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Abstract

This project focuses on the development of a reliable and automated 3D segmentation
pipeline for liver and colorectal liver metastases (CRLM) using computed tomography
(CT) scans. The study combines a detailed literature review on CRLM and deep learning
methods with an extensive experimental process implemented in the MONAI framework.
Multiple architectures, strategies and parameters were explored, with SegResNet emerg-
ing as the most effective model for tumor segmentation. The proposed two-stage pipeline
first segments the liver and then uses the liver mask to guide the tumor segmentation
task.

Particular attention was given to preprocessing and data augmentation to address
issues such as class imbalance, depth variation, and heterogeneous tumor appearances.
Experiments were conducted on an optimized dataset, excluding patients with very few
tumor slices, using Dice similarity coefficient (DSC), recall, precision, and surface distance
metrics for evaluation. The final liver model achieved state-of-the-art performance with a
Dice score of 0.968, while the tumor segmentation model reached 0.674 Dice, a competitive
result given the difficulty of the task and the limited data and hardware resources.

Overall, the project demonstrates the potential of deep learning and 3D medical
imaging for the accurate segmentation of CRLM, providing a solid foundation for future
research using larger datasets and more specialized models.

Keywords: Computed tomography, Colorectal cancer, Colorectal liver metastasis, 3D
image segmentation, Deep learning, Convolutional neural networks, U-Net, SegResNet
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Iepiinyn

H nmapovoa epyacia emkevipoveral 6ty avanTuén evog a&lOTIGTOL KOl GUTOUATOTOIEVOD
CLOTNHOTOG TPLodLdoTATNG TUNHaTontoinong (3D segmentation) HOTOC KO NTATIKAOV OYK®V
amd KapKivo Tov moy€og evtépov kat tov ophov (CRLM), Baciouévo ot fadid pudbnon ko pe
xp11oM voAoyeTik®V Topoypapldv (CT). H pedlémn cvvdvdlel pio extevn BifAoypagikn avo-
GKOTNOT| Y10 TOV KOPKIVO TOV TTa(£0G EVIEPOV KL TIG NTATIKEG LETACTAGELS, [LE L0l TEIPOLLOLTIKT
dwdwocio Tunpatoroinong pe xpnon epyoreiov Padidg pabnong. AokipudotnKoy TOAAATAES
OPYLTEKTOVIKEG KOl GTPATNYIKES, Le TO dikTvo SegResNet vo avadeikvieTol wg To To amoTeLE-
OUOTIKO Yo TNV TUNHoToToinon tev éykwv. H tpotevouevn dtodikacio 600 otadiov, EeKivd
LE TNV TUNMOTOTOINGT TOL NOTOG KOl GTN GLVEYELD YPN|CUYLOTTOLEL TNV TOPAYOUEVT] LAGKO, TOV
NTATOG Yo VoL KOOI YN GEL TNV TUNUATOTOINGON TOV PETACTACEMV.

[dwaitepn éppacn d0OnNKe 610 GTASI0 TPOEMEEEPYAGIOG TV dESOUEVMV KOL OTIG TEXVIKEG
EUTAOVTIGUOV OEOOUEVDV, DGTE VO AVTILETOTIGTOVV (NTHHOTA OTIMG 1] OVIGOPPOTia TV KA-
oemv, N HeTaPfANTOTNTO TOL BAOOVG TOV EKOVOV Kot 1 £TEPOYEVELN TV OYK®V. Ta TEpApOTL
TPOYLOTOTOONKAY GE £voL BEATIGTOTONUEVO GHVOLO SEGOUEVOV, AT TO OTTOT0 ATOKAEITTNKAY
acBeveic pe vepPoiucd pikpo aptBpd oyKmv Kot 1 a&loAdynon TPy LOTOTOWONKE Le LETPIKES
omwg o ocvvtereotng Dice (DSC), n avéxinon (recall), n akpifela (precision) Kot 1 amdcTOON
EMPAVELDV LETAED TOV HOoKAOV. To TEAMKO LOVTEAD NTOTOC TETVYE EMIOOGT VYNAOV ETTEOOV LE
Dice 0.968, evd t0o povtédo 0yKkmv £ptace To 0.674, AMOTELECLLO OVTAYOVIOTIKO LE OVTIGTO(N
BipMoypapio, ded0UEVNG TNG TOAVTAOKOTNTOG TOL TPOPANLOTOS KOl TOV TEPLOPICUEVOV TTO-
pOV.

2UVOMKA, 1 €py0cio AmodEVOEL TN duVaIKT TV HeBOdwV Babidg nabnong kot g Tpio-
SIGTATNG WITPIKNG OMEKOVIOTG OTNV aKPPT TUNUOTOTOINGN TOV NTATIKOV LETACTAGE®Y OO
Kapkivo moy€og eviEPOL Kot 0phov, TPOGPEPOVTAG Lo 1oYVPY| PACT Y10 LEAAOVTIKT EPELVA LE
HEYOADTEPO GUVOAN OEOOUEVMVY KO TTLO EEEIOTKEVUEVA, LOVTEAD KO VTTOOOUEG.

A&Eerc-Kiewowa: Acovikn topoypagia, Kapkivog mayéog evtépov kot opfov, Hratwkég peta-
OTAGELS KOPKIVOU TTay€og eviépov Kat opBod, Tpiodidotarn Tunuatomoinon ewkoévov, Babid
nadnon, Zuvelkticd vevpwvikd diktva, U-Net, SegResNet
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Extevig mepiinyn 6to EAAVIKG

Ewsayoyn

O xapkivog tov mayéog eviépov kat tov ophov (Colorectal Cancer) givat amd T1g o cLYVES
LOPPEG KAPKIVOV TAYKOGUIMG Kol TOPAUEVEL (ol amd TIG o OavatneOpeg LOpPEG KapKivov.
Meléteg avapépovv 0Tt mepinov 1o 10% tav véav doyvacemv kapkivov ke ypovo oyetileton
pe tov KITEO, eva péxpt kar to 50% tov aclevav £xet mapoatnpndetl avantuén petactdoemv
oto Nrap (Colorectal Liver Metastases) oe nepinov 50% tov acBevav. To Nrap anoteAel 10
7o ovyvo Opyovo petdotoonc tov KITEO, Adym TG QUeonC ayYElOKNG GUVOECTG TOVG LEGM
TOV VA0V PAERIKOV GVOTHHATOS. Ot HETAGTAGEIS GTO NP GVVIEOVTAL [LE TTOAD YoLUNAG TTO-
cootd emPiwong, eWkd Yo dSyvdoelg oe mpoywpnuévo otadlo. H mevtaetc emPioon tov
acBevov mov evtomiCovv tov KITEO 6€ mpdipo o1do1o etavel 1o 90%, 0otdG0 Yo S10yvVAGES
0TO UETOOTATIKO GTAO10 TO TOC0GTO TEQPTEL 6T0 14%.

O Paocikog 6KomdG TG TOPOVoaG Epyaciag eivar 1 avdmtuén pog oAoKANpOUEVNS Lebo-
doAoYiOg Yo TNV OWTOUATH TPIGOACTATH TUNLOTOTOINGT TOL HTOTOS KOl TOV UETACTATIKMOV
oYKV amd o oyl Eviepo, o€ ekdveg agovikng topoypaeiog (CT). Xtodyog etvar n dnpuovpyio
€VOG QVTOUOTOV GLGTILATOG TOL Ba umopel vo vroatnpi&etl T dadkosio S1éyvwong Kot EVPE-
oG NG KATAAANANG BEPATEVTIKNG GTPATNYIKNG, KOOMOG 1 YEPOKIVITN TUNUOTOTOINGT OYK®V
elvar (o apketd ypovoPopa dtadikacio. H axpipng tunuatonoinorn Bondd otov Kaidtepo oye-
o O TOL TAAVOL AVTILETMOTIONG, GTNV EKTIUNOT EXOPKOVS VITOAEMOUEVOL VYL0UG NTOTOS GE
TEPIMTMOGELG APOIPESTG TNG KAPKIVOYOVAG TEPLOYNG, CAAL Kol 6TV TTapakolohnon g mo-
petog e vocov.

H 000¢évera

O KIIEO &ekivd cuvnBmg amd Kolonfelg ToAVTOdEG GTO EGMOTEPIKO TOIY®LLO TOV EVIEPOUL,
ot omoiot gvdgyetar otnv mopeia va eEehyBovv oe kKapkivo. H vocog ywpiletal o€ otddia (0 £wg
IV), avdroya pe 1o OG0 Pabid 6To Toiympa Tov viépov eviomilovTon KapKvikd KOTTOPO KO oV
VILapYoLvV petaotacels oe Ao opyava. O petactatikdg KITEO oto Nmap avikel 6to 61ad10
IV (netaotatikoc kapkivog). Ta mpdia otdoto Exovv KaAVTEPT TPHYVMOT Kol OEPATEVTIKN
emtuyio og avtifeon pe To LETACTOTIKG GTASO.

H dnuovpyia petactdoemv oto fmop gival va moAvcHvieto Proroykd eawvopevo. Ta kap-
KWIKE KOTTOpO 0O TO o)D) EVIEPO UETAPEPOVTOL LECH TOV OHLOTOG GTO NTATIKO TOPEYYVLLA,
OOV OAANAETIOPOVV pE TO KOTTOPO TOL NTOTOG KOt dNUIOVPYOHV TO KATAAANAO «UIKPOTEPL-
BaAlov» yia vo avartuyBovv véot dykotl. AvTti 1 GUECT) GUVOEST] TOV OLO OPYAVMV LECH TOL
KOPAyYEWKOH GLUGTHOTOS Etvat kol 0 Bacikdg AOYog Tov 1o Nrap gpeaviletal 1060 cuyva
®G OMUEIO LETAGTACTG.

H dudyvmwon tov petastatikod KITEO oto rap Pacileton o€ ansikoviotikég pebdoovg, pe
™V 0EOVIKT Topoypapio vo amoteAel TNV To drodedopévn emaoyn. H payvntikn topoypogpio

Xiv



(MRI) kou 1 Topoypagio ekrounng modirpoviov (PET) napéyovv emmAéov minpopopieg, aAid
oLYVA SVGKOAEVOVTOL OV EVIOTIGOLV EMOPKMG TOVG HPOVS UPTAoTOTIKOVS Oykovs. Ot Bepa-
TMEVTIKEG EMAOYEG V10U TH CUYKEKPIUEVT UETAOTOON ££0pTOVTOL OO TNV £KTOON TNG. Z€ KPS
apOuo6 achevov (10-20%) etvar dSuvoti 1 0PAiPEST) TOV LETACTACEMV LLE XELPOLPYELD, TTOL De-
WPELTOL 1] TTO ATOTEAEGUATIKN TPOGEYYIOT. 20TOCO GE MEPUTTAOGELS ALENUEVNC TPOGPOANG TOV
Nnatog omd Tov Kapkivo dev etvar 1 apaipeon peydlov £povg Tov opydvov Kpivetal emtkivovuvn,
omoTE EQUPUOLOVTOL TOTIKES TEXVIKEG OVTILETMOTIONG OGS BEPLIKT 1} POSIOCLYVIKY| KaTdALG,
oTOYELEV aKTIVOPOAla, aAAG Kol Aueces yyvoelg ynueodepaneiog oty NraTiKn) aptnpio.
Ye mo coPapd TEPIGTATIKE, XPNCUYLOTOOVVTOL GVOTNHATIKEG Oepaneieg 0TS ynuetodepansio
Kot avocoBepameia.

Ot HETAOTAGELS TOL HTATOG TOPOVGLALOVY OPICLEVA XOPAKTNPLOTIKA TTOL BonBolv Tic anet-
KOVIoTIKEG HeBddovg va Tig avayvopicovv. ['a mapdderypa, cuyxvd epeavifovv vroayyelokn
gwova, ONAadY eaitvoviot AydTePO £VIOVES OO TO PLUGIOAOYIKO NP LETA OO £YYLOT GK10-
ypapwoV otnv afovikn. [TapdAinia to oynua ToVG TAPOVCIALEL VOV TEPLPEPEINKO dOKTOAO
IOV OPEIAETOL GE VEKPWOOT TOV KVTTAPMV TPOG TO KEVTPO TOV OYKOL. 20TOCGO TPOKELTOL Y10 [LL0L,
Kato Bdorn, SVCKOAN avayvopioun Lopen Kopkivov, e£ontiog TG TOIKIAOLOPPIaG TOV ELLQO-
vilel og oynpa kot péyebog, kabdg kot Ty EAAElyYN ovTifeonS e TO YEITOVIKO TEPPAALOV TOVL
NTATOC GTNV TOUOYPOPiaL.

[No va avtipetomiotodyv o1 Tapmdve dVGKOAIESG aviyvevong katl akplPols TunpoTomoinomg
tov petactatikav 0ykov KITEO, éouvv ypnoyoromOetl ohyypoveg Avoelg pe Paon v te-
AVNTH VONUOGUVT. Xvuykekpiuéva, 1 Pabdid pabnon (Deep Learning) €yel amodeiybel dwaitepa
OTOTELECLLATIKY] OTNV ENEEEPYOTIO KO OVAADOT) LTPIKMV EIKOVMV KOt Uopel va BeATuDGEL o1)-
LOVTIKA TNV aKpifeto Kot TV ToydTnTo TG 0VAADONG EIKOVOV, LEIMVOVTOS TAVTOYPOVE, TOV
@OpTo gpyaciog kat to mbavd Adbn TV yioTpov.

BaOwd Madnon

H Babié péadnon (Deep Learning) amoteAet éva and ta o cOyypova epyareios TNG TEXVNTNG
VONUOGUVNG, HE QVENUEVT] EQOPUOYN OTNV 10TPIKN anmelkovion. [Ipoxettan yo pia mposkTaon
™¢g unyovikng pabnong (Machine Learning), Kot agopd tn onpiovpyio. LOVIEA®V TOV EKTOL-
OgVOVTAL GE PEYOAN GUVOAN OEGOUEVOV LE GTOYO VO OVOKAADYOVV TPOTLTTOL KOl GYEGELS LETOED
TV 0edoUEVOV HeTa&D Tovg. Ze avtifeon e T KAaokég pefddovg mov amattovy avlpmmivn
napéuPfocn yo v eE0ymyN YOPUKTNPLOTIK®OV, T0 GUGTHLATO 0VTAE Lofaivouy avTOUaTo Ta TLO
YPNOLLLA XOPAKTNPLOTIKE amevOeiog amd Ta dedopéva.

Ot gpappoyég g Padiag padnong yopilovrar oe 01dpopes Katnyopies. Xtov Topéa g
WTPIKNG OTEIKOVIONG, O1 O GUYVES eivar:

* Ta&wounon (classification): avoyvmdpion Kot KOTYOPOlOTOINoN EKOVOV, T.Y. oV EVOg
Oykog gtvo koAonOng 1 koo ong.

* Tunupartomoinon (segmentation): akpiPic Soy®PIGUOS TOV opiwv VOg opydvov 1| evog
oyxov og ewdveg CT/MRIL

* Evtomopog (detection/localization): evtomopdg VTOTTOV TEPLOYDV LE YPTOT TAUGIOV
N oNUeEl®V EVOLOPEPOVTOC.

* Aviyvevon avouoiov (anomaly detection): avadeién acvvinOiot®V TPOTHTWV TOL d10-
@EPOLVV Od TO PLGLOAOYIKO 16TO.
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"Eva onpovtikd yopaktmpiotikd g BM eivailn cuvodsio tov apyikdv dedopévmv and avti-
ototyeg etkéteg (labels). v emomtevdpevn pébnon (supervised learning), to dedopéva k-
maidgvong dafétovv TkéTEG TOL TEPIAAUPAVOLV TIG KaTNYOpies 1 ToL Opla Tov Tpoomadel va
avayvopicel To LOVTELO, OCTE VA, TO KaBOONY|GOVV GTNV S1001KAGIN TUPUYMYNG TV OVTIGTOL-
YOV TPOoPAEYE®V. TNV Un gnontevdpevn pabnon (unsupervised learning), to GOGTNUA TTPO-
onafei va Bpet kpoed TpodTLTa YWPiG T Pondeta eTikeTdv. TELOG, N Nu-emomtevOUEVT HABN O
(semi-supervised learning), amotelétl £va cuvovacud Twv mapandve 000wV , dtov udvo Eva
HEPOG TV ddOUEVAV EIVOL ETIGTLOGUEVO.

Ta vevpovikd diktva (Neural Networks) amotehovv to PBacwd epyoreio g BM. Eivan
HOVTELQ EUTVEVGLEVA OO TOV aAVOPAOTIVO EYKEPAAO, ATOTEAOVUEVO, OTO CTPMLOTO, TEXVNTDOV
«ELPOVOV» TOL AapPdvovy onpata, ta eneEepyalovrorl Kot to TPowhovv 6To ETOUEVA ETi-
neda. Otav ta dikTua aVTE ATOKTOVV TOAAL KpLEA oTpdpata, ovopdloviat Pabdid vevpmvikd
diktva (Deep Neural Networks — DNN5s) kot £xovv T SuvaTOTNTO VO 0O LOLDVOVY TOADTAOKES
AVOTOPOCTAGELS KOt HOTiPal.

[Swaitepn poro otov Topéa emelepyaciog EOVOV Exovv Ta ZuvelkTikd Nevpovikd Aiktva
(Convolutional Neural Networks). ITeptaapfdvovv 1dikd oidtpo mov epaproloviot Tavm otV
oV OoTE va evToTilovy Bacikd yopaKTNPLOTIKA, OTMG KPOL, GYNLLOTA KOl GTT] GLUVEXELD TTLO
ovvOeteg dopég. Ta ZNA éxovv amoderyel eEpeTIKA AMOTEAECUATIKA GE EPAPUOYES WOTPIKNG
amekdvVIoNs, KOOGS WTopohv Vo ovoyvempicouy Kol Vo 0TOHOVAOCGOLV OYKOLG LE HEYOADTEPT
axpifeta and T Tapadoclakés HeBodoLG.

H exmaidevon evog poviéhov Pabidg pabnong amaitei peydlo 0yKo d€d0UEVOV Kol VYNAN
VTOAOYIOTIKY] 6%V, KATL TOL GYUEPQ EMITVYYOVETOL LE TN YPNON EWIKAV KOPTOV YPUPIKDOV
(GPUs). Eva cuyvo mpopinua elvar n vrepeknaidcvon (overfitting), dniadn n vrepfolikn mpo-
COPLOYN TOL HOVIEAOV GTO GUYKEKPLUEVO YOPOUKTNPIGTIKA TOV OEOOUEVOV EKTOIOEVONC, TOV
HELOVEL TNV 0rOO0GT| TOL € VEX Ayvaota dedopéva. [ va amopevydel avtd, ypnoiponolovviat
TEXVIKEG OTMG 1) Kovovikomoinon (normalization), 1 pOOpion moAvmtAokotnTag (regularization)
Kot 1 emavénon dedopévav (data augmentation).

"Eva onpovtikd ototyeio tov epyacidv BM sivat ot petpicéc a&loddynong (evaluation metrics)
OV TOGOTIKOTOLOVV TNV OOJ00T| EVOG LOVTEAOL. XTIG EPYACIES TUNUATOTOINGNG, OT®MG GTNV
TOPOVCa EPYOTIN, 010 GLYVES LeTPIKEG fvar 0 cuvtedeotng Dice (Dice Similarity Coefficient)
ka1 to Intersection over Union (IoU), mov petpotv 1o kard Touptdlet | meployn mov TpoPré-
TEL TO HOVTEAO LE TNV TPAYUOTIKY «HLAGKO» ToV dyKov. o mpoPAnpata viomouon, cuyva
xpnoyLorotovvtal deikteg Onwe 1 axpifela (precision), n avdxkinon (recall) kot n péon axpi-
Bela (mean average precision) Tov VTOAOYILoVV Ta TOGOGTA WYELOMG OETIKMV KO YELOMDGS aPVT-
TIKQOV TPoPAEYE@V. Ot LETPIKEG AVTEG EMTPETOVY GLYKPIGELS LETOED SLOPOPETIKADV HOVTEAWDY
Kot KaBodnyovv T PEATiOON TOV GTPATNYIK®OV EKTAIOELONG,.

[TopdAinAa, o Bacikdg unyaviopog mov kadodnyel T eKUdONoN YOPUKTNPLOTIKOV 0d TO
povtéro gival ot cuvaptnoelg K6otoug (loss functions). Yroroyilovv tn dapopd avépeso oty
TPOPAEYN TOL HLOVTELOL KO TNV TPOYHOTIKY T, Kol KoB0odN YoV T0 HovTELD va d1opBmaoet
T, Bépn ToL SKTOHOL KATAAANAL, ApOV TIH®POVV TIC AavOacuéveg TpoPAEYEIS. TG epyacieg
TUNUOTOTTOINONG GYK®V GLVOVTAOVTAL GLYVA 1 cross-entropy loss, 1 omoia eotidlel 6T 6O
ta&vounon kabe pixel, ko m Dice loss, mov divel Eppaon otnv akpiPn emtkdAoyn ToV HOCKOV.
Yuyvl LaMoTa ot EpELVNTEG GLVOLALOVV TTEPIGCOTEPES OO [0 CLVOPTHOEL KOGTOVS MGTE VoL
TETHYOVV KOAVTEPT 1COPPOTIO GTNV EKTAIOEVOT).

Mo aKO o GLY VY TPOKTIKT TOL PN CLOTOlEiTON Elval 1 peTtaopd pabnong (transfer learning),
oniaodn 1 a&lomoinomn HOVTEA®V oL £Y0VV EKTTOOEVTEL GE PEYAAD GUVOAL dEdOUEVOV (T.). E1-
KOVEC YEVIKNG XPNONC) Y10 YEVIKOTEPES EPYUCIES KOAL 1| TPOGOPHOYN TOVG GE MO EEEIOIKEVLE-
Veg epyacieg, OTMG M WTPIKN OTEWKOVIOT GUYKEKPILEVAOV 0pyaveV 1 acBeveldv. Avtd Ponbd
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Wwitepa 0tav ta dbéoipa dedopéva ivarl Teplopiopéva, WGTE To HOVTELD va ur Eekvd v
EKTOIOEVOT TOV YOPIS Koo TPOTEPT YVAOOT).

Tunpatomoinon oty latpikn Arekovion

H tunpoatonoinon (segmentation) amotehel pio amd 11 KpLdTEPES EQAPLOYES TNG Pabiig
HaOMNoNG 0TV WTPIKN OTEKOVIOT), KOOMG EMTPENEL TOV OKPIPT SY®PIGUO TG TEPLOYNG TOL
KATOAOUPAVOLV 01 EMAEYUEVEG AVOTOUKEG OOES KOl TAHOAOYIKES TTEPLOYEG OTIG LOTPIKES E1-
KOvec. XtV mepintowon tov Nratikav petactdocwv KITEO, n tunuatoroinon eivan kpioiun
YO0 TNV OVOYVAOPLoT) TOV 0pimv Kot TOV HeyE00VG ToVv OYKOL Kol LETETELTA Y10l TV EMAOYN TNG
KATOAANANG OEPOTEVTIKNG GTPATNYIKNG.

H x0p1a pé€Bodog amecdviong mov ¥pNoYLOTOLEITAL Y10 TOV EVTOTIGUO KOl TNV TOPOKOAOD-
Onon tov petactdcenv etvar n AZovikn Topoypagia (Computed Tomography). H AT emitpénet
TN AMyYM AETTOUEPOV EIKOVAOV TOV NTTATOS KE LYNAN avdAvon, cuvO®G 6 TOAAATALG PAGELS
(.. apTnNplaxn, EAEPIKN), KaTL TOL PoNnOd TNV KAADTEPT SLOUPOPOTOINGCT TOV LETASTUTIKMV
OAAOLOCEMV OO TOV PLGLOAOYIKO 10T0. Q0TOC0 dg AEITOVV 01 TPOKANGELS GYETIKA LE aKpifela
NG AVAALOTNG, E0IKA Yot LuKkpES PAGPBEG N Yo acBeveic Tov £xovv vtoPAndel e ynuelobepaneia.

210 D10 TNG TUNUATOTOINONG, 01 0V0 KVPLEG TPOGEYYIGELS EIVOL 1] OTLLOGLOAOYIKY) TN O
tomoinon (semantic segmentation), 6mwov KaOe ctoryeio katatdooetal oe pio katnyopia (m.y.
VYEG NIap, OYKOG, POVTO), OTwS aKPPdg 6TV Tapovoa Epyacica, GAAR KOl 1] TUNHATOTOINGT
Tapaderypatov (instance segmentation), Tov d1aKpivel EExmPLoTA TOALATALS PAGPEC péGa oV
S ewcovaL.

Ot olyypoveg peréteg eppavilouy po petdfocn mpog TpeOldoTATe LOVTEAN TUNUOTOTON-
o1NG TOL UITOPOLV va a&10To10VY OA0 TOV OYKO dedopévev KaBe AT kot Oyt amhd pepovouéveg
TOWEG KO VO, TOPAYOLV OVTIGTOTYEG TPLOOIACTATEG TPOPAEYELS, dIVOVTOG [0l GUVOALKT] EIKOVOL
Y10 TOL YOPOKTNPIGTIKE TOL OYKOV.

Ta tpia Pacikd 6TAd0 TOV EpyacI®V TUNHATOTOINONG Le epyareioa BM gival n mpoemelep-
yooio TV dedOUEVDV, 1 EKTTOIOELON TOL HOVTEAOL Kot 1) a&loAdynon v mopPAéyemy. X10
TPATO GTANO0 EPAPHOLOVTOL GLYVA TEYVIKEG KMUAKMONG TNG EVTAOTG OGTE OL TYLES POTEWVOTN-
TG Vo BpioKovVTol GE OLOIOPOPPO EVPT], SIEVKOADVOVTAG TO VELP®VIKO OTKTVLO VO ovayvVopPicEL
T KoTdAAN Ao Tpdtuma. Ot evidoelg otnv AT ekppdlovton o povadec Hounstield (Hounsfield
Units 1} HU), o1 omoieg avtiotoryohv o1n d109popeTiky amoppdenon s axtivoforiog amd Kabe
1670 (1. T0 vepd £xer 0 HU, o aépag -1000 HU, ta o614 tdve and +1000 HU). H emdoyn tov
KATOAANLOL £0pOVE TNG KAk aLTh§ etvar Waitepa ypnoun yua T dtdkpion pnetald vylovg
NTATIKOV 16TOV KOl LETAGTATIKOV PAAPDV.

APYLTEKTOVIKESG KOL GTPATNYIKES TUNRATOTOINONS

H wpdtumn apyltektovikn veupovikdv Siktdim mov ypnoiponoteiton og épya BM yua tun-
patomoinon wrpikav ewovov givar to U-Net, mov mapovoidletar oto Zynuoa 5.1. To U-Net
yapoktnpiletor amd T CLUUETPIKT TOL doun oe oynpo U, mov mepthapfavel Eva LovomiTt Gu-
oToANG (contracting path) 1 kwducomom (encoder) yio Tnv e€orymyn YOPOKTNPIOTIKMV Kot EVaL
povorndtt eméktaong (expanding path) 1 arokwduomom (decoder) yio TNV oVOKOTOGKELT TNG
ewovac. Ta Aeyoueva skip connections GuvoEovy Ta, avTioToY0 EMITEDD TOV OVO LOVOTATIAV,
EMTPEMOVTOG T UETAPOPE AETTOUEPELDOY DYNANG AVEALGNG TTPOG TOV ATOKMOLKOTOUTN Y10, VL
oLVOLOGTOVV E TIG TANPOPOpPieg Tov Exovv eEaybel ota Pabdtepa otpdpata. Avti 1 apyl-
TEKTOVIKN €XEL OmOodeLyDel 10101TEPNU AMOTEAECUATIKY GE EPYOUCIEC TUNUATOTOINGONG, E0IKAE GE
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TEPIMTAOGELG OOV omouteital aKPPG EVIOMIGUOS KPAOV 1 OUGKOAN SLAKPLTOV SOUADV, OTMG
ol NTatikéc petootaosls. H apyitektovikn avt pmopet va evioyvbel pe residual blocks mov
oLVOEOVV SLUPOPETIKA EMITESN TOV KMOKOTOUTN Y10, VO EVIGYVGOVY TNV OPOLOINGCT YOPOKTH-
PLOTIKAOV Kol VO LEUWGOVV TO TPOPANLa ¢ e€apdvions twv Paduidwy (vanishing gradients).

Exto¢ amd to U-Net, eetdotnKav Kot GAAEG ApyITEKTOVIKESC TTOL TEPIAAUPAVOLY SLAPOPES
otpatnyikés fertioong. To SegResNet (Zynpa 5.2 ypnotponotei dSradoyikd residual blocks, mov
SEVKOADVOLV TN PON} TOV TANPOPOPLOV HEGO GTO HIKTVO KOl LELOVOVV TO TPOPAN LA TG e€0-
eaviong tov Babuidwv (vanishing gradients). To Attention U-Net eicdyet pnyovicpovg mov emt-
TPETOVV GTO SIKTVO VO «EGTIALEL OTIC O CNUOAVTIKEG TEPLOYES TNG EIKOVAS, PIATPpApOvVTIS 06-
pvPo 1 doyeteg TANpopopies. TELOC, o TpOcPUTEG TPOsEYYioELS, OT™G Ta Vision Transformers
(ViTs), epapudlovv apyés amd 1o medio g enelepyaciog LGN YAdooas Kot Baciloviot o
unyaviopovg tpocoyng (self-attention). Eneepydlovtot 1o GUVOAO TG EIKOVAG Y10 VOL 0O LLOLD-
OOLV GLGYETIOELG HETAED OMOUAKPVGUEVAOV TEPLOYDV TNG. AV KOl amotovv cuvnOmg peyoio-
TEPO GUVOLQL OEOOUEVMV, EXOVV OEIEEL EATTIOOPOPA OMOTEAECLATO KOl GTOV YDPO TNG LUTPIKNG
OTTEIKOVIOT|G.

11 ovvEXELD £YIVE GUYKPLON S0POPOV UEAETMOV TOL APOPOVV EPYACIEG TUNLOTOTOINGNG
TPIGOICTOTOV WTPIKAOV EIKOVOV. Ot OMUOGIEVGELS TOV YPNGILOTOMONKAY AVERTVENY TOLPOA-
Aayég Tov U-Net, 6mmwg to 3D U-Net 1) to V-Net, kaOd¢ kot teyvikég emavénong dedopuévaov
v va BeATidcovv v anddoon oe meplopiopéva datasets. o va avtipetomiotel 1o eovo-
HEVO LIKP®V KOl OIUOTOPTOV OYK®V OTO, OEOOUEVOL LEPIKEG EPEVVEG TTPOYMDPNCUV GTNV OLPai-
peon achevov 1 eIKOVOV Tov 08 TEPIAAUPovOY OYKOVS, eV GAAEG TEPLEAUPOV OTIG LETPIKES
TNV TUNUOTOTOINGT TOL POVTOV, YEYOVOG OV 0dNYNoE G VIEPPOAIKA VYNAL OTOTEAEGLOTA.
[Mopatpndnke TG 01 TEPIEGOTEPES HEAETES YPpMOLLOTTOINCAY EEEMYUEVES KAPTES YPAPIKADV
avénuévng yopntikdttog. Ta dedopéva mposkvyav amd d1ded0UEVES PACELS 1OTPIKMV EIKO-
VOV, O0POPETIKES amd TNV Tapovoa epyacia. Ta amoteAéopato TUNUATOTOINGNG CLKOTION
Kopaivovtal Kovid 6to 96-98%, evd Y10 TOLG LETAGTATIKOVE OYKOLS, Ol o aKPIPEic Epevveg
avaeépovv Dice 70-85%.

MeBoooroyia

YTOY0C TNG TEPUUUOTIKNG O1001KAGT0G TOL AKOAOVONGALE TOV 1 EVPECT TOV KATAAANA®V
TOPAUETPOV KL OPYLTEKTOVIKAOV oL B 0dnyovoay 611 dnpovpyia evog akptPoug kot a&lomt-
GTOL HOVTEALOL TPIGOLACTOTNG TUNLATOTOIN OGNS NOTOS Kol TV HETACTATIKGV OYK®V omd KITEO.
['a o oxomd avtd ypnoyoromdnke extevag N Pipriodnkn MONALI mov sivor £1d0kd oyedo-
opévn yu epappoyég Pabdibg pdbnong oty wrpkn anekovion. To MONAI mapeiye €toyueg
VAOTOMGELS OPYLTEKTOVIKMV, LETACYTLATIGUDY, GUVOPTNCEMY KOGTOVG Kol LETPIK®V OEI0AG-
YNONG, OV ETTAYVVOV CTUOVTIKA TNV avATTLEN TOV HOVIEAOV Kot O1LEVKOADVAY TIG OOKIUES
SPOP®V GTPUTNYIKADV.

To dataset mov ypnoomombnke mpoépyetor amd ™ Pdon The Cancer Imaging Archive
(TCIA) o amoterel To peyolvtepo 0100€o1o0 6OVOLO dedopévav pe mpoeyyepntikég AT amnd
aoBeveic pe petaoctotikd KITEO oto mop. Arotedéiton amd 197 acOeveig pe maboroyucd emPe-
Bouwwpéveg petaotdoels. Kabe mepintwon acOevi meptlapPdvel TpiodidoTaTEG GOPDOCELS GTNV
ool EACT, KAOMOG Kot ovTIGTOYES LACKES Y10 TIG TEPLOYES TOV NTOTOC, TOV OYKW®V, TOV Y-
YelOV KoL TOV PHEAAOVTIKOD NTOTIKOD VTOAEIUUATOG. APYIKA TO OEOOUEVA LETATPATNKAY O
DICOM og NIfTI popon}, ®ote va givat mo cupfatd pe to pyaieio unyovikng pabnong Kot 6t
ouvvéyeln yopiotkay ce cuvora eknaidevong (70%), emkvpwong (10%) kot dokiung (20%),
ue otabdepr] ovvVOeoN 0cOEVOV DGTE VO SIUGPAMGTEL 1] GLYKPIGILOTNTA HETAED TEPAUATOV.
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H npoenetepyacio twv 6edopuévev amoTéAece onpravTiko otddo s epyaciog. Eeappootn-
KoV Pacikol HETOGYNUATIOUOT OTT®G 1) emavaderypatoinyio (resampling) e KOvEG S100TACELG
voxel, kot 1 Kavovikomoinom g £viaong tov eikovov pe ypnon tapabdbpov Hounsfield and
-100 ém¢ 200 HU, dote vo KOADTTETOL O NTOTIKOG 10TOC KOl Ol LETOGTATIKEG OAAOIDGELS, EVED
TEPLOYEG YWPIG EVOLAPEPOV OTIMG 0GTA Ko aépag vo. amokAeiovtatl. Ewdwo Bapog 660nke oto
npoOPANa ™G avicoppomniog dedopévav, kabng apketol achevelg lyav eAdyloteg E1KOVES e
OYKOVG, YeYOVOC oV Bo 001 YOVGE TO LOVTEAD VO EKTTAOEVTEL KUPIMG GTNV OVOYVAPLOT TOV
@OVTOL Kot va Exel xepdtepa amoteAéspota. Io Tov 6Komd avtd ypnoHoToOnKe 1 TEYVIKN
RandCropByPosNegl.abeld tov MONALI, mov dnuovpyel évav aptBuod toyaiov detypdtov pe
VIO-TEPLOYES TNG APYIKNG EIKOVOC, TO OTTOLN TEPLEYOLV GYKOVS aVAAOYQ LE Lo TPOKAOOPIGUEVT
mBavotnrta g 1aENG Tov 80%. ‘Etot, Bedtidvetar 1) icoppomia TV KAAGE®V ot Stac@aiileTot
OT1 10 HoVTELO B GLVOVINGEL ETOPKN OELYLOTO OYK®OV MOTE VAL APOUOIDGEL T YOPAKTPIOTIKE
toug. [TapdAinia, epoappdooTray teyxvikég emavénong dedopévov (data augmentation), OTmg
TEPLOTPOPES, LeyeBHVaels, avaoTpopés, Tpoohnkm BopvPov Kot aAlayéc oty avtifeon, ®ote
va avENOel 1 iovoTNTa YEVIKELONG KO 1) AVOEKTIKOTNTO TOV LOVTEAOL GE TOPAAAAYES.

['o v ekmaidevon SOKIUAGTIKOV OAPOPES OPYITEKTOVIKES, LE KEVIPIKO AEOVA TO TPLOOL-
ototo UNet. H tpiodidotarn £kdoon mov ypnoIonomdnke oty topovca pyacio, TEPIAOLL-
Bavel Tpiodidiotates cuveAiEElg TOLV GUUPAAAOVY GTNV EKUETAALEVGT) YOPIKAOV GUGYETIGEMV
petacd dadoyikav topmv g AT. EmmAéov e€etdonkav: to Attention U-Net, Tov eveouato-
Vel unyavicpovg tpocoyns, to SegResNet, faciopévo oto UNet, adrd pe dradoyud residual
blocks yia Babvtepn expddnon yopic andieio TANpo@opiog Kot povtéda pe transformers (6mmg
10 UNETR xot Swin-UNETR). H gmiloyr] moALOTADV 0pYLITEKTOVIKOV EMETPEYE T] GLGTLLO-
TIKN GUYKPIOT KO TNV 0VAEET TAEOVEKTNUAT®V 1| TEPLOPICUAOV GE SLOPOPETIKH LOVTELQL.

[No v exmaidgvon tov povtélov akoAovdndnke o copPatikny dopn KOOTKA Y10 EPAPLLO-
YEC TPLGOAOTUTNG TUNLOTOTOINONG TOV TPOGAPUOCTNKE GTL EOIKEG OVAYKES TOV OEGOUEVOV
nag. Xe kébe emoyn vworoyiloviav ot facikég LETPIKEG KOGTOVG Kat Dice Yo Ta dedopéva k-
To{dEVOTMG KOl EMKVPMONG, G GLVOLOCUO pe PETPIKES a&loAdynong (recall, precision kAm.)
dOTE VO TOPUKOAOLOEITAL GE TPAYLATIKO YPOVO 1 ATOA0CT] TOV HOVTELOL. XT0 TEAOG KAOE TEl-
pApaTOg VTOAOYILOUE TIC AVTIGTOLES LETPIKES OTA AYVMOOTOH G TOTE dedopéva dokiung. Ta-
PAAANAQL, TEWPAUATICTKAUE KO KATAANEOUE GE POCIKEG VTEPTAPAUETPOVS TOV LOVTEAOV OTG
N ovvaptnon evepomoinong 'softmax’ agod ot KAACES Hog eivatl oVTOATOKAEIONEVES, 1 PEA-
Tiotomoinon pe tov adyopifpo Adam, n emhoyn Tov KowoOTLIOL PLOUOYD pAdnong le-4 Kot
ot teyvikég regularization 6nmg weight decay (1e-5) kot dropout (0.1), dote va amopevyBel
vrepeknaidevon. H a&loddynon Paciotke kupimg oto Dice Similarity Coefficient (DSC), pe
TOV VTOAOYIGHO VO EMKEVIPOVETOL GTIV KAAGT TOL YKoV, KaBmg 1 €0KOAN avayvdpion Tov
@OVTOL B0 UTOPOVGE VAL «KPOVOKDGED TEXVITA TO OMOTEAECUATA LLOGC.

[TopdAinAa, e£€TAGTNKE GUVIOO KO T GTPOATNYIKT TNG LETAPOPAS abnong (transfer learning).
XpnowonomOnke éva mpoekmardevpévo poviédo U-Net and to MONAI Zoo yia tunpatonoi-
NoN GTANVAG TOL TPOGUPUIGTNKE oTa dedopéva paG. Ta mpoekmodevpéva Bapn sivar tkava
va emtayhvouy T 6OYKAoN Katl va, BEATIOC0VV TNV omddoon 6€ HKpOTEPA N O SVCKOAN
datasets, Ommg T0 mapdV. [Mopdpota mepdpata yvav Ko pe t SegResNet apyttektovikn, Tov
TPOEKTOOEVTNKE GE TUNUATOTOINGN NTATOC amd ToL {010 ToL SEGOUEVA OGS KOl GTI GUVEYELD
BeAtioTomomOniKe yio TOV EVTOMIGUO TOV GYKOV.

"o Ttovg EAEYYOVG 6TO AyVEGTO GHVOLO aELOAOYNONG, TO BAPT TOV LOVTEA®Y QOPTOONKOY
Kot ypnopomodnkay yio v mapoymyn tpoPréyenyv. Ot tehkég Tipnég DSC oto othivoro a&lo-
AOYNONGC, G€ GLVOLAGLO LE OTTIKOTOMGELS TV TPOPAEYEWV YPNGLOTOMONKOY Y10 Vo EMAEYET
1N KOAOTEPT OPYITEKTOVIKT Y10 TIC dVO gpyaciec Tunuatomoinong. Ta kaAdtepa povtéda otnv
TUNUOTOTTOINOT) GUKMTION Kot OYK®V GLVOLACTNKOV GTNV Topeia 6€ €vo aLTOUATO GVGTNHLO
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TUNHOTOTTOIN oG, OOV 01 TPOPAEWYELS TOL GLKMTION YPNGILOTOMONKAY Yo Vo Kafodnyncovy
TO LOVTEAO TUNLOTOTTOINGNG TV OYK®V. Mg auTOV TOV TPOTO, TO LOVTEAO AELIOTTOLEL YO PIKT) TTAN-
pogopia kot dopkd cupEpaldpeva, teplopilovtag To GEAALATA EVIOTIGHOD Kot BEATIOVOVTOG
™V axpifela 6Tig TEPLOYES EVOLUPEPOVTOG.

ATOTELEONOTO KO OVAAVGT)

Tunpoartomoinon Nratog

Mo v epyacio tunpotomoinong Hratog dokipudotnkay ot apytrektovikég UNETR, SegResNet
ka1 ResUNet. H dwadikacio mpoenelepyaciog Ntav amin, yopig xpron eravéicemy Kot To Te-
M6 péyeboc v elkdvmv e16600v oy 128-128-48. To SegResNet eiye T vynAdtepn anddoon
070 6VVOAO a&loAdYNoNg te teAkd DSC 0.968, Recall 0.964, Precision 0.96 kot kaivtepo DSC
ouvorov emkbpwong 0.97. Ta GAda SVO HOVTELX ELYOV IKOVOTOINTIKY OTOd00T|, AAAL Alyo Yo-
unAotepa teMkd amoteléspoata, pe DSC 0.963 yia to ResUNet kot 0.956 yuo to UNETR.

To amoteAéspaTa TOV KAAVTEPOV LOVTEAOL OV Ttapovctalovion otov [Tivaka 7.3, eivat ov-
ykpioua pe state-of-the-art povtéda tunuatonoinong nratog. Iapatnpndnie vynin anddoon
OAOV TOV OPYLTEKTOVIKAV LLE TOAPOLOLOL TEAIKO OTOTEAEGLOTA, KATL TOV OTOOIOETAL GTNV OLLO10-
popeio g TePLoyNg evolapépovtog (Leydro, capmg optofetnuévo Opyavo), kat T otabepo-
TNTO ELPAVIONG TOV GE OAES TIG EIKOVEG. Tal LOVTEAD GUYKATVOLV YPTYOPO KATA TNV EKTOLOEVOT),
pe vynAéc tiuég Dice petd amd Alyeg emoyés. Ot teyvikég mpo-enelepyaciog pépeTon vo otabde-
POTTOINGAV TNV EKTTAIOELGN, APOV OE TOPATNPTONKE VIEPTPOCAPLLOYT.

TunpoTomoinc HETUGTUTIKOV OYKOV

Ao to apykd elpdpato KataAnéope oty e€aipeon Tov GOVIOL amd TOV VITOAOYIGUO TG
petpikng Dice, kot 6t xpnon tov PEATIGTOTOMUEVOD GUVOAOD dESOUEVDV e 0GOEVEIC e TTe-
procotepec amd 10 Touég e mapovsio 6yKov, a@ov 1 cUYKAIGN TOL LOVIEAOV NTAV MO GTO-
Bepn ko ypryopn. H odykpion tov apyttektovikdv avédelte mg KoAutepo Eovd T0 LOVTELO
SegResNet pe telkd DSC ot0 ovvoro a&lordynong 0.652, Recall 0.75 kot Precision 0.614,
onwg mapovcidlovror otov [livaxa 7.6. Ta poviéda AttentionUNet kot ResUNet eiyav emiong
wavomontikn amoddoon pe teMkd DSC 0.641 kat 0.604, evd 10 HOVIELO LETACYNUOTIOTOV,
SwinUNETR, ftav apketd xepotepo pe tehkd amotéreopo 0.525.

To meipapa petagopds nabnong anod éva povtélo SegResNet ekmatdevpévo 6TV TUNLOTO-
T0iNoM NTATOG 6TO GUVOAD oG £0€1E€ KAAG OMOTEAEGHATO, MGTOGO EVEYXEL KIVOVVOVG VITEPTPO-
cOpHOYNG ko 0g TpoTiunOnke. Avtiotorya, 1 peta@opd pabnong omd £vo UNet ekamdgvpuévo
OTNV TUNUATOTOINGT CLUK®TION Elxe PTWYO amotédecpa pe TeAko okop 0.531, delyvovtog adv-
vapio YEVIKELOTG TV YOPOKTNPIOTIKMV TNG CTANVOG GE ETEPOYEVEIC LETAGTATIKOVG OYKOVS TOVL
GLUK®OTLOV.

TeMko avTOpaTO CVOTNNA TUNROTOTOINONS

Me Bdon to mapondve aroteléopata, to SegResNet emAéynke ®¢ apyITEKTOVIKT TOV
TEAKOD GUGTNHOTOG, TOGO Y10 TNV TUNUATOTO{NGT TOL NTOTOG, OGO KOl Ylol TNV TUNLOTOTO -
N0N TOV HETACTATIKAOV dykwv. H dopr| Tov auTOHaTOTOHEVOD GUGTHILATOG TEPTYPAPETUL GTO
Yymua 7.17. Ot tpoPAéyelg mov mopnyOncay yio Ty TEPLOYN TOL GLKOTION XPTCLOTO ONKaY
TG0 MG SEVTEPO KAVAAL EIGOJOV Y10l TNV EVIGYLOT TOV YOPIKADV TATPOPOPLDY TOV GUGTHLATOG
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TOV OYKOV, 0G0 Kot KATA TNV O14pKELD TPOENEEEPYUGIOG Y10 TV LETAPOPE TG TEPIKOTN TNG Op-
YIKNG EKOVOS YOP® 0O TNV TEPLOYN TOL GVKMTIOV. Ta TEAIKA ATOTEAEGLATO TOL TOPOLGLALOVTOL
otov Ilivaka 7.12 Ntav apketd vrooydueva, apov to teAkdé DSC tov cuvorov aglordynong
¢ptace 10 0.674. IlapdAinlia, To amoteAécpota TOV HETPIKOV aloAdynong ntav 0.76 recall,
0.647 precision, 0.66 cuvolikd pécso DSC amd 6Aovg tovg acbeveic kKot 8.61 uéon andotaom
emoaveldv. [Topatnpndnke nwg 20/22 acbeveig elyav tedkd DSC peyorvtepo tov 40%, e v
vapén dvo achevav pe akpaieg TIHES, xopig Tovg omoiovg to Tehkd DSC avéfaive oto 0.728.

Ot ontikomoinon Kot cOYKPLoT TOV TPOPAEYEDY TOL HOVIEAOV LE TIG ETIKETES TOL OO -
Kav, avedelgav Kamotla onpavtikd ototyeia. To poviédo edvnke vo omodidel eE0peTIKa o€ [Le-
TOOTOTIKOVG O0YKOVG [ EekdBapo oynua, tkovoromtikd péyebog kot emapkn avtiBeon amd 10
TEPPAALOV TOV GLKMOTION, OTTMG 6T ZyNuata 7.23 ko 7.24. Avtifeta, To poviého eavnke vo
SVGKOAEVETAL VO AVOyVOPIGEL 1] VO TPOPAEYEL ETAPKMOS TO GYNHa Kol TO HEYEDOG GE EIKOVES e
peltwpévn moldtnto Kot EAMT avtifBeon, aALd Kot o€ TOAD PIKpoLG OYKOVG, OTMS GToL Ty HLOTO
7.20 ka1 7.21. Téhog, vanpEay TEPUTTAOGELS OTOL 01 ETIKETEG AV aoTadelc 1] Kot TEAEimG doTo-
YEC, LE OTMOTEAEGLLOL O1 LETPIKES VO TILOPOVV TO HOVTEAD, EVA EKOVE IKOVOTOMTIKY TPOPAEYM.

2ovoyn

Yvvolkd, o KITEO kat o1 nratikég HETAGTACELS TOV amoTeLovV éva cofapd 1aTpikod Tpo-
BAnua pe avEavopevn onpacio. H avantuén pebodmv avtdpatng tunpatoroinong pe m fon-
B0 TG TEYVNTNG VOMUOGHVNG avOoiyeL TOV OpOUO Yo o akpPn Kot o a&lomotn didyvoon,
oV pumopel va BeATidoEL TNV KAVIKY TTPdén Kot v motdtnTa {mng TV achevav.

H peBodoroyia pog ompiydnke o€ £va TPOoEKTIKG SOUNUEVT] GTPOTNYIKY], TOV GLVIVAGE
EKTETOUEVT TPOENEEEPYAGTIA KO EVIOYLTIKEG TEXVIKES, KAODS Ko TNV TapdAANAn a&loldynon
OLLPOPETIKDOV OPYLTEKTOVIKMDV UE CUYYPOVEG TPOGEYYIGEIS. ZNUOVTIKO KOUUATL OTOTEAECE M
TPOoTAOELD SLOUGPAAIONC TG OVTIKEUEVIKOTNTOS TWV OTOTEAECUATOV, LUE OATOPVYT CTOYEVLE-
g e€aipeong aoBevav, 1 LavBavovsog BEATIOONS TOV OTOTEAEGLATOV LLE XPTOT TOL POVIOL.
To teMKO OmOTELEGOL TUNHOTOTTOINOTG GUKMTION Eval CUYKPIGIHO LE KOTAEUOUEVEG EPEVVES
OTNV TEPLOYT], EVD TO OMOTEAEGLO TOV OVTOUOTOTOMUEVOL GUGTNOTOG TUNHOTOTOINGNG [LE-
TOCTOTIKAOV OYK®OV, £Ivol TOAAG VTTOGYOUEVO, EIOIKA OEOOUEVIC TNG OVCKOATNG TUNOTOTOIN GG
TOV GLYKEKIPUEVOL TOHTTOL KOPKIVOL, AALGE KOl TV AGVVETELDY TOL TOPATNPNONKOY 6T 6E00-
péva. IMapdAinia, 60nke Enpaon ot peiwon TV yeudmg apvntik®v (FN) tpopAéyewv, mov
etvan kpioipeg o€ 1TpKEG aproyéS. O cLVOVAGUOC TOV YOPIKAOV TANPOPOPLOV TPOPAEYNS
GLKMTION KO TOV TOTK®V YOPOKTNPIOTIKOV GYNLLOTOG, avTiBeons Kat £vVTaomg amd TNV apyIKn
€IKOVO, GTO OLTOUOTOTOMUEVO cvaTnUo KpiOnke emtuynuévos. H avénuévn anddoon yua gv-
Kpweig dykovg, emapkovg peyéfoug kat avtifeong avadekvieL TIC SLVATOTITEG TOL LOVTEAOL.

Katd ) ddpketa g peAétnc avadeiydnkay opiopéveg TPOKANGELS TOV EXNPENCOV TNV EK-
TodEVOT KoL TNV A0S0 TV HOVTEA®V. ZVYKEKPLUEVA, O ATOLTOVUEVOG YPOVOS EKTTOIdEVOTG
nrav avénuévog, Kabiotovtag avaykaio t yprion wyvpodv GPU pe enapkeic vmoAoyloticong
nopovg. EmmAéov, mapatnpndnke avicoppomnio 6To 6GOVOLo dedoUEVDV, TOGO MG TPOG TO Pabog
TOV TOHOYPUPLOV OGO KOl OG TPOG T GLYVOTNTA ELEAVIONS TV Oykmv. Ot avakpifeleg oTig
ETIKETEC, Ol OLOLPOPEC GTNV EVTACT] KO TOLOTNTO TOV EIKOVAOV, KAHMG Kol 1| LOPPOAOYIKT OVO-
LLOLOYEVELL TV LETOCTATIKMOV OYK®V, OMOTEAEGOV KPIGLLOVG TOPAYOVTES TTOL SVGYEPAVAV TIV
ekmaidevon kot a&loAOYNoN TOV HOVIEA®V.

[Mo vo avTIHETOTIOTOVY 01 TAPATAVE® TEPLOPIGLOL, TPOTEIVOVTAL L0 TAOVGLOL KO OVTITPO-
OOMEVTIKA GUVOAQ OEOOUEVMV, LE KOADTEPT) ETIONUEIDOT OO £101KOVE Y10l 1O GLLEGT] CUVOEDT)
HE KAWVIKEG EQOPUOYES Kol TTO aKpvi amoteAéspota. [Tapdiinia, 1 xprion TpoympnuUEVOV op-
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YLTEKTOVIK®OV TTOL €EEMGGOVV TIG VITAPYOVGES LLE CTOYEVUEVEG TAPOUAAAYES KO ALY Kol GUYPO-
VOV GTPOTNYIKOV LETACYNLOTIGLOD KOl TPOGOYNGS, LTopohV va BeATidcouy v akpifeto g
TunpaTonoinong. Avtiotorya, eEEOIKEVUEVES OTATNYIKEG EKTOIOEVOTNG, GTOYXEVUEVES GTIG OVA-
YKEG TOV KGO Epyov TUNATOTOINON S, LTOPOHV VO EVIGYDGOLY TV axpifela Kat Tn yevikevon.
Télog, n avapddon g vroAoyioTikng vrodoung (cvyypoveg GPU, mepifdAlovia vEQog),
6€ GLVOLOGUO LLE CVTOULATOTOMILEVO KL EDEAKTES GUVOVOAGTIKG GUGTILOTO TUNUOTOTOINGNG,
B0 eMTPEYOLY TTO OTOSOTIKT KOl KAUOKOGIUN EKTAIOEVOT).
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Chapter 1

Introduction

1.1 Background

Colorectal cancer (CRC) is one of the most common types of cancer worldwide and a quite
fatal type of cancer. Around 30-50% of patients with CRC eventually develop colorectal
liver metastases (CRLM), as the liver is the most common site of distant spread due to
its vascular connection with the colon and rectum. CRLM lesions have poor prognosis
statistics and are often unresectable at diagnosis. The main treatment strategies include
surgical resection, if possible, chemotherapy or alternative radiation therapies, which are
determined by the size and distribution of metastatic lesions.

Clinical decisions regarding the diagnosis and treatment options for CRLM patients
rely heavily on accurate CRLM imaging and analysis, usually through computed tomog-
raphy (CT). Tumor segmentation is the process of separating the malignant metastatic
region from the surrounding liver tissue, which can provide valuable insights into surgical
planning, future liver remnant estimation and treatment planning.

Manual segmentation from expert radiologists is a time-consuming and costly process.
That is why automatic segmentation techniques that leverage deep learning methods for
image processing have been developed and applied in medical imaging in recent years.
However, CRLM is a challenging type of cancer with small size, heterogeneity, and irreg-
ular shapes. As a result, there is a lack of complete and well-annotated datasets focused
on CRLM lesions, and therefore a limited availability of deep learning models specifically
designed for this task.

1.2 Research objectives and report structure

The primary objective of this project is the creation of a complete 3D segmentation
pipeline for CRLM segmentation from CT scans. A two-stage automated pipeline is
used for this challenging segmentation task. The liver segmentation precedes in order
to guide the tumor segmentation towards the anatomically relevant region of the liver.
Automating this process is quite important for future clinical application, where rapid
and reliable results are crucial for timely diagnosis and treatment planning.

For this purpose, we divide the objective in two separate segmentation tasks, liver and
tumor segmentation. The best models for each one are then combined in an automated
segmentation pipeline that produces the final CRLM predictions. A variety of prepro-
cessing techniques and augmentations is applied to the data to prepare it for the training



phase. Several prominent network architectures and hyperparameter configurations for
3D medical imaging segmentation are tested on each task. The results are then visualized
through plots and tables, which help compare each processing and training strategy and
architecture and finally come down with the best performing model for liver and tumor
segmentation respectively.

The secondary objective is the development of a comprehensive literature review that
provides the theoretical basis for the experimental part. This review begins with an
overview of the disease, expanding on the development mechanisms and stages of col-
orectal cancer, along with the metastatic mechanism to the liver and the prevailing di-
agnostic and treatment options. The review continues with the presentation of key deep
learning concepts, such as convolutional neural networks, evaluation metrics and training
technicalities. Next, there is an introduction to the key concepts of segmentation tasks in
medical imaging, including modalities, annotation standards and main challenges. The
review ends with a chapter focusing on the most common network architectures used
for segmentation tasks in medical imaging and a comparative analysis of strategies and
networks used in similar research papers.

Our report continues with the presentation of the methodology and the experimental
results and concludes with the critical assessment of the proposed approach and sugges-
tions for further research in this field.

1.3 Scope and limitations

This project specifically focuses on the implementation of a 3D segmentation model for
CRLM patients using a dataset consisting only of CT scans. Other modalities such as
MRI and PET scans are not covered. Both the literature review and the experimen-
tal phase are limited to CRLM and do not cover other types of liver cancer, such as
hepatocellular carcinoma, or CRC metastasis in different organs.

This is strictly a segmentation task and does not involve detection or classification
processes. Many of the programming components for the creation and training of the
segmentation model are imported from libraries like MONAI (Medical Open Network
for Artificial Intelligence) and PyTorch, rather than being implemented entirely from
scratch. This includes network architectures, preprocessing transforms, plotting modules
and some metrics.

The patient data used is restricted to the specific public dataset provided by the
instructors for this task, with no other open-source datasets incorporated. The local GPU
available had only 4 GB of memory, which was not ideal for heavy 3D data and resulted in
longer training and testing times. Later, remote access to a machine with a 16 GB GPU
was granted, enabling faster and more specialized experimentation. However, there were
substantial time and computational constraints that prevented the exploration of some
available models, especially heavier ones, as well as the implementation of specialized
deep learning techniques and architectures that were covered by relevant research.



Chapter 2

Medical Background on CRLM

2.1 Overview of Colorectal Cancer

2.1.1 General definition

A malignant tumor that develops from the inner lining of the colon or rectum is called
colorectal cancer (CRC). It usually begins as a benign polyp and progresses through
a number of histological, morphological, and genetic changes over several years of being
asymptomatic, before finally becoming an invasive cancer. Anomalies known as colorectal
polyps develop on the colon’s or rectum’s inner wall. Although the majority of polyps
are benign and not cancerous, many of them are precancerous (adenomas), which can
develop into cancer if they are left untreated for more than 5-7 years. The stage at
diagnosis has a significant impact on the prognosis, as early detection through screening
is essential to decrease incidence and mortality probabilities [12].

CRC can often spread to other organs through the lymphatic system or bloodstream,
in a process known as metastasis. The liver is the most common organ for metastasis
of CRC, due to its connection to the colon and rectum through the portal vein system.
Despite advances in treatment methods, up to 50% of CRC patients develop CRLM,
which is deemed the primary cause of death from CRC [13].

2.1.2 Current global epidemiology

Almost 10% of all annually diagnosed cancers and cancer-related deaths worldwide are
related to CRC. It is the third most common cancer in men and second in women with an
incidence and mortality rate of 25% lower than in men [14]. Due to advanced detection
tools as well as dietary and lifestyle factors, developed countries have the highest incidence
and mortality rates. On the other hand, urbanization and western globalization are
causing rising trends in developing nations. Notably, there has been a worrying rise in
the incidence of CRC in people under 50, particularly for left-sided and rectal cancers.
Over 148,000 new cases and almost 50,000 deaths from CRC were predicted for a single
year in the United States, with the 5-year survival rate being 90% for early detection,
but drastically lower for detection at a regional or distant stage [15].



2.1.3 Risk factors

There are two main categories of risk factors for CRC: modifiable and non-modifiable. Age
is one of the major non-modifiable risk factors, as the chance of developing CRC increases
significantly over 50 years of age. Another contributing factor is sex, since the disease
is more common in men than in women. A family history of CRC, especially involving
first-degree relatives, is known to double an individual’s lifetime risk of developing the
condition [16]. Hereditary syndromes, such as Lynch syndrome and familial adenomatous
polyposis are responsible for 5-7% of all CRC instances [13]. Type 2 diabetes and specific
ethnic backgrounds are additional non-modifiable factors that have been linked to an
increased risk of colorectal cancer.

The main modifiable risk factors include lifestyle and environmental parameters.
Smoking, excessive alcohol consumption, obesity, and increased red and processed meat
consumption are the main environmental factors related to this type of cancer [12]. Re-
cent studies [14] suggest the potential role of gut microbiota, with bacterial species im-
plicated in promoting colorectal carcinogenesis. On the other hand, specific diets, such
as those high in calcium, green leafy vegetables, and fiber, have been found to lower the
risk of CRC. Even with the acknowledgment and consideration of the above precaution-
ary factors, screening remains essential for early detection and dramatically lowers the
development and mortality rates of the disease.

2.2 Pathophysiology of CRC

2.2.1 Origin and early development of CRC

CRC typically develops from focal changes within benign precancerous polyps. These
polyps are localized growths or aggregations of abnormal cells found within the inner
lining of the colon or rectum [12]. Most polyps are benign (noncancerous), but certain
types can change into cancer over the course of several years, making them quite common,
especially in older ages.

Adenomas and sessile serrated polyps (SSPs) are the two main types with potential
of becoming malignant. Adenomatous polyps are considered a precancerous condition
because they can transform into cancer. The most common type is tubular adenomas.
Villous adenomas are rarer, but more dangerous in terms of malignant transformation.
The third type is tubulovillous adenomas, which exhibit mixed characteristics from the
other two types. All adenoma types are characterized by dysplasia, meaning they exhibit
abnormal growth, while still being benign.

On the other hand, SSPs are a type of colon polyp with a serrated or saw-toothed
appearance under a microscope [12]. They are responsible for only 25% of colon cancer
cases; however, these are generally more aggressive types of cancer. SSPs are classified
in four categories based on their shape:

« Hyperplastic polyps and inflammatory polyps are more common, but in
general they are not precancerous.

 Sessile serrated lesions (SLLs) are the most common precancerous polyps and
have a flat shape, making them similar to hyperplastic polyps.



o Traditional serrated adenomas are the rarest type of serrated polyps, found in
less than 1% of the population. They resemble traditional adenomas and are also
precancerous.

» Unclassified polyps are serrated polyps that may appear sessile and serrated but
also have signs of dysplasia or features resembling adenomas.

Several characteristics of polyps can increase the chances of malignant transformation,
including size larger than 1 cm, number greater than three, and signs of dysplasia.

Most colorectal cancers are adenocarcinomas, which originate in cells that make mucus
to lubricate the inside of the colon and rectum. Other, less common colorectal tumors
include:

o« Carcinoid tumors (from hormone-producing cells)
 Gastrointestinal stromal tumors (GISTs)
o Lymphomas (cancers of immune cells)

 Sarcomas (connective tissue cancers)

2.2.2 Stages

Over time, cancer that starts as a polyp may spread to the colon or rectum’s wall, which
is made up of several layers. The mucosa, the innermost layer, is where colorectal cancer
begins, and it can spread through some or all of the other layers. Cancer cells in the
wall have the potential to develop into lymphatic or blood vessels, which are microscopic
channels that remove fluid and waste. They can then proceed to distant areas of the
body or to neighboring lymph nodes. The stage (extent of spread) of a colorectal cancer
depends on how deeply it grows into the wall and if it has spread outside the colon or
rectum.

Colorectal cancer is diagnosed in five stages from 0 to IV with an increasing degree of
spreading. Cancer can spread to other areas in the body through nearby tissue, blood,
and the lymph system [17]. Several diagnostic tests are used to determine the stage of
colorectal cancer, including biopsy, blood work, biomarker testing, chest X-ray, CT scan,
MRI and PET scan. Based on the thorough description and presentation of the stages
by the American Cancer Society, here are the characteristics of each one.

Stage 0

In stage 0 colorectal cancer, abnormal cells are found in the innermost layer of the colon
or rectum, called the mucosa. There are two types of surgery suggested for this stage,
polypectomy, where cancerous polyps are removed with a wire loop during colonoscopy,
or local excision, which removes polyps from the colon lining along with a small amount
of healthy tissue.

Stage 1

Stage I colorectal cancer has surpassed the mucosa and has spread into the muscular layer
of the colon or rectum. Cancerous cells have been found in the mucosa, the second layer



(submucosa) and probably the third layer (muscularis propria), however, the disease has
not spread to any lymph nodes or nearby tissue. The surgical options suggested for this
stage are the same as for stage 0. Additional surgery for further tissue removal might
be required for high grade cancerous polyps. If the cancer was not in a polyp, a partial
colectomy is required to remove the cancerous portion of the colon and any nearby lymph
nodes.

Stage 2

In stage II, the cancerous cells have spread into the outer layers of the colon or rectum
but have not yet reached the lymph nodes or any other organs. Stage II colon cancer is
divided into three categories.

o Stage ITA cancer has spread up until the muscularis propria layer of the colon.

» Stage IIB cancer has spread through to the outermost layer of the colon wall, called
the serosa.

« Stage IIC colon cancer has spread through the colon wall and into nearby tissue.

Partial colectomy, a surgery that removes the section of colon where the cancer is
located, as well as nearby lymph nodes, is the only treatment usually required at this
stage. In some cases, adjuvant chemotherapy, hence chemo treatment given after the
surgery, is recommended to help destroy any remaining cancer cells and reduce recurrence
probabilities.

Similarly to colon cancer, stage II rectal cancer is also divided into three categories.

 Stage ITA rectal cancer has spread to the outermost layer (serosa) of the rectal wall,
through the muscle layer of the rectum.

o In stage IIB the cancerous cells have spread through the serosa of the rectum to
the tissue that wraps around the organs, called the visceral peritoneum, in the
abdomen.

o Lastly, stage I1C rectal cancer has spread through the serosa to nearby organs.

According to the specific requirements of each case, a combination of chemotherapy,
surgery and radiation is used to deal with stage II rectal cancer. Chemotherapy (usually
5-FU or capecitabine) and radiation are usually the primary treatment options, with a
goal of reducing the size of the tumor ahead of surgical treatment. The final phase of
treatment is additional chemo rounds after surgery.

Stage 3

Stage III colon cancer is characterized by tumor growth beyond the inner lining of the
colon and its spread to nearby lymph nodes, but without further metastasis. In Stage
IITA, cancer has penetrated the innermost layers of the colon wall (the mucosa and
submucosa) and has spread to nearby lymph nodes or surrounding tissue. Stage IIIB
regards deeper invasion into the muscle layer, the outermost layer (serosa), or even into
the lining of the abdominal cavity (visceral peritoneum), with involvement of up to six
lymph nodes. In Stage IIIC, cancer has penetrated the serosa or nearby organs and has



spread to four or more lymph nodes. This stage signals advanced local disease and a
significantly increased risk of distant metastasis, particularly to the liver.

The designated treatment to remove the infected section of the colon, along with
nearby lymph nodes, at this stage of colon cancer is partial colectomy. For better results,
chemotherapy regimens with a combination of drugs are used to accelerate the destruction
of cancer cells. However, in cases where the tumor cannot be removed completely by
surgery, chemotherapy along with radiation therapy are used to shrink the cancer so it
can be removed later with surgery. In other cases where the cancer was attached to a
nearby organ or the tissue that was removed had margins positive in cancer, radiation
therapy may also be used after surgery to ensure complete healing of the region.

Stage 4

In stage IV colorectal cancer, the cancer has been carried through the lymph and blood
systems to distant parts of the body. This type of cancer is called metastatic, since the
cancer cells have formed a new tumor outside their place of origin. The new, metastatic
tumor is the same type of cancer as the primary tumor, even though it is in a different
part of the body. The most likely organs to develop metastasis from colorectal cancer are
the lungs and liver. Stage IV colon cancer is divided into three categories.

» Stage IVA cancer has spread to a distant area or organ from the colon, such as the
liver, lung, ovary, or a distant lymph node.

» Stage IVB cancer has spread to more than one distant area or organ from the colon.

o Stage IVC cancer has spread to the tissue that lines the wall of the abdomen and
may have spread to distant areas or organs.

Similarly, stage IVA rectal cancer has spread a distant area or organ from the rectum,
such as the liver, lung, prostate, or distant lymph node, stage IVB rectal cancer has
spread to more than one distant area or organ and stage IVC rectal cancer has spread to
the tissue that lines the wall of the abdomen and possibly other organs such as the liver,
lungs, and brain.

Stage IV colorectal cancer follows a specific treatment plan. Firstly, surgery is per-
formed to remove or reduce the size of the cancer in the colon, the rectum, or other
organs of metastasis, such as the liver, lungs, prostate, or ovaries. After that, radiation
or chemotherapy are implemented to relieve symptoms and enhance cancer cell destruc-
tion. Immunotherapy, which is a class of cancer drugs based on biologics that find and
destroy colorectal cancer cells. Lastly, immunotherapy has recently emerged as a promis-
ing treatment option for this stage, particularly in patients with tumors that exhibit high
microsatellite instability (MSI-H) or mismatch repair deficiency (IMMR), where it can
lead to durable responses and, in some cases, long-term remission [18].

2.3 Liver metastasis mechanism and relevance

2.3.1 Metastasis definition and explanation

As suggested by the National Cancer Institute’s official website, metastasis is the process
by which cancer cells are transferred to other parts of the body. Metastatic cancers spread



from the original region to a distant part of the body and are usually referred to as “stage
4” cancers of their relevant type.

Lab experiments have shown that metastatic cancer cells have identical features with
the primary cancer cells. Doctors can easily identify the metastatic cells in the foreign
region and proceed with the appropriate treatment for the primary cancer they originated
from. For example, colorectal liver metastatic cancer is treated like stage 4 colorectal
cancer and not like liver cancer. CRC can spread to other parts of the body through the
blood or lymphatic system.

2.3.2 Colorectal cancer statistics and prognosis

The Surveillance, Epidemiology, and End Results (SEER) Program collects and pub-
lishes data from population-based cancer databases, which are used to improve research,
raise awareness and support efforts to reduce the impact of the disease across the U.S.
population. It is managed and supported by the National Cancer Institute (NCI).

According to their published statistics, colorectal cancer represents 7.6% of all new
cancer cases in the U.S., with an estimated 154,270 new cases and 52,900 deaths for 2025.
The disease is more common in men than in women. The incidence rate was 37.1 per
100,000 men and women per year based on 2018-2022 data. Death rates increase with
age with the most diagnosed group being individuals aged 65-74. Colorectal cancer is
the second leading cause of cancer death in the United States, with a death rate of 12.9
per 100,000 men and women per year based on 2019-2023 data.

The stage of diagnosis plays a crucial role in determining treatment options and sur-
vival outcomes. When colorectal cancer is found early and remains localized (stage I) the
prognosis is significantly better. Approximately 34.2% of cases are diagnosed at the local
stage, with a 5-year relative survival rate of 91.5%. Figure 2.1 confirms the importance of
early diagnosis, by showing the increased survival rates for patients diagnosed in stage I,
relative to later stages. Moreover, it showcases the impact of diagnosis during metastasis,
emphasizing the need for accurate diagnosis for metastatic lesions.

In contrast, metastatic colorectal cancer (mCRC) has a significantly worse outlook.
Among people diagnosed with mCRC, approximately 70% to 75% survive beyond 1 year,
30% to 35% beyond 3 years, and fewer than 20% survive beyond 5 years from diagnosis
[19]. Overall, the 5-year survival rate for mCRC is around 14% [20].

The liver is the most frequent site of metastasis, which in turn is the primary cause
of death among CRC patients. About 50% of patients will develop liver metastasis at
some point after diagnosis, while in 15-25% of cases, liver metastasis has already occurred
upon diagnosis [21].
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Figure 2.1: Survival rates by stage of diagnosis from SEER [1]

All the above statistics explain the current situation regarding the disease and the
importance of further research to enhance diagnosis and treatment procedures.

2.3.3 Common sites of metastasis

As already stated, the liver is the most common site of metastasis in patients with CRC,
due to the blood supply that exists between the large intestine and the liver. The anatom-
ical and vascular connection from the liver to the colon happens through the portal venous
system, a network of veins that carries blood from the abdominal portion of the digestive
tract, spleen, pancreas, and gallbladder to the liver [13]. Up to 50% of CRC patients will
develop liver metastases during their disease course, and the liver remains the leading
cause of death among them.

Other common sites of metastasis include the lungs, bones, brain, or spinal cord.
The finding of cancerous cells in these regions, especially after a patient has undergone
treatment for CRC, is a strong indication of metastasis. Metastatic colorectal cancer is
usually found after treatment at the original area of occurrence, when colorectal cancer
cells are found in different regions of the body. This is different from recurrent colorectal
cancer, which refers to the return of cancer at the original area or nearby lymph nodes
after a period of remission, rather than in new parts of the body.

2.3.4 Mechanisms of metastatic spread to the liver

Colorectal liver metastasis occurs through a complex, multi-step process known as the
invasion-metastasis cascade [20]. Cancer cells separate from their original location and
enter surrounding tissue by rupturing barriers such as the basement membrane. After
that, they move to distant organs like the liver via the lymphatic or circulatory systems.
To survive in circulation, they use immune cells to form protective clusters.

Few of these cells can survive and proliferate once they arrive in a new organ. Many go
into a dormant state, remaining inactive for extended periods before they may reactivate
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and develop into metastatic tumors. Certain cancer cell subtypes, known as “metastasis-
initiating cells,” possess unique characteristics that enable them to reproduce and spread
to new locations. These cells are supported by a favorable local environment called the
“tumor microenvironment” and frequently develop from cancer stem-like cells, which can
self-renew, differentiate, and initiate tumors [22].

The epithelial-mesenchymal transition (EMT), in which tumor cells lose cell-to-cell
adhesion and acquire mobility and invasive capabilities, is another important factor that
facilitates tumor metastasis. This process enables them to enter lymphatic or blood
vessels, remain in circulation, and colonize distant locations of the body.

Additionally, cancer stem cells (CSCs) are essential for metastasis, since once they
reach secondary organs, these cells can start the growth of new tumors due to their high
capacity for self-renewal. Both mobility and colonization potential are promoted by the
frequent overlap of EMT and CSC traits [22]. Lastly, genetic mutations, such as those in
the p53 gene, can also promote tumor spread and resistance to treatments [23].

2.3.5 Biological behavior of liver metastases

Most CRC metastatic cells reach the liver due to the portal venous system, which trans-
ports blood directly from the colon to the liver. Cancer cells engage with specialized cells
in the liver area, including Kupffer cells, liver sinusoidal endothelial cells (LSECs), and
hepatic stellate cells. The metastatic process is completed through these interactions, as
they promote tumor survival, stimulate angiogenesis, and enable immune evasion [21].
Figure 2.2 visualizes the aforementioned cells of the hepatic region for better understand-
ing of the metastatic process.

The metastatic progression in the liver typically follows four key phases. During the
microvascular phase, cancer cells become lodged in sinusoidal vessels. This is followed by
an extravascular, pre-angiogenic phase, then an angiogenic phase that provides essential
oxygen and nutrients. Lastly, metastatic cells proliferate into detectable tumors during
the growth phase. At each step, dynamic interactions occur between the invading cancer
cells and various liver-resident or recruited cell types.
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Figure 2.2: Schematic structure of the liver [2]

Once lodged in the liver, metastatic CRC cells encounter a distinct microenvironment
composed of hepatocytes, LSECs, Kupffer cells, hepatic stellate cells, dendritic cells,
and natural killer (NK) cells. These cell types have specialized roles in metabolism and
immune modulation and are responsible for responding to antigens entering the liver via
the portal circulation [21].

2.4 Diagnosis and imaging modalities

2.4.1 Role of imaging in diagnosis and monitoring

A health screening test is a medical test or procedure performed on asymptomatic patients
to determine their likelihood of having a particular disease. Imaging-based screening en-
ables the early detection of pathologic conditions before symptom appearance or physi-
cal examination findings. These tests are performed and analyzed by radiologists, who
aim to decrease false-positive findings, successfully distinguish aggressive malignancies
from benign ones, avoid over-treatment, decrease the radiation dose needed for screening
modalities and establish best practices for managing pathologic findings [24].
Imaging-based screening tests are crucial for the detection, staging, and surveillance
of CRC and CRLM. Early detection through high-quality screening and diagnostic imag-
ing significantly reduces CRC incidence and mortality rates [25]. Colonoscopy remains
the main diagnostic medical procedure, supported by quality metrics such as adenoma
detection rates that can help identify cancer risk [26]. Advanced imaging modalities,
like computed tomography (CT), magnetic resonance imaging (MRI), and positron emis-
sion tomography (PET) scan, offer precise visualization of both primary tumors and
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metastatic sites, crucial for treatment planning. Al-enhanced technologies have further
improved diagnostic accuracy and efficiency, particularly in non-invasive techniques like
CT colonography and capsule endoscopy [27].

2.4.2 Clinical characteristics of screening methods and AI influ-
ence

A range of effective screening methods has been developed to detect abnormal tissue that
could belong to a premalignant lesion or an early-stage tumor. These include invasive
techniques, like colonoscopy and flexible sigmoidoscopy and more passive options, like
capsule endoscopy and imaging exams like CTs and MRIs. Additionally, there are stool
and blood-based tests, including the guaiac fecal occult blood test (FOBT), fecal im-
munochemical test (FIT), and multitarget stool DNA (mt-sDNA) test, that are used to
detect cancerous cells [25].

Virtual colonoscopy, or computed tomographic colonography (CTC), offers a non-
invasive alternative and benefits from AI models that enhance image analysis, enabling
better discrimination of neoplastic and non-neoplastic lesions. Capsule endoscopy (CE)
serves as an alternative for incomplete colonoscopy cases and can also benefit from Al
tools for automated polyp detection, reduced human error and review time [28].

Blood-based screening methods are also emerging, with the help of Al-assisted models
using blood tests and electronic health data that can assess CRC risk with high sensitivity
and specificity. These models can perform thorough analysis of complete blood count
data, serum biomarkers, and circulating tumor cells [28]. Sigmoidoscopy examines only
the distal colon, has >95% sensitivity for CRC in that region, and is less invasive but
misses proximal lesions and may be uncomfortable without sedation [15].

2.4.3 CRLM Imaging — prognosis and challenges

The main prognostic indicators for CRLM lesions include number of metastasis, size and
location of the lesions, response to systemic chemotherapy, time of diagnosis for different
occurrences (e.g., synchronous vs. metachronous), the presence of tumor cells within
blood or lymphatic vessels, as well as the quality of the underlying liver tissue [29].

Imaging techniques for CRLM entail notable challenges that impact both detection
and treatment planning. While CT remains the most available and quick modality, its
sensitivity drops significantly for lesions smaller than 1 cm, particularly after chemother-
apy [30]. PET/CT is great at identifying extrahepatic disease but struggles to de-
tect small or mucinous metastasis, limiting its utility for liver lesions, while integrative
PET/MRI may improve lesion detection and confidence, but is a technically complex
procedure.

Some specialized MRI techniques achieve higher sensitivity per lesion; however, it is
a time-consuming and costly procedure, with significant error margins due to patient
movement. Advanced imaging techniques, including radiomics and Al-driven analysis,
show promise in enhancing detection and response assessment, while there is still room
for improvement for small sample sizes, workflow integration, and the need for validation
protocols [31].

Colorectal liver metastasis displays some distinct imaging characteristics that help
doctors differentiate them from other liver lesions. One of the most common features is
the presence of a peripheral rim, especially visible on contrast-enhanced imaging, caused
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by central necrosis and peripheral viable tumor tissue, which enhances during the portal
venous phase. These lesions are typically hypo-vascular, appearing less enhanced on
CT or MRI scans, than the liver parenchyma that surrounds them. On MRI scans,
CRLM often appear brighter than the surrounding liver tissue on T2-weighted images,
which helps in identifying tumors. This brightness is due to the water content and
structural changes within the tumor. In addition, diffusion-weighted imaging (DWI),
a type of MRI that detects how water molecules move within tissues, shows restricted
diffusion in CRLM. On some instances, the liver surface appears pulled inwards due to the
presence of a metastasis, creating a “capsular retraction” feature. Additionally, CRLM
often demonstrate rapid growth and irregular margins, and may show satellite lesions
nearby [31].

2.5 Primary treatment methods and challenges

2.5.1 Clinical implications and treatment

Treatment for CRC usually involves multiple steps, starting with surgical resection when
the disease is localized and adding chemotherapy and radiation for advanced stages or
high-risk cases. Systemic therapies, such as combinations of cytotoxic medications, tar-
geted biological agents, and immunotherapies, are the standard treatment for metastatic
colorectal cancer. Significant clinical challenges still exist despite advancements in these
treatments. These include addressing tumor heterogeneity and resistance mechanisms,
optimizing treatment regimens, finding trustworthy biomarkers for tailored therapy, and
making sure genomic testing that analyzes the patient’s complete set of genes, is available
to all populations. While the number of options is constantly growing due to ongoing
research into new targeted agents and immunotherapeutic approaches, improving out-
comes for CRC patients still primarily depends on increased research and accessibility of
methods [32].

2.5.2 CRLM treatment options

While liver metastasis can be quite challenging, liver-directed therapies offer important
options for CRLM, especially when surgical resection is not possible or safe. While cura-
tive resection is possible in only 10-20% of cases, local treatments help manage tumors and
sometimes enable surgery by reducing tumor burden. Most common treatment options
aiming to reduce or even remove metastatic tumors include chemotherapy, HAI therapy,
ablation, radiation, cryotherapy or heat. Apart from the tumor region, the nearby tissue
is usually unaffected by these less invasive liver-focused methods. The major treatment
options for CRLM as described by the Colorectal Cancer Alliance are presented below.

During hepatic artery infusion, concentrated chemotherapy is directly delivered to
liver tumors via a pump connected to the hepatic artery. This approach reduces sys-
temic exposure and enhances local tumor control. It may enable resection for previously
unresectable liver metastasis and is also used to decrease recurrence rates after surgery.
The major side effect from HAI is liver toxicity, so liver enzymes should be monitored
closely after treatment [30].

Other common measures for CRLM are embolization techniques, which block blood
flow to tumors, depriving them of oxygen and nutrients vital for their growth. More
specifically, portal vein embolization is used to promote growth and hypertrophy of the
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healthy liver remnant, increasing the safety and success rate of future surgery. Though
effective, it carries a risk of post-embolization syndrome, including pain, fatigue, nausea
and fever [31].

Selective Internal Radiation Therapy (SIRT) introduces tiny radioactive spheres into
the liver’s arterial supply. A small flexible tube is guided through an artery into the liver
and the microspheres are delivered directly into the tumor, where they release radiation.
This targeted therapy delivers a dose of internal radiation up to 40 times higher than
conventional radiation therapy. It is typically used in patients who have failed or are
ineligible for standard chemotherapy. It offers better local control and delayed disease
progression, though survival benefit is still being researched [33]. Side effects include
abdominal pain, nausea, loss of appetite, mild fever and increased fatigue, however the
procedure is quick and painless.

Another radiation alternative is stereotactic body radiation therapy (SBRT) [34]. It
enables highly precise radiation delivery over just a few sessions, with success rates up to
90% in select patients in contrast to standard radiation methods that fluctuate around
40%. Tt is especially valuable for oligometastatic cases or when other ablative methods
are discouraged. Despite its greater dosage, SBRT has relatively few side effects, mainly
short-term fatigue.

Microwave Ablation (MWA) uses microwave energy to heat and destroy liver tumors,
often guided by imaging such as CT or ultrasound. An ablation antenna into the center
of the liver tumor, where it delivers thermal energy to destroy cancer cells. It is a rarer
procedure, best suited for tumors less than 3 cm and in locations difficult to reach surgi-
cally [35]. Recovery is quick in laparoscopic cases, but deeper lesions or open procedures
may increase risk of complications.

Radiofrequency Ablation (RFA) applies high-frequency electrical currents to generate
heat and destroy cancer cells. The procedure is usually done by inserting a needle through
the skin, then placing a probe through the needle and positioning it in the liver tumor.
Alternatively, it can be done laparoscopically or even with open surgery. It is a widely
used non-surgical approach, either as a standalone treatment or to complement surgery
in cases hardly resectable [36]. Most patients recover quickly, although complications like
skin burns or infection are possible.

2.5.3 Specialized treatment options for mCRC

For cases of metastatic colorectal cancer (mCRC) that cannot be resected, systemic
therapy remains the primary treatment approach. This includes chemotherapy, biologic
agents such as antibodies targeting growth factors, immunotherapies, or a combination
of these strategies.

Approximately 50% of patients with metastatic CRC have tumors that are “wild-type”
for KRAS, NRAS, and BRAF genes, meaning the genes are not mutated in the tumor
cells. These genes greatly affect cell growth and division, therefore when mutated, they
can drive cancer growth and worsen treatment options. Wild-type tumors, particularly for
these genes, are generally more responsive to certain targeted antibody therapies, which
can increase median survival by 2 to 4 months compared to chemotherapy alone. Progress
in molecular profiling has improved the ability to tailor treatments to the biological
characteristics of individual tumors. Although complete cures in metastatic CRC are
still rare, personalized therapies have been increasing patients’ life span [37].

The spread of CRC to distant organs is the leading cause of death and continues
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to present major treatment challenges. However, substantial advances have been made
in the development of targeted therapies, with several ongoing clinical trials and FDA-
approved drugs being available to patients [20]. Immunotherapy has shown meaningful
success in tumors with high microsatellite instability (MSI-H), marking a significant step
forward in mCRC treatment [38].

In addition, several emerging technologies including immunostimulatory cytokines,
nanotechnology, and the use of oncolytic viruses, bacteria, and therapeutic peptides ex-
hibit promising results in other cancers and hold potential future applications in mCRC
as well.

2.6 Segmentation in Tumor Representation

2.6.1 Role and challenges of segmentation in diagnosis

Diagnosis and treatment planning for CRLM are heavily influenced by the recent ad-
vancements in Al and Deep Learning technologies. Deep Neural Networks have been
found to be especially effective at image classification and segmentation tasks which are
a key part of medical imaging methods for improved diagnostic procedures [39].

In medical imaging, 3D tumor segmentation refers to the process of finding and out-
lining the exact boundaries of a tumor within volumetric image data like CT scans.
This task is crucial for accurate diagnosis, treatment planning, and monitoring of tumor
progression or response to therapy.

In the case of metastatic liver tumors, segmentation tasks are quite challenging, due to
the variety in tumor shape, size, and appearance, as well as the lack of contrast between
malignant tissue and surrounding healthy liver. Nevertheless, accurate segmentation is
necessary, as it provides the essential foundation for radiomic analysis and guides the
physician’s decision making [19].

2.6.2 Al Advancements and concerns in imaging and segmen-
tation

Automated tumor segmentation has been recognized by clinicians as a tool that ac-
celerates image analysis, and minimizes both oversights and human error—ultimately
contributing to improved patient care [40]. Artificial intelligence (Al), particularly deep
learning, has emerged as a promising approach to enhance both the precision and speed
of image-based classification while keeping high standards of clinical quality.

As digital transformation projects in healthcare keep expanding, adding decision-
support systems with standard workflows can speed up adoption and allow analysis of
multiple tumor samples at once. This approach could help tackle tumor heterogeneity
and improve prognosis accuracy [41].

However, the lack of transparency in how deep learning models make decisions re-
mains a major obstacle to building trust and gaining widespread clinical adoption [42].
To overcome these barriers, there is a growing consensus in the medical community on
the need for greater transparency, the validation of techniques across diverse patient
populations, and the establishment of clear regulatory frameworks.

In the next chapter we are going to expand on the foundational concepts of Al and
deep neural network theory that set the ground for the later experiments on CRLM 3D
segmentation.
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Chapter 3

Deep Learning Fundamentals

3.1 Basics of deep learning

3.1.1 Introduction to machine learning and deep learning

Machine learning (ML) refers to a set of methods that automatically determine patterns
in data and then utilize them to predict future data or enable decision making under
uncertain conditions. The most representative characteristic of ML is that it minimizes
human interventions and mainly relies on data for the decision process. The program
learns from the analysis of training data, and follows with a prediction upon new data is
input [43].

Deep learning (DL) is one of the fastest growing branches of artificial intelligence in
recent years. The scientific community has focused on DL because of its versatility, high
performance, and high generalization ability, among many other qualities. In addition,
the development of more advanced computers along with the increased availability of
medical data has also increased interest in DL applications for medicine [44]. Other
studies, also emphasize the excellent performance of DL in detection, classification and
segmentation tasks for medical images, with results comparable to medical professionals
[45]. Therefore, it is evident that the presentation and explanation of key ML and DL
concepts is necessary for a successful medical image segmentation project.

3.1.2 Types of DL tasks

Deep learning techniques can be utilized in a variety of tasks, each applied for unique
objectives in domains like robotics, manufacturing, medical imaging, text detection etc.

Regarding medical imaging applications, these are the primary categories where DL
is applied:, based on [46]:

o Classification: The goal is to match each input image (e.g., CT or MRI slice) to
a specific category, such as determining between benign and malignant tumors.

e Segmentation: Produces labels of pixels or voxels that best outline the shape of
the input object. For example, segmentation is used for the precise analysis and
mapping of anatomical and pathological regions of whole organs or tumors.

« Detection/Localization: Involves the identification and localization of regions
of interest, usually by drawing a bounding box around the specified object. For
example it is used for the detection of nodules or lesions in diagnostic tasks.
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 Anomaly Detection: Highlights patterns that differ from healthy baselines, useful
for identifying rare or early-stage conditions in cases where labeled data is limited.

Apart from these tasks, there are other popular DL applications, which can be related
to medical imaging but are mostly developed for different fields of study:

» Generative Modeling: GANs (Generative Adversarial Networks) are refer to the
ML technique of utilizing two neural networks, a generator and a discriminator,
which compete against each other to generate realistic synthetic data. These tasks
usually include data augmentation, image synthesis, or domain adaptation.

» Reinforcement Learning (RL): An agent is used to make decisions in a specified
environment, based on sequential policies, aiming to maximize a cumulative reward.
This technique is applied in robotics, autonomous driving, and adaptive treatment
strategies.

« Natural Language Processing (NLP) Tasks: It refers to the processing of nat-
ural language information by a computer model, with the goal of understanding and
generating human-like language. It is developed for text classification, translation,
and summarization tasks.

3.1.3 Supervision categories

A key aspect of deep learning theory is supervision. The presence of labels in the training
dataset, which dictate the correct categorization of the data, determines whether a deep
learning project is supervised, unsupervised, or semi-supervised.

In supervised learning, all training images are accompanied by the corresponding
"ground truth” labels (masks) to facilitate the model’s optimization. For each testing
image, the optimized model generates a likelihood score to predict its class. This pre-
diction is based on the model’s understanding of the relationship and structure of the
input image-label pairs [47]. Supervised learning is the most usual training method for
medical image segmentation tasks. The models are trained with a large number of an-
notated medical images in order to predict the segmentation masks of a foreign image
sample [48].

In unsupervised learning, the model analyzes the patterns or hidden data structures
of the input images without the help of labels, using statistical methods such as clustering
algorithms and density estimation [47].

Lastly, if only a distinct part of training data has labels, the model uses them to
grasp the basic patterns and is later enhanced by learning subtle and fine-grained features
from the unlabeled data. This type of learning approach is defined as semi-supervised
learning [49].

3.1.4 Transfer learning

Another fundamental ML technique for deep learning segmentation, designed to enhance
model performance by utilizing information from already trained models on similar tasks,
is transfer learning. [50].

This technique was developed to deal with corrupt or scarce annotations. With trans-
fer learning, knowledge obtained from models trained on large datasets in irrelevant
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domains or tasks, like ImageNet, is leveraged for medical image segmentation, often im-
proving performance in cases with limited or poor label data [48]. It is a widely used
technique, given the limited availability of sufficiently annotated medical image datasets,
with the ultimate goal to initialize model weights, saving valuable time and computa-
tional units. The pretrained networks are adjusted to the specific needs of each medical
task, in a process called fine-tuning.

In the context of this CRLM segmentation task, however, transfer learning has not
been widely adopted due to the fully annotated dataset provided and the highly specific
nature of the disease’s imaging patterns, which differ considerably from those in general-
purpose datasets. Transfer learning is still very significant in the clinical field for enhanced
performance in situations when obtaining ground-truth labels is difficult, as shown in
relevant research [51,52].

3.2 Neural Networks: Key Concepts

3.2.1 Layers, Back-propagation and Activation

Neural networks are defined as algorithmic models composed of structured layers of in-
terconnected neurons. They are designed based on the learning processes of the human
brain. Through training on specific data they can gradually recognize patterns and gen-
erate predictions by adjusting connection weights [53]. They consist of three main layers:

o The input layer receives raw feature data, meaning that each neuron corresponds
to one attribute of an input sample.

e The hidden layers can be multiple and are responsible for the main computation.
They consist of of neurons that apply weighted transformations and non-linear
activations to the incoming signal.

o The final (output) layer is responsible for generating the the final prediction, which
can be either class labels, a continuous output, or probabilistic distributions such
as softmax outputs in classification tasks

Data flows forward from input to output during forward propagation. The model’s
predictions are evaluated using a loss function, which calculates the difference between
predicted and actual values. This loss is then minimized via backpropagation, where
gradients of the loss with respect to model parameters are computed and used to update
weights and biases, usually via optimization algorithms.

Another fundamental component of NNs is activation functions for both the hidden
layer and the output layer. They are mathematical functions that introduces non-linearity
into the model, allowing the network to learn and represent complex patterns in the
data.They are applied to the output of a neuron. Without this feature a neural network
would behave just like a linear regression model - which applies a a linear equation to
examine the relationship between a dependent variable and one or more independent
variables - no matter how many layers it has [54]. Some of the fundamental activation
functions are the following;:

The Rectified Linear Unit (ReLU) has become the state-of-the art activation function
due to its simplicity and improved performance.

ReLU(z) = max(0, x)
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While the standard ReLLU function is widely used, several variations have been pro-
posed to address its limitations, such as the “dying ReLLU” problem, where neurons can
become inactive and stop learning.

Leaky ReLU: The Leaky ReLLU introduces a small, non-zero slope « for negative input
values to allow a small gradient to flow even when = < 0. It is defined as:

T ifx>0

fx) = (3.1)

ar ifx<0

where « is a small constant (e.g., a = 0.01).

Parametric ReLU (PReLU): The PReLU extends Leaky ReLU by making « a learn-
able parameter, allowing the network to learn the negative slope during training:

z ifx>0

fx) = (3.2)

ar ifz <0

where a is optimized through backpropagation.

Logistic Sigmoid and Tanh activation functions were used in earlier NN theory. The
Logistic Sigmoid is a very popular and traditional nonlinear function. However, output
can become saturated at very high or very low input values, which can cause the van-
ishing gradient problem. This occurs when the gradient of the objective function with
respect to a parameter becomes extremely small, resulting in insignificant updates to the
parameters during training with stochastic gradient descent. As a result, learning slows
down dramatically, and in severe cases, training can effectively stall.

1
Sigmoid(z) =
igmoid(x) e
Tanh(z) = & °

Lastly, the Softmax function is used in the output layer of a multi-class classification
neural network to convert a vector of raw prediction scores (logits) into probabilities.
It ensures that the resulting probabilities are non-negative and sum up to 1 across all
classes.

For a given input vector z = [z1, 29, . . ., 2k |, where zj represents the raw output (logit)
corresponding to class k and K is the total number of classes, the Softmax function is

defined as: .
Softmax(z;) = %. (3.3)
> j=1 €%
Here, Softmax(zy) gives the probability that the input belongs to class k. The final
output of the Softmax layer is a probability distribution over all classes. To make a class

prediction, the model typically selects the class with the highest probability:

U = arg max Softmax(zy). (3.4)
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3.3 Evolution of neural networks in deep learning

3.3.1 Artificial neural networks

Artificial Neural Networks (ANNs) are computational models based on the human brain’s
processing functions. They are consist of interconnected units called perceptrons or artifi-
cial neurons, which receive and process inputs to generate an output. Each perceptron is
activated and passes its signal to the next layer of the network, based on a mathematical
activation function. These networks learn through supervised learning, adjusting their
internal weights based on many training instances. Once trained, ANNs can generate
automatic, accurate responses to new relevant inputs [44].

A multi-layer perceptron (MLP) is a type of ANN consisting of multiple layers of
neurons, as shown in 3.1. The neurons in the MLP typically use nonlinear activation
functions, allowing the network to learn complex patterns in data. ML applications highly
rely on MLPs, due to their ability to learn nonlinear relationships in data, simplifying
tasks such as classification, regression, and pattern recognition.
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Figure 3.1: Example of MLP [3]

Deep neural networks (DNNs) are the extension of conventional artificial neural net-
works. The main difference is the number of hidden layers, which is much greater in
DNNs, than the shallower normal NNs. There is a wide range of deep learning archi-
tectures, including fully connected deep neural networks (DNNs), convolutional neural
networks (CNNs), recurrent neural networks (RNNs), and their variants such as long
short-term memory networks (LSTMs). As the size and the layer count of a network in-
creases, it becomes more complex and requires more time and resources for training [39].
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Deep neural networks (DNNs) have significantly improved diagnosis, treatment plan-
ning, and patient care in medical applications. With large medical datasets as input,
they develop the ability to capture significant characteristics and patterns from medical
images, resulting in more accurate and effective analysis.

These types of networks work best with GPU-based architectures that require sig-
nificantly less training time than classical CPUs [54]. Originally created for graphics
rendering, modern GPUs are massively parallel processors that are excellent at speeding
up deep neural network (DNN) training because of their capacity to effectively perform
thousands of simultaneous operations. When compared to CPUs, they significantly cut
down on training time, allowing complicated models to be trained in a matter of hours
or days [55].

3.3.2 Limitations of shallow networks & growth of DINNs

Although the concept of ANNs was first presented in the 1950s, its applications for actual
problems were severely limited because of issues with overfitting and vanishing gradients.
These resulted in a lack of processing power, difficulty in deep architecture training,and
most importantly, a lack of sufficient training data for the system. It is very likely that a
network with an excessive number of nodes and hidden layers will eventually learn every
training pattern in the training data a phenomenon known as overfitting.

The vanishing gradient problem, which arises when the gradients of the loss function
with respect to the weights of the early layers become increasingly small, is one of the
main obstacles in DNN training. The result is slow convergence or even stagnation,
as early layers receive little to no updated weight information during backpropagation.
The selection of activation functions and optimization techniques in DNNs is primarily
responsible for the vanishing gradient issue [56].

However, with the evolution of big data, GPUs, and novel training algorithms training
algorithms, many obstacles have now been overcome. In a variety of domains, including
medical imaging, these deep learning techniques have demonstrated remarkable results
in simulating human behavior [44]

3.4 Convolutional Neural Networks (CNNs)

3.4.1 Convolutional neural network basics

Convolutional Neural Networks (CNNs) are comprised of neurons that improve them-
selves through learning, similar to normal ANNs. After receiving the input and activa-
tion function, the network continues to express score function (the weight) from the input
raw image vectors to the final output of the class score. The final layer will include loss
functions related to the classes.

As described by [4], CNNs primarily focus on images used as inputs. One key dis-
tinction of CNNs lies in their neurons’ arrangement. Instead of a simple one-dimensional
structure, CNN layers process data in three dimensions: height, width, and depth, where
depth refers to the number of feature maps (or channels) in an activation volume. Unlike
fully connected ANNs, each neuron in a CNN layer connects only to a small, localized
region of the previous layer.

For example, an input image of size of 64 x 64 x 3 (height, width, RGB channels)
might be transformed into a final activation volume of size 1 X 1 x n, where n being
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the number of output classes. This efficiently reduces the original input’s rich spatial
information into class scores across the depth dimension.

3.4.2 CNN structure

A typical CNN architecture consists of three main types of layers: convolutional layers (for
feature extraction), pooling layers (for downsampling and spatial reduction), and fully
connected layers (for final decision-making). By stacking these layers in order, CNNs
can progressively learn and combine simple patterns into complex, high-level features for
classification or other vision tasks.

Therefore, the workflow of the CNN architecture, visualized in 3.2 begins with the
pixel values of the image being held by the input layer.

After that, the convolutional layer passes small, learnable filters (kernels) across the
input’s spatial dimensions, to processes local regions. At each position, it computes a
scalar product between the filter weights and the corresponding input values, resulting
in a 2D activation map. Each kernel is designed to learn specific features, like edges
or structures and is activated when that feature appears in the input. As the network
gets deeper the appropriate kernels are applied to capture more complex information.
The full output volume of the layer consist of all the activation maps stacked along the
depth dimension. Activation functions, such as the ReLU, are then applied to introduce
non-linearity. Convolutional layers are controlled by key hyperparameters, such as depth,
stride, and zero-padding, which determine the preservation of spatial information and the
overall model’s complexity.

The pooling layer operates over each activation map in the input and scales its di-
mensionality using the “MAX” function, reducing the number of parameters within that
activation. Lastly, the fully-connected layers attempt to produce accurate class scores
from the activations, to be used for classification. It is also usual practice for ReLU to
be used between these layers, to improve overall performance.

convolution
w/ReLu pooling fully-connected

|
X K
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FE%

output

input

fully-connected
w/ ReLu

Figure 3.2: CNN architecture [4]

[57] introduced a variation of CNNs, the Fully Convolutional Network (FCN), in
which the final fully connected layers are replaced with convolutional layers. This design
preserves spatial information, enabling dense pixel-wise predictions over the entire image.

23



FCNs avoid the drawbacks of patch-wise prediction by combining high-resolution activa-
tion maps with upsampled coarse outputs to enhance localization accuracy and process
an entire image in a single forward pass [58].

3.4.3 Role in medical imaging

It is evident that CNNs, being specifically designed for image inputs, have become a
standard approach for medical imaging tasks, such as disease detection, tumor localiza-
tion, and diagnosis [59]. These models have significantly reduced the need for manual
feature extraction, with their ability to automatically understand hierarchical features
from images.

CNNs have been improved through model ensembling, architectural optimizations,
and the addition of interpretable techniques that have enhanced their interpretation of
classification tasks. They have enabled methodical and extremely accurate medical image
classification, particularly when paired with cautious and adequate data preprocessing
[60].

The most fundamental architecture used in modern image segmentation tasks, the
U-Net, is developed based on the foundations of CNNs. While standard CNNs were orig-
inally designed for classification tasks they struggled with pixel-level localization, which
is crucial in biomedical imaging. The U-Net utilized the concept of fully convolutional
networks (FCNs) to design a symmetric encoder-decoder structure that is going to be an-
alyzed in later chapters. The result was a great increase in segmentation accuracy, even
with very limited training data, which is often the case in biomedical applications [6].

Beyond U-Net, several other CNN-based architectures have advanced segmentation.
SegNet focuses on efficient upsampling with encoder—decoder designs. DeepLab uses
atrous convolutions and conditional random fields for sharper boundaries. Also variations
of U-Net were developed, like Attention U-Net, which enhances feature selection through
attention mechanisms.

3.5 Detection and evaluation metrics and loss func-
tions

3.5.1 Metrics for segmentation

In segmentation tasks the main objective is to measure the volumetric overlap between
the original and the predicted labels. For this purpose the primary metrics used for these
tasks are Dice Score, Surface Distance and Volume Similarity [61].

The Dice score assesses the level of overlap between the predicted and ground truth
segmentation masks. For example, given two binary masks X and Y, the formula is:

2x |XNY| 2 x TP
| X|+|Y|] 2xTP+FP+FN

Surface distance metrics are correlated measures of the distance between the surfaces
of the input and the predicted region. For this purpose, the Euclidean distance is applied
to determine the shortest distance of an arbitrary voxel u to a set of surface voxels S(X)
as:

DSC(X,Y) =
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(v, S(X)) = min v s|
sES(A)

Based on this distance, the average symmetric surface distance (ASSD) is then given
by:

1
ASSD(X,Y) = d(z,S(Y d(
XN = ey | 2 A St 2 dns

Lastly, the relative volume difference (RVD) measures the volume difference directly,
disregarding the overlap between ground truth and the prediction, as follows:

X Y
o) - -0

3.5.2 Metrics for detection

For detection and classification tasks, where the main objective is to predict the target
variable, additional metrics are introduced for detailed model evaluation. These met-
rics are calculated globally and require a certain correspondence between predicted and
ground truth labels [61].

To begin with, a fundamental metric for classification models is Accuracy. It provides
a quick estimation of the correctness of the model’s predictions. It is calculated as the
ratio of correct predictions to the total number of input samples. Its optimal usage is
done when each class has an equal number of samples.

# correct predictions

Accuracy =
Y= Total number of input samples

In segmentation tasks, the concepts of true positives, false positives, true negatives,
and false negatives are applied at the pixel (or voxel) level rather than at the image level,
as in standard classification. A true positive (TP) When a pixel is correctly identified as
being part of the region of interest, it is deemed as a true positive (TP). A true negative
(TN) is a pixel correctly identified as background or outside of the specified region of
interest. A false positive (FP) occurs when background pixels are incorrectly classified
as positive pixels for the requested region, while a false negative (FN) refers to pixels
that are highlighted in the ground truth mask, but the model fails to detect and instead
classifies as background. The detection metrics presented below are based on different
relationships between these definitions and aim to provide a more complete evaluation of
model performance [61].

Precision is a measure of a model’s performance that shows its ability to correctly
identify the actual positive samples.

TP
TP + FP
Recall describes the ratio of correctly predicted positive instances to the total actual

positive instances. It determines the accuracy of the positive predictions made by the
model.

Precision =

TP

Recall = m
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F1-Score is the harmonic mean of precision and recall, ranging from 0 to 1. It
balances the trade-off between correctly identifying positive cases and not missing relevant
ones. A higher F1-Score indicates better overall performance of the model.

2
F1= — —
Precision™ " + Recall
All the above metrics are crucial to evaluate the model’s performance and pinpoint
any areas that require improvement in the model’s architecture and training process.

3.6 Deep network training

3.6.1 Opverfitting and data augmentation

The ultimate goal of training a DL model is to learn patterns that capture the basic
features of the data rather than memorizing specific training samples. A well-trained
model should maintain high performance in unseen test data, in addition to performing
well in the training set. This ability to generalize is critical in applications such as medical
imaging, where models are expected to perform reliably across various patients, medical
equipment, and data acquisition methods.

As suggested by [62], one of the most common obstacles for successful generalization
is overfitting. Overfitting refers to the adoption of patterns that are too specific to the
training data, including noise or irrelevant details, which can results in poor performance
on unseen data. It can be observed by comparing training and validation performance
over time and especially the corresponding error trends. If the training error continues to
decrease, while the validation error may begin to rise at certain point, it strongly indicates
that the model is just memorizing the training data rather than capturing meaningful
general features. In contrast, a model with good generalization displays decreasing trends
for both training and validation errors.

Data augmentation is a strategy developed to tackle overfitting issues. It increases
the diversity of the training set by applying transformations such as rotations, flips,
scaling, cropping, or noise to existing training samples. These transformations enhance
the diversity of the input data, helping the model become resistant to irrelevant changes
in data structure while focusing on the essential features needed for accurate predictions.

3.6.2 Normalization techniques

Normalization is another common technique applied in DL models with the purpose to
accelerate and stabilize the training process. Data normalization ensures that features
are all scaled to similar ranges, preventing certain variables from dominating the learning
process. Batch Normalization (BN) is the most prominent normalization technique. It
ultimately reduces overfitting and fastens model convergence by computing the mean and
variance of the inputs to each layer within a mini-batch of data. Based on this on this,
numerous other techniques have been developed, like instance, layer, group and positional
normalization [63].

Other simpler techniques include min-max scaling or linear normalization which maps
data to a specific range to reduce extreme deviations and z-score normalization, which
uses mean and standard deviation to produce normalized values from unstructured data.
All these techniques play a crucial role in improving the stability, the efficiency and the
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generalization ability of deep networks. More specific techniques for medical imaging
tasks are analyzed in later chapters.

3.6.3 Regularization techniques

Regularization refers to another collection of strategies designed to prevent overfitting.
Their main purpose is to improve the model’s ability to generalize while keeping training
efficient. The most widely adopted methods include:

« L1 & L2 Regularization: L1 (Lasso) regularization adds a penalty based on
the absolute value of weights, enhancing sparsity, as many weights become zero.
L2 (Ridge) regularization encourages smaller, more evenly distributed weights by
adding a penalty based on the square of the coefficients, shrinking them towards
zero. This technique makes decision boundaries smoother and improves general-
ization. The most common implementation of L2 for optimization algorithms is
weight decay. The optimizer reduces the weights at each update step, preventing
parameters from growing too large and improving generalization.

e Dropout: Dropout is another regularization technique, that randomly deactivates
a subset of neurons and their connections during training [64]. With this method,
co-adaptation of neurons is prevented and the model trains a collection of “thinned”
networks containing the units that remained active, which ultimately reduces over-
fitting and improves robustness.

o Early Stopping: Another popular technique is early stopping, which involves
stopping the training process when the validation loss stops improving. By re-
stricting the number of iterations the model is trained for, early stopping can suc-
cessfully lower the chance that the training data will be memorized. However,
lower patience values can sometimes result in premature stopping preventing the
model from reaching its full potential. On the other hand, longer training times do
not necessarily improve validation accuracy, and early stopping can help prevent
overfitting and shorten training time and cost. Therefore, the training epochs and
patience selected must be carefully considered as they can strongly impact the final
training results [65].

3.6.4 Loss functions

In DL tasks, loss functions are used to quantify the difference between predicted outputs
and the actual ground truth, essentially guiding the optimization process. Their value
is the main indication that the model’s prediction accuracy is improved, therefore the
minimization of the loss becomes the main target of the training process. Each task
category best works with different loss functions. For example, binary cross-entropy and
categorical cross-entropy are conventional in classification, whereas mean squared error
(MSE) and mean absolute error (MAE) are commonly employed in regression. Custom
losses like Dice Loss or Hinge Loss are frequently used in more specialized tasks like
segmentation or object detection in order to capture more specific requirements. A key
component of efficient deep learning training pipelines is the careful selection of a loss
function, which has a direct impact on model convergence, resilience, and generalization
to unknown data [66]. Some of the most common loss functions as presented by [67] are
discussed below.
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Cross-Entropy loss

Cross-entropy loss is one of the most widely used loss functions in deep learning for
classification and segmentation tasks. It measures the difference between the predicted
probability distribution g; and the true label ;. For a single voxel, it is defined as:

A “log(@),  ify=1
ol v {—mgl—mx if y, = 0 (39)

The total loss is computed as the mean across all voxels in the image volume, with
each voxel contributing equally.

Focal loss

Focal loss reduces the weight for easy examples and focuses training on harder and mis-
classified ones, in an effort to address class imbalance issues. It modifies cross-entropy
with a modulating factor v and a weighting factor «, resulting to this form:

Lo (G ys) = —a(1 — §;)" log (i), ify; =1 (3.6)
- =) log(1 = gi), iy =0 '

where a € [0, 1] balances the importance of positive and negative samples, and v > 0
reduces the relative loss for well-classified examples.

Dice loss

Dice loss is derived from the Dice Similarity Coefficient (DSC), commonly used in seg-
mentation tasks to measure the overlap between predicted segmentation Y and ground
truth Y. The binary form, in cases where the background weight is set to 0 is defined as:

2 Zf\;1 Uiy + €
Zz‘]\i1 Ui + 21111 Y; T €

where N is the total number of voxels, and € is a small smoothing constant to prevent
division by zero. Dice loss is particularly effective in addressing class imbalance in medical
image segmentation.

Other commonly used loss functions in segmentation tasks include the Jaccard Loss
that measures the intersection over union of the predicted segmentation and the ground
truth, the Perceptual Loss that computes the difference between high-level features of
images rather than differences between pixels and the Total Variation Loss that penalizes
differences between adjacent pixels, encouraging spatial smoothness in images.

EDSC(Y/aY) =1- (3.7)

3.6.5 Optimization algorithms

Optimizers are another basic concept of DL training process. They are algorithms that
iteratively adjust network parameters to minimize the loss function by using gradients and
improve the learning process. These gradients show how parameters should be adjusted,
and the update process is repeated until the loss converges or a maximum number of
iterations is reached. Among the most widely used are Stochastic Gradient Descent (SGD)
and Adam, each offering specific advantages strengths depending on the context of the
task.

28



SGD is the foundational optimizer, updating parameters by estimating gradients on
small, randomly-selected subset of the data. Despite its simplicity, SGD remains highly
effective, particularly when paired with momentum and weight decay. Momentum is a
term added to the update rule, that helps the optimizer to continue moving in the same
direction even if the local gradient is small. Apart from its computational efficiency, it
provides strong generalizations abilities for models specialized in vision tasks [68].

On the other hand, Adam (Adaptive Moment Estimation) builds upon the RMSProp
optimizer and momentum by maintaining separate adaptive learning rates for each pa-
rameter, based on moving averages of past gradients and their squares. This makes Adam
fast, robust to noisy gradients, and typically requires less hyperparameter tuning.

Choosing between them often comes down to a trade-off, as Adam converges faster,
while SGD with momentum often results to better long-term performance and general-
ization [69].

Another critical component is learning rate scheduling, which refers to the dynamic
adjustment of the learning rate during training. By modifying the model’s parameters in
response to the error determined for the training data, the learning rate hyperparameter
regulates how quickly a model learns. It can greatly affect convergence and stability.
The optimizer can balance exploration and refinement by beginning with big updates and
finishing with fine-grained modifications when learning rate scheduling is implemented
appropriately.
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Chapter 4

Segmentation Tasks in Medical
Imaging

4.1 Medical imaging

4.1.1 Introduction

The fundamental Deep Learning components and techniques discussed in Chapter 3, can
slightly vary depending on the DL task. In this chapter we are discussing the specific
components and methods that are connected with image segmentation tasks in medi-
cal imaging in order to better understand the specific needs and requirements of the
methodology adopted in this project.

4.1.2 Fundamental concepts

Imaging is a fundamental component of modern medicine with a crucial role in screening,
diagnosis, treatment and surveillance. It refers to the visualization of internal body
structures through various modalities like CT, MRI and PET. Almost every patient
has undergone at least one type of radiological examination at some point. Radiology
advancements have made significant changes in healthcare, from a thorough ultrasounds
of a fetus to a detailed brain computed tomography (CT) scan to identify a target for
therapy after a stroke [70].

[71] highlights that medical image segmentation is a crucial post-processing task in
medical imaging, that can strongly affect diagnosis, treatment planning, and analysis of
findings. It describes the process of dividing an image into distinct regions that represent
anatomical structures or pathological areas, such as organs, tissues, or lesions by differ-
entiating between the foreground and background. Pre-operative planning, organ border
delineation, tumor localization, and other crucial tasks are supported by this segmenta-
tion process, which enables accurate analysis of medical data. Because of its importance,
segmentation accuracy directly affects clinical results, making it a crucial component of
contemporary healthcare systems’ workflow .

Radiomics is another relevant emerging field in medical imaging that transforms scans
into quantitative data through automatic extraction of features. For example in oncology,
radiomic analysis of tumors can capture important patterns for heterogeneity, such as
variations in cell density, necrosis, fibrosis, or hemorrhage. When combined with image
segmentation, these quantitative features allow precise localization and characterization
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of tumor regions, with a potential to improve treatment and prognosis in cancer patients
[11,72].

4.1.3 Traditional vs DL Methods

In previous decades, some of the most popular techniques used for medical image seg-
mentation were thresholding, edge-based techniques, region-based approaches, clustering-
based methods and graph-based segmentation. These methods are mostly reliant on
specified rules and intensity-based operations, making them relatively efficient and in-
terpretable. However, their performance is limited when dealing with complex medical
images containing noise, intensity variations, or unclear boundaries. These limitations
highlighted the need for more concrete approaches for segmentation tasks.

In the past years, DL methods have surfaced as crucial applications in this field,
because of their unique performance in automatic feature extraction and complex data
handling. This methods utilize neural network architectures, such as CNNs, FCNs, U-Net
and RNNs to automatically identify and delineate objects or regions of interest within
images. The main functionality of these models involves optimizing the parameters to
accurately map input data to corresponding segmentation masks [71].

As mentioned by [73], DNNs have become an integral part of computer-aided di-
agnostic (CAD) systems. They offer solutions with identifying patterns and features
that cannot be easily observed by radiologists, thus supplying additional information for
diagnostic procedures.

Segmentation tasks can therefore be categorized as manual, semi-automated, and fully
automated. Manual segmentation, requires radiologists or relevant medical experts to
delineate anatomical structures by hand, providing quite accurate but extremely time
consuming results. Semi-automated segmentation utilizes computational tools, like
DL applications, to improve efficiency, followed by manual inspection and editing by
experts. However, the optimal method is fully automated segmentation, based on
well-trained DL models FCNs and U-Net, which enable fast and consistent segmentation
with minimal expert help required, especially for large and complex datasets [74].

Automated segmentation processes do come with some doubts. First, there is no uni-
versally consistent “ground truth” for tumor boundaries, since poor image contrast and
adhesion with nearby tissue can lead to subjective interpretations and inconsistencies that
can undermine the reliability of machine learning models [75]. Additionally, segmenta-
tions might still vary across different time points, physicians and ML algorithms. These
differences can strongly affect diagnostic conclusions and treatment planning. Therefore,
consistency in segmentation results, or in other words reproducability, remains a great
concern and the ultimate goal of research on these methods [40].

4.2 Semantic vs instance Segmentation

Semantic segmentation is a foundational technique in computer vision tasks that focuses
on classifying each pixel (or voxel) in an image into specific categories or classes, such
as objects, parts of objects, or background regions. Given a new image, the algorithm
should output the pixels of the image that belong together semantically. This method
provides a universal understanding of the image by breaking it into meaningful distinct
regions based on the content and context of the scene [76].
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The workflow of semantic segmentation process begins with the analysis of labeled
training data for better understanding of object classes and patterns. Afterwards, a
semantic segmentation network with convolutional layers for feature extraction and up-
sampling layers for dense classification is implemented. The network is then trained to
capture pixel-wise classification and optimize segmentation accuracy using loss functions.
Lastly, the trained model processes unseen images and generates segmentation masks by
classifying each pixel into specific semantic categories.

Other segmentation techniques include instance segmentation, which offers a more
detailed understanding of the image by differentiating between individual objects. It
gives each object instance a unique label, and disregards individual classes, in contrast
to semantic segmentation, which divides each pixel into broad categories without differ-
entiating between instances of the same class [77].

4.3 Imaging modalities

4.3.1 Main categories

In the contemporary diagnostic landscape, the most widely used imaging modalities from
clinics and hospitals based on [78], are the following:

o X-ray: X-ray imaging is one of the oldest and most widely used medical imaging
modalities. Tonizing radiation is used to capture internal body structures, especially
thick tissues and bones. X-rays are quick, affordable, and helpful in the diagnosis
of lung disorders, infections, and fractures. However, there is a limit to the vision
of soft tissues, and repeated use of radiation offers a health risk.

« Computed Tomography (CT): By merging several cross-sectional images, CT
scanning evolves X-ray technology to provide detailed 3D reconstructions of internal
regions. Since, it offers improved depiction of soft tissues, blood arteries, and
bones, it is ideal for cases involving cardiovascular issues, cancer, trauma, and
stroke. Compared to traditional methods, its capacity to identify minor variations
in tissue density makes it an invaluable diagnostic tool. Despite its advantages, CT
is worse at soft tissue discrimination than MRI, while exposing patients to higher
radiation doses. However, thanks to recent developments like low-dose CT and
contrast-enhanced scans, which have increased safety and diagnostic potential, CT
remains a fundamental component of contemporary medical imaging.

« Magnetic Resonance Imaging (MRI): MRI uses strong magnetic fields and
radio waves to produce high-resolution images of soft tissues. It is irreplaceable for
the imaging of the brain, spinal cord, and musculoskeletal system. Unlike X-ray
and CT, MRI is safe for multiple sessions per patient than X-ray and CT, as it
does not involve ionizing radiation. However, it is expensive, time-consuming, and
ineffective for imaging structures containing air or bone.

o Ultrasound: Ultrasound imaging relies on high-frequency sound waves to produce
dynamic, real-time visualization of organs and blood flow. It is widely used in
obstetrics, cardiology, and abdominal imaging, due to its mobility, cost-effectiveness
and safety. The main disadvantage is increased human error probabilities by the
operator and limited accuracy for bones or gas-filled structures.
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e Nuclear Imaging: Nuclear imaging, including PET and SPECT, involves the
injection of radiotracers to visualize physiological and metabolic processes. It is
utilized to detect functional abnormalities before structural changes occur, in the
fields of oncology, neurology, and cardiology.

+ Electrical Impedance Tomography (EIT): EIT is a non-invasive imaging tech-
nique that uses surface electrodes to reconstruct conductivity distributions within
the body. It is safe, portable, and radiation-free, with promising applications in
lung function monitoring, breast cancer detection, and brain imaging.

Recent advances in the imaging field include contrast-enhanced MRI and cardiovascu-
lar imaging, methods that aim to improve specificity, resolution, and functional insights,
addressing limitations of traditional modalities. Al and data mining techniques are also
being incorporated in automated image analysis, to enhance diagnostic precision and
efficiency.

4.4 Annotation standards

As described in Chapter 3, supervised learning relies on the availability of accurately
labeled training data. The development of a supervised learning algorithm requires a
function able to map each training data point to the corresponding label. Self-supervised
learning techniques also utilize labeled data typically as a second step after training a
model on automatically generated pseudolabels [45]. In medical imaging, this mapping
between data and labels is implemented through annotations, which is the process of
highlighting specific features or structures within the images, through bounding boxes,
segmentation masks, or labels to define the ground truth to be used for training models.
The main annotation forms for image processing tasks are:

o Categorical labels, where a single class is assigned to an entire image, volume,
or patient.

o Segmentation masks, where the image is divided in regions corresponding to
pathological regions or anatomical features.

» Regions of interest (ROIs), providing the location and size of specific structures,
often accompanied by class labels.

o Landmark coordinates, indicating precise anatomical points of reference.

While the standard image processing packages such as ImageJ and 3D Slicer are
commonly used to generate image annotations, dedicated software allowing for a fast
workflow has been developed and made available, both by the free software community
and for commercial purposes [79].

Image annotations are usually created through image processing applications and soft-
ware. 3D Slicer is one of the most common programs used for complex volumetric data,
as it provides a user-friendly, yet complete environment for 3D visualization, segmenta-
tion, and quantitative analysis. Another flexible, open-source tool for image processing,
visualization, and manual labeling is ImageJ, which is designed for 2D and basic 3D
images. For semi-automatic segmentation tasks, ITK-SNAP is an excellent option, pro-
viding region-growing and manual contouring tools, crucial for correctly labeling medical
images.
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4.5 Segmentation dimensionality

Deep learning methods for medical image auto-segmentation have been developed to pro-
cess various input image types, like 2D, 2.5D, or 3D formats. These different approaches
were created to handle different output formats from CTs and MRIs, according to the
requested task or region of interest. The differences between the implementation and
strategies for each input dimensionality type, as discussed by [80], are presented below.

For the 2D implementation, one slice per medical image is processed at a time. All
feature maps and parameter tensors in the model are also 2D, and the output is a seg-
mented 2D slice. This method requires the least memory, making it computationally
efficient, but the lack of spatial context between neighboring slices, can lead to critical
information being missed.

The 2.5D approach was developed as a middle ground solution between 2D and 3D.
It analyzes five consecutive slices of the image simultaneously, using the center slice as
the target for segmentation while utilizing information from the adjacent slices.

In 3D segmentation, the entire image volume or selected crops of the volume are
processed in 3D space. The model is able to apprehend all spatial context throughout the
entire volume data, as feature maps and tensors are in 3D. The volumetric segmentation
mask produced is also 3D and each voxel corresponds spatially to a voxel in the input,
allowing for accurate detection of structures across height width and depth dimensions.
Thus, this method works best for complex segmentation tasks like brain and tumor
segmentation or localization. However, it requires up to 20 times more memory than 2D
or 2.5D models, making it much more expensive and time-consuming.

4.6 Segmentation process

As already discussed, image segmentation with specific CNNs is a key DL application that
has improved accuracy and automation in the fields of diagnosis, treatment and medical
data analysis. These models can segment and detect specific anatomical structures, after
being trained with large and correctly labeled datasets from modalities like CT and
MRI [73].

4.6.1 Overview of popular segmentation tasks

Some of the most widely known applications of DL segmentation in medical imaging are
the following:

o Organ segmentation: isolation of different organs (e.g., liver, heart, or brain) to
assist in surgery or therapy planning. Example: [81].

o Tumor and Lesion Segmentation: identification of tumors or lesions within organs
for quantitative analysis, prognosis, and evaluation of treatment plans. Models have
been developed for brain, liver and beast cancer or cancers that have metastasized
in different regions. Example [61,82].

o Vessel Segmentation: extraction of vascular structures for blood flow analysis, ab-
normality detection, or therapy guidance.
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e Cell and Histopathology Segmentation: applied to microscopic or histopathology
images to separate cells or tissue structures for computational pathology. Example:
[83].

o Multi-Organ Segmentation: Localization of multiple organs at the same time for
complete anatomical mapping, especially helpful in oncology or radiotherapy pro-
cedures. Example: [8].

4.6.2 Key concepts in the segmentation procedure

Medical image segmentation techniques involve some specialized concepts that need to
be handled carefully, in addition to the fundamental DL techniques.

To better understand how segmentation models operate, several concepts should be
introduced prior to implementation details:

Feature learning is the process by which CNNs automatically extract complex features
from medical images. While deeper layers capture high-level semantic information, like
organ boundaries and position or lesion shapes and intensity, low-level layers pick up
fundamental characteristics like edges or textures.

CNNs are frequently trained for classification and anomaly detection tasks in addition
to segmentation. This refers to the finding of abnormal patterns that differ from typical
anatomy or expected physiological signals in the medical data captured from CTs and
MRIs. It is an important requirement for the development of complete and accurate
datasets for automated segmentation tasks.

As mentioned already, the segmentation process results to the comparison of the
ground truth (GT) mask, annotated by experts, which serves as the reference point and
predicted masks by the trained model. This comparison takes place during the evaluation
phase using metrics such as Dice Similarity Coefficient (DSC) or Intersection-over-Union
(IoU) that showcase the performance and possible limitations of the model in segmenting
the target regions.

Another important aspect for segmentation performance are scale and intensity ad-
justments. As explained by [84], contrast enhancement, scale intensity changes and
random intensity augmentations are applied during preprocessing to make the requested
anatomical structures, such as small tumors with slight intensity variations from their
environment, much more clear and visible for the model.

For CT images, intensity values that correspond to tissue density are measured in
Hounsfield Units (HU). The process of adjusting those values to better depict the regions
of interest for a specific task is called HU Windowing. This process is implemented by
selecting the appropriate range of HU values to highlight relevant regions and suppress
irrelevant background noise, improving both training and inference [85]. Figure 4.1 shows
the HU values for various structures and elements captured by CT scans, along with the
resulting images after windowing. For example, for liver-specific segmentation tasks, a
window ranging approximately from -150 to 400 is suggested by numerous studies [85,86].
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Figure 4.1: Distribution of HU values for key anatomical structures and components [5]

The last method introduced is cropping, which involves focusing the model on the
most important area of the scan by isolating it from the background. This approach is
quite useful for tasks where ROIs occupy a small part of the overall image volume, like
tumor segmentation [87]. Tt also helps reduce the input size and the overall computational
load, making the training process more efficient.

4.7 Challenges and considerations

4.7.1 Class imbalance

One of the most common problems in medical image segmentation with DL is class
imbalance. This refers to datasets where the structure to be segmented takes up a sig-
nificantly smaller number of voxels than the background. Thus, the network is fed with
a great percentage of irrelevant information during training, resulting in suboptimal per-
formance, as suggested by [88]. More specifically, the network overfits to the few and
under-represented foreground samples found in the data, decreasing its generalization
ability. As shown by [89], in training experiments with class imbalance, the logit acti-
vations, hence the raw outputs before applying activation functions during testing, tend
to move across the decision boundary, causing the model to miss smaller structures. At
the same time, predictions for the well-represented classes remain stable. This problem
is quite critical in tasks like tumor segmentation, since tumors are usually small and can
vary in size, shape, and location, making precise predictions much more challenging.

To minimize the effect of this phenomenon several strategies have been tried. [88]
suggested the implementation of specialized loss functions that shift the model’s focus
towards the minority class during optimization. These loss functions include Generalized
Dice Loss, Focal Loss, the (Focal) Tversky Loss, and the Unified Focal Loss.

Another frequent technique is the implementation of sampling strategies. Oversam-
pling is the process of randomly replicating samples from the underrepresented class to
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increase their presence. It increases the model’s exposure to rare cases, however it re-
duces the variance of the dataset, since it adds duplicate inputs, increasing the risks of
overfitting. On the other hand, undersampling refers to the reduction of the majority
class through random downsampling. This can also increase the risk of a biased model,
since it excludes unique information from the majority class.

Adjusting class weights before, or even during training is another method used to
increase the influence of the minority class in the loss calculation. Specifically, false
negative results in the minority class are heavily penalized in an effort to improve the
recall metric of the model.

Dealing with class imbalance issues can strongly improve the final performance and
results of the segmentation model. It is a problem that was quite important for this
project and the methods implemented to tackle it are discussed in later chapters.

4.7.2 Other challenges

The annotation process of medical imaging data also presents several challenges. Privacy
and security are major concerns, as medical data is highly sensitive and subject to strict
regulations. In addition, specialized knowledge of radiologists or healthcare professionals
is often required for the accurate annotation of complex medical data to avoid inconsisten-
cies and misclassifications. Lastly, specialized formats, such as DICOM (Digital Imaging
and Communications in Medicine), are required to store and use the data effectively.
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Chapter 5

Review of Applied Architectures
and Strategies in Liver and Liver
Tumor Segmentation

After having discussed the main theoretical concepts of deep learning, medical imaging
and segmentation tasks, it is time to take a closer look at the strategies and methods
implemented for liver and liver tumor segmentation tasks, which constitute the main topic
of this project. For this purpose, this chapter presents the most commonly used network
architectures for liver-specific tasks, some of the best datasets used and a comparison of
numerous state-of-the-art architectures on datasets for liver and liver tumor segmentation.
Of course, the main focus is given on studies regarding CRLM and CT scans, however
similar approaches for liver cancer or different modalities like MRI are also included to
provide a broader picture.

5.1 Key network architectures

5.1.1 U-Net and variations
Original U-Net

As already mentioned the U-Net is the fundamental CNN-based architecture for medical
image segmentation, and was first presented by [6]. It is based on an encoder-decoder
structure and takes its name from its shape as shown in Figure 5.1. The encoder is used
to extract high-level features from the input image, while the decoder is used to upsample
intermediate features and produce the final output. They have an identical structure with
the opposite functionality.

More specifically, each level of the encoder consists of repeated 3 x 3 convolutional
layers with ReLLU activation for feature extraction, followed by a max pool layer that
downsamples the image for the next level. After each downsampling the channels are
doubled to make up for the loss of spatial dimensions. level features. Similarly, the
decoder restores the spatial resolution of the features that was lost during the encoding,
by using similar convolutional layers with ReLLU activation, followed by the upsampling
operation with a 2 x 2 transposed convolution layer (up-conv) that reduces the channels
in half.

However the most important property of this architecture are the ’skip connections’
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that concatenate the feature maps from the encoder to the corresponding layer of the
decoder at the same resolution, so that the convolutions are applied to both. This happens
because decoder features include deeper semantic information about the characteristics of
a specific region of the image, while encoder features provide crucial spatial information
from shallow layers, on the exact pixel-wise location of each characteristic. Lastly, the
bottleneck is the part where the encoder and the decoder meet and the intermediate
features are passed from one to the other through convolutions.

With this simple but functional structure this architecture enables both contextual
understanding and spatial precision, which are critical in medical image segmentation
tasks [60].
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Figure 5.1: The structure and specific layers of the U-Net [6]

The specific 3D implementation of the U-Net was proposed by [90]. All operations
(convolutions, pooling and up-convolutions) are extended in the third dimension. 3 x
3 x 3 convolutions are used during compression along with 2 x 2 x 2 max pooling and
2 X 2 x 2 convolutions during upsampling. That way, context on the depth axis is
captured resulting in more effective segmentation of complex volumetric structures like
tumors. However, for this computation, additional GPU memory and processing times
are required.

5.1.2 Residual models
Residual U-Net

[91,92] proposed a variation of U-Net that incorporates residual blocks into the original
architecture. Residual blocks utilize another form of shorter skip connections, which
add the activation of a layer to the output of further layers, disregarding intermediate
transformations. This technique allows the model to learn identify mappings when needed
and helps tackle the issue of vanishing gradients. Residual Networks are created by
multiple stacked residual blocks.
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Based on this method, the ResUNet proposed replaces the standard convolutional
layers of the original approach with residual blocks. Both long skip connections between
the encoder and the decoder and shorter residual skip connections exist in this archi-
tecture. The result combines the training efficiency and stability of residual connections
with U-Net’s feature extraction abilities, increasing the training performance on deeper
networks.

SegResNet

Another successful architecture was proposed by [7]. The SegResNet combines the original
encoder-decoder approach, with an autoencoder architecture. Figure 5.2, analytically
shows the architecture implemented. It is evident that a bigger encoder is used for
enhanced feature extraction, while each green block refers to a residual block. Apart
from the decoder which outputs the segmentation of the input with the same spatial
size, the other branch of the encoder leads to a Variational Autoencoder (VAE) that
reconstructs the input image only during training and is used to enhance the encoder’s
regularization. For context, VAEs are are generative models that create data similar to
the input used during training. They learn a continuous probabilistic representation of
the low-level features of the data they compress and reconstruct.
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Figure 5.2: SegResNet architecture with VAEs [7]

5.1.3 Transformer models

Transformer architectures originally became popular in the field of natural language pro-
cessing, however their unique ability to capture complex global relationships within data
has made them quite useful in computer vision tasks. In contrast to CNNs, Visual
Transformers (ViT) utilize the attention mechanism to process the entire input and learn
relationships between distant regions of an image. More specifically, multi-head self-
attention enables the model to focus on multiple spatial regions simultaneously, allowing
it to capture diverse contextual interactions at the same time. This ability tackles the
spatial limitations of CNN models, that focus on local feature extraction [93]. These
models have demonstrated excellent performance on computer vision tasks, while rely-
ing on extensive pretraining with large datasets, which enables them to generalize well
after fine-tuning. Another unique characteristic of ViTs is their token-based processing,
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as images are divided into patches, linearly embedded, and then treated as sequences of
tokens.

UNETR

[8] approached the task of 3D medical image segmentation, as a ”sequence-to-sequence
prediction problem” and created the UNEt TRansformers (UNETR) architecture. The
original U-Net shape is used, with a transformer serving as the encoder to learn sequence
representations of the input volume and capture the global information. The attention
heads within the transformer encoder learn complex dependencies across distant regions of
the 3D volume, which is particularly important for medical imaging where lesion locations
can vary significantly. Skip connections are also used to connect the transformer encoder
with the decoder and facilitate the computation of the final output.

The shape and layers utilized are shown in Figure 5.3.
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Figure 5.3: UNETR Architecture 8]

SwinUNETR

A more complex transformer-based implementation was proposed by [9] for brain tumor
segmentation. Unlike the UNETR approach, here a Shifted windows or SWIN trans-
former is used at the encoder for feature extraction at five different resolutions. The Swin
method divides the image into discrete local windows and allows cross-window connec-
tion. Self-attention is then computed only within each smaller window and not globally
for all patches of the picture like the ViT approach. **By applying self-attention in a
hierarchical and localized way, the model effectively reduces computational cost while
preserving the ability of attention heads to model relevant dependencies. Information is
exchanged by adjacent windows, enabling the model to capture local and global context
progressively, while keeping the computational complexity reduced. The encoded feature
representations in the Swin transformer are fed to A CNN-decoder receives the feature
representations from the encoder via skip connections at multiple resolutions and then
reshapes them and passes them through a residual block. The upsampling continues
until the final segmentation output. The complete SwinUNETR structure is presented
in Figure 5.4.
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Figure 5.4: SwinUNETR Architecture [9]

5.1.4 Other network variants

Attention U-Net

A different idea, still based on the original U-Net structure, was proposed by [10]. The
architecture, shown in Figure 5.5, uses a similar encoder to U-Net, while adding an
attention gate (AG) at the end of each skip connection from the encoder to the decoder.

For context, attention mechanisms are divided in hard attention, which crops image
to highlight the region of interest, and soft attention, which implements weighting to
showcase the relevance of the different regions of the image, making it trainable with
backpropagation.

The AGs used at each skip connection apply soft attention to reduce activations for
irrelevant regions and block irrelevant low-level features from being passed to the decoder.
They use contextual information from lower-resolution layers to guide the network to-
wards important areas of the image, enabling the model to better recognize structures of
different sizes and shapes, like tumors, during training.

Q
FyxHy x Wi x Dy |

Input Image

1xH x Wy xD
x Dy

F[ KH[ x H"’l ID|
N’(.}(Fh x W) KD[
Segmentation Map

FioaHyp x Wy x D

S

H>x W,

o

(Cory 3l + Rel L) (22)
Upsamgpling (by 2)
Ma-pooling {by 2}
Skip Connection
Gating Signal (Query)

" Concatenation

_ | Attention Gate

P2 Hax Wy Dy

F x_.‘:l'_g * Wax Dy

1Fa % Hy x Wa x Dy |
\Fy xHyx Wax Da

.F]!
Fan Hyx Wyn I
F\XH"IW"XD_g
__\xl'r.’_.x.[}_:,

Fsx Hy x Wix D |
Fyox Hyx Wax iy

i Hyx Wy Dy
FsxH

Fax Hy x Wyx Dy

Figure 5.5: Attention U-Net Architecture [10]

Cascaded FCN

Another structure proposed by [94] were cascaded FCNs, hence a series of stacked FCNs.
In this approach, each model takes advantage of the contextual features extracted by
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the previous model’s prediction map. For the task of liver segmentation, two FCNs were
cascaded, where the first focused on liver as the ROI to be used by the second FCN which
performed liver lesion segmentation.

V-Net

[95] proposed the V-Net architecture, a 3D FCN design for volumetric medical image
segmentation, based on the U-Net structure. The main difference from the U-Net is the
use of strided convolutions for downsampling, instead of traditional pooling. These con-
volutions facilitate feature extraction along with resolution reduction with lower memory
usage, as no switches mapping the output of pooling layers back to their inputs are needed
for back-propagation. Additionally, at each stage of the compression path, residual func-
tions are implemented, ensuring convergence. In the expansion path, deconvolutions are
used to recreate the initial resolution, resulting in a two-channel volumetric segmentation
map.

U-Net ++

U-Net++4 is an advanced segmentation architecture built on the original U-Net design.
Additional skip pathways between the encoder and decoder paths are introduced for an
enhanced connection between the two. These pathways consist of convolution layers for
better semantic connection between the encoder and decoder, as well as dense skip con-
nections that improve gradient flow. Additionally, deep supervision is introduced, which
refers to the calculation of loss at intermediate layers of the network on top of the final
layer. These extra loss connections help earlier layers to learn more discriminative fea-
tures, improving model accuracy and enabling faster convergence. With these advances,
U-Net++ captures descriptive details of target structures more effectively.

5.2 Comparative analysis of strategies and datasets
from similar work

At this point, the methods and results of several similar papers are going to be presented.
This review is necessary to evaluate the usual practices and expected results for tasks
similar to this project. Valuable strategic insights were taken from these papers. The
specific strategies and limitations that were observed are presented below, followed by a
comparison of the results and methods used in Table 5.1.

The datasets that were used in the papers selected for this comparative analysis are
the following:

« The Beyond the Cranial Vault (BTCV) dataset [96] contains 30 contrast-enhanced
abdominal CT scans collected in the portal venous phase.

o The Medical Segmentation Decathlon (MSD) [97] was a biomedical image analysis
challenge which included different tasks with data from multiple anatomical regions
and modalities, such as brain, heart, hippocampus, liver, lung, pancreas, prostate,
colon, spleen and hepatic vessels.

A similar approach focused on the liver is the Liver Tumor Segmentation (LiTS)
dataset by [61], which includes contrast-enhanced abdominal CT scans. The data
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varies in resolution, contrast and slice thickness, due to the numerous institutions
and scanner types used for the collection of the data. The 3DIRCADb Dataset,
is a subset of 20 patients from the LiST dataset, with 75% of patients including
hepatic tumors.

o The CHAOS (Combined Healthy Abdominal Organ Segmentation) dataset, created
by [98] contains abdominal MRI and CT images from 80 patients. The dataset
mainly comprises of healthy abdominal organs, making it ideal for pretraining or
baseline organ segmentation tasks.

o The CAIROS5 dataset originates from the CAIRO5 phase 3 clinical trial, conducted
by the Dutch Colorectal Cancer Group [99]. It consists of 407 patients with unre-
sectable CRLM lesions, who were treated with systemic therapies based on tumor
genetics.

Numerous papers with relevant segmentation tasks were found. The discarding cri-
teria were the use of different modalities (MRI or histopathological images), the focus
on different types of cancer, the implementation of too specific architectures or training
strategies and finally the lack of full access to the entire article. All selected papers used
CT scans mainly during training and focused on liver and liver cancer segmentation and
employed the U-Net architecture or variations of it to train the models. For example, [100]
proposed the "Hybrid W-Net” structure, which takes advantage of 2D features from a
pretrained DenseNet121, which reuses previous convolutions, leading to a lower number
of filters. These extracted features are then passed on a 3D DenseNet and then the entire
architecture is trained from the beginning.

Most of the papers pinpointed the challenges of this task and the under-representation
of the tumor class. Hence, preprocessing and augmentative techniques were used to
increase tumor samples. Moreover, many studies [85,101, 102 excluded slices without
liver or tumor instances for reduced memory usage and better performance results.

Other strategies proposed the exclusion of poor quality patient volumes [103] or the
use of data sets from patients with previously unresectable lesions or generally large tu-
mor samples who then underwent treatment [104,105]. pretraining and transfer-learning
techniques were also implemented especially for CRLM cases. Some of the models were
pretrained on large public datasets [51,105], like LiTS, while others created automated
pipelines that passed on segmentation masks created from the liver segmentation model,
to the tumor segmentation model [104,106].

Some papers implemented internal datasets from medical trials in their training pro-
cess. Expert radiologists were assigned to edit and approve these datasets, which were
used to enhance the testing of the model’s performance [101] or increase the model’s
specialization on CRLM lesions [104, 105].

Another important limitation was the admission that the increased dice values ob-
served derived from the great class imbalance between tumors and background, meaning
that some studies included background in the dice calculation, which was easily seg-
mented and therefore inflated the metric results [51,85,91]. Moreover, both global and
per-case dice scores were reported. Generally, for clinical applications, per-case dice is
more important, as it evaluates performance distinctly for each patient, instead of global
dice which considers all predictions and labels as one big volume.

Regarding CRLM segmentation tasks, research showed that performance drops sig-
nificantly for smaller lesions [103], which are quite common in these datasets, and that is
why dice was presented according to lesion size [100,105].
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The hardware specifications ranged from different GPU variations, including NVIDIA
T4 x2 GPU, the NVIDIA-Tesla V100 32GB GPU, the Tesla V100 GPU, and the 8 GB
NVIDIA GeForce RTX 2080. These are all powerful GPUs, necessary for heavy models

and 3D data.

Table 5.1: Comparative summary of liver and liver tumor segmentation studies.

Author Model Dataset Liver Metrics | Tumor Met- | Notes
(Year) rics
Muhammad | ResUNet MSD DSC:  0.9837 | DSC: 0.871 Background in-
et al. Task03- Acc: 0.98 Accuracy: 0.95 | cluded for DSC
2024 [85] Liver Precision: 0.93 | | Slices excluded
VOE: 12.09 | Separate
liver & tumor
segmentation
Ozcan et al. | AIM-UNet | CHAOS DSC: 0.979 | DSC:0.756 8 GB NVIDIA
(2023) [101] | (UNet with | LiST (CHAOS) (LiST) GeForce  RTX
inception Internal DSC: 0.655 | 2080 | liver-free
module Data (3DIRCADB) | slices excluded |
hybrid) 6 different views
created from
each sample
Rahman et | ResUNet 3DIRCADD| Acc: 0.9923 Acc: 0.9927 All tumor masks
al.  (2022) combined | Class
[91] imbalance and
overfitting  in-
creased accuracy
for tumors
Yashaswini | ResUNet 3DIRCADb| DSC: 0.9144 DSC: 0.76 Images lacking
et al. Acc: 98.18 Acc: 0.98 liver and tumor
(2025) [102] Preciison: Prec: 0.62 were removed
84.42
Manjunath | Modified 3DIRCADb| DSC(LiTS): DSC(LiTS): Testing from
et al. | UNet (58 0.9615 0.8938 open data ex-
(2022) [107] | layers) DSC(3Dircadb):| DSC(3Dircadb):| cluding images
0.9194 0.698 without ROI
Arora et al. | U-Net 3DIRCADb| — DSC(Casc NVIDIA T4
(2025) [51] | ResUNet UNet): 0.92 x2 GPU |
Attention DSC(AttUNet): | potentially
UNet 0.91 background in-
Cascade cluded | models
UNet pretrained  on
public tumor
datasets

Continued on next page
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Table 5.1 — Continued from previous page

Author Model Dataset Liver Metrics | Tumor Met- | Notes
(Year) rics
Wesdorp et | U-Net CAIROb5 DSC(glob and | DSC(glob): CRLM focus |
al.  (2023) median): 0.96 | 0.86 Auto  pipeline|
[104] DSC(median): | patients  with
0.8 a increased
DSC(val):0.6 metastasis
Prec:0.89
Recall:0.84
Bereska et | nnU-Net CAIROb — DSC(Internal): | Self-learning
al.  (2024) 0.85 teacher-student
[106] DSC(External): | framework
0.83 | COlorec-
tal CAncer
Liver metasta-
sis  Assessment
(COALA) model
Anderson U-Net 3D- — DSC: training dis-
et al. | ResUNet IRCADbDO1 (<15bmm): 0.16 | tributed into
(2022) [100] | DenseUNet (>15mm): 0.74 | “slabs” | 7%
Hybrid MSD: mean sensitivity
WNet (<15mm): 28.3 | in sites <10 mm
(>15mm): 1.23 | | NVIDIA-Tesla
Sensitivity: V100 32GB
(<15mm): 0.23 | GPUs

(>15mm): 0.98

Continued on next page
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Table 5.1 — Continued from previous page

Author Model Dataset Liver Metrics | Tumor Met- | Notes
(Year) rics

He et al. | Residual LiTS DSC: 0.95 DSC(Portal Local  dataset
(2021) [105] | Attention local venous phase): | with  patients
U-Net dataset 0.73 after RFA or
Sensitivity: MWA treatment
0.82 | 2D U-Net fro
Precision 0.44 | liver & 3D U-
Net for tumors
| Models pre-

trained on LiTS
| Equal number
of  foreground
and background
patches | Tesla
V100 GPU’s |
Enhanced preci-
sion and F1 for
lesions  greater
than

0.5em?
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Part 11

Experimental Work and
Methodology
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Chapter 6

Methodology and System
Architecture

6.1 Overview of the proposed approach

The main purpose of the experimental part of this project was to create a robust and
accurate model for liver and CRLM 3D segmentation from CT scans. During this process
many pre-built implementations from the MONAI framework were leveraged for simpli-
fying development and accelerating implementation. Many experiments were conducted,
regarding different dataset handling methods, like cropping, network architectures, pre-
processing techniques, evaluation metrics and hyperparameter tuning to finally come up
with the ideal combination for this specific task.

Most of the trials were implemented on top of a local NVIDIA GeForce GTX 1650
Ti 4GB GPU. However, since its capacity limited performance in some cases, some ex-
periments were conducted remotely with an NVIDIA GeForce RTX 4080 16GB GPU.
The various methods and techniques that were developed and tested for this project are
thoroughly presented in this chapter.

6.2 Tools and frameworks used

A combination of specialized DL frameworks and supporting tools were used to facilitate
the coding implementation, result visualization and variety of experiments conducted in
this project. The key frameworks include MONAI, PyTorch, Google Colab, and Weights
& Biases (W&B).

6.2.1 MONAI

The Medical Open Network for AT (MONAI) is an open-source framework, built on top
of PyTorch, specifically designed for DL in medical imaging. It provides a complete
set of tools for the entire pipeline of medical imaging tasks, including preprocessing,
augmentations, model architectures, loss functions, and evaluation metrics. The ready-
to-use network implementations, data transforms and loss functions that are offered by
MONATI and are customized for 3D medical images, simplified greatly the implementation
of the training pipeline.

Moreover, MONAI ZOO, which offers a variety of pretrained models for medical tasks,
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was also utilized for fine-tuning experiments. Overall, MONAI made the experimentation
with different architectures, parameters and methods, much quicker and simpler.

6.2.2 PyTorch

PyTorch is a deep learning library built on Python. It provides GPU acceleration, dy-
namic computation graphs and other important tools for DL developers. It is also the
basic library that is used for MONAI implementations. It facilitated seamless integration
with CUDA for GPU acceleration, which is crucial for handling heavy 3D volumetric CT
data, while also providing more low-level tools for handling neural network layers during
fine-tuning.

6.2.3 Google Colab

Google Colab provides a cloud-based and friendly-to-use development environment. Its
GPU resources were utilized for some experiments, however they were not enough for
full training runs. On the other hand, it provided a useful data visualization tool for
inspecting CT slices, verifying preprocessing functionality and generating plots during
the evaluation phase of the model.

6.2.4 Weights & Biases (W&B)

W&B is a machine operations platform, primarily used for tracking and visualizing model
performance. It was used to log the different experiments, visualize training metrics
such as accuracy, loss, and dice and comparing the different methods and approaches
implemented. W&B automatically logged key metrics, enabling real-time monitoring of
model performance. Moreover, it was also used to log offline runs from a virtual machine
that was used for some experiments. Overall, it was especially valuable for comparing
and identifying the best training strategies and configurations and presenting the final
results.

6.3 Dataset used

The dataset used for the purposes of this project was derived from [11]. This dataset
represents the largest compilation of segmented, portal-venous, hepatic CT scans for
image analysis of CRLM.

CT scans are used during surgical evaluation to determine the feasibility and process
of the procedure to remove the hepatic tumors. This resection must be accomplished with
adequate future liver remnant (FLR) for liver regeneration. The dataset includes preop-
erative hepatic C'T scans, clinicopathological data, and recurrence or survival data from
197 patients who underwent hepatic resection of CRLM. For each patient, segmentations
of the liver, vessels, tumors, and future liver remnant (FLR) were created.

Patients were selected from 384 consecutive hepatic resections previously utilized for
two unrelated studies, based on strict inclusion and exclusion criteria. All patients had
pathologically confirmed resected CRLM and available pathologic analysis data of the un-
derlying non-tumoral liver parenchyma and hepatic tumor. Moreover, they all contained
preoperative conventional portal venous contrast-enhanced multidetector CT (MDCT)
performed within 6 weeks of hepatic resection. Patients with 90-day mortality or less
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than 24 months of follow-up were excluded. Also excluded were patients who received
preoperative hepatic artery infusion (HAI), underwent local tumor ablation, had more
than three wedge resections in the FLR, or had no visible tumor on preoperative imaging.
Each patient had a conventional portal venous phase contrast-enhanced CT scan
within 6 weeks after surgery. Segments of the liver, tumors, vessels and bile ducts were
generated semi-automatically and used to create a 3D liver model. Resections were vir-
tually drawn on these models using postoperative imaging and pathology. Segmentation
was performed by transferring images from the picture archiving and communication sys-
tem (PACS) to a dedicated workstation, using standard image processing techniques. The
liver parenchyma, tumors, vessels, and bile ducts were segmented semi-automatically.
The final segmentations are shown in Figure 6.1. In every CT, the liver is highlighted
in green, with the future liver remnant (FLR) distinguished by a darker shade of green,
representing the portion of liver expected to remain after the resection. The hepatic
(orange) and portal (yellow) veins are segmented to visualize vascular anatomy critical
for surgical planning. Each unique metastatic tumor region is presented with a different
color (blue, red, purple) and corresponds to a different label file. All above segmentations
enable precise modeling and provide a complete analysis of the entire region of interest.

Figure 6.1: Dataset labels [11]

Survival data includes overall survival, disease-free survival, and hepatic disease-free
survival. At final follow-up (median 102 months), 90 patients were alive, of which 75
had no hepatic recurrence and 59 had no recurrence of any kind. Median times were 76
months for overall survival, 53 months for hepatic disease-free survival, and 22 months
for disease-free survival.

6.4 Data preparation

6.4.1 DICOM to NIfTI transformation

The dataset is publicly available on The Cancer Imaging Archive (TCIA) as “Preoperative
CT and Recurrence for Patients Undergoing Resection of Colorectal Liver Metastases.”
DICOM images and segmentation masks, along with metadata files with clinical, pathol-
ogy, and survival data, are included in the dataset page.

DICOM (Digital Imaging and Communications in Medicine) is the standard format
used for storing and transmitting medical imaging data, but its complexity and metadata
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structure makes it inappropriate for deep learning tasks. In contrast, NIfTT (Neuroimag-
ing Informatics Technology Initiative) is a simpler, array-based format that represents
volumetric data in a uniform structure. It is very compatible with image analysis libraries
and deep learning frameworks like MONAI because it stores image data and spatial meta-
data (like voxel dimensions and orientation) in a single file. Therefore, for the optimal
execution of this deep learning task it is necessary to convert the original imaging data
from DICOM to NIfTT.

The dataset includes CT volumes stored as a series of DICOM slices and segmentation
data stored as a single 3D DICOM Segmentation Object per patient. To prepare the data
for modeling, both the CT volume and the segmentation file are converted to NIfTT. This
process results in a 3D image volume and one or more binary segmentation masks, where
all data is spatially aligned, which means that each voxel in the segmentation corresponds
exactly to the same voxel in the CT image. The “Tumor” segmentation files for each
patient were merged in one multi-tumor mask file, ensuring that there was an adequate
number of tumor voxels in the segmentation file for each patient.

NIfTT files simplify the training process of CNNs by ensuring consistency in shape,
orientation, and voxel spacing across all inputs. This alignment allows models to learn
anatomical and pathological patterns without requiring complex preprocessing steps to
resolve misalignments among volumes. The conversion pipeline ensures that every pa-
tient’s image and segmentation data are output with identical dimensions, which is critical
for 3D-image segmentation tasks.

6.4.2 Data split

The dataset was split into training, validation and test sets. The training set includes
70% of the original data and is used to optimize the model’s parameters through back
propagation. The validation set includes 10% of the original data and is used to monitor
the generalization capabilities of the model on unseen data during training, after every
epoch. The validation set’s dice score is an important metric that determines check-
pointing when the model’s weights are progressing, early stopping when the dice is not
improving and generally helps monitor overfitting. Lastly, the test set consists of 20%
of the original data and is used only after the training process is complete to provide a
final generalization estimate for the model, on completely unseen data during training.
The dataset was randomly split into training, validation, and test sets once, before all
training runs. The contents of each set were kept consistent across all experiments to
ensure fair and accurate comparisons between different networks, hyperparameters, and
training strategies.

6.4.3 Data visualization & insights

After the successful conversion of the input volumes, some valuable graphs and informa-
tion was gathered for a better and complete understanding of the dataset and its specific
needs. For these insights, only the train set was used. This way, data leakage for the
characteristics of the validation and test sets is avoided, enhancing the model’s robustness
to overfitting. Moreover, these insights are quite valuable for the determination of the
preprocessing strategy, which only involves the train set.

Firstly, the number of slices with tumor tissue was computed for each patient (vol-
ume), based on the corresponding tumor label masks. The top 10 patients have between
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50 and 93 slices with tumor presence and therefore provide valuable volumetric data for
the model, regarding the 3D shape and characteristics of tumors. In contrast, the bottom
10 patients only contain 2 to 4 slices with tumor presence and could therefore result to
the domination of the background class. Approximately, 25% of the cohort contains less
than 8 tumor slices, showcasing the class imbalance issues of the dataset.

Another important visualization was the distribution of axial slices among patient
volumes. More specifically, Figure 6.2 shows a main cluster of volumes with depths
around 30-60 slices and another one, less dense, between 120-170 slices. This level of
shape variance presents a challenge for 3D segmentation with MONALI, as it best performs
with uniform input shapes and structures. Therefore, the need for consistent resampling
or cropping to standardize input shape is clear.
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Figure 6.2: Depth distribution of train set volumes

Another valuable insight, based on the depth axis variety of the dataset, was the
assessment of the percentage of slices that contain tumors, per patient. A random sample
of 20 patients was selected for this task. The results showcase great variance, as some
patients were found with 35-47%, while others contained tumor instances in only 4-8%
of their total volume depth. These results verify the previous concerns for great dataset
imbalance. However, an acceptable model performance can indicate great generalization
potential, due to the increased variance of the data.

Overall, these analytics of the training set pinpoint important challenges in the
dataset, such as the uneven slice depth, and strong tumor class imbalance. These find-
ings are critical to determine an appropriate preprocessing strategy that can improve the
performance of the model and decrease the potential of overfitting and loss of valuable
data.

Optimized dataset

To handle the imbalance suggested above, we created an optimized data set that only
contained patients with more than 10 slices containing tumor instances. We preferred
this general approach instead of handpicking patients with poor labels. The split among
train, validation and test sets, was again 70-10-20, with a total of 110 patients remaining
from the initial cohort. This process was done to avoid using CTs that mainly include
background and can therefore harm the performance of the model and increase time
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consumption and memory usage without adding valuable information. The depth dis-
tribution of the optimized dataset is presented in Figure 6.3. It is evident that the
mean depth value is increased and mainly patients with shallower scans were excluded.
This allows for using deeper patches during training that contain more relevant tumor
information for the CT, without the addition of extra padding for many scans.
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Figure 6.3: Depth distribution of train set volumes from the optimized dataset

6.5 Data preprocessing and augmentation

A crucial part of the training process followed was the application of thorough prepro-
cessing and augmentation techniques. The augmentation transforms used were based on
similar research work, as well as the unique requirements of this dataset, like the imbal-
ance in tumor slices and the relatively small sample size (200 patients). They all derived
from the MONALI library.

Before defining the transforms to be applied on the data, the deterministic seed for the
deep learning task must be defined. In DL medical imaging tasks, the results should be
consistent across multiple runs. By specifying a constant seed for the task, reproducibility
is ensured. This means that the same code with the same inputs and settings gives the
same result. This is crucial for moderating the effect of different changes on the strategy
and pipeline and making debugging and comparisons easier. This process introduces a
fixed random number generator for all random tasks of the pipeline, like data shuffling,
weight initialization and data augmentation. As a result, the same exact transforms are
reapplied to every patient in every epoch and even in different training runs, provided
that other parameters like batch size and system configuration remain unchanged. The
choice of the seed value as 0 is random, but aligns with similar experiments. Changing
the seed number (ex. to 42 or 123) is sometimes useful for evaluating the robustness
of results across different initializations. However, using a fixed seed ensures a clear
implementation and robust comparison of different methods for the training process.

6.5.1 Basic transforms

Both the CT volumes and their matching segmentation masks underwent a series of pre-
processing procedures to guarantee consistency and compatibility throughout the dataset.
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These transformations from MONATI’s dictionary-based transform pipeline standardize
the data in terms of shape, orientation, spatial resolution, and intensity range, making
the model training more effective. Together, these actions improve model generalization,
lower training variance, and guarantee that the data satisfies the structural requirements
of the specific network used.

Before the data is fed into the network, it is prepared and enhanced using a modular
series of operations called the transform pipeline, which is applied to every sample in
the dataset. To begin with, each volume with the corresponding liver and tumor masks
is loaded from memory with “Loadlmaged”. The “EnsureChannelFirstD” changes the
data shape from (H, W, D) to (C, H, W, D), since most deep learning models expect the
channel to be the first dimension.

“SpacingD” transform is then used to resample the voxels of input images to a con-
sistent physical size, along the x, y and z axis. This voxel spacing parameter is called
pixdim. Table 6.1, contains the median voxel spacing values for each data split, along
with the min and max values found in parenthesis. The height and width dimensions are
almost isotropic in-plane, however the depth dimension displays higher variance. Based
on these values, pixdim was set to (1.0, 1.0, 2.5). Especially for the z-axis, up-sampling
from 5.0 to 2.5 improves the resolution and the volumetric detail being captured, with-
out introducing extreme upsampling (up to 1.0), which could increase memory usage and
introduce noise. This standardization can greatly improve the stability and generaliza-
tion of the model. Moreover, the volume is interpolated in “bilinear” mode (effectively
trilinear for 3D samples) for structural preservation during resampling. In contrast, the
"nearest” mode is used for the segmentation to avoid generating artificial label values
and ensure preservation the discrete class boundaries. CT scans across patients may be
obtained in different orientations. With “Orientationd”, all volumes are oriented to a
specific coordinate system (RAS: Right, Anterior, Superior).

Table 6.1: Voxel Spacing Values

Axis  Train Set (mm) Validation Set (mm) Test Set (mm)

Height  0.79 (0.62 - 0.97) 0.75 (0.61- 0.98)  0.78 (0.63 - 0.97)
Width  0.79 (0.62 - 0.97) 0.75 (0.61 - 0.98)  0.78 (0.63 - 0.97)
Depth  5.00 (1.5 - 7.5) 5.00 (1.5 - 7.5) 2.50 (0.8 - 7.5)

After that, “ScalelntensityRanged” is used to normalize the intensity values of the
input volume. The Hounsfield windowing process is necessary for this step. Relevant
research suggests a window of -100 to 400 Hounsfield Units (HU) to best capture most
lesions and soft tissues of interest around the liver area and thus exclude irrelevant areas
like bones and air. After further visual inspection of the data using ITK-Snap as shown
in Figure 6.4, the final window used during training was -100 to 200 HU.
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Figure 6.4: HU window inspection

Additionally, the HU intensity histogram on Figure 6.5 for a random patient of the
dataset helps confirm whether the selected window covers the majority of meaningful
voxel values. The transform is used to normalize this window to a range of [0.0 to 1.0].
The fine characteristics of the areas of interest are better visualized, and the model can
focus on detecting the necessary tissue for successful tumor segmentation.
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Figure 6.5: HU Intensity Histogram

The final result of the above basic transforms can be visualized in 6.6. It is obvious
that the liver and tumor regions are much more visible after the augmentations, verifying
their necessity.
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Figure 6.6: Original vs Augmented CT scans

6.5.2 Cropping

MONAT’s “CropForegroundd” transform was used for cropping implementation. It crops
the image to a tight bounding box around the defined source key, which was the liver
label. That way the focus on the main ROI instead of the whole CT was ensured.
Each patient’s liver size differs, leading to further dimension errors like before. The
“DivisiblePadD” transform is then introduced to make all crops divisible by k = 16 (or
k=32 for transformer networks) with padding, ensuring a smooth downsampling and
upsampling process during the network training.

All the above fundamental preprocessing transforms are consistently applied to all
data splits, for both liver and CRLM segmentation tasks, to ensure a uniform input format
for the model. This way, the performance of the model can be objectively evaluated,
without preprocessing inconsistencies affecting it.

6.5.3 Augmentative transforms

The above transforms were adequate for liver segmentation. However, for the tumor
task, the model still underperformed, mainly due to the strong imbalance both in the
number of tumor voxels and in the depth (z-axis) of the initial volumes across patients.
They are important for tumor segmentation tasks on imbalanced and small datasets like
the one used, as they ensure sufficient generalization, prevent overfitting and help the
model better understand tumor characteristics. They are only applied on the training
set, because if applied to the validation or test sets, they would lead to distorted input
distribution and biased performance evaluation.

Introducing the “RandCropByPosNegLabeld” transform from MONALI into the pipeline
was one of the main propositions of this project and a crucial step in addressing the sig-
nificant data imbalance of this task. Some scans may only have a few slices with tumor
presence, while others have substantial tumor instances. ’'RandCropByPosNegLabeld’
helps mitigate this problem by generating balanced training samples through controlled
random cropping. This transform selects a specified number of random sub-volumes from
each scan, with a ratio of patches that include positive tumor voxels (pos) and those that
do not (neg). By doing so, it ensures that the network is exposed to a meaningful and
diverse distribution of tumor-containing regions, which is critical when tumors occupy
only a small fraction of the volume. Moreover, the number of positive tumor samples
is effectively increased, without the need to discard slices with low tumor presence, an
approach that would otherwise risk creating a biased and less realistic dataset prone to
overfitting. Without this strategy, the network would be biased towards learning back-
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ground features, as it would mainly see non-tumor regions, especially in patients with
small or few tumors 6.1.

The initialization of the transform and its parameters can be seen in Listing 6.1.
By setting label key="seg tumor”, we ensure that the model uses the tumor label to
define "positive” samples. Based on the transform’s implementation, the model finds all
foreground voxels for each sample (in this case tumor voxels), selects a center near a
tumor voxel and creates a random crop around this center based on the defined spatial
size.

Listing 6.1: Cropping augmentation configuration

RandCropByPosNegLabeld (

keys=["vol", "seg_tumor"],
label_key="seg_tumor", # crop around the liver or
tumor

spatial_size=(128, 128, 48), # Slightly smaller due to
smaller tumors

pos=1, # With probability pos/(pos+neg), it chooses a
center inside the liver region

neg=0.2,

num_samples=6,

image_key="vol",

allow_smaller=True

),

The spatial size depth was carefully selected based on the depth imbalance noticed in
the initial dataset. In cases where the depth requested is greater than the actual, MONAI
introduces padding to the volume to meet the requested depth. This could result in the
return of duplicated or padded regions, worsening the sample’s quality. In contrast,
when the requested depth is less than the actual one, the number of valid positions of the
positive tumor centers increases and therefore the quality of the sample is not affected.
We experimented with various values ranging from (96, 96, 32) for heavier models to
(160, 160, 64) for lighter ones. By cropping to a fixed spatial size, batching and training
stability issues are permanently addressed.

The transform does not resize or shrink the image, since this could damage the res-
olution and shape of the tumor. Instead, it just selects a subregion containing tumor
voxels with probability:
pr—_ P%

pos + neg

For each patient in the DataLoader, “num_samples” defines the number of samples
generated by the transform. The tumor label files for each patient were combined, to
make sure that for each patient there was an adequate number of tumor voxels.

This transform was preferred from other spacing transforms, to maintain the best
possible image quality. For example, “ResizeD” transform, which essentially is a uniform
interpolation, performs the resizing of the CT by introducing blur, which could alter fine
details in small tumors. However, it was used for liver segmentation, as the size and
shape of the ROI is more consistent and clearly defined.
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6.5.4 Random augmentations

Random augmentation transforms introduce variability in both the spatial and intensity
aspect, enhancing model generalization. Each transform is applied to the sample based on
the specified probability. To begin with, RandFlipd randomly flips the image along the
specified axis to help the model become indifferent to anatomical orientation. RandRo-
tated introduces rotations around the x, y and z axis, similar to possible misalignments
occurring during CT scan procedures. RandZoomd encourages robustness to organ size
differences and scale variations among patients, by zooming in and out of the volume.

RandScalelntensityd slightly adjusts brightness, while RandShiftIntensityd offsets
voxel values to simulate scanner calibration differences. RandGaussianNoised introduces
low-level noise, resembling imaging artifacts, and RandAdjustContrastd adjusts contrast
non-linearly, strengthening the model’s ability to handle different tissue visibility levels.

In general, each patient sample goes through all transforms sequentially. It starts
from the fundamental transforms which are mandatory and moves on to “RandCropBy-
PosNeglLabeld”, which is a generative transform that creates multiple patches for each
sample. The rest of the stochastic augmentative transforms are applied to each generated
patch based on the independent probabilities of each one. They are applied every time a
new sample from the dataset is fetched, even if it is cached, preserving data augmentation
during training.

Figure 6.7 presents the result of the complete preprocessing pipeline for both the
volume and the tumor mask. It is evident, that the volumes are now much more prepared
for the tumor segmentation task.
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Figure 6.7: Example of complete preprocessing result
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6.6 Model architectures

Various model architectures, imported from MONAI, were used during experimentation
to compare model performance and identify the most suitable architecture for this specific
segmentation task. The following section briefly outlines the key models, their main
parameter choices, and their distinctive characteristics. Detailed implementation code
for each network is provided in Appendix 9.2.

All models are configured with:

One input channel representing the CT volumes, during initial experiments and
two input channels for the final automated pipeline.

Two output channels representing background and foreground classes (liver or tu-
mors).

Spatial dimensions set to 3, since the data are 3D volumes.
A small dropout rate for regularization and overfitting control.

Input spatial sizes divisible by 16 for compatibility with transformer-based net-
works.

Model Summaries

UNETR: Utilizes a transformer as the encoder to capture global dependencies
across the input volume. A multi-head self-attention mechanism enhances repre-
sentation learning. Skip connections link encoder and decoder for better gradient
flow. (Implementation in Listing 1)

Swin UNETR: Incorporates a hierarchical Swin Transformer backbone with shifted
windows, enabling efficient local-global context modeling with reduced computa-
tional cost. Multiple resolutions are used to progressively exchange information
between windows. The default layer dimensions and normalization settings are
used. (Implementation in Listing 2)

Attention U-Net (3D): A 3D adaptation of the classical U-Net with attention
gates at skip connections to emphasize relevant features while suppressing less in-
formative regions. Channel depth and stride choices balance feature capacity and
memory efficiency. (Implementation in Listing 3)

U-Net with Residual Units (ResUNet): Standard U-Net architecture en-
hanced with residual units at every layer to improve optimization and gradient
flow. Provides strong baseline performance with fast training, ideal for testing dif-
ferent training configurations. Various channel depths are tried, to find the best
balance between feature learning capacity and memory usage. The rest of the con-
figurations are set to the default values. The default normalization normalizes each
image instance independently which is better for inputs with significant variations
in intensity, contrast, and noise. (Implementation in Listing 4)

SegResNet: Higher initial filter counts help capture subtle lesions without ex-
cessive memory use. Residual blocks are implemented throughout the encoder/de-
coder. Dropout is also used, along with the default settings for normalization
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and number of upsampling and downsampling blocks. Lastly,the default ‘7GROUP’
normalization divides the channels into groups and normalizes within each group,
making its performance independent from batch size. (Implementation in Listing 5)

6.7 Training strategy and hyperparameters

The training process follows a conventional supervised learning strategy using a custom
training loop implemented using PyTorch and MONAI. The preprocessing and training
code was based on an open-source implementation available on GitHub [108], and then
adjusted to the specific needs of this project. The pipeline was split into three main
Python files, preprocessing (which was covered previously in this chapter), training and
utilities.

6.7.1 Utilities script

The utilities file contains helper functions necessary for the training process, as well as
the main train loop. Training is performed over multiple epochs using mini-batches, and
model performance is monitored using a combination of loss values and segmentation
quality metrics.

Metrics and transforms setup

Firstly, the necessary metrics and transforms to be used inside the train loop are de-
clared. We use the MONAI ’DiceMetric’ implementation, which is a common practice
in similar projects. This metric calculates the dice similarity coefficient (DSC) between
GT and predicted masks for each patient, averaged across each epoch. It is a voxel-wise
implementation that calculates the number of positive voxels that belong to the intersec-
tion of GT and predicted mask sets and then divides this with the sum of positive voxels
that belong to each set.

We exclude background from the calculation to ignore the dominant background chan-
nel and shift the model’s focus on capturing the tumor regions. The metric processes pre-
dictions and labels as discrete masks instead of their original raw logit form. That is why
the predictions go through a post-processing transform that produces a single-channel
label map with the most likely class for each voxel through ’argmax’. Then the label map
is expanded into a two-channel one-hot encoding, with each voxel’s class represented by
a binary vector. The GT masks are also one-hot encoded to fit the same format. This
setup ensures that the dice computation is accurate and does not include soft predictions,
which are raw low-confidence softmax probabilities that can inflate the final DSC result.

In general, including the background class in the "DiceMetric” calculation can inflate
the final value, since the background covers the majority of the volume and is easily
segmented. Therefore, it is a good practise to only include the foreground class to compute
the DiceMetric for 3D segmentation tasks, so that the results are an accurate reflection of
the model’s ability to identify the ROI. However, as discussed in Chapter 5, some papers
include background in the computation. For this project, we are going to present the
results from both methods to showcase the consequences of each approach.

Additionally, MONATI’s "Surface Distance Metric’ is initialized along with a 'Largest-
ConnectedComponent’ tool that removed small FP predictions from ASSD calculations.
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Train loop

The main training loop follows, which moves the volumes and masks from the train set
to the GPU to begin the process. The automatic mixed precision (AMP) method is
used to accelerate training and reduce memory usage during large matrix computations.
Additionally, the 'GradScaler’ from MONALI is used to prevent underflow, by multiplying
the network losses by a scale factor, so that gradient values are not truncated to zero.

Then, discrete dice computation takes place, where batched tensors are divided into
per-sample tensors and the post-processing transforms are applied to each sample to
create the final discrete prediction and GT values for 'DiceMetric’. At the end of each
epoch the mean DSC and loss over all training samples is calculated.

Validation loop

The validation loop follows the same overall structure with some extra functionalities.

During the training of the validation set, sliding window inference is used. This
module divides the large 3D volumes in smaller overlapping patches to avoid memory
issues while preserving full-volume evaluation during the training process. For small and
sparse tumor, a bigger overlap value 0.5-0.7 is suggested to make sure that instances of the
same tumor but in different slices are more likely to be on the same patch. It’s necessary
because validation data is neither cropped like training data during preprocessing, nor
resized to avoid possible blur or noise and therefore can overload the GPU. The region of
interest shape is set to match the training set’s patches because a smaller size can lead
to valuable context being lost. After each sub-volume is processed, the predictions are
combined back together to form the final full-volume output.

Additionally, key performance metrics are calculated based on the predictions on
the validation set for each epoch. Based on relevant research in tumor segmentation
tasks, False Negatives are quite important, since they reflect missed tumor instances
by the model. To monitor this issue, the Recall metric, also known as sensitivity, was
incorporated to measure the actual positive lesions found. Similarly, the precision met-
ric highlights the number of incorrectly predicted lesions. Lastly, the ASSD metric is
recorded, to provide an extra indicator of the anatomical correctness of the predicted
masks compared to the GT, after the exclusion of small FP and empty pairs.

Dice-Focal loss function is used as the primary training and validation loss because it
combines DSC accuracy with a focus on ambiguous voxels, making it ideal for tumor seg-
mentation tasks with high imbalance. Train loss guides the model’s learning by updating
weights to minimize error, while validation loss checks how well the model generalizes to
unseen data. Dice and loss values are aggregated with the same process followed during
the train loop. However, the global dice is also computed, to highlight the performance
of the model on larger lesions. TP, FP and FN values are accumulated inside the loop
for every batch and aggregated after the epoch is over, for the global dice calculation.

Model checkpoints are saved based on the best validation Dice score, and early stop-
ping is triggered when no improvement is observed after a predefined number of epochs.
This balances training efficiency with performance, helping avoid overfitting.

After the train and validation loops are completed, and the best model is saved, it
is set to evaluation mode to be used for predictions on unseen test data. The test data
go through the same inference and AMP processes, and the DSC, global DSC, precision
and recall metrics are calculated to be compared with the corresponding results obtained
during training.
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6.7.2 Training script

The training script includes the complete experimental training pipeline. It begins with
the option to either load preprocessed data from a local cache or repeat preprocessing
from scratch. This flexible setup supports and faster model experimentation and a clear
understanding of each run.

Following data preparation, the script continues with the definition and configuration
of key training components and their relevant parameters. More specifically, the loss
function and the neural network architecture are initialized, followed by the model with
the corresponding Adam optimizer that contains important hyperparameters. The loss
function calculation includes the background class, but with a 1/10 weighting ratio in
favor of the minority class during the dice loss computation, to increase the penalty for
misclassified tumors and improve the model’s performance.The train() function is then
called with all the parameters required to initiate the training and validation phases over
a specified number of epochs.

Hyperparameters

In DL tasks, the hyperparameters are typically set before each training process begins and
control crucial aspects of the learning process. They influence the model’s performance,
complexity and learning ability. The main hyperparameters used in this task, along with
their selected values are described below.

o The learning rate chosen for the best-performing model was le-4, a value com-
monly adopted in related research. In primary experiments for hyperparameter
selection, the same U-Net architecture was used with different learning rates. It
was observed that 1le-3 led to rapid and premature convergence, before sufficient
generalization of the model. On the other hand, a lower value of 1le-5 resulted in
very slow training progress and required significantly more epochs to reach compa-
rable performance. Based on these observations, le-4 was deemed the appropriate
value to balance training stability and convergence speed.

o The batch size refers to the number of training examples used in each iteration of
the optimization algorithm. The value selected for most experiments is 1, due to
the increased size of the 3D CT scans and the limited GPU capabilities.

e The number of training epochs selected was 200-300 with an early-stopping mech-
anism after 20 epochs to save time and memory usage.

o« Weight decay is a regularization technique that helps avoid overfitting in deep
learning tasks such as tumor segmentation. It adds a penalty proportional to the
squared magnitude of the weights to the loss function. The chosen value for this
task was le~°, which is a widely used initial value that offers a little regularization
without limiting the learning capacity of the model.

e Dropout is another regularization technique, which defines the percentage of ran-
domly selected neurons to be ignored during training, aiming to prevent overfitting.
The usual value selected was 0.1, indicating that only 10% of the neurons in a given
layer will be set to zero at each training step. A low dropout value is chosen to
increase the model’s capacity to learn the subtle tumor features.
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e Activation functions determine the output of a neural network node given a
set of inputs. During network initialization, ReLU was commonly used as the
default option for our experiments. However, Leaky ReLLU and PRELU (which is
the default option for UNet) were also used. These functions have learned a small
slope for negative inputs, which is parametric in the case of PRELU. For the loss
function both sigmoid and softmax were used, but the final choice was softmax,
since the segmentation channels are mutually exclusive and this function assigns a
single class per voxel.

o A scheduler is also selected to facilitate learning rate changes during training.
More specifically the 'ReduceLROnPlateau’ scheduler from MONAT is used after
the validation metrics have been calculated to reduce the learning rate in case
validation DSC stalls, helping the model capture finer details.

6.7.3 Testing script

A notebook was used to run an explicit evaluation process that calculated the testing
metrics again and contained visualizations from the predicted masks and other useful
plots that indicate the accuracy and strengths of the model.

After loading the best weights of the model and setting it in evaluation mode, we used
"DiceMetric’, without including the background, to compute the DSC and other metrics
on unseen data during training. The final mean values for each metric are presented along
with the standard deviation, minimum and maximum values found. This is an important
step that proves the model’s generalization ability, which is crucial for its potential future
application in real-time medical data.

We added another chart that displayed the distribution of per-patient DSC across 5
percentage ranges (0-20, 20-40, ..., 80-100). The main purpose was to examine poten-
tial outliers that decrease the overall results and also evaluate the dataset optimization
strategy that was applied. We also visualize the GT mask next to the prediction contour,
which is the outline of the predicted region. We implement that for two patients from the
top bin and two patients from the bottom one to visualize differences in GT labels, image
quality and potential weaknesses of our model. These visualization also provide insights
on the overall accuracy of the predicted regions and the characteristics of possible false
positives or missed tumor instances.

Lastly, the original scans, ground truth labels and prediction labels are printed for
some random patients for thorough visualization of the quality of predictions. The outline
of the tumor instances are included for GT and prediction slices to showcase the accuracy
of the predicted regions and possible false positives or missed tumor instances.

6.7.4 Fine-Tuning

Another experiment was conducted, this time involving the fine-tuning of a pretrained
model. A 3D segmentation model trained for spleen delineation from CT images was
selected from MONAI ZOO for this transfer learning task. The model was trained on
the MSD dataset, processing 96 x 96 x 96 pixel patches, with the U-Net architecture.
This model was selected due to its similarities with the U-Net model implemented for
our task, since successful fine-tuning requires identical dimensionality, layer shapes and
depths, input channels and normalization. The U-Net structure was slightly edited to
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better fit the pretrained model. The activation function was switched to 'PRELU’; the
feature normalization type was set to 'BATCH’ and dropout was reset to 0.

The model was downloaded from MONAI ZOO and the path to the checkpoint file
“model.pt” was built for weight extraction during our model initialization. After that, a
function was created with the purpose to load the pretrained weights. After loading all
the weights, the final layer or head of the model needs to be re-initialized because it maps
spleen-specific features. In U-Net architecture the head is usually a Conv3d layer with as
many output channels as the number of classes. We visualized our U-Net structure and
saw that the last layer had two output channels and a 3 x 3 x 3 kernel. Therefore, the last
Conv3d layer of the model was selected and re-initialized. This process is done on CPU
and then the model is moved to GPU to begin training. A new optimizer is created, with
a greater learning rate for the fresh head, so that it learns the new tumor features faster.

Additionally, since a pretrained SegResNet network that matched our purpose, was
not found, we decided to try and pretrain the model on our own data only for liver
segmentation for 100 epochs. The weights were then used to fine tune the same model
architecture for the tumor segmentation task.

6.7.5 Combined Pipeline

After the best models for liver and tumor segmentation are selected, they are combined
to form an automated segmentation pipeline. More specifically, we use the whole dataset
as the test set, and create liver predictions for the entire dataset with the best liver
model. Then the transforms used are inverted with the 'Invertd’ transform from MONAI,
which undoes preprocessing and reverts the predictions back to the original image space.
"AsDiscreted’ converts the prediction logits into a hard label map by taking the argmax
class at each voxel and then predictions are saved under the specified folder and name
with ’Savelmaged’.

The predictions saved are then used during the preprocessing stage of the tumor
segmentation task. They replace the original liver GT for all preprocessing transforms.
For example, the volume is now cropped around the predicted liver mask and not the
original GT. Moreover, the predicted masks are added as a second input channel with
"Concatltemsd’ transform, which stacks the volumes and liver predictions together, so
that they are loaded together during training. The mask channel acts as an extra mech-
anism that shifts the network’s focus towards the liver region, when searching to identify
tumors. The CT channel includes important appearance features, while the liver channel
provides spatial information.

65



Chapter 7

Experimental Results

In this chapter, we are going to present the results gathered from the different trials
and experiments mentioned previously. For this purpose, metric curves and plots are
presented for better visualization of the training and testing performance across different
training parameters and model architectures. The predicted masks and the corresponding
ground truth labels are also compared for both liver and tumor segmentation, along with
other valuable evaluation insights. These results aim to describe the performance of the
proposed methods and models and indicate which areas could be further improved.

As we discussed previously, the W&B framework was leveraged to provide metric
visualizations during the training phase of the model that give valuable insight into its
performance. The curves from various experiments are presented and compared in this
section.

7.1 Liver segmentation

7.1.1 Architectures comparison

SegResNet was pretrained on liver to later be fine-tuned, however showed great potential.
Additional experiments were conducted with UNETR and ResUNet. For all experiments
the original dataset was used. The training characteristics are shown in Table 7.1.

Table 7.1: Basic configuration by architecture.

ResUNet UNETR SegResNet
Max Epochs 200 200 200
Learning Rate 0.0001 0.0001 0.0001
Patience 20 20 20
Activation softmax softmax softmax
Loss DiceFocal DiceFocal DiceFocal
Hardware RTX 4080 16GB RTX 4080 16GB GTX 1650 4GB
Spatial Size (H-W-D) 128-128-48 160-160-64 128-128-48

The final training results are displayed in Table 7.2
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Table 7.2: Performance results across architectures

Metric ResUNet UNETR SegResNet
Epochs 70 53 78
Train Dice 0.983 0.980 0.980
Train Loss 0.195 0.022 0.02
Final Val Dice 0.960 0.948 0.966
Final Val Loss 0.037 0.047 0.031
Final Val Recall 0.953 0.948 0.954
Final Val Precision 0.956 0.936 0.097
Final Val Surface 0.613 0.745 0.534
Test Precision 0.954 0.951 0.96
Test Recall 0.957 0.095 0.964
Best Val Dice 0.962 0.952 0.969
Test Dice Softmax 0.963 0.956 0.968

As we can see, the best performing model was the SegResNet. All results were close
on most metrics, proving the robustness of the initial setup for the training process.
Additionally, the test set results verify the lack of overfitting and the substantial gener-
alization capabilities of all models. Lastly, the validation metric curves can be visualized
in Figure 7.1

Figure 7.1: Validation curves for Liver Segmentation comparison

7.1.2 Qualitative evaluation

The best performing model was used for further evaluation on unseen data. Table 7.3
presents the final odel results

Table 7.3: Testing results for SegResNet on 41 test volumes

Metric Mean Std Min Max

Dice 0.9681 =+ 0.0293 0.8443 0.9788
ASSD 1.0058 =+ 0.6580 0.3437 3.8343
Recall 0.8879 =+ 0.0739 0.6368 0.9721
Precision 0.9672 =+ 0.0244 0.8553 0.9949
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An example of liver predictions by this network is shown in Figure 7.2. The great
similarity between the GT and the predicted masks is evident in this figure, verifying the
high-level performance of the model.

Axial z=52 GT contour Pred cantour

Figure 7.2: Liver prediction masks

7.2 Tumor segmentation

7.2.1 Basic trials

The initial trials involved the comparison of similar models in order to determine some
fundamental settings for the task, regarding metric calculations, data preparation and
hardware selection, before moving on to the comparison of different architectures and
parameters.

Background inclusion

Figure 7.3, contains the comparison of 2 different runs with the U-Net architecture and
the same hyperparameters and preprocessing techniques. However, the pink graph rep-
resents a run, where the background was included in the dice metric computation. That
explains the gap between the two curves in the dice metric graphs, since the inclusion of
background provides a significant head-start to the model’s dice, since it is far easier to
be correctly segmented. In contrast, with the background excluded, the dice values begin
almost from 0, until the model slowly and gradually learns the tumor-specific features
and is finally improved.
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Figure 7.3: Comparison for background inclusion

Dataset optimization

Figure 7.4 compares two identical UNet implementations, with the only difference that
in ’Exp 1.5’ an optimized instance of the initial dataset was used as input, which only
contained patients with more than 10 slices that contained tumors, for all 3 dataset splits.
It is obvious that the optimized strategy improves the performance of the model, since
the final dice and loss values are improved, while the validation metrics converge faster,
meaning that the model can understand the features easier now that it is not fed with
CTs where background is too dominant.

69



train_loss train_dice

val_dice val_loss

I . “Nia i ‘.'.h' m

T PR AT

Figure 7.4: Comparison for dataset optimization

Hardware comparison

We compared the training log instances from experiments on the NVIDIA GEFORCE
RTX 4080 16GB GPU and the local GEFORCE GTX 1650 4GB respectively, for the
same SegResNet architecture and similar spatial sizes. It was observed that there is
an immense difference in the runtime speed of the enhanced GPU, as each epoch lasted
around 57s, while the local GPU took around 1300s. This significant reduction in training
time highlights the substantial impact of high-end GPU hardware on model training
efficiency. Faster training not only accelerates experimentation but also enables the use
of larger batch sizes and more complex models without excessive runtime overhead.

7.2.2 Architecture comparison

After finalizing the main hyperparameters and strategies to be used for the training
process we move on with the comparison of different architectures. Four of the most
commonly used architectures were tested, SwinUNETR, ResUNet, AttentionUNet and
SegResNet. The basic parameters and configurations for the training process that were
common for all architectures are displayed in Table 7.4.
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Table 7.4: Training configuration used for CRLM segmentation experiments.

Parameter Value

Activation Function softmax

Max Epochs 300

Loss Function DiceFocalLoss
Dataset Optimized
Hardware GeForce RTX 16GB
Loss Weights 1/10

Patience 40

Evaluation Metric DiceMetric
Learning Rate 1x107*

Sliding Window Overlap 0.4

Table 7.5 contains the different spatial configurations implemented to ensure that the
models fit the memory and did not result in "OutOfMemory” errors due to increased
size. Each training sample is an additional 3D patch loaded into the GPU, hence many
samples can exceed the available VRAM. The final epochs indicate the point where early
stopping was triggered for each model. The earlier the final epoch, the earlier the model
reached a plateau and stopped improving on the validation data score.

Table 7.5: Differences in training configurations across architectures.

Parameter SwinUNETR ResUNet AttentionUNet SegResNet
Spatial Size 96, 96, 64 128, 128, 64 112, 112, 64 128, 128, 64
Number of Samples ) 12 8 8
Final Epoch 102 107 220 171

The final results on the unseen testing set, as well as the best validation dice reported,
are presented in Table 7.6.

Table 7.6: Final results

Parameter SwinUNETR ResUNet AttentionUNet SegResNet
Test Dice 0.525 0.604 0.641 0.652
Test Precision 0.508 0.596 0.665 0.614
Test Recall 0.624 0.647 0.694 0.75
BEST VAL DICE 0.492 0.596 0.637 0.646
Test Global Dice 0.596 0.609 0.673 0.633

Lastly, the training curves for dice and loss during validation, as well as corresponding
metric curves for the four models are shown in Figures 7.5 and 7.6. These graphs provide
an analytical view of the training process, highlighting convergence behavior and potential
signs of overfitting.
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Loss comparison

We used the best model (SegResNet) to conduct an experiments between Dice and Focal
Loss (green) and Dice and Cross-Entropy Loss (grey).
exactly the same. The results are shown in Table 7.7 and Figures 7.8, 7.7. We can see
that the results are similar, however DiceFocal performs slightly better in dice metrics

Figure 7.6: Loss curves

and precision, while keping recall at a satisfying level.

Table 7.7: Final results

The other specifications were

Parameter DiceCE DiceFocal
Test Dice 0.63 0.652
Test Precision 0.582 0.614
Test Recall 0.761 0.75
BEST VAL DICE 0.624 0.646
Test Global Dice 0.604 0.633
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Fine-Tuning comparisons

Figure 7.8: Metric curves

As mentioned before, a SegResNet model was fine-tuned based on a completed training

run for liver segmentation.

The comparative results between this approach and the

original SegResNet run are presented in Table 7.8.

Table 7.8: Final results

Parameter Fine-Tuned Original
Test Dice 0.683 0.652
Test Precision 0.693 0.614
Test Recall 0.722 0.75
BEST VAL DICE 0.653 0.646
Test Global Dice 0.745 0.633

The corresponding metric curves are shown below 7.9:
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Figure 7.9: Loss curves

Another fine-tuning experiment was conducted, this time importing a model trained
for 3D spleen segmentation from MONAI ZOO. Figures 7.10 and 7.11 present the metric
results of the fine-tuned UNet architecture compared to the optimized UNet run executed
on the remote computer. The head of the model should generally be re-initialized before
beginning the fine-tuning, in order for the final layer to learn the brand new tumor
features instead of the spleen features. The test metrics are shown in Table 7.9.

Table 7.9: Final results

Parameter Fine-Tuned ResUNet ResUNet
Test Dice 0.531 0.604
Test Precision 0.659 0.596
Test Recall 0.517 0.647
BEST VAL DICE 0.574 0.596
Test Global Dice 0.602 0.609
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Figure 7.10: Comparison of metrics for fine-tuned UNet from MONAI ZOO

Figure 7.11: Comparison of loss curves for fine-tuned UNet from MONAI ZOO

7.2.3 Evaluation on test set

The best performing models were reloaded and evaluated on the test set, which originally
contained 41 patients, but after optimization it had 22 patients. The model had never
seen the specified patients during training. The best model is considered the regular
SegResNet model, not the fine-tuned one for the testing phase.

Full vs optimized dataset

To highlight the differences in model performance between the complete and the optimized
dataset, that only contains patients with more than 10 slices with tumor existence, we
evaluated our best SegResNet model and plotted the DSC distribution across all patients
to examine potential outliers with much poorer results than the average, in Figure 7.12.
We can see that indeed the optimized dataset removes most of the potential outliers,
along with some better candidates.
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Figure 7.12: Outlier evaluation

Comparison among architectures

The following figures show the prediction masks by different architectures compared for
the same patients.

Figure 7.13 shows the corresponding dice distribution for the additional architectures
tested. SwinUNETR was not included in the computations due to its poor performance.
The results verify that SegResNet had the least outliers.
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Figure 7.13: DSC bin among different architectures

Figure 7.14 shows an example where all architectures provided almost identical results
of really accurate segmentations.
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Figure 7.14: Successful segmentation by every architecture

Figure 7.15 shows an instance where our best model accurately predicted nothing,
while the U-NET and Attention U-Net displayed FP instances, showing some over-
segmentation tendencies.
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Figure 7.15: U-Net architectures over-segmentation example

Best architecture’s results

The SegResNet architecture was the best one among all the trials conducted, displaying a
final test DSC for tumor segmentation of 0.6527. That is why it was selected for thorough
evaluation on the testing set. The metrics obtained during testing are presented in Table
7.10. We can observe a great variance between the min and max values, which pinpoints
the variance in the shapes and sizes of the CRLM tumors, increasing the difficulty of this
task.

Table 7.10: Testing results for SegResNet on optimized dataset (22 test volumes)

Metric Mean Std Min Max

Dice 0.6527 £ 0.2220 0.0975 0.9041
ASSD 8.1884 4+ 10.9624 0.7891 49.0112
Recall 0.7514 £ 0.2280 0.2037 0.9904
Precision 0.6143 £+ 0.2395 0.0641 0.9135
Global Dice 0.6329
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7.3 Final combined pipeline

7.3.1 Liver model tests

The best liver model, the SegResNet, was used to make predictions for the entire dataset.
The predictions were then integrated into the complete tumor segmentation pipeline.
Figure 7.16 shows the overlap between the GT mask (blue) and the predicted one (red),
which is remarkably accurate.

y: CRLM-CT-1001_ct

Figure 7.16: Visualization of predicted and GT liver masks

Table 7.11, contains the final testing results for liver segmentation, on all 197 patients
of the dataset. These results verify that the predicted segmentations used for the next
step of the pipeline are extremely close to the original masks. However, these results are
not to be used for model evaluation and comparison, as the testing set contained patients
that were part of the training set for the same model, which can result in slight inflation
of the final results.

Table 7.11: Liver test metrics on entire dataset

Metric Mean Std Min Max
Dice 0.9682 =+ 0.0097 0.9081 0.9818
Recall 0.9687 4+ 0.0170 0.8994 0.9954
Precision 0.9681 4 0.0181 0.8522 0.9938
Global Dice 0.9690
Global Recall 0.9688
Global Precision 0.9692
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7.3.2 Final pipeline results

The final automated pipeline of two SegResNet models for liver and tumor segmentation
can be visualized in Figure 7.17. This final automated pipeline illustrates a two-stage
segmentation process in which the liver is first segmented from the input volume, followed
by tumor segmentation within the localized liver region. This hierarchical design improves
the accuracy of tumor detection by constraining the search space inside the liver.

Output liver
= SegResNet —) ! ‘ segmentation map
| Output tumor
g SesResNet i ' segmentation map

Figure 7.17: Diagram of final automated pipeline

Input Volume

The automated pipeline performed greatly on tumor segmentation, with a final test
DSC of 0.6744. The metrics obtained during testing are presented in Table 7.10. We can
observe a similar variance between the min and max values to the single channel SegRes-
Net for tumor segmentation that was presented previously, however the final results are
slightly increased for the final pipeline created.

Table 7.12: Testing results for final pipeline on optimized dataset (22 test volumes)

Metric Mean Std Min Max

Dice 0.6744 4+ 0.2092 0.0769 0.9271
ASSD 8.6173 4+ 9.6463 0.8004 37.2691
Recall 0.7604 4 0.1983 0.1841 0.9693
Precision 0.6473 =+ 0.2527 0.0486 0.9391
Global Dice 0.6631

The DSC distribution for the final pipeline is presented in Figure 7.18. We can
observed that the results are higher and more balanced than the original single-channel
SegResNet trial.
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Figure 7.18: Test set DSC distribution for final pipeline

Lastly, we calculated the mean per-case DSC of this model, when excluding the two
outliers with DSC lower than 40%. The result was a DSC of 0.7279 for 20 out of the 22
test set patients.

7.3.3 Final pipeline visualizations

The final model was also used to obtain valuable visualizations that help us observe the
accuracy of the predicted regions. Some valuable examples are presented below.

Example 1 Figures 7.19, 7.21 and 7.20 contain some slices from the 2 outliers during
the evaluation, which are prime examples of wrongfully segmented tumors. We can see
that the model struggles to detect the tumors, mainly due to image contrast issues and
label inconsistencies, resulting in false positive and negative predictions.
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Figure 7.19: Example of difficult to segment tumors
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Figure 7.20: Example of difficult to segment tumors
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Figure 7.21: Example of difficult to segment tumors

Example 2 In the case of Figures 7.22, and 7.23, we have some slices of patients
that belong to the highest distribution bin. The tumors are much larger and the scan’s
intensity makes them easier to detect. Even for smaller tumors, like in Figure 7.24, the
model is still able to accurately segment the tumors for clear and consistent instances.
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Figure 7.22: Example of accurately segmented bigger tumor instances
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Figure 7.23: Example of accurately segmented tumor instances with different intensities
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Figure 7.24: Example of accurately segmented smaller tumor instances
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Example 3 Figures 7.25 and 7.26 show that even for patients with good dice scores,
some ground truth labels can be misleading, as single tumor labels might be divided
in half, or potential smaller tumor labels might be missing. Figure 7.27 showcases an
extreme example where there is a label totally outside of the liver region, harming the
final results.
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Figure 7.25: Example of multiple smaller tumor instances creating confusion
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Figure 7.26: Example of sudden GT division
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Figure 7.27: Completely missed tumor label
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Chapter 8

Discussion

8.1 Interpretation of results

8.1.1 Liver segmentation

The liver segmentation results are consistent with state-of-the-art standards and can be
compared to the reported results from other relevant studies in Chapter 5. The validation
graphs across different architectures are quite similar,

All tested architectures performed effectively and consistently in the liver segmenta-
tion experiments. Models converged quickly during training, as shown by the validation
curves, and validation Dice scores plateaued around high values after a relatively small
number of epochs. The preprocessing and augmentative techniques were successful in
stabilizing training, as displayed by the validation curves, which showed steady improve-
ment without overfitting. SegResNet was chosen for the final evaluation on test data
because it performed slightly better than the other models.

The SegResNet model performed greatly on the unseen test data consisting of 41
patients, with a mean Dice score of 0.944 and very low variance across cases (standard
deviation of 0.029). The low mean average symmetric surface distance (ASSD) of 1.01
mm verifies the accuracy of the volume boundaries predicted. The network’s precision
(0.967) and recall (0.888) further demonstrated its sensitivity in detecting liver voxels and
accuracy in preventing false positives. The model was consistent across patients, with
few outliers, as evidenced by the narrow range between minimum and maximum values.

The validation curves displayed almost similar results across all architectures. This
can be explained by the nature of the liver segmentation task, as the liver is a large, well-
defined organ that is uniform in shape and appearance across different patients. The liver
region is clearly displayed in many slices across all patients, therefore the specialization
of each architecture does not have a great effect on the final performance. All encoder—
decoder structures are able to learn the strong spatial and intensity characteristics that
differentiate the liver from surrounding tissue.

Overall, the performance of the liver segmentation model can be considered state-of-
the-art and competitive with values reported by related literature. The network was able
to accurately segment the liver region even in cases of anatomical or intensity differences
between scans. These results are particularly important because they provided a reliable
foundation for the subsequent tumor segmentation experiments.
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8.1.2 Tumor segmentation

The experiments around tumor segmentation were more thorough and specialized, as it
is a much harder task than liver segmentation. The decision to exclude the background
seems to have hurt the results, however makes them more representative of the actual
capabilities of the model on tumor segmentation without inflation from background seg-
mentation success. This is an important aspect, as some relevant studies do include the
background in the results and therefore can lead to overestimation of their model’s ability.

Another important result, is the comparison between the optimized and regular dataset.
Excluding 87 out of the 197 patients that had fewer than 10 tumor-positive slices, gave
us the chance to over-sample patients with more tumor instances, in an effort to deal
with the background domination. The training and validation curves provide a valuable
demonstration of the results of this method. The training curves (loss and Dice) for
the optimized dataset (purple) show smoother and more stable convergence compared to
the original method (brown). Training loss decreases steadily, while training Dice rises
higher, suggesting that the model learns more consistently when the dataset contains
fewer extremely sparse cases. Similarly, validation Dice starts higher, increases quicker,
and maintains a more stable plateau compared to the original dataset experiment. This
indicates that removing patients with almost no tumor voxels reduces the severe class
imbalance that would otherwise bias the model toward background prediction. Similarly,
validation loss declines faster and to lower values, verifying that the optimized dataset
improves generalization.

The availability of the remote PC with an NVIDIA RTX 4080 16GB GPU was neces-
sary for a complete experimentation process. The enhanced GPU of the remote machine,
which allows for a greater spatial size during training. Compared to the local GTX 1650
4GB, the larger memory capacity of the RTX enabled the use of larger spatial sizes and
number of samples per patient (up to 160 x 160 x 64 and 12 samples for UNet). This
enabled the models to capture more volumetric context in each epoch, improving both
efficiency and segmentation quality. The training logs highlight the immense difference
in runtime. While a single epoch run on the GTX for a SegResNet model could take
around 20-25 minutes, the RTX reduced this time to less than 1 minute. This speed-up
was crucial, as it allowed longer training schedules (200-300 epochs) and experimentation
with more complex architectures such as SegResNet and SwinUNETR.

The architectural experiments, with four different implementations, also provided
valuable insights. Four different architectures were tested with similar configurations
and hyperparameters like loss, activation function, learning rate, maximum epochs, pa-
tience, sliding window overlap and evaluation metric. However the spatial configurations
of the inputs during preprocessing were different depending on the memory constraints
for each architecture. The testing results and training metric curves obtained, provide
valuable insights on each architecture’s performance.

The SwinUNETR model, struggled to follow the performance of the other metrics
and was the first to trigger the early stopping mechanism. It achieved the lowest scores
across dice, recall, precision and surface distance, by a margin. This can be attributed to
the large memory requirements and sensitivity to limited data that characterizes heavy
transformer-based models, like the implemented one. Due to the limited hardware re-
sources. even for the remote PC, we had to significantly lower spatial size and number
of samples, which seems to have hurt the final performance.

ResUNet and Attention U-Net performed moderately well, with Dice scores around
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0.60-0.64. The curves show that both models converged smoothly and without many
fluctuations. Attention U-Net, in particular, demonstrated the highest precision (0.665)
and global dice, but lower recall and per-case dice which indicates that it was successful at
predicting large and certain tumor regions, without many false predictions, but it missed
some lesions.

Lastly, SegResNet was the best model in this experiment, achieving the highest test
Dice (0.652), recall (0.75), and validation Dice (0.663). The validation curves for SegRes-
Net were quite stable, with both Dice and loss trends showing steady convergence. Its
high recall suggests that SegResNet was better at detecting small and heterogeneous tu-
mor regions, a critical factor in CRLM segmentation where under-segmentation can result
in clinical implications. Precision remained at a satisfactory level above 60%, along with
the final average surface distance metrics, around 10-20 mm, confirming the accuracy of
the final boundaries.

Overall, the results confirm that CNN-based residual networks maintain a strong
balance between capacity, stability, and computational cost, which makes them better
more appropriate for tumor segmentation under limited resources compared to more
computationally demanding transformer models.

The loss comparison conducted for the best model architecture (SegResNet) between
Dice-Cross-Entropy and Dice-Focal losses provided additional insights on the model be-
havior. The training curves highlight the stable convergence achieved in both experi-
ments. However, the quantitative results for DiceFocal loss were slightly better for final
test Dice (0.652 vs. 0.63), precision (0.614 vs. 0.582), and global Dice (0.633 vs. 0.604),
while maintaining recall at a similar level (0.75 vs. 0.761). These findings suggest that
the additional weighting mechanism introduced by the focal component helps the model
to better handle the class imbalance of this task. Even though the final results are simi-
lar, DiceFocal displays remarkable consistency across metrics, making it the more fitting
choice for our task.

Evaluation on test set

The distribution comparison between the original and optimized datasets verifies that
some of the patients in the original dataset were not suitable for this segmentation task,
as the small size or frequency of tumors on their scans drove the final DSC below 40%.
In contrast, the optimized method has successfully excluded most outliers, with only 2
patients performing under 40%. Also some average-performing patients were excluded,
but almost all patients from the top bin remained in the optimized dataset.

The distribution of dice values among SegResNet, AttentionUNet and ResUNet ar-
chitectures, indicates that SegResNet is better at avoiding outliers and achieving overlap
over 40% between GT and predicted masks, while the other two architectures display
a smoother dice distribution across all bins. The visualized slices suggest that all ar-
chitectures are capable of accurately segmenting large, well-defined tumors with obvious
intensity and contrast differences from liver tissue. However, especially U-Net architec-
tures, seem to tend to over-segment on cases with poorer contrast, resulting in increased

FP.

Fine-tuning

The first fine-tuning experiment, which utilized weights from a pretrained SegResNet
model to adapt the architecture for tumor segmentation, demonstrated a performance

92



improvement compared to training from scratch Fine-tuning raised the test Dice from
0.652 to 0.683 and the global Dice from 0.633 to 0.745, while also boosting precision from
0.614 to 0.693. Recall was slightly lower, yet still competitive. These results highlight the
effectiveness of transfer learning across related segmentation tasks. The dice curves show
that the fine-tuned model was able to grasp tumor-specific features faster and reach a
smooth plateau. However, fine-tuning from the same dataset, can come with some risks,
as the network may reuse specific dataset features from pretraining, resulting in inflated
performance on the test set but limited generalization to external cohorts.

The second fine-tuning experiment showcases the limitations of transferring knowl-
edge from spleen segmentation to CRLM segmentation. While the fine-tuned UNet from
MONALI Zoo achieved slightly better precision from the baseline ResUNet, it displayed
much lower recall and overall Dice (0.531 vs. 0.604). This suggests that the model strug-
gled to adapt to the heterogeneity and smaller size of CRLM lesions, showing that the
features learned from spleen data do not generalize well to tumor structures. The train-
ing and validation curves also show higher instability and noisier convergence, as even if
dice starts from higher values it does not improve substantially throughout the training
process.

In conclusion, the fine-tuning results indicate that the selection of the appropriate
dataset for pretraining is quite important for the success of the transfer-learning process.
An effective balance must be found between using data that is closely related to the target
task and without harming the final generalization abilities of the model.

8.1.3 Final pipeline results

The final pipeline created for automated tumor segmentation, with two input channels,
performed even better than the single-channel trials. The final test set per-case DSC of
0.674, is slightly lower, yet comparable state-of-the-art models for CRLM segmentation,
like [100, 105]. The final recall (0.759) and precision (0.647) values are also improved,
suggesting a balanced model, focused on avoiding FN results that can be quite serious
for medical imaging tasks, as they represent missed tumor instances.

The improved results, can be partially attributed to the second input channel added,
with the liver predictions. The final model combines the spatial features from the pre-
dicted liver masks that indicate the location of the tumors, with the more specific char-
acteristics from the CT volumes that contain important shape and intensity information.
Additionally, leakage of information from GT masks is reduced, as the liver predictions
are used to spatially guide the model.

The examples visualized for our best model help better understand the dataset and
the specific characteristics that harm the model’s performance. The model seems to
be oversensitive to small intensity variations, possibly mistaking normal parenchymal
texture, vessels, or imaging noise for lesions. Additionally, it seems to miss lesions with
low contrast to background, regardless of their size. Lastly, sometimes the model manages
to capture the size and shape of smaller lesions but misplaces them inside the liver region.

In contrast, the model successfully predicts the shape, location, and extent for one or
multiple tumor instances when there is adequate contrast from the surrounding tissue.
There is a small tendency to under-segment some lesions, which however does not result
in increased FN.

There are also some examples of poor GT labels that prevent the model from increas-
ing its accuracy. In some cases the ground truth contouring appears inconsistent. For
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example, a single tumor label is split into two disconnected contours in the next slice,
even though the intensity pattern suggests continuity. In another example, the ground
truth labels appear suspicious because they are drawn far outside the liver parenchyma,
in regions without any visible lesion, resulting in false negative predictions by the model,
which does not detect any tumors. These annotation quality issues can mislead model
training and evaluation.

8.2 Main limitations observed

During the experimentation phase of the 3D CRLM segmentation task, we faced sev-
eral limitations and practical challenges. A major constraint was the long training time
caused by the computational demands of 3D volumetric data. Training required substan-
tial memory and compute power, but the local resources were limited to a 4 GB GTX
GeForce GPU, which restricted batch size and model capacity. Close to the end of the
project remote access to a more powerful 16 GB NVIDIA GEFORCE RTX GPU was
granted, allowing the experimentation with heavier models and parameters, however the
availability of resources was still limited.

Another important observation was the class imbalance in the dataset. Many patients
had only a handful of slices containing tumor voxels, and some tumors were extremely
small compared to the liver volume. This imbalance caused the network to struggle with
sensitivity, with the average values around 60%, since the model struggled to detect and
successfully segment sparse tumor instances. In addition, there was a great variation
in scan depth, intensity ranges, and liver shapes, which complicated preprocessing and
normalization.

Ground truth labels also presented some inconsistencies, as in several cases, tumors
were extremely small, or they appeared and disappeared inconsistently across consecutive
slices, making learning even harder. Other cases included clearly, mislabeled tumor in-
stances and poor quality scans with bad contrast between tumors and surrounding tissue
or other anatomical features, that overall confused the model and resulted in increased
FP and FN predictions.

The experimentation process of different modules and methods was quite resource
intensive. Many architectures and hyperparameters needed to be explored, the limited
GPU availability made it hard to conduct thorough trials of various different methods.
Additionally, many training strategies required great modifications to the base training
code, for example handling inputs as one-hot encodings or adjusting the training loop,
which added extra complexity.

Overall, these constraints shaped the experimental strategy. Certain lighter archi-
tectures, like U-Net had to be prioritized and utilized for most experiments, while the
focus was given on delivering accurate and objective results, with minimum editing of the
original dataset or leveraging of the dominant background class, which boosted results.

8.3 Comparison with literature

When comparing our best results with existing literature, as described in Chapter 5, a
clear distinction emerges between liver and tumor segmentation performance.

For liver segmentation, our pipeline achieved a Dice score of 0.968 with high precision
and recall (0.969), which is comparable to some of the best-performing reports. This
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confirms the success of our model in the relatively easier liver segmentation task.

In contrast, tumor segmentation was substantially more challenging. Our final au-
tomated pipeline for liver and tumor segmentation, with two SegResNet models trained
with DiceFocal, achieved a final tumor DSC of 0.674, precision of 0.647, and recall of
0.76 on the test set. These values are similar to the most subjective and rational CRLM
experiments, like [105], who reported a Dice of 0.73 and precision of 0.44, [101] with DSC
of 0.655 on 3DIRCADbD and [100] with a DSC of 0.74 on larger tumor instances. The
differences with other studies can be attributed to the smaller size and variability of our
dataset, since many literature works rely on larger or more curated public datasets (e.g.,
3DIRCADb, CAIROb5). Also the hardware constraints limited our abilities for extensive
experimentation with more models and parameters. Lastly, some studies applied exten-
sive dataset optimization techniques, removing non-tumor slices or patients [103], or even
included the background on the metric calculations, inflating the final results [51,85,91].
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Chapter 9

Conclusions and future Work

9.1 Summary of achievements

The main goal of this project was to develop a reliable and automated pipeline for the seg-
mentation of CRLM in 3D CT scans. After thorough experimentation, a complete work-
flow was designed and implemented with the help of MONAI framework, accompanied
by a literature review and theoretical study that explained and justified the experimen-
tal methods and strategies followed. The final test DSC of 0.674 is highly satisfactory,
based on the implications of the segmentation of this specific type of cancer.

The liver-tumor segmentation task can be solved in an organized and effective manner
by putting in place a two-stage pipeline. The tumor model functions within a clearly de-
fined region of interest when the liver segmentation is used as a prior, improving accuracy
and lowering false positives. In addition to increasing overall performance, this approach
simplifies the inference process, which makes it more useful for clinical workflows where
accuracy and dependability are crucial.

Implementing a two-stage pipeline provides a structured and efficient solution to the
liver—tumor segmentation task. The liver segmentation is used to guide the tumor model’s
operation within a well-defined region of interest, which enhances accuracy and reduces
false positives. This strategy also streamlines the inference process, making it more
practical for clinical workflows where precision and reliability are essential.

Using 3D segmentation allows the model to leverage volumetric context and spatial
consistency of the tumors within the liver. This is particularly important for CRLM,
where lesions can be small, have variable shapes, and appear across multiple slices.

The literature review included the medical background of colorectal cancer and CRLM,
the fundamentals of DL, the specifics of segmentation tasks in medical imaging, and an
overview of the most commonly applied architectures in the field. This review helped
to establish a solid foundation for the experimental phase, while also highlighting the
clinical importance and challenges of CRLM segmentation.

Based on this, a full training pipeline was implemented. Special attention was given
to preprocessing and augmentation, since the dataset presented issues such as class im-
balance, varying slice depths, and heterogeneous tumor appearances. A range of trans-
formations were applied to normalize intensities, standardize input dimensions, increase
tumor positive samples and ensure robustness through data augmentation. The main
evaluation metric used was DSC along with recall, precision, and surface distance, to
ensure reliable performance evaluation.

Various different architectures like U-Net, UNETR, and SegResNet were tested under
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multiple configurations. U-Net, being the lighter one of the models, was also used for
experimentation with training strategies and hyperparameters. The model primarily re-
lies on differences in intensity and texture within CT images to successfully segment the
tumor regions, since tumors often appear with contrast or brightness variations relative
to surrounding liver tissue. Through convolutional layers, it captures high-level spa-
tial representations, which help distinguish tumors from neighboring vessels or imaging
artifacts.

The most effective architectures were identified separately for liver segmentation and
tumor segmentation, mainly based on validation and test set DSC results. Recall results
were also important for model selection, since they reflect the model’s ability to avoid
leaving lesions undetected. These models were then combined into an automated two-
stage pipeline, in which the liver model’s predicted masks were used to guide the tumor
segmentation task, as second input.

The results were presented in a systematic way with various graphs and tables deriving
from Weights & Biases framework, to illustrate model performance across the different
experiments, allowing for clear comparisons and objective conclusions. The evaluation
process was objective and robust, as we avoided inflating results, by excluding the back-
ground class from the Dice metric and by applying a consistent dataset optimization
method, rather than picking specific patients for exclusion.

In terms of performance, the liver segmentation model achieved state-of-the-art re-
sults, with Dice scores approaching 96%. Tumor segmentation proved much more chal-
lenging. It was especially affected by the strong class imbalance between the background
and the relatively small and often sparse tumor lesions. In many patients, only a few
slices contained visible tumors, while in others the tumors appeared as very small or frag-
mented structures, making them difficult to capture consistently. Additionally, the use
of 3D volumetric data substantially increased training times and memory requirements.
However, the final tumor results, with a DSC of 67,4%, are competitive and comparable
to values reported in related literature. These results demonstrate that, despite limited
resources and dataset constraints, the developed pipeline is capable of reaching a strong
performance level.

Overall, the project effectively produced an automated 3D CRLM segmentation pipeline,
supported by a carefully structured methodology, extensive experimental validation, and
a thorough literature review. The results offer a useful application as well as a significant
addition to the research of deep learning applications in medical imaging. Our research
provides a strong foundation for CRLM-specific tumor segmentation, while also high-
lighting opportunities for improvement through larger and more representative datasets,
more specialized pipelines, and enhanced hardware resources.

9.2 Future research directions

Even though this project displayed feasible methods for 3D liver and CRLM segmentation
with limited resources, there are still a number of areas with potential for future research,
from enhanced data and computational infrastructure, to advanced training methods,
architecture implementations and clinical validation.

Future studies could benefit from more complete and diverse datasets, with an in-
creased number of patients and tumor instances and fewer class imbalances. Smaller
tumor instances could be combined and multi-center datasets could be implemented to
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enhance performance. Additional validation and evaluation from experts could improve
the segmentation quality of the datasets which could help the model with feature ex-
traction. For example, the use of Total Tumor Volume (TTV) as a clinically meaningful
biomarker, unlike the voxel overlap used in standard segmentation tasks, could enhance
the compatibility of research segmentation tasks with prognosis and treatment monitor-
ing applications [106]. Moreover, more specialized strategies for case selection among
the provided data could be implemented, that are focused in the label accuracy, image
quality and intensity specs of the original volumes.

Another area of promise is the construction of more specialized architectures and
strategies for the specific CRLM task. The curriculum training approach proposed by
[82], implements a U-Net variation with two branches, an over-complete one to evaluate
small structures and an under-complete one for higher-level structures, while training
starts from easier samples and then gradually expands to harder ones. This method
can help the model understand all types of tumors in a more organized and accurate
way. [109] proposed an enhanced U-Net++ architecture with ECA attention module for
channel emphasis and deep supervision, which seems to improve segmentation of blurry
boundaries and handle complex gradients effectively.

A promising direction for future work in 3D CRLM segmentation is the development
of fully modular and automated training pipelines that reduce the need for manual code
edits. [110] proposed a framework that gathers the full training, inference, and evaluation
workflows by the user, without underlying code changes needed and provides support for
advanced techniques like patch-based learning, test-time augmentation, and model en-
sembling. Similarly, [111] suggested the ’Auto-nnU-Net’ architecture offering automated
hyperparameter decisions and optimization strategies that balance accuracy against time
complexity. [106] proposes a self-learning pipeline (teacher—student setup), where limited
manual labels are leveraged to generate large pseudo-labeled datasets, reducing anno-
tation costs and enabling scalable, fully automated CRLM segmentation. Additionally,
MONALI offers an abundance of reusable components, from preprocessing tools to model
training networks that were not evaluated within this project and could be further ex-
plored.

Better hardware capabilities could support more thorough experiments with larger
datasets and improved quality. Upgraded GPUs with larger memory capabilities like
24-48 GB RTX or A100 GPUs could accelerate training and allow experimentation with
increased batches and spatial sizes. Multi-GPU training or subscription programs from
cloud-based platforms (Google Cloud, AWS, Azure) could provide infrastructure for dis-
tributed training on large datasets. These hardware upgrades could result in better and
more stable training performance, experiments with deeper transformer-based architec-
tures without memory fragmentation, and systematic hyperparameter tuning.

Overall, to create clinically reliable tools for CRLM segmentation, with potential
application for medical facilities, advancements in computational power, augmentation
strategies, algorithmic design, and dataset diversity are required.
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Appendix A
Model implementation listings

Listing 1: UNETR for liver/tumor segmentation

from monai.networks.nets import UNETR

model = UNETR(
in_channels=1,
out_channels=2,
img_size=(128, 128, 64),
feature_size=32,
hidden_size=768,
mlp_dim=3072,
num_heads=12, # multi-head self-attention
pos_embed="perceptron",
norm_name="instance",
res_block=True,
dropout_rate=0.1,

Listing 2: Swin UNETR (shifted-window ViT backbone)

from monai.networks.nets import SwinUNETR

model = SwinUNETR(

img_size=(96, 96, 32), # NOTE: each dim should be divisible by
32

in_channels=1,
out_channels=2,
feature_size=48,
depths=(2, 2, 2, 2),
num_heads=(3, 6, 12, 24),
norm_name="instance",
drop_rate=0.1,
attn_drop_rate=0.0,
dropout_path_rate=0.0,
normalize=True,
use_checkpoint=False,
spatial_dims=3,
downsample="merging",
use_v2=False

Listing 3: Attention U-Net (3D)

from monai.networks.nets import AttentionUnet
model = AttentionUnet(

spatial_dims=3,
in_channels=1,
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out_channels=2,

channels=(16, 32, 64, 128, 256),

strides=((2,2,1),(2,2,1),(2,2,2),(2,2,2)), # 4 downsampling
levels

kernel_size=3,

up_kernel_size=3,

dropout=0.1

Listing 4: U-Net (ResUNet-like, residual units + BN)

from monai.networks.nets import UNet

model = UNet(
spatial_dims=3,
in_channels=1,
out_channels=2,
channels=(16, 32, 64, 128, 256),
strides=((2,2,1),(2,2,1),(2,2,2),(2,2,2)),
num_res_units=2,
act='PRELU',
norm='INSTANCE"',
dropout=0.1

Listing 5: SegResNet (3D) for robust CT segmentation

from monai.networks.nets import SegResNet

model = SegResNet (
spatial_dims=3,
init_filters=16,
in_channels=1,
out_channels=2,
dropout_prob=0.1,
act=('RELU', {'inplace': Truel})
norm=('GROUP', {'num_groups': 8}),
num_groups=8,
use_conv_final=True,
blocks_down=(1, 2, 2, 4),
blocks_up=(1, 1, 1),
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