A
™
®<

ek
é

NE|

9

Y

2

\ ‘\
%\a
- :"2‘9
7 NPOMHOEVS
X
VP POPOS

\J

Y

EOvik6 Metoofro [ToAvteyvelo
>xoAn HAextpoAdywv Mnyovikov kot Mnyovik@v YToAoylotov

Topéoag Texvoroyiog IIAnpo@opikng kot YroAoylotodv
Epyaotipro Aoykng kot Emiotung Yrnoloyiopov (Co.RE.LAB)

Efficient Approaches to Deal with Oversmoothing
in Deep Graph Neural Networks

AIAAKTOPIKH AIATPIBH

TOY

AHMHTPIOY K. KEAEXH

ABnva, Oktofprog 2025

EOvik6 Metoofro [ToAvteyveio

>xoAn HAextpoAdywv Mnyovikov kot Mnyovikov
YmoAoylotwv

gje

Topéag Texvohoyiog IIAnpopopikng kot YToloylotomv

-, L)
—) <&l
NPOMHOEVS
NSH=
nvpeopos

la,

Epyaotiplo Aoykng kot Emiotnpung YmoAoyiopmv
(Co.RE.LAB)

Efficient Approaches to Deal with Oversmoothing
in Deep Graph Neural Networks

AIAAKTOPIKH AIATPIBH

TOY

AHMHTPIOY K. KEAEXH

YvpPovievtikn emrponn) : Anpitprog Pwtdkng (Kadnynrig, E-M.IL)
T'ewpylog HO(}\I.OI’)pO(g (Epevvntig A’, EX.E.®.E. “Anpoxpirog”)

I'epylog Xtdypov (Kabnyntrg, E.M.IL)

EyxpiOnike oo tnv emtopeln) e€etactikn emitponn tnv 8n OkxtwPpiov 2025.

AnpnTprog dwtdxng T'ewpyrog MaAovpoag TFewpylog Xtdypov
Kobnyntric, E.M.IL Epevvntig A’, EK.E.®.E. “Anuoxprtog” Kabnyntrig, E.M.IL
ABavaoiog BovAodnpog Iwdvvng NikoAévtlog ABavaoiog Povtoyiavvng

En. Kabnyntig, EMIL Em. Kabnyntrg, lav. IleAomovijocov AvasA. Kabnyntrg, E.M.IL

ANEEavdpog TTotapdvog
Avoarth. Kabnynrrg, EEMIL

Anuntprog K. Kedéong
Adaxtwp HAextporodyog Mnyovikodg kot Mnyavikog Yroloyiotov E.M.IT.

Copyright © Anuntprog K. KeAéong, 2025.
Me empOAa€n mavtog ducondpotog. All rights reserved.

Amayopedeton 1 avtiypogr], amobnkevon kot Stavopr) tng mapovcag epyociog, €€
OAOKANPOVL 1] THAHATOG QLTAG, Yot epmoptkd okomd. Emtpémetar n avatdmwon,
amofnkevon koL Stavopn yioe okomd pi kepOOCKOTLKO, €KTALOEVTIKNG 1) EPEVVITIKNG
@boNG, LITO TNV TPOVTOOEST Vo VOLPEPETOL 1) TINYT) TTPOEAELOTG KoL VoL dLATnpELTOL TO
Topov prvope. Epotipota mov agopoiv T xprion tng epyosiog yio kepdockomikd Koo
TpémeL v artevOOVOVTAL TPOG TOV GLYYPOPEQ.

Ot oo Yelg Ko T CUPTEPACHATA TTOL TEPLEXOVTAL G AVTO TO EYYPOYPO eKPPALOUV TOV

ovyypagéa ko dev TpémeL va eppnvevBel OTL avTiTpocwebovy Tig enionpeg Oéoelg Tov
EBvikob Metoofiov IToAvteyveiov.

2.TOUG YOVELG [1ov.

ITepiinyn. Ta Nevpwvika Aiktva I'pagwv (Graph Neural Networks - GNNs) éxouv emi-
deiel evrunwolakn emruyio oe éva eVPL PACHA EPYACLOV TTOL ALPOPOLV GYeLokd dedo-
péva. Qot6c0, 1 td6doct] Tovg emdelvedvetarl 060 avEavetar To Babog Tovg, Adyw TOv
Qovopévou tng vrep-eEopdAvvong (oversmoothing), katd to omoio oL avamapacTACELS
TV KOPPwv kabictavtal oxedov mavopolotumeg peta&d Twv emmédwv. H mapovoa dio-
PPN Tapovstdlel Pl GUGTNHATIKT HEAETT TOL TTPOPANHATOG TNG LITEP-eEOPAALVOTG KL
npoteivel véeg BewpnTIKEG Ko EPTTELPLKEG TTPOCEYYIGELS LA TNV AVTIHETOTLOT TOV, KoOL-
otovTag duvartr tn oxediaon PabiTepwv Kot ekppacTikOTEp®V apyLltekTovik®V GNN.
[Ipwrov, etodryovpe pio véa petpikt oe k&be emtinedo (layer-wise) yia tn pétpnon tng vmep-
eEOpAALVONG, GLVOSELOpEVT aTTO BewPNTLKA OpLar Ko epyadeior TPk TIKNG aviyvevong [1].
Agiyvoupe O0TL 1) LTEP-eEOPGALVOT) EMLOELVOVETOL OTAV 0 APLOPOG TV TLVAK®V Papdv G-
oyetiletan pe to Pabog tng Stddoong pnvupdtwy, kot tpoteivovpe To G-Reg, pio otpartn-
YLKT] KOVOVLKOTIOINGTG IOV JLATNPEL TNV TTOKLAOHOPPLX TWV VATTUPACTACEWV.

>1n ovvéyela, peletovpe TG residual ouvdécelg Ko avaddoVE TOVG TTEPLOPLOHOVG TOVG
otV Voo T PLEN aAANAemdpacewv pokpivig epPéretag petakd kopPov. H avalvon pog
deiyvel 0TL, Taporo mov Ta povtéda pe residuals (.y. APPNP, GCNII) avtiotékovtol otnv
vnep-e€opdhvvon oe tumikd benchmarks, amotvyydvouvv oe gevapia mov atontovv Poabid
Kot ekppaotiky dtdoon mAnpogopiag [2]. T tnv avddel€n avtov, etodyouvpe éva cuvhe-
TIKO 6UVOAO dedopévwv oxedlacpévo va agloloyet tnv tkavotnta evog GNN va atotunod-
VEL HOKPLVEG eEXPTNOELS.

Emerta, e€etdlovpe tn pepikn ekmaidevon (partial training) e GNNs, 6mov ekmondedetan
povo éva entinedo eved T vtdAoa Tapoapévovv otabepd. To amoteAéopatd pog oroko-
Abmtovv OtL 1 adénon tov TA&TOVG TOL pOVTEAOL avTioTaBpilel TNV atovsio TApoLg
eKTTOUOELONG KOl HELOVEL CTHAVTIKA TNV LTtep-eEopdAvvoT, akoun kot ot Pabiég apyite-
ktovikés. H mpocéyyion autr woopopilel 1) Eemepvd TANPOG EKTALOEVHEVA HOVTEAQ TOCO
o€ TUTIK® 060 ko o “cold start” cevapia [3].

EmunpocBeta, mpoteivovpe tn péBodo G-Init, piax otpatnyikr apytkomoinong Popov evn-
HEPWHEVT) aTtd T SO TOL YPAPOUL, EUTTVEVCHEVT) OO KAXGLKEG TEXVIKEG OPYLKOTTOLNGTG
yia Babid vevpovika diktva [4]. H G-Init AopPdver vdyn tnv tomoloyia Tov ypapov
kot PeAtiodvel T porj Twv gradients oe Pabid GNNs, petovovtag tnv vitep-eEopdAvvon kot
gvioxVovTaG TNV enidoot) Tovg oe TPoPAHATH TAELVOHNOTG.

Téhog, Stepevvoipe TNV eSO PACT) TNG CLVAPTNOTNG EVEPYOTTOLNGNG OTNV LTTEP-eEOUAALVET).
To BewpnTiKd KoL EPITELPLKA EVPHHATA pOG delyvouv OTL 1) Tpomomoine” g KALoNG TNG
ReLU 00nyel oe kaAOTEPT] TOLKIAOHOPPLX AVATTAPACTACEWY KoL PEATIONEVT) addooTn o€
Babid GNNs, ywpig v amantodvTal adlayéc otnv apyirektovikt 1 residual cuvdéoeig [5].
Y UVOALKQ, OL GLVELGPOPEG AVTES TPOWOODV TNV KATAVONGT) HOG GXETIKA e TIG TTPOKATGELG
mov oxetilovtot pe To fabog otar GNNs Kol TposPEPOLY TOAAATAEG, eTEKTAGHEG Ko Oew-
PTIKA TEKHUNPLOHEVES AVGELS YLOL TNV OVTIHETOTLOT TNG Lep-eEopdAvvonc. Ta evpnpota
LITOJELKVDOOULV TNV VALY KT) ETOVATTPOCILOPLOHOD TV apXdv oxedioong twv Pabidv GNNs
KO(L tvoLyouv Tov dpOpO Yl TLo 0ELOTTLOTEG APYLTEKTOVIKES KATAAANAEG YLO TTPOYHOTLKEG

EPOPHOYEG.

Aégerg kAerdud: Nevpwvika Atktva Ipapwv, Yrep-eEopdvvon

Abstract. Graph Neural Networks (GNNs) have achieved remarkable success in a wide
range of tasks involving relational data, yet their performance deteriorates as depth in-
creases due to the phenomenon known as oversmoothing, where node representations be-
come indistinguishable across layers. This thesis presents a systematic investigation into
the oversmoothing problem and proposes novel theoretical and empirical approaches for
mitigating it, thus enabling deeper and more expressive GNN architectures.

We first introduce a novel layer-wise metric to quantify oversmoothing, providing theoret-
ical bounds and practical detection tools [1]. We show that oversmoothing is exacerbated
when the number of weight matrices is coupled with the depth of message passing, and
propose G-Reg, a regularization strategy that preserves representational diversity.

Next, we study residual connections and analyze their limitations in enabling long-range
node interactions. Our analysis shows that while residual-based models (e.g., APPNP, GC-
NII) resist oversmoothing on standard benchmarks, they fail in settings requiring deep and
expressive propagation [2]. To highlight this, we introduce a synthetic dataset tailored to
evaluate the capability of a GNN to capture long-range dependencies.

We then explore partial training in GNNs, where only a single layer is trained while oth-
ers remain fixed. Our results reveal that increasing model width counteracts the lack of
full training and significantly reduces oversmoothing, even in deep architectures. This
approach matches or outperforms fully trained models in both standard and “cold start”
scenarios [3].

Building on this, we propose G-Init, a graph informed weight initialization strategy inspired
by classical deep learning initialization techniques [4]. G-Init accounts for graph topology
and improves gradient flow in deep GNNs, reducing oversmoothing and enhancing classi-
fication performance across tasks.

Finally, we investigate the impact of the activation function on oversmoothing. Our theo-
retical and empirical findings demonstrate that modifying the slope of ReLU leads to better
representational diversity and improved performance in deep GNNs, without employing
architectural changes or residual connections [5].

Together, these contributions advance our understanding of depth-related challenges in
GNN s and offer multiple scalable, theoretically grounded solutions to overcome oversmooth-
ing. The findings support a rethinking of GNN design principles and pave the way for more
robust architectures suited to real-world problems.

Keywords: Graph Neural Networks, Oversmoothing

10

Evyapiotieg

Oa 1feha va evyapiotiow Beppd to Mdpyo aAovpa yix T cvvepyaoio pog OAa avtd
Ta X POVLLL, KB®G KoL Yo TNV TOADTLN ETLGTNIOVLKT) TOL cuvelspopd. H epmiotoctivy mov
pov édel€e, kaBmg kar 1) eAevBepia KLVvoewV KoL TPWTOPOLALOV TTOL oL TTapeiye, cLVEPa-
Aav koBopLoTiKd 6TNV eMITEVEN TOV ATOTEAEGPATWV TNG Ttapovoog dtatpiPne. Méoa amd
QLT TN CLVEPYGIA SLAPOPPWOX TOV EPEVVITIKO HOL YOPOKTHPX KOl GLVELONTOTOLNoO
v o&la TNG ToLoTIKNG Kot LPNAoD emuédov épevvag. Emtiong, evyapiotod Oeppd to Anpn-
pn POTAKN YLt T CNHAVTIKT ETLGTNHOVLKT TOL GUVELGPOPX, XAAK KoL Yot TG GUHPOLAEG
KOL TTPOTPOTLEG TOV GXETIKA HE TNV AVTIHETAOTLON TNG £PELVOG KOl TWV QITOTEAECHATWV
oavtng. Ta mapamave dvo mpoécwma énaEav kaboploTikd pOAO oTNV €KTOVNOT| TNG TTaL-

povcag datpLPrc.

O Bedor aKOUN VO ELXAPLOTIOW TOVG PLAOLG HOV YLOL TNV LITOROVT] KoL TNV GTHPLEN TOUG
avtd o xpovia (avapépovton pe Toxaio oelpd): Niopyog I, Edeva ©., Xapng I, Tidpyog
I'., Atovoong 2., Aavan E., Tpoppatikn T., Potewvn K., Anpuntpa K.

EmutAéov, 0¢hw va evyaplotnow kot T tondid e o omoia cupmopevtrikope oto E.K.E.Q.E.
“Anpokprroc’: Hhiog Z., Kovotavtivog M., Aptepug A., Nikog M., Avdpéag 3., Baciing M.,
EAiva 2., BaciAng I, [wpyog I'., Xpiotdgopog P., Tlavayiotng K.

Oa Nlela emiong va eVXAPLOTHCW TOV TATTTOV POV XTVPO KAt TIG Yioylddeg pov Mapia
Ko Ztopotio yia tny dtapkr) kot artAdxepn mpocpopd toug kad’0An n Sidpkela tng {wing
1OV TOGO GTOV LALGTLKO TOHEXR, ALK KUPLWG 6TOV NOLKOTAXGTLKO.

Télog, Oa 110ela va evyaplotrow Toug yoveig pov Kovotavtivo ko [lavayiodto, acdAd ko
Vv aded@r) pov Mapia yio n droepxn) otrplén kat Tov kafoplotikd polo mov Enaléay ot
dlopopPwaon Tov avBpodTov o eipal oripepa.

Anpntpng Kedéong
ABnva, OktoPprog 2025

11

12

Contents

Contents e,

I. ExtevigIlepiinynota EAAnvikao

I

I

I

v

\%

VI

VII

Eloayoyn o o
LI Nevpwvika Aiktva Ipaowv (Graph Neural Networks - GNNs) . . .
LII BaOi& Nevpwvikd Aiktva Tpapwv (Deep GNNs)
LII Ymep-eEoparvvon (Oversmoothing): Opiopog ko Znpocio

YnoPabpo ko Avackonnon Biphoypagiag oo
1.1 Baokég Evvoleg ko Avartapaotoon Ipopov L.
ILII Tewpetrpwcny Mabnomn (Geometric Learning)
ILOI Zyetikég Epyacieg yix tnv Avtipetomnion g Yrep-eEopdAvvong .
Kepahowo 3: Avadvon tng Enidpaong twv Noppdv tov Avortapactdcewy
kot v Idlovo®v Tipov otnv Yrep-e€opddvveon
Kegpdahaio 4: Avadvon g Enidpaong twv Residual Zvvdécewv atnv Ymep-
EEOHAALVOT) . . o o o o i e
Kepahowo 5: Mepikadg Exkmondevpéva Nevpwvikd Atktva Ipaowv Avtioté-
KOVTo 6TNV YREP-EOHAAUVOT « o o o v o v vt
Kegpdahaio 6: Meiwon tng Yrep-eEopdhvvong péow Evnuepwpévng Apyiko-
moinong Bapovota GNNs
Kegpdaharo 7: Meiwon tng Ynep-eEoparvvong ota GNNs pécw AAAayng g
Yvvaptnong Evepyomoinongo

VIII ZOMPTEPACHOTO . o v v v o o e e e e e e e e e e e e e e e e e e e

1. Introduction L

Gl W N =

6

Graph Neural Networks (GNNs)
Deep Graph Neural Networks
Oversmoothing: Definition and Significance
Central Research Questions
Contributions L
5.1 Formal Definition and Detection
5.2 Quantification L
5.3 Mitigation Strategies Lo
5.4 Empirical Validation
Thesis Outline

2. Background & Literature Review,

1

Preliminaries and Graph Representation
1.1 Basic Graph Concepts
1.2 Node Features and Embeddings
1.3 Notation Overview,

24

25

26

27

28
29

3.

14

2 Geometric learning L
Spectral Graph Theory Foundations
3.1 Graph Operators
3.2 Eigendecomposition o L.
3.3 Spectral Filters
4 Graph Neural Networks (GNNs)

4.1 Message Passing Framework
4.2 Prominent GNN Architectures
43 Extensions and Variants

5 Oversmoothing in Graph Neural Networks

5.1 Definition and Intuition00 L.
5.2 Empirical Evidence L.
5.3 Theoretical Explanations
6 Quantifying and Detecting Oversmoothing
6.1 Metrics and Measures L.
6.2 Empirical Detection Protocols

6.3 Challenges and Gaps in Quantifying and Detecting Oversmoothing
7 Mitigating Oversmoothing
7.1 Architectural Innovations Lo L
7.2 Skip and Residual Connections

7.3 Normalization Techniques
7.4 Regularization.
7.5 Weight Initialization
7.6 Activation Functionso 0oL

8 Synthesis and Research Gaps
8.1 Summary of Observations
8.2 OpenProblems
8.3 Positioning of ThisWork
9 Conclusion of the Literature Review

Analyzing the Effect of Embedding Norms and Singular Values to Oversmoothing
in Graph Neural Networks

1 Theoretical Analysis
1.1 Mean Average Squared Euclidean Distance (MASED)
1.2 Boundson MASED
1.3 Network-Level Analysisof MASED
2 Implications of the Theoretical Analysis
2.1 G-Reg: Regularization of the Standard Deviation of the Weight Matrix
2.2 Effect of multiple weight matriceson MASED
2.3 Decoupling Weight Matrices from Adjacency Powers
3 Experiments
3.1 Experimental Setup oo L
3.2 Experimental Results L.
4 Conclusion

71
72
72
73
77
78

78
79
80
80
81
86

Analyzing the Effect of Residual Connections to Oversmoothing in Graph Neural

Networks
1 Notations
2 Theoretical Analysis
2.1 Residuals without Learning Parameters - APPNP
2.2 Residuals with Learning Parameters
23 Identity Mapping o oo
2.4 Deep GNNs and Long Interactions
2.5 Deep GNNs and the Cold Start Problem
2.6 Synthetic Dataset L.
3 Experiments
3.1 Experimental Setup o oo L.
3.2 Experimental Results,
4 Conclusion

Partially Trained Graph Convolutional Networks Resist Oversmoothing

1 Preliminaries L
1.1 Initialization and Largest Singular Value
1.2 Partially Trained Neural Networks
2 Theoretical Analysis
2.1 Partially Trained GCNs
2.2 Product of Untrained Weight Matrices
2.3 Effectof W'/t .
24 Untrained Weight Matrices and Oversmoothing
3 Experiments
3.1 Experimental Setup o o oL L.
3.2 Experimental Results
4 Conclusion

Reducing Oversmoothing through Informed Weight Initialization in Graph Neu-

ral Networks
1 Notations e
1.1 Weight Initialization
2 Theoretical Analysis
2.1 Forward Propagation
2.2 Backward Propagation
2.3 G-Init
3 Experiments
3.1 Experimental Setup oo oo L.
3.2 Experimental Results,
4 Conclusion

Reducing Oversmoothing in Graph Neural Networks by Changing the Activation

Functiono
1 Preliminaries L
1.1 Normalization in deep neural networks
2 Understanding and dealing with oversmoothing
2.1 Theoretical Analysis
2.2 Alleviating Oversmoothing

88
89
89
89
91
94
95
95
96
96
97
97
102

2.3 Modifying the slope of ReLU: Limitations 137

24 Modifying the learning rate, instead of the slope of ReLU 138

3 Experiments 138

3.1 Experimental Setup o oL 138

3.2 Experimental Results 138

4 Conclusion L 141

8. Discussion and Future Work o000 142
1 Unified Insights 142

2 Limitations o 142

3 Future Directions 143

9. Appendix L 145
Bibliographyo 193

16

Kepaioaro 1

Extevng IepiAnyn ota EAAnvik&

I Ewayowyn

LI Nevpwvika Aiktva I'pa@wv (Graph Neural Networks - GNNs)

Toa Nevpowvikd Aiktoa Ipaowv (GNNSs) éxouvv avaderyBel wg o akpoywviaiog AtBog yio tnv
avaAvon kot tnv ekpadnon oo dedopéva dopnpéva oe popen ypapov. H tkavotnta tovg
Vot GUVELALOLY TA XAPAKTNPLOTIKA TV KOPPWV He TNV EYYEVH) CLVIEGIHOTNTA TWV YPA-
Qv éxeL odnynoel oe akloonpeinteg Tpoddovg oe ToAAovG Topeilg. Toaw GNNs amotelodv
Lot KOLTYoplor VEUPWVLK®OV SLKTOWV 10K GXeSLAOHEVOV YL TNV enefepyacio dedopévwv
OV PITOPOLV VO Avortapac ooV g ypaypoL. Xe Evay YpAYo, oL OVTOTNTEG HOVTEAOTTOLOD-
vToL ©g KOpPoL kat oL oxécelg PeTaD TOUG WG OKHES.

Tomwkd, éotw G = (V, E, X) évag pn katevbovopevog ypayog, pe N = |V| xopfoug u; €
V, axpés (us,uj) € Exow X = [21,...,25]7 € RV*Y 1a apyicd xopoktnplotikd twv
kOpfwv. O axpég oxnpartiCouv évav mivaka yerrviaong A € RVN dmov to otoyeio A; ;
ovoyetiCetou pe v akpn (u;, u;). Katd m gdon g exnaidevong, eivou tpocPaoipeg povo
oL eTIkéTeg evOg vtoovvorov V; C V. O otd)og eivar 1 avamntuén evog Ta&LlvounTn mov
a&loTolel TNV TOTOAOYiot TOU YPAPOL KO T TTALPEXOHEVAL OLLVOGHATO XOPAK T PLOTLKOV
yie vae kéver TpoPAéyers. Toao GNNs pabaivouv piax ovvaptnon F @ G — Z, 6mov Z €
RNX™ gfvou o mivakog tov TeEMKoOV avartapactdcoewmy (embeddings).

LI.1 To ITAaiowo Awxdoong Mnvopdtwv (Message-Passing Framework)

To xvpiopyo mAaiclo yia too GNNs eival To mAaiolo Sidedoong pnvopdtey (i covabpolong
yertovidg). Eva GNN atoteleiton atd L eminmeda (layers), 6ov oto eninedo [kdbe kOpPog
u ST pel Pt KPLPY AVATTALPACTACT) h e R4 H evnpépworn otd to eminedo [— 1 oTo
entimedo [mepthapPaverl dvo Priparo:

1. XuvaBpoion (Aggregation): K&be koppog cvAdéyel mAnpogpopieg od Toug yeitovég
tov. Eotw N(u) 0 6Ovolo Twv YeLtdvwy Tov kKOpPou u.

m{ = AGGREGATEV {n{=V) : v € N(u)}
H cuvéptnon AGGREGATEY givou cuviifog apetdPAnTn wg mpog Tic petabécelc
(permutation-invariant), 6mwg To GBpolopa, 0 PEGOG OpOg 1) £vag GLVOVAGHOG HE

Béomn v mpocoyr (attention), Staocparilovrag 6t 1 é€0dog dev e€apTdton ad TV
avBaipetn oelpd TOV YELTOVOV.

17

2. Zuvdvaopog (Combination): To cuvabpoiopévo pvopa cuvdvadletatl pe tnv tpon-

yoUpevn avortapiotact) Tov KOPPou yio va tapoyOel n véx kpuer) avatopioToo:

A = COMBINE® (R{=1) mV)

SV Tpaén, n COMBINE") aroteeitan svyvé omd évay YPOHPLKO HETACYHATIOHO

(péow evog mivaka Papdv) okoAovBoUpEVO oTtd P PN YPOHULKT] GUVAPTNOT) eVeEp-
yomoinong (m.x., ReLU).

Metd o6 L tétoleg emavonipelg didoong Hnvupdtwy, kadbe kOPBog u ook Td pio TeAkn
AVOTTOPACTOCT) hE.

ILI.2 Exgpaoctikn Ioxog ko ITepropiopoi

H avarapactoatiky wwavotnta towv GNNs mov facilovtal ot S1ddoom PnvupdTev €xeL
avalvBel pécw Tov TeoT LoopopPLopol yphpwv Weisfeiler-Lehman (WL). Exet amtoderyOei
OTL av 00 pn woopop@ikoi ypapol dev propovv va StakptBodv and to 1-WL teot, toTe
kovéva tétoto GNN Sev propei v tovg avtiotolyicel Stapopetikég avamapactdoelg [6].
Qo1o00, kaBdg tao GNNs yivovtar Babotepa, avtipetorilovv cofapovg meploplopoie,
OMWG:

e Ymep-eEopdAvvon (Oversmoothing): Ot avamapactdoels Tov KOPPwv cuykAivouv
O€ TOPOHOLES TUHEG, aveEAPTNTA OTTO TLG SOULKEG OLaPOPES, 0O YDVTAS O TTOAELX
Stk pLTikOTNTOC.

e Ymep-ovpnieon (Oversquashing): H porj tAnpogopiog amd amopakpuopévoug kOp-
Boug mapepmodiletal, kaBdg T onpota awd ekOeTiK eMEKTELVOPEVEG YELTOVLEG SLlO-
XETEVOVTUL PHEGW TEPLOPLOHEVIG X WPTTLKOTNTOG SLOAOPOHDV.

LII BaBix Nevpwvika Aiktva Fpdewv (Deep GNNs)

To BaBia Nevpowvikd Atktoa Iphowv otoxebouv 6tny evioyvon tng ekQpacTLKhG LoXVOG
TOV TUTKQOV OPYLTEKTOVIKOV HEGK TNG oTolPang moAlamAov emmédwv dikdoong unvo-
patwv. Kabe eminedo GNN emitpémnet oe évav kOpPo va cuvaBpoilet kat vo petaoynpotilet
TANPOPOpPLeg aTTd TOVG Gplecovg YeLTOVES TOV, XTI OVTAC OTASIOKA PLOL VAT PAGTAGT) TTOV
QUITOTUTTOVEL TOCO T XOPOAKTNPLOTLKA TOL KOPPOL 0G0 Kol TO TOMLKO SOHLKO TOL TALIGLO.

LIL1 Kivntpa yia B&bog

To kivntpo yi) xpnon Pabiwv GNNs mtnydlel amd tnv avaykr eVEOPATWOTG TANPOPO-
PLOV ATTO ATTOPAKPUGHEVA HEPT) TOV YPAPOUL. Xe TTOAAES EQPAPHOYES, OTTWG 1) TPOPAeYn po-
PLAKOV LOLOTATWV 1) 1] AVAALGOT) KOLVWVLKOV JIKTO®V, 1) LTTOKElEVT onpacloloyia eEapTd-
ToL a6 e€apTtrioelg peyaing epPéretag (long-range dependencies). Ta pny& GNNs, mepro-
plopéva oe éva 1) dvo «aipato» (hops), eivat avertopkn yia tn cOAANYN TéTowv ToAbmTAo-
KWV, pN-tomikev eEoptioeny, odnyodvtag oto TpoéPAnpa g vro-tpocéyylong (under-
reach), 61tov to povtédo dev éxel mpodoPaon otV KaATGAANAN TANpOYOpia.

EmutAéov, amd Bewpnrikn amoyn, o fabitepa GNNs eival Lo eK@pooTiKd Kot LKAV vo
drakpivouv dropopeTikég doPES YPAPwV, koS propov va cuAA&Pouv potifa mov Ppi-
OKOVTOL TTEPA OO TNV ALVOTTOLPAC TOTLKT) LKOVOTNTA TOV PIXOTEPWV HOVTEAWV.

18

LIL2 TIIpokAnoceig twv Babiowv GNNs

[Moapd Ta Bewpnticd Tovg TAeovekTrpata, Ta Pabide GNNs avtipetwnilovv pio cetpd amd
Kplooug eploplopong ov epodilovy TNV TPAKTIKY Tovg XpnoTtikotnto. [IEpa amd éva
oplopévo Pabog, n amddoon cuyva emdetvavetal avti vo feAtidvetot. Avtr n vofddpion
amodideton oe Stapopa paLvopeva:

1. Yrep-eEopaAvvon (Oversmoothing): Kabog avEaveror to fabog, ot avamapactd-
oelg TV KOHPwV Telvouv va cuykAivovy oe éva oTabepo onpeio, 0dNyOVTOG o€ -
AELOX TNG LKOVOTNTOG TOL HOVTEAOL Vo dlotkpivel dLoupopeTikég kKAGdoelg. Avtod amote-
Ael To KOpLo eumddio otnv Kataokevr] atotelespatikev Pabiov GNNs [7].

2. Ynep-ovpmieon (Oversquashing): To gowvopevo avtd epmodilel tnv axpiPn petd-
doon eEaptioewy peyaing epPédeiac, kKabdg Tar GNHATO AITTO ATTOPAKPUGHEVOLG KO-
Boug mapepParrlovtan f} ydvovtol evieAdg AOY® TOL QULVOHEVOL TNG «GUHPOPTOTG»
(bottleneck effect) [8].

3. EEag@avion kot Expnén KAioewv (Vanishing and Exploding Gradients): Onwg ko
oe dA\eg PabLég veLPWVIKEG APYLTEKTOVLIKEG, 1) eKTTaidevoT yivetar dVGKOAN AOY®
actoBov KAicewv, éva TPOPANHO TOL EMLOELVOVETAL OTTO TIG PN YPAUULKES GLVOP-
TNOELG EVEPYOTTOLNGNG KAl TA EMLITEDA KOVOVLKOTTOLNGNG.

4. Opoyevomnoinon KAiocewv (Gradient Homogenization): Ot kAicelg mov oxetilovton
e StoupopeTikos KOPPoLG yivovTon OA0 KoL TTL0 TAPOOLES, TEPLOPLLOVTAG TNV LKO-
VOTNTA TOL HOVTEAOL VO EGTLALEL GE XPT)OLLEG TTATPOPOPLEC.

5. AnoAera Tomwkotntag (Loss of Locality): Evd ta Babia Siktva cuvaBpoilovv me-
PLOCOTEPT) TTAYKOCHLX TTANPOPOpPia, pHrtopel va x&oovv tnv evatsOnoio Tovg oe on-
HOVTLIKG TOTKA XOPOKTNPLOTIKA, KAO®OG T HNVOHATH OO QITOHAKPUGHEVOUG KO-
Boug kuplapyodv oV avamapdoTac.

6. Ilepropiopoi Khpakwong kat I1opwv (Scalability and Resource Constraints): Ta
BaBdtepo GNNs cuvendyovTo LYNAOTEPO LTOAOYLGTIKO KOGTOG KOl KOGTOG VNG,
eWdLIKA G YPAPOULG HEYAANG KAIHOKOG.

LIII Ymep-eEopdAvvon (Oversmoothing): Opiopog kot Xnpacic

H vnep-eEopdAvvon avopépetal 6To QaLVOPEVO KATA TO 0T0l0 oL emarvalapfavopeves Aet-
Tovpyieg dadoong pnvopdtwy 1 cuvabpolong oe éva GNN 0dnyolv TIg avamapactdoelg
XOPOKTNPLOTIKOV TOV KOPPwV vor yivovtor OA0 Kol Lo TapOHoLEG 1) akOpar KoL pn Starkpt-
TéG o€ OAO TOV YPAPO.

Tomiké, éotow HD € RVY*4 o mivakag Tov avamapastdoewy Tov kOpPov peté omd I
eminedo evog GNN. Xe moAdég apyitektovikég GNN, o kavovag evrnpépwong popel va
eEKPPACTEL OG:

HO — & (i H(H>W<H>)

omov A givan vac Kavovikomotnpévog mivakag yerrviaong, WU eivou évag mivakag Pa-
POV TTPog ekpdbnon, ko o(+) eivon pia pn ypoppiktr) cuvéptnon evepyomoinong. Kabog
1o | avEavetat, o emavalapPavopevos TOANATAXGIAGHOC e Tov A cuva®poilet TAnpogo-
piec oe peyaAbTepeg yettoviée, pe amotéheapa ot ypoppéc tov H va evBuypoppilovran
pe Tow kuplopyxor dLodLovOopaTA TOL A. Otav o1 OVATTOPACTACELS GUYKALVOLY pe QUTOV

19

TOV TPOTO, AVTAVUKADVTOG HOVO TNV TOTOAOYIX TOU YPAPOUL KOl QyVOWOVTOG TO Y0Pt
KTNPLOTIKA €GOS0V, 1) SLOKPLTIKT] LKAvOTNTo TV KOPPwv Yavetal Tpoodevutikd. Avth 1
KOXTAPPELOT) TNG OVOITALPACTATIKHG SLlakOpoveng ovopdleton vitep-eEopdhvvon [9].

To PaLvOpeEVO QLTO YoPaKTNPIOTNKE APYIKA ATTO PACHATIKT OKOTLY, eEeTAlOVTag TN OL-
GTOAT TOU LOYDPOL ATTO TNV ETAVOAXUPVOpEVT) GLVEMEN YpapoL: k&Be Pripa dSudoong
HELOVEL TN SLGTIOPA TOV AVATTXPACTACEWV, WOOVTAS TIG TPOg €vav kowvd voxwpo. H
vrep-eEopdAvvon amotedel To o OepeAddeg KoL PEAETNHEVO EUTTOOLO OTNV KAHAK®OOT)
twv GNNs o¢ peyalvtepo Paboc.

II YnoBaBpo ko Avaockonnon BipAioypagiog

II.I Baowég Evvoleg kat Avanapaotaon Fpagpwv
IL1.1 Baowkég Evvoleg Tpagpnv

"Evag ypagog eivat pia OepeAtoddng dopn dedopévav, optlopevn wg éva dratetarypévo Lebyog
G = (V,E), 6ov V eivou to obvoro twv kopueov (1 kopfwv) kat £ C V' x V givan o
o0Volo TV akpdv. O aplOpdg Twv kopve®v cvpPforileton pe N = |V

O ypagot propodv va ta€vopnBodv avaroya pe Tnv KateDOLVOT) TOV AKPOV:

e Mn Katevbuvopevor Tpagor: K&be axpr {u,v} € FE avrimpocwmedel pio opgi-
dpopn ovvdeon. O mivakag yerrviaong A eivan coppetpiog (A;; = Aji).

e KatevBuvopevor Fpagor: Kébe axpr (u,v) € E eivon éva Statetarypévo Ledyog mov
vtodnAwvel 6OVdeon amd Tov kOpPo u otov kOpPo v. O mivakog yeltvioong eiva
YEVIKO LG OPPETPOG,.

’ ’ NxN ’ ’ ’ ’ ’yy. o
O mivakog yerrviaong A € {0,1} kwdkomotel TNV Tapovsia 1) arovsio akpwv: A;; =

1 av vtapyet okpn) ad tov kKopPo ¢ atov kopPo 7, ko 0 dropopetikd.

O mivakog Badpov D € RY*Y elvou évag Staydviog mivakag Tov omotov T oTolyetor avTi-
otoLyovv otovg Pabpots Twv kopLeov. T pun katevBuvvopevovg ypagoug, o fabpog tov
KOpPov i opileton wg deg(i) = Zjvzl A;j, xan Dj; = deg(7).

ILL2 Xapaktnprotikd Koppov kot Avanapactacelg

Y& TOAEG eQUPHOYES, OL KOPLPEG VOGS YPAPOL cLOETLI OVTOL Pe SLVOTHOTO XOPAKTIPL-
OTIKOV OV KWOLKOTTOLOVVY £YYeVT) 1] TTePLPAAAOVTIKA XAPAKTNPLOTIKE. AVTA GUAAEYOVTOL
ot évav mivaxa yopaktnplotikov X € RYXC smov k&be ypoppr z; € RY avtirpocw-
TEVEL TX XXPOAKTNPLOTIKA TNG KOPLYTG %, Kot C elvat 1) SIAGTAGT) TWV XOPAKTPLOTLKOV
eLlcodov.

M avarapdotaon (embedding) eivar évag petaoynUaTiopdg mov TpoPfdidel avTd TX
SLVOGHATO XOPAKTNPLOTIKAOV Ge €vay XOpo xopunAotepng (cuvibwg) didotaong, datn-
pOVTOG TOPAAANAa TIG SOpLKEG KOl TIG PACLOPEVEG GE XaAPAKTNPLOTIKA oXEceLS. O aTOX0G
eivan ot ypoppég by € RY tov mivaka avostapactéoeny H va kodikomoloby 1660 Ta To-
MK pOTiPor GUVOECIUOTNTOG OGO KO T CLPY LKA XAPAKTNPLOTIKA TNG KOPLPNG 7.

ILII Tewperpikn M&Onon (Geometric Learning)

H T'ewpetpikn) Mabnon (1 Feopetpicn Babue Mabnon) eivon n pedétn ko avémtoén poveé-
AWV PnYovikng padnong mov ekpeTaAAAEDOVTOL PITA TH) YEWUETPLKT KoL TOTTOAOYLKT] SO

20

mov eivon eyyevig oe medio dedopévwv mov dev avartapiotavtal puotkd otov EvkAeidelo
XQDPO.

Evo ta mapadooiokd povréda Pabiag pdbnong (6mwg toao CNNs yix elkdveg) éxovv oye-
dwaotel yio tnv eme€epyacio dedopéviv pe Kovovikég SOHES, 1) YewpeTpLkn Pabid pabnon
enmeKTELVEL AUTEG TIG €VVOLEG (TT.X., GUVEALEN, opadomoinat, cLVABPOLET) XAPAKTNPLOTIKOV)
ylo va xeplotel dedopéva tov Ppickovtor oe pn EvkAeidelovg ydpoug, cupmeptiopfovo-
HEVOV YPAP®VY HE AKOVOVLO T GUVOEGLHOTNTA.

2TOV TUPN VA TNG, 1] YEWHETPLKT HAONOT) GTOYEVEL GTOV EVTOMLIGHO KaL TNV eTLPOAT KOTOA-
AnNAov emayoylkodv tpokatoinewnv (inductive biases), cuviifwg pe ™ poper avarloiw-
ong (invariance) 1} woopetafAntoTntag (equivariance) oe HETAGYNHATIGHOVG TTOL LITALYO-
pebovToL artd TNV vIToKelpevn yewpetpio [10].

ILIL.1 Katnyopieg lewpetpicng Mabnong

H yeopetpikn padnon propel va ywplotel oe mévte aAANAEVOETEG KATNYOPLEG, YVWOTEG WG
ta «mévte G's» [10]:

1. Grids (ITAéyporrar): Kaovovikd mAéypata (1.)., ELKOVEG), OTTOL 0L KAXGLKEG UPYLTEKTO-
VIKEG GCUVEALENG EKPETAAAEDOVTOL TN HETAPOPLKT] AVOALOLWOT).

2. Groups (Op°): Zvppetplicég opadeg Kat oL SpAoeLg Tovg, OTTOL oL cLVEALEELG Op&-
dwv emekTeivoLV TNV X TNG KOLVAG XPNoNG Pap®dV € TTLO YEVIKEG OUASEG PETATYN-
HOTLGPOV (TT.X., TTEPLOTPOYPEG).

3. Graphs (I'p&@ot): Awokpitéc oxeclakés dopég, 6mov oL pébodol faciopéveg oe ypa-
(QOUG YeVIKELOLY TNV ap)T] opilovTag AelTovpyleg CUVEALENG HECW OYXNHATOV OLAdO-
OTG UNVUHATOV.

4. Geodesics (Tewdarorakég): Svveyeic moAlamAdtnTeg pe Pupdvieg petpikéc, 6mov ot
HéBodot opilovv mupnveg GUVEAMENG o€ GXECT) e YEWOALOLOKES TTOGTACELG.

5. Gauges: Tomika TAaicla avopopig e TOAXTTAOTNTEG, OOV OL APYLTEKTOVIKEG LGO-
petaPAntotnrog Pabuidag povrelomolotv pnTd TIG AVATAPACTACELS WG TESIQL TOV
petooxnpatilovtal KATOAANAX LITO AAAAYEG TOTUKOV TAXLG LWV XVOPOPAS.

ILIL2 E¢@appoyég

H avaykn ya yeopetpikn pabnon mpoékuvye amd tnv mopatnipnor ot moAld dedopéva
TOU TPAYHATLKOV KOGHOUL eivar eyyevog pn EvkAeideia (.., kKowvwvikd diktua, HOpLorkES
dopég, 3D mAéypata). H kwdikomoinon yvwotev CUHHETPLOV Kal avalloiwTwy amevdeiog
OTNV aPXLTEKTOVLKT] TOUL SIKTOOL HELWOVEL TOV X®OPO LIToBécewv, PeATidvovTag TNV atodo-
TIKOTNTA TOL JELYHATOG KAl HELOVOVTOG TNV Litep-tpocappoyr) (overfitting).

O péBodot yewpetpikng pabnong éxovv emdeifel kopvpaio addocT o€ éva eLPL PACH
EPYUOLOV, OTTMC:

[IpoPAeymn poplok®dVv OLOTATOV.

To€vopnomn kaL TUNHATONONo oNHELOKOV ve@®V (point-cloud).

AvaALoT KOLVOVIKGOV SIKTOWV.

[IpoPAeymn kvkAogoplag e Ypapoug 0dLlK®OV SIKTOWV.

21

H otopikn e€EMEN TG yewpeTpikng pabnong mepthapfavet Tpelg pacels:

1. Ipotn ®aon: Eotiaon oe mpodipeg apxLtekTovikég PacIopéveg oe YpAPOLG, OTWG
ta emtorvahapPavopeva GNNs kat ot paopatikég pébodot mov Pacilovtal otov Ac-
TAQGLOVO TOL YPAPOUL.

2. Aebtepn Péon: Avodog twv xwptk®dv GNNs, pe kupiopyo to tapddetypa diddoong
HNVUHATOV.

3. Tpitn ®aon: Xapaktnpileton amd npoondbeleg VOmoinong AUTOV TwV TPoceyyi-
cewVv LTTO éva eviaio PaONpaTIKO TAaloLo, avayvopilovTag KOLVEG EVVOLEG GUHLE-
Tplog Kol LoOPETAPANTOTNTOC.

ILIII Xyetwcég Epyaoieg yia tnv Avtipetomion tng
Yrnep-eEopdAvvong

H avtyetonion g vrep-eEopdAlvvong amotedel kevipikd epevvnTikd {tnpa, pe tn Pi-
BAloypagio va Tpoteivel Aboelg mov popovv va katnyoplomolnBoldv oe Tpelg kOpLeg Kot-
tevBivoelg: (i) Tpomomowoelg otnv Apyirektovikt, (ii) Texvucég Exmaidevong kan (iii) Mé-
Bodot Audoon.

ILIII.1 Tpomomowoelg otnv ApXLTEKTOVIKN

Avtég oL pébodot aToyebovv otV aAdayr Tov TPOTOL e ToV omoio ta enimedo Tov GNN
aAAnAemidpovv petad Tovg, MwoTe va dratnpeital 1 TANpoYopia Twv KOPPwv o€ peyodv-
tepo Pabog.

e Residual ko Skip Xvvdéoeig: H mio dadedopévn mpocéyyion eival 1 eVowpaToon
ouvdécewv mapdkapyng (skip connections), 6mwg ot residual cuvdécelg, oL omoleg
emitpénouvv tnv amevbeiag por) TAnpogopiag amd ta apykd enineda oto Podo-
tepa. Avtd Ponba otn otabepomoinon Twv kAlcewv Kot otV GuPAuvven Tng vep-
eEopaAvvong, koBwg 1 TeAKT avaTTopAoTacT eival VoG GLVOLAGHOG TNG TOTLKA
ouvaOpoLopéVNG TANpOYopLag KoL TNG apxLlkng TANpoopiag Tov kopPov. Hapa-
detypota mepthapPavouv too GCNII [11] ko PPRGNN [12], tar omoio vioBetodv To
mAaiclo Tov ResNet.

e Eidika Xxedraopéva Entineda: AAAeC ap)LTEKTOVIKES ELGAYOUV ETITTES X TTOL £XOULV
oxediaotel yia va tepropilovv tnv e€opdAvvorn. To PairNorm [13] xpnoyiormotei ko-
VOVLKOTIOLNOT) YLa VoL SLALTNPHCEL TH) HEGT) ATOGTAGCT) HETOED TOV EVOOHATOCEWY TWV
kopPwv oe k&Be emimedo. To DropEdge [14] dtoypdupet Tuxoior akpég KoTé TNV eKTo-
devo, HELWVOVTAG ETOL TNV TUKVOTNTA TOL YPAPOL Kot emtpadivovtag tn diadoon
NG TANPOPOpiag, Yeyovog mov kabvotepel tnv viep-eEopdAvvon.

ILIIL.2 Texvikég Exnaidevong kot BeAtiotonoinong

Avtég o1 pébodot eotidlovv 6ToV TPOTO e TOV 070l0 eKTASEVETAL TO HOVTEAOD, QLVTL Vo
oAAGLOLV TNV Bl TNV OPYLTEKTOVLKT).

e Kavovikonoinon (Regularization): H xprjon 6pwv kavovikomoinong otn cuvép-
TNno1 KOG TOUS propel va evOoppOVEL TIG AVATTOPACTAGELS VoL TTaLpopelvouy SLakpLTég,
KoBwg TpooTiBeTal évag 6pog TOL THOPEL TN PelwoT) TNG SLAKVHAVOTG TWV VAITTO-
PACTACEWV.

22

e Apyxwomoinon Bapov: H cwotr) apyconoinon tov Papdv eivon kpioin yix
otabepotnta g exkmaidevong ot Pabix Siktva. MéBodor 6mtwg 1 G-Init (wov mpo-
telveton oty tapovoa dtatplPr) Aapfdvouvv voym tn dopn ToL YpAYou yia va e€i-
COPPOTNGOLY T1) SLALCTOPAE TV CNHUATWV KL TwV KAIGEWV, ETEKTELVOVTOG TLS OPYES
twv [15] oe pn EvkAeidetovg xwpoug.

o Mepweny Exknaidevon (Partial Training): H 18éa tng exmaidevong povo evodg vmo-
OLVOAOL TV EMTEdWV, OTTWG TPOTELVETAL GTNV TAPOLoA epyacio, AELTOVPYEL WG
HOP®T KAVOVIKOTTOINGTG, SLATNPOVTOG TNV TOLKIAOHOPPIX TOV XVOITTUPACTACEDV.

ILIIL.3 MéBodor Avxdoong (Propagation Methods)

Avtég oL péBodol Tpomomolovy Tov TPOTO He TOV omoio 1) TANpoopic drodideTon peTafd
TOV KOPPV.

o Etatopucevpévn Awadoon (Personalized Propagation): Movtéla 0mwg to APPNP
[16] xpnoyomolovy e€atopikevpévo PageRank yio va diatnprijcovv tnv mAnpogopic
oL apyLkoV kOpPou, emtpémovtag T diddoon oe peydro Pabog xwplg va yavetoan
1) TOTLKTY) TTANPOPOpLaL.

e Avtovoun Awxdoon (Decoupled Propagation): Opiopéveg apyitektovikég Stoyw-
pilouv n dtadoct NG TANPOPOPLAG ATTO TOV HETACTYNHATIOHO TOV XOPAKTNPLOTL-
k®Vv. To SGC [17] apoipel TIG pun YPOHUIKOTNTES KL TOVG TTivakes Papidv petafd Twv
eMUTEdWV, EKTEAOVTOG PHOVO SL1AdocT), YEYOVOG oL emLTayOVeL TNV ekTaidevon Kot
HELOVEL TNV LTtEp-eEOpAALVET).

H ntapovoa diatpiPn, 0wg meprypdpeton oty apyikn tepiAnyn, cupPdrlel oe dheg avtég
TIC KOTNYOpleg, elodyovtag pia véa petpiky dikyvwong (MASED), avalvovtag toug me-
ploplopovg Twv residual cuvdéoewv, mpoteivovtag po véa texvikn ekmoaidevong (Mepikr
Exmaidevon), pia véa apytkomoinomn Papov (G-Init), ko pia tpomonoinen otn cvvaptnon
evepyomoinong (slope-ReLU).

23

I Kepalaro 3: AvaAvon tng Enidpaong tov Noppwv
TV Avanapactdcewy kot tov [drtalovcwv Tipwv
otnv Ynep-eEopdAvvon

To mapov kepdhaio elodyel pio OepeAlddn TPocéyylon ylo TV TOGOTIKOTOLNGT KL TH)
peiwon tng vrep-e€opdAvvong (oversmoothing) oto Pabid Nevpwvikd Aiktva Tpdpwv
(GNNs). H vmep-e€opadvvon amotehel éva kplolpo eummddlo 6TNV avautTugn ekQpocTL-
KoV, Babiov apyitektovikev GNN. T TNV avTIpeTOTION VTN TNG TPOKANGONG, TPOTEL-
VETOL L VEQ HETPLKT] amdoTacng, 1| Méon Tetpaywvikn EvkAeideir Anootaon (Mean
Average Squared Euclidean Distance - MASED), n omoioe mocotikomotet tov Babpd tng
vrep-eEopdAvvong oe éva dedopévo HovTéNo.

H avéaivon tov MASED meptdopfavel Tnv eaywyr] Towv dve Kot KAT® 0piwv TOv, amoka-
AOmTovtog TN oXéoT PeTafD TV ATOGTACEWY TWV AVATXPACTACEWV TOV KOUPWV KoL TNG
dopng tov mivaka Papodv. ZuyKekpLHEVE, AVOOELKVOETOL O KEVTPLKOG POAOG TV VOPHOV
TOV QVATOPACTACEDV TV KOpPwV (node embedding norms) kot Twv pkpdtepwv tdralov-
ooV Tipov (smallest singular values) tov mvakov Bapov, Topdpetpol Tov eiyav tapaPie-
B¢l oe peydro Pabpo. H Siatripnon tng Stk OHAVoNG TwV avamopaoTaoE®wY TV KOPPwv
KoL 1 av€nom Tov kK&t oplov Tov MASED emituyydvetal pécw tng adnong autov twv
TOUPUHETPWV.

EmutAéov, n petpikr) MASED éxer amoderyBel otL pmopet v mpoPAéder tnv évapén tng
vnep-eEopdAvvong vopig otn Stadikacio ekpadnong. Mo tayeia peiwon tov MASED, cu-
VOSEVOEVT) OO CLPPIKVWOT) TV WOL{OLOOV TIHOV TOL Tivaka Papov, 0dnyel oe Kok
am6d0cT) TOL HOVTEAOD.

Qg oTpaTNYLIKT] HETPLOGHOD, TTpoTeivetol pla véa pébodog kavovikomoinong, n G-Reg, 1)
omtolot GTOYEVEL GTN HELWOT) TNG CLYYPOHILKOTN TG HETAED TOV YPOPHUDV TOV TILVAKWV Pot-
POV, AEAVOVTAGS £TOL TIG HIKPOTEPEG WL ovaeC TYEG Toug. H G-Reg Sokipaleton metpopo-
k& o€ Pabidx GCNs, residual GCNs kot SGCs, e éwg ko 32 emimedo, PELOVOVTAG TNV LITEP-
eEOPGALVOT) KoL ETTLOELKVOOVTAS OQEAT) GE GEVAPLOL TTEPLOPLOHEVIG TTATPOPOPLG, OTTWG TO
“cold start”. Té\og, diepevvéton 1 emidpaom tng peiwong Tov TAROoLE TV TVAKWY Bopdv
oe ovvabpolicelg ToAaTA®V aApdtwv (multi-hop aggregation) péocw tng xpriong Atyote-
POV TVAK®V Papdv amd Tov aplipd TV AAPATOV YELTOVLOG.

24

IV Kep&Aaro 4: AvaAvon tng Enidpaong twv Residual
Yuvdéoewv otnv Yrep-eEopdAvvon

To kepahato avtd Siepevva Tov poro Twv residual cuvdécewv GTOV PETPLAGUO TNG LTTEP-
eEopdlvvong kat otn dvvatotnta xpriong Pabiov GNNs yia epyacieg wov amattodv alAn-
Aemidpaoelg peyding epPéretac. Eveo ol ouvdéoeig mapakopymg (skip connections) tomov
residual Tpoo@épovv évav aThd pnaviopo yio T SLTripn ot TG TOLKLAOPOPPLOG TV XO-
POKTNPLOTIKOV G& TTOAAQ entineda, 1 Tapovoa epyacio eEeTAlel TOLG TEPLOPLOHOVS TOVG.

SuyKeKpLEvVa, avaADETOL LA OLKOYEVELX HOVTEA WV TTOVL Xprjoipomotovy residual cuvdéoelg,
onwg toe APPNP, GCNII koo PPRGNN. H avdAvon amodeikvidel 6TL TpocOkn residual
ouvvdéoewv oe kabe emimedo evog GNN kabiotd To povTéAo 16odUVapo pe To oTaOULoHEVO
aBpolopa TV avoapaotacewy otd povtéha dtopopetikot Paboug, pe exBetikd petovpe-
VOUG GLVTEAEGTEG.

Eva Pacikd evpnpa agopd tnv Ameikcoévion Tavtdtntag (Identity Mapping), 6rtov astodet-
KvbeTaL OTL 1) TPocONkn Tov mivaka TavtdTnTeg o8 KABe Tivarka Papdv loodvvayiel pe va
otabpiopévo dBpotopa dvvapewv (weighted powerset sum) twv mvakwv Boapodv Tov po-
VTEAOL. AUTO TO QITOTEAECHX PixVEL PG OTN OXECT) HETAED TNG QUTELKOVLOTG TV TOTNTOG
KoL TG viep-eEopdALVONG.

EmurAéov, to povtého APPNP avadiatumdvetol kot orodelkvOeTol OTL AVAYETOL GE HLOL
emovaAnym dbvopng (power iteration), pe pvBpd oOykAiong mov e€aptaton otd TNV M-
papetpo oxvog tou residual (o). EEqyeton évag TOMOG OV GUVOEEL TNV TOUPAUETPO (X, TO
BaBog ko TV avoyr ToL HOVTEAOV, OTTOV 1) AVOXT) HETPA TNV EYYDTNTA TOV AVATXPOCTA-
oewVv oL dnpovpyovvtal awd daedoxikd emimedar.

Ta metpdpata, edkd oe oevapla pe petwpévn mAnpogopia (6wg to “cold start”) ko oe
ovvBetikd cUvola dedopévwv pe eleyyopeveg alAniemdpaoelg peyaing epPéretag, ao-
KOADTTTOLY TOVG TTEPLOPLORODG TV PeBOdwV oL X protpomotovy residual cuvdéoelg. Avtég
ot péBodot divouv Eppact ota apYLKA XAPAKTNPLOTIKA TwV KOPP®V, HHOOHEVES £TOL pT)-
XEG APYLTEKTOVIKEG KO TTEPLOPLLOVTAG TNV LKAVOTNTA TOL HOVTEAOL var GUAAPPAVEL Tig
amopaltnTeg aAAnAemidpaoelg peyaAng epPédeto.

25

V Kepaharo 5: Meprkwg Exmaidevpéva Nevpovikd
Aiktoa I'pa@wv Avtiotékovial 6Tnv
Yrep-eEopdAvvon

To ke@dAaro avtod e€eTlel TN OewPNTIKT) KO TTELPAPATLKT LKAVOTN T AVOTTAPAGTAOTG TOV
pepkag ekmondevpévwv GNNs, dnhadn povtélwv ota omoio povo éva emtinedo ekmandeve-
TaL, VO T LTTOAOLTT SLATNPOVVTAL GTNV APYLKT] TOVG TuYaix katdotact. H mpocéyyion
avth Paciletal oty Tapatnpnon OtL akoun kat éva prn ekmatdevpévo GCN pmopei va mto-
PAYEL XPHIOLHES VATOPACTAGELS KOPPwV.

To evprpata deiyvovv 6tL 1 adénon tov evpoug (width) Twv pepikdg exmardevpévov GCNs
evioylel TV ard6doaot] Toug Kol T kKoot avBekTikd otnv vep-eEopdvven. H avaivon
avtn enekteivetal kot o€ apytrektovikég GAT ko GCNIL, emiPefardvovtog tovg Loyvpt-
OHOUC.

H Bewpntikn avadvon eoTidlel 0TIS LOLOTNTES TOV UN) EKTTOLIEVHEVOV TILVAKWV Popdv, Xpn-
olpomotevtag To Nopo Bai-Yin yio va cuvdéoel tnv apytcomoinon Glorot pe tn peyodOtepn
wWialovoa Tipn Twv mvakov. EEetaletol To yIvOpEVO TV pn eKTAdEVPHEVOV TIVAK®V Po-
POV KaL 1] KATAVOUT TV 6TOLXEL®V ToLG. AuTh 1) avddvon e€nyel g 1 TAnpopopia Twv
apxXkOV KOpPwv péet kat petaoynpatiletol pEcw Tov dikTdov.

[Tewpapotikd, amodetkvoeTal 1) Lox G TV Pabldv pepikdg ekmondevpévov GCNs oty avti-
otact otnv vrep-eEopdivvon. EmumAéov, Toviovton Tor TAEOVEKTHATO XLTOV TWV OL-
KTOWV O€ GEVAPLO TEPLOPLOPEVIG AT pOPOpiag, Omtwg To “cold start”, dmov ta yopakTnpt-
oTIKA TV KOPPwv eivar Stabéotpo povo yia Toug emonpacpévous koppoug. Tédog, Stepev-
vatol 1 BéATiotn Béom kan o TOTTOG TOL KT VGOV EMLTEGOL EVTOG TOL JLKTVOU, e Eval
antAo eninedo GCN vo ooTeAel plot TOTEAEGHATIKT] ETTLAOYT).

26

VI Kepalaro 6: Meiwon tng Ynep-eEopaAvvong pécw
Evnuepowpévng Apxikomroinong Bapov ota GNNs

To ke@dAoto avtd avtipetorilel To TpoPANpa g veep-eEopdAvvong ot Pabide GNNs
péow tng apykomoinong tewv Papwv. Ou vapyovoeg pébodot apytkomoinong (6mwg ot
Kaiming 1} Xavier) mopopieAo0Ov Tig Sopikég 1dL0tnTeg Twv deSopévwv ypaPou Kot T pova-
dkn) ovpmeplpopd SLAd0CTG GHHATOG TTOL elval eYyevig oTLS ap)LtekTovikés Twv GNNs.

H epyacia yevikevel tnv avéivon twv [15] yie T GNNs, tapovoidlovtag TOmoug yio
™ dtokVpaveT Tewv onpatey (forward signals) kot twv kAioewv (backward gradients) mov
péovv péca oto diktvo. H avdhvon kadvmtel éva moapopetpikd GNN mov propel va ouv-
dvalel ocuvéMEN ypagov, residual cuvdécelc, skip ouVdETELS Ko ateLlKOVIGT) TLTOTNTOG,
KOADTITOVTAG £TOL TNV TTAELOVOTNTO TWV VPLOTAHEVOV HOVTEAWV.

Me Baon avtd o Bewpntikd amoteAéopata, TpoteiveTon Pl véa péBodog apyiicomoinong
Boapwv, n G-Init, eldikd tpocappoopévn yie GCNs. H G-Init otoyevel otn otabepomoinon
NG dLotk LPAVENG Kot aELOTTOLEL TH) GXECT) TNG e TT) Pelwon TNG Lep-eEopdAvVoNG. AvTO TO
amotélecpo amodidetol oTIC apyLkég peyahiTepeg WOLALOVOES THEG TOV TLVAK®V Bapdv,
oL omoleg ennpedlovV TIg TeEALKES LOLALOVOEG TIHEG HETA TN GUYKALOT), KOl OL OTTOLeG elval
YVooto 0TL oxetilovtal pe tnVv vrep-eEopdAvvon.

To ewpapata emiPeParovovy Ta Bewpnrtikd amoteAéopata, xpnopomordvtog Pabide GCNs
kot GATs o€ 8 cvvola dedopévwv yia epyacieg Tavopnong kopfwv. H G-Init amwodekcvo-
ETOL OTL PELWVEL TNV LItEP-eEOPGALVOT) Kot TTPocPEépPeL 0@éNN oe oevapia “cold start”. Emi-
TAEOV, 1] ETEKTACT) TOV TELPUPATWV GE epYasie TaElvopnong ypaewv deiyvel 0tL n G-Init
LIEPTEPEL TV TUTKAOV PEBOdWV apyLKoTOiNoNG KoL o€ QLT TO TPOPATIHALTCL.

27

VII Kepalaio 7: Meiwon tng Ynep-e§opdAvvong ota
GNNs péow AAMAayng tng Zuvaptnong
Evepyomoinong

To kepdAoto ovtd diepevvd v viep-eEopdAvvon ota Pabide GNNs ad pla véo oty
yovia, e6TLA{OVTOG GTOV AVTIKTUTTO TNG CLVAPTNOTG EVEPYOTOLNGNG Kol TOL pLOHOD EKPA-
Onong (learning rate) ava eminedo. Amodeikvietal, T060 BewpnTIK& OGO KoL TELPAPATIKAL,
OTL 1 emAoyn Kot 1) SIHOPPWGT) TOV CLVAPTHTEWV EVEPYOTTOINGNG allovv KeVTPLKO pOAO
ot Suvopkn EOPHAALYONG TWV AVATTPACTACEWY TWV KOPPwV.

Jvykekpiéva, avalvetal 1) oVPPoAT g TuTLkTG evepyomoinong ReLU otnv katdppevon
Twv avaropoctdoewv ot fabide GNNs. Bacilopevol oe avtn)) damictwor), mpoteive-
TOL Pl TAT] GAAGL OTTOTEAECHALTIKT) TPOTTOTOLNGT): 1) Tposappoyn tng kAiong (slope) tng
ReLU yiwx tn Satripnon tng avamoposTatiknig motkihopopeiag petafd tov emmédwv. H
péBodog avtn dev autaitel aAAay€g 6TV ap)LTEKTOVLKT] TOU SIkTOOL 1} TNV eloaywyn skip
oLVOETEWV.

H epyocio mapéxel Tnv mpoT HEAETH OYXETIKA He TOV POAO TNG CUVAPTIONG EVEPYOTTOLNOTNG
Kot Tov puBpov ekpdBnong ava entinedo otV vep-eEopAALYGT). OWPNTIKA, ATTOdELKVDE-
taL 1) ovvdeon petad g kAiong tng ReLU kot Towv Stalovcdv THOVY TV TVAK®OV Bapodv,
oL omoleg oyetilovton pe TV vep-eEopdAvvon.

EmumAéov, n avalvon yux tnv enidpacn tng kAlong tng ReLU emexteivetan otov pubpod
ekpaOnong ava eninedo. Ta mepapata deiyvovv 6TL 1) pOBULIoT TV PLOPGY ekpddnong
HITOPEL ETTLOTG VAL HELWOGEL TNV LITEP-EEOPAALVET], OtV KAl €LVOL ALYOTEPO TTPAKTLKT).

TENOG, TPAYHATOTOLOOVTOL EKTETOPEVOL TTELPAPATA e DIKTLN EWG KoL 64 eMLTEdWV, emLPe-
Bocdyvovtag otL 1) Tpotelvopevn pEB0S0G amOTPETEL TN CUYKALOT) TOV AVOITAPACTACEWY
TV KOpPwv oTo 810 onpeio, 0dnydvTag ot KaADTEpeS avamapactdoelg. Ta opéAn Twv
Bobudv GNNs pe tnv mpotevopevn pébodo tovilovton ko oe oevapla “cold start”.

28

VIII Jvpnepaopata

2y mapovoa datpiPn) mopovctdletal Eva OAOKANPWIEVO TAXIOLO AVTIHETOMTLIONG TNG
vnep-e€opdhuvong ota Nevpwvikd Aiktoa Tpdgpwv (GNNs), to omoio Paoiletan oe mévte
dwakprrég peBodoroyieg. Kabe mpocéyyion cupPaidel oe Sapopeticd onpeio tng alvoidog
ene€epyaciag, amd tn ddyvwaon kot T BewpnTikn TEKHNPLOCT) £0G TIG TPOKTIKEG TOPEH-
Baoelg xa Tnv aoteheopatiky ekmaidevor Pabidv povtéAwy.

To evpripata emPePardvoovv 0TL 1) datrpnon NG SLAKOUAVOTG TWV OVOITOPOCTACEWDY
TV KOPPwV, 0 EAeyX0og NG TOMOAOYIKNG SLAd0oNG TANPOPOPLRG, 1) GTOXEVHEVT KT~
devon GTPWHATWV, 1| COOTH APXLKOTOINCT TV Bap®dV, KoL 0 EAEYXOG HI-YPOUHLKOTHTWV
HITOpOLVY Vo 00N yrcovy oTnV Kataokeur) PabiTtepwy, arodoTIKOTEPWOV KoL YEVIKEDG LWV
GNNSs. O wpotetvopeveg péBodot arvolyouvv Tov dpOpo Yo dELOTLOTES EPAPUOYES OE TPAY-
HOTLKA GEVAPLAL, LTTOSADVOVTAG OTL TO PALVOUEVO TNG LITEP-eEOpAALVONG elval dlayeLpi-
OO 0TV aVTIHETOTL eTaL pe KaTOAANAeG peBodoug.

29

Chapter 1

Introduction

1 Graph Neural Networks (GNN5s)

Graph Neural Networks (GNNs) have become a cornerstone for analyzing and learning
from graph-structured data. Their ability to combine node attributes with the inherent
connectivity of graphs has led to remarkable advances in many fields. GNNs are a class of
neural architectures specifically designed to process data that can be represented as graphs.
In a graph, entities are modeled as nodes and relationships between them as edges. For-
mally, let G = (V, &, X) be an undirected graph, with |V| = N nodes u; € V, edges
(uj,u;) € €and X = [z1,...,xx]7 € RV*C the initial node features. The edges form
an adjacency matrix A € RN where edge (u;, u;) is associated with element A; ;. A; ;
can take arbitrary real values indicating the weight (strength) of edge (u;, u;). During the
training phase, only the labels of a subset V, C V are accessible, where |V)| = Nyqqin. The
objective is to develop a node classifier that leverages the graph topology and the provided
feature vectors to predict the label of each node. GNNs learn a function

F:. G — Z,

where Z € RY*™ is the matrix of output embeddings. Depending on the downstream task,
Z may represent node-level embeddings (for node classification or link prediction), edge-
level scores (for edge classification), or a single graph-level embedding z € R obtained by
pooling over nodes (for graph classification or regression).

Message-Passing Framework. The predominant paradigm for GNNs is the message- pass-
ing (or neighborhood aggregation) framework [18]. A GNN is composed of L layers, where
at layer [each node u maintains a hidden representation h(ul) ¢ R% (with hgo) = x,, and d;
indicating the hidden size of layer /). The update from layer | — 1 to layer [/ involves two
steps:

(i) Aggregation: Each node collects information from its neighbors. Let N (u) = {v €
V: (v,u) € £} denote the neighbor set of node u. Then

ml) = AGGREGATE<l><{h§}‘” v eN (U)}>-

u

Here, AGGREGATEY is a permutation-invariant function (e.g., sum, mean, or an
attention-weighted combination) that ensures the output does not depend on the
ordering of neighbors.

(i) Combination: The aggregated message is then combined with the node’s previous
representation to produce the new hidden representation:

RO = COMBINE@(th—U, mg“).

u

30

In practice, COMBINE(") often consists of a linear transformation (via a learnable
weight matrix) followed by a nonlinear activation function (e.g., ReLU).

After L such message-passing iterations, each node u obtains a final embedding WP For
node-level tasks, one can apply a task-specific prediction layer (e.g., a softmax classifier) to
hE). For graph-level tasks, a permutation-invariant pooling operation (such as summation
or averaging) over {hq(‘L) : u € V} produces a single vector

hg = POOL({hg@ = V}>,

which is then passed through further layers to yield the final output.

Permutation Invariance and Equivariance. A crucial property of any GNN is that it re-
spects the graph’s invariance under node permutations. In particular, if P € {0, 1}*¥ isa
permutation matrix and we permute the input as (P A PT, P X), a properly defined GNN
generates outputs Z satisfying Z’ = P Z for node-level embeddings, and identical graph-
level embeddings. This property ensures that learned representations and predictions do
not depend on the arbitrary ordering of nodes.

Expressive Power and Limitations. The representational capacity of message-passing GNNs
has been analyzed through the lens of the Weisfeiler-Lehman (WL) graph isomorphism
test: if two non-isomorphic graphs cannot be distinguished by 1-WL (color refinement),
then no such GNN can assign different representations to them [6]. While more expressive
variants have been developed to match the discriminative capability of 1-WL, these models
still face inherent limitations and may struggle with certain graph structures. Moreover,
as GNNs grow deeper, they can suffer from oversmoothing, where node representations
converge to similar values regardless of structural differences, and from oversquashing,
which hinders the flow of information across distant nodes. These phenomena, together
with optimization difficulties in very deep networks, underscore the need for architectural
improvements and regularization methods. In essence, GNNs generalize neural architec-
tures to non-Euclidean domains by iteratively aggregating and transforming node features
according to graph topology, allowing the learned representations to respect both feature
information and combinatorial structure. However, addressing challenges such as over-
smoothing, oversquashing, and training stability remains critical for advancing the expres-
sive power and practical effectiveness of GNNs.

2 Deep Graph Neural Networks

Deep Graph Neural Networks aim to enhance the expressive power of standard architec-
tures by stacking multiple layers of message passing operations. In essence, each GNN layer
enables a node to aggregate and transform information from its immediate neighbors, grad-
ually building a representation that captures both the node’s features and its local structural
context. By extending this process across multiple layers, deep GNNs aim to extract high-
level patterns that span increasingly larger neighborhoods of the graph. This enables the
model to capture long-range dependencies, which are crucial in many domains (e.g., so-
cial network analysis, biological networks, and knowledge graphs), where the underlying
semantics or functions depend not only on nodes’ immediate neighbors, but also on their
multi-hop neighborhoods.

31

The motivation for deep GNNs arises from the observation that many graph-based tasks
require the integration of information across distant parts of the graph. For example, in
molecular property prediction, the influence of a functional group may be affected by dis-
tant atoms; in recommender systems, the relationship between two users may be inferred
only through extended interaction paths; and in citation networks, papers sharing a com-
mon research area may only be connected through multi-hop citation paths. Shallow GNNs,
typically limited to one or two hops, are insufficient for capturing such complex, non-local
dependencies, leading to underfitting and limited predictive performance on tasks where
high-order interactions are essential [19, 13]. This limitation, where a model cannot access
relevant information due to insufficient depth, is referred to as the under-reach problem. In
that particular scenario, GNNss fail to learn because each node does not have access to the
appropriate information, which resides more hops away than the depth of the GNN under
investigation.

Moreover, from a theoretical perspective, deeper GNNs are more expressive in their abil-
ity to distinguish different graph structures. This relates to the concept of the Weisfeiler-
Lehman (WL) test of isomorphism: it has been shown that certain classes of GNNs are as
powerful as the 1-WL test in distinguishing non-isomorphic graphs, and stacking more lay-
ers allows the network to capture patterns that are beyond the representational capacity of
shallower counterparts [6]. Consequently, deeper architectures are essential in scenarios
that demand finer structural discrimination and higher-order feature interactions.

However, despite their theoretical advantages, deep GNNs suffer from a number of criti-
cal limitations that hinder their practical usability. Beyond a certain depth, performance
often deteriorates rather than improves. This degradation has been attributed to several
interrelated phenomena:

(i) Oversmoothing. As the depth increases, node representations tend to converge to a
stationary point, leading to a loss of model’s ability to discriminate different classes.
Although this issue will be discussed in detail in the next section, it is important to
note here that it constitutes one of the principal barriers to constructing effective
deep GNNs [20, 21, 7].

(i) Oversquashing. As information from exponentially expanding neighborhoods is
propagated through limited-capacity pathways, signals from distant nodes can in-
terfere or be lost entirely. This bottleneck effect, referred to as oversquashing, pre-
vents accurate transmission of long-range dependencies even when the network is
sufficiently deep [8, 22].

(iii) Vanishing and Exploding Gradients. Deep GNNs, like other deep neural architec-
tures, face difficulties during training due to unstable gradients. As messages are
propagated over many layers, gradients can vanish or explode, making optimization
inefficient and often leading to poor convergence. This problem is exacerbated by
nonlinear activation functions and normalization layers, which amplify numerical
instability in deeper models [23, 14].

(iv) Gradient Homogenization. As GNNs become deeper, the gradients associated with
different nodes may become increasingly similar, hindering the model’s ability to
focus on informative substructures or sparsely represented regions. This gradient
homogenization can hinder the optimization dynamics and limit the model’s ability
to adaptively focus on diverse graph regions [11].

32

(v) Loss of Locality. While deep networks aggregate more global information, they may
lose sensitivity to important local features. As messages from distant nodes dominate
the representation, subtle but critical neighborhood-specific patterns, such as small
motifs or local attribute variations, can be overlooked. This loss of locality can be
detrimental in cases where fine-grained distinctions are crucial for the underlying
task.

(vi) Scalability and Resource Constraints. Deeper GNNs lead to higher computational
and memory costs, especially on large-scale graphs. Each additional layer increases
the number of neighborhood expansions and intermediate feature maps that must be
stored and processed. Without careful design, this can make deep GNNs impractical
for large graphs or resource-constrained environments [24].

In light of these challenges, developing architectures and training strategies that enable
deep GNN:ss to effectively learn long-range dependencies while avoiding the aforementioned
issues has become a central topic in graph representation learning. The subsequent section
will delve deeper into the phenomenon of oversmoothing, one of the most fundamental
and well-studied obstacles in scaling GNNs to greater depth.

3 Oversmoothing: Definition and Significance

Oversmoothing refers to a phenomenon in graph neural networks whereby repeated mes-
sage passing or aggregation operations cause the node feature representations to become
increasingly similar or even indistinguishable across the graph. Formally, let H() ¢ RV
denote the matrix of node embeddings after [layers of a GNN, where N is the number of
nodes and d; is the embedding dimension of the [-th layer. In many GNN architectures, the
update rule can be expressed as:

HO — U(A H=D W(l_l)),

where A is a normalized adjacency matrix (or other normalization of the graph structure),
WU=1) is a learnable weight matrix, and o(-) is a nonlinear activation function. As [in-
creases, repeated multiplication by A aggregates information across larger neighborhoods,
causing the rows of H") to align with the dominant eigenvectors of A. When embeddings
converge in this manner, reflecting only graph topology and disregarding input features,
distinctive node representations are progressively lost. This collapse of representational
variance is precisely termed oversmoothing [20, 7, 21].

The phenomenon was first rigorously characterized from a spectral perspective by exam-
ining eigenspace contraction under repeated graph convolution: each propagation step
functions as a low-pass filter that suppresses high-frequency (local) information, leaving
predominantly low-frequency (global) patterns. In the limit, embeddings converge to a
subspace spanned by the dominant eigenvectors of the graph Laplacian or normalized ad-
jacency, effectively “averaging out” distinctive node attributes. Each node’s new represen-
tation becomes a weighted average of its own and its neighbors’. This process is equivalent
to a form of Laplacian smoothing, and was initially observed in [25] and later analyzed
n [20]. While moderate smoothing can aid semi-supervised learning, stacking multiple
convolutional layers intensifies this effect, causing complete representational collapse and

33

information loss. [7] extended this view by showing that, under ReLU, oversmoothing cor-
responds to convergence onto a subspace rather than a fixed point, and [21] provided a
complementary Dirichlet energy perspective.

Mitigating oversmoothing is critical for several reasons. First, many real-world graphs ex-
hibit complex, multi-scale structure in which local communities or motifs carry essential
information; if embeddings collapse, these subtle variations are destroyed, and the GNN
cannot distinguish nodes appropriately [20]. Second, oversmoothing undermines the ex-
pressivity of deep GNNs: although deeper architectures can in principle capture longer-
range dependencies, in practice representational collapse prevents nuanced differentiation,
degrading performance on tasks such as link prediction in heterophilous graphs or graph-
based regression [13]. Third, from an optimization standpoint, oversmoothing can lead to
vanishing gradients and hinder effective training: as representations become uniform, gra-
dients carry diminishing node-specific signals, making it difficult to adapt to fine-grained
patterns [7]. Finally, many applications demand interpretable or disentangled node repre-
sentations (e.g., recommendation systems, knowledge-graph completion), and oversmooth-
ing directly conflicts with this goal by collapsing embeddings into a few dominant modes
[13].

Owing to these considerations, preventing or alleviating oversmoothing is a central re-
search direction in GNN design. Approaches including normalization techniques (e.g.,
PairNorm) [13], architectural and training modifications (e.g., residual connections, slope-
modified activations, and partial training) [21, 5], weight initialization methods (e.g., G-Init)
[4], and regularization schemes (e.g., graph spectral regularizers, G-Reg) aim to preserve
embedding variance across layers while enabling high-order feature aggregation. Conse-
quently, addressing oversmoothing is vital for advancing both theoretical understanding
and practical capabilities of deep graph learning models.

4 Central Research Questions

This thesis consists of five papers and investigates oversmoothing in Graph Neural Net-
works by addressing the following focused questions:

1. Formal Definition and Detection:
e How can oversmoothing be defined precisely in terms of the distance of node
embeddings under repeated message passing?
e Which theoretical criteria indicate that node representations converge towards
the oversmoothing subspace?

2. Quantification:

e What metrics or bounds capture the rate and extent of oversmoothing as func-
tions of network depth, propagation steps, and weight-matrix spectral proper-
ties?

e How do factors such as partial training, weight initialization, the smallest singu-
lar value of weight matrices, or the choice of activation function quantitatively
affect embedding variance across layers?

3. Mitigation Strategies:

34

4.

e Which modifications (partial training, architectural design choices, weight ini-
tialization, regularization methods or activation functions), prevent or delay
embedding collapse without reducing the effective receptive field?

e How can these strategies be solidified by theoretical analyses to guarantee a
nontrivial lower bound on embedding variance?
Empirical Validation:
e In benchmark datasets, which methods allow the models to explore their deep
variants without suffering from extreme performance degradation?

e In “cold start” scenarios (unlabeled nodes without features), which methods pre-
serve sufficient variance to propagate label information effectively?

e In tasks requiring deep aggregation (e.g., newly introduced synthetic dataset
with controllable long-range interactions), what is the behavior of models claim-
ing to enable deep GNNs and mitigate oversmoothing?

5 Contributions

The main outcomes of this work are presented in the following papers:

[1]

2]

[5]

“Analyzing the Effect of Embedding Norms and Singular Values to Oversmooth-
ing in Graph Neural Networks” by Kelesis, D., Fotakis, D., and Paliouras, G., arXiv,
2510.06066 [1].

“Analyzing the Effect of Residual Connections to Oversmoothing in Graph Neural
Networks” by Kelesis, D., Fotakis, D., and Paliouras, G., Machine Learning, 114(8):184

[2].

“Partially Trained Graph Convolutional Networks Resist Oversmoothing” by Kelesis,
D., Fotakis, D., and Paliouras, G., Machine Learning, 114(10):211 [3].

“Reducing Oversmoothing through Informed Weight Initialization in Graph Neural
Networks” by Kelesis, D., Fotakis, D., and Paliouras, G., Applied Intelligence, 55(7):632

[4]

“Reducing oversmoothing in graph neural networks by changing the activation func-
tion” by Kelesis, D., Vogiatzis, D., Katsimpras, G., Fotakis, D., and Paliouras, G., ECAI
2023 - 26th European Conference on Artificial Intelligence [5].

The papers comprising this thesis collectively advance our understanding of oversmoothing
in Graph Neural Networks by systematically defining, measuring, and mitigating the phe-
nomenon, and by validating proposed methods across diverse settings. Below, we present
a unified narrative that shows how each contribution addresses the four central research
questions.

5.1

Formal Definition and Detection

A precise characterization of oversmoothing is foundational to any mitigation effort. [1]
introduce the Mean Average Squared Distance (M ASE D) metric, which quantifies over-
smoothing as the average pairwise distance among node embeddings at each layer. By

35

framing oversmoothing in terms of embedding distances, this work establishes a clear, in-
terpretable definition: oversmoothing prevails as M ASE D value drops.

5.2 Quantification

Quantifying the rate and extent of oversmoothing is addressed primarily in [1], with com-
plementary insights from [3, 4, 5]:

e Depth and Spectral Properties [1]: By aggregating layer-wise M ASED bounds
across depth, [1] derive global upper and lower bounds on M ASED as functions
of network depth and the spectral properties of each weight matrix. These bounds
explicitly show that deeper GNNs suffer a faster decay of M AS E D unless the small-
est singular value is maintained above zero.

e Partial Training [3]: [3] introduce a theoretical framework that quantifies how freez-
ing a subset of layers (i.e., keeping them at random initialization) introduces stochas-
tic mixing that preserves embedding variance. Under assumptions on model’s width,
it proves that wider layers amplify variance, and thus reduce oversmoothing quanti-
tatively.

e Initialization Effects [4]: The G-Init method sets initial weight variances based on
degree statistics so that signal and gradient variances remain balanced across lay-
ers. Analytical formulas link these variances to the amount of variance preserved in

embeddings.

e Activation Dynamics [5]: By modeling the decreasing fraction of active ReLU units
with depth, [5] show that standard ReLU amplifies variance decay. The proposed
slope-modified ReLU adjusts this decay rate, and theoretical results quantify how the
modified slope reduces oversmoothing as depth increases.

These contributions jointly offer a suite of metrics and bounds that capture oversmoothing
progression under varying depths, spectral characteristics, training regimes, and architec-
tural choices.

5.3 Mitigation Strategies

Equipped with precise detection and quantification, the thesis proposes and analyzes sev-
eral methods to reduce oversmoothing without compromising receptive field size:

1. G-Reg Regularizer [1]: By penalizing small singular values of weight matrices, G-
Reg directly increases the lower bound on M ASE D, ensuring a nontrivial variance
among embeddings at each layer.

2. Decoupled Adjacency Hops [1]: To avoid coupling depth with the number of train-
able weight matrices, a factor that accelerates oversmoothing, the number of distinct
weight matrices is kept small while adjacency hops are distributed across them. This
preserves the effective receptive field yet slows variance decay.

3. Analysis of Residual Connections [2]: Examines widely used residual-connection
methods designed to mitigate oversmoothing, demonstrating both theoretically and
empirically that, they predominantly aggregate information from local neighbor-
hoods and thus fail to support the long-range propagation required by some tasks.

36

4. Partial Training [3]: Freezing weight matrices mixes features in a way that preserves
variance and reduces oversmoothing. Theoretical analysis provides conditions under
which a single trained layer suffices, and empirical results demonstrate its efficacy
without altering network depth.

5. Graph-Informed Initialization (G-Init, [4]): By tailoring initial weight variances to
graph degree statistics, G-Init balances forward and backward signal propagation,
mitigating early variance collapse. This method does not require architectural mod-
ifications.

6. Slope-Modified ReLU (Slope2GNN, [5]): A simple adjustment of slope in the ReLU
activation reduces oversmoothing as depth increases.

Each strategy is supported by rigorous theoretical analyses that guarantee oversmoothing
reduction as depth increases.

5.4 Empirical Validation

The practical utility of these methods is confirmed across multiple settings:

e Standard Benchmarks: On common node and graph classification datasets, deep
GNNs enhanced with G-Reg [1], G-Init [4], or slope-modified ReLU [5] consistently
outperform baselines as depth increases.

e “Cold Start” Scenarios: All proposed strategies demonstrate robust performance
when unlabeled nodes lack feature information, enabling effective label propagation
by preserving embedding variance.

e Synthetic Long-Range Interaction Tasks: In a newly introduced dataset with con-
trollable long-range dependencies, residual GNNs [2] underperform due to restricted
receptive fields, whereas simpler models, such as GCN, achieve higher accuracy.

e Trade-Off Analyses: Experiments validate that distributing adjacency hops across
few weight matrices strikes the optimal balance between expressiveness and over-
smoothing avoidance [1], and that increased width in partially trained networks am-
plifies variance without harming generalization [3].

Collectively, these experiments verify the theoretical guarantees and demonstrate that the
proposed techniques allow GNNs to exploit depth while avoiding the performance degra-
dation traditionally attributed to oversmoothing.

6 Thesis Outline

Chapter 2: Background & Literature Review

This chapter reviews fundamental concepts in graph representation learning, defines over-
smoothing, and surveys existing work on its detection, quantification, and mitigation. Key
approaches, such as normalization techniques, residual/skip connections, regularization
and initialization methods, and activation-based approaches, are discussed to establish con-
text for the subsequent chapters.

37

Chapter 3: Oversmoothing Quantification and G-Reg [1]

Chapter 3 presents [1] in detail. It begins by defining M AS E D metric for measuring over-
smoothing and derives layer-wise bounds on M ASE D. The chapter then shows how cou-
pling adjacency powers to the number of the weight matrices accelerates oversmoothing
and motivates the decoupling strategy. Finally, it introduces the G-Reg regularizer, which
reduces oversmoothing as depth increases.

Chapter 4: Analysis of Residual Connections [2]

Chapter 4 develops [2]’s theoretical and empirical analysis of residual connections in GNNs.
It shows that adding residual connections makes a GCN equivalent to a sum of multiple
shallow GCNs, each operating at a different neighborhood radius. The chapter concludes
by identifying the limitations of residual connections in enabling genuinely deep GNNs
when deep aggregation is needed.

Chapter 5: Partial Training [3]

Chapter 5 details [3]’s investigation of partially trained GNNs. It presents theoretical argu-
ments showing that propagation through untrained layers preserves expected embedding
variance, especially as network width increases, thereby reducing oversmoothing. Em-
pirical results on benchmark datasets confirm that deep, partially trained GNNs maintain
discriminative embeddings.

Chapter 6: Graph Informed Weight Initialization (G-Init) [4]

Chapter 6 covers [4]’s development of G-Init, a graph-specific initialization scheme. The
chapter details how G-Init sets initial weight variances according to degree statistics to
preserve activation and gradient scales across many layers. Experimental evaluations on
node and graph classification benchmarks are then presented, demonstrating that GNNs
initialized with G-Init train stably at depths that cause collapse under standard initialization
methods.

Chapter 7: Slope-Modified ReLU (Slope2GNN) [5]

Chapter 7 explains [5]’s analysis of how activation functions affect oversmoothing. It in-
troduces a slope-modified ReLU and provides a theoretical comparison of variance decay
rates between standard and modified ReLU. Experimental results demonstrate that GNNs
using the modified activation maintain higher embedding variance and achieve better per-
formance than those using standard ReLU or other baseline activations.

Chapter 8: Discussion & Future Work

Chapter 8 synthesizes insights from Chapters 3-7, comparing how different approaches,
address oversmoothing. It discusses limitations of existing methods, and potential avenues

38

for future research, including extending analyses to heterogeneous or dynamic (i.e., time-
evolving) graphs, and exploring alternative activation or propagation schemes.

39

Chapter 2

Background & Literature Review

1 Preliminaries and Graph Representation

1.1 Basic Graph Concepts

A graph is a fundamental data structure in mathematics and computer science, defined as
an ordered pair G = (V, £), where V denotes the set of vertices (or nodes),and € C V x V
denotes the set of edges as unordered or ordered pairs of vertices. The number of vertices
is denoted by N = |V|.

Graphs can be classified according to edge directionality:

e Undirected Graphs. In an undirected graph, each edge {u, v} € £ represents a bidi-
rectional connection between vertices u and v. Consequently, the adjacency matrix
of an undirected graph is symmetric, i.e., A;; = Aj; for all 7, j.

e Directed Graphs (Digraphs). In a directed graph, each edge (u,v) € £ is an ordered
pair indicating a connection from vertex u to vertex v that does not imply a connec-
tion from v to u. The adjacency matrix of a directed graph is generally asymmetric.

The adjacency matrix A € {0, 1}*" encodes the presence or absence of edges between
vertices, defined by

o 1, if there exists an edge from vertex i to vertex j,
Y 0, otherwise.

In the special case of undirected graphs, A;; = Aj;.
The degree matrix D € RV*" is a diagonal matrix whose entries correspond to vertex
degrees. For undirected graphs, the degree of vertex ¢ is defined as

N
deg(z) = Z Aiju
j=1
and D;; = deg(). In directed graphs, one distinguishes:

N
deg,, (i) = Y Ay,
i=1

N
degout(i) = Z Aij’
7j=1

so that D;, and D, are diagonal matrices with the in-degrees and out-degrees on the
diagonal, respectively.

40

1.2 Node Features and Embeddings

In many applications, vertices in a graph are associated with feature vectors that encode
intrinsic or contextual attributes. We collect these vectors into a feature matrix X € RV*¢,
where each row z; € R represents the features of vertex i, and C denotes the input feature
dimensionality.

An embedding is a transformation that projects these input feature vectors (usually) into
a lower-dimensional space while preserving structural and attribute-based relationships.
Formally, an embedding function

F - RNXC N RNxd

maps the original feature matrix X to an embedding matrix H = F(X) € RY*¢, where
d < C is the output dimension of each layer. The goal is that the rows h; € R of H capture
both the local connectivity patterns and the original features of vertex :. These embeddings
serve as inputs for downstream tasks such as node classification [25, 26], link prediction
[27, 28], and clustering [29].

1.3 Notation Overview

Throughout this thesis (unless stated otherwise), I use the following notation:

e G = (V,&): Graph with vertex set V and edge set £, where |V| = N.

A € {0,1}V*N: Adjacency matrix, where A4;; = 1iff (i,) € £.

D € RV*N: Degree matrix, a diagonal matrix with vertex degrees on the diagonal.

e X € RV*C: Node input feature matrix, each row z; € RC is the feature vector of
vertex 1.

H ¢ RY¥*4: Node embedding matrix produced by an embedding function F.

These conventions establish a common framework for describing graph structures, node
attributes, and their embedding representations.

2 Geometric learning

Geometric learning (also called geometric deep learning) is the study and development of
machine learning models that explicitly exploit the geometric and topological structure in-
herent in data domains that are not naturally represented in Euclidean space. Traditional
deep learning models, such as convolutional neural networks (CNNs) [30, 31, 32, 33] for
grid-structured images and recurrent neural networks (RNNs) [34, 35, 36, 37] for sequen-
tial data, are designed to process data with regular structures. On the contrary, geometric
deep learning extends these concepts (e.g., convolution, pooling, and feature aggregation)
to handle data residing on non Euclidean domains, including graphs with irregular con-
nectivity, spaces exhibiting nontrivial group symmetries (e.g., rotations on manifolds), and
continuous curved spaces like Riemannian manifolds. At its core, geometric learning aims
to identify and impose appropriate inductive biases, typically in the form of invariance or

41

equivariance, to transformations dictated by the underlying geometry. The desired out-
come is learned representations which respect the symmetries and metric relationships of
the data domain [10, 38, 39].

Formally, one may state that geometric learning consists of five interrelated categories,
sometimes referred to as the “five G’s™: Grids (regular lattices), Groups (symmetry groups
and their actions), Graphs (discrete relational structures), Geodesics (continuous manifolds
with Riemannian metrics), and Gauges (local reference frames on manifolds) [10, 39]. In
the grid setting, classical convolutional architectures exploit translational invariance by
weight-sharing across spatial positions. In the group setting, group convolutions extend
this idea by sharing weights across more general transformation groups (e.g., rotations, re-
flections), thereby ensuring equivariance to these transformations [40]. Graph-based meth-
ods further generalize this principle by defining convolutional-like operations on nodes
and their neighbors, typically through message passing schemes that aggregate informa-
tion from local neighborhoods [18, 25, 41, 42, 24]. On continuous manifolds, geometric
learning methods define convolutional kernels with respect to geodesic distances, parallel
transport, or local coordinate charts, thereby respecting the intrinsic curvature of the space
[43, 44, 45, 46]. Finally, gauge-equivariant architectures explicitly model learned represen-
tations as fields (scalars, vectors, higher-order tensors) that transform appropriately under
changes of local reference frames, guaranteeing that the network’s output does not depend
on arbitrary choices of coordinates [47, 48].

The emergence of geometric learning can be traced to multiple, diverse but somewhat con-
vergent motivations. First, many real-world applications involve data that are intrinsically
non-Euclidean: social networks [49], molecular structures [50, 51, 19], 3D meshes [52, 53],
and sensor-network data [54] all exhibit underlying relational or manifold constraints that
classical grid-based architectures (e.g., CNNs) fail to fully utilize. Early work on Graph
Neural Networks (GNNs) recognized the need to propagate information along arbitrary
graph topologies, but these methods often lacked a principled framework for incorporating
domain symmetries or continuous geometric priors [55, 56]. Second, the success of group-
equivariant CNNs (e.g., for rotation and reflection invariance in image processing) high-
lighted the importance of respecting known symmetries to improve sample efficiency and
generalization [40, 57]. Third, in fields such as computational chemistry and physics, there
existed a clear drive to develop architectures capable of handling data defined on manifolds
(e.g., molecular surfaces, physical fields on curved domains) while ensuring that learned
models satisfy physical constraints (e.g., equivariance to rigid motions). Taken together,
these factors motivated a systematic effort to unify diverse aspects of non-Euclidean and
symmetry-aware learning under a common theoretical framework, known as geometric
deep learning [10].

The rationale for adopting a geometric learning paradigm is multifold. First, encoding
known symmetries and invariances directly into the network architecture reduces the effec-
tive hypothesis space, thereby improving sample efficiency and reducing overfitting, which
is of importance in domains where labeled data are scarce or expensive to obtain (e.g.,
molecular property prediction). Second, respecting geometric relationships (e.g., graph
connectivity, manifold curvature) ensures that learned representations capture the true re-
lational or spatial structure of the data, which often correlates strongly with the target
prediction (e.g., functional motifs on protein surfaces, social influence propagation in net-
works). Third, equivariant architectures guarantee that the network’s outputs transform
predictably under domain symmetries, which is crucial for tasks requiring physical or se-
mantic consistency (e.g., predicting forces in molecules that must be equivariant to rotations

42

and translations). As a result, geometric learning methods have demonstrated state-of-
the-art performance across a wide range of tasks, including molecular property prediction
[58, 59], point-cloud classification and segmentation [60, 61], social network analysis [24],
and traffic forecasting on road-network graphs [62, 63, 9], often with substantially fewer
learnable parameters than their competitors.

The historical development of geometric learning can be roughly partitioned into three
overlapping phases. In the first phase, the primary focus was on early graph-based archi-
tectures such as recurrent graph neural networks [55] and spectral-domain methods based
on the graph Laplacian [56, 64]. These spectral GNNs leveraged the eigenstructure of the
graph Laplacian to define convolutional filters in the graph Fourier domain but suffered
from limited scalability and poor transferability across graphs with differing topologies.
The second phase witnessed the rise of spatial GNNs, most notably the message-passing
neural network paradigm, where information is propagated along graph edges via learn-
able aggregation functions [18, 25]. This period also saw early attempts to define convo-
lutions on non-Euclidean manifolds via geodesic patches or local charting, enabling deep
learning on surfaces and meshes [43, 44]. The third phase has been characterized by efforts
to unify these different approaches under a single mathematical framework: by identify-
ing shared notions of symmetry, equivariance, and gauge symmetry, researchers have for-
mulated a general framework that includes grid-based, graph-based, and manifold-based
architectures [10, 48]. This unification enabled the design of architectures that can incor-
porate multiple geometric modalities simultaneously (e.g., graphs embedded on manifolds,
or fields defined on meshes) and led to the development of highly expressive equivariant
networks (e.g., tensor field networks, E(3)-equivariant GNNs) for applications in computer
vision, computational biology, and physical sciences [50, 59].

In summary, geometric learning emerged from the recognition that many modern data
analysis problems involve structured domains whose intrinsic geometry cannot be ade-
quately captured by conventional Euclidean architectures. By generalizing convolutional
and aggregation operations to graphs, groups, and manifolds, and by enforcing equivari-
ance and invariance properties dictated by domain symmetries, geometric learning provides
a principled framework for building deep neural networks that are both expressive and
aligned with the underlying data geometry. This unifying perspective has not only led to
theoretical insights regarding the expressive power and limitations of GNNs and manifold
networks, but has also led to practical advancements in numerous application areas where
respecting geometry is essential for obtaining robust and interpretable models [58, 65]. As
our work focuses on understanding and mitigating oversmoothing in GNNss, an issue tied
to the propagation of information along geometric structures, it is critical to situate our
contributions within the broader context of geometric learning, whose foundational prin-
ciples help illustrate the formulation of oversmoothing and motivate the design of effective
mitigation strategies.

3 Spectral Graph Theory Foundations

3.1 Graph Operators

Spectral graph theory analyzes a graph structure through linear operators derived from
its adjacency and degree matrices. The central operators are variants of the graph Lapla-
cian, which summarize connectivity and are foundational in tasks such as clustering [66],
community detection [67], and signal processing on graphs [68].

43

Combinatorial Laplacian. For an undirected graph G, the combinatorial Laplacian L €
RN*N is defined by

L =D — A
Since A is symmetric for undirected graphs, L is symmetric positive semi-definite. The

entry L;; = deg(i), and for ¢ # j, L;; = —11if (¢, j) € £ and 0 otherwise.

Normalized Laplacian. To mitigate the influence of heterogeneous degree distributions,
one often employs the normalized Laplacian:

L = D 3:LD 3 =] — D3AD 3.

Here, I denotes the NV x NN identity matrix. The normalized Laplacian £ is symmetric, with
eigenvalues in the interval [0, 2]. This scaling enables comparison across graphs of different
sizes or degree distributions and is widely used in spectral clustering [69, 66, 70, 71].

Random Walk Laplacian. Another useful variant is the random walk Laplacian:
Lw =D7'L =1- DA

Unlike £, L, is generally asymmetric. It is related to the transition probability matrix
P = D71 A of a random walk on the graph. Because P governs the dynamics of a Markov
chain defined on the vertices, L, finds applications in the analysis of diffusion processes
and PageRank-like algorithms [72, 73].

3.2 Eigendecomposition

The eigendecomposition of the graph Laplacian reveals key structural characteristics. For
a symmetric Laplacian L (either combinatorial or normalized), the decomposition is given

by

L = UAUT,
where:
o U =[uy,us,...,uy] € RV isan orthonormal matrix whose columns u; are eigen-
vectors of L.
o A =diag(\, Ny, ..., A\y) € RV*Y is a diagonal matrix of non-negative eigenvalues

sortedas 0 = Ay < Ay < -+ < Ay

Interpretation of Eigenvalues. The spectrum {\; } encodes connectivity properties of the
graph. In particular:

e The multiplicity of the eigenvalue A = 0 equals the number of connected components
in the graph.

e The second smallest eigenvalue, A\, known as the algebraic connectivity or Fiedler
value, quantifies how well connected the graph is: larger)\, indicates stronger overall
connectivity [74].

44

Role in Clustering and Smoothing. The eigenvectors associated with the smallest non-
zero eigenvalues (e.g., us corresponding to \s) tend to vary slowly over the graph, meaning
that adjacent vertices have similar values in these eigenvectors. This property underpins
spectral clustering, where one uses the first £ eigenvectors (excluding the trivial constant
eigenvector) to embed vertices into a lower-dimensional space and then applies clustering
algorithms such as k-means to identify communities [70]. Additionally, these eigenvectors
serve as smooth basis functions for graph signal processing, enabling tasks like denoising
and interpolation [68].

3.3 Spectral Filters

Spectral filtering on graphs manipulates the eigenvalues of the Laplacian to selectively en-
hance or suppress specific frequency components of signals defined over the vertices. Let
s € RY be a signal on the graph (i.e., s; is the signal value at vertex). Its graph Fourier
transform is given by

s = U's,

and the inverse transform is s = U's. A spectral filter is defined as a function g : R — R
applied to the eigenvalues. The filtered signal s’ is obtained by

s = Ug(A)U's,

where g(A) = dlag(g()‘l)v g<)‘2>7 te 79()‘N>)

Low-Pass Filtering. A low-pass filter g(\) assigns larger weights to smaller eigenval-
ues (low frequencies) and shrinks larger eigenvalues (high frequencies). Applying a low-
pass filter suppresses high-frequency variations in the signal, promoting smoothness across
strongly connected regions of the graph. This is beneficial for tasks such as semi-supervised
learning, where labels propagate smoothly based on graph connectivity, and for denoising
graph signals by removing high-frequency noise [75, 76].

Effect on Information Propagation. The design of a spectral filter directly affects how
information spreads on the graph. Low-pass filters encourage information to diffuse along
densely interlinked areas, facilitating the discovery of communities and robust label prop-
agation. However, excessive smoothing can eliminate crucial high-frequency features that
indicate sharp transitions or boundaries between communities. Thus, selecting or learning
an appropriate filter ¢(-) involves balancing the trade-off between smoothing and preserv-
ing important structural information [20].

4 Graph Neural Networks (GNNs)

4.1 Message Passing Framework

Graph Neural Networks (GNNs) have emerged as a powerful paradigm for learning rep-
resentations of graph-structured data. Central to many GNN architectures is the Message
Passing Neural Network (MPNN) framework, introduced by Gilmer et al. [18]. This frame-
work provides a unifying perspective for various GNN models by abstracting the process
of information propagation through graphs.

45

Aggregate and Update Functions. In the MPNN framework, the learning process can be
described as a series of message passing iterations, each consisting of two primary steps:
message aggregation and node state update. For a graph G with node features z,, and edge
features e, the operations at the [-th layer are defined as follows:

m’ELl) = Z Ml(hg)u hqsl;)a euw)u
weN (u)

h) =y (Y, m),

where h{ represents the hidden state of node u at layer [, M, is the message function
that computes messages from neighboring nodes at layer [, and U, is the update function
that integrates the aggregated message m!" with the current state h.. These functions are
typically parameterized by neural networks and are designed to be permutation-invariant

to ensure consistency across different (but equivalent) graph structures.

Receptive Fields and Depth Implications. The depth of a GNN, determined by the num-
ber of message passing layers, directly influences the receptive field of each node. We term
as the receptive field of each node the subset of the graph from which it can aggregate infor-
mation. Specifically, after L layers, a node’s representation incorporates information from
nodes up to L hops away. While increasing depth allows for capturing broader contextual
information, it also introduces challenges such as oversmoothing, where node representa-
tions become indistinguishable, and vanishing gradients, which hinder effective training.
Consequently, there is a trade-off between depth and the ability to preserve meaningful
node representations.

Advancements in Message Passing Frameworks. Since the inception of the MPNN frame-
work, several extensions and modifications have been proposed to address its limitations
and enhance its capabilities:

e Hierarchical Message Passing. To capture long-range dependencies and high-order
neighborhood information, hierarchical message passing frameworks have been de-
veloped. These approaches group nodes into multi-level structures, enabling efficient
information propagation across different scales of the graph [77, 78].

e DRew: Dynamically Rewired Message Passing with Delay. Instead of applying
message passing uniformly across the entire graph at every layer, DRew gradually
densifies the graph structure and introduces layer-dependent skip connections. This
optional, distance-based rewiring allows long-range node interactions to emerge pro-
gressively, improving performance and alleviating oversquashing on tasks requiring
global context [79].

e Cooperative Graph Neural Networks (Co-GNNs). Treats each node as a strategic
agent that dynamically chooses whether to listen, broadcast, both, or isolate at each
layer. This flexible, adaptive message-passing paradigm enables nodes to regulate in-
formation flow based on local structure and learned context, enhancing expressivity,
especially for long-range dependencies and heterophilic graphs [80].

These advancements reflect the ongoing evolution of message passing frameworks in GNNs,
aiming to address challenges related to scalability, expressiveness, and the effective capture
of complex graph structures.

46

4.2 Prominent GNN Architectures

In the evolution of Graph Neural Networks, several architectures have been proposed to ef-
fectively capture both structural and feature information in graph-structured data. Among
these, Graph Convolutional Networks (GCNs), Graph Attention Networks (GATs), Graph-
SAGE, Chebyshev Networks (ChebNets), Personalized Propagation of Neural Predictions
(PPNP) and its approximation (APPNP), Simplified Graph Convolution (SGC), GCNIIL, and
Graph Transformers have emerged as prominent models. Each architecture introduces dis-
tinct mechanisms to aggregate and transform node features, addressing various challenges
such as computational efficiency, inductive learning, and preservation of high-frequency
information.

Graph Convolutional Networks (GCNs). Introduced by Kipf and Welling [25], GCNs
generalize the notion of convolutional filters to graphs by leveraging a first-order approxi-
mation of spectral graph convolutions. The layer-wise propagation rule for an L-layer GCN
is:

gD = a([)*l/?[lf)*m ao W(”>, (2.1)
where:
o A = A+ I is the adjacency matrix after self-loops addition,
e D is the diagonal degree matrix of A,

e HO = X is the input feature matrix, and H () ¢ RV*d denotes the matrix of node
representations at layer /,

WO e Ré*dit1 g the trainable weight matrix at layer /,
e o(-) is a pointwise non-linearity (e.g., ReLU).

This formulation can be interpreted as Laplacian smoothing, where each node’s represen-
tation is updated by a weighted average of its own and its neighbors’ features. Although
stacking multiple GCN layers allows for capturing information from higher-order neigh-
borhoods, excessive depth leads to oversmoothing, causing node embeddings to become
indistinguishable [20].

Residual Graph Convolutional Networks (ResGCNs). ResGCNs [23] enhance standard
GCNs by introducing residual connections that facilitate the training of deeper architec-
tures and mitigate issues like oversmoothing. In a typical ResGCN layer, the output is
computed as:

HU+D — (AHOWO 4 H(o>> 7
where:

e A is the the augmented symmetrically normalized adjacency matrix after self-loop
addition,

e W is the trainable weight matrix.

The addition of H®) implements a skip connection from the input features, allowing the
model to retain original information across layers.

47

Graph Attention Networks (GATs). To alleviate the limitation of uniform neighbor ag-
gregation in GCNs, Velickovi¢ et al. [41] proposed GATs, which utilize self-attention mech-
anisms on graph neighborhoods. For each node 7, GAT computes attention coefficients o;;
for each neighbor j € N (i) as follows:

B exp(e;;)
¢;; = LeakyReLU(a@" [W A" | W AY]), ay = 7
j (j) j > kenti) eXP(eir)

where:
° hgl) € R% is the input feature of node i at layer I,
o W € R%x*dit1 ig the trainable weight matrix,
e i € R?%+1 ig a learnable weight vector,
e || denotes the concatenation operation.

The updated feature of node u is computed as:

W = o (X oy W),
JEN (u)

often extended to multi-head attention by concatenating or averaging the outputs of K
independent attention heads. GATs adaptively weight neighbor contributions according
to learned relevance scores, thereby enabling the model to focus on the most informative
neighboring nodes. This mechanism also inherently handles graphs with variable node
degree distributions without explicit normalization.

GraphSAGE. Hamilton et al. [24] introduced GraphSAGE to address the need for induc-
tive learning on large and evolving graphs. Instead of learning a single embedding for each
node in a transductive manner, GraphSAGE learns aggregation functions that generalize
to unseen nodes. At each layer [, the embedding of node w is updated via:

B+ U(WU) . AGGREGATE® ({ h} U {BD | v e N (“)}))7
where:

o AGGREGATEY is a permutation-invariant aggregator such as mean, max-pooling,
or an LSTM-based function,

e W is a trainable weight matrix at layer [,

° hq(f)) = x, is the initial node feature.
To achieve scalability, GraphSAGE samples a fixed-size set of neighbors for each node at
each layer, enabling mini-batch training and inductive inference on nodes not seen during

training. This sampling strategy significantly reduces computational cost on large graphs
and supports dynamic graph settings.

48

Chebyshev Networks (ChebNets). Defferrard et al. [64] proposed ChebNets to approxi-
mate spectral graph convolutions using Chebyshev polynomials. The K -localized filter at
layer [is defined as:

K
T * gél) ~ ZH,(CZ) Ti(L) z,
k=0
where:
e T} is the Chebyshev polynomial of order k,

o L = -2 L — I is the scaled Laplacian, with A,y being the largest eigenvalue of the

>\max

combinatorial (or normalized) Laplacian L,

o 9,(;) are learnable parameters for layer /,
e x denotes the convolution operation on the graph.

By truncating the polynomial expansion at order K, ChebNets achieve K-hop localized
filtering without explicitly computing eigenvectors, reducing the computational complexity
to O(K|E]). This framework captures high-frequency components more accurately than
first-order models like GCNs, improving expressiveness on graphs with complex structural
patterns.

Personalized Propagation of Neural Predictions (PPNP) and Approximate PPNP (APPNP).
Klicpera et al. [16] introduced PPNP, which integrates Personalized PageRank (PPR) with
neural network outputs to enhance semi-supervised node classification. Let fp(X) =
H©® ¢ RN*dout be the initial neural predictions (logits) for d,,; classes. PPNP computes
the final prediction matrix Z as:

Z =a(l-(1-a)A) " 'HO,
where:

o A= D"Y2AD Y2 s the the augmented symmetrically normalized adjacency ma-
trix after self-loop addition,

e o € (0,1) is the teleport (restart) probability controlling the balance between local
predictions and propagated values.

~

Because direct inversion of (/ — (1 —«) A) is computationally expensive for large N, APPNP
approximates this propagation via power iteration:

H*Y — 1—a) AH® + o« HO, H®) = softmaz((1—) AHED 4 o H(O)),
where K is the number of propagation steps. APPNP decouples feature transformation
(neural network) and label propagation (PPR), allowing efficient long-range dependency

capture without excessive parameterization.

49

Personalized PageRank Graph Neural Network (PPRGNN). To address the challenges of
oversmoothing and limited receptive fields in deep GNNs, Roth and Liebig [12] introduced
PPRGNN, which integrates the concept of personalized PageRank into the GNN framework.
Specifically, the PPRGNN-like network family [12] is defined as follows:

HD = o <a1AH(l)W(l) n fg(X)) , (2.2)

where:
e fy(-)isaneural network (i.e. an MLP), which takes as input the initial nodes’ features.

PPRGNN sets W) = W VI and oy = % The model’s formulation guarantees convergence
to a unique solution without imposing constraints on the architecture or parameters. More-
over, PPRGNN maintains linear time complexity and constant memory usage, making it
scalable to large graphs.

Simplified Graph Convolution (SGC). Wuetal. [17] propose SGC by collapsing multiple
GCN layers and removing non-linearities to yield:

Yy = softmax(ALXW),
where:

e A= D742 AD Y2 js the the augmented symmetrically normalized adjacency ma-
trix after self-loop addition,

e [is the number of propagation steps precomputed before training,

o IV € RE*dout maps features to logits for d,,; classes.

By precomputing AL X, SGC reduces the model to a single linear classifier, reducing train-
ing complexity while maintaining competitive performance. This simplification is particu-
larly effective when the benefit of non-linear feature transformations is marginal compared
to the costs of training deep GCNs.

GCNIIL. Chenetal. [11] address oversmoothing and vanishing gradients in deep GCNs by
introducing residual connections and identity mapping. The layer-wise propagation rule
for GCNII is:

H* =0 (((1 - QZ)AHU) + OélH(O)) ((1 — Bl + @W(l))))

where:

e A= D12 A D2 s the the augmented symmetrically normalized adjacency ma-
trix after self-loop addition,

e HO = X isthe input feature matrix,

e «; and [3; are hyperparameters controlling the strength of residual connection and
identity mapping at layer [,

o WU is the trainable weight matrix for layer /.

Parameter o allows the model to preserve a fraction of the initial features H®), while f3;
controls the contribution of the identity mapping. This dual mechanism allows GCNII to
train networks with dozens of layers without significant performance degradation, achiev-
ing state-of-the-art results on benchmark datasets.

50

Graph Transformers. Graph Transformers adapt the self-attention mechanism from Trans-
former architectures to graph data, enabling the model to capture both local and global de-
pendencies. Unlike traditional GNNs that restrict attention to immediate neighbors, Graph
Transformers compute attention scores between all node pairs, defined by:

Attention(Q, K, V) = softmax(—%%j) V,

where:

o Q= XWq, K = XWg,and V = XWy are learnable linear projections of the input
feature matrix X € RV*C,

e d; is the dimensionality of the key vectors, used for scaling,
e Softmax is applied row-wise over the NV keys for each query.

The resulting attention matrix has size N x N, allowing each node to attend to every other
node. To incorporate graph structure, Graph Transformers often add positional encodings
derived from the Laplacian eigenvectors or shortest-path distances, biasing the attention
mechanism toward meaningful graph neighborhoods [81, 82]. Empirical studies show that
Graph Transformers excel in tasks requiring modeling of long-range interactions, such as
molecular property prediction [83, 84] and computer vision [85]. However, the O(N?)
complexity of full pairwise attention limits scalability, motivating sparse or approximate
attention strategies.

Each of the above architectures extends the core message passing paradigm of GNNs in or-
der to address specific limitations (e.g., computational efficiency, modeling of global depen-
dencies). The choice among these models depends on the downstream task requirements,
graph size, and attribute heterogeneity.

4.3 Extensions and Variants

The landscape of GNNs has rapidly expanded, leading to numerous extensions and vari-
ants beyond the standard message passing paradigm. In this section, I discuss approaches
that enrich the framework by addressing specific structural properties and application re-
quirements. I first distinguish between spatial and message passing GNNs and then present
specialized models such as graph recurrent networks, pooling mechanisms, heterogeneous
models, and dynamic graph approaches.

Spatial vs. message passing GNNs. Spatial GNNs emphasize the direct modeling of local,
coordinate-based relationships among nodes. These methods often define convolution-like
operations by imposing a local coordinate system or neighborhood kernel on each node,
analogous to image convolution, which can be advantageous when nodes are embedded
in Euclidean space with inherent spatial semantics [86, 25]. In contrast, message passing
GNN:ss rely on permutation invariant aggregation functions over a node’s neighbors and do
not assume any underlying spatial embedding. While spatial models may offer more inter-
pretable local filters, message passing approaches are generally more flexible and applicable
to arbitrary graph topologies without requiring explicit spatial regularities [6].

51

Graph Recurrent Models. For sequential or temporal data on graphs, recurrent archi-
tectures extend standard GNNs by incorporating mechanisms that maintain and update
temporal hidden states. Graph Recurrent Neural Networks (GRNNs) combine temporal
recurrent units (e.g., LSTM or GRU units) with graph propagation, enabling node repre-
sentations to evolve over time [9, 87]. At each time step ¢, the hidden state A of node u
is updated both by aggregating messages from its neighbors at time ¢ and by recurrently
integrating its previous state K'Y Such formulations effectively capture time-varying de-
pendencies and are particularly well-suited for tasks like traffic forecasting [63, 88], event

prediction [89], and temporal recommendation systems [62].

Graph Pooling Methods. Pooling in GNNs aims to learn hierarchical, multi-scale rep-
resentations utilizing the graph structure. Pooling layers reduce the number of nodes by
selecting or aggregating a subset of vertices, facilitating global representation learning for
tasks such as graph classification. Techniques include:

e DiffPool [90]: Learns soft cluster assignments via a differentiable assignment matrix
S e RN*k where k is the number of clusters. The coarsened node features and
adjacency matrix are computed as H(*+Y = (SO)THO and AW+ = (S0)TAO SO
respectively.

e Top-K Pooling [91]: Scores each node based on its importance and retains the top
k nodes, where k is a learnable fraction of N. The filtered features and adjacency
matrix are computed by selecting only the highest-scoring vertices.

These pooling mechanisms enable the extraction of high-level, global features and support
multi-scale analysis of graph structures.

Heterogeneous Graph Models. In many real-world applications, graphs contain multiple
types of nodes and edges. Heterogeneous Graph Neural Networks (HGNNs) account for
this diversity by using distinct aggregation and transformation functions for each relation
type. For instance:

e Relational GCNs (R-GCNs) [92]: Define separate weight matrices W, for each rela-
tion r and aggregate neighbor messages according to relation type:

W = (3 S —wOnY + W),

C
reER veN, (u) w.r

where R is the set of relation types, N,.(u) denotes neighbors of u under relation r,
and ¢, , is a normalization constant.

e Heterogeneous Graph Transformer (HGT) [93]: Extends transformer-based atten-
tion by incorporating node- and edge-type embeddings into the multi-head attention
mechanism, enabling fine-grained interactions between heterogeneous entities.

By distinguishing among node and edge semantics, HGNNs improve performance in tasks

such as knowledge graph completion, recommendation systems, and multi-relational data
modeling [94].

52

Dynamic Graph Models. Static GNNs assume a fixed graph structure, which may not
capture temporal evolution in applications like social networks or communication sys-
tems. Dynamic GNNs incorporate temporal information through one of the following ap-
proaches:

e Snapshot-Based Models [95]: These models represent a dynamic graph as a sequence
of discrete snapshots {G),G®) ...}, applying GNNs independently to each snap-
shot. Temporal dependencies are captured by incorporating recurrent mechanisms
or temporal encoding across snapshots.

e Continuous-Time Dynamic GNNs [96]: These models treat dynamic graphs as se-
quences of timestamped events (u, v, t), updating node representations in real-time.
EvolveGCN, for instance, evolves GCN parameters over time using recurrent neural
networks, enabling the model to adapt to the graph’s temporal dynamics.

e Temporal Message Passing [97]: This approach extends traditional message passing
by integrating temporal information, allowing messages to be weighted based on
the time difference between events. Such mechanisms enable the model to capture
temporal patterns and recency effects in dynamic graphs.

Dynamic GNNs thereby capture evolving structures and can adapt representations as new
nodes or edges appear, making them suitable for tasks such as anomaly detection, link pre-
diction, and dynamic recommendation.

Overall, these extensions and variants demonstrate the broad applicability of GNN architec-
tures across diverse domains. By augmenting the fundamental message passing framework
with spatial features, temporal dynamics, hierarchical abstractions, and node- or edge-type
heterogeneity, researchers have progressively enhanced the representational capacity and
empirical performance of GNNs on complex, real-world problems.

5 Oversmoothing in Graph Neural Networks

5.1 Definition and Intuition

Oversmoothing is a phenomenon observed in Graph Neural Networks wherein, as the num-
ber of layers L increases, the node feature representations become increasingly similar, ul-
timately converging to nearly identical values. This convergence prevents the model from
distinguishing between nodes, thereby degrading performance on downstream tasks such
as node classification and link prediction. The root cause of oversmoothing resides in the
repeated aggregation (or “mixing”) of neighboring features, which, over multiple layers,
drives the hidden representations toward a constant subspace.
Formally, let H () € RV*di he the matrix of node features at layer [, where H 0 = X is
the input feature matrix, and d; is the dimensionality at layer [. Denote by hy) € R% the
representation of node ¢ at layer /. Oversmoothing implies that, as [— oo,

lim ||n — 0|, =0, Vi,jeV,

l—o0
where |-||2 denotes the Euclidean norm. Equivalently, the row vectors of H® collapse
toward a common subspace, making it difficult to linearly (or nonlinearly) separate nodes
belonging to different classes.

53

An intuitive analogy is to view each GNN layer as applying a low-pass filter on the graph:
if £ is a normalized graph Laplacian, then a typical GCN layer multiplies the feature matrix
by D~'/2A D='/? = I — L, which reduces high-frequency components of the graph signal.
Empirical investigations have shown that oversmoothing may occur even in networks with
as few as two to four layers, depending on factors such as graph topology, degree distri-
bution, and choice of aggregation function. For example, on graphs with high homophily,
the mixing is stronger and oversmoothing can appear more rapidly; conversely, on het-
erophilous graphs, the mixing may be less severe but still leads to signal degradation over
many layers [98, 99, 100]. Furthermore, different architectures (e.g., GATs, GraphSAGE) ex-
hibit varying resistance to oversmoothing, often tied to their normalization and attention
mechanisms.

In summary, oversmoothing arises because the iterative neighborhood aggregation in GNNs
acts analogously to repeatedly applying a low-pass filter, which homogenizes the feature
vectors across nodes. Understanding this phenomenon is crucial for designing architectures
(e.g., using residual connections, identity mapping, or adaptive filters) that preserve dis-
criminative information while maintaining the benefits of multi-hop aggregation [11, 101].

5.2 Empirical Evidence

Empirical studies have consistently demonstrated that increasing the depth of Graph Neural
Networks often leads to performance degradation, a phenomenon primarily attributed to
oversmoothing. This section delves into the empirical observations and analyses that shed
light on the depth-performance trade-off and the associated variance decay across layers
in GNNGs.

Depth-Performance Trade-off. The performance of GNNs does not monotonically im-
prove with increased depth. Instead, there exists an optimal number of layers beyond which
the model’s performance shrinks. This degradation is evident in tasks such as node clas-
sification, where deeper GNNss fail to maintain discriminative node representations. For
instance, studies have shown that even shallow GCNs exhibit notable performance drops
beyond a certain depth, often around eight layers, despite the smoothing rate of graph
propagation not being particularly rapid [20, 21, 7]. This observation suggests that factors
beyond mere smoothing, such as optimization difficulties, contribute to the performance
decline in deeper GNNss.

Variance Decay Across Layers. A critical aspect of oversmoothing is the decay of feature
variance across layers. As GNNs propagate information through successive layers, the vari-
ance of node features diminishes, leading to homogenized representations. This variance
decay has been quantitatively measured using metrics like Dirichlet energy, which assesses
the smoothness of node features over the graph. Empirical evaluations have demonstrated
that some architectures exhibit an exponential convergence of layer-wise Dirichlet energy
to zero, indicating significant oversmoothing, whereas others maintain approximately con-
stant Dirichlet energy across layers, reflecting a slower rate of homogenization [102, 103].

In summary, empirical evidence underscores the challenges posed by oversmoothing in
deep GNNs, highlighting the fragile balance between depth and performance. Understand-
ing the variance dynamics across layers is crucial for designing GNN architectures that
effectively leverage multiple layers while avoiding feature homogenization.

54

5.3 Theoretical Explanations

The phenomenon of oversmoothing in GNNs has been extensively studied through the
lens of spectral graph theory. This section explores the theoretical foundations of over-
smoothing, focusing on how the graph’s spectral properties and the depth of the GNN
jointly influence the rate at which node embeddings converge, thereby undermining their
discriminability.

Spectral Perspective on Oversmoothing. GNNs, particularly those based on message
passing mechanisms, can be interpreted as performing iterative smoothing operations on
node features. Each layer in a GNN aggregates information from neighboring nodes, ef-
fectively applying a form of low-pass filtering that suppresses high-frequency components
(i.e., local variations) in the feature space. Repeatedly applying such smoothing operations
progressively removes local, high-frequency information from X, leaving only the global,
low-frequency components. While moderate smoothing can denoise features and capture
global consistency, excessive smoothing causes all node signals to converge toward the
principal eigenvector of £ (or a constant vector when the graph is connected), thus elimi-
nating distinctions between nodes [20, 7].

Role of Graph Spectrum and Adjacency Eigenvalues. The spectral properties of the graph,
encoded in the eigenvalues and eigenvectors of matrices like the adjacency matrix A or the
normalized Laplacian £, play a crucial role in understanding oversmoothing. The eigenval-
ues of these matrices determine the frequency components of the graph signals. In partic-
ular, the largest eigenvalue corresponds to the lowest frequency (global structure), while
the smallest eigenvalue corresponds to the highest frequency (local variations).

When a GNN applies a convolution operation, it effectively modulates these frequency
components. Repeated applications of such operations tend to diminish high-frequency
components, which are crucial for distinguishing nodes from different classes. As evi-
denced in recent studies [104, 105], this suppression of high-frequency signal reduces the
model’s ability to separate closely related yet distinct node features, thereby leading to
oversmoothing and diminishing classification performance.

Impact of Model Depth. The depth of a GNN, defined by the number of layers, directly
influences the extent of smoothing applied to node features. As the number of layers in-
creases, the repeated aggregation operations can cause the node features to converge to-
wards a subspace dominated by the leading eigenvectors of the graph Laplacian. This con-
vergence implies that the node features become increasingly similar, hindering the model’s
ability to capture discriminative information.

Theoretical analyses have shown that the rate of this convergence is exponential with re-
spect to the number of layers. Specifically, for certain classes of graphs, the difference
between node features diminishes exponentially as the depth increases, leading to a rapid
onset of oversmoothing even in relatively shallow networks [7].

[7] generalized the idea in [20] considering also, that the ReLU activation function maps to
a positive cone. They characterize oversmoothing as convergence to a subspace and pro-
vide an estimate of the speed of convergence to this subspace. That speed is expressed as
the distance of node representations from the oversmoothing subspace M (details can be
found in [7]).

55

H,
Theorem 1 ([7]). Let s; = [] s, where sy, is the largest singular value of weight matrix
h=1
Wi and s = supjen+S;. Then the distance from the oversmoothing subspace M is measured as
follows: dM(:X(l)) = O((s\)!), where L is the layer number,) is the smallest non-zero eigen-

value of — A, and if s\ < 1 the distance from the oversmoothing subspace (d ;) exponentially
approaches zero.

According to [7], deep GCNs are susceptible to oversmoothing, with the model’s only de-
fense against this effect being the product of the largest singular values of the weight matri-
ces. This multiplication arises from the 1-Lipschitzness of ReLU, combined with the propa-
gation scheme of GCN (Equation 2.1). If we remove the activation functions from Equation

L

2.1, we obtain the final node representations by H%) = AL X [T W®. Therefore, the prod-
uct of the largest singular values of the weight matrices servles1 as the upper bound of the
appearing product, providing additional insight into the findings of [7].

Theorem 1 indicates that increasing the network’s depth results in node representations be-
ing closer to the subspace M. If the products of maximum singular values and the smallest
eigenvalue of the Laplacian of each layer are small, then node representations asymptot-
ically approach M, regardless of the initial values of node features. Extending the afore-
mentioned theorem, the authors conclude to the following estimate about the speed of
convergence to the oversmoothing subspace.

Corollary 2 ([7]). Lets = sup s;. thendy (X)) = O((s\)!), where L is the layer number and
leNL

if sA < 1 the distance from oversmoothing subspace exponentially approaches zero. Where A
is the smallest non-zero eigenvalue of I - A.

According to the authors, any sufficiently deep GCN will inevitably suffer from oversmooth-
ing, under some conditions (details can be found in [7]).

In summary, the theoretical exploration of oversmoothing through spectral graph theory
provides valuable insights into the limitations of deep GNNs. By analyzing the interplay
between graph spectra, adjacency eigenvalues, and model depth, we can devise strategies
to design more robust and expressive GNN architectures.

6 Quantifying and Detecting Oversmoothing

6.1 Metrics and Measures

Effectively quantifying oversmoothing in Graph Neural Networks is crucial for understand-
ing and mitigating its impact on model performance. Several metrics have been proposed
to measure the extent of oversmoothing, focusing on aspects such as pairwise embedding
distances, spectral properties, and information-theoretic measures.

Pairwise Embedding Distances. One intuitive approach to assess oversmoothing involves
analyzing the pairwise distances between node embeddings. As oversmoothing progresses,
node representations become increasingly similar, leading to a reduction in these distances.
Metrics like the Total Pairwise Squared Distance (TPSD) and the row-difference (row-diff)
measure have been introduced to quantify this effect. The row-diff metric calculates the

56

average pairwise distance between node embeddings, providing a direct measure of repre-
sentation similarity across the graph [16]. Additionally, the Relative Inter-Class Distance
(RICD) metric has been proposed to evaluate the difference in similarity between inter-class
and intra-class node pairs, offering insights into how oversmoothing affects class separa-
bility [13].

Laplacian-Based Indices. Spectral properties of the graph, particularly those derived from
the Laplacian matrix, offer another avenue for quantifying oversmoothing. The Dirichlet
energy is a prominent metric in this context, measuring the smoothness of node features
over the graph structure. It is defined as:

E(X)=tr(XTLX),

A decrease in Dirichlet energy across layers indicates increased smoothness, with values
approaching zero signifying complete homogenization of node features [103]. Compared
to other metrics like the Mean Average Distance (MAD) [106], Dirichlet energy has been
found to be more stable and reliable for detecting oversmoothing.

Mutual Information and Representation Collapse Metrics. Information-theoretic mea-
sures, such as mutual information (MI), have been employed to assess the extent of repre-
sentation collapse due to oversmoothing. MI quantifies the amount of information shared
between input features and their corresponding embeddings. A decline in MI across layers
suggests that node embeddings are losing informative content, converging towards indis-
tinguishable representations. While MI provides a theoretical framework for understand-
ing oversmoothing, its practical computation can be challenging, and its effectiveness may
vary depending on the specific characteristics of the graph and the GNN architecture.

In summary, these metrics provide a comprehensive toolkit for quantifying and detecting
oversmoothing in GNNs. Employing these metrics can assist in detecting oversmoothing
issues and guiding the development of architectures and training strategies to mitigate its
effects.

6.2 Empirical Detection Protocols

Empirical evaluation of oversmoothing in Graph Neural Networks necessitates systematic
protocols that can reliably detect and quantify the phenomenon. Two primary approaches
have been employed in the literature: the use of synthetic benchmarks and layer-wise vari-
ance tracking.

Synthetic Benchmarks. Synthetic datasets provide controlled environments to study over-
smoothing by allowing precise manipulation of graph properties such as homophily, degree
distribution, and connectivity. For instance, the use of synthetic graphs with adjustable ho-
mophily ratios enables the assessment of GNN performance under varying degrees of node
similarity. Studies have demonstrated that in low-homophily settings, GNNs are more
prone to oversmoothing, as the aggregation of dissimilar neighbor features leads to fea-
ture homogenization [107]. Additionally, synthetic benchmarks facilitate the evaluation
of oversmoothing mitigation techniques by providing a consistent testing ground across
different graph structures.

57

Layer-Wise Variance Tracking. Monitoring the variance of node representations across
layers serves as a practical method for detecting oversmoothing. As GNNs deepen, the
variance of node features tends to decrease, indicating a convergence towards similar rep-
resentations. Metrics such as the Mean Average Distance (MAD) and its variant MADGap
have been proposed to quantify this effect. MAD measures the average pairwise distance
between node embeddings, while MADGap assesses the difference in MAD between intra-
class and inter-class node pairs. A declining MADGap across layers signifies a loss of class
discriminability due to oversmoothing [106]. Furthermore, tracking the Dirichlet energy
of node features across layers provides insights into the smoothness of the feature space,
with decreasing energy values indicating increased oversmoothing [103].

In practice, combining synthetic benchmarks with layer-wise variance tracking offers a
comprehensive approach to empirically detect and analyze oversmoothing in GNNs. These
protocols enable systematic evaluation of the the impact of architectural choices and train-
ing strategies on the preservation of informative node representations.

6.3 Challenges and Gaps in Quantifying and Detecting Oversmoothing

Despite significant advancements in understanding oversmoothing in Graph Neural Net-
works, several challenges persist in accurately quantifying and detecting this phenomenon.
These challenges include scalability issues, the absence of closed-form layer analysis, and
a limited theoretical-practical bridging.

Scalability Constraints in Oversmoothing Metrics. Traditional metrics for assessing over-
smoothing, such as the Dirichlet energy, often fall short in large-scale or deep GNNs. These
metrics may not reliably indicate oversmoothing in practical scenarios, as they can provide
meaningful insights only under specific conditions, such as very deep networks or strict as-
sumptions on network weights and feature representations. Consequently, there is a need
for more scalable and robust metrics that can effectively capture oversmoothing across di-
verse GNN architectures and depths.

Absence of Closed-Form Layer Analysis. The absence of closed-form, layer-wise ana-
lytical expressions in GNNs hinders the exact quantification of oversmoothing dynamics.
Even though some studies have provided asymptotic analyses, they often do not offer in-
sights into the finite-depth behavior of GNNs, which is critical for practical applications.
The absence of such analytical tools limits our ability to predict and mitigate oversmoothing
effectively.

Limited Bridging Between Theory and Practice. There exists a gap between theoretical
models of oversmoothing and their practical implications. Many theoretical frameworks
rely on simplified assumptions that may not hold in real-world scenarios, leading to dis-
crepancies between predicted and observed behaviors. For example, spectral and dynamical
system frameworks provide insights, but they rely on simplifying assumptions that limit
precise characterization of how oversmoothing evolves across network depth [102]. Bridg-
ing this gap requires the development of theoretical models that account for the complex-
ities of practical GNN implementations, including various architectures, training regimes,
and data characteristics.

58

In summary, to address these challenges we need to develop scalable metrics, derive closed-
form analytical tools, and create theoretical models that align closely with practical obser-
vations. Such advancements will enhance our ability to quantify and detect oversmoothing,
ultimately leading to more robust and effective GNNss.

7 Mitigating Oversmoothing

7.1 Architectural Innovations

To mitigate oversmoothing in Graph Neural Networks, several architectural innovations
have been proposed. These designs aim to preserve discriminative node representations
across multiple layers by enhancing information flow, capturing multi-scale neighborhood
features, and decoupling feature transformation from propagation. In this section, I discuss
three notable architectures: Jumping Knowledge Networks, MixHop, and Decoupled GNNss.

Jumping Knowledge Networks [108]. Jumping Knowledge (JK) Networks introduce a
mechanism that aggregates information from multiple layers of a GNN to form the final
node representations. Formally, let H() € RV*% denote the node feature matrix at layer /.
Instead of using only H) (the output of the last layer), JK Networks compute
HIX = Combine(ﬁﬂﬁl)7 HY ... ,Hl(f)),

where Combine(+) is a learnable function (e.g., concatenation followed by a linear projec-
tion, max pooling, or attention-based weighting) that adaptively selects and fuses the most
informative features from each layer for node u. By allowing nodes to “jump” to represen-
tations from earlier layers, JK Networks preserve local and higher-frequency information
that might otherwise be vanished in deep layers, thereby mitigating oversmoothing.

MixHop [109]. MixHop is an architecture designed to capture multi-scale neighborhood
information within each layer. Instead of stacking many layers to indirectly gather infor-
mation from distant neighbors, MixHop explicitly computes multiple powers of the nor-
malized adjacency matrix A In particular, at layer [, MixHop computes

HOY = o([AHOWS | AHOWD | - | A EO W),

where A = D~%/24 D1/2 is the the augmented symmetrically normalized adjacency ma-
trix after self-loop addition, W,gl) are trainable weight matrices for the k-hop neighborhood,
K is the maximum hop distance considered, and || denotes concatenation. By simultane-
ously mixing features from 0- to K -hop neighborhoods, MixHop achieves rich representa-
tion power without requiring deep stacking. This multi-horizon aggregation helps maintain
diverse node features and reduces the tendency toward homogenization.

Decoupled GNNs [110]. Decoupled GNNs separate feature transformation from neigh-
borhood aggregation, which are traditionally intertwined in standard GNN layers. In a
standard GNN layer, the update is of the form

~

HD — O'(A HO W(l)),

59

entangling feature mixing (A H") with transformation (-W®). Decoupled GNNs instead
perform multiple transformation steps before (or after) a single propagation step. For ex-
ample, one variant computes:

H=oHOWY), HEY = AH,

or equivalently

HEY = o(AHO) W,

allowing separate control over transformation depth and message passing. By decoupling
these operations, the network can apply multiple nonlinear transformations without re-
peated neighborhood mixing, thereby limiting cumulative smoothing effects. This design
enables deeper architectures with reduced oversmoothing while still leveraging the bene-
fits of feature transformation.

In summary, architectural innovations such as Jumping Knowledge Networks, MixHop,
and Decoupled GNNs offer effective strategies to reduce oversmoothing in GNNs. By ag-
gregating multi-layer features, capturing multi-scale neighborhood information within a
single layer, and decoupling transformation from propagation, these designs preserve the
discriminative power of node representations. Consequently, they enable the construc-
tion of deeper and more expressive GNN models while controlling feature homogenization
across layers.

7.2 Skip and Residual Connections

Skip and residual connections have emerged as pivotal architectural strategies for mitigat-
ing the oversmoothing phenomenon in GNNs. Drawing inspiration from the success of
Residual Networks (ResNets) [33] in deep learning, these connections preserve initial node
features across layers, thereby enhancing the expressive capacity of deep GNNss.

Mechanism and Implementation. In conventional GNNs, each layer updates node repre-
sentations by aggregating information from neighboring nodes. As the number of layers
L increases, repeated aggregation can cause node features to converge to similar values,
diminishing the model’s discriminative power. Residual (or skip) connections address this
issue by allowing the direct propagation of input features to subsequent layers. Formally,
let HO ¢ RV*% denote the matrix of node features at layer [. A residual connection is
given by
HO — }“(H(l—l)) + H(l—l)’

where F: RV*d-1 s RV*d denotes the transformation (e.g., aggregation followed by a
linear map and nonlinearity) applied at layer . By learning the residual function F(H /1)
instead of the full mapping, the model preserves essential information from H /=Y, which
helps maintain feature diversity across deep architectures.

Impact on Receptive Fields and Gradient Flow. Incorporating residual connections in-
fluences both receptive fields and gradient propagation. Because H~V) is added directly to
F(H=1)), the node representation H ") retains information from all previous hops, ensur-
ing that representations capture both local and global structural information. This multi-
scale representation is crucial for tasks requiring knowledge of immediate neighbors and
distant nodes.

60

Moreover, residual connections create alternative gradient pathways during backpropa-
gation. In deep networks, gradients may diminish as they pass through multiple layers,
leading to vanishing gradient problems. The additive term H(~") provides a shortcut for
gradients, thereby improving gradient flow and enabling stable training of deeper GNNs
[23, 11].

Theoretical Insights and Empirical Evidence. Theoretical analyses confirm the efficacy
of residual connections in preventing oversmoothing. For example, under linear propa-
gation, the addition of H (=1) slows down the exponential decay of feature variance, en-
suring that node embeddings do not collapse into a constant vector. Specifically, let A =
D~Y2(A+1)D~"/? be the the augmented symmetrically normalized adjacency matrix after
self-loop addition. Without residuals, repeated multiplication by A drives H®) toward the
principal eigenspace of A. With residual connections, the update

HO = Agt-b 4 gt=-1 _ (I + A)) 2560

modifies the eigenvalues of the propagation operator, reducing the spectral gap and slowing
homogenization.

Empirical evaluations confirm these theoretical results. For instance, the GCNII architec-
ture introduces an initial residual connection that combines H®) with each layer’s output.
This design maintains the influence of H(®) across all layers, effectively mitigating over-
smoothing and enabling deeper GNNs to achieve higher accuracy on node classification
benchmarks [11].

Variants and Extensions. Beyond standard residual connections, several variants have
been proposed to further enhance GNN performance:

e Initial Residual Connections. These incorporate the initial node features H®) into
each layer’s computation, ensuring that original information remains influential through-
out the network depth. For example, in ResGCN, H (+1) depends on both AHO and
H© preserving high-frequency details [23].

e Jumping Knowledge Networks (JK-Nets). JK-Nets aggregate outputs from multiple
layers. This allows each node u to adaptively select features from different neighbor-
hood ranges, which is particularly beneficial in heterogeneous graphs [108].

e Deep Adaptive Graph Neural Networks (DAGNNs). DAGNNs dynamically adjust
the number of propagation steps for each node based on learned attention weights.
Specifically,

K
HO = " o) 4 O,
k=0

where {a,gu)}szo are adaptive weights for node u. This flexibility balances local and
global information, reducing unnecessary smoothing [111].

In summary, skip and residual connections are fundamental to enhancing the depth and
expressiveness of GNNs. By preserving initial node features and facilitating robust gradient
flow, these architectural strategies mitigate oversmoothing, enabling the design of deeper
and more powerful GNN models. Variants such as initial residual connections, JK-Nets,
and DAGNNSs further extend these ideas, offering tailored mechanisms to balance feature
preservation and neighborhood aggregation for complex graph-structured data.

61

7.3 Normalization Techniques

Normalization techniques have emerged as a method to mitigate the oversmoothing phe-
nomenon in Graph Neural Networks. By standardizing feature distributions across various
dimensions, these methods aim to preserve the discriminative power of node representa-
tions, especially in deeper network architectures. This section analyzes several prominent
normalization techniques, focusing on their underlying mechanisms and their role in mit-
igating oversmoothing.

Batch Normalization (BatchNorm). Originally introduced to stabilize and accelerate train-
ing in deep neural networks [112], BatchNorm normalizes layer inputs to have zero mean
and unit variance across a mini-batch. In GNNE, it is typically adapted to normalize node
features within individual graphs. Theoretical analyses have shown that BatchNorm rescal-
ing prevents node embeddings from collapsing into a one-dimensional subspace, effectively
preserving their variance and expressivity across layers [113]. However, the centering op-
eration may distort the underlying graph signal, as highlighted in recent work [113].

Layer Normalization (LayerNorm). LayerNorm normalizes across the feature dimension
of each data sample rather than across the batch [114]. This makes it particularly effective
for GNNs dealing with variable batch sizes or unstable batch statistics. In GNNs, Layer-
Norm stabilizes node-wise feature distributions and mitigates oversmoothing by ensuring
consistent scales of features across layers, without relying on global batch statistics [115].

PairNorm. PairNorm is a normalization technique specifically designed to address over-
smoothing in GNNs. It operates by maintaining a constant pairwise distance between node
representations, effectively preventing them from converging to similar values across lay-
ers [13]. By re-centering and re-scaling node features after each message passing step,
PairNorm preserves the relative distances among nodes, which is essential for tasks requir-
ing discriminative embeddings. However, it is noteworthy that while PairNorm reduces
oversmoothing, it may increase intra-class variance, potentially affecting classification per-
formance.

Differentiable Group Normalization (DGN). Differentiable Group Normalization (DGN)
introduces a group-wise normalization strategy that considers the community structures
within graphs [116]. By normalizing node features within the same group or class, DGN
enhances intra-class compactness while promoting inter-class separability. This approach
effectively balances the need for smoothness within communities and distinctiveness across
different groups, thereby addressing oversmoothing without compromising the model’s
discriminative capabilities.

GraphNorm. GraphNorm is tailored for graph-level tasks and normalizes node features
by considering the entire graph’s statistics. It performs a centering operation followed by
scaling, akin to BatchNorm, but specifically adapted for graph structures [115]. By account-
ing for graph-specific characteristics, GraphNorm ensures that the normalization process
preserves the inherent structural information, thereby mitigating oversmoothing in graph-
level representations.

62

PowerEmbed. PowerEmbed introduces a layer-wise normalization approach that empha-
sizes the top-k eigenvectors of the graph, capturing essential global spectral information
[117]. This technique facilitates the learning of comprehensive node representations by in-
tegrating both local and global information. By focusing on the spectral properties of the
graph, PowerEmbed offers a principled method to mitigate oversmoothing, especially in
scenarios where capturing long-range dependencies is crucial.

In summary, normalization techniques play a critical role in enhancing the depth and ex-
pressiveness of GNNs by addressing oversmoothing. While methods like BatchNorm and
LayerNorm provide foundational normalization strategies, specialized techniques such as
PairNorm, DGN, GraphNorm, and PowerEmbed offer tailored solutions that consider the
unique aspects of graph-structured data. The choice of normalization method should align
with the specific requirements of the task and the characteristics of the underlying graph

topology.

7.4 Regularization

Regularization techniques serve as essential mechanisms for mitigating oversmoothing in
Graph Neural Networks. By introducing controlled perturbations or constraints during
training, these methods preserve informative node representations across multiple layers.
This section describes several prominent regularization strategies, detailing their principles
and contributions to alleviating oversmoothing.

DropEdge. DropEdge randomly removes a subset of edges from the input graph during
each training iteration [14]. By stochastically dropping connections, this technique reduces
the influence of any single neighbor, thereby limiting the extent of feature homogenization
that occurs through repeated message passing. As a form of data augmentation, DropEdge
encourages the model to learn more robust representations that do not rely excessively on
specific edge patterns. Empirical results demonstrate that applying DropEdge to architec-
tures such as GCN and GraphSAGE improves both classification accuracy and robustness
to adversarial perturbations.

Critical DropEdge (C-DropEdge). Critical DropEdge extends the standard DropEdge ap-
proach by automatically determining an optimal, graph-dependent edge preservation rate,
rather than relying on manually tuned, fixed drop probabilities. At each layer, C-DropEdge
selects a critical fraction of edges, preserving a topology that balances connectivity and
trainability. This edge retention rate is computed once per graph based on its structure,
minimizing oversmoothing by theoretically aligning with the GNTK convergence limits.
As a result, C-DropEdge maintains sufficient signal propagation even in deep GNNs, while
avoiding over-pruning that could hinder learning. Empirically, this method offers more
stable and robust performance across different depths, outperforming both vanilla GCNs
and fixed-ratio DropEdge, especially in deeper architectures, and using a much smaller hy-
perparameter search space, since the edge-preservation rate is determined from the graph
itself [118].

Spectral Regularization. Spectral regularization leverages the eigenvalues and eigenvec-
tors of the graph Laplacian to impose smoothness constraints on node features. By pe-
nalizing high-frequency components (often quantified via Dirichlet energy) these methods

63

impose a balance between smoothing within local neighborhoods and preserving differ-
ences between distinct classes [21, 119, 106]. For example, adding a regularization term
proportional to the Dirichlet energy discourages rapid convergence of node features, thus
preventing overly uniform representations. Such spectral penalties are grounded in graph-
theoretic principles and offer a mathematically principled approach to limiting oversmooth-

ing.

Edge Perturbation. Edge perturbation techniques explicitly modify graph’s topology by
adding or removing edges according to a predefined distribution [120]. By perturbing edges,
either randomly or based on criteria such as edge betweenness, these methods increase the
diversity of node neighborhoods and prevent uniformity induced by repeated aggregation.
Edge perturbation also acts as data augmentation, exposing the model to multiple graph
variants during training. As a result, node representations become less prone to collapsing
into similar vectors, and generalization performance improves.

Consistency Regularization. Consistency regularization enforces that model predictions
remain stable under different perturbations of the input graph. Techniques such as Graph
Random Neural Networks (GRAND) generate multiple augmented versions of the same
graph (through methods like random propagation, feature masking, or edge dropout), and
require that the model’s outputs for these variants remain consistent [121]. This constraint
encourages the network to learn representations that are invariant to small graph modifi-
cations, thereby reducing oversmoothing and enhancing resilience to noise.

In summary, regularization techniques are beneficial for addressing oversmoothing in GNNs.
By disrupting the graph structure (DropEdge, A-DropEdge, edge perturbation), imposing

spectral constraints (spectral regularization), or promoting prediction stability (consistency

regularization), these methods preserve feature diversity and discriminative power across

layers. Integrating regularization into GNN training enables deeper, more expressive mod-

els capable of handling complex graph-structured tasks while avoiding excessive feature

homogenization.

7.5 Weight Initialization

Weight initialization plays a pivotal role in the training dynamics and performance of Graph
Neural Networks. Inappropriate initialization can amplify oversmoothing, causing node
representations to become indistinguishable faster, as network depth increases. This sec-
tion first discusses the limitations of conventional initialization methods when applied to
GNNss and then introduces graph-aware initialization techniques designed to preserve fea-
ture variance and mitigate oversmoothing.

Limitations of Conventional Initialization Methods. Traditional weight initialization strate-
gies, such as Xavier (Glorot) [122] and Kaiming (He) [15], were developed for feedforward
and convolutional neural networks. These methods aim to maintain the variance of acti-
vations and gradients across layers, thereby preventing vanishing or exploding gradients
during training. However, when applied directly to GNNs, they ignore the unique charac-
teristics of graph-structured data, particularly the repeated message passing operations.

In GNNgs, each layer aggregates information from neighboring nodes. As layers are stacked,
this aggregation effect compounds, causing the variance of node features to rapidly dimin-

64

ish. This reduction in variance is the primary mechanism behind oversmoothing. Because
Xavier and Kaiming initializations do not take into account graph topology or the spectral
properties of the graph Laplacian, they often lead to suboptimal feature variance preser-
vation in deep GNN architectures. Consequently, deeper GNNss initialized with these con-
ventional methods can exhibit accelerated homogenization of node embeddings, resulting
in degraded performance on tasks such as node classification and link prediction [123].

Graph-Aware Initialization Techniques. To address these shortcomings, several graph-
aware initialization strategies have been proposed. These methods explicitly incorporate
structural information about the graph into the initialization of weights, with the goal of
preserving feature variance across layers and mitigating the onset of oversmoothing.

VIRGO (Variance Instability Reduction in Graph Optimization). VIRGO [123] is grounded
in a theoretical analysis of how variance propagates throughout GNNs layers, both in the
forward pass (node representations) and the backward pass (gradients), while factoring in
activation functions, hidden dimensions, message passing, and graph structure. Based on
these derivations, it identifies initialization methods that stabilize variance across layers,
effectively balancing information flow and preventing both explosion and collapse of vari-
ance. Practically, VIRGO determines optimal scaling of weight matrices by considering
properties of the normalized adjacency matrix (including the spectral radius), and selects
initial weight distributions (e.g., Gaussian or uniform) accordingly.

Isometry-Aware Initialization with Gradient-Guided Rewiring. Jaiswal et al.

[124] highlight the limitations of applying standard Glorot initialization to deep GCNs,
which often suffer from vanishing gradients and oversmoothing. They introduce a topology-
aware isometric initialization tailored to GCNs, derived from a gradient-flow analysis that
ensures each layer preserves the magnitude of activations and gradients. Additionally,
rather than relying on fixed skip-connections, they propose adaptive rewiring: during train-
ing, on-demand skip links are introduced between layers based on observed gradient flow
metrics. This dynamic combination significantly improves training stability and enables
deeper GCNs. However, in that method, it is not yet clear whether the performance of
deep models stems from the initialization scheme itself or the adaptively introduced skip-
connections.

MLPInit: Peer-MLP-Driven Weight Initialization. Han et al. [125] propose a straight-
forward yet powerful method called MLPInit, which uses weight matrices pretrained on a
Peer MLP (an MLP with the same architecture as the target GNN) to initialize GNN train-
ing. After training the MLP solely on node features (ignoring graph topology) the GNN
is initialized with the resulting weights and then fine-tuned. This strategy not only accel-
erates convergence, but also often improves predictive performance compared to random
initialization methods.

Empirical Evidence and Practical Implications. Empirical studies validate the effective-
ness of graph-aware initialization methods. For instance, experiments using VIRGO on ci-
tation network datasets (e.g., Cora, Citeseer) and large-scale social graphs show improved
convergence speed and enhanced classification accuracy relative to Xavier or Kaiming ini-
tialization. These findings underscore the importance of aligning weight initialization with

65

graph-specific factors, such as degree distribution and spectral gap, to preserve the expres-
siveness of node embeddings in GNNss.

In summary, weight initialization is a critical factor in the design and training of GNNs.
Although traditional methods like Xavier and Kaiming provide a foundational approach
for variance preservation in Euclidean domains, they do not account for the iterative ag-
gregation and spectral structure inherent in graphs. Graph-aware initialization methods,
such as VIRGO, incorporate topological and spectral information to maintain feature vari-
ance across layers, thereby enhancing overall model performance. As GNN architectures
continue to grow in depth and complexity, the development and adoption of specialized
(and oversmoothing resistant) initialization methods will remain essential for advancing
state-of-the-art performance on graph-structured tasks.

7.6 Activation Functions

Activation functions can heavily influence the expressiveness and training dynamics of
Graph Neural Networks. They introduce non-linearity into the model, enabling the learning
of complex patterns. However, the choice of activation function significantly influences the
appearance of oversmoothing as network depth increases. This section examines the impact
of various activation functions on oversmoothing and explores strategies to mitigate this
issue.

ReLU and Its Variants. The Rectified Linear Unit (ReLU) is widely adopted due to its
simplicity and effectiveness. ReLU outputs zero for any negative input and passes through
positive inputs unchanged. While this behavior promotes sparse activations, it can amplify
oversmoothing by eliminating negative activation values and reducing information flow
through deeper layers. To address these limitations, several variants have been proposed:

e Leaky ReLU: Unlike standard ReLU, Leaky ReLU allows a small, non-zero output
for negative inputs. This modification helps prevent units from becoming inactive
(“dying ReLUs”) [126] and maintains some gradient flow for negative inputs, which
in turn helps preserve variance in node features and reduce oversmoothing [127].

e Exponential Linear Unit (ELU): ELU applies an exponential transformation to neg-
ative inputs that smoothly approaches a negative constant, while passing through
positive inputs linearly. By shifting the mean activation closer to zero and providing
a smooth gradient for negative inputs, ELU improves learning dynamics and reduces
the tendency for node features to collapse [128].

e Scaled Exponential Linear Unit (SELU): SELU is designed to self-normalize activa-
tions by automatically maintaining zero mean and unit variance across layers. This
normalization effect helps stabilize deep network training and prevents rapid vari-
ance decay in node features [129].

Slope Effects and Variance Preservation. The slope of the activation function for negative
inputs is crucial in preserving the variance of node features across layers. A zero slope (as
in standard ReLU) can lead to rapid variance reduction and oversmoothing. Introducing a
small positive slope for negative values (as in SeLU) allows some negative information to
propagate, thereby maintaining feature diversity deeper in the network [129].

66

Deep GCNs with tanh. An initial approach to reduce oversmoothing was proposed in
[130]. The paper demonstrates that using ReLU in deep GCNs leads to a rapid collapse in
the column-rank of feature matrices. This rank collapse effectively reduces the dimension-
ality of node representations, reducing expressivity. Their experiments show that replacing
ReLU with tanh stabilizes this collapse: the feature-matrix rank remains nearly constant
across deep layers, in contrast to the observed drop with ReLU. Based on these insights,
they proposed tanh as a superior activation function in deep GCNs capable of maintaining
richer feature representations.

In summary, the choice of activation function greatly influences GNN depth scalability and
performance. While ReLU remains popular for its simplicity and efficiency, its tendency to
amplify oversmoothing limits deep GNN expressivity. Variants like Leaky ReLU, ELU, and
SELU help address dying neurons, maintain feature variance, and improve gradient flow,
but they lack theoretical foundations directly addressing oversmoothing. Tanh has been
proposed as an alternative, but like all saturating functions, it flattens (saturates) for large-
magnitude inputs, which, in turn, can still lead to similar node representations as depth
increases.

8 Synthesis and Research Gaps

8.1 Summary of Observations

Recent years have witnessed extensive study of the oversmoothing phenomenon in Graph
Neural Networks, resulting in numerous empirical methods to mitigate its negative effects.
Techniques such as architectural innovations, skip and residual connections, normalization
methods, and regularization strategies consistently demonstrate their ability to preserve
node representation diversity and enhance model performance across different tasks. For
example, residual connections have been both theoretically and empirically proven to coun-
teract oversmoothing by “short-circuiting” initial node features to subsequent layers. In
addition, architectures such as Jumping Knowledge Networks and MixHop capture multi-
scale neighborhood information in order to reduce the homogenization of node represen-
tations.

Despite these practical successes, there remains a need for a theoretical framework that
quantifies oversmoothing, identifies its primary causes, and systematically proposes meth-
ods for its mitigation. Existing theoretical analyses, such as those addressing the trade-off
between denoising and mixing effects in graph convolutions, often rely on assumptions
tied to specific GNN variants or graph structures. Furthermore, recent findings suggest
that oversmoothing can be reduced through carefully chosen weight initialization meth-
ods or architectural constraints, enabling GNNs to retain expressive power even at larger
depths. This indicates that our current understanding is still fragmented, lacking a unified
theory capable of predicting oversmoothing behavior across a broad range of models and
datasets.

In summary, while empirical strategies provide effective means of mitigating oversmooth-
ing, the theoretical foundations underlying their success, and the conditions under which
they are most effective, remain underdeveloped. Bridging this gap between empirical prac-
tice and theoretical insight is essential for the principled design of deeper and more robust
GNN architectures.

67

8.2 Open Problems

Several critical challenges hinder the development of a unified theory and resilient GNN ar-
chitectures that avoid oversmoothing while still leveraging the advantages of greater depth
in GNNgs:

Layer-wise Quantification of Oversmoothing. Current research lacks precise metrics
that capture how oversmoothing evolves at each layer. While global measures such as
Dirichlet energy or mean average distance (MAD) can assess overall feature smoothness,
they fail to reveal layer-specific dynamics. Developing fine-grained, layer-level metrics
would enable more targeted diagnosis and intervention, shedding light on exactly where
and how oversmoothing emerges.

Interactions Between Residual Connections and Graph Topology. Although residual
connections are widely used to alleviate oversmoothing by preserving feature variance,
their effectiveness varies depending on graph structure. Factors such as degree distribu-
tion, clustering coefficients, and connectivity patterns influence how residual connections
interact with message passing. A rigorous theoretical investigation into how residual mech-
anisms behave under varying graph topologies is essential to fully assess their benefits and
limitations.

Impact of GNN Training. Training GNNs has dual effects: while parameter optimiza-
tion enables deep GNNs to learn mechanisms that counteract oversmoothing and develop
more informative node representations, GNNs are also subject to backward oversmoothing,
where gradients themselves become homogenized (creating stationary points and hinder-
ing convergence). Additionally, issues like vanishing or exploding gradients early in train-
ing can dominate performance degradation, implying that trainability often limits deep
GNNs performance. Exploring the effect of training in GNNs and oversmoothing remains
an underexplored territory:.

Informed Weight Initialization Method. Weight initialization substantially affects train-
ing dynamics in GNNs. Standard methods like Xavier and Kaiming do not account for
graph topology, leading to rapid variance decay and exacerbated oversmoothing. While
graph-aware initialization methods like VIRGO demonstrate promise, no universally appli-
cable, theoretically grounded method exists that consistently mitigates oversmoothing as
depth increases and reliably enhances performance across diverse GNN architectures and
datasets. Developing such a method remains an open challenge.

Impact of Activation Functions. The choice of activation function influences gradient
propagation and feature variance, but its specific role in oversmoothing is not fully under-
stood. Clarifying how activation functions influence feature diversity and gradient flow is
essential for designing activation functions that enhance depth scalability.

8.3 Positioning of This Work

In response to these open problems, this work makes the following key contributions:

68

Layer-wise Oversmoothing Metrics. We propose a novel metric to quantify oversmooth-
ing at each layer of a GNN. By capturing the evolution of node representations distance
layer by layer, the proposed metric enables precise diagnosis and targeted architectural
adjustments to prevent representation collapse.

Theoretical Analysis of Residual-Topology Interactions. We develop a formal frame-
work to analyze how residual connections interact with various graph topologies. By de-
riving conditions under which residual fail to enable deep architectures, we highlight their
limitations under specific tasks which require deep GNNs.

Exploration of Partial Training. We systematically investigate how partial training can
mitigate oversmoothing. By analyzing the impact on feature diversity, we identify propa-
gation schemes that maintain expressiveness in deep GNNss.

Informed Weight Initialization Method. Building on recent advances, we introduce a
weight initialization method that integrates key graph statistics, such as node degree dis-
tribution, into the initialization process. Our approach aims to stabilize training and delay
the onset of oversmoothing, and we validate its effectiveness across multiple GNN variants
and benchmark datasets.

Impact of Activation Functions. We systematically investigate how the use of activation
functions with controlled slope can mitigate oversmoothing. By analyzing their impact on
feature diversity and gradient flow, we identify design principles for activation functions
that maintain expressiveness in deep GNNS.

Through these contributions, this work aims to bridge the gap between empirical success
and theoretical understanding, advancing the principled design of GNN architectures that
remain robust against oversmoothing across a wide range of graph-related tasks.

9 Conclusion of the Literature Review

Graph Neural Networks have advanced substantially, providing powerful mechanisms for
learning from graph-structured data. Nevertheless, the oversmoothing phenomenon, where
node embeddings become indistinguishable as network depth increases, persists as a crit-
ical barrier to the development of deeper and more expressive models. Extensive em-
pirical work has produced numerous mitigation techniques, including residual connec-
tions, normalization methods, architectural innovations, and regularization strategies, all
of which have demonstrated effectiveness in preserving feature diversity and improving
performance on a variety of tasks.

Despite these empirical successes, a unifying theoretical framework that quantifies over-
smoothing, identifies its primary drivers, and systematically proposes mitigation strategies
remains absent. Existing metrics, such as Dirichlet energy and Mean Average Distance
(MAD), offer partial insight into feature homogenization, and do not fully capture how over-
smoothing progresses through individual layers. Moreover, the interplay between residual
connections, graph topology, and weight initialization lacks rigorous exploration. Con-
sequently, our understanding of how to design deep GNNs that consistently avoid over-
smoothing across diverse graph structures remains incomplete.

69

Building upon the insights from the literature, the next chapters present theoretically so-
lidified and empirically verified methods to quantify and reduce oversmoothing in deep
GNN . Specifically:

Develop layer-specific metrics that accurately quantify the onset and progression of
oversmoothing.

Theoretically analyze how residual connections interact with various graph topolo-
gies, and, in particular, when deep GNNss are required.

Investigate the role of partial training in maintaining feature diversity.

Propose informed weight initialization method for GNNs that aligns with spectral
and structural properties of input graphs.

Investigate the role of the slope of the activation functions in maintaining feature
diversity and promoting stable gradient flow.

By addressing these points, this work aims to bridge the gap between empirical practice
and theoretical understanding, ultimately enabling the principled design of robust, deep
GNN architectures.

70

Chapter 3

Analyzing the Effect of Embedding Norms and
Singular Values to Oversmoothing in Graph
Neural Networks

Chapter 3 introduces a principled approach to measuring and reducing oversmoothing in
deep GNNs. Oversmoothing poses a fundamental barrier to designing expressive, deep
GNN architectures. To better understand and address this challenge, it is essential to de-
velop a quantitative measure that captures the extent of oversmoothing in a given model. In
this chapter, building on prior studies [106], we propose a novel distance measure, namely
MASED, and conduct an in-depth investigation into its properties.

We derive upper and lower bounds on its value and examine how the lower bound can be
increased, in order to maintain node embedding variance and reduce oversmoothing. In
this direction, we highlight the key role of the node embedding norms and of the smallest
singular values of weight matrices, which have been largely overlooked. Additionally, we
shed light on the relationship between the number of adjacency hops and weight matrices
in GNNs. Our analysis provides insights into the characteristics of a deep model that lead
to oversmoothing and how this, in turn, affects model performance. These findings can
motivate the design of more effective strategies for mitigating the impact of oversmooth-
ing in deep GNNs. We also propose one such mitigation strategy, in the form of a novel
regularization method, named G-Reg, which aims to reduce co-linearity between the rows
of the weight matrices and, in turn, increase their smallest singular values.

In summary, the main contributions of the work presented in this chapter are as follows:

« Contribution on Oversmoothing Quantification: We introduce the Mean Average Squar-
ed Euclidean Distance (M ASFED) to quantify oversmoothing in GNNs. We derive the
upper and lower bounds of M ASED and reveal the relationship between the distances
among node representations and the structure of the weight matrix, highlighting how the
independence of its rows affects oversmoothing. Moreover, we show that M ASE D values
can predict oversmoothing early in the learning process. A rapid decline, accompanied by
a reduction in the weight matrix’s singular values, leads to poor model performance.

+ The effect of embedding norms and angles on oversmoothing: We measure the aver-
age angle between the centroids (i.e., average embedding of nodes belonging to the same
class) of the training nodes and the average norms of node embeddings. We observe that
if norms are close to zero then the model is incapable of learning. However, if the norms
are large enough and the model has the needed capacity, small angles suffice to maintain
competitive performance.

71

« New weight regularization method (G-Reg): We propose a regularization of the values
of the weight matrix in order to maintain higher values of M ASED and higher values
of the embedding norms. We experimentally confirm the benefits of G-Reg, utilizing deep
GCN:s, residual GCNs, and SGCs, with up to 32 layers across 7 node classification tasks. We
show that the proposed regularization reduces oversmoothing, and demonstrate its bene-
fits, in the presence of the “cold start” situation, where node features are available only for
the labeled nodes.

+ Reducing weight redundancy in multi-hop aggregation: We propose using fewer weight
matrices than the number of neighborhood hops, improving learnability and reducing over-
smoothing.

1 Theoretical Analysis

1.1 Mean Average Squared Euclidean Distance (MASED)

The Mean Average Squared Euclidean Distance (M ASED) of node representations can
act as a surrogate to measure the extent of oversmoothing in node representations, while
allowing a rigorous analysis of its properties and a derivation of the connection with weight
matrix properties. M ASED is also highly valuable for capturing the dynamic behavior of
a GNN throughout its training process. During the early training epochs, slight variations
in the model’s learning dynamics can be detected through changes in the average distances
among node embeddings. A rapid decrease in M ASED indicates that the model quickly
begins to enforce uniformity on the node representations, serving as an early alarm for
the onset of oversmoothing even before the overall performance declines. This sensitivity
makes M ASED arobust proxy that reflects subtle shifts in the network, often correlating
with other indicators, such as shrinking singular values of the weight matrix. In essence,
by monitoring M ASE D, we can detect early signs of information degradation and modify
training strategies to maintain the discriminative power of node embeddings.

The M ASE D metric is defined over a graph G with /N nodes as follows:

1 =N 1 j=N) 1 i=N j=N)
MASED(G) = + > ~ D (de)” = 2 DO (die)’, (3.1)
i=1 j=1 i=1 j=1

where dff]‘-c is the Euclidean distance between the representations/embeddings of node ¢
(h{") and node j (n\").

Note that M ASED can be calculated over the output of each layer of the model under
investigation. In order to simplify our analysis, we focus on the output of the /-th layer of
a GCN, i.e, ReLU(H®W) = ReLU(AH-DW®),

In the rest of our analysis we calculate the Euclidean distance using the Gramian matrix
(G97%™) of the embedding matrix H®, i.e. G99 = H® . (HD)T, The Gramian takes that
form because the rows of H) correspond to node embeddings. The value of the squared
Euclidean distance between node embeddings (i.e., rows of matrix H ")) can be calculated
using elements of G9"*"", utilizing the following relationship:

(d%c)z = 9ii — 29i; T 955> (3.2)

where g, ; is the (i, j)-element of G9"*™ matrix.
For each node pair we calculate the squared Euclidean distance between its nodes using

72

Equation 3.2. Summing these values yields the total Euclidean squared distance as follows:

S @) —NZQH+ZZ 29u+Nme=

i=1 j=1 i=1 j=1
N -tr(G*™) — 217G ™1 + N - tr(GI*™) =
2N - tr(GIem™) — 217 Goremy, (3.3)
where 1 is the all-one column vector. Equation 3.3 holds because g; ; and g; ; do not depend

on j and 7, respectively, and the double summation over g; ; is equivalent to the summation
of every element of G9"*". Additionally, summing either of g;; or g, ; yields the trace of
Ggram.
Combining Equations 3.3 and 3.1 leads to the following expression of M ASED:

2 tr(GIrem)y 2.1T@GIr e 2

MASEDY(G) = ¥ -— =¥ <tr(G9mm) —

1
—1Tgorom1). (3.4
N G) (3.4)

This alternative formulation of M ASED is particularly useful in deriving its upper and
lower bounds, which are, in turn, important for controlling oversmoothing.

1.2 Bounds on MASED

In this subsection we derive the upper and lower bounds of M ASED. To simplify the
notation we drop the superscripts (i.e., we denote H®) as H, W" as W and M ASEDV(G)
as MASED(QG)), and introduce H) — A0=Y the smoothed node embeddings after
the step of averaging across neighboring nodes. These lead to the following expressions
about H" and G9*™:

HY = ReLU(AHYW W) = H = ReLU(HW) € RV*?
GQIrem — HHT c RNXN’

whose diagonal elements can be written as G7;"" = ||H;.||3 = 77, i.e., the diagonal ele-

ments of the Gramian are the squared norms of the node embeddings, where H; , indicates
the 7-th row of H.
Considering the form of G9"*" we also derive the following:

17Goem1 =1THH™1 = (1"H) (1"H)" = |1 H||%.
Hence, we can rewrite the terms of Equation 3.4 as:

o tr(Grem) = SN G = 3N

i=1"%¢"

2
L AT gr _\d 1 N — Yy 2
o 1°GY aml—zj:1<\/ﬁ > in Hi,j) _ijlzj’

Where
N
T, = ||Hi,*||27 zj = Z INE (35)
we recover the equivalent form of Equation 3.4
5 N d
_ 2 2
MASED(G) = ~ (; r? ; zj) . (3.6)

73

1.2.1 Upper Bound

In many cases, our objective is to drive M ASED as high as possible, since larger values
of MASED correspond to more diverse node embeddings, which, in turn, reduce over-
smoothing. However, it is equally important to understand the factors that limit M ASED.
An explicit upper bound acts as a guide to reveal which aspects of the model affect M/ ASE D
the most.

Considering the form of M/ ASE D in Equation 3.6 we observe that it is the result of the sub-
traction between positive quantities. Hence, the upper bound can be the upper bound of
the first term of Equation 3.6. Using the Cauchy-Schwarz inequality and the upper bound
of the norm of a product we conclude to the following Lemma.

Lemma 3.

MASED(G) < 202

max(W> ’ M[%[a

where 0. (+) denotes the largest singular value of the respective weight matrix, and M ;, =
max ||H; .||2. In the above result we have used the fact thatr; = || H; W |2 < Omax(W) || H; «]| 2,
(2

which holds for every row of H (i.e., each node embedding).

By examining this bound, we observe how changes in each parameter, such the largest
singular value of the weight matrix, or embedding norms, affects the maximum possible
value of MASED. This analysis provides both a theoretical ceiling for M ASED and
practical insight into which strategies are most effective for approaching that ceiling. Our
result is aligned with the current line of research presented in Theorem 1. Additionally to
that conclusion, Lemma 3 highlights the importance of the norms of the embeddings in
increasing the upper bound of M ASED. Hence, by increasing the largest singular value
of the weight matrix and increasing embedding norms, we may allow the GNN to avoid
oversmoothing. Conversely, when the largest singular values of the weight matrices or
the norms of the node embeddings are small, M ASED is suppressed leading to smaller
distances between node embeddings, and oversmoothing.

1.2.2 Lower Bound

While an upper bound on M ASED is important, especially when certain constraints or
model parameters inherently limit how large M ASE D can become, it does not provide a
complete picture. In some cases, the upper bound may be loose or rarely attained in prac-
tice, offering limited insight into typical or guaranteed behavior.

In contrast, a meaningful lower bound is often more informative in contexts where the
goal is to drive M ASE D to higher values. A strong lower bound ensures that M ASE D
remains above a certain threshold under all valid conditions, providing a reliable perfor-
mance guarantee. It reflects the worst-case scenario we can expect and helps us understand
how much improvement is possible.

By focusing on the lower bound, we can identify which parameters or conditions most
effectively raise this minimum and force the model to avoid oversmoothing. Note that
trivially, M ASED is lower bounded by zero, when all node embeddings coincide, hence
leading to zero distance between every pair of embeddings. We term that particular case as

74

extreme oversmoothing, in which there is no variance in node embeddings and no classifier
can properly distinguish them. Imposing the spectral-alignment condition, we conclude to
the following Lemma.

Lemma 4. The following lower bound on M ASED holds:

MASED(G) > 2¢E[r?] > 2¢ - 12, > 2¢ -0

min — min (

2
W) . mﬁ,
where 1y, denotes the smallest value of 7;’s, omin(W) denotes the smallest singular value of
W, and myz = min ||H; .||

K3

In order to prove Lemma 4, we need to derive a more actionable lower bound of Equation
3.6. Hence, we define the following quantities:

N
1 2 1 T T T
E[r?] :NZH = tr(HHT) dz _—1 HH™

i=1

where E|-| denotes the expected value, and 7; and z; are defined in Equation 3.5. Specifi-
cally, r; € R” measures the Euclidean norm of each row of H, and 2j € R? measures the
normalized column-wise sum.

As a result, Equation 3.5 transforms to:

MASED(G) = 2(]E[r2] - %E[%]). (3.7)

The above formula indicates the need of determining an upper bound of E[2?], which, in
turn, will lead to a lower bound of M ASED.

For this, we exploit the spectral decomposition of the positive semi-definite matrix G9"*" =
HHT, writing

N N
Gorem — Z s ,UKUZ" lTGgram 1= lTHHT 1= Z A (’U;l)Q,

(=1

where each \; > 0 (i.e., eigenvalues of G9"*") and {v,} are orthonormal vectors (i.e., eigen-
vectors of G9"*™). We isolate the contribution of the uniform direction 1 relative to the total
trace >, \¢. Here, (v, 1)? measures how closely each eigenvector aligns with the all-ones
pattern, and weighting by A\, shows how strongly that direction influences the quadratic
form 1" G9"%" 1, which, in turn, determines E[ZQ]. Intuitively, if a large fraction of the total
“energy” (trace) of G9"*™ lies in the uniform direction, then the column averages z; behave
almost like constant multiples of the per-row norms r;. In that case, the lower bound of
MASED is very close or equal to zero.

To avoid this case, we impose a spectral-alignment condition. The spectral-alignment con-
dition suggests that node embeddings have not collapsed to the same representation: there
exists € € (0, 1) such that

N

A(v/1)? < (1=2)N > A

/=1 (=1

WE

Note that since G9"*™ is symmetric, the spectral theorem guarantees that its eigenvectors
can be chosen to form an orthonormal basis. Hence, they are mutually orthogonal and each

75

has unit norm (i.e., ||v¢]|s = 1), so (v/1)? < |[1||*> = N. The left-hand side is exactly the
energy of the uniform direction with respect to G9"*™. If H; , = 3; u for some fixed u, then
v = 1/V/N, (vJ1)? = N, and 3, A\(v/1)?2 = N3, \. Our bound < (1 —)N Y\,
thus strictly excludes this degenerate case. The usage of, “<” caps uniform alignment and
guarantees genuine row-diversity.

The spectral-gap assumption is critical for preventing feature collapse in graph neural net-
works and for ensuring meaningful variability in node representations. If every row of
H were a scalar multiple of a single vector, then all node features would lie on a single
line in RY, and any aggregation or comparison based on dot-products or learned linear
mappings would render all representations indistinguishable up to scale. By requiring a
nonzero spectral gap (¢ > 0), we guarantee that at least an e-fraction of the total row-energy
of H resides outside this degenerate direction, thereby preserving genuine discriminative
structure. Equivalently, since the all-ones vector 1 encodes the uniform pattern “all rows
identical”, bounding its squared projection onto the top eigenspace of HH ' by (1 —)N
ensures that no more than a (1 — ¢)-fraction of the total variance in H can be explained by
uniform alignment.

In turn, at least an e-fraction of variance must lie in directions orthogonal to 1, so that
node features are not all “pointing the same way”. This requirement is mild and generally
satisfied in practical settings. Only pathological rank-one configurations (all rows exactly
proportional, corresponding to ¢ = 0) violate the gap. Therefore, a strictly positive spectral
gap is a realistic and broadly applicable condition.

We therefore focus on e > 0, noting that ¢ = 0 characterizes the pathological feature-collapse
scenario, where M ASE D equals zero. The assumption of a positive ¢ allows us to derive a

positive lower bound, which highlights the contributing factors that can help increase the
values of M ASED. Since

N N
1 1 1—¢
E[zl=—1"HH'1=—))\ 1)< N N =
[27] N dN; (v 1)° < IN ; ¢
1— N
E[z?] <~ “Ntr(HHT) = (1 —¢) = E[r?],

dN d

the alignment condition yields

E[:?] < (1-@%1@[#] — B[- LR > cE[?.

Substituting into the definition of M ASE D in Equation 3.7 gives

MASED(G) = 2(1{-3[#] —4 E[z2]> > 2:E[?] > 0. (3.8)
This bound confirms that, under our spectral-alignment assumption, the lower bound of
MASED is non-negative. Only in the degenerate case ¢ = 0, when the all-ones vector is
the top eigenvector and all embeddings collapse to one direction, does this bound collapse
to the trivial lower bound, i.e., zero.

Using Equation 3.8, we, finally, derive the lower bound presented in Lemma 4. Lemma
4 shows the effect of the smallest singular value and the smallest norm of the node em-
beddings on the lower bound of M ASE D, which is related to oversmoothing appearance.
Additionally, it highlights the tools available to reduce oversmoothing.

76

1.3 Network-Level Analysis of MASED

Having established the upper (Lemma 3) and lower (Lemma 4) bounds on MASED at
each individual layer, we now extend these results to the entire network. By tracking the
evolution of M ASE D from layer to layer, we derive global guarantees on how it changes
from input to output. This extension is crucial as it reveals whether M ASED increases
or decreases over multiple layers, and helps to identify the key layer-wise parameters that
influence the network’s overall behavior. In what follows, we show how the per-layer
bounds combine and discuss the conditions under which the network preserves, amplifies,
or shrinks the value of M ASED.

In order to estimate the bounds of M ASED at the final layer of the model, we reintro-
duce the superscripts in our notation, i.e., we will bound M AS ED®)(G) with L being the
model’s depth. We also utilize Lemma 3 and Lemma 4 along with the inequality:

Tmin(B)|[ull2 < [|Bulla < 0max(B)][ull2,

which holds for every matrix B and vector .

(L

The lower bound (Lemma 4) depends on m p), which can be bounded as follows:

(s = min 2112 = min |AH ™l > a0(4) min | £ =
Opmin(A) min || ReLU (AHE=D W L0,

Substituting H" telescopically leads to:

L—-1

L — 1 . %

miy) > ol (A) - min || Xl - [T o (WO).
i=1

Similarly for M J(EIL) we get:

L -1/ A i
My < ohaa(A) - max [Xoclz -]] omae (W),
i=1
Combining the above results with Lemma 3 and Lemma 4 we arrive at the following con-
clusion about the bounds of MASED®), i.e., the mean average squared distance of node
representations at the final layer of the model:
. L 2 . L 2
22 (o2 (A) s T own(1W0)) < MASED®(G) < 2(okl () My - T oW1
i=1 i=1
(3.9)

o, and X denotes the initial node features.

where mx = min [| Xixll2s Mx = max || X .
In Equation 3.9, the term Omm(fl), i.e., the smallest singular value of A is often zero in
real-world graphs, leading the global lower bound to zero. For this reason, the per-layer
MASEDWY(G) value is more useful.

Ensuring that each M ASEDWY(G) remains not only strictly positive but substantially
above zero, particularly in the lower layers, helps preserve the variance of the input fea-
tures and avoids the pitfalls of relying solely on the global M ASED™)(G) lower bound.
While some reduction of M ASEDW(G) in the upper layers may be expected or even ben-
eficial for classification, maintaining substantially non-zero values in early layers is critical
for robust feature propagation.

77

2 Implications of the Theoretical Analysis

Equation 3.9 highlights that M ASE D is primarily influenced by two factors: the singular
values of the weight matrices and their total number. To address the former, we propose a
regularization method; namely G-Reg, as a means of increasing the singular values, while
for the latter we provide further intuition and suggest reducing the number of weight ma-
trices as a practical remedy.

2.1 G-Reg: Regularization of the Standard Deviation of the Weight
Matrix

An idea for reducing oversmoothing, born from the results of our theoretical analysis, is to
introduce a novel regularization approach tailored to graph-based models. Existing regu-
larizers (e.g., standard weight decay or dropout) do not explicitly address the reduction of
the singular values of the weight matrices, which have been shown to play an important
role in oversmoothing. If the rows of W () tend to become linearly dependent, the smallest
singular value o, (W(l)) will monotonically decrease toward zero, which, in turn, col-
lapses the lower bound of Equation 3.9 to zero.

To address this issue, we propose G-Reg, which aims to reduce the linear dependence of the
rows of the weight matrices by rewarding large standard deviation among the elements of
each row. Increasing the standard deviation can thus increase the directional diversity of
the matrix rows. This results is achieved under the assumption of row-wise independent
perturbations, which means that each row is randomly perturbed independently of the oth-
ers. Since linear independence of the rows implies that the matrix has full (or almost full)
row rank, it follows that the smallest singular value oy, (W) > 0. Positive oy, (W®)
values allow the lower bound of Equation 3.9 to remain positive as well, pushing the aver-
age node distances to higher values.

Formally, let W) denote the learnable weight matrix at layer [, we define the G-Reg penalty

as

L

LGreg = Mw Z P Z Std(Wi(,i)), (3.10)
=1 =1

U

where std denotes the standard deviation, VVZ(Z*) is the i-th row of matrix W®, and A\, > 0
is a tunable strength parameter.

)

2.2 Effect of multiple weight matrices on MASED

Given the importance of weight values, as mentioned above, we study further the effect of
the number of weight matrices through which the input signal passes. Each weight matrix
can be regarded as a transformation from one embedding space to another. Hence, the
number of weight matrices expresses the number of embedding spaces through which the
input signal passes.

Increasing the depth of GCNs introduces a significant risk of losing critical information
even before training begins. This phenomenon arises from the probabilistic properties of
random weight matrices at initialization. Typically, these matrices are initialized with val-
ues drawn from a Gaussian distribution, resulting in eigenvalues within the unit circle and
singular values centered around 2.

Suppose that the top-k singular values of each weight matrix exceed a threshold (e.g., 0.5).

78

Then the corresponding input feature dimensions are only mildly weakened as they pass
through each layer. Conversely, feature dimensions tied to smaller singular values shrink
quickly in deep networks. As the network depth L increases, the probability that a use-
ful feature direction retains sufficient strength across all layers diminishes exponentially,
limiting its influence on the final output. Specifically, if the weight matrices have a width
d > k (k once again denoting the number of singular values that exceed a threshold), the
probability Pr[@)] that an informative direction survives through all layers is given by:

PriQ) = (ﬁ)L — 5t p<l

This exponential decay implies that deeper networks are increasingly likely to suppress in-
formative features before any learning occurs. Consequently, the model may be “doomed to
fail”, as essential information is lost during the initial forward passes, leading to suboptimal
performance that cannot be improved through subsequent training. The underlying issue
is that the initial random weight matrices, combined with the depth of the network, effec-
tively filter out significant components of the input features. As a result, gradient signals
weaken or vanish entirely, preventing the model from updating its parameters effectively.
Consequently, increasing the number of weight matrices can degrade overall performance.
This is also related to the value of M ASED, as shown in Equation 3.9. As the number
of weight matrices increases, the number of factors in the products of the smallest and
largest singular values also increases. To keep M ASE D large, each weight matrix should
maintain both a large minimum and maximum singular value. This becomes increasingly
difficult as more layers are added. Therefore, while using multiple weight matrices allows
the model to capture complex input relationships, too many weight matrices might lead to
performance deterioration.

2.3 Decoupling Weight Matrices from Adjacency Powers

Equation 3.9 additionally shows that the distance between node embeddings after graph
convolution depends on both the number of weight matrices and the adjacency power used
for aggregation. Conventionally, each layer [has a different weight matrix W ®), coupling
receptive field size to parameter count. Yet, successive adjacency multiplications already
capture high-order structure, making the use of a separate W) for each layer not always
beneficial. This was discussed in Subsection 2.2.

Based on this observation, we explore the possibility of aggregating an extended multi-
hop neighborhood via a single weight matrix, thereby reducing the number of matrices in
the network. This principle resembles the APPNP [16] single-matrix propagation scheme.
According to our analysis, reducing the number of matrices can also limit the extent of
oversmoothing.

In practice, we distribute the number of hops L that we want to capture, i.e., the distance
from a single node, across K stacked blocks of SGC, each aggregating up to L/K hops
before applying its own transformation. A visual representation of this mechanism is pro-
vided in Figure 3.1. For example, if L = 10 (i.e., we wish to aggregate information up to 10
hops away), using two stacked layers of SGC implies that each layer aggregates informa-
tion up to L /2 = 5 hops away. This reduces parameter redundancy and enables multi-hop
feature mixing.

79

L hops

A4

L/K hops L/K hops L/K hops
SGC SGC SGC
X (input) —> Weight > Weight Weight
Matrix Matrix Matrix
! ! }
HW H®@ H®) (output)
L J
T
K SGCs

Figure 3.1: Each SGC layer uses the adjacency matrix raised to the power of L/K, and
takes as input either the output of the previous layer or the initial node features
if it is the first layer.

3 Experiments

In this section we perform a series of experiments, inspired by the theoretical results pre-
sented above. The experiments aimed to confirm the power of M ASED in quantifying
oversmoothing and the reduction of the problem by the proposed changes in the learning
process.

3.1 Experimental Setup

Datasets: Aligned to most of the literature, we focused on seven well-known benchmarks:
Cora, CiteSeer, Pubmed, Photo, Computers, Physics and CS. For the first three co-citation
datasets we used the same data splits as in [25], where all the nodes except the ones used
for training and validation are used for testing. For the Photo, Computers, Physics and CS
datasets we followed the same splits as in [131]. Dataset statistics can be found in Appendix
24.

Models: We experimented with the architectures of GCN [25], ResGCN [23], and SGC [17].
Hyperparameters: We performed a hyperparameter sweep (details in Appendix 6) to de-
termine the optimal hyperparameter values, based on their performance on the validation
set. For GCN and ResGCN, we set the number of hidden units for each layer to 128 across
all benchmark datasets. For SGC when using a single layer, the input dimension equals the
number of features while the output dimension is the number of classes. When using mul-
tiple layers of SGC the number of hidden units is also 128. L, regularization was applied
with a penalty of 5- 107, and the learning rate was set to 10~ for GCN and ResGCN, while
for SGC the optimal value was 6- 1073, Depth varied between 2 and 40 layers depending on
the setting under investigation. Finally, \,, € {0,2, 3,4, 6, 8} for GCN and ResGCN, while
for SGC \,, € {0,0.01,0.5,1,2}.

Configuration: Each experiment was run 10 times and we report the average performance
over these runs. We trained all models within 200 epochs using Cross Entropy as a loss
function.

80

3.2 Experimental Results

%1073 Depth: 4 | Acc: 81.00 Depth: 8 | Acc: 17.50 Depth: 16 | Acc: 13.00
64 — Layer1lall A —— Layer1lall H —— Layer1lall
Layer 1 train A Layer 1 train Layer 1 train
57 — Layerz2all ERE —— Layer4all || —— Layer 8 all
4 ——= Layer 2 train H === Layer 4 train |4 === Layer 8 train
E —— Layer 4 all —— Layer 8 all —— Layer 16 all
8 31 - Layer 4 train i === Layer 8 train [] === Layer 16 train
2 1 ‘H~__ R
e B gy 4 H —— S
0 ==== 4 H
25 50_ 753 100 125 15.0 17.5 20.0 25 5.0 7.5 100 125 150 175 20.0 25 5.0 75 10.0 125 15.0 17.5 20.0
%1074 Depth: 4 | Acc: 84.61 Depth: 8 | Acc: 13.39 Depth: 16 | Acc: 9.01

— Layerlall \ \
2.0 ¥ Layer 1 train |q H

— Layer 2 all —— Layer 1 all —— Layer 1all
1.5 === Layer 2 train | Layer 1 train H Layer 1 train

—— Layer 4 all —— Layer 4 all —— Layer 8 all

o
I
£ 10 === lLayer 4 train || —-- Layer 4 train l{ —-- Layer 8 train
o —— Layer 8 all —— Layer 16 all

os4+—brou - - Layer 8 train |l ——- Layer 16 train

0.0 | ——— = H

T T
25 50_ 75 100 125_15.0 17.5 20.0 25 5.0 7.5 10.0 125 15.0 175 20.0 25 5.0 75 10.0 125 15.0 17.5 20.0
%1072 Depth: 4 | Acc: 87.53 Depth: 8§ | Acc: 18.16 Depth: 16 | Acc: 11.28
—— Layer1lall / —— Layer1lall —— Layer1all
2.51 Layer 1 train /" I Layer 1 train || Layer 1 train
201 — Layer 2 all 7 S — Layer 4 all 1 — Layer 8 all
: === Layer 2 train) === Layer 4 train === Layer 8 train

) 1.5, — Layer4all ! i —— Layer 8 all H —— Layer 16 all
o - Layer 4 train —=- Layer 8 train -=- Layer 16 train

1.01 1 1

0.5 n 1

0.0 = s § 1

T T
2.5 5.0 75 10.0 125 15.0 17.5 20.0 2.5 5.0 7.5 10.0 125 15.0 17.5 200 2.5 5.0 75 10.0 125 15.0 17.5 20.0
Epochs

Figure 3.2: Epoch evolution of the Mean Average Squared Euclidean Distance (M ASE D)
value of the embeddings of all nodes and training nodes separately. We show re-
sults for 3 different depths of a GCN model, illustrating how M ASE D changes
in the first, the middle and the last layer of the model. We also include the ac-
curacy achieved by each model.

MASED evolution at different network depths:

Based on Equation 3.9, we investigate the extent to which M ASE D exhibits the predicted
scaling, with larger values in early layers and smaller ones in deeper layers. Figure 3.2
presents the evolution of M ASE D across training epochs for a plain GCN at depths 4, 8,
and 16. Separate curves are shown for training nodes and for all nodes for each layer on
Cora, Photo, and CS datasets. At depth 4, M ASED increases over the 20 epochs, driven
most strongly by the first layer while at deeper layers it rises more slowly. This upward
trend indicates that feature values are diverging before being mixed in later layers. At
depths 8 and 16, all layers show a steady decrease in M ASED. In subsequent experiments
we investigate whether this behavior aligns with embedding norms as Equation 3.9 sug-
gests.

These findings show that M ASED is most informative at the first layer, its rise or fall
signaling whether the network can expand or shrink embedding differences. Similar plots
are presented for the rest of the datasets along with similar plots for ResGCN and SGC in
Appendix 2. Note that Figure 3.2 shows only the first 20 epochs; the complete results over
200 epochs can be found in Appendix 2.

Furthermore, these observations align with the mathematical bounds derived from Equa-
tion 3.9: both the upper and lower bounds scale as 3%, where L is the layer index and /3 is

81

an expression depending on weight matrix properties and the underlying graph topology.
Hence the first layer is generally allowed to attain larger values, while deeper layers are
more prone to smaller values.

Depth: 4 | Acc: 81.00 Depth: 8 | Acc: 18.10 Depth: 16 | Acc: 13.00
1sod Layer 1 all ff | —— Layer1all | —— Layer 1 all
: Layer 1 train K Layer 1 train Layer 1 train
1.25 1 — Layer 2 all / q —— Layer 4 all q —— Layer 8 all
o047 Layer 2 train rd i === Layer 4 train || === Layer 8 train
E : —— Layer 4 all / —— Layer8all —— Layer 16 all
3 0.75 4 Layer 4 train —H === Layer 8 train |1 === Layer 16 train
0.50 1 u u
0.25 1 1 1
0.00 1 P — — |
T T T T T T T T T T T T T T T T T T
0 10 20 30 40 50] 20 30 40 50 0 20 30 40 50
%1072 Depth: 4 | Acc: 84.48 Depth: 8 | Acc: 13.39 Depth: 16 | Acc: 9.01
3.04 — Layerlall Layer 1 all i —— Layer1all
Layer 1 train Layer 1 train Layer 1 train
2.51 — Layer2all Layer4all] —— Layer8all
° 204" Layer 2 train Layer 4 train || —=—- Layer 8 train
‘6 . —— Layer 4 all Layer 8 all —— Layer 16 all
3 159 - Layer 4 train Layer 8 train || —=- Layer 16 train
o ——
L0 (e e 1
0.5 u
0.0 i i
T T T T T T T T T T T T T T T T T
0 0 20 30 40 50 0 0 20 30 40 50 0 10 20 30 40 50
Depth: 4 | Acc: 87.53 Depth: 8 | Acc: 18.16 Depth: 16 | Acc: 11.28
127 — Layer1all Ell — Layerlall] —— Layer1all
1.0 4 Layer 1 train ,‘ il Layer 1 train || Layer 1 train
—— Layer 2 all H —— Layer 4all —— Layer 8 all
0.8 1 —=- Layer 2 train 4 a === Layer 4 train 1 —=- Layer 8 train
s
7] 0.6 —— Layer 4 all /A —— Layer 8 all —— Layer 16 all
9] : === Layer 4 train ; ===~ Layer 8 train —=- Layer 16 train
T T T T T T 1 T T T T T T 1 T T T T T T
0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50

Epochs

Figure 3.3: Epoch evolution of the average value of the norms of the embeddings of all
nodes and of the training nodes separately. We show results for 3 different
depths of a GCN model and average norm values in different layers within the
model. We show how norms evolve in the first, the middle and the last layer of
each model. We also include the accuracy achieved by each model.

Norms and angles of embeddings at different network depths:

Building on the previous experimental results for M AS E D, we now investigate how norms
influence its values and examine whether this behavior aligns with the proposed theoreti-
cal predictions. Figure 3.3 plots the average norm of node embeddings for a GCN at depths
4, 8 and 16 on the Cora, Photo and CS datasets. At depth 4 (high accuracy), the average
norm of node embeddings steadily rises over epochs, reflecting growing feature norms and
healthy propagation at moderate depth; at depth 8 (smaller accuracy), the increase is far
more subdued, its curve remaining nearly flat and indicating early onset of oversmooth-
ing that limits further norm growth; at depth 16 (smallest accuracy), the average norm of
node embeddings is essentially constant, signifying collapse of all node representations and
complete oversmoothing. The gap between the trajectories for shallow and deep models
underscores the sensitivity of norm dynamics to depth, with deeper networks rapidly losing
the capacity to amplify node signals effectively. Similar plots for the rest of the datasets,
along with the residual GCN (ResGCN) and SGC variants are shown in Appendix 3. Note
that Figure 3.3 shows only the first 50 epochs; the complete results over 200 epochs can be
found in Appendix 3.

82

%101 Depth: 4 | Acc: 81.00 Depth: 8 | Acc: 18.00 Depth: 16 | Acc: 13.00

5 4 —— Layer1 u — Layer 1
Layer 8
4 H —— Layer 16
Q
)
24
— Llayer1
14 Layer 2 1
— Layer 4 jw
0 25 75 100 125 150 175 200 0 25 75 100 125 150 175 200 0 25 75 100 125 150 175 200
%101 Depth 4| Acc: 83.88 Depth 8 | Acc: 13.39 Depth 16 | Acc: 9.01
404 — Layerl — Layerl [/ — Llayer 1
Layer 2 Layer 4 Layer 8
357 — Layer4 — Layers || —— Layer 16
e 3.0 1
© 2.5 § "
£
o 2.0 A i
15 1 H
1.0 il 1 ’_/\/”__//‘
0.5 1~ T T T T T T T
0 25 75 100 125 150 175 200 0 25 75 100 125 150 175 200 0 25 100 125 150 175 200
%101 Depth 4| Acc: 87.53 Depth 8| Acc: 18.16 Depth 16 | Acc: 11.28
] | /\’/\N |
—_—— N~~~
4 H i
5] | 1 — Layer 1
8 Layer 8
—— Layer 16
5 J i
—— Layerl —— Layerl
14 Layer 2 i Layer 4 i
—— Layer 4 —— Layer 8 W
0 25 50 75 100 125 150 175 200 O 25 50 75 100 125 150 175 200 O 25 50 75 100 125 150 175 200
Epochs

Figure 3.4: Epoch evolution of the average value of the angles between the class centroids
of the embeddings of the training nodes. We show results for 3 different depths
of a GCN model and average norm values in different layers within the model.
We show how angles evolve in the first, the middle and the last layer of each
model. We also include the accuracy achieved by each model.

Figure 3.4 presents the average angle between the class centroids of the training nodes, i.e.,
the centroids of each class of the training nodes on Cora, Photo and CS datasets. At depth 4
fluctuations start at moderate amplitude and then almost disappear, indicating stable gra-
dient flow and smooth convergence as feature norms increase; at depth 8 the curves have
larger early spikes and a slower decay, reflecting instability from deeper aggregation and
a more unstable training process; at depth 16 fluctuations drop to near zero almost imme-
diately, mirroring the flat average norm of node embeddings and showing that extreme
oversmoothing not only suppresses norm growth but also prevents meaningful parameter
updates. These small fluctuations at larger depths, combined with the flat (and almost zero)
average norm highlight the key role of the embedding norms in reducing oversmoothing
(in agreement with Equation 3.9). One would expect that if the angles between embeddings
remain non-zero then the model would be capable of solving the underlying task. However,
we observe that if the norms of the embeddings become very small, then the input signal
information is lost and the angles between node embeddings do not suffice to capture the
differences between node classes. Similar plots for the rest of the datasets and for ResGCN
and SGC are provided in Appendix 3.

Reducing oversmoothing through regularization:
Figure 3.5 shows node classification accuracy of a GCN on each dataset. Model depth varies
on the horizontal axis and regularization strength \,, of the proposed G-Reg is encoded by

83

o Cora CiteSeer Pubmed Photo

0.8 1

0.6

0.4

0.2 1

0.0 T T T T T T T T — T T T T T T T T T u
2 4 8 16 32 2 4 8 16 32 2 4 8 16 32 2 4 8 16 32

Lo Computers Physics (&)

Accuracy (%)

0.8

0.6 1

— Ay=0

Ay =2
—— Ay=3
- Ay=14

0.4 1

0.2

—— Ay =6 —— Ay=6
- A, =8 - Ay =8 - A, =8
0.0 T T T T T T T T T T T T T T
2 9 8 16 32 2 4 8 16 32 2 9 8 16 32

Model's depth

Figure 3.5: GCN with and without the proposed G-Reg regularization across 7 datasets for
varying depth. We include results for different values of \,,.

curve color. In all seven subplots the unregularized baseline (A, = 0) peaks at shallow
depths and then declines sharply. On the contrary, GCNs with \,, > 0 resist oversmooth-
ing and achieve much higher accuracy than their unregularized counterpart. These results
confirm that by rewarding larger standard deviation of the weight rows, through G-Reg,
oversmoothing can be reduced, permitting effective propagation at depths where the un-
regularized models fail. In particular, the proposed method enables deep architectures that
resist oversmoothing and remain capable of solving node classification tasks at large depths.
Similar plots for ResGCN and SGC appear in Appendix 4.

Our empirical observations align with the theoretical bounds derived from Equation 3.9,
which predict that as depth L increases, both the upper and lower bounds on M ASED
shrink, thereby inducing oversmoothing. The proposed regularization reduces the co- lin-
earity of weight matrix rows, which, in turn, increases the smallest singular value. As a
consequence, the lower bound will increase, leading to larger M ASED values and vari-
ance of node embeddings in deeper layers. In this way, the regularization counteracts the
depth- induced tightening of representational limits and enables the model to reduce over-
smoothing.

Performance under the “cold start” scenario:

Table 3.1 reports the best accuracy achieved by each of the three models (GCN, ResGCN,
and SGC) on each dataset, under the “cold start” setup, where only the labeled nodes have
features initially. The results are presented together with the corresponding \,, value, and
the depth #L at which each model attains that performance. We observe that nonzero
A consistently achieves better performance in larger depths. In particular, regularized

84

Table 3.1: Comparison of different methods with and without the proposed regularization
in the “cold start” scenario. Only the features of the nodes in the training set are
available to the model. We present the best accuracy (i.e., Acc.) of the model and
the depth (i.e., # Layers) at which this accuracy was achieved, for GCN, ResGCN

and SGC.
GCN ResGCN SGC
Dataset

Ao Acc.(%) &std #L | A\, Acc.(%) &std #L | A, Acc.(%)&std #L

Cora 0 60.50 + 4.4 410 69.13 + o9 6 0 61.16 + 04 5

8 73.26 + 0.9 19| 3 73.88 + 0.3 29 1 65.68 + 1.6 8

CiteSeer 0 41.95 + 02 4 | 0 45.85 +12 7 0 38.86 +0.1 7
4 48.08 +13 25| 2 47.97 +12 23 1 49.79 +o1 17

Pubmed 0 60.81 +3.9 4 0 69.23 + 05 6 0 63.57 +0.1 6
4 72.15 +07 25| 2 71.22 +11 23 | 0.01 64.51 +0.1 6

Physics 0 51.12 + 79 3 0 82.45 + 06 6 0 74.54 +13 5
8 89.98 + 0.7 23| 8 89.98 +0.7 32 | 0.01 74.17 +36 5

csS 0 14.11 + 52 410 47.63 + 938 6 0 71.43 +15 7

8 77.48 +24 18 | 8 79.51 +14 19 | 0.5 73.80 + 0.1 7

Photo 0 20.99 +os 2 0 27.14 £79 17 0 45.06 +43 2
2 81.33 +23 7 2 84.16 + 0.9 6 | 05 48.91 +6.6 2

Computers 0 18.85 + 9.9 18| 0 15.84 +9.4 2 0 7.97 £35 2
4 69.74 +63 10 | 3 71.92 +30 8 | 05 9.6 +23 2

models often attain peak performance at depths two to five times greater than the unreg-
ularized baselines and consistently increase accuracy by a statistically significant amount.
This pattern is consistent across all three models, including the ones that are considered
tolerant towards oversmoothing. In cold-start experiments, where unlabeled node features
are zeroed out, unregularized models are restricted to very shallow architectures, whereas
models with optimized \,, achieve their best results at much deeper configurations. These
findings demonstrate that the proposed regularization not only improves overall accuracy
but also enables deeper GNNs and effectively leverages additional propagation steps under
both standard and feature-scarce conditions.

Varying the number of SGC layers at different network depths:

Figure 3.6 compares SGC accuracy on Cora, Photo and CS datasets as the number of trainable
weight matrices (SGC layers), but also the overall depth of the model (i.e., number of hops
of each node’s neighborhood) change. Across all datasets, the 2-layer configuration con-
sistently delivers the highest accuracy, followed by the 1-layer, then the 4-layer, and finally
the 8-layer, which performs the worst. This ordering reflects the need for sufficient train-
able layers (i.e., more than one) to perform the necessary feature transformations, while
avoiding too many trainable weight matrices which can have negative effect. In addition
to achieving the highest accuracy, the 2-layer configuration exhibits higher resistance to
oversmoothing, as the depth of the model increases, as compared to other models, e.g. the
1-layer one. Results for the remaining datasets appear in Appendix 5.

These results reinforce the argument of subsection 2.2 that too many layers can harm per-
formance by introducing redundant weight matrices. In our experiments, two layers strike
the optimal balance, demonstrating that flexible assignment of the total number of hops to

85

Cora Photo (&)

0.8

—e— # of layers: 1 i —e— # of layers: 1
of layers: 2 # of layers: 2
0.7 1 —o— # of layers: 4 |] —e— # of layers: 4

—8— i of layers: 8 —8— # of layers: 8
0.6 1 1

N

—e— # of layers: 1
of layers: 2
0.4 1 —e— # of layers: 4

—e— # of layers: 8
0.3 1 1
" | &.‘.’a 7
T— : 4 2

014® o * - * = b

0.5 1

Accuracy (%)

é l|6 2‘4 3‘2 4‘0 é 1‘6 2‘4 3‘2 4‘0 8 16 24 32 40
Model's depth

Figure 3.6: Comparison of SGC models with varying number of stacked SGC layers, across
3 different datasets for varying depth. At every depth all models have access to
the same information. We only vary the number of trainable weight matrices
(i.e., the number of SGC layers).

a small number of weight matrices is essential for deep graph models.

4 Conclusion

In this chapter, we have proposed the use of Mean Average Squared Euclidean Distance
(M ASED) between node embeddings, as a way to quantify the extend of oversmoothing
in GNNs. We further derived layer-wise bounds on M ASE D and shown how they com-
bine across depth to derive the global upper and lower bounds. Based on those bounds, we
have highlighted the importance of the norms of the node embeddings and the key role of
both the largest and the smallest singular values of the weight matrices. A nonzero small-
est singular value can prevent feature collapse and ensures a meaningful lower bound on
MASFED, which, in turn, preserves variance among node representations and gradient
flow.

Furthermore, we have shown that tying the number of trainable weight matrices directly
to the total number of hops causes redundancy and oversmoothing in deep GNNs. Our
theoretical bounds from Equation 3.9 explain this effect and motivate reducing the number
of trainable weight matrices to a number that is much lower than the total number of hops.
We have also introduced G-Reg, a regularization method, which penalizes the small stan-
dard deviation between the rows of the weight matrices, hence leading to larger smallest
singular values, which, in turn, increase the bounds of Equation 3.9. We have conducted an
extensive set of experiments which showed that these strategies improve accuracy and ro-
bustness, even when combined with methods that resist oversmoothing in different ways.
The theoretical analysis presented in this chapter opens up a multitude of possible research
options to address the problem of oversmoothing. One such direction that we consider
important is the interaction between different existing approaches against oversmoothing.
M ASED highlights the influence of weight matrix singular values and norms, providing
a principled way to quantify the problem. Leveraging M ASED as a common evalua-
tion tool will enable a systematic exploration of how architectural changes, normalization
techniques, and activation adjustments interact, and whether they can be combined in a

86

complementary manner to enable deeper GNNS.

87

Chapter 4

Analyzing the Effect of Residual Connections to
Oversmoothing in Graph Neural Networks

Chapter 4 explores the role of residual connections in alleviating oversmoothing and en-
abling the use of deep GNNs for tasks requiring long-range interactions. While a variety
of normalization and spectral methods have been proposed [103, 13], residual-style skip
connections offer a simple yet powerful mechanism to preserve feature diversity across
many layers [16]. The main aim of this chapter is to investigate whether using residual
connections allows deep GNNs to create meaningful representations, in problems where
long interactions between nodes are needed.

In particular, we study a family of models that employ residual connections, namely APPNP
[16], GCNII [11] and PPRGNN [12]. These models attempt to mitigate oversmoothing and
enable the construction of deep GNN architectures. We reformulate the aggregation mech-
anism of the APPNP model and show that it corresponds to a power iteration process. Sub-
sequently, we establish a connection between the residual strength parameter (i.e., o) of the
APPNP model and the convergence rate of the model. Furthermore, we analyze GNNs that
can be characterized by equations similar to those defining the PPRGNN model, and we
investigate the impact of identity mapping (i.e., adding the identity matrix to each weight
matrix of the model) proposed in [11].

Specifically, the main contributions of the work presented in this chapter are as follows:

+ Residual Connections: We analyze separately the effect of adding residual connections
in every layer of a GNN, which makes the model equivalent to the weighted sum of the
representations of varying depth models with exponentially decreasing weights.

« Identity Mapping: We prove that identity mapping creates a weighted powerset sum
of the weight matrices of the model. Our results shed light on the relationship between
identity mapping and oversmoothing.

+ APPNP and Power Iteration: We also prove that APPNP boils down to a power itera-
tion with convergence rate dependent on the residual strength parameter a. We derive a
formula connecting o, the depth and tolerance of the model, where tolerance measures the
proximity of representations created by consecutive layers of the model.

+ Residuals in long-range interactions: We have conducted experiments under condi-
tions of reduced information, such as in the “cold start” scenario, where node features are
available only for the labeled nodes. We further extend this scenario by introducing a new
synthetic dataset with controllable long interactions. Our experiments reveal the limita-
tions of methods that use residual connections to deal with such tasks, due to the emphasis

88

they give to initial node features, hence emulating shallow architectures.

1 Notations

Definition 5 (Lipschitz Continuity). A function f : RY — RM is called Lipschitz continuous
if there exists a constant L so that

Va,b € RY || f(a) = f(O)ll2 < Llla = bl|>.

For the ReLU activation function, the constant L equals 1, hence ReLU is 1-Lipschitz. We
further utilize the powerset of a set of objects, needed in the analysis of the effect of identity

mapping.

Theorem 6 ([132]). Let A, B € M,, be Hermitian matrices and A\1(-) > Xa(:) > ... > \u(+)
denote the eigenvalues of a matrix in descending order. Then for the eigenvalues of the sum of
two matrices it holds:

M(A) £ M(B) < M(A+ B) < M(A) + M (B) k. (4.1)

Weyl’s theorem provides both lower and upper bounds on the eigenvalues of a matrix sum.
The proof of this theorem is based on the Courant-Fischer Min-max principle [133]. This,
in turn, allows us to extend Theorem 6 to the singular values of a matrix sum. By following
a similar proof technique to that of Weyl’s theorem, we obtain the following Corollary.

Corollary 7. Let A, B € M,, be Hermitian matrices and s,(-) > sa(-) > ... > s,(-) denote
the singular values of a matrix in descending order. Then for the singular values of the sum of
two matrices holds that:

sk(A) + sn(B) < sp(A+ B) < sx(A) + s1(B) VE. (4.2)

2 Theoretical Analysis

In this section we analyze the effect of residual connections and identity mapping. We first
explore the architecture of APPNP, demonstrating its reduction to a power iteration and
deriving a formula that describes the similarity of node representations between consec-
utive layers. Following, we show that models utilizing residual connections with weight
matrices (i.e., PPRGNN, GCNII) are equivalent to the sum of shallow models. Finally, we
study the case where only identity mapping is being used and prove that it results in a
weighted powerset sum of the weight matrices of the model.

2.1 Residuals without Learning Parameters - APPNP

We start by recalling the aggregation scheme of APPNP [16] and demonstrating its equiva-
lence to a power iteration through a transformation that preserves a one-to-one relationship
between the original and transformed representations. We also prove theoretically that the
eigenvalues of the matrix used for the power iteration are at most equal to 1 and that the
residual strength parameter o of APPNP controls the second largest eigenvalue of the ma-
trix. Finally, we derive the formula connecting o with the model’s depth and the average
distance between node representations of consecutive layers. Following these steps, we

89

prove that increasing the depth of APPNP beyond a certain threshold has no effect on the
final node representations.
The APPNP [16] aggregation scheme is given by:

HO = fG(X)a
H*Y = (1 —) AH® + aHO, (4.3)
H) = softmax ((1 — a)AHEY 4 aH(O)> :

where fy(-) is the output of a neural network (i.e., an MLP) operating on the features of
each node, i.e., each row of the feature matrix X.

A different way to approach the transformation happening at each layer in APPNP, is by
modifying the node representation matrix H*) and concatenating it vertically with H(®,
In that new representation matrix, the upper N x C block contains node representations
created by the respective layer (if the standard APPNP method is used) and the lower N x C
block contains the initial node representations, with C being the number of features of
H®)

J50 } will be a block matrix allowing us to rewrite

each node. The new matrix H*) = {

Equation 4.3 as follows:

H®. (4.4)

HY) = softmax (ﬁ(K)[: N,]) :

where [y, Oy are the identity and zero matrix of size /V respectively. The notation H) [N,:

denotes that we only keep the first N rows of H®) To simplify our notation we introduce

A

(1-a)A aly

On In
BH (%), which can also be expressed in terms of the initial representation matrix, as fol-
lows:

matrix B = (k+1) _—

], transforming equation 4.4 as follows: H

Equation 4.5 illustrates that APPNP is a power iteration with transition matrix 5. Since
B is a block upper triangular matrix, its eigenvalues are the union of the eigenvalues of
the matrices lying on the diagonal. Denoting the set of eigenvalues of a matrix (including
multiplicities) as eig(+), we have:

eig(B) = ((1 - a)eig(A)) | Jeig(Iv).

The identity matrix /y has 1 as its only eigenvalue with a geometric multiplicity of N. The
augmented normalized adjacency matrix A has eigenvalues in the range of (—1, 1]. Since
the largest eigenvalue of Ais 1, we conclude that the second largest (excluding multiplicities
this time) eigenvalue of B equals (1 — «) i.e., A\o(B) = 1 — .

Since not every eigenvalue of B is less than 1, a power iteration with B as its transition
matrix does not converge to an all-zero matrix, but rather approaches a limiting matrix:

. ko '
k1£>noo B" = Blzm 7é 02Na

90

[

which proves that Equation 4.5 converges to fixed node representations, after a critical
number of repetitions (i.e., layers), disregarding subsequent layer addition. These final node
representations depend solely on the initial node representations and By;,,,, disregarding the
model’s depth beyond the critical depth required for convergence.

To further explore the limits of APPNP, we investigate the number of layers, beyond which
the distance of node representations remains the same, up to a fault tolerance error. Let this
error be tol = ||[H*D) — A®|2 = ||[H*+D — H®)||2 since H® is a block matrix having
the same lower block for every k (i.e., H()). In a power iteration method, the convergence
rate (cr) is determined by the ratio of the second largest to the largest eigenvalue of the

22(:)

transition matrix, i.e. cr = N0 When B is the transition matrix, cr = 1 — «a < 1, because

« is positive, and the exact value of cr is determined by «.

Lemma 8. In a power iteration method with a convergence rate equal to (1 — «), in order to
achieve a tolerance error of at most tol, the number of iterations needed (L) is given by:

logyo(tol)

Togo(1 —)’ (4.6)

The proof of Lemma 8 can be found in Appendix 7. Equation 4.6 completes our analysis
of APPNP and provides the relationship between a, the model’s depth, and the tolerance
error between node representations of consecutive layers of APPNP. Equation 4.6 indicates
that increasing the number of iterations, which is equivalent to stacking more layers, re-
sults in smaller differences between node representations of consecutive layers, which will
eventually converge to a predefined set of representations.

Figure 4.1 illustrates the effect of Lemma 8 and its practical implications. As « increases,
the required number of layers for convergence decreases. Generally, a model with approxi-
mately 20 layers reaches its final representations, with additional layers providing minimal
improvement. Figure 4.1 depicts Equation 4.6 for two different values of the constant mul-
tiplier of the ratio, emphasizing the trend rather than exact values. The precise constant
cannot be determined, as it depends on the eigendecomposition of the initial state in the
eigenbasis of the transition matrix (Appendix 7). Consequently, this decomposition is in-
fluenced by the learning task, the MLP output, and the structure of B, making an exact
analysis infeasible.

Although, APPNP seems to avoid oversmoothing, it actually forces the model to a set of
representations produced by the product of By;,, with the output of an MLP, i.e. fy(-), re-
sembling the combination of MLP methods with a smart aggregation. APPNP’s aggregation
is not adaptable to the model’s depth, it emphasizes local neighborhood aggregation, and
restricts the model from capturing long-range interactions, which is the scenario where
deep GNNs are needed.

2.2 Residuals with Learning Parameters
2.2.1 The case of PPRGNN

Instead of decoupling aggregation and propagation as in APPNP, methods that use residual
connections augment the output of each layer with initial node representations. Specifi-
cally, the PPRGNN-like network family [12] is defined as follows:

HED = & (alAH(”W(” + fe(X)) : (4.7)

91

— . _logao (tol)
l0g10 (tol) 3D plot L =10 75—

3DplotL=1-

10910 (1 -a)

800

o
=3

0

Number of layers
Number of layers

02 0.4

0.6
® valyes - 1.0

0.8 0.010 : 0.6

® valyes 0.8 10 0.010

Figure 4.1: Illustration of Equation 4.6 showing the relationship between the model’s pa-
rameter a, the number of layers and the convergence of node representations
(tolerance error). The two plots show the effect of changing the constant mul-
tiplier of the ratio, by an order of magnitude (left: 1, and right: 10).

where H(®) denotes nodes representations at layer I, fy(-) is a neural network (i.e. an MLP),
which takes as input the initial nodes’ features and o (-) is usually an element-wise ReLU
function. PPRGNN sets W) = W VI and a; = %, but we will analyze the general case of
arbitrary W% and a; < 1.

Using the 1-Lipschitzness of ReLU and expanding Equation 4.7, we will show that such
models mainly focus on the local neighborhood, in order to extract information and gener-
ate node representations. The aggregation method primarily emphasizes on the output of
the upper layers of the network, and gives less consideration to the contributions from the
lower layers when forming the final node representations.

Specifically, due to the 1-Lipschitz property of ReLU, excluding it from subsequent analysis
is reasonable, as it does not significantly alter the scale of node representations. Expanding
Equation 4.7 leads to:

1 l
HO = A0 [T+ A0 [T 44 ARl O (). (45)
=1

=2

Note that if oy = % (as proposed in PPRGNN), the product of o factors equals 1/1!, which
converges to zero very fast. Let us consider only the limiting case where oy = 1 for ev-
ery [, because adopting the proposed values by PPRGNN will vanish many of the terms of
Equation 4.8 quickly. The vanishing terms are those containing higher powers of the ad-
jacency matrix, representing information flow from distant neighbors and enabling long-
range interactions. As these terms diminish, the model’s output converges to a sum of
shallow model outputs. Consequently, after training, the lower layers (corresponding to
the vanishing terms in Equation 4.8) can be removed, allowing the input to pass through
the remaining upper layers while producing representations that are nearly the same as
those of the full PPRGNN.

Setting oy = 1 for every [, transforms Equation 4.8 to the sum of intermediate outputs
(i.e., output of each layer) of a deep GCN model. This architecture bears resemblance to
the JK-Networks [108] architecture, with the sum operation as a pooling method atop the

92

network, a technique not proposed in [108].

In order to compute the node representations at layer L, using Equation 4.8, we need to
create L GCNs with depths ranging from 1 to L and sum the resulting node representa-
tions. These GCNs will share their weight matrices in reverse order, meaning that a GCN
with depth K < L will have the K upper weight matrices of the GCN with depth L. For
example, a GCN with two layers will have the weight matrices of the two upper layers of
the GCN with L layers. This leads to the observation that Equation 4.8 is simply the sum
of the outputs of varying depth GCNs.

This observation, in turn, indicates that PPRGNN-like networks transform deep architec-
tures into the sum of varying depth GCNs. A large fraction of these GCNs (the deep ones)
will be oversmoothed as theory suggests [7, 21] and their contribution will be negligible,
since they will produce similar representations for all nodes (probably close zero). Even in
the cases where the deep GCNs manage to avoid oversmoothing, their contribution dimin-
ishes exponentially fast, depending on the layer index, as indicated by Equation 4.8. This
results in a model relying primarily on the representations of the shallow GCNs. Conse-
quently, such a deep model can be studied as two disjoint components:

i) Most lower layers have a relatively limited impact on the final node representations. Their
weight matrices could, in some cases, retain initial random values with minimal effect on
the network’s predictions.

ii) The upper layers, in contrast, have a more significant role in shaping node represen-
tations. Adjustments in these layers’ weight matrices are crucial for the model, as they
influence the final node representations and are the primary sites for learning.

2.2.2 The case of GCNII

A prominent method utilizing residual connections in GNNs was introduced by [11], namely
GCNII, and defined as:

H") = 4 (((1 —a) AHY + ,H") (L= 5) L+ s ®)> (4.9)

where o(+) is an element-wise ReLU function, a; denotes the residual connection strength
and (1 — 3) is the strength of identity mapping. In the following analysis we set 5, = 1,
for every [, in order to switch off identity mapping and study the effect of the residual
connections. Expanding Equation 4.9 after setting 5, = 1 and using once again the 1-
Lipschitzness of ReLU, we get similar results to Equation 4.8:

l
HOD = AMHOTT (1 = an)W® 4 aqW QA HOT] (1 = a)W®)+ (4.10)
k=1

! l
+a, WOATHOTT (1= ap)W® + 4 g A HO T w®

k=2 k=l

Considering that 0 < a; < 1 for every layer, we observe that the residual connections
utilized in GCNII result in a sum of node representations of shallow models. Hence, the
analysis provided in 2.2.1 for PPRGNN-like networks applies also to GCNIL The only dif-
ference between Equation 4.8 and Equation 4.10 lies in the form of the product of ¢; (i.e., the
decay factor) which governs the contribution of deeper models. A short proof of Equation
4.10 can be found in Appendix 8.

93

2.3 Identity Mapping

In this section we investigate the effect of identity mapping on GNNs and show that the
resulting node representations depend on the powerset sum of the weight matrices of the
model. In contrast, node representations produced by models that do no use identity map-
ping depend on the product of the weight matrices. Finally, we show that the powerset
sum leads to better guarantees regarding the singular values of the final model, which are
directly connected to oversmoothing [7].

A GNN model utilizing identity mapping is defined as:

HED = (AHO (WO +1)), (4.11)

where o(-) is a ReLU activation function. Disregarding the activation functions due to
ReLU’s 1-Lipschitzness transforms Equation 4.11 to the sum of the powerset of all weight
matrices of the model. The above statement can be verified by performing an algebraic
expansion of Equation 4.11, with £ set to L — 1. To compare identity mapping in GNNs
against standard GCN, we present the final node representations of both models (ignoring
the activation functions).

L
GCN: HL — AL O H W,

Identity Mapping: H®) = APHO) Z H w®, (4.12)
SC{1,2,...,L} i€S

where L is the model’s depth.

From Equation 4.12, we observe that GCN uses the product of the weight matrices, which
is upper bounded by the product of the largest singular values of these matrices, while
a GNN defined as in Equation 4.11 uses the sum of the powerset of the weight matrices.
We now prove that the powerset sum of the weight matrices yields a matrix with a big-
ger largest singular value than the one produced by the product of the weight matrices,
indicating that identity mapping is more effective against oversmoothing than GCN. Let
us denote with PSsum the sum of the powerset of model’s weight matrices, i.e. PSg,, =
> SC{1.2,..L} [Lics W i), Using Corollary 7 about the singular values of the sum of matrices
we get the following:

51 (HW) + 3 5a(i) < 51(PSaum) < Y s1(0), (4.13)

i=1 €D €D’

D= {HW(“:Sg{1,2,...,L},S7é{1,2,...,L}},

€S

:{HWU>:S§{1,2,...,L}}.

ies
Note that in the lower bound of Equation 4.13 the first term is the same term that appears

in a GCN and controls the convergence speed to the oversmoothing region. Powerset sum
produces largest singular values that are strictly larger than the ones of GCN, by a gain

94

factor defined as Gain =) s,(i). Note also that Gain > 1, because D contains combina-
i€D
tions of the weight matricees and the identity matrix /, which has a smallest singular value
equal to 1. Thus, it follows that the largest singular value of PSs,,, is strictly greater than
1 and greater than the largest singular value of the product of the weight matrices, used
in GCN. Since the Gain factor depends on the smallest singular values of the powerset of
the weight matrices, it can take large values leading the model to instabilities, if identity
mapping is used in every layer. In order to avoid this, identity mapping could be used in
some layers of the model, e.g. the lower ones.
Recalling the results of Theorem 1 about oversmoothing and its connection to the singular
values of weight matrices, we observe that powerset sum provably yields slower conver-
gence speed to the oversmoothing region. This is due to the fact that the sum of the pow-
erset of weight matrices has greater largest singular value than the product of the largest
singular values of these matrices. This observation connects identity mapping with exist-
ing literature about oversmoothing and shows why it enables deep architectures without
‘short-circuiting’ initial information to intermediate layers of the model, which is the case
when it comes to GNNs using residual connections.
Setting a; = 0 in Equation 4.9 creates a weighted powerset sum of the weight matrices:

k k+1 6
H*+D — (H (1- Bz)) AF- x> PS (ﬁw(’“)) (4.14)
i=1 -

=1

This observation sheds more light to the effect of weighted identity addition in GCNII. [11]
define 5; = A/l, where X is a hyperparameter, causing f3; to decrease geometrically with
the layer index. The use of f3; leads to a diminishing contribution of the weight matrices in
the upper layers of the model, thereby reducing the significance of the network’s depth.

2.4 Deep GNNs and Long Interactions

2.5 Deep GNNs and the Cold Start Problem

The primary challenge in creating deep GNNss is the oversmoothing effect, which is more
prevalent as the depth of the network increases. A common debate is whether we really
need deep GNN architectures and mainly when do we need them. Most existing datasets
consist of homophilic graphs, where valuable information is typically within close proxim-
ity to each node (usually within 2 or 3 hops). To explore the potential of deep architectures,
we need to examine tasks that require associating nodes that are further apart in the graph.
One such task is the “cold start” problem, which is akin to scenarios in recommender sys-
tems, where new users or products lack prior feature information. The “cold start” problem
can be emulated by removing feature vectors (to be precise, replacing them with all-zero
vectors) from all nodes except the labeled ones used for training. This process can be applied
to any of the existing benchmark datasets, as proposed by [13]. In such a scenario, the hope
is that deep GNNss could recover features from distant nodes and create informative repre-
sentations. In the context of our work, results from such experiments can shed light on the
inherent limitations of residual connections and highlight the potential of deep GNNs to
outperform shallow architectures in addressing long-range problems, like the “cold start”
problem.

95

2.6 Synthetic Dataset

In addition to the cold start task, in this work we introduce a new synthetic dataset, named
Star. The new dataset is a collection of star graphs (see Figure 4.2), where a star graph
consists of a central node and a number of path-graphs attached to it. The underlying task
is to label the central node using information residing in the peripheral nodes (i.e., nodes at
the end of each path). All intermediate nodes in each path do not contain useful information
for the classification of the central node. The use of shallow GNNs in this dataset faces what
is known as the under-reach problem. The under-reach problem occurs when GNNs lack
the required depth to access the information that is needed to solve the underlying task.
Similar to the synthetic dataset NeighborsMatch
introduced in [8], in the Star dataset we fol-
low a simplistic approach about the underlying /.
task and node features. All nodes have a single- .\ 0
element feature vector as follows: i) peripheral
nodes features consist of a positive number, ii) °—@
intermediate node features are zero, and iii) all Y

central nodes have the same feature which is ./
different from the features of peripheral nodes. &
Each central node is classified based on the ma-
jority of the peripheral nodes in that particular
star graph. If the number of odd-featured pe-

ripheral nodes is larger than the even-featured .\0 9
peripheral nodes, then 1 is given as label to the
central node, otherwise the label of the central 0 ®
0
@ 0

0

0

node is 0. Only central nodes are the targets
of classification, hence we randomly split them
into train, validation and test set.

A model that manages to learn the task will be

able to propagate information from peripheral Fjgyre 4.2: Example of the Star dataset

nodes to the central one and based on the num- with two stars, each having 5
ber of odd-featured p‘eripheral nodes predict the paths of length 2 attached to
correct label. Changing the length of the paths the central node.

allows us to select how long the interactions

among nodes need to be. A small path length

allows shallow models to perform well, while longer paths require deeper GNNs. Con-
sequently, the synthetic dataset can effectively test the ability of GNNs to capture long
interactions.

In the two stars of Figure 4.2, the corresponding central nodes have different classes, al-
though they have the same feature value. Deep GNNs are needed in order to solve the
underlying task of majority voting, where peripheral nodes vote either odd (green) or even
(red) about the label of the central node. Intermediate nodes (yellow) do not affect the clas-
sification of the central nodes and only act as buffer nodes necessitating long interactions.

3 Experiments

In this section we experiment extensively with various deep architectures. In particular, we
conduct three sets of experiments of increasing difficulty and need for deep networks i) We

96

experiment on benchmark datasets, where the need for long interactions is unknown. ii) We
experiment on benchmark datasets under the presence of the “cold start” problem, where
long interactions among nodes are needed, but we do not know how far the interacting
nodes are. iii) We experiment on the Star dataset, where both the existence and the length
of long interactions are controllable.

3.1 Experimental Setup

Datasets: Aligned to most of the literature, we focus on six well-known benchmarks: Cora,
CiteSeer, Pubmed, Photo, Computers and Arxiv. For the co-citation datasets we use the same
data splits as in [25], where all the nodes except the ones used for training and validation
are used for testing. For the Photo and Computers datasets we follow the same splits as
in [131], while for the Arxiv dataset we utilize the OGB suite presented in [134]. Dataset
statistics can be found in Appendix 24. Moreover, as stated above, we use the new synthetic
Star dataset to explore controllable long interactions.

Models: We experiment with the proposed architectures of GCN [25], APPNP [16], PPRGNN
[12] and GCNII [11].

Hyperparameters: We performed a hyperparameter sweep (see Appendix 11), to determine
the optimal hyperparameter values, based on their performance on the validation set. For
GCN and PPRGNN, we set the number of hidden units for each layer to 128 across all real
datasets. L, regularization was applied with a penalty of 5 - 10~%, and the learning rate
was set to 1073, As for GCNII and APPNP, we used the settings suggested by the authors
of the corresponding papers. Dropout was not utilized in any of the models. Depth varied
between 2 and 64 layers.

Configuration: Each experiment was run 10 times and we report the average performance
over these runs. We train all models within 1200 epochs using Cross Entropy as a loss func-
tion. Details on the evolution of the training loss and the computational requirements of
the models are provided in Appendix 9.

3.2 Experimental Results

Reducing oversmoothing:

Figure 4.3 presents the classification performance of different architectures on all six bench-
mark datasets. Models utilizing residual connections seem to avoid oversmoothing and
maintain high performance in deep architectures. Note that the accuracy of these models
in co-citation networks seem to be independent of their depth.

As explained in section 2.1, APPNP converges to fixed node representations and increas-
ing its depth has negligible or no effect. The performance of PPRGNN seems to degrade
slowly as the depth of the network increases. This is because Equation 4.8 gets increas-
ingly populated with oversmoothed terms. These terms are themselves deeper GCNs, as
we have proved in sub-section 2.2.1, hence having a negative impact on the final node rep-
resentations of the model. On the other hand, GNNs that employ residual connections
either converge to fixed node representations (APPNP) or act as a summation of shallower
networks (PPRGNN). In both cases, performance indicates that oversmoothing could be
avoided and infinite depth GNNs are feasible. Additionally, the results of GCNII are also
aligned to our analysis, as it manages to maintain high performance in deeper architectures,
due to the usage of residual connection and identity mapping. Finally, the accuracy of the
simple GCN increases up to some depth, beyond which it fails to create meaningful node

97

representations, due to oversmoothing.

Among the methods utilizing residual connections, there is no clear “winner” in terms of
accuracy. However, it is worth noting that the best performance of each method is achieved
at a relatively small depth.

Cora CiteSeer Pubmed

901 1 e GCNII
APPNP
1 @ PPRGNN
® GCN

80 4

701 /" i
60 - g
50
40 4
301 1 e conn
APPNP
204 1 e PPRGNN
X
< 104 ® GCN
> 2 4 8 16 32 64 2 4 8 16 32 64 2 4 8 16 32 64
o Photo Computers Arxiv
=]
g 909 e GCNII] ® GCNII
< APPNP APPNP
80 ® PPRGNN] ® PPRGNN

® GCN ® GCN
70 b

60 -
50 -
40 4
30 -

204

10 A

l’l E’! 1’6 3‘2 6‘4 2 4 8 16 32 64
Model's depth

N
»
[
[~
o
w
N
o
ESy
N

Figure 4.3: Average test node classification accuracy (%) of the four models under investi-
gation in the six benchmark datasets.

Need for deep GNNss:

Given the good performance of all methods, using shallow networks, it is safe to assume that
the benchmark datasets used above do not require long interactions among nodes. Hence,
we move to a set of experiments that aim to highlight the value of deep architectures. To
achieve that we switch our focus to problems involving long-range dependencies. We use
the term long-range dependencies in problems, where the close neighborhood of each node
does not contain the necessary information to create meaningful representations.

For this purpose, we perform experiments using the “cold start” problem in six datasets.
The results are shown in Table 4.1. The table reports the average test node classification
accuracy (Acc., %) and the depth (#L) at which each model achieves its best performance.
A model that effectively addresses the “cold start” problem should achieve high accuracy,
indicating the ability to capture long-range dependencies.

In order to confirm the significance of the results, we used the Friedman test per dataset
and overall. In particular, we apply the Friedman test [135] on the ten accuracy measure-
ments obtained per dataset and per method. The null hypothesis is that the performance
differences are not significant (p<0.05). The null hypothesis is rejected in all datasets, con-
firming that the differences between methods are significant per dataset (full statistics can
be found in Appendix 10). Furthermore, Conover’s post-hoc analysis was used to confirm
pairwise significant differences.

98

Generally, one would expect methods designed for deep architectures, such as APPNP and
GCNII, to outperform simpler models like GCN. The figures in Table 4.1 do not confirm this
hypothesis. This result was further confirmed by a global Friedman test on the per-dataset
mean accuracies of the classifiers (full statistics in Appendix 10). Looking closer at the re-
sults of the different methods, APPNP achieves the best performance in two datasets (Cora
and CiteSeer), PPRGNN in two datasets (Pubmed and Photo), and GCN and GCNII each per-
form best in one dataset each (Computers and Arxiv, respectively). In all but one of those
cases (Pubmed), Conover’s post-hoc analysis confirmed the significant difference between
the first and the second best method. The results in Table 4.1 suggest that deeper archi-
tectures are sometimes necessary, but they must be coupled with effective mechanisms for
addressing oversmoothing and aggregation challenges. For instance, APPNP benefits from
its propagation mechanism, which ensures nodes access relevant information before con-
verging to fixed representations. Similarly, PPRGNN leverages a combination of shallow
GCNs to achieve competitive results in some datasets.

On the other hand, GCNII, despite its depth, fails to achieve high accuracy across most
datasets, with its performance often falling below that of simpler models like GCN. For ex-
ample, GCN outperforms GCNII consistently and with statistical significance (according to
Conover’s analysis), in most datasets.

Hence, our analysis on the “cold start” problem shows that longer interactions are not cap-
tured sufficiently by the methods that we tested, especially the ones using residual connec-
tions.

Table 4.1: Average test node classification accuracy (%) and standard deviation on the “cold
start” problem in Cora, CiteSeer, Pubmed, Photo, Computers and Arxiv datasets.
With bold and underline is the best and second best performing model for each
dataset. We also show at what depth (i.e., # Layers) each model achieves its best

performance.

Model GCNII APPNP PPRGNN GCN
Dataset Acc(%) #L | Acc(%) #L | Acc.(%) #L | Acc.(%) #L
Cora 66.19 26 12 | 70.77 o6 29 | 66.31 +14 6 ﬂ +12 5
CiteSeer 36.17 20 18 | 49.73 120 31 M +09 7 44.66 +o4 5
Pubmed 4838 52 6 | 71.89 o1 24 | 72.00 £10 28 | 69.82 105 7
Photo 20.42 +05 13 | 76.50 + 4 7 83.43 1.2 6 M +20 5
Computers 16.85 +4s 2 40.72 69 4 w +99 5 65.09 197 7
Arxiv 67.61 o5 7 62.11 +o4 4 16.96 172 4 M +02 7

Controllable long interactions:

In order to further shed light to the ability of the different methods to explore long interac-
tions, we experiment with the Star dataset, introduced in section 2.6. Figure 4.4 shows the
performance of the models in three different instances of the Star dataset. The proposed
dataset allows us to control the number of paths and their length, which, in turn, control the
length of the interactions. One may regard the dataset as an extreme case of the “cold start”
problem, because each node has no short paths to reach the necessary information, which
in turn imposes the need to capture long interactions. The resulting dataset is somewhat
imbalanced, with the majority class being represented by roughly 65% of the data instances
(i.e., stars). This means that the accuracy of a random classifier would be around 0.65, cor-
responding to the flat lines observed in the figures for many methods. In other words,

99

these methods cannot learn meaningful classifiers, indicate models incapable to learn, be-
cause they cannot connect the necessary information, in order to create meaningful node
representations. In particular, all variants of GCNII and APPNP have an accuracy at or
below chance, while PPRGNN achieves higher accuracy for only the simplest of the three
datasets. Among all methods, simple GCN performs best, because it does not rely on resid-
ual connections and allows the central node to utilize some distant information. However,
increasing the network depth seems to hurt the GCN, rather than allowing it to capture
longer interactions. In particular, as the length of the long interactions and the number of
paths increases, the performance of GCN also drops close to that of random choice. This
set of experiments shows the inability of methods utilizing residual connections to access
distant information, which is necessary in cases like the one presented in the Star dataset.
Consequently, there is a need for a GNN model capable to harness the benefits of its depth,
in order to access distant information, while avoiding oversmoothing.

0.9

Star dataset: 3 paths with length 10

Star dataset: 3 paths with length 15

Star dataset: 5 paths with length 15

—— APPNP
PPRGNN
— GCN

—— APPNP
PPRGNN
— GCN

—— APPNP
PPRGNN
— GCN

—— GCNIl (o = 0.1) —— GCNIl (a = 0.1) —— GCNIl (a = 0.1)
0.8 —— GCNIl (a = 0.2) [{ —— GCNIl (a = 0.2) [{ —— GCNIl (¢ = 0.2)
—— GCNII (o = 0.4) —— GCNIl (o = 0.4) —— GCNIl (o = 0.4)

AV
|/~ AN

10 15 20 25 30 15 20 25 30 35 15 20 25 30 35

Model's depth

K\ A\ |

os] [\~ J\//_/—/

0.5

Accuracy (%)

0.4 4

Figure 4.4: Average test classification accuracy (%) of the methods under investigation and
two additional variants of GCNIIL, in the Star dataset. We vary the number of
paths and the path length (pl) of the Star dataset and experiment with models
of depth in the range [pl, pl + 20]. All variants of GCNII, overlap in the graph,
making them non-visible.

The convergence of APPNP:

In section 2.1, Equation 4.5, we showed that APPNP performs a power iteration, which con-
verges to a set of predefined node representations. Therefore, APPNP can be regarded as a
graph-steered aggregation of the output of an MLP. This means that the model combines
node representations (i.e., the output of the MLP) according to the relationships encoded
in the graph. The aggregation scheme proposed, utilizing PPR, seems to be extendable to
arbitrary depth, leading to the assumption that infinite depth GNNs can be modeled by
APPNP. Through PPR, APPNP limits the model’s aggregation to the local neighborhood
of each node and does not enable deep learning. Figure 4.5 shows that accuracy on the
co-citation datasets remains almost constant beyond a specific depth. This behavior is ex-
plained by Equation 4.6 as follows: beyond a specific depth, APPNP’s power iteration has
converged, node representations from consecutive layers are almost identical and yield the
same classification results, hence the accuracy remains almost the same.

100

APPNP performance
Cora CiteSeer Pubmed

0.80

0.70 4 1 R

0.65 -

Average test accuracy (%)

0.60

5 0 15 20 25 30 5 10 15 20 25 30 5 10 15 20 25 30
Model's depth

Figure 4.5: Average test classification accuracy (%) of varying depth APPNP models in Cora,
CiteSeer and Pubmed datasets.

The relationship between PPRGNN and GCNss:

According to Equation 4.8 in sub-subection 2.2.1, PPRGNN is equivalent to the sum of shal-
low GCNs. Following suggestion of the authors of the original paper, we set a; = % and
in order to reduce bias, we set fy(X) = X, in Equation 4.7. We calculate the sum of the
resulting representations of shallow GCNs, by mapping the W) matrices of Equation 4.8
to the weight matrices of the GCNs in the following way:

e GCN with 1 layer will have W) as its weight matrix

e GCN with 2 layers will have W) and W~ as its weight matrices

o ..
e GCN with k layers will have W) .. W=+ a5 jts weight matrices

Ignoring the activation functions in Equation 2.1, the output of the GCNs described above
can be expressed as:

e GCN with 1 layer: H' = AXW (%)
e GCN with 2 layers: H? = A2XW Ly (1)

L
e GCN with k layers: H* = Ak X [T wo
i=L—k+1

A closer look at Equation 4.8 indicates that the above mapping recreates PPRGNN through
the summation of the GCNs. To be consistent with the results of Equation 4.8, we need to
add the initial feature vectors to the sum of the GCNs as well.

Figure 4.6 shows the number of GCNs of varying depth we need to sum, in order to get node
representations close to the full PPRGNN. Note that the number of GCNs we sum indicates
the depth of the deepest of them, e.g., if we add 10 GCNs each of them will have a depth
of 1,2,..,10 respectively. We present the results over the three co-citation datasets with a
fixed depth for the PPRGNN model, namely 20 layers. We vary the number of GCNs and
show the respective distance between representations of the last layer of the full PPRGNN

101

model and the summation of GCNs. The average distance between full PPRGNN and its
approximations is shown in logarithmic scale on the y-axis. For each node, we compute
the distance between its embeddings generated by the full PPRGNN and its approximation.
We then average these distances and take the logarithm of the resulting value.

From Figure 4.6, we observe that the full PPRGNN model can be approximated with as few
as 6 relatively shallow GCNs. Similar results hold even if the full PPRGNN is deeper than
20 layers. These results verify the theoretical analysis, and explain that PPRGNN generates
shallow models, which cannot capture long interactions.

Cora CiteSeer Pubmed
L L] L]
-1 -25 -2.5
L] L]

2 ° 5.0 -5.0
o
2 -3 -75
£ -75 :
] .
2 °
g -4 ° -10.0 -10.0
o
35 —125 -125
o
c
o -6 -15.0
S ~15.0 °
z . °

71 -17.5

-175
.
_sd . -20.0 °
®e00e0ceso0®0000e 0 | 200 ®ee0000000%0°, ®o000p00000000

Pt " % or layers kept from original model Pt mmme
Figure 4.6: Logarithmic average distance of node representations at the last layer of a fully-
trained PPRGNN (i.e., with all 20 layers) and an approximation of it using a
varying number of GCNs, as per Equation 4.8. X-axis shows the number of
shallow GCNs summed in order to approximate the full PPRGNN. GCNs use the
weight matrices of only the corresponding upper layers of the original model.
Results are shown for the Cora, CiteSeer and Pubmed datasets.

4 Conclusion

In this chapter, we have analyzed theoretically the effect of residual connections in GNNs
and we have studied the aggregation scheme of prominent models. We have shown, that
GNNss using residual connections converge to node representations that capture informa-
tion in the close neighborhood of each node. Hence, they cannot capture long interactions,
which require deep models. We have verified our results in a series of experiments, includ-
ing simpler benchmarks, as well as more demanding synthetic tasks. Despite the ability
of deep GNNss that use residual connections to maintain high performance on benchmark
datasets, they fail to capture long-range dependencies as needed in the “cold start” prob-
lem. To further confirm this observation, we have introduced a new synthetic dataset of
controllable long-interactions and have demonstrated the performance of the models on it.
These results can steer the development of a mechanism that not only avoids oversmoothing
but also leverages the graph information provided by additional layers to enhance model
performance.

102

Chapter 5

Partially Trained Graph Convolutional Networks
Resist Oversmoothing

This chapter examines the representational capacity of partially trained graph neural net-
works, models in which only a single layer is trained while the remaining layers are left
at their initial random state. [25] demonstrated that even an untrained GCN can generate
informative node embeddings suitable for node classification tasks, as exemplified by their
experimentation with the Zachary’s karate club network [49]. We systematically explore
how such partially trained architectures behave as their width changes, particularly with
respect to oversmoothing and embedding quality.

Our findings indicate that increasing the width of partially trained GCNs enhances their
performance, making them resistant to oversmoothing. Our analysis provides both exper-
imental results and theoretical insights, in order to construct a comprehensive picture of
the behavior of partially trained GCNs. Additionally, we have extended our experiments
to both GAT [41] and GCNII [11] architectures, which further verified our claims.

In summary, the main contributions of the work presented in this chapter are as follows:

« Partially trained GCNs: We investigate scenarios where only a single layer of a GCN
model is permitted to receive updates during training. Our analysis reveals that as the
width increases, the model is capable of obtaining high accuracy. We further validate our
results through experiments with a Graph Attention Network (GAT).

« The power of deep partially trained GCNs: Deep partially trained GCNs are shown ex-
perimentally to resist oversmoothing. Additionally, we highlight the advantages of these
deep GNNss in scenarios with limited information, such as the “cold start” situation, where
node features are only available for labeled nodes in a node classification task. These results
were also confirmed for GAT models.

« Position and type of the trainable layer: We conducted experiments to explore the ef-
fect of placing the trainable layer at different positions within the network. Additionally,
we examined different options for the trainable layer and found that utilizing a simple GCN
layer is a good choice.

103

1 Preliminaries

1.1 Initialization and Largest Singular Value

In our analysis, a significant portion of the model remains untrained, retaining its initial
weight elements. Therefore, we briefly discuss the common weight initialization method
for GNNS, i.e. Glorot initialization [122]. Glorot initialization proposes drawing each ele-
ment of the weight matrix independently from the same zero-mean distribution, which can
be either Uniform or Gaussian. For simplicity in notation and analysis, we adopt Glorot
initialization using a zero-mean Gaussian distribution with variance equal to 1/d, where d
represents the width of the layer.

Theorem 9 ((Bai-Yin’s law [136]). Let Z = Zy,, be an N x n random matrix with elements
that are independent and identically distributed random variables having zero mean, unit
variance, and finite fourth moment. Suppose that the dimensions N and n tend to infinity
while the aspect ration /N converges to a constant in [0, 1]. Then, almost surely, we have:

Smaz(Z) = VN +/n + o(v/n). (5.1)
Here, $y,q:(Z) denotes the largest singular value of matrix Z, and o(-) is the little—o.

Applying Bai-Yin’s law to a Glorot-initialized square matrix leads to the following Corol-
lary.

Corollary 10. Let Z = Zy n be a Glorot-initialized random matrix. As N tends to infinity,
Smaz(Z) = 2+ o(1).

This is true because Z is initialized with a zero-mean Gaussian distribution having variance
equal to 1/ N, instead of unit variance (as Theorem 9 suggests). Therefore, the largest singular
value in Equation 5.1 is scaled by a factor of 1/+/N.

Corollary 10 shows that a randomly Glorot-initialized weight matrix has a largest singu-
lar value greater than 2 as its width increases. We leverage this observation to establish
a connection between our analysis and the findings in the existing literature about over-
smoothing.

1.2 Partially Trained Neural Networks

While fully untrained models are expected to perform poorly, limited attention has been
paid to partially trained networks. This approach resembles the fine-tuning [137] of pre-
trained models, which is common in large neural networks. In classical pretraining meth-
ods, a large model is initially trained on generic data and then fine-tuned on a downstream
task. During fine-tuning, only a subset of its upper layers are permitted to receive updates
and modify the weight values.

As initially noted by [25], even an untrained GCN can generate node features suitable for
node classification. In our analysis, we permit only a single layer of the model to receive
updates during training, while maintaining the remaining layers in their initial random
state.

104

2 Theoretical Analysis

2.1 Partially Trained GCNs

We propose partially training of a GCN, where the training process is constrained to a
single layer of the network. The model architecture remains the same as the one presented
in Equation 2.1, but all weight matrices except one remain constant during training. The
trainable layer can be placed anywhere within the network. The proposed architecture
is presented in Figure 5.1. With training limited to a single layer (i.e., j-th layer) of the
network, we can partition the weight matrices into three sets: i) The lower j — 1 untrained
matrices, ii) The j-th trainable matrix, and iii) The upper L — j untrained matrices, where L
is the model depth. Since learning is a dynamic process, which cannot be fully controlled,
we investigate the properties of the two sets containing the untrained matrices and their
effect on the model’s behavior.

y \ Untrained Trained Untrained Untrained
[Input GCN { ReLU |--- GCN »{ RelU — GCN 4>{ ReLU GCN
\, Layer Layer Layer Layer

Figure 5.1: Architectural diagram of a partially trained GCN.

To simplify the notation, we omit the influence of the ReLU activation functions in our
analysis. This simplification also provides an upper bound for the final node representations
of the model, due to the fact that ReLU is 1-Lipschitz. That particular property restricts
the extent to which the output of the function can change in response to changes in its
input. Therefore, by disregarding the impact of ReLU activation functions, we establish a
theoretical ceiling on the improvement achievable in the model’s node representations.
Considering the partition of matrices into three sets and disregarding the ReLUs, we rewrite
Equation 2.1 to represent the final node embeddings, as follows:

j-1 L-1
HL — AL-1. X(: Hw(i)> W) . (H W(i)) —
i=1

i=j+1
AL x Lttt) Wrisht, (5.2)

where L is model’s depth, Ais the augmented symmetrically normalized adjacency matrix,
X are the initial node features, W7 is the weight matrix of the trainable layer of the model,
and W'/t JWright denote the products of the untrained weight matrices.

Depending on the value of j, representing the position of the trainable layer, the behavior
of the network changes: i) j = 1: Learning occurs in the first layer, with subsequent
layers propagating and aggregating information using random weights. ii) j € [2,L —
2]: Initial node features undergo random transformations, followed by learning in layer j.
The learned features are then randomly aggregated by subsequent layers. iii) j = L — 1:
Initial features pass through the random network, where information is propagated and
aggregated. The final layer is responsible for generating meaningful representations.

105

In the following analysis, we study the formulation of W'/t and W9, the distribution of
their elements, and how they affect the information flow within the network. The analysis
holds also for Graph Attention Networks (GAT), which can be viewed as a GCN applied to
a weighted graph.

2.2 Product of Untrained Weight Matrices

We now take a closer look at the properties of W'/t and W9, Our analysis focuses on
the product of two untrained matrices, denoted as WM and W@, of size d x d. The product
of these two matrices is expressed as:

1 1 2 2
Wip oo Wig wi; ... Wig
wm . w®@ = : . : . : - : =
Wy 1 Wy q Wy 1 Wy q
1,2 1,2
wyp .. Wiy
1,2 1,2
wd71 . .. wd,d

We focus on wif of the resulting matrix, as the same analysis extends to all elements. Since
both W) and W (?) remain constant during training, and all their elements are drawn from
the same distribution, it suffices to determine the distribution of wif We are interested in
the distribution of w,{zQ, because they remain fixed throughout the training process, thereby
influencing the flow of the initial node information within the model. By characterizing
their distribution, we aim to gain insights into how this information evolves and study the
properties of the resulting embeddings.

The value of wif is computed as:

d
1,2 1.2
Wi = Zwl,iwi,l' (5.3)

Each term of the sum in Equation 5.3 is a product of two independent and identically dis-
tributed Gaussian Random Variables (RV.). The following Lemma shows the distribution of
the product of two such RV.s.

Lemma 11. Let Y7, Y5 be two independent R.V.s which follow the same Gaussian distribution.
Their product can be written as:

_ (M +Y)2 (YY)
YiYy = R

If (Y, £Y5) follow a Normal distribution then (Y} £ Y5)? will follow a Chi-square (x?) distri-
bution. Therefore,
Var(Yr +Y2) Var(Y; — Ys)
B A
Var(Yy) + Var(Y;

W +Vet) o g,

where Q, R ~ \? and are independent of each other.

YiYs ~ R=

106

Lemma 11 shows that each term in the sum of Equation 5.3 follows a x? distribution with
one degree of freedom. Based on that result, we focus on determining the distribution of
the difference of two R.V.s, when each of them follows a X% distribution.

Lemma 12. Let F = Q — R, where Q, R ~ x?. Then I follows a symmetric around zero
Variance-Gamma (V.G (a1 1)) distribution with parameters: o« = A = 1/2 and f = p = 0.

The proof is based on the moment-generating function of the Chi-square distribution with
one degree of freedom.

Mq(t) = Mg(t) = (1 —26)".

Mp(t) = (%)m. (5.4)

Equation 5.4 shows that the moment of F matches the moment of a variance-gamma distri-
bution with the aforementioned parameters.

Using the parameter set defined in Lemma 12 to the equations of the Variance-Gamma dis-
tribution we get: i) E[F] = 0, and ii) Var(F) = 4.

Combining the results of Lemma 11 and Lemma 12, we deduce that the product of two
independent RV.s, Y7, and Y5, each following a Gaussian distribution, follows a Variance-
Gamma distribution. Specifically, the parameter set of the distribution is outlined in Lemma
12,ie. 1Y ~ Jy, v, - F, where Jy, y, = (Var(Yl)—l—Var(Yg))/Zl, and F' ~ V.G (1/2,0,1/2,0)-
Applying this result to Equation 5.3 leads to:

Init(W® Init(W®@Y)) &
e Var(Init(WW)) + Var(Init(W'?)) Z

’ 4

where Var(Init(W®*))) is the variance of the distribution used for the initialization of the
weight matrix of the k-th layer, and F; ~ V.G.(1/2,0,1/2,0)-

Both W) and W) are initialized by a zero-mean Gaussian distribution with variance
equal to 1/d (Glorot initialization), which in turn leads to the following result about the
distribution of each element of the W) - () matrix:

d
e 1/d+1/d 1 1
w2 R= g) =gk

with F; being the average of F}’s.

For the last step of our analysis of the product of the weight matrices, we utilize the Cen-
tral Limit Theorem (CLT). CLT states that the distribution of \/d(F; — E[F;]) 2%~

N(0,Var(F;)) as d increases.

Considering that E[F;] = 0and Var(F;) = 4, we conclude that the distribution of F;
N (0,%).

Hence, we arrive at the distribution of wif ~ %Fd TN (O, é), which is the same dis-
tribution as the one used in Glorot initialization. Consequently, the elements of the product
of two weight matrices follow the same distribution as that followed by the elements of the
initial matrices. Using induction we can also prove that the product of an arbitrary num-
ber of untrained weight matrices is a Gaussian matrix, with elements following a A/ (0, é)
distribution, as model’s width (i.e., d) increases.

approz.

107

2.3 Effect of T/'e/t

We have proved that both Wieft and W9t are Gaussian matrices, with random elements
following the distribution of the Glorot initialization method. Looking back at Equation
5.2, since both the graph topology and the initial node features are fixed, their product
(B = AL'X) remains constant during training. Therefore, we investigate the effect of
multiplying a Gaussian matrix with a constant matrix, i.e. matrix B. In order to keep the
notation simple, we analyze the case of j = L — 1 in Equation 5.2, which means that 1¥/"9
disappears. Equation 5.2 is transformed as follows:

HE) — (B . Wleft) WO, (5.5)

Lemma 13. Let Y be a random vector withY ~ N (u,X), and O a non-singular matrix, the
distribution of O - Y is given as:

O-Y ~ N(Op, OSO7).

According to Lemma 13, every column of the product of a Gaussian matrix and a non-
singular matrix follows the same Gaussian distribution. Hence the resulting matrix also
follows that particular Gaussian distribution.

The proof of Lemma 13 comes from the definition of a multivariate Gaussian random vec-
tor and the impact of an affine transformation on its distribution. Lemma 13 indicates that
B - W't ~ N(0,5BBT), because W'/* ~ N/(0, %) and B is non-singular.

Let us take a closer look at matrix B, ignoring temporarily W!/t, Matrix B comprises
node features that are averaged multiple times, based on the underlying graph topology.
As the depth increases, the number of copies of A in B also increases, intensifying the
averaging process. This, in turn, increases the similarity and the correlation between the
feature vectors (i.e., rows of B). Highly correlated features become too similar, causing
oversmoothing. This problem can also be viewed as a reduction in the standard deviation
of each feature column in B.

We focus on the training subset, as it drives representations (via weight updates) either
towards or away from the oversmoothing subspace. Let B, be the observed dataset,
i.e., a submatrix of B containing only the respective rows of the training (i.e., labeled)
nodes. We assume that the initial node features are independent and identically distributed
(iid.), drawn from an unknown distribution. Consequently, the row vectors of By.qn,
representing node features averaged multiple times, also follow an unknown distribution.
Additionally, we assume that these row vectors B;, follow a continuous and irreducible
p-dimensional distribution with mean . and a positive-definite covariance matrix >, e.g.,
B; ~ Np(1, X). Lastly, we make the mild assumption that = 0.

Next, we focus on estimating the sample correlation matrix. Let Y = (Y};)n,,...xp D€
the matrix resulting from the original dataset B4, normalized by column, ie. Y;; =

Ntrain Nt'rain

(Bij —)/, where [i; = Nt'rlain 21 Bjjand ¢;° = lem—l Zl (Bi; — fi;)*. Then the
sample correlation matrix R is defined as:
R=_1 yTy
B Ntrain ‘

Since we assumed that /i; = 0 Vj, we get that Y;; = Bij/@, which in turn leads to Y =
Birain2, where ¥ = diag(1/01,1/09, ..., 1/0¢).

108

In this formula of f], o; represents the standard deviation of each feature column in B,
computed column-wise. That is, o; corresponds to the standard deviation of the i-th feature
across all nodes, assuming each node has C' initial features. This, in turn, transforms R as

follows:
1

N, train

~ ~ ~

SBY Bhans =353,

train

R

1 T
Ntrain train

Leveraging the properties of the diagonal matrix 3., we can derive bounds for R as follows:

where S = Bi;qin is the sample covariance matrix, because fi; = 0 V7.

1\? 1\?
Clrower * S = (min —) S<R< (max—> S = Cupper * 5, (5.6)

J 0y J 0y

2 2

where Cloper = (min %) ,and Cypper = (max L}) .
i i %

The addition of W'/t alters the distribution from which the samples B! are drawn. The

product B - W'/t follows a Gaussian distribution with a predefined variance. We proved

that B; ~ N (Q%(L_ BT Btmm>> = N (O,%S). As a consequence, the

Nipain — train

correlation matrix R’ after the addition of W'/t is bounded as follows:

Ntrain Ntrain
Oower : S < R/ <
a =Ty

Cupper : Sa (57)

where d the width of the trainable layer.

Therefore, the presence of W'/t in Equation 5.5 modifies the upper and lower bounds of
the correlation matrix.

We observe that both Cjyyer and e depend on the inverse of the smallest and largest
standard deviations among the columns of By, respectively. As depth increases and
oversmoothing occurs, the largest standard deviation shrinks. This shrinkage increases the
value of Cjyyer, which, in turn, increases the lower bound of R, leading to higher correla-
tion values.

On the contrary, when W'/ is introduced, the denominator d keeps the upper bound of
R’ small. Comparing Equation 5.6 with Equation 5.7 leads to the following conclusion: In-
creasing the depth reduces the smallest standard deviation among feature elements, thereby
increasing the lower bound and overall values of the correlation matrix. The introduction of
Welt adjusts the upper bound of the correlation matrix and reduces its values as d increases.
Since the rows of B are highly correlated, as the depth increases, we expect that the covari-
ance matrix (and its estimator S) will contain large elements. This, in turn, highlights the
role of the term & teain which tones down these large elements. Therefore, we would like
to adjust the elements of the correlation matrix, in order to: i) prevent similar embeddings
for all nodes, and ii) avoid highly dissimilar embeddings between nodes of the same class.
Therefore, the term tzain plays a crucial role in reducing the correlation between the rows
of matrix B. Given that Ny, is fixed, we can reduce the correlation, by increasing d.
Additionally, since we assume zero-mean distribution of the row values, the cosine simi-
larity of vectors equals their correlation coefficient. Hence, lower values in the correlation
matrix correspond to lower cosine similarity, indicating less similar node representations.
This observation highlights the effect of W!¢/!, which can increase the dissimilarity be-
tween node embeddings, counteracting the oversmoothing caused by repeated multipli-
cations with the adjacency matrix. Finally, we observe that d serves a dual purpose, as

109

its increase (a) strengthens the conditions of CLT; namely the more random variables we
sum, the stronger is the convergence of their average to a Gaussian distribution, and (b)
reduces the correlation between node features (as explained above). However, excessively
increasing d might lead to very dissimilar node embeddings and poor training performance.

2.4 Untrained Weight Matrices and Oversmoothing

Conceptually, as discussed in section 2.3, untrained weight matrices act as reducers of the
correlation between node embeddings before learning occurs. Their presence helps the
model to preserve the informative aspects of the initial node embeddings, while also aggre-
gating information from distant nodes in the multi-hop neighborhood, due to the powers
of the adjacency matrix. Consequently, the trainable layer is applied to node embeddings
that contain information from distant nodes, thereby enabling effective learning.

We now shift our focus to the singular values of the weight matrices, which are known
to influence oversmoothing. The untrained matrices are all initialized using Glorot method
and remain constant during training, which means that their singular values do not change.
Leveraging Corollary 10 about these matrices, we conclude that their largest singular value
is greater than 2, as their width (i.e., d) tends to infinity. Therefore, the product of the
largest singular values of the untrained weight matrices maintains a high value. Accord-
ing to Corollary 2, a large value of the product of the largest singular values of the weight
matrices allows the model to reduce oversmoothing, which is what we expect from the
partially trained models.

3 Experiments

3.1 Experimental Setup

Datasets: We conduct experiments on well-known benchmark datasets for node classifi-
cation: Cora, CiteSeer, Pubmed, utilizing the same data splits as in [25], where all nodes
except the ones used for training and validation are used for testing. Furthermore, we use
the Photo, Computer, Physics and CS datasets, adopting the splitting method presented in
[138]. To assess the real world applicability of our partial training paradigm, we extended
our evaluation to the Arxiv dataset [134] as well. Dataset statistics can be found in Ap-
pendix 24.

Models: The focus of our work is on the effect of the model’s width, under the partially
trained setting. Therefore, our base model is the simple and conventional GCN architec-
ture [25]. To further validate the proposed method, we also experiment with the GAT
model [41], which leverages an attention mechanism for node feature aggregation, i.e., the
features of each node are derived by the weighted sum of the features of its neighbors.
Additionally, we experimented with a more advanced method that addresses the problem
of oversmoothing, through the use of residual connections and identity mapping, namely
GCNII [11]. The reason for including such a method was to verify that the proposed partial
training approach does not harm its performance. All partially trained models update a
single layer, and keep the rest of the model weights frozen to the initial random values.
Hyperparameters: We vary the width of GCNs and GATs between 64 and 8192. The fully
trained models are subject to L, regularization with a penalty of 5-10~%, while the partially
trained models do not use regularization. The learning rate for the fully trained models is
set to 1073, whereas for the partially trained, it is set to 0.1. For GAT we use a single atten-

110

10 Cora CiteSeer Pubmed Computers

0.8
0.6 H
— 64 — 64 — 64 — 64
128 \\ 128 ~. 128 128
— 512 — 512 \ — 512 — 512
021 2048 [— 2048 > [| — 2048 [— 2048 ~
—_ — 8192 — 8192 — 8192 —— 4096
X —— 128-Trained —— 128-Trained —— 128-Trained —— 128-Trained
; 0.0+ . . —L . . —L . . — . . .
> 4 8 16 32 4 8 16 32 4 8 16 32 4 8 16 32
®
> Physics Cs Photo Arxiv
O 1.0
g —o— 512
1024
0.8 1 1 —— 128-Trained
0.6 H
— 64 — 64 — 64
128 128 128
— 512 —e || — 512 — 512
021 2048 1 — 2048 | — 2048 ’_’
—— 4096 — 8192 ~ — 8192
—— 128-Trained —— 128-Trained —— 128-Trained
0 5 T % 4 5 o % 4 ; o % 4 ; T 2

Model's depth

Figure 5.2: Comparison between a fully trained GCN and different configurations (in terms
of width) of partially trained GCNs across 8 datasets for varying depth. The
trainable layer is always the second.

tion head. The above values are determined, based on the performance of the models on
the validation set.

Configuration: Each experiment is run 10 times and we report the average accuracy and
standard deviation over these runs. We train all models for 200 epochs using Cross Entropy
as the loss function. For the Arxiv dataset training was run for 10.000 epochs to ensure con-
vergence.

3.2 Experimental Results

One trainable layer for different widths and depths:

In our first experiment, we investigate the effect of width and depth in partially trained
GCNs and GATs, of varying depth. Specifically, in Figure 5.2 and Figure 5.3 we observe
that wider networks tend to be more resistant to oversmoothing, as the depth of the net-
work increases. This aligns with our theoretical findings, as presented in section 5.2. The
trainable layer of the networks is the second, a choice which was based on experimenta-
tion. Additionally, partially trained GCNs and GATs outperform fully trained ones given a
wide enough trainable layer. Therefore, a wide single layer can effectively learn informa-
tive node representations, when node information is appropriately aggregated by untrained
layers.

To further explore the capabilities of the partial training paradigm and assess real-world
applicability, we evaluated GCN with and without partial training on the large-scale Arxiv
dataset. Across all depths, both partially trained variants yield consistent accuracy im-

111

Cora CiteSeer Pubmed Computers

0.8 1 I i I — 64

0.7 4

0.6 q —— 128-Trained

0.5 1
0.4

0.3 4 H H
— 64 — 64 — 64
128 I 128 I 128
— 512 — 512 — 512
— 8192 || — 8192 || — 2048
—— 128-Trained —— 128-Trained —— 128-Trained

0.2 4

0.11

4 8 16 32 4 8 16 32 4 8 16 32 4 8 16 32

Physics Cs Photo Arxiv

— 64 — 512
128 —— 128-Trained
—g512
— 1024
—— 128-Trained

Accuracy (%)

0.8 9

0.6 q

0.4

64

128 128 ~\
021 __ 356 — 512 }

— 512 — 1024

—— 128-Trained —— 128-Trained
0.0 T T T T T T T T T T T T T

4 8 16 32 4 8 16 32 4 8 16 32 4 8 16 32

Model's depth

Figure 5.3: Comparison between a fully trained GAT and different configurations (in terms
of width) of partially trained GATs across 8 datasets for varying depth. The
trainable layer is always the second. Arxiv experiments were limited to 8 layers
due to hardware constraints.

provements over the fully-trained baseline. At shallow depths (4 and 8 layers), the gains are
modest, but increase at deeper settings (16 and 32 layers). For the GAT model, experiments
on the Arxiv dataset were limited to 8 layers due to hardware constraints. The above result
highlights again that partially trained models are more effective under conditions where
oversmoothing risk is higher. Additionally, the results with the Arxiv dataset demonstrate
that the partial training setup can scale to million-edge graphs, with its benefits becoming
more evident at greater depths where the risk of oversmoothing is higher.

It is also noteworthy, that increasing the width of fully trained GCNs and GATs does not
improve their performance, while, in contrast, we observe significant improvements for the
partially trained models as their width increases. In particular, Figure 5.4 and Figure 5.5 il-
lustrate that fully trained models perform better with smaller widths. Wider fully trained
models achieve lower accuracy, likely due to the increased number of trainable parameters
that hinder the optimization process.

As mentioned above, we also experimented with the more advanced GCNII across varying
network depths. The results of those experiments, which can be found in Appendix 12,
show that the proposed approach does not harm the performance of GCNII and in some
cases may even improve it slightly.

Partially trained GNNs can solve the “cold start” problem:

The second set of experiments aimed at demonstrating the advantages of using deep archi-
tectures that are resistant to oversmoothing. For this purpose, we simulate the “cold start”
scenario, which resembles the situation where a new item enters a recommender system

112

Cora CiteSeer Pubmed Computers

— 128 || I — 128
512 512

0.8

0.7 — 2048 || I —— 2048
—— 8192 —— 4096
0.6 H
0.5 -
0.4
0.3 I
0.2 1 N — 128
512
—~ 014 I N — 2048
X —— 4096
g 00- T T T T n T T T T 3 T fl T
> 4 8 16 32 4 8 16 32 4 8 16 32 4 8 16 32
e
> Physics cs Photo Arxiv
O
g — 128 — 128 — 128
512 512 512
0.8 H — 2048 || — 2048 || — 1024
—— 4096 —— 4096

0.41

— 128
0.2 512
— 1024
— 2048

ol | | | \\
16 32

4 8 16 32 4 8 16 32 4 8 16 32 4 8

Model's depth

Figure 5.4: Comparison between different configurations (in terms of width) of fully
trained GCNs across 8 datasets for varying depth.

without any features. This setup, initially proposed in [13], requires leveraging information
from distant nodes to create meaningful embeddings for the new item. In order to simulate
it, we create the cold-start variants of the datasets, by removing feature vectors from the
unlabeled nodes and replacing them with all-zero vectors. Classification accuracies under
this “cold start” scenario (see Table 5.1) are lower than in the standard setting, as the model
is trained without feature information for the unlabeled nodes. These modified datasets en-
able us to assess the effectiveness of deep architectures in handling scenarios with limited
feature information.

For different widths of partially trained GCNs and GATs, we present the best performance
achieved and the depth at which the model attains that performance in Table 5.1.

In this context, we observed that partially trained models perform better if both of their
last two layers are allowed to receive updates. This is due to the increased difficulty of the
problem, compared to standard node classification without missing features. From Table
5.1, we observe that the deeper models consistently outperform shallower ones in almost
every dataset, underscoring the necessity of relatively deep architectures, which are less
prone to oversmoothing. Additionally, Table 5.1 shows that as width increases, the perfor-
mance of the models improves, and the depth at which optimal performance is attainable
also increases. It is worth noting that the fully trained GCNs and GATs generally exhibit
inferior performance, which is also attained by shallower architectures. This is due to the
high-degree of oversmoothing of such models, which makes deeper architectures unusable.
Role of the position of the trainable layer:

Having demonstrated the advantages of partially trained GCNs and GATs in both standard
node classification tasks and the “cold start” problem, we now conduct a set of ablation

113

Cora CiteSeer Pubmed Computers

0.8 H — 128 H H 64
512 — 128
0.7 1 H — 2048 | H — 256
— 4096 — 512
0.6
0.5
0.4
0.3
— 128 — 128
0.2 512 H H 512
= —— 2048 — 1024
é 0.1 — 4096 L] || — 2048
5 4 8 16 32 4 8 16 32 4 8 16 32 4 8 16 32
®©
—
> Physics Cs Photo Arxiv
]
[v] J— J—
< 128 128 128

512
0.8 9 il — 512
— 1024

0.6 q

0.4

0.2 64

0.0 1

4 8 16 32 4 8 16 32 4 8 16 32 4 8 16 32

Model's depth

Figure 5.5: Comparison between different configurations (in terms of width) of fully
trained GATs across 8 datasets for varying depth. Arxiv experiments were lim-
ited to 8 layers due to hardware constraints.

experiments. According to Equation 5.2, the trainable layer can be placed at any position
within the network. Our theoretical analysis has primarily focused on the scenario where
the final layer is trainable.

Table 5.2 shows the impact of varying the position of the trainable layer across different
combinations of widths and depths. We observe that, in general, the optimal position for
the trainable layer is the second. Placing the trainable layer at a relatively early stage of
the model, facilitates training on the basis of a very local aggregation of information, i.e.
2-hop. Subsequent convolutional layers then distribute the learned embeddings, while also
preventing over-correlation, as explained theoretically. The performance gap between dif-
ferent positions of the trainable layer diminishes with increasing width, showing that a
large width makes the model more robust to the placement of the trainable layer. Addi-
tionally, the optimal position is different for different datasets. Table 5.2 presents the results
for three datasets chosen to highlight this observation. For the rest of the datasets we have
observed similar behavior and the respective results appear in the Appendix 13.

MLP vs GCN for trainable layer:

In this experiment, we aimed to answer the question of whether the trainable layer has to
be a graph convolutional layer, or if it could be replaced by a Multi-Layer Perceptron (MLP).
The underlying hypothesis was that if sufficient information has already been effectively
propagated through the network by the untrained graph convolution layers, then an MLP
could potentially generate informative node representations.

Table 5.3 presents the performance achieved by models employing either a single GCN or
an MLP as their trainable layers. We focus on a rather challenging configuration of a 16-

114

Table 5.1: Comparison of different model widths of partially trained GCNs and GATs with
fully trained ones, in the “cold start” scenario. Only the features of the nodes in
the training set are available to the model. We present the best accuracy of the
model and the depth (i.e. # Layers) this accuracy is achieved.

GCN GAT
Dataset Width
Accuracy (%) & std #L | Accuracy (%) & std #L
128 63.31 +25 6 58.41 +23 4
512 70.60 +15 15 66.66 + 1.8 22
Cora
8192 73.24 + 0.6 17 72.09 + 1.6 28
Trained 69.35 + 0.9 6 66.23 £ 13 5
128 42.09 +o7 4 40.75 £ 20 5
CiteS 512 48.17 +1.2 14 45.26 + 26 19
feseer | g199 51.32 + 0 31 50.29 + 0. 31
Trained 46.62 +o07 7 44.38 +o03 5
128 64.68 +£3.2 7 63.47 +£35 5
Pubmed 512 69.80 +o3 7 67.22 +27 28
8192 72.73 + 05 16 69.83 +0.8 7
Trained 69.48 + 0.6 7 66.50 + 13 5
128 38.61 +o0.0 2 5499 +75 3
Physics 512 75.82 0.6 4 72.11 +15 4
4096 88.11 + 05 14 75.29 + 5.7 16
Trained 82.50 + 0.1 5 74.11 + 26 4
128 40.52 o2 2 43.42 +1.4 3
cS 512 63.94 +o3s 4 56.12 + 0.7 4
8192 77.49 +04 14 72.43 +30 17
Trained 66.11 £1.2 6 61.32 £31 7
128 73.87 +o05 2 67.14 + 20 2
Photo 512 76.72 0.0 2 68.85 +25 2
8192 86.11 + 0.2 5 75.90 £+ 35 12
Trained 82.53 £ 1.2 5 74.08 £ 1.1 3
128 61.07 £07 2 56.46 +256 2
Computers 512 67.07 £0.0 2 57.72 +21 2
4096 76.58 + 0.4 5 63.92 +43 13
Trained 74.03 + o0 6 57.55 £33 3

layer model, which has access to distant information but needs to avoid oversmoothing.
Results indicate that GCN slightly outperforms MLP in terms of accuracy and stability, as
evidenced by achieving better scores with smaller standard deviations. However, the per-
formance improvement is marginal, suggesting that both approaches can generate infor-
mative node representations, provided the necessary information has been appropriately
received and not excessively mixed by graph convolution.

Varying width within the network:

In our final experiment, we investigate the impact of changing the width of the untrained
layers. Table 5.4 shows the performance of a 16-layer partially trained GCN with varying
width across all of its untrained layers. Each row corresponds to a model with a different

115

Table 5.2: Performance comparison of GCN models with different width and depth, as well
as different placement of the trainable layer.

Accuracy (%) & std
. Position
Dataset | (Width, Depth)) 4 g 16 32
(512, 8) 67.58 +125 | 62.13 £118 | 53.47 £ 155 - -
(2048, 8) 71.20 £0.49 | 67.20 £118 | 61.14 +1.11 - -
. (8192, 8) 70.78 +1.45 | 69.52 +108 | 66.39 +074 - -
CiteSeer
(512, 32) 34.35 1225 | 32.40 +981 | 29.01 986 | 27.72 +1178 | 30.12 +10.94
(2048, 32) 57.36 +646 | 55.76 +572 | 57.22 +287 | 56.72 +384 | 58.69 +3.80
(8192, 32) 70.18 + o064 | 68.21 +087 | 65.45 +1.06 | 65.45 +£09 | 65.99 +1.09
(512, 8) 84.53 +132 | 83.54 +074 | 66.85 +544 - -
(2048, 8) 89.68 +0.12 | 89.41 +o018 | 82.59 +036 - -
Photo (8192, 8) 90.26 +021 | 89.82 +o.22 87.73 +o0.18 - -
(512, 32) 22.69 +1500 | 22.15 +1170 | 24.42 +1512 | 25.68 +1529 | 21.61 + 12061
(2048, 32) 41.12 £17.04 | 44.96 £1592 | 50.78 £13.71 | 51.76 +£13.70 | 50.19 +13.14
(8192, 32) 72.32 +2093 | 71.39 £204 | 70.58 £127 | 70.66 £195 | 71.62 +130
(512, 8) 64.74 +214 | 63.81 £157 | 59.70 £ 1.03 - -
(2048, 8) 73.10 +o026 | 72.22 +o022 | 64.77 +o071 - -
Computers (4096, 8) 74.80 +0.00 | 73.15 +000 | 66.52 +0.00 - -
(512, 32) 8.43 +5.18 8.83 +524 | 12.71 +1189 | 10.82 + 548 8.33 +521
(2048, 32) 45.74 + 1944 | 48.15 + 1988 | 49.38 +19.14 | 50.85 +17.11 | 50.97 +17.32
(4096, 32) 65.00 +000 | 67.62 £0.00 | 65.17 £000 | 66.28 £0.00 | 64.84 +0.00

Table 5.3: Performance comparison between an MLP and a GCN, used as trainable layers,
in a 16-layer GCN model, for Cora, Citeseer and Pubmed datasets.

Accuracy (%) & std
Model
LP
Dataset M GCN
Cora 80.83 +08 | 81.09 + 04
CiteSeer 70.31 £12 | 71.15 +11
Pubmed 7832 +08 | 78.55 + 03

configuration. In our experiments, wide layers are placed lower in the model, but changing
their position does not yield improvements.

Results indicate that models having the majority of their layers wide, perform better. This
observation is aligned with our theoretical analysis, in which we have assumed wide square
weight matrices (i.e., maintaining the same width throughout the network).

116

Table 5.4: Performance comparison on the Cora dataset, when we vary the width of a 16-
layer GCN model, in which only the final layer is trainable. For each configu-
ration each width column indicates the number of the untrained layers which
have that particular width. Wider layers are placed at the lowest positions.

2048 VZé(;téh 8192 Accuracy (%) & std
12 0 3 76.54 + 1.0
8 0 7 76.82 +1.0
4 0 11 77.50 £ 1.0
0 0 15 79.45 +1.0
0 12 3 78.37 £0.7
0 8 7 78.62 1.0
0 4 11 79.06 + 0.3

Memory and Convergence:

Table 5.5 reports peak GPU memory and convergence metrics for GCN and GCNII on the
Arxiv dataset, for varying depth and width . As expected, wider and deeper networks
demand more memory, but this cost depends solely on the architecture size. Partially-
trained models consistently converge faster than the fully trained ones (at 50% - 75% of the
epochs), while achieving higher accuracy as shown in subsection 4.2. Per-epoch runtime
increases with width, due to larger number of parameters, but partially-trained models
require fewer epochs and achieve superior performance, reducing oversmoothing in deeper

architectures.

Table 5.5: Peak memory and convergence metrics. Each entry shows memory (GB) and
time per epochxepochs. Width is annotated with (Full) or (Partial), depending
on the type of training adopted.

Depth Width Model Memory TimexEpochs
128 (Full) GCN 1.6 0.1x8000
, 1024 (Partia) GCN 6.0 0.4x4500
256 (Fulll GCNII 9.1 0.4x800
512 (Partial) GCNII 17.6 0.8x400
128 (Ful) GCN 25 0.2x7000
g 1024 (Partia) GCN 112 1.0x4000
256 (Ful) GCNII 14.0 0.8x800
512 (Partial) GCNII 225 1.6X600
128 (Ful) GCN 45 0.3x10000
Lo 1024 (Partial) GCN 230 2.4x8000
256 (Ful) GCNII 19.0 1.7x1000
512 (Partial) GCNII 322 3.3x800

! GAT was excluded from this study, due to its memory-handling problems.

117

4 Conclusion

In this chapter we investigated the use of partially trained GCNs for node classification
tasks. We have shown theoretically that training only a single layer in wide GCNs and
GATs is sufficient to achieve comparable or superior performance to fully trained mod-
els. Additionally, we linked our proposed method to existing literature on oversmoothing
and demonstrated that partially trained models can perform well even as their depth in-
creases. We emphasized the dual role of width in our analysis, both in terms of Central
Limit Theorem convergence and for reducing the correlation of node embeddings, due to
repeated weight averaging. We have assessed our theoretical results through a variety of
experiments that confirmed the potential of partially trained GCNs and GATs. Finally, we
applied our method to the state-of-the-art GCNII architecture. In these experiments we
observe that the proposed method yields consistently at least as high an accuracy as the
fully trained GCNII, even though GCNII's architecture already provides strong resistance to
oversmoothing. Importantly, our integration required no modification to GCNII’s core de-
sign, underscoring that partial training can complement diverse GNN models with minimal
effort.

118

Chapter 6

Reducing Oversmoothing through Informed
Weight Initialization in Graph Neural Networks

This chapter addresses the problem of oversmoothing in deep Graph Neural Networks
through the lens of weight initialization. Most existing GNNs adopt initialization meth-
ods originally developed for fully connected or convolutional neural networks, such as
Kaiming [15] or Xavier [122] initialization. These methods, however, neglect the structural
properties of graph data and the unique signal propagation behavior inherent in GNN ar-
chitectures.

Several methods have been proposed to alleviate oversmoothing and enable deep GNN5s
[103, 13], but none of them considers the effect of weight initialization. The aim of this
chapter is to propose a weight initialization that is suitable for GNNs and investigate the
effect weight initialization can have to oversmoothing. In particular, we generalize the
analysis of [15] to GNNs and present results about the variance of signals and gradients
flowing inside the network. We analyze the case of a general GNN model, which may
combine graph convolution, residual connections and skip connections, aiming to cover
the majority of existing graph convolutional models. Leveraging these theoretical results,
we then focus on the simpler case of a GCN and we propose a novel weight initialization
method (G-Init), that stabilizes variance and reduces oversmoothing. We attribute this ef-
fect to the initial largest singular values of the weight matrices, which may influence the
largest singular values after convergence. These, in turn, are known to be related to over-
smoothing [7]. Finally, experiments on a diverse range of datasets verify our theoretical
results.

Hence, the main contributions of the work presented in this chapter are as follows:

« Theoretical analysis of weight initialization for GNNs: We generalize the analysis of
[15] to convolutional GNNs. We investigate a parametric GNN encompassing variations
with and without residual connections, skip connections, identity addition to the weight
matrix and controlled effects of graph convolution and weight matrix. We derive the re-
spective formulas about the variance of the forward signals and the backward gradients
within the model.

« A new weight initialization method (G-Init): We propose a new way to initialize GNN
weight matrices, focusing on the initialization of GCN. Our method aims to stabilize the
variance and capitalize on its relationship with oversmoothing reduction.

+ Experimental confirmation of the benefits of G-Init: We conduct experiments utilizing
deep GCNs and GATs with up to 64 layers across 8 datasets for node classification tasks and

show that the proposed initialization reduces oversmoothing. Additionally, we demonstrate

119

the benefits of G-Init, in the presence of the “cold start” situation, where node features are
available only for the labeled nodes. Additionally, we extend our experiments to graph
classification tasks, in which G-Init outperforms standard initialization methods.

1 Notations
Extending the GCN formula to a parametric and more generic GNN we arrive at:
H"Y = o ((aAHY 4 BHO + yHED) x (WO + €1)), (6.1)

where «, 3,7, 6 and € are preselected parameters that determine the convolutional GNN
architecture (e.g., if @ = 6 = 1,8 = v = € = 0 we have a GCN, while if « = 0.9, =
0.1,7=10,0 = A/l,e = 1—0 we arrive at GCNII [11]). We observe that, & and 9 control the
importance of graph convolution and the effect of the weight matrix respectively. Further-
more, 3, and € dictate the existence or absence of residual connections, skip connections
and identity addition respectively.

GNNss are also commonly used for graph classification tasks. Such tasks involve multiple
graphs of arbitrary sizes, each associated with a label that needs to be predicted. To achieve
this, GNNs are slightly extended with the addition of a READOUT function. That func-
tion takes as input the final node embeddings and aggregates them to produce a graph
representation. It is common practice to use average pooling as a READOUT function.
We will follow the same approach in our experiments throughout this work.

1.1 Weight Initialization

Before training, all entries of the weight matrices are sampled from a probability distribu-
tion. Selecting the appropriate distribution is very important. The most commonly used
initialization methods (i.e., [122] and [15]) focus on the stabilization of the variance across
layers. They aim to stabilize both the variance of the signals flowing forward and of the
gradients which flow backwards. The aforementioned methods either use uniform or zero-
mean Gaussian distributions. When Gaussian distributions are used, their variance plays a
crucial role. In particular, [122] proposed to initialize the weights, using a zero-mean Gaus-
sian with variance equal to 1/n;, where n; is the dimensionality of the [-th layer. Moving
one step further [15] proposed an initialization with a zero-mean Gaussian with variance
equal to 2/n;, taking into account the characteristics of the ReLU activation function.

In this work, we establish a connection between the weight initialization and the initial
singular values of the weight matrices. These values have the potential to influence the
final singular values and, consequently, oversmoothing. For this, we will use the circular
law conjecture, which was proven with strong convergence by [139].

Theorem 14 (Circular Law Conjecture [139]). Let Z,, be a random matrix of order n, whose

entries are i.i.d. samples of a random variable of zero-mean and bounded variance o2, ;. Also

let Ay, ..., \,, be the eigenvalues of L__ 7 . The circular law states that the distribution of \i
TstaV/n

converges to a uniform distribution over the unit disk as n tends to infinity.

The circular law conjecture dictates the relationship between the standard deviation (o)
of the random variable and the radius of the disk. In fact, if we increase oy there is a

proportional increase of the disk radius, which in turn increases the largest eigenvalue of
I

120

2 Theoretical Analysis

Despite their success in CNNs and FFNSs, existing weight initialization methods fail to cap-
ture the effect of the graph topology, which is of high importance in GNNs. Therefore,
we generalize the method developed in [15] to provide new formulas about the variance
flowing within the network, which takes into account the underlying graph topology. Sub-
sequently, we simplify the formulas specifically for the case of a GCN and introduce a novel
weight initialization method (G-Init) tailored to this particular model. Building on the the-
oretical foundation established by [15], we extend their analysis to the graph domain, by
incorporating the adjacency matrix, a fundamental component of the aggregation scheme
in GNNs. Additionally, we examine the forward propagation of signals and the backward
flow of gradients within the model. The key distinction of the proposed approach, and the
essence of our generalization, lies in the explicit role of the adjacency matrix in our formu-
lation. Notably, when this matrix is omitted, our analysis naturally reduces to that of [15],
reinforcing the validity and continuity of our approach as an extension of their work.

2.1 Forward Propagation

In order to simplify the notation, we will use the augmented normalized adjacency matrix
(ie, A = D Y(A + I)) instead of the symmetrically normalized augmented adjacency
matrix in Equation 6.1. This simpliﬁcation results in an equivalent analysis, differing only

in the use of the factor + o, instead of ——— d —, in the formula of node representations. Hence,
iaj

the representation of a node 7 in layer [becomes:

(Zx + - :1: +7 :1:81) (OW; +€el) + by, (6.2)

]GN

where N (i) is the neighborhood of node i and N (1) is the augmented neighborhood, af-
ter self-loop addition, and b; is the bias. Here xl(]) is an n; X 1 vector that contains the

representation of node j at layer [and W® is an n; x n; matrix, where n; is the di-

mensionality of the layer /. Finally, (j) = (yl(])1> according to Equation 6.1. Setting
xl(i)/ Y a:lj)T + - x) + - xgl) ;) and W/ = 0W, + el aligns Equation 6.2 above
JEN (@)

with Equation 5 in [15].

We let the initial elements of W) be drawn independently from the same distribution.
Aligned with [15], we assume that the elements of xl(j) are also mutually independent and
drawn from the same distribution. Finally, we assume that xl(j) and WO are independent

of each other. Hence, we get:

Var[yl(i)] = anar[éwl:El(i)/ + e:}:l(i)/], (6.3)

where yl(), xl(" and w; represent the random variables of each element in the respective
matrices. Utilizing the fact that the variance of the sum of two variables is equal to the
sum of their individual variances, plus twice the covariance between them, we let w; have

zero-mean, leading the variance to be:

Var[yl(i)] =n (Var [&wlxl(i)/] + Var [eml@/} + 200@(5w1xl(i)/, exl(i)/)) =

121

ny (52Var[wl]E l(xl(i)/)Q] + EVar [xl(i)/}) —

A 2
Var[N<n-E [(:L‘}”) 1 (6°Var[w] + €%) . (6.4)
In Equation 6.4, :cl(i)/ aggregates information from the neighborhood of each node, its pre-
vious representation and its initial representation. These components are subsequently

combined to generate the new node representation. Considering that xl(i) =0 (y;i)l), it is

necessary to decompose xl(" into three components: the first containing ml(), the second

containing x,)1, and the third containing the remaining information of a:l . In order to
achieve that, we will employ the Cauchy-Bunyakovsky—-Schwarz inequality (CBS), because
it allows to transform a squared sum of elements into a sum of squares of these elements.

Lemma 15.

A 2 ; ; 27 csB
l(el")] £ X A7ty e i) | %

JEN(7)

2

(di +1(8 #0) + L(y #£0)) x (%E {(a;f)ﬂ +2E {(zl@l)z

+ia.0)),

, _ oY o @2) _ Hr\? -

where j(a, 8) = —3—=+ - E(zy), k7 = > 7 , i.e., the sum of neighbor
' JEN()

representations excluding the self representation and 1(-) is the indicator function.

If we let w;_; have a symmetric distribution around zero and b;_; = 0 then y;_; has zero-
W\ 2
mean and symmetric distribution around its mean. This leads to £/ [(q:l(z)>] = Warly_1],

when the activation function is ReLU. Applying that result and Lemma 15 to Inequality 6.4
leads to the first main theorem of our work.

Theorem 16. The upper bound of the variance of the signals flowing forward in a generic GNN
defined by Equation 6.1 is:

Var[N <y (di+ 1(B #0) + L(y # 0)) X

(5 dQVar[yl]+ % Varly”,) + j(a,ﬁ)) x (0*Varfw) + €) (6.5)

wheren; is the weight matrix dimension, d; is the degree of nodei, 1(-) is the indicator function,
a, B,7,06 and € are parameters, depending on the underlying architecture of the model, and
j(a, B) is defined in Lemma 15.

The extended proof of Theorem 16, along with a lower bound of Vary, g)] is available in
Appendix 14.

122

2.2 Backward Propagation

For back-propagation, the gradient for node 7 is computed by:
Aa:l(i) = VVl’Ayl(i). (6.6)

We follow the same notation asin [15], where A:L’l(i) and Ayl(i) denote gradients (%, 6‘95) and E is the los
&) Yi

and have dimensionality of n; x 1. Equation 6.6 represents the result of applying the deriva-
tive to the loss function of the model’s predictions. Considering the common practice in
GNNSs to maintain a constant hidden dimension across layers, we proceed our analysis with
W, being an n; X n; matrix. We note that, in the general case proposed in [15], W/ might be
substituted by a matrix W 1, with 7, x n; dimensions, which can be formed by W/ through
reshaping. That modification does not affect our analysis, except in the appearance of the
factor n; in the results instead of ;. The reshaped matrix, W', retains the structural prop-
erties of W/, allowing us to use the latter for our analysis. More details about the use of
W, can be found in [15].

We also set AJ?l(i)/ =q Z (Axl(j)T) +y- AxE?_TI), the average gradient reaching node
JEN(i
¢ derived from the forward (p)ass and the interaction with its neighbors (message passing),
plus the gradient of its representation in the previous layer. The presence of residual con-
nections does not impact the gradient, as it adds a constant value to the node representation
(i.e., x(()i)), which has a derivative equal to zero. This ensures that the gradient for each node
is computed by aggregating the gradients of neighboring nodes, adjusted by the degree of
the node, along with the gradient of its own representation from the previous layer, pre-
serving the effect of residual connections.
If we assume that w; (a random variable representing the weight matrix elements) and Ayl(i)
are independent of each other and wj is initialized with a symmetric distribution around
zero, then A:L’l(i) has zero mean for all . Therefore, Axl(i)/ also has a zero mean, as it results
from the summation of zero-mean variables. '
In back-propagation we have Ayl(l) =0 (yl(z))Axl(fgll, where o'(+) is the derivative of the
activation function (i.e., ReLU). The derivative of the activation function, o’'(-), determines
how the error is scaled at each node. Since for ReLU, ¢'(+) is either one or zero, with
equal probabilities, the back-propagated error either passes through (when the neuron is
active) or gets blocked (when the neuron is inactive). Additionally, we assume indepen-
(i)
)

dence between o’'(y,”) and Axl(fl Hence, we arrive at the conclusion that F [Ayl(i)] =

E [0’(yl(i))] -E |:ACL’Z(_?/1] =F [Axl(i)/l} /2 = 0, due to the two branches of the ReLU deriva-

tive, the independence between o’ (yl(i)) and Az(”, and the zero-mean of Axl(i)/. Conse-

I+1°
quently we get:

AN 2 A 2 A , -\
E {(Ayﬂ) } =F {(Ayl@ — O)] = Var [Ayl(l)} = Var |:0'/(yl(l))] -Var [Afbl(ﬁl] +
ONES (i)’ oNE @']% _

E\o'(y,”)| -Var |Ax | +Var |o'(y,")| - E |Ax),

1 i) 1) 1 B Y

ZVCLT [Aa:l(ﬁl] + Z_LVW [AZBIQJ = éVar _A:El(ﬁl} .

Finally, we compute the variance of the gradient in Equation 6.6 as follows:

. 1 7]
Var [Az)] = nVar[w)]Var [Ayl@} = S ((52Var[wl] + 62> Var [A:L‘l(_?l_ : (6.7)

123

Following a similar approach as in the forward pass and in Lemma 15 we get:

Lemma 17.

(st] - (2 % ey e nay)]

JEN(i)

a1tz (58 |(adh)] + 28 | (8a0)] o)

2

where q(a) = 32 Ol(Jr)l, and Ol+1 = > (Axl])T> , i.e., the sum of gradients originating
JEN()

from the neighbors of the node, excluding self-originating gradient and 1(-) is the indicator

function.

N N\ 2
Taking into consideration that Var [Axl(_?l] =F [(Aml@l)] and applying Lemma 17 to

Equation 6.7 gives rise to the second main theorem of this work.

Theorem 18. The upper bound of the variance of the gradients flowing backward in a generic
GNN defined by Equation 6.1 is:

My

Var [Axl] S (d2 Var [A:clﬂ] + q(a)> (6.8)

with
1
My = §m (di + 1(v #0)) - (52Var[wl] + 62>,

where n; is the weight matrix dimension, d; is the degree of node i, 1(-) is the indicator function
«, 7,0 and € are parameters, depending on the underlying architecture of the model, and q(«)
is defined in Lemma 17.

The extended proof of Theorem 18, along with a lower bound of Var [Axl(i)], are provided
in Appendix 15.

2.3 G-Init

Having analyzed the generic case of convolutional GNNs, we focus on the simpler yet
prominent GCN model. The GCN is defined by Equation 2.1, a special case of Equation
6.1witha =6 = 1,8 = v = € = 0. Leveraging Theorem 16 and Theorem 18, we aim to
control the variance of the input signal at the final layer (L) of the model and the variance
of the gradients flowing backward within it.

Regarding the variance at the final layer, we utilize Equation 6.5 and telescopically replace

the factor Var [yl()1] until we arrive at Var [yii)} , which is the variance of the first layer

of the model.
1 i i
Var [yL)] d—LV ar{wg) (§Var [y(Lzl} —l—k(L)) —

124

Var [] <Var [)] (ﬁ ﬁVar wl> - Z (Jl;[rl / Var[w]) Z—jkl(i)Var[wl].

(6.9)

A proper initialization method should avoid reducing or magnifying the magnitudes of
input signals exponentially. We aim to control the upper bound of the variance of the final
layer of the model, which in turn requires tuning the products of Equation 6.9, in order to
obtain a proper scalar, e.g. 1. A sufficient condition to achieve this is the following:

n
: éi Varlw] =1, VL (6.10)

This leads to a zero-mean Gaussian distribution of the weights, with standard deviation
(std) equal to /2d;/n,.

Similar results can be obtained for the weight initialization, based on the gradients flowing
backward in the network, if we use the respective equations.

Using the initialization generated by either of the two directions (forward or backward) is
sufficient, as both methods prevent the exponential reduction or increase of magnitudes in
both the input signals (flowing forward) and the gradients (flowing backward). Hence, for
the new initialization method (G-Init) we choose a zero-mean Gaussian, whose standard

deviation is \/2d; /n.

3 Experiments

We conducted extensive experiments to thoroughly evaluate the performance of G-Init. We
tested node classification on 8 benchmark datasets and explored “cold start” variants on
them. Additionally, we performed graph classification on 10 datasets, showcasing the ver-
satility of G-Init. To ensure robustness, we varied the model depth and compared G-Init’s
performance against several state-of-the-art initialization methods, consistently achieving
superior results. This comprehensive evaluation highlights the effectiveness of G-Init, not
only in “cold start” scenarios, but also in a wide range of graph learning applications.

3.1 Experimental Setup

Datasets: Aligned to most of the literature about node classification tasks, we focus on
some well-known benchmarks in the GNN domain: Cora, CiteSeer, Pubmed, adopting the
data splits of [25], where all the nodes except the ones used for training and validation are
used for testing. Additionally, we use the Arxiv dataset [134] from the OGB suite. Further,
we experiment with the Photo, Computers, Physics and CS datasets following the splitting
method presented in [138]. Finally, we test the method on graph classification tasks, uti-
lizing various datasets from two collections: TUDataset [140] and MoleculeNet [141]. To
ensure a fair comparison between all methods, we use the same train, validation, and test
splits that are publicly available. Dataset statistics can be found in Appendix 24.

Methods: The focus of our experiments is on the effect of different initialization methods.
For this reason, we combine the basic GCN architecture [25], with different weight initial-
ization methods. To further explore the capabilities of G-Init, we also experiment with the
GAT model [41], which leverages an attention mechanism for node feature aggregation, i.e.,

125

the features of each node are derived by the weighted sum of the features of its neighbors.
Specifically, we compare our method (G-Init) against Xavier initialization [122] and Kaim-
ing initialization [15]. For each of the two competing methods, we explore two variants;
namely drawing samples from a uniform distribution with predefined limits and drawing
samples from a zero-mean Gaussian distribution of predefined standard deviation. We use
the notation Uni form and Normal to denote these two variants. We also compare against
a recently proposed initialization method for GNNS, i.e., VIRGO initialization [123]. Thus,
our comparison includes all well-established initialization methods for GNNs, which serve
as standard baselines in the literature.

Hyperparameters: We performed a hyperparameter sweep, details can be found in Ap-
pendix 18, to determine the optimal hyperparameter values, based on their performance
on the validation set. For both models, the number of hidden units of each layer is set to
128 across all datasets, except for the Arxiv dataset, where it is set to 256. For GAT we
use a single attention head. For both models L, regularization is applied with a penalty of
5-1074, and the learning rate is set to 1073,

Configuration: Each experiment is run 10 times and we report the average performance
and standard deviations over these runs. We train all models for 200 epochs (1200 for Arxiv
dataset) using Cross Entropy as the loss function. We evaluate each model based on its
accuracy in both the node and the graph classification tasks.

3.2 Experimental Results

The choice of an appropriate value of d; in G-Init is important.
Choosing d; = 1 would neglect the struc-

ture of the graph, while opting for a larger 575 rorward Pass_ ————
value could result in increased magnitudes N e
of weight elements, leading to training in- N T aming ol
stability. Consequently, we needed to iden- — VIRGO

tify a proper value for d; that balances these “

two factors. The smallest possible degree 14

for a node in a graph, with self loops in- o

cluded, is equal to 2 (indicating a single R
neighbor). Empirically, we have found that - Backward Pass

values of d; in the range (1, 2] achieve high 40 — Xavier Uniform
performance. In our experiments, we set zz — Slt Normal
d; = 2, except for the Arxiv dataset where 251 T aming Uniform
d; = 1.6 further improves the performance. 201 o
These values are in accordance with the :

proposed theoretical analysis and improve 051

the performance of the models. In sum- 0] —————————
mary, we propose initializing the weights T st
of the models with a zero-mean Gaussian Figure 6.1: Variance plots on the Cora
distribution, with a standard deviation (std) dataset.

of y/4/n; (in the Arxiv dataset, the std is

equal to \/3.2/n).

Variance stability:

126

The first goal of our experimentation was to validate our theoretical results regarding the
effect of G-Init on the variance within the model, before training. Specifically, we measured
the average node variance as the signal flows forward in an 8-layer GCN and the average
variance of the gradients flowing backward. Figure 6.1 presents the results for the Cora
dataset. Both in the forward and in the backward pass, G-Init maintains a larger variance
than the other methods.

Cora Citeseer Pubmed Physics

@ Xavier Uniform
G-Init

Xavier Normal
Kaiming Normal
Kaiming Uniform
VIRGO

Xavier Uniform
GeInit

Xavier Normal
Kaiming Normal
Kaiming Uniform

40 VIRGO

Xavier Uniform
Gelnit
Xavier Normal
Kaiming Normal
Kaiming Uniform
VIRGO

Xavier Uniform
Gelnit
Xavier Normal
Kaiming Normal
Kaiming Uniform
VIRGO

CcS Photo Computers Arxiv

Xavier Uniform @ Xavier Uniform
G-Init G-Init

Xavier Normal Xavier Normal
Kaiming Normal Kaiming Normal
Kaiming Uniform Kaiming Uniform
VIRGO VIRGO

\\

Accuracy (%)

Xavier Uniform
G-Init

Xavier Normal
Kaiming Normal
Kaiming Uniform
VIRGO

40

Xavier Uniform
G-Init
Xavier Normal

eccocoe

=
1)
3
5

3
z
[
3
13

2 a4 8 16 32 64 2 4 8 16 32 64 2 4 8 16 32 64 2 4 8 16 32 64

Model's depth

Figure 6.2: Comparison between 6 weight initialization methods across 8 datasets for vary-
ing GCN model depth.

Node classification and oversmoothing reduction:

Given this increased variance in the signal and the gradients, the next goal of our exper-
iments was to assess the effect on classification performance. Figure 6.2 and Figure 6.3
illustrate the performance of a GCN and a GAT model, respectively, with varying depth on
8 different datasets. G-Init enables the model to achieve superior performance across all
combinations of datasets and depths. In fact, a GNN model initialized with G-Init outper-
forms its counterparts initialized with any of the other methods. The experimental results
verify the benefit of using a graph-informed weight intialization method, compared to the
standard initialization methods that were devised for CNNs and FFNs.

GCN, GAT, and models employing graph convolution, inherently reduce the variance of
node representations (information signal), due to the repetitive application of the Lapla-
cian operator. G-Init enables the model to maintain a higher variance in the lower layers,
preventing the collapse of node representations to a subspace, where they would become
indistinguishable.

Our experimentation also confirms the relationship between weight initialization and over-
smoothing. GCN and GAT cannot avoid oversmoothing using classical initialization meth-
ods, even at moderate depths. On the contrary, G-Init significantly reduces this effect, fa-
cilitating the use of deeper architectures. This assertion is validated not only by the model’s
accuracy but also by the resulting t-SNE [142] plots, which show that node representations
have not been mixed to the extent of becoming indistinguishable. T-SNE plots of the GCN

127

Cora Citeseer Pubmed Physics

Xavier Uniform
G-Init

Xavier Normal
Kaiming Normal
Kaiming Uniform
VIRGO

80

.
.
.
.
.
.

60

40

® Xavier Uniform ® Xavier Uniform ® Xavier Uniform
e G-Init e G-nit o Ginit
® Xavier Normal ® Xavier Normal ® Xavier Normal
—~ 20{ @ Kaiming Normal @ Kaiming Normal ® Kaiming Normal
x ® Kaiming Uniform ® Kaiming Uniform ® Kaiming Uniform
- e VIRGO ® VIRGO ® VIRGO
= n
© (&) Photo Computers Arxiv
3
Iv] ® Xavier Uniform
o] .
£ G-Init

80 Xavier Normal

°
°
@ Kaiming Normal
® Kaiming Uniform
60 Xavier Uniform ® VIRGO
G-hnit

Xavier Normal
Kaiming Normal
Kaiming Uniform
VIRGO

40

CICRC I)

Xavier Uniform
G-Init
Xavier Normal
Kaiming Normal
Kaiming Uniform
VIRGO

Xavier Uniform
G-Init
Xavier Normal
Kaiming Normal
Kaiming Uniform
VIRGO

eeeocce
eeeocce

2 4 8 16 32 64 2 4 8 16 32 64 2 4 8 16 32 64 2 4 8 16 32 64

Model's depth

Figure 6.3: Comparison between 6 weight initialization methods across 8 datasets for vary-
ing GAT model depth.

model for the Cora dataset are presented in Figure 6.4, while for other datasets and initial-
ization methods t-SNE plots are available in Appendix 17.

The oversmoothing reduction achieved by G-Init can be attributed to different initial sin-
gular values of the weight matrices, compared to the classical initialization methods. In
particular, [15] propose an initialization using a zero-mean Gaussian with a standard de-
viation equal to v/2/ /1. Based on Theorem 14, we conclude that that approach creates
weight matrices, whose eigenvalues lie on a disk with a radius equal to V/2, while G-Init
does the same on a disk of a greater radius (i.e., \/4_1) Hence, G-Init initializes the model with
weight matrices having larger maximum singular values than those produced by Kaiming
initialization. These initial values may influence the largest singular values of the weight
matrices after convergence, which, in turn, affect the extent to which oversmoothing can
be reduced, based on Theorem 1.

128

Figure 6.4: T-SNE plot of Cora dataset. The upper row presents results for a G-Init initial-
ized 32-layer GCN, while the lower row showcases results for a Kaiming Normal
initialized 32-layer GCN.

Performance under the “cold start” scenario:

In order to further explore the impact of G-Init on oversmoothing, we conducted a set of
experiments aiming to highlight the value of using deep architectures that are not prone to
oversmoothing. Specifically, we introduced a “cold start” situation in the datasets (details
about “cold start” are available in Appendix 16), by replacing the feature vectors of the unla-
beled nodes with all-zero vectors. For each dataset, Table 6.1 presents the best performance
achieved and the depth at which the model attains that performance, for G-Init, VIRGO, and
Kaiming Normal initialization, because these three are the top-performing methods. An ex-
tended version of Table 6.1 with results for every combination of initialization method and
dataset is available in Appendix 16. We observe that, G-Init consistently outperforms the
other methods across almost all datasets.

129

Table 6.1: Comparison of different initialization methods in the “cold start” scenario. Only
the features of the nodes in the training set are available to the model. We present
the best accuracy of the model and the depth (i.e. # Layers) this accuracy is
achieved, for both GCN and GAT.

GCN GAT

Dataset | Method
Accuracy (%) & std #L | Accuracy (%) & std #L
Kaiming Normal 68.35 +1.9 6 60.73 +45 4
Cora VIRGO 73.01 + 10 26 70.68 + 15 18
G-Init 74.04 + 1.7 25 72.34 +20 27
Kaiming Normal 44.62 + 18 6 37.09 +9.1 5
CiteSeer | VIRGO 49.18 +14 18 41.01 +95 13
G-Init 49.75 + 07 27 49.31 o4 30
Kaiming Normal 68.48 + 15 6 60.25 + 27 4
Pubmed VIRGO 71.55 £15 14 63.06 +9:8 14
G-Init 71.65 +18 23 72.24 +11 32
Kaiming Normal 94.00 + 0.0 2 93.45 + 0.0 1
Physics | VIRGO 82.34 +61 8 85.58 +43 5
G-Init 93.99 +o0.0 1 93.62 + 0.1 2
Kaiming Normal 90.13 + 03 3 90.77 + 01 1
CS VIRGO 71.28 + 1.9 6 76.85 +37 6
G-Init 90.28 +o0.2 3 90.82 + 0.1 3
Kaiming Normal 86.53 + 06 5 86.35 + 0.9 4
Photo VIRGO 83.00 +35 6 77.60 + 4.0 6
G-Init 87.56 +1.2 4 86.07 + 0.9 4
Kaiming Normal 75.18 +3.0 4 74.35 +35 4
Computers | VIRGO 75.17 + 2.7 6 69.91 + 36 7
G-Init 78.03 + 1.0 5 76.28 +1.7 5

Graph classification:

We also conducted experiments with various initialization methods on the task of graph
classification, utilizing a GCN and a GAT model with average pooling on top. As shown in
Table 6.2 and Table 6.3, G-Init outperforms the other initialization methods in 8 out of 10
datasets, closely trailing as the second-best in the remaining two. These results verify that
G-Init enhances the performance of both GCN and GAT also in graph classification tasks.

130

classification for the GCN model.

Table 6.2: Comparison between 6 weight initialization methods across 10 datasets for graph

Dataset
Methods BACE BBBP Clintox Sider Tox21
Xavier Normal 81.07 +19 69.27 +14 9151 +11 59.75+12 75.33 +0s6
Xavier Uniform 80.43 +25 69.68 £12 91.69 +11 59.77 +16 75.34 +o0s
Kaiming Normal 80.78 +19 69.66 +12 9159 +16 59.50 +15 75.52 +06
Kaiming Uniform 79.36 +33 69.37 +10 91.15+15 59.55+18 75.47 +10
VIRGO 81.16 £21 6993 +12 92.26 +13 5874 +10 74.97 £os
G-Init 82.04 +11 70.03 +13 93.05+t14 60.01 +11 75.81 +10
Dataset
Method)
croas Toxcast ~MUTAG ENZYMES Proteins IMDByy,
Xavier Normal 64.18 05 9053 +32 52.41 +26 68.84+16 72.11 £10
Xavier Uniform 64.20 +08 8842 +32 51.25+20 6848 +13 72.67 +13
Kaiming Normal 64.45 +06 90.00 +18 5241 +18 69.02+15 72.33 +09
Kaiming Uniform 64.37 £03 89.47 +24 53.44+26 6893 +16 72.00+15
VIRGO 64.40 £06 90.53 £32 49.67 £36 69.73 £17 72.00 £13
G-Init 64.96 to05 92.63 +31 5271 +25 6884 +12 72.89 +o07
0.07 1 —— Xavier Uniform
G-Init
0.06 { —— Xavier Normal
—— Kaiming Normal
0.05 1 : \ljlaFl(rggg Uniform
g 0.04
é) 0.03
0.02
0.01
0.004 @& \ 2 L 2 o —
4 8 16 P 64

Model's depth

Figure 6.5: Comparison between 6 weight initialization methods for the needed time to
initialize a GCN as its depth increases. All methods, except for VIRGO, overlap
in the graph, making them appear one on top of the other.

Comparison against VIRGO:

The above results showed that VIRGO approached the performance of G-Init in some datasets.
Since both have been specifically devised for GNNs, we compared them further. In partic-
ular, we examined the computational cost of the different methods, since VIRGO needs to
calculate intermediate factors, which are depth dependent. Figure 6.5 presents the time
needed to initialize a model as its depth increases. We observe that time required for ini-
tialization by VIRGO increases exponentially with the depth of the model, in contrast to
G-Init. This behavior provides further reasons for using G-Init for GNN weight initializa-
tion. Note that the computational cost of G-Init remains independent of the graph size,
as it depends solely on the number of model parameters. This is analogous to standard

131

Table 6.3: Comparison between 6 weight initialization methods across 10 datasets for graph

classification for the GAT model.

Dataset
Methods BACE BBBP Clintox Sider Tox21
Xavier Normal 76.89 +£23 67.89 £19 89.31 +11 5846 +15 75.13 +o9
Xavier Uniform 76.84 +35 67.62 +24 89.68 +17 58.17 +09 75.25 + 056
Kaiming Normal 76.34 +31 67.13 +22 89.00 +27 58.65+15 75.20 05
Kaiming Uniform 76.30 +28 67.12+20 89.05+22 58.02+13 75.13 +038
VIRGO 76.32 +22 6636 +27 89.12 +35 5851 +10 74.25+07
G-Init 77.04 +21 66.79 +11 90.01 +18 59.21 +15 75.34 +05
Dataset
Methods Toxcast ~MUTAG ENZYMES Proteins IMDBy;,
Xavier Normal 64.32 +06 90.51 +32 48.26 +36 68.29 +21 72.79 £34
Xavier Uniform 64.56 £04 91.05 £34 4648 £43 68.11 £20 71.50 +22
Kaiming Normal 64.57 +05 90.53 +39 46.67 +40 64.64 +80 71.89 +29
Kaiming Uniform 64.53 £06 91.05+34 47.41 +50 68.29 +28 73.97 + 19
VIRGO 63.77 +13 9187 +52 47.86 +47 66.07 £36 73.00 £29
G-Init 64.64 +03 93.16 +34 46.73 +37 68.73 £20 74.50 +21

initialization schemes, such as Kaiming and Xavier, ensuring scalability regardless of the
complexity of the graph.

4 Conclusion

In this chapter, we conducted a theoretical analysis of the variance within a generic convo-
lutional GNN and introduced a novel weight initialization method, extending the approach
presented by [15] to GNNSs. In particular, the proposed method takes into account the graph
topology and avoids exponentially large or small variance values. We assessed the behavior
of the method through a series of experiments across a diverse set of benchmark datasets,
encompassing both node and graph classification tasks. Our results have confirmed the re-
lationship between weight initialization and oversmoothing reduction, which allowed us to
use deep networks, without modifying either the model’s architecture or the graph topol-
ogy. Additional experiments under the “cold start” scenario, where features are limited to
labeled nodes, demonstrated the superior performance of G-Init.

132

Chapter 7

Reducing Oversmoothing in Graph Neural
Networks by Changing the Activation Function

This chapter investigates oversmoothing in deep Graph Neural Networks from a new per-
spective, without focusing on modifying the model structure to mitigate the issue. In con-
trast, we analyze the impact of two fundamental yet often overlooked components: the
activation function and the learning rate, as applied layer-wise throughout the network.
We demonstrate, both theoretically and experimentally, that the choice and configuration
of activation functions play a central role in the smoothing dynamics of node embeddings.
In particular, we study how the standard ReLU activation contributes to representation
collapse in deep GNNs. Building on this insight, we propose a simple yet effective modi-
fication: adjusting the slope of ReLU to preserve representational diversity across layers.
Crucially, our method does not require changes to the network’s architecture or the intro-
duction of skip connections.

We provide what is to the best of our knowledge the first study regarding the role of the acti-
vation function and the learning rate per layer of the model to oversmoothing and propose
a new method to address the problem. We confirm our hypotheses both experimentally
and theoretically. The new method is shown to prevent node embeddings from converging
to the same point, thus leading to better node representations. We summarize our main
contributions as follows:

+ Role of Activation Function in Oversmoothing: We prove theoretically the connec-
tion between the activation function and oversmoothing. In fact, we show the relation
between the slope of ReLU and the singular values of weight matrices, which are known
to be associated with oversmoothing [7, 21]. We have also verified our theoretical results
experimentally.

+ Role of Learning Rate in Oversmoothing: Our analysis on the effect of the slope of
ReLU to oversmoothing has a direct extension to the learning rates used per layer of the
network. We conducted further experiments to study the effect of tuning the learning rates,
showing that this approach could also reduce oversmoothing, but it is less practical.

+ The power of Deep GNNs: We have performed extensive experiments using up to 64-
layer networks, tackling oversmoothing with the proposed method. We further show the
benefits that such deep GNNs can provide in the presence of reduced information, such as
in a “cold start” situation, where node features are available only for the labeled nodes in a
node classification setting.

133

1 Preliminaries

1.1 Normalization in deep neural networks

Of relevance to oversmoothing are also methods that perform normalization for deep neural
networks [143, 144]. In such methods, the output of each neuron is normalized, in order to
keep a portion of the initial feature variance. Related work proposed Self Normalized Net-
works (SNN), that use a different activation function (SeLU) [129]. These models perform
self normalization inside each neuron, in order to keep the variance between consecutive
layers stable. They have managed to enable deep Fully Connected models and achieve good
performance.

A recent work regarding normalization in GNNss is the Pairnorm method [13], which aims
to keep constant the total pairwise distance between node representations. Compared to
SNNs, Pairnorm performs normalization needing a constant value as hyper-parameter de-
termined per dataset, while SNNs normalize the output utilizing their activation function,
which can be used in a family of neural networks. The SeLU activation function has a satu-
rating region to reduce data variance and a slope slightly greater than 1 in order to increase
data variance, when needed.

2 Understanding and dealing with oversmoothing

Based on the mathematical definition of oversmoothing by [7], in this section we establish
a connection with the training process of GNNs. In particular, we analyse the role of the
activation function and the learning rate and we propose modified versions of GNNs to
address the issue.

2.1 Theoretical Analysis

We start by establishing the connection between oversmoothing and variance reduction
of node representations. Consider oversmoothing as the convergence to a subspace of the
feature space, where node representations are almost the same. In that particular subspace,
the initial variance of feature vectors has been massively reduced. Using ReLU, this un-
wanted oversmoothing effect is “harsh”, due to the mapping of negative input to zero. We
use the term “harsh” to indicate the smoothing case, where representations are mapped to
a single point (i.e. zero), instead of converging to a subspace.

We will now show how the slope of the ReLU activation function affects oversmoothing,
starting with two important assumptions: (a) the non-exploding gradients, and (b) inde-
pendence of ReLU’s probability not to output zero. We use these assumptions to extract
bounds on the weights of the network and then use these bounds to determine the rela-
tionship between the largest singular value and the elements of each weight matrix. Given
that relationship, we connect our analysis with existing literature regarding oversmoothing
through Theorem 1.

Assumption 19. For each layer | there exists a number GG; which is the upper bound to the
gradients of the output of the subsequent layer (1+1) with respect to the weight elements of
w® e,

dO(l—i—l)
<Gy, Yl (7.1)
old
dw(ll)d e
old;

134

where O+ is the output of (1+1)-th layer.

This assumption needs to hold in all cases, in order to avoid the exploding gradient case,
that would not allow the learning process to converge.

Assumption 20. The probability, that the output of the ReLU function does not equal zero
at layer | is independent of the outputs of the previous layers, in a feed-forward ReLU neural
network, i.e.

P(ReLU(RY) £ 0VRY) j < 1) <p, pel0,1) (7.2)

where h\") is the node representation at layer, ReLU is applied piece-wise on that representation
and 0 is the all zero vector.

Following the results of [126] we get that P(ReLU (h(")) # 0|YhY), j < 1) = 1/2 for feed-
forward networks (FFs), on the condition that the output of the previous layers is positive.
That condition does not necessary hold in GNNs, due to the role of the adjacency matrix
in the aggregation scheme. In FFs, when the output of a layer is zero, so are the outputs of
all subsequent layers. In GNNs there might be cases, where the output of layer [(a node
representation) is zero but the aggregation using the adjacency matrix produces a non-zero
representation in layer (I4-1). Apart from this difference, GNNs can be considered a special
case of FFs, with the proper wiring due to the adjacency matrix aggregation. Therefore, the
above assumption holds also for GNNs.

Lemma 21. For a network of depth dep the total gradient reaching the I-th layer (i.e., #)

oldi.j

in order to update W) is bounded by:

dJ
O]
dwoldi, ;

< lder=h . g, (7.3)

Where ¥ is the model’s loss function (i.e. Cross Entropy), a stands for the ReLU slope and G
is the upper bound of gradients of the output of the subsequent layer (1+1) with respect to the
weight elements of W\,

The proof of Lemma 21 is shown in Appendix 19 and is based on the chain rule for backprop-
agation. Given the derivative of the ReLU function and the upper bound G, of Assumption
19, we can derive the bound of Equation 7.3. To compute the gradient with respect to
weight element w of layer [, we repeatedly differentiate nested ReLU functions, leading
to a product of thelr slopes (or zero). In the ﬁnal differentiation step, we get the gradient

of the output of (I4-1)-th layer with respect to w!", which is bounded by G;.

7,_]’

Lemma 22. While model’s loss, through gradients, flows backwards, some weight elements do
not receive updates, because we have dying ReLUs (i.e. ReLUs that output zero) [126]. The total
number of weight elements getting updated at layer | is bounded by:

#{w V< plder=h) . 2 (7.4)

where d is the largest of the two dimensions of W\, i.e. there are at most d* elements in W1,
if it is a square matrix.

135

The proof of Lemma 22 appears in Appendix 20. Given Lemma 21, the gradient flowing
()
2,7
) to get an update all ReLU derivatives need to be non-zero, otherwise the

backwards, with respect to a weight element w,
(u

contains a product of ReLU derivatives.
In order for w;

gradient will be zeroed and w i i) will not be updated. Additionally, due to Assumption 20,
weight elements located at the lower weight matrices tend to receive fewer updates. This
is due to the fact, that the further the gradient flows backwards the more ReLU derivative
factors appear in it. Based on Assumption 20, the probability of all of them to be non-zero
decreases.

Regarding the singular values (denoted by s;(+)) of a weight matrix W) at the [-th layer, the

largest of them is given by: max(s;(W®)) = [[WD|y < [[WO||p = /3]wflj)\z, where
|| - || is the Frobenius norm and || - ||5 is the spectral norm. Using the general weight

updating rule (i.e., w,(fe)wi_j = wgl)di’j +n- dwc(ll{ , Where J is the model’s loss and 7 is the

oldi’j
learning rate, we arrive at the main theorem of this work.

Theorem 23. The upper bound of the largest singular value of the weight matrix W at layer
I for a GNN model, utilizing a ReLU activation function, depends on the slope of the function.
That bound is given per layer and shows the effect of each iteration of updates on the weight
matrix. We denote with W), and W, the weight matrices before and after the update during
an iteration of the training process respectively.

maz(s (W) < Wil +v3-pl*5) . d. oD . B, (7.5)

where B; = 1 - Gy, dep is the network’s depth, d is the largest dimension of the W) matrix, p
is the upper bound of the probability of ReLU not to output zero and « is ReLU’s slope.

The proof of Theorem 23 appears in Appendix 21 and uses the upper bound of the largest
singular value by the Frobenius norm, expanded according to the weight update rule. Sep-
arating weight elements into two sets (updated and not updated) we identify the gradient
values responsible for the weight updates. These values are bounded (Lemma 21), as is
the number of updated elements (Lemma 22), leading to Equation 7.5. The resulting upper
bound shows the connection of the slope of ReLU and the upper bound of the probability of
ReLU not to output zero with the largest singular value of the weight matrix. That largest
singular value is connected with the oversmoothing problem and as we mentioned above
could act as a resource to reduce it.

Theorem 24. The lower bound of the largest singular value of the weight matrix W at layer
I for a GNN model, utilizing the ReLU activation function, depends on the slope of the function.
That bound is defined per layer and shows the effect of each iteration of updates on the weight
matrix. We denote with W, and W, the weight matrices before and after the update that
happens during an iteration of the training process respectively.

mazx(s; (WY) \/2\/_ maz(w olld).Bl’.adeg_l (7.6)

where B] = n - L;, L, is the lower bound to the gradient with respect to the output of the

subsequent layer (d()(xH) > Ll> , dep is the network’s depth and o is ReLU’s slope.

Woldi,j

The proof of Theorem 24 appears in Appendix 21 and is analogous to the one used in The-
orem 23. Theorem 24 indicates the effect of ReLU’s slope to the lower bound of the largest

136

singular value of the weight matrix. From Equation 7.6 we observe that, increasing the
slope of ReLU results in an increment of the lower bound of the maximum singular value
of the weight matrix. Therefore, a larger ReLU slope yields greater largest singular value,
which in turn reduces the oversmoothing effect.

2.2 Alleviating Oversmoothing

We transfer the idea of SeLU to GNNs, focusing on the part that increases the variance,
because the repetition of the Laplacian operator acts as a variance reducer. In order to
avoid oversmoothing in deep GNNs using this approach, we need to identify a ‘sweet’ spot,
where variance reduction from graph convolution is counteracted as needed by the slope
of the activation function. Typically in GNNs, ReLU is used with a slope value o = 1. As
a result, the second exponential factor in Equation 7.5 can be ignored (it is always equal to
1). This pushes the bound for the largest singular value of weight matrices towards a fixed
low value, when the architecture of the network gets deeper (dep increases), and especially
at the lower layers (small /) of the network. This is due to the first exponential factor of
Equation (7.5) converging to zero for large values of dep.

The restriction of the largest singular values to low values, increases the speed of conver-
gence to the oversmoothng subspace, as stated in Corollary 2 from [7]. According to the
corollary, the speed depends on \ and s. The former parameter () is a property of the data
(largest eigenvalue of the adjacency matrix), while the latter (s) is the product of the largest
singular values of the weight matrices.

Realizing the importance of the slope of ReLU in the training process, we move on to pro-
pose a simple modification of the activation function that reduces oversmoothing. Follow-
ing [126], we proceed our analysis with p = 1/2 (see Assumption 20), which simplifies
calculations. In particular, we observe that a slope of 2 makes the second exponential fac-

tor prevail over the first one, leading to a new combined factor of 2(%) This in turn
increases the upper bound for the largest singular value, restricting the influence of the
layer index (/) and depth (dep) in Equation (7.5). It is worth noting, that the upper bound
should not be constant across all layers (which could be achieved by setting a correspond-
ing value for the slope), because different layers of the network have different roles and
the goal of a GNN is to bring intra-class representations close, while keeping inter-class
representations apart. Moreover, an increased value of the slope pushes the lower bound
of the largest singular value, as shown in Equation 7.6.

Using the results of [7] we can further connect the choice of slope for the activation func-
tion to the speed of convergence to the oversmoothing subspace. The proposed method
increases the bound for each largest singular value, which in turn decreases the speed of
convergence to the oversmoothing subspace, according to Corollary 2.

2.3 Modifying the slope of ReLU: Limitations

Oono & Suzuki [7] have proved that any deep enough GCN-like GNN will eventually reach
the oversmoothing subspace. In theory, this also holds for our method, when the GNN gets
very deep. Could this be avoided by increasing the slope of ReLU further? Unfortunately
not, as we cannot make the slope too large. It is known, that by increasing the slope of
ReLU too much, one may face the problem of exploding gradients [145], that impedes the
learning procedure. In fact, if we increase the slope of ReLU too much, the lower bound
in Equation 7.6 over increases, the upper bound in Equation 7.5 becomes too loose and the

137

performance degrades. Our proof suggests, that a slope equal to 2 avoids oversmoothing
and our experiments have shown that it also avoids the exploding gradients problem. In
fact, the choice of 2 is not exact, but that particular value seems to work well as depth
increases. Our experiments have shown, that the proposed method is not sensitive on the
exact slope and that values around 2 also manage to reduce oversmoothing.

2.4 Modifying the learning rate, instead of the slope of ReLU

Instead of changing the slope of ReLU, we could opt to modify the Learning Rate (LR) per
layer in order to increase the lower bound in Equation 7.6 and the upper bound in Equation
7.5. In particular, a different learning rate (1) per layer leads to a different B, (= n - GG}) per
layer, counteracting the problematic first exponential factor of Equation 7.5.

However, determining the right LR per layer is a non-trivial task. Intuitively, LR should be
larger in the lower layers and smaller in the upper ones. Keeping the slope equal to 1, the
first problematic exponential term is smaller (note that p < 1) in the lower layers, reducing
the value of the upper bound. To avoid this, one needs to tune LR carefully. Additionally, LR
affects heavily the learning process and large LR values might lead to oscillations and poor
learning performance. Modifying the slope and the learning rate combined led to negligible
improvements. Preliminary results with modified LR values are shown in Appendix 22.

3 Experiments

3.1 Experimental Setup

Datasets: Aligned to most of the literature, we use four well-known benchmark datasets:
Cora, CiteSeer, Pubmed and the less homophilic dataset Texas. The statistics of the datasets
are reported in the Appendix 24. For Cora, CiteSeer and Pubmed we use the same data
splits as in [25], where all nodes except the ones used for training and validation are used
for testing. For Texas we use the same splits as in [146].

Models: We utilize two different GNNs as our base models for the proposed methodology;
namely GCN [25] and GAT [41]. We compare the results of these models with and without
the modification of the slope of ReLU for varying number of layers. We do not compare
against methods utilizing residual connections, because the aim of this work is to show
that oversmoothing could be avoided without “short-circuiting” initial information to latter
layers. We use residual GNNs as a baseline in the Extended Experiments section, Appendix
23.

Hyperparameters: We set the number of hidden units (of each layer) of GCN and GAT to
128 for both models across all datasets. The L, regularization is set with penalty 5 - 10~*
for both models and learning rate of 1073. We vary the depth between 2 and 64 layers. The
number of attention heads for GAT is set to 1.

Configuration: Each experiment is run 10 times and we report the average performance
over these runs. We train all models for 200 epochs using Cross Entropy as a loss function.
For our experiments we used an RTX 3080ti GPU.

3.2 Experimental Results

Reducing oversmoothing:
Table 7.1 presents the classification performance of the two base models (GCN and GAT)

138

Table 7.1: Performance comparison of vanilla GCN and GAT, against SeLU and Slope2GNN
enhanced versions of the same models, in Cora, CiteSeer, Pubmed, Texas. Average
test node classification accuracy (%) for networks of different depth. With bold
is the best performing model for each depth and each dataset.

Accuracy (%)
Cora CiteSeer Pubmed Texas

GCN GAT | GCN GAT | GCN GAT | GCN GAT
Original 81.38 77.79 | 70.52 69.04 | 77.65 77.33 | 59.01 59.54
2 Slope2GNN | 81.84 77.81 | 70.55 68.24 | 78.34 77.02 | 57.93 56.67
SeLU 81.74 76.59 | 6991 66.81 | 77.80 76.83 | 59.01 57.21
Original 78.09 78.06 | 65.21 63.98 | 76.75 76.34 | 59.55 58.28
4 Slope2GNN | 80.39 79.54 | 67.57 67.27 | 76.46 75.59 | 57.66 57.39
SeLU 79.85 79.33 | 67.53 67.24 | 74.09 72.62 | 58.02 58.65
Original 23.56 33.11 | 32.54 31.33 | 49.08 55.86 | 57.48 57.65
8 Slope2GNN | 76.54 78.33 | 65.80 65.55 | 75.00 74.20 | 57.18 56.85
SeLU 79.41 78.19 | 67.27 67.58 | 73.43 71.93 | 56.85 57.47
Original 14.92 1553 | 17.73 17.80 | 28.95 29.88 | 39.91 41.71
16 Slope2GNN | 76.81 75.00 | 57.10 56.13 | 76.35 73.81 | 57.21 57.53
SeL.U 76.38 7492 | 61.99 62.23 | 76.11 74.27 | 52.88 57.44
Original 14.02 14.67 | 16.69 18.67 | 38.49 29.34 | 25.50 18.64
32 Slope2GNN | 73.21 69.62 | 47.20 49.16 | 75.78 74.63 | 55.79 54.14
SeLU 68.77 69.36 | 47.90 5297 | 71.80 73.60 | 55.77 57.75
Original 1248 15.18 | 17.65 13.35 | 31.73 28.62 | 27.39 06.76
64 Slope2GNN | 61.59 24.17 | 46.46 26.24 | 71.68 38.01 | 46.31 41.44
SeLU 26.85 30.55 | 27.10 20.42 | 40.90 41.00 | 58.38 56.30

Layers Method

on all four datasets, with and without the modified slope of ReLU (called Slope2GNN) for
varying number of layers. Additionally, it presents results using SeLU, instead of ReLU,
since it also modifies the slope of the function, while additionally normalizing node repre-
sentations, as explained in section 1.1. To the best of our knowledge, this is the first time
SeLU is used with GNNss.

Table 7.1 shows that methods with a modified activation function reduce oversmoothing
significantly. As expected, baselines maintain a high performance for shallow architectures
in homophilic datasets, where oversmoothing is not a problem. The modified activation
functions (Slope2GNN and SeLU) consistently improve the test accuracy as the number
of layers (#L) increases. Note that even the proposed method suffers performance degra-
dation for very deep GNNs, due to the unavoidable nature of oversmoothing [7]. GCN
and GAT average over information in the close neighborhood of the node, assuming ho-
mophily, which is not the case in the Texas dataset. Interestingly, low homophily in this
dataset makes oversmoothing appear at a larger depth, compared to other datasets. This
is because connected nodes do not have similar representations and the model needs more
Laplacian operations to oversmooth them.

The effect of deeper networks on different activation functions:

Focusing on the use of SeLU, although it seems to make the models resistant to oversmooth-
ing, the effect seems to be lost for GCNs with 64 layers. This may be due to the sensitivity of
the function on the choice of slope value, which is lower than 2. Moreover, the saturating

139

region of SeLU, used to reduce data variance, might act in favor of oversmoothing. Finally,
SNNs aim to keep the variance of the model stable, ignoring the effect of the Laplacian
smoothing in GNNs.

To further examine the behavior of each method, as the number of layers increases, in Fig-
ure 7.1, we present a more detailed progression of the accuracy of GCNs, as the networks
get deeper on the Cora dataset. The effect of oversmoothing and its reduction by the two
methods that modify ReLU is very apparent here. Furthermore, the simpler Slope2GNN
approach seems to be more resistant to the increase in the depth of the network.

The need for deep networks:

Having shown the benefit of using the modified activation functions in deep GNNs, we
move to a set of experiments that aims to highlight also the value of using such deep ar-
chitectures. In particular, we report our experimental results in the “cold start” scenario.
The cold-start datasets that we use in these experiments are generated by removing feature
vectors from unlabeled nodes and replacing them with all-zero vectors. For each com-
bination of GNN and activation function, we present in Table 7.2 the best performance
achieved and the depth at which the model attains that performance. The main observa-
tion in these results is the improvement in terms of accuracy with the use of deeper GNNs.
This improvement is only attainable with the modified activation functions that reduce the
effect of oversmoothing. The vanilla versions of GCN and GAT cannot go further than the
performance of their shallow versions. Worth-mentioning is also the fact that the simple
Slope2GNN approach manages to benefit from the deeper architectures even in the hard
Texas dataset. This is not the case for SeLU, which achieves its best scores with very shal-
low networks. This may indicate the need to tune the slope of the activation function, as
discussed above.

RelLU Results Slope2GNN Results SelU Results

0.8
0.7
0.6 4
0.5 -

0.3 A
0.2

0.1

0 10 20 30 40 50 60 0 10 20 30 40 50 60 0 10 20 30 40 50 60
Model Depth

Figure 7.1: Comparison between three different activation functions for a GCN on Cora
dataset. Y-axis shows model accuracy on test nodes, while varying the model’s
depth (shown on the x-axis).

Slope sensitivity:

Finally, we performed an experiment to understand the effect of different ReLU slope values
on oversmoothing. Figure 7.2 presents results with GCN on the Cora dataset, showing that
the proposed method is not sensitive to the exact slope value. Slope values around 2 seem
also capable of reducing oversmoothing. Experiments on other datasets are included in
Appendix 23.

140

Table 7.2: Comparison of different models and activation functions on the “cold start” prob-
lem. We show accuracy (%) on the test set, using GCN and GAT as backbone
GNN models. Only the features of the nodes in the training set are available to
the model. We also show at what depth (i.e. # Layers) each model achieves its
best accuracy.

Model GCN GAT
Dataset Method | Accuracy (%) #L | Accuracy (%) #L
Original 64.85 4 59.74 3
Cora Slope2GNN 73.47 19 72.78 20
SeLU 73.00 22 72.65 23
Original 41.94 4 38.50 4
CiteSeer Slope2GNN 49.88 21 49.63 26
SeL.U 49.30 19 49.38 20
Original 60.16 4 50.45 4
Pubmed Slope2GNN 72.61 32 71.14 32
SeLU 72.50 23 71.41 26
Original 32.40 4 30.10 2
Texas Slope2GNN 33.33 6 31.00 4
SeLU 31.62 3 30.81 2
GCN Results GAT Results
0.8
0.7
0.6
0.5
—— Slope: 0.8 —— Slope: 0.8
R [— sﬁﬁi 1.0 — s@ﬁi 1.0
—— Slope: 1.2 —— Slope: 1.2
039 — Slope: 1.4 —— Slope: 1.4
Slope: 1.6 Slope: 1.6
0.2 Slope: 1.8 Slope: 1.8
— Slope: 2.0 — Slope: 2.0
01d — Slope: 2.2 —— Slope: 2.2
(I) _‘I: 1|0 1‘5 2|0 2'5 3IO (I) S') 1‘0 1|5 2|0 2'5 3‘0
Model Depth Model Depth

Figure 7.2: Varying ReLU slope results on Cora dataset.

4 Conclusion

In this chapter we have shown the important role that the slope of the ReLU activation
function plays in the oversmoothing problem in GNNs. We have further proposed a sim-
ple modification that reduces drastically the problem. We have illustrated the benefits of
the approach in a set of experiments with different datasets and GNNs of different depth.
Additionally, we showed the improvement in accuracy one can achieve through deep ar-
chitectures that do not suffer from oversmoothing. This was evident in a set of experiments
that simulated the “cold start” problem of missing node features in GNNss.

141

Chapter 8

Discussion and Future Work

This section synthesizes the principal outcomes from Chapters 3-7, critically examines the
limitations shared across our methods, and outlines promising directions for future research
in oversmoothing mitigation for Graph Neural Networks.

1 Unified Insights

Across five approaches to detecting and reducing oversmoothing, several core principles
emerge:

First, variance preservation is fundamental. Chapter 3’s layer-wise M AS E' D metric and G-
Reg regularizer explicitly monitor and penalize the collapse of node-embedding distances,
while Chapter 6’s G-Init method adjusts weight variances to maintain signal spread at ini-
tialization. Both strategies aim to ensure a nonzero smallest singular value of each layer’s
weight matrix, thereby preserving representational diversity and effective gradient flow.
Second, the interaction between architecture and topology critically shapes smoothing dy-
namics. In Chapter 3, we showed that coupling adjacency depth to trainable transforma-
tions accelerates collapse, motivating decoupling strategies. Chapter 4’s analysis of resid-
ual architectures (APPNP, GCNII, PPRGNN) further reveals that skip connections alone
may fail to capture long-range dependencies when topology and residual strength are mis-
matched to task requirements.

Third, training regime can act as a powerful orthogonal mitigation. Chapter 5 demonstrated
that partially training only one layer in a wide GCN or GAT preserves feature diversity and
rival full-training accuracy, highlighting network width as an underappreciated resource
for expressivity and oversmoothing resistance.

Fourth, activation dynamics influence global depth behavior. Chapter 7 showed that a sim-
ple adjustment to the ReLU slope dramatically slows representation collapse, underscoring
that local nonlinearities serve as systemic levers for smoothing control.

Together, these findings form an integrated toolkit: diagnostic metrics (M ASE D), prop-
agation re-design (decoupling, residual analysis), selective optimization (partial training),
variance-aware initialization (G-Init), and activation-based smoothing control. Each con-

tributes a distinct but complementary mechanism for enabling deeper, more expressive
GNNes.

2 Limitations

Despite these advances, our work operates under several important constraints:

142

Theoretical Assumptions. To obtain tractable analyses, we often assume linear message-
passing, omit activation functions in spectral bounds, or treat node features as independent.
In practice, modern GNNs employ attention, nonlinear aggregators, and highly correlated
feature spaces, which may violate these simplifying assumptions and lead to looser bounds.

Dataset and Scenario Gaps. Most public benchmarks (e.g., citation or social-network
datasets) are shallow, rarely requiring more than 4-6 GNN layers; thus, empirical validation
of very deep models remains limited. All experiments so far focus on static, homogeneous
graphs, leaving dynamic, heterogeneous, and multilayer networks unexplored. While “cold
start” scenarios test feature sparsity, systematic evaluation across varying degrees of node-
feature availability is yet to be performed.

Training Dynamics. Although Chapter 7 hints at benefits from layer-wise learning rate
schedules, we lack a principled framework for selecting optimal rates per layer or for
jointly tuning initialization, regularization, activation, and optimizer settings. The inter-
play among these components remains underexplored.

3 Future Directions

Building on these insights and acknowledging the above limitations, we identify several
promising directions for future research:

Dynamic and Heterogeneous Graphs. Investigate how oversmoothing emerges in tem-
poral networks, where adjacency evolves over time, and adapt G-Reg, G-Init, and activation
slope methods to cope with the changing topology. Extend residual-topology analyses to
heterogeneous graphs with multiple relation types (e.g., knowledge graphs, recommender
systems) to derive propagation bounds that account for varying edge semantics.

Continual and Online Learning. Generalize the partially trained paradigm to streaming
settings by developing algorithms that selectively update only the most recent layers or
most informative nodes. Design adaptive mechanisms to freeze or unfreeze layers in real
time, enabling models to dynamically balance smoothness and expressivity in nonstation-
ary environments.

Layer-Wise Optimization Strategies. Develop theoretical guidelines for assigning dis-
tinct learning rates or optimizer hyperparameters per layer, informed by spectral analysis
or gradient-flow metrics. Explore second-order or natural-gradient optimizers that adap-
tively balance variance across layers, potentially mitigating oversmoothing without explicit
singular value penalties.

Real-World Deployment and Robustness. Benchmark our oversmoothing mitigation meth-
ods on large-scale industrial graphs, such as user-item networks in recommender systems
or infrastructure grids, to evaluate scalability, runtime performance, and memory footprint.
Assess robustness to adversarial perturbations, noisy features, and missing edges. Tailor
methods to domain-specific applications in chemistry (molecular graphs), biology (protein

143

interaction networks), and traffic modeling, where deep GNNs can capture long-range de-
pendencies critical for accurate predictions.

By pursuing these directions, we aim to broaden the applicability of our oversmoothing

detection and mitigation strategies to establish a unified framework for training deep, ex-
pressive GNNs across diverse, real-world scenarios.

Acknowledgments

The research work was supported by the Hellenic Foundation for Research and Innovation
(HFRI) under the 4th Call for HFRI PhD Fellowships (Fellowship Number: 10860).

144

Chapter 9

Appendix

1 Lower Bound on A,

Let

ri = |Hinllo = | HixW 2o Mg = max |[Hi.|l2, mp = min |[H;.,

1<i<N 1<i<N

and define the row—norm spread A, = 7y — Tmin-

Step 1: Bounds on 7, and 7,

From the singular-value inequalities,

|Hix W2 > omin(W) [Hixll2s 1HixWll2 < Omax(W) || Hiil|2-

Choose i* such that ||H;- ,

lo = M. Then

Tmax = mlaxri Z Tix = |’HZ*7*W||2 Z Umin(W) Mﬁ

Similarly, pick j* with || H}- .|| = m . Then
rie = [Hj s Wll2 < Omax (W) mpg,

and since 7y, = min; r; < 7+, we have

Tmin S Umax(W) mg-

Step 2: Subtract to obtain A,

Subtracting the two bounds (lower bound on 7,,x minus upper bound on 7,,;,) gives

Ar = Tmax — "min = Umin(W) MH - Jmax(W) My

Step 3: Express via the condition number

Define the condition number k(W) = pax (W) /Omin(W). Then oy (W) = k(W) 0pin (W),
and the bound becomes

A, > (W) (Mg — 6(W)mp).

This is nonnegative (and thus meaningful) whenever My > k(W) my, i.e. when the in-
herent spread in H exceeds the distortion introduced by WW. We make that assumption in
order to further proceed our analysis.

145

2 MASED Evolution plots

Figures 9.1, and 9.2 present the M ASFE D evolution for ResGCN and SGC models. Addi-
tionally, Figures 9.3, 9.4, and 9.5 present the M ASE D evolution on the CiteSeer, Pubmed,
Computers, and Physics datasets for all models.

%1071 Depth: 4 | Acc: 80.80 Depth: 8 | Acc: 79.00 Depth: 16 | Acc: 74.90
204 —— Layer1lall | — Layer1all i —— Layer 1 all
. Layer 1 train Layer 1 train H Layer 1 train
—— Layer 2 all —— Layer 4 all ,‘ —— Layer 8 all
L5 === Layer 2 train || ——- Layer 4 train K —=- Layer 8 train
E — Layer 4 all — Layer 8 all J — Layer 16 all K
'3 1.0 === Layer 4 train |1 —=- Layer 8 train === Layer 16 train S
0.5]
e==ziz =
0.0 1 1
T T T T T T T T T
25 5.0 10.0 125 15 0 17 5 20 0 .0 10.0 12 5 lS 0 17 5 20 0 2.5 10 0 12 5 15 0 17 5 20 0
x1073 Depth 4| Acc: 90.54 Depth 8 | Acc: 83.82 Depth 16 | Acc: 69.17
359 —— Layer1lall 1T — Layerlall —— Layer 1 all
3.0 4 Layer 1 train | Layer 1 train Layer 1 train
25 —— Layer 2 all —— Layer 4 all —— Layer 8 all
° . === Layer 2 train === Layer 4 train === Layer 8 train
lél 2.0 —— Layer 4all T — Layer 8 all — Layer 16 all
3 154 === Layer 4 train || —=- Layer 8 train === Layer 16 train
T .
1.0 1 1
0.5 ——__’;;__—-—;Zyé R e
0.0 4 1
T T T T T T T T T T T T T T
50 75 10 (4] 12 5 15 0 17 5 20 0 25 50 _ 75 100 125 150 17.5 20.0 2.5 10 0 12 5 15 0 17 5 200
%1071 Depth: 4 | Acc: 88.98 Depth: 8 | Acc: 79.81 Depth 16 | Acc: 82.05
1.04 — Layer1all .l —— Layer1all —— Layer 1 all
Layer 1 train Layer 1 train Layer 1 train
0.8 1 — Layer2all + —— Layer 4 all —— Layer 8 all
=== Layer 2 train === Layer 4 train === Layer 8 train
w 0.6 7 —— Layer4all T — Layer 8 all — Layer 16 all
) === Layer 4 train === Layer 8 train === Layer 16 train
0.4 A n
0.2 1 a
0.0 1

25 50 75

T T T T T
10.0 125 15.0 17.5 20.0

T T T T T T T
25 50 75 100 125 150 17.5 20.0

Epochs

T
2.5

T T T T T T
50 7.5 10.0 125 15.0 17.5 20.0

Figure 9.1: Epoch evolution of the Mean Average Squared Euclidean Distance (M ASE D)
value of the embeddings of all nodes and training nodes. We show results for
3 different depths of a ResGCN model and M ASED values in different layers
within the model. We show how M ASE D evolve in the first, the middle and
the last layer of each model. We also include the accuracy achieved by each

model.

146

%107 Depth: 4 | Acc: 77.70 Depth: 8 | Acc: 70.20 Depth: 16 | Acc: 52.40
201 Layer 1 all —— Layer1lall 1 —— Layer 1all
: Layer 1 train Layer 1 train Layer 1 train
1.5 4 H
©
o
ol 1.0 1
0.5 i uu4____;__r_,,ff»—”"”’/”,
0.0 — -I T T T & T T T T & T T T T
25 5.0 0.0 125 150 175 200 25 5.0 0.0 125 150 175 200 2.5 10.0 125 150 175 200
%1075 Depth 4 | Acc: 26.39 Depth 8 | Acc: 31.60 Depth 16 | Acc: 13.39
—— Layer1lall —— Layer 1lall —— Layer1all
251 Layer 1 train i Layer 1 train I Layer 1 train
2.01 1
2
° 1.5 1
£
[CEEEWE H
0.5 1 1
0.0 T T T T & T T T T & T T T
25 5.0 10.0 125 150 175 200 25 5.0 10.0 125 150 175 200 2.5 0 125 150 175 200
%1074 Depth 4| Acc: 88.20 Depth 8 | Acc: 74.60 Depth 16 | Acc: 64.62
3.0 — Layerlall —— Layer1lall —— Layer1lall
Layer 1 train Layer 1 train Layer 1 train
2.5 H
2.0 4 H
wn
O 151 - H
1.0 - I /
0.5 =t I _
0.0l —— — - —

T
25 50 75

T T T T T
10.0 12,5 15.0 17.5 20.0

T T T T T T T
25 50 75 100 125 150 17.5 20.0

Epochs

T T T T T
25 50 75 100 125 15.0 17.5 20.0

Figure 9.2: Epoch evolution of the Mean Average Squared Euclidean Distance (M ASE D)
value of the embeddings of all nodes and training nodes. We show results for 3
different depths of a SGC model and M ASE D values in different layers within
the model. We show how M ASE D evolve in the first, the middle and the last
layer of each model. We also include the accuracy achieved by each model.

147

Computers Pubmed CiteSeer

Physics

%102 Depth: 4 | Acc: 66.20 Depth: 8 | Acc: 28.30 Depth: 16 | Acc: 17.30
1751+ — Layer1lall =1 — Layer1all — Layerlall
Layer 1 train - Layer 1 train Layer 1 train
1509 layer2all g — Layerdall — Layer8all
1254 ——- Layer2train Y —-- Layer 4 train ~==- Layer 8 train
— Layer4all ya — Layersall —— Layer 16 all
1007 ——- (ayer 4 train 4 ~-- Layer8 train -== Layer 16 train
0754 7}
I3
/
0.50 +
/
0251
0.00 i
0 25 50 7 00 125 150 175 200 O 25 50 75 100 125 150 175 200 25 50 75 100 125 150 175 200
%103 Depth: 4 | Acc: 76.70 Depth: 8 | Acc: 51.30 Depth: 16 | Acc: 18.20
— Layerlall — Layerlall — Layer1lall
8 Layer 1 train Layer 1 train Layer 1 train
— Layer2all — Layer4all — Layersgall
6] ~-- Layer2train | | --- Layer4 train --- Layer8 train
— Layer 4all — Layer8all — Layer 16 all
--- Layer4train | | --- Layer8 train --- Layer 16 train
44
24
o4
0 25 50 7 00 125 150 175 200 O 25 50 75 100 125 150 175 200 25 50 75 100 125 150 175 200
%103 Depth: 4 | Acc: 57.70 Depth: 8 | Acc: 1.80 Depth: 16 | Acc: 6.71
3.04 — Layerlall — layerlall — Layer1lall
Layer 1 train Layer 1 train Layer 1 train
2.57 = Layer2all —— Layer 4 all —— Layer 8 all
--- Layer2 train --- Layer4 train --- Layer 8 train
207 Layeraall , — Layersall — Layer16all
1.5 ~~" Layer4train S === Layer 8 train —-=- Layer 16 train
2 7
I
1.0+ a
0.5 4
0.0
o 25 50 7 00 125 150 175 200 O 25 50 7 100 125 150 175 200 25 50 75 100 125 150 175 200
x10% Depth: 4 | Acc: 93.58 Depth: 8 | Acc: 84.91 Depth: 16 | Acc: 9.18
1.6
— Layer1all — Layer1all — Layerlall
144 Layer 1 train Layer 1 train Layer 1 train
124 — Layer2all — Layer4all — Layersall
--- Layer2train | | --- Layer 4 train --- Layer8 train
10 — Layer4all — Layersall — Layer16all
0.8 1 ~=- Layer 4 train |1 —-- Layer8 train -=- Layer 16 train
0.6
0.4+
02
0.0
o 25 50 7 00 125 150 175 200 0 25 50 75 00 125 150 175 200 25 50 75 100 125 150 175 200
Epochs

Figure 9.3: Epoch evolution of the Mean Average Squared Euclidean Distance (M ASED)
value of the embeddings of all nodes and training nodes. We show results for 3
different depths of a GCN model and M AS E D values in different layers within
the model. We show how M ASE D evolve in the first, the middle and the last
layer of each model. We also include the accuracy achieved by each model.

148

x10%

Depth: 4 | Acc: 65.80

Depth: 8 | Acc: 67.50

Depth: 16 | Acc: 68.20

175

1.50 1

1254

1.004

0.75 1

CiteSeer

0.50 4

0.251

— Layerlall
--- Layer1train
— Layer2all
--- Layer 2 train
— Layer4all
-=- Layer 4 train

Layer 1 all

Layer 1 train
Layer 4 all

Layer 4 train
Layer 8 all

Layer 8 train -

Layer L all
Layer 1 train ¥
Layer 8 all %

Layer 8 train 7
Layer16all
Layer 16 train ,/

0.00 4

%107

7 100 125
Depth: 4 | Acc: 76.90

25 50 75 100 125 150 175 200
Depth: 8 | Acc: 72.50

25 50 75 100 125 150 175 200
Depth: 16 | Acc: 71.50

Pubmed

— Layerlall
~=- Layer1train
— Layer2all
—-- Layer 2 train
— Layer4all
--- Layer4train

Layer 1 all
Layer 1 train
Layer 4 all
Layer 4 train
Layer 8 all
Layer 8 train

Layer 1 all
Layer 1 train

Layer 8 all

Layer 8 train ;
Layer16all -

Layer 16 train
s

%107

50 7 00 125
Depth: 4 | Acc: 78.26

150 175 200

25 50 75 100 125 150 175 200
Depth: 8 | Acc: 74.86

25 50 75 100 125 150 175 200
Depth: 16 | Acc: 61.43

Computers

— Layerlall
~-- Layer1train
— Layer2all
--- Layer 2 train
— Layer4all
--- Layer 4 train

Layer 1 all
Layer 1 train
Layer 4 all
Layer 4 train
Layer 8 all P
Layer 8 train -

i ~
i e
FIAY

— Layer1lall
~== Layer 1 train
— Layergall
--- Layer 8 train
— Layer 16 all
~=- Layer 16 train

I‘"g»-d”

%107

50 7 00 125
Depth: 4 | Acc: 93.72

150 175 200

25 50 7 100 125 150 175 200
Depth: 8 | Acc: 92.07

25 50 75 100 125 150 175 200
Depth: 16 | Acc: 91.65

1.6 9
144
121
1.0+
0.8

Physics

0.6
0.4
0.2+

— Layerlall
~=- Layer1train
— Layer2all
--- Layer2 train
— Layer4all
--- Layer 4 train

27N — Layerlall
~-- Layer1 train
— Layerdall
--- Layer4 train
— Layer8all
Layer 8 train

——- Layer 16 train ’/

Layer 1 all -
Layer 1 train
Layer 8 all

Layer 8 train
Layer16all

0.0

Figure 9.4:

Epochs

Epoch evolution of the Mean Average Squared Euclidean Distance (M ASE D)
value of the embeddings of all nodes and training nodes. We show results for
3 different depths of a ResGCN model and M ASED values in different layers
within the model. We show how M ASE D evolve in the first, the middle and
the last layer of each model. We also include the accuracy achieved by each

model.

149

%1072 Depth: 4 | Acc: 67.60 Depth: 8 | Acc: 56.10 Depth: 16 | Acc: 56.10

| — tayer1all — Layerlall — Layerlall
Layer 1 train Layer 1 train Layer 1 train

CiteSeer
5

o o o
o N
S & o

0 25 50 7 00 125 150 175 200 O 25 50 75 100 125 150 175 200 0O 25 50 75 100 125 150 175 200
%1072 Depth: 4 | Acc: 71.90 Depth: 8 | Acc: 70.90 Depth: 16 | Acc: 71.60
1751 — Layerlall — Layerlall — Layerlall
150 Layer 1 train Layer 1 train Layer 1 train
z 125
£ 1009
S
S 075
a
0.50
025
0.00 4 == — —
0 25 50 7 00 125 150 175 200 0O 25 50 75 100 125 150 175 200 0O 25 50 75 100 125 150 175 200
%1073 Depth: 4 | Acc: 15.25 Depth: 8 | Acc: 2.86 Depth: 16 | Acc: 5.24
14+
— Layerlall — Layerlall — Layer1lall
124 Layer 1 train Layer 1 train Layer 1 train
@ 1.0
4
2 0.8
3
E- 0.6
o 4
N 0.4
02
0.04 = —_— _
o 25 50 7 00 125 150 175 200 O 25 50 7 100 125 150 175 200 O 25 50 75 100 125 150 175 200
%1072 Depth: 4 | Acc: 94.06 Depth: 8 | Acc: 92.80 Depth: 16 | Acc: 81.92
2007 — (ayer1all — Layer1all —— Layer 1all
1754 Layer 1 train Layer 1 train Layer 1 train

Physics
e © o = B o
S oI N
838058
\
|
1
|
1 1
\
\

0 25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200

Epochs

Figure 9.5: Epoch evolution of the Mean Average Squared Euclidean Distance (M ASE D)
value of the embeddings of all nodes and training nodes. We show results for
3 different depths of a SGC model and M ASED in different layers within the
model. We show how M ASE D evolve in the first, the middle and the last layer
of each model. We also include the accuracy achieved by each model.

3 Embedding Norms & Centroids Angle Evolution plots

Figure 9.6 and Figure 9.7 show the evolution of the norms during 50 epochs for ResGCN
and SGC models.

150

%101 Depth: 4 | Acc: 80.80 Depth: 8 | Acc: 79.30 Depth: 16 | Acc: 74.90
2.0 — Layer1all — Layer 1 all — layer1all
Layer 1 train Layer 1 train Layer 1 train
1.5 —— Layer 2 all { —— Layer 4 all —— Layer 8 all
=== Layer 2 train === Layer 4 train === Layer 8 train
E —— Layer 4 all —— Layer 8 all —— Layer 16 all _/
8 1.01 —-=-- Layer4train || —=- Layer 8 train —=- Layer 16 train s
II‘J
S
0.5 1 ul s
/
- ’
I pu
0.01 -1 1
T T T T T T T T T T T T T T T T T T
0 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50
Depth: 4 | Acc: 90.54 Depth: 8 | Acc: 66.29 Depth: 16 | Acc: 79.52
61 .
—— Layer1lall —— Layer 1 all —— Layer1all
5 Layer 1 train | Layer 1 train Layer 1 train
— Layer 2 all — Layer 4 all — Layer 8 all
° 4 —=- Layer 2 train || ——- Layer 4 train —-- Layer 8 train
-lal 3 —— Layer 4 all —— Layer 8 all —— Layer 16 all
3 === Layer 4 train === Layer 8 train === Layer 16 train
[i
14 i
0 = ||
T T T T T T T T T T T T T T T T T T
0 0 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50
x10! Depth: 4 | Acc: 88.98 Depth: 8 | Acc: 54.58 Depth: 16 | Acc: 78.81
251 —— Layer1lall —— Layer 1 all —— Layer1lall
1 Layer 1 train || Layer 1 train Layer 1 train
20 — Layer 2 all — Layer 4 all — Layer 8 all
154 —=- Layer2train || ——- Layer 4 train === Layer 8 train
)) —— Layer 4 all —— Layer 8 all —— Layer 16 all
o 1.0 === Layer4train || ——- Layer 8 train === Layer 16 train
0.5 1 u
0.0 e T ——
T T T T T T T T T T T T T T T T T T
[} 10 20 30 40 50 [} 10 20 30 40 50 [} 10 20 30 40 50
Epochs

Figure 9.6: Epoch evolution of the average value of the norms of the embeddings of all
nodes and training nodes separately. We show results for 3 different depths of
a ResGCN model and average norm values in different layers within the model.
We show how norms evolve in the first, the middle and the last layer of each
model. We also include the accuracy achieved by each model.

%1072 Depth: 4 | Acc: 77.70 Depth: 8 | Acc: 70.20 Depth: 16 | Acc: 52.40
0]l — Layer 1 all | — Layerlall —— Layer 1 all
) Layer 1 train Layer 1 train Layer 1 train
2.5 n
2.0 a
£
S 1sq g
1.01 1
0.5 n
0.0 I— T T T T & T = T T T T T
0 0 20 30 40 0 D D 0 10 20 30 40 50
%1072 Depth: 4 | Acc: 26.39 Depth 8| Acc 31.60 Depth: 16 | Acc: 13.39
1.4 { — Layer1all + — Layer 1 all —— Layer 1all
124 Layer 1 train | Layer 1 train Layer 1 train
o 1.01 1 1
-
-] 0.8 g H
-
o 06 8 H
0.4 1 H
0.21 1 1
T T T T T T T T T T T T
0 0 20 30 40 50 10 D 0 10 20 30 40 0
%1072 Depth: 4 | Acc: 88.20 Depth 8| Acc 74.60 Depth: 16 | Acc: 64.62
3.0{ — Layerlall + — Layer 1 all H —— Layer 1 all
Layer 1 train Layer 1 train Layer 1 train
2.51 1 1
2.0 n I
(0]
U 151 g H
1.0 a 1
0.5 7 u H
0.0 T T T T T T L L I. T T T T T
0 10 20 30 40 50 0 10 20 30 40 50
Epochs

Figure 9.7: Epoch evolution of the average value of the norms of the embeddings of jall
nodes and training nodes separately. We show results for 3 different depths of
a SGC model and average norm values in different layers within the model. We
show how norms evolve in the first, the middle and the last layer of each model.

Figures 9.8, 9.9, and 9.10 present the evolution of norms for 200 epochs for GCN, ResGCN,
and SGC models.

%107 Depth: 4 | Acc: 81.00 Depth: 8 | Acc: 18.10 Depth: 16 | Acc: 13.00
121 —— Layer1lall |1 — Layer 1 all ‘,” I —— Layer 1all
1.0 1 Layer 1 train |4 Layer 1 train ,r' H Layer 1 train
—— Layer 2 all —— Layer 4 all ’.."' —— Layer 8 all
0.8 4 ——=- Layer 2 train || —=- Layer 4 train il 1 —-=- Layer 8 train
E 0.6 1 — Layer 4 all | — Layer8all , ! | — Layer 16 all
8 : === Layer 4 train === Layer 8 train === Layer 16 train
0.4 1 § §
0.2 1 1 1
0.0 4 . 1 - 1
T T T T T T T T T T T T T T T T T
0 25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200
x10! Depth: 4 | Acc: 84.48 Depth: 8 | Acc: 13.39 Depth: 16 | Acc: 9.01
—— Layer1lall # —— Layer1lall —— Layer1all
Layer 1 train Layer 1 train Layer 1 train
L51 — Layer2all I —— Layer 4 all I —— Llayer 8 all
o === Layer 2 train === Layer 4 train ===~ Layer 8 train
la 104 — Layer4all i — Layer 8 all i — Layer 16 all
= === Layer 4 train === Layer 8 train === Layer 16 train
o
0.5 n n
0.0 1 S S S S SR 1
T T T T T T T T T T T T T T T T T T
0 25 50 75 100 125 150 175 200 0 25 75 100 125 150 175 200 0 25 75 100 125 150 175 200
x10! Depth: 4 | Acc: 87.53 Depth 8| Acc: 18.16 Depth 16 | Acc: 11.28
—— Layer1lall JIPPEE S —— Layer1lall —— Layer1all
2.0+ Layer 1 train H Layer 1 train | Layer 1 train
—— Layer 2 all —— Layer 4 all —— Layer 8 all
1.5 ——- Layer 2 train 4 === Layer 4 train |{ === Layer 8 train
wn — Layer 4 all — Layer 8 all — Layer 16 all
9] 1.04 ——- Layerdtrain i === Layer 8 train || === Layer 16 train
0.5 7 u u
0.0 | m——— s 1 1

T T T T T T T T T T
0 25 50 75 100 125 150 175 200 O 25 50 75 100 125 150 175 200 O 25 50 75 100 125 150 175 200

Epochs

Figure 9.8: Epoch evolution of the average value of the norms of the embeddings of all
nodes and training nodes separately. We show results for 3 different depths of
a GCN model and average norm values in different layers within the model. We
show how norms evolve in the first, the middle and the last layer of each model.
We also include the accuracy achieved by each model.

152

%101 Depth: 4 | Acc: 80.80 Depth: 8 | Acc: 79.30 Depth: 16 | Acc: 74.90
al —— Layer1lall | — Layer 1 all | — Layer 1 all ",,"'
—=- Layer 1 train —=- Layer 1 train —=- Layer 1 train P
—— Layer 2 all —— Layer 4 all —— Layer 8 all
31 === Layer 2 train [T —=- Layer 4 train _-—+-==—====r===o===: 7 ==~ Layer8train ¢ vl
E — Layer 4 all —— Layer 8 all —— Layer 16 all "\z"‘_r‘
8 2 === Layer 4 train | ——- Layer 8 train === Layer 16 train
; ra
) Iy
I H y i .
0 i H
T T T T T T T T T T T T T T T
0 O 125 150 175 200 0 25 0 125 150 175 200 0 25 0 125 150 175 200
x10! Depth 4 | Acc: 90.54 Depth 8 | Acc: 66.29 Depth 16 | Acc: 79.52
— Layer1lall —— Layer 1 all —— Layer1all
N Layer 1 train —=- Layer 1 train —=- Layer 1 train
— Layer 2 all — Layer 4 all — Layer 8 all
o === Layer 2 train === Layer 4 train === Layer 8 train
-lél 24 — Layer4all + —— Layer 8 all I —— Layer 16 all
3 === Layer 4 train === Layer 8 train === Layer 16 train
o
14 i H
0 i
T T T T T T T T T T T T T T
O 125 150 175 200 0 25 0 125 150 175 200 0 25 0 125 150 175 200
x10! Depth 4 | Acc: 88.98 Depth 8 | Acc: 54.58 Depth 16 | Acc: 78.81
54 —— Layer1lall | =R || — Layer1lall
=== Layer 1 train == —=- Layer 1 train
— Layer 2 all —— Layer1all — Layer 8 all
61 —=- Layer 2 train || —=- Layer1train [| —=- Layer 8 train
wn — Layer 4 all — Layer 4 all —— Layer 16 all
o 4 —=- Layer 4 train |§ —=- Layer4train {1 —-- Layer 16 traln
—— Layer 8 all
27 /:_‘sk"____; I 777 Layer8train 4
0 i H
T T
0 25 50 75 100 125 150 175 200 [} 25 50 75 100 125 150 175 200 [} 25 50 75 100 125 150 175 200
Epochs

Figure 9.9: Epoch evolution of the average value of the norms of the embeddings of all
nodes and training nodes separately. We show results for 3 different depths of
a ResGCN model and average norm values in different layers within the model.
We show how norms evolve in the first, the middle and the last layer of each
model. We also include the accuracy achieved by each model.

153

x1071 Depth: 4 | Acc: 77.70 Depth: 8 | Acc: 70.20 Depth: 16 | Acc: 52.40

124 q q
—— Layerlall —— Layer1lall —— Layer 1lall
1.0 Layer 1 train H Layer 1 train H Layer 1 train
0.8 1 n n
g
o 0.6 n n
o
0.4 4 a a
0.2 n n
0.0~ § - 1
T T
0 25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200 0 25 50 75 100 125_ 150 175 200
%1072 Depth: 4 | Acc: 26.39 Depth: 8§ | Acc: 31.60 Depth: 16 | Acc: 13.39
3.57 — Layer1all 1 — Layer1all 1 — Layer1all
3.0 Layer 1 train i Layer 1 train i Layer 1 train
2.5 n n
2
-g 2.0
T 151 5 5
1.0 5 5
0.5 n n
0.0 = T
0 25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200
%1072 Depth: 4 | Acc: 88.20 Depth: 8 | Acc: 74.60 Depth: 16 | Acc: 64.62
84 — Layerlall q —— Layerlall q —— Layer lall
Layer 1 train Layer 1 train Layer 1 train
6 H / i
— --7.’______
wn -
o 4 p g i
il / | |
o i i

T T T T T T T T T T T T T T T T T
0 25 50 75 100 125 150 175 200 O 25 50 75 100 125 150 175 200 O 25 50 75 100 125 150 175 200

Epochs

Figure 9.10: Epoch evolution of the average value of the norms of the embeddings of all
nodes and training nodes separately. We show results for 3 different depths
of a SGC model and average norm values in different layers within the model.
We show how norms evolve in the first, the middle and the last layer of each
model. We also include the accuracy achieved by each model.

Figures 9.11, 9.12, and 9.13 show the norm evolution on the CiteSeer, Pubmed, Computers,
and Physics datasets for all models under investigation.

154

=101 Depth: 4 | Acc: 66.20 Depth: 8 | Acc: 28.30 Depth: 16 | Acc: 17.30
10

— wyer1al T — layer1all — Layer1all
084 Layer 1 train BRI Layer 1 train Layer 1 train
| — Layer2all el —— Layer 4 all —— Layer 8 all
- ——- Layer2 train d —-- Layer 4 train ——- Layer 8 train
2 067 — Layer4all 7 — Layersall — Layer 16 all
0 ~-- Layer 4 train ~-- Layer8 train ~=- Layer 16 train
[0.4
2 .
5]
L I R 7 S T ey p—
0.04
0 25 50 7 00 125 150 175 200 O 25 50 75 100 125 150 175 200 0O 25 50 75 100 125 150 175 200
%101 Depth: 4 | Acc: 76.70 Depth: 8 | Acc: 51.30 Depth: 16 | Acc: 18.20
354 — Layerlall — Layerlall — Layer1lall
Layer 1 train Layer 1 train Layer 1 train
3.0 — Layer2all — Layer 4 all — Layergall
- 254 --- Layer2train || --- Layer 4 train ~=- Layer 8 train
o — Layer4all — Layer8all — Layer 16 all
£ 2.0 ——- Layer4train | --- Layer 8 train ——- Layer 16 train
2 151
a
1.0
0.54 S Soistatn ittt Ikt bkt St
0.04 ————
0 25 50 7 00 125 150 175 200 O 25 50 75 100 125 150 175 200 0O 25 50 75 100 125 150 175 200
%101 Depth: 4 | Acc: 57.72 Depth: 8 | Acc: 1.80 Depth: 16 | Acc: 6.71
3.5 3
— Layerlall - — Layerlall — Layer1lall
3.0 Layer 1 train 2 Layer 1 train Layer 1 train
— layer2all — Layerdall — Layergall
4 257 ——- Layer2 train —-- Layer 4 train ~—- Layer 8 train
] 204 — Layeraall — Layersall — Layer 16 all
g_ —=- Layer 4 train —-- Layer 8 train —=- Layer 16 train
£ 151
] 104
0.5
0.0 ———
o 25 50 7 100 125 150 175 200 O 25 50 75 100 125 150 175 200 0O 25 50 75 100 125 150 175 200
%101 Depth: 4 | Acc: 93.58 Depth: 8 | Acc: 80.06 Depth: 16 | Acc: 9.17
I — Layer1all — Layer1all — Layerlall
64 Layer 1 train Layer 1 train Layer 1 train
— Layer2all — Layer4all — Layergall
51 —--- Layer 2 train --- Layer 4 train —-- Layer 8 train
3 2l — Layer4all — Layersall — Layer16all
[--- Layer4train | | --- Layer8 train ~=- Layer 16 train
I
[
5
14 —
o] -
o 25 50 7 00 125 150 175 200 O 25 50 75 100 125 150 175 200 0O 25 50 75 100 125 150 175 200
Epochs

Figure 9.11: Epoch evolution of the average value of the norms of the embeddings of all
nodes and training nodes separately. We show results for 3 different depths of
a GCN model and average norm values in different layers within the model.
We show how norms evolve in the first, the middle and the last layer of each
model. We also include the accuracy achieved by each model.

155

x101 Depth: 4 | Acc: 65.80 Depth: 8 | Acc: 67.50 Depth: 16 | Acc: 68.20
3.0 T
— Layer1all Layer 1 all Layer 1 all . L
254 ~-- Layer 1train Layer 1 train Layer 1 train et P
— Layer2all Layerdall e Layer 8 all oy
- 2.04 ——- Layer 2 train Layer 4 train 2~~~ Layer 8 train
2 — Layer4all Layer 8 all /— Layer 16 all
0 154 ~=- Layer 4 train Layer 8 train Layer 16 train
8 . ’
s} 1.0
0.5 —
0.0
0 25 50 7 00 125 150 175 200 25 50 75 100 125 150 175 200 25 50 75 100
%101 Depth: 4 | Acc: 76.90 Depth: 8 | Acc: 72.50 Depth: 16 | Acc:
1757 — Layer1all Layer 1 all Layer 1 all P
1501 ~=- Layer 1 train Layer 1 train Layer 1 train s
— Layer2all Layer 4 all Layer 8 all S
- 125 ——- Layer 2 train Layer 4 train , 7=~ Layer 8 train 7*
@ 1404 — Layer 4all Layer 8 all Layer 16 all
£ . ——- Layer 4 train Layer 8 train /—/—f_\ Layer 16 train
S8 1 4
S o
a
0.50
L I >~ (e) Sy D R A I R e T rer=rereye sy pepepepaye; epupapepp |
0.00
0 25 50 7 00 125 150 175 200 25 50 75 100 125 150 175 200 25 50 75 100 125 150 175 200
%101 Depth: 4 | Acc: 78.24 Depth: 8 | Acc: 75.14 Depth: 16 | Acc: 53.15
— Layer1lall Layer1all e Layer 1 all
44—~ layer1train Layer 1 train 7 Layer 1 train A
— Layer2all Layer 4 all Layer 8 all WAAN | rd”
(7] ek AYRY
2 --- Layer 2 train Layer 4 train Layer 8 train A v
2 31— Layeraall Layer 8 all Layer 16 all ; -
g_ --- layeratan | | ____ Layer 8 train Layer 16 train -
£ 21 p—
S
14
oA
o 25 50 7 00 125 150 175 200 25 50 7 00 125 150 175 200 25 50 75 100 125 150 175 200
%101 Depth: 4 | Acc: 93.72 Depth: 8 | Acc: 92.07 Depth: 16 | Acc: 91.59
— Layer1all Layerlall | ==y
2.5 ~=- Layer 1 train Layer 1 train
— Layer2all Layer 4 all bt
2.0 ——- Layer 2 train Layer 4 train ayer L a
] ~-- Layer 1 train
] Layer 4 all Layer 8 all 1 sal
w 157 ——- Layer 4 train Layer 8 train ayerda
> - Layer 8 train
£ 1.0 — Layer 16 all
——————————— -== Layer 16 train
0.5
0.0
o 25 50 7 00 125 150 175 200 25 50 75 00 125 150 175 200 25 50 75 100 125 150 175 200

Epochs

Figure 9.12: Epoch evolution of the average value of the norms of the embeddings of all
nodes and training nodes separately. We show results for 3 different depths
of a ResGCN model and average norm values in different layers within the
model. We show how norms evolve in the first, the middle and the last layer
of each model. We also include the accuracy achieved by each model.

156

Computers Pubmed CiteSeer

Physics

Figure 9.13:

%1071 Depth: 4 | Acc: 67.60

Depth: 8 | Acc: 56.10

Depth: 16 | Acc: 56.10

— Layer1all

Layer 1 train

— Layerlall
Layer 1 train

— Layer1lall
Layer 1 train

0 25 50 7 100 125 150 175 200 O 25 50 75 100 125 150 175 200 0O 25 50 75 100 125 150 175 200
%1071 Depth: 4 | Acc: 71.90 Depth: 8 | Acc: 70.90 Depth: 16 | Acc: 71.60
— Layerlall — Layerlall — Layerlall
Liyerlmn/ fayer i) fayer ity
0 25 50 7 100 125 150 175 200 O 25 50 75 100 125 150 175 200 O 25 50 75 100 125 150 175 200
%1072 Depth: 4 | Acc: 15.25 Depth: 8 | Acc: 2.86 Depth: 16 | Acc: 5.24
— Layer1lall — Layer1all — Layerlall e |
Layer 1 train Layer 1 train Layer 1 train
o 25 50 7 100 125 150 175 200 O 25 50 7 100 125 150 175 200 0O 25 50 75 100 125 150 175 200
%1071 Depth: 4 | Acc: 94.06 Depth: 8 | Acc: 92.80 Depth: 16 | Acc: 81.92
— Layer1all — Layer1all — Layerlall
-~ ~ /

°
@
2

75 100 125 150 175 200

0 25 50 75 100 125 150 175 200

Epochs

Epoch evolution of the average value of the norms of the embeddings of all

nodes and training nodes separately. We show results for 3 different depths
of a SGC model and average norm values in different layers within the model.
We show how norms evolve in the first, the middle and the last layer of each
model. We also include the accuracy achieved by each model.

Figures 9.14, and 9.15 show the evolution of the average angle between the centroids of the
embeddings of the training nodes for ResGCN and SGC. Figures 9.16, 9.17, and 9.18 present
the angle evolution on the CiteSeer, Pubmed, Computers, and Physics datasets.

157

x10! Depth: 4 | Acc: 80.80 Depth: 8 | Acc: 79.60 Depth: 16 | Acc: 74.90
6.0+ — Layerl —— lLayer1 |{ — Llayerl .
] Layer 2 Layer4 || Layer 8
357 — Layer 4 —— Layer 8 —— Layer 16
5.0 1
©
-] I — J
5 45
Y a0 §
3.5 1 1
3.0 1 1
025 100 125 150 175 200 100 125 150 175 200 25 100 125 150 175 200
x10! Depth 4| Acc: 90.39 Depth 8 | Acc: 84.23 Depth 16 | Acc: 78.94
4.5 1
4.0 1
3.5 1 1
=] — Layerl
L
© 3.0 1 Layer 8
£
— Layer 16
CIEE g Y
— layer 1l]\
2.0 Layer 2 \//_/_‘ I \f
15 —— Layer 4 i
025 75 100 125 150 175 200 100 125 150 175 200 25 100 125 150 175 200
x10! Depth 4| Acc: 88.98 Depth 8 | Acc: 56.92 Depth 16 | Acc: 82.03
6 — Layer1 |]
Layer 4
1 [% Layerd
(1]
(SIS g
—— Layerl —— Layerl
31 Layer 2 i Layer 8
—— Layer 4 —— Layer 16
0 25 50 75 100 125 150 175 200 O 25 50 75 100 125 150 175 200 O 25 50 75 100 125 150 175 200
Epochs

Figure 9.14: Epoch evolution of the average value of the angles between the centroids of
the embeddings of the training nodes. We show results for 3 different depths
of a ResGCN model and average norm values in different layers within the
model. We show how angles evolve in the first, the middle and the last layer
of each model. We also include the accuracy achieved by each model.

158

x10! Depth: 4 | Acc: 77.70 Depth: 8 | Acc: 70.20 Depth: 16 | Acc: 52.40

— Layerl — Layerl

Cora
w

— Layer1 |]

0 25 50 75 100 125 150 175 200 25 50 75 100 125 150 175 200 25 S0 75 100 125150 175 200
%101 Depth: 4 | Acc: 26.39 Depth: 8 | Acc: 31.60 Depth: 16 | Acc: 13.39

o—
o4

3.54 — Layerl H — Layer1 H — Layerl
3.04 u H
2.57 u H

2.01 1 1

Photo

1.5 1 1 1

0.5+ T T . T T . T = T T . T . T . = T . . . T . .
0 25 50 75 100 125 150 175 200 25 50 75 100 125 150 175 200 50 75 100 125 150 175 200
%101 Depth: 4 | Acc: 88.20 Depth: 8 | Acc: 74.60 Depth: 16 | Acc: 64.62

VT T — — layer1 — layer1

. [T |

o—
o4
~
w

Ccs
w

T T T T T T T T T T T T T T T T
25 50 75 100 125 150 175 200 O 25 50 75 100 125 150 175 200 O 25 50 75 100 125 150 175 200

Epochs

Figure 9.15: Epoch evolution of the average value of the angles between the centroids of
the embeddings of the training nodes. We show results for 3 different depths
of a SGC model and average norm values in different layers within the model.
We show how angles evolve in the first, the middle and the last layer of each
model. We also include the accuracy achieved by each model.

159

Computers Pubmed CiteSeer

Physics

Figure 9.16:

160

4.5

4.04
3.5
3.0
2.54
2.04
1.54
1.04
0.5

x101 Depth: 4 | Acc: 66.20 Depth: 8 | Acc: 28.30 Depth: 16 | Acc: 17.30
— layerl — Layerl
Layer 4 Layer8
//‘\\—g —— Layer8 —— Layer 16
/\/\ NS S S S
— Layer1 7‘*,_,\/\
Layer 2
— layera — ~ T e
0 25 50 7 00 125 150 175 200 O 25 50 75 100 125 150 175 200 0O 25 50 75 100 125 150 175 200
%101 Depth: 4 | Acc: 76.70 Depth: 8 | Acc: 51.30 Depth: 16 | Acc: 18.20
— Layerl — Layerl
Layer8
— Layer16
- —
0 25 50 7 00 125 150 175 200 O 25 50 75 100 125 150 175 200 0O 25 50 75 100 125 150 175 200
%101 Depth: 4 | Acc: 57.83 Depth: 8 | Acc: 1.80 Depth: 16 | Acc: 6.71
— layerl — Layerl
Layer 4 Layer8
— Layer8 — Layer 16
o 25 50 7 00 125 150 175 200 O 25 50 7 100 125 150 175 200 0O 25 50 75 100 125 150 175 200
%101 Depth: 4 | Acc: 93.58 Depth: 8 | Acc: 78.23 Depth: 16 | Acc: 9.18
— Layerl
Layer8
— Layer 16
T — Layer1 — Layer1
Layer 2 Layer 4
— layerd — layers /-/\JM’\—\/\/\-\/\/
o 25 50 7 00 125 150 175 200 0 25 50 75 00 125 150 175 200 0O 25 50 75 100 125 150 175 200

Epochs

Epoch evolution of the average value of the angles between the centroids of

the embeddings of the training nodes. We show results for 3 different depths
of a GCN model and average norm values in different layers within the model.
We show how angles evolve in the first, the middle and the last layer of each
model. We also include the accuracy achieved by each model.

x101 Depth: 4 | Acc: 65.80 Depth: 8 | Acc: 67.50 Depth: 16 | Acc: 68.20

— layerl
5.59 Layer 4 ~
— layers

5.0

4.5 ——

4.04

CiteSeer

3.5
— Layerl — Layer1
3.09 Layer 2 Layer 8

254 — layera — Layer 16

0 25 50 7 100 125 150 175 200 O 25 50 75 100 125 150 175 200 0O 25 50 75 100 125 150 175 200
%101 Depth: 4 | Acc: 76.90 Depth: 8 | Acc: 72.50 Depth: 16 | Acc: 71.50

6.5 — Layerl — Layer1
Layer 4 Layer 8
—— Layers — Layer 16

6.0
5.5
5.0
4.5

Pubmed

4.0
3.5 — Layer1

Layer 2
— Layer4

3.0
2.5

0 25 50 7 100 125 150 175 200 O 25 50 75 100 125 150 175 200 0O 25 50 75 100 125 150 175 200
%101 Depth: 4 | Acc: 78.22 Depth: 8 | Acc: 68.72 Depth: 16 | Acc: 56.97

— Layerl
Layer 4
— Layer8

— Layer1
Layer 8
— Layer 16

4.5

4.0

3.54

3.0

2.54

2.0 o~

o 25 50 7 100 125 150 175 200 O 25 50 7 100 125 150 175 200 0O 25 50 75 100 125 150 175 200
%101 Depth: 4 | Acc: 93.72 Depth: 8 | Acc: 92.07 Depth: 16 | Acc: 91.66

Computers

6.0

5.5

5.0

451 — Layer1
Layer8

4.0
— Layer 16
3.5

Physics

3.0 — Layerl — layerl
Layer 2 Layer 4
— layera — layers

2.5

2.0

0 25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200

Epochs

Figure 9.17: Epoch evolution of the average value of the angles between the centroids of
the embeddings of the training nodes. We show results for 3 different depths
of a ResGCN model and average norm values in different layers within the
model. We show how angles evolve in the first, the middle and the last layer
of each model. We also include the accuracy achieved by each model.

161

x101 Depth: 4 | Acc: 67.60 Depth: 8 | Acc: 56.10 Depth: 16 | Acc: 56.10
8.0+ — layerl — Layerl
7.5
= 7.0
]
a 6.5
2 6.0
v 5.59
5.04
45— Laver1
0 25 50 7 00 125 150 175 200 O 25 50 75 100 125 150 175 200 0O 25 50 75 100 125 150 175 200
%101 Depth: 4 | Acc: 71.90 Depth: 8 | Acc: 70.90 Depth: 16 | Acc: 71.60
61 — layerl — Layer1
54
-
E
S 34
S
a
2
14
— layerl
0 25 50 7 00 125 150 175 200 0O 25 50 75 100 125 150 175 200 0O 25 50 75 100 125 150 175 200
%101 Depth: 4 | Acc: 15.25 Depth: 8 | Acc: 2.86 Depth: 16 | Acc: 5.24
357 — Layer1 — layer1 — Layer1
? 3.04
4
2
5 259
e
E
) 2.0
v
1.5
o 25 50 7 00 125 150 175 200 O 25 50 7 100 125 150 175 200 O 25 50 75 100 125 150 175 200
%101 Depth: 4 | Acc: 94.06 Depth: 8 | Acc: 92.80 Depth: 16 | Acc: 81.92
8 — layerl — Layer1
71
w
v
2 64
>
£
[51
a4
— layerl
o 25 50 7 00 125 150 175 200 0 25 50 75 00 125 150 175 200 0O 25 50 75 100 125 150 175 200
Epochs

Figure 9.18:

Epoch evolution of the average value of the angles between the centroids of
the embeddings of the training nodes. We show results for 3 different depths
of a SGC model and average norm values in different layers within the model.
We show how angles evolve in the first, the middle and the last layer of each
model. We also include the accuracy achieved by each model.

4 Regularization plots

Figures 9.19,

and 9.20 present the results of ResGCN and SGC on every dataset with and

without the proposed regularization.

162

Cora CiteSeer Pubmed Photo

1.0
0.8 1 -
" \‘.%
04— Av=0 —— Ay =0 - Ay =0 —— Ay =0
- Ay=2 —a— Ay =2 - Ay=2 —a— Av=2
—— Ay =3 —— Ay =3 - Ay=3 —— Ay =3
021 —8 Av=4 —— Ay =4 —- Ay =4 —— Ay =4
—_ —o— Ay =6 —a— Ay =6 —8— Ay =6 —— Ay =6
o\" —— Ay =8 —— Ay =8 —— Ay =8 —— Ay =8
;o.o : : ‘ : —L : ‘ ‘ L : . . —L . . : .
) 2 4 8 16 32 2 4 8 16 32 2 4 8 16 32 2 4 8 16 32
e
= Computers Physics (&)
8 1.0
>—
< * * *
0.8 1 w
0.6 1
04— Av=0 —— Ay =0 - Ay =0
- Ap=2 —— Ay =2 —— Ay =2
- Ay=3 - Ay =3 - Av=3
021 o Av=14 —— Ay =4 —-— Ay =4
- Ay =686 —o Ay=6 —— M =6
- A, =8 —— Ay =8 —— A, =8
0.0 T T T — T T T 1 T T T T
2 4 8 16 32 2 4 8 16 32 2 4 8 16 32

Model's depth

Figure 9.19: Comparison between a ResGCN with and without the proposed regularization
across 7 datasets for varying depth. We include results for different values of

Aw-

163

o Cora CiteSeer Pubmed Photo
—a— Ay =0
Aw = 0.01
0.8 A —— Ay =05
1 1 i e —¢—* —— Ay =1
= ¢ o — Ay =2
0.6 -
0.4 '—.—'\'\'
—— Ay=0 —a— Ay =10 - Ay=0
Ay =0.01 Aw = 0.01 Aw =001 .
0218 Ay=05 —— Ay =05 — Ay=05
—_ —— Ay =1 - Ay =1 - Ay=1
= —— Ay =2 —— Ay =2 — Ay =2
T oodo ; ; ; L ; ; ; L ; . . L
a 2 4 8 16 32 2 4 8 16 32 2 4 8 16 32 2 4 8 16 32
o .
=1 Computers Physics (&)
v} 1.0
% -8 Ay =20
Aw=0.01
0.8 1 —— Ay, =05
—a— Ay =1
—— Ay=2
0.6 -
0.4 A
-8 Ay=0 —— Ay =0
s Aw = 0.01 Aw = 0.01
024 —— Ay=05 —s— Ay=05
—— Ay =1 - Ay=1
—— Ay =2 —— Ay=2
0.0 T T T I f T T —— f i T i
2 4 8 16 32 4 8 16 32 2 4 8 16 32

Model's depth

Figure 9.20: Comparison between a SGC with and without the proposed regularization

across 7 datasets for varying depth. We include results for different values
of \.

5 Plots on variable number of SGC layers

Figure 9.21 presents the performance of SGC models with varying number of layers on the
CiteSeer, Pubmed, Computers, and Physics datasets. For the Physics dataset, we could not
train a model with 8 SGC layers due to hardware limitations.

CiteSeer Pubmed Computers Physics
—eo— # of layers: 1 —e— # of layers: 1 —e— # of layers: 1
of layers: 2 # of layers: 2 # of layers: 2
084 —eo— # of layers: 4 || —eo— # of layers: 4 || —e— # of layers: 4 ||
—&— # of layers: 8 —8— # of layers: 8 —&— # of layers: 8
— o+ —o—8—
o F_H——o———c
=
= 061 H H
> 'h\/\
v
©
o
!
O 04 i H
< — o ——+— ¢—*
0.2 4 1 ———& [| & #oflayers: 1
T T T T b # of layers: 2
— 7 M hd T —o— # of layers: 4
8 16 24 32 40 8 16 24 32 40 8 16 24 32 40 8 16 24 32 40

Model's depth

Figure 9.21: Comparison between SGC models that have different number of SGC layers
stacked across 4 different datasets for varying depth. In every depth all models
have access to the same information. We only vary the number of trainable
weight matrices (i.e., the number of SGC layers).

164

6 Hyperparameters

Table 9.1: Hyperparameter search space used for finding the optimal configuration.

Hyperparameter Search Space
Learning Rate (Ir) | {le-4, 6e-4, 1e-3, 6e-3, le-2, 6e-2}
Hidden Dimension {64, 128, 256}

Number of Layers {2, 4, 8, 16, 24, 32, 40}
Weight Decay {5e-4, 1e-3, 0}

Epochs {200, 1500, 3000}

Aw {0,0.01,0.5, 1, 2, 3, 4, 6, 8, 10, 12}

7 Lemma 8 Proof

Lemma 25. In a power iteration method with convergence rate equal to (1 — «), in order to
achieve tolerance error at most tol, the number of iterations (L) needed is given by:

logyo(tol)

= tol ~ (1 —a)r.
logio(1 —) ()

Proof: Let us assume that the power iteration is given by xy,1 = Pxy, where P is the
transition matrix with A;(P) = 1 and A\y(P) = (1 — «), as explained in subsection 2.1.
Considering that in a power iteration method the convergence rate (cr) is given by:

_)\Q(P)_l—a
(P 1

cr =1-aq.

In a power iteration method, with P as transition matrix and u; denoting its ¢-th eigenvec-
tor, we can get the following results regarding the convergence of the method:

Ty = C1u1 + ... + cpu,, where ¢;’s are constants.

k k k
T = P'xg = 1 \jur + ... + ep Ay,

_ ok (A" e (A" k
rr=c N v+ ——=) vat+...+— | —) uy| = a\jus. (9.1)
C1 /\1 C1 /\1

From Equation 9.1 we observe that the slowest convergent factor is the one associated with
the second largest eigenvalue. The tolerance error between consecutive iterations is given
mainly (approached better) by the slowest convergent to zero i.e., the one associated with
the second largest eigenvalue. Hence we get:

logo(tol)

A k
(—2) ~tol = (1 —a)f ~tol = k~ :
logio(1 —)

At

8 Deriving Equation 4.10

Starting from Equation 4.9, substituting 3; = 1, V!, and disregarding the activation func-
tions leads to:

HED — ((1 - al)AH(l) + alH(O)) w®.

165

Substituting H") once yields:

H(H_l) = ((1 — CK[)A(((l — Ojl_l)AH(l_l) + CVl_lH(O))W(l_l)) + OélH(O)>W(l) =

A%(1— o) (1 — ap_) HOWOWED £ A1 — o)yt HOWOW D o, HOWw O,

Repeatedly substituting H*) until k reaches to zero, and writing products of (1 — a;) in
the [](+) format, leads to the formula presented in Equation 4.10.

9 Training Statistics

Figure 9.22 and Figure 9.23 illustrate the training loss evolution for two variants of the Star
dataset. When the star path length is short (Figure 9.22), all models effectively learn the
underlying task. However, as the length increases (Figure 9.23), residual methods exhibit
inferior performance, struggling to integrate distant information from the star’s leaves.

APPNP PPRGNN GCN
1.2 —— Layer:3, Acc.: 96.43 || —— Layer:3, Acc.: 64.29 || —— Layer:3, Acc.: 100.00
—— Layer:4, Acc.: 100.00 —— Layer:4, Acc.: 100.00 —— Layer:4, Acc.: 100.00
—— Layer:5, Acc.: 96.43 —— Layer:5, Acc.: 100.00 —— Layer:5, Acc.: 100.00
1.0 1 —— Layer:6, Acc.: 87.53 —— Layer:6, Acc.: 100.00 [1 —— Layer:6, Acc.: 100.00
—— Layer:7, Acc.: 85.77 —— Layer:7, Acc.: 100.00 —— Layer:7, Acc.: 100.00
0.8 —— Layer:8, Acc.: 92.86 —— Layer:8, Acc.: 100.00 |] —— Layer:8, Acc.: 100.00
0.6
0.4 4
0.24
A 0.0
(e}
- T
c GCNII (a = 0.1) GCNIl (a = 0.2) GCNII (o = 0.4)
© T ™
|= 12 —— Layer:3, Acc.: 100.00 || —— Layer:3, Acc.: 100.00 |] Layer:3, Acc.: 100.00
’ —— Layer:4, Acc.: 100.00 —— Layer:4, Acc.: 96.43 Layer:4, Acc.: 100.00
—— Layer:5, Acc.: 100.00 —— Layer:5, Acc.: 100.00 Layer:5, Acc.: 100.00
1.04 —— Layer:6, Acc.: 100.00 [q —— Layer:6, Acc.: 96.43 Layer:6, Acc.: 85.71
—— Layer:7, Acc.: 98.81 —— Layer:7, Acc.: 100.00 Layer:7, Acc.: 92.86
0.8 —— Layer:8, Acc.: 100.00 || —— Layer:8, Acc.: Layer:8, Acc.:
0.6
0.4 4
0.2 4
0.0 4

0 25 50 75 100 125 150 175 200 O 25 50 75 100 125 150 175 200 O 25 50 75 100 125 150 175 200

Epochs

Figure 9.22: Training loss evolution of APPNP, PPRGNN, GCN, and three variants of GCNII
on a variant of the Star dataset with 3 paths of length 3.

166

APPNP PPRGNN GCN

T T T
1.2 i —— Layer:7, Acc.: 64.29 —— Layer:7, Acc.: 100.00
—— Layer:8, Acc.: 75.24 —— Layer:8, Acc.: 100.00
—— Layer:9, Acc.: 82.14 —— Layer:9, Acc.: 100.00
1.0 1 i —— Layer:10, Acc.: 89.29 |1 —— Layer:10, Acc.: 100.00
—— Layer:11, Acc.: 92.86 —— Layer:11, Acc.: 100.00
0.8 i I —— Layer:12, Acc.: 91.10 || —— Layer:12, Acc.: 96.67
0.6 g W\ N
044 Layer:7, Acc.: 58.57 i i
—— Layer:8, Acc.: 64.29
0.2 — Layer:9, Acc.: 64.29 i i
—— Layer:10, Acc.: 64.29
0 —— Layer:11, Acc.: 61.43
8 001 — Layer:12, Acc.: 64.29 7 1
- T
< GCNIl (a = 0.1) GCNIl (a = 0.2) GCNII (a0 = 0.4)
@®©
l’: 12 —— Layer:7, Acc.: 64.29 —— Layer:7, Acc.: 64.29 —— Layer:7, Acc.: 64.29
—— Layer:8, Acc.: 64.29 —— Layer:8, Acc.: 64.29 —— Layer:8, Acc.: 64.29
—— Layer:9, Acc.: 64.29 —— Layer:9, Acc.: 64.29 —— Layer:9, Acc.: 64.29
1.0 1 —— Layer:10, Acc.: 64.29 [—— Layer:10, Acc.: 64.29 [1 —— Layer:10, Acc.: 64.29
—— Layer:11, Acc.: 64.29 —— Layer:11, Acc.: 64.29 —— Layer:11, Acc.: 64.29
0.8 —— Layer:12, Acc.: 64.29 || —— Layer:12, Acc.: 64.29 || —— Layer:12, Acc.: 64.29
A L Lo
0.6 5 5
0.4 4 5 -
0.24 5 5
0.0 4 5 B

0 25 50 75 100 125 150 175 200 O 25 50 75 100 125 150 175 200 O 25 50 75 100 125 150 175 200

Epochs

Figure 9.23: Training loss evolution of APPNP, PPRGNN, GCN, and three variants of GCNII
on a variant of the Star dataset with 3 paths of length 7.

We also compare the models in terms of average training time consumption for two vari-
ants of the Star dataset. Figure 9.24 shows that for short-range interactions, GCNII is faster.
However, as path length increases, other methods require less time and scale more effi-
ciently, maintaining nearly constant runtime. In contrast, GCNII variants require progres-
sively more time to compute the output as path length grows.

Star dataset: 3 paths with length 3 Star dataset: 3 paths with length 7

250 | —@— APPNP 7 4 —e— APPNP
5 —o— PPRGNN 5 —o— PPRGNN
82254 - G 864 —® GCN
5 —e— GCNII (a = 0.1) 5 —e— GCNIl (o = 0.1)
8 2.00 1 —@— GCNIl (a =0.2) B 5 —o— GCNIl (a = 0.2)
E —e— GCNIl (a = 0.4) E” | e GCNIl(a=0.4)
@ 1,75 A @
8 8 41
(] — (]
g 10 £
= F 3
8 1.25 A g
o o
o | 924
z 100 z

0.75 L .__——r-———'—"—.————._’.

7 8 9 10 11 12 3 4 5 6 7 8
Number of Layers Number of Layers

Figure 9.24: Average training time consumption of APPNP, PPRGNN, GCN, and three GC-
NII variants across two versions of the Stars dataset.

167

10 Statistical Analysis

Tables 9.2 and 9.3 report Friedman and Conover test results. Table 9.2 shows per-dataset
Friedman tests (10 runs each), all of which reject the null hypothesis (p < 0.05). Holm-
adjusted Conover post-hoc tests identify significant classifier pairs. An asterisk “*” denotes
that all pairwise differences are significant.

Table 9.3 summarizes the global Friedman test on dataset-wise mean accuracies. The result
is not significant, indicating that there is no clear winner across the evaluated datasets.

Table 9.2: Per-dataset Friedman test and Conover post-hoc results (Holm-adjusted). Each
row shows a dataset (10 runs): the Friedman y?, its p-value, and any significant
classifier pairs.

Dataset X2 PDrricdman Significant pairs (Conover)

Cora 19.56 2.1e-4 APPNP-GCNII, APPNP-PPRGNN, APPNP-GCN
CiteSeer 2549 1.2e-5 *

Pubmed 2532 1.3e-5 All except of APPNP-PPRGNN pair
Photo 30.00 1.4e-6 *

Computers 23.76 2.8e-5 All except of APPNP-PPRGNN pair
Arxiv 28.92 2.3e-6 *

e

> means all pairs are significant at a« = 0.05.

Table 9.3: Global Friedman test (on dataset-means) and Conover post-hoc (Holm-adjusted).

Analysis X2 Drriedman Significant pairs (Conover)

All datasets 4.8 0.18 -

11 Hyperparameters

Table 9.4: Hyperparameter search space used for finding the optimal configuration.

Hyperparameter Search Space
Learning Rate (Ir) | {le-4, le-3, le-2, 2e-2, le-1}
Hidden Dimension {32, 64, 128, 256}
Number of Layers {2, 4, 8, 16, 32, 64}
Weight Decay {5e-4, 1e-3}

12 Partially trained GCNII

Figure 9.25 presents the comparison of fully-trained GCNII and partially trained GCNII
across seven benchmark datasets. Each subplot reports mean test accuracy over 10 ran-

168

dom seeds, using the original hyperparameter settings from the GCNII authors. Across all
datasets, partially trained GCNII performs at least as well as the fully-trained GCNIL This
behavior aligns with expectations: GCNII already employs identity mappings and residual
connections to resist oversmoothing and achieves near state-of-the-art accuracy, leaving
limited room for further improvement. Nonetheless, the consistent positive results confirm
that our partial training paradigm can complement even highly optimized architectures.
We also conducted a hyperparameter sweep over larger width values on the fully-trained
GCNII and observed no significant performance gains, confirming that improvements arise
specifically from the use of the partial training mechanism.

Cora

CiteSeer

Pubmed

Computers

0.855 1

0.850 1

0.845 1

0.840 4

0.835 4

0.830 1

—o— 64
512
—8— 64-Trained

0.73

—o— 256
2048
—8— 256-Trained

0.800 -

0.795

0.790

0.785 A

0.780 A

—8— 256
2048
—8— 256-Trained

0.746

0.744 1

0.742 -

0.740 4

0.738 1

0.736 1

7

|

—o— 64
512
—8— 64-Trained

Physics

cs

Photo

Arxiv

0.9390 1

Accuracy (%)

0.9385 4

0.9380 1

0.9375 4

0.9370 1

0.9365 -

0.9360 1

0.9355 4

0.9350 ~—

—o— 64
512

—8— 64-Trained

0.91 1

0.90

0.89

0.88

0.87

0.86 -

0.85 A

0.84

0.83 -

—o— 64
512

0.862

0.860 -

0.858 -

0.856 -

0.854 -

0.852

0.850 -

0.848 -

—o— 64
512
—8— 64-Trained

AN

0.725 A

0.724 -

0.723 4

0.722 -

0.721 -

—e— 512
256-Trained

16

32

—8— 64-Trained

16 32

0.846

4 8

Model's depth

32

Figure 9.25: Comparison between a fully trained GCNII and different configurations (in
terms of width) of partially trained GCNIIs across 8 datasets for varying depth.
The trainable layer is always the second. Experiments were limited to the
reported widths due to hardware constraints.

13 Extended Table 5.2

We present the extended version of Table 5.2 of the main text.

169

Table 9.5: Performance comparison of GCN models with different width and depth, as well
as different placement of the trainable layer.

Accuracy (%) & std
. Position
Dataset | (Width, Depth) 5 4 g 16 32
(512,8) 79.65 +o62 | 78.07 £131 | 73.49 +228 - -
(20438,8) 81.85 +034 | 81.09 +o074 | 78.06 +1.12 - -
Cora (8192,8) 81.25 +o071 | 81.47 089 | 81.04 +os56 - -
(512,32) 35.29 £ 1274 | 36.60 £ 1121 | 38.83 £903 | 39.65 +1099 | 33.55 + 1214
(2048,32) 76.90 £223 | 77.09 +205 | 77.43 +188 | 77.22 +195 | 76.99 +222
(8192,32) 78.87 o045 | 78.44 +058 | 79.07 +0.73 78.83 +0.43 78.97 +0.61
(512, 8) 67.58 +125 | 62.13 £118 | 53.47 + 1585 - -
(2048, 8) 71.20 £ 049 | 67.20 +118 | 61.14 +1.11 - -
CiteSeer (8192, 8) 70.78 +1.45 | 69.52 +108 | 66.39 +0.74 - -
(512, 32) 34.35 + 1225 | 32.40 +9.31 29.01 9386 27.72 £ 1178 | 30.12 +10.94
(2048, 32) 57.36 +646 | 55.76 £572 | 57.22 +287 | 56.72 +£384 | 58.69 £330
(8192, 32) 70.18 + 064 | 68.21 +087 | 65.45+106 | 65.45+09 | 65.99 +1.09
(512, 8) 78.07 + 085 | 76.99 +oss | 72.68 +219 - -
(2048, 8) 77.18 +o066 | 77.53 052 | 76.72 +0.66 - -
Pubmed (8192, 8) 74.05 £267 | 76.20 £143 | 77.75 +0.67 - -
(512, 32) 66.91 +1476 | 68.56 +11.22 | 68.99 +11.79 | 68.32 £ 1351 | 65.56 +18.07
(2048, 32) 78.55 £0.40 | 78.22 +o048 | 78.06 £ 0.1 77.96 +0.93 78.24 +0.77
(8192, 32) 78.63 + 044 | 78.57 +o051 | 78.53 +045 | 78.56 +057 | 78.57 +045
(512, 8) 84.53 +132 | 83.54 +074 | 66.85 +544 - -
(2048, 8) 89.68 +0.12 | 89.41 +o018 | 82.59 +036 - -
Photo (8192, 8) 90.26 £0.21 | 89.82 +o022 | 87.73 +0.8 - -
(512, 32) 22.69 £1500 | 22.15 £1170 | 24.42 +1512 | 25.68 £1529 | 21.61 + 1261
(2048, 32) 41.12 + 1704 | 44.96 £ 1592 | 50.78 + 1371 | 51.76 +£13.70 | 50.19 + 13.14
(8192, 32) 72.32 +293 | 71.39 +204 | 70.58 +127 | 70.66 +195 | 71.62 +180
(512, 8) 64.74 +214 | 63.81 £157 | 59.70 £ 103 - -
(2048, 8) 73.10 +o026 | 72.22 +o022 | 64.77 £om1 - -
Computers (4096, 8) 74.80 +000 | 73.15 +000 | 66.52 +0.00 - -
(512, 32) 8.43 +5.18 8.83 +5.24 12.71 £ 1189 | 10.82 + 548 8.33 +5.21
(2048, 32) 45.74 +£1944 | 48.15 £ 1988 | 49.38 +£19.14 | 50.85 £17.11 | 50.97 +17.32
(4096, 32) 65.00 000 | 67.62 £0.00 | 65.17 £o000 | 66.28 o000 | 64.84 £0.00
(512, 8) 92.88 +0.14 | 92.68 +011 | 90.97 +0.71 - -
(2048, 8) 92.51 +006 | 92.47 +o12 | 92.66 +017 - -
Physics (8192, 8) 92.46 £006 | 92.41 £009 | 92.65 +0.13 - -
(512, 32) 39.50 +27.73 | 37.52 + 2690 | 40.04 + 2752 | 38.29 +2626 | 33.93 + 26.08
(2048, 32) 81.54 + 2421 | 80.75 +2478 | 86.35 +14.05 | 85.72 +1394 | 86.09 +13.89
(8192, 32) 92.47 4018 | 92.53 +0.16 | 92.44 009 | 92.40 +010 | 92.43 +o012
(512, 8) 87.16 +133 | 86.83 £139 | 79.82 +176 - -
(2048, 8) 88.34 £0.09 | 88.45 +016 | 88.20 + 030 - -
cS (8192, 8) 87.17 £0.09 | 87.45 +0.08 | 88.93 +0.12 - -
(512, 32) 7.17 +528 | 9.04 +7.78 5.92 +3.92 5.99 +375 7.30 + 353
(2048, 32) 36.07 £ 1423 | 38.16 £ 1080 | 41.19 £1122 | 39.35 £9.42 | 41.39 £ 1159
(8192, 32) 82.96 +092 | 82.32 +£153 | 82.62 +030 | 82.56 £036 | 82.37 +043

170

14 Main Text Formulas
The generic GNN equation as defined in main text is:
H"Y =5 ((aAHY + BHO + yHIV) x (5W W + 1)), (9.2)

where «, 3,7, 6 and € are preselected parameters that determine the convolutional GNN
architecture.

The variance of the gradient flowing backwards is defined as:

. 1 iy
Var [Az| = nVar[w]Var [Ayl(l)} = 5m (52Va7’[wl] + e2> Var [Axl(i)l} : (9.3)

Theorem 16 proof

Theorem 26. The upper bound of the variance of the signals flowing forward in a generic GNN
defined by Equation 9.2 is:

Varly,”] < mn - (di +1(8 # 0) + L(y #0))

o’ (4) ¥ (i))
ﬁvar[%—ﬁ + o Varly,”,] + j(a, B)) -

((52Var[wl] -+ 62) , (9.4)

where n; is the weight matrix dimension, d; is the degree of node i, 1(-) is the indicator func-
tion «, 3,7, and € are constants depending on the underlying architecture of the model, and
j(a, B) is defined in Lemma 3.

Proof: We let the initialized elements in W) be mutually independent and have the same

distribution. We also assume that elements in a:l(i) are also mutually independent and have

the same distribution and finally we assume that xl(i) and W are independent of each
other. Following a similar analysis as the one presented in [15] we have:

Var[yl(i)] = mVar[(Swlxl(i), + exl(i)l], (9.5)
where yl(i), :cl(i)/ and w; represent the random variables of each element in the respective
matrices. We let w; have zero mean, hence the variance of the product is:

Var[yl(i)] =ny (Var [&lel(i)/} + Var [exgi)/- + 2001}(5wlx§i)/, emgi)/)> =
(9.6)
N2
(:L’l(l)) } (*Var[w] + €) .
(9.7)

n <62Var[wl]E {(xl(i)/>2] + Var [x}”i) <mn-E

The special form of xl(i)l is not directly related to yz(i)r In order to bridge that gap we
will proceed our analysis with inequalities resulted by the usage of the Cauchy-Schwarz-

Bunyakovsky inequality (CSB).

171

Lemma 27.
2

[Cy] e | (5 5 ey | 2
JGN (@)
(di +1(B8#0)+ 1(y #0)) x
o)) 8 S (@) e m[(w)] e [(0)]

' JEN(D)
o @2 9 @ \2 .
— @102 0+1020) (58 | ()] +52 5| ()] +st0.).
, LN 2
where k:l(l) = > (:BIU)T> , i.e. sum of neighbors representations except of self representation
JEN()

. ok i
and j(a, B) = * E[(xf)?).
Using Lemma 27, Equation 9.6 transforms to:

Varly"] < m - (di + 1(8 # 0) + 1(y # 0)) X

(e [()] oot s osem) ovateicer. o

We have set :El(i)/ =& 3 xl])T + 8- a:(o) + - x(l 1 and W/ = 6W, + el. Letting
JGN (@)

w)_; (element of W/ matrix) have a symmetric distribution around zero and b;,_; = 0, then

y;—1 has zero mean and symmetric distribution around zero. In order to have symmetric

distribution of w;_, around zero we should have a symmetric distribution of w;_; around

—e¢, based on the relationship between W, and W/}.

N2
This leads to £ (xl(l)> } = Var[y,_1], when activation function is ReLU. Applying that
result to Inequality 9.8 yields:

Var[N <y (di+ 1(8 #0) + L(y # 0)) X

a? 71,2 1. e p
27 —Var[y,”,] + 5 Varly,”,] + j(e, B) (5 Var[w] + e)) (9.9)

In a similar spirit, we also derive the lower bound for the variance. Considering that a:l(i)
for all [, 7 we have the following lemma:

>0

Lemma 28.

)\ 2 i i
e[()] = |(5 5 @ sy |2

]GN

2

S E {(") } +9°-E {(ml(%)] +j(a, B).

)

2
This comes as a consequence of the fact that <Z mj) >3 m?,for allm; > 0.
J J

172

Consequently, the lower bound of Var [yl(l)} is given by:

Var[] >y (Var[yl)1] + %2 . Var[yl(g] + (o, 6)) . (52Var[wl] + 62) . (9.10)

d2

15 Theorem 18 proof

Lemma 29.
2

Var [Aa:l(_?/l] =F [(A:cl(_?/l)Q] [Z Ale +7- Az z)T }

]EN

a1t 20 (G |(adh)] + 28| (8a0)] +at@)

. , A 2
where (o) = 3—; : 01(21’ and 01(21 = > (A:cl(i)lT) , i.e., the sum of gradients originating
' JEN(3)
from the neighbors of the node, excluding self-originating gradient and 1(-) is the indicator
function.

Theorem 30. The upper bound of the variance of the gradients flowing backward in a generic
GNN defined by Equation 9.2 is:

Var [Axl(i)] < (d2 Var [Aaclﬂ] +q(a)) (9.11)
with

Mo = %nl (di +1(y #0)) - (52‘/@7“[101} + 62>,

wheren, is the weight matrix dimension, d; is the degree of node, 1(-) is the indicator function
a, 7y, d and € are constants depending on the underlying architecture of the model, and q(«) is
defined in Lemma 29.

N\ 2 ,
Proof: Using the fact that £ {(Aﬁ”) } =Var [Awl(z)] and Lemma 29 to Equation 9.3 we
get:

, 1 . 1
Var [Axl(l)] = 5 ((52Var[wl] - 62) Var [A$1(21] < ST ((52Va7’[wl] + 62) (di + 1(y #0)) -

< dj Var [Aaf] +*Var [asf] + q@)) _

2
My - (d2 Var [Awlﬂ] +~*Var [Aml } q(a)) =

173

ot 2 (el) =

My

Var [Aml] T2 (d2 Var [A%H] +qla)>

In the final inequality we have assumed that m,, < 7~ 2. If this condition is not satisfied,
then the last inequality has the inverse direction and establishes the lower bound for the
variance of the gradients.

Following a similar approach as in Appendix 14, we derive the lower bound of the variance
of the gradients.

Lemma 31.

Var [Axl(il} =FE {(Axl(il) } = E[Z A;z:l+1 + - A:c >

JEN(l)

2

(0% i 2
EE [(Awl&)l)] —I—V2E [Al’l]

2
This comes as a consequence of the fact that (Z mj> > > m3, forallm; > 0.

j J
Consequently, the lower bound of Var |:Al‘l(i)i| is given by:

My

[+ 1(7 £0))

Var [Axlz] (Var [Axlﬂ] +~*Var [Al’l } + q(a)) -

m/
ﬁ (d2 Var |:AZL‘Z+1] +q<))
where m!, = m,,/ (d; + 1(y # 0)) and once again we assume that m/, < ~~2. If this

condition is not satisfied, then the last inequality has the inverse direction and establishes
the upper bound for the variance of the gradients.

Var [Axl()]

16 Extended analysis about the “cold start” problem

Oversmoothing primarily affects deep GNNs, raising the question of the necessity of deep
architectures. Many benchmark datasets in the literature do not require deep networks
due to the homophilic nature of the data. Homophily implies that the valuable information
for the majority of the graph nodes is typically within close neighbors (2 or 3 hops away).
One particular scenario where deeper architectures might be beneficial is the “cold start”
problem, where the majority of node features are missing, resembling to a recommender
system encountering a new product or user. In this context, deeper GNNs may recover
features from more distant nodes to generate informative representations. The “cold start”
datasets that we use in these experiments are generated by removing feature vectors from
unlabeled nodes and replacing them with all-zero vectors.

We present an extended version of Table 6.1:

174

Table 9.6: Comparison of different initialization methods on the “cold start” problem. We
show accuracy percentage (%) for the test set. Only the features of the nodes in
the training set are available to the model. We also show at what depth (i.e. #
Layers) each model achieves its best accuracy, for both GCN and GAT.

GCN GAT
Dataset Method
Accuracy (%) & std #L | Accuracy (%) & std #L
Xavier Normal 64.86 +0.7 4 59.47 + 1.0 3
Xavier Uniform 62.52 +£39 4 59.63 +13 3
Cora Kaiming Normal 68.35 + 1.9 6 60.73 + 45 4
Kaiming Uniform 62.78 +5.1 6 57.36 +53 4
VIRGO 73.01 £ 1.0 26 70.68 +15 18
G-Init 74.04 +1.7 25 72.34 + 20 27
Xavier Normal 41.95 + 0.2 4 39.75 +63 4
Xavier Uniform 40.17 £50 5 36.63 Lo 3
CiteSeer Kaiming Normal 44.62 + 18 6 37.09 +9.1 5
Kaiming Uniform 44.20 + 25 7 41.68 + 1.2
VIRGO 49.18 + 1.4 18 41.01 £ 95 13
G-Init 49.75 +o.7 27 49.31 +o4 30
Xavier Normal 64.54 + 09 4 59.76 + 15 4
Xavier Uniform 62.83 +238 4 46.91 +65 4
Pubmed Kaiming Normal 68.48 +15 6 60.25 +27 4
Kaiming Uniform 65.93 + 5.7 5 56.93 +5.2 4
VIRGO 71.55 +15 14 63.06 +9.3 14
G-Init 71.65 + 138 23 72.24 +11 32
Xavier Normal 94.00 + 0.1 2 93.26 o1 1
Xavier Uniform 93.98 + 0.0 1 92.9 +o01 2
: Kaiming Normal 94.00 + 0.0 2 93.45 + 0.0 1
Physics . .
Kaiming Uniform 93.98 + 0.0 1 92.68 + 0.1 2
VIRGO 82.34 +61 8 85.58 +43 5
G-Init 93.99 + 0.0 1 93.62 + 0.1 2
Xavier Normal 89.95 + 0.2 1 90.78 +0.1 1
Xavier Uniform 90.17 +04 2 90.71 o1 1
cs Kaiming Normal 90.13 +03 3 90.77 + 0.1 1
Kaiming Uniform 90.22 + 04 2 90.71 + 01 1
VIRGO 71.28 +1.9 6 76.85 +3.7 6
G-Init 90.28 + 0.2 3 90.82 +0.1 3
Xavier Normal 83.19 +51 5 85.58 + 0.8 4
Xavier Uniform 84.50 + 14 3 85.02 + 0.7 3
Photo Kaiming Normal 86.53 + 056 5 86.35 + 0.9 4
Kaiming Uniform 87.11 + 06 4 86.29 +1.2 4
VIRGO 83.00 £35 6 77.60 + 4.0 6
G-Init 87.56 +1.2 4 86.07 +0.9 4
Xavier Normal 68.83 +65 4 70.26 + 17 2
Xavier Uniform 42.73 £ 67 2 70.55 + 1.4 2
Computers Kaiming Normal 75.18 + 3.0 4 74.35 +35 4
Kaiming Uniform 72.42 £ 25 5 68.87 + 2.9 3
VIRGO 75.17 £ 27 6 69.91 + 36 7
G-Init 78.03 +1.0 5 76.28 +1.7 5

175

17 t-SNE plots

We present t-SNE [142] plots for all datasets using a 32-layer GCN model initialized with
the methods investigated in this study. T-SNE results are exhibited for layers 1, 9, 17 and
25. Specifically, we compare the t-SNE plots of a GCN initialized with the proposed G-Init
method against the generally second-best performing initialization method, namely, Kaim-
ing Normal. The t-SNE plots validate that our proposed method attains high accuracy by
generating meaningful representations that reduce oversmoothing. In contrast, alternative
initialization methods lead to the mixing of node embeddings, contributing to a degrada-
tion in performance. We observe this difference in the mixing of node representations as
depth increases across the majority of datasets.

Figure 9.26: T-SNE plot of Cora dataset. The upper row presents results for a G-Init ini-
tialized 32-layer GCN, while the lower row showcases results for a Kaiming
Normal initialized 32-layer GCN.

176

o a4

a

—40 40 -Z0

.

a

—40 —40 -0

o

a

—60 40 -0

o

a

-o0 —40 -0

-0

—an

-&0

—40

— -20

—a0

9.27: T-SNE plot of Citeseer dataset. The upper row presents results for a G-Init

Figure

initialized 32-layer GCN, while the lower row showcases results for a Kaiming

Normal initialized 32-layer GCN.

-0

2

-

] a

2

4

—40

Figure 9.28: T-SNE plot of Pubmed dataset. The upper row presents results for a G-Init

initialized 32-layer GCN, while the lower row showcases results for a Kaiming

Normal initialized 32-layer GCN.

177

Figure 9.29: T-SNE plot of Physics dataset. The upper row presents results for a G-Init
initialized 32-layer GCN, while the lower row showcases results for a Kaiming
Normal initialized 32-layer GCN.

—40 —20 a - aO —40 —20 Q o aO —40 —20 a o @O —40 —20 a i e

Figure 9.30: T-SNE plot of CS dataset. The upper row presents results for a G-Init initialized
32-layer GCN, while the lower row showcases results for a Kaiming Normal
initialized 32-layer GCN.

178

18 Hyperparameters

Table 9.7: Hyperparameter search space used for finding the optimal configuration.

Hyperparameter Search Space
Learning Rate (Ir) | {le-4, le-3, le-2}
Hidden Dimension {64, 128, 256}
Number of Layers | {2, 4, 8, 16, 32, 64}
Weight Decay {5e-4, 1e-3}
Batch Size {16, 32, 64}

19 Lemma 21 Proof

Lemma 21 For a network of depth dep the total gradient reaching to the I-th layer (i.e., %)

oldiﬂj

in order to update W) is bounded by:
dJ

]
dwtgl)di y

< al¥r=h . g,

Where ¥ is the model’s loss function (i.e. Cross Entropy), o stands for the ReLU slope and G|
is the upper bound of gradients of the output of the subsequent layer (I+1) with respect to the
weight elements of W\,

Proof: Firstly, let us define the gradient of the output of a ReLU function with respect to
the input as follows:

d(ReLU(z)) | «, z>0.
dx 10, z<0.

Let us consider now a function of nested ReLUs, like the neural networks under investi-
gation, ie. f(z) = g(o(g(o(..g(c(g(x)))..)))), where o(-) is the ReLU function applied
repeatedly n times, and ¢(+) is a function that multiplies its input with a value. Then the
gradient of f(-) with respect to x (x is a vector) is given as:

d(f(z)) _ { an - A - g(2) > 0, g(a() > 0. (9.12)

dx 0, otherwise.

This formula indicates the relation between slope, layer index, depth and largest singular
value (we only care about the largest). Let as use the notion of J for the loss function of
the network (i.e. Cross Entropy). The relation comes from the following formulas (for each
weight element in the weight matrix):

! dJ
wgllg’u)i’j = w(()l)diyj T/ ’ (l) :
dwoldi,j

] aepnyy 4OV

—_— or 0.
O] O]
dwoldi, p Woid, ;

179

Where the 0 value comes from Equation 9.12. GNNs’ forward pass is similar to f(-), hence
performing the backpropagation leads to gradient calculation of the form of Equation 9.12.
So the update rule adds (or subtracts) to each weight a big number (contains exponential
factor). We prove, that dJ__ tends to be closer to zero as the layer index gets smaller,

dwod; ;
because when the gradient travels backwards the more distant it travels the more probable
it is to die. There exist many components (gradients of ReLU functions) in the total gradient
so it is probable one of them to be zero and the total gradient to be zero.

Given Assumption 19, we get an upper bound regarding the gradient of the output of the

subsequent layer with respect to each weight element of W | i.e., do(l(>l+1> < G’l) .

oldi’j
So we will have that:

< - allerth=l G, < glderth=0) . g (9.13)

dwoldiﬁj

where B; is an upper bound on the product of the learning rate n with Gj, i.e. B, =7 - G|.

20 Lemma 22 Proof

Lemma 22 While model’s loss, through gradients, flows backwards some weight elements do
not receive updates, because we have dying ReLUs (i.e. ReLUs outputting zero) [126]. The total
number of weight elements getting updated at layer | is bounded by:

l ep—
#Hul)y <pr0-

where d is the largest of the two dimensions of W\, i.e. there are at most d* elements in W,
if it is a square matrix.

Proof: Let us assume that the number of weights that get updated is reduced as the gradient
flows backward. This is due to the fact that, the further the gradient “travels” the more
gradients of ReLUs will exist within it. Hence the greater is the probability at least one of
them to be zero. In fact, we define the probability of a weight element to get updated and
the number of weight elements to be updated in layer [as:

P{wflj) = updated} = pl@erth=h),

#{wi!)} = plrth=l . (. j) < plerh=h . g2, (9.14)

Where i, j are the dimensions of the weight matrix and d is the largest of them.

The probability for a weight element to get updated has the aforementioned form, because
we have used the Assumption 20 regarding the probability of a ReLU unit not to output
zero, which is at most p. Thus, the probability of getting updated is the probability of the
gradient flowing backwards to reach the weight element, which in turn means not to have
any ReLU component equal to zero.

The total number of elements that get updated is upper bounded (using union bound) on the
sum of the probabilities of all elements of the weight matrix. In fact, every weight matrix
has i - j elements where i, j are the matrix dimensions and d = max(i, j).

180

21 Theorem 23 & Theorem 24 Proofs

Theorem 23 The upper bound of the largest singular value of the weight matrix W at layer
I for a GNN model, utilizing a ReLU activation function, depends on the slope of the function.
That bound is given per layer and shows the effect of each iteration of updates on the weight
matrix. We denote with W, and W, the weight matrices before and after the update during
an iteration of the training process respectively.

mal‘(Sl(WT(Lle'w))<|| ld||F+\/— p(2) d- OszP D, Bl,

where B; = 1 - G, dep is network’s depth, d is the largest dimension of W matrix, p is the
upper bound of the probability of ReLU not to output zero and « is ReLU’s slope.

Proof: Regarding the singular values of a matrix (denoted by s;), it is known that:

maz (s (W) = [[WO|l, < [[WO||p = \/ > |wz(l3) g

the matrix here being W), the weight matrix at layer . Based on Lemma 21, a new weight
during the weight update process will be given by: wye,, ~ o%P""=0. B, Since only #{w }
weight elements are getting updated per layer (Lemma 22), in each iteration the Frobemus
norm increases by a value, that depends on layer index, depth and slope. Specifically, if we
define o(%Pth=D . B, = K, in order to simplify the formulas, we have:

max(sl(Wfllew)) < || new||F \/ Z |w£fe)wi,j 2=

max(sl (W7’(Lle)w Z |wnew1 ¥ Z |w7(?2wi7j 2 ﬁ
updated not_updated
max(sl(wnew Z ’wold + Kl |2 Z ’woldl i 2 -
updated not_updated
l l l
maz(si (W) < [S0 (wly P+ 1KP+2uly k) + Y il 2
updated not_updated

Using the fact that wol)d , <= K, because K; contains an exponential term and weights
are initialized to values close to zero we get:

! VA+B<VA+VB
max(sl(new Z (old |2 +3|K|) Z ‘w(()l)dm 2
updated not_updated
l Lemma2(9.14)
mar(s(Wil,) < [D7 Jwgy P4+ D0 ol [P+ [Y0 3K T
updated not_updated updated

181

In the second square root we sum over the updated weight elements and K is independent
of them. Hence, we get:

maz(si(W0,) < [WOlle + /31K - #{w’)}

depth—1

maz(sy(WO,)) < IWhlle + V3- K| - p(*7) - d

)) < || ||F + \/gp(%) d- a(depth—l) . Bl.

So the slope of the function determines the upper bound of the Frobenius norm while train-
ing. In turn this norm is directly connected as an upper bound to the largest singular value
of the matrix. In the aforementioned proof we have used previously defined Lemmas and
Assumptions.

maz(s; (W

new

Theorem 24 The lower bound of the largest singular value of the weight matrix W) at layer
I for a GNN model, utilizing ReLU activation function depends on the slope of the function.
That bound is given per layer and shows the effect of each iteration of updates on the weight
matrix. We denote with W4 and W,,.,, the weight matrices before and after the update during
an iteration of the training process respectively.

maz(si(W0,)) > \/2v3 - max(wl)y) Bj-o"%", 9.15)

where B] = n - L, L; is the lower bound to the gradient with respect to the output of the

Wordi,j

subsequent layer <d0(§§+1> > Ll) , dep is the network’s depth and « is ReLU’s slope.

Proof: Let e, ..., e, denote the canonical basis of R". Let L; is the lower bound to the
gradient with respect to the output of the subsequent layer, i.e., L; is the lower bound in a

similar way that (5, is the upper bound (do(l(;ﬂ) > Ll). We define Bj as B] = nL; and set

oldiyj

Kl/ — a(depth—l) Bl/

mazx(sy (W) > [[We;|| =

maz(si(Wig,)) =

d
2 at least one update
maz(si(W5,) = | D (wlhy) + Y 8(kg)? 2w

i=1 updated

d
2
a0 2 |32 (o,)+ s 2mes s

A A-B)1/4
mar(s(Wil,) > \/(maz(w,)2 + (k)2 LA

182

mazx(s; (WO) \/2\/_ max(w olld)K=

l l , depth !
max(s;(Wéew \/2\/_ max(w Old) By -)

22 Modifying learning rate: LR2ZGNN

As discussed in the main text, an alternative to changing the slope of ReLU is to modify
the learning rate. In order to test this hypothesis and compare the results to the modified
activation function, we performed some preliminary experiments with GCN. In these ex-
periments, we determined a different learning rate per layer, using the validation part of
each dataset and the chosen values are shown in Table 9.8. We did this only for the first
8 layers, as the process of tuning the rate proved very cumbersome and time-consuming.
The main observation seems to be the improved performance over the vanilla GCN for the
three simpler datasets, coupled with a low accuracy for the Texas dataset. The comparison
against the modified activation function seems inconclusive, but the latter approach wins
due to its simplicity. If one opted for the modified learning rate, a method to automatically
adapt the rate in different layers would be needed. Deeper architectures extend the com-
plexity and the pool, from which we would have to find the proper values of learning rates.
Worth to mention, combining different values of LR per layer with Slope2GNN results in
negligible improvements.

Table 9.8: Preliminary results of modifying the learning rate of GCN on Cora, CiteSeer,
Pubmed and Texas datasets. The graph displays test accuracy of an 8-layer GCN,
using the aforementioned learning rates.

Layer index 0 1 2 3 4 5 6 7
Learning Rate | 3-1072 | 107* | 107> | 5-107> | 107° | 107* | 10~* | 10~*

Cora Accuracy: 76.43 | CiteSeer Accuracy: 64.96 | Pubmed Accuracy: 78.82
Texas Accuracy: 16.32

23 Extended Experiments

Extended experimentation, regular datasets:

Table 9.9 is an expanded version of Table 7.1 (of the main text), showing average test node
classification accuracy along with the respective standard deviations. We have also in-
cluded GCNII [11], which is one of the best performing GNNs utilizing residual connections.
GCNII reduces oversmoothing through “short circuiting” initial information to subsequent
layers of the model. The aim of the comparison against GCNII is to show that by changing
the slope of ReLU simple models are capable of producing comparable (up to a limit) results
to more sophisticated architectures, that use residual connections.

Extended “Cold start”:

Table 9.10 is an expanded version of Table 7.2 (of the main text) including (a) the per-
formance of the GCNII method, (b) standard deviations for all models, (c) preliminary re-
sults on two additional datasets called Computers and Amazon from [147]. The “cold start”

183

Table 9.9: Performance comparison of vanilla GCN and GAT against SeLU and Slope2GNN
enhanced versions of the same models, in Cora, CiteSeer, Pubmed, Texas. We
include GCNII [11] in the comparison. Average test node classification accu-
racy (%) and standard deviation for networks of different depth. With bold the
best performing method for each model (i.e., GCN, GAT and GCNII), depth and

dataset.
Accuracy (%) and standard deviation
Layers
Dataset | Method 3 1 3 16 33 <
GCN 81.384+ 0.5 | 78.094 1.8 | 23.564 9.2 | 14.924+ 6.4 | 14.021+ 3.5 | 12.48+ 2.9
GCN(Slope2GNN)| 81.84+ 0.3 | 80.39+ 0.9 | 76.54+ 1.5 | 76.81+ 2.2 | 73.21+ 1.7 | 61.59+ 4.7
GCN(SELU) 81.744+ 0.4 | 79.854+ 0.7 | 79.41+£ 0.5 | 76.38+ 1.1 | 68.77+ 5.7 | 26.85+ 4.0
Cora GAT 77.794+ 1.5 | 78.064+ 1.6 | 33.114+ 9.2 | 15.53+ 9.0 | 14.67+ 4.5 | 15.18+ 5.5
GAT(Slope2GNN)| 77.81+ 2.2 | 79.54+ 1.2 | 78.33£ 2.5 | 75.00+ 1.9 | 69.62+ 2.4 | 24.17+ 9.5
GAT(SELU) 76.59+ 2.2 | 79.33+ 1.1 | 78.194+ 1.1 | 7492+ 1.6 | 69.36+ 4.3 | 30.55+ 4.9
GCNII 82.32+ 0.6 | 82.89+ 0.6 | 83.99+ 0.5 | 84.77+ 0.7 | 84.96+ 0.7 | 85.39+ 0.6
GCN 70.52+ 0.6 | 65.21+ 1.0 | 32.544+9.3 | 17.73+£ 4.9 | 16.691+ 4.8 | 17.65+ 4.2
GCN(Slope2GNN)| 70.55+ 0.4 | 67.574+ 0.7 | 65.80+ 1.2 | 57.10+ 4.3 | 47.20+ 3.8 | 46.46+ 4.2
GCN(SELU) 69.914+ 0.4 | 67.534+0.6 | 67.27+ 0.9 | 61.99+ 1.9 | 47.90+ 9.2 | 27.10+ 7.6
CiteSeer| GAT 69.04+ 1.4 | 63.98+ 2.8 | 31.33+ 7.0 | 17.80+ 1.9 | 18.67+ 2.8 | 13.35+ 4.3
GAT(Slope2GNN) | 68.24+ 1.2 | 67.27£ 1.0 | 65.55+ 2.0 | 56.13+ 2.5 | 49.16+ 4.5 | 26.24+ 3.5
GAT(SELU) 66.81t 1.5 | 67.24+ 1.1 | 67.58+ 1.1 | 62.23+ 3.8 | 52.97+ 6.4 | 20.42+ 2.8
GCNII 68.05+ 0.7 | 67.75+ 1.3 | 70.90+ 0.5 | 72.69+ 0.4 | 72.68+ 0.4 | 72.77+ 0.9
GCN 77.65+ 0.3 | 76.75+ 0.7 | 49.084+ 9.7 | 28.95+ 9.9 | 38.49+ 9.8 | 31.73+ 9.9
GCN(Slope2GNN)| 78.34+ 0.1 | 76.46+ 1.0 | 75.00£ 1.4 | 76.35+ 1.7 | 75.78+ 2.1 | 71.68+ 1.7
GCN(SELU) 77.80+ 0.2 | 74.094+ 1.3 | 73.43+ 1.1 | 76.11£ 2.1 | 71.804+ 4.3 | 40.90+ 0.9
Pubmed | GAT 77.33+ 0.7 | 76.34+ 1.3 | 55.86+ 7.5 | 29.88+ 9.9 | 29.344+9.9 | 28.62+ 9.9
GAT(Slope2GNN)| 77.024+ 0.7 | 75.59+ 1.1 | 74.20+ 1.7 | 73.81+ 24 | 74.63+ 1.1 | 38.01+ 5.7
GAT(SELU) 76.834+ 1.0 | 72.624+ 1.2 | 71.93+ 1.8 | 74.27+ 2.7 | 73.60+ 2.2 | 41.00+ 0.3
GCNII 78.57+ 0.6 | 79.09+ 0.4 | 79.85+ 0.5 | 79.70+£ 0.3 | 79.77+ 0.2 | 79.65+ 0.3
GCN 59.01+ 2.7 | 59.55+ 7.7 | 57.48+ 6.5 | 39.91+£ 0.7 | 25.50+ 0.6 | 27.39+ 0.9
GCN(Slope2GNN)| 57.93+ 4.2 | 57.66+ 5.0 | 57.18+ 6.2 | 57.21+ 6.4 | 55.79+ 6.5 | 46.31+ 4.1
GCN(SELU) 59.014 2.7 | 58.024+ 5.0 | 56.85+ 6.2 | 52.88+ 6.6 | 55.77+ 6.2 | 58.384+ 6.8
Texas GAT 59.544 4.2 | 58.284+ 6.5 | 57.65+ 6.7 | 41.71£ 4.0 | 18.64+ 2.9 | 06.76+ 1.9
GAT(Slope2GNN) | 56.67+ 4.3 | 57.39£ 5.2 | 56.85+ 6.0 | 57.53+£ 6.1 | 54.14+ 6.5 | 41.44+ 23
GAT(SELU) 57.21£ 5.0 | 58.65£ 5.8 | 57.474+ 4.5 | 57.44+ 6.9 | 57.75+ 6.4 | 56.30+ 5.1
GCNII 69.37+ 29 | 70.72+ 4.3 | 72.07+ 2.5 | 70.00+ 2.2 | 71.26+ 1.6 | 71.35+ 1.1

problem requires deeper models, because nodes containing informative feature vectors are
located further from each test node. Thus, architectures that utilize deep GNNs could effec-
tively address the problem, if they avoid oversmoothing. The proposed method effectively
enables deep architectures using simple models (i.e., GCN, GAT). Additionally, the new
datasets indicate that the simple methods may perform better than more advanced ones,
when assisted by our method. Removing the features of non-training nodes might be a real
case scenario (although an extreme one) when it comes to recommender systems.

184

Table 9.10: Comparison of different models and activation functions on the “cold start”
problem. We show accuracy percentage (%) and standard deviation on the test
set using GCN and GAT as backbone GNN models and GCNII as a representa-
tive of residual GNNs. Only the features of the nodes in the training set, are
available to the model. We also show at what depth (i.e. # Layers) each model
achieves its best accuracy.

Dataset | Method Accuracy (%) & std #L
GCN 64.85+ 1.2 4
GCN(Slope2GNN) 73.47+ 0.9 19
GCN(SeLU) 73.00+ 1.5 22

Cora GAT 59.74+ 1.2 3
GAT(Slope2GNN) 72.78+ 14 20
GAT(SeLU) 72.65+ 1.6 23
GCNII 73.40+ 1.0 5
GCN 41.94+ 0.3 4
GCN(Slope2GNN) 49.88+ 1.1 21
GCN(SeLU) 49.30+ 1.2 19

CiteSeer | GAT 38.50+ 4.7 4
GAT(Slope2GNN) 49.63+ 0.9 26
GAT(SeLU) 49.38+ 1.3 20
GCNII 59.84+ 3.0 31
GCN 60.164 5.4 4
GCN(Slope2GNN) 72.61£ 0.8 32
GCN(SeLU) 72.50+ 0.8 23

Pubmed | GAT 50.45+ 8.9 4
GAT(Slope2GNN) 71.14+ 1.5 32
GAT(SeLU) 7141+ 1.7 26
GCNII 78.25+ 0.6 7
GCN 32.40+ 6.8 4
GCN(Slope2GNN) 33.33+ 6.9 6
GCN(SeLU) 31.62+ 5.9 3

Texas | GAT 30.10+ 8.5 2
GAT(Slope2GNN) 31.00+ 5.9 4
GAT(SeLU) 30.81+ 5.8 2
GCNII 57.66+ 0.0 1

Dataset | Method Accuracy (%) & std #L

GCN 18.434+ 9.5 15

GCN(Slope2GNN) 77.07+ 1.9 5

GCN(SeLU) 76.90+ 2.0 5

Computers | GAT 13.10+ 8.5 5

GAT(Slope2GNN) 71.944 2.0 13

GAT(SeLU) 71.81+£ 5.1 8

GCNII 61.00£ 7.0 31

GCN 16.00+ 6.0 4

GCN(Slope2GNN) 82.07+ 1.7 5

GCN(SeLU) 81.15+ 3.5 4

Photo GAT 13.87+ 7.4 8

GAT(Slope2GNN) 77.534 4.3 14
GAT(SeLU) 77.40+ 4.1 15 185

GCNII 53.80£ 3.2 32

Slope sensitivity results:

The choice of slope (i.e., « = 2) that we proposed is based on Equation 7.5 (of the main
text). We have verified experimentally that this slope value helps to reduce the effect of
oversmoothing. However, this is not the only slope value that could be used. Therefore, we
experimented with other slope values and present the results in Figure 9.31. Based on the
Figure, it is evident that any value between 1.8 and 2.2 reduces oversmoothing, making the
exact choice of value less important.

186

Varying RelLU Slope results on Cora

GCN Results

GAT Results

0 5 10 15 20 25 30

Model Depth

0 5 10 15 20

Model Depth

Varying ReLU Slope results on Citeseer

GCN Results

GAT Results

25 30

—— Slope: 2.0 M
—— Slope: 2.2

—— Slope: 2.0
—— Slope: 2.2
0 5 10 15 20 25 30 0 5 10 15 20 25 30
Model Depth Model Depth

Varying ReLU Slope results on Pubmed

GCN Results

GAT Results

—— Slope: 2.2

0 5 10 15 20 25 30
Model Depth

0 5 10 15 20
Model Depth

25 30

Figure 9.31: Comparison of test performance accuracy (%) of GCN and GAT with varying

slope values in Cora, CiteSeer and Pubmed. We show the accuracy of the mod-
els in y-axis, while increasing their depth.

Visualising the effect of oversmoothing:
In order to understand the effect of oversmoothing in GNNs and show how our method
alleviates it, we visualise node representations using t-SNE [142] for varying depth mod-

187

els. Figures 9.32, 9.33 and 9.34 visualise the representations for different depth levels and
different ReLU slope values. Ideally, we would like nodes of the same color (same class) to
be close together and well-separated from other classes. In all three datasets, we observe
how oversmoothing (at slope = 1) leads to a mixing of the classes. We also see how the
situation changes for slope = 2. In those graphs, node representations do not rapidly mix
as the depth of the network increases.

188

Slope: 1 on Cora

2-layer GCN 4-layer GCN

a0

20

o]
-20
—40

T T

a0

20

o
-20
—40

60 -4 -20 0 2 4 B 60 -40 -20 0 2 4 &
Slope: 2 on Cora
2-layer GCN 4-layer GCN

[

a0 4

20

o
-20
—40

T

&0 -

40 4

20

o
-20
—40

&

&0 40 20 0 20

]
N
=

|
]
=
=
[N
=

60

Figure 9.32: t-SNE of node representations of GCN and GAT on Cora, while increasing
model’s depth. Upper (lower) 4 figures show the results without (with) our
method.

189

Slope: 1 on CiteSeer

2-layer GCN 4-layer GCN

-20

—40

=20 1

—40

60 -40 20 0 o 0 -60 -a0 -20 O o W &0
Slope: 2 on CiteSeer

2-layer GCN 4-layer GCN

—40 1

-60 -40 20) R -60 -40 20) @0

Figure 9.33: t-SNE of node representations of GCN and GAT on CiteSeer, while increasing
model’s depth. Upper (lower) 4 figures show the results without (with) our
method.

190

Slope: 1 on Pubmed

2-layer GCN 4-layer GCN

Slope: 2 on Pubmed

2-layer GCN 4-layer GCN

T T
8-layer GCN 16-layer GCN

—G'ILO —éﬂ —2‘0 —iD 6 lIO 20 30 40 —JLO —éﬂ —2‘0 —iD o lEJ 20 30 40

Figure 9.34: t-SNE of node representations of GCN and GAT on Pubmed, while increasing
model’s depth. Upper (lower) 4 figures show the results without (with) our
method.

191

24 Dataset Statistics

Table 9.11: The statistics of all datasets used in this work.

Datasets # Nodes # Edges # Classes # Features

Cora 2708 10556 7 1433
CiteSeer 3327 9104 6 3703
Pubmed 19717 88648 3 500
Physics 34493 495924 5 8415

CS 18333 163788 15 6805

Photo 7650 238162 8 745

Computers 13752 491722 10 767
Arxiv 169343 1166243 40 128
Texas 183 309 5 1703

192

Bibliography

[1]

(3]

[7]

D. Kelesis, D. Fotakis, and G. Paliouras, “Analyzing the effect of embedding
norms and singular values to oversmoothing in graph neural networks,” arXiv, vol.
2510.06066, 2025. [Online]. Available: https://arxiv.org/abs/2510.06066 7, 9, 35, 36,
37, 38

——, “Analyzing the effect of residual connections to oversmoothing in graph
neural networks,” Mach. Learn., vol. 114, no. 8, p. 184, 2025. [Online]. Available:
https://doi.org/10.1007/s10994-025-06822-0 7, 9, 35, 36, 37, 38

——, “Partially trained graph convolutional networks resist oversmoothing,’
Mach. Learn., vol. 114, no. 10, p. 211, 2025. [Online]. Available: https:
//dOi.Org/IO.1007/310994-025-06865-3 7,9, 35, 36, 37, 38

——, “Reducing oversmoothing through informed weight initialization in graph
neural networks,” Applied Intelligence, vol. 55, no. 7, p. 632, Apr 2025. [Online].
Available: https://doi.org/10.1007/s10489-025-06426-0 7, 9, 34, 35, 36, 37, 38

D. Kelesis, D. Vogiatzis, G. Katsimpras, D. Fotakis, and G. Paliouras, “Reducing
oversmoothing in graph neural networks by changing the activation function,
in ECAI 2023 - 26th European Conference on Artificial Intelligence, September 30
- October 4, 2023, Krakow, Poland - Including 12th Conference on Prestigious
Applications of Intelligent Systems (PAIS 2023), ser. Frontiers in Artificial Intelligence
and Applications, K. Gal, A. Nowé, G. J. Nalepa, R. Fairstein, and R. Radulescu,
Eds., vol. 372. IOS Press, 2023, pp. 1231-1238. [Online]. Available: https:
//doi.org/10.3233/FAIA230400 7, 9, 34, 35, 36, 37, 38

K. Xu, W. Hu, J. Leskovec, and S. Jegelka, “How powerful are graph neural
networks?” in 7th International Conference on Learning Representations, ICLR 2019,
New Orleans, LA, USA, May 6-9, 2019. OpenReview.net, 2019. [Online]. Available:
https://openreview.net/forum?id=ryGs6iA5Km 18, 31, 32, 51

K. Oono and T. Suzuki, “Graph neural networks exponentially lose expressive power
for node classification,” in 8th International Conference on Learning Representations,
ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020.
[Online]. Available: https://openreview.net/forum?id=S11dO2EFPr 19, 32, 33, 34, 54,
55, 56, 93, 94, 119, 133, 134, 137, 139

U. Alon and E. Yahav, “On the bottleneck of graph neural networks and
its practical implications,” CoRR, vol. abs/2006.05205, 2020. [Online]. Available:
https://arxiv.org/abs/2006.05205 19, 32, 96

Y. Li, R. Yu, C. Shahabi, and Y. Liu, “Diffusion convolutional recurrent neural
network: Data-driven traffic forecasting,” in 6th International Conference on

193

https://arxiv.org/abs/2510.06066
https://doi.org/10.1007/s10994-025-06822-0
https://doi.org/10.1007/s10994-025-06865-3
https://doi.org/10.1007/s10994-025-06865-3
https://doi.org/10.1007/s10489-025-06426-0
https://doi.org/10.3233/FAIA230400
https://doi.org/10.3233/FAIA230400
https://openreview.net/forum?id=ryGs6iA5Km
https://openreview.net/forum?id=S1ldO2EFPr
https://arxiv.org/abs/2006.05205

[12]

[13]

[14]

Learning Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3,
2018, Conference Track Proceedings. OpenReview.net, 2018. [Online]. Available:
https://openreview.net/forum?id=SJiHXGWAZ 20, 43, 52

M. M. Bronstein, J. Bruna, T. Cohen, and P. Velickovic, “Geometric deep learning:
Grids, groups, graphs, geodesics, and gauges,” CoRR, vol. abs/2104.13478, 2021.
[Online]. Available: https://arxiv.org/abs/2104.13478 21, 42, 43

M. Chen, Z. Wei, Z. Huang, B. Ding, and Y. Li, “Simple and deep graph
convolutional networks,” in Proceedings of the 37th International Conference on
Machine Learning, ICML 2020, 13-18 July 2020, Virtual Event, ser. Proceedings
of Machine Learning Research, vol. 119. PMLR, 2020, pp. 1725-1735. [Online].
Available: http://proceedings.mlr.press/v119/chen20v.html 22, 32, 50, 54, 61, 88, 93,
95, 97, 103, 110, 120, 183, 184

A. Roth and T. Liebig, “Transforming pagerank into an infinite-depth graph
neural network,” CoRR, vol. abs/2207.00684, 2022. [Online]. Available: https:
//doi.org/10.48550/arXiv.2207.00684 22, 50, 88, 91, 97

L. Zhao and L. Akoglu, “Pairnorm: Tackling oversmoothing in gnns in
8th International Conference on Learning Representations, ICLR 2020, Addis
Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020. [Online]. Available:
https://openreview.net/forum?id=rkeclirtwB 22, 32, 34, 57, 62, 88, 95, 113, 119, 134

Y. Rong, W. Huang, T. Xu, and]J. Huang, “Dropedge: Towards deep graph
convolutional networks on node classification,” in 8th International Conference
on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30,
2020. OpenReview.net, 2020. [Online]. Available: https://openreview.net/forum?
id=Hkx1qkrKPr 22, 32, 63

K. He, X. Zhang, S. Ren, and]. Sun, “Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification,” CoRR, vol. abs/1502.01852,
2015. [Online]. Available: http://arxiv.org/abs/1502.01852 23, 27, 64, 119, 120, 121,
123, 126, 128, 132, 171

[16] J.Klicpera, A. Bojchevski, and S. Ginnemann, “Predict then propagate: Graph neural

[17]

networks meet personalized pagerank,” in 7th International Conference on Learning
Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net,
2019. [Online]. Available: https://openreview.net/forum?id=H1gL-2A9Ym 23, 49,
57,79, 88, 89, 90, 97

F. Wu, A. H. S. Jr, T. Zhang, C. Fifty, T. Yu, and K. Q. Weinberger,
“Simplifying graph convolutional networks,” in Proceedings of the 36th International
Conference on Machine Learning, ICML 2019, 9-15 june 2019, Long Beach,
California, USA, ser. Proceedings of Machine Learning Research, K. Chaudhuri and
R. Salakhutdinov, Eds., vol. 97. PMLR, 2019, pp. 6861-6871. [Online]. Available:
http://proceedings.mlr.press/v97/wul9e.html 23, 50, 80

[18] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl, “Neural

194

message passing for quantum chemistry,” CoRR, vol. abs/1704.01212, 2017. [Online].
Available: http://arxiv.org/abs/1704.01212 30, 42, 43, 45

https://openreview.net/forum?id=SJiHXGWAZ
https://arxiv.org/abs/2104.13478
http://proceedings.mlr.press/v119/chen20v.html
https://doi.org/10.48550/arXiv.2207.00684
https://doi.org/10.48550/arXiv.2207.00684
https://openreview.net/forum?id=rkecl1rtwB
https://openreview.net/forum?id=Hkx1qkrKPr
https://openreview.net/forum?id=Hkx1qkrKPr
http://arxiv.org/abs/1502.01852
https://openreview.net/forum?id=H1gL-2A9Ym
http://proceedings.mlr.press/v97/wu19e.html
http://arxiv.org/abs/1704.01212

[19] J. Klicpera, J. Grof3, and S. Ginnemann, “Directional message passing for molecular

[20]

[26]

[27]

graphs,” in 8th International Conference on Learning Representations, ICLR 2020, Addis
Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020. [Online]. Available:
https://openreview.net/forum?id=B1eWbxStPH 32, 42

Q. Li, Z. Han, and X. Wu, “Deeper insights into graph convolutional networks
for semi-supervised learning,” in Proceedings of the Thirty-Second AAAI Conference
on Artificial Intelligence, (AAAI-18), the 30th innovative Applications of Artificial
Intelligence (IAAI-18), and the 8th AAAI Symposium on Educational Advances
in Artificial Intelligence (EAAI-18), New Orleans, Louisiana, USA, February 2-
7, 2018, S. A. Mcllraith and K. Q. Weinberger, Eds. AAAI Press, 2018,
pp- 3538-3545. [Online]. Available: https://www.aaai.org/ocs/index.php/AAAI/
AAAI18/paper/view/16098 32, 33, 34, 45, 47, 54, 55

C. Cai and Y. Wang, “A note on over-smoothing for graph neural networks,” CoRR,
vol. abs/2006.13318, 2020. [Online]. Available: https://arxiv.org/abs/2006.13318 32,
33, 34, 54, 64, 93, 133

F. D. Giovanni, L. Giusti, F. Barbero, G. Luise, P. Lio, and M. M. Bronstein,
“On over-squashing in message passing neural networks: The impact of width,
depth, and topology,” in International Conference on Machine Learning, ICML
2023, 23-29 July 2023, Honolulu, Hawaii, USA, ser. Proceedings of Machine
Learning Research, A. Krause, E. Brunskill, K. Cho, B. Engelhardt, S. Sabato,
and J. Scarlett, Eds., vol. 202. PMLR, 2023, pp. 7865-7885. [Online]. Available:
https://proceedings.mlr.press/v202/di-giovanni23a.html 32

G. Li, M. Miiller, A. K. Thabet, and B. Ghanem, “Deepgcns: Can gens go as deep as
cnns?” in 2019 IEEE/CVF International Conference on Computer Vision, ICCV 2019,
Seoul, Korea (South), October 27 - November 2, 2019. IEEE, 2019, pp. 9266—9275.
[Online]. Available: https://doi.org/10.1109/ICCV.2019.00936 32, 47, 61, 80

W. L. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation learning
on large graphs,” in Advances in Neural Information Processing Systems 30:
Annual Conference on Neural Information Processing Systems 2017, December 4-9,
2017, Long Beach, CA, USA, 1. Guyon, U. von Luxburg, S. Bengio, H. M.
Wallach, R. Fergus, S. V. N. Vishwanathan, and R. Garnett, Eds., 2017, pp.
1024-1034. [Online]. Available: https://proceedings.neurips.cc/paper/2017/hash/
5dd9db5e033da9c6fb5ba83c7a7ebead9- Abstract.html 33, 42, 43, 48

T. N. Kipf and M. Welling, “Semi-supervised classification with graph convolutional
networks,” in 5th International Conference on Learning Representations, ICLR 2017,
Toulon, France, April 24-26, 2017, Conference Track Proceedings. OpenReview.net,
2017. [Online]. Available: https://openreview.net/forum?id=SJUdayYgl 33, 41, 42,
43,47, 51, 80, 97, 103, 104, 110, 125, 138

H. Cai, V. W. Zheng, and K. C. Chang, “A comprehensive survey of graph embedding:
Problems, techniques and applications,” CoRR, vol. abs/1709.07604, 2017. [Online].
Available: http://arxiv.org/abs/1709.07604 41

D. Liben-Nowell and J. M. Kleinberg, “The link prediction problem for social
networks,” in Proceedings of the 2003 ACM CIKM International Conference

195

https://openreview.net/forum?id=B1eWbxStPH
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16098
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16098
https://arxiv.org/abs/2006.13318
https://proceedings.mlr.press/v202/di-giovanni23a.html
https://doi.org/10.1109/ICCV.2019.00936
https://proceedings.neurips.cc/paper/2017/hash/5dd9db5e033da9c6fb5ba83c7a7ebea9-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/5dd9db5e033da9c6fb5ba83c7a7ebea9-Abstract.html
https://openreview.net/forum?id=SJU4ayYgl
http://arxiv.org/abs/1709.07604

[29]

[30]

[33]

[36]

196

on Information and Knowledge Management, New Orleans, Louisiana, USA,
November 2-8, 2003. ACM, 2003, pp. 556-559. [Online]. Available: https:
//doi.org/lO.l145/956863.956972 41

M. Zhang and Y. Chen, “Link prediction based on graph neural networks,” in
Advances in Neural Information Processing Systems 31: Annual Conference on Neural
Information Processing Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal,
Canada, S. Bengio, H. M. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi,
and R. Garnett, Eds., 2018, pp. 5171-5181. [Online]. Available: https://proceedings.
neurips.cc/paper/2018/hash/53f0d7¢537d99b3824f0f99d62ea2428- Abstract.html 41

A. Tsitsulin, J. Palowitch, B. Perozzi, and E. Miller, “Graph clustering with graph
neural networks,” J. Mach. Learn. Res., vol. 24, pp. 127:1-127:21, 2023. [Online].
Available: https://jmlr.org/papers/v24/20-998.html 41

A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep
convolutional neural networks,” in Advances in Neural Information Processing
Systems 25: 26th Annual Conference on Neural Information Processing Systems 2012.
Proceedings of a meeting held December 3-6, 2012, Lake Tahoe, Nevada, United States,
P. L. Bartlett, F. C. N. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger, Eds.,
2012, pp. 1106-1114. [Online]. Available: https://proceedings.neurips.cc/paper/2012/
hash/c399862d3b9d6b76c8436€924a68c45b- Abstract.html 41

K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale
image recognition,” in 3rd International Conference on Learning Representations, ICLR
2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, Y. Bengio
and Y. LeCun, Eds., 2015. [Online]. Available: http://arxiv.org/abs/1409.1556 41

C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. E. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,” in IEEE
Conference on Computer Vision and Pattern Recognition, CVPR 2015, Boston, MA,
USA, June 7-12, 2015. 1EEE Computer Society, 2015, pp. 1-9. [Online]. Available:
https://doi.org/10.1109/CVPR.2015.7298594 41

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,”
in 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016,
Las Vegas, NV, USA, June 27-30, 2016. IEEE Computer Society, 2016, pp. 770-778.
[Online]. Available: https://doi.org/10.1109/CVPR.2016.90 41, 60

A. Sherstinsky, “Fundamentals of recurrent neural network (RNN) and long
short-term memory (LSTM) network,” CoRR, vol. abs/1808.03314, 2018. [Online].
Available: http://arxiv.org/abs/1808.03314 41

K. Cho, B. van Merrienboer, C. Giulgehre, F. Bougares, H. Schwenk, and
Y. Bengio, “Learning phrase representations using RNN encoder-decoder for
statistical machine translation,” CoRR, vol. abs/1406.1078, 2014. [Online]. Available:
http://arxiv.org/abs/1406.1078 41

A. Graves, A. Mohamed, and G. E. Hinton, “Speech recognition with deep
recurrent neural networks,” CoRR, vol. abs/1303.5778, 2013. [Online]. Available:
http://arxiv.org/abs/1303.5778 41

https://doi.org/10.1145/956863.956972
https://doi.org/10.1145/956863.956972
https://proceedings.neurips.cc/paper/2018/hash/53f0d7c537d99b3824f0f99d62ea2428-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/53f0d7c537d99b3824f0f99d62ea2428-Abstract.html
https://jmlr.org/papers/v24/20-998.html
https://proceedings.neurips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html
https://proceedings.neurips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html
http://arxiv.org/abs/1409.1556
https://doi.org/10.1109/CVPR.2015.7298594
https://doi.org/10.1109/CVPR.2016.90
http://arxiv.org/abs/1808.03314
http://arxiv.org/abs/1406.1078
http://arxiv.org/abs/1303.5778

[37]

Z. C. Lipton, “A critical review of recurrent neural networks for sequence learning,’
CoRR, vol. abs/1506.00019, 2015. [Online]. Available: http://arxiv.org/abs/1506.00019
41

M. M. Bronstein, J. Bruna, Y. LeCun, A. Szlam, and P. Vandergheynst, “Geometric
deep learning: going beyond euclidean data,” CoRR, vol. abs/1611.08097, 2016.
[Online]. Available: http://arxiv.org/abs/1611.08097 42

[39] J. E. Gerken, J. Aronsson, O. Carlsson, H. Linander, F. Ohlsson, C. Petersson,

[40]

[42]

and D. Persson, “Geometric deep learning and equivariant neural networks,
Artif. Intell. Rev., vol. 56, no. 12, pp. 14605-14 662, 2023. [Online]. Available:
https://doi.org/10.1007/s10462-023-10502-7 42

T. Cohen and M. Welling, “Group equivariant convolutional networks,” in
Proceedings of the 33nd International Conference on Machine Learning, ICML 2016,
New York City, NY, USA, June 19-24, 2016, ser.]JMLR Workshop and Conference
Proceedings, M. Balcan and K. Q. Weinberger, Eds., vol. 48. JMLR.org, 2016, pp.
2990-2999. [Online]. Available: http://proceedings.mlr.press/v48/cohenc16.html 42

P. Velickovic, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y. Bengio, “Graph
attention networks,” in 6th International Conference on Learning Representations,
ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track
Proceedings. OpenReview.net, 2018. [Online]. Available: https://openreview.net/
forum?id=rJXMpikCZ 42, 48, 103, 110, 125, 138

S. Brody, U. Alon, and E. Yahav, “How attentive are graph attention networks?”
in The Tenth International Conference on Learning Representations, ICLR 2022,
Virtual Event, April 25-29, 2022. OpenReview.net, 2022. [Online]. Available:
https://openreview.net/forum?id=F72ximsx7C1 42

[43] J. Masci, D. Boscaini, M. M. Bronstein, and P. Vandergheynst, “Geodesic

[44]

[45]

[46]

convolutional neural networks on riemannian manifolds,” in 2015 IEEE International
Conference on Computer Vision Workshop, ICCV Workshops 2015, Santiago, Chile,
December 7-13, 2015. IEEE Computer Society, 2015, pp. 832-840. [Online]. Available:
https://doi.org/10.1109/ICCVW.2015.112 42, 43

F. Monti, D. Boscaini, J. Masci, E. Rodola, J. Svoboda, and M. M. Bronstein,
“Geometric deep learning on graphs and manifolds using mixture model cnns,”
in 2017 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017,
Honolulu, HI, USA, July 21-26, 2017. 1EEE Computer Society, 2017, pp. 5425-5434.
[Online]. Available: https://doi.org/10.1109/CVPR.2017.576 42, 43

A. Poulenard and M. Ovsjanikov, “Multi-directional geodesic neural networks
via equivariant convolution,” CoRR, vol. abs/1810.02303, 2018. [Online]. Available:
http://arxiv.org/abs/1810.02303 42

T. S. Cohen, M. Weiler, B. Kicanaoglu, and M. Welling, “Gauge equivariant
convolutional networks and the icosahedral CNN,” CoRR, vol. abs/1902.04615, 2019.
[Online]. Available: http://arxiv.org/abs/1902.04615 42

197

http://arxiv.org/abs/1506.00019
http://arxiv.org/abs/1611.08097
https://doi.org/10.1007/s10462-023-10502-7
http://proceedings.mlr.press/v48/cohenc16.html
https://openreview.net/forum?id=rJXMpikCZ
https://openreview.net/forum?id=rJXMpikCZ
https://openreview.net/forum?id=F72ximsx7C1
https://doi.org/10.1109/ICCVW.2015.112
https://doi.org/10.1109/CVPR.2017.576
http://arxiv.org/abs/1810.02303
http://arxiv.org/abs/1902.04615

[47]

[52]

[53]

[54]

[55]

P. de Haan, M. Weiler, T. Cohen, and M. Welling, “Gauge equivariant mesh
cnns: Anisotropic convolutions on geometric graphs,” in 9th International
Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7,
2021. OpenReview.net, 2021. [Online]. Available: https://openreview.net/forum?
id=Jnspzp-olZE 42

N. Keriven and G. Peyré, “Universal invariant and equivariant graph neural
networks,” in Advances in Neural Information Processing Systems 32: Annual
Conference on Neural Information Processing Systems 2019, NeurIPS 2019, De-
cember 8-14, 2019, Vancouver, BC, Canada, H. M. Wallach, H. Larochelle,
A. Beygelzimer, F. d’Alché-Buc, E. B. Fox, and R. Garnett, Eds., 2019, pp.
7090-7099. [Online]. Available: https://proceedings.neurips.cc/paper/2019/hash/
€a9268cb43155d1d12380fb6ea5bf572- Abstract.html 42, 43

W. W. Zachary, “An information flow model for conflict and fission in small
groups,” Journal of anthropological research, pp. 452—-473, 1977. [Online]. Available:
http://www jstor.org/stable/3629752 42, 103

Y. Wang, Z. Li, and A. B. Farimani, “Graph neural networks for molecules,” CoRR, vol.
abs/2209.05582, 2022. [Online]. Available: https://doi.org/10.48550/arXiv.2209.05582
42,43

D. Duvenaud, D. Maclaurin, J. Aguilera-Iparraguirre, R. Gémez-Bombarelli, T. Hirzel,
A. Aspuru-Guzik, and R. P. Adams, “Convolutional networks on graphs for learning
molecular fingerprints,” in Advances in Neural Information Processing Systems 28:
Annual Conference on Neural Information Processing Systems 2015, December 7-12,
2015, Montreal, Quebec, Canada, C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama,
and R. Garnett, Eds., 2015, pp. 2224-2232. [Online]. Available: https://proceedings.
neurips.cc/paper/2015/hash/f9be311e65d81a9ad8150a60844bb94c- Abstract.html 42

T. Pfaff, M. Fortunato, A. Sanchez-Gonzalez, and P. W. Battaglia, “Learning mesh-
based simulation with graph networks,” in 9th International Conference on Learning
Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenReview.net,
2021. [Online]. Available: https://openreview.net/forum?id=roNqYL0_XP 42

Z. Li, N. B. Kovachki, C. B. Choy, B. Li, J. Kossaifi, S. P. Otta, M. A. Nabian,
M. Stadler, C. Hundt, K. Azizzadenesheli, and A. Anandkumar, “Geometry-informed
neural operator for large-scale 3d pdes,” CoRR, vol. abs/2309.00583, 2023. [Online].
Available: https://doi.org/10.48550/arXiv.2309.00583 42

G. Dong, M. Tang, Z. Wang, J. Gao, S. Guo, L. Cai, R. J. Gutierrez, B. Campbell, L. E.
Barnes, and M. Boukhechba, “Graph neural networks in iot: A survey,” CoRR, vol.
abs/2203.15935, 2022. [Online]. Available: https://doi.org/10.48550/arXiv.2203.15935
42

F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini, “The graph
neural network model,” IEEE Trans. Neural Networks, vol. 20, no. 1, pp. 61-80, 2009.
[Online]. Available: https://doi.org/10.1109/TNN.2008.2005605 42, 43

[56] J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun, “Spectral networks and locally

198

connected networks on graphs,” in 2nd International Conference on Learning

https://openreview.net/forum?id=Jnspzp-oIZE
https://openreview.net/forum?id=Jnspzp-oIZE
https://proceedings.neurips.cc/paper/2019/hash/ea9268cb43f55d1d12380fb6ea5bf572-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/ea9268cb43f55d1d12380fb6ea5bf572-Abstract.html
http://www.jstor.org/stable/3629752
https://doi.org/10.48550/arXiv.2209.05582
https://proceedings.neurips.cc/paper/2015/hash/f9be311e65d81a9ad8150a60844bb94c-Abstract.html
https://proceedings.neurips.cc/paper/2015/hash/f9be311e65d81a9ad8150a60844bb94c-Abstract.html
https://openreview.net/forum?id=roNqYL0_XP
https://doi.org/10.48550/arXiv.2309.00583
https://doi.org/10.48550/arXiv.2203.15935
https://doi.org/10.1109/TNN.2008.2005605

[58]

[59]

[60]

[61]

[62]

[63]

Representations, ICLR 2014, Banff, AB, Canada, April 14-16, 2014, Conference
Track Proceedings, Y. Bengio and Y. LeCun, Eds., 2014. [Online]. Available:
http://arxiv.org/abs/1312.6203 42, 43

R. Kondor and S. Trivedi, “On the generalization of equivariance and convolution
in neural networks to the action of compact groups,” in Proceedings of the
35th International Conference on Machine Learning, ICML 2018, Stockholmsmdssan,
Stockholm, Sweden, July 10-15, 2018, ser. Proceedings of Machine Learning Research,
J. G. Dy and A. Krause, Eds., vol. 80. PMLR, 2018, pp. 2752-2760. [Online].
Available: http://proceedings.mlr.press/v80/kondor18a.html 42

J.Klicpera, A. Bojchevski, and S. Ginnemann, “Personalized embedding propagation:
Combining neural networks on graphs with personalized pagerank,” CoRR, vol.
abs/1810.05997, 2018. [Online]. Available: http://arxiv.org/abs/1810.05997 43

S. Batzner, A. Musaelian, L. Sun, M. Geiger, J. P. Mailoa, M. Kornbluth, N. Molinari,
T. E. Smidt, and B. Kozinsky, “E(3)-equivariant graph neural networks for data-
efficient and accurate interatomic potentials,” Nature Communications, vol. 13, no. 1,
May 2022. [Online]. Available: http://dx.doi.org/10.1038/s41467-022-29939-5 43

C. R. Qi, L. Yi, H. Su, and L. J. Guibas, “Pointnet++: Deep hierarchical feature
learning on point sets in a metric space,” in Advances in Neural Information
Processing Systems 30: Annual Conference on Neural Information Processing Systems
2017, December 4-9, 2017, Long Beach, CA, USA, 1. Guyon, U. von Luxburg, S. Bengio,
H. M. Wallach, R. Fergus, S. V. N. Vishwanathan, and R. Garnett, Eds., 2017,
pp- 5099-5108. [Online]. Available: https://proceedings.neurips.cc/paper/2017/hash/
d8bf84be3800d1274d8b05e9b89836f- Abstract.html 43

V. G. Satorras, E. Hoogeboom, and M. Welling, “E(n) equivariant graph neural
networks,” in Proceedings of the 38th International Conference on Machine Learning,
ICML 2021, 18-24 July 2021, Virtual Event, ser. Proceedings of Machine Learning
Research, M. Meila and T. Zhang, Eds., vol. 139. PMLR, 2021, pp. 9323-9332.
[Online]. Available: http://proceedings.mlr.press/v139/satorras21a.html 43

B. Yu, H. Yin, and Z. Zhu, “Spatio-temporal graph convolutional networks: A deep
learning framework for traffic forecasting,” in Proceedings of the Twenty-Seventh
International Joint Conference on Artificial Intelligence, IJCAI 2018, July 13-19, 2018,
Stockholm, Sweden, J. Lang, Ed. ijcai.org, 2018, pp. 3634-3640. [Online]. Available:
https://doi.org/10.24963/ijcai.2018/505 43, 52

Z. Cui, K. Henrickson, R. Ke, and Y. Wang, “Traffic graph convolutional recurrent
neural network: A deep learning framework for network-scale traffic learning and
forecasting,” IEEE Trans. Intell. Transp. Syst., vol. 21, no. 11, pp. 4883-4894, 2020.
[Online]. Available: https://doi.org/10.1109/TITS.2019.2950416 43, 52

M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional neural net-
works on graphs with fast localized spectral filtering,” in Advances in Neural
Information Processing Systems 29: Annual Conference on Neural Information
Processing Systems 2016, December 5-10, 2016, Barcelona, Spain, D. D. Lee,
M. Sugiyama, U. von Luxburg, I. Guyon, and R. Garnett, Eds., 2016, pp.
3837-3845. [Online]. Available: https://proceedings.neurips.cc/paper/2016/hash/
04df4d434d481c5bb723belb6df1ee65-Abstract.html 43, 49

199

http://arxiv.org/abs/1312.6203
http://proceedings.mlr.press/v80/kondor18a.html
http://arxiv.org/abs/1810.05997
http://dx.doi.org/10.1038/s41467-022-29939-5
https://proceedings.neurips.cc/paper/2017/hash/d8bf84be3800d12f74d8b05e9b89836f-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/d8bf84be3800d12f74d8b05e9b89836f-Abstract.html
http://proceedings.mlr.press/v139/satorras21a.html
https://doi.org/10.24963/ijcai.2018/505
https://doi.org/10.1109/TITS.2019.2950416
https://proceedings.neurips.cc/paper/2016/hash/04df4d434d481c5bb723be1b6df1ee65-Abstract.html
https://proceedings.neurips.cc/paper/2016/hash/04df4d434d481c5bb723be1b6df1ee65-Abstract.html

[65]

[71]

[72]

200

C.K.Joshi, C. Bodnar, S. V. Mathis, T. Cohen, and P. Lio, “On the expressive power of
geometric graph neural networks,” in International Conference on Machine Learning,
ICML 2023, 23-29 July 2023, Honolulu, Hawaii, USA, ser. Proceedings of Machine
Learning Research, A. Krause, E. Brunskill, K. Cho, B. Engelhardt, S. Sabato, and
J. Scarlett, Eds., vol. 202. PMLR, 2023, pp. 15330-15355. [Online]. Available:
https://proceedings.mlr.press/v202/joshi23a.html 43

U. von Luxburg, “A tutorial on spectral clustering,” Stat. Comput., vol. 17, no. 4, pp.
395-416, 2007. [Online]. Available: https://doi.org/10.1007/s11222-007-9033-z 43, 44

V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre, “Fast unfolding
of communities in large networks,” Journal of Statistical Mechanics: Theory
and Experiment, vol. 2008, no. 10, p. P10008, Oct. 2008. [Online]. Available:
http://dx.doi.org/10.1088/1742-5468/2008/10/P10008 43

D. L. Shuman, S. K. Narang, P. Frossard, A. Ortega, and P. Vandergheynst, “The
emerging field of signal processing on graphs: Extending high-dimensional data
analysis to networks and other irregular domains,” IEEE Signal Process. Mag., vol. 30,
no. 3, pp. 83-98, 2013. [Online]. Available: https://doi.org/10.1109/MSP.2012.2235192
43, 45

F.R. K. Chung, Spectral Graph Theory. American Mathematical Society, 1997. 44

A. Y. Ng, M. L Jordan, and Y. Weiss, “On spectral clustering: Analysis and
an algorithm,” in Advances in Neural Information Processing Systems 14 [Neural
Information Processing Systems: Natural and Synthetic, NIPS 2001, December 3-8, 2001,
Vancouver, British Columbia, Canada], T. G. Dietterich, S. Becker, and Z. Ghahramani,
Eds. MIT Press, 2001, pp. 849-856. [Online]. Available: https://proceedings.neurips.
cc/paper/2001/hash/801272ee79ctde7fa5960571fee36b9b-Abstract.html 44, 45

J. Shi and J. Malik, “Normalized cuts and image segmentation,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 22, no. 8, pp. 888-905, 2000. 44

L. Lovasz, “Random walks on graphs: A survey,” Combinatorics, Paul
Erdos is Eighty, vol. 2, no. 1, pp. 1-46, 1993. [Online]. Avail-
able: http://scholar.google.de/scholar.bib?q=info:llcRghStI10]:scholar.google.com/
&output=citation&hl=de&as_sdt=0,5&ct=citation&cd=3 44

L. Page, S. Brin, R. Motwani, and T. Winograd, “The PageRank Citation Ranking:
Bringing Order to the Web,” Stanford Digital Library Technologies Project, Tech.
Rep., 1998. [Online]. Available: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=
10.1.1.31.1768 44

M. Fiedler, “Algebraic connectivity of graphs,” Czechoslovak Mathematical Journal,
vol. 23, no. 2, pp. 298-305, 1973. [Online]. Available: http://eudml.org/doc/12723 44

D. Zhou, O. Bousquet, T. N. Lal, J. Weston, and B. Schélkopf, “Learning with local
and global consistency,” in Advances in Neural Information Processing Systems 16
[Neural Information Processing Systems, NIPS 2003, December 8-13, 2003, Vancouver
and Whistler, British Columbia, Canada], S. Thrun, L. K. Saul, and B. Scholkopf, Eds.
MIT Press, 2003, pp. 321-328. [Online]. Available: https://proceedings.neurips.cc/
paper/2003/hash/87682805257¢619d49b8e0dfdc14affa- Abstract.html 45

https://proceedings.mlr.press/v202/joshi23a.html
https://doi.org/10.1007/s11222-007-9033-z
http://dx.doi.org/10.1088/1742-5468/2008/10/P10008
https://doi.org/10.1109/MSP.2012.2235192
https://proceedings.neurips.cc/paper/2001/hash/801272ee79cfde7fa5960571fee36b9b-Abstract.html
https://proceedings.neurips.cc/paper/2001/hash/801272ee79cfde7fa5960571fee36b9b-Abstract.html
http://scholar.google.de/scholar.bib?q=info:llcRghStI1oJ:scholar.google.com/&output=citation&hl=de&as_sdt=0,5&ct=citation&cd=3
http://scholar.google.de/scholar.bib?q=info:llcRghStI1oJ:scholar.google.com/&output=citation&hl=de&as_sdt=0,5&ct=citation&cd=3
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.31.1768
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.31.1768
http://eudml.org/doc/12723
https://proceedings.neurips.cc/paper/2003/hash/87682805257e619d49b8e0dfdc14affa-Abstract.html
https://proceedings.neurips.cc/paper/2003/hash/87682805257e619d49b8e0dfdc14affa-Abstract.html

[76]

[82]

[83]

[84]

A.J. Smola and R. Kondor, “Kernels and regularization on graphs,” in Computational
Learning Theory and Kernel Machines, 16th Annual Conference on Computational
Learning Theory and 7th Kernel Workshop, COLT/Kernel 2003, Washington, DC,
USA, August 24-27, 2003, Proceedings, ser. Lecture Notes in Computer Science,
B. Scholkopf and M. K. Warmuth, Eds., vol. 2777. Springer, 2003, pp. 144-158.
[Online]. Available: https://doi.org/10.1007/978-3-540-45167-9_12 45

Z. Zhong, C. Li, and J. Pang, “Hierarchical message-passing graph neural networks,”
Data Min. Knowl. Discov.,, vol. 37, no. 1, pp. 381-408, 2023. [Online]. Available:
https://doi.org/10.1007/s10618-022-00890-9 46

Z. Zhang,]J. Bu, M. Ester, J. Zhang, C. Yao, Z. Yu, and C. Wang, “Hierarchical
graph pooling with structure learning,” CoRR, vol. abs/1911.05954, 2019. [Online].
Available: http://arxiv.org/abs/1911.05954 46

B. Gutteridge, X. Dong, M. M. Bronstein, and F. D. Giovanni, “Drew: Dynamically
rewired message passing with delay, in International Conference on Machine
Learning, ICML 2023, 23-29 July 2023, Honolulu, Hawaii, USA, ser. Proceedings
of Machine Learning Research, A. Krause, E. Brunskill, K. Cho, B. Engelhardt,
S. Sabato, and J. Scarlett, Eds., vol. 202. PMLR, 2023, pp. 12 252-12 267. [Online].
Available: https://proceedings.mlr.press/v202/gutteridge23a.html 46

B. Finkelshtein, X. Huang, M. M. Bronstein, and I. I. Ceylan, “Cooperative graph
neural networks,” in Forty-first International Conference on Machine Learning, ICML
2024, Vienna, Austria, July 21-27, 2024. OpenReview.net, 2024. [Online]. Available:
https://openreview.net/forum?id=ZQcqgXCuoxD 46

V. P. Dwivedi and X. Bresson, “A generalization of transformer networks to graphs,”
CoRR, vol. abs/2012.09699, 2020. [Online]. Available: https://arxiv.org/abs/2012.09699
51

L. Miller, M. Galkin, C. Morris, and L. Rampasek, “Attending to graph
transformers,” Trans. Mach. Learn. Res., vol. 2024, 2024. [Online]. Available:
https://openreview.net/forum?id=HhbqHBBr{Z 51

G. Mialon, D. Chen, M. Selosse, and J. Mairal, “Graphit: Encoding graph
structure in transformers,” CoRR, vol. abs/2106.05667, 2021. [Online]. Available:
https://arxiv.org/abs/2106.05667 51

C.Ying, T. Cai, S. Luo, S. Zheng, G. Ke, D. He, Y. Shen, and T. Liu, “Do transformers
really perform bad for graph representation?” CoRR, vol. abs/2106.05234, 2021.
[Online]. Available: https://arxiv.org/abs/2106.05234 51

C. Chen, Y. Wu, Q. Dai, H. Zhou, M. Xu, S. Yang, X. Han, and Y. Yu, “A survey on
graph neural networks and graph transformers in computer vision: A task-oriented
perspective,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 46, no. 12, pp. 10 297-10 318,
2024. [Online]. Available: https://doi.org/10.1109/TPAMI.2024.3445463 51

P. Velickovic, W. Fedus, W. L. Hamilton, P. Lio, Y. Bengio, and R. D. Hjelm, “Deep
graph infomax,” in 7th International Conference on Learning Representations, ICLR
2019, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net, 2019. [Online].
Available: https://openreview.net/forum?id=rklz9iAcKQ 51

201

https://doi.org/10.1007/978-3-540-45167-9_12
https://doi.org/10.1007/s10618-022-00890-9
http://arxiv.org/abs/1911.05954
https://proceedings.mlr.press/v202/gutteridge23a.html
https://openreview.net/forum?id=ZQcqXCuoxD
https://arxiv.org/abs/2012.09699
https://openreview.net/forum?id=HhbqHBBrfZ
https://arxiv.org/abs/2106.05667
https://arxiv.org/abs/2106.05234
https://doi.org/10.1109/TPAMI.2024.3445463
https://openreview.net/forum?id=rklz9iAcKQ

[87]

[88]

[91]

[93]

202

S. Yan, Y. Xiong, and D. Lin, “Spatial temporal graph convolutional networks
for skeleton-based action recognition,” in Proceedings of the Thirty-Second AAAI
Conference on Artificial Intelligence, (AAAI-18), the 30th innovative Applications
of Artificial Intelligence (IAAI-18), and the 8th AAAI Symposium on Educational
Advances in Artificial Intelligence (EAAI-18), New Orleans, Louisiana, USA, February
2-7, 2018, S. A. Mcllraith and K. Q. Weinberger, Eds. =~ AAAI Press, 2018, pp.
7444-7452. [Online]. Available: https://doi.org/10.1609/aaai.v32i1.12328 52

L. Zhao, Y. Song, C. Zhang, Y. Liu, P. Wang, T. Lin, M. Deng, and H. Li,
“T-GCN: A temporal graph convolutional network for traffic prediction,” IEEE
Trans. Intell. Transp. Syst., vol. 21, no. 9, pp. 3848-3858, 2020. [Online]. Available:
https://doi.org/10.1109/T1TS.2019.2935152 52

F. Li, J. Feng, H. Yan, G. Jin, F. Yang, F. Sun, D. Jin, and Y. Li, “Dynamic graph
convolutional recurrent network for traffic prediction: Benchmark and solution,”
ACM Trans. Knowl. Discov. Data, vol. 17, no. 1, pp. 9:1-9:21, 2023. [Online]. Available:
https://doi.org/lo.l145/3532611 52

Z. Ying, J. You, C. Morris, X. Ren, W. L. Hamilton, and J. Leskovec, “Hierarchical
graph representation learning with differentiable pooling,” in Advances in Neural
Information Processing Systems 31: Annual Conference on Neural Information
Processing Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal, Canada,
S. Bengio, H. M. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and
R. Garnett, Eds., 2018, pp. 4805-4815. [Online]. Available: https://proceedings.
neurips.cc/paper/2018/hash/e77dbaf6759253¢c7c6d0efc5690369c7- Abstract.html 52

H. Gao, Y. Liu, and S. Ji, “Topology-aware graph pooling networks,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 43, no. 12, pp. 4512-4518, 2021. [Online]. Available:
https://doi.org/10.1109/TPAMIL.2021.3062794 52

M. S. Schlichtkrull, T. N. Kipf, P. Bloem, R. van den Berg, I. Titov, and
M. Welling, “Modeling relational data with graph convolutional networks,” in
The Semantic Web - 15th International Conference, ESWC 2018, Heraklion, Crete,
Greece, June 3-7, 2018, Proceedings, ser. Lecture Notes in Computer Science,
A. Gangemi, R. Navigli, M. Vidal, P. Hitzler, R. Troncy, L. Hollink, A. Tordai,
and M. Alam, Eds., vol. 10843. Springer, 2018, pp. 593-607. [Online]. Available:
https://doi.org/10.1007/978-3-319-93417-4_38 52

Z.Hu, Y. Dong, K. Wang, and Y. Sun, “Heterogeneous graph transformer,” in WWW
"20: The Web Conference 2020, Taipei, Taiwan, April 20-24, 2020, Y. Huang, 1. King,
T. Liu, and M. van Steen, Eds. ACM / IW3C2, 2020, pp. 2704-2710. [Online].
Available: https://doi.org/10.1145/3366423.3380027 52

A. Bordes, N. Usunier, A. Garcia-Duran, J. Weston, and O. Yakhnenko, “Translating
embeddings for modeling multi-relational data,” in Advances in Neural Information
Processing Systems 26: 27th Annual Conference on Neural Information Processing
Systems 2013. Proceedings of a meeting held December 5-8, 2013, Lake Tahoe, Nevada,
United States, C.]. C. Burges, L. Bottou, Z. Ghahramani, and K. Q. Weinberger, Eds.,
2013, pp. 2787-2795. [Online]. Available: https://proceedings.neurips.cc/paper/2013/
hash/1cecc7a77928ca8133fa24680a88d2f9- Abstract.html 52

https://doi.org/10.1609/aaai.v32i1.12328
https://doi.org/10.1109/TITS.2019.2935152
https://doi.org/10.1145/3532611
https://proceedings.neurips.cc/paper/2018/hash/e77dbaf6759253c7c6d0efc5690369c7-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/e77dbaf6759253c7c6d0efc5690369c7-Abstract.html
https://doi.org/10.1109/TPAMI.2021.3062794
https://doi.org/10.1007/978-3-319-93417-4_38
https://doi.org/10.1145/3366423.3380027
https://proceedings.neurips.cc/paper/2013/hash/1cecc7a77928ca8133fa24680a88d2f9-Abstract.html
https://proceedings.neurips.cc/paper/2013/hash/1cecc7a77928ca8133fa24680a88d2f9-Abstract.html

[95]

[96]

D. Xu, C. Ruan, E. Korpeoglu, S. Kumar, and K. Achan, “Inductive representation
learning on temporal graphs,” 2020. [Online]. Available: https://arxiv.org/abs/2002.
07962 53

A. Pareja, G. Domeniconi, J. Chen, T. Ma, T. Suzumura, H. Kanezashi, T. Kaler, T. B.
Schardl, and C. E. Leiserson, “Evolvegcn: Evolving graph convolutional networks for
dynamic graphs,” in The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI
2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference,
IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial
Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020. ~AAAI Press, 2020,
pp- 5363-5370. [Online]. Available: https://doi.org/10.1609/aaai.v34i04.5984 53

[97] J. Wu, M. Cao, J. C. K. Cheung, and W. L. Hamilton, “Temp: Temporal message

[100]

[101]

[102]

[103]

passing for temporal knowledge graph completion,” in Proceedings of the 2020
Conference on Empirical Methods in Natural Language Processing, EMNLP 2020,
Online, November 16-20, 2020, B. Webber, T. Cohn, Y. He, and Y. Liu, Eds.
Association for Computational Linguistics, 2020, pp. 5730-5746. [Online]. Available:
https://doi.org/10.18653/v1/2020.emnlp-main.462 53

Y. Yan, M. Hashemi, K. Swersky, Y. Yang, and D. Koutra, “Two sides of the same coin:
Heterophily and oversmoothing in graph convolutional neural networks,” in IEEE
International Conference on Data Mining, ICDM 2022, Orlando, FL, USA, November 28
- Dec. 1, 2022, X. Zhu, S. Ranka, M. T. Thai, T. Washio, and X. Wu, Eds. IEEE, 2022,
pp. 1287-1292. [Online]. Available: https://doi.org/10.1109/ICDM54844.2022.00169
54

X. Wu, Z. Chen, W. W. Wang, and A. Jadbabaie, “A non-asymptotic analysis of
oversmoothing in graph neural networks,” in The Eleventh International Conference on
Learning Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023. OpenReview.net,
2023. [Online]. Available: https://openreview.net/forum?id=CJd-BtnwtXq 54

Y. Song, C. Zhou, X. Wang, and Z. Lin, “Ordered GNN: ordering message
passing to deal with heterophily and over-smoothing,” in The Eleventh International
Conference on Learning Representations, ICLR 2023, Kigali, Rwanda, May 1-5,
2023. OpenReview.net, 2023. [Online]. Available: https://openreview.net/forum?
id=wKPmPBHSnT6 54

G. Wang, R. Ying, J. Huang, and]. Leskovec, “Multi-hop attention graph
neural networks,” in Proceedings of the Thirtieth International joint Conference
on Artificial Intelligence, IJCAI 2021, Virtual Event / Montreal, Canada, 19-27
August 2021, Z. Zhou, Ed. ijcai.org, 2021, pp. 3089-3096. [Online]. Available:
https://doi.org/10.24963/ijcai.2021/425 54

T. K. Rusch, M. M. Bronstein, and S. Mishra, “A survey on oversmoothing
in graph neural networks,” CoRR, vol. abs/2303.10993, 2023. [Online]. Available:
https://doi.org/10.48550/arXiv.2303.10993 54, 58

K. Zhou, X. Huang, D. Zha, R. Chen, L. Li, S. Choi, and X. Hu, “Dirichlet energy
constrained learning for deep graph neural networks,” CoRR, vol. abs/2107.02392,
2021. [Online]. Available: https://arxiv.org/abs/2107.02392 54, 57, 58, 88, 119

203

https://arxiv.org/abs/2002.07962
https://arxiv.org/abs/2002.07962
https://doi.org/10.1609/aaai.v34i04.5984
https://doi.org/10.18653/v1/2020.emnlp-main.462
https://doi.org/10.1109/ICDM54844.2022.00169
https://openreview.net/forum?id=CJd-BtnwtXq
https://openreview.net/forum?id=wKPmPBHSnT6
https://openreview.net/forum?id=wKPmPBHSnT6
https://doi.org/10.24963/ijcai.2021/425
https://doi.org/10.48550/arXiv.2303.10993
https://arxiv.org/abs/2107.02392

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

204

D. Bo, X. Wang, C. Shi, and H. Shen, “Beyond low-frequency information in graph
convolutional networks,” in Thirty-Fifth AAAI Conference on Artificial Intelligence,
AAAI 2021, Thirty-Third Conference on Innovative Applications of Artificial Intelligence,
IAAI 2021, The Eleventh Symposium on Educational Advances in Artificial Intelligence,
EAAI 2021, Virtual Event, February 2-9, 2021. AAAI Press, 2021, pp. 3950-3957.
[Online]. Available: https://doi.org/10.1609/aaai.v35i5.16514 55

K. Huang, Y. G. Wang, M. Li, and P. Lio, “How universal polynomial bases
enhance spectral graph neural networks: Heterophily, over-smoothing, and over-
squashing,” in Forty-first International Conference on Machine Learning, ICML 2024,
Vienna, Austria, July 21-27, 2024. OpenReview.net, 2024. [Online]. Available:
https://openreview.net/forum?id=Z2LH6Va7L2 55

D. Chen, Y. Lin, W. Li, P. Li, J. Zhou, and X. Sun, “Measuring and relieving the
over-smoothing problem for graph neural networks from the topological view,
in The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The
Thirty-Second Innovative Applications of Artificial Intelligence Conference, [AAI 2020,
The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI
2020, New York, NY, USA, February 7-12, 2020. ~AAAI Press, 2020, pp. 3438-3445.
[Online]. Available: https://doi.org/10.1609/aaai.v34i04.5747 57, 58, 64, 71

J. Palowitch, A. Tsitsulin, B. A. Mayer, and B. Perozzi, “Graphworld: Fake graphs
bring real insights for gnns,” in KDD ’°22: The 28th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining, Washington, DC, USA, August 14 - 18, 2022,
A. Zhang and H. Rangwala, Eds. ACM, 2022, pp. 3691-3701. [Online]. Available:
https://doi.org/lO.l145/3534678.3539203 57

K. Xu, C. Li, Y. Tian, T. Sonobe, K. Kawarabayashi, and S. Jegelka, “Representation
learning on graphs with jumping knowledge networks,” in Proceedings of the
35th International Conference on Machine Learning, ICML 2018, Stockholmsmdssan,
Stockholm, Sweden, July 10-15, 2018, ser. Proceedings of Machine Learning Research,
J. G. Dy and A. Krause, Eds., vol. 80. PMLR, 2018, pp. 5449-5458. [Online].
Available: http://proceedings.mlr.press/v80/xul8c.html 59, 61, 92, 93

S. Abu-El-Haija, B. Perozzi, A. Kapoor, N. Alipourfard, K. Lerman, H. Harutyunyan,
G. V. Steeg, and A. Galstyan, “Mixhop: Higher-order graph convolutional
architectures via sparsified neighborhood mixing,” in Proceedings of the 36th
International Conference on Machine Learning, ICML 2019, 9-15 June 2019, Long
Beach, California, USA, ser. Proceedings of Machine Learning Research, K. Chaudhuri
and R. Salakhutdinov, Eds., vol. 97. PMLR, 2019, pp. 21-29. [Online]. Available:
http://proceedings.mlr.press/v97/abu-el-haijal9a.html 59

H. Dong, J. Chen, F. Feng, X. He, S. Bi, Z. Ding, and P. Cui, “On the equivalence
of decoupled graph convolution network and label propagation,” in WWW °21:
The Web Conference 2021, Virtual Event / Ljubljana, Slovenia, April 19-23, 2021,
J. Leskovec, M. Grobelnik, M. Najork, J. Tang, and L. Zia, Eds. ACM /IW3C2, 2021,
pp- 3651-3662. [Online]. Available: https://doi.org/10.1145/3442381.3449927 59

M. Liu, H. Gao, and S. Ji, “Towards deeper graph neural networks,” in
KDD °20: The 26th ACM SIGKDD Conference on Knowledge Discovery and
Data Mining, Virtual Event, CA, USA, August 23-27, 2020, R. Gupta, Y. Liu,

https://doi.org/10.1609/aaai.v35i5.16514
https://openreview.net/forum?id=Z2LH6Va7L2
https://doi.org/10.1609/aaai.v34i04.5747
https://doi.org/10.1145/3534678.3539203
http://proceedings.mlr.press/v80/xu18c.html
http://proceedings.mlr.press/v97/abu-el-haija19a.html
https://doi.org/10.1145/3442381.3449927

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

J. Tang, and B. A. Prakash, Eds. ACM, 2020, pp. 338-348. [Online]. Available:
https://doi.org/10.1145/3394486.3403076 61

S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training by
reducing internal covariate shift,” in Proceedings of the 32nd International Conference
on Machine Learning, ICML 2015, Lille, France, 6-11 July 2015, ser. JMLR Workshop
and Conference Proceedings, F. R. Bach and D. M. Blei, Eds., vol. 37. JMLR.org, 2015,
pp- 448-456. [Online]. Available: http://proceedings.mlr.press/v37/iofte15.html 62

M. Scholkemper, X. Wu, A. Jadbabaie, and M. T. Schaub, “Residual connections
and normalization can provably prevent oversmoothing in gnns,” 2025. [Online].
Available: https://arxiv.org/abs/2406.02997 62

L. J. Ba, J. R. Kiros, and G. E. Hinton, “Layer normalization,” CoRR, vol.
abs/1607.06450, 2016. [Online]. Available: http://arxiv.org/abs/1607.06450 62

T. Cai, S. Luo, K. Xu, D. He, T. Liu, and L. Wang, “Graphnorm: A principled
approach to accelerating graph neural network training,” in Proceedings of the
38th International Conference on Machine Learning, ICML 2021, 18-24 Fuly 2021,
Virtual Event, ser. Proceedings of Machine Learning Research, M. Meila and
T. Zhang, Eds., vol. 139. PMLR, 2021, pp. 1204-1215. [Online]. Available:
http://proceedings.mlr.press/v139/cai2le.html 62

K. Zhou, X. Huang, Y. Li, D. Zha, R. Chen, and X. Hu, “Towards deeper graph neural
networks with differentiable group normalization,” in Advances in Neural Information
Processing Systems 33: Annual Conference on Neural Information Processing Systems
2020, NeurIPS 2020, December 6-12, 2020, virtual, H. Larochelle, M. Ranzato, R. Hadsell,
M. Balcan, and H. Lin, Eds., 2020. [Online]. Available: https://proceedings.neurips.
cc/paper/2020/hash/33dd6dbald56e826aaclcbf23cdcca87- Abstract.html 62

N. Huang, S. Villar, C. E. Priebe, D. Zheng, C. Huang, L. Yang, and V. Braverman,
“From local to global: Spectral-inspired graph neural networks,” CoRR, vol.
abs/2209.12054, 2022. [Online]. Available: https://doi.org/10.48550/arXiv.2209.12054
63

W. Huang, Y. Li, W. Du, R. Y. D. Xu, J. Yin, L. Chen, and M. Zhang, “Towards
deepening graph neural networks: A gntk-based optimization perspective,’
in The Tenth International Conference on Learning Representations, ICLR 2022,
Virtual Event, April 25-29, 2022. OpenReview.net, 2022. [Online]. Available:
https://openreview.net/forum?id=tT9t_ZctZRL 63

S. Maskey, R. Paolino, A. Bacho, and G. Kutyniok, “A fractional graph
laplacian approach to oversmoothing,” in Advances in Neural Information Pro-
cessing Systems 36: Annual Conference on Neural Information Processing Sys-
tems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023,
A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine,
Eds., 2023. [Online]. Available: http://papers.nips.cc/paper_files/paper/2023/hash/
2a514213ba899f2911723a38be8d4096- Abstract-Conference.html 64

T. Fang, Z. Xiao, C. Wang, J. Xu, X. Yang, and Y. Yang, “Dropmessage: Unifying
random dropping for graph neural networks,” Proceedings of the AAAI Conference

205

https://doi.org/10.1145/3394486.3403076
http://proceedings.mlr.press/v37/ioffe15.html
https://arxiv.org/abs/2406.02997
http://arxiv.org/abs/1607.06450
http://proceedings.mlr.press/v139/cai21e.html
https://proceedings.neurips.cc/paper/2020/hash/33dd6dba1d56e826aac1cbf23cdcca87-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/33dd6dba1d56e826aac1cbf23cdcca87-Abstract.html
https://doi.org/10.48550/arXiv.2209.12054
https://openreview.net/forum?id=tT9t_ZctZRL
http://papers.nips.cc/paper_files/paper/2023/hash/2a514213ba899f2911723a38be8d4096-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/2a514213ba899f2911723a38be8d4096-Abstract-Conference.html

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

206

on Artificial Intelligence, vol. 37, no. 4, p. 4267-4275, Jun. 2023. [Online]. Available:
http://dx.doi.org/10.1609/aaai.v37i4.25545 64

W. Feng, J. Zhang, Y. Dong, Y. Han, H. Luan, Q. Xu, Q. Yang, E. Kharlamov, and
J. Tang, “Graph random neural networks for semi-supervised learning on graphs,”
in Advances in Neural Information Processing Systems, H. Larochelle, M. Ranzato,
R. Hadsell, M. Balcan, and H. Lin, Eds., vol. 33. Curran Associates, Inc., 2020,
pp- 22092-22103. [Online]. Available: https://proceedings.neurips.cc/paper_files/
paper/2020/file/fb4c835feb0a65cc39739320d7a51c02-Paper.pdf 64

X. Glorot and Y. Bengio, “Understanding the difficulty of training deep feedforward
neural networks,” in Proceedings of the Thirteenth International Conference on
Artificial Intelligence and Statistics, AISTATS 2010, Chia Laguna Resort, Sardinia, Italy,
May 13-15, 2010, ser. JMLR Proceedings, Y. W. Teh and D. M. Titterington, Eds.,
vol. 9. JMLR.org, 2010, pp. 249-256. [Online]. Available: http://proceedings.mlr.
press/v9/glorot10a.html 64, 104, 119, 120, 126

J.Li, Y. Song, X. Song, and D. Wipf, “On the initialization of graph neural networks,” in
International Conference on Machine Learning, ICML 2023, 23-29 July 2023, Honolulu,
Hawaii, USA, ser. Proceedings of Machine Learning Research, A. Krause, E. Brunskill,
K. Cho, B. Engelhardt, S. Sabato, and J. Scarlett, Eds., vol. 202. PMLR, 2023, pp.
19911-19931. [Online]. Available: https://proceedings.mlr.press/v202/1i23y.html 65,
126

A.Jaiswal, P. Wang, T. Chen, J. F. Rousseau, Y. Ding, and Z. Wang, “Old can be gold:
Better gradient flow can make vanilla-gens great again,” in NeurIPS, 2022. 65

X. Han, T. Zhao, Y. Liu, X. Hu, and N. Shah, “Mlpinit: Embarrassingly simple
GNN training acceleration with MLP initialization,” in The Eleventh International
Conference on Learning Representations, ICLR 2023, Kigali, Rwanda, May 1-5,
2023. OpenReview.net, 2023. [Online]. Available: https://openreview.net/pdf?id=
P8YIphWNEGO 65

L. Lu, Y. Shin, Y. Su, and G. E. Karniadakis, “Dying relu and initialization: Theory
and numerical examples,” CoRR, vol. abs/1903.06733, 2019. [Online]. Available:
http://arxiv.org/abs/l903.06733 66, 135, 137, 180

A. L. Maas, A. Y. Hannun, and A. Y. Ng, “Rectifier nonlinearities improve neural net-
work acoustic models,” in Proceedings of the 30th International Conference on Machine
Learning (ICML ’13), Atlanta, Georgia, USA, 2013, pp. 3-6. 66

D. Clevert, T. Unterthiner, and S. Hochreiter, “Fast and accurate deep network
learning by exponential linear units (elus),” in 4th International Conference on
Learning Representations, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Conference
Track Proceedings, Y. Bengio and Y. LeCun, Eds., 2016. [Online]. Available:
http://arxiv.org/abs/1511.07289 66

G. Klambauer, T. Unterthiner, A. Mayr, and S. Hochreiter, “Self-normalizing
neural networks,” CoRR, vol. abs/1706.02515, 2017. [Online]. Available: http:
//arxiv.org/abs/1706.02515 66, 134

http://dx.doi.org/10.1609/aaai.v37i4.25545
https://proceedings.neurips.cc/paper_files/paper/2020/file/fb4c835feb0a65cc39739320d7a51c02-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/fb4c835feb0a65cc39739320d7a51c02-Paper.pdf
http://proceedings.mlr.press/v9/glorot10a.html
http://proceedings.mlr.press/v9/glorot10a.html
https://proceedings.mlr.press/v202/li23y.html
https://openreview.net/pdf?id=P8YIphWNEGO
https://openreview.net/pdf?id=P8YIphWNEGO
http://arxiv.org/abs/1903.06733
http://arxiv.org/abs/1511.07289
http://arxiv.org/abs/1706.02515
http://arxiv.org/abs/1706.02515

[130]

[131]

[132]

[133]

[134]

[135]

[136]

[137]

[138]

[139]

[140]

S. Luan, M. Zhao, X. Chang, and D. Precup, “Break the ceiling: Stronger
multi-scale deep graph convolutional networks,” in Advances in Neural Information
Processing Systems 32: Annual Conference on Neural Information Processing Systems
2019, NeurlPS 2019, December 8-14, 2019, Vancouver, BC, Canada, H. M. Wallach,
H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. B. Fox, and R. Garnett, Eds., 2019,
pp- 10943-10953. [Online]. Available: https://proceedings.neurips.cc/paper/2019/
hash/ccdf3864e2fa9089f9ecadfc7a48eala- Abstract.html 67

O. Shchur, M. Mumme, A. Bojchevski, and S. Giinnemann, “Pitfalls of graph
neural network evaluation,” CoRR, vol. abs/1811.05868, 2018. [Online]. Available:
http://arxiv.org/abs/1811.05868 80, 97

H. Weyl, “Das asymptotische verteilungsgesetz der eigenwerte linearer partieller
differentialgleichungen (mit einer anwendung auf die theorie der hohlraum-
strahlung),” Mathematische Annalen, vol. 71, pp. 441-479, 1912. [Online]. Available:
http://eudml.org/doc/158545 89

R. Courant and D. Hilbert, Methods of Mathematical Physics. New York: Wiley, 1989,
vol. 1. 89

W. Hu, M. Fey, M. Zitnik, Y. Dong, H. Ren, B. Liu, M. Catasta, and
J. Leskovec, “Open graph benchmark: Datasets for machine learning on graphs,”
in Advances in Neural Information Processing Systems 33: Annual Conference
on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12,
2020, virtual, H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan, and H. Lin,
Eds., 2020. [Online]. Available: https://proceedings.neurips.cc/paper/2020/hash/
fb60d411a5c5b72b2e7d3527 cfc84fd0-Abstract.html 97, 110, 125

M. Friedman, “The use of ranks to avoid the assumption of normality implicit in the
analysis of variance,” Journal of the American Statistical Association, vol. 32, no. 200,
pp. 675-701, 1937. 98

Z.D. Bai and Y. Q. Yin, “Limit of the Smallest Eigenvalue of a Large Dimensional
Sample Covariance Matrix,” The Annals of Probability, vol. 21, no. 3, pp. 1275 — 1294,
1993. [Online]. Available: https://doi.org/10.1214/a0p/1176989118 104

C.Zhou, Q.Li, C.Li,]J. Yu, Y. Liu, G. Wang, K. Zhang, C. Ji, Q. Yan, L. He, H. Peng, J. Li,
J. Wu, Z. Liu, P. Xie, C. Xiong, J. Pei, P. S. Yu, and L. Sun, “A comprehensive survey
on pretrained foundation models: A history from BERT to chatgpt,” CoRR, vol.
abs/2302.09419, 2023. [Online]. Available: https://doi.org/10.48550/arXiv.2302.09419
104

O. Shchur, M. Mumme, A. Bojchevski, and S. Giinnemann, “Pitfalls of graph
neural network evaluation,” CoRR, vol. abs/1811.05868, 2018. [Online]. Available:
http://arxiv.org/abs/1811.05868 110, 125

T. Tao and V. Vu, “Random matrices: The circular law,” 2008. 120

C. Morris, N. M. Kriege, F. Bause, K. Kersting, P. Mutzel, and M. Neumann,
“Tudataset: A collection of benchmark datasets for learning with graphs,” CoRR, vol.
abs/2007.08663, 2020. [Online]. Available: https://arxiv.org/abs/2007.08663 125

207

https://proceedings.neurips.cc/paper/2019/hash/ccdf3864e2fa9089f9eca4fc7a48ea0a-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/ccdf3864e2fa9089f9eca4fc7a48ea0a-Abstract.html
http://arxiv.org/abs/1811.05868
http://eudml.org/doc/158545
https://proceedings.neurips.cc/paper/2020/hash/fb60d411a5c5b72b2e7d3527cfc84fd0-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/fb60d411a5c5b72b2e7d3527cfc84fd0-Abstract.html
https://doi.org/10.1214/aop/1176989118
https://doi.org/10.48550/arXiv.2302.09419
http://arxiv.org/abs/1811.05868
https://arxiv.org/abs/2007.08663

[141]

[142]

[143]

[144]

[145]

[146]

[147]

208

Z. Wu, B. Ramsundar, E. N. Feinberg, J. Gomes, C. Geniesse, A. S. Pappu, K. Leswing,
and V. S. Pande, “Moleculenet: A benchmark for molecular machine learning,” CoRR,
vol. abs/1703.00564, 2017. [Online]. Available: http://arxiv.org/abs/1703.00564 125

L. van der Maaten and G. Hinton, “Visualizing data using t-SNE,” Journal of
Machine Learning Research, vol. 9, pp. 2579-2605, 2008. [Online]. Available:
http://www .jmlr.org/papers/v9/vandermaaten08a.html 127, 176, 187

S. IToffe and C. Szegedy, “Batch normalization: Accelerating deep network training by
reducing internal covariate shift,” in Proceedings of the 32nd International Conference
on Machine Learning, ICML 2015, Lille, France, 6-11 July 2015, ser. JMLR Workshop
and Conference Proceedings, F. R. Bach and D. M. Blei, Eds., vol. 37. JMLR.org, 2015,
pp. 448-456. [Online]. Available: http://proceedings.mlr.press/v37/ioffe15.html 134

L. J. Ba, J. R. Kiros, and G. E. Hinton, “Layer normalization,” CoRR, vol.
abs/1607.06450, 2016. [Online]. Available: http://arxiv.org/abs/1607.06450 134

Y. Bengio, P. Y. Simard, and P. Frasconi, “Learning long-term dependencies with
gradient descent is difficult,” IEEE Trans. Neural Networks, vol. 5, no. 2, pp. 157-166,
1994. [Online]. Available: https://doi.org/10.1109/72.279181 137

H. Pei, B. Wei, K. C. Chang, Y. Lei, and B. Yang, “Geom-gcn: Geometric graph
convolutional networks,” in 8th International Conference on Learning Representations,
ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020. [Online].
Available: https://openreview.net/forum?id=S1e2agrFvS 138

O. Shchur, M. Mumme, A. Bojchevski, and S. Ginnemann, “Pitfalls of graph
neural network evaluation,” CoRR, vol. abs/1811.05868, 2018. [Online]. Available:
http://arxiv.org/abs/1811.05868 183

http://arxiv.org/abs/1703.00564
http://www.jmlr.org/papers/v9/vandermaaten08a.html
http://proceedings.mlr.press/v37/ioffe15.html
http://arxiv.org/abs/1607.06450
https://doi.org/10.1109/72.279181
https://openreview.net/forum?id=S1e2agrFvS
http://arxiv.org/abs/1811.05868

	Contents
	Εκτενής Περίληψη στα Ελληνικά
	Introduction
	Background & Literature Review
	Analyzing the Effect of Embedding Norms and Singular Values to Oversmoothing in Graph Neural Networks
	Analyzing the Effect of Residual Connections to Oversmoothing in Graph Neural Networks
	Partially Trained Graph Convolutional Networks Resist Oversmoothing
	Reducing Oversmoothing through Informed Weight Initialization in Graph Neural Networks
	Reducing Oversmoothing in Graph Neural Networks by Changing the Activation Function
	Discussion and Future Work
	Appendix
	Bibliography

