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MepiAnyn

H epyaocia e€etdlel Twg ol poltnNTEC XpNolpoToloVy epyaAeia texvnthg vonuoouvng (Al) oe
egpyacieg avamtuéng Aoylopikou, pe Bdon dedopéva amd ta pabniuata «Texvoloyia
NoylopikoU» (70 e€aunvo) kat «TexvoAoyieg Ytnpeolwyv AoylopilkoU» (80 e€Apnvo) otn ZxoAn
HAekTpoASdywVv Mnxavikwy Kat Mnxavikwy YmoAoylotwy tou EMIM. Avti ylia epwtnuatoAodyia,
avaAuBnkav Tmepimouv 6.000 kataypadEg ya To TOTE, TWCE, TU KAl yiati ol ¢oltntég
xpnowomoinoav 1o Al kat oe ToOW0 onueio otov KUKAo avamtuéng. Kabe eyypadn
neplAappBavel ¢daon, evépyela, YA\ wooa TiPoypapUatiopou, poviéAo Al, eminedo eumelpiag
KL UTTOKELPEVIKA atoTteAEapata (Xpovog, e€olkovopnon, cuvaiodnua, aicbnon anelinc).

Ta amoteAéopata deixvouv OTL To Al eival Ttio anodoTtikd oTig GAcELg KWLKA KAl SOKIPWY,
OTIOU TA TIAPAYOHEVA ATIOTEAECHATA ATTALTOUV eAAXLOTEC dlopBwoELg Kal £EOIKOVOHOUV
ONUAvVIKO XPOVo, cuxvd OUTAACLIO ATtO TOV AVAPEVOUEVO. 2TIC APXLKEG dAoELg, OTIWC N
OUAAOYN aTtALTAOEWY N 0 OXEDLAOHOC APXITEKTOVIKNAG, N CUHUBOAN eival HIkpoTEPN, KABWC TO
Al TTapEXEL YEVIKEG LOEEC TIOU XpelalovTal CnUavtikn tpocappoyn. Eva deiypa 51 dottntwy
ouppETElXe KAl ota JdVUO paBrpata, ETUTPETOVIAC CUYKPIoEL eumelpiag PETAEL Twv
e€apnvwv.

H avdAuon deixvel dadopotolnoelg avd yhAwooa kat sumelpia: Python kat JavaScript
ouvdéovtal pe vPnAotepn moldTNTa, evw YAML kat SQL spdavidovral omavia Adyw tng
duvongToug. OLAyOTEPO EPTielpol pottnTEG PAETIOLY TO Al W UTTOOTNPIKTA PE HEYAAN Xpron,
EVW OLTILO EUTIELPOLTO XPNOLHOTIOLOUV KPLTLKA. ZUVOALKA, N TEXVNTH vonuoouvn €xel e€eAxBel
amo TPOoAPETIKO BoNBNUA e avamoomaoTto epyaleio avamtuéng AoyloplkoU Ttou amattel
TEXVIKN Kal ekTtaidevon.

/\éfSlQ KAewda: TEXVNTH VONpoouvn, TexvoAoyia Aoyloptkou, pottnteg kat Al, avaAuon

dedopévwy, utoBondnon Kwdlka, ToldTNTA AOYIOHIKOU, e€olkovounaon xpovou, chatGPT.
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Abstract

This thesis explores how university students engage with Al tools during actual software
development projects; it uses structured data collected from specific courses, namely
"Software Engineering" (7" semester) and "Software as a Service Technologies" (8"
semester), both in Curriculum Flow "L", at the school of Electrical and Computer
Engineering, National Technical University of Athens. Rather than relying on post-project
surveys, this study analyzes nearly 6,000 records submitted during the semester projects'
execution, whichdocument when, how, what, and why students used Al during the entire
software development cycle. Each submission includes metadata—such as the phase,
scope, action, programming language and Al model used, declared experience level on
action and tool use, and perceived outcomes in time allocation, time saved, feeling and
"threat" feeling level.

Findings reveal that Al support is most effective in code-intensive phases like coding and
testing, where students frequently describe outputs as usable with minimal revision or edit.
Time savings are substantial, with many students reporting that Al completed tasks faster
than they could on their own, at a ratio of at least double the time allocated. In contrast,
conceptual software development phases like requirement gathering and architecture
benefit more modestly—Al helps by only offering generic ideas which often lack specificity
or contextual relevance resulting in need for major changes, or even characterized as
unusable by the user. A subset of 51 students were registered in both courses "Software
Engineering" and "Software as a Service Technologies Technologies", which enabled the
analysis of the students’ experience level in the first course in comparison to the second
course.

The study also highlights important differences based on programming language and user
experience. Python and JavaScript are associated with the highest perceived quality, while
configuration or declarative languages like YAML or SQL tend to be mentioned in fewer
records, indicating that the students haven’t used much Al for those languages, which
partially relates to the nature of the semester projects, focusing less on SQL databases and
more on architecture and services. Inexperienced users tend to view Al as a helpful partner,
while experienced students approach it more critically, balancing convenience with
caution. These insights suggest that Al has moved from optional add-on to a "sine qua non"
tool in software development—one that requires not only technical training but also
reflective guidance.

Keywords: Al in software engineering, student-Al interaction, analysis over time, Al-

assisted coding, language model effectiveness, code quality, time savings through Al tools,
data analysis.
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0. Ektevn MNepiAnyin

H mapovoa dumAwpatikn epyacia eéetadel, HEow €peuvag, Tn xpnon epyaisiwyv Texvntig
Nonuoouvng (Al) amd dottntég tou EBvikoL MetcooBlou MoAutexveiou KATA TNV AVATITUEN
AoylopikoU. H peAétn PBaocidetal oe dedopéva TOU GCUAAEXBnkav amod ta padnuata
«Texvoloyiag AoylopikoU» (70 €€aunvo) kat «Texvoloyieg Ymnpeowwv AoylopikoU» (8°
e€apnvo) tng Ponc A tng ZHMMY. Avti epwtnuatoloyiwyv, xpnootmotnenkav tepimou 6.000
kataypadeg (JSON) tou TEKUNPLWVOUV TIPAYHATIKEC AANAETUDO PACELC GOLTNTWYV PE EPYAAEia
Al og 0Aeg TI¢ pATELC TOU KUKAOU avATITUENC AOYLOULKOU.

Kd&be kataypadn mepllapBavel ¢daon avdamtuéng, evépyela, eVpog epapuoyng, yawooa
TIPOYPAUHATIOHOU, epyaleio Kal €kdoon Al, eKTIHWHEVO XpOVvo, eUTIELpia XpnoTh, TtoldtnTa
armoteAéopatog, cuvaicbnua kat eminedo «amelAng». H dltadikacia kabaplopou Kat eAEyxou
EYKLUPOTNTAC TtepLOploe ta dedopéva oe ~3.800 £€ykupec kat ~1.000 «ykpilec» eyypadec,
e€aodpaAidovrag a&lomiotn oTaTloTIkA avaiuaon.

Ta amoteAéopata deixvouv OTL N TEXVNTA VONUOoUVN XPNOLUOTIOLETAL ATtOdOTIKOTEPA OTIC
ddaocelg ouvyypadnce kKwdka Kat testing. Ekei, ol doltntég afloAoynocav 10 TAPAYOUEVO
ATIOTEAECHA WC «ETOLPO TIPOC XPHON» N HE «HIKPEC dlopBwoele» Kal avedpepav CNUAVTIKN
e€olkovounon XpOvou — O TIOCOOTA TIOU AVILOTOLXOUV TOUAAXLOTOV OTO OUTAAGCLO TOU
Xpovou Tou Ba amattovoe n idla epyacia xwpig Al. Avtibeta, otic Tpwipeg dAceLg OTIWC
avAAucn Amattioewy f APXLTEKTOVIKOG oXedLAopOC, To Al tapeixe KUPIWC YEVIKEG LOEEC TTOU
xpetadoviav ocnuavtikn avabewpnon.

H mapakoAolBnon 51 ¢oltnTtwyv Tou CUPPETEIXav Kal ota dUo padnuata £delfe ocadn
avénon Tng avtotmemnoibnong, TNG EPMELpiag Kal Tng wphotntag otn xpnon Al. Ot dottntég
TOU JdeUTEPOU Pabnuatog dHAwaoav LPNAOGTEPN ELXEPELA OTN XPNON, KAAUTEPN a&loAdynon
TWV ATIOTEAECHATWY Kal Tilo BeTIKA otdon amévavtl oto Al, ye otabepn aiclododia yia tn
HEAOVTIKNA TOU Xpron.

H avdAuon avd yA\wooa mtpoypappatiopol £delée otL n Python kat n JavaScript cuvd€ovtal
HE TNV LWNAOGTEPN AVTIANTITH TIOLOTNTA, EVW DNAWTIKEG N TteplypadIkeg yYAwooeg oTtwg YAML
kat SQL eixav meploplopévn mapouoia, Kupiwg Adyw tng dvong twy €pywv. OL Alyotepo
gumelpotl dottnteég avtihapPBavovrat to Al wg ouvepydin, evw Ol TIO EUTELPOL TO
QVTIHETWTIICOLV TTLO KPLTIKA, YVwpidovtag Ta 0pLd Tou Kal ToV Kiviuvo uTtepe&Aptnonc .

2UVOALKQ, N EPYACIA TEKHUNPLWVEL OTL N TEXVNTH VONHOOUVN €XEL HETATPATIEL ATIO TELPAPATIKO
BonBnua oe avamooTacTo CTOLXEID TNG EKTTAIBELONG KAl TIPAKTIKAG AVATITUENC AOYLOUIKOU.
H ocupBoAn tTng xpriong tou eival HEylotn oTic GACELG TTAapaAYWYRG KWOLKA, CNUAVTIKH oTNn
BeAtiwon mapaywylkotnTag Kat padnong, aAAd TeEpLOPLOUEVN OE EVVOLOAOYLIKA OTAdLA OTIOU
aratteitat epunveuTikn Kpion. H petdfacn autn) kabiotd avaykaia tn dldackaAia tng
KPLTIKAG XpAong Twy epyaAeiwv Al Kal TNV eVOWPATWOT TOUC OTO TIPOYPAPHA CTIOUdWYV HE
TTALd AYWYLKO KAl OXL UNXAVIOTIKO TPOTIO.



1. Introduction

1.1 Context and Motivation

Artificial intelligence tools—especially those powered by large language models—are
changing how software is built. What began as an experimental advantage for experts has
become a regular part of software development routines. We focus on students enrolled in
two Software Engineering courses in the School of Electrical and Computer Engineering of
NTUA. In both courses, students need to implement non-trivial software development
projects, in groups of 3 to 6. Probably, there are plenty of tasks that can be assisted by Al
tools. Students have been instructed to use Al not just to write code, but also to conceive
and document requirements, architectures, designs, testing etc.. These tools became part
of everyday development activity, not just side experiments. Yet while the excitement around
Al is clear, serious real-life data from real practitioners on how it fits, and how it behaves
during the developmental cycle is missing. This thesis steps into that gap. It looks directly at
how students used Al tools during their actual academic software projects, using a large,
structured dataset collected during coursework of the two SE courses at the National
Technical University of Athens.

1.2 Objective

The aim of this thesis is to examine how Al tools fit into all stages of student software
development work—from early conceptual planning to hands-on coding and testing. The
analysis focuses on how students evaluate the usefulness, threat, and overall impact of Al
tools, and how their perceptions shift based on the type of task, the programming language,
or their own level of experience. Instead of using general surveys or recollections, this study
used real student-Al interaction logs. This makes it possible to study how Al actually
supports or disrupts different types of software work in a developmental cycle setting.

1.3 Scope and Data Source

The data for this study comes from nearly 6,000 structured JSON files, submitted by students
across the two software engineering courses—Software Engineering, Software as a Service
Technologies—at the span of 3 semesters, thus collecting data from 3 different sets of
students, Software Engineering during the years 2023 and 2024 and Software as a Service
Technologies during 2024, marked accordingly as softeng23b, saas24a and softeng24b.
Each submission, documents a single Al-assisted task: what kind of help the student asked
for, what phase of development or pre-development they were in, what programming
language they used—if any, how much time they allocated for the entire interaction and how



much time they estimate they saved along with how they felt about the result. Phases range
from initial requirement gathering to deployment. Every entry includes detailed metadata—
development phase, action performed, scope of the task, chosen Al tool, experience levels,
time estimates, quality judgments, and emotional responses. This depth of structure allows
for detailed analysis across time, tools, tasks, and user experience.

1.4 Methodological Overview

To make the dataset reliable, | analyzed all the combinations of choices per phase between
action-scope-programming language and Al tool and labeled each path as valid or gray—
where ambiguous paths were marked as. Based on those paths through the data mining tool
Tableau Prep and python scripts for each phase and each dataset, a new column for each
submission was created, displaying that submission’s validity—valid, invalid or gray. For
example, a student’s submission who marked code management in the phase of
requirements gathering would be marked as invalid, since clearly code management makes
no sense beingin the requirements phase. Only valid and gray entries were kept for analysis.
Each diagram was meticulously created through Tableau Desktop, then each diagram’s data
was exported as a csv and displayed through an interactive web platform, where the readers
can explore by course, task, user experience.

1.5 Contributions

This thesis explores how students actually use Al during the developmental cycle. Most
submissions are focused on coding and testing phases, while it also equally examines non-
code related phases like architecture and design. More submissions are reported in Python
and JavaScript—also reporting better Al quality. Over time, students showed higher
confidence, better judgment and more effective tool use.

1.6 Structure of the Thesis

The thesis is organized to build up the argument step by step. Chapter 2 introduces the
research questions that shape the analysis. Chapter 3 outlines the constraints—what
limited the data, and what that means for the results. Chapter 4 defines the dataset in full
detail, including the dimensions and values captured in each course. Chapter 5 profiles the
student population, analyzes the demographics and explains how experience was defined
as. Chapter 6 explains the methodology, and all the additional fields created to aid the
visualization. Chapter 7 presents the actual findings of each research question. Chapter 8
interprets those results in a broader context. Finally, Chapter 9 offers conclusions for the
research. Also, in Appendix A we can see all the correct paths—used for validation, for each
dataset—and in Appendix B two random sample entries from students.



2. Related Work

2.1 Novice Programmers’ Patterns with Copilot [1]

Prior studies have explored the integration of Al tools such as GitHub Copilot in software
engineering classes as an educational tool. The courses were undergraduate programming
courses, and they examined how CS1 level students interacted with Copilot, identifying
behavioral patterns such as passive acceptance of code produced and exploratory
prompting. The study revealed both the perceived benefits of faster progress and the
cognitive challenges students faced in understanding or verifying Al-generated code.
Similarly they conducted a controlled experiment comparing performance with and without
Al use in brownfield programming tasks. Their log-based analysis demonstrated significant
time savings and reduced search activity, yet highlighted student concerns about over-
reliance and comprehension loss. Many students found Copilot as “eerie” yet helpful (“its
weird that it knows what | want”). This duality aligns with the present thesis’s examination of
both perceived benefits and risks in student-Al tool interaction.

2.2 “Give me the code”: First-Year Student ChatGPT Logs [2]

This is the analysis of 69 first-year students’ structured log files documenting their use of
ChatGPT. These students documented their Al interactions with JSON-like logs. The data
revealed distinct usage patterns such as single-shot code requests and iterative refinement
through follow-up prompts. Despite limited training in prompt engineering, many students
effectively incorporated Al-generated suggestions into their code. The study highlighted
student agency in evaluating Al outputs and showed how structured logging enables fine-
grained insights into prompting behavior and decision-making during development. This
work aligns with the present thesis in both methodology (log-based tracking) and focus (Al
use by novice developers during coursework)

2.3 Copilot in Brownfield Programming Tasks [3]

A controlled experiment was conducted to asses GitHub copilot’s impact on undergraduate
students performing brownfield programming tasks—modifying or extending legacy
codebases. Ten participants were observed across Copilot-assisted and non-assisted
conditions. Using detailed IDE event logs, the study measured metrics such as time-to-
completion, code progress, and auxiliary search activity. Results showed a 35%
improvement in completion speed and 50% increase in solution progress when Copilot was
used. The tool also significantly reduced time spent on typing and external searches. Despite
these gains, students raised concerns about understanding and trusting the Al-generated
code, with several expressing unease about relying on suggestions they could not fully verify.



Like this thesis, the study avoids speculation and focuses on concrete usage data to
examine how students interact with Al tools during real development work.

2.4 Youth Learners Using LLM Code Generators [4]

Kazemitabaar et al. (2023) explored how kids and teens, aged 10 to 17, used Codex to learn
Python on their own. By logging every prompt and completion across 45 coding tasks, the
researchers were able to see distinct usage styles—some students asked Codex to solve
entire tasks in one go, others worked through problems step by step, and a few barely used
the Al at all. The one-shot users often got quick results, but those who broke tasks down or
mixed their own code with Al suggestions showed stronger understanding later on. Some
students blindly accepted Codex’s output, while others questioned it, tested it, or rewrote
parts. This kind of variation echoes patterns found in the present thesis: experience level,
prompting style, and task structure all shape how students use Al tools—and how much they
actually learn from them. Both studies rely on concrete usage logs rather than self-reported
impressions.

2.5 Exploring the Integration of ChatGPT in Education [5]

Elbanna and Armstrong examined how ChatGPT can be integrated into educational settings,
highlighting its potential to streamline academic tasks and support personalized learning.
They discussed both opportunities and limitations, emphasizing the need for critical
adoption. Although broad in focus, the study recognizes shifts in student behavior and
performance tied to Al use. Its relevance to this thesis lies in its framing of Al as an evolving
academic tool that directly affects student workflows, particularly in task-based settings.

2.6 Assessing the Effectiveness of ChatGPT in Preparatory Testing
Activities [6]

Haldar, Pierce, and Capretz conducted a focused study where students used ChatGPT to
draft software test artifacts. The students compared Al-generated and manually written test
plans, observing both time savings and gaps in test completeness. Though modest in scale,
this work deals directly with how Al tools integrate into software development processes. Its
attention to student workflow and output quality, based on artifact inspection, makes it
directly relevant to this thesis.

2.7 A Review on the Perks of Using ChatGPT in Education [7]

Heathen and Lin provide a broad review of ChatGPT’s role in education, cataloging reported
benefits such as accessibility, feedback support, and creativity boosts. The study is
descriptive and not empirically grounded, focusing more on theoretical affordances than



behavior data. While its scope includes computer science use cases, its lack of log-based
or output-driven analysis limits direct comparison with the present thesis, though it supports
contextual framing.

2.8 Response Strategies to ChatGPT in Language Education [8]

Liu et al. investigated the influence of ChatGPT on Chinese language education. The study
focused on classroom practices, response behaviors, and adaptive strategies by instructors
and students. It is strictly confined to language education and does not engage with
programming or development tasks. Thus, while informative for broader educational use of
Al, it does not intersect meaningfully with the thesis’s software-oriented log-based analysis.

2.9 The Role of ChatGPT in Higher Education [9]

Rasul et al. outlined five key benefits and five risks of ChatGPT in higher education, touching
on productivity, feedback, and integrity concerns. Their work synthesizes current literature
and proposes future research directions. This paper reflects many of the motivations behind
the thesis, improving efficiency without undermining understanding. The link to the current
thesis lies in its thematic alignment around balancing automation with learning depth.

2.10 ChatGPT-Facilitated Programming Tasks [10]

Sun et al. explored how students used ChatGPT to assist with programming assignments in
a college course. One group used ChatGPT freely, while another worked without Al. Logs
showed that Al-assisted students engaged more in debugging and iterative refinement. Even
though raw performance wasn’t drastically different, the Al group reported higher
confidence and motivation. The focus on concrete behavioral data and coding logs, rather
than survey impressions, makes this study directly comparable to the present thesis.

2.11 Prompt-Based Learning with ChatGPT [11]

In a follow-up, Sun et al. trained students to use structured prompts when interacting with
ChatGPT. Those with prompt training used the tool more strategically and showed deeper
problem understanding. Logs revealed that structured prompting led to more relevant
responses and better learning outcomes. Like this thesis, the study connects specific user
behavior—captured through logs—to concrete educational gains in programming tasks.



2.12 Eight-Week Use of ChatGPT in Python Course [12]

Ma et al. integrated ChatGPT into a Python programming course and analyzed logs from
student-Al conversations. Students used the tool for debugging, exploring variations, and
clarifying concepts. Their feedback was mostly positive, especially regarding increased
independence and reduced frustration. The study’s reliance on structured usage data aligns
with this thesis’s focus on how students practically engage with Al in real coding scenarios.

2.13 Role of Al Literacy in Using ChatGPT for Code [13]

Wang et al. analyzed how students' Al literacy and programming experience affected their
ability to use ChatGPT for coding problems. Log data showed that those with more
experience and critical understanding used the tool more effectively and caught more errors.
This mirrors the current thesis in examining how background factors influence Al tool use,
based on detailed interaction traces.

2.14 Al in Preparatory Software Testing [14]

Haldar et al. studied graduate students using ChatGPT to generate software test plans and
cases. Students reviewed and modified the Al-generated output, integrating it into their
workflow. Although ChatGPT saved time, students noted that its output wasn’t complete
without human judgment. The process-based analysis of how Al fits into real development
phases makes this paper methodologically like the present thesis.

2.15 ChatGPT on Software Testing Course Questions [15]

Jalil et al. tested ChatGPT’s ability to answer structured questions from a software testing
course. They evaluated both answers and explanations, finding moderate accuracy and
several logic flaws despite confident tone. Though not a student usage study, it contribute
[5]s to understanding Al’s limitations in software contexts. This aligns with the current thesis
in examining task-level performance through structured, content-based evaluation.

2.16 ChatGPT in Undergraduate Data Structures Course [16]

Qureshi ran a classroom experiment where students used either traditional methods or
ChatGPT to solve data structure problems. The Al group performed better overall but
sometimes submitted code with subtle errors. The study focused on outcome metrics and
code accuracy, not just perceptions, which is consistent with the thesis’s log-based
evaluation of Al effectiveness in academic programming.



3.Research Questions

The research questions were selected in order to answer how Al tools are actually used
across different phases of the developmental cycle; to make sure that each dataset is
reliable; evaluate how helpful Al is in pre-code related and code related phases; how the
students’ use of Al changes over time; and to analyze Al responds in behavior and output
quality per coding language used.

3.1 Phase Categorization

The software development lifecycle is split into two major categories: pre-code related
phases and code related phases. Pre-code related phases include all planning and design-
related activities that don’t involve direct code execution. These include phases like
requirements gathering, requirements specification, system architecture, and design
modeling. They are typically abstract, text-driven, and involve activities such as stakeholder
analysis, documentation, and UML-based planning. In other cases they are detailed
explanations of methods for how the databases could be distributed or how the developer
needs to follow a specific set of rules in order to maintain the fundamental requirements
needed for the project.

The code related phases, by contrast, include coding, testing, and deployment. These are
the stages where actual source code is written, tested, and deployed into operational
environments. Code mainly includes source code authoring and code management for the
frontend, backend and api. Testing is further broken into unit testing, functional testing,
integration testing, and performance testing, where the peak choices were functional testing
and unittesting. Even though submissions aren’tthat many comparing to coding and testing,
deployment involves mostly dev-ops and deployment scripts-related work. This division
between abstract planning, meaning non-code related phases and concrete execution, so,
code related phases, forms the basis for comparing Al support for the entire developmental
cycle of a software development.



3.2 Source of Data

The dataset used for this analysis was collected from two advanced software engineering
courses—Software Engineering and Software as a Service Technologies—at the span of 3
semesters, thus collecting data from softeng23b saas24a and softeng24b, which were
offered at the National Technical University of Athens. As part of course requirements,
students submitted structured .json files describing Al-assisted tasks they completed
during the entirety of the software development cycle. Each submission captured the phase,
the specific action performed, the scope of the task, the programming language used—if
any—the Al tool and version used, and self-declared experience for both tool and action
type. It also included self-reported fields on time allocated, time saved, output quality of Al,
emotional stance, and perceived threat from Al involvement. All these dimensions were
selected from a pre-existing set of fields, reducing ambiguity from free user choices.

Some differences existed across courses: for example, softeng23b used categorical
descriptors like “none,” “little,” or “big” for experience levels, while saas24a and softeng24b
used numeric scales from 0 to 5 where 0O is the least experience and 5 is master. Additionally,
not all courses covered the same development phases—saas24a excluded requirements
gathering, requirements specification and testing, while the others included all seven. These
discrepancies were resolved during preprocessing by harmonizing the schema across
datasets. Invalid or structurally inconsistent entries were removed or flagged as gray,
resulting in a clean, normalized dataset suitable for comparative and cross-phase analysis.

3.3 Differences across datasets

The tables below show the different choices available to a student for each column that
had a different choice-set across all three datasets.

SoftEng-23b SaaS-24a SoftEng-24b
none 0 0
little 1 1
. . fair 2 2
action experience big 3 3
4 4
5 5




SoftEng-23b SaaS-24a SoftEng-24b
none 0 0
some 1 1
tool experience enough 2 2
master 3 3
4 4
5 5
SoftEng-23b SaaS-24a SoftEng-24b
unusable 0 0
major modifications needed 1 1
quality of ai use minor modifications needed 2 2
ready-to-use 3 3
4 4
5 5

generic feeling, exists as generic feeling now and generic feeling future for the databases of
SaaS-24a and SoftEng-24b, whereas SoftEng-23b only includes the one column of “generic
feeling” as shown below

SoftEng-23b SaaS-24a SoftEng-24b
makes not sense 0 0
needs work 1 1
generic feeling great in the future 2 2
great as-is 3 3
4 4
5 5

3.4 Research Questions

The focus of this thesis is built around six central research questions. Each question
addresses a specific aspect of student-Al interaction: data quality and validity, phase-wise

usage patterns, dependencies per language or experience of the student, and evolution of
students’ Al use over time.

The validity of each submission was based on a schema for each databases’ phase, thus all
the semantic and valid paths for all the combinations of action-scope-language and Al tool
used, were found and used as a reference in order to mark each submission as valid-invalid
or gray. The most ambiguous choices were where the student chose a borderline accepted
choice and were marked as gray—since they weren’t invalid but not valid either. This is




mainly due to the student’s uncertainty or lack of understanding regarding the available
options given in phase-action-scope on the action they actually used the tool for. The level
of experience for each user is selected based on their declared answer in tool and action
experience; a student was marked as experienced if they had in both fields, values of 3 or
higher—in the case of the categorical choices, “enough” or “some” and higher—otherwise
they were marked as inexperienced users.

RQO: Can student-submitted data be reliably used for analysis? This question tests the
structural integrity and reliability of the dataset. It looks at how many submissions are valid,
gray, or invalid, and whether data quality correlates with user experience, programming
language, or year of study. This question ensures that the dataset is trustworthy before
deeper analysis is performed.

RQ1: How do students use Al in pre-development (non-code related) phases? This question
focuses on early conceptual phases—requirements gathering, requirements specification,
architecture, and design. This question examines the frequency of Al use in these phases,
the types of tasks for which Al tool was user and how the students evaluate the quality of Al
output based on their experience level. It also analyzes how usage patterns differ by student
experience and Al familiarity.

RQ2: How do students use Al in code-related development phases? This question targets
coding, testing, and deployment. It examines how often Al is used in these stages, whether
the generated content needs correction, how much time students say they save, and what
feeling they have about Al now or in the future. It evaluates whether Al serves as a reliable
coding partner or still demands close oversight.

RQ3: Does programming language affect Al-perceived usefulness? This question examines
whether the effectiveness of Al tools varies depending on the programming language used.
It tests if some languages—Ilike Python or JavaScript—produce more usable outputs with
better quality and as little modification needed as possible, while others—like YAML or
SQL—introduce errors or mismatches. It also looks at how task types and language
complexity interact to affect utility.

RQ4: How does student experience influence perception and effectiveness of Al? This
question compares responses from inexperienced versus experienced users. It investigates
whether the users who marked themselves as inexperienced report higher satisfaction,
stronger trust and whether more experienced users are more skeptical or selective. It
evaluates if Al serves different roles depending on how comfortable the user is with the tool
and action.
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RQ5: How does Al perception evolve over time in tracked users? This question follows a
subset of students who appear in both softeng23b and saas24a. It tracks changes in tool
and action confidence, emotional stance, and perceived value across semesters. It
identifies whether repeated exposure to Al shifts behavior, strengthens critical judgment, or
builds long-term trust in Al as a development resource.

Each research question is supported by structured metadata, normalized fields, and
diagrammatic visualization. Together, they form a comprehensive framework for analyzing
the multi-dimensional role of Al in software engineering’s development lifecycle.
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4.Constraints

The conditions under which these datasets are collected, cleaned, and interpreted created
some limitations. This section explains the main limitations and how far its conclusions can
be drawn as. These limitations are mainly created from four areas: who the participants
were, how their submissions were filtered, how the logging system evolved across courses,
and the broader academic setting in which everything took place.

4.1 Sample Constraints

All data analyzed in this thesis comes from students who enrolled in “Software Engineering”
and “Software as a Service Technologies” during the academic years 2023-2024 and 2024-
2025. These were taken by students—who had already taken classes where they each had
the same training in programming, software design, and systems development—and not
random people who use Al tools and LLM’s. Therefore, the dataset shows the behavior of
students in a formal, engineering-focused academic environment, not learners from non-
technical knowledge, professional developers who have experience, or self taught coders
who have actual jobs outside academic frameworks.

Importantly, participation in the Al usage logging process was not optional—it was formally
integrated into the grading structure of each course. This means that some students felt the
need to submit their responses hastily without really paying attention to what they were
submitting—resulting in multiple entries of the same responses including the exact same
interaction with the Al model or random choosing that makes no semantical sense to be
chosen with consciousness—in order to avoid the grade penalty if they didn’t submit their Al
logs.

No self-reported demographic data—such as socioeconomic background, gender identity,
or linguistic diversity—was collected. Besides enrollment year, which was derived from the
student’s username and allows for approximate age estimation, no other field captures the
broader social or cultural context. There is no information about prior Al usage habits, or
more exposure than the average studentin an academic setting. As aresult, the conclusions
drawn from this dataset reflect a specific and academically advanced student population,
and any attempt to extrapolate these findings to a more broad developer population cannot
be generalized without additional context.
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4.2 Data Filtering Constraints

The raw data analyzed in this study was submitted by students in the form of .zip files, each
recording included a .json file with the structural format given to the students for each
course—and an optional .txt file including the entire student-Al interaction. Each .json file
included one answer per column, and since in each course the choices were different, the
template was given in the beginning of each course. Also, all columns were required in order
to be accepted by the web platform and stored in the database. If the zip file included the Al
interaction, the entire content of .txt was stored under the “prompt” column in the database.

Since not all submissions had semantic meaning in between combination choices, a
filtering and validation process was applied to allincoming data. This matrix was defined per
phase for each database differently and checked all the valid combinations for action-
scope-programming language used and Al model. For example, we couldn’t allow
submissions during the coding phase who also answered “UML deployment” as scope,
since it makes zero sense to actually be in the coding phase during UML diagrams. Some
choices include gray coloring, which means that the specific set of combination is
ambiguous either due to the misunderstanding of the student or the choice being borderline
accepted in that phase. Below is an example of two phases—coding and deployment—in
the dataset SaaS-24a where we can clearly see the green and gray choices which were used
to shape the validity of all responses.

phase architecture design coding deployment

microservices . g " " choreography . container source code network code
action p apidesign orchestration design data design % 3
definition design

F3
data = i github

scope s mt it UmEoter management fonindiPacks ! design deployment  configuration ' scripts operations

prog lang n/a js js-node python sql nosgldb | java yamljson  other
other prog lang <fillin>
Imstudio-

chatgpt emini copilot
aimodel itgp 8 P! e

phase architecture design coding deployment

action b aiioad apidesign orchestration design Z::ir::grapny

container  source code network code
definition i horil {

datadesign

F4

data 5 i i i github
scope L L il umi other management fiontendiggyibackendiegiapt design deployment | configuration | scripts operations

prog lang n/a s js-node python sql nosqldb | java yaml/json  other
other prog lang <fillin>
Imstudio-

chatgpt lemini copilot
aimodel tgp gemini P hosted

This constraint comes down to a limitation in how Al usage was modeled within the logging
system. Each submission was designed to capture a single instance of Al use tied to one
development phase, one task action, and one scope. In reality, students used an interaction
with Al for multiple phases over multiple actions and tasks—for example they could ask
code management assistance while working on the architectural design, or refined frontend
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elements to match changes in backend endpoints. Since the submissions only allowed only
one combination of phase-action-scope it made the analyze easier but it also limited the
ability to reflect how the Al was used in more natural, blended or mixed ways. Additionally,
some students submitted combinations that didn’t formally make sense—two columns that
don’t align in the matrix—but in that Al interaction the student used both tasks submitted,
the issue here is that the said submission would have been marked as invalid and excluded
from the analysis even though they partially captured a real and reasonable usage of the
developmental cycle.

4.3 Instrumentation Constraints

The data collected varied from each dataset. These changes were our own effort to improve
each template per year so that the data made more sense in both the students while they
were submitting their Al-interactions and to the analysis of the data. In the first course,
SoftEng23, students had to choose from simple labels for their experience level or quality of
Al help provided, but by the next set of students we replaced this measurement with a scale
of 0 to 5 where 0 represents zero experience and bad quality and 5 master and ready to go
quality.

These shifts show that the instrumentation process itself was a learning journey for our part
as well. As we saw how students interacted and answered each column we adapted
accordingly to new models and improved students’ choices. However, this shift created
some mismatches, the older labels don’t line up exactly to the new numeric scales since the
choices in the first course were 4 categorical but in the other courses the template was 6
choices including the zero choice. Therefore, the student’s submission marked as “enough”

» »

in tool experience (with the following order “none”, “some”, “enough”, “master”) doesn’t

necessarily mean the value of 3.

4.4 Environmental and Contextual Constraints

All the submissions in this study were collected as part of real coursework. Students used
Al tools while working on assignments, often with tight deadlines, grading pressure and
changing project needs. These conditions are similar to real-world development in some
ways but are still very different from open-ended projects or professional enviroments. The
main goal for students was to finish their work in time, so many probably used Al in a
practical, results-focused way rather than experimenting or exploring full potential.

The way the submissions were set up also may have affected the quality of what students
recorded. The students had to edit a .json file, had the option to include a .txt file with the Al
interaction, zip everything and upload it to the course site. Doing this repeatedly was time-
consuming, and it’s likely that some students skipped steps or rushed the process—not

14



because they weren’t using Al, but because the submission system added extra work. This
could explain gaps in the data or inconsistent entries that don’t reflect their actual Al use.

The data doesn’t show how difficult the original task was, or whether the Al’s output was
correct. A student might report saving time and being happy with the answer, even if it had
errors. Another might werite a grate prompt, get a decent reply and feel disappointed
because they expected more. Since the analysis of every prompt used couldn’t happen, we
cant be certain on what really happened. This means we have to take the students’ own
declarations at face value, treating their answers as the main source of truth—even if we
can’t fully verify what happened.
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5. Data Specification

This chapter describes the structure, content, and interpretive logic of the dataset analyzed
in this thesis. The data consists of thousands of structured interaction logs submitted by
students during the execution of software engineering coursework. Each submission
captures not only the technical and procedural aspects of the task, but also subjective
evaluations and contextual metadata. The richness of this multidimensional schema allows

for layered analysis across phases, user types, tools, and time allocated and saved.

5.1 Dimensional Fields

5.1.1 Phase for each dataset

Below is a table that shows all the choices the students could fill in ‘phase’ with in all

datasets.

SoftEng-23b SaaS-24a SoftEng-24b
requirements gathering architecture | requirements gathering
requirements specification | design requirements specification
architecture coding architecture

phase design deployment | design
coding coding
testing testing
deployment deployment

5.1.2 Action for each dataset

Below is a table that shows all the choices the students could fill in ‘action’ with in all

datasets.

SoftEng-23b and SoftEng-24b SaaS-24a
problem understanding microservices definition
stakeholder statement api design
requirements (functional) orchestration design
requirements (non-functional) choreography desing
use case specification data design

action architectural decision container structuring

design decision

source code authoring

data design network operations
source code authoring code management
unit testing

functional testing
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performance testing

other testing

dev-ops

vm operations

container operations

network operations

code management

5.1.3 Scope for each dataset

Below is a table that shows all the choices the students could fill in ‘action’ with in all

datasets.

SoftEng-23b

SaaS-24a

SoftEng-24b

scope

documentation (text)

UML sequence

UML state

UML activity

UML component

UML activity

UML sequence

UML deployment

UML sequence

UML component

UML other

UML component

UML deployment

data management

UML deployment

UML class frontend UML other

UML other backend data management
database design api frontend

frontend messaging design backend

data management messaging deployment | api

backend container configuration | messaging design

api deployment scripts messaging deployment
cli github operations container configuration
test cases deployment scripts

test code driver

github operations

test execution scripts

deployment scripts

code management actions

5.2 Dimensional Schema

Each submission in the dataset records a single Al-assisted development interaction. The
entries are encoded as JSON files, each reflecting a student’s use of an Al tool to complete
a specific software engineering task. The metadata fields within each JSON file span both
objective and self-reported values. Objective fields include development phase, action type,
task scope, tool name, programming language, and the time allocated and saved for the
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task. These are selected from predefined choices, ensuring internal consistency. Self-
reported fields include experience levels, perceived time savings, quality of Al assistance,
emotional response, and threat perception. These are also constrained to specific scales or
option sets depending on the course.

The development phase identifies where in the software lifecycle the interaction occurred,

2 & ”

such as “requirements specification,” “architecture,” “coding,” or “deployment.” The action
field specifies the nature of the work, including tasks such as “source code authoring,”
“stakeholder statement,” or “unit testing.” The scope field identifies the target artifact or
domain of the action, ranging from “UML class diagram” to “backend API” or “container
configuration”. These three fields form a semantic triplet that defines the context of the Al

usage, and they serve as the primary axes for aggregation and filtering.

Tool-related fields include the name of the Al model (e.g., ChatGPT 3.5, Copilot, Gemini), the
mode of access (free, trial, full), and the user’s self-declared tool experience. Tool
experience is described either with categorical descriptors (none, some, enough, master) or
numeric scales (0 to 5, where 0 means no experience and 5 master experience), depending
on the course. Similarly, action experience captures the user's familiarity with the type of
task being performed. These two experience dimensions are essential for interpreting the
data, as they influence how users perceive and rate the quality of Al support.

Each submission includes a programming language field, with common entries like Python,
JavaScript, SQL, YAML, or “n/a” for non-coding tasks such as diagrams or written
descriptions. This field is important because it helps show how well the Al performs in
different languages. Some languages—Ilike Python—appear more often in Al training data,
so the model tends to produce better, more usable output for them. By comparing results
across languages, this field helps identify where students found Al effective, depending on
the language they were working with.

Time-related data in the submissions includes both actual effort and perceived benefit, as
reported directly by the students. For each Al-assisted task, users entered two values in
hours: how long they spent working on the task ("time allocated") and how much time they
think they saved thanks to the Al ("time saved estimate"). These self-reported fields allow for
a rough measure of perceived efficiency—essentially, whether students felt the Al sped
things up or simply replaced work they would have done anyway. While both nhumbers are
subjective and unverified, they offer a window into how students gauge the value of Al in
practice. During preprocessing, these values were grouped and compared across users and
phases to support broader analysis of usage patterns.
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Subjective evaluation fields include how students rated the quality of Al help, how they felt

¢«

about using the tool (e.g., “great as-is,” “needs work,” “makes no sense”), and whether they
felt threatened or at risk of being replaced. These responses give insight into students’
thoughts and feelings about using Al. Quality ratings, given either as words or numbers,
reflect how much they had to change the Al’s output to make it usable. Threat level, rated
from 0 to 5, shows how much they worry that Al might eventually replace developer roles.
The emotional response field captures their overall attitude—whether they see the tool as

helpful, promising, or flawed.

5.3 Measurement and Normalization

Each submission combines fixed-choice selections with self-reported reflections, making it
possible to compute a wide range of metrics during preprocessing. Aggregates like average
time allocated, average time saved, and dominant experience levels overall and per phase
are calculated per user. These allow comparisons across groups—such as inexperienced
versus experienced users—or over time, especially for students who participated in more
than one course.

Alongside usage metrics, each student is tagged with additional demographic metadata
derived from their institutional username. This includes an estimate of their year of entry and
corresponding age group. For instance, a username like "el21xxx" implies entry in 2021, from
which approximate age can be inferred by adding 18 to the gap between the currentand entry
year. These derived values support group-based analysis by Al exposure—whether a student
started before, during, or after the mainstream availability of Al tools, thus creating the
category Al exposure and labeled as preAl, someAl or Alsince start. The students marked as
preAl were the ones who started studying from 2019 and before, someAl were the students
who started between the years 2020 and 2022, whereas the marking Alsincestart was for the
students who started after 2022. While these fields are proxies and not self-declared, they
offer useful context for tracking patterns in behavior and perception across different
academic generations.

5.4 Objective vs Self-Reported Fields

Acriticaldistinction in the datasetis between fields that are objectively structured and those
that reflect subjective assessment. Objective fields include phase, action, scope, tool,
language, and time spent. These are constrained by input design and validated through the
filtering pipeline. As such, they form the structure of the dataset’s analytic stability. In
contrast, self-reported fields—experience levels, quality, emotional feeling, threat level, and
time saved—are declared by the student’s estimate. They are influenced by user
expectations, task success, project stress, and familiarity with Al interaction paradigms.
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Fields like age, Al exposure and the year the student started studying are derived from
structured data and treated as objective. However, self-reported fields—such as experience
level, perceived quality, emotional response, and time saved—are clearly subjective. While
they are subjective, these fields are treated as accurate representations for analyzing.

5.5 Al Tool Use and Variations

The dataset includes a range of Al tools used by students, but in reality, most submissions
are concentrated around a few key models. ChatGPT dominates across all three courses,
with both version 3.x and 4.x appearing frequently—by far the most used tool, regardless of
task type or development phase. Its widespread use likely reflects a combination of
accessibility, familiarity, and general-purpose capability. Other tools like GitHub-copilot,
Gemini, Bard Intelli) integrations or LM studio-hosted models appear in a lower frequency.

Each submission records not just the Al tool’s name but also its access level—whether the
student used a free, trial, or full version. This matters, especially for ChatGPT, where the
version used (e.g., 3.5 vs. 4.0) can lead to noticeable differences in response accuracy and
quality. The dominance of ChatGPT also creates a statistical issue—tools outside this
cluster appear so little that it’s difficult to make strong comparisons. In most cases, there
justisn’t enough usage to generalize about effectiveness, preferences, or reliability for non-
ChatGPT tools.

The reasons why students used more ChatGPT are not explicitly recorded, but a few patterns
are likely. Access constraints may have played a role—some tools are gated behind
paywalls. Peer influence recommendations may have also shaped the patterns for the use
of ChatGPT, especially in fast-paced group settings where one student’s tool becomes the
default for others. Even when multiple tools were available, most students seemed to prefer
sticking with what they knew.

Despite this imbalance, the combination of tool metadata with the task type, programming
language, and self-reported outcomes through analysis captures the same goals that we aim
to capture. It supports the targeted analysis on how the tool choices interact with student’s
prompts, perception and perceived quality outcome. Since ChatGPT has the most
submissions by a range from 85-95% for each database set, it defines the reality of what this
thesis actually analyzes—since it’s by far the most used tool across all submissions.

20



6. Sample Identity

The empirical strength of this thesis rests on the scale, consistency, and segmentation of the
student population from which its data is drawn. This chapter describes the properties of
that population in full: the number and type of participants, the volume of submissions they
generated, the derivable demographic indicators encoded in their identifiers, the
classification of their experience levels, and the longitudinal structure that allows intra-
subject tracking across time. The goal is not merely to count users but to expose the
analytical logic that transforms raw participant data into structured identity groupings, each
of which supports specific claims about how Al tools are used and perceived in educational

software development.

6.1 Population and Submission Characteristics

The population size is internally varied. In softeng23b, 126 students participated. In saas24a,
participation dropped to 79, and in softeng24b, participation reached its peak, with 176
students contributing submissions. These raw participant counts are the total number of
submitted interactions. Below is a table that shows each number for each dataset.

SoftEng-23b SaaS-24a SoftEng-24b Total
Number of students 126 79 176 330
Number of submissions | 1,540 1,184 3,175 5,899
Valid submissions 1,029 763 2,060 3,852
Gray submissions 215 163 634 1,012
Invalid submissions 296 258 481 1,035

It is important to note that these numbers represent submission counts, not users. Each
student could submit multiple entries depending on the complexity of their project and the
phases they chose to document. The granularity of the data is therefore intra-individual. This
means that user-level inferences are built not from single-point responses but from patterns
distributed across multiple structured records per student. This allows for much more stable
statistical aggregation and the detection of longitudinal or behavioral consistency.
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6.2 Deriving Demographic Attributes from Identifiers

Each student’s NTUA institutional username contains an embedded numerical indicator of
the year they began their studies. The format of these usernames follows a standardized
pattern—a prefix of “el” followed by two digits indicating entry year, and then the personal ID
for the student. For example, “el20xyz” would denote a student who started their studies in
2020. Using this embedded information, it is possible to derive the three demographic
proxies, year of entry, estimated age and Al exposure.

The year of entry is a stable identifier that allows grouping students by educational
generation. This grouping enables comparative analysis, particularly when examining the
influence of Al availability on student behavior. For age estimation, a fixed academic entry
age of 18 is assumed. From that baseline, estimated age is calculated by subtracting the
entry year from the year the data was collected—so0 2023 in this case—and adding 18. While
this method does not capture non-traditional entry paths or academic delays, it provides
useful age band estimations (e.g., 20-21, 21-22, 23-24) for demographic visualization. Also,
the level of Al exposure which categorizes the user’s exposure to Al models based on when
the most Al tools became easily accessible and mainstream.

This form of demographic inference requires no self-declaration from each student, and
maintains pseudonymity. It enables analysis of whether younger students with some or
complete exposure to Al models display different usage behaviors or perceptions compared
to older students who didn’t have Al tools since their enrollment.

6.3 Encoding and Aggregating Experience Levels

Experience is one of the primary variables used to divide the dataset and is captured along
two main axes: task experience and tool experience. Task experience, or action experience,
shows how familiar the student is with the type of development activity logged (e.g., unit
testing, architecture modeling). Tool experience reflects how comfortable or skilled the
student is with the specific Al tool used during the task—that could mean better prompts
given or expected when that Al tool is no help in some tasks.

In softeng23b, these values are recorded as textual categories—“none,” “little,” “fair,” “big”
or “master”. In saas24a and softeng24b, the experience fields are encoded numerically on a
scale from 0 to 5 where 0 represents no experience and 5 master experience.

Experience encoding is not evaluated at the level of single submissions. Instead, a student’s
dominant experience level is calculated by aggregating across all their entries. The most
frequent response value per user, for both task and tool experience, is retained. This
aggregated label reflects the user’s self-perception. The two labels—tool experience and
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action experience—are then concatenated into a single column-identifier. Students were
labeled as experienced if they showed a level of confidence in experience for both the Al tool
they used and the type of task they were working on. For the courses that used numerical
scales (like saas24a and softeng24b), this meant scoring 3 or above out of 5 in both tool
experience and task experience. For softeng23b, which used categorical labels instead of
numbers, students needed to report at least “some” or “enough” experience in both fields to
be considered experienced. Anyone who fell below these thresholds in either category was
labeled as inexperienced. This classification helped distinguish between users who were
comfortable with both the tool and the task, and those who were still building familiarity in
one or both areas.

This binary segmentation allows the analysis to track whether perceptions of Al quality,
threat, or time savings differ between users with deep experience and those still exploring
their capabilities. It also helps analyze the exposure of the students who appear in both
SoftEng-23b and the second course SaaS-24a, revealing how their initial categorization as
experienced or inexperienced in SoftEng-23b aligns with their responses in the dataset of
SaaS-24a.

6.4 Constructing Al Exposure Categorization

In addition to task familiarity and tool confidence, students are classified according to their
exposure to Al tools across their educational timeline. The logic here is temporal rather
than skill-based. Since large language models such as ChatGPT became widely accessible
in late 2022, students who began their studies before that date would have completed
multiple semesters without Al tools. In contrast, students who entered in or after 2022
would have had continuous exposure to such tools from their first year.

Based on this reasoning, students are grouped into three Al exposure categories. Those
who began their studies in 2019 or earlier are labeled as PreAl, meaning they had no Al
exposure during their early academic training. Students who started in 2020 or 2021 are
labeled as SomeAl, representing partial overlap between traditional and Al-integrated
software engineering education. Students who entered in 2022 or later are classified as
Alsincestart. These students represent a new generation for whom Al tools are a built-in
component of the development environment rather than an external enhancement.

This classification allows the analysis to test whether early or continuous exposure to Al
shifts patterns of tool selection, quality evaluation, or emotional stance. It also supports
curriculum-level reflections: if Alsincestart students display huge differences in
interactions with Al tools, this may signal a grave error in how teaching happens currently.
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6.5 Students Who Enrolled in Both Courses

The most analytically powerful segment of the dataset consists of students who participated
in both softeng23b and saas24a. These are 51 students who engaged with the same Al
logging system across two distinct academic periods. For each of these students, it is
possible to track changes in declared experience, emotional sentiment, perceived quality,
and threat evaluation across time.

For each of these students, their experience declarations in SoftEng-23b are the reference
used while analyzing their answers in SaaS-24a. Each student was marked as experienced
or inexperienced and then was compared to the data they submitted in SaaS-24a, to
compare their experience level, declared quality of Al help, perception of threat level, and
their generic feeling for the use of Al.

The main goal was to find any patterns between the declaration of the inexperienced
students that contrasted with those of the experienced users. For example we analyze the
perceived knowledge acquired and quality of Al help by both the experienced and
inexperienced users to ascertain if the inexperienced users find Al use better or if they learn
more than the experienced users.

Since SoftEng-23b is mandatory for the students who select flow-L in the school of Electrical
and Computer Engineering and SaaS-24a is not we expect to find more students in the first
course who mark themselves as inexperienced, whereas the students who enrolled in both
courses likely had grater prior interest in software development, thus more categorized as
experienced.
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7.Methodology

This chapter provides a detailed, step-by-step account of the processes and systems used
to turn raw student submissions into structured, analyzable data. The goal was to transform
decentralized, user-submitted logs into a dataset that supports clear, phase-specific, and
user-level insights. To achieve this, the methodology followed a strict pipeline: beginning
with submission, continuing through validation and enrichment, and ending in the export of
visualized findings. Every phase of this transformation was grounded in reproducible scripts
and structured schemas. The entire pipeline was built to support tracking, slicing, and
comparisons across technical, emotional, and demographic axes—all while preserving the
original per-user granularity of the submissions.

7.1 Submission Infrastructure and Data Acquisition Context

All data was collected as part of the formal course requirements for two advanced software
engineering classes over three semesters at the National Technical University of Athens. In
each course, students were required to submit Al-interaction logs that documented their use
of Al tools during the development cycle. They were captured at the moment of interaction,
concurrent with the phase they were being executed in. This ensures that the data reflects
actual usage, not reconstructed memory or post interpretation.

Students submitted their work through a standardized web-based interface designed
specifically for this purpose. The interface accepted only zipped archives containing a
combination of structured metadata as a .json file and optional prompt logs in .txt file. Each
archive was required to contain one valid .json file, which followed a pre-specified schema
tailored to the course in question. Optional .txt files could be added to document the exact
prompt or Al response and conversation used in the task, but these were not mandatory and
were excluded from the quantitative analysis pipeline. However they were used in order to
specify the correct validity path in each phase, that was used in the filtering section. The
interface included basic server-side validation to ensure that the zip file submitted was not
corrupt and that the .json file could be parsed and included all columns that were asked.
Submissions without areadable .json file were rejected automatically at upload time, forcing
the student to resubmit.

Each student had to login with their institutional username and password in order to submit
each Al-log, and were limited to 10 total logs per day to ensure that they wouldn’t submit
duplicate entries. Once uploaded, each archive was unpacked on the server side and stored
in database for each course-set. This ensured traceability across sessions and allowed
mapping between user metadata (extracted from the username) and course submission
contents. Timestamps were preserved from the upload metadata to allow future
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chronological ordering of submissions per user if needed, although this temporal ordering
was hot used in the current study. Every valid .json file was then passed into the cleaning and
validation pipeline in Tableau Prep.

7.2 Validation Pipeline and Matrix

The transformation of raw submission data into analyzable metrics required more than
simple cleaning. A sequence of structured steps was applied to each entry, producing new
fields that formed the foundation of cross-phase, cross-experience, and per-user analysis.
These operations are categorized into five distinct and important stages: mapping of
experience, combinations per phase, aggregation of time values at the user level,
determination of dominant experience labels and extraction of demographic metadata from

usernames.

Each of these steps was implemented using Python, through the library of pandas -
DataFrames, and executed via Tableau Prep for schema alignment and traceability. The
resulting fields were then injected back into the unified dataset for further filtering, slicing,
and diagram export.

7.2.1 Phase-Experience Combinations

The first layer of transformation involved resolving each student’s experience level with
specific tasks and tools, segmented by development phase. Because students could submit
multiple entries per phase—each involving different tools or actions—it was necessary to
identify their prevailing experience level for each combination.

To accomplish this, the dataset was grouped by username and phase. Within each group, all
reported action experience values were collected and evaluated using a predefined priority
order. This priority order established that “none” ranks lower than “little,” which ranks below
“fair,” and “big” ranks highest for the database of SoftEng-23b, in the other databases the
ordering was from 0 to 5. Ties were resolved by selecting the higher-priority category,
ensuring that stronger declarations were the assigned label. The same logic was applied
independently for tool experience.

The result was two new fields: one recording the most frequent action experience per user
per phase, and one recording the most frequent tool experience per user per phase. These
fields allowed later visualizations to display experience-modulated perceptions in phase-
specific contexts, such as how threat level varies between inexperienced and experienced
users in the entire software development cycle.
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7.2.2 User-Level Time Averages

Time metrics—specifically time allocated and time saved—were originally recorded per
submission. These values, while useful at the local level, needed to be aggregated upward
to support user-level and group-level analysis. Two average values were computed for each
user: the mean time spent across all their submissions, and the mean time they reported
saving as a result of Al assistance.

To avoid distortion by outliers or uneven submission counts, only validated entries (valid or
gray) were included in these calculations. These averages allowed the construction of
visualizations comparing the basis of reported efficiency, including diagrams that show
whether experienced users tend to save more time or whether certain phases consistently
result in underestimation or overestimation of Al benefit.

The output of this step consisted of two new
fields: users_average_time_allocate and users_average_time_saved. These fields were
joined back to the per-submission records so that phase-level and group-level comparisons
could be rendered in the same visualization layer.

7.2.3 Dominant Experience Labels per User

To understand the experience level of each student, the categorization was based on their
experience level in total—not just per phase but for all their submissions. This allowed to
divide the students into the two categories of experienced and inexperienced. Thus,
analyzing and comparing perceived Al quality, threat level and generic feeling.

All reported experience values for each student were collected for both the tool use and
action familiarity, the most frequently declared value, either categorical or number based on
the dataset was kept for that student. In a case of tie the highest value was kept to avoid
underrepresenting the student’s experience.

Based on this, two summary labels were created: tool_experience and action_experience
indicating the overall experience for the student on each category. This method made it
possible to distinguish students working mostly for the first time in either the task used or
with the Al tool used.

7.2.4 Composite Experience Category (TE_AE)

The most useful label for analysis was a combined one that joined tool and action
experience into a single tag. This was called TE_AE and formatted as “TE: {tool_experience}
AE: {action_experience}”.
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This label was used to sort users based on experience. If both experience scores were 3 or
higher the user was marked as experienced and in the first database—experienced users
were the ones who submitted in both categories values higher than “some” and “enough”. If
either score was lower, the user was considered as inexperienced.

This categorization was used in all comparisons between experience groups—such as
analyzing differences in quality ratings, perceived threats, or knowledge acquired. It also
made it possible to track how students moved between categories over time as they became
more confident and skilled from the dataset of SoftEng-23b to that of SaaS-24a.

7.2.5 Demographic Derivations from Institutional Usernames

Since the demographic fields were inferred indirectly, through the student’s username, the
students didn’t have to provide additional personal data. Each student’s institutional
username followed the format for ECE — NTUA’s school (e.g., el21XXX), where the embedded
number indicated the year they started studying. By decoding the enrollment year three main
new columns, the estimate age, starting year of studying and Al exposure.

The age estimate was calculated by assuming that all students enroll at the age of 18. Then
the age derivation was a subtraction of the year the dataset was collected—2023 with the
year the student started studying and the addition of 18. Also, based on the enrollment year
the Al exposure was marked. Students who enrolled before 2019 were labeled as preAl,
2020-2021 as someAl and all students after 2022 as Alsincestart.

All such derived values were used for grouping, filtering, and visualizing across student
responses—enabling comparisons based not only in responses but also in a demographic
context

7.3 Derived Metrics and Aggregation Logic

Once the cleaned dataset was established, several new fields were derived per user and per
submission. These derivations enabled user-level aggregation and comparison across
experience, phase, and sentiment categories. All derivations were implemented in Python
using Tableau Prep to ensure the creation of the new fields through the database and to
visually verify the correctness of the applied methods.

The first and most important process was the identification of each student’s experience
level. Instead of focusing on a per phase basis or per scope, the entirety of submissions was
taken into consideration for each student—based on the most frequent answer given by the
user. This was filtered at the threshold of both action and tool experience being above 3, all
experienced students were filtered through the TE_AE column in Tableau Desktop (e.g., “TE:
4, AE: 3”. After filtering through Tableau Desktop, the diagrams were created displaying the
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quality of Al reported, generic feeling, threat level, and languages used for both the
experienced and inexperienced students.

A second set of derivations focused on time. Although every submission included a student’s
estimate of time spent and time saved, these new values were the averages per user.
Therefore in each submission there are two new columns for the user who submitted the log,
the average time saved and average time allocated as a constant throughout all the
submissions made by that student for better analysis.

Demographic context was also inferred based on the student’s username, thus estimating
the age group, level of Al exposure also referred to as “generation” and the year they started
studying. This allowed the data to be grouped along generational lines—with the most
important division being based on how much exposure they had for the use of Al tools.

All these new columns of data was added back to the dataset and became the basis for
filtering, visualizing diagrams and comparing them throughout the results. They enabled
reliable filtering, and tracking.

7.4 Visualization Process and Diagram Export

All visualizations presented in the thesis were generated using Tableau Desktop, following a
strict schema alignment between the master dataset and the diagram-specific extracts.
Each diagram corresponds to a filtered subset of the full dataset for each of the three
courses that provided the submissions, focused on a particular metric, group, or
comparison. For example, diagrams related to perceived Al quality in pre-development—
pre-code related phases only include submissions tagged with those phases and exclude all
others. Filtering, grouping, and normalization were applied directly in Tableau to preserve
visual traceability.

In Tableau Desktop, four new calculated fields were created in each workbook to standardize
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how data is visualized across all diagrams. These fields—named “percentage”, “percentage
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per username”, “count per username” and “count—serve different purposes depending on
what each chart aims to display. “Percentage” displays the percentage per all the
submissions based on the submissions in the given database calculated by the count shown
over the count of the total submissions with two decimal places. “Count per Username”
tracks how many unique students fall into each category based on the filters applied in a
given diagram. Building on this, “percentage per username” is the label of each category as
a proportion of the total user count, thus, showing the percentage on the diagram for better

visualization.
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Each diagram was then exported as a png and a csv containing all the necessary columns so
that the diagram could be shown in the frontend webpage provided for the readers. These
extracts were named using a strict naming convention that aligns with the diagram IDs used
throughout the thesis (e.g., D42, D67). These CSV include only the data to display the
diagram visually, not each students submission; those datasets are included in the derived
csv files from Tableau Prep and are also open sourced to any reader for transparency and
use.

7.5 Deployment of Diagram Delivery Platform

To make the diagrams accessible to the reader, a custom frontend web page was built
hosting all diagrams created by this project. By using Highcharts, this interface was designed
to replace the static exports of Tableau Desktop for better exploration of the thesis findings.
Users can switch between course datasets—SoftEng-23b, SaaS-24a, SoftEng-24b and the
intersection of users in both SoftEng-23b, SaaS-24a. This allows students, readers, and
researchers to analyze the results, and validate insights without having the need to use
Tableau environment.

The entire structure of the frontend is organized into the four main databases, and in each
database there are six categories, each corresponding to a specific part of the thesis,
Overview, Al Usage Context, Pre-Coding Related Phases Analytics, Pre-Coding Related
Phases Experience Perspectives, Coding Related Phases Analytics, Coding Related Phases
Experience Perspectives. Within each of these categories, subcategories are displayed,
each with a short explanation and a label indicating the number of diagrams it contains. For

example, under “Overview”, users will find subcategories like “Participant Demographics’
with six diagrams some of them showing age, entry year, and validity distributions.

To support this structure, each diagram’s data was first exported through Tableau Desktop’s
interface as both a csv file and a png. Each csv file contained all the information needed to
display the diagram through highcharts—columns include x-axis, y-axis and labels in each
distribution set. With the use of a custom Python script, a json map was created to support
the schema expected by highcharts for each diagram. As a result, each diagram displayed
on the site is directly linked to the data exported from Tableau Desktop and is rendered
dynamically from its corresponding json map.

The result is a web platform where users can view the diagrams, download them, and
interact with each filter. The use of the frontend could be instructional feedback,
comparison, or research reuse, it offers a complete and transparent interface that displays
all the diagrams that were used in this thesis’s analysis. Every design choice for the frontend
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display—from category layout to interactive filtering—was made to reinforce the adaptability
and exploration of the webpage as easy as possible to a user-friendly level.
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8. Results

This section presents the results of the study, structured to answer the research questions
defined in Section 2.3. We divide the analysis into five parts: data integrity (perception and
noise), Al use in code-related phases, Al use in non-code-related phases, longitudinal
patterns among tracked students, and the influence of programming language and
experience. For each section, we list and interpret selected diagrams and explain how the
results respond to the research questions.

8.1 Perception and Noise

Before analyzing patterns of Al use, student reactions, or how effective Al was in different
phases, it’s important to make sure the data is consistent, clear, and trustworthy. During
preprocessing, each submission was labeled as valid, gray, or invalid—these categories
reflect how clearly and carefully students documented their use of Al. Additionally, since Al
logging was tied to the grading system and was not optional, many students submitted
entries without filtering what they submitted, thus many multiple entries were marked as
invalid due to duplicated entries. The results here respond to Research Question RQO0: Can
student-submitted data be reliably used for analysis?

Figure 1.7.1 presents the distribution of validity states across all phases for the SoftEng-23b
course. Coding emerges as the most structurally robust phase, with a clear majority of
submissions falling into the valid category. This isn’t surprising since coding tasks are
usually clear-cut, with defined inputs and outputs, and the kinds of help Al provides—like
generating functions, entire scripting files or solving syntax issues—are easy to describe in
the schema. Inthe requirements phase, a higher percentage was marked as invalid because
students struggled to map abstract tasks like stakeholder analysis or functional or non
functional requirements. They often mislabeled actions or scopes, showing confusion
about how to log Al use in these phases.

Figure 2.7.1 displays validity distribution for the SaaS-24a dataset. Here, the pattern holds
for coding, but the overall validity drops in phases such as architecture and design. These
phases exhibit a substantial rise in invalid and gray-tagged entries; The architecture phase
in particular, has only around 60% of submissions marked as valid. Same patterns appear
as the first dataset, gray-marked submissions, seems to highlight a mismatch between how
students think about their work and how strongly the defined schema markes valid inputs,
rather than indicating it as misuse, the high number of gray entries (~15% for each phase)
point to structural ambiguity for all the submissions in the databases.

In Figure 3.7.1, presents the validity distribution for the SoftEng-24b dataset. The same
pattern appears, coding remains the most stable phase with the highest validity percentage
submission. While the requirements gathering and specification show the highest
concentration of invalid percentage per phase, from requirements gatherings having 65%
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valid responses and requirements specification at 55%. Like previous datasets these low
percentages suggest confusion around how to log Al use in early, non-code related phases.

In all three course datasets, deployment stands out for having the least number of valid
submissions. Even when students document Al use in this phase—such as for container
scripts or environment setup—the entries are often marked invalid or fall into the gray
category. A common issue is mislabeling: for instance, many students classify frontend
work as part of the design phase, when in fact, design refers to the planning and structuring
of system components—like defining data flow, component interactions, or selecting
architectural patterns—not implementation-level details like Ul styling or layout coding.
Unlike coding, where Al produces clear, testable output, or testing, where results are
straightforward to evaluate, deployment involves less visible tasks—like editing
configuration files, or resolving dependency issues. These are harder to classify within the
current phase-action-scope model and may require future adjustments to better capture
the nature of operational tasks.

Another issue was regarding the initial—pre-code related phases where the students’
responses were usually marked as gray or invalid, and had very little response humber of
submissions in those phases. This pattern suggests more than just the misclassification; it
may show an uncertainty about the logging of Al use during the initial phases. Students may
not have submitted their initial Al interactions such as brainstorming, drafting initial ideas,
definition of requirements—by thinking they were not as worth to document. Another trend
across all courses is that the number of gray entries in design and architecture phases gets
smaller from SoftEng-23b to SaaS-24a. This likely shows that students are getting better at
categorizing their Al interaction with the corresponding phase-action-scope. With repeated
exposure, they seem to learn how to classify their Al use more accurately.

In summary, after the filtering is applied and we exclude the invalid responses, we can more
safely conclude that the submissions left are structurally reliable and have true meaning
since they are aligned and checked with the validity path created. As a result, the filtered
dataset offers a clear view on how students used Al across different development stages,
minimizing noise from confusion or rushed submissions.
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Figure 1.7.1 Validity distribution per phase in softeng23b
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Figure 3.7.1 Validity distribution per phase in softeng24b
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8.2 Code-Related Phases

This section investigates Al tool usage during code related stages of the software
development process: coding, testing, and deployment. These phases collected the most
amount of submissions since the students used Al tools mainly in the phases of coding and
testing—where source code authoring, and code management was major. This section
mainly focuses on the RQ2 for the analysis of Al use during the code related phases—but
also aids the analysis of RQ4.

The coding phase dominates the Al interaction landscape across all three datasets. In
Figures4.7.2,5.7.2, and 6.7.2, which display declared quality of Al help during code-related
phases for SoftEng-23b, SaaS-24a, and SoftEng-24b respectively, student responses
consistently cluster at the top of the quality scale. Most entries in the coding category are
rated as either “ready-to-use” or requiring only “minor modifications”, or have high reporting
at 4-5 from a scale of 0 to 5. This signals a deep level of match between what the student
expects and Al output quality in this phase. It’s clear that students have learned how to
prompt for coding tasks in ways that get solid results. Since the LLM’s have a huge training
set in programming languages like Python or JavaScript, the output given at any coding help
provided will be ready-to-use for both the creation or the syntax fix on a file.

In contrast with the coding phase, the testing phase reports a slightly less quality in Al
output. For the dataset of SoftEng-23b, testing marked as second highest in submissions,
and the distribution of quality of Al help in that phase was slightly skewed to the right—
showing a difference between the coding phase. Testing was registered as “minor
modifications needed” for the most part. While in SoftEng-24b we see notice more
submissions around the values of 3-4 indicating a moderate quality in those phases.

Deployment has the least amount of submissions in the SoftEng datasets, but even in those
submissions we notice that the most answers categorize as the quality of Al help as “minor
modifications needed”. Whereas in the SaaS-24a dataset we notice the same pattern of a
moderate rating of Al quality and the most submissions being at the values of 3-4.

Students’ reported time savings follow the same pattern as their quality ratings. Figures
7.7.2,8.7.2, and 9.7.2 show how much time they said they saved compared to how much
time they spent on tasks like coding, testing, and deployment. It’s clear that for all datasets
and all phases the Al was a help, since the time saved is always nearly double than the time
allocated. The most extraordinary finding is that the average time allocated in the testing
phase in the dataset of SoftEng-24b was around 0.68 hours and the average time saved is
close to 1.54 hours which is way more than double the time allocated. This could mean that
the students reported higher time savings in the testing phase not just because the Al helped
provide code, but because testing often requires the understanding of defining edge cases,
understanding how components should interact and so on. Therefore, Al helped clarify more
than just code—which students already comfortable writing—and since in the coding phase
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only code was provided as outcome, then, students expectedly reported more time savings
in testing phase.

When it comes to how students feel about Al as a possible threat, the response depends on
the task. Figures 10.7.2 and 11.7.2 show how experienced users in SaaS-24a and SoftEng-
24b rated their level of concern for replacement. Most of them sit in the range (1-2), which
shows they’re not cautious nor alarmed. They seem to accept that Al can take over simple
or repetitive code tasks, but they don’t think it’s about to replace them entirely. Their
hesitation is more about responsibility: they’re fine letting Al handle structure or syntax, but
they’re not ready to hand overimportant design or performance decisions to something they
can’t fully understand or control.

In contrast, Figures 12.7.2 and 13.7.2 capture the declared threat levels of inexperienced
students in the same phases. These distributions are heavily skewed toward the low end of
the scale (0-2), suggesting that students perceive their Al interactions as far from a threat.
For these users, Al is not a potential replacement but a helping tool—helping them fill
knowledge gaps, accelerate execution, and build confidence in tasks that might otherwise
be inaccessible or intimidating. Their threat perception is low because Al support is framed
not as competition but as a temporarily provided aid—which seems wrong because these
phases are under the highest threat of Al replacement.

The difference in how experienced and inexperienced users react emotionally points to the
understanding of phase or action, the more they realize what they’re handing over to the Al—
they judge more carefully whether that handoff actually makes sense. Inexperienced users
tend to see Al as a helpful boost, where experienced users see it more as a tradeoff—useful,
but with limits and risks that need to be managed.

Collectively, the code-related phases formed the core of Al interaction across all datasets,
bothin number of submissions and perceived quality. Coding was consistently rated highest
in quality with “ready-to-use” code provided. While testing, rated slightly lower than coding
in quality, it actually showed a higher time saved-time allocated ratio, likely because Al
besides providing code for that action, it also provided understanding on why the structuring
task had to be altered in a specific way. Deployment reports limited use, the quality provided
was moderate. Across all phases the time saved-time allocated ration was always close to
double. Experienced users declared a low threat of Al, whereas the inexperienced users
declared strongly the lowest threat—suggesting their inability to see the threat that Al poses
in these phases.
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Figure 4.7.2 Declared quality of Al help per phase in code-related phases (softeng23b)
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D08 - declared quality of ai help per phase, in code related phases
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Figure 6.7.2 Declared quality of Al help per phase in code-related phases (softeng24b)
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D11 - average time saved vs average time allocated per phase, in code related phases
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Figure 8.7.2 Average time saved vs average time allocated per phase in code-related phases (saas24a)
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D28 - declared threat level, experienced users on code related phases
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Figure 11.7.2 Declared threat level, experienced users on code-related phases (softeng24b)
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D33 -declared threat level, inexperienced users on code related phases
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Figure 12.7.2 Declared threat level, inexperienced users on code-related phases (saas24a)
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Figure 13.7.2 Declared threat level, inexperienced users on code-related phases (softeng24b)
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8.3 Non-Code Phases

This section explores how students interacted with Al during the non-code related phases—
that come before any code is written. These include requirements gathering, requirements
specification, architecture planning, and system design. Unlike coding or testing, these
early tasks are more abstract. They rely heavily on human interpretation, decision-making,
and understanding, which makes Al support less predictable. Students often need help
organizing ideas, sketching diagrams, or articulating goals—tasks that are open-ended by
nature. Because of that, the alignment between what students expect and what the Al
delivers is harder to pin down. This section looks at how Al performed in these early stages
in terms of output quality, time savings, and emotional response, focusing on Research
Questions RQ1, and RQ4.

Figures 14.7.3, 15.7.3, and 16.7.3 present student ratings of Al help quality in non-code
related phases across the three course datasets. It’s clear that among the conceptual
phases, design receives the highest and most consistent ratings, followed closely by
architecture. In all three datasets, student evaluations peak around “minor modifications”
and “ready-to-use”, or 3-4 in the numerically set databases, with very few reports of
unusable output or lower numbered score. This suggests that Al tools perform well when
students pose structured prompts involving diagram assistance, design alternatives, or
architectural rationale templates. Worth mentioning is that architecture has an even
distribution between minor or major modifications needed and ready-to-use quality in the
dataset of SoftEng-23b, showing that Al was often helpful, its outputs in this phase required
more careful interpretation in comparison to the better quality-provided prompts in design.

In contrast, requirements-related phases show more scattered and cautious evaluations. In
SoftEng23b and SoftEng24b—the only two datasets where requirements gathering and
specification were included—quality ratings for these phases flatten toward the center of
the scale, with increased frequency of “minor modifications needed” or neutral responses
(3-4). This reflects the interpretive ambiguity of the students in early-stage activities such as
problem understanding, definition of functional or non-functional requirements or use case
specifications. Unlike design and architecture, these phases lack a definite structure and
involve mainly on a more abstract answer choice. Al tools, when prompted with open-ended
instructions like “generate user requirements” or “suggest non functional requirements”,
tend to produce generalized templates or speculative assumptions that often require
extensive human revision.

Despite this variability in perceived quality, time-related metrics paint a more uniformly
positive picture. Figures 17.7.3, 18.7.3, and 19.7.3 show the average time allocated and
average time saved per non-code phase across the three datasets. In SoftEng-23b, the
requirements specification stands out since the average time allocated by the students in
this phase had an average of 0.93 hours but the estimate time saved was 2.26, suggesting
that Al was particularly useful in structuring the specifications in which the users may not
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have had the knowledge to complete or organize. In SoftEng-24b, requirement gathering
showed a similar but higher ratio, with students allocating an average of 0.59 and saving
1.52—nearly three times the time allocated. These results imply that even when Al outputs
weren’t rated perfect and even with major modifications, they provided enough direction
that still saved a lot of time for the students.

This difference between declared output quality and strong time savings highlights an
important finding. Even when the Al doesn’t deliver perfect results, it often helps students
get started faster. Drafting a paragraph, outlining an idea, or suggesting a template—these
seamlessly minor contributions reduce the time load of early-stage work. Students in these
early stages receive Al’s suggestions, rewrite what doesn’t fit, and move forward. The Al acts
as a productive idea provider, especially in phases where the challenge is figuring out how
to begin when definitions are unfamiliar.

When it comes to how students feel about Al in these early, non-code related phases, the
emotional landscape is more subtle than in code related phases. Figures 20.7.3 and 21.7.3
show the declared threat levels from experienced users working in requirements,
architecture, and design. In SaaS-24a (Figure 20.7.3), responses are fairly balanced, with a
normal-like distribution centered around levels 2-3. This suggests a moderate, thoughtful
stance—these students don’t see Al as a major threat in conceptual phases, but they’re not
completely unconcerned either. There’s a measured awareness that while Al can help with
idea organization or structural planning, the final judgment still rests with the human
developer.

In SoftEng-24b (Figure 21.7.3), however, the responses skew more strongly toward the low
end of the scale. Most experienced students in these phases place their threat rating at 1,
showing a clear relief that Al will not be able to replace these actions. This shift suggests
growing confidence in treating Al as a brainstorming or drafting assistant in the early stages
of development. Additionally, the fact that SaaS-24a excludes the phases of requirements
could indicate that the requirement phases is the reason why SoftEng-24b is more skewed
to the left, thus there is no threat of takeover of Al in the requirement stages yet.

Inexperienced users tend to show even less concern. In SaaS-24a (Figure 22.7.3), the
distribution is slightly skewed left, with most students clustering around levels 1 and 2.
These users still show some caution, but it’s less. They appear comfortable using Al as a
support mechanism, especially in non-code related tasks where the risk of error is low and
the main challenge is getting started.

The SoftEng24b data for inexperienced users (Figure 23.7.3) shows an even stronger skew
to the left even in comparison to the same dataset but with experienced users, with most
responses sitting between 0 and 2—and especially concentrated at 0 and 1. For this group,
Al is not seen as a threat at all. It's viewed almost entirely as a helpful presence—something
that assists with ideation, brainstorming, guides structure or defines unknown terminology
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at the start of a task. The lack of concern reflects a high level of comfort with letting Al
contribute in areas where interpretation, rather than precision, is what matters most.

D42 - declared quality of ai help per phase, in pre-code related phases
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Figure 14.7.3 Declared quality of Al help per phase in non-code phases (softeng23b)
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D42 - declared quality of ai help per phase, in pre-code related phases
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D45 - average time saved vs average time allocated per phase, in pre-code related phases
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Figure 17.7.3 Average time saved vs average time allocated per phase in non-code phases (softeng23b)
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D45 - average time saved vs average time allocated per phase, in pre-code related phases
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Figure 19.7.3 Average time saved vs average time allocated per phase in non-code phases (softeng24b)
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Figure 20.7.3 Declared threat level, experienced users on non-code phases (saas24a)
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D62 - declared threat level, experienced users on pre-code related phases
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Figure 21.7.3 Declared threat level, experienced users on non-code phases (softeng24b)

D67 - declared threat level, inexperienced users on pre-code related phases
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Figure 22.7.3 Declared threat level, inexperienced users on non-code phases (saas24a)
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D67 - declared threat level, inexperienced users on pre-code related phases
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Figure 23.7.3 Declared threat level, inexperienced users on non-code phases (softeng24b)
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8.4 Students who took part in Both SoftEng-23b and SaaS-24a

This section analyzes variation in Al perception among 51 students who submitted
structured data in both the SoftEng-23b and SaaS-24a courses. These repeated participants
allow for within-subject comparison across time, enabling direct evaluation of how declared
experience, emotional stance, and Al-related judgments change through consecutive
academic courses. The figures referenced track changes in user-reported metrics from the
first to the second course and are used to address Research Questions RQ4 and RQ5.

Figure 24.7.4 shows how students rated their experience with Al tools across the two
courses. The results shift clearly to the right: in SoftEng-23b, most students placed
themselves around levels 2-3 (moderate familiarity of “some” and “enough”), while in SaaS-
24a, most responses fall between 3 and 4. Notably, no students rated themselves at the
lowest levels (0-1) inthe second course, meaning everyone felt at least somewhat confident
using Al after an entire semester. This shift isn’t just about using Al more often—it reflects
that students learned how to use it more effectively, not just sending prompts without
preprocessing them first.

A similar trend appears in Figure 25.7.4, which looks at how confident students declared
they were in the said action. Although the increase is more gradual, there’s still a clear move
upward. Students report more comfort with the tasks themselves, suggesting that Al didn’t
just make things faster—it helped them build skill and experience by giving them feedback,
showing patterns, and encouraging clearer thinking. Together, the two figures show that
students improved in both tool use and action execution, gaining confidence on both fronts.

Figures 26.7.4 and 27.7.4 capture current emotional stance—“generic feeling now”—
toward Al tools in SaaS-24a, for the students who were marked as experienced or
inexperienced based on their declaration in the first course. Both groups—those who were
experienced and those who were inexperienced—report neutral to positive feelings (modal
values around 3-4), indicating convergence in present-time trust. However, future-oriented
optimism shows a more dramatic skew. In Figures 28.7.4 and 29.7.4—the figures that
display the distribution of “generic feeling future”, the distributions tilt heavily toward the
maximum value (5), with both groups indicating strong confidence in the future role of Al
tools. This shift is especially shown among initially inexperienced users, who enter the
second course not only with technical improvements and more knowledge but also with
more assurance that Al tools will remain relevant and increasingly useful.

Learning outcomes—knowledge acquired—are evaluated in Figures 30.7.4 and 31.7.4.
These figures track declared knowledge acquired from Al-assisted tasks in SaaS-24a. Both
groups report values centered around level 3, with modest right skew. Inexperienced users
show slightly stronger clustering around higher values, which may be attributed to steeper
learning curves. These results suggest that students perceive Al tools as having meaningful
and learning utilities—even though they were not formally framed as teaching tools. This
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internalized attribution of learning benefit reinforces the role of Al as a learning assist in
software development education.

Finally, perceived output quality is examined in Figures 32.7.4 and 33.7.4. Both experienced
and inexperienced students report strong Al output quality, with dense distributions
between levels 3 and 5. Inexperienced users, report that the Al provided better quality than
what the experienced users reported. This could suggest that the inexperienced users are
claiming the Al output just because it works—if its code related—or because they think its
correct so they accept is as good quality without knowing if it’s valuable or not.

In conclusion, the data from the students who took both the SoftEng-23b and SaaS-24a
reveal a clear progressionin how Al is perceived and used over time. Confidence in both tool
and action use increased dramatically. Emotional responses also shifted through time—
from cautious and average rating to strongly optimistic about future use of Al by both the
experienced and inexperienced groups of students. Inexperienced users, particularly,
showed growth in both trust and perceived knowledge acquired thus seemed to use Al for
learning and understanding. The experienced users on the other hand, remained more
measured in their initial evaluations, however we still notice an improvement of knowledge
acquired. These shifts reflect more than just familiarity over time—they show that students
grow in their Al interactions when given the space to engage more with it—as they did during
the developmental cycle of both projects.
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Figure 24.7.4 Declared tool experience over both years (softeng23b > saas24a)
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Figure 25.7.4 Declared action experience over both years (softeng23b > saas24a)
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Experienced from 23b, generic feeling now
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Figure 26.7.4 Declared current feeling (now), experienced users from softeng23b on saas24a responses
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Figure 27.7.4 Declared current feeling (now), inexperienced users from softeng23b on saas24a responses
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Experienced from 23b, generic feeling future
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Figure 28.7.4 Declared future feeling, experienced users from softeng23b on saas24a responses
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Figure 29.7.4 Declared future feeling, inexperienced users from softeng23b on saas24a responses
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Experienced from 23b, knowledge acquired
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Figure 30.7.4 Declared knowledge acquired, experienced users from softeng23b on saas24a responses
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Figure 31.7.4 Declared knowledge acquired, inexperienced users from softeng23b on saas24a responses
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Experienced from 23b, QAIH on 24a
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Figure 32.7.4 Declared quality of Al help, experienced users from softeng23b on saas24a responses
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Figure 33.7.4 Declared quality of Al help, inexperienced users from softeng23b on saas24a responses

57



8.5 Programming Language and Experience Effects

This section explores how the programming language in use shaped students’ perceptions
of Al-generated output quality, while also revealing how experience levels influenced those
judgments. It directly answers Research Question RQ3, which asks whether programming
language affects perceived Al utility and quality in output, and informs RQ4, which considers
how user experience modifies that perception.

Figures 34.7.5, 35.7.5, and 36.7.5 show that across all three courses, Python and JavaScript
clearly led the way in terms of positive student evaluations. Most submissions involving
these two languages were rated at level 4-5 or as—“minor modifications needed” or “ready-
to-use”—with few responses falling below that. Python, in particular, stands out—likely due
to its wide adoption in backend development, scripting, and Al assignments. JavaScript,
along with Node.js and related tools, also performed strongly, especially in frontend and
CLl-related tasks where students often relied on Al to start building components from
scratch, generate handlers, or polish Ul logic. Languages like SQL and YAML tell a different
story—not because they were rated poorly, but because they were used far less frequently.
These languages appeared in the data much less often, making it difficult to draw strong
conclusions about quality. Where entries did exist, the distribution of quality ratings was
similar to other languages, but the sample size was noticeably smaller. This may be due to
the fact that the Al interaction was quick, clear-cut and ready-to-use, thus the students
decide notto log their interaction.

Figures 37.7.5 through 39.7.5 focus on experienced users, who gave even stronger approval
to the quality of Al provided. In these cases, the vast majority of entries were rated 4 or 5,
suggesting that experienced students not only knew how to prompt effectively but also had
a better sense of what to expect from the tool. Their use of Al was more efficient—they used
it where it worked well, and avoided it in places where it didn’t. Experienced students
seemed to rely on Al most in languages where they trusted the model’s reliability and knew
how to fix issues when and if needed, also where some modifications were needed clearly
indicates that the user has the necessary knowledge to fix the issues that arised.

In Figures 40.7.5 to 42.7.5, we see the responses from less experienced users. Most
students gave high marks, with the majority of responses landing at 4-5. Compared to
experienced users, inexperienced users had a noticeable number of responses as 3. This
could suggest that even when Al produced structurally correct or mostly functional code,
some students didn’t recognize it as such and believed it needed more modification than it
actually did. Without the experience to alter, diagnose or trust the code provided they could
ask the prompt to provide the entire file—where in cases where the file is 300 lines it makes
the LLM overwhelm leading to incomplete or wrong output.

In conclusion, programming language and user experience both played a significant role in
how students perceived the quality of Al-generated code. Python and JavaScript
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consistently received the highest ratings and most submissions, especially among the
experienced users who knew how to prompt more effectively and modify the output when
needed. Inexperienced users also rated these languages highly, but their lower confidence
was evident in more frequent mid-level scores, likely showing their uncertainty than actual
output errors. Languages who had lower number of submissions recorded, were likely
underreported due to the students’ quick ai interaction, and the judgment of the students to
not log the Al interaction. The data shows that students perception of Al quality is shaped
not only by the language used but also by the students ability to understand, rewrite, and
evaluate the code provided.
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D21 - declared quality of ai help per language, in code related phases
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Figure 34.7.5 Declared quality of Al help by programming language (softeng23b)

D21 - declared quality of ai help per language, in code related phases
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Figure 35.7.5 Declared quality of Al help by programming language (saas24a)
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D21 - declared quality of ai help per language, in code related phases
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Figure 36.7.5 Declared quality of Al help by programming language (softeng24b)

D24 - declared quality of ai help, experienced users on code related phases

90

80

70

60

50

40

Count of 23b_final

30

20

10

Quality Of Ai Help

unusable major modifications needed minor modifications needed

ready-to-use

Count of 23b_final for each Quality Of Ai Help. Color shows details about Tool. The marks are labeled by Percentage and count of 23b_final. The data is filtered on TE_AE, Prog Lang, Phase and State. The TE_AE filter keeps TE: enough AE:
big, TE: enough AE: fair, TE: master AE: big and TE: master AE: fair. The Prog Lang filter excludes Null. The Phase filter keeps coding, deployment and testing. The State filter keeps gray and valid.

Figure 37.7.5 Declared quality of Al help by programming language — experienced users (softeng23b)
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Figure 38.7.5 Declared quality of Al help by programming language — experienced users (saas24a)
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Figure 39.7.5 Declared quality of Al help by programming language — experienced users (softeng24b)
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D29 - declared quality of ai help, inexperienced users on code related phases
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Figure 40.7.5 Declared quality of Al help by programming language — inexperienced users (softeng23b)
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Figure 41.7.5 Declared quality of Al help by programming language - inexperienced users (saas24a)
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D29 - declared quality of ai help, inexperienced users on code related phases
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Figure 42.7.5 Declared quality of Al help by programming language — inexperienced users (softeng24b)
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9. Answers to the Research Questions

9.1 RQO: Can student-submitted data be reliably used for analysis?

Yes. The dataset was filtered using a structured validation matrix that checked each
combination between phase-action-scope-tool. Invalid submissions (~17.6%) were
removed for the analysis, and gray entries (~17.2%) along with the valid submissions
(~65.2%) were kept for analysis. Coding phases across all datasets report the best validity
rating at (>75%), while pre-code related phases had the lowest due to students’ unfamiliarity.
This filtering allows a high-integrity dataset to be suitable for the analysis.

9.2 RQ1: How do students use Al in non-code related phases?

Al is moderately helpful in pre-code phases such as requirements, architecture and design.
Students mostly use Al as a brainstorming assistant, or a structural template provided in
these phases. Quality ratings for Al outputs in these phases are concentrated around
moderate scores with a slight skew to the right (3-4), with design receiving the highest
evaluations and requirements gathering the most scattered. Time savings on the other hand
are double or triple for the requirement phases, indicating that Al’s utility even when output
quality is imperfect still helps significantly. Inexperienced students show minimal threat
perception, while experienced ones are more aware of Al’s limitations and do not consider
these phases as a threat.

9.3 RQ2: How do students use Al in code related phases?

Al quality appears to be the strongest in code-related phases, especially coding and testing.
Students consistently rate Al-generated code as “ready-to-use” or with “minor modifications
needed” (4-5 on the scale from 0 to 5). Time saved to time allocated ratio is close to double
for each phase. Experienced users show moderate threat perception, acknowledging Al’s
usefulness and risk of replacement. Inexperienced users report even lower threat level,
showing how unaware they are about Al replacement.

9.4 RQ3: Does programming language affect Al-perceived usefulness?

Yes. Python and JavaScript are the most used and highest-rated languages in terms of Al
quality output. Submissions involving these languages are frequently rated 4-5 in perceived
quality, especially by experienced users who are able to evaluate and modify accordingly.
Languages like SQL or YAML have far fewer submissions but still follow the same distribution
format with 4 having the highest count.
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9.5 RQ4: How does student experience influence perception and
effectiveness of Al?

Experience level significantly affects how students perceive and use Al tools. Experienced
users are more selective, that Al output more critically and are more aware of potential
threat. They use Al as a strategic assistant rather than using it entirely without checking
what’s being provided. Inexperienced users, tend to rate Al outputs highly, report minimal
threat, often accepting outputs without critical revision. The difference is most visible in the
code-related phases.

9.6 RQ5: How does Al perception evolve over time in tracked users?

Among students who were tracked in both courses (SoftEng-23b and SaaS-24a), Al
perception improves remarkably. Tool and action experience scores increase across the
board, emotional stance shifts from neutral to confident, and inexperienced users report
more knowledge acquired. Quality ratings also improve, and there is a bigincrease in generic
feeling for the future in both experienced and inexperienced users.
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10. Limitations

While this thesis presents a detailed analysis of Al tool usage in software engineering
education, several limitations must be acknowledged to contextualize the findings and guide
future research.

First, the study does not include ground-truth validation of Al-generated outputs. Student-
reported perceptions of quality and time savings were not verified against actual
correctness, code performance, or alignment with project requirements. As such,
conclusions about Al effectiveness rely on subjective metrics rather than objective
benchmarks.

Second, the dataset lacks any assessment of prompt quality. Since the structure and
formulation of prompts directly affect Al output, variations in student prompting skill may
influence perceived utility. However, no standardized evaluation of prompts was included,
and optional prompt logs were excluded from the main analysis. This omission limits the
ability to distinguish between model limitations and suboptimal user input.

Third, the study population is drawn exclusively from advanced undergraduate students at
the National Technical University of Athens. These students share a relatively homogeneous
academic background, institutional training, and course structure. As a result, the
generalizability of findings only makes sense in similar contexts. The results may not extend
to students in non-engineering disciplines, to developers in professional environments, or to
self-taught programmers with different tool exposure and project dynamics.
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11. Future work

One meaningful next step would be to collect and analyze data from the upcoming SaaS-25a
course. This would allow for a deeper comparison with SoftEng-24b, especially for students
who enroll in both. Just as this thesis already tracked students across SoftEng-23b and
SaaS-24a, adding this new group would help show how students’ use of Al tools changes as
they continue through different courses. It would also give a better picture of how earlier
experience affects later choices, confidence and experience.

Another important improvement is the way data is collected. Right now, students have to
prepare and upload files manually, which adds extra steps and can feel tiring—especially
when repeated often. In future versions, it would make sense to use a simpler system. For
example, a web platform could let students open Al chat windows directly—either by using
their own API key or by accessing models hosted by the course team. This would allow
interaction data to be recorded more smoothly, without interrupting their workflow. It would
also help reduce errors and make it easier to collect high-quality data without adding extra
effort for students.
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12. Conclusion

This thesis has shown that Al tools are no longer experimental in a software development
cycle, but they are fully integrated into the development workflow—particularly in code
related phases—where students report consistent quality, very strong time efficiency and
somewhat concern about Al replacement. Al is not merely saving time butitis reshaping how
students approach problem-solving, brainstorming, unknown terminology definition and
code organization. Even students with limited experience find Al to be a tool that helps get
the ball rolling in the early phases, while the more advanced students use Al more
strategically.

Before drawing any conclusions from the data, it was necessary to ensure that the
submissions used actually represented a meaningful set of Al use. Each submission was
carefully validated to check whether students had accurately documented what they were
doing or if they were submitting random nonsense. Coding tasks were the most consistently
well-logged cause students clearly understood how to describe their Al use and used a
correct combination set of phase-action-scope. Students had more misclassification rates
in the earlier phases, that could be due to them being unaware of each terminology and
definition and difficulty in the submission of their Al interraction. The invalid and duplicated
entries were marked as invalid.

In earlier stages—pre-code related phases like requirements, architecture or design—Al is
less precise but still provides a moderately good quality for help. Here students treated the
tools used as less of a solution and more as an assist on how they should start the
development. These interactions still provide data for the time savings, even when the Al’s
output was declared as unusable. The role of Al in these abstract phases is less about
correctness and more about the initiation of the project.

The majority of submissions was for the phases of coding and testing. Students focused
heavily on Al tools to assist with implementation tasks, code management and source code
authoring. Coding in particular, emerged as the most productive phase, since students
received most often output that was ready-to-use, especially in programming languages like
Python and JavaScript. The testing phase was reported to have slightly less quality rating
overall, but higher time savings—suggesting that Al didn’t only help by generating code in this
phase but also clarified and explained logic for test structures and edge cases. Overall,
across all code-related phases students reported having almost twice the time saved from
the time they allocated in—which is safe to say that Al meaningfully sped up the
development of the project. Experienced users saw Al as helpful but reported more on the
threat level than the inexperienced users did, this shows that the perception is shaped by
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each student’s understanding, the more students grasp the task, the more they realize
what’s happening, and how much of a threat of replacement Al is.

The dataset that was used among the students who participated in both courses—SoftEng-
23b and SaaS-24a—confirms that the repeated use helped the students become more
confident and selective. In the first course, many rated themselves as only moderately
familiar with the Al tools they used but by the second course, nearly all described
themselves as experienced in the Al use. Interestingly, both experienced and initially
inexperienced users reported similar emotional stances towards Al by the end.
Inexperienced students showed the most growth in knowledge acquired since they focused
on Al tools as a learning tool. Experienced users used the Al tools with more caution but still
registered gains in trust—lower threat level—and learning. Across both groups, what
emerged was the evolution of students, they learned where Al helps more and is more
efficient and also how to use it strategically.

In the end, this study shows that Al tools have become deeply integrated into how students
build software engineering projects. Not just for coding, but across the entire developmental
cycle. Whether they use it as terminology definition, debugging aid, or a source for time
saver—Al shaped how students worked and how they learned from it. Their judgments about
quality usefulness and threat weren’t fixed, they changed as students gained experience.
Students are already living in the use of Al in software development, therefore, if given
structured opportunities to engage with it they are already ready.
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13. Appendix A: Valid paths for phase-action-scope

13.1 Paths for softeng23b

13.1.1 Filter for requirements gathering
{

"valid":{
"phase": ["requirements gathering"],
"action": ["problem understanding", "stakeholder statement",

"requirements (functional)", "requirements (non-functional)", "use case
specification"],
"scope": ["documentation (text)", "uml activity", "uml sequence"],
"tool": ["chat gpt 3.x", "chat gpt 4.x", "bard", "other", "<fill
in>", "Bing AI"]
by
"gray": {
}
}

13.1.2 Filter for requirements specification
{

"valid":{

"phase": [ "requirements specification"],

"action": ["problem understanding", "requirements (functional)",
"requirements (non-functional)", "use case specification"],

"scope": ["documentation (text)","uml activity", "uml sequence"],

"prog lang": ["null", "other"],

"other prog lang": ["<fill in>"],

"tool": ["chat gpt 3.x", "chat gpt 4.x", "bard", "other", "Bing AI"]

by

"gray": {

}
}

13.1.3 Filter for architecture

"valid":{

"phase": ["architecture"],

"action": ["architectural decision"],

"scope": ["uml component", "uml deployment", "uml class", "uml other",

"database design", "frontend", "data management", "backend", "api",
"deployment scripts"],

"prog lang": ["null", "other"],
"other prog lang": ["<fill in>"],
"tool": ["chat gpt 3.x", "chat gpt 4.x", "bard", "other", "Bing AI"]
by
"gray": {
"action": ["problem understanding"],
"scope": ["frontend", "cli"]
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13.1.4 Filters for design

"valid":{
"phase": ["design"],
"action": ["design decision"],
"scope": ["uml activity", "uml sequence", "uml component", "uml
deployment", "uml class", "uml other", "frontend", "backend", "api" ],
"prog lang": ["null", "other"],
"tool": ["chat gpt 3.x", "chat gpt 4.x", "bard", "other", "Bing AI"]
by
"gray": {
"action": ["problem understanding"],
"scope": ["cli"]
}
}
{
"valid":{
"phase": ["design"],
"action": ["data design"],
"scope": ["uml class", "database design"],
"prog lang": ["null", "other"],
"tool": ["chat gpt 3.x", "chat gpt 4.x", "bard", "other", "Bing AI"]
by
"gray": {
"action": ["problem understanding"],
"scope": ["data management"]

}
13.1.5 Filter for coding

"valid":{
"phase": ["coding"],
"action": ["source code authoring", "code management"],
"scope": ["frontend", "data management", "backend", "api", "cli",
"test execution scripts", "deployment scripts", "code management actions"],
"prog lang": ["js", "js-node", "python", "sgl", "nosgl db", "html",
"other"]
b
"gray": {
"action": ["problem understanding", "unit testing", "functional

testing", "integration testing", "performance testing","other testing", "dev-

ops"],
"scope": ["test cases", "test code driver"]

}
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13.1.6 Filter for testing

"valid": {
"phase": ["testing"],
"action": ["unit testing", "functional testing", "integration
testing", "performance testing", "other testing"],
"scope": ["frontend", "backend", "api", "cli", "test cases", "test
code driver", "test execution scripts"],
"prog lang”": [ "js", "js-node", "python","html", "other"]
b
"gray": {
"action": ["problem understanding"]

}
}

13.1.7 Filter for deployment

"valid":{

"phase": ["deployment"],

"action": ["design decision", "source code authoring", "dev-ops", "vm
operations", "container operations", "network operations"],

"scope": ["frontend", "backend", "api", "deployment scripts"]
b
"gray": {

"action": ["problem understanding"]

}
}
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13.2 Paths for saas24a

13.2.1 Filter for architecture
{

"valid": {
"phase": ["architecture"],
"action": ["orchestration design","microservices definition",
"container structuring"],
"scope": ["uml sequence", "uml component”", "uml deployment", "uml

other", "backend", "api"]

by

'lgray'l : {
"action": ["api design", "data design"],
"scope": ["frontend"]

13.2.2 Filter for design
{

"valid": {
"phase": ["design"],
"action": ["api design", "orchestration design", "choreography
design", "data design"],
"scope": ["uml sequence", "uml component", "uml other", "data

management", "frontend", "backend", "api", "messaging design"]

by

'lgray" : {
"action": ["container structuring","source code authoring”],
"scope": ["uml deployment"]

13.2.3 Filter for coding
{

"valid": {
"phase": ["coding"],
"action": ["source code authoring", "network operations", "code
management"],
"scope": ["frontend", "backend", "api", "deployment scripts", "github
operations"],
"prog lang": ["js", "js-node", "python", "sgl", "nosgl", "java",
"yaml/json", "other"]
by
"gray": {
"action": ["api design"],
"scope": ["container configuration"]
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13.2.4 Filter for deployment

"valid": {
"phase": ["deployment"],
"action": ["container structuring", "source code authoring”, "network
operations"],
"scope": ["uml deployment", "frontend", "backend", "api", "messaging

deployment", "container configuration", "deployment scripts", "github
operations"],

"prog lang": ["n/a", "js", "js-node", "python", "java", "yaml/json",
"other"]
}I
"gray": {
"action": ["code management"]

}
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13.3 Paths for softeng24b

13.3.1 Filter for requirements gathering
{

"valid":{

"phase": ["requirements gathering"],

"action": ["problem understanding", "stakeholder statement",
"functional requirements", "non-functional requirements", "use case
specification"],

"scope": ["uml activity", "uml sequence", "uml other"]

s
"gray": {

}

13.3.2 Filter for requirements specification
{

"valid":{
"phase": ["requirements specification"],
"action": ["problem understanding","functional requirements",
"non-functional requirements", "use case specification"],
"scope": ["uml state", "uml activity", "uml sequence", "uml
other"]
s
"gray": {
"scope": ["data management", "backend", "api"]

}

13.3.3 Filter for architecture

"valid":{
"phase": ["architecture"],
"action": ["architectural decision"],
"scope": ["uml component”, "uml deployment", "uml other", "data

management", "backend", "api"]

by

"gray" : {
"action": ["problem understanding", "design decision"],
"scope": [ "frontend" ]
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13.3.4 Filter for design
{

"valid":{
"phase": ["design"],
"action": ["design decision", "data design"],
"scope": ["uml state", "uml activity", "uml sequence", "uml
component", "uml deployment", "uml other", "frontend", "backend", "api"]
s
"gray": {
"action": ["problem understanding","functional requirements", "use
case specification","source code authoring","architectural decision"],
"scope": ["data management"]

}

13.3.5 Filter for coding
{

"valid":{
"phase": ["coding"],
"action": ["source code authoring", "code management"],
"scope": ["data management", "frontend", "backend", "api",
"messaging design", "container configuration", "github operations"]
s
"gray": {
"action": ["problem understanding", "design decision", "data
design" , "unit testing", "functional testing", "integration testing",
"performance testing","other testing", "dev-ops"]

}
}

13.3.6 Filter for testing
{

"valid":{
"phase": ["testing"],
"action": ["unit testing", "functional testing", "integration
testing", "performance testing","other testing"],
"scope": ["frontend", "backend", "api", "messaging deployment",

"deployment scripts"]
b
"gray": {
"action": ["problem understanding"]

}
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13.3.7 Filter for deployment
{

"valid":{
"phase": ["deployment"],
"action": ["design decision", "source code authoring", "dev-ops",
"vm configuration", "container configuration","network configuration"],
"scope": ["frontend", "backend", "api", "deployment scripts"]
s
"gray": {
"action": ["problem understanding"]

}
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14. Appendix B: A sample .json entry

14.1 softeng23b random submission
{

"answers": {
"phase": "requirements gathering",
"action": "requirements (non-functional)",
"scope": "documentation (text)",
"action experience": "fair",
"prog lang": "n/a",
"other prog lang": "<fill in>",
"tool": "chat gpt 4.x",
"other tool": "<fill in>",
"tool option": "full",
"tool experience": "master",
"time allocated (h)": "0.25",
"time saved estimate (h)": "2",
"quality of ai help": "major modifications needed",
"generic feeling": "great as-is",
"notes": "<fill in>"

14.2 saas24a random submission
{

"answers": {
"phase": "architecture",
"action": "network operations",
"scope": "backend",
"action experience": 4,
"prog lang": "js-node",
"other prog lang": "None",
"aimodel": "chatgpt",
"aimodel wversion": "4.0",
"lmstudio-hosted aimodel”: "No",
"tool option": "online full",
"experience with tool": 5,
"time allocated (h)": "2",
"time saved estimate (h)": "3",
"quality of ai help": 4,
"knowledge acquired": 3,

"generic feeling - now": 3,
"generic feeling - future": 4,
"threat level": 5,

"notes": "None"
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