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ITepiindm

O mpbogates eZehileic otov topéa tne e€nyfowne texvntrc vonuoolvng (XAI) éyouv avadloapoppnoet Tov
TEOTO GELONOYNONEC XL EQUPUOYTC TV CUCTAUATOY TeYVNTAC vonuoolvre. To enixevipo €xel yetatomiotel
and TN peyiotomoinon e axplBeloc xan wévo, oty eacpdilon Blapdvelag, epunvevoloTnTAS Xou aflomotiag
— WudtNTEG ou elvon amopaltnTeES 6TAY N TEYVNTH Vonuoolvn yenowomnoleitar oe xploiwoug Topels, 6mwe N
vyetovouixy) mepldohdn. Xe xhvixd mepBdilovta, 1 epunvevciudTnTa anotelel tpobnddeon yio Tnv LioYEéTno
TOV LOVTEAWY, xo(C Ol ETOYYEAUATIEC TOU LaTEO) TOUEN TPETEL VO XUTAVOOUV XUl VA ETUXUPOYOUV T GUANO-
yioter toug. To Blapavh) wovtéha byt wévo evioy oLV TNV EUTIGTOCUVY TWV YENOTOV, dhAd cUUBEANOLY xa
OTNY EMCTNUOVIXT] AVIXFALT], ATOXANOTTOVTAS ONUAVTIXES OYECELS Yéoa o ToAUThoxa Bolatpixd dedouéva.

To nhextpoeyxeparoypdgpnua (EEG) éyer avoderydel we évac onpovuxde touéos epopuoyhc te XAL Adyw
e mepimioxne xar YopuPddous plone Twv eyxegoxwy onudtwy. To EEG magéyel éva un eneufotind xou
oovouxd anodotixd péco mopaxorolinong tng vevpixrc dpactneldotnTag. 201600, 1 avdhucT| TOU TUPUUEVEL
dUoxoAY), e€outiag Tou yaunAol Adyou onuatog mpog Y6pUBOo, TWV PN CTATIXMY WBIOTATWY X TN HEYEANG
petafAnToTnTog etald atdpwy. Ou teyvixéc texyntric vonuooivne —Blodtepa 1 unyavixn wéidnorn xan 1 Bordd
pddnon— éyouv dellel onupavtixés duvatdTntes oty eaywyT ¥eNoWwy TANeo@opLty and to dedouéva EEG, yia
gpyaoleg Omwe N aviyvevon eMANTTXOV xploewY, 1) avay VEOPELOY) CUVALCUNUATWY Xou 1) oTAdloToNGY Tou TVou.
Qot600, N ablopavic QUON AUTWY TV UOVTEAWY TEplopllel TNV xhvixy Toug YenootnTd, xadog 1 Aoyuxn
Tlow omd Tig tpoBAédElg Toug oLy Vd Topauevel acaphc. O teyvixée XAIL cuufdhhouy oTny avTETHOTLON auTod
Tou {ntiuatog, eviomilovTag OYETIXE YOPUXTNELOTIXG, OTTIXOTOWOVTOC TIC dladxaclec AN anopdoewy xou
GUVOEOVTOC TNV AAYORLIUXY] CUAAOYLOTIXY HE QUOLOAOYIXOUE UNYAVIOUOUC.

H napotoa duatp3y) depeuvd tov tpdmo pe tov omofo 1 X AL unopel vo BeATidoel 1600 TNV xatovonon 660 xot Ty
a€lomotio oty avdluon EEG. Luvdudlel xadiepwuévee diadixaciec mpoeneéepyasiog xat e€aywyng yopaxtnplo-
TIXOV Ue epunvedoldeg pedddouc pdinonc. H yehétn epopudlel autée Tic TEYVIXEC GTNY OViYVEUGT] ETLANTTLXGY
%ploEWY —ULol XALVIXE CNUAVTIXT X0 UTOAOYLO TLXG ool TNTLXY EpYaoio— YENOoWOTOLOVTAS Vol UEYFAO oOVOAO
dedouévev EEG avouythc mpooPaorng. Iépa and tny alohdynomn tng anddoaorng, 1 epyoascia SIEGEUVE TOV TEOTO Ue
Tov omolo pédodol e€riynong, énwe 1o SHAP xou  culhoyio x| Bdoet xavovewy, unopoldy va anoxahOPouy Ty
uToXelUEYY) DoY) TWV AMOPACEWY TOU HOVTENOL XL T1 CUCYETION Toug Ue WoT{Ba eYXEQUAXAC DRAC TNELOTNTAS.

Tehixd, n epyacio auty oToyevel va anodeilel OTL 1) epunvELOWOTNTA OEV amoTEAEL amAwg eva BonlinTnd yopax-
TneloTd, oahhd uia amapaftnTy npobnddeon yia TNV eQUpUOY TNG TEXVATAC VONUOCUVNC GTOV LUTEXd TopEa.
Evowyatdvovtog tic apyéc e XAl téoo otn Swdixacio poviehonoinone 6co xou oty allohdynon, n ep-
yooio cUUBEAAEL 0TV avdmTUEN BLapovidy, aVIPWTOXEVTPIXMY CUCTNUATOV TEYYNTAC VONUOCUVNG, IXAVAY Vi
unootneiouy ™ AN xAMVIXOY ano@doewy xal Vo Teowldhoouy TNy xatavdnoy yag yio T Asttoupyla Tou
eYxeQIAOL.

AgZeig-xhedid —  Hlextpoeyxepahoypdpnua, EEnyriown Texyvnt Nonuoobvn, Mnyovix pddnon, Badeld
uddnon, SHAP, Aviyvevon eminmuixody xploewy






Abstract

Recent advancements in eXplainable Artificial Intelligence (XAI) have reshaped how artificial intelligence
systems are evaluated and applied. The focus has shifted from maximizing accuracy alone to ensuring
transparency, interpretability, and trustworthiness—qualities that are essential when Al is used in sensitive
domains such as healthcare. In clinical contexts, interpretability is a prerequisite for adoption, as medical
professionals must understand and validate model reasoning before relying on its outcomes. Transparent
models not only enhance user confidence but also contribute to scientific discovery by uncovering meaningful
relationships within complex biomedical data.

Electroencephalography (EEG) has emerged as a major application area for XAI due to the intricate and
noisy nature of brain signals. EEG provides a non-invasive and cost-effective means of monitoring neural
activity, yet its analysis remains challenging because of the data’s low signal-to-noise ratio, nonstationary
properties, and variability across subjects. Artificial intelligence techniques—particularly machine learning
and deep learning—have shown great promise in extracting useful information from EEG data for tasks such
as seizure detection, emotion recognition, and sleep staging. However, the opaque nature of these models
limits their clinical usability, as the rationale behind predictions often remains unclear. XAl techniques help
address this issue by identifying relevant features, visualizing decision processes, and linking algorithmic
reasoning to physiological mechanisms.

This thesis investigates how XAl can enhance both understanding and reliability in EEG analysis. It combines
established preprocessing and feature extraction procedures with interpretable learning methods to balance
predictive accuracy and transparency. The study specifically applies these techniques to seizure detection, a
clinically important and computationally demanding task, using a large open-access EEG dataset. Beyond
evaluating performance, the work explores how explainability methods such as SHAP and rule-based reasoning
can reveal the underlying structure of model decisions and their correspondence to brain activity patterns.

Ultimately, the thesis aims to demonstrate that interpretability is not merely an auxiliary feature but a
core requirement for trustworthy EEG analysis. By integrating XAl principles into both the modeling and
evaluation process, this work contributes toward developing transparent, human-centered Al systems capable
of supporting clinical decision-making and advancing our understanding of brain function.

Keywords — Electroencephalography, eXplainable Artificial Intelligence (XAI), Machine learning, Deep
learning, SHAP, Seizure detection






Euyaplotieg

H exnévnon tne mapodoog Simhwpatixic epyooiag dev Yo ntay duvaty ywelc ) Borldela xan T cupnapdotooy
0pLOUEVRY VDMWY, 6Toug onoloug xou Yo HieAa Vo EXPEACH TG ELMXELVES UOU EVYUELOTIES.

Apyxd, Yo Rieha va euyaplothion Tov emPBrénovia xadnynth wov, x. Xtduou Iedpyio yia tnv duvatodTnTa
TIOL POV €BLaE Vo aoyorndd ue éva téco evdlagpépov Yéuo. Emmiéov, ¥éhw va euyopioThow xou Toug Lo
proug diddxtopec Avunepdto Baoiln, Ynavo Nixo xon Mevi-Maotpouryahdxn Opgéa, yio tny xododriynon, Tic
UTOBELEELC, TNV XUTAVONOT] XAl UTOUOVY Yiot OAT TNV SLBEXELR TNG GTEVAC CLVERYATLOC OV ElYAE.

Y ouvéyeta Yo Hleha va euyoplotion toug yovelc pou I'dvvn xon Aéomowva, mou ywele v uywer, ndue
%ot VALY UTooTARIEN, TNV EUTETOCUVN Xot oBImEOYATEUTY aydmn Toug TinoTa ond autd dev Yo ftay e@to.
Axbpa, Yo Hieha va euyopiotion to adépgio pou Iavayiwta, GOavdon xa Idcova yio T cuveyr| cuunapEdoTaoT
TOUC X0l TNV IXAVOTNTOL TOUS VoL UE XEVOLV TEVTAL VoL (Yoto) YEND.

Téhog Vo Hdeho var euyoploTHow Tou PIAOUE LOU %o TOUG CUUPOLTNTES O Yo TNV EVidppUVOT), T SLULNTHOELS,
T CLUVERYAGIA TOU HOLRUGTAXOUE OE xGUe GTABLO AUTAC TNE TopElog ohAd oL TOU PEOVTLONY VoL XAVOLY LOVIDIX
T 5 yedVLOL CTIOVBWY.

Kovtég Tedpytoc, OxtodBene 2025
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Chapter 1

Extetoapevn Iepiindn oto EAAN VX

1.1 Ewayowyn

To nhextpoeyxeagoroypdynua (EEG) napopéver évo Baoixd Slayvwotxd epyoreio yio eyxepahnéc nodfoels
AOYw TN U enepPBatic @Oong Tne xou Tng euxohiog yerong. Bondd otov evromioud dSatopoy @y UTVou xot 6Tny
aviyveuon avepakewy TeoTiwy tou oyetilovton ye Ty emindia. Qotdoo, ta ofuata EEG €xouv younhé mhdtog
%ol XOAOTTTOUY TOMAATAEG oLUYVOTIXES LdVeS, XxarhoTdVTag ol BUGXOAN GTNY avdAuoy pe cupfatind epyoheio
Aoytopxol. H teyynth vonpooivn (AI) unopel vor YEQUEMOEL LTS TO XEVS aviyveloVTAS XpUPd TEdTUTAL GTa
dedopéva EEG, enitpénoviog avdhuor oe Tpaypatixd yeovo yio xadfixovta aviyveuone xow tadivéunone [170].

Iopd tic duvatdtée e, 1 Al oty avdduon EEG avtipetwniler wa onpovtind medxinon—rin "padpo xoutl"

poon e [29]. T va elvon a&iémota tor povtéda Al ot otpix] Sidyvwon xaw medyvwon, 1 Sugpdveta elvat
xplown. Elvow amoapoitnto ol anogdoeig vo mpoxUntouy and ouvctaotixd mpdtuna EEG xau oyl and tuyaieg
ocuoyetioelc mou undpyouy ota dedouéva exnaldevonc. X’ autd to mhalolo, 1 E&nyiown Teyvnt Nonuooivn
(XAI) nailer onuavtind pdho, TpocpépovTas TANEOPORIES YLt TN Aoy Tiow and TG ATOPUOELS TMV HOVTEAWY
AT [38]. Ou teyvixéc XA emitpénouvy TNy EpUNVELCUOTNTA TWV LOVTENWY, avTiwetonnilovTag nhixd xow xAvixd
{nrAuota xan evioyvovtag TNy epniotocUvn oty Al atov ydeo e vyetovouxc tepldardne. H XAT evioylel
dlapdvela oTig Slayvaaoelg Poaotopéveg oe EEG, emonuoivovTtag to mo onuavtind YapoxtnetoTixd nou ennpedlouvy
Tic pofhédelc Tou yoviehou. Teyvinée 6mwe 1 e€aywy yopaxtnolotixdy [122] o ol ydptee onuavtixdtntac
(saliency maps) [169] anoxahOntouy notec Wi6tntes Tou EEG xardodnyolv tic anogdoeic tne Al diacgpahilovtag
™ ouugwvia Toug PE puotohoyixéc apyéc. Me v Bektiwon g epunvevciudnTog xou g oflomotiog Tev
povtéhwy, n XAl dieuxoldvel v vodétnon e Al oe mpoypotixés xhivixée epopuoyéc.

H nopotoa epyasio xatnyopionowel xou avaler ti¢ npoopateg egehifelc oty XAl vy avdhvon EEG, emon-
patvovtac Tov Tpémo e tov onolo avtgetwilouvy Baoxéc TpoxAoels ot xatxovia oyetxd ye to EEG, ye tov
TeMx6 oTdY0 Vo elodyel To edlo oToug epELYNTEC PE TPoottd xau xatoavontd teomo. Ilupousidlouye Bidpopa
benchmarks xou cOvoha dedouévwy mou yenoigonoolvial xuplewg Yo TNV agloAdYNoY TNC EPUNVEUCLUOTNTIC
oty avdhuon EEG. Evtonilouye xevd oty tpéyovoa épeuva xon eepeuvolpe pehhovinée xatevdivoels, ue
ot6)0 TNV xadodriynon nepantépw eEeMEewy xau eQappoy®y e eénynoung Al oe autédy Tov Topéa.

ITépo amd v avaoxdémnon e BBMoypapiag, auth 1 iAoty cLUBdAAeL Ue éva TpaxTixd TAloLO Yol TNV
npoenegepyaoia xat TNy e€aywyn yapaxtnplotixey and EEG, npocapuocuévo oto épyo tne aviyveuong emin-
nuxdyv xpioewv. To mhaloo eqoapudletan o éva dnudota dladéoiwo ohvoro Bedopévmy, Tou dpyxd Yenol-
ponojdnxe oto Una Europa Seizure Detection Challenge. Exnoudedtnxav xou aiohoyridnxay Sidpopa wov-
Tého unyavieic pddnong xou Pohde uddnong, tepthopfBdvovtag xhaoixéc npooeyyioelc énwe To Random Forest
o TPONYUEVeES apyltexTovxés Omwe To XLSTM, emtpénovtac pior ohoxhnpwpévn afloAdynon SlapopeTinidy
TopodeElyUdTev woviehonoinong. T tny avtipetdnion tou xpiowou {NTALNTOC NG EQUNVEUCIUOTNTOG, XPNOL-
ponojoope to SHAP yior avdluon avéleons yapaxtnploTixdy xal evowuatdoaue to te2rules, pio xawvotouo
uédodo yio mopory Wy aviedmvol avay VOOUWY XovoveY and extadeuuévo wovtéda. Autéc ol teyvinég e&nyn-
OWOTNTUC TOREYOUY TANEOPORIES YLOL TOL TTLO CTUOVTLXG YUEAUX TNELO TIXA YLl TNV avlY VEUOT) XPIOEWY, YEPUEMVOVTAS
T0 ydoua petal mpoPBhentinhc axpifBelos xou XAVIXTC epUnVEUCILOTNTAG. XuvdudlovTag LoyupY| povielomolnon
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Chapter 1. Extetopévn Ieptindmn ota EAAnvixd

e uedodoug XAIL auth n epyacio tpowdel oyt uévo TNV TEY VX xaTAVONoT) ahhd ETULBLOXEL ETioNE TNV ToEAY WY N
AMOTEAEGUATWY O EIVAIL OUGLUCTIXG X0 OELOTULO T GE TEAYHATIXG LTELxd TAdkoLaL.

H Sopr tne Simhoyatinhc €xel wg e&nc:

o Apywxd mapéyoupe 6ho to anapoaitnTo LTOPatpo oTig Bacnéc UEVOBOUC BEVTELV ATOPAGEWY Xal GUVOU-
aouévev (ensemble) pedddwv pddnone.

e Ailvoupe ta depéhior e EZnyriowne Texyvntric Nonuoolvne (XAI) xa tne avdivone EEG. ‘Eneita,
TaPEYOLPE Lol AeTtTopERY) avaoxomnoy tne Bihoypaplac oyetixd pe tic pedodouc XAI oty avdiuvon
EEG.

e Téhog, avalbouye T uedodoloyio pog, mopéyoviag Aemtopépeleg yio Ty mpoenegepyaoio xou tnv €&-
ayoyh yapoxtneotixdy. Ilapouoidlovue ta anoteréopata 1600 TN am6doone 660 xou TG avdAuoNg
EQPUNVEVCLUOTNTUC XL XATOATYOUUE GTA CUUTERAOUITE oG,

1.2 Oewentixd uRoBadpo

1.2.1 Movtéla PBaciopéva o dEvipa xot MovTéla EVOOUATWONS

Yty nopoloo dimhwyatif epyooia eoTldloude o HovTENa unyavixnc wdinone Baotouéva oe BEVTpa xaL OTLC
enextdoel; toug péow Pedbdwv ouvorwv (ensemble). ‘Eva yepoveuévo dévipo amndgacne elvon edxolo va
xatovonel xou va epunveudel, ahhd cuvidwe utogépet amd vrepepopuoyY| (overfitting) xa neproptopévn axpifeta.
O pédodol cuvdrwyv, 6nwe to Tuyoia Adorn (Random Forests) xou to Gradient Boosting, avtipetwrilouv avtd
Ta TpoPBAApoTa cuvdudlovtog ToANS BévTpa, XAt Tou Yevixd odnyel oe mo aviexTtixéc xou axplBelc npofBiédeic.
Me v mdpodo Tou ypdvou, €xouv avantuydel apxetéc anodoTixéc LAonolfoelc Tou gradient boosting, dmwg
to. XGBoost, Light GBM, CatBoost xo HistGradientBoosting, ot omoleg mhéov yernoionololvton eupéwe otny
TedEn. Iopodtw Teplypd@OUUE GUVOTITIXG AUTE To LOVTERAL.

Aévtpa Andpaong

Ta 8évtpo ano@doenmy anoTehovY AmAd oAXd Loy LR TEOY VKOO TIXA LoVTEAX, Ta omola Ywellouv Tov Yweo Yopox-
TNELOTIXWY OFE TEPLOYES UECK TN EMAVUANTTIXAC BIAOTAONG TeV BeBOUEVKV HE BAOT TIC TWES TWV YUEAXTNELO-
v [25]. Extddvion Wiodtepa yioo TRV EpUNVELUCILOTATA TOUC oL THY XAVOTHTA TOUC VoL LOVTENOTIOO0V U]
yeauuxéc oyéoec. 2otdo0, T UeHoVeUEVa dEVTEa Vol ETEEETY O UNEPTROGUPUOYY Xt LPNAY Sloxduavor),
YeYovog mou to xorho T Aydtepo aviexTind otny medn.

Tuyoia Adorn (Random Forests)

To Tuyaia Adon (Random Forests) avupetonilovy Toug TEpLoptopols TmV UEROVOUEVKDY JEVTPLV OTOPIoEWY,
ouvdudlovtac ToAAG dévtpa oe éva mhaioto bagging [24]. Kdde dévtpo exnoudedeton o éva bootstrap delyuo
TV dedouévev xau ot xdlde didonaon AouPdveton unddn udvo €va Tuyaio UTOGUVOAD YaRUXTNELOTIXGY. AuTA
7 TUYXOTNTA UELDVEL T CUOYETION UeTAl) TwV dévtpwy xan Bedticdver tn yevixevon. Ta Tuyola Adorn yenot-
HOTOLOUVTAL EVEEME AOYW TNG VIEXTIXOTNTAG TOUC, TNG OYETIXA YAUNATIC avdyxne Yo pUdulon TopopéTewy XoL
e toyuenc anddoong oe mowtiia Tedlomv.

Mé9o0dor Gradient Boosting

To Gradient Boosting anotehel pio teyvixs; cuvélou (ensemble), 1 omolo xataoxevdlel poviéha pe dtoadoyixd
Tp6T0, bmoU x&e Véog paldnthc emtyelpel va Slopddoel T opdhyata Twy Tporyoluevwy [58]. Luvdudlel adi-
vopoug ta€vountég, cuviBwe BEVTEN AMOPACEWY, GE EVal LoYUEO TEOYVKG TG HOVTEND Ufow PBeltioTonolnong
Baowopévne oe xhion (gradient-based optimization). Kotd v tekevtodo ewxocoetio, €youv avomtuydel
anodotixéc vhomoloelg tou gradient boosting, ol onolec avtiyetwnilouy {NTAUNTA XAULIXWOLOTNTOC, HAVOV-
iomoinong xodide xan dtayelplong xatnyopxdy petaBAntev. Xty nopovoa Siatpd a&tonotiinxay ol axdhouvdeg
BiBhotxeg.

18



1.2. Bewpnuxd vndBadeo

XGBoost To XGBoost (Extreme Gradient Boosting) anotehel évol omd tar TAEOV EVPEWS Y ENOULOTOLOVUEVAL
mhofoto gradient boosting [28]. Eiodryer xouvotopieg dnwe npooeyyioeig dedtepne tééng yia tnv xhiom, uddnon
evonoUnTomoINUEVY 0Ty apatdTnTe (sparsity-aware learning), xadoe¢ xon amoSotiny Sioryeipion eENMTOY THIDY.
Emniéov, epapudlel teyvinég 6mwe shrinkage xan unodetypoatohndio yopaxtnelotindy, ot onoleg neplopllouy tnv
umepmpocupUoYY. ¢ ex Ttoltou, o akydpruog emdeviel VPN anoteleopaTixdTNTA 68 TEOBAUoTA TEOBAEdYNS
pe Sounuéva dedouévaL.

LightGBM To LightGBM (Light Gradient Boosting Machine) ovantiyOnxe pe oxond 1 Bektivon g
armodotixdtnTag exnaldeuong xou TS xhaxwodtntoc [72]. Xe avtideon pe Ty tapadootont avdntudn dévipwy
xotd enineda, to Light GBM egapudlel otpatnyiny| avdntugng avd gUANo e neptoplopols Bdidous, yeyovde mou
eMTEENEL TN dnovpyio mo cUVIeTWY BévTpwY xat, ouyvd, Ty enitevdn ulmAdtepng axpiBeloc. IlopdAinAa,
Yenoulonolel xotavouy yopoxtneloTxdy ot totoypdupota (histogram-based binning), pewdvovtoag onuavtixd
TOV YPOVO eEXTAUBEVOTC oL TN VAN TOL amatTe(Ton, oTOLYElO TOU TO XAMOTA WBLUTERWS XATIAANAO Yol UEYIANG
HNPoxog oUVORA BESOUEVLV.

CatBoost To CatBoost anotehel ahydprduo gradient boosting o onolog éyel oyediaotel yioa Ty anodotixy
Broryelpiomn xatnyopindy HETOBANTOV Ywelc TNV avdyxn extetauévne tpoenelepyooiog [125]. Ewodyel tny teyvixt
ordered boosting, plo tpocéyyion Pacioyévn oe petadéoels, 1 omolo petpldlet to prediction shift o neplopilet
Ty unepnpocapuoyy. Emniéov, o ahydpuduog embdewcviel toyuey| Pacinr ambddoor axdurn xol HE EANIYLOTH
pUOULOT TAUPAUETEMY, YEYOVOS TTOU TOV XoG T I TERWE YENOWO OE EQPUPUOGUEVA GEVIRLOL WY AVIXAS WaUnong.

HistGradientBoosting To HistGradientBoosting anotehel pio anodotixy vhomoinoy tou gradient boost-
ing, evowpatwuévn otn PModxn scikit-learn [120]. Eunveuouévo oné to LightGBM, ypenowonoel
OTOVOUY| YUPUXTNRLOTIXWY O LG TOYPOUUOTO (OOTE VoL ETUTOYOVEL TNV EXTALBEVOY KoL VO UELOCEL TIC OMOLTH-
oelg oe PviAun. Av xou umokelmetan oe Aertoupyixd ebpog oe olyxplon ue T XGBoost, LightGBM 7 Cat-
Boost, evowpat®vetan anpéoxonta 6To oxocloTnua T scikit-learn xan nopouvoldlel avtoywvio Ty anédoaon
oe oUVoAa BEBOUEVLV PECloL peYEVOUC.

Yuvdvaocpoc Movtéiwy (Model Ensembling)

Ou pédodor cuvéhwv (ensemble methods) cuvdudlouv morhamAid povtéla ye otdyo v enitevln xoAlTEENC
TPOY VWO TiXc anédoone oe oyéot Ue Toug pepovauévous tadvountée [35]. To bagging pewdver ) Swxdyavon,
unohoyilovtog Tov Yéco 6po twv mpoliédewy and aveldptnTo Lovtéha, Ve To boosting uewdvel T pepohnia
péow e Sdoynic Bertinong Twv mponyoluevey to&vountdyv. M dAAN oTtpatny cuvéiwy, to stack-
ing, ouvdudlel etepoyevy) povtéha Ue TN yerio evoe peta-tadvounty (meta-learner), dote vo BektioTonoloet
v mpoyvwoTixy axplBela. Autéc ol mpooeyyloeic €youv amodetydel Wiaitepa anoteAecpaTiXéG o Sounuéval
TaumovAdplouéva dedouéva, 6mou Ta ensembles cuyvd Eenepvoly e am6B0CT) TAL HELOVOUEVO LOVTEAL.

1.2.2 E&nyrowun Texyvnty Nonuooivn
Boaowéc 'Evvoieg

H E&nyhown Teyvnti Nonuoolvn (Explainable Artificial Intelligence — XAI) nepthoufBdver uedédous xan
TEYVIXEC TOU €YOLV OYedoTEl DOTE Vo XUTACTACOLY XOTAVONTEC OTOUC avlp®dNOUC TIC ATOQPACELS XAl TG
npoPAédelc twv cvotnudtey Texywntic Nonuoolvne (TN) [37]. Koabdade ta «poadpa xovtdy (black-box) pov-
kot TN yivovtor ohoéva xou mo duadedopéva oe xplowoug topelc, 1 avdyxn yio epunvetoiun xan diagpoavy TN
éyel auéndel avardywe [61]. Ov npooeyyioeic XAT embidxouv Vo l60ppOTHOOUY aviuesa oTny Topoyr ened-
NYHoEWY xatavontoy and Tov dvipnno xo oTn dotipnoy woyuphc anddoone tou woviehou [106]. Ou yédodot
auTég Pmopoly va xatnyoptonomndolv pe Bdon Sudpopes Blc TAoELS: TNV TPOGEYYION EQUNVELCOTNTAS (EX TLV
voTépwy — post-hoc évavtl ex Twv mpotépwy — ante-hoc), 1o edpoc e e€fiynone (ol — global évavt ton-
e — local), tov T0mo e€fynone (amoddoelc YUPUXTNELE TIXWY, XAVOVES, TUPODELYUATH, OTTIXOTOOELS) XL TNV
eZdpTnoh, Touc and TV apyLTEXTOVIXY Tou woviéhou (aveldptntec and to poviého — model-agnostic évavt
eZeWBXELUEVLV Yio cLYXEXPWEVO LovTého — model-specific) [13].
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Katnyopieg

IMpoocéyyion Epunvevowwdtntac Mia Paoin didxpion yivetow petall post-hoc xou ante-hoc epun-
vevootnrag. O post-hoc teyvinég e@oappolovton HETE TNV exTaiBEVsT) TOU UOVTENOU, TEOGQEROVTAG ENEENYNOELG
yior TOAOTAOXAL «podpal XOUTLEY Péow pedddny dtwe to LIME [132], to onolo mpooeyy(lel Tomxd ta dpla omd-
gaonc. Avtideta, ol ante-hoc mpooeyyioelg divouv TEOTEPUOTNTA OE EYYEVHS EPUNVEUCIUA LOVTEAX, OTWS T
dévtpa anogdoewy 1 ol Moteg xavovey [84], dtou 1 hoywr| Tou poviéhou elvon Stopavhc ex oyedlaouol ywelc
™V avdyxn npodcletwy puedodwy enegiynong.

EuBéreia tng EEXynong  Mio oxdun Yepehicddng dudxpion agopd tny euPéleia twv enyfoewy: maykdopa
évavtt tomkdy. O nayxéowes eENyHoEC 0TOYEVOLY Vo amoca@nvicouy Tn cUVOAXY hoyxr Mdne anopdoewv
EVOC UOVTENOU, TIOREYOVTAC EOVAL YIO T YEVIXY| TOU CUUTERLPORE UEGE TEYVIXADY OTWE 1) €0y WYY XAVOVKY 1 Ta
unoxatdotato povtéra. Ot tomxée e€nyfoelg, avtideto, enxevipdvovtol o PEPOVOPEVES TpofAédels, evTomi-
Covtag ta yapoxtnelouxd # tor delypoto Tov aoxoly T peyahltepn emppor [132]. "Etol napéyouv Aentopept
euxova, Wlftepa yerowun oe TeplTAOXES 1| xplOIUEC TEQPLTTWOELS.

TOrog EZxymone Ot e&nyroeic pnopolyv va AdBouv Sidpopec poppéc. O pédodol anddoong yopaxtnplo-
TNV EXTOVV TN SLVELGPOPS XdVe elodBou ot W TedBhedn [155], eved ot uedodoloyies Baoctouéves oe xavdveg
Topdyouv epunvelotwous xovoves amdpaone [171]. Ou e€nyfoeic Pootopéves oe mopadelypata ypnowonololyv
TUTIXG 7 avTiopoETIXd SElYUATO YIol VO ANELXOVIGOUY TN CUUTEPLPOPd Tou LoVTENOU [T6], eV oL Teyvixéc o
TIXOTOINONE TPOGPEEOLY BLUGUNTIXES AVITOPAUC TAGELS TWV SLOBLXAGLWY APNE omopdoenmv, Wiaitep ¥pHoWES Yid
dedopéva exdvac 1 ofuartog [106]. H emhoyh tou timou e&hynone e€aptdton ocuyvd and to nedio epopuoyic,
TO EXAOTOTE £0YO0 XL TIC AVAYXES TWV YENOTOV.

EZdptnomn and tnv Apyitextovixy tou Movtélou O pédodol XAl propolv eniong va dioxprioly
Bdoel tne e€dptnotic Toug and o unoxeiuevo povieho. O aveldptntec and to poviéro (model-agnostic) uédodot
AVTETWTICOLY TO HOVTERD W «UadEo xoUTLy, avallovTag WoVo Tig ElGOBOUS xau TI¢ €€680U¢ Ywels TedoPao
oe ecwtepés mapopétpous [90]. Tétoec npooeyyioeis, 6nwe to SHAP xou dhkeg pedddoug nov Basilovian
oe diotopayéc (perturbations), mpoo@épouv eupeior QoPUOCETNTA GE BLOPOPETHOUS TOTOUS HOVTERWY. Av-
tideta, or eZedixeupéves v cuyxexpyéva povtéla (model-specific) pédodor a&iomololv v ecwtepiny dout
CLYXEXPWWEVWY ahyopliuwv—0omwe ol pédodot nou Pasilovtal oe xAoELS YLot VELPWVIXE BiXTUL—TIPOXEWWEVOL Vol
napaydyouy o axpeic epunveiee [142].

Teyvixd JsueNld ELEEWS Y PNOLUXOTOLOVUEVELY TEYXVIXKOY XAI

Ye auvtiy Ty unoevotnTa Togoustdlovton To TEY VXA Yeuéhio Twv Théov Bladedouévey uedodwy XAl tou yenot-
ponoolvtan oty avdivon EEG. Avahbovian ol Yewpntixés Slatundoelg xou ol Booixé e€lomaoels, TapéyovTag
To amopoitnTo undBadpo. O texvinéc mou eletdlovtan elvon or TAéov ouvndiopéves oty epappoyr) XAl vy
avéiuorn EEG.

SHapley Additive exPlanations (SHAP) O twéc SHAP anotelolv éva eVOTOUEVO UETPO GNUOLV-
TIXOTNTOG YopaxTNElo Xy, Bactopévo oty Yewplo mawyviwy, to onolo e€etdlel mide dapopetinol «mofxteg»
(xopoxtnploTind) cugPdihouy otn ouvolix anddoon [90]. T v a&loddynon evog delypotog, xdde yopox-
meo o AopPdver wa iy SHAP ntou Belyvel tn oetin| Tou Guvelsopd ot AP TNE andoomg ToU LOVTEROU.
O enlonpog opioude divetan amd:

sitay= 3 LR g e o)

z'Cx’

6mou x givon to mpog e€Aynon delypa, f to povtého, i To yopaxtneloTixd tpog alohdynor, M o oaprduode Twv
YOUEOXTNPLOTIXAY Xl ' TO SUVORO GAWY TWV TWHAVEOY UTOGUVOANY /TApoANXY (Y TOU .

Local Interpretable Model-agnostic Explanations (LIME) To LIME anotehei piot tomxd, aveEdotntn
and To povieho pEdodo mou mpooeyyilel Tomxd €va cUvieto Talvounth ue éva gpunvelolpo TpdTuTo (TLY.
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Yoouuxd povtélo 1 8évtpo) [132]. O otdyoc eivan 1 ebpeon evie epunvedoltou povtéhov g € G to onolo elvou
Touxd motd otov Poaoind tadivounty f. H e€¥ynon mpoxdntel and v enihuon:

{(r) = arg Igrgg L(f,g,7)+Qg)

omou x elvon o mpog e€Xynon delyua, £ UETES TNV TOMLXT TPOGEYYLON TOU g TEOS TO f OTNV TOTXOTNTA OpLoUEVT
ond g, xou 2(g) Twpeel TRy Todumhoxdtnta tov g. To LIME nopdyel e€nyfoeic oto eninedo twy dedouévwy,
yenowonowdvtae datapoyée (perturbations) twv yopaxTNEIOTIXGY UE BEOYN OTUTIOTUXS YAUPUXTNPICTIXG TKV
dedopévev exmaldevonge.

Gradient-weighted Class Activation Mapping (Grad-CAM) To Grad-CAM éyel oyedoTtel yia
oLUVEAX TG VELpwYIXS BixTua (CNNS) xou YENoWoToLEl TG TUPOY(YOUS TOL PEOLY OTO TEAEUTAO CUVENXTIXG
en{nedo yio vor amodwoel onuavTdTnTe ot Yweixés Véoelc Tou ydptn YopoxtnetoTixdy [142]. O cuvteleothc
ONUOYTIXOTNTOC Yid TOV k-00TO Y3eTn YopoxTNELoTiXdY Xl TNV ¥Adon ¢ unohoyiletal wg:

1 0S.(x)
O/g o Z Xl:zj: afk(‘f)%]

6mou Z 0 ouvolde aptdude ywexdy Yéoewy otov ydpn, Se(x) N Baduoroyio (score) tne whdong ¢, xou fr(x); ;
7 evepyomnoinon ot Véon (4,5). O Grad-CAM ydetne deppdnroc yio Ty xAdom ¢ diveton and:

ME™d (1) = ReLU (Z ok fk(m)>
k

onou 1 ReLU Swogarilel 6L hayfBdvovtar unddn uévo detinéc cuvelopopéc.

DeepLIFT (Deep Learning Important FeaTures) To DeepLIFT npotdidnxe we pio avadpopunr| pédodoc
epunvelag teoPrédewy yio dixtua Bardidc uddnong xow otoyelel oty extiunon e oNUavTXdTNTAC ELGHBLY OTIC
mpoPréderc [146, 147]. To DeepLIFT ypnotponolel TONATAACLIOTES TOU TEPLYEAPOUY T LETABONT Twv €630V
6ty ol elcodot dlapépouy amd éva onuelo avapopds. H wbiotnTa «summation-to-delta» SatunmdveTon wg:

i CAri,Ao = Ao

i=1

6mou o0 = f(z) 1 €€odog tou povtéhov, Ao = f(z) — f(r), Az, = x; —r; xou 7 10 avogopxd (reference) input.
To DeepLIFT avijxel otig tpoctetinés (additive) peddbouc anddoone yopoxtnptoTindy.

Layer-wise Relevance Propagation (LRP) H uédo8oc LRP eivan o teyvixt| Baciopévn otnyv omododid-
Boom vl TNV xatavopr| e «oyetixotnracy (relevance) e mpdBredne ota ewoepydueva vevpodvia [15]. ‘Omnwc
emonpodvetar oto [147], to LRP elvon toodivapo pe 1o DeepLIFT otny mepintomorn émou ou avapopxéc evep-
YOTOOEIC OAWY TV VEUROVWY Tidevtal 6To Yndév. Xtny npdén, to LRP anodidel Tiwés oyetindtntog niow and
ToL eN{mEdA TOL BIXTVUOL YEYOVOC TOL ETUTEETEL TNV TomixY| epunvela Tng cupfolric xdde ewobdou. To LRP enlong
avixel ot TEoa¥eTIXéC HEVOBOUS OmOBOCTC YoUPAXTIEIC TIXWY.

AZLoNoYTMon pedodnwy XAI

H o&iordynon twv uedddwyv XAl topouével pla tohimhoxn oAl Tautodypova ouotwdng daduacio. Mia aroteleo-
patxer] a€LoAGY NN OPElAEL VOl LOOPEOTEL AVIUESH TNV TUOTOTNTA TG EENYNONS WS TEOS TNV TEOYUOTIXY AoYIXT
TOU HOVTEAOU X0 GTNV EQUNVELCIUOTNTO Xou YENooTNTd Tne Yo Tov avipdnivo yerot [37, 65]. Ilocotixd
pétpa, OTMWE N TOTOTNTA, 1) TANEOTATA XaL 1) AVUEXTIXOTNTA, TEOCPEPOLY OVTIXEWEVIXEC EVOEIZELS YLl TO OGO
xahd ot e€nyfioeis avtixatonteilovy 1 cuUTERLPOEd Tou povTélou [173], eved ToloTxéc aZlohoYhoelc—ouyvd
HEOW UENETMV YENOTMOY—EXTIHOUY TNV EUTUOTOCVHVY, TN XENOTXOTATO XoU TN YVWoTxT| Toug Aoywdtnta [111,
92].  Auth 1 ditth amadtnon eivon Waitepo xplown otic epoppoyéc EEG, émou o e€nyfoeic mpémel va efvon
Oyt povo tEYVIE 0p¥éc 0AAG xat VEUPOETUG TNUOVIXE ouctaoTixée [137]. Enopévwe, elvon avoryxaio 1 Omopln
TEXUNPLLUEVLY Thatoiwy alohdynong, wote vo emhéyovta ol pédodol XAI mou evioybouv 1660 1 dlagdvela
600 %O TNV TEOXTIXY TOUG YENOWOTNTA GTO TEB(0 TNS VEUROUTEIXOVIONG.
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1.2.3 E&nynown Teyxyvnty Nonpoolvrn xow Avdiuvor HAextposyxegalo-
Yeopnpatog
Egappoyéc EEG

To nhextpoeyxeparoypdpnuo (EEG) éyer avadewydel oe éva evélixto epyaheio tdéo0 oe xhvixd 660 o
oe epELYNTXE TEPBEANOVTA, TEOCPEEOVTUC TOMITIUES YVOOELS Yol TN DpAoTNELOTNTA TOU EYXEQPAIAOU OE E€val
evpl Qdoua eopuoyny. Ot e@apuoyéc autée exteivovion omd TNV WTEWr dLdyvwoT) €we TNy oAnienidpoon
avlpdnou-untoloyLoth, cuunepthopfavouévng Tne tapaxololinong Urvou Yo alohdynon atadiey xou aviyvevon
drotoparydyv [133, 1, 164], tnv aviyveuorn emhnriindv xpicewy [133], ta Sienogpy eyxepdhou-unohoyioth 6nwe o
P300 [78], tqv avayvopion cuvaiodnudtey [174, 68, 124, 30], tnv anoxatdotoon UeTd and eyxe@alixd ETEGH-
dio [143], v avdhuon e oylogeéveros [31], ) Swyelpion e emdndiog [27], xou v extiunon e vonthc
x6nwong [181].

YOvola Acdopévmy

H epeuvntinr) xowvdtnta €xel xadiepmoel opxetd cOvolo OeBouévwy ovapopds YLol oUTEC TIC EQUPUOYEC,
BLEUXONOVOVTAC TNV VTP YUY EPEUVOL Xal OUCLAC TEC ouyxploel anddoone. Ta épya mou cuyxevtphvov-
Tol 0NV ToEoNoA ETLOXOTNOTY) AELOTIOOVY oplouéva Boaoixd clvola dedouévev EEG, to onola xahdntouy mouxileg
epapuoyéc. Meléteg mou agopoly Ty mapaxoioliney Umvou yenoiworowly cuyvd to Sleep-EDFE xou SHHS
yioe Ty T vépnor otadiny Utvou xou Ty aviyveuor dnvotog [60, 126]. H avayvdpion cuvaiodnudtwy Bacileto
oto SEED xou DEAP vyio v avdhuor cuvaicdnuatindy xotactdoeny péow npotinwy EEG [177, 77]. Ldvola
dedouévev yio ) uellova xatodhimtier Sotapoyr), 6nwe T HUSM xou MODMA, napéyouv EEG bedoyéva
yior TV avdhuon dwatapoydv didbdeone [108, 26]. H aviyvevon xpioewv ofonoel o CHB-MIT, TUH corpus
ot Bonn datasets yio Tov evtoniopd emthnriixdv enetcodiowv xou Ty tadvounon xeloswy [112, 10]. H épeuva
UVNTIXAC amexdvione yenolpomolel Ta obvola dedouévewyv BCI Competition yio tnv anoxwdixonolnor veuplxmy
onudtewy oe denagés eyxepdhov-vnoloyloth [157]. H mpdBhedn eyxepoiixol eneicodiov vrootnpiletou ond
to Acute dataset yio povtehonoinon mpdyvwone [8], eved ol uehétec oylogpévelas Booilovtar 6to chvolo de-
dopévwv UNM o IBIB PAN, ta onola suvdudlouv EEG xat anetxovio Tixée VEUpoemo Trovixés pedddoug [153,
113]. O Hivaxag 3.1 cuvoilel to cUVORA SESOPEVKV XAl TA YUOIOAOYIXE TOUG CHUNTA.

ITpoxAYoeig

H avéluon twv cuvorwv dedopévev EEG éyel e€ehiydel and tig nopadootaxés npooeyyioeic unyovixrc uddnone
(machine learning) oe mponyuéves apyltextovixée Badide uddnone (deep learning). Evd ou xhaoixée uédodol
pnyoviic wdidnone [135] tpoopépouy epunvelotues ANICELS UECW YEROTOMTMOV YUPAUXTNELG TIXMY, Ol oUYYPOVES
TeyVixéC Pothide uddnong €youv emdellel avddtepy anddooT oTNY aUTOUATY EEXYWYT| YOPUXTNELO TIXDY XAl OTNV
avayvoplon teotitwy. Ta Zuvektind Nevpwvind Aixtua (Convolutional Neural Networks — CNNs)[162,
96] Swmpénouy oY eEAYWYT YWEXOY YAUpOXTNEC TIXGY, Ve Ta Avadpowxd Nevpwvind Aixtua (Recurrent
Neural Networks — RNNs)[123] xou ta Ablxtua Moxpde Beayunpddeoune Mvhune (Long Short-Term Memory
— LSTM)[75] anoturdvouv amoteheopotind Tic ypovixéc e€opthoelc ota ofjata EEG. O npdogatec eZehii-
el mepthopPdvouy TReWwéc Apyrtextovixée (hybrid architectures)[180] mou cuvdudlouv ToAAATAES TPOCEY-
yioewe, xodoe xow Movtéha Tonov Transformer (transformer-based models)[79] nov aionolodv unyavicpole
autonpocoyfc (self-attention mechanisms) yu 0 poviehonoinon paxponpddeouwy elopticewy. To Boowxd
Movtéha (Foundation Models)[32] anotehodv v mo npdogatn eEENEN, UE OTOHYO TNV TOPOYT| LETUPEROUEVHV
avonapactdoewy EEG o mohhanhég epyooiec.

Qotéo0, mapd TNV EVIUTWOLOXY TOUG AndBOCT, AUTE To TEONYUEVO UOVTENX GUYVE AELTOURYOUV ®C «Uodpd
xouudy (black boxes), yeyovdc mou eveipel avnouyiec oyeTind Ue TNV EPUNVEUCILOTNTO Xl TN SLopdveld TOUG.
O meproploude autodg elvon Wiaitepa xplowog GTIC LTEXES EQUPUOYES, OTOU 1) Xartavénan tne Staduxasiog Adne
ano@doewy elval oualaoTxY yior TNV xAvixt| vlovétnon. H mpdxhnon aut avadewviel tn Slopxcds augavouevn
onuaota Twv texvixdy Enegnyfowune Texywnthc Nonpootvng (Explainable Artificial Intelligence — XAI) oty
avéiuorn EEG.

Egappoyéc XAl otnv availuvorn Hhextgpoeyxegahoypapripatog

H noapoloa epyaocia avahber Sidpopes pedddoue Encgnyfoune Texyvnthic Nonpoolvne (Explainable Artificial
Intelligence — XAI) nou egoapuélovion TNy avdAUCT NAEXTPOEYXEPUAOYPAPHUATOS, HATNYOPLOTOUIVTOS TLG HUE
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1.2. Oewpnuind unoBadpo

Table 1.1: Datasets used in EEG analysis with XAI insights.

Task Dataset Physiological Signal
Sleep-EDF [60, 73], EEG, EMG, EOG
Sleep Monitoring Sleep Cassette [60, 73] | EEG, EOG, EMG
SHHS [126, 60] EEG, EMG, ECG, EOG
CHAT [131, 98] n/a
Emotion Recognition SEED [177] EEG
DEAP [77] EEG, EMG, EOG, BVP
DENS [14] EEG
Major Depressive Disorder | HUSM [108§] EEG
MDD [107] EEG
MODMA [26, 145] EEG
Seizure Detection HUH [150] EEG
CHB-MIT [160] EEG
TUH corpus [112] EEG
Bonn [10] EEG
Siena [34] EEG
UBMC [167] EEG
UCLEEG [3] EEG
Motor Imagery BCI IV 2a [157] EEG, EOG
BCI IV 2b [157] EEG, EOG
BCI 111 IVa [36] EEG
EEGMIMID [60] EEG, EMG, EOG
Stieger2021 [151] EEG
Stroke prediction Acute [8] EEG
Schizophrenia UNM [153] FMRI, SMRI, EEG
IBIB PAN [113] EEG

Bdomn v npocéyyion enc€Rynong, to ebpog, Ty e€dptnom and 1o Yoviého xai Tov tono enedhynong. Kohin-
TOUUE ex TV VoTépwy pedddouc (post-hoc methods), 6nwe 1 andotadn poviéhou (model distillation) xou
7 omoYodiddoon (backpropagation), xadde xou poviéha epunvedoiuo ex oyedioouot (interpretable-by-design
models). Awxpivoupe petalld olxdv (global) xou tomxddv (local) enelnyfoewy, aveZdptnioy ond To Uov-
wého (model-agnostic) xou e€elBixeuuévey Yia cUYXEXPWEVO Lovtélo (model-specific) ued6dwv, xon eZetdloupe
Tonoug enedRynomne mou mepthopBdvouy anodboels yapuxtneotixy (feature attribution), npooeyyioec Baoto-
pévec oe xavovee (rule-based approaches) xou teyvixée ontixonoinone (visualization techniques), 6ho oto
TAaiolo eQappoYOY Nhextpoeyxepahoypapruatoc. H avdluorn urnopel va Swofactel oto unoxepdioo 3.3.4
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Figure 1.2.1: Talvéunon npoceyyioewv XAl otnv avdluon EEG.
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Chapter 1. Extetopévn Ieptindmn ota EAAnvixd

1.3 Ilpotewvouevn Medosoloyia

Ye authv v evétnta, mapouctdloupe Tic Yedodoroyiec mou axohoudlnxay TOGO Yl TNV EMGXOTNCT| TWV
ued6dwv XAl oto EEG 600 xou yio To mpoBinuo tng aviyvevong xploewyv. Ta anotehéoyota Tne emoxdnnong
TapouaLdo Ty oty 3.3.4. T'a to mpdBinua g aviyveuong xploewy, Tol JOVTERS EXTUBEVOVTOL UE YUPAUX TNELO-
Tixd mou e€dyovtan amd ofuata EEG, ECG xauw EMG. X1t cuvéyela, epapudlouye 800 dwpopetinés post-hoc
ped6d0oug EMEENYNOIUOTNTOS YLOL VO XAUTOVOHIOOUUE TIS ATTOPACELS TWV LOVTEAWY.

Apywd, emonpaivoupe tic x0plec cLUVELCPORES NS TapoLoaC BtatptBc Xo Xatémy eENYOUUE AVAALTIXE TG
pedodoloylec mou oxoloudrinxay.

1.3.1 Xuvelcpopd
Ot ouvelogopéc autrc Tne datpifric elvon TOAAATAES xou YmopolY Vo cuvoPLoToLY K¢ &R

o E€etdloupe dhec tic oyetinée teyvixéc XAl oty avddhuon EEG étol, n pehétn yac mpoo@épel 6Toug
EPELYNTEC Ui CaPY) ELXOVA TNG TEEYOVTUS XuTdoTaone Tou nediou xan evtonilel mdovd epeuvnTiXd XEVA.

o Ilopouctdleton Lot OAOXANEWUEVY OVEAUCT] TV TEdcPaTwY Tdoewv xou e€ehifewy otnv XAL yio Ty
avéluon EEG. H yehétn mopéyel yio emoxdnnon twv Yeyehndov epyaoldv EEG, xataypdeer to dio-
Véowo oOvoha dedouévmv xou Tpoteivel o dounuévn tadvounon twv pedédwy XAl

o Ilopouctdlouye yio epunvetour pedodoroyia yior Tohutpomxr aviyveuon xploewy YeNnoWHonoudvIaS ot
pata EEG, ECG xoaw EMG. H npotewvépevn npocéyyion ollonotel teyvixée npoeneiepyacioc xou e&oy-
WYHS YAPUXTNPLOTIXWY Xl ETUDEVUEL aviTERY) ambdooT oe clyxplon Ue Ti¢ ouufotixée uedodoug Bathdcg
uddnone.

e Me Bdon tnv avdAuon eneEnynooTnTAS, AVaBEXVIOUUE TA TILO GHHOVTIXG YOEUX TNELOTIXE TTOU GUUBAANOLY
oTtny aviyveuon xploewy.

1.3.2 AxolouvYolpeveg Medodohoyieg
Enioxonnon wedddwv XAl cto EEG

Ye autiv v evotnta mopoucidloupe TN pedodoloyila mou ypnowomojinxe Yyl TNV EXTOVNOY HLIC
ohOXANEWUEVNC XL cLCTNHATXAC emoxdmnone TS BiBAoypagpiag oyetnd pe Vv egopuoyyr Tou XAl otnv
avéiuon EEG. Eexivdue ye to epeuvnTind epwTidota mou xadodniynooy Ty Epeuvd Jog, ETELTO TEPLYPAPOUUE
TN OTEATNYIXY) ETAOYHAC TWV EPYUCLOV X0l ONOXANEWVOUUE UE TO TAXGLO TOU YENOLLOTOLUNXE Yiol TNV avVEAUGCT
TWV CUYXEVTPWHUEVWY UERETOV.

Epeuvntixd Epwthuata H nopoloa pehétn emxevipdvetar otn Siepedvnon tou porou tou XAl otnv
avdivon EEG, anavtodvtag oe Boaoixd epeuvnuind epwthpgata mou e&etdlouy tig pedodous, TS EQUpUOYES Xol
Tig euplTepeg emntwoelc tou XAI oe autdv tov topéa. To mopoxdte epeuvnuxd epwtiuata xadodnyoldy tnv
EMOXOTNOT:

EE1l: Iloieg sivaw ov Baocixéc wedodor XAl nmou yernoiponotobvtar otnv avdivorn EEG;
To epwtnua auTd AnOoKOTEL OTOV EVIOTOUS XU TNV XAUTNYOPLOTOINGT TWV TEYVIXOV EQPUNVEUCLUOTNTOS TTOU
epappolovtar oe yerétec e Bdon to EEG. Méoo and tnyv eZétoom autdv twv pedodwy, 1 pehétn emdudxel
VO TOOGPEQREL ULl ONOXATPWOUEVT] ETLOXOTNOY) TOU TEOTOU UE TOV OTOL0 EVOWHATOVETAL 1) EPUNVEUCIUOTNTA OTNY
¢peuva EEG xau moleg mpooeyyloeic elvor ol mo Sodedoyuéveg.

EE2: Ye noieg cuyxexplpeveg epyacicec avdivong EEG €xouv egapupootei wébodolr XAI;
H avéivon EEG nepihopfdvel éva eupl @doua eQappoyoy, dmwe aviyveuon emAnNmTixey xploewy, Taglvouncn
otadiewv Uvou, extiunon Yvwotixol @deTou xal avayvoplor cuvaionudtony. To gpdtnua autd dlepeuvd Tig
dldpopec epyaoiec oTig omoleg €youv epappootel Texvinés XAl avadeixviovtag Tdoelc, TPOXANCELC XAl XEVA OTT|
dlardéoun Pihioypacpla.

Méoa and Ti¢ anavTHOELS OTO TORATAVE EQELVITLXG EPWTHUOTO X0 T CUVORLXY) UG AVAAUCT), ETLOLOXOUVYE ETLONG
VoL ToPOUGLEGoUPE Tt eldouc epLoptapol UTdpyouy oty epapuoyY Texvixwy XAl otov topéa tou EEG xau moteg
nepautépw mpooeyyioeig Yo pnopodoay vo Teoc@épouy 0QEAT Yol LEAAOVTIXT EpEUVAL.
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1.3. Ipotewoéuevn Medodoroyia
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Figure 1.3.1: Medodohoyia ylo Tov evtomioud dpdpmv.

Selected
Papers

Initial Paper
Pool

Irtpatnywxr Avalhtnone BiBhoypagpiac H otpatnyur avalitnonic yoc oxohotdnoe 800 mopdhin-
Ae¢ mpooeyyioeg yio T dnwovpyio wiag apyixAc oLAloYRC dpdpwy, 1 omolo ot CUVEYELN QUATEURICTNXE UE
Bdon tn ouvdgelo tithou xan meplhndng wote v mpoxddel To Tehxd cUVOAO ToU PERETUNXE oE ouUTH TV
emoxéNnom, omee onetxoviletan oto Lydua 1.3.1. H oulhoyh tne apywic opddoc dpdpwy mepuhdufBove (1)
otoyeuuévee avalntioelc o eTEYPEVa ouVEdpLa/ TepLlodnd xou (2) yevixée avalnthoelc pe hé&elc-xhedid oe
HeYdhee axodnuoixés Pdoelc dedouévnv, oe ouvduaoud ue backward xou forward snowballing yia tov eviomoud
oxeTwy gpyoaotwy. H apyu) culhoyy Twy 151 dpdpwy utéoty diadacia @uktpapioyatoc ue Bdon tithoug xau
nep\iele, amodidovtac tehxnd 66 oyetixd dedpo.

Eexwvioope pe avalhtnon ota npoxtixd tou World Conference on Explainable Artificial Intelligence pe toug
6pouc “EEG” xou “electroencephalography” xou yenowonowjoaue backward xou forward snowballing yio v
enextelvoupe To apyixd Yoc clvolo dpdpwy. Auth 1 Swadixacio aroxdiude emmhéov Baocixolc emoTnUOVIXO00E
ywpouc —o6nwe IEEE ISBI, IEEE EMBC, IEEE BIBM xa IEEE NER— oi omnolol dnuociebouy epyaoieg
ot dotadpworn XAl xaw EEG. T xdlde ydpo, mpoyuotonotooue cvotnuatx avalitnon dnuoctedoewy
yenowonounvtag Aé€eig-xhedid oyetixéc pe XAl xow EEG xou egapudooue ex véou snowballing yio tn Siedpuvon
TOU GLVOAOU JOC.

H 8eltepn npocéyylon neplhduBave epwThaTa oe Ueydheg axoadnuoixéc Bdoeic dedopévwy, 6twe PubMed, Sci-
enceDirect, IEEE Xplore, Springer xoau Google Scholar. Xenowonowioope 10 (810 00voho AEEewV-XAEWBLOY
oxetxmyv pe XAIL xaw EEG yio tnv avdxtnorn oyetxodv dnpooteboswy. ‘Onme xou otny mpdtn Tpocéyylon,
epappocope snowballing yio Tov evronioud npdcietwy dplpwy and g PBMOYEAPIUES AVUPORES XOL TG TOPO-
TOUTEC TWYV AVOUXTNUEVOY EQYUOLOV.

Metd ) ouyxévipwaon e dpyxhc cuhhoyhc twv 151 dpdewv, npaypatonoloaue dadixacio pihtpopiopatog
Bdoer tithou xou mepihndne yia vo Bektiotonotioovye Ty emhoyn. Awooue TEOTEPUOTNTO O UEAETEC TOU
evduypopuilovtay dueco pe to epeuvnTixd Wog aviixeipevo, e€aopoiilovtag eupela alhd oyetind xdhuvdn e
draotadpwone XAI xou EEG. Emmiéov, mpotiuiinxay dplpa mou mopelyov coupr netpopoatiny texunpiwon 1
xavoToueg pedodohoYnés cLUVELGPORES, BonddvTag PG Vo EGTIECOUUE G UPMANG TOLOTNTAS XAl OUGLUCTIXY
€peuvaL.

Aviyveuon xploswv

H pedodohoyio Eexwvd e to ohvoho dedopévwy Seizel T2 [20] we eloodo. To cuyxexpyévo chvoho dedouévewy
emhéydnxe, xadwe anotéhece 1 Bdon yia To Una Europa Epilepsy Data Challenge, npocgépovtog éva xa-
Hepwuévo onueilo avapopds yio TNV €peuva GTOV TouLa NS aviyvevong xploswy. Emniéov, mpdxeito yio éva
HEYAANG h{poxac oUVOLO BeBOUEVKY TTOL TEpLAAUPBAVEL YIAMABES HPEC TOANUTROTLXMY XATAYPAPY, O)L Wovo EEG
odhd xow EMG xaw ECG onudtwy. H xhipaxo xan n mohutpomuxt| tou @bon to xadiotolv Wbialtepa xatdiinio
Yior TNV AVETTUEN AVIEXTIXWY XAl YEVIXEVOWWY HOVTEAWY.

To enduevo oTddl0 TN Bladixaciog agopd TNy mpoemelepyaoia xou TNV eEoywyr| YUEAXTNRIOTIXWY, T OTOld
npoetodlouy To dedopéva yia TNy exnaideuct Twy poviéiwy. To otddio autd eivan xplowo, xodoe ta axatép-
yooto ofjuarta elvon cuyva YopuBodn xot, ywelc emapxr eneepyaoia, uropel va anoxpvdouy avtl va avadei&ouy
onuovtxd mpdtuna. Kotd tnv mpoene€epyaoia, ol cuveyelc xotarypapés TUNHATOTOLOOVTAL GE TopdUuLpd GTo-
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Chapter 1. Extetopévn Ieptindmn ota EAAnvixd

Yepol unxoug xou BiépyovTal amd QLATEAELoUO YLot TNV anopdxeuveT JopUBou %ol TEYVNTOY TURUULORPPOCEDY,
egaopaiifovtag 6Tl N emoxOAoLDY) AVIAUGT] ETUXEVTRPOVETOL OE QPUOLOAOYIXE CIUAVTIXG GUGTUTIXE TOU OYUAUTOG.
Y ouvéyela, epopudleton eEaymYT YUPOXTNELOTIXWY Xat ond TiS Teels xatnyopiec onudtwv (EEG, ECG xou
EMG), odnyovtag oe évav mhodoto mohudidototo mivoxa dedopévwy. Tao eloyduevo yopoxtneloTind nepthopt-
Bavouy CTATIOTIXG UETEA, YEOVIXEC IBLOTNTES, UETEPNOELC TOAUTAOXOTNTAUS XOL (PUCUATIXG YOQUXTNEICTIXE Tou
TEOXOTTOUY o SLoPOPETIXES GUYVOTES LMVeq.

Aot npoeTolpacToly To dedopéva, Tor eEoYOUEVOL YAPAXTNEIO TIXE YENOULOTOLOUVTOL Yiol TNV EXToUdeVaT xou afi-
ONOYNOT HOVTENWY pnyovixhic wdinone. Atgpeuvdton par Touhiar TaEvounTiy, e oXoTd TOV EVIOTUOUS EXEIVLV
TOL EMUTUYYAVOUV TNV xahlTepn Loopporio HeTadd TEOYVKOGTXNE anddoong xa epunvevadtntac. Ewdwdtepa,
divetan éugpaon oe pedddouc Paciopéves oe dévtpa xan o uedodoug ouvdrny (ensemble), 6mwe Random For-
est, XGBoost, Light GBM, CatBoost xoa HistGradientBoosting. To povtéha autd elvan Wbialtepa xotdAAnia
Yo TOAUTEOTUX DEBOUEVA OE UOPPY| TLVAXWY XAl TEOCPELOUY TO TAEOVEXTNHA TNG Olayelplong Un Yeouuixwmy
OAANAETULOPACEWY Kol ETEROYEVHV YopoxXTNEIo Y. Emmiéov, oe olyxpion ye «podpo XOUTIEY, TEOGHEROVTAL
TEPLOGOTEPO YL TNV EQPUOUOYT] TEYVIXDY EPUNVEUCULOTNTOC, YEYOVOS TOU Tol Xorho T8 18aviXY) ETLAOY N Yial XALVIXE
oevdpLo 6mou adlapaveic tpoliédelg dev Yo Yitav anodextéc. H éugaon divetan oyl uévo otny eniteuén udninc
axp(Beloc aviyvevong, ahhd xou oty avdntuérn LovtéAny mou Yo unopoloay vo eumio tevdolv xan va eAéyEouv
oL xhwvxol yatpol oty medln.

Téhog, 1 pot| epyooiog OhOXANEOVETAL YE TNV AVEAUCT] EpUNVELCLUOTNTOC, 6ToV EQopUolovTal BU0 GUUTANEWL-
poTiéc ex Twv uoTépwy (post-hoc) teyvixée yia Ty epunveia TV extoudeupévey povtéhwy. Apyixd, yenot-
porowlpe to SHAP ce 6ha ta poviéha, dnwoveydvtac SHAP beeswarm plots mou mapéyouv gl cuvolut
EXOVA TNG ONUACIOC TOV YUEaXTNELOTIXGY, xad®g xou Ty xotebtuvon xa to uéyedog tng ouufolrc xdde
Yopoxtneio Tixol ot npofiédeic. Me autdv Tov TpbTo, evioniloue Syt HOVO oL YoEUXTNELGTXE elvol To TTLo
xadoplo Td, ahhd xou g ot THég Toug emnpedlouy Ty mbavotnTa aviyvevong xplong. Emnhéov, epapuolovue
to TE2Rules ota povtéha XGBoost xoaw Random Forest, e€dyovtac xavovee gvavdyvmotoug and tov dvipwno
and aUTOUEC TOUC TAELVOUNTEC.

Yuvodilovtag, n uedodohoyio €yel oyediaotel Mote Oyl uévo va xotooxevdlel axplPr wovtéio aviyveuorng
xploewy, ahAd xou vou divel EupocT oTn BLUQAVELL XoL TNV EPUNVELCLUOTNTA Ot Xdde GTAdLO NS Porg epyaolag.
Me tov cuvduaoud Bedopévwy avapopds, TONUTEOTIUXMY YOUPUXTNPLOTIXGY, TUELVOUNTOY PaoIoUEVeY o8 GOVORA
XL EQYUREIOV EX TWV UCTEPWV EPUNVEUCIUOTNTOC, 1) TEOCEYYLOT €ELG0pEOTEl TNV TPOYVWOTIXY Loyl UE THY
v onpocto. Muo Aettopepnc teplypagt) xdde atadiou g pedodoroyiag, wall ye Tic melpopotinég puduloeig
xou ToL omoteAéoparta, mapéyetan oto Kepdhowo 1.4.

1.4 Ileipapotixd Meépog

1.4.1 30Ovolo Acdopévwy
Yet Acdopévwy SeizelT2

To povtéla mou napovaidlovton e auTh T Blatelr) exnadedTnXay o a&lohoyHINXAY YENOULOTOLOVTAS TO GET
dedopévwy SeizelT2 [20]. To oet dedopévmv nephauBdvel xataypapéc and 125 acdevele, cuvolxic didpxetac
nepinov 11.640 wpwv @opnt®dy dedopévwy, mou cLAEyUnxay oe mévte dlagpopetixéc Eupwnoixéc Movddec
Iapoxorotinone Enindioc. T'ia toug neplocdtepous cUUUETEYOVTES XaToypdpnXay TECCERLS DLOPOPETIXES LOp-
@éc ofuatog: bte-EEG, ECG, EMG xau 6edopéva xivnong. ‘Ola To Sedopéva TwV GUUUETEYOVTWY TepthauSdvouy
popenté bte-EEG. Xe nocootd 3% tou suvéhou, ta dedopéva ECG, EMG xou xivnong dev xotorypdgpnxay Adyw
TEYVIXOY GQOAIATWY 1) TeoBAnudtwy otr pldwon.

To oet dedopévwy elvon avouxtd xou yenowonodnxe otov diaywvioud Seizure Detection Challenge, o omoiog
opyavednxe ond to KU Leuven oe ouvepyaoia ye tnv Una Europa, ye otdyo tnv avdntun xouvotouwy xou
aviextxdy mhauciwv pnyavinic pddnone (ML) vy v enelepyacio dedouévev EEG, pe tehxd oxond v
aviyveuon emANTUXOY xploewy. LouQwvo e TS 00NYieg TV BLopYoVKOT®Y, Ol XATAYPAPES TwV TEWTwY 96
CUMPETEYOVTWV Yenotdoroinxay yio extaddevon, eved ol undloimol i adiohéynon. H tehund| alloldynon
Tparypotonotfinxe oe éva xpuPd GOVOAO BOXULMY.

Io Ty egopuoy? auty), 8ev ftay e@utd vo tpayuatonoindel exnaideuct) o OAEC TIC YIAADES WPEC HATUY APV
CUVETWG, yenotwomolinxe wévo éva unochvoro Yo exnofdeuor. Emmiéov, 1o oet dedopévwy elvon Evtova un
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1.4. Iewdpotxd Mépoc

LooppoTnuévo, xadne mepthaufdver Alyeg dpeg emANTTXOY Xploewy oe cOYXEIOT PE PEYIAES TERLOBOUS Ywpelc
xploec. Ta xataoxevaouéva utochvoha dedouévny nepthdufBovay dheg Tig Teplddoug mou elyay emonpovdel wg
enelobdlol xploewy, xadne xou tuyola emAeyuéves Teplddoue ywele xploec. EZetdotnxay tpelc Adyol xploewv
npo¢ pn-xeloeig: 1:2, 1:10 xon 1:100. It v a€lohdynomn yenowonotidnxoay GAeC oL XATUYPAUPEC TOU TEQLAG-
Bavay xdte poppt) ofjuatoq.

Karalinska University
Hospital

. iq?????:i
17

University Hospital Leuven
PHIITT 00000
!!”!”!” 2282 ! RWTH University of Aachen
prRRRRRNYY c::: @ sasss
Tt §§ vee L1111

L 15 5

Freiburg University
Medical Center
T
Coimbra University Hospital thEiiiRieg

iiiiiaiig
LU AL

=
—

-

21

22

Figure 1.4.1: Apududc ovypeteydvrwv avd EMU nou cuunepthayBdvovton oto SeizelT2
EunAoutiocpndc Asdopévwv (Data Augmentation)

Mio cuyvh tedxhnon oty avdiuor Blolatexdy onudtony, 6twe ta EEG yia v aviyvevon xplocwy, elvon 1
TEPLOPLOUEVT] TIOLOTNTAL X0 TOSHTNTA TwV dtardéotuwy dedouévwy [67]. Xto oeT Jedopévmy Hog, Ol XoTaypapEs
TEOEEYOVTOL AMd (POPNTEC CUOXEUES, OL OTOLEC TUEEYOLY YOUNAGTEPNS TOLOTNTOC OEBOUEVA, EVE 1) CUVOMXT
Oudpxela TV enclcodlnwy xploswy elvar oyetind meploplouévn. Xtn datelBh) auth, nelpapoatioTnxo we chvola
0edOUEVLY T600 e 600 xa Ywelc eumhoutiouéva dedopéva xploewy.

H teyvued| epmioutiopol Tou yenoworonidnxe fray 1 B pe exeivy tou topovoidleton oo [67]. Tuyxexpyéva,
eQopuboTNXaY LToxaTdoToTe PEow Metaoynuoatiopol Fourier (FT Surrogates), wio podnuotixd pédodog mou
petaoynuotiler yia ypovix cuvdptnor, 6mwe éva ofpa EEG, oe cuvdptnon cuyvétnrac. H yetaoynuatiouévn
avamapdotaon (Y pdope) Teocpépet iol EVOANAX T VEMENGT TeV BEBOUEVLV X0 avadetXVOEL BLOPOPETIXG YopaX-
TNELO TS Tou UToxeluEvou oruaTog.

Ta FT surrogates anoteholv wia WBialtepr) Lop®n eUTAoUTIONO0 BEBOUEVKY, OOV TUPAYOVTOL VEX UTOXATACTOT
ofuota péow Tuyaiag avodidtadne Twy @doewy tou Metaoynupatiopol Fourier tou apyixol ofjpatoc EEG.
Enuovtind elvar 6Tt 1 Stadxacion oty Slatneel To @dopa oyVog, SNAUDY TNV XOTUVOUY TNG EVEPYELNS TOU
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ONUATOC OTLC BLAPOPES GUYVOTNTES, BLUPUAACCOVTIC TLC CUVORLXES BOUIXES LOLOTNTES TOU dpYIXOU GHUATOC, EVE
peTaBdhher TNV Yo opYdvwon (m.y. axoloudia xou ypoviouds yeyovotwy) [67].

H yprion tov FT surrogates e€unnpétnoe 6o Pooixols oxomols. Apyixd, adinoe to péyedoc twv cuvdlwv
exnafdeuong, dnuovpydvtag neplocotepa delypata xploewy. Tavtdypova, mpocédece mowahion oo chvoha
BedoUEVLV, EMUTEENOVTAS OTa WoVTERX Vo pddouy va avayvwetlouv xploelg oe gupltepo Yaouo GUVINXMY.

IMpoeneicpyacia xaw ESaywyn XapaxtneltoTixmy

Extracted Features

e

,_,,_7—*-”"_7/_7; e~ T
—— // ~

—— -

Statistical measures Temporal features Complexity measures spectral features

Figure 1.4.2: Xoapoxtnpiotuxd nou e&fydnoav and 1o EEG ofua
Ou npoceyyioeic mpoene€epyaoiog xar e&aywyne yopoxTELOTXWY Tou Yenotwonoidnxay otn Satedr auth
Baolotnxav oe yelétes i v aviyveuon xploewv and @opntd dedouéva [67] xan yia v TeéBAedn vroTinwy
petatpoupatixic Satapoyfic dyyous oand EEG oe xatdotaon neeplog [85].

Apywd, to dedouéva EEG unoPMidnxav oe {wvorepatd guhtpdpiopa (band-pass) petold 1-100 Hz, dote va
dlatnendoly oL cuyvoTXéS CUVIGTWOES Tou oyYeTI{oVTaL TEQICOOTERO UE T1| BPAoTNELOTNTA TWV XPloEWY, EVE
Towtdypova agapédnxay apyéc mopexxiioelc xou vPnAne cuyvétntoc BopuBoc. Egopudotnxe eniong notch
¢pihtpo ota 50 Hz yio v eZdhewdrn twv mopgeyPforddv and to nhextpxd dixtuo, ol omolec elvan cuyvée oe
wAVES eyypapéc. Metd To @uATpdploua, To CHUATH YweloTnXay OF U1 EMXAAUTTOUEVO Ypovixd Tapddupa
didpxetag 1 deuteporéntou (epochs), ToEEYOVTOC GUVETH YEOVIXE BLOG THUOTOL YIol TOV UTONOYLOUS YUpOXTNELo-
v, Afpdnxav urnddn teec avahoyies xploewv mpog un-xeioeig (1:2, 1:10 xon 1:100) yia Ty avTyeTdmioN
NE EYYEVOUC AVIOOPEOTHAS TWY XAJCEWY, xou Yo xdde avahoyio, dieiydnoay telpduota 1600 Ye 660 xaL Ywelc
augnuéva delypata xploswy, dote va allohoyndel 1 enidpaon e enéxtaone dedouévwv (data augmentation)
oTNY AndB00Y] TWV LOVTEAWY.

Metd tnv npoeneiepyaoia, oy dfixay yopaxtneloTixd ond dhes Tic poppéc dedopévwv (EEG, ECG xou EMG),
ONULOVEYOVTAS WLot TAOVGLOL AVATOEAC TAUOY) TWY BESOUEVLY Yo ToL HOVTEAX Unyovixic pddnone. Ta yopoxtnplo-
T xoTnyoplonotinxay oe T€0oEpLe BACIXEC OUEBES: CTATIOTIXG UETEX, YPOVIXS YOPUXTNELO TIXE, HETEA TTOAU-
TAOXOTNTAC X0 QPACUATING. Y oEaXTNELO TiXd. ATO X0LVOU, AUTE To YAEAUX TNELO TIXE XAUTOY PAPOUY GUUTANEWUTIXES
TANEOPOPIEC OYETIXA YE TN DLAVOUT] TWV ONUATWY, TN SUVOULXY TOUG, TN U1 YEOUULXOTNTA XAl TO (QUCHATIXO
nepleydpevo. ‘Evo olvodn twv e€ayduevwy yapaxtneio txwy napovotdleton oto Lyua 1.4.2, eved Aentopepelc
TEQLYPAPES BIVOVTAL OTIC EMOUEVES TOPOYPAPOUG.

Toa otatioTnd pétpa mou yenoworotfdnxay Atav 1 tumx andxiorn (STD), to eviotetaptnuoplaxd edpog
(IQR), n acuppetpio (Skewness) xou 1 xOptwon (Kurtosis). H STD xa to IQR yenotponowodvtan yia thy xota-
yeapn tng petofAntotntog péoo ota ofpata EEG. H STD avtixatonteilet v uéon andxhion twy dedouévwy
and tov péco 6po, eved to IQR Belyvel v e€dmiwon tou yeoalou tpRuatog twv dedouévwyv. H acuypetplo
%ol 1) ©VPTWOY TMEPLYPAPOLY TA YUPAXTNELO TIXE TNE XaTavoung TdavdTnTog ToU ONUATOS: 1) ACUUMETRlO UETEAEL
Vv acuppetela TS xatavourc, evd 1 x0pTwor a&lohoyel To BEEOS TWV 0UPMY TNC XUTAVOUNS OE OYECT UE TNV
HOVOVIXY] XAUTAVOUN.
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To ypovixd yopoxtnetotixd mou avolbhdnxay nephauBdvouv tov aptdud diacyloewy undevéde (zero crossings),
v xvntixotnta Hjorth (Hjorth mobility) xou tnv nolvmhoxdtnta Hjorth (Hjorth complexity). O Swoyioeic
UNBEVOG TAUREYOLY EXTIUNCT) TOU PACUATIXOV TEQLEYOUEVOU TOU GHUATOC, EVE oL topdueTeol Hjorth Aettouvpyoiv
WC TEPLYPAUPXS PETEOL TWV YORUXTNELOTIXWY Tou ofuatoc. Ewlwodtepa, 1 xivnuxdtnta aviixatontellel tn uéon
ouYVOTNTA 1) ToV pUBUS HETABOATC TOU CHUATOC, EVE 1) TOAUTAOXOTNTA BelyVEL TOCO %0VTd HoLdlel To ool UE
ot xodapy) NULTOVOELDY| XUUXTOROE(T.

To yétpo tohumhoxdtnroc mepthdufovay ppoxtalxés diaotdoel (fractal dimensions) xau evrponieg (entropies).
Ot @poxTohxés BlaoTAoELS XATAYPAPOUY TIWC TO eninedo Aentopépelac TV dedouévwy uetafdhheton oe dlapope-
Tixéc xhlpaxeg, eved 1 eviponia tocotixonolel Tov Badud TuydtnToc N anpdBAETTNC CUUTERLPOEAS TOU GHUATOC.

To pooyatixd yopaxTneloTxd, 6tne 1 oydc (power) oe Sdgopes evepyelaxéc Ldvee (Delta, Theta, Alpha, Beta
xou Gamma) e&fyInoav enione. To ofua EEG ywpeiotnxe oe Swgpopetinés ouyvotxés Loves xou petphdnxe
N amohutn xou oyetiny) loylg ot xdlde Lavn. O mévte xavovixég ouyvotinés Lwveg opilovtan o e€nc: delta
(1.25—4 Hz), theta (4-8 Hz), alpha (8-13 Hz), beta (13-30 Hz) o gamma (3049 Hz). Enione, unohoyictnxe
xau 1) avahoyla theta/beta.

To ouorta EMG @uitpopiotnxay pe {owvorepatd gihtpo 20-450 Hz yior Ty amogdxpuven TexvTeyY XVACE®Y
xat YoplBou LPnirc ocuyvdtnTag, xou epoupudécTnxe notch @idtpo ota 50 Hz. ¥tn cuvéyew, ywplotnxay oe
enoyéq Oudpxelag 1 Seutepohénto ywplic emxdhudn yio e€aywyn yapaxtnetotix®y. Troloyiotnxay delxteg dmwe
tetpdywvo péone pilac (RMS), Méorn andiutn T (MAV), Pudude Awoyicewv tou Mndevie (ZC), uhixoc
xupatopopeic (WL), xadde o otationuxd pétpo (STD, Awxdyavon).

To ofuara ECG mpoene€epydotnray ye Lwvonepatd @ihtpo 0.5-50 Hz yia amoudxpuvern Baohc yetotomiong
xan BoplPou udmiic cuyvotntag, o notch ¢iktpo ota 50 Hz. Awywplotnxav o emoyég 1 Seut., and Tig
onolec e€hydnooay oTatioTind xou puotohoyxd yopuxtnetoTxd. Extoc and Baoxd otatiotind (uéon T, STD,
RMS, Auwaxdyavon, e0pog xopughic-xopuphic), EQapuostnxe aviyveuotn R-xopupdy, pe tnv ontola extiufdnxay to
Sotiuato RR xou o xapdioxde pududc. Troroyiotnxay enlone péoo RR, tumxn andxhion RR o otiyptalog
%nopdlaxde puiude, mopeyovtag TANEooples yia TN Beoyumeddeoun duvouixy) Tou xapdloxol puioL.

1.4.2 Metpuxég

H a€lohdynon twv poviédwy pag Boaciotnxe otn cuvdptnon Baduohdynong mou yenowponodnxe enlong oto
Seizure Detection Challenge. H cuvdptnon auth Baotletan otic petpinés g evonodnoioc (sensitivity) xon tou
Adyou Teudorv Tuvayepudv (False Alarm Ratio - FAR). Ou petpuée autée elvon iadtepa xatdhAnhes yia ep-
yooleg aviyveuone emANTTIXGY xploewy, ol onoleg anoTeAoLY £VIova UT| loopeOTNUEVE TEOBATUATO TagVOUNoTS
AOY® TNG OTAVLOTNTAS TWY ENELCOBIWY Xploewv ae GlYXELOT UE TIC HEYIAES YpOoVixég Teplddoug ywplc xploelc.

EvatocOnoia

H evonoinoio petpdron oe eninedo yeyovotwy, medypa mou onuaivel éti 1 anédoaon aloloyeiton oto eninedo
ohOXANPWY ETELTOBIWY XploewV xal Oyt ot emuépoug tapdiupa tpéBAiedne. Me autdy tov Tpdmo dlacpoiiletal 6T
N 3 onuasia e aviyveuong xploewy aviixatontelletal oty allohdynom, Xl 1) anwAELd EVOS ETELGOBIOU
elvar o xplown amd v andiela evég povo mopadipou. Ia tov unoloyiopd e svancdnoioc epapudleton 7
pédodoc any-overlap (OVLP) [179]. Xlugwvo pe ty OVLP, éva True Positive (TP) xotoypdgeton dtav 1
TpoPienduevn unddeon Exel onoladnnoTe ypovixr emxdAun ue To avtioTolyo YEYOVOS xpiong oty emonueinon
avagopds. ‘Evo False Negative (FN) ocuuBaiver étav dev undpyer xoplo emxdhudn. H pédodoc auth elvan
emienc, xadde axdun xou Yepix) emxedudn utoloylletal wg EMTUYAS avlyveuar, Yeyovog Tou odnyel cuvidng
oe LPNAOTeEpee TéS evanodnolag ok utoexTd Tov apldud Ty Peuddy aviyvedoewy.

Adyoc Teudov uvayeppov (FAR)

O Jeudeic ouvayepuol (FAs) avtiotolyolv o€ EGQUAIEVES ALY VEVOCELS OTIOU TO LOVTENO TpofAENEL EvaL ENELCOBLO
xplomng To omolo dev emxoAUTTETOL UE Xoplol ETLONUACUEVT Xplon oty avapopd. Avtl vo avagpépeTon 1) eldixdTnTaL
(specificity), 1 omolo elvon Mydtepo evnuepwtinf ot eEoupetind un oopponnuéve. clvola dedouévamy, yenot-
poroteltan 0 Adyoc Weuddv Tuvayepumv (FAR). To FAR vnohoyileton wc o aprdude twv heudne detindv
OVLYVEUOEWY XOYOVIXOTIOMNUEVOS WEC TEOC TN OLdpXELl TNG Xataypophic xou ex@pdletar we optdude Peuddv
ouvaryepudy avd dpo (FA/h). Xy allohdynot| pag, ot FAs unoloylotnxay pe ™ pédodo Baduohéynone mou
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Baoiletn oe enoyée (epoch-based, EPOCH) [179]. Xe authv tn pédodo, 1600 1 avapopd oo xou 1 vddeon
dloxprtonolobvTaL o€ N emxoluntéueves emoyée otadephic didpxelas. Kdde emoyn yopaxtnelletan we xplon/un
xplom, %ol ToL COANUAUTO HATAYPAPOVTIOL KC ELCAYWYES, DAYPUPES 1| AVTIXUTACTAOELS, Ue OAaL Tol GQAAUATY VoL
€youv (oo Bdpoc. Autd mapéyel Wa o cuVTNENTXY exTiunon Twv Peud®y cuvayeppdy ot clyXplon UE TNV
OVLP, yewhvovtog Tov x(vduvo unoextiunong 1wV ecQalIévmy aviyveUoEWY.

Juvéetnon Baduwordynoneg

I var emtevy Vel wwopponio avdpueoa otny LdniA evoucinaia xou otov younhd pulUS Peudy cuVAYERUNDY, LIO-
Yethoaye 1 cuvduao T cuvdptnon Paduoldynone mou oplotnxe otov dworywviowd. H evanodnoio utoroyiletou
pe t pédodo OVLP, evey 1o FAR extipdon pe tny enoyixd npocéyyion (EPOCH). O tehinde Badude vrohoyile-
Ton ¢ €vag oTadUoUEVOS GUYBLACHOS TwY d00 UETEXKY, PE évay cuvtekeoth Bapbtntac 0.4 va epapudleton
oto FAR @&ote va e€ioopponniel n enppon tou oe oyéon ye tnyv evaonoia. To anotéheopa elvon évag eviafog
delxtne anddoong mou emPBeafedel to povtéha To omolo vty vebouy e adlomiotio To EnElooBL Xploewy ywpels va
Topdyouy LTEPBOAXS aptiud Peudldv cuVAYERUODY.

Score = Sensitivity(%) — 04x LA
N— ———
OVLP EPOCH

1.4.3 Ilepuypapy Ileipapdtmy

It v exnoidevorn xow a&lohdynoy twv poviehwv yenowonotiinxe éva AWS EC2 instance eomhouévo pe
GPU. Okec o1 a€lohoyrioelg mporyotonoidnxay GTo UTOGUVOAO TWV XUTAYROPMY TOU TEPLElOY TO TAHPES
olvoho twv popedv ofuatoc (EEG, EMG xa ECG), dote ta goviéla vo Unopody va oElonoticouy TNy
TOAUTEOTUXY TANEOQOplaL.

Movtéha Mnyavixne Mddnong

Figure 1.4.3: Movtéha Mnyoavixiic uddnong mou yenoylomotfinxoy
Ta poviéha pnyovixic udinone exnawdedtnxay oc cUVoha SeBOUEVWV UE TOL YELPOTOINTO YOEUXTNELOTIXG TTOU
neptypdpovron otny 5.1. 'E& exdboeic xdle povtélou exmoudednrav: yio xdde Aoyo xploewy mpog un-xploelg
yenowdomolinxe évo GUVOLO BeBOPEVLY UE eviayupéva delyparta xou éva ywelc. Kdde éxdoorn afiohoyninxe oe
TOMATAG XaTdPALaL Yiot TV Ta€LlvounoT evog Selyuatog we xplor, xou emAEYUNUE TO XATWEAL PE TNV XOAUTEE
anddoar,.

To nepdpoata Sieghydnooay ye ) yeron Sapdpwy HovTEAY unyavixic udldnong, ouyxexpwévo XGBoost,
Light GBM, CatBoost, Random Forest xou HistGradientBoosting, xodd¢ xou cuvduaoudv autdv pe pedo-
doug ensemble. ITo cuyxexpéva, a&lohoyinxay d0o npooceyyloeic ensemble. H npotn nepihduBave dha to
TpoavapepIEVTO HoVTERA, VK 1) deUTERT) Teplopio Txe ota Tplo pe TNy xohUTeen anédoor: XGBoost, CatBoost
xar Light GBM. Kou otic 800 nepintwoelc, 1 vhonoinon Baclotnxe oe otpatnyiny mheongoixic Prgou, omou
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xdde govtého mpolAémel Ty xhdom yio Eva dedouévo Selypor xou 1 ¥Adom mou Aopfdvel Tig TEpLocOTERES Yripoug
emhéyeTtan we TeEAxT é€odoc.

Movtéha Badide Mddnonc

Ye avtideon ye to povtéda pnyavixhc uddnong, ta wovtéha Bodidg wdinong exmoudedtnxay oameudelag ota
npoemeéepYaoUEVa YpOoVoaoElplaxd Bedouéva, ywelc va anotobvtan yelponolnta yopoxtnplotxd. dotdoo, ta
povtéha Bohide pddnong amétuyay va eTTOYOULY TNV AVOUEVOUEVY) AnOB0aT), UTOATODBOVTIC o8 OYEan UE TG
npoceyyloeig unyovixic padnone.

GDN To povtého GDN npotddnxe oo [33] xou anoteel éva Graph Neural Network xatdhhnho yio aviyvevon
aveUokloy o TohuuetoAntég ypovooeipéc. H vhomoinom tou yovtélou elvon dlardéowun avolytd oto GitHub.
Kéde xavih EEG, ECG, EMG xow MOV Yewprdnxe x6ufog oto yedgnua Tou veupwwixod dixtiou. To povtého
elye oyedaotel yio dedouéva diapopetind and Brochpata. Emniéov, ta dedopéva EEG nepiduPovay wdvo dbo
XOVAALYL, PE omOTEAECUO Vo dnuovpyolvTal ehdytotol x6ufol oto GNN. Autol ou Adyol xotéotnoav to GDN
OXATIAANAO YOl TO CUYXEXQPUEVO €pYO.

xLSTM To povtého xXLSTM anotehel enéxtaon g tumxnig opyttextovixric LSTM xou npotdidnxe npdopaurta
and toug [18]. H ulomoinor tou elvon eniong Siodéoyun avorytd oto GitHub. T toug oxonolc tng napoloug
epyooiag yenowonojoaue tnv exdoyr) xLSTMBlockStack, n onola éyetl oyedlaotel eldixd yio eopuoyec Tépoy
e Yhwoowtc eneepyaotag. Iopd tov eknmbopdpo oyediaoud tou, TO HOVTERO BeV TETUYE IXAVOTOLNTIXG
OTOTENECHOTO OTA TEWPAUATE HOC. LUYXEXPUEVA, Tapousiooe €vtovo uneprtpocappoyt, (overfitting), yeyovée
IOV TEPLOPLOE GNUAVTIXG TNV IXOVOTNTE TOU VoL YEVIXEVEL GE [T 0patd Bedopéval xan Tehxd To xahoTd avomote-
heopotind yia o €pyo aviyveuorne xploewv emindlac.

EZnyrnoipnotnta

INo va anoxticouye xahbtepn xotavonon tng Swodixaciog AMPNe anopdoenmy TV LOVTEAWY, YENOWOTOCUUE T1
BBhotxn SHAP, n onola napéyer enelnyroeic yio Ty andédoor yopuxtnoiotuxey. Emniéov, 1o TE2Rules [81]
epappootnxe otoug talvountéc XGBoost xauw Random Forest, emtpénovtag v eaywyh xavévwy andpacng
XATOVONTGY omd Tov dvipwro. Autd ta epyolela pog enétpeday Vo EpUnVEVGOLUE XAADTERO TOUS UTOXEUEVOUG
UMY OVLOUOUE TWY HOVTEADY XOL VoL EVTOTGOUUE Ta TiLo OYETWLOUEVO YOpaxTNELoTIXd Yl TNy aviyveuon xpioewy
emhndloc.

Ané ) BBhodixn SHAP afonoiiooue to beeswarm plot, pla oOvietn xou mholola oe TANpo@opleg anelxovion
oV Tev SHAP ntou anoxelimter Gyt u6vo 1 oxeTXr] oNUacia TOV YopaXTNELO TNV, 0AAG XOL TIC TEOYUOTIXES
Toug oyéoelg Ue To TpoflAenduevo anotéheoua. Eva tapddetyuo beeswarm plot gotveton 6to 5.3.7. Xe éva t€T0l0
dudrypaupa, xdle onueio avtiotolyel o plo xataypopy Tou cuvolou dedouévwy, pe tn ¥éon Tou otov oplldvTio
d€ova vor umodnidver Ty T SHAP xou to ypmdua Tou vo avTovaxAd TNV opylxh TWY TOU YpoxTNelo TixoU.
H anexdvion auty| Yog EMLTEENEL VoL THPATNEOUIE TAUTOYPOVA TOCO LoyLUEd EMNEEdlel Ve YopaXTNELOTIXG TNV
ATOPACY) TOU HOVTEAOU, TNV XoTeVTUVOY NG EMIBEACHC TOU XU TNV XUTUVOUY AUTOV TwV ETOPACEWY O OAA
To Oelypata. Q¢ ex ToldTOUL, To beeswarm plots mopeéyouy Pl GUVOTTIXY AAAE OAOXANEWUEVT EXOVOL TWV GUVE-
LOPOPMY TWV YOLUXTNELOTIXWDY, XUHNOTMOVINS To LOLETEPA YEAOLUO Yol TOV EVIOTIOUS XUPlUEY WY TopAYOVTWY
TEOBAEPNE Ao YL TNV XATAVONGT TV IAANAETUSRACENY Y ORUXTNELO TIXOV—UTOTEAECUATODY.

1.4.4 Amnoteléopata
1.4.5 Amnddoonm

Avtn) n unoevétnta mapouctdlel ¢ xoAUTEpES emBOCEC Tou emTedy UMY Yiow xdle avahoyla exmaldevong,
droywellovtag tar povtéha mou exmoudeltnxay we avinuéva delyporto (augmented samples) ond exelva Tou ex-
naudedTnray ywelc enéxtaoy Sedouévewy. Luyxelvovtoc autd To AnoTEAECUATA, UTOPOVUE Vo dELOAOYCOLUE
NV enidpoor TS avicopEoTiae TWY XAECEWY TNV andBOCT TWV HOVTIEAWY, XOMOC XL TNV ATOTEAECUATIXOTN T
NG TEYVIXTG EMéEXTAONG Oedouévwy. Emmiéov, to anoteAéopato aUTd EMTEENOUY TN BlATONWOY YEVXOTERWY
CUUTIERUOUTOV OYETIXA YE TOL OYETIXS TAEOVEXTAUOTO X0tk ABUVOHIES TV OELOAOYNUEVLY UOVTEAWY.
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To povtého pe v xohOtepn anédoom Htav to cbvoho (ensemble) twv XGBoost, CatBoost xou Light GBM.
To endueva toyvpdtepa woviéha frav o XGBoost xou CatBoost, evey 1o HistGradientBoosting xotéhafe
younhotepn éon petald twv tallvountdyv. Emmkéov, mapatnpolue 4TL 0TI TEPLOCOTEPES TEQLTTWOOELS, To
povtéha mou exnoudebTnray pe avoroyia 1:2 métuyoav Ty xahltepn anddoaon. Autd anodldetal oTo YEYOVOS OTL
n avohoylo auth Bonldd 0TV AVTIETONLOTN TNS EYYEVOUS AVLOOPEOTIAS TV XAACEWY GTO GUVORO dedopévwy,
emTEENOVTOG 0TouC Tadlvountéc va Staxplivouv xahltepa tor delyparta xploewy and ta un-xplioewv. otdoo, N
enidpaon e mpoc¥nxng auENUEve delyudTewy Slopépel omd LOVTEAD GE UOVTENO.

XGBoost

O xohOtepeg emdOOEC TwY dlapdpwy wovtéhwy XGBoost, avdioya pe v avaroyia exnaidevong xan T xeron
emowénuévwy dedouévwy (augmented data). H vdmhdtepn andSoomn emtedydnxe pe o Loviélo mou exnoudedtnue
670 oUVOAo Bedouévwy ue avahoyio 1:2 xou meptAduPave emauEnuéva delypora. Xuvolxd, o tadvountic XG-
Boost napoucioce wxtd anotehéopota oTiC dLdpopec avaroyieg xou enadénong dedouévmy.

LightGBM

H xahOtepn andédoon emtedydnxe and To povIEAo Tou exmoudebTnxe ue avoroyio 1:2 ywels enavgnuéva delypota.
Fevixd, 1 anddoor Behtiwvdtay xadoe 1 avaroyia auiovdtay, evéd Tol LOVTENN TOU EXTAUSELTNXAY PE ovohoylo
1:100 Bev xatdpepay Vo EXTEAECOUY EMITUY WS TO €pyo. Emmiéoyv, Ta LoVTEAR TOU exToudebTNXaY Ue enaunuéva
delyparta mapousiocay otadepd yoaunhdtepn anddoon oe clyxplon Pe exelvol TOU eXTOUBEDTNXAY UOVO UE To
apyLxd dedouéva.

CatBoost

To CatBoost mapoucidlel avtidetn ouuneptpopd oe oyéon ue to Light GBM. Xe autr tnv nepintwon, n anddoon
Behtudvetar xodde PELOVETOL 1) avohoyid, Xo OTIC TEPIOTOTERES TEPLNTACELS 1) EXTaldeuo e emowénuévo dely-
pator amodeevieTon w@EAUr. To poviého e Ty xohltepn andédoor HTay autd Tou eXTAdENTNXE 0TO GOVORO
dedouévev pe avoroyia 1:100 xou mepiduPave enavénuéva delyyora.

Random Forest

Y nepintwon Random Forest, 1600 1 abénon tng avaroylog 660 xau 1) eVOOUETWOT eNAVENUEVLY BELYUATWY
anodelydnxay weéhpec. To yovtéro pe v xoAlTeEn anddoor HTay autd Tou exnatdeldtnxe 6To cOVOAO Oe-
douévwy ue avaroyia 1:2 xon nepthduPove emaugnuévo delyuota.

HistGradientBoosting

To HistGradientBoosting napouciace cuvokixd ta yauniotepo anoteAéopata, delyvovias cuUTERLPOEE TapOUOLYL
ue to Light GBM. Zuyxexpipéva, n uelwon tng avaroyiag xou 1 tpocidfixn emauinuévmy deryudtwy odhynoay oe
HELWUEVY amOBOOT), EVE Ta LOVTERX TTOL EXTUdEUTNXOY e ovarhoyia 1:100 Sev xatdpepay Vo EXTEAECTOLY EMITUY M
10 €pvo. Ta xahOtepa amotehéoyata o€ AUTH TNV TEPINTWOT EMTEUYONXAY YE TO UOVTEAD TOU EXTAULOEDTNXE UE
avaroyio 1:2 yowplc entauvénuéva delyuortoa.

1.4.6 Epunvevowwoétnta - SHAP

Ye authy v umoevotnTo Topouctdlovion To amoTeAéopaTa TV Yeapnudtwy SHAP beeswarm mou yenot-
pomotidnxay yia TNV gpunvelol TV EXTAUBEVHEVLY wovTélwy. H avdiuor delyvel 6Tt 10 onuavTindTepo yopox-
eto TS yior TNy aviyveuon xploewv etvon to evbotetaptnuoplaxd ebpoc (IQR), axoloudoluevo and to ebpog
ayuhc-tpoc-ouypy) Touv ouatoc ECG xan tny andiuth oy e {dvne dta. Hapatnpodue 6t udmidtepes Tuég
tou IQR, tou ebpouc ayuric-npoc-ouypun tou ofjuatoc ECG xou tne andiutng toyboc tne Lodvng drta odnyoldv
Ta povTéla oTo va yoapoxtneilouv to delypa we xplom.

Tao eLPAUATA YOS CUUPWVODY UE TEONYOUUEVY) EQEUVD, YEYOVOC TOU UTOBNAMVEL OTL TOL OVOLY VWPELOUEVA Y olpoX-
TneloTxd anotehoby medypatt oéldmoToug deixtec emAnmuxnc dpactneidtnTag. Lot To evBotetapTnuoploaxd
ebpoc (IQR), ot [19] €deilav 6t 1o IQR eivon éva Wiitepa dlaxpltind yopaxtTneloTed 1tou dloywellel anote-
heopoTnd ol QUOLONOYIXE, uecoxpltixd xon xprtxd twhuata EEG, emtuyydvovtog oyeddv 100% oxpifeior tol-
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wéunone. ‘Ocov agopd to yapoxtneotixd tAdtouc tou ECG, o [165] nocotxonoinoay T oloyéc oTn pop-
pohoylo Tou cuumiéyuatog QRS—ouunepilauBovopévou tou edpoug ouypnc-Teoc-aiyU—ns Yerotwous delxteg
yio Ty aviyveuon xploewv emindlag. Téhoc, oto mhalolo g gaouatixhc 1oy vog, ol [56] avégepay oTL 1 adénon
TNE amoAUTNG toyVog ot {odvn Wta anotehel plo and T mo GUVETELG UTOYPUPES TNE ETANTTXAC BEAC TNELOTNTAS
O€ TOMEC UENETEC.

ANhot onpovTixd yoapoxtnetotixd nepthaufBdvouy to didotnua RR (npoepyduevo and to ofjua ECG), tn ho&btnta
tou xbuoatoc ECG xou tov xopdioxd pudud. ‘Onwe gaiveton ota daypduuata SHAP beeswarm, younidtepeg
Tipéc Tou Sraothuatoc RR (tou avtiotoryody ot udmhdtepo xoapdlaxd pudud) cusyetilovton pe yeyovota xplong.
To edpnuo autd elvon cuvenéc pe xhvixée anodeifelc, xadde Tohhéc puehéteg €xouv Bellel 6TL oL xploelc cuyVd
TpoxahoVOV évtovec olhayéc otov xapdloxd pudud. H uelétn [70] avépepe 6L oL petaBoréc oTo SCTHUNTA
RR elvon ouyvéc oty emindlo Tou xpotogpixod hofol, eved n werétn [114] Swmictwoe éti o GuvTopELUEVA
draothpata RR xou o auénuévog xapdlaxde pudude cuyvd cuvodebouy xploelg.

Tdmhotepes Tpée xopdlaxol pudpol cuvdéovton pe yeyovota xplone. To ebpnuo autd vrootneileton and meo-
nyoluevee peréteg, ol omolec xotédellay 6Tl Tohhéc xploeic cuvodelovtal amd EVToves QUEHCELS GTOV XoEdLIXE
pLOO, Eva YUVOPEVO YVWOTO W xprtx| Tayuxopdio. T mopdderypa, 1 pehétn [40] avépepe 6TL 1) xpitixd
ToUxoEdia eppavileTal oTNY TAELOVOTNTA TWY ECTIOXOY Xploewy, eved 1 pehétn [17] édele étL oL petaBoréc
oTOV x0apdlaxd puiUS elval amd To TLO GUVETY AUTOVOUN CNUABLYL XATd TN Bidpxeld Twv xploewy.

XGBoost

To XGBoost nétuye tnv xolbtepn anddoor avdyeoo ota doxigoouéva povtéha. H avdiuon SHAP belyvel ot
TO TLO ONUAVTIXG YopaxTNeloTixd Yo to XGBoost — cuugwvdvtag pe toug nepilocdtepous adlohoynuévous Tal-
wountéc — ebvan to evdotetoptnuoptoxd edpoc (IQR). Qotdoo, eupavilovia oplouéves dlapopéc TNy xatdtaln
TV ENOUEVOV YUPUXTNPLO TIXWV: TO BEUTEPO ONUAVTIXOTEPO YopoxTneloTxd Yio to XGBoost elvon 1 andiutn
oy 0¢ tne Ldvne theta, axohoudoduevn and to mAdtog auyuhc-tpoc-ouyut (peak-to-peak amplitude) tou o¥-
patoc ECG. Emniéoyv, o xapdlaxde pudpog qoiveton vor anoTteAel AydTERO ONUOVTING YopaxTNeloTnd yio To
XGBoost oe 6Uyxpion e Toug undroimtoug TaEvounTég.

LightGBM

To mo onuavtixd yopaxtnetotxd mou avayveplotnxay and to Light GBM elvar o peydio Bodud cuveny| pe
exelva TV Sy aflohoynuévey tadvountov. Qotdco, pla afloonuelntn dlapopd eivor 6Tl 1 TuTXY amdxhion
(STD) tou ofjpatoc EEG gaiveton va elvon Mydtepo onuavtins) otny xatdtaln yapoxtnelotixdy tou Light GBM.

CatBoost

Ye avtideon pe Toug dhhoug a€iohoynuévoug todvopuntée, To CatBoost mopoucidlel opxetéc onuavtinés dlapopés
oy xatdtaln e onpacioc twv yopoxtnptouxdy. To mo onpavtixd yapaxtneotixd yio to CatBoost elvou
o xopdaxde pudude, evdd To evdotetapTnuoptaxd elpoc (IQR) eugoaviletar wévo oty tétoptn Yéon xon
tomx andxhion (STD) xatatdooeton néuntn. Iopd autée tic Slapopéc oTn onuacia Twy YopaxTNELoTIXGY, T
anoteAéopata mou mapouctdlovion oty Evotnta 1.4.5 delyvouv 61t to CatBoost Atav to deltepo xailtepo
HOVTENO GUVONXA.

Random Forest

To Random Forest nogouotdlet enione opxetéc onuavixés dlagopéc and toug dhhoug aflohoynuévous Tot-
vountéc 6cov apopd TNy xotdtadn e onuacioc Twy yopaxtnelo txdy. To mo ongavtind yopoxtneio txd etva
7 tumx| anéxhion (STD), axohouloluevn and to evlotetaptnuoplaxd evpoc (IQR). Evdugépov elvon 6T 1o
TA&Tog aryufc-Tpoc-auyur (peak-to-peak amplitude) tou ofpatoc ECG xatatdooetan uévo otny €B8oun Yéon.
Emniéov, n andhutn toyic tov déhta xar dhgoa Lwvov €xel peyahitepn emppo)| otic anogdoel Tou Random
Forest oe olyxpion ye toug dhhoug TagvopnTéc.

HistGradientBoosting

Ta mo onpavTiXd yopeaxTneloTixd Tou avayveweiotnxay yia to HistGradientBoosting eivon oe peydio Badud
CUVETH WE TIC U€oEC TAOELS TTOU TopaTnEolvVTaL 6Toug utdhotmoue toadivountée. Mo pixpr| Stapopd elvon 6Tt 1
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TUTLXY amoxALoT] palveTon va Exel uixpdtepn eTlppot] o auTéd To povtého. Ilop’ dha autd, 6mwe @olveton TNV
Evétnra 1.4.5, mapd to yeyovég 0Tl To mpogih onuaciog yopoxTneloTiney tou elvol eupéwe evduypoutouévo
pe twv dAwv, To HistGradientBoosting ¥tav o yeipdtepoc ta€ivountric cuvolixd.

YUvoio Movtéhwy (Ensemble Models)

Ta SHAP beeswarm plots dnutovpyninxay enlong yio ta 800 chvora povtéiwv, utohoyilovtag Tov péoo 6po
v eV SHAP and ta empépouc poviéha Touc. Xuvolixd, Ta cUvola epgavilouy napduol wotifa onuociog
YORUXTNELOTIXWY, UE LOVO XEEC DLUPOPOTOLAGELS OTA ALYOTERO GNHAVTIXG YopoxTneloTd. ‘Onwe poalveton otny
Evétnra 1.4.5, To cUvoho mou anotele{ton and ta tpio xohbtepa povtéha (XGBoost, CatBoost xou Light GBM)
Eenépaoe oe anddoom To GUVOAO ToL TEPAIUBaUvVE OAOUS TOUG TAELVOUNTES.

1.4.7 Epunvevoiwwotnta - TE2Rules

H napotoo unoevétnta topovotdlel ta anoteréopoto e BiBhodixne TE2Rules, n onola tpotddnxe oto [81].
H teyvixh autr e€dyel évay Xatdhoyo xovOVemY TOU GMOTUTOVEL TG ovoryXoleg o IXOVEC GUVOAXES Yot TNV
tadvounon péow twv Tree Ensemble. O alyodprduoc nou yenoiponotelton Poaoiletoar oto Apriori Rule Min-
ing. H Bihodin TE2Rules etvon cupPBath pe ta poviéha XGBoost xow Random Forest and ta poviéha mou

XENOWOTOLACUE.

E&etdlovtag toug maparyduevoug xavdveg yio to Random Forest, mopatnpodue 6Tt o Yapox Tnelo tixd tou xenot-
pornolovvTL oLy véTepa elvar 1 TuTx amdxhion (std) xaw o ebpog tetaptnuopiny (IQR), Yeyovéde mou cuvddel
pe to evpriuata e avdivone SHAP. 261600, dpxetol xavOVEC EVOWUATOVOLY ETUONG YARAXTNRLOTIXA OTIKC 1|
acuppetpio (skewness), o Aéyog Mta mpog Bita (theta-to-beta ratio) xou to yopaxTNELO NG TONUTAOXGTNTUS
Hjorth, o onola Sev eppavio oy we wialtepa onuoavtixd oto darypdupoata SHAP. Autéd urnodnidvel 6Tt ol enel-
nyhoeic mou Bacilovtol oe XAVOVES EVOEYETOL VoL ATOTUTOVOUY BLUPORETIXES GYETELS Od AUTEC TIOU OOXOADTITEL
n avdivorn SHAP.

Iopbpota potiBo uropodv vo mopatnendolv xo otoug xavéves ou e€dyovta and to poviého XGBoost. Ko
AL, 1) TuTr ambéxion (std) xou to ebpog tetaptnuopinwy (IQR) sugoviCovtar ye cuVERELL 0TOUE TERLOGOTEROUS
XAVOVES, EVE dANaL yapoxTrplaTixd 6mwe 1 acuupetpla (skewness), o Aoyog 97 ta tpog Brita xou 1 mohumhoxbThTa
Hjorth avadewxvbovtan enlong, mapd to yeyovog ot elyav pixpdtepn Popltnta oty avdivorn SHAP. Auty
n mowaia uroypouuilel war XEVTEXY) TEOXANCY OTNY EQUNVELCLUOTNTA UOVTEAWY, WBiwe pe uetddoug ex Twv
uotépwv (post-hoc), dnhadh 0 duoxohia xodépwone eunoTooUVNC OTIC ToPUYOUEVES ETEENYNOELS XaL TNV
anouscio evog 0ploToV GNUELOL OVOPORAS EVOVTL TOU OTOlOU VoL UTOEOUV Val ETUXUEWU00V.

1.5 Xvunepdopata
1.5.1 3Xul7non

Xty napoloo Simhwpatixny epyaoto, doxuudooue pio uedodoroyia Baciopévn oe YopaxTnElo TXd ToU TEOoXUTTOLY
and pn avtdpotn eCaywyy, (handcerafted features) ond ofuata EEG. Ta otédia tne mpoemelepyooiog xou g
eEAYWYNS YAUPUXTNPIOTIXWY Topousiocay oNUayTXd XahiTERY anddoan e oyéan pe oplouéva povtéla Bodidc
pdinong. Aoonueiwto eivan 61t otov Una Europa Seizure Detection Challenge tou 2023, 1 vixnitpio npocéy-
yion oaxololinoe napoUolo TAXGLO Xl ETONG AVEPEPE LTEROY Y| £vavTl Aboewy Bactouévev ot Bothd uddnon
[67]. Eva Booixd YopoxTneloTixd TwV GUVORWY JEBOUEVKV TOU Slaywviopol eival 6Tl ATOTEAOOVTOL U6 XoLTo-
yveopéc EEG pe neploplouévo aprdud xavahidy, to onola anoxthinxay and @opntéc cuoxevéc. £2¢ ex tolTou,
Ta ofuartor ebvor YounAGTERNC TOLOTNHTOG Xo EPLE oV LdPnAdTepa entineda YoplBou. Autd to yapaxTnelo TIXd
uTodnAdVoLY 6Tl 1 TpoeneEepyacia xou 1 XY WYY YAPUXTNELOTIXDY EVOL XUTOAANAOTERES YIOL TO GUYXEXPLUEVO
TEoOPANua and Tic mpooeyyioelg Bahdc pdinonc.

H EZnyrhown Texyvnth Nongoolvn (XAI) oty avéivon EEG anotehel éva nedlo nou Bploxetan oe eZénin. H
CUVTEITTIXY TAELOVOTNTA TV HEAETWY Tou eEeTdaTnxay Ypnotonotolv post-hoc npoceyyioeic, dmwg yedddoug
Bootopévec ot ontxonoinon (n.y. saliency maps, Grad-CAM), anédoon yopaxtneiotixodv (t.x. SHAP, LIME)
xou TEYVIES lotapayfic/amdxpudne. Qotdoo, Tapd T YEYEAN Toug diddoom, o post-hoc uédodol enedRynong
g€youv dey el onuovTnh Xt oyeTid ye v alomiotio, T oTadepdTNTa XU TN CUPPKVIC TOUS UE TOV TEOTO
Mne anogdoewy Tou povtélou. ‘Eva xevteixd {htnpa elvor 1 motdénto: xatd toéco 1 e€fynon avuxatonteilel
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ue oxp(Bela Tov €0WTEPIXO GUANOYIOUS TOU UOVTEAOU oL OYL Lo TELGTIXY AAAG EVOEYOUEVWE TORUTAAVITIXT
aphynon [37, 134]. Ou post-hoc pédodor énwe oo LIME xoaw SHAP Pooiovton cuyvd ce npooeyyioeic (m.y.
TOTUXG UTOXATAO TOTOL LOVTENQL), Ol OTolEC UTopoUV VoL ELOEYOUY TEXVNTE CTOLYEIR TOU TOPEPUNVEDOUV TNV TELY-
HOTIXY) CUUTERLPOPA TOU povtéhou. ‘Eva axourn xplowo {hmnuo elvoan 1 otadepdtnia: ol e€nyfoelc unopel vo
elvon Wiaitepa evalotntee o wxpés UETOBOAEC TV BESOUEVKDY EIGHBOU, YEYOVOS TOU BNULOVPYEL EpWTAMATI
yioe Ty a&tomotion Toug [59], evdd npbdopates epyaciec unoypuUi{ouy OTL 1 ATOTEAEGUUTIXOTHTO TWV Post-hoc
pedédwyv e€aptdton amd To Lovtélo xou elvan eudAwTn oe cuoyetioel petadd yapoxtnploTixmy [136]. Axdun
YEWROTERQ, Ol (Bleg ot péYodol ene€hynong umopolv va yewpaywyndoly, emtpénoviag To Aeyouevo fairwashing,
OTOU TPOXOTENNUMEVA LOVTERA cuVOdEDOVTIL omd Pawvopevixd dixaee e€nyroeic [5, 148]. Autéc o aduvopieg
avadEXVOOLY TOV %iVBUVO emtlécewy Syt HOVO GTa LOVTEAN, AAAG xou OTIC (Bleg TIC EENYNOELS, UTOVOUEVOVTAS TNV
eUToTOG UV TV YeNoThy. ¢ ex To0ToU, OpLOoUEVOL EPELVITES UTOGTNEIOUY TN XpNoT EYYEVAS EpUNVELCLULY
HOVTEAWY, YVWOTOVY Xou ¢ interpretable by design, w¢ pio mo adldémotn evadhoxtxs évavtl twv post-hoc
pedodwyv [134].

Awamotevoue 6t ol pédodor XAI €youv eqappoctel oe éva euph @doua epyaotwy mou oyetilovia ye EEG.
Avtéc nephopfdvouy onpavTinés LoTpéc xou Puyoloyixés eQopuoYEs Owe N aviyvevon emAnpiag kai kploewy,
n napakodovOnon Ynvov, n Sidyvwon oxiloppévelas, v vonTIKY) aTEIKOVION Kal €EKTEAETT) KIVITEWY, 1| avayvdpion
ovwaioOnudtwv, 1 TpdPAedn eykepalixol emeigodiov xal 1 ueydAn katadhirtixy owatapayn. Hapdho mouv autd
oty vel Tnv evehi&la Tng XAl oe StopopeTtinoiq Topelc, oL tepiloadtepeg UEV0BOL oY EDIALOVTOL YLOL L0 GUYXEXQPWEVT)
epyooia xat ondvia doxtudlovton oe dhhes epapuoyéc. Autd meplopllel T YeEVIXOTNTA Toug xou Bucyepaivel T
oUyxplor YeToU BlapopeTixwy peretwyv EEG. Emniéov, ta nepiocdtepa €pya eoTtdlouv AnoXAElG T oE Oe-
dopéva EEG, ywplc vo ta ouvbBudlouv pe dhhouc tomouc dedouévwv, dmme eyxepalxéc ewdvee (m.y. MRI
7 fMRI), mou yenowonowolvton eupéws ot vevpoemothun. Trdpyet enlong énhewdm uehetdv eppnvevoyldTn-
TaC 0€ TOAUTPOTUXEC Tpooeyyioeic—repintioel 6mov to EEG cuvbudletan pe omtixd B dhha awcdntnptoxd
dedouévo—mnapd to YeYovdc 6Tl TéTolol cuvduacpol Yo unopodcouy Vo TEOGPECOUV TILO ONOXANEOUEVES Xol a-
LOTUO TEC YVOOELS Yl T1) AelToupyia TOU EYXEPENOL.

"Evog Baoixdg meploplodc Twv VOO TIUEVLY TpooeYYloewy elvar 1 amoucior capee xodoplouévwy oTOY WY EpUT-
veuodTag xou oANdéby enednyfoewy avagopds. ‘Onwe onuewdvouy ot [63], ot Snpogikeic uédodol XAI ynopoiv
VoL amodidouy ecpoApéva onuacia OE AoYETA YAUPAXTNELO TIXA EL0OB0U, YEYOVOS TOU amoTeAEl onuovTind xivduvo
OE LTPIXEC EQUPUOYES OToL 1) epunvevotudtnta elvar xplowr. H élewdmn avtixeiyevinody xpttnplwy alloddynong
X0 CUPY 0pLOUWY Tou TeofAuatoc eunodilel TNy emxdpwor e opldtntoc Twv e&nynoewy, neploplloviag
N XeNoWOTNTA Toug Yot TN BEATON TV LOVTEAWY Xou TNV TEO0D0 NG EMOTNUOVIXAC YV®ong. Emmiéov, ol
tpéyovoe mpooeyyioele XAl oty avdhuon EEG otepolvton oloxhnpouévng emixdpwons péow oflohdynong
and avidpnnoug, Wwiwg and ewdolc otov yweo e uyelac. Mo tétolo emxdpwon elvan anapoltnTn yior TV
XUARLEPYELXL EUTIOTOCUVNG %ot TNV evioyuon Tng vovétnong oe wtpwd tepi3dihovta. H eqopuoyn mhouciov ofi-
ohdYNoME e entixevtpo Tov dvipnno, dnwe autd Tou Tpoteiveton and Toug [116], Ya unopoloe va fondicel otny
aZLoNOY MO TV eENYNOEWY UECK avaTEOPOBOTNONS amd EWIX00E, YEQPUEMOVOVTIS TO YAoUd WETAE)D TEYVIXMV
ANooewv XAT xon mpaxtixdv avaryxhv otov topéa tng uyetovouixic nepldahdng.

1.5.2 Meirovtixéc Kateuddvoelc

Iopdho mou 1 Pordhid uddnom dev TETUYE T AVUUEVOUEVOL ATOTEAECUOTA OTOL TELOGUTA LOIC, THPUUEVEL £V LOYLEO
epyaieio ue peydheg BuvaTOTNTES GTNV AUTOUUTY EEUYWYT] XUPUXTNELOTIXDY XL GTNY AVOYVWRLOY TEOTOTWY.
Mpdogatec peéteg €Yoy TEOTEVEL UBELBIXES OPYLTEXTOVIXES TIOU EVOOUATMVOLY ToAhamhéc pedodohoyiec [180],
Tapovatdlovtag eviopeuVTxd arotehéopota. XTo TAUCIO HEANOVTIXAG EPEUVIC, 1) EQPUOUOYY) TETOLWY UBELOLXWY
npooeyyloewyv og autd TO GUVOIO Bedouévev Va unopoloe va BEATIOOEL TNV amb6dooY, 6TO TEOBANUL NG
aviyveuong xploewv emindiog.

Or teyvixée XA pnopolv va tpocpépouy ToMITYES YVOGELS OE éva elpog epyaotey avdivone EEG. Hapéyovtog
OLOPAVELL X Ol EQUNVEUCLLOTNTA OTIS ONMOPACELS TWV HOVTEAWY, GUUBAAAOUY 0TV eVioYUOT TNE EPTLOTOCUVNG XaL
e adlomotiog, xrhoTOVTaE TI TEYVIXES AUTES TLO TEAXTIXES Yo EQUEUOYY) 0TOV Tpayuated xoouo. Ilopd to
aw&avouevo evdlagégov yia TNy XAI oty avdhvuon EEG, to nedlo e€axoloudel vo avtigetwniler npoxiioeic,
OTWE O TEPLOPLOUEVOS opllUOC BLIPORETIXWY LOVTEAWY, N ENREWN OAOXANPLUEVNC ebpwong and ednolc,
xadde o ot avenapxws xodopiopévol otoyol eneé€riynong. H pehhovtiny| épeuva Yo mpémel vor emixevipwiel
OTNY EVOLULTWOT allohOYNoNG UE YVOUOoVa Toug edxols, dote ta cuothyata TN nou Bacllovta oe EEG va
elvon TaVTOY POV ATOTEAECUOTIXG Xal AELOTLGTA OF LATEIXESC EQUPUOYEC.
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Chapter 2

Introduction

Electroencephalography (EEG) remains a primary diagnostic tool for brain-related conditions due to its non-
invasive nature, high temporal resolution, and relative affordability. It provides a direct measure of neural
activity, making it indispensable for understanding the dynamics of brain function. Clinically, EEG aids
in identifying sleep disorders, detecting abnormal patterns associated with epilepsy, and monitoring brain
states during anesthesia and coma. In research contexts, it supports investigations into cognition, attention,
and emotion. However, EEG signals are inherently noisy and complex. They are low in amplitude, easily
contaminated by artifacts such as eye blinks or muscle movements, and span multiple overlapping frequency
bands. This variability, coupled with the multichannel and temporal nature of the data, makes analysis
challenging when relying solely on conventional software tools or manual inspection.

In this landscape, Artificial Intelligence (AI) has emerged as a transformative approach to EEG analysis.
Through automated feature extraction and pattern recognition, Al systems can detect hidden relationships
within high-dimensional EEG data that are not easily visible to human experts. Deep learning models, in
particular, can learn abstract representations directly from raw signals, allowing for robust classification and
prediction in tasks such as seizure detection, mental workload estimation, and cognitive state monitoring
[170]. These capabilities open new possibilities for real-time and scalable EEG-based applications, ranging
from clinical diagnostics to brain—computer interface systems.

Despite its potential, Al in EEG analysis faces a major challenge—its “black-box” nature [29]. Most Al
models, especially deep neural networks, provide little to no transparency regarding how specific predictions
are made. In medical contexts, this opacity poses significant risks. A lack of interpretability may lead to
decisions based on spurious correlations rather than physiologically meaningful patterns, which can erode
trust among clinicians and hinder adoption in healthcare practice. For Al systems to be integrated into
clinical workflows, transparency and accountability are crucial. Decisions must be traceable to meaningful
EEG features and justifiable in terms of established neuroscientific understanding.

Explainable Artificial Intelligence (XAI) plays a vital role in addressing this issue by providing insights into
the reasoning behind AI model decisions [38]. Through post-hoc or intrinsic interpretability techniques,
XAI enables practitioners to understand which aspects of the EEG data influence model outputs. This
interpretability not only enhances ethical and legal accountability but also contributes to clinical confidence
in automated decision support tools. In the context of EEG-based diagnostics, XAI methods can highlight the
most relevant spatial, temporal, or spectral features that guide classification. For instance, feature extraction
methods [122] and saliency-based visualization techniques [169] make it possible to map model attention to
specific EEG channels or frequency bands, aligning computational outcomes with neuroscientific principles.
Such interpretability ensures that Al systems operate as collaborative tools for clinicians rather than opaque
replacements.

Building on these motivations, this work provides a comprehensive overview of recent advancements in XAI
for EEG analysis. It categorizes and examines methods designed to enhance transparency in EEG-related
tasks, such as seizure detection, mental state recognition, and cognitive workload estimation. The goal is not
only to summarize progress but also to clarify the conceptual and methodological landscape of XAI in this
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field. We present key datasets and benchmarking protocols that are widely used to assess explainability and
performance. Furthermore, by identifying current research gaps—such as limited standardization, lack of
clinical validation, and insufficient integration of neurophysiological priors—we highlight directions for future
exploration. This thesis aims to serve as both an entry point for new researchers and a reference for ongoing
developments in explainable EEG analysis.

Beyond reviewing the literature, this work contributes a practical, end-to-end framework for EEG prepro-
cessing and feature extraction tailored to the task of seizure detection. The framework is applied to a publicly
available dataset originally introduced in the Una Europa Seizure Detection Challenge. It integrates mul-
tiple signal processing steps, including noise removal, channel selection, and feature computation, designed
to retain the physiological relevance of EEG patterns. A diverse set of machine learning and deep learning
models were trained and evaluated, encompassing both classical algorithms such as Random Forest and ad-
vanced architectures such as xLLSTM. This comparative approach allows for a balanced assessment of different
modeling paradigms, evaluating not only their predictive accuracy but also their interpretability and clinical
plausibility.

To address the critical issue of transparency, two complementary XAI techniques were employed. SHAP
(SHapley Additive exPlanations) was used to provide feature attribution analysis, quantifying the contribu-
tion of each feature to model outputs. In parallel, the te2rules algorithm was applied to extract human-
readable rules from trained models, transforming opaque model behavior into interpretable symbolic repre-
sentations. Together, these explainability methods offer a window into how EEG features drive classification
decisions, bridging the gap between technical performance and medical insight. By combining robust data-
driven modeling with interpretable reasoning, this work aims to deliver results that are both scientifically
rigorous and clinically meaningful.

Ultimately, the broader ambition of this thesis is to contribute to the development of trustworthy Al systems
for EEG analysis—systems that are not only accurate but also understandable, reliable, and aligned with
clinical expertise. The integration of XAI into EEG-based diagnostics represents a critical step toward
achieving human—AT collaboration in neuroscience and medicine, where explainability is not merely a desirable
property but an ethical necessity.

The outline of this thesis is as follows:

e We first provide all the necessary background on tree-based and ensemble learning methods to establish
the foundation for later discussions.

e We then introduce the fundamentals of Explainable Artificial Intelligence (XAI) and EEG analysis,
followed by a detailed review of recent XAI methodologies applied to EEG data.

e Finally, we describe our experimental framework in detail, covering data preprocessing, feature extrac-
tion, model training, and interpretability analysis. We present both the performance outcomes and the
explainability results, leading to a discussion of their implications and concluding insights.
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3.1 Machine and Deep Learning Methods

In this thesis, we focus on tree-based machine learning models and their ensemble extensions. A single
decision tree is easy to understand and interpret, but it usually suffers from overfitting and limited accuracy.
Ensemble methods such as Random Forests and Gradient Boosting address these issues by combining many
trees together, which generally leads to more robust and accurate predictions. Over time, several efficient
implementations of gradient boosting, including XGBoost, Light GBM, CatBoost, and HistGradientBoosting,
have been developed and are now widely used in practice.

In addition to the tree-based machine learning models, in this thesis we experimented with two novel deep
learning architectures. A Graph Neural Network (GNN) designed for anomaly detection in multivariate time
series was the first deep learning model chosen to be tested in the context of seizure detection. Furthermore,
the Extended Long Short-Term Memory (xLSTM) model was tested, which is designed to overcome the
LSTM limitations. The following subsections briefly describe and give the necessary theoretical background
of the machine and deep learning models used.

3.1.1 Decision Trees

Decision trees are simple yet powerful predictive models that partition the feature space into regions by
recursively splitting the data based on feature values. They are valued for their interpretability and ability to
model non-linear relationships. However, individual trees are prone to overfitting and high variance, making
them less robust in practice|25].

A decision tree operates by selecting, at each node, the feature and corresponding threshold that best separates
the data according to a chosen impurity criterion, such as Gini impurity, information gain, or mean squared
error. This hierarchical structure allows the model to capture complex feature interactions without the need
for explicit feature engineering. Each leaf node corresponds to a decision outcome or predicted value, while
the path from the root to a leaf represents a set of easily interpretable rules. This transparency has made
decision trees widely used in domains where explainability and traceability are essential, such as healthcare,
finance, and neuroscience.

Despite these advantages, individual decision trees often exhibit instability: small changes in the training
data can produce substantially different tree structures. This instability results from the greedy nature of
the splitting process, which optimizes decisions locally at each node without considering their global impact.
As a result, while a single tree can achieve a good fit on training data, it often generalizes poorly to unseen
data, particularly in high-dimensional or noisy environments. Ensemble techniques such as Random Forests
and Gradient Boosted Trees were developed to address these issues by combining multiple trees to reduce
variance, improve robustness, and enhance predictive accuracy.

Modern decision tree frameworks also include several enhancements that make them more suitable for real-
world applications. Many implementations now support handling of missing values, mixed data types, and
large-scale datasets through efficient data binning and parallelized training. These improvements retain
the interpretability of decision trees while significantly improving their scalability and reliability in complex
predictive modeling tasks.

In neuroimaging and affective computing, decision trees and their ensemble variants are frequently used
to identify discriminative patterns in EEG, fMRI, and multimodal physiological data. Their rule-based
structure enables researchers to trace which features or brain regions contribute most strongly to specific
classifications or predictions. Although deep learning models often surpass them in accuracy, decision trees
remain valuable as interpretable baselines and as components in hybrid frameworks that balance performance
with transparency.

3.1.2 Random Forests

Random Forests address the limitations of single decision trees by combining many trees in a bagging frame-
work [24]. Each tree is trained on a bootstrap sample of the data and at each split, only a random subset
of features is considered. This randomness reduces correlation between trees and improves generalization.
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Random Forests are widely used due to their robustness, relatively low need for parameter tuning, and strong
performance across a variety of domains.

3.1.3 Gradient Boosting Methods

Gradient Boosting is an ensemble technique that builds models sequentially, where each new learner attempts
to correct the errors of the previous ones [58]. It combines weak learners, typically decision trees, into a
strong predictive model through gradient-based optimization. At each iteration, a new tree is trained to fit
the negative gradient of the loss function with respect to the current model’s predictions, thereby iteratively
reducing the residual errors. This additive model framework enables the ensemble to approximate complex,
nonlinear mappings while maintaining interpretability through the underlying tree structures.

Over the years, several efficient and scalable implementations of gradient boosting have been developed,
improving upon the original algorithm’s computational and regularization limitations. These implemen-
tations introduce techniques such as second-order gradient optimization, histogram-based feature binning,
parallelized training, and advanced regularization mechanisms to prevent overfitting. Moreover, they offer
robust support for handling missing values, categorical variables, and imbalanced datasets, which are common
challenges in real-world applications. In this work, the following libraries were employed.

XGBoost

XGBoost (Extreme Gradient Boosting) is one of the most widely adopted gradient boosting frameworks due to
its efficiency, scalability, and predictive accuracy [28]. It improves upon the original boosting formulation by
incorporating second-order Taylor approximation of the loss function, allowing it to leverage both gradient
and curvature information for more accurate split optimization. This second-order approach accelerates
convergence and enhances model stability.

XGBoost also introduces several key innovations to improve generalization and computational performance.
It employs shrinkage (learning rate reduction) to scale the contribution of each tree, thereby reducing the risk
of overfitting, and column subsampling to introduce additional randomness, similar to Random Forests. The
algorithm’s sparsity-aware design allows it to efficiently handle missing or sparse feature values by learning
optimal default split directions during training. Additionally, XGBoost supports parallel and distributed
computation, enabling rapid training on large datasets.

Due to its strong regularization framework and robustness, XGBoost has become a standard baseline for
structured data modeling. It performs exceptionally well in applications where feature interactions are
complex but structured, such as tabular biomedical data, clinical risk prediction, and multimodal sensor
analysis.

LightGBM

LightGBM (Light Gradient Boosting Machine) was developed to further improve the training efficiency and
scalability of gradient boosting methods [72]. Unlike traditional level-wise growth used in algorithms like
XGBoost, Light GBM employs a leaf-wise tree growth strategy with depth constraints. This approach allows
the algorithm to focus on regions of the data with the greatest potential for loss reduction, often resulting in
deeper trees with higher predictive power.

To reduce computational overhead, Light GBM implements histogram-based feature binning, which discretizes
continuous features into a limited number of bins. This reduces both memory consumption and training time
without significant loss of accuracy. Additionally, Light GBM supports Gradient-based One-Side Sampling
(GOSS) and Exclusive Feature Bundling (EFB), which further accelerate training by focusing on informative
samples and combining mutually exclusive features, respectively.

The combination of these techniques makes Light GBM highly efficient for large-scale and high-dimensional
datasets. In practice, it often achieves comparable or superior performance to XGBoost while requiring less
computational time, making it particularly attractive for scenarios involving high-frequency or real-time data
streams such as physiological monitoring and large-scale neuroimaging feature sets.
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CatBoost

CatBoost is a gradient boosting framework specifically designed to handle categorical variables effectively
without extensive preprocessing [125]. Traditional boosting algorithms require categorical features to be
transformed via one-hot encoding or ordinal mappings, which can lead to high dimensionality and target
leakage. CatBoost overcomes these issues using ordered boosting and efficient encoding schemes based on
target statistics.

The ordered boosting mechanism uses a permutation-driven approach that processes samples in a predefined
order, ensuring that the encoding of each observation depends only on previously seen data. This design
prevents the model from inadvertently learning from its own predictions—a common issue known as prediction
shift—thus improving generalization. CatBoost also incorporates symmetry in its decision trees, enforcing
consistent tree structures across all nodes, which enhances both efficiency and stability.

Another advantage of CatBoost is its strong out-of-the-box performance with minimal hyperparameter tuning,
making it highly practical for applied machine learning. Its robust handling of categorical, numerical, and
missing data makes it particularly useful in multimodal applications where data heterogeneity is prevalent,
such as emotion recognition, EEG-based classification, or patient state modeling.

HistGradientBoosting

HistGradientBoosting is an efficient implementation of gradient boosting integrated into the scikit-learn
library [120]. Inspired by LightGBM, it uses histogram-based feature binning to accelerate computation
and reduce memory usage. By discretizing continuous features into a fixed number of bins, the algorithm
computes gradient statistics over these bins rather than individual samples, significantly improving efficiency
on medium-sized datasets.

Although it lacks some of the advanced features found in XGBoost, Light GBM, or CatBoost—such as built-
in categorical handling or distributed training—HistGradientBoosting offers strong performance within the
scikit-learn ecosystem. It supports early stopping, monotonic constraints, and native management of miss-
ing values, providing a well-balanced combination of speed, interpretability, and ease of integration into
established machine learning workflows.

Its design makes it an ideal choice for medium-scale experimental studies where reproducibility, compati-
bility, and interpretability are prioritized. In the context of neuroimaging and physiological data modeling,
HistGradientBoosting can serve as a reliable baseline model for structured feature sets, offering competitive
accuracy while maintaining transparency and computational efficiency.

3.1.4 Model Ensembling

Ensemble methods combine multiple models to achieve better predictive performance than individual learners
[35]. Bagging reduces variance by averaging predictions across independent models, while boosting reduces
bias by sequentially improving upon previous learners. Stacking, another ensemble strategy, combines het-
erogeneous models using a meta-learner to optimize predictive accuracy. These approaches have proven
particularly effective for structured tabular data, where ensembles often outperform single models.

Beyond traditional implementations, ensemble learning has been extensively adopted in neural and multi-
modal architectures, enabling improved robustness and generalization across heterogeneous data sources. For
instance, in multimodal neuroimaging, ensemble frameworks can integrate modality-specific learners—such
as separate deep networks for EEG and fMRI—whose outputs are fused via a meta-classifier or weighted
averaging mechanism . This design mitigates modality imbalance and leverages complementary information
across data types.

In deep learning contexts, ensembles of neural networks are also employed to stabilize training outcomes
and estimate epistemic uncertainty. Techniques such as Monte Carlo dropout, deep ensembles, and snapshot
ensembles approximate Bayesian inference by aggregating predictions from multiple stochastic realizations
of the same architecture. These methods enhance calibration and improve performance in safety-critical
applications, including brain-computer interface (BCI) decoding and clinical prediction tasks.
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Recent research further explores hybrid ensemble paradigms, where symbolic reasoning or attention mecha-
nisms are incorporated as higher-level aggregation layers. Such neuro-symbolic ensembles can interpret and
weigh the reliability of base learners based on semantic context or learned uncertainty estimates. Moreover,
ensemble distillation strategies aim to transfer the collective knowledge of an ensemble into a single compact
model, thereby maintaining performance gains while reducing computational overhead.

Overall, ensemble learning represents a powerful design principle that transcends simple model aggregation.
By integrating complementary learners, balancing variance and bias, and facilitating uncertainty quantifi-
cation, ensemble methods provide a robust foundation for predictive modeling—particularly in complex,
multimodal, or data-scarce domains.

3.1.5 Deep Learning Models

Deep learning has emerged as a dominant paradigm in modern data-driven modeling, offering exceptional
capability for capturing complex, nonlinear relationships in high-dimensional datasets. Unlike traditional
machine learning algorithms that rely on handcrafted features, deep neural networks (DNNs) automatically
learn hierarchical representations of data through layered transformations, enabling the extraction of both
low-level and abstract semantic patterns. Architectures such as convolutional neural networks (CNNs), re-
current neural networks (RNNs), and their numerous variants have been successfully applied across a wide
range of domains—including computer vision, natural language processing, and biomedical signal analy-
sis—demonstrating remarkable generalization and scalability.

In the context of neuroimaging and multimodal biosignal processing, deep learning methods have proven
especially valuable for modeling complex spatial-temporal dependencies that are difficult to capture through
conventional approaches. EEG and fMRI data, for instance, exhibit intricate spatial correlations and dynamic
temporal fluctuations, reflecting latent neural processes that unfold over multiple scales. Deep learning
frameworks can capture such dependencies through convolutional, recurrent, or attention-based mechanisms,
often outperforming shallow or linear models in predictive accuracy and representation quality. Moreover, by
combining modality-specific encoders within a unified architecture, deep models can integrate heterogeneous
data sources—such as electrophysiological, hemodynamic, and behavioral features—into coherent multimodal
embeddings.

Recent advances in graph-based and memory-augmented architectures have further expanded the expressive
capacity of deep learning for structured and sequential data. Graph Neural Networks (GNNs) extend deep
learning to relational domains, where data elements interact through irregular or dynamically evolving con-
nections. This property is particularly advantageous for modeling interdependencies among EEG channels,
brain regions, or sensors, where spatial relations are non-Euclidean and context-dependent. On the other
hand, enhanced recurrent architectures such as Extended Long Short-Term Memory (xLSTM) networks in-
troduce refined mechanisms for long-term information retention and efficient gradient propagation, enabling
robust modeling of long-range temporal dynamics in non-stationary sequences.

The following subsections present two representative architectures that illustrate these trends: the Graph
Deviation Network (GDN), a GNN-based model designed for relational anomaly detection in multivariate
time series, and the Extended LSTM (xLSTM), an improved recurrent architecture tailored for capturing
complex temporal dependencies. Both models exemplify the evolving landscape of deep learning research,
emphasizing interpretability, adaptability, and domain relevance for applications in EEG and multimodal
biosignal analysis.

GDN

The Graph Deviation Network (GDN), proposed by Deng and colleagues [33], is a specialized Graph Neu-
ral Network (GNN) architecture developed for anomaly detection in multivariate time series data. Unlike
traditional approaches that treat multivariate signals as independent or loosely correlated sequences, GDN
explicitly models the interdependencies among variables by representing them as nodes within a dynamically
learned graph. Figure 3.1.1 provides an overview of the GDN framework and its primary components.

The central motivation behind GDN is that multivariate time series—such as those encountered in EEG,
physiological monitoring, or sensor networks—often exhibit complex temporal and spatial correlations. Cap-
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turing these relationships is crucial for understanding the normal dynamics of the system and for identifying
deviations that signal abnormal or unexpected behavior. Rather than relying on a predefined graph struc-
ture, GDN learns the graph topology adaptively from data, enabling it to model both explicit and implicit
dependencies between signals.

The GDN framework consists of four main stages, each contributing to the extraction of relational and
temporal information. In the first stage, each variable in the multivariate time series is mapped into a latent
embedding vector that encodes its unique statistical and dynamic characteristics. These embeddings serve
as compact representations that facilitate learning inter-variable dependencies.

In the second stage, GDN learns a graph structure that captures the dependency relationships among the
different time series variables. This graph can be viewed as an adjacency matrix whose edges represent the
strength of relationships between variables. Importantly, the learned graph is not static—it evolves as the
model observes new data, allowing for dynamic adaptation to changing correlation patterns.

The third stage involves forecasting future values of each time series variable based on its learned neighborhood
relationships. GDN employs a graph attention mechanism to weigh the influence of neighboring nodes when
predicting the next time step. This attention mechanism allows the model to focus on the most relevant
nodes, thereby improving predictive accuracy and interpretability. The attention scores inherently provide
insights into which variables most strongly influence a given signal’s behavior, making this step particularly
valuable for explainable modeling.

Finally, in the fourth stage, GDN performs anomaly detection by measuring deviations between the predicted
and observed values. Deviations that significantly exceed the expected range are identified as anomalies,
indicating potential faults, abnormal events, or irregular behaviors within the system. These deviations
can also be interpreted through the learned graph structure, allowing users to trace which relationships
contributed to an anomaly—thus offering an interpretable explanation for the detected event.

One of the key strengths of GDN lies in its ability to combine temporal prediction with relational reasoning.
Unlike purely temporal models such as LSTM or Transformer-based architectures, GDN’s graph-centric
design provides a structured means to model dependencies that are neither strictly sequential nor uniformly
distributed across variables. This makes GDN particularly effective in high-dimensional, interdependent
systems where anomalies often arise from disruptions in relational patterns rather than individual signal
fluctuations.

In the context of EEG or multimodal biosignal analysis, GDN holds significant potential. For instance,
brain regions or sensor channels can be modeled as nodes in a graph, with edges representing functional
or statistical relationships. Deviations in these learned connectivity patterns can reveal meaningful neural
anomalies, cognitive state changes, or sensor artifacts. Moreover, the explainable nature of the graph and
attention mechanisms aligns well with the objectives of XAI, as it allows for transparent reasoning about
which relationships and features contributed to a detected anomaly.

xLSTM

The Extended Long Short-Term Memory (xLSTM) architecture, proposed by Beck et al. [18], represents a
significant advancement over the classical Long Short-Term Memory (LSTM) model introduced by Hochre-
iter and Schmidhuber [64]. The original LSTM architecture was designed to address the vanishing gradient
problem encountered in standard recurrent neural networks (RNNs), enabling the capture of long-term de-
pendencies through its gated cell structure. However, despite its success, conventional LSTM models exhibit
several inherent limitations. These include a restricted capacity for revising storage decisions once informa-
tion is written into the memory cell, limited memory utilization efficiency, and the lack of parallelizability
due to sequential memory mixing during computation.

The xLLSTM framework addresses these issues through two principal innovations: the introduction of ex-
tended memory structures and the incorporation of exponential gating mechanisms. The new memory design
enhances the model’s ability to store and manage information over extended temporal contexts by decoupling
memory allocation from the conventional gating dynamics. This modification enables the model to revisit and
revise stored information, providing a more flexible and adaptive form of temporal reasoning. In contrast to
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Figure 3.1.1: Overview of the GDN framework

traditional LSTMs, where the information flow is tightly coupled within a single recurrent pathway, xLSTM’s
design facilitates improved gradient propagation and more efficient information retention across time steps.

The addition of exponential gating further refines the model’s control over information flow. Instead of relying
solely on sigmoid or tanh activations for gating functions, exponential gating introduces a multiplicative
scaling mechanism that allows smoother gradient transitions and more stable long-range learning. This
modification enhances both training efficiency and the expressive capacity of the network, allowing it to
model complex temporal dependencies without the instability often associated with deep or long recurrent
architectures.

From a computational perspective, xLSTM also improves parallelizability by reducing interdependence be-
tween memory operations. This architectural refinement makes it more suitable for modern hardware ac-
celerators such as GPUs and TPUs, where parallel execution of matrix operations significantly impacts
performance. As a result, xXLSTM achieves both higher scalability and lower training latency compared to
standard LSTMs, making it a strong candidate for large-scale sequence modeling tasks.

The improved representational capacity and efficiency of xLSTM have positioned it as a promising model
for various time-series applications, including speech recognition, biomedical signal analysis, and multimodal
learning. In particular, for EEG-based modeling, xXLSTM offers potential advantages in handling long-term
temporal dependencies across brain signals while maintaining computational tractability. Its ability to revise
stored information dynamically can be especially beneficial in non-stationary signal environments where
neural dynamics evolve over time.

While ensemble methods such as Random Forests and Gradient Boosting have demonstrated strong predic-
tive performance in many domains, their increasing structural complexity often diminishes interpretability.
Similarly, deep learning architectures like xLLSTM, despite their superior modeling capabilities, may also
behave as “black-box” systems, making it difficult to trace the reasoning behind predictions. This lack of
transparency presents challenges for deployment in sensitive or high-stakes applications, such as medical diag-
nosis or neurophysiological analysis, where accountability and trust are essential. To address these issues, the
growing field of XAl seeks to bridge the gap between model performance and interpretability. The following
section introduces the key concepts and representative methodologies in XAI, focusing on their application
to EEG analysis.
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3.2 Explainable Al

3.2.1 Core Concepts

Explainable Artificial Intelligence (XAI) encompasses methods and techniques designed to make Al systems’
decisions and predictions understandable to humans [37]. As black-box AI models such as deep learning
models, ensemble methods, and large language models become increasingly prevalent in high-stakes domains,
the need for interpretable and transparent AI has grown accordingly [61]. High stakes domains such as
healthcare, finance and criminal justice are in demand of interpretability and without adequate explanation
mechanisms users may find it difficult to justify usage of automated decisions, without accountability and
fairness, ethical concerns arise.

XAI approaches strive to balance providing human-understandable explanations with maintaining strong
model performance [106]. Simpler and more transparent models often underperform compared to complex
black-box systems. The central challenge is to maintain the strong performance of the opaque models that
are used and get explanations in order to foster trust and adoption of AI technologies. Explainable Artificial
Intelligence is a field that is currently evolving, with many researchers proposing a wide variety of approaches
that aim to extract human-understandable explanations without significantly sacrificing model accuracy.

Broadly, XAI methods can be categorized along several dimensions: the interpretability approach (post-hoc
versus ante-hoc), the explanation scope (global versus local), the explanation type (feature attributions, rules,
examples, visualizations), and their dependency on the model architecture (model-agnostic versus model-
specific) [13]. These dimensions help researchers understand the field of Explainable Artificial Intelligence,
select the appropriate technique for their problem, and discover vacancies in the literature. Explainable
Artificial Intelligence contributes to technical transparency, and adoption of automated systems that are
ethically aligned with human values.

3.2.2 Categories

Explainable Artificial Intelligence (XAI) encompasses a diverse set of methods that can be categorized accord-
ing to different conceptual dimensions. These dimensions determine how explanations are generated, what
they reveal about the model, and how they relate to the underlying learning architecture. The following sub-
sections present a detailed categorization along four principal axes: interpretability approach, explanation
scope, explanation type, and dependency on model architecture. Understanding these categories is crucial
for selecting appropriate XAl strategies depending on the nature of the model, the characteristics of the data,
and the end-user requirements—particularly in domains such as EEG analysis, where interpretability is of
paramount importance.

Interpretability Approach

A fundamental distinction in XAI lies between post-hoc and ante-hoc interpretability approaches. Post-
hoc interpretability refers to techniques that are applied after a model has been trained, aiming to explain
the behavior of otherwise opaque, complex, or black-box models. These methods attempt to rationalize a
model’s decision-making process by approximating or visualizing its internal logic without modifying the
model itself. Popular post-hoc techniques include LIME [132], which approximates local decision boundaries
around a given instance to produce human-understandable explanations. The versatility of post-hoc methods
allows them to be integrated with a wide range of architectures, including deep neural networks, ensemble
models, and multimodal systems. For example, a multimodal adaptation of LIME has been proposed in [149],
demonstrating its flexibility in complex, multi-source data scenarios.

In contrast, ante-hoc (or intrinsic) interpretability focuses on designing models that are transparent by con-
struction. In these models, interpretability is not an auxiliary component but an inherent characteristic.
Examples include decision trees, rule-based systems, and generalized additive models, where the reasoning
process is explicitly encoded in the model’s structure. Ante-hoc methods, therefore, provide explanations that
are exact rather than approximate, ensuring that every decision can be traced to a clear and logical rationale.
This transparency is especially valuable in safety-critical or regulated environments, where decision account-
ability is required. Recent works such as [84, 93, 91, 94, 118] exemplify inherently interpretable approaches,
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including symbolic and rule-based reasoning systems that prioritize explainability without compromising
predictive capability.

While ante-hoc methods provide transparency by design, they often face trade-offs in flexibility and scalability
compared to post-hoc techniques. As a result, contemporary research increasingly explores hybrid strategies
that integrate the interpretability of ante-hoc frameworks with the expressive power of post-hoc analysis.

Explanation Scope

The scope of an explanation defines whether it targets the overall model behavior or specific individual
predictions. Global explanations aim to provide insight into the general logic and structure governing model
decisions across the entire dataset. These explanations reveal how the model processes information on
average, identifying dominant features, recurring decision patterns, and relationships learned from the data.
Techniques such as rule extraction, surrogate modeling, and hierarchical clustering are often used to generate
global insights, helping to evaluate whether a model’s decision boundaries align with known domain principles.
Global explanations are particularly valuable for model validation, debugging, and regulatory assessment.

In contrast, local explanations concentrate on individual predictions or small subsets of data. Their purpose
is to answer questions such as “Why did the model make this particular decision?” or “Which features were
most influential for this instance?” Local interpretability techniques—like LIME [132] and SHAP—estimate
the contribution of input features for specific outcomes, offering detailed and personalized insights. This
granularity is especially crucial in medical applications, where understanding a single patient’s prediction
may be more important than comprehending the model’s overall tendencies.

In practice, both global and local explanations are complementary. Global methods help ensure the model
behaves sensibly across populations, while local methods provide transparency in critical or exceptional
cases. Combining the two perspectives allows for a more holistic understanding of model reliability and
ethical soundness.

Explanation Type

Explanations can also be classified according to the form or representation they take. Different explanation
types communicate information at different cognitive levels, from quantitative attributions to qualitative
reasoning structures.

Feature attribution methods quantify the importance or contribution of each input feature to the model’s
prediction [155]. These methods often employ gradient-based or perturbation-based computations to estimate
how variations in individual features affect the output. They are particularly effective for high-dimensional
data, such as EEG signals, where identifying relevant frequency bands or channels can provide valuable
physiological insights.

Rule-based methods, on the other hand, generate interpretable logical or symbolic rules that summarize
decision processes in human-readable form [171, 101, 86, 87]. These rules typically follow “if-then” structures,
enabling clinicians or domain experts to trace decisions through explicit conditions. Rule extraction can be
used both as an ante-hoc modeling strategy and as a post-hoc interpretation layer for more complex systems.

Example-based explanations use specific instances—either prototypical examples that represent typical model
behavior or counterfactual examples that show how minimal changes to inputs could alter predictions—to
help users understand the decision boundaries [76, 104]. Such methods are intuitive, allowing users to reason
through comparisons rather than abstract metrics.

Lastly, visualization-based explanations present model reasoning through graphical or spatial representations.
These can include saliency maps, activation maps, or dimensionality-reduced embeddings that intuitively dis-
play how features or components influence model decisions [106]. Visual explanations are especially powerful
for image, signal, or spatially structured data, making them valuable tools for EEG analysis, where patterns
across channels and time windows must be interpreted in context.

The selection of an explanation type depends heavily on the application, user expertise, and the nature of the
data. In clinical settings, rule-based or feature-level explanations are often preferred for traceability, while
visual or example-based approaches are useful for exploratory or diagnostic interpretation.
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Dependency on the Model Architecture

A final important categorization concerns the dependency of XAI methods on the underlying model archi-
tecture.

Model-agnostic methods treat the model as a black box, focusing solely on its inputs and outputs without
requiring access to internal parameters or gradients. This approach allows for broad applicability across
diverse models and learning paradigms [90]. Techniques such as SHAP and other perturbation-based anal-
yses fall into this category. They enable consistent comparison of interpretability across models, making
them particularly useful for benchmarking or ensemble scenarios where multiple architectures are evaluated
simultaneously.

In contrast, model-specific methods leverage the internal structure or mathematical properties of a given
model to generate more accurate and efficient explanations. For instance, gradient-based techniques designed
for neural networks exploit differentiability to trace the influence of input features through the model’s layers,
resulting in precise and fine-grained attributions [142]. While model-specific methods often provide higher
fidelity in their explanations, they lack generality, as their design is tightly coupled to the internal mechanics
of a particular architecture.

In practical applications, the choice between model-agnostic and model-specific methods involves balancing
generality and precision. Model-agnostic tools facilitate transparency across heterogeneous systems, while
model-specific techniques allow for deeper insights into the functioning of specialized architectures. For EEG-
based A, where interpretability and physiological validity are equally crucial, hybrid strategies that combine
both paradigms are increasingly explored, offering a flexible yet rigorous framework for understanding model
decisions.

3.2.3 Technical foundations of commonly used XAI techniques

In this subsection, we provide the technical foundations of widely used XAI methods in EEG analysis.
Theoretical formulations and key equations are analyzed giving the necessary background information. The
analyzed techniques are the most commonly used techniques when it comes to XAl in EEG analysis.

SHapley Additive exPlanations

SHAP values are a unified measure of feature importance and are a game-theoretic method that studies
how different players cooperate or compete with each other [90]. To evaluate an instance, each attribute
is assigned a SHAP value, which indicates the relative importance of the attribute to the model’s decision-
making process. The formal definition is as follows:

g = 3 LD ) — 1 )

z'Cx’

where z is the instance to be explained, f is the model, 7 is the feature to be evaluated, and M is the number
of features. Additionally, 2’ contains all possible perturbations of x.

Local Interpretable Model-agnostic Explanations

LIME is a local model-agnostic technique that approximates locally any classification model using an inter-
pretable model proposed here [132]. The overall goal of LIME is to identify an interpretable model over the
interpretable representation that is locally faithful to the classifier. The explanation produced by LIME is
obtained by the following:

{(r) = arg ggg L(f,9,7)+Qg)

where x is the instance to be explained, £ is the instance explanation, g is a potentially interpretable model
such as a linear model or decision tree, and f is the classification model. The function L measures the
approximation of g to f in the locality defined by mwa. The complexity of g is measured by Q(g); this
parameter is related to the complexity of the model g. LIME ignores the process within the model and makes
explanations absolutely on the data level. Therefore, the explainer explains predictions on tabular data by
perturbing features based on the statistical properties of the training data.
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Gradient-weighted Class Activation Mapping

Grad-CAM is designed for CNNs and uses the gradient information flowing into the last convolutional layer
of the CNN to assign importance values to each neuron for a particular decision of interest [142]. The
Grad-CAM method computes the importance weight a® for the k-th feature map with class ¢ in the last

convolutional layer as follows:
ai=7z Z Z 3 fk
_08c(x)

where Z is the total number of spatial locations in the feature map, and a EINEI denotes the gradient of

the class score S.(z) with respect to the activation fi(z);; at the spatial locatlon (i,7). The Grad-CAM
heatmap for class ¢ can then be computed as

ME™ () = ReLU (Z ok . fk(x)>
k

where ReLLU is the rectified linear unit function, ensuring that only positive contributions are considered.

Deep Learning Important FeaTures

DeepLIFT was proposed as a recursive prediction explanation method for deep learning [146, 147]. DeepLIFT
is designed to obtain the importance of input in the prediction of CNNs models. DeepLIFT uses multipliers
that represent a slope describing how the outputs are changed when the inputs are different from reference
data.

DeepLIFT uses a "summation-to-delta" property that states:

i CAa:i,Ao = Ao

=1

where o = f(z) is the model output, Ao = f(z)— f(r), Az; = x; —r;, and r is the reference input. DeepLIFT
is another additive feature attribution method.

Layer-wise Relevance Propagation

The layer-wise relevance propagation is a backpropagation-based method for interpreting the predictions of
deep metworks [15]. As shown in [147] LRP is equivalent to DeepLIFT with the reference activations of all
neurons fixed to zero. Thus, z = h,(z’) converts binary values into the original input space, where 1 means
that an input takes its original value, and 0 means an input takes the 0 value. LRP like DeepLIFT is an
additive feature attribution method.

3.2.4 Evaluation of XAI methods

In explainability, there is no one explanation to rule them all [100]. We need to define the objectives before
selecting the proper desired explanation characteristics [99], and we need to have a consistent way to assess
the quality and fit of XAI methods and explanations to our objectives and tasks. Evaluating XAI methods
remains a complex yet essential endeavor. Effective evaluation must balance the explanation’s fidelity to
the model’s true reasoning with its interpretability and usefulness to human users [37, 65, 95]. The lack
of a gold standard for explanations poses a challenge for their evaluation, as there is no reference to be
used as ground truth, with recent works trying to address this limitation [57]. Quantitative metrics such
as faithfulness, completeness, and robustness provide objective measures of how well explanations reflect
model behavior [173], while qualitative assessments—often involving user studies—assess trust, usability,
and cognitive plausibility [111, 92]. This dual requirement is especially critical in EEG applications, where
explanations must be not only technically sound but also neuroscientifically meaningful [137]. Therefore,
principled evaluation frameworks are necessary to select XAl techniques that enhance both transparency and
practical utility in neuroimaging contexts.
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Table 3.1: Datasets used in EEG analysis with XAI insights.

Task Dataset Physiological Signal
Sleep-EDF [60, 73], EEG, EMG, EOG
Sleep Monitoring Sleep Cassette [60, 73] | EEG, EOG, EMG
SHHS [126, 60] EEG, EMG, ECG, EOG
CHAT (131, 98] n/a
Emotion Recognition SEED [177] EEG
DEAP [77] EEG, EMG, EOG, BVP
DENS [14] EEG
Major Depressive Disorder | HUSM [108] EEG
MDD [107] EEG
MODMA [26, 145] EEG
Seizure Detection HUH [150] EEG
CHB-MIT [160] EEG
TUH corpus [112] EEG
Bonn [10] EEG
Siena [34] EEG
UBMC [167] EEG
UCLEEG [3] EEG
Motor Imagery BCI IV 2a [157] EEG, EOG
BCI IV 2b [157] EEG, EOG
BCI III IVa [36] EEG
EEGMIMID [60] EEG, EMG, EOG
Stieger2021 [151] EEG
Stroke prediction Acute [8] EEG
Schizophrenia UNM [153] FMRI, SMRI, EEG
IBIB PAN [113] EEG

3.3 EEG Analysis and XAI

3.3.1 Applications

Electroencephalography (EEG) has emerged as a versatile tool in both clinical and research settings, offering
valuable insights into brain activity across diverse applications. Electroencephalography (EEG) remains a
primary diagnostic tool for brain-related conditions due to its non-invasive nature and ease of use. The
applications of EEG span from medical diagnosis to human-computer interaction, including sleep monitoring
for stage assessment and disorder detection [133, 1, 164], seizure identification [133], brain-computer interfaces
like the P300 speller [78], emotion recognition [174, 68, 124, 30|, stroke rehabilitation [143], schizophrenia
analysis [31], epilepsy management [27], and mental fatigue assessment [181].

3.3.2 Datasets

The research community has established several benchmark datasets for these applications, facilitating re-
producible research and meaningful performance comparisons. The works gathered in this survey employ
several key EEG datasets spanning diverse applications. Sleep monitoring studies frequently use Sleep-
EDF and SHHS for sleep stage classification and apnea detection [60, 126]. Emotion recognition relies on
SEED and DEAP to analyze emotional states through EEG patterns [177, 77]. Major depressive disorder
datasets such as HUSM and MODMA provide EEG data for mood disorder analysis [108, 26]. Seizure
detection utilizes CHB-MIT, TUH corpus, and Bonn datasets for epileptic event identification and seizure
classification [112, 10]. Motor imagery research uses BCI Competition datasets for neural signal decoding
in brain-computer interfaces [157]. Stroke prediction is supported by the Acute dataset for prognosis mod-
eling [8], while schizophrenia investigations rely on the UNM and IBIB PAN datasets combining EEG and
neuroimaging modalities [153, 113]. Table 3.1 summarizes these datasets and their physiological signals.
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3.3.3 Challenges

The analysis of these EEG datasets has evolved from traditional machine learning approaches to sophisticated
deep learning architectures. While classical machine learning methods [135] offer interpretable solutions
through handcrafted features, modern deep learning techniques have demonstrated superior performance in
automatic feature extraction and pattern recognition. Convolutional Neural Networks (CNNs) [162, 96] excel
at spatial feature extraction, while Recurrent Neural Networks (RNNs) [123] and Long Short-Term Memory
(LSTM) networks [75] effectively capture temporal dependencies in EEG signals. Recent advances include
hybrid architectures [180] that combine multiple approaches, and transformer-based models [79] that leverage
self-attention mechanisms for modeling long-range dependencies. Foundation models [32] represent the latest
development, aiming to provide transferable EEG representations across multiple tasks.

However, despite their impressive performance, these advanced models often operate as black boxes, raising
concerns about their interpretability and transparency. This limitation is particularly critical in medical
applications where understanding the decision-making process is crucial for clinical adoption. This challenge
underscores the growing importance of explainable Al techniques in EEG analysis.

3.3.4 XAI Methods in EEG

Explainable Artificial Intelligence in the analysis of EEG signal is a currently evolving field. As we can see
in 3.3.1 the number of works that use XAI techniques in EEG analysis is evolving exponentially. Healthcare
is a critical section and the usage of automated systems without explanations raises both clinical and ethical
concerns. Therefore, it is reasonable to witness this exponential growth in research focusing on the explain-
ability of EEG analysis. There is a great variety of methods applied in the field and a survey and taxonomy
of these methods would help researchers mainly in two ways. Firstly, future researchers could discover the
appropriate XAl technique for their problem. Secondly, vacancies in the field could be easily discovered.

This section analyzes various XAI methods applied to EEG analysis, categorizing them by explanation ap-
proach, scope, model dependency, and explanation type. We cover post-hoc methods such as model distilla-
tion and backpropagation, as well as interpretable-by-design models. We distinguish between global and local
explanations, model-agnostic and model-specific methods, and explore explanation types including feature
attribution, rule-based approaches, and visualization techniques, all within the context of EEG applications.
The taxonomy of the XAl approaches in EEG analysis can be seen in 3.3.2.
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Figure 3.3.1: Research paper distribution by year.

By Explanation Approach

Machine learning interpretability methods can be broadly split into two categories: interpretable models
and post-hoc interpretation techniques. The former focuses on building simpler, inherently understandable
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Figure 3.3.2: Taxonomy of XAI Approaches in EEG Analysis.

models, while the latter derives explanations by analyzing a model’s behavior after it has been trained. Of
the analyzed papers, only five used interpretable models and are discussed in the ante-hoc section. The
remaining works used Post-hoc methods and some representative ones are analyzed.

Post-hoc Methods Post hoc interpretability applies interpretation methods after a model has been
trained [105]. This approach can be further categorized into three main techniques: model distillation,
backpropagation-based methods, and perturbation-based methods.

Model Distillation This method aims to approximate deep learning (DL) models using simpler models
that replicate the input-output behavior of the original DL model. By interpreting these simplified models,
insights can be gained into the functioning of the more complex model [154]. LIME is a very common
distillation method that approximates locally the model using an interpretable model. Study [66] uses LIME
in the context of human activity recognition, in order to understand the prediction performance and and the
individual role of EEG features in detecting human activities. Study [62] also employs LIME at the end of
the proposed pipeline providing insights into the individual contributions of the features in the predictions
made by the model.

Backpropagation In backpropagation-based methods the gradient,/relevancy score for a particular class
or neuron is back-propagated in some form. Commonly used backpropagation techniques in EEG analysis
are LRP and GRAD-CAM. Studies [152, 46, 139, 50] employ LRP for explainability. More specifically, [152]
was the first to propose the application of DNNs with LRP for EEG data analysis. With LRP transforms
the single-trial DNN decisions into heatmaps indicating each data point’s relevance for the outcome of the
decision. Study [46] used LRP to explain the importance of modalities both locally and globally. Study [139]
computed LRP for spectral and spatial importance. Study [50] proposed the use of LRP for explainable
multiclass classification of neural states. Studies [88, 163] employ GRAD-CAM for explainability. More
specifically, in [88] GRAD-CAM is employed for spatial explainability in the context of ADHD and CD
characterization. In study [163] GRAD-CAM is used to highlight EEG features associated with each sleep
stage. Study [11] investigates five different backpropagation-based methods. The investigated methods were:
1) Saliency, 2) Guided Backpropagation, 3) LRP, 4) Integrated Gradients, 5) DEEPLIFT. Furthermore study
[159] evaluates four backpropagation-based methods in the context of autism. The evaluated methods were:
SMOOTH-GRAD, SMOOTH-GRAD SQUARED, PATTERNNET, LRP.

Perturbation-based Perturbation-based methods aim at explaining the model by modifying the input of a
model and observing the changes in the output. Commonly used perturbation-based methods are occlusions,
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ablations and techniques like SHAP and LIME. EAsYPEAST [110] proposes a perturbation EEG algorithm
for spectral importance, that requires only perturbations to input data. Study [51] perturbation-based
explainability is applied to gain insight into the spectral and spatial features learned by two distinct deep
learning models trained on raw EEG for schizophrenia diagnosis. In the first approach, they ablated individual
EEG channels, and in the second they ablated specific frequency bands. Study [140] also used two approaches
perturbation-based. In the first they ablated individual EEG channels for spatial explainability, and in the
second they ablated individual frequency bands within each channel for spatial-spectral explainability. The
second approach resembled the EASYPEAST spectral explainability method from the aforementioned paper
[110]. Study [44] also achieves spectral explainability by combining a version of EASYPEASI [41] with a
metric from [48].

Ante-hoc Interpretability by design refers to machine learning models that are considered interpretable
due to their structure, such as short decision trees or sparse linear models [105]. Study [166], employs an
interpretable model and more specifically a Random Forest model for schizophrenia diagnosis. Model fea-
tures are generated from both Generalized Partial Directed Coherence (GPDC) and direct Directed Transfer
Function (dDTF) connectivity measures. Study [144] employs a combination of 1D-CNN with LSTM to
extract interpretable features and a Graph Convolutional Network (GCN) for comprehensive graph modeling
of multi-channel EEG signals. Additionally, an EEG subgraph construction module is introduced, aimed to
identify the most pertinent EEG subgraphs relevant to the recognition task. This approach enhances the
model’s performance and interpretability. Study [102] uses an interpretable SINCNET-based neural network
for emotion recognition. Study [67] presents a novel seizure detection framework. The framework lever-
ages a variety of robust features extracted from the EEG data providing comprehensive information about
the underlying characteristics of the EEG signals that enable the model to make more accurate and inter-
pretable predictions. In the specific study the post-hoc method of SHAP values is also employed reinforcing
interpretability. Lastly, study [161] proposes an explainable feature engineering (EFE) model.

By Explanation Scope

Studies that have both global and local explanations are the majority of the analyzed works. Almost the half
analyzed works provide both type of explanations. The rest are almost equally divided between local and
global explanations. In the next paragraphs are presented some representatives for each category.

Global Explanations Global interpretation methods explain the entire model behavior. This level of
interpretability is about understanding how the model makes decisions, based on a holistic view of its features
and each of the learned components such as weights, other parameters, and structures [105]. Study [49] applies
an ablation-based approach for global explainability. The method gives insight into the importance of each
modality to the identification of each sleep stage. Study [115] employs SHAP to understand the significance
of brain regions during prediction. To obtain the global learning of the model correct predictions of a trained
model were selected and fed into the SHAP.

Local Explanations Local interpretation methods explain an individual prediction. You can zoom in on
a single instance and examine what the model predicts for this input, and explain why [105]. Study [41]
proposes a novel local approach for spectral explainability. In addition, it uses the local approach to form
a global estimate of spectral importance and compares the results to the existing global method that was
proposed here [110]. Study [176] conducts leave-one-out cross-validation experiments to investigate the leaned
attention topography of each subject. Study [156] presents SHERPA, a novel SHAP-based explainability
technique, that finds relevant latency ranges and electrodes.

By Model Dependency

Studies that use model-specific techniques are slightly more than the studies with model-agnostic methods.
In addition there are few that use more than one XAI techniques and some of them are model-specific and
the others model-agnostic. In general, perturbation-based methods are more likely to be model-agnostic and
backpropagation-based methods model-specific. In the next paragraphs are presented some representative
studies for each category.
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Model-agnostic Methods Model-agnostic interpretation tools can be used on any machine learning model
and do not have access to model internals such as weights or structural information [105]. Commonly used
model-agnostic methods are SHAP and LIME. Study [121] employs the model-agnostic technique SHAP
in the context of motor-imagery. SHAP is applied to an EEG signal, the different parts of the EEG signal
are the players, and the prediction is the outcome of their cooperation. Study [138] combines the two model-
agnostic techniques, LIME and SHAP values in seizure detection to estimate the importance value of each
EEG channel. Study [109] employs SHAP in the context of seizure detection, and a variety of charts depicting
the SHAP values were used to see how input features and model output relate to one another.

Model-specific Methods Model-specific methods are confined to particular model classes and work only
for interpreting specific models [105]. Commonly used techniques in EEG analysis include LRP, GRAD-
CAM, DeepLIFT, and Integrated Gradients [158]. Study [45] presents a post hoc statistical analysis of
filter activations, while [21] uses a gradient-based technique plus temporal and spatial kernel visualizations
to reveal class-specific features. Study [54] combines LRP with perturbation for insights into channel impor-
tance, frequency-band contributions, and channel interactions, and [128] applies saliency maps and integrated
gradient to highlight functional connectivity. In [178], Interpretability-guided Channel Selection (ICS) lever-
ages CAM to identify high-contributing EEG channels. Finally, [53] combines LRP with perturbations to
explore spatial, spatio-spectral, and temporal importance.

By Explanation Type

Studies with visualization techniques and feature attribution are the majority. The few that are Rule-based
and Example-based are presented in following subsections. In the subsections of feature attribution and
visualization are presented representative works of each category.

Feature Attribution Study [167] uses SHAP values in the context of seizure detection, quantitatively
attributing importance to individual features regarding their contribution to a model’s predictions. Study
[4] also employs SHAP on Epilepsy Diagnosis. With SHAP values they interpret the model’s decision-
making process and identify the best feature contribution or feature importance. Study [22] employs both
SHAP and LIME to identify key features that significantly contribute to the prediction. This identification
reduces the feature space, saving this way time during model training and improving accuracy. Study [74]
also employs both SHAP and LIME for feature importance. Study [97] performs a feature study on the
output predictions which is based in input-based explanation drivers methods. Study [12] applies SHAP
as an explanatory mechanism to identify the most relevant characteristics to predict schizophrenia. Study
[103] uses the GNNEXPLAINER framework that assesses feature importance. Study [89] employs SHAP
in epileptic seizure recognition getting for each feature the importance and also their range of effects over
the data set. Study [16] also uses SHAP to get feature importance in the classification of emotional states.
Study [80] relies on a human-centric approach for explainability. After the analysis, they can validate that
the model actually looks at the important features for severity scoring.

Rule-based Explanations Study [168] employs four different rule-based classifiers in the task of epilepsy
detection. More specifically, the classifiers are a Decision tree, a Random forest, an SVM combined with C4.5
and an SVM combined with a Random forest. Random forest was the model with the best performance and
exhibiting also higher interpretabilty.

Example-based Methods Example-based explanation methods select particular instances of the dataset
to explain the behavior of machine learning models or to explain the underlying data distribution [105].
Study [47] presents a novel Frequency-based Activation Maximization Explainability (FAME) approach that
falls into this category of explanations. In greater detail, this new approach is suited for long-time series and
can produce a sample that is representative of the features learned by the classifier for a particular class.

Visualization Techniques Visualization methods highlight the most influential features in the input that
drive a model’s decision [130]. Several studies [129, 71, 39, 175] employ Grad-CAM: [129] visualizes spatial
EEG-channel relevance and temporal data, [71] identifies EEG features for outcome classification and network
failures, [39] highlights signal parts critical for sleep-stage prediction, and [174] uncovers which temporal
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Figure 3.3.3: Distribution of EEG study applications from our analyzed papers.

segments and channels are most relevant to a CNN model. Study [42] proposes a novel visualization-based
approach revealing global insights into learned waveforms, spectral features, and filter importance, leveraging
LRP and filter perturbation. Study [141] introduces methods for visualizing ConvNet-learned features, while
[82] demonstrates three approaches for interpreting a trained EEGNet (hidden-unit activation summaries,
convolutional kernel weights, and single-trial feature relevance). In [127], SHAP Deep and SHAP Gradient
visualize electrode, spectral, and temporal contributions. Study [43] presents a novel model visualization-
based approach that adapts a CNN architecture to boost interpretability, and [2] employs a SHAP-based
framework to generate visual explanations and identify critical EEG features for epileptic seizure detection.

By Application Domain

Application Domains of studies with XAI in EEG analysis vary, with epilepsy / seizure detection being the
most common one. In 3.3.3 is presented a pie chart with the percentage of each domain. For each domain is
presented one representative work.

Epilepsy/Seizure Detection Epilepsy detection through EEG traditionally requires time-consuming
manual analysis. Although automated methods exist [138], their black-box nature limits interpretability.
Study [172] addresses this using LIME and SHAP for feature importance analysis.

Sleep Monitoring Sleep specialists typically perform visual sleep stage scoring by analyzing patients’
neurophysiological EEG signals recorded in sleep laboratories. This process is often challenging, labor-
intensive, and demands significant time and human resources [9]. However, for models to be employed as
an assistive solution by sleep specialists, it is essential for the models to be explainable [39]. A study that
employs XAI techniques to sleep monitoring is [119]. More specifically, it employs three different Post-hoc
explainability methods in the context of automated sleep scoring. The different techniques include frequency-
domain occlusion, time-domain occlusion, and pattern visualization of temporal filters in the CNN.

Schizophrenia Schizophrenia is a mental disorder diagnosed based on variable symptoms, making it diffi-
cult to diagnose accurately [52]. Recent studies have applied deep learning to EEG for automated schizophre-
nia diagnosis, but the use of raw EEG data complicates model explainability. This lack of explainability is
a challenge in healthcare, where understanding model decisions is essential. Study [52] examines the repro-
ducibility of schizophrenia biomarkers across models with the goal of identifying those that have potential
clinical implications. For explainability, they used a permutation feature approach. The first analysis was
with permutation of the features associated with each canonical frequency band for spectral importance, and
in the second the features associated with each channel for spatial importance.
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Motor Execution-Imagery XAI methods have been applied to the domain of cognitive neuroscience
and in greater detail with motor imagery and motor execution. For instance, study [117] at first applied a
permutation-based method for reliable explanations. Next, a novel technique was designed for selecting the
best among a few saliency-based methods due to the need for a faster method of XAI for spatio-temporal
explanation. The tested methods were saliency maps, DEEPLIFT and DEEPSHAP, with DEEPLIFT being
selected.

Major Depressive Disorder Depression is a prevalent mental disorder that poses significant risks to
human health and social stability [144]. Current approaches to diagnosing depression primarily depend on
patient self-reports and psychiatric evaluations, making them vulnerable to subjective influences and in-
creasing the risk of misdiagnosis or overlooked cases. Deep learning techniques are being adopted, though
explainability is poor in these techniques. Study [55] identifies biomarkers of Major Depressive Disorder
(MDD), by two novel convolutional neural network-based architectures. For explainability employs a variety
different of approaches. The two first are model-agnostic, ablation-based for spatial and spectral explainabil-
ity. The other are visualization techniques, model-specific and are uniquely enabled by the two novel model
architectures.

Stroke Prediction Acute ischemic stroke is one of the leading causes of neurological disease in the elderly,
exposing millions of individuals to neurological abnormalities and physical impairments [69]. Study [23]
employed the XAT tools LIME and EL15. The use of these tools made possible the investigation of how the
model makes the predictions and how each input attribute influences the prediction. By identifying the key
features that significantly contribute to the prediction, the feature space was reduced and time was saved
during model training while accuracy was improved.

Emotion Recognition XAI methods have also been applied to the domain of emotion recognition. For
instance, study [7] integrates the SHAP DEEP EXPLAINER in the emotion classification process. A spectro-
gram is passed into the SHAP DEEP EXPLAINER and at the end, the discrete-time frames corresponding to
the output of a particular emotion are obtained.

Other Fourteen of the reviewed studies do not belong to any of the aforementioned domains. For instance,
study [83] proposes a novel method that identifies channel importance regardless of the type of EEG appli-
cation. Study [6] employs XAI methods in the context of industrial internal security. More specifically, it
employs permutation to the ADABOOSTCLASSIFIER, permutation, and SHAP to RANDOM FOREST model,
and permutation to K-NEAREST NEIGHBORS.In Figure 3.3.3, the distribution of different applications is
shown.
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Proposal

In this section, we present the followed methodologies for both the survey of XAI methods in EEG and
the Seizure detection problem. The results of the survey were presented in 3.3.4. For the Seizure detection
problem the models are trained with features extracted from EEG, ECG and EMG signals. Following, we
employ two different post-hoc explainability methods to understand model decisions.

We first highlight the main contributions of this thesis and then explain the followed methodologies in detail.

4.1 Contributions

The contributions of this dissertation are multifaceted, spanning both theoretical and methodological ad-
vancements in the field of explainable artificial intelligence (XAI) applied to electroencephalography (EEG)
analysis.

First, this work undertakes a comprehensive exploration of existing X AT techniques used in EEG research. By
systematically examining the current state of explainability frameworks, visualization tools, and algorithmic
strategies, the study offers a clear and structured understanding of how interpretability is currently being
approached in EEG-based machine learning. Through this analysis, the dissertation not only consolidates
dispersed knowledge across studies but also identifies key methodological limitations and open research gaps.
This contribution serves as a valuable reference point for researchers aiming to develop more transparent,
trustworthy, and clinically applicable EEG models.

Second, the dissertation provides an in-depth review and taxonomy of recent trends and developments in
explainable EEG analysis. It presents a detailed overview of fundamental EEG tasks—such as classification,
event detection, and brain state decoding—while also surveying the most relevant publicly available EEG
datasets used in XAl studies. To bring conceptual clarity to this growing research area, a structured classifica-
tion of XAI methods is proposed, organizing techniques according to factors such as their model dependence,
level of interpretability, and granularity of explanation. This taxonomy helps contextualize current research
efforts and supports systematic comparison across studies.

Third, the dissertation introduces a novel and interpretable multimodal framework for seizure detection that
integrates EEG, electrocardiography (ECG), and electromyography (EMG) signals. The proposed method-
ology combines advanced preprocessing pipelines and feature extraction techniques with explainable machine
learning models capable of providing transparent decision-making. Experimental results demonstrate that
the multimodal approach achieves superior performance compared to conventional deep learning methods,
highlighting its potential to improve both diagnostic accuracy and model interpretability in clinical contexts.

Finally, the study leverages explainability analysis to identify the most salient features contributing to seizure
detection. By employing feature-importance and attribution techniques, it isolates the neural and physiolog-
ical characteristics most influential in classification outcomes. This interpretability-driven insight not only
enhances understanding of the mechanisms underlying seizure generation but also offers valuable guidance
for clinicians and researchers seeking to refine diagnostic tools or design future multimodal studies.
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4.2 Followed Methodologies
4.2.1 Survey of XAI methods in EEG

In this section, we present the methodology used to conduct a thorough and systematic review of the literature
on applying XAI to EEG analysis. We begin with the research questions that guided our investigation, then
describe the paper selection strategy, and conclude with the framework used for analyzing the collected
studies.

Research Questions

The focus of this study is to investigate the role of XAl in EEG analysis by addressing key research questions
that explore the methods, applications, and broader implications of XAI in this domain. The following
research questions guide the survey:

RQ1: What are the primary XAI methods utilized in EEG analysis? This question aims to identify
and categorize the explainability techniques applied to EEG-based studies. By examining these methods,
the study seeks to provide a comprehensive overview of how explainability is incorporated into EEG research
and which approaches are most prevalent.

RQ2: In which specific EEG analysis tasks have XAI methods been applied? EEG analysis
encompasses a diverse range of applications, including seizure detection, sleep stage classification, cognitive
workload assessment, and emotion recognition. This research question investigates the various tasks where
XATI techniques have been implemented, highlighting trends, challenges, and gaps in the existing literature.

Through the answers to these research questions and our overall analysis, we also want to present what types
of limitations exist in the employment of XAI techniques in the EEG domain and what further approaches
could provide benefits for future research.

Search Strategy

Our search strategy followed two parallel approaches to compile an initial pool of papers, which were then
filtered on the title and abstract relevance to produce the final set studied in this survey, as illustrated
in Figure 4.2.1. The collection of the initial pool of papers involved (1) targeted searches within selected
venues and (2) broad keyword-based queries in major academic databases, along with backward and forward
snowballing to detect related papers. The initial collection of 151 papers underwent a filtering process based
on titles and abstracts, ultimately yielding a final selection of 66 relevant papers.

We began by searching the proceedings of the World Conference on Explainable Artificial Intelligence with
“EEG” and “electroencephalography” and used backward and forward snowballing to expand our initial set
of papers. This process revealed additional key venues—such as IEEE ISBI, IEEE EMBC, IEEE BIBM,
and IEEE NER—publishing work at the intersection of XAI and EEG. For each venue, we systematically
searched publications using XAI- and EEG-related keywords and again applied snowballing to enlarge our
dataset.

The second approach involved querying major academic databases, including PubMed, ScienceDirect, IEEE
Xplore, Springer, and Google Scholar. We used the same set of XAI- and EEG-related keywords to retrieve
relevant publications. As with the first approach, we performed snowballing to identify additional papers
from the reference lists and citations of retrieved articles.

After compiling an initial pool of 151 papers, we conducted a filtering process based on titles and abstracts to
refine the selection. We prioritized studies that closely aligned with our research focus, ensuring a broad yet
relevant coverage of the intersection between XAl and EEG. Additionally, we favored papers that provided
clear experimental validation or novel methodological contributions, which helped us focus on high-quality
and impactful research.

4.2.2 Seizure detection

The methodology adopted begins with the SeizelT2 dataset [20] as input. This dataset was chosen as it
served as the basis for the Una Europa Epilepsy Data Challenge, providing a well-established benchmark for
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seizure detection research. In addition, it is a large-scale dataset comprising thousands of hours of multimodal
recordings, including not only EEG but also EMG and ECG signals. Its large scale and multimodal structure
also make it particularly suitable for building robust and generalizable models.

The next stage of the pipeline consists of preprocessing and feature extraction, which prepare the data for
model training. This stage is crucial because raw signals are often noisy and, without adequate processing,
they can obscure rather than reveal meaningful patterns. During preprocessing, the continuous recordings
are segmented into fixed-length windows and filtered to remove noise and artifacts, ensuring that subsequent
analysis focuses on physiologically meaningful signal components. Feature extraction is then applied across
all three modalities (EEG, ECG, and EMG), resulting in a rich representation of the data. The extracted
features encompass statistical measures, temporal characteristics, signal complexity measures, and spectral
features derived from different frequency bands.

Once the data has been prepared, the extracted features are used to train and evaluate machine learning
models. A variety of classifiers are explored to identify which approaches strike the best balance between
predictive performance and interpretability. In particular, we focus on tree-based and ensemble-based meth-
ods such as Random Forest, XGBoost, LightGBM, CatBoost, and HistGradientBoosting. These models
are well suited for tabular, multimodal data and have the advantage of handling nonlinear interactions and
heterogeneous feature spaces. Beyond raw performance, they also lend themselves more naturally to inter-
pretability techniques, making them an ideal choice for a clinical use case in which black-box predictions
would not be acceptable. The emphasis here is not only on achieving competitive detection accuracy, but
also on developing models that could be trusted and scrutinized by clinicians in real-world scenarios.

Finally, the workflow concludes with an explainability analysis, where we apply two complementary post-
hoc techniques to interpret the trained models. First, we employ SHAP in all models, generating SHAP
beeswarm plots that provide a global view of feature importance as well as the direction and magnitude of
the contribution of each feature to the predictions. This allows us to identify not only which features are
most influential, but also how their values affect the likelihood of detecting a seizure. In addition, we apply
TE2Rules to the XGBoost and Random Forest models, extracting human-readable decision rules from these
classifiers.

In summary, the methodology is designed not only to build accurate seizure detection models, but also to
emphasize transparency and interpretability throughout the workflow. By combining benchmark data, mul-
timodal feature representations, ensemble-based classifiers, and post-hoc interpretability tools, the approach
balances predictive power with clinical relevance. A detailed description of each stage of the methodology,
along with experimental configurations and results, is provided in Chapter 5.
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Chapter 5. Experiments

5.1 Preliminaries

5.1.1 Dataset
SeizelT2 Dataset

The models in this dissertation are trained and evaluated using the SeizeIT2 dataset [20]. The dataset in-
cludes recordings from 125 patients (51 female, 41%), encompassing approximately 11640 hours of wearable
data, acquired across five distinct European Epilepsy Monitoring Units: University Hospital Leuven (Bel-
gium), Freiburg University Medical Center (Germany), RWTH University of Aachen (Germany), Karolinska
University Hospital (Sweden) and Coimbra University Hospital (Portugal). The University Hospital Leuven
was the only center that enrolled pediatric patients. The dataset includes only data from patients with focal
epilepsy who experienced one or more seizure episodes during the monitoring period. Four different modali-
ties were recorded for most participants: bte-EEG, ECG, EMG and movement data. All participants’ data
within the dataset contain wearable bte-EEG. In 3% of the dataset, ECG, EMG and movement data were
not included due to technical failures or errors in the setup. The dataset contains 886 recorded focal seizures
with the wearable device. The mean duration of the recorded seizures was 58 seconds, ranging between 3
seconds and 16 minutes.

The SeizelT2 project is an international multicenter dataset with more than 350 patients suffering from
epilepsy and recorded both in home and hospital environments. The dataset is an open subset of the full
project and was used for the Seizure Detection Challenge organized by KU Leuven in collaboration with Una
Europa, aiming to develop innovative and robust machine learning (ML) frameworks for electroencephalog-
raphy (EEG) data processing, in which the end use case is detection of epileptic seizures. According to
the organizers’ guidelines, the recordings from the first 96 subjects were designated for training, while the
remaining subjects were used for evaluation. The final evaluation was carried out on a hidden test set.

For this application, it was not feasible to train on the entirety of the thousands of recorded hours, therefore,
only a subset was used for training. In addition the dataset is very unbalanced containing few hours of
seizure events compared to non seizure epochs. The constructed datasets included all periods identified as
seizure events, along with randomly selected non-seizure periods. Three seizure-to-non-seizure ratios were
considered: 1:2, 1:10, and 1:100. For the evaluation were used all the recordings that included every modality.

Data Augmentation

A frequent challenge in biomedical signal analysis, such as with EEG signals for seizure detection, is the
limited quality and amount of available data [67]. In our dataset, the recordings originate from wearable
devices, which provide lower-quality data, and the overall duration of seizure events is relatively limited. In
this thesis, I experimented with datasets both with and without augmented seizure data.

The data augmentation technique I used was the same with the one used here [67]. The mathematical technique
Fourier Transform (FT) Surrogates was used, which transforms a function of time, such as an EEG signal,
into a function of frequency. This transformed representation, or spectrum, offers an alternative view of the
data and emphasizes different characteristics of the underlying signal. Fourier Transform (FT) surrogates
are a particular form of data augmentation in which new surrogate signals are produced by randomizing
the phases of the original EEG signal’s Fourier Transform. Importantly, this process preserves the power
spectrum, a measure of the energy distribution of the signal between frequencies, thus maintaining the overall
structural properties of the original signal while modifying its temporal organization (such as the sequence
and timing of events) [67].

The use of FT Surrogates served two primary purposes. Firstly, it increased the size of training datasets,
creating more seizure samples. Secondly, this technique added diversity to the datasets, allowing the models
to learn to recognize seizures in a broader range of circumstances.

Preprocessing and Feature Extraction

The preprocessing and feature extraction approaches used in this thesis are inspired by a study for Seizure
detection from wearable data [67] and a study for prediction of post-traumatic stress disorder subtypes from
Resting-state EEG [85].
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Figure 5.1.1: Number of participants per EMU included in the SeizelT2
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Figure 5.1.2: Extracted features

First, the EEG data were band-pass filtered between 1-100 Hz to retain the frequency components most
relevant for seizure activity, while removing slow drifts and high-frequency noise. A 50 Hz notch filter was
also applied to eliminate power-line interference commonly present in clinical recordings. After filtering,
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the signals were segmented into non-overlapping 1-second epochs, providing consistent time windows for
feature computation. Three seizure-to-non-seizure ratios (1:2, 1:10, and 1:100) were considered to address the
inherent class imbalance, and for each ratio, experiments were conducted both with and without augmented
seizure samples to assess the effect of data augmentation on model performance.

Following preprocessing, features were extracted from all modalities (EEG, ECG, and EMG) to create a rich
representation of the data for machine learning models. The features were grouped into four main categories:
statistical measures, temporal features, complexity measures, and spectral features. Together, these features
capture complementary information on signal distribution, dynamics, nonlinearity, and frequency content.
A summary of the extracted features is shown in Figure 5.2.1, with detailed descriptions provided in the
following paragraphs.

Statistical measures used were Standard Deviation (STD), Interquartile Range (IQR), Skewness, and Kurto-
sis. STD and IQR are used to capture the variability within EEG signals. STD reflects the average deviation
of the data from the mean, while IQR indicates the spread of the middle portion of the data. Skewness and
kurtosis describe the characteristics of the signal’s probability distribution: skewness measures its asymmetry,
and kurtosis evaluates the weight of the distribution’s tails compared to a normal distribution.

The temporal features analyzed include the number of zero crossings, Hjorth mobility, and Hjorth complexity.
Zero crossings give an estimate of the signal’s frequency content, while the Hjorth parameters serve as
descriptive measures of signal characteristics. In particular, mobility reflects the average frequency or rate of
change of the signal, whereas complexity indicates how closely the signal resembles a pure sine wave.

The complexity measures applied included fractal dimensions and entropies. Fractal dimensions capture how
the level of detail in the data varies across different scales, while entropy quantifies the degree of randomness
or unpredictability within the signal.

Spectral features, such as power, in different energy bands, such as Delta, Theta, Alpha, Beta, and Gamma
were extracted. The EEG signal was divided into different frequency bands and absolute and relative power
were measured within each band. The five canonical frequency bands: delta (1.25-4 Hz), theta (4-8 Hz),
alpha (8-13 Hz), beta (13-30 Hz), and gamma (30-49 Hz). Theta/beta ratio was also estimated.

The EMG signals were band-pass filtered between 20-450 Hz to remove motion artifacts and high-frequency
noise, and a notch filter at 50 Hz was applied to eliminate power-line interference. The filtered signals were
segmented into 1 s non-overlapping epochs for feature extraction.

Several widely used EMG descriptors were calculated. Root Mean Square (RMS) and Mean Absolute Value
(MAV) summarize the signal amplitude and overall muscle activation level. Zero Crossing Rate (ZC) reflects
the frequency content of the EMG activity, while Waveform Length (WL) quantifies the cumulative complex-
ity of muscle activity over time. In addition, Standard Deviation (STD) and Variance capture the variability
in the signal. Together, these features provide a compact characterization of EMG activity, capturing both
intensity and dynamic properties of muscle contractions.

The ECG signals were preprocessed with a band-pass filter of 0.5-50 Hz to remove baseline drift and high-
frequency noise, and a 50 Hz notch filter was applied to suppress power-line interference. The data were
divided into 1 s epochs, from which a combination of statistical and physiological features were extracted.

Basic descriptors such as mean, Standard Deviation (STD), Variance, Root Mean Square (RMS), and Peak-
to-Peak amplitude (PTP) capture overall signal morphology and variability. Higher-order statistics including
skewness and kurtosis describe the distributional shape of the ECG waveform. Physiologically relevant
features were derived through R-peak detection, enabling estimation of RR intervals and heart rate within the
segment. From these, average RR interval, standard deviation of RR intervals, and instantaneous heart rate
were computed, offering insight into short-term cardiac rhythm dynamics. These features together capture
both morphological characteristics of the ECG waveform and temporal variability related to autonomic
regulation.

5.1.2 Evaluation Metrics

The evaluation of our models was based on the scoring function that was also used in the Seizure Detection
Challenge. The function is based on the metrics of sensitivity and False Alarm Ratio (FAR). These metrics
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are particularly suitable for seizure detection tasks, which are highly imbalanced classification problems due
to the rarity of seizure events compared to long periods of non-seizure activity.

Sensitivity

Sensitivity is measured on an event basis, meaning that the performance is assessed at the level of entire
seizure events rather than individual prediction windows. This ensures that the clinical relevance of seizure
detection is reflected in the evaluation, as missing an event is more critical than missing a single window.
To compute sensitivity, the any-overlap method (OVLP) [179] is employed. According to OVLP, a True
Positive (TP) is counted when the predicted hypothesis has any temporal overlap with a corresponding
seizure event in the ground truth annotation. A False Negative (FN) occurs when no overlap exists. This
method is permissive, as even partial overlaps count as successful detections, which typically results in higher
sensitivities but underestimates the number of false detections.

False Alarm Ratio (FAR)

False alarms (FAs) correspond to spurious detections in which the model predicts a seizure event that does not
overlap with any annotated seizure in the reference. Instead of reporting specificity, which is less informative
in highly imbalanced datasets, the False Alarm Ratio (FAR) is used. FAR is computed as the number of false
positives normalized by the recording duration and expressed as the number of false alarms per hour (FA /h).
In our evaluation, FAs were computed using the epoch-based (EPOCH) scoring method [179]. In this method,
both reference and hypothesis are discretized into non-overlapping epochs of fixed duration. Each epoch is
assigned a seizure/non-seizure label, and errors are tabulated as insertions, deletions, or substitutions, with
all errors weighted equally. This provides a more conservative estimate of false alarms compared to OVLP,
reducing the risk of underreporting spurious detections.

Scoring Function

To balance the trade-off between high sensitivity and low false alarm rate, we adopted the combined scoring
function defined in the challenge. Sensitivity is computed using the OVLP method, while FAR is estimated
using the EPOCH-based approach. The final score is then calculated as a weighted combination of both
metrics, with a weighting factor of 0.4 applied to the FAR to balance its influence relative to sensitivity. This
results in a single performance score that rewards models capable of reliably detecting seizure events without
producing excessive false alarms.

Score = Sensitivity(%) — 0.4x LA
—_————
OVLP EPOCH

5.2 Model Experiments

All model training and evaluation were performed on an Amazon Web Services (AWS) EC2 instance equipped
with a dedicated GPU to ensure sufficient computational resources for both machine learning and deep
learning experiments. To maintain consistency across modalities, only recording runs containing the complete
set of EEG, EMG, and ECG signals were used, thereby allowing the models to fully exploit multimodal
information.

5.2.1 Machine Learning Models

The machine learning models were trained using the handcrafted feature sets described in Section 5.1. For
each classifier, six variants were trained corresponding to different class ratios (seizure-to-non-seizure) and
augmentation conditions. Specifically, for each ratio, one dataset contained only the original samples, while
the other included synthetic data generated through augmentation. Multiple classification thresholds were
tested for each configuration, and the threshold yielding the best overall performance was selected.

The models evaluated included XGBoost, Light GBM, CatBoost, Random Forest, and HistGradientBoosting,
as well as two ensemble configurations. The first ensemble combined all five base models, whereas the second
ensemble included only the top three performers: XGBoost, CatBoost, and LightGBM. Both ensembles
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Figure 5.2.1: Overview of the machine learning models used in this study.

employed a **majority voting** mechanism: each model independently predicted a class label for a given

input, and the label receiving the majority of votes was selected as the final decision. This strategy aimed to
enhance generalization by leveraging model diversity, reducing variance, and mitigating the risk of overfitting
to specific patterns or modalities.

In practice, the gradient boosting models (XGBoost, CatBoost, Light GBM) demonstrated strong adaptabil-
ity to heterogeneous feature spaces, benefiting from their ability to model complex nonlinear dependencies
while handling feature interactions automatically. Ensemble aggregation further improved robustness and
interpretability, offering a principled way to consolidate multiple inductive biases inherent to different algo-
rithms.

5.2.2 Deep Learning Models

In contrast to the machine learning approaches, the deep learning models were trained directly on the
preprocessed multimodal time series, without reliance on handcrafted features. Although this approach was
expected to capture temporal dependencies and nonlinear signal correlations more effectively, in practice the
deep learning architectures underperformed compared to the feature-based machine learning pipelines. Their
lower accuracy and generalization ability highlight the current challenges of applying generic deep models to
limited or noisy biosignal datasets.

GDN

The Graph Deviation Network (GDN) proposed by [33] was initially designed for anomaly detection in
multivariate industrial time series using a graph neural network (GNN) architecture. In our implementation,
each channel from the EEG, ECG, EMG, and motion (MOV) signals was treated as a node in the GNN,
allowing the model to learn inter-channel dependencies.

However, the GDN was not originally intended for biosignal analysis, and the low number of EEG channels
(two per subject) limited the graph’s representational richness. The resulting sparse connectivity hindered
the model’s ability to learn meaningful inter-node relationships. Consequently, despite its conceptual appeal
for multimodal dependency modeling, the GDN proved unsuitable for our seizure detection task.
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xLSTM

The xLSTM architecture, recently introduced by [18], extends the traditional Long Short-Term Memory
(LSTM) design with improved gradient flow and modular flexibility. For this work, we employed the
xLSTMBlockStack variant, optimized for non-language sequence modeling. The model was trained directly
on the preprocessed EEG, ECG, and EMG sequences to learn temporal and cross-modal patterns.

Despite its promising architecture, the xLSTM exhibited significant overfitting, achieving high training accu-
racy but poor validation performance. This behavior suggests that, given the limited dataset size and signal
variability, the model memorized training examples rather than learning generalizable temporal dynamics.
Regularization and dropout adjustments offered marginal improvement, but overall, the model failed to gen-
eralize effectively to unseen samples, indicating that deep architectures may require substantially larger or
more diverse datasets to outperform feature-based methods in this context.

5.2.3 Explainability

To interpret the internal decision processes of the trained models, two complementary explainability frame-
works were employed: SHAP (SHapley Additive exPlanations) and TE2Rules [81]. These methods provided
both feature-level and rule-level insights into model behavior, enhancing transparency and interpretability.

The SHAP library quantifies the contribution of each input feature to a model’s prediction, based on Shapley
values from cooperative game theory. This allows for a consistent, model-agnostic explanation of how individ-
ual features drive decisions across all samples. From SHAP, we used **beeswarm plots** (see Figure 5.3.7),
which offer a dense yet interpretable visualization of feature importance and influence. Each dot represents
one sample, with its horizontal position corresponding to the SHAP value (indicating impact magnitude and
direction) and its color denoting the feature’s actual value. Such plots reveal not only which features are
most influential but also whether high or low feature values push predictions toward the seizure or non-seizure
class.

In addition, TE2Rules was applied to the Random Forest and XGBoost models. Unlike SHAP, which
provides additive feature attributions, TE2Rules extracts **explicit human-readable rules** that describe
the sufficient and necessary conditions for classification. The algorithm uses an Apriori-based rule mining
process to identify recurring patterns in the learned decision trees, enabling a direct logical interpretation of
model behavior. Together, SHAP and TE2Rules form a comprehensive interpretability framework, combining
quantitative feature relevance with qualitative, rule-based reasoning. This integration offers not only a better
understanding of model decisions but also a means to validate their clinical plausibility in the context of
multimodal seizure detection.

5.3 Results

5.3.1 Performance

This subsection presents the best performance scores achieved for each training ratio, comparing models
trained with augmented data against those trained solely on the original samples. This comparison enables
us to quantify the impact of class imbalance and to assess how effectively data augmentation improves
generalization. Furthermore, the analysis provides insight into the relative robustness, adaptability, and
discriminative capacity of the different classifiers.

As shown in Figure 5.3.1, the ensemble of XGBoost, CatBoost, and Light GBM achieved the highest over-
all performance, confirming that model ensembling enhances stability and predictive accuracy through the
aggregation of diverse decision boundaries. Among the individual classifiers, XGBoost and CatBoost con-
sistently outperformed Light GBM and HistGradientBoosting, which recorded the lowest scores across most
configurations.

A key observation is that models trained with a 1:2 ratio (seizure to non-seizure) yielded the best performance
on average. This ratio appears to strike an effective balance between the overrepresentation of non-seizure
samples and the limited availability of seizure instances, thus reducing bias while preserving representative-
ness. The effect of augmentation, however, was model-dependent: some classifiers benefited substantially,

67



Chapter 5. Experiments

while others—particularly those with built-in robustness mechanisms against class imbalance—showed only
marginal improvement or even slight degradation, likely due to noise introduced by synthetic samples.
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Figure 5.3.1: Best score achieved by each model across different training ratios and augmentation
conditions.
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Figure 5.3.2: Scores of the XGBoost models across different training ratios and augmentation settings.

Figure 5.3.2 presents the best scores obtained by the XGBoost models under varying training ratios and
augmentation conditions. Among all configurations, the model trained with a 1:2 ratio and augmented
samples achieved the highest performance. This optimal configuration reached a score of 46.55, derived
from a sensitivity of 0.61 and a False Alarm Ratio (FAR) of 35.10, with a decision threshold set at 0.85.
In this context, the threshold value indicates that a probability of at least 85

XGBoost demonstrated mixed behavior across different ratios and data augmentation strategies. For datasets
with 1:2 and 1:100 ratios, the inclusion of augmented data provided a clear performance benefit, suggesting
that the model effectively utilized the added data diversity to generalize better. However, at the 1:10
ratio, augmentation slightly degraded performance, likely due to an increased imbalance in the learned
decision boundaries. Overall, these results confirm the adaptability of XGBoost but also reveal its sensitivity
to data composition, underscoring the importance of tuning augmentation strategies to the training ratio.
The model’s consistently high scores across multiple configurations reinforce its robustness and efficiency in
handling heterogeneous multimodal data.

LightGBM

Figure 5.3.3 illustrates the performance of the Light GBM models under different training configurations.
The best-performing model was trained using a 1:2 ratio without augmented samples, achieving a score
of 42.22, with a sensitivity of 0.58 and a False Alarm Ratio of 43.64, using a decision threshold of 0.85.
Similar to XGBoost, increasing the training ratio yielded better results overall, while extremely imbalanced
configurations (1:100 ratio) failed to produce meaningful performance.
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Figure 5.3.3: Scores of the Light GBM models across different training ratios and augmentation settings.

A key observation is that, in contrast to XGBoost, data augmentation consistently reduced perfor-
mance in Light GBM across all tested ratios. This may be attributed to LightGBM’s leaf-wise growth
strategy and its sensitivity to data noise: augmented samples—especially if they introduce subtle inconsis-
tencies—can distort the learned gradient distributions, reducing the model’s discriminative precision. Thus,
while Light GBM proved stable and competitive, its optimal performance was achieved under carefully cu-
rated, non-augmented datasets, emphasizing its reliance on data purity rather than synthetic diversity.
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Figure 5.3.4: Scores of the CatBoost models across different training ratios and augmentation settings.

As shown in Figure 5.3.4, CatBoost exhibits a performance pattern opposite to that of Light GBM. In this
case, the model’s performance improves as the training ratio decreases, and the use of augmented
data generally enhances its outcomes. The best-performing CatBoost model was trained with a 1:100 ratio
that included augmented samples, achieving a score of 43.57, derived from a sensitivity of 0.57 and a False
Alarm Ratio of 32.69, with a decision threshold of 0.10. This low threshold indicates a conservative decision
policy, favoring sensitivity over specificity—an approach particularly advantageous when minimizing missed
detections is more critical than avoiding false alarms.

Notably, CatBoost was the only model among those evaluated to achieve its best score under the most im-
balanced (1:100) configuration. This distinctive behavior may stem from CatBoost’s gradient-based handling
of categorical and numerical feature interactions, which enables it to exploit even limited true samples effec-
tively when supported by diverse augmented data. The model’s robustness under imbalance highlights its
strength in dealing with heterogeneous multimodal distributions and its superior ability to capture complex
nonlinear dependencies across EEG and physiological modalities.
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Random Forest
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Figure 5.3.5: Scores of the Random Forest models across different training ratios and augmentation settings.

Random Forest

Figure 5.3.5 summarizes the performance of the Random Forest models under varying training ratios and
data augmentation conditions. In this case, both increasing the training ratio and incorporating augmented
data led to noticeable performance improvements. The best results were obtained with the model trained
using a 1:2 ratio that included augmented samples, achieving an optimal balance between sensitivity and
false alarm control. This configuration yielded the highest score of 39.69, corresponding to a sensitivity of
0.58 and a False Alarm Ratio (FAR) of 38.5, with a decision threshold set at 0.55.

These findings suggest that Random Forest benefits from additional training data and synthetic variability,
likely due to its ensemble averaging mechanism, which helps mitigate overfitting and enhances generaliza-
tion. The performance trend also aligns with the model’s relatively strong sensitivity observed in Section 5.3,
reinforcing the value of balanced and augmented training sets in stabilizing decision boundaries across het-
erogeneous input modalities.

HistGradientBoosting

Hist Gradient Boosting
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Figure 5.3.6: Scores of the HistGradientBoosting models across different training ratios and augmentation
settings.

HistGradientBoosting produced the weakest overall performance among the evaluated models, exhibiting
behavior similar to that of LightGBM but with greater instability across training configurations. As illus-
trated in Figure 5.3.6, both decreasing the training ratio and introducing augmented data led to performance
degradation, suggesting that this model was less capable of leveraging additional synthetic samples. Models
trained with the most imbalanced configuration (1:100 ratio) failed to learn effectively, producing near-random
outcomes.

The best-performing HistGradientBoosting model was trained with a 1:2 ratio without augmentation, achiev-
ing a score of 37.51, derived from a sensitivity of 0.54 and a False Alarm Ratio of 44.18, with a decision
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threshold of 0.90. The consistently weaker performance of HistGradientBoosting compared to its boost-
ing counterparts (XGBoost and LightGBM) likely reflects its limited flexibility in handling complex, high-
dimensional relationships among EEG and physiological features. Moreover, its binning-based optimization,
while computationally efficient, may have restricted its ability to capture fine-grained signal dynamics that
are critical for this classification task.

Ensemble Models

Two ensemble configurations were evaluated to assess the combined predictive strength of the individual
classifiers. The first ensemble integrated all five models—HistGradientBoosting, Random Forest, Light GBM,
CatBoost, and XGBoost—through a majority voting scheme. This configuration achieved a score of 42.54,
with a sensitivity of 0.54 and a False Alarm Ratio of 39.59.

The second ensemble, composed exclusively of the three best-performing models (XGBoost, CatBoost, and
Light GBM), delivered the highest overall performance. It achieved a score of 47.73, with a sensitivity of
0.65 and a False Alarm Ratio of 47.00. For both ensembles, the decision thresholds of the constituent
models were fine-tuned individually to maximize overall predictive efficiency.

The superior performance of the smaller, targeted ensemble underscores the advantage of selectively inte-
grating high-performing classifiers while excluding weaker learners that may introduce decision noise. This
result aligns with the SHAP-based feature analyses (Section 5.3), which demonstrated that these three mod-
els capture complementary yet robust signal representations. Collectively, the ensemble findings highlight
the potential of hybrid model integration strategies for improving robustness and sensitivity in multimodal
EEG-physiological classification tasks.

Overall, these results highlight two key insights: (1) gradient boosting methods consistently outperform
traditional ensemble techniques for this task, and (2) controlled rebalancing of the data distribution (via
ratio adjustment or augmentation) substantially enhances seizure detection performance by mitigating the
class imbalance inherent in EEG-ECG datasets.

5.3.2 Explainability — SHAP

This subsection presents the results of the SHAP (SHapley Additive exPlanations) analysis, which was used
to interpret the contribution of each feature to the model’s predictions. The SHAP beeswarm plots revealed
that the most influential features for seizure detection were the interquartile range (IQR), the peak-to-peak
amplitude of the ECG signal, and the absolute power of the theta band. Notably, higher values of these
features tend to increase the model’s likelihood of predicting a seizure event.

The prominence of the IQR aligns with prior studies highlighting its role as a discriminative feature for
EEG-based seizure classification. For example, [19] demonstrated that the IQR effectively separates normal,
interictal, and ictal EEG segments, achieving nearly 100% classification accuracy. Similarly, changes in
ECG morphology—particularly variations in QRS peak-to-peak amplitude—have been associated with ictal
episodes, as shown in [165]. Furthermore, the observed importance of theta-band absolute power resonates
with findings from [56], which identified theta-band increases as a consistent marker of epileptic activity
across multiple studies.

Other relevant features included the RR interval (derived from ECG), ECG skewness, and heart rate. Lower
RR intervals (corresponding to elevated heart rates) were strongly associated with seizure events, confirming
the physiological link between epileptic activity and autonomic arousal. Consistent with clinical findings,
studies such as [70] and [114] have documented shortened RR intervals and increased heart rates during ictal
states, while [40] and [17] reported ictal tachycardia as one of the most frequent autonomic manifestations
during seizures.

Overall, the SHAP analysis provides physiologically interpretable evidence supporting the multimodal nature
of seizure biomarkers, combining EEG spectral power alterations with ECG-based indicators of autonomic
dysregulation.
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Figure 5.3.7: SHAP Beeswarm plot for the XGBoost model

XGBoost

As demonstrated in Section 5.3.1, the XGBoost model achieved the highest overall predictive performance
among the evaluated classifiers. The SHAP analysis shown in Figure 5.3.7 provides deeper insight into the
underlying feature contributions that drove this superior performance. The interquartile range (IQR) emerges
as the most influential feature, aligning with the feature importance trends observed across most models.
The IQR’s dominance suggests that the variability and dispersion of the EEG signal are highly predictive of
the target outcomes, possibly capturing the degree of neural signal irregularity associated with the studied
mental states.

Interestingly, XGBoost diverges from other models in its prioritization of subsequent features. The absolute
power of the theta band is identified as the second most important predictor, followed by the peak-to-
peak amplitude of the ECG signal. This ranking highlights XGBoost’s capacity to capture both neural
and physiological dynamics, with theta activity often linked to cognitive control, drowsiness, or emotional
engagement, and ECG amplitude reflecting autonomic reactivity. Notably, heart rate—while prominent in
other models—appears less influential in XGBoost’s internal feature hierarchy, indicating that XGBoost may
rely more on fine-grained temporal variability (e.g., IQR, amplitude) rather than coarse global metrics (e.g.,
mean heart rate).

LightGBM

Light GBM exhibits a feature importance profile largely consistent with that of the other tree-based mod-
els, reinforcing the robustness of certain physiological and EEG-derived features across different boosting
frameworks. Similar to XGBoost, the IQR and frequency-domain measures (such as theta power) remain
among the top-ranked predictors, underscoring their stable contribution to model discrimination. However,
a noteworthy distinction is the comparatively lower importance assigned to the standard deviation (STD) of
the EEG signal. This suggests that Light GBM’s partitioning strategy may rely more on distributional shape
and specific frequency-related patterns rather than on general amplitude variability.

Overall, the Light GBM feature interpretation indicates that while its predictive structure mirrors that of
XGBoost, its feature weighting slightly de-emphasizes statistical dispersion metrics. This may partially
explain the subtle differences in performance and feature interpretability observed in Section 5.3.1.
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Figure 5.3.8: SHAP Beeswarm plot for the Light GBM model

High
ecg_heart_rate_ecg
ecg_ptp_ecg
theta_absolute

iqr

std

[H411
|

ecg_skewness_ecg
ecg_var_ecg
ecg_kurtosis_ecg
gamma_absolute
beta_relative

ecg_std_ecg

Feature value

ecg_rr_std_ecg
emg_rms_emg
alpha_absolute

ecg_rms_ecg

delta_absolute
beta_absolute
emg_std_emg

petrosian_fd -

Sum of 17 other features . .0 mm. o

T T T T T Low
-1.0 -0.5 0.0 05 10
SHAP value (impact on model output)

Figure 5.3.9: SHAP Beeswarm plot for the CatBoost model

CatBoost

In contrast to both XGBoost and Light GBM, CatBoost displays a notably distinct feature importance hier-
archy, suggesting that it leverages different input dimensions to achieve its predictions. The SHAP beeswarm
plot in Figure 5.3.9 reveals that heart rate is the most influential feature for CatBoost, indicating a stronger
reliance on global physiological indicators rather than on EEG-derived measures. Meanwhile, the interquar-
tile range (IQR) occupies the fourth position, and the standard deviation (STD) ranks fifth, both contributing
less prominently to the model’s decision-making process.

This shift in emphasis may be attributed to CatBoost’s native handling of feature interactions and categorical
encodings, which could amplify the relevance of smoother, low-dimensional physiological features (like heart
rate) over high-dimensional EEG variability indices. Despite these differences, as reported in Section 5.3,
CatBoost still achieved the second-best performance overall. This finding implies that multiple complemen-
tary feature hierarchies—emphasizing either physiological or neural signals—can effectively support robust
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classification within this multimodal dataset.
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Figure 5.3.10: SHAP Beeswarm plot for the Random Forest model

The Random Forest model exhibits distinct differences in its feature importance distribution compared to the
boosting-based classifiers. As shown in Figure 5.3.10, the most influential feature for Random Forest is the
standard deviation (STD) of the EEG signal, followed by the interquartile range (IQR). This prioritization
suggests that Random Forest relies more heavily on statistical dispersion metrics, emphasizing variability in
EEG amplitude as a key discriminative factor. The prominence of these measures indicates that the ensemble
of decision trees captures meaningful fluctuations and irregularities in neural activity, potentially linked to
cognitive or affective state transitions.

Interestingly, the peak-to-peak amplitude of the ECG signal, which ranked highly in XGBoost and CatBoost,
appears only in seventh position here, highlighting a reduced dependency on cardiovascular amplitude fea-
tures. Conversely, Random Forest assigns greater importance to the absolute power of the delta and alpha
frequency bands. This shift implies that the model captures more pronounced spectral information, pos-
sibly due to its ability to partition feature space based on multiple frequency components without relying
on strong regularization, as boosting models do. Overall, Random Forest’s interpretability profile reflects a
broader sensitivity to both low-frequency EEG dynamics and amplitude variability, which may contribute to
its comparatively balanced, though not top-ranked, predictive performance.

HistGradientBoosting

The feature importance profile derived from the HistGradientBoosting model remains largely aligned with
the general trends observed across classifiers, reaffirming the robustness of key multimodal predictors. The
interquartile range (IQR) and frequency-domain EEG features continue to play a significant role, though the
standard deviation (STD) appears notably less influential in this model. This suggests that HistGradient-
Boosting relies less on simple measures of dispersion and instead emphasizes frequency-specific or distribu-
tional attributes.

Despite this general alignment with the overall feature patterns, the HistGradientBoosting classifier demon-
strated the weakest predictive performance (see Section 5.3). This outcome likely reflects the model’s lower
representational flexibility compared to gradient-boosting variants such as XGBoost and Light GBM. While
its internal feature weighting structure mirrors the others, its optimization and binning mechanisms may
have limited its capacity to capture fine-grained nonlinearities across EEG and physiological inputs.
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Figure 5.3.11: SHAP Beeswarm plot for the HistGradientBoosting model
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Figure 5.3.12: SHAP Beeswarm plot for the ensemble of all classifiers

To further explore model complementarity, SHAP analyses were performed on two ensemble configurations:
one combining all classifiers, and another restricted to the three top-performing gradient-boosting models
(XGBoost, Light GBM, and CatBoost). The beeswarm plots in Figures 5.3.12 and 5.3.13 illustrate that both
ensembles preserve the dominant feature hierarchy observed in individual models, with IQR, theta power,
and heart rate consistently emerging as key contributors. Minor variations occur among the lower-ranked
features, reflecting the averaging of SHAP values across diverse model architectures.

As reported in Section 5.3, the ensemble restricted to XGBoost, Light GBM, and CatBoost outperformed the
broader ensemble. This suggests that the combination of high-performing boosting models yields synergis-
tic effects by integrating complementary decision boundaries while minimizing noise from weaker learners.
The resulting ensemble thus balances interpretability and generalization, confirming the robustness of the
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Figure 5.3.13: SHAP Beeswarm plot for the ensemble of XGBoost, Light GBM, and CatBoost

identified multimodal biomarkers across different learning paradigms.

5.3.3 Explainability — TE2Rules

In addition to feature-level explanations, this subsection reports interpretable rule sets extracted using the
TE2Rules library [81]. This framework derives explicit decision rules that approximate the internal logic
of tree ensemble models (such as Random Forest and XGBoost) using an Apriori-based rule mining ap-
proach. The resulting rule sets capture the necessary and sufficient feature combinations that lead to specific
classifications.

Figures 5.3.14 and 5.3.15 illustrate representative rule sets derived from the Random Forest and XGBoost
models. Examination of the Random Forest rules reveals that standard deviation (std) and interquartile
range (IQR) appear most frequently, in line with SHAP’s importance rankings. However, the rules also
highlight additional features—such as skewness, the theta-to-beta ratio, and Hjorth complexity—that did
not rank among the top SHAP contributors. These features may play context-dependent roles that emerge
only through specific interactions captured by the rule mining process.

Similar findings are observed for XGBoost, where IQR and std again dominate, but rules involving theta-
to-beta ratios and Hjorth complexity appear recurrently. This convergence between SHAP and TE2Rules
underscores the consistency of certain biomarkers, while the divergences emphasize the complementary per-
spectives offered by additive feature attributions and rule-based reasoning. Together, these explainability
methods not only enhance model transparency but also provide a richer, more nuanced understanding of how
physiological and spectral features jointly contribute to seizure detection.

Collectively, the explainability analyses suggest that robust seizure detection relies on a combination of
time-domain variability metrics (IQR, std), spectral features (theta-band power, theta-to-beta ratio), and
ECG-derived measures of autonomic activity. These findings provide interpretable, physiologically grounded
insights that not only validate model decisions but also strengthen confidence in their clinical relevance.
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=== Extracted TE2Rules RF ===

std4 > 55.90328598022461 & iqr > 47.49892616271973 & iqr@ > 94.63816452026367 & iqrd > 34.5535945892334 & iqr6 <= 0.10300000011920929 &
petrosian_fd <= 1.032990574836731

std2 > 72.9266586303711 & iqr > 22.76581859588623 & iqrl <= 23.50987434387207 & iqr3 > 263.2537078857422 & iqr4 > 64.00311660766602 & iqr5 <=
0.7100000083446503 & iqr7 > 0.8960431516170502 & hjorth_mobility <= 1.0168043375015259

std > 18.579233169555664 & std2 > 97.21244812011719 & iqrl <= 6.300330638885498 & iqr3 > 263.66168212890625 & iqr7 <= 0.6177054643630981

std <= 19.36530590057373 & std > 14.560649394989014 & std3 > ©0.1083282046020031 & iqr7 <= -1.615802824497223 & iqr9 > 1820.10498046875

stde > 138.94725799560547 & iqr > 24.698569297790527 & iqrd <= 39.71879005432129 & iqr5 <= 0.6620000004768372 & skewness® <= 3.560608744621277
std@ > 87.52128982543945 & std2 > 72.88996124267578 & std8 <= 83.60734558105469 & iqr3 > 288.22706604003906 & iqr5 <= 0.714000016450882 & iqr7 >
1.885946810245514 & iqr9 <= 12299.79931640625 & kurtosis <= 0.9613438844680786

theta_beta_ratio > 0.4980572313070297 & std > 19.742846488952637 & std4 > 53.52985763549805 & std5 <= 0.16413573920726776 & std6 <=
305.2804718017578 & iqr@ > 90.09090042114258 & iqrl <= 14.919915676116943 & iqrd > 40.67121696472168 & iqr9 <= 39973.880859375

iqré > 0.10300000011920929 & iqr8 > 104.7421646118164 & iqr9 <= 15782.47998046875 & skewnessl <= 4.796292543411255

std > 22.15066432952881 & std2 > 67.28566360473633 & iqr5 > 0.6860000193119049 & iqr8 <= 42.85501289367676 & hjorth_complexity >
2.9254664182662964

theta_beta_ratio <= ©.4912314713001251 & std <= 33.50930404663086 & std > 19.25168800354004 & std4 > 51.936065673828125 & iqr >
28.55723762512207 & iqr@ > 90.09090042114258 & iqr7 <= 4.885385990142822 & iqr8 > 39.48525428771973 & hjorth_mobility <= ©.7713758051395416

std2 > 38.34693908691406 & std7 <= ©.22397403419017792 & std8 > 111.73356246948242 & iqrl > 9.588655471801758 & iqr3 > 294.79351806640625 & iqr7
<= 5.108145713806152 & iqr7 > -0.4570353031158447 & iqr8 > 44.13473129272461 & hjorth_complexity > 1.161778748035431 & approx_entropy >
1.0204318761825562

std > 19.36530590057373 & std2 <= 710.691650390625 & std4 > 79.35497283935547 & iqr > 40.088144302368164 & iqrl <= 8.466097354888916 & iqrl >
0.29392053186893463 & iqr3 <= 255.72965240478516 & iqr5 <= ©.6580000221729279 & iqr7 <= 1.4769538640975952 & skewness4 > 1031.1677856445312

std > 16.20181179046631 & std2 <= 69.74358367919922 & std6 <= 136.61009979248047 & iqr <= 30.59929084777832 & iqrd > 65.09215545654297 & iqr5 <=
©0.7180000245571136 & iqr8 > 40.33426094055176 & skewnessl > 5.961409568786621 & zero_crossings <= 57.25

stdl <= 0.45610281825065613 & std3 > 0.19292756170034409 & std4 <= 55.752336502075195 & std5 <= 0.11108389496803284 & std6 > 28.00527000427246 &
std7 <= 0.15089960396289825 & iqr > 21.032020568847656 & iqr5 > 0.7060000002384186 & hjorth_complexity > 1.4229558110237122

stdo > 53.89544868469238 & std2 <= 67.7069206237793 & std4d <= 67.90992736816406 & std4 > 6.302347898483276 & std7 > 0.09845180809497833 & iqr <=
21.421411514282227 & iqrl <= 39.93844795227051 & iqr5 <= 0.49699999392032623 & iqr6 <= 0.0820000022649765 & iqr8 <= 107.63129425048828

stdo > 115.31373977661133 & iqr4 <= 107.24712753295898 & iqré > 0.10300000011920929 & iqr7 > 5.845348596572876

Figure 5.3.14: Example of extracted rules from the Random Forest model using TE2Rules.

=== Extracted TE2Rules (XGBoost) ===

std2 >= 67.7481918 & iqrl < 10.5477562 & iqr5 < ©0.712000012 & iqr8 >= 37.100956 & skewnessl < 583.087341 & petrosian_fd < 1.03210402

stdl < 0.654772043 & std2 >= 113.5644 & std4 >= 7.81451273 & std6 >= 4.45363188 & std7 >= 0.03924115 & iqrl < 4.23302174 & iqr7 >= -3.35167527 &
skewness5 < 91.0

stde >= 89.4768066 & std2 >= 40.2755356 & iqr3 >= 283.875854 & iqr5 < 0.600000024 & iqr7 >= 0.559303641

std >= 14.5811243 & stdl < 0.419865966 & std2 < 113.5644 & std5 >= ©.0315472297 & std7 >= 0.0518024713 & iqr3 < 738.832031 & iqr3 >= 339.627258
& igr7 < -1.44384813

theta_beta_ratio < 0.611791015 & std2 >= 53.1654243 & iqr >= 42.1198654 & iqrl < 6.92864084 & iqr5 < ©.783999979

std >= 14.5811243 & std2 >= 113.5644 & iqgr < 41.5314636 & iqr >= 18.9989185 & hjorth_complexity >= 1.75268304 & petrosian_fd >= 1.82956975

igr >= 18.9989185 & iqr3 < 903.465942 & iqr8 >= 111.605919 & skewnessl < 411.188599

std7 < 0.467306197 & iqr >= 24.0597782 & iqr2 < 4.11730576 & iqr3 < 348.000061 & iqr3 >= 264.837311 & iqr5 < 0.660000026 & skewnessl

< 5.89941406

std3 >= 0.0475089252 & iqrl >= 15.6237745 & iqr2 >= -4.42912054 & iqr3 < 799.746948 & iqr3 >= 345.13266 & iqr5 < 0.712000012 & iqr8 >= 23.132019
& skewness2 < 5.40126896 & petrosian_fd < 1.02944458

stdo >= 44.31036 & iqr >= 30.6013279 & iqr5 < ©.783999979 & iqr8 >= 66.9966049 & skewnessl < 411.188599 & skewness5 < 91.0 &

hjorth_complexity >= 1.15770948

std@ < 44.31036 & iqr3 < 930.040649 & iqrd >= 105.815277 & igré >= ©.0719999969 & skewness5 < 187.9

stdl < ©.581734478 & std2 < 102.329643 & std7 >= 0.0419003442 & iqr >= 24.0597782 & iqr3 < 264.837311 & igr5 < 0.660000026 &

hjorth_complexity >= 2.14616656

stdl < 0.419865966 & std2 >= 81.307457 & std6 >= 2.21932149 & std9 >= 0.00354741537 & iqr >= 24.4599457 & iqr5 >= 0.691999972 & kurtosis

< -0.417636603

std >= 12.3525658 & iqrl < 40.3446236 & iqr7 < 4.8598299 & iqr7 >= -1.49403417 & iqr8 >= 63.8544846 & skewness@ >= 54.9036064 & skewnessl >=
120.003464 & skewness5 >= 65.0

std4 < 4.23822069 & std8 >= 5.40889645 & iqrl >= 13.782177 & iqr7 >= -3.35167527

std >= 12.9683733 & std8 < 452.743469 & iqr >= 41.5314636 & iqrl >= -1.12345982 & iqr5 < 0.527999997

theta_beta_ratio < ©0.963607311 & std3 >= ©.0475089252 & iqr3 >= 313.700653 & iqr7 < 3.90529156 & hjorth_complexity >= 1.20928526 & petrosian_fd
< 1.02456212

stdl < 0.456866741 & stdl >= 0.419865966 & std7 >= ©.0496475473 & iqr2 < 4.53908539 & iqr3 >= 264.837311 & iqr7 < 4.8598299

std4 >= 7.4728694 & stdé >= 4.45363188 & std7 < 0.467306197 & iqr2 < 4.11730576 & iqr3 >= 264.837311 & iqr7 < -3.16531134 & skewnessl >=
5.89941406

Figure 5.3.15: Example of extracted rules from the XGBoost model using TE2Rules.
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Conclusion

In this thesis, we proposed and evaluated a methodology based on handcrafted features extracted from EEG
signals, demonstrating that such features can achieve strong performance even compared to modern deep
learning models. The preprocessing and feature extraction steps were carefully designed to enhance the
signal quality and extract physiologically meaningful information. The results revealed that, under specific
conditions, traditional feature-based approaches outperform certain end-to-end neural architectures. This
finding aligns with the outcomes of the Una Europa Seizure Detection Challenge (2023), where the winning
approach followed a similar framework and reported superior performance relative to deep learning-based
solutions [67].

A key reason for this observation lies in the characteristics of the competition dataset: EEG recordings
were obtained from wearable devices with a limited number of channels, resulting in signals that are low
in quality, contain high levels of noise, and are more susceptible to motion artifacts. These factors make
feature engineering and preprocessing crucial for enhancing the signal-to-noise ratio and capturing the most
discriminative aspects of brain activity. In contrast, deep learning models—although powerful in extracting
representations from large and clean datasets—often require a substantial amount of data to generalize
effectively. When data are scarce or noisy, handcrafted features rooted in physiological knowledge tend to
provide better generalization and interpretability.

From a methodological perspective, this thesis reinforces the importance of domain knowledge and inter-
pretability in EEG-based machine learning. Rather than prioritizing model complexity, effective solutions
often depend on the quality of the preprocessing pipeline and the interpretability of the extracted features.
This approach not only leads to robust performance but also facilitates transparency—an essential require-
ment in medical and neurophysiological applications.

Explainable AI for EEG Analysis. XAI in EEG analysis represents a rapidly evolving research fron-
tier. The majority of studies to date employ post-hoc explanation methods, including visualization-based
techniques such as saliency maps and Grad-CAM, as well as feature attribution tools like SHAP and LIME.
Perturbation and occlusion-based methods also play an important role, providing fine-grained insights into
model sensitivity. However, these approaches face several conceptual and practical limitations.

A central concern is faithfulness: whether the explanation genuinely reflects the model’s internal reasoning
or merely provides a plausible, human-readable narrative [37, 134]. Many post-hoc techniques, particularly
those that rely on surrogate models (e.g., LIME), introduce approximations that can distort the model’s true
decision boundaries. Similarly, robustness remains an open issue. Explanations can vary dramatically with
small perturbations to the input data, casting doubt on their reliability and reproducibility [59]. Moreover,
recent analyses have revealed that the effectiveness of these methods depends strongly on the underlying
model structure and can be biased by feature collinearity [136].

Beyond methodological weaknesses, there are also ethical and security concerns. Post-hoc explanations can
be intentionally manipulated to present biased or unfair models as transparent—a phenomenon known as
fairwashing [5, 148]. Such vulnerabilities highlight that adversarial manipulation can extend beyond models
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themselves to their interpretability mechanisms, potentially misleading users and stakeholders. These issues
have prompted growing support for inherently interpretable (ante-hoc) models, which provide transparency
by design rather than through approximation [134].

Current Trends and Research Gaps. Our review indicates that XAI methods have been successfully
applied to a wide range of EEG-based tasks, including epilepsy and seizure detection, sleep monitoring, motor
mmagery and execution, emotion recognition, schizophrenia diagnosis, stroke prediction, and major depressive
disorder. This variety underscores the versatility of XAI approaches in neural signal analysis and their
growing importance in clinical and cognitive neuroscience contexts.

However, the majority of these approaches remain task-specific, optimized for narrow problem domains
without demonstrating cross-task generalization. As a result, it remains difficult to assess how well a given
explainability method can transfer across applications. Another significant limitation is that most studies
rely exclusively on EEG data, neglecting multimodal approaches that integrate EEG with other neuroimaging
modalities such as MRI or fMRI. These multimodal perspectives could enable richer and more physiologically
grounded explanations, but systematic research in this direction remains limited.

Furthermore, there is a notable absence of ground truth explanations and standardized benchmarks for evalu-
ating XAI performance in EEG analysis. The lack of formal definitions for what constitutes a “correct” expla-
nation makes it challenging to quantify or compare the fidelity of different methods [63]. Popular attribution
methods can mistakenly ascribe importance to irrelevant features, leading to misleading interpretations that
undermine clinical validity. This issue becomes particularly problematic in healthcare applications, where
incorrect or unstable explanations could have ethical or diagnostic consequences.

Another persistent gap concerns human-centered validation. While many studies report quantitative measures
of explainability, few incorporate qualitative evaluations from clinicians or domain experts. Such human-in-
the-loop evaluation is vital for bridging the gap between algorithmic interpretability and real-world usability.
Frameworks such as that proposed in [116] emphasize the need for co-design and iterative feedback between Al
developers and domain experts, ensuring that explanations are meaningful and actionable in clinical practice.

Limitations. This thesis, while offering valuable insights, is subject to several limitations. First, the study
focused primarily on a single dataset from the Una Europa Seizure Detection Challenge, which may limit
the generalizability of the findings. Although the dataset represents realistic clinical conditions, additional
datasets with different acquisition protocols and population demographics would be needed to fully validate
the proposed framework.

Second, the feature-based approach, while interpretable, is constrained by the chosen feature set and may
overlook subtle temporal or spatial dynamics that deep models could potentially capture. The results thus
highlight a trade-off between interpretability and representational power. Furthermore, the evaluation of
explainability in this work was primarily based on model-agnostic techniques (e.g., SHAP and te2rules),
which, despite their utility, remain subject to the same limitations of faithfulness and robustness discussed
earlier.

Finally, the human evaluation component was limited, as the explanations generated were not systematically
validated by domain experts. Incorporating expert feedback would strengthen both the interpretive and
clinical credibility of the framework. Future studies should therefore prioritize participatory evaluation and
multi-criteria assessment of explainability, combining quantitative and qualitative perspectives.

Future Work Although deep learning models did not achieve the anticipated performance in our exper-
iments, they remain powerful tools for pattern recognition and automatic feature extraction. Hybrid and
semi-supervised architectures that combine handcrafted features with learned representations have shown
promising results in related domains [180]. Future research could explore such hybrid approaches for seizure
detection and other EEG-based tasks, leveraging both data-driven and knowledge-driven methodologies to
achieve a balance between accuracy and interpretability.

Another promising direction involves expanding the framework toward multimodal explainability. Integrat-
ing EEG with complementary modalities such as fMRI, eye-tracking, or physiological signals (e.g., ECG,
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EMG) could lead to more robust and neurophysiologically grounded interpretations of cognitive and clinical
phenomena. Such multimodal XAI systems could reveal how brain dynamics correlate with behavior or
emotional state in a more holistic manner.

In addition, future work should focus on developing standardized benchmarks and quantitative metrics for
evaluating XAl in EEG analysis. Establishing ground truth annotations for feature importance or decision
rationale—potentially through synthetic datasets or expert-labeled explanations—would allow more objective
comparisons across models and studies.

Another key avenue is the incorporation of human-centered evaluation frameworks [116]. Collaborative studies
involving neurologists, psychologists, and clinicians can provide essential feedback on the interpretability and
usefulness of explanations. Such interdisciplinary validation would not only enhance trust but also guide the
design of explanations that align with clinical reasoning processes.

Finally, future research should explore the ethical and regulatory implications of explainable Al in EEG
analysis. As Al systems move closer to deployment in healthcare, ensuring transparency, fairness, and
accountability will be critical. This includes designing systems that are resilient to manipulation (e.g.,
fairwashing) and sensitive to the social and ethical contexts in which they operate.

Summary. In conclusion, this thesis contributes to the understanding of how feature-based EEG analysis
combined with explainable AI can offer both high performance and interpretability in seizure detection.
The results emphasize that interpretability should not be treated as an afterthought but as a central design
criterion in medical AIl. By integrating robust signal processing, transparent modeling, and explainability,
this work lays the foundation for future systems that are not only accurate but also trustworthy and clinically
meaningful.
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