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Me emupiadn Sixonmuatog.

Arnoyopetetan 1) avirypapn, anodixeucn xat Slavor Tne topoloag epyaciog, €€’ ohox-
Afeou 1} THAROTOC AUTAHS, Vi ERTOPXG 6xoTo. Emitpéneton 1 avatimwor, anovfxeuon
%0l SLOVOIT| Yol OXOTO 1| XEEOOOXOTIXO, EXTUOEVTIXAC 1| EPELYNTIXNAC PUOEWS UTO
v tpobnddean va avapépeTol 1) TNy TROEAEUGTC o Va BlaTneeiton To Toedy PivupaL.

O anddelc xou To CUPTEPACHATO TOU TEPLEYOVTOL OE AUTO TO €YYRAPO EXPEALOULY
TOV CUYYPUQEN o BV TEENEL var EppNVELYEL OTL AVTITPOCKWTEVOUY TIC ETlONPES VE-
oelc Tou Edvixob Metodfou Ilohuteyvelou.






Abstract

The accurate three-dimensional (3D) shape and pose estimation of humans
from a single image constitutes a fundamental and complex problem in Com-
puter Vision, with critical applications spanning health, biomechanics, Vir-
tual Reality (VR), and animation. Despite significant advancements for the
adult population, the majority of current methods fail to generalize effectively
to children and infants due to their unique anthropometric proportions and
the scarcity of specialized datasets required for model training. This diploma
thesis addresses this challenge by introducing a comprehensive framework de-
signed to bridge this domain gap. We propose an optimization-based method
that extends a top-performing model by incorporating the SMPL-A body
model, enabling the concurrent and accurate modeling of adults, children,
and infants. Leveraging this approach, we generated pseudo-ground-truth
annotations for publicly available databases of child and infant images. Uti-
lizing this new training data, we then developed and trained a specialized
transformer-based Deep Learning model capable of real-time 3D human re-
construction. Furthermore, we introduce the BabyRobot dataset, which con-
tains the 3D reconstructions produced by our method from videos of children
interacting with robots with many actions, gestures and movements in the en-
vironment. Our methods contribute to the anonymization of sensitive data,
like that of children and infants, since the 3D reconstructions provide infor-
mation about the body and the motion of humans, but not their identity.
Our results demonstrate a substantial improvement in the quality of shape
and pose estimation for child and infant images, while simultaneously main-
taining high performance across the adult population.

Keywords: 3D Computer Vision, Human Mesh Recovery, 3D Shape and
Pose Estimation, SMPL-A, Vision Transformer, Pediatric Population






ITepiAndn

H axpif3ric tpiodidototn (3A) extipynon tou oyfuatoc xou g n6lag TV av-
Vownwy and ula uévo edva anoterel Eva Yepehwdeg npdanua otnv Opaon
TToAOYIOTWY UE EVRELEC EQPUPUOYES O TOUEIC OTKG 1) ELXOVIXT) TEOYUXTIXOTN T
xot To animation, aAAd xou 6T0 YWeo TN Lyetag xou TNg eYProunyavixhc. Eve
€yel onuetwdel onuoavTxy mpdodog yia Tov evikixo TAnducuo, 1 mAstodnplio
TWV VQPLOTAPEVGY HEVOBMY amOTUY YAVEL Vo YEVIXEVOEL UE oxpif3elo o moudLd xou
Beggpn hoYe TeV WBWETEPWY avIPWTOPETEIXGY TOUG AvVahoYIOY xat TN EAAELPNng
UEYIAWY, ECEWBIXEVUEVDY GUVOAWY OEBOUEVLV YLl TNV EXTOUOEUCT) OYETIXWY
wovtéhwy. H mapoloa Simhomuatind epyoasio avTiuetwriletl authiy TNy Tpoxinon
€03y OVTOG £VOL OAOXATPOUEVO TAUGLO TOU YEQUEMOVEL aLTO TO Ydoua. Tlpotel-
voupe pa uédodo Beltiotomoinong mou emextelvel Eva GUYYEOVO ETUTUYNUEVO
uovtéro, uodetwvtoc to eviofo SMPL-A povtélo avipdmivou couotoc yo
TNV TaUTOYEOVY HovTIEAOTOINCT eVNAiX®Y, Touduwy xat Beepay. Xenoylomolmy-
Tog au T T PéVodo, dnutovpyiooe Peudo-emonuewnoels (pseudo-annotations)
yio Onuooteg Poelg BedoUEVmY Tadxmy EOVeY. Me autd To véo olvoho ex-
madevone, avantdloue xon extoudevooue €va poviého Badde Mdidnone wovd
Yo 3A avoxataoxeur) avlpdTey oe TEay ot yeévo. O pédodol yog umopolv
vo. Bonificouy 6TV avevuPoToinot EVacUNTLY TANEOPORLLY, OTWE AUTES TWV
TOUOLOY Xl TV Peegay, agol Vo TapéyeTon 1 TANEOPoRia Yol TO GWUN XAl
Vv xlvynon Tou avip®rou, ahkd byt TNG THUTOTNTAC Tou. XE auTd To TAdisLO,
Tapovoldlovue To cUvolo dedopévwy BabyRobot, to onolo mepiéyer tic 3A
AVOXATUOUEVES aTtd BIVTED ToudLDY TOU CAANAETILOPOUY UE POUTOT UE TAOUGLEG
dpdioelg, yewpovoulieg xou xivnon oto yweo. To anoTEAEOUATY Yo XATADEYIOUY
oucLoG TIXY) BEATIWOT OTNY TOLOTNTA EXTUNONE OYNUATOS Xou TOLaS OE TadLxEG
xa BEEPIXEC EIXOVES, BLATNEMVTAS TOEAAANANL TNV LPNAY| amddooT GTOV EVAAIXO
TAnduouo.

Aé€eig-KAewdid: 3A ‘Opaon Troroyoteyv, Human Mesh Recovery, Ex-
Tiunomn 3A Eyrfuatog xou I16Cac, SMPL-A, Vision Transformer, Houdotpixde
ITAnduoude






Euyaplotieg

Me v napoloa SITAOUTIXA €pYucio OAOXATEGVOVTOL Ol GTOUDES HOU OTN
oyoh) Hiextpoldywyv Mnyavixayv xaw Mnyoavixov Troloyiotomy Tou Edvixol
Metodfou THohuteyvelou xan Yo Hieha vor evy oo ThHow 660U GUVERUAAY OE
oautéd. Xtov emufBiénovia Kadnynth Ilétpo Mopayxd nou ye eorjyaye otov
xo6ouo e ‘Opaone Troloyotedv péoa and to uardfuatd Tou xal You €8woe
NV guxapior Vo EXTOVACE TNV BITAOUATIXT You epyaocia untd TNy eniBAcdr| Tou.
Ytoug cLVeETBAETOVTES pov, Tov Enixouvpo Kodnyntr I'iwpyo Howidxo yio tny
%0000y No™ xou TIC LOEEC TOU OE aWTH To WLaltepo TEdio Epeuvag xan TN Ap.
Nixn Euduulou yia to oydhio xou tnv mohdtun Bordetd tne xatd T Sudpxeto
e Simhopotixic. H ovotnuated unoothpll toug umhpele xadoplotiny Yo
TNV oMo xou €yxouen oloxhpwor tng epyaoctuc. Emlong, Yo Hdeia vo eu-
YUELOTHOW OAOUG OCOUG GUUTAPWGCAY TO EPMTNUAUTOAGYIO TOU BIEVERYTUNXE
ota mhalolo g epyaoiog authc. ‘Eva yeydho uyopiote ogello xan otoug
@ihoug pov, Yia TIC OTLYUES Yohdpwong xou Tig cLUCNTACELS TOL AEtToVEY oY
¢ TONOTYT YY) LoOoPEOTAC Xou SUVOUNG XoTd TN Bldpxeta auTo) Tou TagloLol.
[Switepn pvela o&ilel xou 670 MAVO OV, TO OTOlO0 TEOGEPERE TNV amoEaiTNTY
onurovpyxr diE€odo. Téhog, euyoploTe Vepud TOUC YOVELS Xou TNV AdERPT| UoU
yioo Ty Eeywpeto T Boridela Toug xod OAn TN BLdExELd TWY GTOUBMY LoV, OTWS
X0l TOUG TAMTOVOES O TLC YLOYIAOES OV Ylal TIS YVWOELS X TNV eVUdopuveT)
TOUC.
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Kegpdhawo 1

Extetoapevn Ilepiindn ota
EAANvVIxd

1.1 Ewcaywyn

H tpiodidototn (3A) extiunon tou oyfuatoc xar tng nélog (3D shape and
pose estimation) twv avipdnmy anotekel éva Vepgehddec npdBinua Tou nediou
¢ Opaong Trohoyiotdyv. Xxomdg eivon 1 avaxatooxeur plag 3A avanapdo-
TONE TOU aVJPOTIVOU COUATOS amtd T DEBOUEVA EL0OOOV, Tal oTtola umopel va
etvan pior Sobdototn (2A) exdva, éva Bivieo 1 xan ouVBLACUOS EXOVLY amtd
olapopeTnég Odec. H @lomn Tou mpofifuatog etvar eyyevag 8UoxoAN xodmg
©otd TNV TEOBOAY| Wiag TpaypaTixhc oxnvAc Tou 3A yopou oto 2A eninedo g
emovag ydvetar TAnpoopla yia To Bddog Tng oxnvic. Autég ol Thnpogopleg
etvan amopaitnTeg, xododg xotd Ty extiunon Tou 3A oyfuatog xon ToLoug ond
uior 2A excdva yivetan 1) avtiotpogn Sadacia, onAadr and to 2A eninedo -
yaivouue oto 3A. To mpdBinua yiveton oaxduo BUGKOAOGTERO HTAY GTNY EXOVA
UTIdEYOUV TEPLOCOTERN ATOUA TOU OAANAETOE0UY 1 avTixelueva Tou xpUBouv
UEPT TOU CWUATOS TV AVIPOTOV.

Apxetéc pédodol €youv mpotodel otn PuBAloypaplor yiar TNV oVTIHETOTION
TWV BUOXOAWY OV TEELYEAPNXAY Topumdve. Eiwbixdtepa, ue Tov parydola avor-
Tuooouevo Touca Tng Badide Mdinong xon tn yerion dedopévwy UEYAANG XAl
LOXOC CLVEYWS TEOTEVOVTAL OAO oL THO AMOTEAEOHATIXEC Yool Apyttex-
ToVIXéC Omwe Tar Luvehtind Nevpwvixd Aixtua (Convolutional Neural Net-
works) (CNN) 7 mo npbéogata ot Transformers ye tov unyovioué tne Hpooo-
yhe (Attention Mechanism) [66] éyouv (pépet TV ETaVACTUOT GTOV YDEO TNG
‘Opaone Trohoytotomv. Autég ol teyvoloyieg pmopolv vo uddouv Tig Yweixég
OYECELC X0 TO TEPLEYOUEVO LG ELXOVAS, DIEUXOAOVOVTS T1) dnuLoupyio ahyo-
elduwvy mou Advouv mpofiAuata ota omolo 1 xhaowr) ‘Opaor Troloylo ey dev

19



20 Kegdharo 1. Extetopévn Iepihndn ota ErAnvixd

elye avdhoyn emtuyla.
O xdpLeg xatnyopleg eddodwy yio T extiunon tou 3A oyAUaToC Xou TNe
Tl TV avipdtev elval:

e Me¢dodol Baciopeéveg ot Behtiotonoinon: Ou o anoteleo-
uotixéc uédoodot, ot omoleg Poacilovton xatd xavove oty eAdyLtoToToNoN
ulag avTIXEEVIXYC CUVEETNONG. LLVHTWS, TeooTordoly Vo EAXYLO TOTOL -
OOLY TNV UTOGTUOY UETAED TNG TPoBoAYg Tou 3A mAéyuaTog (3D mesh)
TIOL ONULOVEYELTAL Yid TOV dvpmTO 6TO ENITEDO TNG EOVOG XOU XATOLWY
onueiov evilapépovtog (keypoints), xuplwe GUVBEGUWY TOL GOUATOC, TOU
gyouv exTunlel mponyouuévewe and xdmoto dAlo poviéro. Ilapd tnv
AMOTEAEOUATIXOTNTE TOUG, aUTEC oL uédodot etvar apxeTd YpovoBopec xou
UTOAOYLO TS axEUBEC, apol yeetdleTal ONUAVTIXOS YEOVOS Uéy et Var et
T0 TEOPANUY BeATioTOTONOT.

e MéYodol Baciopéveg otny Iahwdpdunon (Regression) -
Meé9odor Badidg MdaOnong: Ot mo olyypoves teyvixéc, 6mou
Booilovton oty exmaidevon evoc mpolréntn (Vevpwvixol dixtlou), o
omofog €yel uddel Vo eEXTIUAEL AUECWS TIC TORUUETEOUS EVOC UOVTENOU
TOU TEPLYPdPEL TO avlp®TIVO MUY, HOALS Tou dovel 1 elcodog. o tnv
TeoPAedn To YoviEro yenouylomolel, cuVAYKG, €va VEUPWVIXG BIXTUO TO
omolo eXTUOEVETOL OF APXETH UEYAAO TAUOC OEDOUEVWLY. MUVETMS, oV
xou TOAD To Ypryopec autéc ot uédodol, eCopTMVTAL Omd TNV TOLOTNTY,
xat To TAHUOC TWV BEBOUEVLY exTaidEUaTC.

1.1.1 IIpoxAnoeig xatd tnv extipunon 3A Xynpotog
wou [16Zag

Ou meplocoTepeg and Tig Yetddoug mou €youy avartuydel cuufdilouvy GTny
owoTh extiunom tou 3A oyfuatog xou TNe TOLC TWV avipnOTwy and Wia exova.
H mietodngpla toug €yer oyediactel kote v hertoupyel yia evihixo taAnducuo.
‘Otav oL yedodol autég, wotdoo, EQuEUocTOUY O Ttawdid 1) BeEgn, 1 ToloTnTa
TWV omOTEAEOUATOY Lo TEPEl onuavTixd and auTh Twv evnAixwy. T Ty amo-
Uyl TV TEYVIXGY aUTOY EVTUVOVTUL TOCO Ol YEVIXOTEQEG TROXAHOELS XATd
Vv extiunon tou 3A oyrfuatoc xou TNg moCog evog avipmnou, 6Go xal GUY-
HEXPLEVA TEOPBATUATO TTOU 0popoLY TGO Ta Blardéotua BEdoPEVa 6G0 xou Muixd
xou vopuwd {nthpota YOew amd Tor BeBoPEVOL ALY ol BEEQEY.

ITo cuyxexpuéva, éva Baoixd CATNUA XaTd TN UEAETH TOU OYAUATOC ol
g molag evog avipmou etvar 1 ofefondTrnTar TOL UTEEYEL XATA TNV EXTUNOT
Toug, xVplKG, GTAY UTEEYOUY UEET TOU GOUATOS TOU ATOXEUTTOVTOL ATtO PUOIXY
eumooL, tov Blo A dAho dvipwro, 1| dev elvon oto medio TG exodvag. ‘Otay
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1.1. Ewaywyr 21

XATOLO UEQOS TOU GOUATOC DEV Efvol 0paTO, TOAMES DLUPOPETIXEC EXDOYES OYT-
Hotog xou molag Ymopolv vo Yewpniolv 6noTég, BEBOPEVNE TNG AOUPELNS TOU
UTdPYEL.

H Suoxolio ot yevixeuon o moudid xou Beégn Twv HOVTEAWY ToU €YOLV
avamtuy Vel yia evihixeg xuplwg, dev ogelieton Wbvo oty aduvopuior TV UTOA-
OYLOTY| Vol EQUQUOCEL WO TA TN WeV0B0 1) TO YOVTEAD OTIC EXOVES, A ol
otnv guctoroyio Tou avipnrou. To avipdmvo cwua and v Beepun nhuda
uéyer TV evnidworn xon xotd T Odexela e Cwhg pog oAAGCEL ONUOYTIXG.
Autd onuatver 6tL aAAdlouy xaL oL avaAOYIEC TV BLUPOPWY UEEWY TOU G-
wotog. o mopdderyua, to xe@dhl evog Peépoug elvon ducavdhoya Ueydho o
OYECT UE TO UTOAOLTO GO TOU, EVG TA YEPLA TOU Efval apxeTd Uixpd ot oyEo
UE TOV x0pud Tou. Avtideta, auTEC oL avahoyleg aAAdLoUY GTOUC EVAMXES T
oToug EQRBoug. LUVETOGS, AUTEC OL DLUPORES OTLC AVUAOYIEC ol GTO COUQ,
6UGXOAEVOLY TNV OTUtoVEYIa EVOC XUOAXOU LOVTENOU YLl TNV TEQLYEAUPT) TOU
oavIpOTIVOU oOUATOS Yo dtoud xdie nAtxiog.

‘Evo axdpor onuavtind {ATnuo oyeTind pe tor mondid etvan 1) evakodntn glon
TwV 0edopévwy Toug.  Apxetd niwd (nTthAuaTa oAAd xou ot vopoleoieg Twv
eXAOTOTE ATV TEPLopilouy TNV dnuLoupyio UEYIAWY CUVORWY BEBOUEVWY UE
pwToypapieg Toudlwy Tar omola elvon amapalTnTo Yot TNV EXTUUOEUCT) HOVTEAWY
eCeOWEVPEV OTNY eXTIUNOT TOLC X0t OYHUUTOS ToUdLOV.

1.1.2 Egpopuoyég

H perétn tou 3A oyruatog xou tng toag evog avipnnou anapriuct TAfog
EPUQUOYWY OF DLUPORETIXG TEDLOL X0 ETUC TNUOVIXES XOLVOTNTES. LTOV Y(WEO TNG
vyelag, amotelel Evay U enepPatind TEOTO Yo TN MEAETN TNE xlvnong xan Tng
avamTuEng evog avipwnou. Amd TN peRETn Tng avdmTuing evog Beégouc o
TOV EVIOTUGUO VEUROAOYIXAY 1| XWVNOLOAOYIXWY AOUEVELDY, €S TNV UEAETN TNG
puolxfc xotdoTaong evog adinty, o toufag autdg g ‘Opaong Troroyotoy
Tpoo@épel mohudpriuee hooelc. Me tn Snuoupyla 3A avaXATAOXEUDY TKV
VIOV amoxEUTTOVTOL Ol TANEOYORLES Yiol TNV TOUTOTNTA TWV avlp®TWY,
Ywelc vor ydveton 1) TANEo@opia YL TO CWUA, TIC XIVHOELG XoL TIG AAANAETLOPRY-
oelg Toug. Me autédy Tov TEdTo unopolv vo dnutovpey ol UEYAAES ovoLy TEC
Bdoeig dedouevey pe TAemG avmvupa dedoueva. Enlong, wa onuovtixd eqog-
woyr g derétng Tou 3A oyfuatog xou molag elvon 6Tl Unopel var amotehéoel
EVOL ONUOVTIXG OEXTN Yiot TNV TE®T B8y Vwor) Tou autiopol ot toudid. Téhog,
UECK TOV POVTEAWY TEQLYPUPHIC TOU avUpMTIVOU CWUATOS, 1) eXTiunon tng 3A
molag xan oyfuatog Beloxel epapuoyéc oty eovixy xou otny enauinuévn
TEUYUOTIXOTNTY, MECW, Yol TUPADELYUN, TV PEAMOTIXMY dBaTupg, OTWS XL
oto nedlo e mapoxorolinone avipdnwy (tracking) oe xivoluevo Bivieo xou
OTNV AVOLYVOELOT) OpACEWY.
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22 Kegdharo 1. Extetopévn Iepihndn ota ErAnvixd

1.1.3 Xvuveicpopeég

Me agopun To yYeYovog 6TL oL teplocbTepeg Uévodol yia TNy extiunor Tou
3A oyfuatog xou Tolug TV avlp®TwY e TLAC0UY 6E EVIALXO TAIUCUO, GTOYOG
NG SimAmuaTing epyaciog etvon var BEATIOOEL TNV TOLOTNTU TV ATOTEAEOUTCV
otnv 3A yoviehonoinor moudnv xat Beepav. I'Vautd 10 AdYo oL x0pleg GUVE-
10QOopEES pag cuvolllovTon ToEoXAT:

e IIpoteivoupe pla pédodo Beitiotomoinong, enéxtaon plog olyypovng uedo-
oou, 1 omola yenotuonolel To eviado povtého SMPL-A xau efvan teavi val
UOVTEAOTIOLAGEL TOGO EVAMXEC OGO ol UeEd Xou Tondid xdie nAuxdoc.

o Xoprnowomololue T pédodo BeATioTomoiNo G Yio Vo TUEAEOUUE ETOTUELD-
OELG Y1 ELXOVEG TIOUBLOY Xat BEEP®Y omd dNUOCIES BACELS DEDOUEVLY (OTE
VoL ONULOVEYHCOUPE €VOL GUVOAO BEBOUEVMY TIOU UTOREL VoL Y ENOWIOTO-
Vel yio Ty exnafdevon povtéhwy Badide udinone. Me autd to dedopéva
EXTIUOEVOVUE €Vl TETOLO POVTEAO TO OTolo elvon 1xave amod uio elxdva
OE TEOYUATIXG YPEOVO VO XAVEL 3A ovVoXATAGKELY| TV avipmT®Y ToU
Beloxovta og auT.

e Ou pgdodol Tou TEOTEVOUNE UTOPOUY Vo YENCWOTOL YO0V YL TNV 0VWVU-
womoinon xou amdxeun evalotnTey BedouEVmY PEcw TNne dnutoupyiog 3A
OVAXATAOHEVDY avlp®TwY xdUe ntxdioc. Ot 3A avaxaTaoXEVES TOU av-
Yowmvou coUaTog Unopoly v yenoylorointoly ot dnuoupyio datasets
O€ OEBOUEVY TTOU OE DLAPORETIXN TEP{TTWOT Yo ATaty adUVATO VoL ONUOGLEU-
ToUV AOYW TNg evatcdnoiog Toug. Ye autd To TAAGLO, TUEOUGCLACOUUE Yol
T0 cOvolo dedouévey BabyRobot e 3A avaxataoxsuéc and moudid mou
OANAETLOEOUY UE POUTOT UE TAOUGLEC DPUOELS, YEWOVOUIES Xl XIVACELS
0TO YOEO.

1.2 Oczwentind TroBadeo

Hopoxdtw napovotdlovton cuvoTTixd xdmola VeUEAmDN oTotyeln YewenTnol
umoPddpou yia TNy xotavonon e pedodoroyiag mou avoartuydnxe. Evo mo
EXTETOPEVO VewpnTnd uToBadpo utdpyel 6To ayyAixd xeluevo oto Kegdhoo 3.

1.2.1 To Skinned Multi-Person Linear (SMPL) Mov-
Télo

Ti¢ Tepioc6TERES POPES 1) OruLoupYiar A avaXATACKEUGDY Yiot TO avipmTvo
owua omontel Eva HovTéAo Tou Vo To TEPLYpdpEL. M auTd To TACLO €YouV
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1.2. Ozwentnd TroBadeo 23

avamtuy Vel Stapopetind povtéha. To Skinned Multi-Person Linear (SMPL) [36]
elvow v amd TaL O PEAALS TIXEL X0 DUVATE HOVTEAA TTOU UTOROUY VA YEY|CLLOTOL-
nYoly v auTOY T0 o%0To. ‘Eyel exnandeutel o€ Eva GUVOLO BEBOUEVWY [UE TOLX-
ko oto oyfua xou oty Tola TV avlpOTKY, OOTE VO UTOREL Vo YEVIXEVOEL
OG0 TO BUVATOV XAUAVTERA.

To SMPL povtehonotel 10 oyAua TV avilp®dTwy ¢ EVo GUVOLICUO EVOS
OYAUATOC oL €E0ETATAL OO TNV TOUTOTNTA TOL avIPMTOU X0 EVOC Y AUATOS
mou e€opTdTon and TNy exdoTote TOLa Tou £yel. XpnolonouwvTag vertex-based
skinning ye corrective blend shapes nopdyet o tehixd 3A mhéypo (mesh) tou
avdpdmou.

H poviehornolnon Eexvdel e éva mesh template, o yéco avipdmvo coua,
mou anotereitar and N = 6890 xopugéc xan K = 23 apdpoeic. O Baouxég
TopdueTeol Tou yenowlomolel To SMPL yio v <mopaudppnon>  autod Tou
mesh template eivar ot napduetpor oyfuatoc B € R” (cuvidwe n = 10) xou
ol Topdueteol tolac B. Ot topduetpol B eivor cuvohixd 3 - K + 3 = 72, xodacg
x&ie cOVOECUOC YpeldleTal 3 TUPAUUETEOUC Yiol VoL TEQLY PUPEL 1) TEPLGTREOYY TOU,
XL ETUTAEOV 3 TOUEIUETEOL GUVOMXE YL TOV XEVIPXO TEOGUVATOAOUO TOU
CWUATOG.

Tehixd, 7o SMPL eivor éva povtého M(3,0; @) : RIEIXIBl — RSN 16 onolo
xAveL plar amEOVIOT) oo TG TUPUUETEOUS OYHUUTOS Xou TOLAC GE XOPUYPES EVOS
3A mesh. Me ® ocupBohiilouue to TAfpEG clvoho mapouétpwy tou SMPL,
onAady, Tou template mesh, twv blend weights, tou mivoxa xuplwv cuvioT-
wowv Tou yenotpornotettar yia o blend shapes tou oyrjuotog, Tou nivaxo Tou
yenowomote{ton yioo v Bpedel n Véon twv joints xou, téAog, Tou mivaxo mou
TepLEyel To oUvoho Twv blend shapes yia v molo.

1.2.2 To Skinned Multi-Infant Linear (SMIL) Mov-

Té\o

To SMPL eivon €vor mohd duvatd xan TepLypopind LoVTEAD Yl TO avipnTvo
owua. 201600, T0 YEYOVOC 6TL EYel extoudeutel o 3A mesh uévo evniixwy to
AMOTEETEL a6 TNV EMTLY T Loviehonoinom Beepnv. [Mo o Aoyo autd, otneld-
uevo oto SMPL, avantdydnxe to Skinned Multi-Infant Linear (SMIL) [19]
ue oTéY0 TNV xahitepn povieronolnon Twv Peegnv. To SMIL eivon éva yov-
TéMo ToL €yel exmondeuTel oe younirg towdtntac RGB-D 6edouéva Beegpiv mou
xwvoovTal eAedlepa 6TO YWEO MOTE Vo UTopel Vo EQoapuocTel 0Tr GUVEYELN OE
mpoyUoTieée ouvirxec. Eivon éva povtého wovd va mopdlel éva peahloTixnd
oW BREPOY UE TIC OWOTEG avahoyleg AoYw Tou dlugopetixol template mesh,
e oyedlaopévo Yo Beégn, Tou yenoionolel 6Twg xaL YdplS oty oTo-
YEVUEVT o Bpegixéc avahoylec BeATioTomoiNoT TWV TUPUUETEWY OYHUATOS Kol
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24 Kegdharo 1. Extetopévn Iepihndn ota ErAnvixd

nolac.

1.2.3 SMPL-A

Me v avdntuin Tou SMPL xou tou SMIL Snurovpyhinxay 600 povtéha
TOL UTOEOUY Vo Teplypdpouy ToAD amoteAeopotind evihixes xou Beégn, avtio-
Totya. §lotooo, 1 aduvauio Tou SMPL va poviehonowioet moudid xon Beegn
xat, avtioTorya, Tou SMIL evilixeg dnuoupyel €va xevod oty xodoAixy| Lov-
teronoinomn 6Awv v nhwaoy. To SMPL-A [47] eivou évor povtého mou npooma-
Vel var xohOder autd to %evd. Xpnowonolel xatd Bdorn tn oyedioon Tou SMPL
uE TN Otapopd var Eyxeltan oTo template yio To ooy Tou yenotdorolel. Luy-
xexpwéva, to SMPL-A nopeyfdier éva SMPL template oduoatog evihixa Ty
xou évae SMIL template evog mawdiod Te yar vor tpoxer to tehixd template
Tr oOupwvo ue TNV ToEoxdte oyEon:

TF = OéTC + (1 — a)TA

omou a etvor plor véa TapdeTPog Tou elodyeTot, To Bdpoc TapeUSorfic (in-
terpolation weight). H napduetpoc auth naipver Twée oto didotnua a € [0, 1],
omou a = 0 6tav €yovue template evilxa, xouu a = 1 template noudov. To
shape space yia to SMPL-A napauéver to (6o pye tou SMPL, wotéc0 epop-
uoyég €youv Oeilel 6Tl axduo xou ue auth) TNV odloyry oto body template, 1
XOLVT) LOVTENOTIOMGT) EVIAIXMDY ol TTOUBLAVY Elvorn SUVATH.

1.2.4 Vision Transformer

O Vision Transformer (ViT) [12] etvou pla apyttextovind Podide pddnong
yio ene€epyaota edvwy mou Bactletor otov Transformer [66], o onoloc apyixd
ety avomtuy Vel yio eqappoyéc uoic enelepyaoiog yawoous (Natural Lan-
guage Processing) (NLP). Xe avtideon ue mponyolueves apyttextovxécs, 6mwg
T CNNs, o ViT ypenowonotet tov self-attention unyovioué [66], o omolog tou
emtEénel vo padadver e€apTAOES amd OAN TNV EmOVA, ot Oyl TOTUXS Y opox-
TNELC T

O VIiT, avti va enelepydleton pio edvo we éva cUvolo amd pixels, T
Yweilel oe pxpd N EMXOAUTTOUEVA TURUATO (patches) o to ovTeTOTICEL
oav vou ytay AéEelg ot pla TedTaoT), 6Tws dnAadr o Transformer tou elye apyixd
avantuyVel yia egapuoyéc NLP. Kdie éva and autd ta tpfpata tpofdiieto
Yeouuxd ot éva didvuoua, to embedding. To patch embeddings eviyvovton e
embeddings mou divouv Thnpogopiec Yo T Véom Tou patch otny apyxr| edva
xaL To ouvohx6 embedding mepvdel and Evav xhooixd Transformer encoder
ue multi-head self-attention enineda, layer normalization xou vToheiupoTixég
ouvdéoelg (residual connections).
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1.3. Yyetn) Bidhoypapia 25

‘Evag ViT yenowuonolel 800 eldn unyoaviouol attention:

o Self-attention: Troloyilel tn oyéon uetald SlopopeTincdv patches tng
EXOVAG, WUOVTIC TO HOVTENO VO EGTIACEL OTIC TO OMUAVTIXEC TEQLOYES
NG EMOVOC, AVECUPTATWS TNS YWELXNS AmdoTACTC TOUC.

e Cross-attention: ¥e mohutpomxd cuotiuata, 6tav yepllovial Teplo-
cotepa and €va modalities, yia mopdderyua to xelpevo, o ViT yenot-
porotel cross-attention yia vor SuayeiptoTel TaUTOYEOVYL T BLUPORETIX

elon mAnpogoplog.

O VIiT unopel va ebvar moAd mo anoteheopatindg and eva CNN, xodde
avTETOTICEL EMTUYOS TeoBAAuaTa OTwe To locality xou to translation in-
variance. (ot6co, yio va Yiver autd ypeldleton Vo EXTULOEUTEL O UEYTAO
TA00C BEBOUEVKY XA TOLOTNTIC 1) VoL YeNoHLOTONTOUY amOBOTIXES TEY VIXES
enavénone dedouévwy (data augmentation techniques).

1.3 Xyetwxn BiAoypopia

H extiunon tou 3A oyfuotoc xou tng moloc Twv avlp®rwy omd uio etxdva
1) €va Bivteo €xel yehetniel eEXTEVOS amd TNV EEELUVNTIXT XOLVOTNTA Tal TEAEU TN
yeovia. And xhaocixée pedodoug tne ‘Opaone Troroylotdv uéyet v yeron
olYyeovwy TEYVIXGY Badide Mdidnone, xdlde uédodog npoomadel vor cuuBdiiet
otn Behtlwon Tng moloTNTUS TV anoTeAsoudTwy. Ilapuxdtew mapoustdlovto
CLUVOTITIXA XAMOIEC OmO TS THO AMOTEAEOHATIXEC UEVOO0UC GTO Tedlo xodmg
xou pévodot mou avTeTwriCouy oyeTind TpofAfuata 6Twe N extiunon g 2A
6l TV avipdToV.

1.3.1 Extiunon 2A nélag

‘Eva Yepehioddeg npdPanua tng ‘Opaong Troloyiotov anotehel 1 extiunon
™ 2A n6lag Twv avipnnwy. Autd to medfinua elvar Toh) onuavTXd xadig
UTopEl Vor 00NYOEL GTNY XATAOKELT) EVOC OEAETOU Yol ToV xde dvipwno, To
oTol0 EYEL APXETEC EQUPUOYES OF DLUPOPETIXG TEdlaL, OTWS 1) MEAETT TNG %ivnong
1 1 a&loAdynom xan BEATIWOoT TNG TEYVIXAC TV IANTOY.

Emnpéoieta, ol nepiocdtepeg uédodol Pehtiotonolnong mou €youv avor-
Toydel yioo TNV extiunon e 3A nolac TV avlp®dTwY YeNoWonooly TNV
2A mola, elte wg évay 1poémo aviwong and to 2A eminedo oto 3A elte wg
o@dhua Teoorfc tng 3A Véong twv aplpowoewy ot oyéon pe T 2A Yéon
TOUC. LULVETKG, Wio amoteheouatiny) HEV0BOS Yo TNV OVTLETOTICT AUTO) TOU
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26 Kegdharo 1. Extetopévn Iepihndn ota ErAnvixd

TpoPhiuatoc meénel va otneiletar ot pla eloou amotedeoyatiny uédodo yo
Vv extiunon e 2A nélac.

To mpoBhnua éxer pyehetniel xan Aooeg €youv mpotadel mou PBascilovton
1600 ot mopadoctaxéc pedddoue (58, 67] 600 xauL OE O TEOCPAUTES UPYLTEX-
tovixée Babde Mddnone [35,61,65]. Ot npddteg uédodol mou avortdydnxoy
Yenouomololy mapadoctoxés teyvixéc tne Opaone Troloyiotwv. Mia cuv-
nouévn teyviny| elvon tar part-based povtéla, to omolo ywellouv To obua ot
uéen evtonilovtag T EEYWEIOTA, XoU 0T CUVEYELL LOVIEAOTOOUY TI¢ UETAUED
TOUC AMOCTAOEL WOTE Vo exTyioouy Ty mola. Enilong, moAléc gopéc yenot-
LOTIOLOUYTOL YUROXTNELO TIXE TOU GWUATOC Tou eEdyovTon and descriptors, 6meg
ta Histograms of Oriented Gradients (HOG) [10], xadc¢ xon mdoavotinéc
uévodot [59] ot omoleg €youy wc aTdY0 TNV ENXYLOTOTOMOT Wit OVTIXEWUEVIXAC
cLVaETNOTG Tou EAEYYEL TNV ThavotnTa oL VEoEL TV aplphoewy va elvor Té-
Toleg WoTe 1) oo o elvan puxTr avartoxd. Av xan OAec auTég oL uédodol Ede-
oav Tor Yepéhar Yoo TNy PEAETN Tou TeoAruatoc Tng extiunong e 2A nélug
Tou avipnrou, elvor dEXETE X0 TOPOREC UTOAOYLOTIXG, VK 1) axpifeta oty
extiunon e nooc elvor opXETA TEPLOPIOUEVT], EWDIXA G TOAUTAOXEC TOLEC.

To TayEwe avVamTUGOOUEVO Xou UTOCYOUEVO TEdio Tng Bohdg Mdinong €ye
(PEQEL ONUAVTIXT) TPOODO GTO YWEO UE GUYYEOVES Uel6d0ug oL ontoleg Bactlov-
Ton xuplowe ota CNNs xaw otoug ViTs. Autd to poviéha unopolv vor exmoudeu-
oLV OOTE Vo Udouy eVpWo T YoRUXTNEIOTIXG OE TOAG emtineda ameudelag
and ta dedopéva. H emoy twv peydhwy dedopévov (Big Data) emtpéner tnv
exTalOEVOT TETOWWY HOVTEAWY Ot UeYdho TAHDOC Bedouévwy exmaideuong udn-
MG TOLOTNTOG XAl UEXETA PEYEANG DLAXVUAVOTG, WOTE TO HOVTEAOD Vo udiel vo
yevixelet xahbtepa. To OpenPose [7] xou to ViTPose [71] anoteholv 8o and
TIC TILO YOPOXTNPIO TIXES XAl AMOTEAECHATIXEC PeDOB0UC Tou Eyouy avamtuydel
yioo TV extiunon tng 2A molog.

To OpenPose anotehel pla pédodo mou emtpénel TNy extiunorn oe mpay-
woted yeovo g 2A mélag Yl TEPLOcHTEPA amd €val dTou O Uio oxnvi.
Booileton oe éva CNN 10 omnolo €yel exmoudeutel oe éva dataset peyding »hi-
HOXOC TO OTIO{0 TIEPLEYEL XAl OXNVES UE UPXETOUS VUPMTOUS OTOTE VoL UTOREL Vot
AVTWETOTIOEL EMTUYOC avTioTolyEC TEPITTOOELS. Ol BUVATOTNTES TOU, WGTOGO,
TeplopilovTton 6Tay UTEEYOLY aEXETE Un 0poTd Uépn TOU CWUATOS, OF TOAD-
Thoxeg TOLEC 1) OE YAUNANG TOLOTNTOG ELXOVES.

To ViTPose otnpileton oe pla amhyy apyitextovixy, 1 omola yenoyomoLel,
OTWS PaveP®VEL xou To 6voud Ttou, évav ViT. O self-attention unyoviouog
emteénel oto ViT vo padadver xahOtepa tor yopaxtnelotind o ula eodva,
UEAETOVTOC TIC OYEoElC UETAC) TwV ONUelwy OANC Tng emovag, ot avtideon
ue T CNNs, ta onola mepiopilovTon o TO TOTXA YoEUXTNEOTXG. LUYXEL-
Tixd pe To OpenPose, To ViTPose umopet vo extyurioet ye peyokltepn emtuyio
dVoxoheg TOlec o€ YeYAAOTERO NAOXG Gdoua. ['Voutd to Adyo, oTic Yedo-
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1.3. Yyetn) Bidhoypapia 27

0OUC S YPNOYLOTOLOUUE AUTO TO WOVTERO Yo TNV exTiunon tne Véone tov 2A
apVPWOEWY.

1.3.2 Extiunon 3A oynuatog xou nolag

H avdryxn yior xahOtepn poviehomoinon Tou avip®rivou GOUATOS Xol 1) o&-
tonolnomn autrc oe ToiAES EQapUOYES 00N YNoE OTNV AvaTTUEN UEVOBWY Yol TNV
extiunon tou 3A oyrfuatog xou e nooc Twv avlporwy. H extiunon e 3A
molog €yel Yehetniel xon wg Eeywpetotd TEOPATA, xaddg dev enneedleTon og
ueydho Badud amd to oyfua. Avtideto, ol tepiocoTeReC PéYodol Tou xAVoLV
extiunon Tou 3A oyfuatog, xdvouv Tautdypova xou extiuncn e 3A molog,
ool To oyfua eCopTdTal amd TNV TOLa TOU aVUE®TOL.

Ov mpiyteg pédodor mou avamtiydnxay yioo v extiunon e 3A molog
Ty avlpdnwy Baciloviay oty petatponh) tne 2A molouc oe 3A [8,41]. Me
Vv extiunon e 2A déong tov aplpnoeny, cuvidwe ye éva CNN, yenot-
HOTOLVCOY EVOL VELPWVIXG BixTUO 1| €vary Tegressor yla TNy extiunon tne 3A
Véone tov aplpwoewy. Ilo cbyypovee pédodor €youv avoamtuydel yioo Tnv
extiunon g 3A n6lag ol omoieg dev ypeldlovion TO EVOLUECO GTABO TNG
extiunong g 2A nélac. Autég ol u€vodol yeNnoWomololY Xuplwe TEYVIXES
Borhdic pdinone [33,60] ahhd xou mo xavotoues éeg, onwe oruata WiFi [72].

Mio amé Tic Baocwdtepeg mpoxhAoeg oty pehétn tou 3A xdouou omd
2A oot ebvon 1 offeBandtnta Tou Bddouc. T v avtipetwmioTel autd ToO
TEOPANUe oty extipnomn tou 3A oyfuatoc xan tng mélag, morkég uédodot
YENOULOTIOLOUV XGPUEPES TTOL XAUTAUYPAPOUY BLoPOopeTXES OeLs Tou xbopou (multi-
view cameras) [11,20] 7 Bivteo [52,73]. Epdoov to oyfua evéc avipndrou dev
oAAGCeL xatd T Bdpxela evog Bivieo xon Oev e€aptdtar amd TNV omTixt| Tou Yo
TO OEL X4molog, oL HoP@ES auTES Bonloly 6NV XUADTERT XATAVONOT] XoL EX-
Tipnomn Tou oyfuatog TV avlpdnwy. AUcEC 0TO TEOBATUL TEOCPEPOUY XouL Ot
xduepec RGB-D, ot onoleg divouv xdie otiyur| mhnpogopies yia to Béddog tng
oxnvic [5].

2E TEPIMTWOELS UEAETNG TNG XIVNoTg, Yiot TNV amouYT| Tapedhoyng xivnong
éyouv npotadel epfrounyavixd (biomechanics) yovtéha tng xivnong xow Tou av-
Yodmvou owpotog [28,70]. Pavdueve 6mwe to <skating> twv noduwY, SnAadh
OTOY T TOBLW TOL avdpmTou YALGTEOUY UE a@loxo TedéTo, Yo urtopolcouy Vo
amogeuyYoiv haufBdvovtoag unddr euflounyavixols TEQLOPIOUOUS.

Yy neplntwon omou 1) elcodog etvon pior amhr) RGB ewxdva, 1 yehétn yive-
Ton duoxohoTep. dotooo, apxeTéc pédodol Eyouv avamtuylel ue otéyo TNV
emlluon tou meoPAfuatos. ‘Onwg avagpépinxe, autég ol pédodol etvan xuping
Boolouévee otnv Bektiotonoinon [14, 48], oty mohwvdpdunon e teyvixéc Bo-
Yidg pdinome [24, 75] xodéde xou o€ ouVBUUOUS Behtiotonolnong xon maALY-
dpounone [29].
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28 Kegdharo 1. Extetopévn Iepihndn ota ErAnvixd

TN CUVEYELN TIEPLYPAPOVTOL CUVOTTIXG DUO amoTEAEOUATIXES YéYodoL, Ula
Behtiotonolnong xou plo TahvOEOUNoTE, TIOU Y ETCLIOTIO|CUUE GTA 0y X d TELRE-
MOt oG,

SMPLify-X

To SMPLify-X [48] onotehel piot and tic mo amotereopatixée pedddoug
BehtioTonoinong i Ty extiunon tou 3A oyfuatog xou g TOLag TWV ov-
Yowmov and pio ewdva RGB. Ytnpileton oe plo todawdtepn pédodo, to SM-
PLify [6], tnv omola enexteivel xou Pedticdvel. Xxomdg elvar 1) eoryloTonolnon
ulag avTIXEEVIXY|C oUVEETNOTE H€oa amd TNy ontola Yo Tpoxdipouy ot TtopdueTeot
tou povtéhou SMPL-X [48]. 'Onee xat oTic TEpooOTERES TapbUOoLeES HeYddoUC,
€TOL XU O QUTH, 1) AVTIXEWEVXT| cuvdpTtnoT Baciletar 6TV ehayioTonoinom
evog o@dhpatog mpofoirc tng Véong twv 3A oplpnoewy pe TNV 2A avtio-
Totyn 9€on mou Eyel aviyvevoel to OpenPose. H avtixeyevixt| cuvdptnon eivan
1 OO YTE:

E(B3,0,v) = Ej+ X, Eg, + No; Eo; + Ay By, + XaFo + Mg lg + Ae Eg + AcEe

O mopdetpol Oy, 0 xan my, eivon T Slavbouata Yo Ty 6o ToU GOUATOC,
TOU TPOGOTOU X0l TWY YEPLOY, avT{oTolya, eve oL 6poL By, (my,), By, (0f) xou
E¢ (1)) etvon L2 priors yior v m6lol TV YERLDOY, TOU TEOOWTOU XL TG EXPES-
oelc Tou mpoownou avtiototya. O époc Eg(f) expedlel tnv andotacn Maha-
lanobis petall TwV ToEoPETENY TOL oY HUNTOC XaTd TN BeATioTonolno Xou TG
XATOVOUNG TV TWOV ToU oYRUAToC 6To cUVolo exmnaidevone tou SMPL-X.
Téhoc, 0 bpoc Eq(6h) elvar évog prior yior ToUC ayXOVES XU T YOVOTA, EVE
0 6poc E; elvar 0 6poc o@dAaTog Yl TNV amoctaoy Petold twv 2A key-
points mou aviyvedinxay and to OpenPose xar tng mpofohic Twv 3A oe 2A
keypoints.

To SMPLify-X eiodyet tov Variational Human Body Pose Prior (VPoser)
Tou expedleton Ue Tov 6p0 Ey, (0,) 0T ovTiXeyevny) cuVARTNOY X0t GXOTOG
Tou ebvar 1 amoTEOTA AVEPIXTWY 0TdoEWwY cnuatos. Eniong, eiodyeton eva véo
interpenetration loss (E¢ () otny avtixelevixr cuvdpeTtnom) Yo ThY anoguyt
<OUYXPOUCEWY> X <BIElodUCTC> EVOC HEPOUS TOU GOUUTOS HE Eva GAAO To
omola dev elvan puotxd epunveotua. Téhog, €youv avamtuydel povtéha oto-
YEUUEVaL YL xdE @ONO, xou Y'owTo To AoYo yenotuornoteiton évag Deep Gender
Classifier yia v avayvoplon tou @UAou Tou xdie avilpwmou. e meplntwon
omou dev aviyvewlel ue peydhn olyoupld xdmolo @OAo, yeroulomoleiton €va
OLBETERO UOVTENO.
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1.4. Medodoloyia 29

BEV

To BEV [62] eivan pla pédodoc mou yenotponotel teyvinés Padide pdinong
xou ToAvdpounon yia Ty TedlAedn e 3A molag xou Tou GYHUUTOS TWV av-
Yoonwy oe pio exova 1\ éva Bivteo. ‘Eyer avamtuydel yioa nepintooeic, 6mou
oe ula edva cuvundeyouv Tohhol dvipwrol, xadog elodyel uio amexdvion
<bird’s-eye-view> ylol TOV EVIOTUGUO TWVY XEVIPOY TWV CWUATWY TV AVUROTOV.
Tautdypova, 1 yeron evog Tporonotnuévou SMPL-A povtélou tny xodho td pla
amoTEAEOUATIX OTNV exTiUNoT Tou 3A oyfuatog Tadiwy yédodo. BéBoua, 1
extiunon tne moloag mopouével Evar (AT ool apxeTéc @opéc eivar Aovidao-
UEVT).

To BEV yenowonotel évo vevpwvixd dixtuo Yo Ty e€aymYn YapTov ToU
%EVTPOL TV cwUdTwY, Tou localization offset and tnv unpootivy) odn xar dvo
YoeTov Yo To bird’s eye view. Autol ol T€ooeplc ydpTeC cuVOLALovTOL Yo Vol
Topdgouy ydeTes yior TNV 3A ¥éon tev xévipny xou Tou offset. Xtn cuvéyela,
autol oL Véou ydptec mpofAémouy TNy 3A petatémion TV avlp®Twy, N otolu
TEMXE OE GUVOUNGHO UE EVAY YAETY YAUQUXTNELOTIXWY Yiot TO 3A TAEYUo TOU
avipcmou xdvel regress ¢ SMPL-A nopapétpouc.

‘Onwe npoavagépinxe, To BEV yonotuonolel €va Uepin®de TpOTOTOMNUEVO
SMPL-A povtého yio Tnv xoAOTERT TERLYRAUPT) TWV BREQPMY. XUYXEXQUIEVQ,
dedopévou 6Tt To SMPL-A ypenowomnolel yévo to shape space Tou SMPL 1600
Yoo eVANXEG 600 xou yia Bpggn, emewdr) to SMPL dev €yel povteronoiniel
xoTdAANho yLoe Toudud xon Beggn, To oo Tou tpoxintel ue To SMPL shape
space dev elvar ToAES Qopéc peakiotind. 'Etol, 6tav to Bdpog napeuforrc o
elvan ueYohOTERO amd Eval XUTWOPAL To, ONAXDY| HOLELEL TEPLOGOTERO Yol fRépog,
yenowomoteitar to yovtého SMIL. Avtiteta, otav a < ¢, yenowonoteiton To
SMPL povteho. H ahhayt| auth| fondder otny xakitepn poviehonolnon tou
OYAUATOS TV VIOV YEVIXOTERM, UAAS XAl EWOWE TV BEEPOV.

1.4 MeOodoAoyia

Yy napovioa epyasio tpoteivouue 600 véeg uedodoug yio Ty extiunon 3A
Tolag xan oy AuaTog TV avlp®rwy. T'a vo to Ttetdyoupe autd, emexteivouye
UTIdPY OUGES ATOTEAECUATIXES Yol EVANXES UEVOOOUC YPTOULOTOLOVTAS GUVOAX
OEOOUEVWY [E ELXOVES TIOL TEQLEYOUY ToudLd xou BpépT), HOTE Vo umopel var Yivel
%NOTEPT HOVTENOTIOMNOT AUTWY TWV NAIGY. XTdyog uag eivor 1 dnutoupyia
ued 60wy mou exTipoly TV 3A T6la xon oY TO (B0 XUAd aveELJETNTA OO TNV
nAwto Tou exdotote avilpwmou. Augdtepeg ol uédodol Aettoupyoly Ue €lcodo
1660 EwOVA 660 xou BIVTED, OIS X Yo EXOVES UE €va 1} ToAROUS avlp®dToug.

H npwtn pédodog etvan uior uédodog Poctouévn oe Bedtiotonolnon. Eivo
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30 Kegdharo 1. Extetopévn Iepihndn ota ErAnvixd

opyWd LAoToipéVN Ylol var Aettoupyel oe [Bivteo, wotéoo eueic TNV emexTel-
voupe xat og ewoveg RGB. Yxondg ebvan 1) ehoytotonolnon plag aviixeluevinic
cuvdptnomg 1 omolo anoTteAelton and AEAETOVG HPOUC CPIAUATOS KoL XUVOV-
IXOTIOINONG UE ONUAVTIXOTERO oUTO TOU OQIAUNTOS TeoBoANS Twv 3A onuelwy
ota Pevdo-mporyuatind 2A avtiotorya onueia. Tehwxd, n uédodog eqgoupudlel To
wovtého SMPL-A ce xdle dvipwno twv 6edouévey €lo660L.

Boaoixdg otoy0¢ pog elvor 1 exnaldeucT) evOg HOVTENOL TOU UTOPEL Var XdvelL
aneudelag TpoBhedn Twv tapouéTewy TOLaC xou oY AUATOS BACEL EVOC LOVTELOU,
onwe 1o SMPL-A; yio xdie dvipwno oe pla etxdvo. Autd metuyaivouue ue
oeUteET YEV0d0. H TOAD xoh) TOLOTNTA TOV AMOTEAEGUATWY TNG TEOTNG HEVO-
oou Borinoe ot Onutovpyio PEUBO-TPUYUATIXWY ETLONUELOOEWY OF EIXOVEG
ToUOLOY xot Beep@yv amd avolyTd oOVOAA BEBOUEVKY TNG EPELYNTIXAC XOWOTY-
Tag, o omolor yenotonoinxay yio TNV exTUdEVST) VO VEUPMVLXOU DX TUOU
TOU XAVEL EXTIUNGCT TWV TOPAUETEWY oy AuaTog xat Tolag BAoel Tou Yoviéhou
SMPL-A. Avuty| n yédodoc amotehel xou pio opxetd mo yeryopn uédodo cuy-
AELTXE UE TNV TEOTN xodiG OEV UTGEYEL 1} Pdon TNg BeATioToTolnorg.

1.4.1 Meéedodog Baociouévn otrn BeAtictoroinon

‘Eva Bivteo elvon piar oxoroudio and eixdvee 6mou cuvidwe uTdoyel xdmoLa
oAy ot oxnvh) Yetol toug. doTdoo, eivor BuVATO QUTEC OL EIXOVES Vol
elvan xan ov (Bieg. Me auth| 0 Vemdpnon unopolue va avdyouue To TeoBAnua
e extiunong 3A oyfuatoc xou molag Twv avilp®drwy and pio exove oTo
avtioToryo mpoPBinua e cicodo éva Bivteo. Ildvew o authv TNy mapathenon
XL OF TELYUOTA TOU €YLVoY OF OYETXES UeVOBOUC xan Belyvouv OTL dTay 1|
eloodog elvon €va Bivieo Ta amotehéouata elvon XoaAOTERA CUYXELTIXE UE ElGOBO
uta ewdva Booileton 1 mpdTn YéV0odog Uag.

Yuyxexpyéva, Baotlopoote oto SLAHMR (Simultaneous Localization
and Human Mesh Recovery) [73], uiot amoteheopatixr uédodo Bertiotonoinong
yioo Ty 3A extiunon oyfdatog xou nélag TV avlp®rey ot éva Bivieo, xou
TNV TEOTOTOLOVUE XAUTIAANAGL WOTE Vo BOUAEVEL TO {BL0 XOUAL YLl ELXOVES, XAl
yioo avipwnoug avelaptitog niddoc. O tpomog Aertoupylac Tou SLAHMR
amewxovileton otny Euxéva 1.1.

To SLAHMR éyel oyediactel wote va Aettoupyet yio Bivieo mou €youv An-
@Uel uTd TEAYHATIXEG CUVUTXES, XoU O)L OE EAEYYOUEVAL TELQUUATIXG TEQLIGA-
AovTa, TO 0Tolo ELoBYEL BUOXOALEC OTIWE TIC ATOTOPES XIVACELS XL TO QUOLXO
background. Xpenowonolel mpoywenuévee teyVixéC yioo To tracking tov av-
Yownwyv oto Bivieo, v mépa amd TNV AVUXATUCKEVT TOU CWUATOC TWV OV-
VoOTWY, oVaXTE X0l TG TROYLES TOUG, OTIKES XAl TNY xIVNoT) TNG XYUEQUS OF Vvl
AOWVO CUOTNUA CUVTETAYUEVKY TOU X6oUou. Ye éva Bivteo mou Eyel Angiel und
mpaypotixég cuvinxeg 1 xivnomn g xduepag ebvon pio ooV TIX TUEAUETEOS, 1|
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1.4. Medoboroyia 31

omolo TEEMEL X0 AUTY| VoL LOVTEAOTOLNUEL WOTE 1) AVOXATACKELY| TWV VUMWY
va €yel yivel owoTd.

‘Onwe avagépdnxe, To oot pag hauPBdver we eloodo Eva Blvteo T xupé
(frames) to omolo nepéyer N avipwrous. Kéde dvipmnog i tn ypovix| otiyun
t avamapioToTal WC:

P, = {9, 0,6 T}

6mou Pt € R? elvar 0 ohxde mpocavatohopdc (global orientation), ©F €
R exqpdler v mola amd 22 apdpioeic, A7 € R o mapduetpor v to
oYU OE OAEC TG YPOVIXEG oTyuee t, pe tnv 117 Twn vo avtiotolyel oto
Bdpoc mopepBoric a, xau T € R? 1) petatdmon tov root (root translation).

To mpoyto BrApa elvon 1 xatd xope extiunon tng otdong yia xde dvipwno,
xdvovtac 3D tracking oe oho tor xopé ypenowponowdvtag to 4DHumans [16]
tracking cOoTnuoL.

Mia 6eyoth perhétn Tou TpoAuatoc ogeilel va xdvel cwo Ty poviehonolnon
xou TNG ©vnomng Tne xduepag, agol ot éva Bivieo 1 xivnon evog avipmnou cto
oUCTNHUA CUVTETHUEVWY TNG xduepag efvan uior cuvdptnom tng xivnong T6co Tou
avip@dTou 660 %o TNG HYUEEUC OTO GUCTNHUN CUVTETAYUEVLY TOU XOGUOU.

['Vowtd to hoyo yenotponoteiton to DROID-SLAM [64], éva aotnuo SLAM
Yo VoL exumﬂet o} pewoxnpauopog {Rt, Tt} amb ToV xXOGUO cﬂqv HAUEQA VLN
xdie ypoviery otiyun t. o v extipnon tng xhipoxag g XxAuepas o xon
TV TEOYIWY TV avip®Twy Yenoulomoleiton évag prior yla TV xivnon twv
Vp®TWY GTOV XOGUO.

ZEXWVAUE PE TNV apYLXOTONOT TOU 00U TEOGAUVATOAGUOU Xal TOU root
translation 6To GUGTNUA CUVTETAYUEVWY TOU XOGHOL, EVE) 1) XAl TNG XAUEQIC
apyLxomoleitoar oty T o = 1:

vP; = Ry P}, T = R*“fi — kT,
Bz‘ - Bia @z l

Ov apipnioeic 670 GLOTNUA TOU XOGUOU EXPEALOVTAL WC:
T}~ MU0, 5) T,

omou M elvou 1) cuvdptnon tou yenowotel to SMPL-A yia vo dnutovpyoet
Tic aplpoelc xou Tor onuela TS 3A avamaedoTacnc Tou avienTou.

H avtixeevins| cuvdptnon xatd tn Beitiotonoinon Baciletar, 6mwe xon ot
TEPLOGOTERES OYETIXES YED0DOL, 0TO odhua TEoBornc Twv 3A aplpdoewy 6To
2A eninedo Bdoel twv 2A wpdpmoeny ) Tou éyouv €xouv aviyveudel:
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32 Kegdharo 1. Extetopévn Iepihndn ota ErAnvixd

N T
Baaa = Y > _Wip(Ik((Ry - I, + aTy) — x})

i=1 t=1

T
OTOU HK([azl T fﬂg} ) =K [J”l ii 1] elvon 1) TEoOTTIXN npoﬁo)\n ue
intrinsic nivoxa tng xduepag K € R , p n Geman-McClure cuvdptnon [4]
xou ¥y o confidence score Twv aviyveuuévwy 2A apdpdoenmy.
Ye autd TOo OTAdo, 1 BeltioTomolnom YivETo ATOXAEIGTIXE GTOV OAXO

TPOCUVUTONOUS Xot 670 Toot translation “®i,» I'i:

IIliIl N )\dataEdata
{{w@z wl‘*z l}i:I
¥.70 6eUTERPO G TABIO YivETOw opahoToinom TNg UeTdBaong UeTAC) TKV OTUCEWY
TV avipOnwy 6Tov xécouo. O prior yio TNV opokonolnon Twv apenoewy
optleton we:

N T
Esrnooth = ZZ HJ:: - ::—i—l”z
7 t

Priors 6pol yenowomotolvtot, eniong, yio Ty Pehtiotonoinon tng xhidonog
NG HAPEQRUC (g, TIC TOPAUUETEOUS TOU Oy UaToC 3 xou molog @i TV VpOTWY
OTWS 1o yior TNV xivnomn TV avipdTemv 6Tov XOGHO.

H cuvdptnon Behticonoinong yivetou tehxd o autd 10 0TdL0:

min )\dataEdata + )\ﬁEﬁ + )\poseEpose + )\smoothEsmooth
a?{{th}tT:I}%il

610U Fpose = Yo, S IC? % Eg = SN ||BY)I? ebvan priors yio T
T6la X TO Oy AU, avTioToLy L, UE ¢l e R* va AVOTOPLOTY TIG TORUUETEOUG TNG
6loc @f; otov latent yweo tou pyovtéhou VPoser. Ye autd to otddio yiveton
Behtiotonolnon xan oTIC TaEUUETEPOUS O UaTOg Xt TOLag TV avipnTny,
OTWS %O GTNY XA TNG HAUEQOLS.

o v guodTnTa TN avdpmmvng xivnong yenoulonoteiton évog eXTondelot-
uwoc prior, Bootoyévoc oto HuMoR [54], o onolog yenowponotel évav Condi-
tional Variational Autoencoder (CVAE). O CVAE potdaiver tnv xotavour| -
YovOTNTOG TWV QUOIXMY XIVACEWY TOU COHATOS, ETULTEETOVTAS OTO UOVTEND VO
ToEAYEL PEUAMG TXES oxohoLDES XIVNOTC Xou VoL TIC YENOLWOTIOLEL WG TEPLOPLOUO
xatd TNV Beitiotomoinon, e€acpaiiloviag €T0L TNV YUOXOTNTA TOU TEAIXOU
ATOTEAEGUATOG.

Extéc and toug x0ploug 6poug cpdhuatog e Toug prior yuo v xivnon,
oVo emmAéov bpol xavovixonolnong ewodyovion xatd TN Peitiotomoinon yio
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1.4. Medoboroyia 33

vo eCaogaioVel 6TL 1) xivnon elvon Quowxd mparyyatomolfotun xou ebAoyr. O
TEMOTOS 6POC APOEE. EVAL GPIAUN OTANEQOTNTAC (Egtan) 0 0TOLOC XOVOVIXOTOLE
v Ty OTnT xon TG VEoelg TV aplpmoswy OTng autd €youv Teofisgiel.
'Etot, 0 6poc ogpdhuatog yivetow:

Eprior = )\CVAEECVAE + )\stabEstab

O deldtepog HROC XAUVOVIXOTOINOTNG ATOTEETEL TO GUY VO PUIVOUEVO GE QUTEC
T pedddoug, 6mou o dvipwrog aiveton vo xdvel skating. I Ty xovov-
ixomoinom eAEyyetan 1) ToyUTNTA EXEVWY TwV apUp®oewy Tou elvor TidovdTERo
va Beloxovial oe emagy| e To €00POg TNG OXNVAC:

skate Zzzct |Jl tz—i-l(.])H

OTOV cf;(j) 1 mdaveTnTa EToPic EVOC GUVOESHOU j UE TO ED0OG, Yiol TOV
dvdpwro i Tn ypovixh otiyu ¢, xan Ji () n Héon tou.

Téhoc, 0 6po¢ Eqon mpoomadel vo e€acpoiioer 6Tt autd Tor onueior emagpnc
Yo Topoelvouy x0VTd 0TO Ed0POC:

con Zzzct ma’X Jl(j)ag) _570)'

6rou d(p, g) elvan 1 amdotaon evég onpetov p € R? and 1o édagoc g € R?,
xou 0 plo wixen) otadepd. Xuvdudlovtag 6Aoug auTolg TOUS OEOUS GHANIATOS
eCaoarilouue TNV opohoTNTO TNG *ivNoNng, AR xou TNV PEUALCTIXOTNTA TNC.
No emonuaviel 6t To €dagog g Bertiotonoleiton we pla ehediepn uetaBAnTy,
XOWVT| Yo OAOUG TOUG AVUPMTOUG OE OAEG TIG YPOVIXES CTLYUES.

To tehnd npdBinuo fehtioTonoinong mpocUéToviac 6AoUC TOUS 6poUC G-
HOTOG TEQLYPAPETAL WG:

ac,g,{sé}g\gfﬁ?zit}g‘zl}%il /\dataEdata + /\,BEB + )\poseEpose + Eprior + Eenv

OTOU Fepny = Askate Eskate T Acon Eocon- 23TO TEAXO AUTO G TAOLO TEAYUATOTOLE(-
Tou BeATioTonolnon oTig UETABANTES Yo TNV opahoTNTa TG Xivnong.
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Input Frames Initialization Minimize Global Human and Camera Motion
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Figure 1.1: SLAHMR Pipeline. Ewéva ané [73]

1.4.2 MeYodog Baociouevn otnv llaAivdopdunon
(MéYodoc Badids Madnonc)

H mpdhtn pédodog mou meprypdgprnxe amotelel Wio eonpeTind amoTEAEOUATIXN
uédodo Bertiotomoinong yio TV extiunom g 3A oTdomNg oL OYHUATOS TWV oLv-
Yowmwv ot pio oxnvi|. 261600, T0 YEYOVOC 6Tl Pacileton oTn BehtioTonolno
EYEL ¢ BacIXO UELOVEXTNUO TOV UEYAAO YeoVo exTéleonc ueypet va Adel To
TeoPBAnua Bertiotonoinong. 'Etol, Bev umopel Vo EQUPUOCTEl GE TEAYHATIXO
XPOVO, EVE) UmoUTEL X0 ONUOVTING UEYAAT UTOROYLO T LoY D).

To npoPAfuata autd TpooTadel vo Adoel 1) 6elTepn YeYodog Tou TpoTElveTAL,
1 omola Bactletar oe apyrtextoviny| Pothdc udidnong, ue yenomn TaAvdpounone.
Ynpileton oto HMR2.0 [16], pio pédodo omou dedopévne plag emxodvag, yenot-
uorotel évav Vision Transformer yiou v mpdfredn twv nopauétowy SMPL
yioo xdde dvdpwro tne exoévac. Eivow pla mohd amoteAeopotin xou yeryoen
uédodog, ue amhr apyitexTovixy 1) onola mapouctdletar otny Ewdva 1.2,

Token

HMR 2.0 | Tracking
I Frame t Frame t+1
5 | N
} € |
' 2
4 § |
= |
5 |
.
) |
Input Image = |
|
|
SMPL Transformer I
Query w/ Cross Attn MLP :
|

Figure 1.2: HMR2.0 Overview. Ewéva ané [16]

H 18¢a Booileton oto Human Mesh Recovery (HMR) [24], pe Paowr| Si-
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aopd. TN avtixatdotoorn tou CNN ye évay ViT. To HMR2.0 axohoudel plo
amhr| end-to-end transformer opyitextoviny|, 1 onola KOTOGO TOU EMTEETEL VoL
EMTUYYAVEL TOAD XoAd amoteréopata 6T 3A avoxataoxevy. Me v eméx-
TOOT) Lo OTN UEVODO X0k OTNV OPYITEXTOVIXT, UE T YP1OY) DEDOUEVLV TTALOLWY
X0 WMWY 0L UE TNV OVTIXATAC TAOT) TOU LOVTEAOU TERLY PP TOU aviomTvou
owuatog and 1o SMPL oto SMPL-A, xoatagéovouue vo €youue TOAD xaAd
amoteréopator 6TNY extiunon tou 3A oyfuatoc xon molouc Yl dTopo xdle
nAuxiog.

H apyrtextoviny) tou HMR2.0 anoteheiton and évay ViT o onolog «xdBets tnv
EOVOL OE xoupdTia, oto xoéva omd to omola e&dyet tokens. Autd emed-
eoydlovton and évav amoxwdxoromt Transformer (Transformer decoder)
ue multi-head self-attention xau xatedryouv oe éva MLP mou xdver mpoB-
Aedn v i SMPL-A mopoapétpoug oyfuatog B xan nélac € xododg xan Ty
uetatémon tne xduepoac m. To Bdpoc mopepforrc o umohoyileton we 1 117
Ty TNE TopouETEou 3.

To povtého exnandeleton o€ Evar GUYOLAOUS GUVORWY BECOUEVKY Tal OTtolo
€Y 0LV OLUPOPETIXES ETUOTNUELDOELS, XL ETOL YENOWOTOLETOL EVOC GUVOUNOUOC
2A xan 3A bpwv opdigatog xadog xan évag discriminator.

Yuyxexpwéva, ue elcodo pla ewdvo I, n mpoBiedrn tou poviéhou elvou
© = 10,87 = f(I). O mp®to¢ 6p0¢ GYIAUUTOS TOU YENOIOTOLELTOL OTAY
UTIGEY 0LV ETUCUEWWOELS Yol TIC TEAYHOTXES Tée Tng moloac 8° xau Tou oyr-
uotoc B* etvon évo MSE oo oTig TEOPAEPELS:

YNy epinTeon TOU UTEEYO0LY ETUGNUELOOELS Yia Tot 3A onueio evotapépov-
To¢ X*, mpootidetan évac L1 dpoc opdhuatoc yia Ty andctaoT and To onueio
eVOLIPEEOVTOC ToL €youv TeofAepiel X:

Ligpap = [[X = X7y

Me mapéuolo 1pémo, 6TAV UTHEYOUV ETLOTUEIWOELS YL Tal avTioTolyo 2A
onuelo 2*, mpoo¥étouye éva L1 ogdhua pe tny teoBolr| twy 3A onueiony m(X):

Lipop = [[7(X) = 27x

Téhoc, omwe avagpépinxe, yenowonoweitar évag discriminator Dy, yuor vo
amoTEENEL Un puoéS TOLeg, mou €yel exmondeulel Yy xdde mapdueTpo Tou
MOVTEAOL TEQLYPAPHC TOU avIpmTLYOU GOUATOS, ONAADT TLE ToRoUETEoUS TOLag
0y, ToL oyfuatog B xou TI¢ xaTd pEAOG OYETIXEC TEPLOTEOYES ;. O dpog
OQAANIUTOS Yo TOV generator elvan o mapoxdTw:
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Laay =Y (Di(6y, 8) — 1)

k

Aentopépeleg yia Ty exnaldevon xau TNy aLoAoOY Mo

[o v exnaidevon tou Yovielou yernotuomololue to dataset to omolo
dnuiovpyfoope and exévec omd to SyRIP [21] xar to Relative Human [62]
UE EMONUELOOELS amd TNV TE®TN UEV0B0 pag xodig xol TO GUVOLAOUS TGV
datasets tou HMR2.0 [16].

[a v o&lohdynom, cuyxplvaue To YOVTEAO Pag UE TEELS uedodoug TNng
BuBhoypagplag oc 4 datasets mou mepléyouv elte amoxieloTnd, elte ev pépel
EXOVEC TaUBLOY 1) Beev. Xuyxexpiuéva, yenotporotovue to SyRIP [21] xou
Relative Human [62], émou mepiéyouv emonueidoeic v to 2A keypoints,
eve) Ue TN pévodo Behtiotomoinorc pog e€dyouue mopauétpoug SMPL-A xau
xSuepac. Emiong, yenowonowvye to ChildPlay [63] oto onolo mopdyouue
ETUOTNUELOOELS TO0O0 Yo Tig Tapauéteoug SMPL-A xou xdpepoc amd ) pédodo
Behtiotomolnong pog, 6co xou Tig Véoel Twv 2A keypoints and to ViTPose.

BabyRobot Dataset Katd tnv aflohdynon twv HoVTEAWY Y eNOLOTOI0UE,
oxoua, €va xouvolplo oOvoho dedopévwy, To BabyRobot. Anotehelton and
eOVeC ToudLwv Nhxiog 6-10 T®V Tou AAANAETIOPOVUY UE POUTOT Xal XVOUV-
T eAeliepa 610 epyaoThplo. Tdpyouv TEELS DLUPORETINES XAUERES YL XAUE
Toudt xou xdde oxnvi, pla unpootd and to moudl (Simtia oTo pounoT), wio apto-
Tepd xou pior 6eid Tou poumoT. Katd tnyv aiohdynorn yenolonololue eoves
amd Oheg Tig wdpepeg Yo xde moudt. H évtovn xivnon oto yopo xadoe xou
ToL avTXe{ueva Tou undpyouy TomodeTnuéva ElGdyouy occlusions xon duoxoiieg
otnyv extiunon e nolac Twv moudlwy. Aedouévou OTL BEV £YOUUE ETMCTUELD-
OEIG YL TIG EWOVES, YENOLOoTOoUUE TN Yedodo BeATioTomoinong uag ylo vo
onuovpyiooupe Tig Tapopeteoug SMPL-A xan xduepag, xoa to ViTPose yia ta
2A keypoints.

Metpuxég aglohdynong ¢ ustpxée, yenotponotolue yio To 3A oyfuc
N wéor dapopd Doug and to mesh tou mpoxinTEL M6 TNV exdoTtote péYodo
xou Tou Pevdo-nporypatinol ond Tic emonuelwoels Twy datasets (AHD), xaddde
xou TNy nocootoda avtioTtoryn dtagopd (APHD). N tor datasets mou neptéyouy
UOVO eOVES ToudLY 1 Uovo Bpepyv edyoupe xar To péoo Uog mou Eyel
TpoPBhegUel.

[Na v 3A néla yenoylomooue tnv uetewr) Mean Per Joint Position
Error (MPJPE), dn\adn to péoo opdhua tne 3A déonc twv apdpndoenmy.
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o v 2A m6la, yenowwomowlue to Percentage of Correct Keypoints
(PCK), uio petpixr oyetd Ue T0 1060016 TV TROPoAGY Twv keypoints oto
2A eninedo mou Peloxovton oe andcTooN And TNV TEaypaTixr Véon twv key-
points pxedTeEn amd Eva xUTOEAL. LNUELOVOUPE 6Tl o Oha To datasets yia
To MpaypaTxod Udog omme xou T 3A Véon twv keypoints yenoiuomololue Tig
meoPBréec e mewtng peddédou uoc, eved yia to 2A keypoints, to SyRIP
xau to Relative Human nepiéyouy oTic emonueidoelc ti¢ 9€oeic Toug, ot ota
ChildPlay xo BabyRobot tic e&dyouue and to ViTPose.

ITowotixry a&rohoymnor  Téhog, otov topéa tne 3A Opaone Trnoloylotdv
TOA) oNuavTIXY €lval 1) TOLOTXY OTTLIXY ACLOAOYNOT) TWV ATOTEAEOUATWY, xaH(g
Ol UETEIXES XAl O UTOAOYIOTHS Oev elvan txavol var tar aloloyrioel Thfpws. T
T0 AOYO auTd Bleddryape Uiot EpEUVIL YENOTWOY UTOXEEVXNC OEIOAOYNONG TOV
amoTEAEOUATOY pog, ouyxettixd ue to HMR2.0 xa to BEV. 'Etot, unopolue
VoL £YOUUE TOLOTIXT) 0LOAOYTOT) TWV ATOTEAECUATWY O €Vol UEYUAUTEQO Belyua
ovlpdTeY, To 0nolo 0ONYEl OE ACPUAECTERA CUUTERACUTA YL TNV ATOTEAED-
MOTLXOTNTAL TOU UOVTEAOU HOG.

1.5 Ilewpdpoata

Katd ) @don tne avdntuing twv uedodwy, €ytvoay dlapopeTind TELodlaTo
UEYEL 1 TOLOTNTA TWV AmOTEAEOUTWY Vo efvor 1 emduunty. Iletpdupota €youv
yivel 1600 xatd Ty avdmTuln tne uevddou nou PBucileton o1 BehtioTonoino,
OGO %o XUTH T1 BIAEXELNL TNG AVATTUENC TNE OEUTEENC LEVOBOU X0l CUYHEXQIIEVL
xatd TNV exmaldeuoT) Tou wovtérou. Ta Tp®To YENCYOTOOUY TPOTOTOMNUEVES
npooeyyioelg Twv uedddwv SMPLIify-X [48] xae SLAHMR [73] eves otn dedtepn
pdomn oha ta mepdpata Booilovian oto povtého HMR2.0 [16]. Xtn cuvéyew
TP IETOUYUE EMLYPUUMATIXG Tal TELRdaTo Tou €youy Yivel. H miciodmeolio autdv
TWV TELRAUATWY YoRoXTNEICTNXE (G AVETLTUY NS UE Bdom Tt amoTEAEOUATE TOUC.
[o TeplocOTEPEG AETITOUEQELEC TUPATEUTIOVUE TOV avary vaoTn oto Kegdhowo 6.

IMewpdpata yia tn péYodo Bertictonoinong

To nepduata Bertiotonolnong Pactotnxay oe 800 pedodoug, to SMPLIfy-
X o to SLAHMR, eves yenotponotinxe ev pépet xou to BEV.

o Ileipduata Bactoyéva oto SMPLify-X

— Egopuoyt g apywrc pedodou SMPLify-X ce dedouévo mandioy
xon Beepoy.
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38 Kegdharo 1. Extetopévn Iepihndn ota ErAnvixd

— Avtwotdotoaorn tou SMPL-X povtéhou pe to SMPL-A mou pov-
tehomotel xoADTEQN ToL TIOUOLSL.

— Xpnon twv napauétewy oyfuatog and To BEV, ol ontoleg elvan o
axpBelc amd autég Tou SMPLify-X xou BeAtiotonoinon SMPLify-X
YL TG TORUUETEOUE TNG TOLaC.

— Avtwatdotaor tou OpenPose pe 1o ViTPose yia to 2A keypoints,
xododG auTd elvan peyohiTtepng oxpiBetag xou eqopuélovion xou oE
duoxolotepec MOLeC.

— Grid Search ywo va Beolue v BérTiotn Tyy| Tou Bdpoug o emAE-
yovtog ouTy| Tou divel To UixpoTepo fitting loss.

o Ileipdpata Baolouéva 6To SLAHMR

— Egappoyt g apyniic pedodou SLAHMR oe dedopéva mouduny xou
Beepayv pe ™ yeron tou poviéhov SMPL-A avti yio to SMPL.

— Grid search otnv Ty Tou Bdpoug TapeuBoAAc o xaL ETAOYT AUTHS
UE TO UXEOTEQO GUpOLoUN CPUAIETOV.

— Héywua twv mopauétowy oyfuatoc B elte oe undevinh) tr (ex-
T0¢ omd 1o ) elte otig Twég Tou BEV xou Pedtiotonoinon yio tig
UTIOAOLTTEG TTUEAUETEOUG.

— Beluotonoinon ouyxexpéva yio to SyRIP dataset [21], émou nep-
LEYEL EmbVES PRy xan UEow TEtpoudtey grid search domotadnxe
OTL uTtdpyel plo oyeddY BEATIoTN YW o & 0.9 Yo T woviehonolnon
QUTOV TOV TEPLTTOOEMV.

— Telwxd poviélo nou yernoironowoape: Apyixornoinon Tou
a oty Ty 1, wote va Eexwvoel amd éva onueio 1 BeAtiotonoinon
Tou TAVOS Vo HoVTENOTIO|OEL XahOTEpa ToudLd xou Bpggn. ‘Omeg
xa pdvnxe TeEAxd auté Borinoce tn BeltioTonolnon xal Ye autd TOV
TEoTO AdPBape Tor xahOTepal amoTEAEpT Ywelc va yeetaotel grid
search yia Ty Ty Tou a.

IMewpdpata yio tn pEYodo Badide pwadnong

To merpdporo yior T pédodo Bohde udidnong otnelydnxay oto HMR2.0, pe
Ti¢ Slapopéc va evtonilovton oTov TpoTo exnaideuonc. ‘Eyivav telpduata 1600
exnofdevong 600 xou fine-tuning.

Egboov napéyeton Eva mpoexmoudeupevo povieho HMR2.0, xodog xon dha
ToL OEBOPEVA TTOU YENOHOTOWUNXAY YLot TNV eXTOBEVST), O O EUXONOG TEOTOG
TO JOVTENO VoL <Udiers xou Tor Od o dedouéva ebvar To fine-tuning ota dixd
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uog dedoueva. To povieho HMR2.0 €yel tpeic tinoug mapouetewy, ViT back-
bone, SMPL-A head ot discriminator. To nelpduato fine-tuning die&dyovton
o€ 500 TOUElG, T BEDOPEVA TIOU YENOLOTOOUVTUL Xol OTIG TUQUUETOOUC TOU
aVAVEDVOVTAL xGUE Qopd.

(dc mpog Ta Oedouéva, apywd xdvoue fine-tuning yenowonowwvtag povo
To Owd pog dedouéva.  Ta dwd yog Bedouéva oe cUYXELOoT UE TO DEBOUEVA
Tou HMR2.0 mepiéyouv apxetd ueydho tARUoC TEQITTOOEMY TUdLOY BLUpOEwY
NAAOY Xt Beep®y. XTa ETOUEVOL TELRUUAUTA YPTOULOTOLACOUE EVOL UELY O TV
OLXWY oG OEBOPEVWY Xt TwV dedouevwy tou HMR2.0, divovtoc yeyohitepn
mavoTnTa vo Sovel DEdoUEVO EXTALdEUOTC amd ToL OLxd oG DEOOUEVAL, OTE Vi
UTOEEGEL TO POVTENO Vo pdiel xahhTepar Tar ToudLd xan Tor Bpépn.

Qdc mpog ta Bdpn mou avavemvovTor, apyixd Eyve fine-tuning oe oha To
Bden Tautoypova. Emedr dev doliede omwg mepyévape, xdvoue fine-tuning
OLodoyixd o€ xdie TOTO TUPAUUETEWY, XPATOVTAS TAYWUEVH To UTOAoLTa 3o,
Téhog, yenowonojoaue xo moayhooue to pre-trained ViT backbone mowy tnyv
exnaidevon and 1o HMR2.0, xdvovtag fine-tuning to SMPL-A head xou tov
discriminator.

Egdécov To fine-tuning dev undpeoe va Soulédel, anogacicaue vor xdvoupe
exnaldeUoT) EVOC VEOu povtehou. Lo va elyacte olyoupol 6Tl 10 YOVTEAOD EX-
TOUOEVETAL XAVOUE Wlar TEOTN EXTUOEVCT] YENOOTOLOVTNS UOVO Ta Otxd oG
ocdouéva. Aedouévou 6Tl To YovTéRO Euode Tor BEBOPEVL UTA TEOYWETICOUE
o€ exTOBEVCT] YENOWOTOWWVTAS OAAL To OEQOUEVL, ONAUOY| To DS G %o oUTH
Tou yenotonoinoay ot cuyypageic Tou HMR2.0, yio vo éyoupe éva yovtého
TOU VoL SOUAEVEL TO {810 XaAd. it EVARIXES aAAS xou yior tondLd xan Beégr. Ouoiwg
ue To fine-tuning, enedr) n extiunon tng n6lag mapouciale xdmoleg avaxpiBelee,
Yenowomotfooue to pre-trained backbone xou exnoudedooue Ta Bden and toug
dAhoug 6V TOTOUC TUPUUETEWY, YWEIC WOTOCO XaL AUTO Vo €yel TOAD Xahd
ATOTEAEOUATAL.

Me Bdon v a€lohdynon TV TEoNYOUUEVWY TELRUUATOY, UIOVETACOUE [Uid
UPBELOW TEOGEYYLOT EXTA(DEUOTC Yiot TO TEAXS Pog povTého. H draduasia mou
oxohoLinxe mepthouBdver Tor axdhovda BruoTo:

o Apyw¥ Exnaidevor (Training from Scratch): o apyn, ex-
TUOEVOUUE EVAL HOVTEAOD UE TNV OLAUY HOC TOOTOTOLNUEVY] OQYLITEXTOVIXT
tou HMR2.0 and tnv apyy|, YeNOYLOTOLOYTIC CUVOUNCHUO TWY OQYLXMY
oedopévwy exmaideuong tou HMR2.0 xan twv Six@v yog cuvorwy Oe-
OOMEVWY TIOU TEPLEYOUV TEPLOCOTEPES ELXOVES TOUOLLY ol BOEPV.

e YBpwowxr Movtehonoinoyn xo Fine-Tuning: Ilapatnprinxe ot

TO JOVTENO TOU TPOEXUPE amd TNV apyixr] exnaideuot napoustale oAl
extiunon tou 3A oyfuatog, oAAd utolewdtay oTny axpifela g molac.
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40 Kegdharo 1. Extetopévn Iepihndn ota ErAnvixd

Yuyxpertr) doxur e to apyixd HMR2.0 checkpoint oe edveg moudioyv
emPBefoiwoe v unepoyt) Tou HMR2.0 oty extiunon g mélag. Ae-
dopévou 6Tt o ViT backbone tou HMR2.0 ¥tav mpoexmoudeuyevo ot
2A extiunon keypoints, Yewprooue 6TL 1 yeron Tou, GE CUVOLACHO
ue To SMPL-A head xou tov discriminator Tou dixo0 pag exToUdEUUE-
vou povtéhou, Yo Bedtiwve cuvolxd tnv oamédoon. H unddeor| pog
emPBefouinxe. o Ty Tehr BENTIOTH EVHUYRAUULOT TWV BLOPORETIXGDV
TOUEUUETEMY ToU LRI HOVTEAOL, e@apuocaE fine-tuning yio yepixeg
eTUTAEOY ETOYES, EMTUYYAVOVTAS TEAXS Tor PEATIOTA amOoTEAEGUATOL.

1.6 AmnoteAéopata

Ytov Hivaxa 1.1 mapousidlovton tor anotehéouato TN alloAdYNoNG ToU
wovtéhou pog ota datasets mou ypenowonowcuue o GOYXELON UE 3 UOVTEAX
oo T Bihoypagpio Yo o 3A oyfuc. ‘Onwe mapatneolye oxedOV o OAa
Tta datasets To Lovtélo poag EMLTLUY Y AVEL TNV xaALTEET ENidoo.
Yuyxexpwéva, oto SyRIP émou mepiéyel uovo eixdvee uwpeov mapatneolue
OTL 1) Olapopd lvar TOAY PEYAAOTERT), XATL TOU OTUALVEL OTL TO HOVTEAO HOG
Eyel Pehtiwoet oNUUVTIXG To ATOTEAEOUATH OTIC CUYXEXQUEVES NAieg. Xta
Relative Human »ot ChildPlay emeldy| undpyouv dtopo SLopopeTinmy NAXLOY
oAAG xon TOMAG occlusions xou truncations n Slupopd 6ev elvon TGO UEYIAT,
elval ©¥oTOc0 eVBEXTIXY TN BEATIWONC TWV ATOTEAECUATWY OF TOUN ULXEOY
ALy, ool exel elvon 1 xOpLa BLaPoEd TV LOVTEALY.

Table 1.1: AZioAdynon tou povtélou pac pe tic petpixéc AHD (m) xow APHD
(%). Muxpbdtepn ambdhutn tiur Snhdvel xahlTEpo anoTeEAEoHATOL.

Médodog SyRIP Relative Human ChildPlay BabyRobot
AHD | APHD | AHD | APHD| AHD| APHD | AHD | APHD |
(m) (%) (m) (%) (m) (%) (m) (%)
ProHMR [30] -1.011 -161.76 -0.098 -17.73 -0.477 -92.01 -0.562 -56.69
HMR2.0b [16] -0.980 -157.62 -0.075 -16.18 -0.468 -90.80 -0.534 -54.27
BEV [62] -0.528 -91.8 -0.009 -12.5 -0.067 -42.8 -0.359 -38.92
To povtéro poac -0.118 -25.97 0.088 -4.56 -0.190 -60.23 -0.354 -36.83

Y10 BabyRobot 1 uébodog pag elvon xan mdhl xoAOTERT CUYXELTIXG UE TIC
umoholeg pueddoouc. Edw mapatneelton UeYIAT OUOLOTNT UE TO ATOTEAECUATO
Tou BEV, agol n yerion tou SMPL-A povtéhou Bonddel to yovtého va ex-
TIUNOEL XAAVTEQU TO OY U TV TALOLWV.

Erniong, émwe mopatneodue otov Iivaxa 1.2  wédodog pag mapdyet
To TLo Aoyxod wéco Oog, e Tic undloineg uetddoug va divouv xatd Bdom
OWUA EVANXOL.
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1.6. Amoteléopata 41

MéYodog SyRIP BabyRobot
ProHMR 1.712 1.718
HMR2.0b 1.705 1.717
BEV 1.249 1.528
To povtéro pac 0.848 1.524

Table 1.2: Méoo Uog avipdnwy ce uétpa.

Yrov Ilivaxa 1.3 ouyxpivovtar ta poviéha we mpog v 3A mola ye
uetew) MPJPE. Iapatneolue 61t  w€dodog wog elvon xaAbtepy and
to BEV, on\adr) tn pédodo mou moapdyel To mo xahd 3A oyfjuo yior moudid xan
Beégn. Enlong, pe e€alpeon o SyRIP, To povtélo pag €xel mapdpola
TUWY NG ReTEWXNG e To Lovtého HMR2.0b, anodetviovtag tny ToAd
XA TOLOTNTA TWV ATOTEAEGUATWY otV extiunon tne 3A noloc.

Table 1.3: A&ohéynomn 3A nélac. A&iohdynon Tou HOVTEAOU UE TN HETELXY
MPJPE (MPJPE oe mm). Mixpdtepn tyun | unodewviet xahltepo povtého.

Mé9odo¢ SyRIP ChildPlay BabyRobot
ProHMR [30] 515.24 494.82 505.56
BEV [62] 452.73 424.41 380
HMR2.0b [16] 55.47  314.92 252.08
To povtého pag 287.84 318.26 258.51

Eminpocdeta, otov Iivaxa 1.4 mopoucidlovton Ta amoTEAEGUOTA Yol TNV
extiunon g 2A nélag, 6mou mapatnesiTar xaADTEEN exTiUNON OF
6Aa T dataset extog and To Relative Human yia to povtého pog
ovyxpltixd pe To BEV, tn uétodo, oniady|, mou umopel va LOVTEAOTOLHGEL
xohOtepar moudtd xon Bpéen wall pe Toug evihixec. Ta anoteAéoyotd yag o
olyxeton pe To HMR2.0b unoleinovtor, wotéco Peioxovia oe apxetd upnid
eM(MEDA BEYVOVTOC TNV IXAVOTNTA TOU OVTEAOL UOC ot OT1 exTiunon tng 2A
noloc.

Téhog, yio va mdpoude ulor YEVIXOTERT TOLOTXT| GELOAOYNOY TV ATOTE-
AeoudTev, Olegdyoude uio €peuva o€ Uop@T EpwTNUaToloY{oU, 6Tou cuYXpEl-
voupe to povtého pog pe to HMR2.0 xou to BEV. O cuppetéyovteg xoholvton
VoL omotvTHooLY Yol 25 (0T oVUXATUOXEUGDY (10 OLYXEIOELS TOU LOVTEAOL Uog
ue To BEV, 10 ouyxpioeic tou povtérou pog pe o HMR2.0 %o 5 yio to BEV
ue 1o HMR2.0) teeic epwtiioelg, oL onoieg opopolv v xaAlTepn extiunon
3A oyfuotog, v xahOteen extiunon 3A molac xou To xUAUTEPO GUVORIXO
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Table 1.4: A&wohdynon 2A n6lag. PCK oxop tov 2A mpofohdy twy keypoints
oe dlopopeTinés TéS xatw@hiou. TdPnidtepo oxop T umodetnviel xahiTEQO
uovtého.

M¢édodocg SyRIP Relative Human  ChildPlay BabyRobot

@0.05 @0.1 @0.05 @0.1 @0.05 @0.1 @0.05 @O0.1
BEV [62] 0.34 0.57 0.32 0.55 0.43 0.73 0.61 0.86
HMR2.0b [16] 0.79 0.98 0.48 0.62 0.76 094 0.97 0.99
To povTéro pog 0.63 0.88 0.30 0.51 0.51 0.81 0.89 0.97

amoTENEOUA TOU ABEvouy. Luvolxd €youue 39 EIXOVES UE TIG UVUXUTAOHEVES
TOUC, OTOTE Xde GUUPETEY WY hofdvel évar Tuyalo cUVolo amd 25 (elym.

XNy €peuva cudUeTel oy cUVOAXE 30 dvUpwTOL UE BLOPORETING OXUBNMUIXO
umOBadoo xou BLUPOPETIXES NAXIEC DOTE VoL EYOLUE Wiot O ONOXANEWUEVT
drodmn yioo T onTixy motoTixny aflohdynon and tov avdpnmivo Topdyovta. To
aroteréopata Oelyvouy EexdYapy) UTEPOY Y TOU LOVIEAOU UOS CLUYXEL-
TIXG UE T ShAaL BUO HOVTEND GUVOALXEL, ARG X o€ xde xatnyopio ey wploTd.
Yuyxexpéva, tepinou To 75% TwV ANAVTHCE®Y CLUKLPWOVYNCE OTL TO
KOVTENO LOG TTAEAYEL XAAVTEQA ATOTEAECUATA CLUYXELTIXA AE TO
BEV v xdde xatnyopia. Xtn obyxeion ue to HMR2.0 1 Swgpopd €i-
vai xpoTeEn, agol AouBdvoupe hiyo neplocdtepo and to 50% Ttwv Phgwy, ue
T BLopopd OTL E6 LTAPYOUV TEPLOCOTEROL avamogdcioTol. Autog elvon évag
oxoua deXTNG NG TOAD XAfg eTdooNE TOL povTEAOU pag, agol to HMR2.0
Yewpeltar €vo amd T xohOTeEaL HOVTEA TNV exTlUnom Tou 3A oy AUATOS XaL
¢ molag. XUVOAixd, TO (OVTENO Wog AcBAVEL mEPLOCOTERO Ao
T0 60% Twv PAPLY av cuyxeviphoovpe TiIc Pripoug and xdde
xatnyoplia, delyvoviac 6Tt 1) aloAdynoT and toug avipnnoug Yewpel Thetod-
Ned 10 HOoVTEAO Pog o o&lOTIGTO OTNV eXTiUNon Tou 3A CYAUATOC X TNG
molac yia moudtoteixd TAnduoud. Tao avohutixd amoTeAéopoTa Yior xXGUe xoTn-
yopio o0yxpiong mapoucidlovia 6To ayyhxod xetuevo otoug Ilivaxeg 7.5 xou
7.6.

Mepwd mapadetypato and ta amoteréopato TV YEVOOWY TapouctdlovTol
oTig exoveg 1.3, v ™ pédodo Beitiotonoinong, o 1.4, yio 10 TROTEWVOUEVO
MOVTENO. DUYXEXQWEVA YLOL TO TPOTEWOUEVO UoVTENO Yyivetan xou plor olyxe-
LOY) TV TOLOTIXOY ATOTEAECUITLY TOU UE To AVTIOTOLYO UTOTEAEOUATA TGV
HMR2.0 xou BEV. 'Onow¢ napatnpeiton, n uédodog Behtiotonoinong mapdyel
pEaMOTIES xon LmMATC oxpifBetag 3A avaxaTaoKEVES, TOGO WE TEOS TO Ty U
660 xaL ¢ TEOC TN TOLA, EVE To ATOTEAECUATO TOU TEOTEVOUEVOU UOVTEAOU
wog ebvon o o pealoTixd o cUyxpeion pe to HMR2.0 xaw to BEV, agol To
OWUA TOU ToEAYETAUL OTAY 1) EXOVa TEpLEYEL Bopog elvan mpdypatt Beepoug,
ue axelPn 3A nola. Io mepioodTepa TOWOTXG amotehéopata o€ Bpépr, maudid
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Figure 1.3: Iapadetypoto tng uedodou Bedtiotonolnorc Yog ot dTopo SLopope-
TG nhuxdog.

ueYohOTEENC NAag Ak xou EVANXES TTUPATEUTOUUE TOV AVAY VWO TN OTO oY~
YAx6 xeluevo oto Kegdhawo 7.

1.7 Xvunegdopato xow MeAhoviixes Enex-
Tdoelc

H rnapoloo dimhwpatixy cpyocio avtyletoniler To Yeyehmdec mpoBinua
e 3A extiunong tou oyfuatog xou tng Tolag Tou avilpdrou, eoTIdlovTog
oTn Yevixeuon Ty uedddwy yio un-evilxoug mAnduouolc. O olyypoveg
TEYVIXEC DUOXOAEVOVTAL VO YEVIXEUOOUY OF ELXOVES TOUOLOY X0l BREQ®Y, AOYw
¢ €€dpTNoYC TOUG amd YEWUETEWXE TedTUTA Bactouéva o evihixes. Lo va
YEQUEWOOULUE UTO TO YAOUA, TEOTEVOUNE plal XUVOTOUO TEOGEYYLOT. XLuy-
XEXPLIEV, TPOTEVOUUE 500 uedod0ug Yior TNV exTiunon Tou 3A oy UATOS Xl
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44 Kegdharo 1. Extetopévn Iepihndn ota ErAnvixd

Figure 1.4: Hopadeiypata tou mpotetvouevou poviéhou ((e),(f)) oe obyxpion
ue to HMR2.0b ((a),(b)) xou To BEV ((c),(d)).

moloc aviporwy and pla exédva yia aviporoug xdde nhxioc. Enexteivoupe
oYY EOVEC UEVOBOUC TOU AELTOURYOUY AMOTEAEGUATIXG Yial EVAALXA ATOUN (OTE
VoL €lVoll TEQLOCOTEPO UMOTEAEOUATING X0 VLot ATOUN XEOTERNE NALxiog, OnhadY)
moudud xou Beégn. H mpdytn uédodog Basiletar oe Bedtiotonoinom, eve 1 dedtepn
etvan pédodoc Badide uddnone. Adyw tng EMeudng GeBoUEVLV Yl THY EX-
T{OEUOT) TOU POVTEAOU HAC, WOTE VoL HAUEL Var XAVEL EXTIUNGT Yol TO Gy XAl
v 16la GE EIXOVES ToUdLAY, yenowornotolue Tn pédodo BedtioTonolnong yio
VoL THEAEOUUE (PEUBO-TIRUYUATIXEG ETUONUELOELS OF EIXOVESG A6 ONUOGIWS OLo-
Veowo oYeTiXd oOvola dedoUEVeY. Ol 800 auTteég YeHodOoL TOU AVUTTOGGOUUE
elvon 1xavég va povtehomolioouy dtoua xdie nhixog emtuywe. Ernlorg, o
uédodol yag umopolv va yenoionotnoly yio Ty avwvuponoinon evalointwy
OEBOPEVWLY, ool oL axpiBelic 3A AvVoXATACKEVES TTOU BNULOVEYOVY UTOEOLY Vol
OVTIXATAG THOOLY TOV GVIpmTOo %ot Vo amoxelPouy oTolyelo YL TNV TaVTOTNTA
Tou. M eappoyr| autou, ebvar oto BabyRobot dataset, émou e tn yerion
TV 3A aVOXATAOKEVMY UTOREL TAEOV Vo HETATEOTEL amtd Ulal XAEIGTY TAOUGLA
Bdomn pe AAANAETOEACELS TTOUOLOY UE POUTIOT OE Lol ovoLY TH| BACT| oVWVUIOTO-
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UEVN WG TPOG TO PUOLONOYIXEL YOQUXTNELO TIXE TOU COUATOG EVOS ToudloU Tou
OMANAETILOEE UE POUTIOT UEGE) DRUCEWY X0 XLV CEWV.

Or uédodol g av xon ATOTEAEOUATINES GTNV EXTIUNOT ToL 3A oy uaTog Xxou
molog TV aviporwy yehlovy tepattépn BeATiwons. Apyixd, To AVTIXEYEVIXS
meoBhAuata Tng afefondtnTag Tng T6lag AdY® GUOLXGY 1) aVIEOTIVGY EUTOBIWY
xo Tou Bddouc TN oxunvAC ToEoUEVOLY, xal amd diot UOVO ExOvVa cUVHTLS
auTd Bev ebvon TAHpwe avTiueToniowa. Eixdveg and Swupopetinég ddelg, Biv-
te0 1) xduepec Pddoug RGB-D pnopoly va cuvieAécouv oTny eniAucT auT®y
TV Tpofinudtwy. Eniong, n wavotnta yevixevong tou poviéhov SMPL-A
TOEUUEVEL TEQLOPLOUEVY OE dtoua e NAtxiag. Autd ogeileton oTIC QUOIXES
OLUPOPES EVOC OOUATOG EVAALXAL XAk EVOG w00 1| TALdLOV OL OTIOLEG UETUPEQOVTOL
X0 6T TEYVNTA LoVTERA xou OEV elvon €UX0A0 VoL poviehomondoly Ue éva Lov-
ého. Luyxexpiéva, 1o SMPL-A ypnowonotel yio 6ha T dtopa éva eviaio
shape space, autd ToU eVAAXA, TO OO0 EYEL WG ATOTEAECUN PEPXES (POQES
1 avaxotaoxeur) vo etvar mapdhoyn. H avdmtuln mo Suvatov poviéhwy mept-
Yeupnc Tou avipnnou Yo unopoloe vo AJCEL TETold TEOPAAUNTY, OTWS XoL
1 U1 TURUUETEXY HoviehoTolnor, 1 omold, woT6c0, Teolnodétel TNV Umaedn
OYETXOY OEBOUEVLY exTaldevong. Ta dedoueva exnaideuong, ewdd Yo ToudLd,
TOUEUUEVOLY {GKG TO UEYUAUTEQD EUTOBIO G TNV TPb0do Tou Tedtou. H evancinoia
QUTWV TV dedouévwy anuttel auotney| vopoldeoio xou deovtohoyla, xouhoTov-
TOC TNV GUALOYY| TOUC Wi Bloexr| TeOXANGoT).
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Chapter 2

Introduction

Three-dimensional (3D) pose and shape estimation is a fundamental chal-
lenge in computer vision. It aims to reconstruct a person’s detailed 3D body
model, including both their posture and shape, from various inputs like a
single 2D image, a video, or data from multi-view cameras. This task is in-
herently complex due to its ill-posed nature, as a significant amount of depth
information is lost when a 3D scene is projected onto a 2D plane. Despite this
difficulty, remarkable progress has been made, particularly for adult subjects,
by leveraging large-scale datasets and sophisticated deep learning architec-
tures. These advancements have enabled a wide range of applications, in-
cluding augmented reality, human-computer interaction, and medical motion
analysis.

Modern approaches to 3D pose and shape estimation generally fall into
two primary categories:

e Optimization-based methods: These techniques iteratively refine
the parameters of a body model to minimize the discrepancy between
the projected 3D model and observable features in the 2D image, such
as joint locations or silhouettes. While powerful and robust, these
methods can be computationally expensive.

e Regression-based (Deep Learning) methods: These models, typ-
ically neural networks, are trained to directly predict a body model’s
parameters from an input image. They offer fast inference speeds, but
their effectiveness is heavily dependent on the availability of large-scale
datasets with 3D ground truth for training.

The recent surge in performance within computer vision is largely at-
tributable to the advancements in deep learning. Architectures such as Con-
volutional Neural Networks (CNNs) have proven exceptionally effective at
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2.1. Challenges in 3D Shape and Pose Estimation 47

extracting complex features from images. More recently, the integration of
attention mechanisms and transformer-based models [66], originally devel-
oped for natural language processing, has further enhanced the ability of
these systems to understand spatial relationships and context within an im-
age. This progress, however, is fundamentally driven by data; the power of
these models lies in their ability to learn from millions of labeled examples,
a prerequisite that becomes the central challenge when addressing sensitive
and difficult-to-acquire data for specific populations.

2.1 Challenges in 3D Shape and Pose Esti-
mation

While these methods have been highly successful for adults, extending
them to younger populations, such as children and babies, remains a signif-
icant and largely unresolved challenge. The core obstacles are both ethical
and technical, creating a unique research gap.

Data Scarcity and Ethical Constraints: The most significant obsta-
cle is the fundamental scarcity of high-quality data. Existing human body
models, like SMPL [36], are built from thousands of 3D scans of adults. The
strict legislation protecting minors, coupled with the ethical complexities
of acquiring such data, makes it exceptionally difficult to obtain the neces-
sary datasets for a child-specific body model. This data sparsity creates a
considerable “domain gap” that renders adult-based models fundamentally
ill-suited for accurate pose and shape estimation in children.

Anthropometric Discrepancy: The proportions of the human body
change dramatically from infancy through childhood to adulthood. For
instance, an infant’s head is disproportionately large, and their limbs are
shorter relative to their torso. These anthropometric variations, which are
crucial for accurate modeling, are not captured by models trained exclusively
on adult data.

Occlusions and Pose Ambiguity: Occlusions are a crucial problem
in 3D shape and pose estimation. Natural obstacles or strange poses can
hide parts of the human body, creating ambiguities. When some parts of the
body are missing, a computer, like a human, may perceive the shape and pose
in multiple ways. This problem is particularly challenging in children and
infants due to their unpredictable movements, which makes the collection of
high-quality, occlusion-free data almost impossible.

Privacy and Security Concerns: Reconstructing a child’s 3D shape
and pose, especially from images of their face or identifiable features, raises
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48 Chapter 2. Introduction

significant privacy and security concerns. Future solutions must not only be
accurate but also incorporate robust methods for de-identification and data
protection to safeguard the subjects.

These unique challenges underscore the need for a dedicated approach to
pediatric 3D shape and pose estimation.

2.2 Motivation and Applications

Despite these challenges, the ability to accurately model the 3D shape
and pose of children has critical and transformative applications in pediatrics
and healthcare. This technology could serve as a non-invasive, objective tool
for developmental assessments, tracking motor skills and physical growth.
For example, clinicians could use it to quantify a child’s gait, a key indi-
cator of neurological and musculoskeletal health, without needing intrusive
equipment. This technology could also facilitate the early detection of mus-
culoskeletal disorders like scoliosis and assist in diagnosing conditions like
autism by analyzing a child’s posture and movement patterns [15,27]. These
applications underscore the profound clinical impact and potential of this
research to improve children’s health outcomes globally.

For the generic applications of 3D shape and pose estimation of humans,
it can help with the task of tracking humans as well as the task of action
recognition. For example, in sports analysis, coaches can use 3D pose esti-
mation to meticulously analyze an athlete’s form and technique, providing
objective data to optimize performance and prevent injuries. This capability
extends to fields like virtual reality (VR) and augmented reality (AR), where
realistic human avatars are created and animated in real-time [56].

2.3 Contributions

The contributions of this thesis address the critical data and methodolog-
ical limitations in 3D shape and pose estimation for non-adult subjects. Our
primary contributions are summarized in the following points:

e Specialized Optimization Technique: We successfully adapt and
optimize an existing optimization-based technique for 3D shape and
pose estimation, specifically to enable robust and accurate recon-
struction for infants and young children.

e Novel Deep Learning Model for Non-Adults: We introduce a spe-
cialized, highly accurate HMR-like deep learning model for 3D shape
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and pose estimation. This model is engineered by successfully integrat-
ing a pre-trained backbone with a customized SMPL-A head, achieving
superior performance on child and infant imagery.

Public Dataset Release and Data Anonymization: We release
the BabyRobot dataset, a new resource comprising the 3D reconstruc-
tions of children interacting with robots. This release demonstrates a
methodology for the ethical handling and anonymization of sensitive
child imagery, as the shared 3D body representation replaces poten-
tially identifying photographic data.

2.4 Thesis Structure

The remainder of this thesis is structured as follows: Chapter 3 analyzes

the theoretical background necessary to explain the proposed methodology.
Chapter 4 provides a comprehensive review of existing literature. Chapter 5
details the proposed methodology. Chapter 6 presents and analyzes the ex-
periments that were performed, while Chapter 7 shows the results of the
evaluation. Finally, Chapter 8 concludes the work and discusses potential
avenues for future research.
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Chapter 3

Theoretical Background

3.1 Fundamentals of 3D Representation

The world that we live in, as well as most of the objects around us,
exists in three dimensions. The same applies for humans. Thus, in order to
describe the world and the objects it contains, we need a three-dimensional
(3D) coordinate system.

The most common coordinate system in the world is the 3D Cartesian
coordinate system, where each point p € R? is defined by a tuple of three
numbers (z,y,z). The three planes of the coordinate system are pairwise
perpendicular.

However, Cartesian coordinates are not the only option. Other coordinate
systems are often used depending on the application:

e Cylindrical coordinates (r, ¢, z): Used when there is rotational sym-
metry around an axis. A point is defined by its distance r from the
axis, the angle ¢ around the axis, and the height z.

e Spherical coordinates (p,0,¢): Useful for representing points on
spheres or in 3D space with radial symmetry. A point is defined by its
distance p from the origin, the inclination angle #, and the azimuthal
angle ¢. Figure 3.1 illustrates the way Cartesian, Cylindrical, and
Spherical Coordinates are calculated.

e Barycentric coordinates: Often used in computer graphics for repre-
senting positions inside triangles or tetrahedra, useful for interpolation.

¢ Homogeneous coordinates: Homogeneous coordinates introduce an
extra dimension to represent a point X = [X,Y,Z]T that belongs in
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3.1. Fundamentals of 3D Representation 51

an Euclidean 3D space as X = (X1, Xo, X3, X4) in homogeneous co-
ordinates, where X, # 0 is an arbitrary normalization parameter. To
transform a vector from 4D to 3D we use the following equation:

(X.Y.2) = <X1 X, X3)

In an analogous way a point in the 2D image plane x = [x,y
expressed as X = [z, 9, 23]7 with x5 # 0 and

1 T2
z, =\ —
(z,y) (x3 x3>
Typically, X4 = 1 for points in space and X, = 0 for points at infinity.
This representation is widely used in computer graphics and computer

vision because it allows translations, rotations, scaling, and perspective
projections to be expressed as matrix multiplications.

]7 can be

z Az
K - _/_/7"
ol P
s -
E :Z/ 4 y
Ll P) y Yo
X >
X @
(a) Cartesian Coordi-  (b) Cylindrical Coordi-  (c) Spherical Coordi-
nates nates nates

Figure 3.1: Three Main Coordinate Systems. Figures from [68]

Each coordinate system has its advantages depending on whether the
problem involves symmetry, rotations, projections, or transformations.

While cylindrical, spherical, and similar systems describe alternative pa-
rameterizations of space, in computer vision we mainly use Cartesian coordi-
nates organized in different reference frames, such as the World and Camera
coordinate systems.

World Coordinate System (Cy) The coordinate system that defines
the position and the orientation of an object in the real world is called the
World Coordinate System. It is an arbitrary global reference frame and is
typically denoted by axes (X, Y, Zw) and a center Oy where the three
axes intersect.
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52 Chapter 3. Theoretical Background

Camera Coordinate System (Cc) The Camera Coordinate System is a
local reference frame attached to the camera itself. It is typically used to
describe the position of 3D points relative to the camera after applying the
extrinsic transformation (rotation and translation) from the world coordinate
system.

In this system, the origin O is located at the optical center of the camera
(also called the pinhole), and the axes are defined as follows:

e The Zs-axis points forward along the camera’s optical axis (towards
the scene).

e The Xg-axis is horizontal and usually points to the right in the image
plane.

e The Yq-axis is vertical and points downward in the image plane (fol-
lowing the image coordinate convention).

Any 3D point expressed in the world coordinate system Py, =
(Xw,Yw, Zw)T can be transformed to the camera coordinate system Pg =
(Xe, Yo, Ze)T using an extrinsic transformation:

Po=RPy +t

where R € SO(3) is a 3 x 3 rotation matrix that aligns the world axes to
the camera axes, and t € R? is the translation vector that represents the
camera’s position in the world.

Image Coordinate System (C;) and Perspective Projection The
points of the 3D Camera Coordinate System, when they are projected onto
a 2D plane of the camera, belong in a 2D coordinate system that is called
Image Coordinate System and is usually normal to the z-axis of the camera
coordinate system. The projection from the 3D C¢ system to the C; is com-
monly the perspective projection, and is described with the pinhole model.
The X and Y coordinates of the camera system are projected into the 2D
plane, which is at a distance f (focal length) from the camera coordinate
system. The x and y coordinates of the projection in the image plane can be
found using the law of similar triangles as follows:

r=f— , y=f— (3.1)

Figure 3.2 shows an example of how a point of a surface is projected to a
point in the image plane using the perspective projection.
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Image Object surface
plane

——— Z
+_
- A’ -
e~
A =
(x,v,f &

Figure 3.2: Perspective Projection: A point A in the camera coordinate

system is projected using the pinhole camera model to the point A’

in the image plane. The image plane is at a distance f (focal length) from
the camera coordinate system. Figure from [40]

The pinhole camera model is a simplified, idealized representation of
a camera. It is a mathematical model based on the concept of a camera
obscura, a light-proof box with a tiny hole, or pinhole, on one side. All light
from a scene passes through this single point, projecting an inverted image
onto a sensor plane on the opposite side. The model assumes an infinitely
small pinhole, which prevents any blurring and gives the image an infinite
depth of field. Because all light rays from a 3D point converge at the pinhole
before hitting the image plane, we can use simple geometric principles, like
the law of similar triangles, to derive the relationship between a 3D point
in the camera’s coordinate system and its corresponding 2D projection on
the image plane. An illustration of the pinhole camera model is shown in
Figure 3.3.

The equation 3.1 is non-linear between the world and image coordinates,
something that makes it difficult to analyze. However, using homogeneous
coordinates, these equations can be written in a linear form. The perspective
projection of 3D world points xy, = [X, Y, Z] to 2D image points x; = [9:, y]
can be expressed as a transformation from 4D homogeneous world coordi-
nates with X; = 1 to 3D homogeneous image coordinates. More formally,
using matrices:
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i/( 1 f 0 00 if(

7|7 22| = 0 f 00 7

1 x3 0 010 1
f 000

where P = |0 f 0 0} is the projection matrix.
0 010

Solving the above system in terms of (x1, z9, 3) and changing the homo-
geneous coordinates to Cartesian we have:

(-2 1

3.2 Machine Learning

NI N
|

Machine learning, a subfield of artificial intelligence, addresses the chal-
lenge of enabling computers to learn from data without being explicitly pro-
grammed for every possible scenario. The core objective is to develop algo-
rithms that train computational models to identify underlying relationships
and patterns within a given dataset. Once trained, these models can make
predictions, classify new data, or make decisions. As a result, machine learn-
ing has become a foundational technology across numerous domains, from
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natural language processing and computer vision to healthcare and finance.

3.2.1 Types of Machine Learning

Machine learning algorithms are typically divided into two main cate-
gories:

e Supervised Learning: In this type of learning, the data used have
labels, meaning we know the correct output for each input. The model’s
goal is to learn a mapping from inputs to outputs. The most common
types of problems are classification, which outputs a class (e.g., spam
or not spam), and regression, which outputs a continuous value (e.g.,
a house price).

e Unsupervised Learning: Unsupervised learning handles data that
do not have labels. The algorithm’s objective is to discover hidden
structures or patterns within the data. The most common unsupervised
learning problem is clustering, where the algorithm groups similar data
points into “clusters”.

3.2.2 Data Subsets

As mentioned previously, the training of a machine learning model re-
quires data that are similar to those that the model will be used on after
its training. These data are divided into three essential subsets to ensure
accurate evaluation and to prevent overfitting:

e Training Set: This is the largest subset of the dataset and is used
to train the model, allowing it to learn the underlying patterns and
relationships in the data.

e Validation Set: This subset is used during the training process to
tune hyperparameters and evaluate the model’s performance on unseen
data. It helps in preventing overfitting and provides a basis for making
adjustments to the model’s architecture.

e Test Set: This set is used only after the training is complete to provide
an unbiased final evaluation of the model’s performance and its ability
to generalize to new, unseen data. It is crucial that the model has not
seen any data from the test set during its training or validation phases.
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3.3 Deep Learning

In recent years, the field of artificial intelligence has been revolutionized by
deep learning, a powerful class of machine learning methods that enables com-
putational models to discover intricate representations within vast amounts
of data. Unlike traditional machine learning approaches that often rely on
manual feature engineering, deep learning models autonomously learn hier-
archical features from raw data, such as images or text. This paradigm shift
has been made possible by a convergence of factors, including the availabil-
ity of large-scale datasets, significant advancements in computational power
(particularly with GPUs), and the development of sophisticated algorithms.
This has led to breakthrough performance in a wide array of domains, from
natural language processing to computer vision.

The field of Deep Learning is built upon computational models that are
designed to learn and represent data through multiple levels of abstraction.
The cornerstone of these models is the artificial neural network (ANN), a con-
cept that has revolutionized computer vision and is central to the approach
taken in this thesis.

3.3.1 Neural Networks

A neural network, or artificial neural network (ANN), is a computational
model inspired by the structure and function of the human brain. At its core,
an ANN consists of a collection of interconnected processing units called neu-
rons, which are organized into distinct layers: an input layer, one or more
hidden layers, and an output layer. Each neuron in a given layer is connected
to all neurons in the subsequent layer, with each connection assigned a nu-
merical value known as a weight (w). Data is fed into the input layer and is
processed sequentially as it passes through the network. The output of each
neuron is determined by a weighted sum of its inputs, which is then passed
through a non-linear activation function (f) before being transmitted to the
next layer. The network’s ability to learn complex patterns and relationships
from data is achieved through an iterative training process, where the weights
(w;;) are systematically adjusted to minimize the difference between the net-
work’s predicted output and the true output, a process often guided by a loss
function (£) and an optimization algorithm such as backpropagation [57].

3.3.2 Feedforward Neural Networks (FNN)

A Feedforward Neural Network (FNN) is a foundational type of
artificial neural network where information flows exclusively in one direction,
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from the input layer, through one or more hidden layers, and to the output
layer. The name “feedforward” reflects this unidirectional flow, as there
are no loops or feedback connections. The network learns by adjusting the
weights and biases associated with the connections between neurons.

Hidden Layer

Input Layer Output Layer

Inputs
Outputs

Figure 3.4: A simple Feedforward Neural Network with an input layer with
2 inputs, 1 hidden layer with 3 hidden states and an output layer with 2

outputs.

The structure of an FNIN

The structure of an FNN, as shown in Figure 3.4, is straightforward,
containing three distinct types of layers:

e The Input Layer: This layer receives the raw input data. Each
neuron in this layer typically corresponds to a single feature of the

input data.

e The Hidden Layers: Positioned between the input and output layers,
these layers are responsible for learning complex patterns and relation-
ships within the data. The number of hidden layers and neurons within
them can vary depending on the complexity of the problem.
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e The Output Layer: This layer produces the final result of the net-
work. The number of neurons here is determined by the task; for
example, it equals the number of classes in a classification problem or
the number of outputs in a regression problem.

Training an FNN

Training an FINN is the process of teaching it to map specific inputs to
desired outputs by adjusting its internal parameters—the weights and bi-
ases—to minimize the error between the network’s output and the expected
output. This error is quantified by a loss function. The training process is
an iterative cycle consisting of three main steps:

1. Forward Propagation: The input data is passed through the net-
work, layer by layer, to produce an output.

2. Loss Calculation: The loss function measures the discrepancy be-
tween the network’s prediction and the ground-truth data.

3. Backpropagation and Parameter Update: The error is propa-
gated backward through the network to calculate the gradient of the
loss with respect to each weight and bias. An optimizer (e.g., Stochas-
tic Gradient Descent) then uses these gradients to update the param-
eters, gradually reducing the loss.

This cycle is repeated for many iterations, or epochs, until the network’s
performance is satisfactory.

Activation Functions

Activation functions are mathematical operations applied to the out-
put of each neuron. Their primary role is to introduce non-linearity into
the network, enabling it to learn complex, non-linear relationships in the
data. Without them, a neural network, no matter its depth, would only be
capable of learning linear functions. Common activation functions include:

e Sigmoid: Squashes values between 0 and 1, often used for binary
classification output layers.
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e ReLU (Rectified Linear Unit): Outputs the input for positive val-
ues and zero otherwise. It is widely used in hidden layers due to its
computational efficiency.

f(z) = max(0,x)

e Softmax: Converts a vector of numbers into a vector of probabilities,
used in the output layer for multi-class classification.
e”

K

Softmax(z;) =
j=1¢7

where z; is the logit (the output of the previous layer in the network)
for the i-th class and K is the number of classes.

Challenges

The training of a neural network presents several challenges, one of the
most significant being the training duration. A model trained for a duration
greater or less than the optimal number of epochs may face problems with
overfitting or underfitting, respectively.

Overfitting Overfitting occurs when a model is trained for too long. This
leads to poor generalization, which is the ability to make accurate predictions
on unseen data. The primary effect of overfitting is that the model learns
the training data too well, memorizing noise and specific examples rather
than learning the underlying patterns. As a result, its performance on new,
unknown data is poor.

Underfitting Conversely, underfitting is the opposite problem, occurring
when a model has not been trained for a sufficient number of epochs. In
this case, the model fails to learn the fundamental patterns in the training
data, as it hasn’t seen enough examples. Consequently, the model cannot
generalize well to either the training data or unseen data.

A simple example of the overfitting and underfitting problems in a classi-
fication task is illustrated in Figure 3.5. The two classes are the “blue” and
the “red” points.
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Figure 3.5: A simple illustration of overfitting and underfitting in a classifi-
cation task.

3.3.3 Convolutional Neural Networks (CNN)

A convolutional neural network (CNN) is a type of deep neural
network that has revolutionized the field of computer vision [31]. Unlike tra-
ditional neural networks, its architecture is based on the convolution opera-
tion, which allows it to automatically and efficiently learn spatial hierarchies
of features from data. While predominantly used for image analysis, CNNs
are versatile and can be applied to other types of data, such as text, audio,
and video.

A CNN'’s architecture is built upon a series of specialized hidden layers
that process input data. These layers include one or more convolutional
layers, each of which uses a learnable kernel (or filter). This kernel slides over
the input data, performing a dot product to produce a new representation
called a feature map. This process allows the network to detect features such
as edges, textures, and patterns.

After each convolutional layer, a non-linear activation function (most
commonly ReLU, or sigmoid) is applied to the feature map to introduce
non-linearity. The hidden layers can also include pooling layers, which re-
duce the spatial dimensions of the feature maps, thereby decreasing the com-
putational load and making the network more robust to minor variations in
feature location. Other common layers include normalization layers and fully
connected layers. Before the data is processed by the final fully connected
layers, a flattening layer is applied to transform the multi-dimensional fea-
ture map into a one-dimensional vector, as required by the input of a fully
connected network [39].

More formally, the convolution operation involves a kernel K with di-
mensions f x f that slides over the input image I. The feature map F, is
calculated as the sum of the element-wise products of the kernel and the
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corresponding portion of the input image.
For a 2D input image I and a 2D kernel K, the convolution operation is
formally given by:

(I K)(i,5) =Y > I(mn)K(i—m,j—n)

In practice, a cross-correlation operation is typically used for computa-
tional efficiency:

m=0 n=0

The spatial dimensions of the output feature map, Fi,., are determined
by the input size I,e, kernel size K, stride S (the number of pixels the
kernel shifts), and padding P (adding zeros around the input border), as
follows:

stze _ ]size - Igize + 2P + 1

Because Max Pooling is the most common type of pooling in a CNN,
we present the operation of this pooling layer in more detail. It selects the
maximum value from a small window (e.g., 2 x 2) of the feature map to
represent that entire region. The operation is defined by:

Foooled(%,7) = max F(iS+m,jS +n)
m,neW
where W is the pooling window size and S is the stride. The operations
for average pooling and min pooling are analogous, simply replacing the max
function with average or min, respectively.

3.3.4 Transformer Network and Attention Mechanism

The Transformer architecture, introduced by Vaswani et al. [66],
marked a significant paradigm shift in deep learning, particularly within the
field of Natural Language Processing (NLP). Unlike previous sequential mod-
els like CNNs, the Transformer relies entirely on the attention mechanism to
capture long-range dependencies within a sequence. This parallelizable de-
sign allows the transformer to model complex relationships between words
in a highly efficient manner [23].

The core innovation of the Transformer is the self-attention mecha-
nism, which enables the model to weigh the importance of all other words in
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a sentence when encoding a specific word. This mechanism is defined by three
learned linear projections of the input embedding x: a query (q), a key (k),
and a value (v). These vectors are derived from the input embedding x; by
multiplying it with learned weight matrices W<, W& WV

q; = XZ'WQ, kz = XiWK, V; = XZ'WV

The attention score between token ¢ and token j is calculated as the dot
product of the query vector of token ¢ and the key vector of token j, scaled by
the square root of the dimension of the key vectors, dj, to stabilize gradients:

q; - k;

Vdy,

These scores are then normalized using a softmax function to obtain the
attention weights, «;;, which represent the probability distribution of atten-
tion from token ¢ to all other tokens in the sequence:

score(q, kj) =

_ exp(score(qy, kj))
Zszl exp(score(q;, ki))
Finally, the output of the self-attention layer for token i, a;, is a weighted

sum of all the value vectors, where the weights are the computed attention
scores:

a;; = softmax(score(q,, k;))

N
a;, = E OéijVj
Jj=1

It is worth noting that for tasks like language generation, the summation
is over the preceding tokens (j < i), which is known as masked attention.

Multi-head Attention

To exploit a wider range of information, the Transformer architecture uses
multi-head attention. This mechanism performs the self-attention calcu-
lation in parallel h times, with each “head” using its own set of learned Q, K,
and V weight matrices. Each head can learn a distinct set of relationships,
allowing the model to attend to information from different representation
subspaces jointly. The outputs of these parallel heads are then concatenated
and projected back to the original dimension.
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Transformer Blocks

The complete Transformer model is built from stacked layers called Trans-
former blocks. Beyond the self-attention mechanism, a standard Trans-
former block includes a fully-connected (FFN), residual connections [18]
around both the self-attention and FFN sub-layers, and layer normaliza-
tion [3]. The residual connections and layer normalization are crucial for
enabling the training of deep networks and preventing vanishing gradients,
ensuring information flows effectively through the model. The FFN, which is
applied independently to each position, provides the model with additional
capacity to process the output of the attention mechanism.

3.3.5 Vision Transformer (ViT)

The Vision Transformer (ViT) [12] is a deep learning architecture for
image classification tasks that applies the Transformer model to sequences of
image patches. Unlike traditional CNNs, ViT replaces convolutional layers
with self-attention mechanisms, enabling the model to capture long-range
dependencies across the entire image.

An image is first split into fixed-size non-overlapping patches (e.g., 16 x
16 pixels), and each patch is linearly projected into an embedding vector.
These patch embeddings are then concatenated with positional encodings
that provide spatial information about the location of each patch in the
original image.

The resulting sequence of embeddings is passed through a standard Trans-
former encoder composed of multi-head self-attention layers, layer normaliza-
tion, and residual connections. A learnable [CLS] token' is often prepended
to the input sequence and is used for classification tasks after the Transformer
layers. These procedures are illustrated briefly in Figure 3.6.

ViT primarily uses:

e Self-attention: Computes the relevance between patches, allowing
the model to focus on important regions of the image irrespective of
their spatial distance.

e Cross-attention (in multimodal setups): When used in conjunc-
tion with other modalities (e.g., text), ViT may incorporate cross-

1Used primarily in Transformer-based models, the [CLS] token is a special token that
gets added to the start of a sentence. Its purpose is to act as a single, condensed repre-
sentation of the entire text, which the model can then use to perform tasks like sentence
classification.
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Figure 3.6: Vision Transformer Overview. Figure from [12]

attention mechanisms to align information from both sources. This
is common in models like CLIP [51].

Compared to CNNs, ViT demonstrates competitive or superior perfor-
mance when trained on large datasets. However, it requires significantly
more data or strong data augmentation techniques due to the lack of induc-
tive biases like locality and translation invariance found in CNNs.

3.4 Human Body Models

In order to correctly estimate the 3D shape and pose of a human, we need
a strong model that can express them. Different models have been proposed
to describe the human body. SMPL [36] is one of the most powerful and
realistic models that can be used for this scope. Based on SMPL, there has
been developed a family of models on it, like SMPL-X [48], SMIL [19] and
SMPL-A [47]. SMPL has also been the inspiration for SMAL [76], a model
that applies the SMPL concept to animals. Except for these SMPL-based
models, others have also been proposed. For example, STAR [44] uses a
different formulation for its blend shapes than SMPL, which are corrective
shapes that deform the mesh to look more natural. SKEL [26] combines the
SMPL surface mesh with a biomechanically accurate skeleton. SCAPE [2] is
one of the predecessors of SMPL, which also uses a template mesh and a set
of parameters to model body deformations.
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3.4.1 Skinned Multi-Person Linear (SMPL) Model

SMPL [36] is a learned human body model that has been trained on a
large dataset of various human shapes and poses. This training enables it to
represent a wide variety of human body types accurately.

The SMPL model separates the body shape into two components, as
shown in Figure 3.7: identity-dependent shape and non-rigid pose-dependent
shape. SMPL utilizes a vertex-based skinning approach with corrective blend
shapes.

SMPL modeling starts with a mesh template T € R3", the average body
shape and pose, which consists of N = 6890 vertices and K = 23 joints.
SMPL uses two parameters to deform the mesh template: shape parameter
3 and pose parameter 6.

The B € R" (commonly n = 10) parameters are derived from the n
principal components of the PCA on a dataset of thousands of 3D body scans.
3 shape parameters control the identity-dependent shape of the person, like
the height and weight, the muscle tone, and, in general, the proportions of
the body (like longer legs or arms).

For the pose, SMPL uses a skeleton of K = 23 joints. For each joint, three
parameters are needed to describe the rotation, using axis-angle rotation.
Three more parameters are also essential for the global orientation of the
body. Thus, the total number of pose parameters is 3 - K + 3 = 72.

More formally, SMPL is a model M (3, 8;®) : RI®*IB — R3N that maps
the shape and pose parameters to vertices to create a 3D mesh. ¢ =
{T,W,S,J,P} is the full set of parameters of the SMPL model. W € RV*X
is a set of blend weights. & = [Sy,...,Sg] € R¥**I#l is the matrix of the
orthonormal principal components of shape displacements and are used in
the shape blend shapes.

18
Bs(B;S) =) _ uSn
n=1

where 8 = [Bl, o ,ﬂw]T. The linear function Bg(3;S) is fully defined
by the matrix &, which is learned from training meshes.

J represents the learned matrix that transforms rest vertices into rest
joints. The 3D location of a joint is determined by the body shape 3, so the
joints are a function of 3.

J(B; T, T,8) =J(T + Bs(B;S))

P = [Pl, e ,PgK} € R3V>X9K i a matrix of all pose blend shapes, where
P c R3N are vectors of vertex displacemetns. The matrix P fully defines the
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pose blend shape function Bp(@;P) from which P is learned.

IK

Bp(6;P) =Y (R.(6) — R,(6%))Py

n=1

where 6* is the rest pose and R, (6) denotes the n'* element of R(), a
function R : Rl®l — RK that maps a pose vector 8 to a vector of concate-
nated part relative rotation matrices. Thus, the total number of pose blend
shapes is 23 x 9 = 207.

Applying a standard blend skinning function W(-) (dual-quaternion or
linear) to rotate the vertices around the estimated joint centers with smooth-
ing defined by the blend weights, the SMPL model is finally defined as:

M(B,0;2) =W (Tp(B.6;T,S,P), J(B: T, T,S),0,W)

and each vertex is transformed as:

K
t; = ZWk,iGL(G,J(B; j,T7 8))tP,i<IBa G;T,S,P)

k=1

where

8]
tp:(3,60;T,S,P) =1, + Zﬁmsm, + Z — R (07)) Pn,i

is the vertex 7 after the blend shapes and s,, ;, Pn,i € R? the elements of
the shape and pose blend shapes corresponding to template vertex t;.

TTTY‘

@ T, W ®) T + Bs(B), J(B) ©Tp(B T+Bs(B)+Bp(@) (@ W(Tr(B,0),7(8),0,W)

Figure 3.7: SMPL Model: (a): The template mesh T with blend weights
W indicated with the different colors and the joints with the white points.
(b): The mesh when we add the identity-specific blend shape. (c¢): The mesh
with the addition of the blend shape specific to the pose. (d): Final mesh
with the desired pose. Figure from [36]
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3.4.2 Skinned Multi-Infant Linear (SMIL) Model

While SMPL is a widely used model for human body reconstruction, it
fails to produce accurate results for infants due to the lack of training on
infant scans. To address this limitation, the SMIL model [19] was introduced
as a specialized, learned model for infant human body reconstruction. The
development of SMIL was a crucial step in creating a tool tailored for this
specific population, whose body proportions and movements are significantly
different from those of adults. By focusing on infants, SMIL overcomes the
inherent biases of models trained on adult data.

The SMIL model was trained on a unique dataset consisting of relatively
low-quality RGB-D data captured from freely moving infants. This training
approach is particularly noteworthy because it accounts for the real-world
challenges of collecting data from babies, who are not cooperative subjects.
The model’s ability to learn from this less-than-ideal data demonstrates its
robustness and its practical utility. This method ensures that SMIL can ac-
curately handle the dynamic, unconstrained movements and squirming that
are characteristic of infants.

SMIL’s inspiration from the SMPL framework suggests a familiar under-
lying structure, likely involving a template mesh that is then deformed by
shape and pose parameters. However, unlike SMPL, these parameters and
the template itself are specifically optimized for infant anatomy, capturing
the unique bone structure and fat distribution of babies. This specialized ap-
proach makes SMIL a valuable tool for applications in pediatric healthcare,
developmental research, and realistic infant animation in computer graphics,
providing a reliable method for generating accurate 3D representations of
infant bodies.

3.4.3 The SMPL Model Family

The success of the SMPL model has inspired the creation of a family of
related models that extend its capabilities in various ways. These exten-
sions build upon the core principles of SMPL while adding new features for
more detailed human body representation. They all leverage a learned, low-
dimensional parameterization to generate a wide range of realistic human
shapes and poses.

SMPL+H

SMPL+H [55] is an extension of SMPL that allows for modeling of
both the body and the hands. It achieves this by integrating MANO (Hand
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Model with Articulated and Non-rigid defOrmations), a separate, learned
model designed specifically for reconstructing human hands. By attaching
the MANO model to the SMPL body, SMPL+H provides a fully articulated
model of the body, including the hands, with a combined set of parameters for
shape and pose. This allows for applications in virtual reality, robotics, and
haptic feedback systems where detailed hand pose is essential for interaction.
The model provides a unified framework for capturing and animating the
entire upper body, from the torso to the fingertips.

SMPL-X

SMPL-X (SMPL eXpressive) [48] is a more comprehensive extension
that models the face, hands, and body within a single framework. Its mesh
contains N = 10,475 vertices and K = 54 joints, a significant increase over
the original SMPL model. This additional complexity allows SMPL-X to in-
clude joints for the neck, jaw, eyeballs, and fingers. As a result, SMPL-X can
effectively model facial expressions as well as the detailed position of the fin-
gers, making it a powerful tool for capturing nuanced human movements and
expressions. The model includes an additional set of “expression” parameters
to control facial animations. This makes it particularly useful for creating
realistic avatars in computer graphics, virtual humans for simulations, and
for analyzing non-verbal communication from video data.

3.4.4 SMPL-A

While SMPL can model a range of adult bodies, the absence of children’s
3D scans in its training data hinders its ability to generalize and effectively
model children’s bodies. Thus, Patel et al. introduce the SMPL-A [47]
model, which models effectively both child and adult bodies.

The key difference between SMPL and SMPL-A is the body template.
SMPL-A uses as body template an interpolation of an adult T4 and a child T
template. T}y is the SMPL adult template, while T is the SMIL infant tem-
palte. This interpolation is controlled by a shape interpolation parameter-
weight a € [0, 1] according to the following equation:

Tr=aTc+ (1 —a)Ta

SMPL-A adapts SMPL’s adult shape space, so the only difference between
SMPL and SMPL-A is the body template. Experiments have shown that this
change enables the creation of more accurate body shapes for children. For
the aforementioned reasons, most of our experiments and our final method

utilize SMPL-A.
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Figure 3.8: Simultaneous Localization and Mapping (SLAM). Figure
from [64]

3.5 Simultaneous Localization and Mapping

Many computer vision applications, such as autonomous vehicles and
robotics, require an accurate 3D representation of the surrounding environ-
ment. Humans naturally excel at localizing themselves and building a mental
map of unknown places while moving through them. Simultaneous Localiza-
tion and Mapping (SLAM) aims to replicate this capability: it constructs a
map of an unknown environment while simultaneously estimating the agent’s
position within it. Common approaches to SLAM include particle filters and
Kalman filters. An example of a SLAM system is illustrated in Figure 3.8.

Although SLAM might seem unrelated to estimating the 3D shape and
pose of humans, it can serve as a crucial first step—especially in video sce-
narios—by providing spatial consistency and enabling robust detection and
tracking of individuals across frames. More specifically, in Section 5.1 we will
examine a way of how SLAM can help to get more accurate 3D reconstruc-
tions of humans.
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Literature Review

The estimation of 3D human shape and pose from a single image or a
video has been a focal point of research in the field for several years. Many
attempts have been proposed that try to solve this problem. The two primary
categories of such methods are optimization-based and regression-based. In
this chapter, we will give a brief overview of such methods, and we will
examine more extensively some of the most effective and frequently used.
Furthermore, we will present an overview of methods in similar problems,
like 2D pose estimation from images.

4.1 2D Pose Estimation

Accurate 2D joint estimation is a prerequisite for most methods that
estimate the 3D shape and pose of humans. Consequently, a reliable 3D
shape and pose estimator must be built upon a solid 2D joint estimator.
This problem has been studied for many years, with solutions evolving from
traditional computer vision methods [58,67] to highly effective deep learning
approaches [7,35,61,65,71].

4.1.1 Traditional Methods

Early computer vision methods for 2D human joint estimation often relied
on traditional techniques. These approaches typically utilize part-based
models, which break down the human body into individual parts (e.g., head,
torso, arms) and detect them independently before modeling their spatial
relationships to estimate a full pose. Other methods used hand-crafted
features from predefined descriptors like Histograms of Oriented Gradients
(HOG) [10] to represent the visual characteristics of the body. Probabilistic
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Figure 4.1: OpenPose Overview. Figure from [7]

methods [59] also played a role, aiming to minimize a cost function that
balances the likelihood of a joint’s location with the anatomical plausibility
of the overall pose. While foundational, these methods were computationally
intensive and lacked the ability to generalize well to complex poses, variations
in lighting, and occlusions.

4.1.2 Deep Learning Methods

The advent of deep neural networks led to significant advancements in 2D
pose estimation. Most modern methods leverage CNNs and ViTs as their
basic components, as they are capable of learning robust, high-level features
directly from data.

OpenPose

OpenPose [7] is a pioneering real-time, multi-person method that was
once considered the state-of-the-art. It follows a bottom-up approach, first
detecting all body keypoints in the image and then associating them with
specific individuals. Its core is a CNN trained on large-scale pose datasets,
making it particularly effective in crowded scenes due to its ability to handle
multiple people simultaneously. However, its performance can degrade signif-
icantly in cases of heavy occlusion, extreme poses, or low-resolution imagery.
An overview of OpenPose is illustrated in Figure 4.1. Our first experiments
utilize the 25 keypoints (the names are shown in Figure 4.2) estimated by
OpenPose.

ViTPose

ViTPose [71] is the current state-of-the-art 2D pose estimator. As its
name suggests, it employs a Vision Transformer (ViT) as its core ar-
chitecture, which is illustrated in Figure 4.3. Unlike CNN-based approaches,
which primarily capture local features, ViTPose leverages the self-attention
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Figure 4.2: Names of Keypoints that OpenPose detects. Figure from [74]

mechanism to capture long-range dependencies between keypoints across
the entire image. This global awareness enables more robust pose estimation
in complex and challenging scenes. The model’s simple, scalable, and flexible
nature makes it highly transferable across different datasets and tasks. In our
experiments, we use ViTPose to provide more accurate and consistent pose
estimates, especially in challenging conditions where OpenPose struggles.
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Figure 4.3: (a) The framework of ViTPose. (b) The transformer block. (c)
The classic decoder. (d) The simple decoder. (e) The decoders for multiple
datasets. Figure from [71]
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4.2 3D Shape and Pose Estimation of Human
Body

A significant body of research has been dedicated to addressing the prob-
lem of 3D shape and pose estimation. While the estimation of 3D human
pose has been studied with considerable success as a standalone problem,
the reconstruction of a detailed 3D body shape inherently requires pose in-
formation. Consequently, most contemporary methods jointly estimate both
3D pose and shape to accurately represent the human silhouette.

Early approaches to 3D pose estimation primarily involved a lifting pro-
cess from 2D to 3D. These methods first estimated 2D joint locations and
pose, which were then used to infer the corresponding 3D joint coordi-
nates [8,41,43,45]. Most of these methods use a CNN to estimate the 2D
joints and then, using a neural network or a regressor, they estimate the 3D
location of the joints. End-to-end methods have been proposed to solve the
problem, bypassing the intermediate step of estimating the 2D pose. These
methods use modern deep learning methods [33,60] or more innovative ways,
like the WiF1i Signals [72].

To address the challenge of depth and shape ambiguity, many state-of-the-
art methods utilize multi-view cameras [11,20,50] or videos as input [52,73].
By observing a subject from multiple viewpoints, either spatially (multi-
view) or temporally (video), these models can effectively resolve ambiguities.
Since a person’s shape parameters remain constant within a short time frame,
analyzing different views from a video sequence helps the model better un-
derstand the body’s structure and produce more accurate shape estimates.
A similar principle is applied in multi-shot reconstruction, where multiple
still images from different angles are used to reconstruct a static human sub-
ject [49]. Another standard method to deal with the depth ambiguity is the
use of RGB-D cameras, where except for the image, we also get the depth [5].

More recently, modern methods have integrated the biomechanics of the
human body and motion [28,70]. By taking biomechanical constraints into
account, these models can generate more plausible and smoother motion,
effectively rejecting physically impossible poses and improving the robustness
of the estimation.

The primary focus of this thesis is the estimation of three-dimensional
shape and pose from a single RGB image. A single RGB image represents
the most challenging form of input data for this problem, as it obscures depth
information and provides only a view of a human or humans in a multi-
person scenario. Despite the challenging nature of the problem, the research
community has developed a plethora of methods that attempt to solve it, with
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great results. These methods, as explained in Chapter 2 can be optimization-
based [6,14,48], regression-based with the use of deep learning methods [13,
16,24,62,75] or a combination of optimization and regression [29].

The following subsections delve into a selection of effective methods used
in our initial experiments, with which our results are compared.

4.2.1 SMPLify

In 2016, Bogo et al. [6] introduced SMPLify, the first method that can
estimate the 3D shape and pose of a human body from a single unconstrained
image. SMPLify pipeline starts with an estimation of the 2D joints of the
human in the picture. This is done with the DeepCUT CNN [53], which
finds the 2D location of the joints along with a confidence score w;. Then,
SMPVLify tries to fit a SMPL model onto these 2D joints. The optimization
process minimizes the reprojection loss between the projected 2D keypoints
of the predicted 3D mesh and the estimated 2D joints from DeepCUT. Fur-
thermore, SMPLify adds an interpenetration term in the loss function that
is differentiable to both body shape and pose, and helps to prevent implau-
sible poses. SMPLify prevents interpenetration by approximating the body
surface as a set of capsules, where each capsule has a specific radius and axis
length. These steps are illustrated briefly in Figure 4.4.

More formally, let M(3,8,v) be the SMPL body model with shape pa-
rameters 3, pose parameters 6 and translation 7. Let J(3) be the function
that predicts 3D skeleton joint locations from body shape. For each joint
i, the posed 3D joint is denoted as Rg(J(B);) where Ry is the global rigid
transformation induced by pose 6.

The objective function that SMPLify tries to minimize during optimiza-
tion is a sum of five error terms:

E(B,8) = E;(B,0; K, Jest) + Ao Ea(0) + Ao Ea(0) + Ay Esp(6; 8) + As Es(B)

where K are the camera parameters and Ag, Ao, Asp, Ag weights.
The first term E; penalizes the 2D distance between the estimated 2D
joints and the SMPL projected joints based on the following equation:

EJ(IBa 97 K, Jest) = Z sz(HK(RG(J(B)z)) - Jest,i)

where Il is the 3D to 2D projection of the camera with parameters K
and w; are the confidence scores of the estimation of joints from DeepCUT.
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E,(0) is a pose prior that penalizes elbows and knees that have unnatural
bending:

Eo(0) = exp(6;)

i

where 7 is a counter over knees and elbows pose parameters.

The Ey(0) term is used for the pose prior to eliminate implausible poses.
It is built by fitting SMPL to the CMU marker data using MoSh [37] and
by an approximation of a sum of a mixture of Gaussians as described in the
following equation:

Eo(0) = —log > (g;N(6; o5, T,7))
j

~ —log (m]aX(cng (05 1 Z‘e,j)))

— min(—log(cg; N (6 155, Zn))

where g; are the mixture model weights of 8 Gaussians, and c a positive
constant.

For the interpenetration error term, SMPLify separates the human body
into “capsules” and checks for intersection between capsules that cannot be
intersected in natural poses. For simplicity, these capsules are simplified
into spheres with centers C(6,3) and radii r(8). For the penalty term, a
3D isotropic Gaussian with o(3) = % is is used to describe each sphere.
The error term is a mixture of 3D Gaussians as described in the following

equation:

. IC(6.8) ~ C,0. B)|
Ful0i8 *;;ﬁp( A e )

Finally, a shape prior is used, which is defined as:

Es(B) =BX;'3
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223

Figure 4.4: SMPLify Overview. Figure from [6

4.2.2 SMPLify-X

Pavlakos et al. [48] introduced SMPLify-X, a method that builds upon
the foundational principles of SMPLify but incorporates significant improve-
ments. SMPLify-X leverages the more expressive SMPL-X model, which is
capable of representing the human body, hands, and face. The pipeline is
designed to be compatible with the entire SMPL family of models.

Figure 4.5: SMPLify-X examples. Figure from [48]

Similar to the original SMPLify, SMPLify-X begins by using 2D image
keypoints to fit the 3D body model. These keypoints, including those for the
body, hands, and face, are extracted jointly using OpenPose. Then, fitting
SMPL-X to the image is an optimization problem whose goal is to minimize
the objective function:

E(B8,0,v) = Ey+ X, Eg, + Xo; Eo; + Ay By, + AaFo + AsEg + Ae Ee + AcEe
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where 0,07 and my, are the pose vectors for the body, face and the two
hands, respectively. The notation and the error terms are similar to the
SMPLify ones. Specifically, @ is the pose parameters, 3 are the shape param-
eters, while E,,, (ms), By, (0), and Eg(y) are Ly priors for the hand pose,
facial pose, and facial expressions. Es(8) = ||8]|? is the Mahalanobis distance
between the shape parameters of the optimization and the shape distribution
in the SMPL-X training dataset. Eq(0s) = D ic (cibows, knees) €XP(0:) is a prior
for elbows and knees.

Similar to SMPLify, SMPLify-X has a data term that penalizes the dis-
tance between the 2D keypoints detected by OpenPose and the 3D to 2D
projected keypoints. Specifically, the data term is

Ey(B8,0,K, Joy) = Y viwip(Hxc(Ro(J(B):)) = Jest.i)

joint ¢

where [ is the 3D to 2D projection with intrinsic camera parameters K,
w; is the detection confidence score for each joint ¢ and ~; are the weights per
joint for annealed optimization, as empirically it was found that an annealing
scheme for these weights helps optimization of the objective function to deal
with ambiguities and local optima.

Another contribution of SMPLify-X is the Variational Human Body Pose
Prior (VPoser) that penalizes impossible poses. The error term FEp,(6;) in
the objective function describes this pose prior. VPoser is trained and tested
on a set of approximately 1M and 65k poses, respectively, making it a very
effective pose prior.

SMPLify-X introduces a new interpenetration loss to avoid self-collisions
and penetrations of body parts that are physically impossible. This is done
by detecting colliding triangles C on the mesh using Bounding Volume Hi-
erarchies (BVH). Then, for each pair of colliding triangles f; and f;, the
algorithm computes a local conic 3D distance field W, i.e., a function that
gives the signed distance from any point in space to the surface of the trian-
gle. The sign of the distance indicates whether the point is inside or outside
the mesh. Finally, the loss term penalizes the depth of intrusion by tak-
ing the vertices of one colliding triangle and evaluating their position within
the distance field of the other colliding triangle. The collision term in the
objective function is defined as:

Ec()= ) { Do l=TnlonP+ > 1 - \ijs(vt)ntHQ}

(f5(0),fe(0))eC \vs€fs V€ fi
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Finally, SMPLify-X uses a Deep Gender Classifier to detect the gender of
humans in the images. The proportions and the shape of men’s and women’s
bodies are different, and, therefore, knowing the gender of each human in the
image can improve the quality of the fitting by using a gender-specific model.
If the detected gender probability is below a threshold, a gender-neutral body
model is fitted. Some reconstructions produced from SMPLify-X are shown
in Figure 4.5.

4.2.3 ProHMR

The ProHMR [30] (Probabilistic Human Mesh Recovery) method pro-
poses a probabilistic way to solve the problem of 3D human reconstruction
from 2D data, which may be an image or keypoints. To this end, given
the input, this method learns a mapping from the input to a distribution of
plausible 3D poses. This distribution is regressed using Normalizing Flows,
which are used for the representation of complex distributions as a series of
invertible transformations of a simple base distribution (typically a standard
multivariate Gaussian).

The architecture of ProHMR comprises a CNN that encodes the input
image to get a context vector c that is used as the conditioning input to the
Normalizing Flow model to get the distribution of SMPL pose parameters
. For the task of 3D pose regression, the authors decide to select the mode
of the distribution as the most appropriate choice. The same vector c is the
input to an MLP, which outputs the SMPL shape 8 and camera parameters
7, as they do not depend on the pose.

For the task of body fitting, the logic is similar to SMPLify, with the use
of the following objective function:

)\JEJ — lnp@‘[(¢9|C) + )\gEﬁ

where E; is the term for the 2D keypoint reprojection loss, Eg a quadratic
penalty on the shape coefficients, and Ep; = —Inpg|;(f|c) a pose prior that
models the likelihood of a given pose conditioned on the image evidence.
This prior is used instead of the standard 3D priors about the 3D pose and
the unnatural rotations of elbows and knees. The architecture of ProHMR
is presented in Figure 4.6.

4.2.4 BEV

The Bird’s-Eye-View (BEV) [62] method is particularly effective at pro-
ducing accurate 3D shapes for children and babies. This success is primarily
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Image

Figure 4.6: ProHMR Architecture. Figure from [30]

Input image
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Figure 4.7: Bird’s-eye-view example. Figure from [62]

attributed to its use of a modified SMPL-A model to represent human fig-
ures. As explained in 3.4.4, SMPL-A is a reliable model for representing both
adults and children within a single framework. However, a challenge with
this approach is that pose estimation remains problematic in many cases.

BEV addresses the multi-person problem by estimating the depth of each
individual using a “bird’s-eye-view” map, shown in Figure 4.7, which provides
a top-down estimate of body centers. This is a regression-based method that
operates as follows:

1. Given an input image, a network first generates four feature maps: two
for the body center and localization offset in the frontal view, and two
for the same in the bird’s-eye view.

79



80 Chapter 4. Literature Review

Output  Bird’s-eye-view-based coarse-to-fine localization

map 0 . . L. 3D camera

Front-view  Bird’s-cy Comp & Refi Lomsd anchor map

sy S 4

5z o . L z

% E o) @@ 00058; % _,m%g‘,@ %&%W ) W‘k

= tans —
]2 - an

zt 3D Center map M3”

BDV:DCS;MQI 3D translation
X Vi d;
//Z/ —_ — ﬁ‘;‘g‘?’ 3D offset — ey d)
— vector ¢

3D Offset map M3

Localization
Offset maps My
Iouyay

Sampling-based parameter regression

J 8¢
I SMPL+A parameters 1 |
©g — ~[@ "G J

W'y -
Depth encoding Depth-aware mesh feature ¢ Wi Lojaa

Input 2D image

U0 Ly Results

maps My

1 = Ljza

Mesh Feature

Figure 4.8: BEV Overview. Figure from [62]

2. These four maps are then combined to produce 3D Center and Offset
maps.

3. These maps are subsequently used to predict the 3D translation of each
person (z;, yi, d;).

4. Finally, the 3D translation and a mesh feature map are used to regress
the SMPL-A parameters.

An overview of the BEV method is illustrated in Figure 4.8.

To address the issue of modeling adults and children with a single model,
the authors of BEV utilize a modified SMPL-A model. Specifically, instead
of using only the SMPL model, they also employ the SMIL model when the
interpolation parameter « is above a threshold ¢,. As explained in 3.4.4,

€ [0,1], with & = 0 corresponding to a purely adult template and o = 1
representing a child template. Conversely, when o < t,, the SMPL model is
used, along with the extra a parameter. This is based on the intuition that
the shape space of infants is distinct from that of children and adults, and
consequently, using the SMPL shape space for infants may produce incorrect
results. Therefore, when the subject appears to be an infant, the SMIL model
is employed for its specialized infant shape space.
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Chapter 5

Methodology

We leverage existing approaches and propose two complementary meth-
ods for estimating the 3D shape and pose of humans from single images or
videos. Both methods support single and multi-person scenarios and are de-
signed to better model children and babies. Our goal is to develop effective
methods that can be universally applied to humans of all ages.

The first method is an optimization-based approach that fits the SMPL-A
human body model to images or videos by minimizing a reprojection-based
objective function. This objective combines alignment between 3D keypoints
and pseudo-ground-truth 2D detections with additional regularization terms
and improved strategies for detection and tracking.

The second method is a learning-based approach that predicts 3D shape
and pose from a single image. While this method offers much faster infer-
ence than the optimization-based approach, it requires large-scale annotated
datasets for effective training. To address the lack of child-specific anno-
tations, we generate high-quality pseudo-ground-truth labels using the first
method, thereby augmenting existing datasets.

5.1 Optimization-based algorithm

In many scenarios, the goal extends beyond reconstructing 3D shape and
pose from single images to handling full video sequences. The single-image
case can be regarded as a special case of video-based reconstruction, where
the sequence consists of a single repeated frame. Preliminary experiments
have shown that when the input of a 3D shape and pose estimation system is a
video, the results are better compared to the single-image case. Therefore, we
use SLAHMR (Simultaneous Localization and Human Mesh Recovery) [73]
as a baseline for our approach, with modifications to adjust it to our problem.
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Figure 5.1: Pipeline of our optimization method

SLAHMR is an optimization-based approach designed for this problem. It
operates on videos in the wild, supports multiple people per frame, and jointly
recovers both human trajectories and camera motion in a common world
coordinate system. The key insight is that in unconstrained videos, camera
motion is often significant, and accurate reconstruction requires explicitly
modeling this motion.

SLAHMR was originally developed for the SMPL+H model, but it is
possible to adapt its pipeline to other members of the SMPL family. Our
first method builds upon SLAHMR. We use the SMPL-A model instead of
SMPL+H and we modify the pipeline to be able to handle both images and
videos. Originally, SLAHMR works with videos, but our extension, when
the input is an image, creates a small video of 10 frames of the same image.
Figure 5.1 shows a brief overview of the pipeline of our optimization method.

For a video of T' frames containing N people, each person ¢ at time step
t is represented as:

Pi = {q)i’ @iv 5i’ F;}
where @ € R? is the global orientation, O € R?**3 the body pose with

22 joint angles, 3* € R the shape over all time steps ¢, where the 11*" value
is the a interpolation weight, and I € R? the root translation.

The first step is to estimate each person’s per-frame pose Pi and com-
pute their unique identity track associations over all frames using a 3D track-
ing system, PHALP [52]. Recently, the method had been compatible with
4DHumans tracking, which is analyzed in Section 5.2. In our method we use
4DHumans tracking system, as a more modern and effective method than
PHALP.

In a video, the net motion, ¢.e., a person’s motion in the camera coor-
dinates, depends both on the human’s and camera’s motion in the world
frame. Therefore, the camera motion should also be modeled in a cor-
rect way. Let ‘P! = {°®! ©! 5T} the pose in the camera frame and
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wpi — {v®! i f1wTil the pose in the world with the same local pose ©i
and shape 3¢ parameters.

SLAHMR uses DROID-SLAM [64], a SLAM system, to estimate the
world-to-camera transform at each time ¢, {Rm Tt} This is essential to com-
pute the relative camera motion between video frames. A human motion in
the world prior is used to determine the camera scale o, and people’s global
trajectories. The camera scale a. is important to be estimated correctly to
place the people in the world, so the human bodies and motion are plausible.

First, the global orientation and root translation in the world coordinate
frame using the estimated camera transforms and camera-frame parameters
are initialized. Camera scale is initialized in the value of a, = 1.

wPl = RIP YT = RyTY — o Ry,
Bi = B, o} = 0,

The world frame joints are expressed as:

T = MU, 00,5+ T
where M is the differentiable function that SMPL model uses to generate
the mesh vertices and joints.
Similar to SMPLify, SLAHMR defines a 2D joint reprojection loss to align

the projected 3D to 2D joints with the detected from ViTPose 2D keypoints
Ty

N T
Baaa = Y > _Wip(Ik (R, - I, + aTy) — x})

i=1 t=1

where Tk ( [ml T xg]T) =K [i—; =2 1}T is perspective camera projec-
tion with camera intrinsics matrix K € REXP), p is the robust Geman-McClure
function [4] and ¢} are the confidence scores of the detected 2D keypoints.

At this stage of the optimization, due to the under-constrained reprojec-
tion loss, the optimization is being held only to the global orientation and

root translation “®!* I"? of the human pose parameters:
) HliDT N )\dataEdata
{{wep T Y,

The optimization lasts 30 iterations with Aga;a = 0.001.
For the camera scale a,, human shape (; and body pose ©! optimiza-
tion, additional priors about human movement in the world are used. This
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optimization stage smooths the transitions between poses in the world tra-
jectories so that the displacements of the people are plausible. The prior of
joint smoothness is defined as:

N T
Esmooth = Z Z HJi - J;+1||2
7 t

The other priors concern the pose Epose = S0y S, ||I¢]|* and the shape
Es = V|77, where ¢/ € R represent the body pose parameters ©! in
the latent space of the VPoser model. The updated objective function to be
minimized is the following:

min /\dataEdata + /\BE,B + /\poseEpose + )\smoothEsmooth

a{{"PLHL HY,

The optimization is performed over 60 iterations using Asmooth = 9, A\g =
0.05 and Apgse = 0.04.

To ensure the temporal consistency and naturalness of reconstructed hu-
man motion, SLAHMR introduces a method that incorporates a learned mo-
tion prior. The approach models the likelihood of a human trajectory using
a Conditional Variational Autoencoder (CVAE) to regularize the output.
This approach uses the transition-based motion prior HuMoR [54].

The CVAE is trained to predict the distribution of the next pose pa-
rameters Py, velocity and joint locations (s;) given the previous ones (s;_1),
leveraging a latent variable z, € R* to capture motion complexity. The
transition likelihood is modeled as:

Po(st|si-1) = / Po(Zt|St—1)Pa(st|2t, Se-1)
Zt
The conditional prior pg(z¢|sg_1) is a Gaussian distribution with mean
pg(si—1) and covariance og(s,_1). This learned prior is then used in an energy
term on the latents zi:

N T
Ecvap = — Y Y 1og N(z; (s} 1), o(si 1))
7 t

The method performs a global optimization over a sequence of states to
recover complete human motion trajectories for multiple individuals. The
process begins by initializing the motion transition latent variables, z!, for
each person ¢ at each time step t. These latent variables are derived from
the previous state, si_;, using a pre-trained HuMoR encoder (p,). The
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next state, si, is then recursively generated from the previous state and the
latent variable via a HuMoR decoder (Ay). This autoregressive process is
represented by the equations:

z; = /L¢<5i7 s;-1)s st =811+ Dolz,51_1)
In addition to the primary motion prior losses, the optimization includes
two extra regularization terms to ensure physical plausibility. The first, a

stability loss (FEgap), regularizes the predicted velocity and joint locations,
making the motion more consistent. Thus, the prior optimization terms are:

Eprior = AcvaEEcvag + Astab Estab

The second, a foot-skate loss ( Egkate ), €xplicitly prevents unrealistic sliding
by penalizing the velocity of joints that are likely to be in contact with the
ground plane of the scene g € R3. This is calculated as:

skate Zzzct ||Jl Z—i—l( )H

where ci(j) is the ground contact probability for joint j of person i at
time ¢, and J{(j) is its position. A final term, E,,, encourages these same
contact points to stay close to the ground, calculated as:

con Zzzct ma’X (])79)_570)

Here, d(p,g) is the distance from a point p € R3 to the ground plane
g, and ¢ is a small threshold. These combined losses ensure that the final
reconstructed trajectories are not only temporally smooth but also physically
realistic. Plane g is optimized as a free variable shared across all people and
timestamps.

Combining all the losses of this stage, the final optimization problem is:

) min . AdataEdata + >\,BEB + A oseE ose + E rior + Eenv
oe.g {sh) ) ({2 E N, ey ?
where Eenv - )\skateEskate + )\conEcona )\CVAE - 0~0757)\skate = 100 and
Acon = 10.
The optimization at all stages is performed with the L-BFGS algorithm
and a learning rate of 1.
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Figure 5.2 illustrates the overall SLAHMR pipeline, providing a visual
summary of the key methodological steps described in the preceding sections.

Input Frames Initialization Minimize Global Human and Camera Motion
r (
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Figure 5.2: SLAHMR Pipeline. Figure from [73]
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5.2 Learning-based method

Although the first method can reconstruct humans in a photo or a video
very effectively, its optimization-based nature has some significant draw-
backs. The most notable issue is that optimization requires a considerable
amount of time to run, which makes these methods unable to operate in
real-time. Additionally, the first method is highly sensitive to initialization.
If the starting parameters are not chosen carefully, the optimization process
may get stuck in a local minimum, leading to an inaccurate or anatomically
implausible reconstruction.

These issues are being addressed by deep learning methods. Methods like
Human Mesh Recovery (HMR) [24] use regression to predict the pose, shape,
and camera parameters from an input image. Using these parameters and
a model like SMPL, they can reconstruct the 3D shape and pose of all the
humans in an image.

HMR2.0 [16] is an extension of HMR that uses a ViT instead of a CNN.
The architecture is very simple, since HMR2.0 has an end-to-end transformer
architecture with two main components. Our learning-based method uses as
a starting point the HMR2.0 and leverages it to handle both adults and
children by extending the training set with child and baby data. Our two
core changes are the use of SMPL-A model instead of SMPL and the use of
training data that contains children and babies.

A VIiT is used to patchify the image and extract the image tokens to get
processed by a Transformer decoder with multi-head self-attention that
ends with an MLP that predicts the SMPL-A shape 8 and pose 6 parameters
as well as the camera translation 7. The interpolation weight « is predicted
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as the 11*" 3 parameter. These components are also illustrated in Figure 5.3,
providing a visual summary of the HMR2.0 architecture.

HMR2.0 predictor f is trained on a large mixture of datasets with a com-
bination of 2D and 3D losses and a discriminator. Different datasets used had
different annotations, so the losses are used if there are ground-truth annota-
tions or, in some cases, pseudo-ground-truth annotations. More specifically,
let I be the input image and © = [9, B, 7T] = f(I) the model predictions on
image I. If ground-truth SMPL-A shape parameters §* and pose parameters
0* are available, an MSE loss is used for the model predictions:

»Csmpl = H9 - Q*Hg + Hﬂ - 5*”3

When the dataset provides accurate ground-truth 3D keypoints X*, a L1
loss is added to penalize the distance from the predicted 3D keypoints X:

Ligap = || X = X7y

Similarly, if there are 2D keypoints annotations z*, an L1 loss is used to
penalize the projection of the predicted 3D keypoints 7(X):

Ligop = [[7(X) = 27x

Finally, to get plausible 3D poses, a discriminator Dy, is trained for each
factor of the body model, i.e., the body pose parameters #,, the shape pa-
rameters [ and the per-part relative rotations #; with the generator loss
expressed as:

£adv = Z(Dk(9b75> - 1)2

k

As stated in Section 6.1.2 SLAHMR last version uses HMR2.0 tracking
system, named 4DHumans. The core idea of 4DHumans is the same as the
PHALP, which detects people in individual frames and “lifts” them to 3D,
predicting the 3D pose, the location in 3D space and the 3D appearance from
the texture map. At each recursion step, these three parameters per person
are predicted for the next frame and then the best matches between the top-
down predictions and the bottom-up detections of people in that frame after
lifting them in 3D are found. The current state of each tracked object is
updated with new observations, and this process is repeated.
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Figure 5.3: HMR2.0 Architecture. Figure from [16]

5.3 Architecture Details

The model that we train consists of one ViT image encoder and a trans-
former decoder. The ViT encoder is taken from the ViTPose model, which
was pre-trained for the 2D joint detection task. It takes as input a 256 x 192
image and consists of 50 transformer layers. The encoder outputs 16 x 12
image tokens, each of dimension 1280. These tokens serve as the encoded
representation of the input image for the decoder.

The transformer decoder has 6 layers, each with multi-head self-attention,
multi-head cross-attention, and feed-forward blocks with layer normalization.
It has a hidden dimension of 2048. Both the self-attention and cross-attention
blocks use 8 heads, each with a dimension of 64. The feed-forward MLP has
a hidden dimension of 1024.

For the SMPL-A parameters prediction, a 2048-dimensional learnable
SMPL-A query token is fed into the transformer decoder. The decoder uses
cross-attention to attend to the 16 x 12 image tokens from the ViT encoder.
The output of the decoder is then passed through a linear layer to predict
the final parameters. The output of the network consists of the pose (), the
shape (), and the camera () parameters.

Table 5.1 shows the number of trainable parameters for the backbone,
the SMPL-A head and the discriminator, for a total of 671M parameters.
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Name Type Number of Trainable Parameters
backbone ViT 630 M
smpla_head =~ SMPL-A Transformer Decoder Head 39.0 M
discriminator Discriminator 1.8 M

Table 5.1: Trainable Parameters for Model Components

5.4 Experimental Setup

5.4.1 Implementation Details

For the code of the methods we use PyTorch [46]. For both the training
and fine-tuning of the model, we use the same configuration. The batch
size is set to 16, we use AdamW optimizer [38] with a learning rate of
4-107% B, = 0.9, B = 0.999 and a weight decay of 10~%. The first training
phase lasts for 2.5M steps, while the fine-tuning phase lasts 1.5M steps.
For the different weights used during training we set the values to Lypsp =
0.05, Lypop = 0.05, L4, = 0.0005 and the terms within L, weigh 0.0015
and 0.001 for the # and 6, respectively.

5.4.2 Training Datasets and Annotations Preparation

A significant challenge in the field of 3D child shape and pose estimation
stems from the paucity of training data, largely attributable to the sensitivity
of these data. The datasets that contain child and baby images are very few,
meaning that the datasets with annotations for 3D shape and pose estimation
are even fewer.

For the training, we use the mixture of datasets used in the HMR2.0
model training, i.e., Human3.6M [22], MPI-INF-3DHP [42], COCO [34] and
MPII [1]. These datasets contain annotations for the bounding boxes and
the 3D or 2D location of keypoints that are used for training. Three more
datasets, InstaVariety [25], AVA [17] and Al Challenger [69], are used in the
training of HMR2.0 with pseudo-ground truth annotations. Specifically, a
detector [32] is used for the bounding boxes, then ViTPose [71] for the corre-
sponding 2D keypoints and ProHMR [30] to get pseudo-ground truth SMPL
parameters for the pose #* and the shape * with camera 7*. Additionally,
we use SyRIP [21] and Relative Human [62] datasets with pseudo-ground
truth SMPL parameters from our optimization method and 2D keypoints
from their ground-truth annotations. We observed that some of their anno-
tations are erroneous in these two datasets. In such cases, we use the 2D
keypoints from ViTPose. While this approach was generally effective, cer-
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Figure 5.4: The pipeline of our proposed model. We begin from images of
non-adult population, we extract annotations and train a model to regress
the SMPL-A and camera parameters from a single image.

tain limitations, particularly with extreme poses and unclear facial features,
prevented us from using the entire datasets for training. The training of
HMR-like models requires high-quality, accurately annotated data to ensure
robust generalization in complex scenarios. Figure 5.4 concludes how, from
raw children images, we train our proposed model to estimate the 3D shape
and pose from a single image.

Our method occasionally lacked quality when the human’s face was not
clear or visible. This is a critical issue because facial proportions are a key de-
terminant in distinguishing between an infant and an adult. To mitigate this
problem, we decided to constrain our training set to only include data where
the ViTPose detections for face keypoints had a confidence score greater than
0.7.

This constraint offered a dual benefit and a clear trade-off:

e Improved Data Quality: It ensured that our model was trained on
data where infants were correctly identified as infants, preventing them
from being misclassified as adults.

¢ Reduced Dataset Size: This filter significantly reduced our training
data by more than 50%, as less than half of the total images in the
datasets met this strict criterion.

Since the § parameter in our dataset has 11 components (including the
SMPL-A interpolation weight «), while the other training datasets utilize
the standard SMPL model with 10 shape components, we implemented a
data harmonization step. During the loading of samples from SMPL-based
datasets, we automatically reshape the § parameters to a consistent size of
B € R by setting the SMPL-A interpolation weight « to zero. This ensures
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a uniform input shape for the model training. Finally, for the validation, we
use a mixture of our validation dataset and COCO.

In Table 5.2 we show the weights for each dataset, i.e., the probability
that samples from this dataset are used for the first training phase. We assign
a greater probability in our dataset since our main focus is on child and baby
data. A smaller weight would diminish the ability of our model to learn these
data since it would see only adult ones. In the fine-tuning phase, where the
model has learned the 3D shape of children, we reduce the weight for our
dataset so it sees more diverse examples to capture the 3D pose better. The
weights are shown in Table 5.3.

In both phases, the validation datasets have the same weight.

Table 5.2: Training Dataset Configuration

Dataset Type ‘ Dataset Name Weight
TRAIN DATASETS
H36M H36M-TRAIN-WMASK 0.05
MPII MPII-TRAIN-WMASK 0.05
COCO COCO-TRAIN-2014-WMASK-PRUNED 0.05
MPI-INF-3DHP MPI-INF-TRAIN-PRUNED 0.05
AVA AVA-TRAIN-MIDFRAMES-1FPS-WMASK 0.10
AIC AIC-TRAIN-WMASK 0.10
INSTA INSTA-TRAIN-WMASK 0.10
Ours (from SyRIP and Relative Human) TRAIN Subset 0.50
VALIDATION DATASETS
Ours (from SyRIP and Relative Human) VAL Subset 0.50
COCO COCO-VAL 0.50

Table 5.3: Fine-Tuning Dataset Configuration

Dataset Type ‘ Dataset Name ‘ ‘Weight
TRAIN DATASETS
H36M H36M-TRAIN-WMASK 0.0875
MPII MPII-TRAIN-WMASK 0.0875
COCO COCO-TRAIN-2014-WMASK-PRUNED 0.0875
COCO (ViTPose) COCO-TRAIN-2014-VITPOSE-REPLICATE-PRUNED12 | 0.0875
MPI-INF-3DHP MPI-INF-TRAIN-PRUNED 0.0875
AVA AVA-TRAIN-MIDFRAMES-1FPS-WMASK 0.0875
AIC AIC-TRAIN-WMASK 0.0875
INSTA INSTA-TRAIN-WMASK 0.0875
Ours (from SyRIP and Relative Human) TRAIN Subset 0.3000
VALIDATION DATASETS
Ours (from SyRIP and Relative Human) VAL Subset 0.50
COCO COCO-VAL 0.50
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5.5 Evaluation

5.5.1 Evaluation Baselines

First, we examine whether our approach is better than the HMR2.0 check-
point in child modeling, as it is the starting point of our approach. HMR2.0
has excellent performance in estimating the 3D shape and pose of humans
from a single image. We also compare our method with ProHMR [30], a sim-
ilar probabilistic method for human mesh recovery that uses a distribution
of plausible 3D poses to mitigate the reconstruction ambiguity. Finally, we
compare our method with BEV [62], a model that uses a modified SMPL-A
model and demonstrates efficacy in the reconstruction of children.

5.5.2 Evaluation Datasets

Given that our primary objective is 3D shape and pose estimation for
children and infants, the evaluation necessitates datasets within this domain.
Unfortunately, as with the training phase, the scarcity of publicly available,
annotated data persists. Therefore, our evaluation utilizes both test subsets
from our test pool and an external dataset with challenging characteristics.

SyRIP and Relative Human

We use the test subsets of SyRIP and Relative Human. The SyRIP test
set specifically contains 100 infant images. The Relative Human test set
provides a broader challenge, consisting of 1836 multi-person images that
include subjects of various ages. Both datasets contain ground-truth 2D
keypoint annotations. The necessary 3D keypoints and shape parameters
(B) for the evaluation split are estimated using our optimization method,
thus providing the pseudo-ground-truth data for these datasets.

ChildPlay

Furthermore, we incorporate the ChildPlay dataset [63] as an external
validation source. This dataset, which features videos of children interact-
ing with adults, is characterized by frequent and significant occlusions and
truncations. While the inherent pose ambiguity within these images makes
the dataset unsuitable for inclusion in our primary training pool, it serves
as a robust test of model generalization. For evaluation purposes, we ran-
domly sample 1000 distinct frames from the ChildPlay videos to form a
dedicated test set. ChildPlay dataset does not provide any annotations for
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our evaluation. Therefore, we generate pseudo-ground-truth annotations for
2D keypoints using ViTPose, and for the 3D keypoints and shape parameters
[ using our optimization method.

BabyRobot

Finally, we evaluate our method on the BabyRobot dataset. This dataset
contains 1000 images of children aged 6 to 10 years old, where each child
interacts with a robot and moves freely in the environment. It utilizes 3
cameras: one placed in front of the child and robot, one to the left, and
one to the right. The dataset includes images from all the cameras for every
child. To use these images for our evaluation, we generate pseudo-ground-
truth annotations for the SMPL parameters using our optimization method
and for the 2D keypoints using ViTPose. Some examples of images from the
BabyRobot dataset are shown in Figure 5.5.

¥ 4

(a) Left camera (b) Front camera (c) Right camera

Figure 5.5: Example images from the 3 camera views of the BabyRobot
dataset.

5.5.3 Evaluation Metrics

The performance of our models is rigorously evaluated using a combina-
tion of standard quantitative metrics and specialized domain-specific mea-
surements.

The height of the human subjects offers a reliable metric for evaluating
3D shape estimation quality. Unlike adults, children and infants possess a
specific, age-dependent range of possible heights. Since some of our evalua-
tion datasets contain data exclusively from children or infants, it is possible
to assess the reconstructed human height range. Furthermore, the dataset
annotations enable a direct comparison between the pseudo-ground-truth
height and the predicted height for each subject.

More specifically, we introduce two quantitative metrics based on height:
the Average Height Difference (AHD) between the pseudo-ground-truth
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and predicted height, and the Average Percentage Height Difference
(APHD), calculated as a percentage of the ground truth.

Let N denote the total number of subjects, H; be the pseudo-ground-
truth height (in centimeters), and H; be the predicted height for subject i.
We calculate AHD and APHD as follows:

N
1 . )
AHD = N ;:1 (H — H;) (in cm)

100% ;
APHD = i Z

Absolute values are omitted to assess systemic bias; this reveals whether
the model consistently over-predicts (positive difference) or under-predicts
(negative difference) the height, rather than just the magnitude of the error.

To find both the predicted and the pseudo-ground-truth height of a per-
son, we follow a simple procedure: we calculate the 3D mesh vertices from
the SMPL (or SMPL-A) model using the predicted or pseudo-ground-truth
shape parameters (3) and a zero pose (§ = 0) and global orientation. The
resulting mesh has no joint rotations, allowing the height to be calculated
simply as the difference between the vertices with the maximum and min-
imum y-axis values. For all the datasets, the pseudo-ground-truth shape
parameters are provided by our optimization method.

For the evaluation of our 3D pose and shape estimation model, we primar-
ily use a common metric in the field, the Mean Per Joint Position Error
(MPJPE). MPJPE quantifies the average error between the predicted 3D
joint locations and their corresponding ground-truth locations, specifically
measured using the Ly norm (Euclidean distance). The formula is given by:

K
1 *
MPIPE = 7 32 1: = Il

where K is the number of joints, J; is the predicted 3D location of joint
1, and J7 is the ground-truth location of the same joint. Since no dataset
provides the ground-truth 3D location of the joints, we use our optimization
method to get their pseudo-ground-truth location.

For the 2D pose estimation, we use PCK metric (Percentage of Cor-
rect Keypoints) with two different thresholds, 0.05 and 0.1. It is a metric
for the 2D pose that uses the reprojected 2D keypoints of the generated 3D
mesh. The PCK formula for a threshold 7 is the following:
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where N is the number of keypoints, I an indicator function, p; and p}
the predicted and ground-truth location of the keypoint ¢, D a normaliza-
tion factor equal to the length of the diagonal of the image and v; the con-
fidence score of the keypoint ¢ detection. The SyRIP and Relative Human
datasets initially provide ground-truth 2D keypoint annotations. Conversely,
the ChildPlay dataset only contains images, so we employ ViTPose to extract
the necessary 2D keypoints along with their confidence scores. The same key-
point extraction process was also applied to the BabyRobot dataset.

In 3D vision research, it is also essential to assess models and their re-
sults qualitatively. Some subtle information, such as the plausibility of body
proportions, interpenetration of limbs, or smoothness of the reconstructed
mesh, is not fully captured by quantitative metrics; thus, visual evaluation
remains a critical approach to comparing model quality.

PCK, =

Subjective Evaluation

To provide a quantitative assessment of qualitative performance,
we conducted a comprehensive subjective study. The primary objective
was to compare the efficacy of our proposed method against two baselines
HMR2.0 and BEV.

We developed a dedicated user questionnaire utilizing a carefully com-
piled test set of 39 images, sampled proportionally from the four primary
evaluation datasets. For each image, we generated and included the corre-
sponding 3D reconstructions produced by all three methods.

During the evaluation, each participant was presented with a random-
ized pair of reconstructions (stimuli) and was instructed to address three
distinct evaluative criteria:

1. Shape Fidelity: Which reconstruction exhibits the most accurate
body shape and topology?

2. Pose Accuracy: Which reconstruction demonstrates the most faithful
estimation of the subject’s 3D pose?

3. Overall Efficacy: Which reconstruction delivers the most effective
and visually convincing result?

If the participant could not determine the best reconstruction between
the two options, we provided a third possible answer: “Cannot determine”.
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The questionnaire provided a total of 25 paired comparisons per par-
ticipant. This comparative matrix was structured as follows:

e Our Method vs. HMR2.0: 10 comparisons
e Our Method vs. BEV: 10 comparisons

e Baselines Comparison (HMR2.0 vs. BEV): 5 comparisons

The comparisons between HMR2.0 and BEV served to establish an inter-
nal performance benchmark for the existing methods and a way to prevent
participants from learning the identity of each method.

Based on the aggregated results from the survey, we derived comprehen-
sive statistics concerning the preferred shape and pose estimation for each
method and for every image. This analysis allows us to not only compare
the overall efficacy of the proposed method against the baselines but also to
investigate performance variance across different datasets and demographic
groups (e.g., subject age).
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Experiments

6.1 Optimization-Based Experiments

Before selecting our optimization-based method as the primary approach
for generating training annotations, we conducted several experiments using
SMPLify-X and SLAHMR, applying multiple modifications to assess their
performance on our target domain. Below, we summarize these experiments
and their outcomes.

6.1.1 SMPLify-X

Using SMPLify-X as a baseline pipeline, we performed five variations to
evaluate its applicability for children and babies.

Simple Optimization

As a baseline, we tested the standard SMPLify-X pipeline on our dataset.
While the method performs well for older children, it fails for younger chil-
dren and babies, with errors in both shape and pose. This limitation arises
partly from inaccurate 2D keypoint detections due to the lack of child-specific
examples in OpenPose training data. Since SMPLify-X minimizes 2D repro-
jection error, poor 2D detections propagate to incorrect 3D reconstructions.

SMPL-A Instead of SMPL

A major limitation of SMPLify-X for children is its reliance on adult-
oriented models such as SMPL or SMPL-X. To address this, we replaced the
model with SMPL-A, which introduces an additional « parameter for inter-
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polating between adult and child mesh templates. Despite this modification,
improvements were modest, and significant errors persisted.

BEYV for Shape Parameters

Since previous attempts failed to recover accurate shapes, we incorporated
BEV, a method reported to provide superior shape estimates. We initialized
SMPLify-X with BEV’s shape parameters and kept them fixed during opti-
mization. This approach yielded the best results among SMPLify-X varia-
tions for older children but remained unreliable for babies, often predicting
adult-like proportions.

As we see in Figures 6.1 and 6.2, the shape of BEV is not accurate even
in cases where the face keypoints are clear in the image. Also, the estimated
pose is incorrect with fewer or more problems, in Figure 6.1 and Figure 6.2,

respectively.
(a
{7

Figure 6.1: Example of SMPL-A with BEV predicted shape parameters.
The BEV predicted shape is not accurate, and the pose has been estimated
incorrectly (the right arm).

ViTPose for 2D Keypoint Detection

To mitigate errors from inaccurate 2D keypoints, we replaced OpenPose
with ViTPose. This change improved pose estimation for challenging cases
but did not fully resolve 3D shape inaccuracies. Figure 6.3 illustrates a
direct comparison of SMPLify-X estimations when initialized using OpenPose
versus ViTPose 2D keypoint predictions. The figure clearly demonstrates a
marked improvement in the quality of the resulting 3D pose reconstruction
when utilizing ViTPose.
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>

Figure 6.2: Example of SMPL-A with BEV predicted shape parameters.
Inaccurate pose estimation from SMPLify-X.

k7

A ’ ‘ “ . » N \ vn_

(a) (b)

Figure 6.3: Comparison of SMPLify-X with OpenPose 2D Keypoints (a) and
ViTPose 2D Keypoints (b). The predictions of ViTPose are more accurate,
leading to a better 3D Pose Estimation.

Grid Search on «

We explored a grid search over the SMPL-A interpolation parameter «
within [0, 1]. For each value o € {0,0.1,...,1}, we performed SMPLify-X
optimization without adjusting a. We then selected the reconstruction with
the lowest fitting loss. Results showed minimal improvement compared to
standard optimization. As shown in Figure 6.4, the optimal value for « is 0.9,
which also yields the best qualitative results. For smaller o values, the model
struggles to adapt to the infant’s proportions, resulting in unrealistic recon-
structions that resemble an adult body. As « increases, the reconstruction
more accurately captures the infant’s body shape. However, at the extreme
value representing a pure infant template (o = 1), the optimization fails,
producing a 3D mesh that is not anatomically plausible. This highlights a
critical balance in the model: too little or too much emphasis on the infant
template can lead to poor results, underscoring that the optimal solution lies
in a carefully tuned blend.
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Extra experiments

Finally, we conducted two more experiments that produced poor results.
In the first one, we used the SMIL model to test the pipeline. As we already
knew, SMIL is an infant-specific model and not a universal model. Hence,
the modeling of adults and children with SMIL using SMPLify-X pipeline is
unsuccessful. The main problems are the proportions of the torso and the
head, which are thinner in adults than in infants.

The second experiment was inspired by an observation from the grid
search on the o experiment. Specifically, it appears that children of similar
age are expressed with a similar o value. Knowing the age of each person in
an image could give us some statistics on the distribution of the o value and
the ages. Using this distribution, we would then select the a value based on
it, either without performing a grid search or by performing a grid search on
a smaller o value interval. The main issue with this experiment is the age
estimation model. Unfortunately, these models work only with the face and
are trained mostly on adult data, being unreliable in estimating the age of
children and babies.

6.1.2 SLAHMR

We also evaluated SLAHMR adapting the pipeline to work with the
SMPL-A model and conducted several experiments to improve performance
for children and babies.

Simple Optimization with SMPL-A

First, we tested the SLAHMR pipeline using the SMPL-A model. Con-
sistent with preliminary observations, SLAHMR outperformed SMPLify-X
in most cases. However, for babies, shape estimation remained problematic,
particularly when 2D facial keypoints were inaccurate or unclear. In such
cases, incorrect face proportions led to suboptimal « values and unrealistic
body shapes.

In Figure 6.5, we can see the improvement of SLAHMR with SMPL-
A compared to SMPLify-X with SMPL-A. In the SLAHMR case, the body
shape corresponds to an infant with a correct 3D pose, while in the SMPLify-
X case, both the estimated 3D pose and shape are incorrect.

Grid Search on «a

To address sensitivity to «, we performed a grid search similar to the
SMPLify-X experiments. Specifically, SLAHMR was run 11 times with « €
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Figure 6.5: Comparison of SLAHMR with SMPL-A (left) and SMPLify-X
(right).

{0,0.1,0.2,...,1}, and the solution with the lowest total loss was selected.
Although this approach occasionally improved results, it was computationally
expensive and impractical for large-scale annotation. An example of the 11
results of the grid search is illustrated in Figure 6.6. Figures corresponding to
small o values demonstrate a fundamental limitation of the model: they fail
to capture the child’s unique body morphology, instead regressing to a generic
adult shape within the infant image. Conversely, as the « values increase,
the model successfully approximates an infant’s body shape. However, this
accuracy comes at a cost, as these reconstructions display significant and
unrealistic deformations in peripheral areas, most notably the feet, due to
the complex pose of the infant. This suggests a trade-off between overall
body shape accuracy and the preservation of fine details.

Freezing Shape Parameters

We explored freezing the shape parameters B while optimizing the re-
maining parameters. Two strategies were tested: (1) setting all betas to zero
and optimizing only «, and (2) initializing shape with BEV predictions and
keeping them fixed. Both strategies yielded similar results to those of pre-
vious experiments, without significant improvements in quality. An example
is shown in subfigure (1) of Figure 6.6.

Final configuration - Initialization of o at 1

As discussed in Section 3.4.4, a = 1 corresponds to the child-specific
template. Since our primary focus is on children and babies, we initialized o
at 1 instead of 0, allowing the optimization to proceed from a child-centered
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(c) a=0.2

() a =09 (k) a=1 Wa=1,8=0

Figure 6.6: SLAHMR results of the grid search on «. Figure (1) shows the
results when all the shape parameters are equal to 0, and the interpolation
weight is equal to 1.
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starting point. This modification consistently improved the quality of the
reconstruction compared to previous configurations. This setup represents
the finalized optimization-based method used to generate the pseudo-ground-
truth annotations for the subsequent deep learning model training.

SyRIP-Specific Optimization

The previous experiments suggested that for baby images, o values near
0.9 often yield the best results. The SyRIP dataset contains many such cases
where facial keypoints are unreliable, leading to poor shape estimation. To
address this, we ran SLAHMR with « fixed at 0.9 while optimizing all other
parameters. Results were comparable to those of our final configuration, with
slight improvements for unclear faces. However, SLAHMR still struggled to
produce plausible shapes for some baby images, even with this constraint.

6.2 Training Experiments

With all the data prepared, we conducted a series of experiments to opti-
mize our model’s performance. Our starting point was the HMR2.0b model,
as the authors provided both the model checkpoint and the datasets. The
model consists of three trainable parameter types: the Vision Transformer

(ViT) backbone, the SMPL-A head, and the discriminator. The following
sections briefly describe the different training experiments.

6.2.1 Fine-Tuning HMR2.0

The most direct approach was to fine-tune the HMR2.0 model checkpoint
on our new dataset, which mostly contains data on infants and children. This
method presented challenges due to the demographic differences between the
original HMR2.0 training data (predominantly adults) and our dataset, as
well as the disparity in dataset sizes. Our experiments involved modifying
two factors: the training data and the model weights being optimized.

For the training data, we fine-tuned models using only our new dataset in
some experiments, while in others, we used a mixture of our dataset and the
original HMR2.0 datasets. We assigned a greater weight to our dataset in
the mixture, aiming to extend the model’s knowledge to children and babies,
which our dataset primarily contains.

Regarding the model’s parameters, we explored three configurations:

1. All weights fine-tuned: Initially, we fine-tuned all the weights of the
HMR2.0 model, including the ViT backbone, the SMPL-A head, and
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Figure 6.7: Example from fine-tuning. The model cannot learn the training
data and fits an adult body to infants.

the discriminator. The results showed that the model failed to learn
from our training data. An example is shown in Figure 6.7, where while
the 3D pose is accurate, the body shape refers to an adult.

2. Sequential fine-tuning: In a second approach, we fine-tuned the ViT
backbone separately, followed by the SMPL-A head and the discrimi-
nator. Despite this different training flow, the results were consistent
with the case of training the entire model.

3. Frozen backbone: Finally, we froze the pre-trained ViT backbone
and fine-tuned only the SMPL-A head and the discriminator. This
approach also did not lead to an improvement in results.

We should note that since the HMR2.0 original checkpoint had a slightly
different architecture (it uses SMPL instead of SMPL-A), we made a “model
surgery” for the fine-tuning. More specifically, we expanded those parameters
relative to the shape from 10 dimensions to 11. The initialization of these
new weights and biases was either zero or a small random value in other
experiments.

6.2.2 Training from Scratch

Given the unsuccessful fine-tuning attempts, we decided to evaluate the
model’s capacity to learn from the children and baby data by training it from
scratch. Indeed, the model was able to be trained correctly and learned the
training data. Therefore, a different training practice was followed.

Using the mixture of datasets as shown in Table 5.2, we trained a new
model from scratch. Although the 3D shape was predicted with great results,
the 3D pose exhibited issues. Since the ViT backbone is primarily responsible
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il

Figure 6.8: Example during the training of the model from scratch. The
model learns the training data and correctly predicts the 3D shape and pose
of the infant in the image.

for the 3D pose, we used the pre-trained backbone and trained the other two
types of parameters from scratch. The results indicated that while the model
could accurately estimate the pose of adults, it was unable to correctly fit to
an infant, with notable inaccuracies in the head region.

6.2.3 Final Training Configuration

Due to the unsatisfactory results obtained from more straightforward
training and fine-tuning approaches, we adopted a combined training and
hybrid model strategy. Initially, we trained a model from scratch, utilizing
both the original HMR2.0 training datasets and our custom datasets. While
this model learned to estimate the 3D shape successfully, we observed per-
sistent issues with pose estimation. Testing the original HMR2.0 checkpoint
on the same images revealed its superior pose accuracy. Consequently, we
devised a hybrid model: we combined the SMPL-A head and the discrim-
inator from our newly trained model with the ViT backbone derived from
the original HMR2.0 checkpoint (which was pre-trained on 2D keypoint es-
timation). Despite the immediate improvement in results, this new hybrid
configuration requires further fine-tuning for a few epochs to ensure optimal
adaptation and alignment between the distinct components. Following this
fine-tuning, the model achieved the best results across all previous experi-
ments, demonstrating high accuracy in both 3D shape and pose estimation.
Figure 6.8 shows an example of a reconstruction during the training process,
where it is clear that the model learns both the shape and the pose.
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Results and Discussion

7.1 Optimization-based Method

Finally, our first method seems to provide high-quality results in most
cases. It can model all ages and correctly identifies whether there is a baby, a
children or an adult. We provide some examples of how it works in Figure 7.1
for the ChildPlay, in Figure 7.2 for the SyRIP, in Figure 7.3 for the Relative
Human, and in Figure 7.4 for the BabyRobot dataset. In all cases, the results
are very satisfactory for every age group the method tries to model. It can
capture difficult poses, multi-person scenarios, and natural or not obstacles
and occlusions. The quality of these results led us to use this method for
the annotations for our custom training dataset to train the deep learning
model.

Figure 7.1: Examples of the optimization-based method from the Childplay
dataset. The method can handle difficult poses and humans of every age.
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Figure 7.2: Examples of the optimization-based method from the SyRIP
dataset. The babies are modeled correctly, even in difficult poses.
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Figure 7.3: Examples of the optimization-based method from the Relative
Human dataset.

Figure 7.4: Examples of the optimization-based method from the BabyRobot
dataset.

7.2 Evaluation Results and Discussion

Quantitative Evaluation

To assess our model’s performance, we present a comprehensive evalua-
tion across several key metrics and datasets.
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Height Table 7.1 shows the general 3D evaluation results across all datasets
using the AHD (Average Height Difference) and APHD (Average Per-Joint
Height Difference) metrics.

Table 7.1: Model Evaluation using AHD (m) and APHD (%) metrics. Lower
absolute value is better.

Method SyRIP Relative Human ChildPlay BabyRobot

AHD | APHD| AHD| APHD| AHD| APHD| AHD| APHD |
(m) (%) (m) (%) (m) (%) (m) (%)

ProHMR [30] -1.011 -161.76 -0.098 -17.73 -0.477 -92.01 -0.562 -56.69
HMR2.0b [16] -0.980 -157.62 -0.075 -16.18 -0.468 -90.80 -0.534 -54.27
BEV [62] -0.528 -91.8 -0.009 -12.5 -0.067 -42.8 -0.359 -38.92
Our Model -0.118 -25.97 0.088 -4.56 -0.190 -60.23 -0.354 -36.83

Based on these results, our proposed model demonstrates very good per-
formance, particularly when considering subjects with non-adult anthropom-
etry. The overall lowest AHD and APHD confirm the superiority
of our approach in handling diverse human scales.

The results on the SyRIP dataset, which is dedicated exclusively to in-
fants and toddlers, most clearly highlight this achievement. Here, our model
achieves a significantly lower APHD than all competing methods,
confirming the effectiveness of incorporating the SMPL-A model and spe-
cialized training strategies for accurately estimating highly non-adult body
shapes. In Figure 7.5, we provide some examples of the fitting of our model
compared to the HMR2.0b checkpoint and BEV. It is obvious that our model
fits a baby’s body to the images, while the original HMR2.0 provides an adult
body, leading to an unrealistic shape and pose. The BEV results show an im-
proved body shape for infants, but the estimated pose and the overall fitting
quality are generally unreliable.

In the Relative Human and ChildPlay datasets, which contain a mix of
children and adults, the results are more balanced across all methods. This
moderation is primarily due to two factors: 1) the presence of severe occlu-
sions and truncations, which limit the performance gains of all techniques,
and 2) the high estimation accuracy of existing baseline methods on the adult
subjects, given their extensive training on standard adult datasets. Despite
these challenges, our model maintains a clear performance advantage
on these datasets except the ChildPlay dataset and BEV method,
which shows a better APHD over our method. This happens mainly
for two reasons. The first one is that BEV in about 30% of the images did not
detect any human and could not make its estimations. These subjects are
not considered in the metric and have affected the results. Secondly, BEV
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Figure 7.5: Examples of the proposed model ((e),(f)) compared to the
HMR2.0b model ((a),(b)) and BEV ((c),(d)) in images from the SyRIP
dataset.

is actually an effective method in child shape modeling and it can produce
better results than existing methods. In Figures 7.6 and 7.7 we illustrate
some results in Relative Human and ChildPlay images. Our model provides
as good as the original’s HMR2.0 results for adults and significantly better
for children. Once again, the BEV results reveal the recurring issues with
pose estimation, despite achieving high accuracy in estimating the children’s
shape.

The BabyRobot evaluation provides a compelling case study regarding
the influence of age on model generalization since the model’s performance
remains comparable to the best baselines. This phenomenon is largely at-
tributed to the older average age and resulting body proportions of the
children within this dataset. As their height and limb-to-torso ratios be-
gin to approximate adult metrics, the geometric priors embedded in general
adult body models become surprisingly effective, enabling baseline methods
to achieve results that nearly match our specialized approach. Moreover, the
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Figure 7.6: Examples of the proposed model ((d),(e)) compared to the
HMR2.0b model ((a),(b)) and BEV ((c)) in images from the Relative Human
dataset.

small amount of training data for these ages contributes to this result. Again,
BEV results are very close to ours due to the use of SMPL-A, but our model is
slightly better. Two visual examples comparing our method to the HMR2.0b
checkpoint and BEV are illustrated in Figure 7.8. Crucially, our method
consistently captures the child’s shape more accurately. This leads
to a more realistic pose, as the imposed adult body proportions of HMR2.0b
often fail to map precisely to the child’s specific poses. More specifically, in
both presented cases, the legs of the children appear erroneously bent when
modeled with HMR2.0b, while our model yields a visually more accurate and
realistic pose. The illustration of the BEV proves the quantitative results in
BabyRobot.

In Table 7.2, we present the average predicted height (in meters) from
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(
Figure 7.7: Examples of the proposed model ((d),(e)) compared to the
HMR2.0b model ((a),(b)) and BEV (c) in images from the ChildPlay dataset.

our method compared to the evaluation baselines. This specific analysis is
conducted only on the SyRIP and BabyRobot datasets because these are
the only two evaluation sets comprised exclusively of infants and children,
respectively. Including other datasets with subjects from all age groups would
lead to misleading conclusions regarding the model’s accuracy in the non-
adult domain.

Method SyRIP BabyRobot

ProHMR 1.712 1.718
HMR2.0b 1.705 1.717
BEV 1.249 1.528
Our Model 0.848 1.524

Table 7.2: Average predicted height in m.
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Figure 7.8: Examples of the proposed model ((c),(d)) compared to the
HMR2.0b model ((a),(b)) in images from the BabyRobot dataset.

Based on the results, the superiority of our method is clear. The SyRIP
dataset contains only infants, yet the predicted average heights reported by
the baselines are significantly overestimated and highly unrealistic for this
age group, suggesting a reliance on adult geometric priors. In contrast, our
method, which is trained using specialized data and the SMPL-A model,
yields an average predicted height of 0.848m, providing a more re-
alistic and biologically plausible result for infants. Similarly, for the
BabyRobot dataset, our approach provides a more realistic average height
estimation, further validating the necessity of a child-specific body modeling
strategy.

Table 7.3: 3D Pose Estimation. Model Evaluation using MPJPE (MPJPE
in mm). Lower | is better.

Method SyRIP ChildPlay BabyRobot
ProHMR [30] 515.24 494.82 505.56
BEV [62] 452.73 424.41 380
HMR2.0b [16] 55.47 314.92 252.08
Our Model 287.84 318.26 258.51
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3D Pose For 3D pose accuracy, we present the evaluation results in Ta-
ble 7.3 using the primary metric, MPJPE (Mean Per Joint Position Error),
comparing our model with the baselines across the three key datasets.

The evaluation of the 3D pose shows that our model surpasses BEV,
the method that can estimate the 3D shape and pose of children and infants
more accurately, in all datasets. A surprising result is that while HMR2.0
estimates infants in SyRIP with an average height of 1.70m, it achieves the
lowest MPJPE in this dataset. This can be explained by the very good
fitting of the SMPL model to the 2D keypoints from HMR2.0. Our model
achieves almost the same MPJPE with HMR2.0 in ChildPlay and
BabyRobot, showing its effectiveness in 3D pose estimation.

Table 7.4: 2D Pose Evaluation. PCK scores of projected keypoints at differ-
ent thresholds. Higher 1 is better.

Method SyRIP Relative Human  ChildPlay BabyRobot

@0.05 @0.1 @0.05 @0.1 @0.05 @0.1 @0.05 @0.1
BEV [62] 0.34 0.57 0.32 0.55 0.43 0.73 0.61 0.86
HMR2.0b [16] 0.79 0.98 0.48 0.62 0.76 0.94 097 0.99
Our Model 0.63 0.88 0.30 0.51 0.51 0.81 0.89 0.97

2D Pose Finally, in Table 7.4, we present the results of the 2D pose eval-
uation using the PCK (Percentage of Correct Keypoints) metric with two
different thresholds (0.05 and 0.1). For this comparison, all available evalua-
tion datasets are used to assess the robustness of the methods’ 2D keypoint
prediction.

Based on the results, our model effectively estimates 2D pose across
all datasets, outperforming the BEV method, which is designed to
model children, on every dataset except Relative Human. The superior per-
formance of BEV on the Relative Human dataset is attributed to its inclusion
of this dataset in its training. The HMR2.0b model consistently achieves the
highest PCK score for 2D pose estimation across all datasets. While our
model was trained on the same datasets as HMR2.0b, the difference in re-
sults can be attributed to architectural variations and the incorporation of
the SMPL-A body model, in contrast to HMR2.0b’s use of the standard
SMPL model.

Subjective Study

The subjective study was conducted with a sample of 30 anonymous
participants from different academic backgrounds to achieve a more diverse
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representation. Table 7.5 shows the cumulative results of the pairwise results,
Our model vs BEV and Our model vs HMR2.0. In Table 7.6, we further
analyze these numbers for pairwise comparison by question category, i.e.,
shape, pose, and overall.

Table 7.5: Subjective Study Results: Cumulative Pairwise Comparison
(Overall Win Rate). The total number of comparisons is 900 per pair.

Comparison Pair Method Win Rate (%)
Our Model 75.89
Our Model vs. BEV BEV 17.99
Cannot Determine 6.89
Our Model 50.22
Our Model vs. HMR2.0 HMR2.0 39.44
Cannot Determine 17.34

The results of the subjective user study show a clear improvement of
our method over the baselines, HMR2.0 and BEV, in modeling non-adult
populations. Our model was preferred across every category tested:
shape fidelity, pose accuracy, and overall quality, when compared
head-to-head with both BEV and HMR?2.0.

More specifically, our model was selected in approximately 75% of
the comparison votes against BEV in all categories, demonstrating a
significantly higher perceived quality of reconstruction by human evaluators.
When compared against the HMR2.0 model, our model still outperforms the
baseline, though the margin is smaller, accompanied by a greater percent-
age of indecisive votes. The fact that our model maintains an advantage,
particularly in the pose category, is encouraging given HMR2.0’s established
performance in 3D pose estimation. For completeness, we note that in the
direct comparison between BEV and HMR2.0, the participants overwhelm-
ingly preferred the HMR2.0 reconstructions, confirming its established per-
formance and highlighting the need for improvement from BEV.

Aggregating the results across all categories, we calculated the cumulative
win rate. When considering only the comparisons involving our model, i.e.,
eliminating the BEV vs. HMR2.0 comparisons to avoid misleading totals,
our method was preferred in more than 60% of the total answers,
unequivocally providing the best overall reconstructions. These ag-
gregated results also show that participants perceived our shape estimation
as more accurate than our pose estimation—a finding directly confirmed by
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Table 7.6: Subjective Study Results: Pairwise Comparison Win Rates by
Category. The total number of comparisons for each pair is 300 per category
for all Our Model vs. baseline pairs (Our Model vs. BEV and Our Model
vs. HMR2.0) and 150 per category for the HMR2.0 vs. BEV pair.

Category Comparison Pair Method Win Rate (%)

Our Model 76.33

BEV vs. Our Model BEV 16.33

Cannot Determine 7.34

S Our Model 52.33
hape  {\[R2 0 vs. Our Model HMR2.0 29.67
Cannot Determine 18.00

HMRZ2.0 69.33

HMR2.0 vs. BEV BEV 22.00

Cannot Determine 8.67

Our Model 76.67

BEV vs. Our Model BEV 20.00

Cannot Determine 3.33

p Our Model 49.00
ose HMR2.0 vs. Our Model HMR2.0 35.33
Cannot Determine 15.67

HMRZ2.0 76.00

HMR2.0 vs. BEV BEV 19.33

Cannot Determine 4.67
Our Model 74.67

BEV vs. Our Model BEV 15.33

Cannot Determine 10.00

o 1 Our Model 49.33
vera HMR2.0 vs. Our Model HMR2.0 32.33
Cannot Determine 18.34

HMR2.0 72.00

HMR2.0 vs. BEV BEV 19.33

Cannot Determine 8.67

our quantitative evaluation metrics. The final results lead to the strong con-
clusion that the proposed model establishes a clear subjective perfor-
mance advantage over both baselines, with a substantial preference
gap of over 10% in win rate for the total comparison votes.
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7.3 Limitations

Despite achieving promising results in the estimation of 3D shape and
pose, the visualization and quantitative evaluation of our model reveal sev-
eral inherent limitations within the current methodology, particularly when
applied to challenging imagery.

First, our methods inevitably contend with the depth and pose ambiguity
inherent to 3D reconstruction from a single 2D image. This ambiguity is
severely exacerbated when significant occlusion (whether self-occlusion or
scene occlusion) or truncation is present. Such failure examples are illustrated
in Figure 7.9.

As the evaluation results confirm, 3D pose estimation remains a sig-
nificant challenge in datasets featuring both occlusions and non-adult sub-
jects. Specifically, in these challenging evaluation subsets, the MPJPE metric
reached values of approximately 10cm. An average error of 10cm between
the predicted and ground-truth joint locations represents a substantial error,
highlighting a critical area for future improvement.

(b) Failure of 3D Pose Estimation due
to Severe Truncation. The model esti-
mates a SMPL body in a standing pose
(a) Failure in 3D pose estimation due because the image is cropped to only
to natural occlusions from the infant’s  show the child’s face, while a human un-
pose. derstands that the children are sitting.

Figure 7.9: Failures of our models in 3D pose estimation.

Furthermore, the model’s capacity for accurate child modeling is sig-
nificantly hampered by the scarcity of child-specific training data and the
disproportionately large volume of adult examples in the current dataset.
As previously explained, the sensitivity and ethical constraints surrounding
children’s data hinder the development of large-scale, child-specific datasets.
Decreasing the size of the adult training sets would, however, deteriorate the
generalization quality of the results due to a reduction in observed exam-
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ples. Consequently, there is an unavoidable trade-off between generalization
quality and child-specific accuracy.

It should be mentioned that despite the general good performance of our
methods, the ability of the SMPL-A model to accurately describe an infant
can be problematic in combination with the optimization process. These
limitations are visualized in Figure 7.10, where complex poses and occlusions
lead to anatomically implausible 3D shape estimations for the infants.
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Figure 7.10: Visualizing the optimization method’s limitations on infant
data. Challenging input conditions, including severe physical occlusions and
complex poses, frequently result in anatomically implausible 3D body shape
estimations.
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Chapter 8

Conclusion and Future Work

8.1 Summary of Contributions

In this thesis, we address the critical challenge of 3D human shape and
pose estimation with a specific focus on the non-adult population. Current
state-of-the-art methods, primarily designed and trained on adult bodies,
exhibit significant performance degradation when evaluated on images of
children and infants due to the reliance on adult-centric geometric priors
(e.g., the standard SMPL model). Motivated by this gap, we propose a novel,
two-stage methodological approach that leverages and significantly improves
existing deep learning systems for robust application across all human age
groups.

We introduce a specialized optimization-based shape and pose estimation
method, adapted specifically for use with the SMPL-A body model, which is
highly effective across diverse adult and non-adult proportions. This method
is crucially employed to generate high-quality pseudo-ground-truth annota-
tions for existing public datasets that feature children and infants, directly
addressing the critical scarcity of annotated non-adult training data. We
then utilize this newly augmented dataset, combined with a diverse mix-
ture of predominantly adult datasets, to train a novel, specialized HMR-
like transformer-based neural network. This network estimates 3D shape
and pose via single-image regression, successfully integrating a robust pre-
trained ViT backbone with a customized prediction head tailored for the
11-parameter SMPL-A body representation.

Our approach quantitatively and qualitatively demonstrates excellent per-
formance, establishing a new benchmark against modern, similar works in the
challenging domain of non-adult 3D estimation. Furthermore, the subjective
user study validates the perceived quality and anatomical plausibility of our
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reconstructions among a diverse sample of participants. Finally, we estab-
lish a viable methodology for ethically releasing sensitive data by sharing
3D human reconstructions instead of raw imagery. This process inherently
anonymizes the identity of the subjects (children and infants) while providing
accurate 3D body and motion information essential for subsequent motion
analysis and action recognition tasks. The BabyRobot dataset exemplifies
this approach, offering 3D reconstructions of children interacting with robots,
complete with diverse actions, gestures, and spatial movements.

8.2 Future Work

Our current methodology utilizes the SMPL-A model, which is limited
to modeling the human body’s shape and pose. To advance this work and
achieve a more comprehensive representation of human form, several key
areas will be addressed in future research.

Future work will incorporate more sophisticated and holistic models, such
as SMPL+H and SMPL-X, to enable the modeling of articulated hands and
facial expression, respectively. This will provide a more complete, and ar-
guably socially relevant, representation of the human body, capturing crucial
details involved in interaction and expression.

However, this expansion introduces significant ethical and technical chal-
lenges, particularly when extending to sensitive populations like children and
babies. Modeling features like facial expression and identity necessitates
meticulous attention to data privacy, consent, and subject well-being. Re-
search in this domain must prioritize these factors above purely technical
performance.

To overcome the inherent limitations of adult-centric body models, the
development of child-specific body models is critical. Since children and ba-
bies exhibit distinct anthropometric proportions and a unique shape-space
manifold compared to adults, generic adult models like SMPL-A often intro-
duce unrealistic deformations or anatomical inaccuracies. While the creation
of such a model promises a significant improvement in result quality, it is
contingent upon securing the high-quality, dense 3D scan training data that
remains scarce in this sensitive domain.

Last but not least, the use of different types of input information can
drastically improve the quality of 3D reconstructions. Specifically, leverag-
ing temporal data (video), since a person’s shape is constant across multiple
frames, can constrain the optimization for better shape estimation. Further-
more, the use of multiple views of the same scene (multi-view cameras) is
beneficial for both pose and shape estimation, as different spatial perspec-
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tives reduce 3D ambiguity and yield more accurate reconstructions. These
advanced methodologies can then be applied to existing datasets, such as
BabyRobot, which contains videos from multiple cameras. This ultimately
allows us to create highly accurate 3D meshes of people that can be used as
high-fidelity ground-truth annotations in future 3D shape and pose estima-
tion tasks.
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