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OTEATNYIXWY O GUVITXES o TPoceYY(Louy TGTA TNV TEoyUaTIX TN T,
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Abstract

Large Language Models (LLMs) have demonstrated strong potential in complex decision-making tasks, show-
ing promise for financial trading applications that demand the integration of diverse information sources,
reasoning under uncertainty, and adaptation to rapidly changing market conditions. However, progress in
this direction is limited by the absence of realistic market environments tailored to the assessment of trading
agents, as well as a shortage of well-optimized frameworks capable of fully leveraging LLM capabilities in
such challenging domains.

This thesis addresses these gaps through a two-stage contribution. First, we present StockSim, an open-source
simulation platform that realistically models the behavior of financial markets and supports the development
of LLM-based trading agents. StockSim extends beyond simplified historical backtesting by emulating the
dynamics of live trading, where agents place fully specified orders - including type, price and quantity -
that execute in alignment with actual price movements. The platform also captures order timing, execution
delays, and the effects of market activity on price formation. Its flexible configurations, diverse data sources,
and multi-agent support enable the creation and evaluation of advanced trading strategies under conditions
that closely mirror real-world scenarios.

Building on this foundation, we introduce ATLAS (Adaptive Trading with LLM Agent Systems), a co-
ordinated multi-agent trading framework that integrates specialized analysts for market trends, financial
news, and company fundamentals, synthesizing these perspectives into coherent strategies. At its core,
ATLAS incorporates Adaptive-OPRO, an enhanced Optimization by PROmpting method that iteratively
refines decision-making based on trading outcomes, yielding progressively better performance. Extensive ex-
periments show that Adaptive-OPRO consistently outperforms both traditional quantitative strategies and
existing LLM-based approaches, while ablation studies confirm the complementary contributions of each
component in the framework. ATLAS also improves transparency in the decision-making process, fostering
trustworthy collaboration and enabling more reliable deployment alongside financial experts.

Our results reveal distinctive behavioral patterns in LLMs, providing new insights into their capabilities
and limitations in high-stakes financial contexts. These findings are grounded in rigorous multi-run evalua-
tion protocols that expose severe reliability issues in the single-run assessments common in prior literature,
underscoring the need for robust evaluation in complex sequential decision-making settings.?

Keywords — Large Language Models, Multi-Agent Systems, Prompt Optimization, Sequential Decision-
Making, Financial Trading, Market Simulation, Explainability, StockSim, ATLAS, Adaptive-OPRO

2Code available at github.com/harrypapa2002/StockSim.
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unoothiele)) Toug unhpgay avextiuntes yia yéva xan xadoplotixéc yio 6oa netdyape pall. Hepdoaye otiypée nou
Yo Yuudpon mavto we Evar and Tal To {wVTAVE XEQPAAMA TNG AXodNUIXNE oL TTopelag.
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pe oydmn, xatovonon xa othein. Hroav exel yio va ye eviappidvouy, va pe otnpl€ouy otic B0ox0oAec oTLyUéS
ol VoL LotpaoToOY all oL TIC YUPES TWV UXEMY XL UEYTAWY ETLTUYLOV.

IMomaddnme Xoptdnuoc, OxtodBene 2025
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Chapter 1

Extetoapevn Ilepiindn oto EAAN VX



Chapter 1. Extetopévn Ieptindmn ota EAAnvixd

1.1 Ewayowyn

To tedevtaio ypovia, 1 porydoia e€EMEN Twv Meydhwv Mhwoowxdv Movtédwy (Large Language Models, LLMs)
EYEL OVABLUUORPWTEL TOV TPOTO Ye Tov onoto avThauPavouacte Tig duvatdtnteg e Teyvntic Nonpooivng oe
npofAuata obvietne culhoyiotrc xou AMdng anogdoewy. Ta cOyypova LLMs uropolv xau enc€epydlovtan
TEPAO TIOUS HYXOUE ETEPOYEVADY BEBOUEVKV, CUVIETOUY TATEOPORIEC amd TOMNATAES TNYES Xl TOPAYOUY GUVEX-
TiéC, TEXUNELOUEVES anoxpioelc o éva eupl @doua epopuoy®y. Kadde mpooeyyilouv xou cuyvd vrepBaivouy
Tic avlpdmives emBOOEC OE OAOEVA Yol THO amaLTNTIXG TpoBAAuoTa, auEdveton avtioTolyo To EPELYNTIXG XoL
TEOXTIXG EVOLPEROV YLl TNV OCPUAT) X0l ATOTEAECUOTIXY AELOTOINGY| TOUG O TROYUATIXES EQUPUOYES UE LPNAO
BtaeOPBeBuo.

Y10 mhaiolo auTd, Ol YENUATOOLXOVOUXES AYOREC AMOTENODY €va amd T TLo amantnTixd nedia doxurc. Ilpdxeiton
yia nepiBdAhovTa Mng ano@doewy pe VAT oBeBadOTNTO, OUCLMBELC CUVETEIEC X0 COPAOC UETENOWO ATOTEAED-
potar [78, 58, 47]. Kadnuepwd, or cuppetéyoviec ocuvdudlouv texvixols deixtee, Jeuehddrn avéluor, edfioeic
%o EMEVOLTIXG aloUnua, AauPBdvovTog amoQdoel TeY OTolwy 1 TOLTNTO CUYVE amoxahiteTon Wovo ot Bddog
xeoévou. To LLMs, pe tnv @avoTnTo. TOAUTROTUXHAC XATAVONONS X0k TNV TEOCUQUOC TIXOTNTE TOU ETUDEVOOLY,
BLleuphVOULV TIC BUVATOTNTES EVOTIOIMONS ETEPOYEVAY JEDOPEVLV X oYEDIICoUOY oTpathyxdy [9, 43].

ITépo and 1 yenotiny| toug oéla, ol ayopéc Slotétouy yopaxtneloxd mou ¢ xohotolv Wovixd nedlo oli-
ohéynomne twv LLMs. Xe avtideorn ye ouvdeuxd npdtuna afiohéynone (benchmarks), nov cuyvd Basilovion
og amAOUCTEVCELC 1) PETATOTUOELS XATOVOUNS, Ol YPNUATIOTNELIXES YPOVOOELREC TROCHEPOLY EXTEVY| LOTOPIXY
Oedopéva amohAaYUEVE TIC OTEEBAWCEL TWV TEYVNTWY LTOVECEWY ULOG TPOCOUOIWONS, EVE AMoUToUV YvAaLo
xatovdnom avti yio empaveion avory voplon tpotinwy. To nedio anoutel v evonoinom Sounuévey aprduntixdy
otouyelwv (Tyée, delxtec) pe addunto xelpevo (edfoeie, avahboels), allohoydvac Ty avotnta t1owv LLM va
culhoyilovtar Tohutpomxd. Emniéov, oL yenuatooxovouixéc ayopés dlaxpivovtal and uPniy ctoyaoTixdTnta
oL EVTOVY) BUVAULXY, YoEOXTNELOTIXE Tou eEXVETOLY Yeryopa EVVPUUCTES 1) UTEQTROCUPUOCUEVES TTposEYYioELS
xou avtopeBouy T yvHola aviextixdno.

IMopd Tic TOANE UTOGYOPEVES TROOTITIXECS, 1) AVATTUEY ATMOTEAECUATIXGY CUGTNUETLY GUVOAAAY Y BACLOUEVHY OE
LLMs avtyetwn{let onuavtixég duoxohlec. Yuyxexpiéva napatneeiton EAAELPN TUTOTOINUEVGDY, ONOXANPWUEVKY
TAUGIWY TPOCOUOIGTE AVOLXTOU XWX, EWBLXE OYEBACUEVKVY Yia AUOTNET], PEAoTIXY adloAdYNoN ot TeplBdA-
Aovta cuvahhory v [37, 44]. Ou undpyouoes AMIGEC EITE XUTOPEVYOUY OE ATANOUGTEUREVES TPOCOUOLDTELS TOU
Topaheinouy xplowes Aemtopépetes wixpodourc (xaduotephioeic, BBhio eVIOAGY, EMTTOOE 0TV ayopd), eite
anodidouv moTd TN UV e oryopds adid Bacilovton oe axplBd xou meploptopéva dedouéva, UTOVOUEDOVTIC
T BUVOTOTNTA OVATOROY WY NS Xot EVpelag uloYETnong.

Emniéov, peydho uépog twv tpéyoviwy mpoceyyloewy eupavilel tpelc douxée aduvapieg: (i) edptnom omd
otatixéc Tpotponéc (prompts) ywelc Ty duvatdtnta tpocuppoyhc ot petoforidueves cuvdiixec- (ii) amopov-
UEVN Mn ano@doewmy, Ywplc cUVTOVIOUS EEEITIXEVUEVLY VONUTOY OE BLopopeTXéS TTUYES TN aryopdc: xa (iii)
UTEPATAOVG TEVGT] TOU Y(DPOU EVERYELWY, PE Eupoon ot tpofhédeic xateduvone avtl yia TATPELS TpOdLaYpopES
evIoh@V (t0nog, TochdTNTa, T, YPOVIoROS, dlayeiplon ploxov).

H nopotoa epyacio avuiyetoniler autd o xevd Ue pia SLTTY CUVELGPORd: apevog VETel TNV UTOBOUT| YIol GUC T
portinn) xan peahio tixn alohdynomn mpaxtopny Pooctouévwy e LLMs oe ypnuatooovopnég ayopéc xou apetépou
npoteivel yetodohoyixéc npoceyyloeic Yot Tov anoteAecpatixd oyedlaoud xal ) cuveyl BertioTonolnon autoy
TWY CUCTNUATWY.

H nptn ouvelopopd elvar to StockSim: pla mhat@dpuo mpocopolwone avoxtod x@BX ToU YEQUEMVEL TO
ydopa petall amhoustevpévne avadpouxhic ailohdynone ot totopixd dedopéva (backtesting) xou mporyaTinddy
ouvinxay extéheone. Hpoopépel Vo cuUTANELUATXOUE TPOTOUS AELOAGYNONG:

e Eninebo evtoddy (order-level): mpocopoidver havddvouoes xaduotepfioels, alknheniSpoon pe to BiBAio
EVIOADY %ol PEAALOTX EXTEAEOT YE THIOVEC ETUNTAOCELS OTNY AYOPd.

o Emninedo ypapnudrwy kepidv (candlestick level): emTpénel xAUAXOUUEVO TELGUOTA OE EXTETOUEVOL YPOVIXS
OLIOTAATO XoU TTOMNKATTAG GEVApLYL, UE XAVOVES EXTENEONS EVTUYPUUULOUEVOUG UE T1] YPOVIXY| AVAAUGCT] TGV
BeBOUEVWLV.

H apdpwth apyttextovixn tou StockSim enitpénel TOAUTPAXTOPIXES, CUVERYUTIXES POEC AVAAUONG, OMPOCXOTTY
EVOWPETWON eEwTEpMV TYGY Thnpogdenone (ewdfoels, owxovouxés extéoels), mpdoBaoct oe avdevtind de-

2
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dopéva xou eviaia, cuoTuaTXy Tapaxohovinon e anddoonc-Pue oYEdLICUS Tou BUVOTAL VoL AELlToupYHoEL al-
OO TAL OE PEAMO TG TEPBEANOVTAL oY ORdS.

Me Béon auth v unodoph, mapovoidloupe 1o ATLAS (Adaptive Trading with LLM Agent Systems): éva
TOAUTIROXTOPLXO TAXLGL0 AAPYNS amopdoenmy, dTou eEELBIXEVUEVOL TTPUXTOPES ETUXEVTRLVOVTOL GE TEYVIXY| AVEAUOT),
eWldnoeoypopuet] ovvieon xou Vepehiddn olohbynom, eved évae Xevipnde TpdxXTopoS/CUVTOVIOTHS evoTole! Ta
eMPEPOUS TOPIOUATO OE GUVEXTIXEC OTRUTNYIXEG GUVAARAY Y. Ytov Tuphva tou ATLAS Bploxeton to Adaptive-
OPRO, wa npocuppoyy) tne pedoddou Optimization by PROmpting [79] ot nepBdhhovto Saboyxtv anopdoenmy
UE ETEPOYPOVIGUEVA o YopuPdT ofjpata anédoonc. O unyavioudc autdc ETLTEETEL GUC TNUATIXY AVASLUOPQWOT)
TWY TPOTPOTAY (prompts) Bacel T avaTpo@odGTNoNG omd Ta ANOTEAECUATA TV CUVOAAAYOY, BEATLOVOVTUC
O TOdLXE TNV TOLOTNTOL TWV ATOPACEWY.

H extetauévn nepapatn) aflohdynorn odnyel oe cuunepdoyato pe epféheior mou umepPolvel aUTr TV yETNUo-
TOOXOVOUIX®Y AYOR(Y, TOREYOVTAS TEoxXTXéS xatevivoelc yia v evpltepn aflonoinon twv LLMs oe oUv-
Vet medlo pe onuovtied dioxdfBeupa. Alomotdvoupe 6t to Adaptive-OPRO emituyydvelr otodepd avidtepeg
EMBOOELC OF DLUPOPETINE XOVEC TWOTA AYORAS, UTERTEROVTC TOCO EVOVTL XAUCLXMY TOCOTIXMY CTRATNYIXWOY 600
xou oUyypovwy Tpoceyyioewy Bactopévwy oe LLMs. Iapdhinda, avadletor t0 «mopddolo TOU avaoToyoo-
pol» alugwva ue to onofo N addnon Twv Brudtwy culhoyiowol, av xo cuviiwe Yewpeitor enwpelis, unopel
vo utoPBadploel Ty enidoon ot xuid BeAtiotonomuéva cuothdata. Télog, xadlotatan capéc 6Tl anatodvTo
TEWTOHXOAN AELOAOYNONG YE TOANATAEC EXTENECELS XOU ETMAPEXT| O TUTIO XY TEXUNEIWOT), xardde ol yetprioelg plog
HOVOo exTENEOTC AmodEVOOVTAL EVUETIBANTES OE OTOY OO TIXG TEQYBAANOVTAL XL UTOVOUEVOUY TNV aflomio Tio ot
T YEVIXEUCWOTNTO TWV CUUTEQUOUATOV.

Luvolxd, To EVPNHATA YoREoCOUY VEUEALDDELS APYES Yol TOV TYEDLOUO Xl TNV aopolt) a€lomoinon twv LLMs
oe nedla uPnhol ploxou Ye dladoyixh Mn aropdoewy Lo Teoyuotiny ofeBatdTnTa, Ve ToEdAANAa eutAouti-
Couv TNV xatavonon pog Yyl T ouumeplpopd Twv LLMs, ti¢ yedodouc BehtioTonolnong xo Toug unyoviogois
GUVTOVIOHOU Toug oe aLvdeta teplBdAhovTa.

1.2 Yyetwxn ‘Egeuva

H tour Meydhwv I'hwoowdv Movtéhwv (LLMs) xou yenpotooovopxic Mdne anogdoewy anotelel évo tay -
Tarta e€eAlooouevo medio Epeuvag, To omolo YEQUEGVEL TNV enegepyaoio PUOLXTC YAOOGCOC, YE TA TOAUTEAXTOPIXS.
CUCTAUATO TNV Xl UTohoyio T yenuatoouxovouxt. Kodde ta LLMs emdeixviouy ohoéva eVIUTWOLaxbTERES
avotnTee ouvietng culloyloTixnig, 1 éeeuva petatoniletan oe mepyBdihovta Bladoyixric Aing anogpdoewy
LPNhoL BlouBELUATOC, UE YUEUXTNELOTIXG TIOEABELYUO TIC YENUOTOOXOVOULXES AYORES. LNV EVOTNTA oUTH
ouvoliloupe ™ oyetnn Pihoypagia ot tpeic dEovee: (i) mpdmtopec LLM otic ypnuatooixovopxéc ayopéc, (ii)
pedodoroyiec prompting xou Behtictonoinone npotpony, xau (iii) mhatpdpues Tpocouoiwone xar alohéynone.

1.2.1 TIIpdxtopec LLM otic Xpnuatooixovouixés Ayopég

H mpdiun épeuva aflonoinoe YAWood LOVTEND Yot OVEAUCT] XEWEVKDY ot eEaywYT ENEVOUTIXOU atoifjuaroc,
Vétovtag ta Yepéhiar Yo TapoywYr To TEONYREVKDY cuoTNUdTwyY cuvolhayody [31]. EZelixeupéva yAwoouxd
povtéra, onwe ta FInBERT, FInGPT xu BloombergGPT, ¢5eilav tnv ofla tne npocappoyrc nedlou oe
yenuotoowovouxés epyaoies [81, 80, 73]. Qotdoo, ol povotponixéc autéc npoceyyioels dev enopxovoay yio
ohoxAnpwuévn Mn anopdoewy oe peahioTiXd GEVEPLL GUVOANAYGDV.

Nedrepa épyo uiotdetodv nohunpaxtopixés apyttextovixés. To CryptoTrade cuvdudlel etepoyeveic poég Be-
BOUEVLV PECW EEEBIXEUPEVOV OVINUTOV Xl UMY AVIGUGOY avacsToyoodoy [38], eved to TradingAgents viodetel
pLot o oUVIETY) TOAUTPAXTOPLXT] AEYLTEXTOVIXY|, EUTVEUCUEVY] ATtO T1) AELTOURY (Ol TROLY HOLTIXY ETEVEUTIXGY OpY V-
oYY, UE CUVTOVIOUO EEELBIXEVUEVOY POAWY, BOUNUEVEC ECWTERIXES AVTITUPAIECELS Ol EVOWUATOUEVO EAEYYO
xvB0vou, odnymvTog ot onuavtixés Behtidoeis évavtt baseline pedédwyv [74]. Emniéov, to FinMem eicdyet
molven{nedy uviun yio datpnon ouyxewévou [83], to FLAG-Trader cuvdudlet Ty yhwoow! enclepyacio ye
™V evioyutixh pddnon [76], evéd to TradExpert xaw MarketSenseAl ectdlouv oe apyitextovixés piyuatos
adikddy (mixture-of-experts) xou oToyeLUEVN AVEAUGT ETAUEIXMY avapopny [14, 18].

Iopd ) onpoavtxd Tpdodo, e€oxoloutoiv va upiotavton Teel Yeuehiddels Teptoptopol: (1) otatixd prompts
mou dev mpocopuélovia ot YeTaforldueves ouvidixes, (il) LTKEPATAOVGTELGCTY] TOU Y WEOL EVERYELHOY
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(m.y. xateuduvthpiec npofiédeic avti TARpwY Tpodlaypapdy EVTORGY), xou (iii) averapkeis pédodor a&loAdynong,
6mou oL UeTphoels wlag LoVo eXTEREGTC amoXpUTTOUY TN 6TOYACTIXY PETUBANTOTNTA TKV amoTtereoudtwy [62, 2].

1.2.2 Teyvixég Behtiotonoinong Ilpotponwy

H Behtotonoinon npotponmyv €xel e€ehiydel and ad-hoc, nelpapatixéc mpooeyyloels o8 GUOTNUUTIXES, EMO T
povixd Yepehiwpéves pedodoroyiec. Teyvnéc 6nwe to Chain-of-Thought (CoT) emitpénovy ota LLMs va
anocuviétouy clvdeta npofAfuata ot evdidueca Biuata culhoyiopol [70], evéd tpoywernuévee pédodol dmwe
0 self-consistency xou 1o tree-of-thoughts (ToT) evioyUouv TepaTéped TIC CUANOYIO TIXES IXAVOTNTES TOV
HOVTEAWV[6T7, 82].

H ewoaywyf tou Optimization by PROmpting (OPRO) onuoatodétnoe onuavtinf tpéodo oto medio,
yenowonowdvtag to (Bl T LLMs ¢ yeta-BeltioTonomtég mou mopdyouy eTavoAnTTixd Véeg Tpotponéc Bdoel
lotopxv endbdoewy [79]. Toparhayéc 6nwe 1o EvoPrompt xoau 1o POEM evoouatdvouy e£ehxtinolc
ohyopiduous xou evioyutnd| pddnon avtictouya [24, 15].

ITegropiopol o axorovdaxny AAdrn anogdoswyv. O undpyovcec uédodol Peitiotonolnong meo-
TeOTOV mpobmodétouy cuvihixeg mou anouctdlouy amd mpaypaTXd TEpYBdAovTa axoAoU UKDV ATOPACEWY:
anoutoly dueon avddpaon, AeLTOLEYOUV GE YTETEPUIVIOTIKA anoTeAéoata, xol VTo¥ETouy 6Tl oL anopdoels efval
avekdptnteg. O ypnuotooxovouixés cuvahhayée napouctdlouy axpBne to avtideto oevdplo: ol avtopolBéc
AmOXUAVTITOVTOL UE YoV UoTépnoy, 1 PeTaBAnToTnTa VOAMVEL TG AELONOYHOELC AmOBOOTC Xl Ol AMOPACELC
€ 0LV Blaypovixéc cLVETELES OTNY eEEAEY TOU CUCTARATOC.

1.2.3 IThatgoppeg llpocopolwong Xuvariaywy

H o€iohbynon ouotnudtwy cuvalioyov Bactouévev oe LLM amoutel mhot@bpuec mpocouolnwons mou yov-
TENOTIOOVUY [E PEAALOUO ol TANEOTNTA T1) Buvaxy Tng ayopds. ot600, To TEéYoV ToTlo Napouctdlel €va
XOTOXEQUATIOUEVO OLXOCVOOTNHA UE ONUOVTLXOUS TERLOPLOUOUCE.

ITpocopoiworn oe eninedo eviohdv. IMatgpdpuec 6mwe 1o ABIDES, to PyMarketSim, xou to
JAX-LOB nogéyouv e€elypévn poviehononon uxpodounc ayopds Ye Aemtoueet| duvouxy tou Biilou ev-
oAV [8, 45, 21]. Tlopd tov peaopd Touc, UG TEROUV GE £YYEVH UTooTHELEY Yl Tpdxtopes Pastouévoue LLM
X0l omotTOUY EXTETUUEVY TPOGURUOYY) YIol EVOWUATWOY YAWGOIXWY Hoviéhwy. Emmiéov, Boacilovta cuyvd oe
udPniol xécToug Bedopéva ot eninedo tick UE TEQLOPIOUEVT TPOCBACIUOTNTA, YEYOVOS TIOU AMOTEAEL TPOYOTED
Yo TNV XAPOXWOOWOTITO TWV TELPUUATWY.

IMTAatgpoépues woTopiXAc Tpocopoimwons. Xuothuata 6nwe ta BackTrader xou to FinRL /Meta npo-
TAOGOLY TNV XALPOXWOUOTNTA EVAVTL TOU peaklopol extéleorc, Baotlouevo oe cUYXEVTPWTIXE dedouéva Xep-
WV ywele OUS Vo LovTeEAoTolo0Y TIC HETABOAES TNE TWAS EVIOS QUTWY TWV OLIC TNUATKY, EVE £QUpUOLoLY
ATAOTIONUEVA LOVTEAN EXTENECNC TA OTLOLAL Oy VOOUY TNV TROYHATLXY) BUVOLXY TWV AY0pMY Xl TEPLOPLOUOVS TV
cuvalhay oy [41, 42].

EZewduxevpéva nhaiota yioe LLM. IThatgdoueg oyedlaoUEVES VL0 TOAUTRUXTOPIXO CUVTOVIGHO AVTLUETL-
n{louv tic Tpoxfoeic evowpdtwone Meydhwv Mhwooixidy Movtéhwvy, wotdéoo cuyvd Bacilovto oe unepomhovo-
TEVUEVES QVATIUPAUOC TACELS TNS oY 0pdS TOU TORABAETOUY T1) pEaMO TiXH Buvaixs EXTEREONC EVTOAGY|T4].

Avutdc o xoataxepuaTIonoS dNuLovpyel GUC TARATIXG EUTOBLY OTIOU OL EpELYNTES TEéTel VoL eTAEEOLY UETAED pedh-
IO TIXNC LOVTEAOTIOINONC OYORAC Yol TEUXTIXAC XALPAXWOOTNTAS, emBdAlovTag ouufifacuolc mou neplopllouy
1660 10 €0pog 600 ot TNV AELOTUOTIA TWV EPEUVITIXMY EVPNUATWYV.

1.3 MeYodoioyia

To xedhato autd napovotdlel tn Aentopepn pedodoroyio Twv 500 xVplwV cuvelcPop®Y Woc: To StockSim, pla
ohoXANEWUEVY TAUTPOEUN TRoToUolwang Yio TNV a€LoAdYNOY TEaxTdenY cuVahay Y Boactopévwy oe LLM, xou
to ATLAS, éva mpocoppootind tohunpaxtopixd mhaiolo cuvakhaydy Tou a&lomotel anotekeoyatind o LLMs
OTN XPNUATOOOVOUXT AN ano@doewy.




1.3. Medodohoyia

H pedodoroyia pog dopetton yopw and tpelc Bacixés xavoTowles: TNy apyttexTtovixn 800 AetTovpyLdy Tou Stock-
Sim mou emitpénel cuo ot a€loAdYNoT ot SlapopeTixd enineda TOALTAOXOTNTAG TNE AY0RdS, TO TANlGLO
Tohumpoxtopxol cuvtoviodol Tou ATLAS nou anocuviétel n ypnpatooxovouxy) AMn aropdoewy oe e€el-
BIXELPEVES GLUVLOTWOES, XU Tov alyoprtuo Adaptive-OPRO mou enextelvel tn BeAtiotonoinoy mpotpondy oe
TepBdihovTa axoAoUHAXDY OTOPACENY UE XoFUC TEPNUEVT AvadpaoT).

1.3.1 StockSim: Apyitextovixy Ilpocopoinwong Avo Asitovpyiony

To StockSim avtipetwnilet o xplowwo xevd oty uTOBOUT AELOAGYNONE TEOTEIVOVTAC Lo EVOTOLNUEVT TAATQOEUL
Tou oLVOUALEL PEAALOTIX TTPOCOUOIWOY) ayopds He oAoXANpwUéves duvatdtntes allodynone twv LLM.

Enioxdénnorn Apyittextovixnc JuoTAUATOG

To StockSim uodetel wa apdpwt), aclyypovn dpyltexTovixy] OYeBOUEVT YUpw ond TECoepl Paoxég
CUVLOTOOES TIOU ETUTEETOLY OAOXANEWUEVT a&lohdynon twv LLMs oe peahiotind nepiBdhhovta cuvolioydy. H
apyLtextovixy utootne(lel 800 Slaxpitolg PnYaviopols eXTéNeaT, EXTENEDT] o eninedo EVTIOAWY xau ot eninedo
XEPLWY, Ol OToloL EVOTIOLOUVTAL UECK XOLVMV AELTOURYLWY Ylol TEdcPocy o Bedouéva Tng ayopds, Topoy®YN
TEYVIXWY BETAOV Xl aAANAETBpaon HeTaE) TEUXTOPWY.

Config File . Data Sources Exchange Simulation Engine

exchanges:
NVDA:
data_source: polygon

news/tickers: [NVDA]

agents: |
AWS_Native_Agent:

EIR st
parameters:

use_llm_history: frue

models/market_analysis: Order Level Candlestick|
model_id: Execution .
meta.llama3-1-405b N Execution ) Y
temperature: 0.2 Evaluator
simulation:
start_time: 2024-01- B - . l __________ .
01T00:00:00 Tradln i i
end_time: 2024-03- A emg - § |N | |I| i
01T00:00:00 _,:g.— ' 5

tick_interval: 1d

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
exchange_mode: candle :

|
|
|
|
|
|
|
|
o
: . Level
|
|
|
|
|
|
|
|
|

gem 2| hgoms 2

Figure 1.3.1: Emoxémnon apyitextovixfic cUoTHUATOS Tou STOCKSIM xou oyfuatos eto6dou/eE63ou. Ot
EVOTNTESC XWOKOTOLOVVTAL YEWHATIXA ovd Aettovpyio xan avtioTtolyilovtal 6To xevipixd apyeio Slaudppwonc.

H Mnyave Ilpoocopoiwone Xenuatiotnelaxns Ayopdc Aeltoupyel o¢ XeVTpixdc evopyno TeemTAC
ToU TERIBAANOVTOC GUVAAAXY®Y, BlayelptloUuevn aolyyYpova poEc YEYOVOTWY ol exTtéleons. AvahauPdvel tny
eneepyacion TWV EVEQYELDV TWV TPAXTOPWY, TOV UTONOYIOUO TEXVIXMDV BEMTMV, xo(OS xou TNV Jlavour Twv
dedouévmv tne ayopdc otoug ouupetéyovies. Kdle mpdxtopac exteheiton we aveldptntn Siepyoaoio xou emxotv-
wvel achyypova Ue N pnyavr péow evog uecohafnth unvuudtov RabbitMQ, sgacgaiilovtac anopdveaon
SPOAUATOV Xt 0pLLAVTLOL XALUAXWOT).

At Asitovpyia Extéleong

Extéleor oc eninedo evitorwv. H extéheon oc enilnedo eviohdv avanopdyel peahloTixd T Pixpodouy
e ayopdc, dpdhviae ancuvielas oto BBAio eviordy (LOB).Ou npdxtopec unofdihouy eviohéc ayopdc,
oplou xou evepyomoinong, ot onoleg etadyovron 6to BiBAlo eviohdv xou avtiotoryilovton ye Tic avtidetes eviorég
xarddde notapddvouy véa unvipoata (VEEC EVIOAES X0 aXUPMOELS), BACEL TPOTEPAULOTNTAC TUAC—YPOVOU.
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H hettoupyla autr TEOCOUOWWGVEL TNV PEAALGTIXY SUVOLXY TNE oY 0RdC:

e Movtelonoinor xaduoctépnong: peakiotinés xoduotephoels Yetadd unoBoiic xou EXTEAEONS EV-
TOADY

e Enintwon otny ayopd: YetoBoréc TdY ond UEYIAES EVIONES
e OAiocOnomn: dlapopd YeTal) TPOBAETOUEVY Xol TROLYUATIXWDY TULOY EXTEAECTS

o Tunuatixég exteréoels: dTav 0 dlatéolog 6YX0S OTO OTOYEVOUEVO ENENEDO TIUAC EIVAL AVETOEXTC.

Extéleor o Eninedo Kepiwdyv. H extéheon oe eninedo xepudv Aettovpyel oe cuyxevtpwtind dedopéva
OHLCYV, 6mou ol evtoléc extehobvtan Bdoel Tou edv 1 Th-0tdyoc Peloxeton evidg tou edpoug evog xeELo.
Iapéyel npdoBacn oe peyohitepa Ghvoha SEBOUEVWY Kol ETULTEETEL DOXUYIES OE EXTETAUEVES LOTOPIXES TEPLODOUG.

IMopd o amhomonuévo povtého extéheonc, N Acttoupyio Slotneel PEodMO TIKES BUVOIXES CUVOANAY Y UECL TtpO-
NYUEVNG TPOCOUOIWOoNS TWV TV EVIOC XEPLDY, ETUTEENOVIAC OTOUC TEAXTOPES VO UTOPBAANOUY EVIOAEC TOU
EXTENOUVTAL PEOALO TIXG.

IThaicio Evonoinong Asdopévmyv

To StockSim dioyetpileton dedopéva tne ayopde (T, 6Yxog, poh eviohdv) ahhd xou e&wyevh dedouéva (et
doeic, etaupinée npdelc, Yeuehddn peyédn). H Mrnyoavh Ilpocopolwong evopynotedvel autéc Tic poéc
ACUYYPOVA XU TIE TPOPOBOTEl GTOUE TREAXTORES OE YPOVO TEOCOUOILOTC.

H miatopuo vnootneilel dedoyéva 1660 o€ €minedo €vTOAT)S OGO XAl 0€ €TIMEdO Kepldy. Xe OAeg TIC Aettoupyieg
eEXTEAEDTS, Ol TEdXTORES AoBAVOUY UTOAOYIOUEVOUS TEYVIX0UE BEXTEC-XVNTOUC UEGOUS, TUANVTWTES OpUNG Xal
METEWES UeTUBANTOTNTAC.

Y yediacpoc IMThowciouv Ilpaxtoépwy

To mhaiolo TEoXTOPWY TAUPEYEL YLol EVOTOLNUEVY) BIETOPT] TTOU ATOXQEUTTEL TNV TOAUTAOXOTNTO DIUPOPETIXV AEL-
ToupYLY extéheonc. Kde mpdxtopac umopel va eyypdpeton o poéc BeBOUEVKY, Vol UTOBEANEL X0 VAL XURWVEL
EVTOAEC ol vor AofBvVEL ATOTENECUATO EXTENEOTC O EVIUEPWOELS Y APTOPUANXIOL.

To StockSim mepthauBdvel éva aplpnto mhaiolo tpoxtdpwv Tou utoatneilel cUVTOVIOUS YeTHED EEELBIXEUUEVLY
LLMSs £0TIopEVWY OE BLAPORETIXES TITUYES AVAAUONE TNG oY 0pdS.
IThaicio AZiohbéymone xauw AvadAiuorng

O AZwloyntic xatoypdpel T0 TAAPES LOTOPG VECEWY, UETENTOV XL TEAYUATOTONUEVDY XEEDWY /INULddv.
Me v ohoxhpwon tng npocopoiwone, unoroyilel Tic Poaoiuéc peTpéc anddoong ot Topdyel SladpAUoTIXG
YQOUPHUOTO YId TEPAULTERE BLEPELYNON).

1.3.2 ATLAS: ITAaicto IToAunpaxtopixol XuvTovicpol

To ATLAS (Adaptive Trading with LLM Agent Systems) emdewviel anotehecportixt| epopuoyn twv LLMs ot
Yenuotooxovouxr) Mg ano@doewy U€ow GUVTOVIGUEVNC TOAUTIOUXTORIXNC AEYLTEXTOVIXNC X0 TPOCUPUOCTIXAG
BehtioTomolinoNne TEOTEOTDY.

Apyéc ApyrtexTtovinod M yxediacpol

To ATLAS e8pdleton oe 600 Yepehiddelc TUADVES: Wia oapVpw T, TOAUTPAXTORLXY| apYLTEXTOVIXY TToL Blarywpeilel
T Aettoupyixéc eudiveg avd TOTo TANEOPopiag TN AYopds xon €vay eEEBXEVUEVO Unyaviops Bedtiotonolnong
TPOTPOTY, TPOGUPUOCUEVO GTY CElplaxt| AP anogdoewy und alefordTnTa.

Afavioc Nonpoolvne Ayopdg

To ATLAS yenowomnoiel e€edixevpévous mpdxtopes mou €oTdlouv e Blaxpltols TOTOUS TANPOPORIOY TNS
ayopdc.




1.3. Medodohoyia
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Figure 1.3.2: Emioxénnorn [Maciov ATLAS. O Kevtpide Hpdxtopac Xuvahhoydv vnofdhiel evioréc otov
Mnyavi Hpooopoinong tou StockSim péow npoteomtv SLopopPuUEvmY and Teele eEEBIXEUIEVOUS AVOAUTES
X0l TNV TEOTELVOUEVT TexVixY| Bedtiotonoinone Adaptive-OPRO.

Avalutic Avopdc. O Avahutic Ayopdc enelepydleton axotépyacta Oedouévo TG ot OYXOU Xol
napdryel dounpévee mepthidelc oe moAamhéc ypovixée xAlwaxes. Avahlel xdde petoyn yenoidomnoidvrog telo
BlapLtd Lo Topuxd mapdiupo: 2 €Tn ue unviado xepld, 6 urveg ye eBdouadiaio xepLd, xou 3 UAVES UE NUEENOLOL XEPLA.

Evtéc xdde napadipou, yenowponolel xadiepwuévous Texvixols delxteg xou mopéyel Yo GUVETY, QLATRUPLOUEVT
drodm mou dlatnpeel TNV xOpta SouY| TNG oYORdS AMUAAXYUEVT] OI6 TNV TOAUTAOXOTNTA UXATEQYAOTGWY DEBOUEVWY.

Avarutic Ewdroswv. O Avolutic Ewfoewv egdyer enevbutnd alodnuo xon oHUoTo omd  yernuo-
Toowovouixéc ewdnoelc eneepyaldpevoc emxeqoildec, mnyéc xan tep el yio mapaywyY) Sounuévmy e£68wv
oe téooeplc avohutixés daotdoeis: AZlohéynon Awodruatoc, Boaowée EZelileic, Xuvdgpewa pe v Ayopd, xou
Avéduon Inydv.

‘Otav ol emxepaiideg dev nopéyouv enapxelc Aentopépelee, Unopel auTdvopa Vo avoxtd To ThYipeg xelpevo dptpwy
HECL EVOC TPOCUPUOCUEVOL EpYOAElOL autopaTotoiNuérng ekaywyns Tepiexopévou and 10TooeAide.

Ocueiiddne Avorutic. O Oepchiwdne Avarutrc e€dyel otoiyelo oyetlbueva Ue enevOUTIXES AmOQd-
OElC amd TEPLOBIXES ETOUPLXES ONUOGLOTOACELS CUUTEQLAUBAVOUEVWY YENUOTOOXOVOULXMY XATAOTACEWY Xal
veyovotwy. Avohler hemtopepn nedia dedouévwy dnwe écoda, meptdnplar xEEBOUC, o JUVOHULXY TOHELXMOY
POMY XL TUPAYEL ULol CUVOTITIXY] OVAAUGT) ECTIOUEVY] OE OUCLUC TIXEC AAAXYES XOU TLC ETEVOUTIXEC TPOEXTACELS
TOUG.

Erninedo Andpaocrng xou Extéreong

Kevtpwxdg Ilpdxtopag Xuvoariayov. O Kevtpwde Ipdxtopac Suvarlaydv Aettovpyel we xlplog
%x6uPoc Mne anopdoewy, cUVIETOVTOC To EVERUATO TV OVAAUTOY O EXTEAECLUES OTPATNYIXEG evépyetes. Kdle
Nuépa, TELY TO dvolypa ayopdc, adlohoyel Tic o Tpdopatec avohloele TAc/dyxou, EBHoEnmY xot YeUeNWIOY
OEBOUEVLV OE GUVBLUOUS PE TNV TEEYOUCA XATAGTACY) TOU YopTOQUAAXiOL TOU.

Me Bdon awtéd to evonoinuévo mhaiolo, tonodetel Thipws mpoodloplouéves evioréc-xodopilovTag TocoTnTA,
Ty, TuyoV Tpobmodécelc exTéreons xan TUTO EVTIOANC-OL omolec UTOPBAAAOVTOL GTO CUGTNUA EXTEAEOTC.
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Chapter 1. Extetopévn Ieptindmn ota EAAnvixd

Adaptive-OPRO: BeAtiotornoinon Ilpotpondy yviow Axohouvdiaxry Ay Anopdocewy

To ATLAS ciwodyel to Adaptive-OPRO, évav alydprdpo Bertiotonolinone mpotpondy nou avarpocaplole
ovotnpatixd tig odnyieg Tou Kevtpixol Ilpdxtopo Xuvolhoaydy ye Bdon v anddoon Twv GUVOANXYMY TOU.
ITpbxerton yior TNV TEGOTY EMLTUYNUEVY TTEOCOPUOYN NG optimization by prompting oe axoloudiaxd neptBdAlovta
Mne anogdoewy pe xaduotepnuévn xou YopuPBndn avddeoot).

Enextdoeig yia Axolouvdaxh Afdrn Aropdoswy. H npocéyylon pag elodyet 800 xaipieg Tponomols-
oeig 670 apyxd OPRO, npocopuoopéves 6Tic IBUTEPOTNTES TWV YPNUATOOOVOXOY ayopdv: (1) avtipetwnilel
™ xeovixh uoTépnom avduesa ot Mn andpaone xar Ty anotiunon e enidoone, xou (i) viodetel mpdTuNa
TROTEOTWY ToL Blarywellouy ToV oTATXG XopUd 0dNYLOY 0 omolog Tiletan ud Bektiotonolnon and Ta Suvaxd
Oedopéva EXTEAECTC TOU UETABAAAOVTOL GTOV YEOVO.

Apyitextovixry Beltiotonoinorng Ilgotponddv. To oclotmuo Peitiotonoinone tneel 1w0topikd
eEéhiEng mpotponddy, oto onolo xdde npbdTUTO MoTayedpetan pall ye tnv avtiotoyn enidoon tou. Kdde mévte
dradoynd BT ATOPACTS, ATOTUOVUE TNV AMOTEAECUATIXOTNTA TNE TEEYOVOUE TRoTEoTHS Utoloyilovtag
owpevtxy Andboon Enévduvong (ROI) tou npdxtopo.

H Swdwocia Bedtiotonoinone Bacileton oe évo meta-prompt nouv xadodnyel to LLM-BeAtiotonoumnty| va
AVOADEL TO CUCOWEEVPEVO LOTOPLXO ENBOCNC Kol VO TUPAYEL, UE CUOTNUATIXG TEdTo, Téooeplc Paocixéc e€6Boug:
(i) avérvon enidoong, (i) Bertiotomomuévo mpbdtumo mpotpontc, (iil) clvodm Paowxdv Behtdoewy xou (iv)
eXTUNON NG AVOPEVOUEVNC ETBPACTC.

1.4 Ilsipopotixr; Adtadn

H nepopotin ollohéynon otoyelel vo anovtfioel téooepa xaipla gpwtAuata: (1) mde anodider to
Adaptive-OPRO ot clyxpion ue evolhoxtixég mpooeyyioew, (i) mow eivan ) ouvelspopd xdde eZedixeupévou
Tpdxropa, (iil) nde petaBdiieton 1 enidoor petald SropopeTiny apyttextovixey LLM, xou (iv) notot cuvduaoyol
eMTLYYAvouy oTadepd, agLOTOTA ATOTEAEGUOTA EVOVTL SLOOPPWOEWY UE LYNAY BlaxdpavoT).

Ye avtideon ue mponyolueveg epyaoieg mou epopudlovv exteréoelc plog uévo extéreone, 1 pedodoroyia yag
vhoTolel CUCTNUATING TEWTOXOAAL TOAAATADY EXTEAECEWY, UE AMOTENECUAL VoL ATOXOAUTTETOL 1) BLOXOUOVOT) TWV
emBOoEWY ol VoL EAYOVTAL OTATIOTIXG 0ELOTULGTO GUUTEPACLOLTOL.

1.4.1 Emnuhoyr Moviélwy

A&ioloyolpe mévte LLMs nou aviimpoownebouv dlaxpltd apyttextovixd npdtuna: Claude Sonnet 4 pe xou
el unyavionolg cuiloyiopol, LLaMA 3.3-70B, GPT-03 xa. GPT-04-mini. H cOvieon aut| emtpénel
dueoceg ouyxploeic 1600 peTall ovTEAWY e/ ywpelc ENTolc unyaviopols cLANOYIOUOU 660 Xl HETAUZD BLOXTNTLV
CUCTNUATWY X0 CUOTNUATWY AVOLXTOU XWX

1.4.2 Kadeotwta Ayopdsg xow Emhoyy Metoywv

Ta xodeotdTo Ayopds aVILTPOCWTEVOUY BLAXELTE TEOTUNA CUUTERLPORAS TV TOU dNUloupyoly Yeuehiwdng
dapopeTinés TPOXAAOELS Yior Tot cuoTAUaTa cuvolhary@y. H afiohdynot| pag xahintel tpior dtaxpltd xodeotdTta
ayopdc YeNotLonowdVTaS HETOYES omd dapopeTinols Touels, pe xdle alioldynon va xahintel d0o uhves (28
Anpuiiou - 28 Touviou 2025):

¢ NVDA (Teyvohoyia - Avodixfi Ayvopd): Koatd v nepiodo aliohéynone n NVDA nopovciace
ouvey | avoduxn topeia, eviewtind toyuprc Tdone. To ceviplo e€etdlel xatd ndoo ot tpdxtopes eviomilouy
%ol oELOTOLOVY AMOTENEGUATIXG TNV o, Sltneddvtog xepdopdpes Véaelc oe euvoixés ouvirxec.

e XOM (Evépyeia - IThevpuxr) ayopd): Koatd vy nepiodo aliordynone, n XOM xvidnxe xupiwe
eVTOC ®oVOPLOUEVOL EVPOUC TV, XoNoTMVTAUSC BUCYEREIC TIC OTRATNYIXES OPUNG 0L ELVODVTAC TEOCEY-
yioew uéong emavapopdc.




1.4. Tewopotixr Adtaén

e LLY (Yvyeio- IItwtixh Avopd): HLLY xatéypode évioves unoywpehoels xat algvidles dlaxuudvoels,
BLOLOPPOVOVTOC TO THO ANULTHTLXO GeEVAELO 0Ty a&lordynoT. To nepiBdhhov autd eAéyyel TNV xavoTnTa
dlayelptong xvdivou xa T duvaixy TpocapUoYY Tou eyédoug YEoewv.

1.4.3 AZ&iohoymon Zrpatnywey Ilgotponwy

O melpopatindg oYEBLUoUOS CLYXEIVEL GUC TNUATIXE TOANATAES TIEOGEYY(OELS TROTEOTWY UE GTOYO TNV ATOUOVKON)
TNC eniBEUoNC BLUPORETIXWY UNYAVICUMY TEOCUPUOYNE TNV anddoar) cuvolkayodv. Ta tAnedtnta, cuyxplvouue
eniong pe mévte xadepnuévee nocotxéc otpatnyixéc: Buy € Hold, Moving Average Convergence Divergence
(MACD) [66], Simple Moving Average (SMA) [22]|, Short-Long Moving Average (SLMA) [66] xou Bollinger
Bands [11].

Boaowég Ieltpopuatinég ALohop@ooel

Ytpatnyixr) Baseline. Xprnoiwwonololye npooextind oyYEBIAOUEVEC OTATIXEC TEOTEOTES TOU OMOTUTVOUY
BEATIOTEC MPAXTIXEC OTO GYEDIAOUS TEOTPOTYV YLl EPUPUOYEC cuVahhay®V. Ot mpotponég autég avantdydnxay
HEowW emAVOANTTIXNAC BEATIOTOTOMNONE AMO EUTELPOUC EMAYYEMIATIEC TNE AYORAC X0 EVOWUATMVOUY DOUNUEVL
mhalolo Mdne anogdoewy xadde xou TAHEY EVOWUATOOT SUUPEILOUEVKY.

Ytpatnyixr Adaptive-OPRO. H cuotnuatixr BeAtiotonoinon tpoteomiyV EMXEVIPWVETOL ATOXAELGTLIXA
otov Kevtpwcd Ilpdrtopa Xvvarlaydv, ye oxomnd vo allohoynlel av n duvoxl) mpocappoyt evioylel Ty
EVOTOINOY TOAATADY POWY TANEOPORIdS OF CUVEXTIXES XAl EXTEAECLUES UMOPAOELS CUVAIAAXYWV.

Ytpatnywxn Reflection. I'ia cuyxpitinn anotiunon tng entdoong tou Adaptive-OPRO évovt npornyoi-
HEVOV TpoceEYYioE®Y, Tpocapuoéloupe Tov unyovioud reflection tou [38]-évay and toug Mo TEGGPATOUS Ko
cuvagelc ahyoplduoug celploaxic avadpaong oe cuo THUATA cuvakhay Y Bactouéva oe LLMs. H apyix uédodog,
OYEDIOUEYT YL Y OPES XPUTTOVOUIOUATWY, emioTpépel faduols eumoatootvng (ané —1 éwe 1) avtl yia mhfpelg
evioréc. o o€iémiotn olyxplon, mpocapudlovye xou Tic Vo mpooeyyioee oto StockSim, énou anoutolvron
TATjpers mpodiaypapés evtoddy (tinog, tocodTNTA, TWY, TEoUToYEoeL:).

Xernotpomololue tov unyaviopd reflection énwe €xel opiotel, npocupuélovtdc Tov vo napdyel €Boopadiaia ovd-
dpaom mdvew oe yotifa cuvahhaydy xou otpatnyéc mpooapuoyés. H avdbpaon auth EVOOUATMOVETOL GTOV
Kevtpiké Ipdrtopa XvvaAlaydy péow oupgpalogévey tne npotponhic. Xe aviideon ye to Adaptive-OPRO,
Tou tpornonolel dueca To xelpEvo Tng npotponie, To reflection mapdyel avadvtikd oydhio Ta OO0 O TEAXTOEAS
opeilel vo epunvevoet. Egapudélovue tov pnyavioud ywelc uedodoroyixéc odhayé, Slatnetdviag moeToTNTo 6TNY
apy | TEOTUOT] Xou ETUTEENOVTAS dueon) aELOAOYNOT TNS UMOTEAECUATIXOTNTAC TOU UTO TOUTOONUOUS TEPLOPLO-
polc extéheomne xou (Bieg ocuviixeg aflordynong.

1.4.4 MeYodoloyia xouw Metpixég Agwoldynong
IMTewtdxoAro IToAanAwdy ExteAécewy

Ye avTdlaoToAT pe mponyolueveg epyaoieg mou BaciCovtar oe pio uévo extéleon, epapudlovue CUOTNUATIXG
TEWTOXOANO TPV aveldptnTtwy ekteléoewy avd dopbdppwor. Kdlde extéleon apyixomoleitar e tautdomnueg
apyéc oUVIXES, WOTE 1) TaPATNEOVUEVT BlaxpavoT enidoong va amodidetar ot oToyaotxdTnTa Tou LLM
xaL Oyl o€ TopdyovTeg Tou TEpBdAAOVTOC EXTENEOTC.

To anotehéopato avopépovior we uéon tiunf + tumkr) anékAion oe Tpelc extelécelc (n = 3), emTpENOVIOG
anotiunon 1600 TN xeVTpIXAC Tdong 600 xal TNG PETABANTOTNTAC.
Oloxinpwpueveg Metpixég Anddoong

H afiohéynon Baoiletar o TOAMATAES UETEIXEC TTOU OMOTUTIVOUY CUUTANEWUATIXES TTUYES TS ETidoone Twv
CTEUTNYLXWY CUVOAAAY WV, OTWE:

Anédoomn Enévduong (ROI): Trohoyiletar we n nocootiada petaBohf tne cuvoliic o&iog yoptopuiaxiou:

_ el adlo—apyixd ofia
ROI = oot oo x 100
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Model Prompting ROI (%) 1 SR 1 DD (%) | Win Rate (%)t Num Trades
Non-LLM-Based Strategies
Buy & Hold N/A -8.59 -0.071 20.45 0.00 1
MACD N/A 6.50 0.131 6.86 0.00 1
SMA N/A 6.91 0.177 3.56 50.00 4
SLMA N/A -1.87 -0.078 6.89 0.00 1
Bollinger Bands N/A 0.00 0.000 0.00 0.00 0
LLM-Based Strategies - ATLAS
Baseline —9.191 1.54 ‘0~091i 0.021 16.90i 0.82 30.281 11.87 22.67i 8.39
LLaMA 3.3-70B Reflection -8.441 1.58 -0087i 0.025 1636i 0.31 44691 13.25 27671 1.15
Adaptive—OPRO —6-16:|: 2.08 '0-066:|: 0.004 14-05:|: 3.33 54.36:|: 12.44 2833i 3.21
Baseline —7.26i 2.99 —0066i 0.030 1759j: 1.55 3].].9j: 7.84 1300i 4.36
Claudc SOIlIlCt 4 Reﬂection —5.69i 1.82 —00581 0.013 1512i 3.26 46.67:|: 5.77 12671 2.08
Adaptive—OPRO 0.35:l: 1.78 0-008:|: 0.018 14.76:|: 2.87 4345i 6.27 1500i 2.00
Claude Sonnet 4 Baselin.e -4446:‘: 4.76 '0043:t 0.048 1432;& 4.12 1111:t 19.24 1400:t 2.65
W/ Thinking RCﬂCCFlOH —8.601 0.59 —00781 0.004 19-40i 1.65 1429i 24.75 1167i 2.08
Adaptlve-OPRO -0-73:I: 3.82 '0-004:]: 0.038 12.94:|: 2.32 4389i 21.11 1700¢ 5.00
Baseline —1.301 1.71 —0.0171 0.017 9.68:{: 3.12 29171 11.02 15331 3.06
GPT-04-mini Reflection ‘2~52:t 4.03 ‘0039i 0.045 9823: 3.43 5128i 5.06 2033i 3.06
Adaptlve—OPRO 9.06:}: 0.73 0.094:|: 0.008 1148:k 0.00 65.28i 16.84 17331 5.86
Baseline -6.11i 3.42 -00801 0.029 1158i 3.09 42591 8.49 18671 3.21
GPT-03 Reflection -4.60i 3.40 '0053:t 0.044 12-11:l: 1.27 4603i 16.88 1833i 2.52
Adaptive-OPRO  9.024 3.08 0.1464 g.048 5.33+ 0.14 72.814 17.27 19.67+ 416

Table 1.1: X0yxpion enidoong peto€d npoceyyioewy yweic LLM xo pe LLM, yenowonowbvtoag to ATLAS,
o€ eVUeTdBANTES TTwTKES cuvxes ayopdc (LLY, Touéac YTyeioc). Ou bold tpéc uvnodnidvouy tny
xoAUTERT) ENidOON avd povTéro.

Acixtne Sharpe (SR): Andédoon mpocapuoouévn otov xivbuvo, SR =
anédooT), T To EMTONLO Ywelc x(VOUVO xou 0 1) TUTIXY ATOXALOY).

BT bmou pom péom nuepfio

Méyiotn Yroywenon (DD): : H yeyalltepn ntdon and xopupnh ot xouhddo otny a&ia Tou yoptopuiaxiou,
TIOU AMOTUTOVEL TNV €xdeon oe xadodixolg xvdivouc.

ITocooté Emnwtuyioc (Win Rate): Ilocootd xepbopdpwy ouvahhaydv €vOelln ouvénelos otn Aidn
ATOPICEWV.

ApuOude Zuvorhoy®v:  Juvokndg optduog EXTEAECUEVLDV GUVOANOYWY, EVBEXTIXOS Tou Poduold
BEUC TNELOTNTAC X0 TNS TEOCEYYLONG TNG OTEATYIXAC.

1.4.5 Xyediacpog Merétng Agaipeong

I vou TtocoTtixonoiooude T cuvelo@opd xdle eledixeuuévou mpdxtopa oto mhaiolo ATLAS, Sieldyoupe
ocvotnuatixés puehéteg agalpeone (ablation).

Xwele Avaluth Ayvopdc: Anevepyonololpe Gheg Tic duvatdtnTes TEYVIXAC avdhuong, WoTE Vo exTrniel
v 1 AMOTUTWON NG SOUNS TWOY OE TOMATAES YPOVIXEC A(paxes PEATIOVEL OLUCLACTIXE TNV TOLOTNTA TWV
ATOPIOEWV.

Xwpic Avarutyh Ewdfoswyv: Agopolue v enelepyacio adountou xeévou, yio va anotiundel n o&io e
e€aywyNc eMeVOUTIXOU Ao VAUNTOS Xal TNG OVOLY VEIPLONG XATHAVTEV TOU TPOXVTTOLY b YEYOVOTA.

Xwpic Avarutég Ayopdc xaw Ewdroewv: To olotnua unofiBdleton oe dapdppwon evos Hévo Tedxtopd
ME HOVADLXEC EL0ODOUC Tal VeUEAMDT) SEBOUEVA XOU TNV XATACTACY) TOU YARTOPUAAXLOU.

E€oupolye tov Oeuemddn Avaiuty| and tny avdhuon agaipeons, ETEdY| 1 YaunAs cuyvoTnTa evepyonoinong Tou
(euduypoIIOPEVT) HE TOUC XOXAOUS avoxowv@oewy) xahotd tn Bpoyurpddeoun anotipnon e enidpactc Tov
oTaTIoTXd oo TodY.
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1.5. Arnoteréopata

Model Prompting XOM NVDA
ROI (%) 1 SR 1 DD (%) | | ROI (%) 1t SR 1 DD (%) |
Non-LLM-Based Strategies
Buy & Hold N/A 1.14 0.013 6.97 41.30 0.409 3.16
MACD N/A -0.26 -0.019 5.90 -0.62 -0.343 0.62
SMA N/A -1.02 -0.019 5.75 14.02 0.242 2.93
SLMA N/A -2.08 -0.066 5.53 36.77 0.386 3.12
Bollinger Bands N/A 0.00 0.000 0.00 0.00 0.000 0.00
LLM Based-Strategies - ATLAS
Baseline -0.42i 2.06 -0.024:|: 0.051 556i 1.08 3786i 12.31 0388i 0.096 3.46i 0.63
LLaMA 3.3-70B Reflection —2.61i 0.77 —0083i 0.014 638i 0.72 4040i 1.43 0-422:|: 0.023 296i 0.34
Adaptive—OPRO -LlOi 0.44 ‘0045j: 0.012 5.15:{: 0.71 42.07i 1.85 0418:(: 0.016 315:E 0.02
Baseline -4.494 400 -0.1344+ 0.114 7.714 1.06 13.43+ g.62 0.1804 0.121 5.524 3.96
Claude Sonnet 4 Reflection -3.78i 4.23 -0.115:|: 0.105 1054i 1.58 521i 1.10 0089i 0.026 511i 1.86
AdaptiVC—OPRO ‘5-07i 4.53 —0.165i 0.143 923i 2.71 25.85:|: 10.61 0290:|: 0.087 3-75:|: 0.59
. Baseline -0.99:|: 0.80 —0.039:|: 0.020 7-75i 1.00 12-52i 2.47 0-175i 0.030 5-03i 1.53
Clviljdrihsizgft 4 Reflection -1.494 376 -0.0694+ ¢.123 7.27+ 9.06 11.124 486 0.186+ 0.083 3.424 203
! & Adaptive—OPRO ‘1~01i 0.90 —0046i 0.020 5.16:|: 0.52 16.36i 7.87 0.217i 0.105 518i 2.52
Baseline 129i 1.38 0021i 0.044 3.23:|: 0.48 700i 3.46 0125i 0.054 2.74i 0.79
GPT-04-mini Reflection —1.48i 0.54 —0.087i 0.018 4.64i 0.75 9.80i 3.21 0.189i 0.067 2-45i 1.00
Adaptive—OPRO 3.88i 2.21 0-089:|: 0.067 3.283: 0.95 10.47:|: 3.84 0.193:L 0.046 3'42i 0.90
Baseline -O-GOj: 1.71 —0.034:(: 0.050 5.93:{: 1.33 22.70;{: 0.92 0.269:(: 0.029 6.82j: 3.03
GPT-03 Reflection ‘]-~5'5i 2.09 —0084i 0.075 502i 0.72 2198i 4.54 0325i 0.040 314i 0.99
AdaptiVC—OPRO 362;[: 0.90 0096:|: 0.027 346:|: 0.48 2506;[: 4.28 0392:|: 0.019 2.31:|: 0.80

Table 1.2: Yuvduoaotixde Tivaxac enddoewy oe dvo ayopéc: XOM (mheupinr)) xou NVDA (avoduh).
IepauPdver ROI, SR xow DD. Ot bold twéc unodnicyvouv tny xahbtepn enidoor avd poviého.

1.5 Amnoteléocupata

O Iivaxec 1.1, 1.2 moagouoidlouv cuyxpeltixt| aEloAdGYNoN XUHECWUEVKY TOCOTIXDY CTRATNYIXWOY EVOVTL TOU
ATLAS oe nowihec Blapoppaoelc LoVTEADY xal BlapopeTixd xoesteTa ayopds. Ta anoteAéopato delyvouv
ot to ATLAS emtuyydver otalepd vipnii} emnidoon oe dheq Tic egetaldyeveg ouvirnes. Ilpdxeitan yioo v
TEMOTN TEPInTWoN Tou éva eviofo Thancio emdeviel 1600 GUGTNUATIXY AVIEXTIXOTNTA GE ETEPOXANTO GEVAELYL
ayopdc, uteptepdvTog Eexddupa Evovtl Bladedouévwy xat Topadoctaxd SNUOPIAGY HedddnY. LTpatnyinés 6nwe
0 Buy-and-Hold omodidouv xohd oc avodxd xadectdta, oARd AmoTUYYAVOUV Vo YEVIXEDOOUY, TUEdYOVTIS
aoIntd acBevéo Tepa AMOTEAEOUAT O TAEUELXES XU TTWTIXES AYORES, OTIOU XUPLOEY 0LV oo TddeLa, YounAY) TeoS3-
hepotnto xou meploplopéva ofuata TAnpogoptds. Avtidétwe, to ATLAS, lwg oe cuvduacps ye GPT-03 7
GPT-04-mini, nopéyel otalepd Jetikés anodooers axoun xou oe avti€oo nepiBdilovta, cuunepthauBavousvwy
TTOTXOV XETTOTWY O0Tou 1) xuplapyn Tdomn eivon xadodur xan 1 enitevdn xepdogopiog Wiaitepa BVGXOAT.
H wavotnro va amodidel aflémoTta oaxdps 4Tav Ol TEPLOCOTERES OTEUTNYIXEC DUOXOAEDOVTOL OVODEXVUEL TNV
ovéTNTa Tou Thauotou vo mhonyeitow oty afefondtnTa xon var AauBAveEL ANOTEAECUATIXES OTEAUTNYIXES AMOQE-
OElg, aXOUT Xl OF MTWTxd 1) Wiaitepa euetdBAnta mepBdihovta. Ta svpruato autd ovadewcvbouy TNV av-
Yextdnta tou ATLAS xou ) duvaing Tou 0¢ a€ldmio Tou cUCTHUNTOS AMne anogdoewy ae dho To Ppdoud
xECTOTOVY NG AY0pdc.

1.5.1 BeAtiotonoinon oe Axohovdaxy AMdn Arogdoewy

To Adaptive-OPRO vunepéyel onpavtind 1600 évavtl Twv otatixdy baseline npotpondyv 660 xa évavtl Tpoo-
eyyloewv tOnou reflection oTn GUVTELTTIXY TAELOVOTNTO TV HOVTERWY Xt cLVINXOY oryopds (Hivaxee 1.1, 1.2).
H o taduoner) avaBdipion tng ToloTnTog TwV ano@doewy xotd 1 BEATICTOTOMNOT ATOTUTVETAL OE GUPHS AVOTERT
enidoon cUVUAAAYDY, OTWE XATABEXVOOUY Ol CYETIXEC UETEIXES.

O BeATidoelg otny anddoon enévduone (ROI) unodnidvouy emtuyy allonoinomn tne avddpaons g
ayopdc. Xto mrwtnd/eupetdBinto xadeotoe (Ilivaxag 1.1), yovtéda énwe oo GPT-03 xou GPT-04-mini
petaPaivouy and apvnuixd ROI ye baseline mpotponéc oe capue Vetixéc anodooelg uné Adaptive-OPRO.
Axour mo evbexTixéc elvol ol LETPIXEG TPOCUPUOCUEVES oTOoV %ivouvo: ol udmidtepec Twéc Sharpe
XATOBEWVOOUY OTL To X€PDT) ATOPEEOLY amd oLGLUCTXT oTEATN YLK avaBdiuon xou oyt arnd avdindn urnepBoiixod
ploxou.
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Stock Configuration ROI (%)t Sharpe Ratio T Max DD (%) | Win Rate (%)t Num Trades
LLY No News 407i 0.72 (]056i 0.016 7.84i 3.15 53-51i 6.67 25-33i 4.51
(Bearish/ No Market Data '5‘75i 0.76 ‘0094i 0.017 1132i 2.63 3752i 4.87 1833i 3.06
Volatile No News + No Market —6.86i 1.68 —0078i 0.036 14-54i 3.30 4394i 6.94 2233i 1.15
Regime) ATLAS 906i 0.73 0094i 0.008 11.48i 0.00 6528i 16.84 1733i 5.86
XOM No News —8.20i 1.64 —0.264i 0.069 909i 2.99 22482i 13.65 3500i 12.29
(Sideways No Market Data Ooli 0.92 —0.011i 0.021 656i 1.58 4655i 23.15 1333i 3.06
Regime) No News + No Market  -4.60+ o.70 -0.136+ 0.026 7.014% 229 35.264 13.09 21.00+ 4.58
ATLAS 3.884 2.21 0.089+ 0.067 3.284 0.95 47.954 715 25.33+ 5.03
NVDA No News 6.62+ 0.25 0.090+ 0.008 6.674 0.36 41.964 5.01 28.33+ 4.62
(BllHlSh No Market Data 11.78i 1.76 0216i 0.024 37Oi 0.86 7024i 14.03 2000i 5.57
Regime) No News + No Market  7.344 979 0.110+ 0.012 5.76+ 2.01 63.844 939 20.67+ 1.53
ATLAS 10.474 3.84 0.193+ 0.046 3.424 0.90 62.704 11.25 20.33+ 2.89

Table 1.3: Anote:éoparta pehétng apolpeonc Tou avadexybouy T GUUBOAY Xdde UEHOVLUEVOU TEdXTOPO UE
yenon GPT-o04-mini oe tpla xoadeotdta ayopds.

H cuunepipopd Touv nococtol emttuylog anoxahintel Ty enidpaon tne Pektiotonoinone oty ToldTnTa
ano@doewy: to poviéda und Adaptive-OPRO emituyydvouy yevixd upniotepa win rates poali ue Bertiwuévee
amodoCELS, UTOBNAOYVOVTOG T GUVETY AN amoPdoewy Xo )L TEPLOTAGIXA UEYAHAA XEEDT TOU GUYXAADTTOUY
ouyvéc {nuiec.

AZoonueiwta, avadletar otadepd To «tapddogo tou reflection»: o otpatnywéc reflection 6y wdvo dev
npooeyyllouy v enidoon tou Adaptive-OPRO, ahhd cuyvd votepoty xau évavtl twv baseline tpotponv-
apLoBnTedvTos TNV empatovoa drnodm 6t Ta tpdoteto Bota CUANOYLOUOU BEATLOVOLY TéVTA XAl pLUTULCUE VL
cuoTioTa oe duvoauixd TepBdihovTa.

1.5.2 Avdiuorn Yuveiocpopds Ilpaxtopwy

O Iivaxog 1.3 emPBefoucdver tn dakprer) ovveopopd xdde e€eldixevpévou Tedxtopa, TapoucldlovTaS TG TTMOOELS
enidoong 6tav agatpeltar o xadévac.

O Avahuthc Ayopdc anotehel Yependdec cuotatind oe 6ha ta xadeotdta. H agaipect| Tou 0dnyel cuotr-
HATWE 0T UEYUAUTERT TTAOY eNBOCTNE, WG 0 TTWTES CUVIXES 6ToV TO TEYWLXO Thaiolo efvan xplowo Yo
™ M anogdoewy. e TASUpXES ayopEs, 1 amoucio TEXVIXNG avdAUoNG BEV UELDVEL UOVO TIG amodOCELS AAAY
X0 T} CUYVOTNTO CUVAAAAY WY, UTOBNADVOVTOC OIOAELN KEUTLoTOCUVNGY Yl dpdion ywelc otBapd teyvixd un-
oPBadpo. Ilupd tavta, oe avodixd xadectodto, mapatneeiton wxen Bektiwon tov ROI 6tav mapaielnovton to
dedouéva oyopde, UTOBNADYOVTOC 6Tl UG LoYURES TAoELS 1) ewdnocoypapion XaL 1 €UPUTERT «OUVOLVEST)» TN
ay0pdic EVBEYETAL VoL TROCPEEOLY XadaPdTERR CHUATOL ELGODIOU.

O Avaiuthc Ewdrjoswy npocpépel otpatnyix| aflo mou e€optdtal and 10 xadeoTidg ayopds. Xe ovodixég
TAOELS, 1) AMEVERYOTOINGT) TOU 0B YEl OE YEIPOTEPEC EMBOTELS, xS Ol TEAXTOPES YivovTol To EMLGUANXTIXOL
xou ydvouv evxaupies aftomoinone e Yetinic opuic. Xe mhevpixéc cuVIXES, 0 POAOC TOU YivETOL XUTAAUTLXOC!
N agalpect| Tou odnyel oe éviovr unoldduoT, LTOBNAGVOVTAS OTL 1) anoTiunoy enevouTXO) aoVAUUTOS Elval
xadoploTixy) otay To TEYVIXd ofuarta etvon apionuo.

O ouvbuaocwdg Avaruth Ayvopdc xau Avaiuth Eidrfjoewv armoxahdntel ) ocupmAnpouatikétntd
Toug: ot Ohal T XadECTWTA, 1) TUVTOYPOVY APAipEST) EMPEPEL ONUAVTIXY ETBEVWOT), BElyVOVTaC TKC EWHOE
Ol TEYVIXA ORUOTA TTHp€YOLY TUUTANpwuatikT), un mAeovdlovoa mAnpogoplo. Y& MTwTxéC ayopéc, 1) enidoon
UTOY WEEl SPUUOTIXG, UTOYPUUIICOVTAG TNV oVAY XY VLol GUVBUACUO TEY VX0 TANGIOU Xal AmoTUNoNg ETEVOUTIXNOD
acUuatog oe cuvirixec VYMAAC petaintotnTag. Xe mAeupxd xadeotdTa, 1) arovcior xou Twv BVO YEVVE plo
actody), un xepdopdoa cuUTERLPoEd. Axdun xou oe avodixd nepiBdhhovta, 6Tou Ta TEYVIXE dedopéva umopel Vo
elvon Aiyotepo xploya, 1 cLYBLACUEVT] apalpEDY) TAHTTEL GAPHOS TNV ETDOOT]. XUVOAXA, oL BUO CUVIOTHOOES CUY-
Baarouy dagopetind avd kaleotds, €V 1 xOLVT) TOUG apalpeoT ExEL ETBPAOELS TTOL Hev elval amAwS adpoLo TIXEC.

1.5.3 Juvalhaxtixy Juunepipopd awve LLM

H oavédhuon poc anoxahOntel ooy ouox€tion PeTofl TWV YEVIXMY IXOVOTATOY TWV HOVTEAWY Xou TN ETiB0oTC
TOUC OTIC CUVOANOYES: TOL IO otV LovTéRa amodidouy onuoavtind xahitepa ond 1o Mydtepo eovd (Ly. 1.5.1).
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1.5. Arnoteréopata
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Figure 1.5.1: ROI oe tpeig yetoyéc pe yerion Adaptive-OPRO.

To GPT-03 nopouctdlel TNy O WELUY XATAVONGT) TNG AY0pds, CUVUETOVTOG GUVEXTIXEC OTRAUTNYIXES OO TIC
avohboelc OAVY TwV eEeldixeupévmy tpaxtopwy. Ilopd v xoutd TéToue UTEpUETEA CUVTNENTIXY TOU GTAOT), TOU
neptopllel Ta x€pdN o€ ELVOIXES TAOELS, 1) EMAOY T aUTY) amodidel otalepn, dakaleotwtikn emidoon. OuxavdtnTéc
TOU 011 BEATIOTOTOIN O TPOTPOTEY EIVAL UTODBELYUATIXES: TROOBEUTIXY USUNGCT), CTEATNYIXN AVATEOCUQUOYY| UETE
ané actoyieg xou caphc eVBUYPAUULOY PE TOUC 0TOYoLE PeATiotonolnong.

To GPT-04-mini emdeixviet ixavi, ahid Beayunpddeoun otdyeucy), npotdocovtac Tov EAeY)0 ploxou Evovtl
e otpatnywnc tonodéong. Ilpoxplvel auotned dpia dakonnis {nuiag xou yeryoen xatoylewor XeEdHOV,
TPOGEYYLON ToL amodidel oe cuVIreS LPNATC peToBAnTéTNTaC, Ahhd UoTepEl oE TopateTopéves tdoets. Topd Ty
neplotactoxt vepPolnt| dpactnetdtnta (overtrading), to eninedo wewdtnToc ot BeltioTonolinoy nEOTPOTHY
Tapopével ouyxpiowo ue exsivo Tou GPT-03.

Ytov avtinoda, To LLaMA 3.3-70B Baocileton o dlodtepa anhoixéc toxtixée, ue avemopxn dayeioton xivdivou
xon ywpic ouvextiny) otoyoleoio. Kobduotepel va npocapuoctel otic peTaBoréc Tng ayopdc xoi, oe cuVIfXES
évtovng petafhntotnTog, yetomndd andtopa hetadd otpatnyix@y. Iaupadding, auth 1 amhdTnto anodetxvietol
mheovéxtnua oe xadapd avodd xadeotdta, 6mou oty medin uviodetel oTpatnyw tomou buy-and-hold xou
xatorypdipel eonpeTnd LPNAEC anoddoelg, avadeviovTag OTi o Tepithoxog cLAROYLoUOS unopel vor uoPoduilel
Yy anédoor) oe amholoTepa TEPBEAAOVTA.

Movtéia Claude: Avaxpitd Ipdétuna Actoyiag

Aveopthtwe Swpbppuwone (He 1 ywplc thinking) to povtéla Claude epgoaviouy custruatixés aduvapies, ahhd
HEow BLopopeTIXY LoTBwy aoToylag mou naparéunouy oe douixols neploplopols. Me thinking: exdnidveton
TAON Yo UTERAVAAUOT EWdNoeoYpaplac xou YeUeAlnd®Y, Tou odnyel Tapepunveld TV TeEYVIXwY onudtwy. Iopd
TO POULVOUEVIXE XUAOBOUNHUEVO OXETTIXG, TORUUEVOLY XploWa XEVE TTOL 001 YOUV OFE EGPUNUEVES UTOPIOELS.

Xople thinking, ta Inthpata allomotiag oZ0vovtal: UTEpaVTIOEAC TIXES TomoVeTATELS, eNipoveS «TapotcVOELS
(hallucinations) oTic yetpéc enidoong xou Vepehliddels tapavoRoelc Tne wxpodouic tne ayopde. To anotéleopa
elvan oxpador Stoaxbpaven xan AoLVETAS, CANOTIEOCUANT] CUUTERLPORG, TOU XaMoTOOY TO LOVTENO aXUTEAANAO YLo
ouvent| xou a€lomio Ty o€loAdynon.

Yuvohixd, ol avtietixol autol Tpdémol aotoylug uTOdNAWGYOLY OTL 1 uToxeluevr oapyltextovixyy Tou Claude

elva avemopxds eViUYPOUULOUEVT UE TIC AMOUTACELS TNG YPNUUTOOOVOUXAC Mne amogdoewy, aveapthtwe
evioy0oEWV GUAROYLOUOV.

13



Chapter 1. Extetopévn Ieptindmn ota EAAnvixd

1.5.4 Ixavoéotnteg BeAtiotonoinong LLM

Ané oxomd epunvevoiudtnag, €vo Pooixd micovéxtnuo tou Adaptive-OPRO elvow 61Tt 7n Suadixaocio
Behtiotonoinone mopdyel wot tekikr) odnyia (prompt) yw to povtéla, 1 omola unopel vo alioloynlel téoo
we TPog TNV 0pUdTNTE TN 6G0 Xl 1S TPOS TO XATE OGO Tat LoVTéAA TNV axoloudoly. Autr 1 LTt onTxy] pog
EMUTEENEL VA ATOTYWACOLUE Oyt WoVo TNy evduypdumion e BEATIO TOTOMNUEVNC TEOTEOTNG UE TOV ETUSLWXOUEVO
oTOY0, OAAGL YOl TNV LXAVOTNTO TOU LOVTEAOU Vo TNV epunvelel xat va evepyel Bdoet avtic. 'Etot, uropolye va
a&lohoyrioouye av 1) BertioTonolnor xveltan Tpog TN owoTh xatediuvon.

H avéhuon avadexviel 6Tt oL xavotntes Beitiotonoinong npotpomdy dlagépouy avd LLM: to GPT povtéia
mopdyouy ouvenelg, epunvedolles avaldewerioelg tpotponty, eve to LLaMA cuyvd «poavtdleton» ohhayéc,
XOTAYPAPOVTOS TPOTOTOACELS TIOU GV TeoyloTixdtnTa 6ev viomolovvtal. To Claude teivel oe unepBolixd
avotnpés, dadikaotikés odnyieg mou neptopilouv v evehiéia.

Avtideta, to reflection, mapdT Yewpntind unooyduevo, otny tEdin elodyer VopuPfo. Axdun xa to GPT-03
telvel va eyAwPiletar oe unepavahOoELS, EVE AYOTERO Xovd HovTéAa ElTE TOPdYOLY aoagr] avaTEOPOdOTNON
(LLaMA) eite nopepunvebouv ta ofuato e ayopds pe uépueten Pefoudtnro.

1.6 Xvunepdopota

H Simhopotind avth epyooio napoustdlel éva ohoxinpwpévo mhoioio epappoyhc Meydhwy Iwooixdy Mov-
Téhwv (LLMs) oTic yenuatooixovoixés ayopés Uéow d00 GUUTANPOUATIXGY cUVELG(op®Y: To StockSim, wa
TEONYUEVT Thatpdpua Tpocopoinong yio custnuatixy aflordynon LLM oe peahiotixd mepi3dhhovta cuvol-
hayddv, xou to ATLAS, éva mpocoppootixd mohunpaxtopxd GOGTNUN CUVAAAXY®Y TOU ETUSEXVOEL ATOTEAED-
patxd ouvtovioud xau Behtiotonoinory LLM und cuviixeg ofeBardtntag. Ilapdti oyedidotnxay ye enixevipo
™ xenUoTooixovouxy Mdn amo@doewy, oL cuvelsPopéS auTég VePeLdVOUY EVpUTERES UEVOBOMOYIXES apYEQ Yid
™V egapuoyT Twv Meydhwy I'hwoowidy Movtéhwv ot tepiBdhhovta udnhod Soxufeduatog ye xaduotepnuévn
avddpaoT), YopuBwoels avtouolBés xa analtnom yia otadepd alomio T enidoon oe BUVAUIXES GUVDTXES.

1.6.1 Xul7tnom

H epyoaoia poag avupetwnilel xploa xevd nou éyouv avayotioel v adlonoinor twv LLM oe yenuatooixovouixd
nedla, 6mou ol mapadoctoxéc pédodol alloAdyNnone aBUVITOLY Vo AMOTUTOGCOLY TNV TOAUTAOXOTNTO TWV TEOLY-
HATXOY SUVINXGY ayopds ol TN OTOXaoTXY QUOT TOCO TWV AYopwY 600 o Twv e£6dwv twv LLM. H
avéntuén Tou StockSim cuviotd onuavTix TEG0d0 GTNY EPELVNTIXY UTOBOUN TNS YENUATOOXOVOUIXAC TEY V-
N YONUOGUYNG, TROGPEROVTAC TNV TRAOTN ONOXANEWUEVN That@dpua Tou cuvOUdlel Tpocouoiwon ayopds
eTTESOV TopAYWYNE UE LS TNHATIXES Buvatdtnteg aglohdynong LLM edwd yia epopuoyéc cuvolhaywy. Y-
ootnpilovtoc 1600 exTédeéon o€ eninedo evtoddy 600 xou extédeon o€ eninedo kepidy (OHLCV), to StockSim
EMTEETEL TN MEAETH TNG ouuneplpopds Twv LLM oe Slagpopetind eninedo mTOAUTAOXSOTNTAS AY0RdS, SLOTNEMVTAS
TAVTOY POV VOTNEY TEWTOXOAAN a€loAGYNONG ToL AauPdvouy uTddn Ty eyyev offefondTnTa TWV AYORHOY Xol
Twv poviédnv. H apyttextoviny dimhiic Aettoupylag, 1 OMNOXANEWUEVY] EVOOUETWOT BESOUEVKDY Xal 1) UTOGTARLEN
TOMATAGY TEAXTOPWY BNULOUEYOUY TEMTOYVWPEES BUVATOTNTES Yo TN UEAETN xavoTtAtwy Twv LLM ot egap-
HOYEC TOU ool TE(TOL YENUATOOXOVOULIXOS GUANOYIOUOC, ToAuTpoTXY eneéepyaaior TANPOPOplaC Xol GUVTOVIOUEVT,
An ano@doewy ud YEOVIXES XoL OTOYAC TIXEC TEOXANOELS TEOYUOTIXWY GUVOAAAY (V.

H ewoywyr tou ATLAS xatadevier node ol mponyuéves ixavotntee twv LLM pnopolv va adlomointoldv
ATOTEAEOUATIXG. UECL XATAAANAOU  deyLTeEXTOVIXO) OYEDLIoHOU oL mpocopuooTixic Beitiotomoinong. H
TIONUTIROXTOPLXT] UEYITEXTOVIXT] UAC ATOCUVIETEL TNV TOAOTAOXY YENUATOOXOVOULXT] AVAAUGCT| Ot eEELOIXEVUEVES
CUVIGTWOES, £V BLATNEEL GUVEXTIXT) EXTENEDT) GTEATNYIXAC HECW EVOC XEVTEOU TpdxTopa. AuTH 1) anoclvieon
amodewvieTan xplown yio T Stayelplon TNe TOAUTAOXOTNTAG TEoy ATy TEPBoANOVTOY AMne amogdoewy,
6mou moAamhéc mNyéc mAnpopoplac xou onTxég meénel v cuvteldolv ot exteléoieg amogdoeic. H otalepd
avaTepn €midoon Tou TAUGCIOU OE ETEPOXANTES CUVIHXES 0YORdS, CUUTERLAUUBAVOUEVLY OTOULTNTIXWY TTWTIXWDY
X0l EVUETABANTWY XAIECTHOTWY OTOU OL TORUBOCLOXES GTRATNYIXEG AMOTLY YAVOUY, ETLXUPMVEL TNV EUPLGC Tlal Xol
TNV mpox Ty} Tou o&la.

KopBwd otoiyeto e anotereopotixétnrac tou ATLAS eivar to Adaptive-OPRO, n véa pog enéxtaon
e Pehtiotonoinone npotpondy (prompt optimization) oe mepBdhhovto oxohovthoxfic Mne anogdoewy pe

14



1.6. Xuumepdoporo

xoduotepnuéveg xan YopuBwdelg avtapoBéc. H pedodoroyla auts) oUVIOTE TNV TE®TH ETTUY T TEOCUPUOYT| TOU
Optimization by PROmpting oe nedio ye ypovixéc e€apthoelg xat otoyaotixy) avddpoaor. Ou cuotnuatixég
Behtidoelg mou emtuyydvovton pe to Adaptive-OPRO oe dhec tic doxipaouéves apyttextovixée xou cuvInxeS
ayopde anodewcvbouv éti ta LLM propolv va padaivouvy kair va mpooapudlovtar oe cbvieta nepiBdAlovta
OTOY TAUOLOVOVTOL OO XATEAANAOUS pnyaviopols Behtiotonoinone. H emtuyla auth otnpiler tnv apy? 6TL 7
dueon Beitiotonoinom odnyudy Bdoel anotedeoudtwy npocpépel o o&IOTIOTES PBEATIWOELS and TEOcEYYIoELS
META-Y VWO TS EVioyuomg.

H extevic o€lohdynot| pog amoxoAOTTEL eVphuaTa Yio T cuunepipopd twv LLM nou unepBaivouv tov yernuo-
Toowovouixd yweo. H caphc cuoyétion YeTall YEVIXOV IXAVOTATOY EVOS HOVTENOL Xou edXNE enldoone oTo
nedio umodnAdvel 6Tl 1 mpdodoc oto LLM petagedleton ofiémiota oe e€edineuuéveg eqopuoyéc. {2otédoo,
AVOBELXVOOVTOL X0 OUCLOBELS OPYITEXTOVIXES DLUPORES: EVG T povTéha GPT emdeviouy ouveny| enidoon xau
amoteheopatiny duvatotnTa Bedtiotonoinong, dhkeg apyttextovixés epgovilouv YeuelMmdel Teploplopols Tou
empévouy avegapTiTeg culoylo g evioyuong 1 uedddwy Bedtiotonoinong. O Blagopég auTtég €xouv xpioleg
CUVETELEC YloL TNV EMAOYT LOVTEAWY OE eapuoyéc udnhol BlaxuBeduatog.

H ovotnuatikn votépnon twv npooceyyloewy tOnou reflection mpoo@épel ouolndelg evielel yia Tov oyedl-
aop6 cusTnudtey Pactouévey oe LLM. Ta anoteléopatd pog delyvouv éti ta tpdodeta Brpata cUANOYLOWOL
unopel vo uropaduioovy tnv enidoon xohd pUHLOUEVWY CUCTNUATWY, AUPLOBNTOVTAS TNV xoLvY| Tapadoyr Tepl
%xo0oAx00 o@éhoug omd awEnuévn avolutix tohuthoxdtnto. Autd UTOBNAGOVEL 6TL 1] EPELVNTIXT/ UTOAOYLOTIXN
npoonddeia elvol TPOTYWOTERO Vol ENEVOVETOL OE OUOTNUATIKY) BEATIWOT) TPOTPOTWY Tupd GE TEPIMAOXOUE UNYAVLOo-
polc agloAdynong, Wing o duvauixd TepBdAlovta dToL 1 GUVETELL OTNV TOLOTNTO TV ATOPAcEwY elivon xa-
Yoplo Tixn.

"Eva xplowo edpnua elvar 6Tt tpwtdkoAda toAdamAdy extedéoewy omoxohintouy {ntiuata oélomiotlac o€ cLOTH-
potar LLM mou ouyvd napofiénovtan. H axpaio dioduaver enldoong mou mapatnpolue e 0ploUéves SLopop-
pooelg, unepBaivovtog To 50% e péong enldoong o€ AEMOLEC TMEQIMTAOOELS, XATUDEXVUEL OTL oL dELONOYNOELS
Hoc Yovo extéleonc Bev TopEYOLUY OUGLMBT EXOVO TV IXAVOTATWY evde cuothpatoc. To edonua autd €xel
Badiéc ouvéneteg yior TV €peuva xou avdmtuén LLM, avadewviovtag tny avlyxn otatiotikiis avotnpotntas oTiG
pedodoloyiec o€lohéynone émou 1 adlomotio eivon xadpa.

H epyaocia poag eyxadidplel ot 1 a&iémotn avdntuén LLM oe oOvietoug topelc anmoutel tpior ouolnddn cuo-
touxd: (1) mpomyuévn vrodoun a&ioAdynong mou amOTUTOVEL TNV TOATAOXOTATA TOU TEOYUATIXO) XOOHUOU,
(ii) mpooappootikols unxaviopods PeAtiotonoinong tou entpénouy cuveyh Behtiwon Bdoet exPdocwy, xon (i)
avotnpd mpwtdkoAra a&ioddynons mou AawPdvouy unddn T oToyao TIXGTNTA ToL cuoTHUNTOS. H oloxhnpwuévn
EVOLUATOON AUTOY TWV OTOLYEIWY GTO TROTEWOUEVO XG0 Tpoapépel éva mpdtumo avdntuéne LLM xau oe G-
he¢ xploWeg EPUPUOYES TEQPOY TV YENULUTOOXOVOULXWY CGUVORRAY (V.

1.6.2 MeArovtixéc Kateuddvoelc

To Yepéhia mov Yétouv ta StockSim xou ATLAS avolyouv mhifog npoontindyv yio Ty e€EMEN Tne €peuvog
yOpw and LLMSs oe yenuotoolxovouxés EQuploYEs xot, eupltepd, ot TepBdihovta oetploxic AMdne amopdoemy.
Ané v gpyaocio poc avadhovtal dpxeTég UTOCYOUEVES XATEVTUVOELS TTOU UTOPOVY VoL EVIGYUGOUV OUCLAGTIXG TOV
avtixTund TG xou vor amoxahOPouv Véeg TTUYES TV tavoTAtwY Twv LLMs e oOvieta, Suvopuxd tepiBdhhovta.

Xeovixry Avdiuvor xow Avvouixr Ayvopdc: H tpéyouvca allohdynon emixevipdveton o€ MUEPHOLES
AmOQAGELS GUVIAAAYGY, X3TL ToL evdEyeTaL VoL TepLopilel TNy TATen Buvauixr Twv custnudtwy LLM. Melovtixn
€peuva Yo mpémel va e€eTdoel oevdpLo UPNASTEENC CUYVOTNTAS, OOV Tol HOVTEAX omoPacilouy avd wpea, Aentod 1
oxoun xou oe eninedo tick. Tétolec perétec unopolv va del€ouv av ta LLMs unepéyouv oe tayelo avayvodplon
TEOTUTWYV X0l TEOGUPUOYT TV AoBAVOUY GUYVOTERY AVADEAUOT) XU TEPLOGOOTERES ELXALPIES ATOPIUOTC.

Awcpuvon Katnyopiwv Ilepiovoioxwy Xtoiyeiwyv: H enéxtaon népo and i yetoyés unopel vo
detlel Tov Badud yevixeuong TV EUENUATWY GE dAAA YENUATOOLXOVOUIX péoa. Ol ayopéc XpUTTOVOULOUATOY,
pe Somparypdtevon 24/ 7 xou Widlovta pot{Ba petofAnténrog, anoteholy éva ialtepa evilapépoy medio yio Tov
ENeYY0 TN TpocuprooTixdTNTaS Twv LLMs. Avtictouya, to eunopedpato (m.y. ypuode, netpéhono) diénovon
and SLopopeTeolg VeUEADDELS ToEdyOVTES XAl EVTOVTY ETOYLXOTNTA, BOXWALOVTOS TIC CUANOYIOTIXES LXAVOTNTES
twv LLMs pe véoug tpénous. Ou ayopéc otadepold elcodfuatog, ue udpniy e€dptnon and to emtéxd XL TOV
ToTWTXG %((VOUVo, cUVIETOUY TOAUTIOEOYOVTLIXE TAXLGLL aoPdoEWY, dTou doxwudletan 1) xavoTnTo dlayelptone
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Chapter 1. Extetopévn Ieptindmn ota EAAnvixd

oUvietev aAAnhetdpdoewy UeTAE) TapayOVTWLY.

Evioyvon xou I'evixevorn tou Adaptive-OPRO: H npotewouevy yedodoroyio Behtiotonolnong meo-
TEOTOY amotehel Wi apyxr] Blepelivnor pe onuovtixd teprddpia e€éMEng. Melhovtxée epyaoieg pnopolv va
e€eTdoouy evolhaxTind meta-prompts pe mo eEehiyuév xoadodnynor, SlopopeTind cuo THUNTA aELOAGY MO TERL
a6 o ROI (1.y. UETPEC TPOCUPUOCUEVES GTOV XIVBUVO 1 TOALXELTNPLIXES HETELXEC), XaHDC X EVOANOXTIXOUS
puduolc Beltiotonoinone nou eloopponoly TV TaylTNTa TPocapuoYRc we TN otadepdtnTa. Kateoynhv, n
petagoed tou Adaptive-OPRO ot etepdxintoug topeic axoloudioxnic AMng anogpdoewy, dtwg o oyedloouds
Yepanelog otnv vyela, 1 Swyelpion epodlacTinic ahuoldag 1 1 oTeATNYXN XoTavour Tépwy, Yo texunelnve
YEVIXEUOWOTNTE TOU o Yo avEDELYVE TLC AMOUTAOELS TPOGUPUOYAS avd Tedio.

Egehixtixry Bektiotonoinorn Ilpotpondv: Ilpotelvoupe wa eméxtacn 6mou oL mpoTpomés Oev
BeATIOTOTOLOUVTOL ATOUOVOUEVRL avd UETOY Y|, 0ANS e€ehiocovtar ovAdoyikd péow yevetdy olyoplduwy. T
xdde petoyr) exteheiton évog autévouog Tedxtopag pe Adaptive-OPRO rnou Behtiotonotel to dixd tou prompt.
IIévew and autole Aettoupyel éva ueta-eninedo e£AiEng mou emAéyer TIC O ATOBOTIXES TEOTEOTES, EPApUOLEL
dwotapwon xou petdAra&n xou mopdyel véec unodripieg exdoyég, ol onoleg enavaEloAoYoUVTOL and TOUS TEdX-
topec. Koat’ autdv tov tpdmo, Wblocuyxpactaxd yvwelopata avd LeToxT) Umopoly Vo avacuvBuac oy xol Vo
YEVIXEUTOUV, TUPAYOVTAS UBPIOIKES TROTEOTES TTOL CLVUETOUV EMITUYNUEVES OTRATNYIXES AN ETEPOYEVY| TEQLBAA-
hovto.  Tlopdti tor apyind melpdpoata pe auty TNV TEocéyylon Ntay evioppUVTIXG O EVVOLOMOYWXO ETUTEDO,
Tpoéxuday oLCLIC TIXES TTPOXANTELS LAOTIOINONG" WOTOCO, 1) TPOOTTIXY] AVATTUENG TEOTRPOTWY TOU EVOWUTE-
VouV BLa-evepynTixéc (cross-asset) yvooele cuvahhoy (v anotehel Loyupd xivnteo Yo cuvéylon e épeuvo.

Enidpacn otnv Avopd xar Avdiuvorn Ocsopixnc KAhipoxag: H extéheon oe enlnedo evioldy Tou
StockSim emtpénel ) uehétn oevapiwyv omou mpdxtopec LLM Siardétouv enapxéc xepdiono ¢ote vo ennped-
Couv T Tpég, dnAadn va uodetolv cupneppopés Veounmy enevdutwv. H €peuva umopel vo e€etdoel méde
npocapuolovton oL oTpaTNYXES OTa oL (Bleg oL evépyeleg Tou TpdxTopa UETUBEAOUY TN BUVOHLXY TNS AYOpdS, oV
avantiocovtan eEEAYUéVeES otpatnyxée Bidomaons evtoddy (order-splitting) vy ehayiotonoinon tou market
impact, xon TS AIANAETLBE00Y ToAATAS cuo Tuata LLM peyding xhigoxag oto (6o tepiBdihov. H xatetduvon
auTh) €xel xploWeg TPOEXTACELS Yiot TNV XATAVONCT) TUAVOY TUOTHUIKDY EUNTOOEWY and TNy gupeio LloVETnon
¢ Teyxvntic Nonuoolvng oTic enuatooixovouuxés ayopée.

IMpoocwmxdtnTec Juvariaydyv xou ITpopih Kivdbvou: H euehiio twv LLMs enttpénel cuatnuotiny
BLEPEUVNOT) DLUPOPETIXWY KTPOCWTLXOTATWVY CUVIANAYV PECL EEELBIXEUUEVDY TTPOTROTWV: CUVTNENTXES, ETL-
Yetxée, mpooavatohiopévee otny opph # avudetxéc (contrarian). H anotipnomn autdv towv tepodvwy yropel
va Bet€el e dapopeTixol oTpatnyixol mpocavatolopol ennpedlouv Ty enioon avd xadeotde ayopds, vo
amoxalOel BEATIOTOUC CUGYETIOHOUE TPOOWMIKOTNTAS—OUVYINKGY %ol VoL UTOSEEEL TG 1) «TEOCWTIXOTNTON
unopel vo tpocapudletar Suvapixd xadde petofdihovion ol cuviixes TS oyopds.

Awayeipton IToluv-Evepyntixod Xaptoguhaxiou: H yetdfoacn tou ATLAS and eotioorn oe pla
ueTo) Y| o dlapopomolnuév diayeiptor yopToguAaxiou Yo BoXIUACEL TIC IXAVOTNTEC GUVTOVIOUOU YL TAUTOYPOVES
anogdoel; oe molhamad péoo. H épeuva pnopel va eetdoel tov yelplopd cuoyetioewy, TV kAadikr] mepi-
otpogr) (sector rotation) xou tn Suvapixr) xatovour| xegodaiou, diatnedvTag eUDLYEUUULOUEVOUE TOUG GUVO-
Axolg oTdy0ug Tou Yaptopuiaxiov. H enéxtacy auth anoutel VEOUS UnNYavIGHOUS 0pYHC TEWOTG Xl XUTIAANAES
npooeyyloeic Behtiotonolnong yia Yweoug ano@doewy viPnAng didotaons.

Moaxpoypoviec Meiétec ITpocappoyhc: Av xou ta tpé€yovta napddupa aflohdynone enapxoly yia po
apyy amotiunoy, n enéxtaon tou opllovta oe urvec 1N yeovia Vo emitpédel T HEAETN TG Makpompddeoung
TpocopUoY N xou TNe e€éhEng Twv oTpatnYwy. Avahioelg ot Bddog ypdvou unopolv vo Bel€ouy av Ta GUCTH-
pator LLM Satnpolv otadepdtnta enidoone, i ovtanoxplvoviol oe opikéS UETABOAEC TN oyOpdc ol o,
péow ouveyolc Bektiotonoinong, avantioooLY GTudlXE Mo COVIETEC XU UTOTEAECUNTIXEC OTRATNYLXES.

H avowtr Sddeon tou xdduxa v ta StockSim xou ATLAS emtpénet otnv epeuvnuixy) xowvdtnta va e&-
ehilel cLANOYIXE TiC TaPATAVE XaTELIVUVOELS, OLX0BoUMVTAC Tvw ot oTtépees Bdoelc hote va eyPodivel otnv
xatovdnomn Ty avothtey twv LLM oe odvieta, upnrod dxuBedpartog nepiBdiiovta AMdng aropdoenv. Ko-
Vcde ot apyttextovinég LLM mpoodetouy, ol ev Aoyw yeaupés €peuvag Yo anoxtolyv ohoéva pueyahitepn onuaocio
Yid TN UETOUGIWOT TV VEWY SUVATOTATOY ot a€LOTIO TES, EPUPUOCIUES ANOOELC OTIC YPMUUTOOIXOVOUXES AYORES
o TEEOL Amd oUTEC.
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Chapter 2

Introduction

In recent years, the rapid advancement of Large Language Models (LLMs) has fundamentally transformed our
understanding of artificial intelligence capabilities in complex reasoning and decision-making tasks [23, 35,
34,1, 52, 49, 64, 19, 30, 17, 63, 57]. These sophisticated models have demonstrated remarkable proficiency in
processing vast amounts of information, synthesizing insights from diverse sources, and generating coherent
responses across a wide spectrum of applications. As LLMs continue to evolve and demonstrate human-level
performance in increasingly challenging domains, their potential for deployment in high-stakes, real-world
scenarios has become a subject of intense research interest and practical importance.

Among the various domains where LLMs show transformative potential, financial markets represent one of
the most demanding testing grounds. These markets embody the essence of complex decision-making envi-
ronments, characterized by high uncertainty, consequential outcomes, and measurable performance metrics
[78, 58, 47|. Every trading day, participants must synthesize vast amounts of heterogeneous information-from
technical indicators and fundamental analysis to breaking news and market sentiment-while making decisions
that reveal their quality only over extended time horizons. The emergence of LLMs introduces unprecedented
opportunities for financial decision-making through their demonstrated ability to process diverse data sources,
reason over complex scenarios, and adapt to changing conditions [9, 43].

From a research perspective, financial markets offer several compelling advantages for LLM evaluation. Un-
like synthetic benchmarks that may suffer from distribution shifts or limited complexity, markets provide
unlimited historical data without simulation bias, while demanding genuine understanding rather than pat-
tern memorization. The domain requires synthesizing structured numerical data (time series, indicators) with
unstructured text (news articles, analyst reports), testing LLMs’ ability to perform multimodal reasoning.
Moreover, financial markets exhibit high stochasticity and non-stationary dynamics-properties that quickly
expose brittle or overfit solutions, ensuring that successful methods must demonstrate genuine robustness
and adaptability.

However, despite this promising potential, the development of effective LLM-based trading systems faces
significant challenges that have limited progress in the field. The NLP community currently encounters
substantial obstacles due to the absence of standardized, comprehensive, and openly accessible platforms
specifically designed for rigorous evaluation of LLMs in realistic trading contexts [37, 44]. Existing evaluation
frameworks suffer from critical limitations: they either provide basic trading simulation capabilities while
abstracting away crucial microstructure aspects like latency and detailed order-book dynamics, or they focus
on precise order-level market mechanics but depend heavily on expensive, limited datasets that restrict
practical applicability.

Furthermore, current approaches to LLM-based trading systems exhibit three fundamental weaknesses. First,
they typically rely on manually crafted, static prompts that fail to adapt to changing market conditions
and evolving system performance; this is a critical limitation in environments where continuous learning
and adaptation are essential for success. Second, most existing systems employ isolated decision-making
approaches that fail to leverage the benefits of specialized expertise and coordinated analysis across different
market aspects. Third, they often oversimplify the action space, reducing complex trading decisions to basic

17



Chapter 2. Introduction

directional predictions rather than complete trade specifications including order types, quantities, timing,
and risk management parameters.

This thesis addresses these limitations through a comprehensive two-stage contribution that advances both
the infrastructure for LLM evaluation in financial domains and the methodological approaches for building
effective trading systems.

The first contribution is StockSim, an open-source simulation platform that provides the missing infrastruc-
ture for systematic evaluation of LLM-based trading agents in realistic market environments [51]. StockSim
bridges the gap between simplified backtesting and real-world trading by offering dual execution modes:
detailed order-level simulation that captures latency effects, market impact, and realistic order execution dy-
namics, and scalable candlestick-level execution that enables comprehensive evaluation across diverse market
scenarios. The platform’s extensible architecture supports multi-agent coordination, incorporates external
information sources such as news and financial reports, and provides production-grade infrastructure with
authentic market data integration and comprehensive performance tracking.

Building upon this foundation, we present ATLAS (Adaptive Trading with LLM Agent Systems), a sophis-
ticated multi-agent trading framework that demonstrates how to effectively harness LLM capabilities for
financial decision-making [50]. ATLAS employs a coordinated architecture where specialized agents focus
on distinct aspects of market analysis-technical patterns, news synthesis, and fundamental evaluation-while
a central trading agent synthesizes these insights into coherent trading strategies. At the core of ATLAS
is Adaptive-OPRO, our novel extension of Optimization by PROmpting [79] to sequential decision-making
environments with delayed, noisy rewards. This adaptation enables systematic prompt refinement based on
trading outcomes, allowing the system to continuously improve its decision-making capabilities.

Our extensive experimental evaluation reveals several critical insights that extend beyond financial applica-
tions to the broader deployment of LLMs in complex, consequential domains. We demonstrate that Adaptive-
OPRO consistently outperforms both traditional quantitative strategies and existing LLM-based approaches
across diverse market conditions. Surprisingly, we uncover a "reflection paradox" where additional reason-
ing steps-commonly assumed to be beneficial-can actually degrade performance in well-optimized systems,
challenging conventional wisdom about LLM reasoning enhancement. Furthermore, our rigorous multi-run
evaluation protocols expose severe reliability issues in the single-run assessments that dominate current re-
search, highlighting the critical importance of robust statistical evaluation in stochastic environments.

These findings establish fundamental principles for deploying LLMs in high-stakes domains characterized by
sequential decision-making under real-world uncertainty, while simultaneously advancing our understanding
of LLM behavior, optimization, and coordination in complex environments.

The outline of this thesis is as follows:

e We provide a background section that establishes the essential theoretical foundations spanning Large
Language Models and transformer architectures alongside financial market concepts, providing the
comprehensive foundation needed to understand the methodology and experimental design of our work.

e We survey the landscape of related work, encompassing LLM agents in financial markets, methodologies
for prompt optimization, and contemporary trading simulation platforms, thus setting the stage for our
research contributions.

e We present the detailed methodology behind both StockSim and ATLAS, including the dual-mode sim-
ulation architecture, the multi-agent coordination framework, and our novel Adaptive-OPRO algorithm
for prompt optimization in sequential decision-making environments.

e We describe our comprehensive experimental setup, including the diverse LLM models evaluated, the
range of market conditions tested, the baseline strategies compared against, and our multi-run evalua-
tion protocol designed to ensure statistical reliability.

e We present detailed results and analysis covering performance comparisons, ablation studies, behavioral
pattern analysis across different LLMs, as well as insights into the reflection paradox and implications
for evaluation methodology. We also delve into Adaptive-OPRQO’s underlying mechanisms to reveal how
systematic prompt refinement drives performance improvements through iterative weakness detection
and architectural evolution.
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e Finally, we conclude with a discussion of the broader implications of our findings for LLM deployment in
complex domains, limitations of the current work, and directions for future research in the intersection
of artificial intelligence and financial decision-making.
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Chapter 3

Background

This chapter provides the essential theoretical foundations for understanding the methodologies and exper-
imental design presented in this thesis. We examine two complementary domains: Large Language Models
and their architectural principles, which form the core computational framework of our trading system, and
financial market concepts, which define the domain-specific environment in which our agents operate. A com-
prehensive understanding of both areas is crucial for interpreting the design decisions, experimental protocols,
and results discussed in subsequent sections.

The following analysis is structured to first establish the computational foundations through an
examination of transformer-based architectures, training paradigms, and prompting methodologies that
enable LLMs to function as autonomous trading agents. We then transition to the financial domain,
covering market microstructure, technical analysis, and fundamental analysis concepts that inform the
decision-making processes of our multi-agent trading system.

Contents
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3.1.1 Evolution of Language Models . . . . . .. . ... .. .. oL, 22
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Chapter 3. Background

3.1 Large Language Models and Transformer Architecture

3.1.1 Evolution of Language Models

Language models represent computational frameworks designed to understand and generate human language
by modeling probability distributions over word sequences. The fundamental challenge in probabilistic lan-
guage modeling is estimating the joint probability of a specific n-word sequence, denoted as P(wq, wa, . .., wp).
This probability distribution forms the foundation for two key applications: language understanding, which
evaluates the likelihood of sentences, and text generation, which samples probable continuations.

The earliest approaches to this challenge employed n-gram models, which apply the Markov chain assump-
tion that the probability of the next word depends only on a fixed window of previous words. A bigram
model, for example, models the probability of a sequence as:

P(wy,wa,...,w,) = P(wy) - P(wa]wy) - P(ws|ws) - ... Plwp|w,—1) (3.1.1)

where the conditional probability P(wy|wg—1) can be estimated by calculating the proportion of occurrences
where word wy, appears immediately after word wy_; in the training corpus. An n-gram model is trained by
determining these probabilities from text corpora in one or more languages. While computationally eflicient,
n-gram models suffer from the curse of dimensionality and struggle to assign meaningful probabilities to
unseen word sequences, despite various smoothing techniques developed to address these limitations.

The introduction of neural language models marked a significant advancement, replacing discrete word
identities with continuous embedding vectors [5]. This approach enabled better generalization to unseen se-
quences by learning distributed representations that capture semantic relationships between words. However,
these early feedforward architectures remained limited by fixed context windows and sequential processing
constraints.

The development of recurrent neural networks and subsequently Long Short-Term Memory (LSTM)
networks [28] addressed some limitations of feedforward models by introducing mechanisms for handling
variable-length sequences and maintaining long-term dependencies. LSTMs introduced gating mechanisms
that selectively retain or forget information, solving the vanishing gradient problem that plagued earlier
recurrent architectures.

3.1.2 Transformer Architecture

The Transformer architecture [65] revolutionized natural language processing by discarding recurrence and
convolution in favor of self-attention, which models long-range dependencies across input sequences. This
design underpins modern Large Language Models, enabling strong performance in both understanding and
generation.

Overview and Core Components

At a high level, the Transformer is a sequence-to-sequence model composed of an encoder and a decoder. The
encoder maps an input sequence to a sequence of continuous representations; the decoder autoregressively
generates outputs while attending to the encoder’s states.

Input Representation Tokens are first embedded into continuous vectors, then augmented with positional
information to compensate for attention’s position invariance. Concretely, token embeddings £ € RY*¢
combine with positional encodings P € R"*?, where V is the vocabulary size, d the embedding dimension,
and n the sequence length.

Encoder Stack Each encoder layer contains two sublayers:

o Multi-Head Self-Attention: lets each position attend to all others across multiple learned subspaces,
producing context-aware representations.
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Figure 3.1.1: The Transformer: model architecture. The original encoder—decoder design stacks
multi-head self-attention and position-wise feed-forward sublayers in both the encoder (left) and decoder
(right) [65].

e Position-wise Feed-Forward Network: applies identical fully connected transformations independently
at each position, adding nonlinearity and capacity.

Decoder Stack Each decoder layer comprises three sublayers:

o Masked Multi-Head Self-Attention: blocks access to future tokens during training, preserving the au-
toregressive property.

o Multi-Head Encoder—Decoder Attention: allows the decoder to attend to encoder outputs, channeling
source-side information into generation.

e Position-wise Feed-Forward Network: identical in form to the encoder’s feed-forward sublayer.

Stabilization and Training All sublayers use residual connections [27] followed by layer normalization [4],
which stabilizes optimization and supports deep stacks.

Output Layer A final linear projection followed by a softmax yields a probability distribution over the
next token (or class) at each decoding step.
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Figure 3.1.2: Self-Attention Mechanism

Self-Attention Mechanism

The self-attention mechanism forms the core innovation of the transformer architecture. For input embeddings
X € R™*?_ the attention mechanism computes:

Q=XW?e K=xwkK v=xwV (3.1.2)
QK"

Attention(Q, K, V') = softmax ( ) 14 (3.1.3)
Vdy,

where W@ € R¥*da WK ¢ R¥*de TV € R¥4v are learned projection matrices, and the scaling factor v/dj
prevents softmax saturation in high-dimensional spaces. This mechanism enables each token to selectively
attend to relevant parts of the input sequence, capturing both local and long-range dependencies.

Multi-head attention extends this mechanism by computing attention across multiple representation sub-
spaces:

MultiHead(Q, K, V) = Concat(heady, ..., head;, )W ¢ (3.1.4)
head; = Attention(QWS, KW/, viwY) (3.1.5)

where WO € R >4 projects the concatenated heads back to the model dimension. This parallel computation
allows the model to capture different types of relationships simultaneously.
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Architectural Variants

Modern language models employ three primary transformer variants, distinguished by their attention masking
patterns and intended use cases:

Encoder-Only Models (e.g., BERT [13]) use bidirectional attention, enabling each position to attend to all
other positions. This architecture excels at understanding tasks requiring complete sequence context, such
as classification and named entity recognition, but cannot generate text autoregressively.

Decoder-Only Models (e.g., GPT series [54, 55, 7]) employ causal masking, restricting attention to previous
positions only. This enables autoregressive generation while maintaining the ability to process input context,
making it the predominant architecture for modern LLMs used in interactive applications.

Encoder-Decoder Models (e.g., T5 [56], BART [36]) combine bidirectional encoding with autoregressive
decoding, excelling at sequence-to-sequence tasks like translation and summarization but requiring more
complex architectures and training procedures.

For this thesis, we focus exclusively on decoder-only architectures, as they provide the generative capabilities
and instruction-following behavior essential for autonomous trading agents.

3.1.3 Scaling Laws and Emergent Capabilities

A fundamental discovery in modern LLM research is the existence of predictable scaling relationships govern-
ing model performance. Neural scaling laws [29] demonstrate that model performance follows power-law
relationships with respect to model size, dataset size, and computational budget:

L(N,D,C) x NN D=opC~ec (3.1.6)

where L represents loss, N is the number of parameters, D is dataset size, C' is computational budget, and
the exponents « characterize the scaling behavior. These relationships enable principled decisions about
resource allocation and performance prediction.

Emergent abilities [68] refer to capabilities that appear suddenly in sufficiently large models but are
absent in smaller ones. These abilities, such as few-shot learning, chain-of-thought reasoning, and instruction
following, typically emerge at specific computational scales (approximately 10*2 FLOPs for training). The
emergence of these capabilities is particularly relevant for financial applications, where complex reasoning
and adaptation to new market conditions are crucial.

However, recent work [59] suggests that apparent emergent behavior may sometimes result from measurement
choices and evaluation metrics rather than fundamental phase transitions, emphasizing the importance of
careful evaluation in understanding model capabilities.

3.2 Training Paradigms for Large Language Models

3.2.1 Learning Paradigm Overview

The development of effective LLMs requires sophisticated training methodologies that leverage different types
of supervision and learning signals. Understanding these paradigms is essential for comprehending how the
models in our experiments acquired their capabilities and limitations.

Self-Supervised Learning has emerged as the dominant paradigm for LLM pretraining. Models learn
from unlabeled text by solving pretext tasks such as next-token prediction or masked language modeling,
enabling them to develop rich representations of language structure and semantics from vast corpora [7].
The mathematical foundation rests on learning to approximate the data distribution P(z) without explicit
supervision.

Supervised Learning involves training on explicitly labeled input-output pairs, where models learn to
approximate P(y|z) through direct supervision [13]. While effective for specific tasks, supervised learning
requires extensive labeled datasets and may not capture the full complexity of language understanding.
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Semi-Supervised Learning [10] addresses the scarcity of labeled data by incorporating unlabeled examples
to improve generalization, while Meta-Learning [20] focuses on developing learning strategies that allow
rapid task adaptation with minimal training examples.

3.2.2 Pretraining and Fine-Tuning

Modern LLM development follows a two-stage process that first builds general language understanding before
specializing for specific applications.

Pretraining Phase

During pretraining, language models are trained on vast collections of text using self-supervised learning,
which leverages the structure of raw text without requiring manually labeled data. For decoder-only models,
the central training task is next-token prediction: the model learns to predict the next token in a sequence,
given all previous tokens.

T
Epretrain = - Zlog P(wt | W<ty 9) (321)
t=1

This pretraining loss function measures how well the model predicts each token w; in a sequence of length
T by computing the negative log-likelihood of the correct token at position ¢, conditioned on all previous
tokens w.; and the model parameters #. Through this process, the model acquires internal representations
that capture syntax, semantics, factual knowledge, and reasoning patterns present in the data.

The effectiveness of pretraining relies heavily on scale: state-of-the-art models are trained on hundreds of
billions to trillions of tokens, requiring immense computational resources such as thousands of GPUs running
for months. This large-scale pretraining is crucial for the emergent capabilities observed in large language
models.

Fine-Tuning Phase

Fine-tuning adapts pretrained models to specific domains or tasks through additional training on curated
datasets. This process typically requires orders of magnitude less data and computation than pretraining
while achieving substantial performance improvements on target tasks.

Supervised Fine-Tuning (SFT) trains models on input-output pairs relevant to the target application. For
specialized applications, this might involve fine-tuning on domain-specific data and decision-making examples
to improve task-relevant understanding and performance.

Instruction Tuning [69] fine-tunes models to follow natural language instructions, enabling zero-shot and
few-shot task performance. This paradigm is particularly valuable for applications requiring agents to inter-
pret and execute complex instructions about domain-specific analysis and decision-making processes.

Reinforcement Learning from Human Feedback (RLHF) [48] further refines model behavior by opti-
mizing for human preferences using policy gradient methods. The process involves training a reward model
on human preference data, then optimizing the language model using reinforcement learning algorithms like
PPO [60].

3.2.3 Domain Adaptation

Effective deployment of LLMs in specialized domains often requires domain-adaptive training strategies.
Domain-Adaptive Pretraining [25] continues pretraining on domain-specific corpora, helping models
acquire specialized knowledge and terminology before fine-tuning on specific tasks.

For specialized applications, domain-adaptive pretraining on relevant professional literature, technical doc-
umentation, and domain-specific datasets can significantly improve performance on related tasks. However,
this approach requires substantial computational resources and domain expertise to curate appropriate train-
ing data that captures the nuances and specialized knowledge of the target field.
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3.3 Prompting and In-Context Learning

3.3.1 Prompting Methodology

Prompt-based learning represents a paradigm shift from traditional supervised learning, leveraging the gen-
erative capabilities of pretrained language models to solve tasks through carefully designed input formatting
rather than parameter updates [40].

The core insight underlying prompting is that large language models, through extensive pretraining, develop
the ability to perform many tasks when presented with appropriate context. Rather than training task-
specific models, prompting reformulates problems as text completion tasks that exploit the model’s existing
capabilities.
Prompt Structure
A prompt typically consists of:

e Task Description: Natural language instructions explaining the desired behavior

e Context: Relevant background information or constraints

e Input Slot: Placeholder for task-specific input

e Output Format: Specification of desired response structure

For trading applications, prompts must carefully balance flexibility with precision, providing sufficient context
for informed decision-making while maintaining structured outputs compatible with execution systems.

3.3.2 Few-Shot and Zero-Shot Learning

The prompting paradigm enables models to perform tasks with minimal or no task-specific examples through
in-context learning [7]:

Zero-Shot Learning provides only task instructions without examples. Models rely entirely on pretraining
knowledge and instruction-following capabilities developed during fine-tuning.

Few-Shot Learning includes a small number of input-output examples within the prompt. The number
of examples typically ranges from 1-10, limited by model context windows. The theoretical foundation for
few-shot learning connects to meta-learning principles, where models learn to extract task-relevant patterns
from the provided examples.

Research suggests that in-context learning can be understood through a Bayesian inference lens, where
the model implicitly infers the task from examples and applies this understanding to new inputs [75]. This
perspective explains why larger models with more extensive pretraining perform better at in-context learning.

3.3.3 Chain-of-Thought and Advanced Prompting

Chain-of-Thought (CoT) Prompting [70] improves model performance on complex reasoning tasks by
encouraging step-by-step problem decomposition. Rather than requesting direct answers, CoT prompts ask
models to articulate their reasoning process, leading to improved accuracy on mathematical, logical, and
multi-step reasoning problems.

The effectiveness of CoT prompting appears to be an emergent property of scale, becoming more pronounced
in larger models. This technique proves particularly valuable for trading applications, where decisions require
integrating multiple information sources and considering various market factors.

3.4 Large Reasoning Models

Recent developments in language model architecture have given rise to Large Reasoning Models (LRMs),
which represent a paradigm shift from conventional token prediction toward explicit multi-step reasoning ca-
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pabilities. LRMs employ reinforcement learning and step-wise feedback to optimize full reasoning trajectories
rather than solely maximizing likelihood of next-token predictions [77].

The key architectural distinction lies in process supervision, where models receive feedback on intermediate
reasoning steps rather than only final outcomes. This approach has demonstrated significant improvements
over outcome-based supervision on complex reasoning tasks, as it enables models to learn from partial solu-
tions and avoid compounding errors. Training typically involves large-scale reinforcement learning without
initial supervised fine-tuning, allowing reasoning behaviors to emerge naturally through iterative refinement
and reward optimization [12].

LRMs integrate several advanced prompting techniques as core architectural components: extended chain-of-
thought reasoning for step-by-step problem decomposition, tree-of-thought search mechanisms that explore
multiple solution paths with systematic pruning, and self-consistency frameworks that aggregate outputs from
multiple reasoning traces [39]. These capabilities enable more robust decision-making in domains requiring
complex logical inference and multi-factor analysis.

For autonomous trading applications, LRMs offer significant advantages in handling the intricate reasoning
required for market analysis, risk assessment, and strategic decision-making. The explicit reasoning traces
provide interpretability crucial for understanding agent behavior. However, LRMs also present challenges
including increased computational overhead, training instability, and potential overthinking behaviors that
may impair performance on simpler tasks [12].

3.5 Multi-Agent Systems and Coordination

3.5.1 Agent-Based Architectures

Multi-Agent Systems (MAS) decompose complex tasks across multiple specialized agents, each with distinct
capabilities, knowledge, or roles. In the context of LLM-based systems, agents typically consist of specialized
prompts, knowledge sources, communication protocols, and coordination mechanisms.

The theoretical foundation for multi-agent systems draws from distributed computing, game theory, and
artificial intelligence. Key principles include:

1. Autonomy: Each agent operates independently according to its goals and local information.
2. Interaction: Agents communicate and coordinate through defined protocols.

3. Environment: Agents operate within shared or overlapping environments.
4

. Organization: System-level behavior emerges from individual agent actions and interactions.

Agent Specialization Patterns
Common agent roles in LLM-based MAS include:

e Information Processing Agents specialize in analyzing specific types of data, such as technical
indicators, news sentiment, or fundamental metrics.

e Decision Agents synthesize information from multiple sources to make strategic decisions about
market positioning and risk management.

e Coordination Agents manage task allocation, information flow, and system-level optimization across
the multi-agent framework.

e Execution Agents interface with external systems to implement decisions determined by the multi-
agent system.

3.5.2 Coordination Mechanisms

Effective coordination in multi-agent systems requires mechanisms for information sharing, conflict resolution,
and collective decision-making:
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Centralized Coordination employs a master agent that allocates tasks and aggregates results. This
approach simplifies coordination but may create bottlenecks and single points of failure.

Decentralized Coordination enables peer-to-peer interaction through shared protocols. While more ro-
bust, this approach requires careful design to prevent conflicts and ensure convergence.

3.6 Financial Markets and Trading Foundations

3.6.1 Market Microstructure

Understanding market microstructure is essential for developing effective trading systems, as it governs how
orders are executed and prices are formed. The theoretical foundation draws from information economics,
auction theory, and market mechanism design [26].

Order Types and Execution
Modern financial markets support various order types that provide different execution characteristics:

Market Orders execute immediately at the best available prices. They provide certainty of execution
but uncertain execution prices, particularly in volatile or illiquid markets. The trade-off between execution
certainty and price uncertainty is fundamental to trading strategy design.

Limit Orders specify maximum purchase prices or minimum sale prices. They provide price certainty but
execution uncertainty, as they only fill when market prices reach the specified limits. Limit orders contribute
to market liquidity by providing depth at various price levels.

Stop Orders activate as market orders when prices reach specified trigger levels. They are commonly used
for risk management (stop-loss orders) and trend-following strategies (stop-buy orders).

Limit Order Book Dynamics

The Limit Order Book (LOB) maintains queues of pending buy and sell orders at each price level. The
LOB continuously updates as new orders arrive, existing orders execute, or pending orders are cancelled.
Understanding LOB dynamics is crucial for algorithmic trading systems.

Key LOB concepts include:

e Bid-Ask Spread: The difference between the highest bid and lowest ask prices, representing the cost
of immediacy

e Market Depth: The quantity of orders available at various price levels, indicating liquidity

e Order Priority: Time-price priority rules that determine execution order for orders at the same price
level

Transaction Costs and Market Impact

Market Impact refers to the price movement caused by order execution. Large orders may consume multiple
price levels in the order book, resulting in worse average execution prices.

Slippage measures the difference between expected and actual execution prices, arising from latency, market
impact, and changing market conditions between order submission and execution.

Latency represents delays in order transmission and processing. Even millisecond delays can significantly
impact execution quality in electronic markets where speed provides competitive advantages.

3.6.2 Technical Analysis Framework

Technical analysis employs historical price and volume data to identify trading opportunities and assess
market conditions [46]. The theoretical foundation rests on three core assumptions:

1. Market prices discount all available information
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2. Prices move in trends that persist over time

3. Historical patterns tend to repeat due to consistent market participant behavior

Price and Volume Data
OHLCYV Bars (Open, High, Low, Close, Volume) represent the standard format for historical price data:
e Open: First traded price in the time period
e High: Maximum price during the period
e Low: Minimum price during the period
e Close: Final traded price in the period
e Volume: Total quantity traded during the period

Different timeframes (1-minute, 5-minute, daily, etc.) provide various perspectives on market behavior, from
short-term noise to long-term trends. Multi-timeframe analysis enables identification of trends and patterns
across different temporal scales.

Moving Averages

Moving averages smooth price data to identify trends and reduce noise. They form the foundation for many
technical indicators and trading strategies.

Simple Moving Average (SMA) calculates the arithmetic mean over a specified period:

n—1
1
SMA,, = - Z; P, (3.6.1)

Exponential Moving Average (EMA) applies exponentially decreasing weights to older prices:

EMAt :OZ'Pt-i-(l—Oé) 'EMAt,1 (362)

where o = —2— is the smoothing factor. EMA responds more quickly to recent price changes compared to

n+1
SMA.

Our analysis employs multiple SMA periods (20, 50, 100, 200 days) to capture different trend horizons and
EMA periods (12, 26 days) for responsive trend analysis and MACD calculation.

Momentum Oscillators

Momentum indicators measure the speed and strength of price movements, helping identify overbought and
oversold conditions.

Relative Strength Index (RSI) [72] oscillates between 0 and 100:

100

=100 — ——
RST=100 =753

(3.6.3)

where RS = % over a 14-day period. Values above 70 typically suggest overbought conditions while

values below 30 indicate oversold conditions.

Moving Average Convergence Divergence (M ACD) combines trend and momentum analysis:

MACD = EM A5 — EM Agg (3.6.4)
Signal Line = EM Ag(MACD) (3.6.5)
Histogram = MACD — Signal Line (3.6.6)

MACD crossovers and divergences provide signals for trend changes and momentum shifts.
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Volatility Measures
Volatility indicators assess market uncertainty and risk, essential for position sizing and risk management.

Average True Range (ATR) [72] measures volatility by considering price gaps:

True Range (TR) = max[(H — L), |H — Cprev|, |L — Cprev|] (3.6.7)
1 n—1
ATR, =~ ; TR,_; (3.6.8)

Bollinger Bands [6] construct volatility-adjusted price channels:

Middle Band = SM As (3.6.9)
Upper Band = SM Az + 20 (3.6.10)
Lower Band = SM Ay — 20 (3.6.11)

where o represents the standard deviation of closing prices. The bands expand during periods of high
volatility and contract during low volatility periods.

Support and Resistance Analysis

Horizontal Support and Resistance Levels represent price levels where historical buying or selling
pressure has emerged consistently. Support levels act as floors where buying interest has historically prevented
further price decline, while resistance levels act as ceilings where selling pressure has prevented further price
advance.

These levels gain strength through repeated testing, high trading volume, and extended time periods of
relevance. The psychological and algorithmic significance of round numbers and previous high/low points
contributes to their effectiveness.

Volume Profile analyzes trading activity across price levels:
e Point of Control (POC): Price level with highest volume
e Value Area: Price range containing 70% of trading volume
e High Volume Nodes: Prices with significantly elevated volume

Volume-based analysis provides insights into price levels where significant supply and demand decisions
occurred, often creating future support and resistance zones.

3.6.3 Fundamental Analysis Framework

Fundamental analysis evaluates securities based on underlying economic and financial factors rather than
price movements alone [53]. This approach focuses on determining the intrinsic value of assets through
comprehensive analysis of financial statements, economic conditions, and company-specific factors.
Financial Statement Analysis
Income Statement Metrics assess operational performance and profitability:

e Revenue: Total income from business operations, providing the top-line growth measure

e Gross Profit Margin: (Revenue — CostO fGoodsSold)/Revenue, indicating production efficiency
and pricing power

e Operating Margin: OperatingIncome/Revenue, measuring management’s ability to control costs
e Net Income: Final profit after all expenses, representing earnings available to shareholders

e Earnings Per Share (EPS): NetIncome/Weighted AverageShares, providing per-share profitability
measure
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Cash Flow Analysis evaluates liquidity and financial health:

e Operating Cash Flow: Cash from core business operations, adjusted for non-cash items and working
capital changes

e Free Cash Flow: Operating cash flow minus capital expenditures, representing cash available for
distribution

e Net Cash Flow: Combined operating, investing, and financing flows, showing overall cash position
changes

Balance Sheet Metrics assess financial position and leverage:
e Total Assets: Sum of all company resources, including current and non-current assets
e Total Equity: Assets minus liabilities, representing shareholder ownership value

e Debt-to-Equity Ratio: Total debt divided by total equity, measuring financial leverage

Corporate Actions

Stock Splits increase share count while proportionally reducing price to improve liquidity and accessibility:
e 1:2 Split: Each share becomes two shares at half price
e 1:4 Split: Each share becomes four shares at quarter price
e 1:10 Split: Each share becomes ten shares at one-tenth price

Dividends represent cash distributions to shareholders:

Annual Dividends Per Share
Divi Yield = 1 .6.12
ividend Yield Current Stock Price x 100% (3.6.12)

Dividend policy reflects management’s capital allocation philosophy and cash generation capabilities, provid-
ing insights into company maturity and growth prospects.

3.6.4 Trading Across Market Regimes

Understanding different market conditions and their characteristics is crucial for developing adaptive trading
strategies. Market regimes represent distinct periods where asset prices exhibit specific behavioral patterns,
requiring tailored approaches for optimal performance.

Trending Markets exhibit sustained directional movement, either bullish (upward) or bearish (downward).
Trend-following strategies typically perform well in these conditions, while mean-reversion approaches may
underperform.

Range-Bound Markets oscillate within defined price boundaries without clear directional bias. Mean-
reversion strategies often outperform in these environments, while trend-following approaches may generate
false signals.

Volatile Markets exhibit large price swings regardless of overall direction. These conditions challenge both
trend-following and mean-reversion approaches, requiring sophisticated risk management and position sizing
techniques.

Low-Volatility Markets show minimal price variation, often creating challenges for active trading strategies
due to reduced opportunities and higher relative transaction costs.
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Related Work

The intersection of Large Language Models and financial decision-making represents a rapidly evolving re-
search area that bridges natural language processing, multi-agent systems, and computational finance. As
LLMs have demonstrated remarkable capabilities in complex reasoning tasks, researchers have increasingly
explored their potential for sequential decision-making in high-stakes environments such as financial markets.
This chapter examines the current state of research across the key domains that inform our work, identifying
both the advances achieved and the fundamental gaps that motivate our contributions.

The field has evolved from early applications of simple sentiment analysis to sophisticated multi-agent trading
frameworks, yet several critical challenges remain unresolved. Current approaches often rely on manually
crafted prompts that fail to adapt to changing market conditions, employ oversimplified action spaces that
abstract away real-world complexity, and suffer from evaluation methodologies that may not adequately
capture system reliability. Furthermore, the absence of standardized, comprehensive evaluation platforms has
hindered systematic comparison of different approaches and slowed progress in understanding fundamental
questions about LLM behavior in sequential decision-making environments.

To understand these limitations and establish the foundation for our contributions, our review examines
three interconnected areas of research. First, we analyze current LLM-based agents used in financial
markets, outlining common architectural patterns and their constraints. Second, we examine prompt
engineering and optimization methodologies to identify gaps in adaptive prompt design for sequential
decision-making. Finally, we review trading simulation platforms to understand the evaluation
infrastructure challenges that have limited progress in the field. Through this comprehensive examination,
we establish the theoretical foundation for our contributions and highlight the specific limitations that
ATLAS and StockSim are designed to address.
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4.1 LLM Agents in Financial Markets

The application of Large Language Models to financial decision-making has witnessed significant growth,
with researchers exploring increasingly sophisticated architectures ranging from simple sentiment analysis to
complex multi-agent frameworks.

4.1.1 Early Developments in Financial NLP

Early work in this domain focused primarily on leveraging LLMs for financial text analysis and market senti-
ment extraction. These foundational approaches demonstrated that language models could effectively process
financial news and reports to generate trading signals, establishing the groundwork for more sophisticated
applications [31].

Recent advances in financial sentiment analysis have shown that specialized models like FinBERT and
domain-adapted architectures can significantly outperform general-purpose sentiment analysis tools in fi-
nancial contexts [81]. The development of financial-specific language models, including FinGPT and
BloombergGPT, has further demonstrated the value of domain adaptation for financial applications [80,
73]. These specialized models have shown remarkable capabilities in tasks ranging from financial text sum-
marization to risk assessment and market prediction.

However, these initial systems were largely limited to single-modal information processing and lacked the
comprehensive decision-making capabilities required for realistic trading scenarios. The gap between senti-
ment analysis and actionable trading decisions remained a significant challenge, motivating researchers to
explore more integrated approaches.

4.1.2 Contemporary Multi-Agent Trading Systems

Recent advances have introduced more sophisticated multi-agent architectures that attempt to decompose
the complexity of financial decision-making across specialized components. CryptoTrade represents one
of the most comprehensive early frameworks, integrating on-chain and off-chain data through specialized
market analysts, news analysts, and trading agents [38]. The system incorporates reflection mechanisms for
strategy refinement, demonstrating how LLMs can be organized into collaborative structures for enhanced
decision-making.

TradingAgents employs a more elaborate multi-agent architecture inspired by real trading firms, featuring
fundamental analysts, sentiment analysts, technical analysts, and traders with varied risk profiles [74]. The
framework includes two opposing researcher agents that engage in structured debates to assess market con-
ditions, a risk management team that monitors exposure, and traders that synthesize insights from debates
and historical data. This collaborative approach has shown notable improvements in performance metrics
compared to baseline models.

4.1.3 Advanced Architectural Innovations

Other notable approaches have explored various architectural innovations beyond basic multi-agent coordi-
nation. FinMem introduces layered memory systems that enable agents to maintain long-term context and
learning across trading sessions [83]. This approach addresses the challenge of maintaining consistency and
learning from past decisions in dynamic market environments.

FLAG-Trader presents a fusion approach combining linguistic processing with gradient-driven reinforcement
learning, demonstrating how LLMs can be integrated with traditional optimization techniques [76]. This
hybrid architecture uses a partially fine-tuned LLM as the policy network, leveraging pre-trained knowledge
while adapting to the financial domain through parameter-efficient fine-tuning.

TradExpert explores mixture of experts architectures for financial decision-making [14], while Market-
SenseAl focuses specifically on analyzing corporate filings and earnings calls to extract trading insights [18].
These specialized approaches demonstrate the growing sophistication in applying LLMs to specific aspects
of financial analysis.
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4.1.4 Fundamental Limitations of Current Systems

Despite these architectural advances, current systems share several critical limitations that constrain their
effectiveness and real-world applicability. Most fundamentally, they rely on manually crafted prompts
that remain static throughout the trading process, failing to adapt to changing market conditions or learn
from trading outcomes. This static approach prevents systems from improving their decision-making based
on experience, a crucial capability for success in dynamic financial markets.

Additionally, these systems typically oversimplify the action space, reducing complex trading decisions
to confidence scores or simple directional signals rather than complete trade specifications. Such abstrac-
tion distances the systems from real market operations and leaves fundamental questions unanswered about
whether LLMs can truly understand market mechanics or merely generate plausible-sounding recommenda-
tions. The gap between simplified outputs and actual trading requirements prevents meaningful evaluation
of LLM capabilities in realistic trading scenarios.

Perhaps most critically, the field’s evaluation methodologies remain problematic. Prevalent single-
run evaluations fail to capture the extreme performance variance inherent in LLM-based systems, where
stochasticity can produce substantial variations in outcomes [62, 2|. This methodological weakness may
lead to spurious conclusions about system capabilities and hinders reliable comparison between different
approaches.

Our work directly addresses these fundamental limitations through two integrated contributions. ATLAS
tackles the static prompt limitation through Adaptive-OPRO, our novel extension of prompt optimization to
sequential decision-making environments that enables systematic prompt refinement based on trading out-
comes. The multi-agent coordination is enhanced through ATLAS’s specialized architecture where distinct
agents focus on market analysis, news processing, and fundamental evaluation. The action space oversimpli-
fication is resolved through StockSim’s requirement for complete order specifications-including order types,
quantities, prices, and timing-while ATLAS demonstrates that LLMs can generate sophisticated trade speci-
fications that go far beyond simple directional predictions. Finally, we establish rigorous multi-run evaluation
protocols that capture performance variance and provide statistically reliable conclusions about system ca-
pabilities, setting new standards for evaluation in this domain.

4.2 Prompt Engineering and Optimization

The systematic optimization of prompts has emerged as a crucial component for effective LLM deployment,
moving beyond ad-hoc manual engineering toward principled optimization methodologies. This evolution
reflects growing recognition that prompt design significantly impacts LLM performance and that systematic
approaches can yield substantial improvements over human-crafted alternatives.

4.2.1 Evolution from Manual to Systematic Approaches

Traditional prompt engineering relied heavily on manual iteration and domain expertise, with researchers and
practitioners crafting prompts through trial-and-error processes. While this approach could produce effective
results, it suffered from several limitations: lack of systematic exploration of the prompt space, difficulty in
scaling across different tasks and models, and inability to adapt to changing requirements or feedback.

The introduction of systematic prompt optimization methods has transformed this landscape. Chain-of-
thought (CoT) prompting emerged as a foundational technique that enables LLMs to break down complex
problems into intermediate reasoning steps, significantly improving performance on tasks requiring multi-
step reasoning [70]. Building upon this foundation, researchers developed various prompting paradigms
including few-shot prompting (providing multiple input-output examples), zero-shot prompting (direct
task instructions without examples), and one-shot prompting (single example guidance) [7].

Advanced techniques have further enhanced LLM capabilities: self-consistency prompting generates multi-
ple reasoning paths and selects the most consistent answer [67], tree-of-thoughts (ToT) prompting enables
exploration of multiple reasoning branches with backtracking capabilities [82], step-back prompting encour-
ages abstraction before tackling specific problems [84], and role-based prompting assigns specific personas
to guide response style and expertise [33]. Recent work has shown that simple additions like "Let’s think
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step by step” or "Take a deep breath and work on this problem step-by-step” can significantly improve LLM
performance on reasoning tasks [32, 79].

These systematic approaches have moved the field beyond ad-hoc manual crafting toward principled method-
ologies that can be empirically validated, systematically improved, and reliably deployed across diverse ap-
plications and model architectures.

4.2.2 Optimization by Prompting (OPRO)

The introduction of Optimization by PROmpting (OPRO) marked a significant advancement in this
domain [79]. OPRO employs LLMs themselves as meta-optimizers, iteratively generating new prompts based
on histories of previous ones and their performance scores. The approach demonstrated impressive results on
mathematical reasoning tasks like GSM8K, where OPRO discovered prompts that substantially outperformed
human-designed alternatives.

The OPRO framework operates through a meta-prompt that instructs an optimizer LLM to generate can-
didate instructions based on previous solutions and their scores. These candidates are then evaluated by a
scorer LLM, and the results are fed back into the optimization loop. This process continues until no further
improvements are observed, resulting in optimized prompts that can achieve significant performance gains
over manually designed alternatives.

Subsequent research has explored various extensions and applications of this optimization paradigm. Evo-
Prompt combines LLMs with evolutionary algorithms for discrete prompt optimization, demonstrating how
bio-inspired optimization techniques can be integrated with language model capabilities [24]. The approach
uses evolutionary operators like mutation and crossover, adapted to work with natural language prompts,
achieving significant improvements over human-engineered prompts and existing automatic methods.

POEM tackles prompt optimization using reinforcement learning with episodic memory, showing how RL
techniques can be adapted for prompt improvement [15]. GRAD-SUM incorporates gradient-inspired
feedback mechanisms, exploring how continuous optimization concepts can be applied to discrete prompt
spaces through gradient summarization techniques [3].

4.2.3 Limitations in Sequential Decision-Making Contexts

However, existing prompt optimization methods share a fundamental limitation: they assume conditions
that are largely absent in real-world sequential decision-making tasks. These methods typically require im-
mediate feedback, operate on deterministic outcomes, and assume that decisions are independent.
Trading exemplifies the opposite scenario: rewards materialize over extended horizons, market volatility
clouds performance signals, and each decision influences future states and opportunities.

This limitation is particularly pronounced in financial applications, where the relationship between decisions
and outcomes is complex, delayed, and noisy. Traditional OPRO assumes that task performance can be
immediately evaluated after each optimization iteration, enabling direct assessment of prompt effectiveness.
In contrast, trading decisions reveal their quality only over extended periods as market positions develop and
resolve, requiring fundamentally different approaches to performance evaluation and optimization.

Furthermore, existing optimization methods typically operate on static task formulations where prompt
content remains constant across optimization iterations. Trading environments, however, require prompts
that continuously incorporate changing information-current portfolio status, updated market analyses, re-
cent order executions-while preserving optimized strategic guidance. This dynamic content challenge
necessitates architectural innovations that separate static instructions subject to optimization from dynamic
runtime data that must be preserved unchanged.

Our Adaptive-OPRO directly addresses these fundamental limitations by extending prompt optimization to
sequential decision-making environments with delayed, noisy rewards. We develop cumulative performance
metrics that operate over extended evaluation windows, enabling optimization based on trading outcomes
rather than immediate task completion. The dynamic content challenge is resolved through our template-
based architecture that cleanly separates static instructions subject to optimization from dynamic runtime
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Execution Async  Real-time History No-code LLM AgentExternal Multi

Framework Granularity Latency LOB Back-test Setup Support News Instrument
StockSim (ours) Order v v v v v 4 v
ABIDES Order ~ v 4 X X X v
PyMarketSim Order X v X X X X v
JAX-LOB Order X v v X X X v
FinRL / Meta Bar X X 4 ~ X ~ v
TradingAgents Daily X X v X v v v

Table 4.1: Feature comparison of open-source trading simulators. Legend. v: supported; X: not supported;
~: partial or approximate support.

data, allowing prompt refinement to target decision-making logic while preserving changing market informa-
tion. This represents the first successful adaptation of optimization by prompting to domains characterized
by temporal dependencies, delayed feedback, and noisy performance signals.

4.3 Trading Simulation Platforms

The evaluation of LLM-based trading systems requires sophisticated simulation platforms that can accurately
model market dynamics while providing controlled environments for systematic comparison. However, the
current landscape of evaluation platforms presents a fragmented ecosystem with significant limitations that
have fundamentally hindered progress in LLM-based trading research.

4.3.1 The Evaluation Infrastructure Challenge

The absence of standardized, comprehensive evaluation platforms specifically designed for LLM assessment
in financial contexts represents one of the most significant barriers to advancing research in this domain [37,
44]. This infrastructure gap has created a problematic landscape where researchers must either compromise
on realism or invest substantial resources in developing custom evaluation pipelines, both of which impede
systematic progress in the field.

Common evaluation practices that rely on static benchmark datasets inadvertently risk data leakage, as these
datasets or similar financial texts often appear in LLM training corpora [16, 61, 71]. Consequently, perfor-
mance metrics become inflated, and the models fail to generalize effectively to genuinely unseen scenarios,
creating unrealistic expectations and potential financial risks when deployed.

The fragmented platform ecosystem prevents meaningful comparison between different approaches and makes
it difficult to establish fundamental principles for effective LLM deployment in financial domains. Without
standardized evaluation infrastructure, research findings often remain isolated and difficult to reproduce or
build upon.

4.3.2 Current Platform Landscape and Technical Limitations

Existing evaluation frameworks present fundamental trade-offs between execution granularity, scalability, and
LLM integration capabilities. Table 4.1 reveals the stark limitations across current platforms.

Order-Level Simulation Platforms including ABIDES, PyMarketSim, and JAX-LOB provide sophisti-
cated market microstructure modeling with detailed limit-order book dynamics [8, 45, 21]. These platforms
excel at capturing essential market mechanics including order matching with price-time priority, realistic
latency effects through timestamp replay mechanisms, and detailed market impact modeling. However, they
face critical limitations for LLM research applications. Most significantly, these platforms lack native sup-
port for LLM agent integration, requiring substantial custom development to incorporate language model
components. They provide no built-in mechanisms for external information processing such as news feeds
or fundamental data integration, essential capabilities for realistic LLM-based trading research. Further-
more, they depend heavily on expensive, proprietary tick-level datasets that severely constrain the scope of
experiments and limit accessibility for many research groups.
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Historical Backtesting Platforms such as BackTrader' and FinRL represent the opposite extreme, prior-
itizing scalability and broad market coverage over execution realism [41, 42]. These platforms can efficiently
process extensive historical datasets across multiple assets and timeframes, supporting large-scale experi-
mental studies. However, this scalability comes at the cost of market realism. These frameworks typically
operate on aggregated candlestick data without modeling intra-bar price movements, ignore asynchronous
latency effects that are crucial in actual trading, and employ simplified execution models that abstract away
realistic market dynamics and trading constraints.

LLM-Specific Trading Frameworks designed for multi-agent coordination often attempt to address LLM
integration challenges but face their own limitations that restrict practical applicability and scalability [74].
These platforms typically use highly simplified market representations based solely on coarse historical data,
omitting realistic execution dynamics and latency considerations that are critical for evaluating LLM be-
havior in actual trading environments. While they enable exploration of agent coordination patterns, their
simplified market modeling prevents assessment of whether LLMs can handle the full complexity of real
market execution.

This infrastructure fragmentation creates systematic impediments where researchers must choose between
realistic market modeling and practical scalability, forcing compromises that limit both the scope and reliabil-
ity of research findings. The absence of standardized evaluation infrastructure prevents cumulative progress
in understanding LLM capabilities for financial decision-making, as findings remain isolated within custom
evaluation environments that cannot be easily reproduced or extended.

StockSim directly addresses these critical infrastructure gaps by providing the first comprehensive simulation
platform specifically designed for LLM evaluation in financial domains. Our dual-mode architecture bridges
the gap between order-level realism and scalable evaluation, offering both detailed limit-order book simula-
tion for studying microstructure effects and efficient candlestick-level execution for comprehensive historical
analysis. The platform provides native LLM integration with support for diverse model architectures, built-in
multi-modal information processing for news and fundamental data, and configuration-driven experimenta-
tion that eliminates the need for custom development. By avoiding dependence on expensive proprietary
datasets while maintaining realistic market dynamics, StockSim enables systematic, reproducible research
across diverse market conditions and time periods, establishing the standardized evaluation infrastructure
that the field has long needed.

Lhttps://pypi.org/project /backtrader
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Chapter 5

Methodology

This chapter presents the detailed methodology behind our two primary contributions: StockSim, a compre-
hensive simulation platform for evaluating LLM-based trading agents, and ATLAS, an adaptive multi-agent
trading framework that demonstrates effective deployment of LLMs in financial decision-making. Together,
these systems address the fundamental limitations identified in our review of related work by providing
both the evaluation infrastructure and methodological innovations necessary for reliable LLM deployment in
complex, sequential decision-making environments.

Our methodology is structured around three core innovations. First, we introduce StockSim’s dual-mode
simulation architecture that enables systematic evaluation across different levels of market complexity while
maintaining realistic trading dynamics. Second, we present ATLAS’s multi-agent coordination framework
that decomposes financial decision-making across specialized components while maintaining coherent strat-
egy execution. Third, we detail our novel Adaptive-OPRO algorithm that extends prompt optimization to
sequential decision-making environments with delayed, noisy feedback.

Together, these elements establish a reproducible pathway from controlled evaluation to adaptive
deployment in financial markets, setting clear standards for rigor and extensibility in LLM-based sequential
decision-making.

Contents
5.1 StockSim: Dual-Mode Simulation Architecture . ... ... ... ... ..... 39
5.1.1 System Architecture Overview . . . . . . . . . .. ... 40
5.1.2 Dual Execution Modes . . . . . . . . .. . L 40
5.1.3 Data Integration Framework . . . . .. .. .. .. ... ... 41
5.1.4 Agent Framework Design . . . . . . . . . . .. .. ... 42
5.1.5 Evaluation and Analysis Framework . . . . . . ... ... ... .. .. .. 42
5.2 ATLAS: Multi-Agent Coordination Framework . ... .. ............ 44
5.2.1 Architectural Design Principles . . . . . . . . .. ... o 0oL 44
5.2.2 Market Intelligence Pipeline . . . . . . . .. ... oo 44
5.2.3 Decision and Execution Layer . . . . . . . . . . ... oo 45
5.2.4 Adaptive-OPRO: Prompt Optimization for Sequential Decision-Making . . . . . . 45

5.1 StockSim: Dual-Mode Simulation Architecture

StockSim addresses the critical gap in evaluation infrastructure by providing a unified platform that com-
bines realistic market simulation with comprehensive LLM evaluation capabilities. The platform’s design
philosophy centers on enabling systematic research while maintaining the fidelity necessary for meaningful
conclusions about real-world deployment.
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Figure 5.1.1: Overview of STOCKSIM’s system architecture and input/output scheme. Modules are
color-coded by function and mapped to corresponding blocks in the centralized config file. This design
supports flexible, code-free customization of simulation parameters, agent behavior, and data sources.

5.1.1 System Architecture Overview

StockSim employs a modular, asynchronous architecture designed around four core components that enable
comprehensive LLM evaluation in realistic trading environments. The system architecture supports two
distinct execution mechanisms-order-level and candlestick-level execution-seamlessly integrated with shared
modules for market data retrieval, indicator computation, news and fundamentals integration, and agent
interactions.

The Exchange Simulation Engine serves as the central coordinator, asynchronously managing the sim-
ulated trading environment. Its primary responsibilities include receiving and processing agent actions,
simulating realistic market dynamics for order execution, computing and disseminating relevant market indi-
cators, and providing agents with timely access to market and external information. The engine acts as the
central intermediary between data sources and trading agents, routing data dynamically from their respective
sources to agents upon request while maintaining internal states related to orders and trades.

Each agent runs as a separate process and communicates asynchronously with the engine through Rab-
bitMQ, an advanced message broker that ensures reliable message delivery and scalable communication !
This process-per-component architecture with message-based communication provides natural fault isolation
and horizontal scalability, enabling the platform to support large-scale multi-agent simulations.

5.1.2 Dual Execution Modes

The platform’s innovation lies in supporting two complementary execution modes that address different
research requirements while maintaining interface consistency.

Order-Level Execution

Order-level execution emulates real market behavior by operating directly on the limit order book (LOB),
where agents submit market, limit or stop orders that interact with a stream of order book events including
placements, cancellations, and executions. Orders are matched based on price-time priority: a buy limit

Lwww.rabbitmq.com
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order at $100 will execute only if a sell order exists at $100 or lower; otherwise, it queues until matched or
canceled.

Execution may be full or partial, depending on available volume. The environment updates tick-by-tick,
capturing fine-grained dynamics such as queue position, order interleaving with other market participants,
and the impact of latency between action submission and book update. This level offers high realism and is
critical for evaluating strategies sensitive to microstructure effects.

The order-level mode incorporates several realistic market dynamics that are typically absent from simplified
simulations:

e Latency modeling: Realistic delays between order submission and execution that reflect real-world
network and processing delays

e Market impact: Price movements induced by large orders that clear substantial amounts of pending
orders in the limit order book

e Slippage: The difference between intended and actual execution prices resulting from latency and
market impact effects

e Partial fills: Orders may execute partially when insufficient volume exists at the target price level

Candlestick-Level Execution

Candlestick-level execution operates on aggregated OHLCV (Open, High, Low, Close, Volume) data, where
orders are executed based on whether the agent’s target price falls within the range of a given candle. This
mode provides access to larger datasets and enables testing over longer historical periods, addressing the
practical limitations of order-level data availability and cost.

Despite its simplified execution model, the candlestick mode maintains realistic trading dynamics through
sophisticated intra-candle price simulation. When only aggregated bar data is available, StockSim simulates
realistic price paths within each bar, allowing agents to place conditional orders like stop losses that execute
plausibly even though exact moment-to-moment data is not available.

This approach addresses a critical gap in existing backtesting frameworks, which typically assume that
all prices within a candlestick are equally accessible. Our intra-candle simulation generates realistic price
movements that respect the bar’s OHLC constraints while providing more accurate execution modeling for
conditional orders.

5.1.3 Data Integration Framework

StockSim distinguishes between two primary categories of data: market data including price, volume, and
order-flow information, and external data such as news, corporate actions, and fundamental metrics. The
Exchange Simulation Engine orchestrates these inputs asynchronously, delivering them to agents in simulation
time.

Market Data Processing

The platform supports both detailed order-level data and simplified bar-level candlestick data. In candlestick-
level execution, data is provided as aggregated OHLCV summaries obtained from general data sources like
Alpha Vantage and Polygon.io?. For order-level execution, each market action such as placing, changing, or
canceling an order is individually tracked. These detailed events come either from datasets like LOBSTER? or
from logs created during the simulation. Each event has precise timestamps (milliseconds), allowing realistic
simulation of latency and slippage.

Both execution modes consistently provide agents with computed market indicators derived from real-time or
historical market data. These indicators include moving averages, momentum oscillators, volatility measures,
and volume-weighted metrics that serve as condensed numeric features for agent decision-making.

2www.alphavantage.co; polygon.io

3lobsterdata.com
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External Information Integration

Agents may request news headlines, earnings calendars, corporate actions, or fundamental ratios at any
simulation step. These streams are supplied through the same provider infrastructure and exposed via a
unified query interface implemented by the Exchange Simulation Engine. This abstraction enables agents
to reason over time-sensitive, multi-modal inputs while supporting the development of more interpretable,
information-driven trading strategies.

The platform’s provider abstraction layer wraps each data source with lightweight adapters that map pay-
loads to StockSim’s canonical schema. This design ensures that adding new data providers requires only
contributing a single Python file, enabling the platform to evolve alongside the data ecosystem.

5.1.4 Agent Framework Design

The agent framework provides a unified interface that abstracts away the complexity of different execution
modes, enabling researchers to focus on agent development rather than simulation mechanics. Regardless
of which execution engine mode is active, every agent interacts with the simulator through the same asyn-
chronous message API.

Core Agent Capabilities

Each agent in StockSim may subscribe to data streams for market state, technical indicators, and external
content; submit and cancel orders with support for MARKET, LIMIT, and STOP instructions; receive execution
outcomes and portfolio updates; and log reasoning through optional explanation strings that accompany
every order.

The separation between agent logic and execution details allows a single agent implementation to be tested on
both order-level and candlestick-level execution modes without code changes. This design isolates research
focus on core questions like prompt engineering and reasoning strategies without requiring researchers to
manage low-level simulation mechanics.

Multi-Agent Support

StockSim includes a modular LLMTradingAgent framework that supports coordination between specialist
LLMs focused on different aspects of market analysis. Each analyst operates with its own prompt template,
memory context, and reasoning function. While adding new analyst roles requires lightweight code changes,
the process is intentionally simple and well-documented.

The modular structure ensures that agent internals remain decoupled from the simulation engine, enabling
researchers to rapidly prototype new agent structures, experiment with different LLM backends per role, test
various coordination strategies, and conduct clean ablation studies by toggling analysts through configuration
changes.

5.1.5 Evaluation and Analysis Framework

The Evaluator component subscribes to all trade executions, recording a complete history of positions, cash,
and realized profit and loss. Upon simulation completion, it computes core performance metrics including
overall return, risk-adjusted ratios, drawdown statistics, and trade analytics, packaging them into uniform
reports.

For visual diagnostics, the Fvaluator provides several useful outputs, such as equity curves showing portfolio
value changes over time, candlestick charts highlighting executed trade entries and exits clearly marked on
the price data, and comprehensive summary tables of key trading performance metrics. These outputs can be
directly generated by STOCKSIM’s built-in plotting utilities or exported in JSON format for further analysis.
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Figure 5.2.1: ATLAS Framework Overview. The Central Trading Agent submits orders to the Trading
Execution Engine via prompts shaped by three specialized analysts and the proposed Adaptive-OPRO
optimization technique.

5.2 ATLAS: Multi-Agent Coordination Framework

ATLAS (Adaptive Trading with LLM Agent Systems) demonstrates how to effectively deploy LLMs in
financial decision-making through coordinated multi-agent architecture and adaptive prompt optimization.
The framework addresses the key limitations of existing systems by decomposing market analysis across
specialized components while maintaining unified decision-making through a central trading agent.

5.2.1 Architectural Design Principles

ATLAS is designed around two key pillars: a modular multi-agent architecture that separates concerns
across different types of market information, and a dedicated prompt optimization mechanism tailored for
sequential decision-making under uncertainty. These components enable ATLAS to act as a unified, adaptive
system capable of making coherent, high-impact trading decisions grounded in structured insight and realistic
execution constraints.

The framework’s modular design enhances both interpretability and strategic coherence by enabling each
specialized agent to develop deep expertise in its assigned domain while contributing to collective decision-
making. This approach contrasts with monolithic systems that attempt to process all information types
within a single agent, often leading to diluted expertise and suboptimal integration of diverse signals.

5.2.2 Market Intelligence Pipeline

ATLAS employs specialized agents that focus on distinct types of market information, enabling deep analysis
while maintaining system coherence through structured coordination.

Market Analyst. The Market Analyst processes raw price and volume data to generate structured multi-
timescale summaries of market behavior. It analyzes each stock using three distinct historical windows: 2
years using monthly candlesticks, 6 months using weekly candlesticks, and 3 months using daily candlesticks.
This multi-timeframe approach ensures that analysis operates at appropriate levels of detail for each temporal
scope.

Within each window, the Market Analyst employs established technical indicators including Simple Moving
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Averages (SMA), Exponential Moving Averages (EMA), Relative Strength Index (RSI), Moving Average
Convergence Divergence (MACD), Average True Range (ATR), Bollinger Bands, Support and Resistance
levels, and Volume Profile. These indicators reflect price dynamics, volatility patterns, and market participant
behavior.

Rather than generating trading signals directly, the Market Analyst provides a consistent, noise-filtered
view that preserves key market structure while abstracting away raw data complexity. This standardized
approach allows the Central Trading Agent to focus on strategic decision-making without being overwhelmed
by low-level market noise.

News Analyst. The News Analyst extracts market-relevant sentiment and signals from financial news
content by processing headlines, sources, and summaries to generate structured outputs across four analytical
dimensions: Sentiment Assessment, Key Developments, Market Relevance, and Source Analysis.

The agent may autonomously request access to full article text through a custom web scraping module when
headlines or summaries lack sufficient detail. This capability enables deeper contextualization and improved
detection of emergent themes or persistent tone changes that might be missed in headline-only analysis.

By transforming unstructured news flows into digestible, context-rich summaries, the News Analyst provides
essential complement to price-driven market analysis, particularly valuable during periods of volatility driven
by macroeconomic or firm-specific events.

Fundamental Analyst. The Fundamental Analyst extracts trading-relevant insights from periodic corpo-
rate disclosures including financial statements and structural events such as earnings, dividends, and stock
splits. It parses detailed data fields including revenue, gross profit margins, operating income, and cash flow
dynamics into concise analysis focused on material changes and trading implications.

To reflect the inherently low-frequency nature of fundamental information, the agent activates only 1-2
times per simulation, mimicking real-world reporting cycles. By focusing on actionable changes rather than
exhaustive financial analysis, the Fundamental Analyst complements the more reactive Market and News
modules with structural context essential for mid- to long-term positioning.

5.2.3 Decision and Execution Layer
Central Trading Agent

The Central Trading Agent serves as the core decision-maker, transforming analyst insights into concrete
trading actions. FEach trading day, before market open, it assesses the most recent market, news, and
fundamentals analysis alongside current portfolio holdings to determine appropriate trading actions.

Based on this comprehensive context, the agent may issue trading orders that formally specify the quantity
of shares to buy or sell, the target price, and any conditional requirements using different order types. These
orders are submitted to the StockSim Execution Engine, which simulates realistic trading behavior to
determine execution outcomes.

The daily decision loop supports disciplined, responsive trading behavior grounded in timely information and
consistent with real-world execution constraints. The agent receives updated analyses and refreshed portfolio
information each day, enabling it to adapt its strategy based on evolving market conditions and the outcomes
of previous decisions.

5.2.4 Adaptive-OPRO: Prompt Optimization for Sequential Decision-Making

To enhance the Central Trading Agent’s decision-making capability, ATLAS introduces Adaptive-OPRO, a
prompt optimization algorithm that systematically refines the agent’s instructions based on trading perfor-
mance feedback. This represents the first successful extension of optimization by prompting to sequential
decision-making environments with delayed, noisy rewards.
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Extensions for Sequential Decision-Making

Our approach makes two key modifications to standard OPRO [79] to address financial market constraints.
First, we address temporal delay between decisions and performance evaluation, as trading decisions only
reveal their quality over extended periods as positions develop and resolve. Second, we handle dynamic
content through prompt templates that separate static instructions subject to optimization from dynamic
runtime data including market analyses, portfolio status, and recent trades.

This template-based architecture ensures that refinements target decision-making logic rather than transient
market conditions, preventing the optimizer from overfitting to specific market scenarios while enabling
adaptation of strategic reasoning patterns.

Prompt Evolution Architecture

Our optimization system maintains a prompt evolution history that records each prompt template alongside
its measured trading performance. Every five decision steps, we evaluate the current prompt’s effectiveness by
calculating cumulative Return on Investment (ROI) and store this prompt-performance pair in the Prompt
Evolution History.

The five-step evaluation cycle balances reliable performance assessment with timely adaptation: shorter
cycles introduce noise from market volatility, while longer cycles delay necessary prompt improvements. ROI
provides a direct measure of trading success that reflects actual market outcomes without introducing noisy
performance signals from auxiliary metrics.

The optimization process employs a meta-prompt that structures how the optimizer LLM analyzes accu-
mulated performance records. This meta-prompt incorporates the complete prompt evolution history and
systematically guides the optimizer LLM through four key outputs: performance analysis identifying cur-
rent prompt strengths, weaknesses, and improvement opportunities; an optimized prompt template with
enhanced instructions and improved decision-making logic; key improvements detailing specific modifications
and their strategic rationale; and expected impact forecasting how changes will improve trading performance.

This comprehensive output supports systematic tracking of prompt evolution and provides explainability for
optimization decisions, ensuring transparency in how and why the system adapts over time. The detailed
analysis enables researchers to understand not just whether optimization is improving performance, but how
and why specific changes contribute to enhanced decision-making.

Implementation Details

In the ATLAS framework, each agent maintains its own conversation history and specialized function. When
optimizing, Adaptive-OPRO updates the Central Trading Agent’s initial prompt while preserving all accu-
mulated information including market data, analyst reports, executed trades, and decision rationale.

The upstream analyst agents continue operating with their original static prompts and unmodified conver-
sation histories. This targeted replacement strategy ensures that prompt updates don’t disrupt accumulated
historical context, maintaining system stability and analytical consistency across the multi-agent architecture.

The optimization focuses exclusively on the Central Trading Agent since it serves as the decision-making
hub that directly translates market intelligence into trading actions. This selective approach recognizes
that different components benefit from different optimization strategies: decision-making agents benefit from
adaptive refinement based on outcomes, while information processing agents benefit from stable, consistent
analytical frameworks.
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Chapter 6

Experimental Setup

This chapter describes our comprehensive experimental methodology designed to systematically evaluate
ATLAS across diverse market conditions, LLM architectures, and prompting strategies. Our experimental
design addresses four critical research questions: How does Adaptive-OPRO compare to existing approaches
for enhancing LLM trading performance? What is the individual contribution of each specialized agent in the
ATLAS architecture? How do different LLM architectures behave in complex trading environments? Which
combinations of models and optimization strategies produce reliable versus high-variance outcomes?

The experimental framework is structured around rigorous evaluation protocols that account for the stochastic
nature of both LLM outputs and market dynamics. Unlike previous research that typically employs single-run
evaluations, our methodology implements systematic multi-run protocols that expose performance variance
and ensure statistically reliable conclusions. This approach reveals critical insights about system reliability
that would otherwise remain hidden.

Our evaluation spans multiple dimensions: diverse LLM architectures ranging from reasoning-enhanced
models to open-source alternatives, varied market regimes that test adaptability across different trading
environments, comprehensive baseline comparisons against both traditional quantitative strategies and
existing LLM approaches, and systematic ablation studies that quantify the contribution of each framework
component.
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6.1. StockSim Platform Validation

6.1 StockSim Platform Validation

Before presenting our main experimental results, we establish the reliability and scalability of our StockSim
evaluation platform through controlled validation studies. These experiments ensure that our simulation envi-
ronment can support large-scale, multi-agent experiments while maintaining the deterministic reproducibility
essential for scientific evaluation.

6.1.1 Experimental Design for Platform Validation

We evaluate StockSim along two critical dimensions-scalability and determinism-using controlled exper-
iments with deterministic agents that implement fixed strategies such as moving-average crossovers and
buy-and-hold. This approach isolates the simulation engine’s behavior from LLM-induced variability, includ-
ing response latency, resource consumption, and output stochasticity, ensuring that observed performance
metrics reflect core platform capabilities rather than model-specific effects.

The validation protocol systematically varies agent counts from 10 to 500 agents while monitoring system-level
performance metrics including CPU utilization across all cores and memory usage for both the simulation
engine and the RabbitMQ message broker. Each configuration undergoes multiple identical runs to verify
deterministic behavior and establish resource scaling patterns.

6.1.2 Determinism and Reproducibility

Across all repeated runs with identical configurations, simulation outputs-including order placements, execu-
tions, and computed performance metrics-remain perfectly consistent. This deterministic behavior validates
StockSim’s end-to-end pipeline reliability, from data ingress through agent communication to final account-
ing. The platform’s deterministic properties provide a crucial foundation for meaningful statistical analysis
of LLM trading strategies, as any observed performance variance can be attributed to model behavior rather
than simulation artifacts.

6.1.3 Scalability Analysis

Figure 6.1.1 demonstrates StockSim’s scaling characteristics under increasing agent loads. The platform
exhibits near-linear scaling up to approximately 150 concurrent agents, with simulation container CPU
usage growing from 8% to 27% and memory consumption increasing from 0.8 GB to 2.0 GB-both roughly
proportional to agent count.

Beyond this linear regime, resource demands enter a super-linear growth phase: at 300 and 500 agents,
mean CPU utilization reaches 123% and 418% respectively, while memory consumption grows to 4.1 GB and
5.6 GB. Peak resource usage during high-load periods approaches roughly 4x the average values, indicating
that the platform handles load spikes gracefully without system instability.

6.1.4 Resource Efficiency and Practical Implications

Despite super-linear scaling at extreme loads, StockSim’s absolute resource requirements remain modest.
Even at maximum tested scale (500 agents), the platform operates within 5.6 GB RAM and a few CPU cores
on a MacBook Pro with Apple M3 Pro (11-core CPU) and 18 GB unified memory.

This efficiency profile has important implications for our experimental design: while running hundreds of
concurrent LLM agents with full reasoning capabilities would be computationally prohibitive on standard
hardware, StockSim’s efficiency enables comprehensive evaluation of agent coordination and interaction ef-
fects.

6.1.5 Validation Conclusions

These validation results establish StockSim as a robust foundation for systematic LLM trading evaluation.
The platform’s verified determinism ensures reproducible results, while its demonstrated scalability supports
the comprehensive multi-agent experiments presented in the following sections. The efficiency profile confirms
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Figure 6.1.1: StockSim system performance metrics (memory/CPU usage) for varying numbers of
deterministic agents.

that our experimental methodology can be replicated on accessible computing hardware, promoting broader
reproducibility in LLM trading research.

With platform reliability established, we proceed to evaluate ATLAS performance across the diverse experi-
mental conditions described in the following sections.

6.2 Model Selection and Architecture Analysis

Our model selection strategy explores how different architectural capabilities translate to sequential decision-
making performance in financial markets. The chosen models represent distinct approaches to language
modeling and reasoning, enabling systematic comparison of their effectiveness in trading environments.

6.2.1 Reasoning-Enhanced Models

We evaluate three models that employ explicit reasoning mechanisms (LRMs) designed to enhance decision-
making through structured thought processes:

GPT-03 represents the most advanced reasoning architecture in our evaluation, employing sophisticated
internal chain-of-thought processes before generating responses. This model demonstrates exceptional capa-
bilities in complex reasoning tasks and provides an opportunity to assess whether such advanced reasoning
translates to superior trading performance. The model’s ability to maintain coherent reasoning chains across
multiple decision points makes it particularly relevant for sequential trading decisions.

GPT-04-mini offers a more efficient reasoning architecture while maintaining strong performance across
diverse tasks. This model provides insights into the cost-performance tradeoffs in LLM-based trading systems,
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as it delivers sophisticated reasoning capabilities at lower computational costs. Its inclusion enables evaluation
of whether reasoning enhancement benefits can be achieved without requiring the most computationally
expensive models.

Claude Sonnet 4 with Thinking enables controlled comparison by testing the same base architecture
with and without explicit reasoning mechanisms. This model employs internal thinking processes that are
visible during generation, allowing detailed analysis of how reasoning chains develop in trading contexts.
The thinking mechanism provides unprecedented insight into the model’s decision-making process, enabling
qualitative analysis of reasoning quality alongside quantitative performance evaluation.

6.2.2 Standard Architecture Comparison

Claude Sonnet 4 without Thinking serves as the controlled comparison for the reasoning-enhanced
version, enabling isolation of the reasoning mechanism’s impact on trading performance. By testing the same
base model architecture with and without its reasoning mode, we can determine whether explicit reasoning
chains provide fundamental advantages or if base model capabilities suffice for effective trading decisions.

This controlled comparison is critical for understanding whether the additional computational overhead of
reasoning mechanisms translates to meaningful performance improvements in dynamic trading environments.

6.2.3 Open-Source Alternative

LLaMA 3.3-70B represents the open-source alternative in our evaluation, testing whether effective trading
requires proprietary training methods or emerges from sufficient model scale and architecture sophistication.
This comparison is critical for organizations considering self-hosted deployment and for understanding the
democratization potential of Al trading capabilities.

The inclusion of LLaMA enables assessment of whether competitive trading performance can be achieved
using models with transparent architectures and training procedures. This evaluation has significant impli-
cations for the accessibility and broader adoption of LLM-based trading systems

6.3 Market Conditions and Asset Selection

Market regimes represent distinct patterns of price behavior that create fundamentally different challenges
for trading systems. Each regime demands specific analytical approaches, risk management strategies, and
decision-making frameworks, making regime diversity essential for comprehensive system evaluation. Trading
systems that perform well under uniform conditions may fail catastrophically when market dynamics shift,
making cross-regime testing crucial for assessing true robustness and adaptability. Our evaluation spans three
distinct market regimes using stocks from diverse sectors, with each evaluation covering two months (April
28 - June 28, 2025). This duration provides sufficient time to observe multiple trading cycles and strategy
evolution while maintaining complete conversation history within LLM context limits:

e NVDA (Technology Sector - Upward Market [Bullish]): During our evaluation period, NVDA
exhibited steady upward movement characteristic of strong rising trends. This regime tests whether
agents can effectively capture and maintain profitable positions during favorable market conditions. The
technology sector’s inherent volatility and sentiment-driven dynamics provide additional complexity
beyond simple trend-following.

¢ XOM (Energy Sector - Oscillating Market [Sideways]): XOM remained relatively stable within
a trading range during the evaluation period, presenting challenges for momentum-based strategies
while rewarding mean-reversion approaches. This regime tests patience and selectivity, as profitable
opportunities are scarce and require precise timing. The energy sector’s dependency on broader eco-
nomic conditions adds fundamental complexity to technical trading decisions.

e LLY (Healthcare Sector - Downward Market [Bearish]): LLY experienced sharp declines with
sudden price movements, creating the most challenging environment in our evaluation. This regime tests
risk management capabilities, adaptive position sizing, and the ability to navigate uncertainty while
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preserving capital. Healthcare’s regulatory complexity and event-driven dynamics demand sophisticated
information processing capabilities.

6.4 Prompting Strategy Evaluation

Our experimental design systematically compares multiple prompting approaches to isolate the impact of dif-
ferent adaptation mechanisms on trading performance. The strategy evaluation encompasses both established
approaches from prior literature and our novel Adaptive-OPRO methodology.

6.4.1 Core Experimental Configurations

Baseline Strategy. We employ carefully engineered static prompts that represent best practices in prompt
design for trading applications. These prompts were developed through iterative refinement by trading experts
and incorporate structured decision frameworks, clear constraint specifications, and comprehensive context
integration. The baseline represents the strongest static approach achievable through manual optimization,
providing a robust foundation for measuring adaptive improvements.

The baseline prompts follow OpenAl’s reasoning best practices, incorporating clean structural sectioning,
unambiguous instructions, standardized output formats, and clear separation between data and reasoning
components'. This establishes a strong comparative foundation that any adaptive approach must meaning-
fully exceed to demonstrate value.

Adaptive-OPRO Strategy. Our systematic prompt optimization approach targets the central trading
agent exclusively, testing whether dynamic adaptation specifically enhances the complex synthesis of multiple
information streams into trading decisions. This strategy serves as our primary experimental contribution,
enabling direct comparison against static and reflection-based alternatives under identical market conditions.

Reflection Strategy. To benchmark the performance of Adaptive-OPRO against prior work, we adapt the
reflection mechanism of [38]-one of the most recent and relevant algorithms for sequential feedback in LLM
trading systems. The original approach, tailored for cryptocurrency trading, outputs confidence scores (-1
to 1) instead of concrete orders. For fair comparison, we adapt both methods to StockSim, where full trade
specifications are required. We use the reflection mechanism as originally designed, adapting it to generate
weekly feedback on trading patterns and strategic adjustments. This feedback is integrated into the Central
Trading Agent via prompt context. Unlike Adaptive-OPRQ’s direct prompt edits, the reflection output is
analytical and must be interpreted by the agent. We apply the reflection mechanism without methodological
modifications to maintain fidelity to the original design, enabling direct assessment of reflection effectiveness
under identical trading constraints and evaluation conditions.

6.4.2 Extended Prompting Strategy Analysis

Our evaluation includes additional configurations that explore interaction effects and frequency variations:

Daily Reflection (1d). We evaluate more frequent reflection cycles to test whether immediate feedback
enhances learning or introduces decision paralysis. This variant explores the temporal dimension of adapta-
tion, revealing optimal feedback frequencies for trading decisions.

Combined Adaptive-OPRO with daily Reflection. This configuration tests whether multiple adapta-
tion mechanisms complement each other or create interference. The combined approach reveals mechanism
compatibility and identifies potential synergies between optimization and reflection approaches.

These extended configurations enable systematic analysis of adaptation frequency effects and mechanism in-
teractions, providing comprehensive coverage of the adaptation strategy space while maintaining experimental
control.

Iplatform.openai.com/docs/guides/reasoning-best-practices
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6.5. Evaluation Methodology and Metrics

6.4.3 Experimental Control and Comparison Framework

Structural Consistency: All prompting strategies maintain identical constraint specifications, output for-
mats, and data integration frameworks, ensuring that performance differences reflect adaptation effectiveness
rather than structural prompt advantages.

Context Preservation: Each strategy preserves complete conversation histories and market context, en-
abling fair comparison of adaptation mechanisms without confounding factors from information access dif-
ferences.

Output Standardization: All strategies generate identical JSON formats with standardized action speci-
fications, eliminating output format variations as confounding variables in performance assessment.

This controlled comparison framework enables rigorous assessment of adaptation mechanism effectiveness
while maintaining the experimental validity necessary for reliable conclusions about optimal approaches for
LLM-based trading systems.

6.5 Evaluation Methodology and Metrics

Our evaluation methodology addresses fundamental challenges in assessing LLM-based trading systems, par-
ticularly the need to account for stochastic outputs, market dynamics, and performance variance that can
obscure genuine capability differences.

6.5.1 Multi-Run Evaluation Protocol

Unlike prior research that typically employs single-run evaluations, we implement a systematic three-run
protocol for each configuration. Each run initializes with identical starting conditions, market data, and
system configurations, enabling isolation of performance variance attributable to LLM stochasticity versus
environmental factors. This protocol exposes not just mean performance but stability of behavior under
identical conditions.

Results are reported as mean + standard deviation across three runs, enabling assessment of both central
tendency and variability. Configurations with high variance receive different interpretation than those with
consistent performance, as reliability becomes a crucial factor for real-world deployment consideration.

6.5.2 Comprehensive Performance Metrics

Our evaluation employs multiple metrics that capture different aspects of trading performance, preventing
optimization for single measures while revealing comprehensive system capabilities:

Return on Investment (ROI): Calculated as the percentage change in total portfolio value from initial
capital: ROI = final Vf;l“t‘f;‘s;ﬁ:fé value 100, Portfolio values include both cash holdings and current market
value of all stock positions. ROI provides the fundamental measure of trading effectiveness and capital

growth.

Sharpe Ratio (SR): Risk-adjusted return metric calculated as: SR = “="£, where p is mean daily return,
o is daily return standard deviation, and r is the risk-free rate (set to 0 following [38]). Higher Sharpe ratios
indicate superior risk-adjusted performance, revealing whether returns stem from genuine skill or excessive
risk-taking.

Maximum Drawdown (DD): The largest peak-to-trough decline in portfolio value: Max DD =
max;c|o,7) (maxse[o’t] Vs — Vt) /maxgepo,q Vs, where V; represents portfolio value at time ¢. This metric cap-
tures downside risk tolerance and stress testing capabilities, revealing how systems perform under adverse
conditions.

Win Rate: Percentage of profitable trades calculated as: Win Rate = Number of profitable trades . 1) = yyijp
Total number of trades

rate indicates decision consistency and accuracy, though high win rates do not guarantee profitability if losses
exceed gains on losing trades.
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Number of Trades: Total trading frequency over the evaluation period, revealing strategic approaches from
active short-term strategies to patient conviction-driven approaches. Trade frequency provides insight into
system behavior and capital allocation patterns.

Annualized Sharpe Ratio (Ann. SR): Annualized version of the Sharpe Ratio calculated as: Ann. SR =
SR x v/252, where 252 represents the typical number of trading days in a year. This metric provides stan-
dardized comparison across different evaluation periods and enables assessment of long-term risk-adjusted
performance potential.

Sortino Ratio: Downside risk-adjusted return metric calculated as: Sortino = £ ;rf , where o4 is the

d
standard deviation of negative returns only. Unlike Sharpe Ratio, this metric exclusively penalizes downside
volatility, providing a more nuanced view of risk-adjusted performance that distinguishes between harmful
volatility and beneficial upside variance.

Return on Invested Capital (ROIC): Measures efficiency of capital utilization calculated as: ROIC =
Toral I(\Ijztpittr;d{}‘sge ng?tEntries x 100. This metric accounts for varying position sizes and reveals how effectively the
system allocates available capital, indicating whether superior returns result from efficient capital deployment

or simply from taking larger positions.

Profit per Trade (P/T): Average profit generated per trade calculated as: P/T = Total net profit — y);q

Number of trades”
metric indicates the average value creation per trading decision, helping assess decision quality and revealing

whether profitability stems from frequent small gains or occasional large profits.

These comprehensive metrics provide multi-dimensional performance assessment that prevents gaming of
individual measures while revealing the full spectrum of trading system capabilities. The combination enables
identification of systems that achieve sustainable, risk-adjusted performance versus those that may appear
successful on isolated metrics but exhibit fundamental weaknesses in risk management or capital efficiency.

6.5.3 Baseline Strategy Comparison

We compare ATLAS performance against established trading strategies that require no machine learning,
providing context for where LLM approaches add value versus simpler alternatives:

Buy and Hold The Buy and Hold strategy is a passive investment approach in which an asset is acquired
at the beginning of the investment horizon and retained without any further trading actions, regardless of
interim price fluctuations. This method assumes that, over time, the market tends to grow, and thus long-
term holding can yield positive returns. It does not rely on any predictive model or technical indicator. In
our evaluation, Buy and Hold serves as a benchmark strategy against which the performance of all other
trading methods is compared.

Simple Moving Average (SMA) The SMA strategy [22] issues trading signals based on the relationship
between the current price of an asset and its moving average over a fixed time window. Specifically, a buy
(sell) signal is triggered when the price crosses above (below) the SMA.

Short-Long Moving Average (SLMA) The SLMA method [66] extends the SMA approach by employing
two SMAs of different lengths: one short-term and one long-term. A buy signal is generated when the short-
term average crosses above the long-term average, while a sell signal occurs at the inverse crossover.

Moving Average Convergence The MACD strategy [66] captures momentum shifts by computing the
difference between the 12-day and 26-day exponential moving averages. A 9-day EMA of the MACD line
is used as a signal line. Trading signals are generated when the MACD line crosses the signal line from
below (buy) or from above (sell). The exponential formulation ensures increased sensitivity to recent price
movements.

Bollinger Bands The Bollinger Bands strategy [11] incorporates volatility by constructing a band around
a 20-day SMA, with the upper and lower bands placed two standard deviations above and below the mean,
respectively. A price crossing above the upper band may indicate overbought conditions (sell signal), while
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crossing below the lower band may suggest oversold conditions (buy signal). We adopt the standard param-
eterization of 20-day SMA and multiplier 2, as commonly suggested in the literature.

For window-based strategies, we tested multiple window lengths across different market regimes. Since no
single configuration performed consistently well across all market conditions, we report results from one of
the best-performing configurations for each strategy as an indicative benchmark (10-day SMA and 10/30-day
SLMA crossover).

These baseline strategies represent well-established quantitative approaches that provide meaningful compar-
ison points for assessing LLM value proposition in trading applications.

6.6 Ablation Study Design

To quantify the contribution of each specialized agent within the ATLAS framework, we conduct system-
atic ablation studies using the best-performing model-strategy combination identified through our primary
evaluation.

6.6.1 Configuration Selection

Ablation studies employ GPT-04-mini with Adaptive-OPRO based on consistently strong performance
across all evaluation assets and favorable cost-performance characteristics for repeated experimental runs.
This configuration represents the optimal system variant, enabling assessment of component contributions
under best-case conditions rather than suboptimal baselines.

6.6.2 Systematic Component Removal

No Market Analyst: Removes all technical analysis capabilities to assess whether multi-timescale price
structure analysis and technical indicators meaningfully improve decision quality. This ablation tests whether
pure sentiment and fundamental analysis suffice for effective trading or whether technical context provides
essential decision-making support.

No News Analyst: Eliminates unstructured text analysis to evaluate the value of sentiment extraction
and event-driven catalyst identification. This configuration tests whether market and fundamental data
alone provide sufficient information for trading decisions or whether news processing adds crucial context for
decision-making.

No Market & News Analysts: Reduces the system to single-agent configuration with only fundamen-
tal data inputs plus portfolio state, testing whether task decomposition and specialization provide genuine
benefits or merely organizational convenience. This minimal configuration reveals whether multi-agent coor-
dination is essential for performance or whether concentrated decision-making achieves comparable results.

6.6.3 Excluded Components

We exclude the Fundamental Analyst from systematic ablation due to its low activation frequency (typically
1-2 times per evaluation period), which renders short-term impact measurement statistically unreliable.
The Fundamental Analyst’s contribution is instead assessed through qualitative analysis of trading decisions
during earnings periods and corporate events, where it provides structural context for longer-term positioning.

The low-frequency activation reflects realistic fundamental data release patterns, where quarterly earnings
and annual reports occur at predictable intervals. While important for strategic context, the infrequent
activation prevents meaningful statistical measurement in ablation studies spanning two-month periods.

6.6.4 Evaluation Protocol

Each ablation configuration undergoes three independent runs using identical methodology to primary exper-
iments, enabling statistical comparison of performance differences. The systematic approach reveals which
components provide essential versus auxiliary contributions to overall system effectiveness.
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Chapter 7

Results and Analysis

This chapter presents comprehensive results from our systematic evaluation of ATLAS across diverse market
conditions, LLM architectures, and prompting strategies. Our key findings demonstrate that Adaptive-OPRO
consistently achieves superior performance compared to baseline and reflection-based approaches across the
vast majority of tested model architectures and market regimes. ATLAS exhibits remarkable robustness, de-
livering positive returns even in challenging bearish and volatile conditions where traditional strategies fail.
Multi-agent specialization provides meaningful performance contributions, with systematic ablation studies
revealing the value of task decomposition in complex trading environments. Different LLM architectures
exhibit distinct trading behaviors and optimization capabilities, with clear performance hierarchies emerg-
ing that correlate with general model capabilities. Importantly, our multi-run evaluation protocols expose
significant performance variance that single-run assessments completely miss, highlighting critical reliability
issues in current LLM evaluation practices.

The results are organized around five key areas of analysis. First, we examine the comparative performance
of different prompting strategies across market conditions and model architectures. Second, we present
ablation studies that quantify the contribution of each specialized agent within the ATLAS framework.
Third, we investigate behavioral patterns across different LLM architectures, uncovering distinct trading
philosophies and adaptation capabilities. Fourth, we provide extended performance analysis that incorporates
additional risk-adjusted metrics and explores additional prompting configurations including daily reflection
mechanisms and combined optimization approaches, offering comprehensive confirmation of our primary
findings. Finally, we examine transparent optimization traces produced by Adaptive-OPRO through detailed
examples, demonstrating how systematic prompt refinement drives performance improvements and providing
crucial mechanistic insights into the optimization process.
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Model Prompting ROI (%) 1 SR 1 DD (%) | Win Rate (%) Num Trades
Non-LLM-Based Strategies
Buy & Hold N/A -8.59 -0.071 20.45 0.00 1
MACD N/A 6.50 0.131 6.86 0.00 1
SMA N/A 6.91 0.177 3.56 50.00 4
SLMA N/A -1.87 -0.078 6.89 0.00 1
Bollinger Bands N/A 0.00 0.000 0.00 0.00 0
LLM-Based Strategies - ATLAS
Baseline -9.194 1.54 -0.0914 0.021 16.90+ 0.82 30.284 11.87 22.674 g.39
LLaMA 3.3-70B  Reflection -8.441 158 -0.087+ 0.025 16.36+ 0.31 44.694 13.95 27.67+ 115
Adaptive-OPRO  -6.164 208 -0.0664 9004 14.054 3.33 54.364 12.44 28.334 3.01
Baseline -7.264 2.99 -0.0664+ 0.030 17.594 155 31.194 784 13.004+ 4.36
Claude Sonnet 4 Reflection -5.694 1.82 -0.058+ 0.013 15.124 3.96 46.67 4 5.77 12.674 208
Adaptive-OPRO  0.354 175  0.0084 9018 14.764 257 43.454 607 15.004 2.00
Baseline -4.464 476 -0.0434 0.048 14.324 4.12 11.114 19,04 14.004 265
Clvil/ldéhsiiﬁf; 4 Reflection 8604 050 -0.0784 000s 19454 165 14.29. 94 75 11.67- 2.08
Adaptive-OPRO  -0.734 3.82 -0.0044 g.038 12.944 532 43.89+ 21.11 17.00+ 5.00
Baseline -1.30+ 1.71 -0.0174 0.017 9.684 3.12 29.174 11.02 15.334+ 3.06
GPT-04-mini Reflection -2.524 403 -0.0394 0.045 9.824 343 51.284 506 20.334+ 3.06
Adaptive-OPRO  9.064 .73 0.094 4 0.00s8 11.484 9.00 65.28 16.84 17.33+ 556
Baseline -6.114 3.4 -0.0804+ 0.029 11.584 3.09 42.594 g.49 18.674+ 3.1
GPT-03 Reflection -4.604 3.40 -0.0534+ 0.044 12.114 197 46.034+ 16.88 18.334 252
Adaptive-OPRO  9.024 3.8 0.1464 g.048 5.33+ 0.14 72.814 17.07 19.67+ 4.16

Table 7.1: Performance comparison between non-LLM-based and LLM-based approaches using ATLAS in
volatile, declining market conditions (LLY, healthcare sector). Bold values indicate the best per model.

7.1 Framework Resilience Across Market Dynamics

Tables 7.1, 7.2, 7.3 present a comparative evaluation of baseline non-LLM strategies against ATLAS across
various LLM configurations and market regimes. The results demonstrate that ATLAS consistently achieves
high performance across all tested conditions. To our knowledge, this is the first instance of a single framework
exhibiting such systematic robustness across diverse market scenarios, clearly outperforming widely used and
traditionally favored methods. Strategies like Buy-and-Hold perform well in bullish regimes but fail to
generalize, producing significantly weaker results in range-bound and bearish markets-conditions typically
marked by instability, low predictability, and limited informational signals. Notably, ATLAS, particularly
when paired with GPT-03 or GPT-04-mini, delivers stable and positive returns even under adverse conditions,
including bearish regimes, where the overall market trend is downward and profit generation is particularly
challenging. This ability to perform reliably when most strategies struggle underscores the framework’s
strength in navigating uncertainty and making effective strategic decisions, even in declining or highly volatile
environments. These findings highlight ATLAS’s robustness and its potential as a dependable decision-making
system across the full spectrum of market dynamics.

7.1.1 Optimization in Sequential Decision-Making

Adaptive-OPRO significantly outperforms both static baseline prompts and reflection-based approaches
across the vast majority of tested models and market conditions (Tables 7.1 - 7.3). The improved decision-
making throughout the optimization process clearly translates into more effective trading performance, as
demonstrated by the metrics analyzed.

Return improvements demonstrate successful adaptation to market feedback. In the volatile bearish
regime (Table 7.1), models like GPT-03/04-mini shift from negative baselines to substantial positive returns
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Model Prompting ROI (%) 1 SR 1 DD (%) | Win Rate (%) * Num Trades
Non-LLM-Based Strategies
Buy & Hold N/A 1.14 0.013 6.97 0.00 1
MACD N/A -0.26 -0.019 5.90 0.00 3
SMA (50-day)  N/A 0.13 -0.019 5.57 0.00 3
SLMA (20/50)  N/A 112 -0.043 5.28 0.00 2
Bollinger Bands N/A 0.00 0.000 0.00 0.00 0
LLM-Based Strategies
Baseline -0.424 206 -0.0244 0.051  5.564 108 53.48 9.56 26.004 2.00
Llama 3.3 70B Reflection -2.614 .77 -0.0834 0.014 6.384 0.72 46.634 315 26.334 6.51
Adaptive-OPRO  -1.104 ¢.44 -0.0454 0.012 5.154 o0.71 50.00+ 3.85 25.334+ 1.15
Baseline -4.494 499 -0.1344 0.114 7.714 1.06 37.504 4.17 19.00+ 3.46
Claude Sonnet 4 Reflection -3.784 423 -0.1154 g.105 10.544 158 23.844 g.97 18.004+ 6.93
Adaptive-OPRO  -5.074 453 -0.1654 0.143 9.234 271 31.024 7.90 18.334+ 252
Baseline -0.994 980 -0.0394 0020 7-75+ 1.00 56.28+ 1.50 17.00+ 5.90
Claude Sonnet 4 p 0 tion 1495 576 -0.069: 0123 727 22 45114 196 17.00+ 5.57
w/ Thinking
Adaptive-OPRO  -1.014 .90 -0.046+ 0.020 5.164 0.52 36.24 2447 16.334+ 2.08
Baseline 1.294 138 0.0214 0.044 3.234 0.48 39.014+ 3.61 22.674+ 7.57
GPT-o4-mini Reflection 1484 054 -0.0874 0o1s 4644 075 32.624 740 27.334 506
Adaptive-OPRO  3.884 221  0.089. ¢.067 3.284 0.95 47.954 7.15 25.334 5.03
Baseline -0.604+ 1.71 -0.0344 0.050 5.934 1.33 60.74 1 5.59 16.334 252
GPT 03 Reflection 1554 000 -0.084% 0075 5.024 .70 42,504 6.61 16.67 .58
Adaptive-OPRO  3.624 .90 0.0964 g.027 3.464 .48 71.93+ 15.9 16.00+ 265

Table 7.2: Performance comparison between non-LLM-based and LLM-based approaches using ATLAS in
range-bound market conditions (XOM, energy sector). Bold values indicate the best per model.

under Adaptive-OPRO.

More revealing are the risk-adjusted metrics: improved Sharpe ratios indicate that gains stem from genuine
strategic enhancement rather than increased risk-taking.

Win rate patterns expose the optimization mechanism’s impact on decision quality. Models under
Adaptive-OPRO generally achieve higher win rates alongside better returns, suggesting more consistent
decision-making rather than occasional large gains masking frequent losses.

Significantly, the reflection paradox emerges consistently across models and regimes: reflection-based
approaches not only fail to match Adaptive-OPRO but often underperform baseline prompts, challenging
conventional assumptions about additional reasoning steps in well-optimized systems within dynamic envi-
ronments.

7.2 Agent Contribution Analysis

Table 7.4 confirms each specialized agent’s distinct contribution by showing performance drops when each is
removed.

Market Analyst is a core component across all market regimes. Its removal consistently results in the
most significant performance degradation, especially in challenging conditions such as the bearish regime,
where technical context is crucial for decision-making. In the sideways regime, the absence of market analysis
not only reduces returns but also lowers trading frequency, suggesting that agents lose the confidence to act
without a solid technical foundation. Notably, in bullish markets, ROI slightly improves when market data
are excluded, suggesting that in up-trending markets social consensus and market news may offer cleaner
entry signals.
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Model Prompting ROI (%) 1 SR 1 DD (%) ] Win Rate (%) * Num Trades
Non-LLM-Based Strategies
Buy & Hold N/A 41.30 0.409 3.16 0.00 1
MACD N/A -0.62 -0.343 0.62 0.00 1
SMA ) N/A 36.77 0.384 3.12 0.00 1
SLMA N/A 15.88 0.254 2.98 0.00 1
Bollinger Bands N/A 0.00 0.000 0.00 0.00 0
LLM-Based Strategies - ATLAS
Baseline 37.86+ 12.31 0.388+ 0.096 3.46+ 0.63 20.37+ 35.28 13.00+ 20.78
Llama 3.3 70B Reflection 40.404 1.43 0.4224 9023 2.964 0.34 33.334 57.74 5.334 6.66
Adaptive-OPRO  42.074 1 g5 0.4184 0.016 3.154 0.02 100.004+ ¢.00 1.334 058
Baseline 13.434 562 0.1804 0.121 5.524 3.96 60.834+ 12.30 21.674+ 950
Claude Sonnet 4 Reflection 5.214+ 110 0.089+ 0.026 5.114+ 186 39.254 15.79 22.334+ 153
Adaptive-OPRO  25.854 10.61 0.2904 0.087 3.75+ 0.59 43.814 3837 19.004 12.17
Baseline 12.524 9 47 0.1754 0.030 5.034 153 53.304 14.47 17.004+ 265
Clvil/ld;}izﬁfg 4 Reflection 11124 486 01864 0053  3.424 2.23 77.864 2.58 17.002 5.00
Adaptive-OPRO  16.364 7.87 0.2174 0105 5.184 252 68.89+ 30.06 12.671 4.04
Baseline 7.004+ 3.46 0.1254 0.054 2.74+ o0.79 46.294 391 18.67+ 153
GPT-04-mini Reflection 9.80+ 3.21 0.189+ g.067  2.454 1.00 54.54+ 7.92 26.33+ 9.61
Adaptive-OPRO  10.474 384 0.1934 0.046 3424 0.90 62.70+ 11.25 20.33+ 2.89
Baseline 22.704 0.92 0.2694+ 0.029 6.824 3.03 66.67+ 28.87 7.33+ 252
GPT 03 Reflection 21.984 454 0.3254 0.040 3.144 .99 96.67+ 5.77 18.00+ 3.61
Adaptive-OPRO  25.064 428 0.3924 g.019 2.314+ 0.80 100.00+ ¢.00 9.67+ 4.04

Table 7.3: Performance comparison between non-LLM-based and LLM-based approaches using ATLAS in
rising market conditions (NVDA, technology sector). Bold values indicate the best per model.

News analyst contributes regime-specific strategic value. In the bullish regime, news removal leads to
lower returns as agents become more conservative, missing chances to capitalize on positive momentum. The
sideways regime shows news analysis as particularly critical, with its removal producing severe degradation-
suggesting that sentiment analysis is essential when technical signals are ambiguous.

Combination of News & Market Analyst offers insights into their interdependent value: across all
regimes, removing both agents leads to substantial performance degradation, indicating that news and market
signals offer complementary, non-redundant information. In the bearish regime, performance drops signifi-
cantly, reflecting the importance of sentiment and technical context under volatility. In the sideways regime,
the absence of both leads to unstable and unprofitable behavior. Even in the bullish regime, where market
data alone may be less essential, combined removal clearly harms performance. These results suggest that
each component contributes differently across regimes, with the combined removal producing regime-specific
effects that differ from simple additive impacts.

7.3 Trading Behavior Across LLMs

Our analysis reveals a clear correlation between the general capabilities of the models and their trading
performance, with more capable models performing significantly better than their less capable counterparts
(Figure 7.2.1).

GPT-03 demonstrates the most advanced market understanding, systematically leveraging analysis from all
specialized agents to formulate coherent strategies. While occasionally overly risk-averse (limiting gains in
favorable conditions), this conservative bias enables consistent cross-regime performance. The model’s prompt
optimization capabilities are exemplary, showing incremental learning, strategic adaptation to failures, and
clear understanding of optimization objectives.

60



7.3. Trading Behavior Across LLMs

Stock Configuration ROI (%)t Sharpe Ratio t Max DD (%) | Win Rate (%) ¥ Num Trades
LLY No News 4.074 .72 0.056+ 0.016 7.844 315 53.514 ¢.67 25.33+ 4.51
(Bearish No Market Data -5.75+ 0.76 -0.094 4 ¢.017 11.324 963 37.524 487 18.33+ 3.06
Regime) No News + No Market -6.86+ 168 -0.0784+ 0.036 14.544 3.30 43.944 .94 22.334 115
ATLAS 9.064 0.73 0.094 1+ 0.008 11.484 0.00 65.28 1 16.84 17.334+ 5.86
XOM No News -8.20+ 1.64 -0.264 4+ 0.069 9.09+ 2.99 22.824 1365 35.004 12.29
(Sideways No Market Data 0.014+ .92 -0.011+ 0.021 6.564 1.58 46.554 23.15 13.334 3.06
Regime) No News + No Market  -4.60+ ¢.70 -0.136+ 0.026 7.014 2.29 35.26+ 13.09 21.00+ 4.58
ATLAS 3.884 2.21 0.089+ 0.067 3.28+ 0.95 47.954 715 25.334+ 5.03
NVDA No News 6.6241 g.25 0.0904+ 0.008 6.67+ 0.36 41.964 501 28.334 462
(Bullish No Market Data 11.78+ 176 0.216+ 0.024 3.701 0.86 70.244 14.03 20.004 557
Regime) No News + No Market  7.344 9,79 0.110+ 0.012 5.764 2.01 63.844 939 20.67+ 1.53
ATLAS 10475 550 0.193% 0046 3424 .90 62.704 1105 20.334 2.50

Table 7.4: Ablation study results showing individual agent contributions using GPT-04-mini across three
market regimes.
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Figure 7.2.1: ROI across three assets using Adaptive-OPRO.

In contrast, GPT-o4-mini demonstrates competent but short-sighted decision-making, prioritizing short-term
risk control over strategic positioning. It relies on tight stop-losses and early profit-taking - effective in volatile
markets but weak in sustained trends. While it tends to overtrade in some conditions, its prompt optimization
is on par with GPT-03 in sophistication.

At the other end of the spectrum, LLaMA 3.3-70B operates with remarkably primitive strategies, lacking
risk management abilities or coherent goal-setting mechanisms. It acts belatedly to market changes and
exhibits abrupt strategy shifts under volatility. Paradoxically, this strategic simplicity becomes advantageous
in straightforward bullish regimes, where it effectively mimics buy-and-hold approaches to achieve exceptional
returns, suggesting that complex reasoning can sometimes hinder performance in simple settings.

7.3.1 Claude Models: Contrasting Failure Modes

Claude models demonstrate systematic performance issues across both reasoning configurations, revealing dis-
tinct failure modes that highlight fundamental limitations in the architecture. Claude with thinking exhibits
systematic overthinking, where extensive analysis of news or fundamental data leads to misinterpretation
of technical signals. While the reasoning process appears sophisticated and logically presented, it contains
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Model Prompting Ann. SRt Sortino? ROIC (%) P/T ($) 1
LLM-Based Strategies - ATLAS
Baseline 1454 033 -0.094 002 -1.01xous  -1070.144 634.06
LLaMA 3.3-70B  Reflection 1384 030 -0.084 002 -0.684 020 647134 14163
Adaptive-OPRO  -1.054 ¢.06 -0.06 0474 o19  -A72.274 17419
Baseline 1.044 ous  -0.061 003  -2.83+113  -1920.194 39380
Claude Sonnet 4 Reflection -0.914 g.01 -0.05+ ¢.01 -2.664 1.47 -1206.60+ 745.08
Adaptive-OPRO  0.124 g.28 0.01+ ¢.02 0.00+ ¢.27 -144.524 136.78
Claude Sonnet 4 DBaseline -0.684 o.77 -0.044+ 9.04 -2.654 953 -2084.434 2197.78
Reflection -1.234 9.06 -0.08 -5.214 1,72 -2407.54 1 1345.56
w/ Thinking  Aqantive-OPRO  -0.064 .61 -0.00% .04 -0.354 0.0z -278.104 725.52
Baseline -0.264 .97 -0.024 .02 -0.184 .22 -168.134+ 209.76
GPT-04-mini Reflection -0.614 071 -0.04+ 0.04 -0.484 0.72 -287.24 4 30838
Adaptive-OPRO  1.494 012 0.094 001 1.124 034  1056.494 297.92
Baseline 1274 045 -0.084 002 -1.67+ 103 -792.654 979 17
GPT-03 Reflection -0.844 o.70 -0.054+ 0.04 -0.904+ o.73 -497.414 337.91

Adaptive—OPRO 2.32:|: 0.76 0.16:|: 0.07 1.98:|: 0.84 799.30:|: 242.46

Table 7.5: Additional performance metrics for LLY (healthcare sector) comparing LLM-based approaches
using ATLAS in volatile, declining market conditions. Ann. SR = Annualized Sharpe Ratio, ROIC =
Return on Invested Capital, P/T = Profit per Trade. Bold values indicate the best per model.

fundamental gaps that result in poor decisions.

Claude without thinking demonstrates even more severe reliability issues: overly reactive positioning, per-
sistent hallucinations about performance metrics, and fundamental misunderstanding of market mechanics.
The model’s extreme variance patterns and erratic behavior render it unsuitable for reliable evaluation,
highlighting how insufficient reasoning capabilities can lead to complete system failure. These contrasting
failure modes suggest that Claude’s underlying architecture may be fundamentally misaligned with financial
decision-making, regardless of reasoning enhancement.

7.3.2 LLM Optimization Capabilities

From an explainability perspective, one key advantage of Adaptive-OPRO is that the optimization process
produces a final instruction (prompt) for the models, which can be evaluated both in terms of its correctness
and whether the models follow it successfully. This dual perspective enables us to assess not only the
alignment of the optimized prompt with the intended objective but also the model’s capacity to interpret
and act upon it. In doing so, we can determine whether the optimization is heading in the right direction.

This analysis showcases that prompt optimization capabilities vary across LLMs: GPT models show consis-
tent, interpretable prompt refinements, while LLaMA often hallucinates edits, reporting changes that are not
present. Claude tends toward overly rigid, procedural instructions that limit flexibility.

On the other hand, reflection, while promising in theory, introduces noise in practice. Even GPT-03 can
become paralyzed by over-analysis, while less capable models either generate vague reflections (LLaMA) or
confidently misinterpret market signals.
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7.4. Extended Performance Analysis and Strategic Insights

Model Prompting Ann. SRt Sortinoft ROIC (%) P/T (8)
LLM-Based Strategies - ATLAS
Baseline -0.384 081 -0.02+ 006  -0.034 016 -26.234 164.36
LLaMA 3.3-70B  Reflection -1.324 .21 -0.104+ ¢.01 -0.214 .07 -227.29. 3358
Adaptive-OPRO 0724 010 -0.064 002 -0.094 .03 -86.114 3198
Baseline -2.134 181 -0.174 013 -0.544 o.56 -522.114 353.17
Claude Sonnet 4 Reflection -1.824 167 -0.144 013 -0.374 046 -313.674 414.48
Adaptive-OPRO  -2.624 907 -0.204 ¢.17 -0.80+ 048 -576.65+ 491.70
Claude Sonnet 4 Baseline -0.634+ 0.32 -0.044 ¢.02 -0.121 ¢.10 -113.564 g9.87
Reflection 1104 194 -0.094 016 -0.341 055 -90.06+ 311.40
w/ Thinking A gantive-OPRO  -0.734 052 -0.061 002 -0.394 055 -133.644 11558
Baseline 0.33+ 0.69 0.04+ .08 0.164+ g.21 155.334+ 202.32
GPT-o04-mini Reflection 1384 090 -0.144 002 <0174 005 -132.49 g757
Adaptive-OPRO  1.414 1,06 0.164 0.14 0.344 0.26 340.47 4 260.95
Baseline -0.544 9.0 -0.044 g.07 -0.104 0.31 -64.904 190.96
GPT-03 Reflection 1331 118 -0.104 008 -0.434 068 187.254 26118

Adaptlve-OPRO 152:|: 0.43 015:b 0.05 1-08:|: 0.72 380.06:|: 44.91

Table 7.6: Additional performance metrics for XOM (energy sector) comparing LLM-based approaches
using ATLAS in stable market conditions. Ann. SR = Annualized Sharpe Ratio, ROIC = Return on
Invested Capital, P/T = Profit per Trade. Bold values indicate the best per model.

7.4 Extended Performance Analysis and Strategic Insights

Tables 7.5, 7.6, and 7.7 present extended metrics including Annualized Sharpe Ratio, Sortino Ratio, Return
on Invested Capital (ROIC), and Profit per Trade, providing deeper insights into risk-adjusted performance
and strategic behavior patterns. These comprehensive extended metrics reveal deeper behavioral patterns
that reinforce and expand our core findings about LLM trading capabilities and optimization effectiveness.

7.4.1 Risk-Adjusted Performance Validation

The extended risk-adjusted metrics strongly corroborate Adaptive-OPRQO’s superiority while revealing the
mechanisms underlying its effectiveness. Sortino Ratio analysis, which focuses exclusively on downside
risk, demonstrates that Adaptive-OPRQO’s performance gains stem from genuine risk management improve-
ments rather than increased risk-taking. This finding is particularly significant because it rules out the
possibility that optimization simply encourages more aggressive positioning to achieve higher returns.

The Return on Invested Capital (ROIC) patterns provide additional validation by showing that
Adaptive-OPRO achieves superior capital efficiency across model architectures. This metric reveals that
optimization doesn’t merely improve returns but enhances the fundamental effectiveness of capital allocation
decisions. The consistency of this pattern across different market conditions suggests that Adaptive-OPRO
addresses core decision-making weaknesses rather than exploiting specific market dynamics.

Profit per Trade analysis reveals interesting patterns in completed trading cycles, though this metric cap-
tures only closed positions (completed buy-sell cycles where profits/losses are realized) and thus provides a
partial view of overall trading behavior. The observed variations in per-trade profitability under optimization,
combined with consistently improved win rates, suggest that models may be shifting toward different trading
approaches-potentially favoring more systematic position management over opportunistic large gains. How-
ever, since this metric excludes open positions and considers only completed buy-sell cycles, the full picture
of behavioral changes requires consideration alongside other performance measures.
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Model

Prompting

Ann. SR 1t Sortinot ROIC (%)

P/T ($) 1

LLM-Based Strategies - ATLAS

Bascline 6.165 150 097002  30.984 2606 456.27 1 700,29
LLaMA 3.3-70B  Reflection 6.70+ 0.37 1.034 0.02 29.144 91,06 1511.324 2617.69
Adaptive-OPRO 6.63+ 0.25 1.054 g.01  42.264+ 168 0.00
Baseline 2.864+ 1.93 0.454+ ¢.33 2.824 240 1212.884 920.24
Claude Sonnet 4 Reflection 1424 o417 0164005  0.86 0.36 A416.794 140.76
Adaptive-OPRO  4.604 138 0.684 .22 8.254 9.83 371.704 1779.64
Claude Sonnet 4 DBaseline 2.784 0.48 0.461 ¢.20 3.274 151 1246.394 14377
Reflection 2.954 135 0.574 0.40 4.334 170 1042.204 424,00
w/ Thinking A qaptive-OPRO  3.454 166 0.764 0.56  5.444 281 2402.024 1230.50
Baseline 1984 086 0271014 0.814 .30 212.27. 491.02
GPT-04-mini Reflection 3.00£ 106 0.474 0.23 1.404 o.70 537.97+ 45.35
Adaptive-OPRO  3.074 o.73 0.414 .12 1.54+ o.47 506.75+ 329 55
Baseline 4.274 o.47 0.614 .14 8.03+ 1.86 4262.674 gg7.79
GPT-03 Reflection 5.164 0.63 0.6841 0.20 6.761 2.76 2192.284 920.54
AdaptiveeOPRO  6.224 030 1.224 037 17.044 7.65  3761.994 74907

Table 7.7: Additional performance metrics for NVDA (technology sector) comparing LLM-based
approaches using ATLAS in bullish market conditions. Ann. SR = Annualized Sharpe Ratio, ROIC =
Return on Invested Capital, P/T = Profit per Trade. Bold values indicate the best per model.

7.4.2 The Reflection Paradox Reinforced

The extended metrics provide additional evidence for the variable and generally suboptimal performance
of reflection-based approaches. Across Sortino Ratio measurements, reflection shows mixed results com-
pared to baseline approaches-sometimes achieving modest improvements but frequently exhibiting significant
degradation. However, reflection consistently underperforms Adaptive-OPRO across the vast majority of
configurations, reinforcing the core finding that additional reasoning steps often impair rather than improve
trading effectiveness. ROIC analysis reveals similar patterns, with reflection-based strategies showing incon-
sistent capital efficiency across model architectures. While occasional configurations demonstrate competitive
performance, the overall pattern suggests that reflection’s analytical complexity more often leads to subopti-
mal resource allocation than improved decision-making. This variability in reflection performance contrasts
sharply with Adaptive-OPRQO’s consistent improvements across multiple risk-adjusted measures.

7.4.3 Architectural Performance Patterns

Extended performance measures confirm distinct behavioral profiles across model architectures. GPT models
demonstrate consistent performance patterns across risk-adjusted measures, with GPT-03 showing excep-
tional stability in both downside risk management and capital efficiency. GPT-04-mini exhibits competent
performance but with notable overtrading tendencies and short-term focus, leading to active but sometimes
inefficient capital utilization patterns.

LLaMA’s extended metrics reveal the superficial nature of its apparent success in favorable conditions-while
achieving competitive returns, the model shows poor risk-adjusted performance and inconsistent capital
allocation patterns. This disconnect between raw returns and risk-adjusted measures explains its failure to
generalize across different market environments.

Claude models exhibit systematically poor performance across all extended dimensions, confirming funda-
mental architectural limitations rather than domain-specific adaptation challenges.
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Model Prompting ROI (%) 1 SR 1 DD (%) | Win Rate (%) * Num Trades
LLM-Based Strategies - ATLAS
Reflection (1d) -10.594 4.89 -0.114 906 16.37+ 1.97 40.474 g.05 274 265
_ Adaptive-OPRO
LLaMA 3.3-70B N /Rfﬁection (1d) 303+ 000 -0.061 002 13.18% .22 42,864 7.15 264 4.03
Adaptive—OPRO —6.16i 2.08 ‘0~07:t 0.00 14~05j: 3.33 54-36:|: 12.44 28i 3.21
Reflection (ld) —2.98i 3.38 —0.04i 0.04 10.35:}: 4.47 3333i 11.55 14:t 5.20
Adaptive-OPRO
Claude Sonnet 4 W/R(E)ﬂ:(:tjon (1d) -4.684 471 -0.06+ 0.06 13.07+ 368 26.194 858 154 265
Adaptive-OPRO 0.354 1.78 0.014 g.02 14.764 2 87 43.454 .27 154 2.00
Claude Sonnet 4 Reflection (ld) '5~25:I: 2.34 '0'05:|: 0.01 1535ﬂ: 4.17 24.44i 21.43 13:l: 6.35
Adaptive-OPRO
. -2.07 -0.03 8.74 47.62 16
W/ Thlnklng W/Reﬂectlon (1d) + 3.49 + 0.04 + 3.77 + 4.12 + 2.52
Adaptive—OPRO -0.73:|: 3.82 -0.00:|: 0.04 1294:E 2.32 4389i 21.11 17:t 5.00
Reflection (1d) —3.84i 2.93 —0.06i 0.04 961:|: 2.13 5246i 2.50 32:|: 12.50
_o4-mini Adaptive-OPRO
GPT-od-mini W/Rgﬁe‘étion (1d) -1.251 145 -0.041 003  6.51% 2.08 41.144 1535 274 379
Adaptive-OPRO 9.06+ 0.73 0.094 0.01 11.48 65.28+ 16.84 174 5.86
Reflection (ld) 0.144 .56 -0.01+ 9.01 6.404+ 1.07 73.814 2.06 194 3.79
_ Adaptive-OPRO
GPT-03 o Refloction (1) 805200 0.16x005 455414 T6.69% 505 2. 5.9
Adaptive—OPRO 9.02:|: 3.28 015i 0.05 533i 0.14 7281i 17.27 20i 4.16

Table 7.8: Performance comparison of extended prompting strategies for LLY (healthcare sector) using
ATLAS in volatile, declining market conditions. Bold values indicate the best per model.
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Figure 7.4.1: Daily vs weekly reflection mechanism performance comparison across models and assets,
showing ROI percentages (solid = daily, striped = weekly).

7.4.4 Extended Prompting Strategy Analysis

Tables 7.8, 7.9, and 7.10 examine extended prompting configurations including daily reflection mechanisms
and combined optimization approaches, providing insights into adaptation frequency effects and mechanism
compatibility across different market regimes.
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Model Prompting ROI (%) 1 SR 1 DD (%) | Win Rate (%) * Num Trades
LLM-Based Strategies - ATLAS
Reflection (1d) 0.824 142 0.0110.02 1.624 280 16.67+ 28.87 8+ 13.86
_ Adaptive-OPRO
LLaMA 3.3-70B N /Ré’ﬂecﬁon (d) O29xo0s0 000000 1.96x s 16.67 -+ 28 87 124 90.78
Adaptive-OPRO -1.10+ 0.44 -0.054+ 0.01 5.154 0.71 50.00+ 3.85 254 115
Reflection (ld) —3.76:|: 4.23 —0.10:|: 0.07 7291 3.08 48.81:|: 20.03 15i 6.08
Adaptive-OPRO
Claude Sonnet 4 W/Rgﬂection (ld) -4.484 3.85 -0.204+ .16 7-16:}: 3.31 39.17+ 20.05 144 351
Adaptive—OPRO ‘5-07i 4.53 -0.16i 0.14 9~23i 2.71 31~02i 7.90 18i 2.52
(Claude Sonnet 4 Reflection (].d) 2.40:|: 4.39 0.05:|: 0.14 4.57:|: 1.98 48.41:|: 42.35 14i 5.69
Adaptive-OPRO
. -2.84 -0.12 8.03 22.62 14
W/ Thinking W/Reﬂect1on (1d) + 3.73 + 0.13 + 0.89 + 7.43 + 1.53
Adaptive-OPRO -1.01£ 090  -0.05£ 002  5.161 052 36.20+ 24.47 164+ 2.08
Reflection (ld) -3.81i 2.13 -0.18i 0.06 654i 1.95 3286i 8.84 38i 9.71
_od-mini Adaptive-OPRO
GPT-od-mini W/Rgﬂevction (1d) L43toss  009:o02  5.37e s 41454 7. 38+ 5.20
Adaptive-OPRO 3.884 2.21 0.094 007 3.281 0.95 47.954 7.15 254 5.03
Reflection (1d) _0'97ﬂ: 1.08 _0'11:l: 0.09 342j: 0.58 4821ﬂ: 20.28 llﬂ: 2.65
- Adaptive-OPRO
GPT-03 w/REﬂe\c]:tion (1d) -0.513 076 -0.061£ 003 2.714 0.18 55.184 16.43 174 473
Adaptive-OPRO 3.624 990 0.104 g.03 3.464 (.48 71.934 15.99 164 2.65

Table 7.9: Performance comparison of extended prompting strategies for XOM (energy sector) using
ATLAS in stable market conditions. Bold values indicate the best per model.

Adaptation Frequency Effects The comparison between daily and weekly reflection mechanisms reveals
complex patterns that vary by both model architecture and market regime (Figure 7.4.1). Daily reflection
shows mixed results across different configurations, with performance heavily dependent on the interaction
between model capabilities and market conditions.

In stable, range-bound conditions (XOM), daily reflection demonstrates nuanced behavioral changes that
can prove beneficial. For LLaMA, daily reflection significantly reduces trading activity due to the unclear
market signals, leading to mitigated losses and even small positive returns compared to more aggressive
weekly reflection approaches. Similarly, GPT-03 shows enhanced downside protection under daily reflection
in range-bound markets, though without substantial changes in trading frequency, suggesting improved risk
assessment rather than reduced activity.

However, this conservative bias becomes problematic in trending markets. In bullish conditions (NVDA),
LLaMA’s daily reflection restricts potential gains by encouraging overly cautious positioning that fails to
capitalize on favorable momentum. The same pattern emerges across other models, where frequent self-
evaluation appears to introduce hesitation that impairs the decisive action required to capture trending
opportunities.

These regime-dependent patterns highlight the context-sensitive nature of reflection mechanisms, where ef-
fectiveness depends heavily on both model architecture and market conditions.

Mechanism Compatibility Assessment The Adaptive-OPRO with daily Reflection configurations re-
veal important insights about mechanism compatibility in sequential decision-making systems. While the
combined approach typically outperforms the standalone reflection mechanism, it consistently shows deterio-
rated performance compared to pure Adaptive-OPRO across most configurations. This pattern demonstrates
that reflection introduces noise into well-optimized systems, interfering with the systematic improvements
achieved through prompt optimization.

The performance hierarchy-where Adaptive-OPRO alone exceeds combined approaches, which in turn exceed
standalone daily reflection-illustrates the critical role of systematic optimization and reveals how additional
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7.5. Prompt Evolution Mechanism Analysis

Model Prompting ROI (%) 1 SR 1 DD (%) . Win Rate (%) © Num Trades
LLM-Based Strategies - ATLAS
Reflection (1d) 15-12i 9.01 0.22i 0.11 3~42i 0.70 64.88i 9.16 163E 1.73
_ Adaptive-OPRO
LLaMA 3.3-70B N /R(E)ﬂoction (1a) 363120 0.40+ 001 2.604 0.92 33.331 57.74 2+ 058
Adaptive-OPRO 42.074 185 0.424 ¢.02 3.154 0.02 100.00+ .00 14 058
Reﬂection (1(1) 662i 2.64 0‘111 0.06 5141 2.91 4848i 2.63 151 5.13
; Adaptive-OPRO
Claude Sonnet 4 . /Ré’ﬂecﬂon (d) 2A00sssr 0331005 2:39%0m 92.674 7.15 174 5.86
Adaptive—OPRO 25.85:|: 10.61 029i 0.09 375i 0.59 4381i 38.37 19i 12.17
Claude Sonnet 4 Reflection (1d) 12.824 9,97 0.214 012 3.234 2.11 50.79+ 30.24 94 2.89
Adaptive-OPRO 8 -
w/ Thinking  w/Reflection (1d) 18.224 1021 0.231 011 3.541 063 53.33% 17.64 8+ 208
AdaptiVB—OPRO 1636i 7.87 022i 0.10 518i 2.52 68.89:|: 30.06 13i 4.04
Reflection (ld) 3.75+ 2.06 0.094+ 0.03 3.244 580 61.884+ 11.11 30+ 10.79
_od-mini Adaptive-OPRO
GPT-od-mini w/Rgﬂection (1d) 4.334 0.66 0.124 .02 2.36% 0.51 74.39+ 2.60 30+ 3.61
Adaptive-OPRO 10.474 3.84 0.194 ¢.05 3.424 9.90 62.704 11.25 204+ 2.89
Reflection (ld) 12.82j: 3.94 025j: 0.05 352:t 1.57 8201:l: 9.30 13:t 2.08
_ Adaptive-OPRO
GPT-03 w/Rgﬂection (].d) 1154i 5.63 024i 0.08 1.89:|: 0.54 7374i 23.54 16i 4.16
Adaptivc—OPRO 25.06:|: 4.28 0.39&; 0.02 231:t 0.80 100.00 10:t 4.04

Table 7.10: Performance comparison of extended prompting strategies for NVDA (technology sector) using
ATLAS in bullish market conditions. Bold values indicate the best per model.

analytical layers can diminish the effectiveness of well-tuned systems. This finding emphasizes that optimiza-
tion benefits can be undermined when coupled with mechanisms that introduce decision-making complexity.

7.5 Prompt Evolution Mechanism Analysis

The transparent optimization traces produced by Adaptive-OPRO provide unprecedented insights into
how systematic prompt refinement drives performance improvements in sequential decision-making systems.
Through detailed examination of optimization trajectories across different model architectures, we can ob-
serve the precise mechanisms by which prompt modifications translate into enhanced trading performance.

7.5.1 Systematic Weakness Detection and Resolution

The optimization process demonstrates sophisticated analytical capabilities in identifying prompt weaknesses
and prescribing targeted improvements. Analysis of the GPT-03 optimization trajectory from iteration 4 to
iteration 5 on LLY stock reveals the systematic approach employed by the meta-optimization process.
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Phase 1: Diagnostic Analysis - Identifying Performance Bottlenecks

Performance Analysis: Weakness Detection

Optimizer’s Weakness Identification: "Across iterations, performance rose from 43.2 — 56.6 as prompts
became more concise, structured, and decision-oriented. Gains came from: (1) cleaner sectioning that reduced
cognitive load, (2) explicit reasoning frameworks that guided probability-weighted thinking, and (3) clearer
constraint reminders that prevented rule breaches.

Remaining weaknesses: Reasoning steps are still scattered-no single linear workflow tying analysis — sizing
— compliance — action. Risk-management is mentioned but not enforced with a final checklist, so occasional
oversizing or sub-optimal reward-to-risk trades slip through. The JSON spec is sometimes buried deep in the
prompt; occasional format errors could still occur. Context blocks (technical, news, fundamentals, reflection)
are informative but not explicitly referenced in the reasoning flow, so the model may overlook one dimension."

The optimizer’s analysis demonstrates pattern recognition across multiple iterations, identifying four critical
areas for refinement: workflow linearization to create more structured reasoning chains, risk manage-
ment formalization to enforce disciplined decision-making, output specification prominence to reduce
formatting errors, and context integration enhancement to ensure comprehensive information utilization.
This diagnostic precision enables targeted remediation rather than broad, inefficient modifications.

Phase 2: Strategic Intervention - Translating Insights into Targeted Solutions

Building directly upon these identified weaknesses, the optimization process prescribes specific structural
modifications designed to address each diagnostic finding systematically:

Key Improvements: Targeted Solutions

Strategic Modifications Implemented:

1. Introduced a 5-step THINK — CHECK — ACT workflow that linearly converts market inputs into compliant
orders, minimizing reasoning omissions.

2. Added an explicit PRE-ORDER RISK CHECKLIST (cash, short limit, catalyst validity, > 2:1 R:R) to curb
rule violations and low-edge trades.

3. Elevated the four context feeds (technical, news, fundamentals, reflection) into a single MARKET
SITUATION dashboard that the workflow must reference, ensuring holistic analysis.

4. Moved the strict JSON schema into its own boxed section immediately before output instructions; this
reduces formatting errors.

5. Kept language concise but directive, reinforcing trader autonomy while preventing over-trading with a
PATIENCE override.

6. Preserved every required {{ placeholder }} and {% if %} block exactly, guaranteeing template com-
patibility.

Each modification directly corresponds to a specific weakness identified in the diagnostic phase, creating a
clear causal chain from problem identification to solution implementation. The architectural changes shown
in Figures 7.5.1, 7.5.2, and 7.5.3 demonstrate this systematic approach, consolidating scattered elements
while strengthening decision-making frameworks.

Phase 3: Outcome Assessment - Connecting Solutions to Impact

Having implemented these targeted architectural improvements, the optimization process generates forward-
looking performance predictions based on the expected behavioral changes from each modification:
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Expected Impact: Performance Prediction

Forward-Looking Impact Assessment: "The linear THINK — CHECK — ACT workflow anchors the model’s
reasoning, reducing skipped steps and improving decision quality. The explicit risk checklist enforces dis-
cipline, likely lowering drawdowns and boosting risk-adjusted returns. Consolidating all market feeds into
one dashboard ensures holistic analysis, while the clearer JSON spec lowers formatting errors. Collectively,
these improvements should enhance comprehension, deepen analysis, and translate into higher-scoring, more
profitable trading decisions."

This prediction proves accurate, as performance improved from 56.6 to 67.6 following these modifications, val-
idating the optimizer’s analytical capabilities and demonstrating the effectiveness of systematic architectural
refinement.
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Header and Trader Identity Evolution (Prompt 4 to Prompt 5)

- # {{ instrument }} ALPHA COMMAND CENTER

+ # {{ instrument }} ALPHA STRATEGY HUB

s*xWindow:** {{ window_start }} — {{ window_end }} | **Current:** {{ now }} | **Interval:**<«
{{ action_interval }}

Your singular -objective +mission is to maximise risk-adjusted performance

is to maximise risk-adjusted performance by {{ window_end }} through disciplined, high-<—
conviction positioning. Balance strategic patience with decisive execution; ignore <>
-inconsequential noise.

- 1. MISSION
+ 1. MISSION & KPI

Deliver superior returns while preserving capital +by {{ window_end }}.
- ® Act only when probability and reward justify the risk.
+ ® Success metric: cumulative risk-adjusted performance.

- 2. YOUR EDGE

+ 2. EDGE & PRINCIPLES

® Multi-timeframe pattern recognition

® Integration of technical, fundamental & sentiment narratives

® Dynamic risk management and position sizing
- ® Capacity to remain inactive until odds are favourable
+ ® Patience until odds are clearly favourable

Figure 7.5.1: Header and trader identity modifications between iteration 4 and iteration 5, showing title
changes and mission statement refinements.
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Information Architecture and Constraints Consolidation (Prompt 4 to Prompt 5)

+

3. MARKET DASHBOARD
3. MARKET SITUATION DASHBOARD

{h

{k
{h
{4
{h

if market_open %} Price: 0 {{ open }} H {{ high }} L {{ low }} C {{ close }} | Vol {{ +
volume }}{), else %} **Market Closed** - orders queue for next open {) endif %}

if market_analysis %}*Technical*: {{ market_analysis }}{, endif %}

if news_analysis %}*News*: {{ news_analysis }}{} endif %}

if fund_analysis %}*Fundamentals*: {{ fund_analysis }}{% endif %}

if reflection_analysis %}*Reflection*: {{ reflection_analysis }}{, endif %}

4. OPERATING CONSTRAINTS

Portfolio cash: ${{ portfolio_cash }} | Concentrated in {{ instrument }} only
® Never exceed available cash

e May short up to 100% of cash (must be flat by {{ window_end }})

® Unfilled orders cancel at session close

® Decision frequency: every {{ action_interval }}

e System blocks quantities beyond current exposure (cannot oversell or over-cover)
5. PORTFOLIO SNAPSHOT

4. PORTFOLIO & CONSTRAINTS

Lo

Re
+

+
-
+
+

ng {{ shares_long }} | Short {{ shares_short }} | Net {{ shares_net }} | Cash ${{ <
portfolio_cash }}

cent activity: {{ executed_orders }}

e Never exceed available cash (${{ portfolio_cash }})

® May short up to 100% of cash (flat by {{ window_end 1}})

® Unfilled orders cancel at session close

® Decision cadence: every {{ action_interval }}

e System blocks invalid quantities (cannot oversell/over-cover)

Figure 7.5.2: Structural reorganization consolidating sections 4 and 5 into a unified PORTFOLIO &

CONSTRAINTS section.
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Workflow Restructuring and Output Specification Enhancement (Prompt 4 to Prompt

5)

6. DECISION PROTOCOL
5. THINK — CHECK — ACT WORKFLOW

45

- REVIEW — REASON — RESPOND

- 1. REVIEW: Regime, key drivers, levels, catalysts.

- 2. REASON: Probability map, >2:1 reward-to-risk, position sizing within constraints.

- 3. RISK CHECKLIST: (a) Exposure aligns with conviction; (b) Catalyst still valid; (c) <
Downside defined & acceptable.

- 4. RESPOND: ACT (issue order) or WAIT/HOLD. Patience is edge when conditions are unclear<

STEP 1: Diagnose Regime & Narrative (use all dashboard feeds).
STEP 2: Map Key Levels & Catalysts; assign probabilities.

STEP 3: Define Reward : Risk (target >2:1) and provisional size within constraints.
STEP 4: PRE-ORDER RISK CHECKLIST

e Cash / short limits respected

® Position aligns with conviction & catalyst

® Downside defined; R:R >2:1

e Flat by {{ window_end }} if short

STEP 5: DECIDE

® ACT: issue orders

e WAIT/HOLD: output [] (patience override)

+ + + + + + + + o+ + o+

- v/ ORDER OUTPUT SCHEMA (STRICT)
6. ORDER QUTPUT SPEC (STRICT)

5

Return ONLY a JSON array -(or [] to wait) +or [] - no extra text.
Each object must match exactly:

{
"action": "BUY | SELL | SHORT | SHORT_COVER | HOLD",
"orderType": "MARKET | LIMIT | STOP",
"price": float | null,
"quantity": integer,
"explanation": "Brief strategic reasoning"
}

- No extra fields or text-invalid orders are rejected.
+ A Invalid fields, casing, or additional text will cause order rejection.

Figure 7.5.3: Decision protocol restructuring from informal REVIEW — REASON — RESPOND to structured
five-step THINK — CHECK — ACT workflow.
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7.5.2 Progressive Prompt Evolution: From Generic Foundation to Optimized
Performance

The GPT-04-mini optimization trajectory demonstrates systematic prompt evolution through three distinct
phases, each building upon previous discoveries to achieve cumulative performance improvements. The opti-
mization process adapts to both model-specific response patterns and varying market regime requirements.

The progression from baseline (37.2) through intermediate optimization (51.4) to final optimization (72.1)
reveals how systematic refinement can compound initial improvements into substantial performance gains.
These three representative prompts (Prompt 1, Prompt 4, and Prompt 11) from the full optimization tra-
jectory illustrate the key evolutionary patterns that drive performance enhancement. Figures 7.5.4 and 7.5.5
illustrate the comprehensive baseline prompt structure that provides the starting point for optimization.

The intermediate optimization achieves structural refinement by systematically eliminating architectural com-
plexity while strengthening core functionality. Figure 7.5.6 reveals this transformation: verbose explanations
are stripped away and replaced with a compact, numbered decision framework that provides clear analytical
guidance. The constraint presentation undergoes similar streamlining, retaining comprehensive coverage while
dramatically improving clarity. Crucially, the framework maintains an advisory approach (Define thesis
& edge) that guides without constraining, avoiding over-specification that could limit model flexibility. This
architectural simplification creates a foundation optimized for further enhancement.

The final optimization achieves breakthrough performance by expanding upon this concise foundation with
granular procedural guidance. Figure 7.5.7 showcases the evolved architecture where the decision frame-
work expands to six numbered steps with explicit descriptions: Define Thesis & Edge: state your core
conviction and Validate Compliance: ensure all constraints are met before submission. The
market context integration becomes systematically organized with consistent bullet-point formatting and
descriptive labels like Technical Analysis and News Impact. The constraint presentation achieves optimal
balance between completeness and clarity, providing comprehensive operational guidance without cognitive
overload. This final optimization demonstrates how systematic refinement can compound architectural im-
provements into substantial performance gains, with each evolution building upon and enhancing previous
discoveries.
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Baseline Prompt (Prompt 1) - Part 1 - Score: 37.2

# ELITE {{ instrument }} TRADER
**Window:** ${{ window_start }} - {{ window_end }}$
| **Current:** {{ now }} | **xInterval:*x {{ action_interval }}

You are an elite proprietary trader running a fully-concentrated book in {{ instrument }}.
Your goal is to maximize performance by the end of the trading window

through strategic positioning.

You are a STRATEGIC TRADER, not a day-trader.

Focus on meaningful moves that align with your overall strategy.

## Your Toolkit & Expertise

- Pattern recognition across multiple timeframes

- Narrative synthesis of technical, fundamental, and sentiment inputs
- Dynamic position sizing and risk management

- Strategic patience and selective execution

- Long-term performance optimization over short-term noise

## Trading Philosophy

**Strategic Patience can be your greatest ally when justified.x*x*
- Only act when you have high conviction and clear edge

- Let existing positions work - avoid constant adjustments

- Your edge comes from discipline, not frequency

## Trading Toolbox

**x0rder Typesx**

® MARKET -- immediate ® LIMIT -- execute at price or better
® STOP -- trigger once price crosses level

**Position Actions*x*
® BUY -- open/add long ® SELL -- reduce/close long
® SHORT -- open/add short e SHORT_COVER -- close short

*(Order-type semantics follow standard brokerage definitions;
interpret flexibly as conditions warrant.)*

## Current Context

{/ if market_open %}

Price 0 {{ open }} H {{ high }} L {{ low }} C {{ close }} | Vol {{ volume }}
{% else %}

**xMarket Closed** -- orders queue for next open

{/ endif %}

{% if market_analysis %}*Technical*: {{ market_analysis }}{} endif %}

{/, if news_analysis J}*News*: {{ news_analysis }}{), endif %}

{/, if fund_analysis %}*Fundamentals*: {{ fund_analysis }}{% endif %}

{% if reflection_analysis %}*Reflection*: {{ reflection_analysis }}{) endif %}

Figure 7.5.4: Baseline prompt structure (GPT-o4-mini, Prompt 1, Part 1) demonstrating expert-crafted
foundation with comprehensive trading philosophy and toolkit specification. Score: 37.2
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Baseline Prompt (Prompt 1) - Part 2

## CONSTRAINTS
*x*Portfolio:** 1007 concentrated in {{ instrument }} with ${{ portfolio_cash }}
available cash for position sizing

**Critical Rules:**

- Never exceed available cash (${{ portfolio_cash }})

- Never short more than 1007 of cash balance

- Close all short positions before {{ window_end }}

- Unfilled orders cancel at session close - resubmit to persist

- Decisions can be made every {{ action_interval }}

- SELL orders are automatically limited to current long holdings - overselling is impossible
- SHORT_COVER orders are automatically limited to current short positions - over-covering

is impossible

- System enforces position limits - you cannot accidentally create invalid positions

**xPortfolio Snapshot*x*
Long {{ shares_long }} | Short {{ shares_short }} | Net {{ shares_net }} |
Cash ${{ portfolio_cash }} Recent activity: {{ executed_orders }}

## Decision Task
Formulate a thesis, map key levels, gauge risk vs reward, and make your decision.

## Output Specification
Return **only** the JSON array below--no extra text.

[
{
"action": "BUY | SELL | SHORT | SHORT_COVER",
"orderType": "MARKET | LIMIT | STOP",
"price": float | null for MARKET orders,
"quantity": integer,
"explanation": "Strategic reasoning and analysis that justifies this action"
X
]

*xCRITICAL REQUIREMENTS: *x*

- EXACT values: action must be BUY|SELL|SHORT|SHORT_COVER, orderType must be MARKET|LIMIT|STOP
- NO additional fields, NO typos, NO variations - orders will fail to place otherwise

- Always return JSON array (even single orders).

Return empty array ~[]° if no action is warranted.

- Focus on strategic positioning and end-of-window performance

over tactical adjustments and noise

Figure 7.5.5: Baseline prompt structure (GPT-04-mini, Prompt 1, Part 2) showing detailed constraint
specification and output formatting requirements.
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Intermediate Optimization (Prompt 4) - Score: 51.4

# ELITE {{ instrument }} TRADER
Window: {{ window_start }} - {{ window_end }} | Current: {{ now }} |
Interval: {{ action_interval }}

You are an elite proprietary trader managing a fully-concentrated book in {{ instrument 1}}.
Maximize end-of-window risk-adjusted performance through high-conviction, strategic trades
with disciplined execution and strategic patience.

## MARKET CONTEXT

{)% if market_open %}

Price: 0 {{ open }} H {{ high }} L {{ low }} C {{ close }} | Vol {{ volume }}
{% else %}

Market Closed -- orders queue for next session

{/ endif %}

{/, if market_analysis %}* Technical: {{ market_analysis }}

{% endif %}

{% if news_analysis %}* News: {{ news_analysis 1}}

{% endif %}

{/ if fund_analysis %}* Fundamentals: {{ fund_analysis 1}}

{% endif %}

{/i if reflection_analysis %}* Reflection: {{ reflection_analysis 1}}
{% endif %}

## DECISION FRAMEWORK

1. Define thesis & edge

2. Identify entry, stop, and target levels

3. Assess risk/reward & size within cash limits
4. Choose order type & execution timing

5. Verify constraints & finalize plan

## CONSTRAINTS & PORTFOLIO

- Fully concentrated in {{ instrument }}, Cash ${{ portfolio_cash }}

- Long {{ shares_long }} | Short {{ shares_short }} | Net {{ shares_net }}
- Recent orders: {{ executed_orders }}

- Max short = 100% cash; close all shorts by {{ window_end }}

- Actions: BUY, SELL, SHORT, SHORT_COVER

- Order Types: MARKET, LIMIT, STOP

- Orders expire at session close; re-submit if needed

## OUTPUT SPECIFICATION
Return only a JSON array of orders or []:

[
{
"action": "BUY | SELL | SHORT | SHORT_COVER",
"orderType": "MARKET | LIMIT | STOP",
"price": float | null,
"quantity": integer,
"explanation": "Concise strategic reasoning"
}
]

Figure 7.5.6: Intermediate optimization (GPT-o04-mini, Prompt 4) featuring streamlined structure with
numbered five-step decision framework and more concise constraint presentation. Score: 51.4
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Optimized Prompt (Prompt 11) - Score: 72.1

# ELITE {{ instrument }} TRADER
Window: {{ window_start }} -+ {{ window_end }} | Now: {{ now }} |
Interval: {{ action_interval }}

You are an elite proprietary trader managing a fully concentrated book in {{ instrument }}.
Your mission is to maximize end-of-window risk-adjusted performance with high conviction
and disciplined execution. Think critically and adapt your approach as market conditions evolve.

## MARKET CONTEXT

{% if market_open %}

- Price: 0 {{ open }} H {{ high }} L {{ low }} C {{ close }} | Vol {{ volume }}
{/ else %}

- Market Closed -- orders queue for next session
{/ endif %}

{/, if market_analysis %}

- Technical Analysis: {{ market_analysis }}

{/ endif %}

{/, if news_analysis %}

- News Impact: {{ news_analysis }}

{/ endif %}

{)% if fund_analysis %}

- Fundamental Overview: {{ fund_analysis }}

{/ endif %}

{)i if reflection_analysis %}

- Reflection: {{ reflection_analysis }}

{% endif %}

## PORTFOLIO & CONSTRAINTS

- Total Allocation: 100% in {{ instrument }}, Cash ${{ portfolio_cash }}

- Positions: Long {{ shares_long }}, Short {{ shares_short }}, Net {{ shares_net }}
- Recent Activity: {{ executed_orders }}

- Max short = 100% cash; all shorts must close by {{ window_end }}

- Orders expire at session close; unfilled orders cancel (re-submit to persist)

## DECISION FRAMEWORK

1. Define Thesis & Edge: state your core conviction.

Map Key Levels: identify entry, stop-loss, and target levels.

Assess Risk/Reward: compute per-share risk, total risk, and reward potential.
Allocate Size: determine quantity within cash limits (${{ portfolio_cash }}).
Choose Execution: select action (BUY | SELL | SHORT | SHORT_COVER | HOLD)

and orderType (MARKET | LIMIT | STOP).

6. Validate Compliance: ensure all constraints are met before submission.

o W N

## OUTPUT SPECIFICATION
Return only a JSON array of orders or an empty array ([]). No extra text:

[
{
"action": "BUY | SELL | SHORT | SHORT_COVER | HOLD",
"orderType": "MARKET | LIMIT | STOP",
"price": float | null,
"quantity": integer,
"explanation": "Concise strategic reasoning"
}
]

Figure 7.5.7: Final optimized prompt (GPT-04-mini, Prompt 11) featuring expanded six-step decision
framework with granular step descriptions and systematic market context organization. Score: 72.1
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Chapter 8

Conclusion

This thesis presents a comprehensive framework for deploying Large Language Models in financial markets
through two integrated contributions: StockSim, a sophisticated simulation platform for rigorous LLM evalua-
tion in realistic trading environments, and ATLAS, an adaptive multi-agent trading system that demonstrates
effective LLM coordination and optimization under market uncertainty. While specifically designed for finan-
cial decision-making, these contributions establish broader methodological principles for LLM deployment in
high-stakes settings characterized by delayed feedback, noisy rewards, and the need for sustained performance
across dynamic conditions.

8.1 Discussion

Our work addresses critical gaps that have hindered the deployment of LLMs in financial domains, where
traditional evaluation methods fail to capture the complexity of actual market conditions and the stochastic
nature of both market dynamics and LLM outputs. The development of StockSim represents a significant
advancement in financial Al research infrastructure, providing the first comprehensive platform that com-
bines production-grade market simulation with systematic LLM evaluation capabilities specifically designed
for trading applications. By supporting both order-level and candlestick-level execution modes, StockSim
enables researchers to study LLM behavior across different levels of market complexity while maintaining
rigorous evaluation protocols that account for the inherent uncertainty in both markets and model outputs.
The platform’s dual-mode architecture, comprehensive data integration, and multi-agent support create un-
precedented opportunities for studying LLM capabilities in financial reasoning, multi-modal market informa-
tion processing, and coordinated decision-making under the temporal and stochastic challenges that define
real trading environments.

The introduction of ATLAS demonstrates how sophisticated LLM capabilities can be effectively harnessed
through principled system design and adaptive optimization. Our multi-agent architecture successfully de-
composes complex financial analysis across specialized components while maintaining coherent strategy ex-
ecution through a central trading agent. This decomposition proves essential for managing the complexity
of real-world decision-making environments where multiple information sources and analytical perspectives
must be synthesized into actionable decisions. The framework’s consistent superior performance across diverse
market conditions-including challenging bearish and volatile regimes where traditional strategies fail-validates
the approach’s robustness and practical applicability.

Central to ATLAS’s effectiveness is Adaptive-OPRO, our novel extension of prompt optimization to se-
quential decision-making environments with delayed, noisy rewards. This methodology represents the first
successful adaptation of Optimization by PROmpting to domains characterized by temporal dependencies
and stochastic feedback. The systematic improvements achieved through Adaptive-OPRO across all tested
model architectures and market conditions demonstrate that LLMs can effectively learn and adapt in complex
environments when provided with appropriate optimization frameworks. The approach’s success validates the
principle that direct instruction optimization based on outcome feedback provides more reliable improvements
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than meta-cognitive enhancement approaches.

Our comprehensive evaluation reveals important insights about LLM behavior that extend beyond finan-
cial applications. The clear correlation between general model capabilities and domain-specific performance
suggests that advances in foundational LLM development translate reliably to specialized applications. How-
ever, our findings also expose significant architectural differences: while GPT models demonstrate consistent
performance and effective optimization capabilities, other architectures show fundamental limitations that
persist regardless of reasoning enhancements or optimization approaches. These differences have crucial
implications for model selection in high-stakes applications.

The systematic underperformance of reflection-based approaches provides valuable insights into LLM system
design. Our results demonstrate that additional reasoning steps can degrade rather than enhance perfor-
mance in well-optimized systems, challenging common assumptions about the universal benefits of increased
analytical complexity. This finding suggests that optimization effort may be better invested in systematic
prompt refinement rather than elaborate self-evaluation mechanisms, particularly in dynamic environments
where consistent decision-making effectiveness takes precedence over elaborate analytical processes.

A critical finding from our work is that rigorous multi-run evaluation protocols expose reliability issues in
LLM-based systems that have been largely overlooked in prior research. The extreme performance vari-
ance we observe in some configurations-exceeding 50% of mean performance in certain cases-demonstrates
that single-run evaluations provide no meaningful assessment of system capabilities. This finding has pro-
found implications for LLM research and deployment, highlighting the need for statistical rigor in evaluation
methodologies for any application where reliability matters.

Our work establishes that reliable LLM deployment in complex domains requires three essential compo-
nents: sophisticated evaluation infrastructure that captures real-world complexity, adaptive optimization
mechanisms that enable continuous improvement based on outcome feedback, and rigorous evaluation pro-
tocols that account for system stochasticity. The integration of these elements in our framework provides a
template for deploying LLMs in other consequential applications beyond financial trading.

8.2 Future Work

The foundations established by StockSim and ATLAS create numerous opportunities for advancing LLM
research in financial applications and sequential decision-making more broadly. Several promising direc-
tions emerge from our work that could significantly extend its impact and reveal new insights about LLM
capabilities in complex, dynamic environments.

Temporal Resolution and Market Dynamics: Current evaluation focuses on daily trading decisions,
which may constrain the full potential of LLM-based systems. Future research should explore higher-
frequency trading scenarios where models make decisions at hourly, minute-level, or even tick-by-tick intervals.
Such investigations could reveal whether LLMs excel at rapid pattern recognition and adaptation when pro-
vided with more frequent feedback and decision opportunities. Additionally, evaluating performance during
specific market sessions (pre-market, regular hours, after-hours) could expose temporal behavioral patterns
and optimal deployment strategies for different market conditions.

Asset Class Diversification: Extending evaluation beyond traditional equity markets could reveal the
generalizability of our findings across different financial instruments. Cryptocurrency markets, with their
24/7 trading cycles and unique volatility patterns, present particularly interesting testing grounds for LLM
adaptability. Similarly, commodities trading (gold, oil, agricultural products) involves different fundamental
drivers and seasonality patterns that could challenge LLM reasoning capabilities in new ways. Fixed-income
markets, with their interest rate sensitivity and credit risk considerations, would test the framework’s ability
to handle complex multi-factor decision environments.

Adaptive-OPRO Enhancement and Generalization: Our prompt optimization methodology represents
an initial exploration with significant room for advancement. Future research should investigate alternative
meta-prompt designs that provide more sophisticated guidance for optimization, different scoring mechanisms
beyond ROI that incorporate risk-adjusted metrics or multiple objectives simultaneously, and varied optimiza-
tion frequencies that balance adaptation speed with stability. Most importantly, testing Adaptive-OPRO in
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non-financial sequential decision-making domains-such as healthcare treatment planning, supply chain man-
agement, or strategic resource allocation-would validate its broader applicability and reveal domain-specific
optimization requirements.

Genetic Evolution for Multi-Asset Prompt Optimization: An intriguing but challenging extension
involves implementing genetic algorithms for prompt optimization across multiple assets simultaneously.
This approach would deploy multiple trading agents on different stocks in parallel, each using Adaptive-
OPRO for individual optimization, while a higher-level genetic evolution system performs crossover and
mutation operations on the most successful prompts across different assets. The genetic approach could
potentially capture stock-specific characteristics that generalize across similar instruments or market sectors,
creating hybrid prompts that combine effective strategies from different trading environments. While initial
experiments with this approach showed promise in concept but faced implementation challenges, the potential
for developing prompts that capture cross-asset trading insights warrants continued investigation.

Market Impact and Institutional-Scale Analysis: StockSim’s order-level execution mode enables in-
vestigation of scenarios where LLM agents command sufficient capital to influence market prices, mimicking
institutional investor behavior. Such research could explore how LLMs adapt their strategies when their own
actions affect market dynamics, whether they develop sophisticated order-splitting strategies to minimize
market impact, and how multiple large LLM-based systems might interact in shared market environments.
This research direction has critical implications for understanding the potential systemic effects of widespread
AT adoption in financial markets.

Trading Personality and Risk Profiling: The flexibility of LLM systems enables systematic investiga-
tion of different trading personalities through specialized prompting strategies. Future work could develop
and evaluate risk-averse, aggressive, momentum-focused, or contrarian trading personas to understand how
different strategic orientations affect performance across market conditions. This research could reveal op-
timal personality-market condition pairings and provide insights into dynamic personality adaptation based
on evolving market environments.

Multi-Asset Portfolio Management: Extending ATLAS beyond single-asset concentration to diversified
portfolio management would test coordination capabilities across different instruments simultaneously. Such
research could investigate how specialized agents handle correlation analysis, sector rotation strategies, and
dynamic asset allocation decisions while maintaining coherent overall portfolio objectives. This expansion
would require developing new coordination mechanisms and optimization approaches for multi-dimensional
decision spaces.

Long-Term Adaptation Studies: Current evaluation periods, while sufficient for initial assessment, could
be extended to months or years to study long-term adaptation patterns, concept drift handling, and strategy
evolution. Longitudinal studies could reveal whether LLM-based systems maintain performance consistency
over extended periods, how they adapt to structural market changes, and whether they develop increasingly
sophisticated trading strategies through continued optimization.

The open-source nature of both StockSim and ATLAS ensures that the research community can pursue these
diverse directions collaboratively, building upon established foundations to advance our understanding of
LLM capabilities in complex, consequential decision-making environments. As LLM architectures continue
to evolve, these research directions will become increasingly important for translating advancing capabilities
into reliable, practical applications across financial markets and beyond.
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Appendix

A Prompt Templates

This appendix collects the verbatim prompt templates for all ATLAS agents: the Central Trading Agent
(CTA), Market Analyst, News Analyst, Fundamental Analyst, the Optimizer LLM, and the Reflection Analyst.
Placeholders of the form {{ variable }} are instantiated at runtime. Content inside <system_role> is
injected as the LLM system message; the remainder is passed as the user message. The CTA operates on
a daily decision cadence ({{ action_interval }} = 1 day). Only the CTA’s initial decision prompt
is optimized via Adaptive-OPRO; all other prompts are held fixed throughout evaluation.

Central Trading Agent (CTA)

The Central Trading Agent constitutes the primary decision-making unit within the ATLAS framework,
responsible for synthesizing structured analytical inputs into actionable trading directives. It integrates
market, news, and fundamental information into a coherent reasoning process and produces explicit order-
level outputs that correspond directly to executable market actions.

The agent’s behavior is governed by a structured prompt architecture that ensures strategic coherence while
allowing adaptive responsiveness to evolving market conditions. This architecture comprises two compo-
nents: the Initial Prompt, which specifies the agent’s operational principles, decision criteria, and execution
constraints at the start of a trading window; and the Follow-up Decision Prompt, which governs subsequent
decision stages, enabling controlled adaptation to new data and portfolio states while maintaining temporal
and strategic consistency.

Central Agent - Initial Decision Prompt

The Initial Decision Prompt specifies the operational policy of the agent at the beginning of the trading
window. It outlines the decision objectives, admissible actions, and execution constraints that shape the
first strategic allocation. This prompt establishes the baseline reasoning framework upon which subsequent
updates are built. The prompt is provided below.

Central Agent - Initial Prompt

# ELITE {{ instrument }} TRADER
*x*Window:** {{ window_start }} — {{ window_end }} | **Current:** {{ now }}
| *xInterval:** {{ action_interval }}

<system_role>

You are an elite proprietary trader running a fully-concentrated book in {{ instrument }}
Your goal is to maximize performance by the end of the trading window through

strategic positioning.
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You are a STRATEGIC TRADER, not a day-trader. Focus on meaningful moves that align
with your overall strategy.
</system_role>

## Your Toolkit & Expertise

- Pattern recognition across multiple timeframes

- Narrative synthesis of technical, fundamental, and sentiment inputs
- Dynamic position sizing and risk management

- Strategic patience and selective execution

- Long-term performance optimization over short-term noise

## Trading Philosophy

*x*Strategic Patience can be your greatest ally when justified.x**
- Only act when you have high conviction and clear edge

- Let existing positions work - avoid constant adjustments

- Your edge comes from discipline, not frequency

## Trading Toolbox

**0rder Types*x*

MARKET - immediate ® LIMIT - execute at price or better e STOP -
trigger once price crosses level

**Position Actionsx**
BUY - open/add long e SELL - reduce/close long ® SHORT - open/add short e
SHORT_COVER - close short

*(0rder-type semantics follow standard brokerage definitions; interpret flexibly
as conditions warrant.)*

## Current Context

{% if market_open %}

Price: 0 {{ open }} H {{ high }} L {{ low }} C {{ close }} | Vol {{ volume 1}}
{% else %}

*x*Market Closed** - orders queue for next open

{% endif %}

{% if market_analysis %}*Technical*: {{ market_analysis }}{% endif %}

{% if news_analysis %}*News*: {{ news_analysis }}{% endif %}

{% if fund_analysis ¥%}*Fundamentals*: {{ fund_analysis }}{% endif %}

{% if reflection_analysis %}*Reflection*: {{ reflection_analysis }}{% endif %}

## CONSTRAINTS
xxPortfolio:** 100% concentrated in {{ instrument }} with ${{ portfolio_cash }}
available cash for position sizing

**Critical Rules:**

- Never exceed available cash (${{ portfolio_cash }})

- Never short more than 100% of cash balance

- Close all short positions before {{ window_end }}

- Unfilled orders cancel at session close - resubmit to persist

- Decisions can be made every {{ action_interval }}

- SELL orders are automatically limited to current long holdings - overselling
is impossible

- SHORT_COVER orders are automatically limited to current short positions - over-covering
is impossible

- System enforces position limits - you cannot accidentally create invalid positions

**Portfolio Snapshot*x*

Long {{ shares_long }} | Short {{ shares_short }} | Net {{ shares_net }}
| Cash ${{ portfolio_cash }}

Recent activity: {{ executed_orders }}

## Decision Task

Formulate a thesis, map key levels, gauge risk vs reward, and make your decision.
Return either a structured order list or [] if patience best serves performance
by {{ window_end }}.

## Output Specification
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Return **only** a JSON array - no extra text. If no actiomn, return [].
[
{
"action": "BUY | SELL | SHORT | SHORT_COVER",
"orderType": "MARKET | LIMIT | STOP",
"price": float | null,
"quantity": integer,
"explanation": "Strategic reasoning and analysis that justifies this action"
}
]

*x* CRITICAL REQUIREMENTS : **

- EXACT values: action must be BUY|SELL|SHORT|SHORT_COVER, orderType must be
MARKET | LIMIT | STOP

- NO additional fields, NO typos, NO variations - orders will fail to place otherwise

- Always return a JSON array (even single orders). Return [] if no action is warranted.
- Focus on strategic positioning and end-of-window performance over tactical adjustments
and noise

Central Agent - Follow-up Decision Prompt

The Follow-up Decision Prompt regulates the agent’s iterative reasoning process after initialization. It inte-
grates updated analytical inputs and portfolio states to determine whether position adjustments are justified.
This prompt ensures adaptive responsiveness to evolving market conditions while maintaining alignment with
the initial strategic configuration. The prompt is provided below.

Central Agent - Follow-up Prompt

# TRADING UPDATE - {{ instrument }}
*xCurrent :** {{ now }}

Continue applying your elite trading expertise to {{ instrument }}.

**Key Constraints:*x

- Never exceed cash balance (${{ portfolio_cash }})

- Never short more than 100% of cash balance

- *xIMPORTANT**: Unfilled orders ALWAYS cancel at session close - resubmit to persist
- All short positions must close before {{ window_end }}

- SELL orders are automatically limited to current long holdings - overselling
is impossible
- SHORT_COVER orders are automatically limited to current short positions - over-covering

is impossible

## CURRENT CONTEXT

**xMarket Data:*x*

{% if market_open %}

- Open: {{ open }} | High: {{ high }} | Low: {{ low }} | Close: {{ close }}
- Volume: {{ volume }}

{% else %}

** MARKET CLOSED *%*

- All outstanding orders canceled at session close

- New orders will queue for next session open

{% endif %}

*x* Analyst Insights:*x*

{% if market_analysis %}
### Market Analysis

{{ market_analysis }}

{% endif %}

{% if news_analysis %}
### News Analysis

{{ news_analysis }}

{% endif %}

{% if fund_analysis %}
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### Fundamentals Analysis

{{ fund_analysis }}

{% endif %}

{% if reflection_analysis %}
### Reflection Analysis

{{ reflection_analysis }}

{% endif %}

**Portfolio Status:*x

- Long Shares: {{ shares_long }}

- Short Shares: {{ shares_short }}

- Net Position: {{ shares_net 1}}

- Available Cash: ${{ portfolio_cash }}

- Recent Activity: {{ executed_orders | default("None") 1}}

## YOUR DECISION
**Strategic Update Goal:** Decide if and how the latest developments affect your
thesis and whether adjustments improve end-of-window performance.

**REQUIRED JSON FORMAT : *x*
[
{
"action": "BUY|SELL|SHORT|SHORT_COVER",
"orderType": "MARKET|LIMIT|STOP",
"price": float|null,
"quantity": integer |null,
"explanation": "reasoning that synthesizes new information
with your ongoing strategy"

**Requirements : xx*

- EXACT values: action must be BUY|SELL|SHORT|SHORT_COVER, orderType must be
MARKET | LIMIT | STOP

- NO additional fields, NO typos, NO variations - orders will fail to place otherwise
- Always return a JSON array (even single orders). If no action, return [].

- Maintain strategic discipline while adapting to market dynamics

Market Analyst

The Market Analyst module constitutes the technical assessment layer of the ATLAS framework. It processes
structured market data, indicators, and price dynamics to produce concise, objective analyses that support
the trading agent’s decision-making process. The component operates through two structured prompts
that define its analytical workflow. The Initial Prompt establishes the baseline technical interpretation and
analytical scope at the beginning of each trading window, while the Follow-up Prompt governs subsequent
updates as new market information becomes available. These prompts are presented in detail below.

Market Analyst - Initial Prompt

The Initial Prompt defines the baseline analytical process of the Market Analyst. It specifies the structure,
scope, and format of the initial technical report, focusing on market structure, price behavior, dominant
patterns, and critical levels. The prompt ensures that the analysis remains descriptive, precise, and directly
relevant to trading decisions. The prompt is provided below.

Market Analyst - Initial Prompt

# ELITE MARKET ANALYST - {{ instrument }}
**xSession:** {{ session_start }} — {{ session_end }}
**Current :** {{ current_time }} | **Interval:**x {{ action_interval }}

You are an expert market analyst specializing in technical analysis.
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**Your analytical role:xx*

- Provide objective technical analysis based on market data and indicators
- Identify patterns, trends, and structural elements in price action

- Present factual observations about market conditions and technical levels
- Focus on descriptive analysis rather than predictive recommendations

## MARKET DATA

### Multi-Timeframe Context
{{ extended_intervals_analysis }}

### Current Session

**x0HLCV :** ${{ open_price }} / ${{ high_price }} / ${{ low_price }} / ${{ close_price }}
**Volume :** {{ volume }} | **xVWAP:**x {{ vwap_str }} | x*Transactions:**

{{ transactions }}

## TECHNICAL INDICATORS
{{ formatted_indicators }}

## YOUR ANALYSIS

*x* Analytical Excellence Goal:** Deliver the most valuable technical insights that
directly inform trading decisions. Consider what a trader most needs to know right now.

**Iterative Refinement :** Think through your analysis, then refine it to ensure
you're highlighting the most critical market signals and actionable price levels.
Focus on what matters most for trading success.

Provide analysis covering:

1. *xMarket Structure:** Current trend context and notable support/resistance
observations

2. **Price Action:** What the current session dynamics are showing

3. **Technical Patterns:** Observable confluences and technical formations

4. x*xNotable Levels:** Key price levels and their technical significance

*x* Available Technical Tools:**

- Standard indicators: Moving averages, RSI, MACD, ATR, volume analysis

- Advanced levels: Fibonacci retracements/extensions, pivot points, psychological levels
- Pattern recognition: Chart patterns, candlestick formations, breakout setups

- Volume analysis: Volume profile, VWAP deviations, volume confirmation signals

- Consider any technical tool that helps identify actionable trading levels and signals

**Response Format :*x*

- Keep responses concise and direct - avoid excessive detail and repetitive explanations
- Focus on the most critical observations only, not comprehensive analysis

- Provide essential insights without verbose elaboration

- Each section should be 2-3 concise sentences maximum

Market Analyst - Follow-up Prompt

The Follow-up Prompt manages iterative updates after the initial analysis. It enables the Market Analyst
to incorporate newly available data, refresh indicator readings, and re-evaluate market conditions. This
prompt maintains analytical consistency with the initial framework while highlighting only the most relevant
developments for ongoing trading decisions. The prompt is provided below.

Market Analyst - Follow-up Prompt

## MARKET UPDATE - {{ instrument }}
**Time :** {{ current_time }}

Continue your role as market analyst. Maintain the same objective, descriptive
approach from the initial session.

## CURRENT DATA
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**x0HLCV :** ${{ open_price }} / ${{ high_price }} / ${{ low_price }} / ${{ close_price }}
**Volume :** {{ volume }} | **xVWAP:**x {{ vwap_str }} | **Transactions:*x*
{{ transactions }}

## TECHNICAL INDICATORS
{{ formatted_indicators }}

**Goal :¥* Provide the most valuable technical insights for trading decisions.
Consider what's most important right now, then refine your analysis to focus on those
critical elements.

Cover market structure, price action, technical setup, and key levels with emphasis
on actionable insights. Keep each section to 2-3 concise sentences.

News Analyst

The News Analyst module provides the narrative and sentiment analysis layer of the ATLAS framework.
It processes financial news and media streams to extract structured, factual, and sentiment-based insights
relevant to trading decisions. The component operates through two structured prompts that define its
analytical workflow. The Initial Prompt establishes the methodology and analytical scope at the beginning
of each trading window, while the Follow-up Prompt manages subsequent updates as new information is
released. These prompts are presented in detail below.

News Analyst - Initial Prompt

The Initial Prompt defines the baseline analytical configuration of the News Analyst. It guides the ex-
traction of factual information, sentiment evaluation, and narrative structure from the available news flow.
The prompt ensures objectivity and conciseness, focusing on actionable insights that may influence market
dynamics. The prompt is provided below.

News Analyst - Initial Prompt

# ELITE NEWS ANALYST - {{ instrument }}
xxSession:** {{ session_start }} — {{ session_end }}
**xCurrent : ** {{ current_time }}

**Your analytical role:x*x*

- Analyze financial news content for factual information and sentiment
- Identify narrative trends and key developments in the news flow

- Provide objective assessment of news relevance and credibility

- Focus on factual analysis rather than predictive interpretations

**0Jutput Requirements:*x*

- Keep responses concise and direct - avoid excessive detail and repetitive explanations
- Focus on the most critical observations only

- Provide essential insights without verbose elaboration

*xWeb Search Available:**x Use the web_search tool when article summaries lack detail,
or you need to verify key claims.

## NEWS BATCH
{{ joined_news }}

## YOUR ANALYSIS

*x*News Intelligence Goal:** Extract the most market-relevant insights from news flow
that could influence trading decisions.
Consider what news elements are truly significant versus noise.

**Iterative Refinement:**x After analyzing the news, focus your insights on
what 's most actionable and relevant to current market conditions.
Prioritize information that matters for trading strategy.
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Provide analysis focused on:

1. **Sentiment Assessment:** What's the overall sentiment trajectory

and key narrative changes?

2. **xKey Developments:** What significant events or announcements are reported?

3. *x*Market Relevance:** How might this news content relate to market conditions?

4. **xSource Analysis:** Any source reliability concerns or consensus alignment issues?

**Response Format :*x*

- Write in simple, direct language without jargon overuse

- Each section should be 2-3 concise sentences maximum

- Avoid repetitive phrasing and redundant explanations

- No excessive formatting, bold text, or bullet point lists

- Focus on actionable observations, not comprehensive analysis

News Analyst - Follow-up Prompt

The Follow-up Prompt governs iterative updates following the initial analysis. It enables the News Analyst
to incorporate new articles, track evolving sentiment trends, and reassess the relevance or reliability of infor-
mation sources. This prompt maintains analytical consistency with the initial framework while emphasizing
the most recent developments that may affect trading decisions. The prompt is provided below.

News Analyst - Follow-up Prompt

## NEWS UPDATE - {{ instrument }}
**xTime :** {{ current_time 1}}

Continue your role as news analyst. Maintain the same objective, factual approach from
the initial session.

## LATEST NEWS BATCH
{{ joined_news }}

**xGoal :** Identify the most market-moving news elements and sentiment shifts.
Consider what information is most valuable for trading decisions,
then focus your analysis on those key insights.

Cover sentiment assessment, key developments, market relevance, and source analysis.
Use web_search tool if needed for additional detail.

Fundamental Analyst

The Fundamental Analyst module provides the financial-analysis layer of ATLAS. It processes structured
fundamentals (statements, guidance, events) to extract material, trading-relevant signals under a clear ma-
teriality and catalyst framework. The component operates via two structured prompts: the Initial Prompt,
which establishes the baseline financial interpretation at the start of each trading window, and the Follow-up
Prompt, which delivers iterative updates as new disclosures arrive. These prompts are presented below.

Fundamental Analyst - Initial Prompt

The Initial Prompt specifies the baseline fundamental-analysis procedure, including scope (financial health,
earnings quality, balance-sheet resilience, cash-flow sustainability) and catalyst identification (events, guid-
ance changes, corporate actions). It yields a concise, objective report highlighting only material developments
and their plausible trading implications, designed to complement technical and news inputs. The prompt is
provided below.
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Fundamental Analyst - Initial Prompt

# ELITE FUNDAMENTAL ANALYST - {{ instrument }}
**Session Window:** {{ session_start }} -> {{ session_end }}
**xCurrent Time:** {{ current_time }}

## SESSION ARCHITECTURE
*x*Message Types:*x*

1. **Setup (this message)** - Complete framework, methodology and initial fundamentals
batch
2. *xDelta updates*x* - Compact {{ action_interval }} updates with updated fundamentals

** CRITICAL : ** Future deltas contain NO repeated instructions.
A1l analytical frameworks must persist.

You are an elite fundamental analyst with deep expertise in financial statement analysis
and corporate finance.

Your reputation is built on the ability to quickly identify material changes

in financial health and corporate events that create trading opportunities.

You connect the dots between financial data and market implications like a seasoned
equity research professional.

## ANALYTICAL PHILOSOPHY
Your edge comes from:
- *xFinancial Forensics**: Uncovering the real story behind the numbers
- *xCatalyst Recognition**: Identifying financial events that drive price action
- **Quality Assessment**: Distinguishing between earnings quality and
accounting manipulation
- *xContext Integration**: Understanding how financial health connects to market behavior

## OPERATIONAL FRAMEWORK

*¥*xCore Mission:** Extract trading-relevant insights from financial data and
corporate events

**Professional Standards:** Focus on material information that could influence
trading decisions

*x*Quality Approach:** Prioritize actionable insights over comprehensive analysis

*x*0Jutput Requirements:*x*

- Keep responses concise and direct - avoid excessive detail and repetitive explanations
- Focus on the most critical observations only

- Provide essential insights without verbose elaboration

## CURRENT FUNDAMENTALS DATA
{{ fundamental_data }}

## YOUR ANALYSIS

**Response Format :*x*

- Each section should be 2-3 concise sentences maximum

- Avoid repetitive phrasing and redundant explanations

- Focus on actionable observations, not comprehensive analysis

**Fundamental Intelligence Goal:** Extract the most trading-relevant insights
from financial data that could influence market decisions.

Consider which fundamental factors are most likely to impact price action

in the current market environment.

**Iterative Analysis:** Review the financial data thoroughly,
then focus your insights on the most material changes and catalysts.
Prioritize information that provides valuable context for trading strategy.

Apply your fundamental analysis expertise to extract trading-relevant insights.
Focus on corporate events, financial health trends, and performance indicators
that could influence short-term trading decisions.

Consider earnings quality, balance sheet strength, cash flow sustainability,
and any material changes that could serve as catalysts.
Your analysis should provide fundamental context that complements technical
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and sentiment analysis.

**Remember : ** Identify fundamental factors that could influence price action.
Provide the insights; let the trading agent integrate them systematically.

Fundamental Analyst - Follow-up Prompt

The Follow-up Prompt governs incremental updates after initialization. It incorporates newly released fun-
damentals (filings, guidance, event deltas), reassesses material changes and catalysts, and refines the prior
assessment while preserving methodological consistency. Emphasis is placed on short-horizon relevance and
actionable context for the trading agent. The prompt is provided below.

Fundamental Analyst - Follow-up Prompt

## FUNDAMENTAL ANALYSIS UPDATE - {{ instrument }}
**Timestamp :** {{ current_time }}

Continue with your role as elite fundamental analyst. Apply the same analytical depth
and professional standards established in the initial framework.

## UPDATED FUNDAMENTALS
{{ fundamental_data }}

**xGoal :** Identify the most significant fundamental developments and their potential
market implications. Consider what fundamental information is most valuable

for current trading context, then focus your analysis accordingly.

Provide fundamental analysis focusing on material changes and trading implications.

Trading Prompt Optimizer (Adaptive-OPRO Target = CTA Initial Prompt)

The Trading Prompt Optimizer is the meta-policy that revises only the static instruction block of the Cen-
tral Trading Agent’s Initial Decision Prompt. At each window boundary it consumes a prompt—performance
history (history_text) scored via the windowed ROI signal and proposes an edited template that pre-
serves all placeholders ({{...}}), conditional blocks ({% if %}), and the order JSON schema (actions
and order types). The optimizer returns a strictly structured JSON payload containing a diagnostic
performance_analysis, a full optimized_prompt (template text, not a filled instance), key_improvements,
and an expected_impact. An update is applied only if the placeholder set and interface remain unchanged,
ensuring compatibility with the runtime injector.

Trading Prompt Optimizer’s Prompt

# TRADING PROMPT OPTIMIZER

**Primary Goal:** Optimize prompt context, information architecture,

and decision-making frameworks. Enhanced context leads to better comprehension,
deeper analysis, and superior trading decisions

that naturally improve performance outcomes.

**Performance Learning Context :*x*

{{ history_text }}

Note: Scores reflect cumulative ROI performance (0-100 scale). Higher scores indicate
more effective prompt designs that enable better trading decisions.

**Focus Areas:*x*
- Strengthen the system role and trader identity
- Optimize decision-making frameworks and criteria
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- Enhance clarity of instructions and expectations
- Provide clearer guidance on analysis and decision-making process
- Better structure the flow from analysis to action

*x*Key Principles:*x*

- Ensure agent autonomy and adaptive thinking

- Avoid mandatory procedures or fixed thresholds

- Strengthen natural reasoning and market judgment

- Maintain clear constraints while allowing flexibility

*x*Critical Prompt Design Guidelines:*x*

- Keep prompts simple and direct: Models excel at understanding brief, clear instructions
- Be specific about end goals: Include specific parameters for successful decision-making
- Encourage iterative reasoning: Guide models to keep reasoning until they match

success criteria

- Use clear delimiters and structure to organize different sections appropriately

{% raw %}

*x* CRITICAL TEMPLATE PRESERVATION REQUIREMENTS :**

**WARNING**: Any modification to template variables will cause SYSTEM FAILURE

** FORBIDDEN**: Adding new {{ variable_name }} placeholders is STRICTLY FORBIDDEN
*xFORBIDDEN *#*: Removing existing {{ variable_name }} placeholders is STRICTLY FORBIDDEN
**MANDATORY **: Copy ALL {{ variable_name }} placeholders EXACTLY as they appear in the
original template

**MANDATORY**: Preserve ALL {) if %} template blocks and <system_role> tags EXACTLY

- Maintain JSON format: BUY, SELL, SHORT, SHORT_COVER

- Keep order types: MARKET, LIMIT, STOP

- Ensure compatibility with interval-based decision cycles

{% endraw %}

** CRITICAL JSON FORMAT REQUIREMENTS : *x*

- Must be valid JSON with proper escaping

- Use \\n for newlines within string values

- Use \\" for quotes within string values

- No unescaped newlines, tabs, or special characters
- Enclose the JSON in """ json and “°° code blocks

**Required JSON Output :*x*

json
{
"performance_analysis": "Comprehensive analysis of current template's contextual design
strengths, weaknesses, and enhancement opportunities",
"optimized_prompt": "Complete improved TEMPLATE with better structure

(full template text with all placeholders preserved).
Use \\n for line breaks in the template text.",

"key_improvements": "Specific structural and contextual transformations made
to optimize decision-making effectiveness",

"expected_impact": "Expected improvements in comprehension, analytical depth,
and decision-making quality"

}

Important: Return a generic template, not a filled prompt.

Weekly Reflection Agent

The Weekly Reflection Agent provides periodic ({{reflection_intervall}}-day) reviews of recent trades and
portfolio evolution, producing a single, compact paragraph that highlights recurring patterns, risk discipline,
and thesis maintenance. Its output is advisory text only: it is injected as reflection_analysis for the
Central Trading Agent to read on subsequent decisions, and it does not directly edit prompts or alter execution
semantics. The reflection is derived from the full decision log and period summary, avoids prescriptive rules or
rigid thresholds, and is designed to surface durable process improvements rather than post-hoc trade-by-trade
commentary. By construction, it respects the fixed decision interval and order-cancellation rules described
in the environment specification.
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Weekly Reflection Agent’s Prompt

# ELITE TRADING COACH - {{ instrument }} INTERVAL REVIEW
**Period:** {{ reflection_interval }}-day review | **Session:** {{ current_time }}
| **Trading Decision Frequency:** {{ action_interval }}

You are a reflection agent analyzing {{ reflection_interval }} days of trading
performance to provide strategic insights for systematic improvement.

## TRADING SYSTEM RULES & LIMITATIONS

**Portfolio & Operational Context :*x*

**Single-Stock Portfolio:** The agent manages a concentrated portfolio dedicated
exclusively to {{ instrument }} - all available capital and positions are focused
on this one security with no diversification across multiple stocks.

**Available Actions:** BUY, SELL, SHORT, SHORT_COVER

**0rder Types:** MARKET, LIMIT, STOP

**Constraints:**x Cash limits, position sizing rules, and {{ action_interval }}
decision intervals apply

**Position Limits:** SELL orders are automatically limited to current holdings,
and SHORT_COVER orders are automatically limited to current short positions -
overselling or over-covering is impossible.

The system enforces these limits automatically.

**Critical Constraint:** The agent can only make trading decisions at fixed

{{ action_interval }} intervals. All orders in the decision JSON are placed
simultaneously - there is no sequential order placement.

*x*0rder Auto-Cancellation:** Unfilled orders are automatically cancelled at the end
of each decision interval.

## PERIOD PERFORMANCE OVERVIEW
{{ period_summary }}

## COMPLETE DECISION HISTORY FOR PERIOD
{{ complete_history }}

## YOUR COACHING TASK

PURPOSE

In one comprehensive paragraph, synthesize the most impactful patterns from this

{{ reflection_interval }}-day period and identify the single structural improvement
that would most enhance future performance cycles.

Focus on systematic insights that will compound over multiple

{{ reflection_interval }}-day periods rather than individual trade critiques.

GUIDELINES

- Analyze decision patterns, risk management consistency, and strategic evolution
across the period

- Identify the highest-leverage behavioral or strategic adjustment for future periods

- Emphasize enduring principles over isolated performance details

- Skip grades, personality assessments, or motivational language

**REQUIRED OUTPUT FORMAT:** Return only your reflection as a single paragraph
of continuous plain text (3-5 sentences).

B Reproducibility

All experiments are conducted on a MacBook Pro with an Apple M3 Pro chip (11-core CPU) and 18 GB
of unified memory. Our experiments are conducted using an updated version of the StockSim environment
[61], with modifications to support the ATLAS multi-agent architecture, Adaptive-OPRO optimization, and
reflection-based mechanisms (implementation details in code). An example configuration for GPT-04-mini
using Adaptive-OPRO on XOM is provided under configs/o4-mini-adaptive-opro-config.yaml. All
other experimental configurations can be reproduced by following the StockSim documentation and adapting
this sample.

We access LLaMA Claude models via Amazon Bedrock (Table 9.1). GPT models are accessed via OpenAl
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Model ID Model Card / Provider Identifier
LLaMA 3.3-70B meta.llama3-3-70b-instruct-v1:0
Claude Sonnet 4 anthropic.claude-sonnet-4-20250514-v1:0

Table 9.1: Models accessed via Amazon Bedrock.

Model ID Model Card / Docs
GPT-04-mini gpt-40-mini-2024-07-18
GPT-03 gpt-03-2025-04-16

Table 9.2: Models accessed via OpenAl.

APIs (Table 9.2). We interface with all LLMs strictly through provider APIs and do not employ any local
hardware or fine-tuning.
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