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Abstract

Recent progress in deep learning for 3D face reconstruction and animation has enabled the cre-
ation of realistic digital humans, capable of reproducing subtle expressions and natural speech-
driven motion. These advances open new opportunities for applications across communication,
entertainment, AR/VR, and education. Nevertheless, significant challenges remain. Conventional
approaches often fail to fully capture the expressive dynamics of human faces, they struggle with
temporal consistency, and they are not robust to real-world conditions such as partial occlusions
or interfering background voices. As the demand for detailed digital avatars grows, especially
in interactive systems, developing methods that combine realism, expressiveness, and robustness
becomes increasingly crucial.

This thesis addresses the challenges in 3D face reconstruction through the design of an audiovi-
sual learning technique from input video, which we call FAVOR, extending the SMIRK frame-
work. Our method applies synthetic occlusions to the training dataset to improve robustness
and employs a lip-reading loss for supervision, guiding the model toward more accurate mouth
movements. By combining multimodal signals from and training strategies that reflect real-world
variability, the proposed approach generates talking avatars that remain coherent and natural
even when visual information is missing or corrupted. The system also ensures proper synchro-
nization between speech and facial motion, reducing common artifacts.

Extensive experimental analysis on videos with natural occlusions demonstrates that the proposed
model achieves robust and temporally consistent results compared to single-modality methods,
both in qualitative and quantitative evaluations. A user study further confirms the perceptual
quality of the generated avatars, while an ablation study highlights the contribution of each
component to the overall performance.

Keywords — Audiovisual Face Reconstruction, Multimodal Learning, Talking Avatars, Face
Modeling, Synthetic Occlusions.






ITepiAndn

Ou mpdogateg e€ehilelc g Podide ydinomn otny TELOBWUCTATY AVOXATAOXEUT] XL OTELXOVIOT] OlV-
VoOTVOV TEOCHOTWY €YOLY XATACTAGEL BUVITY TN SNuLovEYIa PEXACTIXWY PNPLaxdy ovlp®dTveY
GPBoToR, XAV VoL OVOTOEEYOUY AETTOUERELC EXPEACELS Xol YUOLXT xivnoT 6 TOPATOS XordodNYOVUEVT
oo TNy outhla. O e€elilelg auTtég avolyouy Véeg BUVATOTNTES Yid EQUOUOYES OTNY ETXOWOVIA, TNV
Quyayoyla, Ty exnaideuon xou To TepBdAlovia enavgnuévng mpaypoatixotntag. o’ dha owtd,
eZoxohouv ol va uTdpeyouv onuavtxég meoxinoelc. O cuuBatinéc mpooeyyioeic cuyvd aduvatody
VoL OmOOMGC0UY TAREWS T BUVAULXT| TWV EXPEACEWY TOU TEOCGKOTOU, BUGKOAELOVTOL Vo BLATNEICOLY
XPOoVIxH) cUVETEL Xat Bev elvan ebpwoteg oe mparyUotixég ocuviixes. Kadde auvgdveton n {itnon yia
hemtoueen Ynplond dBatap, ednd oe BlAdEACTIXA CUCTHUNTA, 1) AVATTUEY UEVOBWY TOLU GLUVBLALOLY
PEAALOUO, EXPEUCTIXOTNTA X0 avIEXTIXOTNTA X H{O TATOL OAOEVOL X0 TILO CTUAVTIXT.

H nopodoo Simhwpatixd epyaoto avTeTwTlEL TIC TEOXAACELS GTNY TELOOLIO TATY) AVAXUTAOXEVY| OV~
VeOTVOU TEOGMTOU UEGE UL OTTIXOUXOUC TN Teoc€yYlong Tou ovoudloupe FAVOR. H pédodog
Tafpvel we elcodo Bivieo dedopéva xan emexteivel v apyttextovixh tou SMIRK. ITopdhhnha, xatd
1 Sradixacio exnaideuone, epapuoloviol cLVIETIXES AmoXEUPEL TEOCKOTOU GTO GOVOAO BEBOUEVLY,
eve) oloTolElToL ULol GUVEETNOT AMWOAELNS BACLOUEVT) OTNV AVALYVWRELOT TWY YELALDY, 1) OTOlo XUTEL-
YOVEL TO HOVTENO TPOC TNV TORAYWYT 0XEUBECTERHY XVACEWY Tou oTépatoc. MEcw Tou cuvou-
AoUO0 TOAUTEOTUXWY CNUATGLY ELGOBOU XUl EVIOYUUEVKDY CTRATNYIXWOY EXTUOEUCTS, 1) TROTEWVOUEVT
TROGEYYLON ToRdYEL Pm@Loxd SBotap TOU TUPUUEVOUY GUVETY X0l AETTOUERY|, OXOUT ot OTAY 1) OT-
T Thnpogopta amouctdlel. To chotnua dacpaiilel emmAéov Tov axplr) CLUYYEOVIOUO UETOLY TNS
opthlog xou Tne xlvnong Twv yethwy, teptopilovtag cuviln cgdipata Tou eviotmilovton oTr TEQLOYT
TOU GTOUATOC.

To melpduotd pag oe onTIX0aXOoVCTIXE BEGOUEVA UE PUOLXES amoxpUELC TEOCWTOL, Oelyvouv TNV
eCOUPETIXNT| TOLOTNTOL AVUXATUOXEUNS, OIS AMOTUTIVETAUL TOGO GE OVTIXEWEVIXES UETEIXEC OCO %ol
oe avdphmveg atoroyroeic. To amoteréopato auTd avadeviouy TNV evpwoTia xou TNV a&loToTin
NG TROTELVOUEYNS UEVOBOU GE PEAMOTIXES CUVUTXES, ETBEBALOVOVTAS TN OUYVATOTNTA TNG VoL ATOBIOEL
GUVETT] X0 TOLOTIXA AMOTEAECUATO AXOUY] XL OF OTMALTNTLXG GEVAQLAL.

AéZeic Kiewdd — Onmuxooxovotixry Avaxatooxevy, Ilpooohmou, Ilohutpomxy Mddnon,
Owroivta ‘APBatap, Movtelonoinon Hpocwnou, Yuvietinéc Anoxpideic Ilpocnnou.






Euyapiotieg

H oloxhpwon tne mopolcos SIAWUATIXAC EQYACIOC ONUATOBOTEL XU TNV OAOXATRWOT| TWV TEOT-
TUYLOX®Y You oToudwy ot Uyohr) Hiextpohdywv Mnyovixody xow Mnyavixedy Troloylotedy tou
Edvixob Metoofiou Hohuteyvelou. Xto onueio autd Yo Hlera vo expedow TNy eLAMXEVY| JOU EUYV-
WUOGUYY TEOC OAOUG 6GOUS GUVEBOAAY UE TOV BIX6 TOUC TEOTO GE AUTY TNV TopE(a.

Hpdta an” dha, Yo Adeda va euyapto Thow Yepud Tov emPBAénovta xadnyntr wou, x. Iétpo Mapayxo,
YLl TNV EUTIGTOOUVY TOU LoU €DEIEE Xou TNV EUXOLE(O TOU oL €BMOE VoL TROYUUTOTOC T1) BLThw-
wotix wou epyasia oto Epyactiplo ‘Opaong Trohoyiotwv xa Encéepyaciog Xnudtov.

Oa ieha enlong va suyoplotion yxdpdia Toug ouvemPBAénovtég wou, Ap. Havoryidtn Puhvtion o
Ap. Tewpylo Petowd, yio Ty axolpeaotn xou ouctaotixr) utoothelly toug. H xadodrynon toug,
Ol YVOOELS TOU potpdotnxay Holl wou, xodog xaL 1 cUVEY NS SladecOTNTA Toug Yior GLLHTNOT Xa
Borewa, énanov xadoploTind pOAO GTNV ETUTUYT) OAOXAHEWOT TNS OITAWHUATIXAC HOU ERYUCTAS.

ISaitepeg euyapiotie ogethw oTOUC PIAOLC POL TOU EBWCAY YEOUN GTA QPOLTATIXG LoV YEOVIA ol
wou ydploav opoppec otiypéc. TEhog, To Mo YEYSAO EUYOQPLOTH AVAXEL GTNY OXOYEVELL O, Yid
NV adidxonn oTHELEN xou TNV TOTN TOUC OE EUEVO OO QUTA TOL YEOVLAL.

Avyyehiny) Towvolxa
OxtefBprog 2025
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1.1. Ewaywyy

1.1 Ewcaywyn

H perétn xou 1 avdiuor Tou avipedmivou Tpocnnou amoTeAoly xeloo Tedio Yot TNV EMCTAUN NG
OPACTC UTOAOYLOTAVY X0l TNS UMy ovixhc udinong, xadwe To mpdowno uetagépel Bactxéc TAnpopopieg
YioL TN TAUTOTNTA, TO cuvakoUnua xat T cuunepipopd. H mpdodog tng teyyntrc vonuocivng emtpénet
OTOUG UTOMOYLOTES VoL avary Vwpl{ouy TpoomTaL, Vol EQUNVEVOUY EXPRAGELS X0l VAL XATAVOOLY XIVAGELS
xalL oA, avolyovTog TOV 8pOUO Yo i TIo QUOLXT| aAANAETBpooT avipdTou-unyavic. XTo TAalcLo
QUTO, 1) TRLOOLAGTATY) AVUXATACKEUT) TEOCOTWY EYEL avadeLy Vel oe Baoind EpELYNTIXG AVTIXEUEVO, UE
Toux{AeC EQUPUOYES OTNY ACPAAELR, TNV LTEXT], TNV PuyaywYld, OTL XOLVWVIXE BXTUA XoL GTNY
EOVIXT/ ETOUENUEVY) TEAY OTIXOTNTOL

H Sudixacio tng avoxataoxeuic Tpoc®rou ivol Wtaitepa amontntixt, xodoe To avlp®nivo TedcmTo
elvol SUVOULXO, TOEUUOPPEVETAUL CUVEY WS UE TNV OUALY, TIC EXPRACELS XaL TNV TdEOBO TOU YEOVOL,
EVE) 1) TOLOTNTA TWV EBOUEVWY EMNEEGLETOL OO TO POTIOUOG, TNV ATOXEUPT OPLOUEVLY YAURUXTNRLO-
TIXOY ToL xou TN PeToBolf Tne Ywvio Mne. Etot, ou povotpomxée pédodor (tou Baotlovton ya
TopddELYUa HOVO oty emdva 1) Lbvo 6Tov 1yo) mopouctdlouy anuovtixols Teptoptopdols. [or tov
AOYO aTO, 1) THEOVUCA BITAWUATIXY EQYUCIN TEOTEIVEL UL TOAUTROTIXT|, O TLXOUXOUG TIXT TROCEYYLOT,
1 omola oUVBUELEL Tar OTTIXE YopaX TNEIG TIXSL (YEWUETPI, EXPEACELS) UE TLC 0XOUC TIXES TANPOPOpR(ES
(xwvhon tou otdpatog, dedpwon). O cuvdLAoPOS UTOY TwY dedouévwy BelTidver Ty axplBeta xou
TNV EVEWO T{OL TOL CUCTAUATOS GE UMOUTNTIXES CUVUTXES EQUPUOYTC.

IToAutpomixy Avanapdotacy xouw Badid Mdadnon

Ot apyéc TNg TOAUTEOTUXN S AVITOEACTACNE HILOVVTOL TOV TEOTO UE TOV 0Tolo 0 dvipnmTog cLVBLALEL
Tic awoVnTnptaxéc TAnpogopies (Gpoaom, axor, Yhwooao). H nolutpomuxdtnta odnyel o mo mholotec
X0l CUVEXTIXEC UVATIORUOTAOELS OE OYECT) UE LOVOTEOTIXE HOVTERA Xoi BElOXEL EQUPUOYT) OE TOUE(S
6Toe 1 avoyvopton Aoyou pe ontixr) utofoinon [66], n autéuatn tepypagr exdvac [29] xon N
avéhuon cuvonotiuatog [76].

[ty vhomoinon e mpotetvduevne pedodoloyiog, aflomolodvton teyvixés Batide udinone [36],
ot omofec Paoctlovtar oe veupwvixd dixtua TolamAody emnédwy [39]. Ta Sixtua autd exnadedovtot
UEow plag emavalnmTixhc Sodixactag tpoBiedng xar dopdwong: xdlde dixtuo mapdyel wa TeEdBAedn
TOU OLUYXEIVETOL UE TNV TEOYUOTiXY TWT, %ol OTN CLVEYELN, UECw Tou olyoplduou avtictpogng
0Lddoong, BeAtiwvel Ty anodoor| Tou. Idiaditepr upaon diveton 0TI TapaxdTw Paoixés xoTNYopieg
OPYLTEXTOVIXWV:

e Ta Yuvehixtixd Nevpwvixd Aixtua (CNNs) [38], [48] armoteholv tov nuphiva tomv
TEpLocoTEPLY Uetddwy enelepyaciog edvag. Xpnoyomololv GUVEMXTIXE QiATea, To onola
e€dyouV LEpURY X YoROXTNELOTIXG BlapopeTol eminédou agalpeonc avd eninedo, omd amAéc
oOUES ¢ CUVUETO HOPPOAOYIXA YopaxTNnEloTxd. Mo eméxTacT TOU YEMNOWOTOLOUUE OTNHY
uéVod6 poc etvan or ypovixée ouvehiCerc (TCNs), ou omolec egapudlovion ot Sidotoaon tou
YEOVOU o ETUTEETOUV TN UOVIEAOTIONGCT TWV CUCYETIOEWY UETOED OLUBOYIXDY XUpé OE Lol
axorovdio Bivteo.

e Toa Avadpopixd Nevpwvixd Aixtuo (RNNs) [45] enclepydlovton dedopéva ue ypovixh
dLdoToom, Omwe 1 avdenmmivy optiio. AZLoToloUY TANEOYORIES Umd TEOTYOUUEVES YPOVIXES G TLY-
HES, Al aBUVATOUY VoL BLaTnENcoUY Laxeoyeovieg e€apThoels. Autd To TROBANUA xahoLvTal
va ovtetonioouy Aixtua Maxpde-Beaybypovne MvAunc [26], ta onola ekéyyouv
TN poY| TANEOYOEiIG GTO YEOVO.
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Chapter 1. Extetopévn Ilepihndn ota eAAnvind

e O petaocynuatictéc (Transformers) [69] anoteholy pio xavotua TEocéyylon, oL otolot
elofyoryay Tov unyavioud mpocoyfc. Eivow oyediouévor yio v amodotiny enc€epyoasio
oxohoL oY BEBOUEVLV XL ETUTEETOLY TN HOVIEAOTOINOY Uaxeoyeoviwy elupthoewy. O
unyoviouoe mpocoyfc cucyetilel To xde otovyelo ye dha Tor utdhoina TNg axoloudiag, divov-
Tag EUQaoT) o€ exelva TOU Elvol TLO ONUAVTIXG Yior TNV TEAXT avamapdotaot. H wbudtntd toug
vo eneepydlovTon TORIAANAGL UEYAAEC TOCOTNTEG OEDOUEVWY EYEL XATACTACEL TOUG UETAOY T
HATIOTEC XUPLUPYOUC OE TOAAESG EQPUPUOYES UMY OVIXC Uanome.

Egopupoyvéc tng Terodidotaong Avaxatacxeuvvg Ilpocwnwy

H Suvoixs] autdv TV opyltextovx®dy oanoTerel T Bdon Yo TOV OYEBLICUO CUCTNUATWDY LXAVEY
VoL AVOXOTAOXEVELOUY TO avilp®TVo Tpoowno pe uPniY axp{Belo xou peoliopd. Ta cuothpaTo autd
Beloxouv egopuoyy| oe mohholg Topeic. Xty Quyayoyla xon oTNy eTALENUEVY TEOYUXTIXOTNTA
[28] ypnotwonotolvtar Yo T dnuLovpyio EEATOUXEVUEVLY PNnpLaxdy dBotop Tou ovamopdyoLy TV
TOUTOTNTA XAl TLC EXPREACELS TOU YeNoTh. X1 Brounyavior Tapoy®mY g TUVLOY ETITEETOLY TOGO TNV
TpoTonolNoT cLVALEUNUATWY 68 oXNVES [50] 660 ot TY QUTOUATY HETAYAMTTION UEGK GLY YPOVIGUOU
Twv yehwwv [21]. H yefon toug enexteiveton eniong ota péoa xovwvixic Sxtimong, Tpocpépovtag
epyohelor dnuiovpynhc eneéepyaciog xou mapaywyhc tepleyopévou. Ewbixéc eqopuoyéc evioniCov-
Tou oty atp (23], [58], ue éugoon oTn UOVIEAOTOMON TOU TPOCKHTOL YLl DAY VWO TIXOUS X0l
TROEYYELRNTIX0UE OXOTOUC, EVEM OMUAVTIXGS EVOL X0l 0 PONOC TOUC OE GUOTAHUNTA AAANAETIBpOoNC
VIEWTOU—UNY VA XL OTT POUTOTIXH.

ITpooxAfoelg xou Xuveliogopd tne Awnhwpatixrs Epyaociog

Hopd v onuavtixd e€€MEn tou €xel onueiwdel otn xateduvoT TNE TEIOOLIC TATAS AVAXATACHEVHS
TpocKTou e&oxohov ol Vo TopouctdlovTon CNUUVTIXES TEOXANOEL, WBIiTEPA O PEAMOTIXES GUV-
¥1xeg 6moL TO TEdCWTO dev eupaviletan TANEWS, AAAG CUYVE XUAVTITETOL OO AVTIXEUEVIL, HIVHOELS
TOV YEQIWY 1| TpooTaTeLTIXéG Ydoxes. H amoxheiotinr ypron ontixdy Be00UEVGLY AmOBEXVIETOL
TEPLOPLO TIXY, xadde 6Tay PéPog Tou TEOCHOTOU XEUPRETAL YEVOoUUE onuavTixh TAnpogopio. Avtideta,
1 XP1ON HOVO AXOUC TIXWY DEBOUEVLY TROCPEREL TAEOVEXTAUATA OTY) MOVTIEAOTOINGT] TNE XIVNONG TWV
YELALOY X0 TOU GUYYPOVIOMOU UE TNV olthia, oTepeitan Ouwe TNg yweixc Thnpogoplag Tou anatteltal
Yoo TNV axeiBr) amoTUTWoT TS YEWUETEING Xal TNG EXPEACTIXOTNTUC TOU Tpoowrou. Emmiéov, 7
TEPLOPLOPEVT BLAIECIUOTNTO EXTEVAOY %ot LYNATIC TOLOTNTOC GUVOAWY BEGOUEVWY TTOU TEPLAUPBAVOLY
TéTolou eldoug oevdplo xorho Té BuayERT TNV AVATTUEN EVEWOTOY UOVTEAWY LXAVOY VoL AELTOURYOUY
o€LOTUO TAL OE TROYUATIXES EPUOUOYES. JUVETMS, 1) CUVOLACTIXT 0ELOTOINGT| OTITIXMY X0 AXOUC TIXWY
ONUATWY, GE GUVBLICUOS UE TN LOVTENOTIOINGT] TV YEOVIXOY eE0pTACEWY TNE axoloudiag evog Bivieo,
amotehel xplowo Bruc yio Tnv e€EMEN xan BeAtionon TG TELOBIACTATNG AVUXATACKEUNG TROCKHTOV.

H nopodoo dimhwyatiny pyaoio Slepeuvd TNy avanTun eVOS VEOU UOVTEROU YLoL TNV TELOOWIOTATY
OVOXATOOXEVT] TEOCKOTOL Tou AopfBdvel we elcodo Bivtéo dedouéva xat oloTolel TN OTTIXY Xl TNV
oxoLoTIX TANEOQopla. Xtdy0¢ elvan 1) dnutovpyia EVOC EVPWOTOU CUCTAUATOS XOVOD VoL TUEAYEL
EEOMOTIXG X0 axEUBT| AMOTEAEGUOTA OXOUT| XUk OE AMALTNTIXES CUVINNXES, OTWS amoxpLELS TUNUATWY
TOU TPOC®TOL 1 HETUBOAEC PwTIoHOL xat TOLC TOU TEOCMTOL. MEow EXTETUUEVLV TELRUUATIXGDVY
o€LONOYNOEWY, OTOBEXVUETAL 1) ATOBOTIXOTNT TOU TROTELVOUEVOU TAULGIOL ol OVABELXVIOVTAL Ol
OLVATOTNTES TOU GE OYEON UE TIG UTAPY0VoES UeOO0UC.
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1.2. Movrtelonoinon Hpocdhmou

Ou xlpleg ouvelopopés ng cpyaoiog elval:

1. AvamTtugn evOC OTTIXO0XOUGTIXOV LOVTEANOU OVOXAUTAOXEUTIC TEOCMTOU, LOYUEO GE TROYUOTIXES
cuVxeg Ue amoxplEl TPOCWTOL.

2. Movtehonolnom towv ypovxdyv eapthoewy otny oxohoudia Bivieo, OoTE oL EXPEICELS Vo amo-
TUTIOVOVTOL E GUVETELN XL GUVEYELDL OTO YPOVO.

3. Lyedlaon plog TELHop@XNG JEYLTEXTOVXNC ToU UTOCTNEIlEL TOCO OTTIXOUXOUCTIXY] OGO Xal
HOVO-ax0LGTIXY 1) WOVO-OTTIXT| €l0000, emTuYYdvovTac LYNAY arddoor xat yia Ta Tplo CUCTH-
porToL.

4. Evowpdtwon plog eVIoyLUEVNS oUVEETNOTNG XO0TOUS Yo T Pelworn Tne ecgaipévng xivhong
TOV YELNOY.

5. Enad&nomn twv 6edopévwy exmaideuong pe cuvietixéc anoxpilelc Tou Tpocntou Yo evioyuon
NS YEVIXEUONC TOU UOVTEAOL GE PEMOTIXG GEVAPLOL.

6. Extevic molotixn ot tocotixy| olohGYNoT|, CUUTERLAUBAVOUEVNC UEAETNG YENOTWY XL [ULOC
MEAETNG apalpEOTE, TOU AMOBEXVOEL TNV UTEPOY T TNG TEOTEWVOUEVNS UEVOBOL EvavTl TEonYoU-
HEVWY TEOCEYYICEWY.

1.2 Movtelonoinon Ilpocwnrou

H povtehonoinom teiodldoTotwy TEocHTemY omoTEAEl EVag EVOLUPEPOV TOUENS OTNY OPAUCT) UTONO-
YIOTOV, UE EQUPUOYESC OTNV AVAYVOELOT| TROCMTOU, TNV AVIAUCT, EXPEICEWY, TNV ELXOVIXY| TEUY-
HATIXOTNTO xat TNV loTeixr]. T dpyouy BLdpopol TeOTOL avamaEdoTAONS TNG YEWUETElOC xou NG
EUPAVIONE TOU TREOCKOTOU TOU APopoLy €lTe TN YeHON OYXOUETEWM®OY Uedddnv elte 0 yeron 3A
Moggomotfoiuwy Movtéhwy 6mne Yo avorutoly mopoxdte.

ITAEypota

Ta mAéypoato amoTeEA0UY TOV O SLABESOUEVO TEOTO AVAUTURAGTACTS TELOOLACTATLWY EMLPAVELDY. 'Eva
TAEypo oplletan amd GUVOAA XOPUPWY XAl ETLPAVELWY, CUVATKC TELYOV®Y, To OTolo GUVBEOLY TIC
XOPUPES YloL Vo oymuaticouy pior ouveyn emipdveta. H Sour autr elvon biodtepa euéhixtn, xodode
UTOOTNEILEL TUPUULORPHOCELS, LORPOTOMNOT Xl YoETOYEAPNOT LYHC. ExToC and Tplywvixd mhéyuata,
uTdEyoUY Xt TLo GUVUETEG EXDOYEC UE TETPATAEURA 1 TOAUYWVA, KOTOGO GE AUTH T1) OLTAWHUATIXT
XENOWTOLOUUE TN TEOTN HOR®N.

Ynueio Avagopdg

Ta onuelor avopopds elval YoEoXTNELOTIXG YEWUETEIXE GNUEIL TOU TEOCMTOU, OTKS Ol YWVIEC THV
HOLTLOY, 1) X0RUGT TNG YOTNS XU TO TEPlYPUUUO TV YELAOV TOU UETUPEQOLY YENOIY TATROpOpia
yioo T YEWUETplo Tou.  XTn SIMAWUATIX auTy yenotwonololvion 800 cUvoha onueiwy avagopdc,
To npwto o e&dyoupe and to Face Alignment Network (FAN) [8], mou evtonilet 68 2A opoud
onuela UEow €VOC CUVEAXTXOU VELPWVLXOUL BixTOoL To omolo elvon edpwoTo ot dlapopeTinég moleg,
exppdoeic xa potiopd. To devtepo to avtiolue ond to MediaPipe Face Landmarker [33], to
omofo evtomilel 468 muxvd onueio ye 3A cuvteTayuéveg, xahOTTOVTAC OAOXANEN TNV ETLPAVELX TOU
mpooonou. O cuVBLACPOS TwV 800 eaooMlel CUVETELL OTN YEVIXH UOPPY| TOU TEOGHOTOU X0l
AETMTOUERELNL OTIC EXPEATELS.
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Chapter 1. Extetopévn Ilepihndn ota eAAnvind

Oyxopetpixég MEDodot

Ot oYxopeTpXéS EMLYELPOUY Vo avaBOUCoUY TNV TELOOIACTATY YEWUETPlO EVOC TpooKOTOoL Ue Bdor
TOAMATAES edVeg 1) petpnoelc Bddouc. O otdyoc elvon va GUYBLACTOLY TUEATNEHOELS ATO BLAUPOPE-
TIXEC OTTIXEC YWVIEC OE ULoL GUVEXTIXT|, TTUXVY| XL axELBY) TELOOLEG TOTT) VOTapdio THOT).

To Structure-from-Motion (SfM) [64] eivar 1 Bdon yioa moMég petayevéotepes Teyvixéc. Méow
NG AVEYVEUOTC XAtk AVTLOTOLYIONG ONUEIV-XAEBLOV OE BLaPORETIXES ELXOVES, UTohOY(LEL U oxp(Beta
Tig Véoelg TV xopep®y xou dnutovpyel éva apond végog 3D onueiwy. Hopdyer afldmoteg extiunoelc
yioo TN yewuetplo, ahhd To anotéleopa neptoplleton povo oe Aya onueio. To Multi-View-Stereo
(MVS) [65] urogel vo ytiotel ndvew oto SIM. TuvAdoc ofiomoel tic extioeic yoo ) ¥éon e
xdpepog and to SIM xan uroloyilel muxvd végn onuelwy 1 TAéyuota eéetdlovTag TNy aviioTolyia
EXOVOOTOLYEIWV PETAED TOMNATAGOY OPeEwV.

Ov Volumetric Fusion pédodot 6nwe to KinectFusion[47], expetaihebovton awodntipec Bddouc
vt var cuviécouy tolhamholg ydetee Bddoug oe €va eviaio 3D povtéro. To avtixelyevo avamopio-
Taton w¢ TAEY A voxel, 6mou xdie voxel amodnxelel TNV andGTACT ANd TNV TEOCNUACUEVT ETLPAVELL
(Signed Distance Function — SDF). Kadd¢ véec Meic mpootievtan, To povtého yivetar mo mAfpeS
xou Aeto. Mo tpdogotn npocéyyiot eivan 1) yprion Neural Radiance Fields (NeRFs) [20]. Avti
Yo ENTA YEWUETEWE TAEY T, Pardatvouy GUVEYEIC OYXOUG UEGH VELPWVIXWY OIXTOWY, ToL OTolo oV TL-
ototyoLy 3A cuvtetaypéveg xou xateutivoelg Yéaong oe ypohuo xar tuxvotnta. ‘Etot, emtuyydveton
PEAALO TIXY| ATOBOCT) VEWY OTITIXMY YWVLWOV X0 XUTOYPOPT| AETTOUERELDY OTIKC LPT) BEPUATOS 1 0XOUT)
xalL TElYES.

Telodidotata Mopgonotioiwa Moviéha

Ov oyxopetpixéc uétodol Tapéyouy UPNAHAC axpifelag avamapao TACELS, AAAS GUY VA TOEdYOUY LOVTENX
Yweic evvolohoyny| mopapetponoinom (.. BLéxelon TwV TaUpaUéTewY TaUTOTNTOS, Expeaonc). [ va
EeMePOG TOUY 0L TEPLOPLOUOL TeV Xordapd YEWUETEXWY UEVEOWY, avartuydnxay to 3A Mopgomotoiua
Movtéra (3AMM) [62]. Ewofydnoov anéd toug Blanz xou Vetter (6], oi onolot mpdtetvay pla ototio-
T, TUEOETEIXY avamaedo Taon Tou Tpooknou. H Sdixacta Eextvd ue cUANOYT| capdoenmy UPNAHC
avdhuone, ot onoleg evduypapuilovior MoTe Gha Tar TEGoLTA VoL €Y0UY XoLvY| Totohoyia ({8lo aptdud
X0pUPMV xaL xowvd onueia avapopdc). ‘Eneita epopudleton Aviivon Kuplwv Zuvictwowv (AKY),
wote va egoydoly oL xUpLeg BLao TAGELS UETABANTOTNTAC oY fuatog xat bghc. Etot, xdie véo tpdowno
neptypdpeton pe Ayec mopapétpouc (ouvteheotéc ANK), nou elvan eppnvedoles xan oupnoyeic. To
Boaowxd mheovéxtnua ebvan 6Tt oo SAMM npoc@épouy onuactohoyind éreyyo. Mnropolue, dnAody,
VoL OAAGEOUUE THY TOUTOTNTA 1) TNV €XPEOOT) TOL TEOCWTOL UETABAANOVTAS Alyeg LOVO TopopéTeoud,
ywelc va yeetdleton vo enelepyaoToOUe ONO TO TAEYUOL.

‘Eva eup€we BLade00UEVO WOVTEAD GTNY OVOXATAOXEUT] TOU avJp@Tivou TROG®TOU, TO OTolo YeroL-
womoloVUe xou ot mopovoa dimhwpotixh eivor 1o FLAME (Faces Learned with an Articulated
Model and Expressions) [40]. Amotelel évo 0ToTloTid LOVTIENO XEQUALOY TOU EMLTUYYAVEL TOV
OLOYWELOUO TV TELWY BacIXMY CUVICTOOMY TOU TROoWTou: oyfua, mola xou éxgeaor. o 1
wovtehonolnon tou yenowonotel Tplywvixd TAEyua, Ue 5023 xopupéc, xou eVonUaT®VEL 4 aptomTég
OUVOEGELS YlaL TOL UATLaL, TO Aoupo xat To mnyouvt. Ta dedouéva exnaidevong npofitoy and axohou-
Blec TEIOdEOTATWY CUp®OEWY Ta ontola €youy TNV (Bl TomoAoyld, EMTEENOVINS GTO UOVTEAO VA
udel pEAALO TIXG OYUAUTOL TORUUORPOOTG. LUYXEXPYEVY, xde Tpdowno oto FLAME yenowonotet
TELOL BLOXENTA OYAUATA TOEAULOPPWONE TOU XWOIXOTOLOUY TIC UETUB0AEC 0TO oy, TN TOlo XL TNV
EXPEACT) DLUPORETIXADY ATOUWY. To TEAMXO TAEYUA TEOCOTOU TEOXVTTEL AN TNV TEOCVEST AUTWY
TWV CLVICTWOWY OTO YECO TEOTUTO TAEYUL, ot epopuoletar 1) Sdixacta Ipopurc Hopaudopwone
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1.3. Bihoypapla pedodnv yia Teiodidotatn Avaxataoxeuy Avlpdmvou Hposhnou

EHeAETOU YLoL VoL ONULOVRYTOEL PUOLKES XAl PEANOTIXES XIVATELS, HE XAUE x0pUYPY| TOU TAEYHATOS VoL
ennpedletan ot SlopopeTind Badud and Tig xovTvEC aplpnatlc.

To FLAME onotelet eZéM&n tou govtéhou owpatoc SMPL [41], to omolo €yet enextodel eldind yia
TNV avamapdo Taor) Tou xe@ahtol. Hapdhhnio n TapaueTEOTOINCT) TOU TEPLYEAPTXE ETUTEENEL GTO UOV-
TENO TNV TOEAY WYY PEUALG TIXY, CUVETIOV X0l EAEY Y OUEVWY TELOOLIC TATWY TEOCKOTMY, XOWIG TOVTIC
0o FLAME évo and to mo aflomota xon eVpéns YeNoYLoToloVUEVR HoVTERD 6TNY xatebluvon Tne

TELOOLAC TUTNG LOVIEAOTIOMOTE TEOCWTOU.

{!!!l‘}
2282 e0

shape pose expression

Figure 1.2.1: Ioapopetponoinon tou FLAME povtéhov. Apiotepd: Evepyomoinomn towv tputhv medtwy

cuvioTwowy oyfuatos. Kévrpo: Iopduetpol n6lag mou xivoly téocepic omd Tig €€l aplpdoelg Tou Aol
xou e yvédou. Ae€id: Evepyonoinom twv teitdv mpdtwy cuvlotwody éxgeacne. [40]

Al yvowotd SAMM yovtéha mou mponyhinxay tou FLAME aroteholv to Basel Face Model
(BFM) [53] xou to Large Scale Face Model (LSFM) [7]. Kot ta 800 povtéha Bacilovtar otnv
Avdduon Kugiov Yuviotwo®v o T poviehonolnon tou oyfuatog xou tne ugphc. H Baowr toug
OLapopd elvon OTL TO BEVTERO XATAOKEVACTNXE ATO TOAL UEYOADTERO aELIUO GUPWOEWY, UE CTUAVTIXS
TAOUGLOTERY], TOWXAOUORPIOL OXAVAPLOUEVLY TEOCKOTILY OGOV apopd TNV nhxio, To @OAO xou TNV
edVIXOTNTO, TEOCPEROVTAC ETOL UEYAAUTERT YeVixeuoT xat axpifela oe oyéon pe To BFM.

1.3 BiBhoyeapio uedodwy yia Terodidototn Avaxataoxsun
Avipwnivou Ilpoocwrou

H tpiobidotatn avaxataoxeuy| avip®mivou Tpocnhtou EYEL YVORIoEL EVTUTKGLOXY TEO000 TNV TEAEU-
Tafor Sexaetio, xupiwe yden oty oflomoinomn PeYSAWY cUVOAWY Bedouévwy xat oTig e&eliel Tng
Badhdc pddnong. O umdpyouoeg mpooeyyioele unopoly va xatnyoplonoinioly oe TeelS Paoiuég
opddee, avdhoyo Ue Tov TOTO Oedouévewy elwbdou ou yenowonoolyv: (o) pedddouc Bactopéves
oty eéva Ry oto Bivteo, (B) pedddouc Puotouéves otov o xar () molutpomixés pedddou mou
cuvdudlouv TauTéYEova T BUo mponyoluevee. Kdle xatnyopla €yel mhcovextriuato xaL TEELOR-
1oUo0g, YEYOVOS TOU xohoTd TNV ETAOYT TNG XUTAAANANG TEOCEYYIoNS Xplown YLol TNV eXAOTOTE
eopuoY Y. XNy napovoa epyacta, Bacillopacte oTny Teltn xatnyopio, aZloTOWOVTAS TH CUVOLAC TIXT
UTIEROYN EOVIC XAl Y OL YL TNV avoxatooxeun] 4A Tpoc®dnwy Ye ueyahitepn oxplBeta xat yeovixn
OULVETELXL.
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Chapter 1. Extetopévn Ilepihndn ota eAAnvind

Médodol Baciopévol oTny onTixy TAneopopia

Ot pédodot mou Pactlovton 6Tny exdVA TEOSTAHOLY VoL AVATUEAUC THOOUY T1) YEWUETEIO TOU TROGMTOy
omd ulo 1} TEPLOCOTEPES EXOVES, OUVAUWS PECWL TNG TPOCUPUOYNC TopouéTpwy o éva 3A Mop-
gomotfowo Movtélo. Xnyv nepintwon omou déyovian wg elcodo PBivieo, emyepoly Oyt Uuovo va
EXTWUNACOLY TN YEWUETPlO OE xdUe Xapé, AAAL Xou VO DLATNEHOOUY TN YEOVIXTH GLUVOYY TOUS OTIG
EXPEACELC X TIC XWVACELS TOU TROCKTOU.

To DECA (Detailed Expression Capture and Animation) [17| arnotekel onueio avagopdc oto
TEdio TNS TELOBIAO TATNE OVOXATACKEVHC TROCMTOU, XS EMXEVIPOVETAL OTNV oVABELET AeTTOUER-
WOV TNG YEWUETELAUC TOU TROOMTOU. e EVa 0pYIX0O GTABI0 EXTUE Wid YOVOPOELDT) AVAXATUOXEVY| TOU
TEOCKOTOU GToV YWeo avanapdotaone Tou FLAME péow tne otpatnyhc avdAuon-péow-cuvieong.
Ye 8e0tepo oTddlo eumhouTilel TN YewUETpla TOU Ue AEMTOPEREIC 0TS PUTIBES ot LPES BEQUATOC
YPNOOTOWOVTAS Y3pTeS Topaudepwone o yweo UV. Me autév tov tpono, 1o DECA povtého
HATOUPEQVEL VOL OVATTOELO TA BUVOIXEC AETTOUERELEC HE LPNAG peahioud oxdun %o o€ GUVOAO Oe-
OOUEVWY ATO TEAYUATIXES CUVIT|XES.

To EMOCA (EMOtion Capture and Animation) povtélo [13]| Booileton néver oto DECA, eo-
Tdloviag wotdco oTNY axelB) anoTONWON CUVALCONUATIXWY EXPEdcEWY. EVowuat®dvel Wio xouv-
0TOUO GLVAETNOT XOCTOUC PBACLOUEVY OE AVTIANTITIXG YOQUXTNELOTIXE CUVOLGUHAUATOS, WOTE TO
OVOXATACHEVACUEVO TIEOCKTO VoL BlaTNEel GUVLCONUATIXT GUVETELXL UE TO apyixO.

Mio mpocéyyion mou oToyelel OTNY ATOTUTWOT, OXEUULWY XAl ACUUUETEWY EXPEACENY Elval TO
SMIRK [59]. To povtéro alionotel tov yopo avanapdotaons tou FLAME xau nepilopfdver 800
Bruato. Y10 mEKTO B, N exova el06b0u xwodixomoleitan ot mapauéteouc Tou FLAME xou mepvd
o6 évay renderer. To anotéheoya autd pall Ue Yo PAoXO TOU TPOCWTOU GUVODBEUOUEVT amd Alya
EXOVOG TOLYEl TNG AEYIXNS EXOVAS, TEOPOOOTOUV €Vl DLpOELXO VELPWVIXG renderer mou TUEAYEL
ULl (POTOREAALO TUXT) OVOXUTAOXELT]. 2TO OEUTERO Brud, e@opuoleton plar ETUENUEVT EXPEACT) GTNV
avanopdotocn FLAME, xaw oxcoulniel éva 8edtepo Briua exnaideuonc. O otdyog lvon oL topduetool
Expoone ToU TEAA TEOBAETEL 0 xwdomoNTAS Vo TowTilovTon UE TIC dpYIXEC TEOTOTOINUEVES
TopopéTEoUS, BlaopolilovTag Tol OTL TO HOVTEND UTOREL VO OVOTORAYEL AETITOUERT] OVUXUTATXEVES
UE TONOTAOXES EXPEACELC.

cycle loss

Image-to-Image
Encoder —
Translator

reconstructed
image

new expression

image reconstruction
losses

expression
expression

Image-to-lmage |

Encoder —
Translator

initial image

[
already predicted

reconstructed pose & identity
image

masking

initial image

Figure 1.3.1: H exnaideuorn tou SMIRK mpaypatonoeitor oe 800 Bruota [59)].

Mo yédo80¢ TOU EMXEVTPOVETAL GTNY aXEIBT] AVITAEACTACT) TWV XIVACEWY TNG O TOUATIXNG TEELO-
¥ xotd v owhia ebvor to SPECTRE [18]. H npocéyyion auth alionotel éva tpoexnaudeupévo
HOVTEAD aVOyVERIONG YEWMDY TOCO GTIC dEYIXEC OGO XUl OTIC OVUXUTUOXEVAUOUEVES EXOVES, €E4-
YOVTOG YUQUXTNELO TIXA BLVOCUOTA IOV TEPLYRAPOLY TNV dptpwaon Twv yethiov. O otdyog elvor 1)
ehayloTonolNoT TNG BLAPORAS AVAUESY GTA 600 GUVOAN YOLUXTNEIC TIXMY, WOTE Vo DIUCPAUNG TEL 1)
TLOTOTNTA TNG *IVNONG TOU GTOUATOC XATA TNV OpLALAL.
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1.3. Bihoypapla pedodnv yia Teiodidotatn Avaxataoxeu Avlpdmvou Ipoohnou
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Figure 1.3.2: Emoxénnon e apyttextovixric SPECTRE. H neployn Tou otéuatog amoxdnteton 1660 and
TO apPYX6 GO0 KoL AT TO AVAXUTAOXEVAUOPEVO Biveo, xou e@oapuoleTal éval BIXTLO avay VKGNS XELMMY YLot
TOV UTOAOYLOWO TNG AVTIANTTIXAC GUVEETNONE XOOTOU avary venome yethuoy. [18].

Hapd Ty udniy anddoor Toug, ol tpoavagepieioes uédodol eupoavilouy xovols TEPLOPLOLOUE oy
AmOEEEOLY AT TNV AMOXAELCTIXY TOUG EE€4ETNOY TNV ONTXY TANeoQopla. 1 omola cuY VA umopel va
TepL ouBdver amoxpldelc ¥ va elvan avemapxig.

MéVodol Baciopévol otny Axovctixy IIAnpogopia

Ou pédodot mou Aapfdvouv we elcodo NynTxd orpata Pacilovial 6T CUCYETION TNG UXOVOTIXAS
TAnpogoplag Ue TNV dpdpmor TOU TEOGHTOU Xl TAEAYOLY HBUTUE TWY OTOIWY OL XIVAGELS TWV YELALOVY
elval amOAUTA CUYYPOVICUEVES UE TNV OULAlaL.

VOCA (Voice Operated Character Animation) [12] anotehei pla pédodo dnuoupyioc ophodviwy
TELOOLAO TATWY TEOoOTWY. (2¢ elcodo Aaufdvel Eva ntpdTuno Théyua otov Yweo tou FLAME, pall
UE Wlol Tapdueteo mou xadopllel TNV ToUTOTNTA TOU UTOXEWEVOU, xad®E %ot TO avTIGTOLYO Ny NTiXO
ofue. Méow apylTEXTOVIXC XWOXOTONTA-ATOXWOXOTONTY|, TO GLOTNUA TEOPBAETEL TIC TELOOLWIO-
TATEG PETATOTOELC TWV XOPLUPEDY TOL TREOTUTOU TAEYUATOS, Ol OToleg EQaEUOLoVTaL Yiol Vo ooy Vel
TO TEAXO TPOCWTO o€ 0LBETERN TOLA, CLUYYEOVICUEVO UE TO OV TNS OUthiog.

MeshTalk [60] ewodryer évay Saxpitéd Aavidvovia ympeo ex@pdoemy, 6Tou 1 TANpogopio and To
ofuo othiog cuvdualeTar ue TAnpoopia YEWUETENG, amodidovTag cUVETElC axohoLDiee TAEYUATOY.
H Suwxpitonolnomn twv exgpdoewy oe xatnyoplec xooTd TO UOVTEAO XoVO VO TORAYEL YEOVIXA
oLVETElC XL EXPEACTIXES axoloulieg Tou avtxatonteilouy TNy dedpworn Tou AdYouL.

FaceFormer [16] oflomolel apylTEXTOVIXT UETACYNUATIOTY YIO VO OVTIUETWTLOEL TOV TEPLOPLOUO
woxpoyeoviwy efapthoeny. 'Etol xatapépvel va anodnoel ypovind GUVETEIC X0t QUOIXEC XIVACELS
TIOU AVTATOXEIVOVTOL GTO GTjud ELGOBOV.

CodeTalker [73] avti va tpoPiénel ouveyeic topauétpous, padaiver vo dtoxpttd AeZAdyLo xivAoewy
HECL BLaXENTWY BLVUOUATLY auToXwdIXoToNTOY. Me autdy Tov TpdTmo neplopilel Tov Yweo £6d0u
o€ peahloTd poT{Ba xivnong xaw BEATUOVEL TOV GUYYQEOVIGUO YELNMY.

Ou uédodol autég ebvon Wwitepa ypeNoWeS, ahAd CUYVE ATOTUYYEVOUV VO OTOOWOOLY TAHRT €X-
PREAUCTIXOTNTO OTAY ATOUGLALEL OTTIXY TANROQORLAL.

25



Chapter 1. Extetopévn Ilepihndn ota eAAnvind

Médodot Baciopévol otny Ontixo-Axovotixy IIAnpogopia

H tpltn xatnyopla, xou 1 mo npdo@aty, GLUVOLALEL N0 XAl EXOVA WOTE VoL AZLOTOLACEL To CUUTANE-
HoTixd TAEoveEXTAUaTA xou Twv dVo.  H exdva mpoogépel yewuetpin oxplBela xan Aemtouept
ATELXOVIOT] TV EXPEACEWY, EVL O 1O TEOCPEREL CUUTANEWUATIXY TANEOQORid OF TEPITTWOELS
avemoexo0g 1) EAMTOUE omTixig €lo6dou. Aev urdpyet extetopévr Bihoypagpioa o auTh TN xoTéu-
Yuvon, eved oUupwva pe doa yvwpeilovue to AVFace [11] arnotelel o mpito ohoxAnpwpévo Lovtélo
yioe TohuTEOoTIXY avoxataoxeur] 4D mpoowrou. H apyitextovinr tou cuvdudlel éva dixtuo ResNet-
50 xou YpNoN HETACYNUATICTOV YioL T Y weoyeovixd yopoxtnetoTixd. H exnaidevon axoloudel 500
OTADLOL OEYIXA TIEOYUOTOTIOLE(TOL [ULaL Y OVOPOELDTG OVOXATAGKEVT| TNG YEWUETEIOC Xl OTY) CUVEYELL
oUTH EUTAOUTICETOL UE AETTOUERELES OTNV LPT| X 0TI eExPpdoels. Emmiéov, to cbotnua epnioutilel
T0 0UVOAO BeBOUEVLDV eXTaldELOTC UE CUVIETIXES amOXPUELC TEOCMTOL, WOTE Vo EVIoYVCEL TNV
EUPKO T TOU LOVTEAOU GE TEAYUATIXES GUVUTXES.

1.4 Ilpozewvdéuevn Medodoloyia

H rnopoloa epyoacia mpotelvel wia ohoxAnpwuévn pedodohoylor yior TEIGOIAOTATY OVOXATACHELT
TEOCWTWY and PBIVTED, PE OTOYO TN EEAAICTIXG XU axEPBT) ATOTUTWOT TOCO NG YEWUETEIOG TOu
TPOCKOTOU OGO XUl TWV XLVACEWY TOU GTOUATOS GE BUOXOAES PEAMO TXES cLVITXES. Xe avtideon pe
TIC MEPIOCOTEPES LUTpY0VCES TEOCEYYIoE Tou Boacilovion amoXAEIoTIXG GTNY ONTXY] TANROQOpld,
TO TEOTEWVOUEVO GUCTNUA GUVOUALEL OTTIXG X0 UXOUCTIXG YUEOXTNEIOTIXG, UE WBlaitepn éugpaon
oty avTeTodmon d0o Baoxmv mpofAnudtov: (o) tig anoxplels mpoowrou xat (B) to YopuBndes
nepBdhhov.

Yuvietixég Anoxpideic Ilpoocwnou

Aebopévou Tou TEPLoploo) TwV Bladéotuwy cUVORWY BEGOUEVLY Vo TERLEYOLY BIVIEO UE QUOLXES
amoxpLPels, evioylouue To cOVOAO exmaldeuons OnutovpydvTog cuvieTixée amoxpllels ypnol-
HOTIOLOVTOG 0VO BLaPORETINOVE TOTOUG.

H Ewéva 1.4.1 nopovoidler amoxpielc omd Spopetind avtixelueva/yéoto: Ta tuyolo xdde
popd uixog axoloudiag Bivteo and ta dedouéva yag, cuVIETOUUE YEYOVOTA amdxpung Omou €vag
AmOXEUTTIXOC TopdyovTog (Y€t 1 avtixeluevo) axoloudel xoumOAn Teoytd uTpootd and 1o TedowaL.
Ewépyetan, onhady|, and 1o 6plo €VOC TEWTOU XUpé, XIWVELTAL TEOC TNV TEPLOYT TOU GTOUATOS, XAl
elépyeTon oMo TNV AmEVAVTL TAELEA OE UETAYEVESTERT Ypovixn oTiyur tou Bivteo. Ilpocdétouye,
enione OUAAEC TIEQLOTEOWES TOL AVTIXEWEVOU, ONUIOLEYOVTOS BUVOUIXE YEYOVOTA TIoU XdUE YeOoVIXT
OTUYUT amoxpUPBeTon BlapopeTIXd UEQPOC TOU TEOGKTOL.

>4

'S
¢ @

Figure 1.4.1: Egopuoyy cuvietindy anoxpdewy npoctnou mou amewxovilouy yépla 1 avTixeipeva.

Yy Ewdva 1.4.2 Brénovye tov dedtepo tino amoxpldewy omou epoapuolovue uia pdoxo oTnyv
TepLoyn) Tou otouatoc. Xenowonotolue Ta Mediapipe onuela avopopds yiol TOV 0pLoUS TOALYOVOY
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1.4. Ipotewvépevn Medoboroyia

YOpw amd TN yvddo xou tn i, Tar onola YeUlouue YE BLopopeTIXéC LPESC amd €val eXTEVES GUVOAO
0e00oUEVLDY. Me autd TOV TPOTO TURAYOUUE OEBOUEVA GTA OTOlA OAOXATEY 1) TTEQLOYH) TOU CTOUATOSG

ATOXPUTTETAL.

Figure 1.4.2: Egappogy, cuvletixic yelpovpynhc Ydoxas 6To exoVi{OUevo Tedonto.

Enelepyacia Acdopévwy

Ta Bivteo ywpellovto oe tpfuata mou anotehobvton and K xope. T xde éva e€dyovtar to onpeia
avdpopoc tou Tpoomrou and to MediaPipe (468 ornueia) xou and 1o FAN (68 onueia). T Moyouc
amodoTXOTNTAG, OLTNEOVUE €val cuuTayég oOvoho amd 126 onuela avapopds, cuvdudlovtog auTd
™e yvédou and to FAN pe ta onuela tou otépoatoc/potidv/pitne and to MediaPipe. Kdébe
oelypo TepLAaUPBAveEL To TEWTOTUTO o To Bivieo Ue Tic cuVleTixég amoxplel, To onuela avapopdc,
e&dyeton 1 wdoxa meptypdppoatog tou npooorou (hull pdoxa) xou to avticTtoryo NynTixd o

Oewpntixd YTroBadpo

"ot T povtehonoinomn tou mpoodhnov utodetolue To FLAME [40], éva otatiotind 3A yopponotfioo
UOVTENO TPOCWMTOU UE TUPUUETEOUS TAUTOTNTOC, Exppacng xat tolag. Ia To axovoTxd xoupdt
Yenotpomnololue to wav2vec [4], éva npoextaudeupévo povtého avamopdotacns oldthiag, To onolo
Booileton oty opytteEXTOVIXY TKV UeTAoYNUaTIoTOY. To wav2vec €yel exmoudeutel oe Yeydho oyxo
UN ETLONUACUEVLY BEQOUEVKY OULAOC Xou OTY) GUVEYELN EYEL TEOCUPUOOTEL Yo TNV EQUPUOYT TNG
VLY VORLOTG POVAG, TUREYOVTIS ETOL TAOUGCLES AVATAPACTACELS Qwvnudtey. H apyitextovixr tou
TEPLAUBAVEL EVAY GUVEMXTIXG XWOIXOTOINTY YORUXTNELOTIXWY TOU UETATEETEL TO NYNTXO CNUA OF
OVOTOPLOTAGELS BLUVUOHATOY, Xxad®e xaL €Vol §{XTUO UETACYNUATIOTH TOU UOVTENOTIOLEL TIC YPOVIXES
eCapThoEl TNV axohoudia.

Apyrtextovix

H npotewdpevn apyttextovxt| Baoiletan oto poviého SMIRK [59], éva xouvotdpo poviého yia
TV anoTONWoN TOWIAWY EXPEACEWY, TO OTOl0 EMEXTEVOUPE (OTE Vo LTOCTNEI(EL TOAUTEOTIXN
eloodo (exdvo xar o) xou va elvor elpwoto oe anoxpUelc. Xenoyomoloue €vay xwOLXoToL-
nth E() mou déyeton w¢ eloodo pia axohovdic peyédouc K pe ouvdetidée amoxpidec 199 =
{rgect 1gect L 195} won mpoPhémer tic mopopétpouc Tou FLAME. Axolouddvtac Tov oyedlaoué

tou SMIRK, o xwduonomnthc yweiletar oe Tpelc emuépouc xAddoug:

O Kwdworownthg ITolag Ey uvnoroyilet tic napopétpouc néloc O1.x = {61, ...,0k} (Oéon xa
TepLoTEOPT TpockTov) o Bactleton ot éva dixtuo MobileNetV3:

b.x = E@(I?CI(CI)
O Kwdwonowthc yAuatog Eg extud tg nopopétpous tavtétnros Bi.x = {f1, ..., Bk}, mou
TepLypdpouy to otadepd oyfua Tou tpocwnou. Bacileta oto MobileNetV3 6ixtuo xou ypnowonotet

emmAéov 1A GUVEMXTIXG GTEWUATO XUTA UWAXOG TNG YPOVIXNS BICTIONS, MOTE Vol LOVTIEAOTOLACEL
TIg Ypoviég e€aptioeic Tng axohouvdiog Bivieo:

61:K = E/B(If%gl)
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Chapter 1. Extetopévn Ilepihndn ota eAAnvind

O Kwdwuxonowmtig Exgepdocwy £y 6éyeta w¢ el0odo 1660 ontnt| TANpogopla 0G0 xat nynTixd
ofjuarto. H ontie mAnpogoplo xwoixonotelton xou mdhl pe yerorn tou MobileNetV3 dixtiou, eve yia
TO AXOUCTXO OTjud EEGYOVTOL YUPUXTNEIGTIXG AELOTOLOVTIS TO Wav2vec.

Ta nynuixd yopoxtnelotxd tpofdihoviar otny (Bl BIAoTACT) UE T OTTIXA WOTE Vo HotpdlovTo
Evay X0V evoldueco ywpeo. Ot 8Uo TUTOL BEBOUEVWV EVEOVOVTAL XL ELOAYOVIOL OE EVAL YEOVIXO
CLVEAXTIXO BixTuO, TO omolo padaivel Tic ypovixée eCaptroec. To tehixd amotérecua unoroyilel
TIg apaéTeoue Exppaonc Yi.x = {¥1, ..., YK} xou poviehonoleltan we e€hc:

Yk = Ey(I55)

Koatd tn Sudpxeior tng exnaideuong, ol xwodixonontég molog xon oY HUATOS E(Val TEOEXTOUOEUUEVOL XAl
TUEUUEVOUY GTAEROL, EVE 0 XWOLXOTOLNTAS EXPEACEWY EXTADEVETAUL TANPLC.

[o v mpoforr| Tou avaxataoxevaouévou mAeypatog tou FLAME yenowwomololye diopopixd
renderer Tou onolou To c@diua eéet miow oTic mapauétpouc FLAME xou otov xwduonounty.
Tumxd:

SI:K - R(HI:K, ﬁl:Ka wl:K)
omou S avtioTolyel 6TOV renderer TOU AVUXATAOXEVACUEVOL TAEYUOTOG.

To tehevtalo Brua elvon évag yevvrtopag TOmou U-Net, o onolog houPdver w¢ elcodo to
arotéAeopa Tou renderer xou To anoTEAEcUA xordodnyelton and To apyxd Bivico oTo onolo €youue
EQUPUOCEL UL EWOE OYEDIAOUEVY] UAOXA OE OAO TO TEOOWTO.  LUYXEXQUEVO Wl cLVAETNOT)
wooxapiopotoc M (-) epapudleton oto Bivieo ewwddou Ik yenowonowdviac t hull pdoxa dote va
XONOTITEL TO TPOGMTO Xl VoL XPaTd UOVO Ao Tuyada etxxovoototyeio. O cuvduaouoe S1.x @M (11.x)
TEpvd amd Tov yevvrtopa T yio var maporyUel 1) TEAXT AVaXOTUOXEUN:

I.x = T(S1.xk ® M(L1:x)

Auto to Brua elvon xploo BLOTL TO BIXTUO XUAEITOL VOL AVUXAUTACHEVATEL TNV U1)-ATOXPUUUEVT] EXOVA,
OoTe vo pdiel va ayvoel Tig amoxpUelg xou vo tapdiyet xadapés, pealoTixég TeoBAEPEC TPOCMTWY.
H opyitextovixr tou povtélou napovoidletar 6to oyfua 1.4.3

[o Ty amoteheoyotin x0plo EXTAUBEVCT, TOU HOVTEAOU, 1) GUVAETNOT XOGTOUC TTOU YENOWLOTOLE(TAL
amoteheiton amd:

Pwropsteixd Lpdhpata. Troroyilouye to o@dhua L1 uetalld twv apymy xapé I tou Bivico
X0l TV OVOXAUTOOXEVUOUEVWY I
4
Lphoto = 11" — I}

Avth n anodiero e€aoparilel cuvETELd oE ETUIMEDO EXXOVOTTOLYEIWY Xt BlaTneel TNV omTixy eyY0TNnTA
ue To PBivieo avagopdc.

Ypdipata AvTtiAnntixnige Opoldotntag we yeron tov VGG. T'a v evioyvon tng ov-
TUANTTIXNG OPOLOTNTAS XOU TNV T UTERY CUYXALOT GTA opY XA CTAdI EXTIUBEUCNC, YPNOWOTOLOUUE
0 VGG povtého [32]:

Lygg = [IT(I") =T (D],

6mou T'(+) oupPBohiler tor yapoxtneloTxd mou e&dyovTon amd Evay TRPOEXTAUBEUUEVO XwdixomoinT
VGG. H anwheta auty| divel éugaon oe douxd otolyela xou ototyeio uphg oTtotyeio Tou dev amo-
TUTOVOVTOL amtd TG OLopopég oe eNENEdO EOVOTTOLYElWY.
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Figure 1.4.3: Yuvolxn dpylTEXTOVIXY TOU TEOTELVOUEVOL HOVTEAOU XoTd TNy exnaldeuvor. H elcodog nepvd
an6 tov encoder nou npoPiénet i FLAME nopopétpouc. Axohoudel 1 xotaoxeuy| Tou dfotap xon tehixd
TUEAYETOL TO AVAXUTAOXEVAOUEVO BiVTED UEGL TOU YEVHTOPA.

Ypdipata Inueiov Avagopds. Lo tn dtrhienon g YEWUETPAC CUVETELNC OTr Bour
TOU TPOCMOTOV, EAXYLOTOTOOUUE TNV andcTAoT Lo UETUED TV TROYUATIXGDY SLOBIAO TATWY CNUEY
avopopdic k xou Twv npoPAendpevmy onueinwy k'

N
ﬁlmk = Z ||k2 - k;”%’
=1

omou N elvar 0 cuvohixdg oapriuog onueiov. ‘Etol dwogaiileton axpifeio otn yewuetpla Tou
TEOCWTOV, WIS OTo YATIAL, OTN UOTY XAl OTO GTOUA.

Ypdpata Avayvaeronsg Xethudv. Eunvevopévol and ty npocéyyion tou SPECTRE [18],
€€y OUUE TOL YAUEAXTNELO TIXE TOU OVOXATUGHEVACUEVOL BIVIEO €] YENOWOTOLOVTOC EVOL LOVTENO OVOLY-
VORLONG YELAWY, X0t UTOROYILOVUE TNV 0mOCTACY) TOUS OO T VTIG TOLY L YOROXTNELO TIXE TOU TTRaLY-
HoTixoU €R:

| K
Ly = E;d(ezk,mk),

6mou d(-) dnhdver T cuvnuitovixy anéotaon xar K tov aptipd xapé ot ypovixy| axoroudio.

Kavovixonoinorn exgedoewyv. Ta my anoguyn unepBohxdy 1 un pEdAloTIXWY TORAUUOp-
POOENY, ETPBAMNOVUE TOWVT Lo OTIC TUpAUETEOUS EXPEACTS:

_ 2

Lreg = [|¥][2,

(OOTE VoL EVIOYVOVTOL TLO OUOAES X0 (PUOIXES EXPEUCELS.
H exmaioeuon yivetan o 800 gdoeic:

1. ITpoexnaidevon we LOVo onttixd dedouéva: H cuvdptnon xdotoug mepthoyfdver to
GQANLOTO TV ONUEiLY avapopds, eVt 0 xwdixomontig e Tolag exnoudedeTon EMTAEOV UE
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eniBiedn Baciopévn otic npofiédec tou wovtéhou MICA. Xpnowonowye emniéov opdAuota
YL Xovovixonoinon g molag xol TNS EXPEOCNS, MOTE VoL ATOPELYOVTAL UXEUES TURUULOPPE-
OElC.

2. Kbpla exnaldeuoy moAuTponmixod OVTEAOL UE YE1HoTN %o TwV 6V0 EL060WY
(ewxovoae xouw yov):, XenoyomoloVUe T cuVolxY | cUVEETNOT *XGOTOUC TOU TEPLYEAPNXE
TOEOTAVE YOl TNV EXTALBEVCT] LOVO TOU XWOLXOTIOUNTY| EXPEAOTC.

H Beltiotonolnon npaypatonoeiton ye Adam Bedtiotonomnts, pe pudud pddnone 1073, uéyedoc
mapTidag 6 xou yeromn 20 xapé dva Bivieo eiodoou. H exnaideuon dapxel 10 emoyég xon ohoxhnpdveton
oe nepimou 1.5 nuépa oe GPU NVIDIA L40S.

1.5 Ileipdpoata - ASLoAoynon

YOvoho Acdopévmy

o v exmaldevon xaw a€lohdynorn Tou poviéhou yenowonoiinxay to cbvora MEAD, LRS3,
CelebV-Text xar ViCo Listeners, xado¢ xan mpdodeteg ocuvietinég anoxplielg. To MEAD nopeiye
dedopéva UPMAYC ToldTNTaC o€ epYaoTNELXES cUVIXES ue Towha exgpdoswy. To LRS3 xdlulde
OXNVES PEOMOTIXOV oLUVINXWY PE peYdho 6yxo ophdy TED/TEDx. To CelebV-Text npocégepe
ToEOBElYpaTaL HERXAC 1) TAPOUC amdxpulng Tpooktou, evé To ViCo, oe cuvbuacud pe to ESC-50,
YENOWOTOWUNXE Yia OEVAPLY UE axPOaTEC OANS ywelc owthio. Télog, dnuoupyinxay cuvieTinég
amoXELPELC TPOCWTOL WOTE VoL EVIOYUVEL 1) avIEXTIXOTNTA TOU GUGTHUITOS OE PEAALGTIXES CUVUTXES
AATAY PPN TOU TEOCMTOU.

H o&iordynomn npaypatonowidnxe oe emheyuévo delypata amd ta cUvola dedouévwy CelebV-Text xou
CelebV-HQ), xoddg xan oe 800 Bivieo mou xataypeddaue oto epyacthpto. oty anopayyntopadvnon
xenowornowpinxe to cbotnua Whisper, mpoxewévou va eheyydel n avtiotolyion Adyou—xivioewy
yethwyv. Emeidr) dev undpyel xadiepwpévo benchmark yioa npdcwna ye guowés anoxpidel, 1 ol-
koY Mo PacloTnxe o €voy GLUYOLACUO TOLOTIXAC AVAAUCTG, UETEIXWY ovVaYVWONG YEAOY Xou Uia
UEAETT YENOTOV.

ITototixy) ASioAéynon

To yovtého amédwoe Ye CUVETELN OF OLAPORETIXOVUC TUTOUS AmoOXELPING OIS TAPOUCLALETOL OTO
oyfua 1.5.1. X1ig tepintidoelg Yeprc andxpudng, 0w dTay Eval xpdpemvo XahOTTEL TO GTOUA, TO
oUOTNUA GUVOVUCE TO TEQLOPLOUEVA OTITIXG. GTOLYELN UE TO IXOUGTIXO GHL XU XATAPERE VoL DlaTneioEL
NV ouolT| dpdpwon. AvticTolya, o duvouxés anoxpllelg, TS dTay Ta YEpLa XtVoUVTOL UTPOCTA
a6 TO TEOGWTO, TO HOVTEAD ONULOUYTOE OUUAES UVAXATUOXEVES Ywpelg amdTOUES Topauoppooels. H
avoTNTO T elva ooy Tix, xodog TéToleg audopunteg xivioele epgavilovTal cuy v oe QUOLXOUg
SlaAbYouC.

Mio amantnuixd tepintwon mou noapovotdleton xou 6To oyhue 1.5.1 (8eZid) apopd TNy TAfen amdxpudn
Tou oTopatog. Edw to clotnua avayxdletar vo BocioTel onuovTixd oTov 1Yo Xol TOEOAO TOU
OUOXOAEVETAL VoL ATELXOVIOEL amOALTOL AeTTOUERT] dpdpwoT, Topdyel pedAloTixd amoteréopota. Emi-
TAé0V, OE GEVIPLAL OTIOL TO TEOCWTO Elval 0paTé oA BeV UTdpPYEL OUAio TOU Vo TEOEPYETOL OO
T0 ameXoVLOUEVO TEOCWTO, TO HOVTENO OV TodYEL PeUdElC XIVACEIC GTOUNTOS. DUVORXA, TO TOL-
OTIXA AmOTEAECUATA OElYVOUY OTL TO HOVTEND UTopel Vo avTIETWToEL éva eupld Qdoua cLYINXOY,
o UepES Uy Pl TATIPELS AmOXPUPELS, X0 VOl ATOOWOEL EXPEACEL TOU TUPUUEVOLY PEANC TIXES XAl
CUVETE(C UE TO UXOUCTIXO TEQIEYOUEVO.
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S

Figure 1.5.1: ITowotixd nopadelypoto Tou poviéhou pog L dlapopetinés cuvifxes. And aplotepd Tpog Ta
BelLd, To eloepyOUEVO NYNTXO ol elvon: éva TopToYUAXd TEoyoldt, Yohhixde Adyoc xat wio oy yAun
EXPEAOT).

Y1n ouvéyela, ouyxplvoude, TN WEYodoe Wog ue 8o obYypovee mpooeyyioelg mou Bacilovion oto
8o yovtéro mapopetewrc avarapdotacne FLAME, ta SPECTRE xoau SMIRK. H ontixonoinon
TOV ATOTEAEOUATWY Tapouctdletoan otny Ewodva 1.5.2. H avdivorn avédelle cagelc Sloupopés otny
TOLOTNTO XOU T1) PEAALCTIXOTNTA TWV ATOTEAECUTWY.

To SPECTRE dwtnpel otadepd v m6lo xou To YEVIXO OYUd TOU XEQUMOU, OARS omoTUY Y EVEL
Vo GUANGPBEL AeTTEC EXPPACELS OTNV TEPLOYT] TOU GTOUATOS ONULIOURYWVTAUSC CNHUOVTIXG CQUALOTA.
Avuté 0dnyel o8 MYOTERO EXPEACTIXES AVATUPAOTAGELS, LWLaiTEQ 0 cLVITXEC OToU 1) dElpwoT TKWV
YEWNLOY elvar xplotun yior TNy xoatavonor tou Aoyou. To SMIRK, avtidétng, mapdyel mo {ovTavég
X0l EVIOVES EXPRACELS, OUWC TAUPOUCIALEL CUY VA YEWUETPIXES AVAXPIBEIEC Xl TUEOUOPPWATELS, Ol
oTolEC UELOVOLY TOV PEUMOUO Xt ONULouEYolY avTAnmTxd opdipata. H mpotewvouevn uédodog
FAVOR xatagépvel vo 1oopponhcel avdueca o autég Tig 600 aduvapieg. Awatnpel pe oxplBeta
TNV TOUTOTNTA TOU ATOUOU, ATOBIOEL TIG EXPEACELS YE PUOLXS TEOTO, Xal xUPIWS TEOCPEREL oTaepd
IXAUVOTIONTIXG. AMOTEAECUATO aXOUT] Xl O BUOXOAES MEQITTMOOELS UERIXNC 1) TAYPOUS amdxeung Tou
GTOPATOC.

ITocotuxry AZlohoymon

H nocotixn a€lohdynom Tng ovaxataoxeLAS EXPEACEWY TROCHOTOU eivol WBIiTEPR AmaLTnTIXT, XIS
Tot xRl YEWUETEXE adApaTa BEV avTIXATOTTRICOLY TEYTA TNV AVTIANTTIXY) TOLOTNTA TWY OTOTE-
heoudtwyv. o Tov Aoyo autd yenotuomotinxay UETEIXES avayVKOOTS YEWAWY, Ol 0Toleg alohoYOlY
TNV avTloTolYLom AOYOU Yol XIVACEWY GTOUATOS. LUYXEXQWEVY, utohoylotnxe o Puldudc Moduo-
toc Xapoxthpwv (CER), o Puludc Egdhpatoc Aégewv (WER), o Puludc Onuxdv Povnudtmy
(VER) xa o Puduéde Egdipatoc Ontindyv Aégewv (VWER). Ta anoteléopoto napovotdlovio
otov mivaxar 1.1 xon €deilav Ot 1 YéYodog uag umepéyel otadepd o oyéon pe twv SPECTRE
xou SMIRK, dioitepo oto ovvoro CelebV-HQ [78], to omolo mepthopPdver delypata pe évioveg
amoxplelc mpooknou. Xto ahvoho LRS3 ol Swpopéc Atay uxpdtepee, xdtt nou e&nyeiton and 1o
YEYOVOC OTL MEPLEYEL MY OTERO TEPLO TATIXY ATOXELYPNE %o ELVOL TILO XOVTE GTOV Y WEO EXTABEVONS TOV
AVTOY OVIO TIXOV LOVTEA®Y. XUVOhxd, ol uetpuxéc emBefoumvouy 6Tt to FAVOR yevixelel xohitepa
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Figure 1.5.2: Ontuxd anotehéopota and de€ld npog ta apiotepd tou SPECTRE, tou SMIRK xou tng
uedodou yog.

xo TToEAYEL TO OELOTIO TEG XWVACELS YELALOV.

CELEBV-HQ LRS3
CER WER VER VWER CER WER VER VWER
SMIRK [59] 108.9 149.6 112.2  140.6 126.7 1574 121.8 153.5
SPECTRE [18] 115.8 156.5 125.4  150.2 116.9 147.3 112.2 145.5
Ours 89.0 118.3 82.6 116.9 1181 146.5 114.0 143.9

Table 1.1: Anoteléopato Tng HETEXNE avaryvaplong yellwy oto LRS3 xou oe 30 Bivieo tou CELEBV-HQ
GUVOAOU DEDOUEVWV.

Meiétn Xpnotwy

Eneldon ot apruntinée yetpixéc 8ev amoTumdvoLY TAREWS TNV avTIANTTXY TolotnTd, Ooledhydn xou
ulor ueAétn yenotov pe 46 cuppetéyovteg. Xto melpoyo autd, ol yenoTeg xAfUNXay Vo cuYXEivouy
Bivteo mou maprynoav ye tn YEVodo pag xan ye T SPECTRE xou SMIRK, emiéyovtag tn mo
PEQALO TIXY| AVAXATUOXELY]. 2T GEVAQLAL UE amoXpOPELS TEOCKOTOU, OL YPHOTES TEOTUNCAV UE UEYEAT
ouvvérela To FAVOR, yeyovde nmou emPBefoucivel tnv avetepdtnta tne pedodou. e delypato ywelg
amoxpLdelc, 1o FAVOR Eenépaoe to SMIRK, evd n anddoot| tou Htav cuyxpelown ye tou SPEC-
TRE, 1o omolo anodidoupe o1o yeyovdg 6ti 1o deltepo dnuLoupyel mo EVIOVES EXPEACELS, XUTL TTOU
oTov TapaTNENTH lowe @alvetar mo (wvtavs. To armoteréopata mou agopolv To 6UVOAO TwV PBiv-
T€0 TOL Yenotwonotinxay (Ue xou ywelc amoxpUES TEOGOTOU) CLUYXEVTROVOVTUL GTOV Tivoxa 1.2,
Tat omolol TOTOTOLOUY OTL TO TEOTEWVOUEVO UOVTEAO EMLTUYYAVEL LPNATC TOLOTNTAS OVUXUTUOXEVES,
emPBeBatdvovTag TN YENoWOTNTA TNES TOAUTEOTUXNS TROCEYYLONS.
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SMIRK SPECTRE
Ours 288/106  247/157

Table 1.2: Ilpotuuroelg yenot®v avd yédodo.

Meiétn Agaipsong XuvicTwo®Y

[oe var a€lohoyniel n ouufolr xdde empépouc oTolyEloL TOU TEOTEWVOUEVOU GUCTAUATOS, TEOY-
votomo|Onxe pla exTeTaUEVN UEAETN agalpeong oUVICTOOWY. Axoloudfinxe 1 e&ng Bruotiny Oi-
adxaota: Eexwvovtag amd to SMIRK w¢ Baowd povtélo, mpootidevtar otadloxd To TpoTEVOUEVA
UTOGUC THUATA, OOTE VoL amopovwiel 1) enldpacn Tou xoevog otny TEAXT amddoo,.

Me vs ywpelc cuvietixég anoxpldelg. Apyixd c€etdotnxe 1 onuacia TS EXTAUBEVONS UE
ouvietxéc anoxplelg Tpoonnou. ‘Onwe galvetar oty Ewdva 1.5.3 to SMIRK, 6tav exnawdedeton
Ywelc anoxpldelc ota dedopéva exnaideuone, Telvel va mopdyel exppdoelc mou dev evduypauuilov-
ToL UE TO TPAYHoTiXd PBivieo xan mopouctdlet sppoavy opdipoata.  Avtideta, 1 yeron tou emauin-
UEVOU GUVOAOL BEBOUEVLV ATMOTEETEL TETOLEG AGTOY(ES, OBNYWVTAUC OF TO OUOAEC Xl OTodEpES
avoxatooxevég. Tlap” dho autd, 1 amoxhelcTixr) aflonolnon onUelwy avapopds OEV AmOdEXVUETAL
EMAPUNAC, xOWWC OE MEPITTWOEL, OTOLU aUTd amouctdlouy TO HOVTEAO BUOXOAEVETAL Vo BlaTneroEL
PUOIXEC EXPEACELS, OTIWE TO OVOLYOXAELOUA TWV UOTLV.

Figure 1.5.3: ITototx) obyxplon tou SMIRK pe 1o npoexnaudevpévo poviého poc. Ao aplotepd mpog o
0e&id: Bivreo elo6BouL pe Tar avtioTolyo oNUelor AVOPORdS, ULt TEPLXOUUEVY) EXOVAL YL TTLO TEOCEXTIXN
napatienon, 1 é€odog tou SMIRK xou 1 é£080¢ TOU TPOEXTOUSEVUEVOL HAG HOVTENOU.

Me vs yweic Lipreading Loss. X1tn ocuvéyela evowuatdinxe axouctixr mhnpogopla xou
BOXWGOTNXE 1) PO TOU GPIAUNTOS OVAYVOELONG YEIAWDY. AV XL oavoevoTay Vo BEATIOCEL TNV
OVATOEAC TAGT] TWV YELADY, OTNV TEAET TEOXIAECE GQPANITA, XUEIWE OTOV TO GTOUN HTOY XAELOTO,
yYeyovog mou avadeixvietar oty Ewdva 1.5.4. To gawvouevo autd amodddnxe ot diapopd wetald
TOU YWEOL EL0OB0L XaL TOL YWEoL Twv rendered EOVLY.

Lipreading Loss oc rendered vs fused sixéva. Apyixd, T0 GOIAUOL ovory VORLONG YELALDOY UTOA-
oywotav ota rendered xopé. TNV Tp€Y0VC TROGEYYLOT), TO EQPUPUOLOUUE OTO AVIXATUACXEVICUEVO
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Figure 1.5.4: YpdApoato nou tpoxdntouy and TN ¥eNon NS ATOAELIC avayvwone yethiov. Ta
AMOTEAEGUATA TOPOUCIALOVTOL YI0l TO OTTLXOUXOUCTIXG oG HOVTEAD Ywpelg XL Ue TNV Xenor Tne
CUVEETNONE XOGTOUL YLOL TNV AVAY VOO TV YENGDY, and aploTERd Tpog To Se€Ld.

Blvteo TOL TOEAYEL O YEVVATORAS, YEYOVOS TOU OBNYEl OE O GUVETH ol GToERd AMOTEAEGUATA
omwe mopouctdletar oty Ewéva 1.5.5.

Figure 1.5.5: Ané aplotepd npog ta deid: Elocodoc, FAVOR, nepixopuévo otéua and to Bivieo eiobddou,
nepixoppévo otopa rendered omoTEAECUN, TEQIXOUUEVO OTOUA OO TO TEAYUATXS Blvieo oe xhlpoxa Tou
YXEL, TEPIXOUUEVO GTOUN O TNV AVUXUTAOXEVAOUEVT] E£0D0.

Me tov 1p6m0 aUTO UELDOVOVTAL Tol GQPIAUNTO XU TUPAYOVIOL TLO PENALCTIXEC XUVHOELS OTOUATOC.
EmnAéov, 1 eloaywyt| evog xatw@hiov 6To c@dhuo anoTeénel TNy utepdloplwar, 1 omola 0d1yoLoE
o€ NVUOOPEVES AVAXATAOKEVES TOU GTOUATOC.

Ontixd vs Axovotixd vs Ontixoaxouvotixd Moviého Télog, ouyxplinxay to anmotehéo-
HOTaL Ao TG TEELS EXOOYEC TOU HOVTENOU UOC UE BLAPOPETIXOUE TUTOUC ELIGOBOL: HOVO YOS, UOVO
Eova xou cLYOLACUOE Toug. To povtého mou BoactleTon ATOXAELTTIXE GTOV YO AMETUYE VO ATOBM-
OEL OWOTA TI EXPEACELS, TUPAYOVTAUS OYEDOV GTATIXEC XWWNOEIC o Bev avtamoxplivoviay otny el
c000. Avtideta, To ONTIXG POVTEAD TUENYOYE TLO PEUAICTIXEC XWVACELC OTOUOTOS XAl EXPEUCELS, UE
WXEEC LOVO aBUVAULES OE TEQITTMOELS AmoXEUPENY, TO 0Tolo ATOBIBETUL GTO YEYOVOS OTL TO TPOEX-
ToudEUUEVO LOVTEND oL yenotponotel €xel exmoudeutel o ouvieTinég anoxplpeic. H ontiooxouvotinn
eX00Y 1) TOU LOVTEAOU EUPAVIOE TNV XAAVTERY) ATODOCT), UE GUVETELS X0l oXEUBE(C OVOXATACKEVES, OTKSG
patvetar oto oyrfua 1.5.6.

1.6 Xvurnépacua

H epyoaota cotiace otny mpodxAnoT tng TELOOWICTATNG AVAXATUACKEVYC TROCWTOU OF TEAYUAUTIXES
ouvifxeg, 6ToL cLY VA UTdEyoLY amoxpLPel xau YoplBol ata dedopéva elcddou. Ilapouoidotnre
avaAuTe BiBAoYpapixY) avaoxdTnoy, 1 omolo avédelle OTL oL MEPIGOOTERES LTdpyouoes uédodol
ETUXEVTPOVOVTUL ATOXAELGTIXG OE HOVOTROTUXES ELOOOOUC. € aUTO TO TANCLO avamtUyUnxe éva
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Figure 1.5.6: Ontin o0yxeion tne TeLoBIACTATNC AVAXATAUOHEVTIC TTROCMTOU YLl OTTUXT), MYNTIXH XL
OTTIX0UXOVCTIXY ElcoBo.

VEO OTITIXOUXOUGTIXO UOVTEAO TOU EXUETAAAEVETAL XU TIG 000 TNYEC TANEOPORIAC, ETLTUYYAVOVTOC
PEQALOTIXT) XL OUVETH| avaxoTaoxevy] mpoownwy. H exnaldevorn ue ouvietinég amoxpilelg xou 1
XENON AVTUANTITIXWY CUVORTHOEWY XOGTOUG EVIOYLoAY TNV EVpwaoTia Tou cuothuatos. H molot
xaL TocoTXY] ALOAOYNON TV ATOTEAECUATWY OE GUVOLAOUO UE TN HEAETH YENOTWV E0elle oupn
UTEPOY Y| EVOVTL GAAWY GUYYROVWY UEVOOWY, 1WBlitepa ot cuvixeS anoxplewmy.

ITepropiopol xaw Merhoviixég Kateudivoeig

Hopd: Tor Yetind amoteréoyata Tng Hedod0u PG, EVIOTIOTNXAY OPLOUEVOL TIERLOPIGUOL TTOL UTOTEAOUY
TEOOTTIXES Yiar pEAAOVTIXY €peuva. [opatnpolvTon opdhuata acUUPKOVING GTIC XVACELS TOU CTOUO-
T0¢ 670 YoVTEAO UE €600 UOVO TOV N0, Ta OTOlOL UEWWDVOLY TNV AVTIANTTLIXY TOLOTNTA TWV ATOTE-
Aeopdrov. Emmiéov, n pédodoc napouctdlel duoxoliec oe meptntmoels axpolwy amoxpldewy (..
TAfene x8Audn tou otéuartoc). Ilpoc auvth ) xatedduvor, Yo propoloay va Siepeuvnioly Teyvixée
omw¢ to modality dropout 1 unyaviouol tpocoyhc, wote To BixTVO Vo TEOCUPUOLEL BUVIUIXE TT|
BopltnTa HETAE) OTTIXGV XAl AXOVC TIXWY EVOEIEEWV.

HOwéc Avaoctdoeic xow Kotvwvixdc Aviixturoc

Ot teyvohoyieg TELOBLECTATNG AVOXATACHEUTC TEOCHOTOY TOPOUCLALOLY ONUAVTIXEC TPOOTTIXES OE
Topel OTMWC M EMAVENUEVT TEAYHATIXOTNTA, 1) LoTEWXY) Xou 1 aAANAenidpaom ovlp®dTou—unyovnig.
Qot600, GUVOBELOVTAL XL aTd GoPBaPOUE XWVOLVOUS, OTwS 1 Yeron Toug ot deepfakes xou oe mopa-
TAAVNTIXO TEQIEYOUEVO Ywplc ouvalveor. H mpdodog oTov Touca autd ogelhel vo DETETAL and apyEC
LTEVYUVOTNTAUC Ol SLUPAVELNS, DOTE VoL AELOTOLOUVTAL ATOXAELC TIXG Ol VETIXES EQPUPUOYES TOU.
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Chapter 2. Introduction

2.1 Prefaces

Human faces are central to perception and communication, as they convey essential informa-
tion about identity, expression, and emotion. With the rapid advances in machine learning,
human—computer interaction has become an important research area in the last decades. Teach-
ing computers to recognize people and interpret their behavior requires understanding not only
how humans look but also how they move and express themselves. As faces and their expressions
provide such a rich source of information, researchers started early to analyze real-world faces
and to develop methods for the generation of realistic digital avatars. These technologies are in-
creasingly applied across many domains, and their impact continues to expand as reconstruction
methods become more accurate and accessible.

Facial analysis supports a variety of applications. In security and interaction systems, it enables
tasks such as identity verification, visual speech recognition, and expression-based interfaces. In
creative and medical domains, it is applied to personalized avatars, prosthetics, and 3D printing.
At the same time, capturing both the geometry and the texture of the face is essential for
producing realistic digital humans in film, games, and social media. Building on this, computer
vision community has increasingly focused on developing 3D face reconstruction methods. This
refers to recovering a detailed three-dimensional representation of a human face, capturing both
its geometry and appearance, from recorded data. Depending on the method, the input can be
a single monocular image [13], [17], [59], a video sequence [9], [18], [35], audio signals [12], [60],
[67], a text [46], [72] or a combination of these modalities [11].

Reconstructing a human face in three dimensions though is a challenging problem. Unlike rigid
objects, faces are deformable and change continuously with expressions, speech, and aging. Fac-
tors such as changes in lighting, occlusions from hand movements or facial masks, and differences
in viewpoint further complicate the task. Capturing both the global geometry and the fine details
of a face is essential for realistic reconstruction, yet it requires methods that can generalize well
to diverse conditions. So far, most existing methods rely on a single modality, which limits their
robustness and accuracy in real-world scenarios.

Driven by these challenges in the current thesis we design and develop an audiovisual 3D face
reconstruction approach that exploits both audio and visual information from input monocular
videos to generate realistic and accurate avatars. Visual data provides rich spatial cues about
facial geometry and expressions, while audio signals offer complementary temporal information
that helps capture lip movements and articulation. By fusing these modalities, the method
becomes more robust to occlusions, lighting changes, and pose variations, while also improving
the temporal consistency of the reconstructed faces. This integration leads to more natural and
coherent animations compared to single-modality approaches as showcased by our experimental
results and user study.

Building such multimodal systems has become feasible largely thanks to the rapid advances in
deep learning over the past decade. The strength of deep learning lies in the ability to learn
complex patterns directly from large amounts of data and to generate accurate representations of
facial diversity. By training deep learning models on extensive datasets, we can develop systems
that generalize well to unseen faces and conditions. In this first chapter, we present the theoretical
foundations of multimodal representation and deep learning, which form the basis of our work.
We also provide an overview of the main applications, discuss the key challenges, and highlight
the contributions of this thesis.
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2.2 Multimodality Representation Learning

Humans naturally perceive and process information through multiple sensory channels such as
vision, hearing, and language, integrating them to form a coherent understanding of the world.
Inspired by this, recent advancements in machine learning have focused on developing models
that can effectively leverage information from multiple modalities. A modality corresponds to a
specific type or form of data, each capturing a distinct aspect of the same phenomenon.

Traditional machine learning approaches have primarily relied on unimodal models, each designed
to process a single type of input data. In contrast, more recent research has shifted towards
multimodal learning, which integrates and exploits complementary information from different
modalities. Multimodality refers to a model’s ability to jointly process and understand diverse
types of inputs, resulting in richer and more robust representations. This approach, also, is
especially valuable in cases where a single modality may be corrupted across data samples or
where unimodal methods fail to capture the complexity of the dataset.

Applications of multimodal learning have wide applications in various domains, including Audio-
Visual Speech Recognition [66] and Visual Question Answering [3]. Other prominent applications
include image captioning, where models generate descriptions of visual content [29], sentiment
analysis from text and images in social media [76], and medical image analysis combining imaging
data with clinical reports [30].

2.3 Background on Deep Learnning

Machine learning is a subset of artificial intelligence that focuses on the development of algorithms
and statistical models that enable computers to perform specific tasks without explicit instruc-
tions. It emphasizes on systems to learn patterns from data and automatically build models to
solve specific tasks. In recent years, the increased availability of large datasets and advancements
in computational power have led to the rise of deep learning [31], [36].

A deep learning algorithm utilizes artificial neural networks with multiple layers to model complex
patterns in data. Unlike traditional machine learning algorithms that often require manual feature
engineering, deep learning models automatically learn hierarchical representations of data through
multiple layers of abstraction. This capability allows them to capture intricate relationships and
patterns, making them particularly effective for tasks such as image processing, natural language
processing, and speech recognition.

Such models are typically trained using large datasets and optimization techniques such as
stochastic gradient descent [63]. The training process involves adjusting the weights and biases
of the network to minimize a predefined loss function, which quantifies the difference between
the model’s predictions and the actual target values. This iterative process continues until the
model converges to an optimal set of parameters that generalize well to unseen data [39].

In the field of 3D face reconstruction, deep learning has introduced new approaches through end-
to-end frameworks that directly map input data such as 2D scans or audio signals, to detailed 3D
face models. These methods exploit the representational power of neural networks to automati-
cally learn complex relationships from data, reducing the reliance on manual feature engineering
and enabling more accurate and robust reconstructions results. The key network architectures
will be described in the following section.
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2.3.1 Convolutional Neural Networks

In the context of face reconstruction, which is inherently a visual task, CNNs [37], [38], [48]
have proven highly effective for detecting key elements such as head pose and facial expressions.
The convolutional layer is the core building block, consisting of a set of learnable filters (also
called kernels) that slide across the spatial dimensions of the input. At each position, the filter
performs a dot product between its weights and the local input region, producing an activation
map that highlights the presence of relevant features. Deeper layers in the network introduce
non-linearities and progressively reduce the dimensionality of the data, allowing the network to
capture increasingly abstract patterns while reducing computational complexity. The final layers
of a CNN are usually fully connected, transforming the extracted features into a 1D representation
suitable for classification or regression tasks. Figure 2.3.1 illustrates the overall architecture of a
typical CNN.

In addition, Temporal Convolutions Networks (TCNs), which we use in this work, extends the
concept of convolution into temporal domain. These networks are well-suited for modeling de-
pendencies across sequential data, enabling the model to learn how features evolve over time.

Fully

Convolution Connected

Pooling _..-—""""
Input E..-

Figure 2.3.1: Typical CNN architecture.

2.3.2 Recurrent Neural Networks

Unlike CNNs that operate on independent data instances, such as images, certain types of data,
like audio signals or natural language, require models that can capture their sequential dependen-
cies. Traditional feedforward networks process information in a single direction: from the input
layer, through one or more hidden layers, to the output layer. In contrast, Recurrent Neural
Networks (RNNs) [45] incorporate feedback connections, allowing the output from previous time
steps to be used as input for the current one, as illustrated in Figure 2.3.2. This enables RNNs
to retain contextual information through their hidden states, which are updated over time based
on prior outputs.

However, standard RNNs struggle with learning long-term dependencies because they tend to lose
information over extended sequences, a limitation commonly known as the long-term context
problem. To address this issue, Long Short-Term Memory (LSTM) networks [26] introduce a
gating mechanism that regulates how information is stored, updated, and forgotten across time
steps, thereby improving the model’s ability to capture long-range temporal relationships.
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Figure 2.3.2: Unrolled Recurrent Neural Network Architecture.

2.3.3 Transformers

Transformers were first introduced by Vaswani et al. in the seminal work "Attention Is All You
Need" |69], which proposed a novel architecture for sequence modeling that eliminates recurrence
and instead relies entirely on the mechanism of self-attention. The Transformer addresses the
limitations of Recurrent Neural Networks (RNNs) by modeling global dependencies within a
sequence, allowing it to capture long-range contextual relationships more effectively. Through
the use of self-attention, each input element can attend to all others in the sequence, weighting
their influence based on learned similarity scores to produce the final output. The complete
Transformer architecture follows an encoder—decoder structure, with both components composed
of stacked layers containing self-attention. Transformers scale effectively to large datasets, and
their encoder—decoder structure is illustrated in Figure 2.3.3.

2.4 Applications

Significant progress in 3D face reconstruction techniques have led to a wide range of applications
across various fields. The ability to generate accurate and realistic 3D models of human faces has
enabled new possibilities in entertainment, communication, healthcare, and security.

In the context of virtual and augmented reality (VR/AR), 3D facial reconstruction provides the
foundation for the creation of personalized digital avatars that can reproduce a user’s identity,
expressions, and emotions in immersive environments [28|. Such avatars facilitate natural telep-
resence and enhance user experience in gaming, social interaction, and virtual meetings.

In the entertainment industry, 3D face reconstruction plays a central role in visual effects, perfor-
mance capture, and film post-production. The ability to accurately reconstruct and manipulate
an actor’s facial expressions enables filmmakers to refine performances and achieve greater emo-
tional realism. Recent systems such as NED [50] allow photo-realistic modification of an actor’s
emotions directly in in-the-wild video footage, while VDub |21] enables realistic visual dubbing by
synchronizing lip motion to new audio tracks without altering the actor’s original performance.

With the rapid growth of social media as a platform for sharing and promoting digital content,
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Figure 2.3.3: The Transformer - model architecture.

realistic facial editing has gained significant attention. A reliable method for changing facial
emotions or expressions can provide a creative tool for face manipulation. Deepfake [67] and
neural rendering techniques make this process easier and more accessible, reducing the need for
expensive and time-consuming visual effects while maintaining high visual quality.

Finally, 3D face reconstruction has important applications in both biometrics and medicine. In
biometrics, 3D facial models provide robust identity representations that are invariant to pose,
illumination, and expression variations. In medical contexts, 3D facial geometry supports the
automated diagnosis of genetic disorders that affect facial morphology [23] and enables precise
quantitative assessment of craniofacial structures for diagnostic and surgical planning purposes

[58].

Many other applications stand to benefit from 3D face reconstruction, and ongoing technolog-
ical advancements in the field are expected to enhance existing ones while also opening new
opportunities in areas where it has not yet been explored.

2.5 Challenges

Audiovisual 3D face reconstruction remains an ill-posed problem, especially under real-world
conditions where the face is often partially occluded by hands, surgical masks or other objects.
Using only visual input for reconstruction is inherently limited due to the lack of visual informa-
tion in these occluded regions, leading to insufficient results. Conversely, relying solely on audio
information provides advantages in modeling lip motion and maintaining temporal consistency,
but it lacks the spatial information necessary to recover identity-specific facial geometry. More-
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over,

the limited availability of large-scale, high-quality datasets containing occlusions limits the

development of robust models capable of handling real-world scenarios. In addition to leveraging
complementary audio and visual modalities, modeling the temporal information across sequences

of frames is crucial, as it enforces consistency in dynamic facial expressions.

2.6

Contributions

As already mentioned, the main topic of this Diploma Thesis is audiovisual 3D face reconstruction.

Our work aims to leverage recent advancements in deep learning and multimodal representation
learning to reconstruct accurate and expressive 3D facial geometry from both visual and audio
inputs. The contributions of this thesis can be briefly summarized as follows:

1.

We introduce a novel audiovisual model for 3D face reconstruction that takes input video
and is robust under real-world conditions, including challenging scenarios with occlusions.

We model the temporal information across sequence of frames.

We propose a trimodal architecture that supports audiovisual, visual-only and audio-only
input.

We augment the training data with synthetical occlusions to improve robustness and gen-

eralization to real-world scenarios where parts of the face are hidden.

By leveraging both modalities, our model reduces erroneous mouth movement generation
when the speech does not correspond to the visible speaker in the video.

We conduct extensive qualitative and quantitative experiments, along with a user study and
an ablation study, to evaluate the performance of our method and compare it with recent
state-of-the-art approaches. The results demonstrate that our method achieves superior
reconstruction accuracy especially in occluded data samples.

2.7 Thesis Outline

The remainder of this thesis is organized as follows.

Chapter 3 provides an overview of mesh representations, facial landmark extraction, face
modeling.

Chapter 4 reviews the most relevant literature on 3D face reconstruction, highlighting prior
work in visual-driven, audio-driven and audiovisual-driven methods.

Chapter 5 presents the proposed audiovisual 3D face reconstruction framework, detailing
the network architecture, training objectives, and data processing pipeline.

Chapter 6 describes both qualitative and quantitative analyses and a user study. Next, we
presents the ablation study, which investigates the contribution of individual components
and design choices within our model.

Finally, Chapter 7 concludes a summary of the results, discusses limitations, and outlines
potential directions for future research.
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3.1 Meshes

Meshes are widely used in computer graphics and vision for various applications, including 3D
modeling, animation, and rendering. They provide a flexible and efficient way to represent com-
plex surfaces and can be easily manipulated for tasks such as deformation, morphing, and texture
mapping. A 3D mesh defines a surface via a collection of vertices and usually triangular faces. It
is represented by two matrices:

e A vertex matrix V € RV*3, where each row corresponds to the 3D coordinates (x, y, z) of
a vertex in the mesh.

NMXS

e A face matrix F' € , where each row contains indices into the vertex matrix that define

a triangular face. Each face is represented by three vertex indices.

While in this thesis we only deal with meshes consisting of triangles, other types of meshes can
include quadrilaterals (quads), or other simple convex polygons (n-gons). Formally, each mesh
can be transformed into a graph M = (V, F') which is a purely geometric representation, meaning
that it does not involve any texture. Similarly, a textured mesh is represented by M = (V, F,C),
with the texture C' € RV*3 encoded as a per-vertex color vector.

Figure 3.1.1: Polygonal 3D meshes of the same object, illustrated at multiple vertex densities [44].

3.2 Texture Mapping

Texture mapping is a technique used in computer graphics to enhance the visual detail of 3D
models by applying 2D images (textures) onto their surfaces. This process involves mapping
points on the 3D surface to corresponding points on the 2D texture image, allowing for the
simulation of complex surface details such as colors, patterns, and material properties. Texture
mapping is widely used in applications such as video games and virtual reality to create more
realistic and visually appealing representations of objects and environments.

Figure 3.2.1: Examples of texture mapping [56].
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3.3 Landmarks

Facial landmarks are semantically meaningful points on the human face, such as the corners of the
eyes, the tip of the nose, and the outline of the lips. They provide a compact geometric represen-
tation of facial structure and are widely used in tasks such as face recognition, expression analysis,
and 3D face reconstruction. In this thesis, we make use of two landmark extraction methods:
the Face Alignment Network (FAN), which produces a sparse keypoint set, and MediaPipe Face
Landmarker, which provides a dense set of landmarks covering the entire facial surface. Together,
these representations allow us to capture both coarse structural cues and fine-grained details of
the face.

3.3.1 Facial Landmark Extraction using FAN

The Face Alignment Network (FAN) [8] is a convolutional neural network designed for facial
landmark localization. It is built on stacked HourGlass networks and outputs heatmaps for each
landmark, where the peak indicates the estimated coordinate. FAN has been widely adopted in
face analysis research due to its robustness across different poses, expressions, and illumination
conditions. In this work, we employ FAN through the iBUG Face Alignment framework, an open-
source Python library developed by the Intelligent Behaviour Understanding Group at Imperial
College London. The framework, implemented in PyTorch, provides a unified interface that allows
pretrained detectors to be applied directly to input images. Within this framework, we use the
FANPredictor, a 2D facial landmark detector that encapsulates a pretrained FAN model.

Our facial landmark extraction pipeline follows a two-stage process. First, face regions are de-
tected using the RetinaFace detector [14], which produces robust bounding boxes for all visible
faces in the input images. These detected face regions are then passed to FAN for landmark local-
ization which predicts a 68-point landmark set, covering key regions of the face such as the eyes,
eyebrows, nose, lips, and jawline. Each landmark ¢; is defined as a two-dimensional coordinate:

b = (zi,y:), 1=1,2,...,68,

with (z;,y;) expressed in pixel coordinates relative to the input image.

Figure 3.3.1: Facial landmark topology extracted by the Face Alignment Network [8].

3.3.2 Facial Landmark Extraction using Mediapipe

MediaPipe (MP) is an open-source, cross-platform framework developed by Google for construct-
ing multimodal perception pipelines [22]. It is designed around the concept of calculators, modu-
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lar components that can be linked together in a directed graph to form complex data-processing
pipelines. This architecture allows MediaPipe to handle the full workflow of machine learning
inference, including data pre-processing, model execution, and post-processing, while maintaining
real-time performance across desktop, mobile, and web platforms. In addition to its role as a
general-purpose framework, MediaPipe provides a suite of pre-trained solutions for vision and
audio tasks, including face detection, hand tracking, and holistic body pose estimation [42].

One of the most widely used solutions within the MediaPipe ecosystem is the Face Landmarker,
which performs dense facial landmark detection in real time. This capability is based on the work
of Kartynnik et al. [33], who introduced the Face Mesh model for estimating 3D facial geometry
from monocular video on mobile GPUs. The Face Mesh model is integrated into the MediaPipe
framework as a complete pipeline: a lightweight face detector [5] first localizes the face region of
interest, after which a regression network predicts a dense set of facial landmarks.

The MediaPipe Face Landmarker estimates 468 landmarks per face, covering the entire surface
of the face. Each landmark is represented as a triplet

Ui = (z3,yi,21), 1=1,2,...,468,

where x; and y; denote normalized 2D coordinates within the image, later rescaled to pixel
units, and z; represents the relative depth in the same scale as the image width. This dense
representation enables reconstruction of a three-dimensional facial mesh, capturing fine-grained
features.

Figure 3.3.2: Facial landmark topology from the MediaPipe Face Mesh model [22].

3.4 3D Face Modelling

Modeling human faces has long been a challenge in computer graphics and computer vision. Since
Parke’s early contributions [51], [52], many approaches have been introduced for both representing
facial geometry [6], [10], [40] and animating expressions [68].

In this thesis, we focus specifically on the task of audiovisual 3D face reconstruction from input
videos. This involves estimating the time-varying 3D geometry and appearance of a human face by
leveraging both visual and auditory modality. Currently, a plethora of methods for single-image
or video-based 3D face reconstruction are primarily built upon 3D Morphable Models (3DMMs).
In these approaches, the parameters of a statistical face model are typically determined either
through iterative optimization procedures or by direct regression using deep learning techniques.
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However, to provide a comprehensive overview, we will first explore some powerful 3D face mod-
eling methods that do not rely on 3DMMs. Following this, we will present a detailed analysis of
3D Morphable Models, specifically focusing on the FLAME model, which serves as the core face
representation model utilized in this thesis.

3.5 Volumetric reconstruction methods for Face Modeling

Volumetric reconstruction methods aim to recover 3D facial geometry by combining information
from multiple images or depth observations. These approaches may include both traditional
geometric techniques and also more recent neural methods.

3.5.1 Structure-from-Motion

Structure-from-Motion (SfM) [64] primary role is to determine the intrinsic properties of cameras
such as focal length and lens distortion and, crucially, the precise 3D position and orientation
(pose) from which each input image was captured. It operates by detecting and matching dis-
tinctive keypoints within each image, robustly filtering erroneous matches, and then performing a
global optimization known as bundle adjustment. The output of SfM is an accurate set of camera
poses for all input images and a sparse 3D point cloud, representing only the locations of the
detected keypoints. While geometrically precise, this sparse output alone is generally insufficient
for a complete surface reconstruction.

Figure 3.5.1: Structure from Motion (in the first row) estimates camera poses from multiple input
images, while Multi-View Stereo (in the second row) reconstructs a dense 3D model [19].

3.5.2 Multi-View Stereo

Multi-View Stereo (MVS) [65] utilizes multiple images taken from different viewpoints around an
object to reconstruct its 3D geometry as shown in Figure 3.5.1. The core idea is to identify corre-
sponding points across different images and then triangulate their 3D positions. Traditional MV'S
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pipelines involve feature extraction, feature matching, bundle adjustment for camera pose esti-
mation, and dense reconstruction. While computationally intensive and sensitive to textureless
regions, new MVS methods are increasingly leveraging deep learning. Neural networks enhance
feature matching robustness and improve depth map [74], making MVS an effective approach
for generating high-fidelity 3D face models. Furtheremore, MVS can be build directly upon the
output provided by SfM utilizing the camera poses from SfM to densify the sparse 3D structure
into a continuous surface model. A leading implementation of this powerful SEIM-MVS paradigm
is COLMAP [64]. COLMAP is an open-source framework that uses state-of-the-art algorithms
for both SfM and MVS into a unified and optimized pipeline.

3.5.3 Volumetric fusion techniques

Volumetric fusion methods, such as KinectFusion [47|, reconstruct 3D surfaces by integrating
multiple depth maps into a unified signed distance function volume. The scene is discretized into
volumetric grid (voxels), each storing a truncated signed distance to the nearest surface: positive
values indicate free space, negative values lie inside the object, and zero marks the surface itself.
As new depth frames are aligned and fused, the SDF representation averages observations, filling
gaps and smoothing noise. This approach creates complete 3D models and is widely used for
real-time scanning with depth cameras.

Figure 3.5.2: Demonstration of KinectFusion for real-time 3D reconstruction and interaction using a
Kinect depth camera. (A) User scanning an indoor scene with Kinect. (B) Phong-shaded 3D
reconstruction with wireframe frustum showing the tracked pose. (C) Texture-mapped 3D model
reconstructed from Kinect RGB-D data. (D) Multi-touch interaction on the reconstructed surface. (E)
Real-time segmentation and tracking of a physical object. [47]

3.5.4 Neural Radiance Fields

Neural Radiance Fields (NeRFs) [20] represent direction for 3D reconstruction. Originally in-
troduced for novel view synthesis from a sparse set of input images, NeRFs learn a continuous
volumetric scene representation that is also rich in geometric detail. A NeRF model uses a multi-
layer perceptron to map 3D coordinates and viewing directions to both RGB color and volume
density. The density field defines geometry, with high-density regions indicating surfaces, and
this can later be converted into a 3D mesh using techniques such as marching cubes. These
neural methods can model subtle aspects of facial shape, skin, and even hair, making them a
powerful tool. Though their volumetric nature can make editing and export to mesh pipelines
more challenging.
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3.6 3D Morphable Face Models

While volumetric methods provide detailed reconstructions, they also present certain challenges.
They often produce dense, high-resolution models that can be difficult to animate or manipulate.
More importantly, they lack a semantic understanding of identity and facial expression. This is
where 3D Morphable Models have historically proven effective. Unlike raw geometric outputs,
3DMMs [62] provide a statistically learned representation of face variations. They offer a para-
metric framework in which a wide range of shapes and textures can be generated and controlled
using only a small set of interpretable parameters.

Blanz and Vetter introduced the concept of the 3D Morphable Models [6] as a general face repre-
sentation and a principled approach to image-based facial analysis. In their seminal work, they
proposed a novel method for modeling textured 3D faces by transforming both shape and texture
information from example scans into a vector space representation. They proposed modelling
shape and texture variations using three-dimensional vertices rather than image coordinates.
This formulation allows for the generation of new, realistic faces while constraining the model to
avoid producing facial shapes or appearances that are statistically unlikely.

Constructing a 3DMM begins with building a 3D face database using high-resolution scans. A
crucial step is solving the correspondence problem: ensuring that semantically consistent land-
marks (e.g., nose tip, eye corners) are aligned across all scans so that each face shares the same
topology and vertex ordering. This alignment process, known as registration, ensures that each
3D face in the dataset can be represented as a shape vector (capturing the 3D coordinates of its
vertices) and a texture vector (representing RGB color values at each vertex). The shape vector
of its n vertex coordinates takes the form (X1,Y1, Z1,..., Xn, Yn, Z,)T € R3", and similarly, the
texture vector encodes (Ry1,G1, B1,. .., Ry, G, By)t € R3™.

Since the shape and texture vectors are not orthogonal and are high-dimensional, they cannot be
directly used as basis vectors for modeling. Therefore, Principal Component Analysis (PCA) is
employed to perform dimensionality reduction. First, the average shape and texture vectors across
all training samples are computed. Then, each individual face vector is centered by subtracting
the mean AS; = S; — S and AT; =T; — T.

Covariance matrices for shape and texture C's and Cr are calculated from these centered vectors,
and PCA is applied to extract their eigenvalues and eigenvectors. The resulting eigenvectors
form the principal components (or basis vectors) for shape and texture, denoted as s; and t;
respectively. The 3D shape and texture of any face can now be represented as a weighted sum of
these components:
k k
Smodel = S + Z OéiSia Tinodel = T + Z Bsz
i=1 i=1

where: S, T are the mean shape and texture, S;, T} are the eigenvectors (principal components),
oy, B; are the PCA coefficients

To reconstruct a 3D face from a single 2D image, the task is to estimate the optimal shape and
texture coefficients o and (3, along with additional rendering parametest. Theng parameters,
combined with the 3DMM coefficients, allow the synthesized 3D face to be projected onto a 2D
plane and compared with the input image. The fitting process then involves minimizing the
difference between the rendered projection and the actual 2D image using an optimization loop.
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3.6.1 FLAME

In this Thesis, we make use of FLAME [40]. FLAME is a statistical head model that separates
identity, pose, and facial expression into separate controllable components, enabling flexible
and accurate facial modeling. FLAME is designed to be efficient by using a relatively low-polygon
mesh, while still maintaining realism through articulated joints and blend skinning. It is trained
on sequences of 3D scans and is able to capture realistic blendshapes, which are approximate
semantic parameterizations of facial expression.
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Figure 3.6.1: Parametrization of the FLAME model. Left: Activation of the first three shape

components. Middle: Pose parameters actuating four of the six neck and jaw joints. Right: Activation
of the first three expression components [40].

FLAME adapts the SMPL body model formulation [41] to heads. The model represents the
human face as a triangular mesh consisting of N = 5023 vertices connected by edges, which
define the surface geometry. Each vertex is associated with skinning weights W (values between
0 and 1 that sum to 1), describing how much the vertex is influenced by nearby joints (K = 4
joints: neck, jaw, and eyeballs). These joints, in turn, define the kinematic skeleton that allows
the mesh to be articulated.

The model is defined by a mean template shape represented by a vector of N concatenated
vertices T € R3N in the zero pose #* and a set of blend weights W € RV*X_ To account for
variability, they use blendshapes. Each blendshape is essentially a displacement function that
shifts vertex positions relative to a neutral template. Three sets of learned offsets are added:

e Shape blendshapes, which capture person-specific shape variation:
18]
Bs(8;S) = BuSn,
n=1

R?:N

where [ is the vector of identity parameters and S, € are orthonormal principal

components of shape displacements.
e Lxpression blendshapes, which capture deformations due to facial expressions:
Kl
BE(#’: E) = Z wnEna
n=1

RSN

where 1 is the vector of expression parameters and E,, € are expression basis vectors.
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e Pose blendshapes, which capture deformations caused by joint rotations, such as jaw open-

ing:
IK

BP(G;P) = Z (Rn(e) - Rn(e*))Pm
n=1
where 6 are the pose parameters, R,, are entries of the joint rotation matrices, and P, € R3Y
are pose-corrective shapes.

The three components are added to the mean template to form the posed mesh:

Tp(B,0,¢) =T + Bs(B) + Bp(0) + Be(y).

To produce natural articulation, FLAME applies Linear Blend Skinning, which blends vertex
transformations from nearby joints according to the skinning weights. The complete model is
written as:

M(B,0,4) = W(Tp(B,0,v), J(B),0, W),

where W is the skinning function, W are the skinning weights, and J(/) is a sparse matrix
defining how to compute joint locations from mesh vertices.

In summary, FLAME represents faces as the mean template mesh plus identity, expression, and
pose blendshapes, articulated through linear blend skinning. This decomposition provides a
compact and controllable model for realistic face generation and animation.

3.6.2 Other 3DMMs

Although FLAME provides a more advanced parametric representation by jointly modeling iden-
tity, pose, and expression in a unified framework, it is important to also present earlier notable 3D
Morphable Models that primarily focused on facial identity and texture. The Basel Face Model
(BFM) [53] is a seminal and widely adopted 3D Morphable Model build from 100 high-quality 3D
scans. It uses PCA to create separate statistical models for face shape and texture , ensuring high
fidelity through a refined registration pipeline. BFM'’s strength lies in its analysis-by-synthesis
fitting, which disentangles identity from external factors enable generation of robust face models.

While BFM laid the foundation for 3DMM-based face modeling, its limited dataset restricted
demographic diversity. LSFM was developed to address this limitation by scaling the model to
thousands of scans, offering broader coverage and stronger generalization. The Large Scale Facial
Model (LSFM) [7] is a 3D Morphable Model automatically constructed from 9,663 distinct facial
identities, making it one of the largest-scale morphable models available. LSFM employs a PCA-
based statistical framework to model facial shape and texture variations, relying on an advanced
pipeline to ensure dense point-to-point correspondence across all scans. An example of the LSFM
model and its principal components is shown in Figure 3.6.2. By leveraging its rich demographic
data, LSFM also enables the creation of tailored submodels for specific age, gender, and ethnicity
groups, significantly enhancing its accuracy and generalization compared to smaller, less diverse
models in generating realistic 3D faces.

53



Chapter 3. Face Modeling

Id Comp. 1 Id Comp. 2 Id Comp. 3
S -3 +3c —30c +3c —30 +3c

o
7]
|

°
”

illustrating facial identity variation using the

—30 (identity only)

Expr. Comp. 1 No expression

+30

Expr. Comp. 2

Figure 3.6.2: Principal component analysis of the LSFM ,
first three components and expression variation using the first two components. [15].
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4.1. 3D Face Reconstruction Literature

4.1 3D Face Reconstruction Literature

Existing approaches in face reconstruction can be broadly categorized into three groups based on
the input data: image/video-driven, audio-driven, and audiovisual methods.

e Image/Video-driven methods rely on monocular visual input to reconstruct the facial
surface. The task is to infer the parameters of a 3D Morphable Model or directly regress
the 3D geometry that best explain the face depicted in a given image. Predicting the 3D
facial performance from a video refers to the dynamic version of the reconstruction problem.
Here, the objective is not only to estimate the 3D facial geometry for each frame, but also
to capture the temporal information of expressions and motions, resulting in a coherent
sequence that represents the performance of the face over time.

e Audio-driven methods use speech signals as the primary input for predicting facial mo-
tion. These models typically focus on synchronizing mouth and lip movements with speech
content generating talking head avatars.

e Audiovisual methods combine both image and audio modalities to leverage the comple-
mentary strengths of each modality. By fusing visual input with speech-driven dynamics,
these methods can produce reconstructions that capture both fine-grained geometry mesh
and temporally coherent expressions. Such approaches have become an active research area
in recent years with many open challenges remaining.

In this thesis, we explore the third category and we propose a novel audiovisual method for 4D
face reconstruction. In the following sections, we review some of the most relevant works in each
category.

4.2 Facial Reconstruction Methods: Image/Video-Driven

In this section, we present some recent models that take a single monocular image as input and
reconstruct the corresponding 3D face geometry.

4.2.1 DECA

Detailed Expression Capture and Animation (DECA) [17] is a 3D face reconstruction model that
emphasizes on capturing fine-grained details. DECA addresses limitations of previous approaches,
which struggles to model animatable faces with dynamic details like wrinkles, while trained on
in-the-wild images. The model consists of two main components: a coarse reconstruction and a
detail reconstruction.

In the first step, the model learns a coarse 3D face reconstruction in FLAME model space using
an analysis-by-synthesis strategy. Given a 2D image as input, the model encodes the image into
a latent representation, decode it to render a synthetic 2D image, and minimizes the difference
between the rendered and input images. The encoder consists of a ResNet50 network |25] followed
by a fully connected layer that regress FLAME and enviroment parameters. Formally, given an
image I, the coarse encoder &,

EC(I) — ( B79’¢?Z’C’ A)

outputs FLAME parameters 3, 6, v, lighting [ and camera parameters ¢ and and albedo A.
Training uses a dataset of 2D face images with multiple samples per subject, together with
identity labels and ground-truth landmarks. Supervision combines several objectives: landmark
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alignment, eye-closure consistency, photometric error, identity preservation, shape consistency,
and regularization.

In the second step, the model augments the coarse FLAME geometry with a UV displacement
map. The detail encoder shares the same architecture as the coarse encoder and predicts a
subject-specific latent code 9.

This code is concatenated with FLAME expression and jaw-pose parameters and decoded into a
UV displacement map D.

Fd(¢7 57 Gjaw) — D

The displacement map is then converted to a detailed normal map, which augments the differ-
ential renderer with dynamic details. An overview of the architecture is illustrated in Figure
4.2.1. Training minimizes a combination of photometric loss, ID-MRF loss, symmetry loss, reg-
ularization, and a consistency loss. The consistency loss ensures that subject-specific details are
disentangled from expression-dependent ones. Specifically, exchanging detail codes between two
images of the same subject should not alter the rendered output.

Training: detail capturing & modeling

Leoarse

Displacements Map

C:cameracode  a:albedo code  L:lightcode  f:shapecode  6: pose code

Image j

Figure 4.2.1: DECA Training and Detail Consistency Loss. In the training stage (left box), DECA
enforces shape consistency and learns an expression-conditioned displacement model from detail
consistency across multiple images of the same person. On the right scheme, extracting the detail code
from image j and combining it with the expression of image i should have no effect on the rendered
image [17].

4.2.2 EMOCA

Emotion Capture and Animation (EMOCA) [13] is a neural network that reconstructs an ani-
matable 3D face from in-the-wild images, capturing expression details that convey the emotional
content of the input. It is build on top of DECA by leveraging its accurate identity shape re-
construction accuracy. EMOCA discards the expression parameters predicted by DECA and
introduces a separate encoder to estimate facial expressions, while keeping the other components
fixed.

Ee(I) — we

This architecture reduces the number of trainable parameters, leading to lower resource require-
ments, faster training, and reduced memory consumption. The model can be trained directly
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on emotion-rich datasets without requiring multiple images per subject and it uses a state-of-
the-art emotion recognition model for expression supervision. A novel perceptual emotion loss is
introduced to enforce similarity between the emotion features of the input and rendered images:

Lemo = ”61 - 62H2

where €; and ey are the emotion feature vectors of the input and the synthesized image re-
spectevely predicted by the pretrained emotion recognition model.

f Relative Landmark Losses (eyes, mouth) L
L Photometric Loss ) COARSE STAGE
Emotion
Consistency Loss

Emotion
Recognition

Emotion
Recognition

—

1 )
o Color Coding
Pretrained by DECA and frozen
Albedo
Coarse Model | Tanedoyevooa
shape - ~ [Pretrained by DECA and finetuned
encoder \ Differentiable
Renderer Fixed DMM parameters |
i Pretrained perceptual loss
Loss computation
FLAME Golored arrows prevent
ambiguities
. - //
- = Differentiable
i i Renderer
Detail D';’;‘::Lr - TR 4 , 3
Encoder
// —

Detail Rendering

DETAIL STAGE

Detail Stage Losses

Figure 4.2.2: EMOCA: extension of DECA for emotional face capture. Given an input image, the coarse
shape encoder (initialized from DECA and kept fixed) predicts the coarse facial shape, while EMOCA’s
trainable encoder estimates the expressions. During training of the detail encoder, the EMOCA’s
expression encoder is fixed. To estimate the emotion consistency loss, both the original and the coarse
rendered images are passed through a pretrained emotion recognition network [13].

4.2.3 SMIRK

In this subsection we present Spatial Modeling for Image-based Reconstruction of Kinesics
(SMIRK) [59], a method for accurate expressive 3D face reconstruction from images. It adresses
shortcomings in self-supervised formulation and pure expression diversity data in previous ap-
proaches, presenting a novel image-to-image translator model based on U-Net [61]. The key
idea is to reconstruct the image while relying only on the rendered predicted geometry and a
small number of sampled pixels. SMIRK uses separate encoders, which consist of a MobilenetV3
backbone [27| followed by a fully connected layer to regress the FLAME parameters.

Encoder for shape Ey and pose Ejg are pretrained and remain freezed, while expression encoder
Ey is trainable. Supervision is enabled with two alternative separate passes during each training
iteration.

Reconstruction path: Given an image I the model encodes the FLAME parameters to render
the face geometry S. Then, the input image is masked out M (I) and along with S, is fed into
the neural renderer T to obtain the reconstruction image I’

I'=T(S®M(I))
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where @ denotes concatenation. The reconstruction path is supervised using a combination of
standard self-supervised landmark, photometric and perceptual losses.

image reconstruction
losses

Image-to-Image
Translator

Encoder — ~Renderer

initial image

reconstructed
image

Figure 4.2.3: Reconstruction path. The encoder predicts head pose, identity, and expression parameters,
which are rendered into a 3D geometry. This rendering is concatenated with the masked input image
and passed through an image-to-image translator to produce the reconstructed image.|[59].

Augmented expression cycle path: In this path, the predicted expression parameters i are
replaced with an augmented expression .4, while keeping the predicted shape and pose fixed.
The translator network T generates a new image I('wg corresponding to 14yy. This image is
then passed through the expression encoder Ey, to recover the expression parameters. A cycle
consistency loss is applied to enforce that the predicted expression matches the original augmented

expression:

EGXP = ‘|E¢(T(R(07/3a¢aug) S M(I))) - waugHi

During training, the expression encoder and the image-to-image translator are alternately frozen
to prevent the translator from compensating for encoder errors, ensuring robust disentanglement
of expression parameters.

new expression

1

Image-to-Image
Translator

Encoder —

expression

expression

reconstructed

T .
already predicted .
image

pose & identity

masking

initial image

Figure 4.2.4: Augmented Cycle Path. Identity and pose are fixed while new expressions are used to
generate augmented faces. The cycle loss enforces consistency, allowing the model to learn from varied
expression inputs [59].
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4.2.4 SPECTRE

We continue the literature review with SPECTRE [18], a method for perceptual 3D face from
reconstruction from videos which focuses on accurately modeling the mouth area. To achieve this,
it introduces a lip-read loss that enforces strong correlation between lip movements and speech
articulation.

perceptual lip |
reading loss I

L ? [ -y
? ‘ Lip Readlng
Nelwork
mouth
cropping

mouth
cropping

3D Reconstruction geometric ‘\

[rigid ransform_] constraints
—— ‘—* - (oot ] :
[ abedoax ] % > > E Differentiable v -
\: s \: \’ 5 ~
Perceptual W
input video k Encoder ]aw pose s b
Emotion’
Network

Vo

perceptual I,
expression loss

Figure 4.2.5: Overview of the SPECTRE architecture. The input video is fed into a fixed encoder which
estimates scene parameters and identity parameters, and an coarse prediction of jaw and expression
parameters. A mouth/expression encoder then augments the expression and jaw pose, and a
differentiable renderer produces the corresponding 3D face. The mouth region is cropped from both the
input and the rendered sequences, and a lip-reading network is applied to compute the perceptual
lipreading loss. In parallel, a facial expression recognizer is used in the same way to compute the
perceptual expression loss. [18].

SPECTRE borrows EMOCA network architecture but replaces the ResNet50 encoder with a
lightweight MobileNetV2 followed by a temporal convolution layer to reduce the computational
overhead of the system. For training supervision, a perceptual expression loss is applied between
the emotional feature vectors of the input video and those of the reconstructed 3D mesh.

To improve the reconstruction of the mouth (expression and jaw parameters in FLAME space),
SPECTRE introduces a perceptual mouth-oriented loss. Since 2D landmarks often suffer from
inaccuracies, a network pretrained on the LRS3 dataset [43] is used. It takes as input grayscale
sequences of both the original and differentiably rendered images cropped around the mouth, and
estimates the cosine distance between them.

Geometric constraints are added to address the domain gap between rendered and original images.
These penalize significant deviations of the predicted expression and jaw parameters from the
corresponding DECA predictions, which serve as a reliable initialization. In addition, landmark
losses are included as an alternative geometric constraint by enforcing consistency between the
2D landmarks of the reconstructed and the original face images.

4.3 Facial Reconstruction Methods: Audio-Driven

Audio-driven reconstrauction methods, also refered to as talking head generation, aim to generate
a talking head avatar whose facial movements is accurately synced with the input audio.
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4.3.1 VOCA

Voice Operated Character Animation (VOCA) [12] is a speaker-independent animation framework
for talking faces. It is trained on VOCASET, a dataset of 4D facial scans aligned with the FLAME
model. By conditioning on subject labels, the model can reproduce a wide range of speaking styles.
The input consists of a subject-specific template mesh and the raw audio signal. The audio is
processed by DeepSpeech [24], a well establish speech recognition RNN model, to extract speech
features that are then passed through an encoder. The encoder is composed of four temporal
convolution layers and two fully connected layers while subject identity is represented by an
one-hot vector. The decoder maps the low-dimensional embeddings to 3D vertex displacements,
which are added to the input template. The output is an animated 3D face in a neutral pose,
represented in FLAME model space.

Template
One-hot subject encoding
Template | == =
g T
— — —> —»@—»
o Add
i
Speech signal -
Input DeepSpeech windows Time convolutions Decoder network Qutput

Figure 4.3.1: VOCA architecture. The model is trained to predict expression coefficients from audio
features using a loss function with two terms: a position loss that enforces vertex alignment with ground
truth, and a velocity loss that promotes temporal stability across frames.[12].

4.3.2 MeshTalk

MeshTalk [60] is a cross-modal framework for speech-driven 3D face animation that disentangles
identity-specific geometry from speech-correlated motion. Given a sequence of face meshes z1.7 =

RY*3 represents V vertices in 3D space, and a corresponding

(z1,...,z7), where each mesh z; €
sequence of aligned speech snippets ay.r = (ay,...,ar), with each audio feature a; € R” be a
sequence of T' speech snippets, each with D samples, aligned to the corresponding visual frame ¢.
MeshTalk learns a shared categorical latent expression space that captures speech-related facial

motion.

The system comprises an encoder and a decoder. The encoder contains two parallel streams: an
audio encoder that extracts temporal features from the speech signal and an expression encoder
that encodes mesh-based motion dynamics. Their outputs are fused and mapped to a cate-
gorical latent expression space. These categorical codes serve as an interpretable and compact
representation of facial motion.

The decoder, implemented as a U-Net—style architecture, takes a neutral face template mesh h
and the latent expression sequence to predict an animated sequence of meshes. This design en-
ables the model to reconstruct temporally consistent and expressive facial motion. MeshTalk is
trained with objectives promoting cross-modal consistency, motion realism, and temporal smooth-
ness, ensuring that the generated animations accurately reflect speech content while remaining
independent of speaker identity.
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Figure 4.3.2: Overview of MeshTalk architecture.[60].

4.3.3 FaceFormer

FaceFormer [16] is an autoregressive transformer-based model for speech-driven 3D facial ani-
mation. It is designed to overcome two main limitations of earlier approaches: the difficulty
of modeling long-term audio context and the lack of large-scale 3D audio—visual training data.
Instead of using convolutional layers for temporal modeling, FaceFormer adopts a transformer
architecture, which can attend to all tokens in the input sequence in parallel. This design enables
the effective capture of long-range contextual information and supports more realistic full-face
animation.

The model follows an encoder—decoder structure. The encoder is inspired by wav2vec and begins
with several temporal convolution layers that extract features directly from raw audio. A linear
interpolation layer is applied for resampling, and a multi-layer transformer encoder with a linear
projection maps the audio features to speech representations.

The decoder contains two core modules. The first is a biased multi-head self-attention with pe-
riodic positional encoding, which allows the model to generalize to longer input sequences. The
second is a biased cross-modal multi-head attention module, which aligns the audio representa-
tions with motion features to produce temporally coherent 3D facial animations. In this way,
FaceFormer effectively integrates speech information with motion dynamics to generate smooth
and realistic talking-face sequences.
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Figure 4.3.3: High-level overview of FaceFormer. Given a raw audio signal and a neutral 3D face mesh,
FaceFormer is composed of an end-to-end transformer-based architecture that generates 3D facial
motion sequences with accurate synced lip.[16].

4.3.4 CodeTalker

CodeTalker [73] introduces a speech-driven 3D facial animation framework designed to address the
over-smoothing and ambiguity issues common in traditional regression-based methods. Rather
than directly regressing continuous facial motion parameters from speech, CodeTalker learns a
discrete motion prior that constrains the generation process to realistic motion patterns. This
prior is established through a vector-quantized autoencoder, which encodes real facial motion
sequences into a set of discrete motion primitives stored in a learned motion codebook. During
inference, a cross-modal transformer decoder takes as input the speech features, a style vector
encoding identity information, and past facial motions to predict the corresponding sequence
of motion codes by querying this codebook. This discretization constrains the output space to
realistic facial motions improving lip synchronization.

—
= . Transformer
z encoder 5
Speech Aj.p 1
Speech encoder
N
Style vector s —» 5‘1 Codebook Z
g — Transformer . _— —» D —
=% decoder quantization -
— =
- o= 1
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b e e e e e e e e e e e e e e e e e e e e e e e e e e e = 1
Past motions My.,_, Cross-modal decoder Predicted motion 1,

Figure 4.3.4: Overview of the CodeTalker speech-driven 3D facial motion synthesis.|[73].

4.4 Facial Reconstruction Methods: Audio and Image-Driven

Audiovisual talking face generation aims to synthesize realistic videos of talking humans by jointly
using audio and visual information. Combining both modalities enables the model to generate lip
movements that are accurately synchronized with speech while maintaining the visual consistency
of the speaker’s face. Limited work has be done toward this direction and to the best of our
knowledge AVFace [11] is the only method for spatio-temporal (4D) face reconstruction.
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4.4.1 AVFace

Audio-Visual 4D Face Reconstruction (AVFace) [11] is a method that leverage a combination of
these modalities for 4D face reconstruction. Its architecture consists of two stages.

The encoder combines a ResNet-50 with a transformer using multi-head self-attention. Expres-
sion and jaw parameters are obtained from the concatenation of audio features extracted with
DeepSpeech and processed by a 1D convolution layer, and visual embeddings from ResNet-50.
These fused features are passed through a transformer encoder to capture the temporal structure
of the input sequence. During training, drop-modality is applied to ensure effective use of both
audio and visual modalities.

In addition, a FiLM-conditioned SIREN MLP [54] predicts lip vertex offsets from audio, which
are added to the coarse lip vertices to refine the mouth shape and position.

In the second stage, high-frequency facial details such as wrinkles and folds are recovered. A
UNet-ResNet, initialized with pretrained weights, predicts normal displacements D from the
coarse output. Audio features are fused in the encoder to improve prediction around the mouth.

AVFace exploits the temporal modeling and audio signals to remain robust under face occlusions,
such as hand motions. While the training set already includes some occluded frames, robustness
is further improved by fine-tuning with synthetic data using the method proposed by [70].

Coarse Stage Fine Stage

Improved lips
Coarse shape Improved lips
Detailed shape
R L(p refinement
.‘ | 77777

mpuzf?ames m HHH ____________
W’”’D A

displacements

Input
speech ? sienmip  Lip Refinement
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normals UV normals

E,: normals encoder  N: pseudo-ground truth UV normal Is
D, : normals decoder N: predicted UV normals

: DeepSpeech feature
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Figure 4.4.1: AVFace Network Architecture. Given a video of a talking face and its corresponding
speech segment, the method applies a coarse-to-fine optimization process to reconstruct detailed 4D
facial geometry. [11].
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Chapter 5. Proposed Method

5.1 Preface

This chapter describes the proposed pipeline for end-to-end 3D face reconstruction. The aim
of the method is to reconstruct faces with accurate geometry and realistic mouth movements
under challenging real-world conditions. Our dataset consist of in-the-wild videos containing
noise, occlusions, and other unpredictable variations. These issues limit the reliability of existing
approaches and motivate the development of more robust reconstruction systems.

We focus on two main difficulties. The first is occlusion, where parts of the face, such as the
mouth, are covered (e.g., by a hand in front of the speaker). Such occlusions are frequent in
talking face videos, and they limit the performance of purely image-based methods. To address
this, the proposed model combines temporal information with audio features so that the face and
especially the mouth area can be reconstructed even when it is not visible. The second difficulty
is background noise, which can be either speech from other speakers or environmental sounds.
In this case, the model is designed to rely more heavily on the visual modality to reconstruct a
closed mouth when the speech signal does not originate from the main character depicted in the
video.

In addition, our framework has a dual-mode design. It can operate as an audio-visual model,
exploiting the complementary strengths of both modalities, or as an audio-only model, which
itself achieves high overall performance. This flexibility enables the system to adapt to a wide
range of application scenarios, depending on the availability and reliability of the input data.

5.2 Preliminaries

As we established in Chapter 4 modeling the human face as a three-dimensional object instead of
an two-dimensional image can better capture its variability, which is crucial for the perception of
realism. Hence, in our method we use FLAME [40] 3D morphable model. FLAME is a statistical
3D head model with seperate parameters for identity shape 3 € RI8I. facial expression ¢ € RI¥I
and pose parameters § € R3**3 for rotations around k = 4 joints (neck, jaw, and eyeballs) and
the global rotation. Given all parameters, FLAME outputs a mesh with n, = 5023 vertices.
Formally, FLAME is:

M(B,0,v) — (V,F),
with vertices V € R™*3 and ny = 9976 faces F' € R™s %3,

Most existing approaches rely exclusively on visual input, whereas the proposed model is further
enhanced by incorporating audio information. For this purpose, wav2vec [4] is employed as a
pretrained speech representation model to extract audio embeddings. The wav2vec architecture
consists of three components. A multi-layer convolutional feature encoder f : X — Z maps raw
audio X into latent speech representations zi,...,z7r. These latent vectors are provided to a
Transformer network g : Z — C, which produces contextualized representations ci,...,cr by
modeling long-range dependencies across the entire sequence. In parallel, the latent representa-
tions are discretized by a quantization module Z — @, creating codebook entries ¢; that serve as
prediction targets for the self-supervised training objective. The overall architecture is illustrated
in Figure 5.2.1.

During pre-training, a proportion of the feature encoder outputs is masked before being passed
into the Transformer. Masking is performed by randomly sampling a subset of time steps as

68



5.3. Synthetic Occlusions

starting indices and replacing spans of M consecutive latent vectors with a single trainable mask
embedding, which is shared across all masked positions.

The model is supervised by a contrastive loss L,,, which requires to identify the true quantized
latent speech representation gie among a set of distractors. In addition, a diversity loss L4
regularizes the quantization module by encouraging uniform usage of all codebook entries.

L =Ly +aly,

where « is a tunable hyperparameter.

Contrastive loss

L
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oo m/w ¥ \m m
/ Transformer /
Masked

Quantized
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Figure 5.2.1: Wav2vec framework overfiew. The model encodes raw audio into latent representations,
applies masking and contextual modeling with a Transformer, and learns discretized speech units
through quantization. [4].

5.3 Synthetic Occlusions

Our dataset consists of in-the-wild videos which provide challenging input sequences for our
model. However, two difficulties arise: (i) there are relatively few videos containing natural facial
occlusions, and (ii) landmark extraction often fails under heavy occlusions, which can mislead
the model.

To address these issues, we augment the dataset with two categories of synthetic occlusions. The
first category consists of random objects or hands using the face occlusion generation method
proposed by [70]. For a random sequence of consecutive frames from our real data, we then
synthesize an occlusion event. The occluder is first placed at an initial position in the starting
frame. From this point onward, we introduce two forms of temporal transformation: translation
and rotation. The occluder’s motion across frames is defined by three key points: a random
starting point outside the image boundary, a target point near the mouth region, and an end point
outside the boundary on the opposite side of the frame. Intermediate positions are interpolated
smoothly between these points, creating a curved trajectory. This guarantees that the occluder
enters from outside the frame, moves smoothly across the face, and exits again outside the
frame. In addition, a total rotation angle is randomly sampled in the range [10°,120°] (positive
or negative), which is applied progressively to the occluder across frames using a cosine-based
easing function.

The second category consists of medical masks, which are synthesized using MediaPipe landmarks
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Figure 5.3.1: Synthetic hand and object occlusions applied to a training video sample, visualized every
second frame.

[34]. We define polygons around the lower face using predefined landmark chains along the left
and right jawlines and the nose. We fill this polygon with a randomly selected texture from a
large dataset. For each video, a random subsequence of consecutive frames is selected, and the
mask is applied consistently across those frames.

Figure 5.3.2: Synthetic textured surgical mask applied on video frames. The synthetic mask successfully
follows the face motion across frames.

5.4 Data Processing

To process the videos for training, we divide them into fixed -length segments and we use a variable
K to denote the number of frames extracted from each video. Depending on the segment length,
we sample a random continuous subsequence of K frames. For each frame, we load pre-computed
facial landmarks obtained from FAN and MediaPipe. We use the MediaPipe Face Landmarker
for landmark extraction on each video frame. As described in Chapter 3, the model detects a
single face and estimates 468 three-dimensional keypoints that describe the overall face geometry.
In addition, we extract landmarks using the FAN model which predict 68 face keypoints.

In order to expedite the training process, we sub-sample both the MediaPipe and FAN landmarks
and we keep the combination of them. For the jawline, we select the 17 FAN landmarks, while for
the remaining facial regions such as the mouth, eyes and nose, we retain 109 MediaPipe keypoints
instead of the full 468. This brings us to a total of 126 landmarks which results in a compact
landmark set that preserves the most relevant facial information.

Figure 5.4.1: First image depicted the FAN landmarks while the second visualize the Mediapipe
keypoints. For out method we use a combined subset.
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Also, our method relies of masking faces. To that end, we use the mediapipe landmarks (or the
fan landmarks if the former are missing) and calculate the convex hull of the landmarks in order
to generate the binary mask that covers the full face.

Finally, each dataset sample contains a sequence of original frames, the synthetic occluded frames,
the corresponding FAN and MediaPipe landmarks together with flags indicating whether they
were valid, the convex hull mask, and the audio waveform.

5.5 Architecture

The proposed architecture, Face AudioVisual Occluded-robust Reconstruction (FAVOR),
built on top of SMIRK [59] which is a state-of-the-art model for capturing extreme expressions.
We model the human face as a three-dimensional object in FLAME space. An encoder E(-)
takes as input a sequence K of synthetic occluded video frames I‘fCKCI = {IfCCI,I§’CCI, e ,I%CCI}
and regresses the FLAME parameters that correspond to each frame. Following the design of
SMIRK, we separate E into three branches:

Pose encoder Ej predicts the pose parameters 01.x = {01,...,0x} . It consists of a Mo-
bileNetV3 backbone [27] applied to 125 .

Or.x = Ep(I75)

Shape encoder Eg regresses the shape parameters f1.x = {f1,...,8k}. It also uses a Mo-
bileNetV3 backbone followed by 1D convolution layers applied across the temporal dimension,
which allows the model to capture short-term dynamics from a sequence of video frames.

B = Eg(IPsd)

Expression encoder E, takes as input both frames and audio. The frames are processed
through a MobileNetV3 backbone. For the audio input, we extract features using wav2vec2.0, a
transformer-based model pre-trained on 960 hours of unlabeled audio from LibriSpeech dataset
[49] and fine-tuned for ASR on the same audio with the corresponding transcripts. Given an

€ RAIXT68 where 49 is the number

input audio segment of length K, wav2vec outputs features a,,
of audio frames and 768 is the embedding dimension. To align the frequency of the wav2vec
output with the video frame rate, we use a 1D convolution with stride 2, resampling features to
25 fps. This step forms the first layer of the audio head, which is followed by four additional 1D
convolution layers. Then, the audio features are projected to the same dimension as the visual
features so that both share a common latent space. The two modalities are concatenated, and a
temporal CNN is applied to capture cross-modal dependencies. This design enables smooth and
accurate prediction of facial expressions ¥1.x = {¢1,...,9¥k} across frames. For training Pose

and Shape Encoders were pre-trained and remain frozen.
Yix = By(IP5)

We follow the same architecture from SMIRK for the renderer and the generator. We use a
differentiable renderer based on orthographic projection and a mesh rasterization step. The
predicted 3D vertices are projected with scale and translation parameters, and per-vertex at-
tributes are interpolated across pixels using barycentric coordinates. Because the rasterization is
differentiable, gradients can flow from the rendered images back to the FLAME parameters and
the encoder. Formally,

SI:K - R(HI:K, Bl:Ka ¢1:K)
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Chapter 5. Proposed Method

where S71.x denote the sequence of outputs of the differentiable rasterization step, where Si.x are
the monochrome renderings of the reconstructed face mesh.

Generator consists of a U-Net archineture and takes as input the sequence of rendered predicted
mesh S7.x and sparsely sampled pixels of the input. A masking function M(-) is applied to the
original non-occluded input frames masking out the face and only retaining a small amount of
randomlly selected pixels. M (I1.x) is concatenated with Si.x and the resulting tensor is passed
through the neural renderer T to produce a reconstruction of the original image

I{;K — T(SI:K ©® M(IIK)

where @ denotes concatenation. It is important that the model learns to reconstruct the non-
occluded image so that it will not be affected by the occlusions in the dataset.

Perceptual Lip
Reading Loss

Lip Reading
Network
mouth
cropping

‘ mouth
cropping

input video

—>» Renderer

pose
shape

| expression
reconstructed video

Masking

Image Reconstruction Losses

Figure 5.5.1: Overall Architecture of our model during training. An input image is passed to the
encoder which regresses FLAME and camera parameters. A 3D shape is reconstructed, rendered with a
differentiable rasterizer and finally translated into the output domain with the image translation
network. Then, standard self-supervised landmark, photometric and perceptual losses are computed.

5.6 Loss Functions

To train our model effectively, we combine several loss functions, each addressing a different
aspect of the reconstruction process. Below, we describe each component in detail.

Photometric loss. We compute the L1 reconstruction error between the original frame I and
the fused frame I':

Lphoto = ||I/ - I||1

This loss enforces pixel-level consistency and ensures that the fused frame remains close to the
ground truth in terms of low-level appearance.
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VGG perceptual loss. To encourage high-level perceptual similarity and accelerate convergence
during the initial training phases, we adopt a perceptual loss using the VGG network [32]:

Lygg = ||F(I,) =T,

where T'(-) denotes the feature embeddings extracted from a pretrained VGG encoder. This
loss emphasizes structural and textural details that are perceptually important but may not be
captured by pixel-wise differences.

Landmark loss. To ensure geometric consistency in facial structure, we minimize the squared
Lo distance between the ground-truth 2D facial landmarks k and the projected landmarks &’
from the fused frame:

N
Liic = Y ki — K3,
i=1

where N denotes the total number of landmarks. This loss guides the model to preserve accurate
facial geometry, especially around key regions such as the eyes, nose, and mouth.

Lip-reading loss. Inspired by the speech-informed training strategy of SPECTRE [18], we
integrate a lip-reading loss to capture the temporal dynamics of lip motion during speech. Both
the ground-truth and fused videos are cropped around the mouth region, and the corresponding
feature vectors e€; and eg are extracted from a pretrained lip-reading model for each frame. The
similarity between the two feature sequences is quantified using the cosine distance:

1 K
Elr - Kkz_ld(efkveRk)’

where d(-) denotes the cosine distance and K is the number of frames in the sequence. This loss
ensures that lip movements in the fused video remain synchronized with the spoken content.

Expression regularization. To avoid exaggerated or unrealistic facial deformations, we impose
an Lo penalty on the expression parameters:

Lreg = [1¥13,

which encourages smoother and more natural expressions.

5.7 Experiment Setup

Before training the full audiovisual model, we pretrain all three encoders (pose, shape, and ex-
pression) using only the visual modality. This stage is supervised primarily with landmark-based
reconstruction losses for pose and expression, combined with expression regularization to prevent
extreme deviations from neutral expressions. Additionally, we introduce a temporal smoothing
loss on pose and expression parameters to enforce consistency across consecutive frames. The
shape encoder is further supervised with predictions from MICA [79], after which the pose and
shape encoders are kept frozen.

During main training, both visual and audio modalities are used. The model is optimized with
a weighted combination of all aforementioned losses in the previous section. For simplicity, we
incorporate the weighting coefficients directly into the loss terms, and thus express the overall
loss as:

Liotal = Ephoto + Evgg + Limk + L1 + £reg-
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Chapter 5. Proposed Method

The training framework, including inputs, outputs, and the loss functions, is illustrated in Fig-
ure 5.5.1.

We adopt the Adam optimizer with an initial learning rate of 1073, a batch size of 6, and video
clips of 20 frames. All experiments are conducted on an NVIDIA L40S GPU with 46 GB of
memory. The model is trained for 10 epochs, which takes approximately 1.5 days to complete.
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6.1. Datasets

6.1 Datasets

For training our model, we use four diverse datasets: MEAD, LRS3, CelebV-Text, and ViCo
Listeners. Fach dataset provides complementary attributes, covering a wide range of speaking
styles, visual conditions, and linguistic contexts. However, a common limitation across all of
them is the scarcity of natural occlusions, which are important for evaluating model robustness
in realistic scenarios. To mitigate this issue, we introduce synthetic occlusions across our training
samples. The statistics of each dataset are summarized in Table 6.1.

6.1.1 MEAD

MEAD [71] is a large-scale emotional audio-visual dataset that we use to enhance the diversity of
our data in terms of facial expressions. It comprises 60 actors and actresses from multiple racial
backgrounds, recorded under controlled conditions with different camera angles. Each subject
speaks with eight distinct emotions, each rendered at three levels of intensity, across seven view
angles. The dataset consists of 281,400 video clips of high audio-visual fidelity, providing clear
facial detail and consistent lighting, which is useful for learning 3D facial geometry and expression
modeling.

6.1.2 LRS3

While MEAD enables controlled evaluation, we also incorporate LRS3 [1] to ensure that our
experiments are not limited to laboratory settings but also cover in-the-wild conditions. LRS3 is a
large-scale dataset for visual speech recognition, constructed from TED and TEDx talks collected
from YouTube. It contains over 400 hours of video extracted from 5,594 talks in English, providing
151,819 video clips. The dataset offers cropped face tracks (224 x 224, 25 fps), single-channel
16-bit audio at 16 kHz, and aligned text transcripts with word-level boundaries. It is divided
into three subsets: Pre-train, TrainVal, and Test. In our experiments, we use the TrainVal split,
which contains 31,982 video clips, for model training and validation, and the Test set, comprising
1,321 clips, to evaluate the performance of our approach.

6.1.3 CelebV-text

To improve our model’s robustness to natural occlusions, we incorporated a dataset containing a
plethora of videos in which the face is partially or fully obscured. For this purpose, we use CelebV-
Text |75]. This large-scale, in-the-wild dataset comprises approximately 70,000 face video clips
with diverse visual content. Its scale and diversity make it suitable for training and evaluating
3D face reconstruction models, as it provides a wide range of subjects, poses, and expressions
under unconstrained conditions.

6.1.4 YViCo Listeners

A combination of ViCo [77] and ESC-50 dataset is also used for training. ViCo is so far the first
video conversation dataset containing face-to-face dialogue video clips in various scenarios. It
involves 92 unique identities, comprising 67 speakers and 76 listeners across 483 paired speak-
ing—listening clips. Each listener is recorded displaying non-verbal feedback behaviors such as
nodding and smiling, reflecting three distinct listening attitudes: positive, neutral, and negative.
In this work, we use only the listener recordings, as they directly provide the visual and behavioral
information necessary for our task. We further replace their original audio with randomly selected
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samples from the ESC-50 dataset [55], which contains 2,000 environmental audio clips across 50
semantic categories, including urban, domestic, natural, animal, and ambient noises. By pairing
listener videos with non-speech audio, we augment our dataset with scenarios where human faces
are visible but no speech signal is present. This design choice prevents the model from learning
spurious correlations and discourages the generation of lip movements in the absence of speech.

6.1.5 Synthetic Occlusions Dataset

Finally, we apply synthetic occlusions only to the training and validation datasets, as shown in
Fig.5.3.1 and Fig.5.3.2. These occlusions include dynamic events, where objects or hands move
smoothly across the face, and static events, where surgical masks are synthesized using facial
landmarks. This augmentation exposes the model to realistic occlusion scenarios and improves
its robustness under challenging visual conditions.

Figure 6.1.1: Example frames from the datasets employed in this thesis. The first row presents subjects
from the MEAD dataset recorded in lab conditions. The second row contains in-the-wild samples from
LRS3. The third row depicts identities under occlusions from the CelebV-Text dataset, while the fourth
row consists of frames from the ViCo listeners dataset.

Dataset Videos Clips Hours  Resolution Environment
MEAD |[71] 24,436 ~40 1920 x 1080 lad-conditioned
LRS3 (train-val) [1] 31,982 ~400 224 x 224 In-the-wild
CelebV-Text [75] 65,261 ~279 512 x 512 In-the-wild
ViCo [77] 483 ~95 1920 x 1080 In-the-wild

Table 6.1: Dataset statistics for training.

78



6.2. Evaluation

6.2 Evaluation

For evaluation, we curated 98 representative samples from the CelebV-Text dataset together
with two self-recorded videos. This process involved a careful selection from the available data
to ensure that the constructed evaluation set accurately represents the challenges targeted in our
work. To assess the generalization ability of our model to unseen data, we further conducted
experiments on the recently introduced CelebV-HQ dataset [78]. CelebV-HQ is a large-scale,
high-quality, and diverse video dataset consisting of 35,666 videos, including 15,653 identities
which was not included during training. From it, we curated a subset of samples that specifically
reflect our problem setting, with a particular focus on both extreme and mild occlusions.

For our evaluation, we use transcriptions of the spoken content in the videos. To obtain these, we
employ OpenAl Whisper [57], a large-scale automatic speech recognition (ASR) model trained
on 680,000 hours of multilingual and multitask supervised data collected from the web. Whisper
has demonstrated strong robustness across diverse acoustic and recording conditions, effectively
handling background noise, speaker accents, and varying environments. In our experiments,
Whisper is used to generate text transcriptions of the evaluation videos, which allows us to verify
the alignment between spoken content and corresponding lip movements.

While standard benchmarks exist for quantitatively evaluating 3D face shape reconstruction,
no such benchmark is available for assessing the accuracy of reconstructed facial expressions.
Quantitatively measuring the difference between a reconstructed 3D expression and a ground-
truth scan is less meaningful, as the resulting errors are often dominated by inaccuracies in the
reconstructed identity shape. Furthermore, a low geometric error does not necessarily reflect
perceptual accuracy, as subtle expression differences can strongly affect human interpretation.
Therefore, we rely primarily on qualitative and perceptual evaluations, complemented by a user
study, to better assess the realism and expressiveness of the reconstructed faces. Finally, we
compare the results of our method with recent state-of-the-art approaches to evaluate its overall
effectiveness and robustness.

6.2.1 Compared Methods

This thesis addresses 3D face generation driven by audio and image input, a field of study where
only a few works exist and, to the best of our knowledge, no recent methods with publicly available
implementations are available. Approaches such as AVFace [11] explore audiovisual input but no
implementation has been released, making direct comparison challenging.

For this reason, we evaluate our method against state-of-the-art models that provide publicly
available implementations and reconstruct 3D face geometry from videos. In particular, we
consider SPECTRE (18] and SMIRK |[59], both of which employ the FLAME model as our
work. We focus on visual-based models because our goal is to address challenging real in-the-wild
senarios while still preserving the subject’s key facial attributes. This comparison highlights the
contribution of combining audio and visual information, leading to more robustface reconstruction
results. Both the above models are analyzed in Chapter 4.
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6.2.2 Qualitative Evaluation

We first present qualitative results from our model and provide comparisons to demonstrate its
effectiveness in challenging conditions. Given the nature of the task, visual evaluation provides
the most direct and intuitive mean of assessment, as the advantages of different methods can be
directly observed in the generated outputs.

In Figure 6.2.1, we illustrate three representative occlusion scenarios: object, hand, and total
mouth mask occlusions (from left to right). These are natural occlusions from real-world data,
matching the types we synthetically generated during training, thereby demonstrating the model’s
generalization ability.

e In the first scenario of Figure 6.2.1, we evaluate cases where the mouth region is partially
occluded by an object, such as a microphone. This type of occlusion produces a persistent
but incomplete obstruction: certain portions of the lips remain visible, while other regions
are hidden throughout the sequence. Such conditions are highly representative of every-
day recording environments, including live performances, podcast recordings, and television
interviews, where microphones frequently cover part of the speaker’s face. Under these set-
tings, the model demonstrates its to reconstruct realistic articulations by effectively fusing
limited visual cues with audio input. The results show that even when the lower lip is
intermittently invisible, the generated reconstructions preserve the timing and dynamics of
speech articulation.

e The second scenario involves dynamic hand occlusions, where a speaker’s hand temporarily
passes in front of the mouth. In contrast to the first case, the occlusion change location
across frames, with different parts of the face becoming hidden at different times. Such
occlusions are highly relevant for natural human communication, where gestures and spon-
taneous movements frequently obscure the face during conversation. Our model remains
robust under these conditions, producing plausible lip synchronization even when visual
cues are absent. Importantly, the outputs show a smooth temporal transition as the occlu-
sion appears and disappears, without introducing flickering or abrupt deformations. This
demonstrates that the model has learned to rely on audio when visual information does not
give information for the face.

e The third and most challenging scenario considers full surgical mask occlusions, where the
entire mouth region is covered for the duration of the sequence. Unlike the previous two
cases, no visual cues are available at any point, forcing the model to rely entirely on the
audio stream to drive articulation. This scenario has gained particular importance in recent
years due to the widespread use of masks in public spaces, making it both realistic and
socially relevant. The results demonstrate that our model is capable of producing plausible
and temporally consistent lip movements even under such extreme occlusions. For instance,
we observe accurate reconstruction of key phonetic events, such as the wide mouth opening
required for the articulation of vowels like “I”. Although more subtle articulations, such
as closed-mouth consonants, remain difficult to reproduce, the outputs remain coherent,
demonstrating that the model is more robust.

Overall, this qualitative evaluation provides strong evidence that our method achieves realistic,
expressive, and robust reconstructions in challenging in-the-wild settings. While limitations re-
main in reproducing fine-grained articulations under complete occlusion, the results suggest that
multimodal approaches offer a substantial advantage over visual-only baselines.
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Figure 6.2.1: Qualitative examples of our model under different conditions. From left to right, the input
audio is: a Portuguese song, French speech, and the English phrase “I woke up”.For visualization
diversity, we display every third frame instead of continuous sequences.
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A key contribution of our model is its robustness to surrounding sounds. In Figure 6.2.2, we
present random selected frames from a video clip in which the main character remains silent
while background speech is present. In this example, Whisper produces the transcription: “Ada,
he ordered your favorite. He got Hawaiian. I saw the order.” The model correctly relies on the
visual information and does not generate mouth movements for the silent character.

Figure 6.2.2: Visualization of Listener sample frames from ViCo dataset. In this video, the main
character does not speak, while background noise is present. Our model correctly generates an avatar
that does not move its mouth, since the background noise does not correspond to the main character’s
voice.

After highlighting the benefits of our model, it is important to evaluate its performance in com-
parison with competing methods. To this end, we visually compare reconstructions obtained by
our approach against the competitors on samples from an unseen dataset. Figure 6.2.3 illustrates
the input frames alongside the corresponding reconstructions from each model. Our observations
are summarized below:

e SPECTRE: Captures the overall head shape and pose consistently, but tends to smooth
out fine details of facial expressions. In particular, the lip region is often not accurately
reproduced, which reduces the naturalness of the reconstructed mesh. The results are stable
but sometimes lack expressiveness compared to the input.

e SMIRK: Reproduces certain dynamic expressions better than SPECTRE, but often fails
to maintain faithful geometry in the mouth region. Since lips are central to perceived ar-
ticulation, this limitation leads to noticeable mismatches between input and reconstruction.
These artifacts, especially around the mouth area, further reduce the realism of the gener-
ated meshes and overall performance.

e FAVOR (our): Produces reconstructions that remain more faithful to the input frames,
preserving both identity and expressions. The correspondence in the mouth and lip regions
is particularly stronger, leading to more realistic and intuitive facial geometry. Compared to
SPECTRE and SMIRK, our approach aligns identity and expression more effectively while
avoiding artifacts.

We further present examples across time to demonstrate the temporal consistency of reconstructed
expressions. In particular, Figure 6.2.4 illustrates the weaknesses of competing methods in han-
dling challenging occlusions. SPECTRE struggles to correctly interpret the occluded mouth
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Figure 6.2.3: Visual comparison of 3D face reconstruction on unseen data for selected frames of video
sequences. From left to right: Input, SPECTRE, SMIRK, ours.

region: instead of articulating realistic lip movements, it misinterprets the round shape of the mi-
crophone as part of the mouth and generates an incorrect, “sad” expression. SMIRK, while more
expressive overall, fails to accurately capture the fine-grained details of lip motion. In contrast,
FAVOR produces results that are closest to the ground truth, showing plausible mouth opening
in alignment with the spoken content.

Figure 6.2.4: Visual comparison of 3D face reconstruction using SPECTRE, SMIRK and ours from left
to right.
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Furthermore, Figure 6.2.5 presents a sequence of frames in which the speaker’s hand partially
occludes the mouth region. Both SMIRK and SPECTRE exhibit noticeable artifacts when the
occlusion reaches the peak of the event, producing facial expressions that deviate from the ground
truth. In particular, SPECTRE tends to exaggerate the deformation around the mouth, gener-
ating expressions that appear unnatural and inconsistent with the input video. By contrast,
FAVOR demonstrates greater robustness to this event, maintaining consistent and realistic facial
reconstructions that align more closely with the correspoding speech content.

©
& ¢ ©

3
».
k4
&
v

Lt

"
.

Figure 6.2.5: Visual results from SPECTRE, SMIRK and ours method.
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6.2.3 Quantitative Evaluation

Quantitative evaluation of audiovisual 3D face reconstruction under occlusion is challenging due
to the absence of large-scale publicly available datasets providing paired ground-truth 3D geome-
try and occluded visual data. Moreover, geometric errors are often dominated by identity-related
inaccuracies and do not necessarily correspond to perceptual quality. To obtain a more mean-
ingful measure of reconstruction accuracy, we incorporate a lip-aware perceptual loss that better
captures the perceptual quality and expressiveness of the reconstructed faces.

6.2.3.1 Lip-Aware Perspective Loss

In this section, we focus on quantitative metrics to assess the performance of our model. Eval-
uating reconstructed face meshes requires reliable measures of facial reconstruction quality.
Landmark-based evaluation, while commonly used, is not suitable in our case, as occluded videos
often lack valid ground-truth landmarks for assessing the generated face mesh. To overcome
this limitation and to capture the contribution of the audio modality, particularly in the mouth
region, we follow SPECTRE [18] evaluation process and adopt a perceptual evaluation based on
lipreading metrics. Particularly, we use

e Character Error Rate (CER)

e Word Error Rate (WER)

e Viseme Error Rate (VER)

e Viseme-Word Error Rate (VWER),

after mapping the predicted and ground-truth transcriptions into visemes using the Amazon Polly
phoneme-to-viseme mapping [2]. We present the performance of these metrics for all compared
methods on both the LRS3 test set and a selected subset of CelebV-HQ in Table 6.2. We
observe that our method achieves lower error rates across most metrics, with particularly strong
improvements on CelebV-H(Q which contains many in-the-wild cases with frequent occlusions.
This indicates that our approach generalizes better to challenging in-the-wild cases and produces
more faithful articulations. On LRS3, the differences are smaller, which can be explained by
the fact that this dataset is closer to the training domain of the competing models and contains
fewer occlusion scenarios. We point out that the objective evaluation results on CER and WER,
remain much higher compared to the original footage. This can be attributed to the different
domains of the rendered images compared to the ground truth, as well as the absence of teeth
and tongue, which are important for detecting specific types of phonemes/visemes.

CELEBV-HQ LRS3

CER WER VER VWER CER WER VER VWER
SMIRK [59] 108.9 149.6 1122 140.6 126.7 1574 121.8  153.5
SPECTRE [18] 1158 1565 1254 150.2 116.9 147.3 112.2 1455
Ours 89.0 118.3 82.6 116.9 1181 146.5 1140 143.9

Table 6.2: Lipreading results on the LRS3 dataset and on 30 sample videos from CELEBV-HQ.
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6.2.3.2 User Study

Perceptual evaluation have an important role in 3D face reconstruction, since the goal is to gen-
erate faces that humans perceive as natural and faithful. To complement the quantitative evalua-
tion, we therefore designed a user study to assess the perceived quality of the reconstructed faces
from human participants. For this purpose, 20 videos were randomly selected from the CelebV-
HQ evaluation dataset and reconstructed using our method as well as SMIRK and SPECTRE.
In each trial, participants were shown two pairs of video clips: one consisting of the original clip
alongside our reconstruction, and the other consisting of the original video alongside a recon-
struction from a competing method as shown in Figure 6.2.6. They were asked to select the one
they considered to be the closest to the ground-truth appearance. A total of 46 users took part
in the study and each of them answered 20 questions. The collected responses, summarized in
Table 6.3, indicate a consistent preference for FAVOR, confirming the advantage of our method.

SMIRK SPECTRE
Ours 288/106 247/157

Table 6.3: User study preferences for each method. The values correspond to the number of times our
method was selected over the competitor method. In both comparisons, participants consistently
selected our method, demonstrating its superior perceptual quality.

Reconstructed Views

Review both reconstructions (Video A and Video B) before answering. Focus on geometry, temporal consistency, and overall fidelity.

Video A Video B

Which reconstruction provides the best 3D quality?

Consider geometry accuracy, temporal stability, and overall fidelity while making your choice.

Video A Video B Cannot determine

Next Question

Figure 6.2.6: Instance of the user study.

We selected a subsample of five evaluation videos without any occlusions and reported the user
preferences in Table 6.4. Our method outperformed SMIRK, indicating that incorporating audio
features increased the overall accuracy of the model, while its performance was very close to
that of SPECTRE. We attribute this result to the tendency of SPECTRE to exaggerate facial
expressions, which often appear more plausible to human perception.

SMIRK SPECTRE
Ours 33/19 33/37

Table 6.4: User study preferences for the non-occluded samples.
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6.3 Ablation Study

To present the contribution of each proposed component, we conduct an extended ablation study.
We follow a step-by-step protocol: starting from SMIRK as the baseline model, we progressively
add modules to build up to the full system. This design isolates the effect of each componet and
clarifies its contribution to the overall performance.

6.3.1 With vs. Without occlusions

We first evaluate the impact of synthetic occlusion augmentation. Starting from SMIRK, which
takes as input video frames and we train it with synthetic occlusions. We then compare the
performance of SMIRK and a pretrained version of our model to examine how the augmented
dataset affects reconstruction performance after 10 epochs. At this stage we are not concerned
with audio-visual synchronization, since no audio information is used.

Figure 6.3.1 illustrates an example where SMIRK produces tweaked expressions, resulting in
noticeable misalignments between the expected expressions and the reconstructed images. In
contrast, training with the proposed occlusion-augmented dataset prevents the model from gen-
erating artifacts.

Figure 6.3.1: Qualitative comparison of SMIRK and our pretrain model. From left to right: the input
frame with its corresponding landmarks, a cropped image for closer observation, the output of SMIRK,
and the output of our pretrained model.

A more representative example confirming the sensitivity of SMIRK to occlusions is shown in
Figure 6.3.2, where it fails to capture the overall facial structure and produces erroneous de-
formations in several frames. By contrast, our occlusion-augmented dataset surpass such cases,
predicting smoother expression parameters and generating more robust reconstructions.

Another important observation here, is the lack of mediapipe landmarks in the last input frame.
Particularly, the first column presents the ground-truth MediaPipe landmarks in red and the
predicted landmarks from our method in green, while ground-truth jawline FAN landmarks are
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shown in white and produced FAN landmarks in magenta. In the final input frame we can see
that ground-truth MediaPipe landmarks are missing, confirming that landmarks alone are not a
sufficiently reliable loss for stable training.

Figure 6.3.2: Examples of crucial artifacts generated by SMIRK. From left to right: input with
landmarks, cropped close-up, SMIRK output, and our pretrained output.

This also highlights a limitation of our pretrained model. Since this version was trained using
only landmark-based supervision, object or hand occlusions that partially cover the face reduce
the available visual information. As a result, the model struggles in certain cases to reproduce
natural eye closures when necessary as illustrated in Figure 6.3.3.

Figure 6.3.3: Visualization of the limitations of our pretrained model. From left to right: the input
frame with its corresponding landmarks, a cropped image, SMIRK, our pretrained model.
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6.3.2 With vs. Without Lipreading Loss on rendered image

Next, we incorporated audio information and introduced stronger supervision through the recon-
struction path. In this setting, we conducted experiments to examine the impact of the lip-reading
loss. Intuitively, one would expect that adding more supervision focused on the lips would lead to
improved results. However, as shown in Figure 6.3.4, the model trained with the lip-reading loss
instead generates artifacts which was also observed. The artifacts were found to occur primarily
in cases where the mouth is closed. We attribute this behavior to the domain gap between the
input space and the rendered image space.

Figure 6.3.4: Artifacts arising from the use of lip-reading loss. Results are shown for our audio-visual
model without and with the lip-reading loss from left to right.

6.3.3 Lipreading Loss on rendered vs. on fused image

To address the domain gap between the rendered frame and the input frame observed in the
previous section, we apply the lip-reading loss between the input and the fused frame.

Figure 6.3.5: From left to right: Input, FAVOR, cropped mouth from input, cropped mouth from
rendered frame, cropped mouth from input in greyscale, cropped mouth from fused frame.

To further mitigate artifacts, we introduce a threshold below which the model is not penalized.
While moderate lip-reading loss helps reconstruct the mouth geometry accurately, excessively
high values push the model to over-correct not only the geometry but also other aspects of the
mouth region, leading to erroneous results. We also observed that training the model using only
audio input tends to generate a large number of artifacts. Finally, it is important to note that
our training dataset contains natural occlusions. In such cases, applying lip-reading loss can be
disruptive, since the mouth is sometimes occluded. Figure 6.3.6 shows that this new pipeline
produces artifact-free results in practice, generating plausible and consistent reconstructions.
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Figure 6.3.6: Visual Comparison of reconstructions using lipreading loss on rendered vs. fused frames.

6.3.4 Visual vs Audio vs Audio-Visual model

We compare our model using as input different modalities audio-only, image-only, both. In
Figure 6.3.7, on the left video frames, we observe that the audio-only setting fails to accurately
capture the avatar’s expressions. This behavior is expected, since the model receives no visual
information in this case. In contrast, both the image-only and the audio-visual settings generate
realistic mouth movements and accurate facial expressions. The image-only model shows a slight
tendency to close the mouth on the occluded side by the microphone, but overall both image-only
and audio-visual models produce plausible facial reconstructions.

Figure 6.3.7: Visualization of models driven by visual, audio, and audio-visual inputs from left to right.

Figure 6.3.8 further illustrates the effectiveness of the visual model in the presence of occlusions,
such as when a hand partially hides facial areas. We attribute this robustness to the fact that
the visual model was also trained with occlusion-augmented data and incorporates temporal
information, allowing it to maintain consistency and avoid failure under such conditions.

We also present observations regarding the audio-driven model. In Figure 6.3.7 (right), we observe
that its outputs remain relatively static over time. Even when the audio signal corresponds to wide
mouth openings, the generated mesh fails to reproduce the expected variations. This behavior
highlights a limitation of our audio-driven setting compared to the other modalities.

In particular, this case illustrates a fundamental difference in how the two modalities handle
temporal alignment. Audio-driven synthesis allows temporal flexibility, since the mapping be-
tween phonemes and mouth shapes does not require strict frame-by-frame correspondence. For
example, an open-mouth phoneme may be captured across neighboring frames and still be valid.
In contrast, image-based reconstruction enforces rigid one-to-one alignment, where each output
frame must precisely match the mouth shape in the corresponding input frame. This distinction
explains why audio-only methods may experience temporal drift, leading to misleading supervi-
sion signals for the encoder. However, when both audio and visual modalities are used jointly,
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Figure 6.3.8: Visual comparison of 3D face reconstruction for visual, audio, audio-visual input. The
audio-driven model (middle) tends to produce more static avatars.

the rendered avatar remains more faithful to the input sequence, as illustrated in Figure 6.3.9
(right).

Figure 6.3.9: On the left, misaligned mouth movements between the input and the rendered frame, when
using only audio input. On the right, exploiting both audio and visual input the model outputs more
accurate mouth reconstruction.
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7.1 Summary

In this thesis, we explored the field of 3D face reconstruction, with a focus on real-world scenarios
and particularly on cases involving facial occlusions. We proposed a robust and flexible model that
leverages audiovisual input to reconstruct realistic and temporally consistent 3D faces. This is a
challenging task, as it requires achieving an effective balance between accurately reconstructing
facial geometry under occlusions, while preserving the identity of the speaker.

We first conducted an extensive review of the related literature, which revealed that most existing
methods are primarily focused on either image-driven or audio-driven models. To the best of our
knowledge, very limited work has been carried out on audiovisual reconstruction architectures.
Audiovisual face reconstruction, as the name suggests, combines information from both audio
and vision modalities.

After presenting the relevant bibliography in Chapter 4, we introduced our proposed method,
whose main contributions are summarized as follows:

e We propose FAVOR, a novel audiovisual model that reconstructs 3D facial geometry directly
from video input. By jointly leveraging both visual and audio features, the model gener-
ates realistic and expressive talking faces while maintaining robustness under real-world
conditions.

e FAVOR captures temporal dependencies across frame sequences to ensure coherent motion
and stable facial geometry. This leads to smoother transitions and prevents frame-by-frame
inconsistencies commonly observed in 3D reconstruction methods.

e The proposed framework supports audiovisual, visual-only and audio-only inputs making it
suitable for a wide range of scenarios.

e To improve robustness, the training data were augmented with synthetic occlusions, simu-
lating real-world conditions such as hands, objects, or masks covering parts of the face.

e The fusion of audio and visual cues enhances lip synchronization and reduces erroneous
mouth movements, especially when the speech does not correspond to the visible speaker in
the video.

We then conducted extensive experiments and compared FAVOR with recent state-of-the-art
methods. The qualitative and quantitative evaluations demonstrated that our model achieves
superior performance, particularly in terms of lip articulation on datasets with facial occlusions.
Furthermore, the ablation study provided insight into the development pipeline and included
visualizations that highlighted the contribution of each component to the final model. Finally,
the user study further validated the performance of the proposed approach, confirming its ability
to produce more natural and expressive reconstructions compared to existing methods.

7.2 Limitations and Future Work

While our method demonstrates strong performance across diverse scenarios, there are still some
limitations in our approach that can guide future research. We briefly outline the key challenges
identified in our experiments together with potential directions for improvement.

e Misalignment on mouth movements using the audio-driven model: As shown in
Figure 6.3.9, our audio-driven model occasionally suffers from misalignment between the
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original and the rendered frame. This reduces the effectiveness of the audio modality,
particularly in the mouth region. A potential solution is to leverage the lipreading network
outputs across consecutive rendered frames and enforce correspondence with the closest
original frame, thereby achieving more consistent alignment.

e Incorrect penalization under natural occlusions in the reconstruction path: A key
limitation of the reconstruction path arises when input frames contain natural occlusions.
Since the fused generator relies on both geometry and sampled input pixels, it produces
a photorealistic image that may attempt to reconstruct regions hidden by occlusions. So,
when the loss is computed against the natural occluded input frame, the model is penalized
even though it has reasonably reconstructed the missing areas. As illustrated in Figure 7.2.1,
the fused output attempts to recover the mouth region, while the original frame is partially
occluded by a mask. Such mismatch introduces misleading supervision during training.
This can be handled with incorporating an occlusion-aware mechanism, such as a pretrained
occlusion detector, to exclude heavily hidden regions from the reconstruction loss.

Figure 7.2.1: From left to right: Input frame, our model’s result, cropped frame in mouth area, cropped
fused image.

e Robustness under extreme occlusions: We also observed that when the entire mouth
region is occluded, our method struggles to generate well-articulated mouth movements.
Improving robustness under such extreme cases remains an important direction for future
research. A promising approach is the use of modality dropout during training, which could
encourage the model to generalize better and reconstruct effectively the face even when one
modality is missing. Furthermore, integrating attention mechanisms may allow the network
to dynamically adjust the relative contribution of audio and visual input, focusing on the
most reliable modality for reconstruction.

7.3 Ethical Issues and Social Impact

In 3D face reconstruction research, it is crucial to account not only for the technical contributions
but also for the wider ethical and societal implications. On the positive side, advances in 3D face
reconstruction and neural rendering have the potential to benefit areas such as virtual reality,
medical domain, and human-computer interaction. More robust and realistic reconstructions
can enable new applications in content creation, assistive technologies, and personalized digital
avatars.

At the same time, however, the ability to generate photo-realistic videos araises important ethical
concerns. They could be misused to create manipulated content of individuals without their
consent, for example in the form of deepfakes of public figures. Such misuse has implications
for misinformation, privacy, and trust in digital media. So even though our method is designed
with the goal of reconstructing detailed avatars under challenging conditions, it is important to
recognize that the same technical advances could be repurposed in harmful ways.
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In conclusion, while the work presented in this thesis contributes to creating a state-of-art au-
diovisual 3D face reconstruction model, its ethical and social dimensions are equally significant.
Progress in this field should continue to be guided by principles of responsibility and transparency,
ensuring that the positive applications of this technology can be realized while minimizing its po-
tential for misuse.
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