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ITepiindm

To ofuata tou eyxepdhou, 6nwe to Hiextpoeyxepahoypdpnua (HEL), uropolv va npooey-
Yo T00V ¢ onfpata Ataudppnong IThdtouc-Xuyvotnrag (AM-FM), ta ontolo amotunedvouy
VEPEAMWONOS TAAAVTOTIXT X0t DLVAULXY| PUCT) TNG VEVPWVIXAC DRUC TNRLOTNTAS. M€ oUTY| TNV Vo
TOEAC TUOY, TO oTyplako TAdTOC xan 1) oTLyaior LY VOTNTA TEQIEYOLY OUCLMOOELS TANPOYORIES
YL TN puotoroyio Tou eyxepdhou, Tou oyeTiCovTon Ue TIC UETOBOAES EVEQYELIC XAl TOV LY YEO-
VIGUO TWV VELPWVOY. 201660, 1 e€ay®YT aUT®Y TV cuVioTwony ard to HEI elvar wiaitepa
amoUTATIXY, AOY® TOU WM YRouuxo0, un oTtdoyou xot evaicintou otov YopuPo yapoxthod
Toug. Mty mapovoa Atmhwuatiny Epyaota, Siepeuvdrtar 1 yprion tou un yeauuixolb Teieotn
Evépyeloc Teager-Kaiser (TKEO) w¢ epyoheio yio tny anodaudppnon HEL xow tv avdhuon
TNG EVEQYELOG OF YVOO TIX Xol XALVIXGL TIELOGUOTAL.

Koot 0 ev AMoyw teheotrc elvon xatdAiniog yio ofjuata otevic {ovng, eopuoleTtal apytxd
ovoToyla giktewy Gabor, ue oxomd TNV AmoUdVWOT TwV cUYVOTIX®Y utavtey tou HET. Y1
ouvéyela, yenotpomoteiton o Ahybpriuoc Awoywptopol Evépyetac Staxpitol ypdvou (DESA-1)
Yoo TV €€aywYT| ToU oTiyUodou TAGTOUC Xal TG OTyUadog oLy VOTNTAC O XdUe UTO-UTavTa,
ETUTEETOVTOC AETTOUERY| AVAAUGT] TV BUVOIXOY BLIUOpPWoNS TAdTOUG-oLYVOTNTAS. ATO TNy
evépyeta Teager—Kaiser xou Ti¢ oUVIOTWOES ATOOLUOPPWOTG, TEOXUTTEL EVAL EXTEVEC GOVOAO
yopaxtneloTixwy. Tt cuctuatind aflohdyNnot) Toug, EMAEYOUNE Telol AVTITPOCWTEUTIXS
meoPAfuota Tou mediou Twv HEI' — Avayvopeion Yuvarodiuatog, Talvounon Kivntixic No-
epfic Ameoviong xou Aviyvevon Emindiogc — o ta ouyxpivoude ue cudBatind evepyetoxd
XL PUOUATING YOEUXTNEWO TIXA. ATOOXOTOVTNG oTNY exTiunon tng yevixeuong tng uedodou
o, e€dyoupe metpduote 1600 ot e€apTOUEVO amd To dtouo (Subject-Dependent), 660 xou o€
aveZdptnro (Subject-Independent) mhoioto.

To mewpapatind anoteréopata detyvouv 6Tt Ta TKEO yopaxtnpiotind emtuyydvouy uhnidtepen
anodoor T vounong ota tpoiuata Kivntixic Noepric Anewdvione xan Aviyveuone Emindioc
oe oUYXEON UE TA CUUBAUTIXG YOEUXTNEWOTIXG, EVG ToEoLCLICouY avTloToly o ATOTEAECUOTA
otnv Avaryvoplon Xuvactfuatoc. EmmAéoy, 1 cuvEVWOT YopoxTNEIo TIXOY HETAUED GUY VOTIXOY
UTOVTOVY BEATIOVEL TN cLVOXT| amt6doaT), utoypeauuilovtag Ty evacinoia twv TKEO yapox-
TP TXOY 0TS To 0TeVES (OVES.  AvahlovTag To amoTEAEOUATA BIUPORETIXGY CUGTOLYi®Y
piktpwy Gabor, mopatneolue 6Tt 1 alEnon Tou aEuol TwY QIATEEY BEATIOVEL TV anddooT
0TI TEPLOCOTERES MEQITTWOELS, XAVOC 1) ASTTOUEREC TERT) PUOUATIXT| ATOCUVIEDT) ETLTEETEL GTOV
TKEO vo aviyvelel evepyetonéc dloxuudvoel mou dlopopetind Yo eCopahivovtay. [lépay tov
oELIUNTIXOY BEXTOY OmOB00oTG, To ECUYOUEVA YAUPUXTNELOTIXG DlaTneoly Broloyuxr cpunvela,
ATOTUTOVOVTOG SUECH TIG OTLYUALEG EVEQYEIUXES XL CUYVOTIXEC PETUBOAEC TOU OLETOUY 1)
VEUROVIXT] DROGTNELOTNTAL.

AéEeig Khewdd — Evepyelaxde Teheotric  Teager-Kaiser, Awudppwon IIAG-
Toug—2uyvotntog, Alyopriuoc Aloywetopol Evépyelg, Hiextpoeyxegahoypdgnua (HEL),
Avayvopeion Luvaodfuoatog, Kt Nogpry Anewcovion, Aviyvevon Emindloc






Abstract

Brain signals such as Electroencephalography (EEG) can be effectively modeled as Ampli-
tude-Frequency Modulated (AM-FM) signals, reflecting the intrinsic oscillatory and dynamic
nature of neural activity. In this representation, the instantaneous amplitude and frequency
capture physiologically meaningful information about energy variations and neuronal syn-
chrony. However, the extraction of such components from EEG is challenging due to the
signal’s non-linear, non-stationary, and noise-prone characteristics. In this Thesis, we in-
vestigate the Teager—Kaiser Energy Operator (TKEO) as a non-linear tool for demodulating
EEG signals and analyze their energy dynamics across cognitive and clinical EEG paradigms.

To accommodate the narrowband nature of the operator, a Gabor filterbank is first applied
to isolate canonical frequency bands. The Discrete Energy Separation Algorithm (DESA-1)
is then employed to extract the amplitude envelope and the instantaneous frequency compo-
nents within each sub-band, enabling a detailed analysis of amplitude—frequency modulated
dynamics. From both the Teager-Kaiser energy and the demodulation components, we derive
a comprehensive set of energy-based descriptors. These features are systematically evaluated
across three representative EEG classification tasks—Emotion Recognition, Motor Imagery,
and Epilepsy Detection—and compared with conventional energy and spectral-domain fea-
tures, under both Subject-Dependent and Subject-Independent settings to assess generaliza-
tion performance.

Experimental results demonstrate that TKEO-based features yield higher classification per-
formance in Motor Imagery and Epilepsy Detection, while achieving comparable results in
Emotion Recognition. Furthermore, feature fusion across frequency bands enhances overall
performance, emphasizing the narrowband sensitivity of TKEO-based descriptors. Analysis
of the filterbank configuration shows that increasing the number of filters improves perfor-
mance in most cases, as finer spectral decomposition enables TKEO to capture subtle energy
fluctuations that would otherwise be averaged out. Beyond quantitative improvements, the
extracted features retain physiological interpretability, directly reflecting the instantaneous
energy and frequency modulations underlying neural activity.

Keywords — Teager-Kaiser Energy Operator, Amplitude-Frequency Modulation, Energy
Separation Algorithm, EEG, Emotion Recognition, Motor Imagery, Epilepsy Detection






Euyaplotieg

H nopodoo Aimhwpotin anotehel Ty Teheutaio epyasia Tou xoholual Vo Tapad®ow oTo Thaiota
NS XYOMAC OV, GTUATOBOTMVTOS TO XAEIGIUO EVOC BLUTERA ONUAVTIXOD %ot XodoploTIXoU Yid
epéva xOxhou. Oa Hieha, hoimoy, va eLyaEloTACK Toug &g avilpdroug Tou Ue Borinoay xou
ouvodedav, T600 xaTd To SdoTNnua extovnong Tne Aimhwuoatixrc Epyooiog, 6o xou xad’ 6hn
N Odpxeta Twv 6 TV @oltnoric wou:

Tov emPBrénovta xadnynt, xOeto IlEtpo Moapoayxd, yia v ouctactixr cupfoly| Tou GTny
eVIoYUOT) TOU EVOLAPEPOVTOC HOL Ylal TNV EPELVA, NON AT TA TEWTU TEOTTUY LN Yo UNTA TOU
ropaxorolinoa pall Tou, uéoo amd TNV TUEOTEUVOT] TOU TR0 TOUS (POLTNTEC VO CUUHETEYOUY OF
EXONAWOELS XoU OULAES EQEVVITIXOU TEQLEYOUEVOU, X0 MS XAl Yo TN cUVERYacio xat xododTynon
Tou %aTd TNV exnovnon g Aimhwpatixic Epyootog.

Touc ouv-emBAémovieg Tne Amhwpotixic pou: uetaddaxtopxr epeuviiteo Ap. Ndvou Zhov-
tivtom, urodrglo dwdxtopa Xeroto I'apolgn xou unodglo BiddxTopa Kiedvin APpouidn, o
orotog - TapoTL Bploxeton o€ AL HTEWO - ATAUY TAVTU £BW), UE UUEQLOTY TTROCOYT| XU TOAD XN
owddeon. H oupfolt cog oy xadopto i) xou oag eipon uyvoumy!

T gihec pou 16An, Moapyapita xaw Negéhrn, ol omoleg ftav xou efvon to ornuelo avagopds pou
oe x&de onuavtnd (xon un) Brio pou.

Toug yoveic pou, Atva xou I'idpyo, yio xdie epodio, dmoln, culhtnom, oxédn xou TNV adLdxon
XOU EUTEOXTT) OTARIEN OAAL QUTAL TOL YEOVLOL.

Tov I'dvvr), o omolog elvon mdvtar Bimhar pov, divovtag wou I, SOVUUN Kot YEWUAL.

Iwdvva Xoupddn
OxtwBplog 2025
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Extetapevn Iepiindmn

Eicoaywy

O Aviponivog Evyxégarog

O avipomvog eyxégoarog anoterel T0 x0plo HEYAVO TOL VEUPLXOU GLUOTAUATOS, LTEDYUVO Yia
NV enedepyacia aucUNTNELIXOY TANROPOELNOY, TN PUUULOY TWV COUATIXMY AEITOURYLHOY XL TNV
exONhwon g oxéPne xan Twv cuvacdnudteov. H Hiextposyxepahoypoupia (HET") etvon Lol
un emeuBatin| wéodog xataypapnc TNG NAEXTEAG BEACTNELOTATAS TOU EYXEPAAOL UECK NAEX-
Tpodiwv Tov Tonodetolvton oTNY empdveta Tou xpaviou [101]. H tonodétnon twv nhextpodiwy
oxohoulel to diedvéc ovotnuo 10-20 [25], to onolo Pacileton o€ avatoptxd onueia ovapopds
OoTE Vo eEaoPUAlETAL 1) OUOLOUOPPN XEAUDT OAWY TWV EYUEPUMXWY TEQLOYOY XOL 1) OVTLO-
Tolylon| Toug pe ouyxexpéva xavdho uétenone. Ilépa and T ywewr| opydvwon, to HED
oot avohDOVTOL X0 WG TEOS TN GUYVOTIXY Toug cUoTaoT, 1 omola ywelleto oc méve
xOpteg ouyvotxée umdvtec [5]: Delta (0.5-3 Hz), Theta (4-7 Hz), Alpha (8-12 Hz), Beta
(13-30 Hz) xon Gamma (30-50 Hz). Kdie undvto avtiotoryel o Slapopetixés xotoo TdoELS
eyxepalxic Aettovpyioc, and tov Badl Unvo (Delta) éwe tny evepyn yvwotixd enelepyacio
(Gamma [76]), tpoopépovTtag TOAITYES EVOE(EELC Yior T LEAETY TN VEUPWVIXTC Bpoo TneldTnTog
X0l TNV aviy VEUOT] VEUROAOYIXGDY DLUTUQOY (V.

Oceswpla TwV XuvaltcUNudTwy

H pyerétn v avlpomiveoy cuvaoinudtowy anotelel dlaypovind medio épeuvag otny Yuyoloyia
xou TN NeVpOemo T, HE SLdpopes VewpNTIXEC TPOGEYYIOES Vo ETLYELOVY Vo eENYHicouV T
pVon xou TN dopr touc [33], [37], [63], [93], [97]. H Yewpla twv James-Lange [63] utootnpilel
OTL ToL GUVACVAUAT ATOTEAOUY GUVELDNTY| avTIANdY TWV CWUATIXOY avTIdRdcE®Y, Ve o Ek-
man [36], [37] npdtewve v Umopdn €21 Baoixdv xodohixdv cuvaioinudtewy, xou o Plutchik [93]
avETTUEE Eval PUYOEEEAXTING UOVTERD OX TG TEWTOYEVHY CUVAUOUNUATOV GE XUXAXT OLAToET.
Téhoc, o Russell [97], [98] etofiyarye To Bi1B180T0t0 HOVTELD GUVALGUNUOTIXOY Y POV, UE GEOVES
™ ouvausUnuatixy euyapiotnon (valence) xou tn Syepon (arousal), to omolo anotehel orjuepa
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VepeA®deg TAAGLO GTNY AVAAUCT) YO OVUTIOQRAGC TUOT) TWV CUVULGUNUSTWY.

Ocwpla tng Kivntixng Noepic Aneixodviong

H Kontp Noepr| Armeixdvion ebvar 1 vonuxt| npocopoinon pag xivnong ywelc guoxy| ex-
TENEOT), XUTA TNV OOl EVEQYOTOLOUVTOL TEQLOYES TOU EYXEQPIAOU Tou oyeTCOVToL UE TOV XIv-
NTXO OYEBLIOUS X TOV ENEYYO, OIS O TROXWNTIXOS PAOLOC Xou 1) ToEYXepoAida [31], [71].
‘Epevveg detyvouv 6Tl 1 Kivnuinr) Noepr} Aneixdvion wotpdletan xolvd VEupmvIXd UTOC TRMUTA
UE TNV meorypatixy| xivnon xou TapouotdlEl TOPOUOIES YPOVIXEC XAl (PUOLONOYIXES DUVOXES,
emBefoucdvovtac T hertovpy| Tne tooduvopio e v extéleon xivnong [32], [86].

Ocewpla tng Emindiog

H emindio etvon ypdvia veuporoyuxr| Slatopay ) mou yopaxtnetletar and npodiddeon Tou eyxe-
(QEAOL Vo TaPAYEL ETLANTTIXES XPICELS, CUVOBEVOUEVT] ATd VEUROPBLOAOYIXES, YVWO TIXES ol PUYO-
hoywée emntwoeg [11], [39]. H nadoguotoroyio tne oyetileton pe agpioixa ouyypoviouéveg
VEUPOWIXEG EXPORTIOELS, AOYW BLatapay v o1 veupodf3iBaocT, tn Aettoupyla Tng yAolog ¥ Tnv
VT opoldoToo, eV 1 Sidyvwon Pooiletar xuplng otnv nhextpoeyxegaroypapio (HET) yua
TOV EVIOTUOUO ETLANTTOUORPIXGDY EXPOPTICEWY Xou TEPLOY OV EvapZng xpioewy [30], [40]. Kitvixd,
oL xploelc TaEvouoUVTOL OE ECTIUXES, YEVIXEUUEVES Ol AYVOOTOU €Vopdng, TapouotdlovTog
yapoxtnewotixd HED potifa (spikes, sharp waves, ouduixéc excpopt(ostg) naL OLOXQLTESG PACELS
eZENENG —amb TNV TEOBEOUIXY) EWC TN UETOXELTIXT— TOU BLEUXOAIVOUV TNV TapaxohoLinoT ot
™ Yepameutint| tapéuPoon [106].

Oewpentixd Yrofadpo

Baowr Ocswpla Enelepyaciog Xnudtwy

H eneéepyaoia onudtwy anotekel Evay MO TNUOVIXG XAUDO TIOU ETUXEVTIPOVETOL GTNY OVIAUCT),
QVOTORAO TAOT) Xl TEOTOTONGT) GNUATMY, UE 6XOT6 TN BlELXOAUVOT TNE ECAYWY TS 1) TNS EVIOYL-
ONG TWY TANEOYOPLKY oL oWTd YeTapépouy [87]. Avdhoya pe v EXdOTOTE EQUPUOYT, AUTO
umopel var tepthopfBdivel BLadXAGIES OTWS 1) ATOUOVOOY) HELOVWUEVWY CNUATLY antd Eva uelyua,
1 AVAOELLT) CUYXEXPWUEVOVY YOOUXTNPLO TIXWY EVOLUPEPOVTOS 1| 1 EXTIUNOT) TUPUUETEWY TOL TERL-
Yedpouv Evar UTOXEIPEVO WOVTERD GARUATOS. XTU CUC TAUNTA ETUXOWVMOVLGY, YId TURAOELYUL, To
ofjuorta cLVAYWS UTOBAAAOVTOL OE Lol OELRY TPOETEEEQRYAGLMY —OTMC BLOOEYMO 1) cuUTiEST—
TELY oo T UETAB00T, €Ve) 0 0EXTNG exTehel TNV avtioTolyn ueta-eneéepyasia yio TNy 660 To
OLVATOV AXPUBECTERT] AVAXTNON TRV UETAOWDOUEVRY TTANPOPoptwY. MEéoa o autd to eupl medio,
n Unelaxy|) Encgepyascio Ynudtwy (VEX) €yer avoderylel we i eUp€ne Ypnotuomoloduevn o
XN EDPAULWUEVT] TEOCEYYLOT).

22



Exterapévn Llepidnn

Yougova ye toug Oppenheim et al. [87], «o bpoc ofua yenowonoteiton yevixd yla vor Tept-
Yedel xdTL mou petapépel TANpogopioy. Ouclac TIXd, T OUATA XWBIXOTOLOVUY BeBoPEVL TOU
apoEOUY TN BUVIULXY|, TNV XUTACTUACT 1 TN CUUTERLPORE PUOLXWY CUCTNUATWY. Mropolv va
TopoyJoly GXOTIA VLol T HETAD0OT, TANEOPORLaG, ETMTEETOVTAS TNV avip®Tivy emixovwvia,
OAANAETBRUOT) GE AUTOPATOTONUEVO GUG THUATA 1 DIETUPES VIPOTOU—UNYAVAS, EVE TORIAANAA
TOEEYOLY OUCLHOT BEBOPEVA YloL TNV TaEATENOT), Tov EAeYyo xat TN An anogdoewy, 1600
oe TeEYVNTE 600 xan o Quotxd TepBdArovTa. To ohpata GUVEYOUS YEOVOU, YVOO T X (G
avahoywd, opilovton oe éva oUVEYEC EVPOC YpOVoU, BNAadY 1 aveldpTnTn HETUBANTY Toug
ueTOBdAAEToL cuvEYGC. AvTileTa, Tar oHUNTA BlaxELTo) Ye6VoUL 0pllovTal UOVO GE GUYXEXQIIEVES
YPOVIXES OTIYPES, OTOTE 1) aveldpTnTy UETOPANTYA Toug hauPBdver doxpitée Tiuég: podnuatixd,
avomopiotavton wg axoroudieg apriuwy. To mAdtog evog ofuatog umopel eniong va elvon elte
oLVEYEG elte BLonpttd. BTNV MERIMTWoT TG TAUTOYPOVNS BLUXELTOTOMNOTG TOU YPOVOU ol TOU
TAGTOUC, To TEOXVTTOVTN OATA TOEVOUOUVTAL WE (m@pLoxd chuoTa.

2l TOMES TPUXTIXES EQPUPUOYES, TA OTUUTA TEOERYOVTOL OO PUOIXES TNYES. Mo iadtepn uT-
oxoatnyopio Tétolwy onudtwy eivor ta froohuata. Ta Brochuata [82] elvor petpriowo onuoto Tou
TEOEPYOVTOL OO BLOAOYIXE GUCTAUATO KoL PETAPEPOLY TANPOPOPIES GYETIX UE PUCLOAOYIXES
olepyaoieg xou Acttoupyiec. Mropolv va tadivoundoiy e 8Vo x0pleg xatnyoplec: NAEXTEIXA Xou
Un NAEXTELXS OY|doTaL.

Avdiuorm Fourier

LNy avdAuor onudtey, wa cuvdetnon urnopel vo epunveutel wg otolyelo evog BlavUCHATIXOY
Y®EOL, OTOU BLUPOPETIXES CLVAPTHOELS [Bdong emTEénouy evolloxTixég avamdpaotdoets. O
Mertaoynuotiopog Fourier napéyet Ty mo eupéwe ypnoylomotouevn anocuvieor, exppdlovTog
EVOL OTUOL GUVEYOUC YPOVOU z(t) »g UTEEUEDT) ULYOdOLXMY EXVETINGY CUVOIPTACEWY:

X(w) = / Zx(t) et gt w(t) :% / ZX(M) eIt du

Xy medln, to ofjpata lvor cuVHOWE BloxELTe XaL TETEPUOUEVOU UAXOUC.  XE qUTAY TNV
TepinTwoT, yenowonoteiton o Awxpitoég Metaoynuatiopdg Fourier, o onolog avtiotoryilel pa
axoloudia N derypdtov x[n] otouc (QUOUOTIXOUG TNG CUVTEAEC TES:

X[k =S znle’ ¥ k=01,...,N—1

O unoloyioude tou Awxpitol Metaoynuatiopol Fourier mpoyuatonoweiton cuvidwg ue
yerion tou I'pfyopouv Metaoynuatiopol Fourier (FFT) [27], evég alyopiiou tou yeidver tny
vrohoytotixh| tohuthoxdtnta amd O(N?) oe O(N log N).
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Evépyeia xou Ioylg Xjpatog

Yy eneepyooio onudtwy, n evépyewr E, n otywola oydc P(t) xou 1 péon toylc P evog
ofuatog cuveyols ypdvou (t) opilovtar we:

Ez/_oo lz(t)|>dt, P(t) = |z(t)]?, P = lim i/_ lz(t)|* dt

(o)

o évor oo Broxprtol ypdvou z[n], oL oplopol elvar avdhoyo:

00 N
1
_ 2 _ 2 . 2
B= 3 Il plal =lelall, P = fim oo 3 el

n=—0oo

ITépa amd toug oplopolg oto medlo Tou Ypdvou, 1) evépyela VoS ofjuatog Umopel emlong va
expaoTel 670 TEdio TNg ouyvotTnTac. AuTh 1 oyéon xadopileton and To Osprnuo Tou Parseval,
TO o700 ONAWVEL OTL 1) GUVONXT) EVERYELX EVOC GTUATOS OTO TEDO TOu Yebdvou elvon (om ue TN
OUVOAXT TOU EVERYELN OTO TEdo Tng ouyvotnTac. I'ar Evar orjuo GLVEY0UE oL BLaxELTOL YEOVOoU
ue petaocynuotiopd Fourier X (w) xou X [k|, tpoxintouv avtiotouya:

=

-1

[ =g [ xR et = 5 3 i

0

i

Pacpatiny ITuxvétnta Ioydog

H ®aocpated) Huxvotnra Ioyog neprypdper 1o mog xotavéUetor 1) Loy UG €VOC OHUATOS 1) [ULog
Tuyolag Badwaciog oTig Sudpopeg cuyvoeTnTeS. Anotelel pla Boaocix petEix 0TV avdAuoT
Broonudrtwy [16], xadoe mapéyer TANpopopla Yol To PUOHUOTIXG YUPOXTNPLOTIXG X0 T SuvaLX T
Tou ofpatog. Moadnuotind, oplleton we:

Sm(w):/ R..(T) e T dr,

émou x(t) eivan évor otdotpo ohfua xou Ry, (T) €lvon 1) ouVPTNON AUTOCUCYETIONS TOU GRUATOC.
H avutoouoyétion yetpd tnv opotdTnto YeTollh TOU OUATOC Yo UIUG YROVIXE UETATOTLOUEVNC
exdoy g Tou xutd xaducTtépnon T.

Xy mpdln, wotdco, unoloyiletu cuvidwe péow tou DFT Tou ohuatoc:

Pl = IXIHP
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Yvotouylo PiAtpwyv Gabor
To @ihtpo Gabor eivon éva ypopuixé (LTT) @ihtpo, to onolo oe i didotaon, opiletor we:

2

o(t) = exp (—L) cos(2 fut + )

202

OToL 0 elvon 1) TUTIXT] ATOXALOT) TOU YXUOUCLAVOL TEQIBANUATOS, 1 oTtolo EAEYYEL TNV YPOVIXN
TOu dloTopd, f. elvar 1) xevipin| cuyVOTNTA Tou PIATEOL Xau ¢ elvon 1) dlopopd pdoNC.

M cuototyio @iltpwy Gabor xataoxeudleton dSnuioupy®vTag o axohoudio giitpwy Ga-
bor, Twv onolwy oL XEVIPIXES CUYVOTNTES XATAVEUOVTOL UETUED ULUG XUTWTERNS (flow) xou o
AVOTEPTG ( fhigh) oLy voTnTag anoxonnc. Me autédv Tov TpéTo, To EUPLLKVIXG G ATOCLVTIVE-
Tou o€ UTOLWVES, UE %Ade PIATRO VoL ITOTUTIMVEL TOTIXO PUCUATIXG TEPLEYOUEVO YUPW Amd T1 Oixn
TOU XEVTEXT GLYVOTNTA. XTNV VAOTONGT| g, To Brua cuyvotntag oplleton wg Af = @,
émou N ebvan 0 aptdude v @iktpwy. Ot xevtpixée ouyvotnteg opilovion e fo(k) = fiow+EAS,
omou k € Z>o 1 k < N.

Gabor Filterbank, # Filters 12 (Fs = 22.05 KHz)

i

1

4230 -
5420 |
6900

1370 [ ——
1870

2490 1

3270

oo
I~
o o

8740
11030

Figure 1 Xvotowyia ®iktpwv Gabor, amotedoluevn and 12 ¢iitpa oc xoatavour, Mel ue
emxdiudn 50% (Puduoe Aerypatorndlag = 22.05 kHz) [123].

Avdivon AveldptnTony ZuvicTwowy

H Avéluon AveZdpmtwv Luviotwomy [26] eivor elvor o umoloyiotix| uédodog yia to Bi-
oY WELOUO EVOC ONHATOC OE TEOCVETNES, OTUTIOTIXG aveldptnTeg ouviotroes. H uédodog auth
UTOVETEL OTL TOL TUEUTNEOVUEVO GYUTOL ATOTEAOLUY YRUUUIXOUS GUVOUAGHOUS OVECTRTNTODY, U
YHOUOUGLOVDY TNYWV.
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Evepyeiaxog Teheotrc Teager-Kaiser

LYEDOV ONOL TAL GUC TAUNTA ETUXOWVOVLOY 0GYOAOUVTOL UE TOAAVTWTIXEC GUVIPTACELS, TOU YUEuX-
meilovta amd dtapubppwon TAdtous (AM) xau Stopdppwon ouyvotnrag (FM). Tty aviyveuon
TWV BLUopPOoEwY ot autd Ta orjdato AM-FM, unopel va yenowonowmdel Evag un yeouuxodg
Stapopinde TeheoThe, YVwotoc we Evepyetonde Teheothc Teager-Kaiser (TKEO) ([54], [74]),
0 omolog EXTIUS TO YWVOUEVO TOU YEOVIXE UETABAUAAOUEVOL TATOUC XU TNG CUYVOTNTAS TOU
ofuatoc. O TKEO éyer avantuytel 1600 yia ofyata cuveyoic ypoévou (¥.), éoo xo yio
OTUATOL DLAXELTOY YEOVOU (Vq) xou AELTOVEYEL WG «UVLYVEUTAG EVEQYELUCY, EMUTEETOVTOS TN UOV-
TEAOTIOINGT] TV YPOVIXGOY PETUBOAMY TN EVERYELIS EVOG ONUATOC.

Vela(t)] = (2(t)" — z()Z(?)
2%[n] — z[n — 1]z[n + 1]

=
&
=
=
I

‘Onwe e€riynoe o Kaiser [54], otny amhr appovin| Tahdvtwon, 1 evépyeto Tou orfuotog Vewpeito
OTL elvan avdAOY T TOU TETPAYOVOU TOU TAGTOUS X TNG CUYVOTNTIG:

1
E = EmcfAQ x w?A?
Hoapd owty| 1 Yepelwdn oyéom, mpornyolueveg uedodohoyieg utoloyiouol evépyelag cuyvd
TOEAUUEAOVGAY TN CUVLGTOON TNG CLUYVOTNTIC, EOTIALOVTAUC ATOXAELOTIXG OTOV TUEEYOVTO TOU
mAdroug. T évor amhd tohavtwTtind ohue z[n] = Acos(Qn + ¢), o Kaiser édeile 6tu:

22[n] — z[n + z[n — 1] = A%sin*(Q) ~ A%Q?,

yroe uxeeg Tég g €2 T var Sraopahiotel 1) axplBelar auThg TG TREOCEYYIONG EVIOS UTOOEX-
OV oplwyv, o Kaiser npoteiver tov meploptopd e twwhc e 2 oto Sidotnua [0, %], OOTE VA
Slotnpeiton To oYETNd opdhua xdtw and 11%. Enouyévec, i va dewpndel avtdc o teheotic
altomioTo PETPO EVEPYELG, amontelton 1 Oerypatolnla TovkdyloTov BUo onueiny avd TétupTo
NG TEPLODOU TNE NULTOVOELDOUE TUALYTWOTC.

ANy opripog Alayweiocuol Eveépyeiog

[oc v e€orywyt) Tou tepBifuatoc Thdtoug xan Tne ottypadag oLy votnToag onudtwy AM-FM,
avamtoyinxe o Alyépripoc Awywplopol Evépyetag (ESA) [74]. O ESA ypenowornotel un
YEoUUOUE GUVBUNOUOUS OTYHaieY €£60WY TOU TEAEOTY| EVERPYELNS, WOTE VoL Olaywpeilel Tig
CUVLOTWOES DLOPORPMONG TAATOUS XAl BLUUORPWONE CUYVOTNTUS EVTIOS TOU YLVOUEVOU EVEQYELG
TIOU TUPAYEL.
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CESA

O Yuveyhc Ahydprduoc Alaywptopol Evépyetag (CESA) etarydn yio orjuata ouveyoic ypdvou.
O CESA mopéyet exTyoeig Tng Ypovixd UeTUBaAAOUEVNS CTLUYULOLAG GUYVOTNTOG wi(t) > 0 xou
ToUu TEPPBAUATOC TAdTouC |a(t)| we egnc:

DESA

O Awoxprtoc Ahybprduoc Ataywetopol Evépyetog (DESA) avamtdydnxe yio ofuoto dtoxpttol
Ypovou, Yyl Tov omolov €youv mpotadel ol &g Teelg maupahhayéc: DESA-la, DESA-1 xou
DESA-2. 'Onwc avagépeton oto [74], 0 DESA-2 eivon o toyltepog Uetoll twv Toidv xou 1)
pordnuotixey| Tou avéhuon elvar 1 mo anAr. O DESA-la epgavilel younhdtepn anddoor, eve o
DESA-1 emtuyydvet ehagpeae xahltepn anodoor and tov DESA-2, ue 1 Swopopd vo xupaiveton
petall 0.01% xou 0.1%. IHopaxdte mopovotdlovion ov e€lonoelc xdie akyopiduov, 6mou 1
tepBdhhouca mhdtoug Snhwveton we |a[n]| xou ) otrymada cuyvéTTa we €2

DESA-1a O deixtng ‘1’ umtodnAOVEL TNV TEOCEYYLOT TOEAYWYWY HE SLopopd evog Oelypatog,
EVK TO YPduua ‘a’ avapépeTal ot YeNon acOUUETENG Dlapopdc.

Ulz[n] — z[n — 1]]
2W[z[n]] )

Q;[n] ~ arccos (1 -

Vz[n]]

2
1_{1_w]

2¥[z[n]]

DESA-1 H enidpaon tou ¥ ot aoOUUETRES Tapory (Y oug EELO0PROTELTAL HEPXMS UE TN UEoT)
Tir) 600 avTileTeY AoOUUETEWY BLUPORMY, OONYOVTIS OF Lo UEQIXT| KOUUUETELOTIOMGT)».

yln] = xln] — z[n — 1]

Qmﬂ%Mm%(L_wMﬂ+ym+ﬂg

40z [n]]
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Vz[n]]

2
_ |1 _ Yyn]tylnt+1]
1 [1 T aln] }

jan]| =

H opi extiunon ouyvétntog npobnoldéter tov meptoptopd 0 < [n] < m, xodde to edpog
xOptog Thc e ouvdptnone arccos(v) opileton vy v € [0,7]. Kotd ouvénewr, o DESA-1
UTOPEL Vo EXTYIHOEL OTLYMLOUEG GLYVOTNTES MG Xl % popéc Tov puIUG BetypaToAnpiog.

DESA-2 O ahyopriuog autdg yenoylomolel cUUeTeixéS dlopopés. O delxtng 27 umodniovel
TNV TEOGEYYLON TWV TEWTWY TURAY DY WY HEGK BLaPopmy UETALD BELYUATOV UE YPoVIX0UE DEXTES
TOL BLAPEPOLY XUTH 2.

Qmﬂzémm%<l_WhM+u—xM—ug

2Wz[n]]

20 [
VUl 1] — a[n— 1]

laln]| ~

Ebw, n opdt| extipnon cuyvétntog npobnmotétel 6t 0 < Q4[n] < 7.

Yvotolyieg Piltpwyv Gabor octov TKEO

O TKEO mnogéyel alldémoteg exTyli|oeic otyplaiog evépyetag xuplwg otav egopudleTton o€ Gt
poto otevig Lovng [74]. Tw NV wavomoinom authg Tng npobmodeorng, 1 yerorn cuctolylag
piktpwy Bonldd otn didonaon Tou gupLlWVIXOU OHUATOS OE TOTXES UTOLWVES GUYVOTHTWY,
YEYOVOC TTOL 0BNYEL GE OUUAOTERES DIUUOPPWOELS G TLYoou TAdTOUC Xou cuyvotntog [34]. T
NV vAoroinor g cuctolylag, xataAniotepa xpivovtar Ta giktea Gabor, xadoe cuvdudlouy
XONT YpOVIXT Xt pacuotixr avdhuon [74].

‘Onwe meplypdgpnxe Teonyoupévewe, 1 ouctolyla giitownv Gabor xataoxeudleton Ye Tov oploud
wag ocohoudiog GIATewY e XEVTPIXEG GUYVOTNTES PETUCD TV XUTOTEPWY X0l AVOTEPWY 0pie)V
amoxorhg. LTnyv mapoloa Epyacio, emAéyovior XeEVIPIXEC GUYVOTNTES OHOIGUOPPA KUTAVEUT)-
uévec. Aol xadoplo Tel TO GUVOAD TWYV XEVTPXMOY GUYVOTATLY fq, xdle orjua Siépyetat omd Ta
avtiotorya gihteo Gabor xou epopudleton o terecthic TKEO oty é€odo xdie gihtoou. Autod
€yel ¢ anoTéAeoya TNy Topaywyr) N onudtwy evépyetag, éva yia xdie utolwvr. o xdlde orjua
TKEO, unohoyileton o ypovixde péoog we pétpo tne péong evépyelog unolaovne. H cuctoyla
¢pihtpwv Tou amodidel T peytotn peorn T TKEO emhéyeton, xou 1o avtiotolyo QUATeupiouevo
ol BraTneeiton yior TEPALTERE avaAUOT), XxadiS avTimpoonTevel TNy urtol®vn, 6touv o TKEO
TOREYEL TNV TEPLYQOPT| TNG DUVOULXTC TOU GTUATOC PE TNV TEQLGCOTERY TANROQOplaL.
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Movtéha Mnyavixng Madnong

Mnyavéc Atavuoudtwy YroothAeEng (SVMs) [28]: Hpdxeiton yio goviédo emPBreno-
HEVNG Udinong oyedlaouéva Yo SUadX] TOEVOUNGCT YO EVOWHATMVOUY Ulal ATTAT) GAAS Loy LeN
apyn: avtl var avallNToly amhde 0mo100NToTE OPLO ATOPACTC TTOL Blary WELlEL TIC XAJCELS, ETLOLOX-
ouv To Béltioto bplo. To BérTioto unepeninedo opileton v exelvo mou dloywpeilel Ta Gedouéva
exTaidELONG UE TO PEYLOTO BuVITO TEPLIWPELO, ONAadY| TN UEYLoTr amdcToon HETall Tou opiou
XL TOV TANCECTERWY OMuEiwY Bedouévwy and xdle xhdo).

Aévipa Anogaornc xow Tuyaio Adococ [18]: Ta Aévtpa Andgacrnc anotehodv Yov-
Téha emPBAENOPEVNE Uddnong Tou Ywpellouy ToV Y®Eo EL0OBWY O TEPLOYES TIOL AVTIGTOLYOLY
oe eTETEC xNdoewy (oTny mepintwon Tadvounong) 1 ot apriuntixéc twée (otny mepintwon
ToAvdpounonc). Eva 6évtpo xataoxeudleton L€ ENAVOANTTINGY Lo WEIOUMY TWV BEGOUEVELY
exnofdevong e BAon TIC TWES TV YopoXTNEIoTXOY.  XE xdde eowtepnd xOufo, emAéye-
TOL VOl YUQUXTNPIO TIXO XL EVOL XUTWOPAL DLy WELOHOU, ETOL WOTE Vo PEYLOTOTOLELTAL XdmoLa
HOTAAANAGL ETMAEYUEVY PETELXY, OIS TO TANEogopLoxd xépdoc. H Swdwacio ouveyileto, éwg
6ToU xavoTolNoly T XPLTAELY TEPUATIONOY, OTwS 1) eNiTeLdn péyioTou Bddouc 1 o puxedc apt-
Vb Betyudtov mou Bev eTTEENEL TEPULTER® Btoywpetoud. Ot telxol xoufot (@Oha) anodidouv
Tic mpofiédec. H pédodoc Tuyaiov Adoovg anotehel wo eméxtoot twv Aévipwy Atdgaong,
OTOU TOAUTAS BEVTOO EXTILOEVOVTOL OE TUY OO UTOGUVOANL TWV BEBOUEVMY X0 TWV YUQUXTNPLO-
v, H el npdfhedn npoxintel péow Pngogopiac (otnv talivéunon) A uéow uéoou dpou
(oTnV ToAVBEOUNGT), YEYOVOS TOU BEATIOVEL TN YEVIXEUOT) XU PEWWDVEL TOV XIVOUVO UTEPEX-
ToldevoTg.

™~ t\—l\
gfg;@\ @gg>6@d\/2}>

/)
4 DECISION
4 TREE 1
/7

Support Vectors

DECISION “ee DECISION
TREE 2 TREE N

RESULT 1 RESULT 2

l

RESULT N

MAJORITY VOTING / AVERAGING

>
>
FINAL RESULT

Figure 2.1 T'popuixdc SVM. Figure 2.2 Tuyalo Adoog ye N Aévrpo.
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Egoapuoyn TKEO Xe HET

ITpoenelepyaocia Xnudtwy

Y1y mapoloo epyaoia yenolonotoVUe TEGoEpa GOVOAN BEBOUEVLY, TANPOGORIES Yo ToL oTola
mopéyoupe ota avtiototya Hopoptiuata. Ta HED anéd ta olvoha dedouéveov DEAP xaw SEED
TopEyovtal \or o TEoENeLepYaoUEVT wop@r. Avtideta, ta cUvola dedopévwy BCI-IV 2a xou
TUEP, ntou eivan dtordéoiuo o€ axatépyaotn Lop@t, anottoly EMTAEOV G TOL TPOETEEERYATTAC.
Mot 600 tedeutadar GOVOA BEBOUEVKV, EQUPUOCTNXE Lol TopdpoLaL dLadixacio, 1) onola TepLAa-
Bdver epapuoyy Avdhuong Aveldptntwy Yuviotwony yia Ty agalpecn YopiBou, allomotdvTog
T Otadéotua nhextpoxapdloypagpruata oto TUEP xau ta dtoadéoiua niextpoopiahuoypagprorta
oto BCI-IV 2a. ¥t ouvéyew, egapudotnxe ¢iktpo amoxonrc {ovng ota 60 Hz yia to TUEP
xou ota 50 Hz yio to BCI-IV 2a, mpoxewévou va e€ahewpiel o H6pufog dixtdou. Téhog, dha
Tor ofjuata Tépaoay and UPLmEPATd PIATEO uE oLy voTNTa aroxonhc 0.5 Hz.

Time Course ICA

Original EEG of ICA Components Components Corrected EEG
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Figure 3 Egoappoyr Avdivong Aveldptniov Yuviotwowv oc HEI ané to Mivoro Ae-
oopévev TUEP.

‘Oha ta apyelor HEI' ywplotnxayv oe emixaAuntopeva Tufuata, Ue Tor urixn mapaddpou xon T
TOGOGTA emxdAUPNG Vo EMAEYOVTAL ovEhOYo UE To WOTEPA YAPOXTNELOTIXNG XdE GUVOLOU
oedouéveyv. H mpooéyyion auth emtpénel TNV e aywyn YEOVIXE TOTIXOV YUQUXTNOIO TIXWY,
OLUTNEWVTAS TOREAANAL TN CUYXEICIUOTNTA UETAC) BLUPORETIXGY XoTorypapwy. [a v all-
olOYTON TNE EMBPACTC TNG YPOVIXTC avdhuong oTny avdAuon tou Baotleton otov tekeots| Tea-
ger-Kaiser evépyeing (TKEO), ou xataypoagpéc 60 deuteporéntwv tou DEAP ywelotxav oe
nopdiupa dtdpxetac 20 Seuteporéntwy pe 50% emx @A, amodidovtag 5 mapdiupa avd Belyua.
AvticTouya, ov xataypapéc tou SEED, didpxetlag nepimou 4 Aentayv 1 xadepio, ywplotnxayv oe
nopdidupa 20 Seuteporéntwy pe 50% emxdiudn, mopdyovtag 23 tuuata avd xataypagr. To
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Dataset ~ Window (s) Overlap (%) # Filters

SEED 20 50 12, 25, 50
DEAP 20 50 12, 25, 50
BCLIV 2a 4 0 12, 25, 50
TUEP 10 0 12

Table 1 Ilopduetpol Ilpoeneepyasiog oe xdde LOvoro AcGouévemy.

oetypota tov TUEP tunuatonom{dnxay oe napdiupo 10 dcuteporéntoy ywpeic emxdiudr, Adyw
UTOAONO TIXWY TEptoplop®y. O aptiudg Twv topadipwy avd delypa diagoportotdnxe avdhoya
ue TN Budpxeto TN xatarypaphc (amd mepinov 1 Aento éwe 1 OPAL), UE OTOTEAEOUO VO XUMOLVE-
tou petagd 11 xou 719 mopodtpwy avd delypa. T to obvoho dedopévewv BCI-IV 2a, xdie
xotarypopr) avTioTotyel oe uio cuveyy| cuvedpla Yo xdle cUUPETEYOVTA, 1) oTtola TeEpLhaUBdveL
1660 TEPLOBOUE ToEoLGTaoTC EpeNoUATWY 6G0 Xou Sloc THUNTA LETAED doxdwy. Aedouévou ot
Topéyovtar axpiBelc ypovinég onudvoelg yior Ty évapln xdie cpediopatog, e€fydnooy Tufuata
otadepol prxoug 4 BELTEPOAETTLY UETE amd xde Tapoucioor epediopatog. H draduacta autn
Topryaye 288 mapdiupa xivnTXAG pavTaciog ove xaToryedp.

pw ané v e€aywyh) TKEO yoapaxtnpiotinoy, xdie tpfua EEG anocuvtédnxe oe mévte mo
0TeVvES LOVES CUYVOTATWY UEGW (WVOTERPUTOV PLIATEURICHATOS, TOU AVTIO TOLYOVV OTIG XAVOVIXES
Lovee EEG. Xtn ouvéyela eqapuoo oy todhamhéc dtatdéels giltpov (12, 25 xou 50 ¢iktpa)
eVTOC TOoL €0poug CUYVOTATLY Xdie xavovixic (ovng ot clvola dedouévwy DEAP, SEED
xow BCI-IV 2a, ue oxond tn cuctnuoatiny| allohdynon tne enidpoone tne avdiuong tou @il-
Teou oTa eCayoueva YapaxTnEo Tixd. Avtiieta, oto oivoho dedopévewy TUEP eqopudotnxay
uovo 12 gihtpa, Aoyw LTOAOYICTIXWY TEPLOPIOU®Y. O TapdueTEoL TEOETEEERYATIAS TOU UOALS
avahbdnxay cuvoliovton otov Iivona 1.

Gabor Filterbank on EEG

Normalized Amplitude (uV')

20 25

Frequency (Hz)

Figure 4 Egopuoyr Yuotovyiag ®lhtowv Gabor ye 12 ®litpa ota Kovdio and éva HED
Tou Yuvorou Aedopévwv DEAP otny Beta Mndvra.
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ECaywyn XapaxtnetoTixwy
Xapaxtnerotixd TKEO

E&dyouvue TKEO yopoxtneiotixd and to ofuota HEI', ue oxond tnv andxtnon mohdTyumv
mAnpogoplv.  Kdle yoapoxtnpiotind umoloyileton aveldpotnra yia xdde xavéh HEID xou
Y xéde Lhdvn oLy VOTATWY, YE amoTéAeoUa Eva BLdvuoua yapoxtnelo Tixwy ueyédoug (umdy-
teg X kavdAia X yapaktnpiotkd) yi xde detypa. Ta TKEO yapoxtnpetotixd, tou npoteivov-
T 6NV Tapovoa pyacio, ouadomololVToL O TEELC XaTNnyoples: otatioTtikd yapakTnplotikd,
XapakTnpiotikd oxeTkng evépyelag xou yapaktnpotikd paciouéva atov AAydpiduo Awaywpio-
pov Evépyeiag. Ao bt xou 670 €€nc, Yewpolue ¥ = Wy

YratioTixd XopaxtneltoTixd

‘Eotw 611 s ofjua mou avtiototyel o €va ouyxexpLévo (elyog xavahlol—L{mvng, amoTeEAOVUEVO
am6d N Oetypota, xou s; T0 1-070 delyua Tou. YrohroyiCouue ta e€rig:

e Méor Teager—Kaiser evépyeiou:

() = 5 Do w(s)

AvaxOpavor tng Teager—Kaiser evépyeiag:

v-U(s) = %Z(\P(Sz) - M\II(S))Z

Anohuty Sragopd uetadl tng REYLOTNG xou TNg eAdyLotrng Teager—Kaiser
evEpyelag:

Max-Mi = U(s;)} — min {U(s;
ax-Miny(s) éﬂlfﬁ]{ (si)} ién[f,%]{ (si)}

Acvppetpia tng Teager—Kaiser evépyeiag:
o (B(si) = pa(s)’
(% S (U(si) — Mm(s))2>

sU(s) = 572

Kbptwon tng Teager—Kaiser evépyeiag:
4
N iy (U(s:) = pru(s))

5 —3
(%8 () - e (s)°)

k-U(s) =
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o Acixtng pnéyiotng Teager—Kaiser evépyeiag:

iy, (s) = argmax{W¥(s;)}
1€[1,N]

o AnoAuty Srapopd UeTad) TwV BTV WEYLoTNG %ol eAdytotng Tea-
ger—Kaiser evépyelacg:

i€[1,N] i€[1,N]
Xapaxtnerotixd Syetixrc Evépyeiag

[oc évar ofuot CUYXEXPWEVNC UTAVTAS S, 1) oxeTikr) ouvelopopd tne Teager-Kaiser evépyelag o
oyéon Ue OAeC T UTO eEETAOT UNAVTES CUYVOTATGY 0plleTon WC:

\Dband(s)
>k Ui(s)

émou k € {Delta, Theta, Alpha, Beta, Gamma}. 3tn cuvéyew, unoroyilovton o axdhoudor
OTATIOTIXG TNG OYETUNAC EVEQYELNS WC YAUPUXTNOLOTING.:

REband (5) =

e Méon oyetixy evépyeta
m- REband Z REband Sz

o ALaxOUAVOT TNG OYETIXNG EVERYELG:

1 N

N Z (REband(s:) — m-REpana(s))

2

V‘REband (8) =

o AmOAUTY BLapopd UETAED UEYLOTNG %Al EAAYLOTNG OYETIXNG EVERYELXG:

Max-Mingg(s) = n?lax {REbana(si)} — H[lll%]{REband(Sl)}

o AcixTtng REYLOTNG OYETIXNG EVERYELNG:

IREma (5) = arg max{REpana(s;)}
1€[1,N]
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o ATOALTT SLaPoEd KETAEY TWV BELXTOV EYLOTNG KXol EAAYLOTNG CYETIXNG

EVERPYELNG:
IRE,ay i (8) = | arg max{REpana(s;)} — arg min{REpana(s;) }|
i€[1,N] i€[1,N]

| ! ! — SE |
Eﬁ 0.8 E I —— TKEO E
S 0.67 ' l
& ; J
2 04 i
lj 0.21 ’ | [ ‘ 'L
2 ) I s

0.0- I, 1 I / l "‘\‘ ' “ l,’v‘nu‘,lvw‘hy '\\‘1" l u* ‘
0 i 2 3 4 5 6
Time (s)

Figure 5 Xyctxéc tetpaywvixéc xan Teager-Kaiser evépyeiec tou xavaiiot FC4 and to
obvolo dedopévwy BCI-IV 2a otn (wvn Alpha. Ot yxpet Swaxexoppéveg xddeteg Yoouuués avio-
ToL 0LV otV évapdn Tou epediopatoc (1s), otn AAEN tou epediopatog (2.25s) xaw ot AMEN g
PAoTNC XV VOERYIC ATEIXOVIONC (5s). H oyetry evépyeln TKEO mapovoidler Avydtepeg
OLUXUUEVOELS EVTOG XGE TIEPLODOU, TOQUUEVOVTAS YUUNAT] XUTE T1) DLHEXELL TNG XIVNTIXNS VOERT|C
amewxovione (MI) xon vpmhdtepn xatd T nepdBous Mpepiag, UTOBEXVIOVTUC OTL 1) OYETXN
evépyelr TKEO npoogépet o mo opahy| xou dtaxpitixy| avanopdotaot yio tny ML

Xapaxtnprotixd AAyopiduou Alaywpiopol Evépyetiag

Yy nopovoa epyaocio, utodetolue tov ahyoprduo DESA-1 vy tny eaywyr Tng oTiyuolag
SLabppwong mhdtoug (a(s)) xon e otryuaiog Swbdppwong ouyvétntag (£2(s)). Axolovidng,
umohoyilovtar Tar yapoxtnetoTxd mou PaciCovton otov DESA:

e Méon tiuy] otiyptaiog dtapndppuwons tAdtoug [124]:
1 X
-JAM(s) = — ;
mIANIG) = 3 3l

o Mtaduiopévog néocog bpog oTiyptaioc Srapnbppuwong cuyvotnTag [124]:
_ SV, Q(si) - (mTAM(s;))’

m-TFM(s) S (m—IAM(si))Q
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o ALaxXOUAVOT TNG OTLYolag BLaAOPPWONG CLUYVOTNTAG:

1 N
2
v-IFM(s) = v § (Qs:) — pals))”,
=1
/ _ 1 N
6mou fia(s) = § iz CA(si).-
(a) (b)
%1070 %1076
1 1 1 1 1 1 1 1 1 _)“ 1
o %
g g 15
20 g
@n oo Mo
<t =
A & 0.5
&) _5 o 09
n
- - - . : : - - - 0014 - - - - - - - -
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Figure 6 (a) Xnpo xavolold CP4 and to obvoho dedouévewy BCI-IV 2a otn {ovn Alpha. (b)
Tetpaywvixr pila tou TKEO. (¢) Extyouevn tepiBdhovoa tAdtoug pe yerion tou DESA-1.
(d) Extpdyevn otryuiodo ouyvétnta pe yeron tou DESA-1, exppacuévn we xAdopo tou 7.

Mévobdor Avagopds xar Enthoyr Xapaxtneiotixenyv TKEO
Anooxondvtac otny o€lordynon twv TKEO yapaxtnoiotixdy xow otny extiunon tng evoeyo-
MEVNG CUUTANROUATIXOTNTAC TOUg Ue xoicpwuéva yapaxTtneltoTixd twv HEI', unohoy{Couvue Ta
TOEUXETE PEVOOWY avapoEdc:
o daopotixr) Huxvotnra Ioyoc (PSD), yenowonowwvtoag ) uédodo Welch, napdywvtag
L yopoxmpioting, mou f 1 ouyvétnTa derypatohndioc.

o Evépyeia Xrfuatoc (SE), to onolo yopuxtneiotind meptéyet tn U€on Tur TOU TETPAYHVOU
evépyetac/otrypiodag 1oy 0oc GHUNTOC Xou TN HECT) TN TNG OYETIXAC EVEPYELUC OHUOTOC,
xot’avahoyio ye to yopoxtneiotind TKEO.

O Codveg ouyvothtwy e&iydnoay and Tic Yedddou avapopds YeNOWOTOLOVTS EVOL TUTLXO
Cwvorepatd gihtpo Butterworth 10ng tdéng.
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270 TELpUUATIXG oG TAUICLO, dpy XS AELOAOYiOUUE TNV ATOB0GCT] TOU UOVTENOU YETCLIOTOLDVTOG
T0 TAYPES oOvoho Twv 15 eloyouevwy yopoxtneloTixdy. o va Siepeuviicoupe tepantépw TN
OYETXT] CUVELGPORE TWV ETUUEPOUS TEQLYPUPIX®Y UEYEDQY, eCeTdope elong BLapopeETINd UT-
0GUVONIL YAURUXTNPLO TGV XL OELONOYHOUUE TNV ATOTEAECUIATIXOTNTA TOUG UEGH GUC TNUATIXGDY
doxydwy. Me Bdon to amoteréopata auT®V TV allohoyocwy, TapatneRinxe OTL éva ouy-
XEXPWEVO LTOGUVONO, amotelolpevo and ta mean Teager—Kaiser energy (m-TKEO), mean
Relative Energy (m-RE), mean Instantaneous Amplitude Modulation (m-IAM) xou variance
of Instantaneous Frequency Modulation (v-IFM), naphyoye otodepd avidtepn anddoor tol-
VOUNONG O GYEOT PE TO BAAXL UTOGUVOAIL YOQUXTNELO TIXMY.

[a Adyoug cagrivelng oTig emopeveg evotnieg, oplloude TNV opoloyio wg e€rfg: To TARPES
oUVOAO TV 15 YapoxTNEIo TIXOY aVAPERETUL W¢ Ta YapaxTneoTixd “TKEO”, eve T0 UELWUEVO
UTOGUVOAO TWY TEGGdpnY BENTIOTOV Teptypapixy ueyedwy (m-TKEO, m-RE, m-IAM xo v-
IFM) yapoxtnpiletar we tor yapoxtnptotxd “Selected TKEO”. Auth 1 8iéxpion Uog emLTeénel
VoL GUYXEIVOUUE pNTd TNV ENidpaoT TN UElONE TNE BLUC TATIXOTNTOC TWY YURUXTNELO TIXWY GTA
amoteAEoUATo TAEVOUNOTC TTOU TOEOUGCIALoVToL 0To ETOUEVA Xe@dhata. Emmiéov, opiCoupe Tov
opo “Combined” yapoaxTneoTnd w¢ T0 6OVOAO TOU TEOXOTTEL ATO TN CUVEVGWOT) TWV YUEUX-
mewoTixwy Selected TKEO, tou PSD, tng P€ong EVERYELIG TOU GTUATOS Yo TNG MEOTG OYETIXTG
EVEQYELIS TOU GYUOTOG.

A&LoNoymom

TroloyiCouue T TKEO yapaxtneiotind o tplo mpofiruata:  Avoyvoplon Xuvauotfuotog,
Toa&wounon Kivnuxrc Noepric Anexdvione xou Evtomioud Emindioc. Ipaypatonoolue telpd-
ot atov xdle ouppetéyovta Eeywptotd (Subject-Dependent) xou oe dhoug Toug GUUUETEYOV-
tec anb xowol (Subject-Independent). Evonotolue to HED' xavdha, ool yiver e€aywmyh
TWY YORUXTNELOTIXOY, Xou EQapuolovue un yeauux Mnyoavh Alevuoudtwy Troothplng yia
Ta Subject-Dependent mepduata, eve emiéyouue talvounon pe Tuyaio Adoog 100 Aévtpwv
Anogdoewc yio ta Subject-Independent melpdato, Aoye Tou YouN o) UTOAOYIO TIXO) XOGTOUG
Tou ahyoplduou. Tolvopolue to xde delypo oe pio wovo xhdor. Luyxexpyévor (1) vhniric
Younhhc euyaplotnong (valence) xou Siéyepone (arousal) oto oUvolo dedopévev DEAP, pe xa-
Voplopd whdoewv Bdoet g dapéoou, (2) Yetnd, oudétepo 1 apvntind cuvaicinua oto SEED,
(3) Umopén emindiog évavt un Unopne oto TUEP xau (4) voepn xavntixt| aneixdvion aptotepo
YepLoU, 6e€lov yepton, modwy 1 Yhwooug oto BCI-IV 2a. T tnv a&lohdynor, yenoionoolue
Ti¢ yetpixéc Balanced Accuracy xouw ROC-AUC, ou onoleg eivan yprioweg, wwiktepa o€ un t1oop-
POTNUEVA GUVOADL BEBOUEVWV.
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ITewoopotinny ASLordynon

Anoteiécpata: SEED

Y10 oUvoho dedopévev SEED, to Subject-Dependent (Iivaxac 2) netpopotind mhoioto Seiyvel
6t to SE emtuyydver to uéytoto ouvolixé Balanced Accuracy, ue tocooté 93.8%. ITohd xovtd
o€ autd tor anoteéopata, ta yopuxtneoTxd TKEO-12 FB nopovotdlouv axpifBetor poiig 3.6%
Yopuniotepn ot ouyywveupévn Lovn (fused-band), Snhadh otor cUVEVLUEVEL YapPOXTNEIOTIXG
TV empépoug Lwvoy. AlloonueinTo elvon 6T, 0 GYEGOV OAEC TIC TELOUUATIXESC OLUTHEELS, Ta
TKEO yopaxtnpiotind utep€youv tng pedodou avagopdc PSD w¢ mpog to Balanced Accu-
racy, xodog xat v 600 Yedodwy avapopds we tpog 1o ROC-AUC, yeyovég mou umodnAGVeL,
OTL 1) TEOTEWVOUEVT TEOGEYYLOT) EMLTUYYAVEL AVAOTERY DL WELOHOTNTA HETOED TWV XAJCEWY GE
oyéon pe T uedodoug avapopds. Emmiéov, ta yopuxtneo Tnd tng ouyywveupévng Lovng un-
£p€y0LY EXElVLV TOV EMHEPOUS LWVOY, YEYOVOS TOU UTOGELXVUEL OTL 1) EVOWUATWOT TANEOPOpiag
oo TOANATAES GUYVOTIXES UTAVTES BEATIOVEL TNV amddooT 0TV Avaryvidelorn LuvotcOnudtey.
Téhog, xatd tn obyxpelon emuépoug Lwvmy, ol {ovee Beta xar Gamma napousidlouv uhnidtepn
axpBeta and ™ Lovn Alpha, edpnua mou eutuypouuiletal ue Tol ATOTEAECUATO TTOU VUPEROVTOL
and Toug Zheng et al. [122].

Features Balanced Accuracy (%) ROC-AUC (x10?%)
Alpha Beta Gamma Raw Fused Alpha Beta Gamma Raw Fused

SE 84.4 4102 8314111 8224937 8044151 93.8483 93.1ig2 942477 935477 893476 97.6437
PSD 4.2 4175 79.64183 69.841188 8581111 86.24125 90.04126 9131103 8784103 96.4 141 944463
TKEO-12 FB 86.24104 89.34197 8804134 858491 902487 947163 971438 93.8481 953448 97.6443
TKEO-25 FB  86.71129 88.94i105 86.71103 87.1499 8844110 97.3435 962450 95.6454 95.6445 971447
TKEO-50 FB 85.3 +12.0 87.1110'2 88.9 +10.8 88.419_6 88.9 +7.9 95.6 +6.1 96.0 +5.6 94~7i7.8 97.3 +4.1 98.2 +2.7
Selected—l? FB 84.9 +11.8 83.6 +17.2 85.8 +11.9 86.7110.6 87.1110,4 95.8 +6.5 95.8 476 95.8 +7.8 96.2 +4.7 97.6 +5.1
Selected—25 FB 82.2 +12.1 85.3 +14.8 86.7i11.9 88.0 +49.8 87.6 +10.3 94.4i7,g 96.2 +4.7 94.2 +49.1 97.3 +4.3 97.8158
Selected—E)O FB 85.3 +12.2 86.7i13'5 84.9 +11.8 86.7i12,2 88.9 499 95.6 +6.4 94.5 +6.8 95.6 +6.7 97.3 +4.6 96.4145
Combined 79.1 +14.8 83.6 +13.7 79~1i14.8 86.2 +14.3 88.0 +12.0 91.3 +10.5 94.0 +8.9 90.2 +11.1 95.5 +7.2 95.81548

Table 2 Metpuéc AxpiBetac yia To Subject-Dependent oto X0voho Acdouévewy SEED.

¥to Subject-Independent (Ilivaxac 3) newpayating mhoioto, o SE emtuyydvel eniong to un-
Motepo ouvohxd Balance Accuracy (68.1%), evod n Selected-25 FB napouoidlet uohie 0.5%
younhotepn entdoon ot ouyywveuuévn Lovn (fused-band). Emmiéov, ov tiuée yetpindyv tou
PSD etvon younhotepeg xou €66 amd autég Twv TKEO yopaxtnelotiney oe OAeg Ti¢ UmdvTeg,
extoc e eupelac Lovne umdvta "raw-band". A&ilelr vo onueiwidel, 6t 1 yeron cucTovylog
piktpwy Gabor ye tepiocotepa and 12 @idteo BeATicdver Yevind tnv axpifela, xaddg 1 auénuévn
paouatixy) avdhuon emiteénel oto TKEO vo aviyveler todaviooelg otevic (wvng, ol omoleg
OLapopeTd Vo eCopahivoVTaY amd EVPUTEPES PUOUATIXES DIULPECELS.
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Features Balanced Accuracy (%) ROC-AUC (x10?%)
Alpha Beta Gamma Raw Fused Alpha Beta Gamma Raw Fused

SE 581458 614417 60.6434 553445 681139 757447 794404 796431 734147 849409
PSD 46.7 140 555447 556142 632107 620140 649150 75T7i3s 76.0106 8l4di;s 80.6135
TKEO-12 FB 623137 61.1435 61.8136 609137 66.7139 805431 79.7409 80.1433 794409 83.5432
TKEO-25 FB 628439 61.7435 619435 60.7407 665140 804437 799430 799437 793103 83.543;
TKEO-50 FB 62.6135 61.84317 614135 614137 670139 805409 80.1i09 799431 79.640s 83.7430
Selected—12 FB 634 +3.8 61-1i3.6 62.9 426 614 +2.7 675 +3.8 81.3 +3.1 796 +3.1 80.8 429 796 +2.6 843 426
Selected-25 FB 63.2 +3.5 61.4 +3.5 62.9 +4.1 62.3 +3.4 67.6 +3.5 81.0 +2.8 79.9 +3.1 80.6 +3.4 80.0 +2.6 84.4:‘32'8
Selected-50 FB  63.6 +4.0 62.0 +3.9 63.2 +3.2 62.1 +2.9 67.0 +3.9 81.3 +2.9 80.1 +3.1 80.8 +3.2 80.1:‘:23 84.0 +2.9
Combined 59‘7i4A5 57.8 +4.4 561i55 64.2 +1.8 63.9 +4.9 77.9 +3.4 77.8 +3.2 77-1i2A3 82.1 +1.8 82.4 +3.1

Table 3 Metpwéc Axp(Betag yio o Subject-Independent oto Xivoho Aedopévwy SEED.

Anoteiécpata: DEAP

To Subject-Dependent (Ilivaxec 4, 5) mewpopotind miaicto oto clvoho dedouévwv DEAP
Topouctdlel otodepd LPNAOTERES TS oxplfBElag yiar T YoapoxTnelo Tid Tou Bactlovton oty
TKEO, urepéyovtac tewv pedodwy avapopds otny toltvouncr arousal, eve otnyv mepintonon
tou valence, 1o PSD epgoviler tic upniotepec tipée (Balanced Accuracy 64.7%, ROC-AUC
70.2). Metoll autmv, To yapaxtneoTixd Selected-50 FB emtuyydvouy ta xahitepa anotehéo-
worto, e Balanced Accuracy 64.6% xou 59.2%), xodde xan tpéc ROC-AUC 69.4 xou 64.0 ot
ouyywveuuévn Lovn (fused-band) yio tig Slaotdoelg valence xou arousal, avtiotoryo. H ouy-
YWOVELOT) PUOUATIUDY LYKV EVIGYVEL TEPUTERW TNV UTOB0CT) GE OAEC TOL T Y ARUXTNELO TIXEL TTOU
eCdyovtan pe yeron TKEO, emBeBarcivovtag Tt 1 eVowudTmoT CURTANEWUATIXAG QPUCUATIXAG
TAnpeogopiag weehel Ty Avaryvopion Luvaoinudtwy and HET.

Y11 dudotoor tou valence,  Gamma pndvto unepéyet Twv Alpha xau Beta unovtov, yeyovog
TOU UTOBNAWYVEL, OTL 1) BpaoTneldTnTa LPNAGTECWY cuyvoTHTwy Tou HEI yetagépel mhovoldtepn
CLVLCUTUATIX TANEOPOEIN GTO CUYXEXPWEVO TAdICL0. LUVoAixd, 1 Tadvounor valence tapou-
oldlel avotepn anddoon e oyéor Ue To arousal yio OAa Tol GUVORL YOQOXTNELO TIXWY, UT-
odexviovTag OTL Tor oTuyadar potiBa evépyetag mou cuvdéovtal e To valence eivon o Blaxpltd
xou oToeRd, Eve 1) dpaoTNneLoTNTA oL oyeTiCeTon ue To arousal Telvel va elvon TEploobTERO

HETOPBANTY.

To Subject-Independent (ITivoxoc 6) TELROUOTIXG TAXLOLO TOPOUGLALEL T AVOUEVOUEVT] HElwoN
¢ cuvolg axp{Betag o olyxpion pe To Subject-Dependent, yeyovég mou avtixatonteilet
N LEYAADOTERN HETOBANTOTNATA TOU ELCAYETOL, AOYW TKV SlUPOPOTOACEWY UETAL) TV ATOUWY.
Ov tpée anddoone auyxiivouy yipw ond to 50%, avadeixviovtog Tt duoxohia yevixeuong
METOEY GUUMETEYOVT®Y 0TO TEOBANUA Avory vidplong YuvalcInudtemy.

MeTto€) TV yopoxTnelo Ty Tou aflohoyfinxay, ot avarapactdoels Booctouéve otnvy TKEO
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Features Balanced Accuracy (%) ROC-AUC (x10?%)
Alpha Beta Gamma Raw Fused Alpha Beta Gamma Raw Fused

SE 60.84118 62.81122 618188 6281116 63.04112 66.11147 68.61140 66.74118 66941139 6844129
PSD 5941109 62.91139 635191 64.T191 06384106 6294136 6764167 6721136 70.24108 6844137
TKEO-12 FB  60.64+103 62.01199 63.61111 6234115 643192 65.04131 6541155 6924138 66.14115 70.61108
TKEO-25FB  60.24106 61.24104 64.04100 61.2492 63.14105 63.31120 67.61135 6854125 0655401 6854121
TKEO-50 FB 61.4.97 60841209 64.2.1704 59.64113 64.1495 65.64130 6594150 69.841130 6414195 6844103
Selected—lQ FB 61.4i11‘5 610 +11.5 629 +9.1 629 +10.3 640 +10.6 655 +14.0 665 +14.4 674 +12.2 659 +14.2 691i139
Selected-256 FB  60.6197 61.61109 61.14105 6234104 639483 6241152 6554141 6731129 6921133 67.81129
Selected-50 FB 60.6 1121  60.31123 6234105 6211111 64.61104 6341156 64.61139 67.91130 64.9:148 6944135
Combined 57.5 +75 60.5 +9.6 60.8 +8.9 62.713,8 60.8 +7.7 61.5 +10.5 65.5 +12.5 64.9 +11.3 66.9 +11.4 65.1:&10,5

Table 4 Metpuéc Axpifeloc Tou Valence yio To Subject-Dependent oto YOvoio Aedopévev

DEAP.
Features Balanced Accuracy (%) ROC-AUC (x102)
Alpha Beta Gamma Raw Fused Alpha Beta Gamma Raw Fused

SE 57.0187 56.4198 55.6196 5341116 585182 6244195 5981141 5934119 5461143 62.61107
PSD 54.3187 56.24109 547199 5524100 O57.0195 58.01129 5694154 5551139 57.51136 604113,
TKEO-12 FB 58.0489 5524120 56.6411.3 58.14100 580488 5944126 5914152 6021146 60.74142 63.34113
TKEO-25 FB  54.0499 55.64121 58.24101 5544100 57.149s 5744138 56.64165 61.04148 60.64115 61.74107
TKEO-50 FB 55.6479 5624118 569496 56.11102 583479 5874121 5724159 59.74131 5744147 6154110
Selected-12 FB 56.8:‘:9‘8 55.1:‘:100 57~2i11.5 57'5i8.6 58.9:&3‘6 61.4i14'4 58.7i15.4 61.6i13‘2 60.9:&124 62.8:&11'4
Selected-25 FB 57.2 49.5 57~0i10.2 56.6 +11.3 57~1i1047 57.6 +10.0 60‘1i13.6 58.6 +13.6 59~7i1540 60.5 +12.5 60.7i14'9
Selected—50 FB 58.2 +8.7 58.3 +9.7 55.8 +8.7 56.3 +10.0 59.2 +7.8 61.0 +13.3 60.9 +13.9 59.1:&12‘2 60.0113'9 64.0 +11.1
Combined 558165 53.9 +9.0 53.5 +8.0 55.0 +7.9 54~9i6.9 57.6 +7.6 55.4:&12.3 56.3 +11.0 57.2 +11.4 58.4:&9.7

Table 5 Metpuéc Axpifeiog Tou Arousal yio To Subject-Dependent oto ¥Ovoio Aedopévev

DEAP.

EMTUYYAVOLY cuYXplown anédoon e Tic uedddouc avapopds, dlatnenvioc To Balanced Ac-
curacy petoll 50-53% xou tic tiwéc ROC-AUC nepinov 51-56. To xohUtepo amotehéopoto
TeoxUTTOLY and T Yapaxtneto Td Combined xou Selected-12 FB, 1o omolo unep€youy ehappg
TV utohoinwy, emtuyydvovtac Balanced Accuracy 54.2% xou 54.0%, xadcde xou ROC-AUC

56.2 xau 54.8, avticTouya.

To eupfporta autd utodnAwvouy 6Tt av xa. o TKEO evtomlel ypriown tAnpogopla yio Tig
OUVAUIXES TWV VEUPOVIXGY CNHUATOV, 1) BLoXELTIXT TNG xavoTnTa efvan Teptoplouévn uné Subject-
Independent cuvirxec. e avtiVeon pe tn pOduwon Subject-Dependent, n ouyydvevon gao-
HoTXOY (VY TEOCPEREL €5 0pLaXES UOVO BEATIOOELS, YEYOVOS Tou Bely Vel OTL 1) yevixeuon
HETOC) aTOUWY eEUPTATAUL TEQIOCOTEQD AMO OUETHBANTO YWEO-YEOVIXA HOTIBo Topd amd @ao-
HOTIXES DLUPORES EVEQYELNC CUYXEXPWUEVODY {WVWMYV.
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Features Balanced Accuracy (%) ROC-AUC (x10?%)
Alpha Beta Gamma Raw Fused Alpha Beta Gamma Raw Fused

SE 52.8494 53.6426 Ol.1igs 54.0406 53.6433 53.T432 54.8442 513463 559439 54.8452
PSD 51.0406 953.0426 525419 DH34dios 547136 524440 541439 bldigg 545102 56.045
TKEO-12 FB 52.0417 534432 510436 5H0.7408 526408 529401 534441 018149 010136 9529147
TKEO-25 FB 523410 9524434 51.04905 H1l.1491 525433 536416 532448 016135 Olbi17 9531147
TKEO-50 FB 52.5424 953.0434 503435 5H1.041s 532430 533426 53.0448 O51.0452 Olbio7 533147
Selected—12 FB 52.2 +1.3 54.0 425 51~0i3.1 50.1 +2.2 52.6i2'4 52-7i144 548 +3.2 50.8i4_7 50~3i2.9 529i’36
Selected-25 FB 52.8 +1.9 52.3 +3.0 51~1:t2.8 50.6 +2.1 52.0 +3.1 54.1 +2.3 53.5 +3.6 51.6 +5.0 50.8 +92.8 53.1:‘:3'5
Selected—50 FB 53.1 +1.7 52.5 +2.3 50.8 +3.2 50.3 +1.7 52.8 +2.5 53.4 +2.92 53.3 +3.5 50.7 +4.9 50.3 +2.9 53.6 +4.1
Combined 53.2 +3.1 53.6 +2.6 52.8 +4.1 54.2 +3.7 54.1 +92.7 54.8 +3.9 55.2 +4.4 53.0 +5.8 56.2 +5.3 55.2 +4.7

Table 6 Metpwéc AxplBetag Tou Valence yiwr to Subject-Independent cto Y0voho Ae-
dopévwyv DEAP.

Arnoteiéocpata: BCI-IV 2a

‘Onwe gatveton otoug Ilivaxeg 8 xou 9, oto chvoro dedouévewv BCI-IV 2a ta Selected TKEO
YUEAUXTNELO TG UTEREYOLY OTAERE OAWY TV ALY GUVORWY YORAXTNELOTIXMY O0TO TEOBANUA
Kivnuinric Nogpric Ameixdviong.

Y10 Subject-Dependent metpopatixd mhaioto, 1 ouyywveupévn Lovn (fused-band) emtuyydvet
™ uPniéteEn ouvolixr anddoaon, pe Balanced Accuracy 51.2% xoa ROC-AUC 77.0, unep-
Batvovtag onuavTtind Ty Tuyaio Tavounor. Emmiéov, n evooudtwon TKEO yapoxtnoio tixdy
E T eYOBoUE avapopdc 0dNYel oe BEATIOUEVT amddoaoT o€ oyéan e TN yeron uovo tng PSD,
YEYOVOS TTOU OVUDEVUEL T1) CUUTANEWUATIXT QUOT| TV YUQUXTNOLO TLXMY QUTOV.

Katd tn olyxpion dwpopetintv cuotoytey @iitewny Gabor, napatneeiton 611 1) yprion neplo-
cbtepwy and 12 @lhtpwv Telvel vo BEATIOVEL TNV amdBO0T OTIC TEPICOOTEPES TEQITTMOOELC.
Autd UTOBNAGYVEL, OTL EVaL TUXVOTERO QPACUTIXNG PIATEO TaPEYEL LPNAOTERT QPUOUATIXT AVEAUOT),
emteénovtog oty TKEO vo arotundver duvauixéc HED otevic {ovng, mou dagopetind Yo
eCoualbvoviay Ue UxpoTeRo aptdud GikTowy.

Emniéov, n Covn Beta gaiveton va amodidel xahltepa o€ oUYXELON UE TIC UTONOLTESG ETYUEQOUG
Cwveg ota TKEO yopaxtneiotixd, ebenua mouv cupgovel Je To anoteréopata twv Scherer et
al. [100] yw to mpdBinuo e Kivnuxrc Noepric Anewxdviong.

Y10 Subject-Independent (ITivaxog 8) TELQUUATIXG TAXGLO, THEATNEOVVTUL TUPOUOIESC TACELS UE
exelvec Tou Subject-Dependent mhouciou. To yapaxtneiotind Selected-50 FB emtuyydvouy to
unhétepo Balanced Accuracy (41.0%) xow ROC-AUC 66.8. H ouvduootix| yefon yopon-
e Tixwy PSD xou TKEO Beltidver nepontépw Ty anddoor), emBelordvovTag Tor Voo
Tou Subject-Dependent miatciov.
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Features Balanced Accuracy (%) ROC-AUC (x10?%)

Alpha Beta Gamma Raw Fused Alpha Beta Gamma Raw Fused
SE 50.1109 51.94009 51547 493415 519455 513113 52.83132 523493 49.0495 528105
PSD 50.6 +0.2 50.3 +2.0 50.9 +0.8 52.0 +2.4 50-7i2.8 50.2 +1.5 51.6 +2.6 50.3 +0.8 50.3 +3.3 50.9 +3.5

TKEO-12FB 515416 504414 520414 515407 51944 51.8419 499416 528400 516435 52.0410
TKEO-25 FB 511410 501416 51141 521417 52310 5174100 505413 521415 524100 53.6116
TKEO-50 FB 50.8415 504119 521415 501405 521179 519416 509400 528405 50.740s8 53.3400
Selected-12 FB 50.9 +1.3 494i03 52.2 +1.5 50~4i1.5 51~4i1.6 51.5 +1.4 49.1 4+0.8 52.9 +2.0 51~1i1.9 52~1i2.0
Selected-25 FB 51.410‘7 49.9 +0.8 51'5:t1.2 50.8:&1'8 52.1 +1.7 52.0:&2‘1 49.8 +0.5 51.8 +1.7 50.9;&_5 52.5:‘32'3
Selected-50 FB 51.2 +1.7 49-7:&0‘6 50.712‘1 50~5:|:1.4 52.0:‘:1'0 51.5 +2.0 50.2 +1.6 51.0 +2.1 51.4:‘:25 52~5j:1.6
Combined 51'7i0.7 51.0 +1.6 51-4i1A6 51.1 +2.5 52-O:t0.8 52'0i0A8 52.2 +92.1 52~1i28 514i33 53-0i1A6

Table 7 Metpwéc AxpiBetag Tou Arousal yio to Subject-Independent oto 0voho Ae-
dopévwyv DEAP.

Features Balanced Accuracy (%) ROC-AUC (x10?)

Alpha Beta Gamma Raw Fused Alpha Beta Gamma Raw Fused
SE 4414147 436475 376482 404487 471485 7044128 706450 6634185 673184 737482
PSD 40.7 1132 382466 283453 432459 40.6469 65.T1134 674457 56.2463 717461 679477

TKEO - 12 FB  44.6 1106 4754100 435470 464400 4951100 7014136 74.6.107 689106 727105 749400
TKEO - 25 FB 4344131 4864103 433474 459492 4974106 6894138 749492 0694490 724497  THdiss
TKEO -50 FB 449,551 4844104 431479 459486 489491 6994135 748495 6874917 724197 75.04ss
Selected - 12 FB 45.4114'3 49.1:&11.3 44.9:&7'5 47.7:&11.0 49.8:&10'3 71.2:&12.3 75.011047 71.818.9 73.3:&1144 75.8:&8.3
Selected - 25 FB  45.8 4+13.3 50.2 +11.8 45.3 +7.1 47.9 +10.7 50-1i11.0 70.8 +12.6 76.1i9_9 72.5 +8.1 73.0 +11.5 76.3 48.6
Selected - 50 FB 45~7:t13.5 50.0 +10.4 45.2 +7.4 48.9 +11.9 51.2 49.1 71'4ill.8 76.1 49.1 72.3 +8.8 73~7i11.6 77.0 +8.6
Combined 42.7 4196 414477 313163 443469 427474 6654142 683477 603469 724168 68.64g5

Table 8 Metpwéc Axp{Beloc yia To Subject-Dependent oto XOvoro Aedopévewy BCI-IV 2a.

Arnoteréocpata: TUEP

Y10 obvolo dedopévewv TUEP (Iivaxag 10), to Combined yapoxtnpiotind emituyydvouy oTic
TEPICOOTEPES TEPINTWOELS TNV LPnAdTepn anddoon. Iho ouyxexpyéva, n Gamma umdvta
nopovotdlel to yeyahltepo Balanced Accuracy (78.4%) —mepinou 15% udnidtepo and to
UTOAOLTIOL GUVONDL YR TNELO TIXAOV—, xodde xou T peyohitepn T ROC-AUC (86.0). To
ATOTEAEOUN aUTO Elval SOUPWVO UE TEOTYOUUEVO ELEYUOTA, Ta oTnola Oelyvouv OTL 1 amd-
doon otnv aviyveuorn emindloc Behtiwveton ye 1 yeron yapoxtneo oy HED udmidtepwv
ouyvothitwy [51].

Evoewtind, mapoucidlovtar 610 Lyfua 4.2 ol Tomoypapuol YEpTES TV YoQuXTNRLOTIXGY V-
IFM vy évor ETANTTING X0 €VOL UT) ETANTTIXG O, ovd goopatiny| umdvta. To eminmtind
ol eupoviler EVIOVES BLOXUPAVOELS GTY) OTLYHLakol GUYVOTNTA, OYEBOV OUOLOUOPPA GE OAAL T
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Features Balanced Accuracy (%) ROC-AUC (x102?)
Alpha Beta Gamma Raw Fused Alpha Beta Gamma Raw Fused

SE 373168 35.1us3 328115 353443 374148 640461 623148 600413 620445 64.0450
PSD 36.1167 356431 27.8122 380458 364150 623467 622140 541497 640160 630457
TKEO - 12 FB 378483 382462 353439 392441 384467 641473 65.0463 628143 655450 65.3164
TKEO - 25 FB  38.617¢ 388466 3D5.5406 39.7455 395458 652,65 654462 630135 653155 659453
TKEO - 50 FB 374174 397479 36.8103 384445 391167 640469 66.1170 632195 644159 654456
Selected - 12 FB  38.4 +8.0 40.2 +8.8 37.5 +3.3 40.0 +6.1 39.9 +6.8 64.9 +7.6 66.3 +7.2 63.8 +3.3 65.9 +6.5 66.6 +6.4
Selected - 25 FB 38.6 +8.1 39.4 +79 39.0 +3.1 40.8 +6.5 39.8 +7.3 64.9 +7.4 66.2 +7.0 647i';4 66.0 +6.2 66.2 +6.3
Selected - 50 FB  39.2 491 40.5 +7.9 38.3 +3.1 39.6 +6.8 41.0 +7.3 65.4179 67.2 +6.8 65.0 +3.0 66.0 +6.6 66.8 +6.4
Combined 37.0 +7.9 36.5 +4.2 32.8 +3.2 37.6 +6.4 37.3 +6.6 64.0 +7.92 64.2 +4.9 60.0 +2.9 64.8 +5.3 64.2 +5.6

Table 9 Metpwéc AxpiBeloc yia to Subject-Independent oto YOvoro Aedopévwv BCI-IV

2a.

xovehla, oe avtideon Ye To un EMANTTIXG, OTOU Ol BLUXUUAVOELS Efvol ONUOVTIXG YUUNAOTEREC.
To ebpnuo auTd avadeEVUEL TIC BIIXUUAVOELS oLy VOTHTWwY 6T Gamma undvio we oafloToTo
OEX T ETANTTXAG DPACTNELOTNTAS.

AZiCer va avagepiel, 6T 0T raw UmdvTa, 1 oxEIBEld PELOVETOL CUYXEITIXG PE TIC UEUOV-
WUEVEG UTAVTES, GAAL %O UE T OUYYWVEUUEVES (fused-band), yeyovéc mou UTIOONAGVEL OTL
n ouumAnpwpatixdtnTe Twv TKEO yapaxtneiotixdy eactevel o ofjuata eupelac undvtoc. H
TopaThAeNon auTH evioy Vel Tepontépw TNy drodn 6Tt o TKEO nopoucidler aunuévn euoncinota
oe ofota oTeEVAS {Hvne.

Features Balanced Accuracy (%) ROC-AUC (x102?)

Alpha Beta Gamma Raw Fused Alpha Beta Gamma Raw Fused
SE 99.2495 61.7479 632484 956.0116 614460 586448 6454135 68.1i1as 599490 75.54135
PSD 982494 625149 617193 619462 61176 065.0156 7231136 76.01163 73.31158 74.24136
TKEO 585423 61.0409 624437 62.14g4 648431 6244147 7354134 Tlliioo 6974143 7054128
Selected 590 +2.8 600i98 61.6i7'2 58~7i6.3 61.2i5'9 663 +2.9 73-4i15.2 70~3i1346 705 +14.5 73.8i11_2
Combined 66.3 +6.2 70.9 +10.0 78.4 +5.5 60.3 +6.7 76.2 +6.6 73.8 +6.1 80.1 +7.3 86.0 +6.4 77.8 +14.6 82.2 +8.0

Table 10 Metpwéc Axpifeiag yio To Subject-Independent oto Y¥ivoho Acdouyévewy TUEP.

ErtAoyoc

Ynv napoloo Aimhouatiny Epyooto, teaypatonot{dnxe cuctnuatiny allohGynon TV Yooux-
e TV Poctouévey otov Evepyeiond Teheotr| Teager-Kaiser oe tpla mpoBifuarta: Avory-
voplon Yuvaotiuatog, Tadvounon Kwntixre Noepric Aneixoviong xo Evtonioud Emindlog.
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Figure 7 Tomohoywr; Ateovion twv HET' Koavahicv tou Yuvohou Acdouéveyv TUEP xdrde
Yuyvotrc Mndvtog yio 1o Xapoxtnetotind v-IFM.

Méow authc g Uerétng, Oiepeuvidnxay to TheovexthApata xou ot meptoplopol twv TKEO
YUEUXTNEO TIXGY 0To TAdlcto g avdivone HEI, eve mpoodioplotnxay ot cuviixeg umd Tig
omoleg 1 uéVodog mpoopépel TpooTWiEueVn alla OTNY AVATURACTACT, X AvVEAUGT) VELREOQU-
CLOAOYIXWY ONUATOV.

H npotewdpevn mpocéyyion atohoyinxe cuyxeitind ue cuUBATIXG YopoxTNELO XS Bactouéva
otnv Paocuatiny Muxvétnta Ioyboc xow oty TeTpaywVIXT EVERYEL, YENOWOTOLOVTAS Tol-
vountéc Mnyovixric Méinone, téco oto Subject-Dependent, 660 xo 6to Subject-Independent
mhadoto. Ta netpopatind anoteréopata xatadexviouy 6Tt Ta TKEO yoapoxtnoiotind emituyyd-
VOUV TOQUTANOLAL 1} AVAOTERT AOOOOT| EVAVTL TV UEDOdWY avapopds, BeAtikvovtag TNy axpifBeia
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Chapter 1

Introduction

1.1 Brain Analysis Fundamentals

1.1.1 Brain Anatomy

As the primary organ of the human nervous system, the brain processes sensory information,
regulates bodily functions, and enables thought, emotion, and behavior. In a typical adult,
it weighs approximately 1.2-1.4 kilograms, with about 60% of its mass composed of fat. The
remaining 40% consists of water, proteins, carbohydrates, and mineral salts. Although it is
not a muscle, the brain contains an intricate network of blood vessels and nerves, including
specialized cells such as neurons and glial cells. Protected within the skull, it is organized
into major regions: the cerebrum, cerebellum, and brainstem.

The cerebrum, which constitutes the largest portion of the brain, is divided into left and right
hemispheres connected by the corpus callosum. Each hemisphere mainly controls the opposite
side of the body and exhibits functional specialization—for example, the left hemisphere is
frequently linked to language and analytical reasoning, whereas the right hemisphere is more
engaged in spatial processing and creative activities. Distinct fissures divide the cerebral
hemispheres into lobes, with each hemisphere containing four: the frontal, temporal, parietal,
and occipital lobes. These lobes are further subdivided into regions dedicated to specific
functions, though they operate in close coordination both within and across hemispheres.

The frontal lobe is associated with higher-order executive functions, including personality,
emotional control, problem-solving, certain aspects of speech, voluntary motor activity, and
self-awareness. The parietal lobe processes somatosensory information such as touch, pain,
and temperature and and contributes to the interpretation of language, the integration of
sensory signals from multiple modalities, and the management of spatial and visual per-
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Figure 1.1 Lobes of the Brain [83].

ception. The temporal lobe is essential for auditory perception, language comprehension,
memory formation, and the sequencing and organization of information. The occipital lobe
is primarily responsible for processing visual stimuli, including colour, light, and motion.
These lobes function interdependently, forming highly complex neural networks that support
sophisticated behaviours and advanced cognitive abilities.

1.1.2 Physiology of Neurons

Neurons constitute the principal functional elements of the nervous system, specialized for
rapid information transfer and processing through electrochemical signalling mechanisms.
The human brain contains roughly 100 billion neurons, each potentially forming thousands
of synaptic connections—adding up to an estimated 100-1,000 trillion synapses—thus creat-
ing an immensely complex communication network. Each neuron comprises three principal
components: the cell body (soma), which houses the nucleus and is the primary site of pro-
tein synthesis; dendrites, tree-like branching extensions studded with dendritic spines that
receive incoming information from other neurons; and a single axon, a cable-like projection
that can extend from micrometers to over a meter in length in humans, transmitting elec-
trical impulses from the soma in the direction of target cells. The axon emerges from the
axon hillock, a region rich in voltage-gated sodium channels and critical for initiating elec-
trical signals. Many axons are covered by myelin, a lipid-rich insulating layer produced by
oligodendrocytes in the central nervous system and Schwann cells in the peripheral nervous
system. The myelin sheath is interrupted by gaps called nodes of Ranvier, which enable rapid
saltatory conduction. At the far end, azxon terminals contain specialized synaptic boutons
that mediate communication with other cells.

Neurons transmit signals using both electrical impulses and chemical messengers. In their
resting state, neurons maintain a voltage gradient across their membrane due to selective ion
distribution, primarily sodium, potassium, calcium, and chloride. When a stimulus alters this
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Figure 1.2 The Structure of a Neuron [99].

membrane potential beyond a threshold at the axon hillock, an Action Potential—a brief elec-
trochemical pulse—is generated. As the signal reaches the axon terminals, it quickly induces
the merging of neurotransmitter-filled vesicles with the presynaptic membrane. Neurotrans-
mitters cross the approximately 20-nm synaptic cleft by diffusion and attach to receptors
on the postsynaptic neuron, modifying the membrane’s ion permeability and affecting the
likelihood of Action Potential generation. Neurons themselves can be categorized according
to structure—such as unipolar, bipolar, multipolar, anaxonic, and pseudounipolar forms—or
by function, including afferent neurons that carry sensory input toward the central nervous
system, efferent neurons that transmit motor commands away from it, and interneurons that
integrate and relay information between other neurons. This transmission process—from
electrical impulse to chemical signal and back again—occurs in less than two milliseconds
and forms the basis of every brain function, from simple reflexes to complex cognition. Ad-
ditionally, neuronal connections are dynamic; repeated activation can strengthen synapses,
contributing to neuroplasticity and the brain’s capacity for learning and memory.

1.1.3 Electroencephalography Signals

Electroencephalography (EEG) [101] is a non-invasive method to measure the spontaneous or
induced electrical activity of the brain. EEG signals are recorded using electrodes, placed at
specific locations of the scalp, which detect voltage fluctuations generated by neural activity.
The 10-20 system [25], endorsed by the International Federation of Electroencephalography
and Clinical Neurophysiology, is a widely adopted approach that utilizes anatomical land-
marks to standardize the positioning of EEG electrodes. This system relies on establishing a
relationship between electrode placement and the corresponding areas of the cerebral cortex,
ensuring comprehensive coverage of all relevant brain regions. The numerical labels ‘10" and
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‘20" denote the distances between adjacent electrodes, which are either 10% or 20% of the
total skull distance in the front-back or right-left directions. These distances are determined
based on anatomical landmarks on the scalp: the nasion and inion for front-back direction,
and the two preauricular points for right-left direction (see Fig. 1.3).

A B Nasion

’ Preaurical
point

Inion 10%

Figure 1.3 10-20 System [10]: Schematic Overview of Electrode Placement.

The neural basis of EEG lies in the coordinated activity of large populations of cortical neu-
rons, particularly pyramidal cells in the cerebral cortex. While action potentials contribute
to local electrical changes, EEG predominantly reflects postsynaptic potentials due to their
longer duration and larger spatial reach. For these signals to be detectable at the scalp, many
neurons need to be active at the same time and aligned in a similar direction. As the elec-
trical currents travel from the brain through the fluid, skull, and scalp, they become spread
out, a process called volume conduction. This spreading blurs the signals, which reduces the
precision of the EEG and makes it hard to localize neural sources directly. Consequently,
techniques such as computational modeling and integration with imaging modalities like MRI
are often employed to improve source estimation.

Accurate EEG measurement also depends on electrode technology and recording systems.
Conventional wet electrodes, typically silver/silver chloride (Ag-AgCl), require conductive
gel or saline to reduce impedance and ensure stable signal quality. Recording setups generally
include multiple active electrodes, a reference electrode, and a ground electrode, with modern
high-density arrays offering up to 256 channels for improved spatial sampling [109]. These
signals, initially in the microvolt range, are amplified, filtered, and digitized before storage.
In the recorded data, amplitudes are represented again in microvolts. Despite technical ad-
vances, EEG remains highly sensitive to artifacts from muscle activity, eye movements, or
environmental noise, requiring careful preprocessing to extract meaningful neural informa-
tion.
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Figure 1.4 EEG Recording Setup with Representative Signals [17].

1.1.4 EEG Channels

Once electrodes are positioned according to the 10-20 system, the recorded signals are or-
ganized into channels. Each electrode is named after a letter and a number, representing its
distinct location, as follows: F-Frontal lobe, T-Temporal lobe, C-Central lobe, P-Parietal
lobe, and O-Occipital lobe, whereas even numbers refer to the right hemisphere and odd
numbers to the left hemisphere of the scalp. The “Z” index refers to the electrodes on the
mid-sagittal plane and is often used as a reference point. Channels can be configured in two
main ways. In monopolar recordings, a single electrode serves as the reference point, while
all other electrodes are compared to it. In bipolar recordings, EEG activity is captured by
measuring the voltage difference between adjacent electrode pairs. The number of channels
used varies depending on the application, with most modern systems ranging from 32 to 128
channels.

1.1.5 Frequency Bands

Beyond the spatial organization of electrodes into channels, EEG signals are also charac-
terized by their temporal patterns. These patterns can be described in terms of frequency
bands, which reflect different aspects of brain activity. EEG activity is typically divided into
five main frequency bands [5]:

e Delta (9) band at 0.5 Hz-3 Hz: Typically appears during deep, unconscious sleep
and is considered normal in adults only during moderate to deep sleep stages. Its
presence outside of these sleep stages suggests brain dysfunction. Anomalies in brain
activity may manifest across all or specific channels, depending on the underlying neu-
rological issue.
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e Theta (/) band at 4 Hz-7 Hz: Observed during some states of sleep and quiet
focus. It can be classified as both a normal and abnormal activity depending on the
age and state of the subject. For adults, it is considered normal during drowsiness,
but it could signify neurological issues when observed in an alert state. Conversely,
in younger individuals, theta activity may dominate recordings from the posterior and
central regions of the scalp.

e Alpha (a) band at 8 Hz-12 Hz: Noticeable when an individual is relaxed with closed
eyes yet remains awake. Alpha is a typical brain activity in adults during wakefulness,
especially prominent in recordings from the posterior head channels. This activity is
relatively balanced between the two hemispheres and exhibits an amplitude ranging
from 40 to 100pV. It’s exclusive to closed-eye states and tends to diminish or vanish
upon opening the eyes.

e Beta () band at 13 Hz-30 Hz: Appears during periods of regular awareness and
focused attention. This brain activity is typical whether the eyes are open or closed
and is commonly observed in recordings from the central or frontal areas of the head.
Certain medications can elevate the level of beta activity in EEG recordings.

e Gamma (v) band at 30 Hz-50 Hz: Particularly responsive to visual stimulation.
It is linked to numerous sensory, emotional, and cognitive processes. During the pro-
cessing of sensory data and memory-related cognitive tasks, gamma activity tends to
intensify. Moreover, the heightened gamma activity observed in these tasks coincides
with reduced power in other lower-frequency band signals [76].

Several additional patterns of brainwave activity exist and are more closely associated with
specific conditions. For instance, spike and wave patterns are indicative of seizure disorders
and might appear in EEG readings even outside of active epileptic seizures. The presence of
spikes or sharp waves can aid in diagnosing various types of epilepsy.
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Figure 1.5 The Primary Frequency Bands of an EEG signal [14].
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1.2 Theory of Emotion

While human emotions have been the subject of sustained inquiry in Psychology and Neuro-
science, their underlying mechanisms and organization remain complex and, in many respects,
unresolved. To better understand emotions, researchers have proposed various frameworks
that aim not merely to categorize them, but to explain their structure, origins, and functions
— whether through discrete classifications [37] , [93], physiological theory [63], functional and
behavioral analysis [33], or dimensional mapping based on affective experience [97]. These
approaches reflect a broader shift from introspective models to scientific theories grounded in
evolutionary biology, purposive behavior, and cognitive-affective structures, offering increas-
ingly systematic accounts of emotional phenomena.

The James-Lange theory [63], developed by William James and Carl George Lange, presents
a physiological explanation of emotion. It proposes that emotions are not the initiators
of bodily changes but rather their outcome. James interpreted emotions as the conscious
perception of somatic responses, while Lange attributed a central role to vascular activity,
collectively asserting that emotional states emerge from autonomic physiological processes.

In his 1971 study, Paul Ekman [37] proposed a framework for categorizing facial expressions
associated with discrete emotions, emphasizing their universality across cultures. Drawing on
cross-cultural research, including work with preliterate populations such as the Fore people
of New Guinea, Ekman identified six basic emotions—happiness, sadness, anger, fear, sur-
prise, and disgust—that correspond to distinct facial muscle configurations. In later work,
Ekman [36] suggested expanding this list to include additional candidate emotions such as
awe, contempt, shame, guilt, embarrassment, and excitement, based on further evidence and
theoretical considerations. This expanded framework, including a neutral category alongside
the basic emotions, helped lay the groundwork for later theories on emotion recognition and
classification.

James A. Russell (1980) [97] introduced a circular model of affect, proposing that emo-
tional experiences can be systematically organized within a two-dimensional orthogonal
space defined by valence and arousal. Valence reflects the degree of pleasure or displeasure
associated with an emotion, while arousal captures the intensity of the emotional experi-
ence, ranging from low-energy states like sleepiness to high-energy states like excitement.
Prior to this, Russell and Mehrabian (1977) [98] had identified a third, independent di-
mension—dominance—which captures the extent to which an individual feels in control or
submissive within an emotional context, suggesting that a full description of affective states
may require a three-dimensional space.

In 1982, Robert Plutchik [93]| proposed a psychoevolutionary model of emotion, conceptu-
alizing affective states within a wheel-like structure composed of eight primary emotions
arranged in opposing pairs. These emotions vary in intensity and can combine to form more
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complex emotional experiences, reflecting the dynamic and multidimensional nature of affect.

These theoretical frameworks provide essential foundations for understanding the structure
and dynamics of human emotions. Despite their contributions, the precise mechanisms
through which emotions emerge and can be systematically analyzed remain an open area
of investigation. Contemporary research continues to explore methods for capturing and
interpreting emotional states through physiological and neural indicators.
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Figure 1.6.1 Valence-Arousal Space for Figure 1.6.2 Plutchik’s Wheel of
Emotional States |79]. Emotions [94].

1.3 Theory of Motor Imagery

Motor imagery (MI) refers to the mental simulation of movement without any actual physical
execution. It involves creating an internal image of a motor action, usually from a first-
person point of view, as if one were physically carrying out the movement [31]. During MI,
the brain areas involved in planning and preparing movements are active, but the actual
movement is voluntarily stopped within the corticospinal system. Evidence from behavioral
and neurophysiological studies indicates that imagined and executed actions share, to some
extent, common neural substrates. These include areas involved in movement programming
such as the premotor cortex, anterior cingulate cortex, inferior parietal lobule, and cerebellum
[31]. While motor imagery activates overlapping regions with actual execution, differences
in activation patterns—particularly within the cerebellum—reflect the absence of sensory
feedback during imagery [71]. This functional equivalence is further reinforced by studies
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showing that the temporal dynamics of imagined movements often mirror those of real ones,
and that response times during imagery follow rules like Fitts’s law, which describes the
relationship between movement speed and accuracy [32]. MI allows conscious access to motor
plans typically involved in real execution and can even produce measurable physiological
responses—such as changes in heart rate and respiration—originating from central motor
processes [86]. Overall, these findings confirm that MI is a cognitive process closely connected
to real motor control, laying the foundation for various applications, which are reviewed in
detail in Section 3.2.

-
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Figure 1.7 Brain Regions involved in Motor Execution (red) and Motor Imagery (blue),
showing Overlapping and Distinct Activations across Cortical and Subcortical Areas [61].

1.4 Theory of Epilepsy

Epilepsy is a chronic neurological disease characterized by an enduring predisposition of the
brain to generate epileptic seizures, accompanied by neurobiological, cognitive, psychological,
and social consequences [39]. It may be diagnosed in individuals who experience at least two
unprovoked seizures occurring more than 24 hours apart, after a single unprovoked seizure
when there is a high estimated risk of future seizures (> 60%), or upon identification of an
epilepsy syndrome. Despite affecting an estimated 51 million people worldwide, a significant
proportion of individuals with active epilepsy remain untreated due to a persistent treatment

gap [11].

The pathophysiology of epilepsy involves abnormal hypersynchronous neuronal discharges,
often resulting from disruptions in excitatory and inhibitory neurotransmission, glial func-
tion, or ion homeostasis [30]. Etiological classifications include structural, genetic, infec-
tious, metabolic, immune, and unknown causes. Diagnostic protocols incorporate electroen-
cephalography (EEG), which enables detection of interictal epileptiform discharges, identi-
fication of seizure onset zones, especially when coupled with advanced imaging techniques,
and evaluation of treatment efficacy. A critical component of diagnosis and treatment plan-
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ning involves the classification of seizures, which are primarily categorized by their mode of
onset to focal, generalized and unknown [40]|. Focal seizures originate in a specific region of
one cerebral hemisphere and are further classified based on the patient’s level of awareness
during the event into focal aware seizures and focal impaired awareness seizures. They can
also be categorized by their onset as motor seizures, involving movements such as clonic or
tonic activity, or non-motor seizures, which include symptoms like sensory changes or altered
emotions. In contrast, generalized seizures involve both sides of the brain at the onset and
are subdivided into motor types (e.g., tonic-clonic, myoclonic, spasms) and non-motor types,
such as typical absence seizures, characterized by brief lapses in awareness. Seizures of un-
known onset are used when the beginning of the event is not observed, though these may
later be classified upon further clinical or EEG evaluation.

From a clinical electrophysiological perspective, seizures are associated with distinct EEG
patterns such as spikes, sharp waves, and rhythmic discharges, often classified according to
frequency, morphology, and duration [106]. The progression of a seizure can be divided into
five phases. The Prodromal phase occurs hours or days before the event and may involve
subtle changes in mood or behavior. The Pre-ictal/Aura phase describes the period right
before the event and is marked by unusual sensations or perceptual changes that can serve as
a warning. The Ictal phase is the seizure itself, when abnormal brain activity leads to visible
symptoms. The Interictal phase refers to the period between seizures, when the brain may still
exhibit abnormal electrical activity without visible signs. Finally, the Postictal phase follows
the seizure and is typically characterized by confusion, fatigue and headaches. Each phase
exhibits distinct neurophysiological and behavioral features that provide critical insights into
seizure onset, progression, and recovery, thereby facilitating more accurate monitoring and
timely therapeutic intervention.
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Figure 1.8 Seizure Stages [48]: (a) Pre-ictal; (b) Transition from Pre-ictal to Ictal; (c) Ictal;
(d) Transition from Ictal to Postictal; (e) Postictal.
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1.5 Thesis Structure & Contributions

EEG signals originate from the synchronized activity of extensive neuronal populations and
manifest as oscillatory waveforms whose amplitude and frequency evolve continuously over
time. These temporal fluctuations mirror rapid, state-dependent variations in neural dynam-
ics, reflecting the inherently non-stationary nature of brain electrical activity. Modeling EEG
as an Amplitude-Frequency Modulated (AM—FM) process therefore provides a physiologi-
cally grounded framework for characterizing the temporal evolution of cortical oscillations and
for capturing subtle modulations in brain states across different experimental conditions [84].

This Thesis aims to provide further insights into the analysis of brain electrical signals un-
der different experimental conditions. Building upon the AM—FM modeling framework, we
investigate the spectral components of neural activity through appropriate signal decompo-
sition techniques, enabling the isolation of physiologically meaningful oscillatory modes and
the extraction of energy-related features to characterize relevant brain dynamics. These rep-
resentations are systematically evaluated using established machine learning approaches to
explore their correspondence with diverse cognitive and clinical tasks. The remainder of this
Thesis is organized into 4 chapters, each described below.

e Chapter 2 presents the theoretical foundations underlying this work, encompassing
signal processing, the Teager—Kaiser Energy Operator, and machine learning method-
ologies. In particular, it reviews fundamental properties of signals and systems, pro-
vides a comprehensive discussion of the Teager-Kaiser Energy Operator, and outlines
the principles of supervised classification algorithms.

e In Chapter 3, we design a feature extraction pipeline based on the Teager—Kaiser
Energy Operator to investigate the extent to which the derived descriptors capture
emotional, cognitive, and pathological (epileptic) information. Furthermore, we estab-
lish the experimental settings and evaluation protocols employed for their assessment.

e Chapter 4 reports the experimental studies conducted across three paradigms: Emo-
tion Recognition, Motor Imagery and Epilepsy Detection. In this context, Epilepsy
Detection refers to the binary classification problem of discriminating between epileptic
and non-epileptic patients. The results highlight the effectiveness of the Teager—Kaiser
Energy Operator as a feature extraction framework for capturing EEG dynamics, par-
ticularly in tasks characterized by well-established transient dynamics.

e Chapter 5 summarizes the main findings of this work, draws general conclusions re-
garding the proposed methodologies and their applicability, and outlines potential di-
rections for future research.

e In the Appendices, we provide information for the four datasets employed in this
study and include a list of papers produced during the course of the Thesis.
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Our contributions can be summarized as follows:

e We motivate and extract a comprehensive set of EEG features derived from instanta-
neous energy analysis using Teager-Kaiser Energy Operator (TKEO).

e We introduce a systematic evaluation of TKEO-derived features against conventional
PSD-based energy and squared-energy features across four representative EEG bench-
marks.

e We examine the influence of spectral resolution on TKEO-based features through the
use of different filterbank configurations.

e We provide empirical evidence of the conditions under which TKEO features outper-
form and/or yield complementary insights over alternative energy measures, particu-
larly in tasks including transient and non-linear dynamics.
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Chapter 2

Theoretical Background

2.1 Signal Processing Fundamentals

Signal processing is a discipline that focuses on the analysis, representation, and modifica-
tion of signals to facilitate the extraction or enhancement of the information they convey
[87]. Depending on the application, this may involve tasks such as isolating individual sig-
nals from a mixture, emphasizing particular features of interest, or estimating parameters
that describe an underlying signal model. In communication systems, for example, signals
typically undergo a series of preprocessing operations—such as modulation, conditioning, or
compression—before transmission, while the receiver performs the corresponding postpro-
cessing to recover the transmitted information as accurately as possible. Within this broad
field, Digital Signal Processing (DSP) has emerged as a widely used and well-established
approach, operating on discretely sampled signals using digital computation.

Within this context, signal processing tasks can be categorized according to their objectives.
Some tasks focus on transforming input signals to generate modified or derived outputs, while
others aim to extract information or characterize the signals without necessarily producing a
new output. The latter class, often referred to as signal interpretation, emphasizes analyzing
a signal to derive meaningful information or a description of its underlying structure, rather
than producing another signal as output. For instance, in biomedical signal analysis, the
objective might be to interpret an electroencephalogram (EEG) to extract clinically relevant
information, such identification of specific brain activity patterns. These systems generally
include digital preprocessing, which may include operations such as noise reduction, filtering,
and extraction of relevant characteristics, and are then followed by computational meth-
ods—such as classification or pattern analysis—to produce quantitative metrics or symbolic
information that can support diagnosis, monitoring, or subsequent interpretation.

o6



Chapter 2. Theoretical Background 2.1. Signal Processing Fundamentals

At the core of signal processing are two fundamental concepts: signals, which represent
information, and systems, which operate on these signals to produce transformations or
extract information.

2.1.1 What is a Signal?

According to Oppenheim et al. [87]| “the term signal is generally applied to something that
conveys information”. In a technical context, signals encode data regarding the dynam-
ics, state, or behavior of physical systems. They can be deliberately generated to trans-
mit information, enabling interactions in human communication, automated systems, or hu-
man—machine interfaces, while also providing essential input for system observation, control,
and decision-making in both engineered and natural environments.

Continuous-time signals, often referred to as analog, are defined over a continuous range
of time, meaning their independent variable varies continuously. Discrete-time signals are
defined only at specific time instances, so their independent variable assumes discrete values;
mathematically, they are represented as sequences of numbers. In addition to the temporal
domain, the amplitude of a signal can also be either continuous or discrete. When both the
time samples and the amplitude levels are quantized, the resulting signals are classified as
digital signals.

2.1.2 What is a System?

A discrete-time system is a system for which both input and output signals are discrete-time
signals. Mathematically, such a system can be described as a transformation or operator T'{-}
that maps an input sequence x[n] to an output sequence y[n|, expressed as y[n] = T{z[n]}.
Different classes of systems are distinguished by imposing specific conditions on the properties
of the transformation 7'{-}. The fundamental characteristics used to describe discrete-time
systems include memory, which indicates whether the output depends only on the current
input or also on past or future inputs; linearity, which determines whether the system obeys
the principle of superposition; time-invariance, which specifies whether a shift in the input
produces a corresponding shift in the output; causality, which indicates whether the output
depends solely on past and present inputs; and stability, expressed in terms of bounded-input
bounded-output (BIBO) behavior, meaning that every bounded input produces a bounded
output.

2.1.3 Fourier Analysis

In signal analysis, a function can be interpreted as an element of a vector space, where
different basis functions allow alternative representations. The Fourier Transform (FT)
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provides the most widely used decomposition, expressing a continuous-time signal x(t) as a
superposition of complex exponentials:

X(w) = /OO x(t) e 9 dt

[e.e]

1 [~ -
x(t) = %/ X (w) e’ dw

In practice, signals are usually discrete and of finite length. In this case, the Discrete
Fourier Transform (DFT) is employed, mapping an N-point sequence x[n] to its spectral
coefficients:
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The DFT samples the spectrum at N equally spaced frequency bins, with spacing ﬁ between
adjacent frequencies, where T' denotes the sampling interval; the k—th bin corresponds to
the natural frequency f = fs(k/N), where f; denotes the sampling frequency. In practice,
zero-padding or truncation is often applied when computing an M-point DFT with M # N.
Since the analysis is based on a finite-duration sequence, the resulting spectrum is inherently
periodic, which is why it is customary to visualize the DFT over the discrete frequency
index range [0, N — 1]. The computation of the DFT is typically performed using the Fast
Fourier Transform (FFT) [27], an algorithm that reduces the computational complexity
from O(N?) to O(N log N).

The Fourier Transform is fundamental in signal processing because it reveals the frequency
content of a signal, indicating which frequencies are present and with what amplitudes. This
frequency-domain view greatly simplifies tasks such as filtering, compression, and feature ex-
traction, making it indispensable in applications from communications and audio processing
to biomedical engineering.

2.1.4 Energy and Power of a Signal

In signal processing, the energy F, of a continuous-time signal z(t) is defined as the integral
of the squared magnitude of the signal over all time, i.e.,

E:[Z@@Pﬁ

The instantaneous power P(t) and the average power P of a continuous-time signal are
defined as
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For a discrete-time signal x[n], the definitions are analogous:
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In addition to the time-domain definitions, the energy of a signal can also be expressed in
the frequency domain. This relationship is established by Parseval’s theorem, which states
that the total energy of a signal in the time domain equals its total energy in the frequency
domain. For a continuous-time signal with Fourier transform X (w):
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For a finite-length discrete-time signal of length N with discrete Fourier transform (DFT)
X|[k]:

Power Spectral Density

The Power Spectral Density (PSD) characterizes how the power of a signal or a random
process is distributed across different frequencies and is widely used in biosignal analysis [16].
Mathematically, it is defined as:

Sm(w)z/ Rao(T) €747 dr,

oo

Where z(t) is a stationary signal, and R,,(7) is its autocorrelation function. The autocor-
relation measures the similarity between the signal and a time-shifted version of itself at lag
T.

By taking the Fourier Transform of the autocorrelation, we convert this time-domain measure
of self-similarity into a frequency-domain representation. This reveals how the signal’s power
is distributed across frequencies. Peaks in the autocorrelation correspond to lags where the
signal closely resembles a delayed copy of itself, and regularly spaced peaks indicate strong
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periodic components. The Fourier Transform of these patterns highlights the corresponding
spectral contributions, which together define the PSD.

In practice, however, the PSD is typically estimated using the DFT of the signal:
1
Plk] = =|X[K]|*.
K = X[

Both definitions are equivalent under the Wiener—-Khinchin theorem, but the former high-
lights the conceptual foundation, while the latter is more convenient for implementation and
numerical analysis.

2.1.5 Signal Filtering

Signal filtering refers to the process of suppressing unwanted components of a signal while
preserving the features of interest. Since many signal characteristics are most effectively
represented in the frequency domain, filtering is typically described and analyzed in terms of
frequency response.

Convolution

Linear time-invariant (LTT) systems, which include most filters, can be completely character-
ized by their impulse response. The output of such a system is obtained by convolving the
input signal with the system’s impulse response. Therefore, convolution provides the funda-
mental mathematical operation underlying filtering and many other signal transformations.

The convolution of two functions f and ¢ is denoted by f % g, where the operator x signifies
convolution. For continuous-time signals, it is defined as the integral of the product of the
two functions, after one is reflected about the y-axis and shifted:

Fro) = [ f@gle-mar

For discrete-time signals, convolution is defined as a sum over all time indices:

(f*g)lnl= Y flKgln—#

k=—o00

In the context of filtering, f typically represents the input signal, while g represents the
impulse response of the filter. The convolution operation thus produces the filtered output,
capturing the effect of the system on the input.

An important property of convolution is its relationship with the Fourier transform: convo-
lution in the time domain corresponds to multiplication in the frequency domain,

(f*9)(t) & F(w)G(w)
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This equivalence explains why filtering can also be interpreted as shaping a signal’s spectrum
according to the filter’s frequency response.

Main types of Filters

With this foundation, filters can be categorized based on their magnitude response. The
main types of filters, along with their idealized behaviours, are outlined below:

e Low-pass filters: Allow low-frequency components while attenuating high frequencies.
e High-pass filters: Allow high frequencies while removing low-frequencies.

e Band-pass filters: Allow signals within a specific frequency range while rejecting
components outside this band.

e Band-Stop filters: Attenuate signals within a defined frequency band while allow-
ing frequencies outside this band to pass. A band-stop response can be realized by
combining a low-pass and a high-pass filter in parallel and summing their outputs.

e Notch filters: A special case of band-stop filters characterized by a very narrow
stopband, typically used to suppress narrowband interference such as power line noise
at 50/60 Hz.

Gabor Filter

The Gabor filter is a linear (LTI) filter widely used in signal and image processing because
it can simultaneously capture information in both the spatial (or temporal) and frequency
domains. In one dimension, the Gabor filter is mathematically expressed as:

2

g(t) = exp (—%‘2) cos(2m ft + @)

where o it the standard deviation of the Gaussian envelope, controlling its temporal spread,
fe is the central frequency of the filter, and ¢ is the phase offset.

The frequency response of the Gabor filter can be expressed as:

G(f) = U\gﬁ [exp(—QWQUZ(f . fc)2) €j¢ + eXp(—27T20'2(f + fc)g) e,jd)]

From a signal processing perspective, the Gabor filter can be viewed as a band-pass filter with
adjustable parameters. The Gaussian envelope governs the extent of temporal localization,
while the sinusoidal carrier defines the central frequency to which the filter is most sensitive.
This property allows the filter to selectively respond to signal components that match its
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Figure 2.1 Normalized Frequency Response of a 1D Gabor Filter.

frequency and phase characteristics. In one dimension, the Gabor filter is commonly applied
to extract local frequency and phase information, which is valuable in areas such as speech
and biomedical signal analysis. In two dimensions, it is widely used in image processing
tasks, including texture analysis [35] and edge detection [50].

Gabor Filterbank

A Gabor filterbank is constructed by generating a sequence of Gabor filters whose center
frequencies are distributed between a lower (fiow) and an upper (fuign) cutoff frequency. In
this way, the broadband signal is decomposed into subbands, each filter capturing localized
spectral content around its center frequency. In the implementation, the frequency step is
defined as:

f hlgh f low
Af = N

where N is the number of filters. The center frequencies are then:
fc(k) = flow + kAf?
wherek’EZZO:k<N.
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Figure 2.2 Gabor Filterbank Consisting of 12 Mel-Spaced Filters with 50% Overlap (Sam-
pling Rate = 22.05 kHz) [123].

2.1.6 Signal Decomposition

Decomposition is a fundamental step in signal processing that allows complex signals to be
expressed as combinations of simpler components, such as in the FT (Section 2.1.3). This
process helps in identifying meaningful patterns and separating sources of interest from noise.
In EEG analysis, decomposition is particularly important for isolating neural activity from
artifacts.

Independent Component Analysis

Independent Component Analysis (ICA) [26] is a statistical decomposition algorithm that
separates a multivariate signal into additive, statistically independent components. It is
widely used for blind source separation [81], where the goal is to recover original source
signals from their mixtures without prior knowledge of their structure. ICA assumes that
the observed signals are linear mixtures of independent, non-Gaussian sources.

Mathematically [26], the ICA of a random vector y € R™ consists of finding a linear trans-
formation that minimizes the statistical dependence between its components. Assume the
following linear, noise-free statistical model:

y = Fz,
where z = [21, 23,. .., 2,] " is arandom vector whose components are statistically independent,
and F € R™*" is an unknown full-rank mizing matriz.
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The problem set by ICA is to estimate both F and the corresponding realizations of the
sources z, given only realizations of y. Since the decomposition is indeterminate up to
scaling and permutation, if {F, A} is an ICA of y, then so is {F’, A’} with

F' = FADP, A'=P"A AP,
where A is diagonal and invertible, D is diagonal with unit-modulus entries, and P is a

permutation matrix.

The ICA is uniquely defined (up to scale and permutation) if at most one component of z is
Gaussian. In this case, there exists a demizing matric W € R™*™ such that

z= Wy,
whose components are as statistically independent as possible.

A suitable contrast function J is used to measure the degree of statistical dependence among
components of z. A theoretically valid choice is the (negative) mutual information,

pz(u)
J(z)=—1(p,) = — /pz(u) log =————du,
IT; = (ui)
which vanishes if and only if the components z; are mutually independent.
In practice, mutual information can be approximated using measures of non-Gaussianity,

since Gaussian variables maximize entropy among variables of equal variance. A common
criterion is based on the negentropy,

J(pz7,> = S(pg) - S<p2i)7

where S(-) denotes the differential entropy and szi is a Gaussian density with the same mean
and variance as p,,. Hence, the ICA estimation problem can be expressed as

max 2; J(ps,),

that is, to find a demixing matrix W yielding components z = Wy of maximal non-
Gaussianity, thereby ensuring their statistical independence.

In practice, the FastICA algorithm [47] is often used due to its computational efficiency,
employing a fixed-point iteration to maximize non-Gaussianity via an approximation of ne-
gentropy.

In EEG analysis, ICA is especially useful for detecting and removing artifacts such as eye
blinks, heartbeats, and muscle activity [53|, as these sources are generally independent from
neural signals. ICA can also help in isolating functionally distinct neural components for
further analysis.
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2.1.7 Biosignals

Biosignals [82] are measurable signals originating from biological systems that convey in-
formation about physiological processes and functions. They can be broadly classified into
two primary categories: electrical and non-electrical signals. Common examples of biosignals
include:

e Electroencephalogram (EEG): Measures electrical activity of the brain.
e Electrocardiogram (ECG/EKG): Records the electrical activity of the heart.

e Electromyogram (EMG): Captures the electrical activity produced by skeletal mus-
cles during contraction and relaxation.

e Electrooculogram (EOG): Monitors eye movements by measuring the corneo-retinal
standing potential between the front and back of the eye.

e Galvanic Skin Response (GSR): Measures changes in the skin’s electrical conduc-
tance.

e Respiration rate
e Body temperature
e Pulse rate

Preprocessing of biosignals constitutes a critical step in biomedical signal analysis, as these
signals are often characterized by low amplitudes and a high susceptibility to noise and
artifacts. Signal processing techniques enable the amplification, filtering, and transforma-
tion of biosignals to extract meaningful information, such as spectral components, temporal
dynamics, or statistical features. These processed signals have widespread applications in
clinical and medical domains [107], supporting diagnostic, prognostic, and patient monitor-
ing tasks. Beyond healthcare, biosignal analysis is increasingly employed in industrial and
human—machine interaction contexts. For instance, driver vigilance monitoring systems uti-
lize biosignals to assess alertness levels, thereby enhancing safety. Moreover, multimodal
approaches that integrate multiple biosignals (e.g., EEG, ECG, respiration) are employed in
advanced applications such as emotion recognition systems.

2.2 Teager-Kaiser Energy Operator

Almost all communication systems encounter oscillatory patterns characterized by both am-
plitude modulation (AM) and frequency modulation (FM). To detect modulations in these
AM-FM signals, a nonlinear differential operator, known as the Teager-Kaiser Energy Oper-
ator (TKEO) (|54], [74]), which estimates the product of their time-varying amplitude and
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frequency, can be employed. TKEO was developed for both continuous (W,.) and discrete
(Uy) signals and is intended to function as an “energy tracker”, enabling the modeling of
energy variations within the signals.

Tela(t)] = (2(t)" — 2()Z(t)
Uylz[n]] = 2%[n] — z[n — 1)z[n + 1]

As Kaiser explained [54], in simple harmonic motion, the signal energy is classically under-
stood to be proportional to the square of both amplitude and frequency.

1
E = imuﬂAQ x w?A?
Despite this fundamental relationship, prior energy calculation methodologies often over-
looked the frequency component, emphasizing solely the amplitude factor. Given a simple

oscillatory signal x[n] = Acos(Qn + ¢), Kaiser showed that:
22[n] — xz[n + Nz — 1] = A%sin*(Q) ~ A20?

for small values of €2. To ensure the accuracy of this approximation within acceptable bounds,
Kaiser suggested constraining the value of € within the range [0, 7], thereby maintaining a
relative error below 11%. Thus, in order to consider this operator as a reliable measure of
signal energy, it necessitates the sampling of at least two points within each quarter cycle

with respect to the sinusoidal oscillation.

2.2.1 Energy Separation Algorithm

For the purpose of extracting the amplitude envelope and instantaneous frequency of AM-FM
signals, the Energy Separation Algorithm (ESA) [74] was developed. ESA employs nonlinear
combinations of instantaneous signal outputs from the energy operator to distinguish between
the amplitude modulation and frequency modulation components within its output energy
product.

CESA

The Continuous Energy Separation Algorithm (CESA) was introduced for continuous-time
signals. CESA offers estimates of the time-varying instantaneous frequency signal w;(t) > 0
and of the amplitude envelope |a(t)| as follows:




Chapter 2. Theoretical Background 2.2. Teager-Kaiser Energy Operator

DESA

The Discrete Energy Separation Algorithm (DESA) was developed for discrete-time sig-
nals and is divided into three categories of algorithms: DESA-la, DESA-1, and DESA-2.
As referred to in [74], DESA-2 stands out as the fastest among the three DESAs, and its
mathematical analysis is the most straightforward. DESA-1a exhibits inferior performance
compared to the other two, while DESA-1 demonstrates slightly better performance than
DESA-2, with the variance in their performance within range 0.01% — 0.1%. Subsequently,
we present the formulas of each algorithm, referring to the amplitude envelope as |a[n|| and
to the instantaneous frequency as €2;.

DESA-1a Here ‘1’ implies the approximation of derivatives with a single sample difference
and ‘a’ refers to the usage of asymmetric difference.

n| ~ arccos| 1 — Yzln] — xfn —1]]
o (1 20 [ )

Vz[n]

2
1_{1_M}

2¥[z[n]]

DESA-1 The effect of ¥ on asymmetric derivatives is partially balanced by averaging its
effect on two opposing asymmetric derivatives, resulting in a partial “symmetrization”.

yln] = zln] —z[n — 1]

Q;[n] = arccos (1 ~ Vlyln] +yln+ 1]])

AUlz[n]]

Yz[n]

2
_ |1 _ Yyn]tylnt1]
1 [1 TVl }

jaln]| =

The frequency estimation component functions effectively when 0 < Q;[n] < 7, as the prin-
cipal value range of the arccos(v) function assumes that v € [0, 7]. Consequently, DESA-1 is
capable of estimating instantaneous frequencies up to % of the sampling frequency.
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DESA-2 This DESA uses symmetric differences. Here ‘2’ implies the approximation of
first-order derivatives by differences between samples whose time indices differ by 2.

1 (1_ \If[x[n—i—l]—w[n—l]])

Q;[n] &~ —arccos 20 ]

20 [
VUl 1] — a[n - 1]

la[n]] ~

The frequency estimation part assumes that 0 < ;[n] < 7.

2.2.2 Applying Filterbanks on TKEO

TKEO provides reliable instantaneous energy estimates primarily when applied to narrow-
band signals [74]. To apply this premise, the use of filterbanks helps decompose the broadband
(raw) signal into localized frequency subbands, which, as a result, produces smoother instan-
taneous amplitude and frequency modulations [34]. Among possible choices, Gabor filters
are particularly suitable due to their joint time—frequency resolution and compactness [74].

As described in Section 2.1.5, the Gabor filterbank is constructed by defining a sequence of
filters with center frequencies between the lower and upper cutoff limits. In this work, the
center frequencies computed are uniformly spaced. Once the set of central frequencies, f,,
has been determined, each signal is filtered with the corresponding Gabor filters, and TKEO
is applied to each filter’s output. This results in N energy signals, one for each subband. For
each TKEO signal, we compute the temporal mean as a measure of the average sub-band
energy. The filterbank that yields the maximum mean TKEO value is then selected. The
corresponding filtered signal is retained for further analysis, as it represents the sub-band in
which the TKEO provides the most informative characterization of the signal dynamics.

2.3 Machine Learning Models

Artificial intelligence (AI) refers to technologies engineered to imitate human mental func-
tions, including comprehension, learning, analytical problem-solving, autonomous decision-
making, and creative thinking. Al-enabled systems and applications are capable of learning
from new experiences and data, recognizing objects, interpreting and responding to human
language, performing tasks independently without human intervention— smart home assis-
tants being a notable example.

Machine learning (ML) is a core subset of Al that enables systems to make predictions
or decisions by learning from training data. Rather than being explicitly programmed for
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every task, ML algorithms analyze examples to recognize patterns, infer insights, and improve
their performance over time. Each ML technique—such as Support Vector Machines, Linear
Regression, Decision Trees, Random Forests, k-Nearest Neighbors, k-Means Clustering—is
particularly effective for specific types of problems and datasets.

Supervised learning is a fundamental paradigm in ML, where a model is trained using
labeled data. Each input is paired with a corresponding target output (label). The primary
goal for the algorithm is to learn the relationship between the inputs and the outputs, en-
abling accurate predictions on new, unseen data. Supervised learning problems are generally
categorized into two types: (1) classification, which involves predicting discrete labels, and
(2) regression, which involves predicting continuous values.

2.3.1 Support Vector Machines

Support Vectors

Figure 2.3 [Illustration of a Linear SVM showing the optimal separating hyperplane, sup-
port vectors, and margin between two classes.

Support Vector Machines (SVMs) [28] are supervised learning models designed for binary
classification that embody a simple but powerful principle: rather than merely finding any
decision boundary that separates classes, they seek the optimal one. The optimal hyperplane
is defined as that which separates the training data with the largest possible margin, i.e.
the maximum distance between the boundary and the closest data points from each class
(Fig. 2.4). These critical samples, called support vectors, alone determine the classifier.
Intuitively, this margin maximization strategy reduces the chance of overfitting and yields
robust generalization to unseen data.
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Formally, let a training set {(x;, %)}/, be given, where z; € R? and labels y; € {—1,+1}.
The data are linearly separable if there exists a vector w and bias b such that

yi-(w-x; +0)>1, i=1,....¢
The optimal separating hyperplane is then
Wo - X + bo =0.

Among all possible separating hyperplanes, the optimal one maximizes the margin between
the two classes. The margin can be expressed as

X-W X

p(w,b) = min —-r- max —H

W
{x:y;=+1} HWH {x:y;=—1} ”W

The margin at the optimal hyperplane (w,b) is expressed:

2
p(wo,by) = m

As support vectors, the vectors x;, where y; - (W - x; + b) = 1 are defined.

At the optimum, the weight vector is expressed as a linear combination of support vectors:

¢
_ 0
Wo = Yit; X,
i=1

where af > 0. The vector of parameters Al = (a?,...,a)) is calculated by solving the

quadratic programming problem:

max W(A)=AT1 — %ATDA,

subject to A >0,
ATy =0,

where 17 = (1,..,1) and D = y,y;(x; - x;), 4,5 =1,...,L.

The optimal weight vector can be expressed as a linear combination of the training samples,
N
Wy = Z QGYiX.
i=1
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Thus, the linear decision function becomes

N
f(x) = sign(wq - X + by) = sign (Z i (% - %) + b0> :

=1

When data are not linearly separable, the above framework is extended through soft margins.
Slack variables &; > 0 are introduced, relaxing the constraints to

yi(w-x; +b) >1—¢,

and the optimization objective is modified to penalize violations:

)4
(1
i {51026

where C' > (0 controls the trade-off between maximizing the margin and minimizing classifi-
cation errors.

More importantly, real-world data are often not linearly separable in the original feature
space. To address this, SVMs employ a nonlinear mapping ¢ : R* — H, where H is a Hilbert
space. Instead of computing ¢(x) explicitly, the kernel trick is applied: dot-products in H
are replaced by a kernel function

¢(x) - 9(z) = K(x,2).

The decision function thus generalizes to

¢
f(z) = sign (Z i K (x,%x;) + b) :

=1

A widely adopted choice is the Radial Basis Function (RBF) kernel, defined as

K(x,z) = exp (—M> :

202

where o is the kernel width (bandwidth) parameter that controls the spread of the RBF
kernel. A larger o leads to a smoother decision boundary, while a smaller ¢ allows the model
to capture finer details but risks overfitting. The RBF kernel allows the SVM to measure
similarity between points in a way that can capture highly flexible, non-linear relationships,
without explicitly transforming the data into a higher-dimensional space. Its key property
is locality: similarity decays smoothly with Euclidean distance, enabling flexible nonlinear
boundaries while controlling complexity.
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In summary, SVMs combine rigorous optimization with kernel methods to achieve powerful
classification. The RBF kernel, in particular, provides an effective balance between expres-
siveness and generalization, which explains its widespread use in domains ranging from text
classification [43] to image recognition [21].

2.3.2 Random Forests

A%Eﬁ KRA

DECISION DECISION eee DECISION
TREE 1 TREE 2 TREE N

L MAJORITY VOTING / AVERAGING J

!

| FINAL RESULT |

Figure 2.4 TIllustration of a Random Forest showing an Ensemble of N Decision Trees and
their Aggregated Predictions for two Classes.

Decision Trees are supervised learning models that partition the input space into regions
associated with class labels (for classification) or numerical values (for regression). A tree is
built by recursively splitting the training data based on feature values. At each internal node,
a feature and split threshold are selected to maximize some measure of class purity, such as
information gain. The process continues until stopping criteria are met, such as reaching a
maximum depth or having too few samples to split further. The terminal nodes, or leaves,
assign predictions.

A Decision Tree is a function
h(x): R — Y,

where x € R? is an input vector and ) is the label space. The tree partitions the space into
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disjoint regions {R,,} such that

h(x) =c¢n ifx € R,
with ¢, the majority class (classification) or average response (regression) within region R,,.
While trees are interpretable and flexible, they are prone to high variance and overfitting.

Random Forests (RF), introduced by Breiman [18], deal with the instability of single
trees by constructing an ensemble of them and aggregating their predictions. The central
intuition is that although individual trees may be weak predictors, combining many diverse
trees yields a strong classifier with reduced variance.

Formally, a Random Forest consists of tree classifiers of the form
h(X,@k), k’Il,...,K,

where ®;, are independent identically distributed random vectors controlling the randomness
in the k-th tree, such as bootstrap sampling of data or random selection of features at each
split. For classification, the forest prediction is obtained by majority voting:

Hg(z) = mode{h(x,0y) : k=1,...,K}.

For regression, the forest prediction is the average of the tree outputs.

The theoretical performance of Random Forests can be analyzed using the margin function.
For an input—output pair (X,Y’) and a finite forest of K trees, the margin is

where I(-) is the indicator function. The margin measures how much more the forest favors
the correct class Y over its most competitive alternative.

The generalization error of the Random Forest is then defined as the probability that the
margin is negative:

PE* = nyy(mg<X, Y) < 0)
As the number of trees K — 0o, the law of large numbers implies that

mg(X,Y) — mr(X,Y) = Po(h(X,0) = Y) — max Po(h(X, 0) = j),

J#FY

where mr(X,Y’) denotes the expected margin, thus the margin converges to its expectation
under the randomization. A central property of Random Forests is that the generalization
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error converges almost surely to a limit, meaning that adding more trees does not cause
overfitting.

Breiman [18] showed that performance depends on two key factors: the strength of individual
trees and the correlation among them. The strength is defined as the expected margin,

s = Exy[mr(X,Y)],
and the average correlation of tree errors is denoted by p. An upper bound then holds:

p(1— 5

PE* < =

This inequality reveals that the best forests combine accurate individual trees (large s) with
low correlation between them (small p). Random feature selection at each split is specifically
designed to lower correlation while maintaining strength.

From a computational perspective, growing a single unpruned Decision Tree on N samples
with M features requires O(M N log N) operations. In a Random Forest, only FF <« M
features are considered at each split, reducing the cost per tree to O(Fnlogn), where n < N
is the number of samples in the bootstrap subset. By combining bagging with random feature
selection, Random Forests extend Decision Trees to reduce variance and improve predictive
performance. Although training multiple trees increases total computation, Random Forests
remain efficient in practice and are capable of handling high-dimensional data with robustness
to overfitting.
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Chapter 3

Related Work & Methodology

3.1 Datasets

The experiments in this study utilize several publicly available EEG datasets that have be-
come benchmarks for emotion recognition, BCI, and epilepsy detection research. Each dataset
differs in its recording setup, stimuli type, and labeling scheme, providing complementary
perspectives on affective and cognitive state modeling, as well as clinical EEG analysis.

SEED: The SEED dataset [122] is a widely used benchmark for EEG-based emotion recog-
nition. It comprises EEG recordings from 15 participants while they viewed 15 Chinese film
clips, each lasting approximately 4 minutes. Each video was selected to induce one of three
affective states —positive, neutral, or negative- resulting in a single categorical label per clip.
The EEG signals were recorded using a 62-channel setup following the 10-20 configuration,
with an original rate of 1000 Hz, subsequently downsampled to 200 Hz.

DEAP: The DEAP dataset [59] is another widely used benchmark for EEG-based emotion
recognition. It comprises recordings from 32 participants while they watched 40 excerpts of
music videos, each of 1-minute duration, designed to elicit various affective responses. After
each video, participants rated their experience along the dimensions of arousal, valence, liking,
dominance, and familiarity on continuous 9-point scales. EEG signals were collected using a
32-channel setup following the international 10-20 system [25] at 512 Hz and downsampled
to 128 Hz, together with peripheral physiological measures such as GSR, respiration, and
EMG. The dataset provides continuous-valued affective labels in the valence—arousal space,
enabling both categorical and dimensional emotion modeling.

BCI Competition IV Dataset 2a: The BCI-IV 2a dataset [20] consists of EEG recordings
from 9 subjects performing 4 motor imagery tasks, i.e., left-hand, right-hand, feet, and tongue
movement imagery. Each subject completed two sessions on different days, with each session
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comprising 6 runs of 48 trials (12 per class), resulting in 288 trials per session. Each trial
lasted 6 seconds in total, with an onset cue presented after the first 2 seconds. Subjects
performed the instructed motor imagery for the subsequent 4 seconds, which was used as the
analysis window. EEG was acquired from 22 channels following the 10-20 configuration [25],
along with 3 electrooculogram (EOG) channels, all sampled at 250 Hz.

TUH Epilepsy Corpus: The TUH Epilepsy Corpus (TUEP) [112] is a curated collection
of clinical EEG data from Temple University Hospital, including recordings from 100 epilep-
tic and 100 healthy subjects. In total, TUEP contains 698 sessions, yielding 1,785 EEG
recordings from epileptic and 513 from non-epileptic patients. Individual recording dura-
tions vary from a few seconds to approximately one hour. All EEG signals were acquired
using the 10-20 configuration with 19 channels and sampled at 250 Hz with supplementary
electrocardiogram (EKG) channels also available.

Further details regarding the experimental setup, data collection procedures, and dataset
formats are provided in the Appendices.

3.2 Literature Review

3.2.1 Traditional EEG Features

Traditional EEG analysis has relied on hand-crafted features designed to capture statistical,
spectral, and dynamical signal properties. Statistical descriptors such as mean, variance, zero-
crossing counts, and autocorrelation have long been used for baseline characterization [96],
[113], [117], [118]. However, spectral approaches, particularly Power Spectral Density (PSD),
remain the most common approach for quantifying canonical oscillatory rhythms [16], [102].
Recently proposed complementary measures to quantify temporal and spatial complexity
include differential entropy [122| and asymmetry indices [103]| respectively. Multiscale and
non-stationary dynamics are effectively captured by Discrete Wavelet Transform (DWT) and
Empirical Mode Decomposition (EMD) [29], [44], [67], while nonlinear descriptors, including
fractal dimensions [12], [125] and higher-order spectra [80] have been used to capture the
chaotic structure of EEG. Despite this rich toolbox, most approaches rarely target an explicit
analysis of transient and nonlinear dynamics in EEG, which motivates the use of operators
such as the Teager—Kaiser Energy Operator (TKEO).

3.2.2 TKEO Applications

The TKEO is widely used in signal processing domains for detecting instantaneous energy
fluctuations in oscillatory signals, with various applications. In speech processing, it has been
leveraged for tasks such as formant detection [46], denoising [58], replayed speech identifica-
tion [92], and emotion recognition [57], [95]. In music signal analysis, TKEO has been used
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for tempo estimation [49], note onset detection [38|, instrument [124] and genre recogni-
tion [126]. Beyond acoustic signals, TKEO has proven effective in biomedical applications to
extract physiologically plausible energy fluctuations. In cardiovascular research, for exam-
ple, it has enabled automated phonocardiogram (PCG) analysis for the detection of heart
valve disorders without requiring prior segmentation [119]. With respect to analysis of neu-
rophysiological recordings, TKEO has been used for electromyography (EMG) segmentation
to detect precise movement onsets [15], while modified thresholding strategies have further
improved detection accuracy [60].

Beyond its applications in speech, music, and other physiological signals, the TKEO has
also been explored for EEG analysis. Early studies focused on fundamental tasks such as
differentiating sleep stages [66], discriminating focal from non-focal brain activity [22], and
detecting epileptic events [13]. More recent work has extended the use of TKEO to affective
computing; for example, it has been employed for stress detection by extracting energy-
based features from the alpha and beta bands, where logistic coefficients derived from TKEO
demonstrated strong discriminative power between stressed and non-stressed states [62]. In
the context of BCI research, Kaleem et al. [55] combined empirical mode decomposition
with multivariate phase space (EMD-MPS) and TKEO to classify cognitive tasks such as
mental arithmetic, letter composition, and 3D rotation, achieving accuracies of up to 87%.
However, not all applications yielded favorable results: Martisius et al. [75] reported that con-
ventional TKEO performed poorly for motor imagery EEG. They showed, nonetheless, that
higher-order generalizations—most notably the Homogeneous Multivariate Polynomial Op-
erator (HMPO)—substantially improved classification accuracy, highlighting the importance
of operator choice in TKEO-based feature extraction.

3.2.3 EEG-Based Emotion Recognition Methods

EEG has received considerable attention for emotion recognition, as it enables the observation
of brain activity underlying emotional processes, providing a direct, noninvasive, and tempo-
rally precise measure of affective responses compared to peripheral physiological signals. |7].
Research typically focuses on mapping EEG oscillatory dynamics to emotional dimensions
such as valence and arousal, where frontal alpha asymmetry has been linked to valence, and
beta or gamma activity to arousal and attentional engagement |7], [103], [122].

As reviewed by Liu et al. [70], traditional EEG-based emotion recognition methods primarily
depend on manually engineered features—such as band-limited power spectral density (PSD),
differential entropy, and various functional connectivity indices—extracted from preprocessed
EEG signals. These hand-crafted features are subsequently used as inputs to classical ma-
chine learning classifiers, including Support Vector Machines (SVM), K-means clustering,
K-Nearest Neighbors (KNN), and Random Forests, to categorize different emotional states.
These approaches have shown consistent performance across public datasets such as DEAP,
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SEED, and DREAMER [56]. More recently, deep learning has enabled end-to-end modeling of
affective EEG using convolutional [73|, recurrent [24], and attention-based [42] architectures,
as well as graph neural networks [69] that exploit spatial-temporal relationships between
electrodes.

As highlighted by Apicella et al. [9], despite significant advances in EEG-based emotion
recognition, achieving robust generalization across subjects and sessions remains a major
challenge. This limitation stems largely from the inherent variability and non-stationarity of
EEG signals, which lead to dataset shift and hinder consistent model performance. Further-
more, individual differences in psychological, physiological, and environmental factors intro-
duce additional sources of uncertainty, while issues such as subjective affect labeling and the
limited interpretability of deep learning models continue to complicate reliable emotion de-
coding. Current research [9], therefore, emphasizes the development of methods that enhance
model robustness, explainability, and cross-subject adaptability—particularly through trans-
fer learning and domain adaptation strategies—to enable more generalizable and practical
emotion-aware systems.

3.2.4 EEG-Based Motor Imagery and BCI Systems

Following EEG-based emotion recognition methods, motor imagery (MI) represents another
extensively studied paradigm in EEG and brain-computer interface (BCI) research. Owing
to its ability to generate distinct and reproducible neural patterns associated with imag-
ined movements, MI provides a valuable framework for both scientific investigation and the
development of practical neurotechnology.

Beyond its theoretical significance, MI has demonstrated practical utility in a range of applied
domains. One of its primary uses lies in motor rehabilitation, particularly for patients with
stroke or severe paresis, where MI-based interventions have shown efficacy in enhancing
motor recovery by promoting neuroplasticity and motor relearning [77|, 78|, [115]. MI is
also extensively applied in brain-computer interface (BCI) systems, which translate imagined
motor actions into control commands, enabling users to interact with external devices such as
computers, robotic systems (e.g. exoskeleton), or wheelchairs without physical movement [8],
[89], [121]. These BCI systems benefit from MI’s capacity to generate distinguishable neural
patterns [68], making them effective for assistive technologies aimed at improving autonomy
in individuals with motor impairments [121]. As shown in Fig. 3.1, an MI-based BCI can
process EEG signals in real time to control a lower-limb exoskeleton, thereby supporting
motor function and rehabilitation. In addition to rehabilitation and assistive control, MI
is increasingly employed to enhance performance in healthy individuals. When combined
with physical training, it can enhance muscle strength by improving movement technique
and fostering individual motivation [64]—often matching or even surpassing the benefits of
physical practice alone [61].
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Figure 3.1 Diagram of a MI-based BCI System for Exoskeleton Control [23].

Despite the promising applications of MI-based systems, several significant challenges re-
main, including time-consuming, user-specific calibration and limited generalizability across
individuals [88]. Additionally, translating lab-based technologies into real-world applications
requires careful attention to usability, reliability, intuitiveness, and cost, while adapting de-
signs to the specific needs and contexts of target users. Continued research and innovation
are essential to overcoming current limitations and fully exploiting the potential of MI not
only across clinical contexts, but also in everyday applications.

3.2.5 EEG-Based Epilepsy Detection Methods

Given the clinical importance of EEG analysis, one of its most critical applications lies in the
automated detection of epileptic activity. Automated epilepsy detection has emerged as an
essential research area within computational neuroscience, focusing on identifying interictal
epileptiform discharges (IEDs), which are transient events observed in EEG recordings [2],
and seizure episodes in EEG data to assist clinicians in diagnosis and treatment planning.
Detection and mapping methods for epileptic activity rely on both scalp EEG (scEEG) and
intracranial EEG (iEEG) recordings, which respectively provide non-invasive low-resolution
and invasive high-resolution measurements of brain electrical activity [3]. scEEG is widely
used in clinical and research settings but is limited by attenuation and noise, whereas iEEG
offers highly localized information essential for accurate identification of interictal epilep-
tiform discharges (IEDs) and seizure foci. Consequently, recent work [3] has focused on
developing models that can map or translate scEEG to iEEG to enhance diagnostic precision
in epilepsy assessment. Techniques range from mimetic approaches and feature extraction
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based on linear and non-linear EEG descriptors [116], to more advanced approaches lever-
aging dynamic functional brain networks and tensor decomposition for feature extraction
and epilepsy prediction [65]. In recent years, deep learning approaches—particularly con-
volutional neural networks (CNNs) and recurrent neural networks (RNNs) [41], [110], [114],
generative adversarial networks (GANs) [4], and autoencoders (AEs) [1|—have been applied
for detecting IEDs and for mapping scEEG to iEEG. These methods aim to enhance sen-
sitivity and specificity in IED detection, supporting early diagnosis and treatment planning
for epilepsy patients.

3.3 Preprocessing

EEG recordings from DEAP and SEED, as noted in the Appendices, are already provided in
a preprocessed form. In contrast, datasets available in raw form required additional prepro-
cessing steps. For the rest of the datasets (i.e., BCI-IV 2a and TUEP), we applied a similar
pipeline that involved Independent Component Analysis (ICA) to remove EKG artifacts in
TUEP and EOG artifacts in BCI-IV 2a. Then, a notch filter with a Finite Impulse Response
(FIR) design was applied at 60 Hz for TUEP and 50 Hz for BCI-IV 2a to eliminate powerline
interference. Finally, all signals were highpass-filtered at 0.5 Hz using a FIR filter.

All EEG recordings were partitioned into overlapping segments, with window lengths and
overlap ratios chosen according to the specific characteristics of each dataset. This approach
enables the extraction of temporally localized features while maintaining comparability across
different recordings. For the DEAP dataset, the 60-second recordings were segmented into
20-second windows, each with 50% overlap, resulting in 5 windows per sample. Similarly,
the SEED recordings, each lasting approximately 4 minutes, were partitioned into 20-second
windows with 50% overlap, yielding 23 segments per recording. To ensure consistency with
prior work [52], [111], the TUEP samples were segmented into 10-second windows with no
overlap, due to computational memory constraints. The resulting number of windows per
sample varied according to the recording duration (ranging from approximately 1 minute to
1 hour), resulting in between 11 and 719 windows per sample. For the BCI-IV 2a dataset,
each recording consists of a continuous session for a participant, encompassing both cue
presentation periods and inter-trial breaks. Since the precise event markers corresponding
to cue onset are provided, we extracted fixed-length segments of 4-sec., following each cue
presentation. This procedure yielded 288 motor imagery windows per recording.

Before TKEO-based feature extraction, each EEG segment was decomposed into five narrow-
band components using bandpass filtering corresponding to the canonical EEG bands. Mul-
tiple filterbank configurations (12, 25, and 50 filters) were then applied within the frequency
range of each canonical band on the DEAP, SEED, and BCI-IV 2a, in order to systemati-
cally evaluate the effect of filterbank resolution on the extracted features. In contrast, only
12 filterbanks were applied to the TUEP dataset due to computational constraints. For base-

80



Chapter 3. Related Work & Methodology

3.3.  Preprocessing

Original EEG

Time Course
of ICA Components

F])i
Fp2 4

F4 4
C3 1
C4 4
P3
P4 4
01 A
02

F8 4
T3
T4 1
T6
Cz A

EKG A

1
b i APt ot S ]
L]

4
MWM‘\»W‘,
Svnasedvel I
N A i A VAT AW VOV YW re

R e e

PR
] ¥

1y

l

A ui W&‘mﬂl“muﬂw‘ WE}MWMWWL

0 1 2 3 0

Time_ (sec)

@ 4

1 2
Time (sec)

Components

ICA

Corrected EEG

ICA2 FpL oM et ™S e gt Y]
A Fp2 Tumeuesa niehi st o Wi A
F3 om0 AT 8 g
P i e RO o g Mo
O3 NN Ny it oo ot o o]
& I S N i A o
P3 B I I S e s |
P A S as s d N A S e

0

1 2 3
Time (sec)

Figure 3.2 Independent Component Analysis (ICA) Applied to EEG Data From the TUEP
Dataset. The Figure Shows the Original EEG Channel Signals (Left), the Time Courses of the

Extracted ICA Components (Middle), the Corresponding Spatial Topographies of Selected
Components (Right Middle), and the Corrected EEG After Artifact Removal (Right).

line comparisons, frequency bands were extracted using a standard 10th-order Butterworth
bandpass filter, providing a conventional single-band reference for evaluating the benefit of
the filterbank approach. All windowing and filterbank configurations for the datasets used
in this study are summarized in Table 3.1.

Dataset

Window (s) Overlap (%) # Filters

SEED
DEAP
BCI-IV 2a
TUEP

20
20
4
10

20
50
0
0

12, 25, 50

12, 25, 50

12, 25, 50
12

Table 3.1 Dataset-wise Preprocessing Parameters.
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Figure 3.3 Gabor Filterbank with 12 Filters applied to EEG Channels from the DEAP
Dataset in the Beta Band. The Red Dashed Curves represent the 12 Gabor Band-pass Filters,
while the Colored Traces show the Spectral Amplitudes of Individual EEG Channels. The

Channel Topology is displayed in the upper-right inset.

3.4 Feature Extraction

3.4.1 Baseline Features

To enable a comparative evaluation of the proposed approach and to assess its potential
complementarity with standard EEG descriptors, we extract a set of baseline features. These
features include the Power Spectral Density (PSD) and the Instantaneous Power (IP) of the

signal.

e Power Spectral Density (PSD): Chapter 2 highlighted that the PSD corresponds

to the Fourier transform of a signal’s autocorrelation. This representation has become
a common choice for extracting features from EEG data because it provides access to
valuable patterns distributed across established EEG frequency ranges. In this work,
the PSD is estimated using Welch’s method, producing % features per extracted win-
dow, where f, denotes the sampling frequency. Consequently, the dimensionality of the
PSD features is 64 for the DEAP, 100 for SEED, 125 for TUEP, and 125 for the BCI-IV
2a dataset.

Squared Energy (SE): The SE, defined as the squared magnitude of the signal at
each time instant, corresponds to the instantaneous power p[n] = |z[n]|? introduced in
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Chapter 2. It is commonly used in signal processing as a direct measure of a signal’s
instantaneous energy. Similar to the proposed TKEO statistical descriptors described
below, the mean Squared Energy of each band, as well as its contribution to the total
signal energy (mean Relative Squared Energy) features are extracted.

Power (dB pV?2/Hz)

1
0 20 40 60 80 100
Frequency (Hz)

Figure 3.4 Power Spectral Density of EEG Channels from the SEED Dataset. The Signals
were Notch-filtered at 50 Hz using Finite Impulse Response Band-pass filter.

3.4.2 TKEO Features

We extract TKEO-based features from EEG signals to get valuable information to use as in-
put in the classification tasks. Each feature is calculated independently for each EEG channel
and for each frequency band, resulting in a feature vector of dimensionality (bands x chan-
nels x features) for each sample. For clarity, the TKEO-based features can be conceptually
divided into three categories: statistic-based, relevant-energy-based, and ESA-based descrip-
tors. The specific measures included in each group are outlined as follows. We constrain our
analysis to the discrete-time formulation of the TKEQ, i.e., ¥ = ¥, for the purpose of this
study.

Statistics

Let s denote the signal corresponding to a specific channel-band pair, consisting of N samples,
and s; its i-th sample. We calculate the following:
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e Mean Teager—Kaiser energy:
| N
pu(s) = + Zl U(s;)

e Variance of Teager—Kaiser energy:

e Absolute difference between the maximum and minimum Teager—Kaiser
energies:

Max-Mi = W(si)y — min (¥
ax-Miny (s) Z-gfffé]{ (si)} igl[l%{ (s)}

e Skewness of TKEO:

LN (W(s:) — pw(s))’

s-U(s) = =72
(% S (W) — Mm(s))2> /
o Kurtosis of TKEO:
kD (s) = iy (Vi) —pu(s)” 5

2"“ 2|>—A

S (U(s) — Mm(3>)2>2

(

¢ Index of maximum Teager-Kaiser energy:

o (8) = arg max{W¥(s;)}
1€[1,N]

e Absolute difference of the indexes of maximum and minimum Teager-Kaiser
energy:

iq]maxfmin<s) = | a‘rg max{\]:l(sl)} - a‘rg mln{qj(sl)}|
1€[1,N] 1€[1,N]
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Relative Energy

For a band-specific signal s, the relative contribution of its Teager—Kaiser energy with respect
to all frequency bands under consideration is defined as

ql an
REpand(s) = M

>k Vi(s)
where band k € {Delta, Theta, Alpha, Beta, Gamma}. Consequently, we calculate the follow-

ing statistics of RE to use as features:

e Mean relative energy:

N
1
m-REp,,4(s) = N Z REpana(si)
i1

Variance of relative energy:

N
1
v-REpana(s) = N Z(REband(Si) - m‘REband(s))Zy

i=1

Absolute difference between the maximum and minimum relative energies:

Max-Mingg(s) = max {REpana(s;)} — min {REpana(s:)}

i€[1,N] i€[1,N]

Index of maximum relative energy:

IREma (5) = arg max{REpana(s:)}
1€[1,N]

Absolute difference of the indexes of maximum and minimum relative en-
ergy:

IREmax—min () = | arg Max{REpana(s;)} — arg min{REpana(s:)}|
1€[1,N] 1€[1,N]
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Figure 3.5 Relative Squared and Teager—Kaiser Energies of the FC4 Channel From the
BCI-IV 2a Dataset in the Alpha Band. Gray dotted vertical lines represent the Start of
the Cue (1s), the End of the Cue (2.25s), and the End of Motor Imagery (5s). TKEO
Relative Energy shows fewer variations within each period, remaining low during MI and
higher during the Resting Periods, whereas SE exhibits more fluctuations. This indicates
that TKEO Relative Energy provides a smoother and more discriminative Representation
for MI.

Energy Separation Algorithm

In this work, we adopt the DESA-1 algorithm to extract the Instant Amplitude Modulation
(a(s)) and Instant Frequency Modulation (€2(s)). Subsequently, we calculate the DESA-based
features:

e Mean of Instant Amplitude Modulation (m-IAM) [124]:

m-TAM(s Z|

e Weighted mean of Instant Frequency Modulation (m-IFM) [124]:

SN Q(sq) - (m-TAM(s;))?
Zij\il (m'IAM<Si))2

m-IFM(s) =
e Variance of the Instant Frequency Modulation (v-IFM):
1
v-IFM(s) = Z (5:) — pa(s))’,

=N
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where po(s) = & SV Q(si).
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Figure 3.6 (a) CP4 Channel Signal from the BCI-IV 2a Dataset in the Alpha Band. (b)
Square Root of TKEO. (c¢) Estimated Amplitude Envelope using DESA-1. (d) Estimated
Instantaneous Frequency using DESA-1, expressed as a fraction of .

3.4.3 Selection of TKEO Features

In our experimental setup, we initially evaluated the performance of the model using the
complete set of 15 extracted features. To further investigate the relative contribution of
individual descriptors, we also examined different subsets of features and assessed their
effectiveness through systematic testing. Based on these evaluations, we observed that a
specific subset consisting of the mean Teager-Kaiser energy (m-TKEO), the mean Relative
Energy (m-RE), the mean Instantaneous Amplitude Modulation (m-IAM), and the variance
of Instantaneous Frequency Modulation (v-IFM) consistently yielded superior classification
performance compared to other feature subsets.

For clarity in subsequent discussions, we define the terminology as follows: the complete
set of 15 features is referred to as the “T’KEQ” features, whereas the reduced subset of the
four best descriptors (m-TKEO, m-RE, m-IAM, and v-IFM) is designated as the “Selected
TKEQ” features. This distinction allows us to explicitly compare the impact of feature
dimensionality reduction on classification outcomes in the following chapter. Additionally,
we define the term "Combined"” features as the set consisting of the Selected TKEO features
using a 25-filters filterbank, the PSD, the mean Signal Energy, and the mean Relative Signal
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Energy, concatenated. Finally, we denote as "TKEO-N FB", the TKEO features, which are
extracted using N filters filterbank configuration.

3.5 Evaluation Protocol

We evaluate the TKEO-based features on the three tasks: Emotion Recognition, Motor Im-
agery, and Epilepsy Detection. Two evaluation settings are considered: Subject-Dependent
and Subject-Independent. In the Subject-Dependent setting, classifiers are trained and tested
on data from the same participant and performance is reported as the average across subjects.
For the Emotion Recognition datasets, distinct trials are used for training and testing to pre-
vent data leakage, since each participant is exposed to all stimuli. In the Subject-Independent
setting, classifiers are trained on data from a group of participants and evaluated on unseen
individuals. Then the average across experiment repetitions is reported. For Epilepsy De-
tection, only Subject-Independent evaluation is performed, since epilepsy is a subject-level
condition and Subject-Dependent evaluation is not meaningful.

We note that performance in the Subject-Independent setting is typically lower, due to the
strong subject-specific variability inherent in EEG signals [6], and a similar trend is therefore
expected in our results.

3.5.1 Classification Models

For all experiments, we adopt a unified classification method that leverages features from all
available EEG channels. The pipeline consists of a Standard Scaler, which standardizes the
features by subtracting the training-set mean and dividing by the corresponding standard
deviation, followed by a classifier. Specifically, we employ an SVM with an RBF kernel
for the Subject-Dependent setting, while for the Subject-Independent, we use a Random
Forest classifier with 100 estimators, chosen for its computational efficiency and scalability.
Experiments address single-label classification tasks, namely: positive, neutral, or negative
emotion in SEED; high-low valence and high—low arousal in DEAP, with classes determined
by a median split; left hand, right hand, feet, or tongue motor imagery in BCI-IV 2a; and
epilepsy versus non-epilepsy in TUEP. Data are divided into 80% training and 20% testing,
with evaluation based on a stratified 5-fold cross-validation to preserve label proportions in
each split. The datasets are balanced across classes, with the exception of TUEP, which is
imbalanced, containing 77.7% of recordings from epileptic patients.

3.5.2 Evaluation Metrics

To assess how efficiently our machine learning models perform, a set of quantitative perfor-
mance metrics is applied. Among the most widely adopted measures are those derived from
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the confusion matrix, which provides a structured summary of classification outcomes by
distinguishing between correct and incorrect predictions for each class (Fig. 3.7).

Predicted Class

Positive Negative

Positi True Positive False Negative Sensitivity
stive TP FN e
TP +FN
Nesative False Positive True Negative Specibeity
E FP ™ _TN
TN + FP

Negative
Predictive Value
TP TP+ TN

TP + FP th TP+ TN+ FP +FN
TN+ FN

Actual Class

Precision Accuracy

Figure 3.7 Binary Classification Confusion Matrix, presenting key Evaluation Metrics.

True Positives (TP) represent correctly identified positive instances, while True Negatives
(TN) correspond to correctly identified negative instances. Conversely, False Positives (FP)
occur when negative samples are mislabeled as positive, and False Negatives (FN) arise
when positive samples are classified as negative. Collectively, TP and TN constitute the set
of correct predictions, whereas FP and FN represent the misclassifications.

In our work, we utilize as metrics the Balanced Accuracy and ROC-AUC, which are
described subsequently. We further note that, in the cases of SEED and DEAP, for evaluation
purposes we calculate the average of the per-excerpt metrics for each trial.

Balanced Accuracy: This metric can be applied to both binary and multi-class classifica-
tion tasks. It is defined as the average of Sensitivity (Recall) and Specificity [19]:

Sensitivity + Speci ficity
2 Y

Balanced Accuracy =

where Sensitivity = TPZ% and Speci ficity = %, as shown in Fig. 3.7.

ROC-AUC: The Receiver Operating Characteristic (ROC) curve [45] is a standard tool
for evaluating the performance of binary classifiers, and it can be extended to multi-class
problems. It is generated by plotting the True Positive Rate (Sensitivity) against the False
Positive Rate (1 - Specificity) across different decision thresholds (Fig. 3.8). The Area Under
the ROC Curve (AUC) provides a single scalar value that summarizes the classifier’s ability
to distinguish between classes. A model with perfect discrimination would correspond to
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a curve reaching the top-left corner of the plot, which reflects both maximum sensitivity
(no false negatives) and maximum specificity (no false positives). By contrast, a random
classifier produces points that tend to align with the diagonal from (0,0) to (1,1), known as
the line of no discrimination. Values above this line indicate performance better than random
guessing, while points below suggest worse-than-random behavior—which, in principle, could
be inverted into a useful predictor.

Importantly, the AUC metric is threshold-independent, as it integrates classifier performance
across all possible thresholds. Hence, it provides a value in the range [0, 1|, where higher
values indicate better discriminative ability.

A Perfect model

1

True Positive Rate

False Positive Rate

Figure 3.8 ROC Curves for Binary Classifiers, illustrating Model Performance against
Random, with the AUC reported for one Model.
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Chapter 4

Results & Discussion

The classification results for all features at the 2 settings are summarized in Tables 4.1-
4.13. We report results using features extracted directly from the raw signal (raw-band),
Alpha, Beta and Gamma bands, which are commonly reported to perform well in these
tasks [51], [91], [100], as well as from the fusion of features computed across all canonical fre-
quency bands (fused-band). TKEO features generally outperform the baseline features (PSD
and Signal Energy) in Motor Imagery and Epilepsy Detection tasks, whereas in Emotion
Recognition, the baselines achieve higher performance. The higher accuracies in Subject-
Dependent tasks reflect the general understanding that brain signals are strongly influenced
by individual-specific patterns. This is further reflected in the higher standard deviation
values, where in the Subject-Dependent setting we observe approximately 10% or higher
variability across subjects. This larger deviation likely arises due to intra-subject model
variability, as each model is trained and evaluated on a single individual, capturing unique
neural signatures and noise characteristics that differ substantially between subjects. In con-
trast, the Subject-Independent setting exhibits considerably lower variability—around 1-5%
in Emotion Recognition and 3-7% in Motor Imagery tasks—since performance is averaged
across multiple train—test folds involving different subject combinations, resulting in more
stable, but typically lower accuracies.

4.1 SEED Results

In the SEED dataset, the Subject-Dependent setting (Table 4.1) shows that SE achieves the
highest overall Balanced Accuracy of 93.8%. Closely following these results, the TKEO-12
FB features achieve accuracies only 3.6% lower in the fused-band. Notably, across nearly
all configurations, TKEO-based features outperform the PSD baseline in Balanced Accuracy
and both baselines in ROC-AUC, indicating that the proposed approach provides superior
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class separability compared to the baselines. Furthermore, fused-band features outperform
single-band features, indicating that integrating information across frequency bands enhances
emotion recognition performance. When comparing individual bands, the Beta and Gamma
bands yield higher accuracies than the Alpha band, which aligns with the findings reported

by Zheng et al. [122].

Features Balanced Accuracy (%) ROC-AUC (x10?%)
Alpha Beta Gamma Raw Fused Alpha Beta Gamma Raw Fused

SE 84.4 4102 8314111 8224937 8044150 93.8483 93.1ig2 942477 935477 893476 97.6437
PSD 4.2 4175 79.64183 69.84188 8581111 86.24125 90.04126 9131103 8784103 96.4 141 944463
TKEO-12 FB 86.24104 89.3197 8804134 858491 902457 947163 97.1i35 938451 953448 976443
TKEO-25 FB  86.71129 88.94i105 86.71103 87.1499 8844110 97.3435 962450 95.6454 95.6445 971447
TKEO-50 FB 85.3 +12.0 87.1i10'2 88.9 +10.8 88.419'6 88.9 +7.9 95.6 +6.1 96.0 +5.6 94~7i7.8 97.3 +4.1 98.2 +92.7
Selected—l? FB 84.9 +11.8 83.6 +17.2 85.8 +11.9 86.7i10.6 87.1i10,4 95.8 +6.5 95.8 +76 95.8 +7.8 96.2 +4.7 97.615‘1
Selected—25 FB 82.2 +12.1 85.3 +14.8 86.7i11.9 88.0 +9.8 87.6 +10.3 94417.8 96.2 +4.7 94.2 +49.1 97.3 +4.3 97.8158
Selected—50 FB 85.3 +12.2 86.7i13'5 84.9 +11.8 86.7i12,2 88.9 499 95.6 +6.4 94.5 +6.8 95.6 +6.7 97.3 +4.6 96.414,6
Combined 79.1 +14.8 83.6 +13.7 79-1i14.8 86.2 +14.3 88.0 +12.0 91.3 +10.5 94.0 +8.9 90.2 +11.1 95.5 +7.2 95.815,8

Table 4.1 Subject-Dependent 5-fold Mean Classification Performance and Standard Devi-
ation on SEED.

Our highest accuracy results surpass those reported in [122| under the same setting, as
shown in Table 4.2. Specifically, we achieve 90.2% and 88.9% accuracy for the TKEO-12 FB
and TKEO-50 FB features at the fused-band, respectively, outperforming the best cases of
differential entropy—based hand-crafted features.

Features Accuracy (%)
Rational Asymmetry [122] 74.74
Differential Asymmetry [122] 75.03
Differential Caudality [122] 77.38
Differential Entropy [122] 86.08
TKEO-50 FB (ours) 88.9
TKEO-12 FB (ours) 90.2

Table 4.2 Comparison of the Highest Reported Accuracies of Differential Entropy—based
Features in [122] with the Proposed TKEO-based Features on the SEED Dataset for the
Subject-Dependent Task.

In the Subject-Independent setting (Table 4.3), SE achieves also the highest overall Balanced
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Accuracy (68.1%) with Selected-25 FB having a 0.5% lower score in fused-band and PSD is
once again outperformed by TKEO-based features in all cases, except in the broad, full-
spectrum raw-band. Interestingly, in this setting, the Alpha band yields slightly higher
accuracies than the Beta and Gamma bands. Furthermore, employing filterbanks with more
than 12 filters generally improves accuracy, as the increased spectral resolution enables TKEO
to resolve narrowband oscillatory components that would otherwise be smoothed by broader
spectral divisions.

Features Balanced Accuracy (%) ROC-AUC (x10?%)
Alpha Beta Gamma Raw Fused Alpha Beta Gamma Raw Fused

SE 581458 614417 60.6434 553445 681139 757447 794404 796431 734147 849409
PSD 46.7 140 555447 556142 632107 620140 649150 757135 76.0106 8l4di;s 80.6135
TKEO-12 FB 623437 61.1135 61.8136 609137 66.7139 805431 79.7409 80.1433 794409 83.5432
TKEO-25 FB 628439 61.7435 619435 60.7407 665140 804437 799430 799437 7934103 83.543;
TKEO-50 FB 62.6135 61.8437 614135 614137 670139 805109 80.1i09 799431 79.640s 83.7430
Selected—12 FB 634 +3.8 61-1i3.6 62.9 +2.6 614 +2.7 675 +3.8 81.3 +3.1 796 +3.1 80.8 429 796 426 843 426
Selected-25 FB 63.2 +3.5 61.4 +3.5 62.9 +4.1 62.3 +3.4 67.6 +3.5 81.0 +2.8 79.9 +3.1 80.6 +3.4 80.0 +2.6 84.4:‘32'8
Selected-50 FB  63.6 +4.0 62.0 +3.9 63.2 +3.2 62.1 +2.9 67.0 +3.9 81.3 +2.9 80.1 +3.1 80.8 +3.2 80.1:{:23 84.0 +2.9
Combined 59~7i4A5 57.8 +4.4 561i55 64.2 +1.8 63.9 +4.9 77.9 +3.4 77.8 +3.2 77-1i2A3 82.1 +1.8 82.4 +3.1

Table 4.3 Subject-Independent 5-fold Mean Classification Performance and Standard De-
viation on SEED.

We also compare our results with state-of-the-art machine learning techniques on the SEED
dataset, as summarized in Table 4.4. The results show that deep learning models outperform
our approach, suggesting that effective emotion recognition requires deeper and more complex
feature modeling to capture the underlying patterns in EEG signals.

Features/Models Accuracy (%)
Selected-12 FB (ours) 67.5
Selected-25 FB (ours) 67.6
Attention-LSTM [105] 72.1
Graph-Embedded CNN [104] 82.4
Bipartite Graph Adversarial Network [85] 85.8

Table 4.4 Comparison of the Highest Reported Accuracies of the Proposed TKEO-based
Features with State-Of-The-Art Machine Learning Architectures on the SEED Dataset for
the Subject-Independent Task.
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4.2 DEAP Results

In the Subject-Dependent setting (Tables 4.5, 4.6) of the DEAP dataset, the PSD features
achieve the highest overall accuracy in valence classification, with a Balanced Accuracy of
64.7% and a ROC-AUC of 70.2. In contrast, TKEO-based features outperform, in most
cases, baseline methods in arousal classification. Among these, the Selected-50 FB features
yields the best performance within the TKEO-based approaches, achieving Balanced Accu-
racy scores of 64.6% (valence) and 59.2% (arousal), and ROC-AUC values of 69.4 and 64.0,
respectively, in the fused-band setting. Fusing frequency bands further enhances predictive
performance across all TKEO-based variants, confirming that the integration of complemen-
tary spectral information benefits EEG-based emotion recognition. In the valence dimension,
the Gamma band outperforms the Alpha and Beta bands, suggesting that higher-frequency
EEG activity carries richer affective information in this context. Overall, valence classifica-
tion yields higher performance than arousal across all feature types, indicating that instan-
taneous energy patterns associated with valence are more discriminative and stable, whereas
arousal-related activity tends to be more variable.

Features Balanced Accuracy (%) ROC-AUC (x10?%)
Alpha Beta Gamma Raw Fused Alpha Beta Gamma Raw Fused

SE 60.84118 6281122 618188 6281116 63.041120 66.11147 68.61140 66.74118 66941139 6844129
PSD 5941109 62.91139 635191 64.Ti91 0638:106 6294136 6764167 6721136 70.24108 6844137
TKEO-12 FB  60.64103 62.04120 63.61111 6234115 643192 65.04131 6544155 6924138 66.14115 70.61108
TKEO-25FB  60.24106 61.24104 64.04100  61.2492 63.14105 63.34120 67.61135 6851125 0655401 6854121
TKEO-50 FB 61.4.97 6081129 64.24104 5964113 641195 6561130 6591150 69.81130 6414128 6844123
Selected-12 FB 61‘4i11‘5 61.0 +11.5 62.9 49.1 62.9 4+10.3 64.0 +10.6 65.5 +14.0 66.5 +14.4 67.4 +12.2 65.9 +14.2 69.1i13.9
Selected-25 FB 60.6 49.7 61.6 +10.9 61.1i]0_5 62.3 +10.4 63.9 +8.3 62.4 +15.2 65.5 +14.1 67.3 +12.9 69.2 +13.3 67.8 +12.2
Selected-50 FB 60.6 4121 60.31123 6234105 6214111 64.641104 6341156 6464139 6794130 6494148 6944135
Combined 57.5 +75 60.5 +9.6 60.8 +8.9 62718.8 60.8 +7.7 61.5 +10.5 65.5 +12.5 64.9 +11.3 66.9 +11.4 65.1:&10,5

Table 4.5 Subject-Dependent of Valence 5-fold Mean Classification Performance and Stan-
dard Deviation on DEAP.

The Subject-Independent setting (Tables 4.7, 4.8) demonstrates the expected decrease in
overall accuracy compared to the Subject-Dependent scenario, reflecting the greater variabil-
ity introduced by inter-subject differences. In this configuration, performance values converge
toward the mid-50% range, highlighting the challenge of generalizing across participants in
Emotion Recognition tasks. Among the evaluated features, TKEO-based representations
perform comparably to conventional PSD and SE baselines, maintaining Balanced Accuracy
between 50-53% and ROC-AUC values around 51-56. The best results are achieved by the
Combined and the Selected-12 FB features, which slightly outperform other variants with
Balanced Accuracy of 54.2% and 54.0% and ROC-AUC of 56.2 and 54.8, respectively. These
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4.2. DEAP Results

Features Balanced Accuracy (%) ROC-AUC (x10?%)
Alpha Beta Gamma Raw Fused Alpha Beta Gamma Raw Fused

SE 57~0i8‘7 564i98 55.6 +9.6 53'4i11‘6 58.5 +8.2 62-4i12.5 59.8 +14.1 59.3 +11.9 54~6i14.3 62.6 +10.7
PSD 543187 56.24109 947199 5524100 970495 58.04129 5691154 5554139 5751136 604413
TKEO-12 FB  58.0489 5524122 56.61113 5814100 580188 5944196 5911150 6021146 60.71142 63.34113
TKEO-25 FB  54.0499 5561121 58.21101 5544100 571198 5741138 56.64165 61.01148 6061115 6174107
TKEO-50 FB 55.6479 56.24118 56.9496 56.14102 583179 58.74121 5724159 59.74131 5744z 6154110
Selected-12 FB 56.819‘8 55.1110'0 57.2 +11.5 57.5 +8.6 58.91845 61.4114'4 58.7:&15.4 61.6 +13.2 60.9 +12.4 62.8 +11.4
Selected-25 FB 57.2 495 57.0110'2 56.6 +11.3 57~1:t10,7 57.6110,0 60.1113.6 58.6 +13.6 59.7:&15,0 60.5 +12.5 60.7:54.9
Selected-50 FB 58-2i8.7 58.3i9_7 55~8i8.7 56.3i]0_0 59-2i7.8 61.0i13_3 60.9i]3_9 59~1il2.2 60.0i13_9 64.0i]]_1
Combined 55.8:‘:65 53.9 49.0 53.5 +8.0 55.0 +7.9 54-9:‘:69 57.6 +7.6 55-4i12.8 56.3 +11.0 57.2 +11.4 58-4j:9A7

Table 4.6 Subject-Dependent of Arousal 5-fold Mean Classification Performance and Stan-
dard Deviation on DEAP.

findings suggest that while TKEO captures informative local energy dynamics, its discrim-
inative capacity is constrained under Subject-Independent conditions. In contrast to the
Subject-Dependent setting, frequency-band fusion provides only marginal gains here, indi-
cating that cross-subject generalization relies more on invariant temporal-spatial patterns

than on band-specific spectral energy differences.

Features Balanced Accuracy (%) ROC-AUC (x102?)
Alpha Beta Gamma Raw Fused Alpha Beta Gamma Raw Fused

SE 92.8494 93.6426 O9l.1i44 540496 93.6433 93.7432 95484142 513463 559439 54.8459
PSD 51.0406 53.0406 525419 534408 547136 524445 541439 5ldigs 545402 56.0450
TKEO-12 FB 52.0417 534432 515436 5H0.7498 526428 529401 534441 518149 010436 529147
TKEO-25 FB 523410 524434 D51.0495 O5l.1iq1 525433 536416 532448 516135 510417 53 1iyg7
TKEO-50 FB 525424 953.0434 503435 51.041s 532430 533406 53.0448 O51.0452 Ol.bio7 533147
Selected-12 FB  52.2 +1.3 54.0 +2.5 510i31 50.1 422 52.6i2'4 52,7i1‘4 54.8 +3.2 50.8i4'7 50~3i2.9 529i36
Selected—25 FB 52.8 +1.9 52.3 +3.0 51~1i2.8 50.6 +2.1 52.0 +3.1 541 4923 53.5 +3.6 51.6 +5.0 50.8 +2.8 531i’35
Selected—50 FB 53.1 +1.7 52.5 +2.3 50.8 +3.2 50.3 +1.7 52.8 +2.5 53.4 +2.2 53.3 +3.5 50.7 +4.9 50.3 +29 53.6 +4.1
Combined 53.2 +3.1 53.6 +2.6 52.8 +4.1 54.2 +3.7 54.1 +92.7 54.8 +3.9 55.2 +4.4 53.0 +5.8 56.2 +5.3 55.2 +4.7

Table 4.7 Subject-Independent of Valence 5-fold Mean Classification Performance and
Standard Deviation on DEAP.

We compare our best-performing TKEO-based features with recent fractal and deep learning
approaches on the DEAP dataset (Table 4.9). While the Combined TKEO configuration
achieves 54.2% and 51.1% accuracy for valence and arousal, respectively, multiscale fractal
and deep models report considerably higher scores, often exceeding 60%. We observe a similar
pattern to that seen in the SEED dataset, and this consistency across datasets suggests that
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4.83. BCI-1V 2a Results

Features Balanced Accuracy (%) ROC-AUC (x10?%)
Alpha Beta Gamma Raw Fused Alpha Beta Gamma Raw Fused

SE 50.1409 51.9499 515417 493415 519415 513413 5231320 523403 49.0405 52.8493
PSD 50.6 +0.2 50.3 +2.0 50.9 +0.8 52.0 424 50-7i2.8 50.2 +1.5 51.6 +2.6 50.3 +0.8 50.3 +3.3 50.9 +3.5
TKEO-12 FB 515416 504114 52.0414 515107 519414 518419 4991416 528199 51.6433 520419
TKEO-25 FB 511410 501416 DHlligq 521417 5283110 517499 505413 521415 524,95 53.64156
TKEO-50 FB 50.8415 504479 521495 501495 521479 519416 509400 528108 50.7108 53.31900
Selected—12 FB 50.9 +1.3 494i03 52.2 +1.5 50~4i1.5 51~4i1.6 51.5 +1.4 491 +0.8 52.9 +2.0 51~1i1.9 52~1i2.0
SC]CCth—25 FB 51.4:&0‘7 49.9 +0.8 51'5:t1.2 50.8:‘:1'8 52.1 +1.7 52.0:&2‘1 498 +0.5 51.8 +1.7 50~9ﬂ:2.5 52.5:‘32'3
Selected-50 FB 51.2 +1.7 49-7:&0‘6 50.712‘1 50~5:t1.4 52.0:‘:1'0 51.5 +2.0 50.2 +1.6 51.0 +2.1 51.4:{:25 52~5:|:1.6
Combined 51'7i0.7 51.0 +1.6 51-4i1A6 51.1 +2.5 52-O:t0.8 52'0i0A8 52.2 +92.1 52~1i28 514i33 53-0i1A6

Table 4.8 Subject-Independent of Arousal 5-fold Mean Classification Performance and
Standard Deviation on DEAP.

deeper architectures are better suited to capturing the intricate dynamics of emotional EEG
responses.

Features/Models Valence — Arousal (%)
TKEO-25 FB (ours) 52.5-52.3
Combined TKEO (ours) 54.2-51.1
Multiscale Fractal Dimension [12] 56.6-63.1
Spectral topography maps of 59.2-55.7
different bands + CNN [90]

Variational Mode Decomposition + DNN [90] 62.5-61.3

Table 4.9 Comparison of the Highest Reported Accuracies of the Proposed TKEO-based
Features with State-of-the-Art Machine Learning Models on the DEAP Dataset for the
Subject-Independent Task.

4.3 BCI-I1V 2a Results

As shown in Tables 4.10 and 4.11, in the BCI-IV 2a dataset the Selected TKEO features
consistently outperform all other feature sets in the Motor Imagery task in both settings. In
Subject-Dependent setting, the fused-band yields the highest overall performance (Balanced
Accuracy of 51.2%, ROC-AUC of 77.0), substantially exceeding chance level. Additionally,
integrating TKEO features with baselines yields performance gains over the PSD baseline
alone, highlighting their complementary nature. When comparing different filterbank con-
figurations, we observe that employing more than 12 filters seems to improve performance in
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most cases. This suggests that a finer filterbank provides higher spectral resolution, enabling
the TKEO to capture narrowband EEG dynamics that are otherwise averaged out with fewer
filters. Additionally, Beta band appears to perform better in TKEO-based features, when
compared to the other single bands, which is consistent with Scherer et al. [100] for the Motor

Imagery task.

Features Balanced Accuracy (%) ROC-AUC (x10?%)
Alpha Beta Gamma Raw Fused Alpha Beta Gamma Raw Fused

TKEO - 12 FB  44.61126 47.51102 435470 464490 4951100 7014136 746497 0689196 727498 749190
TKEO - 25 FB 43~4:t13.1 48.6 +10.3 43.3 +7.4 45.9 +9.2 49~7i10.6 68.9 +13.8 74.9 +9.2 69.4 +9.2 72.4 +9.7 75.4 +8.8
TKEO - 50 FB 4494131 4844104 431479 459486 489491 6994135 748195 687491 724497 750455
Selected - 12 FB 45.4:&14‘3 49.1 +11.3 44-9j:75 47-7j:11,0 49.8i10'3 71-2i12.3 75-0i107 718j:89 73.3i114 75-8j:8.8
Selected - 25 FB 45.8i13‘3 50'2i11.8 45-3i7A1 47~9i10.7 5O~1i11.0 70-8i12.6 76.1i9.9 72.5 +8.1 73'0i1145 76-3i8.6
Selected - 50 FB 45~7i13.5 50~0i10.4 45.2:‘:7'4 48.9i11'9 51'2i9.1 71-4j:11.8 76.1 49.1 7243i8.8 73'7i1146 77'Oi8.6
Combined 42‘7i12.6 41-4j:7.1 31.3 +6.3 44.3 +6.9 42~7i7.4 66.5 +14.2 68.3 +7.7 60.3 +6.9 72.4 +6.8 68.6 +8.5

Table 4.10 Subject-Dependent 5-fold Mean Classification Performance and Standard De-
viation on BCI-IV 2a.

In the Subject-Independent setting (Table 4.10), we observe similar trends. Selected-50
FB features exhibit the highest Balanced Accuracy of 41.0% and ROC-AUC value of 66.8.
Combining PSD with TKEO further improves performance, echoing the Subject-Dependent
case. Likewise, using filterbanks with more than 12 bands consistently yields higher accuracy
in both settings, suggesting that finer spectral resolution is beneficial. Among single-band

models, the Beta band again provides the strongest results in this setting.

Features Balanced Accuracy (%) ROC-AUC (x10?)
Alpha Beta Gamma Raw Fused Alpha Beta Gamma Raw Fused

SE 373168 39.1us3 328115 353443 374148 640461 623148 600413 620145 64.0450
PSD 36.1167 356431 27.8102 3804558 364150 623467 622140 541i97 64.0160 630457
TKEO - 12 FB 378183 382462 353139 392461 384467 64.1.73 650463 628143 655150 653164
TKEO - 25 FB 38.6476 388466 35.5426 39.7455 395455 0652465 654462 630133 653455 659153
TKEO - 50 FB 374174 397479 36.8103 384448 391167 640469 66.1170 632195 644159 654456
Selected -12 FB 38.4 +8.0 40.2 +8.8 37.5 +3.3 40.0 +6.1 39.9 +6.8 64.9 +7.6 66.3 +7.2 63.8 +3.3 65.9 +6.5 66.6 +6.4
Selected - 25 FB 38.6 +8.1 39.4 +7.9 39.0 +3.1 40.8 +6.5 39.8 +7.3 64.9 +7.4 66.2 +7.0 64.7i3.4 66.0 +6.2 66.2 +6.3
Selected - 50 FB  39.2 +9.1 40.5 +7.9 38.3 +3.1 39.6 +6.8 41.0 +7.3 65.4:‘:7‘9 67.2 +6.8 65.0 +3.0 66.0 +6.6 66.8 +6.4
COHlbil’lCd 37.0 +7.9 36.5 +4.2 32.8 +3.2 37.6 +6.4 373 +6.6 64.0 +7.2 64.2 +4.9 60.0 429 64.8 +5.3 64.2 +5.6

Table 4.11 Subject-Independent 5-fold Mean Classification Performance and Standard De-
viation on BCI-1V 2a.
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Additionally, we investigate the impact of each frequency band to the fused-band overall
accuracies. As shown in Fig. 4.1, the SHAP [72] heatmap highlights elevated contributions
in sensorimotor regions (C3, C4, CP3, CP4) in Alpha—Beta bands that capture event-related
desynchronization/synchronization (ERD/ERS) during imagined movements. Such ERD is
also evident in Fig. 3.5, where the Teager—Kaiser relative energy in the Alpha band shows
a significant decrease during MI and increases during the resting periods. This pattern
aligns with well-established neurophysiological findings of motor imagery [100], indicating
that TKEOQO effectively captures the physiology of the brain.

Absolute SHAP Contribution of Bands
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,_%3 Beta
Cﬁd Alpha 0.002
m Theta
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Figure 4.1 Absolute SHAP Values of Frequency Bands, indicating their contributions to
Fused-band TKEO Predictions across EEG Channels in BCI-IV 2a; higher SHAP values
represent greater contribution.

Features/Models Accuracy (%)
EEG Image [120] 32.7
RNN [120] 35.5
Selected-25 FB (ours) 40.8
Selected-50 FB (ours) 41.0
EEGNet [120] 51.3
Convolutional Recurrent 59.1

Attention Model [120]

Table 4.12 Comparison of the Highest Reported Accuracies of the Proposed TKEO-based
Features with different Machine Learning Architectures proposed by [120] on the BCI-IV 2a
Dataset for the Subject-Independent Task.
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We compare our best-performing results with those reported by Zhang et al. [120] at Ta-
ble 4.12, who evaluated several well-known machine learning models on the Motor Imagery
task and proposed a novel approach of their own. While our results are below those of
advanced deep learning models such as EEGNet (51.3%) and the Convolutional Recurrent
Attention Model (59.1%), they exceed the results obtained with the RNN and EEG Im-
age, which are simpler architectures. This indicates that the hand-crafted TKEO features
contain meaningful information for motor imagery classification and serve as a competitive
alternative when data resources are limited.

4.4 TUEP Results

In the TUEP dataset (Table 4.13), Combined features in almost all cases achieve the highest
performance, highlighting the complementary nature of TKEO with the baseline features. In
the Epilepsy Detection task, this complementarity between PSD and TKEO-based features
is intuitive: TKEQO likely captures the transient modulations that occur across different
stages of epilepsy, while PSD may primarily reflect the ictal stage, where the EEG signal is
dominated by a specific frequency component. Within the Combined features, the Gamma
band achieves the highest Balanced Accuracy (78.4%)—approximately 15% higher than other
feature sets—and the highest ROC-AUC (86.0). This result is consistent with previous
findings indicating that epilepsy detection performance improves with higher-frequency EEG
features [51]. Indicatively, we present in Fig. 4.2 the topology maps of the v-IFM features for
an epileptic and a non-epileptic signal across frequency bands. The epileptic signal exhibits
high variations in instantaneous frequency uniformly across the channels, in contrast to the
non-epileptic one, where the variations are lower. This highlights the Gamma band frequency
variations as a reliable indicator of epileptic activity.

Features Balanced Accuracy (%) ROC-AUC (x102?)

Alpha Beta Gamma Raw Fused Alpha Beta Gamma Raw Fused
SE 99.2425 61.7479 632184 9560116 6141609 586148 06451135 6811148 595190 75.54135
PSD 582424 625449 61.7493 619462 6l.1i76 0650456 7231136 76.01163 7331158 7424136
Selected 59.0 +2.8 60.0 +9.8 61.6;&7,2 58.7:‘:6.3 61.2:&59 66.3 +2.9 73~4:t15.2 70-3:&136 70.5 +14.5 73.8:‘:112
Combined 66.3 +6.2 70.9 +10.0 78.4 +5.5 60.3 +6.7 76.2 +6.6 73.8 +6.1 80.1 +7.3 86.0 +6.4 77.8 +14.6 82.2 +8.0

Table 4.13 Subject-Independent 5-fold Mean Classification Performance and Standard De-
viation on TUEP.

TKEO features alone achieve performance comparable to the baseline features, further un-
derscoring their complementary contribution when combined. Interestingly, in the raw-band,
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accuracies decrease in most cases relative to both the single-bands and fused-band, suggest-
ing that the complementary effect of TKEO features diminishes when applied to wideband
signals. This observation further emphasizes the narrowband sensitivity of the TKEO.
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Figure 4.2 Topology Maps of EEG Channels from the TUEP Dataset across Frequency
Bands of the v-IFM Feature.

We compare our best results with those reported by Uyttenhove et al. [111]. Since our
model produces predictions for each 10-second EEG window, we align our evaluation with
the window-level performance metrics they reported. In addition, we include results from a
second state-of-the-art model described in [108]. Both studies report Sensitivity (Recall) and
Specificity, allowing us to compute the corresponding Balanced Accuracy values. These are
summarized in Table 4.14.

Features/Models Accuracy (%)
EEGNet [111] 64.4
TKEO (ours) 64.8
t-VGG Global Average Pooling [111] 76.2
Combined TKEO (ours) 78.4
Convolutional LSTM [108| 92.1

Table 4.14 Comparison of the Highest Reported Accuracies of the Proposed TKEO-based
Features with State-Of-The-Art Machine Learning Architectures on the TUEP Dataset for
the Subject-Independent Task.
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The proposed TKEO-based features achieve a Balanced Accuracy of 64.8%, comparable
to EEGNet (64.4%), a compact CNN tailored for EEG decoding. This shows that the
hand-crafted energy-based descriptors capture discriminative temporal patterns similar to
those learned by deep models. When combined with additional features (“Combined”), the
accuracy rises to 78.4%, confirming their complementary value. The Convolutional LSTM
from [108| reaches 92.1%, benefiting from deeper spatio-temporal modeling and large-scale
training. Although not matching this level, our method offers a lightweight and interpretable
alternative suitable for limited-data or low-resource settings.

4.5 Ablation Study
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Figure 4.3 Comparison of Prediction Accuracies across Different Window Sizes and Fil-
terbank Configurations on the SEED Dataset for the Subject-Independent Setting.

Since the number of filters is a key parameter in our approach, we further conducted an
ablation study to analyze the effect of different filterbank configurations and window sizes
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on the SEED dataset. The corresponding results are shown in Figures 4.3 and 4.4. We
observe that increasing the window size leads to higher Balanced Accuracy, likely due to the
longer temporal context available to the classifier. In the Alpha band (8-12 Hz), which is
the narrowest among those considered, a 12-filter configuration provides sufficient frequency
resolution to capture relevant EEG dynamics. Adding more filters does not yield meaningful
improvements, suggesting that 12 filters offer an optimal balance between resolution and
redundancy. For the wider bands—Gamma and raw—the filterbank configuration becomes
more critical, as the broader spectral range benefits from having more filters to better re-
solve distinct frequency components. Finally, in the fused-band condition, we observe in
the Subject-Independent setting that increasing the number of filters allows the TKEO to
capture EEG energy dynamics more effectively, similar to the Gamma band. However, the
performance gains are smaller, indicating that the number of filters has a less pronounced im-
pact in the fused-band case than in the single Gamma band. This trend is not evident in the
Subject-Dependent setting, where inter-subject variability generally leads to less consistent
and less interpretable results.
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Figure 4.4 Comparison of Prediction Accuracies across Different Window Sizes and Fil-
terbank Configurations on the SEED Dataset for the Subject-Dependent Setting.

102



Chapter 4. Results & Discussion 4.6. Summary

4.6 Summary

The proposed TKEO-based features demonstrate superior relative performance in Motor Im-
agery and Epilepsy Detection tasks compared to Emotion Recognition. This observation
underscores their effectiveness in applications characterized by transient temporal dynamics,
while also revealing their limitations in domains where discriminative information is less tem-
porally localized. Furthermore, the fused-band representation in most cases outperforms the
other bands within the TKEO feature set, indicating the benefits of aggregating information

across multiple frequency bands while maintaining the narrowband sensitivity inherent to
the TKEO.

The integration of PSD and TKEO-based features generally leads to improved classifica-
tion accuracy, emphasizing the complementary nature of spectral power and energy oper-
ator-based temporal information, especially in the Epilepsy Detection task. Our ablation
study further confirms the robustness of the proposed approach, showing that increasing the
window size improves Balanced Accuracy and that filterbank configurations must be adapted
to the bandwidth of each frequency band to optimize performance.

Finally, comparisons across individual frequency bands yield results consistent with prior
studies across all examined tasks. Although deep learning models generally achieve higher
performance—particularly on emotion recognition datasets such as SEED and DEAP—the
proposed approach outperforms other hand-crafted features like Differential Entropy and
simpler architectures such as RNNs, demonstrating that TKEO-based features effectively
capture meaningful temporal dynamics. Additionally, they offer interpretable, and physio-
logically meaningful representations of neural activity, providing a competitive alternative in
scenarios with limited data or computational resources.

103



Chapter 5

Conclusion

In this Thesis, we systematically evaluated TKEO-based features across two tasks charac-
terized by well-established transient dynamics—Motor Imagery and Epilepsy Detection—as
well as in Emotion Recognition, which tests the method’s applicability beyond its original
motivating context. Through this evaluation, we clarified the strengths and limitations of
TKEO features in EEG analysis and identified conditions under which it provides added
value.

5.1 Summary of the Contributions

1. We propose a comprehensive set of EEG features derived from instantaneous energy
analysis using the Teager—Kaiser Energy Operator (TKEO). These features include
statistical descriptors, relative energy measures, and instantaneous amplitude and fre-
quency components, the latter obtained via the DESA-1 demodulation algorithm.

2. To extract narrowband EEG components, we employ Gabor filterbanks with varying
numbers of filters. Our results indicate that increasing the number of filters enhances
predictive performance, as a finer filterbank provides higher spectral resolution to some
extend. This improved resolution allows the TKEO to capture narrowband EEG dy-
namics that would otherwise be averaged out with coarser filterbanks, consistent with
established TKEO theory.

3. We conduct a systematic evaluation of TKEO-derived features against conventional
Power Spectral Density and Squared-Energy-based features across three representa-
tive EEG benchmark datasets, employing Support Vector Machine and Random Forest
classifiers. The evaluation is performed under both Subject-Dependent and Subject-
Independent settings to assess the generalizability of the proposed approach. Experi-
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Chapter 5. Conclusion 5.2. Future Work

5.2

mental results demonstrate that TKEO-based features achieve competitive or superior
performance relative to baseline measures—improving classification accuracy in Motor
Imagery and Epilepsy Detection tasks, while achieving comparable results to energy-
based features in Emotion Recognition.

. Through experimental analysis, we demonstrate that the TKEO provides complemen-

tary information to conventional energy measures, particularly in tasks characterized by
transient and nonlinear EEG dynamics, thereby offering potential to enhance predictive
accuracy.

Future Work

. Integration of TKEO-based Features with Deep Learning: While deep learn-

ing models, particularly convolutional and transformer-based architectures [85], [90],
[105], [108], [120], outperform the proposed approach in most benchmarks, TKEO-
derived features demonstrated complementary properties and superior performance in
simpler architectures such as RNNs. Future work could focus on hybrid architectures
that integrate instantaneous energy features into deep networks—for example, by using
TKEO-based feature maps as auxiliary inputs, attention cues, or regularization signals
to enhance interpretability and robustness.

. Adaptive Filterbanks: The current approach relies on fixed Gabor filterbanks for

narrowband decomposition. Future research could explore adaptive or learnable fil-
terbanks that jointly optimize the spectral decomposition and the TKEO feature ex-
traction process. This would allow the system to tailor the frequency resolution to
individual subjects or specific EEG tasks dynamically.

Combination with Temporal-Spatial Modeling: Future work could incorporate
spatial information (e.g., electrode topology) and temporal context to better capture
distributed EEG dynamics. The TKEQO’s sensitivity to instantaneous energy changes
may complement spatiotemporal models that otherwise rely on global spectral patterns.

. Extension to Additional EEG Paradigms: Building upon the current evalua-

tion on emotion recognition, epilepsy detection, and motor imagery, future work could
incorporate additional EEG tasks—such as attention monitoring, sleep stage classifica-
tion, and complex sequential movement imagery—along with applications in neurore-
habilitation and sports neuroscience, to further assess the versatility and robustness of
TKEO-based features across diverse neural processes.
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Appendix A

The SEED Dataset

The SJTU Emotion EEG Dataset (SEED) [122] is a multimodal corpus developed to support
research in electroencephalography (EEG)-based emotion recognition. It was constructed at
Shanghai Jiao Tong University with the aim of investigating the neural signatures of affective
states and providing a benchmark dataset for affective computing, brain—computer interface
(BCI) research, and computational neuroscience. The dataset has been made freely available

for academic use via the Brain-Like Computing and Machine Intelligence (BCMI) laboratory
at SJTU.

Stimuli Selection

The elicitation of reliable emotional responses is a fundamental requirement for emotion
recognition research. In the SEED dataset, affective states were induced using film clips that
provide audiovisual stimulation, which has been shown to be more effective than static images
or music alone. Fifteen film excerpts were chosen for each experimental session, divided
equally into positive, neutral, and negative emotional categories (five clips per category).

Each clip was approximately 4 minutes in duration and was drawn from Chinese-language
films, ensuring cultural and linguistic consistency for the native Chinese participants. The
clips were selected through a preliminary study to guarantee their ability to evoke the in-
tended emotions. Unlike static picture paradigms or music-only protocols, film clips combine
dynamic visual and auditory information, thereby facilitating immersion and yielding strong
subjective and physiological responses.
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Appendiz A: The SEED Dataset

Participants

A total of 15 healthy subjects (7 male, 8 female) participated in the SEED experiments.
The mean age was 23.3 years (SD = 2.4). All participants were right-handed, had normal or
corrected-to-normal vision, and reported normal hearing. Participants were recruited from
the student population at Shanghai Jiao Tong University.

To ensure that subjects were able to elicit consistent emotions during the experiment, partic-
ipants were screened using the Eysenck Personality Questionnaire (EPQ). Individuals with
more stable moods and extraverted personality traits were prioritized, as such characteristics
are associated with reliable affective elicitation in controlled laboratory settings.

Each participant completed the experiment twice, separated by at least one week. This
design enables the assessment of intra-subject consistency of emotion-related EEG features
across time (see Fig. A.1).

Figure A.1 Experimental Setup [122].

EEG Recording Experiment

Experiments were conducted in a quiet laboratory environment during the morning or early
afternoon to minimize circadian effects.

¢ Recording system: EEG was recorded using an ESI NeuroScan system with a 62-
channel electrode cap, positioned according to the international 10-20 system (see
Fig. A.2).

e Sampling rate: Data were sampled at 1000 Hz.
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Appendiz A: The SEED Dataset

e Additional signals: Electrooculogram (EOG) was also recorded to enable detection
and correction of eye-movement artifacts. Frontal face video was captured via a camera
positioned in front of the subject to monitor facial expressions and compliance.

e Protocol: Each experiment consisted of 15 trials corresponding to the 15 film clips. A
5-second cue preceded each clip. Following the clip, participants completed a 45-second
self-assessment period and then rested for 15 seconds before the next trial.

Self-assessment questions, following Philippot’s guidelines, probed participants on (1) the
emotions they experienced while watching the clip, (2) whether they had seen the movie
before, and (3) whether they understood the clip.
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Figure A.2 62-Channel EEG Electrode Layout [122].

Data Preprocessing

The EEG data were subjected to a rigorous preprocessing pipeline to ensure signal quality:

1. Epoch selection: Only EEG segments corresponding to time periods where the target
emotion was elicited were retained.

2. Downsampling: Raw EEG recordings were downsampled from 1000 Hz to 200 Hz.

3. Filtering: Signals were lowpass filtered at 75 Hz to remove high-frequency noise.
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4. Artifact rejection: Segments heavily contaminated by muscle (EMG) or ocular
(EOG) activity were manually removed. EOG channels were used to identify blink-
related artifacts.

All signal processing was performed using MATLAB.

Availability

The SEED dataset is freely available for research purposes through the BCMI Lab at Shang-
hai Jiao Tong University. Both raw and preprocessed data are provided, along with stim-
ulus details and participant self-reports. Access requires a request via the project website:
bemi.sjtu.edu.cn/home/seed.
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Appendix B

The DEAP Dataset

The Database for Emotion Analysis using Physiological Signals (DEAP) [59] is a large-scale
multimodal dataset designed for affective computing and brain—computer interface (BCI)
research. Developed through a collaboration between Queen Mary University of London, the
University of Geneva, the University of Twente, and EPFL, DEAP provides synchronized
electroencephalogram (EEG), peripheral physiological, and facial video recordings alongside
subjective self-reports of emotion. Its design was motivated by the need for high-quality, re-
producible benchmarks for emotion recognition studies that combine neural and physiological
measurements with naturalistic audiovisual stimuli.

The dataset has become one of the most widely used resources in computational neuroscience
and affective computing due to its scale, multimodality, and innovative semi-automated stim-
ulus selection process.

Stimuli Selection

Selecting appropriate affective stimuli is a central challenge for emotion recognition research.
DEAP employed a three-stage strategy to construct a balanced and validated set of music
video clips capable of eliciting diverse emotions.

Initial Collection

An initial pool of 120 candidate videos was compiled using both automated and manual
strategies. Sixty videos were identified through the Last.fm online music platform, where
user-generated emotional tags such as depressing, aggressive, or happy were exploited to re-
trieve songs strongly associated with affective descriptors. From over 1000 tagged songs, sub-
sets were curated to represent each quadrant of the valence-arousal space (low/high arousal
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crossed with low /high valence) [59]. To minimize cultural mismatch, preference was given to
European and North American artists, aligning with the participant demographic.

The remaining 60 videos were selected manually by researchers, ensuring clear emotional
relevance and even coverage across the four quadrants. Each song was required to have an
accessible music video and to be contextually suitable for laboratory testing.

Affective Highlight Detection

To ensure that participants were exposed to emotionally salient segments, a content-based
affective highlight detection method was applied. Each music video was segmented into
overlapping one-minute excerpts. Acoustic and visual features—including loudness, motion
intensity, color variance, and lighting—were extracted and mapped to valence and arousal
dimensions using regression models trained on annotated movie datasets. The one-minute
segment with the highest emotional salience score was retained as the candidate highlight. In
a few cases, highlights were manually adjusted to capture well-known or particularly evocative
sections of the song [59].

Online Annotation and Final Selection

A large-scale web-based subjective assessment was conducted to evaluate the 120 one-minute
highlights. Each clip was rated by 14-16 volunteers on discrete 9-point scales for valence,
arousal, and dominance. To maximize emotional clarity and reduce variability, 40 clips were
chosen for the final laboratory experiment. The selection was balanced across quadrants of the
normalized valence—arousal space, with preference given to clips eliciting strong, consistent
responses. Of these, 17 originated from the Last.fm tag-based retrieval, validating the semi-
automated selection procedure. The distribution of candidate and selected stimuli across the
valence—arousal space is shown in Fig. B.1.

Participants

The experimental dataset includes recordings from 32 healthy adult volunteers, equally bal-
anced across gender (16 male, 16 female). Participants were aged between 19 and 37 years
(Average Age = 26.9).
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Figure B.1 Distribution of the 120 Candidate Music Video Stimuli in the Valence-Arousal
Space, based on Online Subjective Ratings. The 40 Final Clips used in the DEAP Experiment
are Highlighted in Green [59].

EEG and Physiological Recording

Recording Environment and Hardware

Recordings were conducted in controlled laboratory environments with consistent illumina-
tion. A BioSemi ActiveTwo system was used to capture EEG data at a sampling rate of 512
Hz across 32 AgCl electrodes placed according to the international 10-20 system.

In addition to EEG, thirteen peripheral physiological signals were acquired, including:

e Electrooculogram (EOG) from electrodes around the eyes.

Electromyogram (EMG) from the zygomaticus major and trapezius muscles.

Galvanic skin response (GSR) measured via two channels.

Blood volume pressure (BVP) via plethysmography.

e Skin temperature.
¢ Respiration.

For 22 participants, frontal face video was also recorded using a consumer-grade digital
camcorder, providing complementary behavioral data on facial expressions.
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EXG sensors face EXG sensors trapezius, Left hand
respiration belt and EEG physiological sensors

Figure B.2 Placement of Physiological Sensors [59].

Experiment Protocol

Each participant completed a single experimental session consisting of 40 trials, one per
selected music video. The procedure was as follows:

1. A 2-minute resting baseline with fixation cross.
2. A trial sequence including:

e 2-second trial indicator.

e 5-second fixation baseline.

e 60-second music video presentation.

e Self-assessment of emotional state.

3. After 20 trials, participants were given a short break, during which signal quality and
electrode placement were checked.

Stimuli were presented on a 17-inch screen at 800x600 resolution, approximately one meter
from the participant. Stereo speakers delivered audio at a comfortable, individually adjusted
volume. Synchronization markers ensured precise alignment of multimedia presentation and
physiological recording.

Self- Assessment Procedure

Following each video, participants reported their affective responses using Self-Assessment
Manikins (SAM). Four continuous 9-point scales were employed:

e Valence: ranging from unpleasant to pleasant.
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e Arousal: ranging from calm/bored to excited/alert.
e Dominance: ranging from submissive to empowered.
e Liking: ranging from strong dislike to strong liking.

The SAM figures (and thumbs-down/up symbols for liking) were displayed with numerical
anchors (1-9). Participants indicated their response by clicking with a mouse, producing a
quasi-continuous measure.

At the end of the experiment, participants also provided familiarity ratings for each song on
a 1-5 scale, ranging from ‘“never heard before” to “knew very well.”

Data Preprocessing

To ensure consistency and usability of the signals, the DEAP dataset includes both raw and
preprocessed data:

1. EEG downsampling: Raw EEG sampled at 512 Hz was downsampled to 128 Hz.

2. Filtering: A bandpass filter between 4-45 Hz was applied to remove slow drifts and
high-frequency noise.

3. Artifact handling: EOG channels were retained to enable ocular artifact correction.
Segments with extreme contamination were excluded.

4. Referencing: Signals were re-referenced to the common average.

Both EEG and peripheral channels were released in MATLAB format, enabling straightfor-
ward use in machine learning pipelines.

Availability

The DEAP dataset is freely available for academic research purposes through Queen Mary
University of London’s repository: eecs.qmul.ac.uk/mmv/datasets/deap.
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Appendix C

The BCI-IV 2a Dataset

The BCI Competition IV dataset 2a [20] is a benchmark corpus designed for the evalua-
tion of electroencephalography (EEG)-based motor imagery (MI) brain—computer interfaces
(BCIs). It was created at Graz University of Technology and released as part of the 2008 BCI
Competition series. The dataset was specifically constructed to enable rigorous comparison
of algorithms for multiclass motor imagery classification, a central challenge in BCI research.
It provides high-quality, artifact-annotated EEG data along with standardized evaluation
protocols, making it one of the most widely used resources in motor imagery decoding, signal
processing, and machine learning research for BCls.

Experimental Paradigm

The dataset consists of EEG recordings from 9 healthy subjects, each of whom participated
in two sessions recorded on different days. The paradigm was a cue-based motor imagery
task involving four distinct classes:

e Left hand motor imagery (class 1)
e Right hand motor imagery (class 2)
e Both feet motor imagery (class 3)

e Tongue motor imagery (class 4)

Each session comprised 6 runs, separated by short breaks. Each run contained 48 trials (12
per class), yielding a total of 288 trials per session and 576 trials per subject across both
sessions.

At the beginning of each session, a 5-minute EOG calibration block was recorded to capture
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ocular artifacts. This calibration consisted of three segments: two minutes eyes open, one
minute eyes closed, and one minute with deliberate eye movements. Due to technical issues,
subject A04 performed only the eye movement condition.

The timing protocol of each trial was as follows. At t = 0 s, a fixation cross appeared at
the center of the screen together with a warning tone. At ¢t = 2 s, a directional cue (arrow
left, right, down, or up) was presented for 1.25 s, instructing the subject which imagery
to perform. Subjects carried out the mental task until ¢ = 6 s, when the fixation cross
disappeared. A variable inter-trial interval with a blank screen followed before the next trial.

Beep

Cue
Fixation cross

|
0 1 2 3 4 5 6 7 8 t(s)

Figure C.1 Timing scheme of one trial in the BCI Competition IV 2a Dataset [20].

EEG Recording

EEG was recorded using 22 Ag/AgCl electrodes positioned according to the international
10-20 system with an inter-electrode spacing of 3.5 cm. The left mastoid served as reference,
and the right mastoid as ground.

e Sampling rate: 250 Hz

e Bandpass filter: 0.5-100 Hz

e Notch filter: 50 Hz (to remove line noise)
e Amplifier sensitivity: 100 uV

Additionally, three monopolar EOG channels were recorded with the same sampling and
filtering settings (amplifier sensitivity: 1 mV). These channels were included for artifact
detection and correction but were not intended for classification.
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Figure C.2 Electrode montage for EEG (left) and EOG (right) recordings [20].

The EEG recordings are provided in the General Data Format (GDF), with one file corre-
sponding to each subject and session. For every subject, one session is designated as the
labeled training set, while the other is reserved as the unlabeled evaluation set. Alongside
the raw signals, event annotations are included to mark trial onsets, cue presentations, cali-
bration periods, and segments excluded due to artifacts. Class labels corresponding to motor
imagery tasks (left hand, right hand, feet, and tongue) are available only for the training data,
whereas the evaluation set remains unlabeled in order to support standardized benchmarking
of algorithm performance.

Availability

The BCI Competition IV 2a dataset is freely available for academic research. It includes
EEG and EOG recordings together with artifact annotations and event markers, providing
a comprehensive benchmark for motor imagery studies. The dataset can be obtained from
the official competition website: bbci.de/competition/iv.
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Appendix D

The TUEP Dataset

The Temple University Hospital EEG (TUH-EEG) Corpus [112] is the largest publicly ac-
cessible database of clinical electroencephalographic recordings. It was developed at Tem-
ple University as part of the Neural Engineering Data Consortium (NEDC) and represents
over 14 years of routine clinical practice. The corpus was designed to provide a resource
for computational neuroscience, clinical decision support, and machine learning applied to
EEG interpretation. In contrast to research-oriented datasets collected under tightly con-
trolled laboratory conditions, TUH-EEG captures the heterogeneity of real-world clinical
data, including variability in electrode montages, equipment, sampling rates, and patient
populations. This diversity makes the dataset particularly valuable for developing robust
algorithms capable of generalizing to uncontrolled environments.

Data Collection and Processing

The recordings are stored in the European Data Format (EDF), a widely adopted standard
that ensures compatibility with common signal processing and analysis tools. To protect
patient privacy, all personally identifiable information—such as names, dates of birth, and
medical record numbers—was thoroughly removed. Each patient was assigned a random-
ized identifier, allowing the data to remain anonymous while still preserving the ability to
track multiple sessions from the same individual. Each EEG study was paired with its corre-
sponding physician report, which summarizes the clinical history, relevant medications, and
diagnostic impressions. Only sessions with both valid EEG recordings and associated reports
were included in the curated release.

The corpus follows a hierarchical directory structure: patients are grouped in batches of
approximately one hundred, each with subfolders for individual recording sessions. A session
folder contains one or more EEG files in EDF format and the associated physician report
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in plain text. Long-term monitoring sessions are split into multiple EDF segments, allowing
manageable file sizes and session-level organization.

The TUH EEG Epilepsy Corpus (TUEP)

Within the broader TUH-EEG collection, a subset known as the TUH EEG Epilepsy Corpus
(TUEP) has been defined to specifically support research in epilepsy. While TUH-EEG
includes diverse neurological conditions, TUEP emphasizes cases in which epilepsy-related
pathology is present and well-documented. TUEP distills these cases into a structured dataset
that can be used to train and evaluate automated systems for epilepsy-related analysis.

The TUEP dataset comprises EEG recordings and reports from 200 patients. Of these,
100 patients were diagnosed with epilepsy and 100 patients were classified as non-epileptic
controls. The corpus contains 698 sessions in total, of which 530 sessions (1785 EEG files) are
from the epilepsy group and 168 sessions (513 EEG files) from the control group. These figures
reflect the state of the corpus at the time of analysis; however, the dataset is continuously
updated, and new recordings are periodically incorporated.

EEG Recording

The TUEP dataset shows substantial variability in the number of EEG channels across
recordings, reflecting differences in clinical acquisition protocols based on the international
10-20 system. Recordings were sampled at either 250 Hz or 256 Hz. In addition to EEG, elec-
trocardiogram (EKG) channels were also recorded to provide complementary physiological
information.

Availability

The TUH EEG Epilepsy Corpus is freely available for academic use through the Neural
Engineering Data Consortium (NEDC) at Temple University. Data are distributed in EDF
format along with de-identified neurologist reports. Access requires registration on the NEDC
website: isip.piconepress.com /projects/nedc/html/tuh eeg.
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Appendix E

List of Publications

This Thesis has resulted in a paper that is currently under review for ICASSP 2026:

e [. Chourdaki, K. Avramidis, C. Garoufis, A. Zlatintsi, P. Maragos, Teager-Kaiser En-
ergy Methods For EEG Feature Extraction In Biomedical Applications,” under review
for the Proc. of the International Conference on Acoustics, Speech and Signal Process-

ing (ICASSP), IEEE, 2026.

During the course of this Thesis, we also participated in the Signal Processing Grand Chal-
lenge on EEG-based Music Emotion Recognition, hosted at ICASSP 2025, where our team
won third place in the competition, and the work was subsequently published:

e C. Garoufis, M. Glytsos, I. Chourdaki, P.P. Filntisis and P. Maragos, “Power in Unity:
Combining in-Domain and out-of-Domain Pre-Training Strategies for EEG-Based Per-
son Identification,” in Proc. International Conference on Acoustics, Speech and Signal

Processing (ICASSP), IEEE, April, 2025.
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