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Hepiinyn

Ta cvotrpata High Performance Computing (HPC) eival amapaitnta yuo tnv eilvon oov-
DeTwV VTOAOYLOTIKOV TPOPANHATOV GE SLAPOPOVG ETLGTNHOVIKOVG Kot Pnyovikovg topeig. H
amodoTikT) dloyelplon TOPwV Kot 1) SloXelplon epyacLadV eival KpioHo oToL el ToL ennped-
Covv qpeca Tnv artddoon Kot TNV aELoToinoT auTdV Twv cLOTHHATOY. Eveo to Slurm eivo
EVOG EVPEWG LIOBETNEVOC Open-source JLXELPLOTNG POPTOL EPYATLAC/TOPWV OV TTapéyel Por-
owkég duvartotnteg dpopordynong (scheduling), oe apketéc mepintddoelg Tov Aeimel 1y eveMéia
TTOV OUTOLLTELTOLL YLOL TNV AETITOHEPT] KATOVOUT TTOPWV Kot TNV duVapLkT) SPOHOAOYNOT) EPYACLAOV.
To Flux eivon éva framework Siayeipiong mopwv emdpevng yevidg mov €xel oxedlaoTel yio
VOU QVTIHETWITIOEL AUTOVG TOVG TTEPLOPLOPOVG, ETLTPETOVTOG TTLO EVEALKTES KOl XITTOOOTIKEG
OTPATNYLIKEG KATAVOHUNG TTOP®V Kol SPOPOAOYNOTG.

Avtr) n duthopatikn epyacio mapovotdlel Tnv evowpdtwon tov Flux Framework oe éva
vrtapyov Slurm Cluster oe entinedo xpriotn, oto omoio avapepopacte wg Flurm, emtpémovtag
oto Flux va exkiveitan ko va Srayelpileton péoa o éva Slurm allocation. EmutAéov, e€etalel
g to Flux propel va mpocappootel yio v mopéyxel Aemtopepr) EAeyX0 Ge piot TOLKLALY
VALKOV TOpwv (.. sockets, cores) oe cuvdvaopo pe Ttov graph-based dpoporoyntr Tov Flux -
Fluxion. Etot, to Flux tpomomowifnke yio v vtootn pilel mponypéveg AELTOVPYieg KATOAVOUTG
TOPWV OTWGS 1) CLVEKTEAEGDT), 1] CLVTOTOOETN O KL 1] EVEALKTT KOLVI] XPHiOT) TOPWV EVTOG TOU
neptparrovtog Slurm. Téhog, Sie€dyetan pioe oelpd melpapdTwy yioe TNV afloAdynon g
Tuxov emidpuveng (overhead) mov elocdyeTort td TNV EVEOUATOOT), KABOG KOl TNG KALPXKO-
OLLOTNTOG TNG TPOTELVOREVNG AVGTG.

Aé€erg Kherdux

High Performance Computing (HPC), Slurm, Flux framework, Awayeipion Iopwv, Apopo-
Aoynon Epyaciov, Zuvektédeon, Zuvtonobétnon, ZuvdpopoArdoynor
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Abstract

High Performance Computing (HPC) systems are essential for solving complex computational
problems across various scientific and engineering domains. Efficient resource management
and job scheduling are critical components that directly impact the performance and utilization
of these systems. While Slurm is a widely adopted open-source workload/resource manager
that provides basic scheduling capabilities, it often lacks the flexibility required for fine-
grained resource allocation and dynamic job scheduling. Flux is a next-generation resource
management framework designed to address these limitations by enabling more flexible and
efficient resource allocation strategies.

This thesis presents the integration of the Flux Framework into an existing Slurm cluster
at the user level, which we refer to as Flurm, enabling Flux to be launched and managed from
within a Slurm allocation. It further demonstrates how Flux can be customized to provide fine-
grained control over a variety of hardware resources (e.g. sockets, cores) in accommodation
with Flux’s graph-based scheduler - Fluxion. Thereby, Flux was modified to support advanced
resource allocation features such as co-execution, colocation, and flexible resource sharing
within the Slurm environment. Finally, a series of experiments are conducted to assess any
overhead introduced by the integration and the scalability of the proposed solution.

Keywords

High Performance Computing (HPC), Slurm, Flux framework, Resource Management,
Job Scheduling, Co-execution, Colocation, Co-scheduling
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Chapter 1

Introduction

1.1 Motivation - Problem Statement

High Performance Computing (HPC) clusters are complex shared systems where efficient
resource allocation and job scheduling are critical to maximizing throughput, utilization, and
fairness. As HPC workloads grow in heterogeneity—mixing simulations, data analysis, and
AI/ML components—traditional scheduling policies are sometimes insufficient to extract full
performance from modern hardware. These concerns motivate the exploration of advanced
scheduling techniques such as co-location and co-scheduling and the need for experimentation
with them in real HPC environments.

However, real HPC clusters are often managed by established resource managers like Slurm,
which may not natively support such advanced scheduling features or require configuration
changes by system administrators. This creates a barrier for researchers and users who wish
to experiment with and evaluate new scheduling strategies without disrupting existing work-
flows. To address this, one promising approach is to integrate another resource management
framework within the context of an existing Slurm-managed cluster.

This thesis explores this approach by integrating the Flux framework into the real Slurm
cluster ARIS at GRNET. This integration, referred to as Flurm, empowers end users of the
cluster to experiment with advanced resource scheduling (co-scheduling, colocation, dynamic
overlay) within their own allocations, without requiring system administrator changes, the
foundation of which is presented in this work. Finally, a series of experiments are conducted
to evaluate the overhead introduced of the proposed solution, to prove its correctness and
demonstrate its scalability.
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1.2 Goal

The goal of this thesis is to enable a workflow where users can:
+ Develop scheduling algorithms locally using some simulation tool like ELiSE [1].
+ Write these algorithms in Flux and test them in a controlled - dockerized environment.

« Utilize Flurm to seamlessly transition from local testing to real cluster execution for
evaluation.

HPC Scheduler
Designer Suite

DESIGN | SIMULATE

Craft your scheduling Estimate the behaviour of
algorithm using the ELISE your scheduling algorithm
framework on various workloads

Launch in the Flurm user- Transform your ELISE
space environment to algorithm into a Flux
evaluate real world | scheduler and Validate it in

performance a dockerized framework

DEPLOY | CONVERT

Figure 1.1: Flurm Workflow Overview




Chapter 2

High Performance Computing (HPC)

In this chapter we provide the background on HPC Systems.

2.1 Introduction

In just a few decades, supercomputing has evolved from primitive machines capable of perform-
ing thousands of operations per second into large-scale systems executing exaFLOP workloads
(10'® floating-point operations per second). The world’s most powerful supercomputers now
routinely break that barrier—most recently, El Capitan achieved 1.742 exaFLOPS on the HPL
benchmark [2].

Across the TOP500 [3] list alone, the aggregate processing power surged from about
5 exaFLOPS in mid-2023 to over 11 exaFLOPS by late 2024. This dramatic growth reflects
continuous advancement across multiple fronts: processor architectures, memory systems,
interconnects, accelerators, and system software. Moreover, modern supercomputers are no
longer purely numerical workhorses—they must support increasingly heterogeneous workloads
involving Al, data analytics, and simulation in tandem. Indeed, 83 of the top 100 systems now
incorporate hardware accelerators such as GPUs.

In this landscape, High Performance Computing (HPC) has matured into a foundational tool
for science, engineering, and data-driven discovery. It complements empirical experimentation
and theoretical modeling by enabling large-scale simulations, real-time data analytics, and
predictive algorithms at scales otherwise infeasible. In many scientific domains—from climate
modeling and genomics to materials science and astrophysics—supercomputers are critical to
exploring unseen regimes, validating theories, and interpreting massive datasets.

2.2 Flynn’s Taxonomy

Flynn’s taxonomy (1966) classifies computer architectures based on how many concurrent
instruction streams and data streams they support.
The taxonomy defines four categories:

« Single Instruction Single Data (SISD): This is the traditional von Neumann archi-
tecture where a single processor executes a single instruction stream on a single data
stream.

« Single Instruction Multiple Data (SIMD): In this architecture, a single instruction
operates on multiple data points simultaneously. This is commonly used in vector
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processors and GPUs.

+ Multiple Instruction Single Data (MISD): This is a less common architecture where
multiple instructions operate on a single data stream. It is mostly theoretical and not
widely implemented.

« Multiple Instruction Multiple Data (MIMD): In this architecture, multiple processors
execute different instructions on different data streams. This is the most flexible and
widely used architecture in modern supercomputers.

SISD MISD
INSTRUCTIONS ‘ INSTRUCTIOMS |
E instruction |streams
a
T
£
2 data stream
A data stream E & w
T 1F
A A
SIMD MIMD
I INSTRUCTIONS | | INSTRUCTIONS ‘
E instruction |streams
L1
:
=] -
A S M A _%?—m" m__

Figure 2.1: Flynn’s Taxonomy [4]

2.3 Multi-processor Systems

The multiprocessor class of parallel computer is the dominant form of supercomputer today.
Most broadly, it is any system comprising a set of individual self-controlled computers inte-
grated by a communications network and coordinated to perform a single workload. By the
Flynn taxonomy the multiprocessor is a MIMD-class machine. There are three mainstream
configurations in use: Shared-Memory Multiprocessors, Massively Parallel Processors, and
commodity clusters, which will be discussed in the following sections.
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Memory Banks

Network

Processor Processor Processor Processor

Figure 2.2: Shared-Memory Multiprocessor Architecture

2.3.1 Shared-Memory Multiprocessors

A shared-memory multiprocessor is an architecture consisting of a modest number of proces-
sors, all of which have direct (hardware) access to all the main memory in the system 2.2. This
permits any of the system processors to access data that any of the other processors has created
or will use. The key to this form of multiprocessor architecture is the interconnection network
that directly connects all the processors to the memories. Shared-memory multiprocessors
are also differentiated by the relative time to access the common memory blocks by their
processors into two classes:

« Uniform Memory Access (UMA) / Symmetric Multi-Processor (SMP): All the
processors can access each memory block in the same amount of time. Access times
can still vary, as contention between two or more processors for any single memory
bank will delay access times of one or more processors. But all processors still have the
same chance and equal access. UMA systems are typically easier to program because of
their uniformity, but they can suffer from scalability issues as the number of processors
increases.

« Non-Uniform Memory Access (NUMA): Retain access by all processors to all the
main memory blocks within the system 2.3. But this does not ensure equal access
times to all memory blocks by all processors. NUMA architectures benefit from scaling,
permitting more processor cores to be incorporated into a single shared-memory system
than SMPs. However, because of the difference in memory access times, the programmer
has to be conscious of the locality of data placement and use it to take best advantage of
computing resources.
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Processor Processor Processor Processor

Figure 2.3: Non-Uniform Memory Access Architecture

2.3.2 Massively Parallel Processors

A massively parallel processor (MPP) is a computer system with many independent processors,
each with its own local memory, interconnected by a high-speed communication network.
The largest supercomputers today, comprising millions of processor cores, are of this class of
multiprocessor. MPPs are (in most cases) not shared-memory architectures, but are distributed
memory. In an MPP separate groups of processor cores are directly connected to their own
local memory. Such groups are colloquially referred to as “nodes”, and there is no sharing
of memory between them; this simplifies design and eliminates inefficiencies that impede
scalability. But in the absence of shared memories, a processor core in one group must employ
a different method to exchange data and coordinate with cores of other processor groups.

Network

c‘lgmmc [‘E. ,? o

Processor Processor Processof | ---=-==+:=- Processor

= —
M ML .......... M

Figure 2.4: Massively Parallel Processor Architecture
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2.3.3 Commodity Clusters

While all current generations of supercomputers exploit the economic advantages of incorpo-
rating VLSI microprocessors and DRAM main memory that are mass produced for commercial
and consumer markets, the systems discussed thus far are still based on special-purpose designs
to provide tight coupling among processor cores for superior performance. However, the
dominant class of deployed supercomputers, the commodity clusters, take exploitation of
mass-market economics one step further to introduce even an greater cost advantage. As the
name suggests, such systems consist exclusively of commodity subsystems, sometimes referred
to as COTS (commodity off-the-shelf). A cluster in which both the network and the compute
nodes are commercial products available for procurement and independent application by
organizations (end users or separate vendors) other than the original equipment manufacturer.
The key idea is that a supercomputer can be made up of component subsystems, all of which
can be procured by and are produced for a much larger user market than the deployed base of
supercomputers, thus leveraging economy of scale for dramatic improvements of performance
to cost. Clusters represent more than 80% of all the systems on the Top 500 list and a larger
part of commercial scalable systems. While they do not drive the very peak performance in
the field, they are the class of system most likely to be encountered in a typical machine room,
even when such a data center may include a more tightly coupled and expensive massively
parallel processor among its other computing resources.

Share of cluster systems in TOP500 per year

100.0 ~

Cluster share of TOP500 (%)

2016 2018 2020 2022 2024
Year

Figure 2.5: Percentage of Clusters in the TOP500 list over time




Chapter 3

Resource Management in HPC Systems

Supercomputer installation frequently represents a significant financial investment by the
hosting institution. However, the expenses do not stop after the hardware acquisition and
deployment is complete. The hosting data center needs to employ dedicated system adminis-
trators, pay for support contracts and/or a maintenance crew, and cover the cost of electricity
used to power and cool the machine. Together these are referred to as "cost of ownership”.
The electricity cost is frequently overwhelming for large installations. A commonly quoted
average is over US$1 million for each megawatt of power consumed per year in the United
States; in many other countries this figure is much higher. It is not surprising that institutions
pay close attention to how supercomputing resources are used and how to maximize their
utilization.

3.1 Resource Management Systems

Addressing these concerns, resource management software plays a critical role in how super-
computing system resources are allocated to user applications. It not only helps to accom-
modate different workload sizes and durations, but also provides uniform interfaces across
different machine types and their configurations, simplifying access to them and easing (at
least some) portability concerns. Resource management tools are an inherent part of the
high performance computing (HPC) software stack. They perform three principal functions:
resource allocation, workload scheduling, and support for distributed workload execution and
monitoring.

3.1.1 Resource Allocation

Resource allocation takes care of assigning physical hardware, which may span from a fraction
of the machine to the entire system, to specific user tasks based on their requirements. Resource
managers typically recognize the following resource types:

« Compute nodes Increasing the number of nodes assigned to a parallel application is
the simplest way to scale the size of the dataset (such as the number of grid points in
a simulation domain) on which the work is to be performed, or reduce the execution
time for a fixed workload size. Node count is therefore one of the most important
parameters requested when scheduling an application launched on a parallel machine.
Even single physical computers may include various node types; for example differing in
memory capacity, central processing unit (CPU) types and clock frequency, local storage
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characteristics, available interconnects, etc. Properly configured resource managers
permit selection of the right kind of node for the job, precluding assigning resources
that will likely go unused.

Processing cores (processing units, processing elements) Most modern supercom-
puter nodes feature one or more multicore processor sockets, providing local parallelism
to applications that support it through multithreading or by accommodating several
concurrent single-threaded processes. For that reason, resource managers provide the
option of specifying shared or exclusive allocation of nodes to workloads. Shared nodes
are useful in situations where already assigned workloads would leave some of the
cores unoccupied. By coscheduling different processes on the remaining cores, better
utilization may be achieved. However, this comes at a cost: all programs executing on
the shared node will also share access to other physical components, such as memory,
network interfaces, and input/output (I/O) buses. Users who perform careful bench-
marking of their applications are frequently better off allocating the nodes in exclusive
mode to minimize the intrusions and resulting degradation due to contention caused
by unrelated programs. Exclusive allocation can also be used for programs that rely on
the affinity of the executing code to specific cores to achieve good performance. For
example, programs that rely on lowest communication latency may want to place the
message sending and receiving threads on cores close to the PCI express bus connected
to the related network card. This may not be possible when multiple applications enforce
their own, possibly conflicting, affinity settings at the same time.

Interconnect While many systems are built with only one network type, some installa-
tions explicitly include multiple networks or have been expanded or modernized to take
advantage of different interconnect technologies, such as GigE and InfiniBand architec-
ture in combination. Selection of the right configuration depends on the application
characteristics and needs. For example, is the program execution more sensitive to
communication latency, or does it need as much communication bandwidth as possible?
Can it take advantage of channel bonding using different network interfaces? Often
the answer may be imposed by the available version of the communication library with
which the application has been linked. For example, it is common to see message-passing
interface (MPI) [5] installations with separate libraries supporting InfiniBand and Ether-
net if both such network types are available. Selecting a wrong network type will likely
result in less efficient execution.

Permanent storage and I/0 options Many clusters rely on shared file systems that
are exported to every node in the system. This is convenient, since storing a program
compiled on the head node in such a file system will make it available to the compute
nodes as well. Computations may also easily share a common dataset, with modifications
visible to the relevant applications already during their runtime. However, not all
installations provide efficient high-bandwidth file systems that are scalable to all machine
resources and can accommodate concurrent access by multiple users. For programs
performing a substantial amount of file I/O, localized storage such as local disks of
individual nodes or burst buffers (fast solid-state device pools servicing I/O requests for
predefined node groups) may be a better solution. Such local storage pools are typically
mounted under a predefined directory path. The drawback is that the datasets generated
this way will have to be explicitly moved to the front-end storage after job completion
to permit general access (analysis, visualization, etc.). Since there is no single solution
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available, users should consult local machine guides to determine the best option for
their application and how it can be conveyed to the resource management software.

+ Accelerators Heterogeneous architectures that employ accelerators (graphics processing
units (GPUs), many integrated cores (MICs), field programmable gate array modules, etc.)
in addition to main CPUs are a common way to increase the aggregate computational
performance while minimizing power consumption. However, this complicates resource
management, since the same machine may consist of some nodes that are populated
with accelerators of one type, some nodes that are populated with accelerators of a
different type, and some nodes that do not contain any accelerating hardware at all.
Modern resource managers permit users to specify parameters of their jobs so that the
appropriate node types are selected for the application. At the same time, codes that
do not need accelerators may be confined to regular nodes as much as possible for best
resource utilization over multiple jobs.

3.1.2 Workload Scheduling
Jobs

Resource managers allocate the available computing resources to jobs specified by users. A
job is a self-contained work unit with associated input data that during its execution produces
some output result data. The output may be as little as a line of text displayed on the console, or
a multiterabyte dataset stored in multiple files, or a stream of information transmitted over the
local or wide area network to another machine. Jobs may be executed interactively, involving
user presence at the console to provide additional input at runtime as required, or use batch
processing where all necessary parameters and inputs for job execution are specified before
it is launched. Batch processing provides much greater flexibility to the resource manager,
since it can decide to launch the job when it is optimal from the standpoint of HPC system
utilization and is not hindered by the availability of a human operator, for example at night.
For this reason, interactive jobs on many machines may be permitted to use only a limited set
of resources. Jobs may be monolithic or subdivided into a number of smaller steps or tasks.
Typically each task is associated with the launch of a specific application program. In general,
individual steps do not have to be identical in terms of used resources or duration of execution.
Jobs may also mix parallel application invocations with instantiations of single-threaded
processes, dramatically changing the required resource footprint.
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Queues

Pending computing jobs are stored in job queues. The job queue defines the order in which
jobs are selected by the resource manager for execution. As the computer science definition
of the word suggests, in most cases it is “first in, first out” or "FIFO”, although good job
schedulers will relax this scheme to boost machine utilization, improve response time, or
otherwise optimize some aspect of the system as indicated by the operator (user or system
administrator). Most systems typically use multiple job queues, each with a specific purpose
and set of scheduling constraints. Thus one may find an interactive queue solely for interactive
jobs. Similarly, a debug queue may be employed that permits jobs to run in a restricted parallel
environment that is big enough to expose problems when running on multiple nodes using
the same configuration as the production queue, yet small enough that the pool of nodes for
production jobs may remain substantially larger. Frequently there are multiple production
queues available, each with a different maximum execution time imposed on jobs or total job
size (short versus long, large versus small, etc.).

Scheduling

With hundreds to thousands of jobs with different properties pending in all queues of a typical
large system, it is easy to see why scheduling algorithms are critical to achieving high job
throughput. Common parameters that affect job scheduling include the following.

« Availability of execution and auxiliary resources is the primary factor that determines
when a job can be launched.

« Priority permits more privileged jobs to execute sooner or even preempt currently
running jobs of lower priority.

+ Resources allocated to the user determines the long-term resource pool a specific user
may consume while his or her account on the machine remains active.

« Maximum number of jobs that a user is permitted to execute simultaneously.
+ Requested execution time estimated by the user for the job.

« Elapsed execution time may cause forced job termination or impact staging of pending
jobs for upcoming execution.

+ Job dependencies determine the launching order of multiple related jobs, especially in
producer-consumer scenarios.

« Event occurrence, when the job start is postponed until a specific predefined event
occurs.

« Operator availability impacts the launch of interactive applications.

 Software license availability if a job is requesting the launch of proprietary code.
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In general, scheduling algorithms [6] are divided into two classes: time-sharing and space-
sharing.
Time-sharing algorithms divide time on a processor into several discrete intervals or slots.
These slots are then assigned to unique jobs.
Space-sharing algorithms give the requested resources to a single job until the job completes
execution.
Most cluster schedulers operate in space-sharing mode.

3.1.3 Workload Execution and Monitoring

Resource managers are equipped with optimized mechanisms that enable efficient launching
of thousands or more processes across a comparable number of nodes. Naive approaches, such
as repeated invocation of a remote shell, will not yield acceptable results at scale due to high
contention when transferring multiple programs’ executables to the target nodes.

Job launchers employ hierarchical mechanisms to alleviate the bandwidth requirements and
exploit network topology to minimize the amount of data transferred and overall launch time.
Resource managers must be able to terminate any job that exceeds its execution time or other
resource limits, irrespective of its current processing status. Again, distributed termination
should be efficient to release the allocated nodes to the pool of available nodes as quickly as
possible. Finally, resource managers are responsible for monitoring application execution and
keeping track of related resource usage. The actual resource utilization data is recorded to
enable accounting and accurate charging of users for their cumulative system resource usage.




Chapter 4

Slurm Workload Manager

4.1 Introduction - Overview

Slurm [7] is an open source, fault-tolerant, and highly scalable cluster management and job
scheduling system for large and small Linux clusters. Slurm requires no kernel modifications
for its operation and is relatively self-contained. As a cluster workload manager, Slurm has
three key functions. First, it allocates exclusive and/or non-exclusive access to resources
(compute nodes) to users for some duration of time so they can perform work. Second, it
provides a framework for starting, executing, and monitoring work (normally a parallel job)
on the set of allocated nodes. Finally, it arbitrates contention for resources by managing a
queue of pending work. Optional plugins can be used for accounting, advanced reservation,
gang scheduling (time sharing for parallel jobs), backfill scheduling, topology optimized
resource selection, resource limits by user or bank account, and sophisticated multifactor job
prioritization algorithms.

4.2 Architecture

Slurm has a centralized manager, slurmctld, to monitor resources and work. There may also
be a backup manager to assume those responsibilities in the event of failure. Each compute
server (node) has a slurmd daemon, which can be compared to a remote shell: it waits for work,
executes that work, returns status, and waits for more work. The slurmd daemons provide
fault-tolerant hierarchical communications. There is an optional slurmdbd (Slurm DataBase
Daemon) which can be used to record accounting information for multiple Slurm-managed
clusters in a single database. There is an optional slurmrestd (Slurm REST API Daemon) which
can be used to interact with Slurm through its REST APIL User tools include srun to initiate
jobs, scancel to terminate queued or running jobs, sinfo to report system status, squeue to
report the status of jobs, and sacct to get information about jobs and job steps that are running
or have completed. The sview commands graphically reports system and job status including
network topology. There is an administrative tool scontrol available to monitor and/or modify
configuration and state information on the cluster. The administrative tool used to manage the
database is sacctmgr. It can be used to identify the clusters, valid users, valid bank accounts,
etc. APIs are available for all functions.

13
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Controller daemons

slurmd  slurmd . slurmd

Compute node daemons

Figure 4.1: Slurm Architecture Overview

4.3 Workload Organization

The entities managed by these Slurm daemons, include nodes, the compute resource in Slurm,
partitions, which group nodes into logical sets, jobs, or allocations of resources assigned to a
user for a specified amount of time, and job steps, which are sets of (possibly parallel) tasks
within a job. The partitions can be considered job queues, each of which has an assortment of
constraints such as job size limit, job time limit, users permitted to use it, etc. Priority-ordered
jobs are allocated nodes within a partition until the resources (nodes, processors, memory,
etc.) within that partition are exhausted. Once a job is assigned a set of nodes, the user is able
to initiate parallel work in the form of job steps in any configuration within the allocation. For
instance, a single job step may be started that utilizes all nodes allocated to the job, or several job
steps may independently use a portion of the allocation. Slurm provides resource management
for the processors allocated to a job, so that multiple job steps can be simultaneously submitted
and queued until there are available resources within the job’s allocation.

Figure 4.2: Example of Slurm Entities
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4.4

Slurm Plugins

Slurm has a general-purpose plugin mechanism available to easily support various infrastruc-
tures. This permits a wide variety of Slurm configurations using a building block approach.
These plugins presently include:

Accounting Storage: Primarily Used to store historical data about jobs. When used
with SlurmDBD (Slurm Database Daemon), it can also supply a limits based system
along with historical system status.

Account Gather Energy: Gather energy consumption data per job or nodes in the
system. This plugin is integrated with the Accounting Storage and Job Account Gather
plugins.

Authentication of communications: Provides authentication mechanism between
various components of Slurm.

Containers: HPC workload container support and implementations.

Credential (Digital Signature Generation): Mechanism used to generate a digital
signature, which is used to validate that job step is authorized to execute on specific
nodes. This is distinct from the plugin used for Authentication since the job step request
is sent from the user’s srun command rather than directly from the slurmctld daemon,
which generates the job step credential and its digital signature.

Generic Resources: Provide interface to control generic resources, including Graphical
Processing Units (GPUs).

Job Submit: Custom plugin to allow site specific control over job requirements at
submission and update.

Job Accounting Gather: Gather job step resource utilization data.

Job Completion Logging: Log a job’s termination data. This is typically a subset of
data stored by an Accounting Storage Plugin.

Launchers: Controls the mechanism used by the ’srun’ command to launch the tasks.

MPI: Provides different hooks for the various MPI implementations. For example, this
can set MPI specific environment variables.

Preempt: Determines which jobs can preempt other jobs and the preemption mechanism
to be used.

Priority: Assigns priorities to jobs upon submission and on an ongoing basis (e.g. as
they age).

Process tracking (for signaling): Provides a mechanism for identifying the processes
associated with each job. Used for job accounting and signaling.

Scheduler: Plugin determines how and when Slurm schedules jobs.

Node selection: Plugin used to determine the resources used for a job allocation.
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« Site Factor (Priority): Assigns a specific site_factor component of a job’s multifactor
priority to jobs upon submission and on an ongoing basis (e.g. as they age).

« Switch or interconnect: Plugin to interface with a switch or interconnect. For most
systems (Ethernet or InfiniBand) this is not needed.

+ Task Affinity: Provides mechanism to bind a job and its individual tasks to specific
processors.

» Network Topology: Optimizes resource selection based upon the network topology.
Used for both job allocations and advanced reservation.

4.5 Configurability

Node state monitored include: count of processors, size of real memory, size of temporary disk
space, and state (UP, DOWN, etc.). Additional node information includes weight (preference
in being allocated work) and features (arbitrary information such as processor speed or type).
Nodes are grouped into partitions, which may contain overlapping nodes so they are best
thought of as job queues. Partition information includes: name, list of associated nodes, state
(UP or DOWN), maximum job time limit, maximum node count per job, group access list,
priority (important if nodes are in multiple partitions) and shared node access policy with
optional over-subscription level for gang scheduling (e.g. YES, NO or FORCE:2). Bit maps are
used to represent nodes and scheduling decisions can be made by performing a small number
of comparisons and a series of fast bit map manipulations.




Chapter 5

Flux

5.1 Introduction

Flux [8] is a next-generation resource and job management framework developed by Lawrence
Livermore National Laboratory. It expands the scheduler’s view beyond the single dimension
of "nodes” combining hierarchical job management with graph-based scheduling. Instead of
simply developing a replacement for SLURM and Moab, Flux offers a framework that enables
new resource types, schedulers, and framework services to be deployed as data centers continue
to evolve. Even though Flux is still under active development, it is currently being used in
production on the following Top500 systems [9]:

« El Capitan (#1)
« Tuolumne (#12)

El Dorado (#28)

« rzAdams (#64)

Tioga (#257)

Tenaya (#337)

17
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5.2 Architecture

5.2.1 The Flux Instance

A Flux instance is a self-contained workload manager that consists of one or more Flux brokers
communicating over a tree-based overlay network 5.1. Each broker provides message passing,
event routing, and service discovery within the instance, forming the backbone of Flux’s
distributed architecture.

Node Node
\ (Follower) (Follpwer)

l:lode
(Follower) (Follower) (Follower)

Figure 5.1: Flux Network Overview [10]

5.2.2 The Flux Broker

The flux broker [11],[12],[13] is a distributed message broker daemon that provides commu-
nications services within a Flux instance. Each broker is a program built on top of the ?MQ
(ZeroMQ) [14] networking library. The broker contains two main components.

Overlay Network

First, the broker implements Flux-specific networking abstractions over ®MQ, such as remote-
proceedure call (RPC) and publication-subscription (pub-sub). The broker session is intercon-
nected using ®MQ sockets to implement three persistent overlay network planes:

+ a PGM publish-subscribe bus for events and synchronization heartbeats
« a TCP request-response tree for scalable RPCs, barriers, and reductions

« asecondary TCP request-response overlay with configurable topology for rank-addressed
RPCs

The session wire-up is depicted in Figure 5.2. Each message plane implements reliable,
in-order message delivery, and can self-heal when interior nodes fail. Although a binary
RPC/reduction tree is pictured, the tree shape is configurable.
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Figure 5.2: A Broker Session [12]

Core Services

Second, the broker contains several core services, such as PMI (for MPI support), run control
support (for enabling automatic startup of other services), and, most importantly, broker
module management. The remainder of a Flux broker’s functionality comes from broker
modules: specially designed services that the broker can deploy in independent OS threads 5.4.

Broker
Flux Broker Modules
(i.e., Services)

Broker
Module
Management

PMI Broker State
Client Machine

Broker Core Services

Message Routing

Figure 5.3: Flux Broker Overview
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Broker Startup

When a Flux instance is started, one flux-broker process is launched on each allocated node.
Each broker is assigned a rank from 0 to size - 1. The rank 0 node is the root of a tree-based
overlay network. This network may be accessed by Flux commands and modules using Flux
API services. A logging service aggregates Flux log messages across the instance and emits
them to a configured destination on rank 0. After its overlay network has completed wire-up,
flux broker starts the initial program on rank 0. Most of Flux’s distributed systems and services
that aren’t directly associated with a running job are embedded in the flux-broker executable
or its dynamically loaded plugins.

Key-Value Store

i Overlay Networks
Remole Execunon

Resource Msg Idioms (RPC/Pub-Sub)

Global Sched f-’ Polcy Plugin A
=TT '
Sched1 |~
/]Service Modules

Remote Execution

Parent Flux Instance

Sched Framework

Scheduling
Policy Plugin B

Child Flux
Instance

Figure 5.4: An Overview of the Modular and Hierarchical Nature of Flux

5.2.3 KVS

Key-Value Stores (KVS) have become ubiquitous building blocks in large-scale Internet services
but have been underutilized in HPC. For Flux, however it provides one of the essential building
blocks.

The Flux KVS is implemented as a core broker module that utilizes the request-response
and event overlay networks. It provides a general purpose data store used by other Flux
components, and supports the distributed caching and synchronization needed for parallel
data exchanges, such as required for MPI bootstrap.




5.2. Architecture 21

5.2.4 Flux Instance Modes
Single User Mode

Flux may be used in single-user mode, where a Flux instance is launched as a parallel job,
and the instance owner (the user that submitted the parallel job) has control of, and exclusive
access to, the Flux instance and its assigned resources. On a system running Flux natively,
batch jobs and allocations are examples of single user Flux instances.

Multi User / System Mode

When Flux is deployed as the system instance, or native resource manager on a cluster, its
brokers still run with the credentials of a non-privileged system user, typically flux. However,
to support multiple users and to act as a long running service, it must be configured to behave
differently:

« The Flux broker is started directly by systemd on each node instead of being launched
as a process in a parallel job.

+ The systemd unit file passes arguments to the broker that tell it to use system paths for
various files, and to ingest TOML files from a system configuration directory.

+ Asingle security certificate is used for the entire cluster instead of each broker generating
one on the fly and exchanging public keys with PMIL

+ The Flux overlay network endpoints are statically configured from files instead of being
generated on on the fly and exchanged via PMIL

« The instance owner is a system account that does not correspond to an actual user.

« Users other than the instance owner (guests) are permitted to connect to the Flux broker,
and are granted limited access to Flux services.

« Users connect to the Flux broker’s AF_UNIX socket via a well known system URI if
FLUX_URI is not set in the environment.

« Job processes (including the Flux job shell) are launched as the submitting user with the
assistance of a setuid root helper on each node called the IMP.

« Job requests are signed with MUNGE, and this signature is verified by the IMP.

+ The content of the Flux KVS, containing system state such as the set of drained nodes
and the job queue, is preserved across a full Flux restart.

+ The system instance functions with some nodes offline.
+ The system instance has no initial program.

The same Flux executables are used in both single user and system modes, with operation
differentiated only by configuration. This architectural consistency enables seamless transitions
between user-managed and system-managed deployments, supporting both research and
production use cases within the same software framework.
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3.3

Flux Software Components

Flux was conceived as a resource manager toolkit rather than a monolithic project, with the
idea to make components like the scheduler replaceable. In addition, several parts of flux can
be extended with plugins. At this time the primary component types are:

broker modules Each broker module runs in its own thread as part of the broker
executable, communicating with other components using messages. Broker modules are
dynamically loadable with the flux-module command. Core services like the KVS, job
manager, and scheduler are implemented using broker modules.

jobtap plugins The job manager orchestrates a job’s life cycle. Jobtap plugins extend
the job manager, arranging for callbacks at different points in the job life cycle. Jobtap
plugins may be dynamically loaded with the flux-jobtap command. An example of a
jobtap plugin is the Flux accounting multi-factor priority plugin, which updates a job’s
priority value when it enters the PRIORITY state.

shell plugins When a job is started, the flux-shell is the process parent of job tasks on
each node. Shell plugins extend the job environment and can be configured on a per-job
basis using the —setopt option on job submission commands.

connectors Flux commands open a connection to a particular Flux instance by specifying
a URL The scheme portion of the URI may refer to a native connection method such as
local or ssh. Native connection methods are implemented as plugins called connectors.

URI resolver plugins Other URI schemes must be resolved to a native form before they
can be used. Resolvers for new schemes may be added as plugins. For example, the Isf
resolver plugin enables LSF users to connect to Flux instances running as LSF jobs by
specifying a Isf:JOBID URI.

validator plugins Jobs may be rejected at ingest if their jobspec fails one of a set of
configured validator plugins. The basic validator ensures the jobspec conforms to the
jobspec specification. The feasibility plugin rejects job that the scheduler determines
would be unable to run given the instance’s resource set. The require-instance plugin
rejects jobs that do not run in a new Flux instance.

frobnicator plugins The frobnicator allows a set of configured plugins to modify
jobspec at submission time. For example the defaults plugin sets configured default
values for jobspec attributes such as duration and queue.

Broker modules 5.5 are the most fundamental component type, and the following sections
describe the most important one, the Flux scheduler - Fluxion (flux-sched).




5.3. Flux Software Components 23

flux framework (core) associated projects
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Figure 5.5: Flux Modules and Associated Projects Overview
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5.3.1 Flux Scheduler - Fluxion
Graph-based Resource Representation

Current-generation workload management products are designed to manage static, homoge-
neous HPC systems of the past, and their representation of resources reflects this rigid thinking.
Data management and storage structures designed for efficiently representing compute-node-
centric hardware resources do not encode complex and changing relationships (e.g., power
capping, network flows, location), which makes them incapable of representing important
components of newer heterogeneous, dynamic systems. Flux overcomes the limitations of
current products by basing its resource representation (a model for characterizing resources)
on a directed graph - a powerful and expressive structure capable of dynamically defining
arbitrary resource types.

A vertex can be a hardware resource (e.g., a CPU or compute node), and an edge can
indicate containment (i.e., a server contains a CPU). 5.6 is a visual representation of resource
vertices and edges in a system with multi-tiered disk storage that can be allocated as a global
pool or with respect to the distance (measured in number of edges) from other resources
(e.g., a core). Matching a resource request consists of descending into the graph and checking
vertices for suitability. Specifying different vertex and edge structure allows for tremendous
request flexibility: Selecting solid-state drives in 5.6 via a path through a rack (e.g., purple
vertex rack0 to green vertex mtll_0) versus through mt112_0 (orange vertex near the graph
center) permits priority based on proximity which is extremely difficult for current-generation
schedules to replicate. The ability to allocate resources in different ways based on paths is
a unique capability of Flux, and one that is necessary for the upcoming El Capitan exascale
system at LLNL.
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Figure 5.6: Resource Representation Example [15]

Using a directed graph as a foundation for resource representation provides Flux with
several key capabilities. The abstract model facilitates tremendous flexibility: Any type of
resources (e.g., hardware, software, power distribution units) can be a vertex, and relationships
between vertices are well-defined. Hierarchical scheduling assumes an elegant form when
based on a directed graph model. Each Flux instance manages and schedules a subgraph
(subset of the vertices and edges) of the resource graph, where a child instance’s purview
is a subgraph of its parent. Furthermore, a tremendous number of algorithmic techniques
and optimized software libraries exist for performing fast operations on directed graphs.
By basing its resource model on a directed graph, Flux integrates the fruits of algorithmic
development to perform many required operations: e.g., quickly checking resource states,
scheduling allocations, adding/removing resources, and transforming representations.
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5.3.2 Flux Job Model

A user job request is represented as a jobspec, which is a hierarchical data structure that
describes the job’s resource requirements and execution parameters.
The Jobspec has the following form:

» Resources:

The resource request graph, which describes the resources required by the job. Resource
types include clusters(there is multi-cluster support), racks, nodes, sockets, cores, gpus,
memory. The only resource type that is non physical is the slot resource, which is
an abstract resource that represents a schedulable place where a program process or
processes will be spawned and contained. All resource vertices that are specified as
children or descendants of a slot resource are considered to be the slot’s resources. Each
slot has a unique label that maps it to a specific task.

+ Tasks:
The set of task groups that comprise the job. Each task group is mapped to a slot label
and command to be executed within that slot. This command may be a single program
or a parallel job launcher such as mpirun or srun. The number of tasks or how it is
distributed among slots for each command is specified as part of the task group.

+ Attributes:
The set of user and system attributes that encompass the environment in which the job
will run. This includes environment variables, working directory, I/O redirection, time
limit, and other parameters.

Here is an example jobspec in YAML format:

version: 1

resources:
- type: node
count: 4
with:

- type: slot
count: 1
label: default
with:

- type: core
count: 2
tasks:

- command: [ "app" ]
slot: default
count:
per_slot: 1
attributes:
system:
duration: 3600.
cwd: "/home/flux"
environment:
HOME: "/home/flux"
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Figure 5.7: All jobs on a Flux cluster are child instances of the system instance

Graph-based Scheduling

Flux’s scheduler component, called Fluxion [16], is represented in Figure 5.8. During Flux
instance initialization, Fluxion first populates an in-memory resource graph store (A) com-
prising vertices that represent the HPC system’s various compute resources and edges that
represent the relationships among those resources. The initialization process also includes
the selection of the graph resource’s representation granularity and traversal type if users
decided to use non-default. Once initialization is complete, Fluxion is ready to receive the jobs’
resource requests from Flux’s core framework. Flux first constructs a job’s resource request
in the form of an abstract resource request graph (B). The abstract request graph generally
specifies the job’s resource requirements in terms of both node-local resources (e.g., amount
of compute cores and memory to be used) and higher level or even global resources (e.g.,
compute racks, network switches, power, parallel filesystem bandwidth). The abstract request
graph then becomes the input for the selected graph traverser (A) to find its best- matching
resource vertices and edges. The traverser "walks” the concrete resource graph store in this
pre-defined walking order and matches the abstract request graph to the concrete resource
graph. As shown at (C), the best-matching criteria is determined by the match policy within
Flux’s traverser. The policy is invoked every time the traverser visits a vertex. The policy then
evaluates how well a given resource vertex matches with the abstract request graph and scores
it accordingly. Flux’s resource model must also efficiently keep track of the status changes
of resources over time in order to support various queuing and backfilling policies common
to HPC job scheduling (e.g., EASY and conservative backfilling policies). Thus, the model
integrates a highly efficient resource-time state tracking and search mechanism into every
resource vertex. This mechanism (and a simple abstraction) is called Planner (E).
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Figure 5.8: Fluxion Scheduler Overview

After judicious selection of the appropriate representation granularity for the concrete
resource graph—striking a balance between performance and scheduling effectivenes - the
resulting graph can still be quite large when modeling high- end systems. Thus, the Fluxion
scheduler includes other scalability strategies in its model, such as pruning filters (E). For
example, pruning filters can be installed at high-level resource vertices (e.g., compute racks)
to track the amount of available lower-level resources (e.g., compute cores) in aggregate,
which reside somewhere in the subgraph rooted at that vertex. Fluxion also introduces a
novel scheduler- driven filter update algorithm (D) that updates and maintains these filters
without incurring high performance overhead. This filter significantly improves performance
by pruning the required graph search. Finally, once Fluxion determines the best matching
resource subgraph, this is emitted as a selected resource set representation at (F). Flux’s core
framework can then make use of this resource set to contain, bind and execute the target
program(s) within those resources.

Scheduling Policies

Fluxion supports a variety of resource matching and queuing policies. The resource matching
policies are the following:

+ low Select resources with low ID first (e.g., core0 is selected first before corel is selected).
« high Select resources with high ID first (e.g., corel5 is selected first before core14).

+ lonode Select resources with lowest compute-node ID first; otherwise the low policy
(e.g., for node-local resource types).

+ hinode Select resources with highest compute-node ID first; otherwise the high policy
(e.g., for node-local resource types).

+ lonodex A node-exclusive scheduling whose behavior is identical to lonode except each
compute node is exclusively allocated.
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+ hinodex A node-exclusive scheduling whose behavior is identical to hinode except each
compute node is exclusively allocated.

« first Select the first matching resources and stop the search.

« firstnodex A node-exclusive scheduling whose behavior is identical to first except each
compute node is exclusively allocated.

Match policies are initialized as collections of individual attributes that help the scheduler to
select matches. For convenience, these attributes are exposed to users such that they can write
custom policies. Below is a list of match attributes which can be selected by users.

« policy Allowed options are low or high. If only policy=low or policy=high is specified,
the behavior of the match policy is the same as if match-policy=low or match-policy=high
were selected, respectively.

» node_centric true or false are allowed options. Evaluate matches based on the ID of
the compute node first.

« node_exclusive true or false are allowed options. Exclusively allocate compute nodes
when a match is found.

« set_stop_on_1_matches true or false are allowed options. When a match is found,
take it, without evaluating for potentially more optimal matches.

The queuing policies offered are the following:

« fcfs
First come, first served policy if the priority of pending jobs are same: i.e., jobs are
scheduled and run by their submission order. If pending jobs have different priorities,
they are serviced by their priority order.

. easy
EASY-backfilling policy: If the highest-priority pending job cannot be run with fcfs
because its requested resources are currently unavailable, one or more next high priority
jobs will be scheduled and run as far as this will not delay the start time of running the
highest-priority job.

« conservative
CONSERVATIVE-backfilling policy: Similarly to easy, pending jobs can run out of order
when the highest-priority job cannot run because its requested resources are currently
unavailable. However, this policy is more conservative as a lower priority job can only
be backfilled and run if and only if this will not delay the start time of running any
pending job whose priority is higher than the backfilling job.

+ hybrid
HYBRID-backfilling policy: This is an optimization of conservative where a lower priority
job can only be backfilled and run if and only if this will not delay the start time of running
N pending jobs whose priority is higher than the backfilling job. N can be configured by
the policy-params.reservation-depth parameter: see policy-params.reservation-depth
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5.4 Flux CLI Commands

This section will cover the most important and commonly used Flux commands.

flux start

Usage: [launcher] flux start [OPTIONS] [initial-program [args...]]

or: flux start —test-size=N [OPTIONS] [initial-program [args...]]

Description:

flux start assists with launching a new Flux instance, which consists of one or more flux-broker
processes functioning as a distributed system. It is primarily useful in environments that don’t
run Flux natively, or when a standalone Flux instance is required for test, development, or
post-mortem debugging of another Flux instance.

Useful options:

-S, —setattr=ATTR=VAL Set broker attribute ATTR to VAL. This is equivalent to -0,-SATTR=VAL
-0, —setopt=OPT=VAL Set broker option OPT to VAL. This is equivalent to -S, -oOPT=VAL
-c, —config-path=PATH Set the PATH for broker configuration.

flux alloc

Usage: flux alloc [OPTIONS] [COMMAND...]

Description:

runs a Flux subinstance with COMMAND as the initial program. Once resources are allocated,
COMMAND executes on the first node of the allocation with any free arguments supplied as
COMMAND arguments. When COMMAND exits, the Flux subinstance exits, resources are
released to the enclosing Flux instance, and flux alloc returns. If no COMMAND is specified,
an interactive shell is spawned as the initial program, and the subinstance runs until the shell
is exited.

Useful options:

-n, —nslots=N Set the number of slots requested. This parameter is required unless —nodes is
specified.

-c, —cores-per-slot=N Set the number of cores to assign each slot. The default is 1.

-g, —gpus-per-slot=N Set the number of GPU devices to assign to each slot (default none).
-N, —-nodes=N Distribute allocated resource slots across N individual nodes.

-x, —exclusive With —nodes, allocate nodes exclusively.

-q, ~queue=NAME Submit a job to a specific named queue. If a queue is not specified and
queues are configured, then the jobspec will be modified at ingest to specify the default queue.
If queues are not configured, then this option is ignored

flux submit

Usage: flux submit [OPTIONS] [-ntasks=N] COMMAND...

Description:

flux submit enqueues a job to run under Flux and prints its numerical jobid on standard output.
The job consists of N copies of COMMAND launched together as a parallel job. If —ntasks is
unspecified, a value of N=1 is assumed.

Useful options:
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The most useful options are the same as for flux alloc.

flux job attach

Usage: flux job attach id

Description:

A job can be interactively attached to via flux job attach. This is typically used to watch
stdout/stderr while a job is running or after it has completed.

flux run

Usage: flux run [OPTIONS] [-ntasks=N] COMMAND...

Description:

flux run submits a job to run interactively under Flux, blocking until the job has completed. It
is equivalent to running flux submit followed by flux attach.

flux batch

Usage: flux batch [OPTIONS] SCRIPT ...

or: flux batch [OPTIONS] —wrap COMMAND ...

Description:

flux-batch submits SCRIPT to run as the initial program of a Flux subinstance. SCRIPT refers
to a file that is copied at the time of submission. Once resources are allocated, SCRIPT executes
on the first node of the allocation, with any remaining free arguments supplied as SCRIPT
arguments. Once SCRIPT exits, the Flux subinstance exits and resources are released to the
enclosing Flux instance. If there are no free arguments, the script is read from standard input.
If the —wrap option is used, the script is created by wrapping the free arguments or standard
input in a shell script prefixed with #!/bin/sh. If the job request is accepted, its jobid is printed
on standard output and the command returns. The job runs when the Flux scheduler fulfills
its resource allocation request. Flux commands that are run from the batch script refer to the
subinstance. For example, flux-run would launch work there. A Flux command run from the
script can be forced to refer to the enclosing instance by supplying the flux —parent option.
Useful options:

The most useful options are the same as for flux alloc.

flux jobs

Usage: flux jobs [OPTIONS] [JOBID...]

Description:

flux jobs is used to list jobs run under Flux. By default only pending and running jobs for the
current user are listed.

Useful options:

-a List jobs in all states, including inactive jobs.

-A List jobs for all users.
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flux cancel

Usage: flux cancel [OPTIONS] [JOBID...]

Description:

flux cancel cancels one or more jobs by raising a job exception of type=cancel. An optional
message included with the cancel exception may be provided via the -message option. Can-
celed jobs are immediately sent SIGTERM followed by SIGKILL after a configurable timeout
(default=5s). flux cancel can target multiple jobids by either taking them on the command
line, or via the selection options —all, —user, or —states. It is an error to provide jobids on the
command line and use one or more of the selection options.

Useful options:

-a, —all Cancel all jobs.

-u, —user=USER Cancel all jobs owned by USER.

-s, —states=STATES Set target job states (default: active). Valid states include depend, priority,
sched, run, pending, running, active.

flux shutdown

Usage: flux shutdown [OPTIONS] [TARGET]

Description:

The flux shutdown command causes the default Flux instance, or the instance specified by TAR-
GET, to exit RUN state and begin the process of shutting down. TARGET may be either a native
Flux URI or a high level URL Only the rank 0 broker in RUN state may be targeted for shutdown.

All available commands and their options can be found in the official flux-core documen-
tation [17].
Another useful resource is the Flux Cheatsheet https://flux-framework.org/cheat-sheet/.
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5.5 Flux and Slurm Comparison

Table 5.1: Flux and Slurm Feature Comparison [18]

Features Flux Slurm
In general
Open Source Yes Yes

Multi-User Mode

Multi-user workload management Yes Yes

Full hierarchical resource management Yes No
Graph-based advanced resource management  Yes No
Scheduling specialization Yes No
Security: only a small isolated layer running in  Yes No
privileged mode for tighter security

Modern command-line interface (cli) design Yes Outdated
Application programming interface (APIs) for Yes(4/4) Some(3/4)

job management, job monitoring, resource mon-
itoring, low-level messaging

Language bindings Yes (C, C++, Python, Some (C, REST)
Lua, Rust, Julia, REST)

Bulk job submission Yes No

High-speed streaming job submission Yes No

Single-User Mode

User-level workload management instance Yes No
Support for nesting within foreign resource Yes (Slurm, Isf, ...) N/A
managers

Fully hierarchical management of instances Yes N/A
Scheduler specialization for user level Yes N/A
Graph-based advanced scheduling for user level Yes N/A
Built-in facilities for inter-job communication Yes N/A
and coordination

Modern command-line interface (cli) design Yes N/A
Support to launch message passing interface Yes N/A

(MPI) jobs




Chapter 6

Flurm

In this Chapter the design and implementation of Flurm, the integration of the Flux framework
into a Slurm managed cluster, is presented. The architecture of the system is described, along
with the modifications made to Flux to enable its operation within a Slurm allocation. The
chapter includes the challenges faced during the implementation and how they were addressed.

6.1 ARIS Cluster Overview

ARIS is the name of the Greek supercomputer, deployed and operated by GRNET S.A. (National
Infrastructures for Research and Technology S.A.) in Athens [19]. When it was installed in
2015, it was included in the TOP500 list at position 468. ARIS consists of 532 computational
nodes separated in four “islands” as listed here: All the nodes are connected via Infiniband

Table 6.1: ARIS Cluster Node Types [20]

‘ Node Type ‘ Count ‘ Accelerator ‘ Memory ‘ Cores ‘
THIN nodes | 426 w/o 64 GB 20@2.8 GHz (two sockets)
GPU nodes 44 dual tesla k40m 64 GB 20@2.6 GHz + 2 x K40
PHI nodes 18 dual xeon phi 7120p | 64 GB 20@2.6 GHz + 2 x 7120p
FAT nodes 44 w/o 512 GB | 40@2.4 GHz (four sockets)
ML node 1 8 volta v100 512 GB | 40@2.2 GHz (two sockets)

network and share 2PB GPFS storage. Access to the system is provided by two login nodes.
There are two shared file systems on ARIS, HOME and WORKDIR . All login and compute
nodes may access same data on shared file systems.

The cluster is managed by Slurm, which is used for job scheduling and resource management.
Users can submit jobs to the cluster using the sbatch command, specifying the required
resources and job parameters. Once a job is submitted, it is queued and scheduled for execution
based on the available resources and the job’s priority. For the purpose of this thesis, the
user level integration of Flux into Slurm is implemented and tested on the THIN nodes of the
cluster.

34
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Figure 6.1: ARIS THIN Node Overview
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6.2 Flux Installation

Installing Flux on ARIS with user level permissions is quite challenging due to the lack of
dependencies and the age of the operating system (CentOS 7). To ensure a successful installation
of Flux without interfering with the system’s existing software, a specified package manager
for user level installations in HPC systems named Spack [21] is used.

6.2.1 Spack Overview

Spack is a package manager for supercomputers, Linux, macOS, and Windows [21]. It makes
installing scientific software easy. With Spack, you can build a package with multiple versions,
configurations, and compilers, and all of these builds can coexist on the same machine. Spack
isn’t tied to a particular language; you can build a software stack consisting of Python or R
packages, link to libraries written in C, C++, or Fortran, easily swap compilers, and target
specific microarchitectures. Spack does not require administrator privileges to install packages.
It can install software in any directory, making it easy to manage packages in the home
directory or a shared project location without needing sudo access. Spack’s core strength is
creating highly customized, optimized software builds from source code. While it’s primarily
a from-source package manager, it also supports fast binary installations through build caches.
It can be viewed as a virtual environment manager for scientific software, similar to venv with
pip or conda for Python. Finally, Spack is written in Python, making it easy to extend and
customize.

6.2.2 Flux Installation with Spack

To install Flux using Spack, the following steps are followed:

« Install Spack:
The first step is to install Spack on the system. This can be done by cloning the Spack
repository from GitHub.

+ Load Modules for Running:
Before using Spack, it’s important to load the necessary modules for Spack to function
correctly. The modules required for running Spack on ARIS are:
- gnu/8
gnu/13.2.0
python/3.9.18

- git

Spack does not detect the loaded python module automatically, so it is specified with
the environment variable SPACK_PYTHON. You can also set the environment variables
SPACK_USER_CACHE_PATH, SPACK_USER_CONFIG_PATH to specify a custom lo-
cation for Spack’s cache and configuration files to prevent conflicts with other spack
installations.

« Load Spack: Once the necessary modules are loaded, you need to load Spack. This can
be done by sourcing the ‘spack’ script in the ‘share’ directory of your Spack installation.
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« Prepare for Flux Installation:
Before installing Flux, it’s important to load the rust and zlib modules, which are depen-
dencies for Flux. We also need to hint Spack to use those external modules we loaded,
instead of trying to build them from source.

« Install Flux:
Finally, we can install Flux using Spack. This can be done by running the command
‘spack install flux-sched’. This command will download, build, and install flux-core,
flux-sched and all their dependencies.

« Load Flux:

After the installation is complete, we can load Flux by running the command ‘spack load
flux-sched".

However, Spack in ARIS had a few more issues that needed to be addressed before the
installation of Flux could be completed successfully.

+ Trouble fetching packages:
Due to ARIS using an old version of curl, Spack was unable to fetch packages from https
sources. To resolve this, we disabled SSL verification by setting the spack configuration
option ‘verify_ssl false".

+ Trouble recognizing rust:
Spack was unable to recognize the rust module, which resulted in Spack trying to build
rust from source. To resolve this, we specified rust path found by spack as unbuildable.

+ Trouble with library paths of some modules, LDFLAGS and python forward
compatibility:
Python and gnu libraries were not found by Spack during the installation of Flux.
To resolve this, we specified the library paths of those modules for each executable
run by Spack by changing the environment variable LD_LIBRARY_PATH in the exe-
cutable.py file in spack’s source code. We also set the environment variable LDFLAGS
which was not set by Spack for some builds. Finally, we set the environment variable
PYO3_USE_ABI3_FORWARD_COMPATIBILITY to 1 to resolve issues with building
python packages required for building flux-sched.

+ flux-core and flux-sched latest versions:
The latest versions of flux-core and flux-sched were not available in Spack’s package
repository. To resolve this, we modified the package.py files for flux-core and flux-sched
to include the latest versions from the official Flux GitHub repository. This was sufficient
to install and build them successfully without any conflicts or issues.

6.3 Flurm Overview

6.3.1 Essential Workflow

The Flurm workflow in its essence consists of the following steps:

+ A user submits a job to Slurm using the sbatch command, specifying exclusive access to
a set of nodes that will be the nodes of the Flux managed cluster.
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« Inside the Slurm job script, the user loads the Flux module using Spack.

+ The user then starts a Flux instance using the flux start command within a srun command,
which ensures that the Flux instance is started on the allocated nodes and will be
terminated when the Slurm job ends, leaving no ghost processes. We need to specify
—mpi=pmi2 to ensure that flux will use the PMI2 interface provided by Slurm for inter-
process communication.

« flux start need to be run with a command as an argument in order to be executed non-
interactively. The basic use case is to run flux start with flux run PROGRAM as the
command argument.

« We need to ensure that the flux broker with rank 0 is purely a management node and does
not run any tasks. This is achieved by using the ‘~requires=not hostlist <broker_node>"
option of flux run.

In order for the above workflow to work, a few modifications to Flux are necessary in order
to launch properly:

+ Flux certificate signature fails:

When starting a Flux instance with flux start, the flux broker fails to start and stalls
without any error message. This is due to the fact that for the signing a certificate, Flux
uses a library (libsodium) that relies on the /dev/random device for generating random
numbers, which depends on the system’s entropy pool. However, the thin nodes of ARIS
have almost no entropy available, which causes the certificate signing process to block
indefinitely. To resolve this, we modified the flux broker to use /dev/urandom instead
of /dev/random for generating random numbers. The /dev/urandom device does not
block when the entropy pool is low, making it more suitable for environments with
limited entropy. A custom .so file was created to override the default behavior of the
open system call to redirect any attempts to open /dev/random to /dev/urandom inside
the slurm and flux processes.

#define _GNU_SOURCE
#include <dlfcn.h>
#include <stdio.h>
#include <string.h>
#include <fcntl.h>
#include <stdarg.h>
#include <unistd.h>

int open(const char *pathname, int flags, ...) {
static int (*real_open) (const char *, int, ...) = NULL;
if (!real_open)
real_open = dlsym(RTLD_NEXT, "open");

if (strcmp(pathname, "/dev/random") == 0)
pathname = "/dev/urandom";

va_list args;

va_start(args, flags);

int fd = real_open(pathname, flags, args);
va_end (args) ;

return fd;
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+ Temp file creation fails:

When a flux instance is setting up, a temporary file is created in order to cleanup any
jobs or queues that may be lingering from a previous instance. The semantics of the
function used by Flux to create the temporary file are not compatible with ARIS’s shell,
so flux fails with an error message. This temporary file creation is not essential for
the operation of Flux under Slurm and it is only used when a environment variable
(‘FLUX_DISABLE_JOB_CLEANUP") is not set. We set this environment variable to 1
and flux finally starts without any issues.
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Figure 6.2: Flurm Architecture/Workflow Overview
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6.3.2 Colocation and Co-Scheduling
Colocation

Colocation is the practice of running multiple applications or workloads on the same nodes. The
resource manager should be able to assign different number of processors to each application
leading to more nodes being used by applications than expected. This can be beneficial in
scenarios where applications have complementary resource usage patterns, allowing for better
overall resource utilization. For example, a CPU-intensive application can be colocated with a
memory-intensive application, as they will not compete for the same resources. Colocation
can also help reduce the overhead of context switching and improve cache utilization, leading
to better performance for both applications.

The most relevant resource allocation techniques are the following:

« Compact Allocation:
In this technique, the resource manager allocates resources in a way that minimizes
the number of nodes used by the application. This can be achieved by filling up nodes
completely before moving on to the next node.

« Spread Allocation:
Spread allocation does compact allocation with half sockets. In other words, at each
node, only half of the socket’s cores are allocated before moving to the next one.

+ Job Striping;:
When spread allocation is used, half of the cores of each socket remain unused. Job
striping is when we allocate those unused cores to other applications.
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Figure 6.3: Resource Allocation Techniques [22]

Co-Scheduling

Co-scheduling is the practice of scheduling with colocation in mind. All co-scheduling algo-
rithms essentially decide which applications to colocate together based on a variety of criteria.
Some of them also decide on whether to colocate an application or not and which resource allo-
cation technique to use. For the purpose of this thesis, we don’t implement any co-scheduling
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algorithms, so co-scheduling in Flurm currently is theoretically random. However, we provide
the necessary infrastructure to support them in the future.

6.3.3 Colocation Support in Flux
Jobspec of Different Allocation types

First, we need to figure out the shape of the jobspec for each allocation type. Compact
Allocation The jobspec for compact allocation is quite straightforward. For the resource
shape, we request as many slots as the tasks the user wants to run, with each slot having one
core.

resources:

- type: slot
count: NTASKS
label: tasks
with:

- type: core
count: 1

For the tasks, we request one task per slot.

tasks:
- command: [ "app" ]
slot: tasks
count:
per_slot: 1

We also need to specify that no two tasks can be placed on the same core during task assignment.
This can be achieved by setting the attribute ‘cpu-affinity* to ‘per-task’.

attributes:
system:
duration: 3600
shell:
options:
cpu-affinity: "per-task"

Spread Allocation For spread allocation, the resource shape needs to request the number of
sockets required to fit all the tasks, each socket having half the cores of a full socket. ARIS
thin nodes, each socket has 10 cores, so we request [NTASKS/5] sockets, each with 5 cores.

resources:
- type: socket
count: CEIL(NTASKS/5)
with:
- type: slot
count: 5
label: tasks
with:
- type: core
count: 1

Slots are placed right below sockets to make sure that sockets can be shared between multiple
jobs, making Job Striping possible. For the tasks key, we cannot request one task per slot, as
that would lead [NTASKS/5] x5 tasks being created, which is more than the user requested in
the general case. Instead, we request a total count of NTASKS tasks and let Flux assign them
to the slots.
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tasks:
- command: [ "app" ]
slot: tasks
count:
total: NTASKS

The attributes key is the same as in compact allocation.

Job Submission

In order to submit a custom jobspec, we can use the Python API provided by Flux. The Jobspec
class can load a jobspec directly from a yaml file like so:

jobspec = flux. job.Jobspec()
jobspec.from_yaml_file("custom_jobspec.yaml")

We can submit the jobspec via flux.job.submit. We wait for the results via flux.job.wait.
Finally we can print the results using the cli command flux job attach <jobid>. Python scripts
containing flux api calls can be run via flux python script.py.

Challenges

Even though Flux provides the necessary infrastructure to support the workflow described
above, there are still some challenges in order to make it work properly, due to flux still being
under active development.

The flux-core included job-ingest module does not accept resource types other than slots,
cores, gpus and nodes by default. We can disable the jobspec validation done by this module
in the flux config file, which describes how the flux instance of Flurm is setup at launch.

However, there are still some issues with Fluxion not discovering resource types other than
the default ones. To overcome this, the resource graph of our Flurm cluster should be specified
to Fluxion for it to allocate non default resources properly. This can be done by generating a
resource graph file in the JSON Graph Format (JGF) that fluxion can read to model the resources
of the cluster. This resource graph file is an extension to the default resource specification file
(R file) of flux-core that should also be specified in the flux config file. The R and JGF files are
dependent on the allocation of the slurm user, so we generate them dynamically at the start of
each slurm job some bash commands and a python script accordingly. We use the information
provided by slurm about the hostnames of the allocated nodes.
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6.3.4 Use cases for colocation and co-scheduling
Use case 1: Job-tagged based resource allocation

In this use case, the Flurm user wants to specify the allocation type to be spread or compact
for a job based on a tag. This will provide a more user friendly interface for testing and using
different allocation types.

Solution:

We wrote a flux cli plugin in python that will tranform the user’s jobspec based on the tag
specified.

« The user will submit a job specifying only the number of tasks (No node number) and a
tag for the allocation type. This way the user request is well defined and the jobspec
transformation will make sense.

« We introduce a new option to the flux submit family of commands named —alloc-type
with possible values ‘compact® and ‘spread’.

 The plugin will be a part of the submission process and will transform the jobspec
accordingly before submission if the option is specified.

« Introduce the plugin to flux via the environment variable FLUX_CLI_PLUGINPATH.

Example usage:
Inside the slurm job script, the user will run:
flux start —config=path/to/config flux run -n 42 -alloc-type=spread /path/to/app

Use case 2: Queue-tagged based resource allocation

This is a use case where the user specifies to run a job in a queue specified for co-scheduling. The
queue will function exactly like a slurm partition, providing an environment for co-scheduled
only jobs. This use case should be mutually exclusive with the previous one, as the user should
not be able to specify both a tag and the co-scheduling queue.

Solution:

First, we need to create two queues in the flux config file, one for co-scheduled jobs and one
for normal jobs. Each queue will be linked with a subset of nodes in the cluster using a label
called ‘properties’, as mentioned in the flux documentation. The label of each partition will be
the same as their queue name for simplicity. Additionally, a new flux cli plugin will be created
just like in the previous use case.

+ The user will submit a job specifying only the number of tasks (No node number) and a
tag for the co-scheduling queue.

+ A new option —cosched equivalent —queue=cosched for ease of use in the plugin.

+ The plugin will do the jobspec transformation to spread allocation and set the queue to
cosched if the —cosched/-queue=cosched option is specified.

Example usage:

flux start —config=path/to/config flux run -n 42 —cosched /path/to/app

or:

flux start —config=path/to/config flux run -n 42 —queue=cosched /path/to/app
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Workflow Diagram
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Figure 6.4: Flurm Workflow Diagram in both use cases

6.4 Dockerized Environment

It is important to mention that a dockerized environment was created to facilitate the early
development and testing process of new features and modifications to Flux. The environment
consists of a Slurm cluster with one controller node and three compute nodes, all running on
Rocky Linux 8. The dockerized environment allows for quick iteration and testing of changes
to Flux without the need to deploy them on the actual ARIS cluster or wait in a job queue. It
includes the installation of Spack and Flux, as well as the necessary configurations to run Flux
within a Slurm allocation. This same environment can be used for future development and
testing of scheduling policies and other features in Flurm.

6.5 Source Code

The source code of Flurm can be found in the following GitHub repository:
https://github.com/cslab-ntua/flurm The repository includes:

+ A dockerized Slurm cluster for development and testing.
« Scripts for installing Spack and Flux in ARIS.
+ The flux cli plugins for the use cases described above.

« Scripts for generating the R and JGF files dynamically.
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Chapter 7

Evaluation

In this chapter, we present the evaluation methodology and results for the Flurm system
integrated into the ARIS HPC cluster. We used flux-core version 0.78 and flux-sched version
0.47 for our experiments.

7.1 NAS Parallel Benchmarks (NPB)

The NAS Parallel Benchmarks (NPB) [23] are a small set of programs designed to help evaluate
the performance of parallel supercomputers. The benchmarks are derived from computational
fluid dynamics (CFD) applications and consist of five kernels and three pseudo-applications.
Problem sizes in NPB are predefined and indicated as different classes. Reference implementa-
tions of NPB are available in commonly-used programming models like MPI and OpenMP. For
the experiments in this thesis, we used the MPI implementation of NPB version 3.4.3.

Benchmark Specifications

The NPB suite consists of the following benchmarks:

« Five kernels

IS - Integer Sort, random memory access

EP - Embarrassingly Parallel

CG - Conjugate Gradient, irregular memory access and communication

MG - Multi-Grid on a sequence of meshes, long- and short-distance communication,
memory intensive

— FT - discrete 3D fast Fourier Transform, all-to-all communication
+ Three pseudo applications

— BT - Block Tri-diagonal solver
— SP - Scalar Penta-diagonal solver

— LU - Lower-Upper Gauss-Seidel solver
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Benchmark Classes
+ Class S: small for quick test purposes

« Class W: workstation size (a 90’s workstation; now likely too small)

Classes A, B, C: standard test problems; 4X size increase going from one class to the
next

Classes D, E, F: large test problems; 16X size increase from each of the previous classes

7.2 Functionality Check

To verify the correct functionality of Flurm, we ran some NPB benchmarks for all allocation
types supported by Flurm (compact, spread). We used the -o verbose=2 flag of flux to get
detailed information about the cpu pinning of each task launched by flux.

As we can see from the following examples for the EP benchmark, the tasks are correctly
pinned according to the allocation type:

12 13
i

2 3 3 2 3
4 14 4

2 3 1 1 2 3 2 1
4 1 a 1
n

(a) Compact Alloca- (c) Striped Allocation for 16 tasks
tion for 16 tasks (b) Spread Allocation for 16 tasks per job
(d) Striped Allocation for 32 tasks per job (e) Striped Allocation for 40 tasks per job

For Job Striping we submitted two same jobs simultaneously which is good enough to
verify that tasks do not overlap on the same cores.

7.3 Performance Check

For the performance evaluation of Flurm, we need to compare the execution time of bench-
marks running under Flurm with the execution time of the same benchmarks running directly
under Slurm. We chose the following benchmarks:

CG class D with 64 tasks, because of its irregularity in memory access and communication
« EP class E with 256 tasks, for a large task count and minimal communication

FT class D with 256 tasks, for intense communication between a lot of tasks

MG class E with 128 tasks, for its memory intensity
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7.3.1 Spread Allocation Setup

First, we ran each benchmark alone in spread allocation mode under both Slurm and Flurm to

get their baseline execution times.
Each benchmark ran repeatedly for 10 minutes, with any completed job being restarted. We
recorded the median of the execution times for each benchmark and that was the time reported.

The results are as follows:

Table 7.1: Slurm Spread Results

Benchmark Tasks Spread Time(s)

CG class D 64 149.70
EP class E 256 144.18
FT class D 256 37.68
MGclassE 128 88.50

Table 7.2: Flurm Spread Results

Benchmark Tasks Spread Time(s)

CG class D 64 144.59
EP class E 256 144.13
FT class D 256 35.38
MGclassE 128 88.05

As we can see, the execution times for each benchmark running alone under both Slurm
and Flurm are very close to each other, with Flurm being slightly faster or equally fast in all
cases.

A notable observation is that the FT benchmark shows a more significant performance im-
provement in Flurm compared to the other benchmarks, approximately 6% faster. However,
to more accurately evaluate the performance difference between Flurm and Slurm, we need
to run Flurm with the same task mapping as Slurm. To achieve this, we used the —taskmap
option of flux to specify that we want 10 tasks per node except for the last node which will

have the remaining tasks.

Table 7.3: Flurm Spread Taskmap Results

Benchmark Tasks Spread Time(s)

CG class D 64 146.10
EP class E 256 144.22
FT class D 256 36.64
MGclassE 128 88.05

We can tell that the execution times are even closer, but still the FT benchmark shows a
improvement over Slurm of around 2.7%. All clues point to Flurm having a minimal overhead,
if any, when compared to Slurm.
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7.3.2 Co-Execution Setup

In order to fully evaluate the performance of Flurm, we tried the co-execution scenarios of all
pairs of the selected benchmarks. For each co-execution scenario, we paired the applications
on the same nodes using spread allocation under both Slurm and Flurm. Just like before, each
pair ran together for 10 minutes, with any completed job being restarted. We recorded the
median execution times from these repeated runs as the co-execution time for the benchmark.

Slurm Results

The following table presents the results we obtained when running the benchmarks directly
under Slurm:

Table 7.4: Slurm Co-Execution Results

Benchmark A Tasks Co-Execution Time(s) ‘ Benchmark B Tasks Co-Execution Time(s)

CGclass D 64 191.33 CGclass D 64 191.66
CGclass D 64 155.055 EP class E 256 149.595
CGclass D 64 181.755 FT class D 256 42.305
CGclass D 64 267.855 MG class E 128 105.77
EP class E 256 144.21 EP class E 256 144.205
EP class E 256 148.675 FT class D 256 38.77

EP class E 256 154.31 MG class E 128 96.475
FT class D 256 53.06 FT class D 256 53.01

FT class D 256 48.895 MG class E 128 107.835

MG class E 128 156.19 MG class E 128 156.49
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Flurm Results

The results obtained when running the same benchmarks under Flurm (default task mapping):

Table 7.5: Flurm Co-Execution Results

Benchmark A Tasks Co-Execution Time(s) ‘ Benchmark B Tasks Co-Execution Time(s)

CG class D 64 186.55 CGclass D 64 186.58
CG class D 64 162.9 EP class E 256 145.515
CGclass D 64 179.37 FT class D 256 39.31
CGclass D 64 266.87 MG class E 128 105.54
EP class E 256 145.56 EP class E 256 144.11
EP class E 256 145.075 FT class D 256 36.46
EP class E 256 146.805 MG class E 128 97.29
FT class D 256 39.96 FT class D 256 39.95
FT class D 256 45.04 MG class E 128 108.015
MG class E 128 155.18 ‘ MG class E 128 157.78

And here are the results for Flurm with the same task mapping as Slurm:

Table 7.6: Flurm Co-Execution Taskmap Results

Benchmark A Tasks Co-Execution Time(s) ‘ Benchmark B Tasks Co-Execution Time(s)

CGclass D 64 188.70 CGclass D 64 189.10
CGclass D 64 168.69 EP class E 256 146.61
CGclass D 64 176.39 FT class D 256 39.235
CG class D 64 264.54 MG class E 128 106.12
EP class E 256 145.515 EP class E 256 144.085
EP class E 256 147.34 FT class D 256 37.97

EP class E 256 148.145 MG class E 128 96.445
FT class D 256 42.615 FT class D 256 42.60

FT class D 256 47.085 MG class E 128 106.43
MGclassE 128 155.54 | MGeclassE 128 156.27

Results Analysis

In order to evaluate the time difference between the co-execution times we will use the Mean
Absolute Percentage Error (MAPE) metric. MAPE is calculated using the formula:

n
MAPE = X Z
nis

A, —F
=< 1% 100 (7.1)
A

1

Where:
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« A; is the actual value (execution time under Slurm)
« F; is the forecasted value (execution time under Flurm)
« nis the number of observations

This metric provides an average of the absolute percentage errors between the two sets of
execution times, giving us a clear indication of the performance overhead introduced by Flurm.
Calculating the MAPE for our results, we get a value of approximately 4.793% for the default
taskmap and 3.907% for the taskmap that imitates Slurm.

That deviation is quite small but not insignificant. We need to further examine the individual
benchmark time difference percentages. We choose to calculate the individual time difference
percentages, we can call them Percentage Errors (PE), using the formula:

F — A

Time Difference Percentage = ( ) x 100 (7.2)

i
So that we can see whether Flurm introduces a performance overhead (positive percentage) or
a performance improvement (negative percentage) for each benchmark run.

The individual time difference percentages for each benchmark run are as follows:

Table 7.7: Individual Time Difference Percentages (Default Taskmap)

Benchmark A Tasks PE(%) ‘ Benchmark B Tasks PE(%)

CGclass D 64 -2.50 CG class D 64 -2.65
CGclass D 64 5.06 EP class E 256 -2.73
CG class D 64 -1.31 FT class D 256 -7.08
CG class D 64 -0.37 MG class E 128 -0.22

EP class E 256 0.94 EP class E 256 -0.07
EP class E 256 -2.42 FT class D 256 -5.96
EP class E 256 -4.86 MG class E 128 0.84

FT class D 256 -24.69 FT class D 256  -24.64
FT class D 256 -7.88 MG class E 128 0.17

MG class E 128 -0.65 MG class E 128 0.82




7.3. Performance Check

51

Table 7.8: Individual Time Difference Percentages (Taskmap that imitates Slurm)

Benchmark A Tasks PE(%) | Benchmark B Tasks PE(%)
CGclass D 64 -1.375 | CGclass D 64 -1.336
CGclass D 64 8.794 EP class E 256 -2
CGclass D 64 -2.952 FT class D 256 -7.257
CG class D 64 -1.238 | MGclass E 128 0.331
EP class E 256 0.905 EP class E 256 -0.083
EP class E 256 -0.9 FT class D 256 -2.063
EP class E 256 -4 MG class E 128 -0.031
FT class D 256  -19.69 FT class D 256  -19.638
FT class D 256 -3.702 | MGclass E 128 -1.303
MG class E 128  -0.416 | MG class E 128 -0.141

From the above tables, we can see that in most cases, Flurm is really close the Slurm
execution times in general. In some cases though, especially for the FT benchmark, Flurm
deviates significantly from Slurm, showing a performance improvement of around 25% in
default taskmap and 19.7% in the taskmap that imitates Slurm. A more detailed investigation is
needed to understand the reasons behind these deviations, however it is clear that Flurm does
a great job in keeping the performance overhead minimal and in some cases even improving

the performance compared to Slurm.

Benchmark A
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Chapter 8

Summary and Future Work

8.1 Summary

This thesis presented Flurm, an integration of the Flux resource management framework within
a Slurm-managed HPC cluster at the user level, which enables users to experiment and develop
custom scheduling strategies without requiring system administrator changes. The primary
focus of this work was to establish the foundation for Flurm, demonstrating how Flux can
offer colocation and co-scheduling capabilities, meaning it supports resource sharing.

The first part of creating Flurm involved adapting Flux to operate within a Slurm allocation.
This adaptation required configuring the system’s environment and the package manager for
Flux’s proper installation and operation.

Next, Flux was customized to provide the fine-grained resource control that enables co-
scheduling and colocation. This customization involved extending Flux’s view of the system’s
hardware resources to include sockets. Additionally, a flux cli plugin was developed to allow
for users to either specify a resource allocation type using a job tag or specify to submit a job
tagged to use a queue assigned to co-schedule jobs.

Finally, a series of experiments were conducted to evaluate the correctness/functionality
and performance of Flurm. It was shown that Flurm can successfully co-schedule and colocate
jobs and that the performance overhead introduced by Flurm is negligible.

In conclusion, this work establishes Flurm as a viable solution for co-scheduling research
and experimentation within a Slurm-managed HPC environment without disturbing existing
workflows or requiring system administrator changes.
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8.2 Future Work

While this thesis laid the groundwork for Flurm, several avenues for future work remain to be
explored:

Implementing a Co-scheduling Policy

The current implementation of Flurm allows for resource sharing but does not implement a spe-
cific (non-random) co-scheduling policy. Future work could involve developing and integrating
a co-scheduling algorithm within Fluxion. As part of the Flux exploration work associated
with this diploma, we investigated how could one implement a scheduling policy in Fluxion.
The most viable approach we found was to modify the Fluxion source code to include a new
scheduling policy. Under the flux-sched/qmanager/policies directory, there are several existing
scheduling policies implemented as C++ classes. The base class with comments describing
the required methods to implement a new policy is in the flux-sched/qmanager/policies/base
directory. The new policy will need to be presented to the Fluxion scheduler by a factory class
located in the flux-sched/qmanager/policies/queue_policy_factory.hpp file, which maps policy
names to their corresponding classes.

Exploration of Different Resource Allocation Policies

The current experiments were limited to the default resource allocation policy provided by
Fluxion, which is *first”, meaning that the first resource match fitting for a job request is
allocated for it. An interesting direction for future work would be to explore how different
resource allocation policies impact the performance of co-scheduled and colocated jobs. Fluxion
supports several resource allocation policies, such high node id first and low node id first.
Limited customization is also possible with combinations of different criteria, as the ones
mentioned above. Even more interesting would be to implement a custom resource allocation
policy that takes into account the specific requirements of co-scheduled and colocated jobs.
The development process would be similar to the one described in the previous subsection for
implementing a co-scheduling policy.

Preemption in Flux/Flurm

Preemption is a feature that allows higher priority jobs to interrupt and take over resources
from lower priority jobs. Implementing preemption in Flux/Flurm and evaluating its impact on
scheduling performance and resource utilization would be a valuable area for future research.




Extetopévn EAAnvikn Hepiinym

1 Ewcayoyn

To clusters vynAng arnddoong (HPC) eival cOvOeta kovoypnoto cuGTHHATR OTOL 1) oUTo-
TEAEGHATLKT] KOTOVOLT) TTOP®V KO O TTPOYPAHHATIOHOG EPYACLOV elval KPIGLNG oNpaciog
yla TN peylotomnoinon tng anddoong, Tng aflomoinong kat tng wootntas. Kabwg to popria
epyaciag HPC yivovton 6Ao kot 7o etepoyevr) — cuvdualovTog TPOGOHOLOGELS, AVAALGT)
dedopévwv kot ototyeiar AI/ML — oL Tapadooiokés TOATIKEG TPOYPAPPATIOHOD elval PHePLKEG
(POPEG ALVETTAPKELS YL TNV TTANPN aLoTToinet TG ardS0GNG TOL GVYYPOVOL VALKOD. AUTEG
OL AVNOULXLES TTOPAKLVOUV TNV e€ePEDVIOT TTPONYHEVOV TEXVIKOV TPOYPAPHATIOHOD, OTTMG
1) GLV-TOTTOBETNON KOl O GUV-TIPOYPAPHATIONOG, KOOGS KoL TNV AVAYKT] YL TTELPOHATIGHO
He autég oe mpaypoatikd meptparlovio HPC. Qotdoo, ta mpaypatikd clusters HPC cuyva
droyelpifovtat amd kabiepwpévoug SLayelpLloTéG TOPWV OTTWG To Slurm, To omoio evdéyxeTorl
VaL NV LITOGTN PLLEL EYYEVAOG TETOLEG TIPONYHEVEG AELTOVPYIES TTPOYPAPPATICHOD 1) VO OTTOLTEL
aAAoy€G SLHOPPWONG ard TOLG LY ELPLOTEG CLOTNHATWV. AvTO dnpovpyel éva epmddio yia
TOVG EPEVLVNTEG KAL TOVG XPTOTES TTOL eMLOVUODV VO TTELPAUATLETOOV KoL VoL AELOAOYT)GOLV
VEEG OTPATNYLKEG TTPOYPOHHATIONOD XWPLG Vo SLaTopEOLV TIG LITAPYXOVGES POES EPYATLAG.
[ vor ovTipeTomiotel uTo, piot TOAAE VITOGYOHEVT) TTPOGEYYLOT) ELVAL 1) EVEWHATWGT) EVOG
GAlov mAaiciov dtayeiplong mOpwv 6To TAaicLo eVOg LITAp)ovTOg cluster ov SiayetpileTon
a6 1o Slurm. Avtr) 1) SuTAwHATIKT epyacio eEepevVva AUTT) TNV TPOCEYYLOT) EVOOHATOVOVTOG
to mAaioto Flux oto mpaypatikod cluster Slurm ARIS 6to GRNET. Avtr 1) evowpdtwor, Tov
avaeépetal og Flurm, diver tn duvatdtnta otovg teAkovg yprjoteg Tov cluster va metpot-
HOTLOTOOV HE TTPONYHEVO TPOYPOUHATIGHO TOP®V (CLV-TTPOYPUHUATIOROG, GUV-TOTTOBETN O,
Sduvopkd overlay) evTog Twv SIKOV TOLG KATAVOUMOV, XWPLG VoL ATXLTOOVTOL XAAAYEG ATTO TOV
dtxelploth cvaTHHaTog, To Oepédio Tng omoing Tapovodletan oe avth T dovAetd. Télog,
Sre€qryeton o oelpd TELPOPATOV Yo TNV aEloAdYN o) TNG ETLBAPUVOTC TTOV ELGAYETAL OTTO TNV
TPOTELVOHEVT AVOT), Y vor autodetyOel 1) opBOTNTa TG Ko vor emideryBel 1) kKAPOKWOIPOTNTA
™G. O 6TdX0G arvThG TNG UTAMHUATIKNG ELVOL VO KATAGTHOEL SUVALTT] LI POT) EPYAGLAG OTTOV
Ol XP1|OTEG HITOPOLV:

« Na avantdEovv alyoplOpoug TpoypapaTIGHOD TOTLKA Y PTOLLOTOLOVTHG KAITTOLO £pY0L-
Aelo Tpooopoiwong d6nwg to ELISE [1].

« Na ypayovv avtotg tovg alyopiOpovg oto Flux kot v Toug dokipdoovy oe éva eley-
xopevo mepifariov dockerized.

« Na xpnowomotjoouvv to Flurm yia v petafodv ampodcokonta amd TIG TOMLKEG dOKIHES
OTNV TPAYHATIKY eKTEAECT] TOL cluster yia a&loAdynon.
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HPC Scheduler
Designer Suite

DESIGN | SIMULATE

Craft your scheduling Estimate the behaviour of
algorithm using the ELISE your scheduling algorithm
framework on various workloads

Launch in the Flurm user- Transform your ELISE
space environment to algorithm into a Flux
evaluate real world | scheduler and Validate it in

performance a dockerized framework

DEPLOY | CONVERT

Yxrjna 8.1: Emoxonnon Porg Epyaciog Flurm

2 Yroloylotikd Tvotnpata YPning Anodoong (HPC)

H vroloyiotikn vynAng anddoong (HPC) éxer e€eliyBel amd Tig mpwTeg, meploplopéveg
HNXOVEG GE CUGTNHATO PEYAANG KALPLOKOG LKV Vou eKTEAODY popTia epyaciag exascale
KAipokag mov virepPaivouy T 1018 wpdEeic kivntig LITOSiaGTOAAG avé SevTepdrento. Ot
ovyxpovol vtepuoloylotég 0mtwg o El Capitan Eemepvoiv ta 1,7 exaFLOPS, kol j cuvdvaopévn
ant6doo1 Twv cvotnpatwv TOP500 éxel vepdimlacioctel — amd 5 exaFLOPS to 2023 oe
mave oo 11 exaFLOPS péyxpt o 2024. Avtr) n avamtu€n mpoépyetat ommd tnv mpo0odo 6Tovg
ene€epyaaTEG, TN PV, TIG SLAGLVOETELS, TOVG ETLTOXVVTEG KOIL TO AOYLOHLKO, e 83 oo Tar
100 kopv@aic cuoTpaTa Vo evepatdvouy TAéov GPU 1) mopopolovg emttoyuvTés.

To HPC éyer yivel éva OepeAioddeg epyodeio il TIG QUOLKES ETTLOTHHEG, TOVG HIJYXOLVIKOVG
KoL TIG avorkoAOPels faciopéveg oe dedopéva. ZUPTANPpOVEL T TTELpapaTo KoL TN OewpnTiki
HOVTEAOTTOINGT), EMLTPETOVTOG HEYAAEG TTPOGOHOLOTELG, AVAAVGOT) SeSOUEVWV GE TPAYHATIKO
XPOvo kot adyopiBpovg mpoPArePng oe kAipokeg oL StapopeTikd B TaV AVEPLKTES.

Apyrrektovikd, Ta cvothpata HPC opyavovovtal cOpgwva pe tnv taEivopnon tov Flynn,
1) OTTOLA KATATAGGEL TOVG LITOAOYLOTEG pe PAon TOV TOPAAANALGHO eVTOADV Kot dedopévav
ot kartnyopieg SISD, SIMD, MISD kot MIMD, pe tnv teAevtaia vo KpLapyel GTOVG GVYXPO-
voug vrtepumoroylotég. H kuplapyn popen HPC onpepa eivor 1o obotnpa todveneepyoctodv,
éva dikTvo ene€epyacTOV TOL CLVEPYALOVTOL Ge €var eViaio POPTO epyaciag. AVTA HITopoLV
vo €xouv TpeLg Pacikég SLpopPOoELg:

+ IToAvemeEepyaotég Kotviig Mvnpung: 6Aot ot eme€epyactég éxovv mpocPacn oe pia
kown pvnun (eite Uniform Memory Access — UMA/SMP eite Non-Uniform Memory
Access — NUMA).
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« EneEepyaotég Malikng loapdAining Exe€epyaciag (MPP): xpnoyonoodv kato-
VEUNUEVT) HVIHT 0€ TTOAAOVG KOPPOUG YLot EMTEKTAGLUOTI T KA OTTOOOTIKOTHTAL.

« Tvorolyieg vroroytot®v (Clusters / Commodity clusters): amotelovvtal €€ o-
AOKANPOL aTTd ETOLHA TTPOG XPTOT) EEAPTIHATA, TTPOTPEPOLY OLKOVOHLKA ATTOOOTLKN
EMEKTACLLOTI T KOLL ALVTLILPOCWITEVOLV CHEPX TTAV® ATTO TO 80 % OAWV TWV GLGTNUATOV
¢ AMotag TOP500.

JUVOALKQ, QUTEG OL apLTEKTOVLIKEG autelkovilouv tnv e€€AEn Tov HPC amd e€etdikevpéveg
U XOVEG OE TIOLKIAEC, EMEKTACLUEG TAATPOPLES TTOL LTTOGTNPLLOLV T GVYXPOVI] VTTOAOYLOTLKY)
ETLO TN KOL UNXOVLIKT.

3 Awayeipion mopwv oe cuotnpata HPC

H BéAtiotn xpnoomnoinon twv topwv ot cvotripata HPC amoteldel kxpioyo mapdayovra yio
v enitevEn vYMAng addoong. O drxxelplotég TOpwV mallovv KEVTIPLKO POAO YLA TO TWG
KOLTOVELLOVTOLL OL DTTOAOYLOTLKOL TTOPOL GE EPAPHOYEG XPTOTAOV.

3.1 Katavopn Iopwv

H xatavopn auth amotelel TNV avTioTolylor LITOGLVOAOL TV SLBESIUWY TOPWV TOL GLGTH-
HOTOG G€ OUYKEKPLUEVES EPYUOLES XPNOTAOV PacLopévn oTIg amattroelg toug. Ta Paoikd eidn
TOPWV OV avaryvewpillovv oL dloyeLpLoTég TOPWV TTEPLAXUPavouv:

+ Yrnoloyiotikoi Koppor (Compute Nodes)

« Ene€epyaotikoi [Tupnveg (Processing Cores)

Arxovdeon (Interconnect)
+ Méoa amoOnkevong (Permanent Storage)

« Emutayvvtég (Accelerators)

3.2 ApopoAroynon Poprov Epyaciag (Workload Scheduling)

Epyaocieg (Jobs)

M epyaoio ammotelel évor avTOVopo pepidio dovAeldg To omoio oyetiletat pe pio eilcodo ko
KoT& TNV ektéleon) Tng mapdyel pia é€0do. Ot epyacieg propovv va ekteAobvTaL SLodpacTiKd
(interactively), katd tnv omoia elvar duvatr) ) GUPHETOYT TOL XPHOTN HECK TNG KOVGOAXG, Yl
TNV TaLpoxT EMLTAEOV ELGOSOV GTNV EPAPHOYT) KAT TNV ekTéAEDT), ) va emte€epyalovTol polik&
(batch processing) 6:tov 6AN 1 aTapaiTn T TANPOPOPLX YL TNV OAOKAYPWOT) TNG EPYATLNG
elvor draBéopn katd tnv vtofoAr tne. To batch processing mapéyel peyodttepn evel€ia oTo
ovoThipaTa dtayelplong ToOpwv, kabwg puopel va amopacicel TOTE eivat 1) LOXVLKY GTLYHT Vo
Eexwvnoel 1) k&Be epyacio cOpPva He TNV katdotoot Tou cluster. Mix epyacio propet va
dwxipeiton oe pkpoOTeEpa Koppatia, to tasks. Xovibwg, kabe task oyxetiCeton pe Tnv extéleon
€VOG GUYKEKPLUEVOUL TTPOYPAUHOTOG. 2E YEVIKEG YPOHUES, SEV ELVOLL UITAPALTITO TOL ETLHEPOVG
tasks pog epyooiog va €xovv KoLVa YapokTNpLoTIKA OGOV pOPA X PT)CLHOTOLOVHEVOUS TTOPOLG
KoL StpkeLo eKTEAEOTS.

Ovpég epyactodv (Queues)
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Ot exkpepeic epyaoieg vToAoyloTOV amobnkedovtal oe 0VPEG epyaaLOdV oL kKabopilovy T
OELPA [le TNV OTolot OL EPYATieg eMAEYOVTOL OUTTO TOV JLOLYELPLOTH TTOPWV YLOL EKTEAECT). 2T
mepLocoTEPa cLoTHpOTA dtayelplong Topwv, 1 emmtdoyr) yivetan pe Tnv FIFO (First In First Out)
TTOALTLKT), OHOG XOXAXPDOVOLY QVTO TO GYNHX YLt VX QVENGOUV T1 XP1OT) TOL U)X AVIHATOG, VO
BeAtidsouv Tov Xpovo adkpLlong 1) v PeEATIGTOTOLGOUV e GAAO TPOTO KATTOLXL TTTUXT) TOV
OLOTHHATOG, OTTWC LITodeLkvieTaL atd ToVv Yelptoth. Ta TepLocdTEPA GLOTHIATA XPNOLUO-
70LoVV oLVNOWG TTOAAXTTAEG OVPES epYOLOV, Kabepia e CUYKEKPLUEVO OKOTTO KOl GUVOAO
TEPLOPLOPDOV dPOHOAOYNOTC.

ApopoAroynon

Ot koLvég TapApeTPOL TTOL emnpPedovy TNV dPopordYynoT epyaciav mepthapfPdvouy ta e€ng:

o At@eopotnTa TOV TOPWV EKTEAECTG KL TV BonONnTik®OV TOP®V elvat 0 TPOWTOPYLKOG
mopayovtag tov kabopilel TOTe prmopei va Eekivrioel pia epyacio.

« IIpoTepalOTNTA EMULTPETIEL OTIC EPYNOCLES [E TTEPLOGOTEPA TPOVOHLA VO EKTEAOVVTOAL
VOPLTEPA 1] AKOUN KoL VoL TPOAAPAVOLY TIG TPEXOVOES EPYRTLEG e XOUUNAOTEPT) TTPOTE-
pooTnTaL.

« ITopot mov katavépovton otov xpriotn kabopilovv To pokponpodbecpo cvolo TOpwV
TTOL PUITOPEL VO KOTAVAADGEL £VAG GUYKEKPLHEVOG XPTIOTNG EVGD 0 AOYXPLXGHOG TOV GTOV
VTTOAOYLOTH TTOPAPEVEL EVEPYOC.

+ Méy1otog oplOHOGg EPYACLOV TTOV ETUTPETETAL VAL EKTEAEGEL TAVTOX POV £VOG XPT-
oTNG.

« ZnTtolpevog XpOvog EKTEAEONG TTOV EKTIUA O XPTOTNG YLO TNV epyooia.

+ XpoOvog eKTEAEOT|G HITOPEL VXL TTPOKAAETEL AVAYKAOTLKO TEPUATIONO TNG epyaoiag 1] va
eMNpPedoeL T1) SPOHOAOYNOT EKKPEPDV EPYOOLAOV YLOL HEAALOVTLKT] EKTEAEDT).

« Efaprnoeig epyaciodv kabopilovv tn oelpd ekkiviong TOAOTADY OYETIKOV EpYO-
oLV, eLOIKA 08 GEVAPL TTAPAYOYOU-KATAVAAWTY).

« Eppavion copfdavrog, 6tav 1 évaptn g epyaciog avaPailetar péxpt va cupPel éva
ovykekplpévo pokaboplopévo cupPav.

o AlOeoNOTNTO TOU XEIPLOTN TN PEALEL TNV EKKIVNOT) SLAOPACTIKOV EQAPHOYDV.

« AwaB@esopotnta dderag xpriong AoYIopIkov, eqv pia epyocio {nta tnv ekkivnon
OLOKTNTOL KOILKA.

Y& YEVIKEG YPOUHES, oL adyopiBpol dpopoAroynong xwpilovtal oe do katnyopiec:

« AAyop1Oporn Sraporpacpot xpovov (Time-sharing algorithms): Sioxywpilovv To
XPOvo evog emekepyaotr| oe Stapopa Siakpita Saotriparta 1) xpovobupideg (slots). Avtég
oL ypovoBupideg (slots) otn cuvéyela exywpodvTaL Ge HOVadLKEG EpYTies.

« AAyop1Bpot draporpacpot ympov (Space-sharing algorithms): divouv toug {n-
TOUHEVOLG TTOPOULG Ge piot pOVO epyacia péxpl va oAokAnpwOel 1 extéleorn) tng. Ot
dpoporoyntég oe clusters Aettovpyodv o€ Aettovpyia space-sharing.
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3.3 ExtéAeon ko [lapoarxorotOnon ®oprov Epyaciag(Workload Execution
and Monitoring)

Ot Sroyelplotég TOpwV ekkIvoV Kot StoryelplilovTal ATOTEAECUATIKG EpYaTieg HEYOANG KA~
KOG X PN OLHOTOLOVTOG LEPAPYLKOVS UMY AVIOHOVG TTOL EAALGTOTOLOVV T1) HETOPOPE Sedopévv
KoL a€loTTolotv TNV TomoAoyia TOL SLKTUOV, ATTOPEVYOVTAS AVOTTOTEAECHATIKEG peBddoVg
OTWG Ol EMAVAACPPAVOLEVEG ATTOHAKPVCGHEVES KATOELG KEADPOLG. MITOpOoLV VoL TeEpPATIGOVV
ypnyopa epyacieg mwov vrepPaivouv Ta dpia TOpwV 1} XpOVOL, 1o Te va eAevBepOdGOLY dpECT
koppovg. EmumAéov, mapakolovBolv TIG papHOYEG KoL KATAYPAPOLY TH XPNOT) TV TOPWV
Yyl accounting Kot Xp€wor).

4 Slurm Workload Manager

To Slurm eivan évag dtoyelploTig POPTOL epyasiog avoLyTol KOk, avOeKTIKOG € GPAApATL
KoL eEXLPETLKA EMEKTACLHOG Yl cLGTAdeG Linux, o omoiog Aettovpyel xwplg TpomOTOLCELG
otov uprva. Katavépel Toug vmoAoyloTikovg TOPOLG 6TOVG XPNoTeS, dlayelpiletot tnv
eKTEAEDT) KoL TNV TToepacko AoV o TV epyaoldv Kot xelpiletot Tnv dpopoAdynon twv epya-
oLV PECW eVOG GLOTNHATOG oVP®VY. To Slurm vrootnpilel emiong TpoatpeTikd TPoOcHeTa
yla Aettovpyleg 0mwg accounting, mpoyxwpnpéveg kpatnoelg, backfill kou gang scheduling,
KOTOVOT TTOPWV HE YVAOOT) TNG TOTOAOYLOG KOL TTPOTEPALOTOLNGT) EPYACLOV PE TOAAATAOVG
TOPAYOVTEG,.

4.1 Apyttextovikn Slurm

To Slurm ypnopomotet évav kevipikd drayelploth, To slurmctld, yio tnv enifredn tov topwv
KOL TV EPYUCLOV, HE TTPOULPETLKT dNplovpyio avIlypa@wV ac@aleiog yio avakatevluvveon
oe mepintwon PAaPng. Kabe vroroyiotikog kopfog ektelel éva daipova slurmd mov exteAel
epyacieg ko vTooTNPLlel emKovwVio avekTikT oe o@aApata. Ta TpoopeTikd oToLyela mepL-
Aappavouv to slurmdbd yia kevrpomonpévo accounting oe 6Aa ta clusters ko to slurmrestd
vy tpocPacn oto REST APL Ta epyadeia xpriotn mepthapfdvouvv ta srun, scancel, sinfo,
squeue KoL sacct yuor Tov EAeYY0 KoL TNV TopakoAovOnoT epyascilidv, evad TO sview mapéyel
Hio ypouptkt) astetkoviot). Ot Stayelplotég xprnotpomolodv To scontrol yio T Sixyeipion twv
clusters kaut to sacctmgr yio T dtopodppwor (configuration) tng Paong dedopévwv kot Twv
xpnotov/Aoyoproacpov. API eivon Srabéoipa yia OAeg Tig Aettovpyiec.
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Controller daemons

slurmd  slurmd vee slurmd

Compute node daemons

Yxnjpa 8.2: Emokonnon Apyitektovikng Slurm

4.2 Opydvwon Poprtov Epyaciog Slurm

To Slurm Swoyeipileton Sipopeg Paoiiég ovtotnteg: KOHPOLS (LTTOAOYLIETIKOUG TOPOLG),
dwopepioelg (partitions, opadeg kKOPPwV TOL AELTOLPYOVV KL WG OLPEG EPYATLOV), EPYUTLEG
(koetavopn) TOpWV yia xproteg) ko Ppata epyactdv (cOvola tasks evtog plog epyaciog).
Ké&Be Sropépron éxel meploplopoig, OTwg xpovikd opa, péyebog epyaciog kot Sikatodpato
xpnotn. Ot epyociec SpopoAoyobvTal KUTA TPOTEPALOTNTA HEXPL VA YERLGOLVY OL TTOPOL G
pio dropépiomn. MOALG katavepnBovv, oL xprjoTeg HITOPODV VoL EKTEAEGOLV EVA 1) TTEPLECOTEPQL
Brpata epyaciog oe omoladnmote SLpOPPWST) eVTOG TV KOPPWV TOL TOLG £XOLV ek)wPNOeL.
To Slurm Sroyerpiletan emiong Tovg eme€epycTIKOVG TOPOLS EVTOS HLOG EPYATLNG, EMLTPE-

TOVTOG TOAMXTTAL Prjpata epyaciog vo ekTeAoDVTOL 1} VO SPOHOAOYOVVTOL ITOTEAEGHATIKA
EVTOG TV KOLVOV EKXWPNHEVOV TTOPWV.

Yxripa 8.3: Iapdderypa Ovtotrtwy Slurm
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5 Flux Framework

To Flux [8] eivon éva mAatiolo Sty elplong mOpwV KAl EPYACLOV VEAS YEVLAS TTOL avatTOXOnke
amnd to Lawrence Livermore National Laboratory. Enekteivel tnv opatoétnta tov dpoporo-
YNTH TEPA ATTO TN HOVOSLAGTATY TTPOGEYYLOT) TOV «KOPPWV», GLUVILALOVTOG TNV LEPAPXLKT)
dwxyeiplon epyaciadv pe tnv dpoporoynon Pacel ypopnuatwv. Aev éxel avomtuxOel amAodg wg
éva vtokatdotato twv SLURM ko Moab. To Flux mpoc@épel éva mAaiolo mov emitpémel tnv
avamtuEn vEov TOTTWV TOPWV, JPOROAOYNTOV KoL VTN PECLAOV TOV, KXO®G Ta KEVTPX SedOpEVWV
ovveyilovv va e€ehicoovtatl. [laporo mov to Flux Ppicketar akopn oe evepyn avamtuén (active
development), xpnoipomoteitot et TOL TAPOVTOG OTNV TAPAYWYT] 6TA akOAoLO LG TAHpATA
Top500 [9]:

« El Capitan (#1)

« Tuolumne (#12)

El Dorado (#28)

« rzAdams (#64)

Tioga (#257)

Tenaya (#337)

5.1 Apxtrektovikn Flux

Flux Instance

‘Eva Flux Instance eivon évog avtdvopog Slogxelplothg pOpTou epyoasiog mov atoteleital atd
évav 1 meplocotepoug Flux brokers cuvdedepévoug oe éva devdpikng popeng diktuo emkdAv-
g (tree-based overlay network). Avtoi ot brokers yeipilovron tn Swefipaon pnvopdrwv,
dpopoAoynon GUPPAVTOV KaL TNV AVOKGALYT VITNPECLOV, CYXNHATILOVTOG TOV KATAUVEUNHEVO
koppo tng apyltektovikng Flux. Flux Broker

O Flux Broker eivou évag xatavepnpévog daipovag (daemon) mov Paciletar oto ZeroMQ
(OMQ) kou apéyel emkovavia evrdg evog Flux Instance. Exet dvo kOpia cvotatikd pépn:

« Aiktvo emucdAvyng: Epoappoler apopéoeig RPC kot pub-sub ypnoporoidvrag emi-
pova entimedo Stktoov ZeroMQ yix aLomiotn), torktikr ko avtoemidiopOolpevn emtkot-
vovia.

« Baowég vnnpeoieg: Tlapéxel Paoikég Aettovpyieg 0mwg dwayeipion diepyacidv MPI
(PMI), éAeyyo ektéleong ko drxeipion povadwv peocordpnong. [ipocheteg vnpeoieg
VAOTTOLODVTAL WG HOVADES TTOL POPTOVOVTL SLVALKA.
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Broker

Flux Broker Modules
(i.e., Services)

Broker
Module
Management

PMI Broker State
Client Machine

Broker Core Services

Message Routing

2MQ

Ixnpoa 8.4: Emiokomnnon Flux Broker

KVS (Key-Value Store)
To Flux KVS eivou éva broker module ov mapéyet éva katavepnpévo, GUYXPOVIGHEVO OUTO-
Onkevtikod YOpo dedopévwv mov yxpnotponoteitar amtd il ototyeio tov Flux. Ymootnpilel
TUPOAANAT avToddoyn) dedopévwv kat Tpocwpivr) armobrjkevon — kpiopa yia Aettovpyleg
6mwg To MPI bootstrap kat o cuvtoviopdg oe eninedo ocvotpatoc. Agrtovpyieg (modes)
Flux Instance

« Aevtovpyia evog xpnotn (Single-user mode): Eva Flux Instance extedeiton wg
TAPAAANAN epyacio e AmOKAELGTIKY TPOGPACT) GTOVG EKYXWPNHEVOLG TTOPOLG ATTO TOV
WOLOKTHTN TNG EPYATLOG.

« Asrtovpyia moAhanAdv xpnotdv/cvotipartog (Multi-user/system mode): To
Flux Aettovpyei wg droyelplotng mopwv o eninedo cvotnpatog. Oubrokers exteAodvron
uto évav xpnotn cvotipatog (flux), dwyetpilovtan amd to systemd ko virosTnpilovv
TOAMOTTAOUG XP1IOTEG HE ACPAAY TTLOTOTOLNOT).

To id1a exTeAéoipa apyeior ypnopomotodvtal kKot oTig dV0 Aettovpyieg, pe povn Staxpopd Tn

Stopdpewaon.

5.2 Xtotyeiot Aoytopikod Flux

5.3 Flux Scheduler - Fluxion

Avanapdotacn Topwv pe fdon ypoerpoto

To Flux xpnoomotel éva HovTéAo kateLOVVOHEVOL YPAPTHATOG YL TNV AVATTOPACTOCT)
ETEPOYEVAV TTOPWV GLOTHHATOG, EMLTPETOVTOG SUVOLKT) Kol Lepap) Lkt dpoporoynor). Kabe
KOPLQT AVTLTPOCKITEVEL EVaV TTOPO KoL OL AKpHEG OpilovV TIG XETELS. AUTO TO HOVTELO LTTO-
otnpilel evEALKTT, eLAUGONTN OTNV TOTOAOYLX KATAVOUT KOl SPOHOAOYTGT) LITOYPAPHATWV.

ApopoAoynon pe faon ypagpovg
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To Fluxion dnpovpyet évav ypa@o mopwv 6T Pvipn, avTloToy (el ALTHOELS EPYOTLOV
pe SLaBEGOVG TTOPOLG X PTCLLOTOLOVTAG TTOALTLKEG OLAGYLOTG TOV YPAPOL TOL GUGTHATOG
KOl QVTLOTOLYLOTG TOV HeE TO Ypao NG epyaciog. Eniong feAtiotomoiel tnv dpopordynon
HECW PIATPWV KAAEPATOG Kol TOPAKOAOVONONG TNG KATACTAGNG TWV TOPWV G GXECT] He
TOV XpOVO, EELCOPPOTOVTAG TNV ATTOSOGT JLE TNV ATTOTEAECHATLKOTNTA TG SPOHOAOYN GG O
OLOTARATO HEYAANG KALHOKOG.

IMoAwtikég ApopoAoynong

To Fluxion vrootnpilel Tpocappocieg TOALTIKEG avTioTol)long TOpwv (.. low/high
ID, node-exclusive) kot moAitikég ovphg avopovrg (m.x. FCES, EASY, conservative, hybrid
backfilling). Avtég pmopodv va TPOcaPHOGTODV HEGK XOPAKTIPLOTIKGOV OV 0pilovTot otd

TOV XPNOTN.

5.4 Movtélo gpyociov Flux

M epyoacio avamapliotatal wg éva cOVOAO Tpodiaypop®dv oL Aéyetal jobspec, To omoio
TEPLYPAPeL TOPOLG, tasks ko yapaktnploTiKd TeplPAAlovTog eKTEAECT|G TNG.

« ITopotr (Resources): Opilovv T0 YPAPNHX TV PUOLKOV KL AOYLKOV OVTOTHTWV TNG
epyooiag (m.x. koppfot, mupnveg, vitodoyEq).

+ Tasks: EvtoAég mov avtiotoryifovtal oe vITodoXEG.

« Xapaktnprotikd (Attributes): Ilepiparrov extédeong (7T.x. XpOvikod OpLo, KATAAOYOG
epyaoiog - working directory).

Flux EvtoAég CLI

« flux start — exkivnon véov Flux instance

« flux alloc - exywpnon tépwv kot ekkivnon sub-instance

+ flux submit — vtofoAn epyaociog yix extéleon

+ flux run - extelel puo epyocio Stadpactikd

« flux batch — vtof&AAel batch scripts yix extéleon

+ flux jobs — eppavilel Tnv Alota epyaciodv mov éxovv vtoPAnBel 1) exkteAovvTan
« flux cancel - akvpovel epyocieg

+ flux shutdown - otopatd éva Flux instance

6 Flurm

Avto 1o xepdharo apovotdletl To Flurm, tnv evowpdtwon tov miaisiov Flux e éva 60-
prAeypo HPC mov SwayetpiCeton to Slurm. Ilepiypdgel Tnv apxLTeKTOVIKT), TIG TPOTOTOLNCELG
oto Flux kot Tig TpokAfoelg vAomoinong mov cuVAVTHONKAY KATA TNV EVOWUATOGT).
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Emokonnon tovu cluster ARIS

O ARIS eivou évag vrtepumoloylotng Tov omoio dorxetpiletar to Slurm ko Aertovpyet otd
to GRNET otnv ABnva. IlepihapPaver 532 kopPoug (THIN, GPU, PHI, FAT kou ML) mov
ovvdéovtar pécw Infiniband ko porpalovton 2 PB amoBnkevtikod ycddypov GPES. H epyacia
QTN ETKEVTPOVETAL OTNV eVOWPATWOT) ToL Flux o¢ eninedo xprjotn otovg kopfouvg THIN,
XPNOLHOTOLOVTAS TO Slurm yix tnv opyLkr} SPOHOAOGYNOT) KoL TNV KOTOVOTY TTOPWV.

Eykotdotaon Flux

H eyxatdotacn tov Flux otov ARIS amoutovoe avamtuén ce eninedo xpriotn Adyw meplo-
plop®v tov cvotnpatog. H xpnomn tov Spack emétpefe pio avtdévopn xatackevr(custom
build) xwpig mTpovopiax dwyeipioth, emAbovrag tpoPfAnpata cvpPatotntag pe to CentOS 7
Ko eMAetmovoeg eEaptroels.

To Spack eivaun évag evEAKTOG SLoyELPLOTAG TAKETWV G ETLTTESO X PTOTI YO CUOTHHATO
HPC, mov emitpénel TpocaploCpEVES, PEATIOTOMOLNUEVEG KATOOKEVEG GE OLAUPOPOLS HETA-
YAWTTIOTEG KoL pYLTEKTOVIKEG Xwpig dikowpata root. Yrootnpilet Swxyeipion eEaptroewy,
npocwpLvig atobnkevong binaries kot e0koAN enekTaoIpOTNTA KOOGS eivar Paciopévo oe
Python.

Eyxatdotaon Flux pe Spack

To Flux eykatootddnke pécw Spack xypnowomoiwvtag modules 6ntwg T gnu, python ko
git. IIpopAnpata 6mwg o curl moaAldg €xdoong, pn avayvopiopéva modules petay oTTi-
otV kot PLPALodNKeg emAOONKAV HEC® TPOTOTOLGEWY OTH JLPOPPWAT], TPOTOTOLNGNG
TV petaAntav mepipdilovtog ko emdlopbwcewv ota apyela TakéTwv Tov Spack yio va
oupepAn@Bolv o1 Tedevtaieg exkdooelg Tov Flux.

Emokonnon Flurm

To Flurm extelel to Flux evtog prog katavoprg Slurm, exkivovrog éva Flux instance pécw tov
srun. H pon epyaciag (workflow) StxcpariCel 6TL o1 brokers Eekivodv 6TOVG KATAVEUNHEVOUG
KopPoug kau teppartifovral pe kabapd TpOTO 0TO TEAOG TNG ekTéNeONG TNG epyaciag. Ou
Boaoikég Tpooappoyég mepthopfévouv:

+ AvakoatevBuvor tov /dev/random oto /dev/urandom yio ToPAKOpUYT TV SLOLKOTOV
ekkivnong mov oyetiCovtal pe Tnv evrpomnia Tewv thin nodes.

+ POOpon tov FLUX_DISABLE_JOB_CLEANUP=1 yiot 2mto@UYT) CPOAPATOV TPOCWPLVOV
opyetowv.

YuvvromoBéTnon kot cuv-Spopoldoynon

Yvvrono0étnon
H cvvtomoBétnomn emitpénel oe TOAMATAEG eQapHOYES Vo HolpAlovTal KOPPOLG Yo TNV TTLo
amodoTikr aglomoinon tovg. O Texvikég meplhapfavouy:

« Svpnayng katovopr (Compact allocation): yépiopa ke xoépPov mpv amd
petaPact oe enopevo.

« Atdonmaptn katavopn (Spread allocation): cupmayng KaTavopr epyacLdv o€ plod
sockets.
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« Job Striping: Sidomaptn katavoprn oe Tupnveg mov eivor adpaveig (idle) kan Sraporpoa-
opog sockets pe dAAeg epyaciec.

Tov-dpoporoynon
O ovv-8popordynon amopacilel moleg epyoacieg Oa TomoBetnBovv pali. Av kot to Flurm
dev epappolel oo ovykekpLpévoug odlyopiBpoug (tuyaio cuv-popoAdynor), To cOoTHHA
vrtooTnpilel HEAAOVTLKEG ETTEKTAGELS GUV-OPOROAOYTOTC.

YrootnptEn cvvrtoriopov oto Flux

To Flux vrootnpilel T660 cupmayeig 060 Kol KATAVEUNHEVEG KATAVOPES HEGW TTPOCOLPHO-
opévwv jobspecs. Ot epyacieg vmofarrovtor pécw tov Flux Python API ypnopomoidvtag
jobspecs YAML mov dnpiovpyotvtar duvapikd. Ot mpokAnoelg mepthdpfovay meploplopévoug
TOTTOVG TPOETLAEYHEVOV TTOPWV KoL TNV oVALYKN dnHLovpyiog ypopnpatev mopwv (apyeio R
kot JGF) dvvopukd ava epyosio Slurm.

[Iepzooerg xpriong yix cuvvionoHiTnon kot cuv-SpopoAoynon

AvantOyOnkav dvo Flux CLI plugins yiox tnv vmootiplEn twv akolobbwv mepurtooeny
Xpnong:

Kotoavopn pe etikéteg epyaciov

‘Eva plugin Flux CLI npocOétel tnv emdoyr) ——alloc-type={compact,spread} xatr tnv
XPTOLOTOLEL YL TNV UTOHOLTH TTPOGAPHOYT) TOL jobspec avaloya pe Tnv emtheypévn péodo
KOTOVOUNG TTpLv TNV LITOBOAT TNG epyaciag.

Kartavopn pe etikéto ovpdg

Avo ovpég Flux (normal kot cosched) emitpémouy tov dtaxwplopo (partitioning) Twv epyaciov
mov Pplokovton otov idio xwpo. Eva plugin avtictoryilel tnv emhoyn (option) ——cosched
N ——queue=cosched otV ovp& TOL TPoOPIleTaL Yior GLV-SPOROAOYNOT) Kol TPocappolel To
jobspec oe spread allocation pwv a6 tnv vtofoAr tng epyaciog.

sbatch node allocation
(Flurm cluster)

S

Broker config

Resources ! Flux run ! R
b flxstart L S Eligin
l

! initial jobspec l\

e~ -
transformed jobspec l
Tttt N

-
s |
: Job output :
l\ 1

,

JSON Resource Graph

Yxnjna 8.5: Por) epyaciag Flurm CLI Plugins
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Dockerized IIeptfpaArov

‘Eva Dockerized Slurm cluster (¢vag koppog eAéyyov, Tpelg vtoloylotikoi kopPot) dnpovp-
ynonke oto Rocky Linux 8 yia yprjyopeg dokipég. IlepihapPaver Spack, Flux kou scripts
SLHOPPWETG YO TNV AVOTTapaYwyn NG oupmepupopag tov ARIS, vtootnpilovtog Tnv ava-
ntv€n tov Flurm.

8.3 IInyaiog k®wdikoag
O mnyaiog kodikag tov Flurm eivou Stabéopog otn devBuvon:
https://github.com/cslab-ntua/flurm
To amoBetrpro mepthapPavet:
« 'Eva mepipdirov Sokipov Slurm pe Docker.
« 'Eva xatdloyo pe To akdlovbo oyetikd apyeiot yioe to Flurm otov ARIS:

— Scripts eykataotaong Spack ko Flux.
— CLI Plugins yio Katoovopn Kot GOV-TpoypOopoTIGHO.

— Scripts yia Suvaypukn dnpovpyia ypagnpatwv mopwv R kot JGE.

7 Herpopatikn AEloAoynon

AvTo To Kepaharo mapovotdlel TNV afloAdynon tov Flurm, tng evowpdtwong Flux-Slurm,
oto ARIS HPC Cluster ypnowomowdvtog to flux-core v0.78 ko to flux-sched vO0.47.
O otd)0g Ty va emadnBevtel 1 Aettovpykcdtnta Tov Flurm ko va aohoynBet n amddoom
TOL 0¢ GUYKPLOT) HE TNV eYYevn ekTéleoT) Tov Slurm.

NAS Parallel Benchmarks (NPB)

H afloloynon xpnoyonoince tn covita NAS Parallel Benchmarks (NPB) (éxdoon 3.4.3, MPI
vAoTmoineon), Tov mpoépyetal and computational fluid dynamics epappoyég (CFD). Ilepiiop-
Baver mévte mupnveg (kernels) (IS, EP, CG, MG, FT) xou tpetg Yevdoepappoyéc (BT, SP, LU)
oe pokaBopiopéveg katnyopieg tpoPfAnuartwv (S-F). EmdéxOnrav cvykpitikég a&loloyn-
oelg TV katnyopldv D kat E mov avtutpocwmehovy peaAloTikd, ATottnTIkG LITOAOYLOTIKG
popTiaL.

EAeyyxog AettovpytkotnTog

[ tnv emaAnBevon tng opBoTNTOG, To EP benchmark exteAéotnke ypnoyomoidvtog tig
kotavopéc compact, spread kou striped tov Flurm. H ava®eon task oe muprveg (CPU pinning)
eAéyxOnke pe tn onpoaio —o verbose=2. Ta amoteléopata enifefaincav 0Tl OAeg oL epyncieg
oTepe®ONKAV GTOVG AVAPEVOUEVOUS TTUPTIVES YL K&BE TUTO KATAVOUNG, ATTOSELKVOOVTAG TT)
OWGOTH KATAVOLT] EPYUCLOV KOL KOLVT) XP1ioT) KOpPwv.



https://github.com/cslab-ntua/flurm
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2 3 1 1 2 3 2 1 2 Fl 1 2 3 2 1
4 1 a 1 4 1 4 1
n n

(o) Zopmayrig Kato- (B") Aveomaptn Katavopry yioe 16 ep- (y’) Striped Katavopun yua 16 epyo-

VO] Lot 16 epyooieg yoolieg oleg ava epyacia

] || | | || N A B [ R
(8') Striped Katavopn yi 32 epyacieg avé ep- (€') Striped Katavopr yux 40 epyaocieg avé ep-
yooio yaoio
‘EAeyxog amddoong

H amddoon a€loloynbnke cuykpivovrag tovg xpovoug ektédeong twv NPB 1600 6to Slurm
600 ko oto Flurm. Ot emdeypévor delkteg avopopag nTov:

+ CG (Katnyopia D, 64 epyocieg) — akavOvVIGTH PV KOL ETLKOLVOVIQ

« EP (Katnyopia E, 256 epyacieg) — mapdAAnin emkovaovia

« FT (Katnyopia D, 256 epyacieg) — evtatikn emkolvovia OAwV pe OAoLg
+ MG (Katnyopia E, 128 epyacieg) — evtatikr] xprion Hvipung

AAOTAPTI KATOVOUN

K&Be benchmark extedéotnie yioe 10 Aetté 1600 oto Slurm 600 ko oto Flurm. Ou xpdvor
ekTéleong PeTaD TV §00 CLOTNHATKWV Tav 6XedOV TavopolotuTol, pe To Flurm va mapov-
owalel eAdxioto 1) kaBoAov emmAéov @opto. To FT benchmark eiye axopn ko éog kot 6%
Ty Otepn atddoon oto Flurm.

Mivakag 8.1: Slurm Spread Results

Benchmark Tasks Xpovot Spread(s)

CG class D 64 149.70
EP class E 256 144.18
FT class D 256 37.68
MGclassE 128 88.50

Kata v avtiotoiyion tov task mapping tov Flux pe avtr) tov Slurm, ta amoteAécpota
TTOPEPELVOLY GUVETTT] HE TTOKALOT] PIkpOTEPT) a0 3%.
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Mivakog 8.2: Flurm Spread Results

Benchmark Tasks Xpovot Spread(s)

CGclass D 64 144.59
EP class E 256 144.13
FT class D 256 35.38
MGclassE 128 88.05

Mivakog 8.3: Flurm Spread Taskmap Results

Benchmark Tasks Xpovot Spread(s)

CGclass D 64 146.10
EP class E 256 144.22
FT class D 256 36.64
MGclassE 128 88.05

Aoxpég ovv-ektédeong (Colocation)
To benchmarks cuvdvdotnkav kot ekteAéaTnKAV TRLTOYPOVA KL GTX HVO GUOTHHAT XPNOL-

pomoldvtag Koetavopr spread. Tia tn obykpion ypnoyomowifnkay ot evdidpesol (median)
XPOVOL GUV-eKTENEDTC.

Mivakoag 8.4: Slurm Co-Execution Results

Benchmark A Tasks Xpovor Zvvektéleong(s) ‘ Benchmark B Tasks Xpovor Zvvektéleong(s)

CGclass D 64 191.33 CGclassD 64 191.66
CGclass D 64 155.055 EP class E 256 149.595
CGclass D 64 181.755 FT class D 256 42.305
CG class D 64 267.855 MG class E 128 105.77
EP class E 256 144.21 EP class E 256 144.205
EP class E 256 148.675 FT class D 256 38.77

EP class E 256 154.31 MG class E 128 96.475
FT class D 256 53.06 FT class D 256 53.01

FT class D 256 48.895 MG class E 128 107.835

MGclassE 128 156.19 | MGeclassE 128 156.49
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Mivakog 8.5: Flurm Co-Execution Results

Benchmark A Tasks Xpovor Zvvektéleong(s) ‘ Benchmark B Tasks Xpovor Zvvektéleong(s)

CGclassD 64 186.55 CGclassD 64 186.58
CGclass D 64 162.9 EP class E 256 145.515
CG class D 64 179.37 FT class D 256 39.31
CGclass D 64 266.87 MG class E 128 105.54
EP class E 256 145.56 EP class E 256 144.11
EP class E 256 145.075 FT class D 256 36.46
EP class E 256 146.805 MG class E 128 97.29
FT class D 256 39.96 FT class D 256 39.95
FT class D 256 45.04 MG class E 128 108.015
MGclassE 128 155.18 | MGeclassE 128 157.78

Mivakoag 8.6: Flurm Co-Execution Taskmap Results

Benchmark A Tasks Xpovor Zvvektéleong(s) ‘ Benchmark B Tasks Xpovor Zvvektéleong(s)

CGclass D 64 188.70 CGclass D 64 189.10
CGclass D 64 168.69 EP class E 256 146.61
CG class D 64 176.39 FT class D 256 39.235
CGclass D 64 264.54 MG class E 128 106.12
EP class E 256 145.515 EP class E 256 144.085
EP class E 256 147.34 FT class D 256 37.97

EP class E 256 148.145 MG class E 128 96.445
FT class D 256 42.615 FT class D 256 42.60

FT class D 256 47.085 MG class E 128 106.43
MG class E 128 155.54 MG class E 128 156.27

AvaAvon anoTeEAECPHATOV

H Swxgpopd amtdédoong mocotikomofnke xpnoporoidvtag 1o Méco amdAvTo 1060610
ocpapatog (MAPE):
n

MAPE=1Y
iz

i—F

x 100

1
To Flurm métvxe MAPE 4,793% (mtpoemideypévn avtiotoiyion) kat 3,907% (avtictoiylon
tOmov Slurm). H avéAvon pepovopévov benchmarks ¢dei€e 6ti to Flurm tapidlet oe peydio
Bobpo pe T cvvolikn amddoon Tov Slurm, pe agloonpeiwteg PeATIOOELG Ge POPTOVG EpYUTIG
pe évrovn emkowvavia, 0nwg to FT (¢wg kot 25% taxOtepo):
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Mivakoag 8.7: Mepovopéveg Atgpopég Ilocootdv (Ilpoemideypévn Avtiotoiyion)

Benchmark A Tasks PE(%) ‘ Benchmark B Tasks PE(%)

CGclass D 64 -2.50 CG class D 64 -2.65
CGclass D 64 5.06 EP class E 256 -2.73
CGclass D 64 -1.31 FT class D 256 -7.08
CG class D 64 -0.37 MG class E 128 -0.22

EP class E 256 0.94 EP class E 256 -0.07
EP class E 256 -2.42 FT class D 256 -5.96
EP class E 256 -4.86 MG class E 128 0.84

FT class D 256 -24.69 FT class D 256  -24.64
FT class D 256 -7.88 MG class E 128 0.17

MGclassE 128  -0.65 | MGclassE 128 0.82

Mivakoag 8.8: Mepovopéveg Awapopéc Ilocootdv (Avtiotoiyion tomov Slurm)

Benchmark A Tasks PE(%) | Benchmark B Tasks PE(%)
CG class D 64 -1375| CGclassD 64 -1.336
CGclass D 64 8.794 EP class E 256 -2
CG class D 64 -2.952 FT class D 256 -7.257
CG class D 64 -1.238 | MG class E 128 0.331

EP class E 256 0.905 EP class E 256 -0.083
EP class E 256 -0.9 FT class D 256 -2.063
EP class E 256 -4 MG class E 128 -0.031

FT class D 256  -19.69 FT class D 256  -19.638
FT class D 256  -3.702 | MGclass E 128 -1.303

MGclassE 128 -0416 | MGeclassE 128 -0.141

8 Tvpnepdopata kot MeAlovtikég KatevOovoeig
Yuvolk&, to Flurm emideixviet:

« 20oTh AettovpylkoTnTa Kot ok pPny Tomobétnon epyasiodv oe OAOVG TOLG TOTTOVG KOTO-
vopic.

« Amddoon cvykpioyn 1) kadOTepn amd to Slurm pe apeAntéo emmAéov kKOGTOC.
« Ilepiotaoiokn Peltioon tng anddoong oe YOPTOLG EPYAGLOG JLE EVTOVT ETLKOLVOVIK.

Avta ta atoteAéopata emiPefordyvouy 0TL 1) evowpdtwon tov Flux oto Slurm pécw tov
Flurm eivot 1660 amoteAeopatikn 660 KoL TPAKTLKT, ST p®dvTag TNV arrddoct tov Slurm
KOL ETLTPETOVTOG TALTOY POV TTPonYHEVEG Aettovpyieg Tov Flux, 6mwg n ovv-8popodoyneon.
Mepikég evdiopépovoeg katevBOVOELS Yo peAAOVTLKT] épevva TepthapPfavouv:
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YAomoinon moAlTikng cuv-0popoAdyNoNg

Enti tov mapovrog, to Flurm vrostnpilel tnv kowvr xpron mopwv, alrd dev dabétel kabopt-
opévo alyoplBpo cuv-8popordynong. MeAllovtikég epyaoieg Oa propodoav va mepthopa-
VOUV TNV QVAITTUEN KOl EVOWUATOOT) HLOG TIPOCAPHOGHEVTG TTOALTIKNG GLV-SPOHOAOYNONG
amevBeiog oto Fluxion.

E€epedviion S1@OPETIKOV TOAMTIKOV KATAVOUTG TOP®V

Ta melpdpoTa XPr|GLLOTOLNGAV TNV TPOETAEYHEVT) TTOALTLKT] KATAVOUNG TTOPWV «ITPOTNG
avtiotoiylong» (first match) tov Fluxion. MeAhovtikr) épevva Ba propoloe va cuykpivel
SLaPOPETIKEG EVOWUATWHEVES TTOALTIKEG (TT.X. XOUNAO/VYNAS vy v pLoTikod KOpPov TpodTa)
1 KoL v oXedLAoEL TTPOCAPROCHEVEG TTOATLKEG PEATIOTOTOLNIEVES YLt GUV-OPOHOAOYNHEV
QopTia epynciog.

Preemption oto Flux/Flurm

H sicaywyn tov preemption — mov emitpémnel oe epyocieg VYNANG mTpoTEPALOTNTAG VL
AVAKTOOV TTOPOLG Atd £pYaTieg XopnAOTeEPNG TpoTepadtnTag — Oor evioyve tnv evehfio Tng
dpoporodynong. H a€loddynon tov avtiktumod g atnv amtddoot Kol T Xprorn TV Topwv
amotelel por GAAN TOAAX vITOoYOpEVT KarTeVOLVOT EpeLVaG.
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