7
S

NATIONAL TECHNICAL UNIVERSITY OF ATHENS
SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING

DIVISION OF INFORMATION TRANSMISSION SYSTEMS &
MATERIAL TECHNOLOGY

)
Bl

v

‘I\
F:‘\
v R
TIPOMHBEV S
H
-lﬁlllm’ovo

Interpretable Transformer-Based Longitudinal
Modeling of Alzheimer’s Disease Diagnosis and
Progression

THESIS

Georgios-Efraim
Kanellopoulos

Supervisor: Konstantina Nikita
Professor NTUA

Athens, October 2025






L
z
)
9,
Y

<X
=

NATIONAL TECHNICAL UNIVERSITY OF ATHENS
SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING

DIVISION OF INFORMATION TRANSMISSION SYSTEMS &
MATERIAL TECHNOLOGY

o) R
/.
&

.‘\/,‘\\
|

v

i
t,

‘,\\'-,T ple7
A R
o
NPOMHOEV S -
i
-ljrlvlquaoyof

|

Interpretable Transformer-Based Longitudinal
Modeling of Alzheimer’s Disease Diagnosis and
Progression

THESIS

Georgios-Efraim
Kanellopoulos

Supervisor: Konstantina Nikita
Professor NTUA

Approved by the examination committee on 27th October 2025

Konstantina Nikita Giorgos Stamou Athanasios Voulodimos
Professor, NTUA Professor, NTUA Assistant Professor,
NTUA

Athens, October 2025



© Georgios-Efraim Kanellopoulos, 2025. All rights reserved.

The copying, storage and distribution of this diploma thesis, equal or
part of it, is prohibited for commercial purposes. Reprinting, storage and
distribution for non-profit, educational or of a research nature is allowed, provided
that the source is indicated and that this message is retained.

The content of this thesis does not necessarily reflect the views of the department,
the supervisor or the committee that approved it.

Georgios-Efraim Kanellopoulos

Graduate of Electrical and Computer Engineering, National Technical University
of Athens



Ilepiindm

H véooc Alzheimer anotelel Ty mo cuyvr outiol dvolag Tayxoouine, avTinpocwnel-
ovtac to 60-80% twv nepintdoenmy. Ipdxeitan Yo ot TpOOdEUTIXT| VEVPOEXPUNG TIXA
dlaTopory ) oL Yoo TNElETol Ao AMWAELN UVARNG, YVWO TLXY ATOAELN XL AELTOUEYLXN
avETdpXELR, 0ONYWOVTAC TEAXS ot anwAelo autovoplag xou Vdvato. Tapd tig dexaetieg
EPELUVNTIXMY TPOOTAVELNDY, 1 aLOTLO TN %o €yXaLeT) didyvwaon xot 1 TedPRiedn tng
eZENENG TNE VOoOU TopAUEVOUY W Xplown TeoxAno), Wlaltepa 6TO GTASO TNG
fimac yvooxhc dwotapoyfc (MCI), 6mou ta xhwvixd cuurntduota etvat Ao ahhd o
xivduvog petdfoone oe AD auvénuévoc. H nopodoa Simhwyuatiny epyoasia avantiooel
mpooeyyioeg Bodide uddnong, yenowwonowwvtoag Transformers yio 0 poviehomoinon
e xatdoTaong xa NS €EEAENG TG VOGOU, aLOTOLOVTAS Bloyeovixd BedoUEva and
10 Alzheimer’s Disease Neuroimaging Iniative (ADNI). H épeuva emxevtpdveton oe
dVo mpofhfuata: (i) ) Sdyvwon tne tpéyoucas enioxedne (AD vs MCI/CN, AD vs
CN) xou (ii) tnv mpoPredm tne petdBaong otny enduevn enioxedn and MCI oe AD.
To anoteléoporta delyvouy LPNAY anddooT Yl T SLdyvwaor Tne Teéyoucac enioxedng
(AUC ROC > 0.90 vt AD vs CN), eved 1 mpdBredn tne petdfoone mopauévet éva
To amattnTixd TeoBAnua. o Ty epunvVeELCLUOTATA TOU HOVTEAOL YENOLWOTOLAUNXE 1|
uédodoc Integrated Gradients yia tnv anédoon twv TeolBAédewy Tou Yoviélou ot
EMUEPOUC YAPUXTNELO TIXd, avadexvbovTag Blodeixtec tne vooou. Ipayupatonowiinxe
enlong avdAuon uTooUddwY, amd TNV omold TEOEXUPUY ULo LTOOUADd UE dToud
LPNAGTEROL XWVBUVOU Xat piot YUUNAOTEOU. XUVOAXA, To ELENUATA AUTH oVOBELXVIOUY
v aio Twv Transformer yioa v nedPredn e e€€MEng Tng vOoOUL Ue Bloypovixd
OEBOUEVAL.

A€Zeig xAewdid: IMpavon Eyxegpdiou, Nécog Alzheimer, Egunvetown Teyvnti
Nonuoocivr, Bohd Mddnon, Transformer, IlpdBredn Awdyvwong






Abstract

Alzheimer’s disease (AD) is the most common cause of dementia worldwide,
accounting for 60-80% of cases. It is a progressive neurodegenerative disorder char-
acterized by memory loss, cognitive decline and functional impairment, ultimately
leading to loss of independence and death. Despite decades of research, reliable
early diagnosis and prediction of disease progression remain a critical challenge,
particularly at the stage of mild cognitive impairment (MCI), when clinical symp-
toms are subtle but risk of conversion to AD is elevated. This thesis develops
and evaluates deep learning Transformer-based approaches for modeling disease
status and progression using data from the Alzheimer’s Disease Neuroimaging
Initiative (ADNI). The work focuses on two predictive tasks: (i) current-visit
diagnosis (AD vs. mild cognitive impairment (MCI) and cognitively normal (CN)),
and (ii) next-visit conversion prediction, from MCI to AD. Results show strong
performance for current-visit diagnosis (mean ROC-AUC > 0.90 for AD vs CN),
while conversion prediction remains more challenging. To enhance intepretability,
Integrated Gradients were employed to attribute model predictions to individual
features. This analysis consistently highlights established AD biomarkers. Sub-
group analysis was also conducted by clustering patient embeddings in the learned
representation space. This revealed patterns of risk: one subgroup characterized by
more high-risk individuals, and the other more low-risk. Together, these findings
underscore the potential of Transformer-based models for longitudinal prediction
in Alzheimer’s disease.

Keywords: Brain Aging, Alzheimer’s Disease, Interpretable Artificial Intelli-
gence, Deep Learning, Transformer, Longitudinal Analysis, Diagnosis Prediction
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Evyapiotieg

Oa Hieha va euyoplotion TNy xadnyntelo x. Kovotavtiva Nuita, tou pou
€0woe TNV euxatplol Vo EXTOVAGE aUTH TNV BITAWUATIXH 0TO epyacThplo Blolatpudy
IMpooopoidoewy xou Anexxoviotxfic Teyvoloyiag (BIOSIM) xou v x. Mopia
Adavaciou yia ny mohdTyun Bordelar xan xododrynon Tou pou mtpocégepe xot’ OAN
v dudpxelo. Téhog, euyaplotd Ty Méhnw, nou ye othipile otny mopelo exmOVNoNG
ATAS NG OLTAWUATIXAC.
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Chapter 1

EAAvixen Tepiindn

1.1 Ewoyoyn

H véooc Alzheimer (AD) amotelel tnv mo ouyvA outior dvolog mayxoouing,
guduvopevn vl tepimou 1o 60-80% twv neptotatixdy. ITpdxerton Yior Lol VEVPOEXPUNG Ti-
%Y Sotaparyy) mou yopoxTnelleTal and AMMAELN UVAUNG, YVOOTIXH Xal AELTOURYIXY
AVETIAEXELY, OONYWVTAUC TEAXE OE AMWAELNL TNG WTOVOUIOS TOU ATOUOU ot YAvaTo.
IMopd tic dexoeties epeuvdy, N allOTO TN Xau Eyxaten didyvwon ot TeoRiedn tng
Topelog TNG VOOOU TORUUEVOLY XplOLIES TROXANOELS, WLaiTteEpa GTO GTABLO TN NTLAS
yvoouxie Swtapoyfc (MCI), 6mou to xhvixd cuuntdpote eivat o oAAd o xivduvog
petatponrc o Alzheimer etvon awEnuévoc.

H napoloa dimhopatixng epyoaocio avantiooel xal afloloyel npooeyyloeig Paddc
udinone ue ™ yenon Transformer yia ) povielomolnoy TG xATdoTAUONS XL TNG
eZéNENG TNe vooou, yenotwonoldvtag dedopéva and to Alzheimer’s Disease Neu-
roimaging Initiative (ADNI). H pyehétn eotidler oe 800 npofAfuato: (i) ) Sidyvwon
e TpEYovoug enioxedne (AD évavt atduwy Arog yvwotixhe dwrtapoyfic (MCI) xou
YVOOo TS Quotohoyxdy atépwy (CN)), xou (i) v npdBredn yetatponrc ané MCI
oe AD, otnv enduevn enioxedn.

1.2 MeJdoooloyix

1.2.1 Aecdopeva

‘Omwe avapépe Tal TOEAmdvVe, To OEBOUEVA TOU YENOWOTOW UMY G TNV BITAWUATIXN
mpoépyovtat and 1o ADNI xau nepthapBdvouv d0o ovvoha: (o) éva otatind (cross-
sectional) oOvoho dedopévmv aodeviv, o onolo TepthopBdvel HETENOELS EYXEPUAXCY
neptoy v (ROIs) xan yevetinée mhnpogopies (SNPs), xat (B) éva Saypovind (longitudi-
nal) oOVoho BeBOUEVLV, TO 0TO(0 TEPLEYEL TANPOYORIES YIol TOUC HYXOUG EYKEPUNMAIV
TEPLOY WV avd ETloXEYT.
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To Biaypovind chvolo yenoiponofinxe yia v TEOBAedn g didyvewong xat g
eZEMENG TNG VOGOL, EVEK TO GTUTIXO YENOWOTOLHINXE VLol BLEREUVNTIXT AVIAUGT] EVTOS
UTOOUABMY. Ot dYxoL TwV EYXEPUAXWY Teploy OV eENYINoay and EXOVES Yoy YNTIXNG
topoypapioc (MRI) petd and npoeneZepyasia, 1 onola nepthduBave agaipeon tou
xpaviou (skull-stripping) @ote vo anogovedel o eyxepahixds 16 Tde.

To x0plo dlaypovixd chvoro dedouévey Tepthopfdvel 2398 acdeveic xow cuvolurd
10805 e&etdoeic. 'Eva puixpd 106001t eMoXEPEWMY TOU TEQLELYAY U1 EYXVUPES TWES
oyxwv anoxAielotnxe, pe anotéieopa 2391 acdeveic va ouunepiingdoiy tehnd. I
x&de ao¥evi etvan Srardéotar otaTind Snpoypeapxd yopoxtnelo Tixd (6Twe PUAO X
pUAR), xadde xan daypovixée petprioels yio 145 eyxepolxée neployée (ROIs) wou
™y nAuda xotd Ty enloxedn.

To ypovixd dlac TAgota PeTall Twv emoxéPewy eV efval opoldpoppa, YEYOVOS
TOL amanTEl TEPATERE avaAhLTT). ‘OTeg palveTal 6T OYETIXA DLy PAUUATA, O CUVONXOSG
oprduog ETOXEPEWY XOU 1) GUVOAIXY YpovixT| Bidpxeia avd acdevi| Touxilouy, ennpedlo-
VTG Tov TeEAS apLiud emioxéewy mou yenowonotfinxe yio xdde meipopa.

Emniéov, morlol aceveic dwodétouv poévo wia enioxedr, yeyovog mou elvon
Yenoteo yio To TeoBAnua TG Sdy Vwong oAAd Oy xan Yio THY TedBAedn TS UETATEOTAC
ané MCI ce AD. T'w tov Adyo autd, 10 6UVOAO BeBOUEVWV YwploTnxe oe dVLO
UTOGUVOAQL:

70 LTOGUVOLO BLdyvwong (diagnosis cohort), mou nepthayuBdver To Thipeg delypa,
xa

10 LTocUvoho petdfBaong (conversion cohort), mou dnuovpyHONXE amoxhelovtog
acVevelc pe uévo wa enloxedr, dooug elyav 1on Sudyvewon AD oty apyixt
Toug emtloxedm, xadde xo oheg i CN xatac tdoels.

1.2.2 Emnefepyacia Alaypovixwy AcOOUEVLDYV
YroocOvoho Aiwdyvwong

To apyd chvoro Bedopévemy tepthaufdver cuvoiwd 2391 acvevelc xouw 10730
eletdoelc. Xe eninedo enioxedng, oL Sy vwo Tinég xAdoelg xatavépovtal wg e€ng: 3700
uytele (CN), 4781 pe Ao yvootr dwatopayry (MCI) xou 2249 pe véoo Alzheimer
(AD), pe v xhdon MCI vo anotehel Ty o cuyvh xotdo tao.

H mhetodmeplo twv oupueteyovtony dioadétel TolomAé emox€elc, ue Ty xotavoun
VoL UELWVETAL 600 audveTtal o apLiudg Twv emoxédeny. Luyxexpwéva, and toug 2391
ouppeTtéyovtes, 1907 éyouv TouldyloTtov dVo emoxédel, 1594 Eyouv tpelg xou POAG
267 droya drardétouy evvéa emoxédec. H ntdon auth otov aprdud twv ddéoiuwy
acUevav oTIC YeTayevéo Tepeg emoxédelc teptopllel Tn yenowoTnTa Toug, xadms To
oelyuo yivetan oTaTiIoTXd adOVao.

H apyux| Storyvers i xatavopun elvon oyetind wooppornuévn — nepinou 36% CN,
46% MCI xou 18% AD otouc cuyuetéyovies ne mpodtng enloxedne — wotdoo, YeTd
v €Bdoun enloxedn o apriuds Slodéoiuwy TaPATNENCEWY PEWVETUL andToua. T
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Tov M6Yo autd, 1 xOpua Sroypovixy) (longitudinal) avdhuorn nepopiotnxe oe péyioto
uhAxog axohouvdiog entd emoxédewv (T = 7), eZaogparilovtog ixavoromtixh xdhudn
e Yeovic e€ENENG ue emapxéc péyedog Belyuotoc.

Mo xdde acdevn 7, ta dedouéva opyavediInxay we oelpd emoxéewy oe ypovohoyixn
oelpd and T Baowxn (baseline) e&étaon éwg v €BSoun. O aoevelc pe Aydtepe
amd entd emoxéderc «ovumAne@inxavy (right-padding) wote vo dwtnendel otoadepd
TO UHX0S NS oXOhoLIaC, UE YENHON UAOXIS (YOTE OL AVUTUPXTES YPOVIXES GTIYUES VO
UN CUVELCQEPOUY G TNV EXTALBEVDT).

Ye xde enloxedn ¢, To ddvuopa elo6dou T; , TEPLASUBovE:

o 145 éyxoug eyxegolxidv nepoyov (ROIs), ol onolol e€hydnooay and Sowxéc
poryvnuixée topoypapies (MRI) petd and npoenelepyaoia, xou

o TNV NAxia ToL aoVEVOUC TN CUYAEXPWEVT CTLYUN

‘Oleg oL ouveyelc petoAntéc (niudio xau éyxol ROI) xavovixomouinxay uéow
Z-SCOTe WS TPOS TO UECO 6RO Xat TNV TUTIXY amdXAoT Twy Quatohoyxdy (CN) atéuwy.

To endpevo cTddl0 Tne mpoenelepyaciag TOU EQPUPUOCTNXE GTA oELIUNTIXA
oedopéva twv VOI elvon 1 ypouuixr 016p0won cUPUETABANTOY o elye wg oToY0
v e€dhewdn g enidpoong g NAxiog, Tou GUAOU XAl TOL GUVOALXO) OYXOU TOU
eYxe@dhov oo Bedouéva. AvaAuTiXOTER, ETELWDY 1) AVUTOUIN TOU EYXEPANOU %Ol O
OY%0¢ TNS AeLxrg xan TN poudc ouciog xdie meploy e SlopEpel avdAoya Ue TNV Nhuxlo
N T0 QOO evOg ao¥evole, HTaY AmAEa{TNTY 1) TEOCUPUOYT TWV OEDOUEVWY, WOTE
va Statnendoly uovo ol oyeTlOUEVES UE TIC UTO UEAETY) YOGOUS VEUROUVATOUXES
OLAPOROTIOLACELS TOU OYXOU TWV TEPLOY WY EVOLAPELOVTOC.

Mot tov oxond autd éva poviého Fpopuinic Todwvdpdunone (Linear Regression)
exnaudedTNXE Ye TIC CLPMETOPANTES TNE NAxiag, Tou POAOL XoL TOU GUYOALXOU OYXOU
TOU EYXEPAAOL TOV 449 LYLOVY ATOUWY WS TEOPRAETTIX0UE Tapdyovteg xat T VOIs
Tou eYxepdloL we €€odo. Ilpaypatomoiinxe mpocopuoyy) Tou LOVIEAOU GTOUG
TEOPBAETTIXOUC TOPAYOVTES XaL 0T CUVEYEL To povteho tne IMooppuxrc IoAwvdpounong
EQUPUOCTNXE OE ONOXANPO TO GUVONO BEBOUEVLY, OO TE Vo TeoxLPeL 1) TEOBAEdT Yo
TOV OYX0 TWV TEPLOY MV EVOLIPEROVTOG Xdde atéUou. Ltn cLVEYELR, N T TEdBAedng
yioe xdde dropo agatpédnxe and TNy apyix) T Yo xodévo amd ta VOIs xou mpoéxude
1 {ntoduevn Ty unoloitou ctnyv omoia elye e€akewpiel N enidpaon tne NAwlag xou
Tou QUAOU.

Yuvoilovtag, xde aodevic avamapioTatar wg gL axolovdior ETTA YPOVIXWY
otV TTou Tepthaudvouy Tutotomuéve cuveyy yopaxtnelo Tixd (nhixio xou dyxoug
ROI) xou ) Sryvootir etéta avd entoxedn. H poppomnoinon autr anotéheoe
Bdom yia Gha tar ovTéAa Braypovixrc TedBiedne mou axoholincoayv oty napoloo
epyoolio.

YroocOvoho MetdfBaocng

H avdhuon tne petdBaong oplotnxe w¢ 10 mpofBinua tng meofiedng e e€éhing
and v Aret Yvwo txd dwotapay | (MCI) npog ) véco Alzheimer (AD), hapfdvovtag
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untddm tn didyveon e endpevne enioxedne xdde acdevoic. Ouvyielc (CN) ouyyetéyo-
VTEC amoxAeloTNXOY amd aUTYH TNV AVIAUGT), XIS XAl T ATOUO TTOU Elyory BLory Vo Tel
ue AD and tnv npdTn enioxedrn. Emniéov, acVevelc ye plo pévo enioxedn dev
OLIETOLY EMOUEVT] YPOVIXT TUQATHENOT X0l CUVETKS ATOXAEIT TNXAY.

Metd v eqoppoyy| autdy TV xpLtneiwy tagéucivay 980 acldeveic ye cuvohixd
3867 e€etdoeic. And avtolg, 340 yoapoxtneioTixay wg converters, dnhady| eupdvicoy
oMoy ?) dLdyvwong and MCI oe AD oe xdmowa yehhovxy| enioxedr, eved ol undroinol
640 mapéuevay otadepol oty xatdotaon MCL

I x&de acdevi| @, ta dedouéva opyaveddnxay we por axolovdio emoxédewy
t=0,1,...,T; — 1. T xdde Ledyoc (4,t), opilloupe TN duadixh TiuN

1, ify,, = MCI and y, = AD,
. { yz,t yz,t+1 (11)

0, ify;, =MCIlandy,,,; =MCL
To Sudvuoua YapaxTNEIo TGV ElcOd0L xde enloxedng nepthaufBdvel:
o 145 6yxovug eyxegpalixdv neprox v (ROIs) nov e&iydnoav ané MRI,
o TNV NAxia ToL acVevolg xatd TNy enioxedn, xot
o T0 YpoVix06 ddotnma (At) péyel Ty enduevn enioxedn.

To yéyloto mAfdog emoxédewyv avd acdevy| oplotnre we K = 7, (dlo ye autd
g Sdyvwong. H andAieio xan o peteixég untohoyilovtol poévo oe €yxupa yeovixd
Bruota, egatpwvtac To onueio pe padding ¥ un emiélueg xataotdoeg. Emlong
EQPUPUOC TNUE Z-SCOTE XAVOVIXOTO(NGT), YENOWOTOLOVTAUC HEGOUS OPOUG ol TUTLXES
anoxhioelg tou puotohoyxol Thnduouol (CN), olugpnva ye To TEdTUTO TOL TAHPOUS
GUVOAOU DEBOUEVWLV.

Ye eninedo aodeviv, to tocootd petatponic Htay nepinov 34.7% (340/980). T
N ONULOVEYIA TWYV ETIXETWY, YENOWOTOINXE YpovixT uetatomion ulog enloxedng, eved
o dedopéva ywplotxay oe oivola exntaldeuome xat eEEYyou pe avahoyio 80%-20%.

Téhog, epapudotnxe yeauux Sibpdnwon (linear correction) ota yopaxtneloTiXd
twv ROIS, pe ox0nd tny agalpeon TV YRuUUiX®Y ETORACEDY TV ETUEPOUS UETUBANTHOY
(nhuxior, Ao xau baseline DLICV). It xdde ROI exnawdettnxe éva ypouuxd poviého
ota dedopéva exmaidevone xat yenowonojinxay o utokettéueva (residuals) we
dloptwuéveg Tiwée. H duduxaotia auth egapuoéctnxe ota teofifuata AD vs CN xou
MCI oe AD, ahh& oyt otnv AD vs Rest, 6mou Aoyw TNg xAVIXAC TRaYATIXOTNTOG
Tou TEOPBAUATOC, TEOTWAUNXAY To Taw OEDOUEVAL.

1.2.3 Emneiepyacia Ltatixwv Asdopévwy

It Swaduxacio avdluong uToouddwy yenoworojinxe €va oTaTixd GOVOAO
0edouévev 1463 atoumy, xol auTod TEOoEPYOUEVO amd 1 Bdor dedouévwy ADNI, to
omnoto mephopuBdver dopxd (MRI), Snuoypapuxd xou yevetnd yopoaxtneiotxd. Amnd
Touc oupueTéyovtee, 449 Atav uyteic (CN), 740 elyav A yvwouxy dwtapayr) (MCI)
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xou 274 droryveotnxay e vooo Alzheimer (AD), pe nhxiec mou xupaivovtay and 60
éwe 86 etwdv. To nocootéd cuppeteydvtwv avd xatnyopla Rtav 30.7% CN, 50.6%
MCI xou 18.7% AD.

Ta onuoypapxd yapoxtneloTixd tepthouBdvouy Ty nhixia xat To @O0, EVE Ta
XAVIXE Y OROXTNELO TIXE TIPOERYOVTOL AN BOUIXES Uy VNTIXES TOUOYRAPIES EYHEQPIAOU
(T1 MRI) xou mepthapBdvouy Tov cuVOhxd bYxo eyxe@dhou xodme xou 145 byxoug
TEQLOY WV EVOLAPEPOVTOG, OTIWC O LTNOXAUTOS ol 1) oLy doAr. To yeveTtind dedouéva
amotelolvTon amd 54 povovouxheotdolc tohupopopols (SNPs) mou éyouv ouoyeti-
otel pe ™) véoo Alzheimer, ye tyéc Tou exppdlouvy tov aptdud twv alknhopoppwy (0,
1 4 2) nmou éyet xd0e dropo. ‘Ohot Tar opLOUNTIXE YAEAXTNELO TLXS XOUVOVIXOTOLU XY
UE z-score.

Enione, epapuootnxe yoouuin diopdwon (linear correction) ota dedopévor twv
EYXEQOMXWY OYXOVY Yo Vo eEohelpdoly ol emdpdoelc TNe Nhxiag, Tou PUAOU XaL TOU
EVOOXEAVIAXOL OYXOU, TUEAYOVTES TOU EMNEEGLOLY ONUAVTLXY T1) Hoppoloyia Tou
eyxe@diou. I Tov 6%0omd auTd, OTKC XaL GTAL BloyEOVLXA BEBOUEVA, EXTIOULOEDTNXE
EVAL YPOUUIXO UOVTEND YRAUUUIXHS TUAVOROUNOTNS YeNotoToldvTas wovo toug CN
OUUUETEYOVTES ¢ delypa avapopds. Ot unolhewpatixéc Twéc (residuals) mou npoéxuday
HETE TNV apaipecT) TwV TEOBAETOUEVOY TV Yenoylomotinxay wg Ta TEAMXY BedouévaL.

1.2.4 Movzéro IIgbLBAedne Adyvwong Re Yxenon
Transformer

o v meoPhedn tng Sdyvwong tng vocou oyedidotnxe to Yoviého Tralz-
former, pio napahhayf Baotopévn otny apyrtextovixf twv Transformers [1]. To
povtélo ollomotel Tov unyavioud self-attention Kote vo YdieL avamopao TUCELS TOU
EVOWUATOVOLY TN yeovixy e€dpTtnon tng vocou.

Kéie acdeviic avanapiototar we wa axohovdia T emioxéewy, dnou yio xdde
yeovixo6 onuelo t divetan éva cOvoho yapuxtnpotixwy F;. Kdlde yapaxtnpiotind
f € F mpoPdiketan oe éva xowd yoeo ddotaone d (embedding), mapdyovtog to
Sudvuopa 2t € R, "Ererta, unoloyilovtac tov uéoo bpo twv embeddings twv
eyxepahxidv teploydv (ROIs) xdie enloxedne mpoxdntel wior cuvolixy avamoapdotoon
Z®,

Yt ouvéyew, mpootideton 1 TAnpogopia TNg NAxiag Tou acvevoig egge X0l 0
avVTOTOLYOC CUVTEAECTAC Wyge, TUPEYOVTOC TO DldvUoU ETioxedne 5 = 2 4

wagee(age. H ypovixy) minpogopla ewodyetan péow sinusoidal positional encoding,

Bivovtac Ty tel, elcodo 1) yio xdde enloxedn.

H axorouda twv embeddings Z = 21, ..., (1) TEOPODOTELTAL OE EVAY XWOIXOTOLN-
| (Transformer Encoder) pe éva eninedo multi-head self-attention, o omnolog
urohoy(ler tic avarnapaotdoec H = b, ... h(T) ¢ RT*4,

Kdde ypovixd Briua ¢t avtictoiyel oe wa mpoliedn péow evoc classification
head Tpwov XA doewy, Yt = Head(t)(h(t)), ue yenon softmazx. Ov npoPBAédeic %ol ot
anAeleg unoroy(lovtol uovo yio T Eyxupa Yeovixd Briuota, cOu@wvo Ue TN Ldoxa.
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To yovtého exnoudedetal pe tov BeAtiotonomnt Adam, yenolomowwvTas dido T
xweou d = 128.

1.2.5 Movzeého IIpoLBAedng Metdaong o xaATAC TAOT
AD

Tt Ty extiunon e mdavotntag xAvixic HETATEOTNSC Ot UEAOVTIXES ETUOXEPELS,
avamtOyOnxe po apyitextoviny) Baciouévn oe Transformers, oaxolouddvtag tnv
TEOGEYYLON TOL Yenowonolinxe xau yio Ty teolAedn ddyvwone. To poviého
OYEDAOTNXE €TOL OOTE Vo UOAVEL TIC XPOVIKES €£apTroeiS TWY OYXOUETELXWY
XAEUXTNPLO TV TV aoVEVMY Xt Vo TeofAEneL, o€ xdlde ypovixd Briua, tny miavotnTa
uetatponric oe Alzheimer otny enduevr enloxedn.

Ta dedopéva etcddou anoteholy axorouticc ROIs avd acdevy), 6mou xdide ypovixd
Briuo avtiotolyel oe pion xAwixr enloxedn. Kdde yopoxtneliotixd mpofdihetar opyixd
oe po ddo oot d péow evoc yeauuxol otpwpatoc (Linear Layer) pye Batch Nor-
malization, 6twe xat 6To povtého tpoBAiedng didyvwong. T'a Ty evowudtwon tou
Xpovixol Tapdyovta, yYenoulorowinxay sinusoidal positional encodings, emtpénovtag
070 povTého va avayvwpllel T oelpd Twv emoxédeny evidg tng xdde axohovdlag. H
axoloudio twv embeddings tpogodoteital o évay kwodikoTonT Ue Vo ETUINESO Xau
téooepa attention heads.

[Mo vor avTetwmo tel 1 avouologopplar oTa Yeovixd SLac THUATA TopaxohoUnong
HeTal) ao¥evdy, evonuatdinxay Teels TOToL Ypovixty TAnpopoetdv: (i) n niude, (ii)
7o sinusoidal positional encoding xau (iii) To ypovixd ddotnpa PeTal dladoyLxv
emoxédewyv (At). ‘Etot, 1o telnd Sidvuoyua elo6dou yia xde enioxedn optleton we:

50 = 50 4 pt) 4 g(AHD),

Youpwva ye TN cuvAdn TeaxTixr ot BiAoypapia, To TEOBANUA UETATEOTHS
oplotnxe amoxAelcTixd yia dtopa Tou elyay didyvwor Nrias ywotiknig datapaxnis
(MCI) otny opy  xotd 0 Budpxeio e moapaxohotinong, evéd 1 petatponn opiletol
we N petdBoon ané MCI oe véoo Alzheimer (AD) otnv enduevn enioxedr. Me
TOV TEOTO AUTO, To YovTELO eoTidlel oty meoBAiedn tng e€éhing ané MCI oe AD,
AVTAVAXADVTAC TO OUCLACTIXO XAVIXO EVOLAPEROY YIol TOV EVIOTUOUO ATOUWY UE TOV
vnAotepo xivduvo avdntuéng tne véoou Alzheimer.

1.2.6 Avdivomn YTroopddwyv Acesvwv
IMTapoywyry Embeddings

I nopaywyr) embeddings ond to 6edoyéva, yenowonoydnxe éva Multi-
layer Perceptron, ye otéyo tnv elaywyy, embeddings oand Tto cTotixd dedouéva
ATEWXOVIONG EYXEPAAOU XU YEVETIXWY YopaxTNEloTixdy. O oxomdg tou yoviéhou
ATOV VO CUUTILECEL T YORUXTNEIOTIXG AT OF €vay YUUNAOTERNS BLACTACNS Y WOEO
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(latent space), dutnpdviag tapdhhnia tn Stoxpltxt Thnpogopio Tov oyetileton pe
TNV %XATACTACT TNG VOoOU.

H exmaldevor tou poviéhou €yve Ue oTOYO TN OLAXELOT) YUOIOAOYVIKDY ATOHWY
(CN) ané un guowdoyikd (Not-CN). H cuvolixd) cuvdptnor anmAelos oplo TNxE we
t0 ddpoloua e duadikris daotavpoluerns evrpornias (binary cross-entropy) yio
10 TEéPBANua tagvounone CN vs Not-CN xat evée avtifetikol dpov andreas (con-
trastive loss), o onoloc wdoloe Tig evonpatdoels Twv CN derypdtonv va tinotdlouv
petal Toug GTO YWpEo, eve amopdxpuve Tic Not-CN. Me autév tov tpdmo, ol
TEAY OUEVES AVATIOPAO TUOELS EVOL OOUNUEVES UE TEOTO TOU EVIGYUEL TN BLOXELTOTNTA
HETAUED PUOLONOYIXWY %ol THVOAOYIXWDY OUEDMV.

"Eotw 6TL 10 BEVUCUA YapaxTela Ty tou delypatog i eivar x; € RY. To MLP
aroteheiton and L mAfipwe cLVOESEUEV o TpMpaTa, Xordéva and Ta onolo axoloudeltol
and urn yeopuxr evepyonoinon ReLU:

RO =z, BV =ReLUWORD 1 p0) 1=1,..,L

To tehixd xpuPd GTEGUA Tapdyel To dldvuopa evowpdtwon z; € RE:

To MLP exmadettnxe oe 1.463 aolevelg, ypnowonowdvtog stratified 5-mAn
dwotavpoluern emklpwon (5-fold stratified cross-validation). T tnv moloTxh
a€LOAGYNOT| TOL Blay wpelool PETAED OUBBMY, OL EVOWOUATMOOEL OTTIXOTOUNXAY OE
dVo Swotdoelc yenowonowdvtog Tic Texvixég UMAP xou t-SNE.

ANyoprdpog Oupadonoinong

Metd v e€aywyy| twv embeddings z; and to MLP, egapudéotnxe opadoroinon
(clustering) pe otéY0 TOV EVIOTULOUS OUADMY ATOUWY UE TOPOMOL TTROTUTIAL OTO YWEO.
H opadornoinomn oto yopeo twv embeddings, avti aneudeiog ota apyind yopaxtrneio Txd,
EMITEETEL TOV OYNUATIONS OUEBWY UE BA0T AVATIQIC TAGELS AVWTERWY BLUC TACEWY TOU
mdavov avtixoatonteilouvy xahlbTepa 1 Soun Tne vooou.

O x0plog ahyodpriuog mou yenowonoiinxe Atav o k-Means, eve yior o0yxplom
doxwdotnxay xou ot Agglomerative clustering xoaw DBScan. O akyopruoc k-Means
xwellet To xdpeo twv embeddings oe K ouddec:

K

’Ck—Means = Z Z sz - Mj”z

J=1z,€C;

omouv C; elvon 10 0Ovoho twv embeddings Tou avAxoLY GTNV OPEDA J %ol f1; TO
XEVTPOELOES UTAC TNS OUADIC.

H mowdtnta tne opadomoinong allohoyrhdnxe uéow twyv dewtov Silhouette Score,
Davies-Bouldin Index xou Adjusted Rand Index (ARI). Emniéov, nporyportonofdnxe
avaAuoT OE ETINEDO YULUXTNPLO TLXWY YLOL VAL TIEQLYPAUPOLY Ol TROXVUTTOUCES UTOOUIDES.
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Ou ahydpripol ogadomoinong Soxiudo tTnxay yio Tweég k= 2 g k = 5, ye v TN
k =2 va emhéyetan Bdon xAvixig EQUNVEUCLUOTNTOC, ARG Kol UETEIXDV.

I v gpunvelor Twv LTOOUABWY, EQPUPUOCTNHAY CTATICTIXEC DOXWIES YLoL TOV
EVTOTUOWUO YUEUXTNELO TIXWY TOL BLAPOPOTOOUY TIC UTOOUAdES. Xenouyromotiinxay
1600 napopeteés (ANOVA) boo xou pn napopetpnéc (Kruskal-Wallis) Soxwpéc oe
6houg Toug dtadéououg eYxepalxols 6yxoug xat SNPs.

1.3 ArnoteAéopata xow Egunvevoipnotnta

1.3.1 ArnoteAécpata Movtélwy
AD vs MCI/CN

Table 1.1: AUC petpuxéc avd enloxedn

Visit AUC (ROC) AUC (PR)

0 0.866 0.622
1 0.855 0.636
2 0.844 0.600
3 0.866 0.618
4 0.836 0.548
5 0.802 0.452
6 0.802 0.548
Mean 0.853 0.575

Table 1.2: Metpuéc avd entoxedn (AD vs MCI/CN)

Visit Confusion Matrix Acc. Bal. Acc. Prec. Recall Spec. F1 MCC AUC (ROC) AUC (PR)

0 [[385, 11], [58, 26]]  0.86 0.64 071 032 097 044 o041 0.87 0.62
1 (1301, 9], [46, 23]  0.86 0.67 068 036 097 046 0.42 0.86 0.64
2 [[241,13], 42, 23]  0.82 0.65 063 035 095 045 0.38 0.84 0.59
3 [[208, 16], [28, 28]  0.85 0.72 064 051 093 056 048 0.87 0.62
4 [[163,12], [26, 13]  0.82 0.64 054 034 093 042 0.33 0.84 0.53
5 (118, 11], [19, 8]  0.81 0.61 044 031 091 036 0.26 0.80 0.45
6 (79, 7], [15, 1] 0.80 0.66 060 040 092 049 0.38 0.80 0.55
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Figure 1.1: AUC (ROC)
AD vs CN

Table 1.3: AUC petpuéc avd enioxedn (AD vs CN)

Visit AUC (ROC) AUC (PR)

0 0.930 0.912
1 0.932 0.920
2 0.920 0.910
3 0.940 0.926
4 0.910 0.858
5 0.902 0.818
6 0.876 0.820
Mean 0.916 0.879

Table 1.4: Metpixéc avd enioxedn (AD vs CN)

Visit Confusion Matrix Acc. Bal. Acc. Prec. Recall Spec. F1 MCC AUC (ROC) AUC (PR)

0 (172, 5], [16, 68]]  0.92 0.89 093 081 097 086 081 0.93 0.91
1 (123, 3], [15, 53]  0.91 0.88 095 078 098 086 0.80 0.93 0.92
2 (92, 6], [11,55]  0.89 0.88 090 083 094 086 0.78 0.92 0.91
3 (82,7, 8, 48]  0.90 0.89 088 085 093 086 0.78 0.94 0.93
4 [69,8],[8 31]] 086 0.85 080 079 090 079 0.69 0.91 0.86
5 ([56,6],[8 19] 085 0.81 077 072 090 074 0.63 0.90 0.82
6 [42,8],[8,18]  0.80 0.78 071 071 085 071 0.56 0.87 0.82
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Figure 1.3: AD vs CN Confusion Matrices yia 1, 4 xou 7 emoxédeig

MCI to AD

Table 1.5: AUC petpixéc avd enioxedn (npdBredn petdBoonc)

Visit AUC (ROC) AUC (PR)

0 0.774 0.186

1 0.770 0.258

2 0.578 0.176

3 0.808 0.450

4 0.674 0.262

5) 0.630 0.324

6 0.838 0.628
Mean 0.724 0.326
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1.3.2 Amnoteléocpata Epunvevoipotntag
AD vs MCI/CN

Right Hippocampus 0.037

Left Hippocampus 0.040
Right Ent Entorhinal Area - ‘o.ozs
Left Ent Entorhinal Area - ‘c.oza

Right Amygdala 0.034

Right Inf Lateral Ventricle

—

‘0 027

Left Amygdala 0.037
Left Inf Lateral Ventricle - ‘0‘032
Left PHG Parahippocampal Gyrus 1 ‘o.oze

Left ITG Inferior Temporal Gyrus A 0.029

5 10 15 20 25 30 35
Appearances

o

Figure 1.4: AD vs MCI/CN ROIs
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Figure 1.5: AD vs CN ROIs

25

0032

0.030

0.028

0.026

0.024

0022

0.020

0.018

loil uean



MCI to AD
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Figure 1.6: MCI to AD ROIs

1.3.3 Amnotesiéopata Avaluong Twv YTTooUdAdwY

Biodeixteg avd Yroopndda

Cluster 0 Cluster 1
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Figure 1.7: Augnuéva features avéd urooudda
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Cluster 0 Cluster 1
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Figure 1.8: Mewwpéva features avd uroouddo
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Figure 1.9: Auv&nuéva SNPs avd urooudda
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Figure 1.10: Mewwpéva SNPs avd unooudda

AD vs MCI/CN

Table 1.6: AUCs yi AD vs MCI/CN avé vnoouddo

Cluster 0 Cluster 1
AUC (ROC) AUC (PR) ‘ AUC (ROC) AUC (PR)
0.846 + 0.036  0.488 + 0.106 ‘ 0.655 + 0.167 0.678 + 0.101

Table 1.7: Top ROIs avd unooudda

Subgroup 0 Subgroup 1
Region Appearances ‘ Region Appearances
Left Hippocampus 35 Left Hippocampus 35
Right Hippocampus 35 Right Hippocampus 35
Right Ent Entorhinal Area 31 Left Amygdala 34
Right Amygdala 27 Left Ent Entorhinal Area 33
Left Amygdala 24 Right Amygdala 31
Left Ent Entorhinal Area 23 Left Inf Lateral Ventricle 30
Right Inf Lateral Ventricle 21 Right Inf Lateral Ventricle 29
Left PHG Parahippocampal Gyrus 20 Left PHG Parahippocampal Gyrus 27
Left Inf Lateral Ventricle 18 Right Ent Entorhinal Area 26
Left ITG Inferior Temporal Gyrus 15 Left ITG Inferior Temporal Gyrus 26
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AD vs CN

Table 1.8: AUC petpuéc avd enioxedn (AD vs CN)

Subgroup 0

Visit AUC (ROC) AUC (PR)

0 0.898 0.708

1 0.884 0.662

2 0.860 0.694

3 0.922 0.764

4 0.896 0.708

5 0.912 0.750

6 0.866 0.706
Mean 0.891 0.713

Table 1.9: Top ROIs yio v unooudda 0 (AD vs CN)

Region Mean [IG| Appearances
Left Hippocampus 0.0373 33
Right Hippocampus 0.0311 33
Left Inf Lateral Ventricle 0.0268 21
Left Amygdala 0.0290 21
Right Inf Lateral Ventricle 0.0250 21
Left Ent Entorhinal Area 0.0293 20
Right Thalamus Proper 0.0240 20
Right Ent Entorhinal Area 0.0261 20
Right Amygdala 0.0317 19
Left Thalamus Proper 0.0276 19
MCI to AD

Table 1.10: AUCs yia tnv npoPiedn petdBaone avd unooudda

Cluster 0 Cluster 1
AUC (ROC) AUC (PR) | AUC (ROC) AUC (PR)
0.742 + 0.029  0.347 + 0.025 | 0.671 + 0.014 0.536 + 0.014
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Table 1.11: Top ROIs yio v npdBhedn yetdfaong otny unoouddo 0

Region Mean [IG| Appearances
Left PCgG Posterior Cingulate Gyrus 0.0071 15
Left Hippocampus 0.0048 15
Right Hippocampus 0.0060 13
Right FuG Fusiform Gyrus 0.0067 13
Right Plns Posterior Insula 0.0060 12
Left PP Planum Polare 0.0078 11
Right IOG Inferior Occipital Gyrus 0.0057 11
Left Plns Posterior Insula 0.0058 10
Right MOG Middle Occipital Gyrus 0.0060 10
Left FRP Frontal Pole 0.0059 10

Table 1.12: Top ROIs yio tv npdBredm petdfBaonc otnyv vrooudde 1 (high-
risk)

Region Mean |IG| Appearances
Left Amygdala 0.0079 23
Left Hippocampus 0.0063 21
Right Inf Lateral Ventricle 0.0051 21
Left Inf Lateral Ventricle 0.0085 20
Right Amygdala 0.0054 19
Right Hippocampus 0.0078 17
Left Plns Posterior Insula 0.0070 16
Left Alns Anterior Insula 0.0060 13
Left FuG Fusiform Gyrus 0.0087 13
Right Plns Posterior Insula 0.0065 12
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Chapter 2

Introduction

Over 50 million people have some form of dementia, while this number is
bound to increase to 152 million until 2050. Cognitive malfunction is affected by
a number of factors. Mild Cognitive Impairment (MCI) and dementia consist of
the most representative neurodegenrative diseases. Until now, there is no cure
that halts dementia’s progression. Therefore, it is crucial for the medical science
to focus on the early stages of the disease. The clinical diagnosis of dementia is
based on the detailed medical history of the patients or their family, as well as the
neuropsychological examinations and brain imaging.

Brain aging is related with complex changes in the structure and function of
the brain. There are signs of the disease that can be identified during an imaging
exam, like magnetic resonance imaging (MRI) and positron emission tomography
(PET). While brain atrophy is a critical sign in neurodegenerative diseases, the
individual stays asymptomatic for a long time before the diagnosis. Therefore, the
development of diagnosis tools for the early identification of neurodegenerative
diseases is essential for the management of these diseases.

Artificial intelligence has acquired a major role in our everyday lives, apparent
or not. Healthcare is an area where machine learning has and can deeply affect.
This research aims on developing an artificial intelligence model for the diagnosis
of the progression of Alzheimer’s Disease, using numerical data of brain volume
measurements, derived from MRIs, as well as genetical data that consist of single
nucleotide polymorhpisms. The model consist of two layers: the first layer acts
as a clustering process, dividing patients into two clusters based on their static
features and the second layer consist of a transformer predicting the individual’s
diagnosis on each examination through time.
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Chapter 3

Human Brain and
Neurodegenerative Diseases

In this chapter, we will briefly discuss on the anatomical areas of the human
brain, and the single nucleotide polymorphisms (SNP), which consist the features
included in our datasets. Then, we will expand on neurodegenerative diseases and
Alzheimer’s disease.

3.1 Brain Anatomy

Human nervous system, is the most complex organ found in a living organism,
after 600 million years of evolution. The nervous system is composed of two parts,
the central nervous system (CNS) and the peripheral nervous system (PNS). The
peripheral nervous system consists of the spinal and cranial nevres, while the
central nervous system is represented by the brain and spinal cord. The human
brain is a relatively small structure weighing about 1400 g and consituting about 2
percent of total body weight. The brain is regarded as the organ solely concerned
with thought, memory, and consciousness, but these are only a few of its complex
and varied functions. All information we have concerning the world about us is
conveyed centrally to the brain by an elaborate sensory system.
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Figure 3.1: Lateral view of the brain exposed in the skull
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Figure 3.2: Lateral surface of the brain

The brain consists of four subdivisions, the cerebral hemispheres, the brainstem,
the diencephalon, and the cerebellum. The paired cerebral hemispheres consist
of a highly convoluted gray cortex, an underlying white matter of considerable
magnitude and a collection of deeply located neuronal masses, known as the basal
ganglia. Each cerebral hemisphere is subdivided in lobes, most of which are named
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after the bones of the skull overlying them. The gray cellular mantle of the cerebral
cortex in humans is highly convoluted. The crest of a single convolution is referred
to as a gyrus. Sulci (fissures) separate the various gyri, producing a pattern with
more or less constant features. On the basis of the more constant sulci and gyri, the
cerebrum is divided into six so-called lobes: (a) frontal, (b) temporal, (c) parietal,
(d) occipital, (e) insular, and (f) limbic. Neither the insula nor the limbic lobe
is a true lobe. The insula is a cortical area buried in the depths of the lateral
sulcus. The limbic lobe is a highly heterogeneous entity on the medial aspect of the
hemisphere consisting of portions of the frontal, parietal, occipital, and temporal
lobes which surround the upper part of the brainstem [2].

Diencephalon The diencephalon contains the thalamus, the subthalamus, and
the hypothalamus.

Cerebellum The cerebellum is composed of the left and right cerebellar hemi-
spheres and midline vermis which unites them.

Brainstem The brainstem is subdivided into the midbrain, the pons, and the
medulla.

Cortical Areas The cerebral cortex is composed of three areas: the lateral,
medial and the inferior, which is also named ventral. Moreover, the transitional
areas form the frontal, temporal, and occipital poles.

Lateral Surface Four lobes are visible on the lateral surface of the cerebral
hemispheres: the frontal, temporal, parietal, and occipital lobes.

The lateral surface of the frontal lobe is subdivided by three sulci—the
superior frontal sulcus, inferior frontal sulcus, and precentral sulcus—into four
distinct gyri:

e Superior frontal gyrus
o Middle frontal gyrus
o Inferior frontal gyrus
e Precentral gyrus

The lateral surface of the temporal lobe is divided by two sulci—the superior
temporal sulcus and the inferior temporal sulcus—into three gyri:

e Superior temporal gyrus
o Middle temporal gyrus

o Inferior temporal gyrus
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The lateral surface of the parietal lobe is subdivided by the intraparietal
sulcus into three main gyri:

e Postcentral gyrus
o Superior parietal gyrus (lobule)
o Inferior parietal gyrus (lobule)

— Supramarginal gyrus

— Angular gyrus

The lateral surface of the occipital lobe is divided by two sulci—the superior
occipital sulcus and inferior occipital sulcus—into three gyri:

e Superior occipital gyrus
e Middle occipital gyrus

e Inferior occipital gyrus

Superior

Precentral gyrus (L)
ntral gyrus (L)

tal gyrus (L)

Superior parietal lobule (L)

JSupramarginal gyrus (L)

_’_,;‘\n!]ul.ur gyrus (L)

Anterior Posterion

P{h:jli!l& t

Inferior

Figure 3.3: Lateral view of the cortical areas of the left hemisphere. Each
gyrus is assigned a unique color.
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Medial Surface The medial surface of the cerebral hemisphere includes
the frontal, parietal, occipital, and limbic lobes. The limbic lobe comprises the
gyri located along the inner margin (limbus) of the hemisphere:

o Subcallosal gyrus (areas)

¢ Cingulate gyrus

o Isthmus (of the cingulate gyrus)
o Parahippocampal gyrus

The superior frontal gyrus, which is separated from the limbic lobe by the
cingulate sulcus, occupies most of the medial surface of the frontal lobe. The
parietal lobe includes the precuneus, which is separated from the occipital lobe
by the parieto-occipital fissure. The occipital lobe consists of the cuneus and the
lingual gyrus.

Inferior Surface

Deep Gray Nuclei The deep gray nuclei are paired gray matter structures.

o Basal ganglia (nuclei)

— Caudate nucleus
— Lentiform nuclei

* Putamen
*x Globus pallidus
Lateral (outer) segment

Medial (inner) segment (see also Sect. 77?)
o Thalamus
e Hippocampus

e Amygdala (amygdaloid body)

The lentiform nuclei together with the caudate nucleus form the striatum.

Ventricular System The ventricular system consists of four interconnected
cerebral ventricles (cavities) filled with cerebrospinal fluid (CSF):

o Left and right lateral ventricles

e Third ventricle
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o Fourth ventricle

CSF is secreted primarily by the choroid plexus, a network of blood vessels
located within the ventricles. It circulates from the lateral ventricles through
the paired interventricular foramina (of Monro) into the third ventricle, and
subsequently passes through the cerebral aqueduct to reach the fourth ventricle.

The lateral ventricles are the largest of the four and each includes the following
regions:

o Body (or central portion)
o Atrium (or trigone)
o Horns

— Frontal (anterior)
— Occipital (posterior)

— Temporal (inferior)
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Figure 3.4: Superior view of the brain
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3.2 Single Nucleotide Polymorphisms

A single nucleotide polymorphism (SNP, produced snip) is a genomic variant
at a single base position in the DNA. For example, two sequenced DNA fragments
from different individuals, AAGCCTA to AAGCTTA, contain a difference in a
single nucleotide. In this case we say there are two alleles: C and T. Almost all
common SNPs have only two alleles.

Single nucleotides may be changed (substitution), removed (deletions) or added
(insertion) to a polynucleotide sequence. Single nucleotide polymorphisms may fall
within coding sequences of genes, non-coding regions of genes, or in the intergenic
regions between genes. SNPs within a coding sequence will not necessarily change
the amino acid sequence of the protein that is produced, due to degeneracy of the
genetic code.

A SNP in which both forms lead to the same polypeptide sequence is termed
synonymous (sometimes called a silent mutation) - if a different polypeptide
sequence is produced they are nonsynonymous. A nonsynonymous change may
either be missense or nonsense, where a missense change results in a different amino
acid, while a nonsense change results in a premature stop codon. SNPs that are not
in protein-coding regions may still have consequences for gene splicing, transciption
factor binding, or the sequence of non-conding ribonucleic acid (RNA).

Variations in the DNA sequences of humans can affect how humans develop
diseases and respond to pathogens, chemicals, medication, vaccines, and other
agents. SNPs are also thought to be key enablers in realizing the concept of
personalized medicine. However, their greatest importance in biomedical research
is for comparing regions of the genome between cohorts (such as matched cohorts
with and without a disease).

3.3 Brain Aging

Brain aging is complex biological process, which is characterized by the accu-
mulation of molecular and cellular damage during one’s life. The body’s inability
of restoring this damage, leads to the loss of certain body functions, like feeling,
moving and cognitive functions. Aging also consist a basic risk factor for a number
of disease, including cancer, cardiovascular disease, as well as neurodegenerative
ones.

The brain is specially sensitive in aging’s effect, changing its structure and
cognitive processes. The most common changes related to aging is brain atrophy
(the decrease in volume of gray matter), the decline in quality and volume of the
white matter and the abnormal connectivity between them.
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3.4 Disease Related to Brain Aging

3.4.1 Mild Congitive Impairment

Mild cognitive impairment (MCI) is an early stage of memory loss or other
cognitive ability loss (such as language or visual/spatial perception) in individuals
who maintain the ability to independently perform most activities of daily living.
MCI can develop for multiple reasons, and individuals with MCI may go on to
develop dementia; others will not. For neurodegenerative diseases, MCI can be an
early stage of the disease continuum including for Alzheimer’s. In some individuals,
MCIT reverts to normal cognition or remains stable. In other cases, such as when a
medication causes cognitive impairment, MCI is mistakenly diagnosed.

Mild cognitive impairment is classified based on the thinking skills affected:

- Amnestic MCI: MCI that primarily affects memory. A person may start to
forget important information that he or she would previously have recalled easily.

- Nonamnestic MCI: MCI that affects thinking skills other than memory,
including the ability to make sound decisions, judge the time or sequence of steps
needed to complete a complex task, or visual perception.

Diagnosis The main criteria defined for the identification of Mild Cognitive
Impairment (MCI) are the following: (1) the individual does not present normal
cognitive function, but also does not meet the criteria for dementia; (2) there is
evidence of a decline in cognitive abilities, either objectively measured over time or
reported by the individual or an informant, accompanied by demonstrable cognitive
dysfunction; and (3) daily activities are preserved, with complex functions either
unaffected or only minimally impaired. These criteria aim to broaden the concept
of MCI to include cognitive domains beyond memory and to recognize it as a
prodromal stage of various types of dementia [3].

MCI does not reflect a long-standing state of reduced cognitive function, but
rather a change in an individual’s cognitive abilities. For this reason, having
longitudinal information on the patient’s cognitive history is essential, allowing the
clinician to focus on the specific nature and timing of cognitive changes that have
occurred. For example, if memory dysfunction is the primary symptom, the clinician
should concentrate on events or difficulties that have arisen recently—typically
within the past six to twelve months [4].

Progression to dementia The amnestic single-domain and multi-domain
subtypes of MCI with a degenerative etiology are indicative of a possible progression
to Alzheimer’s disease. In contrast, the non-amnestic subtypes of MCI, where
the impairment involves cognitive domains other than memory, are more often
associated with the future development of non-Alzheimer dementias, such as
frontotemporal dementia or dementia with Lewy bodies. Furthermore, individuals
with amnestic multi-domain MCI are more likely to convert to dementia at a faster
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rate (typically 10-15% per year) compared to those with amnestic single-domain
MCI. The combination of the clinical subtype and the presumed underlying etiology
can therefore be particularly useful in predicting the eventual type of dementia into
which these syndromes may progress [4]. The ability to identify individuals with
MCI who are likely to progress to dementia or Alzheimer’s disease more rapidly
than others remains an important area of ongoing research within the field of MCI.
Recent advances in machine learning and neuroimaging have enabled data-driven
approaches to this problem, aiming to model disease trajectories and predict future
conversion risk.

In recent years, neuroimaging has proven particularly valuable for predicting the
progression of MCI to Alzheimer’s disease. Several modalities are sensitive to MCI-
related changes, including magnetic resonance imaging (MRI), positron emission
tomography (PET), and electroencephalography (EEG). The neuroimaging and
electrophysiological assessments used for the study of MCI often overlap with those
applied in the early stages of dementia. Hippocampal atrophy has been shown to
be a strong predictor of the conversion of amnestic MCI to Alzheimer’s disease,
while other structural indicators—such as total brain volume and ventricular
enlargement—also contribute to predictive performance. These findings highlight
the utility of both structural MRI and FDG-PET imaging. Moreover, medial
temporal lobe atrophy on MRI and glucose hypometabolism on FDG-PET have
been observed in patients with MCI, and the presence of these alterations has a high
predictive value for subsequent conversion to dementia [16]. In parallel, molecular
imaging techniques that allow in vivo visualization of pathological processes have
also been considered particularly promising for understanding and tracking disease
progression.

It is also worth noting that carriage of the apolipoprotein E ¢4 (APOE-e4)
allele represents a well-established genetic risk factor, as it has been shown to
contribute to the prediction of MCI progression to Alzheimer’s disease. Mutations
or allelic variations in the APOE gene markedly increase the risk of conversion from
amnestic MCI to Alzheimer’s disease by altering cholesterol transport and synaptic
plasticity. Moreover, the presence of the APOE-¢4 allele has been associated with
a more rapid rate of hippocampal atrophy on MRI, even in cognitively normal
individuals.

3.4.2 Dementia

Dementia is a general term for loss of memory, language, problem-solving
and other thinking abilities that are severe enough to interfere with daily life.
Alzheimer’s is the most common cause of dementia. Dementia is not a single
disease. It’s an overall term to describe a collection of symptoms that one may
experience if they are living with a variety of diseases, including Alzheimer’s disease.
Diseases grouped under the general term "dementia” are caused by abnormal brain
changes. Dementia symptoms trigger a decline in thinking skills, also known as
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cognitive abilities, severe enough to impair daily life and independent function.
They also affect behavior, feelings and relationships.

Alzheimer’s disease accounts for 60 percent - 80 percent of cases. Vascular
dementia, which occurs because of microscopic bleeding and blood vessel blockage in
the brain, is the second most common cause of dementia. Those who experience the
brain changes of multiple types of dementia simultaneously have mixed dementia.
There are many other conditions that can cause symptoms of cognitive impairment
but that aren’t dementia, including some that are reversible, such as thyroid
problems and vitamin deficiencies. Dementia symptoms are progressive, which
means that the signs of cognitive impairment start out slowly and gradually get
worse over time, leading to dementia.

Causes Dementia is caused by a variaty of diseases that cause damage to brain
cells. This damage interferes with the ability of brain cells to communicate with
each other. When brain cells cannot communicate normally, thinking, behavior
and feelings can be affected.

Different types of dementia are associated with particular types of brain cell
damage in particular regions of the brain. For example, in Alzheimer’s disease,
high levels of certain proteins inside and outside brain cells make it hard for brain
cells to stay healthy and to communicate with each other. The brain cells in the
hippocampus are often the first to be damaged. That’s why memory loss is often
one of the earliest symptoms of Alzheimer’s.

Diagnosis The evaluation of dementia requires a concise medical history, as well
as cognitive and neurological examination. The medical history remains the most
important diagnostic tool and should be obtained both from the patient and from
an informant, since while some patients may recognize their memory loss, others
may not recall relevant details or may present with anosognosia—that is, lack of
awareness of their condition. The history should focus on medical conditions that
affect cognitive function, including vascular risk factors (such as hypertension and
diabetes), pre-existing neurological disorders (such as stroke, Parkinson’s disease,
or traumatic brain injury), and current medications that may impair cognition (for
example, anxiolytics such as benzodiazepines or analgesics containing codeine).

Cognitive testing helps determine the presence, severity, and nature of cog-
nitive impairment, while neurological examination can identify objective signs
of neurocognitive dysfunction such as aphasia, apraxia, and agnosia. Physical
examination is also necessary to detect systemic vascular disease or other systemic
findings that may be associated with rarer causes of dementia. Routine laboratory
evaluation typically includes blood tests (for instance, vitamin B12 and thyroid-
stimulating hormone [TSH]) and neuroimaging to identify cortical and hippocampal
atrophy—commonly seen in Alzheimer’s disease—or neuropathology suggestive of
potentially treatable causes of dementia [5].

For patients whose diagnosis is uncertain or inconsistent with Alzheimer’s
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disease, clinicians may consider referral to a specialist and the performance of
additional diagnostic tests. Functional neuroimaging, such as positron emission
tomography (PET), can reveal metabolic patterns suggestive of Alzheimer’s dis-
ease—typically showing bilateral yet asymmetric temporoparietal hypometabolism
using standard tracers such as fluorodeoxyglucose (FDG).

In cases of frontotemporal dementia (FTD), FDG-PET typically demonstrates
reduced and asymmetric frontal lobe metabolism in patients with the behavioral
variant, and anterior temporal hypometabolism in those with the language variant.
In some cases, cerebrospinal fluid (CSF) analysis may also be necessary to detect
biomarkers indicative of Alzheimer’s disease (e.g., low amyloid-B and elevated tau
protein levels), other neurodegenerative disorders, or secondary causes of dementia.
Finally, genetic testing can be useful, particularly in younger patients with a strong
family history or first-degree relatives affected by dementia [5].
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Chapter 4

Theoretical Background

4.1 Introduction

This chapter outlines the theoretical background that underpins the method-
ology of this thesis. It first introduces the main principles of machine learning,
with particular focus on approaches and model families relevant to biomedical data
analysis. The discussion then moves to deep learning, where commonly used archi-
tectures are reviewed, with an emphasis on Transformers, which serve as the central
framework in this study. The chapter also includes a section on interpretability,
describing techniques such as integrated gradients that are employed to better
understand model predictions. Overall, the goal is to provide the reader with the
conceptual foundations necessary to follow the design choices and experimental
strategy developed in the remainder of this work.

4.2 Machine Learning Problems

Until quite recently, most computer programs encountered in daily life were
built as fixed sets of rules, explicitly defined by programmers to govern how the
software should respond in every situation. However, many tasks we wish to
automate cannot be fully captured by handcrafted instructions. For example,
designing a rule-based program that identifies every person in an image and draws a
bounding outline around them is extremely challenging. Although such recognition
feels effortless to humans, the exact sequence of cognitive steps involved is not
consciously accessible, making it difficult to encode manually.

Machine learning addresses this limitation by developing algorithms that im-
prove automatically through experience. Here, experience is typically provided in
the form of data or interactions with an environment, and performance is measured
by how effectively the algorithm generalizes from that experience to new situations.

One of the domains where machine learning is expected to have a profound
societal impact is healthcare [6]. With the increasing availability of large-scale
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medical data, ranging from electronic medical records (EMRs) to clinical notes
and imaging studies, new opportunities have emerged for data-driven decision
support. Health data can be broadly categorized into structured information, such
as laboratory values or demographic variables, and unstructured information, such
as free-text physician notes or diagnostic images. Since most medical data are
unstructured, the ability to analyze and extract knowledge from such sources is
especially important for deploying machine learning effectively.

Applied appropriately, machine learning has the potential to assist clinicians
across a wide range of tasks: improving diagnostic accuracy, recommending per-
sonalized treatments, identifying patients at high risk for adverse outcomes, and
ultimately enhancing patient care while reducing costs. By leveraging both struc-
tured and unstructured data, machine learning can support more informed decision-
making and strengthen the patient—doctor relationship.

There are four primary types of learning: supervised, unsupervied, semi-
supervied and reinforcement learning.

4.2.1 Supervised Learning

Supervised learning refers to tasks in which a dataset contains both input
variables (features) and their corresponding outputs (labels), and the objective is to
learn a model that can predict the correct label given new input features. Each pair
of inputs and labels is referred to as an example. From a probabilistic perspective,
supervised learning typically involves estimating the conditional probability of a
label given the input features. Among the various paradigms in machine learning,
supervised learning has produced the majority of practical successes, largely because
many real-world problems can be framed as predicting an unknown quantity based
on available data. Examples include classifying medical images as cancerous or
not, diagnosing Alzheimer’s disease from MRI scans, or predicting the correct
translation of a sentence from English into French. In essence, supervised learning
can be summarized as the task of “predicting labels from input features.”

The process of supervised learning can be described as follows. First, a collection
of examples with known features is obtained, and a subset of them is paired with
ground-truth labels. These labels may already exist (e.g., from clinical records) or
may need to be generated by human annotators. Together, the features and their
corresponding labels constitute the training set. A supervised learning algorithm is
then applied to this dataset. The algorithm takes the training data as input and
outputs a predictive function, commonly referred to as the learned model. Finally,
the model can be evaluated on new, unseen data by providing it with input features
and comparing its predicted outputs to the true labels. The full process is shown
below:
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Figure 4.1: Supervised learning

4.2.2 Unsupervised and Self-Supervised Learning

In supervised learning, models are trained on datasets where both input features
and corresponding labels are available, providing direct guidance on the desired
output for each example. In contrast, unsupervised learning deals with datasets
that contain only features, without associated labels. The objective in this setting
is to uncover hidden patterns, structures, or groupings within the data. A common
example is clustering, where the goal is to group similar observations together. For
instance, one might cluster images into categories such as landscapes, animals, or
people, or group users with similar browsing behaviors based on their activity logs.

A recent extension of this paradigm is self-supervised learning, which leverages
inherent structure in unlabeled data to create auxiliary prediction tasks that provide
supervisory signals. In natural language processing, a common strategy is to mask
certain words in a sentence and train the model to predict them from surrounding
context. In computer vision, examples include predicting the relative position of
cropped image patches, reconstructing occluded regions, or determining whether
two samples are augmented views of the same image. These pretext tasks encourage
models to learn rich representations that can later be fine-tuned for downstream
supervised tasks, often leading to significant performance improvements with limited
labeled data.

4.3 Classification Methods

4.3.1 Machine Learning Algorithms

In supervised classification, the objective is to assign a class label 3" to a
previously unseen data point z’, given a dataset D = {(z1,91), ..., (,,,y,)} of
examples with known labels. For simplicity, we focus on the binary case, where
y € {0,1}. Each observation x; is typically represented as an m-dimensional feature
vector describing the covariates of interest.

In most real-world applications, there is no deterministic functional mapping
y = f(z). Instead, the relationship between inputs and outputs is modeled
probabilistically by the joint distribution P(z,y), from which D is assumed to
be sampled. According to statistical decision theory, the Bayes-optimal classifier
assigns ¥y’ by maximizing the posterior probability P(y | x”).
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Machine learning algorithms differ in how they approximate this posterior
distribution. Broadly, some models provide only a discrete decision boundary
between the two classes (e.g., support vector machines), while others aim to
explicitly model P(y | ) and thus yield both a predicted label and an estimated
probability of class membership. The latter category includes logistic regression,
artificial neural networks, k-nearest neighbors, and decision trees. These methods
vary in flexibility, interpretability, and computational complexity, and are compared
in the subsections that follow.

Random Forests

Random Forests are ensemble learning methods used for both regression and
classification. Their core idea is to build a collection of decision trees, each trained
on a randomized version of the data (and/or features), and to combine their
outputs—averaging for regression or voting for classification—to produce a final
prediction.

Formally, assume we have an input random vector X € X' C R? and a real-val-
ued target (response) Y. The goal is to estimate the regression function

m(z) =E[Y | X = ],
using a training sample

D, = {(le}/i>a ) (X Y, )}

n»-n

of independent realizations of (X,Y).

A random forest predictor consists of M randomized regression trees. Each
tree is constructed using randomness both in sampling the dataset (often via
bootstrapping) and in selecting which features to consider at each split. Let
O4,...,0,, be ii.d. random variables determining the randomization in each tree
(for example, which examples to sample and which split directions/criteria at nodes).
Then the jth tree gives a prediction

mn(x; Gja Dn)v

and the forest aggregates these via

1 M
Mppn (205, ...,0,,D,) = Mzmn@;@j,pn).
j=1

In regression trees, each tree’s prediction can be written as an average of the
training responses Y, among those data points that fall into the same leaf (cell)
as z. Concretely, defining A, (z;0;, D,,) to be the leaf cell that contains z, and
N, (x;0;, D,,) its number of training examples,

1

;0,,D)) = ————— 1y 0. Y.
mn($ J n) Nn<x,@],Dn) ie-Dzﬂ(:@j) X-LGAn(-'E,@j:Dn) 7
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Random Forests are consistent under quite general conditions. For example,
Breiman’s original formulation (|7]) shows they converge (in classification error
or regression risk) as the number of trees grows, under some assumptions about
strength of individual trees and correlation among them. More recent theoretical
work (e.g. [8]) has provided L2-consistency proofs even in additive regression
settings.

In practice, choices like how many trees M, how many features to try at each
node (often called ‘mtry‘), and how large each leaf is will affect bias—variance
tradeoffs. Random Forests are popular in biomedical applications because of
their flexibility, resistance to overfitting, and ability to handle high-dimensional or
mixed-type datasets.

Logistic Regression

Logistic Regression (LR) is one of the most widely used statistical methods
for predicting the occurrence of a binary outcome from one or more independent
variables [9], [10]. The dependent variable Y takes the value 1 if the event of
interest occurs and 0 otherwise. Each predictor variable is assigned a coefficient
that quantifies its independent contribution to variation in the dependent variable.

The model is expressed through the natural logarithm of the odds ratio:

P(Y)
In (1_p(y)> = fo + 51 X1 + o X + -+ + B Xy, (1)
PY) \ . .
where ln(ﬁ(yﬂ is the log-odds (logit) of the outcome, X;, X,,..., X} are the
predictor variables, [, is the intercept, and 3y, ..., B), are the regression coefficients.

Rearranging, the odds can be written as

Py)

— eBotB1X1+Be Xo++81, Xy 2
= | @)

and the probability of Y as

eBotB1 X1 ++8, Xy,

P(Y) = 1+ ePotPr Xyt 4B, Xy (3)

The parameters [ are typically estimated via maximum likelihood estimation,
which identifies the coefficients that maximize the probability of the observed data.
Each coefficient reflects the expected change in the log-odds of the outcome for
a one-unit increase in the corresponding predictor, holding the others constant.
Exponentiating a coefficient yields the odds ratio, a common measure of effect size
in biomedical applications.

Logistic regression is valued for its interpretability, probabilistic outputs, and
efficiency. However, it assumes a linear relationship between predictors and the
log-odds, which may limit its applicability in more complex data settings.
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Support Vector Machines

Support Vector Machines (SVMs) are supervised learning models designed for
classification and regression tasks. The key idea is to find a separating hyperplane
that maximizes the margin between different classes, thereby improving the model’s
ability to generalize beyond the training data [11]. In the linearly separable case,
this corresponds to identifying the hyperplane

wlz +b=0,

such that the distance (margin) to the nearest training points is maximized. These
critical training points are known as support vectors, as they alone determine the
decision boundary.

Formally, the optimization problem can be written as

r{uliil %Hw|\2 subject to y;(w-x; +b) > 1 Vi,

which seeks the hyperplane with maximal margin. In practice, kernel functions
extend SVMs to non-linear problems by implicitly mapping the data into higher-
dimensional feature spaces where linear separation becomes feasible.

SVMs have been widely applied in biomedical data analysis and medical imaging
due to their robustness in high-dimensional spaces and relatively small sample
settings. However, their reliance on kernel selection and computational cost in
large-scale problems has limited their adoption compared to modern deep learning
approaches.

Gradient Boosting

Gradient Boosting (GB) is an ensemble method that builds a strong predictive
model by iteratively combining multiple weak learners, typically shallow decision
trees [12]. The method frames supervised learning as an optimization problem:
given training data {(z;, yi)}f\il, the goal is to approximate the underlying function
f(z) by minimizing a chosen loss function L(y, f(z)).

Instead of fitting f(x) directly, gradient boosting constructs it in stages:

fo(x) = constant, f,(x) = f,_i(x) + p;h(x;0,),

where h(z; 0, ) is a base learner fitted to the negative gradient of the loss with respect
to the current model f,_;(z), and p, is the optimal step size. By sequentially
adding functions aligned with the steepest descent direction, the model gradually
reduces the loss.

This approach generalizes to different response types through the choice of
loss function: squared error for regression, logistic loss for binary classification,
and other tailored losses for specific distributions (e.g., Poisson counts). Gradient
boosting is widely used due to its flexibility, high accuracy, and interpretability
through feature importance, though it can be computationally expensive and prone
to overfitting without careful regularization.
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XGBoost

Extreme Gradient Boosting (XGBoost) is an efficient and scalable implementa-
tion of gradient boosting that has gained widespread popularity due to its speed,
regularization, and strong empirical performance [13], [14]. Like gradient boosting
(GB), XGBoost builds an additive model of decision trees, where each new tree is
fit to the negative gradients (residual errors) of the loss function from the previous
stage.

Formally, given a dataset D = {(x;,y;)}}" ,, with features x; and labels y;, the
prediction for instance i at boosting step m can be written as the sum over T
regression trees:

T
2™ =3 fi@), (1)
t=1

where each f, corresponds to a tree structure with leaves weighted by parameters
w;.
The learning objective of GB is to minimize a differentiable loss function L®):

n
LO =3 Uy ™), (2)
i=1
where [(-) measures the difference between the prediction and the true value. To
prevent overfitting, common hyperparameters such as subsampling rate, maximum
tree depth, and learning rate are employed.
XGBoost extends this formulation by introducing an explicit regularization
term Q(f,) that penalizes model complexity. The objective becomes

n
LO =3y 3™) + QU), Uf) =T + 3wl (3)
i=1
where T is the number of leaves in a tree, y controls the minimum loss reduction
required for further partitioning, and A is an L, regularization coefficient on leaf
weights. An additional hyperparameter v can be introduced for L, regularization,
further controlling tree sparsity.

Compared with standard GB, XGBoost also employs column subsampling (ran-
dom selection of features at each split), which has been shown to reduce overfitting
more effectively than row subsampling alone. Together, these improvements make
XGBoost highly accurate, robust, and well suited for large-scale structured data.

4.3.2 Deep Learning Algorithms
Introduction to Deep Learning

While many modern deep learning techniques have emerged only in recent
decades, the fundamental idea of learning patterns from data has much deeper
historical roots. For centuries, scientists and mathematicians have sought methods
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to analyze observations and make predictions about the future. This long-standing
pursuit of understanding and forecasting is at the core of both natural science and
statistics.

A key milestone in the history of artificial intelligence was Alan Turing’s famous
paper Computing Machinery and Intelligence, in which he posed the question “Can
machines think?”. He introduced what is now known as the Turing test, arguing
that a machine could be considered intelligent if its responses in a text-based
conversation could not be reliably distinguished from those of a human.

Insights from neuroscience and psychology also shaped the early development
of learning algorithms. Since humans clearly exhibit intelligent behavior, many
researchers asked whether it might be possible to explain or replicate this ability
computationally. One early biologically inspired principle was introduced by
Donald Hebb in his book The Organization of Behavior, where he suggested that
neurons strengthen their connections through repeated co-activation—a concept now
referred to as Hebbian learning. This notion inspired subsequent work, including
Rosenblatt’s perceptron algorithm, and ultimately laid part of the groundwork for
modern optimization approaches such as stochastic gradient descent.

The term neural networks itself reflects this biological inspiration. Researchers
have long attempted to design computational architectures that mimic, at least
abstractly, the interconnected networks of neurons in the brain. Over time, the link
to biological realism became less literal, yet the terminology persisted. At their
core, neural networks share a set of key principles that remain central today: - The
alternation of linear transformations and nonlinear activation functions, organized
into layers. - The use of the chain rule (backpropagation) to update all network
parameters simultaneously during training.

Multilayer Perceptron

Multilayer Perceptrons (MLPs) are among the most widely used neural network
architectures for supervised learning tasks [15]. They extend the original Perceptron
model introduced by Rosenblatt in the 1950s by stacking multiple layers of neurons
and allowing for non-linear decision boundaries through hidden layers.

An MLP is a feed-forward neural network consisting of an input layer, one or
more hidden layers, and an output layer. The number of input neurons corresponds
to the dimensionality of the feature vector, while the number of output neurons
corresponds to the number of target classes in a classification problem. Information
propagates through the network layer by layer: input features are linearly combined
using weights, transformed by activation functions, and passed forward until an
output is produced. The predicted class is typically the one associated with the
output neuron of highest activation.

The flexibility of an MLP comes from its architecture: too few neurons or layers
may lead to underfitting, while too many may cause overfitting. Choosing the
number of layers, neurons, and connections—known as the architecture problem—is
therefore central to building effective models.
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Training an MLP involves adjusting its weights to minimize the discrepancy
between predicted and true outputs. This is typically done via the backpropagation
algorithm, which computes gradients of the loss function with respect to the weights
using the chain rule and updates them through gradient descent. Backpropagation,
together with non-linear activation functions, enables MLPs to approximate complex
non-linear mappings and perform well on classification and regression tasks.

Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are specialized architectures designed
to process data with a grid-like topology, such as images or time series [15]. Instead
of fully connecting all neurons between layers, CNNs employ convolutional layers,
where local receptive fields (filters) are learned and shared across spatial locations.
This weight sharing reduces the number of parameters, enabling efficient learning
and capturing translation-invariant features.

A typical CNN consists of convolutional layers, non-linear activation functions,
and pooling layers that downsample feature maps. These components progressively
extract hierarchical representations: lower layers detect simple features (e.g., edges),
while deeper layers capture more complex patterns. CNNs are trained using
backpropagation, with the convolution operation making gradient computation
efficient through the chain rule.

CNNs have become the dominant method for tasks involving images and
spatial data, achieving state-of-the-art performance in recognition, detection, and
segmentation problems.

Recurrent Neural Networks

Recurrent Neural Networks (RNNs) are designed for sequential data, where
observations are ordered and dependencies exist across time [15]. Unlike feed-
forward networks, RNNs include recurrent connections that allow information to
persist across time steps. Formally, the hidden state h, at time ¢ is updated as

ht = f(Whht—l + szt + b)a

where x, is the input at time ¢, W}, and W, are weight matrices, b is a bias, and f
is a non-linear activation. The hidden state thus serves as a memory that encodes
past information relevant to the current prediction.

RNNs are commonly used for language modeling, speech recognition, and other
temporal sequence tasks. However, standard RNNs suffer from vanishing and
exploding gradients, which limit their ability to model long-range dependencies.
Variants such as Long Short-Term Memory (LSTM) networks and Gated Recur-
rent Units (GRUs) address this by introducing gating mechanisms that regulate
information flow, enabling effective learning of long-term dependencies.
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4.4 Transformers

Transformers

Attention mechanisms have become a central component in modern sequence
modeling, as they enable the capture of dependencies between elements regardless
of their distance in the input or output. In particular, self-attention (or intra-
attention) relates different positions within the same sequence to derive richer
contextual representations. This approach has demonstrated strong performance
across a wide range of tasks, including reading comprehension, summarization,
entailment recognition, and general-purpose sentence embeddings.

Many state-of-the-art sequence transduction models adopt an encoder—decoder
framework, where the encoder maps an input sequence of symbols (z, ..., z,,) into
a sequence of continuous embeddings z = (zq, ..., z,,). The decoder then generates
the output sequence (yq, ..., ¥,,) in an autoregressive manner, producing each token
step by step while conditioning on the previously generated outputs.

The Transformer architecture builds on this encoder—decoder structure but
replaces recurrent and convolutional components with stacked layers of self-attention
and position-wise feed-forward networks. As illustrated in the original paper [1],
the encoder and decoder are structurally similar, differing primarily in how they
apply masking and cross-attention mechanisms.

Encoder and Decoder Stacks Encoder: The encoder is composed of a
stack of identical layers, each consisting of two primary components: a multi-head
self-attention mechanism and a position-wise feed-forward network. To stabilize
training and improve information flow, residual connections are added around each
sub-layer, and the outputs are normalized using layer normalization. This ensures
that every sub-layer operates on and returns vectors of consistent dimensionality,
typically denoted as d,;,qe-

Decoder: The decoder mirrors the encoder’s layered structure but includes
an additional cross-attention module in each layer. Alongside self-attention and
feed-forward sub-layers, the cross-attention mechanism allows the decoder to attend
to the encoder’s outputs, integrating source-sequence information during generation.
As in the encoder, residual connections and layer normalization are applied to
each sub-layer. Furthermore, the self-attention in the decoder employs causal
masking, which prevents each position from attending to future tokens. This
enforces autoregressive generation, ensuring that predictions at step ¢ depend only
on outputs from earlier positions.

Attention In general terms, an attention mechanism takes as input a query
vector together with a set of key—value pairs and produces an output representation.
The output is a weighted combination of the values, where the weights reflect the
similarity between the query and each key as measured by a compatibility function.
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The most widely used variant in Transformer models is the scaled dot-product
attention. Here, queries and keys have dimensionality d,, while values have dimen-
sionality d,. The attention weights are obtained by computing the dot product
between the query and each key, scaling by \/@ to control for vector dimensionality,
and applying the softmax function. This yields a normalized distribution that
determines how much focus is placed on each value.

For efficiency, multiple queries are processed simultaneously by stacking them
into a matrix @), with corresponding matrices K and V for keys and values. The
resulting operation can be written compactly as:

-
Attention(Q, K, V') = softmax (%) V.
k

Two classical forms of attention mechanisms are commonly used: additive
attention and dot-product (multiplicative) attention. In additive attention, a
feed-forward network with a hidden layer is employed to compute the similarity be-
tween queries and keys. By contrast, dot-product attention measures compatibility
directly through the inner product of query and key vectors. Although both meth-
ods have similar theoretical complexity, dot-product attention is computationally
more efficient in practice because it can be implemented with optimized matrix
multiplications.

For small query/key dimensions (d},), both approaches tend to yield comparable
results. However, when d;, becomes large, unscaled dot products can grow in
magnitude and push the softmax function into regions where gradients are very
small. To mitigate this, the dot products are scaled by a factor of 1/ \/@ , which
stabilizes the computation and improves training.

The Transformer further extends this idea through multi-head attention. Instead
of applying a single attention function with full d,, 4.,-dimensional queries, keys,
and values, the model first linearly projects them into lower-dimensional spaces
(dj, for queries and keys, d, for values) using separate learned weight matrices.
The attention operation is then carried out in parallel across multiple heads (h
in total), each producing its own representation. The outputs of these heads are
concatenated and passed through another linear transformation to produce the final
attention output. This design allows the model to jointly capture information from
different representation subspaces at multiple positions, as illustrated in Figure 2.

Multi-Head Attention Multi-head attention extends the basic attention
mechanism by applying it in parallel across multiple learned projections of the
queries, keys, and values. Instead of relying on a single attention head, which
may average information across all representation subspaces, multiple heads en-
able the model to capture different types of relationships at different positions
simultaneously.

Formally, the multi-head mechanism is defined as:

MultiHead(Q, K, V) = Concat(head, ..., head, )W ©,
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where each head is computed as
head; = Attention(QW,%, KWK, VW.V).
The learnable projection matrices are given by
V[/:LQ - RdmodeIXdk? V[/:LK - RdmodeIXdk’ VV:LV & jllﬁdmodel)(dv7 WO & thdemodel_

Here, h denotes the number of attention heads, while d;, and d,, represent the
dimensionalities of the projected key/query and value spaces, respectively. Each
head produces an output of dimension d,,, and their concatenation is mapped back
into the original model space of size d, 4, Because the dimensionality of each
head is reduced relative to the full model dimension, the computational cost of
multi-head attention remains comparable to that of single-head attention, while
providing richer representational capacity.

Position-wise Feed-Forward Networks In addition to the attention sub-
layers, each encoder and decoder layer also includes a position-wise feed-forward
network. This component is applied independently to each position in the sequence,
using the same parameters for all positions within a layer. The network consists of
two linear transformations separated by a non-linear activation function, typically
the rectified linear unit (ReLU):

FFEN(x) = max(0, zW) + by )Wy + b,.

Although the same transformation is shared across sequence positions, the
parameters are distinct for each layer in the stack. Conceptually, this operation
can also be viewed as a pair of convolutions with kernel size equal to 1.

The input and output of the feed-forward network match the model dimension
dmodel> While the intermediate hidden dimension, often denoted dy, is chosen to
be larger in order to increase representational capacity.

Positional Encoding Because the Transformer architecture does not rely
on recurrence or convolution, it requires an explicit mechanism to incorporate
information about token order. This is achieved by adding positional encodings
to the input embeddings at the bottom of the encoder and decoder stacks. The
encodings are defined to have the same dimensionality d,, 4. as the embeddings,
allowing them to be combined through element-wise addition. Several types of
positional encodings have been proposed, including both fixed functions and learned
embeddings [1].
A widely used approach employs sinusoidal functions of varying frequencies:

N
PE(pos, 2i) = sin <100002i/dm0del> )

, B pos
PE(pos,2i + 1) = cos (—1000021/%0@1) ,
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where pos denotes the position in the sequence and ¢ indexes the embedding
dimension. This construction yields encodings where each dimension corresponds
to a sinusoid with a wavelength forming a geometric progression from 27 up to
10000 - 27. The resulting representation facilitates learning of relative positions,
since a shifted position pos + k can be expressed as a linear function of PE(pos).
Alternatively, positional information can be introduced through learned em-
beddings, in which case the encoding vectors are optimized jointly with the rest of
the model parameters. While both approaches have been shown to achieve similar
empirical performance, fixed sinusoidal encodings have the additional advantage of
enabling extrapolation to sequence lengths beyond those observed during training.

4.5 Metrics

Performance metrics are essential for evaluating and comparing classification
models. They allow us to quantify how well a model distinguishes between classes,
to compare the performance of different algorithms, and to analyze how a model
behaves under different parameter settings ([16]). Most classification metrics
are derived from the confusion matriz, which compactly summarizes correct and
incorrect predictions.

Confusion Matrix

The confusion matrix is a contingency table that records the relationship
between actual and predicted class labels. Rows represent the true labels, while
columns correspond to model predictions. Correct classifications appear on the
main diagonal, while off-diagonal entries indicate misclassifications. This structure
provides the basis for a wide range of performance measures.

In what follows, we begin with binary classification metrics, which extend
naturally to the multi-class case.

Precision and Recall

Precision measures the proportion of predicted positives that are actually

positive:
TP
Precision = W, (4 ].)

where T'P denotes true positives and F'P false positives. Precision therefore quanti-
fies the reliability of positive predictions.
Recall, or sensitivity, measures the proportion of actual positives that are

correctly identified:

TP
= _ -~ 4.2
Recall = 75 7N (42)
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where F'N denotes false negatives. Recall reflects the model’s ability to detect all
positive cases in the dataset.

These two metrics form the foundation for more advanced indicators such as
the Fl-score and balanced accuracy.

Accuracy

Accuracy is one of the most widely used metrics and represents the overall
proportion of correctly classified instances:

TP +TN
TP+TN+ FP+ FN’

Accuracy = (4.3)

Intuitively, accuracy gives the probability that a randomly selected instance
will be correctly classified. It is simple and easy to interpret but can be misleading
in imbalanced datasets, since the performance on minority classes may be hidden
by the majority class. In such cases, accuracy reflects the dominance of larger
classes rather than the true model performance across all categories.

Nevertheless, accuracy remains a useful and intuitive measure, bounded between
0 and 1, with the complement often referred to as the misclassification rate.

Balanced Accuracy

Balanced accuracy addresses the shortcomings of standard accuracy by averag-
ing recall across all classes:

C
1 TFE
Balanced Accuracy = c E TP (4.4)
i=1 " "¢

2

+ FN;’
where C'is the number of classes.

This metric gives equal weight to each class, regardless of class size, making
it more informative for imbalanced datasets. When the class distribution is ap-
proximately uniform, accuracy and balanced accuracy converge to similar values.
Differences between them become more pronounced as class imbalance increases.

F1-Score

The F1-score combines precision and recall into a single measure by computing
their harmonic mean:

precision - recall

F1-Score = 2 - (4.5)

precision + recall’

The Fl-score ranges from 0 to 1, with higher values indicating a better balance
between precision and recall. Because it uses the harmonic mean, the Fl-score
penalizes large disparities between the two components, giving greater weight to the
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smaller value. For example, a model with precision and recall both at 80% achieves
an Fl-score of 0.80, whereas a model with precision of 60% and recall of 100%
achieves only 0.75. This property makes the Fl-score particularly useful when the
goal is to balance false positives and false negatives, rather than optimizing one at
the expense of the other.

In practice, the Fl-score is widely used in both binary and multi-class settings,
especially in imbalanced classification problems where accuracy alone is insufficient.

Area Under the ROC Curve (AUC-ROC)

Receiver Operating Characteristic (ROC) analysis is a widely used method for
evaluating classification performance, particularly in settings with imbalanced data
or varying decision thresholds [17], [18]. An ROC curve is a two-dimensional plot
with the true positive rate (sensitivity) on the vertical axis and the false positive
rate (1-specificity) on the horizontal axis. Each point on the curve corresponds to
a different decision threshold of the classifier, and the curve therefore illustrates
the trade-off between detecting positives and avoiding false alarms.

While ROC curves provide a visual tool for comparing classifiers, it is often
useful to summarize their performance with a single scalar. The most common
summary statistic is the area under the ROC curve (AUC-ROC). Since the ROC
curve lies within the unit square, the AUC is bounded between 0 and 1. A classifier
with no discriminative ability (random guessing) corresponds to the diagonal line
from (0,0) to (1,1), with an AUC of 0.5. Thus, practical classifiers should achieve
AUC values above 0.5, with values closer to 1.0 indicating stronger performance.

AUC-ROC has an important probabilistic interpretation: it is equivalent to the
probability that the classifier assigns a higher score to a randomly chosen positive
instance than to a randomly chosen negative instance [19]. This interpretation links
AUC directly to the Wilcoxon rank-sum statistic. Furthermore, AUC is related to
other measures, such as the Gini coefficient, where Gini = 2 - AUC — 1 [20].

The main advantages of AUC-ROC are its threshold-independence and scale-
invariance. Unlike accuracy, which depends on a fixed classification threshold, AUC
evaluates the model’s ability to rank positive examples above negative ones across
all thresholds. This makes it especially valuable in biomedical applications, where
class imbalance is common and where the choice of decision threshold may vary
depending on the clinical context.

Despite its popularity, AUC is not without limitations. It summarizes ranking
ability but does not reflect the actual probabilities predicted by a model or the
consequences of false positives versus false negatives in specific applications. In cases
where precision is critical, the area under the precision—recall curve (AUC-PR) may
provide complementary insights. Nonetheless, AUC-ROC remains one of the most
widely used and robust performance indicators in machine learning and medical
decision-making.
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Area Under the Precision—Recall Curve (AUC-PR)

Precision-Recall (PR) curves are commonly used in information retrieval and
increasingly in machine learning, particularly for evaluating classifiers on imbalanced
datasets [21]. A PR curve plots precision on the vertical axis against recall on the
horizontal axis, across all possible classification thresholds. The ideal region of
performance lies in the upper-right corner, corresponding to high precision and
high recall simultaneously.

Compared with ROC analysis, PR curves often provide a more informative view
when the positive class is rare. This is because ROC curves can appear deceptively
optimistic under severe class imbalance, as the false positive rate accounts for
the large number of negative examples. In contrast, PR curves directly reflect
the trade-off between identifying true positives and avoiding false positives, which
better highlights differences between models in such settings.

The area under the PR curve (AUC-PR) summarizes the overall performance
into a single scalar. Like AUC-ROC, values range between 0 and 1, with higher
values indicating stronger performance. However, the baseline for AUC-PR is
determined by the prevalence of the positive class: in a dataset where positives
make up p% of the total, random guessing yields an expected AUC-PR of p/100.
This dependence on class distribution makes AUC-PR particularly sensitive to
class imbalance and therefore highly relevant for biomedical applications where
positive cases are rare.

In practice, AUC-PR complements AUC-ROC by providing a clearer picture
of performance in imbalanced datasets. While ROC curves capture the ability to
rank positive examples above negatives across thresholds, PR curves focus on how
many of the predicted positives are correct and how well the model captures all
true positives. For this reason, AUC-PR is often reported alongside AUC-ROC to
give a more complete assessment of classification performance.

4.6 Clustering Algorithms & Validation Met-
rics

Clustering is a basic process in data analysis. It aims to partition a set of objects
into groups called clusters such that, ideally, objects in the same group are similar
and objects in different groups are dissimilar to each other [22]. Unlike supervised
learning, clustering operates in an unsupervised setting, where no ground-truth
labels are available. It is therefore widely used for exploratory analysis, pattern
discovery, and data summarization across diverse fields such as biology, image
analysis, natural language processing and neuroscience. In practice, clustering
can reveal hidden structures within complex, high-dimensional datasets, helping
to identify meaningful subgroups or phenotypes in medical data. In this thesis,
clustering is applied to the learned feature representations of subjects, with the aim
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of uncovering potential subgroups relevant to disease progression. The following
subsections provide an overview of the algorithms and metrics used for evaluating
the quality of these clusters.

4.6.1 Algorithms
k-Means

The k-means algorithm is one of the most widely used clustering methods due
to its simplicity and efficiency. It solves the problem of clustering by minimizing
the sum of squared errors (SSE) [23].

In this problem, we are given a set of points P C R? in a Euclidean space, and
the goal is to find a set C' C RY of k points (not necessarily included in P) such
that the sum of the squared distances of the points in P to their nearest center in
C is minimized.

Thus, the objective function to be minimized is:

t(P,C) = i —c|?
cos(P,C) 1= 3 minlp =

where | - ||* denotes the squared Euclidean distance.

In order to solve the SSE problem heuristically, the k-means algorithm starts
with an initial candidate solution {cy, ..., c,} C R, which can be chosen arbitrarily
(often, it is chosen as a random subset of P). Then, two steps are alternated until
convergence: First, for each c¢;, the algorithm calculates the set P, of all points in P
that are closest to ¢; (where ties are broken arbitrarily). Then, for each 1 <i <k,
it replaces c¢; by the mean of F,. Because of this calculation of the “means” of the
sets F;, the algorithm is also called the k-means algorithm.

The k-Means Algorithm Input: Point set P C R?, number of centers k
1. Choose initial centers c, ..., ¢, from R
2. repeat
(a) ‘P17"‘7Pk <_®
(b) For each p € P do:
i. Let i=argmin,_; ,[p—¢; &
ii. < FU{p}
(c) For i =1 to k do:
i. If P, # 0 then ¢; = \Ii Zpep'p

il

3. until the centers do not change



Agglomerative

Agglomerative Clustering is a hierarchical, bottom-up clustering method. Each
data point starts as its own cluster, and pairs of clusters are successively merged
based on a defined similarity or distance metric until all points belong to a single
cluster or a stopping criterion is met [24].

The algorithm proceeds as follows:

1. Initialize each data point as its own cluster.

2. Compute a distance matrix between all clusters using a chosen metric (e.g.,
Euclidean, Manhattan).

3. Merge the two closest clusters according to a linkage criterion:

e Single linkage: minimum distance between points of the two clusters.

« Complete linkage: maximum distance between points of the two
clusters.

e Average linkage: average distance between points of the two clusters.

¢ Ward’s method: minimizes the increase in total within-cluster vari-
ance.

4. Update the distance matrix and repeat until the desired number of clusters
is reached or all points are merged.

Agglomerative clustering produces a dendrogram, which is a tree-like diagram
showing the hierarchical merging process. It is particularly useful when the number
of clusters is not known in advance or when the cluster structure is hierarchical
[25].

Spectral Clustering

Spectral Clustering is a graph-based clustering method that uses the eigenvalues
(spectrum) of a similarity matrix to perform dimensionality reduction before
clustering. Unlike traditional clustering algorithms such as k-means, spectral
clustering is particularly effective for identifying non-convex clusters or clusters
connected by complex shapes [26], [27].

The algorithm typically follows these steps:

1. Construct a similarity graph G from the data points, where nodes represent
points and edges encode similarity (e.g., using a Gaussian kernel or k-nearest
neighbors).

2. Compute the graph Laplacian L:
L=D-W

where W is the similarity (adjacency) matrix and D is the degree matrix.
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3. Compute the first k eigenvectors of L, corresponding to the smallest eigen-
values (or the largest for the normalized Laplacian).

4. Treat each data point as a vector in the k-dimensional eigenspace and apply
a standard clustering algorithm, typically k-means, to these vectors.

Spectral clustering can capture clusters that are not well separated in the
original feature space and is widely used in image segmentation, social network
analysis, bioinformatics, and other applications involving complex cluster shapes.

DBSCAN (Density-Based Spatial Clustering of Applications with
Noise)

DBSCAN is a density-based clustering algorithm that groups together points
that are closely packed, while marking points in low-density regions as outliers.
It does not require specifying the number of clusters in advance and can find
arbitrarily shaped clusters ([28]).

The algorithm works as follows:

1. Define two parameters:

e ¢ (epsilon): the maximum distance between two points to be considered
neighbors.

e minPts: the minimum number of points required to form a dense region.
2. Classify points into three categories:

o Core points: have at least minPts neighbors within €.

e Border points: have fewer than minPts neighbors but are within ¢ of
a core point.

¢« Noise points: neither core nor border points.

3. Form clusters by connecting core points and including their reachable border
points.

DBSCAN is especially useful when clusters have irregular, non-convex shapes
or when the dataset contains noise. Its main advantage is that it does not require
specifying the number of clusters a priori.

4.6.2 Validation Metrics

Silhouette Score

The Silhouette Score, introduced by [29], is an internal validation metric for
clustering that measures how similar an object is to its own cluster (cohesion)
compared to other clusters (separation).
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For a given sample ¢, let a(i) be the average distance between i and all other
points in the same cluster, and let b(¢) be the minimum average distance between 4
and all points in any other cluster. The silhouette value s(7) is then defined as:

(i) —al)
S0 = ax{a(). b))

The silhouette value ranges from —1 to 1:

e Values close to 1 indicate that the sample is well matched to its own cluster
and poorly matched to neighboring clusters.

e Values around 0 suggest that the sample lies between two clusters.

o Negative values indicate that the sample may have been assigned to the
wrong cluster.

The overall Silhouette Score for a clustering is the mean of s(i) across all
samples. Higher values indicate better-defined clusters, making it a useful too for
comparing the quality of different clustering configurations.

Davies—Bouldin Index

The Davies—Bouldin Indexz (DBI), introduced by Davies and Bouldin [30] is an
internal clustering evaluation metric that quantifies the average similarity between
each cluster and its most similar counterpart. For two clusters C; and Cj, similarity
is defined as the ratio of the sum of their average within-cluster scatter (S; and S;)
to the distance between their centroids (M,;). Formally, the index is given by:

1< k
DBI = ; i,
J#Z
where k is the number of clusters. Lower DBI values indicate more compact
and well-separated clusters, with 0 representing ideal separation and cohesion.
Unlike external validation measures, DBI does not require ground truth labels and
is sensitive to both intra-cluster variance and inter-cluster separation. However,
its reliance on centroid-based distances makes it less effective for clusters with
non-convex shapes or highly variable densities.

S;+5;

Adjusted Rand Index

The Adjusted Rand Index (ARI), introduced by Hubert and Arabie hubert1985comparing
is an external evaluation metric for clustering that measures the similarity between
a clustering result and a given ground truth partition. It is based on counting
pairs of samples that are either assigned to the same or different clusters in both
partitions. The ARI corrects the original Rand Index for chance, ensuring that a
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score close to zero corresponds to random labeling, regardless of the number of
clusters.

Given a contingency table where n,; represents the number of objects that are
in cluster ¢ in the predicted partition and in cluster j in the ground truth partition,
the ARI is defined as:

where:
e 7 is the total number of samples,

e a, = Zj n;; is the sum over row i of the contingency table,

 b; =), n;; is the sum over column j.

The ARI ranges from —1 (complete disagreement) to 1 (perfect agreement),
with 0 indicating a level of agreement expected by random chance. Because of
its chance correction, ARI is more reliable than the unadjusted Rand Index when
comparing clustering results across datasets with varying cluster counts.

4.7 Feature Importance

4.7.1 Analysis of Variance (ANOVA)

Analysis of Variance (ANOVA) is a statistical method used to determine whether
there are significant differences between the means of three or more independent
groups. It decomposes the total variability in the data into variability between
groups and within groups, and evaluates whether the between-group variance is
large relative to the within-group variance.

The test statistic, called the F-ratio, is defined as:

MS,,
F = etween
MS

within

where:

o MSyciween = % is the mean square between groups,

o MS,ithin = % is the mean square within groups,

* SSbetween and SS
respectively,

within ar€¢ the sum of squares between and within groups,
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e k is the number of groups, and N is the total number of observations.

A large F value indicates that the group means are significantly different.
ANOVA assumes independence of observations, normality within groups, and
homogeneity of variances. When assumptions are violated, non-parametric alterna-
tives such as the Kruskal-Wallis test can be used.

4.7.2 Kruskal-Wallis Test

The Kruskal-Wallis test is a non-parametric alternative to one-way ANOVA,
used to determine whether there are statistically significant differences between
the medians of three or more independent groups. Unlike ANOVA, it does not
assume normality of the data and is suitable for ordinal or non-normally distributed
continuous data.

The test is based on ranking all observations across groups. Let R;; be the
rank of the j-th observation in group 7, and n; the number of observations in group
1. The Kruskal-Wallis statistic H is computed as:

12 k _ N 4+1\2
H= ——— . =
N(N+1);"% (Rz 2 )

where:

e k is the number of groups,

e N is the total number of observations across all groups,
e R, is the average rank of group i.

Under the null hypothesis of equal group distributions, H approximately follows
a chi-squared distribution with k& — 1 degrees of freedom. A large value of H
indicates that at least one group median is significantly different from the others.

4.8 Interpretability

4.8.1 Integrated Gradients

Deep neural networks achieve state-of-the-art performance in a wide range of
domains but are often criticized for their lack of interpretability, which poses chal-
lenges in sensitive fields such as medicine and neuroscience. Model interpretability
aims to provide insights into the internal decision-making process of a network,
enabling researchers and clinicians to better trust and understand the outputs.
Among the existing approaches, attribution methods are widely used to assign an
importance score to each input feature with respect to a given prediction.

Integrated Gradients (IG) [31] is a widely adopted attribution method designed
for differentiable models. It addresses some of the limitations of gradient-based
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saliency maps, which often suffer from noise and saturation. The central idea of
IG is to compute feature attributions by integrating the gradients of the model’s
output with respect to the input along a path from a baseline input (often chosen
as a zero vector or mean reference) to the actual input. Formally, for a model
F:R"™ — R, input € R™, and baseline z’, the attribution for feature i is defined
as:

B , 1 OF (2" + a(x — "))
1G;(z) = (z; — z}) /ao D da. (4.6)

7

This formulation satisfies two desirable axioms: sensitivity, which ensures that
features influencing the prediction receive non-zero attribution, and implementation
invariance, which guarantees that functionally equivalent models yield identical
attributions [31]. In practice, the path integral is approximated using a finite sum
over discrete steps, which provides a tractable estimation of feature importance.

Integrated Gradients has been applied extensively in healthcare and neuroscience
applications, including the interpretation of models for disease diagnosis and
progression prediction (]|32], [33]). Its ability to highlight input features that drive
model decisions makes it particularly valuable for biomarker discovery and for
assessing whether models rely on clinically meaningful signals.

4.8.2 SHAP (SHapley Additive Explanations)

SHAP is a model-agnostic explanation method based on cooperative game
theory. It assigns each feature an importance value for a particular prediction,
ensuring a fair distribution of contribution across all features.

The main idea is to consider each feature as a “player” in a cooperative game
where the “payout” is the model’s prediction. The Shapley value for a feature
represents its average contribution to the prediction over all possible subsets of
features. Formally, the Shapley value ¢, for feature ¢ is computed as:

ST =151 =1)!
a

¢; = [fsup (suy) — fs(@s)]

SCFN{i}

where:

e F'is the set of all features.

e S'is a subset of features excluding .

e fg(zg) is the model prediction using features in subset S.

SHAP provides both local explanations (for individual predictions) and global
explanations (aggregated across the dataset), making it widely used for interpreting
complex models such as tree ensembles and neural networks.

65



4.8.3 LIME (Local Interpretable Model-agnostic Ex-
planations)

LIME is a model-agnostic explanation technique designed to provide local
interpretability for individual predictions. Instead of explaining the entire model
globally, LIME approximates the model’s behavior in the neighborhood of a specific
instance with a simpler, interpretable surrogate model (typically linear regression).

The core idea is to perturb the input data around the instance of interest and
observe how the model’s predictions change. Using these perturbed samples and
their corresponding predictions, LIME fits a locally weighted interpretable model
that mimics the complex model’s decision boundary near that instance. Formally,
LIME aims to minimize the following objective:

{(z) = argmin L(f,g,m,) +Q(g)
geG
where:
o fis the original (black-box) model.
e g € (G is a simple, interpretable model (e.g., linear or decision tree).

o L(f,g,7m,) measures the fidelity of ¢ in approximating f around instance z,
weighted by 7, a proximity measure defining the neighborhood of z.

o (g) penalizes the complexity of ¢ to ensure interpretability.

LIME thus provides insight into how individual features influence a specific
prediction by showing the local, linear approximation of the model’s decision
surface. Although it does not guarantee global faithfulness, it is highly valuable for
understanding complex, non-linear models at the level of individual observations.

4.9 Related Work

Transformer architectures, originally introduced for sequence modeling in nat-
ural language processing, have increasingly been adopted in the medical domain
for their ability to capture long-range dependencies and integrate heterogeneous
data sources. In clinical prediction tasks, Transformers have been applied to
longitudinal electronic health records, imaging and multimodal datasets, where
their self-attention mechanism enables the modeling of temporal patterns and
interactions across diverse modalities. This capability is particularly valuable
in neurodegenerative diseases such as Alzheimer’s, where disease progression un-
folds over time and involves complex interactions between cognitive assessments,
imaging biomarkers, and clinical variables. Recently, [34] demonstrated the po-
tential of Transformer-based multimodal fusion in a large-scale study, achieving
state-of-the-art differential diagnosis.
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Recent advances have also applied Transformer models in Alzheimer’s disease
prediction. [35] use a transformer-based framework to fuse multimodal data and
predict AB and tau burder with high accuracy. [36] propose an interpretable
transformer for PET /MRI-based AD prediction-providing both accuracy and trans-
parency.

ROI-based analysis in the field of computational neuroscience can be traced
back to around the early 2000s.

In recent years, deep learning models utilizing ROI-based analysis have made
significant progress in predicting Alzheimer’s disease.

Recent studies highlight the potential of machine learning in advancing Alzheimer’s
disease diagnosis and prognosis [37], [38], [39], [40]. More recently, [41] developed an
AT model for differential diagnosis across multiple dementia etiologies using a large
multimodal dataset spanning over 50000 participants, achieving state-of-the-art
accuracy and showing clinical utility in augmenting neurologist assessments.

[42] proposed a Transformer-based framework for predicting Alzheimer’s dis-
ease progression using longitudinal multi-modal data, demonstrating the value of
temporal modeling for forecasting future conversion.

[43] also extend the approach by comparing conventional 3D convolutional
neural networks with vision Transformers for AD classification, showing that
Transformer-based architectures can better capture long-range dependencies in
structural brain imaging. Their results emphasize the advantages of attention
mechanisms over purely convolutional approaches in handling high-dimensional
neuroimaging data.

Building upon this body of work, the present thesis focuses on a Transformer-
based framework designed to jointly model multimodal longitudinal data for both
diagnosis and disease progression prediction. In addition, special emphasis is placed
on interpretability and subgroup analysis, with the goal of providing clinically
meaningful insights alongside predictive accuracy.
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Chapter 5

Methods

5.1 Dataset Overview & Preprocessing

The data used for this experiment were acquired from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) and comprise two datasets: one containing static
cross-sectional data for patients (including brain region measures and SNPs), and
one with longitudinal data focusing on brain region volumes per visit. The latter
was used for predicting disease diagnosis and disease conversion tasks, while the
cross-sectional subset was used for exploratory analysis within subgroups. In order
to extract the numerical ROI volumes, brain MRI images were preprocessed by
applying a skull-stripping algorithm [44], [45].

5.1.1 Longitudinal Dataset
Dataset Split

As stated above, the first dataset used for the transformer stage contains
longitudinal data. More specifically, there are 2398 patients with a total number of
10805 examinations. A small number of visits (<1% of all examinations) contained
invalid ROI volumes (all-zero or missing values). These visits were excluded before
modeling, leaving behind 2391 patients. The dataset contains static data about
the patient (PHASE, SITE, Sex, and Race), as well as longitudinal information
for 145 brain ROIs and the age at the time of each visit. However, time intervals
between visits are not guaranteed to be homogeneous, therefore further analysis is
required. As shown in Figures and the total number of visits and the total
timespan per patient also vary, which influences the number of visits chosen for the
final tasks, both diagnosis and conversion. Many patients also seem to have only a
single visit, which, while proving useful for the diagnosis task, seems redundant
for the conversion task, motivating a split into two subsets: (i) one containing the
full cohort, which we will call the diagnosis cohort, and (ii) one tailored to the
conversion task, which we will call the conversion cohort. In order to construct the
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‘ ADNI participants ’

(N = 2,398)

/

Diagnosis cohort (N = 2,591)

« Labels: AD / MCI / CN
o Input: visits up to ¢
o Target: diagnosis at ¢t (current-visit)

>

Conversion cohort (N = 980)

« Excludes single-visit subjects

« Excludes baseline AD and all CN

o Input: visits up to ¢

o Target: diagnosis at t+1 (next-visit)

Figure 5.1: Cohort derivation from the ADNI sample.

conversion cohort, we exclude patients with only one visit, those diagnosed with
AD at baseline, as well as all CN diagnoses; therefore the resulting binary task is

next-visit MCI—AD vs MCI—MCI.

Diagnosis Cohort

Across the observation window, the dataset consists of 2391 patients contributing
10730 examinations. At the visit level, diagnostic labels were distributed as 3700
CN (34.5%), 4781 MCI (44.6%) and 2249 AD (21.0%) occurrences, indicating that
MCI is the most frequent state in this cohort.

Table 5.1: Dataset summary

statistics.
Statistic Count
Total patients 2,391
Total examinations 10,730
CN occurrences 3,700
MCI occurrences 4,781
AD occurrences 2,249

5001 --- Median = 4 500 == Median = 2.07y

Patients

123456 7 8 91011121314151617
Visits

Figure 5.2: Number of visits per
patient

Patients

Figure 5.3: Total timespan per pa-
tient.
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Table 5.2: Number of participants with at least k examinations.

Visits Total participants
2391
1907
1594
1383
1080
781
541
387
267
165

© 00 O O i W N+

—
)

Even though the class ratios remain relatively stable until later visits, the
number of available patients drops sharply. This makes those later visits less
informative for modeling, as the sample size shrinks too much. As shown in
Table the baseline distribution is balanced, with CN representing 36%, MCI
46%, and AD 18% of participants. Beyond k = 7, however, the sample size declines
rapidly (e.g., only 267 participants remain at k = 9). These patterns motivated
the choice to restrict the primary longitudinal analysis to a window of up to seven
visits, which balances sequence coverage with sample size given the distribution of
available visits, as well as the total number of visits and timespan per patient as
shown above. Therefore, the maximum sequence length was set to T=7 visits.

2500 A

Diagnosis
[ CN
2000 - 3 mal
I AD

Patients
iR
w
o
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=
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o
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o

o
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Visits

Figure 5.4: Diagnosis distribution per visit
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Table 5.3: Class distribution at the k-th visit

k AD CN MCI Total AD (%) CN (%) MCI (%)
1 420 871 1100 2391 17.6 36.4 46.0
2 360 647 900 1907 18.9 33.9 47.2
3 348 491 755 1594 21.8 30.8 474
4 327 428 628 1383 23.6 30.9 45.4
5 238 367 475 1080 22.0 33.9 43.9
6 169 289 323 781 21.6 37.0 41.4
7 129 210 202 541 23.8 38.8 37.3
8 87 153 147 387 22.5 39.5 37.9
9 67 94 106 267 25.1 35.2 39.7
10 41 54 70 165 24.8 32.7 42.4
11 31 43 36 110 28.2 39.1 32.7
12 16 26 23 65 24.6 40.0 35.4
13 11 14 10 35 31.4 40.0 28.6
4 4 8 5 17 23.5 47.1 29.4
15 1 3 1 5 20.0 60.0 20.0
6 0 1 0 1 0.0 100.0 0.0
17 0 1 0 1 0.0 100.0 0.0

For longitudinal modeling, the dataset was organized per patient as a fixed-
length sequence of visits. Let ¢ index patients and t index visits in chronological
order from baseline. For each patient ¢ we retained the first K visits, where K = 7.
Patients with fewer than K visits were right-padded, and a padding mask was
applied to ensure that padded time steps did not contribute to loss or metrics.

At each visit ¢, the input feature vector included the subject’s age at visit and
a set of brain-region volumes (ROIs) extracted from MRI (145 ROIs in our setup).
The corresponding diagnosis label at visit t was kept in its original 3-class form:
cognitively normal (CN), mild cognitive impairment (MCI), or Alzheimer’s disease
(AD). Labels were encoded as integers for training (CN=0, MCI=1, AD=2) and
downstream task definitions (e.g., conversion vs non-conversion) were derived from
these labels as described below.

Therefore, for each visit (i,t) we assemble the input feature vector z;; as
follows:

e Structural MRI ROI volumes: 145 regional brain volumes extracted after
MRI preprocessing (see below).

o Age at visit

Aside from the exclusions discussed at the start of this section, the remaining
ROI features were treated as observed, since missingness at the feature level was
negligible in our full cohort subset.
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Subsequently, a linear covariates adjustment was applied to the numerical
ROI data in order to reduce the effect of age, sex and DLICV in our data. Since
brain anatomy and the volumes of white and gray matter regions vary substan-
tially with age and sex, linear correction helped retain only Alzheimer’s-related
neuroanatomical differences in ROI volumes.

For this purpose, a linear regression model was trained using age, sex and
DLICV from 449 CN individuals as predictors, with the brain VOIs as output. The
model was fitted on these predictors and applied on the entire dataset, to obtain
predicted ROI values for each individual. The predicted value for each ROI was
subtracted from the observed value, yielding residuals with the effects of age, sex,
and DLICV removed [37].

Z-score standardization was applied to age and each ROI volume for all the
individuals, using the following formula:

Li ~ HeN (5.1)

z_score; =
OCN

where z; is the feature’s value for which z-score is calculated, oy is the mean
of the CN individuals for that same feature and oy is the standard deviation of
CN individuals for that same feature.

In summary, each patient is represented as a length- K sequence of standardized
continuous features (age + ROI volumes) with an accompanying per-visit diagnosis
label in {CN, MCI, AD} and explicit masks for padding and eligibility. Finally,
the data was split into training/validation and test set with a ratio of 0.8 and 0.2
respectively.

Conversion Cohort

The conversion analysis is framed as a next-visit progression task from mild
cognitive impairment (MCI) to Alzheimer’s disease (AD). Cases diagnosed as
cognitively normal (CN) do not contribute for this specific task, and subjects
diagnosed with AD at baseline cannot ”convert” by definition. Moreover, single-visit
subjects offer no next-visit signal. Accordingly, we construct a conversion-specific
subset (the conversion cohort) via the following exclusions:

o Exclude patients with only one visit (no next-visit labels can be defined).
o Exclude patients diagnosed with AD at their first (baseline) visit.

o Exclude all CN diagnoses and CN-stable trajectories (conversion is defined
only within the MCI spectrum).

After applying these criteria, 980 patients remain with a total of 3867 examinations;
among them, 340 are converter subjects (i.e., they experience MCI—AD at some
point during follow-up), yielding a binary next-visit task: MCI—AD (positive)
versus MCI—-MCI (negative).
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Table 5.4: Conversion cohort sum-
mary statistics.

Statistic Count
Total patients 980
Total examinations 3867
MClI-stable 640
AD-converters 340

Patients
Patients

2 3 4 5 6 7 8 9 10 11 12 13 14
Visits

Figure 5.5: Number of visits per Figure 5.6: Total timespan per pa-
patient tient.

We organize the longitudinal data per patient ¢ as an ordered sequence of visits
t=0,1,..,T; — 1. Let y; , € {CN,MCI, AD} denote the clinical diagnosis at visit
t. The conversion task is cast as a next-visit binary prediction conditioned on the
current state being MCI:

eligible at (i,t) <= y;;, = MCland t +1 < T;.

For each eligible pair (i,t) we define the binary label

e = { Yit Yit+1 (5.2)

O, lf y’i,t — MCI and y’i,t+1 — MCI

By construction, last visits ¢ = T; — 1 are never eligible (no t+1 label exists)
and are removed prior to modeling. Post-conversion visits with y; , = AD are not
eligible either because the conditioning y,; , = MCI fails. In practice, each converter
contributes (at most) one positive event (z; ; = 1), whereas non-converters may
contribute multiple negative MCI—MCI events (z; , = 0).

For each visit (i,?) we assemble the input feature vector z, ; as follows:

e Structural MRI ROI volumes: 145 regional brain volumes extracted after
MRI preprocessing (see below).
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e Age at visit
e Time interval At to next visit: Concatenated or embedded as appropriate.

We represent each patient with a fixed maximum number of visits K as in the
diagnosis task(K = 7). During training and evaluation, losses and metrics are
computed only over eligible, non-padded time steps. Original multiclass diagnoses
are retained as integers {CN = 0, MCI = 1, AD = 2} at the sequence level. For
the conversion task we derive a binary target at eligible steps, z; , € {0,1}, using
the rule described above. Linear correction was applied to remove the linear effects
of confounding variables (Age, Sex, and baseline DLICV) from ROI features as in
the diagnosis cohort. For each ROI, a linear model was fitted using these covariates
on the training set, and the residuals were used as corrected feature values. The
last step of preprocessing is data standardization, for which we calculate the z-score
standardization for all the inviduals, as in the full cohort. At the patient level,
the share of converters is 340/980 ~ 34.7%. Labels are defined via a one-step
shift over eligible MCI visits, with last visits removed. The data was split into
training/validation and test set with a ratio of 0.8 and 0.2 respectively.

Table 5.5: Next-visit diagnosis distribution at the k-th visit in the conversion
cohort

AD MCI Total at £ AD ratio MCI ratio

k

1 36 944 980  0.036735 0.963265
2 62 769 831  0.074609 0.925391
3 66 609 675  0.097778 0.902222
4 80 441 521  0.153551 0.846449
5 44 291 335 0.131343 0.868657
6 27 174 201 0.134328 0.865672
7 15 119 134 0.111940 0.888060
8 7 80 87  0.080460 0.919540
9 4 48 52 0.076923 0.923077
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Figure 5.7: Next-visit diagnosis distribution

5.1.2 Cross-Sectional ROIs & SNPs Dataset

The dataset (1463 individuals) used for the subgroup analysis process, is also
derived from ADNI, and includes cross-sectional data and SNPs for each patient.
Among them, 449 participants were cognitively normal (CN), 740 were diagnosed
with mild cognitive impairment (MCI), and 274 were diagnosed with Alzheimer’s
disease (AD). Paricipant ages ranged from 60 to 86 years.

The dataset contains demographic, clinical and genetic features. The demo-
graphic features are age and sex, the clinical features have been obtained from
T1 MRI brain images, while genetic features are single nucleotide polymorphisms
(SNPs) related to Alzheimer’s disease. More specifically, the clinical data are the
brain’s total volume along with 145 volumes of interest (VOIs), from regions such
as the hippocampus and amygdala, while the genetic data consist of 54 SNPs
indicating the number of alleles each individual carries from the corresponding
SNP /loci.

All the clinical data are numeric (tabular), with continuous numerical values,
while sex is a categorical variable encoded as ”1” for female and ”0” for male.
Moreover, the genetic data were standardized and express as discrete numerical
values in the range [0, 1], indicating whether an individual has 0, 1 or 2 alleles
of the corresponding SNP. Cognitively normal individuals are the 30.69% of the
participants, MCI are 50.58% indiviuals and individuals with dementia are 18.73%.

Next, linear correction was applied to the baseline ROI features, similar to
the longitudinal dataset. The final preprocessing step was data standardization,
performed using z-score standardization across all inviduals. We first carry out
longitudinal modeling of Alzheimer’s diagnosis and then extend the same framework
to conversion prediction by predicting the next-visit diagnosis.
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5.2 Longitudinal Modeling using Transform-
ers

5.2.1 Diagnosis Prediction Model

We introduce a Transformer-based model, Tralzformer, for longitudinal diag-
nosis prediction. The model uses self-attention [1] to learn representations across
time.

Let the dataset consist of 1" visits per patient and a set of features 7, observed
at each visit t € {1,...,T}.

Each feature f € {1,..., F'} at time ¢t € {1,..., T} is represented by a vector:

2Ht0) € Ry,
Then, each feature is embedded into a shared latent dimension d as

Z<t7f) = Embedf(a?<t’f)> € Rd (53)

where Embed(-) is a linear projection for numerical features.
To obtain a single representation per visit, the ROI feature embeddings present
at that visit are averaged:

1
M= 3 A eRrt g = {f €7, fis ROL) (5.4)
tl fey

We further incorporate Age at visit ¢, denoted egtg)e € R% and a learnable scalar
gate wyg, € R:
. - t
50 = 70 4 Wage egg)e. (5.5)
Temporal information is injected with a sinusoidal positional encoding over the

visit index:
51 = 5(t) 4 p®), (5.6)

where p(®) is the standard sinusoidal encoding.
The collection of all time-step embeddings forms the input sequence to the
Transformer encoder:

Z={z1, ... z1h,

This sequence is processed by a Transformer encoder consisting of L (L = 1)
stacked layers of multi-head self-attention:

H® = TransformerLayer(H" V), 1=1,..,L, HO9 =72 (5.7)
The encoder outputs a representation:

H={hM n2 a1} ecRT>
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Finally, each prediction target is associated with its corresponding time-step
representation, which is passed through a classification head (3 classes):

y® = Head” (R, Head® : R? — R3,

followed by a softmax at evaluation. Predictions are computed only on valid
(non-padded) time steps according to the mask.

The model is trained using the Adam optimizer, with the d dimension equal to
128.

Mean over ROIs O I e
Z(1)

(1)
: 3
,
o o Transformer Encoder
S L layers, mult: y(k]

head self-attention

(T)
Age® y
a
Mean over ROIs A(T) '
1) Z H

Figure 5.8: Diagnosis model: per-visit mean over feature embeddings, resid-
ual addition of Age(t), sinusoidal positional encoding, causal Transformer,
and per-time classification heads.

5.2.2 Conversion Prediction Model

To model the probability of clinical conversion at future visits, we developed
a longitudinal Transformer-based architecture, following the approach used for
diagnosis prediction. The model was designed to capture temporal dependencies
in volumetric patient features and to predict, at each time step, the likelihood of
conversion at the subsequent visit.

The input consisted of sequential features per patient, with each time step
corresponding to a clinical visit. Each feature type was first embedded into a
fixed-dimensional representation using a linear layer with batch normalization, as
in the diagnosis prediction setup.

To incorporate temporal context, sinusoidal positional encodings were applied
to ensure that the model could distinguish the order of visits within each sequence.
The sequence of embeddings was then processed by an encoder consisting of a layer
with four attention heads. On top of the Transformer representations, a shared
binary classification head (linear layer with output dimension 1) was applied across
all time steps to predict conversion at the next visit. The model outputs a vector
of logits with length T for each sample. This architecture enabled patient-level,
per-visit prediction of conversion risk while explicitly modeling temporal dynamics
and enforcing causality.
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As seen before, follow-up intervals are irregular across patients. To address this,
the model incorporates (i) age as a covariate, (ii) a sinusoidal positional encoding
and (iii) the time interval At between each visit. Thus, to represent temporal
information, two types of embeddings are added:

50 = 50 4 p®) 4 g(AHD), (5.8)

where p(*) is a sinusoidal positional encoding for the time index, and ¢(At*)
is a learned projection of the time gap (in months) to the next visit.

As noted in data overview, an important design choice in defining the con-
version prediction task concerns which diagnostic groups are included as eligible
for conversion. Following common practice in the literature, we restricted the
conversion cohort to individuals diagnosed with mild cognitive impairment (MCI)
at baseline or during follow-up, and defined conversion as the transition from MCI
to Alzheimer’s disease (AD) at the next visit. This definition ensures that the
model estimates the risk of imminent MCI-to-AD progression, which aligns with
clinical interest in identifying subjects at the highest risk of developing dementia.

5.3 Training Setup & Evaluation Metrics

The Transformer model was implemented with a hidden dimensionality of 128
(dpoqer = 128) and four attention heads (ny,,,q = 4). Training was carried out for
64 epochs using a batch size of 64 and binary cross-entropy loss. Optimization was
performed with the Adam optimizer, with a learning rate of 5 x 10~% and weight
decay set to 1 x 107°. To address class imbalance, we employed focal loss and
performance was evaluated at each time step using the area under the receiver
operating characteristic curve (AUC-ROC) and the area under the precision-recall
curve (AUPR). These metrics are threshold-independent and thus provide a robust
evaluation of the model’s ability. The model was trained and validated using 5-fold
cross-validation, and final performance was assessed on a held-out test set.

As stated before, preprocessing was tailored per task. For the diagnosis predic-
tion, two binary subproblems were studied, the AD vs MCI/CN, which is the most
clinically relevant problem, as the diagnostic uncertainty is higher, and the AD vs
CN, which is biologically clearer. For the conversion prediction, the task examined
was the transition from MCI to AD. For each task, results are presented using
the linearly corrected features to minimize demographic and volumetric effects, as
isolating disease-specific effects was of primary interest. Results with the alternative
pipeline, using the raw ROI data, are provided in the Appendix.
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5.4 Subgroup Analysis

5.4.1 Representation Learning

In this part of the experiment, a Multilayer Perceptron was used to extract
meaningful embeddings from the input data. The goal of the embedding model was
to compress heterogeneous, high-dimensional brain imaging and genetic features
into a lower-dimensional latent space that preserves discriminative information
relevant to disease status.

The embeddings were optimized for Controls vs non-Controls separation (CN vs
Not-CN). The total loss was defined as the sum of binary cross-entropy for the CN
vs Not-CN classification task and a contrastive loss term that pulled CN samples
closer together in the embedding space while pushing them away from Not-CN
samples. This ensured that the latent representations were not only predictive but
also structured in a way that highlights the separation between disease and control
groups.

Let z; € R? denote the feature vector of the i-th sample. The MLP consists of
L fully connected layers, each followed by a non-linear activation function (ReLU)
and optional batch normalization:

hO) — o

79

) = ReLUWWAUD 1) 1 =1,... L (5.9)
The final hidden layer produces the embedding vector z; € RE:

These embeddings aim to capture the most informative representation of the
input data, preserving similarity relationships between samples. The MLP was
trained on 1463 samples, using 5-fold stratified cross-validation. To qualitatively
assess separation between clusters, the embeddings were projected into two dimen-
sions using UMAP and t-SNE, two widely used non-linear dimensionality reduction
techniques that preserve local neighborhood structure. These visualizations provide
an intuitive view of class separation in the latent space.

5.4.2 Clustering Algorithm

After obtaining the embeddings z; from the MLP, clustering was performed to
identify groups of similar samples in the laten space. Operating in the embedding
space, rather than directly on the raw features, allows subjects to be grouped
according to higher-level representations learned by the model, which may better
capture disease-related structure.

The primary algorithm employed was k-Means clustering, with Agglomerative
clustering and DBScan also explored for comparison. The k-Means algorithm
partitions the embedding space into K clusters by minimizing the within-cluster
sum of squares:
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K

'Ck—Means = Z Z sz - :U’jHQ (510)

7j=1 ziGCj

where Cj is the set of embeddings assigned to cluster j and p; is the centroid
of cluster j.

Clustering quality was evaluated using the Silhouette Score, the Davies-Bouldin
Index, and the Adjusted Rand Index (ARI). Furthermore, feature-level analysis
was conducted to characterize the resulting clusters.

Clustering algorithms were tested for kK = 2 to k = 5, with £ = 2 selected as
a trade-off between internal validation metrics and clinical interpretability. To
interpret the resulting subgroups, univariate statistical tests were applied to identify
discriminative features between clusters. Both parametric (ANOVA) and non-
parametric (Kruskal-Wallis) tests were applied across all available brain volumes
and SNPs, followed by false discovery rate (FDR) correction to account for multiple
comparisons.

5.5 Interpretability Methods

To better understand the decision-making process of our models, we employed
attribution and subgroup-based interpretability analyses.

Integrated Gradients

For interpretability, we employed Integrated Gradients (IG) [31], a widely
used attribution method for differentiable models, to quantify the contribution of
each input feature to the model predictions. IG attributes importance scores by
integrating the gradients of the output with respect to the input along a linear
path from a baseline reference to the actual input and is computationally efficient
in deep architectures such as Transformers. This method satisfies desirable axioms
such as sensitivity and implementation invariance, and has been widely adopted in
biomedical machine learning applications. For each prediction, we computed IG
scores and aggregated them at the feature and region levels to highlight the most
influential biomarkers.

Alternative methods such as SHAP [32], approximate Shapley values and are
popular in clinical machine learning, but are computationally more demanding and
less straightforward to apply in sequential neural networks. We therefore selected
IG as a suitable and well-established choice for attribution in this setting.

Subgroup Evaluation

In addition to feature-level attributions, we assessed model performance within
patient subgroups. These subgroups were obtained by clustering patients in the
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learned representation space, yielding clinically meaningful strata with mixed CN,
MCI, and AD profiles. Each model was evaluated separately across these subgroups
to examine whether predictive performance was consistent across different patient
populations, and to identify potential biases or failure modes.
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Chapter 6

Results

This chapter presents the results obtained from the above methodology. First,
results and comparisons with baselines and current literature are presented for the
current time-step diagnosis prediction task. Next, results are presented in a similar
manner about the next time-step conversion prediction task. Then both prediction
task results are interpreted, and finally the clustering process is evaluated and
combined with the models produced by the experiments.

6.1 Diagnosis and Conversion Prediction Re-
sults

6.1.1 Current-Visit Diagnosis Prediction
AD vs MCI/CN Problem

As outlined in previous sections, the objective of this experiment is to examine
and interpret the progression of Alzheimer’s disease over time, emphasizing the
importance of longitudinal modeling and temporal dependency over purely cross-
sectional analysis. The Transformer is first evaluated on current-visit diagnosis,
framed as a binary classification task between AD and MCI/CN subjects. For each
time step t € {0, ...,6}, the model processes all available visits up to ¢ and predicts
the probability of AD at the same visit ¢.
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Table 6.1: Per-visit AUC metrics for AD vs MCI/CN

Visit AUC (ROC) AUC (PR)

0 0.866 0.622
1 0.855 0.636
2 0.844 0.600
3 0.866 0.618
4 0.836 0.548
5 0.802 0.452
6 0.802 0.548
Mean 0.853 0.575

Table 6.2: Per-visit metrics (AD vs MCI/CN)

Visit Confusion Matrix Acc. Bal. Acc. Prec. Recall Spec. F1 MCC AUC (ROC) AUC (PR)

0 (1385, 11], 58, 26]]  0.86 0.64 071 032 097 044 04l 0.87 0.62
1 (1301, 9], 46, 23]]  0.86 0.67 068 036 097 046 0.42 0.86 0.64
2 [[241, 13], [42, 23]  0.82 0.65 063 035 095 045 0.38 0.84 0.59
3 [[208, 16], [28, 28]]  0.85 0.72 064 051 093 056 048 0.87 0.62
4 [[163,12], [26, 13]]  0.82 0.64 054 034 093 042 0.33 0.84 0.53
5 (118, 11], [19, 8]  0.81 0.61 044 031 091 036 0.26 0.80 0.45
6 (79, 7], [15, 1] 0.80 0.66 060 040 092 049 0.38 0.80 0.55

Overall, the results indicate stable performance across visits, with mean AUC
of 0.85 and 0.58. The model performs well already at baseline, indicating that the
available features are highly informative for distinguishing diagnostic categories.
Table summarizes the predictive performance of the model across consecutive
visits, reported in terms of AUC (ROC) and AUC (PR) from the results obtained
on the held-out test set.

Table 6.3: Comparison of mean AUC (ROC) and AUC (PR) across visits
between our Transformer model and benchmark models

Model Mean AUC (ROC) Mean AUC (PR)
Transformer 0.853 0.575
Random Forest 0.820 0.561
Logistic Regression 0.777 0.517
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Table 6.4: Per visit comparison of AUC (ROC) and AUC (PR) across
models.

Visit Transformer Logistic Regression Random Forest
AUC (ROC) AUC (PR) AUC (ROC) AUC (PR) AUC (ROC) AUC (PR)
0 0.866 0.622 0.858 0.600 0.862 0.557
1 0.855 0.636 0.774 0.454 0.839 0.585
2 0.844 0.600 0.761 0.459 0.829 0.552
3 0.866 0.618 0.778 0.548 0.837 0.612
4 0.836 0.548 0.764 0.427 0.817 0.539
5 0.802 0.452 0.752 0.417 0.792 0.513
6 0.802 0.548 0.747 0.418 0.783 0.540

When contrasting the Transformer model with two classical models, logistic
regression and random forest, the Transformer consistently achieves the highest
AUC ROC, with values reach 0.87, while the benchmark models generally re-
main in the 0.74-0.87 range. These results indicate the transformer is learning
temporal progression patterns and longitudinal information that LR/RF cannot
capture. Overall, the transformer outperforms both logistic regression and random
forest, while the consistency across time suggests that the Tralzformer provides a
meaningful advantage in modeling Alzheimer’s disease progression.

0.60 1 Transformer
0.55 4 Logistic Regression
—-— Random Forest
0.50 T T T T T |
0 1 2 3 4 5 6

Visit

Figure 6.1: AUC (ROC) across models
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Transformer

0.70 A Logistic Regression
== Random Forest

Visit
Figure 6.2: AUC PR across models

As most of current literature focuses on the AD vs CN task, comparison was
left to those benchmark models. Future work could include comparison with time-
aware models such as RNNs. Nonetheless, AD vs MCI/CN defines a more realistic
approach to clinical diagnosis, therefore performance is expected to be lower here.

AD vs CN Problem

Even though the AD vs (CN/MCI) setup is closer to real clinical progression,
AD vs CN was also tested, as the AD vs CN problem is biologically clearer and
usually easier.

Table 6.5: Per time step AUC metrics (AD vs CN)

Visit AUC (ROC) AUC (PR)

0 0.930 0.912
1 0.932 0.920
2 0.920 0.910
3 0.940 0.926
4 0.910 0.858
5 0.902 0.818
6 0.876 0.820
Mean 0.916 0.879
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Table 6.6: Per time step metrics (AD vs CN)

Visit Confusion Matrix Acc. Bal. Acc. Prec. Recall Spec. F1 MCC AUC (ROC) AUC (PR)

0 [[72, 5], [16,68] 092  0.89 003 081 007 086 081 0.93 0.1
1 (123, 3], [15, 53] 091  0.88 095 078 098 0.86 0.80 0.93 0.92
2 192 6], [11,55] 089 088 090 083 094 086 0.78 0.92 0.91
3 ((82,7),[8 48]  0.90 0.89 088 085 093 086 0.78 0.94 0.93
4 (169, 8,8 31 086 0.85 080 079 090 079 0.69 0.91 0.86
5 ([56,6],[819] 085 0.81 077 072 090 074 0.63 0.90 0.82
6 [42,8),[8,18)] 08  0.78 071 071 085 071 056 0.87 0.82
Per-Visit AUC (ROC) PerVisit AUC (PR)
1.000 1.000
— AUC (ROC) —= AUC (PR)
0.975 0.975
0.950 0.950
g 0.925 1 = 0925 -’—___§\/,,«\\
£ 0.900 1 5 0.900 \
3 S \
2 0.875 1 < 0.875 X
\
0.850 A 0.850 A N
N
0.825 0.825 Moo
0.800 . . . . . . 0.800 .
o 1 2 3 4 5 o 1 2 3 4 5 6
Visit Visit

Figure 6.3: AUC ROC and AUC PR for AD vs CN

Visit 0 Visit 3 Visit 6

True CN True CN True CN

N
w
Count

True AD True AD True AD

Pred CN  Pred AD Pred CN  Pred AD Pred CN  Pred AD 15

Figure 6.4: AD vs CN Confusion Matrices for 1, 4 and 7 visits

The confusion matrices show that, under a fixed classification threshold of
0.5, the model maintains a consistent balance between sensitivity and specificity
across visits (Figure ??). The AUC (ROC) and AUC (PR) metrics provide a more
comprehensive view of performance independent of the chosen threshold. The
results yielded in this setup show better performance than in the AD vs MCI/CN
setup, with consistently high performance across visits, mantaining AUC (ROC)
values above 0.9 and achieving a mean of 91.6% (Table ??7). This indicates that
the model effectively distinguishes AD from CN subjects Accuracy and balanced
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accuracy remain consistently high (>0.80), although a moderate decline in recall is
observed at later visits, reflecting the reduced number of available samples. Overall,
these results indicate that the model retains reliable diagnostic performance and
generalizes well under the linearly corrected feature representation.

As stated in the previous chapter, to account for potential demographic and
volumetric influences, ROI features were linearly corrected for Age, Sex, and
DLICV prior to model training. The linearly corrected features produced results
comparable to, and in several cases slightly more stable than, those obtained
with uncorrected data across time steps and folds. This stability suggests that
the correction effectively reduced demographic and structural bias, allowing the
model to focus on disease-related variability while maintaining strong predictive
performance. Consequently, the linearly corrected representation was adopted as
the main configuration for the analysis. However, the results on the unprocessed
data, reported in the Appendix, serve as a complementary comparison.

6.1.2 Next-Visit Conversion Prediction (MCI—AD)

Finally, the model was evaluated on the task of predicting conversion from MCI
to AD at the subsequent visit. Performance was considerably lower than for current-
visit diagnosis, reflecting the increased difficulty of forecasting disease progression
and the limited sample size of converters available at each time step. While current-
visit classification benefits from direct access to the diagnostic state, next-visit
prediction requires extrapolation into the future, making the task inherently harder
and more sensitive to noise and imbalance. Using the held-out test set across seven
visits, the model achieved an average AUC of 0.724 (ROC) and 0.326 (PR), as
summarized in Table Other threshold-dependent metrics such as precision and
F1 score were unstable due to class imbalance, with a small number of positive
cases per fold. These results suggest that while the framework can capture early
signals of conversion, robust prediction of future progression will likely require
larger cohorts and additional modalities.

Table 6.7: Per time step AUC metrics (Conversion Prediction)

Visit AUC (ROC) AUC (PR)

0 0.774 0.186
1 0.770 0.258
2 0.578 0.176
3 0.808 0.450
4 0.674 0.262
) 0.630 0.324
6 0.838 0.628
Mean 0.724 0.326
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6.2 Interpretability Results

6.2.1 Feature Attributions

Diagnosis Prediction

To identify important regions, features were ranked by their frequency of
appearance among the top attributions across subjects, rather than by mean
absolute IG alone. Age was consistently among the most infuential features, which
aligns with clinical knowledge. For interpretability, we therefore focus on features
beyond age.

Hippocampus and Amygdala regions seem highly important in both experiments.
In the early stages of AD , the hippocampus shows rapid loss of its tissue, which
is associated with the functional disconnection with other parts of the brain. In
the progression of AD, atrophy of medial temporal and hippocampal regions are
the structural markers in magnetic resonance imaging (MRI). This proves that our
model is in line with neuropathology, since the hippocampus is a stable biomarker

in the model.
Right Hippocampus 0.037
Left Hippocampus 0.040

Right Ent Entorhinal Area - ‘o.oze
0040
Left Ent Entorhinal Area - ‘0028 0.038
00%
R'ghtAmvgda'a_w
Right Inf Lateral Ventrlcle 0027 0025
0030
0026
Left Inf Lateral Ventricle - ‘ovuzz
Left PHG Parahippocampal Gyrus - ‘0 026

Left ITG Inferior Temporal Gyrus - 0.029
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Appearances

o

Figure 6.5: AD vs MCI/CN most frequent ROIs

Most important regions in the AD vs MCI/CN setup:
e Hippocampus

o Amygdala

e Entorhinal Area

o Lateral Ventricles
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Findings also suggest that the magnitude of amygdala atrophy - related to
aberrant motor behavior and irritability - is comparable to that of the hippocampus
in the earliest clinical stages of AD. Furthermore, both left and right entorhinal
areas also appear prominently in both lists. This matches expectations , since
the entorhinal cortex is the brain region that often exhibits the earliest histological
alterations in Alzheimer’s disease, including the formation of neurofibrillary tangles
and cell death.

Left Hippocampus

Right Hippocampus

Left Inf Lateral Ventricle { ‘o.oza

Left Ent Entorhinal Area 0.025
0028

Left Amygdala 0.026 0026 3

oo
. . 3
Right Inf Lateral Ventricle ‘o.czz .

‘ 0.020

Right Ent Entorhinal Area - 0.020

Right Amygdala 0.028

= I

Left PHG Parahippocampal Gyrus 025
0 5 10 15 20 25 30 35
Appearances

Figure 6.6: AD vs CN most frequent ROIs

Most important regions in the AD vs CN setup:

o Hippocampus

o Entorhinal Area
e Amygdala

o Lateral Ventricles

e Parahippocampal Gyrus

In addition to that, before applying linear correction, the lateral ventricles
appeared among the most important features in the interpretability analysis for
AD vs MCI/CN, reflecting their strong correlation with overall brain atrophy and
age. However, after correction for Age, Sex, and DLICV, their relative importance
decreased, while more disease-specific regions such as the thalamus and hippocampus
became more prominent. This shift suggests that linear correction reduced the
influence of global volumetric confounds, highlighting structural alterations more
directly associated with Alzheimer’s pathology. The correspondent interpretation
tables can be found in the appendix.
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Integrated Gradients | |IG| per Region x Time
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Figure 6.7: AD vs CN ROIs heatmap per visit

Conversion Prediction

In conversion prediction the integrated gradients methodology yields results
comparable to those of the diagnosis, even though focus is on areas not found on
the diagnosis task attributions. As in diagnosis prediction, hippocampal atrophy is
among the most consistent predictors of conversion from MCI to AD. Posterior
cingulate gyrus (PCgG) is a core element in the default mode network (DMN).
Hypometabolism and structural changes here are consistently linked to prodromal
AD. As for inferior lateral ventricles (both left and right), ventricular enlargement
is a marker of adjacent tissue loss and often appears in progression studies. On
the other hand, Fusiform gyrus (FuG) is a temporal lobe structure, involved in
higher-level visual processing, which could indicate association with AD caused
atrophy. Same goes for Posterior insula (both left and right). Middle Temporal
Gyrus (MTG) and Middle Occipital Gyrus (MOG) are often associated with earlier
stages of AD and executive dysfunction , .
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Figure 6.8: MCI to AD most frequent ROIs

Table 6.8: Top 10 regions by mean |IG| across folds and time

Region Mean [IG| Appearances
Right Hippocampus 0.0055 15
Left Hippocampus 0.0042 14
Right Inf Lateral Ventricle 0.0038 14
Left PCgG Posterior Cingulate Gyrus 0.0065 13
Right PLns Posterior Insula 0.0061 13
Right FuG Fusiform Gyrus 0.0058 12
Left Alns Anterior Insula 0.0051 11
Left FuG Fusiform Gyrus 0.0057 10
Right MOG Middle Occipital Gyrus 0.0055 10
Left MTG Middle Temporal Gyrus 0.0056 10

Most important regions in the MCI to AD conversion prediction setup:
e Hippocampus

o Posterior Cingulate Gyrus (PcgQG)

o Posterior Insula

e Fusiform Gyrus

e Anterior Insula

o Middle Temporal Gyrus

e Middle Occipital Gyrus

e Right Inferior Lateral Ventricle
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6.3 Patient Subgroup Analysis

6.3.1 UMAP Visualization of Representations

As noted before, the MLP was trained on 1463 samples, using 5-fold stratified
cross-validation, achieving a performance of 0.8237 ROC AUC and 0.9194 AUPR.
The high-dimensional embeddings generated from the MLP were projected into
two dimensions using UMAP and t-SNE. As shown in Table the dataset is
imbalanced, which results in the minority class (CN) forming compact subclusters,
while the non-CN occupies a more diffuse region. Figure presents the resulting
projections obtained with both UMAP and t-SNE.

t-SNE of embeddings UMAP of embeddings

20 A

10 4

—20

Figure 6.9: t-SNE & UMAP Embeddings’ Projections

Table 6.9: Distribution of subjects by class

Class Percentage
Non-controls 69.31%
Controls 30.69%

In the t-SNE projection, the blue points (class CN) cluster mostly on the left,
fairly localized. The red points (class non-CN) spread widely around the rest of
the space, encircling the blue cluster. This suggests the model is able to learn a
representation where the minority class forms a distinct “core” cluster, but the
majority class (red) occupies a broader, more diffuse area.

In the UMAP projection, the blue points concentrate on the top part of the
boomerang shape, which again shows grouping of the minority class in a localized
region. The red points occupy the lower parts and are distributed more broadly
along the lower sections. This indicates partial grouping of the control individuals,
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but also overlap with the non-controls class, reflecting that the classes are not
perfectly separable in the embedding space. These patterns are consistent with
the 30/70 class imbalance and suggest that while the model learns discriminative
features, some overlap remains due to shared features and inherent variability.

6.3.2 Clustering Algorithm & Subgroup Characteriza-
tion

We applied k-Means for the clustering process, first applying a k-sweep from
k=2 to k=5, as shown in the UMAP projections. Although ARI/NMI scores
increase slightly with higher k, the improvement is marginal and remains below
0.3, indicating limited alignment with diagnostic labels across all k values. k=2
was selected because it yields a clear, interpretable division of the cohort into
two groups: one enriched for CN individuals and another more heterogeneous
group with MCI/AD cases. This aligns with the hypothesis of distinguishing a
“healthy” cluster from a ”disease-prone” cluster. The decision was also based on
the Silhouette Score and Davies-Bouldin Index calculated for k. Furthermore,
using k>2 would fragment the dataset into smaller clusters, reducing the power
for downstream longitudinal modeling. As for comparison with other benchmark
models, the algorithm was compared with Agglomerative, Spectral Clustering and
DBScan. Overall, the clustering quality was modest for all methods, reflecting
the known overlap between diagnostic categories in Alzheimer’s disease. However,
the results were consistent across algorithms, with ARI values ranging between
0.14-0.21.

Silhouette Score vs. k Davies-Bouldin Index vs. k

Silhouette Score
o
°
<
Davies-Bouldin Index

2 3 4 5 2 3 4 5
Number of clusters (k) Number of clusters (k)

(a) Silhouette Score over k (b) Davies-Bouldin Index over k

Figure 6.10: Comparison of clustering evaluation metrics over different
values of k.
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KMeans (k=2) | ARI=0.166 | NMI=0.268 KMeans (k=3) | ARI=0.178 | NMI=0.264
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Figure 6.11: Comparison of k-Means clustering results for different k values.

Before analyzing the clusters in terms of specific ROIs, it is important to
examine their overall composition with respect to clinical diagnosis. Table 77?7
summarizes the distribution of labels across the two clusters, as well as the overall
proportion of cognitively normal (CN) versus non-CN individuals. The results
indicate the cluster 0 contains the majority of CN individuals (445 out of 449),
but it also shows substantial overlap with MCI (556 individuals) and a number of
AD cases (92). Cluster 1 appears to be representative of the MCI/AD group, as
its almost exclusively composed of MCI and AD participants, with nearly equal
represenation of both. Thus, cluster 0 can be viewed as a "healthy” cluster with
some heterogeneity, while cluster 1 appears to capture a more impaired population.
This separation is consistent with expectations, as the MLP embeddings were
designed to emphasize differences between CN and non-CN groups. However, the
fact that Cluster 0 still includes many MCI individuals highlights the unseparability
of the data.
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Table 6.10: Diagnosis distribution per cluster

Cluster Total CN MCI AD
0 1093 445 (40.7%) 556 (50.9%) 92 (8.4%)
1 370 4 (1.1%) 184 (49.7%) 182 (49.2%)

6.3.3 Subgroup Specific Biomarkers

ANOVA was used for feature selection, along with the Kruskal-Wallis test.
Notably, hippocampal volume, the amygdala and the inferior lateral ventricles
emerged among the most discriminative, consistent with established AD biomark-
ers. Several volumetric measures (e.g. hippocampus, amygdala, lateral ventricle,
entorhinal area) appear among the top-ranked features under both ANOVA and
Kruskal-Wallis, suggesting that these regions of interest may still carry signal
relevant to group separation.

Table 6.11: ANOVA results (top significant features by p-values)

Feature p-value (FDR)
Left Hippocampus 5.74 x 10~ 141
Left Ent Entorhinal Area 1.86 x 107126
Left Amygdala 9.87 x 107126
Right Hippocampus 1.26 x 10~119
Left Inf Lateral Ventricle 1.08 x 107118
Right Amygdala 2.87 x 107197
Right Inf Lateral Ventricle 1.46 x 107105
Left PHG Parahippocampal Gyrus 1.14 x 10104
Right Ent Entorhinal Area 8.07 x 107104

Right PHG Parahippocampal Gyrus 2.52 x 10794
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Table 6.12: Kruskal-Wallis results (top significant features by p-values)

Feature p-value (FDR)
Left Hippocampus 4.90 x 107110
Left Ent Entorhinal Area 3.94 x 10797
Left Amygdala 8.32 x 10797
Right Hippocampus 2.36 x 1079
Left Inf Lateral Ventricle 1.60 x 10794
Left PHG Parahippocampal Gyrus 6.31 x 10789
Right Amygdala 2.20 x 10786
Right Inf Lateral Ventricle 3.38 x 10786
Right Ent Entorhinal Area 3.05 x 1078

Right PHG Parahippocampal Gyrus 3.93 x 1078¢

In the high-risk subgroup (Cluster 1), the most elevated features were the
lateral ventricles, with the right and left inferior horn of the lateral ventricles
showing the strongest increases. Ventricular enlargement is a well-established
marker of neurodegeneration in Alzheimer’s disease. The lateral ventricles, which
are fluid-filled spaces in the brain, tend to enlarge as the surrounding brain tissue
shrinks. This ventricular enlargement is a common finding on brain scans like MRI
and is a useful marker of disease progression. It’s not the ventricles themselves
that cause cognitive decline, but their enlargement is closely linked to the atrophy
of other brain regions, such as the hippocampus and cortex, which are critical for
memory and other cognitive functions. Ventricular enlargement in individuals with
mild cognitive impairment (MCI) is also associated with thinner gray matter in the
frontal, temporal, and parietal lobes, supporting its role as an indicator of disease
progression. Interestingly, the APOE-related SNP 7s/29358 also appeared among
the top elevated features in Cluster 1. This genetic variant is strongly associated
with AD risk and suggests that the high-risk subgroup is chatacterized not only by
structural markers of neurodegeneration but also by genetic susceptibility.

The most decreased features in the high-risk subgroup (Cluster 1) include
well-established AD biomarkers such as the hippocampus, amygdala and entorhinal
areas (both left and right), alongside additional medial temporal lobe structures
such as the parahippocampal gyrus and middle temporal gyrus. These findings are
consistent with the characteristic pattern of medial temporal atrophy in Alzheimer’s
disease. In contrast, the control-enriched subgroup (Cluster 0) showed the largest
decreases in ventricular volumes, particularly the inferior lateral and lateral ventri-
cles, as well as the third ventricle, similar to the elevated features of the high-risk
subgroup. Interestingly, the APOE-related SNP 75429358 also emerged among the
top features, highlighting the impact of its presence on Alzheimer’s disease.
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Cluster 0 Cluster 1
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Figure 6.12: Top 10 elevated features in each subgroup

Cluster 0 Cluster 1
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Figure 6.13: Decreased features in each subgroup

The results reveal clear volumetric differences between clusters. Individuals in
Cluster 0 display relatively preserved brain volumes, with values close to zero after
z-scoring against the CN reference, whereas Cluster 1 exhibits structural deviations:
for example, the left hippocampus and right entorhinal area show strong negative
shifts, while the left inferior lateral ventricle is notably enlarged. This pattern
suggests atrophy in specific cortical and subcortical regions alongside compensatory
enlargement elsewhere, which is consistent with known structural alterations in
Alzheimer’s disease.
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Figure 6.14: Elevated SNPs in each subgroup

Cluster 0 Cluster 1

rs12590654 0.044
rs429358 0053 _ges3g5 0.040
rs10498633 0.040
rs12881735 + 0.037
rs41289512 - 0011 rs2081545 1 0.0%
rs7933202 4 0.034
0.00 O.bl 0.'02 0.b3 0.64 0.2)5 0.00 0.61 0.'02 0.'03 0.'04 O.'OS
Change (decrease) Change (decrease)

Figure 6.15: Decreased SNPs in each subgroup

Concerning each subgroup’s genetic profile, the SNP rs429358 is seen highly
elevated in the high-risk subgroup, and especially decreased in the low-risk one.
This SNP, located in the fourth exon of the ApoE gene, affects the amino acid
at position 130 of the resulting protein. The more common rs429358 allele is (T).
If the allele is (C) and the same chromosome also harbors the rs7412 (C) allele,
the combination is known as an APOFE-¢4 allele. The presence of the APOFE-¢/
allele, which arises from the rs429358(C) variant in combination with rs7412(C), is
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the strongest known common genetic risk factor for late-onset Alzheimer’s disease.
Carriers of one or more copies of APOFE-¢j exhibit significantly increased risk
and earlier onset of the disease compared to non-carriers [51]. Recent work has
further clarified that this allele contributes not only to amyloid-3 pathology but
also to tau aggregation and neuroinflammation, suggesting a multifactorial role in
disease progression [52]. In the context of our subgroup analysis, the enrichment
of rs429358 in the high-risk cluster is consistent with these findings, as it reflects
the well-established link between A POE-¢/ status and heightened vulnerability to
Alzheimer’s disease.

The SNP rs41289512 (located in or near the APOE locus on chromosome 19)
has also been implicated in Alzheimer’s disease risk via large-scale meta-analyses.
In the Jansen et al. GWAS meta-analysis combining diagnosed AD cases and
AD-by-proxy phenotypes, rs41289512 stood out with an extremely strong statistical
association as one of the lead SNPs in the APOE region [53]. This suggests that
rs41289512 is tightly linked (in linkage disequilibrium) with APOE alleles that
confer high AD risk. In our subgroup genetic profiles, any enrichment of rs41289512
in the high-risk cluster may therefore reflect the same underlying APOE-driven
risk architecture. While the functional consequence of rs41289512 itself is not well
established, its strong statistical signal reinforces the genetic importance of its
surrounding APOE locus in AD susceptibility.

When stratifying by diagnostic label (not-CN), a similar trend emerges. Com-
pared to CN, non-CN individuals present reduced hippocampal and entorhinal
volumes, paired with increased ventricular values. This correspondence strength-
ents the interpretation that Cluster 1 represents an MCI/AD-enriched population
subgroup characterized by pronounced structular abnormalities, such as atrophy
and verticular enlargement, while Cluster 0 reflects healthier anatomy with milder
variation.

Table 6.13: Mean feature values per cluster

Cluster Left Hippocampus Left Ent Entorhinal Area Left Inf Lateral Ventricle

0 -0.399557 -0.183944 0.153328
1 -2.333063 -1.977353 2.139030

Table 6.14: Mean feature values per Not_ CN group

Not_CN Left Hippocampus Left Ent Entorhinal Area Left Inf Lateral Ventricle

0 1.94 x 10717 —3.26 x 10717 3.44 x 10717
1 -1.282001 -0.919794 0.945788

To assess and showcase the impact of MCI cases on clustering separability,
we reran the clustering pipeline using only CN and AD individuals, excluding all
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MCI participants. The presence of MCI subjects introduces overlap that lowers
the silhouette score and reduces cluster separability. Once MCI individuals were
removed, the resulting clusters became more distinct and well-defined.

Table 6.15: Clustering results for AD vs CN

Scenario Silhouette score Cluster sizes

AD vs CN 0.591392 {1: 553, 0: 170}

When MCI individuals are exluded, the silhouette score improves, confirming
that this group drives much of the separability. As shown in Table the
exclusion results in more separable clusters. This finding indicates that the overlap
observed in the full dataset is largely driven by the hereogeneous nature of the MCI
class. Nevertheless, excluding MCI would undermine the clinical revelance of the
analysis, since MCI represents the critical transitional stage in Alzheimer’s disease.
Instead, these results highlight the intrinsic challenge posed by MCI, which must
be addressed through longitudinal modeling rather than exclusion.

Diagnosis Prediction per Subgroup

AD vs MCI/CN Finally, the performance and feature importance results
obtained from the AD vs MCI/CN classification task are presented for each
subgroup.

Table 6.16: AUCs for AD vs MCI/CN Diagnosis Prediction across Subgroups

Cluster 0 Cluster 1
AUC (ROC) AUC (PR) ‘ AUC (ROC) AUC (PR)
0.846 + 0.036 0.488 + 0.106 ‘ 0.655 + 0.167 0.678 + 0.101

Table 6.17: Top Regions for Subgroups 0 and 1

Subgroup 0 Subgroup 1
Region Appearances ‘ Region Appearances
Left Hippocampus 35 Left Hippocampus 35
Right Hippocampus 35 Right Hippocampus 35
Right Ent Entorhinal Area 31 Left Amygdala 34
Right Amygdala 27 Left Ent Entorhinal Area 33
Left Amygdala 24 Right Amygdala 31
Left Ent Entorhinal Area 23 Left Inf Lateral Ventricle 30
Right Inf Lateral Ventricle 21 Right Inf Lateral Ventricle 29
Left PHG Parahippocampal Gyrus 20 Left PHG Parahippocampal Gyrus 27
Left Inf Lateral Ventricle 18 Right Ent Entorhinal Area 26
Left ITG Inferior Temporal Gyrus 15 Left ITG Inferior Temporal Gyrus 26

100



Although the two subgroups differ in composition - with Subgroup 0 including
CN, MCI, and AD individuals and Subgroup 1 consisting primarily of MCI and
AD - the results in Table show a high degree of overlap between the most fre-
quently selected regions across the two subgroups. In both cases, the hippocampus,
entorhinal cortex, amygdala, and inferior lateral ventricles consistently emerge as
dominant contributors. As seen before, these regions reflect the core structural
changes most strongly associated with Alzheimer’s disease and are well-established
markers of Alzheimer’s disease progression: hippocampal and entorhinal atrophy
are among the earliest structural changes, while ventricular enlargement reflects
global brain atrophy. The recurrence of these areas strengthens the robustness of
our interpretability analysis, confirming that the model has captured biologically
meaningful patterns regardless of whether lower-risk individuals (CN) are included
in the cohort or not.

Minor variations can still be observed, such as a somewhat higher frequency of
middle temporal gyrus contributions in Subgroup 0, likely reflecting the greater
heterogeneity of disease stage in the mixed group. However, these differences are
modest when compared to the consistency of the medial temporal and ventricular
regions across both analyses. Taken together, the findings emphasize that the
predictive patterns learned by the model remain robust across cohorts with different
risk profiles, reinforcing the central role of medial temporal atrophy and ventricular
enlargement as universal hallmarks of disease progression.

AD vs CN AD vs CN is only applicable on the mixed subgroup 0, which mostly
contains CN and MCI individuals.

Table 6.18: Per-visit AUC metrics (AD vs CN)

Subgroup 0

Visit AUC (ROC) AUC (PR)

0 0.898 0.708

1 0.884 0.662

2 0.860 0.694

3 0.922 0.764

4 0.896 0.708

5 0.912 0.750

6 0.866 0.706
Mean 0.891 0.713
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Table 6.19: Top Regions for Subgroup 0 (AD vs CN)

Region Mean |[IG| Appearances
Left Hippocampus 0.0373 33
Right Hippocampus 0.0311 33
Left Inf Lateral Ventricle 0.0268 21
Left Amygdala 0.0290 21
Right Inf Lateral Ventricle 0.0250 21
Left Ent Entorhinal Area 0.0293 20
Right Thalamus Proper 0.0240 20
Right Ent Entorhinal Area 0.0261 20
Right Amygdala 0.0317 19
Left Thalamus Proper 0.0276 19

For subgroup 0 (lower-risk), the attribution results for AD vs CN diagnosis
closely align with our findings in the diagnosis cohort. The hippocampus and
amygdala dominate the rankings, with both hemispheres represented among the
most influential features. The entorhinal cortex also appears, as well as ventricular
expansion, reflecting the structural consequences of adjacent tissue atrophy. Beyond
these classical regions, additional cortical contributions emerge, such as the thalamus
proper.

Conversion Prediction per Subgroup

In the next step, we applied the Transformer models for prediction to subjects
in the test set, stratified by the two derived clusters. For conversion prediction
within Cluster 1, representing the high-risk patients (MCI/AD-dominant), only the
first four time steps were retained due to limited sample size across visits. These
results should therefore be viewed as exploratory, serving as a basis for biologically
plausible interpretations.

Table 6.20: AUCs for Conversion Prediction across Subgroups

Cluster 0 Cluster 1
AUC (ROC) AUC (PR) ‘ AUC (ROC) AUC (PR)
0.742 + 0.029 0.347 + 0.025 ‘ 0.671 + 0.014 0.536 + 0.014
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Table 6.21: Top Regions in Conversion Prediction within Subgroup 0

Region Mean |[IG| Appearances
Left PCgG Posterior Cingulate Gyrus 0.0071 15
Left Hippocampus 0.0048 15
Right Hippocampus 0.0060 13
Right FuG Fusiform Gyrus 0.0067 13
Right Plns Posterior Insula 0.0060 12
Left PP Planum Polare 0.0078 11
Right IOG Inferior Occipital Gyrus 0.0057 11
Left Plns Posterior Insula 0.0058 10
Right MOG Middle Occipital Gyrus 0.0060 10
Left FRP Frontal Pole 0.0059 10

Table 6.22: Top Regions in Conversion Prediction within Subgroup 1

Region Mean [IG| Appearances
Left Amygdala 0.0079 23
Left Hippocampus 0.0063 21
Right Inf Lateral Ventricle 0.0051 21
Left Inf Lateral Ventricle 0.0085 20
Right Amygdala 0.0054 19
Right Hippocampus 0.0078 17
Left Plns Posterior Insula 0.0070 16
Left Alns Anterior Insula 0.0060 13
Left FuG Fusiform Gyrus 0.0087 13
Right Plns Posterior Insula 0.0065 12

In the subgroup-specific conversion analysis, the attribution patterns again
show overlap with established Alzheimer’s disease biomarkers, but with distinct
regional emphasis across clusters.

In the high-risk subgroup (Cluster 1), the hippocampus and amygdala dominate
the top-ranked features, alongside strong contributions from the inferior lateral
ventricles. Both hemispheres of the inferior lateral ventricles show high attribution,
consistent with neurodegenerative ventricular enlargement reflecting tissue loss
in surrounding medial temporal regions. The co-occurrence of hippocampal and
amygdala regions underscores the central role of medial temporal lobe atrophy in
driving conversion. In addition, the posterior and anterior insula, as well as the
fusiform gyrus, also exhibit high attribution scores, suggesting that cortical-subcor-
tical interactions extend beyond the classical hippocampal-entorhinal axis. Overall,
these findings indicate that Cluster 1 captures a population with pronounced medial
temporal vulnerability and distributed cortical involvement, where conversion is
mostly influenced by hippocampal and amygdala decline.

By contrast, Cluster 0 presents a more heterogeneous attribution profile. While
hippocampal and ventricular regions remain present, they are less dominant, and
occipital and frontal regions emerge as relatively more important. The poste-
rior cingulate gyrus and posterior insula appear consistently as key predictors,
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together with the fusiform gyrus and frontal pole. The prominence of the posterior
cingulate is particularly noteworthy, as this region is a well-established hub of
early Alzheimer’s pathology and was also highlighted in the global conversion
interpretability analysis. This suggests that Cluster 0 represents a subgroup char-
acterized by more distributed or atypical cortical involvement rather than purely
medial temporal degeneration.
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Chapter 7

Discussion and Future Work

7.1 Summary

The current thesis studies the classification of cognitively normal (CN) individ-
uals and patients with Mild Cognitive Impairment (MCI) or Alzheimer’s disease
(AD) using longitudinal structural MRI from ADNI. A transformer-based model
was used that approaches each patient’s follow-up diagnosis as a sequence of visits,
adding temporal information. To make the approach clinically realistic, the trans-
former is trained and evaluated with a causal attention mask - each time step can
attend only to the current and past visits - together with explicit padding masks so
that variable-length histories can be handled safely. After empirical analysis of the
cohort’s visit counts and class composition per visit index k, the main experimental
horizon was fixed to T' = 7 visits, which balances sample size and label stability
while still capturing meaningful longitudinal change. On the other hand, clustering
algorithms were applied to group patients with static and genetic features available.
The two groups provided were used to test and interpret the longitudinal model
into each cluster separately.

7.2 Future Work

Future research could further refine and extend the findings of this study along
several directions. First, the conversion prediction task can be expanded by varying
the forecasting horizon — that is, predicting conversion not only at the next visit
but also across multiple future time steps. This would allow the model to capture
longer-term disease trajectories and to evaluate how predictive information evolves
over time. Additionally, the diagnosis prediction task could be extended to study
the MCI vs CN or MCI vs AD binary subproblems, along with additional data
sources and modalities.

A second line of work concerns the representation of per-visit features before
the Transformer encoder. Two approaches were experimentally tested in this
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study, even though the latter was omitted: mean pooling across brain regions and
an attention-based pooling mechanism that learns a soft weighting over regions.
Although the attention pooling variant showed promise in capturing region-specific
importance, it also introduced model overfitting due to the increased capacity and
parameterization (7' x F). Further work could revisit this approach with stronger
regularization or sparse attention strategies to achieve a better balance between
expressivity and generalization.

Finally, future research could focus on the diagnosis prediction model, extending
the analysis to assess model robustness across genetic subgroups rather than the
overall combined SNP+ROI baseline profiles. Such stratified evaluation could reveal
subgroup-specific model behaviors and potential biomarker differences, contributing
to a more personalized understanding of Alzheimer’s disease progression.
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Appendix A
Additional Tables and Results

The appendix provides the results on the experiments using the raw data,
without the linear covariates adjustment.

AD vs MCI/AD Results on Raw Data.

Table A.1: Per visit AUC metrics

Visit AUC (ROC) AUC (PR)

0 0.866 0.612
1 0.866 0.660
2 0.836 0.564
3 0.860 0.678
4 0.844 0.564
5 0.812 0.544
6 0.868 0.684
Mean 0.850 0.615

Table A.2: Per time step metrics (AD vs Rest) (Raw Data)

Visit Confusion Matrix Acc. Bal. Acc. Prec. Recall Spec. F1 MCC AUC (ROC) AUC (PR)

0 [[385, 13], b7, 24]]  0.85 0.64 064 030 096 041 037 0.87 0.61
1 (319, 7], [47, 23] 0.87 0.65 076 033 098 046 0.44 0.87 0.66
2 [[250,12], 43, 21]] 0.83 0.64 063 033 095 043 036 0.84 0.56
3 (215, 9], [33,25]]  0.85 0.69 074 043 096 051 047 0.86 0.68
4 172, 7], 31, 12]]  0.83 0.62 064 028 096 039 033 0.84 0.57
5 (128, 5], [19, 8]  0.84 0.62 062 029 096 038 034 0.82 0.55
6 (85, 4], [16, 10]]  0.83 0.68 075 038 096 052 046 0.87 0.68
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Figure A.1: AD vs non-AD most frequent ROIs (Raw Data)

AD vs CN Results on Raw Data.

Table A.3: Per time step AUC metrics (AD vs CN)

Visit AUC (ROC) AUC (PR)
0 0.930 0.896
0.930 0.918
0.918 0.910
0.914 0.904
0.916 0.890
0.868 0.836
0.928 0.920
Mean 0.915 0.896
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Figure A.2: AD vs CN most frequent ROIs (Raw Data)

Table A.4: AUCs for Subgroup 0 (AD vs CN) (Raw Data)

Cluster 0
AUC (ROC) AUC (PR)
0.842 4+ 0.030 0.667 + 0.061
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Figure A.3: Top Regions for Subgroup 0 (AD vs CN) (Raw Data)

MCI to AD Conversion Prediction Results on Raw Data.

Table A.5: Per time step AUC metrics (MCI — AD)

Visit AUC (ROC) AUC (PR)

0 0.758 0.244
1 0.758 0.208
2 0.552 0.212
3 0.772 0.392
4 0.618 0.276
5 0.592 0.332
6 0.854 0.686
Mean 0.701 0.336
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Figure A.4: MCI to AD most frequent ROIs (Raw Data)

Table A.6: AUCs for Conversion Prediction across Subgroups (Raw Data)

Cluster 0 Cluster 1
AUC (ROC) AUC (PR) ‘ AUC (ROC) AUC (PR)
0.711 + 0.012 0.351 + 0.021 ‘ 0.729 + 0.023 0.597 + 0.019

Table A.7: Top Regions in Conversion Prediction within Subgroup 1 (high-
risk) (Raw Data)

Region Mean |IG| Appearances
Right Inf Lateral Ventricle 0.0056 25
Left Inf Lateral Ventricle 0.0063 25
Right Alns anterior insula 0.0055 16
Left Alns anterior insula 0.0065 15
Right Lateral Ventricle 0.0039 13
Occipital Lobe WM left 0.0053 11
Right IOG Inferior Occipital Gyrus 0.0059 11
Left Amygdala 0.0041 10
Right PO Parietal Operculum 0.0065 10
Left PCgG Posterior Cingulate Gyrus 0.0073 10
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Table A.8: Top Regions in Conversion Prediction within Subgroup 0 (Raw
Data)

Region Mean [IG| Appearances
Right Inf Lateral Ventricle 0.0043 17
Left PCgG Posterior Cingulate Gyrus 0.0061 15
Left PIns Posterior Insula 0.0054 12
Left FRP Frontal Pole 0.0053 12
Left Hippocampus 0.0049 12
Left PP Planum Polare 0.0069 11
Left MFC Medial Frontal Cortex 0.0045 11
Right FuG Fusiform Gyrus 0.0045 11
Left Inf Lateral Ventricle 0.0042 10
Left FO Frontal Operculum 0.0055 10
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