NATIONAL TECHNICAL UNIVERSITY OF ATHENS
SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING
DIVISION OF SIGNALS, CONTROL AND ROBOTICS
SPEECH AND LANGUAGE PROCESSING GROUP

Efficient Incomplete Multimodal-Diffused Emotion

Recognition

DIPLOMA THESIS

of

IOANNIS ASPROGERAKAS

Supervisor: Alexandros Potamianos
Associate Professor, NTUA

Athens, October 2025







NATIONAL TECHNICAL UNIVERSITY OF ATHENS

SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING
DIVISION OF SIGNALS, CONTROL AND ROBOTICS
SPEECH AND LANGUAGE PROCESSING GROUP

Efficient Incomplete Multimodal-Diffused Emotion

Recognition

DIPLOMA THESIS
of

IOANNIS ASPROGERAKAS

Supervisor: Alexandros Potamianos
Associate Professor, NTUA

Approved by the examination committee on 24 October 2025.

(Signature) (Signature) (Signature)

Alexandros Potamianos Athanasios Rontogiannis Athanasios Voulodimos
Associate Professor, NTUA Associate Professor, NTUA Assistant Professor, NTUA

Athens, October 2025



NATIONAL TECHNICAL UNIVERSITY OF ATHENS

SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING
DIVISION OF SIGNALS, CONTROL AND ROBOTICS
SPEECH AND LANGUAGE PROCESSING GROUP

Copyright (©) — All rights reserved.
Ioannis Asprogerakas, 2025.

The copying, storage and distribution of this diploma thesis, exall or part of it, is pro-
hibited for commercial purposes. Reprinting, storage and distribution for non - profit,
educational or of a research nature is allowed, provided that the source is indicated and

that this message is retained.

The content of this thesis does not necessarily reflect the views of the Department, the

Supervisor, or the committee that approved it.

DISCLAIMER ON ACADEMIC ETHICS AND INTELLECTUAL PROP-
ERTY RIGHTS

Being fully aware of the implications of copyright laws, I expressly state that this diploma
thesis, as well as the electronic files and source codes developed or modified in the course
of this thesis, are solely the product of my personal work and do not infringe any rights of
intellectual property, personality and personal data of third parties, do not contain work
/ contributions of third parties for which the permission of the authors / beneficiaries is
required and are not a product of partial or complete plagiarism, while the sources used
are limited to the bibliographic references only and meet the rules of scientific citing. The
points where I have used ideas, text, files and / or sources of other authors are clearly
mentioned in the text with the appropriate citation and the relevant complete reference
is included in the bibliographic references section. I fully, individually and personally
undertake all legal and administrative consequences that may arise in the event that it is
proven, in the course of time, that this thesis or part of it does not belong to me because

it is a product of plagiarism.

(Signature)

Ioannis Asprogerakas,
Graduate of Electrical and

Computer Engineering,
NTUA

24 October 2025



ITepiindm

H TTohutpomuxr) Avaryvipton Luvaotnudtov (Multimodal Emotion Recognition - MER)
GTOYEVEL OTY) HOVTENOTIOMNGT) TWV avIPOTIVGDY GLVALGUINUETWY PEGW TNG EVOTOINCNE ONUATLY
and yhwooo, 6paon xat fyo. Ou pédodot Bathde udinone €youv emtiyel EVIUTWOLUXY O-
noterécpata U€cw Tou cross-modal fusion, oAAd ol neplocdTERES LTOVETOLY TAYEN Brarde-
OCWOTNTA TV TROTUXOTHTWY XATd TNV exmaideuoT xou inference, xdti mou dev elvon cuvhing
oTNV TEEN AOYw amoxAeloucy, Yopifou 1 BraBov acinthieny. H avtwetodnion autod tou
TEOBAAUATOC AmoUTEl EVPWOTES CTEATNYIXES OVATATIRWONE TTIOLU VAL AVaXTOLY Tol EAAEITOVTAL
oot Yoeic va YucIdcouY amodoTIXOTNTA.

Ye auth TNV epyaoia eEEPEUVOUUE TOV GYEBLIGUO HOVTEAWY BIAYUOTC YIoL TNV VITATIR0-
oM EMNELTOVOHV TEOTUXOTHTWY enexTelvovtag TNy apyttextovixf tou IMDER [1]. Tlpote-
tvoupe éva oyfua exmaldeuone 60o ctadiwy, omou ta modality-specific povtéla dudyvong
TEOEXTIALOEVOVTOL AVEEHOTNTO X0 OTT) GUVEYELX EVOWUTGVOVTOL oTT dtadxacio MER. Emi-
TAE0V, GLYXPIVOUUE BLATUTMCELS O TOYAC TGOV dlapopixmy eElotoewy (LAE), ouyxexpiuévo
tic Variance Preserving (VP) xou Variance Exploding (VE), aZlohoyolue evahhoxtixoie
UNYOVIoROUS UTIO CUVITAXNG ToEAY WY NS HE opyLTeEXTOVIXES transformer, xou SlepeuVOLUE oA~
yopituoug derypotohnlag yior Vo lGOpEOTHCOUUE AmodoTXOTNTA xoi axpifeto.

Extev) netpdpata otae CMU-MOSI o CMU-MOSEI anodewxviouy cuvenel Pehti-
OoeC 1600 ot oTadepd 600 xaL o Tuyaio TEwWTOXOoM elkeldewy. H Bioaudppwor| uag
TOU ETUXEVTPWVETOL OTNY TOLOTNTA ETUTUYYAVEL oveidtepn axpifeta, e x€pdn éwc +2% F1
xou +1.5% ACCsy ot oyéon pe 1o IMDER, nopéyovtag moapdhhnio 5x toyltepo inference.
Tautdypova, 1 SldEPWST| Yog ToL EGTIALEL oTNY Ty OTNTA BIUTNEEL AVTAY WOVLO TLXT) amO80-
on +1% ACCy, +0.5% F1 adkd emtuyydver alroornueintn anodotxdtnro we 15X tayUtepo

inference, xahotdvTag TV avtaywvioTixn Yo egapuoyéc MER mpoypatinod ypdvou.

Aglesic KAeotk

Movtéha Aidyvong, [Toutpomxry Avayvopion Yuvaiodijuoatog, Ytoyaotinée Alopopl-
xéc E€wohoeie, Ilovtpominy Bonhd Mddnor, Babid I'evvetiny Movtehonoinon
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Abstract

Multimodal Emotion Recognition (MER) aims to model human affect by integrating
complementary signals from language, vision, and audio. While deep learning meth-
ods have achieved impressive results through cross-modal fusion, most assume complete
modality availability during training and inference, a condition rarely met in real world
deployments where occlusions, noise, or sensor failures frequently cause missing modal-
ities. Addressing this problem requires robust imputation strategies that can recover
missing signals without sacrificing efficiency.

In this work, we explore the design space of diffusion models for missing modality im-
putation, building upon and extending the IMDER [1]| framework. We propose a decou-
pled two-stage training scheme where modality-specific diffusion models are pre-trained
independently and then integrated into the MER pipeline. This design avoids the insta-
bility of end-to-end IMDER training, where untrained diffusion models initially degrade
classifier performance. In addition, we systematically compare stochastic differential
equation (SDE) formulations, specifically Variance Preserving (VP) and Variance Ex-
ploding (VE) processes, evaluate alternative conditioning mechanisms with transformer-
based backbones, and finally investigate multiple sampling strategies to balance efficiency
and accuracy.

Extensive experiments on CMU-MOSI and CMU-MOSEI demonstrate consistent im-
provements across both fixed and random missing protocols. Our quality-focused con-
figuration achieves superior accuracy, with up to +2% F1 and +1.5% ACCs, gains over
IMDER, while delivering 5x faster inference. Meanwhile, our speed-optimized configura-
tion maintains competitive performance, +1% ACCs, +0.5% F1, but achieves remarkable
efficiency with 15x faster inference, making it competitive for real-time MER, applica-

tions.

Keywords

Diffusion Models, Multimodal Emotion Recognition, Stochastic Differential Equa-
tions, Multimodal Deep Learning, Deep Generative Modeling
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Kegdiowo m

Extetopévn EAAnvixeR Tlepiindn

0.1 Ewaywyn

0.1.1 Kivnteo

H evonoinon minpogopiag and TOAMATAES TNYEC TOPEYEL CUUTATPOUATIXG GTOoLYElo XaL
audvel TNy enidoong xon TV aVIEXTIXOTNTA TWY CUCTNUATOV OE GYECT UE HOVOTROTUXES
npooeyyioeic [31], WBlodtepa OE AmAUTNTIXES EQUPUOYES OIS 1) OVALY VEPLOY) GLUVOLGVAUATOC.
(261660, T TOAUTEOTUXE. BEDOUEVA GLY VA TEPLEYOUY EANTELS 1) XUTECTRUUUEVES EYYPAUPES,
xHOTOVTOC TNV EXTOUBEVOT) XAk TNV AVATTUEY OE TEAYUATIXA GEVARLXL O TERiTAOXY).

H Avayvopion Luvaodfpoatog and tohhamhés tpomixdtntes ofjuatos (YAdooo, ontixd
YOPOXTNELO TIXEL, 0XOUG TIXY) TEOTUXOTNTO) EXEL ONUELDOEL ONUAVTIXY TEO000 YdEN OTIC Ye-
Yod0ug Pordidig pudinomng xau Wotadtepa Tor HOVTEAXL BLIC TAUROUHEVTE TeoC0oY V|G cross-attention
omwe ta MISA [32] xow MulT [26]. Hopdha autd, to teptoodtepa tpoinovétouy TAren Stode-
owoTNTA KAV TV TpoTxoTtwy (modalities), xdt tou onavilel oe mporyuatixés cuviixec.
IMa 1o mpdBinua e anovciac modalities €youv mpotodel B0 Baoixée xatevdivoeis: (o)
pédobdor avamArpwong pe autoencoders [33], GANs [34], normalizing flows [35] 7| diffusion
models énwe 1o IMDER [1], xau (B) un-avamAnpoticés pédodor (n.y. canonical correlation
analysis [27], knowledge distillation [36], subset grouping [37]), mou av xou o aTodoTIXEC

Uy VA ayvoolv xplollec cuoyeTioels.

0.1.2 Xvuvelcpopég

H napoloa epyaocia ewodyet éva anocuvdedepévo (decoupled) oyAua exmo-
d=svorg v diffusion-based molutpomxfc avoryvidplone cuvanodfuatoc (ITAX), to onolo

Behtddver Ty anddoon xar Ty anodouxdtnta évavtt tou IMDER [1]. Yuyxexpuévoa:
1. Ipotetveton Siotadlomy| exnaldeuon), apyixd Twy score networks xou oTn cuvéyeta Tou
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0. Extetopévn EXnvied Iepiindm

MER povtéhou, anogedyovtag tny exxivnorn e “opuB®orn’ avoxaTaeXEVUCUEVH GTU-

Ta.

2. E&etdlovtan dagopetiég dlatunwoelg diffusion dwdixaciyv 6mwe o Variance Ex-

ploding (VE) xau Variance Preserving (VP) otoyactuxéc dwpopinés e€iodoeic.

3. Yuyxplvovtow SLopope TIXEC TOAUTEOTIXES OPYLTEXTOVIXES Yt LovTéNa BLdyuone(diffusion

backbone), pe evahhaxtixd conditioning oyfuora.

4. Aoxydlovton amodotixéc pédodol derypotondioc (samplers) yioa v avtictpogn e-

mluon Twv oToyao TGOV dapopixmy eglotoeny (NAE).

5. Iopouctdlovton 8U0 BEATIOTOTOUNUEVES TOPUUETEOTOLACELS: Wld VLol UEYLOTY TOLOTNHTA
OVOXATAOXEVNE ol o Yo Taryetar e€ory YT, Xow ot 5V0 UE avToy VIO TIXG AmOTEAECUATA

EvavTt Tng oyetxnc PiBAoypapiog.

Me ti¢ mopondve avalntioelc emTiyoue: o GToERY Xl AmodOTIXY EXTAUBEUOT Y-
ple mapaywyY TpomOTATWY and un-exmodeupéva diffusion models, Bertiwuévn nowdtnTa
OVOXAUTOGHEVAC EAAELTIOV TROTUXOTHTWY, ONUAVTIXY UElwon ypovou derypotoindlag péow
Behtiotonotnuévey Serypatohetttédv (samplers), xadde xou Ty avdnTuEn evOg VEOL TONU-
TeoTXOL BixTUoL Tou aflomolel xah)TERA TIC SO TAUEOVUEVES EEUPTAHOELC TMV OESOUEVLY
T0 omolo cuyxplvape xou aZlONOYICOUE UE GANES CUYYEOVES EVOMNOXATIXES UPYITEXTOVIXES
Yoo und ouvixn (conditional generation) mopoywy”R oe povtéha dudyuonc. LuvoAxd, N
uedodoroyio pog avioywvileton xou 68 TOMES TEQLTTWOELC CEMEPVA Tal BAUOIXE HOVTERX TNG
BiBhoypaglac ot amddooT xou Tay 0TI, QPEPVOVTAS To LOVTEAX SLdyUOTE O XOVTY O A)OELS
YL TRV UOUTIXES EQPAPUOYES EAAELTY TOAUTROTIXGY EQYUCLOY AVAYVOPLONE GLYVAGVHUATOS

ToU YEELALOVTOL GUC THATO TEAYHATIXO) YEOVOU.

0.2 Movtéra Awayvong xou 'evetixny Moviehonoinon
nE€ow toyacTtixwy Alagpopixey Eicwoswy

To mdovotnd povtéha Sidyuone [38, 11] ¥ n mpooéyyion Score Matching [39] opiCouv

o YeveTixr) Sladuxacta etodyovtag otadioxd YopuBo oto dedouéva xon ot cuvéyeta toda-

vovtoag e v tov avatpoy.  Aedopévng uiog xatavouic Sedouévmy po(x), 1 eumpdodia

dadixaoto (forward process) mpoo¥éter I'xaovotavd V6puBo oe T Bruata oynuatiloviag

o cduotdor Markov:

q(x¢[x-1) = N (x5 v/ouxi—1, (1 — o)1), (1)
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0.2 Movtéha Aidyvone xou levetinhy Movtelomoinon péow Etoyaotxmy Awgopixtv EElohoewy

OToL 1 oy elvon Eval TEGYpoua Btaxbavong Tou eAEyYeL To uéyedog tou Yoplfou. XTnv
ouveyt ypovixh dtatinwon [2], 1 eunpdotior dradixacio teplypdpeTar omd Ul LTOYAOTIXT
Awgopix EElowon (EAE):

dx = f(x, t)dt + g(t)dw, (2)

omou w eivan 1 tumixn} xivnon Brown. H avtictpopn YAE nou yenowonoleiton yio mopo-
YOYT Setyudtwy etvou:

dx = [f(x,t) — g(t)*Vxlog pi(x)] dt + g(t)dw. (3)

H ouvdptnon Boduidac mbavétnrog (score function) Vi log py(x) mpooeyyileton omd éva

4 7 7 7, .. .
VEUPWVIXO BiXTLO Sp(X, 1), To onolo exnaudeveton pe denoising score matching:

Lpsm = Exg e [H\/Wse(xt,t) + €H2] ; (4)

omou x; = Jauxo++v/1 — aze xou n A(t) etvan cuvAdoc 7 Sraxdpavon tou Yoplfou. Auth
1 SLaTOTOOT EMITEETEL EXPEUOTIXY YEVETIXT povieloToinon oe TARdoc nediwy [11, 12]. Xto
Yyfua 1 amewxoviCetar medg €va delypo ohhotdvetan péow tneg epnpochoc YAE oe 96pufo
x(T') xon médg avaxtdton péow tne avtiotpopne LAE a&ionowdvtoag tn podnuévn ouvdptnon

Borduidoc mdavétnrag (score function) .
Forward SDE (data — noise)
@ dx = f(x,t)dt + g(t)dw
| o score function A
‘(— dx = [f(x, t) — g (t)Vy log ps (x)| dt + g(t)dw

Reverse SDE (noise — data)

Figure 1. Arexovion twv eunpéotowv kar avtiotpopwy YAE 6adikaoidy otn povtelo-
roinon odyvong. H eunpdotha YAE mpootétrar otadaxd 9dpuPo o€ kalapd defyua x(0)
péxpr va yiver kaapés 96puPos x(T'), evd n avtiotpopn XAE xpnowonoel tn padnuévn
ouvdptnon Baduidag mbavétntas ya va arofopuPororioer to x(T') kar va avaktioe éva
detyua. Ilpooappoyn ané [2].
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0. Extetopévn EXnvied Iepiindm

opd Tic e€oupeTinéc BUVATOTNTES TOUG, Ta LOVTENX BLEYUOTC UTOPEROLY amtd EVa XploUYLO
UTIOAOYLOTIXO EUTOBLO: TNV amadTNnoT Yot EXATOVTAOES 1) xou YIALdBeS Bladoyixd Bruota amo-
YopuPBomoinone xotd tn derypatorndlo. Autd xodoTd TNV eCoywYN BELYUATWY ONUOVTIXS
To apYY o oyxéon pe dhha YEVETIXG povTéla, omwe T GANs ¥ ta VAEs. H udmir auty

UTIOAOYLO TIXY| Bumdvn) €yEl 00NYNoEL OE eXTEVY| €pEuVA Yiol UEYOBOUE ETULTAYLVOTS, OTKG:

o Nrtetepuviotxéc npooeyyioeic 6nwe 1o DDIM [40],
e Behuotonoinon Yoplfou xau ypovonpoypappatiopol 6nwe oto iDDPM [41],

o Ilponyuévec pédodol derypatorndioc 6nwe 1o EDM [42], mou oyedidlouv xolitepoug
aptdunTo0g EMAVTES YWElg ahAaYT) OTO EXTALOELUEVAL LOVTEAQ,

o Teyvixéc andotalne 6mwe 1 npoodeutinf andotoln [13], To consistency models [43],
xou 1 an6otadn yvoone [44], mou emteénouy oTa HOVTEND VO TPOGOUOLGVOUY TN BLo-

owactor TOAMGY Brudtwy pe Ayo BAuota 1 axduo xan Ye €va uévo Briuo.

o Apwduntxol emttayuvtéc (fast ODE solvers) 6mwe o DPM-Solver [45],

0.3 Ilohutpomixy pddnor pe eAAELnelc TEOTIXOTNTIES

H Avoyvdpion Zuvaoliuatog ond ToAhamhéc TpomixdTnTes (TOAUTEOTIXT ovory(eLom
ouvatoOiuartog ITAY) otoyeler otnv extipnon avdpdmvou cuvatoVAuatos and cuyyEOVL-
OUEVa OUATH OTWS XEPEVO, HYOg xan exdva. Bevenuopx datacetg omwe to CMU-MOSI
[46] xar CMU-MOSEI [47] napéyouy evduypoplopéves Qpdoelc Ue Xatnyopxés 1 cuveEyE(c
enxéteg ouvanofuatog. Iapd Tic BuvatdTTES TNE TOALTEOTUIXAC HAINONS, 1) TOAUTEOTIXN
avaryvaptone ouvatofuatoc (ITAY) nopapéver TpdxAnon Aoyw ETEOYEVELUC ONUAGIONOYL-
xNg, Yeovnc aouyypeoviog xo YopiBou yetald twv tpomuxotitwy. ‘Eva xplowo mpoxtixd
TEOBANUA €lvol 1) CUY VY| EUPAVIOT) EAAELTOVTWY TEOTUXOTHTWV XUTA T OLEXEL TNG OELYUI-
Toandlag N avdntuéng, oTwe amouasio Yyou 1 xotec Teopuévo Bivieo.

Ou nopadootaxée npooeyyioec ITAY 6nwe ta MISA [32] xou MulT [26] emtuyydvouy
oY LEY| ATOBOCT) LOVTIEAOTIOLOVTOG BLUC TUUPOVUEVES AAANAETORACELS Xat PordodvovTog evdu-
YOUUUOUEVES avVATOPAo TAOELS. §26TOC0, auTég uTOVETOLY TATET] BlardecLUOTNTA OAWY TWV
TEOTUXOTHTWY XoTd T doxiun, teplopilovTtag TNV avieXTIXOTNTA GE TEOYUOTIXG GEVAQLAL.

[o voe avtetomiotel autd, n Bihoypapio €xel e&ehiydel oe dVo xatevdivoec: un-
avamAnpwtikés pédodor, mou Yadaivouv Vo CUVEVEOYVOUY UOVO TIC Bladéoiles EloOO0UC, Xal
péfodor avamAnpwong, Tou ovaXATAGKEVALOVY ENTA TIC EAAEITOVCES TROTUXOTNTES TIELY OO

TN oUVEVWOT. XTIC TeheuTaleg, oUyypoves u€bodol allomololy Yeupo-Baciouéva LoVTEN
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0.4 Ilpotewoduevr pedodoroylo

6nwe to GCNet [30] xou teyvinée avoxataoxeuic e dixtho pavtaciog (imagination-driven
reconstruction) [6]. ITio npdogata, yevetxd yoviéla 6nwe ta DICMoR [35] xaw IMDER
[1] wovteronotoly und cuviinn xotavoués p(x; | 5, Tk) PECE XAVOVIXOTOUEVKDY OGOV N
OLadixaoly ddyuong yio detypotohnla xotd v extéleor downstream, avidvovtoc Ty

aVIEXTIXO TN TAL

0.4 Ilpotewduevn pedodoroyia

0.4.1 Tevixy AwxtOnwon

‘Eotww 6t X = {x], 2y, Tq} SNAOVEL TOV YOPO €060V TEIdY TpoTxoThTwV—language
(1), vision (z,), xou audio (24)—moL AVTIGTOLYOVY GE Wiol LovadixY| gedor. Ltnv npoBiiua
ToluTpoTXfc avoryvoplone ouvatodfuatoc (Multimodal Emotion Recognition) (MER), o
oToy0¢ elvon vo pdouye war ouvdptnon F 1 X — y mou avTioToLyEl TIC TAUPATNREOVUEVES
TEPOTUXOTNTEG OE Wil BlaxElTy| 1) oLUVEY NG ETIXETA GLVALCVNUITOC Y.

YIS EQUPUOYES TRUYUATIXO) XOOUOU, Ouws, Oev elvon vt dlodéouleg OAEC oL TO-
TUXOTNTES AT TN @don e avaryveoenone ouvaodruatog (inference). 'Eotww 61t M C
{l,v,a} dnhdver to clvoro Ty dladéouwy TpotxoTHTRY ot évar delypa, xou MC 10 ou-
UTAHPWUA TOU—TO GUYOAO TV EAEITOVIWY TpomoThTwy. H xevtpu| npdxinorn eivon va
extuiooupe 1\ vo mpooeyyioouye ta eAeinovta ototyela {x, : m € M} und cuvirxn
v dtéowy {z, : 0 € M}, étol dote 1 tehx| Togvounon cuVOLCVAUAUTOS Vol TUROUEVEL
oviex T,

Tumixd, 6ToYedOVUE GTN HOVIEAOTIOMNGT] TWV XATAVOUWDY UTO GUVIHAXT:
po(zm(0) | 5(0)), -y kot T m € ME, (5)

omou z(0) avagpépeton oe xoapd dedopéva (dnhadr oto ypdvo t = 0 otn Sadixaoion didyu-
ong. Agol derypoatohngdolv 1 avaninewdolv ol eAkelitovoes TOTXOTNTES, TEPVAUE TOCO
Tic SLdEOLUES GO0 XL TIC OVAXUTAOXEVAOUEVES TpoTuxOTNTES o€ éva (fusion model) Ty yio
v TeEAXn TEdBRed:
9 = Ti(ap, 2y, 273), (6)
OmoU I}, = Ty av M € M xou x}, = &, (Sevypatohngdév) av m € MC.
I va povtehonotioouye Tic xatavopés und ouviixn pe(zm(0) | 2,(0)), yenowonoto-

Ope éva mhakoto exmaldevong yia ovtéla Bdyuong. e xdlde tpomxotnTa avatideTton Eva

Eeywplotod score network sy, (-, t), exnoadeupévo péow score matching yio vo mpooeyyloet

Diploma Thesis



0. Extetopévn EXnvied Iepiindm

TNV xhiom TG XATAVOUNS TwVY BEBOUEVWY GTOV YEOVO t:
$m (Tm (8);t | 2o(t)) = Va,, 0g pr(m | o). (7)

Metd Ty avamAhewo) Twy EAAEITOVIWY dedouévmy uéow deryuatoindiog yenotuomounvag
oL Topamdve dixtua Tpooéyytone Paduidac mbavétntac (score function), yenoiwonoteiton
évag modality-specific alignment decoder Dy, yia nepoutépw BeAtiworn Twv mopoyOUEVLDY
YUEUXTNPLOTIXGY, X0t TEMXS epopudleton évag teAxdg fusion classifier 7 ue modality-
specific transformers. To mAYjpec dixtuo @alveton oto Myrua 3, xou Yo avahbooupe xdie

CLUGTATIXO TOU.

0.4.2 Awtinwon YAE xau Avtictpopn Awadixacio

AopBdvoupe urodn Tic Vo mo dnuogiieic dladxaoieg didyuong, Tic Variance Explod-
ing (VE) xa Variance Preserving (VP) YAE, énoc neprypdgoviar oto Yeuehddec
épyo twv Song et al. [2]. Kou ot 800 Satunddoeic mopéyouv cuveyn ypovixd Thoioto Yo o Ta-

otax) AAAOLWGOT) TV BEBOUEVKY Xl UETETELTA ONUOVEY o UEGK AVTIOTEOPMY BLAOLXACLOY.

Variance Exploding (VE) SDE

H Swtdnwon Variance Exploding (VE) opilet o ouveyt| ypovind eunpdodior Stodt-
xaoto didyvone (forward diffusion process)énou npootideton otadaxd Y6pufoc oo delypo

ywelc va yetofdiheTton To uEyedog Tou GRUATOC!
dx = o(t)dw, uc o(t) =", (8)

6mou w OnAwvel Tumx) Brownian motion, xat o(t) elvan évoc ypovind e€uptduevoc GuvTe-
AeoThg Bidyuomne mou awZdveton exdetixd yia t € [0, 1]. Xto newpdpotd pag, opillouvye o = 25
olugwva pe [1].

H eunpéotha EAE (forward SDE) opilet pio ouxoyéveio ahNOLOUEVOY XATAVOUOY Pt (X)),

OTIOU 1) OPLUXT) XATAVOUT GTOV YEOVO t EYEL TUTUXT| ATOXALOT:

o2t —1

td; =
St 2lno ’

(9)

étota wote X(t) = x(0)+2z-01td; pe z ~ N (0, I), xou to x(t) yiveton bho xou o YopuBcdec
xodoe t — 1.

H yevetxr Swadwasia avtiotolyel otny mpocoyolnon tne avtiotpogou ypdvou LAE
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0.4.2 Auwtinwon LAE xou Avtiotpopn Aadixaoio

(reverse-time SDE):
dx = —0o(t)?Vy log ps(x)dt + o (t)dw, (10)

6mou Vi log py(x) eivan 1 score function xow W dniwver avtictpogn Brownian motion.

Variance Preserving (VP) SDE

H Swtinworn Variance Preserving (VP) Swtneel nepinou otadept| Swonopd xotd
T Bdpxetlar TNe Saldixaciog Bidyuong TEOGUETOVTASC TAUTOYEOVA VORUBO Xl XALUAXWDYOVTIC

TO ohpL:

dx = —%5(t)xdt + VB)dw, (11)

omou f[(t) elvan ypovixd eZoptmuevo tedypauua YoplBou. XenolomololUe Yeouuixo
mpdypapua B(t) = Bo + t(B1 — Bo) ve Bo = 0.1 xou B = 20.0 cluguve Ye TV xowr
TEOXTUX.

H oploxy xatavoun} otov yedvo t yio tny VP AE €yel tumxy| andxhion:

std; = /1 — exp(2log a(t)), (12)

6mou log a(t) = —0.25¢2(81 — Bo) — 0.5t By ebvor 10 Aoy dprdpo Tou GUVTEREOTH XAWEXWOTS
ofpartoc, wote X(t) = a(t)x(0) + z - otd; pe z ~ N(0,1).

H avtiotouyn reverse-time SDE yua yevetxr| dwdixactio etvou:

dx — —%ﬁ(t)x — B(6) Ve log pi(x) | dt + /B{E)dw. (13)

ITeoocéyyiomn tnc Score Function

[Mo xan tig 8o dwtunoelg LAE, npooeyyilouue v un unoloyiowr score function
Vxlog pi(x) yenowomoudvtoag évo veupwvixd dixtuo sg(x,t), exmoudeuvuévo pe denoising

score matching. O otdyog exnaldeuong ehaytotomolel:

£(0) = Bogn |l150(x1,1) - 0581 + 2] (14)

omout ~Ule, 1 — €] pe e = 1077, x¢ etvon xodoipd dedopéva, z ~ N(0, 1) ebvor Ydpufoc,
XL Xy = Xo + Z - 0710 €lvon To Belypa petd Ty mpooirixn YoplBou otov yedvo t. TN mopo-
YY) Umo cuvdixn (conditional generation), egapuéloupe TV Bl TapaubdEP®ON TGO OTIC
GTOYEUPEVES OGO %Ol OTIG TEPOTUXOTNTEG UTO GLYIXT), OTIKC TEQLYPAPETAL GTNY TROCEYYIOT

XOWAC TOQOUOPPWOTE TIOU YENOULOTOLOUUE.
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0. Extetopévn EXnvied Iepiindm

H emdoyn yetald tov dwtunonoewy VE xoa VP eloptdton and v eqopuoyn xou to
YoeaxTNEIoTIXd TV dedopévwy. Ou VE SDEs npotidvtor cuyvd ylo mopoywyn yoelic
ouvixn (unconditional generation), eved oo VP SDEs noapéyouv mo otodepr exnaidevon

OE GEVHPLAL TORUY WY NS UTO CUVUTHAXY OTWS TO BIXO YOG,

0.4.3 Amnocuvdedeuévn Exnaldeuvon

Y10 mpotewoduevo mhaicto poc, xde modality-specific diffusion model exmoudedeton
aveEJETNTA Yol VO EXTWAOEL TNV XATOVOUT| UTO cuvHTixn GE00UEVKDY amd T UTOAOLTES TEO-
uxdtnree. Xe avtideon pe tic ohoxinpuuévee end-to-end dadixaoiec dnwe to IMDER (1],
ATMOCLVOEOUPE TNV YEVETIXY exTaideuoT xdide score network amd Tov TeEAxd xaTryoploNOL-
Ny, 6w Qaiveton 6To U100 1 Tou LyAuoatog 2. Autd emiTpénel TN ¥eHom EVOC TANRKS
exnoudeupévou score model Yo avamAfipwon Twov ot downstream epyaocio. Avtideto ue
v mponyoLuevn meocéyyion tou IMDER, énou n exmaldeuorn end-to-end odnyoloe oe
XAXNC TOLOTNTOC AVATANPWUEVES TROTUXOTNTES Xai U1 oTadepd gradients, 1 amocuvOedeUévn
EXTIUOEUCT| TPOCPEPEL ATOTEAEGUATIXT Xou ap¥pwTY| EXTaideuoT), BIEUXOALVOVTOUC XUAUTEQO

EAEYYO TNG AEYLTEXTOVIXNS, TOL pnyoaviopoL conditioning xon Tng oTEATNYIXAC OELYUATOAT-
dlog.

Stage 1: Diffusion Pre-training (Offline) + Classifier Training

Dataset (L, V, A)

Y

! 1
! 1
! 1
! 1
! 1
! 1
! 1
! 1
! 1
1 o

1 Train s; Train s, Train s, C1T1a1§ i :
: Input: a; Input: z, Input: x, IaSSIt er :
! Condition: Condition: Condition: nput: 1
! Xy Ty, Ta 1
: Ta> v Ta> Tl rh Ty Supervision: y | |
1

. |
| Y Y Y v !
! . . . 1
1| Pre-trained s; Pre-trained s, Pre-trained s, Trained 1
1

1 Classifier :

Figure 2. Aidypappa mov avarapiotd to mpadto Stage tng ekmaidevons Tov anoouvvOede-
pévou (decoupled) modality diffusion MER network. Ta modality-specific score networks
eKTabelovtal Xpnoonoldrtas to tAipes olvolo dedopévwy e tuyaia kabodriynon (ran-
domized conditioning), evd) o downstream classifier extaideletal enions oto TAjpe§ oUrolo
dedopévwr yia to MER task, pe npéoPaon o€ mAnipws napatnpolpeves tpomkotntes (fully
observable modalities).

‘Eotww x = {2, 2y, x4} T0 TMpec multimodal feature tuple yio évor delypo. T va
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0.4.3 Anoouvdedeyévn Exnaideuon

Stage 2: Integration & Inference (Online)

Input Data

(e.g., L,V
avail; A miss)

[ Encoder & ] [ Encoder &, ] @

x1(0) Ty (0) Pre-trained s,
(Sampling Mode)
Condition -
mpling
Decoder D,
Combine

Features @
(21(0), 25 (0), #a)

Fusion (7)
& Predict

Emotion Output

Figure 3. Aidypapua nov aneikoviler tn npotewduevn exmaidevon tov 20v otadiov Tng jue-
fobodoyiag uag, detyvovtas éva napdderyua dmov n akovotikn tpomkdtnta (acoustic modal-
ity) Aeimer. Apyird, deryuatoAnmrolpe 9dpufo ue duakluavon Bdoe tng dwwdikaoias didyv-
ons. Ererta exteAeitar n avtiotpogn dadikaoia diffusion sampling péow tov exrtaidevuévov
audio score network s, kai mapdyetal pa adpr avakaTaoKEVAOEVT) TPOTIKOTNTA To. XTI
owéyela, avtn PeAtidvetar Tepartépw Tepvavtas ano tov alignment decoder D, mpw xpn-
oporondel oTny aviyvevon ouvvaiodniuatog (emotion inference) péow tou fusion classifier
Ty.

q(0) :
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0. Extetopévn EXinvuag Hepiindn

AVATANEWGCOLUE Plal EAAEITOVCA TEOTUXOTNTA Ty, € T, GTOYEVOLUE GTN UOVIEAOTOINGT TNG
xotavophic untd ouviinn p(xm,(0) | 2,(0)), étou z,(0) C x \ @y, eivar oL Swdéoes tpo-
TUXOTNTES, X Ty (0) T xoapd Sedopéva tne elkelnovoac Tpomxdtnrac. Qotdéc0, dnee
delyvel To [2], umopel vo extoudeutel éva uévo score network yio vo tpooeyyioet Tic xhogwg

™ xowhc xatavourc Vi log pi(x) péow mopaudppnone GAwy twv LETUBANTOY..

IMopaudppworn TOCO TwWV GTOYELKEVWY OCO Xl TWV LUNO CLUVUYXY TEOo-
TXOTATOV. AVl Vo TayOVOLUE TIC TRPOTUXOTNTES LTO GUVITIXY YO VO TIOEUULORPLVOUUE
HOVO TN GTOYELUEVY] TROTUXOTNTA, EL0dYOUUE VOpuPBo 1660 GTO Ty, OGO XL GTIC T, XPNOL-

porotwvtog v o forward SDE (6nwe xou oto IMDER):

dx = f(x,t)dt + g(t)dw, x(0) ~ po(x). (15)

Auté odnyel oe YopuPidelc exdooelc T (t) ~ q(zm(t) | zm(0)) xou xo(t) ~ q(zo(t) |
26(0)). Kotd v exnaldevor, napéyouue tic YopuBndelc tpomxdtntes und cuvinnn zo(t)
avtl v tic xodapéc ,(0), eviappivovtac to score network va pdder tmv akndvr xowr
XOTVOUN (L, To) vl vor Pooileton oe cuvtopeloelg and xadoupés eleddoue.

Oewpntd, autd tpoxdntel and TN Sotinwon oto (2], 6Tou N ehayioTonolnoN TNS o-
ndhetog denoising score matching (DSM) oe dhat To GUOTATING TOU TOEALOPPDOVOVTOL ATd
v SDE napéyet évav extiunt tne score function V log pi(z). Yty nepintwot| pog, avtd

eEMTEETEL TN YovTelonoinon tng conditional score function:

v:cm 10gpt($m ’ 1‘0) ~ Sa(xm(t)7t7x0(t))a (16)

’ ’ ’ 7 ’ oy . ,
6moL sp elvon VELpwVIXo BixTuo tou tpoceyyilel tn conditional score function. H yerion
TV YopUBWdOY T (t) xavovixonolel TNy exTaiBeuoT xou ETITEETEL GTO HOVTERO VoL YEVIXEVEL

oe mowiAo potifa amovoloug xatd Ty inference.

3toxoc Exnaidevong. Acdouévne authc tne dtatinwong, xdde score network sy, (-)

yioe T tpomxdTiae m € {l, v, a} exnoudeveton ye otéyo DSM:

Lin = Eap0)2s(0) 1 U]\/a<t>sm<xm<t>,t,xoos),em) +e

. (17)

OTOU Ty, () = () (0)+0 ()€, xou x4 (t) xotaoxevdleton avaroynd. Edm, to o(t) etvon
cuvdpTnon Bdpoug yia TV extiunon tng score function and tov Y6pufo dmwe TepLypdpeTo
oo [2]. Hpooopoudvoupe Swgpopetixéc puduioeic anovaiag oe xdlde batch, Swopoiilovtag

7 Z 7 4 4 7. / 4
61l 0 Yovtého podalvel va Paotleton o YETABANTE UTOGOVOAA TWY TEOTUXOTHTWY. AUty 1)
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0.4.4  Apyttextovixéc dXTOmY Yior LOVTEND DLdyLONG

Tpocéyyion podaiver anoteheopotind o owoyévela conditional generative models pg(xy, |
Xo) Yt x&e TpomuxdTnTAL M.

Metd v exmaldeucy), ta score networks mory(vouv xoL yenoLLOTOOUVTOL GE AELTOUR-
yio inference yio derypotorndio eleindviwy dedopévmy (t.y. wéow avtiotpogpne SDE 1
probability-flow ODE samplers). Autéc ou derypotodngieioes avomopaotdoelc tepvolv
otn ouvéyeta and évav decoder xau cuyywvebovion Y€ow evog downstream transformer

v tpdPAedn cuvanoIiuartog (BA. Lyrua 5.2, Xtddo 2).

0.4.4 ApyttexTtovixég BIXTOWY YIX LOVIEAA BLAYLONG

H apyttextovint| v score networks s, xou o unyaviopog conditioning anoteholv xplot-
HEC OYedlaoTIXéC emAOYEC Tou xadopiouv TOCO TNV TMOLOTNTA TWV TUEUYOUEVKY EAAEL-
TOVTWY BEBOPEVLY OGO Xou TNV UTONOYIGTIXY| amoteheopatixdtnta.  AZlohoyolue cuoTn-
paTd dlapopeTineg apyttextovixéc backbone oe cuvduaoud pe ddpopes TeYVInég condi-
tioning yio va Tpoodloplcouue TNV WAVIXT] SLUOEPWST] Yo TNV TOAUTROTLXY| oVOLYVMELOT

CLYVAGUNUETELY.

Apyitextovixég Backbone

Yuyxplvoule TECOERLS BLPORETIXES dpYLTEXTOVIXES score network, 1 xodeplo avtinpoow-
TEVEL BLPOPETIXEC TPOCEYYIOELC Yol OVTEAOTIOMGT YPOVIX®DY EC0ETHOEWY Xo cross-modal

OAANAETOPACEWY:

e U-Net with Cross-Attention (Baseline IMDER): Axolouddvtog ) Tumxy
npocéyylon ota diffusion models [48, 17], auth 1 apyrtextovixy yenowwonotel convo-
lutional layers yia e€oywyn yopoxtneiotixy ue skip connections. Ot ypovixéc evow-
potdhoele (time embeddings) npofddloviar oe eviidueca enineda, eved 1 conditioning
oTIC Olrd€OIUES TROTUXOTNTES EMUTUY YAVETAL UECL UNYAVIOUOY cross-attention, omwe
avantOydnxe oto Stable Diffusion [17] (H mAdeng apyrtextovixh goiveton oto Ly
4).

e Multimodal Diffusion Transformer: Boocwléuevol ot Feature-wise Linear Mod-
ulation (FiLM) [49], viodetolue v apyttextovixy mou npotdidnxe and toug Esser
et al. [4]. Ou tpouxdtnteg uné conditioning eneepydlovian péow evoe modulation
flow oe xdlde transformer block yio cuyydvevorn tne mhnpogopiag yeovixol Bruc-
T0C, ToPdYOVTAC DlapopeTIX0UC CUVTENETTEC XAlpaxac (7y) o petatdmone (5) yio Tic
€L0000U¢ XAl TI¢ TPoTXOTNTES LTO conditioning. Xtn cuvéyela, ol elcodol xat oL TpoTL-

x6tnTec U6 conditioning cuvevdvovtal oo self-attention yio e€orywyh TANEOGPOELOY
(BN, Eyfua b).
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2 ~Score

<

KV
Figure 4. Arexérion tov network mov xpnoiponomiinie ota neipdpatd
nas.  Xpnowponoiinke U-Net 4 emnédwy encoder-decoder e residual
connections kai unxaviopuols cross-attention 0TS TapatnpoUueveS Tpo-
mkdtnTes. Xyrjpa tponorowrjinke dro €6 [3]

P

& o
e® ¢

Figure 5. Block wov Multimodal Diffusion Transformer nov eneéep-
ydletar Eexwprotd Ti§ o€ipéS €10000V kai conditioning, ouvevavel kai Tig
ovo ya self-attention ka1 mpooOéter emmAéory modulation ya kaAdtepo
conditioning. Xxripa tporornowrjinke dro €6 [4]
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0.4.4  Apyttextovixéc dXTOmY Yior LOVTEND DLdyLONG

¢ Diffusion-Transformer: Auty n noparhay npotddnxe and toug Peebles et al.
[5] xou ypnowonotel wa et popyr; Adaptive Layer Normalization (AdaLN) mou
ovoudletoan AdaLN-zero. To AdaLN tpononolel Toug cuVTEAEGTEC HAUOXAC XOUL UE-
Tatomong e layer normalization Bdoet twv Sldéouwy TeomXOTATOY, TaEEYOVTOC
AemTOUERT) EAEYYO NG porc TANeogoplag utd conditioning yweic To LTOAOYIGTXO
x0070¢ emmAéoy unyaviouwy attention. 3to Di-Transformer, évoc emniéov cuvte-
AeoTAC Ao o elodyeTon ety and xdde residual connection yio emmAéov €eyyo

conditioning (BA. XyAua 6).

s B
/| —
!
/ Scale a2
Noise 2 / .
Pointwise
32x iZ x4 32x 22 x4 /j B
1
Linear and Reshape Scale, st w2252
] / 1
Layer N
Layer Norm /) L
L —
N x DIT Block semle | T
1
T T \ Multi-Head
Patchlfy Embed \ Self-Attention
| \ ! Y1.51
\ Scale, Shift 4
. \ 1
Noised Timestep t \ Layer Norm MLP
Latent ) N — 1
32x32x4 Label y \ \_ Input Tokens Conditioning )
Latent Diffusion Transformer DiT Block with adaLN-Zero

Figure 6. Apyitextovikn) evis single block tov Diffusion Transformer.
Hpérertar yia PeAtiopévo FiLM conditioning pe khipdkwon kai peta-
Tomion petd and kdOe layer normalization kai emmAéor Tapdyovtes kAiua-
ka§ a. Xynua tponororjinke dro €ddd [5].

e ScoreTransformer1D(Néa Ilpocéyyion): Ilpoteivoupe wa lightweight op-
yrtextovixy| Pactopévn oe transformer yio 1A axoloudieg yapaxtneiotixodv. H opyi-
textovixy eunvéeton omd to UniDiffuser [18], 6mou ot tpomuxdtntec cuvevivovtar »g
eloodog tou transformer, xde po ye tn o) g timestep embedding. Euelc mopo-
AE(TOUYE TIC ETUTAEOV EVOWUATOOELS YEOVIX0U BRUITOC XL TIC ELWOEYOUUE LOVO GTNVY
€lc0d0, xoog elvor XOWES PE TN YpovixT| TANeogoplo TV dedouéveny und condition-
ing. Avtl Twv convolutional U-Net apyttextovincyv, 1o ScoreTransformerlD ovri-
xahoTd Tig ywewée ouveielg pe token-mixing transformer blocks mou unopolv vo

HOVTENOTIOLOUV UoxpoypOViES Ypovixée eCapTthoelc. Me tn concatenation-based con-
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0. Extetopévn EXnvied Iepiindm

ditioning, déAec ot TpomxdTNTES AvTIUETOTILOVTOL OYOLOHOPYA EVTOS eVOG transformer
framework, emtpénovtog T pdinorn croos-modal e€aptrioewy yéow self-attention.
H elcodog anotehelton amd tplo otouyeio:
_ BxCxT. ’ . , 1
reR : YopuPdeg feature tensor yio 0 cToyELUEVN TPOTIXOTN T
— y(t) € RBXIXD: timestep embedding nou npootideton o %x&de xavéh Tou x

c , , oy . ’ ’ ’
— ¢ € RBXOXT®: ¢i5030c und conditioning mou cuvtidetoun and Tic Yopulndelg

TPOTUNOTNTES T\ (1)

H povdda uroroyiCel mpodta Ty time-conditioned latent representation:
T=x+(t) (18)

Y1 ouvéyela cuvevwvel Ty elcodo utd conditioning:

5y = [:E;c] e RBXCX(T-FTC) (19)

Avth 1 apywtextoviny| enegepydleton TNy €l0odo Yéow evog transformer encoder mou
epopuolel self-attention oe xde ypovind Briua. H €€odog qphtpdpeton yia va eaydet

uovo o mpofBienduevog YOpUPBOS Yol TV TEOTUXOTNTA Ly .

Noise estimation

T

Main Input [z+es; c
Concat

~

ScoreTransformer1D

T c RBxCXT

Drop the rest of the
Tokens

Time Embedding

e € RBx1xD

Conditioning

c € RBXCXT

Figure 7. Aifaypapa ya tn npotewduevn apytitektovikn) tov ScorelransformerlD.

Evowpdtwor yeovixoL BAuatog (Timestep Embeddings)

Axohovddvtac mponyoluevee epyooiec [50], yenowonowotuye Gaussian Fourier time

embeddings yia OAEC TIC PAUYOXOXAMES OOTE VAL AVATUPACTACOVUE TO GUVEYES YEOVIXO BHua

YOlec o1 tpomixdntee npoBdihovian oe xowé feature space uéow evég amhol feature encoder.
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0.4.4  Apyttextovixéc dXTOmY Yior LOVTEND DLdyLONG

e Sadxactag Bidyuong wg VPNAAC SldoTooNg TEPLOBIXG GHUL:
v(t) = [sin(2xWt), cos(2nWt)], W e RP/? (20)

omou W elvan otadepde Gaussian matrix xaw D 1 cuvolur Sudotaor tng embedding.

Exhuna Exnaideuong poviéAwy didyvong

Random Condition]—)[ Score L
Random Condition]—)[ Score A ]—)‘ Loss A

A

Random Condition]—)[ Score V

Figure 8. YynAov emmédov didypappa tng odwadikaoias exraidvevons tov diffusion model,
émou dAa ta score networks extaibedovtar o€ pia pévo npodinon (forward pass).

Y

)

Total Loss

)

Y10 Eyfuo 8 mapouctdleTon 1) TEOCGEYYIOT) YOS Yo TNV EXTaideuon OAwY Twv  score
networks. H Siaduacta exnaldcuong axohoudel évo multi-target scheme, 6mou Ao o Tpia

modality-specific score networks exmoudelovtar Tautdypova oe éva povo forward pass:

1. Enegepyacio Etc680ou: O axatépyasteg eloodol xewwévou, Yyou xou Bivieo nep-
voUv uéca amd modality-specific projection layers yia va yoptoypagpniolv oe Evay

XOWO YOEO YoRUXTNELO TIXWV.

2. Tuyaioe Emthoy? tponixothtwy und Conditioning: I xdde dixtuo, mo-
poleimovtar Tuyola 1-2 TEOMIXOTNTEC XAk OL UTOAOLTES YENOHIOTOLUVTAL WS El0060C
um6 ouvinn. Auth 1 otpatnywr e€acpolilel 6Tt T0 Yovtého padalver va yelplleTto
otdpopa HoT{Bor EAMTEV BEBOPEVWY XATA TNV EXTAUOEUCT), BEATIOVOVTUC T1) YEVIXELUOT)

o€ BlapopeTXd oevdipta xotd Ty inference.

3. IMopdAAnhog Y rohoyiopoc Score: Tpla Eeywplotd score networks (Score L,
Score A, Score V) mpoBhénouv toutdypova Tic score functions yia Tic tpomixdTnTES
xeévou, fyou xau Bivieo. Kdlde dixtuo hauBdvel tn Yopufdon oToyeuuévrn Tpomi-

xotnTa poli ye Tig Tuyola emAeyuéveg TpomixdTnTeg Lo conditioning.

4. Yuvdvaocwoc AnwAeidv: Trnoloyilovto ol atouxés andieteg yio xdie modality-
specific score network yenowonoidvtag Ty cuvdptnon x6ctoug denoising score

matching loss, xou aUTEC OL ATOAELEC GUVEVOVOVTOL GE UIla GUVOMXT| ATWOAELL.
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O pnyaviopde tuyaiog emhoyhc tpomxdTtwy (random modality conditioning) e&aopo-
Alet 6T xdde score network pordotver vo a€lonotel BlapopeTixoUe GUVBLUCUOVS SLECILWY
TEOTUXOTATWY, XANOTOVTAG TO CUCTNUA aviexTixd o Odpopa LoTiBo EAATGY OEBOPEVLY

xatd Tty inference.

0.4.5 AMlyobpriupor Acsvypatoindiog

Metd tnyv exnaldevon, xde modality-specific score network si* yenowonoteiton ¢ mpo-
exnoudevpévo generative module yior THY ovaxaToGKELY) TOV EAMTGY TEOTUXOTATWY HECK
e expadnuévng avtiotpopne YAE. Kotd tnv inference, napoheinovpe v eunpdodo dlo-
owacto Budyvong TN exmaideuong xou €QoEUOLOLUE APLIUNTIXOUE OELYUXTOAEITTES Yol TNV
eniluon g avtiotpogng XAE.

H emhoy? tou alyopidwou derypatorndiag (sampling algorithm) ennpedlet on-
HOVTIXG TOGO TNV TOLOTNTO TV TUEOYOUEVMY UTOTEAECUATWY OGO XUl TNV UTOAOYIC TIXT O-
rodoTxotnTa. Eepeuvolye T€00epic BLapopeTixoUe BELYUATOAEITTES TOU AVTITPOCWTEVOLY
BLdpopeg looppomies petald axpifelog xou ToyvTNTaC.

O olybprduot Berypatorndiog mou Yo yenoHLoTo COUUE Xl 1) EXAOTOTE TOAUTAOXOTNHTA

/ 7. Vé /7
Tou xde evg ebvar ot e€ng:

e Euler-Maruyama: O(N) vnohoyiouol tng score function, é6tou N ~ 100 — 1000
e Predictor-Corrector: O(N - (1+ J)) unoloyiopof, ye J = 1 — 2 Briuota corrector

e Heun: O(2N) unoloyiopol ye N ~ 30 — 50, odnywvtoc o€ cuvolixd ~ 60 — 100
unohoylopolc NFE

e DDIM: O(N) unohoytopoi pe N ~ 10 — 50, emtuyydvovtag tnv toyOtepn inference

H evehila otic pedodoug derypatondlog elvan wwitepa yerown oe epyooieg multi-
modal imputation, 6mou dupopeTinég epapuoYES unopel va divouv TpotepaudTnTA ElTE GTNY
ToldTNTaL TNE Topaydpevne €€680uL (T.y. toTp amexdvion) elte otV TayUTTa eXTiUnoNg

(real-time inference).

0.4.6 Anoxwdwxonowmntrc Evduypdupiong

Aol o Selypa tne Aelnovoog TpomxdTnTaC X (0) mapoy Vel and to poviého didyuong,
oLy VA Bev Touptdlel ue TNV (BLor XUTUVOUY| YUROXTNEIO TIXMY OTWS TaL oEyXd Bedouéva exma-
{devong Aoy aterolg anodopuBonoinong, wwxd dtay yenoylonotobvton Alyol utoloyiouol

’ 7 ’ 4 4 Z 7
duxtoou (NFEs). T va yegupdhooupe autd To ydoud, ELOSYOUUE EVOY AmOXOOXOTOMTH
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0.4.7 TTohutpomxol Talvountéc cuvévwone

euduypduuiong Dy, o onolog exnadeteton Gote va avtioTolyel ta YopuBndn/mapoydueva
YUEAUXTNELO TIXG. GTOV 0PYLXO YWOEO XATOUVOUNS YARUXTNELO TIXMY.

Xenowotnoolue W ehageid Exdoorn tne apyttextovixfic Residual Channel Atten-
tion Block (RCAB) [25], opyixd oyedaopévn yla unep-avdivon emdvwy. Xty 1A
mpocopuoyn wag, 1o RCAB anotekeiton and éva undieypo convolutional block pe channel

attention:

e Residual Convolution: EZdyel tomxd ypovixd potifo omd X,.

e Channel Attention: Enavofaduovouel ta xotvahior yopox TEtGTIXGY Yia EVIoYUoT

TV SLaxELTXdV eVOElZewy ypnotpomownvTag squeeze-and-excitation [51].

Autdc o anoxwdixomomntrg exnoudedeTon aveEdETNTA UE PECOVO TEUCTIOV AOGE EVIGYUUEVO

UE TEPCENMTUAA AOGC TAV® OTIC EVERYOTOLoE Tou downstream povtiéhou Liggp:
‘CO()\L‘YV = ||Dm(im(0)) - Xm(o)”h (21>

0.4.7 TIlohutpomixol Tagivountéc cuvEvwong

[ Ty avory vioplon cuvalcINUATmY omd To GUVEVWUEVOL YORUXTNELC TS TKV OLUPOPETL-
XV TPOTIXOTNTOY, LioVeTolue évay unyoavioud ouyyoveuonc(fusion mechanism) epynvev-
ouévo oamd v opyttextovixy Multimodal Transformer (MulT) [26]. Xuyxexpwuéva, yen-
OLLOTIOLOUUE AMOXWOOTONTES EWBLXOUE Yiot xdie TpomoTNTA &Yy YL VO TTEOBAAOUNE T
YAEOXTNEIOTIXA OE €Vay xoWd Aavidvmy YOpo, xaL @apuoloUUe Uiol OEled and pairwise
crossmodal transformers yuo vo LovteAoTO|COUUE TIC XATEVYUVOUEVES ECUPTHOELS UETAED
TV TpomixoTHTwY. Kdlde transformer padaiver o va evioy Vel tia ToOTXOTNTA YENOLLOTOL-
OVTOC TANPOQORIES amd Lol AN uéow crossmodal attention, avyuahwtilovtog anoteheoya-
TIXG TIC HAXQPOYPOVIEG OAATAETILOPACELS AVAUESH OE POES BLAPORETIXOU UAXOUS xou EPLIUGY
detypotoAndlag.

Ot GUVEVWUEVES OVOTOROC TAGEL, CUYXEVTPOVOVTUL UEow vOC memory transformer 7y,
xan To teheutaio token xdde TEOMIXOTNTOC TOU AVATUEIOTE OAOL TA YOLUXTNEICTIXG TNG
oxohoutiag GUVULGUHUNTOC GUVEVVETOL UE Tal UTOAOLTIAL Xou iepvdel oe €va multi-layer per-
ceptron (MLP) yu v teduxr| npdfBredn. Ou fusion transformers exnadedovtar ond xowvol
ue To classification head yenowonowwvtag cross-entropy loss yia tagivounon 7 L1 loss yia
rohwvdpdunon?. Kotd tn Sidpxeia autol tou otadiou, ol heitoucee tpomxdtnTee eite unde-

viCovtan (zero-masked) eite avtixodioTovTon UE AvaXATUOXEVES Amd TO LOVTENO DLdyUONG.

2¥1ic Boxupée pac ypnotwonowlye uévo ty L1 takwdpdunon.
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Ac Yewpricoupe OTL Ty, AVATUELO T TA ELOERYOUEVAL YOQUXTNELO TiXAL Yiot TNV TOUTAX TRO-
uxétnrac m € {1,..., M}. Kdde tpomxdtnia apyxd xmdixonoleiton yéow evic dixon,

ety 00 xwodxomoinTh Ep:

Y ouvéyew, yio xde tpomixdtnTa m, epopudlovpe Ledyrn crossmodal transformers
Tiej YW VO EVOOUUTOOOUUE TANEOYOopieg amd Oheg TiC dhheg Tpomuxdtnteg j # m. Ou

VTP TACELS QUTEG CUYXEVTPMOVOVTOL UECw VOC memory transformer 7,7¢™:

o = T2 ([ Tovees Foms B3 ) (23)

H tehixr} cuvevmuévn avamopdotact eival 1 UVEVWGCT) OAWOY TWV SLVUOULTWY Ay, TOU

mepvdel oe éva prediction head:
g:MLP([iLl,...,BMD, (24)
xou 0 otdyog udinong diveton and 1o Al hoog:

Liask = H:Q - yHla (25)

OToU oL AElTOVCES TEOTUXOTNTES E(TE AVTIXOHOTAVTAL UE OVUXATAOUEVAOUEVES EEOBOUC

ané ToV amoxwoixomolnTY eite undevilovtal xotd TNV exToUdEUOT).

Yuvohxy anwieta (Loss) Tou Xtadlov 2: 310 otddlo 2 g exnaidevone (BAéne
Eyfua 3) n ouvoluxy| omidheto anotelel otoduiopévo ddpotouo Tou loss Tou anoxwdixotont

evduypduuione xou tou loss tng epyaoctog:
Etotal = Etask + )\Acalign (26)
Yug doxpéc pog emhé€ape A = 0.2.
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0.5 Tlewpoportiny) Aol

0.5 Ileipopatiny Aldtoln
0.5.1 3XUvola Acdopévwy IToAutponixic Avayvopiong YuvacOn-
RATWV

AZioloyolpe TV TEocEyYLoY| pac o€ 800 EUPEMS YENOWOTOLOUUEVA GUVOAO OEBOUEVLV

ToluTpoTXAC avaryvoplone ouvatoinudtoy (MER):

e CMU-MOSI [46]: Anoteheiton ané 2.199 Bivteoxiin pe reviews ané to YouTube.
To cOvoho dedouévev yweiletan oe 1.284 delypata exnaideuong, 229 delyuato emi-
x0pwone xou 686 delypato doxiuhc.

e CMU-MOSEI [47]: Ilepiéyer 22.856 Bivteoxhin oe eninedo ex@wvAuatoc pe oyo-
ANAoUO ETIXETOV cuVALCUAUATOS o cuvatoUnpatxotntag. H enionun diadpeon mepl-
AofBdver 16.326 detypota exnaideuong, 1.871 delypoata emxdpwong xau 4.659 delyuata
doxwung.

0.5.2 E&aywyh XopaxtnploTixwy

Xenowomololue epyaheio npo-eneéepyasiog ewdixd Yo xdie TpomxdTNTo WG eEAC:

o Keipevo: Xpnowonolobue Ty TEMXT XpUPT XATACTAOT EVOS TEO-EXTIOUOEUUEVOL

povtéhouv BERT [52] yia tnv eZorywyl evowuathoewy AEewmy 768 dlaotdoemy.

o Axovotixn: E&dyouue axouoTixd yopaxTneloTixd 74 SlaoTUCENY YENOHLOTOLOVTOG
10 epyokelodrixn COVAREP [53], xotorypdpoviag Tov Tvo, Topalétpous YAWTTUOMAS

TINYNC X GAAOL TEOCWOLOXAL Y ORUXTNELOTLXAL.

e 'Opaon: E&dyouye 35 yopaxtnploTixd €xQpaong Teocnhtou and xdle xapé yenoulo-

ToldvTog To epyaietoVrxn Facet [54].

0.5.3 Metpuxéc Aohoynong

Axohouvdolue tponyolueves epyaoiec [1] xon avopépouUe TEELS TUTIXES UETPIXEC:

o AxpiBeia 2-xNdoeswv (ACCsz): Koatmnyopionoinon 2 xhdoewv cuvaodfuotog
(Yetind /apynuind).

o AxpiBeia 7T-xAdoewv (ACCr): Aentopephc xatnyoplonoinon oe 7 Sotetarypéveg

xaTnyopleg cuVULGUAUATOC.
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o Baduporovyia F1: Maxpo-uéon Baduoroyla F1 otn to€ivouion 2 xhdoewy.

0.5.4 IIpwtéxoirho EANeV xouw Xtadepwy AcdopEvmy

Y10 TAO0 TOU YEIPLOUOU EAATGV TOAUTEOTIXWY BESOUEVWY, YeNowonoloLvTol 600

#x0pLoL TEWTOXOANAL:

e ITpwtoxorho Stadepdv EANndYV Acdopévwv (Fixed Missing Proto-
col): Tné autd 10 mpwtdxolho, éva cuvenEC olvolo piac B 800 TEOTUXOTHTLY o
TOpEITTETOL OXOTIHA OE O T OELYUOTAL TOU GUVOAOUL BedoUEvmv. Tar Tapdderyyor, To

nelpdpato uropel vo Siegdyovtat 6mou:

— Mia tpomxdtnro Aeimer (m.y., uévo yYhdooo, uovo 6pacm, N HOVO axouoTixd

dedopéva etvan drardéauar).

— Avdo tpouxdtnteg Aelnouvy (T.)., LOVO YAMOOA X0t 6pUaT), YAMOGU Xl UXOUG Ti-

’ 7 7

Ié 4 7. 4
%4, 1y Gpaom xou axouoTixd dedopéva eivon Stardéouar).

Autd eCoogariler éva npoxadopiouévo potifo ehheldewy oe Ohn TV TElpooTiXy Ot
dtaln.

o ITpwtdéxorho Tuyainyv EANdOV Asdopévev (Random Missing Proto-
col): Autd 10 mpwTOXOMNO EWOdYEL UETOUBANTOTNTA TUYLOTOWVTIS To YOTHBo EANE-
{pewv yio xdde pepovwpévo delyua. XLuvende, yia onoodhnote dedopévo delyua, elte
ula efte 600 TpomxdTNTES MTopEl Vo amouctdlouv. O Badudc erhelewv oe autd To

TEWTOX0AAO TocoTxoTotelto and tov Pudud ENeldewv (MR), mou opiletan we:

N
Dim1 M

MR=1-—
N x M

OTOL TO M; AVTITEOCKTEVEL TOV optlUd TV Bld€oUmY TPOTXOTATWY YId TO i-00TO
oelypa, To N eivon 0 cUVOAXOC apLiUOE BeryUdTwY, xat To M elvor 0 GUVOAIXOC aELiuoC
tpomxottwv (oe auth v mepintwon, M = 3). Ebvau xpiowoc nepoplopds 6Tt
ToLAdyLoTOV piot TpoTuXdTNTA TEETEL Vo efvon TdvTor Btardéoiun yio xdde Sebyua (m; >
1), mou onuaivel 6TL o Yéylotog duvatog Puludc ENieldewy elvo % [ mepdporto
ue Teelc TpomxdtnTee, ot twée MR emdéydnxav and to ovvoro {0.0,0.3,0.5,0.7}.
O emAeypévoc MR Buatnpeiton cLVETOC OTIC QAoE; eXTTUBEUOTG, ETUXVEWONG Kol

Boxnc Yo var e€acpalioTel dixoun agloAdYNoM.
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0.5.5 Aentopépeiec Thonolnong

0.5.5 Acntopépeiec TAhonoinong

[ 6hat T melpdpata yenowonoioope tov Adam optimizer [55] pe pudud pdinong
A = 0.002 xa mapoxuy) Bdpoug B = 0.005. Emniéov, yenowonoidnxe mpdwen doxony
(early stopping) pe patience = 10 xou onueio ehéyyouv poviéhou (model checkpoints) yo to
amotehéopata TG exnaidevong otadiov 2. ‘Olo o e€ory OUEVIL YARAUXTNELOTIXE TEOTUXOTHTLY
TeoBEMOVTOL GE EVay X0 YOPO YOPOXTNPLOTIXGY PECw EVOC PNyl XwdOTOMTH? Ue
owdotaon xavaiod d = 32 xou prRxog axorovdiog T = 48. T t0 pépog tng dudyuong
(diffusion) emhéZope va oyedidooupe Ok Tor score networks va €youv To B0 péyedoc

EXTUOEVCIUWY TORUUETEMY Yiol Oixann olyxplom:

¢ UNet pe Aractavpoduevn ITpocoyr (Cross Attention): Apyitextovixi U-
Net e dwaotavpoluevn Teocoy | UTOBIBACUOY, UE XWOLXOTOMTH-ATOXWOWOTONTY 4
emnédwv pe xavdhia [32, 64, 128, 256, didotoon eVowUdTtwong Yeovou demy = 256 ue
CTEWHATIXG TUXVE OTEOUATA Yot CUYYOVELGTT), xou urhox Atactavpoluevng Ilpocoyrc
Kwbdionomth Metooynuotiot (Transformer Encoder Cross Attention blocks) pe 2

OTEMUAT X0t 8 XEQIALA TPOGOY NG Ve ET{TEDO.

o IToAutponixdg Metaoynuatictic Aidyvorns (Multimodal Diffusion
Transformer): Apyitextovixs] Metooynuatiots ye ototyetont] Dpoopuixs; Avopde-
pwor (FILM) vrofBiBoacuot, didotacn poviéhov dpeder = 256, Béddoc 6 otpwudtomy
HETAOY NUATIOTH, 8 Xe@dha Tpocoy e, didotacn MLP d,,;, = 512, xou didotacr uto-

BBoacuol deong = 256 xou BLACTAOT EVOOUATWONS YEOVOU diime = 128.

¢ Metaoynuatiotis Awdyvonc (Diffusion Transformer): Metaoynuatiotic
Audyuong Ue SlAoTaon WOVTEAOU dpoder = 256, Bddog 6 oTpwUdTwY UETAGY NUATIOTY,
8 xeqpdha tpocoyg, dwdotacn MLP d,,;, = 512, xou didotaon uvnoPiBacuol deppg =
256 mou mepléyel eniong Tic TAnpogopiec ypovixol Buatog (timestep information).

e ScoreTransformerlD: 1D MetaoynuotiotAg Ue SLAGTAOT LOVTENOU dppoder = 256,
Bddog 6 otpwudTey, 8 xepdiia tpocoyng, didotacn MLP d,,;, = 512, o Sidotoon

EVOOUATWONG YEOVOU diime = 256.

Emnpéoieta, ta dixtua Baduohoyioe exmadedtnay yio 50 emoyée péyiotot. Tt ou-
VEYELDL, O AmoXwOoTon T eviuypeduuiong Dy, Tou yenotuomoleiton yio tepantépw Behtinmon
TV doyeduevwy Tpomixothtwy €xel 20 umhox RCAB ye peiwon 16. ‘Ohot o xatdvn to-
Evountég ouyywvevong Tj, ebvan npoemheypévol Kowduxonomtéc Metaoynuatiots PyTorch
(PyTorch Transformer Encoders) pe 4 otpduata, 8 xeqpdhio xou attention dropout = 0.2.

3"Evac povée otpdpa 1D ouvehtinde muphvoc ue uéyedoc 3.
Yedv Bev ouVERN TEdwen dioxont, (early stopping)
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0.6 Ileipopatind AnoteAéouota

Trodetolue pLo oTpaTnyiny| Sladoyixfic BeATioTOoTOMONS Yl Vo evToTioouue T BEATIOT
dropdppwon.  A&oloyolue ovotnuatxd: (1) dwtunwoeic TAE (VP évavu VE) pe tov
TPoETAEYREVO derypotorfnTy Swaotaupolpevne npocoyfic U-Net xou Euler-Maruyama, (2)
apyttexTovixég omo{ou dxpou Eavd pe Tov (Blo Tpoemheypévo deryuatorintn Bdone, ot (3)
ped6doug derypatohndlag, emiéyovtag TNy xahitepa anodidovca emAoyr o xdde oTddLO
TPV TEOY WENCOUKUE OTNV ETOUEVT aZloAoYNoT. X xdde otddo Yo cuyxplvoupe Ty anddoon

Tou povtéhou Ue To povtéro Bdone IMDER oo onolo Bacileton 1 epyaoio pag.

0.6.1 X7ddio 1: XOyxpiwon Awxtivnwong XAE

pdta ouyxpeivouue Tig B0 dtunwoelg LAE yenowonowsvtog pa dloudpponon Bdong
(base configuration) yia va xodopicoupe oo tapéyel xahlTEPN anddoom yio Epyacies To-

AUTROTUXNG VoY VOPLOTG CUVOLCUNUATOV.
Apywx Awapbdppwaon
[t auth T oUYXELOT, YENOLWOTOLOUYE:
o Apyrtextovixy payoxoxalids: U-Net with Cross Attention

o Acwypoatorining: Euler-Maruyama pe 100 NFEs

ITowtéxorha ENAeidhewv: Xtadepd xou tuyola potifo erieldewy

YOvoha Acdopévwv: CMU-MOSI

Table 1. XUykpion Awrtvrdoewy YAE oto Xivodo Aedopuévwr CMU-MOSI

Available Modalitics ‘ Variance Exploding (VE) ‘ Variance Preserving (VP) ‘ Vanilla IMDER

| ACC, | F1 | ACC; |ACC,| F1 | ACC; |ACGC;| F1 |ACC;
Language 849 | 84.9 45.3 85.3 | 85.3 45.6 848 | 847 | 44.8
Acoustic 604 | 60.3 18.7 62.0 | 62.1 17.7 613 | 60.8 | 205
Vision 581 | 58.3 19.1 58.6 | 58.8 18.3 61.0 |61.2| 21.0
Language + Acoustic 85.6 | 85.4 46.7 86.4 | 86.3 45.4 85.4 | 85.3 | 45.0
Language + Vision 855 | 85.4 45.6 86.1 | 85.9 45.0 855 | 85.4| 453
Acoustic + Vision 60.6 | 59.3 19.5 59.6 | 59.7 21.8 620 | 62.1| 202
Average 725 | 722 324 73.0 | 73.0 | 32.3 733 | 732 328
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0.6.1 Xtddio 1: XYiyxpion Awatdnwone XAE

Table 2. Awrvrdoes SDE vrd IpwtdkoAo Tuyaiwr ENetpecwor (CMU-MOSI). INa kdOe
Telpaja Tov avapépetal oTov TapaKdtw TIVaKa, EKTEAETAUE TO HOVTENO L€ & O1apopeTIoUS
TUYaiovs 0TépoUS 0To OUVOAO BOKIUNS Kal UToAoYIioaue Tov HéTO GO TwY aToTEAEOUATWY

Y1 T0 10X UPES HETPLKES.

| Variance Exploding (VE) | Variance Preserving (VP) | Vanilla IMDER

Missing Rate

| ACC; | F1 | ACC; |ACC;| F1 | ACC; |ACGC;| F1 | ACCy
MR = 0.3 80.6 | 80.7 41.8 81.0 | 81.0 415 79.9 | 79.6 | 39.1
MR = 0.5 73.6 | 725 33.7 74.6 | 73.2 335 74.0 | 738 | 342
MR = 0.7 69.5 | 69.7 29.5 70.2 | 69.9 30.2 70.8 | 70.3 | 316
Average | 745 |743] 350 | 75.2 |[74.7| 350 | 749 | 746 | 34.9

Avdivon Awatunwoswy SDE octo CMU-MOSI

O ITivaxec 1,2 mapouotdlet pa ovyxpton petadld tov datunwoeny LAE (VE) xou (VP)
o€ BLdpPopa GEVARELY EANTICV TEOTUXOTATWY 6T 0UVOLo dedouévwy CMU-MOSI. Ot petpinég
Tou avapépovton tepthauBdvouy Ty axpifBeta 2-xatnyoptoyv (ACCsy), t Baduoroyia F1, xau
v axplBeto T-xatnyopudy (ACCy).

H VP TI'evixd Yrneptepel tng VE. e 6ha to potifo eAMTOV TROTUXOTATOLY, 1|
dlatunwon VP nopdyer ouotnuatind vdpmiotepeg Poduoroyieg ACCy xou F1 oe alyxpeion
pe v VE. TN mopdderyuo, dtav ol diodéotueg tpomndtnteg elvon ) IAdooa + Axovotik),
n VP emtuyydver 86.4 ACCq xou 86.3 F1, uneptepivtoc tng VE nou onueidver 85.6 xou
85.4, avtiotorya. Ilapduoia tdom woylel ot Swopodppwor IAdooa + Opaon.

Arnodoon 6tav Axouvoctixd xa ‘Opaocn eivan Arwadéoipa. Kou ot 800 datu-
TWOELS DEYVOUV ONUAVTIXG YounhOTEEN amddooT dTtay elvon Slodéotun LOvo 1 axousTix 1
N oMY TEOTWOTNTA. AUTd avTxaTonTElEl TNV XuploEyio TNG YAWOOXNC TEOTUIXOTNTAS
oe gpyaoieg npdPiedne cuvacifuatoc oto CMU-MOSI, énwe €yel napatneniel oe mpon-
yoLueveg epyaoiec. Enlong, alloonueiwto eivar 611 6tay etvan Srardeoudéc oL ToomxoTnTES
OXOUCTIXNG X0 OPAOEWS, TO HOVTEAD DEV amodidel TOAD XoADTERY XaL OTNV TEPITTWON TNS
VP anodidel ehappns yewpdtepa and To Vo EYEL uovo TNy oxouoTixt| tpomxotnta oe ACCy
xan F1.

To Anoteléopata ACC;  H oxpifea T-xatnyopidv (ACCr) delyvel neploodtepn pe-
tofAntotnta. H VE uneptepel ehagpdc tne VP oe oplopévee nepintdoec (n.y., IAdooa +
Axovotikny xoau Mdvo-Opaon), evér n VP anodider xahltepee Poduohoyiec oe ddhec (m.y.,
Axovotikry + Opaon). Avtd ta anoteréopata utodewxviouv 6t 1 VE unopel neplotaota-

%3 VoL SLTNEEL IXaVOTNTES TTROBAEYNE MO AETTOUEQHDY XATNYORUDY, OV XL OL SLopopES elval
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Hxpéc.

H ITohutpomixy, Yuyywvevon Odnyel otny loyvpdtepn Anddoon. To xo-
AOTERO GUVORXG AMOTEAECUATO TUEATNEOLYTOL OTAY 1) YAWOGO GUYYWVEDETOL UE WLal GAA
TEOTUXOTNTA, ETUOEVVOVTAS TO OQPENOC TNg ToAuTpomxng pdinong. e autéc Tig Tepl-

Ttwoelg, n VP mopouével n mo alldmioty Swtdnwon.

Méomn Amndédoom. Koatd yéco dpo, 1 VP emituyydver ehapeids xahlTERT SLyoTOoWXY
oxpifetar xan Bardporoyior F1 (73.0 xou yior tig 800) oe obyxpion e ty VE (72.5 ACCy, 72.2
F1), eved n VE vneptepel ehagpidc e VP oty ACCr (32.4 évavtt 32.3). Ou Sropopéc,

wOTO00, Vol OPLAXEG.

Yuunépacpa.  Xuvohxd, 1 VP npocgépel mo cuvent| xou 1oy ueY| anddooT o GeEVApLa EA-
MTOV TROTUXOTATWY, Wlaltepa ot uetpés tadvoutong xou F1. Evd n VE unoget vo Swortnpet
ehaPEd TAEOVEXTAUATO OTN) ASTTOUERT| XATNYOPLOTOINON OE EMASYUEVES TEpLTTWOELS, 1 VP

elvon YEVIXA TO amMOTEAEGUATIXT Yo TOAUTEOTLXY avdhuoT cuvancfuatoc oto CMU-MOSI.

0.6.2 X1ddio 2: ZOyxplon ApylTEXTOVIX®Y Yo OO CUVUNXT To-
paywyY”

Xenowonowvtag ) Bértiotn LAE and to Xtddo 1, cuyxpivouue SlapopeTinée apyL-
TEXTOVIXEG POLYOXOXUNLAG KOl UNYAVIOUOUE UTTO GUVITXT) TORY WY NG,
IMepapatixy Alapndppwon

[oc auth T oUYXELOT, YENOWOTOLOUUE:

Ernleypévn X AE: Variance Preserving (VP) XAE
o Acwypoatorining: Euler-Maruyama pe 100 NFEs

o Apyrtextovixég payoxoxahids: U-Net ye Cross-Attention, Multimodal Dif-
fusion Transformer pe cuvévwon xau otpwpate tortou FiLM, Diffusion Transformer

ue AdaLN xou ScoreTransformerlD ye amhr cuvévwon

o ITowtoxorha EANeidewy: Ytadepd potifo elheidewy
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0.6.2 XTd0to 2: Liyxeon ApYltexTovix®y yia UTO cLVIAXY TUEAY OYN
74 | AP { 11 AT

AvalLoY) ATOTEAECUATOY VLA AEYLTEXTOVIXEG VO CLUVIAXY TAEAYWYNC

Ané tov Ilivaxo 3, mopoatneolue 6Tl ol dlagopés anddoons uetald twv conditioning
backbones eivon pixpéc, ahhd avadbovton cuvenelc tdoelc. o povotpominéc nepintoelg, o
Di-Transformer anodidel ehappng xaAbTepa oE epyacieg uovo-yAwooag, eve To U-Net mopo-
HEVEL Loy LEO YL axouC TES eloddouc. A&iwe mpocoyrg, o MMDi-Transformer emtuyydvel
v uPnrotepn ACCy ooy avaxtd axoVoTIXES 1 OTTIXES TROTUXOTNTES, UTOONADYOVTOS OTL
o unoPiBacude tomou FiLM mapéyel mheovextAuata yio Aemtouept| xotnyoponoinon. O
ScoreTransformer1D, wvot600, 16ogopilel 1§ UTERTEREL TWV AVTAYWOVIGTOV OE ApXETEC PUT-
uloeic xou amoxtd ™ Bértiotn uéon ACCy xan F1 oe potifo ehheldewy.

O TIlivoxag 4 Belyvel e 1 TOAUTAOXOTNTA TV TO BUpLOdY AEYLTEXTOVIXGOY BEV omo-
TUTOVETAL XATAVAYXT X0 0TV oty anodotixdtnta Toug. Ilopd to yeyovog otu €yer Tic
Ayotepeg mopapéteoug, to U-Net backbone eivar mdve amd 600 @opéc mo apyd otny e-
uneécHor TeoPodOTNON GE GUYXELON UE TIC EVOANIXTIXES BUCIOUEVES OF UETUACY NUATIO TES.

Avtideta, o mpotewvopyevoc ScoreTransformerlD Sev elvon pévo to o anodoTixd po-
viého oe mopapéteous (3.2M mopduetpol) ahhd emione emTUYYAVEL TOV TayUTEPO YEOVO
eCoywyne ovunepaopdtov (13.1 ms), ndve and 5x toyitepog and to U-Net, Siatnpdvtag
ToEEAANA L orvTory wvio Tt axeifeta. Autd tov xahoTd Wlaitepa EAXUCTIXG Yol oVATTUE T O

TOAUTROTUXES EQUPUOYEC EVALCUNTES GTO YEOVO.

Table 3. Yuykpion apyitektovikay yia vroowOnkn mapaywyry oto XUvolo Aedo-
HévwvCMU-MOSI

Available Modaliti ‘ U-Net Cross-Attn ‘ Di-Transformer ‘ MMDi-Transformer ‘ ScoreTransformer1D ‘ Vanilla IMDER
wvailable Modalities
| ACC, | F1 | ACC; | ACC, | F1 | ACC; | ACC, | F1 | ACC; | ACC; | F1 | ACC; | ACC, | F1 | ACC;

Language 853 | 853 | 456 | 86.1 |86.0| 454 | 844 | 844 | 46.6 | 85.6 | 855 | 453 | 848 |[847| 448
Acoustic 62.0 | 621 | 177 | 61.2 | 611 | 188 | 618 | 60.9 | 20.9 | 61.0 | 60.0 | 200 | 613 |60.8| 205
Vision 58.6 | 58.8 | 183 | 59.6 | 585 | 174 | 60.2 | 59.8 | 18.6 | 61.1 |60.8 | 176 | 610 |61.2| 210
Language + Acoustic 86.4 | 86.3 | 45.4 86.0 859 | 46.2 85.6 85.5 45.0 85.5 85.4 45.0 85.4 85.3 15.0
Language + Vision 86.1 | 859 | 450 | 86.0 | 859 | 47.8 | 853 | 853 | 460 | 86.4 |86.3 | 463 | 8.5 |85.4| 453
Acoustic + Vision 59.6 | 59.7 | 21.8 | 61.0 | 604 | 197 | 612 |61.3| 195 | 61.3 | 60.4 | 195 | 620 |621| 202
Average 730 | 730 | 323 | 733 | 729 | 326 | 731 | 729 | 328 | 73.5 |73.1| 323 | 751 |750| 345

Table 4. Avdlvon Anodotikcétntag Movtélov: O mivaxas avtés mapovoidler ta peyéin kai
Tov xpdvo mpodnons kar apidué FLOPs (Floating point operations) yia yua eunpdotha
Tpopodotnon péoa and éva diktvo faluidag score network piag tpomkdérnrag. ALoonueion-
T0 €lval ot maporo mov to Unet dra¥éter moAU Arydtepes mapapétpovs o€ oUykpion e Toug
Transformer avtaywriotés tov, o xpovos mpowinons elvar utepOimAdoiog o€ oxéon He Tov
XE€1pOTEPO and autols.

Architecture ‘ Parameters (M) ‘ Training Time (hrs) ‘ Inference Time (ms) ‘ FLOPs (G) ‘ Memory (MB)
U-Net Cross-Attention 3.5 0.55 72.1 0.66 13.1
Multimodal Di-Transformer 8.8 0.52 31.2 1.21 33.7
Di-Transformer 9.3 0.45 24.6 0.53 35
ScoreTransformerlD (Ours) 3.2 0.30 13.1 1.04 12.5
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0. Extetopévn EXnvied Iepiindm

0.6.3 X<ddwo 3: XOyxpion Alyopidpwy Acstypatoindiog

Xenowonowvtag tov Bértioto cuvduaoud SAE-poyoxoxahlde and o Teomnyouueva

oTtddLa, a&tohoyolye dlagopeTixolg olyderduoug derypoatorndiog yio vo Bpolue TNy xahbTe-

o1 LoopEoTia HETAED ToyUTNTOG Xl TOLOTNTOG.

IMelpapatixy Alapndppwon

[oe autv T o0YXELoT, XENOWOTOLOVUE:

Enieypévn Awapdppwon: VP YAE + Poyoxoxaiid Score Transformer

o Acwypatorinteg: Euler-Maruyama, Predictor-Corrector, Heun, DDIM

EVpog NFE: 10-100 alohoyhoelc cLVORTHOEWY

AZwohoymon: loopporio anddoong Evavtt TayuTNToG

Avdivor Ioogpponiag TayltnTag-IloldtnTag

Table 5. Xvykpion AXyopiiuwy Aerypatodnpias oto Xivolo Aedopévwr CMU-MOSI,
n amédoon €ivar o Uéoos 6pos ToU TPwToKOAAoU atalepns éArenhng ya kdOe draudppwon

deryuatonmen.

Sampler

| NFEs | ACC; | F1 | ACC; | Sampling Time (s)

Vanilla IMDER
Euler-Maruyama
Euler-Maruyama
Euler-Maruyama
Predictor-Corrector
Predictor-Corrector
Predictor-Corrector
Heun

Heun

Heun

DDIM

DDIM

DDIM

100
100
80
50
100
80
60
80
60
40
30
20
10

73.3
73.5
72.9
73.3
72.9
72.9
72.8
73.4
73.4
72.8
73.8
72.4
72.9

73.2
73.1
72.6
73.1
2.7
72.8
72.9
73.1
73.3
72.5
72.5
72.4
72.8

32.8
32.3
32.9
33.3
33.2
32.9
33.4
32.9
33.4
32.9
33.3
32.1
33.0

1.17
1.17
0.95
0.61
1.17
0.95
0.71
0.95
0.71
0.49
0.37
0.24
0.12

Me Bdon to amoteréouata otov Ilivaxa 5, ta otolo aroteAoVy cuvtouoyeooia and Tov
)

ITivoxa 33, umopolUe Vo avaAUGOUUE TNV L00EEOTIN AMOBO0TNC-AMOBOTIXOTNTC UETAUED TWV

BLapOEWY BLoopP®oEwy detyotorndiog.
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0.6.3 Xtddio 3: Liyxpon Ahyopluwy Aetypotolndiog

Avdiuvon Andédoong. O derypatorfrtng Euler-Maruyama pe 100 NFEs emtuyydvel
TopadoEne tn deltepn udpmiotepn Baduoroyioc ACCy (73.5) xou F1 (73.1), niow ond tov
oetypoatoAjmtny DDIM pe 30 NFEs yio v mpedytn xou tov derypotorrintn Heun ye 60 NFEs
yioe T Sevtepn. O DDIM pe 30 NFEs npoogépet avtaywviotixr anddoon (ACCsy: 73.8,
F1: 72.5) eved ebvon onuavtind toyOtepoc (0.37 évavtt 1.17). O derypatorintne Heun pe 60
NFEs nopéyet e€arpetins; anddoon (ACCq: 73.4, F1: 73.3, ACCy: 33.4) ue pétpta torydtnto
(0.71s).

Aviérvon TayOtntag. O DDIM emdewxviel avidtepn loopeomio Toay UTNToC-ToldTn TS,
ETUTUYYAVOVTOC amod00T XOVTd oTr Baoixt| ue 3 Popéc ToyUTepn Uy WYY CUUTERUCUNTWY
(inference). O pédodol Predictor-Corrector napovoidlouv eNdytota x€pdn anddoong
oe oyéon e anholoTeEpES TPOCEYYIoELS, SLUTNEOVTAC TORIAANAL UYNAGTERO UTOAOYLOTIXG
x60t0¢. O Serypatorintne Heun pe 60 NFEs Sioatnpel woyver anddoon (ACCa: 73.4) ue
Behtiwon toydtnTag oyedov 1.66 gopéc.

Table 6. AvdAvon Ioopporias Tayvtntag-Ilowdtntag, €6¢) CUYKPIVOUHE TS TO AVTITPOTW-
TEVTIKES OaUOPPTeIS detyuatodnpias.

Sampler Configuration ‘ Relative Speed ‘ ACC; Change ‘ Sampling Time (s) ‘ Recommended Use
Euler-Maruyama (100 NFEs) 1.0x 73.5 (baseline) 1.17 High-quality baseline
Euler-Maruyama (50 NFEs) 1.9% 73.3 (-0.3%) 0.61 Balanced quality-speed
Heun (60 NFEs) 1.6x 73.4 (-0.1%) 0.71 Fast with quality retention
DDIM (30 NFEs) 3.2x 73.8 (+0.4%) 0.37 Optimal speed choice
DDIM (10 NFEs) 9.8 72.9 (-0.8%) 0.12 Ultra-fast deployment

Telwxég Ilpotdoeig Alopdppwong

Bdoer e ohoxhnpouévng alloAoynohc pag o Ao Tor Tplot oTAdl, TEOTEVOUPE 600

BEATIOTES BLOOPPWOELS:
Awapbppwon Eotiacuévn otnyv Ilowotnta.
e Y AE: Variance Preserving (VP)

o Apyrtextovixh Payoxoxaiidg: ScoreTransformerlD (3.2M mopduetpor)

o Acwypatorining: Aciyupatorfrtng Heun pye 60 NFEs

Arnoédoon: 73.4 ACCy, 73.3 F1, 33.4 ACCy
o Taybtnta: 0.71s ypedvoc derypotorndlog
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0. Extetopévn EXnvied Iepiindm

o Ilepintwon Xpnong: Egopuoyéc mou anoutodv uéylotn axpifelo ye amodexto

YEOVO EEAYWYHSC CUUTEQUOUATOY

Alwapbppwon Beltiotonomuévn wg ntpog tnv Taydinta.
e X AE: Variance Preserving (VP)
o Apyrtextovixr Payoxoxaiides: ScoreTransformerlD (3.2M nopduetpol)
o Acwypatorining: DDIM e 30 NFEs
e Anédoom: 73.8 ACCy, 72.5 F1, 33.3 ACCy
o ToyOtnTor: 0.37s ypdvoc derypatornbioc (3.2 gopéc toyltepog and tn Pooixr Sla-
uopguon)

o Ilepintwon Xpnong: Egopuoyéc mpaypatixod ypdvou xat cevdplor avantung

omou 1 TayOTnTa elvon xplowun

Baocwuxéc Awamictwosic

Yrnepoyxn tov DDIM. O DDIM pe 30 NFEs avadeixvietan w¢ n BéAtiotn emAioyy yio
Yeryopn e€aywy ouunepaoudtwy (downstream inference), emtuyydvovtag otny mpoyaTl-
x0T EAPEC xohUTEEN amodocn ACCy and 1 Poaoiny| SlopdppnaoT, eV eivol onuavTixd
Tay0TEPoC. AuTO TO VTIQATIXG OTOTEAECUO LTOBNAWYEL OTL 1) VIETEPUIVIOTIXT @OOT NG
oerypatoindloc DDIM umopel var mopéyel xaAOTERES WOLOTNTES CUYXAIGNC YLoL TO TOAUTEOTIL-

%0 pag TAUoLo BdyuoTg.

PVivovoeg Amoddoelg. Ilépa amd ta 60 NFEs, ov Bektidoeic oty anddoor elvou
0pLOKEC, EVE TO UTOAOYIGTIXO XOOTOG aUEAvETaL onuavTxd. Auth 1 nopatipnon euduypay-
uiCetan e mpdopota evpruata ot BiBAoypapio TV HOVTEAWY BLdyYUOTS TOU UTOBNAWVOUY
OTL Ay Otepa Briuorta deryortonlag urnopel vo etvan emoext] Yiot TOAES TEAXTIXES EQUPUOYES.

0.6.4 XUyxpion pe Tic MeUd6doug Avypng

Xenowonoidvtog Tic 0V0 BEATIOTES SLUOPPWOELS YOG TOU EVIOTICTNXAY 0TO LTA00 3,
ouyxpelvoupe Ue undpyouceg PeVdBoUE EAAELTOUC TOAUTEOTIXNG AVAXTNONG, CUUTERLA oS-
vopévne tne apywhc puedodou nou Baciotixopue Vanilla IMDER.
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0.6.4 X0yxplon pe tic Medodoug Ayunc

Table 7. Performance comparison under both Random Missing Protocol and Fixed
Missing Protocol on CMU-MOSI and CMU-MOSEI datasets. Fach cell reports ACCs
/ F1 / ACCy;. Baseline results for DCCA [27], DCCAE [28], MCTN [29], MMIN [6],
and GCNet [30] are taken from prior work [1]. Our Quality-Optimized configuration
uses VP SDE + ScoreTransformer1D + Heun (60 NFEs), while Speed-Optimized uses
VP SDE + ScoreTransformer1D + DDIM (30 NFEs). Bolded values indicate the best
score per metric.

(a) Results under the Random Missing Protocol at various missing rates (MR). We report
the average over 5 random seeds for each missing rate case for a more robust result.

Dataset | MR | DCCA | DCCAE | MCTN | MMIN | GCNet | Vanilla IMDER | Quality-Opt | Speed-Opt
0.0 | 75.3/75.4 /305 |77.3/77.4/31.2 | 81.4 /81.5 / 43.4 | 84.6 / 84.4 / 44.8 | 85.2 / 85.1 / 44.9 | 85.7 / 85.6 / 45.3 | 86.0 / 86.2 / 45.6 | 86.0 / 86.2 / 45.6
MoOSI | 03 | 684 /678 /251 | 0.2/ 69.5 /258 | 73.9 / 740 / 33.4 | 76.3 / 75.7/ 34.5 | 774/ 769/ 35.7| 79.9 /796 / 39.1 | 81.0 / 80.8 / 40.7 | 80.3 / 79.8 / 39.9
0.5 | 61.7/60.9 /210 | 63.4 /621 /219 | 68.3 /67.9 /29.6 | 71.2 / 70.3 / 30.9 | 72.6 / 72.0 / 31.5 | 74.0 / 73.8 / 34.2 | 75.3 / 74.3 / 34.1 | 73.8 / 73.8 / 33.6
0.7 | 55.2 /53.8 / 18.2 | 56.7 / 55.0 / 19.3 | 61.5 / 61.2 / 26.1 | 64.1 / 62.4 / 27.3 | 65.8 / 64.9 / 28.0 | 70.8 / 70.3 / 31.6 | 70.4 / 70.5 / 32.1 | 71.0 / 70.5 / 31.8
Average | - | 65.2/64.5 /23.7 | 66.9 / 66.0 / 24.6 | 71.3 /712 /33.1 | 74.1 / 73.2 /344 | 75.3 / 74.7 / 35.0 | 77.6 / 77.3 / 37.6 | 78.2 / 78.0 / 38.1 | 77.8 / 77.6 / 37.7
0.0 | 80.7/80.9 /47.7 | 81.2 /81.2 /48.2 | 84.2 /84.2 / 51.2 | 84.3 / 84.2 / 52.4 | 85.2 / 85.1 / 51.5 | 85.1 / 85.1 / 53.4 | 85.7 / 85.8 / 53.3 | 85.7 / 85.8 / 53.3
MOSET | 03 | 7.1/ 742 /440 | 763 / 75.6 / 443 | 78.6 / 783 / 7.1 | 79.7 / 79.2 / 483 | 80.6 / 80.0 / 48.5 | 80.2 / 79.7 / 50.1 | 80.8 / 80.4 / 50.3 | 79.9 / 80.0 / 50.1
0.5 | 70.8 /69.1 /41.1 | 71.9 / 70.3 / 41.3 | 75.3 / 74.9 / 45.5 | 76.4 / 75.0 / 46.7 | 77.3 / 76.2 / 46.8 | 78.2 / 77.3 / 47.9 | 79.0 / 78.1 / 48.9 | 77.5 / 77.2 / 46.9
0.7 | 66.3 /64.2 /38.0 | 67.2 /65.0 / 38.7 | 70.4 / 70.1 / 43.2 | 71.5 / 70.6 / 44.5 | 72.7 / T1.7 / 44.9 | 74.2 / 73.2 / 46.0 | 73.2 / 73.6 / 46.4 | 73.2 / 73.1 / 453
Average | - | 73.2 /721 /42.7 | 74.2 / 73.0 /43.1 | 77.1 / 76.9 / 46.8 | 78.0 / 77.3 / 48.0 | 79.0 / 78.3 /47.9 | 79.4 / 78.8 / 49.4 | 79.7 / 79.5 / 49.7 | 79.1 / 79.0 / 48.9
(b) Results under the Fixed Missing Protocol for different modality subsets.
Dataset | Available Modalities | DCCA | DCCAE | MCTN | MMIN | GCNet | Vanilla IMDER | Quality-Opt |  Speed-Opt
1y 73.6 /738 /30.2 | 76.4 /765 / 28.3 | 79.1 / 79.2 / 41.0 83.8 /41.6 | 83.7 /83.6 / 42.3 | 84.8 / 84.7 /448 | 86.1 / 86.0 / 45.9 | 85.8 / 85.7 / 46.5
{v} 47.7 /415 /16.6 | 52.6 / 51.1 / 17.1 | 55.0 / 4.4 / 16.3 54.0 / 15.5 | 56.1 / 55.7 / 16.9 | 61.3 / 60.8 / 20.5 | 61.2 / 61.1 / 22.3 | 61.4 / 59.6 / 18.9
{a} 50.5 /46.1 / 16.3 | 48.8 /42.1 /16.9 | 56.1 / 54.5 / 16.5 | 55.3 / 51.5 / 15.5 | 56.1 / 54.5 / 16.6 | 61.0 / 61.2 / 21.0 61.5 / 60.9 / 21.0 62.3 / 59.7 / 21.8
MOSI {1, v} 74.9 /75.0 / 30.3 | 76.7 / 76.8 / 30.0 | 81.1 / 81.2 / 42.1 83.9 /420 | 84.3 / 84.2 / 43.4 | 85.5 / 85.4 / 45.3 | 85.0 / 85.0 / 46.0 85.0 / 85.0 / 45.6
{1, a} TAT /748 /29.7 | 7T7.0 / 77.0 / 30.2 | 81.0 / 81.0 / 43.2 84.0 /423 | 84.5 / 84.4 / 434 | 85.4 / 85.3 / 45.0 85.8 / 85.6 / 45.6 | 86.1 / 86.0 / 45.0
{v, a} 50.8 /46.4 / 16.6 | 54.0 / 52.5 / 17.4 | 57.5 / 57.4 / 16.8 585 /19.5 | 62.0 /61.9 / 17.2 | 62.0 / 62.1 61.0 / 61.2 / 19.5 62.0 / 59.2 / 22.1
{1, v, a} 75.3 /754 /305|773 /774 /312|814 /815 /434 5/ 844 /448 | 85.2 / 85.1 / 44.9 | 85.7 / 85.6 .3 86.0 / 86.2 / 45.6 | 86.0 / 86.2 / 45.6
Average ‘ ‘ 63.9 / 61.9 / 20.0 | 66.1 / 64.8 / 24.4 | 70.2 / 69.9 / 31.3 71.4 /316 | 73.1 /728 /321 | 751 /750 /345 | 75.2 /75.1 /35.1 | 75.5 / 74.5 / 35.1
{1} 78.5 /787 /46.7 | 79.7 / 79.5 / 47.0 | 82.6 / 82.8 / 50.2 82.4 /514 | 83.0 /832 /512 | 84.3 /84.2 /527 | 85.6 / 85.5 /53.1 | 83.5/83.7 /519
{v} 61.9 / 55.7 / 41.3 | 61.1 / 57.2 / 40.1 | 62.6 / 57.1 / 41.6 | 59.3 / 60.0 / 40.7 | 61.9 / 61.6 / 41.7 | 61.5 / 62.6 / 41.6 | 63.6 / 62.6 / 42.3 | 61.3 / 61.4 / 41.3
{a} 62.0 /50.2 / 41.1 | 61.4 / 53.8 / 40.9 | 62.7 / 54.5 / 41.4 | 58.9 / 59.5 / 40.4 | 60.2 / 60.3 / 41.1 | 61.6 / 61.5 / 41.3 | 63.3 / 60.6 / 41.4 62.3 / 61.3 / 40.5
MOSEI {1, v} 80.3 / 79.7 / 46.6 | 80.4 / 80.4 / 47.1 | 83.2 / 83.2 / 504 83.4 /512 | 84.3 /844 /511 | 84.5 /851 /528 | 85.0 /85.0 / 53.1 | 85.2 /85.3 / 52.4
{1, a} 79.5 /79.2 / 46.7 | 80.0 / 80.0 / 47.4 | 83.5 / 83.3 / 50.7 83.3 /52.0 | 84.3 / 84.4 /51.3 | 85.1 / 85.1 / 53.1 | 85.5 / 85.5 / 52.9 84.4 / 83.8 / 5
{v, a} 63.4 /56.9 /415 | 62.7 / 59.2 / 41.6 | 63.7 / 62.7 / 42.1 5/619 /418 | 64.1 /572 /42.0 | 63.5 / 63.3 / 42.8 | 63.9 / 64.0 / 42.8 | 63.7 / 62.9 / 42.3
{l, v, a} 80.7 /80.9 / 47.7 | 81.2 / 81.2 / 48.2 | 84.2 / 84.2 / 51.2 84.2 /524 | 85.2 /85.1 /515 | 8.1 /851 /53.4 | 85.7 / 85.8 / 53.3 | 85.7 / 85.8 / 53.3
Average ‘ ‘ 723 /688 /445|724 /702 /44.6 | 7T4.6 / 725 / 46.8 | 73.7 / 73.5 / 47.1 | 747 /737 /47.1 | 75.1 /753 /482 | 76.1 / 75.6 / 48.4 | T5.2 / 749 / 47.7

Avidivon Anoteleopdtwy. To melpopatind anoteAéopata delyvouy 6Tt oL BEATIOTES
OLUOPPWOELC Lo amodldouy xahlTepa 1) ouyxplowa ue Tic Yedodoug auyurs, TOCO 01O
random missing protocol 6co xou oto fixed missing protocol. H Quality-Optimized St~
HOPPWOT) EMTUYYAVEL TIC UPNAOTERES EMBOTELC PE AUENUEVY ATOBOTIXOTNTA, EVK 1) Speed-
Optimized BlapdeQOT TEOCPEREL AVTUY WVIO TIXA ATOTEAECUATO UE UXPOTEQO UTOAOYLO TIXO
x6070¢. Ltor 800 olvola dedopévev (CMU-MOSI, CMU-MOSEI), napatnpotvton o tadepd
Behtiwpéveg yetpixéc oe oyéor ue to Vanilla IMDER, axéua xou 6 800%0AEC TEQLTTWOELS

omwe 6ty ebvar Stodéoiun wovo 1 ot 1) 1 axouc TixY| TAnpoopeia.

YroloyioTixr) ATodoTixdTnTa xou Luvelo@opes. O npotevdueveg DIaUopPOoELS
TEEYOLY oNUAVTIXT ETLTAYLVOT, pe TNV Speed-Optimized va elvan €wg xan 15X tayOtepn

and TN Pooinh YeuUUn, YEYOVOS TOoU TIC Xoo T8 XATIAANAES Yol EQUPUOYES TEOYHATIXOD
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0. Extetopévn EXnvied Iepiindm

yeovou. O apyitextovixéc pag emAoyég 1 dwtunworn VP SDE, to unéfadpo ScoreTrans-
former1D, xou ot Serypatorintec DDIM /Heun — cuvbudlovton appovixd yia va BEATLOO0UY
TO0O0 TNV Amod0CT) 6CO XAl TNY ATod0TXOTNTA. 20T600, 1 amousia TNG YAWOOWXHC TANEO-
poploc, mou cLVAlLG UETAPEREL TN UEYOADTERY oTNuactohoyixr Tuxvotnta (uéow tou BERT

povtéhou), odnyet ot oucInTy| TGN TNE ETIBOONC, PUVOUEVO YVWoT6 w¢ modality collapse.

0.6.5 MeAéteg apaipeong
Ynuaoio TwY CUVICTWOWY

[Mo va emixupioouye T onuocio xdde cUVICTOGCUC GTO TEOTEWVOUEVO TAXICLO Lo, Ole-
Edyouue UG TNUATIXES UEAETES OPalpEaC APALEWVTAS BAGIXEC GUVIC TOOES XAl AELONOYOVTAS
TOV AVTIXTUTO TOUG OTN GUVOAXY) amodocoT. Auth 1 avdhuorn Bondd otov npocdloploud g
oLpPolrc xde evoOTNTOC GTNY TEAXT axEiBELa ovory vdpelong cUVILGUHUATOC.

IMewpopatiny Sidtadr: AZ0AOYOUUE TN ONUACIA TWY CUVC TWOWY YETOULOTOLWVTAS
™ Béhtiotn ddtadn poc (Sratdnwon LAE VP, payoxoxahd ScoreTransformerlD xou dety-
potorfrty Heun pye 60 NFEs) xa ot 800 olvola dedouévwy CMU-MOSI xou CMU-
MOSEI unté 1o npwtéxolho otadepric éhhewne (Fixed Missing Protocol).

Table 8. AnoteAéopata pedétng agaipeons ouviotwody kar yia ta 6o orola dedopévawy
XPNOUOTOWOYTAS TN O1aUopPwoT) Uas Peltiotomomnuévn ws mpog tny mowdtnta. Ava-
pépoue TS HéoeS TIUES Yia To TpwTOkoAAo otalepr)s éAAerhng.

C . | CMU-MOSI |  CMU-MOSEI
onfiguration

| ACC2 | ACC7 | F1 | ACC2 | ACCT7 | F1
Full Framework (Ours) 75.2 75.1 | 351 ] 76.1 75.6 | 484
w /o Diffusion Component 1.7 72.0 | 318 | 746 73.7 | 47.1
w/o Decoder Alignment 74.6 744 | 348 | T5.7 74.8 | 47.9

Performance Drop (w/o Diffusion) -3.5 -3.1 -33 | -1.5 -1.9 1.3
Performance Drop (w/o Alignment) | -0.6 -0.7 | -03 | -04 -0.8 | -0.5

AvdAuon TwV CLVELCPORP®Y TV CLVICTWo®Y: Ta anoteAéoyoto UTOYEUU-
uiouv tov xplowo pdro tou povtéhou Bidyvone (diffusion) oto mhaiold pac. H agaipeon
e OLdyuone odnyel ot ueyaAlTeRT pelwon TN amddoong xat oTal 6U0 GOVORA BEBOUEVWLY,
Wlaktepa yiar T Suadxr axpelBeta xou TNy axplfBela T-xAdoewy, xododg xou Yo T fordpuohoyio
F1, unodewvbovtag 6Tl auTh| 1 eVOTNTA EVOL AmOEalTNTN Yo TNV ATOTUTWOT] TWY AETTOV
TONUTEOTUXWY EEUPTHOEMV.

O aroxwdixonownthc evduypdupions (decoder alignment) cuufdiier eniong
Yetxd, av xou o puxeotepo Podud. H agaipeor) tng odnyel oe uio pixer; ahhd otodepn
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0.7 Xuunépaoua ot HEAAOVTLXY] BOUAELS

TTWOT NG AnddoomNS, UTOSNAGOYOVTAS OTL 1 euUYEAUULOT TwV €EHBWY TOU ATOXWOLXOTOL-
Nt UETAC) TV TEOTXOTATWY BEATIOVEL TN CUVOYT TWY TOAUTROTUXWOY TANEOPORLDY XOL
evioy Vel ehappds TNV evpwoTtio T meoBiedne. To ynua 9 elvon wa ontixonoinon twv
OVOXATEOAEUACUEVV YULUXTNEIO TIXADY UECK TWV UOVTEAWY OLAyUoNS UE Xl Ywelc Tov a-
TOXWOXOTOLTY EVYUYEAUULOTS, TUEAUTNEOVUE TS Ywelc TNV eLIUYEIUULIOT dEXETA AVoXa-
Taoxevaopéva Oetypota @aiveton va eggavilovtar paxeld dno to  clusters twv opyixodv

YAEOATNPLO TIXWV.

0.7 XuvunEpacpa xou LEANOVTIXY] BOVAELX

Y1y mapovoa epyacio UEASTAUNXE O OYEBLACTIXNOC Y WPOS TWY TOAUTPOTIXDY HOVTEAWY
OLdyUONC YO oVOLYVWELOT) CUVALOUAUATOS o Oddeong utd cuVINxeg EAMTOY OEDOUEVLY.
Enextetvovtag 1o mhaioto tou IMDER, Soxwudotnxay véec apyttextovixég Umo cuviixm
napaywyNc ve Transformer payoxoxohiée xan ocuyxpitnxav ye to opywxd U-Net dixtuo.
H aohdynon oe yvowotd ovvoha dedopévov (CMU-MOSI xou CMU-MOSEI) €8eiée 6t
TOL TPOTEWVOUEVA HOVTENA ELVOL OVTAYWOVIOTIXG, EVE) TOUTOYEOVO ETUTUYYEVOUV OTUAVTIXES
ETMUTOYUVOEL TNV EXTUOELOT) xou Setypotorndio ue povo oploxéc anwhelee otny axpifeia.
‘Etot, avadeiydnxe n onuacta tne Bertiotomoinong yio ToyUTnTo Xou omoS0TIXOTTA.

opd tor Yetind amoteréopata, 1 pedodoroyin mopoustdlel OpIOUEVOUC TEPLOPLOUOUC.
H perétn emxevipminxe anoxhelotind oc avdhuon cuvalcHiUAToS, aPivoVTaS avolyTod To
EPOTNUO TNS YEVIXEUOTC OE TLO OMOULTNTIXES TOAUTOOTUXES EQPUOUOYES OTIWS 1) TOAUTEOTUXT
UETAPEOCT, 1} 1) AMAVINOY OE OMTIXO-YAWOOWES EpwThoels. Emmiéov, ta potifa andiclog
0eBOUEVKY TOL EEETAOTNXAY OEV AV TIXATOTTEICOLY TANEMS TNV TOAUTAOXOTNTA TEOLYUOITIXDY
oevapltV, EVE TO UTOAOYIGTIXG XOCTOS TaROHEVEL LPNAGTERO amtd amholoTepe Uedddoug
ouyyoveuorne. Téhog, n anddoon etvon evaiodnTn oe LTEETUPUUETEOUS OTWE TA TTROY PAUHUALTOL
Yoplfou xou oL oTeaTNYES deryuatorniog.

Q¢ peMovtixéc xatevdivoelg, TeoTelveTol 1) EQUEUOYT| TOU TANUGIOU GE To TOWX{AES TTO-
AuTpoTUIXEG €pYUOIEC XaL TEUYUATIXG GEVAPLAL YeYioNg UE OlapopeTixolg meplopiopols. H
aVETTUEN IO EVEMXTWY Unyaviouwy cross modal conditioning, 1 Siepevnomn eVahAaxXTIXWOY
YEVETXOV HOVTEAWY OTwe Ta Flow Matching, xodde xou 1 dnplovpyio evoroinuéveny mhou-
olewv mou Yo yewilovton onowodnArote potifo andAielag S00UEVKDY amoTENOVY UTOGY OUEVES

EPELVNTIXEC TPOOTTIXEC.
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Figure 9. t-SNFE visualizations of reconstructed audio features under different sam-
pling steps. Top: DDIM sampler with alignment decoder (10-40 steps). Bottom: DDIM
sampler without alignment decoder (10-40 steps).
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Chapter

Introduction

1.1 Background and Motivation

Human communication is inherently multimodal. People express their emotions not
only through spoken words but also through tone of voice, facial expressions, and sub-
tle behavioral cues. Capturing and understanding these complex affective signals is a
cornerstone of affective computing and has broad applications across domains such as
human-computer interaction, healthcare, education, entertainment, and social robotics.
Multimodal Emotion Recognition (MER), illustrated in Figure 1.1, aims to address this
challenge by combining information from different sensory channels, typically language,
audio, and vision to achieve a more reliable and holistic estimation of human affective
states including happiness, sadness, anger, fear, surprise, disgust, and neutral emotions.

The importance of MER lies in its ability to improve the robustness and naturalness
of intelligent systems. Emotionally aware virtual assistants can provide more empathetic
responses, online education platforms can better adapt to students’ affective needs, and
healthcare monitoring systems can detect early signs of psychological distress. Deep
learning has accelerated progress in this direction by enabling powerful multimodal rep-
resentation learning. Models like MISA [32] and MulT [26] explicitly capture cross-modal
dependencies and achieve state-of-the-art results on benchmark datasets. However, these
successes often rely on a critical assumption: that all modalities are fully observed and
synchronized during both training and inference.

In real-world deployment scenarios, this assumption rarely holds. Sensor failures,
occlusions, background noise, limited hardware resources, or inability to extract mean-
ingful features due to the data nature can lead to missing or degraded modalities. For
instance, a video call application may experience poor lighting conditions that impair
facial expression recognition, or wearable sensors may fail to capture physiological sig-

nals consistently. In Figure 1.2 the individual covers their face with their hands and the
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Chapter 1. Introduction

Multimodal Emotion Recognition from Synchronized Signals

Input Modalities Applications

Language (L) Audio (A) Vision (V) Human-Computer Interaction

Text content Prosody, tone Facial expressions
Semantics Pitch patterns Gestures

Mental Health Monitoring

BERT features COVAREP features Facet features
‘Gustomer Service Analysis

Educatiocnal Technology

Challenge:
Missing modalities due to:

« Hardware failures . .
e ———— Multimodal Fusion
« Privacy constraints :s-modal attention
* Envionmental noise

Solution:

Diffusion-kased imputation
for robust recognition

Emotion Recognition

Happy | Sad | Angry | Fear
Swurprise | Disgust | Neutral

Figure 1.1. Multimodal emotion recognition from synchronized signals.

system cant extract visual information. Under such conditions, traditional multimodal
learning approaches may fail catastrophically, as they are not designed to handle incom-
plete modality inputs. This fundamental limitation severely restricts the deployment
of multimodal systems in unconstrained, real-world environments. To address missing

modality conditions, two primary research directions have emerged:

Imputation methods attempt to estimate missing data from partially observed
input. We review previous works and roughly divide them into three groups: zero/average

imputation, low-rank imputation and DNN-based imputation.

Zero/average Imputation: Padding missing modalities with zero vectors or aver-
age values are widely utilized for data imputation [56, 57, 58|. For example, Parthasarathy
et al. [57] filled missing frames of videos with zero vectors. Zhang et al. [56] padded miss-
ing modalities with average values based on the available samples within the same class.
Zero/average imputation can achieve competitive performance in incomplete multimodal
learning. However, since no supervision information is utilized, there is still a gap be-
tween filled values and original data, thus degrading the performance of downstream
tasks.

Low-rank Imputation: Complete multimodal data exhibits correlations between
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1.1 Background and Motivation

Acoustic

Emotion Recognition

-~ -
_—

\ Textual

| can’t believe it!

Figure 1.2. Missing visual modality scenario where hand occlusion blocks facial feature
extraction for emotion recognition. Figure from [6]

different modalities and leads to the low-rank data matrix. However, incomplete data
breaks these correlations and increases tensor rank [59, 60]. To capture multimodal
correlations, previous works project data into a common space by using low-rankness.
These approaches are usually based on nuclear norm minimization, such as singular value
thresholding (SVT) [61] and Soft-Impture [62]. Besides nuclear norm, Fan et al. [63] also
minimized tensor tubal rank to deal with various missing patterns. Furthermore, Liang
et al. [59] combined the strength of non-linear functions to learn complex correlations in
tensor rank minimization. However, these methods are usually computationally expen-
sive for big data [64].

DNN-based Imputation: Due to the generative ability of DNNs, several DNN-
based models have emerged to estimate missing data from partially observed input, e.g.,
autoencoder [65, 66|, GAN [67, 68|, VAE (69, 70| and Transformer |71, 72|. Among
these approaches, autoencoder and its variants are widely utilized due to their promising
results in incomplete multimodal learning |73]. For example, Duan et al. |74] leveraged
autoencoders to impute missing data. To improve the modeling ability of autoencoders,
Tran et al. |66] proposed the cascaded residual autoencoder (CRA). It combined a series of
residual autoencoders |75] into a cascaded architecture for data imputation. Furthermore,
Zhao et al. [73] incorporated CRA with cycle consistency loss for cross-modal imputation,
which achieved superior performance over existing methods. More modern approaches
utilize graph neural networks like GCNet by Lian et al.[30] and powerful generative
models including, normalizing flows DiCMoR [35], or more recently, diffusion models
such as in IMDER [1]. IMDER trains modality-specific score-based diffusion models
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Chapter 1. Introduction

to learn the joint distribution of multimodal data, enabling conditional generation of
missing signals from available modalities.

The second direction for dealing with incomplete modalities are non-imputation
methods, which can be roughly divided into grouping strategies, correlation maximization
and encoderless models.

Grouping Strategy: Complete data is easier to deal with than incomplete data.
The grouping strategy directly partitions incomplete data into multiple complete sub-
groups, and then feature learning is carried out independently for each subgroup [76,
77, 78]. Despite its effectiveness, the number of subgroups grows exponentially with the
number of modalities. Therefore, this strategy cannot work well for data with a large
number of modalities or limited samples.

Correlation Maximization: To deal with the problem of incomplete data, an ef-
ficient approach is to maximize correlations between different modalities. In this way,
we can constrain different modalities of the same sample to have related low-dimensional
representations. Recently, several works based on correlation maximization have been
proposed, including canonical correlation maximization |79, 80|, HGR correlation max-
imization [81|, mutual information maximization [82] and likelihood maximization [83].
Among these approaches, canonical correlation and its variants are widely utilized due
to their promising results in incomplete multimodal learning. For example, Hotelling et
al. [79] proposed CCA that learned relationships between multi-modalities by linearly
mapping them into a low-dimensional common space with maximal canonical correla-
tions. Different from CCA that focused on linear mappings, Andrew et al. [80] proposed
DCCA that leveraged deep neural networks to learn more complex nonlinear combina-
tions between multi-modalities. Wang et al. [84] further combined canonical correlations
with reconstruction errors of autoencoders, trading off the structure information of each
modality and the relationship between multi-modalities.

Encoderless Model: Unlike previous works that rely on encoders, encoderless mod-
els can learn latent representations without encoders. They directly optimize latent repre-
sentations to reconstruct modality-incomplete data regardless of missing patterns [85, 86].
Typically, Zhang et al. [56] proposed CPM-Net, a robust encoderless model for incom-
plete multimodal learning. It combined the encoderless model with a clustering-like
classification loss to learn well-structured features, which has validated its effectiveness
on multimodal data with missing modalities.

The taxonomy and analysis of these approaches is modified from the work of Lian et

al. on GCNet [30].

While computationally efficient, these methods may overlook useful cross-modal de-
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1.2 Contributions

pendencies and often exhibit performance degradation as the number of missing modal-

1ties increases.

1.2 Contributions

In this thesis we explored a decoupled training framework for efficient multimodal
diffusion-based recovery MER and use optimized samplers, conditioning mechanisms and
diffusion processes to outperform the baseline approach [1] in efficiency and match or
outperform the performance. Our work builds upon IMDER but removes key bottlenecks
by separating the training of the score networks from the final emotion prediction task.
The initial approach in IMDER suggests an end-to-end system that uses untrained score
networks to impute values to a trained fusion emotion prediction network resulting in
gradients from generated samples that do not follow the proper distribution in the start
of training. Furthermore there is no exploration of the diffusion process components. To

address these limitations we present the following contributions:

1. A 2 stage training scheme is proposed firstly training the score networks and then
deploying them in the MER task avoiding imputing untrained generated samples
from the untrained diffusion models and degrading the starting training perfor-

mance.

2. We consider and evaluate the most popular diffusion processes including Vari-
ance Exploding (VE) and Variance Preserving (VP) Stochastic Differential
Equations (SDEs).

3. Furthermore, we swap the proposed Unet backbone with the more recent Trans-
former backbone [71]| and evaluate different conditioning mechanisms like AdaLN,

FiLM and simple concatenation [24, 18, 4] of the diffusion models literature.

4. Once trained, we evaluate four different diffusion samplers, including the default
Euler-Maruyama, second order Heun and Predictor Corrector and the fast
deterministic DDIM sampler to efficiently solve the reverse time SDEs and gener-

ate samples that will be used in downstream inference.

5. Finally we identify two optimized configurations one for quality based recovery and
one optimized for inference speed based on all past experiments and compare them
against all modern state of the art models, achieving accelerated efficiency without

sacrificing performance compared to the original IMDER.
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Chapter 1. Introduction

1.3 Thesis Outline

e In Chapter 2 we quickly review the landscape of generative modeling discussing
some of the most impactful ones that later lead to the development of the most

modern ones.

e In Chapter 3 we provide the background theory behind the breakthrough of diffu-

sion models a deep generative network class.

e In Chapter 4 we explore the deep multimodal learning fundamentals, the missing
modality problem found in multimodal datasets and we analyze some methods to

alleviate it from the literature that we later use as benchmarks for our approach.

e In Chapter 5 all of the decisions regarding the decoupled architecture of the pipeline,
proposed backbones, the hyperparameters of the model, the dataset and a dataset

evaluation are provided.

e In Chapter 6 we experimentally explore the vast design space of the proposed
method and infer the optimal configuration of components and compare it with
the state of the art models proposed literature. Furthermore we conduct ablation

studies to further confirm the robustness of our findings.

e In Chapter 7 we conclude the thesis and discuss some possible future work direc-

tions.

m Diploma Thesis



Chapter

Classical Deep Generative Models

2.1 Vanilla Autoencoders

Autoencoders represent one of the earliest and most intuitive approaches in deep
generative modeling. Their central purpose is to learn a compact representation (latent
code) of input data by training a neural network to reproduce its input at the output.
This is achieved by enforcing an information bottleneck: the encoder network g4(x) maps
the input x to a low-dimensional latent space z, and the decoder fy(z) reconstructs x from
z. Formally, the learning objective approximates the identity function fy(gs(z)) = x,
while constraining z to capture the most salient factors of variation [87].

Over the years, several variants of autoencoders have been introduced: denoising
autoencoders, which learn robustness to noisy inputs by reconstructing clean signals;
sparse autoencoders, which encourage sparsity in the latent code and promote disen-
tanglement of features; and contractive autoencoders, which penalize sensitivity of
latent representations to small input perturbations. Each of these extensions has played a
role in shaping the research trajectory of generative modeling by emphasizing robustness,
disentanglement, and stability.

Although simple autoencoders are not true generative models—as they lack a prob-
abilistic interpretation and cannot easily generate new samples from the learned latent
space—they form the basis for more advanced models such as VAEs and VQ-VAEs, where

probabilistic structure and sampling are incorporated.

2.2 Variational AutoEncoders (VAE)

Variational AutoEncoders, [88] are also a very important idea of the generative Al
toolkit, they aim to fit parameterized surrogate functions (Deep Networks) to the poste-

riors and the likelihoods of our latent codes and data. The encoder takes as input data
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Reconstructed
Input <-------oooooo s Ideally they are identical. ------------------ > input
x~x
Bottleneck!

Encoder Decoder ,
X 1
9¢ fo X

An compressed low dimensional
representation of the input.

Figure 2.1. Vanilla autoencoder architecture. Figure from [7].

space samples and outputs the means and variances of the posterior density probability
function of the latent code z, then we sample from it a code and pass it to the decoder
that represents the likelihood of the data given a sample of z. A reparametrization trick
is implemented to be able to backpropagate the loss to the encoder without any stochas-
ticity in the actual outputs. The loss used in VAEs is called Evidence Lower Bound
(ELBO):

ELBO(0, ¢;2) = Ey, (z|2) log po(x]2)] — KL[gy (2[2)||p(2)]

(2.1)
— [ ds(ela)logpalalz) d= - KLigg(elo)lIp(a))

where:
e py(z|z) is the generative model (decoder) parameterized by 6.
® gy(z|x) is the variational distribution (encoder) parameterized by ¢.

o KL[gs(2|2)|[p(2)] is the Kullback-Leibler (KL) divergence between the variational
distribution and the prior distribution p(z).

e The expectation E,, .|,)[log pp(2[2)] is taken with respect to the variational distri-

bution.

The objective during training is to maximize the ELBO with respect to the model

parameters 6 and ¢:
1 N
ik . (2
0*, ¢* = argrrali)x N ;_1 ELBO(6, ¢; z\"),
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2.3 Normalizing Flows

which states that we can solve an intractable problem, finding exact posteriors and
maximizing the marginal, by optimizing another feasible objective. VAEs are a core
concept in generative DL since they incorporate techniques used in more state of the
art models and the underlying approximate variational optimization task they are trying
to solve can be found in a lot of places in the field. More details can be found in this

insightful discussion available |[7].

| Q po(2) [ e - e(2X) = pozlx)
z ~ N(0,1) % po(x|2) > X
9 A

Figure 2.2. The Graphical model that describes Variational AutoEncoders. Figure from

/7],

Input <o Ideally they are identical. ~ ---------------------- -
, input
X R X

— Probabilistic Encoder

q(2[x)

Mean w Sampled
— latent vector
Probabilistic
X | I . Decoder x/
po(x|2)
o —
Std. dev
_ An compressed low dimensional
z=p+o0e representation of the input.
L e ~N(0,I)
Figure 2.3. VAE architecture using Gaussian parameters latent codes and a

reparametrization trick to propagate the gradients. Figure from [7].

2.3 Normalizing Flows

Normalizing Flows (NFs) [89, 90| represent a powerful family of generative models

that build upon the principle of invertible transformations. Unlike VAEs, which approx-
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Chapter 2. Classical Deep Generative Models

imate posteriors through variational bounds, flows explicitly construct exact likelihoods
by learning a series of bijective mappings f; that progressively transform a simple distri-
bution (e.g., Gaussian) into a complex data distribution. Through the change-of-variables

formula:

0f ~H(z)

px(z) = pz(f () |det o

I

flows provide tractable density evaluation and exact posterior inference.

Architectural innovations such as NICE [91] and RealN'VP [92] introduced coupling
layers that make the Jacobian determinant efficient to compute. Further extensions such
as Masked Autoregressive Flows (MAF) [93| and Inverse Autoregressive Flows
(IAF) [94] leveraged autoregressive networks for more expressive mappings. Glow [95]
popularized flows in image generation by introducing invertible 1 x 1 convolutions, en-
abling large-scale applications. More recent innovations include continuous-time flows
such as FFJORD [96], which model invertible transformations as ordinary differential
equations, and invertible residual networks (i-ResNets) [97], which relax constraints on

invertibility while preserving tractable log-determinants.

While normalizing flows provide exact likelihoods and interpretable latent spaces,
they face challenges in terms of expressivity versus efficiency. Ensuring tractable
Jacobian determinants requires restrictive architectural choices, which may limit flexi-
bility compared to GANs or diffusion models. Despite this, flows remain an important
foundation for modern likelihood-based approaches, and their invertible structure has
influenced recent advances in score-based generative modeling and diffusion probabilistic

models [?].

fl(ZO) fi(zi—l) fi+1(zi)
/” ~\\ /” \\\ //’ \\\

7’ N 7’ N 7’ Y
7 AY ’ AY 7 \
1 \ I \ 1 \
I f E ' ] % { 5 1 I f§!£ 52 1
\ 1 \ 1 \ 1
\ ! \ U \ 1
\ / \ ’ \ ’

\\ ,// \\ ,// \\ ’//

2z ~ po(2o) z; ~ pi(2;) zx ~ pk(zK)

Figure 2.4. Normalizing flows gradually transforming a prior distribution to a complex
one. Figure from [8].
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2.4 Vector Quantised-Variational AutoEncoders (VQ-VAE)

2.4 Vector Quantised-Variational AutoEncoders (VQ-VAE)

The Vector Quantised-Variational Autoencoder (VQ-VAE) [9, 98] introduces discrete
latent representations into the generative modeling landscape. In contrast to continu-
ous latent codes used by standard VAEs, VQ-VAEs map encoder outputs to a discrete
codebook of learned embeddings. The nearest codebook entry replaces the encoder’s con-
tinuous output, producing quantized latent vectors that the decoder reconstructs into the
original data.

This discrete latent structure confers several advantages: it prevents posterior collapse
(a common issue in VAEs), provides a richer and more interpretable latent space, and
facilitates the use of powerful autoregressive priors such as PixelCNN or Transformers
to model sequences of discrete codes. As a result, VQ-VAEs have been widely adopted
in applications such as speech synthesis (e.g., WaveNet [99], VQ-VAE-2) and image
generation, often serving as the backbone for large-scale models like DALL-E [100].

However, the quantization step introduces non-differentiability. To address this, VQ-
VAEs rely on a combination of straight-through gradient estimators and codebook up-

dates, which while effective, can complicate optimization.

Codebook

[Teee, e\
Embedding 1
Space ]
1
AN / |
® ' 1 z (@) VL
ATl 1 4
° VL | z,(x)
e — 1
» N 2 -
a(zlx) e CNN |
CNN L pxiz,) 1
3 ! 2. 1
z,(x) 2z 2 z,(x) . 2,(x) ~ q(zlx)
53
Encoder Posterior categorical distribution: Decoder

1 if k = arg min; ||z.(x) — e;[|2

q(z = exfx) = {

0 otherwise.

Figure 2.5. Vector Quantised Variational Autoencoder. Figure from [9].

2.5 Generative Adversarial Networks (GANs)

Generative Adversarial Networks (GANs) [101] represent a major paradigm shift in
generative modeling by framing sample generation as a two-player game between a gener-
ator G and a discriminator D. The generator seeks to produce samples G(z) from latent

noise z that resemble real data, while the discriminator aims to distinguish between real
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samples * ~ pgata and generated ones. The training objective is defined as a minimax

optimization:

min max V (D, G) = Eonpyyiallog D(@)] + Eorp(z)[log(1 — D(G(2)))].

This adversarial formulation enables GANs to implicitly learn data distributions with-
out explicit likelihood estimation, often producing remarkably sharp and realistic samples
compared to VAEs.

Despite their success, GANs are notoriously difficult to train. Issues such as mode
collapse (where the generator produces limited diversity), unstable convergence, and
sensitivity to hyperparameters have driven research into numerous variants. Improve-
ments such as Wasserstein GANs [102], Least-Squares GANs [103], and StyleGAN [104]
have enhanced stability, interpretability, and controllability of generated outputs.

GANSs have had profound impact on fields such as computer vision (image synthesis,
super-resolution, style transfer) and are often benchmarked as the state-of-the-art in
sample fidelity. Nonetheless, their lack of explicit likelihoods and fragile optimization
dynamics distinguish them from likelihood-based approaches such as VAEs and diffusion

models.

Training set l/ Discriminator

N\
. L »
- —
rendon ) FlI0= e
=] (%

. Fake image

Generator

Figure 2.6. Generative Adversarial Networks. Figure from [10].
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Chapter

Diffusion Models

3.1 Variational Diffusion Models

3.1.1 Deep Unsupervised Learning using Nonequilibrium Thermody-
namics

This paper, authored by [38], introduces the foundational concept of diffusion models,
designed to systematically restore order from pure prior noise. Rooted in non-equilibrium
statistical physics and sequential Monte Carlo methods, the approach leverages a Markov
Chain as a graphical model. Unlike previous generative methods that aimed to generate
samples in a single step, the proposed model proposes a forward trajectory through the
Markov chain, gradually transforming data samples into a prior noise sample and then
a learnt model tries to predict the reverse process.

This distinctive approach employs a forward transition kernel with small Gaussian
perturbations at each step. The small step sizes introduced during the forward process
yield a reverse process with an identical functional form. Exploiting this symmetry, the
authors suggest training a model to predict the mean and variance of the reverse posterior
conditioned on the previous sample. Consequently, maximizing the marginal probability
of the generated data involves optimizing the conventional variational lower bound of
this Markov Chain graphical model.

The paper underscores the critical role of the diffusion rate schedule in constructing
these models, emphasizing its significant impact on performance. Notably, the diffusion
schedule is dynamically learned through gradient ascent of the lower bound objective,
for the Gaussian Transition Kernel, and is held constant during the parameter learning
phase for Gaussian diffusion.

Experimental results demonstrate the model’s capabilities across a spectrum of gen-

erative modeling tasks, including manifold learning, image inpainting, and image gener-
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ation.

3.1.2 Denoising Diffusion Probabilistic Models

This seminal paper of [11] on diffusion models is a natural progression from the
previous one stated above. Based on that the authors expanded and improved the ideas
introduced. We will cover the mathematical backround here since its more consistent

with current notation.

Diffusion models represent latent variable models defined by the expression py(xg) :=
[ po(zo.7) dzy.7, where z1,...,zp represent latent variables of the same dimensionality

as the data zp, sampled from the distribution g(zg).

The joint distribution pg(xo.7), referred to as the reverse process, is modeled as a
Markov chain. Gaussian transitions originating from p(zr) = N (z7;0, 1), practically

prior noise, guide the sample to the data distribution:

T
po(zor) == p(ar H (Tt—1]21), (3.1)

where
po(xi—1|me) = N (zi—1; po(ze, ), So(4,1)). (3.2)

The forward diffusion process is a Markov Chain where noise is gradually added ac-
cording to a schedule 3;, for i € 1,2,...,T. The noising one step distribution is called

perturbation kernel:

Q(th’w‘t_l) = N (.’Iit; vV 1-— Btmt—17ﬂt1> . (33)

One notable advancement lies in the discovery that, conditioned on the initial sample

xg, any desired noised sample x; can be efficiently obtained through a closed form,

_ t
ap:=1—p and & =[], as,

q(zi|zo) = N (24 Vauwo, (1 — au)l), (3.4)

thereby accelerating the training process.

Additionally, the paper demonstrates that during the reverse diffusion process, it is

possible to track the reverse posterior ¢ conditioned on the sample xq:

q(ﬂvt—l\l’t,wo) =N (ﬂﬁt—l;ﬁt(ﬂﬁt,ﬂﬁo),gtI) ) (3-5)
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where _ -
(e, xo) = at_iﬁtxo =+ Vo _7at_1)xt, (3.6)
1-— (077 1-— (677
and s
1 — Q1
= —— 0. 3.7
B —a (3.7)

This insight forms the basis for a novel training objective for the model at each time
step.

The authors formulated the loss function as a variational objective over the steps of
the Markov chain:

Dk, (q(zr|xo) || p(71))

E, +ZDKL (q(zi-1lze, z0) || po(zi—1]z1)) , (3.8)
t>1

— log pg(zo|21)

and by further formula derivations it can be shown that predicting the mean of the noise
added to the sample is equivalent. With a reparametrization trick we can even show that
predicting the noise at the next state is also equivalent, simplifing the objective further.
Lastly the researchers concluded that dropping the constants in front of the loss gave

better results, so the simplified objective used to train their models was:

1
Lsimple('g) = Et,:co,g 5 H€ — €9 (\/OT:I() + 1 — que, t) H2 , (39)

Algorithm 1: Training

repeat

7o ~ (o)

t ~ Uniform({1,...,T})

e ~N(0,1)

Take gradient descent step on Vj He — € (\/O_Tt.%'(] + V1 — aye, t) H2
until converged

After training our noise predictor we can start from a prior distributed noise sample
and iteratively denoise it to sample from the data distribution:

The paper adopts a fixed variance schedule, increasing linearly, and employs a U-
Net architecture as the backbone of the reverse process model. Experimental results

demonstrate performance remarkably close to state-of-the-art GANs that at the time
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Algorithm 2: Sampling

xrr ~ ./\[(0, I)
fort=1T,...,1do
if ¢ > 1 then
z ~N(0,1)
else
z+0
end if
Ti_q \/%7 Ty — %eg(xt,t)) + o042
end for
return x

—
e

had evolved over nearly six years although, the training and sampling where much more

expensive.

Use variational lower bound

Figure 3.1. Markov chain Graphical Model of the forward and reverse diffusion process.
Figure from [11].

3.2 Score Based Generative Modeling

3.2.1 Generative Modeling by Estimating Gradients of the Data Dis-
tribution

In the pursuit of directly modeling complex data distributions, where the model’s out-
put represents the actual distribution function, the computation of normalizing constants
poses a computationally challenging problem. Score-based modeling offers a solution by

estimating the gradient with respect to the data variable z of the corresponding distri-
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bution. Lets say that the output of a model gives us the PDF:

efo(x)

po(x) = Z (3.10)

e py(x): Probability density function (PDF) of the distribution parameterized by 6,

evaluated at the value x.
e fy(x) is often the logit or energy function.

e Zy: Normalization constant, also known as the partition function. Ensures that the

PDF integrates (or sums, in discrete cases) to 1 over the entire range of possible

values of z.

The Score function is:
Vixlogpy(x) = Vx fo(x) + Vxlog Zp = Vx fo(x) = sy(x)

This approach proves advantageous as the normalization constant is not needed when
trying to model the score function resulting in its elimination after computing the gradi-
ent, and it is easily demonstrated that having either the constant or its gradient allows
for a seamless transition between the two through differentiation or integration. Score
based Generative modeling aims to train deep networks that output the score function
of the underlying data distribution. The objective is stated as follows:

1
5 Bpdaa ) [HSO(X) — Vxlog pdata(X)H;}

Gauss’s theorem shows that we can approximate the actual distribution score as follows:

Byt [5(T50(30) + 3 0] 31)

Where Vysp(x) is the Jacobian of sp(x). The term tr(Vyxsy(x)) needs linear number of
backpropagations growing with the data dimensions and is not scallable.

Sliced score matching aims to solve this by random projections in order to approx-
imate the term. Another way is with denoising score matching where we fully bypass
the gradient of the score. Once we obtain a good approximation of the score function,
So(x) ~ Vx 10g paata(x), we can use Lavengin dynamics to produce samples starting from
a prior distributed initial value.

The main problem that arises in high dimensional data is data sparsity. The manifold

assumption states that data reside in a low dimensional manifold inside the data space,
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as a result, most of the space is empty or sparse and we can’t obtain an accurate approx-
imation of the score function at those areas. Sparsity also affects the sampling process
even if we have a ground truth scores disregarding the actual weights of the distribution
modes. The result is slow mixing when using Lavengin dynamics in order to avoid sample
density errors, meaning that sampling doesn’t obey the actual distribution.

In order to deal with these problems the Song et al. [105] introduced Noise Condi-
tional Score Networks (NCSN), in short they aim to perturb the data in different noise
levels and train a Score network conditioned on the noise level. This process effectively
"spreads" the samples decreasing sparsity. The objective is to enable the network to
approximate the score function in previously low data density regions. We define the

noise distribution as g, (%|x) = N (X|x, 0%I); therefore the score is,

. X —x
Vi log ¢, (x|x) = T
The updated objective becomes:
Al . x—x|?
l(@; O’) = iEpdata(x)EiNN(x:UQI) SQ(X,U) + s , .

Subsequently, the network undergoes training via score matching, refining the accuracy
of score predictions.

For sampling the authors proposed an sampling approach called annealed Langevin
dynamics using the learned network to guide a prior noise sample towards the data
manifold. Basically its an updated version of Lavegin Dynamics where we sample in
every noise level using the corresponding NC score function, the step sizes are reduced
with every noise level update in order to eventually converge to the actual distribution.

The experiments presented were very competitive with other state of the art models

at the time.

3.2.2 Score-Based Generative Modeling through Stochastic Differen-
tial Equations

This is yet another seminal work by [106] on the matter where they developed a
unified view of the score based and denoising diffusion probabilistic generative models.

Basically an Ito SDE can model the diffusion process:
dx = f(x,t)dt + g(t)dw (3.12)
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3.2.2 Score-Based Generative Modeling through Stochastic Differential Equations

Algorithm 3: Annealed Langevin Dynamics

Require: {o;}f ¢ T
1: Initialize xq
2: fori%ltogjdo
g,

3: Q<€ & > Step size
L
fort < 1toT do

4

5 Draw z; ~ N (0, 1)

6: Xy — X1+ %Se(fit_l, o) + \/OTZ'Zt
7 end for

8: Xg ¢ X7

9: end for

10: return xXp

Where w is the standard Wiener process or known as Brownian Motion and f(-,?) :
R? — R? is called the drift coefficient and g(-) : R — R diffusion coefficient of x(¢). In
this framework the transition kernel receives samples from the continuous t rather than
the discrete levels of NCSM or DDPMs. What this SDE gives us is a general framework
for diffusing samples in a continuum of intermediate noisy distributions, in Figure 10 you
can see how a prior toy distribution of a Gaussian mixture of two modes can be diffused
into a single Gaussian prior by running it through the diffusion SDE for some time T

Consciously reversing the above SDE can give us samples from the data distribution
starting from a known prior, Anderson (1982) found that the reverse time SDE is also

diffusion process running backward in time and is given by:

dx = [f(x,t) — g(t)*Vx log ps(x)])dt + g(t)dw (3.13)

where the wiener process w now flows backward, and V log p;(x) is the score func-
tion of the perturbed distribution at time step . Once we define f, g and learn this
parameterized score function we are able to reverse the process and sample it by simu-

lating it using some type of numerical solver.

The authors also note that all the previous attempts to tackle the generative approach
of diffusion models (SMLD and DDPM) can be regarded as discretizations of these SDEs
for the forward case, specifically for the case of SMLD we can derive a Markov chain for

the perturbation kernel of the form:
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Xi:Xi,1+\/UiQ—JZ’,12Zi,1,izl...,N

where z;_1 ~ N(0,I) and when we take its limit with regard to the noise levels we
get a continuous stochastic process given by the following SDE:
d[o?(t)]

dx = d 3.14
X prami (3.14)

For the case of DDPM perturbation kernels we have the Markov Chain:

x; =\/1—Bixi1+\/Bizi-1,i=1...,N

which also converges to the SDE:

dx = —%B(t)xdt + VBB dw. (3.15)

The authors state and prove that the former SDE describing the SMLD approach has
exploding variances when ¢ — oo and named it Variance Exploding SDE (VE) and the
latter DDPM approach yields a process with fixed varieance hence the name Variance
Preserving SDE (VP). Also they proposed another type of SDEs that perform well on
likelihoods and called it sub-VP SDE that is bounded by the VP SDE:

dx = _%5(t)xdt + /B (1 — 2B ) gy, (3.16)

Using numerical methods we can produce approximate trajectories from SDEs. Euler-
Maruyama and Runge-Kutta are existing methods that can solve these systems and be
used for sample generation. Lastly the authors compared ancestral sampling used in
DDPMs with reverse diffusion samplers and concluded a slight advantage with the lat-
ter.

Another significant contribution of this paper is the introduction of a deterministic ODE
that exists for all SDEs and simulating trajectories gives us the same marginal probabil-
ities as the SDEs. This ODE was named by the authors the probability flow ODE:

dx — f(x,t)—%g(tﬁvxlogpt(x) dt (3.17)

the process above allows a plethora of capabilities, firstly we can use it to get exact

likelihoods, latent encoding of data samples that can be used for interpolation and since
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3.2.2 Score-Based Generative Modeling through Stochastic Differential Equations

Forward SDE (data — noise)

@ dx = f(x,t)d¢ + g(¢t)dw

. ? &ﬁ ;M"; ’ :
- / sc re function ‘

@ dx = [£(x,t) — ¢ (t)Vx log pi (x)| dt + g(t)dw

Reverse SDE (noise — data)

Figure 3.2. Transforming data to a simple noise distribution using a continuous-time
Ito SDE. This process can be reversed once we learn the score of the distribution at each
intermediate time step. Figure from [12].

the reverse process now is deterministic the latent encoding and its corresponding data
space sample are uniquely identifiable since the forward SDE has no trainable parameters,
and the correspoinding probability flow grants deterministic trajectories.

Lastly its noteworthy to mention the ease of controllable generation meaning that we
can condition our reverse process to sample from a specific mode of the data distribution

(class, text embedding, etc). So the conditional reverse-time SDE:

dx = {f(x,1) = g(t)*[Vx log p¢(x) + Vx log py(y[x)] }dt + g(t)dw. (3.18)

From the above expression we observe that we don’t have to train conditional models for
each class but use the pre-trained unconditional model and a forward model p;(y|x(t))
that "guides" the process to the correct mode of our data distribution. The authors
used controllable generation to tackle applications of class-conditional image generation,
image imputation and colorization.

In the context of our study, the Frechet Inception Distance (FID) scores mentioned were
considered state-of-the-art at the time. The authors conducted extensive experiments,

exploring various architectures and Stochastic Differential Equation (SDE) types.

The findings indicated that employing the sub-VP SDE and VE SDE, coupled with
deep architectures, yielded state-of-the-art results for both FID and negative log like-
lihoods (NLL). This outcome underscores the effectiveness of these specific SDE types
in capturing and generating high-quality samples, contributing to the advancement of

generative models.
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Data Forward SDE Prior Reverse SDE Data

dz = f(x,t)dt + g(t)dw 4)@— de = [f(z,t) — F(HV, logpy(2)] dt + g(t)dw

\/ \/

(z) m(x) > priz) pe(z)

2
G

Figure 3.3. The Forward path uses SDE to smoothly transform a complex data dis-
tribution to a known prior distribution and the backward path uses reverse-time SDE to
transform the prior distribution into the data distribution. Figure from [12].

3.3 Optimizing and Accelerating Diffusion Models

Even though diffusion models showed promising performance they were held back by
their slow inference spanning multiple model evaluations thus making them computation-
ally expensive and practically unusable. Most recent research is focused on accelerating
diffusion models by optimizing noise schedules, higher order samplers, progressive distil-
lation techniques, optimizing training schemes and more. We will briefly analyse some

core literature in this chapter.

3.3.1 Diffusion Process Optimization
Improved Denoising Diffusion Probabilistic Models

In this work by Nichol et al. [41] significant enhancements are introduced, extending
the horizon to 4000 steps and incorporating a hybrid loss to effectively learn the reverse
posterior’s variance. Recognizing the crucial impact of these variances on performance,
learning these variances is an unstable process and direct inference of these parameters is
hard for a neural network since they are really small, even for the log domain. As a result
the authors considered an learned interpolation of the forward and reverse variances.

Additionally, the noise schedule undergoes refinement, transitioning to a cosine sched-
ule. This adjustment reduces the rapid corruption of samples into noise, as observed in
the previous linear schedule, resulting in a broader range of better training samples. The
presented state-of-the-art results further underscore the efficacy of these model enhance-
ments.

Lastly, the authors achieve a notable improvement in sample speed for diffusion mod-

els by reducing the sample steps by an order of magnitude in the reverse process. This
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optimization proves sufficient to achieve near-optimal FID in fully trained models on the
image generation task, showcasing the efficiency gains achieved through these modifica-

tions.

Improved Techniques for Training Score-Based Generative Models

Song et al. [107] address the challenges of unstable training and slow sampling in
Noise Conditional Score Networks (NCSNs). Through a theoretical analysis focused
on high-dimensional spaces, they introduce a stability-enhancing technique involving
an exponential moving average of the model weights and an updated noise schedule.
The outcomes showcase remarkable success, yielding high-fidelity samples that rival the

quality achieved by leading GANS.

3.3.2 Fast Sampling Based Approaches
Denoising Diffusion Implicit Models

DDIMs where proposed by [108]| as a way to tackle the long sampling process that
diffusion models suffer from. They extend the diffusion process into non-Markovian
chains, aiming to speed things up. The core idea involves making an educated guess
about the initial sample xp and then, through a reverse process, obtaining the next
latent variable based on that guessed sample. Below we define the non-Markovian case

of the reverse diffusion conditioned on zy which is tractable:

T

4o (z1.7]|20) := go(27|20) X an(xt—ﬂxt,xo), (3.19)
i—2

where ¢, (x7r|z0) = N (Varz, (1 —ar)I), for t > 1,

qU(IEt,l‘CL‘t,.CL‘()) = N <\/Oét1$0 + \V 1-— 1 — Ut2 . H,O‘?I) . (320)

Using the above we can "guess" the sample x¢ and find the next component of the chain.

For some zg ~ q(z¢) and ¢ ~ N(0,1), z; by rewriting:

Ty = /oo + V1 — e
one can then predict the denoised observation, which is a prediction of zy given x;:

(xy —V1—ay- eét)(xt))'
NGT
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We can then define the generative process with a fixed prior pét)(ﬂsT) = N(0,I) and

N( ;1)(1:1),(;%1) =1,

po(wi—1]re) = ®
do(@i—1|xe, fy ' (2)) otherwise,

Hence, the actual model becomes implicit since we don’t have an explicit parametric
specification for the reverse distribution (except the last step), but we parameterize the
condition of the reverse non-Markovian process.

Now by taking a subset of steps {zr,, ..., Zrs}, where 7 is an increasing sub-sequence
of [1,...,T] of length S and running the above procedure we can generate samples of

high quality with a lot fewer steps:

t — \/1 — theg) <1’t)
Jay (3.22)

+ 1-— Q41 — 0 - €§)t) (.’L't) + o€

x
Tr—1 =+/Qt—1

:

When we set o, = 0 the generative process becomes deterministic and the resulting model
becomes implicit.

A major part of the success of this approach is that you don’t have to retrain DDPMs
to implement this accelerated sampling, you just need to tweak the sampling strategy.
The proposed methods for sampling turned out to be much more effective than regular
DDPMs, especially for a small number of reverse steps. Even for about 100 reverse steps,
the results were surprisingly close to doing the full 1000 steps in reverse after training on

1000 forward steps which is a critically important result.

Elucidating the Design Space of Diffusion-Based Generative Models

In their seminal work, [42] made significant contributions to the theoretical underpin-
nings of Diffusion-based Generative Modeling. Drawing inspiration from the foundational
work of [106] and the Markovian approach proposed by [11], Karras et al. elegantly con-
nected these perspectives within a unified framework.

Essentially, they achieved the formalization of both approaches as discretizations of a
more generalized Stochastic Differential Equation (SDE). This formalization allowed for
the coherent tuning and selection of parameters within a unified structure. Armed with
this versatile framework, Karras et al. combined the different approaches, exploring and
finding the best possible parts for this unified equation, as a result achieving state-of-the-

art accuracy. Another contribution of their lies in the training scheme proposed in order
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to mitigate noise amplification from the raw denoising process. Lastly they proposed
sampling techniques for deterministic and stochastic sampling based on second order
methods and a discretization scheme for choosing noise levels, parameterized so that its
more flexible. In summary, due to their work diffusion based models were made more
flexible uniting them within a cohesive theoretical framework and SOTA performance in

terms of sampling steps and FID benchmark scores.

3.3.3 Progressive Distilation for Fast Sampling of Diffusion Models

In progressive distillation proposed by Salimans et al. [13]| the authors manage to
distil knowledge from a teacher model trained on a normal diffusion setting to a student
model that tries to predict multiple DDIM steps of the teacher. Basically they initialize
an identical student-teacher pair and iteratevly try to optimize the student to match the
teachers 2-step DDIM prediction until convergence. They then repeat the same process
doubling the DDIM sampling steps the student tries to predict until they reduce them by
orders of magnitude without too much loss in sampling quality. This work showed great
progress in accelerating diffusion models and is commonly implemented in commercial

diffusion models.

| €
Z%/i—lei?{

™

Distillation

Zlfz—fzan U{
4 \_7 -x = f(z1:6)
1}{ |

Z1ja — f Z1 /23
N

Distillation

Z1/4 n)
4 NS
X X

><<

t=20

Figure 3.4. Progressive distillation technique scheme. Figure from [13].

3.4 Guiding Diffusion Models

Another important aspect of diffusion models is conditioning them in order to gen-
erate specific classes or modes of a distribution. This subject is at the core of most

commercial uses of diffusion models found online and is what allowed text guided models
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Algorithm 1 Standard diffusion training Algorithm 2 Progressive distillation
Require: Model x4(z;) to be trained Require: Trained teacher model x,,(z;)
Require: Data set D Require: Dataset D

Require: Loss weight function w() Require: Loss weight function w()

Require: Student sampling steps NV
for K iterations do

0+ > Init student from teacher
while not converged do while not converged do
x~D > Sample data x~D
t ~ U[0,1] > Sample time t=i/N, i~ Cat[l,2,...,N]
e~ N(0,1) - Sample noise e~ N(0,1)
Z; = oyX + o6 > Add noise to data Z; = X + O€

# 2 steps of DDIM with teacher
t'=t-05/N, t"=t-1/N

Zy = ¥y (Ze) + 25 (e — Xy (Ze))

Zpor = (xtu}‘cf,(zt:) + D (fo = Qt'ﬁn(2¢ﬂ))

ay

X =x © Clean data is target for X - — % & Teacher X target

A = log[ad /o}] > log-SNR A = log[a? /o}]

Ly = w(M)||% — %p(2z:)||3 © Loss Ly = w(h)||x — x0(z:) |3

0« 0 —~yVyLy > Optimization 04+ 0 —~VyLy

end while end while
n+0 > Student becomes next teacher
N < N/2 v Halve number of sampling steps
end for

Figure 3.5. Progressive distillation algorithm. Figure from [13].

to rise in popularity. We will analyse diffusion guidance and conditioning of different

denoiser backbones in this chapter.

3.4.1 Diffusion Models Beat GANS in Image Synthesis

Dhariwal et al. [14] searched the architecture space and scaled diffusion models for
large image generation and proposed a novel method for trading diversity with fidelity
in the sampling process called classifier guidance.

Based on the prior work of [105, 106, 11| they ablated the design space of the U-
Net architecture trying global attention layers in different resolutions, multiple residual
blocks and timestep and class embedding injections with adaptive group normalization
based on the work of [109]. Furthermore, they also used the up-scalling stack found in
BigGAN by [110] for large image generation tasks such as LSUN dataset [111] or the
large imagenet images.

The second contribution of this work is classifier guidance, in essence by training
a noise conditional image classifier and using its gradients we can guide the diffusion
process to sample from specific modes of the distribution. As seen and in Figure 3.6 by
incorporating a conditional classifier we can enforce direct conditional sampling.

Finally, state of the art results in multiple datasets were reported by the authors

showcasing that the improvements proposed have a significant impact. Classifier guidance
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3.4.2 Classifier-Free Diffusion Guidance (CFQG)

Algorithm 1 Classifier guided diffusion sampling, given a diffusion model (p9(x+), Xg(z¢)), classi-
fier py(y|z:), and gradient scale s.

Input: class label y, gradient scale s
xr < sample from A(0, )
for all ¢ from T to 1 do
My Y H’B(ﬁ:t% 29("(’})
x4—1 < sample from N (p + sX V,, log pg(y|z:), )
end for
return zg

Algorithm 2 Classifier guided DDIM sampling, given a diffusion model eg(x;), classifier pg(y|xe),
and gradient scale s.

Input: class label y, gradient scale s
z1 < sample from A/(0, T)
for all ¢ from Tto1do
€+ eg(ay) 1f1—aLVL, logpy(ylay)

Ti_1 < A/G_1 (I' ““) +T—a;_1¢é

end for
return zg

Figure 3.6. Classifier guidance for different sampling strategies. Figure from [14].

although an expensive procedure, since you have to jointly train a second network on
the dataset thus increasing computational costs, was a first attempt at exploring the

capabilities of these models on conditional generation.

3.4.2 Classifier-Free Diffusion Guidance (CFG)

CFG by Ho et al. [15] is a seminal paper that proposed a method to avoid training a
separate classifier (Classifier guidance) to guide diffusion models as previously proposed
by [14]. Classifier free guidance refers to training a conditional and unconditional diffusion

model and then combining them to sample conditionally from the target distribution:
€9(zx,c) = (1 +w)eg(zn, c) — weg(2))

Theoretically the above formula can be derived by considering an implicit classifier if we

had access to the exact scores (denoted by *):

1
V., logpi(clzy) = —a[e*(zm c) —ex (z2))]

Now, by using this classifier to do classifier guidance we derive to the score estimation
formula:
€ (zn,¢) = (L +w)e*(zn, ¢) — we™(zy)
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We can train both conditional and unconditional diffusion models using a single neural
network and use some null class embedding when training the unconditional model, see

Figure 3.7 for more details. Authors also note that we can interpret classifier free guidance

Algorithm 1 Joint training a diffusion model with classifier-free guidance

Require: pyncond: probability of unconditional training

1: repeat

2 (x,¢) ~ p(x,c) > Sample data with conditioning from the dataset
3 ¢ < @ with probability pyncona > Randomly discard conditioning to train unconditionally
4: A~ p(A) > Sample log SNR value
5: €~ N(0,I)

6: Z) = 0)\X + O\€E > Corrupt data to the sampled log SNR value
7: Take gradient step on Vg ||€g(zy, ¢) — €|’ > Optimization of denoising model
8: until converged

Figure 3.7. Classifier free guidance training algorithm. Figure from [15].

as trading off Inception (IS) and FID scores as we vary the guidance weight or by trading
mode coverage and sample fidelity. The strong point of this approach lies in the training
scheme where little to no changes have to be applied to be able to sample conditionally,

due to this advantage it has become an essential method when using diffusion models.

3.5 Conditioning Diffusion Models

3.5.1 Conditioning with Cross Attention
Unet Architecture

The U-Net architecture, originally introduced by Ronneberger [16], stands as a pivotal
framework, particularly within the domain of diffusion models. This architectural de-
sign leverages the structure of an Encoder-Decoder Convolutional Network with residual
connections that facilitate the transfer of features from the encoder to the decoder.

The primary objective of the encoder is to extract features at multiple scales and
subsequently downsample them, capturing increasingly abstract, high-level features. The
latent representation, situated in the bottleneck and comprising these abstract features,
is then relayed to the decoder. By passing, either concatenating or adding, the encoder
feature maps through the residual connections we enforce information from different
scales to contribute to the task. Full Initial architecture in Figure 3.8.

Notably, the U-Net architecture has demonstrated its efficacy in various applications,
with a prominent example being medical image segmentation. Even when confronted
with limited datasets, U-Net exhibits impressive performance, showcasing its adaptability

and robustness.
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Figure 3.8. The U-Net architecture used in the first publication. Figure modified from

[16].

Stable Diffusion

Rombach elt al. [17] proposed Latent Diffusion Models by leveraging autoencoders to
perceptually compress data and then apply diffusion method in the latent space. Further-
more a conditioning mechanism was proposed in order to generate samples conditioned
on other modalities. Figure 3.9 shows the whole architecture, starting from the percep-
tual encoder we compress the input image after that we proceed to a diffusion process in
the latent space. The U-Net backbone that is mostly used in the literature is modified
to include a cross attention layer that token-based encoded modalities can be included

to condition the process.

More specifically to condition on another modality y the authors use a modality
specific encoder 7y(y) that projects y to an intermediate representation 7 (y) € RM*dr,
which is then mapped to the intermediate layers of the UNet via a cross-attention layer

implementing

) QKT
Attention(Q, K, V) = softmax -V,
Vd

with @ = Wg) coi(z), K = Wl((i) -19(y), and V = W‘(,i) -19(y). Where ¢;(z;) € RV*ds
denotes the flattened intermediate representation of the U-Net and W‘(/i) € Rxd:, Wg ) €
R%>dr and WI(? € R¥4r are learnable projection matrices.
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The diffusion training objective remains unchanged and the only difference is the use

of the noised latent representation instead of the pixel space one:

Lrom = Ee (o) emno)elle — €o(zt, 1) 13

The authors managed to accelerate diffusion generation and training by implementing
the ideas above and made diffusion models more accessible. Lastly the conditioning

mechanism showcased great results and is commonly used in the literature.
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Figure 3.9. Diffusion model architecture used in Stable Diffusion utilizing a U-net with
conditioning in another modality through fusion. Figure from [17].
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3.5.2 Transformer based diffusion models

Diffusion Transformer

Peebles et al. [24] and Bao et al. [19] proposed a different backbone as the denoising
network in diffusion models. Literature until their work used only U-Net based architec-
tures and their scalability was limited. Inspired by the work of [17] on latent diffusion
models, [49] on adaptive layer normalization and ResNet [112] the Diffusion Transformer
(DiT) architecture was proposed. Since scalability is at the forefront the authors didn’t
diverge from the classic Vision ViT design ([113]|) so most of the components remain
unchanged.

Mainly, the conditioning mechanism of the backbone is the most core part of this
work, the authors tried a variety of methods commonly found in the literature. In Figure
3.10 you can see in more detail each one. We will mainly analyze adal.N-Zero block since

it had the best performance, for more analysis on the rest please refer to their work.
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3.5.2 Transformer based diffusion models

As seen in Figure 3.10 the Diffusion Transformer Block is basically a ViT block
with an adaptive layer normalization and dimensional scaling parameters « that are
computed by the context and timestep representations. The conditioning mechanism
is called adaptive layer normalization zero initialized (adaL.N-Zero) block. Basically an
adaptive normalization layer with zero initialized scale factor -, this is done to accelerate
large-scale training, this technique is also found in the diffusion U-Net models by zero
initializing the final convolutional layer. All the scaling and normalization parameters
are regressed using an MLP.

The resulting models outperformed all current SOTA approaches managing great
FID scores with fewer compute resources needed (Gflops as stated by the authors). A
comprehensive study of scaling and performance was given by the authors since a main

concern for these models is scalability, for more details refer to their work.
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Figure 3.10. Diffusion Transformer architectures with all the different proposed condi-
tioning mechanisms. Figure from [5].

Multimodal Diffusion Transformer

Recent progress in rectified flow and transformer-based generative models has moti-
vated the design of architectures that can unify large-scale multimodal generation. Esser
et al. [4] propose the Multimodal Diffusion Transformer (MMDiT), a flexible architecture
that extends the principles of diffusion modeling into a transformer backbone equipped

with feature-wise modulation mechanisms.

Motivation. Traditional diffusion U-Nets are highly effective but face scalability lim-
itations when extended to very high-resolution images or multimodal tasks that require
flexible conditioning. Transformers, on the other hand, offer better scalability with re-

spect to model size and training data, as well as natural compatibility with sequential
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Chapter 3. Diffusion Models

multimodal inputs such as text, audio, or image patches. MMDIiT combines the ad-
vantages of diffusion and transformers while introducing a structured mechanism for

multimodal conditioning.

Architecture. MMDIT leverages Feature-wise Linear Modulation (FiLM) [49] to inject
conditioning signals into the diffusion transformer blocks. For each input sequence token
x;, the conditioning flow generates scale and shift parameters (v;, 5;) that are applied
element-wise:

Modulation(z;) = v; ® Fj . + i,

where F; . denotes the conditioned feature representation and © is element-wise multipli-
cation. This mechanism enables a fine-grained interaction between timestep embeddings,

input features, and conditioning modalities.
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Figure 3.11. Multimodal Diffusion Transformer block. Input and conditioning sequences
are first modulated independently, then concatenated for joint self-attention. Additional
modulation layers propagate conditioning signals through the network. Figure from [4].
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After modulation, the conditioned and input sequences are concatenated and passed
through a multi-head self-attention block. Additional modulation layers are then applied
to refine the conditioning signal across multiple depths of the transformer. Figure 5.4
illustrates the architecture of a single MMDiT block.
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3.5.2 Transformer based diffusion models

UniDiffuser

Recent advances in diffusion models have enabled powerful joint generative modeling
across multiple modalities. A prominent example is UniDiffuser [18], which introduces
a unified diffusion framework capable of simulating joint, conditional, and marginal dis-

tributions of heterogeneous modalities within a single model.

Unified Joint Modeling Unlike conventional multimodal systems that require sepa-
rately trained models for each distribution (e.g., p(z|y), p(y|x), or unconditional p(z)),
UniDiffuser parameterizes all three with one diffusion backbone See figure 3.12. By lever-
aging a shared latent space, the model learns the joint distribution p(z,y) directly and

can perform:
e Conditional generation: e.g., generating text given an image, or vice versa.
e Unconditional generation: sampling either modality independently.

e Joint generation: producing aligned multimodal pairs simultaneously.

Predicted nois
R CTTTTTT

[T
c ©: Concaenste Linar

€

Transformer Block

Transformer Block

Transformer Block

( Embedding Layer )
T

) ¥,

() Encode images & texts into latent space (b) The U-VIT backbone of the joint noise prediction network

Figure 3.12. Implementation of UniDiffuser [18] on image-text data. (a) First, images
and texts are encoded into latent space. (b) Second, we train UniDiffuser parameterized
by a transformer [19] in the way illustrated in Figure 2 on the latent embeddings.

Training Objective The model employs a noise-conditional score network with modality-
specific conditioning mechanisms. During training, input pairs are randomly masked (one
or both modalities), enabling the diffusion process to learn to recover missing modali-
ties or generate consistent multimodal samples. Formally, given a data pair (x,y), the

denoising score function sy is trained across three regimes:
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LyniDiffuser = IEt,(x,y) ||39 (Zt, Yt ta, ty) - v(ﬂc,y) log pt(-%', y) H2:|

where (x4, ;) denotes the noised inputs at timestep ¢.
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Chapter

Multimodal Deep Learning and the Missing Modal-
ity problem

4.1 Introduction

The ability to process and integrate information from multiple sensory channels is
fundamental to human intelligence. We naturally combine visual, auditory, and textual
cues to understand our environment in ways that far exceed the capabilities of any single
modality alone [114]. This observation has motivated decades of research in multimodal
learning, culminating in the deep learning era where neural architectures can automati-
cally learn complex cross-modal representations [115].

However, the promise of multimodal systems is often undermined by a practical re-
ality: real-world data is messy, incomplete, and unreliable. Sensors fail, network connec-
tions drop, and data collection pipelines break down. This leads to the missing modality
problem, where systems trained on complete multimodal data must operate with only par-
tial information [116]. This chapter examines the fundamental challenges of multimodal
learning and the emerging solutions for handling missing modalities, with particular focus

on recent advances in generative recovery approaches.

4.2 Multimodal Fusion: From Concatenation to Attention

4.2.1 The Challenge of Heterogeneous Data Integration

Multimodal learning fundamentally differs from single-modal approaches due to the
heterogeneous nature of different data types 4.1. Consider the task of emotion recog-
nition: audio features might capture prosodic information through spectrograms, visual

features encode facial expressions via convolutional or vision-transformer networks, and
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Figure 4.1. Different task relevance and heterogeneity across modalities. Figure from

/20].

textual features represent semantic content through word embeddings or contextual en-
coders such as BERT [117, 118]. Each modality operates in different dimensional spaces,
exhibits distinct noise characteristics, and contributes varying amounts of discrimina-
tive information. For example, the language modality is often the most semantically
dense, whereas acoustic signals may convey subtler cues that are more ambiguous or
context-dependent.

The core challenge lies not only in effectively processing these modalities individu-
ally, but also in learning meaningful interactions between them. These interactions may
be complementary (where modalities provide additional cues), redundant (overlapping
information), or even conflicting (where one modality introduces noise). A successful
multimodal framework must therefore integrate signals in a way that enhances discrimi-
native power while being robust to noise, misalignment, and missing data.

Early attempts in multimodal fusion treated the task as a straightforward engineering
problem, often relying on simple strategies such as concatenation of features from dif-
ferent modalities. However, such approaches ignore the complex statistical dependencies
between modalities and often lead to suboptimal performance due to the “curse of dimen-

sionality,” modality imbalance, or the inability to model higher-order interactions [119].

4.2.2 Evolution of Fusion Strategies

The field has since evolved through multiple generations of fusion approaches, each
addressing the limitations of its predecessors:

Early Fusion integrates raw or low-level features from different modalities into a
single representation prior to further processing [120]. While computationally simple
and appealing for shallow models, early fusion assumes perfect temporal and semantic
alignment between modalities. Moreover, concatenation dramatically increases the input
dimensionality, making learning more difficult and less robust. Crucially, this approach

also prevents the model from learning modality-specific representations before integra-
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1.2.3 The Attention Revolution and Modern Fusion Approaches

tion, often leading to information loss.

Late Fusion adopts the opposite perspective: each modality is processed indepen-
dently, and the outputs are combined at the decision or prediction stage [121]. This
strategy has the advantage of preserving modality-specific processing pipelines, which
can be tailored to the strengths of each modality. However, because the modalities only
interact at the final stage, late fusion misses the opportunity to exploit cross-modal
dependencies during feature extraction. As a result, it performs well when modalities
provide largely independent evidence but struggles in tasks—such as sentiment or emo-
tion recognition—where subtle cross-modal interactions carry essential information.

Hybrid Fusion emerged as a compromise between the two extremes, combining
modalities at multiple intermediate levels of abstraction [122|. For instance, features
may be fused at both the representation and decision stages, allowing the network to
capture some degree of cross-modal interaction while still preserving modality-specific
structure. However, determining the optimal fusion points and strategies often requires
domain expertise and extensive hyperparameter search. Furthermore, hybrid approaches

often lack flexibility when faced with missing or corrupted modalities.

4.2.3 The Attention Revolution and Modern Fusion Approaches

The true breakthrough in multimodal fusion came with the introduction of attention
mechanisms, which allowed models to dynamically weight information across modal-
ities depending on context [123]. Instead of statically combining features, attention
enables fine-grained, content-dependent integration. In particular, cross-modal attention
mechanisms allow one modality (e.g., language) to query and selectively extract relevant
information from another (e.g., vision), thereby modeling conditional dependencies more
explicitly.

Transformer-based architectures extended this principle by introducing multi-
head attention, which captures different types of relationships between modalities simul-
taneously [71, 124]. For example, one head might focus on aligning temporal signals in
audio with textual cues, while another might capture visual-semantic correspondences.
This multi-perspective mechanism dramatically increased the expressiveness and flexi-
bility of multimodal fusion, leading to state-of-the-art performance in many downstream
tasks, from visual question answering to emotion recognition.

Building on these foundations, recent advances have pushed fusion beyond supervised
alignment by leveraging contrastive learning and generative modeling. Contrastive
multimodal models such as CLIP [125] learn a shared embedding space for vision and lan-

guage by pulling paired samples together and pushing apart unpaired ones. This enables
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zero-shot transfer and robust cross-modal retrieval without requiring explicit supervi-
sion. Similarly, diffusion-based generative models have demonstrated how multimodal
alignment can emerge naturally from joint generation objectives [126, 18|.

In parallel, multimodal transformers such as MMBT, Visual BERT, and more recently
PaLl and Flamingo, show how large-scale pretraining on paired multimodal corpora can
produce flexible and generalizable representations [127, 128]. These models are capable
of handling not only fusion but also imputation, cross-modal transfer, and even few-shot
learning scenarios, significantly expanding the scope of multimodal learning.

This introduction section of multimodal learning is adapted from the dissertation of
Efthymi Georgiou [129].

4.3 The Missing Modality Problem

4.3.1 Problem Formulation and Real-World Implications

The missing modality problem arises from the fundamental mismatch between train-
ing and deployment conditions. Multimodal systems are typically trained on carefully
curated datasets where all modalities are present and well-aligned. However, deployment
scenarios rarely offer such luxury. In healthcare, certain medical imaging modalities
may be unavailable due to equipment failures or patient contraindications [130]. In au-
tonomous driving, sensors may fail due to weather conditions or hardware malfunctions.
In social media analysis, users may post text without images or videos without captions.

Formally, given a set of modalities M = {M;, Mas,..., Mg} with corresponding

2, ..., 28} the missing modality problem oc-

feature representations X = {x(l),x(
curs when only a subset M s C M is available. The system must learn a function

[ Xops — Y that performs comparably to the complete function f: X — Y.

4.3.2 Naive Approaches and Their Limitations

Initial attempts to address missing modalities relied on simple strategies that quickly
revealed their inadequacy:

Zero Imputation replaces missing modalities with zero vectors. This approach is
computationally trivial but introduces artificial patterns that confuse learned represen-
tations.

Mean Imputation substitutes missing modalities with dataset means. While slightly

better than zero imputation, it eliminates the natural variance present in real data.
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Modality Dropout during training attempts to make models robust to missing
inputs by randomly masking modalities [131]. However, this approach often leads to
models that ignore weaker modalities entirely, reducing overall performance.

These naive approaches fail because they don’t address the fundamental issue: miss-
ing modalities represent lost information that cannot be simply filled with generic values.
They require sophisticated recovery or adaptation mechanisms that preserve the mean-

ingful relationships between modalities.

4.4 Deep Generative Approaches to Modality Recovery

The recognition that missing modalities require sophisticated treatment has led to
the emergence of generative recovery approaches. These methods attempt to reconstruct
missing modalities using information from available ones, leveraging advances in gener-

ative modeling to produce realistic substitutes.

4.4.1 Distribution-Consistent Recovery with Normalizing Flows

Wang et al. [21] identified a critical limitation in previous recovery approaches: the
distribution gap between generated and real modalities. Their DiCMoR (Distribution-
Consistent Modal Recovery) framework addresses this issue through a principled ap-
proach based on normalizing flows.

The key insight is that successful modality recovery requires maintaining not just
perceptual quality, but distributional consistency. Previous methods often generated
plausible-looking outputs that nonetheless exhibited subtle distribution shifts, leading to
degraded performance in downstream tasks.

DiCMoR employs a three-stage pipeline:

1. Feature Extraction: Shallow encoders project observed modalities into a com-
mon feature space, ensuring alignment while preserving modality-specific informa-

tion.

2. Latent Mapping: Normalizing flows learn bijective mappings between modality
representations and a shared latent space. This ensures that the transformation

preserves the full distribution of each modality.

3. Recovery Generation: An aggregation mechanism combines latent representa-
tions of observed modalities to generate the latent representation of the missing
modality. The reverse flow then produces the recovered modality in the original

feature space.
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Figure 4.2. DiCMoR architecture for acoustic modality recovery. The framework uses
normalizing flows to ensure distribution consistency between generated and real modali-
ties. Figure from [21].

The training objective balances multiple goals:
ﬁtotal = Etask + 6(['7"60 + »Ccdt) (41)

where L;,s ensures good downstream performance, L,.. measures reconstruction

quality, and L4 enforces class-aware distribution consistency.

4.4.2 Diffusion Models for Modality Generation

Building on the success of diffusion models in image generation [11], researchers have
adapted these approaches for missing modality recovery [3|. Diffusion-based recovery
offers several advantages over flow-based methods:

Generation Quality: Diffusion models have demonstrated superior generation qual-
ity across various domains, producing more realistic and diverse outputs.

Conditional Generation: The denoising process naturally accommodates condi-
tioning information, allowing fine-grained control over the generation process based on
available modalities.

Robust Training: Unlike adversarial approaches, diffusion models exhibit stable
training dynamics without mode collapse or training instabilities.

The diffusion-based approach maintains the same architectural principles as DICMoR
while replacing normalizing flows with a diffusion backbone. Cross-attention mechanisms

enable conditioning on observed modalities, similar to techniques used in stable diffu-
sion [132].
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4.5 Feature-Level Recovery Strategies

While generative approaches attempt to recover missing modalities in their origi-
nal representation space, an alternative paradigm operates at the feature level, learning

shared representations that can substitute for missing inputs.

4.5.1 Cross-Modal Imagination for Unified Missing Modality Handling

A critical limitation of previous missing modality approaches lies in their specificity:
different models must be trained for each possible missing modality configuration. This
scalability problem becomes particularly acute in multimodal systems with three or more
modalities, where the number of possible missing combinations grows exponentially. Zhao
et al. [6] address this challenge through their Missing Modality Imagination Network
(MMIN), which introduces a unified framework capable of handling arbitrary missing
modality patterns during both training and inference.

MMIN addresses this through a unified triplet input format (x(a),x(“),x(t)) where
missing modalities are replaced with zero vectors during both training and inference, See
Figure 4.5. This standardization allows a single model to handle all possible missing

modality combinations while learning robust cross-modal representations.
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Figure 4.4. Diffusion-based modality recovery network. The approach adapts conditional
diffusion models for cross-modal generation tasks. Figure from [3].

Cross-Modal Imagination Architecture

The core innovation of MMIN lies in its imagination module, which explicitly mod-
els the process of inferring missing modality representations from available ones. The

architecture consists of three main components:

Modality Encoder Network extracts sentence-level embeddings for each modality
using specialized encoders: LSTM networks for temporal acoustic and visual features,
and TextCNN for textual content. These encoders are first pre-trained on complete

multimodal data and then fine-tuned within the unified framework.

Imagination Module employs Cascade Residual Autoencoders (CRA) [66] to per-
form cross-modal inference. Given available modality embeddings hgyaiiapie, the module

predicts missing modality representations through a series of residual transformations:

K h(w(zia e ifk=1
Azt = | & (Ravaitabic) ' (4.2)

¢" (havaitable + Z?;ll AZ) ifk>1

The final imagined representation combines the input with all residual outputs:
Pimagined = Pavailable + Zszl AZF,

Cycle Consistency Learning ensures bidirectional imagination quality through
coupled forward and backward imagination networks. The forward network predicts
missing modalities from available ones, while the backward network reconstructs the orig-
inal available modalities from the imagined complete representation. This bidirectional

constraint helps maintain information preservation during the imagination process.
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Figure 4.5. MMIN architecture overview. Figure from [6]. (a) Training phase with
visual modality missing: the network learns cross-modal imagination using all possible
missing modality combinations. (b) Modality encoder structure: pre-trained encoders
(gray) remain fized while updated encoders (orange) are fine-tuned during MMIN training.
(¢) Inference phase: unified model handles arbitrary missing modality patterns through
learned imagination module.

Joint Optimization Strategy

MMIN employs a multi-objective loss function that balances downstream task per-

formance with imagination quality:

Etotal = Ecls + Alﬁforward + >\2['backwa7"d (43)

where L, represents the emotion classification loss, £ forwaerd measures the quality of
forward imagination (available — missing), and Lygckward €valuates backward reconstruc-
tion (imagined — original). The imagination losses use L2 reconstruction error between

predicted and ground-truth modality representations.

The joint representation for classification combines latent vectors from all autoencoder
stages: R = concat(cy,co,...,cp), where ¢j represents the latent vector from the k-
th residual autoencoder. This aggregation captures information at multiple levels of

abstraction.
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4.5.2 Multi-modal Learning with Missing Modality via Shared-Specific
Feature Modeling

The shared-specific framework [22] recognizes that multimodal data contains both
modality-specific information (unique to each data type) and shared information (com-
mon across modalities). By explicitly modeling this decomposition, systems can use
shared information from available modalities to compensate for missing ones.

The architecture employs dual encoding pathways:

Modality-Specific Encoders Egi) extract features unique to modality i:

h) = BO (z0) (4.4)
Shared Encoders Eg;l) extract cross-modal information from each modality:

ho = B («) (45)

When modality j is missing, its shared representation is approximated by aggregating

shared features from available modalities:

hl) — Sl (4.6)
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Figure 4.6. Shared-specific feature modeling with complete modalities. Each modality is
processed through both specific and shared encoders. Figure from [22]

The training process uses adversarial objectives to ensure proper separation:
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from available modalities substitute for the missing modality’s representation. Figure

from [22]

Domain Classification Loss encourages modality-specific features to retain suffi-
cient information for modality identification, ensuring they capture unique characteristics
of each data type.

Domain Confusion Loss promotes shared features that are invariant across modal-

ities through adversarial training, ensuring they capture truly common information.

4.5.3 Missing Modalities Imputation via Cascaded Residual Autoen-
coder

The CRA framework [66] decomposes the imputation process into multiple cascaded
stages, each designed to iteratively reduce the discrepancy between the generated and
ground-truth modalities. Unlike a conventional single-pass autoencoder, CRA leverages a
residual learning scheme where each subsequent autoencoder stage focuses on correcting

the reconstruction errors of its predecessor.

Stage-Wise Residual Autoencoders

CRA is composed of a sequence of autoencoder modules. The first module generates
a coarse reconstruction of the missing modality. Each subsequent module then receives
the residual error from the previous reconstruction and learns to correct it. This cascaded
residual learning progressively improves the quality of the imputation.

Formally, let X (™) denote the ground-truth missing modality and Xt(m) the recon-
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structed modality at stage t. The residual update is expressed as:
Ry = X — x[™

where R; is the residual at stage t. The subsequent autoencoder stage learns a mapping

fi+1 that predicts Ry, yielding the refined reconstruction:
xm) _ x(m) R
t+1 t + ft+1( t) .

This formulation ensures that each stage does not relearn the full modality but instead

focuses only on reducing the remaining reconstruction error.

Progressive Imputation

The cascaded design stabilizes training and improves convergence. By distributing
the reconstruction task across multiple stages, CRA avoids the pitfalls of overfitting
and under-reconstruction often observed in single-step autoencoders. Furthermore, the
progressive refinement aligns with human perception, where coarse-to-fine processing is

frequently observed in multimodal understanding.

4.5.4 Learning Robust Joint Representations by Cyclic Translations
Between Modalities

The central idea of Pham et al. [29] is that corresponding audio and visual streams
carry semantically aligned information when they originate from the same event. By
contrasting aligned (positive) and misaligned (negative) audio-visual pairs, the model
learns a joint embedding space.

Network Architecture

The framework employs modality-specific convolutional neural networks:

e A vision network processes image frames or spatio-temporal features from video

segments.
e An audio network encodes short-term spectrogram representations of sound.

Outputs are projected into a common embedding space, where their similarity is mea-

sured.
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Training Objective

The system is trained using a binary classification objective: predict whether an
audio-visual pair is synchronized. Formally, given embeddings v (visual) and a (audio),

their similarity s(v,a) is computed, and the model minimizes the cross-entropy loss:

L= —(ylogo(s(v,a)) + (1 —y)log(l — o(s(v,a)))),

where y = 1 for aligned pairs and y = 0 otherwise.

4.6 Noise-Robust Representations

Fan et al. [133| observe that the "missing" modality problem often represents an
extreme case of data corruption rather than complete absence. Their approach treats
missing modalities as heavily corrupted inputs and employs variational autoencoders for
joint denoising and recovery.

This perspective shifts the problem from discrete missing/present states to a con-
tinuous spectrum of data quality. The VAE framework provides principled uncertainty
estimation, allowing systems to assess the reliability of both observed and recovered infor-
mation. This approach shows particular promise in scenarios where "missing" modalities

are actually present but heavily degraded.

4.7 Domain-Specific Applications and Insights

4.7.1 Medical Imaging: Handling Clinical Constraints

Medical imaging presents unique challenges and opportunities for missing modality
recovery. In MRI imaging, multiple sequences (T1, T2, FLAIR) provide complementary
diagnostic information, but acquisition time, cost, and patient comfort often limit which
sequences can be obtained [130].

CoLa-Diff addresses these challenges through several medical-specific innovations:

Anatomical Consistency: Brain region masks guide the generation process, en-
suring recovered modalities respect known anatomical structures.

Clinical Validation: Generated modalities must not only look realistic but preserve
diagnostic information relevant to clinical decision-making.

Computational Efficiency: Operating in latent space reduces memory require-

ments, crucial for high-resolution medical images.
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The medical domain highlights the importance of domain expertise in modality re-
covery. Generic generation approaches may produce visually plausible results that lack
clinical validity, emphasizing the need for domain-specific constraints and evaluation

metrics.

4.7.2 Conversational AI: Dynamic Modality Availability

Conversational multimodal systems face unique challenges where modality availability
changes dynamically throughout interactions. Graph neural network approaches model
these scenarios by representing conversations as dynamic graphs where nodes represent
utterances and edges capture temporal and speaker relationships [134].

The graph structure naturally accommodates missing modalities through information
propagation. When visual information is unavailable for certain utterances, graph con-
volutions can propagate relevant information from neighboring nodes where visual data

is present.
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5.1 Proposed Methodology

5.1.1 General Formulation

Let X = {x;, 2y, x4} denote the input space of three modalities—language (z;), vision
(xy), and audio (x,)—corresponding to a single utterance. In the Multimodal Emotion
Recognition (MER) task, the goal is to learn a function F : X — y that maps the
observed modalities to a discrete or continuous emotion label y.

In real-world applications, however, not all modalities may be present at inference
time. Let M C {l,v,a} denote the set of modalities observed in a given sample, and
M€ its complement—the set of missing modalities. The central challenge is to infer or
approximate the missing elements {x,, : m € M¢°} conditioned on the available ones
{z, : 0 € M}, such that downstream emotion classification remains robust.

Formally, we aim to model the conditional distributions:
po(zm(0) | 2,(0)), for all m € M€, (5.1)

where z(0) refers to clean data (i.e., at time ¢ = 0 in the diffusion process). Once the
missing modalities are sampled or imputed, we pass both observed and reconstructed

modalities to a fusion model 7 for final prediction:
y= 77€($?7$;7932)’ (5.2)

where ), =z, if m € M and z}, = %, (sampled) if m € M°.
To model the conditional distributions pg(x,(0) | z,(0)), we adopt a denoising dif-
fusion probabilistic model (DDPM) framework. Each modality is assigned a separate

score network s,, (-, t) trained via score matching to approximate the gradient of the data
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distribution at time ¢:
Sm(Tm(t),t | 2o(t)) = Vy,, logpi(xm, | x0). (5.3)

After the imputation of the missing modalities via sampling using the above score func-
tion a modality specific alignment decoder D,, is used to further improve the generated
modalities features and finally a downstream fusion classifier 7 with modality specific
transformers in employed. The whole netowrk can be see in this Figure 5.2, we will

analyze each component of the total network.

5.1.2 SDE Formulation and Reverse Process

We consider the two most popular diffusion processes Variance Exploding (VE)
and Variance Preserving (VP) stochastic differential equations (SDEs) as described
in the seminal work of Song et al. [2]. Both formulations provide continuous-time frame-
works for progressive data corruption and subsequent generation through reverse-time

processes.

Variance Exploding (VE) SDE

The Variance Exploding (VE) stochastic differential equation formulation defines
a continuous-time forward diffusion process where noise is progressively added to the

data sample without altering the signal magnitude:
dx = o(t)dw, with o(t) =o', (5.4)

where w denotes standard Brownian motion, and o(t) is a time-dependent diffusion
coefficient that grows exponentially over time ¢ € [0,1]. For our experiments, we set
o = 25 following [1].

The forward SDE defines a family of corrupted distributions p;(x), where the marginal

distribution at time ¢ has standard deviation:

o2t —1

tdy =
St 2lno ’

(5.5)

such that x(t) = x(0) + z - std; where z ~ N(0,I), and x(t) becomes increasingly noisy
ast — 1.

The generative process corresponds to simulating the reverse-time SDE:
dx = —o(t)*Vyx log ps(x)dt + o(t)dw, (5.6)
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where V log p:(x) is the score function and w denotes reverse-time Brownian motion.

Variance Preserving (VP) SDE

The Variance Preserving (VP) formulation maintains approximately constant
variance throughout the diffusion process by simultaneously adding noise and scaling the

signal:
1
dx = —iﬁ(t)xdt +/B(t)dw, (5.7)
where () is a time-dependent noise schedule. We use a linear schedule () = 5y +
t(p1 — Bo) with Sy = 0.1 and B; = 20.0 following standard practice.
The marginal distribution at time ¢ for the VP SDE has standard deviation:

std; = /1 — exp(2log a(t)), (5.8)

where log a(t) = —0.25t%(31 — By) — 0.5tf3y is the log of the signal scaling factor, such
that x(t) = a(t)x(0) + z - std; where z ~ N (0, I).

The corresponding reverse-time SDE for generation is:

dx — —%B(t)x — B(6) Ve log pi(x) | dt + /B dw. (5.9)

Score Function Approximation

For both SDE formulations, we approximate the intractable score function V log p;(x)
using a neural network sy(x,t), trained with denoising score matching. The training ob-
jective minimizes:

£(6) = By [l150(x1,1) - sty + 2] (5.10)

where t ~ Ule,1 — €] with € = 1072, xq is clean data, z ~ N(0,I) is noise, and x; =
Xg + z - std; is the perturbed sample at time ¢. For conditional generation, we apply the
same perturbation to both target and conditioning modalities as discussed in our joint
perturbation approach.

The choice between VE and VP formulations depends on the specific application
and data characteristics. VE SDEs are often preferred for unconditional generation
tasks, while VP SDEs provide more stable training dynamics for conditional generation

scenarios like ours.
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Stage 1: Diffusion Pre-training (Offline) + Classifier Training

Y
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Figure 5.1. Diagram representing the first Stage of Training our decoupled modal-
ity diffusion MER network. The modality specific score networks are trained using the
full dataset with randomized conditioning, furthermore the downstream classifier is also
trained on the full dataset for the MER task with access to fully observable modalities.

5.1.3 Decoupled Generative Training

In our proposed framework, each modality-specific diffusion model is trained inde-
pendently to estimate its conditional distribution given the other modalities. Unlike joint
end-to-end training pipelines such as IMDER [1], we decouple the generative training of
each score network from the final downstream classifier as shown in Stage 1 of Figure
5.2. Basically, this allows one to use a fully trained score model to impute values in
the downstream task. Unlike the previous approach of IMDER where an end-to-end
approach jointly trains the pretrained classifier (trained on the full dataset without miss-
ing modalities as show in Figure 5.2) with an untrained diffusion model, resulting with
junk imputed modalities and gradients that result in unstable training. Furthermore,
this allows efficient and modular training, and facilitates better control over the model

architecture, conditioning mechanism, and sampling strategy.

Let = {7, 2y, 24} denote the full multimodal feature tuple for an utterance. To
impute a missing modality x,, € z, we aim to model the conditional distribution p(x,(0) |
z6(0)), where z,(0) C x \ x,, are the available modalities, and z,,(0) is the clean data of
the missing modality. However, as shown in [2], one can train a single score network to
approximate the gradients of the joint distribution V, logp;(z) through perturbing all

variables, not just the target.
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Stage 2: Integration & Inference (Online)

Input Data
(e.g., L,V
avail; A miss)

[ Encoder & Encoder &, @

21(0) @ [ Pre-trained s, ]

\
\
|

(Sampling Mode)
Condition .
mpling

[ Decoder D, ]

Y
Combine

Features
L (11(0%31(0),%) )

Fusion (7%)
& Predict

Emotion Output

Figure 5.2. Diagram illustrating the proposed Stage 2 for our framework showcasing
an example that the acoustic modality is missing. Firstly we sample a noise Latent and
condition the score network with the observed modalities. We reverse the diffusion sam-
pling process through our trained audio score network s, and obtain a rough reconstructed
modality To. After that, we further refine it passing it through our alignment decoder D,
before we use it in downstream emotion inference through our fusion classifier Ty,.

Y
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Perturbing both target and conditioning modalities. Instead of freezing the
conditioning modalities and only perturbing the target modality, we inject noise into
both the target x,, and the conditioning modalities x, using the same forward SDE (like
in IMDER):

dx = f(x,t)dt + g(t)dw, x(0) ~ po(x). (5.11)

This leads to noisy versions X, (t) ~ q(zmy(t) | £,(0)) and z,(t) ~ q(zo(t) | £,(0)).
During training, we provide the noisy conditioning z,(t) instead of the clean x,(0), which
encourages the score network to learn a true joint distribution over (z,,z,) instead of

relying on shortcut correlations from clean inputs.

Theoretically, this follows from the formulation in 2] that minimizing the denoising
score matching (DSM) loss on all components perturbed by the SDE yields an estimator
of the score function V;logp:(x). In our case, this enables modeling of the conditional

score function:

Vi, 10gpi(xm | o) = sg(xm(t),t, (1)), (5.12)

where sy is a neural network approximator of the conditional score function. The
use of noisy x,(t) regularizes the learning and allows the model to generalize to a wider

range of missingness patterns during inference.

Training Objective. Given this formulation, each score network s,,(-) for modality

m € {l,v,a} is trained using a DSM objective:

£ = Bap oo | [Vo@snlonOrtiza®n) + ] G13)

where 2, (t) = a(t)zm(0) + o(t)e, and z,(t) is constructed analogously. Here o(t) is
a weighting function in order to infer the score function from noise as described in [2].
We simulate different missingness configurations at each batch, ensuring that the model
learns to condition on variable subsets of the modalities. This approach effectively learns
a family of conditional generative models pg(x,, | X,) for each modality m.

After training, the score networks are frozen and used in inference mode to sample
missing modalities (e.g., through reverse SDE or probability-flow ODE samplers). These
sampled representations are then passed through a decoder and fused via a downstream

transformer for emotion prediction (see Figure 5.2, Stage 2).
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5.1.4 Score Network Backbones and Conditioning

The architecture of the score networks s,, and its conditioning mechanism are critical
design choices that determine both the quality of generated missing modalities and com-
putational efficiency. We systematically evaluate different backbone architectures paired
with various conditioning strategies to identify the optimal configuration for multimodal

emotion recognition.

Conditioning Architectures

We compare four distinct conditioning score network architectures, each representing

different approaches to modeling temporal dependencies and cross-modal interactions:

e U-Net with Cross-Attention (Baseline IMDER): Following the standard ap-
proach in diffusion models [48, 17|, this architecture uses convolutional layers for
feature extraction with skip connections. Time embeddings projected at intermedi-
ate , while conditioning on available modalities is achieved through cross-attention

mechanisms as developed in Stable Diffusion [17] (The full network archecture in
Figure 5.3).

IDConv 1D Transposed Cony  Cross-modal attention

Figure 5.3. Illustration of the network used in our experiments [23], a
4 layer encoder decoder with residual connections unet was used together
with cross attention mechanisms on the observed modalities.

e Multimodal Diffusion Transformer: Drawing from Feature-wise Linear Mod-
ulation [49] we adopt the architecture proposed by Esser et al. [4]. Conditioning
modalities are processed through a modulation flow in each transformer block to
fuse the timestep information by generating different scale () and shift (3) param-
eters for input and conditioning modalities that element-wise affect the sequences

via Modulation(x;) = 7v; ® F; . + B;, where ® denotes element-wise multiplication
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further scaling is also implemented for more conditioning expressivity. Lastly con-
ditioning and input are concatenated in the self attention mechanism to extract

information and condition the input and the condition (See Figure 5.4).

©é o
e 9

Figure 5.4. Multimodal Diffusion Transformer block [4] modulating
conditioning and input sequences separately, then concatenating both
for self attention and after that further modulation layers are added for
further conditioning.

e Diffusion-Transformer: This variant was proposed by Peebles et al. [5], it uti-

lizes a special case of Adaptive Layer Normalization (AdaLN) conditioning caled
AdaL.N-zero. AdaLLN modulates the scale and shift parameters of layer normaliza-
tion based on available modalities, providing fine-grained control over condition-
ing information flow without the computational overhead of additional attention
mechanisms. In the Di-Transformer another scaling factor « is injected before ev-
ery residual connection within the DiT block for further conditioning control (Full
mechanism can be see in Figure 5.5). We utilize this architecture in our multimodal

scenario and test if AdaLN can perform in such generation tasks.

ScoreTransformer1D (Ours): We propose a novel lightweight transformer-based
architecture specifically tailored for 1D feature sequences such as time-aligned mul-
timodal vectors. This architecture is inspired by the Unidiffuser [18], where a trans-
former model concatenates modalites in as input to the transformer each with its
own timestep embedding. We omit the extra timestep embeddings and only in-
ject the timestep to the input since its always common with the timestep of the

conditioning. Unlike the convolutional U-Net architectures, ScoreTransformerlD
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Figure 5.5. The architecture of a single Diffusion Transformer block
[24]. One can say that its an improved FiLM conditioning utilizing
scaling and shifting after each layer normalization and further scaling
factors .

replaces spatial convolutions with token-mixing transformer blocks that can model
long-range temporal dependencies. With concatenation-based conditioning, we are
treating all modalities uniformly within a single transformer framework and allow
the model to learn cross-modal dependencies through self-attention mechanisms.
Figure 5.6 illustrates the core computation of our proposed ScoreTransformerlD.

The input consists of three components:

— x € RBXCXT: g noisy feature tensor for the target modality’

— 7(t) € RBXIXD: the timestep embedding added channel-wise to =

— ¢ € RBXEXT?; the conditional input composed of concatenated noisy modali-

ties 2\, (t)

The model first computes the time-conditioned latent representation:

T=x4+(t) (5.14)

! All modalities are projected into a common feature space via a shallow feature encoder.
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Then concatenates the conditional input:

2 = [F; ] e REXOX(THT) (5.15)
This tensor is processed through a transformer encoder that applies self-attention

across channels for each timestep. The output is filtered to extract only the pre-

dicted score for the target modality x,,, discarding other channels.

Noise estimation

T

Main Input [z+es; ¢
2 Concat 3 ScoreTransformer1D

z € RBXOXT

Drop the rest of the
Tokens

Time Embedding

et € RBx1xD

Conditioning

c € RBXCXT

Figure 5.6. High-level data flow in ScoreTransformerl1D.

Timestep Embeddings:

Following prior work [50], we employ Gaussian Fourier time embeddings for all back-
bones to represent the continuous diffusion timestep ¢ as a high-dimensional periodic
signal:

v(t) = [sin(2aWt), cos(2xWt)], W e RP/? (5.16)

where W is a fixed Gaussian matrix and D is the total embedding dimensionality.

Diffusion Training Scheme

Score L

Random Condition

\4

Ction

Figure 5.7. High-level diagram of the diffusion model training process, all score nets
are trained in a single forward.

Random Condition Total Loss

Random Condition
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Figure 5.7 illustrates our unified training approach for all backbone architectures.
The training process follows a multi-target scheme where all three modality-specific score

networks are trained simultaneously in a single forward pass:

1. Input Processing: Raw text, audio, and video inputs are processed through

modality-specific projection layers to map them into a common feature space.

2. Random Conditioning: For each target modality, we randomly omit 1-2 modali-
ties and use the remaining available modalities as conditioning input. This random
conditioning strategy ensures that the model learns to handle various missing data
patterns during training, improving generalization to different missingness scenar-

ios during inference.

3. Parallel Score Estimation: Three separate score networks (Score L, Score A,
Score V) simultaneously predict the score functions for language, audio, and video
modalities respectively. Each network receives its corresponding noisy target modal-

ity along with the randomly selected conditioning modalities.

4. Joint Loss Computation: Individual losses are computed for each modality-
specific score network using the denoising score matching objective, and these losses

are aggregated into a total loss for end-to-end optimization.

This training scheme enables efficient learning of cross-modal dependencies while
maintaining computational efficiency through parallel processing. The random condi-
tioning mechanism ensures that each score network learns to leverage different combina-
tions of available modalities, making the system robust to various missing data patterns

encountered during inference.

5.1.5 Sampling

After training, each modality-specific score network sp" is used as a pre-trained gener-
ative module that reconstructs missing modalities through the learned reverse-time SDE.
During inference, we discard the forward diffusion pass used during training and instead

apply dedicated numerical samplers to solve the reverse SDE:
dXy = —o(t)%s5 (X, t | X\ )dt + o (t)dw. (5.17)

The choice of sampling algorithm significantly impacts both generation quality and
computational efficiency. We explore four distinct sampling strategies that represent

different trade-offs between accuracy and speed:
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e FEuler-Maruyama — The default stochastic sampling method used in Score-SDE

[2]. While providing high-quality samples, it is computationally expensive, typically

requiring 100+ function evaluations (NFEs) for convergence.

e Predictor-Corrector (PC) — Combines a predictor step (Euler-Maruyama) with

corrector steps using Langevin dynamics for sample refinement [2]. This approach
offers improved sample quality at the cost of additional computational overhead

per timestep.

e Heun — A second-order stochastic sampler proposed by Karras et al. [42] that

achieves effective sampling with significantly fewer steps, often requiring as few
as 30 NFEs while maintaining competitive sample quality through higher-order

numerical integration.

e DDIM — The Denoising Diffusion Implicit Models sampler [40] provides deter-

ministic, ODE-based sampling that can dramatically reduce the number of required
steps. DDIM enables fast sampling by skipping intermediate timesteps while main-
taining sample coherence, making it particularly suitable for applications requiring

rapid inference.

Algorithm 1: Fuler—-Maruyama Sampler

Require: Score model sy, terminal time 7', number of steps IV, initial noise X7, noise

1:
2:
3:
4:
5:
6:
7

schedule o (t)
Initialize x < xp, timestep At «+ T /N
fori=N,...,1do

t+—1i-At

z ~ N(0,I)

X — x — o(t)%sp(x,t) - At + o(t)VAt - z
end for
return xg
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Algorithm 2: Predictor—Corrector Sampler

Require: Score model sy, number of steps N, noise schedule o(t), Langevin step size 7,

corrector steps J
1: Initialize x + xp, timestep At < T/N
2: fori=N,...,1do
3: Predictor step (Euler—-Maruyama):

4: t <+ i-At

5: Z] ~ N(O, I)

6: X ¢ x — o(t)2sg(x,t) - At + o (t)VAL - 21
7: Corrector step (Langevin MCMC):
8: for j =1to J do

9: Zo ~ N(O, I)

10: X + X+ ns9(X,t) + /21 - 29

11: end for

12: end for

13: return xg

> J typically 1-2

Algorithm 3: Heun Sampler (2nd Order)

Algorithm 4: DDIM Sampler

Require: Score model sy, terminal time Require: Score model sy, steps N,

T, steps N, initial noise xp, noise
schedule o(t)

fori=N,...;1do
1 At tprey < (1 — 1) - At
z ~ N(0,I)
d; + —o(t)?sg(x,t) - At
Xtemp — X +dp + o(t)VAL -z
ds  —0(tprev)?80(Xtemps tprev) - At
X(—x—i—%(dl—{—dg)—{—a(t)\/ﬂ-z
end for
return xg

,_.
=

Initialize x < xp, At < T/N 1:
2: fori=N,N—-1,...,1do

timestep sequence {7; }¥,, noise sched-
ule {oy}
Initialize x,, ~ N(0,I)

t < 7y, tprev S Ti—1

~ xt—/1—a2-s9(x¢,t
%o — t—\/1—a7 s9(xt,t)

at

dir «+ /1 — a%prev - sp(X¢, t)

Xt prev — O‘tpre\,f(o + dir
Xt < tirev

end for

return xg

Computational Complexity and Trade-offs

The computational cost of each sampler varies significantly:

e Euler-Maruyama: O(N) score function evaluations, where N ~ 100 — 1000

e Predictor-Corrector: O(N - (14 J)) evaluations, where J = 1 —2 corrector steps
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e Heun: O(2N) evaluations but with N ~ 30 — 50, resulting in ~ 60 — 100 total
NFEs

e DDIM: O(N) evaluations with NV ~ 10 — 50, achieving the fastest inference

This flexibility in sampling methods is particularly valuable for multimodal imputation
tasks, where different applications may prioritize either generation quality (medical imag-

ing) or inference speed (real-time systems).

5.1.6 Alignment Decoder

Once the missing modality sample X,,,(0) is generated from the diffusion model, it
often does not match the same feature distribution as the original training data due
to imperfect denoising, especially at low NFEs. To bridge this gap, we introduce an
alignment decoder D,,, trained to map noisy/generated features to the original feature
distribution space.

We adopt a lightweight version of the Residual Channel Attention Network
(RCAN) Figure 5.10 architecture [25], originally designed for image super-resolution.
In our 1D adaptation, the RCAN consists of a residual convolutional block (RCAB
blocks), scheme in Figure 5.9), with channel attention (CA) seen in Figure 5.8:

e Residual Convolution: Extracts local temporal patterns from x,,.

e Channel Attention: Re-weights feature channels to enhance discriminative cues

using squeeze-and-excitation [51].

This decoder is trained independently with a reconstruction loss also enhanced by a

perceptual loss on downstream model activations Li,qr 5.22:

Latign = | Pm(Xm(0)) = %m (0)]|1, (5.18)

HxWxC HxWxC
s
r
(=

IxIxC ix) ( IxixC IxIxC
"] * X: ‘ *
\:: .7.{.
=
o

Figure 5.8. Channel attention (CA). Figure from [25].
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Figure 5.9. Residual channel attention block (RCAB). Figure from [25].
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Figure 5.10. Residual channel attention network (RCAN). Figure from [25].

5.1.7 Downstream Fusion Classifiers

To perform emotion recognition from the fused modality features, we adopt a fu-
sion mechanism inspired by the Multimodal Transformer (MulT) architecture [26] as
displayed in Figures 5.11,5.12. In particular, we use modality-specific encoders &,, to
project features into a common latent space, and employ a series of pairwise crossmodal
transformers to model directional dependencies between modalities. Each transformer
learns how to reinforce one modality using information from another through crossmodal
attention, effectively capturing long-range interactions across streams of differing lengths
and sampling rates. The fused representations are then aggregated via a memory trans-
former 7, then the last token for each modality representing all the sequence emotion
feature is concatenated with the rest, and passed to a multi-layer perceptron (MLP)
for final prediction. The fusion transformers is trained jointly with the classification

head using cross-entropy loss for classification or L1 loss for regression?

. Importantly,
during this stage, missing modalities are either masked with zeros or substituted with

reconstructions from the diffusion model.

Formally, let x,, denote the input features for modality m € {1,...,M}. Each

modality is first encoded via a modality-specific shallow encoder &,,:

2In our experiments we will only use the regression loss.
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Figure 5.11. Cross-Modal attention Figure 5.12. MulT CM transformers ap-
mechanism inside a fusion transformer. plied to each pair of language (L), visual
The modalities we want to enchance serve  (V), and acoustic (A) modalities. Figure
as queries while the enchancing one serves — from [20].

as keys and values. Figure from [20].

han = Em(m), (5.19)

Next, for each modality m, we apply pairwise crossmodal transformers 7, ; to in-
corporate context from all other modalities j # m. These representations are then

aggregated through a memory transformer 7,7¢™:

o = T2 (v (s ) ) (5.20)

The final fused representation is the concatenation of all B, vectors, passed through
a prediction head:

g)zMLP([ﬁl,...,BMD, (5.21)

and the learning objective is given by the L1 loss:

Liask = ”.@—yHl, (5.22)

where missing modalities are either replaced with imputed outputs from the decoder

or zero-masked during training.

122 Diploma Thesis



5.2 Experimental Setup

Total Stage 2 Loss: In stage 2 training (See Figure 5.2) the total loss is a weighted

average of the decoder alignment loss combined with the task loss:
Ltotal = Etask + )\Lalign (523)

Where in our experiments we chose A = 0.2.

5.2 Experimental Setup

5.2.1 Multimodal Emotion Recognition Datasets

We evaluate our approach on two widely used multimodal emotion recognition (MER)

datasets:

e CMU-MOSI [46]: Consists of 2,199 opinionated video clips from YouTube. The
dataset is divided into 1,284 training samples, 229 validation samples, and 686

testing samples.

e CMU-MOSEI [47]: Contains 22,856 utterance-level video clips annotated with
sentiment and emotion labels. The official split includes 16,326 training samples,
1,871 validation samples, and 4,659 testing samples.

5.2.2 Feature Extraction

We use modality-specific pre-processing tools as follows:

e Text: We use the final hidden state of a pre-trained BERT model [52] to extract

768-dimensional word embeddings.

e Acoustic: We extract 74-dimensional acoustic features using the COVAREP toolkit

[53], capturing pitch, glottal source parameters, and other prosodic features.

e Vision: We extract 35 facial expression features from each frame using the Facet
toolkit [54].

5.2.3 Evaluation Metrics
We follow prior work [1] and report three standard metrics:

e Binary Accuracy (ACCs32): Binary classification of sentiment (positive/nega-

tive).
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7-Class Accuracy (ACCr): Fine-grained classification over 7 ordinal sentiment

categories.

F1 Score: Macro-averaged F1 score over the binary classification.

These metrics provide a balanced view of performance across both coarse and fine

sentiment granularity.

5.2.4 Random and Fixed Missing Protocols

In the context of handling incomplete multimodal data, two primary missing protocols

are employed:

124

e Fixed Missing Protocol: Under this protocol, a consistent set of one or two

modalities is deliberately discarded across all samples in the dataset. For example,

experiments might be conducted where:

— One modality is missing (e.g., only language, only vision, or only acoustic data

is available).

— Two modalities are missing (e.g., only language and vision, language and

acoustic, or vision and acoustic data are available).
This ensures a predefined missing pattern throughout the experimental setup.

Random Missing Protocol: This protocol introduces variability by randomiz-
ing the missing patterns for each individual sample. Consequently, for any given
sample, either one or two modalities might be absent. The degree of missingness
in this protocol is quantified by the Missing Rate (MR), defined as:

N .
i=1 T4

MRzl—Z

where m; represents the number of available modalities for the ¥ sample, N is
the total number of samples, and M is the total number of modalities (in this
case, M = 3). It is a crucial constraint that at least one modality must always
be available for each sample (m; > 1), which implies that the maximum possible
Missing Rate is M]\ZI. For experiments with three modalities, MR values were
selected from the set {0.0,0.3,0.5,0.7}. The chosen MR is consistently maintained

across the training, validation, and testing phases to ensure fair evaluation.
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5.2.5 Implementation Details

For all experiments we used the Adam optimizer [55] with Learning rate A = 0.002
amd weight decay S = 0.005. Furthermore, early stopping with patience = 10 and model
checkpoints was used for the results of stage 2 training. All extracted modality features
are projected into a common feature space through a shallow encoder® with channel
dimention d = 32 and sequence length T' = 48. For the diffusion part we opted to design

all score networks to be of the same trainable parameter size for a fair comparison:

e UNet with Cross Attention: U-Net architecture with cross-attention condition-
ing, featuring 4-level encoder-decoder with channels [32, 64,128, 256], time embed-
ding dimension d,,;, = 256 with layerwise dense layers for fusion, and Transformer

Encoder Cross Attention blocks with 2 layers and 8 attention heads per level.

e Multimodal Diffusion Transformer: Transformer architecture with element-
wise Linear Modulation (FiLLM) conditioning, model dimension d,,,4¢; = 256, depth
of 6 transformer layers, 8 attention heads, MLP dimension d,,;, = 512, and condi-

tioning dimension d.y,q = 256 and time embedding dimension dy;,. = 128.

e Diffusion Transformer: Diffusion Transformer with model dimension d,,ode; =
256, depth of 6 transformer layers, 8 attention heads, MLP dimension d,,;, =
512, and conditioning dimension d.,,q = 256 which also contains the timestep

information.

e ScoreTransformerlD: 1D Score Transformer with model dimension d,ode; =
256, depth of 6 layers, 8 attention heads, MLP dimension d,,;, = 512, and time

embedding dimension dyj,e = 256.

To add to that, the score networks were trained for 50 epochs maximum?. Next, the
alignment decoder D, used to further refine the diffused modalities has 20 RCAB blocks
with reduction 16. All downstream fusion classifiers T}, are default Pytorch Transformer

Encoders with 4 layers, 8 heads and attention dropout = 0.2.

3 A single layer 1D convolutional kernel with size 3.
4if early stopping didn’t occur
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Experimental Results

We adopt a sequential optimization strategy to identify the best configuration. We
systematically evaluate: (1) SDE formulations (VP vs VE) with the default cross at-
tention U-Net and Euler-Maruyama Sampler, (2) backbone architectures again with the
same default baseline sampler, and (3) sampling methods, selecting the best performing
option at each stage before proceeding to the next evaluation. At each stage we will be
comparing the performance of the model with the baseline IMDER. model that our

work is based on.

6.1 Stage 1: SDE Formulation Comparison

We first compare the two SDE formulations using a baseline configuration to deter-

mine which provides better performance for multimodal emotion recognition tasks.

Starting Configuration
For this comparison, we use:
e Baseline Architecture: U-Net with Cross-Attention conditioning
e Sampler: Euler-Maruyama with 100 NFEs
e Missing Protocols: Both Fixed and Random missing patterns

e Datasets: CMU-MOSI

Analysis of SDE Formulations on CMU-MOSI

Table 6.1 presents a comparison between Variance Exploding (VE) and Variance

Preserving (VP) SDE formulations across various missing modality scenarios on the
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Table 6.1. Comparison of SDE Formulations and Vanilla IMDER on CMU-MOSI
Dataset for the fized missing protocol. Red coloring is used to indicate the previous
comparing method results (IMDER [1]).

Available Modalities ‘ Variance Exploding (VE) ‘ Variance Preserving (VP) ‘ Vanilla IMDER (VE)

| ACC, | F1 | ACC; |ACC,| F1 | ACC:; |ACC,| F1 | ACC:
Language 849 | 849 45.3 85.3 | 85.3 45.6 84.8 | 847 | 448
Acoustic 604 | 60.3 18.7 62.0 |62.1 17.7 61.3 | 60.8 | 20.5
Vision 58.1 | 58.3 19.1 58.6 | 58.8 18.3 61.0 | 61.2 | 21.0
Language + Acoustic 85.6 | 85.4 46.7 86.4 | 86.3 454 85.4 85.3 45.0
Language + Vision 855 | 85.4 45.6 86.1 | 85.9 45.0 855 | 85.4 | 453
Acoustic + Vision 60.6 | 59.3 19.5 59.6 | 59.7 21.8 62.0 |62.1| 202
Average | 725 |722| 324 | 730 |730| 323 | 73.3 |73.2| 328

Table 6.2. SDFE Formulations and Vanilla IMDER approach under Random Missing
Protocol (CMU-MOSI). For each experiment listed in the table below, we ran the model
with & different random seeds on the test set and averaged the results for more robust
metrics.

| Variance Exploding (VE) | Variance Preserving (VP) | Vanilla IMDER (VE)

Missing Rate

| ACC, | F1 | ACC; |ACC;| F1 | ACC; |ACC,| F1 | ACCy
MR = 0.3 80.6 | 80.7 41.8 81.0 | 81.0 415 79.9 | 796 | 39.1
MR = 0.5 73.6 | 72.5 33.7 74.6 | 73.2 33.5 740 | 73.8 | 34.2
MR = 0.7 69.5 | 69.7 29.5 70.2 | 69.9 30.2 70.8 | 70.3 | 3L.6
Average | 745 |743] 350 | 75.2 |747| 350 | 749 | 746 | 349

CMU-MOSI dataset. The metrics reported include binary accuracy (ACCsz), F1 score,
and 7-class accuracy (ACCr).

VP Generally Outperforms VE. Across most missing modality patterns, the VP
formulation consistently yields higher ACCsy and F1 scores compared to VE. For instance,
in the Language + Acoustic setting, VP achieves 86.4 ACCy and 86.3 F1, outperform-
ing VE’s 85.6 and 85.4, respectively. A similar trend holds in the Language + Vision

configuration.

Performance when Acoustic and Vision are available. Both formulations show
significantly lower performance when only the acoustic or vision modality is available.
This reflects the dominance of the language modality in sentiment prediction tasks on
CMU-MOSI, as seen in prior work. Also its notable that when both acoustic and vision
the model doesnt perform much better and in the VP case it performs slightly worse that

just having the Acoustic modality in ACCs and F1.
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ACCy7; Results Are Mixed. The 7-class accuracy (ACCy) shows more variability. VE
slightly outperforms VP in certain settings (e.g., Language + Acoustic and Vision-only),
while VP yields better scores in others (e.g., Acoustic + Vision). These results indicate
that VE may occasionally preserve finer-grained prediction capabilities, although the

differences are minor.

Multimodal Fusion Leads to Strongest Performance. The best overall results
are observed when language is fused with another modality, demonstrating the benefit

of multimodal learning. In these cases, VP remains the more reliable formulation.

Averaged Performance. On average, VP achieves slightly better binary accuracy
and F1 score (73.0 for both) compared to VE (72.5 ACCy, 72.2 F1), while VE slightly
surpasses VP on ACCy (32.4 vs. 32.3). The differences, however, are marginal.

Summary

Overall, VP offers more consistent and robust performance across missing modality
scenarios, particularly in binary and F1 metrics. While VE may retain slight ad-

vantages in fine-grained classification in select cases, VP is generally more effective

for multimodal sentiment analysis on CMU-MOSI.

6.2 Stage 2: Conditioning Architecture Comparison

Using the optimal SDE formulation from Stage 1, we compare different backbone

architectures and their conditioning mechanisms.

Experimental Configuration
For this comparison, we use:
e Selected SDE: Variance Preserving SDE (VP SDE)
e Sampler: Euler-Maruyama with 100 NFEs

e Architectures: U-Net with Cross-Attention, Multimodal Diffusion Transformer
with Concatenation and FiLLM like layers, Diffusion Transformer with AdaLLN and

ScoreTransformer1D with simple concatenation
e Missing Protocols: Fixed missing patterns for comprehensive evaluation
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Conditioning comparison Results

From Table 6.3, we observe that performance differences across backbones are rel-
atively modest, but consistent trends emerge. For unimodal cases, the Di-Transformer
slightly outperforms on language-only tasks, while U-Net remains strong for acoustic
inputs. Interestingly, MMDi-Transformer achieves the highest ACC; when recovering
acoustic or vision modalities, suggesting that its FiLM-style conditioning provides advan-
tages for fine-grained classification. ScoreTransformerlD, however, matches or surpasses
competitors in several settings and obtains the best average ACCy and F1 across missing

patterns.

Table 6.4 highlights a contrast in efficiency. Despite having the fewest parameters
and the second lowest FLOPs number, the U-Net backbone is over twice as slow at
inference compared to transformer-based alternatives. In contrast, our proposed Score-
Transformer1D is not only the most parameter-efficient model (3.2M parameters) but also
achieves the fastest inference time (13.1 ms) with a relatively low FLOP number, over
5x faster than U-Net, while maintaining competitive accuracy. This makes it especially

attractive for deployment in time-sensitive multimodal applications.

Summary

In summary, ScoreTransformer1D achieves the best trade-off between performance
and efficiency. While U-Net and Di-Transformer variants show slightly stronger
results in isolated cases, ScoreTransformerl1D consistently matches their accuracy
while drastically outperforming them in computational cost, establishing it as the
most practical backbone for missing modality recovery, thus we will adopt it for

the rest of our experiments.

Table 6.3. Conditioning Architecture Comparison on CMU-MOSI Dataset. Red coloring
is used to indicate the previous comparing method results (IMDER [1]).

Available Modalities ‘ U-Net Cross-Attn ‘ Di-Transformer ‘ MMDi-Transformer ‘ ScoreTransformer1D ‘ Vanilla IMDER (Unet)

| ACC, | F1 | ACC; | ACC, | F1 | ACC; | ACC, | F1 | ACC; | ACCy | F1 | ACC; | ACC, | F1 | ACC;
Language 853 | 853 | 456 | 86.1 |86.0| 454 | 844 |844| 46.6 | 856 | 855 | 453 | 848 | 847 | 448
Acoustic 62.0 | 62.1| 177 | 61.2 | 611 | 188 | 618 |60.9| 20.9 | 61.0 | 60.0 | 200 | 613 | 608 | 205
Vision 586 | 588 | 183 | 59.6 | 585 | 174 | 602 |59.8 | 18.6 | 61.1 |60.8 | 17.6 | 610 |61.2| 210
Language + Acoustic | 86.4 | 86.3 | 454 | 860 | 859 | 46.2 | 856 |855| 450 | 855 |854 | 450 | 854 | 853 | 450
Language + Vision 861 | 859 | 450 | 86.0 | 859 | 47.8 | 853 |85.3| 46.0 | 86.4 |86.3| 463 | 855 | 854 | 453
Acoustic + Vision 506 | 59.7 | 21.8 | 61.0 | 604 | 197 | 612 |613| 195 | 613 | 604 | 195 | 62.0 |62.1| 202
Average 73.0 | 730 | 323 | 733 | 729 | 326 | 731 [729]| 32.8 | 73.5 | 731 | 323 | 733 |73.2| 32.8
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Table 6.4. Model Efficiency Analysis: This table presents the Sizes, inference time, and
computational complexity (FLOPs) for a single pass through a modality score network.
Notable even though the Unet has very few parameters compared to its Transformer com-
petitors its inference time is over double of the worse transformer based one.

Architecture

‘ Parameters (M) ‘ Training Time (hrs) ‘ Inference Time (ms) ‘ FLOPs (G) ‘ Memory (MB)

U-Net Cross-Attention
Multimodal Di-Transformer
Di-Transformer
ScoreTransformer1D

3.5
8.8
9.3
3.2

0.55
0.52
0.45
0.30

72.1
31.2
24.6
13.1

0.66
1.21
0.53
1.04

13.1
33.7
35
12.5

Table 6.5. Results under the Fized Missing Protocol for Fuler and PC samplers for
different step numbers (the number of the steps is indicated next to the samplers name).

Dataset ‘ Available Modalities ‘

Euler 80

Euler 50

PC 50

PC 40

PC 30

)
{a)
{v}
{La}
{1}
{v.a)

MOSI

86.1 / 86.0 / 47.6
61.9 / 59.6 / 21.4
58.1 /583 /172
84.7 ) 84.7 / 47.1
84.7 / 84.7 / 45.9
62.0 /622 /181

85.9 / 85.7 / 45.3
60.3 / 59.4 / 21.4
60.0 / 60.2 / 17.2
85.2 / 85.1 / 46.2
85.2 / 85.1 / 47.1
63.2 / 63.0 / 23.4

86.0 / 85.9 / 45.1
61.7 / 60.3 / 22.0
59.7 / 59.7 / 20.8
85.6 / 85.6 / 45.0
85.0 / 85.0 / 46.8
59.4 / 59.7 / 19.2

86.0 / 86.0 / 47.4
61.1 / 60.7 / 20.0
59.0 / 59.1 / 19.1
85.2 / 85.1 / 46.2
85.0 / 85.0 / 45.6
61.1/61.1/19.2

84.7 / 84.7 / 46.3
60.6 / 61.1 / 20.9
59.6 / 60.1 / 19.8
85.6 / 85.6 / 46.5
85.6 / 85.5 / 46.6
60.8 / 60.9 / 20.1

Average

729 /726 /329

73.3 /731 /333

72.9 /727 / 33.2

729 / 72.8 / 329

72.8 /729 /334

6.3 Stage 3: Sampling Algorithm Comparison

Using the optimal SDE-backbone combination from previous stages, we evaluate dif-

ferent sampling algorithms to find the best speed-quality trade-off.

Experimental Configuration

For this comparison, we use:

¢ NFE Range: 10-100 function evaluations

e Evaluation: Performance vs. speed trade-offs

Speed-Quality Trade-off Analysis

Selected Configuration: VP SDE + Score Transformer Backbone

Samplers: Euler-Maruyama, Predictor-Corrector, Heun, DDIM

Based on the results in Table 6.7 which are abriviated from Table 7?7, we can analyze

the performance-efficiency trade-offs across different sampling configurations.
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Table 6.6. Results under the Fixed Missing Protocol for Heun and DDIM samplers
for different step numbers (the number of the steps is indicated next to the samplers
name).

Dataset ‘ Available Modalities Heun 80 Heun 60 Heun 40 DDIM 30 DDIM 20 DDIM 10
{1} 86.1 / 86.0 / 46.9 | 86.1 / 86.0 / 45.9 | 85.5 / 85.4 / 45.0 | 85.8 / 85.7 / 46.5 | 86.1 / 86.0 / 45.3 | 85.8 / 85.7 / 47.2
{a} 62.8 /62.2 /20.7 | 61.5 /60.9 / 21.0 | 60.9 / 60.5 / 20.5 | 62.3 / 59.7 / 21.8 | 60.2 / 60.4 / 15.9 | 60.6 / 60.5 / 20.0
{v} 60.0 / 58.8 /19.6 | 61.2 / 61.1 / 22.3 | 60.5 / 59.8 / 18.0 | 61.4 / 59.6 / 18.9 | 58.6 / 58.7 / 18.2 | 59.1 / 59.1 / 18.5
MOSI {la} 86.1 / 86.0 / 45.3 | 85.8 / 85.6 / 45.6 | 85.0 / 85.0 / 45.2 | 86.1 / 86.0 / 45.0 | 85.2 / 85.1 / 46.9 | 85.8 / 85.7 / 45.9
{Lv} 85.2 / 85.1 / 47.3 | 85.0 / 85.0 / 46.0 | 84.5 / 84.4 / 45.0 | 85.0 / 85.0 / 45.6 | 84.0 / 84.0 / 44.9 | 86.1 / 86.0 / 45.3
{v,a} 60.5 / 60.7 / 18.3 | 61.0 / 61.2 / 19.5 | 60.5 / 60.0 / 19.0 | 62.0 / 59.2 / 22.1 | 60.0 / 60.1 / 21.1 | 60.2 / 60.4 / 21.1
Average | - | 734 /731 /329 | 734 /733 /334|728 /725 /329 | 73.8 /725 /333 | 724 /724 /321 | 729 / 72.8 / 33.0

Table 6.7. Sampling Algorithm Comparison on CMU-MOSI Dataset derived from tables
6.5,6.6 , performance is the average of the fized missing protocol for each sampler config-
uration. Red coloring is used to indicate the previous comparing method results (IMDER

[1])-

Sampler ‘ NFEs ‘ ACC, ‘ F1 ‘ ACC;, ‘ Sampling Time (s)
Vanilla IMDER 100 73.3 73.2 32.8 1.17
Euler-Maruyama 100 73.5 73.1 32.3 1.17
Euler-Maruyama 80 72.9 72.6 32.9 0.95
Euler-Maruyama 50 73.3 73.1 33.3 0.61
Predictor-Corrector 100 72.9 72.7 33.2 1.17
Predictor-Corrector 80 72.9 72.8 32.9 0.95
Predictor-Corrector 60 72.8 729 | 334 0.71
Heun 80 73.4 73.1 32.9 0.95
Heun 60 734 | 73.3 | 334 0.71
Heun 40 72.8 72.5 32.9 0.49
DDIM 30 73.8 | 725 33.3 0.37
DDIM 20 72.4 72.4 32.1 0.24
DDIM 10 72.9 72.8 33.0 0.12

Performance Analysis. The Euler-Maruyama sampler with 100 NFEs odly achieves
the second highest ACCy (73.5) and F1 (73.1) scores behind the DDIM sampler with 30
NFEs for the former and the Heun sampler with 60 NFEs for the latter. DDIM with 30
NFEs delivers competitive performance (ACCy: 73.8, F1: 72.5) while being significantly
faster (0.37s vs 1.17s). The Heun sampler with 60 NFEs provides excellent performance
(ACCq: 73.4, F1: 73.3, ACCy: 33.4) with moderate speed (0.71s).

Speed Analysis. DDIM demonstrates superior speed-quality trade-offs, achieving
near-baseline performance with 3x faster inference. Predictor-Corrector methods
show minimal performance gains over simpler approaches while maintaining higher com-
putational costs. Heun sampler with 60 NFEs maintains strong performance (ACCa:

73.4) with nearly 1.66x speed improvement.

132 Diploma Thesis



6.3 Stage 3: Sampling Algorithm Comparison

Table 6.8. Speed-Quality Trade-off Analysis, here we compare the most representative
sampling configurations.

Sampler Configuration ‘ Relative Speed ‘ ACC; Change ‘ Sampling Time (s) ‘ Recommended Use
Euler-Maruyama (100 NFEs) 1.0x 73.5 (baseline) 1.17 High-quality baseline
Euler-Maruyama (50 NFEs) 1.9% 73.3 (-0.3%) 0.61 Balanced quality-speed
Heun (60 NFEs) 1.6x 73.4 (-0.1%) 0.71 Fast with quality retention
DDIM (30 NFEs) 3.2x 73.8 (+0.4%) 0.37 Optimal speed choice
DDIM (10 NFEs) 9.8x 72.9 (-0.8%) 0.12 Ultra-fast deployment

Final Configuration Recommendations

Based on our comprehensive evaluation across all three stages, we recommend two

optimal configurations:

Quality-Focused Configuration.
e SDE: Variance Preserving (VP)

Backbone: ScoreTransformerlD (3.2M parameters)

Sampler: Heun sampler with 60 NFEs

Performance: 73.4 ACC,y, 73.3 F1, 33.4 ACCr

Speed: 0.71s sampling time
e Use Case: Applications requiring maximum accuracy with acceptable inference
time
Speed-Optimized Configuration.

e SDE: Variance Preserving (VP)

Backbone: ScoreTransformerlD (3.2M parameters)

Sampler: DDIM with 30 NFEs

Performance: 73.8 ACCsy, 72.5 F1, 33.3 ACCr

Speed: 0.37s sampling time (3.2x faster than baseline)

e Use Case: Real-time applications and deployment scenarios where speed is critical
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Key Observations

DDIM Superiority. DDIM with 30 NFEs emerges as the optimal choice for fast
downstream inference, actually achieving slightly better ACCy performance than
the baseline while being significantly faster. This counter-intuitive result suggests
that the deterministic nature of DDIM sampling may provide better convergence
properties for our multimodal diffusion framework.

Diminishing Returns. Beyond 60 NFEs, performance improvements are
marginal while computational costs increase substantially. This observation aligns
with recent findings in diffusion model literature that suggest fewer sampling steps

can be sufficient for many practical applications.

6.4 Comparison with State-of-the-Art Methods

Using our two optimal configurations identified in Stage 3, we compare against exist-

ing multimodal imputation methods including the original Vanilla IMDER baseline.

Results Analysis. The experimental results demonstrate the effectiveness of our op-
timized configurations across both random and fixed missing protocols. Our approach
consistently matches or outperforms existing state-of-the-art methods, with the Quality-
Optimized configuration achieving the highest performance in most scenarios while main-
taining superior computational efficiency. Our Speed-Optimized configuration also per-

forms competitively given its lower computational overhead.

Performance Under Fixed Missing Protocol. The fixed missing protocol results
further reveal the robustness of our approach across different modality availability sce-
narios. Our Quality-Optimized configuration achieves similar average performance
with the speed advantages of our sampler and architectural choices on both datasets.
More specifically on CMU-MOSEI (76.1% ACCs, 75.6% F1, 48.4% ACCy), outper-
forming Vanilla IMDER by 1.3% ACCy; and GCNET by 1.8% ACCy in and 2.5% in
F1 and marginal improvement on the rest of the metrics and On CMU-MOSI, sim-
ilar improvements are observed, with our Quality-Optimized configuration achieving
competitive results. Notably, our method shows consistent results with the baseline ap-
proach across challenging scenarios such as vision-only and acoustic-only settings, where

traditional methods often struggle.
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Table 6.9. Performance comparison under both Random Missing Protocol and
Fixed Missing Protocol on CMU-MOSI and CMU-MOSEI datasets. Fach cell re-
ports ACCy / F1 / ACC;. Baseline results for DCCA [27], DCCAE [28], MCTN [29],
MMIN [6], and GCNet [30] are taken from prior work [1]. Our Quality-Optimized
configuration uses VP SDE + ScoreTransformer1D + Heun (60 NFFEs), while Speed-
Optimized uses VP SDE + ScoreTransformer1D + DDIM (30 NFEs). Bolded values
indicate the best score per metric.

(a) Results under the Random Missing Protocol at various missing rates (MR). We report
the average over 5 random seeds for each missing rate case for a more robust result.

Dataset | MR | DCCA | DOCAE | MCTN | MMIN | GCNet | Vanilla IMDER |  Quality-Opt |  Speed-Opt
0.0 | 753 /754 /305 |77.3 /774 /31.2 | 814 /81.5 /434 | 84.6 /844 / 44.8 | 85.2 / 85.1 / 44.9 | 85.7 / 85.6 / 45.3 | 86.0 / 86.2 / 45.6 | 86.0 / 86.2 / 45.6
MoOSI | 03 | 684 /678 /251 | 0.2/ 69.5 /258 | 73.9 / 740 / 33.4 | 76.3 / 75.7/ 34.5 | 774/ 769/ 35.7| 79.9 /796 / 39.1 | 81.0 / 80.8 / 40.7 | 80.3 / 79.8 / 39.9
05 | 61.7/60.9 /210 | 63.4 /621 /219 | 683 /67.9 /20.6 | 71.2 / 70.3 / 30.9 | 72.6 / 72.0 / 31.5 | 74.0 / 73.8 / 34.2 | 75.3 / 74.3 / 34.1 | 73.8 / 73.8 / 33.6
0.7 | 552 /53.8 /182 | 56.7 /550 /19.3 | 615/ 61.2 / 26.1 | 64.1 / 62.4 / 27.3 | 65.8 / 64.9 / 28.0 | 70.8 / 70.3 / 31.6 | 704 / 70.5 / 32.1 | 71.0 / 70.5 / 31.8
Average | - | 65.2 /645 /23.7]66.9 /66.0 /246 | 71.3 /71.2 /331 | 74.1 / 732/ 34.4 | 753 / 747 / 35.0 | 77.6 / T7.3 / 37.6 | 78.2 / 78.0 / 38.1 | T7.8 / 77.6 / 37.7
0.0 | 80.7/80.9 /477 |81.2 /812 /482|842 /842 /51.2|84.3 /842 /524|852 /851 /515 | 85.1/85.1 /534 | 85.7 /85.8 /53.3 | 85.7 / 85.8 / 53.3
MOSET | 03 | 7.1/ 742 /440 | 763 / 75.6 / 443 | 78.6 / 783 / 7.1 | 79.7 / 79.2 / 483 | 80.6 / 80.0 / 48.5 | 80.2 / 79.7 / 50.1 | 80.8 / 80.4 / 50.3 | 79.9 / 80.0 / 50.1
05 | 70.8/69.1 /41.1 | 71.9 /703 /41.3 | 75.3 / 74.9 / 45,5 | 76.4 / 75.0 / 46.7 | 77.3 / 76.2 / 46.8 | 782 / T7.3 / 47.9 | 79.0 / 78.1 / 48.9 | 775 / 772 / 46.9
07 | 663 /642 /380|672 /650 /387|704 /70.1 /432 | 715 /70.6 / 445 | 72.7 / 71.7 / 449 | 74.2 / 732 / 46.0 | 732 / 73.6 / 46.4 | 732/ 73.1 / 453
Average | - | 73.2 /721 /42.7 | 74.2 / 73.0 /43.1 | 77.1 / 76.9 / 46.8 | 78.0 / 77.3 / 48.0 | 79.0 / 78.3 /47.9 | 79.4 / 78.8 / 49.4 | 79.7 / 79.5 / 49.7 | 79.1 / 79.0 / 48.9
(b) Results under the Fixed Missing Protocol for different modality subsets.
Dataset | Available Modalities | DCCA | DCCAE | MCTN | MMIN | GCNet | Vanilla IMDER | Quality-Opt |  Speed-Opt
{1} 73.6 /738 /302 | 764/ 6.5/ 28.3 | 791/ 79.2 / 41.0 83.8 /41.6 | 83.7 /836 /423 | 84.8 /847 /448 | 86.1 /86.0 / 45.9 | 858 / 85.7 / 46.5
{v} A7.7 /415 /16.6 | 52.6 / 51.1 / 17.1 | 55.0 / 54.4 / 16.3 54.0 / 15.5 | 56.1 / 55.7 / 16.9 | 61.3 / 60.8 / 20.5 | 61.2 /61.1 /22.3 | 61.4/59.6/18.9
{a} 50.5 /46.1 /16.3 | 48.8 / 42.1 / 16.9 | 56.1 / 54.5 / 16.5 | 55.3 / 51.5 / 15.5 | 56.1 / 54.5 / 16.6 | 61.0 / 61.2 / 21.0 | 61.5/60.9 /21.0 | 62.3 / 59.7 / 21.8
MOSI {1, v} 74.9 / 75.0 / 30.3 | 76.7 / 76.8 / 30.0 | 81.1 / 81.2 / 42.1 83.9 /42.0 | 84.3 / 84.2 / 43.4 | 85.5 / 85.4 / 45.3 | 85.0 / 85.0 / 46.0 85.0 / 85.0 / 45.6
{1, a} TAT /748 /297 | 77.0 / 77.0 / 30.2 | 81.0 / 81.0 / 43.2 84.0 /42.3 | 84.5 / 84.4 / 43.4 | 854 /853 /45.0 | 85.8 /85.6 / 45.6 | 86.1 / 86.0 / 45.0
{v.a} 50.8 / 46.4 / 16.6 | 54.0 / 52.5 / 17.4 | 57.5 / 57.4 / 16.8 585 /19.5| 620 /619 /17.2 | 62.0 / 62.1 61.0 /61.2 /19.5 | 62.0 / 59.2 / 22.1
{l, v, a} 75.3 /754 /305 | 77.3 /774 /31.2 | 814 / 81.5 / 43.4 5/ 844 /44.8 | 85.2 / 85.1 / 44.9 | 85.7 / 85.6 .3 | 86.0 / 86.2 / 45.6 | 86.0 / 86.2 / 45.6
Average ‘ ‘ 63.9 / 61.9 /20.0 | 66.1 / 64.8 / 24.4 | 70.2 / 69.9 / 31.3 714 /316 | 73.1 /728 /321 | 751 /750 /345 | 75.2/75.1/35.1 | 75.5 /745 / 35.1
{1} 78.5 /78.7 /46.T | 79.7 / 79.5 / 47.0 | 82.6 / 82.8 / 50.2 82.4 /514 | 83.0 /832 /51.2 | 84.3 /842 /527 |85.6 /855 /53.1| 83.5/837 /519
{v} 61.9 / 55.7 / 41.3 | 61.1 / 57.2 / 40.1 | 62.6 / 57.1 / 41.6 | 59.3 / 60.0 / 40.7 | 61.9 / 61.6 / 41.7 | 61.5 / 62.6 / 41.6 | 63.6 / 62.6 / 42.3 | 61.3 / 61.4 / 41.3
{a} 62.0 /50.2 / 41.1 | 61.4 / 53.8 / 40.9 | 62.7 / 54.5 / 41.4 | 58.9 / 59.5 / 40.4 | 60.2 / 60.3 / 41.1 | 61.6 / 61.5 / 41.3 | 63.3 / 60.6 / 41.4 | 62.3 / 61.3 / 40.5
MOSET v} 803/ 79.7 / 46.6 | 804 / 804 / 7.1 | 83.2 /832 / 50.4 83.4/51.2 | 84.3 /844 /511 | 845 /851 /528 | 85.0 / 85.0 / 53.1 | 85.2 / 85.3 / 524
{1, a} 79.5 /79.2 / 46.7 | 80.0 / 80.0 / 47.4 | 83.5 / 83.3 / 50.7 83.3 /52.0 | 84.3 / 84.4 /51.3 | 85.1 /85.1 / 53.1 | 85.5 /85.5 /529 | 84.4 /838 /5
{v, a} 63.4 /56.9 /41.5 | 62.7 / 59.2 / 41.6 | 63.7 / 62.7 / 42.1 5/61.9 /418 | 64.1 / 57.2 /42,0 | 63.5 / 63.3 / 42.8 | 63.9 / 64.0 / 42.8 | 63.7 / 62.9 / 42.3
{1, v, a} 80.7 /80.9 / 47.7 | 81.2 / 81.2 / 48.2 | 84.2 / 84.2 / 51.2 84.2 /52.4 | 85.2 / 85.1 / 51.5 | 85.1 /85.1 / 53.4 | 85.7 / 85.8 / 53.3 | 85.7 / 85.8 / 53.3
Average ‘ ‘ 72.3 /688 /445 | 724 / 70.2 / 44.6 | T4.6 / 72.5 / 46.8 | 73.7 / 73.5 [ AT.1 | 747 /73.7 /471 | 75.1 /753 /48.2 | 76.1 / 75.6 / 48.4 | 75.2 /749 /477

Performance Under Random Missing Protocol. On average across missing rates,
our proposed configurations matches performance both Vanilla IMDER and prior base-
lines. For CMU-MOSI, the Quality-Optimized setup achieves 78.2% ACC,, a
+0.6% improvement over Vanilla IMDER (77.6%) and a +2.9% gain compared to GCNet
(75.3%). The Speed-Optimized configuration remains competitive at 77.8%, still exceed-
ing GCNet by +2.5%. In terms of F1 score, Quality-Optimized reaches 38.1, slightly
higher than Vanilla IMDER (37.6, 4+0.5) and markedly better than GCNet (35.0, +3.1).

On CMU-MOSEI, the Quality-Optimized configuration delivers 79.7% ACCs,
outperforming Vanilla IMDER (79.4%) by +0.3% and GCNet (79.0%) by +0.7%. The
Speed-Optimized setup achieves 79.1%, still matching or exceeding GCNet. F1 scores
follow a similar trend, with Quality-Optimized at 49.7 (+0.3 over Vanilla, +1.8 over
GCNet) and Speed-Optimized at 48.9 (comparable to Vanilla, +1.0 over GCNet).
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Table 6.10. Awverage results under the Random Missing Protocol derived from table

6.9.
| MOSI | MOSEI
Model | ACCy / F1 / ACCy | ACCy / F1 / ACCy
DCCA 65.2 / 64.5 /23.7 | 73.2 /721 /427
DCCAE 66.9 / 66.0 / 24.6 | 74.2 /73.0 /43.1
MCTN 71.3 /712 /331 | 77.1/769 /468
MMIN 741 /732 /344 | 78.0/77.3 /480
GCNet 75.3 ) 74.7 / 35.0 | 79.0 / 78.3 / 47.9

Vanilla IMDER

Speed-Opt

77.6 / 77.3 / 37.6
78.2 / 78.0 / 38.1
778 / T7.6 | 37.7

79.4 / 78.8 / 49.4
79.7 / 79.5 / 49.7
79.1 / 79.0 / 48.9

Table 6.11. Average results under the Fixed Missing Protocol derived from table 6.9.

| MOSI | MOSEI
Model | ACCy / F1 / ACCy | ACCy / F1 / ACC
DCCA 63.9 /619 /20.0 | 72.3/68.8 /445
DCCAE 66.1 / 64.8 / 24.4 | 724 /702 / 44.6
MCTN 70.2 / 69.9 / 31.3 | 74.6 / 72.5 / 46.8
MMIN 727 /714 /31.6 | 73.7/73.5 /471
GCNet 73.1 /728 /321 | TAT /73.7 /471

Vanilla IMDER

75.1 / 75.0 / 34.5

75.1 / 75.3 / 48.2

752 / 75.1 / 35.1
75.5 / 745 / 35.1

76.1 / 75.6 / 48.4
75.2 / 74.9 | AT.7

Speed-Opt

Overall, while both of our configurations maintain strong advantages over GCNet,
the Quality-Optimized setup provides the best robustness across missing rates, whereas
the Speed-Optimized version offers a balanced trade-off with faster inference and only
marginally lower accuracy.
Computational Efficiency Advantages. Beyond performance gains, our optimized
configurations offer significant computational advantages. The Speed-Optimized con-
figuration (DDIM with 30 NFEs) achieves superior or comparable performance to all
baselines while being 3.2x faster than the original IMDER baseline. To add to that the
ScoreTransformer1D has an additional 5x forward inference speedup over the vanilla
cross attention U-Net totalling to over 15x total speedup for a single batch in training.
This efficiency makes our approach particularly suitable for real-time applications and

resource-constrained environments.
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Architectural Contributions. The consistent improvements across both datasets
and protocols validate our architectural innovations: (1) the VP SDE formulation
provides better stability for multimodal diffusion processes, (2) the ScoreTrans-
former1lD backbone offers optimal parameter efficiency while maintaining ex-
pressive power, and (3) the DDIM or Heun samplers enable faster inference
without sacrificing quality. The combination of these components creates a synergistic
effect that advances the state-of-the-art in multimodal emotion recognition with missing

modalities.

Impact of Missing Language Modality on Performance It is a well-known issue
in multimodal systems that the language modality often carries the most densely packed
information. When this modality is missing, we observe a significant drop in accuracy,
as the system struggles to extract useful insights from the remaining modalities. During
preprocessing, we leverage a BERT model, which encodes extensive knowledge from
pretraining—effectively representing around 100 million parameters. When this
rich representation is removed, the diffusion system cannot fully recover the information
contained in the language modality, limiting its ability to robustly predict outcomes.

This problem is known in the literature as modality collapse.

Summary

Our multimodal diffusion framework achieves robust performance across missing
modality scenarios, with Quality-Optimized and Speed-Optimized configu-
rations balancing accuracy and efficiency. The VP SDE formulation, Score-
TransformerlD, and deterministic samplers like DDIM enable fast convergence,
while the language modality remains crucial to prevent modality collapse. Over-
all, our approach competes with state-of-the-art in missing multimodal sentiment

and emotion recognition.

6.5 Ablation Studies

6.5.1 Component Significance

To validate the importance of each component in our proposed framework, we conduct
systematic ablation studies by removing key components and evaluating their impact on
overall performance. This analysis helps identify the contribution of each module to the

final emotion recognition accuracy.
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Experimental Setup: We evaluate component significance using our optimal con-
figuration (VP SDE formulation, ScoreTransformer1D backbone, and Heun sampler with
60 NFEs) on both CMU-MOSI and CMU-MOSEI datasets under the Fixed Missing Pro-

tocol.

Table 6.12. Component Ablation Study Results for both datasets using our Quality-
optimized configuration. We report the average values for the fixed missing protocol.

C . | CMU-MOSI | CMU-MOSEI
onfiguration

| ACC2 | ACC7 | F1 | ACC2 | ACCT7 | F1
Full Framework (Ours) 75.2 75.1 |35.1| 76.1 75.6 | 48.4
w/o Diffusion Component 71.7 720 | 31.8 | 746 73.7 | 471
w/o Decoder Alignment 74.6 74.4 34.8 75.7 74.8 47.9

Performance Drop (w/o Diffusion) -3.5 -3.1 -3.3 -1.5 -1.9 1.3
Performance Drop (w/o Alignment) | -0.6 -0.7 -0.3 -04 -0.8 -0.5

Analysis of Component Contributions: The results highlight the critical role of
the diffusion component in our framework. Removing diffusion leads to the largest
decrease in performance across both datasets, particularly for binary and 7-class accu-
racy as well as F1 score, indicating that this module is essential for capturing nuanced
multimodal dependencies.

The decoder alignment module also contributes positively, though to a lesser ex-
tent. Its removal results in a small but consistent drop in performance, suggesting that
aligning decoder outputs across modalities improves the coherence of multimodal in-
formation and slightly enhances prediction robustness. Figure 6.1 visualizes the recon-
structed quality of generated samples with and without the alignment decoder compo-
nent, we observe that a majority of samples appear to be far from the distribution clusters

further showcasing that the alignment component is positively enhancing.

6.5.2 Sampling Effectiveness

To assess the impact of sampling step of the different algorithms on reconstruction
quality across different modalities, we conduct a comprehensive study using t-SNE visu-
alizations [135]|. For each modality—vision, audio, and text—we randomly sample 500
utterances from the dataset, retain only one modality as input, and reconstruct the re-
maining two using our pretrained diffusion models. The t-SNE embeddings are computed
using 5,000 iterations with a perplexity of 8.

Figures 6.2,6.3,6.4 illustrates the latent space distributions of the source features, the

ground truth of the missing modalities, and the reconstructed outputs from all of our
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Figure 6.1. -SNE visualizations of reconstructed textual and visual features condi-
tioned on acoustic features under different sampling steps. Top: DDIM sampler with
alignment decoder (10-40 steps). Bottom: DDIM sampler without alignment decoder
(10-40 steps).
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Figure 6.2. {-SNF visualizations of reconstructed textual and visual features under
different sampling steps steps for every sampler conditioning on the observed acoustic
features. Ground truth features are marked with circles, reconstructed features with
CToSSes.
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Compr i C ison - t-SNE Visualizations
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Figure 6.3. t-SNE visualizations of reconstructed acoustic and textual features
under different sampling steps steps for every sampler conditioning on the observed visual
features. Ground truth features are marked with circles, reconstructed features with
CTosses.
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Comprel i Comparison - t-SNE Visualizations
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Figure 6.4. t-SNE visualizations of reconstructed acoustic and visual features under
different sampling steps for every sampler conditioning on the observed textual features.
Ground truth features are marked with circles, reconstructed features with crosses.
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tested samplers under different sampling steps for each one and for three conditioning
scenarios (Acoustic, Visual and Textual availability). It is evident that when the textual
modality is available the clusters tend to separate more clearly and generated samples
fall into the distribution cluster indicating the importance of the textual modality in
multimodal settings. An additional observation is that also in general more steps indicate

more defined clustering of reconstructed and ground truth modalities.
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Chapter

Conclusions

7.1 Discussion

In this work, we have presented a comprehensive study on the application of diffusion-
based generative models for missing modality imputation in multimodal learning, with
a focus on emotion recognition tasks. Our framework leverages the Variance Preserving
(VP) SDE formulation, a parameter-efficient ScoreTransformerlD backbone, and care-
fully selected samplers—Heun and DDIM—to achieve robust and efficient reconstruction
of absent modalities. Through systematic exploration of architectural choices, sampling
algorithms, and step sizes due to our decoupled training approach, we identified
configurations that simultaneously optimize predictive performance and computational

efficiency.

Findings from SDE and Conditioning mechanism Comparisons. Our Stage
1 experiments highlight that the Variance Preserving (VP) formulation marginally
outperforms the original Variance Exploding (VE) approach used in IMDER. VP
offers more stable and reliable improvements in ACC, and F1, especially under the
random missing protocol, while VE shows occasional advantages in fine-grained ACCy
classification but remains less robust overall. In Stage 2, we investigated backbone
and conditioning architectures. While U-Net and Di-Transformer variants perform well
in specific unimodal cases (e.g., U-Net with acoustic-only inputs, Di-Transformer with
language), the ScoreTransformerlD emerges as the most balanced choice, achieving
the best average performance across modalities (still remaining marginal but consider-
able). Importantly, ScoreTransformer1D is also the most efficient model, requiring only
3.2M parameters and offering nearly 5x faster inference compared to U-Net with
about the same memory needs. These results confirm VP-based diffusion combined with

ScoreTransformer1D as the most practical and effective foundation for subsequent opti-
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mization.

Findings from Sampler Comparisons. Stage 3 results reveal that sampler choice
plays a crucial role in balancing performance and efficiency. Traditional Euler—-Maruyama
with 100 NFEs provides a strong baseline (73.5 ACCz) but is computationally expensive.
The Heun sampler with 60 NFEs achieves nearly identical accuracy (73.4 ACC,, 73.3
F1, 33.4 ACCy;) while reducing inference time by 40%, making it a robust quality-
focused option. On the other hand, the DDIM sampler with 30 NFEs delivers the
best overall trade-off, slightly surpassing baseline accuracy (73.8 ACCsy) while running
3.2x faster. Even with as few as 10 NFEs, DDIM maintains competitive accuracy
(72.9 ACCy) and achieves nearly 10x faster inference, making it suitable for real-time
applications. Based on these insights, we recommend two optimal configurations: (1)
a Quality-Optimized setup using VP SDE, ScoreTransformer1D, and Heun sampling
at 60 NFEs for maximum predictive stability, and (2) a Speed-Optimized setup using
VP SDE, ScoreTransformer1D, and DDIM sampling at 30 NFEs, which achieves superior

efficiency with minimal performance loss.

Comparison with State of the Art. Our framework consistently outperforms ex-
isting baselines under both evaluation protocols. Under the Fixed Missing Proto-
col, the Quality-Optimized configuration improved CMU-MOSEI performance to 76.1%
ACCsy and 75.2 F1, representing gains of +1.3% and +2.5% over Vanilla IMDER and
GCNet, respectively, with similar improvements on CMU-MOSI. Under the Random
Missing Protocol, the Quality-Optimized setup reached 78.2% ACCs on MOSI and
79.7% on MOSEI, outperforming GCNet by up to +2.9% ACCs and +3.1 F1. The
Speed-Optimized configuration achieved comparable accuracy while reducing inference
time by more than 3x, confirming its suitability for real-time deployment. Overall, our
approach demonstrates robustness across challenging missing data scenarios, including
high missing rates and unimodal-only settings, where traditional methods often degrade
severely particularly when the language modality is absent, as this often causes a signif-

icant drop in accuracy due to modality collapse.

Final Remarks. The combination of diffusion-based modeling, efficient transformer
backbones, and optimized sampling strategies provides a practical and flexible solution
to missing modality problems. Our findings show that (i) VP-based SDEs are more re-
liable than VE for multimodal imputation, (ii) deterministic samplers like DDIM can

drastically reduce computational cost without accuracy loss, and (iii) carefully balanced
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architectures such as ScoreTransformer1D can achieve high performance with fewer com-
putational overhead. Together, these results establish diffusion models as a powerful
unified framework for multimodal recovery, offering strong performance, scalability, and
real-world applicability in scenarios where both robustness and inference efficiency are

critical.

7.2 Limitations

Despite the promising results, our approach has several limitations that warrant dis-
cussion. First, the language-dominant nature of emotion recognition may also favor spe-
cific architectural choices that may not transfer to more balanced multimodal scenarios.
Furthermore, the current framework is designed specifically for language, acoustic, and
vision modalities. Extending it to other types of modalities, such as physiological signals,
contextual information, or emerging modalities like haptic feedback, would require archi-
tectural modifications and potentially different conditioning strategies. The scalability
of the framework to scenarios with more than three modalities is also uncertain.

Another limitation lies in the assumptions made about missing patterns. Our eval-
uation primarily focuses on random and fixed missing patterns, which may not capture
the complexity of real-world situations where missing modalities often exhibit temporal
dependencies, systematic biases, or correlated failures. For example, camera outages
might correlate with lighting conditions, and microphone issues could be more common
in noisy environments. Furthermore, the models ability to adapt to different missing
scenarios such as different missing rates remains problematic, changing the missing rate
or the fixed pattern hinters performance. Additionally, while our method achieves sig-
nificant speedups compared to baseline diffusion approaches, it remains computationally
more expensive than traditional fusion techniques or simple imputation strategies. The
requirement for iterative sampling, even under optimized configurations, may limit ap-
plicability in resource-constrained settings or in real-time applications with strict latency
demands.

Finally, the performance of diffusion-based models can be sensitive to hyperparam-
eters such as noise schedules, sampling steps, and conditioning strength. Although we
provide configurations that yield strong results, the robustness of these settings across
different datasets or domains remains uncertain. Beyond empirical performance, the
theoretical understanding of why certain combinations, such as VP SDE with DDIM
sampling, are particularly effective in multimodal contexts is limited. This lack of theo-

retical clarity makes it difficult to predict optimal configurations for new domains or to
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provide principled guidelines for architectural design.

7.3 Future Work

Several promising research directions emerge from our findings. First, extending the
framework to a broader set of multimodal tasks could help validate its generalizability.
Applications such as visual question answering, multimodal machine translation, and
cross-modal retrieval may require task-specific adaptations, but the core architectural
principles identified here provide a solid foundation. Real-world deployment studies are
also crucial to evaluate robustness to distribution shifts, domain adaptation, and varying
computational constraints. Such studies could include user evaluations to assess the
practical impact of improved handling of missing modalities.

Second, improving intra-modality conditioning for partially corrupted samples is an
important direction. In realistic scenarios, some frames in video or audio sequences
may be missing due to network issues, or entire modalities may be partially unavailable.
Conditioning the model on the observed portions of a modality, as well as on other
available modalities, could provide more robust reconstructions under realistic missing
protocols.

Third, developing unified frameworks that can handle arbitrary missing patterns and
rates without retraining for each scenario would significantly simplify deployment. In-
stead of training separate models for different missing modalities or rates, a single model
could adapt dynamically to various missing configurations.

Fourth, exploring faster generative alternatives to diffusion models, such as flow
matching models [136], could improve efficiency. Flow matching methods rely on simpler
assumptions than diffusion models, enabling faster sampling while maintaining perfor-
mance.

Finally, efficiency improvements through model distillation and hardware accelera-
tion remain important for scaling these approaches to large datasets and real-time ap-
plications. Combining these strategies could make multimodal generative systems both

practical and performant in real-world settings.
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