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Hepiinyn

211 oOYXPOVT ETLGTANN AAAA KOL OTLG TTPOKTLKESG EPAPUOYES AOYLOULKOD, elval TTOAD peyain
1] CUVELGPOPA TWV GLOTNUATWV VYNANG entidoong (High Performance Computing clusters).
E€outiog Twv HeYGAWV QTOLTHOEWV TV CUGTNHATWV QUTOV Ot eVEPYeLX aA Kol pe Sedopévn
TNV eVTELVOHEVT {HTNOT) YL LITNPEGLEG TTOL PITOPOVV VOL TTALPEYOLY HOVO TETOLX GUGTHHATA,
kpilvetar avaykaio 1 PéATioTn aflomoinon Twv TOpwV Tovg Kot 1) PeATIOTONTOINGT TV
EMHEPOVG AELTOVPYLOV TOUVG.

A7d TN oKOMLA TOL OXESLAGTH) TETOLWY GUGTNHATWV HEXPL AUTT] TOL TEALKOV XProTh,
LITAPXEL AVAYKT) YIX EGTIOGT) GTNV eLEAEIX TNG SLPOPPWCTG TWV CLGTNUATWV SLaryelpLong
TOPWV, EGTLALOVTOG OTLG TTEPLOXEG TNG ETMLEKTAGILOTNTAG KOL TNG TPOCAPUOGTIKOTITAG TOV
OLOTAHATOS OTX LITOAOYLOTLKE PopTia. To Slurm, amotelel to mo dradedopévo Aoyloptiod
drayelplong mOpwv cLoTNUATOV VYNANG entidoong, kot Paciletal oTo kernel Tov Linux yio
N Aettovpyia Tov. Ot facikég Aettovpyieg Tov cuvoyilovtor ot Stoxelplon SIKOUWUATWY
XPNOTAOV €L TOV TOPWV TOL GUGTHHATOG, GTNV TAPOYT] EVOG TAALGIOL YLt TNV EKTENEDT)
TWV EPYACLOV TTOL LITOPAANOVTL GE LTO KA, TEAOG, 6TN dtapecoA&Pnon yia T Xprjon Twv
TOPWV TOL CUGTHHATOG.

21006 TNG TapPoLoaS SUTAMUATIKNG EPYATLAS elvar 1] avATTTUET VOGS epyadeiov, xwpig
TNV VAYKT] Yot cOENHEVAL DLOLYELPLOTIKA SIKOULOPATA OGTE VO KATACTEL EPLKTT 1) SOKLIUN
ETMEKTACEWV KL TPOTOTOLNCEWV Yla TO 6UO TN Stayeipiong mopwv tov Slurm. EmunAéov,
TPOLYHOLTOTTOLELTOLL 1) TTELPOPATIKT] ELOAOYNOT TG cuvekTéLeang epyactov MPI oe cuvOnKeg
potpalopevev mopwv, Wiaitepa oe eninedo socket.

H emdiwén amd 1o epyareio eivol va emekteivel To Slurm, pe T£TOL0 TPOTO, OOTE VO
Kotaotel duvatn 1) aELOAOYNOT) EMEKTACEWVY KAl EVAAAAKTIKOV DAOTIOLNGE®Y TOV SLAPOP®V
Aertovpylov Tov. EmumAéov, mapovoialeton pio mpaktikn a&loAoynon tng opbng Aettovpyiog
TOUL €pYaAElOV KOL TNG LKAVOTNTAG TOL Vot eVOWHATwOEL, pe TpoTo aLloTioTo Kot akpLpr), oe
TOPOYWOYLIKE GLOTHHATA VYNAGV emdocewV pe Aettovpytkég Stavopég Slurm.

Ev katokAeid, oL emidooelg twv epyacidv MPI a&loloyodvtal e Xpr)oT) TOGOTLKOV OELKTOV
vyl TV e€okplfwon TG amoTeAeCHATIKOTNTAG KoL TNG PLOCLHOTNTAG TNG CUVEKTENEGTG O
OLGTNHOTH LYNAGV eMLOOGEWV, LOLXTEPA OTOY TTPALYHOTOTOLELTOL GE EKTETAPEVT) KALHAKOL.

AéEerg Kherdua:

HPC, Xpovodpopordyneorn, Zootnpa Awxyeipiong Ilopwv, SLURM, cuvtomobétnon,cuv-
tomofétomn, cuvekTédeor), ouv-ekTéNeDT), peTprioelg emidoong, MPL bash






Abstract

High Performance Computing (HPC) clusters have a major contribution in scientific and
commercial software. Energy requirements of such systems and growing demand drive the
need for constant optimisation in resource utilisation as well as expanding and improving
individual components of HPC systems.

At present, the necessity for the optimal utilisation of resources of high performance
computing systems is the trailblazer for change in current and future resource management
systems. Starting from the perspective of the system designer up to the end user, it is essential
to focus on the flexible aspect of configuring resource management systems, directing attention
to the fields of extendability and adaptability of HPC systems to the multitude of workload
types. Slurm, an open source software based on the Linux kernel, is currently holding the title
of the most used and renowned resource management software for HPC systems. Slurm’s
basic functionality is summarised in three functions, namely access and privilege management,
providing a framework for the submission and execution of workloads, and, finally mediation
and resolution for the underlying system’s resources.

The aims of this thesis to develop a tool in a user-space environment, without the need for
elevated administrator rights, for testing extensions and modifications to the Slurm resource
management system, as well as, investigate the co-execution effects among MPI workloads
that share common hardware resources, specifically at socket level.

The tool’s objective is to extend Slurm so that, in the environment of a real functioning
HPC system, it will allow the evaluation of extensions and alternative implementations of
Slurm’s various components as well as extract insights and data for the operation of these
components. In addition, an hands-on evaluation study of the tool is presented, both for the
accuracy of its results and its reliability to integrate in production systems with existing Slurm
installations.

Finally, the performance of various MPI workloads is assessed using quantitative metrics to
evaluate the viability and efficiency of co-executing computational tasks in HPC environments.
These results provide a foundation for understanding the sustainability and potential benefits
of workload co-execution in large-scale systems.

Keywords:

HPC, Scheduling, Resource Management System, SLURM, co-location, colocation, co-
execution, coexecution, benchmarking, MPI, bash
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Chapter 1

Introduction

1.1 Motivation - Problem Statement

High Performance Computing (HPC) clusters underpin a wide range of scientific and com-
mercial applications. Their growing energy footprint and increasing workload diversity drive
a continual need to improve resource utilization and to extend system capabilities. Central
to this effort is the design of resource management systems that can flexibly accommodate
new scheduling policies, custom accounting modules and novel security mechanisms without
compromising the stability of a production environment.

As HPC installations grow from dozens to thousands of nodes, static allocation policies
and coarse-grained scheduling lead to increased queue wait times, resource fragmentation
and suboptimal utilisation. Scaling intensifies contention for network and storage subsystems,
making it harder to predict performance and balance load across the cluster. Without a
mechanism to test alternative allocation strategies under realistic load, administrators and
researchers cannot quantify potential gains or identify problematic cases in the algorithm
design phase.

Demand for HPC services continues to rise across domains—from climate modeling to
machine learning[1]—driving bursts of heterogeneous workloads that mix batch jobs, interac-
tive analyses and long-running simulations. Traditional resource managers lack the flexibility
to adapt their internal heuristics dynamically, forcing users and operators to rely on manual
tuning, static profiles and policy-based management that quickly become obsolete as workload
patterns shift.

Another layer of complexity is added to the problem from emerging hybrid systems
that integrate quantum accelerators alongside classical compute[2]. Quantum tasks often
require tight co-scheduling with classical pre- and post-processing, as well as specialized
resource reservations. Current resource managers offer minimal support for quantum-classical
workflows, and any extension must be validated in situ to ensure correct orchestration across
both domains.

Slurm (Simple Linux Utility for Resource Management), an open-source resource manager
for Linux-based clusters, dominates the current HPC landscape. Its core services—access
control, workload submission and execution framework, and resource mediation—are well
established, yet modifying or extending SLURM normally requires administrator privileges
and changes to a live system. This poses a barrier to rapid prototyping and rigorous evaluation
of new components.

The problem addressed in this thesis is the lack of a user-space environment in which
Slurm extensions can be developed and tested safely on a functioning HPC installation. The

16



1.2. Thesis Structure

solution proposed here is a tool that intercepts and redirects Slurm’s internal interfaces in user
space, enabling the deployment and measurement of alternative implementations without root
access or disruption to existing workflows. An experimental study evaluates both the fidelity
of the tool’s emulation and its capability to integrate with the existing Slurm infrastructure.

To add to that, a study on the effects of co-locating different workloads is conducted in
advance, in order to probe into the different applications that more advanced scheduling
algorithms, integrated into existing resource systems, could lead to.

1.2 Thesis Structure

The remainder of this thesis is organized as follows:

« Chapter 2 reviews fundamental concepts in HPC resource management, surveys com-
mon bottlenecks and examines Slurm’s architecture and security model.

« Chapter 3 discusses co-location strategies and existing approaches to resource allocation
optimisation in related work.

« Chapter 4 presents the design of Slurm-in-Slurm (5iS), particularly detailing its concep-
tualisation on ARIS HPC and overall system architecture.

« Chapter 5 describes the implementation of SiS in native user-space environment, and
explains integration with a running SLURM installation.

« Chapter 6 reports a proof-of-concept validation of SiS operating in a production en-
vironment and acting as an intermediary tool for Slurm jobs. Moreover, the chapter
recites experimental results for quarter-socket MPI workloads. Finally, it summarizes
the findings, discusses limitations and outlines directions for future research.

« Chapter 7 provides an extended overview of the thesis in Greek.

17



Chapter 2

HPC Resource Management

2.1 Bottlenecks in HPC Research and Utilisation

Despite continued progress in processor and system architecture, several critical bottlenecks
persist in HPC systems. These limitations affect scalability, efficiency, and usability across
scientific and industrial domains.

Understanding and addressing the existing bottlenecks of HPC is critical to improving ap-
plication efficiency, energy proportionality, and scalability. Current HPC research and practice
have been focusing on constraints related to memory access, interconnects, storage, energy
consumption, heterogeneity, and parallel scalability. These bottlenecks are not isolated but
often interact, compounding performance limitations across system components. Nevertheless,
HPC research itself is limited by the availability of production HPC systems for research
purposes regarding the systems themselves. Generally, HPC systems retain high levels of
utilisation during all times due to the importance and time span of the several research and
commercial applications that need them for operational reasons.

A brief introduction the the several bottlenecks of HPC are presented in this section.

While computation capabilities have been improving constantly during past years, memory
bandwidth and latency remain fundamental constraints[3]. Modern processors often stall
waiting for data due to limited throughput [4] and inefficiencies in the memory hierarchy. From
a design viewpoint, memory incurs 20% of the total system cost for modern HPC systems[5],
thus, proper management and resource allocation of the memory subsystem is crucial for
contemporary HPC systems. Data movement across memory levels and between compute
nodes incurs substantial energy and time costs [6]. These factors dominate performance and
energy consumption in data-intensive workloads, especially at large scales.

Related to the issue of memory access is the technology and capabilities of interconnects.
Most of the Top 500 HPC systems [7] are a collection of interconnected commercially avail-
able CPUs and/or GPUs, thus, the science and technology progressing interconnects is of
outmost importance. Data movement across the processing units dominates the overall time
that an application executing in an HPC system needs to reach completion (memory-bound
calculations), and this kind of application profile is far more frequent than computation time
profiles, in which computation dominates the total completion time (computation-bound calcu-
lations)[8]. As of the writing of this dissertation thesis, apart from the less frequent proprietary
interconnects, the interconnects which are more common in the Top 500 systems are:

« Infiniband - the industry standard currently holding a 54.2% share of HPC interconnects.

« Gigabit Ethernet - A well known technology, oftentimes used alongside other intercon-
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nects with higher throughput.

« HPE Slingshot - 7 out of the top 10 HPC systems in the Top 500 list use the HPE Slingshot
interconnect.

« Intel Omnipath

The performance of HPC systems is increasingly constrained by a significant data storage
bottleneck, creating an ”"I/O wall” where computational speed far outpaces the storage subsys-
tem’s ability to deliver and persist data. This disparity forces powerful processors into idle
states while waiting for data, drastically reducing overall application efficiency and scientific
throughput. This long-standing issue has been exacerbated in the exascale era!, where massive
parallelism and data-intensive simulations generate I/O requests at unprecedented rates[9].
Traditional parallel file systems, while scalable, often struggle to handle the highly concurrent
I/O patterns, which oftentimes exhibit bursts of I/O requests, of modern scientific applications.
Despite recent advances in regulating I/O bursts [10], managing the complex data path across
the memory and storage hierarchy remains a central challenge in designing next-generation
HPC systems.

The escalating energy demand of HPC is a well-documented trend[11], but has only been
pursued as a driver for the design and operation of HPC systems in very recent years[12]. The
aggregate performance of the Top 500 HPC systems has grown exponentially, far outpacing
improvements in energy efficiency. This has led to individual systems consuming tens of
megawatts of power, with the total energy footprint of the HPC industry reaching hundreds
of terawatt-hours on an annual basis.

The architectural paradigm of heterogeneity in HPC, which integrates diverse processing
units like CPUs and GPUs, introduces substantial performance bottlenecks despite its promise
for accelerating computation. A primary challenge is the data movement overhead required to
transfer information between the separate memory spaces of CPUs and accelerators, often
constrained by the limited bandwidth of interconnects, which can leave powerful processing
units idle and starved for data [13]. This hardware reality is compounded by significant
programming complexity, as developers must often master and combine discrete programming
models (e.g., OpenMP for CPUs and CUDA for GPUs) within a single application. Furthermore,
efficiently balancing the computational load between architecturally distinct processors is
a non-trivial scheduling problem, where a naive partitioning of work can lead to severe
underutilisation of resources as faster units are forced to wait for slower ones to complete
their tasks [14]. Successfully mitigating these interconnected bottlenecks in data transfer,
programming, and load balancing, remains a critical focus of research to fully harness the
power of modern heterogeneous HPC.

As a final remark on bottlenecks faced by HPC systems stands a basic observation that
came to be known as Amdahl’s Law[15], which dictates that the maximum achievable speedup
of any parallel application is ultimately capped by the fraction of its code that is inherently
sequential and cannot be parallelized. Amdahl’s Law ultimately states that linear performance
gains as processor counts increase is not achievable. In practice, as systems scale to thousands
or millions of cores, this theoretical limit is compounded by the rapidly growing cost of
communication and synchronization.

!'Exascale computing refers to computing systems capable of calculating at least 1018 IEEE 754 double precision
(64-bit) operations (multiplications and/or additions) per second[9].
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2.2 SLURM Resource Manager

To try and tackle some of the aforementioned open challenges for HPC, especially those of
heterogeneity, interconnections and energy efficiency, resource management systems came
into existence, as they play a key role in how a supercomputer’s resources are allocated to
user applications. A resource management system does not only help distribute workloads
of different types and durations, but also offers common interfaces across different types of
machines and their configurations, simplifying access and alleviating concerns about porta-
bility issues. It provides mechanisms through which computing systems can be accessed
by various categories of users (including those outside the institution hosting the cluster,
via specialized collaborative environments) while accurately recording resource usage and
applying appropriate user billing.

Slurm is an open source, fault-tolerant, and highly scalable cluster management and job
scheduling system for large and small Linux clusters. Slurm requires no kernel modifications
for its operation and is relatively self-contained. As a cluster workload manager, Slurm has
three key functions. First, it allocates exclusive and/or non-exclusive access to resources
(compute nodes) to users for some duration of time so they can perform work. Second, it
provides a framework for starting, executing, and monitoring work (normally a parallel job)
on the set of allocated nodes. Finally, it arbitrates contention for resources by managing a
queue of pending work, whilst, having the ability to incorporate user plugins for several of its
subsystems.[16]

Slurm’s origins date back to 2001 where a small team of software engineers lead by Morris
Jette in Lawrence Livermore National Laboratory started researching advanced scheduling
subsystems for large scale computers. Since then, Slurm’s development has progressed im-
pressively, with 200 collaborators contributing on the project as well as multiple institutions,
including SchedMD LLC (the company responsible for Slurm’s development, support and
training), Linux NetworX, HewlettPackard, Groupe Bull, Cray, Barcelona Supercomputing
Center, Oak Ridge National Laboratory, Los Alamos National Laboratory, Intel, Nvidia and
more.[17]

As a general rule, in HPC clusters, resource management systems are essential software
components. Their role centers on three key tasks: distributing resources, scheduling jobs,
and tracking their execution. Resource allocation involves assigning the necessary hard-
ware—whether just a small segment of the machine or the full system—to user workloads,
depending on the specific requirements. A generic view of the operations upheld by resource
managers can be observed on Fig. 2.1
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Figure 2.1: A high-level view of the operation of a generic resource manager

Slurm functions in a similar way, providing many more capabilities that will be presented in
brief in the next sections. Slurm has a centralized manager, slurmctld, to monitor resources
and work. There may also be a backup manager to assume those responsibilities in the event
of failure. Each compute server (node) has a slurmd daemon, which can be compared to a
remote shell: it waits for work, executes that work, returns status, and waits for more work.
The slurmd daemons provide fault-tolerant hierarchical communications. There is an optional
slurmdbd (Slurm DataBase Daemon) which can be used to record accounting information
for multiple Slurm-managed clusters in a single database. There is an optional slurmrestd
(Slurm REST API Daemon) which can be used to interact with Slurm through its REST APL
The described layout of the Slurm concept operation can be seen in Fig. 2.2
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Figure 2.2: Slurm resource manager concept operation
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A description of the basic functional units - daemons that consist Slurm and are in charge
of its operation is given in subsections 2.2.4 and 2.2.5.

2.2.1 Resource Allocation

In order to manage the complexity of large-scale HPC environments, Slurm is designed with a
logical division into distinct entities. This separation of concerns allows Slurm to efficiently
coordinate job submission, scheduling, and execution across thousands of compute nodes while
maintaining scalability and fault tolerance. By organizing its functionality into well-defined
components, Slurm ensures that each entity can operate independently yet cooperatively,
enabling both flexibility for system administrators and transparency for end-users. This logical
structuring is essential for maintaining performance, reliability, and extensibility in modern
HPC systems.

One of the fundamental entities in the system is the node. Each node must belong to
at least one partition, which groups resources into a logical structure. Partitions are logical
compartments and do not represent physical divisions. These partitions are not required to be
mutually exclusive; in fact, they often overlap. Typically, partitions are used to organize nodes
that share similar characteristics, such as comparable hardware configurations or software
environments.

To give these structures purpose, Slurm also defines the concepts of the job and the job step.
A job represents an allocation of resources to a user for a specific period of time, while a job
step refers to a collection of tasks (which are potentially parallel) that execute within the scope
of a job. Each partition can be thought of as a separate job queue, governed by constraints
such as maximum job count, time limits, or user access policies and more.

Jobs are scheduled onto nodes within a partition based on priority until the available
resources of that partition are exhausted. Once resources are assigned to a job, the user gains
full control to launch one or more job steps. These steps can be configured in various ways: for
instance, a single step may utilize the entire allocation, or multiple steps may run concurrently,
each consuming a subset of the resources assigned to the job.

2.2.2 Scheduling

In high-performance computing environments, jobs pending execution are organized into
queues, which govern the sequence in which tasks are dispatched by the resource management
system. While many scheduling decisions adhere to the First-In, First-Out (FIFO) policy—re-
flecting the classical queuing model in computer science, more advanced schedulers incorporate
sophisticated strategies aimed at maximizing overall resource efficiency. Typically, systems im-
plement multiple specialized queues, each tailored to a distinct workload profile and associated
with specific scheduling constraints. For example, separate queues may exist for interactive
jobs, while others may enforce strict limits on wall-clock time, memory consumption, or the
number of allocated compute nodes. Although, these more sophisticated methods are usually
the subject of rigorous research and investigation, most production systems still employ a mix
of simple policies for scheduling jobs.

By default, Slurm adopts comparatively simple scheduling algorithms, consistent with
its foundational design principles of simplicity and efficiency, although more recent versions
of Slurm have integrated more complex algorithms, alas, the description of which is not
in the scope of this dissertation. The scheduling mechanism is event-driven, activated by
specific system events such as job completion, job submission, or modifications to the system
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configuration. In this mode, the scheduler evaluates only a fixed number of jobs —by default,
the first 100 entries in the priority queue— thereby balancing responsiveness with low overhead.
Nevertheless, Slurm also provides the capability to consider the entirety of the queued workload.
This extended scheduling approach, while more comprehensive, incurs higher computational
costs and is therefore executed less frequently, according to a configurable scheduling interval
(sched_interval).

For completeness and without immersion into the details of Slurm plugins, it is noted that
Slurm supports the integration of scheduling extensions to enrich and customize its default
scheduling functionality. These extensions are configured via the SchedulerType parameter
within the slurm.conf configuration file. Although administrators may modify the active
scheduling plugin to adapt the system’s behavior to specific workload or policy requirements,
any such modification necessitates a restart of the slurmctld daemon for the changes to take
effect.

2.2.3 Security

The security model of Slurm is deliberately minimalistic. All authenticated cluster users are
permitted to submit jobs and to cancel only those they have submitted, while also being able
to inspect the system’s configuration and runtime status. Administrative operations, such as
altering configuration parameters, canceling arbitrary jobs, or performing other privileged
actions, are restricted to users with elevated rights. By default, this category of privileged users
includes only the root account and the Slurm users explicitly defined in the configuration file
as such. In scenarios where configuration modifications must be delegated to additional users,
privilege escalation mechanisms such as Set-UID programs (e.g., setuid, setgid) are required to
grant finely scoped administrative permissions.

Traditionally, node-to-node authentication was handled through the use of reserved ports in
combination with Set-UID programs. Daemons would validate incoming requests by verifying
that the source port was within a privileged range accessible exclusively to the root user,
thereby treating such connections as implicitly trustworthy. This approach, however, was
constrained by the scarcity of reserved ports and further weakened by the inherent security
risks of Set-UID binaries. To overcome these limitations, Slurm introduces an alternative
authentication mechanism that avoids reliance on such legacy methods. In fact, this alteration
in the security policy of Slurm was the enabler for the SiS tool developed for the scope of
this dissertation! The logic of the contemporary authentication method imposes that each
inter-node message in a Slurm cluster is tagged with a unique identifier, which encodes the
sender’s user ID (uid) and group ID (gid). Once verified by the recipient, these credentials
establish the sender’s authenticity and authorization level.

As far as job authentication is concerned, Slurm abides by the following mechanism: When
the controller allocates resources to a user, it generates a unique identifier for each job step
submitted by that user. This identifier encapsulates several elements: the user’s UID, the
corresponding job ID, the step ID, the set of allocated resources, and a validity period. To
ensure security, the identifier is cryptographically signed using the controller’s private key.
This mechanism authorizes the user to access the designated resources without requiring
additional validation queries from the slurmd to the slurmctld. Instead, the slurmd verifies
the authenticity of the identifier by checking the controller’s digital signature with its public
key and confirming that the embedded details match the request. In this way, public key
cryptography underpins secure and efficient resource access control within the system.

Finally, Slurm provides mechanisms for partition-level access control. One such mechanism
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is the RootOnly flag, which, when activated, limits the submission of jobs and resource alloca-
tion requests exclusively to privileged users—those whose effective UID grants administrative
rights. Users with such privileges are authorized to submit jobs on behalf of other accounts.
Furthermore, Slurm supports partition access restrictions based on group membership through
the AllowGroups directive in the configuration file, enabling administrators to enforce fine-
grained policies that align computational resource usage with organizational or project-specific
boundaries.

2.2.4 Slurm Controller (slurmctld)

In Slurm, most of the system’s state information is managed by the slurmctld daemon. This
controller is multithreaded and employs separate locking mechanisms for read and write
operations to ensure scalability. Upon startup, it loads the system configuration from the
configuration file along with any previously stored state data. To support fault tolerance, the
controller periodically saves its full state to disk, or immediately if configuration changes
occur. The slurmctld can operate in either master or standby mode, depending on whether a
backup controller (fail-over twin) is present. Unlike the slurmd daemon, it does not require
root privileges. Instead, Slurm recommends assigning a dedicated system user—defined in the
configuration file under SlurmUser—to run slurmctld. The key internal components of the
slurmctld are:

« Node Manager: The Node Manager is responsible for monitoring the operational status
of all nodes within the cluster. This is accomplished either through periodic polling
of the downstream (See: section 2.2.5) daemons or by processing asynchronous state
updates they provide. Before a node is deemed suitable for task allocation, the Node
Manager verifies that it conforms to the expected configuration parameters.

« Partition Manager: Groups nodes into the previously described sets referred to as parti-
tions. It assigns nodes to jobs based on their status and configuration. Job start requests
originate from the Job Manager. It also modifies the configuration of nodes and partitions
according to commands issued from previleged users.

+ Job Manager: The Job Manager handles job submission requests, maintaining them in a
priority queue until resources become available. It is triggered either on a scheduled
basis or in response to state transitions that may enable the initiation of pending jobs,
the completion of existing workloads, the arrival of new submissions, or the activation of
a node or partition. When such conditions arise, the Job Manager selects an appropriate
job from the queue for each available partition and allocates the necessary resources.
Following allocation, it ensures that all required execution details are communicated to
the designated nodes.

2.2.5 Slurm Daemon (slurmd)

The slurmd daemons, are multithreaded programs that are attached on the compute nodes of
the clusters and are generally in charge of relaying and monitoring the command execution
from the slurmctld (See: section 2.2.4). Its responsibilities include, but are not limited to,
parsing the system configuration from the Slurm configuration file, registering its active status
with the controller, awaiting job assignments, executing these jobs, returning execution results,
and remaining on standby for subsequent tasks. Because it initiates processes intermediatiating
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commands from users, execution under root privileges is required. Furthermore, slurmd
communicates asynchronously with the slurmctld, exchanging information about both the
status of active jobs and the condition of the hosting node. Its state management is deliberately
minimal, maintaining only the data strictly necessary for the jobs currently in execution.

2.3 Other Resource Managers for HPC

At the time of writing of this dissertation more HPC resource managers are available for system
administrations, in the scope of this research only a brief presentation of those using open
source software will take place.

2.3.1 Flux

An interesting case of HPC resource manager is Flux. Flux is a resource and job management
framework developed to address the limitations of traditional high-performance computing
(HPC) schedulers in handling heterogeneous hardware, nested workloads, and ensemble-based
workflows. Unlike other schedulers such as Slurm or PBS, Flux adopts a hierarchical model
that enables the instantiation of nested schedulers within existing allocations. This approach
allows for fine-grained scheduling decisions at multiple levels of the system, thereby reducing
contention and improving utilization. Its architecture is built around lightweight components,
including a key-value store and message broker, that support decentralized decision-making
and enhance scalability on large-scale systems[18].

A key contribution of Flux lies in its ability to unify diverse scheduling requirements under
a common framework while supporting portability across platforms. Flux’s main advantage is
that it can operate autonomously under already deployed resource managers in production
systems.

2.3.2 PBS(Pro)

PBS (Portable Batch System Professional) is a mature, full-featured workload management
and job-scheduling system originally developed under NASA’s Portable Batch System (PBS)
initiative, designed to manage compute-intensive workloads across diverse environments
including parallel clusters and computational grids. As advanced by [19], PBS Pro supports
core scheduling features such as advanced reservations, peer scheduling, and cycle harvesting,
allowing coordinated resource utilization from idle desktops to supercomputer clusters, while
offering fine-grained control over compute and data workflows in Grid computing contexts.
Furthermore, PBSPro integrates mechanisms for resource abstraction, authentication, account-
ing, and data staging, thereby facilitating secure and programmable workload distribution
across heterogeneous systems.

Moreover, PBSPro provides a configurable resource-definition framework that allows
administrators to declare standard and custom (generic) resources with defined types, scopes,
and behaviors, which jobs may request at submission. This enables advanced scheduling
logic for specialised resources such as GPUs, memory, node attributes, or licenses. While this
flexibility is beneficial, the enforcement of custom-resource constraints may require additional
administrative tooling or scripting to ensure proper tracking and isolation[20].
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2.3.3 RadicalPilot

RADICAL-Pilot (RP), is Python-based lightweight resource acquisition and scheduling system,
not to be confused with a traditional resource manager. RP is used for executing heterogeneous
tasks with maximum concurrency and at scale. RP can concurrently execute up to 10° hetero-
geneous tasks, including single/multi core/GPU and MPI/OpenMP. Tasks can be stand-alone
executables or Python functions and both types of task can be concurrently executed[21].

RP presents itself as a Pilot system, meaning that it performs a distinction between resource
acquisition and using those resources to execute application tasks. RP acquires resources by
submitting a job to an HPC platform, and it can directly schedule and launch computational
tasks on those resources. Thus, tasks are directly scheduled on the acquired resources, not via
the batch system of the HPC platform. RP supports concurrently using single/multiple pilots
on single/multiple high performance computing (HPC) platforms[21].

Similar projects are Balsam[22] and Parsl[23].
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Chapter 3

Background and Related Work

3.1 Co-execution

In HPC environments, resource allocation policies typically assign jobs from different users
to distinct nodes, ensuring both spatial and temporal separation. Although this strategy
minimizes performance interference across workloads, it incurs significant drawbacks, notably
reduced system throughput and lower energy efficiency. A new approach subjects jobs to
occupy part of the nodes in order to make it possible to co-locate other jobs that will improve
the overall usage of the node[24].

Studies[25, 26] demonstrate that overall system performance can be enhanced when co-
located jobs exhibit heterogeneous resource requirements, such as pairing memory-intensive
workloads with compute-intensive ones.

Co-location, from a physical viewpoint, can be seen as process-to-core mapping technique
for HPC clusters and can come in two different forms, striped and spread.

On the contrary, how and which jobs should be co-located in each node is part of bleeding-
edge research[27-30], centered around many innovative and advanced methods. For the most
part, the resource manager can deploy applications based on the logic followed by the scheduler
and based on the scheduler’s policy it can be elected that an application can be spread across
many nodes and/or allocate it in nodes that other applications are being executed.

Distributing applications across nodes enables them to leverage a greater pool of hardware
resources, given that resource contention among different applications is being minimised
at the same time, such as additional last-level cache or accelerators like GPUs. Furthermore,
intra-node data transfer is optimized because fewer application instances are executed per
node, thereby reducing communication overhead—particularly relevant in the context of MPI
applications. Node sharing is especially beneficial when co-located applications exhibit comple-
mentary resource usage patterns. For example, a memory-bound application, whose scalability
is constrained by bandwidth, can achieve shorter execution times when executed alongside
a compute-intensive workload, as overall communication demands are diminished. From
the system perspective, adopting a strategy of first spreading and then striping applications
mitigates resource fragmentation, thereby improving utilization of nodes that would otherwise
remain underused[31].

Conversely, heterogeneous applications often exhibit diverse communication patterns,
which can lead to performance degradation under certain co-location scenarios. Such slow-
downs may result from synchronization overhead across nodes or from cases where co-located
workloads ultimately manifest similar behavior. Naturally, this that running two indepen-
dent jobs of the same application concurrently is inadvisable: memory-bound applications
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Figure 3.1: Methods for scheduling two 16 process distributed applications A and B on a
supercomputer with two 8-core processor sockets. With spread, A and B are still isolated but
run on two compute nodes each, with half the cores empty. In striped, A and B share all sockets
of two compute nodes.[24]

suffer from increased contention, while compute-bound applications would achieve higher
efficiency if paired with memory-intensive counterparts[32, 33]. An additional challenge arises
in practical systems with pricing models that charge users based on the number of cores
allocated multiplied by execution time. Under such schemes, users may incur higher costs
when scheduling decisions inadvertently slow their applications, raising concerns of fairness.
Although various mitigation strategies have been proposed, these are beyond the scope of our
present analysis.

The impact of node sharing on application performance can be either beneficial or detrimen-
tal, depending largely on workload characteristics. The degree of homogeneity or heterogeneity
among co-located jobs significantly influences co-execution efficiency, with neighboring work-
loads often serving as the primary factor behind performance degradation or optimisation[34].
Consequently, co-scheduling, meaning the implementation of co-location in a dynamic, long-
running scenario, emerges as a highly complex problem, as addressing these challenges requires
deeper insights into the behavior and requirements of submitted applications. Nonetheless, it
may be argued that moderate increases in execution time are acceptable when offset by the
advantage of reduced queue waiting times[35].

3.2 Simulating Resource Allocation

On the subject of designing and using state-of-the-art schedulers, especially ones that can
manage co-location of workloads on different processors, the Computing Systems Laboratory
of the Computer Science Division of National Technical University of Athens has developed a
tool for modeling and evaluation scheduling algorithms[36].

Despite concrete data on the benefits of co-location, which are already presented through-
out this chapter, there remains a critical gap in understanding how co-scheduling schemes
would perform when jobs dynamically enter and exit the system. The complexity of this
problem is compounded by a shortage of dedicated tools and deployments in production HPC
environments that allow researchers to rapidly and accurately develop, test, and evaluate
co-scheduling algorithms without requiring extensive environment configuration. Existing
domain-specific and toolkit-based simulators often lack direct support for co-scheduling under
space-sharing or are difficult to configure and extend for such purposes. In that ecosystem, sim-
ulation emerged as an essential initial step to explore the intricate behaviors of co-scheduling
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Figure 3.2: High-level design logic of the ELiSE framework[31]

and assess key metrics like system throughput, turnaround times, and resource fragmentation.
In response to this pressing need, the Efficient Lightweight Scheduling Estimator (ELiSE), a
Python-based framework, specifically designed for the rapid development and comprehensive
evaluation of scheduling algorithms with co-location capabilities.

ELiSE’s primary contribution lies in its ability to enable researchers to quickly and easily
prototype and test (co-)scheduling algorithms for Message Passing Interface (MPI) applications
on HPC systems.

Concerning design principles and supported features for modeling and evaluation, it is
noted that ELIiSE is built upon a set of design principles that prioritize focused assessment and
ease of use. Crucially, it is not a full system simulator; instead, its core mission is to evaluate
different scheduling policies, with a distinct emphasis on co-scheduling.

This design choice allows ELIiSE to avoid the complexities of full system simulation, which
often necessitate thorough configuration and extensive tuning (a cumbersome approach that
SiS development had to sustain). By focusing on the behavior of co-scheduling scenarios and
leveraging pre-computed or externally derived execution results (e.g., from real experiments,
partial experiments, or other models), ELiSE facilitates the rapid development and testing of
algorithms. For modeling HPC environments and workloads, ELiSE requires several inputs:

« HPC Cluster Description: Users provide a simple description of the target HPC cluster,
specifying the number of nodes, CPUs per node, and cores per CPU. This flexibility
allows for the modeling of diverse system architectures.

« Dynamic HPC Job Load: A dynamic load of HPC jobs is provided as input. This involves
defining the desired number of applications, an "application seed” (a set of applications
with their compact allocation execution times), and a co-execution matrix (heatmap)
detailing pairwise speedups between applications.

« Workload Generation: ELiSE supports the generation of various types of static or dynamic
workloads. Applications can be randomly selected from the seed, with user-defined
frequencies, or via a specific list. Furthermore, the arrival time intervals of applications
can be defined as constant, random, Poisson, or Weibull, enabling realistic workload
modeling.
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« Co-execution Heatmap: A heatmap of pairwise speedups, which quantifies the perfor-
mance change when two specific applications are co-located, is a fundamental input.
This data is crucial for ELiSE’s ability to model the effects of co-scheduling.

A standout feature of ELiSE for scheduler modeling and evaluation is its robust support for
both in-built and custom-made (co-)scheduling algorithms. The framework provides a clear
and straightforward mechanism for extending to new schedulers through a class hierarchy.
An abstract Scheduler class defines essential operations such as host allocation conditions, job
allocation, co-location, deployment, and reordering the waiting queue. The abstract deploy and
backfill methods must be implemented for any new scheduling algorithm to be usable within
ELiSE, providing a standardized interface for algorithm development. Current implemented
schedulers include FCFS, FCFS with EASY backfill, FCFS with conservative Backfill, an FCFS
co-scheduler with EASY Backfill, and a smart” co-scheduler called Filler.

This extensibility is vital for researchers to test novel algorithmic designs. ELiSE’s adapta-
tion for co-scheduling is a core component of its utility. It dynamically adjusts the remaining
execution time of jobs based on their co-located neighbors.

The framework accounts for scenarios where an application’s neighbors might change
during its execution or where it might have different neighbors across multiple allocated
nodes. ELiSE operates on the reasonable assumption that the execution time of an application
co-located with multiple neighbors is determined by the slowest case among its pair-wise
interactions, calculated from the provided heatmap. This ensures that the simulation accurately
reflects the performance impact of dynamic co-locations. The remaining execution time is
recalculated at each simulation step using a formula that leverages the minimum pairwise
speedup from the heatmap, ensuring responsiveness to changing co-location scenarios. While
currently focused on pairwise co-locations, ELiSE includes mechanisms to support more
advanced multi-job co-locations in future iterations.

For evaluating scheduling outcomes, ELiSE provides a rich palette of output and visualiza-
tion tools. It generates detailed logs of workload execution, including job arrival, start, and
end times. Crucially for analysis, it offers various visualizations, such as Gantt charts, system
throughput plots, queue size dynamics, system utilization over time, and application speedups
presented in boxplots, a subset of which is presented in Fig. 3.3.

These visual aids are indispensable for researchers to understand performance metrics and
assess the behavior of different scheduling strategies. The evaluation metrics considered by
ELiSE include makespan (total time to complete all jobs), job turnaround time (submission to
completion), job speedup (ratio of compact execution time to co-scheduled execution time),
and system utilization (percentage of system in use until the waiting queue is empty).

On validation and initial observations on co-scheduling behavior ELiSE has been rigorously
validated to ensure its simulation results are closely aligned with real-world performance.
Comparisons against an extended OAR RJMS on a small Grid5000-Grvingt cluster demonstrated
minimal deviations for both simple FCFS scheduling and co-scheduling scenarios. Through
preliminary experiments using ELiSE, important initial observations have been made regarding
co-scheduling behavior, guiding future algorithmic design, based on:

« Impact of Process Count Diversity: ELIiSE revealed that the diversity in the process count
of jobs significantly impacts the benefits of co-scheduling. This highlights the need for
more sophisticated co-scheduling strategies that can effectively manage diverse job sizes.
The “Filler Co-Scheduler” was implemented in ELiSE to crudely address this by filling
unutilized resources, demonstrating ELiSE’s capability to test mitigating strategies.
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Figure 3.3: ELiSE ships with a set of built-in visualization features to help determine various
scheduling factors[31]

« Correlation between Mean Job Speedup and Makespan Improvement: Experiments showed

a strong correlation between the mean pairwise speedup of jobs in an application pool
and the makespan improvement achieved through co-scheduling.

« Correlation between Mean Job Speedup and Makespan Improvement: This indicates that

leveraging applications with high co-execution speedups is a critical factor for maximiz-
ing system throughput.

« Trade-offs in Optimization Strategies: ELiSE illustrated the inherent trade-off between

system throughput (makespan improvement) and user satisfaction (percentage of jobs
experiencing slowdowns relative to compact execution). The variability observed across
different job shuffles, even for the same application pool, underscores the complexity and
the necessity for advanced co-scheduling algorithms that can balance these competing
metrics.

These insights are invaluable for informing the design of algorithms that aim for both high
system performance and equitable user experience.

ELiSE demonstrates practical simulation performance, capable of simulating small and
medium-scale scenarios very quickly, and even very large cases within tolerable times. For
instance, it can simulate 10,000 jobs on a system with 2.5 million cores for 14 hours of makespan
in approximately one hour of simulation time on a desktop machine.

This efficient performance ensures its applicability for extensive research and evaluation.
In conclusion, ELiSE provides a vital framework for addressing the challenges of co-
scheduling in modern HPC systems. By offering a simple yet accurate platform for the rapid
development, testing, and comprehensive evaluation of scheduling algorithms, ELiSE fills a
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3.2. Simulating Resource Allocation

critical void in research tools. Its ability to model diverse system architectures and workloads,
adapt to dynamic co-location scenarios, and provide rich visualization of performance metrics
makes it an indispensable asset for understanding and optimizing HPC resource management.

The initial observations derived from ELiSE already highlight key considerations for algo-
rithmic design, emphasizing its role in guiding the ultimate implementation and deployment
of co-scheduling in production environments.

The aim of the tool developed in the scope of the present dissertation, SiS, is to build upon
ELiSE’s legacy and validate the results provided by ELiSE or other simulation tools. SiS will
make available to the HPC community a tool to further their research on working production
systems, enriching their insights on (co-)scheduling and optimal resource allocation.

Furthermore, ELiSE’s preliminary studies on the behavior of workloads under co-location
scenarios has been a source of inspiration of the development and experimentation with
quarter-socket allocations of workloads on HPC systems.
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Chapter 4

Design and Architecture of
Slurm-in-Slurm (SiS)

4.1 ARIS

ARIS is the name of the Greek supercomputer, deployed and operated by GRNET S.A. (National
Infrastructures for Research and Technology S.A.) in Athens. The system was ranked 468 in
the Top500 list on June 2015, although, with 2025 data it is considered to be a legacy system
with more than 10 years of contribution on scientific and research projects throughout all
disciplines.

SiS development environment was the ARIS HPC system. SiS was developed while ARIS
was in production and all experiments were conducted while the system was live, without
interfering with its normal operation.

The following chapter has been based on information from the ARIS documentation
page[37], as well as system information gathered by the author during the development of the
SiS tool.

The ARIS system general information can be observed in the following Table 7.1:

Table 4.1: ARIS’ System Specifications

Architecture x86-64

Operating System Redhat/Centos 6.7
Interconnect

Technology Infiniband FDR
Topology Fat tree
Bandwidth [Gb/s] 56

Storage

Type IBM GPFS

Size [PByte] 2

Bandwidth [GB/s] 6

System Software

Batch system SLURM
System Management xCat IBM
Monitoring Nagios, Ganglia
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4.1. ARIS

Five hundred and thirty three (533) computational nodes in five (5) logical entities form
ARIS. An overview is show in the following Table 4.2:

Table 4.2: ARIS’ node Specifications

Node Type Count Accelerator Memory Cores

THIN nodes 426 not included 64 GB 20@2.8 GHz (two sockets)
GPU nodes 44 dual tesla k40m 64 GB 20@2.6 GHz + 2 x K40
PHI nodes 18 dual xeon phi 7120p 64 GB 20@2.6 GHz + 2 x 7120p
FAT nodes 44 not included 512 GB 40@2.4 GHz (four sockets)
ML node 1 8 volta v100 512 GB 40@2.2 GHz (two sockets)

All the nodes are connected via Infiniband network organized in a fat tree topology as in
Fig. 7.5.

Core Switch 1 Core Switch 2

Agg Switch 2-1 Agg Switch 1-1

downlink downlink

downlink downlink

Edge Switch 2-1-1 Edge Switch 2-1-2 Edge Switch 1-1-1 Edge Switch 1-1-2

access access access

(H ost 3) (Host 4) ( Host5 ) (H ost 6) CH ost 7) @

Figure 4.1: Abstract Fat Tree topology with 8 nodes. ARIS nodes follow the fat tree layout.

access access

access access access

The nodes share 2 petabytes GPFS storage and access to the system is provided by two
login nodes using SSH protocol connection.
A technical explanation of each node type is given in the next sections.

4.1.1 THIN Nodes

The 426 thin compute nodes (thin node island) deliver a theoretical peak performance (Rpeak)
of 190.85 TFlops and a sustained Linpack benchmark performance (Rmax) of 179.73 TFlops.
The thin node island is particularly well-suited for highly scalable applications that employ
MPI or hybrid MPI/OpenMP programming models.

In Slurm terms, the system administrators of ARIS have organised the THIN nodes in the
compute partition.
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4.2. Overall SiS Architecture

Table 4.3: THIN nodes technical information

Architecture

System

Total number of nodes

Total number of cores

Total amount of RAM [TByte]

Total Linpack Performance [TFlop/s]

X86-64

IBM NeXtScale nx360 M4
426

8520

27

180

Components
Processor Type
Nominal Frequency [GHz]

Ivy Bridge - Intel Xeon E5-2680v2
2.8

Processors per Node 2
Cores per Processor 10
Cores per Node 20
Hyperthreading OFF
Memory

Memory per Node [GByte] 64

SiS was developed by leveraging the compute partition.

4.2 Overall SiS Architecture

As noted previously, SiS aspires to be a lightweight tool for testing functionalities on production
Slurm systems. To that end, SiS is deployed through the common job submission mechanism
on Slurm as a normal job, without requiring the user to have elevated rights, apart from being
able to submit a job on the cluster. To get a grasp of the operation of SiS, Fig. 7.6 provides a
useful visual aid:
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Figure 4.2: A simplified view of the workings of SiS within a Slurm cluster
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4.2. Overall SiS Architecture

A typical execution lifecycle of SiS involves the following steps:

1. The user submits the job to the external Slurm through the sbatch utility. The job script
is the actual code wrapped with the SiS code to deploy and initiate the SiS cluster.

2. The job gets submitted to the underlying system’s Slurm slurmctld which, among other
operations allocates the nodelist for the specific job.

3. The allocation for the job constitutes the SiS cluster. A slurmctld acting as the controller
of the SiS cluster initiates operation.

4. The SiS slurmctld establishes communication with the SiS slurmds and delegates the
execution to them.

5. When the submitted script finishes execution normally, or by means of the user’s com-
mands or by having exhausted the allocated time for the job completion, it exits gracefully
terminating the SiS daemons as well.

With respect to the final observation concerning the lifecycle of the SiS framework, it
becomes evident that the system is capable of executing the complete set of Slurm commands,
provided that the relevant plugin or functionality has been properly integrated during the
installation phase. In practical terms, this implies that SiS does not impose any restrictions
on the standard usage of Slurm commands. Instead, it allows them to be invoked seamlessly
through the SiS executables once the system is operational. Such invocations may occur either
within an SBATCH script, thereby enabling batch job submission and management, or directly
via the system’s command-line interface (CLI). This characteristic highlights the flexibility and
compatibility of SiS with the broader Slurm ecosystem, as it ensures that users can continue to
rely on familiar job submission and management practices, while benefiting from the additional
abstractions and capabilities introduced by SiS.

Since SiS is executed as a job within the Slurm workload manager, it is appropriate to
examine the internal mechanisms governing the execution of Slurm jobs.

A job in Slurm represents a unit of work that aims to complete one or more tasks. Tasks
may be specified at the job level using the options —-ntasks or --ntasks-per-node, or
alternatively at the step level through the --ntasks option. The number of CPUs allocated
per task is controlled via the —--cpus-per-task parameter.

Each task is executed on a single compute node within the context of a job step. A job is
divided in job steps, starting the enumeration from job step 0. Each such step corresponds to
an srun command. A task utilizes one or more CPU cores and requires a non-zero amount
of memory. By default, Slurm assigns 5 Gigabytes of memory if no explicit request is made,
although users may request smaller allocations. Notably, requesting less memory may increase
the likelihood of a job being scheduled, as fewer resources are required.

When multiple tasks are defined within a job, each task consumes a subset of the resources
allocated to the overall job. These tasks may be distributed across a single compute node or
multiple nodes. However, the resources consumed by an individual task cannot exceed the
resources available on a single node.

Once jobs are submitted and accepted by Slurm, they are assigned a unique job identifi-
cation number (jobid or job_id for backwards compatibility). This identifier serves as the
primary reference when interacting with Slurm utilities such as scontrol or when parsing
output generated by programs such as sacct. Depending on the context, different forms of
identification numbers may be displayed or required.
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4.2. Overall SiS Architecture

In practice, documentation and correspondence often refer simply to the job or jobid, with
the implicit expectation that the user will infer the appropriate identifier to provide in a given
situation.

The structure of Slurm job identifiers follows specific conventions. Underscores (_) are
used to delimit elements of a job array from the associated job identifier, while periods .)
separate the job identifier from a step identifier.

On average, a job will consist of two or more steps, each representing a distinct unit of
execution within the job. The most common types of steps are outlined below:

« External step — This step represents the connection between the submission node and
the leading node in the allocated node list. It typically succeeds regardless of whether the
overall job completes successfully, failure to do so is a strong indication that a problem
with the configuration or operation of the resource manager is has occured.

« Batch step — Created when jobs are submitted with sbatch. The exit code of the batch
script directly impacts the final STATE of this step.

+ Interactive step — Created when jobs are launched with srun outside of a batch job
context.

+ Normal step — A batch job can include multiple normal steps, which appear in the
accounting output as <jobid>.<step_id>. Interactive jobs, in particular, do not contain
normal steps.

When examining accounting information using commands such as sacct, one will observe
that each job is associated with multiple entries, including an entry for the overall job itself.
Each entry is reported with both a STATE code (e.g., COMPLETED, FAILED, CANCELLED) and
an EXITCODE (e.g., 0:0). It is therefore important to distinguish whether the reported state
information refers to the overall job or to one of its component steps.

Having established the fundamental concepts of Slurm jobs, it is important to emphasize
that the SiS framework is executed as a batch job. As previously discussed, the primary
design objective of SiS is to function as a lightweight user-space tool that does not require
elevated privileges for deployment or execution. By leveraging Slurm’s batch job mechanism,
S1S integrates seamlessly into the job scheduling environment while incurring only minimal
overhead. This design choice ensures that the tool remains both efficient and non-intrusive,
thereby aligning with the broader principle of scalability in high-performance computing
systems.

The execution of SiS as a batch job within Slurm provides several important advantages that
enhance both its usability and efficiency in high-performance computing environments. These
advantages extend from resource allocation to system-level integration, ensuring that the tool
remains lightweight while fully compatible with established scheduling infrastructures.

A first trait concerns the ability to monitor execution transparently through the mechanisms
already available in the external Slurm for handling batch steps. Since every batch job is
internally decomposed into steps, SiS health during job execution can be observed throughout
its lifecycle using standard commands such as sacct, if an accounting plugin has been installed
along SiS, and scontrol. For most use cases, the optional slurmdbd daemons and accounting
managers should not be needed since SiS aims to become a lightweight testing tool for several
Slurm components. This can aid in minimising the memory space SiS occupies and optimise
execution latency. The external Slurm commands expose detailed information on job states,
transitions, and exit codes. Thus, users can trace the execution of SiS without requiring

37



4.2. Overall SiS Architecture

additional monitoring infrastructure or privileged system access, let alone re-installing these
components alongside SiS.

Another significant characteristic of SiS is its reliance on the the prior allocation of com-
pute nodes. Slurm requires that resources be requested before a job begins, which ensures
deterministic allocation of both nodes and cores. SiS capitalises on this property, allowing
users to predict resource availability and performance with a high degree of confidence. This
capability is especially relevant for workloads where consistency and reproducibility are central
requirements.

A further advantage arises from the flexibility of batch scripts, which constitute the de-
ployment interface of SiS. Since batch scripts can embed arbitrary user-defined commands, SiS
may be combined seamlessly with user code, enabling heterogeneous workloads to execute
under the same allocation. In practice, this means that a single job allocation can be used
to perform multiple distinct computational tasks (In simple terms: one external sbatch can
amount to multiple SiS sbatches), thereby reducing queue waiting times and optimizing
overall throughput. This flexibility is particularly beneficial in workflows that involve both
monitoring and computation, as it reduces the fragmentation of resource usage.

Finally, the integration of SiS allows it to leverage the system-level guarantees already
implemented by the external resource manager, since Slurm provides well-established mech-
anisms for job integrity, node-level networking, and security enforcement. By operating
within this framework, SiS avoids the redundancy of re-implementing such mechanisms while
benefiting from their robustness. This design choice enhances both the trustworthiness and
the efficiency of the tool, ensuring that its execution is both secure and consistent with broader
system policies.

To conclude with, an important feature of the Slurm in Slurm (SiS) framework is its ability
to deploy custom Slurm installations where the source code has been explicitly modified or
extended. Until now, the dominant approach for experimenting with new scheduling strategies,
authentication methods, or accounting mechanisms was through the plugin system, which
relies on well-defined application programming interfaces (APIs). While plugins have proven
invaluable for extending Slurm’s modular architecture, they inherently impose a boundary:
developers are restricted to modifying only those functionalities that are exposed through
the plugin interface. In contrast, SiS eliminates this limitation by allowing researchers and
practitioners to install, configure, and execute Slurm instances whose source code has been
directly altered. As a result, SiS greatly expands the scope of experimental work, enabling the
evaluation of changes that reach beyond the existing API boundaries.

The significance of this capability is twofold. First of all, it opens the possibility for testing
experimental schedulers, resource allocation mechanisms, or security enhancements that
require fundamental changes to Slurm’s core components, which previously could not be
implemented without tampering with a production system. Secondly, it provides a controlled
and isolated execution environment where different versions of Slurm, including those with
source-level modifications, can coexist and be systematically benchmarked against each other.
This is a crucial advancement in the research and development lifecycle, since it bridges the
gap between theoretical design of scheduling algorithms or system functionalities and their
practical validation within a functioning cluster environment.

Consequently, SiS not only preserves the extensibility advantages of the traditional plugin
system, but also extends them by incorporating a higher degree of flexibility and experimental
freedom. By supporting deployments of custom Slurm instances compiled from modified
source code, SiS transforms into a powerful research and development tool. It enables testing
scenarios that previously remained inaccessible, thus fostering innovation in areas such as
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job scheduling, resource selection, fault tolerance, and system scalability. This makes SiS
particularly valuable for both academic research and industry settings, where the ability
to experiment with and validate modifications at the source code level can lead to shorter
implementation times for improvements in high-performance computing infrastructures.

39



Chapter 5

Implementation and Integration

5.1 ARIS version

In this section, we will examine in detail the various refinements, design choices, and sensitive
implementation points that proved critical in the development of SiS. Particular emphasis
will be placed on the identification of the system’s critical path, highlighting the components
whose proper configuration directly determines the stability and performance of the framework.
Furthermore, the section will provide practical guidelines and step-by-step instructions for
deploying SiS within an already established supercomputing environment. These deployment
instructions are intended not only to demonstrate the feasibility of integrating SiS into existing
infrastructures but also to serve as a reproducible methodology for other high-performance
computing systems. In doing so, the section aims to bridge the conceptual design of SiS
with its practical application, ensuring that both researchers and system administrators can
benefit from a comprehensive understanding of the framework’s operational requirements
and integration process.

At this stage, it is natural to raise a critical question: if the primary objective of SiS is to
enable the deployment of any version of Slurm independently of the underlying system, why
did the developers of SiS elect to utilize the same version as that installed on the host system,
namely version 16.05?

To answer this question, one must draw his/her attention back to Chapter 4.1 where the
issue of the ARIS HPC system infrastructure was first discussed. In this section it was explained
that ARIS’ underlying operating system was RedHat/Cent0S 6.7, which is a rather old and
unsupported version of Cent0S that reached its end-of-life on 30th of November 2020 [38],
followed by an overall discontinuation of the CentOS operating system. To the surprise of the
community and enterprises using RedHat, the company developing CentOS, did not provide a
clear path to system upgrade. To conclude this detour, the way this is related to ARIS HPC
system and the realisation of SiS is that as explained Slurm is based on Linux distributions and
newer versions of Slurm leverage the capabilities of the updated Linux kernel. In that sense,
even though it was possible to install SiS with newer versions of Slurm, the core executables
-meaning those that were responsible for deploying and running the slurmctld and slurmd
daemons- made use of system calls only found in more recent versions of the Linux kernel, thus
rendering attempts to operate SiS with more recent releases of Slurm inoperable. Consequently,
the deployment of SiS within the ARIS supercomputing infrastructure is constrained to the
same version of Slurm that is natively supported by the system, namely version 16.05.11. In
other words, SiS does not independently introduce a more recent Slurm stack, at least for
the case of the ARIS environment, but rather conforms to the specific software environment
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already established in ARIS, thereby ensuring tested consistency and compatibility.

5.1.1 Availability and Reproducibility of Code

The source code of SiS has been made publicly accessible through a dedicated GitHub
repository, thereby ensuring reproducibility, and ease of access within the research community.
Any HPC enthusiast, researcher or just curious reader is encouraged to try the repository
which contains very detailed instructions on how to install and run SiS on an HPC environment.
By hosting the project on a widely used version control platform, the software remains readily
available for inspection, modification, and extension by interested researchers and practitioners.
This accessibility facilitates both independent verification of the results presented in this thesis
and the potential for collaborative development and refinement of the framework. The online
repository includes brief instructions on the configuration, installation and execution of SiS
along with code and data for reproducing the quarter-socket MPI experiments conducted in
the scope of this thesis.

In addition to its online availability, the full implementation of SiS has been archived in
Appendix A.

5.1.2 System Requirements and Dependencies

SiS has been specifically designed to operate within HPC environments that are managed by the
Slurm workload manager. The version of Slurm that can be deployed through SiS is primarily
constrained by the kernel version of the underlying operating system as the introductory note
of this chapter indicated. This dependency arises from the low-level interactions between Slurm
and the kernel, which affect compatibility with certain system calls. Apart from this restriction,
SiS remains agnostic with respect to the specific Slurm release, and thus, in principle, it can
operate with a broad range of versions without further modification.

Another important consideration pertains to external library dependencies. In line with
best practices in HPC environments, SiS does not impose additional requirements for software
beyond what is already available in the cluster infrastructure. Instead, it relies on existing
system-provided libraries and modules to resolve any dependencies that arise during compi-
lation or execution. This approach minimizes administrative overhead, ensures consistency
with the cluster’s software ecosystem, but, in some cases, may need thorough monitoring of
possible conflicts between the system’s underlying Slurm installation and SiS. Moreover, by
delegating dependency resolution to the modules already curated and maintained by the HPC
facility, SiS enhances its portability and ease of deployment across diverse environments. In
this respect, the software can be integrated into production systems with minimal disruption,
while still preserving the flexibility needed for research and evaluation.

Finally, it is worth noting that minimal restrictions on Slurm versions and reliance on pre-
installed libraries reinforces the goal of making SiS both lightweight and easily reproducible.
The absence of heavy external requirements aims to make SiS suitable for rapid deployment in
both testbed and production environments.

For the time being, SiS has been configured and tested in RedHat/Cent0S 6.7 and kernel
version 2.6.32-754.35.1.e16.x86_64.
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5.1.3 Installation Process

This section describes the steps to set up the environment and install SiS, either having

downloaded it from the online repository, or copying the code from the Appendix of this thesis.
The file hierarchy that a SiS user will come across out of the box when downloading the

code from the online repository, as of October 2025, is depicted in the following Fig. 7.7:

L bash

— aris_boilerplate.sh

— environment _variables.sh
— helpers.sh

— job_queue.txt

— epilogue.sh

— prologue.sh

— v—-slurm-lite.sh

L— unit tests

L— quarter-socket-mpi

— data

— find_max_min.sh

— maxnodes.sh

— run_compact.sh

— run_cos.NAS_NAS.sh

— submit_cmp.sh

'— submit_co.sh

Figure 5.1: File hierarchy of the SiS project.

The main directory containing the code for SiS execution is bash and the driver script
for installation is aris_boilerplate.sh, which contains the basic operations to -by default-
download the Slurm source code and create the executables on the target system.

Before dwelling further to the several aspects of the aris_boilerplate. sh script, it is of
outmost importance to point touch on the significance of the environment_variables.sh
configuration file.

This bash script contains the necessary paths and variables that will be needed by the other
scripts to properly install and configure SiS. An example file has the contents present in Lis.
5.1:
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Listing 5.1: An example layout of the environment variables and paths used by SiS

# Pick version of Slurm to install, currently wversion 16 is
— tested and operating

# but version 25 and 21 can also be installed.

version="16.05.11.1"

#unnnssss#t EDIT THESE PARAMETERS ###########
# Set certificate names
cert_name=<your-certificate -name>
key_name=<your-private -key-name>
pkey_name=<your-public -key -name>
password=<your-private -key-file -password >

# Pick your home directory

base dir="$HOME/$USER”

home_ dir="$HOME/$USER/slurm-install/$version”
# Set job queue path
job_queue_filepath=${base_dir %/}/job_queue. txt
# Based on underlying system
sys_cpus=<cpus-per-socket >

sockets=<based -on-system -specs >
cores_per_socket=<based-on-system-specs >
threads_per_core=<based-on-system-specs >
real_mem=<memory-allocated -to-node>
partition_name=<same-name-as-underlying —-system >
max_mem_per_node=<node-available —-memory>
#Execution wvariables

errpath=<SiS -deployment-error -output -path >
outpath=<SiS -deployment-standard —output -path >
nodes_count=<desired -node-count >
time=<walltime -total —time -to-end >
mem_per_cpu=<memory-allocated —per -node>

# Add any other SLURM wvariables here
HEHAAAAAAAHAHAAAAAAARAHAAAAAAARA SR AAAAAARAHH

The structure of the installation script is divided into defined sections, each of which
specifies parameters necessary for the correct deployment and execution of SiS. The first
section records the target version of Slurm, which determines the release of the source code
that will be downloaded and compiled during the installation procedure. As of October 2025,
only version 16.05.11 of Slurm is fully operational, although more versions are available,
targeting more contemporary systems. The second section establishes the file system paths
that will serve as the root directory and also storage locations for complementary installation
files. This section contains explicit definitions of the paths to the executable binaries, the
configuration files, and the path to the file that contains the description of the job to be executed
in each SiS deployment and iteration.

Subsequently, the script includes a section dedicated to the hardware specifications of the
underlying system. These parameters capture system-specific characteristics that influence
compilation and execution, and are therefore required for aligning the deployment process
with the particular HPC environment. The final section of the script specifies the paths and
parameters for the sbatch job of the external/underlying system Slurm will use to deploy SiS.
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This ensures that the user will not have an overhead in editing multiple files.

Returning to the subject of the aris_boilerplate.sh script, this script automates the
preparation, compilation and deployment of user-level Slurm instances. It sources environ-
ment and helper definitions, determines the target Slurm major release, and branches into
installation or configuration modes depending on the command-line option (--install/-1i or
--configure/-c).

For each supported major release (currently available releases include version 16 for full
operability and versions 21 and 25 for installation and debugging purposes) the script creates
the requisite directory layout, manages module loading where required, generates SSL keys
for authentication in inter-node communication. It also retrieves the Slurm source archive
from the upstream repository, configures and compiles the tree, and finally stages or links the
resulting plugin objects and runtime binaries into the user installation area.

In short, the script encapsulates the end-to-end build-and-deploy procedure for multiple
Slurm releases within a non-privileged user directory.

The full code for the boilerplate script can be found in aris_boilerplate.sh.

5.1.4 SiS Deployment

The v-slurm-lite.sh script orchestrates the setup and execution of an ephemeral, user-level
SLURM cluster within the existing batch allocation.

To assist the user in minimising the cumbersome task of having to edit multiple files,
the auxiliary script of submit-v-slurm.sh is used to intermediate the allocation described in
environment_variables.sh and the batch script of v-slurm-lite.sh.

At a high level, the script proceeds through a sequence of logical stages. First, it executes
a prologue.sh script, which serves as a customisable initialisation hook for user-defined
preparatory actions such as loading dependencies or configuring the execution environment.
The script then sources a set of the environment as described in Lis.5.1 and helper functions
in helpers.sh that define variables, paths, and utility functions necessary for subsequent
configuration steps.

Following initialisation, the script determines the number of nodes allocated by the external
batch scheduler and designates one as the control node. It then constructs a temporary SLURM
configuration file (slurm. conf) tailored to the current execution context. This configuration
defines the control machine (or slurmcltd host for newer versions), compute nodes, resource
parameters, and partition information. The exact structure of this configuration varies depend-
ing on the major version of Slurm being used, ensuring compatibility across different Slurm
releases.

Once configuration is complete, the script initiates the SiS controller (slurmctld) on the
designated control node and the SiS (slurmd)s on the remaining nodes. These components are
launched via srun commands, using parameters that specify node allocation, task count, and
CPU binding. The controller and daemon processes collectively establish a fully functional,
albeit temporary, Slurm cluster within the user’s allocation.

After the cluster becomes operational, the script performs a brief validation by querying
the node status using the scontrol show nodes command. It then enters an orchestration
phase, during which it monitors the cluster queue and submits user jobs based on a predefined
schedule specified in a job list file like the one on Lis.5.2:

Listing 5.2: The job list file that can host instructions to run as many applications, within SiS
context, as the user has defined
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# Insert the jobs for SiS here. Every job must be on a
— separate file

# using this format: <path/to/job/> <delay >, where path and
— delay

# are separated by a tab

# Example Usage
./ mpi/vMpiJob . sh 5

The script ensures that all queued jobs are executed and periodically verifies their comple-
tion. If any residual jobs remain active, they are cancelled to guarantee a clean shutdown.

Upon completion of all job submissions, the script invokes an epilogue. sh script. This
serves as a user-defined termination hook, typically used for cleanup operations, result collec-
tion, or post-processing tasks. The inclusion of separate prologue and epilogue scripts provides
modularity and flexibility, allowing users to tailor pre- and post-execution behavior without
modifying the main orchestration logic.

In summary, the v-slurm-1lite. sh script functions as a dynamic orchestration layer and
is the core of SiS. It automates environment setup, configuration generation, controller and
daemon instantiation, job submission, and final cleanup. By combining user-defined prologue
and epilogue stages with runtime configuration flexibility, it enables reproducible and isolated
testing of distributed workloads in a self-contained SLURM environment.
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Chapter 6

Evaluation, Conclusions, Future Work

6.1 Validation

The validation of SiS was conducted through a series of functional tests designed to verify its
correct operation as a proper, fully operational Slurm workload manager and its interaction
with the several tools and internal commands of SLURM. Given the current limitations of the
SiS software, it was not feasible to execute full-scale MPI workloads and assess the performance
of the overhead of the tool on such executions. Consequently, the validation process focused
primarily on confirming that SiS correctly interprets, forwards, and executes standard Slurm
commands within its configured environment.

During testing, a range of Slurm operations was issued directly to SiS, including commands
for job submission, monitoring, and resource querying. In all cases, the tool exhibited the
expected behavior, accurately reproducing the corresponding responses of a native Slurm
installation. This consistency demonstrated that the internal mechanisms of SiS—such as con-
figuration parsing, command translation, and interaction with the underlying Slurm daemons,
function as intended.

In the next Listings, the output of several of the Slurm commands are shown to validate
the proper function of SiS. The following Lis.7.1 presents the output of an sinfo command
issued from SiS for an allocation of 3 nodes [truncated output for clarity]:

Listing 6.1: A SiS-invoked sinfo command with 3 nodes.
NODELIST NODES PARTITION STATE CPUS S:C: T MEMORY

node066 1 computex mixed 20 2:10:1 57344
node413 1 compute= mixed 20 2:10:1 57344
node414 1 compute= mixed 20 2:10:1 57344

Likewise, the next sinfo command has been issued in order to demonstrate the capability
of SiS to scale in many nodes, as shown in the output of Lis.7.2[truncated output for clarity]:
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Listing 6.2: A SiS-invoked sinfo command with 10 nodes, demonstrating the ability of SiS to
scale up to as many nodes as the system can provide

NODELIST NODES PARTITION STATE CPUS S:C: T MEMORY

node323 1 compute= mixed 20 2:10:1 57344
node324 1 computex mixed 20 2:10:1 57344
node325 1 compute= mixed 20 2:10:1 57344
node326 1 compute= mixed 20 2:10:1 57344
node361 1 compute= mixed 20 2:10:1 57344
node362 1 compute= mixed 20 2:10:1 57344
node363 1 computex mixed 20 2:10:1 57344
node364 1 compute= mixed 20 2:10:1 57344
node365 1 compute= mixed 20 2:10:1 57344
node366 1 compute= mixed 20 2:10:1 57344

For the same execution, the ability to monitor the job queue is shown by invoking the squeue
command from the SiS binaries:

Listing 6.3: A SiS-invoked squeue command while performing a job that has allocated 10
nodes.

JOBID PARTITION NAME  USER ST TIME NODES NODELIST (
< REASON)
2 compute Sinfo -10 goumas R 0:01 10 node [323 -326,
361-366]

Subsequently, a systematic validation procedure was conducted in which all Slurm com-
mands were executed within the SiS environment to assess functional correctness and confor-
mity with native Slurm behavior.

6.2 Experimental Results 7;-socket

Following the successful completion of the SiS framework in order to be able to execute MPI-
based workloads, the next logical step in its development involves extending its functionality
to support intelligent co-scheduling mechanisms. In this context, the design of a co-scheduling
algorithm to be integrated within the SiS environment required a set of foundational experi-
mental data to guide its formulation and subsequent evaluation.

To that end, a series of controlled experiments was conducted to examine the behavior
of representative HPC workloads under co-located execution (or co-execution) conditions.
Specifically, the experiments aimed to quantify the interaction between different types of
computational loads when they share the same physical resources. These empirical observations
serve as primary research data for assessing the viability of the proposed scheduling approach
and for identifying potential optimization opportunities to be incorporated into future iterations
of the SiS. The results presented, thus, constitute an essential preliminary step toward the
integration of a dynamic and adaptive co-scheduling component within SiS.

For the sake of the benchmarking experiments regarding the co-execution of 4 NAS
programs on the same compute nodes, each compute node in the ARIS environment consists
of two sockets, with each socket providing ten physical cores, resulting in a total of twenty
hardware threads available for computation. The co-execution algorithm was designed to
leverage the node’s pinout topology in order to assign each benchmark to a distinct subset of
cores while maintaining a balanced distribution across both sockets. This approach was used
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to evaluate the intra-application interference while still allowing inter-application sharing of
system resources such as memory bandwidth and last-level cache.

The code for co-executing 4 different NAS benchmarks is given in Appendix B.

The mapping strategy applied during these experiments was as follows:

« program A was pinned to cores 0-2 and 10-11,

program B to cores 3—4 and 12-14,

program C to cores 5-7 and 15-16,
«+ and program D to cores 8-9 and 17-19.

Given that cores 0-9 correspond to the first socket and cores 10-19 to the second, this configu-
ration ensures that each benchmark utilizes an equivalent number of cores from both sockets,
thereby promoting symmetry in resource distribution. Such a placement policy allows for the
evaluation of co-execution effects under a controlled and reproducible topology, where locality
and resource contention can be systematically analyzed.

The NAS parallel benchmark version utilised was NPB3.4.3 MPI. All programs were
executed for a 64 hardware threads and class D size problems[39].

The results of the observation were put against their compact execution, in the sense of
comparing the execution speed of the program when executing by itself on the same amount
of nodes as its co-executed counterpart occupied (e.g. for 64 threads, this equals 4 nodes). This
measure, called speedup is measured by Eq.7.1:

timecompact
speedup = —p (6.1)
timegyarter

where,

timecompact> represents the average execution time of NAS benchmark on 64 threads of
class D without co-execution,and timegyarter, represents the average execution time of NAS
benchmark on 64 threads of class D co-executed with 3 other NAS benchmark programs on
the same node.

Preliminary observations indicate that this configuration enables a fair assessment of
performance interactions between co-executed workloads, providing insight into the impact of
processor affinity and resource partitioning on overall throughput. The results obtained from
these experiments form the basis for a deeper investigation into the performance trade-offs
associated with node-level co-scheduling in high-performance computing systems.

6.2.1 EP - Embarassingly Parallel

The first benchmark considered is the EP (Embarrassingly Parallel) kernel, which represents
applications that require minimal inter-process communication. The EP benchmark generates
independent random numbers across multiple processes, effectively stressing the processor
and memory subsystems while imposing negligible communication overhead. Due to its
inherent lack of data dependencies, EP serves as a useful baseline for understanding the raw
computational performance of co-executed workloads without interference from network
contention or synchronization delays.
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Figure 6.1: A heatmap representing the speedup of EP program when co-executed with other
programs on a quarter socket environment for class D problems with 64 processes/threads

No major differences were spotted in the execution of the EP benchmark. This was expected
since EP has no data dependencies and, thus, does not burden the intra-socket interference.
The mean speedup for EP co-executed workloads is 0.98.

6.2.2 IS - Integer Sort

IS Integer Sort from the NAS benchmarks requires ranking an unsorted sequence of keys
using bucket sort. The parallel version of IS divides up the keys among the processors. First,
each processor counts its keys and writes the result in a private array of buckets. Then, the

values in the private buckets are summed up. Finally, all processors read the sum and rank
their keys.

Speedups for is

js 41.141.301.161.271.241.131.291.241.151.001.131411.321.381.301.351.231.210.921.331.241.251.181.190971321.241.111.11 1.140.951.15 1.130.920.92

e S e L B e o I e B o e e I B B e o e B L B e o L I
= = = = = =
228528553 8522885328525825382282328352582
m‘ﬂ‘ﬁld;\m\d;‘g‘E‘Egm‘iz‘g‘:u‘g‘g‘idfﬂgﬁ‘g?m‘ﬂ‘ﬁ‘m‘ﬂ‘ﬁ‘ﬁaﬁm‘
E\ g\ 8. Y :\ < 9‘ 2 § o 9\ <, S & @, & o g o 9 9 g b5) %‘ g g 5 = o g g E E\ E g
B - I B U R ™ R SVt Bt O R Oal g o Tl S g e g g

Quad (sc;cket_programs)

Figure 6.2: A heatmap representing the speedup of IS program when co-executed with other
programs on a quarter socket environment for class D problems with 64 processes/threads

IS demonstrated significant speedup for most of the co-executed workloads, with a mean
of 1.18 speedup.

6.2.3 BT - Block Tridiagonal Solver

BT (Block Tridiagonal Solver) is one of the three pseudoprograms of the NAS benchmarks
suite. It is designed to solve non-linear partial differential equations using the block tridiagonal
matrices algorithm. The benchmark is one of the most demanding of the NAS benchmark suite

in terms of computation, but also allows for leveraging the computational capabilities of the
underlying system[40].
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Figure 6.3: A heatmap representing the speedup of BT program when co-executed with other
programs on a quarter socket environment for class D problems with 64 processes/threads

The results for BT speedup evaluation are not deemed conclusive since the program
demonstrates speedups ranging from 0.84 to 1.15, with a mean of 1.00.

6.2.4 CG - Conjugate Gradient

The CG - Conjugate Gradient method is used to compute an approximation to the smallest
eigenvalue of a large, sparse, symmetric positive definite matrix. This kernel is typical of un-

structured grid computations in that it tests irregular long distance communication, employing
unstructured matrix vector multiplication[40].
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Figure 6.4: A heatmap representing the speedup of CG program when co-executed with other

programs on a quarter socket environment for class D problems with 64 processes/threads

CG has exhibited a clear slowdown behaviour when co-executed with other workloads,
also validated by the mean speedup of 0.91.

6.2.5 FT - Fast Fourier Transform

FT (Fast Fourier Transform) represents a 3-D partial differential equation solution using
Fast Fourier Transforms (FFTs). This kernel performs the essence of many spectral codes. It is
a rigorous test of long-distance communication performance[40].
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Figure 6.5: A heatmap representing the speedup of FT program when co-executed with other
programs on a quarter socket environment for class D problems with 64 processes/threads

The mean speedup of 1.32 signals a major improvement on the execution time of the
program when co-executing with other NAS benchmarks.

6.2.6 LU - Lower Upper symmetric Gauss-Seidel

LU (Lower Upper symmetric Gauss-Seidel performs a simulated solution of a three-
dimensional, compressible Navier—Stokes equation using a regular block-structured grid[40].
It is another pseudoprogram available from the NAS benchmarks. The benchmark employs
an approximate lower—upper (LU) factorization scheme to solve a system of linear equations
resulting from the discretisation of the governing partial differential equations. Due to its
iterative nature and frequent data dependencies, the LU benchmark is both computation-
and communication-intensive, making it particularly suitable for evaluating the performance

of message-passing implementations and the efficiency of interconnect networks in parallel
computing environments.
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Figure 6.6:

A heatmap representing the speedup of FT program when co-executed with other
programs on a quarter socket environment for class D problems with 64 processes/threads

Indications of positive speedup are shown since the mean speedup of co-executing LU
workloads is 1.12.

6.2.7 MG - MultiGrid

MG (MultiGrid) represents an approximate to the solution of a three-dimensional discrete
Poisson equation using the V-cycle multigrid method. It requires highly structured long

distance communication and tests both short (intra-node) and long distance (inter-node) data
communication.
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Figure 6.7: A heatmap representing the speedup of MG program when co-executing with other
programs on a quarter socket environment for class D problems with 64 processes/threads

MG has manifested the greatest speedup among the tested NAS benchmarks with an
average speedup of 1.55.

6.2.8 SP - Scalar Pentadiagonal

The last of the three pseudoprograms is the SP (Scalar Pentadiagonal) solver of partial
differential equations for the compressible Navier-Stokes system of non-linear equations. The
benchmark employs an algorithm based on scalar pentadiagonal systems, which arise from the
discretization of implicit approximate factorization schemes. Each iteration involves solving a
series of independent one-dimensional systems along each spatial direction.
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Figure 6.8: A heatmap representing the speedup of SP program when co-executed with other
programs on a quarter socket environment for class D problems with 64 processes/threads

The SP pseudoprogram showed no actual mean improvements, since the average speedup
is 1.01, when co-executed with other benchmarks, although, the actual speedup from one
workload to the next can show significant differences.

6.2.9 Aggregate Metrics

To obtain a comprehensive understanding of the performance implications of benchmark
co-execution, the speedup is also represented as a boxplot in Fig.7.16. A boxplot representation
of the speedup values across all benchmark configurations provides an overview of the overall
performance distribution, highlighting both median behavior and variability among different
co-executed workloads. The box extends from the first quartile (Q1) to the third quartile (Q3)
of the data, with a line at the median. The whiskers extend from the box to the farthest data
point lying within 1.5x the inter-quartile range (IQR) from the box. Outliers are represented as

S 9

x s that extend past the whiskers of each box.
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Distribution of Speedups per Benchmark
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Figure 6.9: The boxplot of NAS benchmarks against their relative speedup when co-executed
in a node and occupying a quarter of the nodes.

Overall, the results demonstrate substantial heterogeneity in how each benchmark responds
to co-execution. Benchmarks such as MG and FT exhibit the highest median speedups, with
several instances exceeding a factor of 1.6, indicating that under certain co-execution patterns,
these applications benefit from improved resource utilization or reduced contention in shared
system components. Conversely, CG and SP present greater variability and, in some cases,
performance degradation, as reflected by speedup values below 1.0. This suggests a higher
sensitivity of these workloads to shared hardware resources, particularly memory bandwidth
and interconnect contention.

Benchmarks such as EP maintain a median speedup close to unity, implying that their
performance remains largely unaffected by the presence of other workloads, consistent with
their embarrassingly parallel nature. LU and IS display moderate yet consistent improvements,
suggesting limited interference and balanced communication-to-computation ratios when
co-executed with other benchmarks.

In summary, the observed distribution highlights that co-execution effects are highly
benchmark-dependent. While some applications demonstrate potential gains from shared-
node execution, others suffer measurable slowdowns.

To highlight the effects of quarter-socket execution compared to other execution policies
that have been previously tested, the aggregate speedup results from the quarter-socket execu-
tion have been set against the results of half-socket executions for identical NAS benchmarks,
in class and processing threads. The results are shown in Fig.7.17.
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Figure 6.10: The boxplot of NAS benchmarks speedups under %-socket execution against the
speedup distribution under %-socket execution.

The median value for quarter-socket execution is 1.09 in comparison with 1.03 for half-
socket execution.

The second metric, referred to as sensitivity, captures the absolute (meaning that it disre-
gards if this influence results in a speedup or slowdown) magnitude of performance deviation,
experienced by a benchmark as a result of its co-execution with another benchmark within
a quarter socket workload. Sensitivity is calculated as the absolute difference between the
isolated and co-executed performance, normalized to account for baseline execution time
differences across all execution involving each benchmark.

1
Shg = ————— 1 — speedup (6.2)
T fbae o {b,qz}e:Qb‘ vl

where,

Sp,q is the sensitivity of the benchmark b with regard to benchmark g,

Qp is the unordered set of all quarter-socket executions involving the NAS benchmark b,
and

speedupb’q is the measured speedup of the benchmark b in execution q.

An overall assessment of the sensitivity factor of the workloads is represented in the
heatmap of Fig.7.18.
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Sensitivity matrix: Average speedup sensitivity of A when colocated with B
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Figure 6.11: A heatmap representation of sensitivity of the absolute speedup magnitude when
two NAS benchmarks are co-executed in a quarter-socket execution.

The results reveal significant variability in sensitivity across benchmark pairs. The MG
benchmark exhibits the highest overall sensitivity, with values ranging from approximately
0.49 to 0.68 when co-executed with other workloads. This indicates that MG is particularly prone
to performance fluctuations under shared resource conditions. Similarly, FT demonstrates
substantial sensitivity levels ranging from 0.25 to 0.36.

In contrast, EP shows the lowest sensitivity values below 0.02 in most cases, confirming that
it operates in an almost fully independent manner with negligible performance interference, an
expected behavior for a random number generator. Benchmarks such as LU, IS, and BT occupy
an intermediate position, showing limited but non-negligible sensitivity, typically below 0.2.
This suggests that while these applications do experience some degree of interference under
co-execution, the overall effect remains bounded and predictable.

Overall, the sensitivity matrix highlights the asymmetric nature of performance inter-
ference: while some benchmarks (e.g., MG, FT) act as “sensitive” workloads that are strongly
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affected by co-execution, others (e.g., EP, SP) are relatively stable and may serve as suitable
co-execution partners.

6.3 Conclusions

This dissertation has presented the design, implementation, and validation of the SiS (Slurm-in-
Slurm) framework, a novel contribution to the field of high-performance computing resource
management. The primary objective of this work was to develop a lightweight, user-space tool
that can deploy and manage isolated Slurm instances within production HPC environments,
thereby enabling future development to render SiS capable of hosting new and innovative
scheduling policies, workload management strategies, and system-level algorithms without
requiring privileged access or administrative intervention.

The results of this study have demonstrated that SiS successfully fulfills this objective.
The framework operates entirely in user space, proving that complex job management and
scheduling mechanisms can be instantiated and executed outside of the privileged system
layer. This design allows HPC practitioners and researchers to explore, test, and validate novel
scheduling strategies directly on production systems, bridging the gap between theoretical
research and practical deployment. In this respect, SiS establishes a valuable experimental
foundation for the HPC community, providing both flexibility and reproducibility.

Furthermore, SiS enables the deployment of customized or in-house compiled versions
of the Slurm workload manager. This capability represents a significant advancement over
existing testing paradigms, which typically rely on Slurm’s plugin-based extensibility and the
authorisation for deployment of such plugins on production systems. By allowing researchers
to modify and recompile the Slurm source code itself, SiS expands the scope of experimen-
tation beyond the limitations of plugin APIs. Although the framework is still under active
development, its current implementation provides a stable and extensible basis for further
enhancement and integration with modern resource management research.

Beyond the development of SiS itself, this dissertation has also contributed valuable ex-
perimental findings and methodologies for the analysis of workload co-execution. Using
ARIS supercomputer, a series of controlled experiments were conducted to investigate the
performance implications of co-executing different NAS Parallel Benchmarks on quarter-socket
allocations. The results include a comprehensive set of performance metrics, such as speedup
distributions and sensitivity analyses, which collectively shed light on the complex interactions
between diverse workloads in shared-node environments. These insights can guide future
research into performance-aware scheduling and resource allocation strategies that aim to
maximize throughput while maintaining fairness and efficiency.

In conclusion, the SiS framework offers both a practical and conceptual advancement in the
study of HPC scheduling systems. It provides an extensible platform for reproducible research,
a mechanism for testing customized Slurm configurations, and a basis for future data-driven
research to explore co-scheduling and resource sharing at fine granularity levels. The findings
and tools developed through this work lay a strong foundation for subsequent studies in
performance modeling, workload characterization, and adaptive scheduling in large-scale
computing environments.
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6.4 Future Work

While the SiS framework provides a functional and extensible foundation for experimental
workload management in HPC environments, several directions for future development and
research have emerged as a result of this work.

The immediate priority for future iterations of SiS is to enable the seamless execution
of MPI-based workloads. Although the current implementation supports the deployment
and management of Slurm instances and the submission of batch jobs, the integration of
full MPI functionality will considerably enhance its applicability. Achieving this would allow
researchers to test and evaluate distributed parallel applications within the isolated environ-
ment provided by SiS, further bridging the gap between controlled experimental setups and
production-level workloads.

Another avenue for development involves extending the framework’s compatibility with
a broader range of Slurm versions. Presently, SiS deploys a specific version of Slurm that is
closely tied to the underlying system kernel. Expanding this support to include newer and
legacy versions would increase the framework’s versatility and ensure its long-term usability
across heterogeneous HPC platforms. This would also facilitate comparative studies of Slurm
version-specific behaviors and performance characteristics.

Beyond its technical evolution, SiS offers a valuable platform for conducting research
into scheduling strategies. One promising direction is the design and evaluation of novel
Slurm schedulers that explicitly leverage workload co-execution strategies. Using the insights
derived from the co-execution experiments presented in this dissertation, future work can
explore algorithms that optimise job placement by considering shared resource contention,
communication locality, and workload complementarity. Such schedulers could dynamically
adjust job allocation policies to improve overall system utilization and reduce interference
effects.

Furthermore, an important research direction lies in the systematic characterisation of
workloads. By employing feature extraction techniques to identify key computational and
memory access patterns, workloads could be classified into categories analogous to the NAS
benchmark suite. This categorisation would enable predictive modeling of co-execution effects,
allowing schedulers to determine in advance which workloads can safely and efficiently share
computational resources. When combined with the experimental flexibility of SiS, such an
approach could lead to data-driven co-scheduling methodologies that optimize performance
while maintaining fairness across diverse applications.
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Chapter 7

Extetopévn EAAnvikn Hepiinym

Ewcayoyn

Ta voloyloTikd cvotipate VYNAeV emddcewv (High Performance Computers - HPC)
amotelovVv Oepédto AiBo yio TANOOP EMLGTNHOVIKGOV KAl EUTOPLKOV epappoy®y. H cuvexmg
QVEQVOILEVT) EVEPYELOKT) TOVG KATAVAAWGT], G GUVOLAGHO HE T SLUPOPOTTOLNGT) TWV POPTiWwV
ePYyOciog, eVTELVOUV TNV avayKn Yix PeATioTonoinon tng a€lomoinong TV Topwyv Toug
KoL T dtebpuveon TV AelTovpylkodv duvatotitewv Tovs. Kaipio poro diaudpoapartiler 1)
OVATITUEN EVEAKTOV CUOTNHATWV OLAXEIPLONG TOPWV, LKOVOV VI EVOOHATOVOLV VEES
TOALTLKEG X POVOTTPOYPAPPATIOROV, HXOVIGHOUG Slkaing katavoung kot diaxbeong Twv mopwy,
aAAG ko acpadelag, xwpig va dwakvPedeton ) otabepotnTa Tov TapaAywyLkos TepPEAlovToG.

Me v xApdkwon twv eykatactdoewv HPC amd dexddeg oe xihadeg kopfoug, ot
OTOTLKEG TOALTIKEG KATOVOUNG TTOPWV KOL O TPOTTOG TTOL TTXPADOCLUKA TTPOYPUHPaTI(OVTOY
T GUGTNHATA XVTA 001 YOUV O€ ALENUEVOVLS XPOVOUG CLVOHOVTG, HELWHEVT) amtddooT Ko
pepikr) povo o€lomoinot tovg. H peyébuvven tov optov epyaciadv ota cvotipato HPC
dnpovpyel cupPoHPNON oTA LITOGLGTAHRATA SIKTVWONG KoL aobrikevong, dvoyepaivovtog
v poPAedn g anddoong kot tnv e€lcoppdmnon tov optiov. EAAeifel pnyoviopodv
eEAEYYXOL Yl TNV OELOAOYNOT] EVOAAXKTIKOV OTPATNYIKOV KOATAVOUNG O PEAALOTIKEG
ovvOnkeg, oL epevvnTég/Tpleg kol doot/eg dwayelpilovtarl Ta cvatipate HPC, advvatodv
VO TTOGOTLKOTTOLoOLV TLOAVA OQEAT) 1] VO EVTOTIOOUV EVAAAAKTLKEG AVGELG GTOV OYEDLALOHO
TV alyopiBpwv.

H aw€avopevn {tnon yia vanpecieg HPC, amd tn povtelomnoinon KAHATIKGOV QOLVOHEVWY
€wg TN pnxovikn pabnon [1], odnyei oe etepoyeveig epyacieg mov ovvdvalovv dtopopeTLkong
TOTOVG POPTiLV, SLdPACTIKEG AVAADOELS KOl HOKPOY POVLES TPOGOHOLOTELS. Ta Tapadooiokd
OLGTHHOTO LY ELPLONG TTOPWV GTEPOVVTAL SVVALKNC TTPOCAPHOCTIKOTNTOG, facllopeva e
OTATIKEG TTOALTIKEG TTOU KABIGTAVTOL GOVTORN TTOPWYTHEVEG.

EmumAéov n eppavion vPpdikdv GUGTNHATWY, TA 0O EVEWUATOVOLV KPovTikodg
VITOAOYLOTEG TTOUPAAANAQ pe KAAOLKOUS LITOAOYLOTIKOUG KOpPoUG [2], tpocBétel éva emumAéov
entinedo moAvmAokotntag. O kKPavTtikég diepyacieg amaltodv avaTnPO CLV-TPOYPUPUATIOHO
0€ GUVEPYELX JLE TLG EPYNCLEG KANGOLKTG LTTOAOYLOTIKNG, KXODG Kot eEeLOIKEVIEVES TTOALTIKEG
KOTAVOUNG TOPwV. OL VPLETAUEVOL SLAYELPLOTEG TOPWV TPOCTPEPOLV TTEPLOPLOHEVT) LITOGTHPLEN
ylo TéTolov eidovg poég epyaciag, kol kK&be eTEKTOCT) TPETEL VAL ETIKVPOVETOL GE TPOYPUATLKES
ouvOnKeg.
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7.1 Awxyxeipion Ilopwv oe Ymoloyiotikd voTnpota
Yynrov Eridocewv

7.1.1 IIlepropiopoi otnv Epevva kot A§lomoinon tov Tvotnudtov
YynrAov Emdocewv

[Mapd v eviunwolakt) eEEAEN TNG APYLTEKTOVIKNG eMEEEPYACTAOV KOL CUOTNHATWV, T
VTTOAOYLOTLKG GUOTHHATX LYNA®V emd0cewV e£akoAovBoDY v AVTIHETWTILOVY GTHAVTLKOVG
TEPLOPLGHOVG TTOV ETTNPEGLOLY TN SLVATOTNTA KALPAKWOTG, TNV EVEPYELAKT] OTTOOTLKOTN T
Ko T XpnoTikotnté Toug. Ot kipLeg mpokAnoelg evromilovtal 6Ta GLoTHHAT TPOSPAoT
ot pvnun, tn dteavvdeon kOpPwv, TNV aobrikevon dedopévawv, TNV KATAVAAWGCT) EVEPYELXG,
TNV ETEPOYEVELX TV APYLTEKTOVIK®OV KoL TN SLGKOALX artodoTLKNG TopaAAnAomoineng.

H avavtiotoiyia petafd tng taydtntag eneepyaciog kat tng amddoong tng Hviung
OUVLOTA €VaY oTTO TOLG GTHAVTLIKOTEPOLG TTePLOPLopoS. To evpog Ldvng ko 1 kalBvotépnon
npodcPaong otn pvrpn dev éxovv PeAtiwdel pe Tov id1o puBPO pe TNV LITOAOYLOTIKT] LOXD, HE
amoTé espa 1 avapovr) dedopévwv va kabioTatol kuplapyog Tapdyovtag kKOGTOVG 6€ XPOVo
ko evépyela. EmumAéov, n) Stakivnon dedopévav petald Twv SLA@opnVv enTEd®VY TNG LEpopyLag
HVARNG aAAG Kot peTaED TV KOPPwV arvEGvel TNV evepyelakt KatavaAwao kot emtPpadivel
TIG ePAPHOYEG peYaANG kAipakag[4]. H pvipn eival, emiong, kot évag SHoVTLIKOG TopRYovTog
KOGTOUG, KOOGS arvTavork A& mTepiitov 1o 20% TOL KOGTOUG TWV ERTTOPLKWDV GUGTNHATOV VYNAGV
emdocewv[5].

AvticTolya, ot texvoloyieg diaovdeong (interconnects) omoteAoOV kpicipo medio épevvag,
KOG 1) kKaBLOTEPNOT) KOL 1) TTEPLOPLOPEVT) XWPNTIKOTNTA TV JLotOAWV ETLKOLVOVIAG HETOED
KOpPwv 0dnyodv ce cuaTrpaT TOL TEPLOPIlovTaL atd TN peTaPopd dedopévwv (memory-
bound) ovti g kaBoprig LITOAOYLOTIKNG TOVG LoXVOG. Ol eMKPATESTEPES TEXVOAOYIEG
Sraovvdeong ota kopvpaio HPC cvothparta eivan ot Infiniband, Gigabit Ethernet, HPE Slingshot
kot Intel Omnipath.

H ant6doon twv cvetnpatewv HPC meplopileton 0Ao kol meploooTepo otd to pOfAnpo
g amobnkevong (CI/O wall”), O6mov 1 ToxdINTH TV eMeEepyacTOV LITEPEXEL TNG
LKOVOTN TG TOVL LITOGULGTHHATOG otoBnKkevLoNG var ToapéxeL koL vor atoBnkevel dedopévar.
QG amoTé eCpHA, HEYOAO TTOCOOTO TWV LITOAOYLOTIKGOV OUVATOTHTOV TOV ZUOTHUATOV
[MapaAAnAing Ene€epyaciog mapoapével adpavég avopévovtag dedopéva, pe auvakoiovdn
Helwo™ TNG oLVOALKNG aTOdOTIKOTNTAG TOV GLUGTNHATOG. To TPOPANUa emidelvdrveTon
GTNV emOXN TWV VIOAOYLGTIKMOV GUGTNHATWV pe Suvatdétnta 101 vroloyiopdv kivnthg
vodLacTOANG/SevTEPOAETTO, OTTOL O TEPATTLOG PABUOC TAPAAANALGHOD KOl Ol XTTXLTITIKEG
oe I/O epyaocieg mpokarodv kopato artnpatev I/0 mov ta cvotripato Suvokoledovtal va
Swxyelprotovv[9, 10].

MapdAAnAa, ot evepyelokég amontnoelg Tov cvotnudtwv HPC avéavovtal paydaia. H
OUVOALKT ATTOS0GT) TV KOPLPALWV CLGTNUATWV €xel aLENDOeL TaxVTEPA ATTO TNV EVEPYELAKT
QATOdOTIKOTNTA TOVG, 0SNYMOVTAG G€ HEPOVWHEVO GUCTHHATO TTOV KATAVAADVOUV dekddeg
MWh. Tevikotepa, o moapdAANAa cuoTHpaTa eeepyaciog EXOVV EVEPYELOKO QUTOTUTWOHA
™G Tééng twv ekatovtddwv TWh etnoing[11, 12]. Katd ovvéneia, n evoopdtwon kpitnpiov
EVEPYELOKTNG 0TOOOTIKOTNTAS GTOV oXedLcpo kat T Aettovpyio Twv HPC kévtpwv amotelel
nAéov Paoikn amaitnon.

H apyirektovikr etepoyévelr (my. CPU + GPU) vmooyetor emtéyvvon, oAl
elodyel coPoapd epmodio: To KOGTOG HETOUPOPAS dedopévwy PHETAED EeXWPLOTOV XOPWV
HVTHNG, Ol TEPLOPLOHOL TOL e0povg {ovNng Twv dovvdécewv Kot 1) o0vOeTn cuviTapén
VAOTTOLCEWV SLALPOPETIKMOV TTPOYPOUHATIOTIKOV povTéAwV (11.X. OpenMP, CUDA) odnyotv
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o€ LITOoEKpPETAAAEVOT) TOpwV [13, 14]. H katovopr) Tov LTOAOYLGTIKOD POPTIOL GTLG TTLO
KoTAANAeg povadeg kaBe popd, kabwg Kan 1 eEdherymn Twv e€aptioewv petafd TV HOVAd®V,
atoTEAOUV KPLOLHO OLVTIKELHEVO €PELVOG TTPOKELHEVOL Vo amteAevBepwBolv oL duvatdTnTEg
TETOLWOV OPYLTEKTOVIKODV.

Télog, 0 BepeAddng meproplopog mov dratvmwvel o Nopog tov Amdahl vrevBopilet 6Tt TO
péyloto Bewpntikd 6@elog amd TNV TapalAnAoroinot Tov AoyLopLkoD eplopileTal atd To
un wopoAAniomotjopo Turjpa Tov[15]. v mpdén, Kabdg Ta CLOTHHAT KAHAKOVOVTOLL
o€ XIAAOEG £WG EKATOPHDPLY TTUPTVEG, TO OPLO LTO B ATOTPETEL EVAL TTPOYPOLA CLTTO TNV
entitevEn Tov BewpPnTIKA HEYLGTOL OPLOL LITOAOYLOP®V TTOV ETLTPETEL TO GUCTNHO GTO OTTOLO
EKTEAELTOL, APKETEG POPES KADLOTOVTAG TNV TOYXVTNTA EKTEAEGTG TOV TTPOYPAUHOTOS VO UV
akoAovBel To pLOPO KALPAKWOONG TOVL LALKOD.

7.1.2 Awyeproting Ilopov SLURM

H eppdvion twv cvotnpdtov diuyeipiong topwv (Resource Management Systems) amotéleoe
QIIAVTNCT) OTIS TPOKANCELS TNG ETEPOYEVELXG, TNG OLXOVUVOESTG KOL TNG EVEPYELXKNG
amodoTikotnTag ota ovyypova cvotipata HPC. Ta RMS SwadpapartiCouvv kaipto poro o1
Sradikaoio KATAVOPNG TOPWVY GTOVS XPHOTEG, TPOCPEPOVTAG eviaia diemagr) TpocPacnc,
aveopTn TG LITokelpevnG apyLTekTOVIKNG. Tlapéyouv, eniong, HNYavIoHoUS HECK TV 0oLV
oL vToAoyloTikol mopol kabicTovtor SLaBEG oL G SLAPOPETLKES KATNYOPLES XPNOTON, EVED
TapaAANA Ao Sroetnpodv akplPry katoypopt Tng XProng Kot EPAPUOYT TV KATAAANAWY
TOATIKQOV XPEWOONG.

To Slurm (Simple Linux Utility for Resource Management) amotelei éva avorytod kKoLK,
Ko LOLaiTePaL EMTEKTAGLILO CUG TN SLOLYELPLOTIG KOL TTPOYPAHUHATIOHOD EPYRTLAOV YLX GUCTOLYLES
Linux [16]. Aev amtantel aldoyég 6TOV TUPHVA TOL AELTOVPYLKOD CLGTHHATOC TwV Linux kot
Aertovpyel avTOVOpQ, emLTEADOVTAC TPELS Paoiicég Aettovpyieg: (o) TV avaBect) LITOAOYLOTIKOV
KOHPwV 6TOVG XPHIOTES YL OPLGHEVO XPpOVLKO SLatnpa, (B) Tnv ekkivnomn, Tapakorovbnom kot
EKTEAEDT) TTUPAAANAWOV EPYOGLOV GTOVG KOPPOUG, Kat (Y) TN StaryelpLoT TOL AVTAYWVIOHOD Yl
TOPOUVG HEG® OLPWV EPYACLOV, LTTOGTNPLLOVTAG TAVTOX POV ETTEKTACELS YLOL TNV TTPOCKPLOYT
TNG AELTOLPYLKOTNTAC.

To Tapamdvew PIropodv vor YEVIKELTOUV YLOL TOUG SLOXELPLOTES TTOPWY OAWV GUGTNHATWV
HPC. Etol ot Tpelg kpioipeg Aettovpyieg: (1) ) katavopr] mopwv He EQoPUOYT] CUYKEKPLUEVIG
TOALTIKNG, (2) 0 TPOYPAPHATIOHOG EpYASLOV Kot (3) 1) TapakoAovBnoT exTédeong amoTe oV
TIG eAGLOTEG AeLToLpYieg oL mpémel va emitedel évag Stayelplotng mopwv. Ot Aettovpyleg
avtéc mapatifevtol oxnpatikd oto Xx.2.1.
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User Pool

| | | | | | | | _| Compute/Node
jobs allocated Pool

to compute nodes

submit jobs

External Job Scheduler

Yxnuoa 7.1: Ameikdvion g AeLtovpyiog evog agnpnpévou dloxelploty Topwv

H avtiotoyn apyitektovikn vPniot emuédov yia to Slurm eivou moapopola, 0Twg gaivetal
oTOo 2).2.2.

|

I backup
Users slurmctld slurmctld
: (optional)

slurmd

slurmd slurmd slurmd

Database

IxNpa 7.2: AQOUPETLKT) QUTELKOVLOT) TOV SLarXeLpLoTr) epyactev Slurm

7.1.2.1 EAeyxtig Slurm (slurmctld)

Yto mhaiolo Aettovpyiog tov Slurm, 1 Swoxeiplon TG KATAGTAGTG TOL CUCTHHATOG ETLTEAELTOL
Kuplwg amd tov eleyktr) slurmctld, o omolog amotelel TO KeVIpLKO GTOLYElD EAEYXOL
oL oLoTHpaTog. O daipovag aLTOG elval TOALVHATIKOG KL XPTCLHOTOLEL dLAKPLTOVG
HNXAVIOHOUG KAEOMOHATOS Yiow AglTovpyieg avayvwong Kot eyypogng, eEaocoaiilovtog
KALpoKoopoTnTo kot orodotikotnto. Katd tnv exkivinor, optovel TIG TAPAUETPOLS TOV
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apyelov pvbpicewv (slurm. conf) Ko TUXOV ATTOONKEVHEVT KATAOTOOT) QITO TPOTYOOHEVEG
ovvedpieg, eveod vtootnpilel avOEKTIKOTNTA 68 COAAIATA PHECW® TEPLOdLKNG amobnKkevong
NG TANPOLS KATAGTOCNS TOL 010 dioko. O slurmctld dOvatal vo AelTOLPYNOEL eite Ge
KOpLa eite oe epedpikr) Aeitovpyia (master/standby), emitpémovrag avainym eréyyov amd Tov
e@edpLko kOpPo oe mepinTwon opaipatog. Aev amartel Sikatdporta doxelploth (root), kabmg
ekTeAelton VIO Evay eEELOIKEVIEVO XPTOTH GUOTHHATOS TTOL OPLLETOL PHEGW TNG TTAPAPETPOV
SlurmUser oto apyeio puBpicewv.
O aoikéc eocwTeplicég vTopovadeg Tov slurmctld eivan Tpelg:

« Node Manager: ITapakolovBet tnv emiyelpnolakt Katdotoot OAwv TV KOPP®V NG
ovoTolylag péow TePLODLKNAG DELYHATOANPLNG 1] AGVYXPOVOV EVIIHEPOCEDV OITO TOVG
daipoveg slurmd. Ipwv évog kOopPog ypnotpomonOel yio ektéleo, eAéyyetal av Anpotl
TIG OUTOLLTOVHEVEG TTXPOUETPOVS pOBpLONG.

« Partition Manager: Opadomoiei tovg koOpPouvg oe Swpepioelg (partitions),
avtioTolyilovtdg Toug o€ epyacieg faoel kataotaong kot pubpicewv. EmmAéov, extelel
SLOYELPLOTIKEG EVTOAEG TTOV TPOTTOTOLOVV TTOAPAPETPOLG KOPPwV 1) dlapepicewv.

« Job Manager: AwxyelpiCeton Tor atpato LITOPOANG ePYACLOV, T Omoia dlatnpel
€ OLPA TPOTEPALOTNTAG EWG OTOL EEXCPAALGTODV TTOPOL Yl TNV €KTEAECT] TOUG.
Evepyomoteitar ommd yeyovoTar TOU GUOTAPATOS (TT.X.  OAOKANPWGT €pyaAcLOdV,
EVEPYOTTOINGT) KOPPWV K.&.) KoL, OTOV 0L 6UVONKEG TO EMLTPETOVY, ETLAEYEL KOIL EKKLVEL TIG
KOTAAANAEG epyaoieg oTIG avTioToLyeg Slapepioelg, HeTadldovTaG 6TOVG EMAEYHEVOUG
KOpPoug Ta amapaitnto dedopéva ekTéAEONG.

7.1.2.2 Aaipovog Slurm (slurmd)

Avtictowya, ot daipoveg slurmd amoTeAOOV TTOAVVIHATIKE TTPOYPAUHATE EYKATECTNHEVL
OTOVG VITOAOYLOTIKOUG KOHPOUG, ETTLPOPTIGHEVH e TNV eKTEAECT) EVTOA®V TOL slurmctld.
Ot k¥pLeg appodLotnTég TOLG TEPIAAUPAVOUV TNV AVAALGOT) TV PLOPICEOY CLUGTHHATOG, TNV
KOTOXWPLOT) TNG TPEXOVOOS KATACTAOTG GTOV EAEYKTH), TNV AVOLOVI] KL EKTEAECT) EPYACLAOV,
KoODG KaIL TNV EMGTPOPT) AWTOTEAEGPATWV EKTENEDTC.

H emwcowvovia peta&d slurmd ko slurmctld eivar acOyypovn kot ap@idpopn, pe
QVTOAACYT] TTANPOPOPLOV YLOL TNV KATACTAGCT] TWV EVEPYDV EPYAOLOV KUL TOV AVTIGTOLYWV
KopPwv. H dwyeipion xatdotaong otov slurmd Topopével ECKEPPEVO EAXXLOTOTOLNHEVT),
TEPLOPLLOPEVT) HOVO 6T OeJOEVA TTOL QUPOPOVV TIG TPEXOLTES ekTeEAéTeLS. To oxedlacTikod
aLTO XAPAKTNPLOTIKO Stacaiilel TNV arodoTikOTNTA, TNV aVOEKTIKOTNTA KOl TNV €VKOALX
AVOKOPYNG TOL CLGTHHATOG o€ TTEPLPAALOVTA PeYRANG KALLOKOG.

7.1.3 AM\ot Awayeprotég Iopwv yra HPC

[Tépav tov Slurm, vT&PYOLV Kot GAAOL SLaXELPLOTES TOPWV YL CUCTHHATX LYNADV eTLOOCEWY,
amd Tovg omoiovg Do avapepBolv ot o Stadedopévol Tov elvarl vVoLKTOD KOSLIKA.

Flux: To Flux oamotelel éva evéAikto mAaiclo Siayeiplong mOPWV KoL £PYOCLOV
OV QVTIHETOTL EL TEPLOPLOHOVG TOV TOPAOCLAKDOV X POVOOPOHOAOYNTOV GE ETEPOYEVT)
N molvemineda meplfoArovta.  YioBetel Lepapylkn) OPXLTEKTOVIKY] HE PWALXCHEVOLS
XPOVOSPOHOAOYNTEG, TTPOCPEPOVTAS AETTTOHEPT) EAEYXO KO LYNAN KAHAKOOILOTNTA HECW
QITOKEVTPWHEVNG AYMG amopacewy. Mia katvoTopio Tov eivor twg propel va vioBetnBel oe
OLOTAHATO TTOL 1)1 £XOVV EVOLY EYKATEGTNHEVO SLayeLploTh TOpwV[18].
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PBS Pro: To PBS Professional eivor opipo cdotnua dwayeipiong epyaoiodv ko
XPOVOOPOHOAOYNOTG, TTpoEP)OHEVO atd TpwTofovAia Tng NASA. Yrnootnpilel mpoywpnpéveg
duvatoTNTEG, OTTWG deCPEDOELS TOPWV, KOTOUVEUNIEVT] XPOVOIPOHOAOYNGT) Kol SUVOLLKT)
aklomoinor avevepywdv cuotnudtwv. Iapéyel emiong TAaiclo oplopoD TPOCAPUOGHEVHOV
nopwv (m.x. GPU, &deteg xpnong), mpoceépovtag peydin eveliéio, av ko amantel TpocoOetn
Swxyelplotikn vtootnpEn[19].

7.2 YnoPaOpo ko Tyetikég Epyaoieg

Yta ocvoThipato VYNA®V emdocE®V, 1 ToPAdOGLOKY TOALTIKY KATOVOUNG TOPWV
QUTOPOVOVEL TAVTOXPOVEG epYacieg o€ dlapopeTikovg KOpPovg, kaBoTL amotelel apevog
TNV amAOVGTEPT] TTOALTIKT KOTOVOUNG KoL KOTX OeVTEPOV a@opel TOAVTAOKOTN T AITd
oVvOeteg aAANAeIdpacelg HETOED TV SLAPOPWV TOPWV TNG LVIHNG KOL TV SIXGLVIECEWV.
Qo1000, LT 1) TPOGEYYLOT) 00NYEL 0 HELWHEVT) ATTOSOTIKOTNTA KO XOUNAOTEPT) EVEPYELOKT)
olomoinon. H ovvektédleon (co-execution 1) co-location) mpoteiveTol ©G eVAANAKTIKY)
OTPATNYIKY, KXTQ TNV onoia epyacieg poipdlovtal Tovg idlovg LITOAOYLGTIKOVG TOPOULG,
BeATidvovTag TN GUVOALKT) XPNGLLOTOLNGT) TOL GLGTHRATOG[24].

MeAéteg[25, 26] éxouv deiel OTL 1) CUVEKTEAEDT) ETEPOYEVOV EYAPUOYADV (TT.X. 0 CUVOLAGHOG
VTTOAOYLOTIKX OUTALTHTIK®OV KOL OITALTNTIKOV GE HVHHN EQAPHOYDOV) Popel vo avErjoel
OTHAVTIKA TNV artdd00T) TOL GLOTHRATOS. ATTO EULOLKY ATTOYT), 1) CLVEKTEAEDT) EPUNVEDETOL
WG TEYXVLKT AVTLOTOLYLONG SlepYynoLOdV o€ TUPTVES, pe 00 KOpLeg popeég: striped kou spread.

=l
a_|a
32 O
a |8
JEaN B 2
JHENNE |3
aimail ol o
snioniln 1o

spread striped

Xxnua 7.3: Mé0odor xpovodpoporoynong dvo epappoywv 16 diepyaciadv (A ko B) oe
vrteputoAoyLoTh pe Vo vTodoxég emeEepyacTdV 8 TUPHVWY: oTo spread K&Oe epappoyr)
ekTeAelTOL QTOpOVOpEVA o€ EeXWPLOTOVG KOPPOLG, evd oTo striped poipdlovtal Tovg idtovg
nopovg[24].

H emloyn tov epyaciodv mov Oo cuvektedeaTovv amotelel evepyo medio épevvag[27-30],
pe TPoThoelg oL PacilovTot o€ TOALTIKEG TOV XpOVOdPOHOAOYNTH Y TN BEATIOTN KOTavOpT
nopwv. H katavopn epappoydv oe moAlog kKOpPoug aAAd kaL o€ SLa@opeTIKOS TUPT|VEG
eVTOG TV KOPPWV auT®V, prtopel var 0dnynoel e HelwoT) TV GUYKPOUCE®V YL KOLVOUG
TOPOLG kot va feATIOTOTOLGEL TN XPHoT eMTESWV Lepapylog TNG HVARNG KaB®OS Kol Twv
emtoyvvTov. Emtiong, n petwpévn emkovovia eviog Tov KOpPov apketég @opég 0dnyel ot
BeAtiwon Tng amd6doon TApAAANA®Y EQUPHOYDOV OVTOAAAYTG HIVUHAT®V. ATO T1) GKOTLY
TOL GUGTAHATOG, O GLVIVLAGHOG CTPATNYLK®OV spread Ko striped PELOVEL TOV KATOKEPUATIGHO
TWV TOPWV, EVIGXVOVTAG TI GUVOALKT] AITOOTLKOTNTA TOV GLGTHHATOG[31].
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7.3. Xxediaopog ko Apyitektovikn Tov EpyaAeiov Eprnpepwv Slurm

H moAvmhokotnta TG avaAvong kot aELoAOYNoNG TOALTIKOV KOTAVOUNG TTOpwV 0dnynoe
otnv avantuén tov Efficient Lightweight Scheduling Estimator (ELiSE) ot to
Epyaotnplo Yroloyiotikev Xvotnpatwv tov EMII[36]. To ELISE eivou évog mpocopolwtg
oe Python mov kdvel xprion tng Aettovpytkdtntog perf towv Linux yio toyeior avamtogn ko
a&loAoynon alyopiBpwv xpovodpopoAroynong pe dvvatotnta cuvektédeons. Eotialel otnv
TPOGOHOLWOT) TOALTIK®OV XPOVOSPOHOAOYNGTG AVTL TNG A POUS TPOGOHOIWGTS CLGTNHATWY,
TPOCPEPOVTAG eVEALELX KarL TarXOTN T OTT) OlePeDVIOT) CUUTTEPLPOPDOV CLVEKTEAETTG.

Waorkload
«Future States

/

Waiting Queue \I . o
. .E‘ E.i l T «Finished States ’»
«Waiting States }I

’?f |

]

] :
Selyedul Machine
Scheduler . , -
«Executing States

Yxnua 7.4: Apyitektovikr vyniov emwédov Tov epyaeiov ELISE[31]

To epyodeio déxeton wg eicodo pia meprypaer tov cvotipatog HPC to omoio B
TPOoGopoLDdoeL. Qg €€000 pmopel vor TopaEel OXNHATIKEG AVOTTOXPACTACELS TNG EKTEAECTG
HECW® HETPLKOV 1 YPOPLKOV OV OITOTLTLMOVOLV TNV NidPAcT TNG OLVEKTEAEOTG KO
XPOovodpoporoynong twv epappoyodv. H enextacipotnta tov ELISE emtpénel tnv vAomoinon
Ko dokun Véwv adyopiBpwv, pécw apnpnpévng tepapyiag kAdoewv. Ot 1dn eveopatopévol
XPOVoSpopoAoyNTEG, emtl TOL TOPOVTOG, TTeptAapfdvouv mapadiayég tov FCFS kabmg kot
évav ¢€vumvo ypovodpopoloynti, tov Filler, mov a&lomotel adpaveig mépouG.

7.3 Xxedwaxopog kot Apyrtextovikn tov Epyaleiov
Epnpepov Slurm

7.3.1 To XVotnpa ARIS

To ARIS asotedel Tov eEAANVLKO LITEPLITOAOYLOTT) TTOL AVATTTOXONKE KoL AeLTovpyel oo T
GRNET otnv Abnva. EvtaxOnke ot AMota Top500 tov Iovvio Tov 2015 (Béon 468) kat, TapoTL
onpepa Bewpeitar cOOTNHA PKETA “NALKIWHEVO”, TOAPAPEVEL EVEPYO HE OTUAVTLKT) GUHPOAT) o€
ETMLOTNHOVIKA KoL epeuvnTikd épya. To meplfaAdlov avdmtuEng tov epyaieiov SiS Paciotnke
€€ oAokAnpov 6To cvaTnpo ARIS, pe OAo TaL TELPAPOATH VOL TTPOYHATOTTOLOVVTOL GE KAVOVLKT)
AeLTovpYla TOL CLGTHHATOC XWPLS enidpact otV ATddooT TOU.

To ARIS amotedeiton amtd 533 vITOAOYLGTIKOUG KOUPOVG OPYAVWOHEVOULG GE TTEVTE AOYLKEG
Swapepioelg, oL omoiot cvvdéovton pécw duktvov Infiniband FDR o¢ tomoAoyia fat tree, 0mwg
paivetal oto Xx. 7.5. To cbotnpa xpnowomnotei Aettovpyikcd Red Hat/CentOS 6.7, dioyelploth)
nopwv Slurm, Sayeipion péow xCAT IBM ko mapakorovOnon pe Nagios kar Ganglia. H
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7.3. Zyxedaopog ko Apyitektoviky Tov EpyaAeiov E@ipepwy Slurm

amoBrnkevon emrtuyydveton péow IBM GPFS ywpntikdétntag 2 PB ko pubpamdédoong 6 GB/s,
eve 1) TpooPaot mapéxeton pécw dvo kOpPwv ovvdeong (login nodes) pe SSH.

Mivakog 7.1: Xapaktnpiotikd Zvotripatog ARIS

Architecture x86-64

Operating System Redhat/Centos 6.7
Interconnect

Technology Infiniband FDR
Topology Fat tree
Bandwidth [Gb/s] 56

Storage

Type IBM GPFS

Size [PByte] 2

Bandwidth [GB/s] 6

System Software

Batch system SLURM
System Management xCat IBM
Monitoring Nagios, Ganglia

H tomoAloyio tov ARIS akorovBei tn didtan Fat Tree, 0nwg gaiveton oto Xx.7.5.

Core Switch 1 Core Switch 2

Agg Switch 2-1 Agg Switch 1-1

downlink downlink downlink downlink

Edge Switch 2-1-1 Edge Switch 2-1-2 Edge Switch 1-1-1 Edge Switch 1-1-2

access access access access access access

( Host 1 ) ( Host2 ) (HostsD (Hostt') (HosttD (Host7> @

Ixnuo 7.5: Apnpnpévn tomoloyio tomov Fat Tree, tnv omoia akolovBovv ot kopfol Tov
ocvotnpatog ARIS.

access access

Ot vtoroylotikot kOpPot Tov ARIS meprypagovtal otov Iliv.7.2
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7.3. Xxediaopog ko Apyitektovikn Tov EpyaAeiov Eprnpepwv Slurm

Mivakog 7.2: Katnyopieg Yroloyiotikodv KopPwv tov ARIS

Tomog KopPov IIAnBog Emitoyvvrig Mviun  Tuprveg

THIN 426 - 64 GB 20@2.8 GHz
GPU 44 2x Tesla K40m 64GB 20@2.6 GHz
PHI 18 2x Xeon Phi 7120p 64 GB  20@2.6 GHz
FAT 44 - 512GB 40@2.4 GHz
ML 1 8x Volta V100 512GB 40@2.2 GHz

H avantuén tov SiS mpaypatonoOnke kuping pe tn xpron twv THIN kopfwv, ot omoiot
amoteAovv Vv dtopépior compute tov ARIS.

7.3.2 Apywtektovikn Epyaieiov [lapaywyng Eenpepov Slurm

To SiS oxediaotnie wg éva eha@pv epyaleio oe emimedo XproTn Tov ekTeAeiton TANPWG EVTOG
oL cvoTtpatog batch tov Slurm, xwpig TNV avaykn avEnpévov SIKALOHATOY, TEPAV TOL
StkoOUATog LITOPOATIG KAVOVIKOV EpYacLOV 6T0 chotnpa Slurm tov cvethipatog. Onwg
paivetor oto Xy. 7.6, To SiS Aettovpyel wg kavovik epyacio Slurm eve tavtdypova dnpovpyet
EVOL E0WTEPLKO, ELPWAEVPEVO Slurm.

Submit SIS job to

original slurmctid
! I[User

Original slurmctld
Original slurmetld initiates
SiS as a SLURM job

-

O O
O O
O
’

Job allocation --> SiS cluster

ON©

SiS slurmctld

00'e 0

OO0 0000
00000
ONOROR®

O O

O O 00
000000

OO0 000O0

O O

IxNua 7.6: AmAomownpévn amelkoviot tng Aettovpyiag tov SiS evtog evog Slurm cluster

7.3.2.1 Koklog Zong Eeniuepov Slurm

M epyacia SiS eival epripepn, avTdOVoun kot otopovepévn amd to Slurm tov e€wteplikon
OoULOTNHHATOG. AUTO onpaivel TG o k&Be ekTéleon To SiS avantdooetal ek véou kat eExpyng,
pe 6ceg TANpoopieg kataoTaong BéleL o xprioTng va éxel dtatnprioel oe kGbe exTéleom), pe
N Sty popr) k&Be TponyoLpeVNG TANpoPopiog KaToTaong va aoteAel tnv poemdoyr). O
kUkAog (wng Tov SiS, Aowrdv, akorovbel ta e€ng Pripata:
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7.3. Xxediaopog ko Apyitektovikn Tov EpyaAeiov Eprnpepwv Slurm

1. YroPoAr tov v-slurm-lite.sh mpoypdppatog pécw sbatch tov e€wtepikod Slurm.
To ovykekpipévo apyelo mpoypatomolel Tnv ekkivinon tov SiS.

2. Tnv idia otiypn yivetou n) ekyopnon kOpPwv amod tov e€wtepikd eleyktn slurmctld.

3. Katda ) diapkela extéleong tov v-slurm-1lite.sh dnprovpyeitar o SiS cluster pe Tov
Ouko Tov eheykTr] slurmctld kou mapapével oe Aettovpyia avaddyws Twv puBpicewny
7OV €)EL OPLOEL O XPTOTNG.

4. Emkowovia petafd tov eheyktrn SiS kot tov doupdvev SiS slurmd yia ektéleon
EPYAOLOV TTOL €XEL OPLOEL O XPT|OTNG.

5. OpoAOG TEPHATIONOC TV dOUPOVELV TOL SiS peTd TNV 0AoKApwoT, dlakomr] and To
xpriotn 1 Anén tov xpovou NG epyaciog.

7.3.2.2 Evoopdtwon pe Epyaocieg eEmtepikot Slurm

To SiS exteleiton wg batch epyaciog Tov e€wtepikod Slurm ko a€lomotel Tovg pnyavicpog
ToUL:

« Ou diepyaocieg ko T Pripata epyociog opilovtar péocw --ntasks, —-ntasks-per-
node kot ——cpus-per-task kabmg Kot GAAWV GXETIKOV TOPOUETPWOV TTOL TTPOCPEPEL
to Slurm.

« KaBe diepyacia tov SiS katavalovel Tpaypatikovg TOPOLVG TOL CUOTHHATOG GE pia
dlapéplor) Tou Kol “vontong” mopovg Tov SiS, dnAad) ATOTUTOCELS TV TPAYHATIKOV
TOPWV TOL EEMTEPLKOV GUOTHRATOG OTTWG AVayLyveokovTol ad to SiS.

« O tawtétnTeg epyacodv (jobid) ypnoipomolodvTal yuor Tnv mopakolovdnon twv
epyoclodv. Mio epyacia SiS €xel dikd tng apbpod epyaciog evtog tov SiS mov dev
elvat yvwotog oto e€wteptkd Slurm.

« OumtAnpogopieg oxetikd pe tn StatbooTn T KorL T XprjoT mOpwv ard Toug XProTEG.

EmumAéov, pioe moAdTn wovotnta tov SiS elvor 1 avamtu€n TPOcopPUOGHEVOV
EYKATOOTAOE®V Slurm, 6TLG 0TT0leg 0 TTNYXIOG KOLKOG EXEL VTTOOTEL AUEGES TPOTTOTOLYOELG.
Avt 1 mpocéyylon avtdiaotéAdetonr pe TV kuplopyn pebodoroyic xprong plugins,
1 ofola, oV Kol €TEKTACLN, TEPLOPLleTOL eYYEVDS atd TG TTPokaBopLopéveg dLemoupEg
TPOYPAPPATIOHOV e@appoyndVv (APIs). To SiS vrepPaivel avTOV TOV TEPLOPLOHO, ETLTPETOVTOG
OTOUG EPELVNTEG VAL EKTEAODV KL VO SLOHOPPHOVOUV GTLYHLOTUTTI EYKATOOTACEWDV KOl
TpomonoNpévey ekddcewv tov Slurm oto omoicr 0 mNyaiog KOSKaG Exel aAAAyEG,
dLevpLVOVTOG €TGL CHAVTLKA TO TEdI0 TNG TELPAUATIKNG EPEVLVAG.

H onpoacio avtig g duvartotntog eivor dirty. [pwtictwg, kabiotd e@iktr tn dokiun
TELPOPATIKOV HIXAVIGHOV X POVOTPOYPUHHATIOHOD KOl GUVEKTEAECTG, KATAVOUNG TOPWV
N PeAtidoewv acpaleiog mov amattovv OepeAlddelg aAAayEC GTO KEVTPLKG GTOLYELX TOV
Slurm, K&TL TOL TTPONYOVHEVWG NTAV AVEPLKTO YXWPIG TaApEUPocT) 6€ GLOTHHATA TOUL
Bpiokovton oe Aettovpyio. AgutepevOVTOGC, TO SiS Tapéyel Eva EAeYXOHEVO KOl ALTTOHOVWOHEVO
neplPaArov ekTéleong, 6oL dlopopeTikég ekdOTeLS Tov Slurm, cupmeplhopfoavopé vy ekelveov
L€ TPOTOTMOLNUEVO TINYOLO KOILKK, HITOPODV VoL GUVLITAPYOLY KoL va LITOPdAAovTaL o
cvotnpatikn ovykpitikn afloddynon (benchmarking). Avtr n e€éMEn yepupavel To xaopo
HeTaED TOL BewpPNTLKOD GXESLTHOD AYOPIOH®Y KoL TNG TTPAKTIKNG TOVG EMKVPWONG G€ €val
Aettovpytid meptBaiiov.
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7.4. YMlomoinon kot Evowpdatwon

Sopmepacpatikd, To SiS oxL povo Siatnpel Tor TAEOVEKTHHATA EMEKTACIUOTTAG TOV
TapadocLlokol cLOTANATOS TV plugins, dAA& Ta dievpivel, emiTvyXYAVOVTAG LYNAOTEPO
Babpod evelifiag wou melpopatikig elevBepiog. Emiong, eivar mAéov epiktd, cevapio
SOKIHOV TTOV TPONYOUHEVOG TTXPEREVAY ATTPOCLTA, TPOAYOVTAG TNV KOLVOTOHIX O TOHELG
OTWG O XPOVOTIPOYPAPUATICHOG EPYACLOV KoL 1) Stayeipion mopwv. Qg ek TovTov, To SiS
koBioTaton Wiaitepo TOAOTIHO TOGO yia TNV akadnpaiky épevva 660 Kot yi T fropnyavia,
EMLTOYOVOVTAG TNV TPAKTLKT] ETLKVPWOT) Kol epappoyn PeAtivoewv oe virodopég HPC.

7.4 YMAomoinon kot Evoeopdtowon

7.4.1 Exdoxn oto Xvotnpa ARIS

‘Evag avayvadotng moAb evAoya Ba Bécel To epdTNpa oXeTIKA pe To AdYO Yo TOV 07T0io TO
SiS, eve v pEe EXTETAPPEVT] AVOLPOPA GE TTPOTYOUHEVOL KEPAAXLNL, TG PITOPEL VO AVOTTTOEEL
Ko va ekteAécel omoladnmote £ékdoot Tov Slurm, pdAlota, aLTOg ivarl Kot VoG otd Tovg
draknpuypévoug Adyoug dnpiovpyiog tov, eplopiotnke otnv idia ékdoon Slurm (16.05) pe
avTniv ToL e€wTteplkot cvoathpatog tov ARIS.

Qg TPOC TO TMAPATAV® EPWOTNHA, 1| ATAVTIOT CLVOEETOL APUEGA HE TNV LITOOOWUT) TOL
ovotnpatog ARIS, 6mwg avtr avaivdnke otnv Evotnta 7.3.1. To vrokeipevo Aettovpylkd
cvotnpa tov ARIS eivor To RedHat/Cent0S 6.7, o adotepn ko £d® KoL apkeTd Xpovia
un vrootnpLlopevn ékdoot twv Linux(npuepopnvia Anéng vtootipiEng: 30 Noepfpiov 2020
[38]). To mpOPANpa TPoKLTTTEL EEAULTING TOV YEYOVOTOG TG OL vedTepeg ekddoelg Tov Slurm
a€LOTTOLOVY KANOELG GUGTIHATOG TTOV TTOPEYOVTAL HOVO ATTO EVIILEPWHEVOLS TLPTVEG ToL Linux.
[Mapora ovtd, okdpa koL ocvtd dev armotedel TPOPAnpa yia to SiS otnv mepintwon mov o
xpNotng éxel tn daxbeon vo epmAokel pe Tov Tnyaio kOSKA TwV vedTEPWV eKSOGEWV TOV
Slurm, ®ote va Tov kataotrioel cUPPaTO pe TaALdTEPEG ekdOGELS TOL VPV TV Linux.
Qotoo0, autn N anaitnon Eemepvd Ta TAaoLx TG TAPOLOUG SUTAWUATIKNG EPYACLOG.

Katd ovvémeiwa, n avamtuén tov SiS evtog tng vmodopng tov ARIS meplopiotnke
avoykaotikd otnv ékdoor Slurm 16.05.11, n omolia givat 1 eyyevodg virootnpllopevn ékdoao
and 1o cvotnpa. Ev mpokepévw, to SiS dev elodyel auTOVOpX Lo TTLo TpoOcpath otoifa
Aoylopikol Slurm, dcAA& GUHHOPPOVETAL [E TO GLYKEKPLHEVO TTEPLPAAAOV AOYLOHLKOD TTOVL
elvou 0N eykarteotnpuévo oto ARIS.

7.4.1.1 Awx@sorpotnra kot Avvatotnto Avarapaywyng Koduko

O mnyaiog k®dikag Tov TAouciov SiS (Slurm in Slurm) éxel kataotel dnpocing tpocPacipog
péow evog amoBetnpiov GitHub, pe 6td)x0 T dtnopddion tng SuvatdtnTog avomapaywyng
Kot TG evkoAiog TpocPacng atd Tnv epevvnTikt Kowvotnta. To ev Aoyw amobetrplo mepiéyel
AemtTopepelg odnyleg yla TNV eykatdotooT kal ektéAeot) Tou SiS o Sipopa meplfariova.
Emniong, mapéxel tov kodika kot Tor dedOpEVA TOV ATALTOOVTOL YO TNV VOTTOPXYWOYT
TV netpapdtov MPI yia %-socket mov Sie€nyOnoav oto mAaiclo tng mapodoag epyasiog.
H 3u&Beon tov €pyov dtevkoAbvel Tnv ave€dptntn emaAnfevon TV amOTEAEGHATOV, TNV
Tpomomnoinom kot tnv mhovr) GuAAOYLKH avatTuEn Tov epyadeiov. Emmpoodétncg, ) mAnpng
vAomoinon Tov SiS, 6Twg TapovcidoTnke kot Tov OkTOPpn ToL 2025, £xeL apyxetoBetnOel
oto lapaptnuo A.
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7.4. YMlomoinon kot Evowpdatwon

7.4.1.2 EEaptinoeig Kodika

M onpovtikr oxedlaoTikn amogaon apopd Tig eEwteplikég e€aptnoelg PLpAtodnkadv. To
SiS dev emiPardel mpdcBeteg amaitnoelg AoyLlopLkoD épav 6wy eival Non dwabéoipeg otnv
vrapyovoa LITodopr. AvtifETwg, alomotel TIg TapexOpeveg atd To cOoTNR PLpALoBKeg Kot
modules yia Tnv emtilven TuyOV EAPTHOEOV KATA TN HETAYADTTION 1} TNV ekTéAEST). AvTh 1
TPOGEYYLOT) EACXLOTOTIOLEL TOV OLOXELPLOTIKO POPTO KaiL EVIGYVEL TN YopNTOTNHTX TOL SiS, av
Ko evdéxeton vo autartteitan evoeleyng mopakorovdnon yia mbavég cvykpovoelg petafd tng
vrokeipevng eykatdotaong Slurm Tov cuetipatog Kot Tov SiS.

7.4.1.3 Awdwkaocia EykatdoToong

H dwadikacio eykatdotocng tov SiS mepthapPdavel tn pvbuion tov mepifdAiovtog kot Tnv
EKTENEOT) CLYKEKPLHEVWV SCrIpLS YLOL TN HETOPOPTWOT), LETAYADTTLON KOL EYKATAGTAGT) TOV
epyadeiov, eite amod To dradikTvokd amobeTrplo eite amd Tov kK®dLka oL TePLAapPaveTon
oto [apaptnua g mapovoag epyacioag. H mposmideypévny Sopn gpakéAwv tov épyou
nopovoLaletor oto Xy. 7.7.

69



7.4. YMlomoinon kot Evowpdatwon

L bash

— aris_boilerplate.sh

— environment variables.sh
— helpers.sh

— job_queue.txt

— epilogue.sh

— prologue.sh

— v—-slurm-lite.sh

L— unit tests

L— quarter-socket-mpi

— data

— find_max_min.sh

— maxnodes.sh

— run_compact.sh

— run_cos.NAS_NAS.sh

— submit_cmp.sh

L— submit co.sh

Yxnua 7.7: Iepapyio pakéAwv Tov epyadeiov SiS.

O x¥plog katdAoyog ov mepthAapPavel Tov ekTeAéoipo kOdka eival o bash, eved To
Boaoiko script eykatdotaong eival to aris_boilerplate.sh, To omolo exteAel Tig Pacikég
Aeltovpyleg HETUPOPTWONG TOL TTNyiov kddika Tov Slurm ko dnpovpylog TV eKTEAECIUOV
GTOV GTOXO0 GUGTNHO.

Kpiowyo poro otn dradikacio oavtr) kotéxel To opyeio environment variables.sh, to
omolo opilel Tig petaPfAntég meptBaAlovtog Kot TIG StdPOpEG TOL X PNOLHOTOLOVVTAL ATTO TaL
vrtoAowra scripts katé Ty eykatdotoot kal ektéleon Tov SiS. Eva evdetktikd mapdderypa
Tov apyelov avtob mapatiBeton otov Kidd. 5.1, 6mov mapovoidlovtat ot petoPAnTég Kot ot
avtioTolyeg dLdPOpEG TTOL ATTAULTOVVTAL YL TNV OPOAT] AELTOVPYLX TOL GUGTHIATOG.

H dopn tov script eykatdotoong diatpeiton oe eMPEPOVS EVOTNTEG:

« H npodytn evotnra kabopiler tnv ékdoomn tov Slurm mov Ba eykatactabel. Qg tov
OxktdPpro 2025, n éxdoon 16.05.11 eivar n TANPWOG AELTOLPYLKT], VD OL VEOTEPEG
ekdooelg (21 xar 25) xpnopomolotvToL yior SOKLHES.

« H debtepn evotnta kaBopilel Tig dtadpopég oto ocvoTna apyelwv, kKabng kot Tig Béoelg
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7.4.

YAomoinon kat Evowpdtwon

0B KELONG TV EKTEAEGIHWOV KOL TWV ap)elwv puBuicewy.

« H tpitn evotnTa agopd T Topaplé Tpovg LALKOD TOL LITOKEIPEVOL CLOTHHATOC, Ol
oroleg elvor amopaitnTeg yiox tnv opOn) mpocappoyn Tng Sladlkaciog HETAYADTTIONG
Kot ekTéleong oe k&Be ovykekpyévo HPC mepifaidov.

+ Téhog, n TeAevtaio evOTN T TEPLYPAPEL TIG DLAOPOHES KL TIG TTAUPAPETPOVG TNG EPYATLOG
sbatch tov e€wtepikot Slurm.

To script aris_boilerplate.sh avtopatomolel oAOKANpn TN Sadikacio TpoeTolpaciog,
HETAYAMTTIONG KoL £YKATAOTAONG ekdOcewV ToL Slurm o eninedo xprotn. ZvykekpLéva:

1. Ewoayel Tig anapaitnteg pubpicelg mepifarrovtog ko fonOntikd scripts.

2. Evtomier tnv éxdoomn touv Slurm mov Oa eykatactodel ko ektelel tn Sadikacio

HETOYADTTIONG.

3. Anpovpyet T dopn pakéAwv, popT®VeL Ta atontovpeva modules, ko mopdyet ta SSL

KAeWdLd (Yo Tig ekddoeLg ToLv avTd elval aapaitnto, 6mtwg 1 ékdoom 16.05) yio tnv
eMKOLVVio pHeTal KOPPwV.

4. Télog, avaktd To apyeio nyoiov k®dika Tov Slurm amod To emionpo amobetrplo Tng

SLtVOUN G TOV, TO HETOYAWTTICEL Kol eYKOOLO T T EKTEAESIUA GTO YDPO TOL XPNOTH).

7.4.1.4 Extéleon tov SiS

To script v—slurm-lite.sh amotelel Tov Tuprva Tov SiS yia TNV avarttuén Tov pe xpron
NG LILAPYXOLOAG KATAVOUNG TOPWV TOL eEwTePLKOL Slurm.

Mo va amopevyBet 1 avaykn emeepyaciog TOA®V apyeiwv, ypnoyomoteitar o
BonOntikog Kiod.A.4, o omoiog Aettovpyel wg evdidpecog petafd Tov apyeiov pubpicewv
environment variables.sh kot tov Kod.A5.

Y€ YEVIKEC YPOUHES, 1) ekTéAeoT) ToL V-slurm-1ite. sh akolovBel pia celpd omd drokprra
otadio:

1.

ExteAeital apyiké to prologue. sh, To omoio Aettovpyel wg onpeio apxLlkomToinong,
01OV 0 XPNOTNG HITopel va Yoptwaoel amapaitnteg PifAobrkeg 1 va pubuicel to
neplPaAlov ektédeong.

. 211 ovvéxewr, Qoptdvovtal ot petaPAntéc mepifarrovtog (PA.  Kdd.5.1) ko ot
BonOntikég cuvaptnoelg amd Tov Kod.A.6, mov opilovv dadpopég kot vAOTOLOVV
XPNOTLKESG AetTovpyieg yia T pvOpLon tov SiS.

3. Emeirta aviyvedel Tov aptBpod kopPov mouv éxouvv ekywpnbdei amd to e€wtepikd Slurm ko

emAEYeL Evay KOPPo g eAeyKTh.

4. Anpovpyeitor Tpoowpvo apyeio puvbpicewv slurm.conf ywx to SiS, to ormoio

nepLypaget tov eleyktr (slurmctld), Tovg LITOAOYLETIKOUG KOUPOVC, TIG TAPAPETPOLG
TOPWV TIG TANpoYopieg dropépiong k.&. H dopn Tov apyeiov mpocappodletal avaroyo
pe tnv ékdoomn tov Slurm, eEaxcparifovtoag cupPatoTnTa pe dloupopeTikég eKSOTELS.

. Exxwveitan o eleyktng slurmctld ko ot daipoveg slurmd otovg vtoAolovg kopPoug,
HéCw evTOA®V srun sov kabopilovton amd tnv katavoun kopPwv, to TAnbog Twv
epyooLov Kot Tnv avtiotoiyton CPU.
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A@pov 0AokAnpwBei 1 exkivnom, yiveTo EAeYX0G AELTOVPYLKOTNTOGS HE TNV EVTOAT scontrol
show nodes. Emeita, 1o cOoTnua eloépyetor ot GAoT opYXHOTPWOTG, KAT& TNV Omoio
nmopokorovbel Tnv ovpa Tov cluster kou extedel epyacieg mov kabBopilovtal 6To apyeio Alotag
epyactodv (PA. Kod. 5.2).

To epyaheio drxoadilel 0TL OAeg oL epyacieg exTeAoDVTOL KoL EAEYYEL TEPLODLKA YL TUXOV
evepyég dlepyaoieg. Xe mEPITTWOT) TOL TAPAPELIVOLV evepYES epyacieg Otav eEavtAndel To
OpLo XPOVOL AUTEG OKLPOVOVTOL Yio Vo emtLtevy el TeppaTiopog.

Me v oAokANpwon TwV gpyaclodv, ekteleital to epilogue. sh, To omolo amotelel
T0 TeAKO oTddlo Kabaplopol, cLANOYNG amoTedeopdTwV 1) peta-ene€epyaciog. H yprion
Eexwplotwv prologue kot epilogue scripts mpocdidel eveliéio oto SiS.

Svvomtikd, to v-slurm-lite.sh Aeitovpyel oG SuvopLkod entimedo opxNOTPWONG TOL
QUTOHATOTOLEL TNV TTpoeToLacia TeptPdilovTog, Tn dnpovpyio pubpicewv, Tnv exkivinon
TWV VINPEGLAOV, TNV LITOPOAN epyacLOV KaL TNV TeAlkT] amelevBépwon mopwv. H dvvatotnta
OUVOLOGHOD TTPOCAPHOCHEVWV OTAIWV EKTEAEGTG HE TTAPAPETPOTTOLOLUN pUOIoT Koo Th
o SiS éva Waitepa tpocPacipo meptPaArov SoKIHOV yia S1ipopovg THITOVG EPYACLOV GTO
mAaiclo Tov Slurm.

7.5 Amoteléopata, ALl1oAoynon, MeAlovtikn AovAerd

7.5.1 EmwOpwon OpBotntag Aertovpyiag SiS

H emkdpwon tov SiS npaypatomotinke péow piag oelpdg SOK®VY oL elxyav wg oTdOX0 Vo
enaAnBeboovy NV opBOTNTA eKTENEOTC G TANPWG AeLtToLPYLKOD dtayelploTh TOPWV, KAODG
Kot TV 0pOn alAnAenidpaot Tov pe Ta didpopa epyadeio kot evtolég Slurm.

AOY® TV LPLETAPEVOV TTEPLOPLOHROV TNG TPEXOLaas £éKkdoong Tov SiS, dev NTav epLKTh
1 extéleon mAnpovg kAlpokoag MPI epappoydv. Qg ek tovtov, 1 dadikacio emkipwong
emkevTpdOnke kupiwg otnv emiPePaiwon otL To SiS epunvetel, mpowbet kot extelel 0pB& To
oVOVOAO eVTOA®V TOL Slurm.

Katd ) diapkela tov dokipodv, ekteAéotnkov Aettovpyieg Tov Slurm amevBeiog pécw Tov
SiS, 0mwg evtoAég LITOPOATG EpYATLOV, TAPAKOAOVONGTG KATAGTAGNG KAt TTapakoAovOnong
TOU CUCTIHHATOG. X OAEG TIG TEPLOTACELG, TO EPYOAELO eTTESELEE TNV XVOUEVOEVT) GUUITTEPLPOPAL,
avamapiyovtag pe akpifelo Tig amokpicelg evog eyyevag eykateotnpévov Slurm. H cuvémeia
LT oT0dELKVVEL OTL OL E0WTEPLKOL PNYaVIGHOL Tov SiS — OTTWG 1) AVAALGT] TV ap)ElwV
pLOpice®V, 1) HETAPPACT) EVTOA®V KL 1) ETTLKOLVOVIA e TOUG dULPOVES, AELTOVPYOVV OTTWG
npoPAémetal.

3TN GUVEXELR, TTOLPOVGLALOVTOL TAL ATTOTEAEGHATO EKTEAECTG EVOELKTIKOV eVTOA®V Slurm,
npokeévou va emdetyOel 1 opOn Aettovpyia tov SiS. O Kwd. 7.1 Seiyvel tnv é€odo tng evtoAng
sinfo amod 1o SiS yux Aettovpyio o€ Tpelg kKOpPoug (To amotéAeopa £xel epLKoTel Yo AOYoug
oOPTVELAQ):

Kodikag 7.1: Extédeon tng evtolng sinfo péow tov SiS e 3 kopPoug.
NODELIST NODES PARTITION  STATE CPUS S:C: T MEMORY

node066 1 compute= mixed 20 2:10:1 57344
node413 1 computex mixed 20 2:10:1 57344
node414 1 compute= mixed 20 2:10:1 57344

Avtictolya, n enopevn evtoAr) sinfo emdetkviel Tn SLVATOTNTA TOL SiS Vo KAHAKOVETOL
oe peyodOtepo aplBpod kopPwv, 6mwg paivetal otov Kdd. 7.2 (emiong mepikoppévo ammotéecpa
ylot AOYOUG 0O VELOG):
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Kaodikoag 7.2: Extéleon tng evroAng sinfo péow tov SiS oe 10 kopPoug, amodetkvdovtag Tn
SuvaTdTnTo KAPAKWOTG TOL epyaAeiov.

NODELIST = NODES PARTITION  STATE CPUS S:C: T MEMORY
node323 1 compute= mixed 20 2:10:1 57344
node324 1 compute= mixed 20 2:10:1 57344
node325 1 compute= mixed 20 2:10:1 57344
node326 1 compute= mixed 20 2:10:1 57344
node361 1 compute= mixed 20 2:10:1 57344
node362 1 compute= mixed 20 2:10:1 57344
node363 1 compute= mixed 20 2:10:1 57344
node364 1 compute= mixed 20 2:10:1 57344
node365 1 compute= mixed 20 2:10:1 57344
node366 1 compute= mixed 20 2:10:1 57344

T v dia ek Téleo), mapovoialetal 1) SuvaTdOTNTA TOUPAKOAOVONGTG TN OLVPAS EPYATLOV
HECW TNG EVTOANG squeue amtd Ta eKTeAESLHA TOL SiS:

K®dwkag 7.3: Extédeon tng evToAng squeue pécw Tou SiS kat& Tn SidpKela epyaciag mTov
éxeL deopevoel 10 kopPoug.

JOBID PARTITION NAME USER ST TIME NODES NODELIST (
— REASON)
2 compute Sinfo -10 goumas R 0:01 10 node [323-326,

361-366]

Télog, mpaypatomoiOnke pio cvotnuatiky dtodikacior emKOPWONS, KATA TNV ool
ekTeAéoTnkaV OAeg oL Pacikég evtorég tov Slurm evtog touv mepipdAiovrog touv SiS,
npokelpévou v aklohoynBei n Aettovpyikr) opBotnta kar n cvpPatdtnTd TOL HE éva
TOUPAYWYLIKO GOOTNHA.

7.5.2 Ilerpopatikd Arotedéopata ¥;-socket

Otav olokAnpwbei n duvatdotnta ektéleong MPI epyacidv amd to SiS, Oa ypeiaotei pio
TELPOPATIKT PAON Yot TO TELPAPATH CUVEKTEAEGTIC OLAUPOPETIKAOV EPAPUOYDV G KOLVOUG
KOPPOUG e GKOTTO TN YXPNOT) TOV UTOTEAECHUATOVY YLO TNV OUTOTIHNGT] TOL OVTLKTUTOL TNG
OULVEKTEAEGTIG OTA SLAPOPA TYNHATA XPOVOSPOHOAOYNOTC.

Ka&Be koppog tov cvotrpartog ARIS dwabéter Svo sockets pe déka mupnveg to kabéva
(obvolo 20 tupnveg), 6o oL Tuprveg 0 ewg 9 avtiotoryobv oto 1° socket evd oL tuprveg 10
ewg 19 oto 2° socket. T T Telpdpata cuvektédeong teocdpwv NAS mpoypoppdtwv, k&be
EPUPLLOYT] AVTLOTOLYIOTNKE O€ GUYKEKPLUEVO DITOGVVOAO TTUPTIVAOV, OTIWG POLVETOL TTAPAKATW:

« IIpoypappoa A: toprjveg 0-2, 10-11
« [Ipodypappoa B: muprveg 3-4, 12-14
« podypappa C: Toprveg 5-7, 15-16
« Ipoéypappoa D: tuprjveg 8-9, 17-19

H tomobétnon avtn e€acparilel cuppeTplkr xpron nopwv, ot eninedo koOpPov, kot
eAéyEun ouvOnkn ovvektédeong. O kodikag yo T ovvektédeon twv NAS benchmarks kot
Yi-socket divetou oto Mapdptnua B.
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To ewpapato Paciotnikav otn covita NPB3.4.3 MPI pe mpoPAfpata kAdong D oe 64
vipato. Ta aotedéopata cvykpiBnkay pe Tig «compact» exteléoelc, SnAadn tnv ektéleon

KkaBe Tpoyplppatog povou touv oe k&Be kopPo. H emrayvvon, 1) speedup, opiletor omtd tnv
EE. 7.1:

speedup = M (7.1)

OTTOL: time ompact ELVOL 0 HEGOG XPOVOG ekTENECTIG XWPIG CLVEKTENEDT), KO timegyarter ©
aVTIOTOLY0G XPOVOG e GUVEKTEAECT) TECCAPWV EQPAPHOYDOV GTOV idLo kOpfo.

Ta tpota amoteAéopata deiyvouv otL 1 didta€n avtr) emitpémel dikain aloAdoynon g
aAAnAentidpaong twv epyaciodv. Ta dedopéva avtd atotedodv ) PBdon yioe peAlovTiky
EVOWUATOOT) SUVOULKOV PNXOVICPOV GLVEKTEAEGTC 6TO SiS.

Mo ocvykekpyéva, T omoteAécpata yia k&be éva amd ta mpoypappato NAS,
TOPOLCLALETOL OTLG ETTOHEVEG VITOEVOTITEG.

timegyarter

7.5.2.1 EP - Embarrassingly Parallel

To EP dnuovpyel aveEdptntovg tuxaiovg aplBpods ywpig emkowvwvia dlepyooiodv,
a&loloywvtag kabapd Tnv vtoAoyloTikn Lo)D.

Speedups for ep

ep +0.951.000.990.981.000.980.970.960.980.96 0.98 1.000.980.970.990.97 0.990.980.970.97 1.00 0.990.991.00 1.00 0.98 0.990.981.00 1.00 0.97 0.990.990.98 1.00
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Quad (socket_programs)

Yxnua 7.8: Speedup tov mpoypdppatog EP pe cvvektédeon oe mepipaAiov %-socket yia
npoPAnpata kAdong D pe 64 diepyaciec/vijpata.

Kaypia ovclaotikn ditopopomoinon dev mapatnpndnke, 6mwg avopevotav. Mécog 6pog
speedup: 0.98.

7.5.2.2 IS - Integer Sort

To IS to€wvopel akorovBieg kAediov péow bucket sort, dokipalovtag tn cvvoyr kaL TV
emKoLveVvia peTafd dlepyaciov.

Speedups for is

1141.301.161.271.241.131.291.241.151.001.131.411.321.381.301.351.231.210.921.331.241.251.181.190.971.321.241.111.11 1.140.951.15 1.13 0.920.92

L e e e e e L e o e e e B L B e p o e e L B m s |
22852854282 283£28852835428228232832%832
) < E| d;‘ o t‘ g! E\ £ E bl n‘ E\ E\ o o 3‘ E\ i ! t‘ g E\ £ g o o E‘ o Q‘ 5\ i&‘ o t‘ il
882898 Jdgd 088 8g8 8909 982 e 2o gy
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Quad (sc;cket_programs)

Yxnuoa 7.9: Speedup tov mpoypdappartog IS pe cvvektédeon oe mepidAiov %-socket yio
npoPAnpata kAdong D pe 64 diepyaciec/vijpata.
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IMapovoidotnke cogng Pertiwon TaxOTNTAG 08 OAES TIG TEPUTTOGELS. Mésog 6pog
speedup: 1.18.

7.5.2.3 BT - Block Tridiagonal Solver

To BT Abver pun ypappikés dagpopikés eflowoelg péow block tridiagonal alyopiBpov,
ATOUTOVTOG LYNAT VTOAOYLOTLKT) LoYD.

Speedups for bt

bt 40.961.050.950.980.870.980.981.110.991.091.021.100.981.010.891.000.920.971.090.981.091.091.151.061.131.121.041.070.960.990.880.990.850.94 0.84|
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Quad (socket_programs)

Yxnua 7.10: Speedup tov mtpoypappatog BT pe cvvektéleon oe mepifdrrov %-socket yio
npoPAnpata kA&ong D pe 64 diepyaoieg/vipata.

[MopoatnprOnke peyadn drakdpaven. Méoog 6pog speedup: 1.00.

7.5.2.4 CG - Conjugate Gradient

To CG vmoAloyilel LOLOTIHES POV GUHPETPLKDOV TLVAKWV, SOKIUALOVTAG 1) VIETLPHLVIGTLKA
HOTIPOX ETLKOLVOVLADV.

cg 0.830.990.83 D.TBD.SGID.BS D.B4.ll2 0.880.941.10

Speedups for cg

l0.94 0.93 0.94.0.89 1.060.89 1.06 1.030.82 1.08 1.05 D.DZID.BS 1.201.12 1.15 0.990.94
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Quad (socket_programs)

xnua 7.11: Speedup tov mpoypdppatog CG pe cvvektéheon oe mepiPdirov %-socket yiox
npoPAnpata kAdong D pe 64 diepyacieg/vijpata.

[Mopatnprnke cagng emPpadovvon katd tn ocvvektéleon. Méoog 6pog speedup: 0.91.
7.5.2.5 FT - Fast Fourier Transform

To FT extelel tplodidotatovg petacynpatiopovg Fourier, amoteAdvtoag avatnpo deiktn
arOS00TG EMKOLVOVIOV HEYAAWDV ATTOCTACEWV.
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Speedups for ft

ft 41.331.301261311311.191.331.441.221351451341351361.351.221241401391.201.391.431431411361371401.301.281.331.311.191.241.131.18
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Yxnuo 7.12: Speedup tov mpoypdppatog FT pe cvvektéheon oe mepipariov %-socket yio
npoPAnpata kAdong D pe 64 diepyaciec/vijpata.

MapatnprBnke afloonpeiowtn PeAtiwon ypovou ektéleong. Mésog 6pog speedup: 1.32.

7.5.2.6 LU - Lower Upper Symmetric Gauss-Seidel
To LU emlver e€icwoelg Navier—Stokes péow mpooeyylotikig LU mapayovtomoinong,

oLVOLALOVTOG €VTOVI) QVAYKN YLt DTTOAOYLOTIKH LoXD OAA& ko emikolvwvieg petafd
depyaoiov.

Speedups for lu

|lu41111141091111111011.121.181.161.141.121.161.111.131.131.031.08 1.111.171.161.121.121.18 1.18 1.16 1.151.18 1.16 1.101.121.11 1.03 1.02 1.08 1.00
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>xnua 7.13: Speedup tov mpoypappatog LU pe cuvektédeon oe

neplPairov %-socket yiox
npoPAnpata kAdong D pe 64 diepyaciec/vijpata.

IMapovoialet Oetikr Pedticon oe OAeg TIg Sokipéc. Mécog 6pog speedup: 1.12.

7.5.2.7 MG - MultiGrid

To MG emihbeL Tnv tpdidotatn e€icwor Poisson pe 1 pébodo moALTAEYHATOV, ATOUTOVTOG
emkoLvevia petafd KOpPwv.

Speedups for mg

mg 4 1.451.44 . 1.511.51 1.491.48 1.44.1.40 1.40
— T —T

3 a B 3 o =5 = &= = o = =S 3 o 3 = =] o o 2 =] o =} a 2 =} (= =) =} =] o =]
o B & 2 B T B 2 2, d;\ T = d:,,' I T B By B B B
Exeses @ Pgeasese s g g 85855

o o 22 o o E| (- E, o o @ 9 o o E, i 5, E © E‘ 5 E 4 o @ @ o o &' I
E‘EE‘E‘E‘EgQEgEIEE‘EIE‘E93‘99'%‘%%'5%‘5‘55‘%%53‘@.11&

I I
4 3‘ 28 g g‘ %' g o %' o %‘ 2 5 o g A O TR P B a 2 g g g

Quad (socket_programs)

>xnuo 7.14: Speedup tov mpoypappatog MG cvvektéleon oe meplfAiov

Yi-socket yia
npoPAnpata kAdong D pe 64 diepyaciec/vijpata.

IMopovoralel tn peyadbtepn emitdyvvon omd 6 Ao to benchmarks. Mécog 6pog speedup:
1.55.
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7.5.2.8 SP - Scalar Pentadiagonal

To SP Abvel e€lowoelg Navier—Stokes pécw penta-diagonal cuotnpatwv/mivakoy.

Speedups for sp

sp q1.071.061.030.940.920.931111.121.040.981.111.111.110.980.960.961.011.08 1.101.030.941.08 1.15 1.14 1.11 0.99 1.081.060.950.930.920.92 0.890.90]
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Ixnpa 7.15: Speedup tov mpoypdppatog SP oe cvvektédeon oe meplfarlov Y-socket yia
npofAnpata kAdong D pe 64 diepyaoieg/vipata.

ABporoTikd, dev mapovoidlel ovolaoTikn) aAdayn oTig emdocelg Tov. Mésog 6pog speedup:
1.01.
7.5.3 Zvykevipotikd MeyéOn

['oe T cuvoALKT] TTPOPOAT] TV EMMTOCEWV TNG OLVEKTEAEGNG, 1) HeTaPAnTn speedup
amelkoviletal oto 2. 7.16 wg boxplot, 6mov yia k&Be éva benchmark amewcoviletan 1 péon
Tiun, 1 dtaomopd kobwg ko To eEwkelpeva onpeio Tov speedup

Distribution of Speedups per Benchmark

1.8 1

(R e

" T — il

Speedup
—
N
—
|_

107 =
0l8 _ i
(0]
0.6 1
S
bt cg ep ft is lu mg sp

Benchmark

Yxnuo 7.16: Boxplot twv NAS benchmarks wg tpog 10 oxetikd Tovg speedup oe cuvekTéAeo
Yi-socket.

To arotedéopata delYvouv GTHOVTIKY £TEPOYEVELX GTN CLHTEPLPOPX kBe benchmark.
Toe MG ko FT eppaviCouv ta vmAdtepa péoa speedups (¢wg 1.6). Avtibeta, to CG kot SP
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TopoLGLalovy LYNAY peTaPANTOTNTA KoL 68 OPLOpEVES TTEPUTTOGELS emPpaduvon (< 1.0),
delyvovtog tov vPNAO Babpd e£&pTnong amd Ta YOPAKTNPLOTIKE TWV GCUVEKTEAODHEVWV
epappoyov. To EP dwatnpet speedup kovta otn povada, eved ta LU ko IS detyvouv otabepn
Beltiwon pe meplopiopéveg petaforég. ZvVOALKA, OL eMOPACELS TNG CLUVEKTEAEGTG eEapTOVTOL
¢vtova ad Tov Tomo Tov benchmark.

Yto Xx.7.17 kotaypagetol 1 Katavopr twv speedups yiox Tig ouvOKkeg cLVEKTEAEOTC KOTA
Yi-socket ko xatd %-socket.

Comparison of Quarter vs Half socket speedup

1.8 1
E O
1.6 - L
8
=]
1.4
% —‘7
3 1.2
[4F]
@
[=
(73]
1.0 4
0.8
e
0.6
B
1 socket L socket

Yxnua 7.17: To boxplot Twv speedups tng ektéAeong kata %-socket, ev avtiBécel pe ta
speedups katd TNV ekTéAeon Katd Y%-socket.

H didpecog yia tnv extédeon katd %-socket vtoloyiotnke oe 1.09 ev ovykpioel pe 1.03
yloe TNV ekTéAEOT) KaTd Y-socket.

‘Evoag devtepog deiktng, n evarotnoia (sensitivity), ekppalel to amdAvto péyebog petaforng
otnv anddoon (speedup 1} slowdown) Adyw ocLVEKTELEGTG, KAVOVIKOTOLNIEVO (G TTPOG TOV
XPOVO ovapopAags.

1
Spg= ————— 1 — speedup (7.2)
T |{b.qt € O {b,qz}e:Qb‘ bal

01oL Sp 4 elvan n evaucsOnoio tov benchmark b wg mpog to g, Oy T0 GVUVOAO OAWY TWV
ekteAécewVv %-socket mov mepthapPfavouvv to benchmark b, ko speeduqu TO HETPNHEVO

speedup tov b 61 q.
H ovvolikn ektipnon tng evarcOnoiag gaivetor oto Xx. 7.18.
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Sensitivity matrix: Average speedup sensitivity of A when colocated with B

0.70

0.35

Average speedup sensitivity (A co-located with B)

0.00

YxAua 7.18: H petpwr) evaioBnoiag (sensitivity) katé tn ovvektédeon dvo NAS benchmarks
oe Y-socket meplpaiiov.

To amoteAéopata deiyvouv vPnAn evatcOnoio yoe To MG (0.49-0.68) ko to FT (0.25-0.36),
dnAdvovtag peyadn enidpoaon and tn ovvektédeor. To EP mapovoidlel pikpr] eng kabBdAov
evonoOnoio (< 0.02), emPeforwvovrog tnv aveaptnoio tov. Ta LU, IS kou BT Bpickovrat otn
péon kAipako (< 0.2). Zuvolkd, o mivakag evatcOnoiog avadetkviel TIg SLapopoToLoeLg
peto€d benchmarks: opiopéva benchmarks (;t.x. MG, FT) eivon diaitepa “evaicOnta’, evd
Ao (.. EP, SP) otaBepd oe cuvOrkeg ovvekTéAeonG.

7.54 SvpumepAopaTo

H moapotoa dimdwpatikn epyacio mapovcsioce Tov oxedloopd, Tnv LAOTOLNoN Kol TNV
emKOpwot) tov epyaeiov SiS (Slurm-in-Slurm), plog cvvelopopdg ot diyeipion TOPwV
LTTOAOYLOTIK®V CLOTNHATOVY LVYNAGOV emddcewv. Koplog atdxog virpée 1 avamtuén evog
epyoielov oe emimedo YPNoTn, LKAVOD Vo avatTOoGEL Kot vo dlayelpiletan epyacieg 6To
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mAaiclo Tov Slurm evtdg moapaywylkov mepiorrlovtov HPC, emtpémovrog peAlovtikd
TNV EVOWHATWOT VE®V AELTOVPYLKOTNTOV KOL TOV TELPOHATIONO HE VEEG TTOALTLKEG
XPOVodpopoAdYNoNg Ko aAyopiBpmy xwpig ovaykn SLoXeLPLOTIKOV TTPOVOHLIWY.

To amotedéopata €det&av 0TL To SiS emTLy)AVEL TATPWG ALTOV TOV 6TOY0. EmitAéov, To
SiS vtooTnpilel TNV AVATTTUEN TPOCAPHOGHEVWV 1) €K VEOU HETAYAWTTIGHEVOV EKOOGEWV TOV
Slurm, vrepPaivovtag Tovg meplopiopong twv plugin APIs. ‘Etot, dnpiovpyei pior emekTdon
Béon yio peAAOVTIKT EVOWHATWGT) COYXPOVOV EPEVLVITIKOV TTPOCEYYIoE®V TN dloryeiplon
nopwv HPC.

[Tépar omd TV avamTugn Tov epyaieion, 1 SUTAHATIKT epyacia Tapeiye KoL CNUOVTLIKA
TELPOPATIKA EVPTIHATO GYXETLKA € TT) GUVEKTEAECT] EQAPHOYDOV. MEG® SOKIPOV 6TO CVGTNHA
ARIS, diepevvnOnkav ol emntooelg Tng ovvektédeong dropopetikdv NAS Parallel Bench-
marks oe exteAécelg J-socket. Ta amoteAéopata, avédelEav tn obvOetn adAnAenidpaon
dLopopeTIik®V PopTiev ot meplBaAlov diopolpalOpeveY TOP®V.

7.5.5 Mellovtikn Epsvva

Av xa To SiS TopéyeL AELTOVPYLKT] KOl ETEKTAGIUN PAOT Yo TELPOPATLKT Loty eLpLoT) YOPTiLV
oe mepparrovra HPC, 1 epyacio avth) avédelEe moAamAég katevBOvoelg yior peAlovTiky
EPELVA KoLl LVATTTLE.

Apeon TpoTepatdTNTA TOTEAEL 1) TARPNG EVOWUATWOT LITOSTHPLENG ekTeAécewy MPI. Av
KoL To TpEYOoV oboTnua droyelpileton ave€aptnteg diepyocieg Slurm, n TAnpng vtoothpien
KaTovepnpéveov MPI epappoyodv O evioy0oeL OLCLAGTIKA TN XPNCIHOTNTA TOV, EMLTPETOVTOG
Vv a€loAOyN o TApEAANAWY EPAPHOYDOV EVTOG TOL ATTOHOVWHEVOL TTepLBdAlovTog Tov SiS.

EmumAéov, mpoteiveton i) eméktaot Tng oVpPatdtnTag Tov SiS pe meplocoTepeg ekdOOCELG
oL Slurm, 600 vedTEPEG 0G0 Kol TohatdTePes. AvTod Bar dLeLKOAVVEL GUYKPLTLKEG HEAETES
OUUTTEPLYPOPAG KoL eTTLOOGEWV PETAED dtopopeTikdv ekdooewv Tov Slurm ko Bar kdvel akodpo
L0 EVEALKTN TNV AVATTTLEN AOYLOHLIKOD ylor ToV mtnyaio kodike tov Slurm.

Se epevvnTiko eninedo, To SiS mapéxel TPOGPOPO Ed0POg yLar aVATTTUEN Ko OELOAOYN O
VEWV YPOVOSPOHOAOYNT®V 7oL OELOTTOLODV OTPATNYLKEG GUVEKTEAEOTG POPTIOV OAAX
KoL dAAec. Me Paon Ta aMOTEAEGHATA TOV TELPAPATOV CUVEKTEAEGNC TNG TAPOVCAS
SUTAWPATIKAG epyaciog, peAAovTikT] épevva Ba ptopovoe vo avorttogel adyopibpovg mov
BeAtioTomolotv TV ekTéAecT epyacLOV AapUPAvovTag LITOYT T GUHEOPNOT), TNV TOTLKOTNTA
emKoLVOViag kot TNV aAAnAentidpacn towv goptiwv. Tétowol duvayikoi ypovodpoporoyntég
Ba propotoav va av€ncovy T cLVOALKT aELOTOLNGT) GUGTHHATOG HELOVOVTOG TTXPAAANAQL
TG aAAnAemidphoelg mapePPoAnc.

TéAog, pla akOpn oMpavTIK KatebOLVOT APopd TO GUOTNHATIKO XXPOKTNPLOHO POPTI®V.
Méow e€aywyng xoapaktnploTik®dv Paoel Twv omoiwy oL epyacies Oa propovv va ta€ivopnfodv
o€ katnyopieg epappoydv avaroyeg pe ta NAS benchmarks. ‘Etot, o kataotel epikth 1)
TPOYVWOTLKY HOVTEAOTIOINGT) TV EMSPACEWV TNG CLUVEKTEAEGTG KAl TNG GLUVOPOHOAOYN OGNS,
ETMLTPETOVTAS OTOVG YXPOVOIPOHOAOYNTEG VO TTPOPAETOLV TTOLEG EPAPUOYEG HITOPOVV VO
HOLPXGTOUV oTOSOTLKA TOLG LOLOVLG TTOPOULS KAl TTOTE VO TG dPOHOAOYOUV. Xe GUVOLAGHO
pe tnv evel€la Tov SiS, avtr 1 TPocEyylon propel vo 0dnyroel oe TPOSUPHOLOpEVEG
TOALTIKEG CUVEKTEAECT|G TTOV HEYLGTOTTOLOVV TNV artdd00T ST pOVTOG Tr SIKaloc OV HeTaEd
EPAPHOYDV.
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Appendix A

Listing A.1: The ARIS boilerplate script. Its use is to install and compile the preferred Slurm
version to be used for SiS

#!1/bin/bash -1

#!/bin/bash -1
./ environment_variables.sh

./ helpers .sh

mkdir --parents $home_dir $base_dir
cd $home dir
major="%${version %%.x}
generate_slurm_conf $major
if (( major <= 16 )); then
module purge
module load gnu/8
module load intel/18
module load intelmpi/2018
if [[ $1 == "—-—install” || $1 == ”-i” ]]; then

»

mkdir --parents ${home_dir %/}{/sbin ,/ lib/slurm ,/
— etc,/spool/{slurm,slurmd},/sys,/sys/{fs, fs/
— cgroup},/var/{run,log,log/slurm,slurm, spool/{
< slurm ,slurmd}},/ spool/slurmd}

touch ${home_dir %/}/var/run/slurmctld.pid ${
— home_dir %/}/var/spool/slurm/{node_state ,
— job_state ,trigger_state}

chmod 755 -R ${home_dir %/}

# Create certificates

openssl req -x509 -newkey rsa:4096 -passout pass:
— $password -keyout $key_name -out $cert_name -
— sha256 -days 365

# Store them in $home_dir/etc/

cp $cert_name S$key_name ${home_dir %/}/ etc/

# Copy slurm.conf.template and cgroup.conf to
— $home_dir/etc/

cp {${base_dir %/}/slurm.conf.template ,${base_dir
— %/}/cgroup.conf} ${home_dir%/}/ etc
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cd ${home_dir%/}/ etc/

openssl genpkey -algorithm RSA -out $key_name -
< pkeyopt rsa_keygen_bits:2048

openssl rsa -pubout -in $key_name -out $pkey_name

cd ${home_dir %/}

wget https:// github.com/SchedMD/slurm/archive/refs
<~ /tags/slurm-16-05-11-1.zip

unzip =slurm=«. zip

cp #slurm«.zip ${base_dir %/}

rm —-f sslurm=«. zip

cd ${home_dir %/}/slurm«/

./ configure --prefix=${home_dir%/} --exec-prefix=$
— {home_dir%/} --sysconfdir=${home_dir %/}/ etc
— —-localstatedir=${home_dir %/}/ var —-with-ssl

— =/usr/lib64/openssl #/engines/lib
# if the script is in unfinished state then you
<~ have to manually create and copy the slurm.

< conf file
cd ${home_dir %/}/slurm=«/src/
make -j8
elif [[ $1 == "--configure” || $1 == 7"-c¢” ]]; then

# Remove old installation

rm —-rf ${home_dir %/}/«

# Copy source from home_dir to installation
< directory

cp ${base_dir %/}/slurm «. zip $home_dir

# Unzip the source code

unzip =slurm«. zip

# Create directories

mkdir --parents ${home_dir %/}/{lib/slurm ,etc , spool
< /{slurm ,slurmd},sys,sys/{fs,fs/cgroup},var/{
— run,log,log/slurm , slurm, spool/slurm}, spool/
< slurmd}

touch ${home_dir %/}/var/run/slurmctld.pid ${
< home_dir %/}/ var/spool/slurm /{node_state ,
< job_state ,trigger_state} ${home_dir%/}/var/
< slurm/slurmd. pid

# Store keys in $home_dir/etc/

cp ${base_dir %/}/{$cert_name ,$key_name} ${home_dir
> %/}/etc/

# Copy slurm.conf.template and cgroup.conf to
— $home_dir/etc/

cp ${base_dir %/}/slurm.conf.template. $version ${
— base_dir %/}/cgroup.conf ${home_dir%/}/ etc/
< slurm.conf.template
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elif

((

cd ${home_dir%/}/ etc/
openssl genpkey -algorithm RSA -out $key_name -
< pkeyopt rsa_keygen_bits:2048
openssl rsa -pubout -in $key_name -out $pkey_name
# openssl rsa -passin pass:$password -in $key _name
— -—out $key name # Remove passphrase

cd ${home_dir %/}/slurm«/

./ configure --prefix=$home_dir --exec-prefix=
< $home_dir --sysconfdir=${home_dir %/}/ etc --
— localstatedir=${home_dir %/}/ var --with-ssl=/
— usr/lib64/openssl #/engines/lib

cd ${home_dir %/}/slurm«/src/

make -j8
else
echo ”Invalid argument. Choose either,,’'—--install -
< i’jor, --configure -c’”
fi
if [[ $1 == "——install” || $1 == "-i” || $1 == 7--
— configure” || $1 == "-c¢” ]]; then
# Plugin linking
lib_dir="${home_dir %/}/ lib /slurm”
so_files=$(find ${home_dir %/}/slurm -/ src/plugins/
— -type f -name 7 x.so”
cd ${lib_dir %/}
IFS=$"\n’
# Create symlinks for object code
for so_file in $so_ files; do
In -s $so_file $(basename $so_file)
done
In -s ${home_dir %/}/slurm —+/ src/slurmd/slurmstepd/
— slurmstepd ${home_dir%/}/sbin/slurmstepd
fi
major == 25 )); then
if [[ $1 == "—-—install” || $1 == ”-i” ]]; then

cd ${home_dir %/}

wget https:// github.com/SchedMD/slurm/archive/refs/
< tags/slurm -25-05-1-1.zip

unzip =slurm=«. zip

cp *slurm=«.zip ${base_dir %/}

rm —-f «slurm«. zip

mkdir --parents ${home_dir %/}{/sbin ,/ lib/slurm ,/ etc ,/
— spool/{slurm,slurmd},/sys,/sys/{fs,fs/cgroup},/
< var /{run,log,log/slurm,slurm, spool/{slurm, slurmd

< }},/spool/slurmd}
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cp ${base_dir %/}/slurm.conf.template. $version
— ${home_dir %/}/ etc/slurm.conf.template
cp ${base_dir %/}/cgroup.conf ${home_dir%/}/ etc
< /cgroup.conf
cd ${home_dir %/}/slurm«/
./ configure --prefix=${home_dir%/} --exec-prefix=
< $home_dir --sysconfdir=${home_dir %/}/ etc --
— localstatedir=${home_dir %/}/ var
cd ${home_dir %/}/slurm=«/src/
make -j8
find ${home_dir %/}/slurm -slurm -25-05-1-1/ -
— type f -name ”x+.so” -exec cp {} ${
< home_dir %/}/1ib /slurm/ \;
find ${home_dir %/}/slurm=«/etc/ -type f -name “+«luax+” -
— exec cp {} ${home_dir%/}/etc/
cp ${home_dir%/}/etc/job_submit.lua.example ${home_dir
— %/}/ etc/job_submit.lua
elif [[ $1 == "--configure” || $1 == 7"-c¢” ]]; then
rm —-rf ${home_dir %/}/«
cp ${base_dir %/}/slurm«. zip $home_dir
Unzip the source code
unzip =«slurm=«. zip
Create directories
mkdir --parents ${home_dir %/}/{lib /slurm , etc ,
< spool/{slurm, slurmd},sys,sys/{fs, fs/
< cgroup},var/{run,log,log/slurm,slurm,
< spool/slurm},spool/slurmd}
cp ${base_dir %/}/slurm.conf.template. $version
— ${home_dir %/}/ etc/slurm.conf.template
cp ${base_dir %/}/cgroup.conf ${home_dir%/}/ etc/cgroup.

< conf
cd ${home_dir %/}/slurm+/
./ configure --prefix=${home_dir%/} --exec-prefix=

— $home_dir --sysconfdir=${home_dir %/}/ etc --
— localstatedir=${home_dir %/}/ var
cd ${home_dir %/}/slurm«/src/
make -j8
find ${home_dir %/}/slurm -slurm -25-05-1-1/ -
— type f -name ”x.so” -exec cp {} ${
< home_dir %/}/1lib /slurm/ \;
find ${home_dir %/}/slurm=«/etc/ -type f -name
<~ «luax” - exec cp {} ${home_dir%/}/etc/
cp ${home_dir%/}/etc/job_submit.lua.example ${
< home_dir %/}/ etc/job_submit.lua

2

else
echo "Invalid argument._ Chooseeither, ’--install -
< i’yor, --configurey-c’”

fi
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elif (( major == 21 )); then
if [[ $1 == "——install” || $1 == ”-i” ]]; then
rm —-rf ${home_dir %/}/+
cd ${home_dir%/}

wget https:// github.com/SchedMD/slurm/archive/refs/
— tags/slurm-21-08-6-1.zip

unzip =slurm=«. zip

cp *slurm=«.zip ${base_dir %/}

rm —-f «slurm«. zip

mkdir --parents ${home_dir %/}{/sbin ,/ lib/slurm ,/ etc ,/
— spool/{slurm,slurmd},/sys,/sys/{fs,fs/cgroup},/
— var /{run,log,log/slurm, slurm, spool/{slurm, slurmd
< }},/spool/slurmd}

cp {${base_dir %/}/slurm.conf.template ,${base_dir %/}/
< cgroup.conf} ${home_dir%/}/ etc

cd ${home_dir %/}/slurm«/

./ configure --prefix=${home_dir%/} --exec-prefix=
— $home_dir --sysconfdir=${home_dir %/}/ etc --
— localstatedir=${home_dir %/}/ var

cd ${home_dir %/}/slurm=«/src/

make -j8

elif [[ $1 == "--configure” || $1 == 7-c¢” ]]; then

rm —-rf ${home_dir %/}/«

# Copy source from home_dir to installation directory

cp ${base_dir %/}/slurm«. zip $home_dir

Unzip the source code

unzip =«slurm=«. zip

Create directories

mkdir --parents ${home_dir %/}/{1lib /slurm ,etc , spool /{
— slurm ,slurmd},sys,sys/{fs, fs/cgroup},var/{run,log
<~ ,log/slurm, slurm, spool/slurm}, spool/slurmd}

cp {${base_dir %/}/slurm.conf.template ,${base_dir %/}/
— cgroup.conf} ${home_dir%/}/ etc

cd ${home_dir %/}/slurm«/

./ configure --prefix=${home_dir%/} --exec-prefix=
< $home_dir --sysconfdir=${home_dir %/}/etc --
— localstatedir=${home_dir %/}/ var

cd ${home_dir %/}/slurm=+/src/

make -j8

find ${home_dir %/}/slurm -slurm -25-05-1-1/ -type f -
< name ~+.so  -exec cp {} ${home_dir%/}/1lib/slurm/
> \;

else
echo ”Invalid_ argument. Choose either,,’—-install -
<~ i’yor, --configurey-c’”
fi

fi
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Listing A.2: A prologue script meant for custom user code to be executed right before SiS
deployment

#!/bin/bash
# Run HPC specific commands and more

# ARIS modules

module purge

module load gnu/8

module load intel/18
module load intelmpi/2018
module load python/3.9.18

# User custom code can be inserted below

Listing A.3: An epilogue script meant for custom user code to be executed right after SiS
shutdown

#!/bin/bash
./ environment_variables.sh
# Just sleep before shutdown
sleep 1
# User custom code can be inserted here

Listing A.4: An intermediary script executed in order to connect the variables set by the user
regarding SiS allocation

#!/bin/bash
./ environment_variables.sh

sbatch --nodes=$%$nodes_count --time=$time --partitions=
— $partition_name --time=$time --mem-per-cpu=$mem_per_cpu
— -——error=%errpath --output=$outpath --export=NODES_COUNT=
— $nodes count v-slurm-lite .sh

Listing A.5: The main script responsible for deploying SiS and executing jobs through SiS
#!/bin/bash -1

#SBATCH --job -name=SlurmVirtualCluster

# Run prologue script

./ prologue .sh

# Nodes for configuration and SiS sruns (have to agree with
< SBATCH options)

# total nodes - 1 (controller node)
n_slurmd=$ (( NODES_COUNT - 1 ))
n_cpus=1

# Make helper functions available
./ helpers .sh
./ environment_variables.sh
major="$%${version %%.+}”
if (( major == 16 ));then
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# Avoid state errors from previous executions
rm -r ${home_dir %/}/var/spool/{slurmd , slurm}
mkdir --parents ${home_dir %/}{/ spool/{slurm , slurmd},/var/{
< run,log,log/slurm, slurm, spool/{slurm, slurmd }}}
#touch ${home_dir %/}/var/run/slurmctld.pid ${home_dir %/}/
< wvar/spool/slurm/{node_state ,job_state.old,node_state.
— old,resv_state ,resv_state.old,job_state ,trigger_state
— ,trigger_state.old)
chmod 755 -R ${home_dir %/}
fi
# Older versions of SLURM uses this runtime wvariable
nodelist=$SLURM_NODELIST
cpus=$SLURM_JOB_CPUS_PER_NODE

cnodes_txt=""

# Parse the nodelist

cnodes_list=$(parse_nlist "$nodelist”)

# Get the control machine (slurmctld will run here)
control_machine=$(get_first_node_old_bash ”$nodelist”)

# We have to create a new slurm.conf file for each execution
# Creates a slurm.conf template that contains generic cluster
< information
# that is changing per execution
cnodes_txt+="NodeName=${cnodes_list} CPUs=${sys_cpus},Sockets=
— ${sockets} CoresPerSocket=${cores_per_socket}
— ThreadsPerCore=${threads_per_core} RealMemory=${real_mem
< }\n”
cnodes_txt+="PartitionName=${partition_name } Nodes=${
< cnodes_list} Default=YES_ ;MaxMemPerNode=$ {max_mem_per_node
— },DefaultTime=24:00:00"
config_text=$(head -n -1 ${home_dir %/}/ etc/slurm.conf.template
— | tail -n +2 )
major="$%${version %%.x}”
if (( major <= 16 )); then
mkdir --parents ${home_dir %/}{/ spool/{slurm, slurmd},/
— var /{run,log,log/slurm, slurm, spool/{slurm, slurmd
= 11}
touch ${home_dir %/}/var/run/slurmctld.pid ${home_dir
— %/}/var/spool/slurm/{node_state ,job_state ,
— trigger_state}
chmod 755 -R ${home_dir %/}

# Create slurm.conf for older versions
config_text=$(echo -e ”"ControlMachine=${control_machine }\
— n$config_text\n$cnodes_txt”)
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elif (( major == 25 ));then

# Create slurm.conf for newer versions
config_text=$(echo -e ”"SlurmctldHost=${control_machine
— }\n$config_text\n$cnodes_txt”)
fi

echo -e "$config_text” > ${home_dir%/}/etc/slurm.conf
# Setup slurmctld
# -N, --nodes, request -N nodes allocated for the job

# -n, --ntasks, specify the -n tasks to run, -c changes this
— defualt
# -c, —--cpus-per-task, request that -c cpus be allocated per

< process

# SLURM controller is ought to run in single machine - Hard
< coded options

strun -N 1 -n 1 -¢c 1 --nodelist=${control_machine} ${home_dir
< %/}/slurm -slurm —«/src/slurmctld/slurmctld -f ${home_dir
— %/}/ etc/slurm.conf -Dvvvv &

sleep 10

# Setup slurmd

srun -N $n_slurmd -n $n_slurmd -c $n_cpus --nodelist=${
— cnodes_list} ${home_dir %/}/slurm-slurm —«/src/slurmd/
< slurmd/slurmd -f ${home_dir%/}/etc/slurm.conf -Dvvvv &

sleep 10

(
unset SLURM_JOBID SLURM_JOB_ID SLURM_NPROCS

${home_dir %/}/slurm -slurm -«/src/scontrol/scontrol show
< nodes

env —-i \

PATH=${home_dir %/}/ slurm —slurm —«/src \
HOME=$HOME \

SLURM_NODELIST=$cnodes_list \
SLURM_CLUSTER_NAME="v_slurm” \

USER=$USER \

SHELL=/bin/bash \

SIS_CONFIG_PATH=${home_dir %/}/ etc/ \
SLURM_CONF=${home_dir %/}/ etc/slurm . conf \

# Stalls main script until all jobs are finished.
while (( $(${home_dir %/}/slurm-slurm -«/src/squeue/squeue -

< u goumas | wc -1) > 2 )); do

${home_dir %/}/slurm -slurm -«/src/scancel/scancel --user
< =$USER

sleep 1
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done
grep -Ev " (#|$)’ job_queue.txt | while read -r path delay
— : do
${home_dir %/}/slurm -slurm -«/ src/sbatch/sbatch --nodes=
<~ $n_slurmd --time=$SBATCH_TIMELIMIT $path
sleep $delay
done

)
./ epilogue . sh

Listing A.6: A collection of helper functions used for parsing and supporting installation and
execution scripts

generate_slurm_conf () {
./ environment-variables.sh
major=9$1
if (( major <= 16 )); then
echo “ControlMachine=<some-dynamically -allocated -node>
vuuuuuuuAuthType=auth/slurm
uuuuuuuu CacheGroups=0
vuuuuuuu CryptoType=crypto/ openssl
vuuuuuuuJobCredentialPrivateKey=${home_dir %/}/ etc/${key_name}
vuuuuuuuJobCredentialPublicCertificate=${home_dir %/}/ etc/${
< pkey_name}
vuuuuuuu EnforcePartLimits=YES
vuuuuuuu KillOnBadExit=1
vuuuuuuuLaunchType=launch/slurm
uuuuuuuuMpiDefault=pmi2
uuuuuuuu ProctrackType=proctrack/linuxproc
vuuuuuuu PropagateResourcelimitsExcept=CPU,NPROC
uuuuuuuu ReturnToService =1
vuuuuuuu SlurmcetldPidFile=${home_dir %/}/ var/slurm/slurmctld . pid
vuuuuuuu SlurmcetldPort=50001
suuuuuuu SlurmdPidFile=$ {home_dir %/}/ var/slurm/slurmd . pid
vuuuuuuu SlurmdPort=50002
uuuuuuuu SlurmdSpoolDir=${home_dir %/}/ var/spool/slurmd
uuuuuuuu SlurmUser=$ {USER }
vuuuuuuuSlurmdUser=$ {USER}
uuuuuuuu StateSaveLocation=${home_dir %/}/var/spool/slurm
vuuuuuuu SwWitchType=switch /none
uuuuuuuu TaskPlugin=task /none
Luuuuuuu InactiveLimit =0
Luuuuuuu KillWait =30
uuuuuuuuMinJobAge =300
vuuuuuuu SlurmcetldTimeout=120
vuuuuuuuSlurmdTimeout=300
Luuuuuuy Waittime =0
I_II_II_II_II_II_II_II_I#

I_II_I\_ILI\_II_II_I\_I#
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vuuuuuuu #USCHEDULING
LuunuuuuDefMemPerCPU=2800

uuuuuuun FastSchedule =1
vuuuuuuuMaxMemPerCPU=2800

uuuuuuuu SchedulerType=sched/ backfill
vuuuuuuu SelectType=select/cons_res

vuuuuuuu SelectTypeParameters=CR_Core_Memory
I_II_II_II_II_II_I\_II_I#

I_II_II_II_II_II_II_II_I#

UUUUUUL’U#UJOBUPRIORITY

uuuuuuuu PriorityFlags=FAIR_TREE
vuuuuuuu PriorityType=priority /multifactor
vuuuuuuu PriorityDecayHalfLife =0
vuuuuuuu PriorityCalcPeriod =300

uuuuuuuu PriorityFavorSmall=NO

Luuuuuuuu PriorityMaxAge=30-00:00:00
uuuuuuuu PriorityUsageResetPeriod =WEEKLY
uuuuuuuu PriorityWeightAge =5000

uuuuuuuu PriorityWeightJobSize =5000
uuuuuuuu PriorityWeightFairshare =20000
uuuuuuuu PriorityWeightPartition=0
uuuuuuuu PriorityWeightQOS=0

uuuuuuuu #ULOGGING ,AND  ACCOUNTING

uuuuuuuuJobCompType=jobcomp /none

uuuuuuuu SlurmcetldDebug=info

vuuuuuuu SlurmcetldLogFile=${home_dir %/}/ var/log/slurm/slurmctld
— .log

uuuuuuuuSlurmdDebug=info

vuuuuuuu SlurmdLogFile=${home_dir %/}/ var/log/slurm/slurmd.log

vuuuuuuu #LCOMPUTE NODES

uuuuuuuuNodeName=node [001 -002] ,CPUs=${sys_cpus}_ Sockets=${
sockets} CoresPerSocket=${cores_per_socket},
ThreadsPerCore=${threads_per_core} RealMemory=${real_mem}
uState=UNKNOWN” > ${base_dir %/}/slurm.conf.template.
$version

redd

# Create cgroup.conf

echo 7#_,CGROUPS ,CONFIGURATION
vuuuuuuu CgroupMountpoint=${home_dir %/}/ sys/fs/cgroup
vuuuuuuu ConstrainCores=no
vuuuuuuu ConstrainRAMSpace=no 7> ${ base_dir %/}/ cgroup . conf

elif (( major == 25 )); then
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echo ”SlurmctldHost=<some-dynamically -allocated -node>
vuuuuuuu ClusterName=aris
Luuuuuuu DisableRootJobs =NO
vuuuuuuu EnforcePartLimits=YES
LuuuuuuuMaxJobld=67043328
vuuuuuuu GresTypes=gpu
vuuuuuuuJobSubmitPlugins=1ua
vuuuuuuu KillOnBadExit=1
vuuuuuuuLaunchType=launch/slurm
uuuuuuuuMpiDefault=pmix
uuuuuuuu ProctrackType=proctrack/cgroup
Luuuuuuuu PropagateResourceLimits =CORE
vuuuuuuu PropagateResourcelimitsExcept=CPU,NPROC, NOFILE , STACK
Luuuuuuu ReturnToService =1
vuuuuuuu SlurmcetldPidFile=${home_dir %/}/ var/slurm/slurmctld . pid
vuuuuuuu SlurmcetldPort=50001
vuuuuuuu SlurmdPidFile=${home_dir %/}/ var/slurm/slurmd . pid
vuuuuuuu SlurmdPort=50002
vuuuuuuu SlurmdSpoolDir=${home_dir %/}/ var/spool/slurmd
uuuuuuuu SlurmdParameters=13cache _as_socket
vuuuuuuu SlurmUser=$USER
uuuuuuuu StateSaveLocation=${home_dir %/}/ var/spool/slurm
uuuuuuuuSwitchType=switch /none
vuuuuuuu TaskPlugin=task /cgroup , task/affinity
vuuuuuuyu InactiveLimit =0
Luuuouuu KillWait =30
uuuuuuuuMinJobAge =300
vuuuuuuu SlurmetldTimeout=120
vuuuuuuuSlurmdTimeout =300
Luuuuuuy Waittime =0
vuuuuuuuDefMemPerCPU=3968
vuuuuuuu SchedulerType=sched/ backfill
vuuuuuuu SelectType=select /cons_tres
vuuuuuuu SelectTypeParameters=CR_Core_Memory
uuuuuuuu PriorityFlags=FAIR_TREE
uuuuuuuu PriorityType=priority / multifactor
uuuuuuuu PriorityDecayHalfLife =0
vuuuuuuu PriorityCalcPeriod =300
vuuuuuuu PriorityFavorSmall=NO
vuuuuuuu PriorityMaxAge=15-00:00:00
uuuuuuuu PriorityUsageResetPeriod =WEEKLY
uuuuuuuu PriorityWeightAge =5000
uuuuuuuu PriorityWeightFairshare =20000
uuuuuuuu PriorityWeightJobSize =2000
uuuuuuuu PriorityWeightPartition=0
uuuuuuuu PriorityWeightQOS =0
uuuuuuuuAccountingStorageEnforce=limits
uuuuuuuuAccountingStorageHost=$USER
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vuuuuuuuAccountingStorageType=accounting_storage /none
uuuuuuuuAccountingStorageTRES=gres/gpu, gres/gpu:1g.10gb, gres/
< gpu:2g.20gb,gres/gpu:3g.40gb, gres/gpu:al00, gres/gpumem,
— gres/gpuutil
uuuuuuuuJobCompHost=$USER
uuuuuuuuJobCompLoc=/var/log/slurm/job_completions
uuuuuuuuJobCompUser=$USER
vuuuuuuuJobAcctGatherFrequency =30
uuuuuuuuJobAcctGatherType=jobacct_gather/cgroup
uuuuuuuu SlurmetldDebug=info
vuuuuuuu SlurmcetldLogFile=${home_dir %/}/ var/log/slurm/slurmctld
- .log
vuuuuuuuSlurmdDebug=quiet
vuuuuuuu SlurmdLogFile=${home_dir %/}/ var/log/slurm/slurmd.log
uuuuuuuuAcctGatherEnergyType=acct_gather_energy/ipmi
uuuuuuuuAcctGatherInterconnectType=acct_gather_interconnect/
— ofed
LuuuuuuuNodeName=m[01 -48] ,CPUs=128 ,Sockets=2_ ,CoresPerSocket=64
— ThreadsPerCore=1_,RealMemory=507904,,State =UNKNOWN
uuuuuuuu PartitionName=compute ;Nodes=m[01 -48] ;Default=YES,,
— MaxTime=48:00:00_MaxMemPerNode=507904,State=DOWN” > ${
— base_dir %/}/slurm.conf.template. $version
echo 7 #_,CGROUPS ,CONFIGURATION
uuuuuuuuCgroupMountpoint=${home_dir %/}/sys/fs/cgroup
uuuuuuuuConstrainCores=no
vuuuuuuuConstrainRAMSpace=no” > ${base_dir %/}/cgroup.conf

elif (( major == 21 )); then
echo "ControlMachine=slurmctld
vuuuuuuu ClusterName=v-slurm
vuuuuuuu ControlAddr=slurmctld
vuuuuuuu SlurmUser=slurm
vuuuuuuu SlurmcetldPort=50001
vuuuuuuu SlurmdPort=50002
uuuuuuuuAuthType=auth /munge
vuuuuuuu StateSaveLocation=${home_dir %/}/ var/lib /slurmd
vuuuuuuu SlurmdSpoolDir=${home_dir %/}/ var/spool/slurmd
uuuuuuuuSwitchType=switch /none
vuuuuuuuMpiDefault=intelmpi
vuuuuuun SlurmcetldPidFile=${home_dir %/}/ var/run/slurmd/
< slurmctld . pid
uvuuuuuuu SlurmdPidFile=$ {home_dir %/}/ var/run/slurmd/slurmd. pid
uuuuuuuu ProctrackType=proctrack /linuxproc
Luuuuuuu ReturnToService =0
vuuuuuuu SlurmetldTimeout =300
vuuuuuuuSlurmdTimeout =300
vuuuuuuu InactiveLimit =0
uuuuuuuuMinJobAge =300
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Luuuuuuu KillWait =30
Luuuuuuy Waittime =0
uuuuuuuu SchedulerType=sched/ backfill
uuuuuuuu SelectType=select /cons_res
uuuuuuuu SelectTypeParameters=CR_CPU_Memory
uuuuuuuu FastSchedule=1
vuuuuuuu SlurmcetldDebug =3
vuuuuuuu SlurmcetldLogFile=${home_dir %/}/ var/log/slurm/slurmctld
— .log
uuuuuuuuSlurmdDebug=3
vuuuuuuu SlurmdLogFile=${home_dir %/}/ var/log/slurm/slurmd . log
vuuuuuuuJobCompType=jobcomp / filetxt
uuuuuuuuJobCompLoc=${home_dir %/}/ var/log/slurm/jobcomp . log
uuuuuuuuJobAcctGatherType=jobacct_gather/linux
vuuuuuuuJobAcctGatherFrequency =30
uuuuuuuuNodeName=m[01 -48],CPUs=128_,Sockets=2,CoresPerSocket=64
— yThreadsPerCore=1_,RealMemory=507904,State =UNKNOWN
uuuuuuuu PartitionName=compute ;Nodes=m[01-48] ,Default=YES,,
< MaxTime=48:00:00_MaxMemPerNode=507904,,State=DOWN” > ${
— base_dir %/}/slurm.conf.template
echo ”#_,CGROUPS ,CONFIGURATION
vuuuuuuuCgroupMountpoint=${home_dir %/}/sys/fs/cgroup
uuuuuuuu ConstrainCores=no
vuuuuuuuConstrainRAMSpace=no 7> ${ base_dir %/}/ cgroup . conf

}

parse_nlist () {
# If arguments of function different from 2 exit
if [[ $# -ne 1 ]]; then
echo "Function_ parse_nlist requires 1l arguments<
— nodelist >~

exit 1
fi
# Extract how many chars on a range entry
num_chars=$(echo "$1” | cut -d’[° -f 2 | cut -d’]° -f 1 |
— cut -d’-> -f 2 | cut -d ', -f 1 | wc -c)
num_chars=$ (expr $num_chars - 1)

hostchar=$(echo 7$1” | cut -d’[° -f1)
range=$(echo "$1” | cut -d’[’ -f2 | cut -d’]° -f1)
IFS=, read -r -a parts <<< “$range”
for i in "${! parts[@]}”; do
if [[ ${parts[$i]} == -+ ]]; then
start_node="$(echo ${parts[$i]}u|ucuty-d’-"-f1)”
end_node="$ (echoy${parts[$i]}u|ucuty-d’ -",-f2)”
if [[ $num_chars -eq 3 ]]; then
printf -v start_node “%03i” $(( 10#$start_node

= ))
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}

##
##
##
##

printf -v end_node %03i” $(( 10#$end_node ))

else
printf -v start_node 7%02i” $(( 10#$start_node
= 1))
printf -v end_node “%02i” $(( 10#$end_node ))
fi
parts[$i]="${start_node}-${end_node}”

else
node=${parts[$i]}
if [[ $num_chars -eq 3 ]]; then
printf -v node %03i” $(( 10#$node ))
else
printf -v node %02i” $(( 10#$node ))

fi
parts[$i]=%$node
fi
done
partl=${parts [0]}
if [[ $partl == «-+ ]]; then
start_node=$(echo $partl | cut -d’-’ -f1)
end_node=$(echo $partl | cut -d’-° -f2)

if [[ $(expr $end_node - $start_node) -eq 1 ]]; then
parts [0]=%$end_node
else
start_node=$(echo "$(expry,$start_node,+,1)")
if [[ $num_chars -eq 3 ]]; then
printf -v start_node “%03i” $(( 10#$start_node

= 1))
else
printf -v start_node “%02i” $(( 10#$start_node
= 1))
fi
parts[0]="${start_node}-${end_node}”
fi
else

parts=( “${parts[@]/ $partl}” )
fi
echo ”“$hostchar[$(echo ${parts[@]}u|used,’s/u/,/g’)]”

get_first_node_old_bash: parses node list
Takes 1 argument: the part of nodelist
which is delimited with °[’ and -~
Returns the starting node of the nodelist

get_first_node_old_bash () {

hostchar=$(echo 7$1” | cut -d’[’ -f1)
range=$(echo "$1” | cut -d’[’ -f2 | cut -d’]° -f1)
IFS=, read -r -a parts <<< ”$range”
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}

##
##
##
##

if [[ $parts[0] == «-+ ]]; then
node=$(echo $parts[0] | cut -d -7 -f1 )
echo "$hostchar$node”
elif [[ $parts == $hostchar ]]; then
echo "$hostchar”
else
echo "$hostchar$parts”
fi

get_start_number: parses node list

Takes 1 argument: the part of nodelist
which is delimited with commas

Returns the starting node of the nodelist

get_start_number () {

}

##
##
##
##
##
##
##
##

input_string="$1"
regex=""(["[]+)\[([0-9]+) -[0-9]+\]$"

if [[ $input_string =~ $regex ]]; then
some_name="${BASH REMATCH[1]}”
start_number="$ {BASH_ REMATCH[2]}”
result="${some_name}${start_number}”
echo " $result”

else
echo ”Invalid input,format”

fi

check2nodes: parses node list and cpus

Takes 3 arguments: the part of nodelist

which is delimited with commas and the
corresponding cpus of that part of the nodelist
and the index of the nodelist

Returns the number of nodes along with the

cpus for that part of the nodelistt

if index is 1, then the first node is left out

check2_nodes () {

# If arguments of function different from 2 exit
if [[ $# -ne 3 ]]; then
echo "Function check2_nodes,requires 3 ,arguments<
< nodelist > ,<cpus>_<index >~
exit 1
fi
# If nodelist is empty exit
if [[ -z $1 ]]; then
echo "Nodelistisyempty”
exit 1
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fi
# If cpus is empty exit
if [[ -z $2 ]]; then
echo "CPUsyis empty”
exit 1
fi
local cpus=$(echo $2 | cut -d’(° -f1)

if [[ $3 -eq 1 ]]; then
if [[ $1 == «[+~ ]]; then
hostchar=$(echo 7$1” | cut -d’[° -f1)

start_node=$(echo ”$1” | cut -d’[’ -f2 | cut -d’-’
- -f1)

end_node=$(echo "$1” | cut -d’-° -f2 | cut -d’]’ -
- f1)

if [[ $(expr $end_node - $start_node) -eq 1 ]];
< then

printf -v end_node "%03d” "$end_node”
echo ”"$hostchar$end_node $cpus”

else
start_node=$(echo
printf -v start_node ”%03d” ”$start_node’
printf -v end_node "%03d” “$end_node”
echo "$hostchar[${start_node}-${end_node}]

< $cpus”

“$(expry$start_node+,1)7)

i

fi
else
echo “control $cpus”
fi
else
echo "$1,$cpus”
fi

}

HEHBHRHBRRRHH####H#H ——END—— H##AHHHHHHHRBHHHHHH
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Appendix B

Listing B.1: Helper functions for sorting workloads based on requested threads
#1/bin/bash -1

function find_max {
# Find max in a list of four integers

[[ $# -ne 5 ]] || { echo "Warning: find_max () requires
— exactly 4 arguments.” >&2; return 1; }
local max val=$1

shift
for num in "$@”; do
[[ 7$num” =~ "-?[0-9]+% ]] || { echo “Error:, $num’ is

< ynotyaninteger.” >&2; return 1; }
(( num > max_val )) && max_val="$num”

done
echo "$max_val” # Print the final maximum value

}

function find_min {
# Find max in a list of four integers

([ $# -ne 5 ]] || { echo "Warning: find_min () requires
— exactly 4 arguments.” >&2; return 1; |}
local min_val=$1

shift
for num in "$@”; do
[[ 7$num” =~ "-?[0-9]+% ]] || { echo ”Error:, $num’ is
< ynotyan,integer.” >&2; return 1; }
(( num < min_val )) && min_val="$num”
done

echo "$min_val” # Print the final maximum wvalue

}

function sort_apps {
([ $# -ne 5 ]] || { echo ”"Warning: sort_apps() requires

— exactly 4 arguments.” >&2; return 1; }

local appl=$1
local app2=%$2
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local app3=$3
local app4=%$4
printf "%s\n” "$@” | sort -t .’ -k3,3n

}

Listing B.2: The code for basic parsing and configuration before sumbitting the script to run
the benchmarks in a co-located manner

#! /bin/bash -1
source find max min. sh
# Quarter node cores
qnc=>5

cases=(mg.D.64 _ft.D.64_bt.D.64_sp.D.64)
DEBUG=false
POLICY="maxnodes”

if $DEBUG; then
echo "Debugging mode”
mode="dbg”
time="00:20:00"
mkdir -p $PWD/logs_dbg

else
mode="prod”
time="00:10:00"
mkdir -p $PWD/logs
fi

for case in “${cases[@]}”;do

IFS="_" read -r app app2 app3 appd<<< “$case’
IFS="." read -r name class proc <<< 7$app”

IFS="." read -r name2 class2 proc2 <<< 7"$app2”
IFS="." read -r name3 class3 proc3 <<< ”"$app3”
IFS="." read -r name4 class4 proc4 <<< “$app4”

apps=$(sort_apps S$app $app2 S$app3 $app4)
readarray -t apps_array <<< ~$apps’

# Get how many nodes will be needed
max_app=${apps_array [${#apps_array[@]} -1])
max_proc=$(awk -F. ’{print $3}° <<< "$max_app”)
count_processes=$%$(( max_proc * 4 ))
nodes_count=$(( ($count_processes + 19)/20 ))
apps_with_copies =()
# Calculate how many copies of each program will be
— needed

for app in "${apps_array[@]}”; do

proc=$(awk -F. ’{print $3}  <<< 7$app”)
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copies=$(( ( max_proc + proc - 1 ) / proc ))
apps_with_copies+=("${app}.${copies}”)
done
apps_joined=$(IFS=_; echo "${apps_with_copies[«]}”)
printf '%s\n’ "${apps_with_copies[@]}”
echo "max_proc=$max_proc,,count_processes=
<~ $count_processes nodes_count=$nodes_count”
sbatch --nodes=$nodes_count --partition=compute --time
=$time --export=POLICY=$POLICY,CASE=$%$case ,
APPS_ARRAY="$apps_joined” ,CORES=$qnc ,NODES_COUNT=
$nodes_count ,DEBUG=$DEBUG, TIME=$time run_cos.
NAS_NAS. sh

VRN

done

Listing B.3: The main script to pin the processes based on the nodelist allocation and execute
the co-located benchmarks

#!/bin/bash

#SBATCH --job -name=run
#SBATCH --output=/users/pa23/goumas/ nfloros/

> quarter_socket_workloads/logs/runs/run.%j.out
#SBATCH --error=/users/pa23/goumas/ nfloros/

— quarter_socket_workloads/logs/runs/run.%j.err
#SBATCH --cpus-per-task=1
#SBATCH --account=pa220401
#SBATCH --exclusive

module purge

module load gnu/8
module load intel/18
module load intelmpi/2018

DBG: %
I_DBG — » »

if $DEBUG; then
DBG="_dbg”
I DBG="-genv,I_MPI_DEBUG=+5"
fi
IFS=: read -r h m s <<< 7$TIME”
walltime=$((10#$h =+« 3600 + 10#$m = 60 + 10#$s))

IFS="_" read -r -a apps_array <<< “$APPS_ARRAY”
n_apps=${#apps_array[@])
if (( n_apps == 0 )); then
echo ”Noyapps,parsed fromapps_joined ="$APPS_ARRAY’” >&2
exit
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fi

# Source the function to create the machine files
if [[ "${POLICY}” == ”dense” ]];then

source policies/dense.sh
else

# Default

source policies/maxnodes.sh

fi
export NPB_TIMER_FLAG=on

NAS_PATH="/users/pa23/goumas/ nfloros /NAS-Benchmarks/NPB3.4.2/
< NPB3.4 -MPI/bin/”

LOG_PATH="/users/pa23/goumas/ nfloros/quarter_socket_workloads/
— logs$ {DBG}/${CASE}”

mkdir -p $LOG_PATH

max_app=${apps_array[${#apps_array[@]} -1]}
max=$ (awk -F. ’'{print $3}° <<< 7$max_app”)

nodes=($(scontrol show hostname $SLURM_NODELIST))

# First remove all the machine files in the path

find "${LOG_PATH}” -maxdepth 1 -name ’nodelists’ -exec rm {}
> \;

# Then remove the pipe lock file

find ”${LOG_PATH}” -maxdepth 1 -name ’pipe’ -exec rm {} \;

# Then create the machine files for each app

create_nodelist_files 7${LOG_PATH}” "$CORES” ”$APPS_ARRAY” ”“§${
— nodes[@]}”

declare -a app_name app_class app_procs app_copies
for (( i=0; i<n_apps; i++ )); do
IFS="." read -r app_name[i] app_class[i] app_procs[i]
< app_copies[i] <<< "${apps_array[i]}”
# wvalidate
if ' [[ "${app_procs[i]}” =~ "[0-9]+$ J] |[ ! [[ "${
— app_copies[i]}” =~ "[0-9]+$ ]]; then
echo “Malformed appuentry: ' ${apps_array[i]} .y
— Expected ,PROGRAM. CLASS .PROCS.COPIES,with numeric
< PROCS_ and COPIES.” >&2
return 1
fi
done
# Current slot combinations. Left array is socket 0, right
— array is socket 1
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# A=1[22 2] [3 3 3]
#B=1[22 2] [3 3 3]
# C=1[33 3] [2 2 2]
#D=1[33 3] [2 2 2]
exclude list=(0,1,4-12,16-19 0-3,7-15,18,19 0-6,10-17

< 2-9,13-19)
for (( i=0; i<n_apps; i++ )); do
for (( c=0; ¢ < app_copies[i] ; c++))
{
while [ ! -f "$LOG_PATH/pipe” ]; do
copy=$(( ¢ + 1))
local_name=${app_name[i]}.${app_class]|
— i]}.${app_procs[i]}-${i}.${copy}

app_start=$(date +%s)
mpirun ${I_ DBG} -genv
I_MPI_PIN_PROCESSOR_EXCLUDE_LIST=
"${exclude_list[i]}” -genv
I_MPI_PIN_PROCESSOR_LIST allcores
-machinefile ${LOG_PATH}/
nodelist.${app_name[i]}.${
app_class[i]}.${app_procs[i]}-${i
}-${copy} -np ${app_procs[i]} ${
NAS PATH}/ ${app_name[i]}. ${
app_class[i]}.x 1>> ${LOG_PATH}/$
{local_name }. out
app_end=$ (date +%s)

N A )

difference=$(( app_end - app_start ))
echo "DATE_of ${local_name} in_ seconds
— :,$difference” 1>> $LOG_PATH/ ${
— local_name }. out
done
] &
done
sleep $walltime
touch ${LOG_PATH}/ pipe

Listing B.4: The code for basic parsing and configuration before sumbitting the main script
for running the benchmarks on a single node each

#! /bin/bash -1

# Enter your cases here
cases =(
bt .D.64

)

for case in “${cases[@]}”;do
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>

IFS="." read -r name class procs <<< ”$case’

nodes=$(( ${procs} / 20 ))

if (( ${nodes} « 20 < ${procs} ));then
nodes=$(( ${nodes} + 1 ))

fi

echo “app=$%${name}.${class}.${procs},nodes=%$nodes,
< allocation=compact”

sbatch --nodes=$nodes --partition=compute --export=APP
< =$name, CLASS=$class ,PROCS=$procs run_cmp.NAS.sh

done

Listing B.5: The main script to execute the benchmarks each on exclusive nodes
#1/bin/bash

#SBATCH --job -name=compact
#SBATCH --output=/users/pa23/goumas/ nfloros/
< quarter_socket_workloads/logs/runs/compact.%j.out
#SBATCH --error=/users/pa23/goumas/ nfloros/
< quarter_socket_workloads/logs/runs/compact.%j.err
#SBATCH --cpus-per-task=1
#SBATCH --account=pa220401
#SBATCH --exclusive
#SBATCH --nodes=4
#SBATCH --time=1-01:25:00

module load gnu/8

module load intel/18

module load intelmpi/2018

LOG_PATH="/users/pa23/goumas/ nfloros/quarter_socket_workloads/
— logs”

nas=(ep cg bt ft mg lu sp is)

for prog in “${nas[@]}”; do
mkdir -p $LOG_PATH/${prog}_compact/
while [ ! -f "$LOG_PATH/${prog}_compact/pipe” ]; do
mpirun -np 64 /users/pa23/goumas/nfloros/NAS-
< Benchmarks/NPB3.4.2/NPB3.4-MPI/bin/${prog
— }.D.x > $LOG_PATH/${prog}_compact/
< compact_${prog}.out
done &
sleep 600
touch 7$LOG_PATH/${prog}_compact/pipe”
done
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Listing B.6: A function implementing the allocation policy by generating the nodelist defini-
tion files to assign each node the applications to execute

#!/usr/bin/env bash
set —euo pipefail

# create_nodelist_files

#

# Usage:

# create_nodelist_files <path> <qnc> <apps_joined > <hostl> [
— host2 ...]

#

# - path: directory to write nodelist files (created if
— missing)

# - gnc: quarter -node cores (e.g. 5)

# — apps_joined: underscore-separated “PROGRAM.CLASS.PROCS.

— COPIES” entries
# - remaining args: hostnames (slurm nodenames) to use for
— placement

I

Writes files: ${path}/ nodelist.<app_idx>.<copy_idx> and
< node-layout.<node_idx> for debug.

#unppppppppppnssnpdiptstst#t NOTE TO SELF ########ARBHHHHHHHHHHHS
There will always be an underutilized node if processes #
are multiples of 2. That happens because 2"n has only a #
prime factor (2) whilst an ARIS socket contains 20 cores #
#
#

H W B W

and 20 has 2 prime factors 2 and 5, and 5 is not a prime

# factor of 2'n.
RARAAAAAAAHBHAARRAAAAAAAARRRAAARAAAARAA AR RRAAAAAAAARAAHHHAAA
function create_nodelist_files {

local path=$%$1

local qnc=$2

local apps_joined=$3

shift 3

# hosts

local hostnames=( "$@” )

local host_count=${#hostnames[@]}

if (( host_count == 0 )); then
echo ”“create_nodelist_files: no hostnames provided” >&2
return 1

fi
mkdir -p ”$path”
# parse apps

IFS="_" read -r -a apps_array <<< ~$apps_joined”

local n_apps=${#apps_array[@]}
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if (( n_apps == 0 )); then
echo ”Noyappsyparsedy fromyapps_joined="$apps_joined '~ >&2
return 1

fi

# decode each app entry into arrays: name, class, procs,
> copies
declare -a app_name app_class app_procs app_copies
local i
for (( i=0; i<n_apps; i++ )); do
IFS="." read -r app_name[i] app_class[i] app_procs[i]
— app_copies[i] <<< "${apps_array[i]}”
# validate
if | [[ "${app_procs[i]}” =~ *[0-91+$ 1] || ! [[ ”${
< app_copies[i]}” =~ "[0-9]+$ ]]; then
echo “Malformed appuentry: ' ${apps_array[i]} .y
— Expected ,PROGRAM.CLASS.PROCS.COPIES,with numeric,
< PROCS and,COPIES.” >&2
return 1
fi
done

# Slots_per_node is 4 (four copies per node).
local slots_per_node=4

# validate qnc

if ! [[ "$qnc” =~ "[0-9]+$ 1] || (( gnc <= 0 )); then
echo ”"Invalid qnc,(must be positive integer):, $qnc’” >&2
return 1

fi

# Prepare per-copy files and clear any previous ones
for (( i=0; i<n_apps; i++ )); do
for (( c¢c=0; c<app_copies[i]; c++ )); do
copy=$(( ¢ + 1))
> "${path}/ nodelist.${app_name[i]}.${app_class[i]}.$
— {app_procs[i]}-${i}.${copy}”
done
done

# For each app and for each copy, allocate app_procs processes
for (( i=0; i<n_apps; i++ )); do
local need_per_copy=$(( app_procs[i]))
local node_idx=0
for (( c¢c=0; c<app_copies[i]; c++ )); do
local remaining_for_copy=$need_per_copy
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while (( remaining_for_copy > 0 )); do
local host="${hostnames [ node_idx_ % host_count,]}”
# assign up to qnc cores from this slot (may be
< partial on last slot)
local assign_cores=$(( remaining_for_copy < qnc ?
< remaining_for_copy : qnc ))

# append to the per-copy machine file

copy=$(( ¢ + 1))

printf '%s:%d\n’ “$host” ”$assign_cores” >> " ${
< path}/nodelist.${app_name[i]}.${app_class[i
= 1}.${app_procs[i]}-${i}.${copy}”

# decrement remaining and advance slot
remaining_for_copy=$(( remaining_for_copy -
< assign_cores ))

node_idx=$%$(( node_idx + 1 ))

# safety guard
if (( node_idx > 10000000 )); then
echo "create_nodelist_files: jaborting after
— tooymany,slots(possible_ bug)” >&2
return 1
fi
done
# this copy finished
done
done

echo “create_nodelist_files: created per-copy machine, files
— under_$path(no,socket, splitting).”
return 0

}
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