>
29
&

I8
nVvpPoOPpos

NPOMHOEVS .

N\

NATIONAL TECHNICAL UNIVERSITY OF ATHENS
SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING
DivisioN OF COMPUTER SCIENCE

Continuous Machine Learning for Cooperative,
Connected and Automated Mobility applications

DIPLOMA THESIS

of

GEORGIOS A. KYRIAKOPOULOS

Supervisor: Panayiotis Tsanakas
Professor NTUA

Athens, October 2025

>
29
&

s

nvpPoro

. .
B
v ®
INar A
7 pOMHOEVS .

A3

NATIONAL TECHNICAL UNIVERSITY OF ATHENS
SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING
DivisioN OF COMPUTER SCIENCE

Continuous Machine Learning for Cooperative,
Connected and Automated Mobility applications

DIPLOMA THESIS

of

GEORGIOS A. KYRIAKOPOULOS

Supervisor: Panayiotis Tsanakas
Professor NTUA

Approved by the three-member scientific committee on the 30" of October 2025

Panayiotis Tsanakas
Professor NTUA

Andreas-Georgios Stafylopatis
Professor Emeritus NTUA

Georgios Alexandridis
Assistant Professor NKUA

Athens, October 2025

Georgios A. Kyriakopoulos
Graduate of School of Electrical and Computer Engineering,
National Technical University of Athens

Copyright (C) Georgios A. Kyriakopoulos, 2025.
All rights reserved.

Copying, storage, and distribution of this work, in whole or in part, for commercial purposes
is prohibited. Reproduction, storage, and distribution for non-profit, educational, or research
purposes is permitted, provided that the source is cited and this notice is retained. Inquiries
regarding the use of this work for commercial purposes should be directed to the author.

The views and conclusions expressed in this thesis represent those of the author and do not
necessarily reflect the official positions of the National Technical University of Athens.

[eptAngm

H oot xivnmixdtna ebvan ex gUoewe un otadepr): YeTooréc oTov xawpd, Tn {ATNOT %ok TS GUV-
UxeC TOU BIXTOOU AAAOLOVOUY TIC XUTAVOUES TwV dedouévmy xat uroBaduiCouy v axp{Bela Twy
HOVTEAWY UE TNV Tdpodo Tou Ypovou. H napodoa Simhwuatixd epyaoio oyedidlet, vAonotel xou atoho-
vel o mhatgpdpua cuveyole unyovixic udinong pe enlyvwon evvololoynic yetatdémone (concept
drift) v egappoyéc Tuvepyatixfc, Luvdedepévne xar Autopatoromuévne Kvntxdtnrac (CCAM).
To cbotnua cuvdudlet pa apdpntr (modular) apyltexTtoviny UxEOUTNEESLOY Yia EEUTNEETNOT LOV-
TENWY, TOEOXOAOVITNOT OE TEAYUATIXO YEOVO, GUVIEVEGT] TOAATAMY aviyveLT®Y concept drift xou
auTOpaTn Enavaextaidevon pe avuxatdotoon ev Aettovpyio (hot-swap). Kotaoxeudleton évor avo-
ToedEo olvolo Bedouévmy Yo To xévtpo e Advag ue Bdon to SUMO, umd xavovixée xou
duoyeveic xapixéc cuviixec. To concept drift endyetoun péow pelwong e TePrc wWote va Tpoco-
polwdel Bpoyn, Srotnedvtag Ty Totoloyio Tou SixTioL xat tapdyovTag PETEHoWES peToBolés (Uéon
ToytnTo —13.68%, péon Sudpxela Swadpourc +16.74%).

H o&iordynon emxevtpdveton otny npdfredn Xpdvou AgiEne (ETA) ye éva povtéro Light GBM ep-
TAOUTIOPEVO UE EWBLXE YopoxTneto Tixd Yo To Tedio, oe éva elpopa ypovixfic ouunicone (time-lapse)
ue andétopo (abrupt) concept drift otn péomn, Aoyw Beoyhc. Tnéd cuvivxec drift, to opdipata Tou
Boowxol povtélou auvidvovton aodntd (MAE 30.36 s — 56.93s xou MAPE 13.20% — 19.02%).
Metd tnv aviyveuorn tou drift, To yovtélo enoavoexmondeetan pe pla oo dedouévey uetd To drift
xou avtxad{ototon ev hettoupyia (hot-swap), avaxtdvtag Ty anddoorn, oe cOYxplon pe To Baotxd
wovtého (MAE —11.00s, —25.42% xou MAPE —2.34pp., —13.85%). H ecuéhtn apyttextovixn
NG TAATPOPUOC TEXUNELOVETOL TEPALTER UE A&loAOYNOT HovTEAWY Katavdhwong Koausiuou xan Ap-
ol Ytdoewy, eve 0 Tivaxag eAEYYOL xaL 1) DETAPY YV 0T TUPEYOLY EQUNVEUCLUOTNTA OE TROY-
HOTIXO YEOVO. LUVOAXE, TO ATOTEAEGUATA AVAOEXYVOUY Lol TRUXTIXT TROGEYYLoN XAl TOL Bodyou
YL VI VEUGT), OmOXELOY Yo OVTWETWTION Tou concept drift oe peahioTind aoTixnd xuxho@opLoxd
repBdihovTa.

AéEerg KAerbrd: Yuveyrc Mnyavixry Mddnon, Evvooloyixy Metatémon, IpdPredn Xpdvou
Agpiine, SUMO, MLOps, Aévtpa Evioyuone Kiiong, Xuvepyatinr Xuvoedepévn xou Autopatonoln-
pévn Kwnuixotnra, Aot Kivnuixotnra

Abstract

Urban mobility is inherently non-stationary: shifts in weather, demand, and network conditions
alter data distributions and degrade model accuracy over time. This diploma thesis designs,
implements, and evaluates a drift-aware platform for continuous machine learning in Cooperative,
Connected and Automated Mobility (CCAM). The system combines a modular microservice
architecture for model serving, online monitoring, multi-detector drift consensus, and automated
retraining with hot-swap deployment. A reproducible SUMO-based dataset for central Athens
is constructed under normal and adverse-weather scenarios. Concept drift is induced via friction
reduction to emulate rain, preserving network topology while yielding measurable shifts (average
speed —13.68%, average trip duration +16.74%).

Evaluation centers on Estimated Time of Arrival (ETA) prediction with a Light GBM model
enriched by domain-specific features, exercised in a time-lapse experiment with an abrupt drift
at the midpoint, due to rain conditions. Under drift, baseline errors increase markedly (MAE
30.36s — 56.93s and MAPE 13.20% — 19.02%). After detecting drift, the model is retrained
using one hour of post-drift data and hot-swapped, recovering performance, when compared to the
baseline model (MAE —11.00s, —25.42% and MAPE —2.34 pp, —13.85%). The platform’s flexible
architecture is further evidenced by the evaluation of Fuel Consumption and Number of Stops
models, while its dashboard and user interface provide real-time interpretability. Overall, the
results demonstrate a practical, closed-loop approach to detecting, responding to, and mitigating
concept drift in realistic urban traffic settings.

Keywords: Continuous Machine Learning, Concept Drift, ETA Prediction, SUMO, MLOps,
Gradient Boosted Trees, Cooperative Connected and Automated Mobility, Urban Mobility

Acknowledgements

First and foremost, I would like to express my sincere gratitude to my supervisor, Professor
Panayiotis Tsanakas, for giving me the opportunity to conduct my thesis in a field that has
been of great personal interest to me.

I would also like to thank Dr. Georgios Drainakis and Dr. Panagiotis Pantazopoulos of
the I-SENSE Research Group of ICCS/NTUA for their valuable feedback and guidance
towards the completion of this work.

I am grateful to my family and friends for their support and encouragement throughout this
important chapter of my life, especially Valentina and Artemis, as well as Nick, Apostolis,
Alex, Christini, and Elina.

Finally, and most importantly, I would like to thank Serafeim and George, with whom I shared
the vision, the challenges, and the excitement of this work. Their collaboration and commitment
were essential in shaping this thesis, and I truly appreciate sharing this journey with them.

10

Contents

Contents

List of Figures

List of Tables

Extended Abstract in Greek

1 Introduction

1.1 Motivation. e
1.2 Problem Statement
1.3 Thesis Goal e
1.4 Contributions
1.5 Thesis Structure
Background

2.1 Classical Machine Learning L
2.2 Deep Learning
2.3 Model Performance Metrics
2.4 Regularization, Overfitting, and Underfitting
2.5 Cross-Validation
2.6 Model Selection and Hyperparameter Tuning
2.7 Continuous Machine Learning oL
2.8 MLODPS
2.9 Concept Drift
2.10 Key Trade-offs in Drift Detection and Adaptation
2.11 SUMO Simulator
2.12 Containerization and Orchestration
2.13 Web Protocols and API Design
2.14 Backend and Frontend Frameworks
2.15 Data Validation and Storage oo

Relevant Work

3.1 Tooling Landscape for Drift Detection and Monitoring
311 River. o
3.1.2 scikit-multiffiow
3.1.3 Alibi and Alibi Detect

11

15

17

19

33
33
33
34
35
36

39
39
40
41
41
42
42
42
43
43
44
45
46
47
47
47

Contents

3.1.4 Evidently 50
3.1.5 NannyML oo o 51
3.1.6 Summary and Limitations L0 52

3.2 ETA Prediction: Literature Overview 52
3.2.1 Classical Time-Series Methods, 52
3.2.2 Deep Learning Approaches 53
3.2.3 Graph Neural Networks, 53
3.2.4 Gradient Boosting and Hybrid Models 54

3.3 Novelty and Contributions of the Proposed Platform 55
3.3.1 Controlled Drift Simulation with SUMO 55
3.3.2 Multi-Task Prediction and Monitoring 55
3.3.3 Automated Model Retraining and Hot-Swapping 56
3.3.4 Real-Time Dashboard and Visualization 56
3.3.5 Conclusion 57

4 Dataset Generation and Machine Learning Research 59
4.1 Dataset Generationo 59
4.1.1 Study Area 59
4.1.2 Network Construction 59
4.1.3 Vehicle Classes 61
4.1.4 Traffic Demand Modeling 61
4.1.5 Concept Drift Scenario 62
4.1.6 End-to-End Generation Pipeline 64
4.1.7 Reproducibility and Extensibility L. 64
4.1.8 Output Format 65
4.1.9 Dataset Characteristics oL 65
4.1.10 Data Availability 65

4.2 Machine Learning Research oL 66
421 Overview 66
4.2.2 From FCD to Trips 66
4.2.3 Experimental Methodology 67
4.2.4 Baseline Models. 67
4.2.5 Transformation Experiments 67
4.2.6 Feature Engineering oo 68
4.2.7 Hyperparameter Tuning L. 71
4.2.8 Final Model 71

5 Platform Architecture and Implementation 73
5.1 High-Level Overview 73
5.2 System Architecture 73
5.3 Service Responsibilities 74
5.4 Technology Stack e 75
5.5 Simulation Control Flow 76
5.5.1 Timelapse Tick 76
5.5.2 User Prediction Flow 76

5.6 Deployment Architecture. 76
5.6.1 Compose-Based Orchestration 76
5.6.2 Images, Footprint, and Resources 76

12

Contents

5.6.3 Configuration and Dependencies 77

5.7 Performance Goals and Realization 78
5.8 Logging, Error Handling, and Observability 78
5.9 Concurrency and Isolation Lo oL 78
5.10 Extensibility and Design Principles 0L 78
5.10.1 Backend Abstraction and Task Agnosticism 78

5.10.2 Feature Engineering Pattern 0. 79

5.10.3 Data Access Pattern 79

5.10.4 Adaptation Policy and Consensus, 79

5.11 Architectural Strengths and Trade-offs 79
5.12 API Endpoints Reference 80
5.13 Summary 81

6 Results 83
6.1 Overview 83
6.2 Notation and Setup 83
6.3 Models and Metrics 83
6.4 Baseline Model Performance o 0L 84
6.5 Retrained Model: Training Window and Rationale 84
6.6 Post-Swap Evaluation on an Identical Window 85
6.7 Takeaways 85

6.8 Platform Demonstration 86

7 Conclusion 93
7.1 Summary of Contributions oo 93
7.2 Key Findings 93
7.3 Limitations 94
7.4 Future Work 94
7.5 Closing Remarks 94

A Code Availability 95
Bibliography 95

13

Contents

14

List of Figures

1.1

2.1

2.2
2.3

24

3.1
3.2
3.3

4.1

5.1
5.2
5.3
5.4
5.5
5.6

6.1
6.2
6.3

6.4
6.5

6.6

6.7

6.8

6.9

Cooperative, Connected and Automated Mobility (CCAM). 34
Feedforward neural network architecture with input layer, two hidden layers, and

output layer. 40
Categories of concept drift. oo 44

SUMO simulation environment showing a microscopic traffic simulation with indi-
vidual vehicle trajectories, real-time visualization, and speed monitoring capabilities. 46

Docker components and control flow. 46
Evidently: Data drift evaluation. L. 51
NannyML: Monitoring estimated performance with the CBPE method 52
AttentionTTE: The self-attention of spatial correlations extraction module. . . . 53
Study area in central Athens. 60
Platform Architecture. 74
Drift States of a Model.o 77
Backend API Endpoints Reference, Swagger UL. 80
Predictor API Endpoints Reference, Swagger UL. 80
Drift API Endpoints Reference, Swagger UL 81
Summarizer APl Endpoints Reference, Swagger UL. 81
Baseline Model Errors Over Time. 84
Post-Swap Comparison: Baseline vs Retrained Model. 85
Admin dashboard — Start. Detectors calibrating, graphs empty, simulation not

yet TUNNING. o oo o e e e e e 87
User interface — Start. No Source and Destination selected, prediction panels empty. 87
Admin dashboard — Stable. Models stable under normal conditions, detectors

calibrated. L 88
User interface — Stable. Example route with baseline predictions: 03:50 min,

0.35 L, 1 stop.. . . . o o o e 88
Admin dashboard — Drifted. Rain conditions active, ETA /Fuel/Stops flagged as

drifted and errors elevated. 89
Admin dashboard — Retraining. ETA retrained and swapped, Stops currently

retraining, Fuel has not started retraining yet. 90
User interface — Retraining. Same route now reflects rain for ETA only: 05:03

min, 0.35 L, 1 stop. 90

List of Figures

6.10 Admin dashboard — Retrained. All three tasks adapted and calibrated, system
back to stable.

6.11 User interface — Retrained. Same route after full adaptation: 05:03 min, 0.36 L,

6.12 Al summary report shown in Admin Dashboard after simulation completion. . . .

16

List of Tables

4.1 Network characteristics of the central Athens study area. 60
4.2 Hourly demand schedule for 08:00-18:00. Period denotes the generation interval
(seconds per vehicle). Trips/hour are approximated as 3600/period. 61
4.3 Distributional shifts between baseline test scenario and rain scenario with reduced
friction. e 63
4.4 Comprehensive dataset characteristics across all three scenarios. 65
4.5 Baseline results (5-fold CV on train). Lo 67
4.6 Transformation experiments (5-fold CV on train). 68
4.7 Feature engineering experiments results. 69
4.8 Top 20 features by combined importance score. 70
4.9 Feature selection validation results. 0L 70
4.10 Hyperparameter tuning results.o L 71
4.11 Final LightGBM hyperparameters. 71
6.1 Baseline results for My (no adaptation), by scenario. 84
6.2 Head-to-head results on the post-swap window Weya = [43,200,72,000].. 85

17

List of Tables

18

Extended Abstract in Greek

Eiwcaywyn
Kivnteo

To cuothuata Luvepyoatixhc, Xuvdedeuévne o Auvtopotonomuévne Kivnuxdtnrog (CCAM) Baoi-
Covtan, Théov, 6ho xau mepiocdtepo ot Mnyaviny) Mddnon yio xploweg hettouvpyieg, 6mme 1 mpof-
Aedn xuxhogoplag xou 1 AN anogdoewy, 6mou 1 oxpelfBeio ennpedlel dueca TNV AGQPIAELL XAl TNV
anodotixdtnta [1]. O npdogatec tdoec oto CCAM tovilouv tTnv avdyxn Yo TpocapuoYY| oE Tpoy-
LTS yeovo xadde ta aotixd meptBdhhovto yivovton mo duvouxd [2]. Qotdoo, oA onueptvd
OLOTAUOTA BEV ETAVEXTIUOEVOLUY GUVEXAOC Tal LOVTEND Xadie pTédvouv Véu dedouéva [3]. Mia Baownn
neptoy) Lerétng ebvon 1 tedBredn Xpdrov AgiEns (ETA).

Opiopoc IpoPBAjpatog

To aoTid CUCTARATE XVNTIXOTATAS Efval EYYEVMS Un oToeRd: Ol OTATIOTIXES IBLOTNTEC TWV OE-
Bopévewy oAdlouy Pe Tov Ypovo, dpa Lovtéha Mnyavixric Mdadnong mou exnaudedtnxay o oTotind
1o Topd olvola dedopévmv umofoduilovtar emtyelpnotoaxd Aoyw evvolohoyixic Yetatémons (con-
cept drift) [4, 5]. To concept drift npoxaheiton and nowxiloug mapdyovtee, 6nwe dopxéc oAhayéc
GTO 000 BiXTUO, XAEE PAVOUEVY, ETOY XY (ATNOT), xou 0dNYel O amdTOUES 1) G TadlXES UETHBONES
ToLTATLY N cuupoenone. ‘Etol, éva povtého mou amodidel xohd oe «oTeEYVESY cuVITES, UG TEREL
uno cuviixeg évtovng PBpoync N oc ayuéc xuxiogoplag, epocov aUTEC oL cUVINXES BEV TEQLAA-
Bdvovtav otnv exnaideuon tou [6].

[Mopd v mholowa PBAoypagpia o aviyveuon xo mpocapuoyr drift, o undeyouceg Aloeig etvon
CUY VA OTOCTIACUATIXES: OTAVLOL EVOTIOLOVY TEOGOUOIWaT), GLVEYY Topoxolovinon anddoong xou
QUTOPTY ETOVAEXTIOEBEUOT) o€ évay «xAelatd Bedyor [5, T|. Autd mou napopével aveniluto elvou
1 Onuovpyio Wag oAokAnpwuérng mAatpdppas Wdxd Tpocapuocuévne Yo tepi3diiovia CCAM,
Tou va dtoryetpileton ouoTrnuatixd To concept drift oe xataveunuévo oevdpta xivntixétntae 8, 9]. H
Topovoa Simhwuatixn epyacio oToyelel vor XoahOPeL aUTO TO XEVO UE ULol TAATPOPUO ULXPOUTNEECLOY
TIOU EVOWUATOVEL TROGOUOIwOT), Tivaxeg eEAEYy oL anddoorg, ahyoplduoug aviyveuong xo auTtouaTY
EMAVEXTABEVTT), BLATNEWVTIC TNV 0XEIBEL TOV UOVTEAWY OTO SUVOULXO aoTIXO TEQSAANOV.

Ytoy oL %o LUVELCPORES

Q¢ xOpla teptoy) perétne emhéyetan n npdPredn Xpovou AgiEne (ETA) oe éva oevdpro Baciopévo
oto xévtpo tne Adfvac |2, 3|. Katooxeudleton évar avanapdiiuo ovvoho dedopévmv yéow SUMO,
omou to drift endyeton eheyyodueva pe pelwon e tedric oto 0dwd dixtuo (Bpoyr), SltnewdvTag
™V Tonohoyia oAAG peTOBIAROVTOC PEAAOTIXG TIC TayUTNTES Xou Toug ypedévous dgpiEng (10, 11]. H

19

List of Tables

Thatpopua elvor aveldeTnTn and TO HOVTEAO xai EMEXTAOLN. Av xou To enixevipo eivon To ETA
ue yeron poviéhwyv evioyvone xhione (gradient boosting), umootneiler mopdhhnho povtéra (m.y.
xotavdAnwor xauoipou, aptdudc otdoewy) [12, 13]. Luvohxd, amodexvietar 0Tt plar TEoxTixy), Ue
eniyvwon concept drift, apyitextovinr| unopel vo Swotneel v oxpifBeior tpoAédewy oe duvauixd,
PEAANLOTIXG TERYBEANOVTOL XAV TIXOTNTOC.

YroBadeo
Mnyavixry Mddnon

H Mnyovixy Ménon (Machine Learning) ueietd odyoptduouc mou padaivouv mpdtumo and Oe-
douéva yia Bedtinon tne mpdPredne/Mdne anogdoewy pe Teploptogévn avipdhmivy topéufac. O
Boowxéc xotnyopiec mephopPdvouy emBhendpevn (supervised), un emPBienduevn (unsupervised),
nu-emBrenduevn (semi-supervised) xou evioyvtxy| uddnon (reinforcement learning) [14]. Evdeux-
Twd povtéha etvan 1 Cpopupnr) Hodwvdpdunon (Linear Regression), o amhd xou eppnvedollo onueio
avapopds, ta Aévtpo Anogdoewy (Decision Trees) xon ta Tuyala Adon (Random Forests) yio ep-
unvevodTTa xou aviextixdTnra, xodoe xou oy ypova povtéha evioyvone xhione (Gradient Boost-
ing) énwe ta XGBoost, Light GBM xat CatBoost, nou netuyaivouv udmir anddoon oe dedopévo oe
mivoxee [15, 16, 17, 18].

Badid Mdadnon

H Badid MéOnon (Deep Learning) anotekei unonedio tne ML mou alionotel teyvntd veupmvixd
dixtuo pe moMamhd eninedo yio eZorywyr oUvietwy yopaxtnolotxey [19]. Kopiec apyttextovinéc:
[Tohueninedor Avtidnntée (Multilayer Perceptron) yio yevix) mohwvdpdunon/tolivéunon, Luvehix-
wxd Aixtuo (Convolutional Neural Networks) yia yopwd potiBa, Enovohnmuixd Abxtua (Recur-
rent Neural Networks) yio axohouvdiec xou o Metaoynuoatiotée (Transformers) mou xuplopyolv
og YAOOOO Xol OAO XoL TEQLOGOTEPOUS TopElg, 6mwe opaot. To dixtua autd elvon eLENXTA, OAAS
OmoUTOVY TEPIOTOTERN BESOUEVAL Xat TPOGEXTIXY ToxTixoTolnon/etduLon.

Metpwuxég A&woAdynong Moviédwy

H allohdynon poviéhwy mokvdpdunone otneiletar o€ PETEIXEC OTWE TO UEGO AMOAUTO GOAAUA
(MAE), 1o péoo andiuto nocootuaio opdhua (MAPE), tou elvar yphiowo ahhd aotadéc 6tav o
otoyoc minotdlel to undéyv, 1 pila péoou tetparywvixol opdlpatoc (RMSE), n onola tovilel ta
LEYOAA GOIMIUTO X0t TO GUVTENESTH Tpoodloptopol R? [20].

Kavovixonoinor, Yreponpocapuoyr, Y ronpocaploy

poPAfuota unepnpocopuoyfic/utonpocapuoy e avtipetwrilovton pe xavovixonoinon (L1/Lasso yua
apardtnta, L2/Ridge yio otadepdtnra), eved otor veupwvixd yenoulonotolvto enione dropout, early
stopping xow weight decay.

Alactavpwuévy Enxdpworn xow POduion Y reprnopauétpwy

H Swotavpwpévn emxdpwon (k-fold, stratified, leave-one-out, repeated) amotehei ypuod xavdva
yioo 0O TN exTiunon anddoone xan emhoyy| unepmopouétewy. To povtélo xau ol puduiceic Tou
emAéyovton ouyxplvovtag urodmeious uéow €yxueng dadxactiog emxdpnaong. Ta) pdiuion unep-

20

List of Tables

TopoéTewy yenotponototvtat grid /random search xou o npoywenuéves pédodol 6mwe n Mrebliavi
Behtiotonoinon,.

Yuveyne Mrnyavixy Mdaodnon

H ouveync unyovixr) udinon eotidlel otn otadlox Tpocapuoyy| HOVIEAWY xodde péouv VEo Oc-
dopéva, avtl yia «exnaidevon o xt €€w». Kevtpur| mpdxhnor elvar 10 «xatacTpo@ixd ey douon.
Yrpotnyéc onwe incremental /online learning, petogopd udinone xou eunetpixy| enavdhndn (expe-
rience replay) toopponoly otodepbdtnTo xou TAaoTixoTn T [21].

MLOps

To MLOps cuvdéet to Machine Learning xat to DevOps yia va tunomotel /autopatonotel Tov xOxho
Lwhc povtéhwy: €xdoomn xmdixa/dedopévev/poviéhwy, CI/CD yio exnaidevon, aiohdynon, Od-
Oeom, xou rollback, mopaxoholinon anddoorne/cuppdppwons xou ouvepyasio pohwy [22]. Etbdyoc
elvon TayOTEEN Mo 0ELOTO TN HETABUCT AlO TELQUUOTIONS GE TUPAY WY, UE LOYUEY LY VNAUCLUOTNTA.

Mezatémon ‘Evvoiag

To concept drift, uetoforr) otic unoxelyeves oTUTIOTIXES WOLOTNTES TOL GTOYOU (BEBOUEVWYV), HELDVEL
Vv oxpifela ye Tov ypovo [5]. Mopgéc: amdroun, Boduade, enavolouBoavouevn xou etoyixt, ovs-
nTer. O aviyveutée elte mapoxoloudoly c@dhpoata eite xatavoués ewwddwy (n.y. DDM/EDDM,
Page-Hinkley, ADWIN, é)eyyot xatavounv, SPC) 23, 24, 25, 26]. Kpeiowwoa dithAupora: evaoinoia
xou (Peudide Vetind anotehéopota, avdyxn eTxetody, uotépnon/latency xou umohoyoTixd xbGTOC.
H mpooapuoyn yivetow pe cuyvé retraining, online evnuépwor, mpdopota mopdiupo SeG0UEVLY 1
ensembles mou €UVOOUV Ta O TEOGPUTA LOVTERA.

ITpocopowwtric SUMO

Ia tpocoyoinon xivntixétntoc, to SUMO (microscopic, multi-modal) etodyet dixtua and OSM 7
eunopéc mnyéc, mapdyet {Atnon (ouvietny we Leuydpta mpoéhevone xat Tpooptolo), utoatneilel
TraClI yio Lwvtovd éheyyo xou e€dyel Aemtouepn UeYEDT (TpoyLéc, OTUATIOTIXG BLOBEOUWMY, XOToo Td
OELC UXUXAOPOEIOC) Yior AVOAUTIXG TIELeduaTa LEYAANG XAlaXag.

Y 7oifa YAornoinong

H otoia vhonoinone aionotel xovtéwvep (Docker) xon opyfiotpwon unneeowdv (Docker Compose)
yior avomopadidtnto/gopnrétnra. O denogpée extidevtar we REST/HTTP, pe FastAPI (1oyupn
emxpwon tonwy, OpenAPI), eved ontixonotfoeic/tivaxes eléyyou uvlomoovvton pe Dash/Plotly.
H BiBhodrixn Pydantic emBddier oyfuota o dedouéva etob6dou/eEddou xaw to Apache Parquet
Tpoo@épel amodotixh anodrixeuon/cuunieon dedouévmy xou TayUTepa analytics.

YixeTwxo 'Epyo

Tonio Twv gpyaleiny yia aviyvevon/nopaxohotdnor) drift

To River eivan évo eviaio maxéto online udidnone oe poée (incremental, delypo mpog Selyua), ue
oalyopidpoue (yeouuxd, Hoeffding trees, oOvola) xou étowoug aviyveutée drift (ADWIN, DDM,
EDDM) [27]. TTkeovextel oe anodotixdtnra, younhé overhead xou toyelo mpooopUoyT, UE YELOVEX-
o T wxpdtepn atonoinon batch/GPU oe oyéon ye auiyde batch Bihodxec.

21

List of Tables

To scikit-multiflow eivar mpdyovoc tou River oto Python owooctotnua [28]. TIpoogéper xhaotxoic
stream oAyoplOuoug, generators pe eheyyoduevo drift xaw oviyveutéc (ADWIN, DDM, EDDM,
Page-Hinkley). IIhéov 8ev ouvtnpeeitar, mpoxtixd éyel «anoppogniely and to River, napopéver dung
xenowo yia avagopéc/benchmarking.

To Alibi & Alibi Detect eivon 800 epyaheio, 6mou To TpdhTo TEooEileTon Yio ppnvevodTnTa (coun-
terfactuals, influence), xou to Sedtepo i outliers/mpoodiopioud drift oe mivaxa, xelyevo, exdva,
ypovooeléc [29]. Trootnpeilovy otatiotxole eréyyouc xou aviyveutéc pe TensorFlow/PyTorch
(m.x. embedding-based). "Eyouv ioyver xdAudn, odld anoatody evowudtwon oe pipeline (dyu
TAAPES GUOTNUO ToPaxoloUINoNG).

To Evidently eivan pla Bihiotxn 7 éva epyoleio yio avagpopég e mivaxeg eréyyou ylo data 7
target drift, moldtnTa SEBOUEVWY xou ATOBOCT) UOVTEAWY UE GUYXELOT| OVAUPORKY EVAVTIOV TWELVOY
ouvohwv [30]. Eyet e€apetins euypnotio xou ontxonoinon yia batch poéc. ot Aertoupyia oe mpory-
HOTX YpOVO YpELdlETaL ETUTAEOY EVOWUATOOT (XUALOUEVO Topdupd, TEOYPUUUATIOUEVES EPYAOIES).

To NannyML emuxevtpdvetar otny extiunon andédoone ywelc dueceg emtonudvoelc (CBPE), cuvbéov-
to¢ to drift pe mbovA ntdon axpelBelag [31]. Eivow mold yefowo dtav ot emonudvoeic xaduotepoiv.
Y 10Ug TEPLOPIOHOUE, YENOHIOTOLETOL XLElKS Yia TaEvounoel, xou amoutel xohr Baduovounon midov-
oTHTOVY ot 6woTh évtagn oe MLOps.

BiBAoypagpia yia tnv npoPredn Xedvou ‘Agiing (ETA)

O xhaoxéc yédodol ypovooepdv (ARIMA) hertoupyolv oe nepLoplopéva evdpLa, oA UOTEPOVY
ot un yeouuxh guon tne xuxhogoplac. H Badid Mddnon (RNN, LSTM, Transformers) a&ionotel
ypovixéc e€aptrioeic xar xodohxéc (global) oddniemdpdoeic [32, 33]. Ta GNNs evowyatvouv pntd
0 douy) Tou 0dWwoY YEdpYou xat BeATIOVOLY TNV TEOBAEdT LTS Buvauxés cuvifixes. TTapdhinha, oTa
dedopéva oe mivaxeg (tabular data) pe oyupd epmhoutiouéva yopoxtnplotixd, ta gradient boost-
ing dévtpo (XGBoost, Light GBM, CatBoost) mopauévouv W8uitepa avtorywviotind: yeryoen ex-
noidevon/eEunnpétnon, epunvevodtna (feature importances) xou ehxoln neptodixy| enavanpocap-
woyt [34, 35]. Xuyvd n mpoxtix| xatevduvor elvar UBEWBIXY: EUTAOUTIOUEVOL YUPOXTNEIOTIXG UE
boosting wc toyuer| Bdon avagopds, xou e€etdixeuuéva ywpoyeovixd Deep Learning ¥y GNN povtéha
6ToU ToL OEBOPEVA XAl 1) UTOBOUT] TO BIXOUOAOYOLV.

Kawvotopla tng npotelvopevng TAATQOpUag

(1) Eleyydpevo concept drift ye SUMO: xatooxeu| oevapiou time-lapse 6mouv to drift (m.y.
Beoxn wéow uelwong teBhc) emdyeton pEaAoTXG, BlatnedvTag TNV TotohoYia oAAd oAAGLoVToC TIC
TayUTnTeS/ yeovous [11]. Autd yepupdvel To ydouo PETOED CUVIETIXMDVY YEVVITELOV Xot ATEOBAETTWY
TEAYHATIXDY YEYOVOTOY, ETMITRETOVTOS OZlOAGYNOT OE «YVwoté» ocupfay drift. (2) Evowpdtwon
xa ToEaxohovine TOAATAOY HOVTEADY: TowTdypovn TedfBiedn xo emonteio Yoo ETA, xotavdh-
0won xowoipou xou aprdud otdoewy. LOyxplon cuuneplpop®y avd task xou cuvaiveorn (consen-
SUS) OVLYVELTOV ovd LovTélo yio pelwon Peudne detixdy anoteheopdtwy. Avtovaxhd peahio-
T emyelpnotox toluthoxétnta. (3) Autdpotn enavoexnaidevon & avtixatdotaon ev Aettovpyio:
xAelowo Tou Bedyou, otav aviyveutel drift, evepyomoleiton retraining ye mpdogato mapddupo oe-
OopEVLY xan YIVETAL GUECT) AVTIXATAC TAOT) oVTEAOL Yweic downtime. IIépa amd monitoring, delyvet
éva auTodloptoluevo oot UE Cugels amopdoelc Yo To toTe allel To retraining, ye oxomd v
ATOPUYT TERLTTOV 1 TEO0pWY WETpwy avTetdmione. (4) Iivaxag eéyyou oe mpaypatind ypdvo:
omtixonotel opdlyota, ueTeixée, xou cuufBdvta (detections, retrains, swaps) xou emtpénel human-in-
the-loop Siepetivnon (m.y. otadepy| Sradpoun we delyua mptv, xotd, xou uetd to drift). e avtideon

22

List of Tables

UE OMAEC OTATIXES AVUPORES, TPOCPEQREL BLUEXT) TOEUXOAOVU NGO,

I[Mapaywy?n Acdopeveyv xou ‘Egeuva Mnyoavixrc Mddnong
IMopoywy”r Acdopévey

To xe@dhono MeEQLYPdPeEL TNV XATAOXELT) EVOC GLUVIETINOU, OAAd PEAALOTIXOU, GUVOAOU BEBOUEVLY
aoTXNC xuxhogoplog Yot To ¥xévtpo tng Atfvag xan) pedodoroyio altohdynong evog povtélou
ETA, uné eheyyoduevo concept drift. H mpocopoiwon viomoweitow oto SUMO xou mopdyet teio
oevdpta 10 wewv pe tnhepetpia FCD avéd Seutepdhento: train, test (Bdon) xou rain (drift). To rain
elodyel puolxd epunvedolo concept drift yewdvoviag ogolduopga Tov cLVTEAEGTY TEHC 0006 TEM-
HOTOG, TEOXAAWMVTAUS YOUUNAOTERES ToYUTNTES X UEYUAVTERES OLdpxeleg Bladpouric. To pipeline etvon
TAfpwe TopaueTpotoioo (otadepd seeds, YAML configs), opdpwté (modular) xo gopntd oe
dhheg meployég 1 evtdoelg drift.

ITeproyry Meiétng

Opdoywvio, muxvd dixtuo pe QTEWVY onuatoddtnon 6Tto x€vipo e AdMvag, wote va ovodLov-
Tan oupEg o peailo) ouupoenon Yy ETA. To tehixd dixtuo: 1184 axuée, 689 xoufor, 106
onuatodotes, 68.17 km cuvolixol uixoue.

Kataoxeun Awxtbou

H Snuovpyio yiveton mpoypoppoatiotixd (scripts pe osmGet.py xou osmBuild.py mou divouv npdo-
Boon oe netconvert xou polyconvert) oe ypopur eviohody, yweic dietogpy yeriot. To Baowxd dixtuo
(tepr=1.0) eZdryeton and dedopéva OpenStreetMap (OSM), eved yio To dixtuo Bpoyhic, ¥xAwvorotei-
Tou xou opileton TEI3N=0.4 oe dheg Tic hwpeldeg. 'Etoul diatneeitoan 1 Tonoloyla, anoyovevovtag to
QUOIXO ATOTEAECUA TNG MEIWREVNS TEHC amd TEYYNTESC aAAXYEC BouNg.

K\doesic Oxynudtoyv

Xpnowonotolvta povo IX, daote vo neploptotel 1 etepoyévela (ywpels dixuxha xou Popéa oyfuota)
xat vou amhonotnVet 1) epunvelor Tou drift Siatnedvtag T Baocixy| duvouxr) Tou ETA.

Movtelonoinorn Zxtnong

Qoo potiBo 08:00-18:00 pe ouyuéc mpwi xou amdyeupa xou xdudn to peonuéet [36]. O tepiodol
véveong (deutepdhenta/dynua) déyovton uixpd I'vaovoiavd Y6pufo (u=1.0, 6=0.01) avd wea HGoTe
VoL OLapOEOTIOOUVTOL Ol POEC Ywelg va ahhowwveton Tto oyfuo. Kdde oevdpio €yet dixd Tou seed
mou eAéyyet VopuPo meplddny, Tuyaies dladpoués, Véoelc exxivnone/dpiing otic Awpldeg xau oTo-
Yoo uxoTnTo cupneptpopds. To trips mapdyovton ye randomTrips.py xon eAéyyovTon yio eQuxTtoTN T
dtadpounc.

Emihoyyy Mnyavicwotl Drift

AoxyddoTnuoy eVOAAAXTIXES, OTWS XAEolUaTa Awpldwy 1 0AOXANEwY Bpouwy xou UETofoAéC o
CUUTERLPORES 0ONY WY, 0ANS amoppipUnxay AOYw TEOCOUOLWTIXMY TEYVIXMY ETLTAOX®GY, 00 TEUELIG
1) 60oxohng cpunveloc. EmAéytnxe Beoyn uéow TEBHC Yot PEAMOTIXG %O UETENOWO AVTIXTUTO,

23

List of Tables

olatrenor tomoloyiag xou eyyevy) vnootheln oto SUMO. H emhoyn toin=0.4 ebvar oxdmypa €v-
Tovn yia xadapod, aviyveuotuo drift ywelc xatdppeuon Tou cucthpatog. Iapatnpolvion younhétepeg
ETTOYOVOELS, VORITERA 1) NTLOTERA PEEVARIOUOTA Kot ALENUEVOL YEOVOL.

Pipeline

(1) E€ayoyr OSM — (2) Koataoxeuh dixtbov — (3) Iapaywyy| dixtiou Beoyhc — (4) Puduioeic
Yeopuhc Sendyne yehiotn — (5) Iapopetponoinon avéd oeviplo — (6) T'éveon ddpounv — (7)
Extéheon SUMO — (8) Metatpont and CSV oe Parquet — (9) Atepeuvnuin| avdiuon Sedogévemy.
Ta Brpata 1 €wg 4 exterolvton pla gopd, eved ta Pruata b €ng 9 plo opd yio xdie cevdptlo.

AvanapaZipnotno/Enextacipuotnta

‘Olec oL nopduetpot ebvar oe €va apyeio YAML, xde Brjua etvon xadapr) cuvdptnon pe inputs xou out-
puts, xat undpyel exteTopévo logging o ey yol emtuyioc. Edxohn npocapuoyy| nepoyfc (bound-
ing box), {htnone xou Yoplfou, seeds, didpxetoc, Topauéteny drift (teir), emhoydv netconvert,
TONTIXWY rerouting, xAdcewy oY NUATLY.

Mop¢p7, Acdouévwyv EE660uL

FCD avd deutepdiento: timestep, id, x, y, speed, lane, odometer, fuel, waiting. Ta CSV yeto-
tpénovtan oe Parquet (otnhodetnuévo xar GUUTIEGUEVO) Yio oLxovopia YHEoL ot ToyUTEPES CUCO-
0EEVOELC xou EEUYWYY| YAURUXTNPLC TIXWYV.

XopaxTneloTixd SuvoAou

Ko ta tpla oevdpio éyouv Sidpxeta 36000 s (10 dpec). Evdewtind: test péon taydtnto 29.8 km/h
xou Odpxetr 211.6 s, rain 25.7 km/h xoau 247.0 s. Ou petaPoréc emPefoudyvouy xodapd drift
(petouévn ToybtnTa, avinuévoc ypdvoc). Ot dyxor FCD eivon tne tdne dexddmv exatoppupinv
EYYEAUPWY UE ONUAVTIXG Opelog anovfixeuong oc Parquet.

Awadeoinotnta Asdopévmy

To clvolo dedouévwy (éxdoon 4) elvan dnudota dlodéoo oe CSV xar Parquet yio train, test xou
rain (Zenodo, DOI 10.5281/zenodo.16950674) [37], eZaogahilovtac mhApn avomopaliddTnta xou
ETAVAYpToYLoToinoy o€ UEANOVTIXG TELOHUTOL.

"Epeuva Mnyavixrc Mddnong

To napdv T teptypdpet T Stadixaoio avdntuing poviélou npdPredne Xpdvou ApiEne (ETA) oto
olOvoho Bedouévmy Tou xévtpou tne Advac. Ntdyot: (i) toyupéc Bdoeic avapopds avd otxoyévela
HovTé WY, (ii) allohdynom otpatnyxdy eaywYhc YoeaxTnEloTixdy, (iii) emhoyh tehiol wovtéhov
UE CLUC TNUOTIXG CUVTOVIOUS Xat SLao ToVpWUEVT ETxpnaT), (iv) avapopd anddoong xot amtodoTxdTn-
T exnaidevone. Kopto anotéheopo: Light GBM ye MAE 26.51,s xav MAPE 12.77%, ypdvo ex-
mafoeuong 2.95,s. Ta XGBoost xa CatBoost métuyav napduola axplBeta, oArd oy mo apyd.

Ané FCD oce Awadpouég

To FCD tou SUMO mopéyet avd-ocutepdhento tnhepetpio: timestep, id, x, y, speed, lane, odome-
ter, fuel, waiting. Y7o eninedo Swdpourc, ouadomoiinxay eyypaupéc avd oynua xou e€Rynoay:

24

https://doi.org/10.5281/zenodo.16950674

List of Tables

time_start (apy?| Stadpounc), duration (Sidpxeta Swadpoprc), source x, source_y, destination x,
destination_y (cuvtetaypévec mpoéhevone xou mpooplopol), distance (andotact mou Swaviinxe).
Egopudéotnxe giktpdpioyo moldtntog, 0mou diadpoués ue didpxeta uxpdtepr and 30 deutepdhenta 1
anéotaon uixpodteen amd 200 pétpa amopplpinxav. To tehixd clvolo €yel 53229 trips ue oha ta
TEONYOUUEVAL YOEaXTNELOTIXG, EXTOC and Tov otdyo (1 Sidpxela).

IMewpapatinry Medodoloyia

Ixyvnidtnon nepopdtwy. Evoroimnuévn BBAodnxn cuvopthioewy, otaldepd seeds, xowvd op-
xeto YAML o napopetponoinon, anodixevon teyvoupynudtoy (Hovtéha, petpixéc, logs) xat oautod-
HOTT GUAAOYY| ATOTEAEGUATWY.

AlacTavpwkeEvY emxLpwon. S-fold ye yoplopa mou Blatneel TV xatovour Tng Sudpxetag
yio otadeponoinon exturoewy. Ta test xou rain xpatRdnxay anoxhelotind yior Tehiny| a€lohdynon
(ywelc dloppon] dedopévav).

Metewxéc. MAE (s), MAPE (%), xou ypdvoc exnaideuone (s) we ypiowog Beixtng yior cuyvég
ETOVEXTIAUOEVCELC.

Bdoeig Avagopdcs

Yuyxptdnxav n Teoppixd) Mahwvdpdunon xo tela boosting povtéha (LightGBM, XGBoost, Cat-
Boost) mdve oto apyixd OET YopaxTNEIOTIXGY (CUVTETAYUEVES TPOENEUOTIC XAl TPOOELOHOU, (AL
exxivnong, anéotoon). To boosting povtéla vrepeiyav xodapd tne Tpoppixhc Hokvdpdunong,
emBefouwdvovtag TN onuacio Twv un yeopuxwy oyxéocny yia to ETA. 'Etol, ta endpeva nelpduata
emixevTpwinxay ota Tplo boosting povtéha.

IMewpdpotoa MeTaoNUATICURGY

E€etdotnxoay Aoyoprduxol UETOUOYNUATIOUOl, XAVOVIXOTIOWACELS YUPUXTNELO TIXWY, Ol UETOCY NUO-
Tiopol otdyou (hoyapriuxde, Box-Cox, nocootaiog). Kavévac dev €dwoe ovotaotind xépdoc,
AVOEVOUEVO Yia B€vTpa boosting mou elvon aviexTixd o HOVOTOVIXOUE 1) XAWAXOTOVS UETUCY NUO-
TiIopo0g, xat amopplpdnxay yia arhomolnoy.

Xapaxtnerotixd ITediou

pootédnxoy opddes YoEaxTNELO TIXDY Yia YPOVIXES xou Ywewés oyéoelc (Temporal, Spatial, Fourier,
Cell, Cluster, PCA). Kdie ouddo Beltinoe ehagped to MAE évavtt e Bdong avagopds, o cuv-
BLACUOS OAWY TWY OUdBLY Ouwe elye udnhdtepo MAE and to ddpolopa Twv emuépoug ouadhy,
umodexvoovTog Uepixy) emxdAudn mAnpogopioc. T'ar TNV TEAXY) ETAOYT YAUEUXTNEIO TIXWY, CUV-
dudio Ty PEVOBoL oTIOUBUATNTAC YoEAXTNRIO TIXWY, OTwe gain, permutation, tuéc SHAP [38] xou
avdhuor ouoyetioewy. Awtnehinxay 22/52 yapoxtnolotixd (6ha ta 6 apyixd, 2 Cluster, 4 PCA
xou 10 Spatial), pe 40% wixpdtepo ypbvo exnaidevone xat mpoxtind opgentéa anwietr MAE/MAPE.

POOuion YTrepropapetpmwy xaw TeAitxd Moviéro

Xpnowonotiinxe 1 BPAodAxn Optuna [39] oe 6o gdoeic: evpeio (100 mepdporta/goviého) xau
eotoopévn (50 mepdpota/uoviého). Kerthplo ftav n ehaylotonoinon MAE pe 5-fold. Xuvohuxd
€ywvav 450 mepduarta.

25

List of Tables

To LightGBM povtého nétuye 1o xahltepo MAE xou MAPE (26.51 s xaw 12.77%) pe 2.95 s ex-
nofdevor), Tayvtepo and XGBoost (nepinou 3 gopéc) xan CatBoost (nepinou 5 gopéc), xaw emhéydnxe
WS TEMXO LOVTENO.

Apyitextovixn xouw YAonoinorn IThatgpdppoag

Enwoxénnon

H mhatpopua vhomotel pla apyltextoviny wixpolmneectdv mou evopynoTemvel Uia time-lapse mpo-
couolwon xuxhogoplag, xdver tohhanhéc mpoPiédec (ETA/Kadowo/Etdoelc), nopaxohoviel poég
oolpdtev yio concept drift ye drift detector consensus xou mpocopudleton yéow retraining xou
hot-swap, extdétovtag éva mivaxa ehéyyou yia dioyelplon xou wio Siemapr) yeHoTn yia TeoBAédeLs.

Apyrtextovixn xaw Polol Yrnpeoiov

Anoteheiton omd €21 aveZdpTnres unnpesiec oe éva WduwTtixd Docker dixtuo, ye HTTP /REST Sienagéc,
yenowonowdvrog to FastAPT xau Pydantic [40, 41].

To dudrypopua Figure 1 8elyvel T yeEVIXY| apYLlTEXTOVIXY) TOU CUOTAUATOC.

Docker Network

Frontend - Dash
Port: 8080

Admin Dashboard
User Interface

HTTP/REST

4

Backend - FastAPI
Port: 8000

Orchestration
Control
Timelapse Driver
Stores

Batch Predictions Batch Predictions Batch Predictions Error Points Generate Report

Drift Servi
Predictor ETA Predictor Fuel Predictor Stops FZI t: :ggje Summarizer
Port: 8001 Port: 8002 Port: 8003 ot Port: 8005

4 Drift Detectt
Estimated Time of Arrival Fuel Consumption Number of Stops rit betec Ors_ Al Report Generation
Consensus Detection

LLMAPI

4

OpenRouter API

External LLM

Figure 1: Apyitextovinr| tne Ihatpopuag.

26

List of Tables

Backend

Opymotedver v mpooopoiwon 20 wewv ot mepinou 4 énc 5 Aentd (300 gopéc ypmnyopdtepa).
‘Eyet tov TimelapseDriver mou mpoywedel 1o pohdl 5 Aemtd avd tick, {ntder mopdAAnia moi-
homhéc mpofAédelc and toug predictors, otéhvel eAéyyoug Yo drift detection pe ta opdiupora Tou
EMOTEEPOLY xat {NTAEL ENAVEXTOUBEVOELS, EVE 0TO TEAOC TupodoTel Tov Summarizer. Kpatd Met-
rics /Notification/Report stores oe pviun xou aviyvelel Siodéowes vnnpeotec Predictor.

Predictors

Awayepilovton tolamhéc poviéha npofiédewy (ETA /Kabowo/Etdoeic) xou tnyv enavaexnaideuon
toug. Kowoe xidduag avd task: ModelManager (ex86oeic povtéhwy), DataLoader (SidBacpo Par-
quet avd timestamp), Predictor (rohhamhéc 1 povadixy| tpdBredn), FeatureCalibrator (online eZory-
oY1 yopaxtnelo ixdy), RetrainService (Zeywploth diepyooio yia enavexnoudeloelc, Suvopixd uéye-
Yog povtélou), SumoService yia TEOETIOXOTNCT dtadpouic.

Drift

[opaxohoudel poéc opoludtev yio concept drift ye consensus. Mio epyocio avd povtélo, ye ovpéc
atnudtewv/anavticewy. ADWIN, Page-Hinkley, KSWIN, SPC ce e€opolupéves poéc opahudtomy,
Teptodoc avoyfic, consensus 3/4, Swaduxaoio foduovounone xou enavaBodpovéunon uetd to hot-swap.

Summarizer

Iopdryet avaopéc uetd To TEog TNg Tpocouolnong ue yeron Meydhwy I'hwoouxwy Movtéhwy. Aay-
Bdver petpnéc xan ewdomoioels xou mopdyer Markdown /PDFE. Kodel to OpenAl API xou cuvdéetan
e e€wtepixd Meydho Thwoowd Moviého (OpenRouter), pe emovdhndn arthiuatog xat ypovixd dpto.

Frontend

Avoxtd 5edopéva and 1o Backend pe mepodixd oautruato. Dash, Plotly, Bootstrap, Leaflet. Iivaxog
EAEYYOL DLaYEIPlOTH UE UETEIXES, EW00TOMNOELS, xaTdoTtaoT Tou concept drift, mpofoir avogpopdc.
Atemoagt| yeotn pe emhoyr| dtadpounc oTov YdeTrn xou cUYYEoVeES TEoBAEDELC.

YtoiBa Teyvohoyiorv

Yrodoun

Docker, Docker Compose, uv, Python 3.12

API
FastAPI, Uvicorn, uvloop, httptools, ORJSON, httpx async

Frontend
Dash/Plotly, Bootstrap, Leaflet, xhtml2pdf

Mnyovixy Mddnon
Light GBM, XGBoost, NumPy, pandas, River yio aviyveutéc

27

List of Tables

Acdopéva
pandas, NumPy, PyArrow, Parquet

Enuxdpwon

Pydantic

Po Ilpocopoiwong

Kdde deutepdhiento 1o poldl mpoywpedet 5 Aentd mpocouoinone. (1) Backend otéhver napddinia
batch awthuata. (2) Predictors goptdvouy mopddupo/xdvouv inference/emotpépouv MAE. (3)
Backend — Drift yio evnuépwon aviyveutdv xaw xotdotaonc. (4) Evnuépwon xotao tnudtoy xo
petaPdoeic epboov undpyer aviyvevon concept drift. (5) Lulhoyn post-drift mopadipou, enavoex-
TodBEVGT) GTO TOPACKAVIO Xou v TXoTdoTaoT ev Aettoupyio. (6) Frontend otélver teptodixd outhuarta
vt Lovtovh evnuépwon. (7) Summarizer nopdyet avopopd oto TéAOC.

Auwatnpeiton xaducTéENOT dEXETA WXEOTERY TOU €VOC OEUTEPOAETTOU avd ToEddupOo, WGTE VoL AEl-
ToupYEel opahd 1) TpocopoiwoT.

Addeon xouw Pudpioeig

Xperon Docker Compose moAlamhey containers e ehéyyoug xohric Aettoupyiog, anopoveuévo dix-
Tuo ot xotvd volumes. Moévo to Frontend extideton extdg, o umdhoineg unneesieg uévouv eviog
gowtepixol dixtvou. Base image python:3.12-slim, xou mpooupetixéc ouddec elopthoenmy (de-
pendencies) péow tou epyoheiou uv. Kevtpixd YAML apyeio yio pudpioeic apyelwv xotorypophc,
TpocoUolnoNg, Tapauétewy concept drift, mapouétewy enavaextaldeuonc.

Enidoor xou IMapatnenoipdtnta

Ytoyog: 72000 deutepdhento Yéoo o€ Alyo Aemtd pe alohdynor dedouévmy oe Ypovixd mapddupa.
Emtuyydveto ye emtdyuvon 300 gopddv, enelepyacia neptocdtepwy and 110000 trips cuvolixd, ue
avavémaT 12 aviy veutdy Tautdypova, xou cuveyT dtadpao TixdTnTa. e autd Bonddve ot YeTpéC/elBoTOOELG
TIOU BLATNEOUVTOL UOVO OTH UVAUT Xl Oyt O xdmola BdcT OEB0UEVWY, T TEOUTOAOYIOUEVIL YApaX-
Tnetotxd o Parquet, 1 yerion Eexwplotodv Siepyaotoy yia enelepyacTixd Bapléc Aettoupyieg Omme
ETOVIEXTIUOEUGT) YOI VLY VELTES, WoTe Vo Unv umhoxdpetar to Global Interpreter Lock (GIL), xou 1

XENom ooy YpOVeY XAACEWY EL0680UL/eE680U. AlaTneohvTan apyEld XoTorypapmV XaL YeNoyLoTolelTo

ouaAt| urofdiuio.

Enextacipotnta xou Apyeg Xyedloong

Backend Ave&dptnto and to Movtéro

OplCer mapdiupa pe apyh xou TENOG, CUYXEVTPOVEL o@dhuata, dtayelplileTal TOV GUVTOVIOUO NG
enavexnaidevong ywelc yvoon yopoxtnetotixwy. Ilpoodvxn véou task yivetouw pe mpooifxn véou
predictor container xou eyypop oto config.

MoziBo XapaxtneltoTixwy

[Mo Tic mohhamAég mpoPAédeic uéoa oTNY TEOCOUOIWST), YENOHLOTOLUVTAL TEOUTOAOYIOUEVOL YApUX-
mewoTd. o Tic mpoPBiédeic and ™ diemagt yerot, yenowonoteiton éva FeatureCalibrator mou
UTOAOY{CEL YUPAXTNELO TIXG OF TEOYUATIXG YEOVO.

28

List of Tables

Mo=iBo Acdouévwy

DataLoader pe qihtpdpioua tou Parquet apyelou pe Bdon moapddupo dwopévo ue éva opynd xou
évae TEAO timestamp, pe duvoatdTnTa aAhayric o€ xdmola 3dom, 1) pot| dedouévwy péow Kafka 7
xdmotac Bdone oe oUvvego (cloud), ywplc odhayf xhfoewmv xou ywplc va ypeetdleto vo tpononoiniel
0 HOOLXAC.

IToAtixn) Ilpocappoync xaw Xuvaiveong

Consensus tov drift detectors, péyedoc apyol mopadlpou avoyhc (grace), uéyedoc napodipou
ouloyg post-drift, dho pudwloueva and Topauétpous oto xowo apyeio YAML.

Ioyved Enpeio xou LvppiBacpol
Ioyved Ynueia

Bagn opta xdie unneeotac, HTTP ywplc xatdotaon, eviaiog opynoTemTAg UE XEVTEIXT XUTACTAOT,
aoUY POV UTHAUNTA XAl ATOUOVKOY) BIERYACLDY, ATAG UNTEMOO LOVTEAWY Yia TRoBAEPuES avTXaTdo-
TAOELS EV AgtToupYla.

Yuupipacuol

Anodixeuon uévo ot uviun Yo TayOTNTo EVavTL TN BLTHENONE LOTORIXOTNTOC, TEOUTONOYIoHEVA
features yior toyOtnTa évavtt plag TAewe online mpooéyylong e mdavée xaduotephoels, Yenon
evog post-drift mapoitpou yia otadepdtnTa oty exmaideuoT Evavtl puxenc xaduotéenons. ‘Olot
ot ouufiBacyol uropoly va BeAtiwdolyv ye Aooelg 6mwe yerion Bdong dedouévwy, online mopoywmyn
YOEAUXTNELOTIXWY, YENOT OTAdLMC EXTALOEVOTNS, YwelC UEYIAES ahhayEC Xou UE EUXOAT EMEXTAON
TOU XWX

Anoterécpata

TeAwxd Movzélo

Apywd mapouctdlovye o anoTeENEoPOTA TOU TEAXOU UOVTENOU (ywplc retraining) yior xovovixéc
xou Bpoyepéc ouviixes. Kavovixd: MAE 30.36s, MAPE 13.20%. Bpoy#: MAE 56.93s, MAPE
19.02%. H Bpoyn oyeddv dimhaoidler to opdhua, Zexdiopn Unapdn concept drift.

ITpocopoiwon xou Ilpocoppoyi

Y11 ouvéyeta tapouctdloupe To anoteéopata TN Tpocopoinong 20 wemyv. H mpdtn wéea (10 dpec)
€yl xavovixéc ouviixec, 1 deltepn (10 wpec) Exel Bpoyn. Ln péomn oaxpBde epgpaviletor To andTouo
concept drift xou o cOoTnua To aviyvelel, xdvel ula cOvTour enavexmaideuor o 1 dpa BeryUdTwY
ue Beoyt xan xdvel hot-swap 1o yovtéro. Emouévng, 1o eTavexmtotdeudévo HOVTEAD YENOHLOTOLElTO
yioe Ti¢ TeoBAEPELC amd TN oTLyuY| Tou €YLVE 1) aAAYY| Xou EMELTAL L€ AUTO TO Toediupo, TapatideTon
1) TOEOXATE CUYXELOT) TWV ATOTEAECUATWY TOU oEyIX00 YOl TOU ETMAVEXTOULOEUMEVOU LOVTENOL.

Apywo: MAE 43.27s, MAPE 16.89%. Retrained: MAE 32.27s, MAPE 14.55%. Képdoc:
—11.00s MAE (—25.4%) xou —2.34 pp. MAPE (—13.9%).

Ta mopandve anotur@vovTon xou 6To Yedgnua Figure 2 mou oxoloudel.

29

List of Tables

Post-Swap Comparison: Baseline vs Retrained Model (5-min aggregation)

—e— Baseline (Mo)

Retrained (M1)
100

80 -
60 -
40

201

Mean Absolute Error (s)

T T T T T T
45000 50000 55000 60000 65000 70000
Simulation Time (s)

Figure 2: ¥0yxpion petd v Hpoocapuoyr: Tehxd xouw Enavexnoudeupévo Movtéro.

YuuneEpdopuATA

To ouunepdopoto eivar: (1) To concept drift piyvelr tnv anédoon touv tehxol poviéhou oauoinTtd.
(2) Ltoyeuuévo retraining oe pxpéd mopddupo petd to drift 4+ hot-swap €youv we anotéleopa ovot-
oot avéxtnon axplBetac. (3) Mixpd x6oTt0¢ Ypbvou, HeEYEAo TEaxXTIXG GYENOG Omd TNV TAXTPOEUA,
Ywplc amdAeL AetToupYiog XATd TNV AVTIXATAC TAOT LOVTEAOU.

EnioeiEn IMhatpopuag

Axoloudoiv xou 600 otiywdTuna 006VNg and Ty Thatpdouo ota ypaphuata Figure 3 xou Figure 4,
omou gaivovtar o Tivaxog eAEyyou xou 1 Oemagy yenotn. O mivoxac eréyyou Belyver T pox:
Start — Stable — Drifted (ofuavorn xou dvodoc opaiudtenv) — Retraining (avtixotdotaon ovd
task) — Retrained (télog mpooappoyhc). H dienagn ypriotn emtpénel emhoyy| dadpouhc xou on-
demand mpofiédeic mou avtixatonteilouy TNV TEOCUPUOYT, EVK 1 TEAXY) avapopd cuvodilel auTh
TNV TPOCGOUOIWOT).

YUUnEpACUA
YOvodn Xuveiogopwyv

H dimhopotiny oyediaoe, vhonoinoe xat EMXOIPMOE Uiot TAATPOPUN GUVEYOUS UMY oViXC Uainong Ue
enlyvwon drift yio egopuoyéc CCAM, ye nepoyf perétne to xévtpo tne Adivoc. Haprydnoav: (o)
avamapdiipo pipeline dedopévev oto SUMO (train, test xou eheyyduevo drift péow pelwone tpiBric
v Beoyn), (B) povtého ETA pe gradient boosting xou otoyeupévn eZoymyy| yopoxtneloTxoy,
(v) mhatpdpua pxpolTneestdy «xhelotol Bpdyouy mou avarapdyet Sedouéva, mapuxolovdel opdi-
ot oviyvelel drift ye consensus TOAATAGOY AVLYVEUTMY, ETAVEXTAOEVEL X0 AVTIXATAC TEL LOVTEAQ
ywelc downtime, xou (8) uedodoroyia aflohéynone oe time-lapse mou €deile aviyveuor, npocaupuoyy
xou avéxtnomn amddoone. Kopa evprjpoto: (1) to peahictxd, eheyydpevo drift eivar ouoiddec yia
uetprotes ToxTixés mpooappoyhe, (i) n ouvaiveon aviyveutdv otadeponolel Tic anogdoel, (iii) 7
enavexnaidevon oto otoyeuuévo post-drift napddupo amoxatictd anoteAeopatind TV axpifela, xou
(iv) n Aertouvpy) opatdtnror (mivaxag eléyyou xau ewdonotioel;) elvan Tpobndleon eumotocivng
X0 YRTYOENS OLdyveong.

30

List of Tables

Drift-Aware ML Platform

Admin Dashboard

£ Simulation Controls Bl Simulation Snapshot A Drift State & AlSummary Report

State

Time
Day 02- 10:30 Running

@ Estimated Time of Arrival A Notifications

[Estimated Time of Arrival] Retrained model swapped
Day02-1000

[Fuel Consumption] Concept drift detected

R Fuel Consumption Day02-09:20

[Number of Stops] Concept drift detected
Day02-08:50.

[Estimated Time of Arrival] Concept drift detected
Day02-08:40

Second day started with rain conditions
Day02-08:00.

[Number of Stops] Drift detector calibration completed
Day01-0930
8 Number of Stops

[Fuel Consumption] Drift detector callbration completed

Day01-09:25

[Estimated Time of Arrivall Drift detector calibration completed
Day01-09:25

First day started with normal conditions.
D3y01-08:00.

Figure 3: Iivoxoc ehéyyou — Emavexnaidevon. To ETA yovtého €yel enavexmoudeutel xou
avTixataotoel, To LOVTENO L TACEWY ENUVEXTOUOEVETOL 0XOUA, EVE TO povTiéro Kavaoipou dev €yel
EexvioEL EMAVEXTIALBEUOT) oXOUOL.

Drift-Aware ML Platform

Concept Drif
Admin Dashboard User Interface

2 Trip Selection

Latitude

@® Trip Predictions

@ Estimated Time of Arrival

B Fuel Consumption

Figure 4: Awenagy| yeriotn — Enavexraidevon. Mia emheyuévn dadpour| delyvel auinuévo ypedvo
ETA Aoy enavexnoideuong xou avtixatdotoong tou: 05:03 min, 0.35 L, 1 stop.

31

List of Tables

ITepropiopol xow MeAhoviixég Epyaoicg

O meplopiopol apopoty tor cuvietind dedouéva (Ot TAHws ETEpOYEVY 1 TONUTNY), TPOUTONOYLO-
uévar yopaxtneloTixd (utoToly Tig duoxolies mpoyuatixol online serving yopEaxTNEOTIXOY) Xou
owddeon oe éva xopPo pe Docker Compose. (d¢ peAlovtiny| epyocia TpoTtelvovTol 1) €LY WYY TEOY-
HOTXOY pomv (connectors, xohuoTepnuéves eTlonudvoelc), online/streaming udinon we cuunire-
WU TNG ETAVEXTALOEVCTS, DIIDEST) OTO GUVVEQO PE AUTOUATY) XALUAXWOT Xl ovIEXTIXOTNTA, time-
series 3401 SEBOPEVOV YIOL LOTOPIXES PETEIXES, X0 ETUTAEOV GEVEPLOL UETATOTUOEWY EVVOLOY (aTUY -
porta, xhetofparto dpouwy, Eapvixée odhayéc {htnoneg) yio benchmarking mpocapuoy®yv.

Eniloyocg

Yuvohixd, amodetxvieTton 6Tl Lo mAat@oépuo ML ye entyvwon concept drift yia aotin xavnuixdtnta
elvon eQUXTH) oL Yerown: €VIOTOE OANAYES, TROCUPUOCTNXE EYXALQU XU ETAVEPERE TNV TOLOTNTA
TeoBAEPEWY, BlaTnedvTag TapdAAnAa dtapdvela Aettovpylac. H mpdxinomn mou axoloudel etvon n)
HETdPBaon amd To emxUpnUEVO «sandbox» ot mapaywYT, UE €TEPOYEVY BEOUEVA, xAYUCTERNUEVES
EMONUAVOEL XA AVAYXY] Yol XAYGXWOT] TWV UTNEECLOY, OOTE TO TewToTUTO Vo eCehty el o ol-
OO TN UTNEEG{N XVNTIXOTNTAC.

32

Chapter 1

Introduction

1.1 Motivation

The rapid evolution of Cooperative, Connected and Automated Mobility (CCAM) is transforming
modern transportation systems. CCAM technologies enable vehicles to communicate with each
other and with infrastructure, promising safer, more efficient, and more sustainable mobility [1].
As intelligent transportation systems become increasingly reliant on machine learning for critical
functions such as route optimization, traffic prediction, and safety-critical decision-making, the
accuracy and reliability of these models directly impact both operational efficiency and public
safety. Recent trends in CCAM emphasize the need for real-time adaptability and continuous
model refinement as urban environments become more complex and data-driven [2].

However, achieving reliable predictions in such dynamic settings presents significant challenges.
One key use case is Estimated Time of Arrival (ETA) prediction for vehicles, a core service in
smart mobility that influences traffic management, logistics, and traveler information [2]. Many
current mobility systems do not continuously recalibrate their prediction models as new data
arrives [3].

1.2 Problem Statement

Urban mobility environments are highly dynamic and non-stationary, meaning that the statistical
properties of traffic data change over time. Machine learning models trained on static historical
data often assume a fixed data distribution, an assumption that rarely holds in real city con-
ditions [4]. When deployed in a dynamic urban setting, a model’s performance can gradually
degrade as driving patterns shift due to concept drift, the evolution of the underlying data re-
lationships over time [5]|. This drift is triggered by many factors: for example, road network
changes (e.g., construction) can alter traffic flow patterns significantly [42]. Even routine vari-
ations like weather and seasonal demand swings can lead to abrupt or gradual shifts in vehicle
speeds and congestion levels. A model that performs well on dry, low-traffic days may become
less accurate during heavy rain or rush-hour peaks if those conditions were not part of its training
distribution [6]. The challenge is that static ML models struggle to maintain accuracy in the face
of non-stationarity, as their predictive power deteriorates over time unless the models continually
adapt to the evolving urban mobility data [4].

While concept drift detection and adaptation techniques have been well-studied in the litera-

33

Chapter 1. Introduction

ture [5, 7|, what remains largely unaddressed is the lack of a holistic, integrated platform specif-
ically tailored for CCAM environments. Existing solutions are often fragmented or confined
to laboratory settings, lacking the integration of critical components needed for systematic drift
management in distributed mobility scenarios. Current tools may address individual aspects, such
as drift detection or model retraining, but they rarely incorporate traffic simulation, continuous
monitoring, and adaptive retraining into one seamless, automated loop [8, 9].

This gap motivates the creation of a continuous machine learning platform for mobility: one
that integrates traffic simulation to test "what-if" scenarios, live performance dashboards to ob-
serve errors as they evolve, drift detection algorithms to raise alerts when model performance
degrades, and an automated retraining pipeline to deploy updated models. By monitoring per-
formance through time rather than just offline metrics and triggering adaptation with minimal
human intervention, we aim to ensure that mobility prediction models remain accurate and ro-
bust despite the ever-changing urban environment, ultimately supporting the safety and reliability
requirements of CCAM applications.

Figure 1.1: Cooperative, Connected and Automated Mobility (CCAM).

1.3 Thesis Goal

The objective of this thesis is to design, implement, and evaluate a microservice-based platform
for continuous machine learning in urban mobility applications. In essence, the goal is to create
a drift-aware ML platform that supports end-to-end monitoring and adaptation of predictive
models in a city traffic context.

To achieve this, we first establish a reproducible experimental foundation by developing a syn-
thetic dataset generation pipeline using the SUMO traffic simulator [10]. This addresses a critical
gap: the lack of standardized, publicly available drift benchmarks in urban mobility research. By
leveraging SUMO’s microscopic traffic simulation capabilities, we can generate controlled sce-
narios that include both stable conditions and deliberate drift events, such as weather-induced
traffic changes, providing labeled data for model training and realistic drift testing. This syn-
thetic approach ensures reproducibility, allows for systematic experimentation with different drift
patterns, and enables validation of the platform’s drift detection and adaptation mechanisms in
a controlled yet realistic environment.

34

1.4. Contributions

Building upon this data foundation, the platform will be built using a modular microservice
architecture to ensure scalability and flexibility, where each component (orchestration, model
serving, drift detection, etc.) operates as an independent service. Crucially, the platform is
intended to be model-agnostic and domain-specific: it can host any machine learning model for
mobility prediction tasks, but this thesis will demonstrate and evaluate it primarily through the
lens of an Estimated Time of Arrival (ETA) prediction use case. We focus on ETA because
of its importance in CCAM scenarios, helping vehicles and travelers coordinate effectively, and
because it provides a tangible benchmark to test how well the platform handles concept drift.
Upon detecting drift, it will automatically trigger model adaptation, i.e. retraining and model
swapping, to self-correct the predictions.

Although ETA is the main case study, the system is designed to accommodate additional models.
For example, external predictive modules for Fuel Consumption [12] and Number of Stops [13]
will be integrated to showcase that multiple concurrent mobility models can coexist and benefit
from the shared drift-aware infrastructure. By the end of this thesis, we aim to show that such
a platform can be realized and that it effectively maintains model performance over time in a
realistic urban traffic setting.

1.4 Contributions

This thesis makes several contributions to the state of the art in continuous machine learning for
mobility:

e Synthetic Dataset Pipeline: We developed a reproducible, modular data pipeline that
generates training and evaluation datasets using synthetic traffic data from Simulation of
Urban MObility (SUMO) [10]. Focusing on a case study of central Athens, the pipeline takes
an open-source city road network and creates realistic traffic scenarios (vehicles, routes,
events) to produce rich labeled data. This approach ensures that experiments are repeatable
and tunable, meaning that the pipeline can be re-run for any city region or traffic pattern by
adjusting parameters, thus addressing the shortage of standard drift benchmarks in urban
mobility.

e ETA Prediction Model under Drift: We designed a feature-engineered ETA prediction
model using gradient-boosted decision trees (Light GBM) [17]. The model is trained on the
above dataset to estimate travel times for vehicles, and we introduce domain-specific features
to improve accuracy. More importantly, the model’s performance is evaluated under highly-
realistic simulation-based drift scenarios, e.g., a sudden shift from normal traffic to heavy
rain conditions that reduce vehicle speeds. This allowed us to study how concept drift
affects ETA prediction accuracy, and to validate that our model, and platform, can detect
and respond to these changes.

e Time-Lapse Drift Simulation: We conducted a time-lapse simulation experiment to
rigorously assess drift detection and adaptation in an end-to-end fashion. In this setup, the
SUMO simulator replays an extended sequence where an initial period of stable conditions
is followed by a clear drift event, in this case a transition from dry weather to a storm
causing slower traffic. The platform’s drift detectors monitor the real-time prediction error
and successfully detect the concept drift when the environment changes. We then measure
how the system’s automatic adaptation, triggering model retraining with new data from the
rainy period, helps recover the model’s performance. This exploration provides a realistic

35

Chapter 1. Introduction

1.5

validation of the platform’s ability to observe, detect, and mitigate drift in a controlled yet
lifelike scenario.

Drift- Aware Platform Implementation: We present the design and implementation of
a platform for continuous machine learning in mobility, which is a key practical contribution
of this work. The platform includes components for simulation replay that feed historical or
synthetic data through the model as if in real time, live dashboarding of model performance
metrics, so that users can visualize concept drift as it happens, pluggable drift detection
algorithms with calibration tools to set detection thresholds and minimize false alarms, and
an automatic retraining and deployment pipeline, which seamlessly replaces the old model
with an updated one when drift is confirmed. The entire system is built with modern
software frameworks, such as containerized microservices, REST APIs for model serving,
and event-driven triggers for retraining, to ensure it can be deployed in real operational
environments. By open-sourcing the platform and detailing its architecture, we enable
other researchers and practitioners to reproduce our approach and extend it to their own
cooperative and automated mobility applications.

Thesis Structure

The remainder of this thesis is structured as follows:

Chapter 2: Background - Introduces the foundational concepts and tools underlying
our work. We review machine learning basics relevant to continuous model updating, the
notion of concept drift, such as types of drift and common detection methods, the SUMO
traffic simulator and its functionalities for creating mobility scenarios, and the platform
technologies, like microservices, Docker, and APIs, used to build our solution.

Chapter 3: Related Work - Surveys existing literature and systems in areas pertinent
to our thesis. We cover drift detection tools and frameworks, examples being streaming
ML libraries and MLOps solutions for model monitoring, and review prior research on ETA
prediction models in classic and intelligent transportation. Finally, we discuss how our
approach compares to and innovates upon the current state of the art.

Chapter 4: Dataset and Modeling - Details our methodology for creating the dataset
and developing the ETA prediction model. We describe the data generation process us-
ing SUMO for the Athens case study, including how traffic demand patterns and drift
scenarios, in this case weather changes, are configured. We then present the ETA model
development, including feature engineering, hyperparameter tuning, model selection, and
the overall training procedure and the set up of the experiments.

Chapter 5: Platform Architecture - Provides a comprehensive overview of the drift-
aware platform’s design. We enumerate the microservices and their roles, explain how
the system ingests data, either from simulation or future extensions to real streams, how
drift detection algorithms are integrated, and how the platform orchestrates retraining and
deployment of models. Implementation details of key components, such as the real-time
dashboard, are given to illustrate how the system works in practice.

Chapter 6: Results - Presents the results of our evaluation. We report the baseline
performance of the ETA model under static conditions and then analyze its behavior under
induced drift. We demonstrate the effectiveness of drift detection and quantify the gains

36

1.5. Thesis Structure

from automatic adaptation. The results validate the platform’s ability to maintain model
accuracy over time.

Chapter 7: Conclusions - Summarizes the contributions and findings of the thesis. We
reflect on the success of the continuous machine learning approach for CCAM applications
and any limitations observed. Finally, we outline future research directions, such as im-
provements to platform scaling and monitoring, or integrating the system with real-time
data streams.

37

Chapter 1. Introduction

38

Chapter 2

Background

2.1

Classical Machine Learning

Machine learning (ML) is a field of artificial intelligence devoted to building algorithms that can
learn from data patterns, enabling systems to predict and make decisions with minimal human
intervention. ML algorithms are typically divided into four broad categories: supervised learning,
unsupervised learning, semi-supervised learning, and reinforcement learning [14].

Supervised learning: involves training models on labeled datasets by learning a function
that maps input features to output labels.

Unsupervised learning: finds patterns and structures in unlabeled data, as seen in clus-
tering or dimensionality reduction algorithms.

Semi-supervised learning: combines small amounts of labeled data with larger unlabeled
datasets, enhancing efficiency in domains with limited annotation.

Reinforcement learning: guides an agent to optimal behavior through trial and error,
rewarding desirable actions.

A few representative machine learning models are [15]:

Linear Regression: Used for predicting continuous variables and modeling the relation-
ship between features and output. It retains mathematical simplicity while remaining a
crucial benchmark in both research and forecasting.

Decision Trees: Represent decisions with branching structures, offering interpretability
and handling mixed-type features.

Random Forests: Ensembles of decision trees, reducing variance and improving general-
ization.

Support Vector Machines (SVM): Classifies data by finding the optimal separating
hyperplane, being effective in high-dimensional settings.

K-Nearest Neighbors (KNN): Classifies points based on the “nearest” labeled examples.
Gradient Boosting Frameworks (XGBoost, LightGBM, CatBoost): Ensemble

methods that extend predictive power, speed, and robustness by aggregating the outputs

39

Chapter 2. Background

of numerous decision trees to make predictions. XGBoost is renowned for its scalability
and performance in structured/tabular data [16]. LightGBM excels at speed and memory
efficiency [17]. CatBoost handles categorical variables and is competitive in ranking and
classification tasks [18].

2.2 Deep Learning

Deep learning is a subset of machine learning that uses artificial neural networks to model and
solve complex problems, inspired by the structure and function of biological neurons [19]. These
networks are composed of multiple layers of neurons, each layer processing the output of the
previous layer to extract increasingly complex features. A typical neural network comprises an
input layer, one or more hidden layers, and an output layer.

A few representative deep learning models are:

e Feedforward Neural Networks (Multi-Layer Perceptrons): The core architecture
for classifying or regressing fixed-size inputs.

e Convolutional Neural Networks (CNNs): Specialized for spatial relationships, such
as image data.

e Recurrent Neural Networks (RNNs): Designed for sequential data, such as text or
time series.

e Transformer Models: Modern architectures excelling in tasks ranging from natural lan-
guage understanding to vision.

«
\
“
e

K
Wi
(X
i
AN
e

_ . output layer

hidden layer 1 hidden layer 2

input layer

Figure 2.1: Feedforward neural network architecture with input layer, two hidden layers, and
output layer.

Neural networks are flexible and scalable but can be data-hungry, prone to overfitting, and require
careful regularization and tuning to achieve optimal results.

40

2.3. Model Performance Metrics

2.3 Model Performance Metrics

Model evaluation is essential for assessing predictive reliability. In the following metrics, ;
denotes the true value, y; represents the predicted value for the i-th observation, and n is the
total number of samples. Key metrics for regression models include [20]:

e Mean Absolute Error (MAE):

n
MAE =2 |y — il
=1

This metric conveys the average absolute prediction error, often valued for its interpretabil-
ity and resistance to outliers.

e Mean Absolute Percentage Error (MAPE):

n N
__ 100 \@/z’ - yz"
MAPE = ";Iyz-l :

MAPE expresses error as a percentage relative to true values, facilitating comparisons
across diverse scales. However, MAPE can be unstable when true values approach zero.
Other metrics (RMSE, R?) complement these in providing insight into the variance, fit,
and reliability of regression and classification models.

¢ Root Mean Squared Error (RMSE):

RMSE = %Z(Z/z —9i)?.
i=1

RMSE measures the average magnitude of the prediction errors (residuals) between pre-
dicted and actual values in regression tasks. It is more sensitive to large errors than MAE
due to squaring, penalizing outliers heavily.

e R? (coefficient of determination):

R2 -1— Z?:l(y’b - :&1)2 .
Y i1 (v —)2

R? measures the proportion of variance in the target variable explained by the model,
ranging from 0 to 1. Values near 1 indicate strong fit, while R?> < 0 means the model
performs worse than a constant baseline.

2.4 Regularization, Overfitting, and Underfitting

Models risk overfitting—memorizing the training set at the cost of poor generalization—when
they become excessively complex. Underfitting happens when the model is too simple, missing
essential patterns.

Regularization combats overfitting by penalizing complexity:

41

Chapter 2. Background

e L1 Regularization (Lasso): Encourages sparsity, zeroing non-critical coefficients.
e L2 Regularization (Ridge): Shrinks coefficients smoothly, preferred for stability.

In neural networks, additional techniques such as dropout, early stopping, and weight decay
further mitigate overfitting.

2.5 Cross-Validation

Cross-validation is the gold standard for robust model evaluation. By partitioning data into
training and validation folds, cross-validation (often k-fold) averages performance over multiple
splits, reducing variance and protecting against accidental overfitting to a single dataset segmen-
tation. Model selection and hyperparameter tuning typically leverage cross-validation to ensure
real-world generalizability

Some common cross-validation techniques are:

e K-Fold Cross-Validation: Partition the data into k equal folds, and then train on k-1
folds and validate on the remaining fold.

e Stratified K-Fold Cross-Validation: Partition the data into k equal folds, and then
train on k-1 folds and validate on the remaining fold. The folds are stratified, meaning that
the distribution of the target variable is kept the same in each fold.

e Leave-One-Out Cross-Validation: Partition the data into n equal folds, and then train
on n-1 folds and validate on the remaining fold.

e Repeated K-Fold Cross-Validation: Repeat K-Fold Cross-Validation n times, and then
average the performance over the n repetitions.

2.6 Model Selection and Hyperparameter Tuning

Selecting the right model and its hyperparameters is a critical decision in the ML workflow.

e Model selection often involves comparing candidate models (such as linear regression,
decision tree, or boosting algorithms) using performance metrics evaluated on a validation
set or through cross-validation.

e Hyperparameter tuning refers to optimizing parameters that govern model behavior
but are not learned during training (e.g., learning rate, tree depth, regularization strength,
number of layers in a neural network). Grid search systematically explores combinations,
while random search samples the setup space. Advanced approaches such as Bayesian opti-
mization build probabilistic models to efficiently home in on good hyperparameter settings.

2.7 Continuous Machine Learning

Continuous machine learning, also known as continual or lifelong learning, refers to a paradigm
in machine learning where models incrementally update their knowledge by learning from new
data streams over time, rather than being trained solely once on a static dataset. In contrast to
traditional retrain-from-scratch approaches, continuous machine learning enables models to adapt
to evolving environments, integrate recent information, and remain relevant as data changes. Key

42

2.8. MLOps

strategies include incremental learning (updating parameters gradually), transfer learning, and
experience replay.

A major challenge for continuous machine learning is preventing “catastrophic forgetting”, the
loss of knowledge about previously learned tasks when adapting to new data [21|. Effective
approaches balance learning new patterns (flexibility) with retaining established skills (stability).

2.8 MLOps

MLOps, short for Machine Learning Operations, is a discipline at the intersection of machine
learning and DevOps, focused on standardizing, automating, and streamlining the end-to-end
lifecycle of machine learning models in production environments. Its goal is to bridge the gap
between data science and I'T operations, helping organizations move ML prototypes from research
to production efficiently and reliably.

Core MLOps principles include [22]:

e Versioning: Tracking code, data, models, and experiment metadata to ensure reproducibil-
ity and traceability across iterations and deployments.

e Automation: Implementing CI/CD (continuous integration/continuous delivery) pipelines
for data ingestion, model training, validation, deployment, and rollback, reducing manual
workload and errors.

e Monitoring: Continuously assessing live models for data drift, concept drift, and perfor-
mance degradation, enabling timely retraining, adaptation, and governance.

e Collaboration: Facilitating teamwork between data scientists, engineers, and domain ex-
perts with standardized workflows, shared environments, and modular architectures.

e Governance and Security: Enforcing access controls, audit trails, and compliance with
regulatory standards, especially in sensitive domains.

MLOps empowers organizations to deploy ML solutions at scale, react to switching data envi-
ronments, and maintain high service quality and reliability. Challenges involve cultural change,
tool integration, and evolving infrastructure requirements. Prominent MLOps platforms include
cloud-native solutions (AWS SageMaker, Google Vertex Al), as well as open-source toolkits like
MLflow and Kubeflow.

2.9 Concept Drift

Concept drift is the phenomenon where the statistical properties of the target variable change
over time, leading to reduced model accuracy [5]. Formally, concept drift occurs when the joint
probability distribution changes over time:

Pt(Xa y) 7é PtJrk(X?y)v

where P,(X,y) is the distribution at time ¢ and P;, (X, y) is the distribution at some future time
t + k. More specifically, drift can affect the conditional distribution P(y|X) (real concept drift)
or the input distribution P(X) (virtual drift). This effect is especially critical in streaming and
non-stationary environments, such as online monitoring, finance, or cybersecurity.

Concept drift manifests in various forms:

43

Chapter 2. Background

e Sudden (abrupt): rapid changes in data distribution;
e Gradual: slow transitions between concepts;
e Recurring (recurrent): cyclic or seasonal patterns;

e Incremental: stepwise, small alterations over time.

i §0000NRRNERNANNNNND

B [TTTTTTTTT -
15 1 08 N0 QSRONEGEEENED

a1 [T [I T -
15 10008000000000

ncremental 5| QRERNNNNN -
T T

Reoccurng 5 | JNNNRNANNN T

Figure 2.2: Categories of concept drift.

Detection strategies are categorized as error-rate monitoring (e.g., DDM, EDDM, HLFR), sta-
tistical tests, and ensembles. Drift detectors can monitor prediction error, data distribution, or
model performance metrics. Notable techniques include Hierarchical Hypothesis Testing (HHT),
Linear Four Rates (LFR), and ensemble detectors, each with distinct strengths relevant to the
type and speed of drift.

Accurate and timely drift detection is paramount for maintaining predictive accuracy and reli-
ability. Systems often employ sliding windows or reference distributions to test for shifts, and
performance degradation often triggers retraining and adaptation processes.

Concept drift adaptation strategies help machine learning models stay accurate as data changes
over time. The main approaches include frequent retraining (updating the model on new data),
online learning (incremental updates with each new sample), window-based methods (using only
recent data for training), and ensemble methods (combining several models and favoring those
performing best on recent data) [4, 43]. Some strategies rely on drift detectors to trigger adapta-
tion, while others update models continuously regardless of detected drift. The goal is to respond
quickly to changes, maintaining reliable predictions in evolving environments.

2.10 Key Trade-offs in Drift Detection and Adaptation

Key trade-offs in drift detection and adaptation include [43]:

e Sensitivity vs. False Alarms: More sensitive detectors can spot small or early changes
but risk frequent false positives. Less sensitive thresholds may delay detection, potentially
degrading predictive performance.

44

2.11. SUMO Simulator

Label Availability: Some detectors require true labels to estimate error rates, limiting
their use in unsupervised or delayed-label scenarios. Unsupervised methods can work on
input distributions alone but often have less precision.

Latency: Maintaining low-latency detection is crucial for real-time systems but may require
sacrificing some detection accuracy or threshold tightness to avoid delays.

Computational Cost: More advanced or frequent drift checks, especially those recalcu-
lating statistics or performing window comparisons, can significantly raise resource require-
ments, impacting scalability in high-volume streams.

Carefully balancing these trade-offs is essential when choosing drift detectors and adaptation
strategies for different operational contexts, such as real-time monitoring, batch analytics, or
resource-constrained environments.

2.11 SUMO Simulator

SUMO (Simulation of Urban MObility) is an open-source, microscopic and continuous multi-
modal traffic simulation suite designed to model and analyze the movement of individual vehicles,
pedestrians, and various transportation modes on large-scale road networks [44]|. Each agent, be
it a car, bus, bicycle, or pedestrian is simulated explicitly, with unique routes, behaviors, and
interactions, allowing for fine-grained analyses of traffic dynamics and management strategies [45].

Core functionalities and capabilities include:

Microscopic and Multi-modal Simulation: Models each vehicle, pedestrian, bicycle,
and public transport unit individually, supporting realistic behaviors such as lane changes,
right-of-way rules, traffic light interactions, and intermodal trips within the same environ-
ment.

Flexible Input and Demand Modeling: Supports importing road networks from Open-
StreetMap, commercial formats (VISUM, Vissim, NavTeq), or synthetic networks, and
generates vehicle flows using origin-destination matrices, real traffic counts, or virtual
population-based demand models.

Traffic Management and Policy Testing: Enables the evaluation of traffic lights, rout-
ing policies, eco-aware navigation, and urban policies before real-world deployment.

Real-time Control and Interoperability: Offers APIs like TraCl for live, programmatic
control of the simulation and integration with external tools, such as vehicle communication
(C2X) simulators.

Visualization and Output Analytics: Provides comprehensive visualization tools and
generates detailed simulation outputs including vehicle trajectories, trip statistics, traffic
states, and environmental metrics in XML or CSV formats.

High Performance and Open Source: Efficiently manages large networks (10,000-+
edges; 100,000+ vehicles) across multiple platforms, and is freely available with an active
developer community for extensions and research applications.

These features make SUMO an established tool for transportation planning, intelligent trans-
portation system development, traffic light optimization, and research on smart mobility solutions
worldwide.

45

Chapter 2. Background

2] & 0| [es90a0, 39763 lot52.51515, lonT3.40308¢

Figure 2.3: SUMO simulation environment showing a microscopic traffic simulation with
individual vehicle trajectories, real-time visualization, and speed monitoring capabilities.

2.12 Containerization and Orchestration

Docker is a widely adopted containerization platform that allows the packaging of software
and its dependencies into isolated units called containers [46]. This isolation ensures that code
runs the same way regardless of the underlying environment, solving the notorious “it works on
my machine” problem. Docker containers are lightweight, highly portable, and enable versioned
environments. Academic use cases include reproducible computational research, easy sharing of
code and data, and simplifying complex setups for fellow researchers. In large organizations and
regulated industries (e.g. healthcare, finance), Docker provides essential security, agility, and
compliance by isolating sensitive data and quickly deploying new services.

container image

manages manages

REST API

server manages
docker dasmon

Figure 2.4: Docker components and control flow.

46

2.13. Web Protocols and API Design

Docker Compose builds on Docker by orchestrating multiple containerized services (such as
databases, backends, frontends) through simple configuration files [47]. This facilitates local
development of microservice architectures, comprehensive integration testing, and staging realistic
production environments before deployment.

2.13 Web Protocols and API Design

HTTP is the foundational protocol for web and API communications, enabling clients and servers
to exchange requests and responses in a standardized format, including JSON and XML payloads.

REST APIs are the core architectural style in web services for interoperable communication over
HTTP [41]. By strictly adhering to stateless client-server principles, REST APIs allow disparate
systems, ML pipelines, data stores, external user interfaces, to work together seamlessly.

2.14 Backend and Frontend Frameworks

Fast API is a modern web framework for building RESTful APIs with Python [48]. Distinctively,
FastAPI leverages Python type hints and asynchronous programming, allowing developers to
write concise, robust, and extremely fast endpoints. Its native compatibility with OpenAPI and
automatic documentation greatly reduces manual effort and errors. FastAPI is widely used in
both prototypes and mission-critical systems due to its speed and strong validation.

Dash is a Python framework for creating interactive web dashboards [49]. With minimal Python
code, data scientists and engineers can build sophisticated analytics apps that integrate visual-
izations, user inputs, and RESTful API endpoints. Dash leverages Flask under the hood, but
developers can extend with additional Python frameworks as required for interoperable, cus-
tomized solutions.

Plotly is an extensible visualization library available on top of Dash, useful for interactive charts,
data exploration, and embedding analytics in dashboards [50].

2.15 Data Validation and Storage

Pydantic is the leading Python library for data parsing and validation using type hints [51].
By providing strict enforcement of schemas at runtime, Pydantic allows developers to safely
handle incoming data—whether from users, APIs, or databases—preventing subtle bugs and
security risks. Models inherit from BaseModel and use Python’s type annotations to declaratively
describe fields, their types, and validation logic. When instantiating a model, Pydantic parses
and validates input, raising structured errors for invalid data. Its integration with FastAPI allows
for automatic generation of API documentation and validation of request and response data.

Apache Parquet is a column-oriented data format optimized for analytical workloads in big data
settings [52]. Parquet’s design enables highly efficient compression and encoding, dramatically
reducing storage costs and query times, especially compared to row-based formats like CSV.

47

Chapter 2. Background

48

Chapter 3

Relevant Work

3.1 Tooling Landscape for Drift Detection and Monitoring

3.1.1 River

River is an open-source Python library for online machine learning on streaming data, born from
the merger of the Creme and scikit-multiflow projects [27]. It provides a single unified framework
to train models incrementally, one sample at a time, which makes it well-suited to scenarios with
continuous data and potential concept drift. River includes a variety of learning algorithms (e.g.
linear models, Hoeffding trees, ensemble methods) that can update their parameters on the fly, as
well as evaluators and metrics that update incrementally along with the model. Notably, River
treats concept drift as a first-class concern: it implements plug-and-play drift detection methods
like ADWIN, DDM, and EDDM to signal when the statistical properties of the data or the
model’s error rate have changed significantly. A major strength of River is its efficiency and low
overhead for streaming applications, it avoids expensive retraining by doing continuous machine
learning, enabling rapid adaptation to changing data. However, River’s focus on single-instance
updates means it may not directly leverage batch acceleration or GPU computing as efficiently
as some batch frameworks. Overall, River is focused on streaming adaptation and concept drift
handling, making it a powerful tool for real-time ML systems.

3.1.2 scikit-multiflow

scikit-multiflow is an earlier Python framework for stream learning and concept drift, which was
one of River’s predecessors [28]. Inspired by the Massive Online Analysis (MOA) stream mining
software in Java, scikit-multiflow brought popular stream learning algorithms and evaluation tools
into the Python ecosystem. It supports a range of tasks including classification, regression, and
even multi-output prediction, and it provides several drift detection algorithms (e.g. ADWIN,
DDM, EDDM, Page-Hinkley) as part of its toolkit. A key design goal was compatibility with
scikit-learn, allowing users to integrate stream learning with familiar APIs. The strengths of
scikit-multiflow include its breadth of implemented methods, many inherited from the MOA
framework, and the ability to simulate data streams with built-in generators for controlled concept
drift, e.g. abrupt or gradual drift in synthetic data. However, scikit-multiflow is no longer actively
maintained and its functionality has effectively been subsumed into River, which offers a more
consolidated and improved interface. In practice, new projects prefer River for streaming tasks,
but scikit-multiflow remains a reference point in the literature and is still useful for benchmarking

49

Chapter 3. Relevant Work

new drift detection techniques due to its comprehensive implementation of classical methods.

3.1.3 Alibi and Alibi Detect

Alibi is an open-source library by Seldon Dev focused on machine learning model inspection
and explainability, offering techniques like counterfactual explanations and influence scores for
black-box models, for example explaining why a prediction was made. Building on this, the
Seldon team also released Alibi Detect, which is a library specifically for outlier detection and
concept drift detection in ML applications |29, 53]. Alibi Detect provides a collection of both
offline and online detectors for various data types: tabular data, text, images, and time series. It
includes statistical methods, like Kolmogorov-Smirnov or Chi-square tests for distribution drift
in features, as well as learned detectors, like drift detection using neural network embeddings for
complex data such as images. A notable focus of Alibi Detect is support for different modalities
and integration with modern ML stacks: it can use TensorFlow or PyTorch under the hood,
which allows it to implement advanced detectors, for example a PCA-based outlier detector or a
classifier-based drift detector, that leverage GPUs. The strength of Alibi/Alibi Detect lies in its
broad coverage: it tackles not just drift but also outliers and even adversarial example detection
in one package, making it a flexible choice for production monitoring where explainability and
data quality are needed alongside drift detection. One limitation is that Alibi Detect is a lower-
level library, it provides algorithms but not a full monitoring solution. Users must integrate
it into their workflow, for example, through scheduling periodic drift checks or responding to
detector alerts in an MLOps pipeline. Additionally, configuring the more complex detectors may
require expert knowledge, like setting thresholds or choosing embedding models. In summary,
Alibi for explainability and Alibi Detect for drift/outliers offer a robust toolkit focused on model
insight and data drift, well-suited for use cases where understanding model behavior and detecting
distribution shifts are both important.

3.1.4 Evidently

Evidently is an open-source Python library and toolset designed to evaluate, test, and monitor
machine learning models and data in production [30, 53]. It provides pre-built reports and dash-
boards to analyze things like data drift, target drift, data quality, and model performance over
time. One of Evidently’s core features is the ability to generate an interactive HTML dashboard
comparing a reference dataset, like the training data or last week’s data, to a current dataset.
The dashboard includes visualizations and statistical tests that highlight any significant changes
in feature distributions or model outputs. It also tracks model performance metrics, if ground
truth is available. The strengths of Evidently include its ease of use and rich visualization, as,
with minimal code, a user can produce a comprehensive report that would otherwise require
manual analysis. This makes it a popular choice for integrating into Jupyter notebooks or auto-
mated pipelines to regularly check for data drift and model decay. A current limitation is that
Evidently’s real-time capabilities are evolving, considering it was initially built for batch analysis
and reporting. Using it in a truly live monitoring scenario with continuous streaming data may
require additional effort, such as writing a job to compute metrics on rolling windows. Addi-
tionally, while it identifies drift and performance issues, it doesn’t automatically retrain models
or suggest fixes, as it’s primarily a monitoring dashboard. In short, Evidently fills the role of
ML monitoring and data validation by making drift detection and model quality checks more
accessible and transparent.

50

3.1. Tooling Landscape for Drift Detection and Monitoring

Embeddings drift Text data drift

Drift in column 'review'
Data drift detected. Drift detection method: Text content
drift. Drift score: 0.685

Dataset drift

> - - il il
e - e, e, -
o I I ouected
- alh . wlhl.. - Feature drift
- .. .

- mal dinn =

all "

Figure 3.1: Evidently: Data drift evaluation.

Prediction drift

3.1.5 NannyML

NannyML is a newer open-source library specifically focused on post-deployment model moni-
toring, with an emphasis on detecting concept drift and estimating model performance without
immediate ground truth [31, 53|. It aims to answer the question: “How is my model performing
now, given that I might not have labels for the latest predictions?”. To this end, NannyML
provides tools for data drift detection, as well as algorithms to infer performance drop. A center-
piece is its Confidence-Based Performance Estimation (CBPE) method, which uses the model’s
prediction probabilities and detected data drifts to estimate metrics like accuracy or ROC AUC
in production before real labels arrive. In practical terms, NannyML can alert you that “your
model’s inputs have shifted significantly, and it estimates your model’s accuracy has dropped
from 0.85 to 0.70, for example”, allowing proactive retraining or investigation. Another innova-
tive feature is the “reverse drift” (RCD) concept: assessing how changes in input data would be
expected to affect the target distribution and thus the model’s error, essentially linking drift to
business impact. The strength of NannyML lies in this performance-centric approach to drift: it
goes beyond flagging that data has changed, by quantifying the likely effect on model predictions
and outcomes. This is particularly useful in industries where obtaining true labels is slow or
expensive (e.g., credit risk, where you only know defaults after many months). NannyML’s limi-
tations include that it currently supports primarily classification tasks (binary and multiclass) for
its performance estimation module. The techniques can be complex to calibrate. For instance,
CBPE assumes the model’s probability estimates are well-calibrated and that past relationships
hold, which might not always perfectly predict actual performance. Additionally, as a specialized
library, it may need to be integrated into an existing MLOps setup, as it provides Python APIs
and some UI components, but not a full monitoring server on its own. In summary, NannyML
represents an advanced approach to concept drift monitoring: instead of just detecting drift, it
focuses on what that drift means for model accuracy, helping close the gap between drift signals
and model maintenance actions.

o1

Chapter 3. Relevant Work

F1 Estimated performance (M-CBPE)

Jan 2018 Apr 2018 Jul 2018 Oct 2018 Jan 2019 Apr 2019 Jul 2019

Metric (reference) Confidence band (reference) Alert Threshold
0

—+— Metric (analysis) Confidence band (analysis)

Figure 3.2: NannyML: Monitoring estimated performance with the CBPE method

3.1.6 Summary and Limitations

While the libraries surveyed above (River, scikit-multiflow, Alibi Detect, Evidently, and Nan-
nyML) offer powerful building blocks for drift detection and online learning, they share a common
limitation: they are primarily toolkits rather than complete systems. Each requires manual inte-
gration into an MLOps pipeline, often leaving critical gaps such as automated retraining, model
hot-swapping, and end-to-end orchestration to the user. Furthermore, none provide a cohesive
solution that combines drift detection with automatic adaptation and user-facing interfaces in
a single deployable platform. In contrast, this work presents a fully integrated microservices
architecture that addresses these gaps by implementing consensus-based drift detection, auto-
matic model retraining and deployment, multi-task prediction, real-time simulation integration,
and interactive dashboards for both monitoring and end-user predictions. By demonstrating this
end-to-end workflow in a realistic traffic prediction scenario, the platform showcases how drift
detection theory translates into production-ready systems with minimal manual intervention,
closing the loop from detection to adaptation in a way that standalone libraries cannot.

3.2 ETA Prediction: Literature Overview

3.2.1 Classical Time-Series Methods

Predicting travel time or estimated time of arrival (ETA) is a well-studied problem in the trans-
portation domain, and a variety of machine learning approaches have been explored. Early works
approached ETA prediction with classical time-series models like ARIMA, treating travel time
as a time-dependent process [54]. While such statistical models worked in limited settings, they

52

3.2. ETA Prediction: Literature Overview

struggled with the inherent non-linearities and context dependencies of traffic data.

3.2.2 Deep Learning Approaches

Over the past decade, the field has seen a surge of deep learning methods that capture complex
spatial and temporal patterns in traffic networks. For example, recurrent neural networks (RNNs)
and long short-term memory (LSTM) architectures have been used to model vehicle trajectories
as sequences of GPS points, successfully learning temporal dependencies such as road segment
travel times and rush-hour effects [32, 33]. Convolutional neural networks have been applied to
encode spatial information. One notable approach is to treat a path’s GPS sequence like an image
or matrix (e.g., via a grid or along-route segmentation) and use CNNs to extract features [55].
More recently, attention mechanisms and transformers have been introduced. AttentionTTE [56]
employs self-attention to capture global interactions among road segments, combined with a
recurrent module for local temporal trends. This achieved state-of-the-art results on a large
trajectory dataset, indicating the benefit of modeling both local and long-range dependencies
in routes. Similarly, researchers have explored multi-task learning in deep models, for instance,
the WDR (wide-deep-recurrent) model [57] and CoDriver system [58] incorporated an auxiliary
task (learning driver behavior style) to improve ETA predictions, demonstrating that additional
contextual signals can improve accuracy.

v
Hﬁ’’"_-] Viocal
—iRE
Pﬂﬂlzm:ut = Wg._’!t_ ~

N
Naemgeiaianersaan s tan

Kiocal Attention

Softmax -*{X",

Wy =
Sigmoid ik 0 FC

! ! —
ﬂ Oiam.‘ 7
3 featureyq,

sasiss hm"dpnd

T
WL

feature,

attr disturb

Global Spatial Correlation Extraction

Figure 3.3: AttentionTTE: The self-attention of spatial correlations extraction module.

3.2.3 Graph Neural Networks

In parallel to sequence-based methods, graph-based approaches have gained prominence for ETA
and traffic prediction. In a road network, intersections and road segments can be naturally
represented as nodes and edges in a graph, so graph neural networks (GNNs) can explicitly
model the connectivity and traffic flow between road segments. Another notable approach is a
GNN-based ETA model deployed in production for Google Maps [59], which learns from massive
amounts of traffic data while incorporating road network topology and dynamic conditions (like
accidents or rush hour patterns). By using GNN layers to propagate information along the road
graph, their model can account for upstream slowdowns or congestion that classical models might
miss. This graph-based ETA estimator yielded significant improvements in real-world accuracy,

93

Chapter 3. Relevant Work

for example, reducing large ETA errors by over 40% in some cities compared to the previous
baseline.

Other studies have followed similar ideas, building spatio-temporal graph models that combine
GNNs with temporal sequence modeling (e.g. graph convolution plus LSTM) to predict travel
times under varying conditions [60, 61]. These advanced deep learning models represent the
current state-of-the-art, especially when rich data is available (historical trajectories, real-time
traffic sensors, etc.). They tend to excel at capturing complex patterns, but at the cost of higher
complexity and data requirements.

3.2.4 Gradient Boosting and Hybrid Models

Despite the success of deep neural approaches, tabular data methods remain highly relevant,
especially in industry settings where interpretability, simplicity, or limited data are considerations.
Many practical ETA prediction systems reduce the problem to a regression on engineered features:
for example, features might include the route distance, expected traffic speed, number of traffic
lights, time of day, day of week, weather conditions, and so on. Gradient boosting decision
trees (GBDT) have been a popular choice for such tabular formulations [34, 35]. GBDT models,
implemented with tools like XGBoost or LightGBM, offer strong performance on structured
data and have the advantage of producing feature importance insights, which is valuable for
understanding ETA drivers.

Zhang and Haghani (2015) demonstrated that with carefully constructed input features, includ-
ing real-time traffic indices, a GBDT model can achieve accuracy comparable to more complex
models, though it may need frequent updating to handle drift. Another recent work applied
XGBoost, CatBoost, and Light GBM to predict bus arrival times in a smart city context, show-
ing that these boosted tree models are competitive for ETA and can be tuned to high accuracy
given domain-specific feature engineering [62]. In their case, gradient boosting achieved around
30% mean absolute percentage error for autonomous bus ETAs, providing a solid baseline for
comparison.

The continued popularity of gradient boosting in this domain is due to several factors:

1. Tabular features can encode a lot of prior knowledge, for instance, the road speed limit or
historical average travel time on a segment is an informative predictor that a tree can easily
use.

2. Training and inference are fast and resource-efficient compared to deep sequence models,
which is useful for deployment on edge devices or with limited infrastructure.

3. The models are easier to maintain and one can retrain a new boosted tree model on recent
data periodically, and examine feature importances if the model starts to degrade.

Of course, a limitation is that these models do not automatically capture sequential or spatial
relationships unless those are manually turned into features.

Therefore, the current trend in ETA research and applications is often a hybrid one: use domain
knowledge to engineer strong features and/or combine outputs of simpler models, and, where
possible, incorporate the structure of the problem (sequential or graph) via specialized models or
ensemble approaches. Well-known benchmarks, such as the NYC Taxi trip duration dataset [63]
or the Google Maps ETA data [59], often show that gradient boosting with rich features can be
very effective, coming close to deep learning methods when the latter are not heavily optimized.

o4

3.3. Novelty and Contributions of the Proposed Platform

In summary, ETA prediction methods span from deep learning models leveraging spatio-temporal
structure to gradient-boosted tree models on tabular features, and the choice often depends on
available data and the need for interpretability versus maximum accuracy.

3.3 Novelty and Contributions of the Proposed Platform

The platform developed in this thesis brings together ideas from concept drift research, MLOps,
and domain-specific traffic simulation to create a closed-loop adaptive learning system for mo-
bility. Here we summarize the key novel contributions of this platform, and how it differentiates
itself from existing tools and literature.

3.3.1 Controlled Drift Simulation with SUMO

In order to study concept drift in a realistic yet controlled manner, we utilize a traffic simulation,
performed with SUMO - Simulation of Urban MObility. SUMO allows us to generate synthetic
traffic data under varying conditions with fine control. A novel aspect is the creation of a
time-lapse scenario in which we deliberately introduce a sudden change in environment. For
example, the platform simulates 10 hours of normal driving conditions followed by 10 hours of
heavy rain, where rain is modeled by globally reducing the road friction coefficient in the SUMO
network. This causes vehicles to slow down and drive differently, thereby inducing concept drift
in the input data and the relationship between features (e.g. speeds, distances) and targets
(travel time, etc.). By having this capability to manufacture drift on demand, we can evaluate
how well different detectors and adaptation strategies perform on a known “ground truth” drift
event. Traditional drift detection research often relies on either real-world events, which are
unpredictable, or synthetic data generators for drift. Our use of SUMO bridges that gap by
producing realistic, domain-specific drift.

This approach is relatively unique. To our knowledge, few if any published works have demon-
strated a full ML workflow where a traffic microsimulator is used to inject controlled drifts and
then automatically detect and counteract them in real time. Moreover, the platform continuously
tracks the model’s performance during the simulation; as the rain scenario unfolds, we log the
model’s prediction error metrics (e.g. mean absolute error for ETA) to observe how performance
degrades due to drift. This provides an authentic demonstration of concept drift’s impact on a
machine learning model deployed in a dynamic environment.

3.3.2 Multi-Task Prediction and Monitoring

The platform is designed to handle multiple related prediction tasks simultaneously, which is a
departure from most drift detection case studies that focus on a single prediction output. In
our implementation, a set of separate models, produces predictions for ETA, Fuel Consumption,
and Number of Stops for a given vehicle trip. This multi-task setup reflects a more complex
operational scenario.

From a drift detection perspective, the platform monitors drift on multiple data streams and
multiple performance metrics concurrently. This also means that using the platform, one can
observe how a drift in the environment can have different manifestations across tasks (e.g., rain
might drastically affect ETA and fuel consumption but not the predicted number of stops if stops
depend more on route layout than speed). But this option opens another possibility to the end
user, which is to compare the performance of similar models, or different flavors of the same

95

Chapter 3. Relevant Work

model, on the same data stream, to find the one that has the better behavior, when drift is
present. This is novel compared to existing tools like River or NannyML which typically assume
a single target.

The above mentioned options required developing a custom monitoring strategy that can ag-
gregate signals from multiple drift detectors and multiple outputs. We implemented a simple
consensus mechanism with multiple drift detectors, where each model had its own copy of the
drift detectors, running in parallel and independently. This consensus mechanism reduces false
alarms in a noisy multi-task setting. Supporting multiple tasks in one platform is a practical con-
tribution because real-world systems often have to monitor dozens of metrics, our work provides
a template for how to achieve that in an automated way.

3.3.3 Automated Model Retraining and Hot-Swapping

Perhaps the most significant contribution of the platform is the seamless closed-loop adaptation
capability. When concept drift is detected, the platform doesn’t just raise an alert. It initiates
a retraining pipeline and deployment of an updated model, without human intervention. Con-
cretely, the system maintains a buffer of recent data (e.g., the last 1 hour of vehicle trips) and
when drift is confirmed, it triggers a retraining job that fine-tunes or re-fits the ML model using
this new data distribution. We implement this efficiently for the gradient boosting models, such
as the one used for ETA, by retraining the model on the drifted data, based on a warm start on
top of the previous one.

Once the new model is trained, the platform performs a hot swap. The running system begins
using the new model for all subsequent predictions, with no downtime at all.

This kind of automated retraining and deployment is often discussed in MLOps but not so
commonly demonstrated end-to-end in academic literature. The novelty here is showing the entire
loop: we not only detect drift, we close the loop by adapting to it immediately. This required
solving engineering challenges (e.g., ensuring that the system can retrain while continuing to serve
predictions, avoiding a halt or latency spikes) and design challenges (deciding when retraining
is worth it to avoid model churn). The outcome is an architecture where model performance
degradation is not only observed but automatically countered by an update, moving towards the
ideal of a self-healing ML system.

3.3.4 Real-Time Dashboard and Visualization

Finally, in order to make the system’s operations interpretable and to aid in human-in-the-loop
oversight, the platform includes a real-time dashboard that visualizes the current state of the
simulation and the ML models. This dashboard (built with Dash/Plotly) displays key information
such as charts of performance metrics over time, and a timeline of platform events, with emphasis
on drift detections, retraining triggers, and model hot-swaps.

When a drift is detected, a retraining job is triggered and a model swap occurs, the dashboard
visibly flags these event separately, for example showing the following notifications: “|ML Task]|:
Drift detected at 10:30” and “|ML Task|: Model retrained and hot-swapped at 11:00”. Subsequent
improvements in error can then be observed, showing the effect of the adaptation process.

Beyond passive monitoring, the dashboard exposes a user interface meant to be used in a human-
in-the-loop manner. Users can request a specific sample to be predicted (in this traffic simulation,
a specific origin-destination trip) and the platform will infer the predictions from the current

o6

3.3. Novelty and Contributions of the Proposed Platform

models and present them. This enables the user to quantify how a fixed sample’s prediction
changes before drift, during drift, and after adaptation, enhancing the understanding of the
system’s behavior.

While a dashboard itself is not a novel research contribution, integrating it end-to-end with the
platform and coupling it with the user interface closes the feedback loop by allowing users to watch
the ML system adapt in real time. Many existing drift tools like Evidently produce static reports
or require the user to inspect logs; in contrast, our system’s Ul shows a continuously updating
view, which is especially important in a streaming context. This also helps communicate the
results, effectively illustrating the benefit of the adaptive approach.

3.3.5 Conclusion

In summary, the platform distinguishes itself by combining drift generation, detection, and adap-
tation in one unified environment and by making their effects inspectable through an interactive
dashboard. Unlike existing monitoring libraries that stop at detection, our system covers the
full lifecycle of a realistic mobility scenario. It manufactures a drift (rainy weather) in a traffic
simulation, observes the model’s decline, detects it via multiple detectors, and then remedies it
through automated retraining, all while delivering insights through a real-time interface. This
end-to-end closed-loop approach, applied in the context of cooperative, connected and automated
mobility, is a novel contribution demonstrating how advanced MLOps techniques, such as con-
tinuous monitoring and automatic adaptation, can be applied to maintain model performance in
non-stationary environments.

o7

Chapter 3. Relevant Work

o8

Chapter 4

Dataset Generation and Machine
Learning Research

4.1 Dataset Generation

This chapter details the construction of a synthetic, yet faithful, urban-traffic dataset for central
Athens and the methodology used to train and evaluate an Estimated Time of Arrival (ETA)
model under controlled concept drift.

The data were generated with the SUMO microscopic simulator and released in three complemen-
tary scenarios: train, test, and rain, each spanning 10 hours of simulated time with per-second
Floating Car Data (FCD) telemetry (vehicle position, speed, lane, odometer, fuel, waiting).

The rain scenario introduces a physically interpretable distributional shift by uniformly reduc-
ing road-surface friction across the network, yielding a measurable degradation in speed and a
significant increase in trip durations.

The pipeline emphasizes reproducibility (fixed seeds, parameterized configs), modularity (clean
separation of network preparation and per-scenario simulation), and portability to other regions
and drift magnitudes.

4.1.1 Study Area

The study area is a dense, signal-controlled rectangle in central Athens, selected for its non-trivial
junction structure and representative city-center congestion. The final network comprises 1,184
edges and 689 junctions, covering 68.17 km of roadway, a scale large enough to expose complex
queueing and dynamics relevant to ETA modeling.

The study area can be seen in Figure 4.1.

Network bounds and more detailed summary metrics are reported in Table 4.1.

4.1.2 Network Construction

Rather than relying on SUMQ’s interactive tooling like the osmWebWizard GUI, the network build
process invokes osmGet . py and osmBuild.py directly from scripts, with specific options specified.
These scripts are responsible for extracting the OSM data [64] for the specified bounding box

99

Chapter 4. Dataset Generation and Machine Learning Research

Figure 4.1: Study area in central Athens.

Table 4.1: Network characteristics of the central Athens study area.

Metric Value

North-West Boundary —(37.974745936977456, 23.725252771719436)
South-East Boundary — (37.988290142332225, 23.752735758169127)

Size 2.42 km x 1.48 km
Area 3.58 km?
Fdges 1184
Junctions 689
Traffic Lights 106
Total Road Length 68.17 km
Average Edge Length 57.57 m

60

4.1. Dataset Generation

and building the SUMO network by converting the OSM data into a SUMO-compatible net-
work format. This choice affords programmatic reproducibility, gaining full access to the internal
netconvert and polyconvert options that are not exposed by the GUI, and headless, automated
runs without manual interaction. The base network is generated once from OpenStreetMap ex-
tracts for the specified bounding box, with traffic-light inference and junction geometry refine-
ment. A second variant is then created by cloning the base network and uniformly applying a
reduced lane friction coefficient of 0.4 to all lanes for the rain scenario. This design preserves
topology and routing feasibility across scenarios, isolating the physical effect of reduced friction
from confounds induced by network edits.

4.1.3 Vehicle Classes

Vehicle classes are limited to passenger cars to avoid heterogeneity that would affect drift analysis
and feature learning. Excluding motorcycles and heavy vehicles reduces behavioral variance
(e.g., lane splitting or heavy acceleration/deceleration profiles) and simplifies interpretation while
retaining the primary dynamics needed for ETA modeling. These vehicle classes would account
for a small percentage of the total vehicle fleet, with the motorcycles holding a higher percentage,
and being rather difficult to model accurately due to their heterogeneous driving behavior [65].
By focusing on the dominant vehicle class, passenger cars, the dataset maintains methodological
simplicity while capturing the primary traffic dynamics relevant to the prediction tasks and
research objectives.

4.1.4 Traffic Demand Modeling

Traffic demand follows a realistic hourly pattern designed to mimic real-world Athens traffic
patterns observed in sources such as the Athens Mobility Observatory [36] and similar traffic
monitoring platforms. Considering that we opted for 10 hour simulation, we chose a pattern that
would capture characteristic morning and evening rush hours with a midday decline typical of
urban traffic, in between the hours of 08:00 and 18:00. The base generation periods, in seconds
between vehicle departures, are shown in Table 4.2.

Table 4.2: Hourly demand schedule for 08:00-18:00. Period denotes the generation interval
(seconds per vehicle). Trips/hour are approximated as 3600/period.

Hour (local) Period (s/veh) Approx. Trips/hour

08:00-09:00 0.50 ~7200
09:00-10:00 0.55 ~6545
10:00-11:00 0.65 ~5538
11:00-12:00 0.75 ~4800
12:00-13:00 0.80 ~4500
13:00-14:00 0.80 ~4500
14:00-15:00 0.75 ~4800
15:00-16:00 0.65 ~5538
16:00-17:00 0.65 ~5538
17:00-18:00 0.60 ~6000

To introduce natural variability between simulations and avoid identical traffic patterns, each
scenario applies Gaussian noise to the base traffic generation periods. Each base period is multi-

61

Chapter 4. Dataset Generation and Machine Learning Research

plied by a random value drawn from a normal distribution centered at 1.0 with standard deviation
0.01. These values are chosen empirically to introduce some stochastic variability in traffic vol-
umes while preserving the overall hourly pattern shape, and to avoid introducing too much noise.

Each scenario uses a distinct random seed that controls the following:
e Gaussian noise applied to traffic generation periods
e Random trip generation (origin-destination pairs)
e Departure and arrival positions on edges
e Vehicle behavior stochasticity in SUMO

Based on the above, the trip generation is performed using SUMO’s randomTrips.py tool. Ran-
dom origin-destination pairs are generated for each scenario. Trips are distributed according to
the hourly traffic generation periods, after Gaussian noise application, validated for route fea-
sibility, and assigned random departure/arrival positions on edges. This process is performed
separately for each scenario (train, test, rain) using the respective random seeds.

4.1.5 Concept Drift Scenario

Several candidate drift mechanisms were evaluated prior to finalization.

Lane Closure Approach This approach used SUMO’s closinglLaneReroute mechanism to
mark specific lanes as closed, with vehicles calculating routes at insertion time. The critical issue
was that vehicles would stop at green traffic lights when approaching closed lanes, remaining
stationary until SUMQO’s automatic teleportation mechanism activated after 300 seconds—a clear
simulation failure.

The root cause was the absence of rerouting devices. Adding them would allow dynamic recal-
culation around closures, but this also meant that all vehicles would reroute based on real-time
conditions, fundamentally altering traffic behavior compared to the base scenario. As a result,
isolating the effect of closures from dynamic rerouting became impossible, and the scenario was
abandoned.

Network Topology Modification This approach used SUMO’s netedit tool to physically
remove closed lanes or edges, with junctions automatically recalculated. Removing edges re-
duced network capacity, causing vehicles to be inserted at different times due to congestion
delays—breaking temporal comparability between scenarios.

The sensitivity was highly non-linear and unpredictable: closing major roads like Panepistimiou,
a main thoroughfare, sometimes produced minimal impact, while closing minor edges would
completely bottleneck the network. Network analysis metrics, such as betweenness centrality and
edge importance, were used to identify strategic closures, but finding combinations that were
realistic (e.g., metro construction, roadworks) while producing detectable but not catastrophic
drift proved extremely difficult.

Vehicle Behavior Modification This approach altered Krauss car-following model parame-
ters (tau and sigma) [66], default vehicle type attributes such as acceleration and deceleration,
following gaps, and speed factors to simulate aggressive or cautious driving patterns.

62

4.1. Dataset Generation

Table 4.3: Distributional shifts between baseline test scenario and rain scenario with reduced

friction.
Metric Test (Baseline) Rain (Drift) Change
Average Speed 29.84 km/h 25.76 km/h -13.68%
Trip Duration 211.58 s 247.00 s +16.74%
Trip Distance 1677.53 m 1685.18 m +0.46%
Waiting Time 19.78 s 22.02 s +11.33%

Fuel Consumption 216300.76 mg 218780.58 mg +1.15%

Behavior changes produced only subtle effects on aggregate traffic patterns, didn’t correspond
to clear real-world events, unlike rain or construction, and lacked ground truth for validation of
“realistic” parameter ranges. This approach was also deemed unsuitable.

Conclusion - Rain Scenario Based on the above, the final drift mechanism uses friction-
based rain simulation. The rain scenario introduces concept drift by simulating adverse weather
conditions through reduced road surface friction. This approach was chosen because:

e Physical realism: Rain directly reduces tire-road friction, a well-understood phenomenon
e Interpretability: Clear causal relationship between friction and vehicle behavior

e Measurable impact: Reduced friction increases braking distances, decreases acceleration,
and lowers average speeds

e Network preservation: No topology changes—all routes remain valid
e SUMO support: Native friction parameter in lane definitions

As mentioned earlier, a modified network is created by parsing the base network XML and
applying a global friction reduction to all lanes. The friction parameter is set to 0.4, down
from the default 1.0, uniformly across all lanes in the network. This modified network is saved
separately and used for the rain scenario simulation.

The chosen value of 0.4 technically falls within the snow /ice range according to road surface fric-
tion coefficients, rather than the wet road range (u ~ 0.5-0.8) [11]. This decision was intentional:
the objective was to produce a significant and detectable concept drift for model evaluation,
rather than to precisely simulate realistic rain conditions. The 0.4 coefficient ensures measurable
performance degradation while maintaining simulation stability and avoiding extreme scenarios
that would lead to complete traffic collapse.

This decreased friction affects vehicle dynamics by altering the maximum acceleration and de-
celeration, cornering speed, and emergency braking, and more. The result is that vehicles in the
rain scenario experience slower acceleration from stops, earlier and gentler braking, longer trip
completion times, and different congestion patterns.

The rain scenario introduces measurable distributional shifts compared to the baseline test sce-
nario, as seen in the following Table 4.3.

The most significant impacts are on average speed (reduced by 13.68%) and trip duration (in-
creased by 16.74%), demonstrating clear concept drift that challenges machine learning models

63

Chapter 4. Dataset Generation and Machine Learning Research

trained on baseline conditions.

4.1.6 End-to-End Generation Pipeline
The complete pipeline consists of 9 steps:

1. OSM Data Extraction — Download OpenStreetMap data for Athens bounding box
Network Building — Convert OSM data to SUMO network format
Rain Network Creation — Generate friction-modified network for drift scenario
GUI Settings — Write SUMO-GUI visualization settings
Configuration Files — Generate simulation configuration files per scenario
Trip Generation — Create random origin-destination pairs per scenario
Simulation Execution — Run SUMO simulation per scenario

Format Conversion — Convert CSV output to Parquet format

© X N otk W N

Exploratory Analysis — Generate statistics and plots

The first 4 steps are performed only once, while the remaining 5 steps are performed once for
each scenario (train, test, rain).

4.1.7 Reproducibility and Extensibility

The pipeline is designed for full reproducibility and extensibility with all configuration parameters
centralized in a YAML configuration file. Each step is an independent function with well-defined
inputs and outputs. All parameters are stored in a YAML configuration file with structured
dataclass access. Random seeds control all stochastic elements (traffic noise, trip generation,
vehicle behavior). All commands, outputs, and errors are logged with timestamps. Path existence
and command success are validated at each step.

The pipeline can be easily adapted to generate new datasets by modifying configuration param-
eters. Key customization points include:

e Geographic Area: Change the bounding box to simulate any OSM-covered region

e Traffic Demand: Modify hourly traffic patterns

e Traffic Volume Noise: Adjust the mean and standard deviation of the Gaussian noise
e Random Seeds: Use different seeds to generate alternative traffic patterns

e Simulation Duration: Extend or shorten the simulation timespan

e Drift Parameters: Adjust network friction to vary rain severity

e Network Processing: Modify netconvert options to change junction detection and traffic
light logic

e Rerouting Behavior: Adjust adaptation steps and intervals to change vehicle re-routing
aggressiveness

e Vehicle Classes: Include buses, trucks, or other vehicle types

64

4.1. Dataset Generation

Table 4.4: Comprehensive dataset characteristics across all three scenarios.

Metric Train Test Rain
Purpose Model training Model evaluation Concept drift testing
Network Base (friction=1.0) Base (friction=1.0) Rain (friction=0.4)
Random Seed 13 2025 314159
Simulation Duration 36000 s (10 hours) 36000 s (10 hours) 36000 s (10 hours)
Total Trips 53,978 56,212 55,366
Average Trip Duration 205.22 s 211.58 s 247.00 s
Average Trip Distance 1675.81 m 1676.36 m 1684.88 m
Average Speed 30.24 km/h 29.81 km/h 25.74 km/h
Total FCD Records 11,130,801 11,948,843 13,728,897
CSV Size 770.1 MB 826.8 MB 946.9 MB
Parquet Size 233.3 MB 247.4 MB 282.3 MB

This modular design allows researchers to reproduce the exact datasets described in this thesis
or generate new variants for different experimental conditions.

4.1.8 Output Format

The output format is Floating Car Data (FCD) with per-timestep vehicle telemetry at 1-second
resolution:

e timestep: Simulation time (seconds)

e id: Vehicle identifier

e x, y: Position coordinates on the network (meters)
e speed: Instantaneous speed (m/s)

e lane: Current lane ID

e odometer: Cumulative distance (m)

e fuel: Fuel consumption rate (mg/s)

e waiting: Time spent waiting since last stop (s)

To optimize downstream analytics, the raw CSV is converted to Parquet (columnar, compressed),
which substantially reduces storage and accelerates feature extraction and aggregation.

4.1.9 Dataset Characteristics

The final dataset, containing the three scenarios (train, test, rain), has the following characteris-
tics, summarized in Table 4.4.

4.1.10 Data Availability

The dataset generated and used in this thesis is publicly available as version 4, comprising three
scenarios (train, test, rain) and dual formats (CSV and Parquet). It is archived on Zenodo under
the DOI 10.5281 /zenodo.16950674 [37].

65

https://doi.org/10.5281/zenodo.16950674

Chapter 4. Dataset Generation and Machine Learning Research

4.2 Machine Learning Research

4.2.1 Overview

This section presents the research process for building a machine learning model for Estimated
Time of Arrival (ETA) prediction on the generated Athens dataset. Objectives were to (i) estab-
lish strong baselines across model families, (ii) evaluate feature engineering strategies, (iii) select
a final model through systematic tuning and cross-validation, and (iv) report performance and
training efficiency.

Key outcomes: the final selected model is LightGBM [17], achieving an MAE of 26.51s and a
MAPE of 12.77% with a training time of 2.95s. Competing gradient-boosting methods, XG-
Boost [16] and CatBoost [18] performed almost the same in accuracy but were slower to train
under comparable configurations.

4.2.2 From FCD to Trips

The SUMO FCD output provides per-second telemetry for each vehicle: timestep, id, x, y,
speed, lane, odometer, fuel, waiting.

To obtain a trip-level dataset suitable for supervised learning, records were grouped by vehicle
identifier and aggregated to derive the following features:

e time start: first observed timestep (seconds)

e duration: last minus first timestep (seconds)

e source_ X, source y: origin coordinates (meters)

e destination x, destination y: destination coordinates (meters)
e distance: final odometer reading (meters)

To ensure data quality and model reliability, the generated trips were filtered based on the
following criteria:

e Minimum Duration: duration > 30 seconds (exclude extremely short trips)
e Minimum Distance: distance > 200 meters (exclude stationary or negligible movement)

These thresholds remove edge cases such as vehicles that failed to complete routes, experienced
immediate insertion errors, or represented non-meaningful trips that would introduce noise into
the training process.

The transformation yields a trip-level dataset with 53,229 samples, where each row represents a
complete vehicle trip characterized by:

e Origin-Destination Pair: Source and destination coordinates
e Temporal Context: Departure timestamp

e Route Characteristics: Distance traveled

e Trip Duration: Target variable

This trip-level representation forms the foundation for feature engineering and model training,
enabling prediction of trip duration based on spatial, temporal, and route characteristics.

66

4.2. Machine Learning Research

4.2.3 Experimental Methodology

Experiment tracking. A systematic experiment tracking framework was implemented to man-
age the iterative research process and ensure reproducibility across all experiments. Experiments
were organized as scripted runs with consistent /O structure, saved artifacts (models, metrics,
logs), and fixed random seeds. This ensured reproducibility, reduced boilerplate, and enabled
reliable comparisons. For this to happen, utilizing a shared library of code for common functions
and tasks was necessary. A centralized configuration YAML file was also used to store all shared
settings and parameters, ensuring consistency across all experiments. This approach also enabled
the use of automated result collection scripts. These scripts would aggregate metrics across all
experiments and have quick and easy access to comparative visualizations and CSV exports for
further analysis.

Cross-validation. Model selection used 5-fold cross-validation with stratification over the target
(trip duration) to stabilize fold distributions and reduce variance in estimates. An important
aspect of this is preventing the model from overfitting to specific ranges of trip durations, if only
such ranges are present in the training data. The test and rain datasets were kept strictly for
final evaluation and were never used for training or model selection to avoid data leakage.

Metrics. Primary metrics were Mean Absolute Error (MAE, seconds) and Mean Absolute Per-
centage Error (MAPE, %). Training time (seconds) was tracked to assess computational efficiency,
since this would be an important factor for prospective re-training in real-time scenarios, where
resources would be limited.

4.2.4 Baseline Models

Four model families were benchmarked using the initial feature set (origin/destination coor-
dinates, start time, distance): linear regression and three gradient boosting libraries, namely
Light GBM, XGBoost, and CatBoost. This decision was made because of previous work showing
that gradient boosting methods are well-suited for ETA prediction tasks [62] and tabular data in
general.

As seen in Table 4.5, gradient boosting methods outperformed the linear baseline, as was expected,
confirming the value of non-linear interactions for ETA.

Table 4.5: Baseline results (5-fold CV on train).

Model MAE (s) MAPE (%) Train time (s)
Linear Regression 31.46 16.11 0.003
Light GBM 27.78 13.39 0.40
XGBoost 2791 13.59 0.57
CatBoost 28.23 13.57 0.58

All subsequent experiments focused on the three gradient boosting models due to their superior
performance.

4.2.5 Transformation Experiments

Prior to feature engineering, standard transformations were evaluated to test whether distribu-
tional normalization could improve accuracy or stability [67]. These transformations were:

67

Chapter 4. Dataset Generation and Machine Learning Research

e Feature log-transform: applying log(1 +) to the distance feature.

Standard scaling: applying standardization (zero mean, unit variance) to all features.

e Target log transform: applying log(1 + y) to the duration target variable.

e Target Box-Cox transform: applying Box-Cox transformation to the duration target
variable [68].
e Target quantile transform: applying quantile normal transformation to the duration

target variable [69].

All transformation experiments used the original 6 features (baseline configuration) with 5-fold
stratified cross-validation. The results of these experiments are summarized in Table 4.6.

Table 4.6: Transformation experiments (5-fold CV on train).

Transformation Average MAE (s) Improvement Best Model
None 27.97 — LightGBM (27.78s)
Log (distance) 27.97 0.00s (0.00%) LightGBM (27.78s)
Standardization 27.98 0.01s (0.04%) LightGBM (27.80s)
Log (duration) 27.92 0.05s (0.18%) LightGBM (27.73s)
Box-Cox (duration) 27.93 0.04s (0.14%) LightGBM (27.72s)
Quantile Normal (duration) 27.90 0.07s (0.25%) LightGBM (27.71s)

None of the transformations resulted in a significant improvement in model performance. This
is expected for tree-based gradient boosting models, which are inherently invariant to monotonic
transformations and feature scaling. Therefore, since the added complexity did not justify the
performance gains, no transformations were applied in subsequent experiments.

4.2.6 Feature Engineering

Feature engineering was conducted systematically to capture spatial separations, temporal con-
text, and route length in model-friendly forms |70, 71]. Initially, some feature groups were tested
independently to assess their individual contribution to model performance. These feature groups
were:

1. Original Features (6 features): Base features extracted directly from the simulation
FCD data. These features serve as the baseline for all experiments.

2. Temporal Features (5 features): Time-based patterns extracted from trip start time.
These features encode temporal patterns.

3. Spatial Features (17 features): Geometric and geographic relationships derived from
coordinates and distances. These features capture urban structure and geometric relation-
ships that influence travel time.

4. Fourier Features (16 features): Sinusoidal positional encoding of spatial coordinates at
2 frequency scales. These features capture spatial patterns in the coordinate space.

5. Cell Features (4 features): Spatial discretization into fixed-size grid cells (100 meters).
These features capture spatial patterns in the grid space.

68

4.2. Machine Learning Research

6. Cluster Features (2 features): K-Means clustering (K=20) on coordinates to discretize
spatial regions. These features capture spatial patterns in the cluster space.

7. PCA Features (4 features): Principal Component Analysis for dimensionality reduction
(2 components). These features capture dominant spatial variance in a reduced dimensional
space.

Each feature group was evaluated through dedicated experiments to assess its contribution to
prediction performance, and then once all together to assess their collective impact. The results
of these experiments are summarized in Table 4.7.

Table 4.7: Feature engineering experiments results.

Feature Configuration Average MAE (s) Improvement Best Model
Original only 27.97 — LightGBM (27.78s)
Original + Temporal 27.84 0.13s (0.5%) XGBoost (27.57s)
Original + Spatial 27.77 0.20s (0.7%) XGBoost (27.42s)
Original + Fourier 27.69 0.28s (1.0%) XGBoost (27.48s)
Original + Cell 27.76 0.21s (0.8%) XGBoost (27.39s)
Original + Cluster 27.87 0.10s (0.4%) XGBoost (27.51s)
Original + PCA 27.73 0.24s (0.9%) XGBoost (27.38s)
All features 27.63 0.34s (1.2%) XGBoost (27.33s)

All feature groups provided improvement over the original features, ranging from 0.10s to 0.34s
MAE reduction. The combined features performed best, achieving the lowest MAE of 27.63 s, but
the improvement from combining all features is less than the sum of individual improvements,
suggesting some overlap in captured information.

After evaluating the combined feature set (52 features total), systematic feature selection was
performed to identify the most valuable features while reducing dimensionality, training time,
and model complexity. The selection methods were:

e Gain-Based Importance: Used LightGBM’s built-in split gain importance to measure
feature contribution to loss reduction across all tree splits.

e Permutation Importance: Model-agnostic approach measuring feature impact by com-
puting increase in MAE when each feature is randomly shuffled [72].

e SHAP Values: Shapley Additive Explanations from game theory to quantify each feature’s
contribution to individual predictions [38|.

e Correlation Analysis: Computed Pearson correlation between all feature pairs to identify
highly correlated features (|r| > 0.95) [73].

The three importance-based methods (gain, permutation, SHAP) were aggregated into a com-
bined ranking with normalization, aggregation and a weighted combination of normalized impor-
tance and rank as a final score. The top 20 features by combined score are listed in Table 4.8.

Distance based features dominate the top 10 poisitions, and all 4 pca features appear in the top
20, confirming their value for dimensionality reduction. Cluster features rank moderately high
(12th), capturing spatial zone patterns. Original coordinate features rank lower (20+), but are
retained due to PCA high correlations.

69

Chapter 4. Dataset Generation and Machine Learning Research

Table 4.8: Top 20 features by combined importance score.

Rank Feature Score Category
1 distance 0.938 Original
2 is_short_distance 0.567 Spatial
3 euclidean_distance 0.520 Spatial
4 x_center 0.497 Spatial
5 is_long_distance 0.476 Spatial
6 detour_length 0.473 Spatial
7 time_start 0.428 Original
8 y_center 0.424 Spatial
9 destination_distance_from_city_center 0.412 Spatial

10 source_distance_from_city_center 0.396 Spatial
11 is_medium_distance 0.395 Spatial
12 source_cluster 0.384 Cluster
13 is_noon 0.378 Temporal
14 trip_centrality 0.368 Spatial
15 destination_pca_1 0.367 PCA

16 source_pca_2 0.359 PCA

17 destination_y_sin_1 0.358 Fourier
18 source_pca_1 0.335 PCA

19 destination_pca_2 0.308 PCA

20 destination_y 0.289 Original

Based on the combined ranking and the correlation analysis, we decided to eliminated all 5
temporal features, all 16 fourier features, all 4 cell features and 7 of the 17 spatial features. The
retained features are all 6 original features, all 2 cluster features, all 4 pca features and 10 of the
17 spatial features:

The feature selection was validated through a dedicated experiment comparing against the full
feature set:

Table 4.9: Feature selection validation results.

Metric All features Selected features Change
Features 52 22 -58%
Average MAE (s) 27.63 27.66 +0.03s
Average MAPE (%) 13.26 13.27 40.01%
Average Training Time (s) 0.81 0.49 -40%
Best Model XGBoost (27.33s) XGBoost (27.33s) Identical

With only 0.03s MAE increase, 0.01% MAPE increase, and a 40% reduction in training time,
the feature selection was successful in retaining the most informative features while eliminating
redundancy and reducing computational cost.

70

4.2. Machine Learning Research

4.2.7 Hyperparameter Tuning

Systematic hyperparameter optimization was performed for all three gradient boosting models us-
ing Optuna [39] with the Tree-structured Parzen Estimator (TPE) sampler [74]. The optimization
objective was to minimize Mean Absolute Error (MAE) across 5-fold stratified cross-validation.
A two-phase approach was employed to balance exploration and exploitation. Phase 1 was a
broad search with 100 trials per model, while Phase 2 was a more focused search on the best
performing regions with 50 trials per model. The optimization process totaled 450 trials (150
per model) without early stopping, leveraging the fast training times enabled by the compact
dataset.

The results of the hyperparameter tuning are summarized in Table 4.10.

Table 4.10: Hyperparameter tuning results.

Model Phase Best MAE (s) Best MAPE (%) Training Time (s)

CatBoost 1 26.72 12.80 11.56
CatBoost 2 26.70 12.81 14.70
LightGBM 1 26.58 12.78 2.60
LightGBM 2 26.51 12.77 2.95
XGBoost 1 26.69 12.82 7.47
XGBoost 2 26.63 12.83 9.44

Light GBM achieved the lowest MAE of 26.51s and MAPE of 12.77% on cross-validation with
a training time of 2.95s, and was therefore selected for downstream evaluation on the held-out
scenarios. Its training efficiency was superior to both XGBoost and CatBoost, being 3x and 5x
faster respectively, and its performance was the best and most consistent across both phases of
the tuning process.

4.2.8 Final Model

The selected model is Light GBM with the following hyperparameters seen in Table 4.11, chosen
via cross-validated tuning for minimum MAE:

Table 4.11: Final Light GBM hyperparameters.

Parameter Value
max_depth 14
n_estimators 1100
num_leaves 104
learning_rate 0.043
subsample 0.958
colsample_bytree 0.692
min_child_samples 38
min_split_gain 1.2 x 107°
reg_alpha 6.7 x 1076
reg_lambda 3.5 x 1075

71

Chapter 4. Dataset Generation and Machine Learning Research

72

Chapter 5

Platform Architecture and
Implementation

5.1 High-Level Overview

The platform embodies a microservice design that orchestrates a time-lapse traffic simulation,
performs multi-task prediction, monitors error streams for concept drift via consensus, and adapts
by retraining and hot-swapping models, while exposing a web dashboard for both administration
and user-facing predictions.

At a high level, the platform comprises six independent services (Backend, three Predictors for
ETA /Fuel/Stops, Drift, Frontend, and Summarizer) communicating over HTTP/REST on a pri-
vate Docker network. The Backend acts as the source of truth for simulation state and orchestrates
a 20-hour scenario compressed to about 4-5 minutes (300x speedup factor), coordinating batch
predictions, drift detection, and adaptation, when needed. The Frontend offers an admin dash-
board (controls, metrics, notifications, post-simulation report) and a user interface for map-based
route selection and on-demand multi-task predictions.

5.2 System Architecture

The platform follows a microservices architecture with strict separation of concerns [40]. Each
service exposes a small, well-typed FastAPI with Pydantic schemas, is independently deployable,
and can be evolved or scaled without impacting others. A minimal service inventory and ports
are:

e Backend (Port 8000): orchestration, timelapse control, state stores, simulation snapshot
APIL

e Predictor-ETA /Fuel/Stops (Port 8001/8002/8003): inference, feature calibration, batch
or single predictions, background retraining.

e Drift (Port 8004): per-task workers, four detectors, consensus and online calibration.

e Summarizer (Port 8005): post-simulation AI report generation from metrics and notifi-
cations.

73

Chapter 5. Platform Architecture and Implementation

e Frontend (Port 8080): admin dashboard and user interface, interacts only with the Back-

end API.

Figure 5.1 showcases the architecture as a diagram:

Batch Predictions

!

Predictor ETA
Port: 8001

Estimated Time of Arrival

Batch Predictions

!

Predictor Fuel
Port: 8002

Fuel Consumption

Docker Network

Frontend - Dash
Port: 8080

Admin Dashboard
User Interface

HTTP/REST

4

Backend - FastAPI
Port: 8000

Orchestration
Control
Timelapse Driver
Stores

Batch Predictions

!

Predictor Stops
Port: 8003

Number of Stops

Error Points

4

Drift Service
Port: 8004

4 Drift Detectors

Generate Report

!

Summarizer
Port: 8005

Al Report Generation

Consensus Detection

LLMAPI

OpenRouter API

External LLM

Figure 5.1: Platform Architecture.

Inter-service links. Backend dispatches batch windows to predictors and error streams to
Drift and it also triggers the Summarizer post-simulation. Frontend polls Backend for snapshots,
metrics, notifications, and report content.

5.3 Service Responsibilities

Backend. The Backend owns orchestration and state. TimelapseDriver advances the clock in
one-second real-time steps at 300x simulated speed (5 simulated minutes per tick), parallelizes
windowed prediction requests, triggers drift checks, and manages the adaptation lifecycle. State
is maintained in in-memory circular buffers (MetricsStore, NotificationStore) and a ReportStore.
Startup includes dynamic discovery of available predictors via parallel health checks to support
partial deployments. The Backend remains task-agnostic by design: it requests predictions for
time windows and stores absolute errors without needing task-specific feature knowledge.

74

5.4. Technology Stack

Predictors (ETA, Fuel, Stops). Each predictor shares a common codebase parameterized
by task identity. Core components include: ModelManager (versioned registry under the shared
simulation appdata directory), DataLoader (fast Parquet windowing by timestamp), Predictor
(batch/single inference and error computation), FeatureCalibrator (task-specific engineered fea-
tures for single predictions), a RetrainService running in a dedicated process with retries and
dynamic model sizing according to the size of the model and the retraining data, and a SumoSer-
vice as an interface with to the SUMO network for route preview and feature extraction.

Drift Detection. The Drift service runs one worker process per ML task with request and
response queues,and implements four complementary detectors (ADWIN [23|, Page-Hinkley [24],
KSWIN 25|, SPC [26]). Detectors operate over smoothed error streams with constant time
computation, and a grace period before activation. Drift is declared when at least 3/4 detectors
agree (configurable). A calibration phase collects baseline errors, tunes detector hyperparameters
against false positives, then transitions to online monitoring. After adaptation, the detectors
need to be recalibrated.

Frontend. The Frontend (Dash + Bootstrap + Leaflet) exposes two tabs. The Admin Dash-
board provides simulation controls (Start /Pause/Resume/Reset), MAE charts with drift window
highlights, per-task status, a chronological notification feed, and a report viewer /downloader. The
User Interface supports map-based source/destination selection, SUMO-based route preview, and
synchronous ETA /Fuel/Stops prediction. Frontend state is maintained client-side using stores,
interval polling of the Backend API, and properly set up callbacks to ensure that the Ul is updated
in real time.

Summarizer. On completion, the Backend packages a timeline of notifications and time-series
metrics and asks the Summarizer to generate a markdown report (and PDF). The Summarizer
formats and structures the data and then uses the OpenRouter API to access the LLM models.
The service is configured to use free models, so no charges are incurred. There are robust retries
and timeouts in place to handle transient failures.

5.4 Technology Stack

The following core technologies are used in the various platform services:
e Infrastructure: Docker, Docker Compose, uv dependency manager 75|, Python 3.12

e APIs: FastAPI with Uvicorn, uvloop, httptools and ORJSONResponse, and async httpx
clients [76] for inter-service calls

e Frontend: Dash with Plotly components, Bootstrap theming, Leaflet for interactive maps,
xhtml2pdf for report pdf generation

e ML: LightGBM, XGBoost, NumPy, pandas, and River for drift detectors

e Data: Pandas [77|, NumPy [78] and PyArrow [79]/Parquet for fast filtered reads by times-
tamp

e LLMs: OpenAl client for the LLM API (OpenRouter API)

e Validation: Pydantic models shared across services for type safety and OpenAPI docs

75

Chapter 5. Platform Architecture and Implementation

5.5 Simulation Control Flow

5.5.1 Timelapse Tick
Each tick advances the simulated clock by five minutes, then:
1. Backend sends concurrent batch prediction requests to all available predictors.

2. Predictors load the window via DataLoader, apply precomputed features, run inference,
and return absolute errors and aggregates (e.g., MAE).

3. Backend forwards error points to the Drift service, which updates its per-task detectors and
returns the state of each task (Calibrating/Stable/Drifted /Retraining).

4. Backend updates the stores, performs state transitions, and if drifted, starts collecting a
fixed post-drift window for retraining.

5. When the window completes, Backend submits a background retraining job; on completion,
the predictor hot-swaps to a new version and the Drift service recalibrates.

6. Frontend polling refreshes snapshot /metrics /notifications, keeping the UT responsive in real
time.

7. Summarizer generates a report from the notifications and metrics if the simulation is com-
pleted.

This design maintains sub-second processing for each batch window and preserves Ul interactivity
throughout the simulation.

Figure 5.2 shows the various drift states of a model, as the simulation progresses, in a diagram:

5.5.2 User Prediction Flow

For on-demand queries, the user first picks endpoints on the map available on the User Interface
tab. Then, a predictor returns a route preview (via SUMO network access) and the Backend
dispatches parallel single-prediction requests to the predictors. Each predictor uses its task-
specific FeatureCalibrator to compute identical features to training, then serves the predictions
values to the user.

5.6 Deployment Architecture

5.6.1 Compose-Based Orchestration

The system ships as a multi-container deployment with Docker Compose. Docker Compose
ensures startup ordering via health checks, isolates the network, and mounts shared volumes
under appdata/ (common SUMO data, task datasets, model registry, feature artifacts, and per-
service logs). In production, only the Frontend requires external exposure, internal ports can
remain bridged on the Docker network. Environment variables identify the running service, set
the app data root, and toggle environment mode.

5.6.2 Images, Footprint, and Resources

All services start from python:3.12-slim, install only their optional dependency group (via uv),
and include curl for health checks. Predictor images are larger due to gradient-boosting stacks

76

5.6. Deployment Architecture

Platform Start

CALIBRATING

Calibration Complete
(10,000 samples collected)

Collecting baseline errors
Tuning detector parameters STABLE
No drift detection active

Drift Detected Retraining Success
(3 out of 4 detectors agree) (New model loaded)

Detectors monitoring errors

Grace period: 5000 samples
Smoothing window: 2500 DRIFTED

samples

Data Collection Complete Retraining Failed
(3600 seconds collected) (Retry or manual intervention)

Collecting post-drift data
Target: 3600 seconds RETRAINING
Preparing for retraining

Background process
Max 3 retries
Model versioning (v1—v2)

Figure 5.2: Drift States of a Model.

(around 2 GB), while other services remain comparatively light (around 500 MB). Dependencies
are managed with a lockfile-based workflow. This includes dependency groups in pyproject.toml
that install only what each service needs (e.g., thesis[drift] vs. thesis[predictor]), keeping
images lean and builds fast.

5.6.3 Configuration and Dependencies

Configuration is centralized in a single YAML file, covering logging and rotation, event loop /server
choices, timelapse parameters, drift detection parameters and consensus threshold, retraining
policies and resource allocation settings, and summarizer options, such as the system prompt,
and retry settings.

7

Chapter 5. Platform Architecture and Implementation

5.7 Performance Goals and Realization

A central goal was to simulate 72,000 s (20 h) of traffic in a few minutes of wall-clock time
while preserving the fidelity of per-window evaluation and monitoring. To that end, the imple-
mentation combines asynchronous request orchestration with lightweight data paths that avoid
blocking operations in the hot loop. Batch predictions read precomputed feature matrices from
Parquet, which eliminates per-tick feature construction and reduces 1/O overhead. Metrics and
notifications are maintained in memory during the run, thereby removing database round-trips
when the system is most active. Model retraining is delegated to background worker processes
so that inference remains responsive even when adaptation is underway. Finally, per-task drift
detectors run in separate processes to avoid blocking the main thread and interfering with the
communication with the backend.

In practice, the platform achieves the 300x multiplier, processes 110,000+ trips across tasks,
runs a total of 12 drift detectors concurrently, and sustains an interactive dashboard throughout,
without any performance degradation.

5.8 Logging, Error Handling, and Observability

All services initialize a common logger with sensible defaults and log rotation, so that operational
traces remain useful across long runs. Critical paths are guarded with graceful degradation on
downstream failures, so a localized issue does not cascade into systemic failure. Looking ahead
to production deployment, the same hooks can be routed to centralized log aggregation and
tracing, enabling correlation of events across services. Looking ahead to production deployment,
the same hooks can be routed to centralized log aggregation and tracing, enabling correlation of
events across services. Health checks already standardize liveness and readiness; extending them
with lightweight self-diagnostics (e.g., queue backlog sizes, last successful tick) would make on-
call diagnostics faster without altering the public API. In addition to the above, comprehensive
automated tests (unit, integration, performance, end-to-end) would further harden reliability and
provide a safety net for the platform.

5.9 Concurrency and Isolation

The architecture uses async I/O for parallel calls per tick (httpx.AsyncClient, asyncio.gather),
while process-based parallelism isolates heavy/long-running work. CPU-bound activities, most
notably retraining and detector updates, run in separate processes so that Python’s GIL does not
throttle throughput and so that faults remain contained. Drift workers run per task in separate
processes, while retraining uses a dedicated ProcessPoolExecutor per predictor, so training
never blocks inference. This division of labor yields robust concurrency on multi-core hosts and
prevents cross-task interference, while preserving responsiveness under load.

5.10 Extensibility and Design Principles

5.10.1 Backend Abstraction and Task Agnosticism

The Backend purposefully avoids task-specific feature and model logic. It orchestrates time win-
dows, aggregates errors, and manages adaptation state without knowing how a predictor computes
its outputs. Adding a new task involves preparing its model and calibrator artifacts, registering

78

5.11. Architectural Strengths and Trade-offs

the task in configuration, and deploying an additional predictor container. The Backend discovers
it at startup and incorporates it into orchestration automatically. This separation of concerns
reduces coupling and simplifies future extensions.

5.10.2 Feature Engineering Pattern

Two complementary paths support inference. Batch predictions rely on precomputed features,
enabling sustained high throughput during the simulation. Conversely, on-demand user queries
construct features on the fly through the FeatureCalibrator artifacts, ensuring consistency with the
training pipeline while accommodating arbitrary origins and destinations. This pattern balances
efficiency and flexibility. If future scenarios require true online features, the same interfaces can
be preserved while swapping the feature source.

5.10.3 Data Access Pattern

The platform encapsulates batch data access behind a simple DataLoader interface that accepts a
start and end timestamp and returns a time-windowed frame for inference and evaluation. In the
current implementation, windows are served from local Parquet files with fast, vectorized times-
tamp filtering. However, the same interface can back onto alternative sources, like a relational or
time-series database, a message bus (Kafka/RabbitMQ), cloud object storage (S3/GCS), or a live
stream, without requiring changes to callers. This design keeps the Backend and predictors free
of storage concerns and allows deployments to evolve from file-based artifacts during development
to production-grade data services by swapping only the loader implementation while preserving
contracts.

5.10.4 Adaptation Policy and Consensus

Drift detection uses multiple detectors with a configurable consensus threshold (default 3/4) to
reduce false positives. The service begins with a calibration phase that characterizes baseline
error behavior. Only after calibration does it enter steady monitoring. A short grace period
after startup further suppresses transient alerts. When drift is declared, the system collects a
fixed post-drift window that is sufficient for stable retraining, then performs a model hot-swap
and returns to recalibration. Externalizing these parameters in configuration allows tuning of
sensitivity and adaptation latency for different operating contexts without code changes.

5.11 Architectural Strengths and Trade-offs

Strengths. The platform benefits from clear module boundaries, stateless HT'TP interfaces,
and a single orchestrator that maintains system-wide state. Asynchronous requests keep ticks
short, process isolation prevents heavy tasks from monopolizing resources, and a simple, versioned
model registry makes hot-swaps predictable and reversible. Together, these choices create a
system that is easy to reason about and robust under typical faults.

Trade-offs. Several pragmatic trade-offs accompany the design. In-memory stores provide
speed at the expense of long-term persistence and historical analytics. Precomputed features
accelerate batch evaluation but are less representative of a fully online setup. The fixed post-drift
collection window introduces some adaptation delay in exchange for training stability. Each of
these decisions was calibrated for the thesis setting and all can be replaced with production-grade

79

Chapter 5. Platform Architecture and Implementation

counterparts, such as durable storage, a streaming feature store, or incremental learners, without
changing the external service contracts.

5.12 API Endpoints Reference

Platform Predictor ETA Service @@ &2

Jopenapi json

predict ~

l POST /predict/batch Predict Baich N l
l POST Jpredict/single Predict Single N I
l POST /predict/route GetRoute ~ l

retrain ~
l /retrain/start Start Retrain N l
‘ /retrain/status/{job_id} Retrain Status 4 ‘

health ~

= v

Figure 5.3: Backend API Endpoints Reference, Swagger Ul.

Platform Predictor ETA Service @ @@

fopenapijson

predict ~

[POST /predict/batch Predict Batch ~ l
l POST /predict/single Predict Single N I
i POST /predict/route GetRoute N I

retrain ~
[/retrain/start Start Retrain ' I
‘ /retrain/status/{job_id} Retrain Status 4 ‘

health ~

= I v

Figure 5.4: Predictor API Endpoints Reference, Swagger Ul.

80

5.13. Summary

Platform Drift Service @@ <2

fopenapi json

drift ~
‘ /drift/errors Process Drift Errors N ‘
‘ /drift/recalibrate Recalibrate Detectors AV ‘
‘. Jdrift/reset Reset Drift Service ~ ‘
health ~

‘ /health GetHealth s ‘

Figure 5.5: Drift API Endpoints Reference, Swagger UI.

Platform Summarizer Service @ &2

fepenapi.json

report ~
‘ /report/generate Generate Report v |
health ~

‘m /health GetHealth v |

Figure 5.6: Summarizer API Endpoints Reference, Swagger Ul

Frontend Service The frontend provides a web interface with Admin Dashboard and User
Interface tabs. It communicates with the backend exclusively through the backend’s REST API
endpoints. It does not expose any REST API endpoints itself. The interface is accessible at
http://localhost:8080.

5.13 Summary

The platform operationalizes continuous ML for urban mobility through a principled microservice
architecture. It demonstrates that a time-lapse, consensus-driven monitoring loop with targeted
retraining can maintain prediction quality under controlled distribution shifts, all while sustaining
real-time interactivity and a practical developer experience.

81

Chapter 5. Platform Architecture and Implementation

82

Chapter 6

Results

6.1 Overview

This chapter presents (i) baseline performance of the ETA model across normal and rain scenarios,
(ii) adaptation via incremental retraining after detected drift, and (iii) a head-to-head comparison
of the initial vs. retrained models on the same post-swap evaluation window. We conclude with
a concise demonstration of the operational platform, meaning the dashboards, notifications, and
reports.

6.2 Notation and Setup

Let t € [0,72,000] denote simulation time in seconds. We define the following time windows:
Whiest = [0, 36,000),
train = 36,000,
Wiain = [36,000, 72,000],
tarife = 38,400,
Wietrain = [38,400, 42,000],
tswap = 43,200,
Weval = [43,200, 72,000].

6.3 Models and Metrics

Models. We compare two models:
e Initial model Mj: trained on 10 hours of normal data (initial training set size 53,229).

e Retrained model Mj: incrementally fine-tuned on Wietrain using 1 hour of samples or
6,755 samples (=~ 12.69% of the initial training volume) and deployed at tewap = 43,200.

Metrics. We use Mean Absolute Error (MAE) and Mean Absolute Percentage Error (MAPE)
to evaluate the performance of the models:
n

1 & 100
MAE:EZ}%—Q@-, MAPE = —)

: n <
i=1 =1

%.

Yi — Ui

Yi

83

Chapter 6. Results

For relative improvements from model A to B we use

Ay (A— B) =100 x A;1 ,

and we denote absolute differences in percentage points as “pp”.

6.4 Baseline Model Performance

Table 6.1 summarizes the performance of the initial model My on the first day (normal conditions)
and on the second day (rain conditions), before any adaptation.

Table 6.1: Baseline results for My (no adaptation), by scenario.

Scenario / Window MAE MAPE

First day Whest 30.36 13.20%
Second day Wiain 56.93 19.02%

Moving from normal to rain nearly doubles MAE (from 30.36 to 56.93) and raises MAPE from
13.20% to 19.02%, indicating a substantial scenario shift, a concept drift.

The evolution of the baseline model errors over time can be seen in the following Figure 6.1:

Baseline Model Errors Over Time (5-min aggregation)

—e— W test
—e— W_rain
== T_rain
T_drift
T_swap

= =
17 ~
=} w

=
¥
u

Mean Absolute Error (s)
=
b 3

u
o

N
w

T T T T T T T T
0 10000 20000 30000 40000 50000 60000 70000
Simulation Time (s)

Figure 6.1: Baseline Model Errors Over Time.

6.5 Retrained Model: Training Window and Rationale

A drift event is detected at tgurr = 38,400 by the platform’s drift detectors, running for this
specific model. To adapt, the platform fine-tunes M, on the first hour of post-drift rain data, i.e.,
Wietrain = [38,400,42,000] (6 755 samples, &~ 12.69% of the initial training volume). The updated
model My is then hot-swapped at tswap = 43,200.

This choice targets the specific post-drift distribution and with only an hour of data and a
quick retraining time, it allows for a seamless adaptation, producing an adapted model while the

84

6.6. Post-Swap Evaluation on an Identical Window

simulation continues. We evaluate the effect of this adaptation on a clean hold-out: the remainder
of the rain scenario after the recorded swap.
6.6 Post-Swap Evaluation on an Identical Window

To ensure a fair, apples-to-apples comparison, we evaluate both the non-adapted baseline (M)
and the retrained model (M) on the same post-swap window Weya = [43,200, 72,000].

Table 6.2: Head-to-head results on the post-swap window Weya = [43,200, 72,000].

Model (Window) MAE MAPE

My (initial; W) 43.27 16.89%
M (retrained; Weyal) 32.27 14.55%
Absolute difference 11.00 s MAE 2.34 pp MAPE
Relative change Ag, 25.42% | 13.85% |

The retrained model reduces MAE by 11.00 s (25.42%) and MAPE by 2.34 pp (13.85%) versus
the baseline on the post-swap window, evidencing effective adaptation to rain.

The post-swap comparison of the baseline and retrained models can be seen in the following
Figure 6.2:

Post-Swap Comparison: Baseline vs Retrained Model (5-min aggregation)

—e— Baseline (Ma)

Retrained (M1)
100 A

80
60

201

Mean Absolute Error (s)

T T T T T T
45000 50000 55000 60000 65000 70000
Simulation Time (s)

Figure 6.2: Post-Swap Comparison: Baseline vs Retrained Model.

6.7 Takeaways

Baseline drift impact. From normal to rain, MAE rises from 30.36 to 56.93 and MAPE from
13.20% to 19.02%, confirming a substantial distribution shift.

Adaptation effectiveness. On the identical post-swap window Weya, M7 improves over M
by 11.00 s MAE (25.42%) and 2.34 pp MAPE (13.85%).

85

Chapter 6. Results

Operational closure of the loop. The platform detects drift, fine-tunes on Wietrain, and
hot-swaps at t=43,200, showcasing a successful and seamless adaptation process.

6.8 Platform Demonstration

Figures 6.3-6.12 illustrate the end-to-end run from an operator’s perspective. Each step shows
either the Admin Dashboard or the User Interface to connect system state with user-facing pre-
dictions.

Narrative highlights. Start — Stable establishes the nominal baseline. During Drifted, rain
conditions are active, all models experience performance degradation and all tasks are flagged as
drifted. In Retraining, only ETA has been retrained and swapped, so the User Interface shows
a higher ETA prediction for the same route while fuel and stops remain at their pre-adaptation
values. Finally, in Retrained, all tasks are adapted and calibrated, and the User Interface reflects
consistent post-recovery predictions. The Report view closes the loop with the Al generated
summary report of the simulation, after it has completed.

86

6.8. Platform Demonstration

Drift-Aware ML Platform

Asi Real Time! ept Drift
Admin Dashboard User Interface

& Simulation Controls Bl Simulation Snapshot A Drift State & Al Summary Report

Day01-08:00 oview &

@ Estimated Time of Arrival A Notifications

Nonot

Time.

! Fuel Consumption

Time

8 Number of Stops

Figure 6.3: Admin dashboard — Start. Detectors calibrating, graphs empty, simulation not yet
running.

Drift-Aware ML Platform

Concept Drift
Admin Dashboard User Interface

2 Trip Selection

W Clear | Predict

@ Trip Predictions

@ Estimated Time of Arrival

R Fuel Consumption

8 Numberof Stops.

Figure 6.4: User interface — Start. No Source and Destination selected, prediction panels
empty.

87

Chapter 6. Results

Drift-Aware ML Platform

ASimulated Real-Time Framework for Performa o y ncept Drift
Admin Dashboard

£+ Simulation Controls B Simulation Snapshot A Drift State & AlSummary Report

= AlSummar thesimuiti

Day01-14:15 Running. ® View | L, Download

@ Estimated Time of Arrival A Notifications

[Number of Stops] Drift detector calibration completed
Day01-09:30.

[Fuel Consumption] Drift detector calibration completed
Day01-09:25

[Estimated Time of Arrival] Drift detector calibration completed
ot o e ., Day01-0925

Time.
First day started with normal conditions.

! Fuel Consumption Day01-0800.

oritDetsction Window

8 Number of Stops

Figure 6.5: Admin dashboard — Stable. Models stable under normal conditions, detectors
calibrated.

Drift-Aware ML Platform

ASimulated Real-Time Framework for Performance Moritor e Concept Drift
Admin Dashboard User Interface

2 Trip Selection

Source
ud

5 50005

hemapts

W Clear | o Predict

@ Trip Predictions

@ Estimated Time of Arrival

& Fuel Consumption

8 Number of Stops

Figure 6.6: User interface — Stable. Example route with baseline predictions: 03:50 min, 0.35
L, 1 stop.

88

6.8. Platform Demonstration

Drift-Aware ML Platform

Admin Dashboard

£ Simulation Controls B Simulation Snapshot - Drift State

Time
Day02-09:25

@ Estimated Time of Arrival

Time

! Fuel Consumption

Time

8 Number of Stops

& Al Summary Report

A Notifications

[Fuel Consumption] Concept drift detected
Day02-09:20

[Number of Stops] Concept drft detected
Day02-08:50.

[Estimated Time of Arrivall Concept drift detected
Day02-08:40

Second day started with rain conditions
Day02-0800

[Number of Stops] Drift detector calibration completed
Day01-09:30

[Fuel Consumption] Drift detector calibration completed
Day01-09:25

[Estimated Time of Arrival] Drift detector calibration completed
Day01-09:25

First day started with normal conditions.
Day01-08:00.

Figure 6.7: Admin dashboard — Drifted. Rain conditions active, ETA /Fuel/Stops flagged as

drifted and errors elevated.

89

Chapter 6. Results

Drift-Aware ML Platform

ASimulated Real Time Fra or Performance Monitoring and M

£+ Simulation Controls

Usethe folon o

Figure 6.8: Admin dashboard — Retraining.

Drift-Aware ML Platform

E [— Mo

2 Trip Selection

Lot

5 50005

W Clear | o Predict

@ Trip Predictions

@ Estimated Time of Arrival

& Fuel Consumption

8 Number of Stops

Figure 6.9:

Concept Drift
Admin Dashboard

B Simulation Snapshot

state

Day02-10:30 Running Calibrating,

@ Estimated Time of Arrival

Time.

! Fuel Consumption

8 Number of Stops

Time of Arrival

A Drift State

s

mption

Drifted

& AlSummary Report
e st

® View | L, Download

A Notifications

[Estimated Time of Arrival] Retrained model swapped
Day02-1000

[Fuel Consumption] Concept drift detected
Day02-09:20

[Number of Stops] Concept drif detected
Day02-08:50

[Estimated Time of Arrivall Concept drft detected
Day02-08:40

‘Second day started with rain condiitions.
Day02-08:00.

[Number of Stops] Drift detector calibration completed
Day01-09:30

[Fuel Consumption] Drift detector calibration completed
Day01-09:25

[Estimated Time of Arrivall Drift detector calibration completed
Day01-09:25

First day started with normal conditions.
Day01-08:00

ETA retrained and swapped, Stops currently

retraining, Fuel has not started retraining yet.

der Concept Drif

Admin Dashboard

min, 0.35 L, 1 stop.

90

User Interface

User interface — Retraining. Same route now reflects rain for ETA only: 05:03

6.8. Platform Demonstration

Drift-Aware ML Platform

Jlated Real Time Fran Performance Monitoring and M ept Drift

Admin Dashboard

& Simulation Controls Bl Simulation Snapshot A Drift State & Al Summary Report

buttons Y T . . . - s imula

Day 02- 15:20 Running
@ Estimated Time of Arrival A Notifications

[Fuel Consumption] Drift detector calibration completed
Day02-14:45

[Number of Stops] Drift detector calibration completed
Day02-1300

[Fuel Consumption] Retrained model swapped
Day02-1230

[Estimated Time of Arrivall Drift detector calibration completed
Day02-1200

[Number of Stops] Retrained model swapped
Day02-1045

! Fuel Consumption

[Estimated Time of Arrival] Retrained model swapped
Day02-1000.

8 Number of Stops

[Fuel Consumption] Concept drift detected
Day02-09:20

[Number of Stops] Concept drift detected
Day02-08:

Figure 6.10: Admin dashboard — Retrained. All three tasks adapted and calibrated, system
back to stable.

Drift-Aware ML Platform

imulated Real Time Fran for Performance Monita el Inference under Concept Drif
Admin Dashboard User Interface

2 Trip Selection

Latitude
37.986940 J 23.728645

W Clear | o Predict.

@ Trip Predictions

@ Estimated Time of Arrival

R Fuel Consumption

8 Numberof Stops.

Figure 6.11: User interface — Retrained. Same route after full adaptation: 05:03 min, 0.36 L,
2 stops.

91

Chapter 6. Results

@ Al Summary Report

Drift-Aware ML Platform Simulation Report

Executive Summary

The Drift Aware ML Platform successfully demonstrated its capabilities in monitoring, detecting, and responding to concept drift ina traffic prediction
‘environment. The 20-hour simulation (compres

‘conitions at 36,000 seconds. The platform detected driftin all three ML tasks (ETA, Fuel, Stops) and initiated retraining processes, with varying degre
success inrestoring performance. Overall the platform proved effective, particularly for ETA prediction, which showed complete recovery after r¢

Simulation Timeline

0-36,0005: Baseline conditions with norma road friction (1.0)

. ition to rain conditions with reduced fiction (0.4)
+ 38,400s: Concept drift detected for ETA (24005 post-transition)
+ 39,000s: Concept drift detected for Stops (3000s post-transition)

40,800s: Concept drift detected for Fuel (4,805 post-transition)
42,000-52,2005: Model retraining and swapping for ll tasks
72,0005 Simulation completion

Performance Analysis
ETA Prediction

+ Baseline (0-36,000s): MAE averaged 32s (range: 19.06-76.305)
« Post-driftimpact: MAE peaked at 188.915 (390005), representing a 489%ncrease.
« Post-recovery: MAE reduced to 28-30s after model swap (432005)

performance: 22.01s at 720005, exceeding

Fuel Prediction

+ Baseline (0-36,000s): MAE averaged 0.032L (range: 0022-0.0711)

« Post-driftimpact: MAE peaked at 0.1029L (3000, representing a 221% increase

« Post-recovery: MAE reduced to 0.020-0.025L after model swap (522005)
performance: 0.0263L at 720005, slightly above baseline

Stops Prediction

+ Baseline (0-36,0005): MAF averaged 0.35 stops (range: 0.72-1.14 stops)
« Post-driftimpact: MAE peaked at 2.04 stops (38700s), representing a 139% ncrease
+ Post-recovery: MAE improved but remained elevated at 1.04-1.27 stops

Figure 6.12: Al summary report shown in Admin Dashboard after simulation completion.

92

Chapter 7

Conclusion

7.1 Summary of Contributions

This thesis designed, implemented, and validated a drift-aware platform for continuous machine
learning in cooperative, connected and automated mobility (CCAM) applications, using a cen-
tral Athens case study. It delivered four concrete artifacts. First, a reproducible SUMO-based
synthetic data generation pipeline produced train/test scenarios and a controlled concept-drift
scenario via reduced road friction to emulate heavy rain. Second, an ETA prediction model based
on gradient-boosted decision trees with domain-informed feature engineering was developed and
tuned, serving as the primary workload to study drift. Third, a microservice platform was built
to operate ML in a closed loop: it replays/streams data, monitors errors, detects drift via a com-
plementary set of detectors with consensus, triggers retraining, and performs model swaps during
operation with no downtime. Fourth, an evaluation methodology tied the above components to-
gether in a time-lapse experiment, demonstrating detection, adaptation, and recovery within one
end-to-end system. Collectively, these contributions show that continuous machine learning for
mobility can be realized with practical engineering trade-offs and clear operational boundaries,
while maintaining a high level of reproducibility.

7.2 Key Findings

The study yields four main findings. (i) Controlled, domain-realistic drift matters: degrading road
friction shifts ETA error distributions in ways that are observable, repeatable, and actionable,
providing a reliable proving ground for adaptation policies. (ii) Consensus-based drift detection
stabilizes decisions under noisy signals; requiring agreement among complementary detectors
reduced spurious triggers without masking material changes. (iii) Warm retraining followed by
a controlled swap restores performance effectively in the short term when the post-drift window
is representative, indicating that periodic, targeted updates can be sufficient for tabular ETA
workloads. (iv) Operational visibility is a prerequisite for trust: aligning dashboards, detector
states, and deployment notifications with the simulation timeline made adaptation auditable and
supported fast failure analysis when behavior deviated from expectation.

93

Chapter 7. Conclusion

7.3 Limitations

Three limitations qualify the results. First, the data are realistic enough but still remain synthetic
and scenario-bounded. While SUMO supports realistic dynamics even in a dense urban network
like central Athens, the distributional support and covariate interactions are still curated. Ex-
ternal validity to heterogeneous, multi-source urban data is not guaranteed. Second, features are
primarily precomputed offline to simplify reproducibility and latency. This this underplays chal-
lenges of on-line feature materialization (late-arriving signals, joins, and leakage control). Third,
the system operates at a single-node, Docker Compose scale. Although services are isolated and
performant, questions of horizontal scaling and elasticity under bursty demand remain open.

7.4 Future Work

Future extensions follow from these limits and the platform’s design. Real data ingestion should
be added, for example using provider-specific FCD connectors, with schema validation and late-
label handling. Online learning variants for ETA, like incremental boosting or streaming variants,
merit evaluation as complements to the warm-retrain path, to reduce adaptation latency and
detector sensitivity. Cloud-native deployment with autoscaling (container orchestration, queue
backpressure, and GPU/CPU bin-packing) would enable elasticity under variable loads. A per-
sistent store, acting as a feature store plus model registry, would support consistent real-time
features, lineage, and rollback. The addition of a time-series database, like TimescaleDB, can re-
tain metrics and notifications for historical analysis and trend detection. Continuous monitoring
should be expanded beyond drift and error to include service-level objectives (e.g., tail inference
latency), label/ground-truth availability, and post-deployment evaluation with delayed ground
truth. Finally, the dataset simulation pipeline can include additional perturbations, such as in-
cidents, closures, or demand shocks, to study interaction effects and to benchmark adaptation
policies under multi-factor drift.

7.5 Closing Remarks

In summary, the thesis demonstrates that a drift-aware, closed-loop ML platform for urban
mobility is both feasible and useful. Under a controlled but realistic drift, the system detected
change, adapted promptly, and restored predictive quality, while keeping its operation observable.
Bridging from this validated sandbox to production, where data are heterogeneous, labels are
delayed, and scale is non-negotiable, defines the next phase: turning a working prototype into a
dependable mobility service.

94

Appendix A

Code Availability

To ensure transparency and reproducibility, the complete source code associated with this diploma
thesis has been made publicly available on GitHub at:

https://github.com/geokyr/diploma-thesis
The repository includes:

e Project documentation and usage instructions

Dataset generation simulation with SUMO

Machine learning research experiments

Platform implementation (backend, predictor, drift, summarizer, frontend)

Containerization and deployment artifacts (Dockerfiles, Docker Compose, uv)

Note on Data Availability: details on the public dataset and its DOI are provided in subsec-
tion 4.1.10.

95

https://github.com/geokyr/diploma-thesis

Appendix A. Code Availability

96

Bibliography

[1] ERTRAC Working Group “Connectivity and Automated Driving”. Connected, Cooperative
and Automated Mobility Roadmap. Tech. rep. Version 10. European Road Transport Re-
search Advisory Council (ERTRAC), 2022.

[2] Abdi, A. and Amrit, C. “A Review of Travel and Arrival-Time Prediction Methods on
Road Networks: Classification, Challenges and Opportunities”. In: PeerJ Computer Science
7 (2021), €689.

[3] Arifi, A., Bouros, P., and Chondrogiannis, T. “A Study on ETA Prediction using Machine
Learning and Recovered Routes”. In: Proceedings of the Workshops of the EDBT/ICDT 2024
Joint Conference. CEUR Workshop Proceedings. Paestum, Italy: CEUR-WS.org, 2024.

[4] Gama, J., Zliobaité, L., Bifet, A., Pechenizkiy, M., and Bouchachia, A. “A survey on concept
drift adaptation”. In: ACM Computing Surveys (CSUR) 46.4 (2014), pp. 1-37.

[5] Lu, J., Liu, A., Dong, F., Gu, F., Gama, J., and Zhang, G. “Learning under concept drift: A
review”. In: IEEE Transactions on Knowledge and Data Engineering 31.12 (2018), pp. 2346—
2363.

[6] Baier, L., Hofmann, M., Kiihl, N., Mohr, M., and Satzger, G. “Handling Concept Drifts in
Regression Problems—the Error Intersection Approach”. In: arXiv preprint arXiv:2004.00438
(2020).

[7] Greco, S., Vacchetti, B., Apiletti, D., and Cerquitelli, T. “Unsupervised Concept Drift De-
tection from Deep Learning Representations in Real-time”. In: arXiv preprint arXiv:2406.17813
(2025).

[8] Xin, H., Zhang, X., Tang, R., Yan, S., Zhao, Q., Yang, C., Cui, W., and Yang, Z. “LitSim:
A Conflict-aware Policy for Long-term Interactive Traffic Simulation”. In: arXiv preprint
arXiw:2403.04299 (2024).

[9] Modesto, C., Borges, J., Nahum, C., Matni, L., Both, C. B., Cardoso, K., Gongalves, G.,
Correa, 1., Lins, S., Silva, A., and Klautau, A. “Towards a Robust Transport Network With
Self-adaptive Network Digital Twin”. In: arXiv preprint arXiv:2507.20971 (2025).

[10] Krajzewicz, D., Erdmann, J., Behrisch, M., and Bieker, L. “Recent development and appli-
cations of SUMO - Simulation of Urban MObility”. In: International Journal On Advances
in Systems and Measurements 5.3&4 (2012), pp. 128-138.

[11] Weber, T., Driesch, P., and Schramm, D. “Introducing Road Surface Conditions into a
Microscopic Traffic Simulation”. In: SUMO User Conference 2019. EasyChair, 2019. URL:
https://easychair.org/publications/paper/354X.

[12] Angelis, G. Fuel Consumption Prediction Model. Unpublished work, integrated in drift-
aware platform. 2025.

[13] Tzelepis, S. Number of Stops Prediction Model. Unpublished work, integrated in drift-aware
platform. 2025.

97

https://easychair.org/publications/paper/3S4X

Bibliography

[14]
[15]

[16]
[17]
[18]
[19]
[20]

[21]

[22]

23]

[24]
[25]

[26]
[27]

28]

[29]

[30]

[31]

[32]

Shalev-Shwartz, S. and Ben-David, S. Understanding Machine Learning: From Theory to
Algorithms. Cambridge University Press, 2014.

Sarker, I. H. “Machine Learning: Algorithms, Real-World Applications and Research Direc-
tions”. In: SN Computer Science 2.160 (2021). DOI: 10.1007/s42979-021-00522-x.

Chen, T. and Guestrin, C. “XGBoost: A Scalable Tree Boosting System”. In: Proceedings
of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining (KDD). 2016, pp. 785-794. DOIL: 10.1145/2939672.2939785.

Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., Ye, Q., and Liu, T. “Light GBM:
A Highly Efficient Gradient Boosting Decision Tree”. In: Advances in Neural Information
Processing Systems 30 (NeurIPS 2017). 2017, pp. 3146-3154.

Prokhorenkova, L., Gusev, G., Vorobev, A., Dorogush, A. V., and Gulin, A. “CatBoost:
unbiased boosting with categorical features”. In: Advances in Neural Information Processing
Systems 31 (NeurIPS) (2018), pp. 6638-6648.

LeCun, Y., Bengio, Y., and Hinton, G. “Deep learning”. In: Nature 521 (2015), pp. 436-444.
DOI: 10.1038/nature14539.

Bishop, C. M. Pattern Recognition and Machine Learning. Springer, 2006.

Parisi, G. I., Kemker, R., Part, J. L., Kanan, C., and Wermter, S. “Continual lifelong
learning with neural networks: A review”. In: Neural Networks 113 (2019), pp. 54-71. DOIL:
10.1016/j .neunet.2019.01.012.

Tabassam, A. 1. U. “MLOps: A Step Forward to Enterprise Machine Learning”. In: arXiv
preprint arXiv:2305.19298 (2023). URL: https://arxiv.org/abs/2305.19298.

Bifet, A. and Gavalda, R. “Learning from time-changing data with adaptive windowing”.
In: Proceedings of the 2007 SIAM International Conference on Data Mining (SDM). 2007,
pp. 443-448.

Page, E. S. “Continuous Inspection Schemes”. In: Biometrika 41.1/2 (1954), pp. 100-115.
DOI: 10.2307/2333009.

Jr., F. J. M. “The Kolmogorov-Smirnov Test for Goodness of Fit”. In: Journal of the Amer-
ican Statistical Association 46.253 (1951), pp. 68-78.

Montgomery, D. C. Introduction to Statistical Quality Control. 9th. Wiley, 2020.

Montiel, J., Halford, M., Marti, S., Becker, C., Gonzalez-Hernandez, A., Lendasse, A., and
Read, J. “River: machine learning for streaming data in Python”. In: Journal of Machine
Learning Research 22.111 (2021), pp. 1-8. URL: http:// jmlr . org/papers/v22/20 -
1346 .html.

Montiel, J., Read, J., Bifet, A., and Abdessalem, T. “Scikit-Multiflow: A Multi-output
Streaming Framework”. In: Journal of Machine Learning Research 19.72 (2018), pp. 1-5.
URL: http://jmlr.org/papers/v19/18-251 .html.

Looveren, A. V. and Klyn, J. “Alibi Detect: Outlier, Adversarial and Concept Drift Detec-
tion for Tabular, Text and Image Data”. In: NeurlPS 2020 Workshop on Machine Learning
Open Source Software. 2020. URL: https://arxiv.org/abs/2006.07272.

Al E. Evidently AI Documentation. https://docs.evidentlyai.com. Accessed 2025-10-
26. 2025.

Grootendorst, M., Koning, B. de, Miltenburg, E. van, and Walt, S. van der. “Confidence-
Based Performance Estimation for Post-Deployment Machine Learning Models”. In: arXiv
preprint arXiv:2305.19388 (2023). URL: https://arxiv.org/abs/2305.19388.

Duan, Y., Zhang, L., and Song, D. “Travel Time Prediction using LSTM Neural Network”.
In: International Journal of Computer Science and Mobile Computing 5 (2016), pp. 44-53.

98

https://doi.org/10.1007/s42979-021-00522-x
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1038/nature14539
https://doi.org/10.1016/j.neunet.2019.01.012
https://arxiv.org/abs/2305.19298
https://doi.org/10.2307/2333009
http://jmlr.org/papers/v22/20-1346.html
http://jmlr.org/papers/v22/20-1346.html
http://jmlr.org/papers/v19/18-251.html
https://arxiv.org/abs/2006.07272
https://docs.evidentlyai.com
https://arxiv.org/abs/2305.19388

Bibliography

[33] Shen, Y., Wang, D., Li, J., Wang, Z., and Chen, X. “DeepTTE: Predicting Travel Time
with Deep Neural Network Architecture”. In: Proceedings of the 28th International Joint
Conference on Artificial Intelligence (IJCAI) (2019).

[34] Guin, A. “Travel Time Prediction Using Gradient Boosting Regression Tree”. In: Proceed-
ings of the 7th International Conference on Applications of Advanced Technologies in Trans-
portation. 2006.

[35] Zhang, L. and Haghani, A. “Travel Time Prediction Using GBDT”. In: Transportation
Research Record 2442 (2015), pp. 45-55.

[36] Athens Mobility Observatory, National Technical University of Athens. Athens Mobility
Observatory. https://amob.ntua.gr/traffic/. Accessed 2025-10-26. 2025.

[37] Kyriakopoulos, G. Synthetic 10-Hour Traffic Simulations for Central Athens (Train/Test/Rain).
Zenodo, Aug. 2025. DOI: 10.5281/zenodo.16950674. URL: https://zenodo.org/records/
16950674.

[38] Lundberg, S. M. and Lee, S.-I. “A Unified Approach to Interpreting Model Predictions”.
In: Advances in Neural Information Processing Systems 30 (NIPS). 2017, pp. 4765-4774.

[39] Akiba, T., Sano, S., Yanase, T., Ohta, T., and Koyama, M. “Optuna: A Next-generation
Hyperparameter Optimization Framework”. In: Proceedings of the 25th ACM SIGKDD In-
ternational Conference on Knowledge Discovery € Data Mining (2019), pp. 2623-2631.
DOI: 10.1145/3292500.3330701.

[40] Newman, S. “Building Microservices”. In: O’Reilly Media (2015).

[41] Fielding, R. T. “Architectural Styles and the Design of Network-based Software Archi-
tectures”. In: Doctoral dissertation, University of California, Irvine (2000). URL: https:
//www.ics.uci.edu/"fielding/pubs/dissertation/rest_arch_style.htm.

[42] Maheshwari, H., Yang, L., and Pazzi, R. W. “Machine Learning Advancements in Urban
Traffic Simulation: A Comprehensive Survey”. In: IEEE Open Journal of Intelligent Trans-
portation Systems 6 (2025), pp. 1027-1052.

[43] Zliobaiteé, I. “A survey on concept drift adaptation”. In: ACM Computing Surveys (CSUR)
46.4 (2014). DOI: 10.1145/2523813.

[44] Foundation, E. and contributors. Eclipse SUMO - Simulation of Urban MObility. https:
//eclipse.dev/sumo/. Accessed 2025-10-26. 2024.

[45] Espinosa, A. V. “Traffic Modeling with SUMO: a Tutorial”. In: arXiv preprint arXiv:2304.05982
(2021). URL: https://arxiv.org/abs/2304.05982.

[46] Merkel, D. “Docker: lightweight Linux containers for consistent development and deploy-
ment”. In: Linuz Journal 239 (2014), p. 2.

[47] Inc., D. Docker Compose Documentation. https://docs.docker.com/compose/. Accessed
2025-10-26. 2025.

[48] Ramirez, S. and contributors. FastAPI Documentation. https://fastapi.tiangolo.com/.
Accessed 2025-10-26. 2025.

[49] Inc., P. T. Dash Documentation € User Guide. https://dash.plotly. com/. Accessed
2025-10-26. 2025.

[50] Inc., P. T. Plotly Python Documentation. https://plotly.com/python/. Accessed 2025-
10-26. 2025.

[51] Colvin, S. and contributors. Pydantic Documentation. https://docs . pydantic . dev/.
Accessed 2025-10-26. 2025.

[52] Vohra, D. “Apache Parquet”. In: Practical Hadoop Ecosystem. Apress, 2016, pp. 325-351.

[53] Miiller, R., Boscolo, G., Wirth, F., and Niggemann, O. “Open-Source Drift Detection Tools
in Action”. In: arXiv preprint arXiv:2404.18673 (2024). URL: https://arxiv.org/abs/
2404 .18673.

99

https://amob.ntua.gr/traffic/
https://doi.org/10.5281/zenodo.16950674
https://zenodo.org/records/16950674
https://zenodo.org/records/16950674
https://doi.org/10.1145/3292500.3330701
https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
https://doi.org/10.1145/2523813
https://eclipse.dev/sumo/
https://eclipse.dev/sumo/
https://arxiv.org/abs/2304.05982
https://docs.docker.com/compose/
https://fastapi.tiangolo.com/
https://dash.plotly.com/
https://plotly.com/python/
https://docs.pydantic.dev/
https://arxiv.org/abs/2404.18673
https://arxiv.org/abs/2404.18673

Bibliography

[54]

[55]

[56]

[57]

[58]

[59]

[60]
[61]

[62]

[63]
[64]
[65]

|66]

[67]

[68]

[69]

[70]

Hyndman, R. J. and Athanasopoulos, G. Forecasting: principles and practice. OTexts, 2018.
URL: https://otexts.com/fpp2/arima.html.

Wang, D., Sun, W., Wang, Z., and Li, J. “DeepTTE: Predicting Travel Time with Recurrent
Neural Network Architecture”. In: Proceedings of the 27th International Joint Conference
on Artificial Intelligence (IJCAI) (2018).

Li, M., Feng, Y., and Wu, X. “AttentionTTE: A Deep Learning Model for Estimated Time
of Arrival”. In: Frontiers in Artificial Intelligence 7 (2024), p. 1258086. DOI: 10.3389/frai.
2024 .1258086.

Guo, Y., Wu, Y., Mao, F., Wang, E., Zhang, J., and Hu, X. “Wide & Deep Learning
for Recommender Systems”. In: Proceedings of the 1st Workshop on Deep Learning for
Recommender Systems - DLRS ’19. 2019. DOI: 10.1145/3331184.3331287. URL: https:
//dl.acm.org/doi/10.1145/3331184.3331287.

Qian, Z., Zhang, 7., Xu, Z., Fan, X., and Wang, M. “CoDriver: Multi-Task Learning for
Driver Behavior and Route Prediction”. In: Proceedings of the 29th ACM International
Conference on Multimedia. 2021, pp. 2957-2965. DOI: 10.1145/3474085 . 3475550. URL:
https://dl.acm.org/doi/10.1145/3474085.3475550.

Derrow-Pinion, A., She, J., Wong, D., Lange, O., Hester, T., Perez, L., Nunkesser, M., Lee,
S., Guo, X., Wiltshire, B., Battaglia, P. W., Gupta, V., Li, A., Xu, Z., Sanchez-Gonzalez, A.,
Li, Y., and Velickovi¢, P. “ETA Prediction with Graph Neural Networks in Google Maps”.
In: Proceedings of the 30th ACM International Conference on Information and Knowledge
Management (CIKM). 2021. DOI: 10.1145/3459637.3481916.

Jia, A.-F. and Guo, X.-Y. “Spatio-Temporal Graph Neural Networks for Urban Traffic Flow
Prediction”. In: IEEE Transactions on Knowledge and Data Engineering (2021).

Guo, X.-Y. and Jia, A.-F. “Spatio-Temporal Graph Neural Networks for Urban Traffic Flow
Prediction”. In: IEEE Transactions on Knowledge and Data Engineering (2022).

Antypas, D., Psychas, A., Mylonaki, N.-K., Stergiopoulou, D., and Giakoumakis, G. “Bus
ETA Prediction Using Gradient Boosting Machines in a Smart City Context”. In: I[EFEE
Access 10 (2022), pp. 55007-55019. DOI: 10.1109/ACCESS.2022.3178195.

Taxi, N. and Commission, L. New York City Taxi Trip Duration Dataset. https://www.
kaggle.com/c/nyc-taxi-trip-duration. Accessed October 2025.

OpenStreetMap contributors. OpenStreetMap. https : //www . openstreetmap . org. Ac-
cessed 2025-10-26. 2025.

Hellenic Statistical Authority. Greece Vehicle Fleet Statistics. https://www.statistics.
gr/en/statistics/-/publication/SME18/-. Accessed 2025-10-26. 2025.

Krauss, S. “Microscopic Modeling of Traffic Flow: Investigation of Collision Free Vehicle
Dynamics”. In: Philosophical Transactions of the Royal Society A: Mathematical, Physical
and Engineering Sciences 356.1742 (1998), pp. 927-938. DOI: 10.1098/rsta.1998.0196.
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel,
M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D.,
Brucher, M., Perrot, M., and Duchesnay, E. “Scikit-learn: Machine Learning in Python”.
In: Journal of Machine Learning Research 12 (2011), pp. 2825-2830.

Box, G. E. and Cox, D. R. “An Analysis of Transformations”. In: Journal of the Royal
Statistical Society Series B (Methodological) 26 (1964), pp. 211-243.

Himeno, R., Kojima, K., Cecotti, H., and Kubota, M. “Progress in Normalization Meth-
ods for Radar Signal Processing”. In: IEICE Transactions on Fundamentals of Electronics,
Communications and Computer Sciences 92.4 (2009), pp. 926-930.

Lloyd, S. P. “Least Squares Quantization in PCM”. In: IEEE Transactions on Information
Theory 28.2 (1982), pp. 129-137.

100

https://otexts.com/fpp2/arima.html
https://doi.org/10.3389/frai.2024.1258086
https://doi.org/10.3389/frai.2024.1258086
https://doi.org/10.1145/3331184.3331287
https://dl.acm.org/doi/10.1145/3331184.3331287
https://dl.acm.org/doi/10.1145/3331184.3331287
https://doi.org/10.1145/3474085.3475550
https://dl.acm.org/doi/10.1145/3474085.3475550
https://doi.org/10.1145/3459637.3481916
https://doi.org/10.1109/ACCESS.2022.3178195
https://www.kaggle.com/c/nyc-taxi-trip-duration
https://www.kaggle.com/c/nyc-taxi-trip-duration
https://www.openstreetmap.org
https://www.statistics.gr/en/statistics/-/publication/SME18/-
https://www.statistics.gr/en/statistics/-/publication/SME18/-
https://doi.org/10.1098/rsta.1998.0196

Bibliography

[71]
[72]
73]
[74]
[75]
[76]
[77]
78]

[79]

Jolliffe, I. T. “Principal Component Analysis”. In: Springer Series in Statistics (1986).
Breiman, L. “Random Forests”. In: Machine Learning 45 (2001), pp. 5-32.

Pearson, K. “Notes on Regression and Inheritance in the Case of Two Parents”. In: Pro-
ceedings of the Royal Society of London 58 (1895), pp. 240-242.

Bergstra, J., Bardenet, R., Bengio, Y., and Kégl, B. “Algorithms for Hyper-parameter
Optimization”. In: Advances in Neural Information Processing Systems 24 (NIPS). 2011,
pp. 2546-2554.

Astral. uv Documentation. 2025. URL: https://docs.astral.sh/uv/.

Christie, T. and contributors. HTTPX: Async HTTP client for Python. https://www.
python-httpx.org/. Accessed 2025-10-26. 2025.

McKinney, W. “Data Structures for Statistical Computing in Python”. In: Proceedings of
the 9th Python in Science Conference (2010), pp. 56-61.

Harris, C. R., Millman, K. J., Walt, S. J. van der, Gommers, R., Virtanen, P., Cournapeau,
D., and al., et. “Array programming with NumPy”. In: Nature 585 (2020), pp. 357-362.
Developers, A. A. Apache Arrow: PyArrow. https://arrow.apache.org/docs/python/.
Accessed 2025-10-26. 2025.

101

https://docs.astral.sh/uv/
https://www.python-httpx.org/
https://www.python-httpx.org/
https://arrow.apache.org/docs/python/

	Contents
	List of Figures
	List of Tables
	Extended Abstract in Greek
	Introduction
	Motivation
	Problem Statement
	Thesis Goal
	Contributions
	Thesis Structure

	Background
	Classical Machine Learning
	Deep Learning
	Model Performance Metrics
	Regularization, Overfitting, and Underfitting
	Cross-Validation
	Model Selection and Hyperparameter Tuning
	Continuous Machine Learning
	MLOps
	Concept Drift
	Key Trade-offs in Drift Detection and Adaptation
	SUMO Simulator
	Containerization and Orchestration
	Web Protocols and API Design
	Backend and Frontend Frameworks
	Data Validation and Storage

	Relevant Work
	Tooling Landscape for Drift Detection and Monitoring
	River
	scikit-multiflow
	Alibi and Alibi Detect
	Evidently
	NannyML
	Summary and Limitations

	ETA Prediction: Literature Overview
	Classical Time-Series Methods
	Deep Learning Approaches
	Graph Neural Networks
	Gradient Boosting and Hybrid Models

	Novelty and Contributions of the Proposed Platform
	Controlled Drift Simulation with SUMO
	Multi-Task Prediction and Monitoring
	Automated Model Retraining and Hot-Swapping
	Real-Time Dashboard and Visualization
	Conclusion

	Dataset Generation and Machine Learning Research
	Dataset Generation
	Study Area
	Network Construction
	Vehicle Classes
	Traffic Demand Modeling
	Concept Drift Scenario
	End-to-End Generation Pipeline
	Reproducibility and Extensibility
	Output Format
	Dataset Characteristics
	Data Availability

	Machine Learning Research
	Overview
	From FCD to Trips
	Experimental Methodology
	Baseline Models
	Transformation Experiments
	Feature Engineering
	Hyperparameter Tuning
	Final Model

	Platform Architecture and Implementation
	High-Level Overview
	System Architecture
	Service Responsibilities
	Technology Stack
	Simulation Control Flow
	Timelapse Tick
	User Prediction Flow

	Deployment Architecture
	Compose-Based Orchestration
	Images, Footprint, and Resources
	Configuration and Dependencies

	Performance Goals and Realization
	Logging, Error Handling, and Observability
	Concurrency and Isolation
	Extensibility and Design Principles
	Backend Abstraction and Task Agnosticism
	Feature Engineering Pattern
	Data Access Pattern
	Adaptation Policy and Consensus

	Architectural Strengths and Trade-offs
	API Endpoints Reference
	Summary

	Results
	Overview
	Notation and Setup
	Models and Metrics
	Baseline Model Performance
	Retrained Model: Training Window and Rationale
	Post-Swap Evaluation on an Identical Window
	Takeaways
	Platform Demonstration

	Conclusion
	Summary of Contributions
	Key Findings
	Limitations
	Future Work
	Closing Remarks

	Code Availability
	Bibliography

