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ITepiAndn

H autdvoun odhynon anotehel Tov xUpto GTOY0 TOMGDV XATUCKEVIC TWOY O NUATWY ChUE-
po. Y€ €val TATIeWS AUTOVOUO GG TNUA, TO Oy N TEETEL Vo umopel var xiveltar ywpls ovlpdmivn
ToEEUPaoT), YEYOVOC Tou anauTel TAYEY XATAVONOT| TOU TEQBAANOVTOC TOu, axpl3T| EAEY YO Tou
OYNUATOS Xou txavoTnTaL PeTaxbvnong amd éva onuelo oe dhho. Mia and Tic xUpleg TpoxAfoelg
oTNV 08NYNOT OE AUTOXVITOBEOMOUC, LOLUTEPX OE BEOUOUC UE TOMAES hwpldeg, lvon 1) TEdBhe-
g1 e ahhayic Awpidoc amd ta yOew oyrfuata. Ilapdro mou Ta prag €youv oyediacTel yia
VoL UTOOEVOOUY TETOLOUG EALYUOUS, Ol 001YOol BEV To YENOWOTOOUY TEVTo YE CUVETEW. ()¢
ex T00OTOU, TO QUTOVOUN OYHUNTA TEETEL Vo efvan o€ VEaT VoL aviy VEDOLY xot Vo TEOPBAETOUY
oMharyEg hwptdag Baocilopeva oe dhla oTolyela, aveldotnTo and OTTIXE CHUATOL.

H nopoldoa dimhwyatiny epyaocta acyoheltar e 1o mpoBinua tne npoliedng emxeiuevmy
ANy @OV Awpldoc YenoWomoldvTag €va Hovtélo unyavixrc udinone Bactouévo oe Alxtua
Moxponpéddeounc Beayurnpddeoune Mvrune (Long Short-Term Memory, LSTM). To po-
viého tadvopel napdiupa otalepol pixoug ot pia and teelc xatnyopiec: LLC (AN\oryA mpog
Apioteph) Awpida), RLC (ANoyh npoc AeZid Awpida) ff NLC (Koo AMoryh Awpidac). H
epyaota mapoustdlel 800 Pacixég xavotopleg Tou dev €youy dicpeuvniel tponyoupévwe otn Bi-
Bhoypapio. ITpdTtov, YeNoUOTOLE! XIVNUATIXG YoEaXTNELO TIXG Yiar THY TEOBAEd EAYUOY ovTl
yioe T 9€om ToL OYNUATOC OE TOTUXO XAPTECLAVO GUGTNUA 1| TIC EVTIOAES EAEYYOU TOU 00NY0U,
ol omoleg ouvlwe dev elvon dlardéoiueg oe TEayUaTIXd cevdpla ywpeic emxotvevio 27 Ae-
OTtepoVY, avTETOTILEL TNV ENRELPN UEYAAOU GYXOoU SLdECLUWY ONUOCIWY GUVOAWY BEBOUEVELV
,ONUoLpYOVTaS cuVIETIXG BEBOUEVOL UE TN YPMOT TOU TEOGOUOWWTY avoixtol xwdixa CAR-
LA, to omolor 6Tn GUVEYELXL YENOWWOTOUVTAL Yiot THY exntaldeuvon Tou yovtélou. Térog, to
novtého afohoyeiton (o) oe cuvleTind dedopéva Tou mapdyovton U dlapopeTinés cuVDTXES
xou (B) oe mporypatind oOvoha Sedouévev, amodevOOVTISC TNV IXAVOTNTA TOU Vol YEVIXEVEL GE

OLopopETIXG TIEPSAANOVTAL.

Aglesic KAeolk

Avutovoun Odrynom, Mnyovixry Mdinon, HpdBredn odhaync hwpldag, Talvounon eivy-
po0, LSTM (Long Short-Term Memory), ITpocopowntic CARLA, Yuvietind dedopéva
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Abstract

Autonomous driving is the primary objective for many car manufacturers today. In a
fully autonomous system, a vehicle must navigate without human input, which requires a
comprehensive understanding of its environment, precise control over the vehicle, and the
ability to travel from one location to another. A key challenge in highway driving, partic-
ularly on multi-lane roads, is anticipating the lane-changing behavior of nearby vehicles.
While turn signals are designed to indicate such maneuvers, drivers do not always use them
reliably. As a result, autonomous vehicles need to detect and predict lane changes based
on other cues, independent of visual signals.

This thesis addresses the problem of predicting imminent lane changes using a machine
learning model based on Long Short-Term Memory (LSTM) networks. The model classifies
fixed-length sliding windows into one of three categories: LLC (Left Lane Change), RLC
(Right Lane Change), or NLC (No Lane Change). The work introduces two key novelties
not previously explored in the literature. First, it employs kinematic features for maneuver
prediction rather than relying on the vehicle’s position in a local Cartesian system or the
driver’s control inputs, which are generally unavailable in real-world scenarios without
V2V communication. Second, it addresses the lack of publicly available large datasets by
generating synthetic data using the open-source CARLA Simulator, which are then used
to train the model. Finally, the model is evaluated on (a) synthetic data produced under
varying conditions, and (b) real-world datasets, demonstrating its capability to generalize

across different environments.

Keywords

Autonomous Driving, Machine learning, Lane change prediction, Maneuver classifica-
tion, LSTM (Long Short-Term Memory), CARLA simulator, Synthetic data
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Euyaplotisg

Oa fideha VoL ExpeAo TG ELYAPLOTIES oL TEO¢ Tov xadnyNTh x. Toavdxa yia Ty euxonplio
TIOU OV TROCEPERE VAL EXTIOVHCW TNV TOEONCH SITAWUATIXT EQYACTa OE VAl LOLOUTERO EVOLUPEPOY
xou oUYyeovo avTixeluevo, To omolo cuvdudlel xplowo {nrAuata, 6mwg 1 Mnyavixr Mddnon
X0l 1) UTOVOUT] OB YNOM.

Euyopiotey enlong depud tov Ap.  Apoivixn 'ewpyio yioa tnv xatovonon mou enédelle
OYETIXA UE TO UMOUTNTINO TROYEUUMS LOU o1 TIC BLAPOPES UTOYPEMTELS TOU XJUGTERNOAY TNV
ohoxMpwor g epyaciog, xadme xou Yo Ty eueM&lo Tou You Tapelye WoTE Vo Bldécw Tov
amopaitnto Yedvo. Avtiotorya, Yo Hlela vo euyaptotion xar tov x. T'weyo Xatlnmouds, o
omolog ye Porinoe otny eyxatdotacn o o1 Yenor tou tpocouolwt) CARLA xou agiépwoe
YEOVo Yl var umopoly va Tpé€ouv dha oe Windows mou yernoionololco €Yo OTav €lyov
oyedaotel yio Linux.

Téhog, Vo Aleha vo eLY AP THCW TNV OLXOYEVELS WOV, TOUC PIAOUC UOU XaL TOUC GUVAOEA-
(QOLC oL OAaL TOL YEOVIAL TNS PolTNoTE KoV, Yia TN oThEEY Toug 160 OTIC BUOXOAEC 6CO XAl

OTIC EUYUPIOTES OTIYUES, UEOO amd TIC OTOLEC AmoXOULoa TONOTYIES EUTELRLES.

Adva, OxtwBelou 2025

Yrypidwy Hapaokevds Xtevtoiuns
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Kegdiowo m

Extetopevn Ilepiindn

0.1 Ewaywyn

H teyvnty| vonuooivn eivon éva amd to o xodoploTind. YopoxTNRLOTIXG. TNG ETOYNG WA,
xS uTdpyEL oe Ghoug Toug Touelc TG xadnueEVOTNTAC Yag, ard TV Juyaywyle uag,
ue Bivteo mou dnutovpyolvTon Y€K QUTAC MEYEL Kol OE ATAEC OLXIAXES EQUQUOYES, OTWS TA
QUTOUATO CUCTAPTA ToTiouatog. Auth Ty Tdon TN autopatoroinong xa yerone Teyvntic
Nornuooivng axoloudel xan o Tou€ag Tng 00NRYNONS, OTOU O GUVBLUCUOS TOUG, Elval aEXETA
OPEMUOC YLoL OAOUC TOUS 08N YOUE, BLOTL QUEAVEL TNV OCPAAELNL TWV OONYOV Xl XoOTE TNV
eunelpiol 001 YNONG MO ELYEELOTY.

XNy 001ynom, o andhutog oTéY0g £Vl 0 EAEY YOS TOU OYAUATOS EE OAOXATPOU aTd TOUG
on-board unoloyiotéc autol, ywelc Ty TapéuPacr Tou avlp®rou-0dnyYoU, dNAadY 1 TAYENC
ouTovoula. Y€ AUTO TO GEVAPLO, 0 POAOS TOL aVUP®TOU AAAALEL amtd 00NYO UE TATET EAEYYO
oe anh6 emP3drn. ‘Onwg eivon Quod, pio Tétota aAloyr| 0V TEoyUaTOTOLE(ToL oTUypLodaL, GAAS
otadtoxd. Auth 1 nopela éyel anotunwiel and tn Society of Automotive Engineers (SAE),

1 omolo efvan Wiar Ty XOOULL XOWVOTNTA XAl OPYAVIOUOS TEOTUTIWY, o€ €EL OTAdLAL:

e 7o eninedo 0, dev UTdPYEL XAVEVAS AUTOUATIOUOS Xl 0 001Y0¢ elvon uTehIuvog Yior ToV

ENEYYO TOU OYAUNTOS.

e Y710 eminedo 1, undpyet uoe unoforinon tou, mou onualvel OTL To oYU UTopel val
Bondroet Tov 00MY6 Vo dlatnenoel oTalepr| Lot OPLOUEVT ToYUTNTO 1) GTO VoL DLATNET|OEL

TO Oy MU EVTOS TNG Awpldac Tou.

e Y7o eninedo 2, pepiny| autovopia €yl emteuyVel, 6ToU TO Oy Mua uropel vor EAEYYEL TN

Tary OTNTé ToL X TN VEom Tou oTIC Awpldeg, cuVATWS GE 001 YNOT GE AVTOXYNTOOEOUOUG.

® Y70 eminedo 3, undpyel avTovouio UTO GUVITXES, OTIOU TO OY MU ATOXTA TATeT EAEYYO,
ahA& oe cuyxexpéva TeEpBdAAovTa xou efvar uTELYUYO AUTO YA TNV ETULTAENGCT TOU
Tep3dAlovto tou. oté00, unopel omowdnnote oTiyuy| vor {ntoel and Tov odnyo va

TdpEL TOV EAEYYO.

e Y70 eninedo 4, umdpyet udnir autovoulo oe cuyxexpéveg cuvirixeg. ‘Otav oL cuvirxeg
UTEC XOADTTOVTOL TOTE, TO OYMUO AElTOoLEYEl Ue TAYjen auTovouio ywelc vo utdpyet

avey X YloL 00NYO.
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0. Extetopévn Iepiindm

e Y10 eninedo 5, €yel emteuyVel TAYENC auTovoula ywelc Teploplopols, xaL 0 dvlpwrog

€xel yetatpanel oe emfBdTng.

Tn otypn g ouyypagnc aUTAC TG SLTALUTIXAG, To LPMAGTEPO eninedo autovoulag
mou elvon eunopa¢ dléolo 6To xowo elvor To eninedo 3 and tnv Mercedes-Benz pe to
obotnua Drive Pilot, to onolo eivan neplopioyévo oe xdnoeg neployéc tne 'epuaviog pe plo
oy Ot T 95 km /h, xon o€ xdmoteg nohiteieg e Apepirc. Qotéo0, undpyet xar to Waymo
otic Hvopevég [lohteleg mou mpoopépel unneesie, 6nwe Robotaxi, poptnyd xan dtovopés ue

oyfuortal e autovopio emédou 4.

0.1.1 3x0ombég TNG OIMAWUATIXNAS

IMo va emiteuydel ) TAeNg avtovouia, To OyNua TEETEL Vo UTOREL Var avTIAopfBdveTon Ue
axp{Belo tepBAAAOY TOU xon Vol TROBAETEL TIC XIVACELS TWV YORW OYNUATOV.

e €va 0UTOTUXO CEVYELO, TIOU UTEYEL AEXETA Amd TAL ONUEEVE DEBOUEVA, ToL Oy AT Vol
ebvor 6hot awtovopa pe V2V (Vehicle-to-Vehicle) emxowvwvia, 6mou xdlde dynua Yo enixovwvel
UE Tal x0VTVa Tou xou Yo poledlovion TANeoQopleg oyeTnd Ue Tic Tpodéoelg Tou, xou 6ev Yo
uTdEyEL XVOUVOG. LTV TEAYUATIXOTNTA OUKS, OTOU TA TEPLOCOTERN O} AUAT EAEYYOVTAL AT
oavdpdToug, Unoeolv va Yivouv ol edxola Addn Tou va 0dnyicouy e aThy UL XL Vol oand
auTé elvon oL ahhary€g Awpldag Ywels TN Yeron TV @wTevGY eviellewy Tou elvor eoTALOUEVA
TAL OYHUOLTAL.

Ye auth T Simhouatixr) eoTdlouvde oTNY TEOANYN TEToWwY ATUYNUATOY, TEOBAETOVTAS
Tétoleg povolfpeg pe BAon To TS XVOUVTOL ToL YELTOVXE Oy AUATA OTO Yweo. Aedouévou Ot
0ev UTdpyEL Lol BladeSOUEVT), eumopLxd Slordéoiun ADoT Tou TROBAAUNTOC auTol, To xohoTd
€var eVOLapEpoY VEpaL Yol EpEUVAL.

O\ neplocdtepeg undpyouoeg TpoceYyioelg autol Tou Teofifuatoc Basilovton oty Véon
TOU OYAUATOS GTO YWEO 1| Ot Bedouéva Tou dev Umopolv va arox ol amd GANO oYU 0K
1 €QoppoY T Tou Yxallol xou Tou QEEVoL, 1) YEOT TOU THIOVIOU Xal TO OTTIXO TESO Tou 0dNYoU.
H epyooia emyeipel va avtwetwnioel to mpoBinua autd Bactlouevn oTic 500 CUVCTHOOES TNG
TayOTNTag, ONANDY| OTN Blauhxn Xou otV TAEUp| Ty OTNToL  XENOWIOTOLOVTIS oUTd Tal 2
Yoo TNEtoTid, Yo exmandedooupe Eva HOVTELD UnyavixAc pdinong Ye otdyo tnyv meoBiedn
ETUXEIUEVOY 0ANY OV Awpidog.

INo v exnaldeuor evog HovTEAOU unyavixrc udinone amouteiton €vog TERAoTIOS OYXOg
BEBOPEVLY OTE VoL XUAOTITOVTOL GGO TO BUVITOV TEPLOCOTERA GEVAELL YiveTon. AUTH 1) ovdyxn
yior TOAAG dedopéva el odnyroel etaupeiec onwe 1 Tesla va yenotwomololy peyding xhipoxog
OUANOYT| BEBOUEVODY Omd TOV GTOAO OYNUATWY TOUG MOTE Vol PEATIOCOLY TOUg alyopituoug
autévoung odhynong. Xougova ue tn Tesla, to Full Self Driving cUotnud tng eivon exmoudeu-
UEVO OE BLOEXAUTOUUDELA ALY OVEVUUMY TIEAYUAUTIXGY DEBOUEVKY 001 YNONG TOU AVTLGTOLY OOV
oe mavw and 100 ypedvia oevapiny odhynone xa €youv avaxtniel amd ToVv GTOAO TOUC TOU
elvon éve amd 6 exatoupdplo Oy AT,

Ye ouT TN OIMAGUATIXT, TNY ovEyXN Yiot TERAOTIO OYXO0 BEGOUEVLDY TNV avTUETWTILOVUE
AAVOVTOG YeNHom CUVIETIXWY Oedouévev Tou mopiyinoay and tov mpocouyowwnty CARLA,
eve axololinoe allohdynor Tou yovtélou oe dataset mpaypatixoy dedopévewv: NGSIM US

Highway 101 ot German Autobahn Dataset.
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0.2 Ozwpntixd YTroRadeo

Or ouvelopopéc pag etvor oL axdroudeg:

e Ilpoteivoupe évav véo tpdmo TEOPAedng yia emixelyeves pavoUBpes, YENOLWOTOLOVTOC

Awoprxerg xan IThevpixée taydtnreg xon Mnyavixy) Mdidnon

o Aclyvoupe 6Tt HoVTELX TOU €YOUV EXTTUOEUTEL ue GUVIETIXG BEBOUEVD TTOU EYOLY TOEO-
Y Vel HECW EXTETAUEVOY TPOCOUOLOCEWY, UTOEOVY VoL TETUY 0LV LYNAS entinedo axp{Belog

OE TEAYUITIXG DEDOUEVL

o Ilopoucialoupe plar véa ohoxAnemuévr dwdixacio tpoenelepyaciog yio Sedouéva and Tov
meocopolwt) CARLA, 1 omolo autopotonolel Tov UETAOYNUATIONS TV Taw BEBOUEVLY
TOU TPOGOUOUDTY) GE DOUNUEVES YPOVOGELREC XUTIAANAES YLol €lCOBO UOVTEAWY UE GXOTO

TNV eXTUOEUCT] o TNV o&LOAGYNOT| TOUG.

0.2 Oeswpntxd YTro6Bodpo

0.2.1 Teyvnto Nevpwvixd Aixtuo

To Teyvntd Nevpwvixd Aixtua (TNA) eivar éva unohoyiotixd obotnuo enelepyooioc
0EBOUEVKY, TO OTOIO TEOCOUOLOVEL TNV AELTOLEYId TOL avlp®Tvou EYXEQdAoL. AuTd To Gu-
OTAUOTA, ATOTEAOUVTOL a6 BLUCUVOEBEUEVOUS XOUBOUC ToU ovoudlovTon TEYVNTOL VEURWYVEC,
TIOU AVTIGTOLYOLY GTOUC BLOAOYIX00C VEUPWVES TOU EYXEPIAOU Xou EfVaL TOTOAOYIXA 0pY VK-
pévol oe emimeda.

Ou veupwveg cuvdéovtal YeTald TOUG UE UXPES, TTOU UE TN OERA TOUS QVTIOTOLOUY OTIG
ouvaelg Tou eyxepdiou. ‘OTwe xaL oToV EYXEPUNO, OTIOU EVAC VEUROVAS EXTEUTEL EVOL OO
oe évay AoV péow tng alvadhc toug, €tal xou oto TNA, xdde veupdvag houfBdver €va
oOVOLO aELIUNTIXOY ELIGOBWY amd GANOUC VELRPOVES, TiC UeTaoynuatilel Bdoel evog Ypouuxon
oLVBUUCUOU PE avahoya Bdpn xou VOTEQO AMd TNV EQPUPUOYY| LG UN-YRUUULXTC CUVEETNONG
evepyomolnong mapdyel TNV TeAxt| €£000, 1 onola TPOPOBOTETUL GTNY CUVEYELN GE GANOUC
VEVPWVES TOU OLxTOO0U.

To Baowd ototyeio twv TNA elvan 1 duvatdtnta exmaldeuonc Toug, U€ow UG Bladixo-
olag mou ovoudleton Mnyavixy) Mddnon, n onola otadiaxd BeATIOVEL TNV IXAVOTNTA TOUS VoL

emADOLY TO TEOBANUA Yo TO 0Tolo duLoLEYHUTY.

0.2.2 Avatpogodotolpeva Nevpwvixd Aixtuo

To Avatpogpodotolueva Nevpwvixd Aixtua (ANA - Reccurent Neural Networks (RNNs))
elvor TNA eduxd oyedioopéva yia Ty encéepyacio axolouiny Se60UEvwyY, OTwS XEIUEVO, O-
WALDL XoL YPOVOOELRESG, OTOU 1) CELRA XOL 1) YEOVIXT| DoY) TV OTOLYElwY elvon oNuUavTixd. e
avtideon pe dixtua dmou N TAnpogoplo xwveltar meog Wi xateduvon, 1o ANA ypnoonooly
OUVOEGUOUE aVaTEOPOBOGLaC, 6TV 1) €000 HLIC YPOVIXAC OTIYUAC EVOC VEUROVA, AVATROPO-
doteltan we €loodog oTo BixTuo oE emoUevn oTiyur. Auto emtpénel oto ANA vo avaryvepilel
Ypovixéc eCoptroelg xau potiBa péoo oe axohoudiec.

Adyow tou oyedoopod toug, T ANA avtiuetwnilouy onuavTIXES TEOXAACELS OTAY TPO-

x0OnToLY paxponpodeoueg eCoptioeic. Katd tn Sidpxeio tne exmaldeuone, ol THES Tapay (Y wy
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0. Extetopévn Iepiindm

Tou odhuatog unoeel eite vo undeviCovton €lte var Talpvouy TOAD UEYAAES THIES OBNYWVTIC OTO

TedPBAnua e€apdvione 1 éxpning twv napoywywy (Vanishing/Exploding Gradient problem).

0.2.3 Aixtua Moaxpds Bepaybyeovne Mvrung

To Aixtua Maxpdc BpoayOypovne MvAune (AMBM - Long Short-Term Memory (LSTM))
elvor 0w poppry ANA, Tou oyedldoTnxay Ue GXOTO VoL AVTIHETOTICOLY TOV TEPLOPLOUS TOL
elyav autd oTo va pdouv poxponpddeouee e€apthoelg e€outiag Tou TEoBAruaTog e€apdvi-
onc 1 €xpning tov mapaydywyv. Ta AMBM éyouv po mo oOvietn ecwtepixy) dour) Tou
TOUC ETUTEETEL VoL OlaTneody xan Vo dtayelpiCovTton xahlTepa TNV TANpopopio o€ UeYUhITERES
axoloudiec.

O muprvag evog xouPBou AMBM anoteheiton amd €var xehl uvriung mou etvan utebuvo yio
v anodixevon tAnpogoplioc oe audaipeta ypovixd dlaotAuata. H por) tng eloepyduevng xou
elepyouevne mAnpogoploc eAéyyetar and Teelc mUAeg. Trmv mOAN ewwddou, Ty TOAN €€bdov,
xan T TOAN Srypapric. H miAn eicdd0u eréyyel méom xouvolpla TAnpogopio Yo amovnxetTel
070 xeAl UVAUNG, 1 TOAT Blaypaprc EAEYYEL TOGT TANEOYOoRia amd TN TEOTYOUUEVT XATUCTACT)
Yo Blarypdupet, eved n oA €€60ou EAEYYEL TO TOCOGTO TN TANPOYoplac Tou xeho) Tou Yo

dwVel wc é€odoc.

0.2.4 Xuvidetixd Acdouéva

Yuvietnd Acdopéva amoxaholue To dedopéva mou €youy Tapay el Ue TEYYNTO TEOTO ETOL
(OOTE VO TPOGOUOUDVOLY YoRoXTNELC Td xou LoTiBa mou eugavilovtal o€ avtioTolya TeayuaTL-
%4 oedouéva. Ta teheutala ypdvia, Toe GUVIETING BEBOUEVA €Y 0LY YiVEL EVal GNUAVTIXG XEQPIAALO
OTOV TOUEN TNG UMY OVIXTG HAINoME, EBIXE GTIC TEQITTMOELS OTIOU Tol TROYaTLXd SeBouévar elvon
dLoXOohO 1) axEB36 Vo amoxTniolv.

"Evo Baocixd npotépnud toug elval 1 ENAGTIXOTNTO TOU TEOGPEPOLY, APOL ETLTEETOLY GTOUC
EPELYNTEC VUL TPOCOUOLOCOLY ETUXIVOUVES 1| OTIAVIES XATAGTACELS O VO ATOXTACOLY BEQOUEVAL
TOU GE OLPOPETIXY TEpIMTwoT Yo EVETAY TNV CLPATIXH TOUG axspatdTnTa o€ %ivouvo 1| Yo
€y ovay TOAUTIO Yedvo. Ernlong, elvon ypriowa o€ TEQITTOOE OTOU To TEOYUOTIXE BESOUEVAL
TaPOUGLALoLY avicopEoTia UETAL) HAAGEWY, OLOTL BlveTol 1) BUVATOTNTO ToEAY WY TS OEBOUEVLY
Yoo TIG xAdoel pe Tor Ayotepa delypata. £26TO00, €Y0UV XL PELOVEXTAUATA, OTwS 1 Tiav
aduvapio cOMNPNE T moAuTAOXOTNTAS %ot Tou YopdBoU TOL UTEEYOULY GTOV TEAYUTIXO
%x600.

Yy nopoloo Simhwuatixy epyacia, 1 yerion cuVIETIXMOY BEBOUEVKY ETUTEETEL TNV AVTI-
UETOTIOT TWV BUGKOALDY GUANOYNG TROYUATIXWY BEQOUEVLY, OTwS axptBol aiodnTreeg, TOA)g

XPOVOS X0l GE OPLOUEVES TEQLTTMOOELS ALENUEVY] ETXVOUVOTNTOL.

0.2.5 IIpocopowwtric CARLA

O tpémog mou emAEYUNHE Yol TNV ToHEAYWYY| TV GUVUETIXWY Oedouévmy elval o mpo-
couowwtic CARLA (Car Learning to Act), o onolog eivon évog mpocouoiwtic odrynong
avoty o0 xMdxa (open-source), TOU LAOTOLAUNXE UE oXOT6 TNV UTOoTHEIEN TN dtadixasiog

EXTAUOELONC, ACLOAOYNONG XU PUETENOTNE TNS AMOB0CTE AUTOVOUWY CUCTNUATWY 001ynong. O
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0.3 Movtélo Xvothuatoc xou IepBdihov Ilpocopolnong

Baowog Tou otdyoc ebvar Vo xdvel TNy €peuva YOpwY amd TNV autdvoun odhynon tpocBdot-
UnN OE UEYOADTEQO XOWO, YWEIC TNV aVAYXT UEYIANDY ENEVOUCEMY, TEOCPEPOVTAS VAL LOYUEO,
EUEAXTO XL PEANOTIXG (ImMLoxd TeptBdAOY.

H emhoyn tou €yve xadog, elvar To pévo evepyd project mpooouolntr Tou TAneolLce
Tic mpolnodéoeic tng moapoloog €peuvag.  AUTES, TEPLEAUBAVOY PWTOPEIMGTING YRUPIXJ,
ToU TIOVOS VO YPELICTOUY OE UEANOVTIXEG ETEXTACELC QUTAC TNG EPEUVOCS, axELBY) QUOLXT
Tpoooyolwon (physics) mou mpoo@épouv LPNAG pealiopd, euxohio yerong, xadde, xau pua
MEYSAN o EVEQYY| XOWOTNTA YENOTWY TOU OLEUXOAUVEL TNV ETMLAUCT TUYOV TEOBANUATOV.
TrrApyay 600 AXOUN TEOGOUOLWTES TOU XIAUTTOY AUTES TIG TROUTOVETELS AANS EYEL OTOHATHOEL
n avdntuén Toug, autol Ntay o AirSim xouw o LGSVL.

‘Eva amd tar onuavTixotepa yopoxtneloTixd tou npocouowwt CARLA eivou 10 cbotnua
Traffic Manager, to onolo eEAéYyEL TN CUUTERLPOPA TWV OYNUATWY TOU eival PEPOC TNE TPO-
copoiwone. O Traffic Manager emtpénel 1 Onuovpyior pEaMOTIXWY SUVINXGY xUXAOPORLAC
Héow NG PLUUOTE TAPAUUETEWY OTWS 1 TavoTNTA aAAaY S Awpeldag, N TaydTnTa, 1 UTaXOM
OTOL (PAVPLOL XOL 1) TUYOLOTNTA TWV OLUOPOUWY, Ywelc Vo amatTeltal 0 TEOYPUUUATIONOSC WV
OYMUAETWY €va TEOC €Val.

Emumiéov, o CARLA npoc@épel Wi ueydAn mowahion ETOWOY YApT®Y TOAEWY, 0 xoEvag
UE OLOPORETINGL YOQOXTNELOTIXG, EVE BIVEL X0 T1) BUVATOTNTA YENONG GAAWY YAETWY TOU €Y 0UV
Tapoy Vel Ue yeromn ewny tpoypouudtwy. Télog, mpoopépel T duvaTOHTNTA TEOTOTOMONG
TWYV AAUPIXGY CUVINUGY, ETITEETOVTOC TNV AZLOAOYNOT| HOVTEAWY UTO BLapopes Xt BUCKONES

ouvifxeg, ol omoleg Va Aoy 50Gx0NO 1 emixivBUVO VoL avamapoy Yoy ot TpoyUaTiég cUVIXES

odrfynone.

0.3 Movtéro Yuvotrpatog xou IlepiBdAAov Tlpocopoiw-
ong

0.3.1 3XUvolo Acdouévwv

[t TNy Topory WY1 TOL GUVOAOUL BEBOUEVKY, UAOTIOLAGOUE (Lol VEX OAOXANEWUEYT) BladLxacio
mpoenedepyaotiag, n onola ywelleton oe 5 otddo. To mpoTo 6TddL0, Elvan aUTO %ATd TO 0ol O
TEOCOUOLW TN xoTaryedpeL ot éva Memory-mapped apyelo Sidpopeg TWES OYETIXES UE TO xAUE
OYMU TN TeocopoiwoNng, OTwe 1 VEom, 1 TayOTNTA, 1) EMTAYUYOY XOl O TREOCUVAUTOAMGUOS.
Autd to apyelo Tepiéyel Tig THES auTES amoUnxeuUéveg PE TN BEXAEEadIXY) TOUS Uop@N.

To deltepo oTddlo, elvon €va custom Python script, to omolo petapedlel Tnv dexacladixn
Hop®n TwV TYW®Y oy Beloxovtal 6To apyeio Tou TEpLYEAPUUE TEONYOUUEVKS, XL dNULoUEYEl
éva véo apyelo CSV e ta dedouéva autd oe poppt| Uiy tpog to Yenotn. To script outd
0EV TporyUoTOTOLEL Xaulal UETUTEOTY OTIC (BIEC TIC TWES, TUEd HOVO GTOV TEOTO OMELXOVIONC
TOUC.

To tplto otddlo, eivan oxdua éva custom Python script, 1o omnolo enelepydleton tnv
¢€odo Tou mponyoluevou oTadlou xou dnulovpyel éva véo apyclo CSV, 1o omolo mepléyet
Yoo TNEIOTIXE LYNAOTEPOL ETUTEDOL, XM Xl UETAUPEREL AUTOUGLOL XATOLOL Y OQOXTNELOTIX.
ywelc enegepyacio. To véo yopoxTNEIoTIXG Elvon 1) TASLUELXT XL 1) SLOW XY ToLTNTOL CUUPLVOL

pe ™ ouPacn 6t 1 xivnon Tpog ta 6edid €yl VeTind TEoOoTUOo xaL 1) xivnom Teog To AploTERd
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7
APVNTLXO.

Y10 T€T0pTO OTABI0, OANGEapE TNV Bour| Tou HTay anoUnxeupéva To dedopéva.  Apyixd
Aoy amodnxeuuéva oe pLor BLATagn oL BUCKOAEUE T1) YPNOT| TOUS, XATd TNV OTolol Lol YUY
AVTIOTOLOVOE GE ULOL YPOVIXY| OTUYWY| %ol Ol GTHAES TNG YPUUUNG auTAS AToy OAEC OL TAT-
popoplec AWV TV oynudtwy. Eucle odhdEoue tn Sour; auth, €tol WoTe, xde Ypouur Vo
AVTIOTOLYEl OTIC TWES EVOC OYUATOS YOl Lol YPOVIXY) GTLIYUY) XAl TO XAVAUE UE TETOLO TEOTO
OOTE oL TWES %A OYUUTOS VoL EEVAL GUVEYOUEVES YO, OTAY TEAELWVOUY OL YEUUMES TOU EVOC,
T6Te va apy(louv Tou emodpevou. Erniong, 6tav tedelwvoy ol Ypouués Tou EVOS OYAUATOS, TPV
TEocHECOVUE TIC YRUUUES EVOC dhhou, Tpoc¥étaue evildueca 10 yoouués oTic onoleg OAeC ot

oThheg elyav T -10, ye o%OTO Vo GNUATOBOTACOVUE TNV AAAXYY.

Y11 ouvEYEL, ETECERYACTAXAUE TN OTAAY TOL VOl ATOUNKEVUEVO TO OVAYVWELOTIXO TN
hopidog mou xivelton o dynua. Ané TNy avdhuon Tev Sedouéveny Beédnxe 6Tl dTav To Gy
XWVELTAL TIPOC TAL AELOTERG, 1) AMOAUTY THLY) TOU avay VOELOTIXOU NS Awpldag PELWVOTAY XaTd
éva, eve oe avtiietn meplnTtwon, dtay To Oynua xwveltor Teog Tar 8e€Ld, 1 amOAUTY TYT TOU
VALY VORLOTIX0U TN Awplbag avgavotay xotd éva. Me Bdon auty| T mapatienorn teoywecoue
OTOV UTIOAOYIOUO TNG Blapopdic 5U0 GUVEYOUEVGY OTONUTWY THIWY, Xt XUTOAAEUUE UE 3 TES, -
1 6tay To Oy muo Tnyadvel Tpog to aplotepd, 0 dtay Stortneet T Awpido xan 1 dtay xivelton Teog To
0edid. Tmrpyoy xot GTHAES UE TUIES SLUPORETIXES OO AUTES TS 3, OTIOU UE TEQOUTERE OVIAUGT)
Beglnxe ot avtioTolyoly ot dhheg yavolBpeg 6mwe €€0060 xat (0080 GE AUTOXVNTOBEOUOUS
1 oTpoWéc. Ye autég Tig oTAREC oAAdEoue TN Tr Toug o€ -10 Ue oXOT6 VoL GNUATOBOTAGOUUE
havdoouévn eyyeapr. Télog, n Twh Twv oAy mou Atay -1 odAAdydnxe oc 2 6Tl To
framework unyovixrc pdinonc mou yENCLIOTOLRCOUE, ANALTEL WG AVOYVWELOTIXE XAAOEWY

YeTiXoUC axépotoug aptiuole.

To méunto xou TeAeutaio oTddlo, elvar awTd TN BNULOLEYING XATIAANALY ELGOOWY Yo
70 povtéro. To yopaxtnelotind mou emAéydnxay H€haue vo umoroyllovtar ebxolo xaL Ue
altomiotion amd €va dymuo o éva TparypaTixd oevdpto. [ Toug Adyoug autolg emAEEoue T
Theupxt| xou dtourixn taytnTa. To yovtého pag yenowonoet AMBM w¢ otpmua e166d0L T0
omolo ypeetdletar w¢ elcodo ypovooelpd cuyxexpévou urxouc. T'a vo to tethyouue autéd Vo
ONULOUPYHOOUUE UTO-GELRES UE T TEY VXY TOU peTtaxtvolpevou mapadipou (sliding window),
70 urxo¢ tou omolou Ya to Beolue ue T Te) VXY Behtiotomoinone unepnapapétowy, Grid

Search.

Ano avdluor dedouévwy Berxaue 6t o CARLA xotaypdgel pio povoifea, 6tav 10 Yéco
Tou oyfuatog Beloxetan axEBOe TAVL amd T Ol WELOTIXT YRUUUT], XPOVIXTH OTIYUY| ToU &-
tvan apyd yioo Ty medPBAedn wavolfBpag. T'a va avTueTwticovue auTéV TOV TEPLOPLOUO BEV
Yopaxtneloaue ¢ povolBpa HOVO TN YEOVOCELRE TOU TEAELOVEL OXEYBMOC TPV TNV XOTOY QopT
tou CARLA, ahhd xou Ti¢ povVOOELpES Tou TEAEIWVAY XATOLd YEOoVIXd BAUdTa TEW XaL HETA
o6 owth. To wovixd autd BrApoata Yo ta Bpodue, mdhL, epapudéloviag Ty teyvixy) Tou Grid

Search.

Téhog, and tn Sadixocio dnutovpyioc Topadlenmy amoXAElcTAXAY Ol EYYPUPES TOU TEQLE-

tyov tig Tég -10 mou elyaue meptypdibel oo TEOTYOVUEVO GTAOLAL.
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0.3.2  3ulhoyY| dedopévwv

0.3.2 Xulhoy™ dedouEvwy

H culhoyr| dedopévwy €ytve oe BU0 BLaopeTinols YdpTeg, OTOU T BEBOUEVI TOU THEA-
pe ambd TV mpoooyolwon otov tewto ydetn (Town04) yenowormoidnxav otn Swduacio
exnaidevone xar allohdynone (evaluation), eved ta dedopéva and TNV TEOCOUOIWON UE TOV
devtepo ydotn (Townl0) yenowonoidnxav otn dradixaocta tehxfc altohdynone (Testing)
Tou wovtéiou yoc. H mpddtn mpooouolnon difpxnoe 4.5 wpeg xou mepletye 41 oyrjuota, eve 1)
oeUTepn Oufexnoe 1.5 dpa xou meplelye 11 oyfuata. Xe xdlde npocopoiwor yenoulorotiinxe
SrapopeTinde “ondpoc’ (seed) yior T tuyoudtnTa Tou Traffic Manager, evdd xée ynuo elye
OLLPOPETIXES o TuYaleS TWES oTIC TiavoTNTES oAy g Awpldag Tpog tar Bedld xal dploTER

xou BapopeTnd o Tuyoko dpto toydtnTag. O pudude Mg dedouévwy oplotnxe ota SHT.

0.3.3 Movtélo Mryavixric Mdadnong

H apyitextovixr) tou poviéhou pog Oev ebvar mohs cOvietn, ahAd elvon apxety| yio vo
OmOOWOEL XOAd Xt O CUVOETIXG OAAGL xan OE TEoyUoTixd Oedouéva. Xpnoyonotooue, 2
enineda AMBM, to éva uetd to dhho, pe oxond va avoryvwpllet xou Bpayunpdlecues petofo-
Mg ahhd xan umAdTepoL emimédou ypovixd potiBa. Ko ota 800 autd eninedu epopudotnxe
Dropout, 6mou éva opioyévo, amd Tov ¥enoTn, TococTo Twv xouBwy undevilouv ta Bden Toug
x&de emoy, mou Bonidel GTNY AVTIIETWTLON TN UTERTROCUPUOYTC 0 To DEBoUEVA EXTIOLBELOTC
(overfitting). Xtn ouvéyeta, axohoudel éva eninedo TAfpwe dloacuvdedepévmv x6uPwy (Fully
Connected) pe ouvdptnon evepyonoinone v LeakyReLU nou Ponddet 1o povtého va e-
Ywellel yapoxtneloTind ywelc To meolAnuo Tou avevepyol VELp®VA, Xl TEAOC, UTHEYEL TO
TEMXO ETUNEDO TAYPWS BLUGUVOEDEUEVWY XOUPWY UE cUVEETNOTN evepyoToinone Ty Softmax
Tou etvar UTELYLVO YLoL TNV TEAXT] TAEVOUNOT TNS YPOVOCELRAS ELGOB0U OE ULl OO TG TEELS

UNAOELC.

0.3.4 Awduxacio Exnaidsvong

H Sraduxaoio exmaldeuong ftay apxeTd amAt, 6ToL YenoWoToinNcaue ¢ BEATIGTOTONTY TOV
oly6prduo Adayu (Adam Optimizer), cuvdptnon anmiewac v Categorical Cross-Entropy xou
o petpwy alohdynone oploaue v oxpifela (accuracy). H yeron tne Categorical Cross-
Entropy, omoutel tic xAdoeig va €youv tnv one-hot xwdwomoinom, yio v enitevén autod
Yenowonooale TNV ouvdptnon to_ categorical and tnv Bihodxn Tensorflow keras.utils.
Q¢ péyiotog apriuog enoywy oplotnxe to 100, v €yve ypron Tng emMAOYAC Yo TEOWEO
teppationd e exnaidevone (EarlyStopping Callback) av 1 tiur tne oxpifetoc oo dedopéva

e a€lohdynone dev aulavotay Touldytotov xotd 0.01 yia 10 cuveydueveg emoyéc.

0.4 MeJdodoloyio

0.4.1 Telhxh ASoroynor (Testing)

H el a&lohdynom ue dedouéva mou dev €yel Eavadel To Lovtélo Yog EYVE YE TN Ypnon

7 7 7 4 7 7. 4 Z 4 7
TELOV OLUPORETIXMY CUVOAWY BEBOUEVLY, Tor omola efvat: cuvleTixd dedopéva amd BlaPopETIXG
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0. Extetopévn Iepiindm

YGeTN, €vo GOVORO Ay ATV Bedouévey pe ovoua US Highway 101 Dataset ané to Troue-
velo Metagopdv twv Hvouévwy TTohtewdy, xan axdu €va cOVORO TEaryUaTIXGY OEBOUEVLY
amd TOV YEQUAVIXG auToxivnTédpouo Autobahn, dnpocieupévo ot pla epyaoia epELVATOY TOL
navemotnuiov Aachen tng I'eppavioc. To 800 chvoha mpoypaTixdy BedoOUEVL Yo VoL Yenol-
pomondolV Yeeldo TNy Uiot TEOENELERYATTO AVTIOTOLY ) UE QUTA TWV GUVUETIXWY GEOOUEVLV
VIO VoL TOL (PEPOVUE OE XATAAANAT LOR®Y,.

INot to xodévar amd autd tor alvola Sedouévny Ya tparypotonotnioly 800 Eeywplotd oe-
VépLoL a€LoAOYNoNG, 0TO TEMTO Vot UEAETACOUKE TNV amGB0GT) TOU HOVTEAOU Yo 0NV TEOBAEdN
uovoUBpwy o uxpolc opllovteg TEOBAEPNEC Tou EYOUUE PEYAAT amalTnoT Yiot UPNAd TococTd
axp{Belog, evey oTo BebTEPo Yo ypenoulonotioouue apxeTtolg opilovTes TEOBAEYNS EeXtvidvTag
amd 2.4 SeUTEROAETTA TRV TNV XoTarypapr TN LovolfBpag uéyet xou 0.8 Uetd yior var €youue
plor TAYjen exova TG amddooTg TOUG.

Or petpuég allohdynong mou Bo yenoiuonoticouye eivan oL apxeTd Slodedopéveg Accuracy,

Recall, Precision, F1-Score.

0.5 AmrnoteAéopata

0.5.1 Amroteiéopata BEATIOTONOMOYNG UNERTARAULETR WY

Metd v extéleon ohwy twv Grid Search Berxoue tL 10 AV Uixog Topodipou elvor To
5 Ypovixd Bripata 1) SlopopeTind, mopdupa Urxoug EVOS SEUTELOAETTOU, EVEG YLo TN dnuLoupyia
TOU GUVOAOU BEGOUEV®Y, To XUAVTERA AMOTEAECUATOL TA THPUUE OTAV Y PNOYLOTONCUUE GUVOAO

0edoUEVeY Tou TepLelye 5 ypovooeipeg yia TNy xdde pavolpa ol omoleg Htov:
1. An6 totart = —2.05 €0C teng = —0.8s and ) xatoypapr tou CARLA
2. AT6 tsart = —1.85 €0¢ tepg = —0.6s and ) xataypoapr tou CARLA
3. Ano tepare = —1.65 €0OC tepg = —0.4s and n xataypapr tou CARLA
4. Ano tspart = —1.45 €0C tepg = —0.2s amd N xataypapr; tou CARLA

5. Ano tepare = —1.25 €0OC tepg = 0.0s and tn xotaypapry tov CARLA

0.5.2 Amrnoteiéopata Exnaildcsuong

H exnoideuvon difexnoe 16 enoyée, avtl twv 100 mou etyav apywxd oplotel, e€outiog Tou
unyoviopol meoweng dtaxonhic. H xakitepn anddoon onueiddnxe otnv 14n emoyr 6mou 1
oxpifela 6To 0Uvolo Sedopévwy TN altohdynone éptace o 95.7% eved 1 TN g cuvdpTnong
amwietog Aoy 0.1537.

0.5.3 Amnotelécpata Tehuxric A&oldynong

To anoteréopata g TeAxg allOAOYNONS NTAV EXETE IXAVOTIONTIXYE OTO GOVORO GUV-
VeTUDY BEBOUEVOV Xl GTO GUVOAO TROYUOTIX®Y OEBOUEVWY amd TOV YeERUAVIXO AuToxivr-

60000, 610U TO HOVTENOD pog TETUYE 92.6% xou 86.2% avtioTtoryo oty peteh GUVOMXAS
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0.5.4 TYroloywotixry Enidoon

axplBelog, eved 0To cUVolo TpaypaTXeY dedouévewy US Highway 101 #tay ehagps yewpdtepa

ue 69.1% oo mpito cevdplo aZlohbynone.

Mo o Bedtepo oevdpto alloAdynong 1 exova dev dAAaEe TOAD, ool To LoVTéAO Yag elye
XA\ AmOB0CT) GTO GUVOAO GUVUETIXWY BEBOUEVKY ot OE UeYoAUTEROUS opllovteg TEOBAEdNC,
ptévovtoc nepinou ato 50% cuvohixrc axpifBetoc oto 1.6 deutepdhenta ety TN Lavolfea, 6To
olvoho dedouévwv US Highway 101 égtace oo 50% cuvolinrc axpifetac oto 2.0 Seutepdhe-
T, EVE 0TO 0UVOLO BEBOPEVKV TOL YEPUAVIXOD auToXVNTOBpOoUOL dev énece xdtw and 50%

oxXOUoL xou 0ToL 2.4 BEVTEPOAETTAL TIEtY T1) arvoLpa.

0.5.4 TYmrnoloyiotixr Enidoon

To mpotewvouevo Yoviého, extdc amd ixavomolntixy| oxpelfeio otic tpoPfAédels, napovaot-
aler xou LPNAY LToAOYLETIXY TiBOOT), 6TIOL 0 PEGOC YPOVOC TOL YEEIALETAL YOl VO XAVEL [l
TeoBAedn etvar wolg 0.15 ms yenowonowwvtag uévo CPU, mou autd oe éva ohndvd oevdplo
Yo pag emtpénel va ypnowonoicovue TNy GPU Yyl cuothApato e YEYUAUTERT aveyxT) yia
TapahAnionoinon.

0.6 Exiloyoc

0.6.1 XVvodmn xou Xvpnepdopota

‘Onwg eldaue xou 0TV EVOTNTA TWV ATOTEAECUATWY, XATAPEQUUE VoL ONUOVEYHOOUUE Eval
MOVTENO EXTIALOEVUEVO ATOXAELG TIXY UE CUVUETIXG DEQOUEVOL TTOU TETUYALVEL IXUAVOTOLNTIXG. Ol
TOTEAEGUOTA 0TI TROPBAEPELC UE TporyUoTixd dedopéva. 26T600, TUPUTNEOUUE OTL OE UEYA-
ANotepoug opllovteg mpofBhedne, N anddoon tou poviéhou pag gdiver apxetd. Avollovtog Ta
oedouéva mou etyaue oTNY BIAIEST| Yo xot xAVOVTOS TN GUYXELOT ANUVGY Xot GUVIETIXGY
OEDOUEVLY TOEATNEOVUE OTL Tor GUVIETIXG BEdOUEVA EYOLY AYdTERo VopUBO amd Tar ahndvd,
OTWE GAADCTE ATAV AVOUEVOUEVO. BUYXEXPUIEVA, [Lol LovolBpo Tor GUVIETIXG GEBOUEVA YPEL-
aletan TOAD Uixpd YPOoVXO OLdoTNUa, and Tn oTiyur mou Va Eexwvhoel u€ypl xaL T oTiyun
mou Yo ohoxAnewiel, eve pdhiota, e Angdel n andgoacn arloyhic Awpldag, To Oynua UEVEL
otadepd 010 %(évTeo TNe hwpeldag Tou, ot avtieon ye to ahndvd dedouéva, dmou 1 povolPBea

TPVEL TIEPLOGOTERO YEOVO %ol YIVETOL TILO OUOAGL.

YuvonTtixd, oe auth 0 SimAwuatixy| Seiloue OTL €vol LOVTEND EXTTUBELUEVO UE GUVIETIXG,
OEBOUEVDL, UTOREL VoL ATOBMOEL OPXETE XAUAG XL OE TEAYUATIXES CUVITXES, EVE eTBEBoudoae
OTL 1) Onuovpylar ahyopldumy unyovixhc udinong amoutel €voy TepdoTio 6YX0 SEG0UEVWY, POl
0€ BLO TEAYHATIXG CEVAQLAL UTO TOROUOLEC CUVUNXES, UE TN UOVT QAVERY| Blopopd Vo elvan 1|
Y WP TROEAEUCTG TWYV OEBOPEVLY, TO (Bl0 LOVTENO Elye UL oNUAVTIXY ATOXALGT) 0TV ATO00CT)
TOU. LUVETWS, OE QUTOV TOV TOWPEQ, 1) XPNOT) OWOTH OPLOUEVKY TEOGOUOLOTOVY YLl TOQUY WY

0edouévmy umopel var anodetyvel Eva Toh) xaho epyaheio.
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0. Extetopévn Iepiindm

0.6.2 Avoxokieg xou Ilepropiopol
0.6.3 MeAiroviixéc Enextdosic

H mopoloo gpyacio emdéyetar didpopeg pelhovtixég enextdoeic. H mpwtn elvon 7 Suo-
OUVOEDT] TOU HOVTEAOU UAC UE TOV TROCOUOLWTY, 6Tou Vo yivovton TpofBAédel o TpoyUoTind
XEOVO, xou yior Vo yivel autd amouteiton mepoutépwy ueAétn tou CARLA v tnv xotdhinin
evonudtworn Twv Python scripts yio T dnuiovpyla twv elcodwy tou yovtéiou.

Mot dhAn enéxtoom ye yeyalltepo evdiapépoy, eivon 1 Tponornoinor tou Traffic Manager
UE OXOTO TNV YENOT| OLAPORETIXMY TopaUETewY Twv PID eheyxtdv oto xdie oynua, €Tol woTe

VoL £YOUPE oXOUoL UEYUADTERT) TOWALL OTIC CUUTIEQLPORES.
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Chapter

Introduction

Artificial intelligence and the automation of many human activities through it are the
defining characteristics of our era [8]|. From the simplest daily task, such as watering one’s
flowers, to more complex and demanding ones, such as the construction of objects and even
houses, processes have been automated and, in combination with artificial intelligence,
have been optimized. For example, watering flowers was initially performed automatically
without any specific criteria; today, irrigation systems take into account data such as soil
moisture, soil type, and the particular needs of each plant.

From this broader trend of automation and autonomy in human activities, driving
could not be excluded. Driving may be considered a hobby and an enjoyable experience
by some, but for others it is a boring activity they would rather avoid, while for others
it is a profession. Full or partial autonomy could be highly beneficial for all drivers, as it
would both enhance safety by minimizing human error and make the driving experience
more enjoyable.

Already in the 1970s and 1980s, the global automotive industry had begun investing
in optimizing vehicle performance through the introduction of various sensors, such as
Lambda sensors, to increase efficiency and reduce emissions [9]. At the same time, signif-
icant efforts were made to enhance driver safety through the installation of airbags and
collision sensors [10].

Subsequently, Advanced Driver Assistance Systems (ADAS) were launched, initially
with simple sensors, such as the Parktronic|[11] system, which assists drivers in parking.
Over time, these systems evolved to include functionalities such as maintaining a constant
speed without driver input, alerting the driver in cases of unintentional lane departure,
and gradually achieving ever higher levels of automation.

This continuous investment is also reflected in the market value of automotive sensors,
which was estimated at $2.3 billion in 1991 and $7.0 billion in 2006 [12], while in 2024 it
was projected to have reached $27.4 billion [13].

The goal of this automation is, of course, complete vehicle control by the onboard
computer system without human intervention. In this case, the human stops being the
driver and instead becomes a passenger. Naturally, this transition does not occur instantly
but is structured into levels of automation. There are six levels defined by the Society of
Automotive Engineers (SAE) International [1] as shown in Figure 1.1, a global professional

association and standards organization, which are outlined briefly below.
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Chapter 1. Introduction

At Level 0, no automation exists, and the driver is fully responsible for controlling
the vehicle.

o At Level 1, driver assistance is introduced, meaning the vehicle can support the driver
by maintaining a constant speed (cruise control) or by assisting in keeping the vehicle

within a lane.

e At Level 2, partial automation is achieved: the vehicle can control both speed and
lateral positioning within the lane simultaneously, typically in highway driving sce-

narios.

e At Level 3, conditional automation is enabled: the vehicle assumes full control in
certain environments and, crucially, becomes responsible for monitoring the driving
environment itself. However, it may request at any moment that the driver take back

control.

o At Level 4, high automation is present under specific conditions. When these condi-
tions are satisfied, the vehicle operates with complete autonomy; otherwise, control
reverts to the driver, or the vehicle remains stationary. Such conditions are usually
tied to geographic constraints, speed limits, or weather. At this stage, vehicles may

even lack a steering wheel or pedals.

e Finally, at Level 5, full automation exists without any restrictions. The human is
exclusively a passenger, and vehicles could be designed without steering wheels or

pedals.

At the time of writing this thesis, the highest level of autonomous driving available to
the public in commercially sold vehicles is Level 3, achieved by Mercedes-Benz through its
Drive Pilot system [14]. However, this system is currently restricted to certain regions in
Germany and operates at a maximum speed of 95 km /h, with plans to extend this limit
to 130 km/h by 2030. The system has also been approved in the states of California and
Nevada of the United States of America.

However, the most widely publicized company in the field of autonomous driving is
Tesla, with its Full Self-Driving (FSD) system, which, despite its name, is classified only
as Level 2. Finally, in the United States, Waymo, formerly known as the Google Self-
Driving Car Project, offers Robotaxi, Trucking, and Delivery services with vehicles that
are categorized at Level 4, representing the highest level of autonomous driving achieved

so far.

1.1 Scope of this Thesis

One of the main challenges in achieving the highest possible level of autonomy lies
in the environment in which the vehicle operates. This environment is dynamic with
constant changes, with the most significant and unpredictable factor being the surrounding

vehicles, especially when controlled by humans, because as shown in a study from the U.S
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1.1 Scope of this Thesis

SAE J3016™ LEVELS OF DRIVING AUTOMATION™

INTERNATIONAL. Learn more here: sae.org/standards/content/j3016_202104
Copyright © 2021 SAE International. The summary table may be freely copied and distributed AS-IS provided that SAE International is acknowledged as the source of the content
SAE SAE SAE SAE SAE SAE
LEVELO"§ LEVELT"' § LEVEL 2" LEVEL 3"§ LEVEL 4"} LEVEL 5"
You are driving whenever these driver support features You are not driving when these automated driving
are engaged - even if your feet are off the pedals and features are engaged - even if you are seated in
What does the you are not steering “the driver’s seat”
human in the
river’ . "
dhavi, tzsgg; You must constantly supervise these support features; When the feature These automated driving features

you must steer, brake or accelerate as needed to requests, will not require you to take

maintain safety you must drive over driving

These are driver support features These are automated driving features
These features These features These features These features can drive the vehicle This feature
are limited provide provide under limited conditions and will can drive the
to providing steering steering not operate unless all required vehicle under
erlattdo thgs% warnings and OR brake/ AND brake/ conditions are met all conditions
eatures dox momentary acceleration acceleration
assistance support to support to
the driver the driver
*automatic *lane centering *lane centering « traffic jam «local driverless |l *same as
emergency OR AND chauffeur taxi level 4,
braking : ) : : okl but feature
Example +adaptive cruise [ *adaptive cruise p can drive

*blind spot
warning

steering
wheel may or
may not be
installed

control control at the
same time

Features everywhere
in all

conditions

*lane departure
warning

Figure 1.1. SAE International Levels of Driving Automation [1]

Department of Transportation, the critical reason for 94% of motor vehicle crashes is
human error[15]. When there are no nearby vehicles, the situation is relatively simple: the
autonomous car only needs to follow the traffic rules and the designated route. However,
once other vehicles enter the equation—especially when they are controlled by human
drivers—the difficulty increases dramatically.

In a utopian scenario, far from today’s reality, all vehicles would be autonomous and
equipped with Vehicle-to-Vehicle (V2V) communication-where each vehicle shares it’s data
like speed, direction and intentions with other vehicle close to it. In such a system, each
vehicle would continuously inform its neighbors about its intentions, allowing all of them
to cooperate seamlessly and achieve complete safety with no risk of accidents. Clearly,
this scenario is still a long way ahead. At present, V2V communication does not exist in
practice, and the majority of vehicles on the roads are driven by humans, who are highly
prone to errors. Some of the most common mistakes leading to accidents include failing
to pay attention to the surroundings through the mirrors, changing lanes without using
indicators, driving under the influence of alcohol, and falling asleep at the wheel due to
fatigue.

This thesis focuses on preventing accidents caused by lane changes that occur without
the use of turn signals. To avoid such incidents, an upcoming maneuver must be predicted

as early as possible, based solely on how nearby vehicles move in space. Since there is
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Chapter 1. Introduction

no widespread, commercially available solution to this problem, it remains an interesting
topic for research.

Existing approaches are based either on the absolute position of a vehicle in space or on
data that cannot be accessed by other vehicles, such as throttle and brake input, steering
wheel angle, or the driver’s field of view. In this work, the problem is addressed using only
the two components of speed—longitudinal and lateral velocity. Using these two features,
a machine learning model is trained to predict imminent vehicle maneuvers.

Existing approaches are based either on the absolute position of a vehicle in space or on
data that cannot be accessed by other vehicles, such as throttle and brake input, steering
wheel angle, or the driver’s field of view. In this work, the problem is addressed using
only the two components of speed—longitudinal and lateral velocity. These quantities
directly describe the vehicle’s motion in the direction of travel and across lanes, making
them reliable indicators of maneuver intent. Moreover, they can be easily obtained from
standard sensors, which makes this approach more practical and independent of vehicle-
specific control data. Using these two features, a machine learning model is trained to
predict imminent vehicle maneuvers.

Training a machine learning model requires a large and diverse dataset in order to
capture as many potential scenarios as possible. This need for large datasets has led major
industry players, such as Tesla, to rely on massive data collection from their vehicle fleets to
improve autonomous driving algorithms. According to Tesla, its Full Self-Driving system is
trained on billions of miles of anonymous real-world driving data, which is over one hundred
years of driving scenarios, collected from a fleet of more than six million vehicles|[16]. In this
thesis, this challenge is addressed by the use of synthetic data generated by the CARLA
simulator, followed by an evaluation of the trained model on real-world driving datasets
NGSIM US Highway 101[17] and German Autobahn Dataset|18].

In summary, this thesis aims to address the prediction of upcoming maneuvers by using
a different set of vehicle features than existing approaches and by employing synthetic data
instead of relying on small-sized real-world datasets that lack a consistent structure.

Our contribution is the following:

e We propose a novel way of predicting upcoming maneuvers by utilizing Longitudinal

and Lateral Velocities in a Machine Learning Model.

o We demonstrate that models trained with synthetic data generated through extensive

simulations can achieve high level of accuracy in real-world data.

e We introduce a novel end-to-end preprocessing pipeline for CARLA simulator data,
that automates the transformation of raw simulator output into structured time-

series inputs for model training and evaluation.

1.2 Structure of this Thesis

This thesis is organized into six chapters. Chapter 1 introduces the objectives of au-

tonomous driving, describes the main pillars of a typical autonomous system, presents the
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1.2 Structure of this Thesis

levels of autonomy, and briefly outlines the goal of this work. Chapter 2 reviews related
research efforts on the development of vehicle behavior prediction systems, while Chapter 3
provides the theoretical background necessary for understanding and describing the prob-
lem, the simulation environment, and the programming mechanisms used to implement
the machine learning algorithm. Chapter 4, System Model and Simulation Environment,
describes the dataset pipeline, the process of collecting training and testing data, and the
design and training of the proposed model. Chapter 5, Methodology, outlines the experi-
mental scenarios, the preprocessing of the real-world dataset, and the evaluation metrics
used in the study. Chapter 6 presents the obtained results, while Chapter 7, Epilogue,

discusses the conclusions, limitations, and possible directions for future work.
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Chapter

Literature Review

The problem of vehicle behavior prediction has been extensively studied in recent years
and can be approached from multiple perspectives, depending on the available compu-
tational resources, the nature and quality of the data, and the technological framework

adopted. Each formulation of the problem implies a distinct methodological approach.

2.1 Predicting Trajectory

One common formulation involves predicting the precise future position of a vehicle
over a defined time horizon. This formulation is considered the most demanding, as it
requires high precision in a problem characterized by numerous external factors that are
not solely related to the state of the vehicle itself. Such factors include the current traffic
conditions, the driving behavior of individual drivers, as well as the topology of the road.

Several reasons led to the exclusion of this formulation from the present research. First,
this type of prediction is highly sensitive to noise and measurement errors, where even a
minor sensor inaccuracy can negatively influence the predicted path. Second, the accu-
mulation of uncertainty and error can cause the prediction to deviate significantly when
forecasting several steps into the future, which explains why studies consistently report a
decline in performance as the prediction horizon increases. Third, the precise future posi-
tion is inherently dependent on the road topology, further increasing the complexity of any
model that must account for it. Finally, in decision-making systems, maneuver prediction
provides sufficient semantic information without the computational cost associated with
estimating exact coordinates.

The authors of [19] propose a simple architecture consisting of an LSTM layer with 256
memory cells, followed by two TimeDistributed fully connected layers with 256 and 128
neurons, respectively, and a final fully connected output layer with 2 neurons corresponding
to the position x4,q and velocity usqrg. Furthermore, the initial input of the network was
also passed as an argument to the final output layer. For training purposes, the authors
used the US101 dataset from NGSIM [17]. They utilized 4892 trajectories for training and
reserved the remaining 1209 for testing. The initial architecture described above yielded
promising results, with the RMS (Root-Mean-Square) error in position reaching 0.4m for a
prediction horizon of 4 seconds and 0.73m for a 10-second horizon, while the corresponding

RMS error in velocity was 1.49 m/s at 4 seconds and 2.96 m/s at 10 seconds.
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Chapter 2. Literature Review

The authors of [20] proposed a different approach, in terms of both model architec-
ture and input representation, where the model is not limited to information from a single
vehicle but instead incorporates knowledge of the surrounding area. Specifically, they
employ an encoder-decoder architecture, which they enhance through the use of a Convo-
lutional LSTM (ConvLSTM). This variant of LSTM replaces the traditional element-wise
(Hadamard) product with convolution operations. The input of the decoder is the concate-
nation of the outputs of the encoder and the ConvLSTM. The encoder receives as input
an Occupancy Map, a matrix of weights representing how much a vehicle located at posi-
tion (4,y) of the map influences the behavior of the ego vehicle. In parallel, ConvL.STM
receives a Risk Map, which serves as an auxiliary input to generate the context vector for
the decoder. This Risk Map encodes the likelihood of the ego vehicle occupying the same
position as another vehicle, thus modeling potential collision risks. The proposed network
consists of an encoder with 128 units and a batch size of 32, the other input layer consist
by two stacked ConvLLSTM layers with 128 hidden states each. The decoder includes 128
LSTM cells, followed by a fully connected layer. The authors evaluate their model on two
separate datasets: the US101 dataset from NGSIM [17] and the HighD dataset [21]. On
the former, they report RMSE values ranging from 0.41 to 3.87 for prediction horizons of
1 to 5 seconds, respectively, while on the latter, the RMSE ranges from 0.22 to 2.8 over
the same prediction intervals.

Another approach is presented in [22], where the authors propose a graph-based spatio-
temporal convolutional network (GSTCN) designed to predict the future trajectory dis-
tributions of all vehicles within a scene simultaneously. The scene is defined as the ego
vehicle’s horizon of sight, which includes the two adjacent lanes and extends £100 me-
ters longitudinally. The elements of this grid are inversely proportional to the distance
between any two vehicles belonging to the same scene. To capture spatial dependencies,
a graph convolutional network (GCN) is used [23], while temporal dependencies are cap-
tured using a CNN-based temporal dependency extractor (TDE). Finally, a GRU-based
encoder-decoder network is used to generate the future trajectory distributions. Train-
ing and evaluation are conducted on the US-101 [17] and I-80 [24] datasets from NGSIM,
achieving RMSE values ranging from 0.44 to 2.98 for prediction horizons between 1 and 5

seconds.

2.2 Predicting Maneuver

An alternative formulation of the problem focuses on predicting the maneuver that a
vehicle will perform within a given time horizon. This formulation is comparatively simpler
and less computationally demanding, but also less precise, as it does not aim to determine
the exact location of the vehicle, but rather a broader area in which it will be positioned.
The most common maneuver classes include lane change to the right, lane change to the
left, lane keeping, right turn, and left turn.

The authors of |25] propose a rather sophisticated approach, which, in addition to
data related to the vehicle’s dynamic and kinematic state, also incorporates information

regarding the driver’s cephalo-ocular behavior. Specifically, they employ two features: the
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2.2 Predicting Maneuver

horizontal head movement of the driver and the three-dimensional Point of Gaze (PoG),
which is obtained using a binocular eye-gaze tracker. For their experiments, they collected
and used their own dataset. The model architecture consists of three LSTM layers, each
with 100 units, followed by a fully connected output layer with 5 units corresponding to the
maneuver classes, using Softmax as the activation function. They also trained an additional
model with the same architecture, except that the final fully connected layer contained only
3 units, representing the same classes but excluding the two turning maneuvers, thereby
retaining only lane changes and lane keeping. According to their results, the models
achieved 82% and 76% accuracy for the 3-class and 5-class settings, respectively, over a
prediction horizon of 3.5 seconds.

The researchers of the previous work built upon the approach introduced in [26], where,
instead of employing machine learning techniques, a statistical model was used, specifically
Hidden Markov Models. As in the later study, they relied on their own dataset. The
reported performance achieved 79.5% precision and 83.3% recall over a prediction horizon
of 3.8 seconds.

Another study [27] adopts a hybrid system, in which the maneuver is first recognized
and the vehicle’s trajectory is subsequently estimated. Unlike the previously mentioned
works that focused on five common maneuvers, the researchers in this study identified ten.
The maneuver types considered include: crossing from an adjacent lane, overtaking—where
the following vehicle changes lane and passes the ego vehicle—cut-ins, where a vehicle from
a neighboring lane overtakes and moves into the ego lane ahead of it, and finally, drift into
the ego’s lane from the left or the right, where a vehicle enters the ego lane behind it. The
ten maneuvers arise from considering the two possible directions for each of the five types.

For training, they used a custom dataset they created themselves by equipping a vehicle
with various sensors and recording 45 minutes of driving. They report two sets of results:
one that disregards the topology of surrounding vehicles, and another that incorporates
it. In the first case, they achieved a correct classification rate of 83.49%, while in the
second, the rate increased slightly to 84.24%. The reported runtime is 0.0891 s for the
first configuration and 0.1546 s for the second; however, this refers to the entire pipeline,
including the trajectory prediction stage.

In [28], the authors follow a conceptually similar hybrid framework to that of the
aforementioned study, in which the maneuver is first identified and the trajectory is subse-
quently estimated. However, their approach differs fundamentally in methodology. First,
they model the vehicle’s path as an arc of a circle, and then they represent the three rel-
evant lanes—left, current, and right. They proceed by computing the statistical distances
between the modeled vehicle path and each lane, and based on these distances, they infer
the maneuver the vehicle is likely to perform. This heuristic method achieves a 100% de-
tection rate 1.1 seconds before the actual lane change. Nevertheless, the authors do not
explicitly define the precise moment at which a lane change is considered to have occurred;
it could correspond either to the instant the vehicle is exactly over the lane marking or the
point at which it has fully crossed it.

In summary, most existing solutions rely on expensive sensors to generate their own

datasets. As a result, these approaches are evaluated on data that are not publicly available,
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which prevents direct comparison with other methods. In contrast, our solution generates
its own data using a free simulator, allowing the data collection process to be reproduced
without costly equipment. Furthermore, some solutions do not use machine learning, but
rely instead on statistical or heuristic approaches, which are less capable than LSTM-based
algorithms for handling data with temporal dependencies. Another limitation of existing
solutions is the lack of reporting on the time required to predict such maneuvers, which is
an important factor for practical deployment. Finally, our method uses different features
for prediction, specifically vehicle dynamics, providing a better representation of vehicle

behavior.
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Figure 3.1. Time-series visualization of vehicle velocity and acceleration from the Next
Generation Simulation (NGSIM) database which contain data collected from four US high-
ways. Image from [2].

3.1.1 Definition of Time Series Data

Time-series is a sequence of data points listed in time order where the data points are
recorded in consistent intervals, making them discrete-time data. Time-series data have
an inherent temporal dependency, which means that future values are influenced by past
values. Time series are used in many areas like statistics, signal processing and in many
domains of engineering. Using time-series analysis we can extract useful statistics and

other characteristics of the data.

3.1.2 Characteristics of Time Series Data

Time-series data have several key characteristics that differentiate them from other
types of data, and also appear on the data we will be using, some of them are temporal
dependency, seasonality, autocorrelation, and structural breaks. Having natural temporal
ordering makes their analysis different from cross-sectional studies, in which there is no
natural ordering, for example, explaining people’s wages by reference to their respective
education levels. Seasonality makes the data regular with repeating patterns that occur
at fixed intervals. Autocorrelation is the correlation of a time-series with its past values
which means that past observations can be used to predict future values. Finally, Structural

breaks are the abrupt changes in the data pattern due to external factors.

3.1.3 Common Time Series Models

As mentioned before, past observations of time-series influence future values, by taking

advantage of this characteristic various models have been developed to analyze and make
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predictions on such data, ranging from statistical approaches to deep learning methods.
One of the most fundamental models is the Auto-regressive (AR) model which is most
useful when the future values are linearly dependent on past values. However, most times
this is not the case and future values also have some random fluctuations or errors and the
Moving Average (MA) models become better. The Moving Average models break-down the
current value as a function of past error terms and by doing that it captures and smooths
out noise in the data.

By combining both models and also differencing to achieve stationarity (I) we get the
Autoregressive Integrated Moving Average (ARIMA) model[29]. This model is effective
for univariate time series displaying linear dependencies and non-stationarity, making it
widely applicable in econometrics and other domains.

However, real-world time series data often display complex, non-linear variatons. This
has led to the broad use of more flexible models like Long Short-Term Memory (LSTM)
networks which is a type of Recurrent Neural Network (RNN) designed to capture, as its
name suggests, long-term dependencies in time series data. LSTMs are particularly ad-
vantageous in scenarios where time series exhibit intricate temporal dependencies, such as
in financial market forecasting [30] or natural language processing applications|31]. LSTM
will be the main focus for the remainder of this study.

Ultimately, the choice of an appropriate time series model depends on several factors,
including the presence of seasonality, the length of historical data, and the degree of non-
linearity in the time series. While classical statistical models remain relevant for many
applications, advances in deep learning continue to push the boundaries of what is possible

in time series forecasting.
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3.2 Machine Learning

Machine learning (ML) is a subset of artificial intelligence (AI) that focuses on devel-
oping algorithms capable of learning patterns from data and making decisions on unseen
data without being explicitly programmed. The algorithm’s ability to change its parame-
ters based on data is where "Learning" comes from. Unlike traditional rule-based systems,
ML models improve their performance over time by learning from examples, making them

highly suitable for complex tasks such as vehicle behavior prediction.

3.2.1 Types of Machine Learning

Machine Learning can be categorized into 3 main categories:

e Supervised Learning algorithms learn a function that can be used to predict the
output associated with a given input. The algorithm is being trained on a set of

inputs and the desired output

e Unsupervised Learning algorithms identify commonalities in the given data and la-
bels, classifies or categorizes it. The algorithm is trained on inputs without labels,

so the algorithm can find patterns on its own.

e Reinforcement Learning, where the algorithm learns to make decisions by interacting

with an environment and receiving feedback in the form of rewards or penalties.

Supervised Learning

As mentioned above, in Supervised Learning the model is trained on a set of examples
where each example is a pair of input-output. Usually the input is the raw or processed
data while the output is the transformation of the input which the model has to find. The
output varies based on the task the algorithm has to perform. For example, if we want the
algorithm to perform Image Classification then the input will be an array of pixels and the
output will be the category in which the image belongs.

Depending on the output, supervised learning can be divided in classification and
regression algorithms. Classification algorithms are used when the outputs are restricted
to a limited set of values, while regression algorithms are used when the outputs can
take any numerical value within a range. For example, the Image Classification task is
a classification task while predicting a person’s height based on factors like genetics is a

regression task.

Unsupervised Learning

Unsupervised Learning algorithms find similarities in data that has not been labeled,
classified or categorized. There algorithms make decisions based on the absence or pres-
ence of certain commonalities in each new piece of data. Most common applications of
unsupervised algorithms are clustering, dimensionality reduction and density estimation.

In clustering the algorithm
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Figure 3.2. Visual comparison between classification and regression. The left panel
shows a classification task with a decision boundary separating two classes (e.g., disease vs.
healthy). The right panel shows a regression task with a best-fit line predicting a continuous
outcome (e.qg., survival years). Image from [3].

3.2.2 Key Concepts
Dataset

In machine learning, a dataset is a structured collection of data used to develop, train,
and evaluate predictive models. Each entry in the dataset is typically composed of two
main components: features and labels. Features, also known as input variables, represent
the measurable attributes or characteristics of the system being modeled. These inputs are
used by the learning algorithm to infer patterns or relationships within the data. Labels,
also known as target variables, represent the desired outputs that the model aims to predict
based on the given features.

To ensure proper training and evaluation of the model, datasets are commonly divided
into two or three separate subsets. The training set is used to fit the model by feeding
it labeled examples, allowing it to learn the underlying structure of the data by adjusting
its parameters. After each training step the model is fed with the validation set to get
an overview of the training progress on unseen data, to guide hyperparameter tuning and
also make decisions like Early Stopping to avoid overfitting. Lastly, the test set is reserved
for evaluating the performance of the final model in previously unseen examples, providing
insight into its ability to generalize. The overall quality, size, and balance of the dataset are

critical factors that directly affect the performance and reliability of the resulting model.

Feature Selection and Engineering

Feature selection and feature engineering are two separate and fundamental processes
in the preparation of data for machine learning models. Their goal is to improve model
performance by identifying the most relevant information from the input data and trans-
forming it into a form that best supports learning.

Feature selection refers to the process of choosing a subset of the available input vari-

ables that contribute meaningfully to the predictive task. By eliminating redundant, irrel-
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evant, or noisy features, this process can improve model interpretability, reduce overfitting,
and decrease computational complexity. In high-dimensional datasets, such as those en-
countered in simulation environments or sensor-based data collection, feature selection is
particularly important for isolating the most informative signals.

Feature engineering, on the other hand, involves the creation or transformation of
features to better represent the underlying problem. Raw data collected from real-world
or simulated environments may not be immediately suitable for learning algorithms. For
instance, rather than using only the raw values of variables such as as speed or direction,
derived quantities such as their rates of change or relative differences between agents can
offer richer contextual information. These transformations often require domain-specific
knowledge and creativity, as they aim to expose patterns that are not directly visible in
the original inputs.

In combination, feature selection and engineering form a bridge between raw data
and meaningful representations, enabling models to learn more efficiently and make more
accurate predictions. These steps are especially crucial when dealing with time-series
or spatial-temporal data, where dynamic relationships often carry more importance than

static values.

Data Preprocessing

Data preprocessing is one of the most important steps in data mining and model train-
ing processes. Data collection, especially from a simulation, is subject to out-of-range
values, impossible data combinations, and missing values. Also raw data sometimes may
be useless for training a machine learning algorithm, for example, many times the rate of
change of a variable is much more valuable than the value of the variable itself. Prepro-
cessing is the process by which unstructured or useless data are transformed into useful
and intelligible representations suitable for machine learning algorithms.

In machine learning, a model refers to a mathematical representation of a system that
is trained to make predictions or decisions based on input data. The model learns patterns
and relationships from the data during the training process and uses this knowledge to

generalize to new unseen data.

Hyperparameter Tuning

Hyperparameters are configuration variables that do not affect prediction ability like
internal parameters, like weights and biases do. Hypeparameters are used to manage the
training process and are manually set before the start. Some well known examples are the
number of nodes and layers, learning rate, batch size and epochs.

Hyperparameter tuning is a process in which a different set of hyperparameters is passed
to the model to be trained with them and because every combination is tested this process
is computationally intense and time-consuming. There are two commonly used methods
to perform this tuning. The first one is Grid Search where a list of hyperparameters and

a performance metric is set and the algorithm traverses through all possible combinations
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and determines the best one based on the metric. The second one is Random Search which

is not as thorough where only a subset of those combination are tested in random.

Validation, Testing and Inference

Validation and Testing are essential steps in the development and evaluation of a ma-
chine learning model, while inference takes place once the final model is deployed on a
production environment. They are fundamental for assessing the model’s prediction per-
formance, detecting overfitting and guiding hyperparameter tuning. These two processes
look the same but they are not. They both feed the model with unseen data and evalu-
ate the model’s performance during that stage. The difference is the stage at which each
process is performed.

Validation is performed during the training process and it used to help tune the model.
It is used for Hyperparameter Tuning and Model Selection, also, many times the loss of
the validation is used to determine if the model generalizes better in each epoch or not
and if not the training is stopped to avoid overfitting.

Testing, on the other hand, is performed after the model is trained and no more tuning
is done. The test set remains unseen during training and validation and provides an
objective measure of the model’s generalization ability. The metrics that are extracted
during testing, such as accuracy, precision, recall, or F1 score, offer insight into how well
the model will perform in real-world data.

Inference, in contrast, refers to the stage after testing, when the trained model is used
to make predictions on real-world or production data. No further tuning or evaluation
is performed at this point, as the model simply generates outputs based on the learned

parameters.

Overfitting

Overfitting is a very common challenge in machine learning, where a model learns
patterns specific to the training data rather than capturing the underlying structure of
the problem. While an overfitted model has very low value on the loss function on the
training set, its performance isn’t as good when feeding new, unseen data which means
poor generalization.

This phenomenon is usually found when a model is too complex relative to the vari-
ability of the training data. Higher complexity models have large number of parameters
or layers which in turn allows the model to memorize noise or irrelevant differentiations in
the training data that do not represent generalizable features. In those cases, the model

begins to look for minor changes in the input and fails to perform in unseen data.

Diploma Thesis m



Chapter 3. Theoretical Background

Model accuracy Model loss

8+
20 -
LU
15 -
E — ftrain w
5] — al 8
o 0.4 10 1
5
0.2
T T T T T 0. T

-
=]
=]
&
&
]
=
-
-
-
&
-

epochs epochs

Figure 3.3. An example of an overfitted model’s accuracy and loss curve over epochs of
training. As clearly shown, the accuracy on the training set increases while the validation
accuracy fluctuates around a fized value. The opposite applies to the model’s loss. Image

from [4].
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3.3 Artificial Neural Networks

In machine learning, an artificial neural network, also called a neural network, ab-
breviated ANN or NN, is a computational model inspired by the structure and functions
of biological neural networks. These models consist of connected nodes called artificial
neurons, which loosely resemble the biological neurons in the brain, and are organized in
multiple layers.

Neurons are connected to each other with edges, which in turn resemble the synapses in
the brain. Like the brain, where a neuron transmits a signal to another with the synapse,
in an ANN a neuron receives a signal, processes it, and then sends it to its connected
neurons. The signal is the output of the neuron computed by its activation function, and
the strength of the signal is determined by its weight.

Typically, neurons are grouped into layers and different layers may perform different
transformations on their inputs. A signal enters the ANN from the first layer, the input
layer, and travels to the last layer, the output layer, most likely passing through multiple
intermediate layers, or hidden layers, each layer performing a transformations resulting to
the prediction of the model. A network is typically called a Deep Neural Network if it has

at least two hidden layers.

3.3.1 Key Concepts

Activation Function

Activation Functions are a fundamental component of ANNs and are responsible for
adding non-linearity into a neuron’s output. Without them, an ANN composed only of
linear transformations would be equivalent to a single-layer linear model, no matter its
depth. Non-linearity is essential for enabling the network to approximate complex, real-
world functions and to learn intricate patterns within the data.

Each neuron in an ANN computed a weighted sum of all its inputs and then applies
an activation function to this result to produce the output of the neuron, or the next
layer’s input, or the model’s final prediction in the case of the output layer. The choice of
activation function significantly influences the learning dynamics and overall performance
of the network.

The selection of an appropriate activation function depends on the network architecture,
the type of task and empirical performance. Understanding their behavior is crucial,
especially in deep learning applications where multiple layers interact in complex ways.
One of the most widely used functions is the Rectified Linear Unit (ReLU), defined as
the positive part of its input. It introduces sparsity and accelerates convergence during
training, although it may suffer from the "dying ReLLU" problem where neurons can become
inactive. Variants such as Leaky ReLU or Parametric ReLU address this limitation by
allowing a small, non-zero gradient when the input is negative. Some other commonly
used functions are Sigmoid and Softmax, both for tasks such as classification. The first
maps the input values to the interval between 0 and 1, thus making it useful for binary

classification, while the second outputs a probability distribution over multiple classes and
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is typically used in the output layer of multiclass classification networks.
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Figure 3.4. Plot of some of the most common activation functions. Image from [5].

Training and Parameter optimization

Model Training is the process by which a machine learning algorithm learns to perform
a specific task. It is the step in machine learning where the learning occurs. In this step, the
model is given input-output pairs from the training dataset and it adjusts its parameters in
order to produce more accurate predictions. These parameters, which in ANNs are known
as weights and biases, define the behavior of the mathematical representation of the model.

Particularly in ANNs, to correctly adjust these parameters the training process uses
relies on a loss function which quantifies the difference between the model’s prediction
and the true labels. The goal is to minimize this loss function in order to achieve the
optimal performance. This minimization is carried out by the use of different optimization
algorithms, with the most common choices being Stochastic Gradient Descent (SGD)[32]
and Adam|33|. This workflow is repeated until a stopping criterion is met, such as achiev-
ing satisfactory performance on a validation dataset or reaching a predefined number of

iterations.

Loss Function

The loss function plays a critical role in the predictive model training process. It is used
during this process to measure model performance by quantifying the difference between
the model’s predictions from the correct, "ground truth" labels. By minimizing this loss,
the model learns to generalize and make better predictions on unseen data. The choice of
loss function depends on the problem we are called to solve.

In classification tasks, which involve assigning input data to discrete categories, com-
monly used loss functions include categorical cross-entropy and binary cross-entropy. These

functions measure the difference between the predicted probability distribution over classes
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and the true distribution represented by the ground-truth labels. For regression tasks,
where the objective is to predict continuous values, loss functions such as mean squared
error (MSE) or mean absolute error (MAE) are often employed.

Ultimately, the effectiveness of an ANN heavily relies on the suitability of the chosen
loss function for the specific task. An appropriately selected loss function not only reflects
the learning objective accurately but also ensures stable and efficient convergence of the

training algorithm

Early Stopping

Early Stopping is a form of regularization used to avoid overfitting. Regularization
refers to the process of modifying a learning algorithm and in this case to prevent overfit-
ting. During the training process, the Optimizer, updates the model to make it better fit
the training data with each iteration. This improves the performance of the model up to
the point of overfitting. Overfitting is usually identified when the value of Loss Function
decreases over a set number of epochs but on the other hand the loss of validation stays the
same or increases. At this point, training is stopped to conserve computational resources,

time and preserve model generalization.

Dropout

Dropout is another form of regularization used to avoid overfitting by randomly deac-
tivating a subset of neurons during each training iteration. Before the start of training a
probability is set, commonly between 0.2 and 0.5, that determines how many neurons are
going to be temporarily removed from the network during an iteration. These neurons are
excluded from forward and backward propagation, which means that the neuron neither
contributes to the prediction nor gets its weights updated. However, during testing or
deployment the full network is used and the dropout is ignored.

Dropout is particularly effective in deep learning architectures, including Recurrent
models such as Long Short-Term Memory (LSTM) networks and although it adds stochas-
ticity to the training process, it is a simple yet powerful method to improve model robust-

ness and is widely adopted in both research and practical machine learning applications.

Figure 3.5. Dropout Application. Image from [6].
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3.3.2 Perceptron

The perceptron, introduced by Frank Rosenblatt in 1958[34], is one of the earliest and
simplest models of an artificial neuron and represents the foundation of ANNs. It is a linear
binary classifier that takes multiple inputs, multiplies each by a weight, sums the results
along with a bias term, and applies an activation function to produce a binary output.

Mathematically, the output of the perceptron y can be described as:

1, if 7wz +b>0
BN A D I a0
0, otherwise
where x; are the input values, w; are the weights, and b is the bias term. The activation
function in the original perceptron is a simple step function, which outputs either 0 or 1

based on whether the weighted sum is greater than zero.
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Figure 3.6. Perceptron. Image from [7].

Despite its simplicity, the perceptron laid the groundwork for more complex neural
architectures. However, it is limited to solving problems that are linearly separable. One
well-known example that illustrates this limitation is the inability of a single-layer per-
ceptron to solve the XOR problem. These limitations eventually led to the development
of multilayer neural networks, which introduced hidden layers and non-linear activation

functions and enabled neural networks to model complex, non-linear relationships.

3.3.3 Multilayer Perceptrons (MLPs)

Multilayer Perceptrons (MLPs) are a class of feedforward neural networks that extend
the basic perceptron by introducing one or more hidden layers between the input and
output layers. Each layer is composed of multiple artificial neurons, and each neuron is
typically connected to every neuron in the next layer, and that is the reason many also
call them Fully Connected Networks.

The inclusion of hidden layers and the use of non-linear activation functions, such
as the sigmoid or ReLLU, allow MLPs to approximate complex, non-linear functions. This
capability makes them suitable for a wide range of classification and regression tasks where

linear models fall short.
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Unlike the single-layer perceptron, MLPs can solve non-linearly separable problems,
such as the XOR problem, by transforming the input space into higher-dimensional repre-
sentations. This transformation enables the network to find decision boundaries that are
not limited to straight lines or planes.

Multilayer Perceptrons represent an important milestone in the evolution of neural
networks. They form the basis for many modern architectures, even though they do not
inherently handle sequential data or temporal dependencies, which are essential in certain
domains such as speech recognition, natural language processing, and vehicle behavior

prediction.

First hidden layer Second hidden layer Third hidden layer

Output layer

Input layer

Figure 3.7. A Multilayer Perceptron or Fully Connected Neural Network. Image from [6].

3.3.4 Recurrent Neural Networks (RNNs)

Recurrent Neural Networks (RNNs) are Artificial neural networks specifically designed
for processing sequential data, such as text, speech, and time series where the order and
temporal structure of elements is important. Unlike feedforward networks such as Multi-
layer Perceptrons, which process inputs independently, RNNs utilize recurrent connections,
where the output of a neuron at one time step is fed back as input to the network at the
next time step. This enables RNNs to capture temporal dependencies and patterns within
sequences.

The fundamental building block of RNNs is the recurrent unit which maintains a hid-
den state. This hidden state acts as a form of memory, enabling the network to retain
information about past inputs. Formally, the hidden state h; at time ¢ is updated as
follows:

hy = oc(Wanze + Whphi—1 + b) (3.2)

where x; is the input at time ¢, W, and Wy, are weight matrices, by is a bias term, and
o is a non-linear activation functions such as tanh. The output of the RNN at each time
step depends not only on the current input but also on the hidden state from the previous

time step and can be calculated by:

Yt = ¢(Whyhy + by) (3.3)

where N is the hidden state at time ¢, W}, is the weight matrix connecting the hidden
state to the output, b, is the output bias term, and ¢ is an activation function appropriate
to the task.
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This recurrent structure enables RNNs to learn patterns that evolve over time, making
them applicable to time series forecasting, speech recognition, language modeling, and
behavior prediction. However, standard RNNs face significant challenges when dealing
with long-term dependencies. During training, gradients can either vanish or explode,
known as the Vanishing Gradient problem, as they are propagated backward through
many time steps. This makes it difficult for the network to learn relationships between
distant elements in a sequence.

These limitations led to the development of more advanced recurrent architectures,
such as the Long Short-Term Memory (LSTM) network, which introduces mechanisms to

better preserve and regulate information across longer sequences.

3.3.5 Long Short-Term Memory (LSTM)

Long Short-Term Memory (LSTM) networks are a specialized type of Recurrent Neural
Network (RNN) designed to address the limitations of standard RNNs, particularly their
difficulty in learning long-term dependencies due to the vanishing and exploding gradient
problems. Introduced by Hochreiter and Schmidhuber in 1997 [35], LSTMs incorporate
a more complex internal structure that enables them to better preserve and manage in-
formation across longer sequences. The name is made in analogy with long-term memory
and short-term memory and their relationship, studied by cognitive psychologists since the
early 20th century.

At the core of the LSTM is a memory cell, which is responsible for storing information
over arbitrary time intervals. The flow of information into and out of this cell is regulated
by three gates: an input gate, an output gate, and a forget gate. Forget gates determine
how much of the information from the previous state should be discarded by mapping the
previous state and the current input to a value between 0 and 1. A (rounded) value of
1 signifies the retention of the information, and a value of 0 represents discarding. Input
gates control how much new information is stored in the current cell state, using the same
system as forget gates. Lastly, output gates control how much of the cell state is exposed
as the output at the current time step, by assigning a value from 0 to 1 to the information,
considering the previous and current states. The activation functions of the gates that
maps values from 0 to 1 is usually the sigmoid function.

The operations of the gates of an LSTM unit at time step ¢ can be described by the

following equations|35]:

Ji =Wy +Uphi—1 + by) (forget gate)
it = o(Wizy + Uihi—1 + b;) (input gate)
or = o(Woxy + Uphyi—1 + by) (output gate)

While the cell input candidate ¢, the cell state update ¢; and the output h; can be

calculated as:
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Ct = tanh(cht + Uchi_1 + bc)
c=ftOc 1+ O
ht =0t ©® tanh(ct)

where z; is the input at time ¢, h;_1 is the previous hidden state, ¢;_1 is the previous
cell state, ® denotes element-wise multiplication, ¢ is the sigmoid activation function, tanh
is the hyperbolic tangent function and W, U, and b, are the learned parameters of the
model.

Selectively outputting relevant information from the current state allows the LSTM
network to maintain useful, long-term dependencies to make predictions, both in current

and future time-steps.
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3.4 Synthetic Data

Synthetic data refers to artificially generated data that simulates the characteristics and
patterns of real-world datasets. In recent years, it has become an important resource in the
field of machine learning, particularly in situations where real data is difficult to obtain,
expensive to collect, or sensitive in nature. In this work, the training and evaluation of
the predictive model rely on synthetic data generated using the CARLA simulator, a high-
fidelity open-source platform designed for autonomous driving research. The simulator
allows for the creation of diverse and realistic urban traffic scenarios, enabling the collection
of large quantities of labeled data under controlled conditions.

One of the main advantages of synthetic data is its flexibility. It allows researchers to
simulate specific situations that are rare or hazardous in the real world, such as building
fires [36], wildfires [37] or working with heavy machinery [38], as well as driving scenarios
like sudden lane changes or near-collision events, which are the focus of this study. This
is particularly relevant for tasks such as maneuver prediction, where rare behaviors like
abrupt lane changes are critical to model performance but are underrepresented in real-
world datasets. In the case of this study, synthetic data includes vehicle kinematics such
as longitudinal speed, and lateral speed, which serve as input features for the model used
to predict lane-change maneuvers.

In addition to supporting model training, synthetic data is widely used to address
class imbalance by generating samples for underrepresented categories[39] [40] [41]. It
also plays a key role in testing and validating machine learning systems, allowing for the
evaluation of model behavior under specific conditions without requiring additional data
collection efforts. Furthermore, in domains where privacy and data protection are concerns,
synthetic data provides a means of sharing useful information while preserving anonymity
and compliance with regulations|[42]| [43] [44]. For example, it can be used to generate
artificial datasets that mirror the statistical properties of real data without exposing any
sensitive details.

While synthetic data offers many benefits, it also comes with limitations. It may
not perfectly capture the complexity, unpredictability, and noise present in real-world
environments [45] and may exhibit different statistical and geometric properties than those
of real data. This difference is especially noticeable in visual applications, where the quality
of camera imagery is affected by these gaps. As a result, models trained solely on synthetic
data may experience a performance drop when deployed in real settings. However, when
carefully designed and validated, synthetic data can significantly reduce the cost and risk
of experimentation without risking real-world generalization [46], especially in fields like
autonomous driving, where real-world testing can be dangerous or impractical.

In summary, synthetic data provides a valuable foundation for training, testing, and
validating machine learning models. Its use in this thesis enables the efficient development
of a predictive model for vehicle behavior in an urban environment while ensuring safety,

scalability, and reproducibility of the data collection process.
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3.5 CARLA Simulator

The method chosen to obtain synthetic data for this study is the CARLA Simulator[47].
CARLA (Car Learning to Act) is an open-source driving simulator developed to support
the training, validation, and benchmarking of autonomous driving systems. Its main goal is
to make autonomous driving research more accessible to the wider community by providing
a powerful, flexible, and realistic virtual environment. Built on the Unreal Engine, CARLA
offers high-quality rendering and physical realism, allowing the simulation of urban and
rural environments with detailed maps, dynamic weather conditions, and realistic lighting.

The simulator chosen for this project needed to offer realistic graphics, allowing for fu-
ture extensions that might require photorealistic rendering, as well as accurate physics to
ensure a high level of realism. Finally, it was important to have a large and active commu-
nity, so that any technical issues could be resolved easily. As we mentioned before, CARLA
meets the first two requirements by using one of the most popular and freely available game
engines, Unreal Engine 4, which is also used for generating synthetic data[48]. Moreover,
the transition to the newer and more advanced Unreal Engine 5 is already underway.

Apart from CARLA, two other simulators also met these criteria: AirSim [49], backed
by Microsoft, which is built on the same engine, and LGSVL [50], backed by LG, which uses
another widely adopted game engine, Unity. AirSim even has a larger GitHub community
with 17,000 stars, compared to CARLA’s 13,000. However, neither of these two simulators
was selected because both projects have been discontinued by their developers|51].

Figure 3.8 shows the graphical interface of the CARLA simulator used during data
collection. The larger window provides a top-down, free-roaming spectator view of the
entire highway environment, allowing navigation across the map to monitor all surrounding
vehicles. This view can be optionally disabled during long simulation runs in order to
reduce rendering load and lower power consumption. The smaller window displays the
third-person camera view of the ego vehicle, which may be either manually controlled
or operated in autopilot mode. Each road section is annotated with a unique identifier,
visualized as red labels on the road surface.

CARLA uses the ASAM OpenDRIVE standard to define road networks and infras-
tructure, ensuring compatibility with other tools and simulators used in the automotive
industry. One of its strengths lies in its robust API support in both Python and C+-+,
which enables researchers to create custom scenarios, control multiple vehicles, access sen-
sor data in real-time, and manage the simulation loop programmatically. The platform
is also open to community contributions and is continuously being expanded by an active
group of developers and researchers.

A key advantage of CARLA is its ability to simulate a wide variety of sensors commonly
used in autonomous vehicles. These include LiDAR, RGB cameras, depth cameras, seman-
tic segmentation cameras, GPS, IMU, radar, and ultrasonic sensors. Each sensor can be
configured in terms of position, orientation, frequency, and resolution, offering fine-grained
control over the data collection process. Multiple sensors can be attached to a single ve-
hicle, or to multiple vehicles at once, allowing the generation of rich, multi-perspective

datasets. To illustrate this flexibility, two screenshots are shown in Figure 3.9, which were
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Figure 3.8. Screenshot from one of our CARLA simulation runs showing a Lane Change.

captured from the same simulation setup in which only the ego vehicle’s camera type was
switched, from an RGB camera to a semantic segmentation camera, while the environment,
vehicles and spectator view remained unchanged. In both screenshots, a radar sensor was
also enabled, with its detections visualized as small white points around nearby vehicles.
In addition, CARLA provides access to low-level vehicle information such as position, ve-
locity, acceleration, yaw, and control signals (throttle, brake, steering), making it suitable

for both perception and control research.

Figure 3.9. Screenshot from one of our CARLA simulation runs showing different sensors
view.

Another important feature is the Traffic Manager system, which governs the behavior
of non-player vehicles (NPCs). The Traffic Manager allows users to simulate realistic traf-
fic flow by adjusting parameters such as speed, lane-changing behavior, distance-keeping,
traffic light compliance, and randomization of routes. This enables the simulation of com-
plex, dynamic driving environments without the need for manual scripting of each vehicle.

Scenarios can be further customized using the Scenario Runner module, which allows the
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definition of specific driving tasks and test cases for benchmarking autonomous agents
under reproducible conditions.

CARLA also supports a wide range of predefined maps and the integration of custom-
built maps created using external tools like RoadRunner or Blender. Environmental con-
ditions such as rain, fog, cloudiness, time of day, and sun angle can be manipulated dy-
namically, allowing for the testing of models under varied and challenging scenarios that
would be difficult or dangerous to reproduce in real life.

Overall, CARLA provides a comprehensive and safe platform for generating the diverse
datasets required to train and evaluate machine learning models for autonomous driving.
One notable example is the KITTI-CARLA dataset [52], where researchers created a virtual
twin of the real-world KITTI dataset [53| using identical sensors and placement configura-
tions. Another study [54] generated a dataset featuring objects that are underrepresented
in real-world data, such as rare or uncommon street scenarios. In a further work [55], a ded-
icated dataset was developed for evaluating SLAM algorithms. Together, these examples
demonstrate the remarkable versatility of CARLA.

In this work, it enables the collection of time-series data related to vehicle dynamics,
such as yaw, longitudinal speed, and lateral speed, across multiple scenarios. The simula-
tor’s flexibility and sensor fidelity make it an ideal choice for research into vehicle behavior

prediction in complex urban environments.
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System Model and Simulation Environment

4.1 Dataset

The dataset was generated using a custom pipeline, presented schematically in Figure

4.1 and described in detail in the following sections.

Carla Logging Custom Logger Data Manipulation JWindow Generation

Produces mmap file Decodes the mmap hex Computed useful features  Data reconstruction and Time window construction
containing hexadecimal file into a user-friendly using decoded data labeling. for model input
values for each vehicle CSV file.

with set frequency.

Figure 4.1. Custom pipeline for dataset generation

4.1.1 Carla Logging

The CARLA Python API offers a logger that saves certain values in an mmap file at a

user-defined frequency. The logged values are as shown in 4.1.

4.1.2 MMap Decoder

Once the simulation is completed and the mmap file has been generated, it is processed
using a custom Python script . This tool, from this point onward referred to as the MMap
Decoder, converts the raw hexadecimal byte stream into a human-readable decimal repre-
sentation, thereby enabling systematic analysis. Importantly, the MMap Decoder performs
no modification of the underlying variable values; it only reformats their representation
and storage structure. Specifically, it transforms the raw dictionary-based format into a
structured CSV file that facilitates subsequent data handling, preprocessing, and model

training. For this reason, its structure remains as shown in Table 4.1.

4.1.3 Data Preprocessing

The preprocessing stage is divided into 3 distinct parts. The first involves the use of
the CARLA simulator to extract map-related information and the location of each vehicle.

The second and third are performed independently of the simulator.
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timestamp index quantity mode 1 vehicle id 1 \\

)

steer 1 throttle 1 brake 1 handbrake 1 reverse 1 \\

N

velocity x 1 velocity y 1 wvelocity z 1 acceleration x 1 acceleration y 1 \\

N

acceleration z 1 location x 1 location y 1 location z 1 rotation _x 1 \\

N

rotation y 1 rotation z 1 rotation y_ 41 rotation z 41

Table 4.1. MMap File Columns

Custom Logger

For the first stage, an additional custom Python script was developed called Custom
Logger. Its purpose is to process the output of the MMap Decoder and generate a new
CSV file containing higher-level features, along with selected raw attributes carried over

from the previous file.

Specifically, the timestamp, the rotational values around the three axes (yaw, pitch,
roll), as well as the Lane ID, are transferred directly. Then, the signed instantaneous
longitudinal and lateral velocities and accelerations are computed, under the convention

that rightward motion is assigned a positive sign and leftward motion a negative one.

This computation is performed using the get forward wvector()[56] function, the vector
pointing forward according to the rotation of the object. By taking the cross product of
these two vectors, the rightward lateral direction vector is obtained. With these three
vectors, it becomes straightforward to transform the motion from the global Cartesian
frame of the map to the local reference frame of each road segment, allowing for an accurate

calculation of the longitudinal and lateral velocity and acceleration.

This transformation was a critical step in the preprocessing pipeline, as it ensured that
the features used to train the model accurately captured the directional dynamics of vehicle

motion within the local context of the road geometry.
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4.1.3 Data Preprocessing

timestamp ego_vehicle id ego_lane id ego_yaw \\

N

. ego lateral - ego long speed
ego_pitch ego_roll speed W
S\
ego lateral ac- ego_long accel- veh359 vehicle -
celeration eration id \\
veh359 lane id veh359  yaw veh359 pitch veh359 roll \\

veh359 lateral -
- - AN\

speed
veh359 long - veh3h9 lateral -  veh359 long ac-
speed acceleration celeration

Table 4.2. CSV file columns after Custom Logger

Data manipulation

Before proceeding to the second part of preprocessing, an exploratory data analysis was
performed using visualizations to better understand the structure and meaning of the data.
This analysis revealed that several rows contained missing values in columns of interest,
which were removed as an initial step to ensure data integrity. The original CSV structure
consisted of a timestamp in the first column, followed by the set of variables for each
vehicle. Although straightforward, this representation was not well suited to our modeling
objectives, as it grouped all vehicles into a single row per timestamp. To address this,
the dataset was restructured such that each vehicle was assigned one row per data point.
Consequently, the same timestamp could appear multiple times, once for each vehicle.
To maintain continuity and avoid misalignment introduced by this stacking, we inserted
10 placeholder rows containing the value -10 at the end of each vehicle’s sequence before
appending the next vehicle’s data. These artificial rows were later filtered out during input
generation, serving as explicit markers of sequence boundaries.

Lane change detection was performed using the Lane ID column. Through analysis,
it was determined that when a vehicle moved from a lane with a higher absolute Lane -
ID to a lower one, it corresponded to a change in the left lane, while transitions from
a lower to a higher absolute Lane ID indicated a change in the right lane. Based on

this rule, all Lane_ID values were first converted to their absolute form, after which
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the difference between consecutive rows was computed. This transformation yielded the
maneuver classes: -1 for left lane change, 0 for lane keeping, and 1 for right lane change.
However, larger differences also appeared, which upon inspection were found to correspond
to other maneuvers, such as highway entry or turns. These cases were systematically
assigned the placeholder value -10, consistent with the sequence boundary convention.
Finally, the values equal to -1 were replaced with 2, since the classes of the data to be
classified must be positive integers.

This restructuring and labeling strategy was crucial, as it not only standardized the
input format but also ensured robust identification of the maneuver classes of interest,
while explicitly handling irrelevant or ambiguous events. As a result, the preprocessing
pipeline produced a dataset that was both cleaner and better aligned with the specific

requirements of the predictive modeling task.

timestamp  vehicle id lane id yaw pitch \\

-\

roll lateral speed long speed lateral acceleration long acceleration

Table 4.3. Dataset columns after Data Manipulation

Window Generation

The final step of the preprocessing stage was the construction of the model inputs. The
features selected had to be values that could be obtained quickly and reliably in a real-
world in-vehicle scenario. For this reason, we restricted the inputs to only two variables:
the lateral velocity and the longitudinal velocity.

The model employs an LSTM layer as its input, which requires fixed-length time series
as input sequences. To meet this requirement, sliding windows were created with the
optimal window size found with grid search. Further examination of the training and
evaluation datasets revealed that CARLA registers a lane change at the moment when the
vehicle’s center crosses the lane boundary. However, this point in time occurs too late to
be considered an early prediction of the maneuver, which is the main goal. To overcome
this limitation, a custom re-labeling strategy was developed in which timeseries slightly
before and after the one originally labeled as a maneuver, were also labeled as one. The
optimal timing of these before and after is also found with grid search. This strategy is
also a novel way of exploiting CARLA simulation data to improve prediction performance.

During the creation of each window, we examine the values in the Lane ID column
from the start of the window up to 4 seconds afterward. If the value -10 appears or if
the value corresponding to the opposite lane change occurs, that is, a value of 2 when
generating windows for a lane change to the right or a value of 1 when generating windows

for a lane change to the left, the window is discarded to reduce complexity.
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4.1.4 Hyperparameter Tuning - Grid Search

Window Length

To determine the optimal window length, a grid search was performed. This brute-force
technique searches through different hyperparameter values to identify the one that has
the best overall performance. Specifically, five separate models were trained, each using a
different window length. The performance of each model was then evaluated on the Real-
World test dataset across multiple prediction horizons, and the configuration that achieved
the best accuracy over different horizons was selected. The sequence lengths tested were
5, 7,10, 12, and 14.

Finally, once the results of the next subsection are obtained, this grid search will be

repeated to verify and confirm the consistency of the findings.

Temporal Offset Optimization of Timeseries

To determine how early, relative to CARLA’s labeling of a lane change, a time series
should be classified as a lane change maneuver, a second grid search was conducted. In this
experiment, the window length identified in the previous grid search was kept constant,
while the temporal offset between the CARLA-defined maneuver event and the labeling of
a time window as a lane change was systematically varied. For each offset configuration,
a new dataset was generated, where the sliding windows preceding the CARLA event
by different time intervals were assigned to the corresponding maneuver class. Different
models were then trained and tested for each created dataset. This procedure allowed for a
detailed analysis of how the model’s predictive performance changes as the labeling point

moves further away from the moment the simulator officially registers the maneuver.

For better understanding, if in time g = 0 CARLA registers a lane change, the following

datasets will be created:

1. [-1.4s,—0.25]

2. [-1.4s,-0.2s], [-1.2s,—0.0s]

3. [~1.6s,—0.4s], [~1.4s, —0.2]

4. [-1.6s,—0.4s], [-1.4s,—0.2s], [-1.25,0.0s]

5. [-1.8s,—0.6s], [-1.6s,—0.4s], [—1.4s, —0.25]

6. [—1.8s,—0.6s], [-1.6s, —0.4s], [-1.4s,—0.25s], [-1.25,0.0s]
7. [-2.0s,—-0.8s], [-1.8s,—0.6s], [-1.6s, —0.4s], [-1.4s, —0.25]

8. [-2.0s,—0.8s], [-1.8s,—0.6s], [-1.6s, —0.4s], [-1.4s,—0.2s], [-1.2s,0.0s]
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4.1.5 Training and Evaluation Data

To generate the training set we ran a CARLA simulation on Town04[57]. Town04 is a
map that encompasses a variety of driving scenarios, as it features a figure-eight shaped
highway surrounding a smaller urban road network composed of narrow one- and two-lane
streets, interspersed with commercial and residential buildings. This map was selected
because it is sufficiently large to accommodate a substantial number of vehicles—41 in this
case—without causing traffic congestion that would hinder lane changes. Furthermore, its
size helps to minimize the occurrence of repetitive data, meaning that the same maneuver
is unlikely to take place multiple times at random locations.

To ensure that the data were as unique and non-repetitive as possible, at the start of
the simulation and every 20 minutes thereafter, the following parameters were modified for

all vehicles:
1. the probability of performing a lane change to the left,
2. the probability of performing a lane change to the right,
3. the individual speed limit.

The simulation lasted 6 hours and involved 41 vehicles. The data recording frequency
was 5 Hz, which resulted in 102,404 data points per vehicle and a total of 4,198,564
data points. After applying the preprocessing steps described above, 48,233 inputs were

generated.

e 11.564 right lane changes for the training and 5.064 for the evaluation set,
e 10.903 left lane changes for the training and 4.788 for the evaluation set,

e 11.067 lane keeping for the training and 4.847 for the evaluation set.

4.1.6 Testing Data

For the testing set, we wanted to use a different map, one with no relation to the
previous environment, in order to avoid potential repetitions in the data. We selected
the Town10[58] map, which represents a small urban environment characterized by rapid
changes in orientation without lane changes, as well as numerous turns, making it suitable
for testing our model.

The simulation lasted 85 minutes and included 11 vehicles. The data sampling rate was
again set to 5 Hz, resulting in 25.112 data points per vehicle and a total of 276.232 data
points. After applying the preprocessing steps described above with, the only difference

being that a few more prediction horizons were added, 15.429 inputs were generated:
e 5.602 right lane changes,
e 4.799 left lane changes,

e 5.028 to lane keeping.
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Figure 4.2. Aerial view of Town04 map used for gathering training and evaluation data

4.2 Model

As mentioned in the Theoretical Part at Section 3.3.5, a combination of LSTM Lay-
ers, that are better for capturing temporal features, and Fully Connected Layers for the

classification part, were chose for the proposed Machine Learning Model.

1. LSTM with 256 units

2. Dropout Layer with 40% possibility

3. LSTM with 128 units

4. Dropout Layer with 40% possibility

5. Fully Connected Layer with 32 units and LeakyReLU activation function

6. Fully Connected Layer with 3 units and Softmax activation function

The architecture of the model is not very complex but it is complex enough to perform
good in both Synthetic and Real-World data. A stacked LSTM was chosen instead of a
single layer in order to capture both short-term signal variations and higher-level temporal

patterns in the two velocity features. Dropout is applied after both LSTM layers to reduce
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Figure 4.3. Aerial view of Townl10 map used for gathering testing data

overfitting, which is a common issue with recurrent models. The Fully Connected layer
with LeakyReLU helps the model separate features more effectively without running into
the problem of inactive neurons. Finally, the Fully Connected with Softmax activation

output layer provides probability scores for the three maneuver classes.

4.3 Training Process

The training process was relatively straightforward. First, the model described earlier
was constructed and compiled using the Adam optimizer, categorical cross-entropy as the
loss function, and accuracy as the evaluation metric, which is a common configuration for
multi-class classification problems. Since the use of categorical cross-entropy as the loss
function requires the labels to be one-hot encoded, the to_ categorical function provided
by TensorFlow was used to perform this transformation. This transformation does affect

the classes but just the representation of them. As a result, the labels now are as follows:
e 0->[100]
e 1->1[010]
e 2->1001]
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4.3 Training Process

In addition, the training was designed to be as deterministic as possible, so that different
training runs performed for hyperparameter tuning would not be influenced by randomness
inherent in the learning process. To achieve this, several different random seed values were
tested, and the one that yielded the best performance was fixed for all experiments.

Finally, an EarlyStopping callback was added to stop training when the validation

accuracy failed to improve by at least 0.01 over 10 consecutive epochs.
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5.1 Experimentation Scenarios

5.1.1 Testing with Synthetic Dataset

The first evaluation setup involved the use of synthetic data. After generating the
data as previously described, the same preprocessing pipeline was applied, with the only
modification being the addition of more prediction horizons, with those being: 1.0 second
before the maneuver and 0.2 seconds after the maneuver. Consequently, our test dataset

consists of timeseries that:
1. end 1.0 seconds before the maneuver
2. end 0.8 seconds before the maneuver
3. end 0.4 seconds before the maneuver
4. end 0.2 seconds before the maneuver
5. end 0.0 seconds before the maneuver
6. end 0.2 seconds after the maneuver

These prediction horizons were chosen because they are very close to the maneuver, and
we considered it critical for the model to achieve very high accuracy for these intervals.
Evaluating the performance of the model at these horizons allows us to decide whether
to proceed with further assessment or make adjustments. A confusion matrix was then
produced to obtain a comprehensive view of the model’s behavior under these conditions.

Subsequently, the model was tested across different prediction horizons individually,
in order to assess how its performance is affected by the temporal distance between the
current observation window and the moment the maneuver is registered. To achieve this,
all recorded lane changes were found , and sliding windows were created to end X seconds
before the timestamp at which CARLA registered the maneuver. The values of X used
were: 2.4, 2.2, 2.0, 1.8, 1.6, 1.4, 1.2, 1.0, 0.8, 0.6, 0.4, 0.2, 0.0, -0.2, -0.4, -0.6, -0.8.
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5.1.2 Testing with Real-World Data

This research would be meaningless if there was no intention for it to also work in the
real world. For this reason, we will attempt to test our trained model on real data as well.
We will use data from the NGSIM US Highway 101 Dataset [17], which is quite well known
and widely used in the literature[19][20][22], and from a recently released dataset collected
from videos recorded with drones above the German Autobahn|[18].

For both datasets, a confusion matrix was generated to provide an overall view for the
prediction horizons of 1.0, 0.8, 0.6, 0.4, 0.2, 0, and —0.2 seconds. In addition, similarly
to the tests conducted on the synthetic data, the model was evaluated across different

temporal horizons using exactly the same procedure.

US Highway 101 Dataset

Starting with the US Highway 101 Dataset some preprocessing was required. First,
we decided not to keep all the columns that were available, since many of them were not

useful, but to keep only:

e Global Time

Vehicle ID

Total Frames

Local X

Local 'Y
e Lane ID

In the description of Vehicle ID it is stated that repeated values are not associated.
After analyzing the data, it was found that the combination of the columns Vehicle ID
and Total Frames is that who uniquely identifies each vehicle. For properly processing
the data, it should be known which record belongs to which vehicle. To achieve this, a new
identifier, New _Vehicle ID, was created for every record that has the same combination of
Vehicle ID and Total Frames, and then the were data by this new identifier and Global -
Time.

It was also observed that there were some temporal gaps, where no data were recorded
for certain vehicles over a few seconds, which were not useful for our purposes. To detect
these cases, a new column, dt, was created, which measured the difference in Global Time
between each record and the previous one. For each vehicle, the maximum dt value was
checked, starting from the 3rd record. If this value was greater than 100ms, the entire
vehicle was removed from the dataset. Vehicles with fewer than 15 records were also
removed. Afterwards, as it was done with the synthetic dataset, 10 rows filled with the
value -10 were added and dt column was dropped.

Another issue was that the sampling rate of the two datasets was dissimilar. The

synthetic dataset had sampling rate of 5Hz, which means one sample every 1/5 of a second.
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The real-world dataset, had sampling rate of 10Hz, which means one sample every 1/10 of
a second. To make them consistent, only the odd indexed records were kept.

As already mentioned, the proposed model takes lateral and longitudinal speed as in-
puts. These values were not included in the first place, but could be calculated from the
available columns. Specifically, Global Time corresponds to a Unix Timestamp (time in
milliseconds since 01/01/1970 UTC). Local_ X is the lateral distance of the vehicle’s front
center from the leftmost section in the direction of travel, and Local Y is the longitudinal
distance from the entrance of the section. By dividing the difference between two con-
secutive Local X values by the difference in their corresponding Global Time values the
lateral speed was obtained, and by doing the same with Local Y gives the longitudinal
speed. Finally, the results were multiplied by 0.30480 for the feet to meters conversion.

For Lane ID the same logic with the synthetic dataset was applied, but with one
difference.In this dataset, the value 1 is a right lane change, while the value 2 is a left lane

change.

German Autobahn Dataset

As with the previous dataset, the current data also required preprocessing to make
suitable for this model. The dataset was split into two files, with each one corresponding
to a different driving direction (West to East in one file and East to West in the other).
The files were merged into a single dataset, keeping only the rows where the type of vehicle
was Passenger Car.

As in the synthetic dataset, this dataset had a data recording frequency of 10 Hz.
Downsampling was therefore applied again by keeping only the rows with odd indices.
Columns that were not relevant for the modeling task, such as timestamps and vehicle

dimensions, were removed, leaving only the variables necessary for model input:
e ID, which is a unique identifier for each vehicle
e 1z, which is the vertical position of the vehicle in space
e y, which is the horizontal position of the vehicle in space

In this dataset, lane identifiers were not provided. However, they were inferred using the
y position, considering that the lanes on the Autobahn are 3.75 meters wide. By dividing
y by 3.75, an artificial lane id was created. A subsequent inspection of the distribution of
y values, as shown in Figure 5.1, confirmed the validity of this approach, as vehicles tended
to remain near y = 1.9 and y = 5.8, corresponding to the centers of the lanes. The same

procedure for detecting lane changes as applied to the synthetic dataset was then followed.

5.2 Evaluation Metrics

For the evaluation of the model for each horizon, the following metrics will be used:

TrueLLC + TrueRLC + TrueNLC

O A —
verauaccuracy Total Predictions

)
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Figure 5.1. Distribution of y values

TrueRLC, Correctly predicted Right Lane Change
where § TrueLLC, Correctly predicted Left Lane Change
TrueNLC, Correctly predicted No Lane Change

Precisi TruePositive
recision =
TruePositive + FalsePositive
TruePositive
Recall =

TruePositive + FalseNegative

FlScore — 2 Precision * Recall

Precision + Recall

5.3 Experimental Setup

The entire pipeline developed for this thesis was executed on a personal computer.

The software environment consisted of Carla simulator version 0.9.14, PyCharm 2024.3.1.1

for the implementation of the Python scripts, MMap Decoder and Custom Logger, and

managing the simulation configuration files, and Anaconda for Python package and envi-

ronment management. TensorFlow, version 2.10.0, was employed as the primary machine

learning framework and executed on the CPU. The preprocessing, model implementation,

training, and evaluation were performed within Jupyter Notebook.

The hardware environment included a Ryzen 5600 processor, 16 GB of RAM, and an

AMD RX 6700XT GPU.
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Having thoroughly described the methodology in the previous chapter, we now proceed

to present the results and their interpretation.

6.1 Hyperparameter Tuning Results

6.1.1 Window Length

After the execution of the first run of grid search to establish a solid baseline for the
next experiment, the results shown in Figure 6.1 were obtained. As it can be observed,
the best performance is achieved with a window length of 7, while a length of 5 also has
competitive results.

Following the completion of 6.1.2; the first grid search was repeated using the final
dataset. The results, shown in Figure 6.2, show a change in the optimal window length.
The best overall performance is now achieved with a window length of 5, which will be

used as the final configuration, instead of 7.

6.1.2 Optimization of Timeseries Labeling

Upon executing the second grid search, the results presented in Figure 6.3 were ob-
tained. It is evident that the optimal performance occurs when for each lane change the

time series which are labeled as one and added to the dataset are those following:
1. From ts4+ = —2.0s to teopg = —0.8s of Carla’s Label
2. From tgsqrt = —1.85 to te,qg = —0.65 of Carla’s Label
3. From tsqrt = —1.65 to te,g = —0.4s of Carla’s Label
4. From tsqr = —1.45 to te,g = —0.2s of Carla’s Label

5. From tgiqrt = —1.28 t0 teng = 0.0s of Carla’s Label

6.1.3 Final Values of Hyperparameters

In conclusion, the final value of Window Length is 5 timesteps or 1.0 second, while for

the timeseries labeling, we label the following timeseries as a lane change:
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6.1.3

Final Values of Hyperparameters
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Figure 6.3. Recall over different prediction horizons of models training with datasets as
described in this list
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6.2 Training Results

1. From ts4p¢+ = —1.65 to topg = —0.8s of Carla’s Label

2. From tgsqrt = —1.45 to te,qg = —0.65 of Carla’s Label

3. From tsqrt = —1.25 t0 teng = —0.4s of Carla’s Label

—1.0s to teng = —0.2s of Carla’s Label

4. From tstart

5. From tgire = —0.85 to teng = 0.0s of Carla’s Label

Figure 6.4 shows that 0.8 seconds, or four steps, before CARLA registers a lane change,

the vehicle is less than one meter from the point where the lane crossing occurs. Considering

that most standard vehicles are about two meters wide, it can be infered that at the moment

we define as the earliest point to label a maneuver, the vehicle has already begun moving

into the adjacent lane. This indicates that our choice for the earliest labeling is realistic

and consistent with actual vehicle behavior.

S

—— ego_lane_id

1.0 1 —— ego_lateral_speed
0.5 4

0.0 1

—— ego_distance _to _left lane | |
0- . T T T T

34
24

| | 1 —— ego_distance_to _right lane

0.0

. . — ego_steer
o5 | 1 | |
0.6 1 —— ego_throttle
0.4 -
10‘1 2 10 il4 lDII 6 lDII 8 10‘20 10‘2 2 10‘24 10‘2 6
Figure 6.4. CARLA data showing a Lane Change.
6.2 Training Results

The model was trained for 16 epochs out of the 100 initially set,

with the training

stopped by the Early Stopping Callback. This callback was configured to stop training if

validation accuracy did not improve by more than 0.01 for 10 consecutive epochs. After

the first epoch, the model had already reached a validation overall accuracy of 94.3% with

a validation loss of 0.2058. By the sixth epoch, accuracy increased to 95.3% and loss

decreased to 0.1682, while the corresponding training metrics were 95.6% and 0.1569. No
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improvement greater than 0.01 was observed after that point. The best performance was
recorded in the 14th epoch, with a validation accuracy of 95.7% and a validation loss of

0.1537.

Figure 6.5 shows the evolution of accuracy and loss over the epochs.

Loss over Training Time Accuracy over Training Time
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Validation Validation
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Figure 6.5. Loss and Accuracy over Epochs

To better understand why the validation accuracy was so high at the first epoch, a
cosine distance analysis was performed between 200 validation samples and 2,000 training
samples. The results showed that 75% of the samples were very similar (distance below
0.3), while only 5% differed significantly. This pattern was consistent across all splitting

strategies.

For these reasons, the model’s generalization ability will ultimately be evaluated using

data from other simulation runs and, in particular, real-world data.

We subsequently trained the model without the Early Stopping Callback in order to
assess its actual impact on the training process. As illustrated in the Figure 6.6 the model
did not achieve any substantial improvement beyond the 14th epoch. From around the
20th epoch we see that Validation Loss increases while the Training Loss is decreasing
which is a clear indication of Overfitting. The same stands for the Accuracy, where the

training accuracy increases while the validation accuracy remains the about the same.

All of the above, justify the choice we made for the parameters of the Early Stopping
Callback.
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6.3 Testing with Synthetic Data Results
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Figure 6.6. Loss and Accuracy over Epochs Without Farly Stopping Callback

6.3 Testing with Synthetic Data Results

For the testing using synthetic data we first show a confusion matrix for the prediction
horizons of 1.0, 0.8, 0.6, 0.4, 0.2, 0 and -0.2 seconds before the maneuver. As shown in
Figure 6.7, the Recall the model achieved is 92.1% for lane keeping, 92.7% for right lane
changes and 93.2% for left lane changes, with a total accuracy of 92.6%.

Confussion Matrix for maneuvers in: 1.0, 0.8, 0.6, 0.4, 0.2, 0.0, -0.2 seconds.

5000
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[1~]
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o
',_
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Predicted label

Figure 6.7. Confusion Matrix for Synthetic Data

Next, the four graphs with the metrics described in Section 5.2 are presented.
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Figure 6.8. Overall Accuracy over Different Prediction horizons
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Figure 6.9. Class-Wise Precision over Different Prediction horizons
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Figure 6.10. Class-Wise Recall over Different Prediction horizons
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Figure 6.11. Class-Wise F1-Score over Different Prediction horizons

From the above graphs, it can be seen that the model was trained well and generalises
effectively, even in scenarios it has never encountered before, such as the change from
a highway map to an urban map. However, at large time distances from the maneuver
(greater than 1.2 seconds), its performance drops sharply. On a good note though, the pre-
cision results show that the model is still able to correctly identify lane change maneuvers
with relatively few false positives even at 1.8 seconds before the maneuver. This sh that,
although overall confidence is lower at longer horizons, the model maintains a good level
of reliability when it does predict a lane change, which is a desirable property for early

warning systems.

In addition, the model was observed to exhibit a tendency to classify maneuvers as
lane keeping rather than incorrectly predicting the direction of a lane change, a behavior
that is particularly concerning. A closer examination of the data revealed that, within this
time horizon, there are essentially no discernible indicators suggesting an upcoming lane
change. This outcome is attributed to the high fidelity of the simulation: when a vehicle
follows a straight trajectory, long before the actual decision to execute a maneuver is made,

there are no small deviations in its motion that could signal the driver’s intent.

As shown in Figure 6.12, up to point 1014, corresponding to 1.6 seconds before the
maneuver is registered, no substantial variation is observed in either the vehicle’s speed or
its distance from the adjacent lanes. Minor oscillations appear in the steering and throttle
signals, likely reflecting the activity of the PID controller as it attempts to maintain the
vehicle at the center of the lane. Only at 1.4 seconds before the maneuver’s registration
does a clear lateral movement begin to emerge. This observation reinforces the earlier
discussion regarding the observed decrease in accuracy. Figure 6.10 further illustrates this
behavior, showing that model performance deteriorates sharply for time distances greater

than 1.4 seconds before the maneuver.
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Figure 6.12. Diagram of Lane_ID, Lateral Speed, Distance to Left and Right Lane, Steer
and Throttle, showing a Left Lane Change. Diagram starts 6.4 seconds before the maneuver
1s registered.

6.4 Testing with Real-World Results

6.4.1 US Highway 101 Dataset

As in the previous case, we tested our model using the prediction horizons of 1.0, 0.8,
0.6, 0.4, 0.2, 0 and -0.2 seconds before the maneuver and we first show the Confusion
Matrix. The results are not very encouraging, even when considering that the model was
trained exclusively on synthetic data. Specifically, the model achieved an accuracy of 94.3%
for lane keeping, 56.5% for right lane changes, and 53.9% for left lane changes, with an

overall accuracy of 69.1%. These results are further analyzed in Chapter 7.1.

Next, the four graphs with the metrics described in Section 5.2 over those prediction

horizons we mentioned in Subsection 5.1.2 are presented.
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6.4.1 US Highway 101 Dataset

Confussion Matrix for maneuvers in: 1.0, 0.8, 0.6, 0.4, 0.2, 0.0, -0.2 seconds.
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Figure 6.13. Confusion Matriz for US Highway 101 Dataset
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Figure 6.14. Owverall Accuracy over Different Prediction horizons
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Figure 6.15. Class-Wise Precision over Different Prediction horizons

Diploma Thesis E



Chapter 6. Resul

ts

Recall over different prediction horizon

1.0 §
0 o o
o ] L] ]
] o o 0
o L] ] o °
0.8
— ]
T 0.6 @
8 o ® ¢
a
o ° ¢
o
0.4 1 *
] o
o ® Right Lane Change
0.2 1 0 Left Lane Change
LIPS ® No Lane Change

2.40 2.20 2.00 1.80 1.60 1.40 1.20 1.00 0.80 0.60 0.40 0.20 0.00 -0.20-0.40-0.60-0.80
Time until maneuver (sec)

Figure 6.16. Class-Wise Recall over Different Prediction horizons
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Figure 6.17. Class-Wise F1-Score over Different Prediction horizons

As already shown by the overall view of the confusion matrix, the model did not perform
very well in several of the tested prediction horizons. As with the synthetic dataset, a
positive aspect is that, as shown in Figure 6.15, it achieved a precision of higher than
60% in both lane-change classes. This means that when it predicts such a maneuver, it is

unlikely to be wrong.

6.4.2 German Autobahn Dataset

As we did with the US Highway 101 Dataset, we first show the Confusion Matrix
for prediction horizons of 1.0, 0.8, 0.6, 0.4, 0.2, 0 and -0.2 seconds before the maneuver.
However, unlike with US Highwat 101 Dataset, this time the results are very encouraging,
especially considering that the model was trained exclusively on synthetic data. Specif-
ically, the model achieved an accuracy of 90.0% for lane keeping, 78.8% for right lane
changes, and 89.7% for left lane changes, with an overall accuracy of 86.2%. These results

are further analyzed in Chapter 7.1.
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6.4.2 German Autobahn Dataset

Confussion Matrix for maneuvers in: 1.0, 0.8, 0.6, 0.4, 0.2, 0.0, -0.2 seconds.
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Figure 6.18. Confusion Matrixz for German Autobahn Dataset

Next, the four graphs with the metrics described in Section 5.2 over those prediction

horizons we mentioned in Subsection 5.1.2 are presented.
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Figure 6.19. Owverall Accuracy over Different Prediction horizons
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Figure 6.20. Class-Wise Precision over Different Prediction horizons
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Figure 6.21. Class-Wise Recall over Different Prediction horizons
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Figure 6.22. Class-Wise F1-Score over Different Prediction horizons
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6.5 Computanional Performance

This time the results are very promising. Even at larger time distances of 1.8 seconds
before the maneuver our model achieves 60% recall for Left lane changes and 70% for Right
lane changes the model. The precision is very high even on larger prediction horizons
reaching 85.0% for the Right Lane Change and 92.0% for the Left Lane change. Overall

this is a very good and promising result.

6.5 Computanional Performance

The model was designed not only to achieve competitive predictive performance but
also to remain computationally efficient, allowing deployment on systems with limited
hardware capabilities. Both training and evaluation were performed on a CPU, as no
GPU or TPU accelerator were available. Across all conducted tests—exceeding one mil-
lion predictions—the average inference time per sample was 0.15 ms, indicating that the
model can operate efficiently in real-time applications. This low inference latency enables
GPU resources to be reserved for more computationally demanding tasks such as object
detection.

The average duration of a training run, terminated by the Early Stopping Callback, was
8 minutes. During training, CPU power consumption was approximately 60 W, which is
about 8Wh of energy per session. This value would likely differ if training were conducted
using a GPU.
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7.1 Summary and Conclusions

In this thesis, we studied the problem of predicting vehicle behavior in urban envi-
ronments using machine learning, focusing specifically on the prediction of imminent ma-
neuvers through a machine learning algorithm trained on synthetic data generated by the
CARLA simulator, a widely recognized tool in autonomous driving research. Subsequently,
we evaluated the model’s performance on synthetic data generated from a completely dif-
ferent map, changing from a highway scenario to an urban scenario, as well as, on real-world
data from the NGSIM US Highway 101 Dataset[17] and the German Autobahn Dataset
[18].

To achieve this objective, we first implemented a custom pipeline for the simulation
data processing and use. We then ran a simulation on one map for 4.5 hours to generate the
training dataset, and an additional 1.5 hours on the map to produce the testing dataset.

Next, we trained a relatively simple model, designed to ensure fast inference time.
The training process lasted only ten minutes due to the simplicity of the model and the
use of Early Stopping. For model evaluation, two different tests were executed using the
generated data. In the first test we used data relatively close to the maneuver, with
prediction horizons of 1.0 second as close as -0.2 seconds before the maneuver registration
in CARLA. In the second test, we calculated four different metrics for more prediction
horizons from 2.4 before the maneuver up to 0.8 seconds after the maneuver.

The results of the first scenarios were highly encouraging, with the model achieving
overall prediction accuracy of up to 92.6%. The second test better pictured the true
performance of the model. Up until prediction horizons of 1.0 second it performs very
well. However, for larger time distances it produced less satisfactory results, falling about
10% for each 0.2 seconds behind in time. This is justified because a maneuver begins at
the moment a decision is made by the CARLA Traffic Manager, and until that point, the
vehicle maintains its position at the center of its current lane. This decision is randomly
determined by the Motion Planner based on a predefined probability. Subsequently, a PID
controller generates the control commands, which the vehicle then executes.

To further illustrate this, in Figure 7.1 a sample lane-change event is presented to help
interpret the obtained results. The graph begins 15 data points before the lane-change

registration and ends 10 data points after. Recall that a lane change is registered when
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the vehicle’s center is exactly aligned with the dividing line between two adjacent lanes.
Consequently, the graph spans 3 seconds prior to the registration point and 2 seconds
after. We observe that the vehicle starts to increase its lateral velocity at ¢ = 2.0s, which
corresponds to just 1 second before the lane change is registered, and returns to zero
at t = 4.8s, or 1.8 seconds after. This shows that the maneuver is rather abrupt and
aggressive, which in turn explains why our model struggles to make accurate predictions

earlier than 1 second before the registration point.

1.0
—— ego_lane_id

0.5

0.0 1

ego_lateral_speed

—— ego_distance_to_left_lane

—— ego_distance_to_right_lane

T T T T T
220 225 230 235 240

Figure 7.1. A graph showing the values of Lane ID, Lateral Speed, Distance to Left Lane,
Distance to Right Lane during a lane change to the right

The final step was to conduct a more substantial evaluation of our model, namely by
testing it on real-world data from the dataset [17] and [18]. For the first dataset the results,
while satisfactory, did not fully meet our expectations, particularly in the case of left-lane
changes. In order to better understand these outcomes, we proceeded with an analysis of
the dataset.

We were able to classify the mispredictions into three categories. The first category
included cases where the lane change was performed very slowly, that is, with relatively low
lateral velocity. By artificially multiplying the lateral velocity by a factor of two or even
four, we observed that the model’s prediction changed accordingly and became correct.
The values of Lane_ID, Lateral speed(U X) and the Distance from the left-most section
of the road (Local X) of such cases are shown at Figure 7.2.

Another category of issues was related to corrupted data. Since this dataset was created
in 2005 and extracted from video recordings, errors are to be expected. The most common
error was the incorrect assignment of vehicles to lanes. For example, in one case a vehicle
was recorded as performing a lane change when its Local X value (the distance of the
vehicle from the left edge of the road) was 15 meters. The vehicle then continued its
trajectory up to a value of 24 without any lane change being annotated, later dropped

to 17, and finally a lane change to the right was registered at 19 meters. In another case
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Figure 7.2. Graphs of three incorrectly categorized lane changes possibly due to low speed.
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shown at Figure 7.3, a vehicle was annotated as making two consecutive right lane changes,
while in both instances its Local X value was around 6.5 meters, without any preceding
lane change to the left.

The final category consisted of cases for which we were unable to identify a clear reason
for the misclassification. Most of the data belonging to this category contained rows with
a sign opposite to what would be expected for the corresponding maneuver, which we

consider may have contributed to the incorrect predictions.
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Figure 7.3. Corrupted Real-World Data

Continuing with the real data and the German Autobahn Dataset, the results were
noticeably better than those of the US Highway 101 Dataset and, in some cases, even
better than the synthetic data. Specifically, the overall accuracy remained high even 1.8
seconds before the maneuver, reaching 75%, while the precision stayed at 80% even at 2.40
seconds before the maneuver.

Based on these results, two conclusions can be drawn. The first is that training machine
learning models with synthetic data and then applying them in real conditions is feasible.
The second is the confirmation that creating a reliable model that performs well globally
is quite challenging and requires a large amount of data. As shown, the same model, in
the same type of environment—highways with long straight sections—but in a different
country with different rules, did not perform equally well in both scenarios.

These findings have broader implications for the field of autonomous driving. Success-
fully training models on synthetic data and transferring them to real-world scenarios opens
avenues for efficient development and testing of predictive systems, reducing the reliance

on costly and time-consuming real-world data collection. Understanding the limitations
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of these models and the conditions under which they perform best can help guide the
development of future autonomous systems, improving the reliability of vehicle behavior

predictions in complex urban settings.

7.1.1 Challenges and Limitations

As expected, the development of this work had some limitations and challenges. One
category of limitations was the experimental configurations that could not be implemented,
either because they fell outside of the scope of this thesis or because they were technically
impossible. For instance, adjusting the PID controller parameters individually for each
vehicle was initially considered, but CARLA only allows modifications to these parameters
collectively across all vehicles. Another intended configuration was the modeling of the
impact of weather and road conditions on vehicle traction. Although different weather and
road states were tested, they did not result in any noticeable changes in vehicle behavior,
and therefore this aspect could not be effectively incorporated.

Another challenge was the reproducibility of the experimental results. During the first
training attempts, no random seed had been set, and while one training run produced
decent results, the next run under the same configuration produced worse performance
due to randomness. This highlighted the importance of controlled initialization when
evaluating model performance.

Another limitation observed was the weakness of CARLA to handle large number of
vehicles, especially at high speeds. Initial simulation runs included 100 vehicles on fairly
large maps, which could accommodate this number. However, increasing the number of
vehicles led to frequent collisions that completely blocked traffic over large areas of the
map. Using 40 vehicles, which we determined to be a reasonable number, did not create
this problem.

A further limitation is the simulation speed. Ideally, we did not want the ratio between
real time and simulation time to be 1 to 1, but the simulation to run faster than real time.
CARLA does not provide a straightforward way to achieve this, and the methods we tested
either had no effect or caused the simulation to fail. While a solution may exist, we did
not pursue it further after several unsuccessful attempts.

Finally, a limitation we encountered was related to our hardware setup. The combi-
nation of an AMD GPU with Windows proved incompatible for machine learning due to
missing drivers, preventing the GPU from functioning as an accelerator. This limitation
prevented us from testing larger and deeper architectures that required more resources and

also restricted the parallel use of the system for long periods of time.

7.2 Future Work and Extensions

The present work is open to several roads for future research, and we outline here the
most noteworthy.
The first to consider would be the intergration of the developed model directly into

the CARLA simulator, enabling real-time predictions for surrounding vehicles relative to
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the ego vehicle. This extension would require a better understanding of CARLA’s internal
processes to allow the parallel execution of additional tasks, as well as the development
of an intergrated data pipeline. Instead of relying on two external Python scripts, the
selected features could be passed directly to the model in real time. In addition, deploying
the system on hardware equipped with NVIDIA GPUs could allow faster inference times
and make the approach more suitable for real-world scenarios.

Another extension would be the modification of the Traffic Manager in order to achieve
bigger variety of vehicle driving behavior. By changing the parameters of the PID con-
trollers, it would be possible to simulate vehicles with different lane change strategies, with
some being more aggressive with abrupt maneuvers, while others do smoother and more
gradual transitions. Having more behavioral diversity could lead to more realistic synthetic
datasets and, consequently, to models with stronger generalization capabilities.

Beyond maneuver classification, future work could also include trajectory prediction,
as reviewed in Section 2.1. This would be training models to predict the exact trajectory
a vehicle is likely to follow. Doing such research with synthetic data and then testing
them with real-world datasets would represent an important step toward bridging the gap
between simulation and reality.

Finally, an interesting work would be an in-depth comparative study of different model
architecture proposed in the literature, tested with datasets generated with CARLA. This
kind of work could provide insights into which approaches are best suited for learning from

synthetic driving data, and guide the design of more robust predictive models.
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Appendix

Source Code

The complete source code used in this thesis, including the dataset preprocessing
pipeline and the machine learning models, is available in a public GitHub repository. The
repository contains scripts for data preprocessing and windowing of time-series data, and
training and evaluation of LSTM-based models for vehicle behavior prediction.

The code can be accessed at: https://github.com/FoxyStent /carla-lane-change-prediction
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FSD
V2v
LSTM
GRU
RMS
CNN
MLP
RNN
ML
Al
ANN
ReLU
MSE
MAE
mmap

SGD
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Full Self-Driving
Vehicle-to-Vehicle

Long Short-Term Memory
Gated Reccurent Unit
Root Mean Square
Convolutional Neural Network
Multi-Layer Perceptron
Recurrent Neural Network
Machine Learning
Artificial Intelligence
Artificial Neural Network
Rectified Linear Unit
Mean Squared Error
Mean Absolut Error
Memory-Mapped

Stochastic Gradient Descent
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