§‘e

NATIONAL TECHNICAL UNIVERSITY OF ATHENS
ScHOOL OF ELECTRICAL AND COMPUTER ENGINEERING
DivisioN OF COMPUTER SCIENCE

B
5
Bl

:‘:\";‘
7 npoMmHOEV
=
nVpPPopos

\

s

Accelerating SpMM for Multi-head Self-Attention:

Kernel-Level Design and Performance Analysis

DIPLOMA THESIS

of

ANASTASIOS LAGOS

Supervisor: Georgios Goumas
Professor, NTUA

Athens, November 2025

National Technical University of Athens
School of Electrical and Computer Engineering

Division of Computer Science

Accelerating SpMM for Multi-head Self-Attention:

Kernel-Level Design and Performance Analysis

DIPLOMA THESIS
of

ANASTASIOS LAGOS

Supervisor: Georgios Goumas
Professor, NTUA

Approved by the examination committee on 3rd November 2025.

(Signature) (Signature) (Signature)
Georgios Goumas Nectarios Koziris Dionisios Pnevmatikatos
Professor, NTUA Professor, NTUA Professor, NTUA

Athens, November 2025

National Technical University of Athens

School of Electrical and Computer Engineering

Division of Computer Science

Copyright (© — All rights reserved.
Anastasios Lagos, 2025.

The copying, storage and distribution of this diploma thesis, exall or part of it, is pro-
hibited for commercial purposes. Reprinting, storage and distribution for non - profit,
educational or of a research nature is allowed, provided that the source is indicated and

that this message is retained.

The content of this thesis does not necessarily reflect the views of the Department, the

Supervisor, or the committee that approved it.

DISCLAIMER ON ACADEMIC ETHICS AND INTELLECTUAL PROP-
ERTY RIGHTS

Being fully aware of the implications of copyright laws, I expressly state that this diploma
thesis, as well as the electronic files and source codes developed or modified in the course
of this thesis, are solely the product of my personal work and do not infringe any rights of
intellectual property, personality and personal data of third parties, do not contain work
/ contributions of third parties for which the permission of the authors / beneficiaries is
required and are not a product of partial or complete plagiarism, while the sources used
are limited to the bibliographic references only and meet the rules of scientific citing. The
points where I have used ideas, text, files and / or sources of other authors are clearly
mentioned in the text with the appropriate citation and the relevant complete reference is
included in the bibliographic references section. I fully, individually and personally under-
take all legal and administrative consequences that may arise in the event that it is proven,
in the course of time, that this thesis or part of it does not belong to me because it is a

product of plagiarism.

(Signature)

Anastasios Lagos,
Graduate of School of
Electrical and Computer
Engineering, National
Technical University of

Athens
14th October 2025

Hepiindn

To Meydha M'hwoowxd Movtéha Bacilovtar otny opyttextovix Transformer yio vor cUA-
AeZouv oyéoelc YeTadl Twv AéZewy elobdou. Koo to péyedoc twv wovtéhmy xou Tor uixn e
oxohoutiag elc6doL aUEdvovTal, 1) SUVATOTNTA ATOTEAECUUTIXNNC ETedepyaaiog YiveETol OhOEval
X0l TO ONUAVTIXOC TORAYOVTOS Yiot TNV OLUTHENOT TNS ENBOONE XAk TNG EMEXTACYLOTNTOG.

Apouée (Sparse) mpooeyyioeic Tou unyoavioyot attention twv Transformers éyouv mpoto-
Vel yia v eniAuon tou mpoPAfuatog tohuthoxdtnTog. Hapd tnv Yewpntix Toug arodoTixdTnTa
, OUY VA BEV EMTUYYEVOUV TOUC OVOHUEVOUEVOUS YPOVOUSC OROXATIRWONS GE GUYYPOVES XAPTES
YEAUPIXWY, AOYW TWV YURUXTNRIOTIXMY TOU ELCAYEL 1) OQOLOTNTO TWV TUVAXWY TOU UETEYOUV
oTOV LTOAOYIGUO Tou attention.

H epyaota autr otoyevel otnv avdiuor cuvidey onueiwy cuudgdenong Tou TupHva TOA-
Aamhactoopol apotol Tivoxa Ye Tivoxa, xou emaxohoudn Behtiotomnoinor tou, cuyxplivovtag
TNV anédoct Tou Ye TNV avtictolyn viomoinon tng BBAodrxne cuSPARSE tng NVIDIA.
Ye peoola apoudtnTa, 1 amodotxdtepn vAomoinon mpooépel €ng xou 57% emTdyLVOT), EVEH
oe umhéc apondtntes emPpadivetar xatd 49%. Evag evahhoxtixde oyedlaopdc Tou muprva,
emtayUVEToL o€ LPNAéC apoudtnTec émc xar 64% oe oyéon pe tnv cuSPARSE, od)\d emi-
Beadlveton xatd 250% o yaunhéc. LuUTepodveTon OTL, 1) AVTLUETMTLOT SLUPOPETIXMY CUVOALY
TOUEUUETEWY WS OLOXELTA TEOPAAUATO GYEOLACUOL ATOOEXYVUETAL TO ATOBOTIXY|, TEOGPEPOVTAS

onuavTid %épdn entdoorc évavtt pag eviadoc Aborne.t

Agleic-KAeot&

Nevpwvixd Alxtuo, Bahd Mdidnorn, Evioyutiy Méainor, Meydha I'hwooixd Movtéla,
[MopdrAnha Trohoylotnd Luothuata, ITodhamiaciaouos Aparod Ilivaxa pe Iivona, ITuprvec,
Metaoynuatiotée, Apor| [lpocoyy

MInyaioc xOBixac: https://github.com/gosutek /sparse-attention

https://github.com/gosutek/sparse-attention

Abstract

Large Language Models (LLMs) rely on the Transformer architecture to capture de-
pendencies on input tokens. As model sizes and input contexts continue to grow, the
ability to efficiently handle extended sequences becomes increasingly critical to maintain-
ing performance and scalability. However, the computational and memory demands of
the standard attention mechanism increase by an order of O(n?) with respect to sequence
length, impeding models from scaling further. A proposed solution, the sparse approxima-
tion of attention, aims to reduce the overall complexity while maintaining model quality.
However, when implemented on accelerator platforms such as GPUs, sparse attention im-
plementations often showcase a performance degradation caused by the emergent properties
of sparsity.

This work aims to analyze common bottlenecks in the implementation details of the
Sparse matrix-Matrix Multiplication (SpMM) kernel and its consequent optimization, com-
paring performance to NVIDIA’s cuSPARSE library. The best kernel at low sparsity
achieves a 57% speedup but for high sparsities, demonstrates a 49% slowdown. A different
kernel design achieves a 64% speedup but for low sparsities, a 250% slowdown. Thus, the
study concludes that tailoring kernel designs to the specific parameters of each problem

achieves significantly better results than applying a catch-all approach.?

Keywords

Neural Networks, Deep Learning, Reinforcement Learning, Large Language Models,
Transformers, Multi-Head Self-Attention, Sparse Attention, Sparse Matrix—Matrix Multi-
plication, Parallel Computing Systems, GPU Programming, Kernels, CUDA, Optimization

2Source code on: https://github.com /gosutek /sparse-attention

3

https://github.com/gosutek/sparse-attention

to my family

Acknowledgements

Immense gratitude to my supervising professor Georgios Goumas for the opportunity to
work on such a project, uncovering a passion for low-level programming, parallel computing
and optimization, I never realized I had, in the process. The successful completion of this
work is, in part, due to the continuous endeavour of loanna Tasou to provide valuable
support whenever that was required and also plenty of breathing room to pursue my
academical interests.

Last but not least, I want to thank my parents for the material and immaterial support
they have unwaveringly provided throughout this adventure and of course my brothers, for

their tenacious belief in me from start to finish.

Athens, November 2025

Anastasios Lagos

Table of Contents

Abstract

Acknowledgements

1 Extevic nepilndn ota EAAnvixd

2 Introduction

3 Background

3.1

3.2
3.3

Graphics Processing Unit L o
3.1.1 Single Instruction Multiple Threads (SIMT)
3.1.2 Memory hierarchy
Standard Multi-head Self-Attention
Sparse Attention
3.3.1 Sparse matrix-Matrix Multiplication
3.3.2 General Sparse Formats
3.3.3 Bounded by Memory o

4 Sparse Matrix Multiplication Kernels

4.1

4.2

4.3

4.4

4.5
4.6

Kernel 1: Element-wise work distribution with shared memory
4.1.1 Coalesced memory access
4.1.2 Analyzing Memory Accesses in our Kernel
Kernel 2: Nonzero-wise work distribution with coalesced memory access
4.2.1 Non-constant number of non-zeros per column.
4.2.2 Partialresults
Kernel 3: Minimizing shared memory usage and restoring L1 cache func-
tionality
Kernel 4: Vectorized Memory Access with Adaptive Nonzero Tiling
4.4.1 Vector Data Types and Alignment
4.4.2 Adaptive Block Tiling
Kernel 5: Column Tiling w/ Nonzero-wise work distribution

Kernel 6: Block Tiling w/ Element-wise work distribution

5 Experimental Evaluation

5.1
5.2
9.3

Hardware Specifications L
Input Data
Benchmarks
5.3.1 cuSPARSE

17

21

23
23
23
24
25
25
25
26
26

29
29
30
31
32
32
33

34
35
35
36
38
39

TABLE OF CONTENTS

5.3.2 Profiler metrics
5.3.3 Full Benchmarks

6 Future Work

7 Conclusion

A Proofs . . .

Bibliography

List of Abbreviations

10

51

53

o4

56

57

List of Figures

3.1
3.2

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

4.10

4.11

4.12

4.13

Simple overview of how the GPU works

Memory hierarchy. Base: Larger but slower. Top: Smaller but faster. . .

A thread block (purple) over a row of C. Each thread calculates an element
of C. The corresponding row of A is reused and consequently loaded into
shared memory. L L
Element-wise w/ Shared memory against cuSPARSE. Left Variable
sparsity at 4K input sequence length. Right Variable sequence length
@50% sparsity. X-Axis: Extreme sparsities for small x, dense matrices
for high x.
Uncoalesced Memory Access: A single LDG.E instruction will be ex-
ecuted by all non-dashed threads, reading in a strided pattern. Assume
eight threads per warp. L
Coalesced Memory Access: Here a single LDG. E instruction will service
all the warps in the thread. L.
Each block (colored) is tasked with computing a single element of the re-
sulting matrix C'. This allows its threads to access contiguous memory in
the meta arrays of CSC.
Thread-strided loop: Red threads will get reused while the grey ones
will stall. . . . oo
Nonzero-wise distro w/ coalesced memory access: Left. Variable
sparsity at 4K input sequence length.Right. Variable sequence length
@50% sparsity.o
No shared memory: Left. Variable sparsity at 4K input sequence
length. Right. Variable sequence length @50% sparsity.
gridDim.z thread blocks (colored) compute an element of C.
n dense matrices of size m x k, where m = 2" : v € Nand k = N, where N
the input sequence length. Following that, the sparse matrix’s meta arrays,
col_ptr, row _idz, val. Finally, the output C; to Cy,.
Let mnz be the non-zeros of a column. Blocks (colored) are assigned
v/gridDim vectorized loads, where v = nnz/4 and gridDim the grid di-
mension. Any remainder is handled with scalar loads by the first block of
that column group (blockldx.z =0)
Vectorized w/ Adaptive block tiling: Left. Variable sparsity at 4K
sequence length. Right. Variable sequence length @50% sparsity.
A block (colored) is assigned BN columns

11

24

LIST OF FIGURES

4.14

4.15

4.16

Column tiling: Left. Variable sparsity at 4K sequence length. Right.
Variable sequence length @50% sparsity.
Threads, grouped by block (colored) are assigned a BK x BN grid of
elements to process, however threads of warp (numbered) read distant lo-
cations in memory (numbered). L
Block tiling: Left. Variable sparsity at 4K sequence length. Right.
Variable sequence length @50% sparsity.

12

List of Images

13

List of Tables

5.1

5.2

5.3

5.4

9.5

Time in milliseconds and GFLOPs/s for all kernels at input sequence N =

128. Underlined values are best for that sparsity. 45
Time in milliseconds and GFLOPs/s for all kernels at input sequence N =
256. Underlined values are best for that sparsity. 46
Time in milliseconds and GFLOPs/s for all kernels at input sequence N =
512. Underlined values are best for that sparsity. 47
Time in milliseconds and GFLOPs/s for all kernels at input sequence N =
1024. Underlined values are best for that sparsity. 48
Time in milliseconds and GFLOPs/s for all kernels at input sequence N =
4096. Underlined values are best for that sparsity. 49

15

1 Extevrg nepiindn oto EAAnvixd

To Meydha T'hwoowd Movtéha Paotloviar oty apyttextovix) Transformer [1], tng
omolag, o xVploc unyeaviopoc, Multi-Head Self-Attention (MHSA) emtpénet tn poviehonoinon
oyéoenwy UeTallh TV Aéewv elo6dou. Kodng ta yeyedn poviéhou xou tor uixrn oxoroudiog
£10680L aEAvovTaL, 1) BUVATOTNTA aToTEAECUATIXAC ETeEepyaciog Tng El06dou YiveTon xployog
TEAYOVTAS Yl TN BlaTAENON TG00 TNG XAUOXWOWOTNTAS GG XoL TN amodoong. (loTtdoo,
TUTIXES UAOTIOLNGELS Tou Unyaviodol attention eygovilouy tetporywvixr) UTOAOYLOTIXY) TOAU-
TAOXOTNTA Xoi TOAUTAOXOTNT UVAUNG citedao2022flashattention oe oyéon ye to uAxog g
oxohoudiac eloddou. 2, 3|

Apaiéc mpooeyyloeic Tou attention €youv mpotadel wg Abom yio Ty eniluoT Tou Tpof-
Muotog ToAumhoxotntag. 2, 4] Autéc ot uédodol [5, 6] YEWDdVOUY TO GUVORIXG UTOROYIOTIXG
x6670¢, drtnpdvTag Tapdhhnha ouyxplown axpiBeto povtéhou. |7] Moupd tny Yewpntn Toug
ATOBOTIXOTNTA, Ol UNyoviopol sparse attention cuyvd Bev ETLTUYYAVOLY TOUC OVOUEVOUEVOUS
xpdvouc ohoxhipwong [8] oe olyypoves xdptec ypapixwy (GPU). Mepiéc and tic avtieg ei-
VOIL 1) AVIGOPEOTIN XATAVOUT| PORTOU EpYastag oTar ViUATo eNEEepYasiog oAAG XoL 1) AXUVOVLOTY
TEOCPBACT) GTNY UVAUT], YOEOXTNELOTIXA TOU BNULOUEYOUVTOL AGY® TNS 0EOLOTNTOC.

Yuvenwg, 1 anoteheouatiny vhomoinot Tou tupYva Sparse Matrix—Matrix Multiplication
(SPMM) i xevtpixi hertoupyia oto Sparse Attention , nopopével xpioyo avTixeluevo épe-
uvoc. AUt 1) EpYACIa APOCLOVETOL GTNY AETTOUERT) AVIAUGT] TNG amddoong Tne Tedine SpMM,
OTory UTY) VAOTIOLELTAL OE XAPTEC Ypapixy. Ipoyuoatonoiel avdntugn nuprvewy oe CUDA, xou
Toug ouYxplvel ue TNy avtioTolyn vhonoinon g Biiiodixne cuSPARSE tng NVIDIA. Kdde
TUEAVOC BEATIOVEL G TadLXE TTUYES TNG EXTEAEONC, OTIWS 1) CUVEVWON UVAUNG, 1) Xehon (1 un)
shared memory, warp-level mpoypauuaTIouoS, xou 1 XUTUVOUT| EQYACIUC OE U1 OUOLOUOPYA
TEOTUTIAL 0P TN TAS.

O xdptec ypapxdv (GPU) eivar) mAéov dnuogihfc emhoy T 660 avapopd Tov UTOAOYIOUS
Tou attention Adyw NG xavOTNTAC TNG Vo exTehel yihddeg viuata mapdhinha. Avtideta, o
xevtpwocg enelepyoothic (CPU) éyel Behtiotonomiel yio uixpd aprdud vnudtov xo oetplaxy
extéleon. H GPU opyaviveton oe Streaming Multiprocessors (SMs), to onola nepthoufd-
VOUV TOAATAOUE TURHVES ol LOVADES Olayelptone tng uviung. Ta vAuata opadonolobvton 6e
blocks, ta onola oynuotiCouv éva grid extéheong. Kdde SM extelel opddeg tov 32 vudtwy,
To Aeydpevo warps, ta onolo exteholv Ty (Blor VoM Tautdypova (povtélo Single Instruc-
tion Multiple Threads). ‘Otav ta viuata evéc warp anoxAivouv exTEAOVTIC OLUPOPETIXES
evtohéq, epgavileton warp divergence, mou peidvel Ty anddoor. H extéleon npoyuotonotei-
ot péow Tuprivwyv (kernels) mou opilouv mAéyuata vpdtomv xou blocks. [9]

H GPU Godéter mohueninedn tepopyio uvAung yia looppomior petadd oy dtntog xon ebpoug
Covne:

e Global Memory: u{miol ebpoug {odvng oArd umAnc xaduotépnonc.

17

Chapter 1. Exteviric nepiindmn oto EAXAnvixd

e L2 Cache: xowdypenotn yio 6ha ta SMs.
e L1 Cache / Shared Memory: tayeio pvAun avéd block.
e Registers: biwtixn uviun xdde viuatog.

To povtého attention petaoynuotiCer ta daviouata eloédou oe queries (Q), keys (K) xou

values (V) péon ypapuxdv TeoBokoy.

Qi =XWZ e RV (1.1)
K; =XW[¢ RV*d (1.2)
Vi =XW" e RV*d (1.3)

H Boowr mpdln attention etvou: [1, 8]

S=QK' e RN = A =softmax(S) e RVY, 0O =AV ¢ RV*% (1.4)

O €00t and xdde “xeparry’” (head) cuvevdvovton xon TpoBEAlovIaL X VEOL GE YEUUULXT
woppn. H cuvdptnomn softmax xavovixonolel Ti¢ TWES TwV scores WOTE VoL Tapdy el THavOTIXES
oTtdiueg BapbTnTog.

H npd&n SpMM (Sparse matrix-Matrix Multiplication) anotekel 1o Baoixbd utoloylotind
poptio tou Multi-head Self-Attention (MHSA):

C=aA-B+5C

omou 1o A elvon muxvog mivaxoc xou 0 B apardg. Ou apouéc TEdEels YELOVOUV T1) Yenol-
HoTolNGoT UTOAOYIG TIXWY TOPWY EEUTING UN XAVOVIXWY TROCTEAACEWY GTN UVAUT, Xotdio THV-
Tag Tov SpMM e Aettovpylor meploplopévn and T uviun.

IMopoustalovton Sidpopes Loppéc anovhxeuonc:

e COO (Coordinate List): oamoUfixeuon cuVIETAYUEVLY xoL TGV xdde un undevixol

oTolyetou.
e CSR (Compressed Sparse Row): cuunieouévn popen xatd ypoupéc.
e CSC (Compressed Sparse Column): cuumeouévn Lop@n xatd oTHAEC.

ponyuévee popypéc 6mwe BCSR [10], ELLPACK, DIA, CSF ctoyelbouv otn Behtiwon
NS EMAVAYENOLLOTOINoNG BEBOUEVKV GE LTOAOYIGTIXG UTAOX.

Trohoyiletow 10 Pewpnund dvw dplo emdoéoEwy e Bdorn v unoloyiotxn woyd FP32
(44.10 TFLOPs/s) xou 10 €bpog uviune (672.3 GB/s) tng GPU. Ta anoteléoporto detyvouv
OTL 0 TOMTAACLAOUOS AEOLWY TVAXWY TEPLOPIlEToL XUPlwE amd TG TPOOTEAICELS UVAUNG, UE
TOV YPOVO UETAPORAS OedOPEVWY Vo UTERBAIVEL TOV YEOVO LUTOAOYIOUOU Tepinou xotd 1.3X,

prévovtac €nc xou 27X o UPNAS enineda apardtnToc (98%).

18

Oa ToPoLCLAcw EEL BLUPORETIXOVE TUPTIVES Yol ToV uTohoyloud Tou Ilolhamiaciacuol
Apono0 Ilivaxa pe Iivoxo (SpMM), avolbovtag AETTOUERMS TOV OYEBLICUS, Tl YaUpUXTNELO-
TIXd xaL TV an6doot| Touc. O mpwTtog muprvag yenowonotel shared memory yio vo gépel
Ta BEQOUEVOL TIO XOVTE GTOUC TMUPHVES UTOAOYLOUOU, UELOVOVTOC TIC UETAPORES BEBOUEVLV,
oAAG 8oy EL omd U cLVEVKUEVES (uncoalesced) TEOOTEAGOELS UVAUNG XOU TIERLTTH XATAVEAWOT
bandwidth. O deltepog Tuprvac avadLOVEUEL TO €070 aVd U UNOEVIXO GTOLYE(D, ETLTUY Y EVOV-
TAUC GUVEVOUEVY TeOGBaoT GTN VAN %ot XUAUTERT eXETdAAeUoT) Twv cache av xau ewodyel
VEEC TIPOXATOELS OTIOC 1) UY) OULOLOUORYT] XATOVOUY| U1 UNOEVIXWY 0VE GTHAT) XoUL 1) VY XT) CUY-
Yeoviouol petalld vrudtonv. O tpltog muprvag elaytotonolel tn yeron shared memory yio
VoL OmoXATao THOEL TN Aettoupyixotnta tne L1 cache, yewdvovtog) onotdhn ebpoug {odvng
xou Bedtidvovtag Ty enidoon oe udhniéc apadttes. O TéTapTog elodyel SlavuouoTixés (vec-
torized) mpoonehdoeic pviune xou Tpoocuppoc x| xatavour| (adaptive tiling), oAAd To uxpd
uéyedoc tTwv unte®yv neptoplletl ta 0@éAn. O méunTtog alloTolel XATovour) GTNAGY WOTE xdUE
block vo ene€epydletor ToMamAé GTARES, PEATIOVOVTOC TNV ETOVIY NOLLOTIOMOT BEBOUEVELV
xou TNy anodoon oe Lhniéc apandotnteg. Téhog, o éxtog muprvag epapuolel xotovour TOTou
block tiling oe otouyeioxd eninedo, eaTIELOVTAC TAUTOYEOVO OT SLATHENON TNS AELTOLRYIXOTT-
Tag TV cache xou 0N pelwor oTATIANG UVAUNS.

Méoa and UG TNUATING TELRAUTA, 1) AVIAUCT) ATOXUADTTEL KOS OLUPORETING CYEBLIC TIXY
trade-offs ennpedlouv 0 cuvolur| por xau Tig emiteuyVeioeg floating-point npdéelg avd deutepdrenTto
(FLOPs). Ta euncipixd anotehéopota Selyvouv OTL, DIUQOpETIX OYEBLOTIX TPOCEYYLON
OVIAOYOL UE TIC TUPAUETEOUS Yo TO EMIMESO TNE ApalOTNTAS, 00NYEL OE ONUAVTIXG XUAUTEQY
amOTEAECUUTA OE GUYXQELOT UE Lol eViodar, Yevixr) ADOT. DUYXEXPWEVA, UEYIOTY EMITAYUVOT)
57% emtedydnxe oe 50% opoudtnta, eved Evog EVOAAXTIXOS oYEDOUOS TUpH VoL TETUYE €wC
xou 64% emtdyuvon oe 98% apoubdtnta oe oyéon ue v cuSPARSE. Ou petproeic autéc,
umoypoupiCouy TNV onuacior TPOCUPUOYNG TWY TURHVMY CTNV XUTOUVOUT| AEoLOTNTIC Xol TNV

mavotnto onuavtxhc Pertinong oty anddocr Tou unyovicpo attention.

19

2 Introduction

The Transformer architecture [1] has become the foundation of modern deep learning
models in natural language processing [11| and image generation [12]. At the core of
the Transformer lies the Multi-Head Self-Attention (MHSA) mechanism, which enables
the model to capture long-range dependencies and contextual relationships between input
tokens. As model sizes and sequence lengths continue to increase, the ability to efficiently
process extended input contexts becomes a crucial factor in sustaining both scalability and
performance. However, the complexity of the standard MHSA scales quadratically 8] with
input sequence length, both in terms of computation and memory, which severely limits
its applicability to long sequences [2, 4].

To address this issue, numerous approaches have been proposed to introduce sparsity
into the attention mechanism |2, 3|, thereby reducing the number of pairwise interactions
computed during self-attention. Sparse attention models [5, 6], exploit structured sparsity
patterns to approximate full attention while maintaining comparable accuracy [7|. These
sparse variants significantly reduce computational requirements, making large-scale Trans-
former models more efficient and scalable. Despite their theoretical efficiency, sparse atten-
tion mechanisms often fail to achieve expected speedups on modern GPU accelerators due
to the irregular memory access patterns and workload imbalance introduced by sparsity.
Consequently, efficient Sparse Matrix—Matrix Multiplication (SpMM) implementations, an
operation central to sparse attention, remain a critical research focus.

In this work, I perform an in-depth analysis of the performance bottlenecks inherent in
GPU-based SpMM kernels using general sparse formats. Multiple CUDA kernel variants
are developed and benchmarked against NVIDIA’s cuSPARSE library to evaluate perfor-
mance across a range of sparsity levels. Each kernel incrementally refines aspects of GPU
execution, including memory coalescing, shared memory utilization, warp-level scheduling,
and work distribution across non-uniform sparsity patterns. Through experimentation,
the analysis reveals how different design trade-offs impact overall throughput and achieved
floating-point operations per second (FLOPs).

Empirical results demonstrate that the proposed kernels outperform NVIDIA’s cuS-
PARSE implementation at both low and high sparsity regimes. Specifically, a maximum
speedup of 57% was achieved at low sparsities but a 49% slowdown at higher sparsities,
while an alternative kernel design achieved up to 64% speedup at extreme sparsities and
a 250% slowdown at dense-like sparsities. These findings underscore the importance of
adapting kernel execution strategies to the sparsity distribution of input matrices and
highlight the potential for significant efficiency gains in sparse attention computation on
GPU platforms.

21

3 Background

I provide some background on fundamental hardware details of the Graphics Processing
Unit (GPU) and an overview of Standard Multi-head Self-Attention. I also describe the
Sparse matrix-Matrix multiplication, the prevalent operation in attention computation and

some general sparse formats (GSFs).

3.1 Graphics Processing Unit

The Graphics Processing Unit (GPU) emerged as a dominant accelerator platform for
computing attention scores, owning to its ability to launch and execute thousand of threads
(sequences of operation) in parallel. Designed with different goals in mind, the Central
Processing Unit (CPU) is optimized for low-latency, single-thread performance and com-
plex control logic (e.g., branch predictors and speculative execution) but can only launch a
few tens of concurrent threads. Whereas the GPU sacrifices complex control mechanisms,
it comprensates with substantially higher throughput, effectively hiding single-thread la-
tency through massive parallel execution [9]. The GPU architecture is organized around
a scalable array of multithreaded Streaming Multiprocessors (SMs). Each SM contains
multiple cores capable of executing arithmetic and logic instructions, along with special
units for memory and scheduling management. At a higher level of abstraction, threads are
organized into blocks, which are distributed across the available SMs for execution, while

multiple blocks collective compose a grid, corresponding to a single execution context.

3.1.1 Single Instruction Multiple Threads (SIMT)

When an SM is given a block of threads to process, it forms groups of 32 (typically)
threads called warps which serve as the fundamental unit for thread scheduling and exe-
cution. Warps are then enumerated in a static way, given increasing thread IDs and dis-
patched to the scheduler for execution. The Single Instruction Mutliple Threads (SIMT)
model of execution, dictates that all threads of the same warp will execute the same instruc-
tion!. From this paradigm arises an important performance consideration: when threads
of the same warp attempt to execute different instructions, warp divergence occurs and are
executed in sequence. Warp divergence can significantly reduce performance and is a key
factor to understand in order to achieve full utilization of the GPU.

To enable this massive parallelism, one or more special functions, called kernels, can be
launched by the CPU, defining a grid of blocks of threads. The blocks are then distributed
to SMs and follow the partition, scheduling and execution process discussed previously
(Figure 3.1).

"Modern GPUs support Independent Thread Scheduling, allowing threads of different warps to execute
that same instruction.

23

Chapter 3. Background

CPU GPU
] Blocks
Warps Warp Computq SM
Schedul Cores

Liatinch pargms

Kernel

Ninnn

BEEE

EEEEIEEEEIEEEE

Figure 3.1. Simple overview of how the GPU works

3.1.2 Memory hierarchy

The memory hierarchy in a GPU is heterogeneous, designed to balance speed, scope and
bandwidth across different levels of storage. Understanding this hierarchy and designing
computations to work with it is crucial for achieving high performance, as memory access
often represents the primary bottleneck in many GPU workloads due to its relatively high
latency compared to compute.

Primary memory types used in this work:

e Global Memory: Device-level high-bandwidth memory (HBM or GDDR), accessi-
ble by all threads. High latency compared to on-chip memory.

e L2 Cache: On-chip cache shared across all SMs, serving as an intermediate buffer

for global memory accesses. Provides moderate latency.

e L1 Cache / Shared Memory: On-chip memory with block-level scope, shared
among threads within a block. Shared memory is allocated on the L1 cache, serving

as a user-managed cache.

e Registers: Private to each thread, providing the fastest storage.

Reg

SMEM (L1)

L2 Cache

GMEM (Device Memory)

Figure 3.2. Memory hierarchy. Base: Larger but slower. Top: Smaller but faster.

24

3.2 Standard Multi-head Self-Attention

3.2 Standard Multi-head Self-Attention

[1, 8] Given embeddings matrix X € RV*4 where N the sequence length, d the head
dimension, and h learned linear projections VViQ, WiK, VVZ-V, WO e R4 where 0 <i < h
and h the number of heads, the transformer network linearly projects the embeddings

vectors of the input sequence to queries, keys and values:

Qi =XW? e RVXd (3.1)
K; =XWX ¢ RV*4 (3.2)
Vi =XW" e RV*d (3.3)

Each set of {Q;, K;,V;} (h in total), is used in the attention operation, with the exe-

cution context constituting a head. The attention operation computes the following:

S=QK' e RN = A =softmax(S) € RV*¥, O = AV ¢ RV*d (3.4)

where d = d,,,/h, d,, is the model dimension and softmax is applied row-wise. Note
that, typically, a scaling factor of % and optional mask is applied to S. Finally, each
head’s attention output O; is concatenated column-wise resulting in a N x d,, matrix and

then linearly projected back into usable output:
Concat(heady, . . ., head,)W©°
Softmax [13] is defined as the function:

o RE - (0,D)K

where K > 1, takes a tuple z = (21,...,2K) € RX and computes each component of vector
o(z) € (0,1)X with
e*
o(2)i =%
> €%
j=1

3.3 Sparse Attention

3.3.1 Sparse matrix-Matrix Multiplication

[9] Sparse matrix-Matrix Multiplication computes the following 2:

C=aA-B+pC

2Standard implementations of the SpMM kernel compute C' = aAB + BC where A is sparse and B is
dense. Kernel equivalence proof in Appendix A

25

Chapter 3. Background

e A is a dense matrix of size m x k
e B is a sparse matrix of size k X n
e (is a dense matrix of size m xn
e «, [are scalar

For the remainder of this work, o = 1 and 8 = 0.
As shown in Equations 3.1, 3.2, 3.3 and 3.4, SpMM represents the key computational
workload in MHSA. Sparsity induces irregular memory accesses, which hinder throughput

and make SpMM the main performance-limiting factor on GPU implementations.

3.3.2 General Sparse Formats

Given the importance of memory for GPU performance and the inefficient access pat-

tern in sparse attention, how matrices are stored becomes critical:

e Coordinate List (COO). Keeps a coordinate and value structure (row, column, value)
for each non-zero, packed in list. The leading dimension is controlled by the ordering
of these vectors. Sorting them by row first makes the rows as the leading dimension

and vice versa.

o Compressed Sparse Row (CSR). Similar to a row-major layout in dense matrices
where rows are the leading dimension, the compressed sparse row (CSR) format
focuses on storing positional information of the non-zeros. It achieves this through
the use of three arrays, row ptr, col idr and val. The last two, store the column
indices and values of the non-zeros, respectively, traversed in a row-major fashion.
The row ptr array stores a prefix sum of the number of non-zeros of each row. Hence,
we can retrieve the number of non-zeros of row r by computing row ptr[r + 1] —
row_ptr[r] and their respective indices in col idx and wval by iterating the range

[row ptr(r],row_ptrr + 1]).

e Compressed Sparse Column (CSC). Equivalent to CSR but with the leading dimen-
sion being the column instead. The metadata arrays are typically called col ptr,

row_idr and val.

Quite a few GSFs (BCSR [10], ELLPACK, DIA, CSF) and custom sparse formats
[14, 8, 15] have been proposed, it is noted that most of them exploit the data reusability

that emerges from matrix multiplication in a block of elements.

3.3.3 Bounded by Memory

Here I provide a theoretical upper bound for compute and memory time, as bounded by
the theoretical FP32 compute and memory bandwidth of the GPU used for benchmarking

this work3. For each row of matrix A we perform one multiplication and one addition with

3Full specifications in Chapter 5. Experimental Evaluation.

26

3.3.3 Bounded by Memory

each non-zero element of sparse matrix B. Modern hardware fuse these two operations into
one, called Fused Multiply Add (FMA). However, theoretical FLOP bound calculations
have both operations contribute. Therefore, total FLOPs for a Sparse matrix-Matrix
Multiplication are calculated as:

m X nnz X 2

The matrix of the input data used in this work are of shape (512 x 512). At 50% sparsity,
on average, we have a total of 130K non-zeros per matrix. Typical m dimensions range,

as powers of two, from 512 up to 16 K. GPT-2 uses 1K for input sequence length:
1024 x 131,000 x 2 ~ 268.288 MFLOPs

In regards to memory transactions, we read the input and store the output. Dense FP32

matrix A is represented with:
1024 x 512 x 4 =~ 2.09 MB
Sparse matrix B in CSC format takes up:
(2xnnz+n+1)x4~1.05 MB

In total ~ 3.14 MB. The resulting matrix is stored back in global memory, represented as
a total of:
1024 x 512 x 4 =~ 2.09 MB

Therefore, the total read and writes total up to 5.24 MB. The GPU’s compute and memory
bandwidth are as follows: 44.10 TFLOPs/s of FP32 and 672.3 GB/s of memory bandwidth.
The upper bound of compute:

268.288 x 106

1410 x 1012 OU8Hs
The upper bound of memory:
5.24 x 10°
672.3 x 100 0K

That’s ~ 1.3x more memory access time than compute time. This ratio gets even more
disproportionate at higher sparsities. Performing the same calculation at 98% sparsity or
~ 5K mnon-zeros results in ~ 27.3X more memory access. Hence, Sparse matrix-Matrix

Multiplication is a memory bound operation.

27

4 Sparse Matrix Multiplication Kernels

Each section in this chapter presents a distinct Sparse Matrix—Matrix Multiplication
(SpMM) kernel, providing a detailed analysis of its design, characteristics, and differences

compared to its predecessor, along with an overview of its performance.

4.1 Kernel 1: Element-wise work distribution with shared

memory

The main goal of this kernel is to try and bring reusable data closer to the computing
cores by using shared memory, reducing the overall number of memory transactions in the
process. Shared memory’s scope, encompasses all threads in block, i.e. each block has its
personal shared memory space shared amongst all threads in it. Adhering to the main goal,
work is distributed to thread blocks such that data reusability is maximized. In Spmm,
and matrix multiplication in general, multiple computations in the same data occur when
calculating elements of the same row or column of C'. This kernel chooses to distribute the

calculation of C(z, ::), consequently loading row x of A into SMEM.

B (Sparse)

AIowouWI SNONSJIHUOD

A (Dense) threadldx.x Thread block

C blocklIdx.x

contiguous memory

Figure 4.1. A thread block (purple) over a row of C. Fach thread calculates an element
of C. The corresponding row of A is reused and consequently loaded into shared memory.

We distribute a thread block across a row of the result matrix C. Consequently, each
thread is assigned with the computation of an element from that row of the matrixina1:1
scheme. Initially, each thread loads its corresponding element from A into shared memory,
until the whole row is loaded (Figure 4.1). A is in row-major format hence the rows are

the leading dimension, therefore, accessing elements of the same row consecutively means

29

Chapter 4. Sparse Matrix Multiplication Kernels

accessing contiguous memory. On the contrary, accessing elements of the same column
consecutively means accessing discontiguous memory.
As evident from Figure 4.2, performance is many times slower than cuSPARSE’s im-

plementation for low sparsities, but for extreme sparsities > 95% it performs ~ 11% faster.

4K Sequence Length 50% Sparsity
D il S s (A N S -
,,,, Ry TEREESS | Y St
500 » 500 ==
/ _,0’/
/ '__——
4
400 4+ 400 1
1
!
@ ¢
4 300 300 -@- cuSparse
]
=z —#— Naive w/ SMEM
U]
200 4 2001
— - . —a
100 1001
0 - T T T T T 0 T T T T T T
0 10 20 30 40 50 128 256 512 1024 2048 4096
Non-zeros (%) Sequence Length N

Figure 4.2. Element-wise w/ Shared memory against cuSPARSE. Left Variable
sparsity at 4K input sequence length. Right Variable sequence length @50% sparsity. X-
Awxis: Extreme sparsities for small x, dense matrices for high x.

At both sparsities, this kernel suffers from the same memory access problem: The
hardware can not coalesce memory transactions into as few as possible. This hypothesis
is supported by NVIDIA’s proprietary profiler, Nsight Compute which reports 87% ex-
cessive sectors and that warps are stalled for 244 cycles and 243 cycles waiting for the
Global Memory and L1/TEX cache memory instruction queue to empty, respectively. The
term excessive sectors refers to the proportion of global memory transactions that go be-
yond what is strictly necessary for computation. In other words, it quantifies how much
redundant memory is being transferred, indicating wasted bandwidth.

Another critical issue lies in how this kernel addresses the uncertainty of which elements
of row x are required by each sparse column. By disregarding sparsity, it transfers the
entire row from GMEM to SMEM, resulting in unnecessary bandwidth consumption. This
inefficiency will be examined in greater detail in Chapter 4.3. Note that this additional
bandwidth waste, accumulutes with that caused by uncoalesced memory accesses, and the

two sources of inefficiency are independent.

4.1.1 Coalesced memory access

As discussed in Chapter 3.1 NVIDIA GPUs are build upon Streaming Multiprocessors
(SM) which utilize the SIMT architecture (Single Instruction, Multiple Threads). This
enables instruction-level parallelism in a single thread and additionally, thread-level paral-
lelism [9]. When we read (or write) to GMEM in this kernel, the compiler will generate an
LDG.E (or STG.E for stores) instruction. The SIMT architecture allows all active threads
(i.e. threads ready to execute the instruction), regardless of warp, to execute it. However,

the hardware will only access device memory (which is where GMEM resides) via 32-, 64-,

30

4.1.2 Analyzing Memory Accesses in our Kernel

or 128-byte contiguous memory transactions.

We can take advantage of this hardware feature such that we use less memory tran-
scactions overall, by making threads of the same warp load contiguous global memory. As
an example, consider the following: We require of our threads to read 32 single precision
(4 bytes) floating point numbers from memory. Best case: Each one of 32 floats occupies
neighbouring memory spaces, hence, the hardware can now issue a single global memory
read of 128-bytes satisfying the LDG.E instruction of every thread in that warp. Worst
Case: Each one of the 32 floats is separated by 31 unrelated floats. The hardware, in
an effort to service all the threads, will perform 32 memory transactions, each loading

124-bytes of data that goes unsued leading to excessive sectors.

4.1.2 Analyzing Memory Accesses in our Kernel

In this kernel we perform GMEM accesses when:

1. Read the input dense matrix X.

2. Read the compressed sparse matrix components col ptr, row idz, val.

3. Write back the result.

Dense matrix X is in row-major format, i.e. the leading dimension is across the rows.
Each thread reads one element of X and writes it to shared memory and since it is indexed

with threadldx.z, we are indeed accessing contiguous memory per warp.

Let us analyze how we access the sparse matrix. Each thread is assigned with the
computation of an element of C'. Consequently, each thread will have to load the non-zeros
of its corresponding column, and since the sparse matrix is in CSC then each thread will
access contiguous memory. However, this does not take advantage of memory coalescing, as

each thread of a warp must access contiguous memory, and not a single thread (Figure 4.3).

Warp

112|13(4(5|6]|7

\Y

| —
col ptr[1] - col ptr[0] {7”0'(1) idz, val}

Figure 4.3. Uncoalesced Memory Access: A single LDG.FE instruction will be executed
by all non-dashed threads, reading in a strided pattern. Assume eight threads per warp.

Ideally, we want the access pattern demonstrated in Figure 4.4. This pattern ensures
that a single global memory load services all the threads in a warp.

31

Chapter 4. Sparse Matrix Multiplication Kernels

Warp
0.1 234567

{row_idz, val}

Figure 4.4. Coalesced Memory Access: Here a single LDG.E instruction will service

all the warps in the thread.

4.2 Kernel 2: Nonzero-wise work distribution with coalesced

memory access

To achieve full memory coalescing we must change our work distribution pattern. In-
stead of assigning each thread to the computation of an element of C, we assign a thread
block to the computation of an element of C' as shown in Figure 4.5.

B (

Sparse CSC)

= contiguous memory

//////////////////////////////////////

contiguous memory C blockldx.y

Figure 4.5. FEach block (colored) is tasked with computing a single element of the resulting
matriz C. This allows its threads to access contiguous memory in the meta arrays of CSC.

Now, the non-zero values of a column are delegated to the threads of a block. This
allows for coalesced memory access, since they reside in contiguous memory in the form
of the three meta arrays of the CSC sparse format. Such an approach revealed some new

challenges, in turn, providing a deeper look into the nature of sparse matrices:

4.2.1 Non-constant number of non-zeros per column
The previous kernel (Section 4.1), distributed a block to a row of C', with each thread

calculating one element. The number of columns stays constant for a matrix, so we,

32

4.2.2 Partial results

trivially, set the number of threads equal to the number of columns.

With this current approach however, we assign non-zeros non-uniformly. Some blocks
end up with more non-zeros, while some end up with less. As a result, this directly
influences how many non-zeros are assigned per thread. However, the block size (no.
threads per block) is defined at compile time and is constant among all blocks of the grid.
This required a more sophisticated strategy as to how we assign non-zeros to threads, since

a one-to-one scheme would no longer work:

Listing 4.1: Thread-strided loop over nonzeros in a column. Note the iteration step.

for (size t i = col ptr[blockldx.x| + threadldx.x;
i < col_ptr[blockldx.x + 1];
i += blockDim.x) {
acc += x_row_smem|row idx[i]] * val|i];

}

Each thread processes up to LCOl—ptr[iH]%Ol—ptr[i]

dy
is the block dimension. Any remaining elements are handled by reusing the corresponding

J elements of the column, where dp

threads, while the unsused threads (dp — (col ptr[i + 1] —col ptr[i]) mod dp in size) are
temporarily stalled until the last iteration of the loop completes (Figure 4.6).

]
!

col ptr[blockldx.x| col ptr[blockldx.x + 1]

blockDim.x

Figure 4.6. Thread-strided loop: Red threads will get reused while the grey ones will
stall.

4.2.2 Partial results

As evident from Figure 4.6, threads might accumulate more than one pointwise mul-
tiplication. This signals that individual threads will need to synchronize and cooperate
such that partial results are correctly accumulated and the final element of C is stored.
While not inherent to sparsity, this challenge highlights the necessity for warp-level syn-
chronization support by the runtime. CUDA offers warp-level primitives, which guarantee

safe warp-synchronous programming. These intrinsics permit the exchange of a variable

33

Chapter 4. Sparse Matrix Multiplication Kernels

between threads within a warp without use of shared memory. The exchange happens
simultaneously for all active threads within the warp [9]. The current kernel implementa-
tion first performs a warp-wide reduce, accumulating all partial results of individual warps,

then a block-wide reduce to get the final result.

Figure 4.7 shows the performance benchmarks of this kernel against cuSPARSE and
against the previous kernel. We have lost any and all performance leads for higher sparsi-

ties, but gained a speedup at lower sparsities against the previous kernel.

4K Sequence Length 50% Sparsity

PO Sah ikl CE T G— ry R
-- B 500 - "

500 - x

4004+ 4007

/ [R F S S
] ¢ . 300 4 Naive w/ SMEM

-@- cuSparse
—#— NNZ-wise Distro

w
=3
S

GFLOPs/s

200 A

N
=3
)

100 1001

0 10 20 30 40 50 128 256 512 1024 2048 4096
Non-zeros (%) Sequence Length N

Figure 4.7. Nonzero-wise distro w/ coalesced memory access: Left. Variable
sparsity at 4K input sequence length. Right. Variable sequence length @Q50% sparsity.

Results of Figure 4.7 highlight the importance of following different approaches when

it comes to sparsity.

4.3 Kernel 3: Minimizing shared memory usage and restor-

ing L1 cache functionality

As discussed in 3.1 shared memory is an abstraction of the L1 cache and as such,
inefficient usage of shared memory cripples L1 cache functionality, that is, keeping reusable
data on a low latency close-to-the-cores storage. This kernel’s one and only change is the
minimization of shared memory usage with utilization of it remaining only when absolutely

necessary (reduction step).

For 50% sparsity, results are trailing cuSPARSE’s implementation, and we see a minor
improvement for higher sparsities. However, the L1 hit rate improvement was smaller than
anticipated, reaching ~ 55% from the ~ 47% of the Kernel 2. The large leap in performance
is due to the fact the we no longer waste memory bandwidth on unused bytes. With this

kernel, the two main issues discussed in the first kernel’s implementation are largely solved.

34

4.4 Kernel 4: Vectorized Memory Access with Adaptive Nonzero Tiling

4K Sequence Length 50% Sparsity
@ mm e -
5004 500 {———®—__-=7 b —H
-
[2o
400 4 400
" Naive w/ SMEM
& 300 1 3001 NNZ-wise Distro
g -@- cuSparse
© —#— No SMEM
200 4 200 4
100 - 1004
0 -7 T T T T T 0 T T T T T T
0 10 20 30 40 50 128 256 512 1024 2048 4096
Non-zeros (%) Sequence Length N

Figure 4.8. No shared memory: Left. Variable sparsity at 4K input sequence length.
Right. Variable sequence length @50% sparsity.

4.4 Kernel 4: Vectorized Memory Access with Adaptive Nonzero
Tiling

Vectorized memory access is a pretty common performance optimization technique
and this kernel contributes just that, trying to maximize memory bandwidth by making
the necessary changes to adhere to the strict alignment requirements to utilize vectorized
memory access. In addition, it allows for > 1 number of blocks to be assigned to the non-
zeros of each column, through both thread-strided and block-strided loops. I'll analyze how
these new characteristics are implemented and their impact on performance, but first, the
distribution of work: the x and y dimension of the launched grid is distributed uniformly
across the columns and rows respectively. The z dimension of the grid is distributed across
the non-zeros of the corresponding column (Figure 4.9). For reasons discussed in Kernel

3, no shared memory is used.

4.4.1 Vector Data Types and Alignment

The aforementioned LDG.FE instruction loads (or STG.E for stores) 32 bits from global
memory [16]. Vectorized load instruction LDG.E.{64, 128} (or STG.E.{64, 128}), does
so in 64 or 128 bits. This reduces the total number of instructions, latency and improves
bandwidth utilization. There are a couple of tradeoffs, however: Firstly, we increase the
number of utilized registers, possibly descreasing occupancy as a result. Less important
to performance and more of a development overhead, vector data types require pointers,
pointing to naturally aligned memory addresses. That is, the data must be stored in
addresses multiples of their size in bytes.

Before discussing alignment, I will provide an overview of how input and output is laid
out in memory, both in the CPU and the GPU. The allocation scheme I chose follows a

few principles:
1. There must only be a single CPU and a single GPU memory allocation. This implies

35

Chapter 4. Sparse Matrix Multiplication Kernels

B (Sparse CSC)

T
- blockldx.z

contiguous memory C blockIdx.y

Figure 4.9. gridDim.z thread blocks (colored) compute an element of C.

that there is a single deallocation of memory for each.

2. There must only exist one CPU to GPU memory transfer for the input and one for

the output.

System calls for allocation and deallocation, as well as, CPU to GPU memory transactions
are very costly with regards to time. Hence it is imperative to perform as few of them as
possible. As an added benefit, a single allocation provides (guaranteed by the operating
system/GPU driver) contiguous memory. This will increase data locality as a function of

sparsity. Allocation scheme showcased in Figure 4.10.
Ay - A, col_ptr row _idx wal C1 - Cp

Figure 4.10. n dense matrices of size m X k, where m = 2 : v € N and k = N, where
N the input sequence length. Following that, the sparse matriz’s meta arrays, col ptr,
row_idz, val. Finally, the output Cy to C,.

Keeping matrix sizes of A1 to A, as powers of two, guarantees that the pointer col ptr*

is aligned. However, alignment possibly breaks with the pointers of row idx and val since
the size of col ptr is equal to N +1 and row_idz is equal to the number of non-zeros. This
possible misalignment is caught and handled during the allocation phase with sufficient
use of padding. Remaining (nnz mod 4)! elements are handled with scalar loads and the

rest are handled with vectorized loads (Figure 4.11).

4.4.2 Adaptive Block Tiling

In addition to stepping by a thread-stride (Figure 4.6) in the main loop, each block’s

range of work inside the meta arrays of the sparse matrix was calculated beforehand for

IThe kernel uses the 128-bit version of the instruction.

36

4.4.2 Adaptive Block Tiling

col ptr

adding (Aligned elements / 4) vectorized loads
row _idxl—"—
Vec loads / no. blocks (Aligned elements % 4) scalar loads
blockIdx.z
Figure 4.11. Let nnz be the non-zeros of a column. Blocks (colored) are assigned

v/gridDim wvectorized loads, where v = nnz/4 and gridDim the grid dimension. Any
remainder is handled with scalar loads by the first block of that column group (blockldz.z =

0)

each, such that it was split among them as evenly as possible. That way, the number of

blocks along a column was configurable and the work was adaptively split among them.

4K Sequence Length

50% Sparsity

P [SEE *------@ | | e mmmm—mmm—— = L
) AR R N A (N N I R S
500 7 500 grosis
/ -
II
b
400 1 # 400
1
¢ Naive w/ SMEM
2 NNZ-wise Distro
£ 3001 300 1 No SMEM
g -@- cuSparse
Vec Mem Access
200 - 200
100 4 100 4
0-r T r y r 0 T T T r T
0 10 20 30 40 256 512 1024 2048 4096
Non-zeros (%) Sequence Length N
Figure 4.12. Vectorized w/ Adaptive block tiling: Left. Variable sparsity at 4K

sequence length. Right. Variable sequence length @50% sparsity.

Benchmarking results (Figure 4.12) show a notable performance degradation.

The

bandwidth gained from vectorizing memory access is negligible at such small total bytes
transferred (our sparse matrices are 512 x 512) and does not outweigh the overhead in-
troduced. Also the adaptive block tiling helped uncover another intrinsic property of the
operation. The best results (shown in Figure 4.12) are when we assign only one block
per column, that is, not use adaptive block tiling at all. For bigger z-dimension grids,

performance degrades exponentially.

37

Chapter 4. Sparse Matrix Multiplication Kernels

4.5 Kernel 5: Column Tiling w/ Nonzero-wise work distri-

bution

Although adaptive block tiling may have yielded suboptimal benchmark results, it
nevertheless suggests that we may be assigning too little work per block. Hence, instead
of splitting non-zeros of a single column to more blocks, this kernel does the opposite: it
splits one block to multiple columns-worth of non-zeros, controlled by a parameter BN.
An immediate benefit of this appraoch is a better L1 cache hit rate, as the elements fetched
from the correposnding row of A, are reused for any other columns that block has been

assigned to (Figure 4.13).

5 B (Sparse CSC)

3N\ col ptr
\QEIQ\\\
’ val ‘

—
threadldx.x

1
[
| | blockldx.x * BN

C

Figure 4.13. A block (colored) is assigned BN columns

//////////////////////////////////////

contiguous memory blockIdx.y

4K Sequence Length 50% Sparsity

‘‘‘‘‘ OG- _ o *______._________-_---o
500 4 . 5004 -
4 PP
I, .——
’/
4004/ 400 -
/ Naive w/ SMEM

v ¢ NNZ-wise Distro
& 300 300 No SMEM
g Vec Mem Access
G} -@- cuSparse

200 A 200 - Column Tiling

100 100 A

0 - T T T T T 0 T T T T T T
10 20 30 40 50 128 256 512 1024 2048 4096

Non-zeros (%)

Sequence Length N

Figure 4.14. Column tiling: Left. Variable sparsity at 4K sequence length. Right.
Variable sequence length @50% sparsity.

Figure 4.14 shows that we have managed to smooth out the performance for higher

sparsities, indicating the low performance at higher sparsities might be a result of the

38

4.6 Kernel 6: Block Tiling w/ Element-wise work distribution

overhead introduced with over-launching blocks of threads.

4.6 Kernel 6: Block Tiling w/ Element-wise work distribu-
tion

A compilation of previous benchmarks allows us to pinpoint the following reasons for

performance fluctuations:
1. Work distribution scheme (amplified by sparsity levels).
2. Wasted memory bandwidth.
3. L1 cache functionality retention (keep only fully reusable data in shared memory).

This kernel pays attention to all three by tiling work in a block. Block tiling is done on
the element-level of the resulting C' matrix and each block is assigned BK x BN elements
which then subsequently distributes on a 1 : 1 ratio to its threads. This increases L1/L2
cache hit to a range of 95% — 99% due to how matrix multiplication reuses elements in
a block, making this the best performing arrangement out of all kernels. Note that, this
kernel accesses global memory in a way that makes it hard for the hardware to coalesce
the transaction to as few as possible. The first kernel suffered from the same issue and,
as discussed previously, this happens due to how each thread of a warp doesn’t read from

neighbouring memory locations. Work distribution is shown in Figure 4.15.

B (Sparse)

col ptr

‘ val ‘
0 1

A (Dense) blockIdx.x * BN

C blockldx.y * BK

Figure 4.15. Threads, grouped by block (colored) are assigned a BK x BN grid of el-
ements to process, however threads of warp (numbered) read distant locations in memory
(numbered).

Figure 4.16 shows a massive leap between cuSPARSE’s implementation at more dense-
like matrices achieving a speedup of ~ 57% but above the 90% sparsity mark, performance

still suffers comparatively. Metrics will be discussed in more detail in Chapter 5.

39

Chapter 4. Sparse Matrix Multiplication Kernels

4K Sequence Length 50% Sparsity

800 -

700 A

600 -

Naive w/ SMEM

500 - NNZ-wise Distro
2 No SMEM
o
S 400 Vec Mem A.ccess
5 Column Tiling

-@- cuSparse

300 ~m— Block Tiling

200 A

100 A 100 A

0-r T T T T T 0 T T T T T T
0 10 20 30 40 50 128 256 512 1024 2048 4096
Non-zeros (%) Sequence Length N

Figure 4.16. Block tiling: Left. Variable sparsity at 4K sequence length. Right.
Variable sequence length @50% sparsity.

40

5 Experimental Evaluation

5.1 Hardware Specifications

Evaluation of the kernels was performed on the commercial NVIDIA RTX 4070Ti

Super. I provide some relevant properties for this GPU model:

Metric Value
Architecture Ada Lovelace
Compute Capability 8.9
FP32 44.10 TFLOPs/s
FP64 689.0 GFLOPs/s
Max Threads per Block 1024
Max Threads per SM 1536
Threads per Warp 32
Max Registers per Block 65536
Max Registers per SM 65536
Total Global Memory 16714 MB
Memory Type GDDR6X
Global Memory Bandwidth 672.3 GB/s
Max Shared Memory per Block 49KB
Max Shared Memory per SM 102400B
SM Count 66
Theoretical Active Warps per SM 48

5.2 Input Data

Input weight matrices W, WX WV where provided by the Deep Learning Matrix
Collection |7] (DLMC). Benchmarks were performed for 50%,60%, 70%, 80%, 90%, 95%
and 98% sparsities for each of the following sparsification methods: L0 Regularization,

Magnitude Pruning, Random Pruning and Variational Dropout.

First, a warmup phase was conducted and results were verified against cuSPARSE’s
SpMM implementation. Afterwards, kernels were executed for a thousand times, measuring
total wall-clock time. Mean time and FLOPs/s were subsequently calculated. Note that,
the figures of Chapter 4 showcase only the LO Regularization pruning method since results
were pretty similar between all of them. However, full benchmarking results are provided
in Section 5.3.3.

41

Chapter 5. Experimental Evaluation

5.3 Benchmarks

5.3.1 cuSPARSE

cuSPARSE is NVIDIA’s closed source basic linear algebra accelerator library for sparse
matrices. It targets matrices of the sparsity range 70%-99.9% and is designed to perform

well on a variety of hardware and fields.

5.3.2 Profiler metrics

I will present and analyze metrics profiled by NVIDIA’s Nsight compute of each kernel
against cuSPARSE’s implementation and the best in work (BiW), Kernel 6, as measured
for the L0 Regularization pruning method at 4K sequence length mainly at 50% sparsities,
showing off 98% sparsity metrics only in remarkable performance changes as is the case
with Kernel 1 and Kernel 6.

Kernel 1: Element-wise w/ SMEM

This kernel has a Warp Cycles Per Issued Instruction of 533.54 in cycles, compared to
cuSPARSE’s 20.29 and the BiW of 43.51 at 50% sparsity. Most stalls are of type: Stall
MIO Throttle and Stall LG Throttle, indicating that threads are waiting for the instruction
queues of the corresponding GMEM and L1/TEX cache operations to complete. At 98%
sparsity, the warp cycles are reduced to 28.72 per issued instruction. This is expected,
since at higher sparsities less total memory transactions are required, hence the memory
queue can handle the small number of memory instructions. The number of executed
instructions are summed to 113,340,416 against cuSPARSE’s 851,856,384 and the BIW’s
of 217,650,176. A similar ratio is maintained and at 98% sparsity. Grid size is the smallest
amongst all at 4,096 while cuSPARSE dominates at 154,880 blocks while BiW is at 32,768.
This kernel achieves the highest occupancy across all three at 96.11% (95.30% cuSPARSE,
79.97% BiW). Uncoalescing is prevalent, as discussed, resulting in 87% excessive sectors
while cuSPARSE has the best memory access pattern at 39% excessive sectors and the
BiW is at 64%. cuSPARSE’s not predicated off threads per warp (avg.) is at 23.26 out of
the 32 threads of the warp. Meanwhile this implementation achieves a 27.60 on average
while the BiW a 29.10. This warp divergence is possibly due to some control sequence
that acts as a catch-all solution in the cuSPARSE implementation, totalling 76,669.09
divergence branches (avg.) compared to this implementation’s 2,156.61 and the BiW’s
1,648.48 (avg.). Finally L1 cache hit rate is at 68.07% compared to cuSPARSE’s 73.60%
and BiW’s 94.81%. L2 cache hit rate is at ~ 99% across the board.

Kernel 2: NNZ-wise with coalesced mem access

Warp Cycles Per Issued Instruction have been massively reduced, down to 30.61 per
cycle (cuSPARSE 20.29, BiW 43.51). The majority of stalls are of type Long Score-
board, which means that threads are waiting on a memory operation dependency to com-
plete. Number of executed instructions increased dramatically to 947,478,528 (cuSPARSE

42

5.3.2 Profiler metrics

851,856,384 & BiW 217,650,176) with more than half of them being for integer operations.
Grid size is up to 2,097,152 (cuSPARSE 154,880, BiW 32,768) due to how we doa 1: 1 as-
signment of blocks to elements of C'. Occupancy is similar to the previous kernel, measured
at 94.22% (cuSPARSE 95.30%, 79.97%). Only 10% excessive sectors fetched (cuSPARSE
39%, BiW 64%). 30.03 avg. threads per warp are not predicated off, having the highest
convergence so far on a warp-scope, however the average number of divergent branches
is up to 7,664.48. L1 cache hit rate has dropped to 45.83%, since block-wide reusability
is minimized with the current work distribution scheme. L2 cache hit rate similar to the

previous kernel.

Kernel 3: No SMEM

Comparable Warp Cycles Per Issued Instruction to previous implementations at 27.80
cycles, with the majority still being of type Long Scoreboard. The number of executed
instructions reduced, down to 585,949,184 due to how we don’t perform any shared memory
stores (STS) instructions. The grid size remained the same, as we didn’t change work
distribution in this kernel. Occupancy dropped a bit (down to 89.21%) due to the increased
register demands, now that we don’t utilize shared memory. Excessive sectors increased
(29%), as we don’t access the corresponding = row of A in a contiguous fashion, instead
only request random addresses dictated by the row of the corresponding non-zeros. Hit rate
increased to 52.99% due to restoring L1 cache functionality but not as much as expected.

L2 cache hit rate similar.

Kernel 4: Vectorized Mem Access

Warp Cycles per Issued Instruction at the lowest point of 12.68. However, the complex
control scheme of handling unaligned and remainder element loads as scalar while vector-
izing the main bulk of the data caused a lot of divergent warp (only 18.63 of threads are
not predicated off on average) and a lot of average divergent branches in total (15,653.79).
Whilst previous kernels had a theoretical occupancy of 100%, derived from the amount of
GPU resources they required, this kernel’s theoretical occupancy dropped to 50% primar-
ily due to the amount of registers used to service the vectorized loads, with an achieved
occupancy of 47.41%. Once again we have an identical work distribution (at least when
not using any adaptive tiling), hence the same grid size as the previous kernel. Number
of executed instructions jumped to 770,789,376 due to the vectorized memory access and
all the control sequences (alignment, scalar loads) that it required. This irregular access
pattern could not be coalesced into as few memory transactions as possible, resulting in

61% excessive sectors.

Kernel 5: Column Tiling

Warp Cycles Per Issued Instruction increased to 22.45 cycles, losing to cuSPARSE’s
20.29 cycles. Warp Divergence is minimized with only 2.7 threads on average being pred-

icated off per warp. Removing vectorized access meant reducing the excessive number

43

Chapter 5. Experimental Evaluation

instructions of the previous kernel, and as such we are now down to 504,029,184 instruc-
tions lower than cuSPARSE’s 851,856,384 but higher than BiW’s 217,650,176. The number
of blocks decreased to 131,072 hitting one this kernel’s marks, i.e. giving more work to
blocks. More work however requires more registers, and the 27 registers per thread reduce
the theoretical occupancy down to 50%. On an A100 or H100, this kernel might give better
results, due to higher occupancy. Despite this, achieved occupancy comes very close to

theoretical at 49.54%, possibly hinting at a performance gain on a non-commercial GPU.

Kernel 6: Block Tiling (BiW)

The biggest factor contributing to this kernel’s performance is the L1 /L2 cache hit rate,
reaching a 94.81% hit rate for L1 and a 99.96% for L2, toppling cuSPARSE’s 73.60% and
98.28% respectively. This kernel’s total instructions are at 217,650,176 which is lower than
cuSPARSE. This kernel wins on grid size as well, having the smallest across all at 32,768
blocks due to how work is partitioned into blocks, incurring the least amount of overhead.
Theoretical occupancy is at 83.33% limited mainly by the number of registers per thread
(using 48, would need less than 40 for 100% theoretical occupancy). However, having less
than perfect accurary can sometimes be beneficial to performance [17]. As discussed in
Section 4.6, our global memory access pattern leaves little room for coalescing and this is

supported by the reported 64% excessive sectors fetched from memory.

5.3.3 Full Benchmarks

Here I present the full benchmarking results for each of the kernels previously dis-
cussed. The results are grouped by sparsity and pruning technique and both wall-clock

time measure and GFLOPs/s are included.

44

5.3.3 Full Benchmarks

Time (ms) GFLOPs/s
Sparsity 60% 70% 80% 90% 95% 98%‘ 50% 60% 70% 80% 90% 95% 98%
cuSPARSE
L0 Regularization 0.056 0.044 0.030 0.020 0.013 0.010|437.388 487.792 475.902 444.983 355.970 230.696 128.271
Magnitude 0.056 0.042 0.030 0.018 0.014 0.010|487.897 485.900 479.877 449.278 367.499 246.251 131.250
Random 0.056 0.043 0.030 0.019 0.014 0.011[492.696 483.872 472.744 446.272 359.733 245.862 128.220
Variational Dropout 0.061 0.048 0.033 0.023 0.015 0.011[497.040 488.511 478.689 440.901 365.107 271.415 168.597
Naive w/ Shared Memory
L0 Regularization 0.179 0.138 0.088 0.045 0.018 0.007|150.956 151.704 152.300 158.376 175.723 199.093 209.949
Magnitude 0.176 0.135 0.086 0.041 0.013 0.005|152.248 153.574 150.313 157.073 165.243 261.224 257.362
Random 0.178 0.141 0.088 0.042 0.013 0.005|153.812 152.128 143.614 153.609 162.182 264.618 283.247
Variational Dropout 0.201 0.155 0.096 0.057 0.026 0.010|149.812 148.152 149.040 153.215 179.647 215.627 221.277
Nonzero-wise Distribution
L0 Regularization 0.096 0.088 0.082 0.078 0.075 0.073|340.007 283.714 237.977 166.135 94.302 44.824 20.418
Magnitude 0.094 0.088 0.083 0.077 0.075 0.073]338.614 289.172 229.800 163.246 88.232 45.300 18.521
Random 0.095 0.089 0.084 0.077 0.074 0.073|340.167 284.126 227.896 160.645 &87.871 45.656 18.537
Variational Dropout 0.097 0.090 0.082 0.080 0.074 0.072|358.651 306.126 255.843 176.739 111.199 61.315 29.841
No Shared Memory
L0 Regularization 0.058 0.051 0.042 0.037 0.036 0.035]499.351 463.895 405.344 317.880 194.928 93.551 42.319
Magnitude 0.057 0.050 0.042 0.036 0.036 0.035|510.873 476.763 408.414 320.885 187.620 94.683 38.246
Random 0.058 0.050 0.042 0.036 0.036 0.036|507.781 466.954 400.907 317.835 187.069 94.310 37.717
Variational Dropout 0.061 0.053 0.043 0.039 0.036 0.035|518.121 477.824 430.674 330.985 227.078 128.474 62.058
Vectorized Memory Access
L0 Regularization 0.072 0.065 0.060 0.055 0.053 0.051[452.694 377.732 317.653 226.549 133.589 61.284 28.657
Magnitude 0.072 0.069 0.059 0.057 0.056 0.054|433.604 375.805 293.779 230.048 118.221 59.789 25.167
Random 0.072 0.070 0.058 0.057 0.057 0.055[432.105 375.116 287.607 232.095 118.955 59.591 24.696
Variational Dropout 0.074 0.068 0.059 0.058 0.055 0.053[453.718 399.609 337.218 240.388 154.133 82.692 39.684
Column Tiling
L0 Regularization 0.070 0.057 0.042 0.030 0.021 0.018]399.140 387.021 364.309 319.412 233.404 145.700 77.366
Magnitude 0.069 0.054 0.041 0.028 0.020 0.018]408.388 391.009 372.126 324.574 244.742 168.427 72.896
Random 0.070 0.054 0.041 0.027 0.019 0.019[407.104 383.754 374.722 329.990 247.865 174.655 72.618
Variational Dropout 0.076 0.061 0.043 0.032 0.023 0.019[402.042 387.128 375.177 330.789 256.525 177.501 102.542
Block Tiling
L0 Regularization 0.042 0.035 0.025 0.017 0.012 0.007|695.938 648.799 599.343 532.564 409.578 267.310 185.974
Magnitude 0.041 0.033 0.024 0.014 0.010 0.007|713.797 648.694 604.892 571.167 489.130 337.979 188.774
Random 0.040 0.033 0.023 0.013 0.009 0.007|738.504 675.878 613.045 585.954 509.918 373.323 200.303
Variational Dropout 0.045 0.037 0.026 0.020 0.013 0.008|706.963 650.494 616.249 538.750 421.296 312.370 227.392

Table 5.1. Time in milliseconds and GFLOPs/s for all kernels at input sequence N = 128.
Underlined values are best for that sparsity.

45

Chapter 5. Experimental Evaluation

Time (ms) GFLOPs/s
Sparsity 50% 60% 70% 80% 90% 95% 98%‘ 50% 60% 70% 80% 90% 95% 98%
cuSPARSE
L0 Regularization 0.150 0.106 0.082 0.055 0.033 0.020 0.014[469.567 514.120 513.046 494.401 426.553 306.223 187.648
Magnitude 0.132 0.105 0.078 0.054 0.030 0.021 0.014[509.493 513.637 517.654 503.244 454.636 327.495 190.976
Random 0.131 0.106 0.080 0.054 0.030 0.021 0.014|515.514 509.895 506.012 498.939 445.793 321.899 189.957
Variational Dropout 0.140 0.116 0.091 0.059 0.040 0.024 0.015|520.342 513.658 510.214 488.263 434.100 343.882 239.989
Naive w/ Shared Memory
L0 Regularization 0.491 0.369 0.278 0.174 0.088 0.033 0.012|144.485 148.092 151.354 160.458 185.370 225.572 263.206
Magnitude 0.468 0.362 0.270 0.171 0.080 0.024 0.008|143.976 149.052 150.126 157.698 167.840 286.623 332.358
Random 0.465 0.370 0.282 0.177 0.082 0.022 0.007{145.100 146.291 143.614 152.922 164.003 301.585 363.979
Variational Dropout 0.515 0.417 0.315 0.190 0.113 0.050 0.018|142.291 144.245 147.677 156.199 183.463 247.734 269.829
Nonzero-wise Distribution
L0 Regularization 0.206 0.190 0.174 0.162 0.154 0.147 0.147|341.775 285.536 239.845 168.276 95.942 45.421 20.384
Magnitude 0.199 0.186 0.175 0.164 0.153 0.147 0.144|340.502 291.400 231.396 164.703 88.231 45.951 18.795
Random 0.198 0.189 0.176 0.166 0.152 0.146 0.144|342.440 286.460 230.169 162.521 88.882 46.264 18.722
Variational Dropout 0.202 0.192 0.180 0.161 0.158 0.147 0.143|361.975 308.070 256.092 179.269 112.502 61.985 30.255
No Shared Memory
L0 Regularization 0.139 0.115 0.101 0.083 0.073 0.070 0.069|506.736 470.558 412.369 322.489 199.175 95.474 43.211
Magnitude 0.131 0.112 0.097 0.082 0.070 0.070 0.069|513.943 483.611 418.687 328.474 191.328 96.579 38.992
Random 0.132 0.114 0.099 0.084 0.071 0.070 0.070[512.690 472.961 408.420 322.877 189.598 96.288 38.571
Variational Dropout 0.139 0.121 0.104 0.084 0.076 0.070 0.069 |523.783 483.890 440.024 337.942 231.109 131.393 62.811
Vectorized Memory Access
L0 Regularization 0.153 0.140 0.129 0.118 0.108 0.104 0.100[459.933 385.837 322.156 229.641 135.971 62.794 29.371
Magnitude 0.153 0.141 0.136 0.114 0.112 0.111 0.105[439.538 382.600 296.871 236.113 120.736 61.045 25.771
Random 0.154 0.142 0.138 0.114 0.111 0.111 0.106|437.828 381.169 293.077 237.467 121.326 60.663 25.314
Variational Dropout 0.158 0.145 0.134 0.117 0.113 0.107 0.104|461.355 405.322 342.622 244.548 157.494 84.618 40.544
Column Tiling
L0 Regularization 0.166 0.131 0.106 0.077 0.053 0.039 0.033[424.975 416.365 395.438 351.036 261.981 160.774 84.682
Magnitude 0.155 0.128 0.101 0.076 0.050 0.036 0.034[435.595 422.041 401.946 354.552 271.230 186.311 80.424
Random 0.155 0.130 0.098 0.074 0.049 0.035 0.034[433.760 416.185 411.395 363.911 274.891 190.460 80.107
Variational Dropout 0.170 0.142 0.113 0.079 0.059 0.043 0.034|429.341 418.111 406.366 361.916 283.031 195.056 114.234
Block Tiling
L0 Regularization 0.097 0.078 0.065 0.046 0.031 0.020 0.013|729.747 693.286 642.608 578.873 457.410 307.091 206.883
Magnitude 0.090 0.078 0.062 0.044 0.025 0.018 0.013|749.471 685.970 646.616 611.088 533.444 370.328 207.864
Random 0.087 0.076 0.063 0.043 0.024 0.017 0.013|772.919 708.651 643.716 622.117 550.910 387.151 212.493
Variational Dropout 0.099 0.085 0.070 0.047 0.035 0.023 0.014|738.482 691.624 652.708 600.483 479.510 360.037 261.810

Table 5.2. Time in milliseconds and GFLOPs/s for all kernels at input sequence N = 256.
Underlined values are best for that sparsity.

46

5.3.3 Full Benchmarks

Time (ms) GFLOPs/s
Sparsity 60% 70% 80% 90% 95% 98%‘ 50% 60% 70% 80% 90% 95% 98%
cuSPARSE
L0 Regularization 0.206 0.158 0.103 0.060 0.033 0.020|501.613 528.910 532.434 529.399 475.518 366.591 251.046
Magnitude 0.205 0.151 0.101 0.053 0.034 0.021|522.431 526.235 535.449 533.313 509.649 394.862 262.412
Random 0.207 0.154 0.102 0.054 0.035 0.021]523.016 521.634 524.187 527.204 500.881 387.915 257.326
Variational Dropout 0.225 0.175 0.113 0.074 0.042 0.024|534.172 528.511 528.679 515.344 479.403 397.955 302.500
Naive w/ Shared Memory
L0 Regularization 0.737 0.556 0.342 0.172 0.061 0.021|144.525 148.610 152.374 163.355 197.142 269.328 315.106
Magnitude 0.725 0.526 0.336 0.157 0.041 0.014|144.176 148.931 154.027 160.685 171.582 328.162 392.400
Random 0.746 0.547 0.347 0.163 0.041 0.012|144.412 144.850 148.104 155.900 166.041 327.459 435.480
Variational Dropout 0.830 0.623 0.371 0.220 0.094 0.033]142.372 145.381 149.389 159.841 203.317 291.279 308.864
Nonzero-wise Distribution
L0 Regularization 0.382 0.348 0.325 0.308 0.298 0.293|340.137 284.994 240.229 168.180 96.186 44.823 20.281
Magnitude 0.372 0.350 0.328 0.302 0.295 0.287|341.114 290.830 232.050 165.277 89.719 45.928 18.847
Random 0.377 0.353 0.333 0.304 0.292 0.289|342.536 286.749 230.336 162.592 89.034 46.295 18.726
Variational Dropout 0.385 0.355 0.324 0.318 0.294 0.286|355.210 307.611 258.635 177.891 111.792 62.114 30.268
No Shared Memory
L0 Regularization 0.228 0.199 0.165 0.145 0.138 0.136|512.989 474.162 417.159 326.339 201.461 96.763 43.980
Magnitude 0.223 0.193 0.163 0.140 0.138 0.137[520.712 484.446 419.879 330.681 193.289 97.728 39.465
Random 0.227 0.196 0.165 0.141 0.139 0.138|515.468 475.337 412.783 327.562 190.827 96.726 39.004
Variational Dropout 0.241 0.207 0.165 0.150 0.139 0.137|526.825 486.512 441.679 341.309 234.875 132.738 63.698
Vectorized Memory Access
L0 Regularization 0.279 0.256 0.234 0.214 0.209 0.197|465.569 388.297 325.063 230.738 137.834 63.290 29.616
Magnitude 0.280 0.271 0.226 0.221 0.218 0.207|442.696 384.783 298.645 238.223 122.033 61.749 26.106
Random 0.281 0.272 0.225 0.220 0.220 0.211|438.868 384.089 296.832 239.701 122.975 61.315 25.606
Variational Dropout 0.288 0.264 0.230 0.223 0.212 0.205|464.545 407.972 346.007 247.072 159.209 85.503 41.055
Column Tiling
L0 Regularization 0.253 0.203 0.147 0.100 0.072 0.060|440.732 429.595 410.611 366.856 279.191 173.584 92.166
Magnitude 0.247 0.194 0.145 0.093 0.066 0.062|448.194 435.764 416.998 372.766 291.231 203.558 87.220
Random 0.247 0.189 0.141 0.091 0.065 0.062|446.575 436.798 427.671 382.059 296.901 205.742 87.106
Variational Dropout 0.274 0.219 0.150 0.112 0.080 0.063|442.565 432.628 421.284 379.490 299.622 208.954 123.374
Block Tiling
L0 Regularization 0.150 0.123 0.088 0.058 0.038 0.024|750.560 719.990 675.905 613.844 484.242 326.079 219.374
Magnitude 0.151 0.120 0.084 0.052 0.034 0.025|775.869 712.819 673.639 639.822 519.444 396.736 215.497
Random 0.146 0.120 0.083 0.051 0.033 0.025|800.111 736.284 673.980 649.838 532.139 413.921 213.598
Variational Dropout 0.163 0.135 0.090 0.065 0.043 0.027|766.954 719.148 682.526 629.929 513.210 379.816 278.549

Table 5.3. Time in milliseconds and GFLOPs/s for all kernels at input sequence N = 512.
Underlined values are best for that sparsity.

47

Chapter 5. Experimental Evaluation

Time (ms) GFLOPs/s
Sparsity 50% 60% 70% 80% 90% 95% 98%‘ 50% 60% 70% 80% 90% 95% 98%
cuSPARSE
L0 Regularization 0.548 0.407 0.309 0.201 0.115 0.061 0.035|514.532 536.341 542.689 545.528 500.953 401.067 292.193
Magnitude 0.511 0.404 0.299 0.197 0.102 0.061 0.036|528.040 534.425 540.833 548.740 530.237 441.137 302.669
Random 0.512 0.410 0.302 0.200 0.104 0.062 0.037|527.020 527.354 535.824 539.447 519.539 437.612 293.378
Variational Dropout 0.541 0.445 0.345 0.220 0.142 0.078 0.043|539.097 535.401 536.503 530.085 503.911 434.263 344.555
Naive w/ Shared Memory
L0 Regularization = 1.914 1.427 1.074 0.659 0.331 0.118 0.039|148.432 153.709 157.826 169.623 205.775 284.957 342.028
Magnitude 1.814 1.421 1.013 0.648 0.305 0.076 0.026|148.768 151.957 160.077 166.876 176.940 353.820 433.397
Random 1.818 1.446 1.043 0.672 0.317 0.076 0.022|148.683 149.583 155.433 160.842 170.626 355.904 482.968
Variational Dropout 2.013 1.593 1.202 0.717 0.422 0.180 0.063|145.418 151.327 154.916 165.948 214.322 311.864 336.078
Nonzero-wise Distribution
L0 Regularization 0.833 0.773 0.706 0.658 0.629 0.607 0.594|338.882 281.938 237.500 166.914 93.794 44.085 20.183
Magnitude 0.803 0.759 0.709 0.666 0.611 0.597 0.580|337.472 285.810 229.720 163.012 88.778 45.462 18.702
Random 0.804 0.766 0.713 0.678 0.615 0.592 0.585|337.520 283.041 228.270 159.910 88.169 45.843 18.560
Variational Dropout 0.835 0.780 0.710 0.655 0.643 0.595 0.579|350.438 304.369 259.265 175.781 111.283 61.456 29.997
No Shared Memory
L0 Regularization 0.548 0.460 0.401 0.328 0.288 0.275 0.272[513.069 471.076 413.461 327.154 202.182 96.972 44.099
Magnitude 0.519 0.445 0.385 0.324 0.277 0.274 0.272]520.043 484.614 420.447 333.378 194.969 98.284 39.700
Random 0.524 0.454 0.391 0.329 0.282 0.278 0.275|515.213 475.661 413.860 328.646 191.515 96.931 39.160
Variational Dropout 0.556 0.483 0.411 0.330 0.298 0.276 0.269 |524.491 486.467 444.398 342.757 235.240 133.398 64.559
Vectorized Memory Access
L0 Regularization 0.606 0.555 0.510 0.464 0.424 0.413 0.391[464.480 389.595 326.021 233.028 139.044 63.519 29.782
Magnitude 0.606 0.560 0.537 0.450 0.441 0.434 0.411[444.591 385.082 301.069 240.029 122.387 62.230 26.260
Random 0.612 0.562 0.539 0.448 0.436 0.435 0.417[440.497 384.010 299.955 240.783 123.725 61.959 25.854
Variational Dropout 0.630 0.573 0.524 0.459 0.445 0.421 0.408|462.760 409.644 349.048 247.991 159.942 85.922 41.321
Column Tiling
L0 Regularization 0.631 0.499 0.399 0.286 0.194 0.139 0.116[446.400 435.916 418.502 375.724 287.528 178.965 95.426
Magnitude 0.596 0.488 0.382 0.283 0.180 0.128 0.119[452.613 442.141 423.334 381.050 300.023 210.318 90.308
Random 0.592 0.486 0.374 0.278 0.176 0.127 0.119|455.843 444.463 432.915 387.402 305.475 212.368 90.226
Variational Dropout 0.653 0.540 0.429 0.294 0.217 0.154 0.120(447.578 438.356 429.468 388.561 308.380 216.711 128.520
Block Tiling
L0 Regularization 0.365 0.295 0.240 0.170 0.110 0.071 0.046|772.238 734.628 693.579 635.641 510.544 342.537 226.873
Magnitude 0.340 0.296 0.236 0.164 0.100 0.066 0.049|793.089 728.841 686.186 658.484 540.194 406.955 219.915
Random 0.332 0.287 0.235 0.163 0.098 0.065 0.050|812.089 751.956 688.786 662.114 549.903 416.768 215.348
Variational Dropout 0.374 0.320 0.264 0.176 0.126 0.084 0.051|780.236 734.492 696.674 648.412 533.525 394.203 291.288

Table 5.4. Time in milliseconds and GFLOPs/s for all kernels at input sequence N =
1024. Underlined values are best for that sparsity.

48

5.3.3 Full Benchmarks

Time (ms) GFLOPs/s
Sparsity 60% 70% 80% 90% 95% 98%‘ 50% 60% 70% 80% 90% 95% 98%
cuSPARSE
L0 Regularization 1.618 1.223 0.792 0.446 0.227 0.125|535.844 539.899 549.469 554.020 519.269 433.785 336.324
Magnitude 1.607 1.183 0.775 0.395 0.228 0.129(530.737 537.418 547.270 556.707 546.011 472.575 334.137
Random 1.617 1.198 0.785 0.403 0.228 0.133|529.728 534.320 540.725 550.303 535.855 472.461 325.316
Variational Dropout 1.778 1.368 0.863 0.551 0.300 0.157|539.488 536.433 542.043 541.804 523.072 456.979 386.475
Naive w/ Shared Memory
L0 Regularization 5.478 4.141 2.550 1.285 0.450 0.148|152.367 159.928 163.615 175.382 213.349 305.258 373.600
Magnitude 5.442 3.903 2.519 1.197 0.285 0.093|152.440 158.628 166.014 171.415 180.631 378.461 478.711
Random 5.592 4.022 2.594 1.226 0.288 0.081|152.098 154.543 161.082 166.704 176.217 375.666 533.676
Variational Dropout 6.164 4.665 2.773 1.631 0.698 0.238|149.397 156.582 160.509 170.627 224.746 335.326 363.195
Nonzero-wise Distribution
L0 Regularization 3.477 3.194 2.986 2.881 2.824 2.754|308.190 254.373 213.417 151.132 84.925 39.274 18.181
Magnitude 3.399 3.154 2.982 2.738 2.750 2.644|303.612 261.550 211.353 148.968 &81.325 40.570 16.841
Random 3.401 3.182 3.047 2.787 2.722 2.685|307.788 260.720 208.955 145.553 79.887 40.852 16.641
Variational Dropout 3.484 3.055 3.004 2.879 2.740 2.700|322.529 278.002 245.951 155.126 102.532 55.403 26.241
No Shared Memory
L0 Regularization 1.848 1.593 1.330 1.151 1.095 1.092|507.748 469.068 416.405 322.870 202.841 97.680 43.950
Magnitude 1.811 1.557 1.309 1.106 1.097 1.082|512.705 476.929 416.149 330.296 195.391 98.337 39.905
Random 1.854 1.587 1.333 1.124 1.112 1.097|506.931 466.331 408.697 324.220 192.011 97.031 39.338
Variational Dropout 1.966 1.662 1.338 1.197 1.099 1.075[520.777 478.354 439.738 338.174 234.350 133.628 64.624
Vectorized Memory Access
L0 Regularization 2.226 2.049 1.853 1.706 1.653 1.563|459.718 388.838 324.874 233.172 138.280 63.671 29.952
Magnitude 2.259 2.137 1.813 1.765 1.743 1.649|444.772 382.170 303.182 237.997 122.396 61.950 26.228
Random 2.249 2.161 1.789 1.757 1.741 1.690|436.370 383.939 299.201 241.279 122.922 61.981 25.541
Variational Dropout 2.295 2.111 1.841 1.779 1.716 1.632[462.752 409.335 345.994 247.550 160.004 84.559 41.316
Column Tiling
L0 Regularization 1.970 1.584 1.137 0.762 0.541 0.454|454.320 442.138 422.168 378.375 293.772 183.602 97.673
Magnitude 1.934 1.534 1.117 0.703 0.500 0.466|452.417 446.289 421.829 385.976 307.040 215.597 92.616
Random 1.917 1.506 1.106 0.698 0.495 0.469|463.552 450.359 429.644 390.042 309.004 218.076 91.971
Variational Dropout 2.142 1.709 1.162 0.857 0.603 0.470[447.187 442.728 432.155 393.679 312.883 220.968 131.492
Block Tiling
L0 Regularization 1.151 0.939 0.665 0.427 0.276 0.180|798.502 753.037 711.565 648.286 526.479 354.190 230.247
Magnitude 1.160 0.923 0.642 0.389 0.261 0.192|806.643 742.928 700.463 672.355 554.688 413.504 225.439
Random 1.125 0.925 0.637 0.383 0.259 0.199|833.234 766.914 699.364 676.981 562.280 416.331 216.419
Variational Dropout 1.467 1.266 1.039 0.694 0.493 0.325 0.202|796.614 743.397 706.857 658.160 545.772 405.291 297.240

Table 5.5. Time in milliseconds and GFLOPs/s for all kernels at input sequence N =
4096. Underlined values are best for that sparsity.

49

6 Future Work

This chapter outlines potential directions for further improving the performance and
efficiency of Sparse Matrix-Matrix Multiplication (SpMM) kernels in Transformer-based

architectures.

1. Solve Work Imbalance with a Partition Step: Current kernels suffer from
uneven work distribution across threads, especially for irregular sparsity patterns.
Introducing a partitioning step, as cuSPARSE seems to employ, to dynamically assign
rows or blocks to threads could help achieve better load balancing and improve overall

throughput.

2. Switch from General Sparse Format to a Custom One: General sparse for-
mats are versatile but often suboptimal for attention matrices due to their disregard
for data reusability. Designing a custom format that exploits the specific sparsity
patterns of Transformer workloads could reduce memory overhead and accelerate

computation.

3. Row Swizzle Load Balancing: Row swizzling can reorder rows to improve memory

coalescing and reduce execution imbalance.

4. Quantization: Reducing the numerical precision of weights and activations can cut
memory usage and increase computational throughput. Exploring quantized SpMM
implementations while maintaining accuracy is a promising direction for future re-

search.

5. Fused Kernels: [8] Fused kernels are the current state-of-the-art accelerator of at-
tention computation, used in the highly optimized NVIDIA CUDA Deep Neural
Network library (cuDNN) [18]. Instead of focusing the atomic optimization of in-
dividual Attention operations, they apply a macroscopic analysis across the entire

pipeline, an approach that ultimately delivers the best results.

51

7 Conclusion

In this work, we investigated the performance bottlenecks inherent in GPU-based
Sparse Matrix-Matrix Multiplication (SpMM) kernels, with a focus on applications in
Transformer models and attention mechanisms. Through the implementation and study of
multiple kernel variants, we were able to identify key factors affecting both computational
throughput and memory efficiency, providing insights into why standard implementations
sometimes fail to deliver expected speedups.

Subsequent analysis demonstrated that careful design of kernel execution strategies,
including memory coalescing, work distribution that favors data reusability paired with
efficient L1 cache use, can significantly improve performance. By benchmarking against
NVIDIA’s cuSPARSE library, we were able to quantify speedups and slowdowns under
varying sparsities, highlighting the importance of adapting kernel behavior to input char-
acteristics rather than relying on general solutions.

Additionally, the work highlighted the limitations of sparse attention mechanisms when
confronted with irregular sparsity patterns and non-uniform workloads. These findings
underscore the need for continued optimization, particularly in areas such as load balancing,
custom sparse formats, and fusion of kernel operations, to fully exploit the computational
potential of modern GPU architectures.

Overall, this thesis contributes a deeper understanding of the interplay between spar-
sity, memory access patterns, and GPU execution efficiency. The proposed analyses and
experimental results provide a foundation for future research in high-performance sparse
computation, paving the way for more scalable and efficient implementations of Trans-

former models and other large-scale neural networks.

53

Chapter 7. Conclusion

A Proofs

Let A € R™*F be a sparse matrix, and B € RF*” be a dense matrix. For any two
matrices X,Y:
XV =vTxT,

therefore
(AB)T = BT AT — AB = (BTAT)T

where AB the original product. Let’s consider the elementwise multiplications and addi-
tions. Let C' = AB € R™*", with elements

k
Cij =Y _ AyBlj
1=1
Now consider D = BT AT € R™*™ with elements

k k
Dji =) BjAj;=> Bj;Ai=Cy
=1 =1

Therefore, any kernel implementing sparse X dense can be mathematically replaced by
a kernel implementing densex sparse on the transposed operands without changing the
result or total number of operations.

Transposing dense matrices incurs zero cost, as it only involves a reinterpretation of
the memory layout rather than any arithmetic operations. In contrast, transposing sparse
matrices carries a nontrivial computational overhead, as it requires rearranging the internal
storage structures; however, this is considered a one-time preprocessing step that can be

amortized across multiple subsequent multiplications.

54

Bibliography

1]

2]

13l

4]

[5]

(6]

17l

8]

9]

[10]

[11]

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Lukasz Kaiser and Illia Polosukhin. Attention is all you need. Advances in

neural information processing systems, 30, 2017.

Rewon Child, Scott Gray, Alec Radford and Ilya Sutskever. Generating long sequences
with sparse transformers. arXiw preprint arXiv:1904.10509, 2019.

Aurko Roy, Mohammad Saffar, Ashish Vaswani and David Grangier. Efficient content-
based sparse attention with routing transformers. Transactions of the Association for
Computational Linguistics, 9:53—68, 2021.

Yi Tay, Mostafa Dehghani, Samira Abnar, Yikang Shen, Dara Bahri, Philip Pham,
Jinfeng Rao, Liu Yang, Sebastian Ruder and Donald Metzler. Long range arena: A
benchmark for efficient transformers. arXiv preprint arXiw:2011.040006, 2020.

Manzil Zaheer, Guru Guruganesh, Kumar Avinava Dubey, Joshua Ainslie, Chris Al-
berti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang and
others. Big bird: Transformers for longer sequences. Advances in neural information
processing systems, 33:17283-17297, 2020.

Nikita Kitaev, Lukasz Kaiser and Anselm Levskaya. Reformer: The efficient trans-
former. arXiw preprint arXiv:2001.04451, 2020.

Trevor Gale, Matei Zaharia, Cliff Young and Erich Elsen. Sparse gpu kernels for
deep learning. SC20: International Conference for High Performance Computing,
Networking, Storage and Analysis, pages 1-14. IEEE, 2020.

Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra and Christopher Ré. Flashattention:
Fast and memory-efficient exact attention with io-awareness. Advances in neural in-
formation processing systems, 35:16344-16359, 2022.

NVIDIA Corporation, Santa Clara, CA. CUDA C++ Programming Guide, 13.0th
edition, 2025.

Ali Pinar and Michael T Heath. Improving performance of sparse matriz-vector mul-
tiplication. Proceedings of the 1999 ACM/IEEE conference on Supercomputing, pages
30—es, 1999.

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia
Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat
and others. Gpt-4 technical report. arXiv preprint arXiv:2308.0877/4, 2023.

55

BIBLIOGRAPHY

[12]

[13]

[14]

[15]

[16]

[17]

[18]

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser and Bjérn Om-
mer. High-resolution image synthesis with latent diffusion models. Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition, pages 10684—
10695, 2022.

Wikipedia contributors. Softmazx function — Wikipedia, The Free Encyclopedia, 2025.
[Online; accessed 20-October-2025].

Ahan Gupta, Yueming Yuan, Devansh Jain, Yuhao Ge, David Aponte, Yanqgi Zhou
and Charith Mendis. SPLAT: A framework for optimised GPU code-generation for
SParse requlLar ATtention. Proceedings of the ACM on Programming Languages,
9(OOPSLA1):1632-1660, 2025.

Shigang Li, Kazuki Osawa and Torsten Hoefler. Efficient quantized sparse matrix
operations on tensor cores. SC22: International Conference for High Performance

Computing, Networking, Storage and Analysis, pages 1-15. IEEE, 2022.

Rajeshwari Devaramani Justin Luitjens. CUDA Pro Tip: Increase Performance with
Vectorized Memory Access, 2013.

NVIDIA Corporation, Santa Clara, CA. CUDA C++ Best Practices Guide, 13.0th
edition, 2025.

NVIDIA Corporation, Santa Clara, CA. NVIDIA CUDA Deep Neural Network library,
2025.

56

List of Abbreviations

LLM Large Language Model

MHSA Multi-head Sparse Attention

SpMM SParse matrix—dense Matrix Multiplication
SDDMM Sampled Dense-Dense Matrix Multiplication
NLP Natural Language Processing

FMA Fused Multiply Add

COO Coordinate List

CSR Compressed Sparse Row

CSC Compressed Sparse Column

GMEM Global Memory

SMEM Shared Memory

SIMT Single Instruction Multiple Threads

SM Streaming Multiprocessor

GPU Graphics Processing Unit

CPU Central Processing Unit

FPGA Field-Programmable Gate Arrays

HBM High Bandwidth Memory

GEMM General Matrix Multiplication

GSF General Sparse Formats

Biw Best in Work

o7

	Abstract
	Acknowledgements
	Perilipsi
	Introduction
	Background
	Graphics Processing Unit
	Single Instruction Multiple Threads (SIMT)
	Memory hierarchy

	Standard Multi-head Self-Attention
	Sparse Attention
	Sparse matrix-Matrix Multiplication
	General Sparse Formats
	Bounded by Memory

	Sparse Matrix Multiplication Kernels
	Kernel 1: Element-wise work distribution with shared memory
	Coalesced memory access
	Analyzing Memory Accesses in our Kernel

	Kernel 2: Nonzero-wise work distribution with coalesced memory access
	Non-constant number of non-zeros per column
	Partial results

	Kernel 3: Minimizing shared memory usage and restoring L1 cache functionality
	Kernel 4: Vectorized Memory Access with Adaptive Nonzero Tiling
	Vector Data Types and Alignment
	Adaptive Block Tiling

	Kernel 5: Column Tiling w/ Nonzero-wise work distribution
	Kernel 6: Block Tiling w/ Element-wise work distribution

	Experimental Evaluation
	Hardware Specifications
	Input Data
	Benchmarks
	cuSPARSE
	Profiler metrics
	Full Benchmarks

	Future Work
	Conclusion
	Proofs

	Bibliography
	List of Abbreviations

