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Περίληψη

Η παρούσα διπλωματική εργασία ασχολείται με την ανάπτυξη ενός πλαισίου ανίχνευσης

αντικειμένων ανοιχτού συνόλου (open-set) για εφαρμογές αέρος-αέρος με μη επανδρωμένα
αεροχήματα (UAV). Η προτεινόμενη μεθοδολογία είναι ανεξάρτητη από το βασικό μοντέλο
και βασίζεται στην εξαγωγή διανυσμάτων χαρακτηριστικών (embeddings) από τον ανιχνευτή,
στα οποία εφαρμόζεται μοντελοποίηση εντροπίας μέσω Γκαουσιανών Μιγμάτων (Gaussian
Mixture Models) για την εκτίμηση της σημασιολογικής αβεβαιότητας. Για τη βελτίωση της
σταθερότητας και της διακριτικής ικανότητας, ενσωματώνονται τεχνικές φασματικής κανον-
ικοποίησης (spectral normalization) και κλιμάκωσης θερμοκρασίας (temperature scaling),
ενώ χρησιμοποιούνται στοχευμένες τεχνικές εμπλουτισμού δεδομένων με προσομοιωμένες

αλλοιώσεις που αντανακλούν τις συνθήκες πτήσης. Η εργασία περιγράφει αναλυτικά τη δι-
αδικασία ενσωμάτωσης της μεθόδου σε σύγχρονους ανιχνευτές, καθώς και την προσαρμογή
της για χρήση σε ενσωματωμένα συστήματα UAV.

Λέξεις κλειδιά: Ανοιχτού Συνόλου Ανίχνευση Αντικειμένων, Μη Επανδρωμένα Οχή-
ματα, Εκτίμηση Αβεβαιότητας, Επεξεργασία Εικόνας.
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Abstract

This thesis presents the development of an open-set object detection framework for
air-to-air scenarios with unmanned aerial vehicles (UAVs), aimed at enhancing perception
reliability in real-world �ight conditions. The proposed method is model-agnostic and
operates on feature embeddings extracted from the detector, applying Gaussian Mixture
Models (GMMs) to model semantic uncertainty through entropy estimation. To improve
stability and discrimination, spectral normalization and temperature scaling techniques
are integrated, while targeted data augmentation with simulated corruptions is employed
to re�ect aerial imaging conditions. The implementation process includes the adaptation
of the framework for integration into modern detectors and its optimization for embedded
UAV systems. The methodology is documented alongside the theoretical background,
providing a practical reference for future work in UAV perception and open-set detection.
This thesis was written in English to be accessible to a wider audience. A comprehensive
summary in Greek follows.

Keywords: Open-Set Object Detection, Unmanned Aerial Vehicles, Uncertainty Es-
timation, Image Processing.
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Chapter 1

Εκτεταμένη περίληψη στα

Ελληνικά

1.1 Εισαγωγή

Τα μη επανδρωμένα αεροσκάφη (UAVs) έχουν γνωρίσει ραγδαία εξάπλωση σε εφαρμογές
όπως επιτήρηση, μεταφορές και έρευνα�διάσωση. Η αυξημένη χρήση τους ςπιφέρει αυξημένο
κίνδυνο εναέριων συγκρούσεων, ειδικά σε πυκνό ή αστικό εναέριο χώρο. Για την αντιμετώπιση
αυτού του προβλήματος αναπτύσσονται συστήματα Sense-and-Avoid (SAA), τα οποία επιτρέ-
πουν στα UAVs να ανιχνεύουν και να αποφεύγουν αυτόνομα εμπόδια. Ωστόσο, οι υφιστάμενες
προσεγγίσεις δυσκολεύονται με μη συνεργατικούς στόχους (π.χ. άλλα UAVs ή πουλιά) και
σε δύσκολες περιβαλλοντικές συνθήκες.

΄Ενα κρίσιμο ζήτημα είναι ότι τα περισσότερα συστήματα ανίχνευσης λειτουργούν με την

υπόθεση του κλειστού συνόλου (closed set), δηλαδή ότι όλες οι κατηγορίες αντικειμένων είναι
γνωστές εκ των προτέρων. Στην πράξη όμως, τα UAV συχνά συναντούν άγνωστα αντικεί-
μενα, με αποτέλεσμα υποβάθμιση της ακρίβειας και αύξηση του κινδύνου. Για αυτό τον λόγο
απαιτούνται μέθοδοι ανοιχτού συνόλου (open-set detection), που μπορούν να αναγνωρίζουν
γνωστές κατηγορίες αλλά και να ανιχνεύουν άγνωστες.

Στόχος αυτής της διπλωματικής είναι η ανάπτυξη και αξιολόγηση ενός πλαισίου ανίχνευσης

ανοιχτού συνόλου, το οποίο ενσωματώνει εκτίμηση αβεβαιότητας σε σενάρια αέρος�αέρος. Η
προσέγγιση αυτή βασίζεται σε μοντελοποίηση της εσωτερικής αναπαράστασης των ανιχνεύσεων

στο μοντέλο (embeddings), σε Gaussian Mixture Models και σε τεχνικές κανονικοποίησης,
ώστε να παρέχει αξιόπιστες προβλέψεις με μικρό υπολογιστικό κόστος σε πραγματικό χρόνο.

1.2 Σχετική ΄Ερευνα

1.2.1 Ανίχνευση Αντικειμένων με UAV

Η σύγχρονη ανίχνευση αντικειμένων σε εναέρια δεδομένα βασίζεται κυρίως σε ταχείς

one-stage ανιχνευτές (π.χ. οικογένεια YOLO) και σε transformer-based προσεγγίσεις (π.χ.
DETR). Οι πρώτοι προσφέρουν ευνοϊκό λόγο ακρίβειας�ταχύτητας για ενσωματωμένες πλατ-
φόρμες, ενώ οι δεύτεροι αξιοποιούν πετυχαίνουν μεγαλύτερη ακρίβεια αλλά συχνά με υψη-
λότερο υπολογιστικό κόστος. Στα εναέρια benchmarks, σύνολα όπως το AOT (air-to-air)
και το FAIR1M/DOTA (air-to-ground, με περιστρεφόμενα πλαίσια) έχουν επιταχύνει την
πρόοδο, αναδεικνύοντας όμως προκλήσεις: πολύ μικρούς στόχους, έντονες μεταβολές κλί-
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1.3. ΘΕΩΡΗΤΙΚ΄Ο ΥΠ΄ΟΒΑΘΡΟ

μακας/προσανατολισμού και ανάγκη για γρήγορους υπολογισμούς σε πλατφόρμες με περιορ-
ισμούς SWaP.

1.2.2 Ανοιχτή Αναγνώριση (Open-Set Recognition)

Σε πραγματικές αποστολές, ο ανιχνευτής συναντά άγνωστα αντικείμενα ή συνθήκες εκ-
τός κατανομής, άρα απαιτείται ικανότητα διάκρισης γνωστών από αγνώστους. Οι βασικές
κατηγορίες μεθόδων περιλαμβάνουν: (α) threshold-based κανόνες πάνω σε βαθμούς εμπισ-
τοσύνης/εντροπία, και (β) συνδυασμοί προβλέψεων από διαφορετικά μοντέλα ή από το ίδιο
μοντέλο με ελαφρώς διαφορετική εικόνα εισόδου (ensembling/ bayes). Ο στόχος είναι αξ-
ιόπιστη απόρριψη OOD χωρίς υποβάθμιση του mAP και της ταχύτητας.

1.3 Θεωρητικό Υπόβαθρο

1.3.1 Αβεβαιότητα στη Μηχανική Μάθηση

Η ποσοτικοποίηση της αβεβαιότητας είναι κρίσιμη για συστήματα ασφαλείας. Διακρί-
νουμε δύο κύριους τύπους: aleatoric (προέρχεται από τον θόρυβο/ασάφεια των δεδομένων:
φωτισμός, καιρικές συνθήκες, μερική απόκρυψη) και epistemic (προέρχεται από άγνοια του
μοντέλου: ανεπαρκή δεδομένα, ελλιπή παραμετροποίηση, περιοχές του χώρου εισόδων που
δεν έχουν παρατηρηθεί). Η πρώτη είναι συχνά μη μειώσιμη, ενώ η δεύτερη μπορεί να μειω-
θεί με περισσότερα ή καλύτερα δεδομένα και κατάλληλη μοντελοποίηση. Στην πράξη, η εκ-
τίμηση αβεβαιότητας υλοποιείται με δείκτες εμπιστοσύνης/εντροπίας, ensembles, στοχαστικά
περάσματα (π.χ. dropout), ή βαθμονόμηση θερμοκρασίας, με στόχο αξιόπιστες αποφάσεις
απόρριψης/αποδοχής.

1.3.2 Κανονικοποίηση Φάσματος (Spectral Normalization)

Η κανονικοποίηση φάσματος ελέγχει τη Lipschitz σταθερά των στρωμάτων περιορίζοντας
τη μέγιστη ιδιοτιμή (spectral norm) των βαρών. Πρακτικά, κάθε γραμμικός τελεστής W
ανακλιμακώνεται σε W̄ = W/∥W∥2, εξασφαλίζοντας 1-Lipschitz συμπεριφορά ανά στρώμα
(με αποδοτική προσέγγιση της σmax μέσω power iteration). Σε σύνθεση στρωμάτων με 1-
Lipschitz ενεργοποιήσεις (ReLU κ.ά.), προκύπτει παγκόσμιος έλεγχος ομαλότητας. Για την
ταξινόμηση, αυτό οδηγεί σε καλώς δομημένους εμφωλευμένους χώρους (embeddings) με
σταθερή γεωμετρία, βελτιωμένη βαθμονόμηση και πιο αξιόπιστους δείκτες αβεβαιότητας.

1.3.3 Μείγματα Γκαουσιανών (Gaussian Mixture Models)

Τα Μείγματα Γκαουσιανών (GMMs) προσεγγίζουν πολύτροπες κατανομές ως κυρτό συν-
δυασμό K Γκαουσιανών:

p(x) =

K∑
k=1

πkN (x | µk,Σk),
∑
k

πk = 1.

Η εκτίμηση των παραμέτρων (πk, µk,Σk) γίνεται συνήθως με EM. Στο πλαίσιο ανίχνευσης/
αναγνώρισης, ταGMMs εφαρμόζονται στον χώρο εμφωλευμάτων ανά κλάση ώστε να παρέχουν
λογαριθμικές πιθανοφάνειες/εντροπίες ως σήματα αβεβαιότητας και κριτήρια απόρριψης εκτός
κατανομής (OOD), με ελάχιστο πρόσθετο κόστος και καλή συμβατότητα με μοντέρνους
ανιχνευτές.
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1.4 Μεθοδολογία

Η προτεινόμενη προσέγγιση στοχεύει σε ανοικτή ανίχνευση αντικειμένων σε σενάρια

αέρος�αέρος, με δύο συμπληρωματικά στάδια: (i) Joint Thresholding, όπου συν-
δυάζονται η εγγενής εμπιστοσύνη του μοντέλου με την εντροπία των GMM για αποφάσεις
διατήρησης/ απόρριψης ανά ανίχνευση, και (ii) Fusion MLP, όπου ένα ελαφρύ πολυεπίπεδο
perceptron μαθαίνει να συγχωνεύει πολλαπλές ενδείξεις αβεβαιότητας σε έναν ενιαίο, βαθ-
μονομημένο κανόνα απόφασης. Και στα δύο στάδια, ο ανιχνευτής παραμένει αμετάβλητος
(detector-agnostic) και απαιτείται μόνο πρόσβαση στα εμφωλεύματα (embeddings) και στα
logits/σκορ του.

1.4.1 Joint Thresholding

Δομή pipeline. Κάθε είσοδος (εικόνα) επεξεργάζεται από ανιχνευτή πραγματικού χρό-
νου με συνελικτικό δίκτυο που έχει κανονικοποιηθεί φασματικά (spectral normalization)
για ευσταθή εμφωλεύματα. Για κάθε προτεινόμενη ανίχνευση (detection) λαμβάνονται: (α)
εγγενή σκορ εμπιστοσύνης (softmax/score con�dence, εντροπία, πυκνότητα των logits) και
(β) σήματα από χώρους εμφωλευμάτων μέσω Gaussian Mixture Models (GMMs) που
προσαρμόζονται ανά κλάση στα εμφωλεύματα του συνόλου εκπαίδευσης. Από τα GMMs
εξάγονται η πυκνότητα και η εντροπία ως σήματα αβεβαιότητας από τις λογαριθμικές πι-

θανοφάνειες.
Είσοδοι/΄Εξοδοι. Είσοδοι: ανά ανίχνευση, η εμπιστοσύνη του ανιχνευτή και η εν-

τροπία του GMM. ΄Εξοδος: δυαδική απόφαση keep/reject ανά κουτί, ώστε να απορρίπτονται
OOD/ αμφίβολες ανιχνεύσεις με ελάχιστο κόστος.

GMM & con�dence fusion. Η μέθοδος (joint thresholding) εφαρμόζει διπλό φίλτρο:
ένα κατώφλι στο σκορ του ανιχνευτή και ένα κατώφλι στο GMM-παράγωγο σήμα (εντροπία).
Η ανίχνευση διατηρείται όταν και τα δύο κριτήρια ικανοποιούνται. Προηγείται pruning πολύ
χαμηλών σκορ για απομάκρυνση θορυβωδών, πλεονάζουσων ανιχνεύσεων, και temperature
scaling για ήπια βαθμονόμηση των logits/ πυκνοτήτων. Η διαδικασία είναι απολύτως μετα-
επεξεργαστική (χωρίς νέα εκπαίδευση του ανιχνευτή) και διατηρεί ταχύτητα σε πραγματικό
χρόνο.

1.4.2 Fusion MLP

Κίνητρο. Οι χειροποίητοι κανόνες κατωφλίωσης δεν αξιοποιούν πλήρως τη συμπληρω-
ματικότητα των σημάτων. Στο δεύτερο στάδιο, μαθαίνουμε απευθείας τη συγχώνευση πολ-
λαπλών ενδείξεων αβεβαιότητας ώστε να βελτιωθεί η διάκριση ID/OOD (και, όπου απαιτείται,
η ρητή διάκριση {ID, OOD, BG}).
Δομή pipeline. Τρέχουμε τον προεκπαιδευμένο ανιχνευτή σε δεδομένα με γνωστές

(ID) και άγνωστες (OOD) περιπτώσεις και κατασκευάζουμε νέο σύνολο εκπαίδευσης σε
επίπεδο ανίχνευσης: για κάθε κουτί εξάγουμε διάνυσμα χαρακτηριστικών που μπορεί να περ-
ιλαμβάνει score con�dence, softmax entropy/density, GMM log-likelihoods/entropies και,
προαιρετικά, logits. Κάθε δείγμα επισημαίνεται ως ID, OOD ή BG (background) βάσει αντι-
στοίχισης με ground truth.
Είσοδοι/΄Εξοδοι. Είσοδοι: συμπαγή διανύσματα χαρακτηριστικών ανά ανίχνευση

(χωρίς ανάγκη πρόσβασης σε εικονοστοιχεία). ΄Εξοδος: λογάριθμοι πιθανοφάνειας (logits)
από ένα ελαφρύ MLP για (α) δυαδική απόφαση ID vs. OOD ή (β) τριταξική απόφαση
{ID, OOD, BG}. Στη συνέχεια εφαρμόζεται κατωφλίωση στα logits για να ικανοποιούνται
περιορισμοί open-set recognition (π.χ. επιθυμητά false acceptance rates).
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1.5. ΠΕΙΡ΄ΑΜΑΤΑ ΚΑΙ ΑΠΟΤΕΛ΄ΕΣΜΑΤΑ

Χαρακτηριστικά υλοποίησης. Το MLP είναι μικρού μεγέθους ώστε να εκπαιδεύε-
ται/εκτελείται σε περιορισμένο υλικό, αξιοποιεί την ίδια ροή εξαγωγής χαρακτηριστικών με το
πρώτο στάδιο και συνδυάζεται με τις ίδιες ήπιες βαθμονομήσεις (π.χ. temperature scaling).
Η επιλογή χαρακτηριστικών γίνεται συντηρητικά (με σκοπό να αποφύγουμε την υπερπροσαρ-
μογή), ενώ η εκπαίδευση μπορεί να προσαρμόζεται στο σενάριο (δυαδικό ή τριταξικό) χωρίς
αλλαγές στον ανιχνευτή.

Συνολικά, το Joint Thresholding παρέχει άμεση, χαμηλού κόστους ενίσχυση αξ-
ιοπιστίας μέσω απλών, αλλά συζευγμένων κανόνων, ενώ το Fusion MLP μαθαίνει έναν πιο
εκφραστικό κανόνα συγχώνευσης που αξιοποιεί πλήρως τα διαθέσιμα σήματα αβεβαιότητας,
διατηρώντας τον ρυθμό καρέ και την κλειστού συνόλου ακρίβεια.

1.5 Πειράματα και Αποτελέσματα

1.5.1 Πειραματική Διάταξη

Χρησιμοποιούμε ταAOT (κλειστό σύνολο), AOT-C (συνθετικές αλλοιώσεις), Real Flights
(πραγματικές πτήσεις με έντονο domain shift) και COCO-OS (πολύπλοκο, μεγάλης κλίμακας
ανοιχτό σύνολο). Η εκπαίδευση γίνεται σε GPU κατηγορίας A10G και οι ελαφρές συνιστώσες
(Fusion MLP) είναι συμβατές με CPU. Μετρικές: AUROC, TPR@OSR (5/10/20%), mAP
(CS/OS), FPS.

1.5.2 Μέρος I: Joint Thresholding

Ablation σε σήματα αβεβαιότητας

Για να συγκρίνουμε τον Joint Thresholding έναντι δημοφιλών συναρτήσεων αυτοπε-
ποίθησης/αβεβαιότητας, χρησιμοποιούμε υποσύνολο του AOT με εικόνες drones ως άγν-
ωστες κλάσεις. Ελέγχουμε score pruning, spectral normalization και temperature scaling
σε όλους τους συνδυασμούς. Παρατηρούμε ότι ο συνδυασμός (SN + pruning + scaling) με
Joint Thresholding δίνει τη σταθερά καλύτερη διαχωρισιμότητα.

mAP και FPS

Ελέγχουμε την επίδραση της βαθμονόμησης/κατωφλίωσης στην ανίχνευση κλειστού συνόλου
και στην ταχύτητα του ανιχνευτή. Η ακρίβεια CS/ OS mAP διατηρείται (ή βελτιώνεται οριακά
λόγω αποκοπής χαμηλών σκορ) και ο ρυθμός παραμένει σε πραγματικό χρόνο.

Σύγκριση με Δημοφιλείς Ανιχνευτές

Συγκρίνουμε με entropy thresholding και αντιπροσωπευτικές ανοικτού συνόλου μεθόδους
σε AOT-C και Real Flights. Ο αλγόριθμος Joint Thresholding υπερέχει συστηματικά σε
AUROC και AUROCbd χωρίς κόστος σε mAP/FPS, δείχνοντας ανθεκτικότητα σε συνθήκες
πραγματικής πτήσης.
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1.5.3 Μέρος II: Fusion MLP

Ablation διανύσματος εισόδου

Δοκιμάζουμε συνδυασμούς: detector scores, GMM σήματα και βαθμονομημένα logits,
αποφεύγοντας υψηλοδιάστατα embeddings. Το συμπαγές διάνυσμα (scores + GMM + logits)
αποδίδει καλύτερα και γενικεύει σταθερά.

Δύο κλάσεις (ID/OOD)

Αντιπαραβάλλουμε το Fusion MLP με score/entropy/density και το Joint Threshold-
ing σε AOT-C, Real Flights και COCO-OS. Η συγχώνευση υπερισχύει του ανταγωνισμού,
κρατώντας mAP και FPS στα επίπεδα του βασικού ανιχνευτή.

Τρεις κλάσεις (ID/OOD/BG)

Αξιολογούμε Fusion MLP έναντι double-thresholding με ρητή διάκριση υποβάθρου. Το
MLP μειώνει background ανιχνεύσεις (false positives) και διατηρεί την απόδοση στις ID
κλάσεις.

Domain Shift στην εκπαίδευση Fusion

Εξετάζουμε εκπαίδευση MLP με proxy OOD (άλλο drone dataset, COCO, συνθετικά
στο feature space) και σταθερό έλεγχο σε Real Flights. Καμία proxy πηγή δεν υποκα-
θιστά πλήρως in-domain OOD· η χρήση αντιπροσωπευτικών άγνωστων αντικειμένων κρίνεται
απαραίτητη για τη διατήρηση των επιδόσεων του αλγορίθμου.

1.6 Συμπεράσματα

Η διπλωματική εργασία αυτή ασχολήθηκε με το πρόβλημα της ανίχνευσης ανοιχτού συνόλου

με εκτίμηση αβεβαιότητας στην εναέρια ανίχνευση αντικειμένων, με έμφαση στις προκλήσεις
που εμφανίζονται κατά την ανάπτυξη σε UAV. Παρουσιάστηκε ένα μοντέλο-αγνωστικό πλαί-
σιο που συνδυάζει συμπληρωματικά σήματα αβεβαιότητας, εισάγει ρητή διάκριση ανάμεσα σε
υπόβαθρο και άγνωστα αντικείμενα, και διατηρεί πραγματικό χρόνο λειτουργίας, κατάλληλο
για ενσωματωμένα συστήματα. Σε benchmarks και δεδομένα πραγματικών πτήσεων, το πλαί-
σιο βελτίωσε σταθερά την ανθεκτικότητα ενώ διατήρησε την ακρίβεια του κλειστού συνόλου,
αποδεικνύοντας την πρακτική του αξία σε εφαρμογές κρίσιμες για την ασφάλεια.
Συνοπτικά, τα βασικά συμπεράσματα είναι:

� Το Joint Thresholding βελτιώνει το AUROC σε σχέση με τις βασικές μεθόδους
χωρίς να θυσιάζει mAP ή FPS.

� Το Fusion MLP υπερτερεί των χειροποίητων κατωφλίων και προσφέρει καλύτερη
τριμερή διάκριση (ID/OOD/Background).

� Η επιλογή κατάλληλωνOOD δεδομένων εκπαίδευσης αποδείχθηκε κρίσιμη για τη γενίκευση
και τη σταθερότητα των μεθόδων.

Συνολικά, η εργασία συμβάλλει στη βελτίωση της αξιοπιστίας των συστημάτων αντίλ-
ηψης UAV, μειώνοντας τα υψηλής εμπιστοσύνης σφάλματα και αυξάνοντας την ασφάλεια σε
πολύπλοκα αεροπορικά περιβάλλοντα.
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Chapter 2

Introduction

Unmanned Aerial Vehicles (UAVs), commonly known as drones, have experienced a sig-
ni�cant surge in applications across various sectors, including military operations, real-time
monitoring, emergency response, goods delivery, and scienti�c research. Their versatility
and e�ciency have made them indispensable tools in both civilian and military contexts.
As the deployment of UAVs increases, so does the complexity of the airspace they must
navigate. Particularly in urban environments, the risk of mid-air collisions becomes a
pressing concern due to the high density of obstacles and other airborne objects. Cur-
rent regulations require operators to maintain a Visual Line of Sight (VLOS) with their
drones, which limits the potential for fully autonomous operations and restricts UAVs from
reaching their full capabilities. To address these challenges, Sense and Avoid (SAA) sys-
tems have been developed to enable UAVs to detect and autonomously avoid potential
collisions. These systems utilize sensors to observe the environment, recognize threats,
and make decisions to minimize risks while accomplishing mission objectives. However,
existing SAA systems face signi�cant hurdles, particularly in dealing with non-cooperative
tra�c that does not share positional information and in operating reliably under varying
environmental conditions.

Within aerial perception, two related yet distinct problem settings face di�erent practi-
cal challenges. Air-to-air detection targets other airborne agents (airplanes, helicopters,
drones, birds) against largely unstructured backgrounds (sky, clouds, glare). Targets are
typically small, distant, and fast-moving, labeled data are scarce, and missed detections
are safety-critical. Air-to-ground detection focuses on vehicles, vessels, infrastructure,
and terrain from a top-down vantage. Here the pain points are extreme scale variation,
arbitrary object orientations, clutter and occlusions, and diverse classes under shifting
viewpoints, weather, and illumination. Both regimes share the same constraints: real-time
inference on SWaP-limited platforms, robustness to adverse conditions and sensor artifacts
(blur, noise, compression), and reliable localization of very small objects.

Reliable perception is therefore critical to enabling robust and safe autonomy in UAV
operations, especially in complex air-to-air scenarios involving dynamic, non-cooperative
targets. Traditional object detection frameworks typically assume closed-set conditions,
where the object categories encountered during inference are known a priori and adequately
represented in the training dataset. However, real-world UAV deployments frequently
violate this assumption due to environmental variations, sensor noise, domain shifts, and
the inevitable presence of previously unseen or unknown aerial targets. Such violations can
signi�cantly degrade detection accuracy and compromise operational safety, underscoring
the necessity of robust open-set detection methods capable of reliably identifying and
rejecting unknown or ambiguous targets.
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Open-set object detection (OSOD) methods aim explicitly at detecting objects be-
longing to known categories while e�ectively rejecting unknown instances, ensuring safer
autonomous decision-making under uncertainty. Motivated by these limitations, this thesis
introduces a robust, uncertainty-aware OSOD framework speci�cally designed for air-to-
air UAV detection scenarios. The framework integrates semantic uncertainty estimation
via embedding-space entropy modeling, drawing inspiration from techniques such as Deep
Deterministic Uncertainty (DDU) and Gaussian Mixture Modeling-based detection (GMM-
Det). To further enhance robustness, spectral normalization is incorporated to stabilize
feature geometry and temperature scaling for con�dence calibration. At inference, the
detector's native softmax con�dence is fused with embedding-space uncertainty to keep
high-trust detections and discard ambiguous ones, introducing negligible runtime over-
head.

The framework is extensively validated using the challenging AOT-C aerial benchmark
and real-world �ight experiments conducted under diverse operational conditions. Through
systematic ablation studies, improvements in open-set discrimination and robustness over
strong YOLO-based baselines are demonstrated, while preserving closed-set mAP and
real-time throughput (>20FPS on embedded platforms). Notably, this method achieves
substantial performance gains in adverse real-world aerial conditions.

Contributions

� Model-agnostic, uncertainty-aware OSOD for air-to-air detection via embedding-
space Gaussian mixtures and entropy, fused with detector con�dences for per-box
keep/reject decisions.

� Calibration and regularization: spectral normalization to smooth feature geom-
etry and temperature scaling to improve con�dence calibration under shift.

� Real-time, low-overhead design: a post-hoc pipeline that preserves embedded-
platform throughput.

� Comprehensive evaluation: AOT-C and real �ight tests demonstrating higher
open-set AUROC and stable closed-set accuracy under adverse conditions.
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Chapter 3

Background and Related Work

3.1 Aerial Object Detection

3.1.1 Air-to-Air Object Detection

Air-to-air object detection refers to UAVs detecting other airborne objects (e.g. other
drones, manned aircraft, birds) using onboard sensors. This capability is critical for Sense-
and-Avoid (SAA) systems that prevent mid-air collisions in increasingly crowded skies
[3]. In civil applications like parcel delivery drones and urban air taxis, reliable aerial
object detection enables autonomous collision avoidance to meet safety regulations (which
currently require human line-of-sight). It is also vital for UAV swarm coordination (each
drone tracking others visually) and for counter-drone systems to detect malicious UAVs
entering protected airspace [3]. These use cases demand real-time performance and high
detection reliability, as missed detections or false alarms can lead to accidents in safety-
critical scenarios.

Early work on air-to-air detection was limited by scarce specialized datasets. Recently,
dedicated benchmarks have emerged to advance this �eld. Notably, the Airborne Object
Tracking (AOT) dataset and similar UAV-to-UAV detection datasets (e.g. the UAV-DetFly
and UAV-Fly datasets) have been introduced, providing labeled imagery of �ying objects
captured from drones [3]. These benchmarks enable standardized evaluation of algorithms
for detecting and tracking airborne targets. However, they remain constrained in envi-
ronmental diversity � e.g. most images are collected in clear weather and uncluttered
backgrounds. Thus, current detectors trained on such data may struggle under adverse
conditions not represented in the training set.

Key challenges in air-to-air detection include the typically small object size and distant
range of targets, as well as relative speeds that can be very high (both the observing UAV
and target may be moving rapidly). Airborne objects often appear as barely a few pixels or
a tiny silhouette against the sky, making them di�cult to distinguish. The background can
vary from a plain sky to a complex ground backdrop if the camera's line-of-sight extends
toward the horizon. The lack of cooperation from targets (non-cooperative tra�c) means
no prior information (like GPS broadcast) is available, so detection must rely purely on
sensor data. This visual detection approach is one of the few viable options for air-to-air
scenarios due to payload limits on small UAVs (which preclude heavy sensors). Overall,
air-to-air object detection must achieve high sensitivity to small, fast-moving objects and
do so with minimal latency to be useful in collision avoidance.
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3.1.2 Air-to-Ground Object Detection

Air-to-ground object detection covers scenarios where aerial platforms (UAVs, aircraft,
or satellites) detect objects on the ground. This is common in remote sensing and surveil-
lance applications, such as tra�c monitoring, search-and-rescue, precision agriculture, and
military reconnaissance. Unlike air-to-air, here the camera looks downward to identify tar-
gets like vehicles, ships, buildings, or people on the Earth's surface. Large-scale datasets
like DOTA [43] (Dataset for Object Detection in Aerial images) and FAIR1M [39] (Fine-
grained Object Recognition in Remote Sensing Imagery) have driven progress in this area.
For instance, the DOTA dataset contains over 2,800 high-resolution aerial images (around
4000×4000 pixels each) with about 188,000 annotated object instances across 15 categories.
Each object is labeled with an oriented bounding box (a quadrilateral), re�ecting the fact
that in aerial views objects can appear at arbitrary orientations rather than aligned to the
image axes. FAIR1M is an even larger benchmark with over 15,000 images and 1 million
object instances, focusing on �ne-grained categories of aircraft, ships, and vehicles. These
datasets highlight unique challenges of air-to-ground vision: enormous scale variations (a
single image can contain both close-up large objects and far-away tiny objects), densely
crowded scenes in some areas and sparse regions in others, and the need to handle rotated
objects and di�erent viewpoints.

Cutting-edge models for aerial image detection have adapted general object detection
frameworks to meet these challenges. Many two-stage detectors (e.g. Faster R-CNN)
and one-stage detectors (e.g. YOLO) have been evaluated on DOTA and FAIR1M, often
with modi�cations for rotated bounding boxes (such as oriented R-CNN or transformer-
based methods for rotation). Results show that while deep learning detectors achieve good
accuracy on these benchmarks, performance can still lag behind that on natural image
datasets like COCO, due to the increased complexity of aerial scenes. Nonetheless, contin-
uous improvements are being made: for example, specialized oriented-object detectors (like
the recent AO2-DETR transformer [8]) have attained state-of-the-art results by directly
predicting rotated boxes and accounting for orientation in their design. Air-to-ground de-
tection remains an active research area, bridging computer vision and remote sensing, with
importance for both civilian and defense-related applications.

3.1.3 Common Challenges in Aerial Detection

Despite the di�ering perspectives, air-to-air and air-to-ground detection share many
common constraints that make the problem particularly challenging:

� Small Object Size and Scale Variation: Aerial objects often occupy only a few
pixels or a tiny fraction of the image (e.g., a small drone at distance, or a vehicle in
a wide-area satellite image). This makes detection di�cult, as models must discern
minute targets from background noise. Extreme scale variation can occur, requiring
detectors to handle both very large and very small instances in the same frame.

� High Speeds and Dynamic Scenes: In air-to-air scenarios, both the sensor platform
and the target may be moving at high velocity, drastically reducing the time window
for detection and increasing motion blur. Even in air-to-ground settings, a UAV
moving at speed introduces motion parallax and rapidly changing viewpoints. Fast-
moving objects (e.g. another UAV or a car) exacerbate the challenge of obtaining a
clear detection in time. Dynamic backgrounds (moving clouds, swaying trees, etc.)
can further complicate distinguishing true objects.
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� Occlusion and Clutter: Aerial images can be cluttered with many irrelevant ob-
jects or textures (waves on water, patterns on the ground). In urban environments,
ground objects can be partially occluded by buildings or vegetation. Similarly, mul-
tiple airborne objects might overlap in the camera view. Such occlusions and back-
ground clutter make it hard for detectors to isolate the object of interest from the
background.

� Varying Environmental Conditions: Aerial detection must contend with chang-
ing lighting (day/night, sun angles), weather conditions (fog, rain, snow), and atmo-
spheric e�ects. For example, fog or haze can obscure distant objects, and glare can
wash out camera images. These factors lead to domain shifts between training data
(often collected in clear, favorable conditions) and real-world deployment scenarios.
Without robustness to such variations, models that perform well in the lab can fail
in the �eld.

� Sensor and Platform Variability: Di�erent UAVs may use di�erent cameras or
sensors (with varying resolutions, �elds of view, spectral bands, etc.), and capture
data from di�erent altitudes or angles. A model trained on one sensor's data may not
directly generalize to another sensor due to di�erences in image characteristics (color,
noise pro�le, etc.). Moreover, as UAVs move, the viewpoint can change rapidly (e.g.,
looking forward versus downward), causing the appearance of objects to shift.

� Real-Time Processing Requirements: Both air-to-air and air-to-ground detec-
tion often require real-time operation. In collision avoidance, decisions must be made
within seconds or less to be e�ective. This imposes strict latency and computational
constraints on detection algorithms. The UAV's onboard computer typically has
limited processing power due to Size, Weight, and Power (SWaP) constraints, so the
detection method must be e�cient. High accuracy is needed, but not at the expense
of speed � the system must maintain a high frame rate to track fast events. Achiev-
ing robustness under the above challenges while meeting real-time and hardware
limitations is a core di�culty in aerial object detection.
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3.2 The Collision Avoidance Pipeline

A UAV's collision avoidance system can be conceptualized as a multi-stage pipeline
that mimics a human pilot's process of perceiving and reacting to threats. This Sense-and-
Avoid pipeline takes raw sensor inputs and produces safe navigational actions. We provide
an analytical overview of the pipeline, outlining each stage and the associated methods, as
depicted in recent literature. We also discuss the sensing modalities available, the detection
and tracking algorithms used to perceive obstacles, the decision-making approaches to
select avoidance maneuvers, and the various system constraints that in�uence the pipeline
design.

3.2.1 Pipeline Stages Overview

The collision avoidance pipeline typically consists of four key stages:

1. Sensor Data Acquisition (and Preprocessing): The system �rst gathers obser-
vations of the environment through onboard sensors (camera frames, LiDAR point
clouds, radar signals, etc.). Data augmentation or preprocessing may also occur at
this stage to enhance sensor inputs. This raw sensor feed provides the basis for all
subsequent analysis.

2. Object Detection: Next, algorithms analyze the sensor data to detect and localize
objects that could pose collision threats. In this stage, the system di�erentiates
foreground objects from the background and estimates their bounding boxes or other
descriptors. Importantly, this detection step is performed on a frame-by-frame basis
(a �temporal snapshot�), not yet linking observations over time. The output is a set
of observed objects (obstacles or other aircraft) with their positions (and sometimes
categories or sizes).

3. Re-Identi�cation and Tracking: The detected objects are then fed into a track-
ing module that associates detections across consecutive time frames. Each newly
detected object is either matched to a previously seen object (re-identi�cation) or
initialized as a new track if it hasn't been seen before. Through tracking, the system
maintains a situational picture of each threat's trajectory (position over time and
estimated velocity). This spatio-temporal modeling of threats greatly aids prediction
and decision-making.

4. Decision-Making Algorithms: Finally, given the detected and tracked obstacles
and their predicted trajectories, the system must decide on an avoidance maneuver
(or con�rm that none is needed). The decision module takes the world model from
previous stages and computes the optimal evasive action to avoid collision, balancing
safety as the top priority with other objectives like mission continuity or energy
e�ciency. This could involve choosing a new �ight path, adjusting speed, or in
multi-rotor drones, an immediate evasive maneuver.

These stages operate in a closed loop at high frequency, constantly sensing, detecting,
tracking, and updating decisions as the UAV moves. In practice, there may be feedback
between stages (e.g., the decision to maneuver might reset tracking of an object if the
ownship UAV turns abruptly). Each stage has to be robust and e�cient for the overall
system to function reliably in real-time.
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3.2.2 Sensing Modalities: Cooperative vs. Non-Cooperative

The foundation of the SAA pipeline is the sensor suite. Broadly, sensing approaches
for collision avoidance are categorized into cooperative and non-cooperative modalities:

� Cooperative Sensing: These methods rely on cooperative communication between
aircraft. For example, transponders and systems like ADS-B (Automatic Dependent
Surveillance�Broadcast) allow aircraft to broadcast their own GPS position, velocity,
and ID to others. If all aircraft in an airspace are equipped and enabled, a UAV can
simply receive positional data of nearby tra�c and predict collisions. Cooperative
sensors (including Tra�c Collision Avoidance Systems, TCAS) are e�ective in sce-
narios where adoption is wide. However, they fail to detect �non-cooperative� objects
that do not broadcast signals (e.g., a hobby drone or bird). They also require extra
communication hardware and have reliance on spectrum and protocol compliance.

� Non-Cooperative Sensing: To handle objects that do not self-report their position,
UAVs use onboard sensors to perceive the environment. A variety of sensor types
have been explored, each with pros and cons:

� Vision Cameras: Normal RGB cameras are popular due to their lightweight,
low cost, and richness of information. They can detect a wide range of object
types and provide classi�cation cues. The downside is that interpreting images
is computationally intensive � requiring advanced computer vision algorithms
� and performance can degrade in poor lighting or weather.

� LiDAR: Laser scanners provide precise 3D distance measurements to obstacles.
LiDAR can directly sense range and shape, which is advantageous for accurate
obstacle localization. However, LiDAR units are typically heavier and more
power-hungry, and their performance is severely impacted by weather (rain,
fog, and dust can scatter the laser). Cost is also a limiting factor for many
UAV applications.

� Thermal Infrared Cameras: These can detect heat signatures and so might
pick up other aircraft via engine heat or warm bodies (for birds). Yet, thermal
sensors have limited range and resolution, and like vision, can be a�ected by
weather obscurants. They are more often used in low-light/night scenarios as
a complement to visible cameras.

� Radio-Frequency (RF) Sensors: RF-based ranging (like radar altimeters or pas-
sive RF detectors) can detect objects emitting radio signals or radar re�ections.
They can work at long range, but RF methods are prone to interference and
noise in cluttered electromagnetic environments. For example, a drone might
use a simple radar to detect large obstacles, but small drones or birds provide
very weak radar returns and may be missed.

� Millimeter-Wave Radar: Specialized automotive-style radars operating at high
frequency (e.g., 77GHz) have been tested on drones. They are all-weather and
can detect objects' range and relative velocity. However, distinguishing small
airborne objects with radar is challenging, as is resolving closely spaced objects.
Moreover, radars add to system complexity and require signi�cant processing.

Each UAV collision avoidance system must carefully select a sensor suite that balances
these trade-o�s. Often, a combination is used (sensor fusion), e.g. a camera for object
classi�cation and a radar for range measurement. Ultimately, the sensing modality sets the
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stage for the detection algorithms and in�uences their design (e.g., vision-based detectors
vs. LiDAR-based obstacle detection).

3.2.3 Object Detection and Tracking in SAA

Once sensor data is acquired, the pipeline's perception components (detection and
tracking) identify and characterize airborne objects. Object detection in SAA systems
is often implemented with advanced computer vision models that take images (or other
sensor data) and output bounding boxes around potential obstacles. Recent research has
applied deep learning detectors, originally developed for generic object detection, to the
aerial domain. For instance, convolutional neural network (CNN) based detectors have
been trained to spot other UAVs in camera images. A notable example is the work by
Arsenos et al. [?], who developed a vision-only real-time collision avoidance framework
using object detection, tracking, and distance estimation with deep learning models. In
their pipeline, a YOLO-based detector was used to identify �ying objects in each frame,
and then stereo vision techniques estimated range � demonstrating a purely vision-driven
SAA solution.

Detection in this context must prioritize high recall (not missing any true obstacle)
while maintaining low false alarms. Some approaches tailor the detection algorithms to
aerial scenarios, for example by training on drone images and augmenting data to simulate
various backgrounds (sky, clouds, ground). The output of the detector (locations of objects)
is then passed to the tracking stage. Tracking algorithms (like Kalman �lters, SORT, or
deep SORT for vision-based tracking) take these raw detections and link them over time to
form trajectories. By tracking, the system can estimate the relative velocity and heading
of a detected object, which are crucial for predicting future positions and collision risk
assessment. Tracking also helps smooth out noise from the detector (since a consistent
track gives more con�dence than a single-frame detection) and can handle brief occlusions
by predicting where an object will reappear.

A challenge in aerial tracking is maintaining locks on very small objects that may
maneuver quickly. Approaches to improve robustness include using the physics of �ight
(e.g., assuming a �ying object will follow certain motion constraints) or employing re-
identi�cation descriptors (appearance features of the object) to avoid identity switches.
The end product of the detection & tracking stage is a situational awareness: the UAV
knows �what� is around it (object detections) and �where it is going� (tracks and velocities
of those objects).

3.2.4 Decision-Making Algorithms for Avoidance

With a dynamic world model from the tracker, the �nal pipeline stage is to decide
on avoidance maneuvers. Over the years, various decision-making paradigms have been
explored, ranging from simple rule-based strategies to sophisticated machine learning meth-
ods:

� Rule-Based and Geometric Methods: Traditional collision avoidance logic of-
ten uses prede�ned rules or geometric calculations. An example is the Probabilistic
Intersection Collision Avoidance (PICA) algorithm, a rule-based method that uses
current distances and relative velocities to decide evasion, without needing any learn-
ing. Such algorithms tend to be computationally lightweight and can be analytically
veri�ed for safety. However, they might be myopic (considering only current snap-
shot, not future trajectory) and have limited adaptability to complex scenarios.
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Legacy systems like the ACAS XO advisory for manned aircraft rely on massive
lookup tables of optimal maneuvers for given states, but these tables can be too
large for UAVs (several GB in size). Researchers have compressed these into neural
networks � e.g., using a deep network to approximate the table with much smaller
memory (tens of MB) � merging rule-based optimal strategies with learning-based
function approximation.

� Reinforcement Learning (RL) Approaches: Deep reinforcement learning allows
a UAV to learn collision avoidance policies by trial-and-error in simulation. For
instance, Ouahouah et al. propose a DQN-based approach named RELIANCE,
which learns an avoidance policy by interacting with simulated UAV tra�c. The RL
agent observes the state (positions of threats) and outputs maneuver actions, trained
to minimize collision incidents. RL methods can in theory handle complex, dynamic
environments by learning adaptive strategies. In practice, they require extensive
training and careful reward design, and the learned policy's reliability outside its
training conditions can be hard to guarantee. RELIANCE was shown to outperform
the rule-based PICA in dynamic scenarios (since it anticipates future behavior by
learning from data), but it demands more computational resources (e.g., needing a
GPU or powerful onboard computer for real-time inference).

� Imitation Learning: Another avenue is training the UAV's decision module by
imitating an expert (e.g., human pilot or a known optimal strategy). The system
learns a mapping from sensor/tracker inputs to avoidance actions by observing the
decisions of an expert in many scenarios. This can achieve good performance if
the expert demonstrations cover diverse cases. One challenge found in practice is
that the camera's �eld of view can be narrow, so an imitation policy might not
generalize if an obstacle approaches from an angle outside the training scenarios.
Also, a broader �eld of view (or multiple cameras) could improve safety but at the
cost of more data processing and possibly lower image resolution per camera. Thus,
imitation-learned policies must carefully balance sensor con�guration with learned
behavior.

In summary, the decision-making stage can be implemented via a spectrum of methods:
simple reactive rules for resource-limited drones, or complex learned policies (RL or imita-
tion) for drones with more computing capability and in more unpredictable environments.
Hybrid approaches also exist, such as using rule-based logic for well-understood cases and a
learned policy for edge cases, or running a learned policy with a rule-based safety override.
Regardless of approach, any decision algorithm for SAA must be thoroughly tested to en-
sure it avoids collisions reliably and does not introduce unsafe maneuvers (the evaluation
often happens �rst in high-�delity simulations and then in controlled �ight tests).

3.2.5 System Constraints and Considerations

Real-world UAV collision avoidance must operate under stringent system constraints:

� Onboard Hardware (SWaP) Limitations: Small UAVs are constrained in Size,
Weight, and Power. This limits the processing hardware that can be carried � often
to a lightweight embedded GPU or CPU. As a result, algorithms that are too com-
putationally heavy or memory-intensive may be impractical for real-time use. The
pipeline must be optimized to run within the available computing budget, sometimes
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requiring quantized models, e�cient neural network architectures, or o�oading com-
putation to edge servers when possible. However, o�oading data comes with its own
issues, as described next.

� Communication Latency and Reliability: If parts of the processing (especially
the detection/tracking) are o�oaded to a ground station or cloud (to leverage more
powerful computing), the communication link's latency and stability become criti-
cal. Network delays or dropouts could render the avoidance system ine�ective when
a fast reaction is needed. For this reason, many SAA systems strive to be self-
contained onboard. When wireless links are used (for example, to get cooperative
tra�c info or to o�oad heavy vision processing), designers must account for poten-
tial lag and packet loss. Techniques like prediction bu�ers can mitigate latency (by
planning avoidance assuming worst-case delays), but the safest course is often to
require autonomy without reliance on real-time comm links.

� Real-Time Operation: Collision avoidance is inherently a real-time task � detec-
tion - to -decision loops must execute within fractions of a second to be useful for
high-speed UAVs. This imposes a hard constraint on each pipeline stage's execution
time. For instance, if a UAV is closing in at 20 m/s to an obstacle and needs at least
1 second to safely turn, the system must detect and initiate an avoidance maneuver
at least a second in advance. That leaves very little margin for computing. Every
stage from sensor readout, inference (detection/tracking), to decision-making must
be streamlined and possibly run in parallel or on dedicated hardware accelerators.

� Safety and Redundancy: As a safety-critical system, the collision avoidance
pipeline often includes redundancies and fail-safes. Multiple sensors can provide
redundancy (e.g., having both a camera and a radar � if one fails or is uncertain,
the other can con�rm). The decision logic might incorporate safety margins � for
instance, issuing avoidance commands that err on the side of caution if any uncer-
tainty exists in the object state estimation. Furthermore, rigorous validation (often
following aviation standards) is needed. These considerations can sometimes con�ict
with performance; for example, adding more sensors improves reliability but adds
weight and processing load.

Given these constraints, researchers have emphasized the need for algorithms that are not
only accurate but also resource-e�cient. Recent studies highlight the incompatibility of
certain advanced techniques with UAV platforms: for instance, some domain generalization
or deep learning methods dramatically improve robustness but are too slow or heavy for
onboard use. Thus, an active area of research is slim, optimized neural networks and
algorithms that maintain high detection and avoidance performance while �tting within
the tight SWaP and real-time envelope of UAV systems.
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3.3 Vision Models for Aerial Detection

Having reviewed the pipeline and sensing, we now focus on the core vision models used
for aerial object detection. Modern object detectors can be categorized by their architec-
ture into one-stage and two-stage approaches, each with implications for performance and
suitability in aerial tasks. We highlight representative models from both categories � par-
ticularly the evolution of the YOLO family, and transformer-based detectors like DETR
� and note their performance on standard benchmarks (COCO for generic objects, and
DOTA/FAIR1M for aerial images).

3.3.1 One-Stage vs. Two-Stage Detectors

In traditional computer vision, two-stage detectors (e.g., the R-CNN family) �rst gen-
erate region proposals and then classify each proposal, whereas one-stage detectors (e.g.,
YOLO, SSD) predict class probabilities and bounding boxes in a single pass over the image.
Two-stage models historically achieved higher accuracy on benchmarks by focusing on a
few promising object regions, but at the cost of speed. One-stage models are designed for
speed, performing dense prediction over the image in one go, but had to close the accuracy
gap with innovations in network design and loss functions.

In the aerial domain, the trade-o�s manifest in speci�c ways. Because aerial images
often contain many small objects and the objects can appear in arbitrary orientations,
the detector's design needs to handle those. Two-stage detectors can be adapted (e.g.,
Faster R-CNN with rotated RoI pooling to handle oriented boxes). One-stage detectors
can incorporate custom anchor boxes or prediction heads for small and rotated objects.
An important consideration is that many aerial platforms (like drones) demand real-time
inference, favoring one-stage methods for their e�ciency. Indeed, recent evaluations have
found that advanced one-stage models can match or exceed two-stage models in accuracy
while being faster, making them attractive for UAV use. For example, Arsenos et al.
report that one-stage YOLO models not only run in real-time but also exhibit better
robustness under image corruptions compared to a two-stage Faster R-CNN in air-to-
air detection tasks. In contrast, transformer-based detectors (which we discuss below)
and older two-stage methods showed vulnerability to domain shifts, despite competitive
standard accuracy.

3.3.2 Representative Detection Models

YOLO Series (One-Stage): The �You Only Look Once� (YOLO) family of models
has become synonymous with real-time object detection. From YOLOv1 (2016) through
YOLOv8 (2023) and beyond, each iteration has improved on accuracy and capabilities
while preserving high speed. YOLO models predict bounding boxes and class probabilities
through a single forward network pass, making them extremely fast � a crucial advantage
for onboard UAV deployment. They also tend to be lightweight, which aligns with UAV
hardware limits. In aerial tasks, YOLO has been widely used; for instance, as a baseline in
open-set drone detection research, YOLOv5 achieved around 40�43 mAP on known object
classes in a UAV image benchmark. However, a standard YOLO trained on a �xed set
of classes will treat any object as one of those classes � it has no built-in mechanism to
recognize an object it was never trained to detect (the open-set problem). This can lead to
false detections when an unknown object appears. Recent work addresses this by adding
uncertainty estimation to YOLO-like models, so that the detector can say �I'm not sure
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what this is� for novel objects. The most up-to-date YOLO versions continue to push
the envelope, incorporating transformer layers and other enhancements. On the COCO
dataset, top YOLO models reach around 50% AP (average precision) while running at 60+
FPS on GPU � a balance of accuracy and speed that is hard to beat. On aerial datasets like
DOTA, YOLO models adapted for oriented boxes have also been successful, though they
may require adjustments (such as angle prediction) to handle the rotated targets common
in aerial images.

DETR and Transformer-Based Detectors: A major recent development in object
detection is the introduction of Transformers, as exempli�ed by DETR (Detection Trans-
former). DETR reframes detection as a direct set prediction problem using an encoder-
decoder transformer architecture, eliminating the need for hand-designed anchor boxes and
non-maximum suppression. The original DETR achieved comparable accuracy to Faster
R-CNN on COCO (around 42% AP) but needed long training schedules and struggled with
small objects. Subsequent variants (Deformable DETR, SMCA, etc.) improved training
speed and small object detection. In aerial imagery, the oriented-object extension of DETR
has shown promise. For example, Rotated DETR and AO2-DETR introduce mechanisms
to predict rotated boxes by generating oriented proposals and rotation-invariant features.
These models directly output angled bounding boxes suitable for datasets like DOTA and
FAIR1M. The bene�t of a transformer approach is that it can globally reason about the
image context, potentially handling dense scenes or learning long-range dependencies (like
groups of objects). However, transformers tend to be heavy; the computational load of
DETR can be signi�cant, and early studies (like Michaelis et al. for autonomous driv-
ing) found that transformer detectors could be less robust to distribution shifts. For UAV
applications, real-time performance is a concern � a naive DETR model might not meet
the frame rate requirement on onboard hardware. Research is ongoing to compress and
accelerate such models, or hybridize them with convolutional features to get the best of
both worlds.

Oriented Object Detectors for Remote Sensing: Because standard COCO-style
detectors output axis-aligned boxes, a special class of detectors has been devised for aerial
image tasks requiring oriented bounding boxes. These include adaptations of classic models
(e.g., Oriented Fast R-CNN, Rotated RetinaNet) and bespoke architectures. Many oriented
detectors introduce additional angle predictors and rotation-aware loss functions. For
instance, one approach is to predict the four vertices of the bounding box polygon instead
of just width/height/angle, thus capturing orientation implicitly. DOTA benchmark results
over the years show steady improvement: early methods achieved around 60% mAP, while
more recent ones with deeper backbones and ensemble strategies exceed 80% mAP on
DOTA-v1.0. DETR-OBB (oriented bounding box) variants combine transformers with
angle prediction to reach state-of-the-art. In the FAIR1M dataset (which has numerous
�ne-grained classes like di�erent aircraft models or ship types), detectors often incorporate
a classi�cation head that can handle many categories and subtle di�erences � sometimes
using a two-step process (detect the object, then a secondary classi�er for �ne-grained
recognition). A noteworthy observation is that detectors which perform best on natural
images are not always the top on aerial images; specialized models or training techniques
are needed to cope with the tiny objects and extreme aspect ratios (for example, a run-
way aligned airplane can be a very slender, rotated bounding box). Nevertheless, progress
in generic object detection has greatly bene�ted aerial detection: techniques like data
augmentation, multi-scale feature pyramids, and better backbone networks (e.g., ResNeXt,
Swin Transformer backbones) have all been transferred to the aerial domain to boost
performance.
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In summary, the state-of-the-art vision models for aerial object detection include fast
one-stage models (YOLO and its variants) that excel in real-time settings, and advanced
two-stage or transformer-based models (including DETR and oriented detectors) that
achieve high accuracy and are tailored to aerial images. On benchmarks, one-stage mod-
els o�er a compelling accuracy-speed tradeo� (for example, YOLO-based models are often
top performers in real-time UAV tracking competitions), while transformer models promise
improved long-range context understanding and end-to-end simplicity (no post-processing)
at the cost of increased computation.
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3.4 Domain Generalization

As UAVs venture into varied environments, a trained model will inevitably encounter
conditions di�erent from its training data, causing a drop in performance. This problem
is referred to as domain shift: the statistical distribution of input data (and possibly
labels) changes between training (source domain) and deployment (target domain). For
example, a drone vision model trained on sunny daytime images may falter on cloudy or
twilight conditions; a detector trained on simulation or one geographic region may not
work well in a new locale. Traditional approaches to address this involve transfer learning
or domain adaptation, where some data from the target domain is used to �ne-tune the
model. However, in many UAV scenarios, collecting or labeling target-domain data (e.g.,
every possible weather or location) is impractical. This motivates the concept of Domain
Generalization (DG), where the aim is to train models that generalize to unseen domains
without any target domain exposure during training.

In formal terms, domain generalization techniques assume multiple source domains
available during training (e.g., images captured in di�erent cities, seasons, or sensor set-
tings) and seek to learn a model whose performance will remain high on a new domain
drawn from the same task. Unlike domain adaptation, no target domain data (not even
unlabeled) is used in training � the model must be inherently robust to shifts. DG also
di�ers from standard transfer learning: instead of simply �ne-tuning on a new domain,
DG prepares the model to handle new domains from the outset. Essentially, DG attempts
to capture the invariances and essential features of the task that hold across domains, and
to avoid over�tting to domain-speci�c cues.

Research in domain generalization has proposed a variety of methods. These can be
grouped into three broad categories:

1. Data Manipulation Techniques: Methods that enrich or manipulate the training data
to expose the model to a wider variety of conditions. This includes data augmenta-
tion (applying transformations like random crops, �ips, color changes, adding noise)
beyond the typical, sometimes in a learned or adversarial manner to simulate domain
shifts. For example, one could randomize image styles or weather conditions (known
as domain randomization) so the model learns to rely on invariant features. Another
approach is data generation, where additional training samples are synthesized (e.g.,
using GANs or neural style transfer) to cover hypothetical domains. The goal is to
have training data that is as diverse as possible, so that any new domain appears
as just another variation the model has seen. In UAV context, this might mean
augmenting images to simulate di�erent sensor noise levels, motion blur, lighting,
or backgrounds (forest vs urban scenes) to prevent the model from latching onto
spurious domain-speci�c details.

2. Representation Learning Techniques: These methods focus on learning features that
are domain-invariant � i.e., the model's internal representations generalize across
domains. One popular strategy is domain adversarial training (as in DANN frame-
works), where the model is trained to perform the task (e.g. detection) while si-
multaneously trying to confuse a domain discriminator network that attempts to
predict which domain a sample comes from. By adversarially learning, the feature
extractor is encouraged to remove domain-speci�c information. Other representa-
tion approaches include invariant risk minimization (�nding features that have a
stable correlation with labels across domains) and feature disentanglement (separat-
ing features into domain-speci�c and domain-shared parts and only using the latter
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for prediction). Contrastive learning can also be used: e.g., ensure that an object's
features from domain A are close to the same object's features from domain B, to
enforce domain invariance. In aerial vision, an example might be training a detec-
tor on both simulated and real images such that the internal feature maps for an
airplane are similar regardless of sim vs real, thus bridging the gap without explicit
adaptation.

3. Learning Strategies and Meta-Learning: These methods alter the training procedure
or learning strategy to promote generalization. Ensemble learning is one, where
multiple models (or multiple specialized classi�ers) are trained on di�erent domains
or subsets and then combined, so that a new domain can be handled by some mix-
ture of these experts. Meta-learning (learning-to-learn) approaches explicitly sim-
ulate domain shift during training: the training data is split into pseudo-train and
pseudo-test with di�erent �domains,� and the model is optimized to do well on a new
pseudo-test domain after seeing the pseudo-train domains. This forces the model to
acquire a generalization ability. Approaches like MLDG and MetaReg train models
in an episodic fashion to be ready for domain changes. Other strategies include
gradient-based methods (adjusting or regularizing the optimization process so that
it doesn't over�t source domains) and self-supervised auxiliary tasks (which improve
the learned features' generality). In essence, these approaches treat domain general-
ization as a problem of learning robust training routines that yield models capable
of extrapolation.

It is worth noting that these categories are not mutually exclusive � a practical DG ap-
proach for UAV detection might combine data augmentation with an invariant feature loss,
for example. The surveys by Zhou et al. and Wang et al. provide comprehensive overviews
of these techniques, indicating that combining complementary DG methods often yields
the best results.

While most domain generalization research is demonstrated on tasks like image classi-
�cation, its relevance to aerial object detection is growing. UAVs frequently face train-test
domain gaps: e.g., a model trained on one geographic region's imagery might be deployed
globally, or a model trained in simulation deployed in reality. In such cases, DG meth-
ods can improve reliability. For instance, Arsenos et al. introduced common corruption
benchmarks for air-to-air detection and showed that training with simulated corruptions
(a form of data augmentation for DG) improved detectors' real-world robustness. Gener-
ally, applying DG to aerial vision means accounting for things like di�erent camera lenses,
di�erent altitudes or viewpoints, seasonal changes in landscapes, or unpredictable light-
ing/weather � all without having examples of every case in training. Our later chapters
will delve deeper into how domain generalization techniques can be tailored and applied
to UAV open-set object detection. For now, we acknowledge that DG o�ers a pathway to
enhance model robustness against domain shifts that are inherent in any practical UAV
deployment, complementing other approaches like domain adaptation when target data is
available.
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3.5 Summary and Research Gap

In this chapter, we surveyed the landscape of aerial object detection and the sup-
porting technologies for UAV collision avoidance, and we reviewed the concept of domain
generalization as a solution to robustness challenges. We highlighted that air-to-air ob-
ject detection is an essential component for UAV sense-and-avoid systems, with stringent
real-time and reliability requirements given the safety-critical nature of mid-air collision
avoidance. We also described air-to-ground detection in remote sensing, noting analogous
challenges in detecting small, oriented objects from aerial views. Common obstacles such
as tiny object size, high relative speeds, occlusions, and environmental variability make
both tasks extremely challenging. The SAA pipeline was broken down into sensing, detec-
tion, tracking, and decision stages � each of which has seen extensive research. Modern
UAVs can leverage a range of sensors (cooperative ADS-B, onboard vision, LiDAR, etc.),
and advanced detection/tracking algorithms (like deep learning-based vision detectors) to
build situational awareness. For decision-making, both classical rule-based methods and
modern learning-based methods (DQN, imitation learning) are being investigated, with
trade-o�s in adaptability vs. computational cost. Throughout, we emphasized the system
constraints (limited compute, need for real-time, communication limits) that force practical
solutions to be e�cient and robust.

We then reviewed state-of-the-art vision models for detection, noting that one-stage
detectors (exempli�ed by the YOLO family) and two-stage/transformer detectors (exem-
pli�ed by Faster R-CNN and DETR, including oriented detectors) each have roles to play.
One-stage detectors shine in real-time performance and have been successfully deployed on
drones, though they historically assume a closed-set of object classes. Transformer-based
detectors o�er a new paradigm with potential accuracy and robustness gains, but can be
heavy for UAV use. Empirical evaluations in the literature suggest that, under ideal condi-
tions, many detectors can achieve high accuracy, but under shifting or corrupted conditions
relevant to UAV �ight, their performance can degrade signi�cantly. This naturally led to
the discussion of domain generalization, where we saw that a plethora of methods exist to
tackle unseen domain shifts by augmenting data, learning invariant features, or adopting
special training regimes. Domain generalization is particularly pertinent to UAV applica-
tions, because a UAV may encounter novel environments (unseen backgrounds, weather,
or sensor settings) without warning.

After assessing the body of prior work, we identify a pressing research gap at the inter-
section of these topics: the lack of a robust, real-time open-set object detection (OSOD)
system integrated into UAV collision avoidance pipelines under domain shift conditions. In
other words, current UAV vision systems do not adequately handle objects outside of their
trained categories (the open-set problem) especially when the operational domain di�ers
from the training domain. Standard object detectors will con�dently classify or ignore an
unknown object, which is dangerous in an SAA context (e.g., mistaking a new type of
drone for a known bird, or missing it altogether). Likewise, domain shifts (like sudden fog,
or a di�erent cityscape) can cause detectors to fail to detect even known objects. While
research in open-set detection and domain robustness exists in general computer vision,
very few works have applied it to the aerial domain and none, to our knowledge, provide
a complete real-time solution suitable for onboard UAV deployment. The recent study by
Loukovitis et al. took steps in this direction by adding uncertainty-based OOD scoring
to a real-time detector, improving its ability to recognize when it sees an unfamiliar ob-
ject. However, this is one of the �rst of its kind, and it underscores how nascent this area
is. Even their approach, while promising, highlights the complexity of balancing multiple
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uncertainty measures and maintaining detection accuracy and speed.
In conclusion, the background and related work point to the need for a new approach

that marries high-performance object detection with open-set recognition and domain gen-
eralization, tailored for UAV constraints. The remainder of this thesis will address this
gap. We aim to design and evaluate a framework for open-set aerial object detection that
remains reliable under a range of domain shifts and meets real-time operational require-
ments. By doing so, we hope to advance UAV sense-and-avoid capabilities toward safer
autonomous �ight in unstructured, real-world environments, where the only constant is
uncertainty.
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Chapter 4

Theoretical Background

4.1 Uncertainty in Machine Learning: Aleatoric vs.

Epistemic

Uncertainty quanti�cation is increasingly recognized as a critical component in modern
machine learning, especially for safety-critical systems such as UAVs. Broadly, uncertainty
refers to how con�dent a model is in its predictions, and more precisely, what kinds
of unknowns are contributing to that lack of con�dence. In the literature, a common
decomposition is into two principal types of uncertainty: aleatoric and epistemic.

4.1.1 De�nitions and Conceptual Distinction

Aleatoric uncertainty (also called data uncertainty) refers to uncertainty inher-
ent in the observations. It stems from noisy, ambiguous, or incomplete data. Exam-
ples include measurement noise, ambiguous labels, inherent overlap between classes, or
sensor/environmental e�ects such as fog, low light, or occlusion. Importantly, aleatoric
uncertainty is often irreducible in the sense that collecting more data does not always
eliminate it, since the underlying phenomenon may be inherently stochastic.

Epistemic uncertainty (also called model uncertainty) arises from a lack of knowl-
edge about the appropriate model. This could be due to insu�cient training data, model
misspeci�cation, uncertainty over model parameters, or overcon�dence in regions where
the model has not seen su�cient examples. Epistemic uncertainty can be reduced by
more or better data, by more expressive or better-trained models, or by architectural or
algorithmic improvements.

As discussed by Hüllermeier and Waegeman [18], supervised learning predictions can be
understood as being a�ected by both sources: uncertainty in the data generation process
(aleatoric) and uncertainty in the learned model parameters or hypothesis (epistemic).

4.1.2 Measurement and Estimation Techniques

Several common methods have been proposed to estimate these uncertainties:

� Ensembles: training multiple models with di�erent initializations or subsets of data
and measuring the disagreement among outputs. Disagreement captures epistemic
uncertainty, while averaging provides predictive uncertainty. Ensembles are often
found to be among the most reliable methods [40].
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� Monte Carlo Dropout and Bayesian methods: introducing stochasticity into
model parameters at inference time (e.g., through dropout) approximates uncertainty
over parameters and is useful for estimating epistemic uncertainty [9]. Extensions
also allow capturing aleatoric uncertainty by predicting variance alongside outputs.

� Loss functions with variance prediction: in regression tasks, a network may
predict both mean and variance, with the loss designed so that the variance models
aleatoric uncertainty. In classi�cation, aleatoric uncertainty can be approximated
via con�dence scores such as softmax probabilities [21].

� Evaluation strategies: distinguishing aleatoric and epistemic uncertainty often re-
lies on controlled tests, for example by comparing the stability of aleatoric estimates
versus the variability of epistemic ones across regions of the input space [40].

4.1.3 Applications in Object Detection

While much of the foundational research has focused on classi�cation and regression,
uncertainty estimation has also been applied to object detection and segmentation, where
the problem is more complex due to multiple simultaneous outputs (localization and clas-
si�cation).

For example, Liu et al. [26] study aleatoric uncertainty in camou�aged object detection,
where ambiguous signals from low contrast or environmental noise contribute strongly to
uncertainty. In such settings, explicitly modeling aleatoric uncertainty helps reduce false
positives and mitigate overcon�dence.

These applications highlight an important challenge: object detection involves not only
class-level uncertainty but also spatial uncertainty regarding bounding box localization.
Moreover, background clutter and visually ambiguous regions can exacerbate aleatoric
uncertainty, requiring specialized approaches for reliable estimation.

4.1.4 Challenges and Limitations

Some notable challenges remain in the estimation of aleatoric and epistemic uncer-
tainty:

� Interaction between the two uncertainties. In practice, aleatoric and epistemic
components are not always cleanly separable, and some estimation methods may
underestimate one or both [40].

� Unreliable aleatoric estimates. Under challenging conditions, aleatoric uncer-
tainty estimates may become unstable or misleading, undermining con�dence cali-
bration [18].

� Computational cost. Many approaches, such as ensembles or Monte Carlo dropout,
require multiple forward passes, which is expensive for detection models that are al-
ready computationally heavy.

� Dependence on metric and loss design. The quality of uncertainty estimates is
strongly in�uenced by the choice of uncertainty measure (entropy, variance, mutual
information) and how the loss function is structured to capture uncertainty [21].
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4.2 Concluding Remarks

Understanding and distinguishing aleatoric and epistemic uncertainties is essential for
building reliable ML systems. In object detection tasks for UAV perception, where false
positives or overcon�dence can compromise safety, uncertainty estimation supports better
calibration, improves interpretability, and helps prevent errors in decision-making. While
signi�cant progress has been made through ensembles, Bayesian methods, and hybrid ap-
proaches, challenges remain in computational e�ciency, disentanglement, and robustness.
These aspects motivate the use of complementary techniques, which will be discussed in
subsequent sections.

4.3 Open-Set Recognition

Traditional classi�cation tasks assume a closed world, where all test samples belong to
one of the categories observed during training. In many real applications, however, this
assumption fails: test inputs may belong to entirely new and unseen classes. Open-Set
Recognition (OSR) addresses this challenge by requiring models to not only classify
known categories, but also to detect and reject unknowns.

Scheirer et al. [34] �rst formalized open-set recognition, introducing the notion of open
space risk, where the decision function must avoid making con�dent predictions far from
the support of known data. Their work proposed compact abating probability models as a
principled way to manage this risk. Later, Geng et al. [12] provided a comprehensive survey,
highlighting OSR methods ranging from shallow statistical models to deep neural networks,
and organizing them into categories such as discriminative approaches, reconstruction-
based methods, and generative modeling.

These early contributions illustrate the key principles of OSR: (i) the need for mech-
anisms to identify unknown inputs during inference, and (ii) the trade-o� between recog-
nizing known classes accurately and maintaining caution in unfamiliar regions of feature
space. This foundation underpins recent progress across domains such as biometrics, med-
ical imaging, and natural language processing, and motivates the techniques developed in
this thesis.

4.4 Spectral Normalization

Training deep networks often leads to the issue that small perturbations in the input
can produce disproportionately large changes in the output. This sensitivity is undesirable
in tasks that require stability and calibrated predictions, such as uncertainty estimation.
A standard way to formalize stability is through the Lipschitz constant of a network. A
function is said to be K-Lipschitz if its output cannot change faster than K times the
change in its input. Bounding the Lipschitz constant therefore ensures smooth behaviour
of the model: small variations in the input cannot result in arbitrarily large deviations in
the output.

Spectral normalization, introduced by Miyato et al. [28], provides a practical mecha-
nism for constraining the Lipschitz constant of each layer in a neural network. Consider
a linear transformation with weight matrix W ∈ Rm×n. The maximum ampli�cation that
this layer can apply to an input vector is given by the operator norm of W , also known as
its spectral norm:
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∥W∥2 = max
∥x∥2=1

∥Wx∥2.

This quantity corresponds to the largest singular value σmax(W ) of the matrix. Spectral
normalization rescales the weight matrix by its spectral norm, yielding

W̄ =
W

∥W∥2
,

which guarantees that the linear operator is 1-Lipschitz. Since computing the full sin-
gular value decomposition at every update step is computationally prohibitive, in practice
the largest singular value is approximated e�ciently using a small number of iterations of
the power method.

For a network composed of layersW1,W2, . . . ,WL interleaved with activation functions,
the Lipschitz constant is bounded above by the product of the individual spectral norms,
provided that the activations are themselves 1-Lipschitz (such as ReLU or leaky ReLU
with slope ≤ 1):

∥f∥Lip ≤
L∏

ℓ=1

∥Wℓ∥2.

Constraining the spectral norm of each weight matrix therefore provides a global bound
on the Lipschitz constant of the network, ensuring that the mapping from input to output
is smooth and well-conditioned.

Although originally proposed in the context of stabilizing training of generative ad-
versarial networks, spectral normalization has proved valuable in classi�cation tasks. By
bounding the Lipschitz constant of the feature extractor, it produces embeddings that are
geometrically well-structured: intra-class features remain compact, while inter-class sepa-
rability is preserved without excessive distortions. This regularization improves calibration
by reducing the tendency of the model to assign high con�dence in regions of the input
space that were never encountered during training.

This connection is directly relevant for uncertainty estimation. In the work of Mukhoti
et al. [29], spectral normalization is applied to the convolutional backbone of a classi�er
to obtain embeddings suitable for density modeling, such as with Gaussian mixture mod-
els. Without spectral normalization, embeddings may become unstable: distances between
samples lose meaning, densities collapse, and uncertainty scores �uctuate unpredictably.
With spectral normalization, embeddings are regularized, ensuring that uncertainty esti-
mates derived from them are more reliable. In this manner, spectral normalization o�ers
a principled and computationally e�cient approach to improving robustness and inter-
pretability in modern classi�cation systems.

In conclusion, spectral normalization can be understood as a mathematical framework
for controlling the sensitivity of deep networks. By bounding the singular values of weight
matrices, it provides smooth mappings from input to feature space, stabilizes embeddings,
and improves the reliability of uncertainty quanti�cation. These properties make spectral
normalization a valuable tool not only in generative modeling, but also in classi�cation
and uncertainty-aware learning where safety and robustness are of primary importance.
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4.5 Gaussian Mixture Models

Gaussian Mixture Models (GMMs) are a classical probabilistic method for modeling
complex data distributions. Instead of assuming that all samples come from a single
Gaussian distribution, a GMM represents the data as a weighted combination of several
Gaussian components, each capturing a di�erent mode or cluster of the data. This makes
GMMs particularly well-suited for approximating multimodal distributions.

Formally, a GMM with K components models the probability density of a data point
x ∈ Rd as

p(x) =
K∑
k=1

πkN (x | µk,Σk),

where πk are the mixture weights with πk ≥ 0 and
∑K

k=1 πk = 1, and N (x | µk,Σk) de-
notes a multivariate Gaussian distribution with mean vector µk ∈ Rd and covariance matrix
Σk ∈ Rd×d. Parameters are typically estimated using the Expectation�Maximization (EM)
algorithm, which alternates between assigning soft cluster memberships to data points and
updating the Gaussian parameters accordingly.

GMMs are widely used for clustering, density estimation, and anomaly detection. In
the context of representation learning, they are often applied in the feature space of neural
networks to model the distribution of embeddings for each class. This provides a principled
way to estimate likelihoods and derive uncertainty scores, which are particularly valuable
for tasks such as out-of-distribution detection and open-set recognition.
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Chapter 5

Proposed Methodology

5.1 Overview

In this work, we start by enhancing a real-time aerial object detector with per-box con-
�dence scores indicating whether each detection is out-of-distribution (OOD).
Our approach is detector-agnostic, requiring only access to feature-space embeddings and
thus can be integrated with any modern detector. As illustrated in Figure 5.1, an input
image passes through the detector's backbone, which produces a feature representation reg-
ularized via spectral normalization to ensure well-behaved embeddings. The transformer-
based encoder�decoder then generates object detections, each accompanied by a high-level
embedding. These embeddings are fed intoGaussian Mixture Models (GMMs), which
estimate per-class likelihoods from which we compute an entropy-based uncertainty score.
In parallel, the detector's native softmax con�dence is obtained. Both signals are fused
during post-processing to prune low-con�dence, potentially OOD detections. This post-hoc
calibration operates directly on the pretrained backbone without altering the architecture
or training process and introduces negligible runtime cost, preserving the detector's real-
time throughput.

We then continue by introducing a general, detector-agnostic algorithm that fuses
multiple con�dence estimates and per-detection features through a lightweight multilayer
perceptron (MLP), as illustrated in Fig.5.2a. This formulation provides a �exible frame-
work for improving the area under the ROC curve (AUROC) by learning to combine
complementary uncertainty cues. Building on this approach, we propose a model-agnostic
embedding-based variant (Fig.5.2b), which leverages the intermediate feature representa-

Figure 5.1: Overview of the object detection and uncertainty estimation pipeline.
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(a) General architecture (b) Embedding-based architecture

Figure 5.2: Comparison of general and embedding-based feature fusion architectures.

tions produced by modern detectors to achieve enhanced uncertainty calibration. Most
importantly, our framework extends beyond standard binary in-/out-of-distribution clas-
si�cation and enables explicit three-class discrimination between in-distribution objects,
out-of-distribution objects, and background clutter. This capability is particularly impor-
tant for reliable autonomous navigation in both terrestrial and aerial environments, where
safety-critical decisions must depend on robust uncertainty estimation.

5.2 Uncertainty-Aware Open-Set Detection

5.2.1 Base Detection Framework

Our method is compatible with any modern object detector that produces �xed-
dimensional embeddings for each detection. Such detectors typically consist of a back-
bone network that extracts a feature representation of the input image, followed by an
encoder�decoder or head that outputs:

� class logits for category prediction,

� bounding box coordinates, and

� a �xed-dimensional embedding capturing high-level appearance information for
each detected object.

These embeddings serve as the key input to our density models for estimating semantic
uncertainty. To improve feature-space regularity, the convolutional layers in the backbone
can optionally be spectrally normalized following [29], enforcing a bi-Lipschitz constraint
on the feature mapping. Our method operates post hoc on these embeddings without
modifying the detector's architecture, training process, or inference speed.

5.2.2 Feature-Space Density Modeling

Collecting training embeddings

After training, we run the detector on the entire training set. Each prediction is
matched to a ground-truth box via the Hungarian assignment built-in into the object
detector; the embedding of the matched prediction inherits the ground-truth class label.
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This creates a training set where each sample consists of the features (embedding) and the
label (class label of the detection) D.

The following matching methodology was also implemented but lead to worse results
and thus was abandoned:

� For each image we run it through the detector to get the bounding boxes and the
predicted classes

� For each ground truth annotation in the dataset we �nd the detection with the
highest IOU

� If the detection has an IOU of over 50 percent it's considered valid

� For every valid detection we get the embeddings and match to them the ground
truth class label of the annotation

Fitting Gaussian mixtures

We continue by training one or multiple GMMs on the previously produced dataset.

� Single-GMM: One full-covariance Gaussian per class (regularised with a small
jitter).

� Multi-GMM: A mixture of K ∈ {2, 3, 4} Gaussians per class, �tted with EM.

In the �rst case one Gaussian of the mixture is responsible for the modeling of the distri-
bution of the embeddings for a signle class. In the second case, each GMM is responsible
for the same modeling. Using GMMs per class increases the expressive power of the dis-
tribution at the cost of potential over�tting and the approximation of the EM steps.

No OOD data are used at this stage. At inference, each detection embedding is passed
through the �tted GMMs to obtain a vector of per-class log-likelihoods; which are subse-
quently reduced to a single con�dence or uncertainty score.

5.2.3 Calibration Techniques

Score pruning

Detections with Smax < 0.2 exhibit highly scattered embeddings and dominate AUROC
errors (see Fig 5.3). More speci�cally we observe that the distribution of the id detections
has two peaks. The obvious one is the second, centered arround high con�dences. The
second one, centered around low con�dences, accounts for the vast majority of the id
detections. At inference the detector produces hundreds of detections, around areas with
high density in features. Most of these detections are then pruned through NMS as long
as there is one detection of high con�dence that shares a high IOU. From the diagram we
conclude that ignoring these detections would lead in much better separability of the id
to the ood detections. We therefore test every score in a Raw setting (no �lter) and a
Pruned settings that discards those low-con�dence boxes. Pruning's impact on closed-set
mAP is reported in the experiments.
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Figure 5.3: Distribution of softmax scores for in-distribution (blue) and out-of-
distribution (red) detections. The leftmost peak corresponds to low-con�dence de-
tections that are redundant or failed predictions occurring near high-con�dence de-
tections. Pruning these low-score detections improves open-set rejection without
degrading closed-set mAP, as the correct high-con�dence detections remain unaf-
fected.

Temperature scaling

Baseline logits are under-con�dent, while GMM log-densities can di�er by two orders of
magnitude, collapsing GMM-derived scores to 0/1. We learn a scalar temperature Tmodel

and Tgmm on the validation split (negative-log-likelihood minimisation [29]) and rescale
both models' densities.

Combining the two toggles (Pruning ×Temperature) yields four evaluation modes per
algorithm, model: Raw, Pruned, Temp, Pruned + Temp.

5.2.4 Uncertainty Scoring and Ablation Protocol

We begin by describing our main algorithm, which combines sigmoid con�dence and
GMM-based uncertainty to �lter detections. Each detection is assigned both a score and a
GMM-derived score (e.g. entropy or density). If both exceed �xed thresholds, the detection
is retained; otherwise, it is discarded. The goal is to leverage both complementary signals
for improved OOD rejection. We refer to this method as Joint Thresholding.
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Algorithm 1 Model-Agnostic Open-Set Detection via Joint Thresholding

1: De�nitions:
- Detector output: class logits l, bounding boxes b, embeddings e
- Softmax scores: p(y|l)
- GMM entropy: Hgmm = −

∑
y q(y|e) log q(y|e)

- Dataset: (X,Y )

2: procedure TRAIN(X, Y )
3: for all images x ∈ X do
4: Run detector → predictions (bi, li, ei)
5: Match predictions to GT via Hungarian matcher
6: Assign ei to its GT label
7: end for
8: for all class c with samples xc ⊂ X do
9: µc ← 1

|xc|
∑

xc
fθ(xc)

10: Σc ← 1
|xc|−1

∑
xc
(fθ(xc)− µc)(fθ(xc)− µc)

T

11: πc ← |xc|
|X|

12: end for
13: end procedure

14: function OOD_DETECTION((b, l, e))
15: p(y)← Softmax(l)
16: ssoft ← maxy p(y)
17: Hgmm = −

∑
y q(y|e) log q(y|e)

18: if ssoft ≥ τsoft and Hgmm ≤ τgmm then
19: return ID
20: else
21: return OOD
22: end if
23: end function

We compare this method against the following standalone con�dence scores, each op-
erating on either the logits l (subscripts index classes) or the GMM output:

� Score con�dence: maxc pc

� Softmax density: log
∑

c e
ℓc

� Softmax entropy: −
∑

c pc log pc

� GMM density: single-Gaussian log-likelihood

� GMM posterior entropy: entropy of GMM posteriors

� Multi-GMM density: log-likelihood with K Gaussians/class
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Algorithm 2 Model-Agnostic Open-Set Detection with MLP Fusion

1: De�nitions:
- Detector Output : per detection features f
- Scores : con�dences and uncertainties derived from features c
- OOD Dataset : (X,Y) D

2: procedure TRAIN_FUSION_MLP(D, f, c)
3: Select features: From f ∪ c select fs
4: Select outputs: choose K ∈ {2, 3}
5: S ← ∅
6: for all images u ∈ DID ∪ DOOD do
7: Run detector → predictions xi = fs
8: Match with labels for yi
9: S ← S ∪ {(xi, yi)}

10: end for
11: Train a K-way MLP classi�er g(·) on S
12: thresholding(·) ← decision boundaries
13: end procedure

14: function CLASSIFY_DETECTION(fs)
15: logits← g(fs)
16: decision ← thresholding(logits)
17: return decision
18: end function

5.3 Post-Hoc Con�dence Fusion with MLP

We �rst describe the general model-agnostic algorithm for open-set aerial object de-
tection, illustrated in Algorithm 2. The approach constructs a new training set of per-
detection features and labels by running a pretrained detector on data containing both
in-distribution (ID) and out-of-distribution (OOD) samples. Each detection yields a fea-
ture vector that may include raw detector con�dences, uncertainty scores, logits, or em-
beddings, along with a label indicating whether the detection corresponds to an ID object,
an OOD object, or background clutter.

Formally, given a detector and a dataset D = DID ∪ DOOD, the detector is applied to
all images. Each prediction is matched to its ground-truth label, producing pairs (Xi, Yi)
where Xi is the feature vector of the detection and Yi ∈ {ID,OOD,BG} is the class label.
This collection of pairs constitutes a new dataset tailored for uncertainty calibration.

From this dataset, a subset of features is selected to serve as input to a lightweight
multilayer perceptron (MLP). The desired output con�guration is also chosen: a binary
classi�er (K = 2) for ID vs. OOD, or a three-way classi�er (K = 3) for ID, OOD, and
background. The MLP is then trained on the constructed dataset. Lastly, thresholds are
tuned on the MLP logits to satisfy desired open-set recognition guarantees (e.g., controlling
the false acceptance rate), which need not correspond to a simple argmax decision rule.

At deployment time, for each new detection, the same set of features is extracted,
the trained MLP is applied to obtain fused logits, and these are passed through the cali-
brated decision function. The output is a classi�cation of each detection as ID, OOD, or
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background, enabling reliable open-set detection in real time.

5.3.1 Embedding-Based Fusion Algorithm

Building on the general framework described in Section 2, we present a more speci�c
embedding-based implementation tailored to modern detectors that produce per-detection
feature embeddings. The methodology follows prior work on embedding-space density
modeling [27, 29] and extends it with calibration and pruning strategies, as well as fusion
through our MLP.

1. Detector training with spectral normalization: The base detector is trained
with spectral normalization applied to convolutional layers to enforce bi-Lipschitz
continuity and produce well-behaved embeddings.

2. Temperature calibration of logits: On a held-out calibration set, scalar temper-
ature parameters are learned to rescale both detector logits and GMM log-likelihoods
by minimizing negative log-likelihood. This improves comparability across di�erent
uncertainty scores.

3. Gaussian mixture modeling: Using the training set, Gaussian mixture models
(GMMs) are �tted to the embeddings of each class. Each detection embedding is
then mapped to a vector of per-class GMM log-likelihoods, which serve as additional
uncertainty signals.

4. Logit calibration: The raw GMM log-likelihoods are rescaled using temperature
scaling, ensuring that their magnitudes are consistent with detector-derived con�-
dences.

5. Score pruning: Detections with low raw con�dence scores (sigmoid < 0.2) are
discarded, reducing redundancy and eliminating spurious predictions that otherwise
dominate AUROC errors.

This procedure provides, for every detection, both calibrated detector scores and GMM-
derived logits and con�dences. These signals are then used as input features for the fusion
MLP described in the previous subsection. The overall embedding-based pipeline is sum-
marized in Algorithm 3, which combines GMM training, fusion MLP training, and the
�nal OOD decision rule.

5.3.2 Detection Classi�cation and Ground Truth Matching

To establish a consistent evaluation framework, we de�ne how detector outputs are
categorized relative to ground truth annotations. When comparing detector outputs with
ground truth labels, four types of detections emerge:

1. True Positive ID (TP-ID): Detections that match with a known ground truth
object and predict the correct class label

2. False Positive ID (FP-ID): Detections that match with a known ground truth
object but predict an incorrect class label

3. Out-of-Distribution (OOD): Detections that match with ground truth objects
whose class is not present in the training set
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4. Background (BG): Detections that do not match with any ground truth objects

For the purpose of open-set detection, we classify both TP-ID and FP-ID detections as
in-distribution (ID) detections. This design choice separates the problem of ID/ OOD/
background categorization from the problem of correct class prediction within the ID set.
This de�nition di�ers from some approaches in the literature that consider only correctly
classi�ed detections as ID, creating a positive bias in the results. When comparing against
prior methods, we recompute their results according to our de�nition to ensure fair evalu-
ation.

5.3.3 Evaluation Protocol

We evaluate our method under three classi�cation settings: (i) binary ID vs. OOD, (ii)
binary ID vs. OOD+background, and (iii) three-class ID vs. OOD vs. background. For
all settings, we also track mean average precision (mAP) and frames per second (FPS) to
ensure that open-set calibration does not degrade closed-set accuracy or real-time perfor-
mance.

5.3.4 Domain Shift in MLP Training

Finally, we study the impact of training the fusion MLP with OOD data from sources
di�erent from the deployment domain. We �nd that training on unrelated datasets or syn-
thetic features signi�cantly degrades performance, underscoring the importance of either
accessing representative OOD data from the target domain or generating realistic image-
domain OOD examples that produce detector features aligned with deployment conditions.
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Algorithm 3 Embedding Based Algorithm

1: De�nitions:
- Detector output : class logits l, bounding boxes b, embeddings e
- GMM logits : ℓgmm

- GMM dataset : (X,Y ) with ID class labels for GMMs
- OOD dataset : D = DID ∪ DOOD

2: procedure TRAIN_GMM(X, Y )
3: for all images x ∈ X do
4: Run detector → predictions (bi, li, ei)
5: Match predictions to GT via Hungarian matcher
6: Assign ei to its GT label
7: end for
8: for all class c with samples xc ⊂ X do
9: µc ← 1

|xc|
∑

xc
fθ(xc)

10: Σc ← 1
|xc|−1

∑
xc
(fθ(xc)− µc)(fθ(xc)− µc)

T

11: πc ← |xc|
|X|

12: end for
13: end procedure

14: procedure TRAIN_FUSION_MLP(D, f, c)
15: Select features: From f ∪ c select fs
16: Select outputs: choose K ∈ {2, 3}
17: S ← ∅
18: for all images u ∈ DID ∪ DOOD do
19: Run detector → predictions xi = fs
20: Match with labels for yi
21: S ← S ∪ {(xi, yi)}
22: end for
23: Train a K-way MLP classi�er g(·) on S
24: thresholding(·) ← decision boundaries
25: end procedure

26: function CLASSIFY_DETECTION(fs)
27: logits← g(fs)
28: decision ← thresholding(logits)
29: return decision
30: end function
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Chapter 6

Experimental Setup

In this chapter, we present the design of our experimental evaluation. The experiments
are divided into two main parts. The �rst part focuses on Joint Thresholding, where
the con�dence score derived from the detector and Gaussian mixture models are combined
with pruning and temperature scaling. The second part introduces the Fusion MLP,
a lightweight post-hoc model that learns to combine multiple con�dence signals into a
single decision rule, extending the problem to a three-class setting. By structuring our
experiments in two stages, we highlight the progression from simple threshold-based scoring
to more �exible and powerful fusion techniques.

6.1 Common Setup

Before describing each part in detail, we �rst outline the aspects common to all ex-
periments. All models are trained and evaluated on an NVIDIA A10G-class GPU, while
lightweight components such as the fusion MLP are designed to run e�ciently on CPU,
enabling on-site recalibration if needed.

Across both parts, evaluation follows the same set of metrics. We report the Area
Under the ROC Curve (AUROC) to measure separability between in-distribution
(ID) and out-of-distribution (OOD) detections. We further compute the True Positive
Rate (TPR) at �xed Open-Set Recognition (OSR) levels of 5%, 10%, and 20%,
re�ecting operational trade-o�s between detection and rejection. To ensure closed-set
accuracy is not degraded, we measure mean Average Precision (mAP) on ID objects
under both closed- and open-set conditions. We also track AUROCbd, where background
detections are treated as OOD, re�ecting the aerial domain's sensitivity to clutter. For
the 3 class setting we also track the macro pairwise AUROC to track an average of the
separability among classes. Finally, frames per second (FPS) are recorded to validate
real-time operation.

6.2 Part I: Joint Thresholding

6.2.1 Datasets

The joint thresholding experiments focus on controlled binary open-set detection. We
use three sources of data:
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� AOT: The Airborne Object Tracking (AOT) dataset was introduced as part of the
Airborne Object Tracking Challenge, organized by Amazon Prime Air in collabora-
tion with academic partners. It was created to support the development of robust
perception systems for unmanned aerial vehicles (UAVs), with the ultimate goal of
enabling safer navigation and collision avoidance in shared airspace. We use a subset
of it containing the classes of "airplane" and "helicopter", enhanced by an ood class
of "drone" for the ablation study. We use a bigger subset, with only in distribu-
tion classes to measure the closed-set performance of Joint Thresholding when
calibrated on domain-shifted open-set conditions.

� AOT-C: The AOT-C dataset is a corrupted extension of the Airborne Object Track-
ing (AOT) benchmark, speci�cally designed to evaluate the robustness of aerial ob-
ject detection under real-world conditions. It introduces seven types of synthetic
corruptions, grouped into weather e�ects (fog, rain, low light), sensor noise (ISO
noise, color quantization), and defocus blur. Each corruption is applied at four
severity levels to ensure controlled evaluation across a range of di�culties. The
motivation behind AOT-C is to simulate the environmental and hardware-related
challenges encountered in real UAV �ights, such as adverse weather or camera noise,
while preserving object visibility for fair comparison. We use it to decrease the
domain shift between our closed-set training and open-set testing environment.

� Real Flight Data: Contains uncontrolled UAV-captured sequences. Here, air-
planes and helicopters are considered ID, while drones act as OOD. We opt to use
this dataset for our open set evaluation, since its di�erence in environment, weather
conditions, and camera setup create realistic real-world deployment domain shift and
test the robustness of our method.

6.2.2 Detector and Variants

The base detector used in our experiments is a transformer-based real-time model
(RT-DETR) with a ResNet-50 backbone. We consider two variants: a standard baseline
and a spectrally normalized version, in which the convolutional layers are regularized to
stabilize the embedding space. In the baseline con�guration, the backbone is pretrained
and kept frozen during training. This choice is important, as training the backbone from
scratch results in signi�cantly worse detection performance due to slow convergence in
the early layers of deep networks, a phenomenon commonly linked to vanishing gradients.
Moreover, pretraining on large-scale datasets provides richer feature representations and
stronger generalization compared to training solely on the specialized aerial dataset. For
consistency, both variants employ a pretrained PResNet-50 backbone: the baseline uses the
standard ImageNet-1K model, while the spectrally normalized backbone is also pretrained
on ImageNet-1K before being frozen for subsequent experiments.

6.2.3 Uncertainty Ablation Study

The �rst experiment is an ablation study on uncertainty scoring. Each detection is as-
signed both a logit-derived con�dence and a Gaussian mixture�based entropy derived from
embeddings. We evaluate several standalone uncertainty scores as well as their combina-
tion through joint thresholding. The purpose of this experiment is to determine the most
e�ective scoring method for distinguishing ID and OOD detections. In addition, we test
multiple con�gurations of score pruning and temperature scaling. The goal is not to report
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results here, but to establish which combination provides the most reliable foundation for
subsequent comparisons.

6.2.4 Closed-Set Accuracy and Runtime

Having established the best con�guration, we next study its impact on closed-set de-
tection accuracy and runtime. We measure mAP on ID classes to ensure that open-set
�ltering does not degrade detection quality, and we record FPS to con�rm that real-time
performance is preserved. This experiment is critical to show that open-set calibration
introduces negligible overhead while maintaining high detection accuracy.

6.2.5 Comparison with Baselines

Finally, we compare joint thresholding against existing uncertainty-based methods,
including single-score con�dence measures and density modeling approaches. This experi-
ment establishes a clear baseline and highlights whether our thresholding strategy consis-
tently improves AUROC and mAP across datasets. The comparison also illustrates the
robustness of joint thresholding under both corrupted and real-world �ight conditions.

6.3 Part II: Fusion MLP

6.3.1 Datasets

The second stage expands the evaluation to multi-signal fusion and three-class detec-
tion. In addition to AOT-C and real �ight data, we also use COCO-OS:

� AOT-C: Provides corrupted aerial data for studying robustness.

� Real Flights: Tests generalization under natural deployment conditions.

� COCO-OS: To evaluate our methods in a more complex and diverse setting, we also
make use of the COCO dataset, which is one of the most widely used benchmarks for
object detection and contains a large variety of everyday objects in natural scenes.
COCO introduces substantial variability in scale, appearance, and background clut-
ter, making it an excellent testbed for open-set evaluation. For our purposes, we
construct an open-set variant, COCO-OS, by treating the �rst 50 categories as
in-distribution (ID) classes and the remaining 30 categories as out-of-distribution
(OOD). This split allows us to assess the ability of our models to generalize beyond
the training distribution while maintaining reliable performance on a challenging
large-scale dataset.

6.3.2 Fusion Features and Model

Each detection is represented by a feature vector that includes detector scores (score
con�dence, entropy, density), GMM-derived scores (likelihoods, entropy), and optionally
raw logits or embeddings. These features are input to a lightweight multilayer perceptron
(MLP). The MLP is trained for two settings: binary classi�cation (ID vs. OOD) and
three-class classi�cation (ID, OOD, background).
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6.3.3 Feature Ablation Study

The �rst experiment evaluates di�erent feature combinations for fusion. We compare
detector-only signals, GMM-only signals, and their combination, with and without cal-
ibrated logits. This experiment identi�es which feature set contributes most to robust
uncertainty estimation. We want to avoid feature vectors that lead to low open-set perfor-
mance, and over�tting. For the second reason we omit the embeddings from the feature
space since they are a vector of 256 elements and shatters the OOD datasets, achieving an
AUROC of 1, through over�tting.

6.3.4 Two-Class Comparison with Baselines

In the two-class open-set setting (ID vs. OOD), we compare the Fusion MLP against a
range of established uncertainty-based methods. These include score thresholding, entropy-
based measures, and GMM-derived scores. The purpose of this experiment is to demon-
strate that our fusion approach consistently improves AUROC while maintaining the
closed-set mAP and the real-time FPS of the base detector. This ensures that the gains
in open-set discrimination do not come at the expense of closed-set accuracy or e�ciency.

6.3.5 Three-Class Evaluation

We also evaluate our method in the three-class setting, where detections are categorized
into ID objects, OOD objects, and background clutter. Here, we compare the Fusion
MLP against a double-thresholding baseline, which applies separate thresholds for rejecting
background and unknown objects. This experiment tests whether learning a fused decision
boundary provides an advantage over handcrafted thresholding, particularly in clutter-
heavy aerial imagery where background suppression is crucial.

6.3.6 Domain Shift in Fusion Training

A critical aspect of evaluating the Fusion MLP is understanding how well it generalizes
when the out-of-distribution (OOD) data used during training does not match the OOD
data encountered at deployment. To study this e�ect, we design a controlled experiment
where the testing OOD data is �xed: in all cases, the evaluation is performed using the
real �ight dataset, which represents the deployment domain. The variation comes from the
source of the OOD data used to train the MLP. Importantly, the MLP does not operate
on raw images but only on per-detection feature vectors; thus, the OOD training data is
represented entirely within the feature space. We investigate three di�erent strategies for
constructing this OOD training set:

1. Drone Dataset as Proxy OOD. In the �rst setting, we select another publicly
available UAV dataset, process it through the detector, and use the resulting feature
vectors as OOD training samples. The advantage of this approach is that the se-
mantic class of OOD objects (other drones) matches the testing scenario. However,
the domains di�er signi�cantly: in the proxy dataset, the objects are much larger in
the image, often closer to the ground, and recorded under di�erent camera hardware
and weather conditions. As a result, the feature distributions of these samples may
diverge from those seen in the real �ights test set, limiting their utility.
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2. COCO as Proxy OOD. In the second setting, we sample images from COCO,
process them through the detector, and construct OOD training vectors from the
resulting detections. This has the positive e�ect of introducing high variability:
COCO covers a wide range of object types and appearances, which helps the MLP
establish more general decision boundaries in feature space. On the other hand, the
dataset is semantically unrelated to the aerial domain, meaning that the proxy OOD
distribution bears little resemblance to the target deployment conditions.

3. Synthetic OOD in Feature Space. In the third setting, we generate OOD feature
vectors directly, without relying on external images. We �rst �t distributions to the
existing in-distribution (ID) and background detections in feature space. Then, we
randomly sample new points and retain only those that fall in regions of very low
density relative to the ID and background distributions, e�ectively placing them in
�unoccupied� regions of feature space. While this approach o�ers �exibility and does
not depend on external datasets, it also has limitations: the synthetic data can only
be generated from certain feature types, such as logits or GMM logits, which are
more tightly connected to the underlying distributions. The resulting OOD samples
may therefore fail to fully capture the diversity of real-world OOD conditions.

Through these three complementary settings, we systematically assess the extent to
which mismatches between training and testing OOD distributions a�ect the calibration
and robustness of the Fusion MLP. This experiment highlights the trade-o�s between
semantic similarity, feature diversity, and distributional alignment in open-set training.

6.3.7 Runtime and Model Size Analysis

Finally, we analyze the runtime performance and sensitivity of the MLP to architectural
size. By varying the number of hidden units and layers, we test how model complexity
in�uences AUROC, mAP, and FPS. This con�rms that even compact MLPs can achieve
strong calibration while maintaining real-time throughput.

6.4 Summary

In summary, the experimental setup is designed to progressively evaluate two stages of
open-set detection. The joint thresholding experiments validate uncertainty-based �ltering
in a binary setting, while the fusion MLP experiments extend this to multi-signal fusion and
three-class classi�cation. Together, these experiments provide a comprehensive evaluation
of both foundational and advanced techniques for robust aerial open-set object detection.
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Chapter 7

Results and Analysis

In this chapter we present the results of our experiments. As outlined in the experimen-
tal setup, our evaluation proceeds in two stages. The �rst stage analyzes the performance
of the Joint Thresholding method for binary open-set detection, focusing on the e�ect of
uncertainty scoring, calibration, and pruning. The second stage examines the Fusion MLP,
comparing it against baselines in the two-class setting and extending to the three-class set-
ting with background separation. Throughout, we evaluate both detection accuracy and
open-set robustness, while monitoring real-time performance to ensure practical feasibility.

7.1 Part I: Joint Thresholding

7.1.1 Uncertainty Ablation Study

We begin with an ablation study of uncertainty scoring on the AOT subset enhanced
with the drone OOD dataset. Table 7.1 reports AUROC and TPR at �xed OSR levels
for di�erent scores. The comparison includes score con�dence, softmax entropy, softmax
density, GMM density, and GMM posterior entropy, as well as the proposed Joint Thresh-
olding that combines detector and GMM scores. All of the methods are evaluated at both
detector variants: Base and Spectrally normalized. Additionally all methods where eval-
uated with and without pruning the detections scoring under 20% in detector con�dence.
The results of the unpruned version were uncompetitive across the board, with most of the
results scoring AUROC under 0.5 for the reasons described in the Methodology section.
For these reasons the results without score pruning are omitted from the table. A notable
outlier was the GMM entropy in the following settings:

� Model Variant: Base

� Algorithm: GMM density

� GMM temp-scaling: True

� Embedding Layer: 6

For these settings the unpruned method achieved a semi-competitive AUROC of 0.895. As
far as Temperature Scaling is concerned, every algorithm was evaluated with and without
temperature scaling applied. To make the table more readable we only incude the best
result for each scoring method, indicating whether or not temperature scaling was applied
in the last column.

We observe the following:
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Table 7.1: AUROC and TPR at �xed OSR levels (5%, 10%, 20%) for each uncer-
tainty scoring method. ✓ indicates that temperature scaling was applied.

Method AUROC TPR@5% TPR@10% TPR@20% +Temp

RT-DETR (Base)

Softmax 0.875 0.506 0.696 0.848 ✗

Logsumexp (Density) 0.870 0.536 0.714 0.835 ✗

Entropy 0.939 0.810 0.873 0.913 ✓

GMM Density 0.924 0.783 0.835 0.874 ✓

GMM Entropy 0.924 0.725 0.801 0.869 ✓

GMM per class 0.927 0.796 0.843 0.887 ✓

Joint Thresholding 0.929 0.744 0.829 0.882 ✓

RT-DETR + Spectral Normalization

Softmax 0.916 0.742 0.834 0.884 ✓

Logsumexp (Density) 0.870 0.747 0.800 0.837 ✓

Entropy 0.939 0.868 0.897 0.911 ✓

GMM Density 0.845 0.652 0.707 0.761 ✗

GMM Entropy 0.952 0.841 0.906 0.940 ✓

GMM per class 0.936 0.712 0.866 0.936 ✓

Joint Thresholding 0.982 0.927 0.966 0.980 ✓

� The best results throughout the study are achived by Joint Thresholding using
a spectrally normalized backbone. This setting achieves both the highest AUROC
and the highest true positive rate at set open set error rates.

� Spectral normalization improves open-set performance on all methods compared to
the base variant of the detector.

� Temperature scaling generally improves open-set performance, especially when spec-
tral normalization is also applied.

� Softmax Entropy achieves consistently good results in both the base and the
spectrally normalized variant; achieving the highest open-set performance in the base
variant. This is to be expected since Softmax Entropy has been widely used as a
metric to measure the sum of Epistemic and Aleatoric Uncertainty. For these
reasons, in the following experiments we also include this method for comparison.

7.1.2 Closed-Set Accuracy and Runtime

Table 7.2 presents the closed-set and open-set mAP (mAP50:95) for the evaluated con-
�gurations. Here, CS mAP refers to detection performance on the closed-set validation set,
which contains only the in-distribution categories (airplanes and helicopters). OS mAP
measures performance on the same ID classes in the open-set test set, where unseen drones
are also present. Because the closed-set and open-set splits consist of di�erent images, val-
ues should not be compared directly across columns, but rather across models and scoring
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Table 7.2: Closed-set (CS) and open-set (OS) mAP at IoU 0.5:0.95 (mAP50-95).
We report mAP after pruning for each scoring method, using the best con�guration
per model.

Model Method CS mAP OS mAP

RT-DETR (Base)

Softmax 54.1 52.6
Softmax Density 52.9 53.9
Entropy 54.0 55.4
GMM Entropy 50.4 52.6
Joint Thresholding (Ours) 53.7 53.4

RT-DETR + SN

Softmax 51.9 56.6
Softmax Density 49.1 56.6
Entropy 51.9 56.9
GMM Entropy 51.7 56.8
Joint Thresholding (Ours) 51.7 56.9

methods. The results indicate that pruning and thresholding do not lead to a signi�-
cant drop in closed-set performance, and in some cases pruning even improves precision
by suppressing low-con�dence duplicates. Runtime measurements further con�rm that
throughput remains above 27 FPS across all con�gurations, with only negligible overhead
from calibration and thresholding.

7.1.3 Comparison with Baselines

The most critical evaluation of the Joint Thresholding approach is its ability to gener-
alize beyond synthetic test conditions. To assess this, we train on the AOT-C splits and
then evaluate performance on real �ight data, treating it as an open-set environment. This
setup follows the AOT-C protocol, where synthetic corruptions simulate realistic degrada-
tion, and real �ights provide a true domain-shift test.

As baselines, we include standard uncertainty-based methods such as softmax entropy
and density-based approaches, along with prior open-set detectors including YOLOv5 and
GMM-Det. All models are evaluated under the same pipeline for fair comparison. To pro-
vide a nuanced view, AUROC is reported under two protocols: one that ignores background
detections (AUROC) and one that treats background detections as OOD (AUROCbd). This
dual evaluation is particularly important in aerial detection, where background clutter of-
ten dominates errors.

Results are summarized in Table 7.3 and the ROC curves are compared in Figure 7.2.
We observe that methods relying on a single score, such as softmax entropy or GMM-Det,
degrade signi�cantly when applied to real �ight conditions. Dynamic lighting, cluttered
skies, and sensor noise expose the limitations of calibration alone or of density modeling in
isolation. By contrast, Joint Thresholding consistently achieves higher AUROC across both
protocols, while maintaining competitive closed-set mAP. The improvement is evident for
both the baseline RT-DETR and the spectrally normalized variant, showing that the fusion
of detector con�dence with embedding-space density modeling provides a more robust
rejection mechanism than either source alone.

Beyond numerical results, qualitative inspection (see Fig. 7.1) con�rms this trend:
Joint Thresholding successfully identi�es ID aircraft while rejecting unseen drones as OOD,
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(a) ID example 1 (b) ID example 2

(c) OOD example 1 (d) OOD example 2

Figure 7.1: Side-by-side comparison for the same image: the left half of every
panel shows RT-DETR (SN), the right half shows YOLO. Top row contains
in-distribution (ID) objects, while the bottom row contains out-of-distribution
(OOD/ID) objects. A blue box indicates the detector classi�ed the object as ID;
a red box indicates the detector judged it OOD. RT-DETR correctly classi�es the
planes (ID) and the drones (OOD) in all shown cases, whereas YOLO fails on the
same images.

avoiding high-con�dence false predictions on novel objects. In comparison, YOLO-based
baselines often misclassify unknown drones as familiar categories or produce spurious detec-
tions with unwarranted con�dence. Taken together, these �ndings highlight the practical
advantages of Joint Thresholding: improved robustness under domain shift, more reliable
perception, and safer operation of UAVs in real-world environments.

Table 7.3: Performance on real �ight data after training on AOT-C. mAP is reported
on known classes. AUROC is computed two ways: AUROCbd treats background
detections as OOD; AUROC ignores background.

Model Method mAP AUROCbd AUROC

RT-DETR Softmax Entropy 40.7 0.837 0.798
RT-DETR Joint Thresholding 39.3 0.883 0.859
YOLOv5 [3] Standard 40.0 0.800 0.789
FasterR-CNN GMM-DET 35.9 0.775 0.723
RT-DETR + SN Joint Thresholding 41.1 0.887 0.874
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Figure 7.2: Comparison of ROC curves for di�erent methods in open-set real �ight
data. (a) Results ignoring background detections. (b) Results treating background
detections as OOD errors.

7.2 Part II: Fusion MLP

7.2.1 Input Feature Ablation

We �rst investigate the impact of di�erent input features on the performance of the Fu-
sion MLP. Each detection can be represented by a combination of detector-derived scores
(softmax con�dence, entropy, density), GMM-derived scores (log-likelihoods, entropy), cal-
ibrated logits, and optionally embeddings. Table 7.4 reports AUROC and TPR@OSR for
di�erent input con�gurations. The results highlight several key �ndings. First, detector-
only features provide a reasonable baseline but are limited in capturing the full variability
between ID and OOD. Adding GMM-derived scores consistently improves separability,
indicating that embedding-space density modeling provides complementary information.
Inclusion of calibrated logits further enhances performance by aligning the scale of scores
across features. The ablation study con�rms that a compact input representation, combin-
ing detector scores, GMM signals, and calibrated logits, provides the best balance between
performance and generalization.

Table 7.4: Ablation study for MLP inputs in the two-class setting. Each row in-
dicates which input features are included (✓/✗). We report AUROC and TPR at
�xed OSR levels (5%, 10%, 20%).

Dataset Score Entropy Density GMM Entr. GMM Dens. Logits GMM Logits AUROC TPR@5% TPR@10% TPR@20%

Real Flights

✓ ✓ ✗ ✓ ✗ ✗ ✗ 0.891 0.717 0.754 0.821
✓ ✓ ✓ ✓ ✓ ✗ ✗ 0.889 0.629 0.758 0.819
✓ ✓ ✗ ✓ ✗ ✓ ✓ 0.885 0.681 0.724 0.795
✓ ✓ ✓ ✓ ✓ ✓ ✓ 0.897 0.687 0.719 0.835

COCO

✓ ✓ ✗ ✓ ✗ ✗ ✗ 0.788 0.390 0.493 0.633
✓ ✓ ✓ ✓ ✓ ✗ ✗ 0.788 0.390 0.493 0.633
✓ ✓ ✗ ✓ ✗ ✓ ✓ 0.894 0.636 0.739 0.823
✓ ✓ ✓ ✓ ✓ ✓ ✓ 0.894 0.624 0.702 0.829
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Table 7.5: Comparison of algorithms on Real Flights and COCO datasets. We
report mAP, AUROCbd, and AUROC.

Real Flights

Model Method mAP AUROCbd AUROC

YOLOv5 Standard 39.3 0.800 0.789

Faster R-CNN GMM-DET 35.9 0.775 0.723

RT-DETR + SN Joint 41.0 0.887 0.874

RT-DETR + SN MLP 39.0 0.887 0.897

COCO

Model Method mAP AUROCbd AUROC

YOLOv5 Standard 44.4 0.839 0.685

Faster R-CNN GMM-DET 41.6 0.836 0.872

RT-DETR + SN Joint 42.0 0.701 0.756

RT-DETR + SN MLP 42.1 0.845 0.894

7.2.2 Two-Class Comparison with Baselines

Next, we evaluate the Fusion MLP in the standard two-class open-set setting (ID vs.
OOD). Table 7.5 compares our method against baseline scoring approaches, including score
thresholding, entropy, and GMM-based methods. We also include Joint Thresholding, our
�rst attempt at combining uncertainty metrics for better open-set performance. The Fusion
MLP achieves the highest AUROC across both AOT-C and COCO-OS, while maintaining
closed-set mAP at the same level as the base detector.

The di�erence seems at �rst small, achieving only a moderate 2.7% AUROC improve-
ment from the second best model in each dataset. A closer look at the results reveals
the following. The second best method is not the same in both datasets. Joint Thresh-
olding, while performing only slightly worse in the Real Flights dataset, underperforms
signi�cantly in the more complex COCO-OS dataset. Moreover, the GMM-Det algo-
rithm, achieves results really close to the Fusion MLP in the COCO-OS dataset, but
achieves the worst result out of the four in the real �ights dataset. This shows that our
model agnostic method is more robust across di�erent domains. Importantly, runtime
remains una�ected: throughput stays above 27 FPS, con�rming that the additional fu-
sion step introduces negligible computational overhead. These results demonstrate that
learning a fused decision boundary from multiple uncertainty signals yields measurable im-
provements over handcrafted scoring rules, without compromising e�ciency or closed-set
accuracy.

7.2.3 Three-Class Evaluation

We then extend the evaluation to the three-class setting, where detections are explic-
itly categorized as ID, OOD, or background. Here, we compare the Fusion MLP against
a double-thresholding baseline, which applies independent thresholds for OOD rejection
and background suppression. This method is a simple heuristic, basically what open-set
methods already do. Our inability to compare with more complex methods comes from
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Table 7.6: Three-class results: macro AUROC and Open-Set mAP (higher is better).
An asterisk (*) in the result means that all detections in the dataset got pruned.

Algorithm
Real Flights COCO

AUROC OS mAP AUROC OS mAP

Score 0.86 41.5 0.64 36.1

Entropy 0.75 42.7 0.57 39.7

Density 0.79 40.9 0.57 39.0

GMM Entropy 0.78 45.9 0.60 32.7

GMM Density 0.81 * 0.46 23.8

MLP 0.91 39.1 0.89 41.0

(a) ID object classi�cation:
Airplane

(b) OOD object classi�ca-
tion: Drone

(c) Background Classi�ca-
tion

Figure 7.3: Qualitative Results on Real Flights Dataset. ID classi�cations in green,
OOD in red and background in blue. The UAV separates ood objects from back-
ground detections improving both safety and e�ciency.

the fact that open-set detection has always been framed as a 2 class classi�cation problem
until now. Table 7.6 reports results on both COCO-OS and real �ight data. The Fusion
MLP achieves higher AUROC in both datasets, especially though in the more complex
COCO-OS dataset where all other methods signi�cantly underperform. When it comes to
open-set mAP, our method remain competitive with others. Qualitative results (Fig. 7.3)
demonstrate our �ndings: the MLP reduces spurious detections in cluttered skies and cor-
rectly rejects unseen drones as OOD, outperforming double thresholding in challenging
scenarios.

7.2.4 Domain Shift in Fusion Training

We now evaluate how well the Fusion MLP generalizes when trained with OOD data
that do not come from the deployment domain, as described in the Experimental Setup.

Training with random detections from COCO achieves the best result with an AUROC
of 0.867, bene�ting from the diversity of the dataset despite its lack of semantic relation to
the aerial domain. Using an unrelated drone dataset yields an AUROC of 0.823, showing
that although the OOD class matches semantically, the strong di�erences in object size,
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altitude, and image quality reduce transferability. Synthetic OOD samples generated di-
rectly in feature space achieve an AUROC of 0.835, con�rming that while this approach
avoids dataset mismatch, the resulting points are overly simplistic and fail to capture the
richness of real-world OOD conditions. For reference, none of these proxy-based results
outperform Joint Thresholding, which remains a competitive baseline.

To further analyze the shortcomings of proxy training, we evaluate the best-performing
source (COCO) in the three-class setting. Pairwise AUROCs between ID/OOD, ID/BG,
and OOD/BG are reported as (0.722, 0.957, 0.951). These results show that while back-
ground can be reliably separated from ID and OOD, distinguishing OOD from ID remains
challenging without access to representative OOD training data.

Overall, these experiments highlight the limitations of relying solely on proxy OOD
data for calibration. The distribution gap between proxy sources and deployment data is
too large for the MLP to generalize e�ectively. This suggests that future work should focus
on generating synthetic image-domain OOD samples that better re�ect real-world aerial
conditions, thereby narrowing the domain gap and improving the robustness of open-set
recognition.

7.2.5 Detection Performance

Finally, we present the closed-set detection performance of our algorithms compared
against popular detectors on the AOT and AOT-C datasets. The results can be seen in
Table 7.7. Here, we observe the following:

� Detection performance drops signi�cantly when synthetic corruptions are introduced.
From this we can conclude, �rstly, that training on a harder dataset like the AOT-C,
shows the detectors ability to learn beyond optimal conditions. Secondly, it shows
that domain shift through adverse weather, or sensor corruptions is an importnat
problem that, when not adressed, can compromise UAV safety.

� RT-DETR is the best choice for our experiments. It maintains robust performance
on both optimal (AOT) conditions and adverse (AOT-C) conditions, achieving the
second best out of the closed-set variant in both datasets.

� Joint Thresholding and 2 class Fusion maintain strong detection performance, com-
parable with the base RT-DETR variant, while at the same time improving open-set
performance.

� 3 class MLP Fusion achieves improved results in detection than the base RT-DETR
model. It's detection performance in the clean AOT dataset is comparable to the
best detector, while it achieves an 18.0% improvement in mAP in the corrupted
dataset. This improvement leads it to achieve the best results out of all the detectors
by a more than 5 point margin. This improvement can be attributed to the rejection
of many false positives from the background.

7.3 Summary of Findings

The Fusion MLP experiments provide several key insights:

� A compact input vector combining detector scores, GMM signals, and calibrated
logits achieves the best balance between performance and generalization, while high-
dimensional embeddings cause over�tting.
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Table 7.7: The benchmarking results of 13 object detectors on AOT and AOT-C in
terms of Average Precision (AP), inference speed (fps) and model size (M)

Object detector APclean ↑ APcor ↑ fps ↑ Model Size (M) ↓
YOLOv5 [20] 64.6 53.5 99 46.5
YOLOv8 [19] 56.4 41.2 110 43.7
YOLOX [11] 69.3 43.8 68 54.2

RetinaNet [17,24] 35.7 20.0 17 37.9
FasterR-CNN [31,36] 52.9 29.7 15 41.3

Di�usionDet [6] 63.8 35.7 30 110.5
DETR [?] 58.7 26.1 27 41.2

CenterNet2 [47] 66.2 35.9 24 71.6
GMM-DET (FasterR-CNN) [27] 64.2 48.0 15 41.3

RT-DETR-R50 [45] 66.2 49.6 28 40.1
Joint Thresholding 66.8 49.3 28 40.1

MLP FUSION 2 class 65.0 49.3 27 40.2
MLP FUSION 3 class 69.2 58.7 27 40.2

� In the two-class setting, the Fusion MLP consistently surpasses baseline scoring
methods, achieving higher AUROC while maintaining closed-set mAP and real-time
throughput.

� In the three-class setting, the MLP outperforms the double-thresholding baseline,
e�ectively suppressing background clutter and reducing false positives, subsequently
increasing detection performance.

� Domain-shift experiments highlight the importance of training with OOD data that
are semantically and distributionally aligned with the deployment environment.

� Runtime analysis con�rms that the method remains lightweight, with small MLPs
su�cient for strong performance at over 27 FPS.

Together, these �ndings establish the Fusion MLP as an e�ective extension of uncertainty-
based open-set detection, enabling robust performance in both binary and three-class set-
tings while remaining practical for real-time deployment.
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Chapter 8

Discussion

8.1 Interpretation of Key Results

The results of our experiments highlight several important �ndings regarding the pro-
posed framework for uncertainty-aware open-set detection in UAV settings. A central
observation is that combining multiple uncertainty metrics and detector-derived signals
encapsulates more information than relying on any single measure. Each type of un-
certainty captures a di�erent aspect of the problem: softmax entropy re�ects predictive
dispersion, density-based scores capture how well features align with known distributions,
and calibration reduces systematic con�dence misalignment. When combined, these sig-
nals provide complementary perspectives on both the epistemic and aleatoric aspects of
uncertainty, leading to more robust separation between in-distribution (ID) and out-of-
distribution (OOD) samples.

A particularly important dimension of this work is the explicit di�erentiation between
background clutter and OOD targets. In aerial imagery, the majority of the �eld of view
is dominated by background, especially below the horizon where terrain and man-made
structures appear. Sensor noise and cluttered environments can generate spurious features
that are su�cient to trigger false positives in conventional detectors. By introducing a
third class that explicitly models background, the system reduces the risk of con�ating
background with novel aircraft, thus improving both safety and operational reliability.

Another strength of the approach is its model-agnostic nature. The fusion of signals
does not depend on the internal architecture of the underlying detector, which means that
the framework can be integrated alongside a wide range of models. This �exibility enables
adaptation to di�erent mission pro�les or future architectures without requiring signi�cant
modi�cations to the uncertainty estimation or thresholding procedure.

Finally, beyond open-set performance, the framework also improves detection accuracy
in challenging conditions. Adverse weather, sensor corruption, and complex backgrounds
often degrade baseline detectors by producing high-con�dence false alarms. By leveraging
joint thresholding and fusion, many of these spurious detections are suppressed. This
results in tangible gains in detection performance under real-world conditions, con�rming
that robustness to background clutter directly translates into better operational reliability.
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8.2 Comparison with Related Work

Relative to the existing literature, our framework achieves state-of-the-art performance
in the standard two-class open-set detection setting. Across benchmarks, it consistently
outperforms baseline scoring approaches such as entropy and density-based metrics, as
well as prior open-set detection algorithms like GMM-Det. These results demonstrate the
bene�ts of leveraging complementary signals rather than relying on a single uncertainty
measure.

In addition to outperforming prior work in the binary ID/OOD setting, we also in-
troduce a three-class formulation that explicitly separates background from OOD. To our
knowledge, this is a novel contribution in the context of open-set object detection. Prior
work has typically ignored background, which neglects the unique role of background in
aerial imagery and introduces safety risks in UAV deployment. By formalizing background
as a separate class, we extend the scope of open-set detection and provide a more principled
foundation for robust perception in safety-critical environments.

8.3 Practical Deployment Considerations

From a deployment perspective, the framework satis�es the real-time constraints typi-
cal of UAV operation. Inference speed remains well above 27 FPS across all con�gurations,
indicating that the additional fusion and thresholding steps introduce negligible overhead
compared to the base detector. This makes the approach suitable for embedded deploy-
ment on resource-constrained platforms, where maintaining throughput is critical for safe
navigation and timely decision-making.

Another consideration is the role of OOD training data. Our ablation study on proxy
OOD sources showed that the choice of OOD data strongly in�uences performance. While
the framework is computationally inexpensive, its success still depends on the availability
of representative OOD examples for calibrating thresholds. This is not a limitation unique
to our method, but rather a general property of open-set detection systems. Since all
threshold-based approaches ultimately require labeled OOD samples for proper calibration,
this requirement is consistent with the broader state of the �eld. Future work may mitigate
this dependency through improved synthetic data generation or more principled domain
adaptation techniques.

In summary, the framework balances strong open-set robustness with practical de-
ployability. It extends the capabilities of existing methods by combining complementary
uncertainties, explicitly modeling background, and maintaining e�ciency suitable for UAV
integration.
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Chapter 9

Conclusion and Future Work

9.1 Conclusion

This thesis has addressed the problem of uncertainty-aware open-set detection in aerial
object recognition, with a particular focus on the challenges faced in UAV deployment. We
proposed a model-agnostic framework that combines complementary uncertainty signals,
introduces a principled distinction between background and out-of-distribution (OOD)
samples, and maintains real-time e�ciency suitable for embedded systems. Across bench-
marks and real-world �ight data, the framework consistently improved robustness while
preserving competitive closed-set accuracy, demonstrating its practical potential for safety-
critical applications.

9.1.1 Summary of Contributions

The main contributions of this work can be summarized as follows:

� We demonstrated that fusing multiple uncertainty measures leads to more reliable
separation between ID and OOD detections compared to single-signal baselines.

� We introduced a three-class formulation for open-set detection that explicitly sepa-
rates background from OOD, addressing a long-standing gap in the literature and
reducing the risk of false positives in cluttered environments.

� We established that the framework is model-agnostic, enabling seamless integration
with di�erent detectors without architectural modi�cation.

� We con�rmed that the proposed methods maintain real-time inference speed, making
them practical for UAV deployment where latency and throughput are critical.

9.1.2 Impact on UAV Perception and Safety

By improving robustness under domain shift and reducing high-con�dence errors, the
proposed framework enhances the reliability of UAV perception systems in complex aerial
environments. Di�erentiating background from OOD and suppressing spurious detections
is particularly important for safety, as it reduces the likelihood of false alarms that could
trigger unnecessary evasive maneuvers or compromise mission success. Overall, this work
contributes toward making UAV object detection systems more dependable and better
suited for real-world operation.
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9.2 Future Work

Several promising directions remain open for future investigation. First, the Fusion
MLP introduced in this thesis can be incorporated into more specialized or custom detec-
tors to assess whether its bene�ts generalize across architectures and domains. Because
the framework is model-agnostic, it can be readily applied alongside di�erent backbones
or detection pipelines, potentially uncovering new performance gains.

Second, while this work examined the use of proxy datasets for OOD calibration, the
results highlight the importance of having realistic training examples. Future research
should explore the generation of simulated OOD data in the image domain, rather than
feature space alone. By leveraging modern simulation tools, it may be possible to produce
diverse and representative OOD samples that better re�ect real-world conditions. Such
data would reduce the dependency on domain-speci�c OOD collections and improve the
generalization of open-set detectors.

Taken together, these directions suggest a pathway toward more resilient, generalizable,
and practically deployable open-set detection systems for aerial robotics and beyond.
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