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[epiAnyn

Ymv enoyn OmOL TA TANPOPOPLOKE GLGTHUOTO OTOTEAOVV TN POYOKOKOALL TNG WNOUKNG
vrodoung, to. Application Programming Interfaces (APIs) dwadpapatiovv kpicipo poéio otn
SLIAEITOLPYIKOTNTA HETAED VINPESLOV, EQUPROYDV Kot ypnotdv. Ta APIs opiCovv cupforaia pe
ocaen dour|, cvvora and endpoints ToOv £KBETOVLV GLYKEKPIUEVES AEITOVPYIEG EVOC GUGTNOTOC.
Kabng o1 ohyypoveg apyrrextovikég Pacilovrot OA0 Kol TeEPIocOTEPO GE KaTAVEUNIEVES Kot cloud-
native vanpecieg, 1 OCLVEMEW, 1) EMEKTACIUOTNTO Kot 1) cvvinpnowdmto tov APIs elvau
KaBOPIOTIKNG ONUAGTIOG Yot TOV am0d0TIKO oyedtaopd kot v e&€MEn cvotudtov. H tapovoa
epyaoia emkevipoveral ot pebodoroyia Model-First API Design, 6mov to cupforaio tov API
opiletar mpwv v vAomoinom, pe ypnom epyoreiov. Tpla avrimpoconevtikd frameworks mov
peretdvtor eivor ta gRPC/Protocol Buffers, AWS Smithy xot Microsoft TypeSpec. Kabe
framework mapéyel évav dounpévo tpdmo meptypaeng endpoints, AEITOLPYIOV KOl SESOUEVDV,
vrootpifovtag avtopatn mapaywyn tekunpioong kot SDKs. Me Bdaon avt ) Bepeiioon, 1
gpyacia mpoteivel o pebodoloyio yw otatikr avdivon efaptioemv petalld endpoints,
alomolmvTog To LoVvTéAD oL Tapdyoviot amd ta mapoandve frameworks. H avdivon evromilet
eCapmoelg oedopévav petash tov endpoints cuykpivoviog KOOV TOTOVS Kol OOUEG OTO
eloepydpeva kot e€epydpeva Lovtéda. Avtd eMITPENEL TV OMTIKOTOINGT] TOV GYECEMV UETAED
AELTOVPYIOV KOL TNV OTOKAALYT EUUECHOV OKOAOVOIOV KANGEDV TOL AVTOVOKAOVV TPOYLLOTIKES
poég APL Ta mepapatikd amotedéopata detyvouy 6Tt ta povtéda Smithy kot TypeSpec mapdyovv
Wwitepa akpp] kor kaBapd dependency graphs, evtomilovtag eEapToElS HE UEIOUEVT
apeonpio. AviiBétwc, o gRPC napovsialet younAidtepn akpifeia Aoym tng advvapiog tov va
opilel wrapped primitive types, KTl TOL 00NYEl OE AMMAELN CNUAGIOAOYIKNG TANPOPOPiaG KOTA
mv gayoyn oe OpenAPL. To gvpiuato katadeikvoovy 0Tt ot koAl dounuévol, model-first
opopol mpooeépovv mo afdmiotn Pdon yw avaivon eEoptioeov APIs oe oyféon pue
TAPOOOCIOKEG OTATIKES 1] SUVOLIKEG TTpoGEYYioelg Onwg eketves mov epapuolovtar cto RADAR.

AéEarg Khewowa: Model-First APl Xyedoopog, gRPC, Smithy, TypeSpec, Avdivon
E&apmoemv API, OpenAPI, Smithy AST, Xtatikn Avdivon






Abstract

In an era where software systems form the backbone of digital infrastructure, Application
Programming Interfaces (APIs) play a crucial role in enabling interoperability between services,
applications, and users. APIs define structured contracts, sets of endpoints that expose specific
functionalities of a system. As modern architectures increasingly rely on distributed and cloud-
native services, the consistency, scalability, and maintainability of APIs have become vital for
efficient system design and evolution. This thesis focuses on the Model-First API Design
approach, where the API contract is defined before implementation, using formal modeling
frameworks. Three such frameworks are examined: gRPC/Protocol Buffers, AWS Smithy, and
Microsoft TypeSpec. Each framework provides a structured way to describe endpoints, operations,
and data models, supporting automated documentation and SDK generation. Building on this
foundation, the thesis introduces a methodology for static inter-endpoint dependency analysis that
leverages the structured models produced by these frameworks. The analysis identifies data
dependencies between API endpoints by comparing shared types and message structures in their
input and output models. This enables the visualization of relationships between operations and
the discovery of implicit invocation orders that describe real API workflows. Experimental results
show that Smithy and TypeSpec generate highly accurate and noise-free dependency graphs,
effectively capturing object-level dependencies and reducing ambiguity. In contrast, gRPC
exhibits reduced precision due to its inability to wrap primitive types, which leads to semantic loss
in its OpenAPI export. The findings demonstrate that well-structured, model-first definitions
provide a richer and more reliable foundation for analyzing API interdependencies than traditional
static or dynamic approaches such as those implemented in RADAR.

Keywords: Model-First API Design, gRPC, Smithy, TypeSpec, API Dependency Analysis,
OpenAPI, Smithy AST, Static Analysis
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Greek Extended Abstract

1. Evcayoym

210 GUYYPOVO YNOLoKO otkocvLoTnpa, To. APIs amoteAovv tov Kpioio unyovicpud d1060voeong
CLGTNUATOV, OLUOPAGHOL dedOUEVOV KOl VAOTOINONG OAOKANPOUEVOV VINPECIOV. Agv
avtyetonilovtar mAéov ¢ Pondntikd texviKA epyolein, OAAL ®G OTPATNYIKA HECH TOL
kabopilovv tOv TpOMO pe TOV Omoio opyaviopol ekBETovv Agrtovpyieg, OLUOPPDOVOLV
OKOGUGTNLOTO. KOl KOLVOTOLLOVV.

H e&amlmon Katavepunuévav apyrteKTovikav, OTmg microservices, serverless kot cloud-native
EPAPULOYES, €xel avénoel dpactikd v moAlvmiokotnta ¢ avdmtuéng APIs. H avéykn yw
OULVETELD, OLOAEITOVPYIKOTNTO KOL COPNVEWL O TEPPAALOVTIO pE €KATOVTAdES eSapTOUEVA
endpoints arotelel peilov TpoPAnua punyovikng kat dtaxvépvnone. Ta APIs mAéov Asttovpyodv
®¢ ovuPorata PeETaEL opddwv, emnpedlovtag Oyt LOVO TNV TEYVIKN VAOTOINoY, OAAL Kol TO
EMYEPNCLOKA HOVTELQ, TIC TOAITIKEG OLGOAAELNG KO TIG OVTOUATOTOMGELS KUKAOL {mNG.

[Mopadociokd, o tepiocdtepa APIs oyedidloviav pe ™ Aoyikn tov code-first: ot pnyovikot
VAOTOL0VCAV TH AOYIKT) GE KMOKO KO GTT] GUVEXELD ONUIOVPYOVGOV TEKUNPIMON 1 TPOSLYPUPES
ne epyareio 6Tmg 10 OpenAPL Av kot Aeltovpyikn Yo PIKPE GLUGTHLOTA, OVTH 1) TPOGEYYIoN
odnyel cLYVA Ge KATOKEPUATIOUO: 1 TEKUNPIOOT amOKAIVEL ad TV LAOTOINGY, 0 GYESUGHOG
eAéyyetan kaBvotepnuéva Kat 1 cuvepyacia teplopiletol € oTEVE TEXVIKA TANIGLAL.

Q¢ andvinomn, ot chyypovol opyavicpol viobetodv v mpocéyyion model-first, dmov to API
TEPLYPAPETAL TANPWOS KOL TUTIKE TPV OO TV VAOTOINOT), HECH YAMCOHOV LOVTEAOTOINONG OTMC
ta Protocol Buffers (gRPC), Smithy kot TypeSpec. To poviého Aettovpyet ¢ 1 povadikn mnyn
aAnBeag, amd v omoia mopdyoviol ovTOROTH KMOKAS, TeKpunpioorn, SDKs kot gpyoieia
EAEYYOVL. AVTI 1 TPOKTIKN TPOAYEL TNV TPAOIUN ETIKVPMOT], TN CUVETI OPYLTEKTOVIKY KOl TN
ouvvepyaoio HeTaED TEYVIKAOV KOl U1 TEXVIKMOV POAMV.

Kobng ta APIs avantoccovtar mAéov oe mepifdiiovta multi-cloud 1 hybrid, n vio6étmon
LOVTEAWDV SLELKOAVVEL TNV aveEaPTNGio amd VTOSOUES KOt TV OVTOUATOTOMUEVN dlakvBEpvnon
0V KOKAov (Mg H olvykAiion tov model-first oyediacpov pe 11 apyég tov DevOps kot Tov
infrastructure-as-code onpoatodotel (o véa eroyn, émov ta APIs avipetonilovral wg versioned
KOl GUVEYMG EMKLVPpOUEVA artifacts.

H mapodoa epyacio peretd eig faboc avty v mpocéyyion. Eotialel ota tpia xupiopya
frameworks, gRPC/Protocol Buffers, AWS Smithy kot Microsoft TypeSpec, kat mpoteivel pua
pebodoroyia yio v avéivon eoptioewv peta&d endpoints pe ototikd Tpdémo, Paciouévn oe
model-first avamapactdoeic. H épeuva cuvdvdlel Bempntiky] avdAvon, GUYKPITIKY UEAETN Kot
eumelpikn  afoloynon péow perétng mepimtwong oto PayPal APIL, emekteivovtag v
nponyovpevn epyacic RADAR ya aviyvevon eEaptioewv o€ REST APIs.
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2. OgpeAmon tov Xyedaouov API

Ta APIs amoteAodv t0v PBocikd pnyavicpd OSlocVVOESNS KOl EVOTOINGCNG CLYYPOVOV
CLOTNUATOV AOYIGUIKOV. AgrTovpyohv m¢ emionua GUUPOANLN ETKOVOVIOG HETOED TELUTAOV Kot
vINpecLOV, Kabopifovtag Tig drabéotpeg Aettovpyies, To avaptevopevo dedopéva e16000V/eE600V
KOl TOVG KOVOVEG TG OAANAETIdpaong. Amo Tig Tpdes vAomomoels péow SOAP kot WSDL oto
nmlaicto tov SOA, to owkoovotnua eEeliyOnke npog RESTful APIs, pe épupacn oe mopovg mov
extifevron péow HTTP pe ypnon pnebddwv 6nwg GET, POST kot DELETE. To REST kabiépwoe
apyés ommg statelessness kot uniform interfaces, emtpénovioag oe APIs va emektafodv kot va
AELTOVPYNCOVV ATOJOTIKA GE TEPPALAOVTA [LE TOAAOVG TEAATES.

H petédPaon oto REST cuvodevtnke amnd viobBétnon JSON mg popen avtaldayng 0E00UEVDV,
KaO1oTOVTOG TV EMKOWVOVia o eha@pid Kot ovayvaoiun. Ta APIs mAéov dwadpapatiCovv poro
oe microservices, serverless mAatedpueg, mobile backends, IoT ocvokevéc kot avtdOvopa
ocvotiuata. O poAog Tovg dev elvarl amA®dG TEYVIKOS, OALL KOl GTPOATNYIKOG: EMITPEMOVY TNV
ynoewnoinon Asttovpyldyv, v wpdcPacn oe Tpitovg kol TNV otkodounon modular
OPYLTEKTOVIKOV.

O oyedwopog API petatpdnnke 1ot 6g apyrtektovikng dtadtkacio. Ot dvo Pacikég rlocopieg
nov emikpdnoav givor 1 Code-First kar 1 Model-First mpocéyyion. Ztnv Code-First pébodo, ot
TPOYPOUUATIOTEG EEKIvoUV amevBeiag e v vAomoinomn endpoints, ypnoomoidvrog frameworks
omwg Spring Boot 11 Express.js. H tekunpioon mopdyetol €k TV VOTEPOV HECH EPYAULEIDV TOVL
e€ayouv petadedopéva amd annotations 1 decorators. Av kot 1 pnéBodog avtn givar Toyelo Kot
owela otovg developers, 0dnyel ovyvd oe oamokAicelg petalld tekunpimong Kot LAOTOINoNG,
dVOKOAEG EMKOPOONG Kot EAATN 0pATOTNTO OO U TEXVIKA LEAT] TNG OLASOGC.

Avrtifeta, 1 Model-First piiocoeia Eekivd amd Tov opiopd £vog emionuov poviéAov tov APIL,
ypnoonolwvtag yhwooeg 6mwg OpenAPI, Protocol Buffers, Smithy 11 TypeSpec. To povtéio
TePLYPAPEL TANP®G ta. endpoints, Ta schemas, o TopASElYHOTA KOl TOVG KOAVOVES, KOl OOTEAEL
KOWwO onueio ovapopds yro. GAOVG TOVG EUTAEKOUEVOLG. Méoa amd avTd TapAyovToLl CVTOLOTA TOL
stubs, ta SDKs kot 1 texpunpioon, e£ac@arilovtag GLUVETELD KOl OLLOIOHOPPiaL.

H mpocéyyion avt evBuypappileton pe tig apyés tov Model-Driven Engineering kot mpow0et
N oLvEPYATin, TN CLUUOPP®OT LE TPOTLTA KoL TNV €XeKTACILOTNTA. E16dyel, ®o1060, Kot véeg
ATOLTAOEIS: Ol opadeg mpémel va pabovv ta modeling epyadeia, vo emevdvcovv g pipelines
EMKVPOONG KoL VO SLOLYEPIOTOVV repositories HovtéAwv e mefopyia.

"Eva and ta mo dwadedopéva formats meprypapnig APIs givar to OpenAPI (mponv Swagger), to
omoio meprypdpet RESTful APIs 6e YAML 1 JSON. Méow dopmv 0mtmg paths kot components, ot
TPOYPOUUATIOTEG UTOPOLV Vo opicovv endpoints, schemas kot authentication pnyaviopovg. To
OpenAPI vrrootnpiletar and epyoreia 6nmg Swagger Ul yuo dtodpactikn| tekpunpioor, OpenAPI
Generator Yo mopaymynq SDKs kat Stoplight yia validation.
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[Mopd v evpeion amodoyn tov, to OpenAPI mepropiletor otov REST paradigm kot dev
KoAOTTEL £YYeEV@G streaming 1) bidirectional emkowvovie. H Model-First mpocéyyion emexteiveton
népa and to OpenAPI, vioBetdvTag o ekEPACTIKA LOVTELQ.

YuvoAiKd, ot 600 Tpoceyyicelg ekppalovv drapopetikés priocopieg: 1 Code-First divet Epgpoaon
oTNV TOLTNTO KOl TV GUEST TOPAYMYT] AEITOVPYIKOV KOJKA, dAAd Bucidalel Tn cuvoyn Kot
dopkn aptidtra. Avtifeta, n Model-First mpocpépel €va gheyyOpeEVO Kol TLTOTOMUEVO
nePPAALOV GYESOGOD, EVOOUATMVOVTOS OLTOUOTOTONON Kot entkbpwon. H vioBémon g
arortel aAloyn vootpomiag kot Tpdcehetn TPOoSTAdED GTNV 0Py, OU®G EMTPENEL TN SATHPNON
oLUPaTOTNTOG, TNV KAMUAK®OGCT Kol TNV LI0BETNON Kowvdv standards oe OAOKANPO TOV OPYOVIGUO.

3. Model-First Zyeoroo16g API

To Model-First API Design Paciletor ommv apyn 6t  povtedomoinon tov cvpfolaiov
VINPEGLOG Kol TOV SOUMV dEdOUEVDV TTponyeitan TG VAomoinone. H dadwacio Eexva amd Eva
APNPNUEVO, TEXVOAOYIKA aveEAPTNTO HOVTEALD TTOL TEPLYPAPEL TIG Agttovpyiec, Ta schemas Kot
TOVG TTEPLOPIOUOVG. ATH TO povtédo avtd Tapdyoviot avtopata server stubs, SDKs, texunpimon
Kot epYaAEin EMKOPWONGC, KOOIEPOVOVTAG TO G TN LOVAIIKT TNYN oA 0gl0g o€ OAN TNV AVATTVE.

To povtého emitpémel mpodUn ocvupetoyy SEOpOV Polwv otov oyedtacud (dxt poévo
UNYOVIKAV), evd 1 emkvpwon "shift-left" PBonbd otov €ykopo evromopd cooiudtov. H
OLTOLOTOTTOINOT ETOVOAAUPAVOLEVOV EPYOCLOV KOl 1| OHOOHOp@Pia og eTepoyev mepBdAlovTa
KaO1oTOOV TNV TPOGEYYIoN WOLHTEPA OTOSOTIKY.

To gRPC a&lomotet o Protocol Buffers (.proto) og kevipikd poviélo oyedacov. Xto .proto
apyeia dnidvovrtal tomot, Aettovpyieg RPC kot vanpeoieg, mov ot cuvéyela petoyrmttilovrol o
KOO yuoo ToAAEG YAdooeg. H ovlevén tov povtélov pe 1o runtime tov gRPC emitpémet
amodoTiky emkowvovia mwhveo ornd HTTP/2, vrmoompiloviag dwadpactikd mpdtuma (unary,
streaming k.4.) Wovikd ywo real-time kot low-latency cevdpia.

Ta Protocol Buffers eivar oyedacpéva yio compactness kot copfotommra HEToED EKOOCEWMV.
Ot apBuntikég eTikéteg avti yroo ovopata medimv emTpENOVY WKPOTEPO Héyehog Kat ypryopn
eneepyaoio. To runtime tov gRPC mpocpéper primitives ywo authentication, deadlines, health
checks ot interceptors, vmootnpilovtag TOPAYOYIKES €YKATACTACELS o TEPPAAAOVTA e
observability kot service mesh.

To gRPC cvuvovaletar kord pe ovyypoveg vmodopég cloud: reverse proxies, gateways kot
epyodeia Onmg grpec-gateway emitpémovv v ékbeon JSON/REST dienapdv eEmtepikd, evd to
€0mTEPIKO cLUPOAaIo Tapapével o gRPC. H apyttektovikny vt emitpémel vynAég emdOceLg
ectepkd kot ocvpparomta pe REST efotepuwcd. H vmoompiEn tooling sivor gvpeia kot
nepthapPdvel moAléc Yhwooeg, plugins, IDE integrations kot epyadeia yia testing Kot tekpnpioor).
Ta .proto ypnoyomolovvior ®g cupPoOrale Yo TOPAAANAN ovATTLEY, EMKOPWOT GAAAYDOV Kot
avtopot mapaywyn SDKs. Qot6c0, vadpyovv meplopiopoi: 1 dvadikn popen Kabiotd SVCKOAN
™ oK Yopig 0K epyolreio 1 EAAetyn TANPOLS VITOSTNPIENG ad browsers amottel ypnon
gRPC-Web 1) transcoding- kot yio onpodcio APIs, to REST mopapéverl mo dadedopévo. Xovinoeig
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ypnoels tepthappdvovy microservices, backend APIs kot mobile backends, evd cuyvd emidéyston
VPP poviéro (gRPC somtepikd, REST e€wtepikd).

To Smithy g AWS eivan pia yhwoosa poviehonoinong APIs mov dwoywpilel capdc ™ doun
dedopévmv (shapes) amd T oNUACIOA0YIKES 1010TNTEG (traits). To povtédo mapapéverl oveEdptnro
and 10 MPMOTOKOAAO, eMTPENOVTAG TPOPOAEG (projections) 6€ JSLUPOPETIKEG VAOTOMGELS OTMG
restJsonl 1 custom binary protocols. Avtd emttvyydvetal pécw traits mov opifovv m.y. bindings og
HTTP verbs, authentication, pagination 1} error handling. H vAomoinon nepilapfavet tooling yio
EMKVPWOOT, TOPAYOYN KOIKA Kot TeKpnpioon. Méow tov smithy-build.json dnidvovtar ta
plugins mov Ba gvepyomocovy mpoforég kar SDKs. Ta traits Aettovpyohv ™G POpeig TOMTIKNG:
vy mopaderypa, opilovv status codes, coumeplipopéc pagination 1 mePLOPIGHOVG Tediwv. To
Smithy ypnoiponoteiton extevarg amd v AWS yia va meprypayet APIs kot va mapdyet SDKs kot
CLI clients, kot T0 01KOGVOTNLLO TOV EXEKTEIVETOL OTOSIOKA Kol €KTOG AWS.

To TypeSpec ¢ Microsoft eivat pia To TPOYPOLLATIGTIKY TPOGEYYION OT LOVIEAOTOINGT
APIs, pe odvtaén epnvevopévn and TypeScript. vvovdlet SnioTikoOg opiopovg pe templates ko
decorators, emtpénovtag avarapaywyr OpenAPI, Protobuf, SDKs 1} documentation amd pio kot
puovo myn. To Poaocikd povtého meprypdpel Tovg THMOVG Kot TIG Artovpyieg vanpeciog HECW
interfaces. Ot decorators, 0nw¢ @route, @get, (@post, AmrodidovVV GNUAGIOAOYIKES TANPOPOPIES
nov a&lomotovvion amd emitters. Ot emitters givarl PipAiodnkeg mov petaTpémovy 10 HOVIELO OF
tehkq artifacts (OpenAPI specs, gRPC definitions k.Axn.). H vrodopr| emitters givol enektdoun,
EMTPENOVTOG GLYYPOPY| custom eEAY®YDV YWPig EMAVAAN YT THG AOYIKNG LOPPOTOINGNC.

4. H Znuacia tov Model-First Xyediaopnog otov Kvxio Zmnc tov API

O mapadootakdg kokAog Long evog APL mepihapfdvel to otddo Tov oYedOCUOD, NG
vAomoinomg, TV SOKIUAV KOl TNG TOPAY®YNG. XvYVO OU®MC, oVLTE To oTAdW. €KTEAOVVTAL
OTTOLLOVOUEVE, OMUIOVPYDVTOG OCGLVETEIEG, KoBvoTEPNOES Kot TeYVikd ypeog. H mpooéyyion
Model-First enavompoodopiler tov kbkdo (Mg tov API, edpaidvovioc to poviélo ¢ To
povodikd onpeio avaeopds yro OAn TV avamTuén.

H dwdwaocia Eekivd pe ™ povtelomoinon twv endpoints Kot Twv Sopdv dedopéEVEV Le yprion
epyareiov 6mmwg Smithy, TypeSpec 1 Protobuf, g meptBdAlov ovdétepo MG TPog TNV TEXVOLOYiaL.
Amd 10 emkvpouévo poviélo mopdyovior oavtopate  stubs, SDKs kor  texunpioon,
dtuoparilovtog 0T 1 VAOToino™ gival cuyypovicUévn e Tov oyedlacpd. Méow CI/CD pipelines,
TO HOVTEAO VOPAAAETOL GE EAEYYXOLG GLUPATOTNTOC, EMKVPOONG Kot versioning mptv and Kdabe
avamTuén.

To testing Eekivd 0N amd 10 6TAd10 ToYediaong, e xpnon mock servers kot schema validators
TOV EMTPEMOVY TNV TPO®PN aviyvevon tpofAnudtwv. ‘Etot amrogedyovrar AdOn mov evtomilovtan
apyotepa otV mopaymyn. Exiong, o oxediaopog dievkorvvel v e€ehktikn avapdOuion APIs,
EMTPEMOVTOG UN-KATAGTPOPIKEG aAAayEC, amdovpon endpoints kot dlayeiplorn eKOOGE®V, YWPIG
vo emnpealovtal VITAPYOVTEG KATAVOAWMTES.
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O woKkhog {ong Stopopeavetol ®¢ £vag emavaAdpPoavopevog Bpoxos: opioprog Hovtélov,
emove€ETaon Kot ETKOPWGT), AVTOUATH Tapaymyn artifacts, vAomoinon, avantuén kot eEEMEN. Xe
avtiBeon pe ™ ypouuky pon tov code-first poviéhwv, n Model-First mpocéyyion cuvoéet
oLVEYMG TOV OYXEOOGUO LE TNV TOPUY®YN, EVICYVOVTOG TN OPAVELD, Tr| CUVETELDL KOl TNV
EVOVYPAULOT) TEXVIKDVY KOl ETLYEPTOLUKDYV GTOYMV.

‘Eva. and to onpavtikdtepa mieovektipato tov Model-First gival n evepyn| coppetoyn un
UNYOVIKOV pOA®V oTov oxedtacud. Méoa and tic povtedomomoels oe Smithy, TypeSpec 1
Protobuf, opddeg mpoidvioc, oyxediaotég UX 1 HéAN KAVOVIGTIKNG GUUUOPO®ONG UTopodV va
dwPdcovv, oyoidoovv kot cvvolapopedcovy 10 APL Ov meprypoaeéc eivor OMA®TIKES,
EVOVAYVOOTES KO EKTEAOVVTOL ald ePYUAElD TTOV TIC LETATPEMOVY G€ Mock servers, Tekunpimon
1 validators.

Avt n mpocPacipudtra  emtpénet otovg product managers vo  eEaceaiilovv v
EVOVYPAUIIOT UE TO. EMYEPNOOKA GEVAPLO, OTOVG OCYEONOTEG VO EMKLPAOVOLV TIG POEG
JEQOUEVMV KOl GTOVS VOULKOVG VoL EAEYXOVV T1) OLOXEIPIOT] TPOCOTIKAOV TANPOPOPIDV

H gpappoyn kowvmv oyedacTikdv HoTiBoVv Kot 1 KEVIPIKY dtoyeipion LOVTEA®V Slac@oAilovv
ouvvénela kot TototnTo 6€ 6A0 10 API owocvompa. Etavoypnoonotodpeva traits 1| decorators
yw. authentication, error handling kot pagination pmopodv va epappoctovv optldvtio oe OAA Ta
services. 'E1ol, peidveror o kivouvog acVVETELNG Kol Ol OHAOES OTOPEVYOVV TNV EMOVEPEHPEST
VOLOTAUEVODV ADGEWV.

H dwkvBépvnon oe Model-First mepifaiiov dev givar otatikn. Kabog véeg texvoroyieg 0mmg
GraphQL federation 11 AsyncAPI evoopatdvovtal, ta povtéda kot ot validators e&glicoovtat
avéroya. H apyttektoviky mopaptéverl o1a@avig Kot EVEAIKTY), TPOGOUPLOLOUEVT] OTIC GTPATIYIKEG
VAYKEGS.

H mpocéyyion Model-First cvvdéetar dpeco pe cloud-native apyitektovikés. Ta APIs
avteTonilovtal ®g povades evomoinong oe mepPdiiovta multi-cloud, 6mov | ave&aptnoio and
™ otoifa vAomoinong eivar kpioyn. Toa poviéha tov APIs meprypdoovtor dniotikd kot
EVOPYNOTPOVOVTAL OTTMG 1) VTodoun|: version-controlled, mapaperporompéva, Kot Guyypovicuéva
pe Terraform 1 Kubernetes manifests. Ot oAlayég ©TO0 HOVIEAO EMPEPOLYV  OVTOLOTEG
TPOTOTOW|OELS GTNV LVITOOOUTN KOl TIG TOATIKEG ac@aAeiag, puewwvovtag to drift kKot evioybovrog
v a&lomotio. [TAateoppeg 6nwg AWS API Gateway, Azure API Management kot Google Cloud
Endpoints vrootpilovv eicaymyq OpenAPI 71 gRPC specs, emtpénovtag otig aAloyég oto
HOVTEAO Vo avTiKatonTpilovtol GUeEsH 6To runtime.

H dwiertovpywcdmra eEaceariletonr péow e£oymydv o MOALOTAG TPOTOKOAAN: Ao Eva
eviaio povtédo pmopotv vo mpokvyovv REST, gRPC 7 GraphQL interfaces, emitpémovrag
Aertovpyio o€ £TEPOYEVEIS VTOJOUES YW Pig emavacyedtacd. H popntdmra avt tpoctatevel amnd
vendor lock-in kot vrootnpilet VPPLOIKA cEVAPLO microservices.

H texunpioon, erniong, avaPaduiletor o factkd cuoTOTIKO TOV GYESIAGHOV. ZE avTifeon ue
11 code-first mpoceyyioelg, Omov 1 TEKUNPIOOT EvOl HETAYEVEGTEPT KOl GUYVE OLGVVETNG, GTO
Model-First mpoxvmter dupeco amd T0 poviého. Ileprypoeéc, moapadeiypoto Kot oyOAln
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npootifevtarl ota endpoints, oto schemas Kot 6Tovg THTOVS SEFOUEVMV, KOl EVOOUATMOVOVTOL
avtopota oto OpenAPI 1 SDKs. H texpunpioon e&ehicoeton pali pe to povtédo, dtatnpeiton
emKapomTonpévn kat vrrootnpiletl auditing, 1GTOPIKOTNTO KOl ATOTVTMOOY] TOV CKEMTIKOD TICW®
Ao TIC OYEOAOTIKEG amoPdoels. Evioyvel T dtapdvela, BEATIOVEL TNV gUREPio TOV ¥PNOTAOV TOL
API ko peidvet tov ypdvo Evtacng vémv opddmV 1] GUVEPYUTAOV.

Yvvolikd, n Model-First oyxediaon APIs petatpénetl ta interfaces oe otpatnyikd epyaieia,
evbuypapopéva Pe TG apy€g ™S PLOGIUNG APYLTEKTOVIKNG, TNG OTOUATOTOINONG KOl TNG
oLVEPYOOIOG. XVVEVAOVEL HOVTEAOTOINON, TeKunpiowon kot dwkvBépvnon oe éva  eviaio
owocVoTNH, EvOLVaudvovTag TV e£EMEN APIs og peydin kAipoka kot pe otafepn modtnra.

5. Avaivon E€aptoemv pe Xpnon Model-First API [Ipoceyyicewmv

Ot mapadociakéc Tpodtaypaeés API 6nwg 1o OpenAPI 1 ta Postman Collections weptypdgpovv
TANPOG pepovopéva endpoints, GAAE GTAVIN ATOTVTIOVOLY TMOG TO dedoUEVA pEovy HeTa&d TovG,
INradn g 1 ££0d0g £vog endpoint yivetat eilcod0¢ oe AAro. H katavonor avtdv tov eEaptmoeny
peta&h endpoints givarl kpiown yio tov oyedacpud chHvleTtv pomdv, Tn dokiun Kot v eEEMEN
peydimv APIs.

H epyaoia enexteivel tnv évvola g oTaTikng ovéivong e&aptinoewv oto tAaicio Model-First
oyxedlacpov API: Smithy, TypeSpec kot gRPC / Protocol Buffers, a&lomoidvtag v gyyevn
TUTOTTOINGN KO TI GNUOGIOAOYIKT OOUN GLTAOV TOV LOVTEAW®V Yio. akp1Pn Kot dounpévn eEaymyn
eCapmoewv. H Bacikn Aoy etvan 1 €€1g: av 000 endpoints porpdloviot Tomovg dedopévev (T.y.
éva medio NG amoOKPIoNG TOV TPAOTOL YPNCOTOLEITAL 6TV €1G000 TOV SEVTEPOV), TOTE VILAPYEL
e&aptnon peta&d tovg.

To Smithy npoceépet pia 1oyvpn, Tvmomomuévn yAwooa neptypaens REST APIs, otnv onoia
Kd0e Aertovpyia cuvodeveTal amd traits (OnG smithy. api#http) mov oniwvovv HTTP puebddovg,
routes Kot Topapétpovs. To poviéro meprypdopet TAnpwg 10 API yopic va amaiteitor KOOKOG, Kot
01 V101 £16600V/e£0d0V opilovtatl pécw dopmv. H avdivon eaptiocmv a&lomotet To mapaydpuevo
Abstract Syntax Tree (AST) oe popen JSON. To AST dwatnpel OAa Ta TEPLEYOUEVA TOV LOVTEAOV
(Tomovg, traits, OOpEC, OYEGEIS) KOl EMITPEMEL TN CLOTNUATIKY avayvodplon tov shared shapes
petald e£000v evog endpoint Kot £16050v Kamowov dArov. To gpyadeio avaivong dnpovpyei Evav
KateLBLVOLEVO YPAPO EXPTHGE®V, OTTOL KOUPOL elvar Ta operations kol aKUES Ol EEAPTNOEIS LECH
KOWQV TOTOV 1| TAPAUETPOV.

To TypeSpec neprypapet REST APIs pe yprion decorators (@get, @post, @route K.G.) Y10 va.
OTTOTVTTAOCEL TIG SLOPOUES, TIC TOPAUETPOVS Kot TIG peBddovg twv endpoints. Ot tHmot opilovon
oNAotikd, pe oJSvvatdtnto scalar wrapping, omMAadn ot primitive TOmOl (OM®G string)
EMEKTEIVOVTOL GE OVOUAOTIKEG HOPPEG (scalar Name extends string) YO0 Vo 0TOODOGOLV
onpactoroyikny mAnpoopia. [lapott dev ekBéter AST, 10 TypeSpec e&dyet OpenAPI documents
OV S1ATNPOVV TIG AVAPOPEG GTOVS EKTETOUEVOVG TOUTTOVG. H avdlvon e€aptioewv epapudletan
nave og avtd to. OpenAPI apyeia, evroniloviag kKowvéd $ref schemas avdpeca ce response kot
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request media. ‘Etot, ot dwaocvvdéoelg peta&h endpoints evromilovral péow Kowvmv component
schemas, 6mmwg axpiPmg Kot 6o Smithy.

Ta Protocol Buffers (Protobuf) Pacilovton oe RPC-style APIs kot 6yt oe REST,
povtedomoldvtog services kot peBodovg (RPCs) pe avotnpd opiopévovg TOmovG request Kot
response. Mg TNV €méKTOON google.api.http MUTOPOVV Vo yoptoypoaenBovv ce HTTP
endpoints, emrpémovrog eEaywyn o OpenAPI péow tov protoc compiler.

H avéivon eEapmoewv epappdletar o€ dVO Aettovpyies:

e Component Mode: Evtomioviot kowd message types petald tov amokpicemv kot
€600V RPCs.

e Primitive Mode: EmumAéov oclOykpion yivetar og eninedo primitive nediwv (m.y. string
order id) ®oTE Vo aviyveLBodv TeplocOTEPES MOOVES EEAPTNTELS.

Ye avtifeon pe to Smithy kar 1o TypeSpec, to Protobuf dev vmoomnpiler wrapping twv
primitive tomwv. ‘Etot, ot TOmot givat Arydtepo onpacioloyikd dtokpttol, yeyovog Tov Kabiotd tnv
avdivon egaptoewv Aryotepo akpipr. Iap’ Ao avtd, pe ™ ypnon OpenAPI e&aywyng kot
KATAAANANG avdAvong, evronilovtal ovclaoTikés oyéoelg petald RPCs.

6. Case Study: Avéivon ECaptioemv ko XOykpion oto PayPal API

Mo mmv a&loynon g mpotewvduevng pebodoroyiag aviyvevong eSaptmoewv petald
endpoints, emA&yOnke og pedétn nepintwong to PayPal REST API. H pon gpyaciog meptrappdvet
onuovpyion Kot evnuéP®ON TPOIOGVTOC, VTOPOAN TapayyeAlng, OlayEiploT OTOGTOANG Kot
TANPOUNG, Kol TPOsONKN oTtoleiowv mopakolovnone. Xe kdbe oTddl0, To OESOUEVO TOL
napdyovtal (OnMG Product Id, Order Id, Payment Id, Tracking Id) YPMNOLULOTOLOUVTOL GE
emopeva Pripata, oynuatiCoviog o aAvcion e£0pTHoE®V OV AVTIKATOTTPIEL TOV TPOYUATIKO
KOKAo (Mg woag mapayyerioc. To 1610 cuvoro endpoints LOVTEAOTOMONKE LE TPELG SLOPOPETIKES
Model-First teyvoioyiec: Smithy, TypeSpec kot gRPC/Protobuf. H vAomoinon dwatipnoe kowvd
ovopata, paths kot Sopéc dedopévmv, MOTE 1) GUYKPLON VO EIVOL OVTIKEUEVIKT). XTO ETAEYUEVA
endpoints  meplhapPdvovtar  Aettovpyleg  Omwg  onuovpyio  mapoyyediag  (POST
/v2/checkout/orders), éykpion minpoung (POST /v2/checkout/orders/{order id}/authorize),
avékton otoyeiov mAnpoug (GET /v2/payments/captures/{capture id}), kot mpocHnkn
tracking (POST /v1/shipping/trackers-batch).

H &aywyn eEaptoemv tpaypatoromdnke pe tovg analyzers Tov Tponyovpevov KEQOAOiov,
TPOCUPUOGHEVOLG Yo KAOe povtéro. H avdAivon cuykpivel Tovg thmovg e£6dov kdbe endpoint pie
TOVG TOMOVG €10600V TV vmoAoimwv. Av Ppebel kowdc tOmog M schema, katoypdpeTan
KatevBouvopevn e€aptnomn amd Tov Tapaywyo (source) TPog ToV KATAVOAMTY (target).

Y10 Smithy, to gpyaieio avdivong a&lomoinoe 1o Abstract Syntax Tree mov mapdyeTol KoTd
TNV UETAYADTTION, HE TOLG TUTOLG VO, SITNPOVV TANPN ONUOGIOAOYIKY TOVTOTNTO (7.
smithy.paypal#Order Id). AVTO EMETPEYE TNV ATOTUTOOT) TOV EEAPTNOEMV [E aKpifeta, xwpig
acdpeteg Adym kool primitive tomov. To amotédecpa NTov Eva TANPES YpAPN U eE0PTNCEDV
nov Paciletar o€ 10YLPEG OOUES THTWV Kot O)L GE GUYKPLOT OVOUATMV.
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To TypeSpec Aertobpynoe pe mapoporo tpdémo. Ot scalar Tomor OnwG scalar Order Id
extends string; dtutnpnOnkav oto OpenAPI wg $ref schemas, dlotnpdVTOG TN GNUOGIOAOYIKY
ninpoeopia. H avdivon evtomioe pe axpifeia 6Aeg T1g eEapToELS, TOG0 Yo amhovg TOTOVG 0G0
Kol Y10, 6GOVOETEC OVTOTNTEG OMMG Amount, Payment, Tracker. To amoteléouato tovTioTNKOV
TAPpOG pe eketva Tov Smithy.

Y10 gRPC/Protobuf, n efaymyq OpenAPI éywe pécm protoc, pe to .proto apyeioc vo
petatpénovtal oe JSON schemas. Qo1660, t0 Protobuf dev vrootnpilel semantic wrapping e
primitive media. Avtd onuaivel mwg nedio Onmg order id avomoapiotavtol o amid strings, xopig
duvatodtTa d1dkpiong and dAia mapopola tedia. H avdivon eEaptioemv omnpiydnke gite povo
oe structured message types (component mode) gite kot o€ primitive wedia (primitive mode). Xtnv
TPMTN TEPITTWOT, TO OMOTEAEGLOTO NTAV IKOVOTTOMTIKE, pe Kabapéc oyéoelg peta&y RPCs. X
devtepn, M aviivorn mapnyaye apketd "B0pvPo", pe yevdeic Betikég eEaptnoelg AOY® KOOV
OVOUAT®V, OAAG O10POPETIKNG ONUOGTOG.

Ta Smithy kot TypeSpec anédwaoov mpaktikd tavtdoonpa ypoenuota eEoptioeov (Figures 4
Kot 5), pe cagnvelo kol yopig vrepPoiucéc 1 Aavlaouéveg cvoyetioelc. To gRPC eppdvice
YOUNAOTEPY ONUAGIOAOYIKY] Gvuvoyn, Wing 6tav meptiapfdvovtov primitives onv oviAvon
(Figure 7), evéd oe component-only mode ta amoteAéopata rav wo a&iomota (Figure 6).

H ovykpion pe 11g ototikég kot dvvapikés avarivoelg tov gpyoieiov RADAR avédeiEe v
avotepdtta g Model-First mpocséyyiong. H otatikny avédivon tov RADAR Poaciletor oe
cuvovupieg ovopdtov Kot Tapaleinel onpavtikég eEoptnoelg (Figure 8). H dvvapuxn avdivon
KATOypAQEL LOVO O,TL TopaTnpeiton o€ TPayratikod ypdvo Katd v ektédheon evog use case (Figure
9), onote mepropiletan amod 1o Mo cevapLa vepyomotovvtat. [a mapdderypa, oto endpoint Create
Order, To Smithy kot n Suvopik| avdivon evtomoay OAeg T1g e€aptoetg (Figures 10 kat 12), evod
1 oTaTIKN TPocéyylon evtomoe puovo pia (Figure 11). Avtiotpoga, oto Create Product, 1 Smithy
KOl M OTATIKY ovOAvon kotéypayoav pio Kown €£aptnomn, eved 1 Suvoulk 0gv TNV eviomioe
KaBO6AoV AOY® amovciog extédeong g pong (Figures 13—15).

Yvvolikd, 1 Model-First tpocéyyion Tpoc@Epel Tov GLVOLAGHO CULOGLOAOYIKNG aKpiPetlog Kot
TANpOTTAG YOpig va arartel runtime dedopéva. Tlapéyet a&idmota ypoenuota eEoapTmoewv o
EMIMESO AVTIKEIUEVOV KOl EVVOLDV, EVD Ol OTATIKEG Kol duvapkég péBodot tov RADAR eite
yévovv TAnpoopia gite mepropilovtal amd TV EKTELEDT).

7. ZoumepdcuoTto

H epyacio avédeile 1o poviého Model-First og pia ocbyypovn kot aldmotn Tpocéyyion GTov
oxedlacpud APIs, mpotdocovtag v vmoapén evog eviaiov poviélov ®¢ PAcn yio kKdOo Kot
documentation. AvoivOnkav ta gRPC, Smithy ot TypeSpec, pe to gRPC va vrepéyet oe
ecntepkés, low-latency emkowmvieg, aAAd vo VOTEPEL GTNV EVVOIOAOYIKY| OVOTOPAGTAON.
Smithy kot TypeSpec mpoc@épovv peyaldTep eKQpacTIKOTNTA Kot eveM&ia, pe To Smithy va
£xel o mpyo owoovotnua kot To TypeSpec mo cOyypovn eunelpia xpnotn. MEcm ™G GTATIKNG
avdivong eapmoewv, amodeiyOnke OTL To. HOVTEAD OVTO UTOPOVV VO, OTOdMGOLV aKPN
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ypapnuata oyxécewv petah endpoints ywpig avaykn yuo runtime dedopéva. Térog, mpoteivetan
®¢ peddovtikny katebBovvon 1 ypnon tov Smithy/TypeSpec yio tov oyedaocpud MCP servers,
a&lomolmvtog T dvvapikn Tov model-first kot otov y®po ™ aAinAenidpaong Al epyaieimv.
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1 — Introduction

1.1 Background and Motivation

In today’s interconnected digital ecosystem, Application Programming Interfaces (APIs) have
become the fundamental building blocks that enable software systems to communicate, share data,
and deliver integrated services. They are no longer auxiliary technical artifacts but core strategic
assets that define how organizations expose functionality, build ecosystems, and foster innovation
[1].

The accelerated growth of distributed architectures, microservices, serverless computing, and
cloud-native applications, has increased both the scale and complexity of API development. In
such environments, maintaining consistency, interoperability, and clarity across hundreds of
interdependent endpoints becomes a key engineering and governance challenge [2]. APIs now
serve not only as technical interfaces but also as contracts between teams, influencing business
models, security boundaries, and lifecycle automation.

Historically, most APIs were created following a code-first paradigm, in which engineers
implemented functionality in code and later exposed the interface through documentation or
specification tools such as Swagger or OpenAPI. While effective for small systems, this approach
often produces fragmented ecosystems: documentation drifts from implementation, design
feedback occurs late, and collaboration among cross-functional teams is limited.

In response, modern organizations have embraced the Model-First (or Design-First) paradigm
[3], [4], [5]. In this approach, the API is defined formally and semantically before implementation,
using modeling languages such as Protocol Buffers (gRPC), Smithy, and TypeSpec. The model
becomes the single source of truth from which code, documentation, SDKs, and tests are
automatically generated. This practice ensures early validation, architectural consistency, and
seamless collaboration between technical and non-technical stakeholders.

Furthermore, as APIs increasingly operate across multi-cloud and hybrid infrastructures, a
consistent model-driven foundation enables cloud-agnostic deployment and automated lifecycle
governance [6]. The convergence of Model-First design with DevOps automation and cloud
management represents a paradigm shift: APIs are now treated as versioned, governed, and
continuously validated artifacts much like infrastructure-as-code.

This thesis explores that paradigm in depth. It studies the leading Model-First frameworks,
gRPC/Protocol Buffers, Smithy, and TypeSpec, and proposes a methodology that leverages these
models for accurate static endpoint-interdependency analysis. The research combines theoretical
analysis, framework comparison, and empirical validation through a real-world PayPal API case
study, extending the foundational RADAR work on RESTful dependency detection [7], [8], [9].

1.2 Objectives of the Thesis

The main objective of this thesis is twofold:
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1. To perform a comparative analysis of the three dominant Model-First API design
frameworks, gRPC, Smithy, and TypeSpec, evaluating their architecture, expressiveness,
interoperability, and integration with the cloud ecosystem.

2. To develop and assess a methodology for static inter-endpoint dependency analysis based
on Model-First representations, improving upon the static and dynamic methods previously
proposed in the RADAR research framework [11].

More specifically, this work aims to:

1. Demonstrate how Model-First artifacts (e.g., Smithy ASTs, TypeSpec schemas, gRPC
OpenAPI exports) can be analyzed to discover inter-endpoint dependencies without
requiring runtime traces.

2. Compare the resulting dependency graphs against RADAR’s static and dynamic analyses,
validating improvements in accuracy and semantic cohesion.

3. Highlight how the Model-First approach provides noise-free, type-aware, and higher-level
dependency detection by leveraging formal schema structures rather than textual name
matching.

Ultimately, the thesis bridges the gap between API design theory and analytical tooling,
showing how Model-First frameworks can be repurposed not only for specification and generation
but also for automated reasoning and knowledge extraction across large-scale API ecosystems.

1.3 Structure of the Thesis

The remainder of this thesis is structured as follows:

e Chapter 1 — Introduction outlines the motivation, objectives, and scope of the thesis,
introducing Model-First API Design and the selected frameworks.

e Chapter 2 — Fundamentals of API Design introduces the foundational concepts of
APIs and Web Services, explaining the evolution from code-first to model-first design
and discussing classical specification methods such as OpenAPI and Swagger.

e Chapter 3 — Model-First API Design Paradigms provides an in-depth analysis of the
three principal frameworks: gRPC/Protocol Buffers, Smithy, and TypeSpec, focusing
on their modeling syntax, architectural abstractions, and design philosophies.

e Chapter 4 — The Importance of Model-Design-First in the API Lifecycle and
Collaboration explores how Model-First design transforms collaboration, governance,
consistency enforcement, and documentation generation across the API lifecycle.

e Chapter 5 — Static Analysis of Inter-Endpoint Dependencies introduces the
methodology for extracting endpoint dependencies from Model-First artifacts and
presents the analytical foundations for Smithy, TypeSpec, and gRPC models.

e Chapter 6 — Case Study: PayPal API Dependency Analysis applies the developed
methodology to a real-world PayPal API scenario, comparing the results against
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RADAR’s static and dynamic analyses and discussing the accuracy and interpretability
of each approach.

Chapter 7 — Conclusion summarizes the findings, compares the frameworks, and
highlights future directions for model-driven dependency analysis.
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2 — Fundamentals of API Design

2.1 Overview of APIs and Web Services

Application Programming Interfaces (APIs) constitute the foundational layer of modern
software systems, enabling structured and standardized interaction between independent software
components. An API defines a formal contract that describes how a client can communicate with
a service, specifying available operations, the expected inputs and outputs, and the semantics that
govern their interaction [1]. This concept has evolved from simple procedural calls in monolithic
systems to a sophisticated architecture paradigm that underpins today’s distributed and cloud-
native environments.

In the early stages of distributed computing, the Service-Oriented Architecture (SOA) model
dominated enterprise integration. APIs were primarily implemented using SOAP (Simple Object
Access Protocol), with message formats defined in XML and contracts specified in WSDL (Web
Services Description Language). While SOAP provided strong type safety and extensibility, its
reliance on verbose XML schemas and strict contracts introduced significant overhead, limiting
agility and increasing development complexity. The architectural shift toward Representational
State Transfer (REST), formalized by Fielding [10], marked a significant transition in API
philosophy. REST introduced a resource-oriented architecture, in which each resource is identified
by a URI and manipulated through standardized HTTP methods such as GeT, posT, puT, and
DELETE. It emphasized statelessness, cacheability, and uniform interfaces, enabling APIs to scale
horizontally and integrate seamlessly across diverse clients.

Over time, RESTful APIs became the backbone of web-based systems and microservices. Their
reliance on JSON (JavaScript Object Notation) made data exchange lightweight and human-
readable. Today, APIs extend far beyond web applications, they power microservices, serverless
architectures, mobile backends, IoT ecosystems, and even machine-to-machine communication
within autonomous systems. Enterprises use APIs to expose digital capabilities, facilitate third-
party integration, and enable composable architectures that accelerate innovation. This ubiquity,
however, introduces new challenges. APIs must now be designed with governance, security,
discoverability, and backward compatibility in mind. Maintaining consistency across thousands of
endpoints in multi-cloud environments requires structured methodologies that move beyond ad
hoc development practices.

This evolution has transformed API design from a programming task into a core architectural
discipline. It now demands formalized approaches that balance technical precision, scalability, and
organizational agility. Two dominant philosophies have emerged in this context: the Code-First
and the Model-First approaches.
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2.2 API Design Approaches: Code-First vs. Model-First

Modern API design methodologies can be categorized based on whether implementation
precedes specification or specification precedes implementation. The Code-First approach
emphasizes quick development and bottom-up generation of documentation, while the Model-First
approach focuses on defining the API as a formal model from which all implementations derive.

In the Code-First approach, developers start by writing code that implements the API endpoints.
Frameworks such as Spring Boot, Flask, and Express.js enable rapid creation of HTTP routes,
controllers, and serialization logic. Once the core functionality is in place, automated tools extract
metadata from annotations or decorators to produce formal documentation, typically in OpenAPI
(Swagger) format.

This approach excels in speed and developer familiarity, making it highly effective for
prototyping or internal APIs where tight deadlines outweigh documentation rigor. However,
several long-term drawbacks emerge as systems scale. Documentation often drifts from
implementation, as developers make changes to code without regenerating or verifying the
specification. Validation becomes reactive, with schema mismatches and missing parameters
identified only during runtime testing. Moreover, since the design is embedded in the codebase,
collaboration across multidisciplinary teams becomes difficult, excluding product owners, UX
designers, or compliance auditors who lack access to or familiarity with the source code. As
systems evolve, the lack of a unified specification leads to fragmentation, inconsistent data models,
and significant maintenance overhead.

The Model-First paradigm reverses this workflow. Here, the process begins with a formal
definition of the API contract, typically written in a modeling language such as OpenAPI, Protocol
Buffers (gRPC), AWS Smithy, or Microsoft TypeSpec. This model serves as the authoritative
artifact from which server stubs, client SDKs, tests, and documentation are automatically
generated [3], [4], [5]. The model defines all aspects of the API including endpoints, parameters,
data types, request and response bodies, and even example payloads. Because it is both machine-
and human-readable, it becomes a shared reference point for engineers, architects, and business
stakeholders alike.

Model-First design aligns with the principles of Model-Driven Engineering (MDE), where
high-level abstractions guide implementation through automated transformations. By defining the
structure and semantics upfront, teams can perform early validation, enforce consistency, and
generate downstream artifacts automatically. This approach promotes collaboration and
governance, ensuring that all services adhere to organizational standards. It also decouples design
from implementation, making it easier to refactor APIs, enforce backward compatibility, and
support multi-language client generation. The tradeoff lies in the higher upfront cost, since teams
must invest time in defining schemas, learning modeling tools, and integrating validation pipelines
but the long-term gains in consistency and scalability are substantial.
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2.3 Classic Specification Methods: OpenAPI and Swagger

The OpenAPI Specification (OAS), formerly known as Swagger, is the most widely adopted
standard for describing RESTful APIs. It provides a language-agnostic, machine-readable format
written in YAML or JSON that defines the structure, parameters, authentication methods, and data
models of an API [11]. OpenAPI facilitates clear communication between humans and machines
by serving as a contract that defines how an API behaves, without requiring access to its
implementation.

An OpenAPI document is structured around the concept of paths, which represent individual
endpoints, and components, which define reusable schema objects. Each path can include multiple
HTTP operations (GET, POST, PUT, DELETE), each of which specifies the expected inputs and
outputs. For example:

1. paths:

2. /orders/{orderId}:

3. get:

4. summary: Retrieve order details
5. parameters:

6. - name: orderId

7. in: path

8. required: true

9. schema:
10. type: string
11. - name: expand
12. in: query
13. required: false
14. schema:
15. type: string
16. enum: [items, payments]
17. responses:
18. '200':
19. description: Order retrieved successfully
20. content:
21. application/json:
22. schema:
23. $ref: '#/components/schemas/Order’
24. components:
25. schemas:
26. Order:
27. type: object
28. required:
29. - id

30. - amount

31. properties:

32. id:

33. type: string

34. amount:

35. type: number

36. currency:

37. type: string
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This specification defines a GET /orders/{orderId} endpoint that retrieves an order’s details.
It accepts a path parameter (order1d) identifying the resource and an optional query parameter
(expand) that modifies the response. The response schema references a reusable object named
order defined under components/schemas. This modular design allows complex APIs to
maintain consistency across hundreds of endpoints.

The OpenAPI ecosystem includes tools for interactive documentation (Swagger UI), automatic
SDK generation (OpenAPI Generator) and validation (Stoplight). [12], [13], [14]. However,
OpenAPI’s expressiveness is limited to RESTful paradigms since it cannot natively represent
streaming, bidirectional communication, or protocol-agnostic services.

2.4 Advantages and Challenges of API Design Approaches

The Code-First and Model-First methodologies represent fundamentally different strategies for
managing complexity in API ecosystems. The Code-First method emphasizes immediacy and
familiarity. Developers can quickly create and deploy endpoints with minimal process overhead.
The implementation naturally mirrors the development workflow, allowing rapid experimentation.
However, this flexibility comes at a cost: as APIs scale, code-first systems struggle with
documentation divergence, inconsistent versioning, and poor visibility across organizational
boundaries. The specification becomes an afterthought, and when APIs evolve independently
across teams, inconsistencies in naming conventions, response structures, and authentication
mechanisms accumulate. This fragmentation ultimately hampers maintainability and integration.

By contrast, the Model-First approach introduces rigor and consistency through explicit
modeling. The API definition becomes the foundation of the software lifecycle: a single, verifiable
artifact that ensures alignment between design, implementation, and consumption. Because the
model serves as the canonical source of truth, tools can automatically generate server stubs, SDKs,
mock servers, and documentation, maintaining complete synchronization across development
environments. This paradigm also enables early validation, allowing teams to test contracts before
implementation. It further enhances governance, as shared schemas and organizational patterns
can be enforced across multiple teams through centralized design systems.

Nevertheless, the Model-First paradigm introduces new challenges. Defining APIs as models
requires a shift in mindset: teams must invest time in training, adopt schema management tools,
and enforce automated validation in CI/CD pipelines. The need for dedicated model repositories
and strict versioning introduces operational overhead. However, these challenges represent an
investment in maturity, as they enable predictability, interoperability, and controlled evolution of
APIs over time.

In summary, Code-First approaches prioritize speed and simplicity, while Model-First
approaches emphasize structure, automation, and collaboration. The two philosophies reflect
different trade-offs between short-term agility and long-term sustainability. As the complexity of
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distributed systems grows, the Model-First paradigm is increasingly favored for its ability to
produce consistent, maintainable, and evolvable APIs across large organizations.

The next chapter explores the Model-First design frameworks in detail, focusing on
gRPC/Protocol Buffers, AWS Smithy, and Microsoft TypeSpec.
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3 — Model-First API Design Paradigms

3.1 Definition and Principles of Model-First Design

Model-first API design refers to a methodology in which the definition of the service contract
and its associated data structures precedes the implementation of business logic. Instead of starting
from code and exposing endpoints afterward, the process begins with an abstract model that
captures operations, request and response messages, and structural constraints. This model
becomes the single source of truth from which server stubs, client SDKs, validation tools, and
documentation are automatically derived.

The guiding principles of this paradigm include the idea of a single canonical specification,
automation of repetitive engineering tasks, and consistency across heterogeneous systems. In
addition, by exposing the model early in the lifecycle, collaboration is extended beyond engineers:
architects, designers, and even product stakeholders can provide feedback on the contract. A
further benefit lies in the so-called “shift-left validation,” where potential inconsistencies or design
flaws are detected at the specification level before costly implementation efforts are undertaken.

3.2 gRPC / Protocol Buffers — Architecture, Features, and Use Cases

gRPC is a modern Remote Procedure Call framework that couples a compact, schema-driven
serialization format (Protocol Buffers, or protobuf) with the performance and semantics of
HTTP/2. At design time the API surface is defined in .proto files: operations (RPC methods),
message types, enums and services are declared there and then compiled into idiomatic client and
server bindings for multiple languages. The .proto model therefore becomes the canonical
contract for both implementation and generated artifacts (client SDKs, server skeletons, docs),
which perfectly aligns with a model-design-first workflow where the specification is the single
source of truth [5].

gRPC Server Ruby Client

C++ Service

/‘Or
© Response(s)

Android-Java Client
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A minimal .proto example illustrates the central ideas where types and RPCs are declared in
a compact, strongly typed syntax, and each field carries a numeric tag used by the wire format for
compactness and compatibility:

[ay

. syntax = "proto3";

package example.weather;

// Service definition: RPC methods with request/response types
service WeatherService {
rpc GetCurrent (GetCurrentRequest) returns (GetCurrentResponse);
rpc StreamForecast (ForecastRequest) returns (stream ForecastChunk);

}
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. // Message definitions: strongly-typed schemas
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. message GetCurrentRequest {
string city = 1;
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. message GetCurrentResponse {
float temperature = 1;
string units = 2;

R R R
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-}
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. message ForecastRequest {

N
N

string city = 1;

N
w

-}
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[V

. message ForecastChunk {
string day = 1;
float tempHigh = 2;

NN
N o

28. }

The .proto is the design artifact from which protoc (the Protocol Buffers compiler) generates
language-specific code; protoc is extensible via plugins so teams can add custom generators or
integrate with tools like grpc-gateway to expose a REST facade.

Architecturally, gRPC builds on HTTP/2 which provides multiplexed streams over a single
TCP connection, header compression and flow control. Those transport features directly enable
gRPC’s support for four interaction styles: unary (request/response), server streaming, client
streaming and bidirectional streaming. The richness of these interaction models makes gRPC a
natural fit where long-lived channels, backpressure, or real-time streaming semantics are required
(for example telemetry ingestion, real-time feeds, or bidirectional control channels).

Protocol Buffers themselves are designed for compactness and forward/backward
compatibility. Because field names are not transmitted on the wire and each field is encoded using
its numeric tag, protobuf payloads are typically smaller than equivalent JSON payloads and parse
faster; this reduces bandwidth and CPU cost in high-volume systems. Protobuf also provides
concrete, well-documented compatibility rules (e.g., safe ways to add fields, reserved ranges, and
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the recommendation to favour certain tag ranges for frequently set fields because smaller tags
encode into fewer bytes). These encoding and evolution rules are central to designing APIs that
can evolve without breaking deployed clients.

gRPC is not merely a serialization + transport combination; it offers a mature runtime and
operational primitives that production services rely on. Metadata (an HTTP-like header/trailer
channel), deadlines/timeouts, cancellation propagation, interceptors (middleware), health
checking and reflection are part of the gRPC ecosystem. Metadata allows authentication tokens,
tracing IDs or other contextual headers to be passed alongside requests; deadlines and cancellation
allow clients to bound work and prevent resource exhaustion; interceptors provide a canonical
hook for cross-cutting concerns (logging, auth, metrics); and a standard health-checking protocol
enables orchestrators and load-balancers to detect unhealthy backends. These primitives support
robust production deployments when combined with observability and service mesh tooling [15],
[16], [17].

Operationally, gRPC integrates well with modern cloud infrastructure. Service meshes (Envoy,
Istio), reverse proxies and API gateways can act as ingress/egress points, perform JSON to gRPC
transcoding, and provide policy, routing and observability at the network edge. Projects such as
gRPC-Gateway allow teams to expose a JSON/HTTP API to external clients while keeping an
internal gRPC contract for service-to-service traffic (Figure 1). This pattern lets organizations
combine the performance benefits of gRPC inside the data center with the accessibility of REST
for external consumers [18].

API Client

RESTful API PUT vl/user/123/profile
(Typically JSON
over HTTP 1.1) (SrsLilrGeae NS

example.ProfileService.Update

. user_id: 123
gRPC email: "foo@example.com”

Figure 1 grpc-gateway

Tooling and language support are mature. The official Protocol Buffers toolchain supports code
generation for many mainstream languages (C++, Java, Go, Python, C#, Ruby, Kotlin, Dart, PHP
and more), and protoc is designed to be extended with plugins for additional languages or
artifacts. The gRPC project supplies idiomatic libraries for numerous languages and language
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communities have produced ecosystem tooling like test clients (e.g., grpcurl), IDE integrations,
and documentation generators, making gRPC practical across polyglot environments. [19]

The model-first benefits of gRPC show up in development workflows. Because the .proto is
the contract, teams can generate server skeletons and client libraries early and use generated
mock/stub servers for parallel development. This allows front-end or integration teams to work
against a mock implementation while backend services are implemented. It also enables contract
validation in CI, where protoc can be run during pre-merge checks to enforce style or schema
rules, and schema diffs can be used to block breaking changes. The compile-time nature of
protobuf encourages disciplined schema evolution and integrates smoothly with automated SDK
release pipelines.

However, there are important limitations and trade-offs. First, the binary wire format is not
human readable, so debugging and exploratory testing require supporting tools (e.g., grpcurl,
Postman’s gRPC client) or a JSON transcoding layer. Second, native browser support for the full
HTTP/2 based gRPC protocol is missing because browsers do not expose the low-level control
over HTTP/2 frames required to implement the full gRPC spec, so gRPC-Web or a JSON
transcoder must be used to reach browser clients [20]. Third, while gRPC and protobuf are mature
within internal microservices and cloud providers, public REST + OpenAPI ecosystems still have
broader tool and human-facing support (browsers, API marketplaces, third-party tools).

Typical production use cases for gRPC include internal microservice RPC, high-throughput
backend APIs, low-latency request paths, real-time streams and mobile/back-end communications
where compact payloads reduce bandwidth costs. Conversely, when public, browser-centric APIs
or human-readable payloads are primary concerns, teams often either front gRPC services with
HTTP/JSON gateways or choose REST/OpenAPI as the primary public contract. The pragmatic
hybrid approach of internal gRPC contracts and public REST facades preserves both developer
productivity and external accessibility [21].

In summary, gRPC + Protocol Buffers is a high-performance, model-first platform that excels
when strong typing, compact binary serialization, streaming semantics and language-agnostic code
generation are priorities. Its operational primitives (metadata, deadlines, interceptors, health
checks), mature toolchain, and integration with cloud-native networking primitives make it a
compelling choice for large-scale, internal distributed systems. Teams must, however, weigh the
added complexity of binary protocols and browser limitations against the performance and
contract-discipline benefits.

3.3 Smithy — Service Modeling, Traits, and Protocols

Smithy is an interface-definition and modelling language that treats the API model as a first-
class artifact rather than an incidental byproduct of code. A Smithy model is composed of shapes
(the typed building blocks for strings, numbers, structures, lists, maps, unions, enums, resources
and services) and traits (metadata annotations that attach semantic meaning to shapes). This
separation of shape and trait lets teams describe not only the structure of data but also validation
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rules, HTTP bindings, error semantics, authentication requirements, pagination behavior and other
operational concerns in a declarative way; the Smithy spec documents these core concepts and the
shape/trait model in detail.

Because Smithy is protocol-agnostic, a single model can be projected onto multiple concrete
protocols and bindings. Protocols and serialization rules (for example restJsonl, restxml, or
custom protocols) are expressed as part of the model via protocol-related traits; code generators
and projection tools consume the model plus protocol traits to produce REST/JSON endpoints,
binary RPC bindings, SDKs or documentation. This design establishes a clean Platform-
Independent Model (PIM) — Platform-Specific Model (PSM) transformation pipeline: the
platform-independent Smithy model serves as the source, validators and build tooling enforce
constraints, and build plugins generate protocol-specific artifacts. The Smithy specification and
official tooling guides describe how protocol and serialization traits define these projections.

A minimal Smithy IDL example demonstrates how shapes, operations and HTTP bindings are
represented in practice:

[ay

. $version: "2"
namespace example.weather

service WeatherService {
version: "2025-06-01"
operations: [GetCurrent]

}
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@http(method: "GET", uri: "/weather/{city}")
. operation GetCurrent {

[
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input: GetCurrentInput
output: GetCurrentOutput
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-}
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. structure GetCurrentInput {
@httpLabel
city: String

[
0 N O

-}

N =
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. structure GetCurrentOutput {
temperature: Float

NN
N =

units: String
23. }

This snippet shows the explicit binding of an operation to an HTTP verb and URI via the @http
trait and how ehttpLabel marks a member used in the path. The Smithy IDL and trait reference
detail many such bindings (e.g., streaming, headers, query bindings, authentication traits) [3].

Tooling around Smithy is focused on model validation, projection, and code generation. The
Smithy CLI and smithy-build use a smithy-build.json configuration to declare what model
projections (called projections or plugins) should be produced; code generators are implemented
as smithy-build plugins that can create language-idiomatic SDKs, server stubs and docs.
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One of Smithy’s operational strengths is its expressive trait ecosystem. Smithy defines many
first-class traits (documentation traits, constraint traits, behavior traits, resource traits,
authentication traits and protocol/serialization traits) that let model authors encode cross-cutting
policies into the model itself. These traits feed downstream validators and generators: for example,
pagination can be modelled with the @paginated/outputToken style, error shapes can be
annotated with HTTP status mappings, and custom organization-level traits can be added to
enforce naming or security rules.

Smithy is also widely used at AWS: the provider uses Smithy to model many of its public
service APIs and to generate the official AWS SDKs and CLI artifacts. Recently AWS published
and expanded its public set of Smithy API models, underscoring that Smithy is not only an internal
modeling tool but also part of the delivery pipeline for real-world, large-scale cloud APIs. That
real-world adoption translates into practical benefits: consistently generated SDKs across
languages, centralized policy enforcement, and a single source of truth for documentation and code
generation [22].

Despite these strengths, Smithy has limitations and practical trade-offs. Its ecosystem and most
mature toolchains are closely tied to AWS; while the project is open source and used outside
Amazon, external adoption is not as widespread as OpenAPI. Generators for some languages or
niche use cases may be community-driven or still maturing, and teams need to invest in smithy-
build configuration, custom plugins or internal generators to realize the full benefits. Additionally,
the power and flexibility of traits introduce governance complexity: teams must discipline trait
usage and maintain plugin implementations to ensure consistent behavior of custom semantics.
Finally, while Smithy’s abstractions reduce protocol lock-in, the choice of protocol projection still
requires careful design to avoid semantic mismatches between model intent and concrete bindings
[23].

3.4 TypeSpec — API Modeling and Language-Specific SDK Generation

TypeSpec (formerly Cadl) is a modern, author-centric API modeling language that treats API
design as a first-class, programmatic artifact. Its syntax is intentionally familiar to TypeScript users
and mixes declarative model definitions with composable programmatic constructs (models,
interfaces, templates) and metadata decorators. The design goal is to let teams express domain
shapes and service surfaces once, then emit many downstream artifacts (OpenAPI,
Protobuf/gRPC, JSON Schema, SDKs, docs) from a single source of truth. This process is called
an emitter pipeline.

A short TypeSpec example shows the basic authoring style and how decorators attach protocol
semantics to a model:

1. model User {

2 id: string;

3 name: string;
4. email?: string;
5.}
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. @route("/users")

. interface UsersService {

@get list(): User[];

10. @post create(@body user: User): User;
11. }

O 0 N O

This snippet demonstrates three important TypeSpec ideas: first, models encode domain types;
second, interfaces describe service operations; third, decorators (e.g., @route, @get, @post,
@body) attach transport-level semantics that emitters use when producing HTTP/OpenAPI
artifacts.

TypeSpec’s emitter framework is central to its value proposition. Emitters are reusable libraries
that “reflect” on the compiled TypeSpec model and generate textual artifacts; there are first-party
and community emitters for OpenAPIv3, Protobuf (for gRPC), JSON Schema, client SDK
scaffolds, and documentation. The emitter architecture provides composable building blocks so
teams can write or extend emitters without reimplementing low-level formatting logic.

From a practical standpoint, TypeSpec is designed to be integrated directly into developer
toolchains. There is an official VS Code extension that provides language services (syntax
highlighting, completion, diagnostics) and the compiler (tsp) runs in CI to validate models and
run emitters. Teams commonly place the TypeSpec compilation and emitter invocation inside
build pipelines so that generated OpenAPI documents, Protobuf files, SDKs and docs are produced
and published automatically on merge (Figure 2). The TypeSpec GitHub project and community
guides emphasize this CI/CD orientation and show typical workflows for emitter invocation and
automated publishing.
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Figure 2 Typespec build pipelines

There are, however, practical caveats and mapping constraints to be aware of. When using
TypeSpec to generate different kinds of outputs (like OpenAPI or Protobuf), there are some real-
world limitations to keep in mind. Each output format has its own rules and capabilities: for
example, Protobuf requires numbered fields and doesn’t support every complex type feature that
TypeSpec allows. Because of that, a TypeSpec model that looks perfect for an HTTP API might
not automatically work well when converted to Protobuf.

So, when a team wants to generate multiple outputs from the same model, they have to be
careful in how they design it. They might need to adjust parts of the model, simplify certain
structures, or add extra hints (through decorators or annotations) that tell the generator how to
handle specific cases.

In summary, TypeSpec is a pragmatic, extensible model-first system that emphasizes developer
ergonomics, emitter-driven outputs, and organizational guardrails. It is particularly appealing
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when teams need to generate multiple artifacts (OpenAPI for external docs, Protobuf for internal
RPC, client SDKs for consumers) from a single, maintainable model and when they want to encode
organizational policies as executable decorators and linters that run in CI. The tradeoffs are the
need to understand emitter constraints and the current maturity of the ecosystem compared to older
standards.
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4 — The Importance of Model-Design-First in API
Development Lifecycle and Collaboration

4.1 The API Development Lifecycle with Model-First Design

The API development lifecycle traditionally follows a sequence of stages including planning,
design, implementation, testing, deployment, and maintenance. However, in many organizations,
these stages occur in silos, leading to communication gaps, inconsistent specifications, and costly
rework. The Model-First design paradigm redefines this lifecycle by establishing the API model
as the single, authoritative artifact from which all downstream processes derive.

In a Model-First lifecycle, development begins with defining the API model which is an
abstract, technology-neutral description of services, resources, and data contracts. Using modeling
languages such as Protocol Buffers (for gRPC), Smithy, or TypeSpec, teams specify every
endpoint, data type, and interaction pattern upfront.

Once the model is finalized and validated, automated code generation pipelines produce service
stubs, client SDKs, and documentation directly from the model. This automation ensures
synchronization between the specification and implementation, property that is a common pain
point in code-first approaches, where documentation and SDKs often lag behind actual service
changes. By integrating these steps into continuous integration workflows, Model-First
frameworks enforce schema validation, version control, and compatibility checks before
deployment.

A key differentiator of the Model-First lifecycle is that testing and validation begin at the design
phase, rather than post-implementation. Mock servers or schema validators can simulate
interactions defined by the model, allowing developers and testers to verify behavior early. This
early testing ensures that inconsistencies or design flaws are identified before they propagate to
production environments.

Furthermore, Model-First design facilitates API evolution and versioning. By maintaining a
well-defined model repository, organizations can introduce non-breaking changes systematically
by adding new fields, deprecating endpoints, or altering protocols while preserving backward
compatibility for existing clients. This approach promotes evolutionary design, aligning with
principles of sustainable architecture and agile delivery.

The lifecycle under Model-First design can thus be visualized as a closed feedback loop:
Model Definition: Specification of data structures, endpoints, and semantics.

Review and Validation: Cross-team collaboration and schema verification.
Artifact Generation: Automated production of SDKs, documentation, and tests.
Implementation: Development of business logic based on generated contracts.
Deployment and Monitoring: Continuous validation against model rules.

A o e

Evolution: Controlled schema updates and backward-compatible extensions.
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This cyclical structure contrasts sharply with the linearity of code-first models. The Model-First
approach ensures that design, implementation, and maintenance are interconnected, promoting
consistency, traceability, and alignment between technical and business objectives. Ultimately, the
Model-First API lifecycle establishes a foundation for scalable, automated, and predictable API
delivery, reducing technical debt and enhancing organizational agility in rapidly changing
environments.

4.2 Cross-Team Involvement and Non-Engineer Participation

One of the most transformative aspects of Model-First API design is its ability to enable cross-
functional collaboration by bringing together engineers, architects, product managers, designers,
and even non-technical stakeholders around a single, comprehensible model. This marks a
fundamental departure from traditional code-first development, where design knowledge is often
encoded directly in source code and thus inaccessible to non-engineers.

In large organizations or multi-team environments, APIs are more than technical constructs,
they are interfaces between business capabilities. The Model-First paradigm provides a common
language of collaboration, expressed through human-readable modeling specifications such as
Smithy, TypeSpec, or Protocol Buffers. These languages describe service contracts, message
formats, and endpoint behaviors in a declarative and structured way that can be easily reviewed,
versioned, and discussed.

This shared model allows non-engineers to participate meaningfully in the design process. For
instance:

e Product managers can validate that the exposed endpoints and operations align with
user stories and business objectives.

e UX designers can ensure that API interactions are consistent with intended user flows
or data consumption patterns.

e Legal and compliance officers can review data handling and exposure policies at the
contract level.

e Technical writers can generate and refine documentation directly from the evolving
model, keeping it synchronized with design changes.

Such collaboration is facilitated by machine-readable specifications that can be visualized or
exported into user-friendly tools including API explorers, documentation portals, and schema
visualization dashboards. This participatory design approach fosters early alignment between
business and technical goals. Instead of downstream reviews after code completion, non-
developers collaborate before implementation, reducing miscommunication and costly rework.
The result is an API that is not only technically sound but also fit for purpose, accurately
representing the business domain it serves.

Additionally, Model-First workflows empower organizations to adopt Design Reviews as a
Service by utilizing automated pipelines that validate new or modified models against internal
standards, governance rules, and organizational best practices. This enables distributed teams to
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contribute independently while maintaining global consistency, even across large-scale, multi-
cloud environments [24].

In summary, Model-First design promotes a culture of collaboration and transparency, bridging
the gap between engineers and non-engineers. It transforms API design from a technical
implementation detail into a shared organizational asset, fostering a collective understanding of
the system’s purpose, constraints, and evolution.

4.3 — Patterns, Consistency, and Governance

One of the key advantages of adopting a Model-First approach in API development is the ability
to enforce patterns and consistency across services, supported by well-defined governance
mechanisms. This section explores how shared modeling conventions, reusable design templates,
and governance policies help ensure uniformity, maintainability, and compliance across the API
landscape.

1. Pattern-Driven API Design

Model-First design facilitates the establishment of reusable design patterns that encode best
practices across an organization. These patterns such as standardized pagination, authentication,
error handling, or naming conventions can be defined once at the model layer and automatically
inherited by every service definition. For instance, a Smithy or TypeSpec model may include
shared traits or decorators for HTTP behaviors, versioning, or data validation, allowing teams to
maintain consistent API behavior across microservices.

Such modeling standards reduce redundancy and prevent the “reinvention of the wheel” by
providing a blueprint for service design, ensuring that new APIs follow consistent design
principles aligned with business and technical objectives. Reusable interface models, standardized
type libraries, and shared schemas enhance the coherence of an organization’s overall API
portfolio.

2. Consistency as a Quality Enabler

Consistency in APIs directly influences developer experience, integration simplicity, and long-
term maintainability. When naming conventions, status codes, and data structures remain uniform,
developers can easily navigate between services without additional learning curves. Model-First
frameworks promote this uniformity by treating the API model as the single source of truth from
which documentation, SDKs, mocks, and test cases are derived automatically. This tight alignment
between design and implementation minimizes discrepancies and reduces the risk of drift between
specification and deployed behavior.

Consistency also extends to semantic and structural design. For example, if two teams expose
a “Customer” resource, governance rules can enforce schema alignment or type inheritance to
maintain semantic integrity. These consistency layers make APIs easier to consume, reducing
friction for both internal developers and external partners.
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3. Governance Through Centralized Models and Validation

Governance in a Model-First ecosystem operates at the specification and validation level rather
than through manual enforcement. By managing models in a central repository or registry (such
as Stoplight, Postman, or internal Git-based systems), organizations can implement automated
checks for compliance with internal guidelines, legal constraints, and regulatory frameworks [12].

Automated governance pipelines often built into CI/CD workflows validate each model against:

e Organizational design rules (naming, versioning, parameter consistency),
e Security standards (mandatory authentication schemes, encryption policies),
e Interoperability norms (JSON Schema or OpenAPI compatibility).

These validations help maintain API discipline at scale, ensuring that teams can innovate
rapidly without compromising alignment or compliance. Model registries may also version and
track schema evolution, enabling traceable changes and consistent backward compatibility
management.

4. Governance as a Continuous Process

Finally, API governance in a Model-First environment is not static and it evolves with the
organization’s technology landscape and business priorities. As new standards (like GraphQL
federation, AsyncAPI, or REST hooks) emerge, model validators and shared libraries must evolve
accordingly. This adaptive governance ensures that the ecosystem remains future-proof and
interoperable, while preserving the clarity and consistency that make Model-First methodologies
effective at scale.

4.4 Model-First API Design in the Cloud Ecosystem

The growing adoption of cloud-native and multi-cloud architectures has transformed APIs from
simple communication interfaces into the foundational integration layer of modern digital systems.
Within this landscape, the Model-First API Design paradigm provides the structural and semantic
discipline needed to manage APIs as scalable, interoperable, and governed assets across
heterogeneous platforms.

Traditional code-centric development often produces fragmented API portfolios where each
service evolving independently, tied to the specifics of its deployment environment. Model-First
design eliminates these inconsistencies by defining APIs declaratively and independently of any
single technology stack. The formal model, expressed in languages such as Smithy, TypeSpec, or
Protocol Buffers becomes a cloud-agnostic abstraction that drives every downstream process: code
generation, deployment configuration, documentation, security enforcement, and versioning.

By describing services and data structures through formal schemas, Model-First APIs align
naturally with the declarative principles of cloud infrastructure. Just as Infrastructure-as-Code and
Configuration-as-Code make cloud resources reproducible, Model-First design makes the
interface itself reproducible. The API specification can be version-controlled alongside Terraform
modules, Kubernetes manifests, or CI/CD pipelines, ensuring that every environment from
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development to production implements the same canonical contract. This co-evolution of
infrastructure and interface minimizes configuration drift and enables contract-driven
deployments, where schema validation, backward-compatibility checks, and documentation
generation occur automatically before release.

Major cloud platforms have embraced this approach. AWS API Gateway, Azure API
Management, and Google Cloud Endpoints all natively import OpenAPI or gRPC definitions
generated from Model-First frameworks, translating abstract models into fully configured runtime
gateways. This automation bridges the gap between design and operations: when the model
changes, the infrastructure updates itself accordingly. Security policies, throttling rules, and
authentication flows defined at the model level, by using Smithy traits or TypeSpec decorators,
propagate directly to the deployed service. In this way, governance and security cease to be post-
deployment add-ons and become first-class design constructs, enforceable through automated
pipelines rather than manual configuration.

Equally important is the role of Model-First design in achieving interoperability and portability
across multiple clouds. Because the model defines only the semantics of communication services
can emit multiple protocol representations (REST, gRPC, GraphQL) from the same specification.
This allows the same logical API to function seamlessly across different cloud providers and
runtime environments without rewriting its interface logic. Such schema-level portability protects
organizations from vendor lock-in and supports hybrid architectures in which microservices
operate across diverse infrastructures while sharing a single semantic vocabulary.

Automation also extends to the DevOps toolchain. Once an API model is committed to a
repository, automated workflows can generate SDKs, mock servers, documentation, and gateway
configurations, then validate them during CI/CD execution. Every pull request can trigger checks
for breaking changes or non-compliant patterns before deployment, ensuring governance at scale.
These pipelines make the API lifecycle continuous and self-correcting where new versions are
validated, published, and monitored with minimal human intervention.

In essence, Model-First APl Design operationalizes the principle of “Interface-as-
Architecture.” It extends the declarative mindset of Infrastructure-as-Code to the design and
governance of communication contracts themselves. By unifying modeling, automation, and
governance, organizations gain the ability to deploy, evolve, and observe APIs coherently across
any cloud. This synthesis of specification and execution marks a decisive step toward cloud-
agnostic interoperability and sustainable API ecosystems.

4.5 The Role of Documentation in Model-First API Design

Documentation occupies a central position in the API development lifecycle, acting as the
primary conduit through which design intent, technical specifications, and business semantics are
communicated. In traditional code-first approaches, documentation is often considered an
auxiliary output which is written after implementation or automatically extracted from source code
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comments. This reactive treatment leads to frequent inconsistencies between the actual system
behavior and its described interface, particularly in fast-moving development environments.

4.5.1 From Reactive Description to Proactive Design Artifact

Model-First API Design reverses this paradigm by embedding documentation at the core of the
design process rather than positioning it at the periphery. The API model, expressed in a formal
modeling language such as Smithy, TypeSpec, or Protocol Buffers, serves not only as an
executable contract between producers and consumers but also as a continuously synchronized
documentation source of truth.

Every structural element of the model, endpoints, parameters, schemas, and error types can be
annotated with semantic metadata, descriptive text, examples, and constraints. These annotations
are preserved in the compiled outputs (e.g., OpenAPI 3.1, JSON Schema, or SDK comments),
allowing documentation to evolve in lockstep with the specification. As a result, documentation
ceases to be a static text file and becomes a dynamic, machine-generated reflection of the model’s
formal semantics.

This structural integration addresses the two chronic weaknesses of code-first documentation:
latency and divergence. Because documentation is generated from the authoritative model at build
time, the risk of drift between implementation and description is effectively eliminated. Updates
to the model, whether adding a new endpoint or deprecating a field, are immediately reflected in
all derived documentation artifacts, ensuring accuracy and timeliness.

4.5.2 Mechanisms of Automated Documentation Generation

Each major Model-First framework provides tooling to generate comprehensive, navigable
documentation directly from the model source:

¢ Smithy integrates traits such as @documentation, @Gexample, and custom metadata tags,
which propagate through the build pipeline to produce rich HTML or OpenAPI
documentation. These outputs can include semantic relationships, inheritance
hierarchies, and cross-references between services and data types.

e TypeSpec leverages decorators and scalar annotations to embed domain-specific
semantics within the schema. Its compiler can emit both developer-friendly portals and
machine-readable outputs, ensuring that documentation and schema validation share a
common source.

¢ gRPC/Protobuf, through extensions like google/api/annotations.proto, SUppOrts
automatic generation of OpenAPI specifications and API reference material that map
RPC methods to REST-style endpoints, aligning transport-agnostic service definitions
with human-readable documentation.

In all cases, documentation generation is not an optional auxiliary step but an integral part of
the continuous integration pipeline. Whenever a new commit modifies the model, the build system
re-emits the documentation, SDKs, and schema validators simultaneously. This creates a self-
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sustaining documentation ecosystem, where accuracy, versioning, and discoverability are
automated rather than manually enforced.

4.5.3 The Epistemic and Strategic Role of Documentation

From an epistemological perspective, Model-First documentation represents a codified form of
organizational knowledge meaning that it describes a living artifact that records not just technical
structures but also the rationale behind design decisions. Because it is versioned alongside the
model, it allows engineers to reconstruct historical design contexts, compare schema revisions,
and reason about the evolution of business capabilities over time. This traceability strengthens
architectural governance and supports continuous auditing of service evolution.

Strategically, automated and semantically rich documentation enhances developer experience
(DX) and accelerates ecosystem growth. Well-structured, always-synchronized documentation
reduces onboarding time, increases adoption rates for public APIs, and improves integration
reliability. It also provides a tangible metric for maturity within an organization’s API governance
framework, demonstrating how design consistency and transparency translate directly into
operational efficiency.
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5 — Static Analysis of Inter-Endpoint Dependencies

While documentation formats such as OpenAPI or Postman Collections describe each endpoint
in detail, they rarely capture how endpoints depend on one another that is, how data produced by
one API call becomes an input to another.

Understanding these inter-endpoint dependencies is essential for integration, testing, and
evolution of complex systems. It allows developers to determine call order, recognize data flow,
and identify potential reuse opportunities.

This chapter extends the concept of static dependency analysis into Model-First API Design
frameworks, Smithy, TypeSpec, and gRPC / Protobuf, where schemas and operations are defined
with strong typing and semantic structure. These models enable dependency discovery that is both
accurate and structurally meaningful.

5.1 Inter-Endpoint Dependencies

An inter-endpoint dependency exists when an endpoint E,requires data produced by another
endpoint E;. Formally, endpoint E,depends on E;when one or more fields in E;’s response are
necessary to construct E,’s request.

Typical dependency types include:

e Body — Path: A response attribute is used as a path parameter in another request.
e Body — Body: A response field is reused within another request body.
e Body — Query: A response field is used as a query parameter.

5.2 Smithy Analysis

REST Endpoint Modeling with smithy.apit#http

For this work, REST-style endpoints were modeled by applying the smithy.api#http trait to
Smithy operations. This trait allows each operation to be annotated with an HTTP method (e.g.,
GET, POST, pUT) and a URI path pattern, effectively defining the REST interface in a declarative
manner. Through these annotations, the Smithy model encodes complete endpoint semantics like
paths, query parameters, and request/response bodies, within the abstract model itself, without
requiring code generation.

Strongly-Typed I/O Definitions

A central strength of Smithy in this context lies in its ability to wrap primitive values inside
structured shapes, thus expressing semantically meaningful data types. For example, two strings
can be separated with the following syntax in smithy:

1. string Name
2. string Name2
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Then we can use Name and Name?2 in different occasions. This design enables non-primitive
modeling of request and response data, ensuring that every input and output value carries both
syntactic type and domain-level meaning.

Smithy Build and AST Extraction

Once the Smithy model is authored, it is compiled using the smithy build command, which
generates a comprehensive Abstract Syntax Tree (AST) in JSON format. The AST contains every
operation, shape, trait, and reference, preserving the complete semantic hierarchy of the service
model. Unlike the OpenAPI emitter, which flattens structures and loses the wrapping of non-
primitive types, the Smithy AST preserves these wrappers, maintaining the distinction between
higher-level domain types and their underlying primitive values. This makes the AST the ideal
intermediate representation for performing inter-endpoint dependency analysis.

Inter-Endpoint Dependency Analysis

With the Smithy AST as the input, the dependency analysis process seeks to uncover how one
endpoint’s output feeds into another’s input. In essence, this analysis identifies data flow
dependencies between operations by tracing shared shapes across their input and output
hierarchies.

Algorithmic Process
The following algorithm outlines the procedure for computing these inter-endpoint
dependencies using the Smithy AST:

1. Algorithm: Smithy Dependency Analyzer

2.

3. Input: Smithy AST model (JSON)

4. Output: Directed graph of inter-endpoint dependencies

5.

6. 1. Parse the Smithy AST and extract all operations:

7. - Operation name, HTTP method, input shape, output shape.

8.

9. 2. For each operation (source):
10. a. Recursively collect all type identifiers (shapes) from its output.
11. b. Record parameter traits (path, query, body) where applicable.
12.
13. 3. For every other operation (target):
14. a. Recursively collect all type identifiers from its input and parameters.
15. b. Compare each type in the source output with each in the target input.
16. c. If a shared type is found:

17. Record a dependency (source - target)

18. Include shared type and parameter mapping.

19.

20. 4. Eliminate duplicate matches of the same type per operation pair.

21.

22. 5. Optionally restrict analysis to GET operations as sources.

23.

24. 6. Generate the dependency graph:

25. - Nodes: operations

26. - Edges: dependencies labeled with shared types.
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5.3 TypeSpec Analysis

REST Endpoint Modeling with @typespec/http

REST-style endpoints were modeled in TypeSpec using the @typespec/http library, which
provides decorators such as @get, @post, Gput, and eroute to declare REST operations. These
decorators allow the full definition of HTTP methods, URI paths, and parameter locations (path,
query, or body) directly within the model. As a result, the REST interface is described
declaratively, and all endpoint semantics (methods, paths, and payload structures) are explicitly
encoded within the TypeSpec source itself.

Strongly-Typed I/O Definitions
TypeSpec, like Smithy, supports wrapping primitive types with higher-level, domain-specific
scalars. For instance, a developer can define:

1. scalar Name extends string;
2. scalar Name2 extends string;

These scalar definitions allow non-primitive modeling of API inputs and outputs, ensuring that
identical base types (like string) can be semantically distinguished by their context. This strong
typing guarantees that request and response data maintain domain meaning and enables the
identification of dependencies between endpoints based on shared, named scalar or structured

types.
TypeSpec Compilation and OpenAPI Generation

Once the TypeSpec model is authored, it is compiled using the tsp compile command with
the @typespec/openapi3 emitter to produce an OpenAPI specification. Unlike Smithy, TypeSpec
does not expose a standalone AST format. However, its emitted OpenAPI retains type references
for wrapped primitives, represented as schema references such as:

1. $ref: '#/components/schemas/Name’
2. Name:
3. type: string

This means that the TypeSpec emitter preserves these scalar wrappers. As a result, type-level
distinctions remain visible in the exported OpenAPI, allowing accurate and fine-grained
dependency analysis directly at the schema level.

Inter-Endpoint Dependency Analysis

Using the OpenAPl document generated from TypeSpec as input, the inter-endpoint
dependency analysis follows the same conceptual framework as in Smithy. The goal is to identify
how one endpoint’s response data (source) provides input to another endpoint (target). This is
accomplished by tracing shared schema references across the request and response structures
within the OpenAPI document.
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Algorithmic Process

The procedure for detecting dependencies is outlined below:

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.

. Algorithm: TypeSpec Dependency Analyzer

1
2
3. Input: OpenAPI specification generated from TypeSpec
4. Output: Directed graph of inter-endpoint dependencies
5.

6 . Parse the OpenAPI specification.

7 . Extract all operations:

8
9

- HTTP method, path, input and output schema references.

. For each operation (source):

a. Collect all schema references ($ref) from its response body.

. For every other operation (target):

a. Collect schema references from its request body and parameters.
b. If a shared reference is found in both:

Record a dependency (source - target)

Include the shared schema and parameter context.

. Skip duplicate matches for the same type between identical operation pairs.
. Optionally restrict analysis to GET operations as dependency sources.

. Generate a dependency graph:

- Nodes: operations
- Edges: dependencies labeled by shared schema references.

5.4 gRPC / Protobuf Analysis
RPC Modeling with Protocol Buffers

Unlike Smithy or TypeSpec, which model REST-style resources, Protobuf structures APIs
around services and RPC methods. Each RPC defines a request and response message type,

representing the input and output of a remote call.

For example:

1.
2.
3.
4.

service OrderService {
rpc CreateOrder (CreateOrderRequest) returns (CreateOrderResponse);
rpc GetOrder (GetOrderRequest) returns (Order);

This structure emphasizes procedural semantics through method calls instead of resource

manipulations, while maintaining a strong type system using message definitions.

REST Mapping with google/api/annotations.proto

To enable REST-style interoperability, gRPC services can be annotated with the
google/api/annotations.proto extension. This allows RPCs to be mapped directly to HTTP
endpoints via the google.api.http option, defining REST semantics such as HTTP methods,

paths, and parameter locations. For example:

1.

rpc GetOrder (GetOrderRequest) returns (Order) {
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2 option (google.api.http) = {
3. get: "/vl/orders/{order_id}"
4. };
5. }

Through these annotations, gRPC services can be exported as OpenAPI specifications, making
them compatible with the same dependency analysis pipeline used for Smithy and TypeSpec.

Type Modeling and Limitations

While Protobuf is strongly typed, it differs from Smithy and TypeSpec in one key respect: it
does not support wrapping primitive types into higher-level domain scalars. Each primitive field
such as string, int32, or bool is defined directly within messages, without an alias or domain-
level identifier. Consequently, when converting gRPC services to OpenAPI, only structured
message types (component schemas) retain their identities, while primitive fields lose their
contextual meaning. This makes dependency inference based purely on primitives more
ambiguous.

The OpenAPI specification used for the analysis is generated directly from the .proto
definitions using the Protocol Buffers compiler (protoc) with the OpenAPI plugin, as shown
below:

1. protoc \

2. --openapi_out=out \
3. --proto_path=. \

4. my_service.proto

This command compiles the Protobuf service definitions into an OpenAPI document (. yam1 or
.json), preserving all structured message types and HTTP annotations (via
google/api/annotations.proto)

To mitigate this, the analysis operates under two modes:
1. Component Mode — Compares only structured message references, producing high-
precision dependencies between RPCs that share message types.
2. Primitive Mode — Broadens analysis by also comparing primitive fields (by name and
type). This captures additional potential dependencies but may introduce false positives.
Inter-RPC Dependency Analysis

The dependency analysis for gRPC follows the same conceptual structure as for Smithy and
TypeSpec, with the OpenAPI export acting as the input. The goal remains to identify how data
produced by one RPC can serve as input to another. In this context, an RPC’s response message
type acts as the source, while another RPC’s request message type serves as the target. If they
share a common structured message or field, a dependency edge is created.

Algorithmic Process

The procedure for detecting dependencies is outlined below:

1. Algorithm: gRPC / Protobuf Dependency Analyzer
2.
3. Input: OpenAPI specification generated from .proto files
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4. Output: Directed graph of inter-endpoint dependencies

5.

6. 1. Parse all operations and extract:

7. - RPC name, HTTP method, input/output message schemas, parameters.
8

9. 2. For each operation (source):
10. a. Recursively collect all schema references ($ref) and primitive fields
11. from its response body.
12.
13. 3. For each other operation (target):
14. a. Recursively collect schema references and primitive fields from
15. its request body and parameters.
16. b. Compare:
17. i. Schema references » record if identical (Component Mode)
18. ii. Primitive name/type pairs - record if matching (Primitive Mode)
19. c. Label each dependency with the reason (“ref” or “primitive”).
20.
21. 4. Deduplicate identical matches per operation pair.
22.
23. 5. Optionally restrict analysis to GET operations as sources.
24,
25. 6. Generate the dependency graph:
26. - Nodes: RPC endpoints
27. - Edges: dependencies labeled by match reason and type.

The next chapter presents a PayPal API case study, comparing the dependency graphs generated
by RADAR, Smithy, TypeSpec, and gRPC analyzers. This evaluation quantifies improvements in
accuracy and demonstrates the advantages of model-first representations for dependency
discovery.
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6 — Case Study: PayPal API Dependency Analysis

To validate the proposed methodology for endpoint interdependency detection, a real-world
API scenario was selected as a case study. The use case originates from the previous diploma thesis
about dynamic analysis [8], [9].

6.1 Use Case Definition

The analyzed workflow, originally defined in the thesis as Use Case 1: New Order, Payment,
and Tracking Information, simulates the complete lifecycle of an e-commerce transaction using
the PayPal REST API. It was chosen because it embodies realistic interdependencies between
endpoints across multiple subsystems including catalog management, checkout processing,
payment authorization, and shipment tracking.

The workflow begins with the creation of a new product in the PayPal catalog. Once created,
its details are retrieved and updated to modify descriptive fields. Next, an order is placed for the
same product. The shipping address associated with that order is updated, and the order’s
information is subsequently retrieved for confirmation. The next phase focuses on financial
transactions: the payment of the order is first authorized, confirming that the customer’s balance
is sufficient, and is then captured by the seller. Once captured, the payment details are retrieved.
Finally, tracking information is added to the previously captured payment, and the record is
updated. This workflow is also presented on the following Sequence diagram.
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1: POST Create product(Create product request)

2: (Create product response): 201 Created

3: GET Show product details(id : string)

4: (Show product details response): 200 OK

5: PATCH Update product(id : string, UpdatePath)

6: 204 No Content

7: POST Create ofdeE(Create Order Request)

8: (Create Order Rlesponse): 201 Created

1
9: PATCH Update order(id : string, Update Order Request)
!

10: zu;m Content

__________________________ - ————— e e e e e e e

11: GET Show order details(id : string)

1

|
12: (Show order details respo::s: (with shipping)): 200 OK

|
13: POST Authorize payment for order(id : string)
I

]
14: (Authorize payment for order response): 201 Created

15: GET Show details for authorlzedlpaymenllld < string)

|
16: (Details for authorized payment): 200 OK

|
19: GET Show captured payment details(id : string)
1

20: (Captured Payment oeu:ns); 200 0K

______ —_ - —_ ————————

|
21: POST Add tracking information fovl multiple PayPal transactions (AddT rockhgnfolrmatlonllequest)

| |
| |
22: (AddTrackingInformationResponse): 200 OK |

________________________________________________________

|
25: PUT Update or cancel tracking information for PayPal transaction(tracking_number : strlnglj, Update carrier req

26: 204 No Content

| |
| |
| |
T T
| |
| |
| |
| |
| |

Figure 3 PayPal Use Case 1: sequence diagram
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This workflow encapsulates multiple interdependent entities such as Product Id, Order Id,
Payment Id, and Tracking Id. Each identifier is generated or returned by one endpoint and later
consumed by another, forming a chain of logical dependencies that reflect the real data flow within
the PayPal API.

6.2 Model Definition

To perform the comparative evaluation, the PayPal API workflow was implemented using three
different Model-First API frameworks: Smithy, TypeSpec, and gRPC/Protobuf. In all three, the
same endpoints were modeled with equivalent names, paths, and data structures, ensuring
consistency across frameworks. The implemented endpoints included:

® POST /v2/checkout/orders — Create an order

® GET /v2/checkout/orders/{order id} — Show order details

® PATCH /v2/checkout/orders/{order id} — Update an order

® POST /v2/checkout/orders/{order id}/authorize — Authorize payment for order

® GET /v2/payments/authorizations/{authorization id}- Show authorized
payment details

® POST /v2/payments/authorizations/{authorization id}/capture — Capture an
authorized payment

® GET /v2/payments/captures/{capture id} - Show captured payment details

® POST /vl/catalogs/products — Create a product

® GET /vl/catalogs/products/{product id} — Show product details

® PATCH /vl/catalogs/products/{product id} — Update a product

® POST /vl/shipping/trackers-batch — Add tracking information for multiple
PayPal transactions

e PUT /vl/shipping/trackers/{tracking id} — Update or cancel tracking
information for a specific PayPal transaction

Each of these endpoints was encoded using the respective modeling language constructs of the
framework. Smithy used ehttp traits and input/output structures; TypeSpec used annotated
interfaces and scalars; and gRPC defined messages and RPC methods, annotated with
google/api/annotations.proto to export REST-compatible OpenAPI definitions. This cross-
framework implementation provided a controlled environment for assessing how each modeling
paradigm affects dependency detection accuracy.

6.3 Dependency Extraction Procedure

The dependency extraction process was carried out by the analyzers implemented in Chapter 5,
each adapted to handle the corresponding model format. The process follows the same general
logic across frameworks: for each operation, the analyzer extracts its input and output schemas
and recursively collects all referenced types. It then compares the output types of each operation
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with the input types of every other operation. When a shared type or reference is found, a directed
dependency is recorded from the producer (source endpoint) to the consumer (target endpoint).

6.3.1 Smithy Analysis

For Smithy, the analysis utilized the AST (Abstract Syntax Tree) generated by the Smithy build
system. In this model, all primitives were defined as semantic wrappers, for example:

1. string Order_Id
2. string Product_Id

These were preserved in the AST as fully qualified type identifiers such as
smithy.paypal#Order Id, enabling the analyzer to distinguish between conceptually different
fields that would otherwise share the same primitive type. This design allowed the dependency
analyzer to capture relationships based on type identity rather than mere textual similarity.

6.3.2 TypeSpec Analysis

The TypeSpec implementation followed the same principle. Semantic primitives were
represented as scalar extensions, for example:

1. scalar Order_Id extends string;
2. scalar Product_Id extends string;

When compiled to OpenAPI, TypeSpec preserved these scalar types as sref entries in the
#/components/schemas section. This ensured that type identity was maintained throughout the
export process, enabling the analyzer to match dependencies at the schema level. The TypeSpec
analysis produced results identical to those of Smithy: all dependencies were correctly identified,
with high-level objects and wrapped primitives both contributing to meaningful connections.
Complex types such as Amount, Payment, and Tracker were treated as unified entities rather than
fragmented sets of fields, reinforcing the semantic integrity of the graph.

6.3.3 gRPC / Protobuf Analysis

For the gRPC implementation, .proto files were compiled to OpenAPI using the protoc.

This generated OpenAPI specifications that exposed Protobuf message structures as JSON
schema components. However, Protobuf does not support the concept of semantic primitive
wrapping; thus, identifiers such as string order id are represented only by their basic type. As
a result, the analyzer could detect dependencies only by comparing field names and primitive
types.

This introduced two issues: false dependencies appeared when different resources shared
common field names (e.g., id), and true dependencies were sometimes missed when naming
differed (e.g., order id versus id). Nevertheless, the analyzer successfully captured message-
level dependencies, maintaining meaningful high-level relationships while losing some detail in
primitive-level matching.
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6.4 Comparative Findings

Both Smithy and TypeSpec produced virtually identical and highly accurate dependency graphs
as it is presented on Figure 3 and 4. Their analyses captured all genuine data flow relationships
within the PayPal endpoints and eliminated noise by using explicit type-based matching.

Show captured payment details (GET Update product (PATCH)

ET)
Show order details (GET)Update order (PATCH)

Figure 4 smithy complete graph
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Create an o der (POST)

Add tracking information for multiple PayPal
transactions (POST)

Show captured paymet details (GET)
Show product details (GET)
Update a product (PATCH)

Update or cancel tracking information for PayPal
ransactions (PUT)

Create a product (POST)

Authorize payment for order (POST)
Capture an authorized payment (POST)

Show authorized payment details (GET)

Update an order (PATCH)

Show order details (GET)

Figure 5 typespec complete graph

In contrast, the gRPC results exhibited less semantic cohesion due to the structural limitations
of Protocol Buffers, which do not support primitive type wrapping. When the analysis was
performed excluding primitive types, the algorithm successfully identified all high-level
dependencies between complex objects, accurately reflecting the true inter-service relationships
as shown in Figure 5.

However, when the primitive inclusion mode was enabled, where dependencies were also
inferred based on matching primitive field names and types, the output became significantly
noisier, as illustrated in Figure 6. The analyzer began linking fields that were textually similar but
semantically unrelated, resulting in fragmented or misleading relationships. Moreover, because
Protobuf does not distinguish between semantically different identifiers that share primitive types,
it was unable to associate related fields with different names (for example, recognizing that id and
orderld refer to the same logical entity). Consequently, the gRPC-based analysis, while capable of
capturing object-level dependencies, lacked the semantic precision and abstraction depth achieved
by Smithy and TypeSpec.
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. ) Create an order (POST)
Show authorized payment details (GET)

Show captured payment details (GET)
Authorize payment for order (POST)

Capture an authorized payment (POST)
Show order details (GET)

Figure 6 proto complete graph without primitives

‘ Update or cancel tracking information for a specific
PayPal transaction...
Show authorized paymant details (GET) ‘

Add tracking information for multiple PayPal
transactions (POST)

e o
Create an order (PCST) _
Capture an authorized paymei .t (POSgho captured payment details (GET)

Show product details (GET)

® e
Create a product (POST) Show order details (GET) ‘

Update a product (PATCH)

Update an order (PATCH) .

Authorize payment for order (POST)

Figure 7 proto complete graph with_primitives
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6.5 Comparison with existing RADAR analyses

To evaluate the effectiveness and accuracy of the proposed Model-First dependency analysis
methodology, a direct comparison was conducted against both the static and dynamic analysis
results of the RADAR software. For this comparison, the Smithy-based model was selected as the
reference implementation, since its dependency extraction logic and results are identical to those
obtained from TypeSpec, and it provides a more expressive and semantically consistent abstraction
than the gRPC approach, which as discussed previously suffers from limitations in representing
wrapped primitive types.

At first glance, when examining the complete dependency graph generated by the Smithy
analyzer (Figure 3), it is evident that it contains more connections compared to both the static
(Figure 7) and dynamic (Figure 8) RADAR results. This outcome was expected, as the Model-
First methodology leverages the semantic precision of the Smithy Abstract Syntax Tree (AST) to
match dependencies based on the formal type relationships defined in the model, rather than
relying on approximate name or value matching. In contrast, the static analysis used in RADAR’s
original implementation tends to lose significant dependency information because it relies
exclusively on textual similarity between names and primitive types, without the ability to infer
higher-level type semantics. Consequently, the static graph appears sparser and omits several
meaningful relationships that are structurally encoded in the Smithy model.

The dynamic analysis (Figure 8), although producing a more meaningful dependency graph
than the static approach, captures dependencies only for interactions actually observed during the
MIM-based execution tracing. As a result, it provides a partial view of the API’s interconnectivity,
accurate for the executed workflows but inherently limited to the recorded behavior. When
focusing on specific endpoints, these differences become even clearer.

For example, in the case of the Create order endpoint, both the Smithy-based model and the
dynamic analysis successfully identify all four real dependencies, as shown in Figures 9 and 11.
In contrast, the static analysis (Figure 10) detects only one dependency, omitting critical
relationships such as the link between id and order id. This omission demonstrates the static
analyzer’s inability to recognize dependencies across fields that differ in name but share a semantic
relationship defined in the model. In this scenario, the dynamic analysis performs well because it
captures the actual runtime data flow of the use case, allowing it to show dependencies that the
static approach misses.

However, when examining another endpoint, such as Create Product, the situation reverses. The
Smithy-based dependency graph (Figure 12) accurately identifies a dependency between
CreateProduct and CreateOrder, represented by the relationship name — name (through the type
smithy.paypal#Product Name). The static analysis also detects this dependency (Figure 13),
since the field names are identical and thus easily matched. In contrast, the dynamic analysis
(Figure 14) fails to identify this relationship entirely, as the corresponding workflow was not
executed in the recorded MIM session. This highlights an important limitation of dynamic
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methods: while they produce precise results for executed interactions, they cannot infer
dependencies that have not been empirically observed.

Overall, the comparison demonstrates that the Smithy-based dependency analyzer combines
the semantic precision of static analysis with the completeness of dynamic inference, without
requiring execution data. It captures both explicit object-level dependencies (e.g., Amount,
Product, Order) and implicit semantic relationships (e.g., Order 1d ) by leveraging the model’s
structured type information. In contrast, RADAR’s static approach loses many such dependencies
due to its reliance on surface-level matching, while the dynamic approach, though behaviorally
grounded, is constrained by the scope of the monitored use cases.

Consequently, the Model-First methodology achieves a more comprehensive, noise-free, and
semantically rich dependency graph, enabling deeper insights into API interoperability and
lifecycle coupling than either of RADAR’s existing methods.

Add tracking information for multiple PagRal
transactions (POST)

Update product (PATCH)

Show product details (GE}

Create product (POST)

Authorize payment for order (POST)

Create order (POST)

Show details for authorized payment (GE
Show captured payment details (GET)

Capture authorized payment (POST)

Show order details (GET)

Figure 8 static analysis complete graph

62



PS5 T v2/chzckout/orders (POST)

POST v1/shipping/trackers-batch (POST)

PUT v1/shipping/trackers/9F694541N2045151V- .
1722691303179 (PUT) GET v2/payments/captures/9F6945411204 5151V
(GET)
POST
izations/77E24576A p
‘ture (POST)

POST
v2/checkout/orders/0SV42290DB743762L /authorize
(POST)

(GET)

GET [77E245

GET v2/checkout/orders/05V422900874376 BATH T checkout/orders/0SV42290DB743762L
(PATCH)

Figure 9 dynamic analysis complete graph
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7 — Conclusion

In this thesis, we introduced and thoroughly analyzed the concept of Model-First API Design,
a paradigm that redefines how APIs are planned, implemented, and maintained.

Three representative frameworks were examined in detail: gRPC (Protocol Buffers), Smithy,
and TypeSpec. Each framework embodies the principles of model-first design but applies them
within different technical and operational contexts. The analysis revealed that gRPC is the best
option in low-latency, internal communication environments, where efficiency and binary
serialization are paramount. However, it is less expressive in modeling domain semantics due to
its inability to wrap primitive values which limits its potential for structural dependency analysis.
In contrast, Smithy and TypeSpec proved to be more mature, language- and protocol-agnostic
frameworks that emphasize extensibility, interoperability, and design consistency. Between them,
Smithy currently offers a richer ecosystem and a more advanced trait system, while TypeSpec
provides a modern, developer-friendly approach to specification generation and code integration.

Beyond technical differences, the study highlighted the broader organizational value of Model-
First design. By defining APIs as formal models, teams gain a single source of truth that promotes
cross-team collaboration, early validation, and automatic documentation generation. These
qualities are essential in large-scale, cloud-native environments where multiple teams contribute
to the same API ecosystem and where long-term maintainability is as critical as initial delivery.

A central contribution of this research lies in leveraging these modeling frameworks for inter-
endpoint dependency analysis. Because Smithy and TypeSpec define operations and data
structures holistically, they enable the extraction of rich dependency graphs directly from their
OpenAPI or AST representations. This capability allows the discovery of logical relationships
between endpoints based solely on their structural definitions without the need for runtime
execution or manual inspection.

The resulting analyses achieved great precision: the generated dependency graphs were noise-
free and correctly identified object-level dependencies, effectively mapping the semantic flow
between endpoints. In comparative evaluations, particularly with the Smithy and TypeSpec
models, the results surpassed those produced by traditional static and dynamic analysis methods.
The graphs not only revealed more meaningful relationships but also provided a higher-level view
of system interactions, capturing dependencies between entire objects rather than isolated
primitive fields.

However, several limitations were identified. The gRPC model lacks the ability to define
wrapped primitives. This absence leads to information loss in the generated OpenAPI specification
and, consequently, to reduced accuracy in dependency detection. Furthermore, the quality of the
results produced by our analysis proved to be tightly coupled with the quality of the model
definition itself. The introduction of well-structured wrappers and consistent type hierarchies
greatly enhances dependency resolution accuracy, whereas loosely modeled or inconsistent
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schemas can lead to missed or ambiguous connections. Simply put, the better the model structure,
the clearer and more meaningful the resulting dependency graph.

Looking ahead, a promising direction for future research involves exploring how Smithy and
TypeSpec can be utilized to model and implement Model Context Protocol (MCP) servers
following a Model-First design approach. The Model Context Protocol, recently introduced by
Anthropic, defines a standardized mechanism for enabling Al systems and tools to exchange
structured context and interact programmatically through well-defined interfaces. Since both
Smithy and TypeSpec are capable of precisely describing operations, input/output schemas, and
service behaviors, they could serve as ideal foundational languages for formally specifying MCP
tools and services.
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