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Me empUAaLn TAVTOC BIXOUMUATOC.

Arnoyopeleton 1 avitypagr, amoUxeuor xou dovour| Tne mopovoas epyaoiog, €€
ONOXATIPOU 1) TUAMATOC QUTHC, Yio EUTOEIXSG oxomd. Emtpeneton 1 avatinwon,
ooV XEVOT) XL OLVOUY| YLt OXOTO Y] XEEDOCKOTUIXO, EXTAUOEUTIXNG 1) EQELV-
NTAS PUONG, UTO TNV TEOUTOVEST, VoL OVAUPECETAL 1) TINYT) TROEAEUGTC XL VOl
ototneeitan To ToEoY urvuua. EowtAuata Tou apopolv T yerion tne pyaoiog yio
AEEOOOKOTUNO OHOTO TEETEL VoL ATEVVUVOVTAL TIEOG TOV CUYYPUPEX.

O ambelc xou To CUUTERAOUNTA TOU TEPLEYOVTUL GE AUTO TO EYYEUPO EX-
pedCouV TOV CUYYEUPEN XL OEV TEETEL Vo EQUNVELUEL OTL AVTITPOCKTEVOUY TIC
enionuec Yéoeic Tou Edvixod Metodfou ITohuteyvelov.



Abstract

Genomic analysis relies heavily on transforming raw sequencing data into com-
plete and interpretable genomic information. At the heart of this process lies
the alignment step, where billions of sequencing reads are mapped to a ref-
erence genome to reconstruct the original DNA structure. Despite significant
algorithmic progress, the alignment extension phase—particularly the Matrix
Fill and Traceback steps—remains a major computational bottleneck due to its
high time and resource demands.

This thesis explores two complementary approaches to alleviate these chal-
lenges: (i) the optimization and hardware acceleration of alignment algorithms,
and (ii) the reduction of alignment workload through intelligent filtering. Field-
Programmable Gate Arrays (FPGAs) are investigated as a hardware accelera-
tion platform due to their fine-grained parallelism and configurability, which en-
able efficient implementation of alignment algorithms such as Smith-Waterman,
GenASM, and WFA. Furthermore, the SneakySnake pre-filtering algorithm is
employed to analyze datasets, identify edit distributions, and guide algorithmic
optimizations.

By combining dataset-aware pre-filtering with hardware acceleration tech-
niques, this work aims to minimize redundant computations, reduce the search
space during alignment, and achieve substantial performance gains without
compromising accuracy. The proposed system leverages insights from SneakyS-
nake to dynamically adapt alignment strategies, demonstrating speedups rel-
ative to software-based implementations. Experimental results and architec-
tural evaluations validate the effectiveness of the proposed approach and high-
light promising directions for future optimization in genomic data processing
pipelines. Keywords— Alignment, Pre-filtering, Genomics, Hardware Accel-
eration, Data-aware system design






ITepiAndm

H yovidiwpatixn avéiuon Bocileton oe peydho Badud otrn UETUATEOTH TWV 0y XDV
OEDOUEVLY AAANAOUYNONG O AT %o EQUNVEVLCLUY YEVETIXT] TANPOpOopia. 2T0
enixevtpo authc g dtadixactoc Beloxeton To 6TABI0 TN EVHUYEAUULIONC, XATE TO
oTnolo BLOEXATOPULELN AAANAOLYIES YUPTOYPAUPOUVTAL OE EVOL TEOTUTIO YOVIOIWUA
TPOXEWEVOU VoL VoA TAOXEVACTEL 1) aipywer) dour) Tou DNA. Tlopd tnv adloon-
ueloTn Teododo oToug alyopliuoug evduypduuiong, 1 @aoY TNG ETEXTAONS TNG
evduypduuione , Wwiwe to Brjwata Matrix Fill xaw Traceback , e€axoloudel vor
amotehel Baond LTOAOYIG TN oNuEio CUUPOENONC AOYK TWV UPNADY ATUTACEWY
OE YPOVO Xal UTOAOYIO TIX00C TTOPOUC.

H napodoa dimiwpotind epyoacta e€etdlel 600 cUUTANEWUATIXES TPOCEYYIoEC
YLOL TNV QVTLHETOTLOT QUTOY TWY TEOXAACEWY: (1) TN BEATIOTONOINGT X0 EMLTAYUVOT
TV oAyopliuwy evduypduuione péow LoD, xau (i) T uelwon tou pdpTou
e evduypduuiong uEow €€untvou tpo-@uiteapiouatog. Tao Field-Programmable
Gate Arrays (FPGAs) diepeuvdiviar ¢ mAat@opuor ETLTdyuveng hixol Aoyw Tou
udmnAod Barduol TaEUAANALGUOY X0t TNG BUVATOTNTAC TULUUETEOTOIMNGTC TTOV TEOO-
(PEEOLY, XATL TOU ETUTEETEL TNV ATOOOTIXY| LAOTOINOT ahyopiluwy evduypduuiong
onwe ot Smith-Waterman, GenASM xoa WFA. EmnAéov, o akyodprduoc meo-
pihtpaplopatoc SneakySnake yenowonotelton yia TNV avdAuon TwV GUVOALY Ot-
SOUEVWYV, TNV oVOLY VOELOT TG XATOVOURAS TwV Slapopy (edits) xou tn Bedtinon
NG AmOB0CNEC TV ohyopiUuwY.

Me Tov cuvduaoud TEo-PLhTEURloUNTOC BUCIGUEVOU OTO YUEAUXTNELO TS TWV
OEDOUEVMY XL TEYVIXWY ETUTAYVVOTNS UECK VA0V, 1 epYacio oToyelel oTn pelwor
TWV TEPITTOV UTOAOYIOUGY, OTOV TEPLOPIOUO TOU YMEOU Vol ATNONG XUTA TNV EL-
Yuyeduulon xat oTtny eniTeLln oNUAVTIX®Y BEATIOOEWY GTNY anddoon Ywelc va
Yuotdleton 1 axpifeta. To mpotewoduevo clotnua allomolel Tic TAnpogoplec amd
T0 SneakySnake oTe vor TEOGUEUOLEL BUVAUIXE TIC OTEATNYIXES ELVUYEAUUIONG,
ETMUTUYYAVOVTUC ETULTOY OVOELS OE OYECT] UE TIC UAOTIOLOELS ATOXAEIC TIXG OE AOYLO-
6. To melpouaTind amoTEAECUATA XAk OL AEYLTEXTOVIXES allohoyTHioels emBeBon-
YOUV TNV OMOTEAEOUOTIXOTNTA TNG TROTEWVOUEVNC TROCEYYIOTS Kol OVODELXYIOUV
EATLOOPOPES XATELVVUVOELC Yo TEpaTEPW BEATIOTOTOMOT 0TS Bladaolee emelep-
YOolUS YOVIOLWUATIXWDY DEDOUEVLV.

Keywords— Avtiotolyion, ®ihtpdpiopa,I'ovidiwpatixd, Entdyuvon Thuxol, Xyedioor
ue Bdomn o Aedouévar






FEuyapiotieg

Euyaplotod Yepud tov emPBrénovto xodnyntd pou, x. Anufteio XolvTen, Yo Thy
EUTLO TOCVVY) TTOU oL EBELEE Yo TNV EuXOLElol VoL EXTOVACK QUTY| T1) OLTAWUOTIXY Ep-
yoola p€ow tou gpyactnelou Tou MicroLab. "Eva peydlo euyopiotd otny o1ddx-
Teopa x. Kwvotavtiva Koloyewpyn xaw otov Enixoupo Kodnynty, x. Xothplo
2007, yioo TNV xododRynon xou TNy mohdTyr Borjlela Tou pou mpocEpepay. Ou
fUeha oxdua Vo EUYOPLOTHOW Toug GlAoug You Tou GLVEBaAAaY 6To va Yivouv
TAL POLTNTIXG YEOVIoL €vol amd ToL o euydplota Tokidla tng (whc wou. Téhoc éva
TEQUG TIO EUYOQLO TG OTNV OLXOYEVELX LOU YLOL TNV OVIOLOTEAT] EUTLG TOG)OVY XAl UT-
oo TNElln mou pou €dwaoay xord” OAN TNV axadNuaixY Lo Topeia.
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Extetapevn Iepliindn

H yovidiwpotind) elvon 1 oucTNUATIN UEAETT TOU GUVOAXOU YEVETIXOU UAXOU
(DNA) twv Loviavey opyaviou®y. AToxohITTEL XploIUES TANPOPOELEC TTOL UToEOVY
VoL UETOORQWG0oVY TN Bloloyia, Vo aAAGEOUY TOV TPOTO UE TOV OTOlO OVTIUETWTI-
Coupe acVEVELES XAl VoL ETNEEACOUY TNV XATOVONGCT| Hog Yot TV eEEMEN. TTo ouy-
HEXQUIEVY, ETUTEETEL TNV oxElBr) OLdyvwon aodevey, tTny emtrienon nadoyovey,
XL OTNY TEPIMTWON PUTIXWY OPYAVIOUWY, 0XOUTN xat TN BEATIWON XUAMEQYELDV.
‘Okec autéc ot e@apuoyéc BaciCovton oTN UETATEOTH TWV ARYIXDY YEVOUXWDY OE-
Souévwyv (reads) mou mapdyovial and TAUTQORUES OAANAOUYNONG OE TAREN YoO-
vidtopatoe.  To yovidiopoto autd cuyxplvovton ETELTo UE EVa TPOTUTIO YOVIdlUA
X0l UECK OLOBXAOL)Y OTIWC 1) EVPECT) YEVETIXMY TURUANXNYMV XOL 1) ETLYEVETIXT
avaALoT), eCayETAL YeY oW TANEOogopia Yo Tt UTO UeAETY Oelypato. H Stadixaoto
Tou Beloxetar 670 enixeEVTEO ALUTO) TOU LTOAOYIGTIXOU CWATVA EVOL TO GTADLO TNG
evduypduptone.[1][2]

Kotd tnyv evduypduuton, dioexatoupdplo reads yoptoypagolvion 6To TpdTUTO
yYowdlwua, OoTE va ovoxataoxevaoTel 1 cuvokixy| doury tou DNA. Ou mepio-
o6TEPOL EVVUYPAUUUICTEC YENOoLdoToUY iot oTpatnYr] Tou ovoudletal «seed
and extend», émou ta reads ywpilovton o uxpdTepa TUATa (seeds), ue otoéy0
TNV EVPECT AXEIBOY AVTIOTOLYLMY GTO TEOTUTO YOVLOIWUN Xou TN UElton TwV Ti-
Yoavay VeEcewy oTig onoleg umopel var yaptoypagniel 1o apyd read. Xto 18-
Ol0 NG emEXTUOTC, xde seed emexTelveTon OE Ulal TEOCEYYIOTIXY| ELVUYEGUULOT),
ETUTEETOVTAC TNV UToREN o@ahudtwy 1 Slagopwy (edits).

O olyypeovol evduyEUUUIGTEC UAOTIOOUY TNV EMEXTACT] OE OVO OLOXELTES (Qd-
oewc. Tn @don Matrix Fill xou tn @don Traceback. Xto octddio Matrix Fill
oL oAy6prduoL GUUTANE®YOLY Evay Tiivaxo oUoLOTNTOG UETOED EVOC read xou TOu
TUAUATOS TOU TROTUTIOU YOVIBLOUATOS, TopdyovTog cuvitng wia faduoroyia eudu-
YEUUULONG™ OGO UEYURDTERY 1) OUOLOTNTOL TWY V0 axOAOUIIWY, TOCO UEYAAUTEQT) 1)
Baduoroyia. Xto otddo Traceback yenowonotelton n mAnpogopio Tou Tivoa yia
VoL VaY VRLo TOLY 1) UECT]) X0l TO EIBOC TWV BLUPORKY KAl VAL VUXUTUOKEVUCTEL 1)
TEMNXT OLadpoUT) EVYUYEAUULONC.

XNy yovoiwuotixr enelepyacio, 1 Swadixacta eméxtaone (Snhadh to Matrix
Fill xou Traceback) amotehel to x0pto onueio ouupdenone and drodrn anddoone,
eCoutlog TV PEYSAWY AMAUTHOEWMY OE YEOVO %ol UTOAOYIGTIXOUC TOPOUS. XTNV
ool SiTAwuaTixy| epyasia Slepeuvmvton 800 Tpoceyyioelc: 1) n Beltiotonoinon
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e eVDLYPUUIONG PECL ETLTAYLUVONG, Xt (L) 1 Uelwon Tou thridouc towv eudu-
YoouUioEwy alOTOLOVTIC YULUXTNELO TIXG TV oA yopliuwy.

Hardware acceleration and optimization of algorithms: O 6pog emtdyuvon
UEow LAOU mepthopfdvel Thdoc AOCEWY Tou GTOYEVOLY OTNV ETLTAYUVCT) EVOC
uTohoytoTXoU €pyou Ue e€etdixeuuévo VAo, To otddlo tne eutuypduuiong €yel
vioroiniel o cuoxevéc 6mwe GPUs, FPGAs xau ASICs. Adyw tne mapopetponolnone
oe eninedo bit xa tne emavanpoypaupatilouevng @long toug, ot FPGAs éyouv
avadeLydel oe WLaiTERO UTOOYOUEVES TAATPOPUES ETULTAYUVOTS VLo YOVIOLOUATIXOVC
UTOAOYLOUOOC Xal EWIXE Ylot To G Tddo TN evduypduuione. ‘Otav To EmTEENEL O
oAy OeLiuog, Umopoly vo tapahhnAonolicouy extevag 1o 6tddo Matrix Fill yeow
douwY TUTOU systolic arrays, HEWWVOVTAC GNUAVTIXG TO UTOAOYLO TG xOoTOC. ETi-
TAEOV, 1) ETTAYUVOT) UToEEl Vo YIVEL UECK EUPIGTIXMY TEYVIXWY, OOV EMTEETETAL
1 Toedon oplouévmy eupTHOEMY BEBOUEVLY HOTE VoL ALENDEL 0 TUPUAANALGUOC
— oYL Ouwe Ywelc cupPBacuoic ueTall anddoone xou oxpiBelac.

Algorithm exploitation and filtering: "Evo oxdurn onuovtixd oTtddlo otr yo-
vidlouotixt| poY| enelepyaotog elvon To Tpo-guitedpioua. Metd to otddlo seeding,
umopoly va @uATeaploToLy mdoavd (elyrn reads- mEOTOTOU YOVIBLWUATOS, (OTE
Celyn mou dev eupaviCouv ETOEXT OUOLOTNTA VoL ATOPEITTOVTHL VWE(C, EE0IXOVOUWY-
¢ Y eOVo o opouc. TTohhol ahydpripol tpo-guitpaplouatog £youy anodellet ot
UELOYVOUY oNuovTixd Tov Yeovo euduypduuione. O SneakySnake etvon évag alydpot-
Yuoc mpo-@uitpapiouatoc TEAEUTAUlNG YEVIAC, TOU ETTUYYAVEL UPNAT oxplBelar eu-
VUYEAUUIONE YPNOHLOTOLOVTUS Lol ATOOOTIXT TEYVIXT| YLOL TNV ATOEELPT U1 OUOLWY
enextdoewy. TEtolol ahyopriuol TapEyouy enione TANEOPORIES YIoL TNV XATAVOUT
TV Slpopryv oe éva dataset, yeyovog mou uropet va a&tornomdet and olyoplduouc
evduypdpuione. Do mopdderypa, aiyoorduol 6mwe o Banded-Smith-Waterman
amodidouV xaAUTEPY OTaY Elvall YVWOTO €X TWV TEOTEQWY TO TAHUOC TWV OL-
APopY, XM UToEoLY Vo TEPLOPIOOLY ToV YWEO avalATNONG O EVal GTUTIXO
eVpoc (band), YeWdvovTac oNUovTIXG TNV UTOROYLC TEXY| TOAUTAOXOTNTOL.

LUy Vva, TEYVIXEC ETITAYLVONC EQopuolovTal o yevxd datasets odnywviag o€
un Wavixég Aooelg, xadde To Tpo-pLitedptoua etval dtadxaota eCUPTOUEVT amd To
OEDOUEVA X0 OCO TILO TEOCUPUOCUEVT Elvon 6To dataset, 1600 xahdTepa anoTEAED-
MoTor oAy EL.

Kdplog otdy0oc tne mapoloug SImAOUATIXAS Elvon 1) OLEEEdYNOY TOU TS TO
Teo-@Lktedplopo enneedlel emToyLVTES evduypduplone Bactouévouc oe Lhixs. H
aVEAUOT) LTIOEYOVTWY eutuypouuoTmv xou datasets Oelyvel OTL 1 xaTavoun Twv
OQANIGTWY Oev elvar ouotduoper, xadwe ol Teplocdtepeg evduypoupioeic Eyouy
U0 apriud o@aiudteny. TETolEC TEQITTMOELC UToEoUY Vo ETALYOUY UE Ay OTEp-
0UC TOPOUC Xat TRAEELS OE OYEaT UE TO TUTIXO GEVEELO.[3]

H rnopoloo epyacio allomolel pre-filters Baciouévo oe xatedpAlar BLapopnv
®ote va Bertiotonotfoel Ty evduypduuion o FPGAs og 600 eninedo
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o YE PYLTEXTOVIXO ETUTEDO, UE TOV OYEDLAOUS LOVEDLY EVHUYEAUULICTC TROC -
LOOUEVLY OE GUYXEXPLIEVO XUTWPALL DLUPOEMY, TOU E(VOL ATODOTIXES WG TTPOG
TOPOUC XAl ATOBOOT).

o Y OUCTNULXO ETUTEDOD, UE T1) ONULOVEY (0L UidC P YLITEXTOVIXAC TOANATAGDY ETL-
T UVTOY, 1) oolo BeEATIOTOTOLEL T1) POY| TV BEBOUEVWY XATUVEUOVTOS reads
OTOUC XATEIAANAOUG ELDIXEVUEVOUS ETLTAYUVTES.

H yedodohoylo Eextvd ue TNy avdAuoT TV BEBOUEVGY — TEOYUUTIXMY XL TRO-
COHOLWUEVRY — WOTE Vo ECETAC TEL 1) XaTovOUT| TV ooiudtwy. Me Bdon to eu-
eYUoTa, ETAEYOVTOL AAYOELIUOL TTOU UTOPOVY VoL EXHETUAAEUTOUY To XATOPALL Ot-
AUPOPMYV YL VO UELOTOUY TOUS UTOAOYIO TLXOUE XAl Y WEI0US TOROUCS, Xl VAOTOLOUY-
tou e High-Level Synthesis (HLS). IToAAamAéc VAOTOWAGELS EMITOYUVTOY GUVTI-
Yevton Yo DLapopeTnd xoT®@ALoL OLlopopy xat Onuiovpyeital pio «deauevy| emi-
TAYUVTOVY UE DLPOPETIXEC ATAULTHOELS TOPWY xot XaUo TEPNOELC.

Téhog, dnurovpyeitar évar choTnua LPNAAC amdBOoNC UE TOAATAOUC ETLTOYUV-
Téc, 6mou xdie emitayuVTHAC enelepydleTal PEAOC TOU AVTICTOLYOUY 010 £0pOC
OLapopyv Tou. 'Eva script e€looppdnnong, yenolonolwyvtas dedouéva and exié-
oelg olvleong xar otaTioTixd tou dataset, xadopiCel Tov BéATIOTO GLUVOLACUS
ETUTOYUVIOY OOTE Vo eEAaytoTonotnlel 0 GuVOAXOC Ypodvoe evduypduuions ue Oe-
dopévouc touc mopoug Tou FPGA.

Oewentixo YTroBadeco

T'ovidiwpatiny xaw 1 07 TNg yovidiwuatixrg eneiepyaciog

H yovidiwpatixd ebvan 1 peretn tou cuvolxol nepieyousvou DNA evoc opyoav-
lopoU, Tou TEpLhaUBdveL Oyt HOVO TN VOUXAEOTIOWT) ahAniouylor AN XL TO TwS
QUTY| LETAUBAAAETAL UETAED XUTTARWY, ATOUWY, TANYUCU®MY X0t GTOV Yeovo. Emeldr
TO YOVIOLWUATA XWOXOTO0Y T 00Nyiee yiar TN Asttoupyia TV xUTTIPWY XaL
TNV XANEOVOUXOTNTY, 1) YEVOUXT oTnpellel T clyypovn Bloloyio xat tateu:
AMOXAUNOTITEL T1) YEVETIXT BAOT) OTEAVIWDY X0 XOWV®Y VOOTUATWY, Topoxohoulel Tnv
eCENEN xan Tar LeoTdouaTo T OYOVOY OPYAVIOUMY, EVNUERMVEL TN BLAYVWOT) Xal
Yepamelor Tou xopxivou, xadodnyel tn BeAtiwon ToudAwy xou TN dlatAenon oTN
vewpylo xou TV owohoyla, xou emTeEnel Baowés avoxahilec yia T pvduion
yovidlwy, tnv avdmtudn o v e€EMEN. O xAddog €yel YetooynuUaTtioTel amd
TEYVOohoYiEC aAAnholynong, ot onolec uetétpedoav To DNA oe Ynglon uopyy| mou
uropet vo petpnlel xou vo avokudel vtoroytotxd. [4][5][6]

Mo Tumint| Sradaoto eneéepyaciog YOVIOLWUATOS LeEXVE UE TNV ahAniolynon,
omou ta popta DNA tepayilovian, mpoetowdlovton oe BiBAodrxec xon dtof3d-
Covton amd Opyava TOU TORAYOUV EXATOUUUELN EWS OLoEXATORUOpL ty Vv ofjua-
t0¢. Ot mAaTopUeS Pxpol uixous odAniouytody (T.y. sequencing-by-synthesis)
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Figure 1: Tumx# eneepyaoia avihuone DNA [7]

amodidouv uPnirc axplBelog avayvooelg ufxoug tepinou 75-300 bp, v ot mAot-
pOpuUEC peYdAOU Uhxoug (m.y. nanopore xat single-molecule real-time (SMRT)
sequencing) mopdyouv avoryvaoelc o xhipoxa kilobase-megabase mou enthlouv
emavohfiheic xon Bouixée mopodhoyéc ue Tiunua UPNAGTERO AXATERYAUO TA TOCOOTY
o@dhuotoc. Emhoyéc melpopatinod oyedlacuol — Bddog xdAudng, uixog ovdryv-
wong xat paired-end évavti single-end — xodoptlouv Ty 1oyl xou Tic pepoindice
TV ENOUEVLY oTadlwY. [7]

To basecalling YetoTpEmel Tol AXATEQYUC T CHUATA TOU OPYEVOU OE VOUX-
AeoTidneg axohovdieg e Poduoroyiec mowdtntag avd Bdor. Iho cuyxexpyeva,
Ta oot petagpdlovton oe Bdoeic: A (Adenine), T (Thymine), C (Cytosine),
G (Guanine). XuoTthuato puixeol ufixouc avtioTtolyoly mpdtuna @Yoptogol oe
Bdoeic' To nanopore GUCTAUAT AVTIOTOLOVV (VN LoVTIXo) eeduatog o [3¢-
oelg, ouvidwe pe deep neural networks. H oxp{Beio Tou basecalling xou 1 Ba-
Yuovounon twv Phred quality scores emnpedCouv dueca tnv evoncinocta xar To
(peudde VeTnd oTor emOuEVA GTABWL, YU WTO OL POEC GUY VA BlaTNEOVY TOCO TIC
axoloudiec ( FASTQ ) 600 xou tic Baduohoyiec yio eTayeVEGTERO QUATEAPLOUA
xou povielonoinon. [7]

To seeding evrtonilel amodotxd umoPplec yovidiwuatixée Véoelg yia xdie
VALY Vo) Tapldlovtoag oUVTOUES UTOCUUBOAOCELRES. LUVHUELS GTRATNYIXEG TER-
thapBdvouy otatepol urxouc k-mers, spaced seeds mou avEyovtal AcUUPLVIES,
minimizers xou syncmers mou LUTO-OELYUATOANTTOUY AVTITPOOKTELTIXG k-mers Yo
uelwon tne mAeovdlouoac mAnpogoplouc, xat Yedddous Baclouévec o eupETApLYL
omwe FM-index/BWT 1 nivaxeg xataxeppotiopol ( hash tables) mdve oto npo-
tuno. H anoteleopotinr enthoyy seeds eioopponel evaodnoio (vor un yadolv
andeic Véoeic) ue torydTnTo/uviun xou ouyvé moedyet ToAamAS utohpio Thry-
LOToL ovE ovay Vo Yo ueToryevéatepo meptoptoid.[8][9][10]
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To filtering neptopiCel Toug vmodnploug mewy amd TV axed evduypduuion.
Tumxd pilteo aparpoldy avoryVOGCELS YoUNAYC TOLOTNTAS XS Xt WLalTEQH avo-
uota Ceuydptor axoroutav. [11][12]

To alignment BeAticdver tn yapToyedpnon os avdhuor vouxheotidlou utoloyi-
Covtog Wi BEATIOTN 1) oYE0OV BEATIOTN avTioTolyion HETAL) xde avdyvworng
Xl TNG UToPRPLIC TEPLOY NS Tou TTEoTOToU, LTS €val WovTéro Baduohdynong yia
TV TioElg, aoup@LVies xat xevd. Alyoprduol SUVIIXOU TEOYPUUUATIONOV OTWS OL
Smith-Waterman (tomxr) o Needleman-Wunsch (ohix) mapéyouv oxetfeic
ANooeic' banded, affine-gap xa wavefront Swatundoelc emtaydvouv Tov UTOA-
oywoud® Ta mhalota seed-and-extend meptopiCouv TO BuvVOULXG TEOYEAUUUN OTIC
yertoviée mou umodexviel To seeding. H emhoyt tpémou evduypduuione (tomx
évavtt end-to-end), ot mowécg xevol xau to evpoc Lwvne (bandwidth) ennpedlouv
v aviyveuor indels, Tov yeliouo soft clipping xat tnv andédoon o emovohoy-
Boavouevee 1 YopuBwdelc teptoyéc.[10]

To variant calling aviyvelel Slagopéc YeTall BelyuaToC Xot TEOTUTOU YOVL-
OLOMATOC CUYXEVTOOVOVTAC EVIUYRUUUOUEVES EVOEIEELC amb TOAAES VALY VACELC.
Ou germline callers povtehonotolv Simhoetdelc (1 ToAumhoetdeic) yovdTuToug Xou
eCdyouv SNPs xan uxed indels e moavotntee yovotimou xou deixtec moldTn-
Tag' ot somatic callers cuyxpivouv (elyrn tumor-normal 7 tumor-only vy tov
EVIOTUOUO UTOXAWVIXGDY TURUAAXNYOY OE TERYBAAAOY aAAXY®V copy-number: to
goyahelor yeydhou uixoug emhbouy emiong peyohitepa indels xou douxéc mop-
odharyée ((SVs) omec VIO TEOWYES, UETAVESELS Xat aAAAYES aELIUo) oV TLy OdpLY.
20YYEOVOL VLY VEUTEC EVOLUATOVOLY base qualities, mapping qualities, tpocavo-
Tohlopo/Levyornolnon avayvaoewy, local assembly yOpw and Umonta onuelo, xa
unyovixr) uadnomn yio Boduovounor. Metayevéotepa otddl tepthoufdvouy joint
genotyping, phasing yio avoxataoxeun amhoTOTwY, Gy oMacUd o€ BAoElS YOLdiwY
xot TANYUOUMY, %o OTEATNYIXES PLATEORIOUUTOC TOU EAEYYOLY Ta (PEUBKS VeTNd
Yol va ydvouv aindeic noparhayéc o S0oxoheg neptoyéc.[13][14]

High Level Synthesis

To High-Level Synthesis (HLS) anotehel pio pedodoroyia oyediaone nou petoppdlet
xHOWor udmhot emmédou (m.y. C/C++, SystemC, OpenCL) oe ulomnotioiun
neptypapr) Lol (RTL). Avti o oyediacthc va yedget €€ apyhc Verilog/VHDL
O€ EMIMEDO XATAYWENTWY, TEPLYPAPEL TOV AAYOOLIUO apnenueEva xou To EQYAAEio
QUTOUOTOTIOLEL TOV YPOVOTPOYPUUUATIONS, TNV Xatavouy|/SEoueucT) Topwy Xat Tr
YoETOYRAPNOT O XUXAWUATIXES Dopéc. ETol UetdveTar 0 Ypdvog avdmTuéng xou
OLEUXOADVETAL 1) OLEPEUVNOT EVUANUXTIXDV UOYLITEXTOVIXMV.

H tumxy pory Eexavd amd tnv meptypagt) Tou alyopituou xou tov xadoploud
TEPLOPIOUOV (ouyvoTnTa, Xaduotéenaon, oyle, Yenon népwyv). To epyolelo epap-
uélet Bertiotonooelg (.. pipelining, unrolling, Storyeipion pviuncg) xou tapdyet
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RTL pali pe avopopéc extiunone anddoone/euBadol (latency, initiation interval,
LUT/FF/BRAM/DSP). H enairideuon yivetow ouyvd pe co-simulation, cuy-
xplvovtag tn cuunepupopd tou RTL pe 1o povteho avagpopdc Aoyiouxou.

Directives octo HLS

Y0vtopeg odnyleg mou elodyovion oTov xwoxa 1 6To gpyaieio yior vor xorteudi-
YOUV TOV UETACYNUATIONO O UAXO Ywpelc Vo aAAGCEL 1 AEITOURYIXT] CUUTERLPOQA
Tou ahyopiduou. Eléyyouv m.y. Tov mopurinhioud Bedywv, To pipelining, tnv
xowoxpnoiu/&n)\o«jwcpé TOPWY, ot TN OWTan uvnuey. O xuptdtepeg Tou Yo
yenowotnotntody otny mopoloo dthwuatixy lvot:

 Loop unroll: Avtypdepel tor adyato Twv enavolfbenmy (Uepnde 1 TAHewS)
OoTe TOMEC emavarfelc va extelovton Topdhinha.  Kepdilel ypdvo ex-
TENEOTC UE OO TOC TMEPLOCOTEQOUC TTOPOUC.

« Pipeline: Awomnd pio uTohoyloTixr pot| o€ o TddLa ToL enelepYdlovTol THUTOY POVY
SopopeTind oedopéva.  Kplown petewnr to Initiation Interval (II)—dco
UXPOTEPOD, TOG0 UeyahlTtepn oY) (throughput).

 Array partition: «Xndew» €vav mivoxa og ToAamAéS aveldpTNTEC UVHUT €C
yior vor auEndolv oL TauTOYPOVES TPOCTIENJOELC.

MeYodoAoyio

Koploc oxondg tng dimiwpatin’ic etvon 1 diepedvnom tng enidpaong Twv QIATEwY
07O PAUC TNG AVTIOTOYNONG VAOTOINUEVO amtd EMToYUVTEC VA0V, Mio yoviol-
OUUTIXT) BAOT) DEDOUEVWY EYEL UEYAAO TOLXIAOUOP(PIL OGOV APOEE TNV KATAVOUT
TWV OE0OUEVRY TNG Bdoel TV aptlud TV CQUAIGTWY TOU TEPLEYOVTUL O XQUE
oTolyelo TNe. LuvHlwe TOAAE BEBOUEVA EYOUV UxEd AELIUO GPUAIATWY %ol AUTO
oLy Vv onuaivel 6Tt uropel va Bpedel uio avtioTolynon ue Arydtepoug TOEOUC amtd
T0 Baocixd cevdplo. e auTy| TN OLmAWUATIXY Vo yenoLuoTocoupE GiATea Tou
EEOAAPTALOLY BEBOUEVA BAOEL EVOC XATWPAOU CYIMIATOC, UE GHOTO VO XATT)YO-
CLOTIOLCOUUE ToL OEBOUEVA Uog BAoel TV aptiud TV GQUMIATWY TOU EUTERLEYOV-
ToL O QUTA. LT cuveyela Yo ypnowonoljcouue aryopliuouc avTiotolynong ol
omofol UmopoLy Vo ENKPEANIOLY antd TN YVOOY Yo ToV apldud TV CQUAIATLY
Toug onoloug Ya vhomotfooupe o FPGA xou da etvon mapapetpononuevol Bdoet
TV XATOPALWY TOU YENOWOTOWoUUE xotd To @ihtedpoloua. Kdie oudda emi-
ToyUVTOV Yo avTio Tolyel xaTdAAnAc DEDOPEVY, ONANDT] DEDOUEV TOL LUTERYOUV
oTny xatrnyopio Tou TaEtdlEL UE TO XUTWPAL TNC.

O yenowonomndel eva mporyyoatind datasetxon evo dataset mpoowpolwong. O
Yenowotnotntoiy 6Vo alydpriuot avticTolynone. O Smith-Waterman o omolog et-
VoI VAL XAACOIXOG ahY Optlog Yior avTio Toly om cupBolocelpmy xou efvor amd Toug
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Figure 2: Ilpotewoéuevn Medodoroyio

TEAOTOUC oL Yenowonot\Inxe oTny yovdlwpatix emothun, xoat o GenASM o
omolog ebvar €voag olftepog ahyopriuog Tou yenoloTolel xaTtd xOpwY TEALELS OE
eninedo bitwote va Tpédel Wiaitepa amodotixd oto hardware. ¢ piitpo Yo yenot-
uomoljoouue To SneakySnake ,Eva @iktoo TO 0Ol BOUAEUEL UE HATOLO HATWPAL
CPIAIATOC XOL EYEL TAEU TTOAD XOAGL ATOTEAECUAUTA OGOV aPopd TNV axpeiBetd Tou.
H Sodwacio mou Yo axohouinel ebvon 1 axdrovdn. Agol avardcouue to Oc-
OOMEVA HUC WE TEOC TO TANVOC TWV CQUAUSTLY XAl UVAOTOL\COUNE TNV OOYLTEX-
oV Ty emtoyuvtov uoc péow  High Level Synthesis Yo ewodyoupe ta
AMOTEAECHUATO YL TNV XUTVAUOUN TOV CPUAIATWY ARG %ot TNV YEHOT TOPWY TWV
ETUTAUYUVIOVY OF €vay xwoLxa 1oopoTnone. O xwowag autoc Yo npoonadfioel vo
umohoyioel Tnv BEATIoT xoTavour| and TARYOC xon EdN EMTOUYUVI®Y , oL oTolol
Yo yenowonotnioldy 6to teAixd clotnua. Agod AIBouue auTH TNV XUTAVOUT
Yo dnuovpyfooupe pio oepd and @iktpo 1 omola Bdoet Twv xaTW@ALWY Tou
meoéxudoy and To mEdypauue Yo xatrnyoplonolel Ta dedopéva Bdoel Tov apriu
TWV 6PUAUATLY Toue. Emlong xou ndh BAcet Tou Teoyeduuatog autod Yo VAT
OOUUE TNV AEYLTEXTOVIXT TOAATA®Y enedepyact®y Tou mpoteivouue. Télog, o
eninedo mpoowpoiworng, Vo TdeouUE PETENOEIC Yia TOUC Yedvouc Tou Yeetdlov-
TOL VoL EXTEAEGTOUV TOOO YLoL TNV OQYITEXTOVIXN YOS, 000 %ol Yo TO AOYLOUIXO
OANGL xaL YLoL ETULTAYUVTESC TIOU OEV YENOWOTOOUY TNV apyttextovxn pac. ‘Eva
OYNUOTIXO DLy QoL (POEVETOL TOEOXAITE).
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SneakySnake

O ahyopriuoc SneakySnake [15] avtiel éunvevon and to npéAinue SNR routing
oe VLSI xuxdouata. To npéfinuoa SNR emhbeton ue yeron evog neighborhood
map xou 0 aAyoépriuoc mpoondlel vo uetofel and TNV apy”) Tou TVUXA TEOS TO
TENOG TOU, GUVAVIWVTUC OG0 TO OUVATOV ALYOTEQN EUTOOL, OTWS PoVETHL OTO

oY L.

G WG ® 8 m

o ol ol o e ol e A A

it ol ol A

e I i ol ol
ol T el ol T Ol e T e
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E-El . ! ! . ! . ! . ! ! .E,E I “ertical routing brack [WRT]

Figure 3: To npéBinua SNR oto VLSI [16]

>.to SneakySnake outé To eldog mivoxa unoloyiletan we e€nc. Metd v olox-
Apwon tou seeding otny Sadixacio eneepyaciog Tou YOVIBLWUATOS, To BEGOUEVA
dLoywpiCovton ot Lebyn axoloudny read-reference. To reads etvon ot axohouvdieg
TOL TEOXVUTTOUV oo TN unyavh ahAniolynong xau ol reference axohouvdieg eivan
TUARATO TOU TEOTUTIOU YOVIOLWUATOC TOU UToEL VoL amoTeAoUV xaholg utodrigproug
ToToug euduypduuone. To SneakySnake Asitoupyel wavixd dtav oL 500 axohoL-
Viec €youv To (B10 urrog, xadmg dLIPOoPES GTO PAXOC UTOPOVY Vil EQUNVEUTOUY (G
edits.

o Tnv xotaoxevy|) Tou neighborhood map, 1 oxohloudio read yetatoniCe-
Ton xou ouvyxplvetan ye tnv reference. O aprduodc petatonioswy elvon (cog ue 10
HATWOPAL OLopopy Tou 0p{lel 0 OYEDIOTAC TEOS TA APLOTERS Xl TEOS ToL OECLL.
‘Etot, av 1o xatodeh etvar E; o nivaxag Yo €yet 2¥E+1 opldvtieg yooupée (uio
ywelc petatémon, E yio apiotepy| petotonion xou E yio 8e€id). H obyxpton yivetan
oe eninedo vouxheoudwy Bdoewv (A, C, G, T) xa o nivaxac yepilet pe 0 dtav
ot axohoutiec toupldlouv xan pe 1 6tav dev tarpldlouv. To 1 amoterody Tor «ey-
modLoy. O tehxdg mivoxac woldlel €vtova pe tov avtiotoryo Tou SNR. O mivonag
éxet 800 moAY onpovtxée WwidtnTes: (o) xdle xeAl Tou umopel va UTOAOYLOTEL
UE TapdAANAO TEOTO! (ﬁ) OAeC oL 0ptlOVTIEC YRUUUES UTOPOUY Va ETEECEQYACTOUV
Ywelc e€aptroelc 0s00uEVLY.  AUTE TA YUEUXTNEIOTIXG ETUTEETOUVY EXTETOUEVO
mopahinioud oe FPGAs, GPUs xou axéun xou o noduvnuatixéc CPUs apyttex-
TOVIXEC.
Aol ohoxhpwlet o tivaxag Eextvd o x0plog alyopriuog, xatd Tov onolo EAEY Y oLUE
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Y10l GUVEYOUEVES GUUPBONOCELREC amo UNdeVixd. Aol Bpolue T TEpIOCOTERA GUVEY -
veva 0 oe pio ypouur tou mivaxor xon TEAd Bpolue évor eumddio (évar 1 dnhadn)
TOTE CTOUATIUE TPOOUETOOUE X0 TOOOTEQVIUE TO EUTODL0 Xou cuveylCouue amd
exclvo To ornuelo Tou Tivoxa TEAL Yoy vovTag TNV UEYUAVTEQRT, CUVEYOUEVT CUU-
Bohooepd amo 0. O alydprduog Tehelvel 1) 6Tay TACOLUE GTNV AN dxper Tou
mivoxa, To omolo ornuatvel 6Tl To Ceuydpl €xel Tov anupaltnTo dELiud CQAUAUETWY
1 Aiydtepo, 1) 6tav evionicoupe Eva TAYoC eunodiwy mou Lenepvd To 6plo, OToU
16T 0 ahyopriuoc tepuatilel anoppinttovtac to (EUYdolL BEBOUEVMV.

O ouyxexpevog ahyopriuog eyxudton 6TL 0eV amopplTTel ToTE AaviaoUEVA XATOLO
Ceuydpt. Aev umopel ouwe vo eyxuniel 6t dev Vo amodeytel Aavdoouéva xdmolo
Cebyoc Oedopévewy. Autd Yo odnyroel oe uio pixer) Ttwon tne axpifeloc g
QEYLTEXTOVIXTG MaC OTwe Vo avapepiel oTn cuveyeLa.

ceTacBeAGCTC .u\".'r 2 3 4 F & 7 & % 10 N o022 checkpa I.-'.. kpeinnt 3
vy e i = [ = = = ¥ [l [ [ = ] = = = =
| o o o o T T el T » ¥ . -
] "EE EEEEEE E E = .
m "EE R, EEE N - .
n I L 1 13 T f 5EE T u 0 . - n
| - R DL I [
. B, , EREE, EEnN » a .

EILS ), , A EEEEEEEENR () K N L 'n

Figure 4: O ahyéprduoc SneakySnake. (o) O mivaxag umoloyiletar ouyxpivovtag To petatonio-
uévo read ue to reference. (B) O olyoprduog Peioxel ta meplocbdtepa 0 P€ypt Vo GUVOVTHOEL
eunddlo xon emavahopPavel. (¢) Evtonileton Siobpopr| pe edits pixpdrepa # oo tou xato@iiou
(E=3), ondte 10 Lebyog mpoywped otnv evduypduuion [16].

AvVAALCT] BECOUEVWLV

Ané v avdhuom Ty dedouévey Ue Tr Borielo Tou Tapandve @iktoou TpoxiTTouY
Ol XUTOVOUEC CPUNIGTWY TEMTO YL TO TROCOUOWWUEVO KAl UETE YL TO TEAYUOTIXO
dataset.
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Figure 5: Kotavour| cpoipdteny npocopoimuevou dataset
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Figure 6: Koatavour| ogoludtev mpoyuatixol dataset

ANy opriupolr AvtioTolynong xau vAoroinon Toug oto FPGA

pe xenon HLS
Smith Waterman

O Smith Waterman efvar évoc ahyodprduoc duvauixo) Teoyeouuatiogod o onotog
EMLYELREL VoL avTIoTOLYHoEL BUO oxohoudie pe tn Porlelo evog mivoxa ouoldTnTaC.
Apa ot 800 gdoec. Tnv @don urtohoylouol Tou mivoxa xou Ty @don Traceback
. TNV TeWTN @doT Bdoel TNg Tapadte:y PanUATIXG OYECTS:

H[il[j] = max(
0,
H[i-1][j-1] + match_or_mismatch(P[i-1], T[j-1]1), // diagonal (match/
substitution)
H{i-11[j] - gap_penalty, // deletion
H[i][j-1] - gap_penalty // insertion

)

umohoytlovton to xehtd Tou mivaxo. Kdle xehl tou mivaxa €yel e€dptnomn and To
XEAL GTOL APLOTERY TOV, TO XEAl amd Tévew 1o To XEAL To omolo Bploxeta aploTERd
Téve omo oautd. Autéd emITEETEL 08 XAUE AVTIOLY (VIO Vol UTOREl var UTOAOYLOTEL
ToEEAANAAL, 0po Tor XEALS AUTHC OEV €youV UETOLY TOuC eURTHOELS.

Kotd tny mpodytn auth @dorn anodnxedeton ot 1 Thneo@opia yia To Tolo dploua
Tou max operation mou cuyfaivel oe xdie xehi EAofe uepoc. Autr Tn TAnpogopia
Yo AdBer o akyopwlog tou traceback yio vor avataoxeudoel TNV TEAMXT AvTIO-

Tolymon.

Mo tov ouyxexpiuévo alydprduo toylel 6TL av éva (edyog BEBOUEVMLY EYEL UEYEL
E o@dhpoto 16Te unopolue Vo TEQLOPICOUNE TOV TVaX L OUOLOTNTAS OTIC Dlarywviou
Tou Tivaxar Tou amEyouy E amd tnv xdpla dtoryovio. ‘ETol unopolue vo exUET-
OAELTOVUE TNV TANROYopla Yo To TANYOC TwV CPUAUATOY TNV onola Taipvouue
UECK TOU QIATEOL YLo YOI HELWOOUNE TOUS GUVORLXOUS TOPOUC TOU YEEWICETAL O
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Figure 8: Awxyoviwnoinon tou Smith Waterman

EMTAYLVTAC Uoc. AT 1 TopaAloyy| Tou alyoplduou ovoudletar Banded Smith
Waterman.
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Figure 9: Meiwon twv népwv Yyl yvwoto aprdud cQuhudTe:y

Hopanedtes pabveTon piot oY NUATIXY AVATAEAC TUOT) TNG URYLTEXTOVIXTS TOU UAOTIOLN-
cape 610 FPGA. Yty apyy| yivetan plo amoxmdixonoinom twy 600uévwy ot €vay
x0xho unyovhc yeow tou Unroll directive. Xtn cuveyein ye tn Porjdea tou
pipeline directive metuyaivoupe €va systolic array design wote va ToapahAniomnol-
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nUel 0 LTOAOYIOUOC TV AVTL-DLAYWVIWY. MTNV €xéva QAvovTol To processing
elemenets plac avti-dlorywviou ta omolo ypdpouy napdiinia oty BRAM. T va
yivelr autd TpETEL va yenolwoTotoouye To array partition directive wote vo ywel-
COUME TOV TVOXA OF OLUPOPETIXG XOUUATIO To OTtolal UTOPOLY VoL TROCTIEAUC TOUV
TauTOYEOVA. XTNV cuvéyela To traceback module dwdlel Tnv TAnpogopia amd
TOV TIVOXAL XL XOTAOXEVBLEL TNV TEAMXT avTIoTolyNoT. AUTO ETITUYYAVETOL UE TT)
Yerion Tou pipeline directive to omolo emixoAlnTEL TIC TEAELES TONC TEOCTEAAOTC
o€ Tivoxa xo TNV TEAEN AAPNS AMOPAGEWY YLoL TNV XATAOXELY| TG AVTLO TolyNome.
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Figure 10: Apyttextovixr) Banded Smith Waterman

GenASM

O GenASMeibvar évac ahyodpriuoc o omoloc ypnowonotel mpdlelc oe emninedo bit
amoUnxebovTag dloviopaTo avTi Yot o%0p, OTWS ot cuBaTixol ahyopLiuoL AVTLo-
Tolytong. Xenotdonolel UAoHES xot BLAYOOUATO XATAC TUOTS YL VO XWOIXOTOLACEL
TAnpogoplec Tic onoleg anodnxedel o Evay ueydro mivaxa tov omolov ula trace-
back duadixacio 1 onola dBdlovtac Tov anodnreupévo mivoxo xaToXELACEL TNV
el avtiotolynon. O mivoxag €yel 4 diaotdoelg, plo yeyedoug 4 (éva yio xdde
eldog mpdlng), plo yeyédoug 6oa tar o@dipata cuv 1, uio peyédouc 660 To unxog
Tou read xou pio yeyedoug oo to urxoc Tou reference. To xOplo xouudtt Tou
alyoplduou elvon pio emavaAnmtixy dour| 1 onola TEeyel avdmoda oto reference
sequence.Xe xdlde Brpo authc Tng emavdindng, vroloyilovtar véo daviouaTa
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Figure 11: Tlupdderypo tng xbptog dourg emavdindng tou GenASM

xotdo taong xou amodnxevoviar 4 uro-Soviopota (évar yio xdle npdén) otov mi-
vaxor Tou Yo yenoyornotioel To traceback . Ou npdéeic mou cuufatvouv ot xdle
emavahndm etvon xatd xOpo Aéyo mediec ohioUnone , hoywd KAI xar hoywd H,
onwe gaivetar xou oty exdva. ‘Otav o alydpriuoc Beel xdmoto didvuouo xatdo-
Taong pe to MSB va Bploxeton otny xatdotoon 0, 16t 0 alydpriuoc avapepel
oTL Berixe xdmota avtiotoryrong pe E o@dhauta , émou E o adlwv aprdudg tou
otavoouatog xatdotaonc. To traceback otn cuveyelo nopoxoroudel avtd to 0
oTa OLdpopal XEME TOU Ttivaol AmOVAXVESTC YIaL VO XUTAOXEVAOEL TNV TEAXT| LV TL-
ctolynon.

O ouyxexpéoc alydpriuoc hettoupyel e£0pLoU00 UE XATOLO XATWPAL GHUAUATLY.
Auto gatvetar xou oTny 6186 ToGT TOL Ttivoa Tou Yenowonoteltar oto Traceback. H
o Tou dtdoTaon etvor (on pe Tov apELiUd TRV CPUAIGTWY CLV 1 0TOTE AV YVWEl-
Coupe t0 oo opdhuato €yl Eva (euYdipl UTOPOUUE VoL TEPLORICOUNE TNV BLAGC Too
auToL Tou Tivaxa xepdilovTag Tdpouc.

Hopanedtes poadveTon piot oY NUATIXY AVATUEAC TUOT) TNE UPYLTEXTOVIXTIC TOU LAOTOL|UTXE
oto HLS.Xtnv apyr| mapdyovton o bitmasks mou etvon amapattnta yio Ty Siexmep-
alwon Tou ahyopituou. O utohoyloude Toug yiveton o€ Evay xUXAO ol BV UT-
deyouv e€apthoel ue TN Borjelo Tou unroll directive. Xtn cuvéyetoa ular ToEdhAnAN
ouoTotyfo amd pxed enelepyacTind TUfuata utohoyilel mapdhinio xdie xOxho
Tor emopeva davoouata xatdotaonc. Emedy) o unohoylouodg toug amoutel yvwon
X0 YLOL TOL TWEVE AAAG o Yior ToL BLaYOOUATA TOU TEoTYOUUEVOL BAUNTOC, Yenol-
womojinxe to pipeline directive wote vo emxohu@iel n avdyvwon Twy TaAwy
UE TNV Onuoupyia TV xavolplwy dlavuoudtwy. Erione yenowworouiinxe to un-
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Figure 12: Yynuotixy avoamopdotaon tng apyttextovxrc tou GenASM

roll directive yio Tov TautdYEOVO LUTOAOYIONG OAWY TwY UTO-Olavuoudtwy. [
vo emiteuyVel 1 mpoavagepieioa Topolhnla oy amopaltnTo vo yernotuorotniet
To array partition directive t6c0 otny SidoTaoN TWY CYAAUATWY , OGO XAl CTNV
OLdo oot Ty Tedlewy wote xdde PE vo urmopel vo ypdger xdde umo-oidvuouoa
mopdAinha.  Téhoc o traceback module dwof3dler Tov mivoar xan xotaoxsudlel
™V TEAXT avTioTolynon. Autd Yo vo yivel o Eval xOXAO avd amdQooT ETPETE
va. yenotuoroindel to pipeline directive kote vo emxohugiel ) Tmpoonehaon ooV
oo ue TNV AP TN amdpaorg.

ITgotewopevrn Apyrtextovixy

YNV exOva QUEVETAL 1) TROTEWVOUEVT] ORYITEXTOVIXTY), XATd TNV omolo €vor OET Oe-
OOMEVWVY apol @LATEuptoTEL xou xatnyoplonoindel olupwva pe o Thdoc Twv
GPUARETWY TOU OE AOYLOUXO, UETAPERETAL OTNV TAUXETA Ueow streaming FIFOs
Ol OTOLEC XUTAUAYOUV OE ETLTAYLVTES avTioTotyou peyedouc. Exel mpoyuatonotel-
ToL TOEAAANAS amtd xddE EETULTOUYUVTY| 1) AVTIO TOLYLON TV DEQOUEVWLY.

32



Software Side Hardware Side

Streaming
FIFOs
PL
DATASET Sneaky Ed ot E1 Bin —  #1E2 #2 E2 #3 E2
l #6E1 | #7E1 Aligner Aligner Aligner
| L[ Aligner Aligner
Rejected o
#_1 E1
#1E3  #2E3  #3E3 A
SneakySnake E2 ~Accepted> E2 Bin A|Ignel’ A|Ignel’ A|Ignel’ PE
{ Aligner
Rejected
#3 E1
Aligner
SneakySnake E3 -Accepted> E3 Bin #1 E4 #2 E4 1
L #4
| . H Aligner
Aligner Aligner
Rejected : . . .
#5 E1
Aligner
SneakySnake E4 -Accepted> E4 Bin

Figure 13: Ilpotewdpevn Apyttextovixt

ITewcopoatind AnoteAécpata

AwehydInoav 4 mepduota.  ‘Evo yo xdde ahyopruo oe xodévo and to 600
dataset. Agol mpwta 66UNKE N Yerion TépwV Tou xdle alyopiuou, ol cuvolixol
TOEOL TN TAUXETUC AL 1) XUTUVOUES CPUNUATOY TWV OEDOUEVWY GTO TEOYRUUUA
l600pOTNONG, TEOoEXLPAY oL dEYLTEXTOVIXEC Tou ulomouinxav oto HLS Ot cuy-
xploelc 600V aPopd TOV YPOVO EXTEAEONC YIVAVE UETOED TNG UEYITEXTOVIXHAC UAC
xal AOYLoUX00 Xal UETOED TNC AEYLTEXTOVIXHC HOC X0l ETULTAUYUVIOVY Ywelc va €yeL
mpo-urdpel grhtedploua. Emione yia to Aoylouxd undpyouv dlo exdooelc. H
TEMTY APoEd AoYLoUixd Tou el TapaucTeonoinlel Bdoet Tou pUATeapiouaTog XaL
T0 0eVTEPO Elval AoYlouxd Tou AettovpYel ywelc guhtpdpioua. Iupoxdte gotvov-
TOL CUYXEVTEWTIXA TOL ATOTEAECUATAL.

20yxplor ReETAEL Bacixol EMUTAYVUVTAH UE TYV TEOTELVOUEVT Ap-
YLTEXTOVIXN

Hapatnpolue onuavtixn emitdyuvorn oe oyéon pe 1o Pooixd Hardware.

20Y%plor RETAEY AOYLOULXOU XAl TROTEWOUEVYG AOYLTEXTOVIXNS

Hopatneolue onpovTiny eTITdyuVoT T660 PETAL) TNC AEYITEXTOVIXAC OIS XOL TOU
TOROUETROTIONUEVOL AOYIoUIX00 GAAS X UETOEY owTOU UE TO Baond AOYIoUIXO |
T0 omolo delyvel 6TL 1 €peuva elvon Tpog T cwo Ty xatedYuvon.
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Figure 16: X0yxpion apyltextonxfc Ue hoyiopixo yio Tov ahyoprduo GenASM

Y0vxplorn axpifeloag

O Banded Smith Waterman éyet xohOtepa amoteréopata and tov GenASM.
Auto ogeileton 670 Yeyovog 6Tt o GenASM amoppintel autdpata Ledyn Tou €youv
TOUEATEVE COAAUNTO oo TO XUTWPAL Tou, eve o Banded Smith Waterman eve
eyxudtan ot Yo Bpet avtioTolyton av to Ceuydol €yel GQAIALUTO AYOTEQO Ao TO
ueyevog Tou band dev amoxhieton va Spel avTio Tolylom UE TEPLOCOTERN GPAAUATA
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Chapter 1

Introduction

Genomics is the systematic study of the complete DNA content of living or-
ganisms. It reveals crucial information that can revolutionize biology, change
how we treat diseases and how we think about evolution. More specifically,
it enables precise diagnosis of patients, pathogen surveillance, and in the case
of plant organisms, even crop improvements. These applications depend on
the transformation of raw genomic data (reads) generated by sequencing plat-
forms into complete genomes. These genomes are then compared to a reference
genome and through processes like variant calling and epigenetics we can ex-
tract useful information about our subjects[6]. The procedure that lies in the
heart of this pipeline is the alignment step[1][2]. During the alignment billions
of reads are mapped to a reference genome in order to reconstruct a complete
DNA structure. Most aligners use a strategy called "seed and extend", in which
reads are fragmented into smaller pieces called seeds in an attempt to find ex-
act matches in the reference genome and narrow down the possible places the
starting read could be mapped to. In the extension step each seed is extended
into an approximate alignment allowing the existence of errors or edits.

Most modern aligners actualize the extension step through two distinct phases.
The Matrix Fill step and the traceback step. During Matrix Fill the algorithms
fill a similarity matrix between a read and a reference ,usually producing an
alignment score. The more similar the sequences are, the greater the score.
During Traceback information is used from the Matrix Fill step to identify the
position and the kind of all the edits and thus reconstructs the alignment path.
In the genomic pipeline, the extension process (both Matrix Fill and Traceback)
is a major performance bottleneck, because of the excessive time requirements
and computational intensity of the algorithms used. In this thesis the following
approaches are explored: i) optimizing the alignment and thus accelerating the
task , and ii) reducing the volume of alignment tasks by exploiting key features
of algorithms.

Hardware acceleration and optimization of algorithms: Hardware accelera-
tion is a broad term that encapsulates many solutions to accelerate a task with
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specified hardware. The alignment step has been developed numerous times in
devices such as GPUs, FPGAs and ASICs. Due to their bit-level customiza-
tion and re-configurability, FPGAs have emerged as very promising hardware
acceleration platforms for genomic pipelines and specifically to the alignment
step. If the algorithm allows it, they can vastly parallelize the Matrix Fill step
using systolic array structures, alleviating the computational bottleneck of this
step. Another way hardware acceleration is enabled is through heuristics. By
modifying some parts of an algorithm or by knowingly ignore some key data
dependencies, further parallelization can be achieved, not without the intro-
duction of a performance-accuracy tradeoff,which the hardware designer must
confront.

Algorithm exploitation and filtering: Another optional but rather important
step of a genomic pipeline is Filtering. After seeding, the potential pairs of
reads and reference sequences can be filtered so that pairs that are not as sim-
ilar as wanted, can be discarded early, so that no time and resources will be
wasted on their alignment. Several pre-filtering algorithms produce great re-
sults in reducing alignment time. SneakySnake is state-of-the-art pre-fitering
algorithm that achives great accuracy alignment result by using a very efficient
technique to discard dissimilar extensions. SneakySnake and such filters can
give great insights about the distribution of edits in a dataset and that can
be exploited in many algorithms. Algorithms like Banded-Smith-Waterman
thrive under conditions where the number of edits is known as a static band
can be used to find the optimal alignment reducing computational intensity of
the alignment step. These opportunities will be explored further in this thesis.
Often these acceleration methods are used on generic datasets and produce sub-
optimal solutions, as pre-filtering is a data-aware procedure and the more it is
customized to the dataset, the better results it can produce.

The main objective of this thesis is to investigate how pre-alignment filtering
affects hardware-based sequence alignment accelerators. Profiling of existing
aligners and datasets shows a heterogeneous distribution of edit distances, with
most alignments containing few edits. Such cases can be resolved with fewer
resources and operations than the baseline scenario typically assumed|3].

This work leverages edit-threshold-based pre-filters to optimize FPGA-based
alignment on two levels:

At the architectural level, by designing individual alignment units that are
resource- and performance-efficient for specific edit thresholds.

At the system level, by constructing a throughput-optimized multi-accelerator
architecture composed of aligners tuned to different edit thresholds.

The methodology begins with profiling simulated and real datasets using
state-of-the-art aligners to analyze edit distributions. Based on these insights,
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algorithms capable of exploiting edit thresholds to reduce computational and
spatial demands are selected and implemented using High-Level Synthesis (HLS).
Multiple accelerator variants are synthesized for different thresholds, forming a
pool of designs with varying latency and resource footprints.

Finally, a high-throughput multi-accelerator system is assembled, where each
accelerator processes reads matching its threshold range. A balancing script,
informed by synthesis reports and dataset statistics, determines the optimal
combination and number of accelerators to minimize total alignment latency
within available FPGA resources.

The structure of the rest of this thesis is as follows. In Chapter 2 a genomic
pipeline review is presented along with an explanation of the aligners used as
long as an explanation for SneakySnake. Also, there will be a brief review
of the tools used. In Chapter 3 the methodology that was followed will be
explained, as well the designs of the hardware kernels will be explained as well
the overall architecture that was achieved within the platform. In Chapter 4
the results will be shown with comprehensive graphs and finally in Chapter 5
some thoughts for future work will be mentioned.
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Chapter 2

Theoretical Background

2.1 Genomics and the genomics pipeline

Genomics is the study of the complete DNA content of an organism, encom-
passing not only the sequence of nucleotides but also how that sequence varies
across cells, individuals, populations, and time. Because genomes encode the
instructions for cellular function and inheritance, genomics underpins modern
biology and medicine: it reveals the genetic basis of rare and common diseases,
tracks pathogen evolution and outbreaks, informs cancer diagnosis and therapy,
guides breeding and conservation in agriculture and ecology, and enables basic
discoveries about gene regulation, development, and evolution. The field has
been transformed by high-throughput sequencing, turning DNA into a digital
substrate that can be measured at scale and analyzed computationally[4][5][6].
A typical genomics pipeline begins with sequencing, where DNA molecules are
fragmented, prepared into libraries, and read by an instrument that produces
millions to billions of signal traces. Short-read platforms (e.g., sequencing-by-
synthesis) yield highly accurate reads of 75-300 bp, while long-read platforms
(e.g., nanopore and single-molecule real-time sequencing) produce kilobase-to-
megabase reads that resolve repeats and structural variation at the cost of
higher raw error rates. Experimental design choices here—coverage depth,
read length, and paired-end vs single-end—determine downstream power and
biases|[7].
Basecalling converts the instrument’s raw signals into nucleotide sequences with
per-base quality scores. To be more percise during basecalling the signals from
the sequencing machines are translated into the following nucleotide bases: A
for Adenine, T for Thymine, C for Cytosine and G for Guanine. In short-
read systems this maps fluorescence intensity patterns to bases; in nanopore
systems it maps ionic current traces to bases, typically using deep neural net-
works. Basecalling accuracy and calibration of Phred quality scores directly
affect downstream sensitivity and false discovery, so pipelines often retain both
sequences (FASTQ) and qualities for later filtering and modeling[7].
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Figure 2.1: Typical Genomics Pipeline for DNA analysis [7]

Seeding identifies candidate genomic locations for each read efficiently by match-
ing short substrings. Common strategies include fixed-length k-mers, spaced
seeds that tolerate mismatches, minimizers and syncmers that subsample rep-
resentative k-mers to reduce redundancy, and index-based methods using FM-
index/BW'T or hash tables over the reference. Effective seeding balances sen-
sitivity (not missing true loci) against speed and memory, and often generates
multiple candidate hits per read for later pruning[8][9][10].

Filtering narrows candidates before expensive alignment. Typical filters remove
low-quality reads, adapter or low-complexity sequences, and exact or near-exact
duplicates; they prune seed hits by distance constraints, chaining heuristics
across colinear seeds, or quick Hamming/edit-distance screens. Lightweight es-
timators (e.g., Jaccard similarity from sketches) and mapping-quality models
are used to discard unlikely mappings early, protecting throughput while pre-
serving sensitivity[11][12]].

Alignment refines the mapping at nucleotide resolution by computing an op-
timal or near-optimal match between each read and its candidate reference
region under a scoring model for matches, mismatches, and gaps. Dynamic-
programming algorithms such as Smith—Waterman (local) or Needleman—Wunsch
(global) provide exact solutions; banded, affine-gap, and wavefront formulations
accelerate computation; seed-and-extend frameworks restrict DP to neighbor-
hoods suggested by seeding. Choice of alignment mode (local vs end-to-end),
gap penalties, and bandwidth influences indel detection, handling of soft clip-
ping, and performance on repetitive or error-prone regions[10].

Variant calling infers differences between the sample and a reference genome
by aggregating aligned evidence across reads. Germline callers model diploid
(or polyploid) genotypes and output SNPs and small indels with genotype
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likelihoods and quality metrics; somatic callers compare tumor-normal pairs
or tumor-only data to identify subclonal variants amid copy-number changes;
long-read callers additionally resolve larger indels and structural variants (SVs)
such as inversions, translocations, and copy-number changes. Modern callers
integrate base qualities, mapping qualities, read orientation and pairing, local
assembly around candidate sites, and machine-learned calibration. Post-calling
steps include joint genotyping across cohorts, phasing to reconstruct haplo-
types, annotation against gene and population databases, and filtering strate-
gies that control false discovery while retaining true positives in challenging
regions|13][14].

Across all stages, rigorous quality control and reproducibility are essential.
Pipelines typically track run metrics (yield, quality score distributions, cov-
erage, duplication, insert size), use reference standards for benchmarking, and
encode processing steps in workflow systems to ensure portability, versioning,
and provenance. Choices at each step propagate to downstream accuracy and
computational cost, so well-designed pipelines make explicit trade-offs among
sensitivity, precision, runtime, and memory in light of the biological question
and the sequencing technology[17].

In this particular thesis the main focus are the filtering and alignment steps.
In the following sections these two steps will be explained in great detail along
with the actual algorithms that were used in this work|[18][19].

2.2 Filtering

2.2.1 General

In a seed-and-extend mapper, filtering is the triage step between seeding and full
dynamic-programming alignment. Its job is to discard candidate read-reference
loci that cannot possibly be within a user-specified edit-distance (or scoring)
threshold, so that only a small fraction of hard cases reach the expensive
aligner. Classical pre-filters rely on combinatorial or sketching arguments: g-
gram counting guarantees that two strings within k edits must share at least
a certain number of k-mers, enabling quick rejection when the shared count
is too low; this idea underlies many early filters and remains a baseline for
sensitivity—speed trade-offs. Advantages include simplicity and determinism;
disadvantages are memory for large q and reduced power on indel-rich reads
because indels disrupt many consecutive g-grams[20][21]. More modern fil-
ters use bit-parallel encodings and SIMD to approximate edit distance quickly.
Shifted Hamming Distance (SHD) slides multiple bit-masks to tolerate up to k
edits and rejects pairs that provably exceed k; it is fast and comprehensive for
short reads but can pass more false positives as divergence grows, leaving extra
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work for the aligner[22].

Hardware-centric designs such as GateKeeper move this screening onto FP-
GAs (and recently GPUs), achieving very high throughput with low latency;
they excel when the seeding stage yields many candidates, but require device-
specific implementations and careful batching to hide 1/0O[23].

Other ecosystem filters operate earlier on seeds themselves, e.g., GRIM-Filter
prunes seed locations using bloom-like region summaries to cut down extension
load, and BLEND tolerates near-exact seed matches in one hash lookup, im-
proving sensitivity at similar compute cost; both reduce the number of loci
that even reach pre-alignment filtering, though their effectiveness depends on
the seeding scheme and reference indexing strategy|24][24].

SneakySnake is a pre-alignment filter that recasts approximate string match-
ing as a shortest-path problem on a “neighborhood map” grid, equivalent to
single-net routing in VLSI [15]. It seeks a monotone path from the origin to the
opposite corner whose cost does not exceed the edit threshold; if no such path
exists, the pair is safely rejected without running dynamic programming. This
formulation yields several practical advantages: first, accuracy—SneakySnake
reduces false accepts by up to orders of magnitude versus prior filters like SHD,
Shouji, and GateKeeper at the same thresholds, which directly lowers wasted
aligner work and improves end-to-end throughput; second, universality and
portability—the same algorithm maps well to CPUs, GPUs, and FPGAs with
similar core logic, making it straightforward to integrate into heterogeneous
pipelines; third, scalability—the grid walk inspects only a thin band around
the main diagonal proportional to the edit budget, so runtime and memory
scale with k rather than read length, benefiting both short and long reads; and
fourth, non-intrusiveness—because it is a filter rather than a substitute aligner,
you retain the full scoring models and features of downstream aligners. Re-
ported accelerations include double- to triple-digit speedups for popular libraries
(e.g., Edlib) and substantial reductions in total mapping time, with accompa-
nying Snake-on-Chip and Snake-on-GPU implementations demonstrating high
throughput on real datasets. The main trade-offs are that, like all threshold-
based filters, sensitivity depends on a correct or conservative edit budget, and
extremely noisy reads may still pass to alignment more often[25][23][8][26][27].

2.2.2 SneakySnake

As mentioned the SneakySnake [15] filtering algorithm draws inspiration from
the SNR routing problem in VLSI chips. The SNR problem is solved by using a
neighborhood map and trying to reach from the beginning to the end encounter-
ing as few obstacles as possible as shown in Figure 2.2. In SneakySnake this kind
of matrix is calculated in the following manner. After the seeding step of the
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Figure 2.2: SNR problem in VLSI [16]

pipeline is complete the data is seperated into pairs of read-reference sequences.
The reads are the sequences that ultimately came out of the sequencing ma-
chine and the reference sequences are parts of the reference genome that may
be a good candidate spot for alignment. SneakySnake works well when the two
sequences have the same length, as differences in the length of the sequences
could be interpreted as edits.

To construct the neighborhood map, the read sequence is shifted and compared
to the reference sequence. The number of shifts is equal to the edit threshold
given by the designer to the left and to the right. So, if the edit threshold is E,
the matrix will have 2*E+1 horizontal lines (one for no shifting , E for left-shift
and E for right-shift). The comparison is being done, comparing nucleotide
bases (A,C,G,T) and filling the matrix with a 0 where the sequences match and
with an 1 where the sequences do not match. The ones are the obstacles in this
case. So, the final matrix looks a lot like the SNR equivalent. This matrix has
two very important aspects. First, every cell of it can be computed in parallel.
Second, all horizontal lines of the matrix can be processed without any data
dependencies. These two feature enable great parallelization in various plat-
forms, like FPGAs, GPUs and even multi-threaded CPUs.

After the matrix is complete, the SneakySnake algorithm starts by counting
zeroes (matches) simultaneously in all lines of the matrix,trying to find the
longest segment of Os before reaching an obstacle (an 1). Then it stops, skips
the obstacle and repeats this process until either of two things happen:

o The algorithm found obstacles greater than the edit threshold: The pair
is too dissimilar and is discarded never reaching to the alignment step

e The algorithm reaches the end of the matrix: The algorithm found equal
or less obstacles than the edit threshold, so the pair is similar enough to
reach the alignment step

45



=
@0
=

—

—

| Z GGTG_CTEIQ_AGCTC

| R B armrerere. s BRI &8
m " EEEEEE,E - .
R o M I e o I A A e e 3 N . .
" o EEEEEEN ] L -
| - EEE, EEE,E = | om
m B EEEE EEE ® . '|

EILS EEEEEEEEEER ., B ' m |

Figure 2.3: The SneakySnake algorithm. In a) the matrix is calculated by comparing the shifted
read to the reference. In b) the algorithm finds the most zeroes until it finds an obstacle and
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edit threshold (E=3) so the pair will reach the alignment step [16]

This procedure is shown in Figure 2.3
The SneakySnake algorithm guarantees the following two qualities:

e The SneakySnake algorithm is guaranteed to find a signal net that inter-
connects the source terminal and the destination terminal when one exists.

« When a signal net exists between the source terminal and the destination
terminal, using the SneakySnake algorithm, a signal from the source ter-
minal reaches the destination terminal with the minimum possible latency

This means that SneakySnakes never overestimates the edits between two
sequences. This is a highly important feature as no other filtering algorithm
can ensure that it will not have false rejections. Despite that, as it is common
in pre-filtering, SneakySnake occasionally underestimates the number of edits
between two sequences, but even then it is extremely better than other filters.
This typically does not raise an issue as the only downside of false accepted
pairs is that an alignment will be attempted at slightly more pairs than needed,
which overall does not impact greatly the speedup it offers to the pipeline. As
it will be explained in Chapter 3 this raises a problem in the workflow of the
current thesis and will introduce an accuracy loss on the complete system that
needs to be addressed.

2.3 Alignment

Alignment is the step that turns a set of sequenced reads into precise hypothe-
ses about where those reads came from in a reference genome and how they
differ from it. Formally, alignment finds, for each read, one or more reference
loci and an edit script—matches, mismatches, insertions, and deletions—that
maximizes a scoring function under biological constraints. Conceptually there
are three classical modes. Global (Needleman—Wunsch) alignment forces both
sequences to align end-to-end, which is appropriate for assembled contigs or
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amplicons. Local (Smith—-Waterman) alignment finds the highest-scoring sub-
sequence match and is robust to adapters, chimeras, and partial matches. Semi-
global (end-to-end read, local reference) is common in mapping, penalizing in-
ternal gaps but tolerating clipping at read ends to handle residual adapters
and variable insert sizes. Most modern mappers embed local or semi-global
alignment inside a larger “seed-and-extend” framework|28][29][30][31].

The scoring model encodes biological plausibility. Matches receive positive
scores, mismatches and gaps receive penalties. Affine-gap costs are nearly uni-
versal: opening a gap carries a larger penalty than extending it, reflecting the
fact that single multi-base indels are more likely than many tiny ones. Some
aligners modulate mismatch penalties with base quality scores and known vari-
able sites; others incorporate context-dependent gap costs to better handle
homopolymers. The dynamic-programming (DP) matrix that computes the op-
timal score has quadratic worst-case time, so practical mappers restrict where
they fill it. Common accelerations include banded DP around the main di-
agonal, X-drop or Z-drop termination that abandons unpromising extensions,
bit-parallel algorithms, SIMD-vectorized kernels, and the wavefront algorithm
(WFA) whose cost scales with the edit distance rather than read length. The
output is typically emitted in SAM/BAM/CRAM with a CIGAR string describ-
ing the edit script, alignment score tags, mapping quality (MAPQ), and flags
that distinguish primary, secondary, and supplementary alignments[1][32][33][29][34].

Because genomes are large and repetitive, alignment begins with index-
ing and seeding to narrow candidates. FM-index/BWT based mappers (e.g.,
BWA-MEM, Bowtie2) search the reference implicitly and are very memory-
efficient; hash-based and minimizer-based mappers (e.g., minimap2) sample
representative k-mers and chain co-linear seeds into long anchors before DP.
For RNA-seq, “spliced” aligners add an intron model that permits long dele-
tions consistent with splice junctions and can leverage annotations to improve
sensitivity[35][28][36][37].

Short-read mainstays include BWA-MEM and Bowtie2. Their strengths are
mature indexing, good speed—accuracy balance, careful MAPQ models, and
broad ecosystem support. Weaknesses include difficulties in highly diverged
regions, long tandem repeats, and complex structural variation; they also rely
on heuristics that can occasionally mis-prioritize among many near-identical
loci. SNAP and STAR (for RNA-seq) emphasize high throughput, with STAR
excelling at splice junction detection in exchange for substantial memory. For
long-read data, minimap2 is the de facto standard across DNA and RNA. It
is fast, versatile, and robust to high error rates, with strong chaining that
reduces DP work and good SV /split-read handling; trade-offs include heuristic
tuning across modes and occasional under-penalization of certain gap patterns,
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which can affect precise indel placement in low-complexity regions. Specialized
long-read aligners such as NGMLR, GraphMap, LRA, and Winnowmap target
structurally complex or highly repetitive genomes; they often improve alignment
contiguity and SV breakpoint placement but can be slower or more memory-

hungry and may require careful parameterization for different read accuracies
(raw nanopore vs PacBio HiF1)[28][35][38][39][40].

At the core, many tools reuse or expose optimized DP engines. Libraries
like ksw2 (used by BWA-MEM /minimap2), Edlib, and WFA provide SIMD
or wavefront primitives for global, local, and semi-global alignment with affine
gaps. Their strengths are speed and exactness within the restricted band or
error budget; their limitations are inherited from the surrounding heuristics: if
seeding or chaining misses the right locus, no downstream DP can fix the map-
ping. Hardware acceleration (GPU/FPGA) increasingly offloads extension DP,
traceback, or pre-alignment filtering to achieve order-of-magnitude through-
put gains, but integration must account for I/O and batching to avoid new
bottlenecks[35][32][26][41].

Two practical issues dominate downstream correctness. First, multi-mapping
and ambiguity: in repetitive regions, multiple loci produce near-identical scores.
Aligners report one “primary” location and may emit “secondary” or “supple-
mentary” alignments for alternatives and split mappings. The MAPQ field
tries to summarize uniqueness but is model-dependent; analyses should avoid
over-interpreting high MAPQ in repeats and should retain secondary/supple-
mentary records for SV and fusion discovery. Second, scoring and clipping
choices shape variant representation. Aggressive soft-clipping can hide real
indels at read ends; overly narrow DP bands can misplace indels; affine pa-
rameters that penalize gap opens too strongly can fragment true long indels
into runs of mismatches. Best practice is to keep base qualities, tune presets
to the read technology, and validate with truth sets; for variant calling, many
pipelines realign locally around candidate sites or perform graph-based assem-

bly to mitigate alignment artifacts.

In summary, alignment is an optimization problem wrapped in engineering
compromises: indexes and seeds find plausible loci, chaining and filters cut the
search, and a DP kernel produces base-level edits under a biologically moti-
vated score. Short-read aligners deliver speed and small-variant precision at
scale but struggle in repeats and with long indels; long-read aligners span re-
peats and resolve structural variation with modest trade-offs in runtime and,
for noisier reads, per-base accuracy. Understanding these strengths and weak-
nesses—and how parameters, heuristics, and reporting fields interact—Ilets you
design pipelines that are both computationally efficient and faithful to the bi-
ology you aim to infer.
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In this thesis three aligners will be examined:
« Smith-Waterman: the classic DP algorithm used in a banded approach[42]
o GenASM: an efficient algorithm based on BITAP ][43]

« WFA: a newer, ambitious algorithm with cost that scales to edit distance
rather than read length|[32][44]

2.3.1 Smith-Waterman
2.3.1.1 Base Algorithm

The Smith—Waterman algorithm [45][42]performs local sequence alignment; that
is, for determining similar regions between two strings of nucleic acid sequences
or protein sequences. Instead of looking at the entire sequence, the Smith—Waterman
algorithm compares segments of all possible lengths and optimizes the similarity
measure.

As many aligners have in common, Smith-Waterman has a matrix fill and a
traceback step. During matrix fill, a similarity matrix H is computed which has
(n+1)x(m+1) dimensions , where n is the length of the reference sequence and
m is the length of the read sequence. Before the computation of the similarity
matrix a similarity score must be assigned which entails how much the algo-
rithm rewards a match between the two sequences, and how much it penalizes
mismatches and gaps. These constants often occur from biological constraints
of the organism that is studied. The algorithm is as follows:

e Let A = ag,aq,as,...,a,be the reference sequence and B = by, by, bs, ...b,
the read sequence

e Initialize the first row and first column of the matrix with zeroes
o Fill the rest of the matrix with the following formula:

Hi 11+ s(ai, by),
manz1{Hi—k,j - Wk};
max;>1{H; j—1 — Wi},
0

H;; = max (1<i<n,1<j53<m) (21)

where,

— Wj is the penalty score of gap of length k

— s(a,b) the similarity score (positive for match, negative for mismatch)
— H; — k,j - W}, is the score if a; is at the end of a gap with length k
— H;, 7 — 1 - W, is the score if b; is at the end of a gap with length 1
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Figure 2.4: Smith-Waterman Algorithm [46]

— 0 means there is no similarity between a; and b;

o At the same time as the computation of the matrix, information is also
stored about the branch of the equation (2.1) that was used to get to the
number in each cell of the matrix. This way a traceback algorithm starting
at the highest scoring cell can find an alignment path tracing back to the
first cell it finds with score 0. An example of the matrix fill and traceback
steps are shown in Figure 2.4. A diagonal arrow means that a match or
a substitution error exists in that place. An upwards arrow means that a
gap in the reference sequence is inserted (an insertion error) and a sideways
arrow means that a gap in the read sequence is inserted (a deletion error).

The Smith-Waterman algorithm has square spatial and time complexity as it
needs to compute n*m values and it needs to store them all for traceback.
These two points make it a very resource and time consuming DP algorithm.
In Chapter 3 it will be discussed how it can be parallelized and optimized via
the use of systolic arrays and diagonalization.

2.3.1.2 Banded Smith-Waterman

As explained in (insert reference), it is true that if a pair of sequences has E
edits, the max-score in the Smith-Waterman similarity matrix will be within the
2*E+1 diagonals with the main diagonal of the matrix as the center diagonal
of these. That means that for a given edit threshold Smith-Waterman can be
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Figure 2.5: Standard vs Banded Smith Waterman [47]

reduced to a specific band within the matrix and eliminate the need for storing
and searching the entire score matrix. As shown in Figure 2.5, for E = 1,
only the main diagonal and one diagonal on each side must be computed to
find an alignment for the two sequences. It needs to be mentioned that for
traceback to be executed, the algorithm needs one additional diagonal on each
side because it also checks neighboring cells forming a "halo" around the yellow
area in Figure 2.6. As an example as it will be explained in Chapter 3, for two
sequences which are 100 nucleotide bases long, the matrix would have 10000
cells to be computed and stored for traceback. With Banded Smith-Waterman
for few edits (eg. E = 3), only (2*3+3)*199 = 1791 cells must be computed
and store which is less than 20% of what the standard algorithm needed (The
number 199 is the number of diagonals of the score matrix for sequences of
length 100).

This observation makes the Banded Smith-Waterman a very efficient alignment
algorithm and with the systolic array optimization it can be a great aligner for
platforms like FPGAs, as it will be detailed later in this thesis.

2.3.2 GenASM

GenASM [43]is a co-designed algorithm—hardware framework that accelerates
approximate string matching (ASM)—the main bottleneck in read mapping
and several downstream genomics tasks. Instead of quadratic-time dynamic
programming, GenASM builds on a reworked, bit-vector form of the Bitap
algorithm, chosen for its simple, word-parallel bitwise operations. The authors
remove loop-carried dependencies to expose intra-alignment parallelism, extend
Bitap to handle long as well as short reads, and introduce the first Bitap-
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compatible traceback method, enabling full alignments (not just distances).

The hardware consists of two tightly integrated units: GenASM-DC for dis-
tance computation using parallel, on-chip bit-vector updates (match/ins/del/-
sub) and GenASM-TB for high-throughput traceback. By matching compute
with on-chip SRAM bandwidth and capacity in a systolic-style architecture,
performance scales linearly with the number of compute units while keeping
power and area low.

Across three use cases—read alignment, pre-alignment filtering, and edit-
distance computation—GenASM consistently outperforms state-of-the-art soft-
ware and prior accelerators, often by large margins (e.g., >100x speedups vs.
leading software on both long and short reads, multi-x gains over FPGA /A-
SIC baselines), while substantially reducing power. Beyond these evaluated
settings, the same engine is applicable to other genome analysis tasks (e.g.,
WGA/MSA) and even general text processing. In sum, GenASM demonstrates
that a Bitap-based, memory-balanced accelerator can deliver high throughput,
low power, and flexibility for modern sequencing workloads.

2.3.2.1 BITAP Algorithm

Given a text (reference) T and a pattern (read) P of length m, Bitap scans T
to find all end positions where some substring of T matches P with at most k
edits (Levenshtein distance). When k=0, it finds exact matches. The algorithm
works by turning P into bitmasks and then updating a small set of status bit-
vectors with only bitwise ops and shifts as it sweeps through T.

To create the bitmasks, the Bitap algorithm preprocess P once to build four
masks PM[a] (length m bits) for every alphabet symbol a from A ,C,G,T. By
convention, 0 means “match” in Bitap, so PM[a|[i]=0 iff P[ij==a; otherwise
it is 1. These masks let the algorithm compare the next text character to all
pattern positions in parallel using simple bitwise operators.

The algorithm maintains m-bit status bit-vectors R[d] one for each number
of edits. Intuitively, at text index i, the j-th bit of R[d] summarizes whether
the suffix of P starting at position j can match the text suffix starting at i with
at most d edits—again where again 0 is a match. All R[d] are initialized with
all-ones.

After the pre-process and initialization steps the main algorithm begins. The
main loop of the algorithm traverses the Text sequence (reference), so for each
text character c="T1i|:

o It retrieves its precomputed mask curPM = PM|c].

o It updates R[0] (exact matching) by shifting left one bit (consume one
pattern char) and doing an OR operation with curPM.
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o For each d=1..k, it forms intermediate bit-vectors that capture the ways
we could incur up to d edits at this text step, then combines them:

— Deletion (D): consume a pattern character without consuming text

(delete in pattern).

— Insertion (I): consume a text character without consuming pattern

(insert in pattern).

— Substitution (S): consume both but allow a mismatch.

— Match (M): consume both only where curPM indicates equality.

All four are expressed with left shifts and AND/ORs on the previous iter-

ation’s R[] (and curPM). The combined result is the new R[d]. This is
the key to Bitap’s speed: we update m positions at once with a handful of

word-level operations.

Then after the main loop is finished Bitap checks the most significant bit (MSB)
of each R[d]: if it is O for any d less than or equal to k, then the pattern matches
a text substring ending at position i with edit distance d. Finally it records the

position and the minimal d. An example is presented as follows:

e A, e
PREPROCESSING -:,ﬂ} Text[4]: A {1} Text[3]: GA i,2.,'—
Text Region: (e T Tt e oot
Pattern Bitmasks: suldﬂ.a = 1111 coldR@ = 111&5
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Alignment Found @ Locations=2

Alignment Found @ Location=1

The Bitap algorithm is very hardware-friendly.
shifts, ANDs, and ORs over compact bit-vectors, it has no branches and regular
memory accesses so it maps well to SIMD/SIMT and systolic hardware. The
GenASM algorithm builds on this, but the baseline Bitap already illustrates
why bit-parallel ASM has such high throughput potential.

The reasons the authors saw the need to evolve Bitap into GenASM, are these

5 pitfalls:
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Figure 2.6: Example of Bitap Algorithm [48]
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o No support for long reads. Bit-vectors R have length equal to the read
length. So for larger reads with potential higher edit thresholds, the storage
requirements are utilizing more and more of a platforms resources.

o Data Dependency between Iterations. The computed bitvectors of each
iteration depend on the bitvectors in the previous iteration.

» No Traceback support. There is no stored information that could produce
a CIGAR string through a traceback process.

o Limited Parallelism. There is a computational bottleneck on compute units
on modern CPUs that even after alleviating the data dependencies could
prove fatal for parallelization.

o Limited Memory Bandwidth. The above problem is maybe solved by mov-
ing to GPUs , but GPUs have problems with memory bandwidth (the
bitvectors need big memory bandwidth to be computed in parallel).

So GenASM is an attempt to evolve Bitap by solving all of the aforementioned
problems.

2.3.2.2 GenASM-DC

The GenASM algorithm is split into to distinct steps. GenASM-DC (distance
calculation) which is the evolution of Bitap by solving many of eaach problems
and by providing the appropriate data to perform traceback. GenASM-TB
(traceback) uses the data stored by GenASM-DC to create a CIGAR string
(the alignment of the pair of sequences).

The modifications of Bitap that produce GenASM-DC are the following:

o Long Read Support. GenASM can store long reads over multiple words,
further improving on Bitap, by introducing a computational overhead for
operations like shifting. In this thesis only short reads are used, so this
optimization will not be addressed.

e Loop Dependency Removal. GenASM is a co-designed algorithm. The
main algorithm resides on a PL part of some platform to utilize its par-
allelization capabilities. To remove the loop dependencies, GenASM per-
forms loop unrolling, enabling computations of independent bit-vectors in
parallel. This will be shown later in Chapter 3 where the hardware-designs
of this thesis will be explained.

o Text-level Parallelism. This is done by overlapping windows of the text
sequence and compute those in parallel. This is advised for longer reads
so it will not be addressed in this thesis.
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o Traceback Support. In Bitap four vectors (insertion, deletion, substitu-
tion, match) were computed to then be saved as an single AND’ed version
in R[d]. These vectors contain useful information that can be used fro
traceback. So in the GenASM algorithm, instead of of saving only the
R[d] vectors, all four vectors are saved in a large array.

2.3.2.3 GenASM-TB

After GenASM-DC has scanned a text window and found a match position
and its edit distance d, GenASM-TB reconstructs the alignment path—i.e.,
the sequence of matches (M), substitutions (S), insertions (I), and deletions
(D)—and emits a CIGAR string. The key idea is to reuse the intermediate
bit-vectors (for M/S/1/D) that GenASM-DC produced at every text step and
error level. A zero bit indicates that the corresponding operation is feasible at
that position and error budget.

Traceback begins at the most significant bit (MSB) where a zero in some
R[d] indicates a successful alignment end (length m with d errors) and proceeds
“backwards” toward the least significant bit (LSB), effectively undoing the bit-
wise updates performed during the forward pass. At each step, GenASM-TB
examines the stored per-step bit-vectors in this priority: (i) extend an ongoing
insertion or deletion if possible (to coalesce runs into one CIGAR op), else (ii)
take a match if available, else (iii) take a substitution, else (iv) open a new in-
sertion, else (v) open a new deletion. Based on the chosen operation, it updates
three indices:

o patternl (pattern position / bit being traced),
o textl (text position within the current window),
o curError (remaining error budget).

Transitions follow the usual Levenshtein semantics:

e M (match): consume both pattern and text; errors unchanged (z,y, z) —
(x—1,y+1,2)

S (substitution): consume both; errors decrease (z,y,2) = (x—1,y+1, 2 —

1)

I (insertion in pattern): consume pattern only; errors decrease (x,y, z) —
(JZ - 17 Y,z — 1)

e D (deletion from pattern): consume text only; errors decrease (x,y,2) —
(x,y+1,2—1)
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In general, GenASM aligns in windows of size W with overlap O,that is
why TB runs per window: it initializes indices, walks until (W—O) characters
are consumed (to keep overlap for the next window), emits the local CIGAR
(merging consecutive identical ops), advances the window anchors, and re-
peats. Unlike GenASM-DC’s regular, bit-parallel loop, TB’s control flow is
data-dependent (it follows chains of zeros across the saved bit-vectors), but it
remains lightweight because it touches only the compact bit-state already pro-
duced during DC. The windowed heuristic is not used in this thesis as only short
reads are used and the computational overhead does not give enough storage
benefits to consider it.

2.3.3 WFA

Pairwise alignment is a foundational primitive in computational genomics, un-
derpinning read mapping, variant calling, de novo assembly, and multiple se-
quence alignment, among other pipelines. Classical dynamic-programming
(DP) approaches such as Needleman—Wunsch for gap-linear penalties and Smith
Waterman for gap-affine penalties guarantee optimality but incur quadratic
time and space in the sequence lengths. This quadratic cost rapidly becomes
the bottleneck as modern sequencing produces both enormous volumes of reads
and, with third-generation technologies like PacBio and Oxford Nanopore Tech-
nologies (ONT), read lengths often exceeding tens of kilobases. Over the years,
an extensive body of work has squeezed significant constant-factor speedups
from DP through vectorization techniques, clever data layouts, banded com-
putations, integer saturation, and cut-offs, and through highly tuned libraries
such as SSW, SeqAn, KSW2, and GABA. Yet, despite these advances, the core
O(nm) dependence remains, vectorization tends to be architecture-specific, and
heuristics can forgo optimality. A key observation is that classical DP evaluates
essentially the same number of cells regardless of how similar the two sequences
are, leaving potential performance gains on the table when the true optimal
alignment deviates only modestly from the main diagonal.

The Wavefront Alignment algorithm (WFA) [32][44]rethinks this landscape
by replacing cell-by-cell DP with a score-by-score exploration that explicitly
exploits sequence similarity. WFA targets the common gap-affine scoring model
with penalties p = a, x, o, e for matches, mismatches, gap-open, and gap-
extend. Critically, it sets the match score to zero (a = 0) and formulates the
computation in terms of wavefronts—sets of “furthest-reaching” points along
each DP diagonal for a given alignment score s. Intuitively, rather than filling
a two-dimensional matrix, WFA advances a one-dimensional front of candidate
offsets across diagonals, increasing the score in small steps and extending along
exact matches whenever possible. This design leads to a time complexity O(n*s)
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Figure 2.7: Data Dependencies in WFA. A) When computing DP cells. B) When computing
wavefronts [32]

for sequences of length n with optimal alignment score s, yielding dramatic
improvements when the error rate is moderate and s is much smaller than n.

At the heart of WFA are the notions of diagonals and furthest-reaching (f.r.)
points. For strings q and t with indices v and h, diagonal k is defined by k=h
v. For each score s and diagonal k, WFA maintains the largest offset reached on
that diagonal under score s for each of the three SWG states: match/mismatch
(M), insertion (I), and deletion (D). These offsets, encode how far the algorithm
has progressed along each diagonal without storing the full DP scores. The al-
gorithm begins with a trivial wavefront at score s = 0 on the main diagonal and
iteratively constructs higher-score wavefronts by considering the only events
that can increase the score under gap-affine penalties: a mismatch, opening a
gap, or extending a gap. For a given s, the new offsets are computed from pre-
viously built wavefronts at scores s x,s o e, and s e through simple max-plus
recurrences that select, for each diagonal, the predecessor state that yields the
furthest reach. After these transitions, WFA performs an aggressive “extend”
step that consumes all consecutive matches along each diagonal in constant-time
word-level batches, thanks to bit-parallel comparisons over packed characters.
This extend step is central: because matches do not increase the score, the
front can surge forward cheaply across long identical stretches, compressing
what would be many DP cell visits into one operation per word of sequence.

The algorithm proceeds by alternating two phases for increasing s: extend
all current furthest-reaching points along exact matches, then generate the next
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Figure 2.8: Example of WFA Algorithm. A) The DP matrix, B) The offset arrays per
wavefront[32]

wavefront via the affine transitions. At each score, WFA checks whether any
diagonal’s offset has reached the terminal cell (n, m). The first score s for which
this occurs is provably the optimal alignment score under the chosen penalties.
Importantly, WFA’s proof of optimality leverages the property that the con-
structed furthest-reaching points at score s dominate all other paths with the
same score; if a strictly further point existed on the same diagonal, it would
have been generated by the same recurrence and subsequent match extension,
contradicting maximality. This “frontier optimality” ensures that the earliest
wavefront reaching (n, m) corresponds to the globally optimal path. Once the
terminal cell is reached, WFA performs backtracking not through a full DP
matrix but through the sequence of wavefront offsets. The traceback follows, in
reverse, which predecessor state and diagonal produced each furthest-reaching
point and uses differences in offsets to infer contiguous runs of matches between
successive scored events. For example, if an offset at score s on diagonal k orig-
inated from an offset at score s-x on the same diagonal, the difference encodes
exactly how many matches follow the mismatch event. Because only a thin
history of recent wavefronts is needed to reconstruct predecessors, backtracking
avoids materializing the quadratic matrix and retains the algorithm’s succinct
memory footprint.

Memory usage in WFA scales with the span of the active wavefronts. As
the score increases, the set of diagonals that a wavefront could occupy grows
roughly linearly with s, so storing all wavefronts naively can require O(s?) space.
In practice, WFA stores only the few wavefronts necessary for both forward pro-
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gression and later traceback, and it encodes offsets in compact integer widths.
For many workloads, 16-bit integers suffice, and even 8-bit integers are ade-
quate for short Illumina-like reads. This compact representation, together with
predictable access patterns, also enables compilers to auto-vectorize the core
transitions, eliminating the need for architecture-specific SIMD intrinsics while
still harvesting instruction-level parallelism. The extend phase benefits from
bit-parallel block comparisons over packed characters, which typically termi-
nate in a single iteration unless long runs of matches are present; in that case,
the algorithm progresses even faster.

A salient strength of WFA is that its performance is governed by the optimal
score s rather than by n X m. When error rates are moderate, s grows roughly
with the number and size of indels and mismatches, so O(n*s) can be orders
of magnitude smaller than O(n?). This behavior is exactly what practical read
mappers and long-read aligners need: work proportional to the actual diver-
gence between sequences. Moreover, WFA’s formulation is inherently portable
and friendly to modern compilers; the simple recurrences over contiguous ar-
rays of offsets allow transparent SIMD across diverse instruction sets without
handwritten intrinsics, and the match-extension uses standard word-level oper-
ations. These engineering advantages stand in contrast to several classic gap-
affine vectorizations, which often require bespoke kernels for each SIMD width
and layout. Finally, the memory profile is low and controllable; narrow integer
offsets and optional pruning keep footprint modest even when aligning tens of
kilobases.

In practice, integrating WFA into a pipeline invites a few considerations.
First, the gap-affine parameterization should reflect the application domain;
penalties that strongly favor opening versus extending gaps will shape the dy-
namics of wavefront transitions and the realized score s. Second, for very high
error rates or extreme structural discordance, s can approach n, and WFA’s
asymptotic advantage diminishes; however, in these regimes classical DP is
also stressed, and WFA-Adapt can still rein in resource use. Third, memory
and throughput can be tuned through integer width choices for offsets and
through thresholds for adaptive reduction. Finally, because WFA computes an
exact alignment with a compact provenance, it is straightforward to reconstruct
CIGAR strings and to interoperate with downstream components that expect
standard gap-affine semantics.

Taken together, the Wavefront Alignment algorithm offers a clean, general,
and highly efficient alternative to classical DP for gap-affine global alignment.
By recasting alignment as the progressive expansion of score-indexed wave-
fronts of furthest-reaching diagonal points, it ties computational effort to the
true difficulty of the instance, leverages long exact matches with bit-parallel
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extensions, invites portable auto-vectorization, and greatly reduces memory.
With an optional, empirically robust pruning heuristic, it scales gracefully to
the long, noisy reads produced by modern sequencers while preserving optimal-
ity when desired. These properties explain its strong empirical performance
relative to state-of-the-art libraries and motivate its growing adoption within
high-throughput genomics workflows.

Further optimizations can be implemented into WFA as by knowing an ex-
act (or approximately exact) edit threshold E for a pair of sequences, and by
using the lemma from Banded Smith Waterman that ensures that an optimal
alignment is always between 2*E+1 diagonals, we can prune the DP matrix
statically to only search those diagonals for alignment paths.

2.4 High Level Synthesis

High-Level Synthesis (HLS) [49] [50]converts algorithmic C/C++ (or SystemC)
into application-specific RTL, letting designers work at a higher abstraction
while still delivering high-performance hardware. In a typical heterogeneous
system, the bulk of the application runs on a host CPU, and the compute-
intensive kernels are compiled by HLS into RTL and then into an FPGA bit-
stream. The result is a custom accelerator that exploits the FPGA’s mas-
sive spatial parallelism and fine-grained control over data movement to achieve
strong performance, cost, and energy efficiency compared with traditional processors[51][5

The overall low begins with a C-level description of the algorithm. HLS pro-
vides fast functional verification at this level, so correctness can be established
before committing to hardware. The C code is then synthesized to RTL. During
synthesis, the tool applies default optimizations and also honors user-specified
constraints and directives to shape the resulting micro-architecture. The pri-
mary outputs are Verilog/VHDL (and often SystemC) suitable for downstream
logic synthesis, place-and-route, and bitstream generation. Post-synthesis, RTL
co-simulation can be used to check that the hardware’s behavior matches the
C model. Finally, the generated RTL is packaged as an IP block for system
integration.

In the background, HLS first compiles the functional specification into a
control /data flow graph (CDFG) that makes data and control dependencies ex-
plicit. Three intertwined steps then determine the hardware: allocation (what
types/quantities of resources are available), scheduling (which operations exe-
cute in which cycle, possibly chained or in parallel, while meeting timing and
user constraints), and binding (which specific resource implements each sched-
uled operation). Choices in allocation and binding affect schedulability and
vice-versa, so the tool iterates across these decisions to converge on a feasible
design. Performance and area are driven by a small set of metrics that appear
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in the synthesis report. Area reflects the consumption of FPGA resources such
as LUTS, registers, BRAMs, and DSPs. Latency is the number of cycles to pro-
duce all outputs for one invocation of a function. Initiation interval (II) is the
number of cycles between starting successive invocations—an II of 1 indicates
a throughput-optimized pipeline that can accept new inputs every cycle. Af-
ter examining these metrics, designers refine the micro-architecture with HLS
directives and re-synthesize to approach the desired area—performance point.

Directives can be applied to functions, loops, arrays, or regions to expose and
exploit parallelism. Pipelining reduces the II by overlapping loop iterations or
intra-function operations. Dataflow enables task-level pipelining across produc-
er /consumer functions and loops, so independent stages run concurrently. Inlin-
ing removes function boundaries to enable more aggressive logic optimization.
Loop unrolling replicates the loop body to create parallel operators. Memory
pragmas are crucial because arrays map to on-chip memories, typically with
limited ports. Partitioning and reshaping adjust array organization to increase
parallel access and remove BRAM bottlenecks, while array mapping can com-
bine arrays to reduce memory footprint when bandwidth is not the limiter.
Used together, these controls let the designer trade area for throughput and
latency in a principled way.

HLS is particularly effective for computational genomics, where pipelines
consist of multiple streaming stages with abundant parallelism and predictable
access patterns. In seed-and-extend alignment, for example, seeds are gener-
ated and filtered, candidate locations are extended and scored, and the best
alignments are traced back to produce compact encodings (e.g., CIGAR). HLS
matches this structure well: dataflow can stream reads through seeding, fil-
tering, alignment, and traceback kernels with on-chip FIFOs; loop pipelining
and unrolling expose fine-grained parallelism within each stage; and careful ar-
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ray partitioning supplies the multi-port memory bandwidth needed for parallel
comparisons|[53][54]].

Alignment itself—whether dynamic-programming based (e.g., Smith—Waterman,
affine-gap variants) or wavefront-based—benefits directly from HLS-driven micro-
architectures. Systolic or semi-systolic arrays map DP recurrences onto process-
ing elements arranged along anti-diagonals or bands, achieving an II of 1 when
BRAM and routing permit. Banded implementations exploit the observation
that the optimal path stays near the main diagonal, reducing memory and com-
pute while retaining exactness within a known edit threshold. HLS directives
can unroll across the band width and pipeline across anti-diagonals, while ar-
ray partitioning provides concurrent access to reference/read symbols and DP
states. For wavefront alignment, diagonal-major data layouts and diagonally
partitioned memories support parallel comparator arrays that extend matches,
detect the first mismatch, and then advance the wavefront; static pruning can
be realized by predicating updates outside the admissible diagonal window,
saving both cycles and memory bandwidth. In all cases, 2-bit base packing,
on-chip buffering of hot DP tiles, and carefully chosen bit-widths for scores and
penalties reduce area and improve timing.

Traceback can be integrated without sacrificing throughput by storing com-
pact predecessor hints (e.g., 2-bit codes for match /substitution/deletion /inser-
tion) in a rolling on-chip buffer or in selectively spilled BRAM tiers, enabling
a second, streaming pass that reconstructs the alignment path. HLS facilitates
this design pattern by letting the forward pass and traceback pass be sepa-
rate dataflow stages, each independently pipelined, so the system sustains high
throughput while controlling memory footprint.

In summary, HLS provides a productive path from algorithm to RTL for
genomics workloads. By exposing pipeline and memory structure at the C
level—and then steering allocation, scheduling, and binding with directives,designers
can realize accelerators for alignment that approach hand-tuned RTL in through-
put and efficiency, while retaining the agility to iterate on scoring schemes,
pruning heuristics, and 1/O formats as datasets and accuracy requirements
evolve[55].

2.5 Versal VCK190 Evaluation Platform — Specification

™

Platform overview. The AMD Versal = Al Core VCK190 evaluation kit targets
high-throughput, low-latency acceleration. A dual-Arm® processing system or-
chestrates heterogeneous engines (Al Engines, programmable logic, and hard-
ened I/0) over an integrated NoC. Compute-intensive kernels are implemented
in the PL/AIE while control and non-critical code runs on the PS[56].
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SoC at a glance

Device / Package
Processing System

AT Engines

DSP Engines
Integrated DDRMC
Programmable NoC

XCVC1902 (VC1902 family), speed grade -
2, SEVSVA2197

Dual Arm Cortex-A72 (APU) + Dual Arm
Cortex-R5F (RPU)

400 AIE tiles

1,968

4 controllers

High-bandwidth connectivity among PS/-
PL/AIE/DDR

Programmable Logic (PL) resources (VC1902 class)

System logic cells
LUTs / Flip-flops

Block RAM (BRAM)
UltraRAM (URAM)

Distributed RAM

Max general 1/O (device-level)

~1,968 K

899,840 LUTs / 1,799,680 FFs

967 blocks (= 34.0 Mb total)

463 blocks (=~ 130 Mb total)

~27.5 Mb

~T70 pins (board-dependent availability)

Board-level memory & storage

« 8GB DDR4 UDIMM (via DDRMC), up to 3200 MT/s.

« 8GB LPDDRA4 (4 x 16 Gb), up to 3900 MT/s.

e Dual microSD sockets (kit includes card).

Expansion & 1/0

o PCle Gen4 x8 edge connector.

Two FMC+ (VITA 57.4) sites (multi-lane GTY per connector).
Networking: 1xQSFP28, 2xSFP28, 3xRJ-45 (tri-speed Ethernet).
Video: HDMI in + HDMI out.

Control/Debug: JTAG, USB-UART, QSPI boot, system controller (PM-
Bus/telemetry), SYSMON.
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Clocks, power, and physical

« On-board programmable clocks for DDR, PCle, Ethernet/video, and tim-
ing sources.

o Power: 12V input (AC adapter included); PMBus-managed rails with
telemetry.

o Form factor: %—length PCle card; example envelope ~9.50in (L) x 7.48in
(H).
e Operating range (typ.): 0°C to +45°C (storage: —25 to +60°C).

Notes for genomic alignment workloads

e The mix of ~900k LUTs, ~34 Mb BRAM, and ~130 Mb URAM supports
deep tiling/buffering for banded dynamic programming (SW/affine) and
wavefront alignment.

o URAMS-backed score tiles with BRAM line buffers enable II = 1 systolic/semi-
systolic datapaths across anti-diagonals or fixed bands.

« Dataflow across PS — PL — AIE streams seeding /filters into extension and
traceback; array partitioning/reshaping removes BRAM port bottlenecks.

o PCle Gend and QSFP28/SFP28 sustain high-rate ingest from sequencers
or host storage; FMC+ permits custom front-ends.
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Chapter 3

Methodology

3.1 Methodology Overview

The main goal of this work is to explore the impact of pre-alignment filters on
hardware-based accelerators for alignment. As previously described, profiling
different aligners and datasets reveals heterogeneity in the number of edits ob-
served in the final alignments. In most cases, the alignments exhibit small edit
number and could be found using less resources and performing less operations
than in the baseline scenario. In this thesis, we aim at leveraging pre-alignment
filters based on the edit threshold to optimize FPGA-based alignment on two
levels: (i) optimize the architecture of individual alignment units in terms of
resource utilization and performance, (ii) create a throughput-optimized multi-
accelerator architecture comprising aligners that support different edit thresh-
old. This section describes a systematic way to achieve this.

First, we select simulated and real datasets and perform profiling with state-
of-the-art aligner to study the alignments reported based on the number of
edits observed. We then perform a literature search and identify state-of-the-
art alignment algorithms that could benefit from the edit threshold informa-
tion,i.e., algorithms that can exploit the edit threshold in a way to reduce their
computational and spatial requirements. After identifying the algorithms, we
explore their parallelization capabilities and leverage High-Level Synthesis tools
and tuning knobs to implement hardware-based accelerated designs. Those de-
signs leverage the inherent parallelization of the algorithms and incorporate the
information for the edit threshold to further optimize for resource utilization
and performance. We synthesize different versions of the aligners with different
edit thresholds and create a pool of designs with different latency and resources
utilization.

We then aim to create a high-throughput multi-accelerator architecture that
comprises accelerators of different thresholds to align a given dataset with in-
creased throughput and reduced resources. The number and type of the acceler-
ators, i.e., in terms of edit threshold, are mainly defined by the edit distribution
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of the datasets. The accelerators operate in parallel on suitable reads, i.e., reads
with edits less or equal to the edit threshold of their assigned accelerator. With
a help of a balancing script, given the resource estimation from synthesis and
the workload for each number of edits, we greedily search for a configuration
that has the minimum latency in aligning the whole dataset. Therefore, the
balancing script decides on the cutoff edit thresholds that the aligners will have
and how many of each type of aligner we will use.

The following subsections elaborate on each step of the methodology and
give insights to the design process.

Genomic Data Extraction Hardware Kernel Design

Pairs of Sequences

\ 4 \ 4

Profiling with
SneakSnake

Synthesis of different

——Dataset Distributon—»{ Balancing Script | «—Resource Estimation edit thresholds

Cutoff thresholds

Cutoff thresholds

SneakySnake chain <—| » System Configuration

Index Files

Indey fil
Index files

A

Software Execution Hardware Execution

Figure 3.1: Proposed Workflow

3.2 Genomic Data Extraction

To evaluate the aforementioned kernels, genomic data are needed. For this
particular thesis 100 base sequences are going to be used for read and reference
sequences. Two dataset are going to be used. The first is a simulated dataset
of 200000 pairs. .They are not taken from real human genome but with them
corner cases can be usually explored.

The second dataset is part of the Illumina dataset. It comes from [57] and
it consists of 4287748 pairs taken for chromosome 22 of the human genome. To
extract this data first the reads where downloaded from official sources. Then,
with the use of samtools, a software library used for alignment, these reads were
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aligned to a reference genome and produced CIGAR strings. Finally, with a
python script the CIGAR strings along with the reads were reverse engineered
to produce 100 base pairs of read and reference sequences.

3.3 Profiling Genomic Data with SneakySnake

SneakySnake was used to filter the data into bins of different exact edit thresh-
olds. For this procedure a series of filters was used, all with different edit
thresholds ranging from 0 to 20. If a pair passed a filter, it was binned into
a separate index file. If the pair was rejected, it was forwarded to the next
filter. With that procedure we created filtered data distributions (Figure 3.2
and Figure 3.3).

Edit Distribution
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Figure 3.2: Simulated Dataset Filtered Distribution

SneakySnake can be extra helpful for the proposed architecture, as it can
automatically align 0 edit pairs. That happens because the Neighborhood ma-
trix of a SneakySnake module with 0 edits is only one line that is the result of
a 1-1 comparison of the reference and read sequence. So for SneakySnake to
pass that pair it must had only 0 accross that line, meaning a perfect match.
This way SneakySnake aligns the pairs with 0 edits, if passed by a SneakySnake
module with edit threshold E = 0. That means that when counting pairs for
our proposed architecture, we can exclude those with 0 edits. That is not true
when testing basic hardware implementations that do not use SneakySnake as
a pre-filter.
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In the simulated dataset, there are pairs with up to 10 edits and for the
[Nlumina dataset up to 19. In the Illumina dataset given the large amount of
pairs, pairs with more than 15 edits are very few and they are likely to be poor
quality reads given from the sequencing machine. Despite that, they can be
treated like viable reads and configurations will be considered to encompass
them into the proposed designs.

It is important, not to neglect, that these are results form the SneakySnake
filter. That means that in some cases the filter might have underestimated the
number of edits and binned a pair into an index file of less edits than it should.
That will impose a problem as the aligners will not align this pair properly
(they are bound by edit threshold) and thus introducing an accuracy metric
that will be discussed later.

3.4 SneakySnake on Hardware

SneakySnake can also be implemented on Hardware using HLS and can be
greatly parallelized. SneakySnake executes on two steps. First, it creates a
Neighborhood matrix as described in Chapter 2. Then it runs the actual algo-
rithm on the matrix finding longest trails of zeros until it finds a 1 (obstacle).
If it finds a number of obstacles greater than a user given threshold it rejects
the pair, otherwise it accepts it. The hardware SneakySnake acts on those two
procedures to accelerate the algorithm.
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3.4.1 Neighborhood Parallelization

The neighborhood matrix is made of 2*E+1 horizontal lines , each LENGTH
cells long , where LENGTH is the length of the pairs of sequences. Because
each line is simply a comparison between the read and reference sequences
,each at different shifts, each line is fully independent of each other and so they
can be computed in parallel (Figure 3.4). Also, because the comparisons are
between apuint variables, the comparisons are bit-wise operations that can also
be computed in parallel.

Read :ACCTG Ref: ACTGG

offset A C C T G

Neighborhood Tile 1 0 0 0 9 1 0
|

Neighborhood Tile 2 1 1 1 0 0 0
|

Neighborhood Tile 3 A 1 1 1 1 1
|

Figure 3.4: Neighborhood Matrix Parallelization

So, each neighborhood tile computes one line of the matrix and each tile
contains LENGTH parallel 1-bit comparators (Figure 3.5).

The second optimization it the Tiling of the neighborhood matrix. After
computing it, we tile the matrix into sub-matrices of length t. Then each sub-
matrix, becomes a sub-problem. Each sub-problem can run in parallel (Figure
3.6).

Each After Neighborhood Tile consists of several Leading Zero counters and
comparators. Fach leading zero counter counts the leading zero of each line of
he sub-matrix. The comparators, compare the results in a tree-like structure
to find the biggest trail of zeros (Figure 3.7).

After this step all the edits found are added from each sub-problem and if
the total surpasses the edit thresholds then the pair is rejected. Otherwise it
passes the SneakySnake test.

The major problem with this implementation is the accuracy loss. Because
each sub-problem is treated as new, it is very likely to underestimate the number
of edits. An example is shown in Figure 3.8 , to visually interpret how that is
possible. When we process the full matrix it is obvious that he SneakySnake
finds 1 obstacle. When we tile the matrix it finds 0 obstacles. In this case it
is not really a problem as the set edit threshold was E=1, but it shows how
it can underestimate edits and lead to estimation that can really damage the
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—Reflil—>  1-bit _
comparator —NM[O][i]—>
—Read[i]—>;
—Refil—>  1-bit '
comparator —NMIO][i]—>
—Read[i]—»
—Reflil—> 4 it |
— Read]ij—y SOMPArator —NM[0][il—>
—Ref[il—> .
oot —NM[0][i}—>
—Read[i]—» COmparator
—Ref[i—> |
oot —NM[0][i}—>
—Read(i}—»; Ccomparator

Figure 3.5: Neighborhood Tile 1

After

After Neighborhood Neighborhood

After Neighborhood

Tile 1 Tile 2 Tile 3
0 0 1 1 0
1 1 0 0 0

Figure 3.6: After Neighborhood Procedure

accuracy of our proposed design, as we depend on SnealySnake to make as
accurate predictions as possible. As it will be mentioned in Chapter 5, it is
important to develop an alternative hardware design for SneakySnake in order
to exploit its parallel structure and include it in an end-to-end pipeline. Despite
that, in the current work SneakySnake will serve as on off-line pre-processing
step.
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Figure 3.7: After Neighborhood Tile [7]

Read :ACCTG Ref: ACTGG
offset A C ] T G
0 0 0 1 1 0
+1 1 1 0 0 0 1 edit
1 1 1 1 1 1
offset A C (¢} T G
0 0 0 1 1 0 0 edits
+1 1 1 0 0 0
1 1 1 1 1 1

Figure 3.8: SneakySnake example. On the full matrix it finds 1 obstacle. On the tiles matrix
it finds 0 obstacles
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3.5 GenASM

3.5.1 Overview

The GenASM (Genome Approximate String Matching) algorithm is a bit-
parallel method for approximate sequence matching, designed to efficiently align
a short pattern (read) against a longer text (reference). Unlike classical dy-
namic programming algorithms that fill a two-dimensional matrix cell by cell,
GenASM encodes the same computation using bit-vectors and simple bitwise
operations, which can be performed in parallel and efficiently implemented on
hardware such as FPGAs.

The main idea is to represent each position of the pattern as a bit within
a machine word. FEach bit indicates whether a partial match is possible at
that position for a given number of allowed edits (mismatches, insertions, or
deletions). The algorithm then updates these bit-vectors as it scans through
the reference sequence, keeping track of which positions can still yield a valid
alignment within the allowed error limit. First, a bit mask is created for each
symbol of the alphabet (for DNA, A, C, G, T). Each mask stores the locations
in the pattern where that character appears. For example, for letter A, the
mask has a 0 bit at positions where A occurs and 1 otherwise. These masks
allow quick comparison between the current text character and the pattern.
The algorithm maintains a small set of bit-vectors Rle], one for each allowed
edit distance e (from 0 up to a user-defined limit E). Initially, all bits are set to
1, meaning that no match has been established yet.

The algorithm processes the reference text one character at a time. For each
character Tj|:

The corresponding pattern mask M = MASK][T[j]] is retrieved.

Using bit shifts and logical operations, the algorithm updates the bit-vectors
to reflect:

Match/Extend: advancing when characters match,

Substitution: allowing a mismatch,

Insertion and Deletion: handling gaps between the read and reference. These
updates efficiently emulate the recurrence relations of the edit-distance dynamic
programming algorithm.

After each character is processed, the algorithm checks whether the pattern
could fully align ending at that position within any allowed number of edits.
This is done by examining a specific bit (corresponding to the last pattern char-
acter) in each R[e|. If this bit indicates a valid alignment (a 0 in the proper
encoding), a match is reported.

When traceback is enabled, small control bits are stored during updates to
record the operation that led to each state (match, insertion, deletion, or sub-
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stitution). Once a match is found, these bits are used to reconstruct the align-
ment path and generate a CIGAR string (a compact format that encodes the
sequence of edit operations).

3.5.2 Exploiting SneakySnake

GenASM is an algorithm that inherently uses an upper edit threshold. The
main bottleneck of GenASM is the storage utilization as it needs a rather large
matrix to encode information for traceback. The size of the matrix depends on
the upper edit threshold. To be precise, the 4-dimensional matrix used is of size:
LENGTH * LENGTH * (EDITS+1) * 4 , where LENGTH is the length of the
sequences used (e.g. 100bp), EDITS is the edit threshold and 4 is the number
of possible operations (match, mismatch, insertion, deletion). So, for example
a GenASM kernel with edit threshold E = 2, will need to store 100*100*4*3
= 120000 cells of that matrix, whereas if E = 10, will need to store 400000
cells. It is obvious that we can fit more kernels of lower edit thresholds into a
platform, so we are going to exploit this information given by SneakySnake to
instantiate many GenASM kernels of different sizes.

3.5.3 Optimizations

READ T 7 SBIMASK T —> girvasks —R—> M——>
GENERATOR ——»> Ry PEI o3 TEOAIN)
> —TB—>
JLL
_R e
REFRENCE REFERENCE) . > o —— TEOI
—oldR—», —3
MASF v
N e
IdR =S — O &) R If R{d]=0, min_edits=d [ min edits>
__oldRy
—
R —
o PE4 [ TBIO3M
__oldRy
—
R—> —
e L)

Figure 3.9: GenASM DC

The GenASM-DC algorithm runs a main for loop over all Text characters
in the read sequence. For each character, it runs a for loop that goes over all
possible number of edits and stores 4 values for each number of edits, one for
each possible operation. There is also a data dependency between iterations
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PE[d]

oldR[d]<<1|[MASK———>
R oldR[d-1] >
oldR[d-1]<<1 >
R[d-1] >
oldR—> &&
R[d] > R
Mask——»

Figure 3.10: GenASM DC Processing Element

B )
——curPattern——>
—M—
—T—curError————> ——S—>
— minedits____y] B PERATION-T—P> CIGAR
—l—>
curTextt——> I &

Figure 3.11: GenASM TB

as information from the previous character of the text sequence is required
to compute values for the next character. So, by running this loop without
directives it would take roughly LENGTH*(Edits+1)*4 cycles to complete the
DC step.

To achieve the design in Figure 3.9 ,Figure 3.10 and Figure 3.11, we use a
combination of pipeline, unroll and partition directives. We fully unroll the
bitmask generation so that it happens all in 1 cycle , as every character of the
bitmask can be computed in parallel. Then main loop has a latency of 2 cycles.
The first cycle is used to compute the next state vectors and the second cycle
is used to write the information into the TB matrix in the BRAM. We pipeline
this loop so we can achieve [I=1. Each nested loop inside the main loop is also
unrolled so that all computations inside the PE can be executed independently.
At first those directives did not have any result, as the TB matrix was stores
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Figure 3.12: Array Partition on traceback matrix

as a whole inside one block. So, the array partition directive was used on the
TB matrix to partition it along the dimension of size Edits+1 and along the
each PE (one for each edit) can write
at the same time all four operations states to the TB matrix at the same time

dimension of the operations. This ways

(Figure 3.12).

Below is the code that shows the main loop:

for(int i=READ_LENGTH-1;i>=0;i--){
#pragma HLS PIPELINE II=1
curChar ref .range (2*xi+1,2%1i);
curMask masks [(int) curChar];

for (int d=0;d<MAX_EDITS+1;d++){

#pragma HLS UNROLL
oldR[d]=R[d];

b

R [0] (0ol1dR[0]<<1) |
Rall [0]1[0][i]1=R[0];
Rall[1][0][il=all1l;
Rall [2][0][i]l=all1l;

curMask;

for(int d=1; d<MAX_EDITS+1;
#pragma HLS UNROLL
ap_uint <READ_LENGTH> m

d++

ap_uint <READ_LENGTH> del =
ap_uint <READ_LENGTH> ins =
ap_uint <READ_LENGTH> sub =
R[d] = del & (del<<1l) & ins
Rall [0] [d][i] = m;
Rall [1] [d] [i] = del;

Rall [2] [d][il] ins;

Rall [3][d]l[i] = sub;

) {

(0ldR[d]<<1) | curMask;
0ldR[d-1];
(R[d-1]<<1);
(0ldR[d-1]<<1);

& m;
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R[g-1]

R[d]

R[¢+1]

Figure 3.13: Main Array Pipelining. In the first cycle a part of the array is written, and in the
following cycle it is read, achieving I1=1.

The end product is a loop that takes LENGTH time instead of
LENGTH*(EDITS+1)*4 to complete. The algorithm finishes with a small loop
that finds the final minimum number of edits which is Edits+1 cycles long. So,
the whole DC algorithm takes LENGTH+Edits+1 cycles to complete which is
roughly equal to LENGTH (LENGTH»Edits). During traceback the TB algo-

Operation\Control Step

Rall_1_1_load(read)
MuxLogicAddr_to_Rall 1_2 load(muxlogic)
Rall_1_2_load(read)
MuxLogicAddr_to_Rall_1_3_load(muxlogic)
Rall_1_3_load(read)
MuxLogicAddr_to_Rall_2_0_load(muxlogic)
Rall 2 0 load(read)
MuxLogicAddr_to_Rall_2_1_load(muxlogic)
Rall_2_1_load(read)
MuxLogicAddr_to_Rall_2_2_load(muxlogic)
Rall 2 2 load(read)
MuxLogicAddr_to_Rall_2_3 load(muxlogic)
Rall_2_3_load(read)
muxLogicData_to_store_ln113(muxlogic)
muxLogicAddr to store In113(muxlogic)
it_write_Ln113(write)
MuxLogicAddr_to_temp_load_2(muxlogic)
temp_load_2(read)
MuxLogicAddr_to_curPattern_03_load(muxlogic)
curPattern_03_load(read)
MuxLogicAddr_to_curError_load(muxlogic)
curError_load(read)
MuxLogicAddr_to_j_load(muxlogic)
j_load(read)

trunc_ln106{trunc)
or_n115(])
tmp_5(bitselect)
xor_In115(")
tmp(sparsemux)
7ext In117(zext)

Figure 3.14: Traceback. All reads happen at first cycle. All mux operation happen on the
second cycle

rithm starts form the end of the traceback matrix figuring out which operation
took place for each text character. This requires that for each character four
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decisions must be taken. By partitioning the traceback array, the TB algorithm
can access every cell needed. Each iteration takes 2 cycles to complete, 1 to
read the matrix and one to take the decision (Figure 3.14). These two opera-
tions can be pipelined so TB can achieve II = 1 and so, max throughput. The
optimizations used are shown on the following listing.

template<int MAX_EDITS>
void GenASM_TB(ap_uint <READ_LENGTH> Rall [4] [MAX_EDITS+1] [READ_LENGTH],
int min_edits,
ap_uint <2« (READ_LENGTH+MAX_EDITS)> &CIGAR,
bool &valid){
#pragma HLS INLINE off
ap_uint <2* (READ_LENGTH+MAX_EDITS)> temp=0;
int curPattern = READ_LENGTH-1;
int curText=0;
int curError = min_edits;
int j=0;
bool temp_valid=false;

for(int it=0; it<(READ_LENGTH+MAX_EDITS); it++){
#pragma HLS PIPELINE II=1
if ((curPattern>=0) &&(curError >=0) ) {

bool step_valid = true;

bool bit_match = 'Rall[0] [curError][curText] [curPattern];
bool bit_sub = 1Rall [3] [curError] [curText] [curPatternl];
bool bit_del = I1Rall[1] [curError] [curText] [curPatternl];
bool bit_ins = 'Rall [2] [curError] [curText] [curPattern];

if (bit_match){

temp.range(j+1,j)=0; curPattern--; curText++;
} else if(bit_sub){

temp.range(j+1,j)=3; curPattern--; curText++; curError--;
} else if(bit_del)A{

temp.range (j+1,j)=2; curPattern--; curError--;

} else if(bit_ins){
temp.range(j+1,j)=1; curText++; curError--;

} else{
¥
temp_valid |= step_valid;
Jj+=2;
}
}
CIGAR=temp;

valid=temp_valid;

The final optimization is that ap uint types are used for all variables. Each
base is encoded in 2 bits (00 = A, 01 =T, 10 = C, 11 = G) and each operation
is also encoded in 2 bits (00 = match, 11 = mismatch, 01 = insertion, 10 =
deletion).

By synthesizing the above design we obtain the following metrics about la-
tency, bram and luts.

The main bottleneck of GenASM is the BRAM utilization as expected as
the traceback matrix is expected to use a lot of BRAM and this is what will
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Figure 3.15: BRAM utilization

limit the design of running too many kernels at the same time.

3.6 Smith-Waterman

3.6.1 Overview

The Smith—Waterman algorithm is a classic dynamic programming method
used for local sequence alignment, which identifies the most similar subsec-
tions between two sequences — typically a read and a reference segment in
genomics. Unlike global alignment algorithms such as Needleman—Wunsch,
Smith—Waterman focuses on finding the best local match, meaning that it can
align subsequences even when the overall sequences differ significantly.

This algorithm is known for producing optimal alignments but is computa-
tionally expensive, which is why many modern accelerators and optimizations
aim to improve its performance or reduce its memory footprint.

A two-dimensional scoring matrix H is created with dimensions (m+1) x (n+1),
where m is the length of the query (pattern) and n is the length of the reference
(text). All entries in the first row and first column are initialized to 0, since
local alignment allows the alignment to start anywhere in the sequences.

A two-dimensional scoring matrix H is created with dimensions (m+1) x (n+1),
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where m is the length of the query (pattern) and n is the length of the reference
(text). All entries in the first row and first column are initialized to 0, since
local alignment allows the alignment to start anywhere in the sequences.

The matrix H is filled cell by cell, where each cell H[i][j] represents the best
alignment score for the prefixes P[0..i-1] and TJ[0..j-1]. The recurrence relation
is:

H[il[j] = max(

0,

H[i-1][j-1] + match_or_mismatch(P[i-1], T[j-1]1), // diagonal (match/
substitution)

H[i-1]1[j] - gap_penalty, // deletion
H[il[j-1] - gap_penalty // insertion

As the matrix is filled, the algorithm keeps track of the highest score and
its position (i*, j*). This represents the endpoint of the best local alignment
between the two sequences. Once the maximum cell is identified, the traceback
begins from (i*, j*) and proceeds backward:

Move diagonally for matches or substitutions,

Move up for deletions,

Move left for insertions. The traceback stops when a cell with score 0 is
reached, marking the start of the optimal local alignment. This path is then
converted into a CIGAR string describing the sequence of operations (M, I, D).

3.6.2 SneakySnake Exploitation

As it was explained in Chapter 2, the Smith Waterman DP matrix can be
restricted, if the edit threshold is known or roughly estimated. If the edit
threshold is E, only the main diagonal and E diagonals on each side are needed
to find an alignment. This algorithm is also known as Banded Smith-Waterman.
Banded Smith-Waterman when executing on CPUs has two major variations.
Adaptive Banded Smith-Waterman and Static Banded Smith Waterman. The
Adaptive algorithm starts its search around the main diagonals and if it needs
it expands to further diagonals to always find an optimal alignment. The static
algorithm is designed using a maximal band which is 2*E+3 diagonals wide,
where is a user provided edit threshold. The adaptive algorithm is dynamic
and not ideal for hardware design as it has many run time unknowns. Also, by
using SneakySnake we can provide the algorithm with exact edit thresholds, so
bands can easily defined. This way banded SW can be used to always find an
optimal alignment using minimal search time and space. In the example of this
thesis 100bp sequences are used for both read and reference. This means that
the matrix has 199 anti-diagonals to compute. So, if we use a static band for
E = 2, which is 2*2+3= 7 cells wide, 7*199 = 1393 cells must be computed. If
E = 10, the band is 23 cells wide and 23*199 = 4577 cells must be computed
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and stored. So, if SneakySnake can give good estimates for the edit threshold,
Banded Smith Waterman can exploit this to instantiate different kernels of
different sizes and achieve greater speedup.

3.6.3 Optimizations

READ

DI
REFERENCE f

TB MATRIX

TRACEBACK MODULE

— CIGAR

Figure 3.16: Banded Smith Waterman Hardware Architecture

M——>

S——>»

D—>

OP_TO_CIGAR———>»

OPERATION

Figure 3.17: BSW-TraceBack

The main hardware optimizations done on the banded Smith Waterman can
be summarized into 3 main axis.

« Diagonalization of the algorithm and use of systolic arrays

« Using custom types of variables to reduce area utilization

e Pre- and post-computing to avoid unnecessary lut replication

As it also true for regular Smith Waterman, the banded version can be diago-
nalized. Each cell of the matrix is dependent on the cell on top, the cell on the
left and the cell in the upper left corner.
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Figure 3.19: SW dependencies

This means that each cell of an antidiagonal can be computed at the same
time, essentially reducing the time to run the main loop of the algorithm to
O(n+m) where n and m are the lengths of the read and reference sequences.
This is done by using systolic arrays. By creating process elements (PEs) that
use as inputs the outputs of the top, left and topleft cells the algorithm can
compute each independent cells (each antidiagonal) one cycle at a time. The
main part of the PE is shown in the following listing.

ap_int<10> diff_ji = (ap_int<10>)j - (ap_int<10>)1i;
bool in_core = in_mat &&

(diff_ji <= (ap_int<10>)BAND) &&

(-diff_ji <= (ap_int<10>)BAND);

6 // Halo band: |[j-i| <= BAND+1

7 bool in_halo = in_mat &&

: (diff_ji <= (ap_int<10>) (BAND+1)) &&
9 (-diff_ji <= (ap_int<10>) (BAND+1));

10

81




NN NN

// Neighbors from previous diagonals (gated to halo)

score_t Hdiag = in_halo ? H_prev2[idx]
Z;

score_t Hup = (in_halo && (idx+1<HALO_BANDW)) 7?7 H_prevl[idx+1]
Z;

score_t Hleft = (in_halo && (idx>0)) ? H_prevl[idx-1]
Z;

// Bases from predecoded arrays (only if in halo)
ap_uint<2> br = 0, bg = 0;
if (in_halo) {

br = rbase[(int)i];

bg = gbase[(int)jl;

}

// PE compute on halo; clamp out-of-core result to zero (score
not stored)

score_t H_ij;

ap_uint <2> dcode;

sw_pe_linear_argmax (in_halo, Hdiag, Hup, Hleft, br, bq, H_ij,
dcode) ;

if (!in_core && in_halo) { H_ij = Z; /* keep dcode to guide TB
if desired */ }

H_curr[idx] = in_halo ? H_ij : Z;

Here Hdiag, Hup, Hleft are the values from topleft, top and left cells of the
current PE, and i,j are the indexes of the matrix (where i - j is an antidiagonal).
Finally, to achieve diagonalization all loops are internally unrolled and pipelined
with the appropriate directives.

A ; B
w N l
N s
% T

Figure 3.20: Diagonalization of SW

Then using apuints for all variables and especially encoding CIGAR opera-
tions and read and reference sequences as in the GenASM algorithm, the total
area used is reduced.

Lastly, instead of updating the max score to find the best cell at the end,
each diagonal saves its personal best score and the comparison is done after the
algorithm is complete introducing a small area and computational overhead.
Otherwise, huge critical paths are created and the design misses timing. Also,

82




the bit-packed input sequences are decoded into small arrays so that no apuint
slicing is taking place in each PE. This way the LUT utilization is almost
dropped in half, enabling almost double the kernels to be instantiated.

PRE-DECODING INPUT SEQUENCES
DECODE_READ: for (idx7_t i=0; i<(idx7_t)LEN; ++i) {
#pragma HLS PIPELINE II=1
int ii = (int)i;
rbase[ii] = read_enc.range (2xii+1, 2*ii);
}
DECODE_REF: for (idx7_t j=0; j<(idx7_t)LEN; ++j) {
#pragma HLS PIPELINE II=1
int jj = (int)j;
gbase[jj] = ref_enc.range(2*xjj+1, 2*jj);

The latency of each kernel is almost the same and it is around 350 cycles, as
it needs 200 cycles for the main loop, and 100 cycles for traceback, plus some
overhead cycles for writing the CIGAR string and initialize some arrays.

These are the utilization results for edit thresholds ranging from 0 to 20.
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Figure 3.21: BRAM(%)

Here the main bottleneck that will limit the use of many kernels will be the
LUT utilization and that is why it was needed to reduce its usage by unpacking
the input sequences.
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3.7 WFA

The WFA algorithm was proven a daunted task for this thesis, with no sat-
isfiable results. That was because of two key reasons. First, it is a dynamic
algorithm. The extend matches step of the algorithm is not pre-determined as
to when it will find the next mismatch, running for an amount of cycles that
range from 1 cycle up to the while length of a diagonal. Also, the intermediate
scores are not determined either. For that reason, and in order to have static
bounds for HLS synthesis, loop tripcounts are maxed at max length, or max
score respectively, resulting in very large execution times. The second reason
is that despite its large execution time, because of the high complexity compu-
tations needed for determining the next wavefront and traceback the resources
are not minimum. So, it is not feasible to instantiate too many kernels to allevi-
ate the high latency reports. In this particular case, the lack of flexibility HLS
sometimes have , has proven detrimental to the realization of this algorithm
for the current task. As implemented in [58] a more custom solution to this
problem exists that targets WFA in FPGAs that writes its kernels into low-level
VHDL in order to bypass the flexibility restrictions imposed by HLS.

WFA remains a great algorithm for CPU and GPU implementations that
has benefits over other algorithms in these platforms. For FPGAs it is either
reformed into a more static version that eventually resembles Banded Smith-
Waterman, or written in more low-level languages like VHDL and verilog that
allow for custom solutions.

The results form the aforementioned work for 100bp inputs gave x6 speedup
in reference to the single-threaded cpu-wfa, by fitting 100 aligners in a single
FPGA. That could be managed by cleverly mapping resources into the FPGA
with VHDL. This is a great motivation for future work, to try to implement
the banded-WFA algorithm on FPGA using hardware description languages
and achieve greater speedups.

3.8 Multi-accelerator Throughput-Optimized Architec-
ture

The proposed architecture is shown in Figure 3.22. The real and the simulated
datasets are passed through a chain of SneakySnake filters. These data are cete-
gorized into bins according to their number of edits. These bins are streamed
through FIFOs to the PL of our system. There, each FIFO feeds an accelerator
custom to edit threshold that matches the bin the FIFO originated from.

The data in the used datasets are not equally distributed between the differ-
ent number of reads in regard to edit threshold. If that was the case, we could
instantiate an equal amount of aligners for each edit threshold as long we have
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Figure 3.22: Proposed Architecture

resources. Because in all of our used algorithms the latency is roughly equal
despite the difference in edit thresholds, the whole system of equally distributed
accelerators would finish when the bin with the most pairs would finish, while
the rest remain idle. This is a sub-optimal behavior and we propose a balancing
heuristic.

By binning the data into ranges of thresholds, instead of individual exact
thresholds, we can divide the workload between different classes of aligners by
instantiating a -proportional to workload - number of them. If the workload for
a range of threshold is X and the number of aligner instantiate for that workload
is Y, we want X/Y to be the same for all classes of aligners. To achieve that,
we created a python script that takes as parameters the number of workload,
according to SneakySnake, for each exact threshold and the critical resource
utilization for the particular kernel (BRAM for GenASM, LUTs for Banded
Smith-Waterman). This script greedily tries all possible configurations and
outputs the optimal configuration of aligners to be used by estimating their
resource utilization.

We ensure this configuration is synthesizable, through the vitis-hls environ-
ment. If it has less than 100% utilization , it is a valid configuration. Otherwise,
the python script must be restricted to a smaller budget and rerun the script.

85






Chapter 4

Experiments and Results

We have four configurations to realize:

A GenASM configuration for the simulated dataset
A GenASM configuration for the Illumina dataset
A Banded-SW configuration for the simulated dataset

A Banded-SW configuration for the [llumina dataset

All of the experiments were executed as follows:

First, given the critical resource estimation (BRAM for GenASM and LUTs
for Banded Smith-Waterman) a balancing script was executed to propose
a combination of aligners of different edit thresholds.

The proposed combination was synthesized in order to check, if it actually
fits inside the FPGA. In case it fitted, the design was used to estimate
speedup. Otherwise, the balancing script was run anew with a lower re-
source budget, until a suitable combination was found.

Then SneakySnake was run on software to correctly bin the dataset into
index files.

Then the alignment algorithms were executed in software for each of the
bins to extract the appropriate metrics (time in seconds and number of
aligned pairs). Only the alignment and traceback parts were measured in
terms of time.

Finally, an estimate of cycles and time using synthesis was extracted to
calculate the speedup of alignment

The goal is to run SneakySnake on software and the acceleration process on
hardware. The speedup is computed by comparing the hardware version with
the software version of the aligners. It is also important to calculate the speedup
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our proposed design has in respect to a design that did not implement the above
methodology and run a max threshold aligner.

The software experiments were executed on single thread Intel i7 CPU 1.8Ghz.
For the hardware implementation, a 10ns clock was used with a clock uncer-
tainty of 27% meaning that the design was estimated to run on 7.3ns, but to
respect the fact that the hardware experiments were not executed on hardware
the 10ns will be used to estimate speedup.

As mentioned in Chapter 2 the SneakySnake pre-filter can falsely accept se-
quences of higher edit thresholds. In this proposed system, these sequences are
not aligned, if the aligner they were assigned to, cannot support them. This
introduces an accuracy metric that essentially shows how many pairs of se-
quences SneakySnake falsely accepted and it is the same number as the pairs of
sequences that were not aligned properly, or not aligned at all by the proposed
design.

4.1 GenASM with simulated dataset

After running the balancing python script, the following combination of GenASM
aligners was proposed.

Edit Threshold ‘ Aligners ‘ Workload ‘ Workload /Aligner

1 5 27710 5542
2 5 42141 8428
3 > 41061 8212
4 5 40321 8064
) 4 27899 6974
10 2 10941 5470

Table 4.1: GenASM configuration with simulated dataset

The Workload is the number of pairs to be aligned for each number of edits.
The Workload/Aligner is the number of pairs that each individual aligner will
have to align in the final design. Because for each number of edits the latency
is roughly the same, it is important to balance the Workload /Aligner metric for
each aligner to achieve minimum latency. The balancing script tries to minimize
the maximum Workload /Aligner metric given a resource constraint. The above
configuration of aligners has a total resource estimation of:

BRAM(%) | LUTs(%) | FFs(%) |
9 [ 87 | 6 |

Table 4.2: Total Resources of GenASM on simulated dataset

After binning the data to the proposed bins with the help of SneakySnake,
the GenASM algorithm with an appropriate edit threshold was executed for
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each bin. The results are the following, in respect to time and accuracy. Time(s)
for each bin is the individual time each run needed to execute. Total time is
the sum of all individual times.

Bin | Time(s) | Accuracy
1 0.33601 0.51
2 0.675876 0.65
3 0.853457 0.58
4 1.016036 0.60
5 0.82732 0.69
6-10 | 0.586214 0.99
Total | 4.294913 0.63

Table 4.3: Software Metrics

For hardware estimation, the maximum Workload/Aligner was used to es-
timate how many times the hardware kernels must be executed. To ensure
that data transfer overhead between runs of the same kernel was minimized,
an axi-stream interface was used to stream data from a FIFO queue to the ker-
nels. The max Workload/Aligner is 8428 on the aligner of edit threshold E=2
which needs 207 cycles to fully execute. So, given a 10ns clock period time, the
hardware needed to fully run was 0.0174 seconds, resulting in a x246 speedup
in respect to software alignment.

The main issue with this configuration is the accuracy. 63% accuracy means
that 37% of the pairs were not aligned. This happens for two reasons. First,
SneakySnake seems to underestimated many of the pairs’ edit thresholds. Sec-
ondly, the GenASM algorithm works with a very strict rule, that if a pair of
sequences has more edits than its edit threshold, GenASM will automatically
reject it. That is not happening with algorithms like Banded-Smith Waterman
because in some cases they can find an alignment with more edits than the
reserved band as it will be discussed in the next section.

To solve the aforementioned problem there are two solutions. Either keep track
of the indexes that were not aligned and realign them in a later step, or raise
the edit threshold of all the GenASM aligners by some amount. Running the
same balancing script but for greater thresholds that bin pairs into categories
of higher edits. The following results were recorded (GenASM-+X means that
the pairs were binned X edits higher than SneakySnake predicted).

Aligner | Accuracy | Software Time(s) | Hardware Time(s) | Speedup

GenASM+1 0.72 4.84 0.023 x211
GenASM+-2 0.94 6.72 0.029 x227
GenASM+3 0.99 6.71 0.03 x220

Table 4.4: GenASM+X Aligners
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Edit Threshold ‘ Aligners ‘ Workload ‘ Workload/Aligner

4 2 27710 13855
) 3 42141 14047
6 3 41061 13687
7-8 5 68220 13644
9-10 1 10941 10941

Table 4.5: GenASM+-3 configuration with simulated dataset

A Hardware Time(s)-Accuracy (total for the whole architecture) plot for the
four designs is shown in Figure 4.1:
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Figure 4.1: GenASM aligners

Because we want to maximize accuracy and minimize time, the Pareto opti-
mal aligners are the original GenASM and the GenASM+3. Because in ge-
nomics accuracy is very important and the difference in time is negligible,
GenASM+3 is the best aligner for the simulated dataset. This final config-
uration as calculated by the balancing script has 11941 max Workload /Aligner
with a resource utilization as shown in the following table.

BRAM(%) | LUTs(%) | FFs(%)
93 | 56 | 4

Table 4.6: GenASM-+3 Resources

Another important comparison, is the speedup between the binned version
proposed by this thesis against a configuration of GenASM aligners that their
edit threshold was not exploited by filtering. Because the simulated dataset
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has an upper edit threshold of 10 edits, the FPGA was filled with as many
GenASM aligners it could fit with an edit threshold of ten. The result was,
that 10 aligners could fit with a re source utilization of:

BRAM(%) | LUTs(%) | FFs(%)
9 | 49 | 3

Table 4.7: Baseline Genasm Resources

That means, that the Workload/Aligner is 20000 and the Hardware Time(s)
is 0.043s yielding a x250 speedup in respect to a software implementation run-
ning at 10 edit threshold for the whole dataset. The results that compare the
GenASM+-3 aligner against the base GenASM are shown in the following table:

Aligner | Hardware Time(s) | Speedup(in respect to Base) | Accuracy
Baseline GenASM 0.043 1 0.999
GenASM+3 0.03 1.6 0.99

Table 4.8: Comparison between baseline GenASM and GenASM+3

As shown above, there is a x1.6 speedup between the base version and the
proposed aligner with a very slight loss in accuracy (only 0.009).

4.2 Banded Smith-Waterman with simulated dataset

The same reasoning was used for this experiment. After using a balancing script
but with LUTs as critical resource instead of BRAM the following configuration
of Banded Smith-Waterman kernels was proposed.

Edits ‘ Aligners ‘ Workload ‘ Workload/Aligner

4 26 151233 2816
6 ) 28899 2579
10 2 10941 2470

Table 4.9: Banded Smith-Waterman(BSW) configuration with simulated dataset

The above configuration of aligners has a total resource estimation of:

BRAM(%) | LUTs(%) | FFs(%) |
27 | 9% | 4 ]

Table 4.10: Total Resources of BSW on simulated dataset

After binning the data to the proposed bins with the help of SneakySnake,
the Banded Smith-Waterman algorithm with an appropriate edit threshold was
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Bin | Time(s) | Accuracy
1-4 0.844 0.997
o-6 0.337 0.999
7-10 | 0.0224 1
Total 1.20 0.998

Table 4.11: Software Metrics for BSW

executed for each bin. The results are the following, in respect to time and
accuracy.

For hardware estimation, the maximum Workload/Aligner was used to es-

timate how many times the hardware kernels must be executed. To ensure
that data transfer overhead between runs of the same kernel was minimized,
an axi-stream interface was used to stream data from a FIFO queue to the ker-
nels. The max Workload/Aligner is 5816 on the aligner of edit threshold E=4
which needs 333 cycles to fully execute. So, given a 10ns clock period time, the
hardware needed to fully run was 0.019 seconds, resulting in a x62 speedup in
respect to software alignment.
A major benefit of Banded Smith-Waterman is the accuracy in respect to
SneakySnake. Banded Smith-Waterman does not inherently reject pairs that
have more edits than its band. Banded Smith-Waterman only rejects pairs that
attempt to search the DP matrix in areas that extend further than its band.
That happens only if the pair has many insertions or deletions. Insertions make
the algorithm search cells further from the main diagonal on one side and dele-
tions to the other. So, it needs many gaps of the same type, in order not to be
able to align two pairs. That results in great accuracy and there is no need to
explore +X aligners as in GenASM algorithm.

To compare the binned version proposed by this thesis against a configuration
of Banded Smith-Waterman aligners that their edit threshold was not exploited
by filtering. Because the simulated dataset has an upper edit threshold of 10
edits, the FPGA was filled with as many Banded Smith-Waterman aligners it
could fit with an edit threshold of ten. The result was, that 20 aligners could
fit with a resource utilization of:

BRAM(%) | LUTs(%) | FFs(%)
27 | 9% | 6

Table 4.12: Baseline BSW Resources

That means, that the Workload/Aligner is 10000 and the Hardware Time(s)
is 0.035s yielding a x68 speedup in respect to a software implementation running
at 10 edit threshold for the whole dataset. The results that compare the Banded
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Smith-Waterman aligner against the base BSW are shown in the following table:

Aligner ‘ Hardware Time(s) ‘ Speedup(in respect to Base) ‘ Accuracy
Baseline BSW 0.035 1 1
BSW 0.019 1.84 0.998

Table 4.13: Comparison between Base BSW and proposed BSW

As shown above, there is a x1.84 speedup between the base version and the
proposed aligner with a very slight loss in accuracy (only 0.002).

Comparing all the aligners for the simulated dataset, we conclude these re-
sults.

Aligner ‘ Accuracy ‘ Hardware Time(s)
GenASM 0.63 0.017
GenASM+1 0.72 0.023
GenASM+-2 0.94 0.029
GenASM+3 0.990 0.028
BSW 0.998 0.019

Table 4.14: Comparison between the two aligners for the simulated dataset

We see that Banded Smith-Waterman performs better than GenASM in
terms of latency and accuracy, even so we tried to optimize GenASM. Al-
though some GenASM variations have better latency than BSW, they have
very poor accuracy which make them not valid candidates for a good aligner.
In every case, the proposed design performs better at alignment than the base
algorithms.

4.3 GenASM with real dataset

The same reasoning was used for this experiment. After using a balancing script
but with BRAM as critical resource, the following configuration of GenASM
kernels was proposed.

Edits ‘ Aligners ‘ Workload ‘ Workload /Aligner

1 2 413460 206730
3 3 689054 229684
) 3 722505 240835
7 3 675909 225303
9 2 446219 223109
15 2 164311 164311

Table 4.15: GenASM configuration with real dataset

The above configuration of aligners has a total resource estimation of:
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BRAM(%) | LUTs(%) | FFs(%) |
97 | 70 | 5 |

Table 4.16: Total Resources of GenASM on real dataset

After binning the data to the proposed bins with the help of SneakySnake,
the GenASM algorithm with an appropriate edit threshold was executed for
each bin. The results are the following, in respect to time and accuracy.

Bin | Time(s) | Accuracy
1 5.32 0.999
2-3 17.9 0.994
4-5 26.13 0.968
6-7 29.73 0.926
8-9 24.9 0.878
10-15 | 27.51 0.999
Total | 131.55 0.96

Table 4.17: Software Metrics for GenASM on real dataset

For hardware estimation, the maximum Workload/Aligner was used to es-

timate how many times the hardware kernels must be executed. To ensure
that data transfer overhead between runs of the same kernel was minimized,
an axi-stream interface was used to stream data from a FIFO queue to the
kernels. The max Workload/Aligner is 240835 on the aligner of edit threshold
E=5 which needs 216 cycles to fully execute. So, given a 10ns clock period
time, the hardware needed to fully run was 0.52 seconds, resulting in a x252
speedup in respect to software alignment.
This time GenASM has a much better accuracy than before. This shows that
pre-filtering is very dataset dependent and the accuracy error SneakySnake can
introduce depends heavily on the dataset and the distribution of edits within
that dataset.

To compare the binned version proposed by this thesis against a configuration
of GenASM aligners that their edit threshold was not exploited by filtering.
Because the real dataset has an upper edit threshold of 15 edits, the FPGA
was filled with as many GenASM aligners it could fit with an edit threshold of
fifteen. The result was, that 6 aligners could fit with a resource utilization of:

BRAM(%) | LUTs(%) | FFs(%)
84 | 20 | 6

Table 4.18: Base GenASM Resources for real dataset

That means, that the Workload /Aligner is 760000 and the Hardware Time(s)
is 1.7s yielding a x266 speedup in respect to a software implementation run-
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ning at 15 edit threshold for the whole dataset. The results that compare the
GenASM aligner against the base GenASM are shown in the following table:

Aligner | Hardware Time(s) | Speedup(in respect to Base) | Accuracy
Baseline GenASM 1.7 1 0.999
GenASM 0.52 3.26 0.96

Table 4.19: Comparison between Baseline BSW and proposed BSW

As shown above, there is a x3.26 speedup between the baseline version and
the proposed aligner with a small loss in accuracy (0.03).

4.4 Banded Smith-Waterman with real dataset

The same reasoning was used for this experiment. After using a balancing script
but with LUTs as critical resource instead of BRAM the following configuration
of Banded Smith-Waterman kernels was proposed.

BSW size ‘ Num. of Aligners ‘ Workload ‘ Workload/Aligner

4 11 1457776 132525
7 8 1043152 130394
8 2 255347 127673
11 3 412811 137603
15 1 76924 76924

Table 4.20: Banded Smith-Waterman(BSW) configuration with real dataset

The above configuration of aligners has a total resource estimation of:

BRAM(%) | LUTs(%) | FFs(%)
21 | 96 | 4

Table 4.21: Total Resources of BSW on simulated dataset

After binning the data to the proposed bins with the help of SneakySnake,
the Banded Smith-Waterman algorithm with an appropriate edit threshold was
executed for each bin. The results are the following, in respect to time and
accuracy.

For hardware estimation, the maximum Workload/Aligner was used to esti-
mate how many times the hardware kernels must be executed. To ensure that
data transfer overhead between runs of the same kernel was minimized, an axi-
stream interface was used to stream data from a FIFO queue to the kernels.
The max Workload/Aligner is 137603 on the aligner of edit threshold E=11
which needs 354 cycles to fully execute. So, given a 10ns clock period time, the
hardware needed to fully run was 0.48 seconds, resulting in a x47 speedup in
respect to software alignment.
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Bin | Time(s) | Accuracy

1-4 6.41 0.99
o-7 7.92 0.96
8 2.37 0.90
9-11 491 0.95
12-15 1.13 0.99
Total | 22.76 0.97

Table 4.22: Software Metrics for BSW on real dataset

To compare the binned version proposed by this thesis against a configuration
of Banded Smith-Waterman aligners that their edit threshold was not exploited
by filtering. Because the simulated dataset has an upper edit threshold of 15
edits, the FPGA was filled with as many Banded Smith-Waterman aligners it
could fit with an edit threshold of fifteen. The result was, that 15 aligners could
fit with a resource utilization of:

BRAM(%) | LUTs(%) | FFs(%)
2 | 94 | 5

Table 4.23: Base BSW Resources

That means, that the Workload /Aligner is 304000 and the Hardware Time(s)
is 1.11s yielding a x45 speedup in respect to a software implementation running
at 15 edit threshold for the whole dataset. The results that compare the Banded
Smith-Waterman aligner against the base BSW are shown in the following table:

Aligner | Hardware Time(s) | Speedup(in respect to base) | Accuracy
Baseline BSW 1.11 1 0.99
BSW 0.48 2.31 0.97

Table 4.24: Comparison between base BSW and proposed BSW on real dataset

As shown above, there is a x2.31 speedup between the base version and the
proposed aligner with a slight loss in accuracy (0.02).
Comparing the two aligners for the real dataset, we conclude these results.

Aligner | Accuracy | Hardware Time(s)

GenASM 0.96 0.52
BSW 0.96 0.48

Table 4.25: Comparison between the two aligners for the simulated dataset

The two aligners have very similar accuracy on the real dataset. In terms
of hardware latency, GenASM is 0.04s slower on the real dataset than Banded
Smith-Waterman.

All the aforementioned results are presented in Figure 4.2 and Figure 4.3
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4.5 SneakySnake Overhead

Despite using SneakySnake as an offline profiling tool, it is important to mention
the time overhead it introduces when discussing the speedup of the proposed
architecture. We compare the end to end workflow that includes both filtering
and alignment. We compare the following configurations:
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« software filter + accelerated aligner against software pipeline
» software filter + accelerated aligner against baseline aligner
« software filter + binned software against baseline software

SneakySnake time for the simulated dataset is 0.016s and for the Illumina
dataset is 0.35s.

When comparing the software binned version to the hardware binned version,
the SneakySnake time is just added to the two latencies and then find the new
speedup. This produces the following results.

Experiment ‘ Dataset ‘ Original Speedup against software ‘ Speedup after overhead

GenASM | simulated x220 x144
real x252 x151

Banded SW | simulated x36 x23
real x47 x29

Table 4.26: Measuring Speedup against software including the SneakySnake overhead

When comparing the proposed architecture (hardware binned version) to
the baseline scenario aligners, the SneakySnake overhead is only added to the
proposed architecture.

Experiment | Dataset Original Speedup Speedup after overhead
against Baseline Hardware
GenASM | simulated x1.48 x0.955(Slowdown)
real x3.26 x1.95
Banded SW | simulated x1.8 x1.09
real x2.29 x1.46

Table 4.27: Measuring Speedup against base hardware including the SneakySnake overhead

In most cases we observe a speedup even after the SneakySnake overhead
is introduced. Two key observations can be made. First, the more data we
process the greater the gain from SneakySnake. Second, various aligners can
behave different on different datasets. GenASM has better speedup on the real
dataset, and Banded Smith-Waterman has better speedup on the simulated
dataset. Finally, these results, especially the slowdown, call for further research
on SneakySnake and pre-filtering algorithms in general, as well for a full hard-
ware implementation that can speedup this process without losing too much
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accuracy.

When comparing the software versions of our binned proposed architecture
to the base software the overhead time is only added to the binned architecture.

Experiment ‘ Dataset ‘ Software Speedup against Baseline Software

GenASM | simulated x2.1
real x2.47

Banded SW | simulated x2.2
real x2.29

Table 4.28: Software Comparison

These results show the importance of data-aware procedures and architec-
tural design, and that those techniques can benefit both Hardware and Software

implementations.
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Chapter 5

Conclusion

5.1 Summary

This thesis explored the design of different genomic aligners, deployed on FPGA-
based accelerators using a data-aware approach. This approach was achieved
by using the pre-filtering algorithm SneakySnake, enabling a more custom-to-
dataset design methodology of the alignment step of the genomics pipeline.
Also, High Level Synthesis tools were used as a method to speedup the design
process and testing if such tools are good candidates for genomics hardware
design.

First, the proposed methodology exposed the benefits of using pre-filtering
algorithms to speedup alignment. By efficiently discarding dissimilar pairs and
by giving insights of exact edit thresholds, a custom configuration of aligners
could be deployed to achieve speedups of over x2 for certain aligners. These
results highlight the importance of the pre-filtering step, and show how impor-
tant is to develop good pre-filters with great accuracy.

Second, this thesis showed how useful High Level Synthesis can be in de-
signing hardware for genomic algorithms. It significantly sped up the design
and testing procedure, as writing in more human understandable languages like
C, instead of hardware description languages like VHDL or Verilog, can make
the design process that much easier. Despite its more limited capabilities, in
respect to HDLs, it proved quite useful and capable in designing complex DP
algorithms with great results.

Finally, this work emphasizes the need of data-aware approaches when de-
signing systems for genomic pipelines. Genomic datasets can vary in many
aspects, e.g. edits distribution, distribution of edits and types of edits within
the sequences. This information can be exploited by designers to create more
data-aware hardware kernels and systems that greatly improve the accuracy
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and latency of such designs.

5.2 Future Work

The current work can be expanded in various directions:

Deployment of the designs mentioned in the current thesis on an actual
board to extract real measurements and not estimates

Mapping the above designs to Alveo boards’ multiple SLRs to be able to
fit even more aligners into a system to achieve greater speedup

Executing experiments on whole human genomes

SneakySnake can be specifically designed to run on hardware, creating a
complete end-to-end pipeline that will drastically reduce the time needed
for both pre-filtering and alignemtn to be executed

Designing a Verilog/VHDL implementation of banded WFA with the data-
aware workflow of this thesis to explore if it can produce great results as
it achieves on CPUs and GPUs

Verilog/VHDL implementations of GenASM and Banded Smith Waterman
that can achieve greater hardware times and maybe better area utilization.

Explore even more data-aware workflows for genomic pipelines
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