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IlepiAnypn

Ot audavopeveg UMTOAOYIOTIKEG ATTALTOELS KAl Ol MEPLOPIONO0T KATHAK®OOTG TRV IOVOAL-
KAV APXITEKTOVIK®V £XOUV O8NYr0el OtV U0OETN0N apXITEKIOVIKGOV TToU Paocifovtal oe
mikpoUninpeoieg. a ) draxeipion autng g TOAUTTAOKOTNTAS PI€ AUTOIATOIIOLEVO TPOTIO,
mAatpoppeg oniwg to Kubernetes €xouv yivel 1000 10 Blropnxaviko 000 Kat 10 akadnpaiko
POTUTTO AOY® NG AVOEKTIKOTNTAG, TG EMEKTACTHOTTAG KAl TG EUEAKTNG UTIOOTPENS -
VOPXIOTP®ONG AUT®V IOV APXITEKTOVIK®V TTOU Bacilovial os PiKpoUTpeoieg, e1d1ka pe v
eloayeyn scalers ornwg to Horizontal Pod Autoscaler (HPA). Qotdéco, autoi ot scalers PBa-
otlovtal oe amdoikeég eupetikeg peBodoug nou Paocilovial oe KATOPAL, o1 ortoieg Hev avraro-
Kpivovial BéAtiota ota MOAUMAOKA MPOTUIA OPTOU £pyAciag MOU aVIHEI®T{oUV autd td
ouotfpata rou Paocidoviat o pikpoUnnpeoieg. O KUPLOg OTOX0G AUTHS TG SUTAGUATIKAG
epyaoiag eivat va nipoteivet éva pipeline diaxeipiong rmopwv rmou cuvduddet v enomteudpe-
vr pabnon pe 1o mBavodoyiko calibration yia tov eviormopo 1oV KPiolHeV OTOXEI®V TTOU
g€ayovtat aro ta dedopéva 1XvnAdtnong ToU CUCTHPATOG KAl TNV EVIOXUTIKY pabnon yua
TNV ATTOTEAEOPATIKY] KATAVOUT] TV IopaVv 1ou Kubernetes. Tautoxpova, mpaypiatonoteitat
eCaynyr kplopng dadpopng pe w) xpnon tou CRISP kabodnywvrag avddoya ) Anyn a-
MOPACER®V TOU TIPAKTIOPA EVIOXUTIKAG nabnong. Ta v adlodoynon teov rpoavapepbeviav
mAnpogopiov 1ou e§nxbnoav, n napovoa epyaocia OUYKPIVEL TPEIS TPAKIOPES EVIOXUTIKNG
pébnong, tov Proximal Policy Optimization (PPO), tov Trust Region Policy Optimization
(TRPO) xat tov Synchronous Advantage Actor-Critic (A2C), pe tov paxktopa PPO va ek-
nadevetal pe §Uo Sapopetikoug aplOpoug eneloodiov, aglodoywviag tnv Kavotntd Toug
va dlayxepidovral anotedeopanikda toug nopoug Kubernetes pe petpikeég onwg n and akpo-
oe-akpo kaBuotépnon (end-to-end latency) oe diadopa ekatootnuopla oe ouvduacpo e
TV ONHAVIIKI] PEIPIKY TOU PECOU Opou avarrtuocoopevev Pods eve tautdyxpova tovidetl ta
HE10VEKTIATA TIOU IIPOKUITIOUV Ao 1§ IpoavapepBeioeg PEIPIKES TRV H1APOPETIKOV AUTAOV
npaxktopwv. Ta anoteAéopata g a§loddynong avadelkviouy OTL 1] LarpoxXpovia eKaideuon)
0€ T€T01a TTOAUTTIAOKA OUCTHHATA €ival arapaitntn POoKEIEVOU va ermteuxel n kavotnta
BEATI0TNG KATAVOTG TIOP®V EVM AKOUN KAl HE MTEPLOPIONEVT EKTIAIOEUOT], O1 TIPAKTOPEG TTETU-
Xav e€a1petikr] anodoorn os oUYKPLon pe autr) tou KHPA, avadsikvioviag tn onpacia tétolwv

npaxktopwv ota cuotnuata Kubernetes.

Aggerg KAebua

Kubernetes, Katavopr [1opov, EAactikdtnta, Yriodoyiotks vépoug, Mnyavikr) Mabnon,

Evioxutikn Mda6nor), DeathStarBench, FIRM, CRISP, Apxttektovikyy MikpoUninpeoiov
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Abstract

The increasing computational demands and scalability limitations of monolithic ar-
chitectures have driven the adoption of microservices-based architectures where applica-
tions are composed of loosely coupled deployable services. To manage that complexity in
an automated way, platforms like Kubernetes have become both the industry and aca-
demic standard due to their resilience, scalability and versatile support of orchestrating
these microservices-based architectures, especially with the introduction of scalers like
Horizontal Pod Autoscaler (HPA). However, these scalers rely on simplistic threshold-
based heuristics which do not respond well to the complex workload patterns these
microservices-based systems encounter. To address this limitation, this thesis’s main ob-
jective is to propose a resource management pipeline, that combines supervised learning
with probabilistic calibration to identify the critical components extracted from the sys-
tem’s trace data and reinforcement learning to allocate Kubernetes resources effectively.
This work uses CRISP to extract the constantly changing critical paths of the system, guid-
ing the decision-making of the reinforcement learning agent accordingly. To assess the
aforementioned information extracted, this thesis compares three reinforcement learning
agents, Proximal Policy Optimization (PPO), Trust Region Policy Optimization (TRPO) and
Synchronous Advantage Actor-Critic (A2C), with the PPO agent being trained with two
different number of episodes, evaluating their ability to manage Kubernetes resources
efficiently with metrics such as the end-to-end latency on different percentiles (50, 95,
99) and the average deployed Pods in the cluster while at the same time highlighting each
agent’s limitations based on the aforementioned metrics. The evaluation results demon-
strate that long-term training in such complex systems is necessary in order to obtain
the ability to allocate resources optimally. Notably, even with limited training, the agents
achieved strong performance compared to each other and the KHPA baseline, showcasing

the importance of such agents in Kubernetes clusters.

Keywords

Kubernetes, Resource Allocation, Elasticity, Cloud Computing, Machine Learning,

Reinforcement Learning, DeathStarBench, FIRM, CRISP, Microservices Architectures
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KegpaAatro m

Extevng IepiAnyn

Ta tedeutaia xpovia, 1o UTIOAOY10TIKO VEPOG (cloud computing) €xel petapopPmoetl Tov
TpOIT0 Je oV ortoio avarrtuooovtal epappoyes. Ta ouyypova kévipa dedopévav peyaing
KAipakag @Aogevouv rmiéov éva eupl @dopa SnPoPIA®V UTNPECIHV TTIOU enPedouv oxedov
KaBe mruxn g avlporvng Spactnplotntag. a v KaAuyn 1@V CUVOETOV ATIAITHOE®V TOV
XPNOTOV HETASU TV S1aPOPETIK®V UTINPECIOV EVOG TTAPOXO0U, 1] 0UVHONG MPocéyylorn oto Ia-
PEABOV 1TV 1] KATAOKEUT] H1ag HEYAANG, OUXVA TIEPITTAOKNG APXITEKTOVIKIG, TNG AEYOHEVNG
BovoAO1kn g apxtiektovikig (monolithic architecture), otnv omoia 6Aeg ot Aettoupyieg vdo-
o10UVIAl ®G £Viaio oUVOAO KOG1KA KAl avarituooovial og Pia eviaia eKteAéon epappoyn.

Av KAl auty 1 TEXVIKY NIAV €MAPKNG O armlouoctepa mepiBaddlovia, Kabwg o apiBpog
TV UMNPE01OV audvetal, emMQEPEL ONPIAVIIKT TTOAUTIAOKOTNTA, Kabiotwviag tn Siaxeipion
6UoKkoAn 1 Kat avépikin. Ta tedeutaia xpovia, o1 MPOYPAPATIOTEG £XOUV OTpadel O 10
ATOKEVIPOPEVEG KAl EMEKTACIIEG MPOOEYYioelg. Metady 1oV apXITEKTOVIK®V ITOU IPOEKU-
yav ano auvty) ) petdBaor, o1 pikpoUTnpeoieg (microservices) €xouv anoktrjoet 16iaitepn

dnpogidia Adym NG ONUAVIIKLG KAIHAKQOIPOTTAS KAl avOeKTIKOTNTAG Toug [14].

0.1 Oswpntiro Ynobabpo

Te autnv v evotnta neplypadovial ot IePeADSeIg TEXVOAOYiEG TTOU XP1O10TIo|OnKav
0€ aut) Vv SUMAOPAtIKY epyaocia, Sekvaviag pe v avaluorn tou Kubernetes kat towv ouvo-
deuopevav texvodloywv. 'Enetta, 9a avadubei 1o koppat g Mnyavikrg Mabnong to oroio
€ITI0NG XPNOpornioOnKe eKtevog, Pe 1d1aitepn Epgaor) va napaxwpeitat oty Enorntteuopevn

Mdabnon kat v Evioyxutukr Mdabnon.

0.1.1 Kubernetes kat ouvodeuopeveg TEXVOAOYiES

To Kubernetes [1] (K8g) eivatl éva cuotnpa evopxrotp®ong container avoixtou kodika
yld TV autopatornoinor tng avdarrtuing, g KAHAK®OoNG Kat g dtaxeiplong epappoyov
oe container. [Mapakdte meptypdovial ta KUpla e§aptr)pata amo 1a onoia araptietal n

mAatpoppa autn:

e Nodes: 'Evag kopBog evOEXETAL va €ival Pid €1KOVIKY ] QUOLKI Pnxavy], avaloya pe
v uniobopn tou vépoug. KdbBe kopBog Siaxeipidetat ano to control plane 1} tov KUpio

KOPBo Kal TEPLEXEL TIG UMNPEDIEG TTOU elval armapaitnteg ya v dwaxeipion Pods.
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0. Extevrg [MepiAnyn

e Pods: Ta Pods eivat ot pikpdtepeg aAvantuooOPEVESG 11OVADES UTIOAOY10TAV TIOU eVOEYXE-
tat va dnpoupynBouv kat va dayeiptotouv oto Kubernetes. 'Eva Pod eivat piia opdda
€VOG 1] TIEPLO0OTEPHV container, pe Kovoxpnotoug nopoug anobrjkeuong Kat S1ktuou,
KAt pia podiaypadr) yia Tov 1poro eKtéAeong v container. Ta riepiexopeva evog Pod
Bpiokovtatl mavia os Kowr) torodeoia Kat mpoypappati{ovial TautoXpova Kat EKTEA0-
Uvtat og éva kowoypnoto riepiBardov. ‘Eva Pod poviedornotel évav "Aoyiké Kevipiko
UTIOAOY10TI]” TTIOU aopd CUYKEKPIPEVEG EPAPHIOYEG, TEPLEXOVIAG £va 1] TIEPLO0OTEPA
container spappoywv. Ta ocuykekpipéva container eivat oteva ouvdedepéva e Kot-
VOXPNOTOUG TOPOoUg arobrnkeuong Kat S1KtUou, Kat pia mpodiaypadr| yida tov TpoIo

ektéAeong toug[1].

e Services: Xe éva cluster, ta Pods eivat aotafrn, kabwg eviExetal va teppatiotovy 1
va enavekKvnBouv anpocdoknta. a autov 1ov Adyo, ta Services Ae1ToUupyouv ©g £va
agpnpnpévo eminedo mou ermrpenet myv adiormotn npocBaon ota Pods péon otabepmv
endpoints, ave§aptnta and ug duvapikég IP dieubuvoeig toug. Kabe Service opilet éva

ouvolo Pods kat évav 1poro npocBacng o autd.

e Deployment: To Deployment eivat artapaitnto kabag xeipidetat 1o lifecycle tov Pods
Sraxelpiloviag Asttoupyieg OMOG N KATPAK®OON Kat tapopeg ddAeg 1biaitepa Xpriotpeg

Aettoupyieg.

'Eva Kubernetes cuotnpa 1 ocuotdda arotedeital anod toug KopBoug epyaciag (worker
nodes) ot omtoiot draxepioviat ta Pods, ta oroia armotedovv ta otoixeia mou AapBavouv 1o
@optio epyaoiag. ITapdAdnda, to Control Plane 1] aAAidg xkopBog apéving (master-node)
etvatl unevBbuvo yia ) owotr) Asttoupyia t@v worker nodes kafmg Kat yia tov Iipoypappatt-
opo v Pods og autoug. Lta nmapayeyika iepiBaidovia, pia Kadr) npaktiky) eivat to Control
Plane va 61a6¢tel moAAanAd avtiypada oe S1apopeTikoug KopBoug eviog g ouotadag, ma-
péxoviag £€tol uywnirn dwabeopotnta kat avlhekukonta o opdaipata oto vépog. Ta xkupla

eCaptrpata tou KopBou-adEvin rmapouctalovial MapaKAat® :

e kube-apiserver: O Baoikdg Siakopiotig riou exkBétel 1o Kubernetes HTTP APIL.

e etcd: ZTuven|g kat vynlng Swabeopotntag Paon debopévav turnou key-value rou

anoBnkevel 0Aa ta dedopéva tou API server.

e kube-scheduler: Evtonilet Pods mou dev éxouv axkopa deopeutel oe karotov K6pBo
Kat ekXwpei 1o kabe Pod os katdAAnAo node. Xpnoponoioviag tov adyopifpo Round-
Robin, o scheduler srméyet évav node kat agiodoyel av eival kataAAndog ya tnyv

ektéAdeon tou Pod.
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0.1.1 Kubernetes kat cuvodsudpeveg texvoloyieg

|:> Extensible API

| Internal AP

Pod Scheduling Context e

Node for the z:::od to
Pod in Cache

TITIE

Scheduling Cycle / Binding Cycle

Pick a Pod from
New pods go scheduling
queue

Reserve a

[ sort

y

Score

PreEnqueue
PreFilter

Normalize
Score
Reserve
Permit

— =
WaitOnPermit
PreBind
Bind
PostBind

New pods gated

A

Zxnpa 0.1. ITAaiowo mpoypaupatiopov touv Kubernetes, Inyn: [1].

o kube-controller-manager: ExteAel controllers yia v epappoyr] g ouprepidpopdg
tov APIs tou Kubernetes.

e cloud-controller-manager (npoaipetird): Evoopatovetal pe v vnodopr) tou mna-

poxou cloud. IMapadeiypata napoxev eivat ot AWS [15], Microsoft Azure [16] kat
Google Cloud [17].

Yuveyxidovtag pe ta ototxeia tou kopBou (Node components) rmou ektelouvial oe KAOe

worker node kat sivat unieuBuva yua ) diatrpnon v evepywv Pods kat v mapoyxr| tou
niep1BaAdoviog exktédeong Kubernetes:

e kubelet: BeBaiwvetal o1t ta Pods ektedouvial omotd Katl Xepi§ opaipata, CUPIEPL-
AapBavopévav tov containers toug.

e kube-proxy (mpoaipetikd): Alaxeipiletal toug kavoveg HIKTUOU OToUG KOPBOUG GOTE
va vAorolouvial ta Services.

o Container runtime: Aoyiopiko uneuBuvo yia v ektédeon tov containers. To 1o

ouvnBOiopévo sivat to Docker (mA¢ov Docker Engine).

CLUSTER

CONTROL PLANE

cloud-controller-manager

GLOUD PROVIDER API

kube-api-server

Node | Node 2
ﬁ L

pod pod

scheduler controller manager

ube-scheduler kube-contoler-manager

pod

Zxfnpa 0.2. Apyuekrovikr) tou Kubernetes cluster, Ilnyn: [1].
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'Enetta, oe ouvduaopod pe 0Aeg 11§ aparave texvoloyieg, 1o Kubernetes diver ) 6u-
vatotnta KAPAK®OOLG, EIMTPEIOVIAS TV AUTOPAT] IIPOCAPHOYT] TV MTOP®V avaloyd He 1o
@opTtio Tou cuotnpatog. Ot KUpleg KAtnyopieg KAIPAK®ONG ToU epappodoviat givat ol mapa-

RKAT® :

¢ Opilévtia RApaKR®Oon: Mia amo TG Imo oNHavilkeg Katl 1o PeAETIEVT] TIPOCEYY10T)
autopang KAPAkaoong mopwv oto Kubernetes eivat n opiddoviia KAPAKeor, 1 oroia
rieptAapBavet v avinon 1 ) peioon tou aptdpov tv avitypapev Pod yia va taipiadet
HE TN QOPTOU £pyacoiag Kal TautoXpovad va KATAVEHEL TO (POPTO £pyAoiag ota TpEXovIa
avtiypaga Pod. Me autov tov 1pomo, ot edpappoyeg evdEXeTal va 51axelplotouv 1o
audnuévo @optio gpyaociag 1 va PEWOOUV T XProrn MOPV Ot MePLOdoug Xapning

gnong.

o KaBsetn RAlpdreon: Avibétwg, otv Kabetn kAipdkeorn to Kubernetes avti va au-
&avel 1) va pevel tov apdpo v avuypdpev Pod tng ouykekpiiévng urnpeoiag, to
Kubernetes eivat oe 9¢on va dmoel neplooodtepoug ropoug oto Pod, pe toug mo ou-
vnOopévoug va eivat 1 CPU kat n pviprn, MPOKEPEVOU va KAAUWEL TG TPEXOUOES

ATALTHOE1G TOU POPTOU epyaociag.

Vertical Scaling Horizontal Scaling

(Scaling up) (Scaling out)

Zxnpa 0.3. Kadewm kai opilovuia kiwdrxwon, ITnyn: [2].

'Exovtag Kat ot U0 TeXVIKEG Tdpda TTOAAA TTAEOVEKTIATA, Yia AOYOUg arAdtntag yia apxr) o
avt) v Sumdepatiky epyacia, Sa pedendel o pnxaviopog g opidoviag KANAK®OONG TOU
Kubernetes 1¢0nke og onpueio avapopdag otg peAéteg. O pnxaviopog autog eivat o Horizon-
tal Pod Autoscaler (HPA) kat Xpno10Itolel 1oV mapakdate® adyopidpo yia va rpoodiopioet

1ov KatdAAndo apOpod Pods yua éva cuykekpipévo Service:

currentMetric

desiredReplicas = ceil |currentReplicas X -
targetMetric

m Diploma Thesis



0.1.1 Kubernetes kat cuvodsudpeveg texvoloyieg

Me Bdon tov apandve alyopfpo kat pa dtapoppootpn avoyn (cuvnbwng 10%) rou epap-
pocetat oy Baokn avadoyia rApdkeong, to HPA AapBavet tnv anogaon va KATHAK®OOEL
ta Pods. Eivat moAu onpaviiko va onpelodet 0tt autog o aiyopiBpog AapBavet umoyn ola
ta Pod oe katdotaon Ready kat auta pe kaBopiopévn xpoviky onpavor Swaypaeng (avri-
Kelpeva pe Xpovikn orjpavon Siaypagng Ppiokovial oe Sradikacia teppatiopou/adaipeong)

ayvoouvtat kat 6Aa ta Pod nou éxouv amotuyetl anoppintoviat.

Ia v ouvexn napakoloubnon kat arnobrikeuorn TV 6e6o0pévev Ao ) MEPUTAOKT ap-
XUTEKTOVIKI] TOV HIKPOUTINPECIOV Xpnotporot)dnkav ta §Uo mapakdat® spyaleia, ta oroia

avaAvovtal OUVTOITIKA

o Jaeger: To Jaeger [3] elval éva oUotnia KATAVERNEVOU EVIOITIOHNOU AVOlXTOU KOO1KA,
anod axkpo oe AKPo, Iou avarrtuxdnke apyxikda amno v Uber yia v nmapakoAoubnorn
Kdl TV AVIIPEIOITON OUVOETOV apXlIEKIOVIK®V HUIKpoUTnpeolov. Bonba toug mpo-
YPAHHATIOTEG VA KATAVONOOUV TIRG TA AT HATA PEOUV HECR EVOG GUOTIATOG CUAAEYO-
Viag Kat ortkonowwviag dedopéva evioriopou, ta ornoia nepltiapBavouv mAnpodopieg
XPOVIOPOU yla Asttoupyieg oe moAAarAég vnnpeoieg. H apyitektoviki) tou @aivetat

MAPAKAT®

Eava A nuch@@a G\’

................

jaeger ul

| |
| 1

| v

i cati A collector e ™ jaeger

: Application '] L Kaika ,‘ s T

1 1 GRECAT — _/ @sync | g indexer

! jaeger-client || | sampling :

I 1 jaeger
1 1

I 1

I 1

| 1

| 1

|

| |

| 1

query

A
trol
Spans I Confro push

(UDP)

: flow

Flink T

i streaming LIIBJ
A ! i

Control flow poll
(sampling, etc.)

Zxnpa 0.4. Apyutektovikr] tou Jaeger, ITnyn: [3].

e Prometheus: To Prometheus eival éva ouotnpa napakoAoubnong kat eidomnoinong
OUCTNHATOV AVOI1XToU KOd1KA mou dnuoupyhOnke apyika oto SoundCloud [18], aAAd
aro o 2016 éxet eviayBei oto CNCF [19] wg 1o 8eUtepo pAogevoupevo £pyo, HETA TO
Kubernetes [1]. To Prometheus cuAAéyet kal anoBnkevet 11§ PEIPOelS TOU &G dedo-
péva xpovooelpwv, dnAadr ol mAnpodopieg PeTprioe®v armobnkevovial Pe 1) XPOVIKY)
onpavon otnv onoia Kataypadpnkav, padi pe mpoatpetikd {euyn KAe1810U-TNG TTIOU

ovopadoviatl etketeg [4]. H apyitektoviky 1ou gaivetal mapakdatm :
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Service discovery Prometheus
Short-lived alerting = pagerdu‘rg

b
jovs kubernetes file_sd

push metrics N Alertmanager [~ Email
atexit i

discover -
targets H notify_

etc

Pushgateway { Prometheus server i
i push
alerts

e UL L Retrieval [ TsDB ey HTTP [

metrics server
PromQL

9 Prometheus
; web Ul
v
Jobs/ Node HDD/SSD Grafana Data
S—— oy visualization

exporters
and export

Prometheus
targets -l APl clients

IZxnpa 0.5. Apyuextovikr) tou Prometheus, ITnyn: [4].

0.1.2 Mnyxaviky pabnon, Enonteuopevny Mabnon rat Neupwvira diktua

H Mnxavikn pdOnon [20] eivatl évag topéag g TEXVNTHG VOO0 UVIG TTOU EIMITPETIEL OTd
ouotfjpata va pabaivouv autopata potiBa kat va AapBavouv anopaocelg 1 mpoBAEWelg e
Baon 6edopéva, xmpig va mpoypappatidoviatl pnid yia CUYKeEKpiEveg epyaoies. Baoidetat oe
OTATIOTIKEG KAl UTTOAOYIOTIKEG TEXVIKEG Y1a TNV €6ay®YL MANPOQOPI®V Ao HIKPpA 1 peyaia
oUvoAa 6ebopévev Kal TauTOXpovad TOV HETPLAOHO TG ITOAUTTAOKOTITAG TG ATTAITOUHEVIS
epyaoiag. ITpoxkepévou autd ta cuotrpata va pabouv potiBa, epappodoviatl pabnpatikoti
aAyopiOpot oe TOAAEG emmavaArPelg, OU ovopadovial €MOXEG, Yid TNV EMAVAANIITIKI) TIPO-
OOPHOVI] TOV MAPAPETPOV TOU poviedou. Mia e1d1kr) Katnyopia g pnyxavikng pabnong
etvat n) emBAenopevn pabnor, oty oroia 1o oUvoAo dedopévav oto omoio pabaivel o erava-
AnNnukog adyop16p10g ePmePIEXEL ETIKETEG EIMITPEIIOVIAG TOUG va TPOBAEIOUV 1) va tagivopouy
artoteAéopata ripoodilopidoviag potiBa kat oxEoelg PETAiU XApaAKTIPIOTIKGV £100860U KAt TV
etket®v. 'Etol 1o poviédo npooappodel enmavaAnmuikd g mapapérpoug Tou yia va eAaxt-
OTOITOW0EL TG TIHEG PETASU MPOBAEMOPEVROV KAl TIPAYHATIKOV TIHOV, OM®S KAaAgital arno pa
OUVAPTNON ATIVAEIAG. XTN OUYKEKPIPEVI SUTAQPATIKY] £pyacia 0 KUPlog alyopldpog rmou
Xpnotpornow)Onke eivat o Support Vector Machine (SVM) [21] o omoiog eivatl aAyopiBpog
ETTOITTEVOEVNG 1AONONG TTOU XPNOTIoIIo0UVIdl KUpieg yia tagivounorn. H Baowkr) 16a sivat
va PBpebei éva unepemninebo o Evav XWPO XAPAKINPIOTIKOV UPNANG didotaocng mou Staxm-
pidel onpeia dedopévav dladopetik®v KAAoewmV Pe 10 peytoto duvato nepdwpro. Ta onpeia
b6edopévav rmou Bpiokovial mo kKovid oe auto 1o urneperninedo ovopddoviatl Siavuopata uro-
omping, kabwg opidouv 1o VP10 Kat £101 10 ypapika Staxepiotpo rpoBAnua meptypddetat

WG:

) 1 2
— 1
min 5l -
yi(wai + b) > 1, (2)
i=1,...,N (3)
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0.1.2 Mnyxavikn pdadnor, Enortteuopevn Mabnon kat Neupwvika diktua

6mou N eivat 10 cuvoAikd mARB0g TV onpeiov Sedonévav, ne x; € RY kat y; € {-1, 1} yia
i=1,...,N.
Zinv nepimwor) mou ta 6edopéva dev eival ypappika diaxwpiopa, eiodayoviatl duo tpo-

TOTION0E1g otr| Baoikn Siatvniwon tou SVM:

e MetaBAntég avoxng (slack variables) & > O dote va srurpénovial opaipata tagi-

vounong (soft margin).

e Ancirovion pe nupriva (kernel mapping) ¢(x) yia tov petacxnpatopd v 6e6o-
HEVOV 08 XOPO XApAKINPIOTIKGOV PeyaAutepng didotaong, orou sival uvatog o ypap-

P1KOg dax@plopog.

Opiletatl pla anekovion yla v €miAuorn) 10U apakdate rpoBArpatog BeAtiotonoinong:

(,‘l):Rd—)’]-{ (4)

min Sl + ci & 5)
wbé 2 —

y(w o) +b)>21-§& i=1,....N (6)

=0, i=1,...,N (7)

orou C > 0 eivat napaperpog rmou pubuilel v 1w0opporia Petady tou MAATOUG TOU
rep1®wpPiou KAl TV OPaApdtev Tagivopnong.
Avti va urtodoyiotet pntd n ¢(x), epappoletal 1o k6Ano tou nuprjva (kernel trick), pe

10 OIT0{0 TO E0WTEPIKO YIVOHEVO @(x;) T (X)) aviikadiotatatl and pia cuvaptnor) mupnva :

K(xi. %) = ¢(x) " p(x5) 8)

ZuvnO1opEveg eMAOYEG Y1 OUVAPTHOEIS TTUPvaA €ival 0O TIOAUGVUHIKOG TTUPTNVAG, O TTU-
prvag aktuvikhg Bdong (RBF), kat o sigmoid muprjvag, pe tov kabe muprva va £xel 6ia-
(POPETIKA TTAEOVEKTPATA KAl pPelovektpatda. Eve ot mapadooiakoi aAyopiOpol pnxavikng
pabnong mou mapouctddovial mMapArndave £Xouv 1 duvatdinta va eival oAU anoteAeopa-
TIKOl KAl ouyvd odnyouv ot ToAU eAmibodopa arnotedéopata, 6tav 1o oUVoAo debopévav 1
0 OTOX0G-0TOX0G arattel ouvOeteg AUOELG, ATIATTOUVIAL IO OUVOETEG APXITEKTOVIKESG Yid TV
eriteudn adoruotng kat akpBoug artodoong. Eprmnveuopéva and tov avlparivo eykEpalo
avaruxtnkav ta VEUp®VIKAG 8iKktud, KATaOKEUAOPEVA ATIO PEPOVAIEVOUG VEUPMVEG KAl
ertineda (ouyva ovopalopeva kpupa smnineda). Kdbe veupodvag AapBavet pia 1) meplocotepeg
TIHEG €10060U, epappodet éva otabpiiopévo dBpoiopia akoAouboUevo aro pid P YPAPRHIKn

ouvdptnon evepyoroinong kat petabiBadet 1o anotédeopa oto endpevo erirnedo [22].

n
af’ = g(z wia ™ + b?)) ©)
=

orou :
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l , . ,
a§ ). 1] evepyortoinon tou veupova i oto ertiredo 1,

w?: 1o Bapog 1mou ouvdiel tov veupmva j oto rpornyoupevo erirnedo (I — 1) pe tov
]

veupova i,

bgl): 0 0pog petatorong (bias) yla tov veupova i,

g(+): pa un ypappikr) ouvdptnor evepyoroinong (r.x. ReLU, sigmoid 1 tanh),

e n: 0 ap1lBPog TWV VEUPHOV®OV OTO TIPONYOUHEVO eminedo.

0.1.3 Evioyutikn padnon kat Badiwa Evioyutiki pabnon

IV IIPONYOUEVE) £VOTHTA, MTAPOUCIACTNKAV Ol IIPOCEYYIOEIS TG ETOITIEVOHEVNG NAOn-
ong, ot ortoieg Baoidovtat oe peyddo Padbpo oe otatika, IPo-ermonuacpéva cuvola dedopévav
Kdl OUCLa0TIKA OE €évav €MOTTI Yid va 0X0A1adel eite Xe1poKivnta £ite P KAO10 IIpoypajl-
patidopevo Tpomo KAbe KATAX®PNOon otn HPETABANTH-0TOX0 aUTOU ToU oUvOoAou Sedopévav.
Auto evbéxetal va eivat oAU danavnpod kat ToAAEG popég aduvato va yivel oe epiBaidovia
emedou apaywyng OIou 1 T g PHetaBAntrg-otoxou eival ayveootn pexpt va oupBel to
yeyovog 11 aAddadel ouvexmg Pe v rapodo ToU XPOvVou, YEYOVOG TIOU Onpaivel 01l mpoKettal
yua éva e€alpetikd duvapiko nepiBaddov. Ta va emepdoet autég tg npoxrAroeig, 11 Evioxu-
Tkr) Mdbnon (RL) siodyet pia S1apopetiky mpoogyyion ota mpobAnpata §iadoxikig Anyng
anopacemv pe ) Xpnon v Auadikaciwv Aniogpaong Markov (Markov Decision Processes

(MDP)) o1 ormoieg mieptypadovial mapakdate :

M=(S, A P,RY)

orou:

'Eva ouvolo kataotdoemv s € S, 10 011010 EVOEXETAL Va €ival H1AKPITO 1] CUVEXEG.

e 'Eva oUvolo evepyeldv a € A 1ou €xel ) duvatotnta va ektedéoel o ipdkropag, Sia-

KP1IO0 1] OUVEXEG.

e Mia ouvdptnon aviapoiBrg
R:SXA—-R

n omoia avtiototyidel Evav mpaypatiko apfpo g aviapodn os kabe {euyog Kataota-
ONG-€VEPYELAG.
e Ma ouvaptnorn petaBacemv

P:SXAXS—][0,1]

orou P(s'[s, a) exkppadet Ty mbavotnta (ot S1akpity) mepint®on) 1) v MTUKVOTHTA Tt~
Savotntag (otn cuvexr) miepinteoon) petaBacng otny enopevy) kataotaor s’, dedopévng

G TPEX0U0AG KATAOTAONG S KAl NG EVEPYELAS A.

e 'Evag ouviedeotrg ripoegopAnong y € [0, 1], o oroiog kaBopilel tr) OXETIKT| onjpaocia tov

PeAAOVUIKAOV aviapoBev og 0XEoT e TG AJIEOES.
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’J Agent Il

state reward action

. _S.. | Environment ]4——

.

Zxnpa 0.6. AAAnAesnibpaon MDP, IInyn: [5].

O1 aAyopiBpuot evioxutikrg pabnong Paocilovtatr otnv évvola tng ouvaptnong agiag, n
ortola eKPPACEL TTIO0O IKAVOITOUTIK] £1val P1d KATAOTAOCT 1] P1d EVEPYELA OGS TIPOG Tr PLAKPO-

ipoBsopn abpolotikn aviapoBr) 1 onoia opidetal wg:

Gt = Res1 + YRes2 + V' Ries + VPR + -+
= Ry + Y(Rt+2 + YRi+3 + YZRt+4 + - )

= Rer1 + YGea (10)

Turukd, pa MOATTIKY] 0pideTal @G HPid AIEIKOVIOT Ao KATAOTAoelg 08 Bavotnteg emAo-
y1g kabe duvatng evépyelag. Av 0 MPAKTOPAG AKOAOUOel TV MOALTIKY) TT T XPOVIKI] OTIYHT)
t, 10te n w(als) dnA®vel v uno cuvlrKkn bavotnta ot Ay = a, Sedopévou o611 Sy = s.

O teA1kdg 0TOX0G £ival 1] HEYIOTOMOINoN NG AVAPeEVOREVNG aBPO10TIKTG TTPOEEOPANIEVNG
aviapoBrig, Péow tng eupeong uag PéAtiotng moAtukng n*. H ouvaptnon afiag xataota-
ong (state-value function) urn6 pla moAtukn © petacxnuarti¢etal og Bellman e§iowon kat

opiletal wg:

Vi(s)= ) m(als) )" P(s'ls, @) [R(s, @) + yV"(s")]

aceA s’eS
= Ba~n(ls) Z P(s'ls,a)[R(s, a) + yV”(s')]}
s’eS
= Eaun(ls |R(s.@) +y ) P(s'|s, )V"(s) (11
s’eS

Kal PEIpd thv avapevopevn abpolotikn aviapolBr) $eKivaviag aro thyv Katdotaon S,
akoAouBaviag TV MMOAITIKI) TT.
Avtiotoixa, n ouvaptnon afiag Kkataotaong-svépyelag (action-value function) opide-

Tal ©g:

Q"(s,a) = R(s,a) +y Z P(s’ | s,a) Z n(a’ | sHQ"(s',a’) (12)

s’eS a’eA

KAl PETPA TV avapevopevr avtapolBr) SeKvaviag aro v Kataotaot] S, EKTEAMVIAg v
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evépyela a, Kat €netta akoAoubBoviag v noAttkn . Me fdorn ta naparndve ot adyopidpot
g Evioxutikrig Mabnong xepidovral oe tpelg Katnyopieg 0mou 1 npotn Katnyopia Paocidetat
0T PEY10TOI0INoT KAMoag arno 1§ ouvaptroeig asiag, netta n devtepn Paoiletal oty Ka-
Teubeiav eKTIINON TG TTOATTIKEG KAl TEAOG, 1] Tpity Pfaciletal otov ouvduaopo aut®v v dUo
MPONYOUNEVRV TeEXVIKGV. [TapdAAnda, yia v eKTiNon 1OV MEPIMAOKOV AUTOV OUVAPTHOE®V
Umio niepimloka rep1BaiAovia, XPNnotpornolouvidl Ta VEUp®VviKA §iktua ta oroia, Orwg Iipo-
avapepbnkav €xouv ) Suvatotnta eKTIPNNONG OUVAPTINOE®V UTIO TepinmAokeg ouvOnkeg. Ot
aAyopiOpot ou Baocidoviat oe auty T TEXVIKY €KTipnong ovopalovial adyopibpot Babiag

Evioxutikng Mdabnong kat apatifevial mapakdate :

Function Learning
& Controllers
Approximators algorithms B j':“{{"“lll_d:dt_“-’“
« Convolutions Value-bazed RL Tl h L:r ?::ti?:tcrs
« Recurrent cells Policy-based RL ; yp' pd
S Model-based RL management

Replay memory Policies
Exp luratiull] Exploitation
dilemma

AGENT

ENVIRONMENT

1
1
1
1
[
[
1
1
1
[
I
I
1
!

Zxnpa 0.7. Isviko oxrjpa Badiag Evioyvtucric Madnong, Inyn: [6].

[Tio ouykekpIéva, o1 aAyopiBpiot ot o1oiol Xprotpono|fnkav yia ) peAtn g Kata-
voprg rmopwv oe cuotipata Kubernetes eivat ot mapakdie:

Apxwkd Trust Region Policy Optimization (TRPO) [23] eival évag and toug npwIoug
KAwvotopoug aAyopifpoug rou nipotddnkav, BeAtidvoviag tig KAaoikeg pebodoug policy gra-
dient péow g eloaywyng pag £Eurnvng ouvlrkng rou e§acdpalilel otabepr) KAl POVOTOVIKA
BeAtiovpevn exnaidevon g moAtikryg. Ot mapadooiakeg péBodot policy gradient evdéye-
1Al va IPaypatonolouV unepBoAkd PeyAdeg evnepwoelg, odnyoviag os anotopeg aAdayeg
OTNV MOAITIKY] KA1 OUVET®S TPOKUITIEL aotabrg pabnor), kabiotoviag tr oUYKALorn SUOKOAT.
Ma v avupeomnon avtov tev npoBAnudatev, 10 TRPO mpoteivel ) peylotornoinon evog
evadAaktkou otdxou (surrogate objective), o oroiog eivat urtoAoytotikd o evkoAog (Baot-
opévog otr) pébodo importance sampling, rou eivat texvikr) Monte Carlo), eve xprnowporotet
) KL-divergence [24] yia va e§aopadioet 0t 1) véa mOAMTIKY 6ev arokAivel onpuavika ard

TV PO yOUHEVT], TTapapévoviag eviog piag trust region. Me autdv tov 1poro s§aopadiletat
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0.1.83 Ewvioyutikr pabnon kat Babia Evioxutikr) pdabnon

otaBepr) kat adiormotn PeAtinon arnd Vv MOAITIKY) Ty, OV IOATTIKI) Ty.

old

max ES,CL"’T[@ M Anaold (S’ a) ( 1 3)
9 old 914 (a | S)
By, [Pkt (o (- | 5) | T | )] < 6 (14

orou 10 6 eival 1o 0ptlo g trust region, 1o oroio eAéyyel ) péyiotn emrpenopevy KL-

divergence petagu g nmaAidg Kat mg véag MOAUKNAG, Kat 1o Dk (ms,, || ms) eivat n anoxkAion
Kullback-Leibler rou petpd 1oco arorAivel ) véa TOAITIKY) Arlo v rponyoupevry. To A"
etval n advantage function (BA. 3.24). Av kat to TRPO nipoogépet otabepiég evepOOELS ITo-
Atkng péow tou constraint otnv KL-divergence, eivat uroAoyiotika akpi80, kabwg amnarttet

conjugate gradient optimization kat line search yia v ikavortoinorn tou neploptopou.

Avti yia auto, potdbnke €vag o arndog adyopidpog, 1o Proximal Policy Optimiza-
tion (PPO) [25], o omoiog aviikadiotd tov orAnpo neplopiopd onv KL-divergence pe pia
TIPOCEYY10TIKI) ouvdptnorn rmou Baocifetat ot clipping:

may(a; | St)

r(8) = m (15)

LCYP(8) = E; [min (r(8) A;, clip(ri(d), 1 — €, 1 + €) Ay)] (16)

OTIoU € eival pa unepriapdperpog (ouvhbwg 0.2). H avukepievikn ouvaptnon arnotedsitat
and 8Uo 6poug: o P®TOG £ival To apx1ko surrogate objective, eve o HeUtepog TO TPOTIOIIOE],
rieplopidoviag 1o Adyo mbavotIi®v ry WOTE va MAPAPEVEL VIog ToU Staotnpatog [1 —¢€, 1+ €].

Me autov tov Iporo aropeuyovial PEYAAES ATTOKAIOELG OTNV EVIHEP®OT] TG TOATTIKIG.

Tédog, pla akOpA IO AMMAOTIOUEVH] TIPOCEYYon eivat o synchronous Advantage
Actor-Critic (A2C) [26], otov omoi0, OTIRG MEPLYPAPNKE TIPONYOUHEVRG, XPNOolpomoteitatl
éva 6iktuo yla tov actor kat éva yia tov critic (1) éva koo 6iktuo, Onwg OTIg IIPOETNAEYIEVES

vlorojoelg B1BA100NKAV), Kat el0ayetal 0pog eviportiag ot cuvdptnon policy optimization:

Vodactor(8) = E¢ [Vglog ma(a | s¢) At + BVeH(1(s¢; 9))] (17)

Leritie(®) = B¢ [ (Gt = Va(s)’| (18)

omou H eivat ) eviportia KAt 1 UnepnapapeTpog 3 eAEyxet ) Baputnta tou 0pou entropy
regularization term. To rpoBAnpa raAivépopinong rmou ermAvstal péo® Tou critic, ouvduadet
Ha extipnon g avtapoBrg Gt pe ) pébodo Temporal difference (untapyet n Suvatdointa
va xprnoponown0ouv kat diAeg peébodot, oniwg Monte Carlo kat ng F'evikeupévng Extipnong

[MAsovekTtrpatog) Kat v npoBAeniopevn T TOU S1KTUOU critic.
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0.2 ApPYXITEKTOVIKI)

Auti) ) evotnta MAPEXEL TV TANPI APXITEKIOVIKL] TOU IIPOTEWVOHEVOU CUCTHIATOG, TIPO-
Kepévou va deidet g ta §1agopa orotkeia ou avaAubnkav rnponyoupéveag aAAniermdpouv
yla ) daxeipion kat ) PeAtioronoinon g kKatavopung nopwv oto Kubernetes. H apytte-
KTOVIKH aroteAeitat aro 6 kupla erineda ta oroia @aivovial mapakdat® :

Kubernetes
Cluster

Cluster Nodes

o o Q Q Interfere with the environment

Pods per service
(DeathStarBench)

@ Client workload

@Deployment Class

Trace-Telemetry Data
extraction

Monitoring System(s)

P Action
@ A“TJ/‘" 9 Reward (Adjust the number of Pods per service)
—=
tuple for each service
Critical Path (n_Pods, CPU, Mem)
extraction @ RL Agent
CRISP
©) Uber & Gymnasium
Probabilistic SVM Observation
Classifier (Probability, n_Pods, CPU, Mem)

Summary with P99/P50
and PCC for each Service

Probability that the service
over the last traces gathered O . learn is culprit

Ixnpa 0.8. [1potewopevo oUotnua yia tm Kavour 1oL Topav.

0.2.1 Ta 3 npota snineda

To mPTO eminedo tng APXITEKTOVIKIG ATIOTEAE] TOV £§RTEPIKO @OPTO epyaociag, dnAadn
TOUG XPIOTEG 1] CUCTATA TTOU EKTEAOUV AITHHATA TTPOG TG NIKPOUTIPECIEG TOU CUCTIIATOS
ou peAetatat. a ) Sokir) tou ocuothpatog emAexOnke n Astitoupyia ComposePosts, péow
g oroiag dnpioupyouvial Kat S11oolEVovIal avaptr)Oelg o€ £va E1KOVIKO KOW®VIKO diKktuo.
IMa m dnpiovpyia moAAardav xprnotev Xpnowtornow|Onke o HTTP workload generator wrk2
[27] xat to avtiotoixo Lua script compose-post.lua, onwg npoteivetal oto framework tou
DeathStarBench [8], to ormoio givat pia oAokAnpopévn couvita arto benchmark avoiyxtou
KoOdka rou nepldapBdvetl miévie peadiotikeg, end-to-end epappoyég cloud mmou €xouv Ka-
TaoKeuaotel xprnowponowwviag pikpoUnnpeoieg. Kataokeuaopévn pe supéwg uloBstnpéva
mAaiowa 6niwg 1o Apache Thrift [28] kat to gRPC [29], n couita poOVIEAOTIOEL AVTIITIPOO®-
TIEUTIKEG UTIPECIEG, OTI®WG €va KOWMVIKO S1KTUO, pla MAATPOPHA NAEKTIPOVIKOU E£PITOPIOU
(e-commerce), évav 10TOTONO AVAOKOINONG KAl pONg PNEC®V, £va aoPalég Tpanediko ouotn)-
Ha kat pua unnpeoia cuvioviopou drone rou Bacietat oto [oT. e aviiBeon pe ponyoupeva
benchmark rou srukevipovovial oe aniég 1) povoertinedeg vrinpeoieg, o DeathStarBench

KAtaypadet tv MOAUAOKOTTA KAt TG AAANAeSapTAOElg TOV PIKPOUIPECI®MV TOU IIPAYHATL-
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0.2.1 Ta 3 mpwta ermineda

KOU KOOHOU 0¢ KAlpaka, pe Kabe epappoyn va neptdapBavetl 6exkadeg PikpoUIpeoieg rTou
£€X0UV Kataokeuaotel Kat ypadtel oe éva peiypa yA@oo®v Iipoypappatiopou.

To &eUtepo eninedo apopd ta ouotjpata napakoloudnong. To Prometheus cuddéyet
petpikeg xprong (r.x. CPU, pvrun,) ano kabe pikpoUnnpeoia, EMIpENOVIAG TV ITAPAKOAO-
UOnon g arnodoong KAt v £yKaipn avixveuon oupdopnong 1 opaipdatev. [apdAina, to
Jaeger kataypaget ixvn (traces) mou avarapiotouv ) Por TV AltHoerV PETady TV PIKPOo-
Urnpeotdv Kat oupBaidet 18laitepa Ot KATAOKEUTR YPAPOV £§APTI0E®V, ATTIOKAAUITIOVIAS
) Sopn kat tg oxéoelg kKaAéoaviog-kadoupevou (caller-callee) petagu twv unnpeowov. Ta
6edopéva auta eivatl kpiowa yla v Katavonorn g CUNRIEPIPOPAg TOU OUCTIATOG, TV
EVIOITIONO Onpeiov oupdopnong, Kal anotedouv ) Pdon yua wmyv avaluon g Kpiowpung
Sradpopng! mou akoAouBei.

A@ou ouldexBouv ta ixvrn, petabiBadoviatl oto Tpito eninedo, Orou xpnowpornoieital to
epyaleio CRISP, 1o oroio sivat éva iponypévo epyaleio ou unoAoyidel anoteAeopatikd myv
TIOAUTIAOKOTNTA TRV CUYXPOV®V CUCTNHAT®OV PIKPOUINPECI®V, ATOPOVAOVOVIAS TNV KPIoln)
alAuoida Sadpopnv 1wV KANoewv umnnpeoiag, n arodoon v onoiwv kKabopilel apeoa tn
OUVOAIKY] KaBuotépnor evog attfjpatog. H ouoia tou CRISP éykettal otnv 1Kavotntd tou va
Xepiletatl armotedeopatika 6Asg 11§ Kpioieg 51a6popég oe ouotrpata peyaing KAipakag Kat
va QEPVEL OV ETUPAVELA XP1OHEG TTANPOPOPIEG OXETIKA HE TO AEITOUPYIKO TIEPIBAAAOV TTIOU
Baoietatl oto cloud. Auto 10 gpyaleio adloroiet ) Sopr) twv xveov Jaeger yla va Ppet kat

va urodoyioet v Kpiown diadpopr) pe tov akodoubo peuboaAyopiOpo:

def CP(root):
path = [root]
if len(root.child) == 0:
return path
children = sortDescendingByEndTime(root.children)
Ifc = children[0]
path.extend (CP( 1fc))
for ¢ in children|[1:]:
if happensBefore(c, Ifc):
path.extend (CP(c))
Ifc = ¢
return path

Zxnpa 0.9. Pevboaiyopduog sfaywyng kplowng dtadpoung, Inyn: [7].
To mAaioto tou CRISP emitpénet emMImAE0V TV OMTIKOTIOINOT T0U ouvoAikou Critical Call-

ing Context Tree (CCCT), 6nAadn 1 cuyX®VeUoT) TV Kpiotiav Siadpopmv 1eov tedeutaiov N

XVOV:

'YroBétoviag éva otabpiopévo KateuBuvopevo akukAKO ypago (DAG) G(V.E) pe V xopugég xat E akpég
KAl Vv apX1Kn Kopupn va eivat 1o S kat v tedikr) 1o Z, pa diadpopn péytotou Bdapoug amnod to S oto Z ot
éva ypaenpa egaptopevo amno epyaoieg G(V,E) ovonaletat kpiowpn dradpopn xat o G evdéxetatl va repiéxet
neploodtepeg anod pia aro auvtég[30].
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Trace DAGs critical path as Aggregate
A Critical CCT (CCCT) CCCT
— [ N N ! I
trace 1 [ T c . P == A::B_C P
! X D
. ABC
e \D
. A A—B—M
1 R : : I:> \\
trace N VNN C
:_ i : A\ _/

Zxfnpa 0.10. Zvuyywvevon kplowwv dtadpouwv (CCCT), Inyn: [7].

Kabwg kabe kopBog rieprtdapBavel mocotikda dedopéva, Katl 0AeG 01 KANOELG SEKIVOUV a-
o €va KOwo onpeio, ot Siadpopég €xouuv 1 Suvatotnia va CUYX®VEUTOUV Ot €va HEvipo
oupgpalopévav. To CCCT amotunovel motot 6popot epdavidovial mo ouxva g Kpiotpot,
pe Bapn otoug KOPBOUG va avilotolxouv oto dbpolopa tov Papov kKabe povoratiov. Xu-
YKERPIPEVA PE authv Vv avdluor, 1o rAaiolo tou CRISP mapéxet moAAd mocootd onwg ta
exatootnpopla P50, P95, P99. TéMog, 1o 181aitepa onpaviiko npdBAnpa g HPETATOINONG
tou poAoyiou (clock drift) mou ocuyxvd napouciddetal oe T€Tola CUCTPATA AVIIHETRITICETAL e
v weuboouvaptnon happensBefore, oniwg @aivetat otov yeudoadyopibpo napanave. H

OITTIKI] ATEIKOVION TETOIRV IPOBANPATOV @AiVETAL TIAPAKAT® :

misattribution

% W AR
B 0B iAfAs 52;.8;';95

—_———
Zxnpa 0.11. [davikd ixvn - ot KOKKIVES
yoapués beixvouv mu Kpioyn Giadpour), Sxfqpa 0.12. Mn ibavucd iyvn Adye x00-
Inyn: [7] vucric androng, Iy : [7]

0.2.2 Ta 3 teAeutaia enineda

TMa v a§loroinon t®v oTatioiKOV IIPOTUIIOV IOV IPOKUITIOUV ATt T1§ Kpiotpueg S1adpo-
HEQ KABe unnpeoiag, eMAEXONKE 1 TEXVIKY eruBAenopevng Pnxavikng pabnong pe Support
Vector Machine (SVM) oto tétapto eninedo, Aoym g tKavotntdg va yevikeuel oe riep1Bal-
Aovta uynAng Stactacpdtntag aKOpn KAt e anwAeid PEYAA®v ouvolav dedopévav. T1oX0g
G OUYKEKPIIEVNG TEXVIKIG €ival 1 Ta§vopnorn tev o rmbavoAoyouevav UMAtti®v VIO
¢ Kpiloung dtadpoung, n oroia Sa oupBaAdet detika oty €netta avaiuon g Evioyutikng
ndbnong. Ta va sruteuyxBel auto, akoAoubBoviag Ty avaiuor MoU MPAyHATono|0nKe oto
paper tou FIRM [31], e§ayovtal 6Uo Paocika yapaxkinploukd, 1o Relative Importance, rou
urodoyiletal péow tou ouviedeotr) ouoyétiong Pearson[32] petalu kabuotépnong unnpeoiag
Kal ouvoAlkng Kabuotépnong (yvootd kat og explained variance [33]), kat to Congestion
Intensity, 6nAadr) o Adyog kabuotépnong tou ekatootnpopiou P99 mpog to P50, 10 oro-

1o Belyvel v wavowta daxeiplong @optiou and 1o cuykekppévo Service. Ta dedopéva
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0.2.2 Ta 3 tedevutaia erineda

ou divovtal oto SVM mpogpxovial aro sAeyxopeva meipapata pe Xpron tou chaos-mesh
[34], émou epappoonkav diadopeg Katarnovroelg oe diadopa otoixeia (r.x. CPU stress)
oe tuxaia Pods, eved nmapdAdnda ta ixvn kataypddnrav arno to Jaeger oe ouvOnkeg ota-
9epou @optou (.x. 6 RPS yia 5 Aerta). Ot apepBaocelg autég Paciotnkav oty TEXVIKI)
Chaos Engineering, n oroia Xpnotpomnoieitat ylia v mpooopoi®or PEAAIOTIK®OV OevapieV

Katarovnong. Kamnowa anod ta napandave ixvn @aivovial oto mapaKAate® LXNaa:

Scatter Plot of PCC vs P99/P50
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Zxnpa 0.13. Awdypoaupa 51a0mopdg Ly vav Ue TapeuGacels.

'Onwg @aiveral oto napandve didypappa, 1 Xprorn ypappikou [oviéAou yia v tadl-
vopunorn tov 6edop€évev TETO10U oUCTAHIATOG £ival apKetd SUOKOAN, YEYOVOG ou S1kaloAoyel
) xprorn rupnvev Kernels. Tautoxpova, ereidr) ) £6060¢ tou ta§vountr) eEVO@PATOVETAL ap-
yOtepa OTO APATN P00 TIEPIBAAAOV TOU MPAKTOPA EVICXUTIKNG 1abnong, avti yia Suadikr)
tadwounon (0 1 1), xpnowporofnke &g PeAtinon 1 1Pooeyyilorn mbavoloyikig tagivoun-
ong, pe mbavointa ya 1o av pia pikpounnpeoia eivat vnaitia. 'Etotl, akopn kat pepikmg
uneubuveg unnpeoieg, 6nAadr) pe pikpn mbavotnta, AapBavouv moPousg Ao ToV MIPAKIopd
avadoyeg. Ta va eruteuxBel autr) ) avaduorn pe v mbavoloyiky tagivopnor), epappootn-
ke calibration otov SVM tawvount, petatpérioviag tg €068oug tou oe mbavotnteg oto
6tdotnua [0, 1]. To calibration emtuyxdavetat pe maAivépopunor), XPnotHoroiwviag 1o Aoyt-

oTKO poviédo tou Platt [35] oniwg paivetal mapakat® :

1
1 +exp(Af;+B)’

p(label = 1| f;) = (19)

orou label eival n paypatiky eukéta kat f; n €§06o0g tou apyxikou (un-calibrated) ta-
Swvountr ywa to deiypa i. Ot mapdpetpol A Kat B mpokumouy pe péyiotn rmbavopdaveia
(maximum likelihood). Tia va spappootel n teXVikY o 1)dn eknatdeupévo poviedo, Xpn-

owponoOnkav ot kKAaoeig FrozenEstimator kat CalibratedClassifierCV amno to scikit-learn
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[36]. H rmBavoloyikn ta§ivopnon epappodetat oe kaOe pikpoUnnpeoia §exowplotd kat ) telt-
K1 TBavotnta EVOOUATOVETAL OTO TIAPATH PO X®PO ToU IpdKtopa Evioxutiknig pabnong.

'Onwg avapepbnke oe nponyoupeva Kepadaia, 1 Evioxutukr) Mabnon (RL) eivat katdaA-
AnAn yila cuotpata Anyng anopAdoe®v, Kabog emrpenel ) pabnon péon epneipiag Kat
ouveyxn PeAtiwon g anodoong os Suvapikd niepiBaddovia onwg to cloud. 'Exoviag kaAuyet
) Yewpnuiky faon twv RL agents kat avadluyosl PAKTKA Ta IPONyoupeva erinedda, 1o -
niopevo Prjpa sivat n npaktikn evoopatoon mg RL oto iepiBaAdov tou Kubernetes. I'a va
adAnAerubpd o RL agent (mépmto eninedo) pie 10 Kubernetes, énpioupyrOnke pa pooap-
poopévn KAdon reptBalAoviog ocUppmva pe 1o Ipdtuno g BBAto0nkng Gymnasium [37].

Auto onpaivel 6t nj KAdon vAoro)Onke pe 1g Paocikég pebodoug:
e _ init_ (): KAnpovopel and gymnasium.Env kat opidet ta anapaimta:

- observation_space: Turog napatr)pnong (r.X. Box, Discrete).

— action_space: Evépyeieg rou evdéxetal va ektedeotouv, 6w opilotnke g Mul-
tiDiscrete[num_services, num_actions] yia tporonoinon tou apiBpou twv Pods

ava urnnpeoia.

- Eowtepikég petaBAnTEG KATAOTAONG KAl PMETPIKEG.

e reset(): Emavagépet 1o mepiBaldov otnv apyiki T0U KATACTAOH KAl EMOTPEPEL UTIO-

XPEWTIKA ot popdn tuple:

— observation: Apyikn napatnpnon.

— info: EmunpooBeteg mAnpodopieg (poaipetiko).

o step(): Extedel tv evépyeta kat mpoxmpd 1o reptBaddov katd éva Bripa emotpedoviag

UTIOXPERTIKA og popdn tuple:

— observation: H napatr)pnon aro to riepiBaidov.

- reward: H apibunuxkr) avtapoBr] ou uroloyiotnke €ite pe duvapikn eite pe
OTATIKY] OUVAPTNOT).

- terminated: True Qv teAei®oe Pe ermtuyia 1o emnelcodio.

— truncated: True eav teAeiwoe 10 €me100610 AOY® KATIOOU MEPIOPICHOU.

- info: Erunpoo6etn mAnpogopia.

Znpavuko sivat ot observation_space xkat action_space va eivat ocupBartoi pe tig e§66oug
10U reset() kat tig €10060Ug ToU step(). 'OAleg o1 urtoxpewtikeég pEBodot (oupneptdapBavo-
Hévev tev render(), close()) eprypadoviat oto documentation tou Gymnasium. H apyxikn
dopur tou mepBadAoviog Kat g KAAong avdrtuéng Baciotnke oto paper gym-hpa [38], 1
ortoia eixe vAomownBei pe nadaidtepn éxkdoon g Gymnasium (gym). Xt ouvéxela, mpo-
ocappootnke otnv €kdoorn 1.1.1 dote va vnootnpidel 1o DeathStarBench kat 11§ texvikeg g
napovoag epyaociag.

IMapdaAAnAa, ta poviéda RL (PPO, TRPO, A2C) uloroifnkav e tg otabepég kat agiorm-
oteg B1BA10Or|keg stable-baselines3 [39] kat stable-baselines3-contrib [40], ¢ék6oong 2.6.0,

e TG aKOAOUBOEG UTIEPTIAPAPETPOUG Yia KAOE 1OVIEAO:
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Ta 3 tedevtaia emineda

Table 1. Yreprapaustpot vilonoinong touv afyopiduov PPO uéow tou Stable-Baselines3

IMapapetpog Iepiypagn HMepapatirng Tipn
policy Policy model MlpPolicy

env Gymnasium environment (can be vectorized) SocialNetwork
learning_rate Step size for optimizer 0.0003
n_steps Steps per environment per update 150

batch_size Minibatch size 64

n_epochs Number of passes per update 10

gamma Discount factor 0.99
gae_lambda GAE parameter 0.95
clip_range Policy loss clipping parameter 0.2
clip_range_vf Value function clipping None
normalize_advantage Normalize advantages True

ent_coef Entropy bonus coefficient 0.0

vf_coef Value function loss coefficient 0.5
max_grad_norm Gradient clipping norm 0.5

use_sde State-Dependent Exploration False
sde_sample_freq SDE noise resampling frequency -1
rollout_buffer_class | Custom rollout buffer class None
rollout_buffer_kwargs | Rollout buffer arguments None
target_kl KL divergence early stopping None
stats_window_size Stats averaging window size 100
tensorboard_log Path for TensorBoard logs tensorboard_log_path
policy_kwargs Policy keyword arguments None

verbose Verbosity level 1

seed Random seed None

device Training device auto
_init_setup_model Build model on creation True

Table 2. Ymnepnapausipor vionoinong touv afyopiduov TRPO uéow tou Stable-Baselines3

contrib
Hapapetpog Iepiypagn HMepapatiky Tpn
policy Policy model MilpPolicy
env Gymnasium environment SocialNetwork
learning_rate Step size for optimizer 0.0003
n_steps Steps per environment per update 150
batch_size Minibatch size 128
gamma Discount factor 0.99
gae_lambda GAE parameter 0.95
ent_coef Entropy bonus coefficient 0.0
vf_coef Value function loss coefficient 0.5
max_kl Maximum KL divergence for updates 0.01
cg_damping Conjugate gradient damping factor 0.1
cg-max_steps Maximum conjugate gradient iterations 10
line_search_coef Coefficient for line search 0.8
n_cpu_tf_sess Number of CPU threads for TensorFlow session 1
normalize_advantage | Normalize advantages True
tensorboard_log Path for TensorBoard logs tensorboard_log_path
policy_kwargs Policy keyword arguments None
verbose Verbosity level 1
seed Random seed None
device Training device auto
_init_setup_model Build model on creation True
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Table 3. Yreprapdauetpot vuilonoinong tov afyopiduov A2C uéow tou Stable-Baselines3

IMapapetpog Iepiypagn Iepapatiky Tpn
policy Policy model MlpPolicy

env Gymnasium environment SocialNetwork
learning_rate Step size for optimizer 0.0007

n_steps Steps per environment per update 150

gamma Discount factor 0.99

gae_lambda GAE parameter 1.0

ent_coef Entropy bonus coefficient 0.0

vf_coef Value function loss coefficient 0.5

max_grad_norm Gradient clipping norm 0.5
rms_prop_epsilon RMSProp optimizer epsilon le-5

use_rms_prop Whether to use RMSProp optimizer True
normalize_advantage | Normalize advantages False
tensorboard_log Path for TensorBoard logs tensorboard_log_path
policy_kwargs Policy keyword arguments None

verbose Verbosity level 1

seed Random seed None

device Training device auto
_init_setup_model Build model on creation True

H ouvdptnon aviapoiBrig rmou Xpnotpono)fnKe yia v eKnaideuon tov pakiopmv e

OTOXO TNV APy Kal owotr) ekrnaibeuon eival n akddoubn :

R = Z [a-SLO4 + (1 — a) - Aligng] (20)
deD
ortou
SLO4 =1 —wy 21)
1
Aligng = R — (22)
D = set of deployments (23)
pa = number of pods for deployment d € D (24)
réCpu) = desired number of replicas for deployment d € D (25)
= |pa - CpuC_I‘Z:r_glzjilﬁZage (same for memory) (26)
(27)
wyq = critical weight of deployment d € D (28)
a € [0, 1] is the weighting factor (29)
(30)
cpu_target_usage = pq - cpu_target (31)
mem_target_usage = pg - mem_target (32)
cpu_target = threshold - cpu_request (33)
threshold = 0.75 (same as KHPA) (34)
cpu_request = initial CPU request of deployment. (35)
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0.2.2

Ta 3 tedevtaia emineda

I'a va daopaliotet ot o1 agents aAAnAsrmudpouv e 1o mpaypatko cuotpa Kubernetes

PEO® TG IPOOAPIOCUEVNS KAGoNg meplBAlloviog, 10 €Kto eninedo, 1o oroio arotele-

ftat arnd pia dAAn kAdorn pe ovopa DeploymentStatus, yedpupovel 1o Kevo petadt tov 8uo

eCaopadidoviag 1 oot ermukowevia péow tou Kubernetes API. Ot kUpileg pébodot mou

opidovtal péoa oe autr) v KAdor givat ot €&1g:

e _ init (): Apxwkormoiel Tig amapaitnteg MANPOPOPIES TTOU TIPETIEL va TieptAapBavovtat

yla kaBe Service, orwg cpu_request, cpu_limit, max_pods, min_pods k.d., kaBog kat

v Tun critical_weight, n omoia unodnAwvet v mbavointa va sivatl unaito, onwg

avagépbnke mponyoupéveg. Ot apyikég tipég opidovial Eexwpiota yia kdbe Service,

OIS @AiveTal MAPAKAT® :

Table 4. Apyucn S1apudp@won mopwv TV puKpolinnpeotdv tou SocialNetwork Kubernetes

Service

CPU (attovpevo/6p1o0)(MB)

RAM (attovpevo/6p10)(MB)

compose-post-service
home-timeline-redis
home-timeline-service
jaeger

media-frontend
media-memcached
media-mongodb
media-service
nginx-thrift
post-storage-memcached
post-storage-mongodb
post-storage-service
social-graph-mongodb
social-graph-redis
social-graph-service
text-service
unique-id-service
url-shorten-memecached
url-shorten-mongodb
url-shorten-service
user-memcached
user-mongodb
user-service
user-mention-service
user-timeline-mongodb
user-timeline-redis
user-timeline-service

100 / 300
200 / 300
100 / 300
100 / 300
100 / 300
200 / 300
200 / 300
100 / 300
200 / 300
200 / 300
200 / 300
100 / 300
200 / 300
200 / 300
100 / 300
100 / 300
100 / 300
200 / 300
200 / 300
100 / 300
200 / 300
200 / 300
100 / 300
100 / 300
200 / 300
200 / 300
100 / 300

100 / 300
200 / 300
100 / 300
600 / 800
100 / 300
200 / 300
200 / 300
100 / 300
200 / 300
200 / 300
200 / 300
100 / 300
200 / 300
200 / 300
100 / 300
100 / 300
100 / 300
200 / 300
200 / 300
100 / 300
200 / 300
200 / 300
100 / 300
100 / 300
200 / 300
200 / 300
100 / 300

e update_obs_k8s(): KaAcital kuping riptv tov unodoylopo g aviapodrg otn pébodo

step() yia va e§ao@aAiotouv o1 0WOTEG TIHEG Y1a TV MApathpror tou reptBaiAoviog.

Extelel epotpata rpog 1o Prometheus kat avaktd 11§ anapaitnieg PeTpikeg mou Sa

Xpnotporoin0ouv ot oUVEXELd Yid TOV UTTOAOY1opo tev ermbupntov Pod replicas yia

KA0Oe Service.

e update_replicas(): Kalsital péoa ot pébodo update_obs_k8s(). O Baocikog oKorog
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etvatl o uroAoylopdg tev ermbupniov replicas ylua kabe Service pe BAon TiG PEIPIKEG

IOV avaktOnkav nponyouvpévag.

e update_deployment(): Evnuepwvet 1o Deployment péowm tou Kubernetes API kat ot
ouvéxela kalei ) pébodo patch_deployment() yia tv epappoyr) g EVNREPRONG.

e patch_deployment(): Epappnolet aAdayég oto Deployment péowm tou Kubernetes API.

e deploy_pod_replicas(): Kaleitat péoa amd to npoocappoopévo riepiBaldov aro tov
Agent otav n evépyela eivat n poodnkn replica Pods oe kdmoto Service. Kalei

u ate_deplo en 1a v vAoroumon t EVEPYELAG.
pdate_deployment() yia v vdoroinon tng evépyelag

e terminate_pod_replicas(): KaAeital péoa amod 10 mpoocaplloopevo repiBaiAov amno
tov Agent dtav n evépyelwa eivatl i1 adaipeon replica Pods ard kdrowo Service. Kalei

1 update_deployment() yla tnv udormoinon tng evépyeiag.

0.3 ASwoAdynon peAétng

Y& autd 1o Kepadalo mapouotalovial Ta arnoteAéopatd SEXmPotd yia Kabe Koppdtt tou
oxrpatog aAAd Kat OUVOAIKA Pe BAoT KATIOEG ONPAVIIKEG PETPIKEG aSl0A0OYN oG Orwg ivat
1] A0 AKPO-0E-AKPO KAOUOTEPNON TOU CUCTHATOG 1) 0 PEc0G 0pog draxeipiéopévev Pods oto
ouotnua. Eekivoviag tnyv agloAoynorn tng pedéng, apxika napouvctadetat n emiboorn piag
ONUAVIIKIG eVOTNTAG AUTHg TS SUMA®PATIKNAG epyaociag, mou eivatl o ta§vopng SVM. O
OUYKEKPIIEVOS TaSlvountg eKmadevtnke oe Kadd eruonpaocpéva dedopéva pe ) PiBAlo-
91kn mou avapépOnKe mPONyoUEveRg KAl TautdXpovd, yld TOV OKOIT0 autd, td melpapatd
B1e€nxbnoav pe Aiya Sedopéva, mporepévou va aropeuybei i uniepripooapuoyr) (overfit),
Kabwg eival éva aro ta yveoord npoBArjpata autev tev tadtvountov. Ta arotedéopata
a&loddynong napouctalovial Kuping xprotporoioviag Vv kaprnudn ROC kat tov mivaka
oUYXUo1g, Ta OIoia MmapéXouv CUPMANPOUATIKEG TTANPOPOPIES Yia TV ATOTEAEOPATIKOTTA
tou ta§vopntr). H kauruAn ROC areikoviletl tnv 10opportia petadu suaiobnoiag (sensitiv-
ity) ka1 e16ikotntag (specificity) oe d1apopetikd katwdpAia. Tautoxpova, o rivakag ouyxuong
napéxXel pia oagr) £1KOvVA TV ATOTEAEOPAT®V TaSvopunong, 1e 1dlaitepn éugaon oty arou-
ola aveopadev dedopévav mou Katnyoploroouvvial, Aaviaopéva, ©g @UO0AoYIKA. Aut 1)
1610ta eival kpiown yia v a§lormotia tou 0uvoAlKoU ouotpatog, Kadmg ta weudag e-
kA 6edopéva Sa eixav ) duvatdina evdexopévag va BAdyouv 1o cUuctnia Kat €mmiong va

APAITAQVI|COUV TOV TIPAKTIOPA £VIOXUTIKLG 1abnong.
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e auto 1o onpeio, o tagivountg £xet eKatdeUTel Katl £XE1 EMMTUXEL IKAVOITOUTIKT) Artodo-
O TIPOKETPEVOU VA XE1P10Tel KATAAANAa Katl va eMONIAVEL Ta KPIlold OTolXeia Tou Kpiotjou
povomatioy Kadl PE dUToV ToV TPOTo va Bonbrjost tov mpdKiopa eVIOYXUTIKIG Pabnong otn
0oty anogaon 61a0song KatdAAndev opev ota kKatddAnAa Services. Metda anod autd 1o
onpueio, o ta§ivopntrg petatpdnnke oe TOavoAOy1KOG OIIRG MEPIYPAPTNKE 0L IPOnyoupeva
Kepalala.

It ouvéxela, n dwadikaoia exknaibeuong Tou MPAKIOPA EVIOXUTIKLG PAbnong npaypa-
oo Onke xpnowporowwviag to cluster Kubernetes rmou avagépbnke mponyoupéveg oto
benchmark tou SocialNetwork tou DeathStarBench. Kd&6e npdxktopag sknaibeutnke ya
1300 eme10661a kat péyloto 20 Bripata ava enelco610 A0Y® ToU UPNAOU KOOTOUG (XPOViKa)
exnaidevong oto npaypatnko cluster. ITio ouykekpipéva, 10 KOOTOG eKIaideuong twv mpa-
ktopav PPO, A2C, TRPO 1jtav niepinou 3.8, 4.3, 4.2 nuépeg avtiotorxa. 'Oneg KAl P TV K-
raideuor, o1 apXikéG ouvlrkeg Tou mepiBaiAoviog SiatnprOnkav tuxaieg, divovtag epgaon
KAl €EAEYX0VIAg TV IKAVOTNTA TO00 IOV IIPAKTop®v 000 kat tou KHPA va ipooappiédovrat kat
va yevikeuoviat oto debopévo rpoBAnpa. Ta va toviotel ) onpaocia g avinong g eKmna-
tbeuong v npaktopev RL oe tétota moAundoka cuotrpata, o ipaktopag PPO ekmaibeutnke
niepattep® ya 1300 ermmAéov eneloodia, @TAVOVIAG Ta OUVOAIKA £Me10061a ekmnaidsuong oe

2600 eme10061a KAl TAvVOVIag Tov Xpovo eknaibeuong os ouvoAika 8.11 nuépeg.

Reward over all trained episodes

— PPO_2600
350 A PPO_1300
A2C

—— TRPO

300 A

200 A

150 A
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Zxnipa 0.16. Anoteicouata eknaibevong 10U MPAKIOPa EVICXUTIKYG UASNONG.

Ta anotedéopata g eKAideuong 10U MPAKTOPA EVIOXUTIKIG PAbnong rapouoiddoviat
MAPAIIAVE 1€ OPLAAOTTOUEVEG KANUITUAEG eKTTAIOEUONG XP1OOIIOIOVTIAG TTAPABuUpo Kivitou
peoou opou 100 enelcobimv yia va 600t epgaorn otnv tdorn pabnong.

Apyika, oot o1 Tipaktopeg apXidouv va pabaivouv pe xapndég tpég aviapobng kat
BeAtidvovial otadiaka péXpt va oAokAnpwOei n exnaidevon. O mpaktopag TRPO deixvet

oapog Vv 1o ypryopn kat otabepry BeAtioon oe OAn ) @don exknaideuong, Senepvaviag
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otabepd toug addoug mpaktopeg. Tautdxpova, o mpaktopag PPO akolouBel pia napopola
Kapmuln pabnong pe tov TRPO, adAd pe moAdég Srakupdvoetg, £181KA yUp® Arto 10 onpeio
erteloodiou 200-400. Tédog, o paktopag A2C akoAoubel pia otabepr) kKapmmuAn pabnong
€ pla JiKprn oo yupe and ta onpeia 600-800 kat 1000-1100.

[TapaAAnla, 1o potiBo POPTOU gpyaciag mou XPnotponolOnKe e OKOIO 1] 0K ToU
npoavadepBéviog oxrpatog oto cluster Kubernetes, aroteleitat amod ) yevvrjtpla http a-
voixtou Bpoxou wrk2, v i61a rmou Xpnotpono|fnke yla v eKnaideuorn 1ov HovieAav, pe

10 akoAoubo potiBo @oéptou epyaciag:

RPS Schedule across the evaluating episodes

Medium demand High demand Very high demand
(50 RPS) (60 RPS) (100 RPS)
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Zxnpa 0.17. Moti6o 0ptou spyaciag o 0A0KkANEN ™ edon afloAoynong.

To potiBo @optou epyaciag rmou xpnotpornotriOnkKe katd ) @daorn aloAoynong oxediaotn-
KE V10 VA aVTIKATOITIPidel peaAIOTIKEG KAl ATIANTIKEG OUVOKEG OUOTIATOG. ZUYKEKPIHEVQ,
1a apXka otddua g aglodoynong uréBalav 1o ouoInpa O Pecaia OoPTia AttPATOV, IPo-
OOPOLOVOVTAG APXIKEG TTIEPLOOOUG TTIOU OUVIOKG IapATnPoUVIal O TIPAYHATIKEG OUVONKEG £0G
ouotpatog, aAld Kat to tedeutaio pépog tmg agloddynong rapouotalet pia vwniotepn -
on amno T0Ug XPnoteg, UnoBEtoviag emiong 0Tl PETA Arnd KAIMO10 XPOVIKO ditaotnpa urdapxet
augnorn 10U POPTOU £pyaciag oto CUCTNHA. TV EMOHEVE) eVOTNTA, UTIAPXEL pta aloddynon
TV MPAKTIOP®V XPIOLIOIIOIWVIAS [TOAUAP1O1EG PETP0elg OTG TTIOAAA mocootd KabBuotépn-
ong kat emiong tov apBpo v Pods mou avamtuyxBnkav. To mpoto aviikartoripi¢el tov
TMIPAYHATIKO AVIIKTUITO Ao TNV ITAEUPA TOU XP1OTH KAl T0 SEUTEPO AVTIKATOTIPILEL TO KOOTOG

Sratnpnong g poavagpepbeiocag anodoong.
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Median Latency (in ms) over the evaluated episodes
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Zxnpa 0.18. Awiusoog kaduotépnong oe ofokAnoen m eaon aflofoynong.

Ta anoteAéopata 1@V SOKIPOV TV IIPAKTIOP®V TTOU (Paivovidl 010 Iaparndve diaypapud,
1Blaitepa oe ouykplon pe v anodoon tou KHPA otnv apxikt) kataotaon, eivat edAoya Aoy
10U Xapndou apBpou enetcodi®v eknaibeuong Kat 10U X®Pou UPning §1dotaong 1ou XOpou
dpdong, onwg avapépetat kat oto paper tou FIRM ([31], ogAida-12), érou mapopola mpo-
BAnpata mapouoclactnKav UTo t€1oleg ouvOnkeg eknaideuong kat 16laitepa oe 1600 Xapnlo,
ETEI00010KA, XpOVo ekmaibeuong. ApXiKd, @aiveral 0Tt 6Aol 01 TIIPAKTIOPESG CUPIIEPIPEPOVIAL
e TPOIo mou Serepvouv evdoya v arodoor tou KHPA ouig petpikég kabuotépnong. ITo
OUYKeKpéva, o mpaktopag A2C Eexkva pe audnpévn kabuotépnorn, addd kovia oto 10°
€Me100010, PEIOVEL TV KABUOoTEPNOoN KATe and ) ypappn faong tou KHPA. Autd avadet-
KVUEL TIOG O TIPAKTOPAS XPELAetal XpOvo yla va IIPOcAPHOOoTEl OTIG IIPAYHATIKEG OUVONKEG
TOU OUCTNPATOS KAl ITAPOUOIAdeEl KAAEG EVEPYELEG OTAV MpaypatoronOei autd. O mpdkIopag
TRPO @aivetat va taiptadet pe v anodoorn) g ypappng faong tou KHPA oe 6Ao 1o otddio
a&lodoynong. H onpavuxr auinon nou napatpnbnke yupe and v allayr oto @eopto
epyaoiag dikatodoyeital kanwg Aoy tng Sapvikng addayng aro 60 RPS os 100 RPS. TéAog,
0 patog rpdktopag PPO mou sknaibevutnke yia 1300 eneioddia, apxika @aiveratr ot du-
OKOAEgUETAL VA TIPOCAPHOOTEL OTIG HETPLOEIS TOU CUCTAHATOS 000V adopd v Kabuotépnorn,
aAAd yUpw oto 550 eme100610 apyidel va oupnepipepetal KaAutepa aro ) ypappr faong tou
KHPA. Emiiong, o 6ettepog kat 1o eknaideupévog rpaxktopag PPO duokoAeustal va dwaoet
KaAd arotedéopata otig HEIPHoelS PEoNg Kabuotépnong, av Kat autd €UKoAd SikailoAoye-
{tatl ota napakdaw Swaypappata v avarrtuypéveov Pod. Eival a§loonueioto ot kabmg ot
MPAKTOPES Ipooappiodovial oty aAdayrn tou @optou gpyaociag, 1 anodoorn yiverat 0yt povo
OUYKpiowan pe tnv apXiKy tpn, addd eival eukola napatnpnpiopo ot Semepvd v apxiKr)
Tpn tou KHPA, e18ikd ano tov rpaktopa A2C. 'Ola ta arotedéopata mou oxetidovial pe

v Kabuotépnon nou @aivoviatl oto naparnave diaypappa da dikaiodoynbouv oe petaye-
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véotepo otadlo, ornou da napouctactei 10 KUPO Stdypappa rmou aneikovidel v avantuin
1wv Pods evidg tou Kubernetes cluster. Tautoxpova, unapyet oadrg évdeln ot akopun
Kal pe XxapndAo apipo sneiocodiov eknaibeuong, ol IPAKIOPES £X0UV Katadepel va pabouv
moAuTipa potiBa, Bonbmviag oty péon anodoon kKabuotépnong anod AKpo-oe-AKPO TOU OU-
otjpatog Kubernetes. Xin ouvéxela tng avaluong autou Tou Kepadaiou Kat g anodoong

TV PAKIOp®V, rapouctdlovial ta dSwaypdppata 95°%° kat 99°Y ekatootnpopiou.

95th percentile of Latency (in ms) over the evaluated episodes

300 4
Medium demand High demand Very high demand
PS) (60 RPS) (100 RPS)

250 4 [‘\
>
o
c
3z
5 200 4 — PPO_2600
“g —— PPO_1300
% — TRPO
g 150 + —— A2C
] —— KHPA
o
<
A
< 100

50

o
=
o
N
o
w
o
N
o
w
o
(=2}
o
~
o
@
o

Episodes

Zxnpa 0.19. 95° ekarootnuopto ¢ kaduotépnong oe oA0kANEN ™ edon aflofoynong.

99th percentile of Latency (in ms) over the evaluated episodes
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Zxfpa 0.20. 99° ekarootnuopio g kaduotépnong o 0A0kAnEnN m eaon aflojoynong
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Zto Saypappa tou 95°% ekatootnpopiou, rapatnpeitat 6t t0oo o npdkropag A2C 600
kat o PPO mou €xouv ekmaideutei ota 1300 ere10661a, mapouoctdouv KATOEg SaPpVviKeS aty-
HEG Katd ta npwta otadia tng afloAoynong, urodeikvuoviag tv aduvapia arnoteAeopatikeg
dlaxeiplong tou peyadutepou PEPOUG g 0UPAg attnudt®y ava aca otuypr]. E§aipodviag ta
npoavagepBévia onpeia, 0Aot o1 rpaktopeg seriepvouv to KHPA oe moAAd onpeia tou ota-
dlou agodoynong. Tédog, oto Siaypappa tou 99°° ekatootnpopiou kabuotépnong, 1o KHPA
Kat 0Ao1 o1 TipdKtopeg £xouv audnuévo aplbuo axpov kabuotépnorng, vroypappitoviag v
nipoxkAnon Swatripnong g BEATIONG andédoong o OAN TtV OUPA UTIO akpaieg ouvOnKeg. Xn-
pavukn BeAtioon avadsikvietal and tov 1o exknaldsupévo npakropa PPO, o omoiog €xet
HKPO ap1Bpd aypwv UPning kabuotépnong. Auto unoSnA®vel OTL, Pe EMAPKDn ekmnaidsuon,
o nipaktopag PPO eivat oe 9¢on va xepiletal 1ig 0Upég AtPATOV IO ATOTEAEOPATIKA KAl
va dlatnpel Xapndotepoug xpovoug anokplong uro petaBalAopeveg ouvonkeg goptou. a
MV MEPATEP® AS0AOYN 0 g arnodoTKoTag TV MOPAV, 0 KUPLOG OTOX0G aviapolBng tev
MPAKTOP®V, 0 PEoog aptdnog avarttuxbéviov Pods kat i ypapurn Bdong apouvoiddovial oto

axkolouBo daypappa:

Average Pods deployed over all evaluated episodes
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Zxfpa 0.21. Meoog 0pog avantuyuévwv Pods oe oAokAnon  edon altoAdynong.

To mpato draypappa ou avaduvet tov apBpo v Pods mou €xouv avartuyBel Seiyxvet
TOV TPOIO JE TOV OTOI0 KADE TIPAKIOPAS TPOCAPHOLEL T CUHMEPIPOPA KAPAK®ONG TOU
0€ AroKplon otrv aAAayrn tou @optou epyaciag. Eival eukola mapatnpnoipio ot oAot ot
MPAKTOPEG 0 OAOKAN PN Vv Ipwtn repiodo twv 50 RPS £xouv avarttudel Atyotepa Pods a-
6 to KHPA. Auto eivat éva onpaviiké misovékinpa, kabwg Atyotepa Pods petagppddoviat
apeoa o XapnAotepo KOOTOG Al Ty MAEUPA TOU H1aKOp1oTr). L& PETAYEVEDTEPO OTAdlo, O
nipaktopag A2C ureprpopunOeUel MOPOUG O ATIOKP1ON OtV aAAdyr) T0U QOPToU gpyaociag,
EMBE1IKVUOVIAG TIPOCAPHOOTIKI] CUNIEPLPOPA KATPAKDONG AAAd H1a HIKPL OATAAn nOpav

Kabwg Sernepvd ) ypappn Pdong tou KHPA. Eival onpaviko va onpeiodei 6t ota tedeuta-
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ia 12 ene10661a tou otadiou a§lodoynong, o MPAKIopag rPocappodetatl oto reptBaiiov kat
pewwvet tov aptdpo v Pods mou €xouv avarttuyBei kate ano ) ypappn faong tou KHPA,
urntodeikvuoviag PBpaduteprn anodoon poocappoyrg. Tautoxpova, o paktopag TRPO beiyxvet
KAAUTEPT) 1KAVOTNTA KATAVOPG OTo Tp®To otadio, adAd oe petayeveéotepa otadia eubuypap-
pidel 1ig anogdoetg tou e ) ypappr Paong tou KHPA. TéAog, kat ot 6Uo paktopeg PPO
erde1kvUouy egaipetikeg SuvatdtnTeg KATAVOUS MOpKV, eubuypappifoviag anoteAeopatika
TG aroPAcelg TIAPOXNS TOUG Pe T {ftnon @optou epyaoiag. Eival onpaviko va onpeiodet
€80 ot 0 o exmtaideupévog nipaktopag PPO smutuyyxavel anodoon 22.55% Atyotepwv Pods
ToU €xouv avarttuxBel oto ovotnua, pe avidAdaypa 9.16% uvyndotepn péon rKabuotépn-
orn. 'OAeg 01 PETPROEIg KAl Ta anoteAéopata arnod 1o aflodoynpévo otadlo ocuvoyidoviat otov

MAPAKAT® ITivaka:

Table 5. Mcon Swagopa petpikov petalv Ipaxtopwv kat KHPA (Ensioobia 0-80).

Metric | PPO_2600 | PPO_1300 | A2C | TRPO
Pod Usage

Relative (%) 22.55% 10.30% -0.74% | 2.57%
Absolute 10.77 5.25 -0.05 2.03
P50 Latency

Relative (%) -9.16% -6.09% 4.89% | -0.72%
Absolute (ms) -1.369 -0.931 0.807 -0.120
p95 Latency

Relative (%) -14.64% -6.05% 4.46% | -1.13%
Absolute (ms) -2.770 -1.131 0.983 -0.251
P99 Latency

Relative (%) -12.29% -8.17% 6.78% | -4.69%
Absolute (ms) -2.516 -2.350 1.757 -1.182

To tedevutaio Siaypappa g Zuvdpinong ABpototuikrg Katavoprg (CDF) 1600 tev ermt-
dupntev avilypdpev 600 Katl IOV MPAYHATIKOV avartuypévev Pod mou gaivetal mapakdte
UTIOBEIKVUEL Pl aKOPUn PETPIKY BEATIotng Katavoung nopwv. Autn n arodoon divel pa
1oxupn €voelln 0Tl e MEPIO0OTEPT] EKIIAIBEUOT 0 TIPAKTOPAG OX1 LOVO £XEL TV KAvOTTa va
61a6éoel Atyotepa Pod, aAdd kat rpog ) owotr) Kateubuvor ocov adopd ) Xpron g CPU
Kat g pvnpng. Ot unddouot ipaktopeg, o PPO pe exnaideuon 1300 eneicodinv, o A2C kat
o TRPO ermtuyxavouv piia 60Xt Kat T000 1KAVOITOUTIKY oupIepipopd, ektog tou PPO_1300
kKaBwg aivetal va kateuBuvetal pog 1 owotr] Kateubuvon ouykAlong. H dwagpopa otig
Katavopég Heixvel oo Kovid PpioKovial o1 IPAKTIoPeg otV ertteusn BEAtiotng anodoong

o€ OAOKANPI ) PAon agloAdynong.
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CDF of num_pods and desired_replicas during evaluation stage
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Zxnpa 0.22. Adpoiwstukr; Zuvdptnon Katavour¢ (CDF) twv Pods oe oAoxAnon tm edon afio-
Aoynong.

'Onwg @aivetal oto napandve diaypappia, ol IIPAKTIOPES TIOU £X0UV ekmnatdeutel yia 1300
EME10061a HEV £XOUV TNV 1IKAVOTHTA Vd TIPOCAPIIOC0UV TV 1IKAVOTNTA KATAVOULS BEATIoTA TOUG
MOTE va TAPLAdel Pe TV KATavour) tov ermbupntov avuypdeov. Aviibeta, o npakropag PPO
rou €xet exnadeutel yia 2300 eretoddia £Xel €§APETIKY KAVOTTA VA KATAVEHEL TIOPOUG
oe €ubU avaloyia pe v ermbupnt) KATtavopr avilypdpov, YEYOVOS TIOU avadelkvuel Tn

onpaocia g eknaideuong oe T€Told MOAUTTIAOKA CUOTHHATA.

0.4 Zupnepacpata Kat PEAAOVIIREG EMERTACELS

To o onpaviiké CUPTEPACHA TIOU TIPOEKUYE ATI0 aUTh 11 SIMAopatikn epyaoia eivat
ot 1] Snoupyia Evog ATOTEAEOPATIKOU KAl aKP1B0Ug MPAKIOPd EVIOXUTIKAS 11AOnong rou
etvat oe 9¢on va Katavépel omotd Toug Iopoug duvapika oe éva cluster Kubernetes eivat éva
EYYEV®S TMOAUTTAOKO Kal anattuko épyo. H e§aipetikd Suvapikn @uorn teov repiBardoviov
rou Baocilovtal oe PIKPOUTNPECieg, He TOAUIMAOKEG KAl £§A1PETIKA duvapikeég aAAnAegap-
TNOELG, €10AYEL UYPNAT PETaBANTOTNTA 1OV TPETEL va AngOel unoyn amnod 1ov mpAKIopd otnv
exntaidevon kat 11§ Sokpég. Emiong, ot online aAyopiBpot evioyutikng pabnong anodeikvyo-
vtat akpiBoi, 6cov apopd v ekmnaideuon, o ouotrpata onwg 1o KuBepveteg, pe tporo
mou xpetadovial PEPeS yia va ekmnaldeutel évag nmpdkiopag Povo yla Atya emneioodia, yeyo-
VOG TIOU UTIOSNAGVEL OTL AUTOG O TUTIOG €KIAISeUONg eVOEXETAL va PNV €ival 0 KAAUTEPOS.
Autr) n duepatkr gpyacia adlonoinoe v kplowpn dadpopr) rou e€ayetat anod ta ixvn
oU avaktoOvial péo® tou Jaeger kat ekraideuoe évav ta§vount) SVM Xprnotonoioviag
QUTEG TG TANPOPOPIES, TIPOKEINEVOU VA TASIVOUTOEL TI§ AVIXVEUREVEG UTPECIEG (G UIAITIEg
urninpeoieg. e enékraon, 1 duadikn £§odog petaoxnuatiotke oe rubavoloyikr| £€§0do xprot-

porowwvtag to calibration tou tadvountr, ermpénoveag t AfjYn aoPpaAeéotep®y AroPAcE®Y
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OIIOU 01 UTIPECieg KaTataoooviatl 1€ Ao v KPlotuottd 1oug Kat 0xt pe faon ) duadikr)
TOUG TASIVOUNON @G uTaitieg 1 0xXt. ZT10 emdpevo otddlo, 0ol EUMAOUTIOREVES TTANPOPOPIES
rmou eixav mponyoupéveg eSaxbei, mpootébnkav ot ouvéxela oty €i00do tou TPAKTopPaA
RL mipooappooviag toug mopoug pe BAon o1 HOVOo TNV eMAvVAAnIUKL 1abnon, addd kat
) onpaocia kaOs vninpeoiag. Ta odokAnpwpéva armotedéopata deixvouv o1l 10 TIPoBAna
NG KATAVOUIG IOP®V O TOOO IMOAUITAOKA, KATAVERNHEVA OUCTNPATa €ival mpaypatt éva
MPAYHATIKA TIOAUTIAOKO £pyo. H dnpioupyia evog mpaktopa TeXVITIG VONHOOUVEG TTOU £ivatl
1Kavog va AapBdvel anodAocelg € AVIIKTUIIO Anattel IMPOOEKTIKY EVORPATOOT TTOAAATIAGV
oroyeiov, Iou Kupaivoviatl anod ta epyalsia mapatnpnotpot)ag Kat v Kavotntd Toug va
KATtaypadouv TS OOOTEG PETPLOEIS OTOV KATAAANAO XpOvo, aAAd Kal Ta POVIEAA HNXAVIKAG
RAbnong Kat eVioXUutikng padnong rmou mpémetl va eknaidevovial e akpiBela pe apKeteg
ekTeAéoelg eneloodinv, pe edayiotn pepoAnyia (bias) kat 11§ owotég amopacelg Spdong mou
9a ennpedacouv apyotepa 1o ipoavapepBEV cuotnpa.

[Mapd TG MPOKANOEIG AUTEG, 1 TIPOTEWVOHEVT Bladikaocia €xel Heifel OAAA urooxopeva
AMOTEAEOATA TIOU SEMEPVOUV TO KAAOOIKO gpyaleio tou Kubernetes to KHPA. O mpdkto-
pag 1€ Tov peyadutepo aptdpo sknadeupévav enetcodiov (PPO_2600) €xetl emTUXEL OXETIKT)
dragopad 22,55% Arydtepng xprong Pod oe avidAdAaypa yua 9,16% nepioodtepn péorn kabu-
otépnon 1 12,29% neproodepo 99° ekatootnpoplo kabuotépnong oto Kubernetes cluster.
Auto petagppaletat oe 10,77 Atyotepa Pods oe avidAAdaypa ya 1,369 (ms) riepioootepn péon
kabuotépnon 1 2,516 (ms) reproodtepo 99° exkatootnpdplo kabuotépnong o 6Ao 1o otddilo
a&loAoynong rou aroteleitatl arod 81 eneloo6dia pe Suvapikd eoépto epyaciag rou Kupaive-
tat and 50 éwg 100 RPS. Akoprn Kat ot UMOAOIOl TIPAKTOPES TTOU £X0UV EKMAIOEUTEL yia
Ayotepa emneloodia nEtuyav eSalpetika anotedéopata oe 0AOKANPo 1o otddio a§loddynorng,
0TS @ativetal otov mivaxka 5.

TNV ouvéxela mapouotadovial KATIOlEG PEAAOVIIKEG ETIEKTAOELS AUTAS NG SIMA®PIATIKAG
epyaoiag, ot oroieg Ya enekteivouv Katl 9a PeAti®oouv ta anoteAéopata rmou mapouoiaotn)-
Kav. ApXIKd, €ivatl oAU onuaviko va diacpaliotel 611 10 CUCTNHA £1vAl KATAOKEUAOEVO
P& avOeKTKOTTA KAl PE TOV 0OO0TO TPOTI0, OOTE Apyotepd va dnpoupynOet Evav mpdkiopag
rou 9a aAAnlAerubpd opba pe autd. Ta napdadetypa, n dSnuoupyia piag Sexwplotig Paong
6edopévav, onwg n Cassandra 1) n ElasticSearch, yia tv anofnkeuon kat Siatr)pnon v
6edopévav yia tov Jaeger kat ox1 Ol PvAprn, Onwg ulobetrOnke o auty) ) dumdeparti-
K1) epyaocia, 9a amoguyel TV ONPAvilKy emBdpuvon mou IMPOEKUYE KATA v mpoorddeia
avaktnong v npoavapepbiviov debopévav (peow atnpatev http) mpokepévou va t1po-
@obotnBei 0 aAyopiBpog CRISP yia va e§axBei apydtepa n kpiown dadpopr ano auvtd ta
ixvn. Ermiong, pe ) pubpion evog Kafka pipeline padi pe ) Baon 6edopévav, e§aopalidetat
n PéAtuotn nposnedepyaocia tov Sedopévav, e okoro ) PEAtion exknaideuon 1oV POVIEAGV
pNnxavikng padnong. Qg oUVvErela, 0 XPOVOG EKIMMAIBEUONG TOV MPAKTIOP®V AVAMEVEIAL va
Pe1wBel pe Kpiopo 1pOIo, EMITPENOVIAS OTOUG IIPOYPAPHATIONEG OX1 HOVO vd eKTTAlSEUO0UV
TOUG TIPAKTIOPES Y1d IEPLOOOTEPA EMEI0001A, AAAd KAl va SOKIPIACOUV S1aPOPETIKEG TIPOOEY-
Y10€1G KAl Katvotopieg.

Tautdxpova, pla onpaviiky PeAtioon sivat otov alyopiBpo avixveuong akpaiov TPV
1] OTIWG MEPIYPAPTINKE O TPONYOUHEVA KePAAALA, OTOV EVIOIMIONO TOU KPIOoI0U oTotxEiou.

'Onwg eatvetat oty BiBAoypadia, péBodot driwg autol rou Pacidovial oIV ITUKVOTNTA £X0UV
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m Suvatdtna va xpnotponownBouyv yla v avixveuon akpaiov tipov, yia napadstypa n
Xwpwkn Opadoroinon Edappoyov pe @opuBo (DBSCAN) mou Paocidetatl otnv mukvotta
etvat évag e€aipetikog alyopibpog mou PBpiokel Baocikd Seiypata uywnAng mukvotnag Kat
enekteivel ouotadeg (clusters) amod autég, OUOLACTIKA AVIXVEUOVTAG ONHEId EKTOG AUTOV TRV
ouotad®V Kal EMONUAivoviag Ta O§ aKPAieg TIIEG.

Mua akopn BeAtioon, n ortoia Sa BeATidoet ) ouvoAikr) artodoor 0AokAnpou tou pipeline,
Baoidetal anokAsiotika otov ipaktopa RL kat tnv eknaibevor) tou. 'Onwg neptypadetal Kat
@aivetal os aut) ) SuMAepaAtiky epyaocia, n eknaidsuvon tou mpaxktopa RL oe 1€toia mo-
AUrdoka cuotpata eivat avap@lobrta 1 mo KPiotin Iuxr) yla va taplaget Kat teAka
va genepaoel 11§ Pacikég orpatyikég tou Kubernetes 1) mapdpowv cuotpdtev, aidd a-
motedel £rtiong pla CNUAVUKI TIPOKANOCT), OM®G @aivetat oto Kedpdadaio agloAoynong, Iou
onpaivel ot xpeladovral PEPES Yia va eKmaldeutel £vag mpdaktopag, yla evav pikpo apiopo -
neoodiov. Mia 16éa yla v avgnorn g taxutag mg exknaideuong eivat n Xprior poviéAov
Feveuikng Texvnig Nonpoouvng (Generative Artificial Intelligence) yia tv mpooopoinon
Kal v avadnpioupyia tov KATavop®v ToU X®WPOoU Katdaotaong-dpdong, dnuioupywviag te-
xvnta véa debopéva eknaideuong mou £ivatl oAU KOvid OtV IIPAyHATIKOTTA KAl PE autdv
Tov 1poro 1 eknaidevon tou nipdaktopa RL 9a Bedtiwbel onuavuka.

Axkourn, pua onpavikn BeAtioon mou svdexetal va PeATIOOEL 1] CUVOAIKT anodoon eivat
1 Xpron piag Soprg eVICYXUTIKIG PAONong MoAAAMAGV IIPAKIOP®V, AVAITTUCO0VIAG TTOAAOUG
nipaktopeg RL mou poipddovial tnv Katdotaor] Iapatpnong 0AOKANPOU TOU CUHIAEYHATOS
Kubernetes. Avti va Baocidetal oe évav KEVIPIKO MTPAKTOPA yla 1 Slaxeiplon oAV tov diado-
PETIK®V TTOPW@V, Pd EYKATAOTAOT ITOAAAITAQV MTPAKTIOP®V KATAVELEL TO QOPTO epyaciag 1 v
€UbUVH TOV EVEPYEIWV O€ TTIOAAOUG ITPAKTIOPES e T duvatotnta va rmpaypatornotouv diadope-
TIKEG EVEPYELEG OF B1APOPETIKEG UTINPEDIEG, EVIOXUOVIAG TNV TOITIKL] ANYn anoPpAce®v, H1E TIG
napatnproeig ou cluster va poipadoviat Petady 1oV MPAKIOPOV Ao EVEPYEIEG ITOU ITPAY-
PaTorolouvial arnod toug S1aPpopetikoUg MIPAKIOPES EEX®PI0TA 1) AKOPN KAl ouvepyalopevot.

TéAog, pia onpavuky) Pedtioon nou Sa BeAti®oet 1) OUVOAIKY arntodoor 0AOKANPOU TOU
pipeline eivatl n xprjon evog veupwvikou Siktvou ypadpnpdatev (GNN) katl rieploocdtepav teXvi-
KoV rou Paoctloviatl o ypapnpata, oe cuviuaopd pE TOV MPAKIOPA EVIOXUTIKNG 1abnong.
Y& £MEKTAOT AUTrg NG epyaociag, n Kpiown Siabpopr 1) 1o kpiowo DAG mou eayetat ard
1a ixvn Jaeger, akopa Kat 0AOKANPO 10 ypddpnua rmou arotedeital anod ta ixvn Jaeger €xet
1 duvatotnta va tpopodonOel oe autd to poviedo GNN. Me autov tov 1porto, 1 KAatavonon
ToU TIeP1BAAAOVTIOG arto toug rpdktopes da evioxubel onpavukd, BeATidvoviag 11§ artopAacelg

KATavopng mopev 1mou AapBavovial and autoug Toug MTPAKIOPES.
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Chapter “

Introduction-Problem Statement

1.1 Motivation and Problem Statement

In recent years, cloud computing has transformed the way applications are developed
and deployed. Modern large-scale datacenters host an increasing number of popular
cloud-based services that impact nearly every aspect of human activity. In order to
satisfy the many complex objectives that different users have among the different services
of their providers, a common way was to build a large, often complex architecture, called
monolithic, that integrates every function, or in general block of code, into a single, unified
codebase and deployed as one executable.

Although this technique seems fine, in many ways it induces very high complexity
as the number of different services gets bigger and thus it can be frustrating and many
times impossible to deal with. In more recent years, developers have shifted to more mod-
ular, decentralized and scalable approaches. Among the many architectural paradigms
emerging from this transformation, microservices have gained widespread popularity due

to their modularity, scalability, and resilience [14].

/" Monolith Microservices
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Figure 1.1. Monolith vs Microservices architecture, Source: [8].
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However, as microservices become more complex and grow in size, managing their
given resources dynamically becomes increasingly complex. Resource allocation is a
cornerstone of operational efficiency in many fields, ranging from telecommunications and
supply chain management to energy systems ,healthcare and finally in large cloud-based
systems. The challenge lies in determining how to allocate limited resources optimally
to achieve specific objectives. Traditional methods, such as linear programming or rule-
based heuristics, while effective in static and deterministic settings, can struggle to adapt
to the complexity and variability of modern systems and the high demand in user requests.

Resource allocation in microservices presents a unique challenge due to the architec-
ture’s dynamic and distributed nature. Microservices, which consist of loosely coupled
services, each with distinct functionalities, experience fluctuating workloads and varying
resource demands based on user interactions and inter-service communications. This
variability complicates the task of distributing very important computational resources
such as CPU and memory. Traditional static or heuristic allocation methods such as
static thresholds as implemented by solutions like the Horizontal Pod Autoscaler (HPA)
[41] and Vertical Pod Autoscaler (VPA) [42], struggle to adapt to these changing conditions,
leading to potential inefficiencies, such as over-provisioning (waste) or under-utilization
of resources leading to bottlenecks.

Reinforcement learning (RL) offers a promising approach to this problem by allowing
for dynamic, data-driven resource allocation decisions. In this context, RL models the
microservices environment as a series of states, each reflecting current resource utiliza-
tion, workload, and performance metrics like latency and throughput. Actions in this
framework involve decisions about adjusting resource allocations or scaling services up
or down. The RL agent’s objective is to learn a policy that optimizes a reward function,
which typically combines goals such as minimizing response times, maximizing resource
utilization, and reducing operational costs.

Also, supervised or unsupervised machine learning models can help the aforemen-
tioned RL agent to generalize more quickly and also gain impactful insight information
about the residing microservices it has to deal with. The application of RL in microser-
vices resource allocation provides several advantages. It enables adaptive responses to
workload changes, optimizing resource usage in real-time, and considers the complex de-
pendencies between services, leading to more holistic and effective allocation strategies.
Moreover, RL automates the decision-making process, reducing the need for constant
manual intervention and tuning. However, this approach brings up many rough chal-
lenges. The implementation and training of the RL agents can introduce computational
overhead, and during the learning phase, the RL agent may make suboptimal decisions
as it explores various strategies, making the whole process really slow.

Despite these challenges, RL has shown great potential in large-scale cloud-based
platforms, handling them the ability to adapt and manage resource allocation dynamic-
ally, ensuring efficient operation even under varying demand conditions. By leveraging
reinforcement learning and machine learning in general, organizations can achieve a more
responsive and cost-effective management of their microservices environments, paving the

way for improved performance and scalability.
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1.2 Related Work

This section explores the work done at the literature, pointing out great frameworks
that explore the problem of resource allocation with various techniques. The explored
work is divided into threshold-based controllers, statistical controllers-models and finally
ML-based controllers-models. This literature review is essential in the design of this
thesis’s pipeline with the objective of optimal resource allocation in Kubernetes clusters.

First, Threshold-based techniques constitute one of the most widely deployed SLO
protection mechanisms in cloud systems. Popular platforms (e.g. Amazon, K8s) rely on
threshold-based scaling policies on metrics such as CPU and memory pressure and queue
depth. When a metric crosses the predefined threshold, specific actions are triggered,
altering the formation of the cloud by adjusting the resource provisioning (e.g. increase
the CPU or memory request). This approach is relatively easy to implement as it does
not require any type of training or data acquisition. However, threshold rules require
manual tuning, react poorly to non-stationary or in changing workloads as seen in many
papers([43]).

At the same time, another technique that is used in the literature is the statistical-
based one. This technique uses statistical models or analytical models to anticpate QoS
fluctuations and keep the predefined SLAs/SLOs intact. A great example of this approach
is Ursa [44] in which the authors propose a performance model for mapping microservice
SLAs to resources with decomposition of end-to-end latency, mapping the per-service
latency to resources and finally use a resource optimization model to calculate an efficient
way to allocate resources for each microservice using solvable mixed-integer programming
(MIP) models.

On the other hand, ML-based techniques aim to build a model that is able to predict
the right resource allocation to the cluster under varying or specific workloads based on
metrics such as CPU , memory or even workload traffic or network traffic. This approach
can be really robust in dynamic environments due to the adaptation of the model via
training.

A great example of this approach is Sinan [45], in which the authors created a model-
based approach with Convolutional Neural Networks (CNNs) and boosted trees to predict
the end-to-end latency and give the probability of a QoS violation. This approach leverages
ML and the correlation with time, to identify the impact of dependencies on end-to-end
performance and make efficient resource allocation decisions.

Also, in FAST23 [46] the authors propose an intelligent ML-based scheduler which
learns the correlation between architectural hints (e.g. IPC, cache misses, memory foot-
print, etc.), scheduling solutions and the QoS demands. They adopt a multi-model col-
laborative learning approach, where multiple ML models are employed in order to work
collaboratively to anticipate and predict QoS variations-fluctuations. Trained on runtime
data, this ensemble sustains SLOs at higher and dynamic workloads.

Another great example is FIRM [31] which is a fine-grained, intelligent cluster man-
agement framework designed to optimize the performance and efficiency of microservice-

based cloud applications by leveraging hardware heterogeneity and real-time performance
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insights. Recognizing that microservices exhibit diverse resource demands and interde-
pendencies, FIRM introduces the idea of acquiring critical paths from the dependency
graph of all microservices. Based on that, the focus shifts to a smaller group of microser-
vices, giving us the ability to not waste time and resources in order to fix problems that are
not the direct cause of the loss of target. Lastly, it makes great use of machine learning,
and reinforcement learning in order to automate the resource allocation efficiently and
rapidly.

Lastly, a great approach to solve the problem of resource allocation is Seer [47] which
combines ML-based prediction with queueing theory-based signals. The authors of Seer
trained a pipeline that consists of Convolutional Neural Networks and Long Short-Term
Memory (LSTM) networks in order to reduce the dimensionality of the original dataset and
at the same time capture load patterns effectively, guided by queueing theory intuition

and metrics reducing latency with a short window to act.

Table 1.1. Related Work.

Framework Method | Signals Key idea Dependencies

K8s HPA [41] Threshold | CPU, mem, queue |Fixed rules trigger scal- | Metric only
depth ing

Ursa [44] Statistical | Arrivals, service | SLO decomposition | Per-service analytic de-
rates, per-svc targets | with MIP composition

Sinan [45] ML CPU/mem, traffic, | CNN + boosted trees | Explicit inter-service
time/dep feats predict tail graph

FAST23 (OSML) [46] ML Architectural hints & | Multi-model collab. | Learned interference
QoS demand scheduler across co-located svcs

FIRM [31] ML+RL | Telemetry data Contention localization | Critical-path extracted

+ RL reprovision manually

Seer [47] ML+Queue | Traces, per-svc queue | DL forecasting for early | Trace-derived initiators

depth action / causal hints

1.3 Proposed Solution and Outline of Thesis

The proposed solution presented in this thesis is inspired by FIRM’s [31] approach,
which has shown promising results in resource allocation. However, to better suit the
specific requirements of this study, we introduce several modifications that adapt and
extend the original model. These adaptations are intended to address the acquirement
of critical path more effectively, training of the SVM model more effectively with a signif-
icant modification of the output transforming it to probabilistic and finally feeding the
aforementioned results into online Reinforcement Learning Agent of recent RL modules in
order to improve the management of the total resources of Kubernetes and cloud cluster
as a whole.

This thesis is composed out of three main parts, with Part I named Theoretical back-
ground providing the main theoretical information about the technologies being utilized
in this thesis, giving the readers the ability to have a clear idea of the referenced concepts.

More specifically, this part is composed from the following chapters:

e Chapter 2: Presents the essential theoretical information about Kubernetes includ-

ing its architecture, core components and finally the integration with monitoring
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tools such as Jaeger and Prometheus.

e Chapter 3: Provides the essential theoretical foundations of Machine learning and
its components. More specifically, starting with supervised and unsupervised learn-
ing, covering the main algorithm used in this thesis, while later introducing neural
networks with its underlying structures and their role as powerful tools for approx-
imations. Finally, an extensive analysis about Reinforcement learning covering its
underlying mathematical structure and in later stage introducing the deep neural

network addition in order to improve the value and policy based methods.

Continuing with Part II named Implementation, focus shifts from theoretical appli-
cations to the practical implementation of the previous technologies. More specifically,
this part details the integration of all Kubernetes components with the Machine learning

algorithms previously mentioned, divided into the two following chapters:

e Chapter 4: In this chapter, the entire architecture of the proposed pipeline is
examined in detail, outlining the details of its structure with the parameters used

to test the accuracy and effectiveness of the pipeline.

e Chapter 5: The results of both the training and testing of the aforementioned

pipeline will be presented.

Finally, Part III contains one chapter (Chapter 6) that summarizes the conclusions of
this thesis and provides suggestions for future work in order to increase the accuracy and

efficiency of the proposed pipeline.
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Chapter E

Kubernetes and related technologies

In this Part, we provide comprehensive information on the technologies referenced
throughout this thesis. The focus is to understand fundamental concepts and technolo-
gies about the underlying system that this thesis is dedicated to. Starting, in this chapter
the basic concepts of Containers, Microservices and Docker platform are going to be an-
alyzed. Also, the basic ideas and components of Kubernetes are going to be extensively
analyzed, giving great details about the underlying algorithms used in Kubernetes for
resource allocation and self-healing. Furthermore, in this chapter the fundamentals of
Monitoring in microservices system will be introduced, emphasizing in tools like Jaeger
which is a mandatory tracking tool in such systems. Also, Prometheus, with its added
services, is going to be analyzed in order to close the chapter having all the basic concepts

of microservices and its core ideas.

2.1 Containers and Microservices

Containers are a standard unit and form of operating system-level virtualization that
allow applications to run in isolated environments, integrating the application code along
with all its dependencies in order to run properly without the need of a hypervisor. This
integration ensures that the software behaves consistently across different computing
environments, from development and testing to production. Unlike virtual machines,
which require a separate operating system for each instance and essentially a hypervisor,
containers share the kernel of the host machine-system, making them significantly more

lightweight and efficient in terms of resource consumption and startup time (Fig.2.1).

Virtual Machine Virtual Machine

App  App  App

Traditional Deployment Virtualized Deployment Container Deployment

Figure 2.1. Traditional approach vs VM vs Container, Source: [1].
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At the same time, containers are fundamental in the microservice architecture [48]
that developers are adopting recently. More specifically, applications like front-end or
back-end, are separated into containers that each play a different and individual role,
while each of them are loosely coupled, microservices can easily communicate. Each
microservice communicates with each other via a specific protocol, for example gRPC [29]
or HTTP [49].

2.2 Docker

Docker [50] is one of the most widely used containerization platforms that has popu-
larized and standardized the use of containers in the software industry. With the use of
Docker, user can host a large number of containers to his host machine without the need
of setting up different VMs as described above. Docker simplifies application deployment,
reduces conflicts between software versions, and optimizes resource utilization by sharing
the host OS kernel. However, while Docker is good at managing individual containers or
small groups of services, it lacks native support for handling complex, distributed sys-
tems at scale, such as orchestrating container lifecycles, managing service discovery, and

ensuring high availability.

NORDICAPIS.COM

Figure 2.2. Docker architecture, Source: [9].

2.3 Kubernetes

Kubernetes [1] (K8s) is an open-source container orchestration system for automat-
ing deployment, scaling, and management of containerized applications. First developed
by Google in 2014 and later on 2015 was launched open source, Kubernetes has be-
come the industry standard as it offers numerous advantages on container-based cloud

environments, starting with a few robust features like:

o Self-healing: Automatically replaces or restarts failed containers.

e Rolling updates: Gradually updates applications with minimal disruption.
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e Automated failover: Redirects traffic or workloads to healthy instances to ensure

high availability.

e Automatic bin packing: You provide Kubernetes with a cluster of nodes that it can
use to run containerized tasks. You tell Kubernetes how much CPU and memory
(RAM) each container needs. Kubernetes can fit containers onto nodes to make the

best use of resources.

e Horizontal and Vertical scaling: Automatically adjusts the number of Pods in a
deployment (Horizontal) or the resource limits of individual Pods (Vertical) based on
observed metrics such as CPU usage, RAM usage, network traffic, workload inten-

sity, and many more, ensuring optimal performance and efficient use of resources.

2.3.1 Kubernetes cluster components

In this subsection, the essential components are provided in order to create a Kuber-

netes cluster (system). Starting of with some basic terms for Kubernetes:

e Nodes: Anode may be a virtual or physical machine, depending on the cloud cluster.
Each node is managed by the control plane or the master node and contains the

services necessary to run Pods.

e Pods: Pods are the smallest deployable units of computing that you can create and
manage in Kubernetes. A Pod is a group of one or more containers, with shared
storage and network resources, and a specification for how to run the containers.
A Pod’s contents are always co-located and co-scheduled, and run in a shared
context. A Pod models an application-specific "logical host" by containing one or
more application containers. These containers are relatively tightly coupled, with

shared storage and network resources, and a specification on how to run them. [1].

e Services: In a cluster, Pods can be terminated or restarted unexpectedly, making
them incredibly unreliable. Therefore, due to the highly dynamic nature of the Pods,
Services are created to be a more abstracted layer than Pods, making them essential
for the exposure of the Pods over the network. In that way, the developer does not
have to rely on the dynamic IP each Pod has, and therefore each Service object
defines a logical set of endpoints (usually these endpoints are Pods) along with a
policy about how to make those pods accessible. In short, Service manages access
to the Pods.

e Deployment: Last but not least, Deployment is essential for managing the lifecycle

of Pods, handling tasks like scaling, rolling updates, and self-healing.

A Kubernetes cluster consists of a control plane, often called master-node, and a set of
worker-nodes referred as nodes. Worker nodes host Pods that are the components of the
application workload and the same time Control plane is responsible for the appropriate
operation of the worker nodes and the Pods that are being scheduled to them. In produc-

tion environments, a good practice is that the Control Plane often has many copies across
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the cluster, offering high availability and fault tolerance to the cloud. Core components

of the cluster, starting of with the Control-Plane components:

e kube-apiserver: The core component server that exposes the Kubernetes HTTP API.

e etcd: Consistent and highly-available key value store database that stores all API

server data.

e kube-scheduler: Looks for Pods not yet bound to a node, and assigns each Pod to
a suitable node. Via the Round-Robin algorithm scheduler selects one node and
tries to evaluate if it is suitable for Pod scheduling. Factors taken into account
for scheduling decisions include: individual and collective resource requirements,
hardware/software/policy constraints, affinity and anti-affinity specifications, data

locality, inter-workload interference, and deadlines.
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Figure 2.3. Kubernetes Scheduling framework, Source: [1].

e kube-controller-manager: Runs controllers to implement Kubernetes API behavior.

e cloud-controller-manager (optional): Integrates with underlying cloud provider
structure. For example providers can be AWS [15], Microsoft Azure [16] or Google

cloud [17].

Continuing with the Node components that run on every worker node, maintaining

running pods and providing the Kubernetes runtime environment :

e kubelet: Ensures that Pods are running properly without any error, including their

containers.
e kube-proxy (optional): Maintains network rules on nodes to implement Services.

e Container runtime: Software responsible for running containers. The most com-

mon one is Docker (Docker-engine now), following by Containerd and CRI-O.
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CLUSTER
CONTROL PLANE

cloud-controller-manager

Node 1 Node 2

_

Figure 2.4. Kubernetes cluster architecture, Source: [1].

2.3.2 Kubernetes Scaling

In this subsection, the basic techniques of scaling in Kubernetes are briefly analyzed.
Although Kubernetes system can indeed self-heal and restart broken Pods, that is not
enough to ensure that the cluster is operating in optimized environment settings. That is
why the concept of autoscaling resources is present and helps achieve the best conditions
for the cluster. In Kubernetes, you can scale a workload depending on the current demand
of resources. This allows your cluster to react to changes in resource demand more

elastically and efficiently.

e Horizontal scaling: One of the most important approaches of autoscaling resources
in Kubernetes is Horizontal scaling, which involves increasing or decreasing the
number of Pod replicas to match workload demand and at the same time distribute
the workload across the current Pod replicas. In this way, applications can han-
dle traffic spikes or reduce resource usage during low-demand periods. While this
method does increase the total resource consumption, it enables greater paral-
lelism, and resilience against failures, making it especially effective for applications
designed to operate as multiple independent instances such as stateless Services.
The negative aspect of this approach is that it increases the total resource con-
sumption and also, sometimes can be wrong to apply this kind of scale in some
microservices due to their stateful nature. Stateful Services maintain data or ses-
sion information that must remain consistent across requests, making it challeng-
ing to simply add replicas without careful coordination. For example, databases or
caching layers require specialized mechanisms like replication, sharding to ensure
data integrity and consistency when scaled horizontally and at the same time must
satisfy the CAP theorem [51].

e Vertical scaling: In contrast, instead of increasing or decreasing the number of
Pod replicas of the specific service, Kubernetes is able to give more resources to the

Pod, with the most common ones being the CPU and memory, in order to meet the
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current demands of the workload. This approach is suited best for stateful Services.
Although vertical scaling can effectively improve performance for such workloads,
it has inherent limitations, such as maximum hardware capacity and the risk of
creating a single point of failure but also the risk of allocating less resources than

needed which may cause bugs or even out of memory errors.

Vertical Scaling Horizontal Scaling
(Scaling up) (Scaling out)

Figure 2.5. Vertical and Horizontal scaling techniques, Source: [2].

e Event driven Autoscaling: Event driven autoscaling is a CNCF [19] graduated
project enabling you to scale your workloads based on the number of events to be

processed, for example the amount of messages in a queue.

o Node scaling: In very rare situations, Node scaling is also possible in Kubernetes. If
Pod scaling is not enough to distribute the workload effectively, adding more Nodes

to the cluster can eventually also help to achieve this goal.

2.3.3 Horizontal Pod Autoscaler (HPA)

Although all of the aforementioned techniques have their distinct advantages, for this
thesis, the chosen use and baseline of performance is the default HPA of Kubernetes. As
mentioned before, the most common practice is that based on some kind of resource,
for example CPU usage or RAM usage, the HPA instructs the workload resource (the
Deployment, StatefulSet, or other similar resource) to scale up or down. Basically, HPA is
a controller that tries to transform the current state into the desired one via the metrics-
server which is an API that needs to be launched separately to acquire the desired metrics.
The default algorithm that HPA uses in order to achieve the desired number of replicas is

the following:

currentMetric

desiredReplicas = ceil |currentReplicas X -
targetMetric
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Based on the above algorithm and a configurable tolerance (usually 10%) that applies
on the base scale ratio, HPA makes the decision to scale the replicas. It is very important
to note that this algorithm takes into account all Pods with Ready state and the ones with
a deletion timestamp set (objects with a deletion timestamp are in the process of being
shut down / removed) are ignored, and all failed Pods are discarded. Also, due to technical
constraints and initialization noise of the Pods (really high at the initial state) , Pods with
CPU target metric are initially labeled as "not yet ready" and then in a certain amount
of time, that is also configurable, they transition to state Ready. This configuration
flag is named horizontal-pod-autoscaler-initial-readiness-delay and its default value is
30 seconds. At the same time, another flag that tries to avoid any CPU value during
the warmup stage (especially useful for example Java apps) is horizontal-pod-autoscaler-

initial-readiness-delay with default value of 5 minutes.

2.4 Monitoring tools

2.4.1 Jaeger

Jaeger [3] is an open-source, end-to-end distributed tracing system originally devel-
oped by Uber to monitor and troubleshoot complex microservice architectures. It helps
developers understand how requests flow through a system by collecting and visualizing
trace data, which includes timing information for operations across multiple services.
Jaeger enables the identification of performance bottlenecks, root cause analysis of er-
rors, and optimization of service dependencies by providing detailed insights into request
latency and service interactions. It integrates well with modern observability stacks and

supports standards like OpenTracing [52] and OpenTelemetry [53] .
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Figure 2.6. Jaeger architecture, Source: [3].

Figure 2.6 illustrates the core architecture of Jaeger. It consists of jaeger-client,
jaeger-agent, jaeger-collector, jaeger-query and optionally jaeger-ingester. Each of the
aforementioned components is essential in the Jaeger tracing system to track and trou-

bleshoot complex microservices architectures in the following way:
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e jaeger-client: Jaeger clients are language-specific implementations of the Open-
Tracing API. They can be used to instrument applications for distributed tracing
either manually or with a variety of existing open source frameworks, such as Flask,
Dropwizard, gRPC, and many more, that are already integrated with OpenTracing.
The traces that are being fetched consist of spans for each operation in the un-
derlying application. In that way, a directed acyclic causal graph is created and
essentially models the causal relationship between each microservice, with each
microservice being a node and an operation being the edge. This can be very useful
for a developer not only to debug and understand the underlying system but also to

use this kind of information for various machine learning cases.
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Figure 2.7. Traces, Spans and the Causal graph in Jaeger, Source: [3].

e jaeger-agent: Jaeger agent is a network daemon that essentially listens and waits
for the client to send tracing data via the UDP protocol [54]. Once collected, the

agent sends them to the collector for further analysis.

e jaeger-collector: Jaeger collector receives the traces as mentioned before and pro-
cesses them through a specific pipeline, consisting of validation, indexing, transfor-
mation and then persists them into a Jaeger storage. Jaeger storage is a pluggable
component and in the simple case it can be an in-memory infrastructure or, in the
more complex case, can be one of the currently supported databases of Cassandra
[55], ElasticSearch [56] or Kafka [57].

e jaeger-query: Jaeger query is essential to acquire the data from the database (in-

memory or not) and display them to the hosted UI.

e jaeger-ingester (optional): In order to use a complex backend to store the data
from jaeger-agent and jaeger-collector, a jaeger-ingester must be present, this way
data can be read from a Kafka topic and then stored to a Cassandra or ElasticSearch

database.

2.4.2 Prometheus, Grafana and Alertmanager

Prometheus is an open-source systems monitoring and alerting toolkit originally built
at SoundCloud [18] but since 2016 has joined CNCF [19] as the second hosted project,

after Kubernetes [1]. Prometheus collects and stores its metrics as time series data, i.e.
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metrics information is stored with the timestamp at which it was recorded, alongside
optional key-value pairs called labels [4]. It helps developers to track important metric
from their systems with very high accuracy and gain visibility of their behavior. Tracking
metrics such as CPU, RAM, network traffic and many more, handles the opportunity for
various advanced analyses and optimizations.

Figure 2.8 illustrates the core architecture of Prometheus. It consists of the main
components, Prometheus server which scrapes and stores time series data, exposing the
very powerful PromQL query language that enables users to filter, aggregate, and analyze
metrics with great flexibility, Grafana which helps with the visualization of the scraped
metrics, Alertmanager which can be set accordingly in order to alert the developer based
on defined conditions. Lastly, Pushgateaway for supporting short-lived jobs to deliver
metrics that also integrates well with Grafana creating live and dynamic dashboards.
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Figure 2.8. Prometheus architecture, Source: [4].
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Chapter E

Machine learning

In this chapter, we provide comprehensive information on the technologies referenced
throughout this thesis. The focus is to understand fundamental concepts and technolo-
gies relevant to resource allocation with the use of reinforcement learning and machine
learning in general, which are the core essence of this thesis. Starting, machine learning
topics such as supervised learning, unsupervised learning and reinforcement learning are
also going to be extensively analyzed. More specifically, deep reinforcement learning as
the core feature will be presented, and at the same time, algorithms of that nature such
as Proximal Policy Optimization (PPO), will be introduced. Furthermore, in the supervised
and unsupervised learning section the core algorithm of SVM will be analyzed due to the
criticality in this thesis.

Machine learning [20] is a field of artificial intelligence that enables systems to auto-
matically learn patterns and make decisions or predictions based on data, without being
explicitly programmed for specific tasks. It relies on statistical and computational tech-
niques to extract insights from small or large datasets and at the same time mitigate the
complexity of the task needed. In order for these systems to learn patterns, mathemat-
ical algorithms (often called model) over many loops, called epochs, are being applied to
iteratively adjust the model’s parameters. In this way, each model based on the task and
the data they are iteratively applied tends to learn specific patterns and finally makes
future predictions. The data aforementioned are randomly split into training and valida-
tion sets, with the training data usually being the 80 percent of the whole dataset and
the validation data being the rest (assuming the simplest form of split). Training data are
used to let the model learn specific patterns from input to output, usually by minimizing
a loss function, the loss function being a mathematical expression that quantifies the
difference between a model’s predicted output and the actual ground truth. On the other
hand, validation data are used to evaluate how well the model has learnt the general
relationship between input and output or simply the function that expresses output in
terms of input. Here, terms like overfitting [58] appear, referring to the situation where a
model learns the training data too well, including its noise and minor fluctuations, rather
than capturing the underlying general patterns and function that connects the output(s)
to input(s). As a result, while the model performs exceptionally well on the training data,
it tends to score poorly on validation or test data, indicating poor generalization. This

discrepancy is often reflected in evaluation metrics such as accuracy, precision, recall, or
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loss, where the model’s performance on unseen data significantly drops. Overfitting is a
common challenge in machine learning and can be mitigated through various techniques
such as cross-validation, regularization, early stopping, and by using more training data

or simpler models.

3.1 Supervised and Unsupervised learning

Supervised learning [59] is a prominent machine learning paradigm in which algo-
rithms are trained on labeled datasets, enabling them to predict or classify outcomes by
identifying patterns and relationships between input features and associated target vari-
ables. This approach relies on explicit guidance in the form of annotated examples, where
the model iteratively adjusts its parameters to minimize the values between predicted and

actual values, as called before a loss function.

Table 3.1. Common loss functions in supervised learning [12]

Loss Function Mathematical Expression Use Case

Mean Squared Error (MSE) Luse = + 2t (i — 9)? Regression

Mean Absolute Error (MAE) Lyvag = ﬁ Dy lyi — Gl Regression

Binary Cross-Entropy (BCE) LBcE = —% 1 [yilog(@y) + (1 — yy) log(1 — §y)] Binary classification

Categorical Cross-Entropy (CCE) | Lcce = — Yty ZJC:] yy log(Ty) Multi-class classification

Hinge Loss Lhinge = 2pey max(0, 1 — y; - §y) Support Vector Machines (SVMs)

Also, in order to avoid overfit as described before, many times a regularization term is

added in the previous loss functions as shown in Table 3.2.

Table 3.2. Common regularization (penalty) terms in supervised learning [13]

Penalty Type Mathematical Expression Purpose

L1 Regularization (Lasso) | Ry = AXT, [wjl Encourages sparsity by driving weights toward zero

L2 Regularization (Ridge) | Ri2 = AXT, w/2 Penalizes large weights, helps reduce overfitting

Elastic Net Ren = M 2;21 |wyl + Az 2}21 ub.z Combines L1 and L2 for balance between sparsity and smoothness

Common algorithms employed within supervised learning include linear regression,
logistic regression, decision trees, support vector machines, and artificial neural net-
works, each with distinct advantages and limitations depending on data characteristics

and application contexts.

On the other hand, unsupervised learning [60] is a critical paradigm in computer
science and machine learning that deals with identifying patterns, structures, or intrinsic
relationships within unlabeled data, without explicit guidance or predefined output labels.
Unlike supervised learning, unsupervised algorithms such as clustering methods (e.g.,
k-means, hierarchical clustering), dimensionality reduction techniques (e.g., principal
component analysis, autoencoders), and anomaly detection models rely solely on input
features, seeking to uncover hidden patterns or groupings inherent to the dataset. This
approach enables the exploration of data in scenarios where labeling is costly, impractical,
or unavailable. In figure 3.1 the basic categories of machine learning are briefly shown

with the appropriate algorithms.
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Figure 3.1. Machine learning categories, Source: [10].

3.1.1 Support Vector Machines (SVMs)

Support Vector Machines (SVMs) [21] are supervised learning algorithms primarily
used for classification (and regression in the form of Support Vector Regression). The
core idea is to find a hyperplane in a high-dimensional feature space that separates
data points of different classes with the maximum possible margin (often called "street").
The data points closest to this hyperplane are called support vectors, as they define the

boundary and thus the linearly separable problem is described as:

1
min 5||w||2 (3.1)

y(w'x;+b) > 1, i=1,....N (3.2)

where N is the total number of data points with x; € Reandy; € {-1,1}fori=1,...,N.

In the non-linearly separable case, two modifications are introduced to the original

SVM formulation:
e Slack variables § > O to allow misclassification (soft margin).

e Kernel mapping ¢(x) to transform data into a higher-dimensional feature space

where linear separation is possible.

A mapping is defined, in order to solve the following optimization problem:
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9 :RY > H (3.3)
min l||w||2 + ci & (3.4)
wbhé 2 —

y(w'ox)+b)>21-§, i=1,...,N (3.5)
&>0, i=1,...,N (3.6)

where C > O controls the trade-off between margin width and misclassification. In-
stead of computing ¢(x) explicitly, the kernel trick is used, replacing the dot product

@(x;) T p(x;) with a kernel function:

K(x;. %) = ¢(x;) " ¢(x) (3.7)

Common choices of kernels include the polynomial kernel, radial basis function (RBF)

kernel, and sigmoid kernel.

3.2 Neural Networks

While traditional machine learning algorithms shown above can be very effective and
often lead to very promising results, when the dataset or the target objective requires
complex solutions, more complex architectures are required in order to reach reliable and
accurate performance. Inspired by the human brain (Figure 3.2) neural networks were
developed, made from individual neurons and layers (often called hidden layers). Each
neuron receives one or more input values, applies a weighted sum followed by a nonlinear

activation function, and passes the result to the next layer [22].
n
o - g( el bgv] .8

Jj=1

where:

l
a1()

is the activation of neuron i in layer [,

(D

i

w;;’ is the weight connecting neuron j in the previous layer (I — 1) to neuron i,

bgl) is the bias term for neuron i,

g(+) is a nonlinear activation function (e.g., ReLU, sigmoid, or tanh),

e n is the number of neurons in the previous layer.
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Figure 3.2. A biological neuron in comparison to an artificial neural network. (a) Brain
neuron, (b) Artificial neuron, (c) Neuron and biological synapse, (d) Artificial neural networl.
Source: [11].

This layered architecture allows neural networks to learn complex, hierarchical pat-
terns in data by progressively extracting features at different levels of abstraction. More
specifically, the network previous shown is called feed-forward network (FFN) or multi-
layer perceptron (MLP) that consists only from neurons and layers. These architectures
often include deeper networks with many hidden layers (deep learning networks). In or-
der to evaluate these networks, similar techniques are employed as in simpler models.
However, due to the increased complexity arising from the large number of neurons and
layers, a specialized optimization method known as Backpropagation [22] is used. This
technique efficiently computes gradients by propagating the error backward through the
network, allowing for effective adjustment of weights during the training process. In many
cases instead of just using simple neurons, alternative network architectures exist that
combines inputs or even neurons, e.g. Convolutional neural networks (CNN) or Recurrent
neural networks (RNN).

3.3 Reinforcement learning

In the previous sections, supervised and unsupervised learning approaches were pre-
sented, both of which rely heavily on static, pre-labeled datasets and essentially a su-
pervisor to either manually or with some programmable way annotate each entry to the
target variable of that dataset. That can be very costly and many times impossible to do in
production level environments that the value of the target variable is unknown until the
event happens or is constantly changing with time meaning it is a highly dynamic environ-
ment. In such settings, the outcome of an action often depends not only on the current
state but also on the sequence of prior decisions, creating a complex dependency that
traditional data-driven methods struggle to handle. To overcome these challenges, Re-
inforcement learning (RL) introduces a different approach to sequential decision-making

kind of problems.
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3.3.1 Markov Decision Processes (MDP) and Bellman equations

In the context of this category of problems, it is necessary to appropriately introduce
the framework of a Markov Decision Process (MDP) [61] that is formal to decision-making
problems in dynamic environments. Markov Models are stochastic models created to de-
scribe non-deterministic processes with the main advantage being that they are memory-
less, meaning they only depend on the current state and not the previous ones. In that
way, having enough information about the current state and a set of actions, the transi-

tion ,via the agent, to the next step is possible. An MDP is defined as:

M=(S.A,P,Ry)
where:
e A set of states s € S, can be discrete or continuous.
o A set of actions a € A the agent can execute, can be discrete or continuous.

e A reward function
R:SXA—R

which assigns a scalar reward to each state-action pair.

e A transition function
P:SXAXS—]0,1]

where P(s’|s, a) denotes the probability (discrete case) or probability density (con-
tinuous case) of transitioning to the next state s’ from state s after taking action

a.

e Adiscount factor y € [0, 1], which specifies how future rewards are weighted relative

to immediate rewards.

'_| Agent I

state reward action
S, R, A,
i Rul
S S ZY )
.S, | Environment ]4——

Figure 3.3. MDP interaction, Source: [5].

In reinforcement learning, the purpose or goal of the agent is formalized in terms of
a special signal, called the reward, passing from the environment to the agent. At each
time step, the reward is a simple number. Informally, the agent’s goal is to maximize the
total amount of reward it receives. This means maximizing not immediate reward, but

cumulative reward in the long run [5]:
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Gt = ) Y*Rirn (3.9)
k=0

The extraction of the recursive form of equation (3.9) is essential in dynamic program-

ming and further analysis of reinforcement learning:

Gt = Res1 + YRis2 + V?Ress + V' Rppa + -+
=Ry + Y(Rt+2 + YRe3 + Yth+4 + - )
= Rey1 + YGir1 (3.10)

Now, in order to continue, it is necessary to define certain functions that estimate how
good it is for the agent to be in a particular state or to take a specific action in that state.
Initially, it is obvious that future rewards depend on the actions the agent will perform.
That is why it is necessary to define a term called policy denoted as m .Formally, a policy
is a mapping from states to probabilities of selecting each possible action. If the agent is
following policy m at time t, then m(als) denotes the conditional probability that A; = a
given S; = s. Ultimately, the objective is to maximize the expected cumulative discounted
reward by finding an optimal policy r*.

The state-value function under a policy r is defined as:

V™(s) =Ex [Gi | St = s] (3.11)

and the action-value function of taking an action a in state s under a policy m is

defined as:

Q"(s.a) =E.[G | St = s, A = a (3.12)

It is important to note that in this form, these equations cannot be used properly. By

using the recursive property in eq. 3.10, the Bellman equations are defined:

The Bellman equation for the state-value function V*(s) [5] is:

Vi(s) = Z w(als) Z P(s']s, @) [R(s, @) + yV(s)]

aceA s’eS

= Ea~n(ls)

Z P(s|s, a) [R(s, a) + yV"(s')]]

s’eS

R(s,a) +vy Z P(s'|s,a)V™(s)
s'eS

= Ea~n(-|s) (3.13)

Essentially, this equation averages over all the possibilities, weighting each by its

probability of occurring.

Similarly, the Bellman equation for the action-value function Q"(s, a) is :
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Q"(s,a) = R(s,a) + y Z P(s | s, a) Z a | $)Q™(s,d) (3.14)
s'eS a’eA
Now, in order to find the optimal solution for the policy function ©* the Bellman
optimality equations are introduced:

For the optimal state-value function V*(s), the Bellman optimality equation is:

Vi(s) = 1;1116221( SZE;SP(S’IS, a)[R(s, a) + yV*(s')] (3.15)

Similarly, the optimal action-value function Q*(s, a) satisfies:

Q'(s,a) = Z P(s'|s, a) [R(s, a) + y max Q'(s’,a) (3.16)
s’eS

These equations form the basis for many reinforcement learning algorithms, including
dynamic programming, Monte Carlo methods, and temporal difference learning but most

importantly approximate solution methods which are more applicable in this thesis due

to the complexity of the action and more importantly the state space.

3.3.2 Reinforcement learning algorithms

Now, having established the baseline theory of reinforcement learning with MDPs and
Bellman equations, the introduction to RL continues with the main algorithms and the
categorization of them, which is split mainly into two parts. The first part is the model-
based algorithms, in which methods rely on planning as their primary component, which
means the agent already knows the model-environment and its probabilities of every ac-
tion and state, therefore it tries to create an optimal plan to achieve its goal with the
maximization of the cumulative discounted reward G;. As is obvious, in systems like Ku-
bernetes it is very hard to know the model-environment and its probabilities to begin with.
For that reason alone, the analysis of this thesis is solely focused in the second part of the
RL algorithms, with the second part consisting of model-free algorithms in which meth-
ods primarily rely on learning, meaning the agent does not know the model-environment
itself, as we defined it, but can gain access to its properties via experience and interaction
with it.At the same time, a fundamental challenge in reinforcement learning is the explo-
ration—-exploitation dilemma. At every decision point, the agent must choose between
exploiting its current knowledge to maximize immediate reward or exploring less known
actions that might lead to higher long-term cumulative discounted reward. Exploitation
leverages the best known policy so far, ensuring stability and short-term performance,
while exploration seeks additional information about the environment, which is essential
for improving the policy over time. Having briefly analyzed the main differences between

the two parts of reinforcement learning and the importance of exploration-exploitation
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dilemma, it is essential to focus deeply into the modern model-free algorithms which gen-

erally, can be further split into on-policy and off-policy. On-policy algorithms attempt to

evaluate or improve the policy that is used to make decisions, whereas off-policy algo-

rithms evaluate or improve a policy different from that used to generate the data:

e Value-based Algorithms: Value-based algorithms mainly focus on the estimation of

value functions rather than direct policy optimization. These algorithms aim to com-
pute the state-value function V"(s) or the action-value function Q"(s, a) and derive
optimal behavior implicitly by selecting the actions that maximize these value esti-
mates, typically through greedy or e-greedy policies. Algorithms such as Q-Learning
[62] and State-action-reward-state-action (SARSA) [5] follows this approach, iter-
atively updating value estimates based on the Bellman equations. The advantage
of value-based methods lies in their conceptual simplicity and proven convergence
properties in discrete state and action spaces. For example, the most well known
value-based algorithm in reinforcement learning is Q-learning, which is an off-policy
algorithm which seeks the optimal action-value function Q*(s, a) satisfying the Bell-

man equation:

Q(s,a) =E R + yma;;{Q*(SHl, a’) | Si=s,A=a. (3.17)
a’e

In practice, Q-Learning iteratively approximates Q*(s, a) using the following update

rule at each time step t:

Q(si, ap) «— Q(s¢, a) + a|Rey1 + Vg}g;}( Q(st+1.a’) — Qs ap) | (3.18)

where a € (0, 1] is the learning rate. The aforementioned algorithm follows the

fundamental logic of Temporal-Difference bootstrapping [5].

However, value-based algorithms can face challenges when applied to environments
with high dimensional or continuous action spaces such as Kubernetes systems,
due to a nearly infinite search space, and employing improvements like discretizing

the action space may produce sub-optimal solutions [63].

Policy-based Algorithms: Policy-based algorithms on the other hand, primarily
focus on the direct estimation and optimization of the policy m, or to be more precise
a parameterized policy ms(als, ), with the use of linear or non-linear functions.
The following method named Policy-gradient, is an essential method used in policy-
based algorithms in RL. As mentioned in previous sections, the policy is a function
that outputs an action(s) based on the current state, but when stochasticity is
involved, this is done probabilistically. In order to achieve that, the policy parameter
8 is updated in the direction of the gradient of the objective function J(8) using

gradient ascent:
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8t+1 — 8t + aV3J(3t) (3 19)

where a denotes the learning rate and VgJ(8) is given by the policy gradient theorem
[5]:

VaJ(8) = Er, [VaInma(als) 9™ (s, a)] (3.20)

where Q™ (s, a) here is the action-value function under policy ms. The problem that
occurs here is that in the current point the estimation involves only the policy my
and thus it helps us compute only the gradient of Inmy, still not any estimation for
action-value function @™(s, a). In order to surpass this problem REINFORCE [5]
algorithm was introduced, trying to estimate the action-value function with the use
of Monte-Carlo estimators, thus at the end of each episode an approximation of
the action-value function is derived by averaging the actual rewards observed after

visiting state-action pairs, using the policy my:

o1
(s, ) ~ s Z‘ G, (3.21)

(3.22)

where Gy, is the same as (3.9) and N(s,a) is the number of times state-action pair
(s,a) appeared in the episode. Remember from (3.12), the action-value function
is actually the expected value of the cumulative reward, thus using the estimator
mentioned, one can approximate the expected value as the average over the derived
samples. The same estimator can be used to estimate the state-value function
V™(s), making the pure Value-based Algorithms simple to compute. By making all

the aforementioned calculations the equation 3.19 is transformed accordingly:

dt+1 «— 8 + ay' G, Valnma(A; | Sp) (3.23)

where A;, S; are the action and state set respectively. However, as a Monte Carlo
method REINFORCE may be of high variance and thus produce slow learning. For
this problem alone, the generalization of REINFORCE [5] method has occurred,
instead of just using Gy, the problem of variance is reduced with a baseline function
b(s) as long as it does not vary with the learning parameter a. Introducing the next
category of algorithms, the baseline function is set to the state-value function and

the approximations made with Monte-Carlo are replaced with another method.
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e Actor-Critic Algorithms: Algorithms that try to approximate both the value func-

tions and the policy function are called Actor-Critic algorithms, with the actor fo-
cusing on learning the policy and the critic focusing on learning the value function
(which can be either state or action value function). This hybrid approach combines
the advantages of both value-based and policy-based algorithms, with the advantage
of evaluating state-action pairs and the flexibility of policy-based methods in directly
optimizing the policy. This interaction reduces the high variance typically found
with pure policy gradient methods and simultaneously addresses the inefficiencies
of purely value-based algorithms in handling continuous or high-dimensional ac-
tion spaces. Continuing the analysis from the Policy-based algorithms, one obvious
problem that occurs from that analysis is that, the updates happen after a full
episode and not online. To overcome this issue, Actor-Critic architectures are intro-
duced, with approximations done with the use of Temporal-Difference [5]. As such,
the computation of the critic responsible of the value function (usually state-value)
is done online, incrementally with lower variance as before and the same kind of
bias in the actor as before. This way, instead of relying on the whole episodic G;
reward, the use of immediate reward is done. The final form of the algorithm and

its generalization with eligibility traces are shown below respectively:

One-step Actor—Critic (episodic), for estimating mg = 7.

Input: a differentiable policy parameterization 7(a|s, @)
Input: a differentiable state-value function parameterization #(s,w)
Parameters: step sizes o > 0, a¥ > 0
Initialize policy parameter 8 € R and state-value weights w € R? (e.g., to 0)
Loop forever (for each episode):

Initialize S (first state of episode)

I+1
Loop while S is not terminal (for each time step):
A~ 7(|S,0)
Take action A, observe 8', R
8+ R+ ~v6(5",w) — d(S,w) (if 8" is terminal, then #(S",w) = 0)

W w4 aVdVi(S,w)

8 0+a’16VInm(AlS,0)
I ~I

S5+ 5

Figure 3.4. Actor-Critic REINFORCE algorithm with temporal-difference, Source: [5].

Actor—Critic with Eligibility Traces (episodic), for estimating g

Input: a differentiable policy parameterization (a|s, @)
Input: a differentiable state-value function parameterization 0(s,w)
Parameters: trace-decay rates A’ € [0,1], A™ € [0,1]; step sizes o® > 0, a¥ > 0
Initialize policy parameter @ € B4 and state-value weights w € R (e.g., to 0)
Loop forever (for each episode):

Initialize S (first state of episode)

2% « 0 (d’-component eligibility trace vector)

z% « 0 (d-component eligibility trace vector)

I+1
Loop while S is not terminal (for each time step):
A~7(]S,8)
Take action A, observe S, R
§ + R+ (5", w) — 0(S,w) (if §' is terminal, then #(S’,w) = 0)

2V — yAVzV 4+ Vi(S,w)

2% « yA\%2° + IVInn(A|S,8)
W w+avVizV

0 «— 6 +a52°

I +~1

S5

Figure 3.5. Actor-Critic REINFORCE algorithm with eligibility traces, Source: [5].
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Finally, in many of these cases instead of using the Q-function, another function called
advantage function is used, which quantity describes how good the action a is, as com-

pared to the expected return when following directly policy m:

A'(s,a) = Q"(s,a) — V(s) (3.24)

3.3.3 Deep Reinforcement learning algorithms

Having analyzed the foundational concepts of reinforcement learning, it is essential
to outline that serious limitations arise when these classical methods are applied to envi-
ronments with large or continuous state and action spaces. Traditional methods, which
explicitly store value functions or policies, become computationally heavy and, at the same
time, increasingly costly as the dimensionality of the problem arises, a phenomenon of-
ten referred to as the "curse of dimensionality" [64]. To address these challenges, an
addition to this field is presented called Deep Reinforcement Learning, which integrates
the classical methods aforementioned with deep neural networks, mitigating the prob-
lems described earlier. The ability of these networks to model complex and non-linear
relationships enables deep reinforcement learning algorithms to approximate value func-
tions or policies even in environments with large and highly dynamic state and action
spaces. This makes them particularly suitable for system-level decision-making tasks,
such as resource allocation, scheduling, and scaling, where the environment’s dynamics

are non-stationary and difficult to capture with traditional methods.

1 : ¥
Function Learning Controllers
Approximators algorithms B J.ri:lr{{valh-df;t.mn
i Valosbased 1L gl plamse
« Recurrent cells Policy-based RL i 13."P'E’TP=W?HIE ers
* .. }'quir-_'l—based RL ImanAgemen|

Policies
Exploration/Exploitation
dilemme

AGENT

ENVIRONMENT

Figure 3.6. General Deep Reinforcement learning schema, Source: [6].

Diploma Thesis



Chapter 3. Machine learning

e Value-based algorithms for Deep RL: Building on the principles of the afore-
mentioned classical value-based reinforcement learning, deep value-based methods
leverage neural networks to directly approximate action-value functions in envi-
ronments with large or continuous state spaces, instead of just using the classic
tabular method. One of the first innovations in this type of algorithms was the Deep
3-Network (D@N) [65] which architecture is based on the classic tabular Q-learning

algorithm:

yr=re+ymax Q(s’, a’;87), (3.25)
a’eA

where r; is the reward received from R(s, a, s’), 8 is the network parameters that
directly estimates the Q function and its delayed version &~ which is periodically
synchronized with the online network with parameter 8 . In fact, the delayed version
is kept stable in order to have a stable target for the other network to achieve.The
loss function is the mean squared error between the predicted Q-value and the target

that must be reached, which in practice will be minimized by gradient descent :

L(8) = Bis,aprosin~n (U — st ai; )% (3.26)

VaL(®) = Ep [2( (s, a;9) — y) VoO(s, a; 9)] (3.27)

8« 8—-a2Ep[(Q(s. a;9) — y) VoQ(s. a; )] (3.28)

8 <« 08 (every C steps, hard update) (3.29)

&8 «18+(1-1)8 (every C steps, soft update) (3.30)

Note: (s¢, ai, 1t, Se+1) ~ D often called mini-batch, is sampled from the replay memory
D, which is a special memory that keeps,the last Nyepiqy experience gathered from
the environment by following the ¢ — greedy policy'. When the replay memory has
enough samples (e.g. after 1000 steps), a mini-batch is sampled and then the
gradient descent in equation 3.26 is computed. The major advantage of the replay
memory is that one mini-batch update has less variance compared to a single tuple
update. Consequently, it provides the possibility to make a larger update of the

parameters, while having an efficient parallelization of the algorithm [6].

e Policy-based and Actor-Critic algorithms for Deep RL: The policy-based algo-
rithms can be extended further with the use of deep learning approaches such as
neural networks in order to model non-linearities as part of both the policy function

and the value function. The Actor-Critic approach described analytically earlier,

!it takes a random action with probability € and follows the policy given by arg maxq.cx Q(s, a; 8;) with
probability 1 — €.
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has the advantage of being simple, yet it is not computationally efficient as it uses
a pure bootstrapping technique that is prone to instabilities and has a slow reward
propagation backwards in time. The ideal architecture is one that can be both
sample-efficient and computationally efficient. Trust Region Policy Optimization
(TRPO) [23] is one of the first innovative algorithms that was introduced, improving
upon standard policy gradient methods by introducing a clever condition to ensure
stable and monotonic policy improvement. Traditional policy gradients can make
overly large updates, causing drastic policy shifts and unstable learning making
them hard to converge. In order to address that, TRPO suggests that maximizing
a different, surrogate objective is computationally easier (derived from importance
sampling which is a Monte-Carlo method) and using the KL-divergence [24] ensures

that the policy doesn’t change drastically but is kept within a Trust region. This

way ensuring stable and robust change and improvement from policy g, to policy
Tty.
mg(a | s
max Eggon, me(als) AT (s, a) (3.31)
9 old T[Bom(a | S)
Esnyy, [Di(Moa( 15) || (- | )] < 6 (3.32)

where 6 is the trust region threshold controlling the maximum allowed KL divergence
between old and new policies, Dki(mg,, || ms) is the Kullback-Leibler divergence

between the old policy mg , and the new policy ms, measuring how much the new

old
policy diverges from the old one, A" is the advantage function (3.24).

While TRPO provides stable policy updates through a trust-region constraint on the
average KL divergence, it is computationally expensive because it requires conju-
gate gradient optimization and a line search to enforce this constraint. Instead, a
simpler approach was made through the Proximal Policy Optimization (PPO) [25]
algorithm, in a way that it replaced the hard KL-divergence constraint with a clip

approximation:

naold(at | St)

LYP(8) = E; [min (r(8) As, clip(ri(8), 1 — €, 1 + €) Ay)] (3.34)

where ¢ is a hyperparameter, usually 0.2, the objective function has changed with
two terms, the first one being the original surrogate objective, the second term
modifies the surrogate objective by clipping the probability ratio, which removes
the incentive for moving r; outside of the interval [1 — ¢, 1 + ¢]. Finally, a simpler
approach with a pure Actor-Critic algorithm is the synchronous Advantage Actor-
Critic (A2C) [26] in which, as described before, combines a network for the actor and

a network for the critic (in the default implementation of the library, one network is
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used for both) with an entropy term added in the policy optimization function:

Vadactor(9) = E¢ [Vo log ma(ay | s¢) Ar + BVaH(1(st; 9))] (3.35)

Lerite(8) = By [(Gy = Va(s)’| (3.36)

where H is the entropy and the hyperparameter 3 controls the strength of the entropy
regularization term. The regression problem being solved via the critic, combines an
estimation of the cumulative reward G; with Temporal difference (other estimations
including Monte Carlo and Generalized Advantage Estimation can be used) and the

predicted value of the critic network.

m Diploma Thesis






Part ﬂ]

Implementation

m Diploma Thesis






Chapter ﬂ

Architecture

In this section, the architecture of the entire thesis is extensively outlined. Initially,
the Infrastructure’s details are defined and in later stage every component of the proposed
pipeline is analyzed, emphasizing each and every layer that was created and deployed.

Lastly, all details about the deployed RL Agents of this case study are also analyzed.

4.1 Infrastructure setup

The Kubernetes cluster consists of 5 nodes with one being the master node and the
rest being the worker nodes. Each of the node is equipped with a virtualized Intel Skylake
processor exposing 4 vCPUs, each operating at approximately 2.2 GHz. It runs on a 64-
bit architecture and supports virtualization (VT-x) along with SIMD instruction sets such
as SSE. The processor includes 128 KiB of L1d cache in total (4 instances), 128 KiB of
L1i cache in total (4 instances), 16 MiB of L2 cache in total (4 instances), and up to 64
MiB of L3 cache in total (4 instances). Each node has 15.61 GiB of RAM, with about
approximately 14 GiB available. This hardware configuration is suitable for running
autoscaling microservices in Kubernetes, as it provides the necessary processing power
and memory capacity. Finally, each node runs on Ubuntu 22.04.5 LTS with Linux kernel
version 5.15.0-144-generic. At this point it is important to note that all scripts were
executed from the master node, including training of all RL and ML models, client traffic
etc. , a choice made for simplicity reasons. Simultaneously, the Kubernetes cluster was
provisioned using Kubernetes v1.30.3, with cluster management performed via kubectl
v1.30.3 . At the same time, containerization performed using Docker v28.1.1 ensuring
compatibility with Kubernetes deployments and the underlying aforementioned system.
These details are critical, as variations in tool versions can influence cluster behavior,
API availability, and overall system performance, particularly when integrating machine

learning pipelines that rely on resource allocation.

4.2 Core components of the proposed solution

This section provides the complete architecture in order to illustrate how the various
components previously analyzed interact to manage and optimize resource allocation

in the Kubernetes cluster. The architecture is composed of 6 main layers which are
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illustrated briefly on figure 4.1.

Kubernetes
Cluster

Cluster Nodes

oo
0 . o o Interfere with the environment

Pods per Service

Client workload

R 1

(DeathStarBench) @ Deployment Class
Trace-Telemetry Data *
extraction
@ Monitoring System(s)
& Action
«/ Reward (Adjust the number of Pods per service)

=

tuple for each service

Critical Path (n_Pods, CPU, Mem)
extraction @ RL Agent
- ¥

CRISP (= 5@»

@ uber & Gymnasium ‘/ )
0
y Observation
SVM Classifier (Probability, n_Pods, CPU, Mem)

Summary with P99/P50

and PCC for each Service Probability that the service
over the last traces gathered O . &a’m' is culprit

Figure 4.1. Proposed pipeline for resource allocation.

Before analyzing each layer extensively, it is important to note at this point that the
microservices benchmark used in this thesis, is taken from DeathStarBench [8] which
is a comprehensive open-source benchmark suite that includes five realistic, end-to-end
cloud applications constructed using microservices. Built with widely adopted frame-
works such as Apache Thrift [28]and gRPC [29], the suite models representative services
including a social network, an e-commerce platform, a media review and streaming site,
a secure banking system, and an IoT-based drone coordination service. Unlike previous
benchmarks that focus on simple or single-tier services, DeathStarBench captures the
complexity and interdependencies of real-world microservices at scale, with each appli-
cation comprising dozens of microservices built and written in a mix of programming
languages.

The benchmark is specifically designed to evaluate the broad system-level implications
of microservices across the cloud and edge computing stack. DeathStarBench reveals
the limitations of traditional cluster management strategies, showing how microservice
dependencies can lead to backpressure, cascading Quality of Service (QoS) violations, and
delayed recovery from performance degradation. Additionally, it explores the implications
of deploying microservices in serverless environments, highlighting trade-offs between
cost, scalability, and latency. Through its modular, extensible, and heterogeneous design,
it provides a powerful foundation for studying the performance, efficiency, and scalability
challenges introduced by the microservices paradigm in modern cloud and edge systems
with the help of static policies such as heuristics or even with the help of machine learning

techniques. The specific architecture chosen is called SocialNetwork which simulates a
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social network with unidirectional follow relationships, implemented with loosely-coupled
microservices, communicating with each other via Thrift RPCs and its architecture is

depicted below:

Frontend Logic Caching & Storage
Search

Unique ID Read Home Memcached § SMongoDBN BVET- g (Jg-Tel}
Timeline pa \

A ’ w Memcached \/lelgle[e)p)=]] Post storage
URL Shorten > Post “ v

Index, J Index, Index,,

Media

Frontend 4§ , Compose mail Storfve’
QY ECE— Post AN - User timeline

CE 1 s NGINX > R AT e ) e storage

Balancer ‘ \.' 2o Timeline ) Home timeline
>< is
Text ~4§ storage

User : — .
‘ RabbitMQ & Memcached || MongoDB Social graph

2 storage
User Tag ’ —

. 7 4 Memcached) | SMongoDEN MY T [ERS (o] Te -]

Social Write Home

Graph Timeline

Recommender

Figure 4.2. SocialNetwork benchmark architecture,Source: [8].

4.2.1 First and second layer (Workload and Monitoring)

Continuing with the core architecture of this thesis, the first layer consists of the
client workload, which represents the end users or the external systems that query the
cloud microservices. More specifically, the operation selected to be used in order to stress
the system is named ComposePosts which creates and publishes posts into the social
network. To effectively create multiple users, each using the aforementioned operation,
the http workload generator wrk2 [27] was leveraged as the author of DeathStarBench
recommended and also used the provided Lua [66] script, named compose-post.lua, in
order to create and publish posts accurately. The second layer corresponds to the moni-
toring systems, which are tasked with collecting traces and telemetry data and presenting
performance metrics from the various microservice instances in this architecture. More
specifically, Prometheus is responsible for collecting metrics such as the usage of CPU
and memory from each Service, and at the same time, Jaeger is responsible of capturing
traces that form the internal dependence graph of each microservice to another. This
graph is particularly useful for next layers. The further in depth analysis of this layer was

done in previous chapter.

4.2.2 Third layer (Critical Path Analysis with CRISP)

After capturing and then processing the aforementioned traces, the data are passed
into the third layer, consisting of CRISP [7] which is an advanced tool that computes
efficiently the complexity of modern microservice systems by isolating the critical path!
chain of service calls whose performance most directly determines the overall latency of

a request. By transforming Jaeger traces into computational DAGs, CRISP identifies syn-

!Assuming a weighted directed acyclic graph (DAG) G(V,E) with V vertices and E edges and the starting
Vertex being S and the final being Z, a maximal-weight path from S to Z in a task-dependency graph G(V,E)
is called a critical path and G may contain more than one of them[30].
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chronization points and walks each trace in reverse to discover the longest dependency
path. When the same method is applied across large volumes of trace data, it aggre-
gates these paths into very important visualizations as flame graphs, heatmaps, and text
summaries that spotlight which services consistently contribute to delays. This focused
approach drastically reduces noise and highlights opportunities for targeted optimization,
whether in service code, infrastructure decisions, or anomaly detection pipelines. At large
scale, CRISP also supports two complementary analysis modes: a top-down tool for end-
point specific issues and a bottom-up view to track which internal APIs have system-wide
impact . Its real world deployment at Uber traces demonstrated significant operational
benefits, identifying hidden bottlenecks, guiding infrastructure choices, and enhancing

anomaly detection.

The essence of CRISP lies in its ability to efficiently handle all critical paths in large-
scale systems and bring to the surface useful insights about the working cloud-based
environment. This tool leverages the structure of the Jaeger traces to find and compute

the critical path with the following pseudo-algorithm:

def CP(root):
path = [root]
if len(root.child) == 0:
return path
children = sortDescendingByEndTime (root.children)
Ifc = children[0]
path.extend (CP( 1fc))
for ¢ in children|[1:]:
if happensBefore(c., lfc):
path.extend (CP(c))
Ifc = ¢
return path

Figure 4.3. Critical path extraction pseudo-algorithm,Source: [7].

At the same time, the structure of CRISP’s framework works in a way that can capture
and present also the merge of all the critical paths from the last N traces, which is named
Critical Calling Context Tree (CCCT):
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Trace DAGs critical path as Aggregate
A Critical CCT (CCCT) CCCT
— [ N N ! I
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Figure 4.4. CCCT aggregation,Source: [7].

Since every node on the critical path encodes quantitative information of its called
structure, and since all call paths originate from a common root, the endpoint under in-
vestigation, this allows all call paths to be merged into a calling context tree by identifying
their common prefixes. The aggregate CCCT essentially summarizes all call paths leading
to critical path nodes in all traces, thus it captures the quantitative aspect by associating
higher weights to those call paths that are often on the critical path. The weights of the
nodes in such a tree would be the summation of the weights of the individual call paths.
Specifically with this analysis, CRISP’s framework provides numerous percentiles such as
P50, P95, P99. Last but not least, the clock drift problem shown in the figures below, is

dealt with the happensBefore pseudo-function as it is shown in the algorithm 4.3 above.

misattribution

P
U 1 P - Q—M—A—rﬁ‘

AQQ aB'g

. .

Figure 4.5. Ideal traces for a parent with
three serialized children executions, red
lines indicate the critical path, Source: [7]

Figure 4.6. Actual traces due to the
clock drift, red lines indicate the critical
path, Source: [7]

4.2.3 Fourth layer (Probabilistic SVM classifier)

In order to leverage the statistical insights and the repetitive patterns that form from
each critical path and specifically from each Service, Support Vector Machine was chosen
in the fourth layer, from the various Machine Learning supervised techniques, with the
objective to derive these patterns and more notably, to accurately classify the most prob-
able culprit among the components residing in the critical path. This choice was chosen
due to its effectiveness in high dimensional data and also its ability to generalize well in
the absence of data. To achieve this kind of generalization, important and representative
features must be extracted from all the services that are included into the critical path.

The idea of the original paper [31] was that the first good representation of the data,

called Relative Importance, is defined as the Pearson correlation coefficient [32] of the
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total latency and the individual latency of the Service. This way, the strength in the
variance of the total latency correlated with the individual variance of the Service, known
as explained variance[33], is measured accordingly. At the same time, the second good
representative feature of the data, called Congestion Intensity, is defined as the ratio
of the 99th percentile of latency over the 50th percentile of latency (also called median)
of the Service. This feature simply measures the ability to handle requests with the
given allocated resource. It is important to note that the 99th percentile was selected to
specifically focus on tail latency, which highlights the worst-case performance experienced
by a small fraction of requests in the queue.

Simultaneously, in order for the SVM to effectively classify performance culprits along
the critical path, it must be provided with a well-structured and informative dataset that
represents the Kubernetes system accurately, but also with controlled labeling of the cul-
prits (supervised problem). For these reasons, experiments were designed with controlled
performance injection of a random Pod at each experiment. The controlled performance
injections were conducted using Chaos-Mesh [34], a powerful tool that enables the de-
veloper to conduct various controlled performance injections e.g. CPU, memory, network
and even node failure injections. For this thesis only CPU injections were conducted for
simplicity purposes, while a pipeline was created simulating normal conditions with a low
workload of a constant number of requests per second for a controlled number of time, e.g.
6 RPS for 5 minutes and a randomly chosen Pod to be injected with high usage of CPU.
The assumption made here is that injecting the CPU or any other metric of the specific
Pod, represents the behavior of a Pod or in general a Service that needs more resources
allocated. Such techniques are called Chaos Engineering which are essential for simulat-
ing the stress conditions the system is going to encounter with real-world scenarios [67].

Injecting and then gathering the Jaeger traces can be plotted as follows:

Scatter Plot of PCC vs P99/P50

L ® Not injected
% o ® Injected
120 4 ° °
94 . o
100 L o
o
°
o
®e o o
80 ° a__a S e
o e®e e ©

P99/P50

60

40 -

20 A

T T T T
—0.75 —0.50 —0.25 0.00 0.25 0.50 0.75 1.00

Figure 4.7. Traces of injected data.
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As can be seen in the plot 4.7, deriving a linear pattern that satisfies the classification
objective can be really hard in this case, so the use of kernels is justified. Also, because
the output prediction of the classifier will be included in the observation of the RL Agent,
an idea that is implemented in this thesis is that instead of using binary classification
(O or 1), a more reliable and safe way to derive the culprit from the critical path is to
assign a probability that one Service is the culprit. In that way, even if a Service is
partially causing a problem, still its resources will be allocated. To achieve this kind of
probabilistic approach, the calibration of the SVM classifier was performed. Calibrating
a classifier consists of fitting a regressor (called a calibrator) that maps the output of the
classifier to a calibrated probability in [0,1]. The implementation of the SVM classifier
and its calibration performed with the machine learning framework scikit-learn [36]. The
regressor used in this thesis was the sigmoid regressor which was based Platt’s logistic
model [35]:

1

label = 1| f;) = ,
p(labe 0 1+ exp (Af; + B)

4.1)

where label is the true label of sample i and f; is the output of the un-calibrated classifier
for sample i. A and B are real numbers to be determined when fitting the regressor via
maximum likelihood. Also, in order to use the aforementioned technique for an already
fitted classifier, FrozenEstimator Class was used in combination with CalibratedClassi-
fierCV. Given all the previous knowledge and frameworks, probabilistic SVM classification
is made for each Service separately and then the output probability is fed on the obser-

vation space of the RL Agent.

4.2.4 Fifth layer and Sixth layer (RL Agent and Deployment class)

As described in earlier chapters, RL is the way to go in decision-making environments
to achieve adaptive and optimal control, as it enables agents to learn from experience and
continuously improve performance in the presence of dynamic interactions from users
to the cloud environment. Having analyzed the theoretical foundations of RL agents and
at the same time having analyzed all the previous layers practically, the final step is to
examine the practical integration of RL with the Kubernetes environment. In order for
the RL agent (fifth layer) to interact with the Kubernetes environment, it is essential
to create a custom environment Class with structure that follows the specifications of
the Gymnasium [37] interface, meaning the Methods inside the Class must be designed

accordingly:

e Initialization (—init_()): The first mandatory requirement is that the environ-
ment class should inherit from gymnasium.Env. Also, at the initialization stage the

following must be defined:

- observation_space: a gymnasium.spaces object (e.g., Box, Discrete) describ-

ing the format of the observations.

— action_space: a gymnasium.spaces object describing available and valid ac-

tions. For simplicity reasons in this thesis the chosen action space included
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only the modification of the number of Pods per service, a MultiDiscrete[num_-
services, num_actions] object was initialized, e.g. here num_actions is adding

and subtracting Pods from the Service.

— Internal variables for representing the state of the environment and additional

metrics if needed.

e reset(): Resets the environment to its initial state. Also, must return a tuple with:

— observation: initial state as defined by observation_space.

— info: dictionary for auxiliary information, can be empty.

e step(): Executes the given action and advances the environment by one timestep.

Also, must return a tuple with:

— observation: The observation at the end of the step.

— reward: The numerical reward calculated, either with a dynamic function or a

static one.
- terminated: True if episode ended successfully.
- truncated: True if episode ended due to a limit.

- info: auxiliary diagnostic information, can be empty.

An important note here is that the observation_space and action_space definitions
must align with actual outputs from reset and inputs to step. All methods __init__(),
reset(), step() and optionally render(), close() with their mandatory structure are further
described in the Gymnasium documentation. The initial structures of the custom envi-
ronment and the deployment class were based on the implementation of gym-hpa [38]
authors, which was compatible with the old version of Gymnasium (formerly called gym).
Later, they were altered and aligned considering the newest version of Gymnasium (ver-
sion 1.1.1), the different benchmark used for the microservices architecture (DeathStar-
Bench) and different techniques in this thesis. At the same time, the RL models (PPO,
TRPO, A2C) were implemented using the robust and highly stable frameworks stable-
baselines3 [39] (version 2.6.0) and stable-baselines3 contrib [40] (version 2.6.0) with the

following hyperparameters for each model:
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Table 4.1. Hyperparameters of the PPO algorithm in Stable-Baselines3

Parameter Description Experiment Value
policy Policy model MlpPolicy
env Gymnasium environment (can be vectorized) SocialNetwork
learning_rate Step size for optimizer 0.0003
n_steps Steps per environment per update 150
batch_size Minibatch size 64
n_epochs Number of passes per update 10

gamma Discount factor 0.99
gae_lambda GAE parameter 0.95
clip_range Policy loss clipping parameter 0.2
clip_range_vf Value function clipping None
normalize_advantage Normalize advantages True
ent_coef Entropy bonus coefficient 0.0
vf_coef Value function loss coefficient 0.5
max_grad_norm Gradient clipping norm 0.5
use_sde State-Dependent Exploration False
sde_sample_freq SDE noise resampling frequency -1
rollout_buffer_class | Custom rollout buffer class None
rollout_buffer_kwargs | Rollout buffer arguments None
target_kl KL divergence early stopping None
stats_window_size Stats averaging window size 100

tensorboard_log

Path for TensorBoard logs

tensorboard_log_path

policy_kwargs

Policy keyword arguments

None

verbose Verbosity level 1

seed Random seed None
device Training device auto
_init_setup_model Build model on creation True

Table 4.2. Hyperparameters of the TRPO algorithm in Stable-Baselines3 contrib

Parameter Description Experiment Value
policy Policy model MlpPolicy

env Gymnasium environment SocialNetwork
learning_rate Step size for optimizer 0.0003
n_steps Steps per environment per update 150
batch_size Minibatch size 128

gamma Discount factor 0.99
gae_lambda GAE parameter 0.95

ent_coef Entropy bonus coefficient 0.0

vf_coef Value function loss coefficient 0.5

max_k1l Maximum KL divergence for updates 0.01
cg_damping Conjugate gradient damping factor 0.1
cg-max_steps Maximum conjugate gradient iterations 10
line_search_coef Coefficient for line search 0.8
n_cpu_tf_sess Number of CPU threads for TensorFlow session 1
normalize_advantage | Normalize advantages True

tensorboard_log

Path for TensorBoard logs

tensorboard_log_path

policy_kwargs

Policy keyword arguments

None

verbose Verbosity level 1

seed Random seed None
device Training device auto
_init_setup_model Build model on creation True

Diploma Thesis




4.2.4 Fifth layer and Sixth layer (RL Agent and Deployment class)

Table 4.3. Hyperparameters of the A2C algorithm in Stable-Baselines3

Parameter Description Experiment Value
policy Policy model MilpPolicy

env Gymnasium environment SocialNetwork
learning_rate Step size for optimizer 0.0007

n_steps Steps per environment per update 150

gamma Discount factor 0.99

gae_lambda GAE parameter 1.0

ent_coef Entropy bonus coefficient 0.0

vf_coef Value function loss coefficient 0.5

max_grad_norm Gradient clipping norm 0.5
rms_prop_epsilon RMSProp optimizer epsilon le-5

use_rms_prop Whether to use RMSProp optimizer True
normalize_advantage | Normalize advantages False
tensorboard_log Path for TensorBoard logs tensorboard_log_path
policy_kwargs Policy keyword arguments None

verbose Verbosity level 1

seed Random seed None

device Training device auto
_init_setup_model Build model on creation True

The reward function ensuring that the aforementioned Agents will be trained slowly

and in the right direction-manner is the following:

R = Z [a- SLO4 + (1 — a) - Aligng] 4.2)
deD
where
SLO4q =1 —wyqg 4.3)
1
Aligng = m (4.4)
D = set of deployments (4.5)
pa = number of pods for deployment d € D (4.6)
rt(;pu) = desired number of replicas for deployment d € D (4.7)
=|pq - CpuC_IE:r_giii%Zage (same for memory) (4.8)
(4.9)
wy = critical weight of deployment d € D (4.10)
a € [0, 1] is the weighting factor (4.11)
(4.12)
cpu_target_usage = pq - cpu_target (4.13)
mem_target_usage = pgy - mem_target (4.14)
cpu_target = threshold - cpu_request (4.15)
threshold = 0.75 (same as KHPA) (4.16)
cpu_request = initial CPU request of deployment. (4.17)
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To ensure that the agents interact with the actual Kubernetes through the custom en-

vironment Class, the sixth layer which consists of another Class named DeploymentSta-

tus, bridges the gap between these two by ensuring the right communication via the

Kubernetes API. The main methods that are defined inside this class are the following:

e _init_ (): Initializes the mandatory information that must be included for every

Service, e.g. cpu_request, cpu_limit, max_pods, min_pods etc. and finally the criti-

cal_weight which denotes the probability of being a culprit as previously mentioned.

The initial values are defined for each Service separately as can be seen below:

Table 4.4. Initial resource configuration of SocialNetwork microservices in Kubernetes

Service

CPU (req/limit)(MB)

Mem (req/limit)(MB)

compose-post-service
home-timeline-redis
home-timeline-service
jaeger

media-frontend
media-memcached
media-mongodb
media-service
nginx-thrift
post-storage-memcached
post-storage-mongodb
post-storage-service
social-graph-mongodb
social-graph-redis
social-graph-service
text-service
unique-id-service
url-shorten-memcached
url-shorten-mongodb
url-shorten-service
user-memecached
user-mongodb
user-service
user-mention-service
user-timeline-mongodb
user-timeline-redis
user-timeline-service

100 / 300
200 / 300
100 / 300
100 / 300
100 / 300
200 / 300
200 / 300
100 / 300
200 / 300
200 / 300
200 / 300
100 / 300
200 / 300
200 / 300
100 / 300
100 / 300
100 / 300
200 / 300
200 / 300
100 / 300
200 / 300
200 / 300
100 / 300
100 / 300
200 / 300
200 / 300
100 / 300

100 / 300
200 / 300
100 / 300
600 / 800
100 / 300
200 / 300
200 / 300
100 / 300
200 / 300
200 / 300
200 / 300
100 / 300
200 / 300
200 / 300
100 / 300
100 / 300
100 / 300
200 / 300
200 / 300
100 / 300
200 / 300
200 / 300
100 / 300
100 / 300
200 / 300
200 / 300
100 / 300

e update_obs_k8s(): Mainly called before reward calculation at step() method to en-

sure right observation values. Queries Prometheus and fetches the desired metrics

which will be used later to calculate the desired Pod replicas for each Service.

e update_replicas(): Called inside the update_obs_k8s() method. The main purpose

of this method is the calculation of the desired replicas for each Service based on

the metrics previously fetched.
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e update_deployment(): Updates the Deployment via the Kubernetes API and then
calls patch_deployment() method to patch it.

o patch_deployment(): Patches the Deployment via the Kubernetes API.

o deploy_pod_replicas(): Called inside the custom environment by the Agent when
the action is to add replica Pods to the Service. Calls update_deployment() to ensure

this action.

e terminate_pod_replicas(): Called inside the custom environment by the Agent
when the action is to subtract replica Pods from the Service. Calls update_de-

ployment() to ensure this action.
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Chapter E

Evaluation

In this chapter, the evaluation of the performance and effectiveness of the proposed
system is presented, starting with Section 5.1 that focuses on Critical Component Local-
ization, evaluating the probabilistic SVM effectiveness in identifying critical components.
Section 5.2 presents the Training Evaluation, analyzing the behavior of the reinforcement
learning agent during training. Section 5.3 describes the workload pattern used for exper-
imentation, detailing the characteristics and generation process of the input load. Finally,
Section 5.4 reports the End-to-End Performance results, comparing the trained agent’s
performance against baseline method of KHPA across key operational metrics such as

CPU and memory usage.

5.1 Critical Component Evaluation

This section evaluates the performance of a very important module of this thesis, which
is the SVM classifier. The specific classifier was trained on well-annotated data with the
library that was mentioned in previous chapters and at the same time to this end, the
experiments were conducted with a few data in order to avoid overfit as it is one of the
well-known problems of these classifiers. The evaluation results are primarily presented
using the ROC curve and the confusion matrix, both of which provide complementary
insights into the classifier’s effectiveness. The ROC curve illustrates the balance between
sensitivity and specificity across different thresholds. At the same time, the confusion
matrix provides a clear view of classification outcomes, with particular emphasis on the
absence of anomalous data being incorrectly categorized as normal. This property is
critical for the reliability of the overall system, as false negatives could potentially harm

the system and also mislead the RL agent.
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5.2 Training Evaluation

At this point, the classifier is trained and has achieved satisfactory performance in
order to perform the critical component annotation and assist the RL agent with the right
decision of which component to allocate resources. After this point, the classifier was

calibrated to a probabilistic one as described in previous sections.

5.2 Training Evaluation

The training process was carried out using the Kubernetes cluster previously men-
tioned on the SocialNetwork benchmark of DeathStarBench. Each agent was trained for
1300 episodes and maximum of 20 steps per episode due to the high cost (time-wise) of
training in the real cluster. More specifically, the cost of training the PPO, A2C, TRPO
agents was approximately 3.8, 4.3, 4.2 days respectively. Similarly to training, the initial
conditions of the environment were kept random, emphasizing and testing the ability of
both the agents and the KHPA to adapt and generalize to the given problem. To emphasize
the importance of increasing the training of RL agents in such complex systems, the PPO
agent was further trained for an additional 1300 episodes, reaching the total training

episodes to 2600 episodes and reaching the training time to a total of 8.11 days.

Reward over all trained episodes

—— PPO_2600
350 PPO_1300

A2C
— TRPO

300 A

200 A

150 4

0 500 1000 1500 2000 2500
Episode

Figure 5.3. Training results of the RL Agents.

The results of the training phase are shown in figure 5.3 with smoothed training
curves using 100-episode moving average window to give emphasis on the learning trend.
Initially, all agents begin to learn with low reward values and gradually improve until
the whole training is finished. TRPO agent clearly shows the most rapid and stable
improvement throughout the training phase, consistently outperforming the other agents.
At the same time, PPO agent follows a similar learning curve to TRPO but with the many

fluctuations, especially around the 200-400 episode mark. Finally, the A2C agent follows
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a steady learning curve with a slight drop around the 600-800 and 1000-1100 marks.

5.3 Testing workload pattern

The workload pattern that was used with the aim of testing the aforementioned pipeline
in the Kubernetes cluster, is composed of the wrk2 open-loop http generator, the same

used to train the models, with the following workload pattern:

RPS Schedule across the evaluating episodes

200 1
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Figure 5.4. Testing workload pattern.

The workload pattern used during the evaluation phase was designed to reflect realistic
and challenging system conditions. Specifically, the initial stages of evaluation subjected
the system to medium request loads, simulating initial periods typically observed in real-
world deployments but also the last part of the evaluation consists of higher demand in
users, also assuming that after some time there is an increase in workload to the system.
In the next section, there is an evaluation of the agents using numerous metrics such as
many percentiles of latency and also the number of Pods deployed. The former reflects
the actual impact on the user’s side and the latter reflects the cost of maintaining the

aforementioned performance.

5.4 End-to-End Evaluation

In this section, the end-to-end evaluation of the trained RL agent will be presented
at the aforementioned benchmark including the workload pattern and all the other con-
ditions that were previously extensively analyzed. At the beginning, the first 3 plots
analyze the agent’s performance on the SocialNetwork benchmark with metric evalua-
tion being the end-to-end latency of the system, pointing out the effects on the client’s
side. Finally, two plots illustrating server-side behavior are presented, highlighting how
the agent manages the allocation of resources, specifically the pods within the current

namespace, under such complex operating conditions.

m Diploma Thesis



5.4 End-to-End Evaluation

Median Latency (in ms) over the evaluated episodes
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Figure 5.5. Median Latency over the evaluated episodes.

The test results of the agents shown in the plots, particularly when compared with
the baseline performance of KHPA, can be reasonably justified due to the low number of
training episodes and the high dimension space of the action space, as mentioned also
in the FIRM ([31], page-12) paper, where similar problems occurred under such training
conditions and particularly at such low, episodic-wise, training time. Initially, it can be
seen that all agents behave in a way that outperform the performance of KHPA in the
metrics of latency. More specifically, the A2C agent starts with an increased latency
but around the 10th episode mark, it lowers the latency below the KHPA baseline. That
is a sign of an agent that needs time to adapt to the real system options and provide
great actions if done so. The TRPO agent seems to match the performance of the KHPA
baseline throughout the evaluation stage. The significant spike observed around the
change in workload is somewhat justified due to the sudden change from 60 RPS to 100
RPS. Lastly, the first PPO agent that was trained for 1300 episodes, can be seen struggling
to adapt to the latency-wise metrics of the system, but around the 55th episode mark it
starts to behave better than the KHPA baseline. Also, the second and most trained
PPO agent struggle to give good results in the median latency metrics, although it can
be easily justified in the pod plots below. It is noticeable that as agents adapt to the
workload change, the performance becomes not only comparable with the baseline, but
can be seen to outperform the baseline of KHPA, especially by the A2C agent. All latency-
related results shown in plot above will be justified at a later stage, where the primary
plot illustrating Pod deployment within the Kubernetes cluster will be presented. At the
same time, there is a clear indication that even with a low number of training episodes,
the agents still have managed to learn valuable patterns, helping the median end-to-end

latency performance of the Kubernetes system. The focus now shifts to comparing the
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baseline KHPA with the aforementioned agents under the critical latency metrics of the

95™ and 99" percentiles, which are essential to measure in such complex and latency-

sensitive systems.
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Figure 5.6. 95" percentile of Latency over the evaluated episodes.
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Figure 5.7. 99" percentile of Latency over the evaluated episodes.

In the 95" percentile plot, it is observed that both the A2C agent and the 1300 episode
trained PPO, have some sudden spikes during the first stages of evaluation indicating the

inability of handling the most of the queue of requests effectively at all times. Excluding
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the aforementioned points, all agents are outperforming the KHPA in many points of the
evaluation stage. Lastly, in the 99" percentile of latency plot KHPA and all of the agents
have an increased number of latency spikes, highlighting the challenge of maintaining
optimal performance throughout the queue under extreme conditions. Significant im-
provement is demonstrated by the most trained PPO agent which has a small number of
high latency spikes. This suggests that, with sufficient training, the PPO agent is able to
handle request queues more efficiently and maintain lower response times under vary-
ing load conditions. To further assess resource efficiency, the main reward objective of
the agents, the average number of Pods deployed and the baseline are presented in the

following plot:

Average Pods deployed over all evaluated episodes
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Figure 5.8. Average Pods deployed over all evaluated episodes.

The first plot analyzing the number of Pods deployed illustrates the way each agent
adapts its scaling behavior in response to the workload change. It can be easily observed
that all agents in the entire first period of 50 RPS have deployed less Pods than the KHPA.
This is a significant advantage, as fewer Pods directly translate to lower server-side costs.
At a later stage, A2C agent overprovisions resources in response with the workload change,
demonstrating adaptive scaling behavior but a slight waste of resources as it surpasses
the KHPA baseline. It is important to note that in the last 12 episodes of the evaluation
stage, the agent adapts to the environment and reduces the number of deployed Pods
below the baseline of KHPA, indicating slower adaptation performance. At the same time,
the TRPO agent shows better allocation ability in the first stage but in later stages aligns
his decisions with the KHPA baseline. Finally, both two PPO agents demonstrate excellent
resource allocation capabilities, effectively aligning their provisioning decisions with the
workload demand. It is important to note here that the most trained PPO agent achieves

a performance of 22.55% less Pods allocated in return for 9.16% higher median latency.

Diploma Thesis m



Chapter 5. Evaluation

All metrics and results from the evaluated stage are summarized in the table below:

Table 5.1. Median Differences in evaluated Metrics between Agents and KHPA (Episodes

0-80)

Metric | PPO_2600 | PPO_1300 | A2C | TRPO
Pod Usage

Relative (%) 22.55% 10.30% -0.74% | 2.57%
Absolute 10.77 5.25 -0.05 2.03
p50 Latency

Relative (%) -9.16% -6.09% 4.89% | -0.72%
Absolute (ms) -1.369 -0.931 0.807 -0.120
p95 Latency

Relative (%) -14.64% -6.05% 4.46% | -1.13%
Absolute (ms) -2.770 -1.131 0.983 -0.251
P99 Latency

Relative (%) -12.29% -8.17% 6.78% | -4.69%
Absolute (ms) -2.516 -2.350 1.757 -1.182

The last plot of the Cumulative Distribution Function (CDF) of both the desired replicas

and the actual deployed pods shown below indicates one more metric of optimal resource

allocation. This performance gives a strong indication that with more training the agent
not only can allocate less Pods, but also in the right direction regarding the CPU and

memory usage. The rest of the agents, PPO with 1300 episode training, A2C and TRPO

achieve unsatisfactory performace, except PPO_1300 which shows the right direction to

converging performance. The difference in the distributions shows how close the agents

are to achieving optimal performance over the entire evaluation phase.
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Figure 5.9. CDF over the number of pods deployed and the desired replicas.
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As demonstrated in the above plot, the agents trained for 1300 episodes do not have
the ability to adapt their allocation ability optimal to match the distribution of the desired
replicas. In contrast, the 2300 episode trained PPO agent has excellent ability to allocate
resources in alignment with the desired replicas distribution, illustrating the importance

of training in such complex systems.
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Chapter E

Conclusion

This chapter concludes the thesis and summarizes the observations and key findings,
but also difficulties drawn from the pipeline designed with the objective of resource allo-
cation in Kubernetes clusters and finally recommends some ideas that will improve the

work done in this thesis.

6.1 Final remarks

The most important conclusion that emerged from this thesis is that building an
efficient and accurate reinforcement learning agent that is able to correctly allocate re-
sources dynamically in a Kubernetes cluster is an inherently complex and challenging
task. The highly dynamic nature of microservices based environments, with complex and
highly dynamic inter-dependencies introduces high variability that must be taken into ac-
count by the agent into the training and testing. Also, the online on-policy reinforcement
learning algorithms are proven expensive in systems such as Kubernetes in a way that
it takes days to train for only a few episodes, indicating that this type of training might
not be the best one to count on. This thesis leveraged the critical path extracted from the
traces fetched via Jaeger and trained an SVM classifier using that information in order
to classify the detected services as culprit services. In extension, the binary output was
transformed into a probabilistic output using the calibration of the classifier, allowing the
developers to make safer decisions where services were ranked based on their criticality
rather than binary classified as culprit or not. In the next stage, the enriched information
that was previously extracted, was then added into the input of the RL agent adjusting
the resources based not only in the iterative learning, but also to the importance of each
service. The end-to-end results indicate that, building an artificial intelligence agent that
is able of making impactful decisions requires careful integration of multiple components
ranging from the observability tools and its ability to capture the right metrics in the
appropriate timing, but also the machine learning and reinforcement learning models to
be accurately trained with enough episode runs, with minimal bias and the correct action
decisions that will later impact the aforementioned system.

Despite these challenges, the proposed pipeline has shown promising results outper-
forming the classic baseline of KHPA. The agent with the most amount of trained episodes
(PPO_2600) has achieved relative difference of 22.55% less Pod usage in return for 9.16%
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more median latency or 12.29% more 99" percentile of latency in the Kubernetes clus-
ter. This translates into 10.77 less Pods in return for 1.369 (ms) more median latency or
2.516 (ms) more 99" percentile of latency throughout the evaluation stage consisting of
81 episodes with dynamic workload going from 50 to 100 RPS. Even the rest of the agents
that have been trained for less episodes achieved great results in the entire evaluation

stage as shown in table 5.1.

6.2 Future work

Initially, it is very important that the developer ensures that the system is built re-
siliently and in a correct manner to later try and build an agent to interact with it. For
example, building a separate database, like Cassandra or ElasticSearch, to store and hold
the data for Jaeger and not in memory as this thesis adopted, can avoid the significant
overhead that appeared when trying to fetch the aforementioned data (via http requests)
in order to feed the CRISP algorithm to later extract the critical path from these traces.
In addition, a Kafka pipeline can be set along with the database ensuring the optimal
preprocess of the data in order to train the machine learning models optimally. With that
being said, the training time of the agents is expected to be lowered in a critical man-
ner, enabling the developers to not only train the agents for more episodes, but also try
different approaches and novelties.

At the same time, a significant improvement can be made in the outlier detection
algorithm or as described before the localization of the critical component. As seen in
literature, methods such as Density-based methods can be used in order to detect outliers,
for example Density-Based Spatial Clustering of Applications with Noise (DBSCAN) is a
great algorithm that finds core samples of high density and expands clusters from them,
essentially detecting points outside of these clusters and annotating them as outliers.

Another great improvement, which can enhance the overall performance of the entire
pipeline, is based solely on the RL agent and its training. As described and shown in this
thesis, the training of the RL agent in such complex systems is arguably the most critical
aspect in order to match and eventually outperform the baseline strategies of Kubernetes
or similar systems but it also represents a major challenge as shown in the evaluation
chapter, meaning it take days to train for a low number of episodes. An idea to increase
the speed of training is to use Generative Artificial Intelligence models in order to simulate
and recreate the distributions of state-action space, artificially creating new training data
that are very close to the reality and in this way the training of the RL agent can improve
significantly.

Also, a great improvement that can enhance the overall performance is to use a multi-
agent reinforcement learning structure by deploying many RL agents that share the ob-
servation state of the entire Kubernetes cluster. Instead of relying to a centralized agent
to manage all the different resources, a multi-agent setup distributes the workload or the
actions responsibility to many agents with the ability to make different actions on differ-
ent services enhancing the localized decision making, with the observation of the cluster

being shared across the agents from actions previously made.
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6.2 Future work

Lastly, a strong improvement that can enhance the overall performance of the entire
pipeline is to use Graph Neural Networks (GNN) and more graph theory-based techniques
in combination with the reinforcement learning agent. In extension to this work, the
critical path or the critical DAG that is extracted from the Jaeger traces or even the entire
graph that is composed from the Jaeger traces can be fed into that GNN model, extracting
valuable insights. In this way, the understanding of the environment from the agents will
be enhanced significantly, improving the resource allocation decisions made from those

agents.
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