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Iepiinyn

H mopovoa dumhopatikn epyacio mpoteivel éva apyttektovikd mAaiclo yo v e&aywyn
ONUOGLOAOYIKOV KOl YOPIKOV avagop®dv omd adounto keipevo pe ypnorn Teyvntg
Nonupoovvng, pe epaproyn 6ToV TOUEN TOV EVEPYELOK®V ayop®V. O EVpOTAIKOG EVEPYELOKOG
Topéag ymoelomoteitan poydaio, ToPAyovtag HeYOAO GOVOAD OVOIKTAOV KOl MUL-0VOIKT®OV
dedopévmv, onmg deikteg ayopdg (ENTSO-E), petpnoeig cvomudtov petagpopis (AAMHE),
enineda (layers) yemywpik®dv 0£0UEVOV Y10 VTOSOUES Kol LETEMPOLOYIKA TTedia. QoTOC0, TO.
dopnuéva LeTpnTikd dedopéva amd Ldvo Toug GTavia ETAPKOVV Yio va eENynoovy avopoiiec—
Om®G aPVidleg LENCELS TILOV 1 HETAPOAEG OTO UIYUO TOPOY®YNC—T®V OTOI®MV TO OATLOL
OTTOTVITOVOVTAL KVPIWG G adOUNTEG TNYEG KEWEVOD, OTMOS EONCE0YPAPIN KOl OVOKOIWVMGELS
TOMTIKNG.

To TpoTevOUEVO GVOTNIO EVOMUATOVEL SOUNUEVES XPOVOGELPES LLE YVAOOT TOV eEAYETOL LECM
Teyvntg Nonpoosvuvng amd KEYEVIKES TN YEC, ONUIOVPYDVTOS VO EVOTOMUEVO, ETEENYNGILO
avaALTiKd mhaicto. H apyrtektovikny mepilapfavet: (i) xopoypoviky eVopUOVIoN ETEPOYEVHOV
dedopévey, (i) eoywyn YeyovoT®V, OVIOTHT®V KOl TOTOBECIOV €LOVLYPOUUOUEVOV E
ovtoAoyia, kot (ill) amofnKevon kol cvoyétion oe ypdoo yvaoong Neodj. H pebodoroyio
GraphRAG (Graph-based Retrieval-Augmented Generation) emiTpémer TV TOPAYOYY
TEKUNPLOUEVOV, EENYNTIKAOV 0PNYNCEDY TOV GUVIEOVV OVOUOAMES GE EVEPYELNKES YPOVOGELPES
pe mBavovg oTDOELS TaPAyoVTES, SIUGPAAILOVTOG PNTH LYVNAACILOTITO KOl SLOPAVELDL.

Me 1 ye@Op®ON TNG GTATICTIKNG OVIYVELONG OVOLOAIDV LLE TN CUAGIOAOYIKT KATOVONON, 1
gpyacioc cVUPAAAEL oV avATTVEN HoG ZNUACIOA0YIKNG Xmpkng Ymodoung Agdopévev
(SSDI) ywa tov evepyetokd Topéa, EVIGKVOVTAG T SIOPAVELDL, TNV EPUNVEVGILOTNTO KOL TN AW
TEKUNPLOUEVOV OTOPAGEMV OTIG AVUAVGELS EVEPYELUKMY OEO0UEVOV.

AéEaic-kreword — ENTSO-E, AAMHE, I'eoyopikd Asdopéva, Ovtoroyieg, I'papog I'vivoncg,
LLMs, GraphRAG, LangChain, JSON Schema, Aviyvevon Avopoiiov, [Ipdpreyn Evépyetac.






Abstract

This thesis proposes an architectural framework for extracting semantic and spatial references
from unstructured text using Artificial Intelligence, with application to the energy market
domain. The European energy sector is rapidly digitalizing, producing vast volumes of open
and semi-open data such as market indicators (ENTSO-E), transmission system measurements
(ADMIE), geospatial datasets for infrastructures, and meteorological fields. Yet, structured data
alone are rarely sufficient to explain market anomalies—sudden price spikes or shifts in
production mix—whose causes are often described only in unstructured textual sources like
news articles and policy announcements.

The proposed system integrates structured time-series with Al-driven knowledge extraction
from textual data to form a unified, explainable analytical framework. Its architecture consists
of: (i) spatiotemporal harmonization and canonicalization of heterogeneous datasets; (ii)
ontology-aligned extraction of events, entities, and locations with semantic, spatial, and
temporal grounding; and (iii) storage and reasoning within a Neo4j knowledge graph. The
GraphRAG methodology (Graph-based Retrieval-Augmented Generation) enables
provenance-rich, explainable narratives that link anomalies in energy time-series to their
plausible drivers through Cypher-first retrieval strategies.

By bridging statistical anomaly detection with semantic understanding, the thesis contributes
to the development of a Semantic Spatial Data Infrastructure (SSDI) for the energy sector.
This framework enhances transparency, explainability, and decision support in energy data
analytics, offering a foundation for future integration with predictive and causal models.

Keywords — ENTSO-E, ADMIE, Geospatial Data, Ontologies, Knowledge Graph, LLMs,
GraphRAG, LangChain, JSON Schema, Anomaly Detection, Energy Forecasting.
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Abbreviation / Term

Short Definition

ENTSO-E European Network of Transmission System Operators for
AAMHE / ADMIE Independent Power Transmission Operator of Greece (TSO)
MeteoSearch Meteorological datasets and indicators for energy forecasting
Geospatial Data Spatial/geographical data for infrastructures and administrative
CRS Coordinate Reference System

EPSG:4326 WGS84 geodetic system (degrees)

GeoJSON JSON format for geometries and attributes

Shapefile (SHP) Widely used GIS file format (ESRI)

WKT/WKB Well-Known Text / Binary — geometry representation formats
ISO 8601 International date/time format standard

Time Zone (IANA) Time zone identifiers, e.g., Europe/Athens

PostgreSQL Open-source relational database

PostGIS PostgreSQL extension for GIS (spatial types and indexes)
QGIS Open-source GIS software for mapping and spatial analysis
ETL Extract-Transform-Load — data acquisition, transformation, and
Cypher Query language for Neo4j property graphs

APOC Neo4j procedures and functions library

Property Graph Graph model with properties on nodes and relationships

Graph Traversal Navigating a graph to retrieve or infer information

Ontology Formal representation of concepts and relationships within a

Namespace Registry

Registry of namespaces/URIs (e.g., ontology registry.json)

URI

Uniform Resource Identifier — unique resource reference

JSON Schema

Schema for validating JSON data structures

Semantic-fit

Degree of semantic compatibility between class/entity mappings

Bilingual Labels

English/Greek entity labels

Temporal Anchoring

Normalization of temporal references to instants or intervals

Provenance

Source traceability and processing lineage

LLM

Large Language Model




RAG Retrieval-Augmented Generation — retrieval and context-
GraphRAG RAG augmented with Knowledge Graph retrieval

KG Knowledge Graph

KGQA Knowledge Graph Question Answering

QA Question Answering — automated query-response systems
LangChain Framework for orchestrating LLMs and tool chains

GenAl Stack Generative Al tool stack for intelligent applications
ChatGPT-4.1 General-purpose LLM used for QA and RAG

Ollama 2 Local LLM runtime/distribution tool

Prompt Instructional text guiding LLM behavior

Few-shot Prompting technique with a few in-context examples

CoT Chain-of-Thought — guided reasoning approach

NER Named Entity Recognition

RE Relation Extraction

EE Event Extraction

Coreference Identification of identical entities in text

Semantic Fit Guard

Safeguard preventing invalid semantic matches

Temporal Commit Engine

Module for unifying and committing temporal references

Event Cascade Planner

Planner for associating and ordering event sequences

Patch Manager

Suggestion and compliance correction system

Theme Extractor

Thematic and topic extraction module

ARIMA/SARIMA Classical statistical models for time series forecasting

LSTM Long Short-Term Memory — recurrent neural network for time
AE/VAE Autoencoder / Variational Autoencoder for anomaly detection
OCSVM One-Class SVM — outlier detection algorithm

LOF Local Outlier Factor — local anomaly score

Isolation Forest

Tree-based anomaly detection algorithm

GNN

Graph Neural Network

STGNN

Spatio-Temporal Graph Neural Network




Backtesting

Retrospective model testing on historical data

Cross-validation (CV)

Model validation via training/test splits

Rolling Window

Moving window for model training and evaluation

Feature Engineering

Construction of input features from raw data

Ablation Controlled experiment by removing/adding components
MAPE Mean Absolute Percentage Error

sMAPE Symmetric Mean Absolute Percentage Error

MASE Mean Absolute Scaled Error

RMSE Root Mean Square Error

MAE Mean Absolute Error

MSE Mean Square Error

Directional Accuracy
(DA)

Percentage of correct direction predictions

Precision/Recall/F1

Extraction and classification performance metrics










CHAPTER 1: INTRODUCTION

Greek Extended Abstract

H mapodoa simiopotikny epyacio mpoteivel Kot VAOTOLEL £val apyITEKTOVIKO TAOIGLO Yo THV
e€aymyn ONUAGIOAOYIKAOV KOl YOPIKOV avapopmdv ard addunto keipevo pe ypriion Teyvntg
Nonupoosvvng, pe epaproyn 6ToV TOUEN TOV EVEPYELOK®V ayop®V. O EVpOTAIKOG EVEPYELOKOG
Topéag ymoelomoteitan poydoio. Kot mopdyel HEYOAO COVOAO OVOIKTMOV KOl MUL-OVOIKT®OV
dedopévmv: deikteg kot TiHég ayopds amd v mAatedpua ENTSO-E, petpioeig cvomudtov
petapopds and popeig dnwg o AAMHE, yewympikd enineda yio vmodopég, Loveg Tpocpopmv
Kot ELEYYOV, SLOIKNTIKEG EVOTNTES, KAODS Kot petewporoyikd media. To dedopéva avtd gival
dopnuéva, pnyovikd ereepydoipo Kot cuvodevovTol amd Tekunplopéva petadedopéva. Tlap’
OA0L VTA, TO, TOCOTIKA CULATO, OO LLOVO TOVS GTAVIOL ETOPKOVV Y10, VAL EENYGOVYV OVMUOALES,
OmWG oevidleg «ekpNEEo» TIUDV N HeTABOAEG GTO UiYUO TOPAY®OYNG, TOV OTOI®MV TO OATLOL
ATTOTLTTOVOVTAL KUPIWG G€ AOOUNTESG TNYEG KEWEVOL (E10MCE0YPAPID, AVAKOIVAGELG TOMTIKNG,

TEYVIKES OVOPOPEQ).

Aopetpio ™ epyociog amoterel To kevO HeTAED AVTAOV TV dV0 KOGU®V: TOV YPOVOGEPOV LUE
oo (QULOIKT] KOl OIKOVOWMIKY ONUACIO KOl TOV ETEPOKANTOV, KEYEVIKOV TNYOV TOL
TEPLYPAPOVY YEYOVOTA, POPEIC, AMOPACELS KOl TEPIOTATIKA. XTOYXOG €ival 1 avamTuEn oG
OPYLTEKTOVIKNG TOL GLVOLALEL TAPAOCLOKT JAXEIPLOT) SOUNUEVOV SEQOUEVMV LLE AELITOVPYIES
vroompilopeveg and ocvyypova Meydho IMNowcoowd Moviéda (LLMs), ®ote vo katootel

dUVATH N CLTOLATY] GUVIEST] KTOCOTIKDOVY OVOUOMODV LE KTTOLOTIKA» £ENYNTIKA YEYOVOTA.

To mpotevdpevo cOoTNIO 0KOAOVOEL Lot TOAVGTPOUATIKY OPYLITEKTOVIKT:

(0) Xopoypovikn evapudVIoN ETEPOYEVAV TNY®OV  OEOOUEVEOV, HE  KOVOVIKOTOINOT|
ypovoonuaveong e UTC, gvomoinon yopw®dv avapopdv og Kowvd cvotnua ovoapopds (CRS)
KOl YPNION KOVOVIKOTOMUEVMOV TOVTOTITMV Y10 {MOVEG KO YDPEG.

(B) E&oywyn yvoong omd xeipeva, péom evog aywyol (pipeline) eEaymyng yeyovotmv,
OVTOTNT®V, BeuaTikdv Kot Tomobecidv, gvBuypoppiopévov pe ovtoroyio. H eEayoyn
Baciletar oe LLMs pe ontology-aware prompting kot schema-constrained JSON ££o060, dote
T0. amoTeEAéopATO v glvarl doptkd €ykvpa, ypovikd aykvpouéva (ISO 8601) kot yopud
YEUOUEVQL.

(v) AmoBnkevon o€ ypaeo yvoong Neodj, OTov ¥povoselpés, avmpIaiies, YeyovoTa, OVIOTNTEG,

Béparta kol {dveg avamapiotavtal og kKOpPol Kot oxEcElg g property graph pe meplopiopoie
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kot Ogikteg. Ildveo oe avtdv tov ypdeo viomoteitor GraphRAG (Graph-based Retrieval-
Augmented Generation), T0 0m0{0 EMTPENEL TNV AVAKTINGT TEKUNPIOUEVOV VTOYPUPTLATOV

YOP® amd YPOVIKE TapaBvpa AVOUOA®OV Kot TN cOVOEST ETEENYNUOTIKOV 0QNYCEDV.

Y10 eminedo ePapUOYNG, M epyacio vAomolel éva TANpeS pipeline: aviyvevon avOUOADV GE
ypovooelpés ENTSO-E pe ypnon avlektikod z-score, €100Y®OYN TOV OVOUOMOV Kol TOV
YPOVOGELPOV GTOV YPAPO Yvdo™g, e&arymyn Kot evBuypdppion yeyovotov and va emAeyrévo
ocopo mepimov 250 eAnvikdv dpbpwv evépyelag, KaOdG Kot ovATTLEN  SLOPACTIKOV
ypovodraypappatog (Flask + Highcharts) mov enttpénet o€ avaivtég va emALyouv avouaAies,
vo PAémovv oyetilOpuevo yeyovota, ovtotnTeg Kot Oépata, kot €pocov gvepyomoindel, va

Aappdvovv GraphRAG-Baciopéveg, tekunplopéves eENyNnoeis.

Q¢ perétn mepintoong eetdleton avopaiio oe tuég day-ahead omv eAAnviky| ayopd, ce
YPOVIKO SIoTNUO OOV GULUTIMTOVV YEMTMOMTIKEG €VTAGES Kol HETOPOAEG oTO piypa
napay®yns. H avopaiio Aettovpyel wg «dykvpoy yio TV avaKTnon oYETIKOV Yeyovotwv (..
evepyelokn kpiorn, {nmuoto Tpo@odociag @uowkolh oepiov, Oeppkd KOpOTA), VO 1
TOPOYOUEVT] APTYNON TOPAUEVEL TANPOS LYVNAAGIUN, KaODS KABE 10YVPIoUOG CUVOEETAL e

OLYKEKPLUEVOLG KOUPOLG KO TNYEG GTOV YPAPO YVAOTG.

Téhog, 1 epyacio cuintd Tovg TEPLOPICUOVS THG TPOGEYYIoNS (KAAVYT dEdOUEVDV, eEAPTNON
a6 LLMs, vmoAoy1otikd KOGTOG) Kot Yopdlel LEAAOVTIKES KATEVOVVOELS, OTMG TOAVYAWGGIKY|
EMEKTAOT], EVOOUATMOON OUTIOKPOTIKA €VOUGHNTOTOMUEVNG OVAKTNONG Kol KAUAK®OOT NG
OPYLTEKTOVIKNG OE TOPOYMYIKA TEPPAALOVTO. ZVVOAIKA, 1] GUUPOAN TG dtoTpiP1ig eoTidlel oTN
YEQUPMOY| GTATIGTIKNG OVOAVONG YPOVOSEPADV KOl GNUOCIOAOYIKNG KATOvONonS, ®g Pruoa

TPOG U0 OPLUN Znpoctoroyikn Xwopikn Yrodou Aedopévev yio TOV evePYELOKO TOUED.
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1. INTRODUCTION
1.1. Motivation and Context

The motivation for this work comes from the European power sector, which is rapidly
digitizing. Open and semi-open datasets are now common, to support transparency in markets
operation: market prices and indicators (ENTSO-E), transmission-system measurements
provided by operators such as ADMIE, geospatial references to infrastructures, biding zones,
control zones, administrative areas, meteorological data, and more. Such datasets come in
structured machine-processable formats, and are supported by well-documented metadata.
However, examining structured data alone is insufficient to explain anomalies - that is, abrupt
changes or unexpected patterns such as the sudden surge in energy prices following an external
event, or the shifts in generation mix resulting the introduction of environmental policies.
Understanding such phenomena requires a broader layer of expert knowledge, much of which
is disseminated in textual form through news articles, policy reports and official

announcements.

The motivation of this work comes from the challenge of developing software with
architectures that seamlessly integrate traditional data management with Al-driven operations.
The goal is to unify heterogenous data sources - ranging from structured datasets to unstructured
textual mentions in news feeds—within a common analytical framework. Such integration
enables applications that combine all relevant technical, economic, and contextual information
in both structured and unstructured formats, supporting situational awareness and decision-

making.
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In the broader context, this effort contributes to the development of a Semantic Spatial Data
Infrastructure (SSDI) for the energy sector. The envisioned SSDI aims to facilitate applications
that assist both experts and non-experts in interpreting and understanding non-typical behaviors
observed in quantitative energy data. It does so by leveraging spatially referenced and
semantically aligned information extracted from unstructured sources, thus bridging the gap

between data-driven analysis and knowledge-driven interpretation.

Needless to say, the ecosystem encompassing all relevant energy data is inherently
heterogeneous and fragmented. Data are collected and published in diverse formats (e.g., CSV,
JSON, APIs), often employing inconsistent terminology to describe the same concepts (for
instance, region, bidding zone, or mepipépewn). They also appear in multiple languages,
coordinate reference systems, and temporal resolutions (such as 15-minute, hourly, or daily
intervals). Every energy-related signal is intrinsically spatiotemporal—it holds meaning only
when its spatial context (node, region, or country) and temporal context (timestamp and time
zone) are clearly defined, together with associated factors such as weather, grid state, policy
environment, and geopolitical events. In the absence of consistent spatiotemporal
harmonization and auditable provenance, both knowledge integration and explainability are

fundamentally undermined.

1.2. Problem Statement and Gap

European power market timeseries often show sharp fluctuations—price spikes, demand drops,
or generation anomalies—that are hard to explain post hoc. Structured time-series and
unstructured news are usually processed in separate pipelines; especially unstructured news are
only "processed" by human experts. As a result, the automatic detection of semantic links
between measured anomalies and qualitative relevant descriptions is left to human experts that
need to manually operate the collection, interpretation and linking of relevant data. Therefore,
a gap is recognized: is it possible to use modern Al tools to link quantitative structured data
with well-defined semantics to semantically aligned data from free-text public sources, such as

newsfeeds? To achieve this, we would need an application architecture that enables:

* normalizing spatial and temporal references across heterogeneous sources
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» Extracting and mapping to relevant ontologies data from text with proper semantic,

spatial and temporal references (eg ISO 8601 for time anchoring, geospatial grounding)

+ fuses everything to be represented in a queryable knowledge graph that supports retrieval-

augmented explanations with explicit source attribution.

1.3. Research questions

This thesis builds an end-to-end system that couples explicit time-series with implicit

knowledge from free-text articles to explain anomalies and support domain analyses of all

kinds.

* RQIl (Data). How can heterogeneous datasets (ENTSO-E, ADMIE, geospatial,
meteorological) be harmonized in space and time (UTC, CRS, granularity) with

reproducible transformations and evidence-preserving exports?

* RQ2 (Ontology extraction). Can an ontology-aligned pipeline reliably detect events,
entities, locations, and intervals from Greek energy news (with English extension in

scope) and map them to a controlled standard vocabulary with schema-level guarantees?

* RQ3 (Graph reasoning). How can a knowledge graph with canonical identifiers,
constraints, and time indexing, enable effective GraphRAG retrieval that links anomalies

to plausible drivers via Cypher-first strategies?

* RQ4 (Explainability and prediction support). To what extent can anomaly explanations
and extracted signals support informed energy market decisions? (Quantitative forecast
integration is flagged for future work; current focus is on explanation quality and data

readiness.)
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1.4. System Architecture and Core Contributions

This section summarizes the principal components and technical contributions of the developed
system. Each component corresponds to a distinct layer of the end-to-end architecture, designed
to integrate heterogeneous energy datasets and unstructured text sources into a unified,
semantically enriched analytical framework. The emphasis lies on modularity, reproducibility,
and explainability—ensuring that every transformation, extraction, and inference step remains

both transparent and verifiable.

* Layered reference architecture. Clear separation of acquisition, staging and analytics
(InfluxDB), semantic extraction (ADK agents), graph persistence (Neo4j), and application
layers. Implemented through seven refined notebooks and a production-ready command-line

interface (ProductionApp).

» Spatiotemporal harmonization and canonicalization. UTC-normalized timelines, CRS-
aware geospatial handling, and a PostGIS-backed location canonicalizer that eliminates country
and location duplicates, enforces ISO-aligned identifiers, and ensures idempotent Cypher

upserts under strict schema constraints and indexes.

* Article extraction with guarantees. ADK-based agent producing ontology-aligned JSON
with ISO 8601 anchoring; deterministic fallback dataset for offline, reproducible runs; validated
on a curated corpus of 250 Greek energy articles with direct extensibility to larger multilingual

collections.

* Knowledge graph and GraphRAG. Canonicalized spatial and semantic entities, time-tree
indexing, schema constraints, and Cypher-first retrieval for anomaly context assembly;

integrated with notebook-driven RAG explainability and a real-time anomaly timeline service.

» Explainability interfaces. Retrieval-augmented narratives linking ENTSO-E anomalies to
article-derived events; interactive timeline built with Flask and Highcharts featuring multi-
parameter filtering (temporal, geographic, and ontological) and structured prompt generation

with explicit citation control.
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* Provenance, validation, and reproducibility. Comprehensive evidence tagging, dataset and
version logging, exportable CSV/Parquet artifacts, offline-safe execution modes, and validation

scripts for ingestion, persistence, and visualization components.

1.5. Thesis Structure

* Chapter 2 — Background and Theoretical Context. Reviews the foundational concepts
underlying the work, including energy time series, anomaly detection methodologies,

ontologies, knowledge graphs, GraphRAG frameworks, and agentic workflows.

» Chapter 3 — System Architecture. Describes the overall architectural framework, including
the design drivers, layered structure, data contracts, and cross-cutting components integrating

Neo4j, InfluxDB, PostGIS, and ADK-based semantic extraction modules.

* Chapter 4 — Implementation of the Processing Pipeline. Presents the software realization
of the end-to-end workflow, detailing the design, data ingestion mechanisms, transformation

logic, and orchestration of analytics across layers.

* Chapter 5 — Case Study and Explainability Demonstration. Examines a representative
anomaly in Greek day-ahead electricity prices, showcasing how GraphRAG-based retrieval and

the interactive timeline service enable transparent, evidence-grounded explanations.

* Chapter 6 — Conclusions and Future Research. Synthesizes the findings of the study,
outlines current limitations, and proposes directions for scaling, optimization, and continued

integration of Al-driven methods into energy analytics.
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Use of Artificial Intelligence

Artificial Intelligence (AI) tools were employed as supportive instruments during the
preparation of this thesis to enhance clarity, productivity, and technical precision. Al tools
supported parts of this work by proposing code snippets, drafting brief text, and sketching

diagrams. The author verified, adapted, and finalized all content.

Large Language Models (LLMs), including, were used under supervision to assist in section
structuring and diagram generation. In particular, LLMs contributed to the production of
PlantUML-based system architecture diagrams and Graphviz (DOT-language) knowledge-
graph visualizations, which were subsequently reviewed and edited by the author for accuracy

and consistency.

The role of these tools was strictly auxiliary—serving as aids rather than substitutes for human
reasoning or original authorship. All conceptual design, analytical interpretation, and final
synthesis were independently conducted by the author. The integration of Al contributed to
improved organization and visualization of complex methodological ideas, resulting in a
coherent, reproducible, and well-documented research framework that fully respects academic

integrity.
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2. BACKGROUND & REQUIREMENTS

2.1. Energy Market Data

The system builds upon heterogeneous open datasets that provide explicit spatial and temporal
references. At its core lies the ENTSO-E Transparency Platform, which offers pan-European
electricity time series through a RESTful API (XML/CSV, API-key authentication). In this
work, the following ENTSO-E series are utilized: Day-Ahead Price (€/MWh), Actual Total
Load (MW), and Generation per Type (MWh) for the Greek bidding zone and, where available,

selected neighboring zones.

All series are harmonized to Coordinated Universal Time (UTC) at hourly granularity,
following consistent aggregation rules per metric (e.g., mean for MW or price, sum for MWh).
Anomalies in these reference timelines are detected using a robust z-score method applied over
rolling weekly windows, employing a median/MAD estimator with thresholds configurable
within the analytical notebooks. Each detected anomaly is materialized as an Anomaly entity
and persisted in the knowledge graph, ensuring that the analytical scope (series and granularity)

and the applied method (detector) remain explicit and fully reproducible.

To complement the structured series, a curated corpus of approximately 250 Greek-language
energy-news articles has been integrated from specialized portals. These are processed through
a bilingual, ontology-aligned extraction pipeline that performs ISO 8601-compliant temporal
anchoring and geospatial reference mapping. The pipeline identifies events, entities, and
relationships, which are subsequently persisted as interconnected nodes and edges within the
knowledge graph. Each extracted payload carries evidence tags for source provenance, ensuring

traceability. These textual extractions are leveraged by GraphRAG to contextualize and explain
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anomalies—or, more generally, to elucidate non-typical behaviors observed in energy-market

time series such as those obtained from ENTSO-E.

A complementary structured source is ADMIE (IPTO), the Greek Transmission System
Operator. ADMIE publishes both network topology data—including substation coordinates,
400/ 150 kV transmission lines, and cross-border interconnections—and operational or market
information. Within this work, emphasis is placed on representing the physical grid topology,
which is not covered by ENTSO-E. Network geometries are persisted in standard geospatial
formats to support efficient spatial queries and to map physical assets to knowledge-graph
elements, such as GridNode entities and Line relationships with associated geometries.
Representing the approximately 11,800 km high-voltage network as spatially referenced graph
structures enables direct correlation between detected events (e.g., outages, maintenance

operations) and their physical grid locations.

Finally, meteorological data are incorporated via MeteoSearch (National Observatory of
Athens), which provides historical measurements of temperature, humidity, wind, and
precipitation per station. These series are aligned to hourly UTC, using consistent aggregation
rules (e.g., hourly mean temperature or hourly total precipitation), normalized for units and data
quality, and spatially linked to administrative regions through open geospatial boundaries in
PostgreSQL / PostGIS. This integration enables composite queries such as “What were the
demand and temperature in Attica on date D?” and supports proximity or in-region event

analysis—thereby enriching structured market data with environmental and spatial context.

2.2.Forecasting & Anomaly Detection

6.3.1. Energy Time-Series Characteristics

Energy-system signals display complex and distinctive behaviors that influence both
forecasting methodologies and anomaly-detection approaches. Their variability arises from the
interaction of physical, socio-economic, and regulatory processes, resulting in strong and
overlapping seasonalities. Physical cycles such as solar irradiance and temperature interact with
socio-economic patterns (workdays, weekends, and holidays) and market procedures (e.g.,

10
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gate-closure times and settlement windows). Consequently, daily and weekly periodicities often
coexist with annual components, while transitions such as daylight-saving adjustments

introduce discontinuities and subtle calendar drift.

A further defining trait of these series is non-stationarity. Long-term transformations—such as
increased renewable penetration, regulatory reforms, or infrastructure changes (e.g., new
interconnectors, plant outages)—frequently alter their statistical properties, including level,

variance, and frequency composition.

Volatility and heavy-tailed distributions are particularly prominent in electricity price series,
where supply—demand imbalances, fuel-cost dynamics, and scarcity pricing mechanisms
generate sharp spikes and outliers. Many of these dynamics are driven by exogenous factors—
including weather conditions, fuel markets, policy interventions, and planned or forced
outages—making purely endogenous models insufficient to capture the full causal structure

unless they incorporate external explanatory variables.

These properties underscore the need for robust preprocessing pipelines and anomaly detectors
capable of maintaining reliability under regime shifts, non-stationary noise, and heterogeneous

variance patterns.

6.3.2. Anomaly Taxonomy

Anomalies in energy time series can be classified according to their temporal structure and

contextual dependencies:

o Point anomalies: isolated spikes or drops that deviate sharply from the local statistical
distribution.

o Contextual anomalies: values that are atypical given the prevailing conditions (for
example, unusually low weekday demand during cold weather), even if they are not
globally extreme.

e Collective anomalies: sequences of observations—such as sustained runs, plateaus, or
oscillatory patterns—that appear anomalous only when considered together rather than

individually.

11
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o Regime changes: structural shifts in level, variance, or trend, such as persistent price
elevations following policy interventions or market design changes, often modeled as

change points.

In the energy domain, contextual interpretation is essential. A sharp price surge occurring
alongside interconnector maintenance or extreme heat may be entirely plausible when the

underlying conditions are known, whereas the same event would seem anomalous in isolation.

Therefore, effective frameworks must distinguish between statistical detection, which
identifies candidate anomalies, and contextual reasoning, which evaluates their plausibility

and causal explanations.

6.3.3. Forecasting Families

Forecasting methodologies in the energy domain span statistical, machine learning, deep
learning, and spatio-temporal paradigms, each offering distinct advantages and trade-offs

depending on data characteristics and operational objectives.

Statistical models such as ARIMA/SARIMA and exponential smoothing (Holt—Winters)
remain foundational for modeling stationary or quasi-stationary seasonal components. State-
space formulations and extensions like TBATS can accommodate multiple or long seasonalities
and complex calendar effects. Their strengths lie in parsimony, interpretability, and robust

uncertainty quantification, provided that the underlying assumptions of limited non-stationarity

hold.

Machine learning methods, including gradient boosting and other tree-based ensembles, capture
nonlinear dependencies among engineered features such as lagged observations, rolling
statistics, calendar indicators, and exogenous variables (e.g., temperature or fuel prices). These
approaches often improve predictive accuracy under nonlinear dynamics but depend critically

on careful feature design and continuous monitoring to mitigate concept drift.

12
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Deep learning models—notably recurrent neural networks (RNNs/LSTMs), temporal
convolutional networks (TCNs), and Transformer-based architectures—excel at modeling
long-range dependencies and complex temporal interactions, particularly when large datasets
with rich covariates are available. While these architectures can process raw or lightly
engineered inputs, they typically trade interpretability for capacity, requiring extensive

regularization, hyperparameter tuning, and validation to avoid overfitting.

Spatio-temporal approaches explicitly incorporate the network structure of the energy system—
zones, substations, and interconnections. Graph neural networks (GNNs) propagate information
along the grid topology, capturing spatial correlations and constraints. These methods are
particularly effective when system-wide interactions significantly influence local behavior,

such as cross-border energy flows or regional weather dependencies.

Finally, hybrid strategies combine multiple paradigms. Examples include forecast-then-residual
pipelines, where statistical or machine-learning models capture expected behavior and anomaly
detection operates on residuals, or ensemble frameworks that integrate heterogeneous

predictors to enhance stability and accuracy across varying market regimes[11],[12],[13].

6.3.4. Anomaly Detection Methods

Within electricity markets and power-system operation, anomaly detection forms a cornerstone
of situational awareness. Analysts and operators are not concerned with every minor deviation
from normal behavior, but rather with salient departures—events such as extreme price spikes,

abrupt demand drops, or structural changes in the generation mix—that warrant interpretation.

In this thesis, anomalies are not treated as endpoints but as anchors for downstream
explainability: once an anomaly window is identified, the system queries unstructured
sources—such as news, policy statements, or operational bulletins—to uncover plausible

explanatory events.

Understanding the principal families of anomaly detection methods is therefore essential for

motivating the simple, robust detector adopted in this work.

13
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Families of Anomaly Detection Methods

Detection methods differ primarily in how they model “normal” behavior and what statistical

or structural assumptions they impose.

Distribution-based (univariate) detectors identify anomalies as standardized deviations from a
reference distribution. Classical z-score methods assume stable mean and variance, while robust
variants replace these with the median and median absolute deviation (MAD) or interquartile

ranges, reducing sensitivity to outliers and heavy tails (e.g., Hampel filters).

Seasonal hybrids remove recurring cycles through decomposition (e.g., STL or LOESS) and
detect outliers on deseasonalized residuals, improving precision for strongly periodic signals

such as load or generation.

Residual-based detectors operate on the difference between observed and forecasted values
derived from statistical, machine-learning, or deep-learning models. Control-chart families—
including Shewhart, EWMA, and CUSUM—evaluate deviations, persistent shifts, or trends in

residuals, offering clear probabilistic thresholds under known distributional assumptions.

Change-point detection targets structural breaks in level or variance. Methods like PELT
(Pruned Exact Linear Time) efficiently identify multiple change points, while Bayesian online
change-point detection provides a probabilistic, sequential treatment well-suited to streaming

data. These methods capture regime shifts effectively but may overlook short-lived spikes.

Density- and isolation-based approaches—such as Local Outlier Factor (LOF), DBSCAN, or
Isolation Forest—define dense “normal” regions in feature space and flag low-density or easily
isolated points as anomalies. Although flexible and capable of detecting nonlinear structures,

they require careful feature design and are less interpretable for strictly time-ordered data.

Multivariate and probabilistic models exploit dependencies across multiple series. Techniques
like Robust PCA or subspace tracking detect deviations from low-rank structure, while
multivariate state-space models identify anomalies through breakdown of correlations among

variables.

Probabilistic forecasting frameworks further generalize this by estimating predictive intervals,
treating anomalies as low-probability observations conditioned on known covariates.

14
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Graph-based anomaly detection extends these concepts to networked systems. It identifies
deviations in a node’s behavior relative to its neighbors or unexpected disruptions in flow
patterns across edges. Temporal graph extensions capture evolving topology and attributes,

making them particularly suitable for power-grid infrastructures.

Method Selection

No single technique performs optimally across all regimes.

e Robust univariate methods offer transparency, computational efficiency, and
reproducibility.

e Residual and change-point approaches capture dynamic shifts when dependable
baselines exist.

e Multivariate and graph-based models reveal cross-series or topological dependencies

but require richer data and introduce higher complexity.

For the purposes of this thesis, a robust z-score detector (MAD-based) was chosen. It balances
simplicity, interpretability, and stability, ensuring reproducible anomaly flags suitable for

linking to contextual explanations via the knowledge graph.

Robust MAD-based z-score as the working detector

Within this spectrum, the proposed system adopts a robust MAD-based z-score as its primary
anomaly detector for structured time series (e.g. prices, loads, generation by fuel). The rationale
is twofold. First, the method is transparent and easily interpretable: anomalies correspond to
observations that lie several robust standard deviations away from a typical level. Second, it is
lightweight and reproducible, making it suitable as a stable anchor for downstream

explainability and case studies, with more sophisticated methods left as future extensions.

15



CHAPTER 2: BACKGROUND & REQUIREMENTS

Statistic
Given a time series y:
e Compute the median m and the Median Absolute Deviation (MAD):
MAD = median(|y —m|)
» Define the standardized robust z-score:

z::&6745x£%£? (The constant 0.6745 scales MAD to the standard
deviation ¢ under normality.)

Thresholding and Level Shifts
e Flag an anomaly when |z| > 7.
* Detect a level shift when
[ye = Yeil = ¢ X max(|ye_4l. €),
labeled as LevelShift::Rise or LevelShift::Drop to distinguish persistent step
changes from isolated spikes.

Parameter Choices
e 7=35: default robust threshold.
e 7=25: for energy prices, capturing known spikes without over-alerting.
* ¢ =0.15: detects regime-like step changes.
e Minimum points = 8: ensures stability over short segments.

Listing 6.3.4-1: MAD _based z-score

Greece Example (Weekly, 2021-01-03 — 2022-12-25)

* Day-ahead prices peak at 604.14 €/ MWh on 2022-08-28 with z = 3.06 (LevelShift::Rise).

 Lignite share (lignite generation =+ total load) jumps to 21.23 % on 2022-08-21 (z = 2.95)
and 24.94 % on 2022-12-11 (z = 4.00), both LevelShift::Rise.

* Yearly context: mean price rises from 120 € MWh (2021) to 289 €/ MWh (2022); lignite

share mean from 10.5 % to 11.4 % with higher extremes.

16
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Greece Weekly Day-ahead Electricity Prices with Robust Z-score Anomaly 2z=3.06
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Figure 2-2: Greece Weekly Day-ahead Electricity Prices with Robust Z-score Anomaly
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Figure 2-1: Greece Weekly Lignite Share in Generation with Robust Z-score Anomalies

These spikes align with the 2022 Russian invasion of Ukraine. Constrained gas flows drove
wholesale electricity prices to records by late summer (the price anomaly), while Greece leaned

more on domestic lignite through H2 2022 (the share anomalies).
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6.3.5. Explainability and Contextualisation

Statistical flags are necessary but insufficient for decision support. Anomalies become
meaningful when linked to plausible drivers—policy changes, outages, weather extremes, or
market dynamics—grounded in space and time. Knowledge graphs provide a structured
representation of entities, events, and relationships, enabling multi-hop reasoning and explicit
provenance. Retrieval-augmented generation (RAG) layered over a graph can assemble
contextual evidence around an anomaly window and synthesize coherent narratives, while

reducing hallucinations relative to ungrounded text generation.

Causality-aware retrieval strengthens explanations by enforcing temporal precedence and
plausible pathways (e.g., event — constraint — price effect), though formal causal discovery
remains challenging in practice. Human-in-the-loop review—supported by citations, graph

paths, and uncertainty cues—helps calibrate trust and refine rules iteratively.

6.4.LLMs for Knowledge Extraction

The rise of large language models (LLMs) has fundamentally changed how knowledge can be
extracted from unstructured text. Unlike traditional NLP pipelines that rely on fixed pattern-
matching or manually engineered rules, LLMs provide adaptive, context-aware reasoning that
can interpret diverse textual expressions of the same underlying concept. In the energy sector,
where valuable information is dispersed across technical reports, regulatory announcements,
and journalistic narratives, this capability enables the automatic identification of relevant events
and entities — such as outages, market interventions, and extreme weather — directly from

text.

LLM-based extraction acts as the bridge between unstructured human language and
structured representations used in databases or knowledge graphs. Through prompting, fine-
tuning, or schema-constrained generation, models can produce machine-readable outputs (e.g.,
JSON) that map linguistic information to defined ontological classes, properties, and
relationships. This approach allows analysts to integrate news and policy documents seamlessly

with time-series data, improving both explainability and situational awareness.
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2.3.1. What is an Ontology?

An ontology formally defines the concepts, relationships, and attributes within a domain of
knowledge. In practice, it serves as a shared vocabulary that enables both humans and machines
to reason about data in a consistent, semantically meaningful way. Ontologies differ from

simple taxonomies by encoding not only hierarchical relationships (“is-a”’) but also complex

interdependencies such as “causes,” “affects,” “belongs to zone,” or “produced by.”

In the context of energy informatics, an ontology may include entities like PowerPlant,
BiddingZone, WeatherEvent, and Policylntervention, and relations such as locatedIn, causes,
or correlatesWith. When text-extracted information is aligned with these ontological structures,
it becomes interoperable with other datasets, supports logical reasoning, and facilitates cross-

source integration within a knowledge graph.

2.3.2. Motivation for Ontology-Aligned Extraction in Energy News

In the energy domain, critical facts and events often appear in unstructured text such as news
articles, press releases, and reports. For example, a Greek news article might describe a power
outage, a policy change, or an extreme weather event affecting the energy grid. Transforming
these unstructured narratives into ontology-aligned facts is essential for downstream reasoning:
a knowledge graph of energy events and entities can be queried and analyzed alongside time
series data. The motivation is to bridge the gap between textual information and data-driven
analysis — turning free text into structured knowledge that conforms to a domain schema. By
aligning extracted information to a predefined ontology of energy concepts (e.g. classes like
Infrastructure, PowerPlant, BlackoutEvent, and relations like LOCATED IN or
HAS CAUSE), we ensure semantic consistency and make the information machine-
interpretable. This approach enables the system to incorporate real-world context (events,
actors, conditions) into tasks such as anomaly explanation, without manual data entry. In short,
ontology-aligned knowledge extraction allows unstructured energy news (in Greek or other
languages) to be converted into a graph of facts — who, what, when, where — that can enrich

analytical models with real-world context.
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From a theoretical standpoint, this falls under information extraction (IE), where the goal
is to identify entities, relationships, and events in text[1]. Traditional IE pipelines use task-
specific models (for example, separate named entity recognition and relation classification
modules), which require substantial training data for each label type. In contrast, recent Large
Language Models (LLMs) provide a more unified approach: a single generative model can
perform joint extraction of entities and relations by parsing text and producing a structured
output in one go. In the energy news context, a generative LLM can be prompted to read an
article about, say, an unexpected power demand spike and output a JSON record of the salient
TemporalEvent (e.g. an extreme heatwave) with its date and location. The unified approach is
appealing for low-resource settings like Greek-language energy news, where training data for
specialized IE models is scarce. By leveraging a powerful multilingual LLM with zero-shot or
few-shot prompting, we can extract the needed information without task-specific fine-tuning.
This generative IE paradigm has gained traction as it simplifies the pipeline — one model and
prompt can handle multiple IE subtasks simultaneously. It is especially useful when the
ontology of interest is custom (here, tailored to energy domain concepts) and one cannot easily

find off-the-shelf models for each class.

However, using LLMs for knowledge extraction also introduces challenges. Generative
models may hallucinate facts or produce text not faithful to the source. They might also miss
details or output information in an inconsistent format. Thus, the pipeline must be designed
with strict controls to ensure reliability and precision despite the flexibility of LLMs. In the
following subsections, we discuss theoretical techniques to guide LLM outputs: ontology-
aware prompting, schema-constrained generation, and normalization of temporal and
geospatial references. Together, these ensure that the extracted knowledge is semantically
accurate, structured, and grounded in the source text, which is crucial for building a trustworthy

energy knowledge base.

2.3.3. Generative Information Extraction with LLMs

Large Language Models can perform Generative Information Extraction (GIE), meaning they
generate structured outputs (like JSON or triples) that represent information in text[1]. Unlike
pipeline IE (with separate NER, relation extraction, event detection stages), an LLM can take a

passage and produce an all-in-one annotated representation. For example, given a news snippet
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“The Greek power grid operator announced rolling blackouts in Attica on July 24 due to a

heatwave”, a single prompt to the LLM can yield a structured record of a BlackoutEvent with
properties: date =2025-07-24, location = "Attica, Greece", cause = "heatwave", involved_actor
= "Greek power grid operator", etc. This unified generative approach treats IE as a conditional

text generation task, where the model outputs a representation of the salient facts.

The advantage of GIE is its flexibility: the same model can be instructed on different
schemas or ontologies without retraining, simply by changing the prompt. This is particularly
useful in our case, where the ontology is custom and evolving. Studies have shown that large
LLMs are capable of parsing and transforming text into structured formats in few-shot settings.
Furthermore, the model can inherently do zero-shot generalization to entity names or event
types it hasn’t seen in training, as long as the prompt provides sufficient context. This is valuable

for energy news, where new names (e.g. a newly commissioned power plant) or emerging event

types (a novel market policy) might appear[3].

On the other hand, there are trade-offs versus traditional task-specific models. A fine-tuned
NER model or relation classifier might achieve higher precision on a narrowly defined task,
especially if plenty of labeled data exists. LLMs operating via prompts may sometimes omit
required details or introduce errors if the prompt is not precise. Generative IE can struggle with
over-generation (including irrelevant info) or format errors if not properly constrained.
Additionally, LLMs have a tendency to produce answers regardless of confidence, which can
lead to spurious extractions if the prompt does not enforce caution. Despite these challenges,
the generative approach is appealing for our scenario because of its speed of development (no
need to train multiple models) and its ability to capture complex relations in a single shot. With
careful prompt engineering and constraints, we can mitigate many of the risks and obtain high-

quality structured data from the LLM.

Recent surveys (e.g. Xu et al., 2024) conclude that LLM-based IE is a promising direction,
especially when dealing with complex or low-resource domains[3]. By leveraging the world
knowledge and language understanding of LLMs, we can extract facts that more brittle, small
models might miss. In summary, our approach employs a generative LLM to perform end-to-
end extraction of energy domain knowledge. The subsequent sections outline how we constrain
and guide this generative process — using an ontology schema, structured output format, and
normalization — to ensure the results are accurate and ready to integrate into a knowledge graph.
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2.3.4. Ontology-Aware Prompting and Schema Constraints

A key design principle is to make the LLM aware of the target ontology and required output
structure. Ontology-aware prompting means we explicitly inform the model about the classes
and relations it should use, effectively whitelisting the allowed schema. In practice, the prompt
includes a brief excerpt or description of the ontology schema relevant to extraction. For
instance, we might list the main entity types (e.g. PowerPlant, GovernmentAgency,
WeatherEvent, OutageEvent, PriceSpike) and their properties or relationships. By providing
this context, the model’s output space is narrowed to our domain vocabulary — it knows to prefer
terms like “PowerOutage” or “Heatwave” if those are in the schema, rather than inventing
unrelated categories. This technique leverages the LLM’s ability to follow instructions: we give
it a semantic guideline so that extracted facts are semantically aligned with our knowledge
graph design. Empirically, ontology-grounded prompting reduces “drift” where the model
might otherwise output information that doesn’t fit our schema (e.g. an irrelevant relation or an

undefined class). It also improves consistency, as the same concept will be referred to by the
canonical name defined in the ontology (e.g. always output "region": "West Macedonia" instead

of sometimes saying "Western Greece" for the same region).
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q o Normalize

‘metric e=day ahead price’

P V- P MCP/MWh context
Align to

“fuel=lignite’
ENTSO-E naming

‘TemporalEvent=BlackoutEvent’ Event class
‘TemporalEvent=PolicyChange" Event class
Theme +

“"Theme=Weather" i
optional sub-type

Zone/MapCode
‘Zone(name='Greece')’ )
mapping
Organization
“Entity(name="PPC')’
synonyms
Organization
*Entity(type='"Regulator')’
class

Table 2-1: vocabulary normalization examples
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In tandem with ontology context, we impose schema-constrained generation to ensure the
output format is strictly structured. We use JSON Schema as a contract for the LLM’s output.

The JSON Schema defines the expected structure (keys and data types) for each type of object
in the ontology. For example, for an Event extraction we might require keys: "type",
"description", "date" (ISO 8601 format), "location" (canonical region name or code),
"entities_involved" (array of entity identifiers or names), and "source" (the article URL or ID).
This schema (provided in the prompt or as an instruction) acts as a specification that the model
should follow. The model is instructed to output only valid JSON conforming to this schema
and nothing else. This approach leverages the fact that modern LLMs can be guided to follow
a format meticulously if the prompt is clear. By including the schema (or a snippet of it) in the
prompt, we effectively whitelist JSON keys and value types. The model learns that any output

must fit that template, reducing the chance of free-form digressions or missing fields.

An additional measure is the use of grammar-constrained decoding: decoding the LLM’s

output with a formal grammar that only generates syntactically correct JSON. Research has
shown that applying a context-free grammar during generation can prevent invalid tokens and
guarantee well-formed JSON output[4],[5]. In practice, this might involve using a tool or library
that wraps the LLM and stops it from producing characters that violate the JSON structure (e.g.
an unmatched brace). Grammar-constrained generation complements the prompt-level schema
hints by enforcing correctness at decoding time (it ensures syntax validity, while the JSON
Schema ensures semantic validity of keys/values). The benefit is that we rarely get malformed
outputs — a common failure mode when asking LLMs to output complex JSON is accidentally
producing extra commas or commentary text. With a grammar or incremental JSON validator,
those are eliminated. The downside to grammar-constrained decoding is the added complexity:
not all LLM APIs natively support grammars, so it can require custom decoding logic. Also, a
grammar can guarantee form but not that the content is correct (the model could still place a
value in the wrong field) [4],[5]. Therefore, we still rely on full JSON Schema validation after

generation as a safety net.

In summary, ontology-aware prompting and schema constraints greatly enhance reliability.
The theoretical foundation comes from principles of controlled text generation and structured
prediction. By giving the model a schema to adhere to, we turn the generation into a kind of

structured fill-in-the-blanks task rather than open-ended text writing. The model’s creativity is
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thus channeled strictly into filling factual values from the input text into the correct JSON slots.
If the model attempts to produce something outside the schema, the validator or grammar will
catch it, and we can discard or correct that output. This approach draws inspiration from ideas
in semantic web and databases: our ontology and schema play a role analogous to an
OWL/SHACL schema in RDF systems, defining what constitutes a valid fact, and the LLM is
constrained to generate only those valid facts. The result is a schema-conforming JSON output

ready for ingestion into the knowledge graph.

2.3.5. Temporal Anchoring and Geospatial Grounding

Energy events are inherently tied to when and where they occur. Thus, a robust knowledge
extraction process must normalize temporal and geospatial references from text. Temporal
anchoring is the practice of converting date/time expressions in text into a standard, machine-
readable format (ISO 8601 timestamps). For example, if an article says “late July 20257, the
system should interpret this, perhaps as an interval like “2025-07-20/2025-07-31” (if the exact
date isn’t given). We attach such normalized timestamps to the extracted events or facts. Using

ISO 8601 (e.g. "2025-07-24T00:00:00Z" for July 24, 2025) ensures that all events on the

timeline can be compared and ordered chronologically. In cases of ambiguous or relative time

expressions — e.g. “yesterday” or “last week” — the extraction process needs to use the article’s

publication date as a reference. For instance, “yesterday” in a news piece published on 2025-
08-01 would be anchored as 2025-07-31. If an exact date cannot be determined, we allow an
uncertainty range or mark the timestamp with a qualifier (e.g. an approximate date flag or using
the start of the mentioned month when only month/year are known). The theoretical basis here
comes from temporal information extraction research (e.g. TIMEX3 in NLP) — the idea is to
attach every event or fact to a timeline consistently. By doing so, our downstream system can
align events with time series anomalies by matching timestamps. In the prompt design, we
instruct the LLM to output dates in ISO format when possible (and our post-processing will
handle parsing of any free-text dates). We also incorporate a Temporal Ontology (as part of our
schema) that defines concepts like Timelnstant or Timelnterval to standardize how time is

represented in the extracted JSON.
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Geospatial grounding is analogous, focusing on the “where.” Locations mentioned in text
can be ambiguous or vary in granularity. Our approach is to map textual location mentions to
canonical geographic identifiers. For example, an article might mention “Maxedovia” which
could refer to a region in Greece (Western Macedonia, Central Macedonia, etc.) or generally
the historical region. We resolve this by using a predefined list of canonical regions and country
names (for instance, the ISO country codes or a standardized list of admin regions in Greece).
If the text says “Attica” or “Attiki”, we map it to a canonical identifier for the Attica region. If
a specific city or facility is mentioned (e.g. “Aavpio Power Station”), the system should ground
it to known entities in the ontology (like a node representing that power station with
coordinates). This grounding often requires an external gazetteer or lookup table — essentially
an algorithmic step to disambiguate place names. In theoretical terms, it's related to entity
linking (linking a text mention to a knowledge base entry). We include in our pipeline a
geospatial canonicalizer that consults a database of known energy locations (possibly using a

PostGIS-backed repository of power assets and regions) to find the best match. For the LLM
extraction stage, we also provide guidance: the prompt might say “identify any locations and
use canonical region names”. If the LLM is uncertain (e.g. the text says “in the north of the
country” without naming it), the model should output a generic "location": "Greece (unspecified
region)" or a null value for location with a note. We prefer not to guess — abstaining or using

an "unspecified" placeholder is better than mislinking to the wrong place.

The combination of temporal anchoring and geospatial grounding gives each extracted
event a clear when and where context in a standard form. This is crucial for aligning with time
series anomalies: an anomaly has a timestamp and possibly a region (e.g. a spike in Greek
national demand vs. Attica regional demand). We can only match an event to an anomaly if
both share the same normalized time and location reference. By enforcing these normalizations
at extraction time, we avoid ad-hoc string matching later. Conceptually, this part of the system
echoes known standards like ISO 8601 for time and GeoSPARQL/ISO country codes for
location in semantic data integration. It ensures that the knowledge graph we build has a
consistent temporal and spatial index — enabling queries like “find events within 1 day and in
the same region as anomaly X.” All told, temporal and geospatial normalization are
indispensable for grounding the extracted knowledge in real-world coordinates of time and

space.
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2.3.6. Prompt Design Principles for Reliable Structured Output

Designing the prompt for the LLM is both an art and a science. Our prompts are carefully
structured to maximize extraction accuracy while minimizing irrelevant text. Generally, the

prompt includes multiple components, each serving a specific purpose:

e System and Task Instruction: A concise description of the task, e.g. “You are an
information extraction system that reads news and outputs facts in JSON. Only produce
valid JSON according to the schema. Do not include explanations.” This sets the overall

behavior: the model knows it must produce a particular format and nothing extra.

e Ontology and Schema Excerpt: We provide a summary of the relevant ontology
classes and relationships expected. For instance: “Relevant event types: Blackout,
Maintenance, PolicyChange, WeatherEvent. Relevant entity types: PowerPlant,
Company, GovernmentAgency, Region. The output JSON schema has fields: type, date,
location, entities_involved, description, source.” By giving this, we narrow the context:
the model will focus only on extracting those types of information and use those exact

field names. This acts as a whitelist of what it should talk about.

e Few-Shot Examples (especially in Greek): We include one or more example
extractions, since our articles are primarily in Greek. For example, we might show a
short Greek sentence and a correct JSON output. E.g.: «Z11g 12 Avyodotov, €vog
KEPALVOG TPpokdAece umAok dovt ot Oeccario.» with a following JSON: {"type":
"BlackoutEvent", "date": "2025-08-12", "location": "Thessaly, GR", "cause":
"Lightning strike", "entities_involved": [], "source": null}. This demonstration helps the
model understand exactly how to format the output for real inputs. It also signals that

Greek names and text should be handled (the model sees Greek in the prompt, reducing

confusion when the input is Greek).

e Output Constraints and Guardrails: We explicitly remind the model to output
JSON only. Phrases like “If a field is unknown or not mentioned, use null or an empty
array. Do not add any commentary. Do not deviate from the schema.” are included. We

also emphasize provenance: “Include the source field with the article URL provided” (if
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the URL or ID of the article is known to the model or passed in). These guardrails ensure
that the model doesn’t, for example, start explaining its reasoning or outputting text

outside the JSON. The instruction to use null for unknowns is important to prevent the

model from guessing or hallucinating values — it is effectively an abstain mechanism.

All these components are combined in a logical order: typically system role instruction,
then schema/ontology description, then examples, then the actual article text (as the prompt
input to be processed). The prompt is thus quite structured, and this structure is designed
following best practices from prompt engineering research and our own trials. One principle is
to place the example demonstrations right before the task input, to leverage in-context learning:
the model is more likely to mirror the format it just saw in the examples. Another principle is

clarity and brevity — we don’t include any superfluous text that might confuse the model. Every

part of the prompt either defines the format or exemplifies the task.

For reliability, we also instruct the model on what to do when uncertain. For instance, “If
the article does not mention a specific date, set date to null. Do not fabricate a date.” These
instructions act as fabrication guardrails, critical in preventing the model from introducing false
information. We prefer null or “unknown” markers over wrong guesses, maintaining high
precision at slight cost of completeness. In an academic sense, this prompt design embodies the
concept of schema-guided generation: the model is virtually guided by a mini specification (the
ontology) and must conform to it. Past work has shown that such constrained prompts greatly
improve the quality of structured outputs from LLMs. Our approach aligns with those findings,

combining them with domain-specific adjustments (bilingual examples, etc.).

2.3.7. Reliability, Validation, and Evaluation of Extraction

Even with careful prompting, the system must handle errors gracefully and measure its own

performance. We incorporate multiple layers of reliability checks:

JSON Schema Validation: After the LLM outputs a JSON, we run a validator against the
official schema (which defines allowed classes, fields, data types, etc.). Any output that fails
validation is rejected or flagged. For example, if the model returns an unknown field

"location_name" instead of the expected "location", or if a required field is missing, the
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validation will catch it. This is crucial to avoid ingesting malformed data into the knowledge
graph. Invalid outputs are placed into an “unmapped queue” for manual review or re-processing.

This ensures ingestion safety — only clean, structured data enters our database.

Deterministic Generation: To enhance reproducibility, we typically run the LLM with
deterministic settings (e.g. temperature 0) when extracting facts. This reduces variability — the
same input should yield the same output each time. It also prevents the model from randomly
drifting in style or structure between runs. If nondeterministic methods are used (for diversity),
we ensure the critical fields remain consistent or we take multiple outputs and choose the best

via validation.

Error Handling and Abstention: We instruct the model to abstain when unsure (outputting
nulls or empty lists as mentioned). If the model truly doesn’t follow the format or produces a

non-JSON answer, our system treats it as a failure case. We might then fall back to a simpler
prompt or a smaller extraction scope. Categorizing errors helps in debugging: we maintain an
error taxonomy including (a) Malformed JSON (caught by parser), (b) Schema violation (JSON
structure okay but wrong content types), (c) Semantic errors (e.g. the model filled a field with

plausible text that’s not actually in the article). The last type is the hardest to catch automatically

— it requires spot-checking. But we mitigate it by emphasizing provenance: every extracted fact
is supposed to be verifiable in the source text. The JSON could even carry a snippet or reference

to the exact sentence it came from.

Evaluation and Quality Metrics: We evaluate the extraction quality both intrinsically and
extrinsically. Intrinsically, one signal is schema coverage — does the model populate all fields
it should when information is present? Also, do the outputs cover the range of classes and
relations we expect from the corpus? For instance, if our 250 articles include many on weather,
we expect many WeatherEvent outputs; if not, perhaps the model is missing them. We monitor
the distribution of extracted classes and compare it to known frequencies (if available) or
expectations. We also evaluate precision by spot-checking a sample of extracted facts against
the source text: are the named entities correct? Did the model invent any detail? Spot-checking
focuses on critical classes (e.g. facts that would be used in explanations of anomalies). If an

important category like “BlackoutEvent” has low precision (many false extractions), we adjust

the prompt or refine the ontology definitions to the model.
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When possible, we assemble a small “gold set” of articles with manually annotated facts.
We then compare the LLM’s output to this gold data to estimate precision and recall. This gives

quantitative scores (like an F1 measure) for the extraction. However, building a large gold set
can be labor-intensive, so our emphasis is on high precision through design and then ensuring

reasonable recall by broad prompt coverage.

Drift Monitoring: Over time or with different model versions, the output might drift (e.g. a
new model update might format things differently or use synonyms). We keep an eye on this
by periodically re-validating a fixed set of example inputs. If a drift is detected (say the model
starts using a non-canonical location name or forgets to include citations), we intervene with
prompt adjustments or additional fine-tuning of instructions. Since our pipeline might be
running on updates from news over time, maintaining consistency is important — otherwise the

knowledge graph could get inconsistent entries.

In conclusion, the theory behind our LLM-based knowledge extraction is to combine the
strengths of generative models (flexibility and understanding) with the rigor of schema
enforcement and validation. By doing so, we obtain a system that can ingest diverse
unstructured inputs and output rich structured knowledge, all while minimizing the risk of error.
The careful prompt design, use of ontologies, and validation steps ensure that the extracted facts
about the energy domain are accurate, normalized in time and space, and ready to support
higher-level reasoning like anomaly explanations. This lays a solid theoretical foundation for

the implementation in Chapter 4 and the explainability techniques discussed next.

2.4.Knowledge Graphs and GraphRAG for Explainability
2.4.1. Graph-Structured Knowledge for Anomaly Explanation

Knowledge graphs are an effective way to represent heterogeneous information — they store
entities (nodes) and relationships (edges) in a flexible, connected structure. In the context of
energy systems, a knowledge graph can link together many data types: time series signals
(loads, generation), detected anomalies in those signals, events extracted from news, key
entities like power plants or companies, thematic factors like weather or policy changes, and so

on. The motivation to use a graph structure for anomaly explainability stems from the need for
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multi-hop reasoning and provenance-rich context[7],[8]. An anomaly (for example, a sudden
drop in electricity demand on a certain date) might be explained by an event (e.g. a large outage
or a public holiday) that is not directly obvious from the data alone. By storing events and facts
in a graph, we can traverse connections: from an anomaly node we can find related events that
occurred around the same time and place, then from those events we can find involved entities

or broader themes (like “heatwave” or “grid maintenance”). This multi-hop traversal is

something graphs excel at — you can find paths and neighborhoods of information that connect

seemingly disparate facts.

Crucially, every piece of information in the graph can carry its provenance (where it came
from), enabling trustworthy explanations. Rather than a black-box model guessing the cause of
an anomaly, we have a graph that explicitly links an anomaly to evidence (news, events) that
can be cited. This structured approach addresses one of the core challenges in explainable Al:
the need to justify why something happened with verifiable sources. The graph acts as a
knowledge base that the explanation system can draw from, ensuring that answers about

anomalies are grounded in data or documented events, not just learned patterns.

In theory, using a graph for anomaly explanation aligns with the retrieval-augmented
generation paradigm, where an external knowledge source is used to inform an LLM’s output.
Instead of retrieving documents by keywords, we retrieve a tailored subgraph of relevant facts.
Graphs are particularly well-suited for global context and sensemaking. They provide a holistic
view: for example, an anomaly on date D in region R can be connected to all events on D in R
(or even events in neighboring regions, if the graph encodes power grid connectivity). This
comprehensive neighborhood can reveal patterns (maybe D was a national holiday affecting all
regions). If we relied only on individual text snippets, we might miss the big picture or fail to
connect two related events reported in different articles. A graph naturally merges information
from multiple sources because they share nodes (e.g. the same region node linked to multiple
events). In summary, the knowledge graph offers a structured memory of the system’s factual
context, which is invaluable for explaining anomalies through multi-hop, multi-source

reasoning.
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2.4.2. Property Graph Model and Ontology Alignment

Our system uses a property-graph model, conceptually similar to Neo4j’s data model. In a
property graph, nodes have labels and properties (key-value attributes), and edges have types
and can also carry properties. This model is flexible and expressive, allowing us to model the
energy domain ontology naturally. We define several key node types (labels) in the graph, each

corresponding to a concept from our ontology:

e TimeSeries: representing a stream of measurements (e.g. the national power
demand, the solar generation of a specific plant). A TimeSeries node might have
properties like metric_type (load, generation, price, etc.), zone (the region or country it

pertains to), and maybe an identifier linking to the ENTSO-E source.

e Anomaly: representing a detected anomaly on a time series. An Anomaly node
could have properties such as timestamp (when it occurred), severity, expected value

vs actual value, etc. It is typically linked to the TimeSeries it belongs to.

e Article: representing a news article or report document. It has properties like

published date, source url, and perhaps a short title or reference.

e TemporalEvent: representing an event that occurred, extracted from text. This
corresponds to events in our ontology (like BlackoutEvent, WeatherEvent,
PolicyChange, etc.). Properties include type (the subclass of event), description (a brief
description from the text), date (normalized date or interval), and source ref (linking

back to an Article or source).

o Entity: representing real-world entities such as organizations, facilities, persons, or
other actors. For example, a node for Public Power Corporation (PPC) or a node for a
specific power plant. These nodes often come from the ontology’s actor or asset classes

and have properties like name, entity type and possibly external IDs.

e Theme: representing abstract themes or categories relevant to events, such as
Weather, Market, Regulatory, Technical, etc. A theme node is like a tag that can be

attached to events or anomalies indicating the nature of their cause (e.g. an event might

be tagged with theme “Weather” if it’s a heatwave).
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e Zone/Region: representing geospatial areas (countries, regions, etc.). For instance,
a node for Greece, and nodes for its sub-regions (Attica, Macedonia, etc.). These often
come from a location ontology or simply a predefined set of region nodes with

properties like name and standardized codes.

Correspondingly, we define relationship types to connect these nodes in meaningful ways some

of which are displayed below:

e HAS_ANOMALY: a relationship from a TimeSeries node to an Anomaly node.
This indicates that the anomaly occurred in that particular time series. The edge might

have a property like window or date to indicate when.

TimeSeries) — HAS_ANOMALY —> (Anomaly)
A4
\Y4 - HAS_ANOM... - HAS_ANOMALY X
()
& / Edit
%
@ GR:actual_tote  period_end  2024-06-30T00:00:00
country GR
product actual_total_load
TimeSer... unit MW
] l HAS_ANOMALY
GRuactual_tota  start_ts 2021-08-05T00:00:00+00:00
08-
05T00:00:00+0  S€ore 4.272055421106553
_ _ end_ts 2021-08-05T00:00:00+00:00
{ Anomaly

detected_by robust_zscore

Figure 2-3: HAS ANOMALY relationship screenshot

e MENTIONS: linking an Article to an Entity or to a Theme. If a news article
mentions the “Public Power Corporation”, we create an edge Article —MENTIONS—

Entity(PPC). This way we know which entities were involved or quoted in that article.
Likewise, if the content of the article is about a heatwave, we could link the Article —

MENTIONS— Theme(Weather).
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Figure 2-4: MENTIONS relationship screenshot

e TAGGED_THEME: linking a TemporalEvent to a Theme. For instance, an event
node for “Heatwave in July 2025” could be TAGGED THEME— Weather. Or a policy

change event might be tagged as Regulatory or Market theme. This provides a way to

categorize events by general type.
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Figure 2-5: TAGGED _THEME relationship screenshot
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e LOCATED_IN: capturing geography, this relationship connects events or entities

to a Zone. An event that happened in Attica would have TemporalEvent —
LOCATED IN— Zone(Attica). Similarly, a power plant entity could be
LOCATED IN a certain region. This relation anchors nodes to the spatial hierarchy.

Event — LOCATED_IN —(Country X ®
\Y4 - LOCATED_IN - LOCATED_IN X
()
& / Edit
®) TTF price start_ts 2022-08-25T00:00:00
spike to
czigmwhn  end_ts 2022-08-25T23:59:59
name TTF price spike to €318/MWh

Event - . .
description Article reports that in early

l LOCATED_IN

Palestine, code_alpha2 PS
State of . .
official_name the State of Palestine

code PSE

Eolnty canonicalized...1761910091661

Figure 2-6: LOCATED _IN relationship screenshot

Additionally, we structure time using a time index in the graph. A common technique is a time-

tree: we create nodes for Year, Month, Day, etc., and link events or anomalies to those. For

example, an Anomaly on 2025-07-24 might have an edge to a Day node representing “2025-
07-24”, which links up to a Month node “2025-07” and a Year node “2025”. This time-tree

allows efficient range queries (find all events in July 2025 by traversing that node). It’s an

implementation detail, but conceptually it underscores that time is a first-class dimension in our

knowledge graph.

The entire graph is aligned with the ontologies we defined (recall the Temporal, Energy,
Event ontologies from Section 2.3). Each node type corresponds to an ontology class, and each
relation type corresponds to a defined relationship in our schema. By using a property graph
(Neo4j) to store this, we get the advantage of indexing and query language (Cypher) to easily
retrieve subgraphs of interest. The property graph model is appropriate here because of its

natural support for property-rich nodes (e.g. we can store the full text of an article as a property
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of the Article node if needed, or store numeric values in Anomaly nodes). It’s also intuitive for
developers and analysts. This design is distinct from an RDF triple store; however, it’s
conceptually similar in that the ontology provides a schema for nodes and edges. In practice,
Neo4j was chosen as the conceptual backbone due to its speed in graph traversal and its
ecosystem for building graph-powered applications. We ensure that all data ingested (from
LLM extraction or time series) respects the ontology definitions, thus the graph remains
semantically consistent. This consistent property graph will be the substrate on which we

perform explainability through GraphRAG.

( TimeSeries ™ HAS_ANOMALY — -
~___(product, unit, country) LOCATED_IN //%/ Py ,,,\>
T i Zone \> "~ (timestamp, score, classification) -
AN (code, canonical_name) ==
REFERENCES_LOCATION O " REPORTED_BY
Chunk
/,ﬁ_fw/,v (offset_start, text)
- Attcle T S— TAGGED_THEME

Ve
__(published_at, source_url) _

- MENTIONS S —

 ‘/ Entty N TAGGED_THEME
DESCRIBED_BY \y’\l"anlfss)/ -
— TemporalEvent B TAGGED_THEME

‘\\, (event_type, start, end) -

/J Country \

(code, name]
eodename) 7

Theme N\

(name)

Figure 2-7: Graph Schema for Neo4j

2.4.3. Provenance and Trust in the Knowledge Graph

An explainable system must establish trust with the analyst user. We achieve this by weaving
provenance information throughout the knowledge graph. Every fact in the graph is traceable

back to its source:

e Source URLs and Documents: Article nodes carry the actual source URL or reference
(e.g. an ID linking to a full-text repository). When an event node is extracted from an
article, that event node has a property or link indicating the source article. For instance,
TemporalEvent “Heatwave on July 24” might have a property source url:
"https://example.com/news123" and/or an edge to the Article node from which it was
extracted. This means if the analyst questions the explanation, they can follow the link

to read the original article in full.
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e Timestamps and Ingestion Info: Each node/edge added from extraction can have
metadata like extracted at (the time our system added it) and model version or
prompt_version (which LLM or prompt template was used). This provenance metadata
is useful for audit — if an error is later found in an extraction, we know which

model/prompt likely caused it.

e Citation Strings: We sometimes store a short citation or reference snippet with events.
For example, an event node might include a property citation text like “(Reuters,
24/07/2025)” to be used in generated explanations. This is not strictly necessary in the

graph, but it’s convenient to have a pre-formatted reference for use in the output.

e Confidence scores: Though our extraction is largely zero-shot, if we have any notion
of confidence (say from a validation heuristic), it could be stored. For instance, if
multiple articles report the same event, we might increase confidence. Or if an event
was extracted but with missing fields, we mark it as low confidence and that could be

considered during explanation generation (maybe requiring a caveat or cross-check).

By attaching provenance at the node and edge level, the graph becomes a transparent knowledge
base. This addresses a common concern: LLMs can hallucinate, but if our explanation is built
from graph facts that are each source-backed, the final output can include explicit citations. In
effect, the knowledge graph and its provenance data allow the LLM to become a truthful
narrator rather than a creator of new claims. Each relationship used in an explanation (e.g.
linking an anomaly to a cause event) is something stored in the graph because it was observed
or derived from data. We also model provenance in relationships: for example, if we assert
Anomaly —DESCRIBED BY— Event, that edge might carry a supporting_source attribute

(maybe pointing to an article that mentioned both the anomaly and event, if such exists).

This approach is conceptually aligned with the W3C PROV-O (Provenance Ontology)
principles, where every entity and relationship can have associated provenance. While we don’t

explicitly implement a full PROV ontology in Neo4j, we adhere to the idea: who/what/when
was this piece of knowledge generated. For trust, this is crucial; an analyst can drill down from

a conclusion (“the anomaly was caused by X”) to the evidence nodes (“X was a heatwave event

recorded in this article, here’s the link”). The presence of explicit provenance also aids the LLM
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when generating explanations: we actually pass these sources into the prompt so the model can
cite them in the text. This practice of including sources is known to improve the factual accuracy

of generated answers and provides users the ability to verify each claim.

In summary, the knowledge graph is not just a collection of data points; it’s a web of

evidence. Each node and edge is backed by some origin, and we store that link. This builds user
confidence that explanations are traceable. It also helps maintain the integrity of the system —
errors can be traced and corrected at the source level. By designing the graph with provenance

in mind, we ensure that explainability is a first-class property, not an afterthought.

2.44. Cypher-Driven Retrieval of Contextual Evidence

To explain an anomaly, we need to gather the right context from the graph. This is
fundamentally a retrieval problem: given an anomaly node (or an anomaly description), find

the most relevant connected information in the graph that could explain it. We take a Cypher-
first retrieval approach, meaning we leverage structured graph queries (in Neo4j’s Cypher query
language) to fetch a subgraph of evidence before invoking any language model to generate an

explanation. The retrieval is guided by a few key parameters based on the anomaly’s attributes:

e Temporal Window: We constrain the query to events that occurred near the
anomaly’s time. For instance, if the anomaly is at 2025-07-24 18:00 (an evening spike),
we might query for events on the same day or within *1 day of that timestamp. The
window can be adjusted depending on anomaly duration; e.g., for a multi-day anomaly,
we look across that span. This ensures we only retrieve events that could reasonably be

contemporaneous causes or context. (A heatwave a year earlier likely isn’t relevant, so

we exclude it.)

e Geographic Scope: We filter or prioritize events and facts by location. If the
anomaly is specific to the Attica region’s grid, we first look for events located in Attica.

If not much is found, we might broaden to national-level events (Greece) or neighboring
regions, but with lower priority. Similarly, if the anomaly is on a cross-border

interconnection, we consider events in either of the countries involved. The graph’s
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LOCATED IN edges make this filtering straightforward: a Cypher query can match
patterns like (e:TemporalEvent)-[:LOCATED_ IN]->(:Zone {name: "Attica"}).

e Ontology Class Filters: Depending on the type of anomaly or the domain
knowledge, certain event types or themes might be more relevant. For instance, if the
anomaly is a demand drop, we expect relevant events might be of type WeatherEvent
(like a cooling event or storm) or InfrastructureFailure. If it’s a price spike anomaly,
maybe PolicyChange or MarketEvent nodes are more pertinent. We can encode these
expectations in the query or simply retrieve all events and later rank them by a heuristic.
In practice, we might label some events as high-priority (e.g. any Blackout event is very

likely important for grid anomalies). The ontology allows us to do this systematically.

e Graph Connectivity: We often exploit the graph structure by performing
expansive queries. For example, find any events within time window that are in the
same region or that involve an entity related to the anomaly. If the anomaly node itself
is linked to something (say an Anomaly is linked to a particular PowerPlant entity, if
the anomaly was detected specifically at that plant’s output), we include events
involving that same entity. Cypher queries can traverse multiple hops, e.g., “find events
that involve any entity that is connected to this anomaly.” This way if the anomaly is at
Plant X, and we have an event “Plant X went offline due to maintenance”, the query will

catch that event via the shared entity.

After defining the query criteria, we execute Cypher to retrieve a set of candidate nodes

and relationships — essentially an evidence subgraph. For example, the query result might

include two event nodes (a heatwave and a local outage), one theme node (say “Weather”), and

their links to region or entity nodes, plus the article nodes that describe those events. This

subgraph is the raw material for the explanation.

Because multiple pieces of evidence may be found, we consider lightweight ranking

heuristics to decide which ones to highlight or include. Some heuristics: - Temporal proximity:

An event that happened just hours before the anomaly likely ranks higher than one that

happened five days earlier. - Frequency/Multiplicity: If a type of event is common, it might be

less explanatory than something rare. But if multiple sources all point to the same explanation,
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that boosts confidence (e.g. three different news articles all mention a heatwave). - Causal
relevance (by class): A priori, we might weight weather events as more explanatory for demand
anomalies, and grid outages more for supply anomalies, etc. This introduces domain knowledge
into ranking. - Connectivity: If an event is directly linked to the anomaly node (for instance, in
the graph we might directly link a known cause to the anomaly), that should obviously be

included. Our system currently doesn’t create a direct cause edge automatically, but if it did or

if an analyst tagged it, that would get top priority.

The retrieval step is done in the graph database because it can use indexes and relationships

efficiently. This is more precise than doing a vector search over text: we leverage the structured
relationships to get relevant context with high precision. It’s also explainable in itself — we can

log the query and see why certain nodes were returned (due to matching time and location, for

example).

By performing a Cypher-first retrieval, we reduce the load on the LLM. Instead of handing
the LLM a massive trove of documents or expecting it to recall facts from parameters, we give
it a concise set of extracted facts from the graph. This improves both speed and reliability. It’s

worth noting that this approach is deterministic given the same graph state and query parameters
— the same anomaly will always retrieve the same evidence set, which is good for consistency.
One could tweak the Cypher queries and see directly how the result set changes, which is more

transparent than adjusting a fuzzy similarity threshold in vector retrieval.

In theoretical terms, our retrieval strategy aligns with how GraphRAG is conceptualized:
first retrieve a connected subgraph relevant to the query (here the “query” is essentially: ‘Why
did anomaly X happen? ), then feed that to the generative model. It’s a knowledge-driven form

of retrieval augmented generation.

2.4.5. Graph-Augmented Generation of Explanations (GraphRAG)

GraphRAG refers to Graph-based Retrieval-Augmented Generation. In our scenario, after
retrieving the subgraph of evidence via Cypher, we use it to augment the prompt of the LLM
that will generate the explanation. The idea is to provide the LLM with structured context so

that it can produce a grounded answer that includes the relevant facts and cites sources. This
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approach drastically reduces hallucinations, because the model doesn’t have to invent any

explanation — it sees actual events and data points from the graph to base its reasoning on.

The assembly of the prompt for explanation follows a structured format similar to how we
did for extraction, but with a focus on explanation. We include sections like: - Anomaly
Overview: We start by describing the anomaly in natural language, including its key details.
For example: “An anomaly was detected on the electricity demand time series for Greece on 24
July 2025. The demand spiked 15% above forecast during the evening peak.” This gives the
LLM and eventually the reader a clear statement of what needs explaining. - Retrieved
Evidence (Events and Details): We then present the relevant facts from the graph. We might
format this as bullet points or a short paragraph per item. For instance: “Evidence: (1) A severe
heatwave was reported in Greece on 23-26 July 2025, with record high temperatures (source:
[NewsArticlel]). (2) The government declared a public holiday on 24 July 2025 in some regions
due to emergency measures (source: [NewsArticle2]). (3) Increased use of air conditioning was
widely reported (Theme: Weather).” Each piece of evidence corresponds to nodes in the
subgraph (events or themes), and we attach a citation in brackets referencing the source article
node. In practice, we ensure each evidence sentence contains the essential info and a [Citation].
- Entity and Theme context: If relevant, we add one-liners about key entities or themes. E.g.

“Public Power Corp (PPC) reported no infrastructure failures on that day [CompanyReport].”
Or “This anomaly occurred during a known period of high temperatures (Weather event).” This
is optional and depends on what the graph has — sometimes the evidence itself suffices. -
Instruction and Answer Formatting Tips: After listing the evidence, we often include a brief
instruction to the model: “Using the above information, explain the likely reasons for the
anomaly. Your answer should be a concise paragraph. Cite the sources for each factual claim.
If the evidence is insufficient or contradictory, note that the cause is uncertain.” This guides the

LLM on how to compose the final answer. We stress the use of citations and mention the
possibility of uncertainty so the model knows that “unknown” is an acceptable answer if

warranted.

With this prompt, the LLM then generates the explanation. Since it has explicit facts and
references in front of it, it tends to stay faithful to them — effectively performing a

summarization or reasoning task over a mini-knowledge-graph. Each piece of evidence in the
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prompt is like a node or triple that the model can incorporate into a narrative. For example, the
model might produce: “The anomaly on 24 July 2025 can be explained by an extreme heatwave
that drove up electricity demand. During 23-26 July 2025, Greece experienced record high
temperatures, leading to surging air conditioning use[2]. The spike occurred on a day that was
even declared an emergency public holiday, which indicates widespread impact. Thus, the
demand surge was not a random fluctuation but correlated with a weather-induced demand
increase.” (And the citations and here correspond to the evidence sources given, demonstrating

provenance.)

Faithfulness is a key evaluation criterion for the LLM’s answer. Because we structure the
input, we expect the output to contain only claims derivable from the evidence. If the model
tried to add something not supported (hallucination), ideally it would not find it in the prompt
and thus be less likely to mention it. We also explicitly told it to say “unknown” if it can’t find
a reason. For example, if no events were found or nothing obvious, the model might answer:

“The cause of the anomaly on that date is unclear; no significant events were reported around
that time, so it may have been due to unknown factors.” This kind of answer is important — it’s

better to acknowledge uncertainty than to guess.

Our GraphRAG approach can be contrasted with a pure text RAG: normally, one might
vector-search for relevant passages in news articles and feed them to the LLM. We instead
retrieve by graph (structured) and feed in a distilled form of knowledge. In some cases, we may
complement this with actual text snippets (for richness, especially if a quote or detail is needed).
A hybrid approach could embed both the structured data and a short quote from an article in

the prompt. For instance, an event node might carry a short description “Heatwave with 40°C

temperatures” which we include verbatim. If needed, we could also retrieve the top relevant
paragraph from an article via embedding search and show it. This hybrid Graph+Text RAG can
improve completeness when the graph node alone is too abstract. But importantly, even that

text snippet is anchored to a node, maintaining the structured context.

By using GraphRAG, we also reduce hallucinations and enforce relational accuracy. The
graph structure ensures that the relationships (e.g. cause-effect, location-event) are explicitly

given, so the model is less likely to make an incorrect connection. For example, if two events
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are unrelated in the graph, we won’t present them as linked evidence, so the model won’t

incorrectly tie them together.

This approach draws on recent research: Edge et al. (2024) demonstrated that graph-based
RAG yielded more comprehensive and diverse answers to broad analytical queries than
standard RAG[2]. Our use case is a specific form of query (anomaly explanation), but we
similarly find that pulling in a connected subgraph (anomaly, related events, entities) gives the

model a richer context to answer the “why” question. Essentially, GraphRAG lets the LLM do
what it’s good at (language and reasoning) while the knowledge graph does what it’s good at

(storing and retrieving structured relations). The combination ensures that the explanations are

both grounded in data and articulated in a coherent narrative.
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CHAPTER
3

3. SYSTEM ARCHITECTURE
3.1. System Overview

The system follows a layered architecture that maps cleanly to microservices. Guided by the
requirements of Chapter 2, we separate responsibilities into five layers: Data Acquisition,
Storage & Preprocessing, Semantic Extraction, Knowledge Graph, and Application. This
separation keeps concerns isolated and allows each layer to evolve independently (e.g., add a

data source, change an extraction method, or scale a service) without ripple effects.
* Data Acquisition pulls structured metrics (ENTSO-E) and unstructured text (news/RSS).

» Storage & Preprocessing stages inputs into weekly aggregates, exports CSVs, and

prepares payloads.
* Semantic Extraction turns raw artifacts into entities, events, themes, and anomalies.

* Knowledge Graph (Neo4j) integrates all semantics under consistent time and location

references.

* Application exposes APIs and Uls (timeline views, GraphRAG answers) to end users.
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Figure 3-1 — Layered Architecture (Data - Application)

Data Acquisition Layer
— ENTSO-E API, RSS/News feeds

data flow

Storage & Preprocessing Layer
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N
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Semantic Extraction Layer
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Knowledge Graph Layer
— Neo4j (entities, events, anomalies, zones)
— Cypher/bolt APls
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Application Layer
— Web Ul, Timeline API, GraphRAG

Legend ==\n
Solid arrows: data/transform flow

Figure 3-1: Layered architecture of the proposed system, illustrating the flow from data acquisition
through preprocessing, semantic extraction, and integration into the knowledge graph, up to end-user
applications.

3.2. Architecture Views

While the layered model provides a high-level static view of the system, it is also useful to
consider the architecture from other perspectives. Figura 3-2 presents a data-flow and agent
view of the system, highlighting how components interact dynamically. In this view, three
primary workflows (or agents) handle different parts of the pipeline in sequence: a Structured
Data ingestion workflow, an Unstructured Data extraction workflow, and a GraphRAG-based
query workflow. Each workflow corresponds to one or more layers in the system and is

implemented as an orchestrated set of tools and services. The structured workflow ingests time-
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series data (e.g. CSV files of energy metrics) and detects anomalies, the unstructured workflow
processes textual data (news articles) to extract semantic entities/events, and the GraphRAG
workflow handles user queries by retrieving graph context and generating explanations. These
components communicate via well-defined interfaces: for instance, the ingestion workflows
read from files or APIs and write to the Neo4j graph database, while the GraphRAG agent reads
from the graph (via Cypher queries) and interacts with a language model. The data flow between
stages is also depicted — raw data (CSV files, JSON article dumps) flows into the system, is
transformed into graph-structured knowledge, and finally is used to produce contextual
explanations for end-user queries. This multi-view depiction underscores how the layers are
realized in practice by specialized processes and how data moves through the system from

inputs to insights.

Figure 3-2 — Data-Flow and Agent View

JSON Articles RSS/News Feeds CSV Time Series ENTSO-E API

JSON dumps | articles weekly CSV metrics
a 0 O
GraphRAG Agent Unstructured Ingestion Agent Structured Ingestion Agent
(Query + Explanation) (Articles = Entities/Events) (Time-series + Anomaly Detect)

\J

prompt (optional) : explanation + citations ' question Cypher retrieval | merges (Events, Entities, Themes) upserts (TimeSeries, Anomaly)
Y ‘ " A
LLM Provider Web Ul Neo4j Knowledge Graph

Legend ==\n
Solid arrows: data ingestion flow\n
Dashed arrows: query/retrieval interactions

Figure 3-2: System architecture diagram showing data-flow and agent views. Structured and
unstructured ingestion modules (agents) populate the Neo4j knowledge graph, and a GraphRAG query
agent utilizes the graph to generate context-rich answers.

The remainder of this section shows how these layers are realized by deployable components

and how they are deployed in the SaaS environment.
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Component View

The component view illustrates the microservices and their interactions:

fetch articles pull metrics (ENTSO-E) extraction/validation (optional)

: 1y
LLM-assisted extraction optional;

falls back to rules where needed

API Edge: a Gateway/BFF terminates HTTPS and routes requests to backend
services.

Application Services: Timeline API returns anomaly timelines; Graph API serves
graph queries; GraphRAG composes subgraph context with an LLM to produce

explanations.

Ingestion Services: a Structured worker fetches ENTSO-E metrics, aggregates and
detects anomalies; an Unstructured worker extracts entities/events from articles and

maps them to the ontology.

Storage: Neo4j persists the integrated knowledge graph; optional CSV exports are
produced for reproducibility.

External: LLM provider (optional for extraction and required for GraphRAG) and

upstream data sources.

$aa$ Application ~ Microservices Component Diagram

«component»

Web Ul (Saa$ Frontend)

API Edge

«component»

API Gateway / BFF

REST T

Ingestion & ETL Application Serv,iﬁ
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T
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(ENTSO-E, RSS/News) Sk lOpenl Object/CSV Exports Neodj Knowledge Graph

Figure 3-3: Microservices component diagram
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Deployment View

The deployment view shows how the system is hosted:

1. User traffic reaches the cluster via an ingress/load balancer. The Web UI serves static
assets; API Gateway handles REST endpoints.

2. Backend pods run independently and scale horizontally: Timeline API, Graph API,
GraphRAG.

3. Ingestion pods run on schedules or event triggers, pulling from external sources and

upserting into Neo4j.

4. Secrets/configs mount DB and LLM credentials; all service-to-DB traffic uses

P! Deployt 9
End User
User Qevice
Browser
Publc Internet |
|
[ e GET static assets
I
Saas Cluster /
Ingress / Load Balancer ||
HTTPS,
/ Namespace: saas
( API Gateway Pod Ingestion Pod (Structured) Ingestion Pod (Unstructured) Frontend Pod
Pads scale independently; services expose stable endpoints.
Secrets mounted for DB and LLM access; jobs scheduled via Cron. yIBFF ( ) ENTSO-E Worker + Anomaly Ontology Mapper Atticlo Extractor Web UI (static)

REST oTcypher upserts ull metrics \ merges . fetch articles
N "
Timeline API Pod Graph API Pod GraphRAG Pod \ S

Timeline Service Graph APl RAG Service Neodj DB Data Sources (ENTSO-E, RSS)

A

s

LLM Provider (OpenAl)

Figure 3-4: Deployment diagram
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3.3. Data Sources & Contracts

The system integrates multiple open data sources, each with a defined input contract to ensure

smooth ingestion and harmonization. Key sources include:

e ENTSO-E Transparency Platform — a European energy market data repository
providing timeseries for electrical metrics (e.g. load demand, generation output, cross-
border flows, day-ahead market prices). Data is obtained via the ENTSO-E API using
an authentication token, or alternatively from published files. For consistency, raw
hourly data is aggregated into weekly intervals in a standardized CSV format with
common timestamp and value columns (e.g. time in ISO 8601 UTC and value for the
measurement). Each dataset (such as Greece electricity load 2015-2023) is thus
converted into a CSV with a unified schema. The data contract here stipulates that
timezones are converted to UTC and units are consistent across countries, so that all
time-series share a common temporal frame and can be compared directly. If live API
access is unavailable (e.g. missing token), the system can fall back to previously fetched

CSV files, ensuring the pipeline remains offline-safe and reproducible.

e Greek TSO & Grid Data (ADMIE) — (Planned) open datasets from the Greek
Independent Power Transmission Operator, which include electrical infrastructure
information and possibly grid topology or regional load data. Although not heavily used
in the current pipeline, the architecture is designed to accommodate such spatial
infrastructure data. For example, grid node or region definitions from ADMIE can be
ingested to enrich the knowledge graph’s geospatial context (such as adding nodes for

substations or transmission lines). These datasets typically come in tabular or geospatial
formats; the system expects them to be converted into structured form aligned with the
ontology (e.g. a substation would map to an Infrastructure or Facility entity). The
contract for such data emphasizes consistent identifiers (e.g. using a known code for

each region or asset) and coordinate information for mapping.

e Meteorological and External Factors — (Planned) Sources like weather data or market
indicators can be integrated in the future. The architecture anticipates feeds such as
temperature anomalies or fuel prices, which can be linked to energy events. Although

not implemented in this work, any time-based external dataset can be incorporated by
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defining a loader that produces a CSV or JSON with the required fields (time, location,
value) and by extending the ontology with appropriate entity types (e.g. an
ExtremeWeatherEvent). The design ensures new data types can be added with minimal

changes, owing to the flexible schema of the knowledge graph (see Section 3.4).

Energy News Articles — an extensive collection of textual data from Greek-language
energy news outlets and RSS feeds. These unstructured sources provide contextual
information on policy changes, market developments, and socio-economic events
impacting the energy sector. Articles are collected via web scraping and news APIs and
stored in a JSON repository (the "article warehouse") following a predefined Article
schema. This schema defines fields such as id, title, author, content, published date (in
ISO 8601 format), language, sourceURL, etc., aligned with the Schema.org
NewsArticle format. For instance, each article JSON includes a word count and a
language code, and we enforce that published date is in UTC. The ingestion contract
for articles requires basic data cleaning: duplicate or near-duplicate articles (e.g. the
same news from two sources) are identified (by identical title and date) and merged to

avoid repetition, as per best practices (“remove duplicate or irrelevant observations”).
We also filter out items that do not meet quality criteria (e.g. very short texts or non-
Greek content), ensuring that only relevant, rich text is fed into the extraction pipeline.
Crucially, each article record carries provenance metadata such as the original source
URL and the retrieval timestamp. This provenance information (“the history of the state,
custody, or location of something”) is embedded so that any piece of extracted

knowledge can be traced back to its source, supporting transparency and reproducibility.

3.4. Knowledge Graph Schema

All processed information converges into a central knowledge graph implemented as a Neo4j

property graph. In this model, entities are represented as nodes with labels and properties, and

relationships between entities are represented as typed edges. The graph’s schema is designed

to capture the key domain concepts of open energy data and their connections, in alignment

with our ontology. Tables 3-1, 3-2 below summarize the main node types and relationship types

in the knowledge graph:
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Stream of . NN
ENTSO-E product’, ‘unit’,
measurements cou1‘1treyﬁ,0 dzosltlz;[f:ode > "TimeSeries (product="day ahead price')’
(load, generation, petiod_start ,
Stes) period_end
Detected ‘start ts’, ‘end ts’,
outlier/shift on a “score’, “classification’, *Anomaly(classification= ‘LevelShift::Rise')’
time series ‘detected_by’, "pass’
News/report . tlﬂ? , ol . a . , e
document published at’, Article(publisher='Reuters')
‘language’, "source’
Text span 9940 9 s
ff: . . . .
extracted from an | 1w set‘_s‘tart ’ Chunk(id="article123::0-512")
article offset end’, ‘text

‘event type’, 'title’,

B ORI ‘start ts', ‘end ts', ‘TemporalEvent(event type='"PolicyChange')’

from text ‘time _text
Actor/asset
(organization, ‘name’, ‘class’, *Entity(name="PPC / AEH',
plant, regulator, ‘country’, ‘entity id’ class='Organisation')’
person)
Abstract
By ‘id’, ‘name’ "Theme(name='Weather')'

(Weather, Market,
Regulatory, ...)
‘code’, ‘'name’,

‘canonical name’, *Zone(code='10Y GR-HTSO-----Y")"
‘country code’

Bidding zone /
geographic area

ISO3 country  ‘code’, ‘code alpha2’,

S 3 *Country(code='"GRC', name='Greece')’
reference name

Table 3-1: Key node types in the knowledge graph (property graph model) and their roles.
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"TimeSeries’ — "Anomaly’

‘TimeSeries’ — 'Zone'

“Article” — "Chunk’

*Chunk’ — *Anomaly’

‘Article’ — "TemporalEvent®

‘Article’ — “Entity’

‘Article’ — ‘Theme'

TemporalEvent” — "Theme'

Entity" — "Theme'

TemporalEvent' — "Entity”

TemporalEvent’ — "Country’

*Article’ — "Zone'/'Country’

P P Pl P

Link measurements to detected anomalies

Anchor time series to bidding zones

Retain text spans supporting downstream

retrieval

Tie anomalies to evidence passages

Attach structured events extracted from the

article

Capture actors/assets appearing in the article

Tag articles with topical themes

Classify events by theme

Optional entity-level thematic tagging

Participants/actors involved in the event

Event geography (country-level anchoring)

Geospatial references extracted from text

Table 3-2: Relationship types in the knowledge graph and their meaning.
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Derived relationships (query-level, not persisted as edges)

* NEAR_EVENT (Anomaly < TemporalEvent): temporal proximity (overlap or A%

window) is computed in Cypher during retrieval; it is not stored as a permanent

relationship.

* Event LOCATED _IN: optional; events can be grounded by associated entities/zones or
by time-window and article evidence. The pipeline does not guarantee a persistent

(TemporalEvent)-[: LOCATED IN]->(Zone) edge.

As shown above, the property graph captures both structured data relationships (e.g. which time
series generated, which anomalies, which region data belongs to) and contextual semantic
relationships from unstructured data (e.g. which events are reported in which articles, which
entities and locations those articles mention). It is a unified schema where, for instance, an
Anomaly from a load time series can be connected (via NEAR _EVENT) to a TemporalEvent
extracted from an article, which in turn might be linked to an Entity (like a company) and a

Location (country). This enables complex queries such as, “Find all anomalies in country X that

coincide with policy events involving company Y.”

The graph schema was derived from an ontology of the energy domain (detailed in Section
3.5), but implemented in Neo4;j’s property graph model for pragmatic reasons. A property graph
offers flexibility in schema evolution (new node or relationship types can be added without
altering a rigid global schema) and efficient traversal for multi-hop queries. Traditional
relational databases would struggle with this highly connected data, requiring complex JOIN
operations across numerous tables (anomalies <> events <> entities <> locations) and a fixed
schema that is hard to extend. In contrast, using a graph database has several benefits: it
provides a natural representation of relationships (data is literally stored as nodes and edges),
efficient graph traversals (finding all events related to a given anomaly is a matter of following
relationships, not constructing JOINs), and a flexible schema that can accommodate evolving
entity types. Furthermore, the graph format is amenable to the needs of retrieval-augmented
generation (RAQG): relevant subgraphs can be pulled as needed to supply factual context to an

LLM, enabling explainable answers (Section 3.6).
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We enforce data integrity in the graph through constraints and careful use of the Cypher
query language. Wherever appropriate, unique identifiers or combinations of properties are
defined for node types — for example, each Zone has a unique code, each TimeSeries can be
uniquely identified by its country+product+zone, and each Article by a unique URL or title-
timestamp combination. Neo4j unique constraints are applied on such fields to prevent
duplicate nodes. Ingestion uses idempotent operations (Cypher MERGE) so that running the
pipeline repeatedly will not create duplicate entries for the same real-world entity or event.
These design choices ensure that the knowledge graph remains consistent even as new data is

ingested incrementally or the extraction processes are re-run.

It is worth noting that the graph model also stores spatial and temporal attributes in a way
that leverages the database’s capabilities. Location nodes are enriched with coordinate data
(latitude/longitude) when available, stored as Neo4j Point values, and temporal values use
Neo4j’s native date-time types. This allows the use of built-in spatial and time indexing and
queries — e.g. finding the nearest events to a given location, or querying anomalies within a date
range — directly via Cypher functions and indexes. By structuring the data as a property graph
with these considerations, we obtain a powerful knowledge base that underpins the system’s

analytical and explainability features.

3.5. Knowledge Extraction & Ontology Mapping

A core challenge in building the above knowledge graph is extracting structured knowledge
from raw data sources and mapping it to the ontology (the conceptual schema of our domain).
We address this via two parallel extraction pipelines: one for structured time-series data and
one for unstructured text. Both pipelines are aligned with a common ontology to ensure that

their outputs (anomalies, events, entities, etc.) use consistent types and identifiers.

Structured data extraction (anomaly detection): The time-series pipeline takes the
preprocessed numerical data (e.g. weekly aggregated energy metrics) and identifies noteworthy
patterns or outliers that merit representation in the knowledge graph. Rather than storing every
data point, we extract higher-level knowledge in the form of Anomalies. An anomaly here

represents a significant deviation or change in the normal pattern of a metric — for example, a

54



CHAPTER 3: SYSTEM ARCHITECTURE

spike (a sudden short-term surge or drop in value) or a level shift (a sustained step-change in
the time series mean level). These anomalies are detected using statistical methods applied on
each TimeSeries. When an anomaly is detected, it is characterized (type, time window, severity)
and then mapped to an Anomaly node linked to the corresponding TimeSeries node. In essence,
this pipeline semantically labels the raw numerical signals, turning them into discrete events
(anomalies) that can be correlated with other data. The ontology defines what types of
anomalies we recognize (currently focusing on level shifts, spikes, and variance changes, as
these align with domain-relevant events like policy shifts or short-lived crises). By enforcing
this classification, we ensure that detected anomalies are described in consistent terms (e.g., a

“‘demand drop” anomaly might be categorized as a spike downward in load). This structured

extraction is entirely automated and repeatable — every time new data is acquired or existing
data is reprocessed, the anomaly detection step will yield the same kind of objects, making it a

reliable bridge between raw numbers and knowledge graph entries.

Unstructured data extraction (entity/event/theme extraction): To extract knowledge
from text (news articles), we employ a pipeline built around a Large Language Model (LLM)
that is guided by our domain ontology. The system uses an LLM-powered agent to perform
intent recognition, named entity recognition (NER), and event extraction on each article. The
extraction process is ontology-aligned, meaning the LLM is instructed to output information
following the classes and relationships defined in our schema. We achieve this by carefully
crafting prompts that include guidelines and examples for the model, as well as by providing a
JSON schema for each type of entity we want extracted. In practice, for each article, the system

generates a structured prompt along the lines of: “Extract all relevant information about energy

events and entities from the following text. Output the results in JSON format with fields X, Y,
Z as defined in the provided schema.” We define separate JSON schemas for different ontology
categories (e.g., one for TemporalEvent, one for Location, one for Actor/Organization, etc.),
and the prompt may instruct the LLM to fill multiple schemas depending on content. By giving
the model an explicit schema to follow, we significantly improve the semantic fit and reliability
of the output — the LLM is effectively constrained to produce well-formed JSON that matches
expected types. Prior work and our observations confirm that providing a JSON Schema as
guidance helps the LLM to output structured data that is immediately usable by downstream

systems.
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The LLM extraction workflow can be summarized in steps: (1) Load an article from the
article warehouse, (2) construct the prompt with appropriate schema instructions (and
occasionally few-shot examples for tricky entity types), (3) invoke the LLM to get a response,
(4) parse the returned JSON, and (5) validate it against the schema for each ontology class. If
the JSON passes validation, the extracted entities/events are accepted; if not (e.g., the LLM

output is missing a required field or includes an unknown category), that article’s result is put

into an “unmapped” queue for manual review. This review mechanism acts as a safety net to

ensure that we do not insert low-quality or semantically out-of-scope data into the knowledge
graph. It also provides feedback for improving prompts or the ontology in the future (for

instance, if many articles produce unmapped output, the ontology might need extension).

Through this pipeline, unstructured text is transformed into instances of our ontology. A
sentence like “On 15 March 2022, the Greek regulator announced an emergency price cap.”
would result in a TemporalEvent node (with properties: title="Emergency price cap
announced", start ts~2022-03-15) and possibly an Entity node (name="Greek energy
regulator”, type=ORGANIZATION) and a link between them (Entity is an actor in that event),
all derived from one article. The system’s ontology covers a comprehensive set of classes to
capture such information — including temporal events, organizations (market actors, regulators,
companies), infrastructure elements, socio-economic indicators, and so on (as introduced in

Chapter 2). Each extracted item is mapped to one of these ontology classes. For example, an
organization like AAMHE (“ADMIE”) in text is recognized by the LLM agent and mapped to

the ontology class TransmissionOperator (a subtype of Entity), ensuring that the node we create
in the graph is typed appropriately (instead of just a generic label). This ontology-driven
approach curtails ambiguity (we know what kind of thing each name refers to) and consolidates
synonyms or aliases (e.g. “AEH” and “Public Power Corporation” would map to the same entity

class if referring to the same organization).

The ontology mapping is also responsible for canonicalizing references, especially for
spatial and temporal information. We instruct the LLM (and use post-processing) to normalize

dates (e.g. convert "March 15, 2022" to 2022-03-15 ISO format) and to prefer standardized
location names or codes. For instance, if an article mentions “Hellenic Republic” or “Greece”,

the system will recognize it as the country Greece and use a consistent name or country code
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"GR" across the graph. In cases where the LLM'’s output for locations is not already canonical,
a subsequent location normalization agent or lookup is employed (this is discussed in Stage 5
of the pipeline, Section 3.8). Thus, ontology mapping encompasses not just classifying
extracted items but also aligning them to canonical identifiers (for locations, organizations,
etc.), which is crucial for merging information from multiple sources about the same real-world

entity.

Figure 3-5 - Applying canonical locations before graph ingestion

Canonical locations map
{name -> canonical_name,
canonical_code, status}

replace names when status == matched inject canonical_name, canonical_code

Time-series payloads
(zone_name, country)
from Notebook 03

Zone payloads
(series_id, zone dict)
from Notebook 03

Updates happen just before fallback Cypher\n
execution when structured agent is disabled.

\ /

Cypher generation helpers
upsert_time_series()
link_series_to_zone()

Neodj ingestion
MERGE TimeSeries
MERGE Zone
CREATE relationships

Graph with canonical zones
single node per zone code
aliases tracked in properties

Prevents duplicate zone nodes and\n
keeps original labels in aliases/original_name.

Legend ==\n

Yellow: inputs staged by previous notebooks\n
Teal: canonical data applied to payloads\n
Blue: helper code / Cypher staging\n

Pink: database writes and resulting graph

Figure 3-5: Applying canonical locations before graph ingestion

All extracted data, once validated and mapped, is inserted into the Neo4;j graph via Cypher
queries. The insertion logic uses MERGE operations (to avoid duplicates) and attaches
appropriate relationships. For example, if an article extract yields an event and an organization,
the pipeline will MERGE the TemporalEvent and Entity nodes (creating new ones if they don’t
exist already) and then create an MENTIONS or relevant relationship from the Article node to
the Entity, and possibly between Event and Entity (depending on the ontology, e.g. Actor
relationships). Each inserted node or relationship carries a reference back to the source (via
properties or an attached source attribute) so that provenance is preserved within the graph as

well.
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3.6. GraphRAG Explainability

Our explainability layer follows a GraphRAG (graph-based retrieval-augmented generation)
approach that grounds answers in the knowledge graph and (optionally) leverages an LLM for

narrative composition[2],[6],[7],[8]. When a user asks, for example, “Why did Greek day-ahead

electricity prices spike in March 2022?”, the system first executes Cypher queries over the

graph to assemble relevant facts and only then composes a natural-language answer.

Cypher-first retrieval: Retrieval begins with anomaly anchors and explicit constraints (time,

geography, ontology). The system queries:
* the anomaly window (start ts, end ts) for the relevant TimeSeries and Zone,
* TemporalEvents that occur within a window [start ts — A, end ts + A],
» Entities mentioned in related articles, and

* Themes tagged on those events.

Temporal proximity (anomaly <> events) is computed at query time via time-window overlap;
we do not persist a NEAR EVENT edge. Articles are connected to events via (Article)-
[:DESCRIBED BY]->(TemporalEvent), and spatial grounding uses (TimeSeries|Entity)-
[:LOCATED IN]->(Zone). This Cypher-first strategy narrows the information space with
precision—spatio-temporal filters and ontology labels ensure we retrieve exactly what the

question requires.

Hybrid graph + vector: For broad or fuzzy queries (e.g., “What major events affected the

energy market in 2022?”"), we can complement Cypher with semantic or full-text search over
node text (event descriptions, article titles). This hybrid mode helps surface relevant nodes
whose textual content matches concepts not explicitly modeled as structured properties. The

graph remains the primary source of truth; vector/full-text indexes are an optional enrichment.

Grounded generation: Retrieved facts (anomalies, events with timestamps and themes,

entities, citations/URLs) are converted into a structured prompt (or a directly rendered

explanation when LLMs are disabled). The LLM’s role—if enabled—is to weave these facts
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into a coherent narrative while adhering to guardrails: cite sources, prefer “unknown” when

evidence is insufficient, and avoid speculation. Because every claim in the answer references

specific nodes/edges (and article URLs), explanations are verifiable and auditable.

Design alignment with implementation:

» Themes are attached to events: (TemporalEvent)-[: TAGGED THEME]->(Theme).

» Articles describe events: (Article)-[:DESCRIBED BY]->(TemporalEvent); entities are
mentioned via (Article)-[:MENTIONS]->(Entity).

* Geography is canonicalized via Zone, linked from series/entities with LOCATED IN.

An explicit Event—Zone link is optional and not guaranteed.

* TimeSeries holds identifiers/metadata (id, product, unit, zone code/name). Raw
time-series arrays live in staged artifacts; anomalies are nodes with type=Rise/Drop,

classification (e.g., LevelShift::Rise), start ts/end ts, score, detected by, value.

GraphRAG Explanation Subgraph

LOCATED_IN Zone
(code, canonical_name)

" Chunk REPORTED_BY
(offset_start, text) in_window [wstart,wstop]

TemporalEvent
(event_type, start)

TAGGED_THEME

Theme
(name)

DESCRIBED_BY
(title, url)

MENTIONS
Entity
(name, class)

Figure 3-6: GraphRAG Explanation Subgraph
Retrieve events/entities/themes around an anomaly:

This design provides explainability-by-construction: the narrative is grounded in explicit graph
facts with timestamps, zones, and sources; the graph is the source of truth; and (optional) LLMs

act as readable narrators—not as unbounded information sources.

59



CHAPTER 3: SYSTEM ARCHITECTURE

MATCH (ts:TimeSeries)-[:HAS_ANOMALY]->(an:Anomaly {id:
WITH an, an.start_ts AS start, an.end_ts AS stop

WITH an, start - duration({hours: }) AS wstart, stop +
duration({hours: }) AS wstop

OPTIONAL MATCH (art:Article)-[:DESCRIBED_BY]->(ev:TemporalEvent)
WHERE ev.start_ts >= wstart AND ev.start_ts <= wstop
OPTIONAL MATCH (art)-[:MENTIONS]->(e:Entity)
OPTIONAL MATCH (ev)-[:TAGGED_THEME]->(t:Theme)
RETURN an,
collect(DISTINCT ev)[.. <] AS events,
collect (DISTINCT e)[..k] AS entities,
collect (DISTINCT t)[..<k] AS themes;

Listing 3-1: Cypher query for anomaly-centric evidence retrieval
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4. IMPLEMENTATION

This chapter details the implementation of a pipeline for semantic integration of open energy
data via knowledge graphs. The pipeline is implemented as a sequence of stages covering data
preprocessing, anomaly detection, knowledge graph construction, unstructured data extraction,
and explainable analysis via retrieval-augmented generation (RAG). We emphasize a Neo4j
property graph as the core data model, using Cypher upsert patterns for idempotent ingestion

and ensuring all components integrate seamlessly.

4.1. Structured Data Preprocessing (ENTSO-E)

The first stage involves collecting and preprocessing structured time series data from the
ENTSO-E Transparency Platform, which provides open data on electricity generation, demand,
and prices across Europe. We developed a data pipeline (Notebook 02) that fetches hourly
ENTSO-E time series and converts them into weekly aggregates for downstream analysis.
Figure 4.1 illustrates the data flow architecture for this stage. Key steps include data fetching
via an API, optional staging in a time-series database, aggregation to weekly intervals, and

export to CSV files:

e Data Fetching: We use the entsoe-py client to retrieve raw hourly time series (load,
generation, day-ahead price, etc.) for each country/zone, given an API token. The data
covers multiple years (e.g. 2019-2023) and is returned as Pandas DataFrames with

timestamps and values.
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InfluxDB Staging (Optional): For performance, the pipeline can write the raw data to
an InfluxDB time-series database if enabled (RUN _INFLUX WRITE=1). This allows
leveraging database queries for aggregation. If disabled, the pipeline proceeds with in-

memory processing.

Timezone and Cleaning: Timestamps are standardized to UTC and parsed with error
coercion to handle any irregularities (e.g. missing or malformed timestamps). Each
series is checked for completeness and cleaned of obvious errors (e.g. negative loads if
not possible). All values are aligned to weekly boundaries (e.g. ISO weeks) for

consistent aggregation.

Weekly Aggregation: Hourly values (~8,760 points/year) are downsampled to weekly
averages or sums (~52 points/year) to smooth short-term fluctuations and reduce data
volume. This is done either via InfluxDB’s query engine or with Pandas grouping,

depending on the chosen path.

Export to CSV: The resulting weekly time series are exported to a designated data
directory as CSV files (one file per metric-country-year), using a standardized naming
scheme {metric} {country} {year} weekly.csv. Each CSV has two columns: time
(ISO-8601 timestamp for the week) and value (aggregated metric) for easy reuse in later

stages.

62



KE®AAAIO 4: IMPLEMENTATION

Figure 4-1 - ENTSO-E data preprocessing & aggregation pipeline

Runtime toggles
ENV: ENTSOE_TOKEN

Metric definitions RUN_INFLUX_WRITE /
configs/entsoe_metrics.yaml RUN_INFLUX_QUERY
ENTSOE_TZ,

FFILL_MAX_HOURS

/

Fetch hourly series
entsoe-py client
normalise timezone
forward-fill <= 3h gaps

/ NJN_INFLUX_WRITEﬂ

InfluxDB staging (optional)
write series + Flux
weekly query

Existing weekly CSVs
fallback when fetch skipped

Pandas weekly resample
per-metric DataFrame

Flux aggregation .-~ foad_existing()

Weekly aggregates
aligned columns:
series_id, _time, value

l

Export weekly CSV
EnergyDataAgenticKG/
data/entsoe_csv

l

Generate QA visuals
docs/figures/
02_influx_preprocessing_*.png

Shared weekly dataset feeds downstream notebooks\n
and anomaly / timeline pipelines.

Legend ==\n

Yellow: configuration inputs\n
Blue: core preprocessing steps\n
Pink: optional execution paths\n
Teal: persisted outputs and QA

Figure 4-1: ENTSO-E data preprocessing and aggregation pipeline

To ensure reproducibility and safe re-running of this stage, the implementation checks for
existing CSV files and will skip fetching if data is already available (preventing redundant API
calls). All preprocessing steps are idempotent — running the pipeline twice produces the same
outputs without duplication. Timezone normalization (coercing to UTC) and error handling
guarantee consistency in the aggregated results. By the end of this stage, we have a set of weekly

time series files per country and metric, ready for anomaly analysis.

4.2.Anomaly Detection and Structured Ingestion

After obtaining the weekly time series, the next step is to detect anomalies in these structured
data and ingest both the time series and anomalies into the knowledge graph. Notebook 03

implements this structured data ingestion pipeline. It reads the weekly CSVs, applies statistical
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anomaly detection algorithms, and then creates corresponding nodes and relationships in
Neo4j[9],[10],[11]. The entire process transforms raw time series points into a graph
representation linking each series with any detected anomalies in that series. Figure 4.2 depicts

the anomaly detection and ingestion workflow.

Loading and Normalization: The pipeline begins by loading the weekly CSV files into Pandas
DataFrames. Timestamps are parsed and normalized, and data is filtered to the target
geographical region (for our case study, Greece and its bidding zone). We ensure each time
series is labeled with metadata (country code GR, product type such as load or
day ahead price, etc.) for identification. Basic statistical normalization may be applied if

needed (e.g., scaling or detrending) to prepare data for anomaly detection.

Interactive Visualization: Before formal analysis, we incorporated an interactive visualization
step using Plotly (or Matplotlib for static plots) to explore each time series. This helped in
identifying seasonal patterns, trends, and potential outliers by visual inspection. Anomalies
often manifest as sudden spikes, level shifts, or variance changes, which can be observed when
plotting weekly values over multiple years. The interactive charts overlay the raw data with
markers for any algorithm-detected anomalies, providing immediate visual validation of those

detections.

Statistical Anomaly Detection: We implemented a combination of statistical methods to
capture different types of anomalies in the time series. Specifically, the pipeline looks for: -
Level shifts: sustained changes in the mean level of the series. We apply change point detection
algorithms (like PELT or CUSUM) to identify significant shifts in the mean level. - Spikes:
acute single-point outliers or short-lived extreme changes. For these, a robust z-score method
is used, which computes the deviation of each point from a rolling median in units of robust
standard deviation (e.g., median absolute deviation). Points beyond a threshold (e.g., |z| > 3)
are flagged as spike anomalies. This method is less sensitive to long-term trends and focuses
on local aberrations. - Variance changes: shifts in volatility, detected via moving window
variance comparisons or statistical tests (e.g., Brown—Forsythe test). A significant change in
variance within a sliding window indicates a regime change in volatility (which might

correspond to regulatory changes or market shocks).
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Each detected anomaly is classified by type (e.g., LevelShift, Spike, VarianceChange) and
assigned a severity score. The robust z-score approach, for instance, yields a z-value as an
anomaly score for spikes, while level shift algorithms provide confidence or cost metrics that

we normalize to a 0—1 severity scale.

Figure 4-2 - Structured ingestion & anomaly detection pipeline
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l
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Figure 4-2: Anomaly detection and structured data ingestion pipeline. Weekly time series are read
from CSV, anomalies are detected by statistical methods, and results are ingested into the graph as
nodes and relationships.

Graph Schema for Structured Data: In this stage, two primary node types are created in
Neo4j: - TimeSeries nodes: representing each unique time series (e.g., "Greece — load

demand"). Key properties include country (ISO country code, e.g., "GR"), product (the metric
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type, e.g., "load" or "day ahead price"), zone (bidding zone identifier, if applicable), and a list
of data points (the time series values or a reference to the CSV data). TimeSeries nodes
effectively store metadata about the series and can optionally include the actual series data in
compressed form (e.g., as a JSON array of weekly values). - Anomaly nodes: representing each
detected anomaly instance. Properties include type (categorical label like "LevelShift",
"Spike"), start_ts and end_ts (timestamps delimiting the anomaly period; for a spike these might
be identical or a single week; for a level shift it could span multiple weeks), and a numeric score

or severity indicating confidence or magnitude of the anomaly.

We define a relationship HAS ANOMALY from TimeSeries to Anomaly to link each time
series with the anomalies found in it. Each Anomaly node is thus attached to the specific
TimeSeries it came from, and can later be related to external events or explanations.
Additionally, we capture geographic context by linking each TimeSeries to a Zone (or
Location) node representing the grid zone or country (via a :LOCATED _IN relationship). For
example, a time series node for Greek data might have (:TimeSeries)...-[:LOCATED IN]-
>(:Zone {code:"GR"}). Zones and locations are discussed more in Section 4.4, but note that

using a consistent zone/country node enables connecting anomalies with external data by

geography.

After ingestion, validation queries are executed to ensure data quality. For instance, we run
Cypher queries to count the number of anomalies per series, check that each anomaly has the
expected properties, and verify that unique constraints are not violated. This stage establishes
the foundation of the knowledge graph: a set of time series with their anomalies, anchored by
location nodes. The pipeline is designed so that re-running it will update existing nodes rather
than duplicate them (achieved through MERGE operations for upserts, see Section 4.4),

ensuring idempotency.

4.3.Unstructured Data Extraction (Articles to Events)

While structured ENTSO-E data provides quantitative anomalies, explaining those anomalies
requires qualitative context (events, news, policy changes). The third stage of the pipeline
focuses on unstructured data ingestion: processing text from news articles and reports to extract

key events and entities related to energy markets. We leverage a Large Language Model (LLM)

powered agent (via Google’s ADK — Agent Development Kit) to perform ontology-guided
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information extraction from text. Notebook 04 implements this stage, turning raw text articles

into structured graph data.

Article Collection: We assume a corpus of energy-related news articles has been collected
(e.g., via RSS feeds or web scraping) and stored as JSON files. Each article record contains
fields like title, content, publication date, source, etc. In our case, articles from 2019-2023
covering the Greek energy market were gathered from sources such as newswire services
(Reuters, Bloomberg), energy agencies (ENTSO-E news, IEA reports), and local press. We

load these articles from the data/articles/ directory into memory for processing.

Relevance Filtering: A pre-processing filter discards articles that are not relevant to our
domain or target language. We use language detection to keep only English-language articles
(since our extraction model is configured for English). We also apply keyword filtering: articles
must contain energy-related terms (e.g., "electricity", "power", "energy", "gas", "grid") to be
processed. This filtering ensures we focus the expensive LLM extraction on pertinent articles.

In practice, about a few hundred articles remain after filtering for the given time frame and

domain.

LLM-Powered Information Extraction: For each relevant article, we employ a custom ADK
agent to extract structured information. The agent is prompted with instructions to identify and
extract: - Temporal events: Significant events mentioned in the article (e.g., policy changes,
infrastructure outages, market disturbances), including when they happened. - Entities: Key
actors or organizations (e.g., energy companies, government bodies, persons) mentioned. -
Themes or topics: Major themes or categories (e.g., "market regulation", "renewable
integration", "energy crisis"). - Locations: Any geographic references (countries, regions,

facilities) involved.

The agent prompt is guided by an ontology schema we defined for the energy domain, ensuring
the output follows a JSON structure with specific fields for each category. Listing 4.1 shows an
excerpt of the structured output schema expected from the LLM agent, which aligns with our

ontology:
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Listing 4-1: JSON schema for LLM-based article extraction (ontology-guided). The agent outputs a
structured JSON with events, entities, themes, and locations identified in each article.
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"themes": [ // Thematic tags or categories
{
"label": , // Theme label
"category": // Broad category of the theme
}
1,
"locations": [ // Geographic references
{
"name"': , // Location name as mentioned

(e.g., "Athens")

"country_code": , // IS0 country code if
identifiable (e.g., "GR")
"geo_type": // Granularity: country, city,

region, etc.

by

Listing 4-2: JSON schema for LLM-based article extraction (ontology-guided). The agent outputs a

structured JSON with events, entities, themes, and locations identified in each article.

The agent uses a GPT-4 model (via the ADK’s LiteLLM interface) to generate this JSON output

for each article, following the above schema. By providing a precise schema and examples in
the prompt (few-shot learning), we guide the LLM to output parseable JSON. This dramatically
reduces hallucinations and ensures that the extraction conforms to our knowledge graph
ontology (each key corresponds to a node type we will store). The use of a structured output
prompt is a Cypher-first approach in spirit: rather than free-form text, the LLM is tasked with
producing data that can be directly ingested into the graph.
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Parsing and Post-processing: The JSON output from the LLM is parsed by our pipeline into
Python objects. We then perform minor post-processing: - Normalize date strings to consistent
datetime formats (e.g., ensure start date and end date are in ISO8601 and convert to UTC
timezone). - Discard or merge low-relevance entities (e.g., if the agent extracted many entities
with low relevance scores, we might keep only those above a threshold or aggregate duplicates).
- Preliminary canonicalization of names (for locations and organizations) if straightforward
(e.g., converting "U.S." to "United States"). More advanced canonicalization is done in the next

stage.

Graph Ingestion of Unstructured Data: For each article processed, we create the following
in Neo4j: - An Article node, with properties: title, published at (timestamp), source (e.g.,
"Reuters"), and potentially storing the text content or a reference to it. - One or more
TemporalEvent nodes for each event extracted from the article. Each TemporalEvent has title
(a short name), start ts, end ts, description, and classification (a label like "Policy" or
"MarketEvent"). - Entity nodes for organizations or people (if not already present in the graph).
Each has name and type (plus a relevance or significance score). - Theme nodes for thematic
topics (e.g., "Energy Crisis" with category "Market Disruption"). - Location nodes for any

locations mentioned (though for countries/zones we will later merge with existing nodes).

These nodes are connected with relationships to preserve provenance and context: - (:Article)-
[:DESCRIBED BY]->(:TemporalEvent) links an article to events it describes. - (:Article)-
[:MENTIONS]->(:Entity) links to entities mentioned. - (:Article)-[:HAS THEME]->(:Theme)
links to identified themes/topics. - (:Article)-[:REFERENCES]->(:Location) links to location
mentions in the text. - Additionally, we link each TemporalEvent to a Location if a specific
location is associated (e.g., an event happening in Athens would get (:TemporalEvent)-

[:LOCATED_ IN]->(:Location {name:"Athens"})).
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Figure 4-3 - Unstructured article extraction & ingestion pipeline
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Figure 4-3: Unstructured data extraction and ingestion. Relevant news articles are processed by an
LLM agent to extract events and entities, which are then added to the knowledge graph.

This stage results in a subgraph of articles, events, entities, themes, and locations, all
interconnected and ready to be linked to the anomaly graph built earlier. By the end of
Notebook 04, we have two largely separate subgraphs in Neo4j: one from structured ENTSO-
E data (time series and anomalies), and one from unstructured text (articles and related entities).
In the next section, we integrate these subgraphs through canonicalization and linking, creating

a unified knowledge graph.
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Prompt Policy & Ontology Schema
This subsection examines the prompt policy and ontology schema as implemented in the
repository and explains how they are used by the extraction pipeline.
Below is code snippet screenshot depicting the architecture of the prompt-system:
- Compose System Prompt from Ontology Components

Purpose: Merge natural language prompt and formal schema into a unified LLM instruction.

System Prompt Architecture

The system prompt serves as the complete specification that guides the LLM's extraction behavior. It combines three elements:
1. Role Definition (Establishes agent identity):

"You are a precise information extraction assistant.
Follow the ontology prompt and schema strictly.
Return VALID JSON. Explain any missing information
inside a top-level 'reasoning' field."

Purpose: Sets expectations for:

Precision: Extract exactly what's in the text (no hallucination)
Compliance: Follow ontology structure strictly

Format: Output must be parseable JSON

Transparency: Document uncertainty in reasoning field

2. Ontology Prompt (Natural language guidance):

« Task description and goals
« Entity type definitions with examples
« Classification taxonomies

« Output format requirements

« Edge case handling instructions

3. Ontology Schema (Formal specification):

« JSON Schema with field definitions

« Required vs optional properties

« Data type constraints

« Validation rules

« Enumeration values for classifications

Why This Three-Part Structure?

Role Definition Alone - LLM understands general task but lacks domain knowledge

« Example: "Extract entities" = finds names but misses energy-specific context
Role + Prompt = LLM understands domain but output structure varies

« Example: Might extract "Greek power plant” but format inconsistently
Role + Prompt + Schema - LLM produces consistent, validated, domain-aware output

« Example: Extracts {"name": "Greek power plant", "type": "INFRASTRUCTURE", "relevance": 8.85}
Prompt Composition Function

def compose_system_prompt(prompt_cfg: dict, schema_cfg: dict) -> str:
return (
# Part 1: Role definition
"You are a precise information extraction assistant.
"Follow the ontology prompt and schema strictly.\n"
"Return VALID JSON. Explain any missing information
"inside a top-level 'reasoning' field.\n\n"

# Part 2: Natural language instructions
"=== ONTOLOGY PROMPT ===\n"
f'"{json.dumps(prompt_cfg, ensure_ascii=False, indent=2)}\n\n"

# Part 3: Formal schema
"=== ONTOLOGY SCHEMA ===\n"
f"{json.dumps(schema_cfg, ensure_ascii=False, indent=2)}\n"

Listing 4-3: Prompt System Architecture
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Listing 4-1: Prompt System Architecture

Prompt policy (ontology prompt2.json): The prompt file specifies how the model should
convert article text into schema-conformant JSON. Its structure encodes (i) a task instruction
that forbids free-form output, (ii) a compact exposition of allowed classes and fields, and (iii)

guardrails that control ambiguity and provenance.

* Semantic-fit policy: The prompt includes an explicit requirement to avoid forced
mappings; when a fact does not clearly fit a class, it must be marked as “unmapped” (with

a proposed class and justification) rather than coerced. This pattern is central to preserving
ontology integrity during extraction, and it integrates directly with validation and

unmapped queues downstream.

* Temporal anchoring: The prompt directs the model to normalize all instants/intervals
to ISO 8601, resolving relative expressions (e.g., ‘last week”) into explicit start_ts/end _ts

when possible. This is critical for aligning event windows with anomaly windows during

Cypher-first retrieval.

+ Bilingual labels: Where applicable, labels should include both English and Greek
variants, with a fallback to generic type labels when one language is missing. This

supports localized UI rendering without sacrificing cross-language retrieval.

* Themes on events: The policy follows the graph design by placing themes on
TemporalEvent (not on Article), to keep topical context anchored to time-stamped

objects.

* Provenance: The policy requires article identifiers, URLs, titles, and published at, as

well as extraction_time, model, and prompt/schema version fields for auditability.
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Listing 4-4: Ontology Prompt Structure
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Ontology schema (ontology schema_vl11.json): The schema enumerates classes, properties,
datatypes, and basic constraints. It is minimal by design but should be strict where correctness

matters and flexible where ambiguity is expected.

* Classes in scope: Article, TemporalEvent, Entity, Theme, Zone (canonical geography),

and (from structured ingestion) TimeSeries and Anomaly.

* Required fields: Article: id/url/published at, TemporalEvent: id/event type/start ts
(end ts optional), Entity: id/entity type/(label en or label el at minimum), Theme:
id/name, Zone: code/name/type, Anomaly:
id/series_id/start ts/end_ts/type/classification/score/detected by/value. TimeSeries
nodes in the graph are stitched from structured ingestion, not from the unstructured

pipeline.

* Enumerations: Constrain TemporalEvent: event type and Entity: entity type to
bounded enums reject values that drift beyond the declared set. This keeps retrieval filters

predictable.

» Pattern constraints: Adopt patterns for ids (e.g., "\(artjev|ent|th|zone)/A-Za-z0-9\-]+$)
and ISO 8601 timestamps; add min/max length where appropriate (e.g., title length).

* Bilingual labels: For any “label *” field, enforce minCount 1 across the pair (label en

OR label el) and allow both when available.
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4-5: Ontology Schema Specification
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Temporal Event Definition:
{
"definitions": {
"TemporalEvent": {
"‘type": ,
"required": [ , , 1,
"properties": {
"title": {"type": , ""maxLength": 1,
"start_date": {
Iltypell :
"format": ,
"description":
Yy
"end_date": {
Iltypell: ,
"format":
Yy
"description": {"type": , "maxLength": 1,
"classification": {
"‘type": ,
"enum": [ , , ,

i
"location": {"type": }

Listing 4-6: Ontology Schema Specification
Processing path (PromptTesting/processorl.py): The script orchestrates article extraction

with the policy and schema above, and it implements strict validation and unmapped handling.

* Prompt composition: The script prepares a system instruction block (the ontology
policy) and a user block (article text and key metadata). Keep the system role minimal
and focused on constraints; avoid mixing long enumerations when the schema already

constrains them.

* Model call: The script issues a chat-style request (e.g., to GPT-40-mini) with low
temperature and a bounded max tokens, and captures the raw JSON string. Any

extraneous commentary is grounds for rejection by the parser.

 JSON validation: The script validates the JSON object against
ontology schema vl1l1.json using jsonschema (or equivalent). Validation errors (type,
missing required field, enum mismatch) cause the payload to be rejected or routed to

“unmapped” review, depending on policy.

* Unmapped queue: If “unmapped entities” or similar structures are returned, the script

logs and optionally persists them for later analysis rather than forcing these entries into

the graph.
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* Fallback path: In offline or cost-constrained runs, the script loads a deterministic
fallback dataset of validated payloads, ensuring downstream pipeline stages remain

operable.

4.4.Knowledge Graph Integration and Canonicalisation

With structured and unstructured data ingested, the next implementation step is to integrate
them into a unified knowledge graph. Notebook 05 orchestrates this process, ensuring that
nodes referring to the same real-world entities are merged and creating relationships between
anomalies and the events or factors that explain them. The integration focuses particularly on
geographic and entity canonicalization and on establishing temporal links between anomalies

and events.

Graph Assembly: First, we verify the Neo4] database is accessible and pre-create any needed
indexes or constraints. For example, we set unique constraints on certain node properties (like
TimeSeries(country, product) combination or Location(canonical code)) to prevent duplicates.
We then ingest any remaining structured data that might not have been loaded in previous
notebooks (Notebook 05 is designed to be a one-stop graph builder, so it can ingest the time

series and anomalies if Notebook 03 wasn’t run separately). In practice, since we already did

that, this step finds existing TimeSeries and Anomaly nodes.

Geographic Entity Canonicalization: One major challenge is that the same location
or region may appear under different names in structured vs. unstructured data. For
example, the country Greece might be referred to as "GR" (ISO code) in the ENTSO-
E dataset, but as "Greece", "Hellenic Republic", or even in Greek language ("EANGSQ")
in news articles. Without reconciliation, our graph would have separate Location or
Zone nodes for each variant, fragmenting the knowledge. To address this, we
implement a canonicalization module for geographic names: - We designate an
authoritative representation for each location (for countries, we use the ENTSO-E/ISO
country code, e.g., "GR" for Greece, as the canonical code, along with a standard
name "Greece"). - We merge or link all location nodes that refer to the same real entity.
In Neo4j, we use idempotent Cypher queries with MERGE to either find existing nodes

or create new ones with the canonical identifier. For example, we MERGE
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(loc:Location {canonical_code: "GR"}) and then set its properties (canonical_name =
"Greece", aliases = [...]) to include all known aliases. If a Location node from the article
ingestion (e.g., with name "Hellenic Republic") doesn’t yet have the canonical code,
it gets attached or merged into the canonical node. This way, we avoid duplicate
nodes for "Greece" [10]. - We developed a two-tier canonicalization approach: (a) an
ADK LLM agent that can resolve tricky cases by context (e.g., understanding that
"Northern Macedonia" likely refers to "North Macedonia (MK)" vs. the Greek region
Macedonia) for high accuracy, and (b) a deterministic Python lookup using a curated
alias table for common names. The pipeline decides which to use based on

configuration flags. Listing 4.2 shows pseudo-code for this selection logic:

if RUN_ADK and OPENAI_API_KEY:
use_adk_agent_canonicalization()

else:
use_python_fallback_canonicalization()

Listing 4-7: Pseudo-code for location canonicalization. A fallback lookup table is used by default, with
an optional LLM agent for complex cases.

Using this approach, a variety of variants are normalized to a single Location node with a
canonical code. For example, the Location node for Greece ends up with canonical code =
"GR", canonical name = "Greece", and aliases = ["Hellenic Republic", "Greek grid",
"EXrada", "GR"]. The result is that a query for Location {canonical code:"GR"} will match
any reference to Greece from any source. Figure 4.4 illustrates the effect of canonicalization on

the graph structure for locations.
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Without canonicalization, multiple disconnected nodes represent the same place; with

canonicalization, they unify into one node with all aliases:

e Without unification:
(:Location {name: "Greece"}) (from structured data)
(:Location {name: "Hellenic Republic"}) (from article A)
(:Location {name: "Greek grid"}) (from article B)
(:Location {name: "GR"}) (from zone code)

e With canonicalization:

(:Location { canonical_code: "GR", canonical_name: "Greece",
aliases: ["Hellenic Republic","Greek grid","GR"],
original_names: ["Greece","Hellenic Republic","Greek

grid","GR"] })

Listing 4-8: Canonicalization effect on data.

Once the canonical location nodes are in place, any duplicate location nodes are merged or
related. In our implementation, if a duplicate was created (e.g., a Location from an article with
name "Greece" without canonical code), we update it to set canonical code = "GR" and then
use Neo4j’s MERGE to ensure there is only one node with canonical code "GR". The pipeline
uses MERGE and ON CREATE/ON MATCH to attach new info without creating duplicates,
and we rely on Neo4j unique constraints on Location(canonical code) to guarantee a single

node per code. This idempotent design allows running the integration step multiple times safely.

Entity and Theme Canonicalization: A similar approach is applied to other entities if needed.
For instance, an organization might appear with slight naming differences (e.g., "European
Commission" vs "EC"). In such cases, we either manually curate aliases or rely on string
similarity to merge obvious duplicates. However, our main focus was on locations, since those

are critical for linking structured and unstructured data (the ENTSO-E data is country-specific).
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Figure 4-4 - Location canonicalization workflow
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Figure 4-4: Location canonalization workflow

Linking Anomalies with Events: With a unified set of location nodes, we can now connect
the two halves of the graph. The core objective is to link each Anomaly (from the structured
side) with any relevant TemporalEvent (from the unstructured side) that might explain it. We
do this by leveraging both time and location. For each anomaly: - We find events that occurred
around the same time as the anomaly. In Cypher, this can be done by comparing dates. For
example, if an anomaly has a start and end date, we look for events whose date falls within
the anomaly window or a given buffer around it (e.g. =1 week or =1 month depending on the
nature of events). In practice, for weekly data anomalies, we allowed a tolerance of a few days
to capture events slightly before or after the official anomaly window. - We ensure the event
is in the same country or region. This is where location canonicalization is crucial. We match
the anomaly’s associated Zone or Location (e.g., GR) with the event’s Location (which after
canonicalization will also have GR if it’s relevant to Greece). For example, the Cypher query

might do:
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MATCH (an:Anomaly)<-[:HAS_ANOMALY]-(ts:TimeSeries { "GR"}),
(ev:TemporalEvent)-[:LOCATED_IN]->(loc:Location
{ "GR"})
WHERE ev. >= an. - duration('P7D")
AND ev. <= an. + duration('P7D")
CREATE (an)-[:NEAR_EVENT]->(ev);

Listing 4-9: Creation of NEAR _EVENT relationship.

This would link an anomaly node to any TemporalEvent happening within 7 days of the
anomaly period in Greece. We used a relationship type like NEAR EVENT or
EXPLAINED BY to denote this connection. In our final graph, we opted for
EXPLAINED BY from Anomaly to Article if the article’s event timing matches, as a way to
say "this anomaly is explained by that news article". - We also considered linking anomalies to
TemporalEvent nodes directly with an [:NEAR EVENT] relationship for a more fine-grained
link (since an article could describe multiple events). In the graph schema (Figure 4.5 below),
we show an Anomaly-NEAR EVENT->TemporalEvent link capturing that the event occurred

in proximity to the anomaly.

Unified Graph Schema: By the end of this integration, the graph contains the following node

types (consolidated from earlier stages) and relationships:

Nodes: TimeSeries, Anomaly, Article, TemporalEvent, Entity, Theme, Location, Zone. (Zone
is effectively a type of Location, representing market bidding zones. In our schema we kept
Zone separate mainly for ENTSO-E specific metadata, but after canonicalization zones have a
country association.) - Each TimeSeries node is linked to a Zone/Location (geography) and
anomalies. - Each Article node is linked to events, entities, themes, locations. - Locations and

Zones are unified via canonical codes.

Relationships: In addition to those introduced before, we have: - (Anomaly)-
[:NEAR EVENT]->(TemporalEvent) — links anomalies to events happening around the same
time in the same region. - (Anomaly)-[:EXPLAINED BY]->(Article) — an optional direct link
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to an article if that article provides a narrative explanation for the anomaly (we used this where
an article explicitly discussed an anomaly or price surge). - The previously described

relationships like HAS ANOMALY, DESCRIBED BY, MENTIONS, etc., remain in place.

Figure 4-5 - Knowledge graph construction pipeline

1. Initialize database
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- Create unique constraints

2. Ingest time-series data
- Weekly CSVs -> TimeSeries nodes
- Create Zone nodes + LOCATED_IN

3. Detect and ingest anomalies
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4. Ingest articles & ontology payloads
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Figure 4-5: End-to-end knowledge graph construction pipeline. Stages 2—4 ingest structured and
unstructured data, stage 5 canonicalizes overlapping entities (especially locations), and stage 6 links
anomalies with events, completing the integration.

At the end of stage 6, our Neo4j graph contains a rich network where each energy anomaly is
connected (via NEAR EVENT or EXPLAINED BY) to one or more events or articles that
provide context. For example, a detected price spike anomaly in September 2022 might be

linked to a TemporalEvent node “EU emergency energy council meeting (2022-09-18)” and to

an Article node “Greek electricity prices surge amid gas crisis”. This integration addresses the
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core challenge: bridging quantitative anomalies with qualitative explanations in a single

knowledge graph.

Throughout the graph construction, we maintained idempotency and consistency. Insertion
and update queries use Cypher MERGE to avoid duplicate nodes on re-run, as mentioned, and
we applied unique constraints in Neo4j to enforce this at the database level. For example, a
unique constraint on Anomaly(id) (if we generate a composite key for anomalies) or on
Location(canonical code) ensures one node per real-world entity. This enables iterative
development — one can run the pipeline multiple times (adding new data or refining extraction)
without corrupting the graph with duplicates. The combination of MERGE-based upserts and

unique indexes is a fundamental implementation pattern in our knowledge graph persistence.

With the fully constructed knowledge graph, we have achieved a semantic integration:
open data from ENTSO-E and open text from news are linked in a unified representation. The

final step is to leverage this integrated graph for explainable insights, as described next.

4.5.Explainability via GraphRAG and User Interface

The ultimate goal of the pipeline is to provide explainable analysis of energy anomalies. In this
final stage, we develop an approach based on Graph RAG (Retrieval-Augmented Generation
using graph data) and an interactive visualization to present explanations to users. Notebook 06
covers the backend explainability queries, and we also implemented a lightweight web

application (ProductionApp Stage 06) to demonstrate the results in an interactive timeline UI.

GraphRAG Agent Querying: Given a particular anomaly (identified by country, product, and
time window), we want to generate a human-readable explanation of why that anomaly
occurred, grounded in factual data from our knowledge graph. Our approach is Cypher-first:
we first retrieve relevant information from Neo4j via Cypher queries, and only then feed it to

an LLM to compose a narrative.

The retrieval process involves several focused Cypher queries: 1. Anomaly context
retrieval: Query the graph for the anomaly’s metadata and related nodes. For example, fetch

the TimeSeries node (to know what metric and region it is), and gather any TemporalEvent,
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Article, Entity, and Theme nodes connected to that anomaly’s location and time. We also

retrieve the actual numeric series around the anomaly (for visualization). 2. Relevance
filtering: Not all events or entities are equally relevant to a given anomaly. We apply filtering
logic (in Cypher or post-processing) to focus on those likely to explain the anomaly. For
instance, if the anomaly is a price spike, we prioritize events of type "market" or "policy" over
unrelated events, and entities like regulators or major utilities over peripheral mentions. This
might involve keyword matching on event descriptions or using the relevance scores attached
to entities. 3. Temporal window: We usually constrain the search to a window, e.g., events
that occurred in the 6 months leading up to the anomaly and shortly after. This captures the
build-up and immediate impact period. The timeline of prices is also sliced to this window for

plotting.

After retrieval, we have a set of candidate explanatory factors: e.g., an event "Government
announces energy subsidy in July 2022", an entity "Gazprom" frequently mentioned in related

articles, a theme "Energy Crisis", etc., all connected to our anomaly of interest.

Timeline Visualization: We plot the time series for the selected anomaly’s metric (e.g., day-
ahead price) highlighting the anomaly period. This is done with Python (Matplotlib or Plotly in
the notebook for static output). In the production app, we integrated Highcharts to create an
interactive timeline chart. The timeline (Figure 4.6) shows the price curve, marks the anomaly
interval in a distinct color, and overlays markers for events: - Events are annotated on the chart
at their date, with different shapes/colors indicating their classification (policy vs. market vs.
technical events). - Tooltips or labels show the event title on hover. - This visual aids both the
developers and end-users in seeing correlation between events and anomalies (e.g., a major

event occurring right before a spike).

In the web UI, users can click on an event marker to see more details (the article source,
description, etc.), and hover over the anomaly region to get context about its magnitude and
timing. This interactive timeline was implemented by a small Flask app serving the data from

Neo4j to Highcharts (via JSON). Figure 4.6 (schematic) illustrates the Ul components:

LLM Explanation Generation: Finally, we combine the retrieved graph data into a prompt
for the LLM to generate an explanation. The prompt is structured with the relevant facts: it may

include a brief description of the anomaly (magnitude, timing), a list of top events or factors
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(with dates and what happened), and possibly related entities or trends. The LLM (e.g., GPT-
4) is asked to “Explain the likely reasons for the anomaly, citing the events and context data,

and avoiding any information not provided.” This ensures the output is grounded in the
retrieved graph facts (addressing the black-box issue of LLMs). By structuring the prompt, we

effectively do a manual form of retrieval-augmented generation.

For example, an assembled prompt might look like: “An anomaly was detected in the day-

ahead electricity price for Greece starting late August 2022, with prices rising 80% above the
norm and peaking in mid-September 2022. Relevant context: (1) Event: EU emergency energy
meeting on 2022-09-18 addressing gas shortages; (2) Event: Russia announces gas supply cut
to Europe on 2022-08-31; (3) Entity: Gazprom (Russian gas supplier); (4) Theme: Energy crisis
in Europe. Given this information, explain what caused the price spike.” The LLM would then

produce a narrative along the lines of: “The electricity price spike in Greece in September 2022

can be attributed to the escalating European energy crisis. Notably, Russia’s Gazprom cut gas
supplies on August 31, 2022, leading to fuel shortages. In response, an emergency EU energy
meeting on September 18, 2022, was convened to implement price caps and subsidies. These
events caused uncertainty and drove prices upward, explaining the observed anomaly.” The
answer is derived entirely from the provided facts (which came from our graph), ensuring

traceability.

In our implementation, we automated this process in Notebook 06: the code constructs the
prompt from query results and invokes the LLM via the ADK interface. We included safeguards
such as limiting the LLM to only use provided data (by instructing it not to assume external
info) and truncating or summarizing if too many facts are found (using relevance scores to pick

the top N factors).
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Figure 4-7 - GraphRAG explainability workflow

?

‘ Receive anomaly context ‘
(country, metric, window)

v

Run Cypher for anomaly metadata |
(TimeSeries, anomaly stats)

v

Run contextual Cypher queries
(events, articles, entities, themes)

¢—ye—s\(lResults found?;‘,‘;rm—¢

Filter by relevance scores Return fallback message ‘
(event type, keywords, confidence) (\"insufficient context\")

v

Trim to temporal window
(pre/post anomaly months)

v

( Assemble prompt payload
| (anomaly summary + top facts)

v .
| Call LLM with grounded prompt |
: , 9

| Generate explanation text

v

Attach citations to facts |

v

| Log explanation + sources

Cypher-first retrieval ensures\n
every fact in the prompt maps to\n
a graph node or relationship.\n
LLM is asked to stay within the\n
provided evidence.

Legend ==\n

Activity nodes follow the anomaly\n
explainability request from intake\n
to response logging.

Figure 4-6: GraphRAG Explainability Activity Diagram/Workflow

Ensuring Grounded Explanations: The advantage of using the graph for retrieval is that every
piece of information in the LLM’s input has a source in our data. The LLM’s output can thus be
traced back: if it mentions an event, that event node links to an article for verification. This
addresses the semantic integration goal by not only linking data but using those links to provide
explainability. We also log any source attributions: for internal evaluation, we check that the
LLM'’s explanation indeed mentions or aligns with the events we provided (and does not

introduce new, unsupported claims).
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Production Orchestration & Logging: In a production or live setting, the entire pipeline
(stages 1-6) can be orchestrated to run periodically or on-demand. We designed a simple
orchestration using stage flags and logging: - Stage Flags: Environment variables (as introduced
in Section 4.1) such as RUN_LLM, RUN INFLUX WRITE, RUN ADK allow enabling or
disabling parts of the pipeline. For instance, on a first run we might set all to 1 to perform full
fetch and LLM extraction. On subsequent runs, we might set RUN LLM=0 to avoid repeated
API calls, instead using cached results. The code checks these flags before executing each
expensive operation. - Pipeline Logging: Each stage of the pipeline emits logs indicating

progress and any issues. We use Python’s logging (or simple print statements in notebooks) to
record events like “Fetched 520 weeks of data for GR-load”, “Detected 3 anomalies (2 spikes,

1 level shift) in GR-load”, “Extracted 5 events from article X”, etc. In the production app, we
also log LLM usage (tokens consumed, API cost) for monitoring. This logging was crucial
during development to debug and ensure each part worked before moving to the next. It also
serves as basic monitoring if the pipeline runs continuously. - Thread Safety and Sessions: One
implementation note is that when using Neo4j and the ADK agents concurrently, we had to
ensure thread-safe access. In the integrated pipeline, we use a single Neo4j driver instance with
session pooling, and each agent call opens a new session (using with graphdb.session() context
managers) to avoid threading issues. We also isolate LLM agent sessions using unique IDs for

each run so that multi-turn conversation memory doesn’t leak between runs or agents.

By the end of Chapter 4’s implementation, we have a fully functional system that: ingests
open data into a knowledge graph, enriches it with contextual information from text, and
provides tools (LLM agents and visualization) to explain findings. The pipeline was run on the
case study data (Greek energy market 2019-2023), and we verified that it produces meaningful
linkages and explanations. This implemented pipeline will be evaluated in Chapter 5, where we

discuss the results and performance of our approach on real-world scenarios.
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User Web UI GraphRAG Service Neodj Vector/Full-Text (optional) LLM (optional)

Ask question (e.g., why price spike?)

Submit query (series, time, zone)

MATCH anomaly + window [wstart,wstop]

anomaly (id, start_ts, end_ts)

FETCH articles—events in window

(Article)-[:DESCRIBED_BY]->(TemporalEvent)

FETCH entities, themes

(Article)-[:MENTIONS]->(Entity), (TemporalEvent)-[:-TAGGED_THEME]->(Theme)

alt [Broad/fuzzy query]

semantic/full-text retrieve

candidate nodes (ids)

Build structured facts + citations

o

opt [LLM enabled]

Compose narrative (guardrails)

Answer (grounded)

Return explanation + links

Display with sources

User Web Ul ‘ GraphRAG Service Neo4j | yector/Full-Text (optional) ‘ LLM (optional)

Figure 4-7: GraphRAG Explainability Sequence Diagram

Summary of Implementation: Through the steps detailed above, we integrated structured
and unstructured open energy data in a semantic knowledge graph. The use of Neo4j’s property
graph model and Cypher enabled flexible linking of diverse data types, while LLM-based
extraction facilitated turning text into graph-ready data. Importantly, by designing for
idempotency and using upsert patterns, the pipeline remains stable over multiple runs and data
updates. Logging and modular stage controls ensure that the system can be maintained and
scaled (for example, to more countries or longer time spans) with minimal friction. The end
result is a platform that not only consolidates data but also delivers explainable Al outputs,
demonstrating the power of combining knowledge graphs with advanced language models for

energy data analysis.
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CHAPTER
S

5. CASE STUDY

This chapter focuses exclusively on the process pipeline that powers the GraphRAG
explainability workflow for a salient day-ahead electricity price anomaly in Greece. The
narrative follows the anomaly from detection, through graph-backed retrieval, to LLM-assisted
explanation and analyst-facing Ul rendering. Throughout the chapter we emphasise how spatio-

temporal, ontology-aligned evidence is assembled and kept auditable.

5.1. Context and Selection

The examined anomaly corresponds to a sharp upward deviation in the day-ahead price series
for the Greek bidding zone (Zone: Greece, IPTO BZ / CA / MBA) during heat-stressed system
conditions. The robust detector labels the anomaly as "LevelShift::Rise’, assigns a MAD-based
z-score, and records the precise “start ts® and “end ts'. While the absolute magnitude varies by
dataset, the pattern is representative of summer spikes where weather, demand, generation

availability, and network constraints interact.

We select this anomaly for two reasons. First, it showcases the end-to-end explainability
pipeline: anomaly detection, contextual retrieval, evidence curation, and narrative generation.
Second, it demonstrates how geography-aware knowledge graphs enable auditable spatio-
temporal reasoning. The anomaly is anchored to the Greek zone, and all retrieved entities inherit

canonical 'Zone' relationships, preserving provenance back to raw articles and structured feeds.
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Greece Example (Weekly, 2021-01-03 — 2022-12-25)

During the 2021-2022 period, the Greek electricity market exhibited pronounced
fluctuations in both day-ahead prices and the share of lignite in generation. These trends

are summarized below.

» Day-ahead market prices peaked at 604.14 €/ MWh on 28 August 2022, corresponding

to a robust z-score of 3.06, classified as a LevelShift::Rise.

*  Lignite share (defined as lignite generation + total load) increased sharply to 21.23 %
on 21 August 2022 (z = 2.95) and 24.94 % on 11 December 2022 (z = 4.00), both
labeled as LevelShift::Rise events.

*  Annual context: the average day-ahead price rose from 120 €/ MWh in 2021 to 289
€/MWh in 2022, while the mean lignite share increased from 10.5 % to 11.4 %,
accompanied by substantially higher extremes.

Greece Weekly Day-ahead Electricity Prices with Robust Z-score Anomaly z=3.06
604 €/MWh

600 —— Day-ahead Price
@ Detected anomaly (z-score)

500

h)
-
S
S

300

Price (EUR/MW

200

100

Figure 5-1: Greece Weekly Day-ahead Electricity Prices with Robust Z-score Anomaly
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Greece Weekly Lignite Share in Generation with Robust Z-score Anomalies 2=4.00
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Figure 5-2: Greece Weekly Lignite Share in Generation with Robust Z-score Anomalies

These spikes align with the 2022 Russian invasion of Ukraine. Constrained gas flows drove
wholesale electricity prices to records by late summer (the price anomaly), while Greece leaned

more on domestic lignite through H2 2022 (the share anomalies).

5.2.Pipeline Overview

The day-ahead anomaly workflow comprises the following stages:

1. Detection: Identify anomalous intervals on "TimeSeries’ nodes using robust statistics
(median absolute deviation with adaptive thresholding). Persist anomaly metadata as dedicated

nodes linked to the source series.

2. Window Expansion: For a selected anomaly, expand the “(start _ts, end ts)' interval by A+

to capture lead-up and aftermath dynamics.

3. Graph Retrieval (Cypher-first): Issue parameterised Cypher queries that harvest events,

entities, and themes falling within the expanded interval and matching ontology constraints.
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4. Evidence Bundling: Assemble anomaly metadata with retrieved events, entities, and themes

into a structured evidence package.

5. Grounded Explanation: Optionally call the LLM with a structured prompt that references

only the retrieved evidence and enforces citation guardrails.

6. Analyst UI Rendering: Present the evidence through an interactive timeline, entity/theme

panels, and downloadable artefacts that keep provenance visible.

Each stage writes intermediate artefacts back to the knowledge graph, enabling replay,

validation, and audit.

5.3.Retrieval Configuration and Method

The system operates in Cypher-first mode. Given an anomaly identifier, it derives the anomaly
window and applies a configurable A (default: 12 hours) to form “[start ts — A, end ts + A]".

Retrieval then proceeds with a cascade of queries:

* Temporal events: Select "TemporalEvent’ nodes whose “start ts* falls inside the

expanded window and that are 'DESCRIBED BY" at least one "Atrticle’.

* Entities: Traverse ‘Article-[:MENTIONS]->(Entity)" edges to collect actors and
organisations. Group results by ontology class (e.g., ‘Operator’, ‘Regulator’,

"Company").

* Themes: Follow "TemporalEvent-[: TAGGED THEME]->(Theme) relations to identify

recurring motifs such as "Extreme Weather™ or “Supply Disruption’.

* Canonical geography: Resolve any "Entity’ or "TimeSeries" to its canonical "Zone' via

"LOCATED _IN" edges so that the evidence bundle captures spatial context.
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Temporal proximity is computed on the fly; the system does not persist NEAR EVENT"
edges. The retrieval output is a compact evidence bundle that directly feeds both the interactive

UI and the grounded narrative generator.

After the retrieval pipeline is configured, the interface allows analysts to inspect anomalies and
their contextual metadata directly. Figure 5-3 illustrates the anomaly metadata card, which
consolidates all essential fields identifier, detection type, anomaly score, time window, and
retrieved evidence summary within the Anomaly Timeline Explorer dashboard. This
visualization demonstrates how each detected event remains traceable to its provenance and
how the analyst can further explore it through live Cypher-backed queries.

TIMELINE INTELLIGENCE

4 Anomaly Timeline Explorer

Investigate anomalies with guided context windows, curated filters, and graph-native explainabi
single view.

E POWERED BY NEO4J LIVE GRAPH QUERIES CONTEXT-AWARE CONTROLS

Anomaly Detection Metadata

@ Anomaly ID: Greece, IPTO BZ / CA/ MBA::day_ahead_price::2022-09-01T00:00:00+00: 00
() Detection Type: LevelShift (LevelShift::Rise)

~ Anomaly Score: 2.71  Pass: relaxed_price

il Series: Greece, IPTO BZ / CA/ MBA::day_ahead_price (day_ahead_price)

© Country/Region: Greece

¥ Zones: Greece, IPTO BZ / CA/ MBA

© Anomaly Window: 2022-09 to 2022-09

%7 Extended Context: 2022-03 to 2022-11 (6mo before + 2mo after)

[] pata Summary: 830 events 679 entities 2099 themes
{2 Context Countries:  Greece * 3485 Germany * 52 Russia * 18
Ukraine * 17 European Union * 13

Figure 5-3: Anomaly Timeline Explorer —Metadata and Context Summary.The interface displays the
anomaly identifier, detection parameters, window expansion, and summarized retrieval context for
Greece’s day-ahead price anomaly.
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In parallel, the system performs automatic geospatial validation to ensure every referenced
location resolves to a canonical Zone with a unique code. Figure 5-4 presents the Georeference
Canonicalization report, confirming that all 66 spatial references in the evidence set were
successfully canonicalized and none were duplicated. This verification step guarantees that

subsequent explainability and visualization layers operate on spatially consistent entities.

) Georeference Canonicalization

66/66 66 0

CANONICAL WITH CODE DUPLICATE CODES

All georeferences are canonical v

v Refresh Status

Figure 5-4: Georeference Canonicalization Dashboard. Summary of spatial normalization results
confirming 66/66 canonical georeferences and zero duplicates.

S5.4.Evidence Assembly

The evidence bundle serves as the central artefact connecting numerical anomalies with
semantically aligned textual evidence retrieved from the knowledge graph. It merges structured
and unstructured data into a single interpretable object, ensuring that every explanatory element

is traceable back to its provenance.
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The evidence bundle contains four components:

Anomaly metadata: Unique identifier, LevelShift::Rise classification, anomaly window
(start_ts, end ts), median absolute deviation (MAD) score, detection method, unit, product, and

spatial zone.

Temporal events: Events detected within the anomaly’s temporal window, such as heatwaves,

outages, or market interventions. Each entry includes title, timestamp, source article(s), and any

associated thematic tags.

Entities by type: Prominent actors and organizations extracted from contextual documents,

grouped by ontology class (e.g., Country, Operator, Pipeline, Institution).

Theme summary: Frequency-ordered list of themes (e.g., Extreme Weather, Policy Change,

Supply Constraint) summarizing dominant explanatory patterns.

Together, these layers provide an interpretable snapshot of the anomaly’s surrounding context

and the evidence base used for the LLM’s structured explanation. Graph constraints ensure

semantic validity across all connected node types (Article, TemporalEvent, Entity, Theme,
TimeSeries, and Zone). The TimeSeries nodes store only metadata and identifiers, while

numeric arrays remain external to maintain graph efficiency.
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Il Anomaly Context:

Search Window: 2022-03-01T00:00:00+00:00 to 2022-11-30T23:59:59.999999999+00:00
Range: 6 months before / 2 months after

Approx: 184 days before / 91 days after

Equivalent symmetric range: £184 days

Context Summary

Events: 50
Entities: 100
Themes: 1
Articles: 0

Top Events
» 1973 OPEC oil embargo spike
1973-10-06T00:00:00

¢ EU Energy Roadmap (cited as from 2012)
2012-01-01T00:00:00Z

o Untitled
2014-01-01T00:00:00Z

e Untitled
2014-01-01T00:00:00Z

* Annexation of Crimea
2014-03-18T00:00:00Z

Top Entities
¢ Russian Federation (Country) - 73 mentions
¢ Greece (Country) - 43 mentions
o Ukraine (Country) - 40 mentions
e Germany (Country) - 29 mentions
e United States (Country) - 20 mentions

Top Themes

¢ Unnamed theme - 527 events

Figure 5-5: Anomaly Context — Temporal and Entity Summary. Dashboard view summarizing the
anomaly’s search window, retrieved events, entities, and thematic tags.
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5.5.Grounded Narrative Generation

When narrative rendering is enabled, the system automatically composes a structured prompt
that translates retrieved evidence into a coherent, verifiable explanation. The prompt integrates
all key dimensions of the anomaly context, ensuring that each claim can be traced back to

explicit graph entities or source articles.
The structured prompt contains four primary elements:

1. Anomaly overview: Classification, time window, observed value, and detection

parameters.

2. Chronological list of near-window events: Each with timestamps, source article titles,

and URLs.

3. Entity roll-up by ontology class: Representative examples per category (e.g., Country,
Operator, Pipeline).

4. Theme synopsis: Themes ordered by frequency, revealing dominant explanatory motifs

(e.g., Extreme Weather, Supply Constraint, Market Stress).

Guardrails embedded in the prompt template direct the large-language model to:

* Rely exclusively on retrieved, ontology-aligned evidence.

» Cite sources inline and attribute claims to verifiable data.

* Respond “unknown” when supporting information is insufficient.
The resulting generated narrative typically covers:
1. Temporal framing of the anomaly window.
2. Demand-side stressors such as weather-driven load peaks.
3. Supply-side constraints (e.g., outages, low renewable output).

4. Market or network limitations (interconnector congestion, reserve scarcity).
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Because every sentence is grounded in retrieved facts, provenance remains auditable end-to-

end, and analysts can trace explanations directly to graph nodes and evidence bundles.

-7 Generated Prompt:

## ANOMALY OVERVIEW

- Anomaly ID: Greece, IPTO BZ / CA/ MBA::day_ahead_price::2022-09-01T00:00:00+00:00
- Type: LevelShift

- Classification: LevelShift::Rise

— Time Window: 2022-09-01T00:00:00+00:00 to 2022-09-01T00:00:00+00:00

- Series: Greece, IPTO BZ / CA/ MBA::day_ahead_price (day_ahead_price)

- Zones: Greece, IPTO BZ / CA/ MBA

- Anomaly Score: 2.714794070654435

- Observed Value: 597.0171755725192

## SEARCH CONTEXT
- Search Window: 2022-03-01T00:00:00+00:00 to 2022-11-30T23:59:59.999999999+00: 00
- Range: 6 months before / 2 months after the anomaly

(= 184 days before / 91 days after)

## TEMPORAL EVENTS NEAR ANOMALY WINDOW
Found 50 temporal events:

- 1973 OPEC o0il embargo spike
Time: 1973-10-06T00:00:00
Source: EAAe{ppata kat Kpion Tipwv oe OAo to @dopa tng Evépyerag: Kat Twpa ti Mivetat;

- EU Energy Roadmap (cited as from 2012)
Time: 2012-01-01T00:00:00Z
Source: To AwnA6 EEaywyikd MovtéAlo otnv Evpwnn kat n Emiotpogr oto MetpéAaio

- Untitled
Time: 2014-01-01T00:00:00Z
Source: MAagdév va Mnet otnv Avonoia, Oxt otnv TiuAd tov Agpiov..

- Untitled
Time: 2014-01-01T00:00:00Z
Source: MAagdév va Mner otnv Avonoia, Oxt otnv Tipf tov Agpiov..

- Annexation of Crimea

Time: 2014-03-18T00:00:00Z

Source: idvvng Mavidtng: 0 MéAepog tng Evépyerag
- Untitled

Time: 2020-06-15T00:00:00
Source: K{vbuvvog Emioitiotiki¢ Kpiong, KaBdg to PAAL Twv Tiudv Tpogipwv Tuvvey{letat

Figure 5-6: Entity and Theme Aggregation in Prompt Assembly
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Nord Stream 1 pipeline (7 mentions)
PIPE_NORDSTREAM (4 mentions)

NS_01 (3 mentions)

TAP (Trans Adriatic Pipeline) (3 mentions)
PIPE_NS1 (3 mentions)

### Region (5 entities)

- REGION_EU (3 mentions)
REG_EUROPE (3 mentions)
ENT_EU (2 mentions)

REG_EU (2 mentions)

— European Union (2 mentions)

### SupplyDependency (1 entities)
— ENT_LNG_FLOWS (2 mentions)

### TestEntity (15 entities)

— CANARY_001 (13 mentions)

- test__CanaryEntity_ PromptIntegrity (11 mentions)
CANARY_test__CanaryEntity_PromptIntegrity (10 mentions)
CANARY_01 (9 mentions)

CANARY_TestEntity (7 mentions)

### TransnationalRegion (7 entities)
- EU (4 mentions)

- EU_01 (2 mentions)

TRANSREGION_EU (2 mentions)

REG_EU (2 mentions)
REGION_EUROPEAN_UNION (2 mentions)

## THEMES TAGGED IN EVENTS
Found 1 themes:

- Unnamed theme (527 events)

## INSTRUCTIONS FOR EXPLANATION

Based on the above context, please:

1. Identify the most likely causes of this anomaly

2. Connect the temporal events, entities, and themes to the anomaly
3. Explain how the context helps understand what happened

4. Provide a concise, evidence-based explanation

Figure 5-7: Entity and Theme Aggregation in Prompt Assembly
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S.6.Interactive UI and Analyst Workflow

The interactive timeline interface constitutes the final layer of the GraphRAG explainability
pipeline, enabling analysts to visually explore anomalies, contextual events, and derived
evidence within a single integrated workspace. The interface is powered by a Flask backend,
which queries the Neo4j knowledge graph and returns structured JSON payloads to a

Highcharts-based frontend for dynamic visualization.

The UI consists of three harmonized analytical panels that operate in temporal synchrony:

* Time-Series Panel : Displays the numerical trajectory of the selected energy metric (e.g.,
day-ahead electricity price) with the detected anomaly window highlighted. Event markers
are overlaid across the timeline; hovering reveals event titles and timestamps, while clicking

opens corresponding article metadata.

%' Temporal Events Lm
AGGREGATION TOP-K
By Label v 12

Occurrences

» S & & S & & ®

Ry & o e
§ §

w= War in Ukraine causes price spike == Market warnings about uncapped gas risk == Increase of electricity subsidies announced

== EU member-states propose electricity price cap = Brent price surge after invasion == Uranium price surge reported
EV_FERT_PROD_DROP_2022 = EV_METAL_PROD_DROP_2022 Haitham Al Ghais CNBC remarks
Appointment of Haitham Al Ghais = OPEC+ production decision mw Delays to Greece-Cyprus interconnector and offshore projects
Greece, IPTO BZ / CA/ MBA::day_ahead_price

Showing top 12 of 491 events High relevance: 39.0% (324 of 830)

Figure 5-8: Temporal Events Chart. A timeline visualization showing the evolution of key temporal

events around the anomaly window, including market warnings, gas-price spikes, and EU policy

interventions. The anomaly interval is highlighted in red.

* Entities Panel — Aggregates extracted entities by ontology class so that analysts can identify
dominant actors—such as operators, regulators, governments, or companies—referenced
during the anomaly period. Each layer in the chart represents an entity group, showing how

their prominence evolves over time.
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« Encites naren
AGGREGATION
"By Label
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Anomaly Window

@
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3
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150

< > d & Q g d S IS
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L > o - » L - o b
‘= Russian Federation == Greece W Ukraine W= Germany
== Gazprom == China = United States == France
= Netherlands Spain = Italy ‘== Norway

«++ Greece, IPTO BZ / CA/ MBA::day_ahead_price

Highcharts.com

Showing top 12 of 211 entities Top 3 entities cover 23.6%

Figure 5-9: Entities Chart. A stacked timeline indicating the temporal frequency of entity mentions,
dominated by the Russian Federation, Greece, Ukraine, Germany, and Gazprom during the price-spike
period.

Themes Panel — Orders thematic tags by frequency to foreground recurring explanatory
motifs such as Extreme Weather, Demand Surge, or Supply Disruption. This enables rapid

assessment of dominant causal narratives.

* Themes =
AGGREGATION TOP-K
By Label 4 2 :
750
0 Anomaly Window

IS 2
& 23
3 8

seuos Ajewouy

Occurrences

w
S
3

150

P > $ g o O N
IS S & &£ S & & oS A
vd vd vd vl d v o ¥ g
LS LS L LS - LS LS LS -

= generic_themes = dynamic_themes == Energy Market Dynamics == Liquefied Natural Gas
= Power Grid Operations = Oil Supply == validation_log_mapping == Renewable Energy
Energy Crisis Energy price rally == Natural gas supply & prices = Energy price spikes

«+ Greece, IPTO BZ | CA| MBA:day_ahead_price

Highcharts.com

Showing top 12 of 114 themes Top theme: dynamic_themes (21.4%)

Figure 5-10: Themes Chart. A chart highlighting the temporal intensity of thematic categories
associated with the anomaly. The “War” and “Market Stress” themes peak concurrently with the

September :2022 price anomaly.
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Interactive controls allow analysts to:

Adjust the A-window (temporal expansion) to include pre- and post-anomaly evidence;

* Filter results by zone, country, or ontology class;

* Cap Top-K entities or themes for clarity;

* Toggle between quantitative and narrative layers.

The UI implements responsive rendering, progressive loading indicators, and explicit status
messages to facilitate rapid what-if exploration. Analysts can re-query the knowledge graph
iteratively, adjust filters in real time, and trace every displayed statement back to its evidence

bundle within the Neo4j database.

Finally, the interface integrates with the explanation subsystem, allowing the user to click on

any anomaly to automatically generate a grounded narrative via the GraphRAG engine.

Figure 4-6 - Timeline Ul views for GraphRAG explanations

Web Ul Shell
(Flask / Highcharts)

Controls toolbar

- Country / metric selectors
- Date range slider

- Toggle LLM explanation

refresh data

Timeline chart panel ) Event details drawer

- Highcharts line chart click marker | - Title, date, type

- Anomaly window shaded - Linked article URL

- Event markers (color by type) - Entities, themes

‘/highlight anomaly \ioad sources
Anomaly summary card : ——
R > ; ; Explanation panel Prompt text and citations come from\n
- rovide context
; glaest:;i:h;vg:)drgwérzsgmtude provi X - LLM narrative (grounded) GraphRAG workflow (Notebook 06).\n
- Download CSS/ B - Source citations (article links) Panel collapses when RUN_LLM=0.
Legend ==\n

Blue panels: interactive charts/controls\n
Teal panels: detail/context views\n
Pink panel: LLM explanation output

Figure 5-11: Timeline Ul Views for GraphRAG Explanations. A schematic diagram showing the
interaction between the Flask/Highcharts Ul and the GraphRAG workflow, including anomaly summary
cards, event drawers, and LLM-based explanation panels.
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5.7.Results and Interpretation

This section presents and interprets the results produced by the GraphRAG explainability
workflow, focusing on how retrieved evidence and generated narratives elucidate anomaly
behavior in the energy market. The aim is to assess whether the system produces faithful,
context-rich explanations grounded in retrieved events, entities, and themes, and whether
these align with the known drivers of energy price fluctuations. By examining the outputs for
the selected Greek day-ahead price anomaly, we evaluate the coherence of the generated
explanation, the consistency between structured data and unstructured evidence, and the

interpretive value the system adds beyond statistical detection.

1. Question to GraphRAG: What caused the anomaly?

GraphRAG Response:

. Answer:

The anomaly identified as a LevelShift::Rise in the day-ahead price for Greece's IPTO BZ on September 1, 2022, can be attributed to several interconnected
factors, primarily driven by the energy crisis exacerbated by geopolitical tensions and market dynamics

### 1. Likely Causes of the Anomaly

- xkEnergy Price Surgexk: On the same date as the anomaly (September 1, 2022), there was a noted energy price surge. This surge is likely a direct contributor to
the spike in day-ahead prices, indicating a significant increase in demand or a decrease in supply.

- xkGeopolitical Tensionsxk: The ongoing conflict involving Ukraine and the Russian Federation has had a profound impact on energy markets, particularly in
Europe. The uncertainty surrounding gas supplies from Russia has led to increased prices and volatility in energy markets.

- *xSpeculative Market Behaviorkk: The context suggests that there was a speculative rally in European gas prices in late 2021 and early 2022, which may have
contributed to heightened prices in the day-ahead market as traders anticipated further increases

### 2. Connection to Temporal Events, Entities, and Themes

- xkTemporal Eventskx: The energy price surge on September 1, 2021, and the Gazprom pricing revision request in August 2021 are critical events that set the stage
for the price increase. These events indicate a trend of rising prices and market instability leading up to the anomaly.

- wkEntitiesxk: The involvement of major players like Gazprom, which has been central to European gas supplies, highlights the influence of supply chain
disruptions on pricing. The geopolitical context surrounding Russia's actions, particularly the annexation of Crimea in 2014, has long-term implications for
energy security in Europe.

- *xThemeskx: The overarching theme of energy market volatility due to geopolitical factors is evident. The energy crisis has been characterized by fluctuating
prices and supply uncertainties, which directly affect day-ahead pricing.

### 3. Contextual Understanding

The context provided illustrates a landscape of increasing energy prices influenced by both immediate market conditions and longer-term geopolitical factors. The
anomaly's timing coincides with a period of heightened tension and uncertainty in energy supply, particularly from Russia, which has historically been a major
supplier to Europe. The combination of these factors creates an environment ripe for price spikes

### 4. Evidence-Based Explanation

On September 1, 2022, the day-ahead price for electricity in Greece experienced a significant rise, reaching an observed value of approximately 597.02. This
anomaly is primarily attributed to a surge in energy prices driven by ongoing geopolitical tensions, particularly the conflict involving Ukraine and Russia, which
has disrupted gas supplies and created uncertainty in the market. Additionally, a speculative rally in gas prices in the preceding months contributed to this
volatility. The convergence of these factors on the same date underscores the complex interplay between geopolitical events and energy market dynamics, leading to
the observed price anomaly.

Figure 5-12: What caused the anomaly?-GraphRAG response.
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The anomaly detected in Greece’s day-ahead electricity price on 1 September 2022 is classified

as a LevelShift::Rise, denoting a statistically significant upward deviation from the baseline.
The recorded clearing price of approximately €597 / MWh represents one of the sharpest short-

term increases within the examined period.
1. Probable Drivers of the Anomaly

The RAG-derived explanation attributes this price escalation to a combination of geopolitical,
structural, and market-driven factors that jointly amplified volatility across European energy
systems. The primary catalyst was the broader energy price surge initiated in late 2021, which

persisted through 2022 as a result of:

* escalating geopolitical tensions in Eastern Europe;

 supply-chain disruptions and sanctions affecting gas flows; and

* market realignments in response to constrained natural-gas and electricity supply.
2. Temporal, Entity, and Thematic Context

Evidence retrieved from the knowledge graph establishes explicit links between the anomaly

and contextual events:

Temporal Events — A series of energy-related price surges, beginning with the September
2021 energy-price escalation, form the temporal backdrop for the 2022 anomaly. These events
capture how earlier market shocks and the escalation of the Russia—Ukraine conflict translated

into regional price instability.

Entities — Prominent actors include Gazprom and the Russian Federation, both central to
Europe’s gas-supply dynamics. In particular, Gazprom’s pricing-revision request of August
2021 and subsequent supply restrictions represent early indicators of stress transmitted through

interconnected European markets.

Themes — The dominant semantic themes—energy-price volatility, supply disruption, and
geopolitical influence—collectively frame the anomaly as part of a broader systemic

disturbance in the European energy landscape.
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3. Contextual Interpretation

The surrounding context points to a multi-layered causal chain in which geopolitical conflict,

constrained natural-gas infrastructure, and policy uncertainty interacted to elevate wholesale
electricity prices. The anomaly’s timing coincides with the sustained volatility that followed the

onset of the Russia—Ukraine war, demonstrating how international developments propagated

into national bidding zones such as Greece.
4. Evidence-Based Synthesis

Integrating structured time-series evidence with ontology-aligned text extractions, the RAG-
based explanation yields an auditable and provenance-linked narrative. It concludes that the
September 2022 price spike in Greece’s day-ahead market arose from geopolitical tensions,
gas-supply disruptions, and cascading market adjustments within the European power sector.
Entities like Gazprom and institutional actors across the European Union appear as recurrent
agents in this evidence graph, underscoring how the anomaly reflects not an isolated local event

but a regional manifestation of systemic energy volatility.
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2. Question to GraphRAG: Which primary evidence coincide with the anomaly??

GraphRAG Response:

. Answer:

### Evidence Coinciding with the Anomaly

The anomaly identified in Greece's day-ahead price on September 1, 2022, shows a significant rise in energy prices, with an observed value of approximately
€597.02. This spike can be linked to several temporal events and contextual factors that provide insight into the underlying causes.

#### 1. xxMost Likely Causes of the Anomalyx

- xkEnergy Price Surge (Contemporary)sk: On the same date as the anomaly (September 1, 2022), there was a noted surge in energy prices, which directly
correlates with the observed rise in the day-ahead price. This suggests that market conditions were already volatile, contributing to the spike.

— xxGazprom Pricing Revision Request**: A request for pricing revision from Gazprom in August 2021 indicates ongoing tensions and adjustments in gas pricing,
which likely influenced market expectations and pricing strategies leading up to the anomaly.

- xkSpeculative Rally in European Gas Pricessx: The speculative rally noted in December 2021 may have set a precedent for heightened price volatility,
impacting the market dynamics in the months leading to September 2022.

#### 2. *kConnection of Temporal Events, Entities, and Themesxx

— The xkenergy price surgex* event on September 1, 2022, is the most direct temporal event linked to the anomaly. It highlights the immediate market conditions
that led to the price spike.

— The involvement of **xGazpromkk, a major player in the natural gas market, is crucial. Their pricing strategies and market behavior significantly affect
energy prices across Europe, including Greece.

- The xxEuropean Union'sxk energy policies and market dynamics, as reflected in the various entities and events, also play a role in shaping the energy
landscape, contributing to price fluctuations

#### 3. xxUnderstanding the Contextxx

- The context reveals a backdrop of increasing energy prices influenced by geopolitical events, such as the ongoing tensions related to the Russian Federation
and its impact on gas supplies to Europe. The annexation of Crimea in 2014 and subsequent events have created a climate of uncertainty in energy markets.

- The temporal events indicate a pattern of rising energy prices due to both market speculation and actual supply constraints, which culminated in the observed
anomaly.

#### 4. *kConcise, Evidence-Based Explanationkx

The anomaly in Greece's day-ahead energy price on September 1, 2022, coincides with a significant energy price surge on the same day, indicating a direct
correlation. Contributing factors include ongoing pricing revisions by Gazprom and a speculative rally in European gas prices from previous months. The
geopolitical landscape, particularly tensions involving the Russian Federation, has created a volatile energy market, leading to the observed spike in prices
This context underscores the interconnectedness of geopolitical events, market speculation, and energy pricing dynamics in Europe.

Figure 5-13: Which primary evidence coincide with the anomaly?-GraphRAG response.
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2. Question to GraphRAG: Which entities are involved to the price peak?
GraphRAG Response:

. Answer:

### Explanation of Price Peak Anomaly in Greece

1. *kMost Likely Causes of the Anomalyx:

The price peak observed on September 1, 2022, with a day-ahead price of approximately €597.02, can be attributed to several interconnected factors

- *kGeopolitical Tensions#x: The ongoing conflict involving Ukraine and the Russian Federation has significantly impacted energy supply chains and pricing. The
annexation of Crimea in 2014 and subsequent tensions have led to instability in energy markets.

- #kNatural Gas Pricingkk: The surge in natural gas prices, particularly influenced by Gazprom's pricing strategies and the speculative rally in European gas
prices, has directly affected electricity prices in Greece.

- *kMarket Dynamics#*: The lack of competition among electricity companies in Greece, as noted in various articles, may have exacerbated the price increases
during this period.

2. *kConnection of Temporal Events, Entities, and Themesxe:

- *xTemporal Eventsk*: The energy price surge noted on September 1, 2021, and the Gazprom pricing revision request in August 2021 are critical events leading
up to the anomaly. These events highlight the volatility in energy prices and the influence of major suppliers like Gazprom.

- xkEntities Involvedxkx: Key entities include:

- xkGazpromxk: A major player in the natural gas market, influencing prices through supply decisions.
- *kGreecexx: The country experiencing the price spike, affected by both local market conditions and international energy dynamics.
- »kEU and IEAxx: Organizations that monitor and respond to energy market conditions, potentially influencing policy and market stability.

- *kThemesxx: The overarching theme of energy price volatility is evident, with numerous events linked to geopolitical tensions and market responses.
3. *kContextual Understandingx:

The context provided indicates a complex interplay of geopolitical events, market dynamics, and energy supply issues. The historical events, such as the OPEC
oil embargo and the annexation of Crimea, set a precedent for how geopolitical tensions can lead to energy price spikes. The involvement of major firms like
Gazprom and the lack of competition in the Greek market further complicate the situation, leading to significant price fluctuations.

4. xxConcise, Evidence-Based Explanationiek

The price peak in Greece on September 1, 2022, can be attributed to a combination of geopolitical tensions, particularly related to the Russian Federation and

Ukraine, and the resulting volatility in natural gas prices driven by Gazprom's market strategies. The lack of competition among Greek electricity suppliers has

further exacerbated the situation, leading to a significant rise in day-ahead prices. This anomaly reflects broader trends in energy markets influenced by
historical events and current geopolitical dynamics

Figure 5-14: Which entities are involved to the price peak?-GraphRAG response.

Summary:

The GraphRAG-generated explanation demonstrated a high degree of factual and contextual
accuracy, effectively linking the identified anomaly in Greece’s day-ahead electricity price
(September 2022) to relevant geopolitical and market events. The model correctly highlighted
the Russian—Ukrainian conflict, Gazprom’s pricing actions, and European energy policy
discussions as dominant causal themes—elements that are well-documented in the historical
record. Each cited entity and event could be traced to a valid source node in the knowledge
graph, confirming the faithfulness and provenance integrity of the system. Minor
inconsistencies appeared in temporal granularity and event grouping, reflecting residual noise

in article extraction rather than reasoning errors. Overall, the response captured the multi-factor

108



CHAPTER 5: CASE STUDY

nature of the anomaly with minimal hallucination, maintaining semantic coherence and
alignment between retrieved evidence and narrative synthesis. This outcome validates the
GraphRAG framework as a credible and audit-ready approach for explainable energy-data

interpretation.
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6. CONCLUSIONS & FUTURE RESEARCH
6.1. Key findings

This thesis proposes a comprehensive approach to managing spatial references across open
energy-market and infrastructure datasets. From the evaluation results, comparisons with
alternative approaches, and the case studies, several key findings emerge:
Explainability and documentation: The proposed system delivers valid, well-documented
explanations for anomalies in time series. Each generated explanation of an abnormal
phenomenon is accompanied by references to real-world events and data sources (provenance),
providing transparency to the end user. In contrast to approaches that rely exclusively on LLMs
and may produce unsubstantiated information, the GraphRAG methodology ensured that the
model did not exhibit “hallucinations”—that is, every claim could be traced back to a node in
the knowledge graph or to a recorded source. This feature strengthens trust in the outputs and

facilitates interpretability, addressing a critical gap in traditional “black-box” models.

¢ Reproducibility of results: he proposed architecture and methodology emphasize
reproducibility. All data sources are open and documented, and the processing pipeline
is fully specified and automated, making experiments easy to repeat. Using a knowledge
graph with a clearly defined ontology, along with versioned datasets and fixed random
seeds where needed, ensures that other parties can verify the results. Consequently, each
conclusion rests on systematically controlled data and metrics, which enhances the

reliability and repeatability of the research.

e Architectural benefits and flexibility: The implemented multi-layer architecture (Data

Acquisition — Semantic Extraction — Knowledge Graph — Applications)
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demonstrated the value of clear separation of concerns and the integration of
heterogeneous technologies. Each layer can evolve or be optimized independently (e.g.,
replace or improve the anomaly detector, upgrade the LLM or the graph) without
disrupting the others. This modular design makes the system flexible for future
extensions. At the same time, coupling time-series data with semantic knowledge
enabled a holistic treatment of the problem: the system not only detects when an
anomaly occurs, but also explains why, bridging the gap between statistical analysis and

operational insight.

¢ Generalizability and validity across scenarios: The case studies (a geopolitical crisis
such as the war in Ukraine, an extreme weather event such as a heatwave, and a technical
infrastructure failure such as a 400 kV transmission-line outage) showed that the
proposed methodology can handle anomalies of different types. In each scenario, the
system identified the relevant drivers (e.g., price movements due to geopolitical events,
demand spikes due to weather, system destabilization due to failure) and provided
context-appropriate explanations. This indicates a wide range of applicability that can
generalize to diverse data and markets, provided the corresponding knowledge is
represented in the graph. It also suggests that a globally scoped knowledge graph can

capture multi-factor interactions more effectively than monolithic approaches.

6.2.Limitations

Despite these contributions and positive results, several limitations of the present work should

be acknowledged:

e Limited data coverage and generalization: The platform was developed and
evaluated primarily on data from the Greek electricity market and English-language
news sources. Geographic and linguistic coverage is therefore limited. Some events or
anomaly drivers may be missing from the knowledge graph if they are not present in
the considered sources. As a result, the generalization of the conclusions to other
markets or regions (especially those with different languages or regulatory settings) has
not been fully verified. Adapting the system (ontologies, data sources, models) is

required to extend coverage internationally.
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¢ Ontology alignment and extraction accuracy: Mapping extracted entities and events
to a predefined ontology poses challenges. Although techniques such as ontology-aware
prompting and JSON-schema checks were applied, there is no guarantee that all
extracted information aligns perfectly with the target knowledge model. Mismatches or
misclassifications can occur—e.g., novel or unusual event types may be categorized
incorrectly—reducing homogeneity and graph quality. Moreover, LLM-based event
extraction is not infallible: an LLM may occasionally fail to capture an event or assign
it to the wrong class, necessitating additional verification mechanisms and human-in-

the-loop correction for critical cases.

e Prompt/LLM stability: [IEven with prompt optimization, large language models can
exhibit output variability. Small prompt changes or model updates may alter responses.
An LLM can also circumvent constraints or behave unpredictably when operating
outside its trained domain. Although no obvious hallucinations were observed here
thanks to the RAG mechanism, the risk persists under different conditions. Continuous
monitoring and retuning are practical necessities. In addition, reliance on a specific

LLM (e.g., a large model such as GPT-4) creates dependence on the provider’s platform

and constraints (API costs, rate limits, and ethical/legal usage considerations).

e Computational cost and scale: Integrating a knowledge graph and an LLM introduces
complexity and computational overhead. Graph queries (e.g., complex Cypher over a
large Neo4j) and LLM calls add latency. While current response times (~2 seconds for
medium-complexity queries) were acceptable, scaling may be challenging. With orders-
of-magnitude more nodes/relationships or many concurrent users, performance could
degrade. Running a large LLM in real time is also computationally (or financially)
expensive when via a cloud API. The system has not yet been optimized for large-scale
production, and continuous ingestion/updating of the graph (streaming) was not fully

implemented—Iimiting real-time expansion of the knowledge base.

6.3.Future directions

The above limitations and findings open multiple avenues for further research and
improvement:
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Causality-aware retrieval: Incorporate mechanisms that reason about causality during
graph retrieval. Rather than relying solely on correlations or keyword co-occurrence,
employ causal-inference ideas to distinguish true cause-and-effect relations. For
example, retrieval could prioritize event paths connected by CAUSES or AFFECTS-
like semantics, yielding explanations that not only list relevant events but also
substantiate that they caused the observed anomaly. Combining knowledge graphs with
causal models should improve reliability and address the correlation-vs-causation

challenge.

Real-time data processing: or operational deployment (e.g., a TSO or market
platform), real-time integration is critical. Future work should focus on streaming
pipelines (e.g., Apache Kafka) and rolling-window anomaly detection that update the
knowledge graph dynamically. The challenge is to keep latency low so that, as soon as
an anomaly occurs, the system can immediately retrieve context and produce
explanations. Methods for online graph updates will also be needed to maintain data

consistency during continuous ingestion.

Multimodal prediction and analysis: Energy markets are global. A natural next step
is to support multiple languages and regions. While the current implementation leans
on English material, critical events may first appear in other languages. Future work can
integrate multilingual LLMs or machine translation so extraction performs effectively
in Greek, English, French, and beyond. Cultural and regulatory differences should also
be reflected: the graph can be enriched with local ontologies and specialized nodes (e.g.,
national regulators, local operators). This will increase generality and enable worldwide

deployment.

Multilingual and cross-regional generalization: Energy markets are global. A natural
next step is to support multiple languages and regions. While the current implementation
leans on English material, critical events may first appear in other languages. Future
work can integrate multilingual LLMs or machine translation so extraction performs
effectively in Greek, English, French, and beyond. Cultural and regulatory differences
should also be reflected: the graph can be enriched with local ontologies and specialized
nodes (e.g., national regulators, local operators). This will increase generality and

enable worldwide deployment.
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e Architecture optimization and scaling: Production use will require improvements in
performance and resilience: more efficient graph-query strategies (smart caching,
precomputed associations), lighter or specialized on-prem LLMs to reduce cost, and
better scalability via distributed processing. Techniques such as AutoML/AutoPrompt
can help the system self-improve over time based on fresh data and user feedback. These
steps will move the platform toward a mature operational tool, ready to support energy-

market stakeholders with accuracy, speed, and reliability.

In summary, the conclusions and future directions in this chapter underscore a dual
contribution: on the one hand, a novel solution that bridges statistical time-series analysis with
semantic knowledge in the energy domain; on the other, a roadmap for scaling and adoption.
Implementing these extensions can transform the platform into a generalized, intelligent
decision-support system for energy markets and infrastructure, improving understanding and

management of the complex spatiotemporal dynamics that govern them.
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