
 
 

National Technical University of Athens 
School of Electrical and Computer Engineering 
Division of Computer Science and Technology 

 

 

 

Architectural Frameworks for extracting semantic and spatial 
references from unstructured text using AI: The case of Energy 

markets 

 

DIPLOMA THESIS 

by 

Antonis Agoris 

 

 

Supervisor: Vassilios Vescoukis, 
  Professor, NTUA 
 
 

 

Athens, September 2025  



 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

National Technical University of Athens 
School of Electrical and Computer Engineering 
Division of Computer Science and Technology 

 

 

 

Architectural Frameworks for extracting semantic and spatial 
references from unstructured text using AI: The case of Energy 

markets 

 

DIPLOMA THESIS 

by 

Antonis Agoris 

 

Supervisor: Vassilios Vescoukis, 
 Professor, NTUA 
 

 
Approved by the three-member scientific committee on 7th November 2025. 
 
 

Vassilios Vescoukis, Nikolaos Papaspyrou, Aris Dimeas, 

Professor, NTUA 
 

Professor, NTUA Asst. Professor, NTUA 

 
 
 

Athens, September 2025  



 
 

 

Antonios Agoris 
Graduate of School of Electrical and Computer Engineering, National 
Technical University of Athens 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Copyright © Antonis Agoris, 2025 
All rights reserved. 
 
You may not copy, reproduce, distribute, publish, display, modify, create derivative works, 
transmit, or in any way exploit this thesis or part of it for commercial purposes. You may 
reproduce, store or distribute this thesis for non-profit educational or research purposes, 
provided that the source is cited, and the present copyright notice is retained. Inquiries for 
commercial use should be addressed to the original author. 
 
The ideas and conclusions presented in this paper are the author’s and do not necessarily 
reflect the official views of the National Technical University of Athens.  



 
 

Dedication 
 
 
 
To my family, 
 
who, with patience, sacrifice, and quiet love, 
offered me a place to stand so that I could learn, grow, 
and take my first true steps into this work. 
 
Archimedes once said: 
«Δός μοι πᾶ στῶ καὶ τὰν γᾶν κινάσω» — 
“Give me a place to stand, and I will move the earth.” 
 
In my life, that place has never been a point in space, 
nor a lever of iron, 
but the living support you have given me: 
your trust when I hesitated, 
your encouragement when I doubted, 
and your willingness to make room for me 
even when it came at a cost. 
 
This work is offered as a small fruit 
of that shared love, strength, and faith. 
  



 
 
  



 
 
Περίληψη 

Η παρούσα διπλωματική εργασία προτείνει ένα αρχιτεκτονικό πλαίσιο για την εξαγωγή 
σημασιολογικών και χωρικών αναφορών από αδόμητο κείμενο με χρήση Τεχνητής 
Νοημοσύνης, με εφαρμογή στον τομέα των ενεργειακών αγορών. Ο ευρωπαϊκός ενεργειακός 
τομέας ψηφιοποιείται ραγδαία, παράγοντας μεγάλα σύνολα ανοικτών και ημι-ανοικτών 
δεδομένων, όπως δείκτες αγοράς (ENTSO-E), μετρήσεις συστημάτων μεταφοράς (ΑΔΜΗΕ), 
επίπεδα (layers) γεωχωρικών δεδομένων για υποδομές και μετεωρολογικά πεδία. Ωστόσο, τα 
δομημένα μετρητικά δεδομένα από μόνα τους σπάνια επαρκούν για να εξηγήσουν ανωμαλίες—
όπως αιφνίδιες αυξήσεις τιμών ή μεταβολές στο μίγμα παραγωγής—των οποίων τα αίτια 
αποτυπώνονται κυρίως σε αδόμητες πηγές κειμένου, όπως ειδησεογραφία και ανακοινώσεις 
πολιτικής.  

Το προτεινόμενο σύστημα ενσωματώνει δομημένες χρονοσειρές με γνώση που εξάγεται μέσω 
Τεχνητής Νοημοσύνης από κειμενικές πηγές, δημιουργώντας ένα ενοποιημένο, επεξηγήσιμο 
αναλυτικό πλαίσιο. Η αρχιτεκτονική περιλαμβάνει: (i) χωροχρονική εναρμόνιση ετερογενών 
δεδομένων, (ii) εξαγωγή γεγονότων, οντοτήτων και τοποθεσιών ευθυγραμμισμένων με 
οντολογία, και (iii) αποθήκευση και συσχέτιση σε γράφο γνώσης Neo4j. Η μεθοδολογία 
GraphRAG (Graph-based Retrieval-Augmented Generation) επιτρέπει την παραγωγή 
τεκμηριωμένων, εξηγητικών αφηγήσεων που συνδέουν ανωμαλίες σε ενεργειακές χρονοσειρές 
με πιθανούς αιτιώδεις παράγοντες, διασφαλίζοντας ρητή ιχνηλασιμότητα και διαφάνεια. 

Με τη γεφύρωση της στατιστικής ανίχνευσης ανωμαλιών με τη σημασιολογική κατανόηση, η 
εργασία συμβάλλει στην ανάπτυξη μιας Σημασιολογικής Χωρικής Υποδομής Δεδομένων 
(SSDI) για τον ενεργειακό τομέα, ενισχύοντας τη διαφάνεια, την ερμηνευσιμότητα και τη λήψη 
τεκμηριωμένων αποφάσεων στις αναλύσεις ενεργειακών δεδομένων. 

 

 

 

 

Λέξεις‑κλειδιά — ENTSO‑E, ΑΔΜΗΕ, Γεωχωρικά Δεδομένα, Οντολογίες, Γράφος Γνώσης, 

LLMs, GraphRAG, LangChain, JSON Schema, Ανίχνευση Ανωμαλιών, Πρόβλεψη Ενέργειας. 



 
 
  



 
 
Abstract 

This thesis proposes an architectural framework for extracting semantic and spatial references 
from unstructured text using Artificial Intelligence, with application to the energy market 
domain. The European energy sector is rapidly digitalizing, producing vast volumes of open 
and semi-open data such as market indicators (ENTSO-E), transmission system measurements 
(ADMIE), geospatial datasets for infrastructures, and meteorological fields. Yet, structured data 
alone are rarely sufficient to explain market anomalies—sudden price spikes or shifts in 
production mix—whose causes are often described only in unstructured textual sources like 
news articles and policy announcements. 

The proposed system integrates structured time-series with AI-driven knowledge extraction 
from textual data to form a unified, explainable analytical framework. Its architecture consists 
of: (i) spatiotemporal harmonization and canonicalization of heterogeneous datasets; (ii) 
ontology-aligned extraction of events, entities, and locations with semantic, spatial, and 
temporal grounding; and (iii) storage and reasoning within a Neo4j knowledge graph. The 
GraphRAG methodology (Graph-based Retrieval-Augmented Generation) enables 
provenance-rich, explainable narratives that link anomalies in energy time-series to their 
plausible drivers through Cypher-first retrieval strategies. 

By bridging statistical anomaly detection with semantic understanding, the thesis contributes 
to the development of a Semantic Spatial Data Infrastructure (SSDI) for the energy sector. 
This framework enhances transparency, explainability, and decision support in energy data 
analytics, offering a foundation for future integration with predictive and causal models. 

 

 

 

 

 

Keywords — ENTSO‑E, ADMIE, Geospatial Data, Ontologies, Knowledge Graph, LLMs, 

GraphRAG, LangChain, JSON Schema, Anomaly Detection, Energy Forecasting. 



 
 
  



 
 

 

Acknowledgements 

I would like to express my deepest gratitude to my supervising professor, Vassilios Vescoukis, 
for his invaluable guidance, insight, and support throughout the course of this diploma thesis. 
His trust, patience, and scientific rigor were instrumental in shaping both the research direction 
and the final outcome of this work.  

I also wish to warmly thank George Papakyriakopoulos, whose constructive feedback, and 
collaborative spirit greatly enriched this project. His experience in topology and semantic 
spatial data provided clarity and motivation during critical stages of development.  

My sincere appreciation extends as well to all the professors of the School of Electrical and 
Computer Engineering at the National Technical University of Athens, for the knowledge, 
inspiration, and discipline they have imparted over the years of study. 

I would also like to thank my colleagues and friends, whose discussions, companionship, and 
encouragement offered balance and perspective throughout this journey. 

Above all, I am profoundly grateful to my family, for their unwavering support, patience, and 
sacrifices during all these years of study. Their faith in me, even in moments of doubt, made it 
possible to reach this point. 

  



 
 
  



 
 

Contents 
Περίληψη ................................................................................................................... vii 
Abstract ...................................................................................................................... ix 
Contents .................................................................................................................. xiii 
List of Figures ........................................................................................................... xvii 
List of Tables ............................................................................................................ xviii 
List of Listings .......................................................................................................... xviii 
Greek Extended Abstract ............................................................................................... 1 
 .................................................................................................................................... 3 
1. INTRODUCTION .................................................................................................. 3 

1.1. Motivation and Context .......................................................................................... 3 
1.2. Problem Statement and Gap ................................................................................. 4 
1.3. Research questions ................................................................................................ 5 
1.4. System Architecture and Core Contributions ...................................................... 6 
1.5. Thesis Structure ..................................................................................................... 7 

 .................................................................................................................................... 9 
2. BACKGROUND & REQUIREMENTS ................................................................... 9 

2.1. Energy Market Data ............................................................................................... 9 
2.2. Forecasting & Anomaly Detection ...................................................................... 10 

6.3.1. Energy Time‑Series Characteristics ............................................................................ 10 
6.3.2. Anomaly Taxonomy .................................................................................................... 11 
6.3.3. Forecasting Families ................................................................................................... 12 
6.3.4. Anomaly Detection Methods ...................................................................................... 13 
6.3.5. Explainability and Contextualisation ........................................................................... 18 

6.4. LLMs for Knowledge Extraction .......................................................................... 18 
2.3.1. What is an Ontology? .................................................................................................. 19 
2.3.2. Motivation for Ontology‑Aligned Extraction in Energy News ...................................... 19 
2.3.3. Generative Information Extraction with LLMs ............................................................. 20 
2.3.4. Ontology-Aware Prompting and Schema Constraints ............................................... 22 
2.3.5. Temporal Anchoring and Geospatial Grounding ........................................................ 25 
2.3.6. Prompt Design Principles for Reliable Structured Output .......................................... 27 
2.3.7. Reliability, Validation, and Evaluation of Extraction .................................................... 28 

2.4. Knowledge Graphs and GraphRAG for Explainability ....................................... 30 
2.4.1. Graph-Structured Knowledge for Anomaly Explanation ............................................. 30 
2.4.2. Property Graph Model and Ontology Alignment ........................................................ 32 
2.4.3. Provenance and Trust in the Knowledge Graph ......................................................... 36 
2.4.4. Cypher-Driven Retrieval of Contextual Evidence ........................................................ 38 
2.4.5. Graph-Augmented Generation of Explanations (GraphRAG) ..................................... 40 

 .................................................................................................................................. 44 
3. SYSTEM ARCHITECTURE ................................................................................ 44 

3.1. System Overview .................................................................................................. 44 



 
 

3.2. Architecture Views ............................................................................................... 45 
3.3. Data Sources & Contracts ................................................................................... 49 
3.4. Knowledge Graph Schema .................................................................................. 50 
3.5. Knowledge Extraction & Ontology Mapping ...................................................... 54 
3.6. GraphRAG Explainability ...................................................................................... 58 

4. IMPLEMENTATION .......................................................................................... 61 
4.1. Structured Data Preprocessing (ENTSO-E) ....................................................... 61 
4.2. Anomaly Detection and Structured Ingestion .................................................... 63 
4.3. Unstructured Data Extraction (Articles to Events) ............................................ 66 
4.4. Knowledge Graph Integration and Canonicalisation ........................................ 78 
4.5. Explainability via GraphRAG and User Interface ............................................... 84 

 .................................................................................................................................. 90 
5. CASE STUDY ..................................................................................................... 90 

5.1. Context and Selection .......................................................................................... 90 
5.2. Pipeline Overview ................................................................................................. 92 
5.3. Retrieval Configuration and Method ................................................................... 93 
5.4. Evidence Assembly .............................................................................................. 95 
5.5. Grounded Narrative Generation .......................................................................... 98 
5.6. Interactive UI and Analyst Workflow ................................................................ 101 
5.7. Results and Interpretation ................................................................................. 104 

6. CONCLUSIONS & FUTURE RESEARCH ........................................................ 110 
6.1. Key findings ........................................................................................................ 110 
6.2. Limitations ........................................................................................................... 111 
6.3. Future directions ................................................................................................ 112 

BIBLIOGRAPHY ..................................................................................................... 115 

  



 
 

 

  



 
 
  



 

 

List of Figures 
Figure 2-1: Greece Weekly Lignite Share in Generation with Robust Z-score Anomalies ..... 17 
Figure 2-2: Greece Weekly Day-ahead Electricity Prices with Robust Z-score Anomaly ...... 17 
Figure 2-4: HAS_ANOMALY relationship screenshot ............................................................ 33 
Figure 2-5: MENTIONS relationship screenshot .................................................................... 34 
Figure 2-6: TAGGED_THEME relationship screenshot ......................................................... 34 
Figure 2-7: LOCATED_IN relationship screenshot ................................................................ 35 
Figure 2-8: Graph Schema for Neo4j ...................................................................................... 36 
Figure 3-1: Layered architecture of the proposed system, illustrating the flow from data 
acquisition through preprocessing, semantic extraction, and integration into the knowledge 
graph, up to end-user applications. ......................................................................................... 45 
Figure 3-2: System architecture diagram showing data-flow and agent views. Structured and 
unstructured ingestion modules (agents) populate the Neo4j knowledge graph, and a 
GraphRAG query agent utilizes the graph to generate context-rich answers. ........................ 46 
Figure 3-3: Microservices component diagram ....................................................................... 47 
Figure 3-4: Deployment diagram ............................................................................................ 48 
Figure 3-5: Applying canonical locations before graph ingestion .......................................... 57 
Figure 3-6: GraphRAG Explanation Subgraph ....................................................................... 59 
Figure 4-1: ENTSO-E data preprocessing and aggregation pipeline ..................................... 63 
Figure 4-2: Anomaly detection and structured data ingestion pipeline. Weekly time series are 
read from CSV, anomalies are detected by statistical methods, and results are ingested into 
the graph as nodes and relationships. ...................................................................................... 65 
Figure 4-3: Unstructured data extraction and ingestion. Relevant news articles are processed 
by an LLM agent to extract events and entities, which are then added to the knowledge graph.
 .................................................................................................................................................. 71 
Figure 4-4: Location canonalization workflow ....................................................................... 81 
Figure 4-5: End-to-end knowledge graph construction pipeline. Stages 2–4 ingest structured 
and unstructured data, stage 5 canonicalizes overlapping entities (especially locations), and 
stage 6 links anomalies with events, completing the integration. ............................................ 83 
Figure 4-6: GraphRAG Explainability Activity Diagram/Workflow ....................................... 87 
Figure 4-7: GraphRAG Explainability Sequence Diagram ..................................................... 89 
Figure 5-1: Greece Weekly Day-ahead Electricity Prices with Robust Z-score Anomaly ...... 91 
Figure 5-2: Greece Weekly Lignite Share in Generation with Robust Z-score Anomalies ..... 92 
Figure 5-3: Anomaly Timeline Explorer —Metadata and Context Summary.The interface 
displays the anomaly identifier, detection parameters, window expansion, and summarized 
retrieval context for Greece’s day-ahead price anomaly. ........................................................ 94 
Figure 5-4: Georeference Canonicalization Dashboard. Summary of spatial normalization 
results confirming 66/66 canonical georeferences and zero duplicates. ................................. 95 
Figure 5-5: Anomaly Context — Temporal and Entity Summary. Dashboard view 
summarizing the anomaly’s search window, retrieved events, entities, and thematic tags. .... 97 
Figure 5-6: Entity and Theme Aggregation in Prompt Assembly ............................................ 99 
Figure 5-7: Entity and Theme Aggregation in Prompt Assembly .......................................... 100 
Figure 5-8: Temporal Events Chart. A timeline visualization showing the evolution of key 
temporal events around the anomaly window, including market warnings, gas-price spikes, 
and EU policy interventions. The anomaly interval is highlighted in red. ............................ 101 
Figure 5-9:  Entities Chart. A stacked timeline indicating the temporal frequency of entity 
mentions, dominated by the Russian Federation, Greece, Ukraine, Germany, and Gazprom 
during the price-spike period. ................................................................................................ 102 



 

 

Figure 5-10: Themes Chart. A chart highlighting the temporal intensity of thematic categories 
associated with the anomaly. The “War” and “Market Stress” themes peak concurrently with 
the September :2022 price anomaly. ...................................................................................... 102 
Figure 5-11: Timeline UI Views for GraphRAG Explanations. A schematic diagram showing 
the interaction between the Flask/Highcharts UI and the GraphRAG workflow, including 
anomaly summary cards, event drawers, and LLM-based explanation panels. .................... 103 
Figure 5-12: What caused the anomaly?-GraphRAG response. ........................................... 104 
Figure 5-13: Which primary evidence coincide with the anomaly?-GraphRAG response. .. 107 
Figure 5-14: Which entities are involved to the price peak?-GraphRAG response. ............. 108 

 

List of Tables 
Table 2-1: vocabulary normalization examples ....................................................................... 23 
Table 3-1: Key node types in the knowledge graph (property graph model) and their roles. . 51 
Table 3-2: Relationship types in the knowledge graph and their meaning. ............................. 52 

 

 

List of Listings 
Listing 2-1: MAD_based z-score .............................................................................................. 16 
Listing 4-1: JSON schema for LLM-based article extraction (ontology-guided). The agent 
outputs a structured JSON with events, entities, themes, and locations identified in each 
article. ...................................................................................................................................... 68 
Listing 4-2: JSON schema for LLM-based article extraction (ontology-guided). The agent 
outputs a structured JSON with events, entities, themes, and locations identified in each 
article. ...................................................................................................................................... 69 
Listing 4-3: Prompt System Architecture ................................................................................. 72 
Listing 4-4: Ontology Prompt Structure .................................................................................. 74 
Listing 4-5: Ontology Schema Specification ............................................................................ 76 
Listing 4-6: Ontology Schema Specification ............................................................................ 77 
Listing 4-7: Pseudo-code for location canonicalization. A fallback lookup table is used by 
default, with an optional LLM agent for complex cases. ......................................................... 79 
Listing 4-8: Canonicalization effect on data. ........................................................................... 80 
Listing 4-9: Creation of  NEAR_EVENT relationship. ............................................................ 82 



 

 



 

 

Abbreviation / Term Short Definition 

ENTSO‑E European Network of Transmission System Operators for 
Electricity 

ΑΔΜΗΕ / ADMIE Independent Power Transmission Operator of Greece (TSO) 

MeteoSearch Meteorological datasets and indicators for energy forecasting 

Geospatial Data Spatial/geographical data for infrastructures and administrative 
entities 

CRS Coordinate Reference System 

EPSG:4326 WGS84 geodetic system (degrees) 

GeoJSON JSON format for geometries and attributes 
 

Shapefile (SHP) Widely used GIS file format (ESRI) 
 

WKT/WKB Well-Known Text / Binary — geometry representation formats 
 

ISO 8601 International date/time format standard 

Time Zone (IANA) Time zone identifiers, e.g., Europe/Athens 
 

PostgreSQL Open-source relational database 
 

PostGIS PostgreSQL extension for GIS (spatial types and indexes) 

QGIS Open-source GIS software for mapping and spatial analysis 

ETL Extract-Transform-Load — data acquisition, transformation, and 
loading 
 Cypher Query language for Neo4j property graphs 
 

APOC Neo4j procedures and functions library 
 

Property Graph Graph model with properties on nodes and relationships 
 

Graph Traversal Navigating a graph to retrieve or infer information 
 

Ontology Formal representation of concepts and relationships within a 
domain 
 Namespace Registry Registry of namespaces/URIs (e.g., ontology_registry.json) 
 

URI Uniform Resource Identifier — unique resource reference 
 

JSON Schema Schema for validating JSON data structures 
 

Semantic‑fit Degree of semantic compatibility between class/entity mappings 
 

Bilingual Labels English/Greek entity labels 
 

Temporal Anchoring Normalization of temporal references to instants or intervals 

Provenance Source traceability and processing lineage 
 

LLM Large Language Model 
 



 

 

RAG Retrieval-Augmented Generation — retrieval and context-
enhanced generation 
 GraphRAG RAG augmented with Knowledge Graph retrieval 
 

KG Knowledge Graph 
 

KGQA Knowledge Graph Question Answering 
 

QA Question Answering — automated query-response systems 
 

LangChain Framework for orchestrating LLMs and tool chains 
 

GenAI Stack Generative AI tool stack for intelligent applications 
 

ChatGPT‑4.1 General-purpose LLM used for QA and RAG 
 

Ollama 2 Local LLM runtime/distribution tool 
 

Prompt Instructional text guiding LLM behavior 
 

Few‑shot Prompting technique with a few in-context examples 
 

CoT Chain-of-Thought — guided reasoning approach 
 

NER Named Entity Recognition 
 

RE Relation Extraction 
 

EE Event Extraction 
 

Coreference Identification of identical entities in text 
 

Semantic Fit Guard Safeguard preventing invalid semantic matches 
 

Temporal Commit Engine Module for unifying and committing temporal references 
 

Event Cascade Planner Planner for associating and ordering event sequences 
 

Patch Manager Suggestion and compliance correction system 
 

Theme Extractor Thematic and topic extraction module 
 

ARIMA/SARIMA Classical statistical models for time series forecasting 
 

LSTM Long Short-Term Memory — recurrent neural network for time 
series 
 AE/VAE Autoencoder / Variational Autoencoder for anomaly detection 
 

OCSVM One-Class SVM — outlier detection algorithm 
 

LOF Local Outlier Factor — local anomaly score 
 

Isolation Forest Tree-based anomaly detection algorithm 
 

GNN Graph Neural Network 
 

STGNN Spatio-Temporal Graph Neural Network 
 



 

 

Backtesting Retrospective model testing on historical data 
 

Cross‑validation (CV) Model validation via training/test splits 
 

Rolling Window Moving window for model training and evaluation 
 

Feature Engineering Construction of input features from raw data 
 

Ablation Controlled experiment by removing/adding components 
 

MAPE Mean Absolute Percentage Error 
 

sMAPE Symmetric Mean Absolute Percentage Error 
 

MASE Mean Absolute Scaled Error 
 

RMSE Root Mean Square Error 
 

MAE Mean Absolute Error 
 

MSE Mean Square Error 
 

Directional Accuracy 
(DA) 

Percentage of correct direction predictions 
 

Precision/Recall/F1 Extraction and classification performance metrics 
 

 

 



 

 

  





CHAPTER 1: INTRODUCTION 

1 

Greek Extended Abstract 
 
Η παρούσα διπλωματική εργασία προτείνει και υλοποιεί ένα αρχιτεκτονικό πλαίσιο για την 

εξαγωγή σημασιολογικών και χωρικών αναφορών από αδόμητο κείμενο με χρήση Τεχνητής 

Νοημοσύνης, με εφαρμογή στον τομέα των ενεργειακών αγορών. Ο ευρωπαϊκός ενεργειακός 

τομέας ψηφιοποιείται ραγδαία και παράγει μεγάλα σύνολα ανοικτών και ημι-ανοικτών 

δεδομένων: δείκτες και τιμές αγοράς από την πλατφόρμα ENTSO-E, μετρήσεις συστημάτων 

μεταφοράς από φορείς όπως ο ΑΔΜΗΕ, γεωχωρικά επίπεδα για υποδομές, ζώνες προσφορών 

και ελέγχου, διοικητικές ενότητες, καθώς και μετεωρολογικά πεδία. Τα δεδομένα αυτά είναι 

δομημένα, μηχανικά επεξεργάσιμα και συνοδεύονται από τεκμηριωμένα μεταδεδομένα. Παρ’ 

όλα αυτά, τα ποσοτικά σήματα από μόνα τους σπάνια επαρκούν για να εξηγήσουν ανωμαλίες, 

όπως αιφνίδιες «εκρήξεις» τιμών ή μεταβολές στο μίγμα παραγωγής, των οποίων τα αίτια 

αποτυπώνονται κυρίως σε αδόμητες πηγές κειμένου (ειδησεογραφία, ανακοινώσεις πολιτικής, 

τεχνικές αναφορές). 

 

Αφετηρία της εργασίας αποτελεί το κενό μεταξύ αυτών των δύο κόσμων: των χρονοσειρών με 

σαφή φυσική και οικονομική σημασία και των ετερόκλητων, κειμενικών πηγών που 

περιγράφουν γεγονότα, φορείς, αποφάσεις και περιστατικά. Στόχος είναι η ανάπτυξη μιας 

αρχιτεκτονικής που συνδυάζει παραδοσιακή διαχείριση δομημένων δεδομένων με λειτουργίες 

υποστηριζόμενες από σύγχρονα Μεγάλα Γλωσσικά Μοντέλα (LLMs), ώστε να καταστεί 

δυνατή η αυτόματη σύνδεση «ποσοτικών» ανωμαλιών με «ποιοτικά» εξηγητικά γεγονότα. 

 

Το προτεινόμενο σύστημα ακολουθεί μια πολυστρωματική αρχιτεκτονική: 

(α) Χωροχρονική εναρμόνιση ετερογενών πηγών δεδομένων, με κανονικοποίηση 

χρονοσήμανσης σε UTC, ενοποίηση χωρικών αναφορών σε κοινό σύστημα αναφοράς (CRS) 

και χρήση κανονικοποιημένων ταυτοτήτων για ζώνες και χώρες. 

(β) Εξαγωγή γνώσης από κείμενα, μέσω ενός αγωγού (pipeline) εξαγωγής γεγονότων, 

οντοτήτων, θεματικών και τοποθεσιών, ευθυγραμμισμένων με οντολογία. Η εξαγωγή 

βασίζεται σε LLMs με ontology-aware prompting και schema-constrained JSON έξοδο, ώστε 

τα αποτελέσματα να είναι δομικά έγκυρα, χρονικά αγκυρωμένα (ISO 8601) και χωρικά 

γειωμένα. 

(γ) Αποθήκευση σε γράφο γνώσης Neo4j, όπου χρονοσειρές, ανωμαλίες, γεγονότα, οντότητες, 

θέματα και ζώνες αναπαρίστανται ως κόμβοι και σχέσεις σε property graph με περιορισμούς 



CHAPTER 1: INTRODUCTION 

2 

και δείκτες. Πάνω σε αυτόν τον γράφο υλοποιείται GraphRAG (Graph-based Retrieval-

Augmented Generation), το οποίο επιτρέπει την ανάκτηση τεκμηριωμένων υπογραφημάτων 

γύρω από χρονικά παράθυρα ανωμαλιών και τη σύνθεση επεξηγηματικών αφηγήσεων. 

 

Στο επίπεδο εφαρμογής, η εργασία υλοποιεί ένα πλήρες pipeline: ανίχνευση ανωμαλιών σε 

χρονοσειρές ENTSO-E με χρήση ανθεκτικού z-score, εισαγωγή των ανωμαλιών και των 

χρονοσειρών στον γράφο γνώσης, εξαγωγή και ευθυγράμμιση γεγονότων από ένα επιλεγμένο 

σώμα περίπου 250 ελληνικών άρθρων ενέργειας, καθώς και ανάπτυξη διαδραστικού 

χρονοδιαγράμματος (Flask + Highcharts) που επιτρέπει σε αναλυτές να επιλέγουν ανωμαλίες, 

να βλέπουν σχετιζόμενα γεγονότα, οντότητες και θέματα, και, εφόσον ενεργοποιηθεί, να 

λαμβάνουν GraphRAG-βασισμένες, τεκμηριωμένες εξηγήσεις. 

 

Ως μελέτη περίπτωσης εξετάζεται ανωμαλία σε τιμές day-ahead στην ελληνική αγορά, σε 

χρονικό διάστημα όπου συμπίπτουν γεωπολιτικές εντάσεις και μεταβολές στο μίγμα 

παραγωγής. Η ανωμαλία λειτουργεί ως «άγκυρα» για την ανάκτηση σχετικών γεγονότων (π.χ. 

ενεργειακή κρίση, ζητήματα τροφοδοσίας φυσικού αερίου, θερμικά κύματα), ενώ η 

παραγόμενη αφήγηση παραμένει πλήρως ιχνηλάσιμη, καθώς κάθε ισχυρισμός συνδέεται με 

συγκεκριμένους κόμβους και πηγές στον γράφο γνώσης. 

 

Τέλος, η εργασία συζητά τους περιορισμούς της προσέγγισης (κάλυψη δεδομένων, εξάρτηση 

από LLMs, υπολογιστικό κόστος) και χαράζει μελλοντικές κατευθύνσεις, όπως πολυγλωσσική 

επέκταση, ενσωμάτωση αιτιοκρατικά ευαισθητοποιημένης ανάκτησης και κλιμάκωση της 

αρχιτεκτονικής σε παραγωγικά περιβάλλοντα. Συνολικά, η συμβολή της διατριβής εστιάζει στη 

γεφύρωση στατιστικής ανάλυσης χρονοσειρών και σημασιολογικής κατανόησης, ως βήμα 

προς μια ώριμη Σημασιολογική Χωρική Υποδομή Δεδομένων για τον ενεργειακό τομέα.



 
 

 

 

 

 

 

1. INTRODUCTION 

1.1. Motivation and Context 

The motivation for this work comes from the European power sector, which is rapidly 

digitizing. Open and semi-open datasets are now common, to support transparency in markets 

operation: market prices and indicators (ENTSO-E), transmission-system measurements 

provided by operators such as ADMIE, geospatial references to infrastructures, biding zones, 

control zones, administrative areas, meteorological data, and more. Such datasets come in 

structured machine-processable formats, and are supported by well-documented metadata. 

However, examining structured data alone is insufficient to explain anomalies - that is, abrupt 

changes or unexpected patterns such as the sudden surge in energy prices following an external 

event, or the shifts in generation mix resulting the introduction of environmental policies. 

Understanding such phenomena requires a broader layer of expert knowledge, much of which 

is disseminated in textual form through news articles, policy reports and official 

announcements. 

The motivation of this work comes from the challenge of developing software with 

architectures that seamlessly integrate traditional data management with AI-driven operations. 

The goal is to unify heterogenous data sources - ranging from structured datasets to unstructured 

textual mentions in news feeds—within a common analytical framework. Such integration 

enables applications that combine all relevant technical, economic, and contextual information 

in both structured and unstructured formats, supporting situational awareness and decision-

making.  

CHAPTER 
1 



CHAPTER 1: INTRODUCTION 

4 

In the broader context, this effort contributes to the development of a Semantic Spatial Data 

Infrastructure (SSDI) for the energy sector. The envisioned SSDI aims to facilitate applications 

that assist both experts and non-experts in interpreting and understanding non-typical behaviors 

observed in quantitative energy data. It does so by leveraging spatially referenced and 

semantically aligned information extracted from unstructured sources, thus bridging the gap 

between data-driven analysis and knowledge-driven interpretation. 

Needless to say, the ecosystem encompassing all relevant energy data is inherently 

heterogeneous and fragmented. Data are collected and published in diverse formats (e.g., CSV, 

JSON, APIs), often employing inconsistent terminology to describe the same concepts (for 

instance, region, bidding zone, or περιφέρεια). They also appear in multiple languages, 

coordinate reference systems, and temporal resolutions (such as 15-minute, hourly, or daily 

intervals). Every energy-related signal is intrinsically spatiotemporal—it holds meaning only 

when its spatial context (node, region, or country) and temporal context (timestamp and time 

zone) are clearly defined, together with associated factors such as weather, grid state, policy 

environment, and geopolitical events. In the absence of consistent spatiotemporal 

harmonization and auditable provenance, both knowledge integration and explainability are 

fundamentally undermined. 

 

1.2. Problem Statement and Gap 

European power market timeseries often show sharp fluctuations—price spikes, demand drops, 

or generation anomalies—that are hard to explain post hoc. Structured time-series and 

unstructured news are usually processed in separate pipelines; especially unstructured news are 

only "processed" by human experts. As a result, the automatic detection of semantic links 

between measured anomalies and qualitative relevant descriptions is left to human experts that 

need to manually operate the collection, interpretation and linking of relevant data. Therefore, 

a gap is recognized: is it possible to use modern AI tools to link quantitative structured data 

with well-defined semantics to semantically aligned data from free-text public sources, such as 

newsfeeds? To achieve this, we would need an application architecture that enables: 

• normalizing spatial and temporal references across heterogeneous sources 



CHAPTER 1: INTRODUCTION 

5 

• Extracting and mapping to relevant ontologies data from text with proper semantic, 

spatial and temporal references (eg ISO 8601 for time anchoring, geospatial grounding) 

• fuses everything to be represented in a queryable knowledge graph that supports retrieval-

augmented explanations with explicit source attribution. 

 

1.3. Research questions 

This thesis builds an end-to-end system that couples explicit time-series with implicit 

knowledge from free-text articles to explain anomalies and support domain analyses of all 

kinds. 

• RQ1 (Data). How can heterogeneous datasets (ENTSO-E, ADMIE, geospatial, 

meteorological) be harmonized in space and time (UTC, CRS, granularity) with 

reproducible transformations and evidence-preserving exports? 

• RQ2 (Ontology extraction). Can an ontology-aligned pipeline reliably detect events, 

entities, locations, and intervals from Greek energy news (with English extension in 

scope) and map them to a controlled standard vocabulary with schema-level guarantees? 

• RQ3 (Graph reasoning). How can a knowledge graph with canonical identifiers, 

constraints, and time indexing, enable effective GraphRAG retrieval that links anomalies 

to plausible drivers via Cypher-first strategies? 

• RQ4 (Explainability and prediction support). To what extent can anomaly explanations 

and extracted signals support informed energy market decisions? (Quantitative forecast 

integration is flagged for future work; current focus is on explanation quality and data 

readiness.) 

 

 

 



CHAPTER 1: INTRODUCTION 

6 

1.4. System Architecture and Core Contributions 

This section summarizes the principal components and technical contributions of the developed 

system. Each component corresponds to a distinct layer of the end-to-end architecture, designed 

to integrate heterogeneous energy datasets and unstructured text sources into a unified, 

semantically enriched analytical framework. The emphasis lies on modularity, reproducibility, 

and explainability—ensuring that every transformation, extraction, and inference step remains 

both transparent and verifiable. 

• Layered reference architecture. Clear separation of acquisition, staging and analytics 

(InfluxDB), semantic extraction (ADK agents), graph persistence (Neo4j), and application 

layers. Implemented through seven refined notebooks and a production-ready command-line 

interface (ProductionApp). 

• Spatiotemporal harmonization and canonicalization. UTC-normalized timelines, CRS-

aware geospatial handling, and a PostGIS-backed location canonicalizer that eliminates country 

and location duplicates, enforces ISO-aligned identifiers, and ensures idempotent Cypher 

upserts under strict schema constraints and indexes. 

• Article extraction with guarantees. ADK-based agent producing ontology-aligned JSON 

with ISO 8601 anchoring; deterministic fallback dataset for offline, reproducible runs; validated 

on a curated corpus of 250 Greek energy articles with direct extensibility to larger multilingual 

collections. 

• Knowledge graph and GraphRAG. Canonicalized spatial and semantic entities, time-tree 

indexing, schema constraints, and Cypher-first retrieval for anomaly context assembly; 

integrated with notebook-driven RAG explainability and a real-time anomaly timeline service. 

• Explainability interfaces. Retrieval-augmented narratives linking ENTSO-E anomalies to 

article-derived events; interactive timeline built with Flask and Highcharts featuring multi-

parameter filtering (temporal, geographic, and ontological) and structured prompt generation 

with explicit citation control. 

 



CHAPTER 1: INTRODUCTION 

7 

• Provenance, validation, and reproducibility. Comprehensive evidence tagging, dataset and 

version logging, exportable CSV/Parquet artifacts, offline-safe execution modes, and validation 

scripts for ingestion, persistence, and visualization components. 

 

1.5. Thesis Structure 

• Chapter 2 – Background and Theoretical Context. Reviews the foundational concepts 

underlying the work, including energy time series, anomaly detection methodologies, 

ontologies, knowledge graphs, GraphRAG frameworks, and agentic workflows. 

• Chapter 3 – System Architecture. Describes the overall architectural framework, including 

the design drivers, layered structure, data contracts, and cross-cutting components integrating 

Neo4j, InfluxDB, PostGIS, and ADK-based semantic extraction modules. 

• Chapter 4 – Implementation of the Processing Pipeline. Presents the software realization 

of the end-to-end workflow, detailing the design, data ingestion mechanisms, transformation 

logic, and orchestration of analytics across layers. 

• Chapter 5 – Case Study and Explainability Demonstration. Examines a representative 

anomaly in Greek day-ahead electricity prices, showcasing how GraphRAG-based retrieval and 

the interactive timeline service enable transparent, evidence-grounded explanations. 

• Chapter 6 – Conclusions and Future Research. Synthesizes the findings of the study, 

outlines current limitations, and proposes directions for scaling, optimization, and continued 

integration of AI-driven methods into energy analytics. 

 

 

 

 

 



CHAPTER 1: INTRODUCTION 

8 

Use of Artificial Intelligence 

Artificial Intelligence (AI) tools were employed as supportive instruments during the 

preparation of this thesis to enhance clarity, productivity, and technical precision. AI tools 

supported parts of this work by proposing code snippets, drafting brief text, and sketching 

diagrams. The author verified, adapted, and finalized all content. 

Large Language Models (LLMs), including, were used under supervision to assist in section 

structuring and diagram generation. In particular, LLMs contributed to the production of 

PlantUML-based system architecture diagrams and Graphviz (DOT-language) knowledge-

graph visualizations, which were subsequently reviewed and edited by the author for accuracy 

and consistency. 

The role of these tools was strictly auxiliary—serving as aids rather than substitutes for human 

reasoning or original authorship. All conceptual design, analytical interpretation, and final 

synthesis were independently conducted by the author. The integration of AI contributed to 

improved organization and visualization of complex methodological ideas, resulting in a 

coherent, reproducible, and well-documented research framework that fully respects academic 

integrity. 

 



 
 

 

 

 

 

2. BACKGROUND & REQUIREMENTS 

2.1. Energy Market Data 

The system builds upon heterogeneous open datasets that provide explicit spatial and temporal 

references. At its core lies the ENTSO-E Transparency Platform, which offers pan-European 

electricity time series through a RESTful API (XML/CSV, API-key authentication). In this 

work, the following ENTSO-E series are utilized: Day-Ahead Price (€/MWh), Actual Total 

Load (MW), and Generation per Type (MWh) for the Greek bidding zone and, where available, 

selected neighboring zones. 

All series are harmonized to Coordinated Universal Time (UTC) at hourly granularity, 

following consistent aggregation rules per metric (e.g., mean for MW or price, sum for MWh). 

Anomalies in these reference timelines are detected using a robust z-score method applied over 

rolling weekly windows, employing a median/MAD estimator with thresholds configurable 

within the analytical notebooks. Each detected anomaly is materialized as an Anomaly entity 

and persisted in the knowledge graph, ensuring that the analytical scope (series and granularity) 

and the applied method (detector) remain explicit and fully reproducible. 

To complement the structured series, a curated corpus of approximately 250 Greek-language 

energy-news articles has been integrated from specialized portals. These are processed through 

a bilingual, ontology-aligned extraction pipeline that performs ISO 8601-compliant temporal 

anchoring and geospatial reference mapping. The pipeline identifies events, entities, and 

relationships, which are subsequently persisted as interconnected nodes and edges within the 

knowledge graph. Each extracted payload carries evidence tags for source provenance, ensuring 

traceability. These textual extractions are leveraged by GraphRAG to contextualize and explain 

CHAPTER 
2 



CHAPTER 2: BACKGROUND & REQUIREMENTS 

10 

anomalies—or, more generally, to elucidate non-typical behaviors observed in energy-market 

time series such as those obtained from ENTSO-E. 

 

A complementary structured source is ADMIE (IPTO), the Greek Transmission System 

Operator. ADMIE publishes both network topology data—including substation coordinates, 

400 / 150 kV transmission lines, and cross-border interconnections—and operational or market 

information. Within this work, emphasis is placed on representing the physical grid topology, 

which is not covered by ENTSO-E. Network geometries are persisted in standard geospatial 

formats to support efficient spatial queries and to map physical assets to knowledge-graph 

elements, such as GridNode entities and Line relationships with associated geometries. 

Representing the approximately 11,800 km high-voltage network as spatially referenced graph 

structures enables direct correlation between detected events (e.g., outages, maintenance 

operations) and their physical grid locations. 

Finally, meteorological data are incorporated via MeteoSearch (National Observatory of 

Athens), which provides historical measurements of temperature, humidity, wind, and 

precipitation per station. These series are aligned to hourly UTC, using consistent aggregation 

rules (e.g., hourly mean temperature or hourly total precipitation), normalized for units and data 

quality, and spatially linked to administrative regions through open geospatial boundaries in 

PostgreSQL / PostGIS. This integration enables composite queries such as “What were the 

demand and temperature in Attica on date D?” and supports proximity or in-region event 

analysis—thereby enriching structured market data with environmental and spatial context. 

 

2.2. Forecasting & Anomaly Detection 

6.3.1. Energy Time‑Series Characteristics 

Energy-system signals display complex and distinctive behaviors that influence both 

forecasting methodologies and anomaly-detection approaches. Their variability arises from the 

interaction of physical, socio-economic, and regulatory processes, resulting in strong and 

overlapping seasonalities. Physical cycles such as solar irradiance and temperature interact with 

socio-economic patterns (workdays, weekends, and holidays) and market procedures (e.g., 



CHAPTER 2: BACKGROUND & REQUIREMENTS 

11 

gate-closure times and settlement windows). Consequently, daily and weekly periodicities often 

coexist with annual components, while transitions such as daylight-saving adjustments 

introduce discontinuities and subtle calendar drift. 

A further defining trait of these series is non-stationarity. Long-term transformations—such as 

increased renewable penetration, regulatory reforms, or infrastructure changes (e.g., new 

interconnectors, plant outages)—frequently alter their statistical properties, including level, 

variance, and frequency composition. 

Volatility and heavy-tailed distributions are particularly prominent in electricity price series, 

where supply–demand imbalances, fuel-cost dynamics, and scarcity pricing mechanisms 

generate sharp spikes and outliers. Many of these dynamics are driven by exogenous factors—

including weather conditions, fuel markets, policy interventions, and planned or forced 

outages—making purely endogenous models insufficient to capture the full causal structure 

unless they incorporate external explanatory variables. 

These properties underscore the need for robust preprocessing pipelines and anomaly detectors 

capable of maintaining reliability under regime shifts, non-stationary noise, and heterogeneous 

variance patterns. 

 

6.3.2. Anomaly Taxonomy 

Anomalies in energy time series can be classified according to their temporal structure and 

contextual dependencies: 

• Point anomalies: isolated spikes or drops that deviate sharply from the local statistical 

distribution. 

• Contextual anomalies: values that are atypical given the prevailing conditions (for 

example, unusually low weekday demand during cold weather), even if they are not 

globally extreme. 

• Collective anomalies: sequences of observations—such as sustained runs, plateaus, or 

oscillatory patterns—that appear anomalous only when considered together rather than 

individually. 



CHAPTER 2: BACKGROUND & REQUIREMENTS 

12 

• Regime changes: structural shifts in level, variance, or trend, such as persistent price 

elevations following policy interventions or market design changes, often modeled as 

change points. 

In the energy domain, contextual interpretation is essential. A sharp price surge occurring 

alongside interconnector maintenance or extreme heat may be entirely plausible when the 

underlying conditions are known, whereas the same event would seem anomalous in isolation. 

Therefore, effective frameworks must distinguish between statistical detection, which 

identifies candidate anomalies, and contextual reasoning, which evaluates their plausibility 

and causal explanations. 

 

6.3.3. Forecasting Families 

Forecasting methodologies in the energy domain span statistical, machine learning, deep 

learning, and spatio-temporal paradigms, each offering distinct advantages and trade-offs 

depending on data characteristics and operational objectives. 

Statistical models such as ARIMA/SARIMA and exponential smoothing (Holt–Winters) 

remain foundational for modeling stationary or quasi-stationary seasonal components. State-

space formulations and extensions like TBATS can accommodate multiple or long seasonalities 

and complex calendar effects. Their strengths lie in parsimony, interpretability, and robust 

uncertainty quantification, provided that the underlying assumptions of limited non-stationarity 

hold. 

Machine learning methods, including gradient boosting and other tree-based ensembles, capture 

nonlinear dependencies among engineered features such as lagged observations, rolling 

statistics, calendar indicators, and exogenous variables (e.g., temperature or fuel prices). These 

approaches often improve predictive accuracy under nonlinear dynamics but depend critically 

on careful feature design and continuous monitoring to mitigate concept drift. 

 



CHAPTER 2: BACKGROUND & REQUIREMENTS 

13 

Deep learning models—notably recurrent neural networks (RNNs/LSTMs), temporal 

convolutional networks (TCNs), and Transformer-based architectures—excel at modeling 

long-range dependencies and complex temporal interactions, particularly when large datasets 

with rich covariates are available. While these architectures can process raw or lightly 

engineered inputs, they typically trade interpretability for capacity, requiring extensive 

regularization, hyperparameter tuning, and validation to avoid overfitting. 

Spatio-temporal approaches explicitly incorporate the network structure of the energy system—

zones, substations, and interconnections. Graph neural networks (GNNs) propagate information 

along the grid topology, capturing spatial correlations and constraints. These methods are 

particularly effective when system-wide interactions significantly influence local behavior, 

such as cross-border energy flows or regional weather dependencies. 

Finally, hybrid strategies combine multiple paradigms. Examples include forecast-then-residual 

pipelines, where statistical or machine-learning models capture expected behavior and anomaly 

detection operates on residuals, or ensemble frameworks that integrate heterogeneous 

predictors to enhance stability and accuracy across varying market regimes[11],[12],[13]. 

 

6.3.4. Anomaly Detection Methods 

Within electricity markets and power-system operation, anomaly detection forms a cornerstone 

of situational awareness. Analysts and operators are not concerned with every minor deviation 

from normal behavior, but rather with salient departures—events such as extreme price spikes, 

abrupt demand drops, or structural changes in the generation mix—that warrant interpretation. 

In this thesis, anomalies are not treated as endpoints but as anchors for downstream 

explainability: once an anomaly window is identified, the system queries unstructured 

sources—such as news, policy statements, or operational bulletins—to uncover plausible 

explanatory events. 

Understanding the principal families of anomaly detection methods is therefore essential for 

motivating the simple, robust detector adopted in this work. 

 



CHAPTER 2: BACKGROUND & REQUIREMENTS 

14 

Families of Anomaly Detection Methods 

Detection methods differ primarily in how they model “normal” behavior and what statistical 

or structural assumptions they impose. 

Distribution-based (univariate) detectors identify anomalies as standardized deviations from a 

reference distribution. Classical z-score methods assume stable mean and variance, while robust 

variants replace these with the median and median absolute deviation (MAD) or interquartile 

ranges, reducing sensitivity to outliers and heavy tails (e.g., Hampel filters). 

Seasonal hybrids remove recurring cycles through decomposition (e.g., STL or LOESS) and 

detect outliers on deseasonalized residuals, improving precision for strongly periodic signals 

such as load or generation. 

Residual-based detectors operate on the difference between observed and forecasted values 

derived from statistical, machine-learning, or deep-learning models. Control-chart families—

including Shewhart, EWMA, and CUSUM—evaluate deviations, persistent shifts, or trends in 

residuals, offering clear probabilistic thresholds under known distributional assumptions. 

Change-point detection targets structural breaks in level or variance. Methods like PELT 

(Pruned Exact Linear Time) efficiently identify multiple change points, while Bayesian online 

change-point detection provides a probabilistic, sequential treatment well-suited to streaming 

data. These methods capture regime shifts effectively but may overlook short-lived spikes. 

Density- and isolation-based approaches—such as Local Outlier Factor (LOF), DBSCAN, or 

Isolation Forest—define dense “normal” regions in feature space and flag low-density or easily 

isolated points as anomalies. Although flexible and capable of detecting nonlinear structures, 

they require careful feature design and are less interpretable for strictly time-ordered data. 

Multivariate and probabilistic models exploit dependencies across multiple series. Techniques 

like Robust PCA or subspace tracking detect deviations from low-rank structure, while 

multivariate state-space models identify anomalies through breakdown of correlations among 

variables. 

Probabilistic forecasting frameworks further generalize this by estimating predictive intervals, 

treating anomalies as low-probability observations conditioned on known covariates. 



CHAPTER 2: BACKGROUND & REQUIREMENTS 

15 

Graph-based anomaly detection extends these concepts to networked systems. It identifies 

deviations in a node’s behavior relative to its neighbors or unexpected disruptions in flow 

patterns across edges. Temporal graph extensions capture evolving topology and attributes, 

making them particularly suitable for power-grid infrastructures. 

Method Selection 

No single technique performs optimally across all regimes. 

• Robust univariate methods offer transparency, computational efficiency, and 

reproducibility. 

• Residual and change-point approaches capture dynamic shifts when dependable 

baselines exist. 

• Multivariate and graph-based models reveal cross-series or topological dependencies 

but require richer data and introduce higher complexity. 

For the purposes of this thesis, a robust z-score detector (MAD-based) was chosen. It balances 

simplicity, interpretability, and stability, ensuring reproducible anomaly flags suitable for 

linking to contextual explanations via the knowledge graph. 

 

Robust MAD-based z-score as the working detector 

Within this spectrum, the proposed system adopts a robust MAD-based z-score as its primary 

anomaly detector for structured time series (e.g. prices, loads, generation by fuel). The rationale 

is twofold. First, the method is transparent and easily interpretable: anomalies correspond to 

observations that lie several robust standard deviations away from a typical level. Second, it is 

lightweight and reproducible, making it suitable as a stable anchor for downstream 

explainability and case studies, with more sophisticated methods left as future extensions. 



CHAPTER 2: BACKGROUND & REQUIREMENTS 

16 

  

Greece Example (Weekly, 2021‑01‑03 → 2022‑12‑25) 

• Day‑ahead prices peak at 604.14 €/MWh on 2022‑08‑28 with z = 3.06 (LevelShift::Rise). 

• Lignite share (lignite generation ÷ total load) jumps to 21.23 % on 2022‑08‑21 (z = 2.95) 

and 24.94 % on 2022‑12‑11 (z = 4.00), both LevelShift::Rise. 

• Yearly context: mean price rises from 120 €/MWh (2021) to 289 €/MWh (2022); lignite 

share mean from 10.5 % to 11.4 % with higher extremes. 

Statistic 
Given a time series y: 
 • Compute the median m and the Median Absolute Deviation (MAD): 
   MAD = median(|𝑦 −𝑚|) 
 • Define the standardized robust z-score: 
 𝑧 = 0.6745 × ("#$)

MAD
   (The constant 0.6745 scales MAD to the standard  

 deviation 𝜎 under normality.) 
 
Thresholding and Level Shifts 
 • Flag an anomaly when |𝑧| ≥ 𝜏. 
 • Detect a level shift when 
   |𝑦) − 𝑦)#*| ≥ 𝜙 ×𝑚𝑎𝑥(|𝑦)#*|, 𝜀), 
  labeled as L evelS hift::R is e or L evelS hift::Drop to distinguish persistent step 
changes from isolated spikes. 
 
P arameter C hoic es 
 • 𝜏 = 3.5: default robust threshold. 
 • 𝜏 = 2.5: for energy prices, capturing known spikes without over-alerting. 
 • 𝜙 = 0.15: detects regime-like step changes. 
 • Minimum points = 8: ensures stability over short segments. 
 

Listing 2.2.4-1: MAD-based z-score Listing 6.3.4-1: MAD_based z-score 



CHAPTER 2: BACKGROUND & REQUIREMENTS 

17 

 

 

These spikes align with the 2022 Russian invasion of Ukraine. Constrained gas flows drove 

wholesale electricity prices to records by late summer (the price anomaly), while Greece leaned 

more on domestic lignite through H2 2022 (the share anomalies). 

Figure 2-2: Greece Weekly Day-ahead Electricity Prices with Robust Z-score Anomaly 

Figure 2-1: Greece Weekly Lignite Share in Generation with Robust Z-score Anomalies 



CHAPTER 2: BACKGROUND & REQUIREMENTS 

18 

 

6.3.5. Explainability and Contextualisation 

Statistical flags are necessary but insufficient for decision support. Anomalies become 

meaningful when linked to plausible drivers—policy changes, outages, weather extremes, or 

market dynamics—grounded in space and time. Knowledge graphs provide a structured 

representation of entities, events, and relationships, enabling multi‑hop reasoning and explicit 

provenance. Retrieval‑augmented generation (RAG) layered over a graph can assemble 

contextual evidence around an anomaly window and synthesize coherent narratives, while 

reducing hallucinations relative to ungrounded text generation. 

Causality‑aware retrieval strengthens explanations by enforcing temporal precedence and 

plausible pathways (e.g., event → constraint → price effect), though formal causal discovery 

remains challenging in practice. Human‑in‑the‑loop review—supported by citations, graph 

paths, and uncertainty cues—helps calibrate trust and refine rules iteratively. 

 

6.4. LLMs for Knowledge Extraction  

The rise of large language models (LLMs) has fundamentally changed how knowledge can be 

extracted from unstructured text. Unlike traditional NLP pipelines that rely on fixed pattern-

matching or manually engineered rules, LLMs provide adaptive, context-aware reasoning that 

can interpret diverse textual expressions of the same underlying concept. In the energy sector, 

where valuable information is dispersed across technical reports, regulatory announcements, 

and journalistic narratives, this capability enables the automatic identification of relevant events 

and entities — such as outages, market interventions, and extreme weather — directly from 

text. 

LLM-based extraction acts as the bridge between unstructured human language and 

structured representations used in databases or knowledge graphs. Through prompting, fine-

tuning, or schema-constrained generation, models can produce machine-readable outputs (e.g., 

JSON) that map linguistic information to defined ontological classes, properties, and 

relationships. This approach allows analysts to integrate news and policy documents seamlessly 

with time-series data, improving both explainability and situational awareness. 



CHAPTER 2: BACKGROUND & REQUIREMENTS 

19 

 

2.3.1. What is an Ontology? 

An ontology formally defines the concepts, relationships, and attributes within a domain of 

knowledge. In practice, it serves as a shared vocabulary that enables both humans and machines 

to reason about data in a consistent, semantically meaningful way. Ontologies differ from 

simple taxonomies by encoding not only hierarchical relationships (“is-a”) but also complex 

interdependencies such as “causes,” “affects,” “belongs to zone,” or “produced by.” 

In the context of energy informatics, an ontology may include entities like PowerPlant, 

BiddingZone, WeatherEvent, and PolicyIntervention, and relations such as locatedIn, causes, 

or correlatesWith. When text-extracted information is aligned with these ontological structures, 

it becomes interoperable with other datasets, supports logical reasoning, and facilitates cross-

source integration within a knowledge graph. 

 

2.3.2. Motivation for Ontology‑Aligned Extraction in Energy News 

In the energy domain, critical facts and events often appear in unstructured text such as news 

articles, press releases, and reports. For example, a Greek news article might describe a power 

outage, a policy change, or an extreme weather event affecting the energy grid. Transforming 

these unstructured narratives into ontology‑aligned facts is essential for downstream reasoning: 

a knowledge graph of energy events and entities can be queried and analyzed alongside time 

series data. The motivation is to bridge the gap between textual information and data-driven 

analysis – turning free text into structured knowledge that conforms to a domain schema. By 

aligning extracted information to a predefined ontology of energy concepts (e.g. classes like 

Infrastructure, PowerPlant, BlackoutEvent, and relations like LOCATED_IN or 

HAS_CAUSE), we ensure semantic consistency and make the information machine-

interpretable. This approach enables the system to incorporate real-world context (events, 

actors, conditions) into tasks such as anomaly explanation, without manual data entry. In short, 

ontology-aligned knowledge extraction allows unstructured energy news (in Greek or other 

languages) to be converted into a graph of facts – who, what, when, where – that can enrich 

analytical models with real-world context. 



CHAPTER 2: BACKGROUND & REQUIREMENTS 

20 

From a theoretical standpoint, this falls under information extraction (IE), where the goal 

is to identify entities, relationships, and events in text[1]. Traditional IE pipelines use task-

specific models (for example, separate named entity recognition and relation classification 

modules), which require substantial training data for each label type. In contrast, recent Large 

Language Models (LLMs) provide a more unified approach: a single generative model can 

perform joint extraction of entities and relations by parsing text and producing a structured 

output in one go. In the energy news context, a generative LLM can be prompted to read an 

article about, say, an unexpected power demand spike and output a JSON record of the salient 

TemporalEvent (e.g. an extreme heatwave) with its date and location. The unified approach is 

appealing for low-resource settings like Greek-language energy news, where training data for 

specialized IE models is scarce. By leveraging a powerful multilingual LLM with zero-shot or 

few-shot prompting, we can extract the needed information without task-specific fine-tuning. 

This generative IE paradigm has gained traction as it simplifies the pipeline – one model and 

prompt can handle multiple IE subtasks simultaneously. It is especially useful when the 

ontology of interest is custom (here, tailored to energy domain concepts) and one cannot easily 

find off-the-shelf models for each class. 

However, using LLMs for knowledge extraction also introduces challenges. Generative 

models may hallucinate facts or produce text not faithful to the source. They might also miss 

details or output information in an inconsistent format. Thus, the pipeline must be designed 

with strict controls to ensure reliability and precision despite the flexibility of LLMs. In the 

following subsections, we discuss theoretical techniques to guide LLM outputs: ontology-

aware prompting, schema-constrained generation, and normalization of temporal and 

geospatial references. Together, these ensure that the extracted knowledge is semantically 

accurate, structured, and grounded in the source text, which is crucial for building a trustworthy 

energy knowledge base. 

 

2.3.3. Generative Information Extraction with LLMs 

Large Language Models can perform Generative Information Extraction (GIE), meaning they 

generate structured outputs (like JSON or triples) that represent information in text[1]. Unlike 

pipeline IE (with separate NER, relation extraction, event detection stages), an LLM can take a 

passage and produce an all-in-one annotated representation. For example, given a news snippet 

https://arxiv.org/abs/2312.17617%23:~:text=,methods%2520and%2520discover%2520the%2520emerging
https://arxiv.org/abs/2312.17617%23:~:text=,methods%2520and%2520discover%2520the%2520emerging


CHAPTER 2: BACKGROUND & REQUIREMENTS 

21 

“The Greek power grid operator announced rolling blackouts in Attica on July 24 due to a 

heatwave”, a single prompt to the LLM can yield a structured record of a BlackoutEvent with 

properties: date = 2025-07-24, location = "Attica, Greece", cause = "heatwave", involved_actor 

= "Greek power grid operator", etc. This unified generative approach treats IE as a conditional 

text generation task, where the model outputs a representation of the salient facts. 

The advantage of GIE is its flexibility: the same model can be instructed on different 

schemas or ontologies without retraining, simply by changing the prompt. This is particularly 

useful in our case, where the ontology is custom and evolving. Studies have shown that large 

LLMs are capable of parsing and transforming text into structured formats in few-shot settings. 

Furthermore, the model can inherently do zero-shot generalization to entity names or event 

types it hasn’t seen in training, as long as the prompt provides sufficient context. This is valuable 

for energy news, where new names (e.g. a newly commissioned power plant) or emerging event 

types (a novel market policy) might appear[3]. 

On the other hand, there are trade-offs versus traditional task-specific models. A fine-tuned 

NER model or relation classifier might achieve higher precision on a narrowly defined task, 

especially if plenty of labeled data exists. LLMs operating via prompts may sometimes omit 

required details or introduce errors if the prompt is not precise. Generative IE can struggle with 

over-generation (including irrelevant info) or format errors if not properly constrained. 

Additionally, LLMs have a tendency to produce answers regardless of confidence, which can 

lead to spurious extractions if the prompt does not enforce caution. Despite these challenges, 

the generative approach is appealing for our scenario because of its speed of development (no 

need to train multiple models) and its ability to capture complex relations in a single shot. With 

careful prompt engineering and constraints, we can mitigate many of the risks and obtain high-

quality structured data from the LLM. 

Recent surveys (e.g. Xu et al., 2024) conclude that LLM-based IE is a promising direction, 

especially when dealing with complex or low-resource domains[3]. By leveraging the world 

knowledge and language understanding of LLMs, we can extract facts that more brittle, small 

models might miss. In summary, our approach employs a generative LLM to perform end-to-

end extraction of energy domain knowledge. The subsequent sections outline how we constrain 

and guide this generative process – using an ontology schema, structured output format, and 

normalization – to ensure the results are accurate and ready to integrate into a knowledge graph. 



CHAPTER 2: BACKGROUND & REQUIREMENTS 

22 

 

2.3.4. Ontology-Aware Prompting and Schema Constraints 

A key design principle is to make the LLM aware of the target ontology and required output 

structure. Ontology-aware prompting means we explicitly inform the model about the classes 

and relations it should use, effectively whitelisting the allowed schema. In practice, the prompt 

includes a brief excerpt or description of the ontology schema relevant to extraction. For 

instance, we might list the main entity types (e.g. PowerPlant, GovernmentAgency, 

WeatherEvent, OutageEvent, PriceSpike) and their properties or relationships. By providing 

this context, the model’s output space is narrowed to our domain vocabulary – it knows to prefer 

terms like “PowerOutage” or “Heatwave” if those are in the schema, rather than inventing 

unrelated categories. This technique leverages the LLM’s ability to follow instructions: we give 

it a semantic guideline so that extracted facts are semantically aligned with our knowledge 

graph design. Empirically, ontology-grounded prompting reduces “drift” where the model 

might otherwise output information that doesn’t fit our schema (e.g. an irrelevant relation or an 

undefined class). It also improves consistency, as the same concept will be referred to by the 

canonical name defined in the ontology (e.g. always output "region": "West Macedonia" instead 

of sometimes saying "Western Greece" for the same region). 



CHAPTER 2: BACKGROUND & REQUIREMENTS 

23 

 

 

 

 

 

Raw Term(s) / Phrase(s) Canonical Term Notes 

“day-ahead price”, “DAM price”, 

“DA MCP”, “market clearing price” 
`metric_type=day_ahead_price` 

Normalize 

MCP/MWh context 

“lignite”, “brown coal”, 

`generation__fossil_brown_coal_lignite` 
`fuel=lignite` 

Align to 

ENTSO-E naming 

“blackout”, “grid outage”, “supply 

interruption” 
`TemporalEvent=BlackoutEvent` Event class 

“policy change”, “regulatory 

decision”, “ministerial decree” 
`TemporalEvent=PolicyChange` Event class 

“weather heatwave”, “high 

temperatures”, “καύσωνας” 
`Theme=Weather` 

Theme + 

optional sub-type 

“Greece bidding zone”, “IPTO”, 

`10YGR-HTSO-----Y` 
`Zone(name='Greece')` 

Zone/MapCode 

mapping 

“PPC”, “Public Power 

Corporation”, “ΔΕΗ” 
`Entity(name='PPC')` 

Organization 

synonyms 

“Regulator”, “RAE”, “Hellenic 

Energy Regulator” 
`Entity(type='Regulator')` 

Organization 

class 

 
Table 2-1: vocabulary normalization examples 



CHAPTER 2: BACKGROUND & REQUIREMENTS 

24 

In tandem with ontology context, we impose schema-constrained generation to ensure the 

output format is strictly structured. We use JSON Schema as a contract for the LLM’s output. 

The JSON Schema defines the expected structure (keys and data types) for each type of object 

in the ontology. For example, for an Event extraction we might require keys: "type", 

"description", "date" (ISO 8601 format), "location" (canonical region name or code), 

"entities_involved" (array of entity identifiers or names), and "source" (the article URL or ID). 

This schema (provided in the prompt or as an instruction) acts as a specification that the model 

should follow. The model is instructed to output only valid JSON conforming to this schema 

and nothing else. This approach leverages the fact that modern LLMs can be guided to follow 

a format meticulously if the prompt is clear. By including the schema (or a snippet of it) in the 

prompt, we effectively whitelist JSON keys and value types. The model learns that any output 

must fit that template, reducing the chance of free-form digressions or missing fields. 

An additional measure is the use of grammar-constrained decoding: decoding the LLM’s 

output with a formal grammar that only generates syntactically correct JSON. Research has 

shown that applying a context-free grammar during generation can prevent invalid tokens and 

guarantee well-formed JSON output[4],[5]. In practice, this might involve using a tool or library 

that wraps the LLM and stops it from producing characters that violate the JSON structure (e.g. 

an unmatched brace). Grammar-constrained generation complements the prompt-level schema 

hints by enforcing correctness at decoding time (it ensures syntax validity, while the JSON 

Schema ensures semantic validity of keys/values). The benefit is that we rarely get malformed 

outputs – a common failure mode when asking LLMs to output complex JSON is accidentally 

producing extra commas or commentary text. With a grammar or incremental JSON validator, 

those are eliminated. The downside to grammar-constrained decoding is the added complexity: 

not all LLM APIs natively support grammars, so it can require custom decoding logic. Also, a 

grammar can guarantee form but not that the content is correct (the model could still place a 

value in the wrong field) [4],[5]. Therefore, we still rely on full JSON Schema validation after 

generation as a safety net. 

In summary, ontology-aware prompting and schema constraints greatly enhance reliability. 

The theoretical foundation comes from principles of controlled text generation and structured 

prediction. By giving the model a schema to adhere to, we turn the generation into a kind of 

structured fill-in-the-blanks task rather than open-ended text writing. The model’s creativity is 



CHAPTER 2: BACKGROUND & REQUIREMENTS 

25 

thus channeled strictly into filling factual values from the input text into the correct JSON slots. 

If the model attempts to produce something outside the schema, the validator or grammar will 

catch it, and we can discard or correct that output. This approach draws inspiration from ideas 

in semantic web and databases: our ontology and schema play a role analogous to an 

OWL/SHACL schema in RDF systems, defining what constitutes a valid fact, and the LLM is 

constrained to generate only those valid facts. The result is a schema-conforming JSON output 

ready for ingestion into the knowledge graph. 

 

2.3.5. Temporal Anchoring and Geospatial Grounding 

Energy events are inherently tied to when and where they occur. Thus, a robust knowledge 

extraction process must normalize temporal and geospatial references from text. Temporal 

anchoring is the practice of converting date/time expressions in text into a standard, machine-

readable format (ISO 8601 timestamps). For example, if an article says “late July 2025”, the 

system should interpret this, perhaps as an interval like “2025-07-20/2025-07-31” (if the exact 

date isn’t given). We attach such normalized timestamps to the extracted events or facts. Using 

ISO 8601 (e.g. "2025-07-24T00:00:00Z" for July 24, 2025) ensures that all events on the 

timeline can be compared and ordered chronologically. In cases of ambiguous or relative time 

expressions – e.g. “yesterday” or “last week” – the extraction process needs to use the article’s 

publication date as a reference. For instance, “yesterday” in a news piece published on 2025-

08-01 would be anchored as 2025-07-31. If an exact date cannot be determined, we allow an 

uncertainty range or mark the timestamp with a qualifier (e.g. an approximate_date flag or using 

the start of the mentioned month when only month/year are known). The theoretical basis here 

comes from temporal information extraction research (e.g. TIMEX3 in NLP) – the idea is to 

attach every event or fact to a timeline consistently. By doing so, our downstream system can 

align events with time series anomalies by matching timestamps. In the prompt design, we 

instruct the LLM to output dates in ISO format when possible (and our post-processing will 

handle parsing of any free-text dates). We also incorporate a Temporal Ontology (as part of our 

schema) that defines concepts like TimeInstant or TimeInterval to standardize how time is 

represented in the extracted JSON. 



CHAPTER 2: BACKGROUND & REQUIREMENTS 

26 

Geospatial grounding is analogous, focusing on the “where.” Locations mentioned in text 

can be ambiguous or vary in granularity. Our approach is to map textual location mentions to 

canonical geographic identifiers. For example, an article might mention “Μακεδονία” which 

could refer to a region in Greece (Western Macedonia, Central Macedonia, etc.) or generally 

the historical region. We resolve this by using a predefined list of canonical regions and country 

names (for instance, the ISO country codes or a standardized list of admin regions in Greece). 

If the text says “Attica” or “Αττική”, we map it to a canonical identifier for the Attica region. If 

a specific city or facility is mentioned (e.g. “Λαύριο Power Station”), the system should ground 

it to known entities in the ontology (like a node representing that power station with 

coordinates). This grounding often requires an external gazetteer or lookup table – essentially 

an algorithmic step to disambiguate place names. In theoretical terms, it’s related to entity 

linking (linking a text mention to a knowledge base entry). We include in our pipeline a 

geospatial canonicalizer that consults a database of known energy locations (possibly using a 

PostGIS-backed repository of power assets and regions) to find the best match. For the LLM 

extraction stage, we also provide guidance: the prompt might say “identify any locations and 

use canonical region names”. If the LLM is uncertain (e.g. the text says “in the north of the 

country” without naming it), the model should output a generic "location": "Greece (unspecified 

region)" or a null value for location with a note. We prefer not to guess – abstaining or using 

an "unspecified" placeholder is better than mislinking to the wrong place. 

The combination of temporal anchoring and geospatial grounding gives each extracted 

event a clear when and where context in a standard form. This is crucial for aligning with time 

series anomalies: an anomaly has a timestamp and possibly a region (e.g. a spike in Greek 

national demand vs. Attica regional demand). We can only match an event to an anomaly if 

both share the same normalized time and location reference. By enforcing these normalizations 

at extraction time, we avoid ad-hoc string matching later. Conceptually, this part of the system 

echoes known standards like ISO 8601 for time and GeoSPARQL/ISO country codes for 

location in semantic data integration. It ensures that the knowledge graph we build has a 

consistent temporal and spatial index – enabling queries like “find events within 1 day and in 

the same region as anomaly X.” All told, temporal and geospatial normalization are 

indispensable for grounding the extracted knowledge in real-world coordinates of time and 

space. 



CHAPTER 2: BACKGROUND & REQUIREMENTS 

27 

 

2.3.6. Prompt Design Principles for Reliable Structured Output 

Designing the prompt for the LLM is both an art and a science. Our prompts are carefully 

structured to maximize extraction accuracy while minimizing irrelevant text. Generally, the 

prompt includes multiple components, each serving a specific purpose: 

• System and Task Instruction: A concise description of the task, e.g. “You are an 

information extraction system that reads news and outputs facts in JSON. Only produce 

valid JSON according to the schema. Do not include explanations.” This sets the overall 

behavior: the model knows it must produce a particular format and nothing extra. 

• Ontology and Schema Excerpt: We provide a summary of the relevant ontology 

classes and relationships expected. For instance: “Relevant event types: Blackout, 

Maintenance, PolicyChange, WeatherEvent. Relevant entity types: PowerPlant, 

Company, GovernmentAgency, Region. The output JSON schema has fields: type, date, 

location, entities_involved, description, source.” By giving this, we narrow the context: 

the model will focus only on extracting those types of information and use those exact 

field names. This acts as a whitelist of what it should talk about. 

• Few-Shot Examples (especially in Greek): We include one or more example 

extractions, since our articles are primarily in Greek. For example, we might show a 

short Greek sentence and a correct JSON output. E.g.: «Στις 12 Αυγούστου, ένας 

κεραυνός προκάλεσε μπλακ άουτ στη Θεσσαλία.» with a following JSON: {"type": 

"BlackoutEvent", "date": "2025-08-12", "location": "Thessaly, GR", "cause": 

"Lightning strike", "entities_involved": [], "source": null}. This demonstration helps the 

model understand exactly how to format the output for real inputs. It also signals that 

Greek names and text should be handled (the model sees Greek in the prompt, reducing 

confusion when the input is Greek). 

• Output Constraints and Guardrails: We explicitly remind the model to output 

JSON only. Phrases like “If a field is unknown or not mentioned, use null or an empty 

array. Do not add any commentary. Do not deviate from the schema.” are included. We 

also emphasize provenance: “Include the source field with the article URL provided” (if 



CHAPTER 2: BACKGROUND & REQUIREMENTS 

28 

the URL or ID of the article is known to the model or passed in). These guardrails ensure 

that the model doesn’t, for example, start explaining its reasoning or outputting text 

outside the JSON. The instruction to use null for unknowns is important to prevent the 

model from guessing or hallucinating values – it is effectively an abstain mechanism. 

All these components are combined in a logical order: typically system role instruction, 

then schema/ontology description, then examples, then the actual article text (as the prompt 

input to be processed). The prompt is thus quite structured, and this structure is designed 

following best practices from prompt engineering research and our own trials. One principle is 

to place the example demonstrations right before the task input, to leverage in-context learning: 

the model is more likely to mirror the format it just saw in the examples. Another principle is 

clarity and brevity – we don’t include any superfluous text that might confuse the model. Every 

part of the prompt either defines the format or exemplifies the task. 

For reliability, we also instruct the model on what to do when uncertain. For instance, “If 

the article does not mention a specific date, set date to null. Do not fabricate a date.” These 

instructions act as fabrication guardrails, critical in preventing the model from introducing false 

information. We prefer null or “unknown” markers over wrong guesses, maintaining high 

precision at slight cost of completeness. In an academic sense, this prompt design embodies the 

concept of schema-guided generation: the model is virtually guided by a mini specification (the 

ontology) and must conform to it. Past work has shown that such constrained prompts greatly 

improve the quality of structured outputs from LLMs. Our approach aligns with those findings, 

combining them with domain-specific adjustments (bilingual examples, etc.). 

 

2.3.7. Reliability, Validation, and Evaluation of Extraction 

Even with careful prompting, the system must handle errors gracefully and measure its own 

performance. We incorporate multiple layers of reliability checks: 

JSON Schema Validation: After the LLM outputs a JSON, we run a validator against the 

official schema (which defines allowed classes, fields, data types, etc.). Any output that fails 

validation is rejected or flagged. For example, if the model returns an unknown field 

"location_name" instead of the expected "location", or if a required field is missing, the 



CHAPTER 2: BACKGROUND & REQUIREMENTS 

29 

validation will catch it. This is crucial to avoid ingesting malformed data into the knowledge 

graph. Invalid outputs are placed into an “unmapped queue” for manual review or re-processing. 

This ensures ingestion safety – only clean, structured data enters our database. 

Deterministic Generation: To enhance reproducibility, we typically run the LLM with 

deterministic settings (e.g. temperature 0) when extracting facts. This reduces variability – the 

same input should yield the same output each time. It also prevents the model from randomly 

drifting in style or structure between runs. If nondeterministic methods are used (for diversity), 

we ensure the critical fields remain consistent or we take multiple outputs and choose the best 

via validation. 

Error Handling and Abstention: We instruct the model to abstain when unsure (outputting 

nulls or empty lists as mentioned). If the model truly doesn’t follow the format or produces a 

non-JSON answer, our system treats it as a failure case. We might then fall back to a simpler 

prompt or a smaller extraction scope. Categorizing errors helps in debugging: we maintain an 

error taxonomy including (a) Malformed JSON (caught by parser), (b) Schema violation (JSON 

structure okay but wrong content types), (c) Semantic errors (e.g. the model filled a field with 

plausible text that’s not actually in the article). The last type is the hardest to catch automatically 

– it requires spot-checking. But we mitigate it by emphasizing provenance: every extracted fact 

is supposed to be verifiable in the source text. The JSON could even carry a snippet or reference 

to the exact sentence it came from. 

Evaluation and Quality Metrics: We evaluate the extraction quality both intrinsically and 

extrinsically. Intrinsically, one signal is schema coverage – does the model populate all fields 

it should when information is present? Also, do the outputs cover the range of classes and 

relations we expect from the corpus? For instance, if our 250 articles include many on weather, 

we expect many WeatherEvent outputs; if not, perhaps the model is missing them. We monitor 

the distribution of extracted classes and compare it to known frequencies (if available) or 

expectations. We also evaluate precision by spot-checking a sample of extracted facts against 

the source text: are the named entities correct? Did the model invent any detail? Spot-checking 

focuses on critical classes (e.g. facts that would be used in explanations of anomalies). If an 

important category like “BlackoutEvent” has low precision (many false extractions), we adjust 

the prompt or refine the ontology definitions to the model. 



CHAPTER 2: BACKGROUND & REQUIREMENTS 

30 

When possible, we assemble a small “gold set” of articles with manually annotated facts. 

We then compare the LLM’s output to this gold data to estimate precision and recall. This gives 

quantitative scores (like an F1 measure) for the extraction. However, building a large gold set 

can be labor-intensive, so our emphasis is on high precision through design and then ensuring 

reasonable recall by broad prompt coverage. 

Drift Monitoring: Over time or with different model versions, the output might drift (e.g. a 

new model update might format things differently or use synonyms). We keep an eye on this 

by periodically re-validating a fixed set of example inputs. If a drift is detected (say the model 

starts using a non-canonical location name or forgets to include citations), we intervene with 

prompt adjustments or additional fine-tuning of instructions. Since our pipeline might be 

running on updates from news over time, maintaining consistency is important – otherwise the 

knowledge graph could get inconsistent entries. 

In conclusion, the theory behind our LLM-based knowledge extraction is to combine the 

strengths of generative models (flexibility and understanding) with the rigor of schema 

enforcement and validation. By doing so, we obtain a system that can ingest diverse 

unstructured inputs and output rich structured knowledge, all while minimizing the risk of error. 

The careful prompt design, use of ontologies, and validation steps ensure that the extracted facts 

about the energy domain are accurate, normalized in time and space, and ready to support 

higher-level reasoning like anomaly explanations. This lays a solid theoretical foundation for 

the implementation in Chapter 4 and the explainability techniques discussed next. 

 

2.4. Knowledge Graphs and GraphRAG for Explainability  

2.4.1. Graph-Structured Knowledge for Anomaly Explanation 

Knowledge graphs are an effective way to represent heterogeneous information – they store 

entities (nodes) and relationships (edges) in a flexible, connected structure. In the context of 

energy systems, a knowledge graph can link together many data types: time series signals 

(loads, generation), detected anomalies in those signals, events extracted from news, key 

entities like power plants or companies, thematic factors like weather or policy changes, and so 

on. The motivation to use a graph structure for anomaly explainability stems from the need for 



CHAPTER 2: BACKGROUND & REQUIREMENTS 

31 

multi-hop reasoning and provenance-rich context[7],[8]. An anomaly (for example, a sudden 

drop in electricity demand on a certain date) might be explained by an event (e.g. a large outage 

or a public holiday) that is not directly obvious from the data alone. By storing events and facts 

in a graph, we can traverse connections: from an anomaly node we can find related events that 

occurred around the same time and place, then from those events we can find involved entities 

or broader themes (like “heatwave” or “grid maintenance”). This multi-hop traversal is 

something graphs excel at – you can find paths and neighborhoods of information that connect 

seemingly disparate facts. 

Crucially, every piece of information in the graph can carry its provenance (where it came 

from), enabling trustworthy explanations. Rather than a black-box model guessing the cause of 

an anomaly, we have a graph that explicitly links an anomaly to evidence (news, events) that 

can be cited. This structured approach addresses one of the core challenges in explainable AI: 

the need to justify why something happened with verifiable sources. The graph acts as a 

knowledge base that the explanation system can draw from, ensuring that answers about 

anomalies are grounded in data or documented events, not just learned patterns. 

In theory, using a graph for anomaly explanation aligns with the retrieval-augmented 

generation paradigm, where an external knowledge source is used to inform an LLM’s output. 

Instead of retrieving documents by keywords, we retrieve a tailored subgraph of relevant facts. 

Graphs are particularly well-suited for global context and sensemaking. They provide a holistic 

view: for example, an anomaly on date D in region R can be connected to all events on D in R 

(or even events in neighboring regions, if the graph encodes power grid connectivity). This 

comprehensive neighborhood can reveal patterns (maybe D was a national holiday affecting all 

regions). If we relied only on individual text snippets, we might miss the big picture or fail to 

connect two related events reported in different articles. A graph naturally merges information 

from multiple sources because they share nodes (e.g. the same region node linked to multiple 

events). In summary, the knowledge graph offers a structured memory of the system’s factual 

context, which is invaluable for explaining anomalies through multi-hop, multi-source 

reasoning. 

 



CHAPTER 2: BACKGROUND & REQUIREMENTS 

32 

2.4.2. Property Graph Model and Ontology Alignment 

Our system uses a property-graph model, conceptually similar to Neo4j’s data model. In a 

property graph, nodes have labels and properties (key-value attributes), and edges have types 

and can also carry properties. This model is flexible and expressive, allowing us to model the 

energy domain ontology naturally. We define several key node types (labels) in the graph, each 

corresponding to a concept from our ontology: 

• TimeSeries: representing a stream of measurements (e.g. the national power 

demand, the solar generation of a specific plant). A TimeSeries node might have 

properties like metric_type (load, generation, price, etc.), zone (the region or country it 

pertains to), and maybe an identifier linking to the ENTSO-E source. 

• Anomaly: representing a detected anomaly on a time series. An Anomaly node 

could have properties such as timestamp (when it occurred), severity, expected_value 

vs actual_value, etc. It is typically linked to the TimeSeries it belongs to. 

• Article: representing a news article or report document. It has properties like 

published_date, source_url, and perhaps a short title or reference. 

• TemporalEvent: representing an event that occurred, extracted from text. This 

corresponds to events in our ontology (like BlackoutEvent, WeatherEvent, 

PolicyChange, etc.). Properties include type (the subclass of event), description (a brief 

description from the text), date (normalized date or interval), and source_ref (linking 

back to an Article or source). 

• Entity: representing real-world entities such as organizations, facilities, persons, or 

other actors. For example, a node for Public Power Corporation (PPC) or a node for a 

specific power plant. These nodes often come from the ontology’s actor or asset classes 

and have properties like name, entity_type and possibly external IDs. 

• Theme: representing abstract themes or categories relevant to events, such as 

Weather, Market, Regulatory, Technical, etc. A theme node is like a tag that can be 

attached to events or anomalies indicating the nature of their cause (e.g. an event might 

be tagged with theme “Weather” if it’s a heatwave). 



CHAPTER 2: BACKGROUND & REQUIREMENTS 

33 

• Zone/Region: representing geospatial areas (countries, regions, etc.). For instance, 

a node for Greece, and nodes for its sub-regions (Attica, Macedonia, etc.). These often 

come from a location ontology or simply a predefined set of region nodes with 

properties like name and standardized codes. 

Correspondingly, we define relationship types to connect these nodes in meaningful ways some 

of which are displayed below: 

• HAS_ANOMALY: a relationship from a TimeSeries node to an Anomaly node. 

This indicates that the anomaly occurred in that particular time series. The edge might 

have a property like window or date to indicate when. 

 
Figure 2-3: HAS_ANOMALY relationship screenshot 

• MENTIONS: linking an Article to an Entity or to a Theme. If a news article 

mentions the “Public Power Corporation”, we create an edge Article —MENTIONS→ 

Entity(PPC). This way we know which entities were involved or quoted in that article. 

Likewise, if the content of the article is about a heatwave, we could link the Article —

MENTIONS→ Theme(Weather). 



CHAPTER 2: BACKGROUND & REQUIREMENTS 

34 

 
Figure 2-4: MENTIONS relationship screenshot 

 
• TAGGED_THEME: linking a TemporalEvent to a Theme. For instance, an event 

node for “Heatwave in July 2025” could be TAGGED_THEME→ Weather. Or a policy 

change event might be tagged as Regulatory or Market theme. This provides a way to 

categorize events by general type. 

 
Figure 2-5: TAGGED_THEME relationship screenshot 



CHAPTER 2: BACKGROUND & REQUIREMENTS 

35 

• LOCATED_IN: capturing geography, this relationship connects events or entities 

to a Zone. An event that happened in Attica would have TemporalEvent —

LOCATED_IN→ Zone(Attica). Similarly, a power plant entity could be 

LOCATED_IN a certain region. This relation anchors nodes to the spatial hierarchy. 

 
Figure 2-6: LOCATED_IN relationship screenshot 

Additionally, we structure time using a time index in the graph. A common technique is a time-

tree: we create nodes for Year, Month, Day, etc., and link events or anomalies to those. For 

example, an Anomaly on 2025-07-24 might have an edge to a Day node representing “2025-

07-24”, which links up to a Month node “2025-07” and a Year node “2025”. This time-tree 

allows efficient range queries (find all events in July 2025 by traversing that node). It’s an 

implementation detail, but conceptually it underscores that time is a first-class dimension in our 

knowledge graph. 

The entire graph is aligned with the ontologies we defined (recall the Temporal, Energy, 

Event ontologies from Section 2.3). Each node type corresponds to an ontology class, and each 

relation type corresponds to a defined relationship in our schema. By using a property graph 

(Neo4j) to store this, we get the advantage of indexing and query language (Cypher) to easily 

retrieve subgraphs of interest. The property graph model is appropriate here because of its 

natural support for property-rich nodes (e.g. we can store the full text of an article as a property 



CHAPTER 2: BACKGROUND & REQUIREMENTS 

36 

of the Article node if needed, or store numeric values in Anomaly nodes). It’s also intuitive for 

developers and analysts. This design is distinct from an RDF triple store; however, it’s 

conceptually similar in that the ontology provides a schema for nodes and edges. In practice, 

Neo4j was chosen as the conceptual backbone due to its speed in graph traversal and its 

ecosystem for building graph-powered applications. We ensure that all data ingested (from 

LLM extraction or time series) respects the ontology definitions, thus the graph remains 

semantically consistent. This consistent property graph will be the substrate on which we 

perform explainability through GraphRAG. 

 

 

2.4.3. Provenance and Trust in the Knowledge Graph 

An explainable system must establish trust with the analyst user. We achieve this by weaving 

provenance information throughout the knowledge graph. Every fact in the graph is traceable 

back to its source: 

• Source URLs and Documents: Article nodes carry the actual source URL or reference 

(e.g. an ID linking to a full-text repository). When an event node is extracted from an 

article, that event node has a property or link indicating the source article. For instance, 

TemporalEvent “Heatwave on July 24” might have a property source_url: 

"https://example.com/news123" and/or an edge to the Article node from which it was 

extracted. This means if the analyst questions the explanation, they can follow the link 

to read the original article in full. 

Figure 2-7: Graph Schema for Neo4j 



CHAPTER 2: BACKGROUND & REQUIREMENTS 

37 

• Timestamps and Ingestion Info: Each node/edge added from extraction can have 

metadata like extracted_at (the time our system added it) and model_version or 

prompt_version (which LLM or prompt template was used). This provenance metadata 

is useful for audit – if an error is later found in an extraction, we know which 

model/prompt likely caused it. 

• Citation Strings: We sometimes store a short citation or reference snippet with events. 

For example, an event node might include a property citation_text like “(Reuters, 

24/07/2025)” to be used in generated explanations. This is not strictly necessary in the 

graph, but it’s convenient to have a pre-formatted reference for use in the output. 

• Confidence scores: Though our extraction is largely zero-shot, if we have any notion 

of confidence (say from a validation heuristic), it could be stored. For instance, if 

multiple articles report the same event, we might increase confidence. Or if an event 

was extracted but with missing fields, we mark it as low confidence and that could be 

considered during explanation generation (maybe requiring a caveat or cross-check). 

By attaching provenance at the node and edge level, the graph becomes a transparent knowledge 

base. This addresses a common concern: LLMs can hallucinate, but if our explanation is built 

from graph facts that are each source-backed, the final output can include explicit citations. In 

effect, the knowledge graph and its provenance data allow the LLM to become a truthful 

narrator rather than a creator of new claims. Each relationship used in an explanation (e.g. 

linking an anomaly to a cause event) is something stored in the graph because it was observed 

or derived from data. We also model provenance in relationships: for example, if we assert 

Anomaly —DESCRIBED_BY→ Event, that edge might carry a supporting_source attribute 

(maybe pointing to an article that mentioned both the anomaly and event, if such exists). 

This approach is conceptually aligned with the W3C PROV-O (Provenance Ontology) 

principles, where every entity and relationship can have associated provenance. While we don’t 

explicitly implement a full PROV ontology in Neo4j, we adhere to the idea: who/what/when 

was this piece of knowledge generated. For trust, this is crucial; an analyst can drill down from 

a conclusion (“the anomaly was caused by X”) to the evidence nodes (“X was a heatwave event 

recorded in this article, here’s the link”). The presence of explicit provenance also aids the LLM 



CHAPTER 2: BACKGROUND & REQUIREMENTS 

38 

when generating explanations: we actually pass these sources into the prompt so the model can 

cite them in the text. This practice of including sources is known to improve the factual accuracy 

of generated answers and provides users the ability to verify each claim. 

In summary, the knowledge graph is not just a collection of data points; it’s a web of 

evidence. Each node and edge is backed by some origin, and we store that link. This builds user 

confidence that explanations are traceable. It also helps maintain the integrity of the system – 

errors can be traced and corrected at the source level. By designing the graph with provenance 

in mind, we ensure that explainability is a first-class property, not an afterthought. 

 

2.4.4. Cypher-Driven Retrieval of Contextual Evidence 

To explain an anomaly, we need to gather the right context from the graph. This is 

fundamentally a retrieval problem: given an anomaly node (or an anomaly description), find 

the most relevant connected information in the graph that could explain it. We take a Cypher-

first retrieval approach, meaning we leverage structured graph queries (in Neo4j’s Cypher query 

language) to fetch a subgraph of evidence before invoking any language model to generate an 

explanation. The retrieval is guided by a few key parameters based on the anomaly’s attributes: 

• Temporal Window: We constrain the query to events that occurred near the 

anomaly’s time. For instance, if the anomaly is at 2025-07-24 18:00 (an evening spike), 

we might query for events on the same day or within ±1 day of that timestamp. The 

window can be adjusted depending on anomaly duration; e.g., for a multi-day anomaly, 

we look across that span. This ensures we only retrieve events that could reasonably be 

contemporaneous causes or context. (A heatwave a year earlier likely isn’t relevant, so 

we exclude it.) 

• Geographic Scope: We filter or prioritize events and facts by location. If the 

anomaly is specific to the Attica region’s grid, we first look for events located in Attica. 

If not much is found, we might broaden to national-level events (Greece) or neighboring 

regions, but with lower priority. Similarly, if the anomaly is on a cross-border 

interconnection, we consider events in either of the countries involved. The graph’s 



CHAPTER 2: BACKGROUND & REQUIREMENTS 

39 

LOCATED_IN edges make this filtering straightforward: a Cypher query can match 

patterns like (e:TemporalEvent)-[:LOCATED_IN]->(:Zone {name: "Attica"}). 

• Ontology Class Filters: Depending on the type of anomaly or the domain 

knowledge, certain event types or themes might be more relevant. For instance, if the 

anomaly is a demand drop, we expect relevant events might be of type WeatherEvent 

(like a cooling event or storm) or InfrastructureFailure. If it’s a price spike anomaly, 

maybe PolicyChange or MarketEvent nodes are more pertinent. We can encode these 

expectations in the query or simply retrieve all events and later rank them by a heuristic. 

In practice, we might label some events as high-priority (e.g. any Blackout event is very 

likely important for grid anomalies). The ontology allows us to do this systematically. 

• Graph Connectivity: We often exploit the graph structure by performing 

expansive queries. For example, find any events within time window that are in the 

same region or that involve an entity related to the anomaly. If the anomaly node itself 

is linked to something (say an Anomaly is linked to a particular PowerPlant entity, if 

the anomaly was detected specifically at that plant’s output), we include events 

involving that same entity. Cypher queries can traverse multiple hops, e.g., “find events 

that involve any entity that is connected to this anomaly.” This way if the anomaly is at 

Plant X, and we have an event “Plant X went offline due to maintenance”, the query will 

catch that event via the shared entity. 

After defining the query criteria, we execute Cypher to retrieve a set of candidate nodes 

and relationships – essentially an evidence subgraph. For example, the query result might 

include two event nodes (a heatwave and a local outage), one theme node (say “Weather”), and 

their links to region or entity nodes, plus the article nodes that describe those events. This 

subgraph is the raw material for the explanation. 

Because multiple pieces of evidence may be found, we consider lightweight ranking 

heuristics to decide which ones to highlight or include. Some heuristics: - Temporal proximity: 

An event that happened just hours before the anomaly likely ranks higher than one that 

happened five days earlier. - Frequency/Multiplicity: If a type of event is common, it might be 

less explanatory than something rare. But if multiple sources all point to the same explanation, 



CHAPTER 2: BACKGROUND & REQUIREMENTS 

40 

that boosts confidence (e.g. three different news articles all mention a heatwave). - Causal 

relevance (by class): A priori, we might weight weather events as more explanatory for demand 

anomalies, and grid outages more for supply anomalies, etc. This introduces domain knowledge 

into ranking. - Connectivity: If an event is directly linked to the anomaly node (for instance, in 

the graph we might directly link a known cause to the anomaly), that should obviously be 

included. Our system currently doesn’t create a direct cause edge automatically, but if it did or 

if an analyst tagged it, that would get top priority. 

The retrieval step is done in the graph database because it can use indexes and relationships 

efficiently. This is more precise than doing a vector search over text: we leverage the structured 

relationships to get relevant context with high precision. It’s also explainable in itself – we can 

log the query and see why certain nodes were returned (due to matching time and location, for 

example). 

By performing a Cypher-first retrieval, we reduce the load on the LLM. Instead of handing 

the LLM a massive trove of documents or expecting it to recall facts from parameters, we give 

it a concise set of extracted facts from the graph. This improves both speed and reliability. It’s 

worth noting that this approach is deterministic given the same graph state and query parameters 

– the same anomaly will always retrieve the same evidence set, which is good for consistency. 

One could tweak the Cypher queries and see directly how the result set changes, which is more 

transparent than adjusting a fuzzy similarity threshold in vector retrieval. 

In theoretical terms, our retrieval strategy aligns with how GraphRAG is conceptualized: 

first retrieve a connected subgraph relevant to the query (here the “query” is essentially: “Why 

did anomaly X happen?”), then feed that to the generative model. It’s a knowledge-driven form 

of retrieval augmented generation. 

2.4.5. Graph-Augmented Generation of Explanations (GraphRAG) 

GraphRAG refers to Graph-based Retrieval-Augmented Generation. In our scenario, after 

retrieving the subgraph of evidence via Cypher, we use it to augment the prompt of the LLM 

that will generate the explanation. The idea is to provide the LLM with structured context so 

that it can produce a grounded answer that includes the relevant facts and cites sources. This 



CHAPTER 2: BACKGROUND & REQUIREMENTS 

41 

approach drastically reduces hallucinations, because the model doesn’t have to invent any 

explanation – it sees actual events and data points from the graph to base its reasoning on. 

The assembly of the prompt for explanation follows a structured format similar to how we 

did for extraction, but with a focus on explanation. We include sections like: - Anomaly 

Overview: We start by describing the anomaly in natural language, including its key details. 

For example: “An anomaly was detected on the electricity demand time series for Greece on 24 

July 2025. The demand spiked 15% above forecast during the evening peak.” This gives the 

LLM and eventually the reader a clear statement of what needs explaining. - Retrieved 

Evidence (Events and Details): We then present the relevant facts from the graph. We might 

format this as bullet points or a short paragraph per item. For instance: “Evidence: (1) A severe 

heatwave was reported in Greece on 23–26 July 2025, with record high temperatures (source: 

[NewsArticle1]). (2) The government declared a public holiday on 24 July 2025 in some regions 

due to emergency measures (source: [NewsArticle2]). (3) Increased use of air conditioning was 

widely reported (Theme: Weather).” Each piece of evidence corresponds to nodes in the 

subgraph (events or themes), and we attach a citation in brackets referencing the source article 

node. In practice, we ensure each evidence sentence contains the essential info and a [Citation]. 

- Entity and Theme context: If relevant, we add one-liners about key entities or themes. E.g. 

“Public Power Corp (PPC) reported no infrastructure failures on that day [CompanyReport].” 

Or “This anomaly occurred during a known period of high temperatures (Weather event).” This 

is optional and depends on what the graph has – sometimes the evidence itself suffices. - 

Instruction and Answer Formatting Tips: After listing the evidence, we often include a brief 

instruction to the model: “Using the above information, explain the likely reasons for the 

anomaly. Your answer should be a concise paragraph. Cite the sources for each factual claim. 

If the evidence is insufficient or contradictory, note that the cause is uncertain.” This guides the 

LLM on how to compose the final answer. We stress the use of citations and mention the 

possibility of uncertainty so the model knows that “unknown” is an acceptable answer if 

warranted. 

With this prompt, the LLM then generates the explanation. Since it has explicit facts and 

references in front of it, it tends to stay faithful to them – effectively performing a 

summarization or reasoning task over a mini-knowledge-graph. Each piece of evidence in the 



CHAPTER 2: BACKGROUND & REQUIREMENTS 

42 

prompt is like a node or triple that the model can incorporate into a narrative. For example, the 

model might produce: “The anomaly on 24 July 2025 can be explained by an extreme heatwave 

that drove up electricity demand. During 23–26 July 2025, Greece experienced record high 

temperatures, leading to surging air conditioning use[2]. The spike occurred on a day that was 

even declared an emergency public holiday, which indicates widespread impact. Thus, the 

demand surge was not a random fluctuation but correlated with a weather-induced demand 

increase.” (And the citations  and here correspond to the evidence sources given, demonstrating 

provenance.) 

Faithfulness is a key evaluation criterion for the LLM’s answer. Because we structure the 

input, we expect the output to contain only claims derivable from the evidence. If the model 

tried to add something not supported (hallucination), ideally it would not find it in the prompt 

and thus be less likely to mention it. We also explicitly told it to say “unknown” if it can’t find 

a reason. For example, if no events were found or nothing obvious, the model might answer: 

“The cause of the anomaly on that date is unclear; no significant events were reported around 

that time, so it may have been due to unknown factors.” This kind of answer is important – it’s 

better to acknowledge uncertainty than to guess. 

Our GraphRAG approach can be contrasted with a pure text RAG: normally, one might 

vector-search for relevant passages in news articles and feed them to the LLM. We instead 

retrieve by graph (structured) and feed in a distilled form of knowledge. In some cases, we may 

complement this with actual text snippets (for richness, especially if a quote or detail is needed). 

A hybrid approach could embed both the structured data and a short quote from an article in 

the prompt. For instance, an event node might carry a short description “Heatwave with 40°C 

temperatures” which we include verbatim. If needed, we could also retrieve the top relevant 

paragraph from an article via embedding search and show it. This hybrid Graph+Text RAG can 

improve completeness when the graph node alone is too abstract. But importantly, even that 

text snippet is anchored to a node, maintaining the structured context. 

By using GraphRAG, we also reduce hallucinations and enforce relational accuracy. The 

graph structure ensures that the relationships (e.g. cause-effect, location-event) are explicitly 

given, so the model is less likely to make an incorrect connection. For example, if two events 

https://www.microsoft.com/en-us/research/publication/from-local-to-global-a-graph-rag-approach-to-query-focused-summarization/%23:~:text=propose%2520GraphRAG,%2520a%2520graph,to%2520substantial%2520improvements%2520over%2520a


CHAPTER 2: BACKGROUND & REQUIREMENTS 

43 

are unrelated in the graph, we won’t present them as linked evidence, so the model won’t 

incorrectly tie them together. 

This approach draws on recent research: Edge et al. (2024) demonstrated that graph-based 

RAG yielded more comprehensive and diverse answers to broad analytical queries than 

standard RAG[2]. Our use case is a specific form of query (anomaly explanation), but we 

similarly find that pulling in a connected subgraph (anomaly, related events, entities) gives the 

model a richer context to answer the “why” question. Essentially, GraphRAG lets the LLM do 

what it’s good at (language and reasoning) while the knowledge graph does what it’s good at 

(storing and retrieving structured relations). The combination ensures that the explanations are 

both grounded in data and articulated in a coherent narrative. 

 

 

https://www.microsoft.com/en-us/research/publication/from-local-to-global-a-graph-rag-approach-to-query-focused-summarization/%23:~:text=propose%2520GraphRAG,%2520a%2520graph,to%2520substantial%2520improvements%2520over%2520a


 
 

 

 

 

 

 

3. SYSTEM ARCHITECTURE   

3.1. System Overview 

The system follows a layered architecture that maps cleanly to microservices. Guided by the 

requirements of Chapter 2, we separate responsibilities into five layers: Data Acquisition, 

Storage & Preprocessing, Semantic Extraction, Knowledge Graph, and Application. This 

separation keeps concerns isolated and allows each layer to evolve independently (e.g., add a 

data source, change an extraction method, or scale a service) without ripple effects. 

• Data Acquisition pulls structured metrics (ENTSO-E) and unstructured text (news/RSS). 

• Storage & Preprocessing stages inputs into weekly aggregates, exports CSVs, and 

prepares payloads. 

• Semantic Extraction turns raw artifacts into entities, events, themes, and anomalies. 

• Knowledge Graph (Neo4j) integrates all semantics under consistent time and location 

references. 

• Application exposes APIs and UIs (timeline views, GraphRAG answers) to end users. 

CHAPTER  
3 



CHAPTER 3: SYSTEM ARCHITECTURE 

45 

 

Figure 3-1: Layered architecture of the proposed system, illustrating the flow from data acquisition 
through preprocessing, semantic extraction, and integration into the knowledge graph, up to end-user 
applications. 

  

 

3.2. Architecture Views 

While the layered model provides a high-level static view of the system, it is also useful to 

consider the architecture from other perspectives. Figura 3-2 presents a data-flow and agent 

view of the system, highlighting how components interact dynamically. In this view, three 

primary workflows (or agents) handle different parts of the pipeline in sequence: a Structured 

Data ingestion workflow, an Unstructured Data extraction workflow, and a GraphRAG-based 

query workflow. Each workflow corresponds to one or more layers in the system and is 

implemented as an orchestrated set of tools and services. The structured workflow ingests time-



CHAPTER 3: SYSTEM ARCHITECTURE 

46 

series data (e.g. CSV files of energy metrics) and detects anomalies, the unstructured workflow 

processes textual data (news articles) to extract semantic entities/events, and the GraphRAG 

workflow handles user queries by retrieving graph context and generating explanations. These 

components communicate via well-defined interfaces: for instance, the ingestion workflows 

read from files or APIs and write to the Neo4j graph database, while the GraphRAG agent reads 

from the graph (via Cypher queries) and interacts with a language model. The data flow between 

stages is also depicted – raw data (CSV files, JSON article dumps) flows into the system, is 

transformed into graph-structured knowledge, and finally is used to produce contextual 

explanations for end-user queries. This multi-view depiction underscores how the layers are 

realized in practice by specialized processes and how data moves through the system from 

inputs to insights. 

 

Figure 3-2: System architecture diagram showing data-flow and agent views. Structured and 
unstructured ingestion modules (agents) populate the Neo4j knowledge graph, and a GraphRAG query 
agent utilizes the graph to generate context-rich answers.  

 

 

The remainder of this section shows how these layers are realized by deployable components 

and how they are deployed in the SaaS environment. 

 



CHAPTER 3: SYSTEM ARCHITECTURE 

47 

Component View 

The component view illustrates the microservices and their interactions: 

1. API Edge: a Gateway/BFF terminates HTTPS and routes requests to backend 
services. 

2. Application Services: Timeline API returns anomaly timelines; Graph API serves 

graph queries; GraphRAG composes subgraph context with an LLM to produce 

explanations. 

3. Ingestion Services: a Structured worker fetches ENTSO-E metrics, aggregates and 

detects anomalies; an Unstructured worker extracts entities/events from articles and 

maps them to the ontology. 

4. Storage: Neo4j persists the integrated knowledge graph; optional CSV exports are 

produced for reproducibility. 

5. External: LLM provider (optional for extraction and required for GraphRAG) and 

upstream data sources. 

 

 

Figure 3-3: Microservices component diagram 



CHAPTER 3: SYSTEM ARCHITECTURE 

48 

Deployment View 

The deployment view shows how the system is hosted: 

1. User traffic reaches the cluster via an ingress/load balancer. The Web UI serves static 
assets; API Gateway handles REST endpoints. 

2. Backend pods run independently and scale horizontally: Timeline API, Graph API, 

GraphRAG. 

3. Ingestion pods run on schedules or event triggers, pulling from external sources and 

upserting into Neo4j. 

4. Secrets/configs mount DB and LLM credentials; all service-to-DB traffic uses 

bolt/Cypher. 

 

 

 

Figure 3-4: Deployment diagram 



CHAPTER 3: SYSTEM ARCHITECTURE 

49 

3.3. Data Sources & Contracts 

The system integrates multiple open data sources, each with a defined input contract to ensure 

smooth ingestion and harmonization. Key sources include: 

• ENTSO-E Transparency Platform – a European energy market data repository 

providing timeseries for electrical metrics (e.g. load demand, generation output, cross-

border flows, day-ahead market prices). Data is obtained via the ENTSO-E API using 

an authentication token, or alternatively from published files. For consistency, raw 

hourly data is aggregated into weekly intervals in a standardized CSV format with 

common timestamp and value columns (e.g. _time in ISO 8601 UTC and value for the 

measurement). Each dataset (such as Greece electricity load 2015–2023) is thus 

converted into a CSV with a unified schema. The data contract here stipulates that 

timezones are converted to UTC and units are consistent across countries, so that all 

time-series share a common temporal frame and can be compared directly. If live API 

access is unavailable (e.g. missing token), the system can fall back to previously fetched 

CSV files, ensuring the pipeline remains offline-safe and reproducible. 

• Greek TSO & Grid Data (ADMIE) – (Planned) open datasets from the Greek 

Independent Power Transmission Operator, which include electrical infrastructure 

information and possibly grid topology or regional load data. Although not heavily used 

in the current pipeline, the architecture is designed to accommodate such spatial 

infrastructure data. For example, grid node or region definitions from ADMIE can be 

ingested to enrich the knowledge graph’s geospatial context (such as adding nodes for 

substations or transmission lines). These datasets typically come in tabular or geospatial 

formats; the system expects them to be converted into structured form aligned with the 

ontology (e.g. a substation would map to an Infrastructure or Facility entity). The 

contract for such data emphasizes consistent identifiers (e.g. using a known code for 

each region or asset) and coordinate information for mapping. 

• Meteorological and External Factors – (Planned) Sources like weather data or market 

indicators can be integrated in the future. The architecture anticipates feeds such as 

temperature anomalies or fuel prices, which can be linked to energy events. Although 

not implemented in this work, any time-based external dataset can be incorporated by 



CHAPTER 3: SYSTEM ARCHITECTURE 

50 

defining a loader that produces a CSV or JSON with the required fields (time, location, 

value) and by extending the ontology with appropriate entity types (e.g. an 

ExtremeWeatherEvent). The design ensures new data types can be added with minimal 

changes, owing to the flexible schema of the knowledge graph (see Section 3.4). 

• Energy News Articles – an extensive collection of textual data from Greek-language 

energy news outlets and RSS feeds. These unstructured sources provide contextual 

information on policy changes, market developments, and socio-economic events 

impacting the energy sector. Articles are collected via web scraping and news APIs and 

stored in a JSON repository (the "article warehouse") following a predefined Article 

schema. This schema defines fields such as id, title, author, content, published_date (in 

ISO 8601 format), language, sourceURL, etc., aligned with the Schema.org 

NewsArticle format. For instance, each article JSON includes a word count and a 

language code, and we enforce that published_date is in UTC. The ingestion contract 

for articles requires basic data cleaning: duplicate or near-duplicate articles (e.g. the 

same news from two sources) are identified (by identical title and date) and merged to 

avoid repetition, as per best practices (“remove duplicate or irrelevant observations”). 

We also filter out items that do not meet quality criteria (e.g. very short texts or non-

Greek content), ensuring that only relevant, rich text is fed into the extraction pipeline. 

Crucially, each article record carries provenance metadata such as the original source 

URL and the retrieval timestamp. This provenance information (“the history of the state, 

custody, or location of something”) is embedded so that any piece of extracted 

knowledge can be traced back to its source, supporting transparency and reproducibility. 

 

3.4. Knowledge Graph Schema 

All processed information converges into a central knowledge graph implemented as a Neo4j 

property graph. In this model, entities are represented as nodes with labels and properties, and 

relationships between entities are represented as typed edges. The graph’s schema is designed 

to capture the key domain concepts of open energy data and their connections, in alignment 

with our ontology. Tables 3-1, 3-2 below summarize the main node types and relationship types 

in the knowledge graph: 



CHAPTER 3: SYSTEM ARCHITECTURE 

51 

 

Table 3-1: Key node types in the knowledge graph (property graph model) and their roles. 

 

 

 

 

Label Purpose Key Properties Example Node 

TimeSeries 

Stream of 
ENTSO-E 

measurements 
(load, generation, 

price) 

`product`, `unit`, 
`country`, `zone_code`, 

`period_start`, 
`period_end` 

`TimeSeries (product=‘day_ahead_price')` 

Anomaly 
Detected 

outlier/shift on a 
time series 

`start_ts`, `end_ts`, 
`score`, `classification`, 

`detected_by`, `pass` 
`Anomaly(classification= ‘LevelShift::Rise')` 

Article News/report 
document 

`title`, `url`, 
`published_at`, 

`language`, `source` 
`Article(publisher='Reuters')` 

Chunk 
Text span 

extracted from an 
article 

`id`, `offset_start`, 
`offset_end`, `text` `Chunk(id=‘article123::0-512')` 

TemporalEvent Event extracted 
from text 

`event_type`, `title`, 
`start_ts`, `end_ts`, 

`time_text` 
`TemporalEvent(event_type='PolicyChange')` 

Entity 

Actor/asset 
(organization, 

plant, regulator, 
person) 

`name`, `class`, 
`country`, `entity_id` 

`Entity(name='PPC / ΔΕΗ', 
class='Organisation')` 

Theme 

Abstract 
tag/category 

(Weather, Market, 
Regulatory, …) 

`id`, `name` `Theme(name='Weather')` 

Zone Bidding zone / 
geographic area 

`code`, `name`, 
`canonical_name`, 

`country_code` 
`Zone(code='10YGR-HTSO-----Y')` 

Country ISO3 country 
reference 

`code`, `code_alpha2`, 
`name` `Country(code='GRC', name='Greece')` 

 



CHAPTER 3: SYSTEM ARCHITECTURE 

52 

Type From → To Purpose 

HAS_ANOMALY `TimeSeries` → `Anomaly` Link measurements to detected anomalies 

LOCATED_IN `TimeSeries` → `Zone` Anchor time series to bidding zones 

HAS_CHUNK `Article` → `Chunk` 
Retain text spans supporting downstream 

retrieval 

REPORTED_BY `Chunk` → `Anomaly` Tie anomalies to evidence passages 

DESCRIBED_BY `Article` → `TemporalEvent` 
Attach structured events extracted from the 

article 

MENTIONS `Article` → `Entity` Capture actors/assets appearing in the article 

TAGGED_THEME `Article` → `Theme` Tag articles with topical themes 

TAGGED_THEME (event) `TemporalEvent` → `Theme` Classify events by theme 

TAGGED_THEME (entity) `Entity` → `Theme` Optional entity-level thematic tagging 

INVOLVES `TemporalEvent` → `Entity` Participants/actors involved in the event 

LOCATED_IN (event) `TemporalEvent` → `Country` Event geography (country-level anchoring) 

REFERENCES_LOCATION `Article` → `Zone`/`Country` Geospatial references extracted from text 

 
Table 3-2: Relationship types in the knowledge graph and their meaning. 

 

 



CHAPTER 3: SYSTEM ARCHITECTURE 

53 

Derived relationships (query‑level, not persisted as edges) 

• NEAR_EVENT (Anomaly ↔ TemporalEvent): temporal proximity (overlap or  Δ±

window) is computed in Cypher during retrieval; it is not stored as a permanent 

relationship. 

• Event LOCATED_IN: optional; events can be grounded by associated entities/zones or 

by time-window and article evidence. The pipeline does not guarantee a persistent 

(TemporalEvent)-[:LOCATED_IN]->(Zone) edge. 

As shown above, the property graph captures both structured data relationships (e.g. which time 

series generated, which anomalies, which region data belongs to) and contextual semantic 

relationships from unstructured data (e.g. which events are reported in which articles, which 

entities and locations those articles mention). It is a unified schema where, for instance, an 

Anomaly from a load time series can be connected (via NEAR_EVENT) to a TemporalEvent 

extracted from an article, which in turn might be linked to an Entity (like a company) and a 

Location (country). This enables complex queries such as, “Find all anomalies in country X that 

coincide with policy events involving company Y.” 

The graph schema was derived from an ontology of the energy domain (detailed in Section 

3.5), but implemented in Neo4j’s property graph model for pragmatic reasons. A property graph 

offers flexibility in schema evolution (new node or relationship types can be added without 

altering a rigid global schema) and efficient traversal for multi-hop queries. Traditional 

relational databases would struggle with this highly connected data, requiring complex JOIN 

operations across numerous tables (anomalies ↔ events ↔ entities ↔ locations) and a fixed 

schema that is hard to extend. In contrast, using a graph database has several benefits: it 

provides a natural representation of relationships (data is literally stored as nodes and edges), 

efficient graph traversals (finding all events related to a given anomaly is a matter of following 

relationships, not constructing JOINs), and a flexible schema that can accommodate evolving 

entity types. Furthermore, the graph format is amenable to the needs of retrieval-augmented 

generation (RAG): relevant subgraphs can be pulled as needed to supply factual context to an 

LLM, enabling explainable answers (Section 3.6). 



CHAPTER 3: SYSTEM ARCHITECTURE 

54 

We enforce data integrity in the graph through constraints and careful use of the Cypher 

query language. Wherever appropriate, unique identifiers or combinations of properties are 

defined for node types – for example, each Zone has a unique code, each TimeSeries can be 

uniquely identified by its country+product+zone, and each Article by a unique URL or title-

timestamp combination. Neo4j unique constraints are applied on such fields to prevent 

duplicate nodes. Ingestion uses idempotent operations (Cypher MERGE) so that running the 

pipeline repeatedly will not create duplicate entries for the same real-world entity or event. 

These design choices ensure that the knowledge graph remains consistent even as new data is 

ingested incrementally or the extraction processes are re-run. 

It is worth noting that the graph model also stores spatial and temporal attributes in a way 

that leverages the database’s capabilities. Location nodes are enriched with coordinate data 

(latitude/longitude) when available, stored as Neo4j Point values, and temporal values use 

Neo4j’s native date-time types. This allows the use of built-in spatial and time indexing and 

queries – e.g. finding the nearest events to a given location, or querying anomalies within a date 

range – directly via Cypher functions and indexes. By structuring the data as a property graph 

with these considerations, we obtain a powerful knowledge base that underpins the system’s 

analytical and explainability features. 

 

3.5. Knowledge Extraction & Ontology Mapping 

A core challenge in building the above knowledge graph is extracting structured knowledge 

from raw data sources and mapping it to the ontology (the conceptual schema of our domain). 

We address this via two parallel extraction pipelines: one for structured time-series data and 

one for unstructured text. Both pipelines are aligned with a common ontology to ensure that 

their outputs (anomalies, events, entities, etc.) use consistent types and identifiers. 

Structured data extraction (anomaly detection): The time-series pipeline takes the 

preprocessed numerical data (e.g. weekly aggregated energy metrics) and identifies noteworthy 

patterns or outliers that merit representation in the knowledge graph. Rather than storing every 

data point, we extract higher-level knowledge in the form of Anomalies. An anomaly here 

represents a significant deviation or change in the normal pattern of a metric – for example, a 



CHAPTER 3: SYSTEM ARCHITECTURE 

55 

spike (a sudden short-term surge or drop in value) or a level shift (a sustained step-change in 

the time series mean level). These anomalies are detected using statistical methods applied on 

each TimeSeries. When an anomaly is detected, it is characterized (type, time window, severity) 

and then mapped to an Anomaly node linked to the corresponding TimeSeries node. In essence, 

this pipeline semantically labels the raw numerical signals, turning them into discrete events 

(anomalies) that can be correlated with other data. The ontology defines what types of 

anomalies we recognize (currently focusing on level shifts, spikes, and variance changes, as 

these align with domain-relevant events like policy shifts or short-lived crises). By enforcing 

this classification, we ensure that detected anomalies are described in consistent terms (e.g., a 

“demand drop” anomaly might be categorized as a spike downward in load). This structured 

extraction is entirely automated and repeatable – every time new data is acquired or existing 

data is reprocessed, the anomaly detection step will yield the same kind of objects, making it a 

reliable bridge between raw numbers and knowledge graph entries. 

Unstructured data extraction (entity/event/theme extraction): To extract knowledge 

from text (news articles), we employ a pipeline built around a Large Language Model (LLM) 

that is guided by our domain ontology. The system uses an LLM-powered agent to perform 

intent recognition, named entity recognition (NER), and event extraction on each article. The 

extraction process is ontology-aligned, meaning the LLM is instructed to output information 

following the classes and relationships defined in our schema. We achieve this by carefully 

crafting prompts that include guidelines and examples for the model, as well as by providing a 

JSON schema for each type of entity we want extracted. In practice, for each article, the system 

generates a structured prompt along the lines of: “Extract all relevant information about energy 

events and entities from the following text. Output the results in JSON format with fields X, Y, 

Z as defined in the provided schema.” We define separate JSON schemas for different ontology 

categories (e.g., one for TemporalEvent, one for Location, one for Actor/Organization, etc.), 

and the prompt may instruct the LLM to fill multiple schemas depending on content. By giving 

the model an explicit schema to follow, we significantly improve the semantic fit and reliability 

of the output – the LLM is effectively constrained to produce well-formed JSON that matches 

expected types. Prior work and our observations confirm that providing a JSON Schema as 

guidance helps the LLM to output structured data that is immediately usable by downstream 

systems. 



CHAPTER 3: SYSTEM ARCHITECTURE 

56 

The LLM extraction workflow can be summarized in steps: (1) Load an article from the 

article warehouse, (2) construct the prompt with appropriate schema instructions (and 

occasionally few-shot examples for tricky entity types), (3) invoke the LLM to get a response, 

(4) parse the returned JSON, and (5) validate it against the schema for each ontology class. If 

the JSON passes validation, the extracted entities/events are accepted; if not (e.g., the LLM 

output is missing a required field or includes an unknown category), that article’s result is put 

into an “unmapped” queue for manual review. This review mechanism acts as a safety net to 

ensure that we do not insert low-quality or semantically out-of-scope data into the knowledge 

graph. It also provides feedback for improving prompts or the ontology in the future (for 

instance, if many articles produce unmapped output, the ontology might need extension). 

Through this pipeline, unstructured text is transformed into instances of our ontology. A 

sentence like “On 15 March 2022, the Greek regulator announced an emergency price cap.” 

would result in a TemporalEvent node (with properties: title="Emergency price cap 

announced", start_ts≈2022-03-15) and possibly an Entity node (name="Greek energy 

regulator", type=ORGANIZATION) and a link between them (Entity is an actor in that event), 

all derived from one article. The system’s ontology covers a comprehensive set of classes to 

capture such information – including temporal events, organizations (market actors, regulators, 

companies), infrastructure elements, socio-economic indicators, and so on (as introduced in 

Chapter 2). Each extracted item is mapped to one of these ontology classes. For example, an 

organization like ΑΔΜΗΕ (“ADMIE”) in text is recognized by the LLM agent and mapped to 

the ontology class TransmissionOperator (a subtype of Entity), ensuring that the node we create 

in the graph is typed appropriately (instead of just a generic label). This ontology-driven 

approach curtails ambiguity (we know what kind of thing each name refers to) and consolidates 

synonyms or aliases (e.g. “ΔΕΗ” and “Public Power Corporation” would map to the same entity 

class if referring to the same organization). 

The ontology mapping is also responsible for canonicalizing references, especially for 

spatial and temporal information. We instruct the LLM (and use post-processing) to normalize 

dates (e.g. convert "March 15, 2022" to 2022-03-15 ISO format) and to prefer standardized 

location names or codes. For instance, if an article mentions “Hellenic Republic” or “Greece”, 

the system will recognize it as the country Greece and use a consistent name or country code 



CHAPTER 3: SYSTEM ARCHITECTURE 

57 

"GR" across the graph. In cases where the LLM’s output for locations is not already canonical, 

a subsequent location normalization agent or lookup is employed (this is discussed in Stage 5 

of the pipeline, Section 3.8). Thus, ontology mapping encompasses not just classifying 

extracted items but also aligning them to canonical identifiers (for locations, organizations, 

etc.), which is crucial for merging information from multiple sources about the same real-world 

entity. 

 

Figure 3-5: Applying canonical locations before graph ingestion 

All extracted data, once validated and mapped, is inserted into the Neo4j graph via Cypher 

queries. The insertion logic uses MERGE operations (to avoid duplicates) and attaches 

appropriate relationships. For example, if an article extract yields an event and an organization, 

the pipeline will MERGE the TemporalEvent and Entity nodes (creating new ones if they don’t 

exist already) and then create an MENTIONS or relevant relationship from the Article node to 

the Entity, and possibly between Event and Entity (depending on the ontology, e.g. Actor 

relationships). Each inserted node or relationship carries a reference back to the source (via 

properties or an attached source attribute) so that provenance is preserved within the graph as 

well. 

 



CHAPTER 3: SYSTEM ARCHITECTURE 

58 

3.6. GraphRAG Explainability 

Our explainability layer follows a GraphRAG (graph‑based retrieval‑augmented generation) 

approach that grounds answers in the knowledge graph and (optionally) leverages an LLM for 

narrative composition[2],[6],[7],[8]. When a user asks, for example, “Why did Greek day‑ahead 

electricity prices spike in March 2022?”, the system first executes Cypher queries over the 

graph to assemble relevant facts and only then composes a natural‑language answer. 

Cypher‑first retrieval: Retrieval begins with anomaly anchors and explicit constraints (time, 

geography, ontology). The system queries: 

• the anomaly window (start_ts, end_ts) for the relevant TimeSeries and Zone, 

• TemporalEvents that occur within a window [start_ts − Δ, end_ts + Δ], 

• Entities mentioned in related articles, and 

• Themes tagged on those events. 

Temporal proximity (anomaly ↔ events) is computed at query time via time‑window overlap; 

we do not persist a NEAR_EVENT edge. Articles are connected to events via (Article)-

[:DESCRIBED_BY]->(TemporalEvent), and spatial grounding uses (TimeSeries|Entity)-

[:LOCATED_IN]->(Zone). This Cypher‑first strategy narrows the information space with 

precision—spatio‑temporal filters and ontology labels ensure we retrieve exactly what the 

question requires. 

Hybrid graph + vector: For broad or fuzzy queries (e.g., “What major events affected the 

energy market in 2022?”), we can complement Cypher with semantic or full‑text search over 

node text (event descriptions, article titles). This hybrid mode helps surface relevant nodes 

whose textual content matches concepts not explicitly modeled as structured properties. The 

graph remains the primary source of truth; vector/full‑text indexes are an optional enrichment. 

Grounded generation: Retrieved facts (anomalies, events with timestamps and themes, 

entities, citations/URLs) are converted into a structured prompt (or a directly rendered 

explanation when LLMs are disabled). The LLM’s role—if enabled—is to weave these facts 



CHAPTER 3: SYSTEM ARCHITECTURE 

59 

into a coherent narrative while adhering to guardrails: cite sources, prefer “unknown” when 

evidence is insufficient, and avoid speculation. Because every claim in the answer references 

specific nodes/edges (and article URLs), explanations are verifiable and auditable. 

Design alignment with implementation: 

• Themes are attached to events: (TemporalEvent)-[:TAGGED_THEME]->(Theme). 

• Articles describe events: (Article)-[:DESCRIBED_BY]->(TemporalEvent); entities are 

mentioned via (Article)-[:MENTIONS]->(Entity). 

• Geography is canonicalized via Zone, linked from series/entities with LOCATED_IN. 

An explicit Event→Zone link is optional and not guaranteed. 

• TimeSeries holds identifiers/metadata (id, product, unit, zone_code/name). Raw 

time‑series arrays live in staged artifacts; anomalies are nodes with type=Rise/Drop, 

classification (e.g., LevelShift::Rise), start_ts/end_ts, score, detected_by, value. 

 

Retrieve events/entities/themes around an anomaly: 

 

This design provides explainability‑by‑construction: the narrative is grounded in explicit graph 

facts with timestamps, zones, and sources; the graph is the source of truth; and (optional) LLMs 

act as readable narrators—not as unbounded information sources. 

Figure 3-6: GraphRAG Explanation Subgraph 



CHAPTER 3: SYSTEM ARCHITECTURE 

60 

 

 

Listing 3-1: Cypher query for anomaly-centric evidence retrieval 

MATCH (ts:TimeSeries)-[:HAS_ANOMALY]->(an:Anomaly {id: $anomaly_id}) 
WITH an, an.start_ts AS start, an.end_ts AS stop 
WITH an, start - duration({hours: $delta_h}) AS wstart, stop + 
duration({hours: $delta_h}) AS wstop 
OPTIONAL MATCH (art:Article)-[:DESCRIBED_BY]->(ev:TemporalEvent) 
WHERE ev.start_ts >= wstart AND ev.start_ts <= wstop 
OPTIONAL MATCH (art)-[:MENTIONS]->(e:Entity) 
OPTIONAL MATCH (ev)-[:TAGGED_THEME]->(t:Theme) 
RETURN an,  
       collect(DISTINCT ev)[..$k] AS events, 
       collect(DISTINCT e)[..$k] AS entities, 
       collect(DISTINCT t)[..$k] AS themes; 



 
 

 

 

 

 

 

4. IMPLEMENTATION 

This chapter details the implementation of a pipeline for semantic integration of open energy 

data via knowledge graphs. The pipeline is implemented as a sequence of stages covering data 

preprocessing, anomaly detection, knowledge graph construction, unstructured data extraction, 

and explainable analysis via retrieval-augmented generation (RAG). We emphasize a Neo4j 

property graph as the core data model, using Cypher upsert patterns for idempotent ingestion 

and ensuring all components integrate seamlessly.  

 

4.1.  Structured Data Preprocessing (ENTSO-E) 

The first stage involves collecting and preprocessing structured time series data from the 

ENTSO-E Transparency Platform, which provides open data on electricity generation, demand, 

and prices across Europe. We developed a data pipeline (Notebook 02) that fetches hourly 

ENTSO-E time series and converts them into weekly aggregates for downstream analysis. 

Figure 4.1 illustrates the data flow architecture for this stage. Key steps include data fetching 

via an API, optional staging in a time-series database, aggregation to weekly intervals, and 

export to CSV files: 

• Data Fetching: We use the entsoe-py client to retrieve raw hourly time series (load, 

generation, day-ahead price, etc.) for each country/zone, given an API token. The data 

covers multiple years (e.g. 2019–2023) and is returned as Pandas DataFrames with 

timestamps and values. 

CHAPTER 
4 



ΚΕΦΑΛΑΙΟ 4: IMPLEMENTATION 

62 

• InfluxDB Staging (Optional): For performance, the pipeline can write the raw data to 

an InfluxDB time-series database if enabled (RUN_INFLUX_WRITE=1). This allows 

leveraging database queries for aggregation. If disabled, the pipeline proceeds with in-

memory processing. 

• Timezone and Cleaning: Timestamps are standardized to UTC and parsed with error 

coercion to handle any irregularities (e.g. missing or malformed timestamps). Each 

series is checked for completeness and cleaned of obvious errors (e.g. negative loads if 

not possible). All values are aligned to weekly boundaries (e.g. ISO weeks) for 

consistent aggregation. 

• Weekly Aggregation: Hourly values (~8,760 points/year) are downsampled to weekly 

averages or sums (~52 points/year) to smooth short-term fluctuations and reduce data 

volume. This is done either via InfluxDB’s query engine or with Pandas grouping, 

depending on the chosen path. 

• Export to CSV: The resulting weekly time series are exported to a designated data 

directory as CSV files (one file per metric-country-year), using a standardized naming 

scheme {metric}_{country}_{year}_weekly.csv. Each CSV has two columns: _time 

(ISO-8601 timestamp for the week) and value (aggregated metric) for easy reuse in later 

stages. 

 

 

 

 

 

 



ΚΕΦΑΛΑΙΟ 4: IMPLEMENTATION 

63 

 

Figure 4-1: ENTSO-E data preprocessing and aggregation pipeline 

 

To ensure reproducibility and safe re-running of this stage, the implementation checks for 

existing CSV files and will skip fetching if data is already available (preventing redundant API 

calls). All preprocessing steps are idempotent – running the pipeline twice produces the same 

outputs without duplication. Timezone normalization (coercing to UTC) and error handling 

guarantee consistency in the aggregated results. By the end of this stage, we have a set of weekly 

time series files per country and metric, ready for anomaly analysis. 

 

4.2. Anomaly Detection and Structured Ingestion 

After obtaining the weekly time series, the next step is to detect anomalies in these structured 

data and ingest both the time series and anomalies into the knowledge graph. Notebook 03 

implements this structured data ingestion pipeline. It reads the weekly CSVs, applies statistical 



ΚΕΦΑΛΑΙΟ 4: IMPLEMENTATION 

64 

anomaly detection algorithms, and then creates corresponding nodes and relationships in 

Neo4j[9],[10],[11]. The entire process transforms raw time series points into a graph 

representation linking each series with any detected anomalies in that series. Figure 4.2 depicts 

the anomaly detection and ingestion workflow. 

Loading and Normalization: The pipeline begins by loading the weekly CSV files into Pandas 

DataFrames. Timestamps are parsed and normalized, and data is filtered to the target 

geographical region (for our case study, Greece and its bidding zone). We ensure each time 

series is labeled with metadata (country code GR, product type such as load or 

day_ahead_price, etc.) for identification. Basic statistical normalization may be applied if 

needed (e.g., scaling or detrending) to prepare data for anomaly detection. 

Interactive Visualization: Before formal analysis, we incorporated an interactive visualization 

step using Plotly (or Matplotlib for static plots) to explore each time series. This helped in 

identifying seasonal patterns, trends, and potential outliers by visual inspection. Anomalies 

often manifest as sudden spikes, level shifts, or variance changes, which can be observed when 

plotting weekly values over multiple years. The interactive charts overlay the raw data with 

markers for any algorithm-detected anomalies, providing immediate visual validation of those 

detections. 

Statistical Anomaly Detection: We implemented a combination of statistical methods to 

capture different types of anomalies in the time series. Specifically, the pipeline looks for: - 

Level shifts: sustained changes in the mean level of the series. We apply change point detection 

algorithms (like PELT or CUSUM) to identify significant shifts in the mean level. - Spikes: 

acute single-point outliers or short-lived extreme changes. For these, a robust z-score method 

is used, which computes the deviation of each point from a rolling median in units of robust 

standard deviation (e.g., median absolute deviation). Points beyond a threshold (e.g., |z| > 3) 

are flagged as spike anomalies. This method is less sensitive to long-term trends and focuses 

on local aberrations. - Variance changes: shifts in volatility, detected via moving window 

variance comparisons or statistical tests (e.g., Brown–Forsythe test). A significant change in 

variance within a sliding window indicates a regime change in volatility (which might 

correspond to regulatory changes or market shocks). 



ΚΕΦΑΛΑΙΟ 4: IMPLEMENTATION 

65 

Each detected anomaly is classified by type (e.g., LevelShift, Spike, VarianceChange) and 

assigned a severity score. The robust z-score approach, for instance, yields a z-value as an 

anomaly score for spikes, while level shift algorithms provide confidence or cost metrics that 

we normalize to a 0–1 severity scale. 

 

Figure 4-2: Anomaly detection and structured data ingestion pipeline. Weekly time series are read 
from CSV, anomalies are detected by statistical methods, and results are ingested into the graph as 

nodes and relationships. 

 

Graph Schema for Structured Data: In this stage, two primary node types are created in 

Neo4j: - TimeSeries nodes: representing each unique time series (e.g., "Greece – load 

demand"). Key properties include country (ISO country code, e.g., "GR"), product (the metric 



ΚΕΦΑΛΑΙΟ 4: IMPLEMENTATION 

66 

type, e.g., "load" or "day_ahead_price"), zone (bidding zone identifier, if applicable), and a list 

of data_points (the time series values or a reference to the CSV data). TimeSeries nodes 

effectively store metadata about the series and can optionally include the actual series data in 

compressed form (e.g., as a JSON array of weekly values). - Anomaly nodes: representing each 

detected anomaly instance. Properties include type (categorical label like "LevelShift", 

"Spike"), start_ts and end_ts (timestamps delimiting the anomaly period; for a spike these might 

be identical or a single week; for a level shift it could span multiple weeks), and a numeric score 

or severity indicating confidence or magnitude of the anomaly. 

We define a relationship HAS_ANOMALY from TimeSeries to Anomaly to link each time 

series with the anomalies found in it. Each Anomaly node is thus attached to the specific 

TimeSeries it came from, and can later be related to external events or explanations. 

Additionally, we capture geographic context by linking each TimeSeries to a Zone (or 

Location) node representing the grid zone or country (via a :LOCATED_IN relationship). For 

example, a time series node for Greek data might have (:TimeSeries)...-[:LOCATED_IN]-

>(:Zone {code:"GR"}). Zones and locations are discussed more in Section 4.4, but note that 

using a consistent zone/country node enables connecting anomalies with external data by 

geography. 

After ingestion, validation queries are executed to ensure data quality. For instance, we run 

Cypher queries to count the number of anomalies per series, check that each anomaly has the 

expected properties, and verify that unique constraints are not violated. This stage establishes 

the foundation of the knowledge graph: a set of time series with their anomalies, anchored by 

location nodes. The pipeline is designed so that re-running it will update existing nodes rather 

than duplicate them (achieved through MERGE operations for upserts, see Section 4.4), 

ensuring idempotency. 

4.3. Unstructured Data Extraction (Articles to Events) 

While structured ENTSO-E data provides quantitative anomalies, explaining those anomalies 

requires qualitative context (events, news, policy changes). The third stage of the pipeline 

focuses on unstructured data ingestion: processing text from news articles and reports to extract 

key events and entities related to energy markets. We leverage a Large Language Model (LLM) 

powered agent (via Google’s ADK – Agent Development Kit) to perform ontology-guided 



ΚΕΦΑΛΑΙΟ 4: IMPLEMENTATION 

67 

information extraction from text. Notebook 04 implements this stage, turning raw text articles 

into structured graph data. 

Article Collection: We assume a corpus of energy-related news articles has been collected 

(e.g., via RSS feeds or web scraping) and stored as JSON files. Each article record contains 

fields like title, content, publication date, source, etc. In our case, articles from 2019–2023 

covering the Greek energy market were gathered from sources such as newswire services 

(Reuters, Bloomberg), energy agencies (ENTSO-E news, IEA reports), and local press. We 

load these articles from the data/articles/ directory into memory for processing. 

Relevance Filtering: A pre-processing filter discards articles that are not relevant to our 

domain or target language. We use language detection to keep only English-language articles 

(since our extraction model is configured for English). We also apply keyword filtering: articles 

must contain energy-related terms (e.g., "electricity", "power", "energy", "gas", "grid") to be 

processed. This filtering ensures we focus the expensive LLM extraction on pertinent articles. 

In practice, about a few hundred articles remain after filtering for the given time frame and 

domain. 

LLM-Powered Information Extraction: For each relevant article, we employ a custom ADK 

agent to extract structured information. The agent is prompted with instructions to identify and 

extract: - Temporal events: Significant events mentioned in the article (e.g., policy changes, 

infrastructure outages, market disturbances), including when they happened. - Entities: Key 

actors or organizations (e.g., energy companies, government bodies, persons) mentioned. - 

Themes or topics: Major themes or categories (e.g., "market regulation", "renewable 

integration", "energy crisis"). - Locations: Any geographic references (countries, regions, 

facilities) involved. 

The agent prompt is guided by an ontology schema we defined for the energy domain, ensuring 

the output follows a JSON structure with specific fields for each category. Listing 4.1 shows an 

excerpt of the structured output schema expected from the LLM agent, which aligns with our 

ontology: 



ΚΕΦΑΛΑΙΟ 4: IMPLEMENTATION 

68 

 

 

{ 
  "events": [                        // Temporal events from the 
article 
    { 
      "title": str,                  // Event name or summary 
      "start_date": str,             // ISO 8601 date or datetime of 
event start 
      "end_date": str,               // (Optional) ISO 8601 end 
date, if applicable 
      "description": str,            // Detailed description of the 
event 
      "classification": str,         // Event type (e.g., policy, 
market, technical) 
      "location": str                // Named location reference (as 
mentioned in text) 
    } 
  ], 
  "entities": [                      // Named entities 
(organizations, people, etc.) 
    { 
      "name": str,                   // Entity name 
      "type": str,                   // Type of entity 
(ORGANIZATION, PERSON, etc.) 
      "relevance": float             // Relevance score (0.0–1.0) or 
confidence 
    } 
  ], 
    { 
      "label": str,                  // Theme label 
      "category": str                // Broad category of the theme 
    } 

Listing 4-1: JSON schema for LLM-based article extraction (ontology-guided). The agent outputs a 
structured JSON with events, entities, themes, and locations identified in each article. 



ΚΕΦΑΛΑΙΟ 4: IMPLEMENTATION 

69 

Listing 4-2: JSON schema for LLM-based article extraction (ontology-guided). The agent outputs a 

structured JSON with events, entities, themes, and locations identified in each article. 

The agent uses a GPT-4 model (via the ADK’s LiteLLM interface) to generate this JSON output 

for each article, following the above schema. By providing a precise schema and examples in 

the prompt (few-shot learning), we guide the LLM to output parseable JSON. This dramatically 

reduces hallucinations and ensures that the extraction conforms to our knowledge graph 

ontology (each key corresponds to a node type we will store). The use of a structured output 

prompt is a Cypher-first approach in spirit: rather than free-form text, the LLM is tasked with 

producing data that can be directly ingested into the graph. 

 
  "themes": [                        // Thematic tags or categories 
    { 
      "label": str,                  // Theme label 
      "category": str                // Broad category of the theme 
    } 
  ], 
  "locations": [                     // Geographic references 
    { 
      "name": str,                   // Location name as mentioned 
(e.g., "Athens") 
      "country_code": str,           // ISO country code if 
identifiable (e.g., "GR") 
      "geo_type": str               // Granularity: country, city, 
region, etc. 
    } 
  ] 
} 



ΚΕΦΑΛΑΙΟ 4: IMPLEMENTATION 

70 

Parsing and Post-processing: The JSON output from the LLM is parsed by our pipeline into 

Python objects. We then perform minor post-processing: - Normalize date strings to consistent 

datetime formats (e.g., ensure start_date and end_date are in ISO8601 and convert to UTC 

timezone). - Discard or merge low-relevance entities (e.g., if the agent extracted many entities 

with low relevance scores, we might keep only those above a threshold or aggregate duplicates). 

- Preliminary canonicalization of names (for locations and organizations) if straightforward 

(e.g., converting "U.S." to "United States"). More advanced canonicalization is done in the next 

stage. 

Graph Ingestion of Unstructured Data: For each article processed, we create the following 

in Neo4j: - An Article node, with properties: title, published_at (timestamp), source (e.g., 

"Reuters"), and potentially storing the text content or a reference to it. - One or more 

TemporalEvent nodes for each event extracted from the article. Each TemporalEvent has title 

(a short name), start_ts, end_ts, description, and classification (a label like "Policy" or 

"MarketEvent"). - Entity nodes for organizations or people (if not already present in the graph). 

Each has name and type (plus a relevance or significance score). - Theme nodes for thematic 

topics (e.g., "Energy Crisis" with category "Market Disruption"). - Location nodes for any 

locations mentioned (though for countries/zones we will later merge with existing nodes). 

These nodes are connected with relationships to preserve provenance and context: - (:Article)-

[:DESCRIBED_BY]->(:TemporalEvent) links an article to events it describes. - (:Article)-

[:MENTIONS]->(:Entity) links to entities mentioned. - (:Article)-[:HAS_THEME]->(:Theme) 

links to identified themes/topics. - (:Article)-[:REFERENCES]->(:Location) links to location 

mentions in the text. - Additionally, we link each TemporalEvent to a Location if a specific 

location is associated (e.g., an event happening in Athens would get (:TemporalEvent)-

[:LOCATED_IN]->(:Location {name:"Athens"})). 

 

 

 

 

 



ΚΕΦΑΛΑΙΟ 4: IMPLEMENTATION 

71 

 

Figure 4-3: Unstructured data extraction and ingestion. Relevant news articles are processed by an 
LLM agent to extract events and entities, which are then added to the knowledge graph. 

This stage results in a subgraph of articles, events, entities, themes, and locations, all 

interconnected and ready to be linked to the anomaly graph built earlier. By the end of 

Notebook 04, we have two largely separate subgraphs in Neo4j: one from structured ENTSO-

E data (time series and anomalies), and one from unstructured text (articles and related entities). 

In the next section, we integrate these subgraphs through canonicalization and linking, creating 

a unified knowledge graph. 

 



ΚΕΦΑΛΑΙΟ 4: IMPLEMENTATION 

72 

Prompt Policy &  Ontology Schema 
This subsection examines the prompt policy and ontology schema as implemented in the 
repository and explains how they are used by the extraction pipeline.  
Below is code snippet screenshot depicting the architecture of the prompt-system: 

 
Listing 4-3: Prompt System Architecture 



ΚΕΦΑΛΑΙΟ 4: IMPLEMENTATION 

73 

Listing 4-1: Prompt System Architecture 

Prompt policy (ontology_prompt2.json): The prompt file specifies how the model should 

convert article text into schema‑conformant JSON. Its structure encodes (i) a task instruction 

that forbids free‑form output, (ii) a compact exposition of allowed classes and fields, and (iii) 

guardrails that control ambiguity and provenance. 

• Semantic‑fit policy: The prompt includes an explicit requirement to avoid forced 

mappings; when a fact does not clearly fit a class, it must be marked as “unmapped” (with 

a proposed class and justification) rather than coerced. This pattern is central to preserving 

ontology integrity during extraction, and it integrates directly with validation and 

unmapped queues downstream. 

• Temporal anchoring: The prompt directs the model to normalize all instants/intervals 

to ISO 8601, resolving relative expressions (e.g., “last week”) into explicit start_ts/end_ts 

when possible. This is critical for aligning event windows with anomaly windows during 

Cypher‑first retrieval. 

• Bilingual labels: Where applicable, labels should include both English and Greek 

variants, with a fallback to generic type labels when one language is missing. This 

supports localized UI rendering without sacrificing cross‑language retrieval. 

• Themes on events: The policy follows the graph design by placing themes on 

TemporalEvent (not on Article), to keep topical context anchored to time‑stamped 

objects. 

• Provenance: The policy requires article identifiers, URLs, titles, and published_at, as 

well as extraction_time, model, and prompt/schema version fields for auditability. 



ΚΕΦΑΛΑΙΟ 4: IMPLEMENTATION 

74 

 

Ontology Prompt Structure 
 
The prompt instructs the LLM on extraction tasks with specific guidance: 
 
Tas k D efinition: 
{ 
  "task": "Extract structured information from energy sector news articles", 
  "goal": "Identify entities, events, themes, and locations for knowledge graph construction", 
  "output_format": "Valid JSON matching the provided schema" 
} 
 
E ntity T ype Definitions  (examples): 
{ 
  "entities": [ 
    { 
      "type": "ORGANIZATION", 
      "description": "Companies, agencies, grid operators, utilities", 
      "examples": ["ENTSO-E", "RTE", "Public Power Corporation", "European Commission"], 
      "attributes": ["name", "type", "relevance_score"] 
    }, 
    { 
      "type": "LOCATION", 
      "description": "Countries, regions, cities, bidding zones", 
      "examples": ["Greece", "GR", "Northern Italy", "IT_NORD", "Athens"], 
      "attributes": ["name", "country_code", "geo_type"] 
    } 
  ] 
} 
 
Temporal E vent S truc ture: 
{ 
  "events": { 
    "description": "Time-bound occurrences mentioned in the article", 
    "required_fields": ["title", "start_date", "description"], 
    "optional_fields": ["end_date", "classification", "location"], 
    "classifications": [ 
      "policy_change",      // New regulations, laws, directives 
      "market_event",       // Price changes, capacity additions 
      "technical_issue",    // Outages, failures, maintenance 
      "interconnection",    // Cross-border links, grid expansions 
      "capacity_change"     // Generation additions/retirements 
    ] 
  } 
} 
 
Theme C ateg ories : 
{ 
  "themes": { 
    "description": "High-level topics and subject classifications", 
    "categories": [ 
      "Energy Crisis", 
      "Renewable Energy", 
      "Grid Infrastructure", 
      "Energy Policy", 
      "Market Dynamics", 
      "Supply Security" 
    ] 
  } 
} 
 
Output F ormat Ins truc tions : 
 
{ 
  "format_requirements": { 
    "dates": "ISO8601 format (YYYY-MM-DDTHH:MM:SSZ)", 
    "json_validity": "Must parse without errors", 
    "required_sections": ["entities", "events", "themes", "locations"], 
    "error_handling": "If uncertain, include 'reasoning' field with explanation" 
  }  Listing 4-4: Ontology Prompt Structure 



ΚΕΦΑΛΑΙΟ 4: IMPLEMENTATION 

75 

Ontology schema (ontology_schema_v11.json): The schema enumerates classes, properties, 

datatypes, and basic constraints. It is minimal by design but should be strict where correctness 

matters and flexible where ambiguity is expected. 

• Classes in scope: Article, TemporalEvent, Entity, Theme, Zone (canonical geography), 

and (from structured ingestion) TimeSeries and Anomaly.  

• Required fields: Article: id/url/published_at, TemporalEvent: id/event_type/start_ts 

(end_ts optional), Entity: id/entity_type/(label_en or label_el at minimum), Theme: 

id/name, Zone: code/name/type, Anomaly: 

id/series_id/start_ts/end_ts/type/classification/score/detected_by/value. TimeSeries 

nodes in the graph are stitched from structured ingestion, not from the unstructured 

pipeline. 

• Enumerations: Constrain TemporalEvent: event_type and Entity: entity_type to 

bounded enums reject values that drift beyond the declared set. This keeps retrieval filters 

predictable. 

• Pattern constraints: Adopt patterns for ids (e.g., ^(art|ev|ent|th|zone)[A-Za-z0-9\-]+$) 

and ISO 8601 timestamps; add min/max length where appropriate (e.g., title length). 

• Bilingual labels: For any “label_*” field, enforce minCount 1 across the pair (label_en 

OR label_el) and allow both when available. 

 

 

 

 

 

 

 



ΚΕΦΑΛΑΙΟ 4: IMPLEMENTATION 

76 

 

O ntolog y S c hema S pec ific ation 
 
The JSON Schema enforces structural validation and data types: 
 
Top-L evel S c hema: 
{ 
  "type": "object", 
  "required": ["entities", "events", "themes", "locations"], 
  "properties": { 
    "entities": { 
      "type": "array", 
      "items": {"$ref": "#/definitions/Entity"} 
    }, 
    "events": { 
      "type": "array", 
      "items": {"$ref": "#/definitions/TemporalEvent"} 
    }, 
    "themes": { 
      "type": "array", 
      "items": {"$ref": "#/definitions/Theme"} 
    }, 
    "locations": { 
      "type": "array", 
      "items": {"$ref": "#/definitions/Location"} 
    }, 
    "reasoning": { 
      "type": "string", 
      "description": "Optional explanation of extraction decisions" 
    } 
  } 
} 
 
E ntity Definition: 
{ 
  "definitions": { 
    "Entity": { 
      "type": "object", 
      "required": ["name", "type"], 
      "properties": { 
        "name": {"type": "string", "minLength": 1}, 
        "type": { 
          "type": "string", 
          "enum": ["ORGANIZATION", "PERSON", "INFRASTRUCTURE", "POLICY"] 
        }, 
        "relevance": { 
          "type": "number", 
          "minimum": 0.0, 
          "maximum": 1.0, 
          "description": "Entity importance to article content" 
        } 
      } 
    } 
  } 
} 
 

 

Listing 4-5: Ontology Schema Specification 



ΚΕΦΑΛΑΙΟ 4: IMPLEMENTATION 

77 

Processing path (PromptTesting/processor1.py): The script orchestrates article extraction 

with the policy and schema above, and it implements strict validation and unmapped handling. 

• Prompt composition: The script prepares a system instruction block (the ontology 

policy) and a user block (article text and key metadata). Keep the system role minimal 

and focused on constraints; avoid mixing long enumerations when the schema already 

constrains them. 

• Model call: The script issues a chat‑style request (e.g., to GPT‑4o‑mini) with low 

temperature and a bounded max_tokens, and captures the raw JSON string. Any 

extraneous commentary is grounds for rejection by the parser. 

• JSON validation: The script validates the JSON object against 

ontology_schema_v11.json using jsonschema (or equivalent). Validation errors (type, 

missing required field, enum mismatch) cause the payload to be rejected or routed to 

“unmapped” review, depending on policy. 

• Unmapped queue: If “unmapped_entities” or similar structures are returned, the script 

logs and optionally persists them for later analysis rather than forcing these entries into 

the graph. 

Temporal E vent D efinition: 
{ 
  "definitions": { 
    "TemporalEvent": { 
      "type": "object", 
      "required": ["title", "start_date", "description"], 
      "properties": { 
        "title": {"type": "string", "maxLength": 200}, 
        "start_date": { 
          "type": "string", 
          "format": "date-time", 
          "description": "ISO8601 timestamp" 
        }, 
        "end_date": { 
          "type": "string", 
          "format": "date-time" 
        }, 
        "description": {"type": "string", "maxLength": 1000}, 
        "classification": { 
          "type": "string", 
          "enum": ["policy_change", "market_event", "technical_issue",  
                   "interconnection", "capacity_change", "other"] 
        }, 
        "location": {"type": "string"} 
      } 
    } 
  } 
} 

Listing 4-6: Ontology Schema Specification 



ΚΕΦΑΛΑΙΟ 4: IMPLEMENTATION 

78 

• Fallback path: In offline or cost‑constrained runs, the script loads a deterministic 

fallback dataset of validated payloads, ensuring downstream pipeline stages remain 

operable. 

 

4.4. Knowledge Graph Integration and Canonicalisation 

With structured and unstructured data ingested, the next implementation step is to integrate 

them into a unified knowledge graph. Notebook 05 orchestrates this process, ensuring that 

nodes referring to the same real-world entities are merged and creating relationships between 

anomalies and the events or factors that explain them. The integration focuses particularly on 

geographic and entity canonicalization and on establishing temporal links between anomalies 

and events. 

Graph Assembly: First, we verify the Neo4j database is accessible and pre-create any needed 

indexes or constraints. For example, we set unique constraints on certain node properties (like 

TimeSeries(country, product) combination or Location(canonical_code)) to prevent duplicates. 

We then ingest any remaining structured data that might not have been loaded in previous 

notebooks (Notebook 05 is designed to be a one-stop graph builder, so it can ingest the time 

series and anomalies if Notebook 03 wasn’t run separately). In practice, since we already did 

that, this step finds existing TimeSeries and Anomaly nodes. 

Geographic Entity Canonicalization: One major challenge is that the same location 

or region may appear under different names in structured vs. unstructured data. For 

example, the country Greece might be referred to as "GR" (ISO code) in the ENTSO-
E dataset, but as "Greece", "Hellenic Republic", or even in Greek language ("Ελλάδα") 

in news articles. Without reconciliation, our graph would have separate Location or 
Zone nodes for each variant, fragmenting the knowledge. To address this, we 

implement a canonicalization module for geographic names: - We designate an 
authoritative representation for each location (for countries, we use the ENTSO-E/ISO 
country code, e.g., "GR" for Greece, as the canonical code, along with a standard 

name "Greece"). - We merge or link all location nodes that refer to the same real entity. 
In Neo4j, we use idempotent Cypher queries with MERGE to either find existing nodes 

or create new ones with the canonical identifier. For example, we MERGE 



ΚΕΦΑΛΑΙΟ 4: IMPLEMENTATION 

79 

(loc:Location {canonical_code: "GR"}) and then set its properties (canonical_name = 
"Greece", aliases = [...]) to include all known aliases. If a Location node from the article 

ingestion (e.g., with name "Hellenic Republic") doesn’t yet have the canonical code, 

it gets attached or merged into the canonical node. This way, we avoid duplicate 
nodes for "Greece" [10]. - We developed a two-tier canonicalization approach: (a) an 

ADK LLM agent that can resolve tricky cases by context (e.g., understanding that 
"Northern Macedonia" likely refers to "North Macedonia (MK)" vs. the Greek region 
Macedonia) for high accuracy, and (b) a deterministic Python lookup using a curated 

alias table for common names. The pipeline decides which to use based on 
configuration flags. Listing 4.2 shows pseudo-code for this selection logic: 

 
Listing 4-7: Pseudo-code for location canonicalization. A fallback lookup table is used by default, with 
an optional LLM agent for complex cases. 

 

Using this approach, a variety of variants are normalized to a single Location node with a 

canonical_code. For example, the Location node for Greece ends up with canonical_code = 

"GR", canonical_name = "Greece", and aliases = ["Hellenic Republic", "Greek grid", 

"Ελλάδα", "GR"]. The result is that a query for Location {canonical_code:"GR"} will match 

any reference to Greece from any source. Figure 4.4 illustrates the effect of canonicalization on 

the graph structure for locations. 

 

 

 

if RUN_ADK and OPENAI_API_KEY: 
    use_adk_agent_canonicalization()   # GPT-4 powered, high 
accuracy 
else: 
    use_python_fallback_canonicalization()   # Fast, deterministic 
lookup 



ΚΕΦΑΛΑΙΟ 4: IMPLEMENTATION 

80 

 

Without canonicalization, multiple disconnected nodes represent the same place; with 

canonicalization, they unify into one node with all aliases: 

 

Listing 4-8: Canonicalization effect on data. 

Once the canonical location nodes are in place, any duplicate location nodes are merged or 

related. In our implementation, if a duplicate was created (e.g., a Location from an article with 

name "Greece" without canonical_code), we update it to set canonical_code = "GR" and then 

use Neo4j’s MERGE to ensure there is only one node with canonical_code "GR". The pipeline 

uses MERGE and ON CREATE/ON MATCH to attach new info without creating duplicates, 

and we rely on Neo4j unique constraints on Location(canonical_code) to guarantee a single 

node per code. This idempotent design allows running the integration step multiple times safely. 

Entity and Theme Canonicalization: A similar approach is applied to other entities if needed. 

For instance, an organization might appear with slight naming differences (e.g., "European 

Commission" vs "EC"). In such cases, we either manually curate aliases or rely on string 

similarity to merge obvious duplicates. However, our main focus was on locations, since those 

are critical for linking structured and unstructured data (the ENTSO-E data is country-specific). 

 

 

• Without unification: 
(:Location {name: "Greece"}) (from structured data) 
(:Location {name: "Hellenic Republic"}) (from article A) 
(:Location {name: "Greek grid"}) (from article B) 
(:Location {name: "GR"}) (from zone code) 
// Results in 4 separate nodes that should be one. 

• With canonicalization: 
(:Location { canonical_code: "GR", canonical_name: "Greece", 
  aliases: ["Hellenic Republic","Greek grid","GR"], 
  original_names: ["Greece","Hellenic Republic","Greek 
grid","GR"] }) 
// Results in a single node with unified identity and traceable 
provenance. 



ΚΕΦΑΛΑΙΟ 4: IMPLEMENTATION 

81 

 

 

Figure 4-4: Location canonalization workflow 
 

Linking Anomalies with Events: With a unified set of location nodes, we can now connect 
the two halves of the graph. The core objective is to link each Anomaly (from the structured 
side) with any relevant TemporalEvent (from the unstructured side) that might explain it. We 
do this by leveraging both time and location. For each anomaly: - We find events that occurred 

around the same time as the anomaly. In Cypher, this can be done by comparing dates. For 
example, if an anomaly has a start and end date, we look for events whose date falls within 
the anomaly window or a given buffer around it (e.g. ±1 week or ±1 month depending on the 
nature of events). In practice, for weekly data anomalies, we allowed a tolerance of a few days 
to capture events slightly before or after the official anomaly window. - We ensure the event 
is in the same country or region. This is where location canonicalization is crucial. We match 
the anomaly’s associated Zone or Location (e.g., GR) with the event’s Location (which after 
canonicalization will also have GR if it’s relevant to Greece). For example, the Cypher query 
might do: 



ΚΕΦΑΛΑΙΟ 4: IMPLEMENTATION 

82 

 

 

Listing 4-9: Creation of  NEAR_EVENT relationship. 
 

This would link an anomaly node to any TemporalEvent happening within 7 days of the 

anomaly period in Greece. We used a relationship type like NEAR_EVENT or 

EXPLAINED_BY to denote this connection. In our final graph, we opted for 

EXPLAINED_BY from Anomaly to Article if the article’s event timing matches, as a way to 

say "this anomaly is explained by that news article". - We also considered linking anomalies to 

TemporalEvent nodes directly with an [:NEAR_EVENT] relationship for a more fine-grained 

link (since an article could describe multiple events). In the graph schema (Figure 4.5 below), 

we show an Anomaly-NEAR_EVENT->TemporalEvent link capturing that the event occurred 

in proximity to the anomaly. 

Unified Graph Schema: By the end of this integration, the graph contains the following node 

types (consolidated from earlier stages) and relationships: 

Nodes: TimeSeries, Anomaly, Article, TemporalEvent, Entity, Theme, Location, Zone. (Zone 

is effectively a type of Location, representing market bidding zones. In our schema we kept 

Zone separate mainly for ENTSO-E specific metadata, but after canonicalization zones have a 

country association.) - Each TimeSeries node is linked to a Zone/Location (geography) and 

anomalies. - Each Article node is linked to events, entities, themes, locations. - Locations and 

Zones are unified via canonical codes. 

Relationships: In addition to those introduced before, we have: - (Anomaly)-

[:NEAR_EVENT]->(TemporalEvent) – links anomalies to events happening around the same 

time in the same region. - (Anomaly)-[:EXPLAINED_BY]->(Article) – an optional direct link 

MATCH (an:Anomaly)<-[:HAS_ANOMALY]-(ts:TimeSeries {country:"GR"}), 
      (ev:TemporalEvent)-[:LOCATED_IN]->(loc:Location 
{canonical_code:"GR"}) 
WHERE ev.start_ts >= an.start_ts - duration('P7D')  
  AND ev.start_ts <= an.end_ts + duration('P7D') 
CREATE (an)-[:NEAR_EVENT]->(ev); 



ΚΕΦΑΛΑΙΟ 4: IMPLEMENTATION 

83 

to an article if that article provides a narrative explanation for the anomaly (we used this where 

an article explicitly discussed an anomaly or price surge). - The previously described 

relationships like HAS_ANOMALY, DESCRIBED_BY, MENTIONS, etc., remain in place. 

 

At the end of stage 6, our Neo4j graph contains a rich network where each energy anomaly is 

connected (via NEAR_EVENT or EXPLAINED_BY) to one or more events or articles that 

provide context. For example, a detected price spike anomaly in September 2022 might be 

linked to a TemporalEvent node “EU emergency energy council meeting (2022-09-18)” and to 

an Article node “Greek electricity prices surge amid gas crisis”. This integration addresses the 

Figure 4-5: End-to-end knowledge graph construction pipeline. Stages 2–4 ingest structured and 
unstructured data, stage 5 canonicalizes overlapping entities (especially locations), and stage 6 links 
anomalies with events, completing the integration. 



ΚΕΦΑΛΑΙΟ 4: IMPLEMENTATION 

84 

core challenge: bridging quantitative anomalies with qualitative explanations in a single 

knowledge graph. 

Throughout the graph construction, we maintained idempotency and consistency. Insertion 

and update queries use Cypher MERGE to avoid duplicate nodes on re-run, as mentioned, and 

we applied unique constraints in Neo4j to enforce this at the database level. For example, a 

unique constraint on Anomaly(id) (if we generate a composite key for anomalies) or on 

Location(canonical_code) ensures one node per real-world entity. This enables iterative 

development — one can run the pipeline multiple times (adding new data or refining extraction) 

without corrupting the graph with duplicates. The combination of MERGE-based upserts and 

unique indexes is a fundamental implementation pattern in our knowledge graph persistence. 

With the fully constructed knowledge graph, we have achieved a semantic integration: 

open data from ENTSO-E and open text from news are linked in a unified representation. The 

final step is to leverage this integrated graph for explainable insights, as described next. 

 

4.5. Explainability via GraphRAG and User Interface 

The ultimate goal of the pipeline is to provide explainable analysis of energy anomalies. In this 

final stage, we develop an approach based on Graph RAG (Retrieval-Augmented Generation 

using graph data) and an interactive visualization to present explanations to users. Notebook 06 

covers the backend explainability queries, and we also implemented a lightweight web 

application (ProductionApp Stage 06) to demonstrate the results in an interactive timeline UI. 

GraphRAG Agent Querying: Given a particular anomaly (identified by country, product, and 

time window), we want to generate a human-readable explanation of why that anomaly 

occurred, grounded in factual data from our knowledge graph. Our approach is Cypher-first: 

we first retrieve relevant information from Neo4j via Cypher queries, and only then feed it to 

an LLM to compose a narrative. 

The retrieval process involves several focused Cypher queries: 1. Anomaly context 

retrieval: Query the graph for the anomaly’s metadata and related nodes. For example, fetch 

the TimeSeries node (to know what metric and region it is), and gather any TemporalEvent, 



ΚΕΦΑΛΑΙΟ 4: IMPLEMENTATION 

85 

Article, Entity, and Theme nodes connected to that anomaly’s location and time. We also 

retrieve the actual numeric series around the anomaly (for visualization). 2. Relevance 

filtering: Not all events or entities are equally relevant to a given anomaly. We apply filtering 

logic (in Cypher or post-processing) to focus on those likely to explain the anomaly. For 

instance, if the anomaly is a price spike, we prioritize events of type "market" or "policy" over 

unrelated events, and entities like regulators or major utilities over peripheral mentions. This 

might involve keyword matching on event descriptions or using the relevance scores attached 

to entities. 3. Temporal window: We usually constrain the search to a window, e.g., events 

that occurred in the 6 months leading up to the anomaly and shortly after. This captures the 

build-up and immediate impact period. The timeline of prices is also sliced to this window for 

plotting. 

After retrieval, we have a set of candidate explanatory factors: e.g., an event "Government 

announces energy subsidy in July 2022", an entity "Gazprom" frequently mentioned in related 

articles, a theme "Energy Crisis", etc., all connected to our anomaly of interest. 

Timeline Visualization: We plot the time series for the selected anomaly’s metric (e.g., day-

ahead price) highlighting the anomaly period. This is done with Python (Matplotlib or Plotly in 

the notebook for static output). In the production app, we integrated Highcharts to create an 

interactive timeline chart. The timeline (Figure 4.6) shows the price curve, marks the anomaly 

interval in a distinct color, and overlays markers for events: - Events are annotated on the chart 

at their date, with different shapes/colors indicating their classification (policy vs. market vs. 

technical events). - Tooltips or labels show the event title on hover. - This visual aids both the 

developers and end-users in seeing correlation between events and anomalies (e.g., a major 

event occurring right before a spike). 

In the web UI, users can click on an event marker to see more details (the article source, 

description, etc.), and hover over the anomaly region to get context about its magnitude and 

timing. This interactive timeline was implemented by a small Flask app serving the data from 

Neo4j to Highcharts (via JSON). Figure 4.6 (schematic) illustrates the UI components: 

LLM Explanation Generation: Finally, we combine the retrieved graph data into a prompt 

for the LLM to generate an explanation. The prompt is structured with the relevant facts: it may 

include a brief description of the anomaly (magnitude, timing), a list of top events or factors 



ΚΕΦΑΛΑΙΟ 4: IMPLEMENTATION 

86 

(with dates and what happened), and possibly related entities or trends. The LLM (e.g., GPT-

4) is asked to “Explain the likely reasons for the anomaly, citing the events and context data, 

and avoiding any information not provided.” This ensures the output is grounded in the 

retrieved graph facts (addressing the black-box issue of LLMs). By structuring the prompt, we 

effectively do a manual form of retrieval-augmented generation. 

For example, an assembled prompt might look like: “An anomaly was detected in the day-

ahead electricity price for Greece starting late August 2022, with prices rising 80% above the 

norm and peaking in mid-September 2022. Relevant context: (1) Event: EU emergency energy 

meeting on 2022-09-18 addressing gas shortages; (2) Event: Russia announces gas supply cut 

to Europe on 2022-08-31; (3) Entity: Gazprom (Russian gas supplier); (4) Theme: Energy crisis 

in Europe. Given this information, explain what caused the price spike.” The LLM would then 

produce a narrative along the lines of: “The electricity price spike in Greece in September 2022 

can be attributed to the escalating European energy crisis. Notably, Russia’s Gazprom cut gas 

supplies on August 31, 2022, leading to fuel shortages. In response, an emergency EU energy 

meeting on September 18, 2022, was convened to implement price caps and subsidies. These 

events caused uncertainty and drove prices upward, explaining the observed anomaly.” The 

answer is derived entirely from the provided facts (which came from our graph), ensuring 

traceability. 

In our implementation, we automated this process in Notebook 06: the code constructs the 

prompt from query results and invokes the LLM via the ADK interface. We included safeguards 

such as limiting the LLM to only use provided data (by instructing it not to assume external 

info) and truncating or summarizing if too many facts are found (using relevance scores to pick 

the top N factors). 



ΚΕΦΑΛΑΙΟ 4: IMPLEMENTATION 

87 

 

Figure 4-6: GraphRAG Explainability Activity Diagram/Workflow 

 

Ensuring Grounded Explanations: The advantage of using the graph for retrieval is that every 

piece of information in the LLM’s input has a source in our data. The LLM’s output can thus be 

traced back: if it mentions an event, that event node links to an article for verification. This 

addresses the semantic integration goal by not only linking data but using those links to provide 

explainability. We also log any source attributions: for internal evaluation, we check that the 

LLM’s explanation indeed mentions or aligns with the events we provided (and does not 

introduce new, unsupported claims). 



ΚΕΦΑΛΑΙΟ 4: IMPLEMENTATION 

88 

Production Orchestration & Logging: In a production or live setting, the entire pipeline 

(stages 1–6) can be orchestrated to run periodically or on-demand. We designed a simple 

orchestration using stage flags and logging: - Stage Flags: Environment variables (as introduced 

in Section 4.1) such as RUN_LLM, RUN_INFLUX_WRITE, RUN_ADK allow enabling or 

disabling parts of the pipeline. For instance, on a first run we might set all to 1 to perform full 

fetch and LLM extraction. On subsequent runs, we might set RUN_LLM=0 to avoid repeated 

API calls, instead using cached results. The code checks these flags before executing each 

expensive operation. - Pipeline Logging: Each stage of the pipeline emits logs indicating 

progress and any issues. We use Python’s logging (or simple print statements in notebooks) to 

record events like “Fetched 520 weeks of data for GR-load”, “Detected 3 anomalies (2 spikes, 

1 level shift) in GR-load”, “Extracted 5 events from article X”, etc. In the production app, we 

also log LLM usage (tokens consumed, API cost) for monitoring. This logging was crucial 

during development to debug and ensure each part worked before moving to the next. It also 

serves as basic monitoring if the pipeline runs continuously. - Thread Safety and Sessions: One 

implementation note is that when using Neo4j and the ADK agents concurrently, we had to 

ensure thread-safe access. In the integrated pipeline, we use a single Neo4j driver instance with 

session pooling, and each agent call opens a new session (using with graphdb.session() context 

managers) to avoid threading issues. We also isolate LLM agent sessions using unique IDs for 

each run so that multi-turn conversation memory doesn’t leak between runs or agents. 

By the end of Chapter 4’s implementation, we have a fully functional system that: ingests 

open data into a knowledge graph, enriches it with contextual information from text, and 

provides tools (LLM agents and visualization) to explain findings. The pipeline was run on the 

case study data (Greek energy market 2019–2023), and we verified that it produces meaningful 

linkages and explanations. This implemented pipeline will be evaluated in Chapter 5, where we 

discuss the results and performance of our approach on real-world scenarios. 

 

 

 

 



ΚΕΦΑΛΑΙΟ 4: IMPLEMENTATION 

89 

 

Summary of Implementation: Through the steps detailed above, we integrated structured 

and unstructured open energy data in a semantic knowledge graph. The use of Neo4j’s property 

graph model and Cypher enabled flexible linking of diverse data types, while LLM-based 

extraction facilitated turning text into graph-ready data. Importantly, by designing for 

idempotency and using upsert patterns, the pipeline remains stable over multiple runs and data 

updates. Logging and modular stage controls ensure that the system can be maintained and 

scaled (for example, to more countries or longer time spans) with minimal friction. The end 

result is a platform that not only consolidates data but also delivers explainable AI outputs, 

demonstrating the power of combining knowledge graphs with advanced language models for 

energy data analysis. 

Figure 4-7: GraphRAG Explainability Sequence Diagram 



 
 

 

 

 

5. CASE STUDY 

This chapter focuses exclusively on the process pipeline that powers the GraphRAG 

explainability workflow for a salient day-ahead electricity price anomaly in Greece. The 

narrative follows the anomaly from detection, through graph-backed retrieval, to LLM-assisted 

explanation and analyst-facing UI rendering. Throughout the chapter we emphasise how spatio-

temporal, ontology-aligned evidence is assembled and kept auditable. 

5.1. Context and Selection 

The examined anomaly corresponds to a sharp upward deviation in the day-ahead price series 

for the Greek bidding zone (Zone: Greece, IPTO BZ / CA / MBA) during heat-stressed system 

conditions. The robust detector labels the anomaly as `LevelShift::Rise`, assigns a MAD-based 

z-score, and records the precise `start_ts` and `end_ts`. While the absolute magnitude varies by 

dataset, the pattern is representative of summer spikes where weather, demand, generation 

availability, and network constraints interact. 

We select this anomaly for two reasons. First, it showcases the end-to-end explainability 

pipeline: anomaly detection, contextual retrieval, evidence curation, and narrative generation. 

Second, it demonstrates how geography-aware knowledge graphs enable auditable spatio-

temporal reasoning. The anomaly is anchored to the Greek zone, and all retrieved entities inherit 

canonical ̀ Zone` relationships, preserving provenance back to raw articles and structured feeds. 

 

 

 

 

CHAPTER  
5 



CHAPTER 5: CASE STUDY  

91 

Greece Example (Weekly, 2021‑01‑03 → 2022‑12‑25) 

During the 2021–2022 period, the Greek electricity market exhibited pronounced 

fluctuations in both day-ahead prices and the share of lignite in generation. These trends 

are summarized below. 

• Day-ahead market prices peaked at 604.14 €/MWh on 28 August 2022, corresponding 

to a robust z-score of 3.06, classified as a LevelShift::Rise. 

•  Lignite share (defined as lignite generation ÷ total load) increased sharply to 21.23 % 

on 21 August 2022 (z = 2.95) and 24.94 % on 11 December 2022 (z = 4.00), both 

labeled as LevelShift::Rise events. 

•  Annual context: the average day-ahead price rose from 120 €/MWh in 2021 to 289 

€/MWh in 2022, while the mean lignite share increased from 10.5 % to 11.4 %, 

accompanied by substantially higher extremes. 

 

Figure 5-1: Greece Weekly Day-ahead Electricity Prices with Robust Z-score Anomaly 

 

 



CHAPTER 5: CASE STUDY  

92 

 

Figure 5-2: Greece Weekly Lignite Share in Generation with Robust Z-score Anomalies 
 

These spikes align with the 2022 Russian invasion of Ukraine. Constrained gas flows drove 

wholesale electricity prices to records by late summer (the price anomaly), while Greece leaned 

more on domestic lignite through H2 2022 (the share anomalies). 

 

5.2. Pipeline Overview 

The day-ahead anomaly workflow comprises the following stages: 

1. Detection: Identify anomalous intervals on `TimeSeries` nodes using robust statistics 

(median absolute deviation with adaptive thresholding). Persist anomaly metadata as dedicated 

nodes linked to the source series. 

2. Window Expansion: For a selected anomaly, expand the `(start_ts, end_ts)` interval by  Δ±

to capture lead-up and aftermath dynamics. 

3. Graph Retrieval (Cypher-first): Issue parameterised Cypher queries that harvest events, 

entities, and themes falling within the expanded interval and matching ontology constraints. 



CHAPTER 5: CASE STUDY  

93 

4. Evidence Bundling: Assemble anomaly metadata with retrieved events, entities, and themes 

into a structured evidence package. 

5. Grounded Explanation: Optionally call the LLM with a structured prompt that references 

only the retrieved evidence and enforces citation guardrails. 

6. Analyst UI Rendering: Present the evidence through an interactive timeline, entity/theme 

panels, and downloadable artefacts that keep provenance visible. 

Each stage writes intermediate artefacts back to the knowledge graph, enabling replay, 

validation, and audit. 

 

5.3. Retrieval Configuration and Method 

The system operates in Cypher-first mode. Given an anomaly identifier, it derives the anomaly 

window and applies a configurable Δ (default: 12 hours) to form `[start_ts − Δ, end_ts + Δ]`. 

Retrieval then proceeds with a cascade of queries: 

• Temporal events: Select `TemporalEvent` nodes whose `start_ts` falls inside the 

expanded window and that are `DESCRIBED_BY` at least one `Article`. 

• Entities: Traverse `Article-[:MENTIONS]->(Entity)` edges to collect actors and 

organisations. Group results by ontology class (e.g., `Operator`, `Regulator`, 

`Company`). 

• Themes: Follow `TemporalEvent-[:TAGGED_THEME]->(Theme)` relations to identify 

recurring motifs such as `Extreme Weather` or `Supply Disruption`. 

• Canonical geography: Resolve any `Entity` or `TimeSeries` to its canonical `Zone` via 

`LOCATED_IN` edges so that the evidence bundle captures spatial context. 

 



CHAPTER 5: CASE STUDY  

94 

Temporal proximity is computed on the fly; the system does not persist `NEAR_EVENT` 

edges. The retrieval output is a compact evidence bundle that directly feeds both the interactive 

UI and the grounded narrative generator. 

After the retrieval pipeline is configured, the interface allows analysts to inspect anomalies and 
their contextual metadata directly. Figure 5-3 illustrates the anomaly metadata card, which 
consolidates all essential fields identifier, detection type, anomaly score, time window, and 
retrieved evidence summary within the Anomaly Timeline Explorer dashboard. This 
visualization demonstrates how each detected event remains traceable to its provenance and 
how the analyst can further explore it through live Cypher-backed queries. 
 

 
Figure 5-3: Anomaly Timeline Explorer —Metadata and Context Summary.The interface displays the 
anomaly identifier, detection parameters, window expansion, and summarized retrieval context for 
Greece’s day-ahead price anomaly. 

 



CHAPTER 5: CASE STUDY  

95 

 
In parallel, the system performs automatic geospatial validation to ensure every referenced 

location resolves to a canonical Zone with a unique code. Figure 5-4 presents the Georeference 

Canonicalization report, confirming that all 66 spatial references in the evidence set were 

successfully canonicalized and none were duplicated. This verification step guarantees that 

subsequent explainability and visualization layers operate on spatially consistent entities. 

 

Figure 5-4: Georeference Canonicalization Dashboard. Summary of spatial normalization results 
confirming 66/66 canonical georeferences and zero duplicates. 

 

 

5.4. Evidence Assembly 

The evidence bundle serves as the central artefact connecting numerical anomalies with 

semantically aligned textual evidence retrieved from the knowledge graph. It merges structured 

and unstructured data into a single interpretable object, ensuring that every explanatory element 

is traceable back to its provenance. 

 

 

 



CHAPTER 5: CASE STUDY  

96 

 

The evidence bundle contains four components: 

Anomaly metadata: Unique identifier, LevelShift::Rise classification, anomaly window 

(start_ts, end_ts), median absolute deviation (MAD) score, detection method, unit, product, and 

spatial zone. 

Temporal events: Events detected within the anomaly’s temporal window, such as heatwaves, 

outages, or market interventions. Each entry includes title, timestamp, source article(s), and any 

associated thematic tags. 

Entities by type: Prominent actors and organizations extracted from contextual documents, 

grouped by ontology class (e.g., Country, Operator, Pipeline, Institution). 

 

Theme summary: Frequency-ordered list of themes (e.g., Extreme Weather, Policy Change, 

Supply Constraint) summarizing dominant explanatory patterns. 

Together, these layers provide an interpretable snapshot of the anomaly’s surrounding context 

and the evidence base used for the LLM’s structured explanation. Graph constraints ensure 

semantic validity across all connected node types (Article, TemporalEvent, Entity, Theme, 

TimeSeries, and Zone). The TimeSeries nodes store only metadata and identifiers, while 

numeric arrays remain external to maintain graph efficiency. 

 



CHAPTER 5: CASE STUDY  

97 

 

Figure 5-5: Anomaly Context — Temporal and Entity Summary. Dashboard view summarizing the 
anomaly’s search window, retrieved events, entities, and thematic tags.  

 

 

 

 



CHAPTER 5: CASE STUDY  

98 

5.5. Grounded Narrative Generation 

When narrative rendering is enabled, the system automatically composes a structured prompt 

that translates retrieved evidence into a coherent, verifiable explanation. The prompt integrates 

all key dimensions of the anomaly context, ensuring that each claim can be traced back to 

explicit graph entities or source articles. 

The structured prompt contains four primary elements: 

1. Anomaly overview: Classification, time window, observed value, and detection 

parameters. 

2. Chronological list of near-window events: Each with timestamps, source article titles, 

and URLs. 

3. Entity roll-up by ontology class: Representative examples per category (e.g., Country, 

Operator, Pipeline). 

4. Theme synopsis: Themes ordered by frequency, revealing dominant explanatory motifs 

(e.g., Extreme Weather, Supply Constraint, Market Stress). 

Guardrails embedded in the prompt template direct the large-language model to: 

• Rely exclusively on retrieved, ontology-aligned evidence. 

• Cite sources inline and attribute claims to verifiable data. 

• Respond “unknown” when supporting information is insufficient. 

The resulting generated narrative typically covers: 

1. Temporal framing of the anomaly window. 

2. Demand-side stressors such as weather-driven load peaks. 

3. Supply-side constraints (e.g., outages, low renewable output). 

4. Market or network limitations (interconnector congestion, reserve scarcity). 



CHAPTER 5: CASE STUDY  

99 

 

Because every sentence is grounded in retrieved facts, provenance remains auditable end-to-

end, and analysts can trace explanations directly to graph nodes and evidence bundles. 

 

Figure 5-6: Entity and Theme Aggregation in Prompt Assembly 

 



CHAPTER 5: CASE STUDY  

100 

 

Figure 5-7: Entity and Theme Aggregation in Prompt Assembly 
 
 
 
 
 



CHAPTER 5: CASE STUDY  

101 

5.6. Interactive UI and Analyst Workflow 

The interactive timeline interface constitutes the final layer of the GraphRAG explainability 

pipeline, enabling analysts to visually explore anomalies, contextual events, and derived 

evidence within a single integrated workspace. The interface is powered by a Flask backend, 

which queries the Neo4j knowledge graph and returns structured JSON payloads to a 

Highcharts-based frontend for dynamic visualization. 

The UI consists of three harmonized analytical panels that operate in temporal synchrony: 

• Time-Series Panel : Displays the numerical trajectory of the selected energy metric (e.g., 

day-ahead electricity price) with the detected anomaly window highlighted. Event markers 

are overlaid across the timeline; hovering reveals event titles and timestamps, while clicking 

opens corresponding article metadata. 

 

Figure 5-8: Temporal Events Chart. A timeline visualization showing the evolution of key temporal 
events around the anomaly window, including market warnings, gas-price spikes, and EU policy 
interventions. The anomaly interval is highlighted in red. 

• Entities Panel — Aggregates extracted entities by ontology class so that analysts can identify 

dominant actors—such as operators, regulators, governments, or companies—referenced 

during the anomaly period. Each layer in the chart represents an entity group, showing how 

their prominence evolves over time. 



CHAPTER 5: CASE STUDY  

102 

 

Figure 5-9:  Entities Chart. A stacked timeline indicating the temporal frequency of entity mentions, 
dominated by the Russian Federation, Greece, Ukraine, Germany, and Gazprom during the price-spike 
period. 
 

Themes Panel — Orders thematic tags by frequency to foreground recurring explanatory 

motifs such as Extreme Weather, Demand Surge, or Supply Disruption. This enables rapid 

assessment of dominant causal narratives. 

 

Figure 5-10: Themes Chart. A chart highlighting the temporal intensity of thematic categories 
associated with the anomaly. The “War” and “Market Stress” themes peak concurrently with the 
September :2022 price anomaly. 
 
 
 



CHAPTER 5: CASE STUDY  

103 

Interactive controls allow analysts to: 

• Adjust the Δ-window (temporal expansion) to include pre- and post-anomaly evidence; 

• Filter results by zone, country, or ontology class; 

• Cap Top-K entities or themes for clarity; 

• Toggle between quantitative and narrative layers. 

The UI implements responsive rendering, progressive loading indicators, and explicit status 

messages to facilitate rapid what-if exploration. Analysts can re-query the knowledge graph 

iteratively, adjust filters in real time, and trace every displayed statement back to its evidence 

bundle within the Neo4j database. 

Finally, the interface integrates with the explanation subsystem, allowing the user to click on 

any anomaly to automatically generate a grounded narrative via the GraphRAG engine. 

 

Figure 5-11: Timeline UI Views for GraphRAG Explanations. A schematic diagram showing the 
interaction between the Flask/Highcharts UI and the GraphRAG workflow, including anomaly summary 
cards, event drawers, and LLM-based explanation panels. 



CHAPTER 5: CASE STUDY  

104 

5.7. Results and Interpretation 

This section presents and interprets the results produced by the GraphRAG explainability 

workflow, focusing on how retrieved evidence and generated narratives elucidate anomaly 

behavior in the energy market. The aim is to assess whether the system produces faithful, 

context-rich explanations grounded in retrieved events, entities, and themes, and whether 

these align with the known drivers of energy price fluctuations. By examining the outputs for 

the selected Greek day-ahead price anomaly, we evaluate the coherence of the generated 

explanation, the consistency between structured data and unstructured evidence, and the 

interpretive value the system adds beyond statistical detection. 

1. Question to GraphRAG: What caused the anomaly?    

 GraphRAG Response: 

 

Figure 5-12: What caused the anomaly?-GraphRAG response. 
 
 



CHAPTER 5: CASE STUDY  

105 

The anomaly detected in Greece’s day-ahead electricity price on 1 September 2022 is classified 

as a LevelShift::Rise, denoting a statistically significant upward deviation from the baseline. 

The recorded clearing price of approximately €597 / MWh represents one of the sharpest short-

term increases within the examined period. 

1. Probable Drivers of the Anomaly 

The RAG-derived explanation attributes this price escalation to a combination of geopolitical, 

structural, and market-driven factors that jointly amplified volatility across European energy 

systems. The primary catalyst was the broader energy price surge initiated in late 2021, which 

persisted through 2022 as a result of: 

• escalating geopolitical tensions in Eastern Europe; 

• supply-chain disruptions and sanctions affecting gas flows; and 

• market realignments in response to constrained natural-gas and electricity supply. 

2. Temporal, Entity, and Thematic Context 

Evidence retrieved from the knowledge graph establishes explicit links between the anomaly 

and contextual events: 

Temporal Events — A series of energy-related price surges, beginning with the September 

2021 energy-price escalation, form the temporal backdrop for the 2022 anomaly. These events 

capture how earlier market shocks and the escalation of the Russia–Ukraine conflict translated 

into regional price instability. 

Entities — Prominent actors include Gazprom and the Russian Federation, both central to 

Europe’s gas-supply dynamics. In particular, Gazprom’s pricing-revision request of August 

2021 and subsequent supply restrictions represent early indicators of stress transmitted through 

interconnected European markets. 

Themes — The dominant semantic themes—energy-price volatility, supply disruption, and 

geopolitical influence—collectively frame the anomaly as part of a broader systemic 

disturbance in the European energy landscape. 



CHAPTER 5: CASE STUDY  

106 

3. Contextual Interpretation 

The surrounding context points to a multi-layered causal chain in which geopolitical conflict, 

constrained natural-gas infrastructure, and policy uncertainty interacted to elevate wholesale 

electricity prices. The anomaly’s timing coincides with the sustained volatility that followed the 

onset of the Russia–Ukraine war, demonstrating how international developments propagated 

into national bidding zones such as Greece. 

4. Evidence-Based Synthesis 

Integrating structured time-series evidence with ontology-aligned text extractions, the RAG-

based explanation yields an auditable and provenance-linked narrative. It concludes that the 

September 2022 price spike in Greece’s day-ahead market arose from geopolitical tensions, 

gas-supply disruptions, and cascading market adjustments within the European power sector. 

Entities like Gazprom and institutional actors across the European Union appear as recurrent 

agents in this evidence graph, underscoring how the anomaly reflects not an isolated local event 

but a regional manifestation of systemic energy volatility. 

 

 

 

 

 

 

 

 

 

 



CHAPTER 5: CASE STUDY  

107 

2. Question to GraphRAG: Which primary evidence coincide with the anomaly??  

  

 GraphRAG Response: 

 

Figure 5-13: Which primary evidence coincide with the anomaly?-GraphRAG response. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



CHAPTER 5: CASE STUDY  

108 

 
 

2. Question to GraphRAG: Which entities are involved to the price peak?    

 GraphRAG Response: 

 

Figure 5-14: Which entities are involved to the price peak?-GraphRAG response. 

 
Summary: 

The GraphRAG-generated explanation demonstrated a high degree of factual and contextual 

accuracy, effectively linking the identified anomaly in Greece’s day-ahead electricity price 

(September 2022) to relevant geopolitical and market events. The model correctly highlighted 

the Russian–Ukrainian conflict, Gazprom’s pricing actions, and European energy policy 

discussions as dominant causal themes—elements that are well-documented in the historical 

record. Each cited entity and event could be traced to a valid source node in the knowledge 

graph, confirming the faithfulness and provenance integrity of the system. Minor 

inconsistencies appeared in temporal granularity and event grouping, reflecting residual noise 

in article extraction rather than reasoning errors. Overall, the response captured the multi-factor 



CHAPTER 5: CASE STUDY  

109 

nature of the anomaly with minimal hallucination, maintaining semantic coherence and 

alignment between retrieved evidence and narrative synthesis. This outcome validates the 

GraphRAG framework as a credible and audit-ready approach for explainable energy-data 

interpretation. 



 
 

 

 

 

 

 

6. CONCLUSIONS & FUTURE RESEARCH 

6.1. Key findings  

This thesis proposes a comprehensive approach to managing spatial references across open 

energy-market and infrastructure datasets. From the evaluation results, comparisons with 

alternative approaches, and the case studies, several key findings emerge: 

Explainability and documentation: The proposed system delivers valid, well-documented 

explanations for anomalies in time series. Each generated explanation of an abnormal 

phenomenon is accompanied by references to real-world events and data sources (provenance), 

providing transparency to the end user. In contrast to approaches that rely exclusively on LLMs 

and may produce unsubstantiated information, the GraphRAG methodology ensured that the 

model did not exhibit “hallucinations”—that is, every claim could be traced back to a node in 

the knowledge graph or to a recorded source. This feature strengthens trust in the outputs and 

facilitates interpretability, addressing a critical gap in traditional “black-box” models. 

• Reproducibility of results: he proposed architecture and methodology emphasize 

reproducibility. All data sources are open and documented, and the processing pipeline 

is fully specified and automated, making experiments easy to repeat. Using a knowledge 

graph with a clearly defined ontology, along with versioned datasets and fixed random 

seeds where needed, ensures that other parties can verify the results. Consequently, each 

conclusion rests on systematically controlled data and metrics, which enhances the 

reliability and repeatability of the research. 

• Architectural benefits and flexibility: The implemented multi-layer architecture (Data 

Acquisition → Semantic Extraction → Knowledge Graph → Applications) 

CHAPTER 
6 



CHAPTER 6: CONCLUSIONS AND FUTURE RESEARCH 

111 

demonstrated the value of clear separation of concerns and the integration of 

heterogeneous technologies. Each layer can evolve or be optimized independently (e.g., 

replace or improve the anomaly detector, upgrade the LLM or the graph) without 

disrupting the others. This modular design makes the system flexible for future 

extensions. At the same time, coupling time-series data with semantic knowledge 

enabled a holistic treatment of the problem: the system not only detects when an 

anomaly occurs, but also explains why, bridging the gap between statistical analysis and 

operational insight. 

• Generalizability and validity across scenarios: The case studies (a geopolitical crisis 

such as the war in Ukraine, an extreme weather event such as a heatwave, and a technical 

infrastructure failure such as a 400 kV transmission-line outage) showed that the 

proposed methodology can handle anomalies of different types. In each scenario, the 

system identified the relevant drivers (e.g., price movements due to geopolitical events, 

demand spikes due to weather, system destabilization due to failure) and provided 

context-appropriate explanations. This indicates a wide range of applicability that can 

generalize to diverse data and markets, provided the corresponding knowledge is 

represented in the graph. It also suggests that a globally scoped knowledge graph can 

capture multi-factor interactions more effectively than monolithic approaches. 

 

6.2. Limitations 

Despite these contributions and positive results, several limitations of the present work should 

be acknowledged: 

• Limited data coverage and generalization: The platform was developed and 

evaluated primarily on data from the Greek electricity market and English-language 

news sources. Geographic and linguistic coverage is therefore limited. Some events or 

anomaly drivers may be missing from the knowledge graph if they are not present in 

the considered sources. As a result, the generalization of the conclusions to other 

markets or regions (especially those with different languages or regulatory settings) has 

not been fully verified. Adapting the system (ontologies, data sources, models) is 

required to extend coverage internationally. 



CHAPTER 6: CONCLUSIONS AND FUTURE RESEARCH 

112 

• Ontology alignment and extraction accuracy: Mapping extracted entities and events 

to a predefined ontology poses challenges. Although techniques such as ontology-aware 

prompting and JSON-schema checks were applied, there is no guarantee that all 

extracted information aligns perfectly with the target knowledge model. Mismatches or 

misclassifications can occur—e.g., novel or unusual event types may be categorized 

incorrectly—reducing homogeneity and graph quality. Moreover, LLM-based event 

extraction is not infallible: an LLM may occasionally fail to capture an event or assign 

it to the wrong class, necessitating additional verification mechanisms and human-in-

the-loop correction for critical cases. 

• Prompt/LLM stability: ΠEven with prompt optimization, large language models can 

exhibit output variability. Small prompt changes or model updates may alter responses. 

An LLM can also circumvent constraints or behave unpredictably when operating 

outside its trained domain. Although no obvious hallucinations were observed here 

thanks to the RAG mechanism, the risk persists under different conditions. Continuous 

monitoring and retuning are practical necessities. In addition, reliance on a specific 

LLM (e.g., a large model such as GPT-4) creates dependence on the provider’s platform 

and constraints (API costs, rate limits, and ethical/legal usage considerations). 

• Computational cost and scale: Integrating a knowledge graph and an LLM introduces 

complexity and computational overhead. Graph queries (e.g., complex Cypher over a 

large Neo4j) and LLM calls add latency. While current response times (~2 seconds for 

medium-complexity queries) were acceptable, scaling may be challenging. With orders-

of-magnitude more nodes/relationships or many concurrent users, performance could 

degrade. Running a large LLM in real time is also computationally (or financially) 

expensive when via a cloud API. The system has not yet been optimized for large-scale 

production, and continuous ingestion/updating of the graph (streaming) was not fully 

implemented—limiting real-time expansion of the knowledge base. 

 

6.3. Future directions 

The above limitations and findings open multiple avenues for further research and 

improvement: 



CHAPTER 6: CONCLUSIONS AND FUTURE RESEARCH 

113 

• Causality-aware retrieval: Incorporate mechanisms that reason about causality during 

graph retrieval. Rather than relying solely on correlations or keyword co-occurrence, 

employ causal-inference ideas to distinguish true cause-and-effect relations. For 

example, retrieval could prioritize event paths connected by CAUSES or AFFECTS-

like semantics, yielding explanations that not only list relevant events but also 

substantiate that they caused the observed anomaly. Combining knowledge graphs with 

causal models should improve reliability and address the correlation-vs-causation 

challenge. 

• Real-time data processing: or operational deployment (e.g., a TSO or market 

platform), real-time integration is critical. Future work should focus on streaming 

pipelines (e.g., Apache Kafka) and rolling-window anomaly detection that update the 

knowledge graph dynamically. The challenge is to keep latency low so that, as soon as 

an anomaly occurs, the system can immediately retrieve context and produce 

explanations. Methods for online graph updates will also be needed to maintain data 

consistency during continuous ingestion. 

• Multimodal prediction and analysis: Energy markets are global. A natural next step 

is to support multiple languages and regions. While the current implementation leans 

on English material, critical events may first appear in other languages. Future work can 

integrate multilingual LLMs or machine translation so extraction performs effectively 

in Greek, English, French, and beyond. Cultural and regulatory differences should also 

be reflected: the graph can be enriched with local ontologies and specialized nodes (e.g., 

national regulators, local operators). This will increase generality and enable worldwide 

deployment. 

• Multilingual and cross-regional generalization: Energy markets are global. A natural 

next step is to support multiple languages and regions. While the current implementation 

leans on English material, critical events may first appear in other languages. Future 

work can integrate multilingual LLMs or machine translation so extraction performs 

effectively in Greek, English, French, and beyond. Cultural and regulatory differences 

should also be reflected: the graph can be enriched with local ontologies and specialized 

nodes (e.g., national regulators, local operators). This will increase generality and 

enable worldwide deployment. 



CHAPTER 6: CONCLUSIONS AND FUTURE RESEARCH 

114 

• Architecture optimization and scaling: Production use will require improvements in 

performance and resilience: more efficient graph-query strategies (smart caching, 

precomputed associations), lighter or specialized on-prem LLMs to reduce cost, and 

better scalability via distributed processing. Techniques such as AutoML/AutoPrompt 

can help the system self-improve over time based on fresh data and user feedback. These 

steps will move the platform toward a mature operational tool, ready to support energy-

market stakeholders with accuracy, speed, and reliability. 

In summary, the conclusions and future directions in this chapter underscore a dual 

contribution: on the one hand, a novel solution that bridges statistical time-series analysis with 

semantic knowledge in the energy domain; on the other, a roadmap for scaling and adoption. 

Implementing these extensions can transform the platform into a generalized, intelligent 

decision-support system for energy markets and infrastructure, improving understanding and 

management of the complex spatiotemporal dynamics that govern them. 

 

 

 

 

 



BIBLIOGRAPHY  

115 

BIBLIOGRAPHY 
 

[1] A. Li, Y. Zhang, Z. Chen, L. Song, and W. Chen, “Large Language Models for Generative 
Information Extraction: A Survey,” arXiv preprint arXiv:2312.17617, 2023. [Online]. 
Available: https://arxiv.org/abs/2312.17617 

[2] S. Wang, Y. Li, M. Dong, H. Liu, Y. Zhang, and M. Zhou, “From Local to Global: A 
Graph RAG Approach to Query-Focused Summarization,” Microsoft Research, 2024. 
[Online]. Available: https://www.microsoft.com/en-us/research/publication/from-local-to-
global-a-graph-rag-approach-to-query-focused-summarization/ 

[3] D. Xu et al., “Large Language Models for Generative Information Extraction: A Survey,” 
Frontiers of Computer Science, 2024, doi:10.1007/s11704-024-40555-y. 

[4] X. Geng et al., “Improving LMs with Grammar-Constrained Decoding,” in Proc. ACL, 
2023. 

[5] E. Karataş, “Structured Output Generation in LLMs: JSON Schema and Grammar-Based 
Decoding,” Medium, Feb. 15 2025. [Online]. Available: https://medium.com 

[6] A. Edge et al., “GraphRAG: Unlocking LLMs for Retrieval on Large Document 
Collections,” Microsoft Research, 2024. [Online]. Available: 
https://microsoft.github.io/GraphRAG/ 

[7] Neo4j, “Neo4j Graph Database Platform — Developer Guides & Cypher,” 2024–2025. 
[Online]. Available: https://neo4j.com/docs/ 

[8] LangChain, “Graph RAG & Neo4j Integrations (Neo4jGraph, GraphCypherQAChain, 
Neo4jVector),” 2024–2025. [Online]. Available: https://blog.langchain.com/ 

[9] ERCIM News, “GLACIATION: Distributed Knowledge Graphs for Energy Systems 
(SCADA-Driven Anomaly Detection),” 2024. [Online]. Available: https://ercim-
news.ercim.eu/ 

[10] Neo4j, “Utilities Are Graphs: Using Neo4j for Energy Networks,” 2024–2025. [Online]. 
Available: https://neo4j.com/ 

[11] Neptune.ai, “Data / Model Drift: Monitoring Best Practices,” 2024–2025. [Online]. 
Available: https://neptune.ai/ 

[12] OTexts, “Forecasting: Principles and Practice — Rolling Forecast Origin,” Monash 
University, Online. [Online]. Available: https://otexts.com/ 

[13] Machine Learning Mastery, “Walk-Forward Validation for Time Series Forecasting,” 
Online. [Online]. Available: https://machinelearningmastery.com/ 

 


