EONIKO METXOBIO IIOAYTEXNEIO
YyoA HAiextpoddywv Mnyavikav

Kot Mnyovikeov Ymoroyietav

Topéag Teyvoroyiag [TAnpopopikng kot YoAoyiotdV

Avantoén RAG Chatbot yia fofj0cra ypnotov epappoyng

AITIAQMATIKH EPT'AXIA

I'ewpyrog E. Kitolog

Emprénov : Nektdprog Kolopng
Kabnyntig E.M.II

AbMva, OxtdPprog 2025

EONIKO METXOBIO IIOAYTEXNEIO
YyoA HAiextpoddywv Mnyavikav

Kot Mnyovikeov Ymoroyietav

Topéag Teyvoroyiag [TAnpopopikng kot YoAoyiotdV

Avantoén RAG Chatbot yia fofj0cra ypnotov epappoyng

AITIAQMATIKH EPT'AXIA

I'ewpyrog E. Kitolog

Empiénov : Nextaprog Kolopng
Kabnyntg EM.II

EykpiOnke and v tpiuein e&etaoctikn entpony) v 3n NoeguBpiov 2025

Nektdprog Kolvpng I'edpylog 'codpog Awovooiog [Mvevpatikdrog
Kofnynmce E.M.IL. Koafnynmce E.M.IL Kobnynmge E.M.IL.

ABnva, Oxtodpprog 2025

Mewpyiog E. Kitolog
ArmmAwpaTouxog HAekTpoAOYyoG Mnxavikdg kal Mnxavikog YtroAoyiotwy E.M.IM

Copyright © I'ewpylog Kitolog, 2025
Me gmporaén tavtog dwaidpatoc. All rights reserved.

AmoryopevETOL 1) AVTIY AP, AToOKELGT KOl SLOVOULY| TNG TAPOVCAS EPYUGING, £& OAOKAT|pOV
N TUWLLOTOG VTG, Y10 ELTOPIKO okomd. Emtpéneton n avatdinwon, amobrkevon Kot dtovoun
Y10 GKOTLO U1 KEPOOGKOMIKO, EKTALOEVTIKNG 1) EPEVVITIKNG VOGS, VIO TNV TpolindBeon va.
AVOPEPETOL 1) TNYT TPOEAELONG KoL Vo dtotnpeital To mapdv unvopa. Epotmuata wov
aQOpPOvV TN YPNON TNG,EPYAGING Y10 KEPOOGKOMIKO GKOTO TPEMEL VO, amevLBHVoVTOL TPOg TOV

GLYYPOUPEQ.

Ot amdyelg Kot To GUUTEPAGILOTO TTOL TTEPLEYOVTOL GE ALTO TO EYYPAPO EKPPALOVV TOV
oLYYPOUPEN KOl OEV TTPEMEL VAL EPUNVELOEL OTL AVTITPOGMTEVOVV TIG EMioNLEG BEGEIS TOV
EBvucod Metoofrov TToAvteyveiov.

Iepiinyn
Ta chatbot cvotuata amoTEAOVV AVAOLOUEVO EPYOAEID LE TAPO TOAAEC TPOUKTIKES
EPAPLOYEG, TPOGPEPOVTAG GUECT] TANPOPOPNON Kot PEATIOVOVTAG TNV OAANAETIOpaCT e
ynowokég vanpeoies. H cvykekpuévn epyacia eotidlel oy avamtuén evog RAG (Retrieval-
Augmented Generation) chatbot, oyedwaopévov yww v epapuoyn "AGHNA" mov
ypnopomroleiton and epyaldUevoug Tpamelikov 0pYaVIGHOD Yo TV dNUovpYio Sty popdTmy
pe BAaon ouKovoutKa 0edopEVQ.

To chatbot Tov peletdTon 6T GLYKEKPIUEVT] SMA®UATIKT OMovpyRONKe pe oKomd va
OTAOTIOMGEL TNV EUTELPIO TV YPNOTAOV KOTA TNV TAONYNON Kot a&10T0oinon TV SuvaToTHTOV
g epappoyns. Ewdwotepa, to cvhotnua aviiel mAnpopopio amd 0dnyovg yp1omng Kot TEXVIKA
eyyepiow og popen PDF, ta omoia avaidovtor kot HETOTPETOVTIOL GE LOPPT) KATAAANAN Yo
avaktnon mAnpogopiag. Méca amd avtiv TV TPOGEYYIoT, 0 ¥pNotNS umopel va Béoet
EPOTNLLATA GE PUGIKN YADGGO KOt v AGPEL KATOTOTIOTIKEG OMAVINGELS TTOL GYETILOVTOL LE TN
dradikacio Snuovpyiag StaypopuudT®y.

H apyitektovikn tov ovotpotoc meptlapfaverl po dtadikacio amodnkevong tov
OEdOUEVMV GE HOPPT KATAAANAN Yoo avdkTnon kabmg Kot Evav Unyovicid ovaKtnong tmv
dedopEvmV Ko Topoymyn g amdvinong pe Pdon ta oyeTikd anoondopata. H cuvovaotikn
ot Aettovpyia eEacparilet akpifela kol GuVAPELD GTNV TANPOPOPNGT TOV TAPEXETAL GTOV

xXPHoT.

Kotd v avantoén 1ov cueTLATOS TPOYUATOTOONKAV TEPALTIKEG AELOAOYNOELS
Y10 TNV GLVOALKY| addoot Tov chatbot pe dtapopeg maparrayéc oe facikodg TaPAYOVIES TOV
GLGTNLLOTOG, YPNCULOTOIDOVTOG EOIKES HUETPIKEG TOdTNTAG. Ta amoTEAEGLOTA AVESEEAY TIG
dLVATOTNTEG TOV GLGTNUOTOG VO VTOGTNPILEL OMOTEAEGUOTIKA TOVG YPNOTES OTNV EPYOCIN
TOVG.

H epyacio kataAnyet pe pio amoTiunon TV TAEOVEKTNLATOV KOl TOV TEPLOPIGLMY TNG
TPOGEYYIONG VNG, KABMG Kot TPOTAGELS Y10 LEAAOVTIKEG EMEKTAGELS TOL Ba umopovsav va
EVIGYVOOVV TEPALTEP® T1) AELTOVPYIKOTNTO TOVL chatbot otV cuykekpévn epapuoyn.

AgCag Kherona:

Retrieval-Augmented Generation, Large Language Models, RAG chatbot, Al chatbot,
Knowledge retrieval, Context-aware chatbot, Intelligent assistant, Generative Al, Vector
search, Semantic search, Embedding-based retrieval, Custom knowledge base, LangChain,
Llamalndex, FAISS / Chroma / Pinecone

Abstract

Chatbot systems are an emerging tool with numerous practical applications, offering
instant information and enhancing interaction with digital services. This particular thesis
focuses on the development of a RAG (Retrieval-Augmented Generation) chatbot designed for
the “ATHENA” application, which is used by employees of a banking organization to create
charts based on financial data.

The chatbot studied in this thesis was created with the goal of simplifying the user
experience when navigating and utilizing the features of the application. Specifically, the
system retrieves information from user guides and technical manuals in PDF format, which are
analyzed and converted into a form suitable for information retrieval. Through this approach,
users can pose questions in natural language and receive informative answers related to the
chart creation process.

The system’s architecture includes a pipeline for storing data in a format suitable for
retrieval, as well as a retrieval mechanism for the data and the generation of a response based
on the relevant chunks. This combined functionality ensures accuracy and relevance in the
information provided to the user.

During the development of the system, experimental evaluations were conducted to
assess the chatbot’s overall performance, testing various configurations of key system
components using specialized quality metrics. The results highlighted the system’s potential to
effectively support users in their tasks.

The thesis concludes with an assessment of the advantages and limitations of this
approach, along with suggestions for future enhancements that could further improve the
chatbot’s functionality within the specific application.

KeyWords:

Retrieval-Augmented Generation, Large Language Models, RAG chatbot, Al chatbot,
Knowledge retrieval, Context-aware chatbot, Intelligent assistant, Generative Al, Vector
search, Semantic search, Embedding-based retrieval, Custom knowledge base, LangChain,
Llamalndex, FAISS / Chroma / Pinecone

Evyaprotieg

Koatapydc, 0o ndero vo evyaploTiom TV 01KOYEVELD LLOV TOL NTOV diTAd pov kob’ OAN
N SLAPKELD TOV GTOVIMV OV KoL KATE TN SEPKELN TEPATMONG OVTNG TNG EPYACIOGS.

Eniong, 6o 0era va evyopiomom v gpevvitpla g oxoing Katepiva Adxka kat tov
oLvadeAPO ™G I'edpylo XTavpovAdK™ TOL GKEPTNKAY TNV 10£0 TG CLYKEKPIUEVNG EQAPLOYNG.

Téhog, Ba MBera va gvyaploTo® OAOVG TOVG KaONYNTEG TNG OYOANG, oL YX&pn o€
OVTOVG OMEKTNOO AP TOAAEG CNUAVTIKES YVMOGELS, Ol OToieg Ba LLov Gavovv YpNoLEG 6N
peténetta emayyeApoTiky pov mopeia. duoikd Ba MBela var uxaploTNo® Kol TOVS TPELS
emPrénovieg g Ouwlopatikng Nektdpro Kolopn, T'eopyro I'kodpa kot Awovdcio
[Tvevpatwcdro.

10

11

Table of Contents

Exteviic TTepiAnum OTO EAMVUCH....cooiiiieiiie ettt e 18
| A T 0 004§ USRS 18
2 MNYOVUKT] IMOONOT 1ttt ettt ettt e et e et e e e sbeeesaaeessaeeessaaesssaeesnseeesnseaenns 19
2.1 Katnyopieg MNYOVIKIG MAONOMG «vveeeereeeeiiieeeiieesiieeeiieeeiteeesieeeeeeeetaeeeseeessreeeseseeeeens 19
2.1.1 EmPrenopevn Madnon (Supervised Learning)cceeeeeeeevveeeveeescieesciieeeeeeeeneenn 19
2.1.2 Mn Emprenopevn Mabnon (Unsupervised Machine Learning)...........cceeeveeeneee. 19
2.1.3 Evioyvtikr) MaOnon (Reinforcement Learning)ooccveeeevveeeciieeeceeesciieeeieeeeenenn 20

3 BaO1d MaONom (Deep Learning)cc.eeveeeiuieiiieiieiieeiie ettt ettt 21
3.1 Ewoay@yn 611 BaOud MAONOT .eooviieiiiieeeeeeeee ettt 21
3.2 POICEPIION. ...eeiiiieiiie ettt et ee ettt e ettt e et e e et e e st e e e s bt e eantee e sbeeensseeensseeansaeeenseeennseeennseens 21
3.3 Ap1teKTOVIKEG BOOAG MABNOMG -eeeenviieeiiiieeiie ettt 22
3.3.1 Nevpovikad Aiktoa [Tp6c01ag Tpo@oddtnong (FNNS)....ccuevvieriieiieeieeieeeee e 22
3.3.2 Zuvelktikd Nevp@Vikd ATKTUO (CINNS) cueviiiiieeiiieevee ettt siee e e evee e 22
3.3.3 Avadpopikd Nevp@vikd ATKTUO (RNNS) ..eeiiiiiiiiciicieceeeee e 23
3.3.4 MetaoynUatioTEG (Transformers)oeveeeevieeiiie et 24

4 ETEEEPYOOTO QUOUKTIG YAMGGOSG cvvveeenvreeenrreeeereearreenseeeaseeessseeessseeessseesssseessssesssseesssseesssseennns 25
4.1 Ewoaymyn oty Enegepyacio Guokng TADOGGOC (NLP) c.ovveeeiieeiieieeeeeeeeeee 25
4.2 Opiopog g Enegepyaciog Duotkng IAOGoaG (NLP) .ooevveeeiieeieeeeeeeeee e 25
4.3 H ovpPoromoinon oty Enelepyocio Duotkng TA®GGoG (NLP)...oveevveeeiiieiieeeee 26
4.3.1 OPIOHOG KOU ZTOGTOL ¢ eveenrienreeriteeteeeiteetee st et e ettt sate et e et e e e sareesneesaneeseeesanees 26
4.3.2 E101 ZUUPOAOTIOMNOTIG -vevvevrerreenteniienteetesitesieesteesteeteeste et sieesseesteeseesbeetesaeesseeeeenees 26

4.4 TIpoemeEepyaoiot KEULEVOUeiiiiiiiiiiii ettt e 27
4.5 EMonNUoveT) MEPMY TOU AGYOUuviiiiiiiiiiiieiiee ettt ettt e 29
4.6 Avayvopion Ovopaostik®v OvtotNT®V (NER).....ooiiiieee e 29
4.7 Mé00601 AvamapaoTaonG XOPOUKTIPIGTUCDY ..eeureeereeureerererreenseeaseesseesseenseesseesseesses 30

5 Tevetikn] TeqvNTI] NOTOGUVI . c..eiiiiiiiiiiie ettt ettt ettt e et ee e sibeessabeeenes 33
5.1 Ewoayoyn oty evetikn Texvnti] NOTHOGUVI c..eeiiiiiiiiiiieiiieeieeeteeeee et 33
5.2 MeYOAO TADOOOTUCE MOVTEAGL.....eevvieniieeieieiie et eite ettt ettt et esieeeteesaeeebeessaesaseesaeeens 33
5.3 Tehwn IpodcPacn Xpnotdv oto Meydho TAOGOIKE MOVTEADcovvveeeieeiieiieeiieiee 34
5.4 Zyedroopdg [Ipotpomtddv (Prompt engineering)........ccveeeceveeereveeeiiveeeiieeerieeecreeesveeennveens 35
5.5 Xpnowédmta 1oV MeydAmv NAOGOIKOY MOVTEADV...cc.vvveeiiieeiieeeiie e 37
5.6 Tlepropiopol Tov Meydrhov IAOGOIKOV MOVIEADV ...occvveeeiiieeiieeeiieecie e 37

6 Retrieval Augmented Generation (RAG)ooeovieeiiieeiiieceeceeee e 38

6.1 E1aY@YT OTO RAG ... ittt e e e e s e e e e naaea s 38

6.2 TTOPOOOTED EQOPILOYIG eeerieeirieeiieeeitee ettt ettt et eeste e e taeeeaaeeetaeeensaeesseeessseeennseens 38
6.3 OKoGUOTNIO LangCRaINc.veieiiiciiie et e e e e s 39
6.4 TIPOETOULOGTIO AEOOLEVEIIV ..eevevieeneieeeieeeeteeeeieeeeiteesteeessseeessseesssseeessaeansseesseeessseeensseens 39
6.5 Atodkooion AVAKTNONG KOL TTOPOYDYNG cvveeeeriieeiieeeiie ettt 40
OO JO70) 171 PSPPSR 41

7 AELOAOYNON RAG GUOTIHOTOG .. eeeveeniieeiieeiieeiieeieeeteeiteeireesteeeseessaeesseenseesnseenssesnseensnesnsens 44
7.1 Ewoaywyn omv AE10A0YNo1 ZUGTNUATOV RAG ..o 44
7.2 METPIKEG ACTOAOYIIOTG 1envveeenerieenireeeiteeetteesteeestteessteeessteeesseesssaeansseeansaeesseeesnseesnsseens 44
7.3 TIpoxktiky AE0AOYNGN TOL RAG PIpeling.......cceeevieiiiiiiieiiieiieieceeeeeeee e 45

8 Yiomoinon E@appoyng AANAeniopaonc e TOV TEMKO XPHOTI c.veerereerrerereerieniieeieeeeneens 47
O AVOIKOUPOAGIIOT] 1eeenirieeiiieeiiieeriteeesiteeerteeestteeeeteeesateesseeeasseeasseesssaeeassaeessseessnsaeesseessseesnns 48
Extended English VErSION........ccuiiiiiiiiiiiiiiiecie ettt aae e e ssneennees 49
I INEEOAUCEION ...ttt ettt ettt et at et et s et e be et e ebeeaeennenaeens 49
1.1 Chatbot DefiNition.......ceueiuieiiiieriieie ettt sttt e seeens 50
1.2 Retrieval Augmented Generation (RAG)......ccceeeviiieiiieeiiieeieeceeeeee e 50

2 MaChing LEearningc.ccoueeiiriiiiiiiiiriieie ettt sttt ettt st ettt sbe e 52
2.1 Machine Learning Definitionc.ccooouieiiieiieiiiiiecieeee e 52
2.2 Machine Learning Cat@ZOTIEScccoueerueerueeriierieeniieeteenieeeieesieeeteesseesseesseeenseesseesnseas 52
2.2.1 Supervised Learningcccceceeeerieiierienieienieseee ettt sttt 53
2.2.1.1 Linear REGIESSION......ccueeiiriiriiiieeititeeteeit ettt sttt sttt et saeens 53

3.2.1.2 LOZISHIC TEZIESSION ..cuveuviiiireeiteniienteeiteetteste et siee st eteestesbeeteseeenaeebeeneenneenee 54

2.2.1.3 Support Vector Machine (SVM)ccceoiriiniiiiniiniiieiieneceeeseceeienens 54

2.2.1.4 k-Nearest Neighbors (K-NIN).....cccoeiiiiiiiiiieieeieeeeeeee e 54

2.2.2 Unsupervised Machine Learningcccceevuieriieiienieeniienieeeeeie et 56

2.2.3 Reinforcement Learningccoevueeiieniienieeniienieeieeeie et seeeiee st 56

3 DD LEATIING ...ttt ettt ettt et e st e et e e b e e beesabe e st e enbeenneeenneas 58
3.1 Introduction to deep LEAININGcceeuviiiiiiieiiiiecie et e aee e e e s 58
3.2 Perceptron: The basis of a neural Networkic.cccceveriiieiiiiiiiieeiieeeeee e 58
3.3 Deep Learning ATChItECIUIEScc.veeeeuvieiiiiieeiieeeiieeeite et et e e e e steeeeeaeesaeeesveeennnee s 61
3.3.1 Feedforward Neural Networks (FINNS)cccuviiiiiieiiieeieceeeeeeee e 61
3.3.2 Convolutional Neural Networks (CNNS)cccviiieriiiieiiieeiiee e eieeeevee e 62
3.3.3 Recurrent Neural Networks (RNINS)veieiiiiiiiiieciieeieeeee e 63

3.3.4 The TranSformer ATCHITECTUTEcceeeeeeeeee e et e e e e e e e e eeeeeeeaaeeeeeaaees 66

4 Natural Language ProCESSINGcecuiiiiiieiiiiieeiieeeieeeeieeesieeesteeesteeeeeeesssaeessaeessseeessseeenns 72
4.1 Introduction t0 NLPoooiiii et et 72
4.2 Definition of Natural Language Processing (NLP)........ccccoveeiiiieiiiecieeceecee e 72
4.3 TOKENIZALIONeieniieeiiieiie ettt ettt ettt et et e e et e bt e s ate e bt e esbeebeesabeesateenbeesseeenseas 72

4.3.1 Definition & Importance of TOKENIZationcceeeeviierciieeeiieeeiie e 72
4.3.2 Types Of TOKENIZATIONcc.eieuiiiiiieiieeieeiee ettt saaeebeessaeenseas 73
4.3.3 Importance of TOKENIZAtION..........cccuieriierieiiieiieeieerte ettt eeees 74
4.3.4 Challenges & Considerations of ToKenization.............ccceeveeeeieeniencieenieesieenreennenn 74
4.4 Text Preprocessing BaSICs......ccuiiiiiiiiiiiieeiieiie ettt ettt sveesaesbeessaeennaes 75
4.4.1 Introduction to TeXt PreproCesSiNg.........ccveeevieriieeiiienieeieeniieeieeseeereeseeeereeseneenees 75
4.4.2 STOPWOIAS ...eveeniieeiiieciie et et et e eite et e e ae et e eibeebeeesseesaeessbeesseeesseeseesnsaensseenseenssesnseas 75
4.4.3 STEIMIMING ... vieiurieieeieieetieeieeteeeteeteeeaeeseessteeseeasseesseessseeseeasseenseessseensseasseesssesnses 75
4.4.4 LemMmMAtiZATION ...eouvieiiieieieeitestieie ettt ettt ettt ettt siee bt et et esbe et sate et e reeneas 76
4.5 Parts of SPEECh TaZ@ING......c.ccooiiiiiiiiiieiieeieeiee ettt e et esbe e aeessbeenseeensees 77
4.6 Named Entity RECOZNTHIONccuviiiiiiiiiiieciiieciie ettt e 79
4.7 Feature Representation Methods...........c.ooviiiiiiiiiiiiiiiiieeee e 80
4.7.1 One-Hot ENCOAINGcoouiiiiiiiiiiiiieiieeie ettt sttt e 80
4.77.2 BaG OF WOTASeieiiieiieeiie ettt ettt ettt ettt e et e bt e enbeeseeeeaseas 81
G T\ o4) 1 | H PP 83
4.7.4 Term Frequency-Inverse Document Frequency (TF-IDF).......ccccociiniiiiinnnnnnen. 86
4.7.5 Word EMDeddingsc.cocuiiiiiiiiiiiieeieeiie ettt e 89
4.7.5.1 Introduction to Word Embeddings..........cccccerieriiiiniinieniniiniceeeceeieneene 89
4.7.5.2 WOTAZVEC ..ttt sttt et s 89
4.7.5.2.1 The Continuous Bag-of-Words (CBOW) Model...........cccccevvrrviieninannnnne. 90
4.7.5.2.2 The Skip-gram Modelccciiviiiiiiiiiiiiieeeeee e 90
4.7.5.3 Word Embedding Similarity Calculation Methods............ccceviieiiienieniiennnn, 91

5 GNETALIVE ALttt ettt e h e et b e st be e et saeesbeenaeeen 93
5.1 Introduction to eNerative Alcocuiiiiiiieiiieeee e e e 93
5.2 Large Language Models (LLMS)cccuiiiiiieiiieeieeeeeeeie et etee e s 93
5.3 Chatbots HISTOTY .. .ceiiiuiiiiiieeiiieeciee ettt ettt e et e e e tae e saae e e teeeensaeessaeaeenseeensseeas 96
5.4 End-User Access to Large Language Modelsccceeviieeiiiiniiieeiieeeie e 97

S5.4.10PN SOUICE LLMS ...ttt et e et e e e e e e enneees 97

5.4.2 ClOSEA-SOUICE LLLIMS ..o e e e e e e e e e aaaaeeeeaees 97

5.5 Prompt ENGINEEIING......ccciuiiiiiieeeiieeciieeciee et et e et e e e e taeesaeeestaeesaseeessseeesnseeennseeas 98
5.6. Use Cases of Large Language Models (LLMS)cccuveeiiieeiiieeiieeeie e 102
5.7 Critical Limitations of Large Language Models..........cccveeviieeiiieeiieeeie e 104
6 Retrieval-Augmented Generation (RAG)cccvieeiiiiiiiieeeeeeee e 109
6.1 Introduction to RAG and Chapter OUtlinec.cccccvveeriieeiiieeiiee e 109
6.2 Chatbot Application requirements-g0oals...........cceeevureriierieeniieniieiienie e eee e see e 111
6.3 Overview of the LangChain ECOSYSteM........c.ccoiiriieriiiiiieiieeieeiieie e 112
6.4 The Indexing Pipeline (Data Preparation)............cccueevveerieeriienieeniienieeieesee e 114
6.4.1 Data Loading & PreproCesSing........cecvierueeiiiieriieeieeniieeieenieeeieeseeeeveessseeseessneensens 114
6.4.2 Document ChUNKINGccveiiiiiiiieeiieiie ettt ettt sbe e e ebeeseneeneees 117
6.4.3 Embeddings Generation and Vector Database storage............cccceeevverveecieenreenen. 118
6.5 The Retrieval and Generation Pipeline (Real-time Querying)..........ccceevveeveevveenenennnen. 120
6.5.1 User Query EMbeddingcocuieiiiiiiiiieiiieieeeeee et 120
6.5.2 Semantic Search & Retrieval...........ccooiiiiiiiiiiiiiieceeeee e 121
6.5.3 Context AUGMENTALION.cccuiieiirieeiieeeiieeeieeerieeesieeesreeesereesereessneessseeeseseeennseens 121
6.5.4. Augmented GENeTatioN..........ccceevueriiriieiierienieie ettt ettt sbe e eaees 122
0.0 COIPALL ..ttt ettt ettt et be e aeeenreas 123
6.7 RAG Pipeline Evaluationc.ccoooiiiiiiiiiiiiiiee ettt 126
6.7.1 RAG Pipeline Evaluation MEtriCsccccvcverirviiniinienienienecieeecseeeseeseeeee e 127
6.7.1.1 Component-Wise Evaluation Metrics........cccoeovereenierieneenenieneceneeneeeeeaes 127
6.7.1.2 End-to-End Evaluation MEtricsccceevuieiiiiiiieniieiienie e 130
0.7.1.3 ASPECE CIILIQUESeeveeeiiieiieeiieeiie et eeite et et e et et e et e e steesaeeeabeesseesnseesaeeens 131
6.7.1.4 Conclusion of Evaluation MEtriCsccccevuiriiniinienieniiiecieneceseeseeeeees 131
6.7.2 RAG Pipeline Evaluation in Practicecccceeeviieiieniiiinieeiieciecieee e 131
6.8 End-to-End Application Deployment............c.ccceeriieriieiiieniienieeiienee e 134
0.8.1 Streamlit OVEIVIEWccuiiiiriiiriiiieeiterit ettt sttt ettt st sbe e eaees 134
6.8.2 Streamlit Application Deployment...........cccueeviieeiiieeiiieeiiie e 135

T CONCIUSION ...ttt ettt b e et e bt et e bt e st e e sbe e eabeenbeesabeenbeesnseeneee 138

15

Table of Figures

Figure 1 — Scatter Plot for simple linear regression [38].......ccccveviiieiiieeiiieecieecieeeee e 53
Figure 2 - Structure of @ perceptron [44]ccueeecieeeiie ettt saee e 59
Figure 3 - Feed Forward Neural Network [S].....ccceeoiieiiiiiieiiiieeeee e 62
Figure 4 - Convolutional Neural NetWork[6]ccccoeriiriiiiiiniieieeieeieee e 63
Figure 5 - The architecture of an RNN [47] ..ccvieiiiiiiiiiiiieeeeee et 65
Figure 6 - The Transformer - model architecture.[8]........cccoeoieriiiiieniiieiieieeieee e, 67
Figure 7 - Scaled Dot-Product Attention. [8]........ccceeecuiiieiiieeiiiieeiiie e evee e 68
Figure 8 - Multi-Head Attention consists of several attention layers running in parallel. [8] 69
Figure 9 - Efficiency Metrics of different layer types including self-attention. [§] 70
Figure 10 - Example where 2 heads from the encoder self-attention learned to perform
IfTErENt TASKS. [8] .veiiiieiiiiii ettt et e e e e e e e et e e et e e e ae e e etae e eaeeeeareeenns 71
Figure 11 - The words "Changing", "Changed" and "Change" and the stem produced from
thESE WOIAS [54] ittt et e e e et e et e et eeeeaaeeeeaeeestaeesaneeeeareeenns 76
Figure 12 - The words "Changing", "Changed" and "Change" and their lemma [56]............. 77

Figure 13 - Example of Part-of-Speech (POS) tagging applied to the sentence “A quick
brown fox jumps over a lazy dog”. Each word is annotated with its corresponding POS tag

LS T ettt bbb h ettt b bt bbbttt e et st ntes 78
Figure 14 - Initial Dataset with Integer Encoded Categorical Feature. [66]..........ccccccceruene. 81
Figure 15 - Dataset from figure 9 Transformed via One-Hot Encoding. [66]..........cccccccueneen. 81
Figure 16 - Bag of Words implementation results matrixX.cccoceevierieenicnieenieeneeneeeee. 82
Figure 17 - Bigram implementation results MatriX.........ccoceeveerieriienieeiieniceeeseeeeeeeeeen 85
Figure 18 - Implementation of unigram, bigram, and trigram on the same sentence [69] 86
Figure 19 - CBOW architecture (left) and Skip-Gram architecture (right) [73]......cccceevneenn. 91
Figure 20 - Prompt Engineering Techniques [101] ...ccc.ooieiiiiiniininiiniieeceeeeeceee 101
Figure 21 - Process of Retrieval Augmented Generation. [109]ccceviviiniininicnicnene 111
Figure 22 - Visual Representation of the LangChain Ecosystem's Components [110]......... 113
Figure 23 - Implementation of the first method for document parsing where the images were
parsed through an LLIM.c.cooiiiiiiiiiiee ettt e e e 115
Figure 24 - Implementation of the first method for document parsing where the images were
passed through OCR.oooiiiiiieeeee ettt e ee e s e e be e e enneeeenees 116
Figure 25 - Function to implement recursive chunking using Langchain’s
RecursiveCharacterTeXtSPIIttOr. ...c.ueiiieiiieiieie ettt 117
Figure 26 - Function used for creating embeddings with Pinecone............ccccoecvveviiriiennnn. 119
Figure 27 - Function used for creating embeddings with ChromaDB...............c.cccceeiieneenn. 120
Figure 28 - Function for retrieval, context augmentation and augmented generation with

|73 YO 4 T2 4 USSP 123
Figure 29 - Colpali ATChItECTUIEccevviieiiieeiieecie et s 124
Figure 30 - Bar Plot of Average Faithfulness by Configuration............ccoccoviiiiiiniininnnen. 132
Figure 31 - Bar Plot of Average Context Precision by Configuration...........cccccccveevveeennnenn. 133
Figure 32 - Bar Plot of Average Answer Correctness by Configuration.c..ccceevvereenenne 133
Figure 33 - End-User interface of our RAG application...........cccceeecveerieeiiienieeieenieeieeeeeeens 136
Figure 34 - Example of questions and their answers in our final RAG application. 137

16

17

Extevnc [lepiinyn ota EAANViKG

1 Etcaymyn

Ta tedevtaio ypovio, M TEXYNTH VONUOGHVN KOl 1010UTEPA 1) EMEEEPYOACIO PUOIKNG YADGGOG
(NLP) é£yovv yvopicer onupoaviikn mpdodo, odnymvioag oty ovarntuén chatbots mov
TPOGOUOLALOVY TNV avVOPOTIVN KATAVOTOT) KO OVTATOKPLON).

‘Eva. yapoktnplotikd mopddstypo amotehovv to poviédo RAG (Retrieval-Augmented
Generation), to. omoio. cLVOLALOVY TIG SVVATOTNTEG TOV UEYOA®Y YAWOGIKOV HOVIEA®MV
(LLMs) pe v avaktnon tAnpoeoptodv and eEwtepikég mnyéc. 'Etol, mapéyovv mo akpiPeic
KO TEKUNPLOUEVES OTOVTNGELS, EEMEPVAOVTOS TOVE TEPLOPIGHOVE TOV TOPAd0GlaKdV chatbots.
H napovoa epyasio eotidlel oty avantuén evog RAG chatbot yio v epappoyn “AGHNA”,
TOV YPNOLOTOLEiTaL Yo TN dNpovpyia doypappdtov e owovokd dedopuéva tpdmelog. To
chatbot Oa dievkoAdvel Tovg £pyalOUEVOVS, TPOCPEPOVTOS GUEGEG OMOVINGELS GE OmOpieg
YPNONG, XOPIG TNV avayK™ avalnTnons 6Tov 0dnyo, eVIcYDOVTOS £TGL TNV TOPAY®YIKOTNTO KO
™V gumepia ypnone.

18

2 Mnyovik) MéOnon

H Mnyovikn Mabnon [1] meprypdoetor o¢ 10 medio Hehétng mov TapEYel GTOVG VITOAOYIGTESG
™V Kavotra va pabaivovv ywpig va €govv tpoypoppatiotel pntd. AnoteAel Evay vTokAddo
¢ Teyxvnmg Nonpootvng (Artificial Intelligence) mov eotialel oty avdantuén ailyopibumv
KO OTATICTIK®OV LOVIEAMV, TO OTTOL0L EMTPENTOVY GE VIOAOYICTIKA cuoTipaTa va, "pobaivouv"”
and dedouéva, ympig va givor pnté TPOYPOUUOTICHEVE YloL KAOE GUYKEKPIUEVT €pYaciaL.
Ovo100TIKA, TPOKELTOL Y10 Lo, O10OTKAGTI0 KATA TNV 0TToi0 0 VTOAOYIGTAG ovaryvmpilel TpdTuma
oe peydAo oOvora dedouévav kot Pacillopevoc o avtd, Tpaypatomolel TPoPAEYEIC T
Aappaver aropdcels. H Bepeldong apyr e unyovikng pdnong sivor 61t 1o cuetipoto
UTOPOLY Vo paBsovv amd T 0edopéva, Vo EVTOTIGoUV HoTifo Kot voo AABovy amopicel e
eAdiotn avOpoTivn TapéuPocn.

2.1 Katnyopiec Mnyaviknc Mdaonong

Ot aAy6p1Bpot punyavikng pabnong ta&vopovviot og TPELG KOPLEG KaTNyopies, avaloya LUE TOV
1pomo pe tov omoio "poBoaivouv" amd ta dedopéva: v EmPrenopevm Mdbnon, ™ Mn
EmPrendpevn Mdabnon kot tmv Evieyvtikn Mébnon.

2.1.1 EmPrenduevn Mdabnon (Supervised Learning)

2y emPrendpevn pddnon [2], o adydpBpoc ekmondeveton 6e €va GHVOAO SESOUEVAOV TOV
elvan "emonuoopévo” (labeled). Avtd onuaiver 6tL Yo kéBe €ic0d0 O€dOUEVOV, 1| COGTN
€€odog etvar oM yvoot. O alyopiBuoc pabaivel va yaptoypagei t oyéon peTaéd TV
€1000wV Kol TV ££00mV, MGTE Vo Lmopel va TpofAdyel TV ££000 Yo vEQ, UT) ETIOUACUEVA
dedopéva. H emPrendpevn pdbnon dwaxpiveron mepattépw oe 60O TOTOVG TPOPANUATOV: TNV
ta&wounon (classification), 6mov 1 €€0dog givar po katnyopia (m.y., "spam" 1 "oyt spam"),
Kot TNV ToAvopounon (regression), 6mov 1 €£0d0¢ etvar pia cuveyng T (m.y., N Ty evog
omT100).

2.1.2 Mn EmiPrenopevn Mdébnon (Unsupervised Machine
Learning)

2t un emPAremopevn pabnon , o odyopBpog Aappdvetl dedopuéva Tov dEV Elval EMGTUACUEVA.
O otoy0g dev elvar va TpoPAdyel o cuykekpipévn €080, 0AAG Vo OVOKOADYEL KPUUUEVES

19

douég, mpoOTLTO Kot oy€oelg uéoa ota i01a ta dedopéva. Ot mo cuvnoUEVES TEXVIKEG U
emPAemopevng pdbnong mepriapPdvovy m cvotoiyion (clustering), mov opadomotel mapdpoto
dedopéva, kot ™ peiwon dwactacotnrag (dimensionality reduction), mov amAomolel to
OEJ0UEVO LELOVOVTAG TOV AP0 TV HETAPANTOV.

2.1.3 Evicyvtikn Mdabnon (Reinforcement Learning)

H evioyvtikn pabnon [3], [4] elvon o mpocéyyion omov évag "npdktopag” (agent) paboivet
va Aapfavel amopdoelg aAnAemidpavog pe va "mepipdAiov” (environment). O TplaKTOpPOG
Aappaver "avtapoPéc” (rewards) 1| "mowvég” (penalties) yia Tig evépyeteg mov extedel. O 6TOYOG
oV eivar vo pdbet poe otpatnykny (policy), dniadn po oelpd amd evépyeieg, mov Oa
LLEYIOTOTOMGEL T1| GUVOAIKT avTopolPn Tov pe TV TAPodo Tov ¥pdvov. AVTH 1| TPOGEYYIoT
elvar eumvevopévn amd T GLUTEPLPOPIKN WYLYOAOYiDL KOl YPNOULOTOIEITOL EVPEMS OGN
POUTOTIKY, 6T oY Vidlo Kot 6T BEATIGTOTOINGT CLGTNUATWV.

20

3 BaOid Mdabnon (Deep Learning)
3.1 Ewcaymyn ot Babid Mdabnon

H Babid Mdabnon amoterel €vav €£eldKELUEVO Kot TPONYUEVO VTOTOWUED TNG UNYOVIKNG
néonong, o omoiog avtiel TV EUmvevcn Tov amd TN SoUN Kot TN AELITOVPYia TOL aVOPOTIVOL
EYKEPAAOV, KO GLUYKEKPIUEVO OO Ta PLOAOYIKA VELPOVIKA OTKTLOL. OEUEAIDONG apyn TNG ELvar
N ¥PNON TOAVETIMEI®V TEXVNTOV VELPOVIKOV SikTOmV (Artificial Neural Networks - ANNs)
YL TNV TPOOSELTIKY €EAYMYT] YOPUKTINPIOTIKAOV LYNAOTEPOL €MMEGOL OO TO dESOUEVOL
€16000v. Ze avtifeon pe 11§ Tapadootakés HeBOdovg unyavikng nanong, émov 1 dadwocio
mg eaymyng yopoxtnplotik®v (feature engineering) oamottel oNUAVTIKY avOp®OITIVN
wopEuPpoon Ko eEEOIKEVUEVT YVAOOT, To LovTEla Pabidg nddnong avTopuaTtonolovy avtr ™
dwdkacio. Kabe eninedo tov diktvov pabaivel va avayvopilet 0Ao kot mo cvvheto potifa,
petaoynUotiloviag Ty apyikY], OKATEPYAGTN TANPOPOPIN GE L0 TTLO OPNPNUEVT KOl GUVOETN
aVOTOPAGTACT). AVTY 1 LEPAPYIKT TPOGEYYIOT EMTPENEL TNV EXIAVOT EPETIKA TOAVTAOK®V
npofAnpdtov ce toueic Onwg 1 eneEepyacio PUOIKNG YADGGOC, 1 OVOYVOPLoT) EIKOVOS KoL 1)
avtdvoun 0dNyNoN, OTov TO TAPASOGIOKA LOVTEAN GUYVE OTOTLYYAVOVY Vo GLAAGPOVY TV
TOAVTTAOKOTNTA TV OEOOUEVOV.

3.2 Perceptron

H évvola tov Perceptron [1] amoterel oV akpoywviaio ABo TV TEQVNTOV VELPOVIKAOV
dwtomv. Tlpdkertor yu tov amiovotepo TOMO €VOG TEYVNTOL vELP®VA, Evav aAyOpOLo
emPrendpevng padnong oxedwoopévo v dvadikr taStvopnon (binary classification). To
Perceptron 6éyeton éva chvoro €1600mv, kabepio and Tig onoieg moAlamlacidleTon pe €va
avtiotoryo Papog (weight), T0 omoio VLOONAGVEL TN GNUOGIN TG CLYKEKPIUEVNS E1GOO0V. X1
ouvvéyela, vrohoyiletar 10 otabcpévo dfpoopa avtdv TV €100dwv. To amotélecua
dépyeTon amd o cvvaptnor evepyomoinong (activation function), cuovnOmg o Prpotiky
ovvéptnon, n omoio mopdyel pa ovadwkn £€odo (m.y., 1 1 0, -1 1 1). H paOnuatikny tov
dwtvmwon etvon n e€Ng:

n
y=<P(ZWixi+b>
i=1

omov y elvan m é£0dog, xi ot gicodotl, wi ta Bapn, b n méAwon (bias) kot f n cuvdpnon
evepyomoinons. Méow pog dtadikaciog ekmaidevong, ta Papn Tpocoprdloviot ETUVoANTTIKA
MOTE TO LoVTéAD va. udbel va taStvopel cwotd ta dedopéva. Av kot Eva povo Perceptron pmopet
Vo EMAVCEL LOVO YPOUUIKG Oloywpiotpo TpoPAHata, 1 OchVOEST TOAOTAMY TETOIWV
HOVAO®WV O& TOAVENIMEDES OPYITEKTOVIKEG OmOTEAESE TN Pdon Yoo TNV ovATTLEN TV
TOADTAOK®V VELPOVIK®V SIKTO®V TTOV YVOPILovpe oNpepa.

21

3.3 Apyitektovikéc Babidc MdaOnonc

H 1oy0¢ ™ g Pabidg pdbnong éykettat oty moKiMa TOV ApYITEKTOVIKOV TG, Kabepio amod Tig
omoieg etvol oxedlaGUEVT Y1 VO, ETAVEL GUYKEKPIUEVES Kot yopieg TpofAnudtwv. H emiloyn
™G KOTAAANANG 0pYITEKTOVIKNG E0PTATOL OO TN VOT TV SEGOUEVMOV KOl TOV
EMOIWKOUEVO GTOYO.

3.3.1 Nevpovikd Aiktva [1pocbiag Tpopoddtnonc (FNNs)

Ta Teyvntd Nevpovikd Aiktva [Ipodcbiag Tpopoddmong (Feedforward Neural Networks -
FNN) [5] amotehovv pio and T1g mo Pacikég Kot EVPEMS YPNOUYLOTOIOVUEVES OPYLTEKTOVIKES
o Padid pdbnon. H doun tovug ivar amdn aAld 1oyvpn, 0pyavmpéEVN G€ 1000y KA GTPMLLOTOL
nov emeepydlovTon TIg TANPOPOPIES [LE CLGTNUATIKO TPOTO, EMTPEMOVTOGS T LOVIEAOTOINGT
TOAOTAOK®V GYEceV HeTAD 16000V Kat ££000V.

Aopn Tov FNN:

1. Zrpopa Ew6600v: Aéyetor ta apyikd ocdopéva, 6OTov Kabe vevpmvag
AVTITPOCHOTEVEL £VOL, YOPOKTNPIOTIKO.

2. Kpvoa Zrpopata: Metalh €16000v kat €£600v, Ta KPLPA CTPOUATOL
petacynuotilovv o dedopEVA HEGM YPOLLUIKOV KO 1T YPOUUK®OV GUVOPTCEDV
EVEPYOTOINGNG, EMTPEMOVTIOG TV OVIXVELGT GUVOET®V TPOTHTMV.

3. Zrpopa EE6o0v: [Tapdyet nv telikn mpdPAreym, OTmg pia kaTnyopio yio
npofAnpate TaSvOUNong 1 Lo GUVEXNS TLUY Yo TPOPALATO TAAVIPOUNOTG.

H wopua w016t ta twov FNN givor 1 povodpopn por| mAnpo@opidv, 0mov To 0E00UEVO TEPVOVV
SdoYIKd amd TO £VO CTPOUO GTO EMOUEVO Y®PIG KOUKAOLG M avatpo@odotinoels. Kotd
SlpKe OVTNG NG OdIKOGI0G, TO OIKTLO OMIOVPYEL OAOEVOL KOL TO PN PTUEVES
avamopaotdoels Tov dedouévov. o mapddetypo, oe EPAPUOYES OVAYVAPLIONG EKOVOV, T
apykd otpopato uropet vo evtomilovy amAd yopakmploTikd, Onwg akpés, evad To Babbtepa
otpoOpoTe ovayvopifouv mo oOvleto YOPOKTNPIOTIKE, OTMG OYNUOTO 1) OAOKANPA
avTIKEipEVaL.

3.3.2 2vveliktika Nevpovikd Atktoa (CNNs)

Ta Xvvehktikd Nevpovikd Aiktva (CNNs) [6] oamotedodv pio katnyopio Poabidv
OPYLITEKTOVIKADV VELPOVIKAOV SIKTO®V, EIOIKA OYEOIOCUEVOV Y10l SOUNUEVO OEGOUEVA [LE LOPPT

22

TAEYLOTOG, OTMG EIKOVES Kat ypovocelpés. H prhocsopia toug Baciletarl 6Tov onTikd eAOO TOV
avOpOTIVOL £YKEPALOV, OTTOV O1 VEVPAOVES OVTATOKPIVOVTOL GE TOMIKE TTEdi0L VITOOOYNG,.

Me m ypnion podnookdv eiltpov mov epapuodlovror pe cvveMEn, ta CNNs gvtomilovv
TOTIKA YOPIKE HoTiPa, EmOVaypNOILOTOIOVTOS AmodoTikd T Bapr. ‘Etot, ytilovv epapyikég
AVOTOPUGTAGELS YOPAKTNPLOTIK®V: oo amAd ototyeio (Ommg aKpES Kot VEEG) £mG o cHVOETEG
£vvoleg (OTmG AVTIKEILEVA KO CYTLOTOL).

[Mopd v gpedvion véov poviéhwv, 0ntmg ot Vision Transformers, ta CNNs mopapévoovv
Kevipikd epyareio g Teyvnmg Nonupoovvig AOY® G amodoTIKOTNTAG TOVG, TNG
avOEKTIKOTNTAG TOLG KOl TNG VYNANG TOVS EMIO0ONG G TPOPANUOTA OPOCNG VITOAOYICTMV,
OT(G M AVAYVMPLOT] EKOVOS, 1] TUNUOTOTOINGT KOl 1] OVIXVELGT OVTIKEUEVOV.

H tonu apyrrektovikry evog CNN mepihapfdvel cuveAkTikd otpopoto yoo e&oymyn
YOPOKTNPIGTIKAOV, U1 YPOUUKEG cLVOPTHGELS evepyomoinong (m.y. ReLU), mpdeig pooling yia
pelwon VTOAOYIOTIKOD KOGTOUG KOl OVOEKTIKOTNTO, OTPMOUATO KOVOVIKOTOINoNG Yol
otabepomoinon ekmTaideVoNg Kot TANPMG CLUVOESEUEVA GTPMUOTA Y100 ANYT OTOPACEDV.

3.3.3 Avadpoukd Nevpovikd Atktoa (RNNs)

Ta Avadpouikd Nevpovikd Aiktva (Recurrent Neural Networks - RNNs) [7] arotelobdv pua
KOTNYOpPio. VEVPOVIKOV OIKTU®OV EWOIKO CYESOGUEVN Yoo TV emeepyacios okoAovOaK®Y
dedopévov. Xe avtifeon pe ta moapadoctokd diktva tpdsbiag tpopodotnong (feed-forward),
0. RNNs dwbétouv ecmtepikois Bpdyovg mov Toug eMTPEMOVY Vo dlaTnpodV Lo Lopen
CUWMUNS» omd TPONYOVUEVES €1GOO0VG. AVTO EMTVYYAVETOL HECH LIS ECOTEPIKNG KPLONG
katdotoong (hidden state), n omoia evnuepmdvetanr oe kKaOe ypovikd Ppa, KabiotodvTag To
WOVIKE Yot EQAPUOYEG OTOL TO TEPLEYOUEVO KOL 1) GEPA TOV OEOOUEVOV Elvar Kpiotung
onuociog, Omwg M eMeEepyacio PUOIKNG YAMOCOS, M OVAALGT MOV Kot 1 TPOPAEYN
YPOVOGEPDV.

H Baowm apyttektovikn evog RNN enelepydletan og kdbe Pripa tnv tpéyxovoa eicodo pali pe
NV KPLPN KATAGTAGT] TOL TPONyovpevoy Prinatos. O cuvdvacuodg avtodg petacynuatiteton
Y0l VO, TTOPOYAYEL LLOL EVIILEPOUEVT] KPLOT| KATAGTOGT KO, TPOUPETIKE, o ££0d0. Me avtdv
oV TPOTO, N KPLPY KaTdoTaor Asrtovpyel G ol SLVOUIKT] cHVOYT TOL 1GTOPKOD TNG
aKolovBiog, EMTPEMOVTOG GTO STKTLO VO AVIYVEVEL XPOVIKES EEAPTGELC.

[Tapd v xuprapyio Tov apyitektovik@v TOmov Transformer oe ToALEG GOYYpOVES EQAPUOYEG,
ta. RNNs mapapévoov eEapetikd ypniolo o€ €EEIOIKELUEVOVG TOUELS, 1dlaiTEPA OOV TOL
dedopéva emefepydlovior TUNUOTIKA 1 OOV 1 VTOAOYIGTIKY OOOOTIKOTNTO Elvol 70
ONUOVTIKNY 0O TNV AOAVTY 0TOO00T).

23

3.3.4 Metaoynuotiotég (Transformers)

H apyrtektovikn Transformer, mov mapovcidotnie 1o 2017 [8], onuatodotnoe o Bepeimon
oAMayn oto poviéAa emefepyaciag okKoAovbldv (Om®G M UNYOVIKY HETAepooM),
aviikadiotovtoag ta mapadocstokd avadpoukd (RNN) kot cvvediktikd (CNN) diktva. H
Baokn kawvotopio tov Transformer givar 6T amo@ehyel TANPOC TV avadpoun (recurrence)
kot Baciletal amokAEIoTIKG GE UNYAVIGLOVG TPosoyN¢ (attention mechanisms). O wopnvag g
APYLITEKTOVIKNG €ival 1 avto-tpocoyn (self-attention), évag pnyavicpdg mov eMTPENEL GTO
LOVTEAO Vo oTOOILEL SUVALIKA T ONILOGTO SLAPOPETIKMV AEEEMV 1) TUNUATOV TNG akoAoVOing
€16000v, aveEdptnta omd TNV omdGTAcN TOVS. AVTN M TPOGEYYIoT EMAVEL TO KPIGLLO
npoPANUa TV pokpvav eEoptnoemv (long-range dependencies) Kat, TaVTOYPOVA, EMTPETEL
TOAD LeYaADTEPT TOPaAANLOTOiNoT KATA TNV ekTtaidgvon o€ oxéon e ta oeplakd RNNs.

O petaoynuatiotg otatnpel v KAOGIKY dopY| KOIKOTomT-omokmdworomth (encoder-
decoder). T6c0 0 K®IKOTOMTNG OGO Kol O OTOKMIKOTOUTNG ALOTELOVVTAL ATd Uio. GTOiPa
TOALOTADV TOVOLOLOTLTT®V 6TPpOUdTeV. Kdbe éva amd autd ta otpdpata teptéyet Vo Pacikd
vro-otpopata: Evay unyavioud Ipocsoyng MoAlanlov Kepardv (Multi-Head Attention) kot
éva omA0, TOmKO VELPVIKS dikTvo TpopoddTnong (Position-wise Feed-Forward Network). O
ATOK®OIKOTOM TG dtaBETEL EMioNg éva TPITO VIO-GTPOUA TOV EKTEAEL TPOGOYT| TAV® GTNV
¢€0d0 10V KmOtKomomty. Agdopévov OtL M apyrtekToviky Oev emeEepydleTan Tig AEEelg
CEPLOKA, OV €YeL gyyevn avTiAnym g oepdcs. [va avtipetomiotel avtd, o Transformer
ewodyer Kodwomomoelg ®éong (Positional Encodings), ot omoieg mpootifevtor ota
embeddings ™G £16600V Y1 Vo TOPEYOVY GTO LOVIELO TANPOPOPIES GYETIKA LLE TN CEPA TOV
otolyEimv otnv aKoAovOia.

H emrvyio tov Transformer omédeile O6tL o1 punyovicpol mpocoyng amd povol tovg eivol
EMOPKELS Y10 TNV EMITEVEN VYNA®V EMOOGE®V OE gpyacieg e akoAovBieg. Ta mAeovekTipoTo
NG AVTO-TPOGOYNS (TKavATNTO povTELOToINoNg Hokpvev eEaptnoewv pe otabepd aplfuo
Aertovpyudv Kot VYNAOS Pabog TapaAincpov) Ty Katéstnoav Kupiapyn. H apyrtektoviknm
oLt 0gv amotéAece omAMG o Pertioon, aidd ™ Pdon méveo oty omoia yticTnkav To
ocvyypova peydho yAoooiwkd povtéda (LLMs), onwg to BERT (mov Paociletonr otov
kodworomtn) kot 1o GPT (mov PacileTor 6TOV AmoK®OtKonom).

24

4 EneCepyacio QUGIKNC YADGGOC

4.1 Evoaymyn otnv Enelepyacio Pucwknc 'Ahwocag (NLP)

To Pacwd mmua mov épyetarl va avtipetoniost n Enegepyasio Puowng Moocag sivar 1
KaTovonon g avlpodmvng YAMOGOS omd TOVG VROAOYIOTEC. Emedn ot vmoloyiotég
«katorafaivouvy Hovo dvadtkd KOdKa, 1 emtkovmvia poall Toug HECH TG PLGIKNG YADGGOS
Katéotn Qi xépn oto NLP. [Ipdkettal yio £vov ouGLOGTIKO «GUVOETIKO Kpiko» avaueca
oV avlpOTIV EMKOWVOVIDL KOU TNV KOTOVONGCT 00 TIG UNYOVES, EMITPEMOVING GTOVG
VTOAOYIOTEG VO, EPUNVEDOLV, VO TOPAYOLV Kot va. Lolfaivouy amd T YAMooo, OGTE VO EKTEAOVV
ypNoeg Aettovpyiec. Elvar n teyvoloyia mov Bpicketor micm omd mOALES amd TIC «EEVTVES)
EQOPUOYEG TOV YPNOLUOTOIOVUE KaOnuepva, kabiotdvtog TV oAANAETIOpAcT HOG HE TIC
UNYOVEG TO PUGTKY, ATOJOTIKY KOl OVGLUGTIKY.

4.2 Opiondg e EneEepyacioc Puvowmc I'Adccog
(NLP)

H Enetepyasio Dvowkng ['ooocag [9] etvan kAddog g Texvntig Nonpooovvng (Al), o omoiog
dtvel T SLVVATOTNTO GTOVG LITOAOYIGTES VAL «OLaBACOVVY, VO KATAvoohV, Vo EPUNVEDOLV Kol VoL
Tapdyovv avlpoOmTv YAOCoH. XuvOLAlel T YAWGGOAOYIM e GTATIOTIKA LOVTEAQ, UYOVIKTY
péonon xot Babid padnon. O kOPLog 6TdYOG TG ivar vo dlevkoAvveL TV emelepyacio Kot
avdAvon HEYAA®Y TOGOTNTOV YAMGGIK®V 0£00UEVAV, EEAYOVTAG YPTCLLO GCUUTEPAGLOTO KoL
dtevkoAvvovtag Vv ofiaotn emkowovio avOpomov-unyavns. Me mo amid Aoyie, to NLP
elval n teyvoloyio TOv EMITPENMEL GE AOYIGHIKA Vo, KataAofaivouv Tt AEpE 1 YPAPOVLLE,
avTiloppavopeva to vonuo Kot Ty tpodeon, onwg Ba Exave Evag dvOpwmoc.

25

4.3 H ovuPoronoinon otnv Eneéepyacio Pvoiknc
I'A\wccog (NLP)

4.3.1 Opiopocg Kol Xnuacio,

H ovpPoiomoinon (tokenization) [10] amotelel éva and Ta Pacikdtepa oTAd10 6T d1dIKAGTO
¢ Eneéepyociog Pvokng 'Adocac (Natural Language Processing — NLP). [Tpdkettat yio tov
S ®PICUO TOV OKOTEPYOGTOV KEWEVOD OE LUKPOTEPES MOVAdES, Ta Agyoueva tokens. Ta
tokens pmopel va etvan AEEELC, VITOAEEELS, YOPUKTNPES I AKOUT KOl OLOKANPESG TPOTAGELS, KOt
amoTEAOVV TIG PACIKES JOMIKEG HOVADEC TAV® OTIG omoieg otnpifovtol ot ETOUEVEG PACELS
enelepyaciog.

Kd&Be token Bewpeitor g pi onpacloAoykn povéoa, m omoio pmopel va ovolvBel, vo
emeEepyactel M Vo LETOTPOTEL GE YOPAKTNPIGTIKO OV a&tomolovviar and aAyopifuovg
punyavikng péononc. O poiog g cvpforomoinong eivor KaBopioTikdc, KaBmg dlevkoAvvEL T
dlomacn Tov pn dounpévov Keyévov oe dayepiota pépn kot Btel ta Bgpéha yoo v
OMOTEAECUOTIKT Attovpyia peydAwv YAOOGIKOV poviéAwv (LLMs).

4.3.2 Eion XvuPoromoinong

Avaroya [e TN YADGGO Kol TO EKAGTOTE VTOAOYLIGTIKO £PY0, EQAPUOLOVTOL SLOUPOPETIKES
npoceyyioels. Ot mo cvuvndiouéveg Lopeég etvar ot €ENG:

a) ZopPoromoinen og Aé€erc (Word Tokenization)

H mo amAn pébodog, n omoia ympilet to keipevo pe faon to kevd 1 ta onpeia otiEng. Eivot
10104TEPOL OTTOTELEGLATIKY] GE YADGGES TTOV YPTGLUOTOIOVV GOPT| SaYWPIOTIKA LETOED TMV
AéEemv, dnwg Tor AyyMKA.

[Topdoetypo:

“Natural Language Processing” — [“Natural”, “Language”, “Processing”]

B) Xvpporomoinon o yapaxtipes (Character Tokenization)
Awympilel 10 KeILEVO GE PELOVOUEVOLG YOPAKTIPES. XPNOCLUOTOLEITOL GLYVA Y10 EPYOGIES

omwg M d1opbwomn opboypaEk®dV AaBmV, Yo YAOooEg ywpic EekdBapa Opto HeTaED AéEemv 1)
YO TEPMTMOOELS HE TEPLOPIGHEVO Ae&hdylo. Qotdco, m péBodog avtr| Tapdysl TOAD

26

HEYOALTEPES aKOAOVOieG Ko 00Myel G OMMAEW VYNAOTEPWV OTNUOGIOAOYIK®OV OOUMV.
[Tapdoetypa:
((hello » _) [((h JJ’ ((e JJ’ ((l”, (KIJJ’ ((0 17

v) XopPoromoinon og vroréEers (Subword Tokenization)

Awyopilel T1g AEEEIG O LIKPOTEPEG LOVADES, LEYUAVTEPES OO YOPUKTNPES OAANL LUKPOTEPES
and AéEeic. Xpnowwomotel aAdyopiBuove ommg Byte-Pair Encoding (BPE), WordPiece 1
SentencePiece. H mpocéyyion autr| EXTPENEL TNV OTOJOTIKOTEPT] AVOTOPACTAGT CTAVI®DV M
ouvletV AéEgwV.

[Mopaderypo:

“unhappiness” — [“un”, “happi”, “ness”’] (avéAoya pe 10 €KAGTOTE LOVTELO
eKTaidELOTNC).

0) Xvpporomoinon o€ mpotaoelg (Sentence Tokenization)

Awywpiletl To keipevo o€ TPoTAGELS, KATL TOL £lvar WaiTEPO YPNOYLO GE AVOADGELS KEWEVOV
HEYAANG KAMUOKOG 1] GE GLGTNLOTO TOV OTTALTOVY KOTAVONGN TNG TPOTACTG MG AVTOVOUNG
ONUOCIOAOYIKTG EVOTNTOG.

[Mopdoetypo:

“This is one sentence. This is another.” — [“This is one sentence.”, “This is another.”]

4.4 Tlpoenetepyasio Keiuévoo

[Ipwv éva keipevo a&lomomBel amd va LovtéAo punyavikng nadnong, tpénetl va kabapiotel Kot
va opoyevoromBel. H dwadikacio avtr], yvoot) o¢ npoeneiepyacio KEWEVOL, LETATPETEL TO
un dounuévo Keipevo og mo opyovouévn popen. Tpeig Pacikés teyvikég elval 1 dlayeipion
TV stopwords, To stemming Kot 1| lemmatization.

Stopwords

e KaBe yYAmooo vrapyovv AEEEIG oL epgovifovtol TOAD GuYVA OAAL amd UOVEG TOVS OEV
npocBéTovy ovalaotikn onuacio. TEtoleg elvar ta dpBpa (.. «TO», «1»), Ol GUVIEGHOL (T.Y.

27

«KOW, «aAAG») Kot o1 TpoBéoelg (m.y. «oe», «uen). Ovopdlovton stopwords [11]H apaipeon
TOoVG GLUPAALEL 6T PEI®ON TNG TOAVTAOKOTNTOG TV SEGOUEVOV KOl GTNV €6TIOGT OTIG AEEELS
TOL PEPOLY UEYOAVTEPO ONUAcIOA0YIKO Papog. [Ma mapdderypa, ond ™ epaon «The quick
brown fox jumps over the lazy dogy» névoov ot AéEewg: [“quick”, “brown”, “fox”, “jumps”,
“lazy”, “dog”].

Qo1660, 1 amopdkpuvon stopwords dev gival TAvTo ETOPEANC. Xe epyaciec OT®S 1 avaivon
CLUVOUGONMUOTOC | 1N OVTOUATN HETAPPOOT, Ol «UIKPES) ovTEG AEEElG umopel va mailovv
KkaBop1oTiKd pOLO TN S10THPNGN TOV VONUATOS KOl TNG PONG TOV KEWEVOU.

Stemming

To stemming [12] eivon po omdoikn pé€B0d0g mov amokomTel KOTaUANEES amd TIc AEEELS, MOTE
va TIg pewwoet og pa kown piCa (stem). H piCa avt cvyvd dev aviiotoyel o vrapkt AEEN,
aALG Aettovpyel oG vOlduesn popen yio v opadonoinon épav. O akydpiBuog epapuodlet
amAobg kavoveg (T.y. agaipeorn KatoAnEemv Onwg -ing, -ed, -s) yopig va Aapupdavel vedyn to
ovpepaldpevo.

"‘Evag amd toug Mo yveootohs Kot upEmG XPNCLOTOIOVIEVOLS ahydpiBuovg eivar o Porter
Stemmer, mov Eexmpilet yro v amhdTa Kot TV ToOTNTA TOV.

Hopadeiyporta:
o “jumps”, “jumping”, “jumped”’ — “jump”

e “running”, “runner”, “runs” — “run”

e “university”, “universal” — “univers” (un vopkt AEEN)

To stemming &ivol amOTEAECUOTIKO Yo TN YPNYOPN UEI®ON TNG TOAVTAOKOTNTOG KOl TNV
gvomoinom 0pwv, ®GTOGO UTOPEL VO 0OMYN|GEL GE TAPALOPPMOELS 1 ATMOAELD VONUOTOS AGY®
™G uUn axpPoic mpocéyylong Tov.

Lemmatization

To lemmatization [13], [14] elvon pia o e€eArypévn Kot VITOAOYIGTIKG OTOTNTIKY] O10OTKAGT0L
o€ oyéon Ue To stemming. X10y0g NG ivor 1 petmon pog AEENG ot Aotk TG LOPPT, YVOGOTN
o¢ \MMupa (lemma), To omoio amoteAel vrapkTy AEEN TOL Ae&1K0D.

Y& avtifeon pe to stemming,to lemmatization Aapfdavet vwOYN TO0 CLUPPALOUEVO KO TO LEPOG
TOV AOYOV (PNLa, OVGLOCTIKO K.AT.) 6TO omoio avikel n AéEn. Baoileton og extevn Ae&ihdya
KO LOPPOAOYIKY] OVIAVOT), DOTE VO EMOTPEWYEL TV KAVOVIKT LOPPT TNG AEENC.

28

Mopadeiyporta:
o “better” (emifeto) — “good”

“ * » r [z »
o “runmning” (pnua) — “run
o “meeting” wg¢ ovolootikd — “meeting”’, evOd w¢ pRuo — “‘meet”’

To lemmatization givot o akpiég amd 1o stemming, KaOdS dtatnpel 10 cOSTO VoMU, ALY
glvar mo oapyn Ko oamoutel TEPIGCOTEPOVG YAMGGOAOYIKOVG TOPOVS, ONMG EPYOAEia
avayvopions népovg tov Adyov (POS taggers), mov avapEpeTol TopaKaT®.

4.5 Emonuoavon Mepav tov Adyov

H emonuovon pepav tov Aoyov (Part-of-Speech Tagging) sivan 1 dadkacio kotd tnv onoio
oe kbBe AEEN oG TPOTAOG ATOSIOETAL O YPOUUATIKOG TNG POAOG (OTMG OVGLACTIKO, P,
enifeto, enippnua), pe Pdon to vonua kot ta supuepalopeva. 'a tapddetypa, oty tpdTaoN
«The quick brown fox jumps over the lazy dog», o1 AéEeig yapaxtnpilovion wg apbpo, enibero,
ovoloTIKO, pNue. K.AT. Avt) n dwdwacio eivor Oepeimong ot Dvowkn Emelepyacio
IN'\woocag (NLP), kabag divel doun oto axatépyacto keipevo kot vrootnpilel mo cvuvleteg
gpyaciec, OT®G 1 GLVTOKTIKN AVAALGTY], 1| UNYXOVIKT LETAPPACT] KOL 1) QLTOUATY OTAVINGN O
EPOTNCELS.

4.6 Avayvopion Ovopaoctikaov Ovrottov (NER)

H Avayvopion Ovopaotikov Ovromtowv (Named Entity Recognition[15], [16] eivon Baocikd
puépog omv Emelepyacia Ouvowng ['Adocog (NLP) mov evromiler kot koatnyopromotel
oVTOTNTEG OE KEEVO, OTMG TPOSMTMO, TOTOOEGIES, OPYAVIGLOVG, NUEPOUNVIES KoLl TPOTOVTA.
Me avtov tov TpOmo, emTpEnel TV €E0y®YN] OLVGLOCTIKNG TANPOPOPiag amd un dounpévo
OedOUEVO, OLEVKOADVOVTOS EQUPUOYEG OT®G M e&ayyn mAnpoeopiag, ta chatbots kol m
onuovpyio knowledge graphs.

O mpidteg mpooeyyioelg Paciloviav oe kovoveg kot AeSIKA, OAAA GNUEPO KVPLOPYOLY Ol
péBodot punyovikng kou fadiag pabnong, 6mwg ta transformer-based povtéda (.y. BERT), mov
AapBavovy voyn to cupEpalopevo kot Tig oyéoels Tov AéEewv. 'Etol, 1 NER petatpénetl 1o

29

ad0OUNTO KEILEVO GE A10TO G YVMOT) Y10 VOALGT KOl OAANAETIOpOIOT e LEYAAOVS GYKOVG
dedoUEVOV.

4.7 MéBodotr Avanapdotoonc XopoKTnploTIKOV

Mo onpavtikny Aswtovpyion g Emegepyasiog Dvowkng 'occag sivar n avorapdotoon
ALV, KOUHOTIOV AEEEMV 1] KOl PACGE®Y GE LOPPT TOV ovoryvopilovv ot unyoaves. Tapakdtom
Ba Ttapovoibdcovpe kKdmotleg amd Tig HeBOSOVS QLTS TNG AVATOPAGTACTS.

H One-Hot Encoding [17], [18]amoteiel pia Pacikn néB0d0 avamapdcToon KATNYOPIKOV
dedopévmy, Katd tnv omoio Kabe Eexmploth Katnyopio petatpénetal o€ pio SvadK GTHAN
(0/1). T kGBe detypo, povVo pion GTHAN QEPEL TNV TN 1, EVEO OAEG 01 LVTOAOUTEG TAPAUEVOVY
undevikég. Me Tov TpOTo anTo, T LOVTEAD ATTOPELYOLV VO ATOdMGOVY WYELON LEpaPyic. LETOED
TOV KOTNYOPLOV, OTTmG Bo cuvEPave av ypnotpomolovvtay aniéc apountikés Tiués. 'Etot, yua
TAPASELYLLOL, TO YPOUATO, “KOKKIVO”, “UTAE” Kot “Tpdovo” avamapictavtol 10T, Yopic vo
vrovogitan 0Tt kKdmoto £xetl peyaddtepn “a&io” amd to vdAoUTA.

H pnébodog Bag of Words (BoW) [19], [20] ypnowomoteiton kupimg otny enelepyacio puGIKNG
YA®Goos. Avarapiotd kabe keipevo pe Baon) cuyvotnta ELEavions Tov AEEEDV Tov, Ypig
va Aappavel vtoyn T oepd Tovg. Me avtov Tov TpdTO, dNovpyeitan va “ocaxi” AéEewv dmov
N onuacio TpokHTTEL amd T0 TOGES PopES eppavileTar kabe dpog. H pébodog avtn Avvet tov
nepopiopd tov One-Hot Encoding, kabdg emtpémer tn oLYKPION Kol KOTOVONOM
neplexoévon Kelévav pe Paon tig AéEglg mov mepiEyovy. Qotodc0, N Pactkn TG advvapio
etvar 6t ayvoel to cupppaldpeva kot) oepd pe v omoia gpeavifovrat ot AEEELS.

[Ma va avtipetomiotel 0vToc 0 TEPLOPIGUAGS, ¥pNoLoTolovvTal Ta n-grams [21], [22], ta onoia
Aappévovv voyn akorovdieg n AéEewv (.. bigrams yia (ebyn AéEewv, trigrams Yo TPLOOEG
K.0.K.). Mg autdv 10V TpOTO, dtatnpeiton LEPOS TS TANPOPOPIaG TG GEPAC, KATL TOV EMITPETEL
TNV KOADTEPT KATOVONGOT PPACE®MV 1| eKQPPACE®Y pe €01KO vomua, omwg “Néa Yopkn™.
Qo16060, 1 1EB0SOC VT ALEAVEL GNUOVTIKE TOV 0Pl TOV YOPAKTNPIOTIK®V Kol UTOPEL Vol
TOPAYEL TOAAEG GYPNOTEG 1 OMAVIEG CLVOLOCTIKEG HOPPEG, OOMNYDVTOC GE UEYAADTEPN
TOAVTAOKOTNTOL.

Téhog, n nébodog TF-IDF (Term Frequency — Inverse Document Frequency) [23] emdubket
va Bedtuwoet To Bag of Words pe 1o va amodidet dtapopetikd Bapn otig AEEELS. ZuyKekpluéva,
N ovyvOTNTO EPEAVIONG PG AéEng o€ éva keipevo (TF) cuvdvdleton pe tov avtictpogo Babud
oVYVOTNTOG EUPAVIONG NG o€ OAOKANPM T ovAroyn kewévov (IDF). ‘Etol, AéEelg mov
epeavifovrar moAd cuyvd oe Ola to Kelpeva, omwg ta dpbpa 1 o1 chvoeouot (“kor”, “to”,
“eltvar”), Aoupdvoov yapnAod Papoc, v WO OWAVIEG KOL TANPOQOPLOKES AEEELC
avadetkvvovtal. Me tov tpdémo avtd, to TF-IDF Avver tov mepropiopd tov BoW mov teivel va
dtver v 101 Papvnta og OAeg TIc AéEELS, aveEapTnTa amd T oNUacio TovG.

30

Evoopoatoocsig Aééewv (Word Embeddings)

Ot Evoouoatooeig Aégewv (Word Embeddings) [24], [25] amotelobv oclOyypovn néBodo
avaropdotaong Aéemv ommv EmeEepyoacia duvowne 'hdocag (NLP). Xe avtiBeon pe
Tapadoclokég TeXVIKEG Omwg to bag-of-words kot to TF-IDF, mov avtipetoniCouv tig AéEelg
¢ oveEapTa GOUPOLN YMPIS VO ATOTLTMVOLY VONUOTIKEG GYEGELS, Ol EVOMUATDOGELG AEEEMV
ancikoviCouv kaBe AéEn og Sivuopa ce moAvdldotato cuvvexés xdpo. 'Etol, AéEeig pe
TapoOpoto vonua Bpiokoviot YEOUETPIKA T10 KOVTE HeTa&d Tovg (1. king kot queen). Avti n
010TTO EMTPENEL GTAL POVTEAD UNYOVIKNG HaOnong va a&lomolovy TG GNUOGIOAOYIKES
KOVOVIKOTNTEG TNG YADGCGCOG Kol VoL BEATIOVOLV TNV atOd0CT| TOVG GE EPAPLOYES OIS AvaALGoN
CLVOGOMLOTOC, UNXOVIKY LETAPPOCT] KOt OVAKTNON TANPOQOpPiag.

To Word2Vec [26], [27] amotelel pio and T1g Mo onpaviikég teyvikég oty Enelepyacia
dvowng IMoocag (NLP) yw v avamapdotaon Aéewv o€ HOpeY] OlOVUCUAT®OV
(embeddings). Emétpeye v Onuiovpyio «TLUKVAOV» KOL YOUNA®V OlGTACE®MV
AVOTOPOCTAGE®MY, 01 0TO1EG GLAAAUPAVOVY TOGO TIG GLVTOKTIKEG OGO KO TIG OTLUAGIOAOYIKES
oxéoelg petald tov Aégewv. Xe ovtifeon pe ta one-hot vectors, mov dev gumepiEyovv
mAnpoeopia yuo ™ onpacio, 1o Word2Vec opyavavet tig AEEELG 6€ £vov TOAVIAGTATO YDPO,
Omov o1 AéEeic e mopdpoto vomuo Bpickoviot Kovtd.

H Boown apyn tov Word2Vec givor 6011 onuacio pag Aééng pmopel va cuvayBel and ta
ovuepalopeva c. Me Bdaon avtv ™ AoyikY|, TpotdOnkay 600 SPOPETIKEG VELPOVIKES
apyrrektovikég: To Continuous Bag-of-Words (CBOW) ko to Skip-gram.

CBOW

To CBOW emyepel va mpoPAéyet) Aé&n-otdyo pe Pdom ta copepaldueva. Ot AéEerg Tov
nepParioviog €icdyovtal o6to diktvo ®¢ one-hot vectors, cvvdvalovion e pio evioio
SLOVUGLLOTIKY] OVOTTOPAGTAGT KOt ¥PNGLOTO00VTOL Yo TNV TPOPAEYN TG KEVIPIKNG AEENG.
To mAeovékTnud Tov elvar 1 AmOSOTIKOTNTO Kot 1) TaYOTNTA EKTAIOELONG, YEYOVOS OV TO
KaO16Té KOTAAANAO Yoo LIKPOTEPO. GUVOAN dedOUEVDV Kal GLyVEG AéEels. QQoTdG0, T 1M
péBodog umopel va mepropicel v dvvotdTa Vo avayveopiloviol TANPoPopieg amd GIAVIES
OAAG onpavTikég AEEELS.

Skip-gram

Avtifeta, to Skip-gram avaoctpéeet ™ Swdwacio: ypnowomolel ™ AéEN-otdHY0 Yo va
npoPAréyet o cvpppalopeva. Kabe cvvovacudg Aéénc-otoxov kot AéEng mepiPdAlovtog
Aertovpyel ©¢ EexOPloTd EKTAOEVTIKO TOPASELYUA, YEYOVOG MOV TO KoOIOTA TO
OMOTEAECUOTIKO OTN HAONON avamopooTdce®V Yoo omdvieg AEEEIS Kol OTNV OMOTUTTMOON
AEMTAOV ONUACIOAOYIKOV oxécemv. To Skip-gram cuyvd amodidel KaAOTEPU GE GNULAGIOAOYIKEL
épya (my. ovohoyieg AéEewv), aAld amortel mEPIGGOTEPO YPOVO Kol HEYOADTEPO OYKO
dedoUEVOV Yl EKTTOOEVOT).

31

A@o0 PETATPOTOVV 01 AEEEIC GE EVOOUATDOGELS, LTOPovV va, BpeBodv oNUaGIOAOYIKA KOVTIVEG
AéEerg pe amAéc nebodovg GVYKPLONG OMOGTACE®V OUVUGUAT®V, OTMG EVKAEIDELN ATOCTAON,
amTOGTOCT] GLVTULITOVOD 1] ECOTEPTKO YIVOUEVO.

32

5 T'evetikn Teyvnt Nonuosivn

5.1 Ewoaywyn otnv I'evetikn Teyvnt Nonuocivn

H Tevetucn Teyvnty Nonupootvvn (Generative Al) eivon évag topéag e punyovikng pédnong
OV EMIKEVTIPAOVETOL GTT ONLOVPYio VEOU, TPMOTOTLTOV TEPLEYOUEVOV, OTIMG KEILEVA, EIKOVEG,
LOVCIKN N KOOGS, HECH TNG EKUAOMONS TPoTOHT®V amd PEYOAN GUVOAX OEOOUEVDV. ZE
avtiBeon pe v moapadoctaky] TN, mov avaAddel dedopuéva Kot KOveL TPOPAEYELS, 1) YEVETIKN
TN mapdyet dnuovpyikés e£6dovg mov potdlovv pe avlpamiva épya. Baoiletor kuping oe
Babud vevpwvikd diktva, 0nwc to Generative Adversarial Networks (GANs) kot To povtéia
tomov Transformer, kol €yl oNUED®GEL GNUOVTIKY TPOOdo oe Topelg Onwg 1 enelepyocio
(QLOIKNG YADGGOG, 1) VTOAOYLIGTIKN OPOGT KOl 01 SNUIOVPYIKEG Bropnyovies. XTo KEPAAMO aVTO
avorveton 1 F'evetukny TN, pe éupaon ota Meydho [Noooikd Movtéha (LLMs), ta omoia
anotedobv 10 Pacikd epyoleio NG €QOPUOYNG TOL ONUOLPYNONKE Y TV TOpovGQ
Smlopotikng epyacio.

5.2 Meydha I'howooikd Movtéha

Ta Meydro INwookd Movtéda (Large Language Models — LLMs) [28] amotehovv e£EMEN
NG OPYLTEKTOVIKNG TOV LETACYNUATIOTAOV (transformers) ko kupiwg ot popen decoder-only.
To yopaxtnplotikd toVg oToLElo ivon M KAIpOKA: TEPAGTIOS aplOUOg TOPAUETP®V, OYKOG
OedOUEVMV EKTTOIOELONG KOl TEPAGTLO VITOAOYICTIKY| 1YVG. H d1evpuvon avtr| dev etvon amAmg
TOGOTIKT), OAAL 0ONYEL GE VEEG, AVAOVOUEVES dVVATOTNTEG TTOV OgV EUPAVILOVTOL GE LIKPOTEPQL
LLOVTEALL.

H xatackeun evog LLM ompiletor og Tpelg TuADVEG:

1. Apyrrektovikn: kuplapyel 1o decoder-only povtélo, 100viKo Yo Topoymy| KEWEVOL
KOl EQAPLOYEC OGS GLVOUIALNL, GLYYPAPT 1) TPOYPOUUUATICUOG.

2. Aegdopéva: n eknaidevon Paciletol og Tproekatoppvpla tokens amd motkideg mnyég
(drdikTvo, BiPpAiia, apBpa, kddkag). H mowdtnta kot 1 kKaBapdtnta Tmv dedopuévav
elvan xpioec.

3. Exmaidevon: meplhapfavel 00 QACELS. TNV Tpo-eKTaloevar], TO LOVTELO pobaivet
T fOCIKG GTATIOTIKA TNG YADOGOS KOl avanTuooel "yvodon" yio Tov KOGHO. XTnV

33

elatouikevon (fine-tuning), NEC® TEXVIKMOV OMMG TO instruction tuning, Tpocapuoletol
MOTE va eivat YpNOUO, AGPAAES KOl CUVETEC.

H gvBuypappion pe tig avOpomves atleg emrvyydvetol pe 1o Reinforcement Learning from
Human Feedback (RLHF) [3], [4], wo dwdikacio moAlami®mv otadimv mov cuvovdlet
avBpamiveg vrodeitelg, exknaidevon Povtélov avtapolPng kot evioyvon pécm olyopiBumv.
210x0¢ eivar M omouyr emPAafdv M OKOTEIAANA®V OTOVINGE®V Kol 1 TOPAY®OYN
OTOTEAECUATMOV TOV IKOVOTOLOVV TIG TPOTIUNGELS TWV YPTOTAOV.

Ta LLMs Eegympilovv yia duvatdtnteg Onmg: in-context learning (expdbnomn and napoadeiyporto
HEGO OTNV TPOTPOTN]), EKTEAEGT] TOAVTAOK®V 00N YLDV, 0ALGLOMT GLAAOYIGTIKY (chain-of-
thought reasoning) kot wapayoyn/Katavonon KoOdka. Qotdc0, cvLVOSEVOVTOL O
OTNUOVTIKOVG TEPLOPIGLOVG:

e Tlapdyovv melotikd oAAE Yevdég mepieyouevo (hallucinations).

e Agv £(0ovV TpayLOTIKY KOTAvONoT TOL KOGHOV, KOOMG AerTovpyodv HdvVo AV GE
GTATIOTIKA TPOTLTO.

e Evoouatdvouv KOWmVIKES TPOKATAANYELS TTOV VITAPYOLV GTA SES0UEVA TOVG.

e Exovv vynio vmoloyiotiko kot TepPaArovikd KOGTOG.

Avokepoiadvovtag, to. LLMs cvviectoov pa topn oty Texyvnmt) Nompoovvn, kobmg
LETATPETOVY TN YADGOO G€ medio dLVOUIKNG oAANAemidpaong pe unyoves. Eivar wwitepa
YPAoWa epyoreion 0AAG TOPOUEVOVY OTOTIOTIKA HOVTEAQ ME Oplo Kol aOLVOLIEG, Kot M
a£10moiNoN TOLG AMALTEL KPITIKY| ENLYVMOOT TV SVVATOTHTMV KOl TEPLOPIGUAOV TOVG.

5.3 Tehun IIpocPaocn Xpnotwv oto Meydia I'Awooikd
Movtéla

H oavantoén peybdrov yaooowov poviédmv (LLMs) amotekel po wdwitepa amortntikn
dradkacio, Tov TPOHTOBETEL TEPAGTIONG VITOAOYIGTIKOVG TOPOLG KOl GLLOVTIKT] OUKOVOLLKY|
emévovon. [V avtd tov Adyo, TV Kataokev Kot BEATIOTOTOINGY| TOVG avaAapPavouy Kupimg
HEYAAEG OPYOVMDOELS LE TNV amapaitnTn vITodour| kot kepdioto. H mpocPaon tov ypnotodv o
LT TO LOVTEAQ TPAYLLATOTTOLEITOL PLEGOL OO 0V0 POCIKES KOTIYOPIES: TO AVOIKTOU KMOTKA KOl
T0 KAEWOTOO Kddwka LLMs.

Ta avowtod kmdoka LLMs (6nwg too LLaMA, Mistral 1§ Falcon) dwatiBevton eledBepa oto
KOWO, HE ONUOCIELUEVE TOL OPYLTEKTOVIKA TOVG GTOYEID KO, GE OPIGUEVES TEPUTTAOOELS, TO.
dedopéva ekmaidevonc. H dwabeoipdttd toug oe mhatedpueg 6mwg to GitHub 1 To Hugging

34

Face emutpénet e gpeuvnTéc, akadnUoikoDs Kot LKPEG EMYEPNOELS VO T KOTEPACOLV Kol VoL
T a&10moooVV, EPOGOV d100£ToVY TOV KATAAANAO e€omMapd 1 vanpeciec cloud. H dapdveia
OLTNG TNG TPOGEYYIONG EVICYVEL TNV KOUWVOTOUIOL KOL TN GLVEPYOCIN, VM OIELKOADVEL TNV
avAmTLEN €EEIIKEVUEVOV EQUPUOYDV. QOTOCO, 1 0E0TOINGT TOVG OOLTEL TEYVIKEG YVMDGELS
KOl GNUOVTIKOVS VTOAOYIOTIKOVS TOPOVS, EVA TO KOOTOG AELTOVPYIOG Kol Ol KIVOLVOL KOKNG
YPNONG OTOTEAOVV CTLLOVTIKOVG TTEPLOPIGLLOVG.

Avtifeta, ta kiewotov kmdwo LLMs (6mwg to ChatGPT, Claude v Grok) mopapévovv
1010KTNG10 TOV ETAPELD®Y TOV To ovETTLEAY Ko dlaTifevton Kupimg og vimpeoieg péow APIs,
SLOOIKTLOK®MOV EPAPUOYDV 1 KTtV gpapuoydv. H npdofacn cuvnbwg mpoceépetan Hécm
CUVOPOUADV N HOVIEAWV YPEWONG OVAL YPNOT), EVAD TAPEYOVIOL KOl OWPERV €KOOGEIS WE
TEPLOPIGHOVS. AVT 1) TPOGEYYIOT SIVEL ELOAGT] GTNV EVKOALN YPIONG, LELOVOVTAG TNV OVAYKN
YL TEYVIKEG YVAOOELS, €V 1 Qlho&evia oe oyvupn vrodour e&acporilel aflomotioo Kot
KMpdkoon. TlopdAinio, eveoUaTOVEL UNXAVICHODS ao@aAEiag Yo T peiwon emPAafav
arovtoewv. QoTdG0, 1) EALENYT) SLUPAVELLG SVCKOAEVEL TV KOTOVOTON TOOVOV LEPOANYIDV,
EVD T0 KOGTOG GLVOPOUNG Kot 1 e&APTNoT amd Evav Tapoyo eyeipovy (NTHLOTO 1IGOTNTAG Kot
TPOcTaGiog dEdOUEVOV.

5.4 Zyedwaoudg Ipotpondv (Prompt engineering)

O Zyxedraocpdg Ilpotpondv (Prompt engineering) opiletor ©¢ 1 GLOTNUOTIKY O0OTKAGIOL
SLUOPP®ONG OKPIPOV EVIOADV TOL EMITPETOVV TNV OTOTEAEGUOTIKY TPOCUPUOYN KOl
Aertovpyio evog peydrov yAmoowob povtédov (LLM). o va katavonBel n mpaxtikny ooy,
etvar yprowo vo meprypagel 1 TUmKY doUn €600V TPOS TO HOVIEAO GE GUVOUIAOKES
EPOPLOYES: TO UNVOLLOTA OpYOVOVOVTOL G€ aKoAovBia pe dtakpitovg porovg — System, User
Kot Assistant — mwov KaBopilovv avticTolyo TOvg KAVOVEC/TEPLOPIGUOVS, TO QUTNUO TOV
avOpOTOL KoL TNV OTOKPICT) TOV LOVTEAOV.

Zero-shot prompting [29], [30]: n arAobotepn mpocEyyion, 6oL N TPOTPOTN diveTOl YWOPIg
Topadetypoto Kot To HovtéAo PacileTon amoKAEICTIKO GTNV TPOEKTAIOELGT| KOl TNV EUPLTN
wavomta yevikevone. To mAeovéKTnua avtig TG TPocEyyong eivol 1 omAOTNTO Kol TO
YopunAd K6otog ovvtatng. To pelovéktmupo etvor 6t eivonr evmabég o€ mOAOTAOKA,
TOAVPNUOTIKA 1] EWO1KA 0UTAHUATO, OTTOV TO HOVTELO Pmopel va kdvel AavOacpuéves vtoBEcers.

One-shot prompting [30]: mepriapfPdver éva evoektikd mapddetypo e166oo0v—eE600V péoa
070 prompt, TPOGPEPOVTOS KAADTEPT] KOTAVONGN TNG £pYaciog mov diveTat 6to povtéro. Eivan
YPNOO OTOV YPEWLETAL CLYKEKPIUEVO GYNUO OAAA TO TTPOPAnUa dev elval vrepfoiikd
ovuvBeto. O mepropiopodg elvat 6T Eva LOVO TOPAOEY LA GLYVE OEV KOADTTEL OA TOL OPLOL 1 TIC
10101TEPOTNTEG.

35

Few-shot prompting: Topéyet moAALG TopadelypaTo doTe TO LOVTELO Vo LdBeL To TpdTLTTO, TN
oTPOTNYIKN OKEYNS 1 TO VEOC. AvEavel onuavtikd v aflomotio o ocVvOeTEG Epyncieg
(TOAOTTAEC KATNYOPIES, LETAGYNUATICHOT KEWEVOL, GLYKEKPIUEVO VPOG). To kOGTOC €lvar N
YPoN ueydlov pépovg Tov context window Kol M OVAYKN EMUEPOVG EMAOYNG TOV
TOPOUOELYUATWV.

Negative prompting [31]: o ypriotng ONAmdvel pntd TL TPEmeL va, amoevydel 610 amoTEAET L
(oToMoTikd oToyeia, gvaicOnTo mEPLEXOLEVO, KAGE). XpNOIUEDEL GTOV EAEYYO TEPIEXOUEVOV
KOl GTNV OTOULAKPLVOT] aveETBOUNTOV LOTIR®V, 0ALA UTOpEl va. EpYETOL GE GUYKPOVGT LUE TOV
KOPLO oTOX0 M va €lvol AYOTEPO OMOTEAEGUATIKO EVOVTL GYLPAOV TPOKATUANYEDY TOV
LLOVTEAOV.

Iterative prompting : pebodoroyio emavoainmtikod oyedlaGHOL OTOL TO apylkd prompt
a&oroyeitat, OlopOadveTon Ko BeATidveTon péoa omd KOkAovg péxpt va emitevyBel n emBopunt
nmoldtnta. Eivon mpoktikn yio peaMotikés, 00GKOAN OpIoUEVEG EpYACiES, amottel OPLMS xpOVO
KOl OVOADTIKT IKOVOTNTO OtO TOV YPNOT.

Prompt chaining: n arocvvOeomn evdc chvBeTov £pyou og dladoykd vo-Prjpata, 0mov Kabe
Brpo tpo@odotel 1o endpevo, dnovpymdvtag ariniovyio enelepyasioc. Meidvel To yvooTIKO
eoptio oe kdOe Puo kot mePopilel GLGGWPEVTIKA GEAANATO, OAAAL cLVNO®G amortel
eEOTEPIKT OPYNOTPOOT] (KMOOKA) Y10 T PO} TANPOPOPLADV.

Chain-of-Thought (CoT) prompting [32]: teyviki] TOV TPOTPEMEL TO LOVTIEAO VO TAPAYEL
pntn, Pnuatikn ortioAdynon mpv 1 pali pe v amdvinon, €ite HEo® ToPAdEIYUATOV EITE IE
odnyieg Ommg «ag okepTrovpe Ppa-Prpoy. Ymepéyel oe apOuntikd kot Aoyikd mpoPAnuota
KaOdG Kot o€ GOVOETN GLALOYIGTIKY, LE TO KOGTOG OUMG TNG AVAYKNG Yot KOAG oxed1aGUEVOL
TAPOdElY AT KO QVENUEVOV VTOAOYIGTIKMOV TOPWV.

H emioyn teyvuang e€aptdtor omd T @OON KOt TNV TOALTAOKOTNTA TOVL €PYOV, TOLG
TEPLOPIoUOVE TOV context window Kot TV avaykm yua EAeyyo M ene&nynon. o amhd otrporto
apkovV zero- 1 one-shot mpooeyyicel, evd yio TOAOTAOKEG 1| TOALPNUOTIKES €PYOGIES
ovvictovtat few-shot, CoT, prompt chaining kot iterative prompting.

36

5.5 Xpnowotmta tov Meydhov IN'oooikwv Moviédmv

Ta Meydra I'hoooikd Movtéla (LLMs) amotehovv onpovtikn tpdodo oty TeXvnT
VONUOGUVI, HE EQOPUOYEG TOL petaoynuatilovy moAAOLG Topeic. Xtnv ekmaidgvon,
TPOCPEPOLY EEATOUIKELUEVT] Ao Kot VTooTNPIfovV TOVG EKTAOEVTIKOVS e dMpovpyio
VAKOD. TNV vyeia, SIELKOAVVOLV TN JIAYVOOT), TNV EMKOVOVIO e acOeveic katl TNV €pguva,
OV KOl OTTOLTEITOL TPOGEKTIKY] EVOOUATOOT). XTOV EMYEPNUATIKO KOL PNUOTOOIKOVOUIKO
TOUEN, PEATIOVOLY TNV OTOSOTIKOTNTO HE avdAvon Kwobvov, aviyvevon omdtng Kot
OLTOUATOTOINGON OOIKACIMY. XTIV EMGTNHOVIKN €PELVA, EMTAYOVOLV TN GLAAOYN Kot
avdAvon dedopévav, aArd ypetdlovtor avBpomvn enifieyn. Tt dnpovpykn Propnyovio
EVIOYVOVV TNV TOPOYMOYT TEPIEXOUEVOL KOL TNV EEUTOMKEVCT] EUTEPLAOV, EVAD GTO PLAPKETIVYK
Kol TNV €ELMNPETNON TEANTOV TPOGPEPOLV OVTOUOTOTOUEVT] KOl TPOCOTOTOMUEV
aAnAenidpaon. KoataAnyoviag, to LLMs avoiyovv véovg JSpOHOLS KOVOTOMIOG, ME
TAVTOYPOVEG TPOKANGELS 0ELOTIOTIOG KO 1OKN G Yprone.

5.6 Ilepropiouoi tov Meydhwv I'hoooikwv Moviédmv

Ta Meydha T'woowd Movtéha (LLMs) éxouv @épel emavdotoon otnv TeXvNT
vonuoouvn Kou v emeepyasio LUOIKNG YAMOGOS, OU®MG mopovcstdlovv GoPapovg
nepropiopovs. Kat’ apyds, oev dwobétovv mpaypatikn Katovonon 1 Aoyikn okéym, oAAL
TopAyovy KeIPEVO PAGEL GTATIGTIKOV GUOYETIGUAOV, YEYOVOS TOL 00NYElL 08 «TaponcONCEIS»
(avakpPeic N wevdelg mAnpoeopiec). Emiong, eppaviCouv actdbsio ot GLAAOYIGTIKN,
TEPLOPICUEVES TKOVOTNTES APNPNUEVNG OKEWYNG, KOOGS Kol EUQPVTEG TPOKATOANYELS TOL
avtikatontpilovy Ta dedopéva ekmaidocvong tove. H yvdon tovg elvar ootk Kot mepropileton
YPOVIKA, €V 1 ovATTLEN Ko Agrtovpyio. TOLG OMOLTOVV TEPAGTIONS LTOAOYIGTIKOVG KOl
neporiroviikodg mopovs. EmumAéov, Aettovpyodv ®G «uodpo KOLTIE» Y®PIS EMOPKN
dvvatdTrTo €ENYNONG TOV OMOPACE®Y TOVG. TEAOC, mopd TN (QOIVOUEVIKY] TOVG gvevia,
oTeEPOVVTOL GLVEIONONG KOl TPOYHOTIKNG KOTOVONONG, OTOTEADMVTOS EPYOAEIN TOPAYWOYNG
YADGGOG Kot Ol VOT|LLOVO OVTQ.

37

6 Retrieval Augmented Generation (RAG)

6.1 Etcaywyn oto RAG

H Retrieval-Augmented Generation (RAG) [33] anotekel o cOyxpovn apyLTEKTOVIKN
oL GLVOLALEL TOL YAMOOIKA HOVTEAD HEYOANG KAlpaKag pe eEmtepikés PAcES YVOONG, UE
oT0Y0 TNV gvioyvon G akpifelag, g ETKOPITNTAG KO TNG OEOMIGTIOG TOV TUPAYOUEVOV
anavioewv. Xe avtiBeon pe ta mapadociakd LLMs, ta omoia Bacilovtal amokAeloTikd ot
yvoon mov €yel evompatobel Katd v ekmaidevon tovg, o RAG gmirpémel) SuvoK
avalfTnon TANPOPOPIOV oo EMTEPIKEG TNYES TPLV TNV TAPAYMYT] KEWEVO.

H avéyxn yio 1610100 TOTOV apyITEKTOVIKEG TPOKVTTEL 0md TIG £yyeEVelg advvapieg tov LLMs:
N YVOOY TOLG GTOUOTA GTN YPOVIKY GTIYU Tov OAoKANpoveTon 1 ekmaidevon (knowledge
cutoff), ocvyvd mapdyovv «moapacOncelcy OMAadT WeVLOEG OAAG TEICTIKEG OTOVTNGELS,
napovcstalovy EAlelyT eEeldikevong oe otevd 1| e€gldikevpéva edio Kol AETovpyolv G
CUaPOL KOLTIE YOpig SuvaTOTNTA AVIXVELONG TNG TPOEAELGNG TV TANPOPOPUDYV.

To RAG épyeton va avtyetonicest ovtd to {ntipoate LEG® TOL GLVIVAGLOV VO EODV YVMOONG:
NG TOPOAUETPIKNG, TOL EUTEPLEYETOL GTO {010 TO HOVTEAOD, KOL TNG UM TOPUUETPIKNG, TOV
poépyeTal and eEmTepEc mNYEC (.. Pacelg dedopuévav 1 copoto kewévov). H dadikacio
Bopiler «avoryto PiAio»: 10 cLOTNUA YPNGILOTOLEL EVOV UNXAVICUO OVAKTNONG Yo Vo Bpet
OYETIKO OTOCTAGUATO KOl TO EVOMUATMVEL GTNV 16000 TOv OlveTol 6T0 HOVTELD, OOTE M
TAPOYOUEVT] OTAVINGT Va €ival TEPIGGOTEPO KPP, EMTKOLPT KOl TEKUNPLOUEV.

Me avtov tov tpomo, to RAG Eenepvd tic Pacikés advvapies tov mopadocsiak®v LLMs,
LELOVOVTOG TIC WELOELS OMAVINGCELS, EVOMUATAOVOVIOS GUVEXMG VEN YV(MOT, EMITPETOVTIOG
eEedikevon yowpic emavekmoidevon Kot TaPEYOVTAS SVVOTOTNTO TOPUTOUTNG OTIS TNYEG.
[Ipoxerton yio po opYITEKTOVIKT) TOL AVOiyEL TOV OPOUO Y10 AEIOTIOTEG EPOPLOYES GE TOMELS
omov N akpifeto Ko 1 TeEKUNpiwon elval KpiGLEC.

6.2 Iopadotéa Epoapuroyng

[Ipotov mpoywpnoovpe ot Bewpnrtikn avdivon tov RAG, Ba meprypdyovpe Tig
arotoels e epappoyns. H epyacio eotialer ommv avantuén evég RAG chatbot yio v
epapuoy “A®HNA”, n omoio ypnowomoteitar oamd TPamelkovg LIOAANAOLS Yo TN
ONUovpyict YPNUATOOTKOVOUIKAV OOYPUUUAT®V. ZTOY0S eivan va KaAv@Oel n avaykn Gueong
npdsPaonc oe TANPoYopiec Yo TIG AErTovpyieg ™C €QOPUOYNG, KaODS 1 avalnnon otov
00Mn Yo ypNong eivor xpovoPopa Kot LEUDVEL TNV ATOOOTIKOTNTO.

38

To chatbot 8o Aettovpyel wg Gpeon Paom yvaonc, ETITPETOVTAG EPOTNCELS GE PUGIKT YADGOH
Kol YpNYyopes, a&lomoteg amavinoels. Aedouévou Ot 0 00Nyog tepthapufavel chvOeTeg douég
OTMG TIVOKEG KOl EIKOVES, amontoOvTol EEEOTKEVUEVES TEXVIKES ATOOKELGOTG KOl OVAKTNONG,
ot omoieg Bo avaivBovv ot GuVEXELa.

6.3 Owkoocvotnuoa LangChain

To owocvomuo LangChain [34] arotelel éva amd Ta onpavtikoOtepa epyareia yio v
avantuén epapuoy®v mov PBocilovioar oe YAMOOIWKA povtéda peydAng wiipoaxog (LLMs).
[Tpocpépet éva eviaio mAaiocto mov cvvdéel Ta LLMs pe eEmtepucég mnyég dedopévov, APIs
KOl UNYOVIGLOVG GUAAOYIGHOD, KAMGTAOVTAG TO O EVEMKTO KO TPUKTIKE GE TPOYUOTIKES

EQUPLOYEG.

H Baowr BpAodrkn mapéyel apapécels yio prompts, memory, chains xou agents, Bondmvtog
ot Owayeipon €16000v, cvpuppalopévev kot ektéreong epyociov. [HapdAinia, n gvpeia
YKApo and EVOOUUTOCELS EMTPENEL GUVIEOT Ue Pdoelg dedopuévav, vector stores, APIs ko
cloud vmpeoieg, Tpocpipovtag peydAn eveMéio GTNV OPYLTEKTOVIKY TV EQOPLOYDV.

Emniéov, epyadeio Ommg to LangSmith digvkolvvouv tov éheyyo, TV mapakoiovOnon kot
ToV evtomopd opoipdtov, evdd to LangServe emtpémer tnv €O0KOAN ovATTLEN KO
EVOOUATOON 0AVGId®MV Kol TPAKTOPOV GE HeYaAVTEPO cvathnpata. H avolym kovotnta Tov
LangChain gvioyvel cuvex®G TO OIKOGVOTN O LE VEEG EVOOUOTDOGELS KO TEKUNPIOOT).

Avoxkepaiardvovtag, o LangChain mpooceépet tn dopn| Ko ta epyaieio yio vo HeTATpamovV
ot duvatdmreg twv LLMs oe mAnpels, a&lomoteg Kot eMEKTAGIUES EQOUPUOYES, KATL TOV
AmOTEAEGE KO TN BAGT Yo TNV VAOTOINOT| TG TOPOVCHG EQAPLOYNS.

6.4 Ilpoctopacio AcdouEvmv

H npogtopacio tov dedopévov anoteiel 10 OepeMdOeg 6TAS10 EKTOS GUVOESNG GE Eval
ocvotnua Retrieval-Augmented Generation (RAG), pe okomd TN HETATPONY OKATEPYUCSTMOV
dedopévmv og o dounpévn, avalntowun Paon yvoong. Avti 1 dwadikacio eEacpaiilel 6Tt
eCotepwcég mAnpogopieg eivor gokolo mpooPdoiuec Katd T @don avaKTnong,
nepapPdvovrag to €€ng kpiowa Pruata: EOPTOON Kol TPOEMEEEPYACIH EYYPAPMOV,
TEUOYIOUOG TOVG oE dwyepioa TunpoTo, onuovpyio evoopatodcoewv (embeddings) kot
amofnKevon avTO®V o po Paorn 0edopEVEV SUVUGUAT®V Yol OTOO0TIKEG avalnTNoELg

39

opowdtroc. Kdébe frpa otoyevel otn Pertiotonoinon g moldtntos Kot TposPactuoTN TS TG
Baong yvoong, emtpénovtag 6to cuotnua RAG vo mopéyet akpieig kot cuvaeeic 0navIncelc.

Doptmon kat Ilpoenelepyacio Agdopévov: H dwudkacio Eekvd pe T GLALOYN €YYPAO®V
and mowkideg mnyég, omwg PDF, 1otocelideg N Pacelg dedopévmy. Xty mepintmon oG,
ypnoworomdnkav 6vo PDF yia v epappoyn «AOHNAY». H npoeneéepyacio meptlapfdvet
v e&aymyn Keévou pe epyaieio 6nmg 1o PyMuPDF4LLM péom tov mhiatciov LangChain,
10 omoio vootnpilel TNV avaivon TVAK®V Kot EikOvav. o Tig ekdveg, epapuoécTnKay d00
puéBodoL: 1 mPMOTN, MO ATOSOTIKN, ¥PNOonToince Eva moAvtpomikd (multimodal) povtédo
('gpt-40-mini") yio AeTTOUEPT) TEPTYPOAPT] EIKOVOV, EVOD 1 deVTEPN, LE® OCR, iye yaunilotepn
axpifero. EmmAéov, n mpoeneiepyasio neprrappdaver kabapiopd (apaipeon Bopvfov, dmwg
€101Kol YOpaKTAPES), Kavovikomoinon (emitevén opoopopeiog) Kot EAeyY0 mTOWOTNTOS, E
o160 ™ dNuovpyia Kabapov, TVTOTOINUEVOL KEWEVOV.

Tepoyropdg (Chunking) Eyypaoov: Adym tov meploptoévou mopabipov mepLEXoUEVOL TOV
YAOGGIKOV HOVTEL®V, Ta &yypaga tepoyiloviar o pKpOTEPO, OTUAGLOAOYIKA GULVEKTIKA
tuuato. Kdmoteg amd tic pebddovg meprrapfavoov: a) otabepod peyéboug tepayiopod (Fixed-
Size Chunking), mov eivor amAdc oAAd pmopel vo S106Té TN ONUAGLOAOYIKY GLVEXELD, [3)
avadpouikd tepoyopnd (Recursive Chunking), mov dSwtmpel Aoywég povéodeg (m.y.,
TAPOYPAPOVG, TPOTAGELS) KOl EQAPUOCTNKE OTNV TEPITTOON HOG UE SOKIUEG OLOPOPETIKADV
peyebdv kot emKOAOYE®Y, Kot y) onuactoroykd tepoyiopd (Semantic Chunking), mov
Bacileton ot onpacio Tov KEWEVOD, TPOGPEPOVTOS VYNAN TOLOTNTO OAAL LE PEYAADTEPO
VTOAOYIOTIKO KOGTOC,.

Anpuwvpyio Evoopotoccov (Embeddings) kot Amo@nkevon: Metd tov tepayicpd, to
KEILEVO LETATPENETAL GE OLOVVOUATIKEG avamapactdoels (embeddings) pécm LovtéAwV OTmg
10 text-embedding-3-large, mov emAéyOnke yo v VYA T0L OKpifElr TNV EAANVIKY
yAdooa. Ot evoopotdoelg omobnkevovtal e PAcelg dedOUEVOV SAVUGHATOV, OGS Ot
Pinecone kot ChromaDB, wov vrootpilovv ypriyopeg avalnmoelg opotdtntoag. H modtta
TOV EVOOUATOCEMY &ivarl kpiowun yia v arotedeopatikotnta tov RAG, kabdg koakég
EVOOUOTMOGELS 001YOUV GE L] GYETIKES OLVOKTOELS.

H dwdwoascio mpoetopacioc tov dedopévav, LEcw avtdv Tov Pnudtov, eaceaiilet 6T T0
ocvotnuo RAG pmopel va avaktoetl kot vo a&lomomoel TAnpogopieg pe okpifelo kot
OTOTEAEGLOTIKOTNTO, OTOTEAMVTAG TN BACT Yot TNV TOPOYMYN TOWOTIKAOV OTAVTI|GEDV.

6.5 Awdwkaocio Avaxktnong kot Iapaywyng

H dwadikacio avaxktnong kot mapaywyng (Retrieval and Generation Pipeline) meptypaget
dladkacio Tov EKTEAEITOL GE TPAYLATIKO ¥pOVO OTOV 0 XPNOTNG VTOPAAAEL £voL EpMOTNLO GTO
ovotnua. Bacileton ota dedopéva mov £xovv mponyovpéveg elcoydet katd v offline pdon
eloaywyns ko e€acpariler 6tL | amdvrnon tov LLM otpileton o€ £yKupeg Kot GYETIKES
ninpoeopiec. H dodikacio amoteAeital and t€66Epa GTAON: EVOWUATDON EPWOTHUATOS

40

(Query Embedding), onuacioroyixn avalntnon koir avaxtnon (Retrieval), euriovtiouo
repieyouévon (Context Augmentation) Kou wopoywyn e eumiovtiouo (Augmented
Generation).

270 TPAOTO GTAJI0, TO EPMTNLLOL TOV YPNOTN UETATPEMETAL GE 0PLOUNTIKO SLAVLGHO HECH TOL
310V HoOVTELOL EVOOUAT®ONG TTOL YpNoiponomOnke oty offline dadikacio (.. Text-
embedding-3-large otV nepintmon pog). ‘Etot, 1o epdTpHa Kot To 0mocTAC AT EYYPAOOV
GLVVLTLAPYOVV GTOV 1010 SLOVUGLATIKO YDPO, EXTPEMOVTOG OVGLOCTIKY GUYKPLon pe Bdon
ONUOGIOAOYIKY] OLOIOTNTOL.

Axolovbel n onpactoroyikn avaeljTnon, 0Tov T0 EPMOTNUO-OLAVUCLO CLYKPIVETOL LLE TO
davoopoto Tov £Yypaemv otn Pdon dedopévov. Metpikéc onwg Cosine Similarity Y| Dot
Product xaBopilovv tn cuvaeel, Kot ovoKT®OVToL To fop-k To oyeTikd anocmacpato. To
KatdAAnAo k kabopileton pe faon a&loloynTikég HETPIKES, EVAD TNV TPAEN
ypnooromdnkav cuotiuate énwg ChromaDB kot Pinecone yio amodotikn avalntmon.
270 6TAO10 TOV EUTAOVTICRODV TEPLEYOUEVOV, TO OVAKTILLEVO, ATOCTAGLOTO
EVOOUATMOVOVTOL GE £V TPOKOOOPIGHEVO TPATLTTO TPOTPOTNG (prompt template), pali pe to
apyd epotua. To Tpdtumo avtd kabodnyeli o LLM va amavincel amokAelotikd pe féon
T0 TALPEXOUEVE OEOOUEVA KOl VO TEPLOPIGEL TLYOV “POVTAGTIKES” TANPOPOPIES.

Téhog, ot @don Tapay®YNS pHe EPTAOVTIGNO, TO TANPES prompt amoctéAAeTol oto LLM
(otmVv mepintoon pekétng to gpt-4). To poviéro dev avtiel mTAEov amod T YEVIKN TOV
TPOEKTAIOEVOT), OAAG GUVOETEL LI TEKUNPLOUEVT] KOl QUGTKT OTAVTION, CTNPLYHEVN
OMOKAEIGTIKG GTO OVOKTNEVO TTEPLEYOUEVO. ME TOV TPOTO aVTO HEUDVETOL O KIVOLVOG
AavBoouévev amavticemy Kot otac@oiletor n akpifelo Kot 1 yvnAAGILOTNTO TNG
TANPOPOPING.

H ovvolikn vAomoinon, xapn oe epyareio dmwg 1o LangChain, propel va extedel o otdo10L
AVAKTNONG, ELTAOVTIGHOD KOl TAPOYWYNG LE ATAES KANGELG CLVAPTNCEWV, KAIGTOVTOS TN
JLdKaGI0 TPOUKTIKE EQAPUOGIUN KO OTOSOTIKT).

6.6 Colpali

To ColPali amotelel pa Kovotdpo pébodo avalnnong Kot Katavonong eyypaemy e TAo0c10
ontikd mepieyopevo (0nwg PDF pe wivokeg, eucoveg 1 draypappota), 1 oroio vrepPaivel Tovg
TEPLOPIGHOVS TOV TOPAOOGIOKAOV GLGTNHATOV. AVt va otnpileton o€ mepimhokeg dladikocieg
omwg OCR, avdivon didtaéng Kot amoomacuatiky eEaywyn kewévov, to ColPali a&lomotet
povtéda Opaonc-I'ioccag (Vision-Language Models — VLMs) yio va enefepyaleton
angvbeiog TIg €1KOVEG TOV GEMOMV, EVOOUOTOVOVTOS TOVTOYPOVO, OTTIKES KOl YAWOGIKES
TAnpogopiec. Me avtd TOV TPOTO, TPOGPEPEL AL OTTAOTOINUEVT] KOl TANPOG EKTOOEVCIUN
TPOGEYYIoN Yo oval|TNon EYYPAPOV, ETITVYYAVOVTOS DYNAOTEPT AmOd00T GE EPYUGIEC TOV
AToLTOVV KATOVONGT TOGO TOV KEWEVOL OGO KoL TNG OOUNG TNG GEAIDNG.

41

ApITEKTOVIKY

H péboodog Paciletar oto PaliGemma-3B VLM, 10 omoio cuvovdlet Evav ontikd KmOKomometn
(SigLIP) pe éva yAwooiko poviého (Gemma-2B) péow morvtpomikng tpofoinc. Kabe cerida
€YYPAQOL HETATPETETAL OE EIKOVA Kot YwpileTon o€ “patches”, Ta omoio AeltovpyovV ¢ OTTIKA
tokens. O unyoviopog TPOPOANG HETATPENEL TIS OVOTOPUCTACELS GE £VOV YOUNAOTEPNG
drdotaong yopo (D=128), dnuiovpydvtog moALamTAl dtovucpaTa v GeEAIda. Avtd emiTpémel
AETTOUEPT OVTIGTOIYION EPOTNUATOV Kot EYYPAP®Y PECH GE £vaV KOWVO TOAVTPOTIKO XD PO.
Me teyvikég OmmG M 1EPOPYIKN UECT] OLOOOTOINGT LEIMVETAL O TAEOVAGUOG TMV OEOOUEVOV,
BEATIOVOVTOC OITOSOTIKOTNTO KO LIV UT).

Exnaidgvon

To ColPali ekmadevnke pe mepimov 119.000 Levyn epothoemv—ceMO®V, TPOEPYOUEVA ATO
axoadnuaika chvora dedopévav (DocVQA, InfoVQA) kot cuvietikd dedopéva. H exmaidosvon
yiveton pe Low-Rank Adaptation (LoRA) kot avtifetikr anmAeia (contrastive loss), dote 0
cvoTnua vo pobaivel va ovTiotoyilel epoTMUATO HE TIG To OYETIKEG oeAides. H dadwacio
etvar end-to-end, BEATIGTOTOUOVTOG TAVTOXPOVA TNV OTTIKY KOl YAWCGIKN KOTAVONOT).

Agurrovpyia — Avalntnon Eyypdoov
To ColPali Agttovpyei g dv0 Pacikd 6Tddo 1oL GLVIVALOVY ATOTEAECHATIKOTNTA, OKPiPELn
KOl EPUNVELGIUOTNTA.

1. Anpovpyia gupetnpiov (Indexing):

Ye autd 0 0TAd10, KAOE GEAMOO EYYPAPOV OMOOIOETO MG EKOVA KO EIGAYETOL 6TO Vision-
Language Model (VLM). To povtélo avaidet v ontikny tAnpoeopio (m.y. Keipevo, mivakeg,
SlypaupoTo, GYNUOTO) Kol ONUIOVPYEl TOALOIOVUCULOTIKES — OVOTOPOCTAGELS —TOV
OTOTVTAOVOVV TOGO TN YAMOOIKN OG0 kol Tn Yopikn doun ¢ ceiidac. Kdébe didvooua
avtiotolel oe évo “patch” 1M oe éva tunua g oeAMdag, emTpémovtag TV oKppn
K®OWKOToinon tov mepteyopévov ympig avaykn v OCR, aviyvevon owdtaéng 1 AeChvteg
ewovov. Ta dedopéva avTd amodnKevoVTaL AmTodOTIKA, KOOIGTOVTOG TO EVPETIPLO EAAPPV Kol
€0YPNOTO Yo LEAAOVTIKY] avalTnom.

2. Avalntnon (Querying):

Ortav o gpnotng vroPdiretl Eva Keipevo-epdTNUO, 0LTO peTaTpéneTol ond 10 1010 LovTéLo G€
évo. GUVOAO TOAVIIAVUGLOTIKOV OVATOPUCTAGE®MY, AVTIIGTOYNG HOPONG ME €KEIVES TOV
oeMowv. H opotdtnta peta&d epotratog Kot £yypaemy VtoloyileTol HEGM VO UNYOVIGLOV
kaBvotepnuévng aiinienidopaong (late interaction): yio Ka0e SdvucUa TOV EPMOTNUATOS
evtomiletal 10 mO GYETIKO Oldvucpa omd 10 gvpetnplo (e Pdon to HEYIOTO €0MTEPIKO
YWOUEVO), Kol TO GOPOIGHO OVTOV TV ETUEPOVSG OUOOTHTOV Kobopilel T GLVOMKN
ocuvaeeta. 'Etot, to cuotpa propet va eotidlel oTa To onpoavtikd ototyeio ke celidag, eite
avtd givar AéEetg, Tithot, mivakeg 1 EIKOVEG.

H Sadikacio gtval ToAd ypiyopn kot emektdoiun, anottdvrag rtepimov 0,39 devtepdrenta avd
oeAida yio v gupetnpiaon Kot PO 30 yMoGTA TOL JELTEPOAETTOL Yoo KAOE EpAOTNLOAL.

42

EmnAéov, to ColPali mpoocpépel epunvevoiuomta pécm Beppikaov yoptov (heatmaps), ot
omoiotl amekovifovv Ta onpeia g oelidac mov oyetiovian mePlocdTEPO e TNV avalnTnon.
Me avt0 TOV TPOTO, O YPNGTNG UTOPEL VO KOTOVONGEL TG KOL YTl TO GVGTNUO EVIOTIGE
OCULYKEKPIUEVES TANPOPOPIES, EVIGYVLOVTOG TN OPAVEIDL KOl TNV EUMIGTOGVUVH GTO.
OTOTEAEGLOTAL.

ATOTEAEGNOTO KO ZVPTEPAOPATA

1o npdtuno ViDoRe, to ColPali emrvyydvel vyniotepeg emddoelg (nDCG@S = 81,3%) and
0. TOPOOOGLOKG GLOTHUATO, WIME G€ ONTIKA omouTnTIkKEG epyaocieg (m.y. mIVOKES,
Swypdupata). Etvor ypnyopotepo, mo amodotikd kot avlektikd oe opdipato OCR, evd
YEVIKEVEL KAAG KO GE AAAEG YADGGEG.

Yvvolikd, o ColPali onpotodoTel pio 6Tpoen TPOg TNV OTTIKO-KEVTPIKT OVAKTNON EYYPAOWV,
EVOTIOIOVTOG TNV KOTAVONGT EIKOVOG Kot KEWEVOL. ATOTEAEL Lot EDEMKTY, EMEKTAGIUN ADOT)
Yl EQAPHOYEG aKOONUATKNG Epevvag Kot Bropmyoaviag, B€Tovtag Tig Pdoelg yia wo £Eumva Kot
aroteleopotikd cvotuota Retrieval Augmented Generation (RAG).

43

7 AZiohoynon RAG cvotiuotog

7.1 Etcaywyn otnv Atohdynon Xvotnudtov RAG

H amoteleopatikotnto evog cvomuatog RAG (Retrieval-Augmented Generation) dev givat
ogdopévn. H amddoon tov efaptdtal amd T 6moT cvuvepyasio Twv 000 PacIK®V TOL
TUNUATOV: TOL UNYOVICUOD OVAKINGNG TANPOQOPLOV (retriever) Kot TOV UNYOVIGHOD
napoywyns Kewévov (generator). Mwo advvapio e omolodnmote and to dVO UTOPEL va
odnynoel oe doyetes, avakpPeig 1 edMneic amavtmoels. [a tov Adyo owtd, 1 GLGTNUOTIK
a&loAoynon eivon kpioun.

7.2 Metpikég AZioldynong

H a&oloynon yivetar pe 600 tpoémovg cvppmva pe 1o gpyareio RAGAS [35]. O mpidrog
€0TLALEL OTA EMPEPOVS GTOLYEID TOL CLOTNOTOG, EEETALOVTAG TNV TOLOTNTA TV TATPOPOPIDYV
TOL AVOKTMOVTOL KO TN 0XE0T) TOVS e TNV TEMKN anavtnot. Ot facikég petpucés ivor ot eENg:

e IhIwetétnto (Faithfulness): EEetdlel av n amdvinon eivon cuvenng e Tig
TANPoPopieg mov avaktOnkay, ympic va "epevupickel” dedouéva.

o Xvuvagseiwo Amavtiong (Answer Relevancy): Metpd katd m6co 1 amdvinon eival
OYETIKT LE TNV APYIKT EpAOTNON TOV XPNOTH.

e Avaxkinon & Axpifewo Iepreyopévov (Context Recall & Precision): A&torloyodv
av 1o cvotnuo Bprke OAeg TG anapaitnteg TANpoPopies (AvAaxkinon) Kat av ot
TANpoeopieg mov Ppédnkav NTav dvTwg ypnotpes kot oyt mepirtég (Akpipeia).

O debtepog TpOTOG 0&loroyel TO TEMKO OMOTEAEGILO GUVOMK(, GLYKPIVOVTOG TV OTAVTNOY)

TOV GLGTNUATOG HE Htol Waviky), "oAndwn" andvinon (ground truth). Ot kvprdtepeg peTpiKég
elvat:

44

e Xnupoocroroyikn Oporwotnta (Answer Semantic Similarity): EASyyet av n
TOPOYOUEVT ATAVTNOTN EXEL TO 1010 VOO LLE TNV 1O0VIKT] OTAVTNOT), OKOUT KL OV
YPNOUOTOIEL SLOPOPETIKEG AEEELC.

e OpB6tnTa (Answer Correctness): Zuvovdletl TNV TPAyLLOTOAOYIKY] OKPiPELO LLE T
ONUOGLOAOYIKT OLOIOTNTA Y10 (O TTLO 100PPOTTNEVT a&loAdYn o).

Téhog, vapyovv Kou morotikoi Eleyyol (Aspect Critiques) mov a&loAoyohv TTLYEG OTTMG M
ovvoyn, N opBoOTNTA Kol 1 amovsio emPBAaPog mepieyouévon. O GLVOLAGLOC OAMY CVTAOV TOV
LETPIKOV TPOCPEPEL UL OAOKANPOUEVT] €KOVA Yo TV amddoon Kot TNV aSlomotio evog
ovotnuotog RAG.

7.3 Ipaxtikny A&loldynon tov RAG Pipeline

Xe ovvéyela ¢ ovlNoNg Yo TIG dAPOPES HETPIKEG AELOADYNONG, VTN 1 EVOTNTA
eotdlel oTNV TPAKTIKN AE0AOYNON TG OIKNG LG EQAPUOYNG OC TPOG TIG MO GYETIKEG ATd
avtég TG peTpkés. Katd tov oyedtacpd g dtodkosiog a&toAdynong, TEPUUATIGTKOUE e
JSLPOPETIKEG TOPAUETPOVS, GVYKEKPIUEVA PeTOPAALOVTOC TO HéyeBog Tov Tunudtov (chunk
size), tov Pobud aiiniemukaioyng (chunk overlap) kot tov aplBud tov avaxtnuévov
TUNHOTOV.

Eivor onpovtiké va tovictel O6tt Bo pmopodoov vo €EETOCTOVV TOAAEG EVOAAUKTIKEG
dwpopepmoelg kot kprripre agloAdynons. To RAG pipeline mpooeéper moAvdpBueg
puOloueveg TTuyég kot 1 a&loddynon pmopei va dteEayel oe moAhamAéc dractdoels. Qo6tdc0,
Y10l TOVG GKOTOVG QLTNG TNG UEAETNG, EMAEEQUE CKOTILA TIG TPOUVaPEPOEicES TAPAUETPOVG,
KaOdG T1g BeprcaLE ®C TOVG O KPIGIHOVG TapdyovTes Tov ennpedlovy TV amddoom Tov
CLOTAHTOS LLOG.

To wpdto Prpa Nty N EMA0YY TV dapopeOcewv. EmAéEape 4 d10popeTIKES SIAUOPPDOTELS
Kot 3 PeTPKéG oL KPIvapEe 0G TIG o oNUAVTIKES. [l Ty TpdTn Stopdpewon, o apyikdé PDF
eopt®Onke pe Vv mpoemheypévn ovvdaptnon load document, n omoia ypnowomolel v
KAdon LLMImageBlobParser yio vo ovTIKOTOGTGEL TIG EIKOVESG LUE TIG AEKTIKEG TTEPLYPOPES
touc. Avtifeta, 0 6evteEpo PDF @optmbnke pe) cvuvéptnon load document OCR, 6émov ot
EIKOVEG OVTIKATOOTAOM KAV e Keipevo Tov e€nydn péom OCR. Xe avtn T pOOon, to puéyebog
tov chunk opiotnke og 2800, ywpic aAinienucaioyn (overlap), Kot | TAPAUETPOS AVAKTNONG
KaBoploe TV avaKTnon VO TUNUAT®V. XTn GUVEXEW, OOKIUAGTNKOV TPES EMUTAEOV
SLLOPPMCELS, OAEG XPNOUYLOTOLDVTOG TNV TPOETAEYLEVT] cuvapTnon load document aAld pe
SLOUPOPETIKES TOPOUETPOVG:

e H devtepn dwopdpemon ypnoiponoince péyebog chunk 2000 ywpig aAiniemikdivym,
AVOKTOVTOGS 000 TULLOTO.

45

e H 1pitm dapdpemwon ypnoiponoinoe péyebog chunk 3500 pe ariniemikdioyn 100,
AVOKTAOVTOG ETiONG OVO TUNUATO.

e Téhog, n Té€taptn Sapdpemon epapuoce péyedoc chunk 4200 pe aAAnAemikdAvyn
100, avakt@vTog LOVO £VOL TUTLLA.

Metd v €Qoproyn TOV SLOUOPPOCE®DY, dnpovpynoape éva apyeio CSV yua kabepio pe tig
otAeg: "user input", '"retrieved contexts", '"response", '"reference", '"faithfulness",
"context precision" kot "answer correctness". Ot mpdTEC TECOEPIS GTNAEG OMOTEAEGAV TO
OUVOAO OE0OUEVOV OOKIUNG, VA Ol TPELS TEAEVTOAEG OVIUTPOCMOTEVAY TS WNETPIKES
alordynong. Ot petpwég avtég Mrav: Faithfulness (IIwetétnte), Context Precision
(Axpipera ITAorsiov) ko1 Answer Correctness (Op0otnta Amavinonc). Ta amotedécpata
avédel&ov capn vrepoyn ™g Awpudpemong 1, n omoila Tapovsioce TG VYNAOTEPES TILES OE
OAEG TIC KaTNYOpPiES.

Ocov agopa ™ Faithfulness, N Atopopowon 1 métuxe tov vyniotepo péso 6po (0.676),
YEYOVOG TTOV OEl)VEL OTL O1 ATAVTIOELS TNG NTAV TLO GUVETEIS LE TIG AVAKTNIEVES TANPOPOPIES.
O emdpeves OLOUOPPADCELS EUPAVIOAY GTAOIOKA YOUUNAOTEPEG EMOOGELS, VITOINADVOVTOG
HEIOUEVN IKOVOTNTO EVOOUATOONG TOV TOPEYOUEVOL TEPLEYOUEVOL OTN dlodikacio
onpovpyiag amavIncemy.

>tV Context Precision, 1 idwo dtapdépemon dwatrpnoe v npotid (0.758), evd ot vmOAoUTEG
onueimcav @Bivovceg Twés. Avtd vmodnAdver 6Tt T0 GUGTNUHO OVAKTINGNG TOV GAA®V
OLLOPPMOCEMY TAPNYOYE TEPICGOTEPO ACYETEG N EMAVOAUUPOVOUEVES TANPOPOPIES,
LLELOVOVTOG TN GLVAQELD KOl TNV aKPIPEL TOV OTAVINCEDV.

Avrtictoya, otnv Answer Correctness, 1 Alopopewon 1 anédwoe T1g o akpiPeis amavtoelg
(0.506), pe T vrdAouTEG Vo akoAovBovv mrtoTkd. H cuvoyn twv anotedecudtov ce OAeg TIg
HETPIKES KATASEIKVOEL GTEVY] GYECT OVAUEGO GTNV TOWOTNTO AVAKTNONG, TNV TIOTOTNTO GTO
mAaiclo Kot TV 0pHOTNTO TOV TAPAYOUEVMV OTAVTICEMV.

YUVOMKA, TO OMOTEAECUOTO OVOOEIKVOOLV pia EekaBapn tepapyio amddoons, He 1
Awpdpomon 1 va emituyydvel tov BEATIGTO GLVIVAGUO GLVAEELNG, a&lomioTing Kot akpifetag.
Mo tov Adyo avtd emiéynke @g n TALOV KATAAANAN YOO GLVEYION TNG OVATTLENG Kol
viomoinong g epoproyns RAG, xkabohg eacporilel petopéva cedipato Kot avEnpévn
a&lomiotio. XT0 EMOUEVO KEQPAANLO TOPOLGLALETOL 1] OladIKaGio avAmTLENG Kot dnuovpyiog
TOV TEMKOV TEPPAALOVTOC YPOTT).

46

8 YAomoinon Epapuoyng AAAnieniopacng Le Tov
Telkod Xpnot

To ke@dAoto avTd TEPYPAPEL T dAdIKAGT0 OVATTLENG TNG TEMKNG EQap oy chatbot,
eotidlovtag oto Streamlit, to framework mov ypnoipomombnke yio T Onuovpyio TOVL
ypapob mepiParrovtog (front-end). To Streamlit eivon €va gpyaieio avorytod KdOOWKA TOL
AmTAOTOLEL TN dNUIOLPYiC S10OPACTIKOV Web EQaPLOYDVY Y10 ETIGTHUN OEOOUEVOV KOl LNYOVIKT
uébnon, kabng sivar Paciopévo ot yAdooo Python.

"‘Eva Bacikd tov mAcovéKTHa givatl 6Tl emTpénel T ypryopn ovamtuén mpoTtotintev (rapid
prototyping) ywpic vo omortel yvooeig HTML, CSS 7 JavaScript. Ot mpoypopplatioTés
UTTOPOVV UE ATYEG YPOUUES KMOKO VO TPOGHEGOVV JAdPACTIKA GTOXELN, OTMG KOVUTLE Kot
sliders, ka1 vo To GUVIEGOVV LE TOL EGOUEVOL 1) TOL ATOTEAEGLLOTA EVOG LOVTEAOVD.

To Streamlit eivor Wwitepa ypnopo ywo v evooudtoon poviéAmv machine learning,
EMTPEMOVTOG TN UETATPOTY] TOVG € web epapuoyés ywpig mepimhokeg vmodopés. T
epappoyés onwg to RAG (Retrieval-Augmented Generation), dnpovpyet éva giiikd mpog tov
PN ot TEPPAALOV, divovtag Tn dVVATOTNTO GTOVS XPNOTES VAL AAANAETIOPOVV EVKOAM LE TO
GUGTNLOL.

H epappoyn viomomOnke kot avartoydnke pe to mhaicio Streamlit mov mpoavagépOnke,
gnerta amd TV ETAOYN TS KOTAAANANG Oapdpemwong RAG pipeline. Ztov @dkeAo Tov £pyov
gykataotadnke to Streamlit ko dnpovpyndnke éva €d0wo apyeio Python mov mepilappove
GLVOPTNGELS Yol T OpTOOT TV embeddings, TNV Tapay®YN ATAVTGEDV KOl TV KOTOCKELT
™m¢ oemapng ypnot. H diemapn evompdtove titho, sidebar yio kataydpion ctoyeiov kot
EPOTNUATOV Ao TOV ¥PNOTY, KAOOS Kot oTotyeia yio TV aneikdvion ¢ cuvopiiioc. Metd
oo dokipég mov emiPefainoay v opOn Asttovpyia, o kddKas avéPnke oto GitHub kot péow
NG EVOOUATOWIEVTS duvaTdTnToS avamTuéng tov Streamlit 1) epappoy”| avamtuyOnkKe TTLYOG.
Eivon mAéov SwBéoun ot owevbovvon “https://diplomaappdeployment.streamlit.app/”, pe
TEAMKY] LOopeN oL Voot Pilel epwtnoelg Paciopuéveg otov 0dnyo ypnong “ATHENA”.

47

9 Avaxorpoaroionon

H dumlopatikn epyacio mopovciace Tov oxedlaco, Ty vAomoinon kat tnv a&loldynon evog
ovotiuatog chatbot facicpévov e RAG, pe okomd v vmootipién Tov ¥pnotov g
epappoyns «KA@HNAY. To chotnua amédel&e 0Tt Pmopel Vo amovTd OmOTEAEGLATIKG GE
EPWTNOELS, TPOCPEPOVTAS GLEST] KO GTOXEVUEVT TPOGPOON GTIG TANPOPOPIEG TOL 0O YOV
YPNONG Kol PEATIOVOVTOG GNUAVTIKA TNV gumelpio Tov ypnotr. 261060, AOY® TG
TOUVOKPATIKNG PUOTC TWV YEVETIKMV LOVTEA®V, 0V ivar Suvatdv va eEarelpbel TANpwc N
TOavOTNTO AoVOUGUEVOV OTAVINGE®V, YEYOVOS TOV AVAOEIKVIEL TNV OVAYKT) Y10 GUVEYT
Bertioon. Melhovtikd, Tpoteivetar | a&l0moinon mo TponyUEVOV YAMGGIK®OV LOVIEA®MY
(10ilmg Yo TNV EAANVIKT YADGGA), 1) EQAPROYN EEEAMYUEVOV TEXVIKOV EMEEEPYOTTOG
dedoUEVMV, KAOMS Kol 0 EUTAOVTIGHOG KOl 1) KOADTEPN SOUN TOV LAIKOD TOL 031 YoV ¥PNoNG.
Me avtd to frpota, n akpifela, 1 TANpOTNTO Ko 1) xpnotpodTnTo Tov chatbot umopovv va
evioyvBohv akdun mePocdTEPO.

48

Extended English Version

1 Introduction

In recent years, artificial intelligence technologies and, in particular, Natural Language
Processing (NLP), have experienced rapid development, making it possible to create advanced
dialogue systems (chatbots) that approach human levels of understanding and response. One
of the most recent and powerful examples of such systems are RAG (Retrieval-Augmented
Generation) models, which combine the capabilities of large language models (LLMs) with the
search for information from external knowledge sources.

This thesis focuses on the development of a RAG Chatbot, which utilizes the Retrieval-
Augmented Generation architecture to provide highly accurate answers, documented on the
basis of relevant documents or databases. The combination of search and language production
allows the system to overcome the limitations of traditional chatbots, which rely exclusively
on the knowledge that has been integrated during their training phase.

The aim of the work is to design, implement and evaluate a RAG system, which will be used
by users of the “ATHENA” application. “ATHENA” is an application through which financial
data representation diagrams can be created for a bank. Employees who use this application
often have questions about the correct use of this specific application. Therefore, creating a
RAG chatbot will make things much easier for employees and increase productivity, as they
will be able to ask the chatbot a question and get an answer immediately without having to
search through the entire user guide.

49

1.1 Chatbot Definition

A chatbot is a software application, often powered by artificial intelligence (Al), designed to
simulate and process human conversation, whether written or spoken. It enables users to
interact with digital systems in a conversational manner, simulating a conversation with a
human [36].

The term chatbot is directly related to the term LLM. A large language model (LLM) is a type
of deep learning model that is trained on vast amounts of text data—such as books, websites,
or articles—to learn patterns, grammar, facts, and relationships between words. Modern LLMs
are typically based on transformer architecture, which uses self-attention mechanisms to
process entire input sequences in parallel, making them robust and scalable. Once trained,
LLMs can generate human-like text by predicting the next word, or "symbol", in a sentence.
This capability allows them to perform many tasks without being trained on a specific task, a
phenomenon known as zero-shot or few-shot learning [28].

Having been trained on a large amount of data, LLMs gain knowledge and can answer correctly
in a wide range of domains. But what happens when the user asks for something that is not
included in the training data, such as something that happened after the model was trained, the
content of a website, a database, or, in our case, a user manual with text, images, and tables?
This is where Retrieval Augmented Generation (RAG) comes in hand.

1.2 Retrieval Augmented Generation (RAG)

The Retrieval-Augmented Generation (RAG) technique is a modern approach to augmenting
large language models (LLMs) with dynamic access to external information sources at runtime.
Unlike traditional LLMs that rely solely on the parameters learned during their training phase,
RAG models also incorporate mechanisms for retrieving knowledge from external data
sources, with the aim of generating more accurate, timely and evidence-based answers.

The architecture of a RAG system is based on two main subsystems:
Retriever:

This is a system that, when receiving a query from the user, searches for relevant text fragments
from an external knowledge base (usually a vector base, such as FAISS or Chroma). The texts
in the database have been pre-transformed into vector representations (embeddings) using a
separate model, to allow searching based on semantic relevance and not just exact word
matching.

Text generator:
The LLM receives the retrieved chunks as information (context) along with the user's initial
query. It then composes an answer that is based not only on the knowledge contained in the

model itself, but also on information that came from outside. This process is called
augmentation, as the prompt processed by the model is dynamically enriched.

50

The use of the RAG technique presents significant advantages:

e Reduction of false answers (hallucinations), as the model is based on external,
documented data.

e Content update, without the need to retrain the model every time there is new
information. This is very useful for cases like owr own where the user manual or app
data might change.

e Transparency and documentation, as the user can be provided with the same sources
used to produce the answer.

e Increased reliability in answers, especially in areas that require accurate and up-to-date
knowledge (e.g. legal, medical or business data).

In this paper, we study ways in which we can produce the most correct and informative answers
possible that are consistent with both the user's initial question and the retrieved data, reducing
errors, inaccuracies and hallucinations.

51

2 Machine Learning

Before analyzing the architecture of the chatbot that we will develop, we must establish the
theoretical foundations on which this technology is based. The general science in which an Al
chatbot is classified is artificial intelligence. Analyzing concepts such as machine learning and
deep learning will lay the foundation to understand concepts such as transformers and large
language models (LLMs). Thus, we will have all the theoretical background to understand the
composite architecture of a RAG chatbot.

2.1 Machine Learning Definition

Let's start our analysis with an introduction and definition of machine learning. Machine
Learning is a subfield of artificial intelligence (Al) that focuses on developing algorithms and
statistical models that allow computers to perform tasks without being explicitly programmed
for each specific action. By learning from data, these systems can identify patterns, make
predictions, and improve their performance over time [37].

At its core, Machine Learning harnesses the power of data and computational techniques to
simulate aspects of human learning. Unlike traditional programming, where a programmer
manually writes rules to perform tasks, machine learning systems extract rules and
relationships directly from data. This has opened up new possibilities in areas as diverse as
image and speech recognition, natural language processing, medical diagnosis, autonomous
systems, economic modeling, and more.

2.2 Machine Learning Categories

Machine Learning can be categorized into supervised learning, unsupervised learning, and
reinforcement learning, each of which is characterized by the nature of the learning process
and the type of data available. Supervised learning involves learning from labeled data, where
the algorithm is trained to predict an output based on input-output pairs. Unsupervised learning,
on the other hand, deals with data without explicit labels, focusing on discovering hidden
structures or patterns. Reinforcement learning is based on an agent learning to make decisions
by interacting with an environment and receiving feedback in the form of rewards or penalties.
Following we will shortly present some machine learning algorithms without going into too
much detail, as they are not prerequisites for the subject of this diploma thesis.

52

2.2.1 Supervised Learning

Supervised learning is a type of machine learning that aims to classify or predict data, based
on a set of examples provided in advance for training. These examples include input data
(usually feature vectors) and the corresponding desired outputs or labels. Supervised learning
algorithms study these examples and create a model, which can then be used to predict or
classify new, unknown cases. The goal is for the model to be able to apply the knowledge it
has acquired from the training data to new data in a way that makes sense, that is, to generalize
well [2]. Following, we will make an introduction to som

2.2.1.1 Linear Regression

Linear regression is one of the most fundamental algorithms in machine learning and statistics,
used to model the relationship between one or more input variables (often called features) and
a continuous output variable. The goal is to find a linear equation that best describes how the
inputs influence the output. For a single input, this takes the form of a straight line; for multiple
inputs, it becomes a flat surface (or hyperplane) in higher dimensions.

The algorithm estimates the weights (or coefficients) for each input variable so that the
predictions are as close as possible to the actual observed values. This is typically done by
minimizing the overall difference between predicted and actual values, often measured as the
average squared error. Once trained, the model can be used to make predictions for new data
and to interpret the strength and direction of the influence of each input [38].

Below is shown the scatter plot for the result of the simple linear regression algorithm.

'y

260 10 ' 10 20 30 40 50 60

Figure 1 — Scatter Plot for simple linear regression [38]

53

Linear regression is used to predict continuous values based on one or multiple input values.
For binary values, the algorithm that is used is logistic regression.

3.2.1.2 Logistic regression

Logistic regression is a supervised machine learning algorithm traditionally used for
classification tasks, particularly binary classification—predicting outcomes such as
“yes/no,” “0/1,” or “spam/not spam.” Unlike linear regression, which predicts a continuous
variable, logistic regression estimates the probability of class membership using the logistic
(sigmoid) function to bound outputs between 0 and 1 [39], [40].[41]

Mathematical Foundation
The model computes a weighted sum of input features and applies the logistic function:

9(2) = 1+e2

where z =) + f1x1 + - + Bnxy,. This maps the real-valued z to a probability between 0 and
1.

Variants

e Binary Logistic Regression: for two-class outcomes (most common)
e Multinomial Logistic Regression: for unordered multi-class targets
e Ordinal Logistic Regression: for ordered multi-class outcomes (e.g. ratings)[42]

2.2.1.3 Support Vector Machine (SVM)

A Support Vector Machine (SVM) is a supervised machine learning algorithm widely used for
classification and, with adaptations, for regression tasks. The fundamental idea behind an SVM
is to find the optimal decision boundary, known as a hyperplane, that separates data points
belonging to different categories. Unlike a simple dividing line, this hyperplane is chosen in
such a way that it maximizes the margin, which is the distance between the boundary and the
closest data points of each class. These critical points, called support vectors, play a central
role in defining the position and orientation of the hyperplane. By focusing only on these
support vectors rather than the entire dataset, SVMs achieve strong generalization capabilities
and robustness against overfitting, even in high-dimensional spaces.

2.2.1.4 k-Nearest Neighbors (k-NN)

The k-Nearest Neighbors (k-NN) algorithm is one of the simplest and most intuitive machine
learning methods used for classification and regression. It belongs to the family of instance-

54

based (lazy) learning algorithms, meaning it does not explicitly learn a model but instead
stores all training data and makes predictions based on similarity [43].

The k-NN algorithm works in three main steps:

1. Store the Training Data: The algorithm memorizes the entire training dataset
(features and labels).

2. Compute Distances: For a new data point, it calculates the distance (e.g., Euclidean,
Manhattan) to all other points in the training set.

3. Find Nearest Neighbors: It selects the k closest data points (neighbors) and predicts
the output based on their labels.

e For Classification: The most common class among the k neighbors is chosen.
e For Regression: The average (or weighted average) of the neighbors' values is taken.

3. Mathematical Formulation

The Euclidean distance between two points X; and X, in an n-dimensional space is:

n
A%, %) = |) (rag = 020)?
i=1

We use this to calculate the distance from the neigbors. Other distances can be used also, like
manhattan.

For classification, the predicted class ¥ is determined by majority voting:
¥ = mode({y; | i € top k neighbors})
For regression, the predicted value is the average of the neighbors:
k
1
y= Ez Yi
i=1
While deciding on the right value of k to use for the algorithm it is important to note that:
e A small k (e.g., 1) leads to high variance (overfitting).

e Alarge k (e.g., 20) leads to high bias (underfitting).
e The optimal k is often found using cross-validation.

To sum up, k-NN is a fundamental algorithm in machine learning, useful for both
classification and regression. While simple, its performance depends on proper tuning of k
and distance metrics. It serves as a good baseline model before exploring more complex
algorithms.

55

2.2.2 Unsupervised Machine Learning

Unsupervised machine learning is a branch of machine learning where algorithms work with
data that is not labeled. Unlike supervised learning, where the goal is to predict known
outcomes, unsupervised learning focuses on discovering hidden structures, relationships, or
patterns within the data itself. The input consists only of features, without any predefined target
values.

The central idea is that data often contains inherent groupings or underlying structures that can
be uncovered without prior knowledge. Two of the most common tasks in this area are:

e Clustering — grouping data points into clusters based on similarity (e.g., k-means,

hierarchical clustering).

o Dimensionality reduction — reducing the number of features while preserving
essential information, often for visualization or preprocessing (e.g., Principal
Component Analysis, t-SNE).

2.2.3 Reinforcement Learning

The last machine learning category mentioned in this diploma thesis is Reinforcement
Learning. Reinforcement Learning (RL) is a core paradigm of machine learning where an agent
learns to make decisions by interacting with a dynamic environment, aiming to maximize a
notion of cumulative reward over time [3]. Unlike supervised or unsupervised learning, RL
doesn’t rely on labeled examples; instead, agents learn through trial and error, striking a balance
between exploration (trying new actions) and exploitation (leveraging known rewarding
actions).

Essential Components of RL

e Agent: the decision-maker learning from interaction.
o Environment: the context within which the agent operates and evolves.

o State: a representation of the current situation.

56

Action: choices available to the agent.

Reward: feedback signals that drive learning, guiding the agent toward desirable
outcomes [4].

57

3 Deep learning

In order to build the knowledge required to learn about LLMs we have to first learn about deep
learning and some of the architecture around this field. In this chapter we will mention some
relevant concepts as the technology of the LLMs is highly based on deep learning architecture
and neural networks.

3.1 Introduction to deep learning

Deep learning is a subfield of machine learning that focuses on training artificial neural
networks with multiple layers (hence "deep") to model complex patterns in data. Inspired by
the structure and function of the human brain, deep learning algorithms automatically learn
hierarchical representations of data, enabling breakthroughs in computer vision, natural
language processing (NLP), speech recognition, and many other domains.

Unlike traditional machine learning, which often requires manual feature extraction, deep
learning models can automatically discover relevant features from raw data. This capability
has made deep learning a dominant force in artificial intelligence (Al), driving innovations
such as self-driving cars, virtual assistants, and medical diagnostics.

3.2 Perceptron: The basis of a neural Network

The basic building block of a neural network is the perceptron, which is a simplified
representation of a biological neuron [1]. A perceptron calculates a weighted sum of its input
features x, adds a bias term b, and then passes the result through a non-linear activation function

n
y=<p<2wixi+b>
i=1

Here, the w; values represent the adjustable weights. This formulation enables the perceptron

@ to generate an output:

to define linear decision boundaries. On its own, a single perceptron can only solve linearly
separable tasks, but combining many perceptrons allows the network to capture more complex,
non-linear patterns.

58

Activation functions are crucial because they introduce non-linearity into the network, making
it possible to model sophisticated relationships in the data. Commonly used activation functions
include:

e Sigmoid:

1
R
e Hyperbolic tangent (tanh):
X _ o™X
tanh(x) = ——
anh(x) T

e Rectified Linear Unit (ReLU):

ReLU(x) = max(0, x)

Each of these functions comes with advantages and drawbacks. For instance, sigmoid and tanh
are prone to vanishing gradient problems in deep networks, which hinders effective learning.
ReLU alleviates this issue but can result in inactive neurons. The selection of an activation
function strongly influences the network’s ability to learn efficiently and capture expressive
patterns.

Inputs Bias

.
I
]

—r X

1 : b
W, N
]

IS Sy [
Outputs
‘ w, \ net
X < X, o —— finet) ——

Activation
Combination Function

Figure 2 - Structure of a perceptron [44]

59

Neural networks are built from three main types of layers: the input layer, which takes in the
raw features; one or more hidden layers, where the data is transformed and patterns are
extracted; and the output layer, which delivers the final result or prediction.

Within each layer, neurons perform a combination of a linear operation and a non-linear
activation. As data flows forward through the network, each layer refines the representation
learned from the previous one. This step-by-step processing enables the network to capture
deeper and more abstract patterns, making it capable of handling tasks ranging from simple
classification to complex regression problems.

60

3.3 Deep Learning Architectures

In this chapter we will analyze some basic deep learning architectures which are crucial for the
rest of this thesis. More specifically, we will analyze certain types of Artificial Neural Networks
(ANNSs) which are composed of interconnected layers of neurons.

More Specifically, we will mention:

o Feedforward Neural Networks (FNNs): Basic networks where data flows in one
direction.

e Convolutional Neural Networks (CNNs): Specialized for grid-like data (e.g., images),
using convolutional layers to detect spatial hierarchies.

e Recurrent Neural Networks (RNNs): Designed for sequential data (e.g., text, time
series), with loops allowing information persistence.

Transformers, which is another architecture that leverages deep learning concepts and is also
the basis of LLMs will be analyzed later after we introduce some other important concepts.

3.3.1 Feedforward Neural Networks (FNN5s)

A Feedforward Neural Network (FNN) which we described in short in the previous chapter is
one of the simplest and most widely used architectures in deep learning. Its structure is
organized into layers, which form the foundation of how the network processes information.

An FNN is composed of three main types of layers:

o Input layer: This is where raw data first enters the network. Each node in this layer
represents one feature from the input data.

o Hidden layers: Between the input and output, one or more hidden layers transform
the data. Each hidden layer contains neurons that apply a linear transformation to the
incoming values, followed by a nonlinear activation function. These nonlinearities are
crucial, as they allow the network to capture complex patterns rather than just simple
linear relationships.

e Output layer: This produces the final prediction, which may be a class label in
classification problems or a continuous value in regression tasks.

The defining feature of an FNN is its feedforward flow of information. Data passes sequentially
from one layer to the next, without any loops or feedback connections. At each step, the

61

network builds increasingly abstract representations of the input. For example, in image
recognition, early layers may detect edges or simple textures, while deeper layers capture
higher-level concepts such as shapes or objects.

By stacking transformations in this way, FNNs are able to map complex input-output
relationships. Although modern neural network architectures (like recurrent or convolutional
networks) extend beyond this basic idea, the feedforward model remains the conceptual
backbone of deep learning.

Output layer

Input layer
g Hidden layer

Figure 3 - Feed Forward Neural Network [5]

3.3.2 Convolutional Neural Networks (CNNs)

A Convolutional Neural Network (CNN) is designed to process spatial data, such as images,
by mimicking the human visual system. Its core functionality relies on three key ideas: local
connectivity, parameter sharing, and hierarchical learning.

The process begins with a convolutional layer. Instead of connecting every neuron to every
pixel in the input image, this layer uses small filters (or kernels) that slide across the image.
Each filter detects a specific local feature, like an edge or a blotch of color, producing a feature
map that highlights where that feature occurs. This allows the network to learn patterns
regardless of their position, a principle called translation invariance.

Next, pooling layers (typically max pooling) downsample these feature maps. They reduce

their spatial size by taking the maximum value from small regions, preserving the most
activated features while making the representation more manageable and robust to small shifts.

62

Through a stack of alternating convolutional and pooling layers, the network builds a
hierarchical representation. Early layers learn simple low-level features (edges, corners), while
deeper layers combine them into complex high-level patterns (eyes, wheels, entire objects).

Finally, the processed features are flattened and fed into traditional fully connected layers to
perform the final classification, assigning a label based on the complex features extracted.[6]

Below is a figure depicting everything described above.

Convolution Neural Network (CNN)

/)
nput - Qutput
Pooling Pooling Pooling 1 \
_/é
M ¢ Horse
] Zebra
] k Dog
] \\\ SoftMax
Convolution Convolution Convolution - ‘?ﬁtr"f:h‘)‘l’_'“
+ + +
Kernel RelLU RelU ReLU Fngtt;n\\
Y Fully
Feature Maps———————— COE:;ecrted
Feature Extraction Classification E’I‘:Ef’bbdllifo‘::

Figure 4 - Convolutional Neural Network([6]

3.3.3 Recurrent Neural Networks (RNNs)

Recurrent Neural Networks (RNNs) [45] are a class of neural networks engineered for
processing sequential data. Unlike traditional feed-forward networks, RNNs incorporate loops
that enable them to retain a "memory" of previous inputs by updating an internal hidden state
at each time step. This makes them ideal for tasks where context and order are critical, such as
natural language processing, audio analysis, and time-series prediction.

At each step, an RNN processes an input alongside its hidden state from the prior step. This
combination undergoes a transformation—typically non-linear—to produce an updated hidden
state and, if needed, an output. The hidden state acts as a dynamic context, evolving as the

63

network processes the sequence, allowing it to capture temporal patterns and dependencies
effectively.

RNN Layers
An RNN typically includes:

e Input Layer: Accepts sequential data, such as words in a sentence or values in a time
series.

e Recurrent Layers: Maintains temporal context through hidden states, enabling the
network to "remember" past information.

e Output Layer: Generates predictions, either as a single output for the entire sequence
(e.g., sentiment classification) or as a sequence of outputs (e.g., machine translation).

Challenges in Training

Training RNNs using backpropagation through time (BPTT) can be problematic due to
vanishing or exploding gradients. Vanishing gradients hinder learning of long-term
dependencies, as updates become negligible, while exploding gradients can destabilize the
training process. To address these, advanced architectures like Long Short-Term Memory
(LSTM) [46] units and Gated Recurrent Units (GRUs) introduce gating mechanisms to
selectively retain or discard information, enabling better handling of long sequences.

Strengths and Applications

Recurrent Neural Networks (RNNs) excel in scenarios that require sequential understanding.
They are widely used in speech recognition, where they model audio signals for accurate
transcription. In time-series analysis, RNNs are effective at predicting trends in financial
markets or environmental data. They are also employed in text generation, where their ability
to create coherent sequences makes them valuable for applications such as automated writing
or dialogue systems.

Another key advantage of RNNSs lies in their compact design. This makes them particularly
useful in resource-limited settings, such as embedded systems or real-time applications, where
low computational overhead and continuous data processing are crucial.

Despite the dominance of Transformers in many sequence-processing tasks—thanks to their
scalability and parallelization—RNNSs remain relevant in specialized domains. Their sequential
processing nature is well suited to applications where data arrives incrementally or where
model efficiency is more important than raw performance. Moreover, advancements such as
Long Short-Term Memory networks (LSTMs) [46] and Gated Recurrent Units (GRUs) have
helped overcome some of the traditional limitations of RNNs, further extending their utility in
modern contexts.

64

hidden layer 1 hidden layer 2

Figure 5 - The architecture of an RNN [47]

65

3.3.4 The Transformer Architecture

Introduction to the Transformer

In the realm of deep learning for sequence modeling and transduction tasks, such as machine
translation and language modeling, traditional approaches have long relied on recurrent neural
networks (RNNs) or convolutional neural networks (CNNs) that we mentioned earlier .These
models, while effective, suffer from inherent limitations in parallelization and handling long-
range dependencies due to their sequential nature. The Transformer [8], introduced in 2017,
represents a paradigm shift by avoiding recurrence and convolution entirely, relying solely on
attention mechanisms to process sequences.

The core innovation of the Transformer is its use of self-attention, which allows the model to
weigh the importance of different parts of the input sequence relative to each other, regardless
of their positional distance. This architecture not only enables greater parallelization during
training but also achieves superior performance on benchmark tasks. Experiments on machine
translation datasets, such as WMT 2014 English-to-German and English-to-French,
demonstrated that Transformer models outperform previous state-of-the-art systems, achieving
BLEU scores of 28.4 and 41.8, respectively, with significantly reduced training times [8].

This chapter delves into the architecture, components, and empirical results of the Transformer,
drawing directly from its foundational design. We explore how attention mechanisms form the
backbone of the model, why self-attention offers advantages over traditional layers, and the
training systems that enable its efficiency.

Background and Motivation

Sequence transduction models typically involve an encoder that maps an input sequence to a
continuous representation and a decoder that generates an output sequence from this
representation. Recurrent models, like long short-term memory (LSTM) networks, compute
hidden states sequentially, limiting parallelization and making it challenging to capture long-
range dependencies. Convolutional alternatives, such as ByteNet and ConvS2S, compute
representations in parallel but require stacked layers to connect distant positions, with
computational costs growing with sequence length. Attention mechanisms address these issues
by modeling dependencies without regard to distance, often used in conjunction with RNNs.
Self-attention extends this by relating positions within a single sequence. The Transformer
builds on this, using self-attention exclusively to compute input and output representations,
reducing sequential operations to a constant number and enabling efficient learning of global
dependencies.

Model Architecture

The Transformer follows a standard encoder-decoder structure (which we will explain below)
but replaces recurrent or convolutional layers with stacked self-attention and feed-forward
networks. Both the encoder and decoder consist of six identical layers, with all sub-layers
producing outputs of dimension d,;,4 = 512 to support residual connections.

66

Encoder and Decoder Stacks

The encoder comprises six layers, each with two sub-layers: a multi-head self-attention
mechanism and a position-wise fully connected feed-forward network. Residual connections
and layer normalization are applied around each sub-layer: LayerNorm(x + Sublayer(x)).

The decoder mirrors this but adds a third sub-layer for multi-head attention over the encoder's
output. To maintain auto-regressivity, the decoder's self-attention masks future positions,
ensuring predictions for position i depend only on prior outputs.

The figure below shows how encoder and decoder are structured within the Transformer
architecture.

Output
Probabilities

t

| Softmax)

{

| Linear)

. “
| Add & Norm J=~

Feed
Forward

r

I R | Add & Norm Je=
> Add 8 Norm] Multi-Head

Feed Attention

Forward 2 } Nx
— i’

[LAdd & Norm Je=
Nx | —("Add & Norm) T

'

Masked
Multi-Head Multi-Head
Attention Attention
At 4 At
_ J _ _JJ
Positional Positional
Encodi P & i
ncoding Encoding
Input Output
Embedding Embedding
Inputs Qutputs

(shifted right)

Figure 6 - The Transformer - model architecture.[8]

67

Attention Mechanisms

Attention maps a query and key-value pairs to an output, computed as a weighted sum of
values based on query-key compatibility.

Scaled Dot-Product Attention

The Transformer's attention is "Scaled Dot-Product Attention," (see figure) where queries Q,
keys K, and values V are matrices. The output is:

. QKT
Attention(Q, K, V') = softmax vV

Jax

Scaling by /d}, (where dj, is the key dimension) prevents large dot products from saturating
the softmax. This is faster and more efficient than additive attention for high dimensions.

|

MatMul
A

SoftMax
)
Mask (opt.)
)

Scale

MatMul

t 1

Q K V

Figure 7 - Scaled Dot-Product Attention. [8]

Multi-Head Attention

Instead of one attention function, multi-head attention projects queries, keys, and values h =
8 times into lower dimensions (d; = d,, = 64)(values used in the original “Attention is All
you need paper” [8]), applies attention in parallel, and concatenates results before a final
projection:

MultiHead(Q, K, V) = Concat(head,, ..., head,)W?°

68

where head; = Attention(QW,%, KWX, V).

This allows joint attention to different subspaces, maintaining computational cost similar to

single-head attention.
Attention is applied in three ways:

e Encoder self-attention: Keys, values, and queries from the previous encoder layer.
e Decoder self-attention: Similar, but masked to prevent attending to future positions.

e Encoder-decoder attention: Queries from the decoder, keys and values from the
encoder.

)

Linear
A

Concat

AA

Scaled Dot-Product
Attention

Jt[nl nl

[[[
Linear u Linear u Linear u

Figure 8 - Multi-Head Attention consists of several attention layers running in parallel. [8]

Position-wise Feed-Forward Networks
Each layer includes a feed-forward network applied identically to each position:
FFN(X) = maX(O, le + bl)WZ + b2

With inner dimension dfy = 2048, this adds non-linearity while preserving parallelism.

69

Embeddings and Softmax

Input and output tokens are embedded into d,, 4. -dimensional vectors. The decoder uses a
linear transformation and softmax for next-token probabilities, sharing weights between

embedding layers and the pre-softmax linear layer, scaled by \/ dodel-

Positional Encoding

Since the Transformer architecture does not incorporate any notion of sequential order by
default, positional information must be introduced separately. To incorporate this sequence
order, fixed sinusoidal positional encodings are added to embeddings:

_ pos pos
PE@osaiy = sin (100002i/amode1)' PE@os,2i+1) = €OS (100002i/dmode1)

This allows extrapolation to longer sequences and models relative positions linearly.

Advantages of Self-Attention

Self-attention layers offer key benefits over recurrent and convolutional layers for mapping
sequences:

Layer Type Complexity per Layer | Sequential Operations | Maximum Path Length
Self-Attention 0(n?-d) 0(1) o(1)
Recurrent O(n-d? 0(n) o(n)
Convolutional O(k-n-d? 0(1) 0(logx(n))
Self-Attention (restricted) O(r-n-d) o) o(n/r)

Figure 9 - Efficiency Metrics of different layer types including self-attention. [8]

Self-attention connects all positions with constant operations and path lengths, aiding long-
range dependency learning. It is faster for typical sentence lengths (n < d) and yields
interpretable attention patterns, often aligning with syntactic structures.

Conclusion and Future Directions

The Transformer demonstrates that attention alone suffices for state-of-the-art sequence
transduction, offering parallelization, efficiency, and superior quality. It is used by many state
of the art models like GPT(decoder-only), BERT (encoder-only), BART (encoder and
decoder) and is the basis for LLMs which we will analyze later in this thesis.

70

<ped> <ped>
<S03>: <S0O3>
/
uojuido «. uojuido
Aw - Aw
ul R. “ul

Buissiw - Buissiw

ale ale
am am
jeym 1eym
sI sI
sy} siy}
.
sl 3 Jsnl
oq) -9q

pinoys -+ pjnoys

uoneoydde == uopeoydde
sy 2= SY
ing- nq

<ped> <peds>
<SO3> X <S03>
uoluldo = uojuido
Aw Aw
w——
Buissiw Buissiw
ale \ ale
am am
eym jeym

!

sl

siy} d - sy}
- - =
1snf isnl
o9 \ i
pinoys « p|noys

uoneoldde \ uoneoldde
SH si

" \ ing
1ospad \ 109uad
aq aq
JEVETT SEVETN
nm M

o \ e
ayl 9yl

Figure 10 - Example where 2 heads from the encoder self-attention learned to perform different tasks. [8]

71

4 Natural Language Processing

4.1 Introduction to NLP

The main problem that NLP solves is the understanding of human language. Since computers
understand binary code, communication with computers through human language has been
made possible thanks to NLP [9]. It is a critical bridge between human communication and
computer understanding, empowering machines to interpret, generate, and learn from human
language to perform valuable tasks. It is the driving force behind many of the intelligent
technologies we interact with daily, making our interactions with machines more natural,
efficient, and insightful.

4.2 Definition of Natural Language Processing (NLP)

Natural Language Processing (NLP) is a branch of artificial intelligence (AI) that gives
computers the ability to read, understand, interpret, and generate human language. It combines
computational linguistics with sophisticated statistical, machine learning, and deep learning
models. The primary goal of NLP is to enable computers to process and analyze large volumes
of natural language data, deriving meaningful insights and facilitating seamless interaction
between humans and machines.

In simpler words, NLP is the technology that allows software applications to understand what
we are saying or writing, making sense of its nuances and intent, just as another human would.

4.3 Tokenization

4.3.1 Definition & Importance of Tokenization

Tokenization is one of the most fundamental steps in the Natural Language Processing (NLP)
pipeline. It involves splitting raw text into smaller tokens—such as words, subwords,
characters, or sentences, that serve as the basic units for downstream processing [10], [48].Each
token is a semantic unit that can then be processed, analyzed, or transformed into features for

72

machine learning models. Tokenization not only aids in dissecting unstructured text into
manageable parts but also sets the foundation for the functionality of LLMs.

4.3.2 Types of Tokenization

Different strategies are employed depending on the language and task. Here are the most
common [10]:
Word Tokenization

Most straightforward: splits text by spaces or punctuation. This tokenization type works well
for languages with clear word delimiters like English.

o Example: "Natural Language Processing" — ["Natural", "Language", "Processing"].

Character Tokenization
Breaks text into individual characters.This type of tokenization for misspelling correction,
languages without clear boundaries, or highly compressed vocabularies. However, it creates

vastly longer sequences and loss of higher-level semantic structure [49].

° Example: Hhelloll N ["h", neu’ Hl") Hl") "0"].

Subword Tokenization

Splits words into subunits (smaller than words but larger than characters) often using
algorithms like Byte-Pair Encoding (BPE) [50], WordPiece, or SentencePiece.

o Example: “unhappiness” — ["un", "happi", "ness"] (depending on training)[51].

73

Sentence Tokenization
Segments text into sentences.

o Example: Splitting "This is one sentence. This is another." into two elements.

4.3.3 Importance of Tokenization

Tokenization converts raw text into quantifiable units that algorithms can handle, such
as vocabulary, counts, or embeddings.
It also helps build the vocabulary (a mapping of unique tokens to IDs) which is essential for
both traditional methods like Bag-of-Words and TF-IDF, as well as for modern neural
architectures.
In particular, for Large Language Models (LLMs), tokenization influences many aspects of
performance, from spelling and encoding issues to handling non-English languages effectively.

4.3.4 Challenges & Considerations of Tokenization

Tokenization is a very useful technique and plays a crucial role in LLMs. However, it
faces several challenges. One major issue lies in the ambiguity of languages that lack clear
word separators, such as Chinese, Japanese, or Arabic, which makes segmentation far more
complex.

Another difficulty is handling contractions, special characters, URLs, and symbols, all of which
require careful preprocessing.

Out-of-vocabulary (OOV) words present an additional challenge, often resulting in unknown
token placeholders. This reduces both interpretability and flexibility in models.

Finally, while subword methods help reduce vocabulary size, they can sometimes hinder
generalization—particularly in morphological or low-resource languages. For instance,
SentencePiece has been shown to outperform Byte Pair Encoding (BPE) in some cases because
it better preserves morphological structures [52].

74

4.4 Text Preprocessing Basics

4.4.1 Introduction to Text Preprocessing

Before raw text can be understood by a machine learning model, it must be cleaned and
standardized. This process, known as text preprocessing, transforms unstructured text into a
structured format. Three fundamental techniques in this phase are the handling of stopwords,
stemming, and lemmatization.

4.4.2 Stopwords

In any language, certain words are extremely common but carry little substantive
meaning on their own. These include articles (e.g., "a," "an," "the"), conjunctions (e.g., "and,"
"but," "or"), and prepositions (e.g., "in," "on," "at"). These are called stopwords [11].

The primary goal of removing stopwords is to reduce dimensionality and focus computational
resources on the words that truly contribute to the meaning of a text. By filtering them out, we
decrease the size of our dataset and help highlight the more meaningful terms.

For example, in the sentence "The quick brown fox jumps over the lazy dog," removing
stopwords would yield: ['quick’, 'brown', 'fox', 'jumps', 'lazy', 'dog'].

We should note here that stopword removal is not always beneficial. For tasks like sentiment
analysis or language translation, where context and nuance are critical, these "small" words can

be very important.

4.4.3 Stemming

Stemming [12] is a crude heuristic process that chops off the ends of words to reduce them to
a common base or root form, known as a stem. The stem may not be a valid word in itself. The
algorithm applies a series of rules (e.g., removing "-ing," "-ed," "-s") without any understanding
of the word's context.
The Porter’s Stemmer [53] is a classic and widely used algorithm. Its strength is its simplicity
and speed.

e Example:

"nong "o on:

o "jumps", "jumping", "jumped" — "jump"

nn "non

o "running", "runner",

nn

o "university", "universal" — "univers" (Not a real word)

runs" — "run"

75

Stemming is fast and effective for broad term consolidation, but its error-prone nature can lead
to strange results and a loss of meaning.

Stemming

Changing
Changed — — Chang

Change

Figure 11 - The words "Changing", "Changed" and "Change" and the stem produced from these words [54]

4.4.4 Lemmatization

Lemmatization [13], in contrast, is a more sophisticated and computationally intensive process.
It aims to reduce a word to its canonical form, known as a lemma, which is a valid dictionary
word.
Unlike stemming, lemmatization considers the context and part of speech (e.g., verb, noun) of
a word. It uses a detailed vocabulary and morphological analysis to return the base word [55].
e Example:

o '"better" (adjective) — "good" (The lemma)

o "running" (verb) — "run"

o "meeting" (as a noun) remains "meeting"; as a verb, it becomes "meet".
While more accurate than stemming, lemmatization is slower and requires more linguistic
resources, such as a part-of-speech tagger.

Together, these techniques form a core part of the preprocessing pipeline, enabling models to
work with cleaner, more consistent, and more meaningful textual data.

76

Lemmatization

Changing

Changed Change

Change

Figure 12 - The words "Changing", "Changed" and "Change" and their lemma [56]

4.5 Parts of Speech Tagging

Part-of-Speech (POS) Tagging is the task of labeling words in a sentence with their
grammatical roles (such as noun, verb, adjective, or adverb) based on both meaning and
context. For example, in the sentence “The quick brown fox jumps over the lazy dog,” the
words are tagged as determiner, adjective, noun, verb, and so on. This process is foundational
in Natural Language Processing (NLP) because it provides structure to raw text and supports
higher-level tasks like parsing, machine translation, and question answering [57].

Early methods for POS tagging were simple but paved the way for modern systems. Default
tagging assigns the same tag to every word, often “noun,” and serves only as a baseline. Slightly
more sophisticated are rule-based systems [58], which rely on handcrafted linguistic rules, such
as tagging words ending in -tion as nouns. While interpretable, these systems fail with
unfamiliar language patterns.

A major breakthrough came with statistical and probabilistic methods like Hidden Markov
Models and N-gram taggers . These use training data to estimate the likelihood of tag
sequences, enabling more accurate predictions. Accuracy can reach over 90%, and taggers like

77

CLAWS became widely adopted. To handle unknown words, backoff strategies combine
multiple taggers, falling back to simpler ones when needed.

Today, neural models dominate POS tagging. BiLSTMs [59] and transformers use word
embeddings and contextual representations to achieve state-of-the-art accuracy, often above
97%. These models learn directly from large annotated corpora, reducing the need for hand-
designed rules.

Tag Sets and Standards

POS tagging requires a consistent set of labels. The Penn Treebank tag set is one of the most
widely used in English, offering fine-grained categories like singular noun (NN) or past-tense
verb (VBD) [60]. Meanwhile, the Universal POS tag set provides broader categories (NOUN,
VERB, ADJ, etc.) [61], designed for multilingual NLP. The choice of tag set depends on the
complexity of the language and the level of detail required.

A quick brown fox jumps over a lazy dog

l

[POS Tagging]

l

[A [DT]] [quick (JJ)’ ‘brown [JJ] ‘fox [NN]’ {jumps[VBZ]’

{over [IN]]

a [DT]] lazy | [1J]| |dog|INN]|

Figure 13 - Example of Part-of-Speech (POS) tagging applied to the sentence “A quick brown fox jumps over a lazy dog”.
Each word is annotated with its corresponding POS tag [57]

POS tagging is not just an academic exercise, it strengthens downstream NLP applications by
clarifying sentence structure and improving feature extraction. Even in the deep learning era,
where models can operate on raw embeddings, POS information is still useful for parsing,
information extraction, and text analytics. Combining POS features with neural models often
leads to more robust performance.

To conclude, POS tagging has evolved from default and rule-based systems to probabilistic
models and now to neural networks. Despite these changes, its role remains central:
transforming raw text into structured input for deeper language understanding. The balance
between interpretability and accuracy continues to shape its development, making it both a
historical and modern cornerstone of NLP.

78

4.6 Named Entity Recognition

Named Entity Recognition (NER) is a key task in Natural Language Processing (NLP) that
focuses on identifying and categorizing important elements in text into predefined types such
as people, organizations, locations, dates, quantities, and other proper nouns. It allows
machines to extract meaningful information from unstructured text by pinpointing the most
relevant entities [15], [62]. For instance, in the sentence “Barack Obama was born in Hawaii
in 1961 and later became the President of the United States”’, an NER system would recognize
“Barack Obama” as a person, “Hawaii” as a location, “1961” as a date, and “President of the
United States” as a title or role. Similarly, in “Google announced the launch of its new Pixel
phone in October 2020, “Google” is an organization, “Pixel” is a product, and “October 2020”
is a date.

NER plays a crucial role in various applications such as information extraction, question
answering, knowledge graph construction, and chatbots. Early NER systems relied on rule-
based or dictionary-based approaches, which were limited by their dependence on manually
curated lists [63]. Modern methods predominantly use machine learning and deep learning,
particularly sequence models like Conditional Random Fields (CRFs) or transformer-based
models such as BERT, which consider both the context of words and their relationships within
a sentence [64]. By accurately identifying entities, NER enables NLP systems to structure raw
text into actionable knowledge, making it easier to analyze, summarize, or interact with large
volumes of textual data.

79

4.7 Feature Representation Methods

One of the most fundamental aspects of Natural Language Processing (NLP) is how textual
data is represented in a way that computational models can process effectively. Since raw text
cannot be directly interpreted by algorithms, it must be transformed into structured numerical
representations known as features. The quality and suitability of these representations play a
crucial role in determining the performance of downstream NLP tasks such as text
classification, machine translation, and sentiment analysis.

Over time, a variety of feature representation methods have been developed, ranging from
traditional statistical approaches like bag-of-words and TF-IDF to more sophisticated
distributed representations such as word embeddings and contextualized vector models. Each
method captures different aspects of language, such as frequency, semantics, or context, and
thus offers distinct advantages and limitations.

This chapter provides an overview of the most widely used feature representation methods in
NLP, outlining their underlying principles, strengths, and application areas.

4.7.1 One-Hot Encoding

One-Hot Encoding transforms a categorical feature into multiple binary (0/1) features—one
for each unique category. Precisely one column per category contains a 1 (the “hot” bit), all
others are 0 [17], [65].

This method ensures that algorithms interpret categories without implying any ordinal
relationship. For example, encoding colors or fruit types avoids mistakenly suggesting that
“Apple > Orange” simply because of numeric label assignment [66].

Below is an example of how we would categorize data using One-Hot-encoding.

80

Fruit Categorical value of Price

fruit
apple 1 5
mango 2 10
apple 1 15
orange 3 20

Figure 14 - Initial Dataset with Integer Encoded Categorical Feature. [66]

Fruit_apple Fruit_mango Fruit_orange price
1 0 0 5
0 1 0 10
1 0 0 15
0 0 1 20

Figure 15 - Dataset from figure 9 Transformed via One-Hot Encoding. [66]

4.7.2 Bag of Words

A fundamental challenge in Natural Language Processing (NLP) and machine learning is the
representation of textual data in a form recognizable to computational algorithms, which
typically require fixed-length numerical input vectors. The Bag-of-Words (BoW) model is a
simple, yet powerful, feature extraction technique that addresses this challenge by quantifying
text based on word frequency.

The model operates on a core premise: it represents a document as a multiset (a "bag") of its
words, disregarding all information pertaining to grammar, syntax, and word order . The
representation is solely concerned with the occurrence and frequency of words within the

81

document. This simplification allows for a high-dimensional feature space where each unique
word in the corpus vocabulary constitutes a separate dimension [19].

The formal construction of a BoW representation involves a two-step process [20]:
1. Vocabulary Generation: Given a corpus of documents D = {d,d>,..., d,}, a unified
vocabulary V is constructed. This vocabulary is the set of all unique words (or tokens)
found across the entire corpus after common preprocessing steps such as lowercasing and
removal of punctuation.

Let V = {w;,w,,...,w,,} be the vocabulary of size m.

2. Vectorization: Each document d; in the corpus is then encoded as a numerical
feature vector v; of length m. The value of each element in the vector corresponds to the
frequency (count) of the corresponding word from V' within the document d;.

Thus, v; = (count(wy, d;),count(w,, d,), ...,count(w,,, d;)).

Example

Consider a minimal corpus C comprising two document sentences:
e d;: "The movie was good good good!"
e d,: "The movie was bad."

The application of the BoW model proceeds as follows:

4. Vocabulary Construction (V): After lowercasing and removing punctuation, the
unique words form the vocabulary: V' = {the,movie,was,good,bad}, with m = 5.

5. Frequency Vectorization: Each document is mapped onto the 5-dimensional feature
space defined by V.
e For di: The word "good" appears three times. The resulting vector is: v; =
(1,1,1,3,0)
e For d,: The resulting vector is: v, = (1,1,1,0,1)
This transformation yields a term-document matrix A, where rows represent documents and
columns represent terms (words):

Document | the | movie | was | good | bad
d, I |1 1 3 0
d, 1 |1 1 0 1

Figure 16 - Bag of Words implementation results matrix.

82

Applications and Limitations

The BoW model serves as a cornerstone for numerous NLP tasks, including document
classification, topic modeling, and information retrieval. Its efficacy stems from its ability to
capture lexical statistics that are often strong indicators of document content and sentiment
(e.g., a high frequency of "good" versus "bad").

However, the model's simplicity introduces significant limitations [20]:

e Loss of Semantic Structure: By discarding word order and syntactic context, the
model fails to capture meaning derived from phrasing and grammar. For instance, the
phrases "not bad" and "not good" would be decomposed into identical constituent
words, leading to similar vector representations despite their opposing sentiments.

¢ High Dimensionality: The vocabulary size m can be very large, leading to sparse,
high-dimensional vectors that pose computational challenges.

e Vocabulary Sensitivity: The model's performance is highly dependent on the
comprehensiveness and cleanliness of the vocabulary V.

Despite these limitations, the Bag-of-Words model remains a critical baseline and a
computationally efficient method for initial feature extraction in text mining workflows.
Subsequent techniques, such as TF-IDF weighting and N-grams, are often employed to
enhance its basic formulation. We will discuss these techniques in the following sections.

4.7.3 N-gram

A primary limitation of the standard Bag-of-Words (BoW) model is its failure to capture any
sequential information or syntactic structure within text, treating a document as an unordered
collection of words. The N-gram model extends the BoW paradigm to address this shortcoming
by incorporating local word order into the feature representation.

An N-gram is defined as a contiguous sequence of N items (typically words) from a given text
sample. The value N defines the scope of the context window the model considers:

e A Unigram (1-gram) is a single word, which is equivalent to the standard BoW model.
e A Bigram (2-gram) is a sequence of two adjacent words (e.g., "was good").
e A Trigram (3-gram) is a sequence of three adjacent words (e.g., "the movie was")[67].

By considering these contiguous sequences as individual tokens, the N-gram model can capture

limited local context, phrases, and common expressions, thereby enriching the feature set
beyond isolated terms [68].

83

Model Construction
The construction of an N-gram feature space follows a similar procedure to the standard BoW,
with a critical difference in the definition of the vocabulary.

1. N-gram Vocabulary Generation: Given a corpus D, the vocabulary Vy is constructed
from all unique contiguous N-gram sequences found within the corpus. For a bigram
model (N=2), the vocabulary consists of all unique two-word pairs.

o LetVy ={9g1,92 ---,91} be the N-gram vocabulary of size k.

2. Vectorization: Each document d; is encoded as a numerical feature vector v; of length
k. The value of each element corresponds to the frequency of the corresponding N-
gram from Vy within the document d;.

e Thus, v; = (count(g4, d;),count(g,,d;),...,count(gy, d;)).

This results in a significantly larger and more sparse term-document matrix compared to the
unigram BoW, as the number of possible N-grams grows combinatorially with N.

Example

Consider the same minimal corpus C:
e d;: "The movie was good good good!"
e d,: "The movie was bad."

The application of a Bigram (N=2) model proceeds as follows:
1. Bigram Vocabulary Construction (V;): The unique bigrams from both documents
are extracted to form the vocabulary.
e From d;: "the movie", "movie was", "was good", "good good", "good good"
(duplicate).
e From d,: "the movie", "movie was", "was bad".
e The unique bigram vocabulary is: V, =
{the movie,movie was,was good,good good,was bad}, with k = 5.
2. Frequency Vectorization: Each document is mapped onto this 5-dimensional bigram
feature space.
e For d;: The bigram "good good" appears twice. The resulting vector is: v; =
(1,1,1,2,0)

e For d,: The resulting vector is: v, = (1,1,0,0,1)

This yields the following bigram term-document matrix:

Document | the movie | movie was | was good | good good | was bad
d, 1 1 1 2 0

84

Document

the movie

movie was

was good

good good

was bad

da

1

1

0

0

1

Figure 17 - Bigram implementation results matrix.

Applications and Limitations
N-gram models are a powerful enhancement to text representation and are widely used in [69]:

e Statistical Language Modeling: For predicting the next word in a sequence, which is
fundamental in speech recognition and machine translation.

e Text Classification: Capturing phrases (e.g., "not good" vs. "very good") can
significantly improve sentiment analysis and topic classification accuracy over
unigrams.

¢ Information Retrieval: Improving search relevance by matching multi-word queries
to document phrases.

Despite its utility, t he N-gram model introduces significant challenges that must be
acknowledged. The number of potential features grows exponentially as N increases, leading
to an explosion in the dimensionality of the feature space. This exponential growth results in
extreme data sparsity, a manifestation of the so-called "curse of dimensionality," and imposes
severe computational overhead for both model training and feature storage. A direct
consequence of this sparsity is the problem of unseen events, where many linguistically
plausible N-grams are absent from the training corpus. This necessitates the use of specialized
techniques, such as smoothing, to assign non-zero probabilities to these unseen sequences in
language modeling tasks. Furthermore, while the model represents a substantial improvement
over a simple Bag-of-Words by capturing local context, its fundamental limitation remains a
fixed context window. The context captured is strictly limited to N contiguous words, meaning
long-range linguistic dependencies cannot be captured without employing prohibitively large
and impractical values of N.

In conclusion, the N-gram model provides a crucial middle ground between the simplicity of a
Bag-of-Words and the complexity of modern deep learning models, allowing for the
incorporation of local context at a manageable computational cost for many practical
applications [69].

85

N-grams by NLP

this,
N=1 :|This|is|/all Sentence | unigrams: -
sentence
[”_H I RN estill - this is,
N=2 :|This|is|a| Sentence | bigrams: *>

— | S
This |is|a| Sentence | trigrams: thisfss.

3

is a sentence,

Figure 18 - Implementation of unigram, bigram, and trigram on the same sentence [69]

4.7.4 Term Frequency-Inverse Document Frequency (TF-
IDF)

A significant limitation of both the standard Bag-of~-Words and N-gram models is their reliance
on raw term frequency (TF). These approaches assign higher weight to terms that appear more
frequently, under the assumption that frequent terms are more important. However, this
assumption is flawed, as the most frequent terms in a language (e.g., "the", "is", "of")—known
as stop words—are often the least informative. The Term Frequency-Inverse Document

86

Frequency (TF-IDF) weighting scheme addresses this issue by refining the concept of term
importance.

TF-IDF is a statistical measure that evaluates the importance of a word to a document within a
collection (corpus). The core intuition is that a term is important to a specific document if it
appears frequently within that document (high term frequency) but rarely across all other
documents in the corpus (high inverse document frequency). This combination effectively
discounts the weight of common words that appear in many documents and boosts the weight
of terms that are unique and discriminative.

The TF-IDF weight for a term t in a document d, belonging to a corpus D, is the product of
two components [23]:

1. Term Frequency (TF): This measures how frequently a term occurs in a document. It
is often normalized (e.g., by the document length) to prevent a bias towards longer

documents. A common normalization is:

countof t in d

tf(t, d) = -
(¢, d) total number of terms in d

2. Inverse Document Frequency (IDF): This measures how much information the word
provides, i.e., whether it is common or rare across all documents. It is calculated as the
logarithm of the inverse proportion of documents that contain the term:

idf(e, D) = log T b

where N is the total number of documents in the corpus D, and |{d € D:t € d}| is the
number of documents containing the term ¢.

The final TF-IDF score is the product of these two factors:
tf-idf(t, d, D) = tf(t, d) x idf(t, D)

Each document is subsequently represented as a vector of these TF-IDF scores for every term
in the vocabulary, rather than raw counts.

Example
Consider a corpus D containing three documents:
e d;: "the movie was good good good"
e d,: "the movie was bad"
e d5: "the book was good"
We will calculate the TF-IDF weight for the word "good" in document d; .

87

1. Term Frequency (TF) for "good" in d;:
e Raw count =3
e Totaltermsind; =6
o tf("good",d;) =3/6 =0.5
2. Inverse Document Frequency (IDF) for "good'":
e Total documents N = 3
e Number of documents containing "good": |{d;,d3}| = 2
e idf("good",D) =log(3/2) =log(1.5) = 0.176
3. TF-IDF Calculation:
o tf-idf("good",d;,D) = 0.5 X 0.176 = 0.088

For comparison, the IDF for a very common word like "the" (which appears in all 3 documents)
would be log(3/3) = log(1) = 0, resulting in a TF-IDF weight of zero, effectively filtering it
out. Conversely, a rare word like "bad" (which appears in only 1 document) would have a much
higher IDF value of log(3/1) = log(3) = 0.477, increasing its relative importance in the
document where it appears.

Applications and Limitations
TF-IDF [70] is one of the most ubiquitous weighting schemes in information retrieval and text
mining. Its primary applications include:

e Information Retrieval and Search Engines: It is the foundational algorithm for
ranking search engine results. Documents are ranked by the cosine similarity between
their TF-IDF vectors and the TF-IDF vector of the search query, effectively returning
documents that contain the query's most discriminative terms at high frequency.

e Text Classification and Clustering: By representing documents as TF-IDF vectors,
machine learning algorithms can more effectively identify patterns based on salient
keywords rather than common but meaningless words.

e Keyword Extraction: The terms with the highest TF-IDF scores within a document
are often strong candidates for being its key keywords or topics.

However, the TF-IDF model is not without its limitations. Firstly, it remains a bag-of-words
model and, as such, inherently disregards word order, semantic meaning, and context in the
same way as the standard BoW model. Phrases and syntactic relationships are lost. Secondly,
the IDF component is based on a simple document frequency count and does not truly capture
the semantic importance of a term; a rare word is not necessarily meaningful. Furthermore, the
standard TF-IDF formulation does not account for the specific positions of terms within a
document, potentially missing the significance of words appearing in titles or abstracts. Despite
these limitations, its computational efficiency, interpretability, and proven effectiveness ensure
its continued relevance as a powerful feature extraction technique and a strong baseline for text
representation tasks.

88

4.7.5 Word Embeddings

4.7.5.1 Introduction to Word Embeddings

In natural language processing (NLP), one of the central challenges lies in representing textual
data in a way that can be effectively processed by computational models. Traditional methods
which we mentioned earlier, such as the bag-of-words or term frequency—inverse document
frequency (TF-IDF), treat words as independent and discrete symbols. While these approaches
capture statistical information about word occurrence, they fail to represent semantic
relationships, contextual similarity, or syntactic structure. This limitation makes it difficult for
algorithms to generalize meaning across different but related terms.

Word embeddings [71] were introduced as a powerful solution to this problem. They are vector
representations of words in a continuous, high-dimensional space, where semantic similarity
between words is reflected in geometric proximity [24]. For example, the vectors for “king”
and “queen” will be closer to each other than to unrelated words such as “table” or “car.” This
property allows machine learning models to exploit semantic regularities in language and
improves performance across a wide range of tasks, including sentiment analysis, machine
translation, and information retrieval.

4.7.5.2 Word2Vec

Word2Vec is a technique in natural language processing (NLP) used to represent words
as numerical vectors (embeddings) in such a way that words with similar meanings are placed
close to each other in a high-dimensional space. It was introduced by Mikolov et al. (2013)
[72] and has become one of the foundational methods for learning word embeddings.

The main idea behind Word2Vec is that the meaning of a word can be inferred from
the company it keeps. For example, words like “king” and “queen’ often appear in similar
contexts, so their vector representations should also be close.

89

Instead of representing words as one-hot vectors (which are sparse and do not capture
meaning), Word2Vec learns dense, low-dimensional representations that encode semantic
and syntactic relationships.

The work of Mikolov et al. (2013) [72] at Google introduced two highly efficient and influential
neural network architectures for learning high-quality word embeddings: the Continuous Bag-
of-Words (CBOW) model and the Skip-gram model. While both share the core objective of
learning useful vector representations, they approach the learning task from converse
perspectives, each with distinct strengths and weaknesses.

4.7.5.2.1 The Continuous Bag-of-Words (CBOW) Model

The way that the Continuous Bag-of-Words model [72] operates is, given a context
window surrounding a target word, it aims to predict the target word itself. For a given sequence
of words, the model uses the surrounding context words (e.g., the *n* words to the left and
right) as input to predict the center word.

Architecturally, the CBOW model consists of an input layer, a single projection layer, and an
output layer. The context words are represented as one-hot vectors and fed into the network.
Their vectors are then averaged (or summed) in the projection layer to form a single, aggregated
context vector. This aggregated vector is subsequently used to compute a probability
distribution over the entire vocabulary, attempting to maximize the probability of the actual
target word. The training objective is to minimize the loss between the predicted word and the
true center word.

The primary advantage of the CBOW model is its efficiency. By averaging the context vectors,
it smoothes over the individual contributions of each context word, making it robust and
particularly fast to train. This characteristic often makes CBOW perform well on smaller
datasets and for more frequent words, as it effectively leverages the combined information from
the entire context. However, this averaging process can also be a limitation, as the model may
lose the distinct information contributed by less frequent but potentially important context
words.

4.7.5.2.2 The Skip-gram Model

In contrast to CBOW, the Skip-gram model [72] inverts the predictive task. Instead of

predicting a target from its context, Skip-gram uses a central target word to predict its
surrounding context words. For a given center word, the model seeks to predict each of the
words within a defined context window.
The architecture of Skip-gram is similar to CBOW but is used in reverse. The input is the one-
hot vector of the center word, and the output layer is designed to produce multiple outputs—
one for each context word position to be predicted. The model learns a vector representation
for the center word that is useful for predicting its likely context.

90

The key strength of the Skip-gram model lies in its effectiveness with infrequent words and its
ability to capture more nuanced representations of word relationships. Because it makes
multiple predictions from a single input word, it treats each context word as a separate learning
example. This provides more training signals for each word-context pair, allowing it to learn
better representations for rare words. It often produces embeddings that perform exceptionally
well on semantic tasks, such as word analogy tests (e.g., "man is to king as woman is to queen").
A noted trade-off is that Skip-gram typically requires more training time and a larger corpus to
achieve its full potential compared to CBOW, due to its larger number of training examples
per data point.

INPUT PROJECTION OUTPUT INPUT PROJECTION OUTPUT

W(t-2) W(t-2)
Wit1) SUM SUM W(t-1)
— Wi(t) W(t)| rm— —
Wit+1) W(tt1)
W(t+2) W(t+2)
(A) (B)

Figure 19 - CBOW architecture (left) and Skip-Gram architecture (vight) [73]

Using the above architecture (Word2Vec) we are now able to capture the semantic meaning
of the words in the vector instead of just the frequency in which they appear.

4.7.5.3 Word Embedding Similarity Calculation Methods

Word embeddings transform text into continuous vectors, enabling the computation of
similarity between words via geometric and algebraic operations in embedding space. Below
are mentioned three principal methods for measuring similarity between embedding

vectors: Euclidean Distance, Cosine Similarity, and the Dot Product.

Similarity Measures [74]

91

Let A = [a4,ay, ...,a,] and B = [by, b, ..., b,,] denote two word embedding vectors.

1. Euclidean Distance
Also referred to as the L2 norm, Euclidean distance measures the straight-line distance

between the two vectors:
n
Z(a; — b;)?
i=1

A smaller Euclidean distance indicates greater similarity. However, as similarity increases,
the value of the distance measure decreases.

Euclidean distance(A, B) =

2. Cosine Similarity
Cosine similarity assesses the cosine of the angle between two vectors, emphasizing their
orientation rather than magnitude:

A"B

Cosine similarity(A, B) = TAT-IBI

Here, similarity increases as the cosine value approaches 1, indicating vectors that point in
similar directions.

3. Dot Product
The dot product directly gauges both the alignment and the magnitudes of the vectors:

Dot product(A, B) = ATB =|| A [|-Il B [I- cos(8)

A higher dot product indicates greater similarity; it increases with both larger magnitudes and

greater directional alignment.

92

5 Generative Al

5.1 Introduction to generative Al

Generative Artificial Intelligence (Generative Al) refers to a class of machine learning models
capable of creating new and original content, such as text, images, music, or code, by learning
patterns from large datasets. Unlike traditional Al systems, which are primarily designed to
analyze data and make predictions, generative models synthesize novel outputs that resemble
human-created artifacts. This technology is most prominently represented by deep learning
architectures such as Generative Adversarial Networks (GANs) and Transformer-based
models, which have enabled significant breakthroughs in natural language processing,
computer vision, and creative industries. Generative Al not only demonstrates the rapid
advancement of computational intelligence but also raises important questions regarding ethics,
authorship, and the future of human—machine collaboration.

In this chapter we will analyze Generative Al and more specifically LLMs which are the main
tool we use in the application that we built for this diploma thesis.

5.2 Large Language Models (LLMs)

In previous chapters, we deconstructed the transformer architecture, understanding the
mechanics of self-attention in encoders and the autoregressive generation in decoders. We now
arrive at the end goal of discussing these concepts: the Large Language Model (LLM). An
LLM is not a new fundamental architecture but rather a specific implementation and scaling of
the decoder-only or encoder-decoder transformer models. The key differentiator, as the name
implies, is scale: scale of parameters, scale of training data, and scale of computational
resources. This chapter explores what defines an LLM, how they are built, how they are aligned
with human intent, and their inherent capabilities and limitations.

The Core Ingredients of an LLM

While a standard transformer model [8] from the early days might have had tens or hundreds
of millions of parameters, an LLM has billions (B) or even trillions (T) of parameters. This
scaling is not merely incremental; it leads to emergent abilities unpredictable from smaller
models. The creation of an LLM hinges on three pillars:

1. Architecture: Most modern LLMs, such as GPT-4 , LLaMA [75], and PaLM, use a
decoder-only transformer architecture. This choice is driven by the success of
autoregressive modeling for text generation. The model predicts the next token in a
sequence, making it perfectly suited for tasks like conversation, story writing, and code

93

completion. The encoder-decoder architecture is still prevalent for specific tasks like
translation (e.g., Google's TS frames all tasks as a text-to-text problem).

Dataset: The training data is colossal, encompassing trillions of tokens sourced from a
diverse corpus of filtered web text, books, articles, code repositories, and more. The
quality, diversity, and cleanliness of this data are very important. A key concept here is
the "token," which for most LLMs is a sub-word unit (using algorithms like Byte-Pair
Encoding - BPE), allowing them to handle a vast vocabulary efficiently.

Training: The training process [76] is a monumental undertaking in compute. It
involves:

o Pre-training [77]: This is the initial, incredibly resource-intensive phase where
the model learns the fundamental statistics of language. Using a self-supervised
objective, typically next-token prediction or a masked language modeling
objective, the model builds a rich, internal representation of grammar, facts,
reasoning patterns, and even stylistic elements present in the data. This phase
establishes the model's "world knowledge" but does not make it directly useful
or safe for user interaction.

o Fine-Tuning (Post-Training): The raw, pre-trained model is a powerful next-
token predictor but is not yet an helpful, harmless, and honest assistant. This is
where fine-tuning [78], particularly a technique called Instruction Tuning,
comes in. The model is further trained on a curated dataset of (prompt, response)
pairs that demonstrate desired behaviors—following instructions, answering
questions helpfully, refusing harmful requests, and adopting a consistent
persona.

A raw pre-trained LLM can complete the prompt "The best way to steal a car is..." with
technically accurate but harmful information. The goal of alignment is to ensure the model's

outputs are helpful, safe, and aligned with human values. The primary technique for this is
Reinforcement Learning from Human Feedback (RLHF), popularized by OpenAl.
RLHF [79]is a multi-stage process:

1.

Supervised Fine-Tuning (SFT): A dataset of high-quality human demonstrations (ideal
responses to prompts) is used to fine-tune the pre-trained model, teaching it a basic style
of interaction.

Reward Model Training: Human labelers rank multiple outputs from the SFT model for
a given prompt from best to worst. This data is used to train a separate reward model
that learns to predict which output a human would prefer.

Reinforcement Learning (PPO): The SFT model becomes an "agent" that generates
responses. The reward model provides a "reward" score for each generated response.
Using a reinforcement learning algorithm (like Proximal Policy Optimization - PPO
[80]), the LLM's parameters are updated to maximize this reward, thus optimizing its
outputs for human preference without needing continuous human input.

The scale of LLMs unlocks capabilities not seen in smaller models:

In-Context Learning (ICL): An LLM can perform a task from just a few examples
provided in the prompt (few-shot) or even from a single example (one-shot) without

94

any weight updates. This is a form of meta-learning arising from the model's vast pre-
training.

Instruction Following: The ability to understand and execute complex, multi-step
instructions presented in natural language.

Chain-of-Thought (CoT) Reasoning [32]: When prompted to "think step-by-step,"
LLMs can break down complex problems (e.g., math word problems) into intermediate
steps, significantly improving reasoning performance.

Code Generation and Comprehension: Trained on vast codebases, LLMs like Codex
[81] (powering GitHub Copilot) can generate, explain, and debug code across numerous
programming languages.

Despite their power, LLMs have fundamental limitations [82] :

Hallucination: LLMs are proficient generators of statistically plausible text, not arbiters
of truth. They can confidently generate false or nonsensical information, a phenomenon
known as "hallucination" [83] .

Lack of True Understanding: They operate on patterns in data, not on a grounded,
embodied understanding of the world. Their knowledge is static, limited to their
training cut-off date. We can fight this limitation, as well as the above by enriching the
prompt using RAG which is the final part of this diploma thesis. We will analyze this
concept thoroughly in later chapters.

Bias and Toxicity: They can reflect and amplify societal biases present in their training
data. Despite extensive efforts in alignment, mitigating all bias remains an open
challenge.

Computational Cost: The inference cost of running a single query for a large model is
significant, creating barriers to widespread deployment and raising environmental
concerns.

Large Language Models represent a paradigm shift in artificial intelligence. By scaling the
transformer architecture to unprecedented sizes and aligning it with sophisticated human
feedback, we have created tools that are not just processing language but are, in a functional
sense, interacting with it in a way that is profoundly useful. They are the foundational engines

powering the current revolution in generative Al. However, they are not sentient nor

omniscient; they are complex statistical models whose strengths must be leveraged with a clear-
eyed understanding of their weaknesses. In the next chapter, we will explore the practical
applications and ecosystem that has blossomed around these powerful models.

95

5.3 Chatbots History

In this chapter, we provide an overview of the historical progression of chatbots, tracing how
they have developed over time. We categorize different types of chatbots, with particular
attention to the changing approaches to response generation. We also consider both the
strengths and limitations of chatbot systems.

In 1950, Alan Turing introduced the Turing Test [84] as a method for assessing machine
intelligence. The test involves a human evaluator communicating via text with both a person
and a computer, without knowing which is which. If the evaluator cannot reliably tell them
apart, the machine is considered to have demonstrated intelligence.

The first widely recognized chatbot, Eliza, was developed by Joseph Weizenbaum in 1966 [85].
Eliza simulated a psychotherapist by using simple pattern-matching rules and predefined
responses. Although limited in capability, it created the illusion of meaningful conversation
and quickly gained public attention. In 1971, “Artificial Paranoia” was created by Colby and
colleagues [86]. Designed to imitate a patient with schizophrenia, it generated responses based
on assumptions and emotional triggers derived from user input. While more sophisticated than
Eliza, its language comprehension remained restricted.

In 1995, Alice was introduced by Richard Wallace [87]. Unlike its predecessors, Alice used
the Artificial Intelligence Markup Language (AIML) and drew upon a knowledge base of over
41,000 templates. Considered one of the most advanced chatbots of its era, Alice could discuss
a wide variety of topics and won the Loebner Prize in 2000, 2001, and 2004.

A major shift came with the appearance of intelligent voice assistants such as Apple’s Siri,
Microsoft’s Cortana, Amazon’s Alexa, Google Assistant, and IBM’s Watson. These systems
were capable of processing spoken commands to complete tasks such as sending text messages,
organizing schedules, and managing smart home devices.

In recent years, progress in natural language processing (NLP) has enabled the emergence of
more advanced conversational agents. A notable example is ChatGPT, released by OpenAl in
2022. Unlike earlier systems, it leverages the transformer architecture [8] (discussed in
previous chapters), allowing it to interpret context and perform a wide array of tasks, including
programming, creative writing, and customer service.

The development of chatbots for Greek has been slower due to fewer available resources
compared to English. However, researchers from Institute of Language and Speech Processing
have recently developed “Meltemi” [88] and “Kri-kri” [89] which are fine-tuned versions of
the LLMs “Mistral” [90] and “LLama” [91] respectively.

96

5.4 End-User Access to Large Language Models

The development of large language models (LLMs) is a highly resource-intensive process,
requiring significant computational power and financial investment. Creating these models
demands substantial infrastructure, as does the fine-tuning process necessary to enable
effective conversational interactions with humans, which relies on high-performance GPUs.
Consequently, the creation and refinement of sophisticated LLMs are predominantly
undertaken by large organizations with the financial capacity to support such computationally
demanding tasks. These organizations play a pivotal role in shaping the accessibility and
deployment of LLMs, which can be broadly categorized into open source and closed source
models, each with distinct approaches to serving the population.

5.4.1 Open Source LLMs

Open source LLMs, such as Meta AI’s LLaMA series [91] (for research purposes), Mistral
[90], or Falcon [92], are publicly available, with their architectures, weights, and sometimes
training datasets accessible to developers, researchers, and enthusiasts. These models are
typically hosted on platforms like GitHub or Hugging Face, allowing users with sufficient
hardware, such as consumer-grade GPUs or cloud computing services (e.g., AWS, Google
Cloud, or Azure), to download and deploy them. This open approach fosters a collaborative
ecosystem, enabling individuals, startups, and academic researchers to build customized
solutions, such as niche chatbots or industry-specific applications (like ours). The transparency
of open source LLMs promotes scrutiny of their behavior, encouraging community-driven
innovation. However, running these models requires technical expertise and computational
resources, which can be a barrier for some users. Additionally, the cost of hardware or cloud
services for inference and fine-tuning may be prohibitive, and ethical concerns about potential
misuse necessitate responsible use guidelines.

5.4.2 Closed-source LLMs

In contrast to open source LLMs, closed source LLMs, such as OpenAl’s ChatGPT,
Anthropic’s Claude, or xAI’s Grok, are proprietary, with their architectures and training
processes kept confidential. These models are primarily offered as services through APIs (e.g.,
OpenAl’s API or xAI’s API for Grok) or user-facing applications, such as web interfaces (e.g.,
grok.com, chatgpt.com) or mobile apps. Access is often provided through subscription plans,
pay-per-use models, or free tiers with limited quotas. Especially the creation of APIs enables
developers to integrate LLMs into applications, take advantage of this advanced technology
and create useful applications. Closed source LLMs prioritize ease of use, requiring minimal
technical expertise, and are hosted on robust infrastructure to ensure scalability and reliability.
They often incorporate safety mechanisms to mitigate harmful outputs. However, their
proprietary nature limits transparency, making it challenging to address biases or understand
their inner workings. Access costs, such as subscriptions for premium features, may exclude

97

some users, and reliance on a single provider can create dependency and raise data privacy
concerns.

5.5 Prompt Engineering

Prompt engineering may be defined as the methodological process of formulating precise
instructions that enable the effective adaptation and operation of a large language model (LLM)
[93]. In order to contextualize this process, it is necessary to examine the typical structure of
inputs provided to an LLM in conversational applications. Such inputs are generally organized
into a sequence of messages, each of which is assigned a distinct role [94] [95]. The most
fundamental message types are the following:

o System Message: This message establishes the directions and constraints that the
model must adhere to throughout the entire interaction.

o User Message: This message represents the contribution or query introduced by the
human participant engaging with the model.

o Assistant Message: This message corresponds to the response produced by the model
in accordance with the preceding instructions and user input.

Prompt Engineering Techniques
1. Zero-Shot Prompting

Zero-shot prompting [29] represents the most fundamental interaction with a large language
model (LLM), wherein a task is presented without any prior examples or demonstrations of
desired behavior. The model is expected to rely solely on its pre-trained knowledge and
inherent reasoning capabilities to interpret the instruction and generate an appropriate response.
This technique is predicated on the model's ability to perform internal task recognition and
generalization. Its primary advantage lies in its simplicity and efficiency, as it requires minimal
effort from the user. However, its efficacy is limited to well-defined and common tasks where
the model's training data provides a strong foundation. For complex, multi-step, or highly
nuanced tasks, zero-shot prompting is prone to failure, as the model may make incorrect
assumptions about the format, depth, or context of the required output, leading to inaccuracies
or oversimplifications.

98

2. One-Shot Prompting

One-shot prompting [30] extends the zero-shot approach by including a single illustrative
example within the prompt. This example consists of an input and its corresponding desired
output, serving as a concrete demonstration of the task for the model to emulate. The
mechanism functions by providing a contextual anchor that guides the model's response
generation towards a specific format, style, or structural pattern. This technique is particularly
advantageous for tasks that require a defined schema but are not overly complex, effectively
bridging the gap between the ambiguity of zero-shot and the resource intensity of few-shot
prompting. A significant limitation is that a solitary example may be insufficient to
communicate all necessary task constraints or to cover potential edge cases, which can result
in inconsistent performance when novel inputs deviate from the provided example.

3. Few-Shot Prompting

Few-shot prompting is a powerful and widely adopted technique that involves providing the
model with multiple examples of a task within the prompt context. By presenting several input-
output pairs, the model is conditioned to identify and replicate the underlying pattern, reasoning
strategy, or stylistic conventions demonstrated. This method was comprehensively
demonstrated by Brown et al. [96] in their seminal work, which showed that scaling up model
parameters dramatically improved their ability to perform in-context learning from these
examples. It is highly effective for complex tasks such as classification with numerous
categories, sophisticated text transformation, or applications requiring a specific tonal register.
The principal strength of few-shot prompting is its demonstrable ability to significantly
enhance model performance and output reliability across a diverse range of challenges. The
primary drawback is its increased consumption of context window tokens, which raises
computational costs and can become a limiting factor in extended interactions. Furthermore,
the selection of optimal examples is non-trivial and often requires an iterative, empirical
process.

4. Negative Prompting

Negative prompting [31] is a technique wherein the user explicitly specifies elements, styles,
or types of information that must be excluded from the model's output. While prominently
featured in text-to-image generation models to prevent unwanted visual artifacts, it is equally
critical in text-based LLMs for content control and refinement. The technique operates by
instructing the model to avoid certain pathways or associations during its generation process.
It is exceptionally well-suited for mitigating biases, preventing the inclusion of sensitive or
irrelevant information, and steering the model away from common clichés or generic
responses. The effectiveness of negative prompting can be compromised if the instructions
conflict with the core objective stated in the primary prompt or if the model's prior biases are
exceptionally strong.

99

5. Iterative Prompting

Iterative prompting is best understood not as a discrete technique but as a meta-strategy or
development process. It entails a cyclical methodology of crafting an initial prompt, evaluating
the generated output, diagnosing its shortcomings, and refining the prompt accordingly. This
process is repeated until the output meets the desired standard of quality and precision. This
approach is indispensable for complex, real-world applications where the ideal output is
difficult to specify axiomatically in a single attempt. It embodies the pragmatic principle that
effective prompt engineering is a collaborative dialogue between the human and the model.
The main limitation of this approach is its inherent time consumption and its dependency on
the user's analytical skill to correctly identify the reasons for suboptimal outputs.

6. Prompt Chaining

Prompt chaining [97] is an advanced engineering strategy that deconstructs a single, intricate
task into a sequence of smaller, more manageable subtasks. The output from each prompt in
the sequence is utilized as a foundational input for the subsequent prompt, creating a coherent
pipeline. This technique is designed to manage complexity by reducing the cognitive load on
the model at any single step, thereby minimizing compound errors and enhancing the overall
accuracy and coherence of the final output. It is ideally employed for sophisticated reasoning
tasks, multi-document analysis, and the generation of long-form, structured content. The
significant disadvantage of prompt chaining is the requirement for external orchestration,
typically through programming code, to manage the flow of information between steps, which
increases the technical barrier to implementation.

7. Chain-of-Thought (CoT) Prompting

Chain-of-Thought (CoT) prompting is a specialized variant of few-shot prompting specifically
designed to elicit explicit, step-by-step reasoning from the model. The provided examples
within the prompt include a detailed rationale that leads to the final answer, instructing the
model to emulate this explanatory process. This technique is profoundly effective for arithmetic
problems, logical deductions, and other complex reasoning tasks where the final answer is less
valuable without an understanding of its derivation. This method was formalized by Wei et al.
(2022) [98] and has been shown to significantly improve performance on complex reasoning
benchmarks. CoT prompting works by unlocking the model's latent ability to perform
structured reasoning, a capability often obscured by standard prompting techniques. A notable
extension, "Zero-Shot CoT," where the simple instruction "Let's think step by step" is appended
to a prompt, has also proven remarkably effective. There are also extensions of this method
like Tree of Thoughts prompting [99] and Graph of Thoughts [100]. The main limitation is the

100

necessity for carefully crafted reasoning examples and the increased consumption of
computational resources to generate the extended reasoning text.

Q Zero-Shot One-Shot
Prompting Prompting

@ Few-Shot P':omp;t Negative
Prompting Eng|neer|ng Prompting

Iterative Prompt
Prompting Chaining

Q Chain-of-Thought
(CoT) Prompting

Figure 20 - Prompt Engineering Techniques [101]

101

5.6. Use Cases of Large Language Models (LLMs)

Introduction

Large Language Models (LLMs) represent a significant advancement in artificial intelligence,
leveraging vast datasets and sophisticated neural architectures to process, understand, and
generate human-like text. Their applications span multiple domains, transforming traditional
workflows by automating complex tasks, enhancing decision-making, and personalizing user
experiences. This chapter explores prominent use cases of LLMs across key sectors, drawing
on recent research and industry implementations to illustrate their practical impact. While
LLMs offer substantial benefits, their deployment also introduces considerations and
limitations which will be addressed in the next section.

Use Cases in Education

In the education sector, LLMs are reshaping teaching and learning by providing personalized,
scalable support. One primary application is in adaptive learning systems, where LLMs
generate customized explanations, examples, and interactive exercises tailored to individual
student needs. For instance, they can offer alternative explanations or visual aids to
accommodate diverse learning styles, thereby improving accessibility and engagement.

LLMs also facilitate content creation for educators, such as drafting lesson plans, generating
assessment questions, or summarizing extensive documents, which saves time and allows
teachers to focus on higher-level instruction. In knowledge tracing, LLMs enhance student
records by producing auxiliary information, enabling more accurate tracking of learning
progress. Additionally, they support scientific writing skills among students by empowering
innovation and fostering independent thinking when used appropriately.

Use Cases in Healthcare

Healthcare stands out as a domain where LLMs demonstrate profound transformative potential,
particularly in diagnostics, patient engagement, and research. LLMs enhance clinical support
by analyzing patient records and electronic health records to automate audits and assist in
decision-making. For example, they can simplify documentation tasks, improve patient
communication through interactive chatbots, and aid in diagnostics by processing medical
literature and symptomes.

In medical education, LLMs serve as tools for generating drafts, summarizing articles, and
checking language, thereby supporting scientific writing and learning. They also contribute to
research by facilitating clinical trial recruitment and hypothesis generation. Specific use cases
include personalized patient care, where LLMs summarize data for better clinical decisions,
and drug discovery assistance through NLP tasks.

102

Despite these advancements, evaluations indicate that while LLMs excel in controlled settings,
their clinical readiness requires further validation to ensure reliability and safety. LLMs thus
promise to elevate healthcare efficiency while necessitating careful integration.

Use Cases in Business and Finance

In business and finance, LLMs drive efficiency through automation and insightful analytics.
Key applications include fraud detection, where models analyze transaction patterns to identify
anomalies, and risk assessment by processing regulatory updates in real-time. They also enable
personalized financial advisory services, interpreting customer complaints and generating
tailored recommendations.

Compliance and investment strategies benefit from LLMs' ability to navigate complex
regulations and interpret market information for better decision-making. In broader industry
contexts, LLMs support workflow automation, such as generating reports or enhancing
customer support, leading to significant productivity gains. For smaller institutions, however,
resource intensiveness poses a barrier, highlighting the need for scalable solutions.

Use Cases in Scientific Research

LLMs are increasingly integral to scientific research, aiding in data extraction, hypothesis
verification, and literature synthesis. They automate code generation for testing hypotheses and
summarize vast datasets, reducing time and errors in manual processes. In literature reviews,
LLMs streamline the process by extracting key insights from publications, supporting tasks
like sentiment analysis and named entity recognition.

They also generate synthetic data or assist in writing scientific content, such as letters of
recommendation or article drafts, while maintaining ethical standards. In specialized domains,
LLMs perform NLP tasks with high potential, though their use in generating research outputs
raises questions about originality. Despite this, LLMs are not a panacea; their limitations in
accuracy necessitate human oversight.

Use Cases in Entertainment and Creative Industries

In entertainment and creative sectors, LLMs augment human creativity by generating content
and personalizing experiences. They assist in scriptwriting, music composition, and
personalized news feeds, enabling rapid prototyping and innovation. For content creation,
LLMs produce marketing materials or blog posts, shifting workflows toward dynamic, Al-
enhanced production.

Personalization in streaming platforms uses LLMs to recommend content based on user
preferences, improving monetization and engagement. In pre- and post-production, they handle
tasks like generating visuals or editing, though copyright concerns with training data persist.
Studies show LLMs can enhance divergent thinking but may homogenize ideas if over-relied

103

upon. LLMs thus enhance rather than replace creativity, with implications for design and
media.

Use Cases in Customer Service and Marketing

Customer service and marketing leverage LLMs for efficient, personalized interactions. In
support, LLMs power chatbots that handle queries, extract context from conversations, and
provide instant responses, achieving up to 10x productivity gains. They analyze sentiment in
customer feedback for nuanced insights.

In marketing, LLMs generate tailored content like emails or website copy, segment customers
based on data, and translate materials for global reach. Use cases include automating ticketing
and FAQ handling in B2B contexts. Adapting LLMs with interaction data further boosts
engagement and satisfaction.

5.7 Critical Limitations of Large Language Models

The remarkable capabilities of Large Language Models (LLMs), as detailed in the previous
chapter, have caused a paradigm shift in artificial intelligence and natural language processing.
Their proficiency in generating coherent, contextually relevant, and often insightful text has
led to their deployment across a vast array of domains, from creative writing to technical
support. However, it is a critical fallacy to equate this proficiency with genuine understanding,
reasoning, or intelligence. The performance of LLMs is fundamentally constrained by a set of
inherent limitations rooted in their architecture, training data, and operational mechanics.

This chapter provides a critical examination of these limitations. A thorough understanding of
these constraints is not merely an academic exercise but a prerequisite for the responsible
development, deployment, and interpretation of LLM outputs in real-world applications. In the
below paragraphs we will explore issues of factual accuracy, reasoning capabilities, inherent
biases, computational demands, and the elusive nature of true understanding. Some of the
limitations highlighted in this chapter provide the motivation for Retrieval-Augmented
Generation, discussed in the following chapter. A critical examination of these limitations
facilitates a deeper understanding of the practical significance of this technique.

The Illusion of Knowledge: Hallucinations and Factual Inaccuracy
Perhaps the most significant and perilous limitation of LLMs is their tendency to generate

plausible yet entirely fabricated or incorrect information, a phenomenon commonly termed
"hallucination" [102]. Unlike a database or a search engine that retrieves stored records, an

104

LLM generates text by predicting the most probable next token based on its training data and
the provided prompt.
This statistical nature means LLMs lack a certainly correct model of the world. They do not
"know" facts but instead, they have learned statistical correlations between words and concepts.
Consequently, they can:
o Invent citations and sources: Generating references to non-existent academic papers or
books.
e Provide incorrect data: Stating inaccurate statistics, historical dates, or scientific facts
with high confidence.
o Create fictitious narratives: Generating detailed but false descriptions of events or
biographies.
This limitation poses a severe risk in high-stakes domains like healthcare, law, and journalism,
where factual accuracy is paramount. Mitigation strategies like Retrieval-Augmented
Generation (RAG) [33], discussed in the next chapter, attempt to ground LLMs in external,
verifiable knowledge sources, but the core tendency to hallucinate remains an unsolved
fundamental problem.

The Absence of Robust Reasoning and Common Sense

While LLMs can solve certain logical puzzles and perform reasoning tasks within their training
distribution, their reasoning is often unstable and superficial. They excel at mimicking
reasoning patterns found in their data but struggle with novel problems requiring genuine
abstraction, multi-step planning, or the application of commonsense knowledge not explicitly
stated in text.

Key failures include:

o Logical Inconsistencies: Inability to maintain consistency over long passages of text,
often contradicting themselves within a single response.

o Difficulty with Counterfactuals: Struggling to reason about scenarios that contradict
established facts or their training data.

e Poor Arithmetic and Symbolic Reasoning: Despite being trained on vast amounts of
data, their performance on basic arithmetic or symbolic manipulation is unreliable
without specific tool augmentation (e.g., a calculator).

This suggests that LLMs are not built upon a foundation of logical rules or causal models but

are instead engaging in a form of "stochastic parroting" [103] recombining seen patterns
without deep comprehension.

105

Inherent Biases and the Reflection of Training Data Imperfections

LLMs are not objective or neutral entities. They are mirrors reflecting the entirety of their
training data: the good, the bad, and the ugly. The internet-based corpora used for training
contain pervasive societal biases, stereotypes, and offensive content. Consequently, LLMs
inevitably learn, amplify, and can perpetuate these biases [104].

These biases manifest as:

e Sociodemographic Bias: Generating text that associates certain professions, traits, or
behaviors with specific genders, ethnicities, or nationalities.

o Representational Bias: Over- or under-representing certain viewpoints, cultures, or
languages based on their prevalence in the training data (typically a Western, English-
language bias).

e Toxic and Harmful Outputs: Generating abusive, hateful, or otherwise harmful
language, even when prompted with seemingly neutral inputs.

Debiasing LLMs is an active area of research but remains profoundly challenging. Techniques
like reinforcement learning from human feedback (RLHF) can suppress the most overtly
harmful outputs but often fail to address more subtle, ingrained biases. The model's behavior
is ultimately a direct function of its data, and perfect data does not exist.

Static Knowledge Limitation

The knowledge of an LLM is frozen in time at the moment of its pre-training. A model trained
on data up to late 2023 has no innate knowledge of events, discoveries, or cultural shifts
occurring thereafter. This presents a major limitation for applications requiring up-to-date
information (e.g., news analysis, scientific research, current events).

Strategies to overcome this include:

1. Periodic Retraining: Costly, computationally intensive, and environmentally
unsustainable.

2. Fine-tuning on new data: A more efficient alternative but can introduce catastrophic
forgetting, where the model loses performance on previously learned tasks. Also, this
technique is very resource-intensive which is a key factor to considerate.

3. Retrieval-Augmented Generation (RAG) (see next chapter): The most promising
approach, where the LLM is paired with an external, updatable knowledge base,
allowing it to access current information without altering its core parameters.

This limitation underscores that an LLM is not a living, learning system but a static snapshot
of a point in time.

Computational and Environmental Costs

The development and operation of state-of-the-art LLMs incur staggering computational,
financial, and environmental costs. Training a single model like GPT-3 was estimated to
consume several hundred megawatt-hours of electricity and generate a carbon footprint

106

equivalent to hundreds of tons of CO2 [105]. Furthermore, inference, generating responses for
millions of users, requires continuous, massive GPU power.
This raises serious concerns regarding:

o Environmental Sustainability: The carbon footprint of widespread LLM use.

e Economic Barrier to Entry: Concentrating the power to develop frontier models in the
hands of a few well-funded tech corporations, potentially stifling innovation and
academic research.

e Resource Allocation: Ethical questions about the societal value of allocating vast
energy resources to these systems.

The Opacity of Black-Box Models and the Explainability Problem

LLMs are considered "black boxes". With hundreds of billions of parameters and complex,
non-linear interactions, it is virtually impossible to trace a specific model output back to a
specific piece of training data or to understand the internal "reasoning" process that led to it.
This lack of explainability and interpretability is a critical barrier for deployment in regulated
industries like finance (e.g., for loan denials) or medicine (e.g., for diagnoses), where decisions
must be justified and auditable.

The field of Explainable Al is working on techniques to shed light on model behavior, but
providing clear, causal explanations for LLM outputs remains a fundamental challenge [106].

The Fundamental Lack of Understanding and Consciousness

At their core, LLMs are sophisticated autocomplete systems. They manipulate symbols without
any grounding in real-world experience, sensory input, or embodied cognition. They have no
desires, beliefs, intentions, or consciousness. The text they generate is a statistical construct,
devoid of genuine understanding or semantic meaning.

This philosophical limitation, often discussed in the context of the "Chinese Room" argument
[107], is crucial for tempering expectations. LLMs simulate understanding but do not
instantiate it. They are powerful tools for processing and generating human language, but they
are not sentient beings and should not be anthropomorphized.

Conclusion

This chapter has delineated the critical limitations that restrict the capabilities of Large
Language Models. From their tendency to hallucinate and lack of robust reasoning to their
inherent biases, static knowledge, immense costs, and opaque nature, these constraints are not
mere bugs to be fixed but inherent properties of their current architecture and training
paradigm.

Acknowledging these limitations is not to diminish the transformative potential of LLMs but
to contextualize it. It serves as a vital corrective to the hype that often surrounds this technology
and provides a framework for responsible development. In the following chapter we will

107

analyze how we can avoid these limitations so we can create applications that are very useful
in the real world.

108

6 Retrieval-Augmented Generation (RAG)

This chapter will provide a comprehensive examination of Retrieval-Augmented Generation.
The subsequent sections will detail the core architectural components, including the retriever
and generator models. We will then explore various methodologies, from naive RAG
implementations to advanced techniques. Following this, the chapter will discuss key metrics
and frameworks for evaluating the performance of RAG systems. To connect these concepts
to a practical application, we will simultaneously analyze their implementation within the
chatbot developed for this thesis. We will begin by making an introduction to RAG and
restating the chatbot's requirements to provide a clear reasoning for the methodologies chosen
in this chapter.

6.1 Introduction to RAG and Chapter Outline

Retrieval-Augmented Generation (RAG) represents a paradigm shift in how large-scale
language models interact with information, effectively bridging the gap between their static,
internalized knowledge and the dynamic, vast amount of external data repositories. This
chapter introduces the fundamental concepts of RAG, positioning it as a pivotal architectural
pattern designed to enhance the factuality, timeliness, and verifiability of generative Al
systems.

The Limitations of Traditional Large Language Models

As established in the preceding chapter, while Large Language Models (LLMs) exhibit
profound capabilities in natural language understanding and generation, they are constrained
by several inherent limitations. These challenges, which stem directly from their design as self-
contained, parametric models, create a clear need for architectures like RAG. The primary
limitations can be summarized as follows:

o Knowledge Cutoff: An LLM's knowledge is frozen at the point its training concludes.
It has no intrinsic mechanism to access information or events that have occurred post-
training, rendering its outputs potentially outdated.

o Hallucinations: LLMs can generate text that is plausible and grammatically correct but
factually inaccurate or entirely nonsensical. This phenomenon, often termed
'hallucination', arises when the model lacks the necessary information in its parametric
weights and instead generates a statistically likely but unsubstantiated response.

109

e Lack of Domain-Specificity: While trained on vast general corpora, standard LLMs
lack deep expertise in specialized, proprietary, or niche domains. Fine-tuning is a
possible remedy, but it is computationally expensive, time-consuming, and must be
repeated to incorporate new information.

e Opacity and Lack of Citations: The "black box" nature of LLMs makes it exceedingly
difficult to trace a generated statement back to its source material. This opacity is a
significant barrier to trust and verification, particularly in academic, medical, and
enterprise contexts where source attribution is critical.

Introducing RAG as a Solution

Retrieval-Augmented Generation (RAG) [108] is a hybrid Al framework that enhances the
capabilities of a generative LLM by dynamically retrieving relevant information from an
external knowledge base before generating a response. At its core, RAG synergizes two distinct
types of knowledge:

1. Parametric Knowledge: This is the knowledge implicitly encoded within the LLM's
neural network parameters during its pre-training phase. It encompasses broad language
patterns, general facts, and reasoning abilities.

2. Non-Parametric Knowledge: This refers to explicit information stored in an external
data source, such as a vector database, a document corpus, or a knowledge graph.

Conceptually, the RAG process functions as an "open-book exam" for the LLM. When
presented with a prompt or query, the system does not immediately rely on its internal
knowledge alone. Instead, it first employs a retriever component to search the external
knowledge base for documents or text snippets that are semantically relevant to the input query.
These retrieved passages are then concatenated with the original prompt and fed as augmented
context to the generator (the LLM). Armed with this timely and specific information, the LLM
can formulate a response that is not only contextually appropriate but also grounded in
verifiable, external facts.

This architecture directly mitigates the core limitations of traditional LLMs. It provides a
mechanism for incorporating up-to-date information, reduces the likelihood of hallucinations
by grounding responses in retrieved evidence, allows for deep domain specialization without
costly retraining, and enables source citation by pointing to the specific documents used for
generation.

Below is an image describing the whole process of Retrieval Augmented Generation. It depicts
all the steps that will be analyzed in this chapter and provides a good visual understanding of
the RAG pipeline.

110

Embedding Embedding 1 Query

c/T\ \

Vector Database

9 | 99 | chunking @ .‘. Retrieval Augmented Generation
LN J

LLM(s)
.lll Information \ Relevant Data 4
[1] Y Extraction 3 ——
- (') (OCI. POF data extraction,

web crawkers, eto)

af : l
[.

. SE—— Response
Data Preparation

Figure 21 - Process of Retrieval Augmented Generation. [109]

6.2 Chatbot Application requirements-goals

Before proceeding to the actual techniques described in this chapter let’s shortly restate the
application that we have to build for this thesis. The project details the design, implementation,
and evaluation of a Retrieval-Augmented Generation (RAG) system built to assist users of the
“ATHENA” application. “ATHENA” is a vital tool used by bank employees to create diagrams
for financial data representation. A common pain point for these employees is the need to find
answers to specific questions about the application's functionality. This often requires them to
stop their work and go through a lengthy user guide, a process that is both inefficient and
frustrating. To solve this problem, we are developing a RAG chatbot that will serve as an instant
knowledge base. By allowing employees to ask questions in natural language and get
immediate responses, the chatbot is expected to streamline their workflow, reduce downtime,
and significantly increase their day-to-day productivity.

The user guide that will be used for retrieval is not plain text but has some quite complex
structures like tables and images. Therefore, advanced techniques need to be used in order to
successfully save and retrieve this information. We will discuss all of those techniques in the
following sections.

111

6.3 Overview of the LangChain Ecosystem

The LangChain ecosystem [34] has quickly grown into one of the most important toolkits for
building applications powered by large language models (LLMs). At its core, LangChain
provides a framework that helps developers connect LLMs with external data sources, APIs,
and reasoning capabilities, making these models more practical and versatile in real-world
scenarios.

The ecosystem can be thought of as a collection of components and integrations that work
together to unlock the potential of LLMs. The central library, LangChain, serves as the
foundation. It offers abstractions for prompts, memory, chains, and agents—concepts that help
developers manage how an LLM processes input, maintains context, executes tasks, and
interacts with external tools.

Beyond the core library, LangChain is supported by a growing community of integrations.
These allow applications to seamlessly connect with databases, vector stores, APIs, and cloud
services. For example, LangChain makes it possible to pair LLMs with vector databases for
semantic search (as seen in the following sections), or to link them with APIs so that the model
can fetch up-to-date information or execute actions on behalf of the user. This modular design
ensures flexibility: developers can swap components in and out depending on the needs of their
project.

Another key aspect of the ecosystem is its developer infrastructure. LangSmith, for instance,
enables developers to test, monitor, and debug their LangChain applications, ensuring
reliability and scalability. Similarly, LangServe provides deployment tools so that chains and
agents can be exposed as APIs and integrated into larger systems without friction. Together,
these tools make it easier not just to prototype, but also to move applications into production.
The ecosystem 1is also characterized by its strong community and open-source spirit.
Contributions from developers worldwide continue to expand the number of supported
integrations and enrich the documentation and examples available. This collaborative energy
has helped LangChain become more than just a library—it has grown into a full-fledged
ecosystem that lowers the barriers for anyone who wants to build with LLMs.

In short, the LangChain ecosystem is about providing the structure, tools, and integrations
needed to transform raw LLM capabilities into useful, scalable, and reliable applications. It sits
at the intersection of language models, external data, and real-world workflows, making it a
cornerstone for modern Al development. We used Langchain’s framework for the majority of
our application as it can be observed in the following chapters and the code repository.

112

Observability La ngSmith

Deployments LangServe Chains asRest APIs ®#ython

Templates Reference Applications @ Python

$ LangChain @python Ma
o E
22 Debugging
g5
S = Chains Agents Retrieval Strategies
Playground
i i Evaluation
LangChain-Community @Python B
Annotation
Model 110 Retrieval Agent Tooling
Monitoring
Integrations
Components
edding
LangChain-Core @python M
LCEL - LangChain Expression Language
Protocol

lizatio a & Tracing Batching

Figure 22 - Visual Representation of the LangChain Ecosystem's Components [110]

113

6.4 The Indexing Pipeline (Data Preparation)

The indexing pipeline is the foundational offline process in a Retrieval-Augmented Generation
(RAG) system, responsible for transforming raw data into a structured, searchable knowledge
base. This pipeline ensures that external information is readily accessible for retrieval during
the generation phase. It involves several critical steps: loading and preprocessing raw
documents, chunking them into manageable pieces, generating embeddings, and storing these
embeddings in a vector database for efficient similarity searches. Each step is designed to
optimize the quality and accessibility of the knowledge base, enabling the RAG system to
deliver accurate and contextually relevant responses.

6.4.1 Data Loading & Preprocessing

The indexing pipeline begins with sourcing and preparing raw documents to create a robust
knowledge base for the Retrieval-Augmented Generation (RAG) system. Data loading involves
collecting documents from diverse sources, such as PDFs, HTML pages, text files, or
databases, depending on the application’s requirements. Common sources include web pages,
internal knowledge bases, academic papers, or user-uploaded files. In our case, these
documents were two PDFs containing information about how to use the “ATHENA”
application.

Once collected, the documents undergo preprocessing to ensure they are clean and usable. This
step typically includes:

o Text Extraction: Extracting raw text from various formats. For PDFs, tools like
PyPDF, PDFMiner or PyMuPDF4LLM can be used to parse text, while HTML
documents may require libraries like BeautifulSoup to strip tags and extract content.
For structured data (e.g., JSON or CSV), relevant fields are extracted and normalized.

For our implementation we used PyMuPDF4LLM through the Langchain
ecosystem. The reason was that this framework has built-in functionality to parse the
tables and images. More specifically, we used the “table_strategy” argument and the
“loader” argument which provides several ways to parse images. We implemented two
ways of parsing images as shown in the images below. The first way was the most
efficient, because it used a multimodal LLM ('gpt-40-mini') and, through a
carefully structured prompt, it output on the final document the thorough description of
each image, in the positions that the respective images were originally placed. As a
result, the LLM that used this text later in the RAG pipeline had highly accurate
information in regards to the content of the image. The second image parsing method
was through OCR and it was not as efficient as there was loss of information in the

114

produced text. We used this method in the second PDF for testing purposes and the
results of the image extraction were significantly worse than the first method.

bd

nini’, temperature=1

print(
loader
elif extension

data = loader.load()
r n data

Figure 23 - Implementation of the first method for document parsing where the images were parsed through an LLM.

115

def load document OCR(file):
import os
name, extension = os.path.splitext(file)

if extension ==

print(
loader = Py
file,

print(f

loader =
elif e

fro

IGELT
]se:

print(’

retcurn

data = loader.load()
return data

Figure 24 - Implementation of the first method for document parsing where the images were passed through OCR.

o Cleaning: Removing noise such as special characters, extra whitespace, or formatting
artifacts (e.g., page numbers, headers/footers in PDFs). This ensures the text is coherent
and free of irrelevant elements. In this part, PyMuPDF4LLM was helpful because it
automatically parsed all the pdf in markdown format, ideal form for LLM input.

e Normalization: Ensuring consistency across documents, such as standardizing date
formats, expanding abbreviations, or translating languages if needed.

e Validation: Checking for data quality issues, like incomplete documents or encoding
errors, and filtering out low-quality or irrelevant content.

The goal of preprocessing is to produce clean, standardized text that can be effectively chunked
and embedded in subsequent steps. The quality of preprocessing directly impacts the system’s
ability to retrieve relevant information, as noisy or poorly formatted data can lead to suboptimal
embeddings and retrieval performance.

116

At the end of this stage, we obtained a single LangChain document that combined the contents
of the first PDF with those of the second. The images and tables were parsed using the methods
described earlier.

6.4.2 Document Chunking

Since language models have a limited context window (the amount of text they can process at
once), feeding them entire long documents, like the one we described in the previous section
is inefficient and often impossible. Chunking is the strategy of breaking down these large
documents into smaller, semantically coherent pieces. The choice of chunking strategy is a
critical design decision that directly impacts retrieval quality.

e Fixed-Size Chunking: This is the simplest method. The text is split into chunks of a
fixed number of characters or tokens (e.g., 500 tokens) with a potential overlap between
consecutive chunks.

This method is fast and easy to implement, but it can unnaturally split sentences or
separate related ideas, leading to a loss of semantic context.

e Recursive Chunking: A more sophisticated approach that attempts to preserve
semantic boundaries. It splits the text recursively using a predefined list of separators,
such as paragraphs (\n\n), sentences (.), and then spaces (). It prioritizes keeping related
content together by first trying to split at the largest logical unit (a paragraph) before
moving to smaller ones.

This method is generally better at maintaining context than fixed-size chunking, though
it can be slightly more complex to implement.

This was the method we used (as shown in the image below) and we tested different
chunk sizes and chunk overlap. Afterwards, we evaluated these different combinations
to decide which one is the best. The evaluation process will be described in detail later
in this diploma thesis.

» chunk_overlap=chunk_overlap)

chunks = text_split
return chunks

Figure 25 - Function to implement recursive chunking using Langchain’s RecursiveCharacterTextSplitter.

117

e Semantic Chunking: This is the most advanced strategy. Instead of relying on
character counts or separators, it uses the semantic meaning of the text to create chunks.
This can be done by looking for changes in topics or by using a language model to
determine the most logical break points between ideas.

This method produces the most contextually coherent chunks, leading to superior
retrieval performance. However, it is computationally more expensive and complex,
often requiring an embedding model even during the chunking process itself.

6.4.3 Embeddings Generation and Vector Database storage

Once documents are preprocessed and chunked into manageable units, the next step in the
indexing pipeline is embedding generation. An embedding, as discussed earlier in this thesis,
is a numerical vector representation of text, designed so that semantically similar pieces of text
are mapped close to each other in a high-dimensional space. This transformation allows a
retrieval-augmented generation (RAG) system to search and reason over knowledge not by
simple keyword matching, but by semantic similarity.

Embeddings serve as the backbone of modern information retrieval systems, particularly in
RAG architectures. By converting text into dense vector representations, embeddings enable
the system to capture the semantic essence of the content. For instance, words like "car" and
"automobile" or phrases like "machine learning" and "artificial intelligence" may be positioned
closer together in the embedding space due to their contextual similarity, even if they share no
common keywords. This capability is critical for RAG systems, which rely on retrieving
relevant documents or text chunks to generate accurate and contextually appropriate responses.
The process begins with selecting an appropriate embedding model. Common choices include
models such as text-embedding-ada-002, BAAI/bge-m3, text-embedding-3-large or more
specialized models like Sentence-BERT, which are fine-tuned to produce high-quality
embeddings for sentences or paragraphs. These models are trained on large corpora to
understand linguistic nuances, ensuring that the resulting vectors reflect not just syntactic
structure but also deeper semantic relationship. For our application, we used text-embedding-
3-large, as it was observed to have high accuracy for the Greek language.

To generate embeddings, each chunk of preprocessed text is passed through the chosen
embedding model. The model processes the text and outputs a fixed-length vector. These
vectors are then stored in a vector database, such as FAISS, ChromaDB and Pinecone, which
is optimized for fast similarity searches using techniques like cosine similarity or Euclidean
distance, discussed earlier in this paper. In our implementation, we used Pinecone for quick
API retrieval and Chromadb for local testing.

The quality of embeddings directly impacts the performance of the RAG system. Poorly
generated embeddings may fail to capture nuanced relationships between text chunks, leading
to irrelevant retrievals. This is the reason the correct selection of the model is vital for a well-
functioning RAG application.

118

chun

chunk_size=288

names = [index[

e ing_index names:

, end="")
ndex_name, embedding=embeddings)

print(

pc.creat
name=index_name,
dimension

store =

E (index_name=index name, embedding=embeddings)
ore.add_documents(documents=chunks)

)

Figure 26 - Function used for creating embeddings with Pinecone.

119

def create_embeddings_chroma(chunks, directory="./chroma_db"):

from 1 = mbeddings import AzureOpenAIEmbeddings
embeddings i

openai_api_ we

azu

model="

chunk_size=2608

)

vector_store = Chroma.from_documents(chunks, embeddings, persist_directory=persist_directory)

return vector_store

Figure 27 - Function used for creating embeddings with ChromaDB.

6.5 The Retrieval and Generation Pipeline (Real-time
Querying)

The retrieval and generation pipeline represents the online, real-time process that is initiated
when a user submits a query to the system. This phase leverages the indexed data prepared
during the offline ingestion process to generate a factually grounded and contextually relevant
response. The pipeline consists of four sequential stages: user query embedding, semantic
search and retrieval, context augmentation, and augmented generation. This sequence ensures
that the Large Language Model's (LLM) response is synthesized from verified information
retrieved from the knowledge base, rather than relying solely on its internal, pre-trained
parameters [111].

6.5.1 User Query Embedding

The first step in the real-time pipeline is the transformation of the user's natural language query
into a high-dimensional numerical vector. This process, as described in the previous section, is
critical for enabling semantic comprehension by the system.

To achieve this, the user's input string is processed by the same pre-trained embedding model
that was used during the offline data ingestion phase (The embedding model in our case was
text-embedding-3-large, as mentioned in the previous section). Maintaining consistency in the
embedding model is critical. Using the same model ensures that the query and the document
chunks reside within the same vector space. This shared semantic space allows for meaningful
comparisons, where vectors that are closer together represent concepts that are more

120

semantically similar. The output of this stage is a query vector, which encapsulates the semantic
intent of the user's question, ready for the subsequent retrieval phase.

6.5.2 Semantic Search & Retrieval

With the query transformed into a vector, the system then performs a semantic search against
the indexed vector database. The objective is to identify and retrieve the document chunks that
are most relevant to the user's query. This is not a keyword-based search but a search for
semantic similarity.

The search is executed by comparing the user's query vector against all the document chunk
vectors stored in the database. This comparison is quantified using a similarity metric. Two of
the most common metrics employed for this purpose are Cosine Similarity and Dot Product, as
discussed previously on this paper.

The system calculates the similarity score between the query vector and every document chunk
vector in the database. It then ranks the chunks by their scores in descending order and retrieves
the top-k most relevant results, where 'k' is a pre-configured parameter. The choice of 'k'
represents a trade-off between providing sufficient context and overloading the LLM with too
much, potentially irrelevant, information. In order to decide on which ‘k’ value was the best,
we used evaluation metrics discussed later. Similar to the Vector Storage, we used ChromaDB
and Pinecone for similarity search. Since we used Pinecone through an API, the retrieval of the
relevant chunks was much faster with this method.

6.5.3 Context Augmentation

Once the top-k document chunks are retrieved, they form the context that will be used to ground
the LLM's response. These seperate pieces of text are not sent to the LLM in their raw form.
Instead, they are systematically formatted and integrated into a prompt template in a process
known as context augmentation.

The prompt template is a pre-defined structure that combines the retrieved context with the
original user query. It typically includes explicit instructions for the LLM, guiding it on how
to behave and how to use the provided information. An example of a simplified prompt
template that we actually used in the testing of our application is this:

121

Xpnoonoince o TopoKAT® ATOGTAGATO TEPLEXOLUEVOD Y10 VO ATTAVINGELS GTNV EPMOTNON
TOL YPNOTN.

Av dev Bpelg TNV amdvInon 610 TOPEYOUEVO TEPLEYOUEVO, ATAMG aravinoe "Agv yvopilm."
[Tepreyduevo: {context}

"

This structured prompt is crucial. It clearly outlines the scope of information the LLM is
permitted to use, explicitly instructing it to synthesize an answer based only on the retrieved
factual data. This step is the cornerstone of the Retrieval-Augmented Generation (RAG)
architecture, directly linking the final output to the source knowledge base.

6.5.4. Augmented Generation

The final stage of the pipeline is augmented generation. The complete, augmented prompt,
containing the instructions, the retrieved context, and the user's query, is sent as a single input
to the generator LLM. In our case, this LLM was gpt-4 from OpenAl’s APIL

Upon receiving this prompt, the LLM's task is not to recall information from its vast pre-trained
knowledge but to perform a task of synthesis and summarization based exclusively on the
provided context. The model reads and comprehends the supplied text chunks and formulates
a coherent, natural language answer that directly addresses the user's question.

This method of grounding the LLM's response in retrieved, factual data is the primary
mechanism for mitigating the risk of "hallucinations", the generation of plausible but incorrect
or fabricated information as discussed previously. By constraining the LLM to a specific set of
trusted documents, the system ensures that the generated answer is verifiable, accurate, and
directly traceable to the source knowledge base. The final output presented to the user is this
synthesized, context-aware, and factually grounded response.

Thanks to the versatility and compact development of LangChain frameworks, in our final

solution, we implemented the steps of retrieval, context augmentation and augmented
generation with one simple function as shown in the figure below.

122

api_version=

)

retriever = vector_store.as_retriever{search_type="similarity’', search_kwargs={
docs = retriever.get_relevant_documents(q)

print("Re
for i, do
print{f"\nChunk { 1}:\n{doc.page_content}")

chain = RetrievalQA.from_chain_type(llm=11m, chain_type="stuff", retriever=retriever)

answer = chain.invoke(q)
return answer, docs

Figure 28 - Function for retrieval, context augmentation and augmented generation with LangChain.

6.6 Colpali

Introduction

In the field of information retrieval, traditional systems for processing visually rich documents
(such as PDFs containing tables, figures, and layouts) rely on complex pipelines involving PDF
parsing, optical character recognition (OCR), layout detection, and text chunking. These
methods were analyzed in the previous sections of this thesis. These steps are often error-prone
and fail to fully utilize visual elements, leading to suboptimal performance in tasks like
Retrieval Augmented Generation. The ColPali method addresses this by leveraging Vision
Language Models (VLMs) to directly embed document images, bypassing preprocessing and
enabling end-to-end trainable retrieval that incorporates both textual and visual cues. This
approach is motivated by evidence that improving document ingestion yields greater gains than
refining text embeddings alone. ColPali introduces a benchmark called ViDoRe for evaluating
such systems and demonstrates superior results on visually intensive tasks.

Architecture

ColPali is built upon the PaliGemma-3B VLM, which combines a SigL.IP vision encoder with
a Gemma-2B language model through a multimodal projection layer. The process begins by
rendering document pages as images, which are divided into patches (typically 1024 for

123

PaliGemma). These patches are encoded by the vision model and treated as tokens, prepended
to a textual prompt before being fed into the language model.

A key innovation is the addition of a projection layer that maps the language model's output
embeddings (for both text tokens and image patches) to a lower-dimensional space (D=128).
This creates multi-vector representations per page, akin to the ColBERT model, where each
vector corresponds to a token or patch. This design allows fine-grained matching between
queries and documents in a shared embedding space, exploiting the VLM's pre-trained
alignment between vision and language. Variants explored include reducing patches (e.g., to
512) or adapting other VLMs like Idefics2-8B or Qwen2-VL-2B, but the core PaliGemma-
based setup balances efficiency and performance.

Optional token pooling, such as hierarchical mean pooling, can reduce redundant embeddings
(e.g., from blank areas) by up to 66.7% while retaining nearly full effectiveness, further
optimizing storage and computation.

Standard Retrieval 4 0.66 NDCG@5

online
— S
- —— e > ﬁ Text
N Frobe B, MaxSIm(| E)i <—fEmbed.
o
L. t
(O 7.22s/page OCR Skl (© 22ms / query
ColPali (ours) &l 0.81 NDCG@5
Vision LLM ﬁ online
: : B MaxSim (ﬁ ’ ﬁ)
' [— : >
____________ N | (B2 + : m <« are
1 encoder LLM ' B ﬂ
—— [>
= Pl (8w .,.,s.m@,ﬁ)
@ 0.39s / page e D e v Pk ol 1 @ 30ms / query

Figure 29 - Colpali Architecture

Training Process

ColPali is fine-tuned on a dataset of approximately 119,000 query-page pairs, sourced from
academic benchmarks (e.g., DocVQA, InfoVQA) and synthetic data generated from web-
crawled PDFs using advanced language models like Claude-3 Sonnet. Training employs Low-
Rank Adaptation (LoRA) on the transformer layers and projection module, with a batch size
of 32, bfloat16 precision, and a paged AdamW optimizer over one epoch.

The objective uses a contrastive loss based on late interaction scores: for a query-document
pair, the positive score is maximized against the hardest in-batch negative. Queries are
augmented with placeholder tokens for flexibility. This end-to-end training optimizes the entire

124

retrieval pipeline, including visual processing. Removals show that freezing the vision encoder
and using multi-vector interaction are crucial for performance, while task-specific fine-tuning
(e.g., for non-English languages) enhances adaptability without harming generalization.

How ColPali Works for Document Retrieval

ColPali operates in two main phases: offline indexing and online querying.

Initially, there is the indexing pipeline where document pages are rendered as images and
passed through the model to generate multi-vector embeddings (one per patch/token). These
are stored efficiently (about 257 KB per page in compressed form), requiring no OCR or
captioning.

The Vision LLM (Large Language Model) layer is the core component of the indexing pipeline,
responsible for processing document images and generating meaningful embeddings. In this
layer, a document page is first rendered as an image and divided into patches. These patches
are fed into a vision encoder, which extracts visual features from the image content (such as
text, tables, or diagrams). The encoded features are then combined with a textual prompt and
passed to the LLM part of the model. The LLM, built on a pre-trained language model like
Gemma-2B, interprets the visual data in context with the prompt, producing a rich
representation of the page.

A key feature of this layer is the projection (proj.) mechanism, which maps the output
embeddings from both the vision encoder and the LLM into a lower-dimensional space
(D=128). This creates multi-vector representations for each patch or token on the page,
enabling fine-grained encoding of both visual and textual elements. The process is optimized
for efficiency, taking approximately 0.39 seconds per page, and leverages pre-trained y and
document embeddings, respectialignment between vision and language to capture the
document's structure and content holistically. This end-to-end approach eliminates the need for
separate OCR or layout analysis, making it a streamlined solution for document understanding.
After the pages have been indexed the user can query the system to get the relevant context.
This happens thanks to the querying pipeline where the text query is embedded into multi-
dimension vectors using the same model used in the indexing process. Relevance is computed
via a late interaction mechanism: for each query vector, find the maximum similarity (dot
product) to any document vector, then sum across all query vectors. This score enables precise
matching that highlights prominent visual and textual elements.

In this pipeline, the core component is the Similarity Score layer that handles the retrieval
process by matching a user query against the indexed document embeddings. During the online
phase, a text query is processed by the same LLM to generate query embeddings in the same
multi-vector format. The similarity between the query and document is computed using a late
interaction mechanism.

In this mechanism, for each query vector, the system calculates the maximum similarity score
(MaxSim) with any document vector across all patches or tokens. This is done by taking the
dot product between corresponding vectors, denoted as (E_q(i) | E_d(j)), where E qand E d
represent query and document embeddings, respectively. The total similarity score,

125

— o (7) (7)
LI(q,d) = ‘e“zl:\, l]_iellﬁ(.1§d|]<Eq IEqV’)

is the sum of these maximum similarities across all query vectors. This approach allows the
model to focus on the most relevant parts of the document, such as specific visual elements or
text snippets that align with the query. The process is fast, taking about 30 milliseconds per
query, and supports precise retrieval with an nDCG@5 score of 0.81, indicating high relevance
in the top five results.

Together, these layers enable ColPali to efficiently index and retrieve information from visually
rich documents, leveraging the strengths of vision-language integration and advanced
similarity matching.

The method supports fast inference (e.g., 0.39 seconds per page for indexing, 30 ms for query
encoding) and scalability with tools like Flash Attention. Additionally, it offers interpretability
through heatmaps, visualizing which image patches align with query terms—revealing the
model's implicit OCR and focus on features like charts or layouts.

Results and Conclusion

On the ViDoRe benchmark, ColPali achieves state-of-the-art nDCG@5 scores (81.3%
average), outperforming text-based baselines by 14—30 points, especially on visual tasks like
table extraction (+32.4%) and infographics (+29.5%). It also excels in text-heavy domains and
generalizes zero-shot to languages like French. Compared to pipelines with OCR and
captioning, ColPali is faster and more robust, with lower latency and storage needs post-
compression.

In summary, ColPali represents a shift toward vision-centric document retrieval, simplifying
workflows while enhancing accuracy through multimodal embeddings. Its end-to-end nature
makes it adaptable for domain-specific applications, paving the way for more efficient RAG
systems in research and industry.

6.7 RAG Pipeline Evaluation

The efficacy of a Retrieval-Augmented Generation (RAG) system cannot be taken for granted.
While RAG architectures offer a powerful solution to the limitations of traditional Large
Language Models (LLMs), their performance depends on the successful interplay of their
distinct components: the retriever and the generator. A flaw in either component can
compromise the quality of the final output, leading to irrelevant, inaccurate, or incomplete
answers. Therefore, a systematic and rigorous evaluation methodology is not merely a final
step but a critical aspect of the development lifecycle. This chapter outlines the primary
approaches to evaluating RAG systems, covering both component-wise metrics and holistic,
end-to-end metrics. After this, we will explain how we practically implemented these metrics
to come to conclusions about which RAG pipeline configuration is the optimal.

126

6.7.1 RAG Pipeline Evaluation Metrics

In order to evaluate an LLM application, there are a lot of different metrics for specific aspects
of our application. In our case, which is a RAG application, metrics specific to the RAG
pipeline have been invented, so we can evaluate how effective the several parts of our system
perform. Below we will discuss the most important of these metrics. The information about
these metrics were derived from the documentation ofa RAG end-to-end evaluation
framework called RAGAS (RAG Assessment) [35]. This framework is the one we used to
implement the evaluation of our system.

6.7.1.1 Component-Wise Evaluation Metrics

Component-wise metrics focus on dissecting the RAG pipeline into its core elements: the
query, retrieved context, and generated answer. These metrics help identify bottlenecks, such
as irrelevant retrievals or unfaithful generations, without requiring a full end-to-end
assessment.

Faithfulness

Faithfulness quantifies the factual consistency between the Al-generated answer and the
retrieved context. It ensures that the answer does not introduce hallucinations or
unsubstantiated claims. The process involves decomposing the answer into simpler sentences
and verifying each against the context using an LLM.

The faithfulness score is calculated as:

Faithfulness score
|Number of claims in the generated answer that can be inferred from given context|

| Total number of claims in the generated answer|

This metric requires two API calls: one LLM call to generate simpler sentences from the
answer, and another to judge their faithfulness to the context.

The required data is:

127

e The original question/query
e The retrieved context
e The Al-generated answer

In practice, faithfulness scores can be visualized alongside supporting data, such as in tabular
form, to facilitate analysis.

Answer Relevancy

Answer relevancy assesses how pertinent the Al-generated answer is to the original query. This
metric is particularly complex, involving question generation and semantic similarity
computations to detect non-committal or off-topic responses.

The process unfolds as follows:

1. An LLM generates a new question based on the answer and assigns a non-committal
score (1 for non-committal, e.g., "I don't know", 0 otherwise).

2. Both the generated and original questions are embedded.
3. Cosine similarity is computed between the embeddings.
4. The final score is the product of the non-committal score and the cosine similarity.

The formula is:

1% 1 By, - E
Answer relevancy = NZ cos (Ey, E,) = N 2. m
L= =

Where Eg; is the embedding of the i-th generated question, E, is the embedding of the
original question, and N is the number of generated questions (default: 3).

This metric requires three API calls: one LLM call for question generation and non-committal
scoring, and two embedding calls.

Data Required:

e Retrieved context
e Al-generated answer

An answer is deemed relevant when it directly and appropriately addresses the original
question. Relevancy scores are useful for debugging responses that stray from the query's
intent.

Context Recall

Context recall measures how comprehensively the retrieved context covers the ground truth
answer, similar to traditional recall in information retrieval. It evaluates each statement in the
ground truth to determine if it can be attributed to the context.

128

The score is:

|GT sentences that can be attributed to context|

Context recall = -
|[Number of sentences in GT|

This requires one LLM call to attribute ground truth sentences to the context.
Data Required:

e Original question/query
e Retrieved context
¢ Ground truth (post-generation reference answer)

High context recall indicates effective retrieval mechanisms.

Context Precision

Context precision evaluates the utility of the retrieved context in deriving the Al answer, similar
to precision in statistics. It assesses whether each context chunk contributes meaningfully to
the response.

The calculation involves:

1. An LLM categorizes each context chunk as helpful (1) or not (0).
2. Precision is computed iteratively, weighted by relevance.

The formula is:

YK (Precision@k X vy)

Context Precision@K = - -
@ Total number of relevant items in the top K results

true positives@k

Precision@k = — —
@ true positives@k + false positives@k

Where K is the number of context chunks, and v, € {0,1} is the relevance at rank k.
This metric requires one LLM call for verdicts.
Data Required:

e Original question/query
e Retrieved context
e Al-generated answer

Context precision is essential for optimizing retrieval to avoid noise.

Context Entity Recall

Context entity recall focuses on entities (e.g., names, concepts) rather than full text. It computes
the intersection of entities between the context and ground truth.

129

The score is:

ICE N GE|

Context entity recall = GE]

Where CE are context entities and GE are ground truth entities.

This requires two LLM calls: one for extracting entities from the context and one from the
ground truth.

Data Required:

e Retrieved context
e Ground truth

This metric is valuable for entity-centric domains like knowledge graphs.

6.7.1.2 End-to-End Evaluation Metrics

Answer Semantic Similarity

Answer semantic similarity evaluates the closeness between the Al-generated answer and the
ground truth. It is computed by embedding both texts and measuring cosine similarity:

Semantic similarity = M
Il Eq Il Ege |l

Where Ej is the embedding of the Al answer and Ej, is the embedding of the ground truth.
This metric provides a semantic rather than lexical comparison, making it robust to
paraphrasing.

Answer Correctness

Answer correctness is a hybrid metric that combines statement-level validation with semantic
similarity. It works as follows:

3. Decompose both the Al answer and ground truth into simpler statements.
4. Classify statements as True Positive (TP), False Positive (FP), or False Negative (FN).
5. Compute an F1 score:
2XTP
~ 2XTP+FP+FN
4. Compute semantic similarity between the Al answer and the ground truth.
5. Aggregate both measures using a weighted average (default weighting: 0.75 for F1,
0.25 for similarity).

F1

130

This provides a balanced measure of both factual correctness and semantic alignment.

6.7.1.3 Aspect Critiques

Aspect critiques represent a qualitative evaluation approach, where the LLM judges answers
along multiple dimensions of quality. Each aspect yields a binary score (0 or 1). Supported
dimensions include:

e Harmfulness: Potential for causing harm.

e Maliciousness: Intention to deceive or exploit.

e Coherence: Logical organization of content.

e Correctness: Factual accuracy.

e Conciseness: Brevity and avoidance of redundancy.

Although aspect critiques can provide useful diagnostic insights, their implementation
currently suffers from limitations in strictness and consistency.

6.7.1.4 Conclusion of Evaluation Metrics

The metrics outlined in this chapter offer a robust toolkit for evaluating RAG systems.
Component-wise metrics enable granular debugging, end-to-end metrics assess overall
efficacy, and aspect critiques address qualitative concerns. In the following section we will
analyze the RAG pipeline evaluation in practice by describing how we implemented some of
the above metrics to achieve the best results in our system.

6.7.2 RAG Pipeline Evaluation in Practice

Following the discussion of the various evaluation metrics for Retrieval-Augmented
Generation (RAQ)), this section focuses on the practical assessment of our own application with
respect to the most relevant of these metrics. In designing the evaluation process, we
experimented with different parameter configurations, specifically varying the chunk size, the
degree of chunk overlap, and the number of retrieved chunks.

It 1s important to emphasize that a wide range of alternative configurations and evaluation
criteria could have been considered. The RAG pipeline offers numerous tunable aspects, and
the evaluation can be conducted across multiple dimensions, depending on the underlying
evaluation data and the chosen metrics. However, for the purposes of this study, we deliberately

131

selected the aforementioned parameters, as we identified them to be the most critical factors
influencing the performance of our system.

The first step was deciding the configurations. We chose 4 different configurations and 3
different metrics which we deemed most important. For the first configuration, the initial PDF
was loaded using the default load document function, which applies the LLMImageBlobParser
class to replace images with their textual descriptions. In contrast, the second PDF was
processed using the load document OCR function, where images were replaced with OCR-
extracted text. In this setup, the chunk size was set to 2800, with no chunk overlap, and the
retrieval parameter specified two chunks to be retrieved. Three additional configurations were
then tested, all using the default load document function but with different chunking
parameters. The second configuration employed a chunk size of 2000 with no overlap,
retrieving two chunks. The third configuration used a chunk size of 3500 with an overlap of
100, also retrieving two chunks. Finally, the fourth configuration applied a chunk size of 4200
with an overlap of 100, retrieving only one chunk.

After applying the configurations, we generated a CSV file for each configuration with the
columns: '"user input," '"retrieved contexts," ‘"response," ‘'"reference," "faithfulness,"
"context precision," and "answer_correctness." The first four columns formed the test dataset,
while the last three represented the evaluation metrics. We calculated the average for each
metric across all configurations and created bar plots to compare the average values for each
metric, as shown in the three figures below.

o Average Faithfulness by Configuration

0.8

0.6

0.4 1 0.817 0.821
) 0.741
0.655

Average Faithfulness

0.2 1

0.0

1 2 3 4
Configuration

Figure 30 - Bar Plot of Average Faithfulness by Configuration.

132

Average Context Precision by Configuration

1.0

Average Context Precision

0.0 -
1 2 3 4

Configuration

Figure 31 - Bar Plot of Average Context Precision by Configuration.

Average Answer Correctness by Configuration

1.0

Average Answer Correctness

1 2 3 4
Configuration

Figure 32 - Bar Plot of Average Answer Correctness by Configuration.

133

The above evaluation results reveal distinct performance profiles across the four
configurations in our retrieval-augmented generation (RAG) pipeline.

Faithfulness scores, which assess the absence of hallucinations by measuring alignment
between generated answers and retrieved context, peak at 0.821 for Configuration 4 and 0.817
for Configuration 2, while Configuration 3 lags notably at 0.655, indicating potential
overgeneration or context misalignment.

Context Precision, evaluating the relevance and ranking quality of retrieved documents,
achieves 1.000 in Configuration 2, surpassing the consistent but lower 0.857 across the others,
underscoring superior retrieval efficacy in this setup.

Answer Correctness, measuring semantic accuracy against ground truth, favors
Configuration 2 at 0.846, markedly ahead of Configurations 1 (0.652), 3 (0.663), and 4 (0.676),
suggesting more reliable end-to-end response quality.

Collectively, Configuration 2 demonstrates the optimal balance of high faithfulness,
flawless context retrieval, and superior correctness, making it the recommended choice for
deployment in this RAG system to minimize errors and enhance reliability. Of course, as
previously noted, numerous additional configurations, along with a broader range of input
questions and corresponding answers, could be tested to achieve fully precise evaluation
outcomes. However, implementing such an extensive approach would entail significantly more
time and resource expenditures. For this reason, we continued our application development
with the second configuration which performed better based in this specific evaluation
implementation.

In the next chapter we will continue by explaining how we deployed our RAG
application and created the end-user interface.

6.8 End-to-End Application Deployment

The present chapter outlines the procedural framework adopted for the deployment of
the chatbot system to its intended end-users. The discussion commences with an examination
of the Streamlit framework, which served as the foundation for the application's front-end
interface. Following this, the chapter provides a comprehensive description of the development
and deployment process, ending in a demonstration of the fully functional application.

6.8.1 Streamlit Overview

134

Before continuing with the actual deployment process of our RAG application we will
provide an overview of the Streamlit framework.

Streamlit [112] is an open-source framework designed to simplify the development of
interactive web applications for data science and machine learning. Its primary appeal lies in
its simplicity and ease of use, allowing data scientists, researchers, and engineers to build and
deploy interactive applications with minimal effort, all while focusing on the core functionality
rather than complex frontend design. The framework is Python-based, meaning developers can
leverage their existing knowledge of Python libraries like Pandas, NumPy, and Matplotlib to
quickly prototype and visualize data.

One of the defining characteristics of Streamlit is its emphasis on rapid prototyping.
Unlike traditional web development frameworks that require knowledge of HTML, CSS, and
JavaScript, Streamlit abstracts away much of the frontend complexity. The syntax is intuitive
and highly readable, allowing users to focus on the logic and interactivity of the application.
With just a few lines of code, developers can create widgets such as sliders, buttons, and
dropdown menus, which can be dynamically linked to the underlying data or model outputs.
This capability is particularly useful for creating data-driven applications, dashboards, or
machine learning tools that require user interaction.

The framework's integration with machine learning models is another key strength.
Streamlit supports the seamless integration of pre-trained models, enabling data scientists to
deploy their models as web applications without the need for complex backend infrastructure.
This is especially valuable for rapid testing, model validation, or sharing insights with
stakeholders who may not have a deep technical background. Additionally, Streamlit provides
the ability to visualize data in real-time, making it ideal for exploring datasets, visualizing
trends, and tracking changes in model performance.

In the context of a Retrieval-Augmented Generation (RAG) application, Streamlit can
play a pivotal role in presenting and interacting with the outputs generated by the model. For
example, an application could allow users to input queries, retrieve relevant information from
a knowledge base, and display the model’s generated responses in an easy-to-read format. By
providing an intuitive user interface (UI), Streamlit ensures that non-expert users can interact
with advanced machine learning systems with ease. The framework's real-time rendering
capabilities allow users to observe changes in the model’s output, helping them gain insights
into the underlying process and improve decision-making.

Overall, Streamlit's simplicity, ease of deployment, and focus on interactivity make it a
powerful tool for developing web-based applications, particularly in the fields of data science,
machine learning, and natural language processing. Its relevance in the context of a RAG
application is evident, as it allows for the creation of user-friendly interfaces that can effectively
showcase and interact with complex machine learning models.

6.8.2 Streamlit Application Deployment

Having provided a comprehensive overview of the Streamlit framework, we now
proceed to outline the process we followed for deploying our application.

135

First, after determining the most suitable RAG pipeline configuration (as discussed in the
previous chapter), we installed Streamlit in our project directory and created a dedicated Python
file to host the application. This file defined several key components of the system: a function
for loading the embeddings generated in earlier stages of the process, a function responsible
for generating responses, as well as the user interface elements. Specifically, the interface
included a title, a sidebar that enabled users to input their credentials and submit their queries,
and various components for rendering the chat interface. The whole code is available in the
project directory. After testing that the application functioned in the desired way, we continued
with the deployment of the application.

For the deployment of our application, we used Streamlit’s built-in deployment
functionality. The first step was to upload the source code to github and then, after following
Streamlit’s docs instructions we deployed the app and made it available to the
URL: “https://diplomaappdeployment.streamlit.app/”.

Below we can see the final interface of our application, along with an example of
questions based on the “ATHENA” user guide and their answers.

EYPQEYETHMA

Ynoakdg Bonbag yia toug Xprioteg Tou AOHNA

Figure 33 - End-User interface of our RAG application.

136

TPAIIEZA THX EAAAAOX
EYPQIYITHMA

Yndrakog Bonbog yia toug Xprioteg tou AOGHNA

Méoo peTaBdArAeTal To OWOC TOU YPA@HUATOC VI Hia pETABOAN KOTG O
100 Tng TipnRg Tou kKedioU D11(Y wog Tou ypa@ripatog) Tou QuAAou
«MeTadedopévax;

Mo pia petapoin kata 100 g nipng Tou kehiod D11 (Ywog Tou
ypa@rpaToc) Tou @uAlhou «MeTadsdopévax, T0 UWOC TOU YPAPrHaTog

UETaRAAAETOI KATA TTEpiTION 3,53 eKaTooTd.
[Nolol sival o1 poAol Twv XpnoTwV (O)

O1 poAol Twv ¥pnaoTwy ato guoTnua AQHNA TTEpIAauBavouy:

« Emrehkn Avahiutikrj ExkBean

EmmeAikn) Emixeipnoiakr] Exfeon
« Emrehkog Aiayeipiotric/EvowpatwThig
« Egeupenikog/OIKovopoAGYOG

o Texvikog YTreuBuvog ExkBeang

Figure 34 - Example of questions and their answers in our final RAG application.

137

7 Conclusion

This diploma thesis detailed the design, implementation, and evaluation of a Retrieval-
Augmented Generation (RAG) chatbot system, engineered to serve as an interactive guide for
the "Athena" application. The primary objective was to create a tool that could effectively
understand user queries and retrieve accurate, contextually relevant information directly from
the user guide documentation. The implemented system was proven successful in this
endeavor, demonstrating a robust capacity to satisfactorily answer a wide range of questions.
By providing immediate and targeted access to information, the chatbot significantly
streamlines the user's experience, mitigating the need for manual navigation through extensive
documents and thereby enhancing overall usability.

However, it is imperative to maintain a critical perspective on the system's limitations.
While the architectural choices and techniques employed (specifically within the RAG
pipeline) were explicitly selected to constrain hallucinations and improve factual accuracy, the
inherent probabilistic nature of generative Al models means that the possibility of producing
an inaccurate or erroneous response cannot be completely eradicated. This acknowledgment is
not a shortcoming but a fundamental characteristic of current technology, underscoring the
need for continuous refinement.

Looking forward, the performance and reliability of the chatbot can be advanced
through several strategic initiatives of further development. A primary area for investigation
involves the core models that power the system. The exploration and integration of more
advanced language models, particularly those with superior capabilities in comprehending the
syntactic and semantic nuances of the Greek language, could yield substantial improvements
in both the retrieval of relevant text passages and the generation of fluent, precise answers.

Equally critical to the system's success is the quality and structure of its underlying
knowledge base. The process of data extraction, chunking, and vector storage was a major
factor influencing response quality. Future work should, therefore, investigate more
sophisticated data processing techniques. For instance, the handling of non-textual elements
like complex tables, diagrams and images presents a particular challenge. Developing or
integrating more advanced methods for parsing and representing this structured information
would ensure a more comprehensive and accurate knowledge base for the model to draw upon.

Finally, the intrinsic quality of the source material itself is a determining factor. The
clarity, simplicity, and comprehensiveness of the "Athena" User Guide directly correlate with
the quality of the chatbot's outputs. Enriching the dataset with an expanded collection of
Frequently Asked Questions (FAQs), detailed step-by-step tutorials, and concrete examples
covering a broader spectrum of application use cases would provide a stronger foundation for

138

the language model. In essence, a well-structured and exhaustive source document naturally
leads to more precise and helpful generated responses.

To summarize, this thesis has established a functional and effective RAG-based chatbot
system that fulfills its primary objective. The foundation laid here is solid, yet it also opens up
numerous possibilities for enhancement. By pursuing improvements in model sophistication,
data processing pipelines, and source material quality, the system's accuracy, depth, and utility
can be progressively elevated to meet even more demanding user needs.

139

[4]

[5]

[6]

[7]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

Bibliography

K. Awapavtépog and A. Mrdtong, Myyavikn Ma6non. Exdocelg KiedapiBuog, 2019.
“Supervised learning - Wikipedia.” Accessed: Aug. 12, 2025. [Online]. Available:
https://en.wikipedia.org/wiki/Supervised learning

“Reinforcement learning - Wikipedia.” Accessed: Aug. 30, 2025. [Online]. Available:
https://en.wikipedia.org/wiki/Reinforcement learning

“Reinforcement Learning - GeeksforGeeks.” Accessed: Aug. 30, 2025. [Online].
Available: https://www.geeksforgeeks.org/machine-learning/what-is-reinforcement-
learning/

“Feedforward Neural Network - GeeksforGeeks.” Accessed: Aug. 30, 2025. [Online].
Available: https://www.geeksforgeeks.org/nlp/feedforward-neural-network/
“Convolutional Neural Network | Deep Learning | Developers Breach.” Accessed:
Aug. 30, 2025. [Online]. Available: https://developersbreach.com/convolution-neural-
network-deep-learning/

A. Sherstinsky, “Fundamentals of Recurrent Neural Network (RNN) and Long Short-
Term Memory (LSTM) network,” Physica D, vol. 404, Mar. 2020, doi:
10.1016/j.physd.2019.132306.

A. Vaswani et al., “Attention Is All You Need,” 2023.

“What Is NLP (Natural Language Processing)? | IBM.” Accessed: Sep. 06, 2025.
[Online]. Available: https://www.ibm.com/think/topics/natural-language-processing
“Tokenization in NLP - GeeksforGeeks.” Accessed: Sep. 06, 2025. [Online].
Available: https://www.geeksforgeeks.org/nlp/nlp-how-tokenizing-text-sentence-
words-works

“To Use or Lose: Stop Words in NLP | by Moirangthem Gelson Singh | Medium.”
Accessed: Sep. 06, 2025. [Online]. Available: https://medium.com/@gelsonm/to-use-
or-lose-stop-words-in-nlp-de946edaa468

“What Is Stemming? | IBM.” Accessed: Sep. 06, 2025. [Online]. Available:
https://www.ibm.com/think/topics/stemming

“Lemmatization - Wikipedia.” Accessed: Sep. 06, 2025. [Online]. Available:
https://en.wikipedia.org/wiki/Lemmatization

“Stemming and lemmatization.” Accessed: Sep. 06, 2025. [Online]. Available:
https://nlp.stanford.edu/IR-book/html/htmledition/stemming-and-lemmatization-1.html
“Named-entity recognition - Wikipedia.” Accessed: Sep. 07, 2025. [Online].
Available: https://en.wikipedia.org/wiki/Named-entity recognition

“Named Entity Recognition - GeeksforGeeks.” Accessed: Sep. 07, 2025. [Online].
Available: https://www.geeksforgeeks.org/nlp/named-entity-recognition/
“Categorical data: Vocabulary and one-hot encoding | Machine Learning | Google
for Developers.” Accessed: Sep. 07, 2025. [Online]. Available:
https://developers.google.com/machine-learning/crash-course/categorical-data/one-
hot-encoding

140

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

“One Hot Encoding in Machine Learning - GeeksforGeeks.” Accessed: Aug. 25, 2025.
[Online]. Available: https://www.geeksforgeeks.org/machine-learning/ml-one-hot-
encoding/

“Bag-of-words model - Wikipedia.” Accessed: Sep. 08, 2025. [Online]. Available:
https://en.wikipedia.org/wiki/Bag-of-words _model

“A Gentle Introduction to the Bag-of-Words Model - MachineLearningMastery.com.’
Accessed: Sep. 08, 2025. [Online]. Available:
https://machinelearningmastery.com/gentle-introduction-bag-words-model/
“N-grams in NLP. N-grams, a fundamental concept in NLP... | by Abhishek Jain |
Medium.” Accessed: Aug. 25, 2025. [Online]. Available:
https://medium.com/@abhishekjainindore24/n-grams-in-nlp-a7c05claff12

“N-gram in NLP - GeeksforGeeks.” Accessed: Aug. 25, 2025. [Online]. Available:
https://www.geeksforgeeks.org/nlp/n-gram-in-nlp/

“Understanding TF-IDF (Term Frequency-Inverse Document Frequency) -
GeeksforGeeks.” Accessed: Sep. 09, 2025. [Online]. Available:
https://www.geeksforgeeks.org/machine-learning/understanding-tf-idf-term-frequency-
inverse-document-frequency/

“Word embedding - Wikipedia.” Accessed: Sep. 09, 2025. [Online]. Available:
https://en.wikipedia.org/wiki/Word embedding

“Word Embeddings in NLP - GeeksforGeeks.” Accessed: Aug. 25, 2025. [Online].
Available: https://www.geeksforgeeks.org/nlp/word-embeddings-in-nlp/

“Word2vec - Wikipedia.” Accessed: Sep. 09, 2025. [Online]. Available:
https://en.wikipedia.org/wiki/Word2vec

“Word Embedding using Word2Vec - GeeksforGeeks.” Accessed: Aug. 25, 2025.
[Online]. Available: https://www.geeksforgeeks.org/python/python-word-embedding-
using-word2vec/

“Large language model - Wikipedia.” Accessed: Aug. 12, 2025. [Online]. Available:
https://en.wikipedia.org/wiki/Large language model

“Zero-Shot Prompting: Examples, Theory, Use Cases | DataCamp.” Accessed: Sep. 21,
2025. [Online]. Available: https://www.datacamp.com/tutorial/zero-shot-prompting
“What is One Shot Prompting? | IBM.” Accessed: Sep. 21, 2025. [Online]. Available:
https://www.ibm.com/think/topics/one-shot-prompting

Y. Ban, R. Wang, T. Zhou, M. Cheng, B. Gong Google, and C.-J. Hsieh,
“Understanding the Impact of Negative Prompts: When and How Do They Take
Effect?,” Jun. 2024, Accessed: Sep. 21, 2025. [Online]. Available:
https://arxiv.org/pdf/2406.02965v1

J. Wei et al., “Chain-of-Thought Prompting Elicits Reasoning in Large Language
Models Chain-of-Thought Prompting”.

P. Lewis et al., “Retrieval-Augmented Generation for Knowledge-Intensive NLP
Tasks”, Accessed: Sep. 21, 2025. [Online]. Available:
https://github.com/huggingface/transformers/blob/master/

“Introduction | €& LangChain.” Accessed: Sep. 24, 2025. [Online]. Available:
https://python.langchain.com/docs/introduction/

b

141

[35]
[36]
[37]
[38]

[39]

[40]
[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

“Introduction | Ragas.” Accessed: Sep. 26, 2025. [Online]. Available:
https://docs.ragas.io/en/v0.1.21/index.html

“What Is a Chatbot? | Oracle.” Accessed: Aug. 11, 2025. [Online]. Available:
https://www.oracle.com/chatbots/what-is-a-chatbot/

“Machine learning - Wikipedia.” Accessed: Aug. 12, 2025. [Online]. Available:
https://en.wikipedia.org/wiki/Machine learning

“Linear regression - Wikipedia.” Accessed: Aug. 12, 2025. [Online]. Available:
https://en.wikipedia.org/wiki/Linear regression

“Logistic Regression in Machine Learning - GeeksforGeeks.” Accessed: Aug. 17,
2025. [Online]. Available: https://www.geeksforgeeks.org/machine-
learning/understanding-logistic-regression

“Logistic regression - Wikipedia.” Accessed: Aug. 17, 2025. [Online]. Available:
https://en.wikipedia.org/wiki/Logistic_regression

“Logistic regression | Definition & Facts | Britannica.” Accessed: Aug. 27, 2025.
[Online]. Available: https://www.britannica.com/science/logistic-regression

“What Is Logistic Regression? | Master’s in Data Science.” Accessed: Aug. 27, 2025.
[Online]. Available: https://www.mastersindatascience.org/learning/machine-learning-
algorithms/logistic-regression

“scikit-learn: machine learning in Python — scikit-learn 1.7.1 documentation.”
Accessed: Aug. 27, 2025. [Online]. Available: https://scikit-learn.org/stable/
“Structure of Perceptron | Download Scientific Diagram.” Accessed: Aug. 30, 2025.
[Online]. Available: https://www.researchgate.net/figure/Structure-of-
Perceptron_fig2 330742498

A. Sherstinsky, “Fundamentals of Recurrent Neural Network (RNN) and Long Short-
Term Memory (LSTM) Network”, Accessed: Sep. 06, 2025. [Online]. Available:
https://www .linkedin.com/in/alexsherstinsky

R. C. Staudemeyer and E. R. Morris, “Understanding LSTM-a tutorial into Long
Short-Term Memory Recurrent Neural Networks,” 2019.

“A neural network with 2 hidden layers | Download Scientific Diagram.” Accessed:
Sep. 06, 2025. [Online]. Available: https://www.researchgate.net/figure/A-neural-
network-with-2-hidden-layers fig3 351347266

“Tokenization in NLP : Definition ,Types and Techniques.” Accessed: Sep. 06, 2025.
[Online]. Available: https://www.analyticsvidhya.com/blog/2020/05/what-is-
tokenization-nlp

“Tokenization in NLP : All you need to know | by Abdallah Ashraf | Medium.”
Accessed: Sep. 06, 2025. [Online]. Available:
https://medium.com/%40abdallahashraf90x/tokenization-in-nlp-all-you-need-to-know-
45c00cfa2df7

“Byte-pair encoding - Wikipedia.” Accessed: Sep. 06, 2025. [Online]. Available:
https://en.wikipedia.org/wiki/Byte-pair _encoding

“The Technical User’s Introduction to LLM Tokenization.” Accessed: Sep. 06, 2025.
[Online]. Available: https://christophergs.com/blog/understanding-llm-tokenization

142

[52] “Linguistic Laws Meet Protein Sequences: A Comparative Analysis of Subword
Tokenization Methods.” Accessed: Sep. 06, 2025. [Online]. Available:
https://arxiv.org/html/2411.17669v1

[53] “Introduction to Stemming - GeeksforGeeks.” Accessed: Sep. 06, 2025. [Online].
Available: https://www.geeksforgeeks.org/machine-learning/introduction-to-
stemming/

[54] “Stemming in NLP: Key Concepts and Fundamentals Explained.” Accessed: Sep. 06,
2025. [Online]. Available: https://botpenguin.com/glossary/stemming

[55] “Lemmatization in NLP. Lemmatization is a more advanced and... | by Kevinnjagi |
Medium.” Accessed: Sep. 06, 2025. [Online]. Available:
https://medium.com/@kevinnjagi83/lemmatization-in-nlp-2a61012c5d66

[56] “Lemmatization: Key Componenets, Benefits & Types| BotPenguin.” Accessed: Sep.
06, 2025. [Online]. Available: https://botpenguin.com/glossary/lemmatization

[57] “POS(Parts-Of-Speech) Tagging in NLP - GeeksforGeeks.” Accessed: Sep. 07, 2025.
[Online]. Available: https://www.geeksforgeeks.org/nlp/nlp-part-of-speech-default-
tagging/

[58] “Part-of-speech tagging - Wikipedia.” Accessed: Sep. 07, 2025. [Online]. Available:
https://en.wikipedia.org/wiki/Part-of-speech _tagging

[59] P.Wang, Y. Qian, F. K. Soong, L. He, and H. Zhao, “Part-of-Speech Tagging with
Bidirectional Long Short-Term Memory Recurrent Neural Network,” Oct. 2015,
Accessed: Sep. 07, 2025. [Online]. Available: https://arxiv.org/pdf/1510.06168

[60] “Penn Treebank P.O.S. Tags.” Accessed: Sep. 07, 2025. [Online]. Available:
https://www .ling.upenn.edu/courses/Fall 2003/ling001/penn_treebank pos.html

[61] “Universal POS tags.” Accessed: Sep. 07, 2025. [Online]. Available:
https://universaldependencies.org/u/pos/

[62] “Named Entity Recognition - GeeksforGeeks.” Accessed: Sep. 07, 2025. [Online].
Available: https://www.geeksforgeeks.org/nlp/named-entity-recognition

[63] ‘A Brief History of Named Entity Recognition.” Accessed: Sep. 07, 2025. [Online].
Available: https://arxiv.org/html/2411.05057v1

[64] V. Yadav and S. Bethard, “A Survey on Recent Advances in Named Entity
Recognition from Deep Learning models,” 2019, Accessed: Sep. 07, 2025. [Online].
Available: http://2016.bionlp-st.org/tasks/bb2

[65] “One-hot - Wikipedia.” Accessed: Sep. 07, 2025. [Online]. Available:
https://en.wikipedia.org/wiki/One-hot

[66] “One Hot Encoding in Machine Learning - GeeksforGeeks.” Accessed: Sep. 07, 2025.
[Online]. Available: https://www.geeksforgeeks.org/machine-learning/ml-one-hot-
encoding

[67] “N-grams in NLP. N-grams, a fundamental concept in NLP... | by Abhishek Jain |
Medium.” Accessed: Sep. 08, 2025. [Online]. Available:
https://medium.com/@abhishekjainindore24/n-grams-in-nlp-a7c05claff12

[68] J. Daniel and J. H. Martin, “Speech and Language Processing,” 2025.

[69] “N-gram in NLP - GeeksforGeeks.” Accessed: Sep. 08, 2025. [Online]. Available:
https://www.geeksforgeeks.org/nlp/n-gram-in-nlp/

143

[70]
[71]

[72]

[73]

[74]

[75]
[76]
[77]
[78]
[79]
[80]
[81]
[82]
[83]
[84]
[85]
[86]

[87]
[88]

“TF-IDF: Weighing Importance in Text - Let’s Data Science.” Accessed: Sep. 09,
2025. [Online]. Available: https://letsdatascience.com/tf-idf/

R. Stuart and P. Norvig, Teyvytn Nonquoovvy: Mia abyypovy npoacéyyion, 4th ed.
Exd6ce1g KhedapiOpog, 2021.

T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient Estimation of Word
Representations in Vector Space”, Accessed: Sep. 09, 2025. [Online]. Available:
http://ronan.collobert.com/senna/

“Model architecture of (A) CBOW and (B) Skip-gram. | Download Scientific
Diagram.” Accessed: Sep. 09, 2025. [Online]. Available:
https://www.researchgate.net/figure/Model-architecture-of-A-CBOW-and-B-Skip-
gram_figl 335355568

“Measuring similarity from embeddings | Machine Learning | Google for
Developers.” Accessed: Sep. 09, 2025. [Online]. Available:
https://developers.google.com/machine-learning/clustering/dnn-clustering/supervised-
similarity

H. Touvron et al., “LLaMA: Open and Efficient Foundation Language Models”,
Accessed: Sep. 17, 2025. [Online]. Available:
https://github.com/facebookresearch/xformers

A. R. Openai, K. N. Openai, T. S. Openai, and I. S. Openai, “Improving Language
Understanding by Generative Pre-Training”, Accessed: Sep. 17, 2025. [Online].
Available: https://gluebenchmark.com/leaderboard

A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever, “Language
Models are Unsupervised Multitask Learners”, Accessed: Sep. 17, 2025. [Online].
Available: https://github.com/codelucas/newspaper

T. B. Brown et al., “Language Models are Few-Shot Learners,” 2020.

L. Ouyang et al., “Training language models to follow instructions with human
feedback”.

J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. K. Openai, “Proximal Policy
Optimization Algorithms”.

M. Chen et al., “Evaluating Large Language Models Trained on Code”, Accessed:
Sep. 17, 2025. [Online]. Available: https://www.github.com/openai/human-eval.
OpenAl, “GPT-4 Technical Report”.

S. Kadavath et al., “Language Models (Mostly) Know What They Know,” 2022.

A. M. Turing, “COMPUTING MACHINERY AND INTELLIGENCE,” Computing
Machinery and Intelligence. Mind, vol. 49, pp. 433—460, 1950.

Joseph Weizenbaum, “Computational Linguistics.” Accessed: Sep. 21, 2025. [Online].
Available: https://web.stanford.edu/class/cs124/p36-weizenabaum.pdf

K. M. Colby, S. Weber, and F. D. Hilf, “Artificial Paranoia’,” Artif Intell, vol. 2, pp.
1-25, 1971.

“The Elements of AIML Style,” 2003.

L. Voukoutis ef al., “Meltemi: The first open Large Language Model for Greek,” 2024,
Accessed: Sep. 21, 2025. [Online]. Available: https://huggingface.co/ilsp/

144

[89] D. Roussis et al., “Krikri: Advancing Open Large Language Models for Greek,” 2025,
Accessed: Sep. 21, 2025. [Online]. Available:
https://huggingface.co/datasets/wikimedia/wikisource

[90] A. Q. Jiang et al., “Mistral 7B”.

[91] H. Touvron et al., “LLaMA: Open and Efficient Foundation Language Models”,
Accessed: Sep. 21, 2025. [Online]. Available:
https://github.com/facebookresearch/xformers

[92] E. Almazrouei et al., “The Falcon Series of Open Language Models The Falcon LLM
Team *,” 2023, Accessed: Sep. 21, 2025. [Online]. Available:
https://huggingface.co/tiiuae/

[93] J. White ef al., “A Prompt Pattern Catalog to Enhance Prompt Engineering with
ChatGPT,” 2023.

[94] “Llama 3.1 | Model Cards and Prompt formats.” Accessed: Sep. 21, 2025. [Online].
Available: https://www.llama.com/docs/model-cards-and-prompt-formats/llama3 1/

[95] “Overview - OpenAl APL.” Accessed: Sep. 21, 2025. [Online]. Available:
https://platform.openai.com/docs/overview

[96] T.B. Brown et al., “Language Models are Few-Shot Learners,” 2020.

[97] “What is prompt chaining? | IBM.” Accessed: Sep. 21, 2025. [Online]. Available:
https://www.ibm.com/think/topics/prompt-chaining

[98] J. Wei et al., “Chain-of-Thought Prompting Elicits Reasoning in Large Language
Models Chain-of-Thought Prompting”.

[99] S. Yao et al., “Tree of Thoughts: Deliberate Problem Solving with Large Language
Models”, Accessed: Sep. 21, 2025. [Online]. Available: https://github.com/princeton-
nlp/tree-of-thought-1Im.

[100] M. Besta et al., “Graph of Thoughts: Solving Elaborate Problems with Large
Language Models”, Accessed: Sep. 21, 2025. [Online]. Available:
https://github.com/spcl/graph-of-thoughts

[101] “Prompt Engineering Guide: Unlocking the Potential of AI Models.” Accessed: Sep.
21, 2025. [Online]. Available: https://www.eweek.com/artificial-intelligence/guide-to-
prompt-engineering/

[102] Z. Jietal., “LLM Internal States Reveal Hallucination Risk Faced With a Query,”
BlackboxNLP 2024 - 7th BlackboxNLP Workshop: Analyzing and Interpreting Neural
Networks for NLP - Proceedings of the Workshop, pp. 88—104, Jul. 2024, doi:
10.18653/v1/2024.blackboxnlp-1.6.

[103] M. Binz et al., “How should the advent of large language models affect the practice of
science?,” Proc Natl Acad Sci U S A4, vol. 122, no. 5, Dec. 2023, doi:
10.1073/pnas.2401227121.

[104] Y. Guo et al., “Bias in Large Language Models: Origin, Evaluation, and Mitigation,”
Nov. 2024, Accessed: Sep. 21, 2025. [Online]. Available:
https://arxiv.org/pdf/2411.10915v1

[105] J. Morrison, C. Na, J. Fernandez, T. Dettmers, E. Strubell, and J. Dodge, “Holistically
Evaluating the Environmental Impact of Creating Language Models,” Mar. 2025,
Accessed: Sep. 22, 2025. [Online]. Available: https://arxiv.org/pdf/2503.05804v1

145

[106] W. Hsieh et al., “A Comprehensive Guide to Explainable Al: From Classical Models
to LLMs,” 2024.

[107] “Chinese room - Wikipedia.” Accessed: Sep. 22, 2025. [Online]. Available:
https://en.wikipedia.org/wiki/Chinese_room

[108] P. Lewis et al., “Retrieval-Augmented Generation for Knowledge-Intensive NLP
Tasks”, Accessed: Sep. 24, 2025. [Online]. Available:
https://github.com/huggingface/transformers/blob/master/

[109] “Techniques, Challenges, and Future of Augmented Language Models - Gradient
Flow.” Accessed: Sep. 24, 2025. [Online]. Available:
https://gradientflow.com/techniques-challenges-and-future-of-augmented-language-
models/

[110] “Block diagram of the LangChain ecosystem. [17] | Download Scientific Diagram.”
Accessed: Sep. 24, 2025. [Online]. Available:
https://www.researchgate.net/figure/Block-diagram-of-the-LangChain-ecosystem-
17 fig2 379507857

[111] “What is Retrieval Augmented Generation, and How Can You Use It? | by Niall
McNulty | Medium.” Accessed: Sep. 24, 2025. [Online]. Available:
https://medium.com/@niall. mcnulty/what-is-retrieval-augmented-generation-and-how-
can-you-use-it-d5db3169dc3a

[112] “Streamlit documentation.” Accessed: Sep. 27, 2025. [Online]. Available:
https://docs.streamlit.io/

146

