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ITepiAndm

To cUyxEovo NoYIouxd — and ENEYXTES AEPOTHAPLY WS EQPUPUOYES EEUTVLV XIVNTOV TNAEQPOVWY — EXTE-
AelTon GE BLaPEXMOC Kol THO TUEAANTAO UNLXO. 26TOC0, Tol GQINUATO NOY® TOURUANNALAS TOROUEVOUY XAT
xow1 oporoyio 50oxoro va evtomiotolv. ‘Eva mapdAAnho mpdypouuo umopel va exterectel ye exbetind
TOANOUG BLIPORETIXOVUE TEOTOUS, AVANOYO UE TO TG OLATAEXOVTOL TO VAUTA TOU GTO XEOVOTEOYQOUUAL.
Edv axoun xou plo extéleon npoxakel o@diua, auth umopel tehixd vo cuufel, mpoxolwvrtag duvnTixd
XATAO TEOPIXEG OLVETEIES. Mot mpoaéyyion vy TNy enoifeuoT TS anouclag GPINUATWY AOY( TOEON-
Aniioc o éva mpdypoapua eivon to Stateless Model Checking (SMC), to onolo e€epeuvd cuo TnuaTixd TOv
XWPO TOV THAVOY EXTENECEOV () VoL AVTITPOCKOTEVTIXG UTOGUVONO QUTOV) EXTENMVTOS ETAUVELNNUUEVAL
TO TEOYEOUUN OO TNV AEXIXY XATACTAOY) €0C TOV TEPUATIONS UTO OLOPORETIXA CEVAQLOL YEOVOOROUONO-
ynong. M Baowr euxanplor €yxeiton 0TOV TAEOVOOUS: TOANEC EXTENETELS EMOELXVOOUV TAVOUOLOTUTY)
CUUTEQLPOEE. TOU TROYEAUUITOS o ETOUEVOS Oev yYeetdletal Vo eEXTENEGTOUV ONeC. §20T600, axdun
xan ot o e&elrypévec tapoharyéc Tou SMC (Baoiopévee oe woduvopio happens-before, topatneiowne
happens-before 7 reads-from) eZoaxorouvboVV var e€epeUVOlV TOANES POPES EXTENETELS OTIOU OXAL T VLoITaL

owafalouv Tic (Bleg Tiuéc.

Auth n epyaota diepeuvd v Iooduvopia ‘Odewv (View Equivalence), v mo odpn yvwoth oyéon too-
duvapiog Yo To LOVTENO oLVETELS UVARNS TNe Axoloubiaxic Yuvénelog (Sequential Consistency): 8o
exteENéoElS YapaxTnellovial LooBUVOES oV Xal HOVOV oV Xdle avdryvwon emoTeépel Ty (Blar T, ovedio-
™Ta oo To ol eyypa@h Ty tophyoye. Ewoaydyouue tov VIEWXPLORE, Tov mpito 0phd (sound) xau
Béxtioto (optimal) ahyopibuo yia T e€epelivion axoroubioaxd GUVETOV EXTENEGEMY TOPAANNA®V TR0~
YeoudTwY UTo Wooduvauia 6gewv. O VIEWXPLORE avayvop(lel OXeg Tig mboavég Tiuég xdbe avdyvwong
xot €EEPELVE it EXTENEGT OVE GUVBUOOHO TULWVY, ETUTUYYAVOVTAS VoL EXTENETEL TEAXS oxpLfede plor exté-
\eom avd x\don woduvoploc oewy. Ta vo emtiyer autd, o VIEWXPLORE amantel évav alyopifuo yia
TNV XATAOXELT| 0xON0LOLOXE CLVETHY exTENECEWY. Eloorydryouue tov anydpluo CONSTRUCTWITNESS, o
omolog EXTENEL QUTH TNV XATACKELT] OE TONUOVUUXO YEOVO Yia OYEDOY ONEC TIC ELGODOUC, ToEd TO YEYO-
Vo 6Tl o TpbPANua autd elvan NP-thfipec. O VIEWXPLORE vlornoteltan yio npoypdupato C/Pthreads
uéow evowudtwone pe to gpyorelo NIDHUGG nou Paciletar oto LLVM.

Emmiéov, anodewviouye 6TL 10 TpOBANUL amdQaong yia TO €6V OTOLOHTOTE oXONOLBLXE CUVETHC EXTE-
\eor) evog 600€vTog TapdAANNouL Tpoyeduuatog Tapafialet pio dobeloa WwioTNTa, elvon NP-tAripeg. Auto
%aBlEpOVEL €val XATO PEAYUA UTONOYICTIXAC TOAUTAOXOTNTOS oL Lo Vel ave€dpTnTa omd OnoldnToTE

EMNOYY| OY€ong looduvaulag.

A€Zeig-xhedid: Hopdinha Ipoyeduuota, Axoloubon Xuvéneia, Enanrifeuon poypopudtov, State-
less Model Checking, Iooduvapulo ‘Odewv, VIEWXPLORE, Kataoxeun Exteléoewy, NP-tAnpdtnta
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Abstract

Modern software — from avionics controllers to smartphone apps — runs on increasingly parallel hard-
ware. Yet concurrency bugs remain notoriously difficult to uncover. A concurrent program can execute
in exponentially many different ways, depending on how its threads are interleaved. If even a single
interleaving triggers a fault, it may eventually occur, potentially causing catastrophic consequences.
A standard approach to verify the absence of concurrency errors in a program is Stateless Model
Checking (SMC), which systematically explores the space of possible interleavings (or a representative
subset thereof) by repeatedly executing the program from the initial state to termination under dif-
ferent scheduling scenarios. A key opportunity lies in redundancy: many interleavings yield identical
program behavior and therefore need not all be explored. However, even the most refined variants
of SMC (based on happens-before, observers, or reads-from equivalence) still explore multiple times

interleavings where all threads read the same values.

This thesis investigates view equivalence, the coarsest known equivalence relation for the Sequential
Consistency (SC) memory model: two executions are equivalent if and only if every read returns the
same value, irrespective of which write produced it. We introduce VIEWXPLORE, the first sound and
optimal algorithm for exploring concurrent executions under view equivalence. VIEWXPLORE identifies
all the possible values of each read and explores one relevant interleaving per combination of values,
executing exactly one execution per view equivalence class. To achieve this, VIEWXPLORE requires
an algorithm to construct sequentially consistent executions. We introduce the CONSTRUCTWITNESS
algorithm, which performs this construction in polynomial time for nearly all inputs, despite the
problem being NP-complete. An implementation targeting C/Pthreads programs is built through
integration with the LLVM-based NIDHUGG stateless model checker.

In addition, we prove that the decision problem of determining whether any SC' execution violates a
safety property is NP-complete. This establishes a lower complexity bound that holds independently

of any equivalence strategy.

Keywords: Concurrent Programs; Sequential Consistency; Program Verification; Stateless Model

Checking; View Equivalence; VIEWXPLORE; Execution Construction; NP-completeness
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0 Extetauévn EXAnvixr Iepidndr (Extended Greek Abstract)

H nagovoa evérnra magéyetar pia xavonotixols A6yovs xat Sev elodyet véo TEQLEYOUEVO T CVUTANQWUATIXES
TANQOPOQIES.

This section is provided for regulatory purposes and does not introduce new content or supplementary

information.

0.1 Ewoayoyn

H e€dmhowon tov ToNUTOENVOY GUCTUATWY, ATOEEOLd, UETAED GANMY, TNG XUTALPEVONS TNS XALUAXOONS
tou Dennard, €yl xataoTOEL TOV TORAIANNAO TEOYEUUUATIONS AVUTOCTAOTO HEQOG GYEDOV XdDE eoo-
noyhc. Amoé xplowo Brounyavind xou lTexd cUC THUXTA, UEYEL EQUPUOYES XIVNTOV TNAEPWVOY, O CWOTOG

YERLOUOC TOU TORUANNAIOUO) GUVLO T amoeodTnTy TEoUTOBEGT YLol TNV AGPANELL Xou TNV A€loTo Tio.

201600, 1 AVATTUEY TUEAAATIAOLU NOYLoUIX00 XEUPEL ONUAVTIXEC TROXNNOELS. LTMAVIES Xl OUCXONO OVi-
YVEVOLUES ONATAETLORAOELS UETAUE) VIUATOVY UTOROLY VoL 001 YI0UV GE GQEAUaTa ToU epavilovTon anpd-
Bhemta xotd Tov xedvo extéNeoNg xau elvar dUoxo o Vo avarapayBolv oe TepLBAANOY BoXUDdY. XpdapoTo
6mog oL cuvbrxeg avtayoviopol (race conditions) 1 ou mopaPidoels atopxdTNTAC Elvan YoUEOXTNELO TS

TapadelypaTaL.

[o tov cuoTNUATIXG EVTOTIOUO TETOLWY CQUNUATOV Exel avantuyOel 1 texvixy| Stateless Model Checking
(SMC) [12, 10] (Kepdhowo 2.3), n omoiot Aowfdvel oc elcodo €va TapdANNNO ey RO Xt TO EXTENEL
ETMAVELNNUUEVOL UE BLOPORETIXG YPOVOTEOYRAUUATA, BNNADY SLopORETIXES BIATAEEC TWY YNUETWY GTO ¥PO-
VOTIROY PO, OOTE Vo TEEEEL EVal GUVONO EXTENECEWMY TOU VoL XONUTITEL ONEC TIC TLOOVES GUUTEQLPORES

ToU UTopel var €XEL TO TEOYPUUUAL.

A&ilel va dieuxpivio el Twg ot anydelbuol Stateless Model Checking dev €youv mpdoBoor otov mryoio
%x0OOxa Tou eEeTAlOUEVOU TROYEEUUATOS, OANE ENEYYOLY HOVO TOV YEOVOBEOUONOYNTH Xot Aofdvouyv
YVOON HOVO YL TS AELTOVEYIEC TOU EXTENOUVTOL GTNY xowdyenotn uvAun (emnpealouevn Béong uvAung
xou T avdyvoone/eyypapric avd Aettoupyia).

Mo tpwtdhelor d€a Bor Ty amhd vor exTENEG TOUY AN Tat BV X EOVOTIROY PAUUATAL, ONAADY) ONEC OL Tho-
vég dlatdielc vnudtwy. To Baouxd mpdfAnuo authg Tng WEag €y xeElTan 0TO YEYOVOSG OTL EVal TONUVIUATIXG
TEOYEOUUO UTOREL Vo EXTENECTEL UE eXOETING TONNG BLapopETIXG X pOoVOoTpOYEduUaTa, xolde ol mhovég
dtartdelc Tov ynudtwy elvor exbetind Toréc. Anodewxvietar og auth TNV gpyacio (Osdpnua 2.2) twe éva
TeOYeoUa Ue k viuoTor xou 1 AeLToupyleg avd VA ETLOE ETAL % OLAPOPETIXA YpOoVOTROYEdUUaT. Ev-
dewetixd yio k = 3 vApata xou n = 10 hettoupylec avd vApa undpyouv 5.5-1012 (5.5 tetpdic-exatouipto)
Ye0ovVoTROYEdUUoTa. AXoun i av €va udvo amd ta exBeTind TONNG mhoavd ypovonpoyedupato topafLdlel
XATOLOL DOCUEVT] WBLOTNTA ACPUNELNS, TO TEOYEUUU BEwpeiTon Un ACPANES, %O TO XEOVOTEOY QU AUTO

TEETEL VoL EVTOTUO TE.

[Tpoxewévou va amogeuybel 1 e&avtanmxn avalAtnomn OXeV Twv TOAVOY ¥EOVOTEOYEUUUATOY, TA TE-
Nevtado ypovia €xel obel Eupaon oty avalAtnon oyoplBuwy Tou amo@edyouy Tov EXEYYO0 LoOBHVOUWY
exteNéoewv (Kepdhouo 2.4). Ou akybpbuot autol dapotpdlouv dhec Tic mbavéc eXTENECELS OE XNAOELS L-
coduvaiag ue Bdon pia xaboplouévn ox€omn LoodUVIUIOG XAl ETELTA ETLXELPOVY VU EXTENEGOUY TOUNYYLO TOV

Ho EXTENEDT), 1) WDavixdTERA axplPidg Wwia exTENEDT), amd xdhe xNdoT LoodUVAULIC.

O yopoxtnplouds g Looduvoplog dlagépel and aNyoplduo o a\yoplduo, duwe mdvta 800 eEXTENECELS

15



mou yapaxtnellovton 1wodlvoueg epgavilouy Ty Bio cuureplpopd. Io cuyxexpyéva, xaboOg to vi-
pator Bewpolvtan artioxpatixd d00éviny Tov TWwdV tou Swfdlouy and TNV XOWOXENC TN UVAUN, VLol Vo
YAEUXTNELETOVY BUO0 EXTENECELS LOOBUVOUES TEETEL ONaL Tl VAUTA Vo €Y0UV OLPdoel 08 ONEC TIC AEL-
Toupyieg avdyvwong Blec TWég amd TNy xowodyeno Tt uvAun. 261600, 500 eXTENECELS UTOREL Vo €X0UV
(Blec Twwée avdyvwong oe dheg Tic Aettoupyies avdryvoone (omdte (Bl cuuneplpopd) xat Top’ OXot aUTé
QLo amodeX T ox€a ooduvaiag var uny Tig yopoxtneloet .oodivaues. Mo tétola oyéon toduvapiag Ba
avaryxdoet évay oxyoelbuo mou otneiletar oe auty vo e€epeuvroel Tdvew uiot EXTENECT AVd GUUTERLPOES

TPOY POUULTOC.

H epyaoia auth peNetd pio véa oyéon wooduvapiog exteléoewy, v Iooduvayuio Odewv (Kepdhoo 3
xat oplopods 3.1), olupova ye Ty omolo, 0 TapaTdve TAEOVAoUOS eEoNElpETOL Xou TAEOV B0 EXTENETELS
yopaxtneilovion 1oodivaues ov xan Wovo av OXa tar viApato Stafdlouv (Bleg Tiég yior ONeC TIC AelTovpy(eg
avdyvwone. H epyacio auth| eloaydyer tov VIEWXPLORE, Tov Tp®To oX\yoelfuo mou e€epeuvd oxplag
war extéNeon avd xidor Ieoduvaplog Odewv. Axpldc eneldrn 0 TAEOVAOUOC TV TONMOTEROY OYECEWMV
looduvoiog e€ahelpeton, T0 TANHOC TWV XAICEMY LOOBLVOULOC UELOVETAL Xk ETOL O XEOVOS EXTENECTC TOU

oa\yoplBuou e€epebivnong PewdveTaL xou UTOS.

0.2 Xuvewc@opeg

H rapotoa spyacio tephopfdver téooeplc oLVELTQORES, oL omtolec and xowvol e&eNiooouy Tt Bewpla xau

NV TRax T TNE enonnifevone TapdAANAwY tpoypauudtoy. Ol cuvelopopéc autég elval:

1. Ewoaydyetor o alyopifpoc VIEWXPLORE, 0 TptT0¢ oY OpfUoc eEEpeVNONG EXTENECEWY TOREANT-
AWV ROy popPdTOV LTS Wooduvopuio Glenv yLo To HovTéNo Tng Axoloublaxhc Yuvénelas (Sequential
Consistency) pviunc. O a\yopuoc autoc anodewxvietar ophoc (sound) xou BéXTiotoc (optimal),
OnAad” exteNel axpifdc pia avTimpocwreuTixy eXTENETT avd xAdom lwoduvaplog ddewv (Kepdhouo 4
xon Beoprpato 4.1 xou 4.2).

2. Ewaydryetar aohyoptBuog yio 1o NP-mifipec mpdPanua tng xoataoxeuis Axoroubiaxd Yuvendv (Se-
quentially Consistent) exteNécewv. O alyopliuoc anoteleitor and 300 euplo TN GTEBLAL PE TONL-
TAOXOTNTA TOAVWYLUIXOL Yedvou, to omola PBacilovian oe yedpoug, xat €va TENXO GTEdl0 Tou
Baoileton oe enihuon npofifuatoc teptopopdv (Kegpdhowo 5). To euptotixd otddior emthlouv o€

TOAUOVUUIXO YEOVO GYEBOV TO GUVONO TV TLHAVOY ELGOBLV.

3. O VIEWXPLORE UNOTOLE{TOL X0l EVOWUATWVETAL GTO ERYONEl0 NIDHUGG, TOU eEXTENEL RO PAUUATA
LLVM IR, mpoogépovtac mhien unoctiplln yia tpoyedupata C/Pthreads (Kegdhawo 7).

4. Arnodewcvietan 6TL T0 YeVIXOTERO TEOPANU amdpacng Tng UTapdne Axoloubiaxd Xuvenolg exténe-
one mou TapafLdlet o Soouévn widtnta (MCSC) eivan NP-t\fpeg, xdtt ntou xabopilel to Bewpnuind
bptar %8B uebtdou exéyyou (Kepdhouo 9 xou Bewpruata 9.1 xou 9.2). To anotéleopa autd dev e-

vrornileton we ofuepa oTny Pifhioypogpia.

0.3 OcswenTtixd Ynofobeo

H xotavonon tng cuumeplpopds Tov TapdANNA0Y Tpoyeouudtoy Baciletar oty évvola TN EXTENEOTS
X OTN oyEon PETOED TV EVERYELDY TV VNUETOV, SMNADT 0TO AEYOUEVO HOVTENO CLVETELNS (memory
consistency model). Kdfe extéheon pmopel vo avomopactafel we éva olvoNo NettoupyLtdv avdprwons

(read) xou eyyoapic (write) névo ot xowbdypnotes Béoelc uvhung.
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Y10 poviého AxolouvBiaxrc Xuvéneiag (Sequential Consistency, SC) [20] (Kegpdhouo 2.2),
mou elofyaye o Lamport, amaitelton vor undeyet pio cuvoxY|, oelplaxt| BITaln OAWY TWV EVERYELDY, N

ool
1. Awtneel tn oelpd Tov evepyELOY xdfe viuaTog, xou

2. Anod{del oe xd0e avdry vwon TNV T TNE TO TEOCPATNG, SOUPOVOL UE TNV GELpLoXY) BLATalT), EYYeaUpng
oty Bl BlevBuvorn uviung.

Me dX\ho Noyia, ) SC povtehomolel évay enegepyao Ty, OTOU To VAUXTO EXTENOUVTOL TOUESANTACL UEV, UANG

TO AMOTENECUA EIVOL GOV VoL €Yoy EXTENECTEL GELRLAXA.

Y Bibhoypagia éxouv npotabel didpopes oyéoeic tooduvapiog exteNéoewv (Kepdhoo 2.4). Ou onua-

vTuxoTepeg elvon ol e€ne:

1. Icoduvopio Happens-Before [1, 3] (Kepdawo 2.4.1): Ewdyel t oyéorn happens-before,
1 omolo expedlel TNV awTioTTa PETAED evepyeldy. o ouyxexpiuéva pa Aettovpylo eivar happens-
before amd wa dedtepn Aertovpyio av oL 600 Nettoupyieg agopolv TNy (Biar dielbuvon uvAung xau

TouNdloTov plo amd Tig BVo elvon Nettoupyia ey ypaphc.
Avo extenéoeic yapaxtneilovian 1odivayues av endyouv Ty (Bia oxéon happens-before.

2. Icoduvapia IMapatneRowune (Observable) Happens-Before [7] (Kegpdhowo 2.4.2):
Ewdryel tn oxéon nopatneriowunc happens-before. Ilio cuyxexpiuéva o Nettovpryla eyypaprc etvan
napatnerowa happens-before amé pio Aettovpyia avdyvwong mévta, av ol 500 Aettoupyleg apopolv
v (B SievBuvon pviung. 2ot6o0, uia Nettovpyla eyypapng elvon tapatneriowa happens-before
amo Lot Aettoupyiog eyypaprc av xou UOVo oV UTEXEL Wiar Nettoupyia avdyvwone mou SofBdlet amd
v 0e0TEEN Nettoupyia ey ypaghc. LNUEVETH TG Bewpolue 6Tl pia Aettoupy o avdry voong dlafdlet
and Wt Aettoupyla eyypaphc 6tav 1 Aettouvpyia eyyparic elvar 1 teeutala Aettoupyio ey ypapnc TEwy
v Aettoupyio avdyvwong yioe Ty StedBuvorn puvAunce mou dwfdler n Nettovpyia avdyvoone. Avo

exteNéoelg yapaxtneilovial LloodUvopEeS av emdyouy Ty (Bia oyéon napatneriownc happens-before.

3. Icoduvapia IInyhs Aviyvoong [5] (Kegpdhawo 2.4.3): Ao exteléoeic elvon lood0vopes
av OXeC oL AetToupy(eg avdyvwong Twv 8Vo exterécewy dlafdlouy and tny (Bl Aettovpyio eyypaprc
OTIC 000 EXTENECELS. XNUELOVETAL, OTWE Xob TpLY, TG Bewpolue O6TL wior Nettoupyia avdyvwong
dtafaler amd wor Aettoupyior eyypaphc otav 1 Aettoupyio eyypaghc elvar 1 teleutalor Aettovpylo
EYYPUPHC TRV TNV Aeltovpyla avdryvwong yia Ty diebbuvern puvAune mou dwfdler n Aertovpylo

oAV3Y VOOTC.

Ko yia tig tpeic mapandve oyéaoeic tooduvaulag éyxouy mpotabel opbol xou BéNTIoTOL akydptbuot, dnhady

oy oplbuol mou e€epeuvoly axplBmg ULl EXTENEOT avd XAGOY) LooBUVOloC.

[TopdTi oL mapandve oyéoelc looduvapiag emdyouy onuavTxd wxedtepo TARB0C XAdoewy tooduvayiag ot
oxéon YE To TANDOC TV EQIXTHOV YEOVOTROYRUUUATWY, Topouévouy un Béxtiotec. Ewwxdtepa, ouyvd
Bewpolv 500 exTENECELS UN LOOBUVOUES TAEONO TOL 081 YOUV GTIC (BLlEC TUES avdry vwomg xan dpa o TNy (Bia

CUUTERLPORE. TEOYPAUUATOG.

[oe opdderypa, ov dUo eyypapés ypdpouy xar ol 800 TV Twh 0 xau wa avdyvwon T diafdlet, to
TEOY oM OEV UTOEEL VoL SLoxpivel ol amd TG 600 £YYRAUPES TR YAYE TN CLYXEXEWEVT TWT oL Bldfaoe

N Nettovpylo avdyvoone. 2oTt6c0, oL oL TEEG Topandve oxEoelc looduvauiag Ba yapaxtneloouv dlo
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EXTENECELS OTIC OTOlEG 1 AeLTovpyio avdyvwong ddface and dlapopeTixn Aettoupyio eyypapnc Ty Bla

TIWY), WS U1 LOOBUVOUES.

0.4 Icoduvapio 'Odeov

Autd axpific 1o xevéd xaintel i Icoduvapia ‘Odenv (View Equivalence), nou pyeketdtor otny
nopovoa epyacia (Kepdhawo 3), n onola opiler v iooduvopia ye Bdon wévo tic Twéc mou teNud dafd-

Covtan, avedptnta and v npoéreuct| toug (Opoude 3.1).

Avo exteNéoeic elvan l0OBOVAUES av OXEC oL Aeltoupyieg avdyvmoneg dwafdlouy Tig Bleg Twwée oTic dlo

EXTENECELC.

H oyéon iwooduvapiog autr petwvel onuovtixd to TAHB0g xAdoewv tooduvauiag, ETTEETOVTAC GUVIXONOUDA
NV pelwon Tou xedvou eXTENEOTC YLl TNV EEEQEDVNON TWYV EXTENECEWY EVOC TORAANTAOU TEOYEAUUITOS

(Bewpidvtag alyopifuouc tou eZepeuvoiv axplie pio extéNeon avd xAdor toduvayiog).

Iapoucidlovton dYo Teoypeduuata-Topadelyuata tou delyvouv v oyl e Iooduvauloc Odewv otnv

exBetiny pelworn Tov xN\doewv Looduvopulog:
1. MANYSAMEVALUE (MSV) (Keg@dhowo 3.2.1)

To mpdypouuo amoteNelton amd 800 VAUATHL: TO TEWTO YEAPEL eNavENNuUéva TNy Twh 0 oe pa
2x0WOYEO TN UETABANTY, Ve To BevTepo T dlafdlel. Anodeixvietan otny nopodoa epyacia OTL, UE
Béon tic tohoudtepES o éoelc looduvauiag, To TAHHOC TV EXTENECEMY X0 TOV AVTIOTOLXWY XNACEWY
tooduvapiog auZdveton aoLUTTOTXG EXBETIXE WS TEOS To TARBOC TV Aettoupylndy (Oswphuota 3.1
xon 3.2 xou wopopa 3.1). Qotd00, 08 ONeC TIC EXTENEDELS ONES OL AetTovpryieg avdryvoong dwfdlouv

v wun 0. 'Etol, 1o npdypaupa éxel axplfog wla xhdorn Isoduvauiag Odewv.
2. READINC (Kegdhowo 3.2.2)

KdBe viua diaBdlet pa xowodyeno tn UETaBANTH X xou 6T cLuVEXEL Yedgpel TNy T x + 1. Metpdton
OTL 0 AELOUOC TOV BLAPORETIXWDY XNACEWY L0BUVIULNG ALEAVETAL TOAD O apyd Ye TNV adEnon Twv
vnudtwy, wc tpog v Iooduvapio Odewv oe oyxéon pe tic dikeg oyéoelc wooduvopiog (Ilivaxag 1

xon oyfua 2).

0.5 AMXyo6pebpog VIEWXPLORE

O VIEWXPLORE elvou 0 TptdTog anydplfuoc mou e€epeuvd axpifade pio extérean yia xde xhdon Ioodu-
voploe Odewv (Kegpdhowo 4). T va to emitiyet, ewodyer v évvola tou read-cut (Optopoc 4.1), dnhadn
TOV GUVBLAGUO, yLot ONa Ta VApaTa, Teobepdtov pog axoloubioc Ty nou Swofdlel xdbe vhua.
Ye adpéc ypoppés o alyobplbuoc axoroubel to e€hc Priuata (ANydeiBuog 1):

1. Teéyer pia extéleon.

2. Awtpéyel Oxa Ta read-cuts g extéNeong:

i. T xdbe vApa, emexteivel xdbe read-cut pe pio Aertoupryio avdry voong mou dlafdalet dlapopetixn
TN amb TNV TeEYouoa exTENEDT. L'ivovTon emexTAoEC it ONEC TIC DLUPOPETIXES TWWES TTOU
EYYPAPOVIOL GTNV CUYXEXPWEVT BlelBuvon wvAune oty ouyxexpwévn extéreon'. Av to

enexteTopévo read-cut avixel oe extéleon nou e&epeuvinxe oto moEeNBOY oryvoeitou.

LoxpuBéotepa ylor OAec Tic TYEC TOU EYYEEPOVTOL amd EYYPUPEC TOU ETLTPETEL TO CUYXEXPIWEVO Tead-cut.
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ii. Me tov a\ybpiduo xataoxeunc axoroubioxd cuVenwy exteNécewy CONSTRUCTWITNESS, oy
oUTH 1) EpYOola ELOAYAYEL, ETUYELREL VO XATAOXEVAOEL Eval Teobeo eXTENEONC, AV LUTAEYEL,
TOL VoL EMdyEL To emexTeEToévo read-cut. Av Sev umdpyet, To emextetopévo autéd read-cut

aryvoelto.

iii. Av mponyouuévwe xataoxeudo Tnxe TEdbeUd EXTENECTC, TEEYEL UL VEX TIATIRT) EXTENECT] VLol TO
Tpobepa AUTO YENOWOTOLOVTOS TOV Ypovodpodoroynth. Tonobetel tnv extéleon oe uia Soun
0edopévmv Tou datneel exteNéoelc mpog avdauor. Lo Aoyouc yelwone tne yenong pviung,
Omwg e€nyelton, EMAEYETOL WS BOUT| BEBOUEVWY ULl OLEE, Ay Xou 1) ETIAOYY) aUTY| BEV emnEedlet

Vv opbBdtnTar Tne e€epedivnone.

3. AgoU emavandfel Tnv mopandve dladixacta yia OXa Ta read-cuts tng extéleong mou elye Teé€el, mpo-
YWEUEL, OTIWE TUPATAV®W, GTNV AVINUCT] TNG ENOUEVNS EXTENEDTC TTOU UTHEXEL TNV DOUY| DEBOUEVHV

TOU BLATNEEL TIC EXTENECELS TTEOC AVAAUGT).
4. ‘Otav dev amouévouy GANEC EXTENECELS TIPOG AVAAUGT), 0 aNYOpLlpog e€epebvnone teppatilet.

Emonuaiveton 6Tl T0o Tapamdve GUVIG T LOVA 0L Lol aBRT|, UTERATAOUGC TEVUEVT] TEQLY (T TOU oy OpLduou,

TOU AMEYEL ONUAVTIXE Ad TOV TINYEYN ONYOELOUO O 0TOlog OVONDETAL TOROXAT.
Arnodewxvietan 1L 0 VIEWXPLORE elvou:
1. OpB6¢: E&epeuvd toundylotov uio extéreon and xdBe xhdon Iooduvopiac Odewv. (Oedpnua 4.2)

2. BéXtiotog: Elepeuvd axplfdde wa extéreon and xdbe xhdomn Iooduvopias Odewyv. (Oebdpnua4.1)

0.6 AXyopBpoc CONSTRUCTWITNESS

H xotaoxeur; Axoloubiaxd Xuvenov (SC) exteéoewy yio dobeloec axoroubiec Aertouvpydv avd vAua
€yel amodetyfel mwg etvon éva NP-tfipeg mpofAnua, dnhadr éva utohoyloTixd duoxolo meéfBinua. 1o
oLUYXEXPWEVD, TO TEOPBANUa andpaone av undpyet Axolovblaxd Yuvenhc extéleon eivon NP-t\fpec [11].

[Top’ OXat autd, eueic eloaydyoupe tov oNyoelBuo CONSTRUCTWITNESS TOU XATAOXEVALEL OE TOANUWYU-
WX xpovo AxolouBioxd Xuveneic exteNéoelc o edov yo dhec Tic mbavéc eloddouc (Kegpdhawo 5). 1o

ouyxexpiéva, o CONSTRUCTWITNESS yenotdonolel Toug axdlovboug teelg unyaviogois:

1. HEURISTIC-URF (Ke@dhowo 5.2): Ltdyoc tou mpdtou otodiou eivar vo dellel o8 moAvwvuuLxs
YEOVO OTL Yia XmOLEC EL0OBOUE BeV UTdpYEL axoroubloxd cuVETHg exTéNeDT. AUTO emTuYYAVETAUL
xatooxeLdlovTag oTadlaxd uio avaryxao i oxéorn happens-before, und tTnv évvola twg oV LTdEyEL-
XATOLOL 0XONOLBLOXE GUVETTC EXTENEDT), TOTE awTH Bar xavoolel TNy avoryxaotixy) happens-before
oxéon. H oxéon auth mpéner va ebvan oxuxdur). Av oe xdmoto onueio, eicaydyouue x0xho téTe

elvon ad0vVaTO var uTdEYEL axONoLBLOXE GUVETAC EXTENEDT).
To otddo autd emoTEEYEL elte aovrenss 1 dyvworo.

2. HEURISTIC-INCR (Kegdhawo 5.3): Xtdyoc tou dettepou otadiou el vou vor XaTooXeUdoEL Yo e-
ATENEDT), XPNOWOTOUVTOS TOCO TNV avayxacTxr oyéor happens-before nou utohoylotnxe mpon-
youpéveg, 660 xou TNV BIAToEN TV AELTOURYLOY NS EXTENEONC omd TNV omnola Topdydnxe n el
c0d0¢ tou CONSTRUCTWITNESS ctov VIEWXPLORE. Ilio cuyxexpwéva, mapatneeiton 6TL oTov
VIEWXPLORE 6Xe¢ ot eloodol tng CONSTRUCTWITNESS mpoxOntouy Ue “uxpéc peTaforéc” and
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W aieyix) oxohouBiaxd cuveny| extéheon. ‘Etol, elvon mbavd, yenowwonowdviag tny Sdtaln twyv

AELTOLEYLOV QUTAHS VO UTOPECOUUE VO XATUACHEUGGOVUE Uial axoNoubiaxd cUVETH exTéreo,.

YNV TRy OTIXOTNTA, 1) XATAOXEVT| Efvar onpavTind mo oOVIETN and autd Tou TEPLYPAPETOL EO, KoL
ouT6 oL yivetan elvon T xataoxeudletar pio enapxnc happens-before (npoodiopileton Tt onpaive
T0 enaExNC) xou oV TEOXVPEL AXUUNIXY, ETLO TEEPOVUE WS EXTENEDT) Uil TOTONOY XY TNS Ta&vounom,

EVE AV TEOXVPEL XUXNXT] ETULO TEEPOLUE dPVWOTO.
To otddo autd emioTeéYeL eite éva mpdleua extéleons 1 dyvworto.

3. COoNSTRUCTWITNESSCOMPLETE (Keg@dhawo 5.1) Av xou tor 800 moapomdve otddio emotpédouy
AyrawoTo XATAUPEYYOUUE OE EVOL TEITO CGTABO TOU ATOPUVETOL YLl ONEC TIC ELOOBOUC ELTE AOVVETES
elte ye mpdleua extéleons. O anyopibuoc autdc Paciletar oe avorywyr Tou TpoPAAuaToC o enthuon

TEOPNAUATOC TEQLOPLOUMY.

Yy mpdn, oL 800 TEMTES TEXVIXES ETITUYYAVOUY oYeddY Tdvta, eEaogarilovtac uhn\ enidoon (mo-

Avwvuuxd yeévo).

Ynuewdveton OTL pe dedopévo OTL €xel anodelylel OTL To TEOPANUO XATAOKEVAC axONOLOIXE CUVETWVY
exteNéoewv elvor NP-mhfipec [11], extéc av P = NP, dev undpyer olydpiBuoc moluwvuuixol ypbvou
TIOU VoL OmOQAVETAL Yol ONEC TIG €L0600UG. AUTO PUOIXE BEV ATOXAEIEL TNV TAPATAVGD XATAOKELT), OTOU

TOAUOVUUXO XEOVO ATALTOUY OL TEPLOCOTEPES E(CODOL OANS Oyl ONEC.

0.7 MeXhovtixéc Enextdosic
MeXhovtxd, 1 epyaota auth uropet va enextabel (Kegpdhowo 10):
1. Me v unocthpien atopxwy Aertovpyldv Read-Modify-Write xou xheldwpdtov.

2. Me v unootiplln mo xoXop®V HOVTEN®Y ouvénelas uvAune (6nwe Total Store Order, Partial
Store Order xou Release/Acquire).

3. Me v nopodAnhonoinoy tou alyoplBuou e€epelivnong yia adinomn enidoong.
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1 Introduction

Writing correct concurrent software is hard. Race conditions, atomicity violations, and misplaced
memory fences manifest rarely, depend on timing, and may survive months or even years of field
testing — sometimes only being discovered when they cause catastrophic failures. Notorious incidents,
e.g., the Mars Pathfinder resets [14], the 2003 Northeast Blackout [22]|, and the Therac-25 radiation

overdoses |21], can all be traced back to subtle race conditions and other concurrency errors.

Underlying the above failures is the fact that the execution of a concurrent program is inherently
non-deterministic due to scheduling non-determinism. A concurrent program may be executed under
multiple possible schedules, each exhibiting potentially different behaviors depending on the order in

which the scheduler interleaves the operations of the participating threads.

Regardless of the scheduling decisions, a correct concurrent program must preserve its intended se-

mantics. Ensuring this property is the responsibility of the programmer.

A natural need that arises from this challenge is for a tool that can execute all feasible interleavings
that a concurrent program may exhibit. Such a tool would allow a programmer or verifier to explicitly
check whether certain properties hold in all feasible executions - for instance, that the program never
crashes or violates an assertion. However, the number of possible interleavings of a concurrent program
grows exponentially with the number of threads and shared accesses. For a program with & threads

and n operations per thread, there exist E:?)%: distinct interleavings. For example, with £k = 3 and

n = 10, the number of possible interleavings is 5.5 - 102, Consequently, exhaustively executing all

feasible interleavings is, in general, computationally infeasible.

Fortunately, many interleavings result in the same program behavior. In particular, consider two
different interleavings in which all threads read exactly the same values at every read operation. Since
the reads read identical values, both interleavings induce the same thread-local behaviors, and therefore
the same global program behavior. This observation motivates the idea of reducing exploration by
pruning equivalent interleavings, keeping only one representative execution per distinct combination
of read values. In essence, the goal is to explore exactly one execution for each distinct combination

of values read by all threads.

Example 1.1. As a first example, consider a program with two concurrent threads, p and ¢, assigning

the same value to a shared variable x, initially set to O.

X :=1;

a (= X

This simple program has three possible interleavings (p;q;qs, ¢3P1¢2, and q,q,p;, where with ¢, we
denote the i-th operation of thread t). In all interleavings, the operation g, which reads x and assigns
its value to a local register a, reads the value 1. Consequently, all interleavings are behaviorally

equivalent, and it suffices to execute only one of them.

A key challenge is that the set of possible values a read may read is not known a priori in programs.
Some writes that could be read from may only appear after certain threads perform reads with specific
values. This dependency implies that a simple enumeration of all value combinations is insufficient;

instead, systematic dynamic exploration is required.
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Example 1.2. Consider now another program where two threads access a shared variable x, whose

initial value is 0. Once again, a is a thread-local register.

p q
a X, a X5
=a+ 1| x:=a+1;
a :=x
We start with an arbitrary interleaving;:
P191P29293

Here, the reads p; and ¢; read the value 0 and the read g, reads the value 1. At this point, we can
infer that these reads might also have read the values 0 and 1, but we have no evidence that any
other values are feasible. However, the following interleaving demonstrates the existence of additional

values:

P1P2919293

This interleaving, which the algorithm executes after the initial interleaving to cause ¢; to read 1 in-
stead of 0, introduces the new value 2, which could not have been discovered from the initial execution.
Therefore, the exploration algorithm has to incrementally generate and execute new interleavings that

reveal additional feasible values.

Constructing a feasible execution for a given combination of read values poses further challenges. A

read can read a particular value from a shared variable only if there exists a corresponding write that:
1. Writes that value to the variable.
2. Occurs before the read in the execution.
3. Is not subsequently overwritten by another write before the read occurs.

However, determining whether such an execution exists has been shown to be NP-complete [11].
Nonetheless, we introduce the CONSTRUCTWITNESS algorithm, which constructs SC executions in

polynomial time for nearly all inputs.

Moreover, some combinations of read values may be infeasible, meaning that no valid execution cor-
responds to them. The above example also demonstrates this. Observe that the read g5 can never
read 0 and the reads p; and ¢; can never read 2. An effective exploration algorithm must be able to

detect and discard such infeasible combinations.

1.1 Relation to Previous Work

Before our work, others have employed similar techniques. The general approach of systematically ex-
ecuting a representative subset of all possible interleavings so as to cover all feasible program behaviors
is known as Stateless Model Checking (SMC) [12]. Existing SMC algorithms [10, 1, 3, 17, 7, 5, 6, &,

, 15, 4] typically define an equivalence relation between executions; for example, two executions may
be considered equivalent if they share the same happens-before relation. Based on this equivalence
relation, executions are grouped into equivalence classes. To cover all program behaviours, a property

known as soundness, the algorithm needs to explore at least one execution from each equivalence class.
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When the algorithm explores ezactly one execution per equivalence class, we say that the algorithm

is optimal [1].

A key observation underlying these approaches is that whenever two executions are deemed equivalent,
all read operations in both executions read the same values. Building on this insight, this thesis
explores a more coarse notion of equivalence: we consider two executions equivalent if and only if

every read operation reads the same value. We will refer to this notion as view equivalence.

The fundamental difference between our approach and prior ones lies in the strength of the equivalence
relation. While existing equivalence relations guarantee that equivalent executions read the same
values, the converse does not hold: executions that produce identical read values may still be treated
as belonging to different equivalence classes. Consequently, earlier algorithms often explore many
redundant executions corresponding to the same observable program behavior, often exponentially
more. In contrast, our view equivalence-based approach eliminates these redundancies, substantially

reducing the exploration space and improving performance.

1.2 Contributions

This thesis presents four distinct contributions that together advance the theory and practice of

verifying concurrent programs:

1. Sound and Optimal Stateless Model Checking Algorithm under View Equivalence

for Sequential Consistency.

We introduce VIEWXPLORE, the first algorithm for Stateless Model Checking under View Equiv-
alence for Sequential Consistency. The algorithm is both sound, exploring all feasible program
behaviors (at least one execution per view equivalence class), and optimal, exploring exactly one

execution per view equivalence class.
2. Efficient Construction of Sequentially Consistent Executions.

We introduce CONSTRUCTWITNESS, an algorithm for constructing Sequentially Consistent (SC)
executions. Although this problem is known to be NP-complete [11], the algorithm achieves

polynomial-time performance for nearly all inputs. It consists of:
(a) a complete constraint-solving algorithm, and

(b) two polynomial-time, graph-based heuristics (URF and INCR) that eliminate the need for

constraint solving for nearly all inputs.
3. Implementation.

We implement the algorithm and integrate it with the LLVM IR-based NIDHUGG stateless model
checker. The tool can take C/Pthreads programs as input.

4. Complexity bound.

We establish that the decision version of the model checking problem under sequential consistency

— whether any SC execution violates a given safety property — is NP-complete.

This result holds independently of the chosen equivalence relation and irrespective of whether

Stateless Model Checking or any other methodology is employed.
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2 Background

2.1 Notation
Basic entities. Threads are denoted by p,q,r, ..., memory objects (addresses or shared variables)

by x,y,2, ..., local variables by a, b, c, ..., and values by 0,1, ... or v.

Operations and executions. An operation e is a tuple
e = (kind, thread, address, value)

where:
e kind € {R, W} indicates whether the operation is a read or a write,
e thread is the identifier of the thread that executes the operation,
e address denotes the memory object (or variable) being read or written,
e value is the value read or written.
Reads are denoted by e, and writes by e,,.
An execution E is a finite sequence of operations.

The set of participating threads is denoted by Threads(E):

Threads(F) = {e.thread | e € E}

Program-order projections and sequence order. For an execution (or, more generally, a se-
quence of operations) E, the p-projection E, is the subsequence of E consisting of the operations

executed by thread p.

E
We write e; — e, when e; precedes e, in the sequence E (i.e., the index of e; in F is smaller than
that of e,).

Reads-from and initial writes. Sequential consistency (SC) is assumed throughout. If a read e,
executes immediately after a prefix £’ of an execution F, then e,.value equals the value of the latest
write e,, € E’ such that e,.address = ¢,.address. For convenience, we assume every read has a

source write: if needed, an explicit initial write to each address is present at the start of the execution.

Write sets. For a (context-implied) execution F, define
W(addr,v) = {e, € E| ¢, is a write, e,.address = addr, e,.value = v },

W(addr) = {e, € F | e, is a write, ¢,.address = addr }.
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2.2 The Sequential Consistency Model

The execution of a concurrent program is, by nature, non-deterministic, primarily due to the un-
predictable interleaving of threads and the inherent non-determinism in their communication and

synchronization.

A widely adopted model for shared-memory concurrency is Sequential Consistency (SC) [20], which
intuitively enforces single-copy semantics. Under this model, threads issue memory operations. The
memory system then arbitrarily selects one thread, processes its memory operation, and allows that
thread to issue a subsequent operation. This process continues iteratively until all memory operations
have been selected and all threads have terminated. In essence, SC stipulates that the operations of

all threads can be linearized into a single global total order such that:
1. The program order of each thread is preserved.

2. Each read reads the value of the most recent write to the same address in the total order.

Each thread p? issues its next
memory operation according to

\ / its program order.
Y T

he switch selects one thread,

Switch processes its memory operation,
ﬁ y and repeats.
Memory

Figure 1: Sequential Consistency Memory Model

Importantly, the interleaving of memory operations from different threads, as determined by the mem-
ory system, is non-deterministic. Concurrent programs must be designed to preserve their intended

semantics under all interleavings.

2.2.1 Key Relations of Sequential Consistency

We view an execution E as an ordered list of operations (reads or writes) issued by a set of threads

E
Threads(F). Four standard relations — which refine — — capture how these operations depend on one

another.
Program order (po). For every thread p, operations appear in the order they are issued.

We define e, = e, if and only if:

E
1. ey — ey

2. ey.thread = ey.thread

Reads-from (rf). A read e, reads the value written by the latest write e,, to the same location that

precedes it in the execution sequence.

We define e, = e, if and only if:
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E
1. e, —e,

is a write operation and e, is a read operation.
3. e, and e, access the same memory object: e,.address = ¢,.address.

4. e, is the latest write to e,.address before e,. More formally, there does not exist a write
e;, € E such that:

(a) e,.address = e,.address = ¢,.address
E , | E
(b) e, — e, Ney, —> e,

Each read therefore has exactly one incoming rf edge, while a write may have multiple outgoing

rf edges to the reads that read from it.
Intuitively, the rf relation links each read to the write from which it obtains its value.

Coherence order (co). For each memory location, all writes to that location form a total order,

corresponding to the order in which they reach memory.

We define e, = e if and only if:

E
1.oey1 — euo

2. e, €0 are write operations.
3. e, and e, access the same memory object: e, .address = ¢ ,.address

Reads-before (rb). If e, reads-from a write e,,, and a later write e, overwrites the same memory

w

object, then e, must follow e,..
We define rb as the composition rf—*; co.
In other words, rb links a read to the next write that overwrites the memory object it read.

We also define the happens-before relation hb as the union of the relations po, rf, co, and rb:

hb=poUrfUcoUrb

2.2.2 An Equivalent Graph-Based Characterisation of Sequential Consistency

Lamport’s original definition [20] states that an execution is sequentially consistent (SC) if there exists

a single global order of events that:
1. preserves every thread’s program order, and
2. ensures that each read reads the value written by the latest preceding write to the same address.

Lahav and Vafeiadis [19] showed that Lamport’s global-order definition of SC can be reformulated in
terms of the existence of suitable rf (reads-from) and co (coherence order) relations such that the

induced happens-before dependency graph is acyclic. Their result can be stated as follows.
Theorem 2.1 (SC Acyclicity Theorem [19]). Let E be a set of operations.

Let po be an acyclic relation on E such that for all e;, ey € E, if e;.thread = ey.thread, then either
po po
€1 —> €y 0T €5 — €, (i.e. po totally orders the operations of each thread).
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There exists a (Sequentially Consistent) execution E that contains exactly the operations E if and only

if there exist:

1. An acyclic relation co such that for all e, e, € E, if e, and e, are write operations and

. co co
€,1-2ddress = e, o.address, then either e, — €,5 Or €,0 — €,1-
In other words, co totally orders the write operations for each memory object.

2. An acyclic relation rf such that for all e, € E, if e, is a read operation then there exists a unique
£
operation e,, € E such that e, = e,. This operation e,, must be a write operation that satisfies

e,-address = e,.address and e, .value = e,.value.
Notice that no additional constraints are imposed on rf.

such that the relation
hb=poUrfUcoUrb with b =rf"1;co

s acyclic.

Any topological sort of hb is a (Sequentially Consistent) execution E.

2.3 Stateless Model Checking

One way to verify that concurrency issues do not arise under a particular interleaving is to system-
atically explore all possible interleavings, or at least a representative subset of them, as we describe
below. This is the goal of Stateless Model Checking (SMC) [12].

A central principle of SMC is stateless execution. Statelessness means that executions are never paused,
stored, or later resumed. Instead, every execution begins from the program’s initial state and proceeds
without interruption until termination, or until all threads are blocked. This restriction is fundamental

to both the design and the correctness of SMC algorithms.

SMC algorithms interact with programs solely through a Scheduler Oracle, denoted SCHEDULER, which
controls thread interleaving. The algorithm invokes SCHEDULER with a sequence of threads, called an
execution prefic. When invoked, SCHEDULER starts from the initial state of the program and schedules
one operation from a thread at a time, following the order specified in the given prefix. When the
prefix is exhausted, if there are still active threads, SCHEDULER continues the execution by selecting
threads in an arbitrary order until all threads have terminated. Upon termination, SCHEDULER returns

the resulting complete ezecution to the model checker.

An ezecution is represented as a sequence of operations on shared memory. For every read or write,
the sequence records the operation type, the executing thread, the accessed address, and the value
read or written. Thread-local state and operations are omitted, since, under thread determinism, they

are determined by shared-memory accesses.

This interaction can be expressed informally as
SCHEDULER : Execution Prefix i Execution (= Operation”)

with the understanding that SCHEDULER is not a mathematical function: the arbitrary scheduling
choices made after the prefix is exhausted may lead to multiple possible executions for the same

execution prefix.
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In the C/Pthreads environment, which we use in our implementation, thread-local memory is not
supported, and the entire memory is considered shared. In this setting, ignoring thread-local state
has no practical effect. However, in environments that do support thread-local memory, excluding it

from executions can yield substantial performance improvements.

Finally, no partial execution state is retained between successive oracle invocations. Allowing paused
or resumed executions would require capturing and maintaining full snapshots of the shared memory
and the local state of every thread. Since the size of this data is unbounded in general and may grow
with the computation itself, storing multiple snapshots of paused executions would quickly lead to

prohibitive memory overhead.

In summary, the interaction between the model checker and the program is restricted to a single
mechanism: the Scheduler Oracle SCHEDULER. The model checker provides an execution prefix, the
oracle executes the program from its initial state until completion, and the resulting execution is

returned as a sequence of operations.

Note: In this model, threads are considered deterministic; that is a thread exhibits identical behaviour

whenever its reads read the same sequence of values.

The number of possible interleavings under Sequential Consistency (SC) grows exponentially with the
number of threads and operations. Even small concurrent programs generate enormous execution
spaces, a phenomenon known as the state explosion problem. The following theorem formalizes this

growth.

Theorem 2.2 (Number of SC interleavings with k threads, n operations each). Let k threads execute

exactly n shared-memory operations each. Then the number of distinct SC executions is

=)

k times

Proof. An SC execution is a total order of all kn operations that respects each thread’s program order.

That is, for every thread p with operations (ep71, €p2s - ,epyn), the global order must contain
E E E
€p71 H €p72 —> A —> ep7n.

The constraint is that these operations must appear in order, but they may be interleaved arbitrarily

with operations from other threads.

Equivalently, constructing an execution amounts to choosing the positions of each thread’s operations

in the global sequence of length kn:
e Thread p! must occupy n of the kn slots, which can be chosen in (kqf) ways.

e After these positions are fixed, thread p? occupies n of the remaining (k — 1)n slots, giving

(*= 1) choices.

e This continues until the last thread, which has only n slots remaining and thus only one valid

placement.

Because the internal order of each thread is predetermined, there is no additional freedom once the

slots of all threads are chosen.
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Multiplying the choices for all threads yields:

")) = 6 = ()

k times

Example For k=2 and n = 10:

2-10)!
((10‘32) = 184,756
For k = 3 and n = 10: 3.10)!
((ﬁ)og = 5,550,996,791,340

i.e., over 5.5 trillion distinct interleavings.

2.4 Dynamic Partial Order Reduction
2.4.1 Happens-Before Equivalence and the OpTiMAL-DPOR Algorithm

A key insight is that many interleavings permitted by the memory model yield the same program

behavior, and thus need not all be explored.

For example, suppose thread p writes to a shared variable, and threads ¢ and r subsequently read it.

The order in which ¢ and r perform their reads is irrelevant: both read the same value.

Likewise, if two threads perform writes to disjoint variables, and two other threads subsequently read
them, the relative ordering of the writes is irrelevant, as the reads read the same values under both

orderings.

These examples suggest that a property determining program behavior is the happens-before relation

between operations.

For convenience, we provide an equivalent definition of the happens-before relation. For an execution

hb
E., we define e; — e, if and only if:
E
1. e, — ey
2. e.address = ey.address
3. At least one of e, e, is a write operation.

It is evident that if two executions have the same happens-before relation, then all reads read the
same values. Thus, assuming each thread behaves deterministically with respect to its inputs (i.e., the

values it reads), thread behaviour is fully determined by the happens-before relation.

Therefore, we define two executions F; and E, to be equivalent if they induce the same happens-before
relation. This equivalence relation induces a partitioning of the executions into equivalence classes. All
executions belonging to the same equivalence class are equivalent, and it suffices to execute only one
of them. Since exploring multiple equivalent executions provides no additional benefit, it is preferable

to explore exactly one representative execution per equivalence class to avoid redundant computation.

Two events are defined as logically concurrent if they are not related by the transitive closure of the
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happens-before relation. The reduction in execution space follows from the fact that the relative order
of logically concurrent events is irrelevant to program behavior. Thus, executions that differ only in

the order of such events are equivalent and need not all be explored.

An algorithm that runs exactly one execution from each equivalence class according to the happens-
before equivalence relation is the Optimal Dynamic Partial Order Reduction (OPTIMAL-DPOR) algo-
rithm [1, 3].

Classic Dynamic Partial Order Reduction equates executions that share the full happens-before re-
lation hb = po U rf U co U rb. Subsequent work has shown that many of these edges are irrelevant
to program behaviour and can be safely omitted without eliminating any feasible program behaviour.

The two most prominent refinements are outlined below.

2.4.2 Observer Equivalence and the OPTIMAL-DPOR-OBSERVERS Algorithm

Intuitively, a write—write edge matters only if some read actually reads the later write. Formally, for

thBSERVERS

an execution E, define the observer happens-before relation e, ——— e, if and only if:

po co . . rf
e; — €4 or (e; — e, and there exists a read operation e, such that e, — e,.)

hb BSERVERS
More intuitively, e, _omeme, e,2 holds, beyond program order, only if some read actually reads from
ew2-

Definition 2.1 (Observer Equivalence). Ezecutions E; and E, are observer equivalent if and only if:

thBSERVERSEl = thBSERVERS Ey

Algorithm. OPTIMAL-DPOR-OBSERVERS |7]| explores exactly one execution per observer-equi-
valence class. It extends classic DPOR with a modified backtracking rule that ignores write—write
races not witnessed by any read, achieving provably sound and optimal exploration with substantially

fewer executions.

2.4.3 Reads-From Equivalence and the OpTiMAL SMC-RF Algorithm

Observer equivalence still records the relative order of observed writes. An even coarser equivalence

relation is to retain only the reads-from mapping itself:

Definition 2.2 (Reads-From Equivalence). Ezecutions E; and Ey are reads-from equivalent if and

only if
rfEl — rfE2

Equivalently, every read obtains its value from the same write in both executions.
Since rf fully determines the values returned to every thread, reads-from equivalence implies identical

program behaviour.

Algorithm. OPTIMAL-SMC-RF [5] achieves sound and optimal exploration under this coarser

equivalence relation. Starting from a concrete SC execution, the algorithm mutates the source write
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of one read at a time and incrementally repairs the execution using lightweight graph operations. Al-
though deciding whether there exists an SC execution with a candidate rf relation is NP-complete [11],
the authors show that simple graph-based heuristics are sufficient to decide for almost all cases in prac-

tice, with exhaustive search needed only as a last resort.

2.4.4 Reads-Value-From (RVF) Equivalence and the SMC-RVF Algorithm

Agarwal et al. [6] introduce the reads-value-from equivalence, which refines view equivalence by captur-

ing a light-weight causal ordering among reads, while remaining coarser than reads-from equivalence.

Formally, let E be an execution, with program-order poy and reads-from rfj relations. Define the
causal relation

causaly = (pog U rfp)™"

as the transitive closure of their union. The reads-restricted causal relation causal®®®?® is then obtained

by restricting causaly to read events:
causalfeads causalg
e ——— ey < ey,e, are read operations A (e, —— e5).
Two complete executions F, and E, are defined to be reads-value-from (RVF) equivalent if:
1. They are view equivalent: every read r reads the same value in both E; and E,.
2. Their reads-restricted causal relations are equal: causalp®™?®® = causalg*®.

Agarwal et al. [6] present a sound exploration algorithm under this equivalence, but it is not optimal

— multiple executions from the same reads-value-from equivalence class may be executed.
By contrast?, VIEWXPLORE:
1. Is based on view equivalence, coarser than RVF equivalence, yielding fewer equivalence classes.

2. Guarantees optimality: ezactly one representative per equivalence class is executed.

2.4.5 Data-Centric Dynamic Partial Order Reduction

Similar to OpTIMAL SMC-RF, Data-Centric DPOR [8] is founded on reads-from equivalence. However,
Data-Centric DPOR (DC-DPOR) provides no general optimality guarantees. Its optimality holds
only in the very restricted case where the underlying communication graph — whose vertices represent
program threads and where an edge connects two vertices if they access a common shared variable —
is acyclic. In all other situations, DC-DPOR may explore a large number of partial executions that

are ultimately determined to be redundant.

2.5 Properties of SMC/DPOR Algorithms
2.5.1 Soundness and Optimality

As we will see later, the previous idea can also be applied to coarsenings of the happens-before relation

~, thereby reducing the number of equivalence classes and consequently the time and space required.

2The concepts of View Equivalence and Optimality will be introduced in a subsequent section. However, this point in
the thesis provides the most appropriate context for comparing our approach with SMC-RVF.
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In what follows, we provide definitions for SMC algorithms parameterized by the choice of equivalence

relation ~.

It is essential that an SMC algorithm explores at least one execution from each equivalence class;

otherwise, some program behaviours may be lost. This property is called soundness.

Definition 2.3 (Soundness of an SMC algorithm). Let & be the set of executions run by the SCHEDULER

once the algorithm has terminated.

An SMC algorithm is sound with respect to an equivalence relation ~ if, for every equivalence class
induced by ~ on the set of all possible executions (under all thread interleavings), there ezists an

execution E € & that belongs to that class.

Note that soundness requires that at least one, but not necessarily exactly one, execution from each

equivalence class is explored.

A central design goal for any SMC algorithm is to minimize redundant calls, ensuring that exactly one

execution is explored from each equivalence class.

Definition 2.4 (Optimality of an SMC algorithm). Let & be the set of executions run by the
SCHEDULER once the algorithm has terminated.

An SMC algorithm is optimal with respect to an equivalence relation ~ if, for every equivalence class
induced by ~ on the set of all possible executions (under all thread interleavings), there exists a unique

execution . € & that belongs to that class.

In an optimal SMC algorithm, the number of SCHEDULER invocations equals the number of equivalence

classes under ~.

Optimality is crucial for scalability, as it prevents exponential blow-up from redundant interleavings
that yield the same program behaviour.

2.5.2 Performance

The overall performance of a Stateless Model Checking (SMC) algorithm can be approximated by the

product:

Total Time = #(Equivalence Classes) x #(Executions) per Equivalence Class x Time per Execution

This simple relation highlights the following key trade-offs:

e Coarser equivalence relations typically reduce, often exponentially, the number of equiva-

lence classes to be explored.

e Optimal algorithms guarantee that exactly one execution is explored per equivalence class,

whereas non-optimal algorithms may revisit the same class exponentially many times.

e Coarser equivalence and optimality generally incur higher computational overhead, as they

require more complex reasoning per execution, thereby increasing the time per execution.

Remark. For some programs, different equivalence relations yield the same partitioning of executions

and thus the same number of equivalence classes. In such cases, the overall runtime of an SMC
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algorithm may increase if other factors — such as the time required per execution or the number of

executions per equivalence class — increase.

2.5.3 NP-completeness of Constructing Sequentially Consistent Executions

A central challenge in reads-from equivalence, and one that becomes even more pronounced in this

work, is as follows.

At first sight, one might expect that reconstructing a sequentially consistent execution is straightfor-
£

ward once the reads-from mapping is known: take the program-order edges, add an edge e, N e, for

every read e,., perform a topological sort, and the result should be a valid execution. The graph-based

characterisation from SC Acyclicity Theorem (Theorem 2.1) shows why this intuition fails.

In particular, an SC execution E can be constructed from a set of operations if there exists proper

relations rf and co such that hb = po Urf U co Urb is acyclic, where rb = rf!; co.

Fixing rf resolves only part of the problem. po is predetermined by the program, so once rf is chosen

the remaining freedom lies entirely in the co edges — and, transitively, in the rb edges they induce.

Any topological sort of po U rf implicitly commits to one particular coherence order co. That choice

may introduce a cycle once the corresponding rb = rf~!; co edges are added.

The acyclicity criterion is thus far stronger: does there exist some coherence order co such that the

combined graph hb = poUrf U co Urb is acyclic?

Informally, a read e, that reads-from a write e,, excludes every other write to the same location from
appearing between e, and e, in the global order. However, a topological sort of rf U co alone does

not enforce this constraint.
Gibbons and Korach [11] proved that the following decision problem is NP-complete:

Given a set of operations E - where the values read by read operations are fized — does

there exist a Sequentially Consistent Ezecution E that contains exactly the operations E?

The result also holds when a desired rf relation is provided as input, as in the SMC-RF algorithm.
In this setting, the only remaining nondeterminism is to select a coherence order co that keeps G =

poUrfUcoUrb acyclic. The need to search over all such co choices drives the NP-completeness.

Under view equivalence®, reconstruction is strictly harder, and is exactly what the above decision
problem captures. Here the reads-from relation is not fixed a priori. We must jointly explore the
space of (rf,co) pairs to find one that avoids a cycle in hb. This expanded search space strictly
contains the subproblem of construction under reads-from equivalence, underscoring the algorithmic

difficulty of constructing witnesses at the granularity required by view equivalence.

Practical workaround. Optimal SMC for reads-from equivalence mitigates this complexity with
heuristics that incrementally repair an existing execution. Our approach adopts a similar philoso-
phy, but the challenge is more severe under view equivalence, since the reads-from relation is not

predetermined.

3The formal definition of view equivalence will appear shortly; for now, the important point is that the reads-from relation
is not fixed.
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3 View Equivalence

3.1 Definition

We introduce a new equivalence relation on executions, termed View Fquivalence. This equivalence
relation is coarser than previously studied relations, including those based on happens-before [10, 1, 3],
observer equivalence [7], and reads-from [5]. Its coarseness enables significant reduction in the number
of executions explored, by collapsing multiple indistinguishable executions into a single equivalence

class, while still preserving all program behaviours.

Definition 3.1 (View Equivalence). Two ezecutions are view equivalent if they contain the same

set of read operations, and each read reads the same value in both executions.

In essence, View Equivalence leverages thread determinism (a thread exhibits the same behaviour

whenever it reads the same values) to its fullest extent.
Example 3.1. Consider three threads sharing a variable x, initially set to 0:

p q r
X:=OHXZ=OHa:=X

The following six interleavings are possible:
L ormpig
2. Tq1py
3. Py
4. q1pimy
5. q171Py

6. pra1my

In all six interleavings, the single read operation r; returns the same value 0. Therefore, all six

executions belong to the same View Equivalence class.

The key intuition is that since all reads observe the same values, the behaviour of every thread is
identical across all six interleavings. Hence, it suffices to explore just one of them. This is the essence

of View Equivalence.

By contrast, under reads-from equivalence the situation differs. In interleavings (1) and (2), r; reads
from the initial write. In (3) and (4), r; reads from p;, and in (5) and (6), it reads from ¢;. Thus,

there are three distinct reads-from equivalence classes.

Consequently, an optimal Stateless Model Checking algorithm under View Equivalence executes only
one execution, whereas an optimal algorithm under Reads-From Equivalence must explore three exe-

cutions, incurring additional cost.

Finally, note that no stateless model checking algorithm that ignores values can safely reduce the
number of executions below three in this example. The reason is that p; and g; could have written
different values, in which case r; would read different values in the three reads-from classes, potentially

altering the behaviour of thread r.
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3.2 Exponential Reduction in View Equivalence Classes

We present a set of programs demonstrating that view equivalence can induce significantly fewer
equivalence classes than previously studied notions such as happens-before equivalence and reads-

from equivalence.
3.2.1 The MANYSAMEVALUE (MSV) Program

Program Definition

The program consists of two threads and a single shared variable x, initially set to 0, and is parame-
terized by a positive integer n. Thread p performs n writes of the value 0 to x, while thread ¢ performs

n reads from r:

No. P q

x := 0; a; = X;
2 x :=0; || ay := x;
n x:=0 H a, := x

Despite its simplicity, this program captures behaviors that naturally arise in low-level concurrent
code. In particular, repeatedly writing or reading fixed values is not only a standalone pattern but

also a building block within more complex synchronization mechanisms, such as locks.

Counting Equivalence Classes

It is easy to see that this program has exactly one view equivalence class. Since the initial value
of x is 0, and all subsequent writes by p also write the value 0, every read of ¢ must read the value
0, regardless of the interleaving. Thus, all executions contain the same set of read operations with

identical read values, and are therefore view equivalent.

In contrast, under both the happens-before and reads-from equivalence relations, no two interleavings
collapse into the same class. Intuitively, even though every read always reads the same walue, the
specific write from which it reads varies across interleavings. Hence every distinct interleaving produces

a different equivalence class. The following theorem formalizes and proves this observation.

Theorem 3.1 (Equivalence classes in the MSV program). In the MSV program, every execution forms

a distinct equivalence class under both reads-from and happens-before equivalence.

Proof. An execution F is a total order over {py,...,p,, ¢, .-, ¢, that preserves the program order of

threads p and gq.
For an execution E, let indexy(e) denote the index of operation e in E (indexes start at 1).

Define k(i) as the number of writes that appear before the read ¢; in E. In particular, py_; is the

latest write in E before the read g;.

By Sequential Consistency, each read returns the value of the latest write that precedes it in the global

order. Hence, the reads-from relation of E is exactly

rfp = {(Pr,0)p %) | 1<i<n}
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Thus rf 5 is completely determined by the vector kp = (kg(1),...,kg(n)).
We now show that E can be uniquely reconstructed from k.

Set ay = kg(i) and, for 1 <i<n—1,set a, := k(i + 1) — kx(i), and finally a,, :=n — kg(i). Each

a; is a nonnegative integer because the sequence kp(i) is nondecreasing and bounded by n.
Equivalently:

® a, is the number of writes before ¢;.

e For 1 <i <n—1, a; is the number of writes strictly between ¢; and ¢, .

e qa, is the number of writes after ¢,,.

po po po po
Because the per-thread orders p; — -+ — p,, and ¢; — -+ — ¢,, are fixed, the counts (a,...,a,,)

determine the execution E:

pla"'7pa07 (11; pa0+17"')pa0+a17 q27 ey qn7 pn—an+17"'7pn
N —— —
aq writes a, writes a,, writes

Hence E is uniquely determined by k.
Therefore, if E # E’, then ky # kg, which implies rf ; # rf 5, and consequently hby # hbgy.
Thus, each execution corresponds to its own equivalence class under both reads-from and happens-

before equivalence relations. ]

Corollary 3.1 (Number of equivalence classes in the MSV program). In the MSV program, the number

of happens-before equivalence classes and reads-from equivalence classes is:

(2: ) B EZL;?!

Proof. By Theorem 2.2, the number of SC executions with n operations per thread is (27?) = Ei?));
By Theorem 3.1, each execution is its own equivalence class.
Thus the number of equivalence classes is also (27?) = gi@; ]

Asymptotic Analysis

Theorem 3.2 (Asymptotic growth of equivalence classes in the MSV program). It holds that

(2:) _ Ei?lz))z' _ (\;‘%) :w((4f5)n> for any e >0

Proof. Applying Stirling’s approximation:

1 1
logn! =nlogn —n+ B log(27mn) + O<7>
n
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we obtain:

og (m) g 20!

n (n!)?
= log (2n)! — 2logn!
1

1
= 2nlog2n — 2n + 510g(47m) —i—O(
n

O(3)-0(1)=+0(3)
= 2n

) —2 (nlogn—n—i—;log(%m) —|—O<1>>

n
2n  log2? +logmn
g—+————— —

1
© 2

(log2 + logmn) + O(i)

1 1
=2nlog2 — flogﬂnj:O(—>
2 n

Exponentiating both sides gives:

(2n) — 9log (%) — 92n . (mn)~

[SIE

n

1 qm
L9x0(1) —
2 9<\/ﬁ>

Above is used the fact that 22%) = €(1).

Finally, for any € > 0:

O

Hence, the number of equivalence classes under happens-before and reads-from equivalence grows

exponentially with n, whereas under view equivalence, there is only a single equivalence class.

Thus, any sound and optimal exploration algorithm based on happens-before or reads-from equivalence
must explore @(%) = w((4 — &)™) executions, whereas any sound and optimal exploration algorithm

based on view equivalence must explore exactly only one.

3.2.2 The READINC Program

The READINC program consists of n threads and a single shared variable x, initialized to 0. Each
thread reads the value of x into a local variable a, and subsequently writes the value a + 1 back to x,

as shown below:

1 2 n
p p p
a := x; a := x; -l a = x;
x :=a+1 x :=a+1 x :=a+1

This program serves a dual purpose. First, it highlights the practical impact of view equivalence on
reducing the number of explored executions. Second, it provides a robust test for verifying that a
Stateless Model Checking (SMC) algorithm correctly constructs consistent executions: A key insight
in this program is that it encodes causal structure implicitly: each thread is only able to write the
value v+ 1 after reading the value v. Hence, the value it writes reflects its position in a causal chain of

updates to the shared variable x. This dependency is enforced entirely through data values, without
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the need for explicit control flow or synchronization, making the program a useful tool for debugging

and validating SMC implementations.

By Theorem 2.2, the total number of interleavings is given by:

(2n)!
9k

At present, we have not derived closed-form expressions or asymptotic bounds for the number of
equivalence classes under the happens-before, observers, reads-from or view equivalence relations in

this program. However, we report concrete numbers for n = 2,3,4,5,6, 7.

To measure the number of happens-before, observers and reads-from equivalence classes, we use the

NIDHUGG model checker. For view equivalence, we validate results using two independent methods:

1. Extract the executions produced by NIDHUGG’s implementation of Optimal under Reads-From
Equivalence SMC algorithm (OPTIMAL-SMC-RF) and post-process them by regrouping accord-

ing to the view equivalence relation.

2. Perform an exhaustive enumeration of all valid interleavings (brute-force), then group them

according to view equivalence.

Table 1 and Fig. 2 summarize the number of equivalence classes under each equivalence relation for
n=[2.7].

n Interleavings Happens-Before Observers Reads-From — View
2 6 4 3 3 3
3 90 36 22 16 13
4 2,520 576 281 125 75
5 113,400 14,400 5,566 1,296 541
6 7,484,400 518,400 157,717 16,807 4,683
7 681,080,400 25,401,600 6,053,748 262,144 47,294

Table 1: Number of equivalence classes under various equivalence relations for the READINC program.
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Number of Equivalence Classes (log scale) for various Equivalence Relations
for the READINC benchmark
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Figure 2: Equivalence class counts (log scale) for the READINC program.

Although the logarithmic plot does not make precise growth rates immediately apparent, the noticeably
lower slope for view equivalence suggests a significantly slower exponential growth compared to the

happens-before, observers, and reads-from equivalence relations.

For completeness, Fig. 3 illustrates the equivalence-class structure of the READINC program for n = 3.
The figure presents one representative execution from each of the 36 happens-before equivalence classes,
which are then hierarchically grouped: first into observers equivalence classes (green), next into reads-
from equivalence classes (red), and finally into the coarsest view equivalence classes (blue). Each view
equivalence class is additionally annotated with a triple (a,b,c), indicating the values read by the

three threads (p, ¢, and r), respectively.
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View Class 1 (0,1,2)

Reads-From Class 1

Observers Class 1

View Class 2 (0,2,1)
Reads-From Class 2

Observers Class 2

View Class 3 (1,0,2)
Reads-From Class 3

Observers Class 3

P1P2419271 72

P1DP2T1724192

q192P1P27172

View Class 4 (2,0,1)

Reads-From Class 4

View Class 5 (2,1,0)

Reads-From Class 5

Observers Class §

View Class 6 (1,2,0)
Reads-From Class 6

Observers Class 6

Observers Class 4

414271 72P1P2

T1T241492P1P2

T T2P1P24142

View Class 7 (0,1,1)
Reads-From Class 7

Observers Class 7
P1P241719272

P1P2417T1 7242

View Class 8 (1,0,1)
Reads-From Class 8

Observers Class 8

q142P171P272

q192P17172P2

View Class 9 (1,1,0)

Reads-From Class 9

Observers Class 9

T1T9P1491P292

T1T2P19192P2

View Class 10  (0,0,0)

Reads-From Class 10

Observers Class 10
P19171P29272
P1917T1P2T 24>
P14171492P272
P191714272P2
P1417172P292

P1a171T242P2

40




View Class 11  (0,0,1)
Reads-From Class 11

Observers Class 11

P191P2927172

Observers Class 12

P1919271 P27

P19192717T2P2

Reads-From Class 12

Observers Class 13
P191P2719272

P141P2T1 7242

Observers Class 14

P14142P271 72

View Class 12 (0,1,0)

Reads-From Class 13

Observers Class 15
P171P2414279

P1T1P2917242

Observers Class 16

P17T179P24142

Reads-From Class 1/

P171P2T24142

Observers Class 18

P1T17241P292

P17T1724142P2

View Class 13  (1,0,0)
Reads-From Class 15

Observers Class 19

q17192P1P272

q17192P172P2

Observers Class 20

q1717292P1P2

Reads-From Class 16

Observers Class 21

q1719272P1P2

Observers Class 22

q1T1T2P1P242

q17172P192P2

Figure 3: Representative executions from each of the 36 happens-before equivalence classes in READ-
INC, hierarchically grouped into observers (green), reads-from (red), and view (blue) equivalence
classes. Each view equivalence class is annotated with a triple (a, b, ¢), where a, b, and ¢ denote the
values read by threads p, ¢, and 7, respectively.
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4 Exploration Algorithm

Our goal is to explore a single execution from each view equivalence class of sequentially consistent
executions. The exploration is structured around a combinatorial abstraction, which we term read-cuts.
4.1 Definitions

Definition 4.1 (Read-Cut). Let T be a set of thread identifiers and VALUES a set of values. A

read-cut is a function rc : T+ VALUES" that assigns to each thread a sequence of read values.

Example 4.1. Consider the program with two threads, p and ¢, and a shared variable x, initially set
to 0.

a

I
e

a = y;
b :=x

I
[EY

X :
e 7¢y(p) = [0],7¢q(¢) = [0] means that both p; and ¢; read the initial value 0.

o 1¢y(p) = [1],7¢c5(q) = [0] means p; reads 1 and ¢; reads 0.

o rcy(p) =[], res(q) = [0] means ¢; reads 0 and p, is not included in the read-cut.

Definition 4.2 (p-projection of execution E). Let E be an execution. The p-projection of E, denoted

E,, is the subsequence of E containing all operations of thread p.

Definition 4.3 (Read-Cut of Execution). Let E be an execution and rc a read-cut. We say that rc

is a read-cut of E if for every thread p € dom(rc), the sequence of values read by the first |rc(p)| read

operations of E,, equals rc(p).

Definition 4.4 (Execution-Induced Read-Cut). Let E be an execution (or prefix, or any sequence
of operations). The read-cut induced by E, denoted rcg, is defined as follows: for each thread
p € Threads(E), let rcg(p) be the sequence of values read by all the read operations of p in E, listed
in program order. Formally, for every p € Threads(E):

rcg(p) = [e.value | e.thread = p A e is a read operation].

Notice that two executions E;, E, are view equivalent if and only if they induce the same read-cut,

Le., reg =rcg,.

Definition 4.5 (Feasible Read-Cut). A read-cut rc is feasible if there exists an SC execution E with
a prefic E' such that rc = regy.

Definition 4.6 (Witness). Let rc be a feasible read-cut. An execution prefix E' is a witness for rc if

there exists a complete execution E such that E’ is a prefix of E and re¢ = rcg:.

Definition 4.7 (rc-restriction of execution E). Let E be an execution and rc a read-cut of E. The

rc-restriction of F, denoted E

s 18 the subsequence of E containing all operations e € E such that e

is not after the (1 + |rc(e.thread)|)™ read operation of E, 1y caa-

Intuitively, E,. is the mazimal subsequence of E that contains exvactly the reads specified by rc.

C
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FEquivalently, for each thread p, E

TC

contains all operations of E, up to (but not including) the first
read of E, that is not in rc(p).

It follows immediately that rcy = rc.

Example 4.2. Consider the program with two threads, p and ¢, and a shared variable x, initially set
to 0.

q
x :=1; a := x;
a = x; x := 3
X = 2;
b :=x

Let an execution be E = [q,p1P5P5P4q5] and consider the read-cut req(p) = [1],7¢y(p) = [0].

The corresponding rc-restriction of E is E,. = [q1p1P2P345)-

Remark. Let E,, E, be executions with read-cuts rc;, rcy, respectively. Because threads are deter-

ministic given fixed read values, if rc; = re, = re, then for every p € dom(rc):
1. the maximal prefix of F; = containing exactly |re(p)| reads, and
2. the maximal prefix of E, , containing exactly |re(p)| reads

are identical. Therefore, the rc-restrictions E;  and E,  contain the same set of operations; their

only possible difference lies in the relative ordering of operations from different threads.

4.2 Algorithm

The algorithm explores the space of read-cuts by analyzing executions and generating new executions

with unexplored read-cuts.
Its pseudocode is given in Algorithm 1.

A set EXPLORED stores all read-cuts that have already been analyzed (Line 1). A second set To-
BEEXPLORED stores read-cuts that have been witnessed by some execution that has run but has not
yet been processed (Line 2). Finally, a container EXECUTIONS stores executions awaiting processing
(Line 3). The order in which executions are extracted from this container is left unspecified by the
algorithm. In particular, any strategy may be used. The options considered are a stack (yielding DFS)
or a queue (yielding BFS). The traversal strategy may affect memory consumption but does not affect

correctness. BF'S is chosen in order to reduce memory usage.

Initially, the algorithm invokes the scheduler oracle SCHEDULER with the empty execution prefix
(Line 4) and obtains an arbitrary execution E. All read-cuts of E are enumerated and added to
TOBEEXPLORED (Line 6), and E is added to EXECUTIONS (Line 5).

The algorithm then iteratively processes executions from EXECUTIONS until it becomes empty (Line 7).
In each iteration, an execution F is extracted from EXECUTIONS (Line 8), and all its read-cuts rc are

enumerated and considered one by one (Line 9).
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If rc ¢ TOBEEXPLORED, the algorithm skips it (Line 10), since some other execution E’ must already
be a witness for r¢ and rc was analyzed while processing E’. Otherwise, rc is removed from TOBE-
EXPLORED and added to EXPLORED (Lines 11 and 12). The algorithm then considers all one-read

extensions of rc¢ by iterating over threads of E (Line 13).
For each thread p € Threads(FE):

1. Identify the first read e, in E, not included in rc (ie., the (1+ |re(p)|)™ read of E,). (Line 14)

If no such read exists (all reads of p are already covered), continue. (Line 15)

Compute the set VALUES of all values v written to e,.address by some write e,, under the

w?
constraint that e, is not after the (1+ |rc(e,,.thread)|)” read of E,  tnreaa (Otherwise e, would

be excluded by the current read-cut restriction of the execution). (Line 16)

For each v € VALUES, define (Line 18) the new read-cut

r¢’ =re[p = re(p) - v).

If r¢” has already been encountered (i.e. r¢’ € EXPLORED V r¢’ € TOBEEXPLORED), skip it (Line 19).
Otherwise, attempt to construct a witness for r¢’ using the function CONSTRUCTWITNESS, formally
defined below.

Compute the re-restriction E, . of E (Line 21). Extend E,, with the new read e, = e, [value > v]
(Line 20), producing the sequence E’ (Line 22). Call CONSTRUCTWITNESS(E’, e;.) to attempt to con-
struct a valid execution prefix E/ (Line 23). If no such prefix exists (i.e. CONSTRUCTWITNESS(E’, er)

returned NONE and thus the read-cut r¢’ is infeasible), continue. (Line 24)

Otherwise, let E’ be the execution prefix returned by CONSTRUCTWITNESS. Invoke the scheduler
oracle SCHEDULER. on input E (Line 25). It returns a complete execution E’ such that B’ is a prefix
of E'.

Add E’ to ExecuTions (Line 26), and enumerate all its read-cuts 7¢ (Line 27). Add any new
7¢ ¢ EXPLORED to TOBEEXPLORED (Line 28).

This process continues until EXECUTIONS becomes empty (Line 7).

Definition 4.8 (CONSTRUCTWITNESS). Let E be a sequence of operations representing a subsequence

of an execution, extended by a newly added read operation e,..

The function CONSTRUCTWITNESS(FE, e,.) attempts to construct a reordering E of E such that E isa
prefiz of some sequentially consistent (SC) execution. Equivalently, it attempts to construct a witness

for the read-cut rcp corresponding to this extended sequence, if the read-cut is feasible.

If such a reordering exists, CONSTRUCTWITNESS(E, e,.) returns the corresponding SC execution prefic

E. Otherwise (i.e., if rcg is infeasible), it returns INCONSISTENT.
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Algorithm 1: VIEWXPLORE Exploration Algorithm

EXPLORED ¢ () // Set of analyzed read-cuts
TOBEEXPLORED < ) // Read-cuts witnessed but not yet analyzed
EXECUTIONS < |] // Executions awaiting processing

E + SCHEDULER([])
EXECUTIONS < [F]
foreach read-cut r¢ of E do TOBEEXPLORED < TOBEEXPLORED U {rc}

while EXECUTIONS # [| do

[E, EXECUTIONS] <— EXECUTIONS // Extraction order may follow any traversal
(e.g. DFS with a stack, BFS with a queue)

foreach read-cut rc of £ do

if rc ¢ TOBEEXPLORED then continue

TOBEEXPLORED < TOBEEXPLORED \ {rc}

EXPLORED — EXPLORED U {rc}

foreach p € Threads(E) do
e, < (1+ |re(p)])™ read in E,, // First read of p ‘‘not in” rc
if e, = NONE then continue // No remaining reads for thread p

VALUES < {e,.value | ¢, € E, ¢,.address =
e,.address, e, not after (1+ |rc(e,.thread)|)!” read of B, thread }
foreach v € VALUES do
rc’ < relp = re(p) - v]
if r¢’ € EXPLORED or r¢’ € TOBEEXPLORED then continue
el < e,[value I v]
E,. <« [e]|e€ E Aeisnot after the (1 + |rc(e.thread)|)! read of E, 4renq]
// rc-restriction of E
B« B, +1c]]
E’ < CONSTRUCTWITNESS(E’, €/.)
if ' = NONE then continue
E’ « SCHEDULER(E")
EXECUTIONS <— EXECUTIONS + [E\/]
foreach read-cut 7¢ of E’ do
if 7¢ € EXPLORED then continue
L TOBEEXPLORED < TOBEEXPLORED U {7¢}

Enumerating the read-cuts of an execution E can be done as follows. First, compute the read-cut rcp

induced by E. The set of all read-cuts of F is then given by the cross-product over all threads:

H Pref(’rcE (p>) )

p€eThreads(E)

where Pref(S) denotes the set of all prefixes of a sequence S, including the empty prefix and the full

sequence. We will later refine this construction to exclude some infeasible read-cuts.
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4.3 Example: Running the Algorithm on READINC [n = 2]

We illustrate the execution of VIEWXPLORE on the READINC program with two threads (n = 2). For

conciseness, we refer to the two threads as p (instead of p') and ¢ (instead of p?).

We begin by invoking the SCHEDULER on the empty execution prefix [], and obtain:

E, =p1g1p295

Execution F, is added to the container EXECUTIONS.

Processing E;. The algorithm then enters the main loop and begins processing E;. This execution

has following read-cuts:

Cip P° IF q:|]
rCio P (0], q: ]
13 DP: IF q:[0]
repg pi[0], q:[0]

These read-cuts are added to the set TOBEEXPLORED.

Processing the first read-cut rc, ;. We begin with the first read-cut and move it from TOBEEX-
PLORED to EXPLORED. We attempt to expand it by introducing a new read value for each thread:

1. The first read of p not included in rc; ; is p;. The set of values written to x in £ is {0,1}.

Since p; read 0 in E,, the only alternative value is 1. We thus consider the expanded read-cut
pell gl

As this read-cut does not belong to either EXPLORED or TOBEEXPLORED, we proceed to examine
it. Conceptually, this corresponds to constructing an execution prefix where p; reads 1 and ¢,

does not exist. This is clearly infeasible.

The algorithm constructs the rc, ;-restriction of E;, which is the empty sequence, appends the
new read operation p; reading 1, and invokes CONSTRUCTWITNESS on this sequence. CON-
STRUCTWITNESS reports infeasibility, so this read-cut is discarded.

2. Thread ¢ is handled analogously, yielding no feasible expansion.
Processing the second read-cut rc, 5. Next, we process the second read-cut by moving it from
ToOBEEXPLORED to EXPLORED and again attempt to expand it.

1. Thread p has no additional reads available.

2. The first read of ¢ not included in rc, , is ¢;. The values written to = in E; are again {0, 1}, and

the alternative to the value read in E; (0) is 1. We therefore examine the expanded read-cut
p: (0] g:[1).

Since it is not yet in EXPLORED or TOBEEXPLORED, we proceed. The rc; 5-restriction of E; is:

El,rclvz = DP1P2
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We append the new read operation ¢; reading 1, and invoke CONSTRUCTWITNESS on this se-

quence. This call returns the execution prefix p;p,rs.

Invoking SCHEDULER on this prefix yields:
Ey = p1pyryry

Execution E, has the following read-cuts:

rear Pl q: ]
TCyo P+ [0], q: ]
TCy3 D [, q:[1]
TCyy D+ [0], q:[1]

Among these, rcy; and rc, 5 already appear in EXPLORED or TOBEEXPLORED and are thus
skipped, while rcy 3 and rc,y 4 are added to TOBEEXPLORED. Finally, E, is added to the EXE-
CUTIONS container.

The remaining read-cuts of F; are processed in the same manner.

Subsequent processing. After all read-cuts of E; have been explored, the algorithm selects another
execution from the EXECUTIONS container and repeats the process. This continues until EXECUTIONS

becomes empty, at which point the algorithm terminates.

4.4 Optimality
We now establish the optimality of the exploration algorithm under view equivalence.

Invariant 4.1. At any point during the algorithm, all read-cuts of all executions that have run belong
to EXPLORED U TOBEEXPLORED.

Proof. Immediately after an execution is run, all its read-cuts are added to TOBEEXPLORED. When-
ever a read-cut is removed from TOBEEXPLORED, it is added to EXPLORED. Hence the claim always
holds. O

The following theorem, together with the soundness proof given later, establishes that the SMC algo-

rithm is optimal under view equivalence.

Theorem 4.1 (Optimality of VIEWXPLORE). After Algorithm 1 terminates, no two executions Fy

and Ey that are view equivalent have both run.

Proof. Assume for contradiction that the algorithm terminates and two executions F; and E, have

run that are view equivalent. Without loss of generality, suppose E; was run before E,.

Since F; and E, are view equivalent, they induce exactly the same read-cuts. Consider the state of
the algorithm immediately after F; has run but before Iy has. By Invariant 4.1, all read-cuts of E;
must already belong to TOBEEXPLORED U EXPLORED. Since E, has the same read-cuts as E;, the

same must hold for FE,.
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Now consider the call to the scheduler oracle SCHEDULER that produced E,. This call must have been
triggered during the processing of some new read-cut r¢’, which is a read-cut of F,. as guaranteed by
the definition of CONSTRUCTWITNESS.

By construction, r¢” was only explored because it was not already in TOBEEXPLORED U EXPLORED
at that point. But from the argument above, r¢’ was in fact already present in TOBEEXPLORED U
ExPLORED. This contradiction establishes the theorem. O

4.5 Soundness
We now establish the soundness of the exploration algorithm.

Theorem 4.2 (Soundness of VIEWXPLORE). At termination, the exploration algorithm has visited at
least one ezxecution from each view equivalence class induced by some feasible sequentially consistent

execution.

Proof. Throughout the exploration, we maintain a partition of the universe of view equivalence classes

induced by sequentially consistent (SC) executions into two disjoint sets:
FExplored 1 Unexplored
For clarity, note that Explored here refers to this partition, and is not the same as the algorithm’s

internal set EXPLORED.

We say that an execution belongs to Explored (respectively, Unexplored) if it belongs to a view

equivalence class contained in that set.
Assume, for contradiction, that the algorithm terminates while Unexplored # ). Let E be an execution

in Unexplored.

Lemma 4.1. There exists a prefic E” = E’e,. of E (e, a read operation, E’ possibly empty) such that
both:

1. The read-cut induced by E’ is a read-cut of some execution in Explored.

2. The read-cut induced by E” is not a read-cut of any execution in Explored.

Proof. Suppose, for contradiction, that no such prefix exists. Then either:

1. Every prefix E’ of E induces a read-cut not induced by any execution in Explored. This is
impossible, since the empty prefix induces the empty read-cut, which is common to all executions
in Explored. (Note that Explored is non-empty, because the algorithm always runs at least one

execution at initialization.)

2. Every prefix E” = FE’e, of E induces a read-cut that is also induced by some execution in
Explored. In particular, let E” = E. Then E induces the same read-cut as some Ee FExplored.
Hence E and E belong to the same view equivalence class, contradicting the assumption that
E € Unexplored while E € FExplored.

This contradiction proves the lemma. O

48



Let E” = E’e, be the prefix guaranteed by the lemma. Let Ee Ezplored be an execution that has

been run such that rcg, is a read-cut of EA

Since rcp, is a read-cut of both E and E, and since E has run, the algorithm eventually examines

rcgs, as it explores all read-cuts of E.

The difference between rcg, and rcg» is exactly one additional read: e,..

In E, the read e, reads-from some write e,, in E’. It follows that e, is contained in
the maximal prefix of E, yc.q containing exactly |reg (e,,.thread)| reads,

and therefore, by thread determinism, and since rcg is a read-cut of both E and E , also in
the maximal prefix of Eeu).thread containing exactly |rcg(e,,.thread)| reads.

Hence, when the exploration algorithm checks for new possible values for e,, e, .value € VALUES.

Therefore, the expanded read-cut rcg» induced by E” is indeed examined by the algorithm.

Moreover, by thread determinism, the rc g -restrictions of E and E (namely E, 6 =E and E‘;CE,)

consist of the same operations, differing only in the interleaving across threads.’

Thus, the sequence constructed by the algorithm as input to CONSTRUCTWITNESS is, as a set of
operations, precisely E’e,. Since E’e, = E” is a feasible execution prefix, CONSTRUCTWITNESS
returns an execution prefix rather than NONE. The algorithm then invokes the oracle SCHEDULER on
this prefix.

By the construction of CONSTRUCTWITNESS, the execution that now runs has the read-cut rcgr,
and having run, it belongs to Explored. This contradicts the lemma’s assumption that rcp, is not a

read-cut of any execution in Explored.

This contradiction completes the proof. O

4.6 Reducing Memory Consumption
At an abstract level, the exploration algorithm operates as a graph traversal.

Each node in this graph represents a view equivalence class, and a directed edge connects two nodes
C; — C, whenever a feasible read-cut of C'; can be extended into a feasible read-cut of C, by a single
read expansion. Importantly, these edges are discovered on the fly: they are generated only when the
source node is visited. Moreover, upon visiting a node, the algorithm computes all of its outgoing
edges immediately, prior to exploring any other node. Consequently, these edges must be stored in

order to enable further exploration along them at a later stage.

4Such an execution E must exist because:
1. rcps is a read-cut of a view equivalence class that belongs to Explored,
2. all executions within the same view equivalence class have the same read-cuts, and

3. since this view equivalence class is in Explored, at least one execution from it has been run by the algorithm.

SFor every thread p € dom(rcgy):

1. the maximal prefix of F, containing exactly |rcg/ (p)| reads, and

2. the maximal prefix of Ep containing exactly |rcg/ (p)| reads

~

are identical. By thread determinism, these prefixes must be equal. Hence ET,CE/ = ETCE,.
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The graph is never constructed explicitly. Instead, the traversal is driven by the container EXECU-
TIONS, which stores executions (nodes) to be explored. Soundness and optimality require only that
EXECUTIONS behaves as a generic container: executions are inserted into it and later extracted, in
any order. Correctness does not depend on the extraction order, and uniqueness of entries need not

be enforced.

However, the order in which executions are extracted — i.e., the traversal strategy — has a major
effect on memory consumption. Each time a node is visited, its neighboring nodes are generated and
temporarily stored in EXECUTIONS for later exploration. Thus, the traversal strategy determines the

maximum number of nodes stored at once.

If EXECUTIONS is implemented as a stack (depth-first traversal), the container may grow large: upon
reaching the leftmost leaf, the stack holds the entire traversal tree, except for the nodes along the

current root-to-leaf path.

Conversely, if EXECUTIONS is a queue (breadth-first traversal), the container typically holds only one

or two layers of the traversal tree at a time.

Neither traversal tree need resemble a balanced tree: they may degenerate into long chains. However,
empirical results on real benchmarks suggest the following pattern: the upper levels of the traversal tree
exhibit high fanout, while fanout decreases near the leaves. Equivalently, the graph of view equivalence

classes resembles a dense, highly connected core with chain-like structures extending from it.

Under this structure, the number of nodes in one or two breadths of the BFS tree is typically much
smaller than the number of nodes in the DFS tree minus a single root-to-leaf path. We therefore

expect BFS traversal to require significantly less memory.

Experiments comparing DFS and BF'S confirm this expectation. Consequently, we adopt BFS traversal

in practice, using a queue as the data structure for EXECUTIONS.

A final caveat is worth noting. This discussion has implicitly assumed that all edges of the view
equivalence class graph require approximately the same computational effort to explore. This need
not hold: for certain edges, the heuristics of CONSTRUCTWITNESS may fail, causing those edges to
require disproportionately more time. If such edges become part of the traversal tree, the time to visit
them may dominate the exploration cost. It is conceivable that some traversal strategies make such

edges more or less likely to appear. However, in our experiments we have not observed such an effect.

4.7 Improved Read-Cut Enumeration with Early Feasibility Pruning

Recall that the set of read-cuts of an execution E was earlier defined as the cross-product

H Pref(reg(p)),

pEThreads(E)

While conceptually simple, this naive enumeration generates an exponential number of candidates,
most of which are trivially infeasible: they prescribe that some read must return a value that is never

produced by any write in the corresponding rc-restriction of E.

To avoid this blow-up, we design a specialised iterator that enumerates read-cuts incrementally while

simultaneously checking a necessary feasibility condition. The key idea is to maintain the sets of the
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values written and the values read so far. If a read-cut requires a value v for which no write exists in
the current rc-restriction, the candidate is immediately discarded, and enumeration continues with the

next candidate. Thus, many infeasible read-cuts are pruned on the fly, without ever being materialised.

The enumeration itself is structured as a form of mixed-radix counting across threads: each thread p
is treated as a digit whose value corresponds to the number of reads included from p. Incrementing
a digit corresponds to extending the prefix of p by one additional read, while backtracking (carrying
to the left) resets a prefix and removes the contributions of its reads and writes. Throughout, the

following three auxiliary structures are maintained and updated incrementally:

e W, : multiset of values written by all write operations that currently belong to the rc-restriction
E

rc*

e R,.: multiset of values read by the reads currently included in rc.

e Unsat, ., the set of unsatisfied read values, i.e. those required by R,, but not yet provided by

rc)

W,... Formally, Unsat = R, .\ W,...
Note that, for this definition, W,,. and R,.. are interpreted as sets rather than multisets.

A read-cut is emitted only when Unsat = (). This ensures that every enumerated read-cut satisfies the

necessary condition that all of its reads can be matched to at least one write in its restriction E,..
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Algorithm 2: ENUMERATEREADCUTSWITHPRUNING(E)

Input: Execution F

Output: Stream of read-cuts rc that satisfy a necessary feasibility condition.

re () // all thread prefixes empty

R, « 0

Unsat + ()

W,.. < multiset of values written by all writes occurring before the first read of each thread p in
E

p

yield rc

while true do

i < |Threads(FE)]

while i > 1 and thread p (the i-th thread) has no further read to include do

let p be the i-th thread. // Reset (carry out) the digit of p: undo its current
contribution to F,.,

foreach read e, of E, do

// Remove reads of p

v < e,.value

decrement R,..(v)

if R,.(v) > 0 and W, (v) = 0 then insert v into Unsat

if R,.(v) = 0 then remove v from Unsat

foreach write e,, of E, that is after the first read of E, do
// Remove writes of p
v < ¢e,-value

decrement W,..(v)

if R,.(v) >0 and W, (v) = 0 then insert v into Unsat
re(p) < ]
1 i—1
if i <1 then break // Overflowed the most-significant digit

// Increment the digit of p: include its next read

let e, be the next read of p in £,

v < e,.value

append v to rc(p)

increment R,..(v)

if W,..(v) = 0 then insert v into Unsat

foreach write e,, of E,, occurring after e, and before the next read of p (or end of E,) do

// Expand E,.  along p: include writes up to (but not including) the next
read of p

w 4— e,.value

increment W, (w)

if w € Unsat and W, .(w) > 0 then remove w from Unsat

if Unsat = () then yield rc
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Once defined, ENUMERATEREADCUTSWITHPRUNING replaces the naive cross-product enumeration in

the exploration algorithm. Concretely, wherever the baseline algorithm iterates
for all read-cuts rc of an execution F
we instead iterate
for all read-cuts rc € ENUMERATEREADCUTSWITHPRUNING (E)

This refinement preserves completeness while avoiding the explosion of trivially infeasible read-cuts.
By pruning early, the exploration algorithm focuses its effort only on potentially feasible cases, sub-
stantially reducing the number of candidate read-cuts that must later be checked by the more costly

consistency algorithms.

A crucial consequence is that trivially infeasible read-cuts are never inserted into EXPLORED or TOBE-
ExPLORED. This yields a substantial reduction in memory consumption, as these sets would otherwise

accumulate many read-cuts that cannot correspond to any sequentially consistent execution.

In principle, one might attempt to avoid storing all infeasible read-cuts. However, doing so would
force the algorithm to re-examine the same infeasible read-cuts across different executions, incurring
significant overhead due to repeatedly invoking CONSTRUCTWITNESS on read-cuts that have already
been determined to be infeasible. In contrast, our enumeration algorithm discards trivially infeasible
read-cuts immediately: their infeasibility is detected in constant time during enumeration, and because

every candidate is traversed regardless, there is no advantage in storing them.
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5 The Algorithm CONSTRUCTWITNESS

We now describe CONSTRUCTWITNESS, the algorithm that, given a sequence of operations F, attempts
to build a reordering E that is a prefix of some sequentially consistent (SC) execution - or prove that
none exists. Our presentation is modular. First, we give a complete algorithm (Section 5.1) that
reduces the problem to a constraint-solving problem solved by an SMT solver; this serves as the
complete fallback. Then we introduce two polynomial-time heuristics that dramatically reduce solver
usage in practice: HEURISTIC-URF (Section 5.2), which infers a mandatory subset of the happens-
before relation and quickly rejects many infeasible cases, and HEURISTIC-INCR (Section 5.3), which
incrementally assembles SC execution prefixes by reusing relations from the most recent execution while
accommodating a newly added read. The final algorithm (Section 5.4) combines these components:
It first runs Heuristic-URF. If it proves the candidate is INCONSISTENT, it stops. Otherwise it invokes
HEURISTIC-INCR to try to construct a witness. Only if HEURISTIC-INCR returns UNKNOWN does it
fall back to CONSTRUCTWITNESSCOMPLETE.

5.1 CONSTRUCTWITNESSCOMPLETE: A Complete Algorithm based on Constraint-
Solving

We define an algorithm for checking whether there exists a reordering E of a given sequence of

operations E such that Eisa prefix of some sequentially consistent (SC) execution.

The problem is expressed as a constraint satisfaction problem in quantifier-free integer difference logic
(QF-IDL)®. Unlike standard integer programming, our encoding requires disjunctions (logical OR),
which are not directly supported by vanilla integer programming but are handled by SMT solvers
such as 7Z3.

Theorem 5.1 (Necessary and Sufficient Conditions for CONSTRUCTWITNESSCOMPLETE). A sequence
of operations Eisa prefiz of an SC execution if and only if program order is respected and, for every

read operation e, € E, the following conditions hold:
1. There exists a write e,, to e,.address with value e,.value such that e, occurs before e, in E.
2. Every other write €}, # e,, to e,.address occurs either strictly before e,, or strictly after e,..

Note that even other writes to the same memory object with the same value are disallowed between e,,

and e,..

Proof. (=) If Eisa prefix of an SC execution, then (i) program order is preserved by definition of SC,
and (ii) every read e, reads the value of the latest preceding write to e,.address; hence Conditions
(1)-(2) hold.

~ E
(<) Assume program order is preserved and Conditions (1)-(2) hold for every read e, € E. e; — e,

denotes that e; occurs before e, in the sequence E.

Define the relations.

6Quantifier-Free Integer Difference Logic (QF-IDL) consists of atomic constraints of the form x — y < ¢, =,y are integer
variables and ¢ is an integer constant, combined using the standard Boolean connectives. The satisfiability problem for
QF-IDL is decidable; for instance, it can be solved within the DPLL(T) framework [23].
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po E
Program order po. For each thread p, define e; — e, iff e;,e, belong to p and ¢, — e,. By

. E
assumption, program order is respected in F, so po C—.
Reads-from rf. For eachread e,, Conditions (1)—(2) ensure that there exists a write e, to e,..address
with value e,.value such that e,, occurs before e,, and moreover that e,, is the latest such write.
£ E E
Define e, = e,. Since e,, — e, it follows that rf C—.

. co . . E
Coherence co. For each memory object address, define e,,;, — €, for writes to address iff e,,; —

E
e,2- Thus, co is acyclic, total per address, and co C— by construction.

E b
Handling rb. Let rb := rf~1; co. We show rb C—. Pick any edge e, = el,. Then there exists a

rf co co
write e, such that e,, — e, and e, — e,,. From e, — e/, and the current construction of co, we
E

have e,, — e,.
Apply Condition (2) of the theorem to the read e,: every write e* # e, to e,.address occurs either

strictly before e, or strictly after e, in E. Instantiate e* := e.,. Since e,, — e, €., cannot be strictly

E E
before e,,; therefore e, — e, and thus rb C—.

B E
Acyclicity and conclusion. We have shown po,rf,co,rb C—, so hb := poUrf U co Urb C—. Since

E ~ E
— is acyclic, so is hb. Moreover, E is a topological sort of —, and therefore also of hb.

By the SC Acyclicity Theorem (Theorem 2.1), it follows that E is a prefix of some SC execution. [

We introduce an integer variable V, for each operation e, representing its position in the reordered

sequence F.

The constraints are expressed in QF-IDL as follows.

Range and Distinctness. To ensure that each V, corresponds to a valid position in E and thus
that E defines a valid total order, the V, must lie within the bounds of the execution and be pairwise
distinct:

Valid:=Vee E: 0<V_,<|E| A allV, are distinct

Program Order Preservation. For each thread p, the reordering must respect the relative order

of its operations in E:

PO= A A V<V M

i J
pEThreads(E) (e;,e;) consecutive in E,,

Reads-from Condition. For each read e,, there must exist some write e, to the same address with

value e,.value such that:
1. e, occurs before e,., and
2. every other write e, # e,, to the same address occurs either strictly before e,, or strictly after e,.

Let:

W (address,v) = {e,, € F | e, is a write, e,,.address = address, ¢,,.value = v},
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W(address) = {e, € E | ¢, is a write, e,,.address = address}.
The constraint for e, is:

R(e,) := (W(e,.address, e,.value) # ) A

\/ (Voo <Veon A (Vg <Vi, V V., <Vy)). (2)
e, EW(e,.address,e,. .value) el,EW(e, .address)
€t

Final Constraint. The overall formula is:

P:=ValidAPOA A\ Ree,). (3)

e.€cE
e, is a read

The formula P is in QF-IDL, using only atomic constraints of the form z < y. Since QF-IDL is
decidable [23], satisfiability can be checked effectively with an SMT solver such as Z3.

Finally, the pseudocode of CONSTRUCTWITNESSCOMPLETE is given in Algorithm 3.

Algorithm 3: CONSTRUCTWITNESSCOMPLETE(E)

Construct formula P

Invoke an SMT solver on P

if UNSATISFIABLE then return NONE

else

L Extract model and order operations of E by V, to obtain E

return F

5.2 HEURISTIC-URF': Fast Elimination of Inconsistent Executions

The majority of invocations of CONSTRUCTWITNESS are expected to fail, i.e. most candidate read-
cuts are infeasible and do not correspond to any prefix of a sequentially consistent execution. To
avoid the overhead of repeatedly invoking an SMT solver, we introduce a polynomial-time heuristic
that eliminates a large fraction of these infeasible cases. The heuristic returns either INCONSISTENT,

indicating that no valid execution exists, or UNKNOWN.

The heuristic is motivated by [5], which, though, operates under the assumption that the entire reads-

from relation is known. In our setting, however, the reads-from relation is not specified.

We introduce a weaker relation than rf, termed Unique Reads-From (urf), which is a subrelation
of rf.

Given a sequence of operations F, the HEURISTIC-URF algorithm incrementally constructs a partial
happens-before relation hb. At each step of the algorithm, hb contains only those edges that must
necessarily hold in any sequentially consistent execution prefix that is a reordering of E. This partial

relation is then used to infer mandatory reads-from edges, which we term as Unique Reads-From (urf).

Definition 5.1 (Unique Reads-From (URF)). Let E be a sequence of operations, and let hb denote

the current partial happens-before relation maintained by the algorithm. A read operation e, € E is
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urf
said to uniquely read-from the write operation e,, € E, denoted e,, — e,., if and only if:

1. e,.address = e,.address and e,.value = e,.value, and
. . / / 4 %
2. There does not exist any write e,, # e,, such that e,, € W(e,.address,e,.value) and e, €.

urf £
Ife, —e,, thene, = e, in every sequentially consistent execution prefix that is a reordering of E.

On the basis of this definition, the HEURISTIC-URF algorithm proceeds by iteratively extending the
partial happens-before relation hb until a fixpoint is reached. At each iteration, urf edges are inferred
and, along with their consequences, are added to hb. If this process yields a cycle, the candidate

execution is declared INCONSISTENT. Otherwise, the algorithm continues until a fixpoint is reached.

hb
Instead of performing explicit cycle detection, each time we add an edge e; — ey, we first check

whether e, i e, already holds. If it does, we return INCONSISTENT.
The algorithm is defined as follows:

1. Initialise hb with program-order po.

2. Iterate to a fixpoint:

(a) urf inference. For each read e, € E with exactly one candidate write e,, € W(e,.address, e,.value)
h f
such that erygew, add the edge e, = e,. If no such e, exists, return INCONSISTENT.

urf hb
(b) co inference. For each edge e,, — ¢, and for all e/, € W(e, .address) with e/, — e,., add

co hb . . .. co
e,, — e, (recorded as e, — e,,). This must hold because if, by contradiction, e,, — e,

then
co , hb
Ew — €y — €y

implying e, does not read-from e, since e, overwrites e,,.address — an absurdity.

urf
(¢) rb computation. For each edge e,, — e, and for all e, € W(e,.address) such that

hb b, =
€, — €, add e, — e;,. Recall that rb =rf~"; co.
(d) If a cycle is detected in hb, return INCONSISTENT.
3. On reaching a fixpoint without inconsistency, return (urf,hb).

Rules (2) and (3) coincide with the saturation rules of [5], but here they are reformulated directly in

terms of the relations used by the SC Acyclicity Theorem (Theorem 2.1).

At first glance, it may seem that co inference and rb computation computation need only consider
newly added urf edges in each iteration. However, as the algorithm progresses, hb accumulates more
constraints, and inferences may become possible for older urf edges as well. Hence iterating over urf

at rb computation and co inference is necessary.

The pseudocode of HEURISTIC-URF is given in Algorithm 4.
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Algorithm 4: HEURISTIC-URF(FE)
Input: Sequence of operations F

Output: INCONSISTENT or (urf,hb)
1 urf <0
2 hb + ()

3 foreach thread p € Threads(E) do

// Initialise hb with program-order edges.
4 E, < [e € E|ethread = p]
5 foreach consecutive (e;,e,) in E, do
po
6 tAdd e; — e, to hb
7 while true do
8 progress < false
9 foreach read e, € E with no incoming urf edge do // --- urf inference ---
h
10 W+« {e, | e, € W(e,.address,e,.value) A erygew) }
11 if W = () then return INCONSISTENT
12 if [W| =1 then
13 progress <— true
14 let W={e,}
urf
15 Add e, = e, tourf and to hb
16 foreach edge (e,,e,) € urf do // --- co inference ---
hb
17 foreach write e;, € W(e,,.address) with e,, — e, do
18 progress < true
hb
19 if e,, — e/, then return INCONSISTENT // Cycle Detection
20 Add e, = e, tohb
21 foreach edge (e, e,) € urf do // --- rb computation ---
hb
22 foreach e, € W(e,.address) with e, — e,, do
23 progress <— true
hb
24 if e;, — e, then return INCONSISTENT // Cycle Detection
b
25 Add e, = e;, to hb
26 if not progress then break

27 return (urf, hb)

Because the algorithm makes many connectivity queries on hb, we maintain hb as its transitive closure.
This allows reachability checks in O(1) by simple edge lookup. To preserve transitivity, whenever

adding an edge (a,b), the following updates are also made:
e For all z,y with (z,a), (b,y) € hb, add (z,y).
e For all x with (x,a) € hb, add (z,b).

e For all y with (b,y) € hb, add (a,y).

o8



The heuristic is sound: every sequence of operations reported as INCONSISTENT is indeed infeasible un-
der Sequential Consistency. Because the problem of deciding execution consistency under Sequential
Consistency is NP-complete, no polynomial-time algorithm can be complete (unless P = NP). Accord-
ingly, the heuristic must sacrifice completeness: some cases remain unresolved and are delegated to

the complete, but more costly, algorithm based on constraint-solving.

In practice, however, the heuristic rapidly eliminates nearly all inconsistent candidate executions,

leaving only a small fraction to be resolved by CONSTRUCTWITNESSCOMPLETE.

5.3 HEURISTIC-INCR: Incremental Construction of Sequentially Consistent Ex-
ecutions

HeURISTIC-URF substantially reduces the computational burden of rejecting infeasible read-cuts.
However, whenever a read-cut is feasible and an actual sequentially consistent (SC) execution pre-
fix must be constructed, CONSTRUCTWITNESSCOMPLETE is required, which significantly impacts the

overall performance of the SMC algorithm.

To mitigate this cost, we introduce HEURISTIC-INCR, a polynomial-time heuristic that attempts to
incrementally construct sequentially consistent execution prefixes by reusing information from previ-

ously run sequentially consistent executions.
Before HEURISTIC-INCR is invoked, the following are already available:

e A partial reads-from relation rf (specifically, the urf subset) and a partial happens-before rela-
tion hb, both guaranteed to be subsets of the corresponding relations of any SC execution prefix

that is a reordering of F.

e The most recent complete SC execution F ., from which the current sequence E is obtained as

pre»

a subsequence of E, . extended by one new read operation.
Two elements are missing in order to obtain an SC execution prefix for E:
1. A complete reads-from relation.
2. A complete coherence order (total order on writes to the same memory object).

The heuristic attempts to complete the rf and co relations by reusing rf,, and cog,. Since E is

e

obtained by minimally modifying F_ ., these relations are expected to remain valid for most operations.

pre?

If successful, the resulting hb = poUrfUcoUrb will be acyclic, and a sequentially consistent execution
prefix E can be obtained by a topological sort of hb. If at any point a cycle is introduced to hb, the
heuristic cannot conclude infeasibility, and defers the decision to the complete algorithm based on

constraint solving.

Unlike CONSTRUCTWITNESSCOMPLETE and HEURISTIC-URF, which only take the sequence E as in-

new
r

put, HEURISTIC-INCR additionally receives the new read operation el introduced by the exploration

new

" and thus the only one for which we have no

algorithm. e’*¥ is the only operation not present in E

pre»
information beyond the partial relations inferred by HEURISTIC-URF. The heuristic tries all candidate

writes as a read-from write for e}®".

The heuristic requires access to the relations rf
E,,

pre and cop . of E, .. The input £ is a subsequence of

with the additional read e;®". Therefore, the restrictions of rf, . and co,, to the operations of

e e
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FE coincide with the relations obtained by computing rf and co directly from E and then discarding
any edges involving eV,

Choosing a Candidate Source Write. For each write el € W(el®".address, e!*".value) (de-

h
fined with respect to F) such that e, 72%/ eV attempt the following construction. The first successful

w

attempt yields an SC prefix. If none succeeds, return UNKNOWN.

Completing the rf Relation.
£
e Initialize rf := urf, add e};" = e to rf and to hb.

e For each read e, € E without a source write in rf:

rfpre

h f
1. First try the source e,, such that e, —e,. If e, € E 7 and er;gew, add e, = e, torf
and hb.

2. Otherwise, search for an alternative write operation as follows. Starting from the position
of e, in the sequence E, scan backwards towards the beginning of E. At each step, if
the encountered operation e,, is a write such that e, .address = e,.address, e,.value =
e,.value, and er;%ew, select this e,, as the source write of e, by adding the edge e,, = e,
to rf and to hb.

If no such write is found in the backward scan, repeat the procedure by scanning forwards
from the position of e, towards the end of E. If no suitable write is found in either direction,

return UNKNOWN.

The rationale for this search order is twofold. First, the backward scan prioritises writes
already ordered before e, in the given sequence, which are more likely to respect existing
constraints. Second, examining operations close to e, increases the chance of success, as

nearby candidates typically introduce fewer additional happens-before dependencies.
3. Apply co inference and rb computation (as in HEURISTIC-URF).

This step ensures rf is complete, as required by the SC Acyclicity Theorem (Theorem 2.1).

Completing the co relation. At this stage, some pairs of writes to the same memory object may
remain unordered in hb. To complete the coherence order, we reuse information from the previously

known execution E, ..

For each memory object address € dom (W), consider all pairs of distinct writes e, €, € W(address).
hb hb
If neither e,,; — e, nor e,o — €, holds, then inherit their order from hb,.:

hb

o If e, — e, add the edge e, = €, to hb.

w2

hb

o Ife,o — €,1, add the edge e, = €1 to hb.

wl

Recall that the co relation is not maintained explicitly; instead, its edges are incorporated directly
into hb.

"Because we compute rf . from E, for this case, we will just not find a source write for read e,. in the computed rf .
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rb computation. Finally, add all edges rb = rf~!;co to hb. If this introduces a cycle, return

UNKNOWN.

Topological Sort. At this stage, we have a complete reads-from relation rf and a total coherence
order co for all writes, together with program order po and the derived relation rb. We also have that
the derived relation hb from these relations is acyclic. These relations satisfy the requirements of the
SC Acyclicity Theorem (Theorem 2.1).

Accordingly, perform a topological sort of hb. The resulting sequence E is, by the SC Acyclicity

Theorem (Theorem 2.1), a sequentially consistent execution prefix. Return E.

The pseudocode of HEURISTIC-INCR is given in Algorithm 5.
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Algorithm 5: HEURISTIC-INCR/(E, e}V, (urf, hby))

Input: Sequence of operations E, new read eV, (urf,hb,) from HEURISTIC-URF

Output: UNKNOWN or SC execution prefix E
Group writes of E by (address, value) into the sets W(address, value).

new

Tf res COpe <= compute rf, co from F, omitting all edges involving ey,

pre»

// These equal the restrictions of the relations of E, . to the operations in E.

nb,
foreach write eV € W(el*V.address, e?V.value) such that eV e’V do
w I ) ™ w

T

// --- choosing a candidate source write for the new read e}V ---

hb <— hb,; rf < urf

£
Add ev = er™ to rf and to hb

foreach read e, € E do // --- completing the rf relation ---

rf
if Ae,, with e,, — e, then
rf re
e, < the write such that e, SN e,

b
if e,, # NONE (this can occur if e,, € E,, but e, ¢ E) and er;gew then
£
Add e, = e, to rf and to hb

else // --- search for a suitable alternative source write for e, ---

e,, + first write found when scanning backwards in E from e, toward the start that

. h .

satisfies: e,.address = e,.address A e¢,.value = ¢,..value A er;gew (NoNE if
none exists)

if e, is NONE then

e,, < first write found when scanning forwards in E from e, toward the end

h
that satisfies: e,.address = e,.address A e,.value = e,.value A eT;gew
(NONE if none exists)

if e,, is NONE then return UNKNOWN

Add e, = e, to rf and to hb
repeat
Apply co inference and rb computation (as in HEURISTIC-URF). If adding
an edge would introduce a cycle, return UNKNOWN instead of INCONSISTENT.
until fixpoint of hb reached

foreach address € dom(W) do // --- completing the co relation ---

foreach distinct e, €, € W(address) do

h h)
if e, g €w2 aNd €, g e, then

hb

. pre co

if e,,;, — e, then add e,,; — ¢,,, to hb
hbprc

if e, — €,,; then add e, = e, to hb

hb
Add edges rb « rf~!; co to hb. If adding some edge e, — e, would create a cycle

hb
(equivalently if e, — e, already exists) return UNKNOWN // --- rb computation ---
E + TOPOLOGICALSORT(hb)

return F

return UNKNOWN
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Whenever adding an edge would result in a cycle, the heuristic conservatively returns UNKNOWN, even
though an alternative choice of rf or co might have yielded consistency. This is unavoidable: deciding
execution feasibility under SC is NP-complete, and achieving completeness in polynomial time would
imply P = NP.

In practice, HEURISTIC-INCR successfully constructs SC prefixes for the vast majority of feasible
candidate read-cuts, thereby substantially reducing the number of invocations of CONSTRUCTWIT-
NESSCOMPLETE.

5.4 Final CONSTRUCTWITNESS Algorithm

By combining the heuristics with the complete algorithm, the final CONSTRUCTWITNESS algorithm is

obtained. Its pseudocode is given in Algorithm 6.

Algorithm 6: CONSTRUCTWITNESS(E, e)®")
Input: Sequence of operations F, new read operation e

new
r

Output: Sequentially consistent execution prefix E such that E is a reordering of E, or
INCONSISTENT

U < HeurisTIC-URF(E)

if U = INCONSISTENT then return INCONSISTENT

else (urf,hb) <~ U

E «+ HEURISTIC-INCR(E, €™, (urf, hb))

if £ # UNKNOWN then return E

return CONSTRUCTWITNESSCOMPLETE(E)
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6 Why Naively Adapting the Reads-From Exploration Fails

At first glance, sound and optimal stateless model checking (SMC) under view equivalence may ap-
pear straightforward. For example, one natural idea is to adapt techniques developed for reads-from
equivalence. In particular, algorithms such as Optimal SMC for Reads-From Equivalence [5] explore
new executions by changing the source write of a single read operation while holding the rest of the
reads-from relation fixed. This strategy succeeds under reads-from equivalence because the reads-from

relation uniquely characterizes each equivalence class.

A straightforward extension to view equivalence would attempt to explore new view equivalence classes
by altering the values read by one read at a time, while keeping the others unchanged, achieved by

fixing the reads-from relation for all but that read.

However, this seemingly minor restriction introduces a critical flaw. By preserving the reads-from
edges of all other reads, the algorithm also preserves the induced happens-before relation. Since
happens-before constraints determine which writes are visible to a read, the algorithm may fail to
realize executions where a new combination of values is achievable only if multiple reads simultaneously

change their source writes. In such cases, no single read-from mutation suffices.
Example 6.1. Consider the following program with three threads and two shared variables x and y:

p q r
x :=2|y :=3; a := x;
y :=4;||b =y
x =2
Suppose we explore an execution where r; reads from ¢;. Program order then enforces the following

happens-before chain:

po po rf po
GG — Gy — q3 — Ty — Ty

As a result, ry happens-after g,, which itself happens-after ¢;. Therefore, if r; reads from g, then
ry cannot read from ¢;. Thus, if the algorithm attempts to force r, to read 3 while keeping r; fixed
to reading from g, it finds no valid execution and incorrectly concludes that 3 is an impossible value

for ry.

Yet such an execution does exist. Consider:

P14171724243

Here, r; reads from p,, scheduled before g;. The happens-before relation no longer prevents g, from

reading from ¢;. These constraints are illustrated in Fig. 4.
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Figure 4: Two competing tentative reads-from edges (dashed). If r; happens-after g5, the hb chain
blocks the red edge; moving p; earlier unlocks it and lets ¢, read 3.

This example illustrates the core limitation of this strategy: by mutating the reads-from write of only
a single read while keeping all others fixed, causality constraints are introduced that can mask feasible
executions. As a result, this strategy is unsound under view equivalence, since it may miss valid view

equivalence classes.

One might attempt to address this limitation by dynamically rescheduling or injecting additional
operations to “unblock” hidden writes; for example, by scheduling p; just before r; so that r; reads
from p, instead of ¢5. This adjustment would remove the happens-before constraint that previously

blocked 7, from reading from ¢, .

While this may succeed in simple examples, it does not resolve the fundamental issue. The entire
exploration strategy is predicated on keeping the remaining reads-from edges fixed. This fixed context

may encode deep causal dependencies that cannot be broken by local rescheduling.

For example, writes cannot always be arbitrarily rescheduled due to control-flow constraints, condi-
tional execution, and data dependencies. For instance, the write p; might be able to move only if
an earlier read of p on an unrelated variable z reads-from a particular write. Moving p; would then
require altering the source of this read, which in turn may cascade to other parts of the execution.
Thus, what begins as an attempt to change the value of a single read, can force consideration of un-
related reads and writes — potentially to entirely different variables — just to reach a viable execution.
This highlights the inherent difficulty of constructing sequentially consistent executions under view
equivalence: even a local change in one read’s value may necessitate a global reconfiguration of the

execution’s causal structure.

This discussion highlights a fundamental distinction between reads-from and view equivalence. Under
reads-from equivalence, exploration can proceed incrementally by mutating the source of a single read
while keeping all others fixed. Under view equivalence, by contrast, sound and complete exploration
may require mutating sources of multiple reads simultaneously. Consequently, any viable exploration

algorithm must be able to dynamically adjust causality across the entire execution.
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7 Implementation

7.1 Forks and Joins

Practical runtimes such as pthread permit dynamic thread creation and joining. We extend our model

to handle fork and join operations as follows.

Let eg, denote a spawn operation run by the parent thread, p"" the new thread, efsy the first

new

et a join operation. We add the constraints:

its last operation, and e;

operation of the new thread, e join

po po
new new
Cfork Cfirst and €last ; join

These constraints are injected into po wherever it is constructed:
e in HEURISTIC-URF and HEURISTIC-INCR, when initialising hb, and

e in CONSTRUCTWITNESSCOMPLETE, as inequalities V, =~ < Voew and Vopew <V,
or ast

first join :

Equivalent encoding. For theoretical purposes, it is useful to observe that fork and join can be

expressed entirely in terms of ordinary memory operations. In this encoding:

o e, is modelled as a write to a fresh location with a fresh value. A virtual read, prepended to

E, v, reads the fresh location. This virtual read is, thus, constrained to always rf from eg.

e A virtual write, appended to E ., writes to a second fresh location with a fresh value. ¢y, is

modelled as a read that reads the fresh location. e, is, thus, constrained to always rf from

join

this virtual write.
po
This encoding enforces exactly the same causal constraints as the explicit — edges:

e The child thread cannot perform any operations before the parent’s fork, since the virtual read

in p"®" depends on the fork’s virtual write.

e A join cannot occur until the corresponding thread has terminated, since the join, as a virtual

read, depends on the final virtual write in p"®".

Thus, programs with dynamic thread creation and joining can be reduced to programs containing only
ordinary reads and writes. This equivalence implies that our SC model requires no additional axioms,

and all theorems proved for the base model extend unchanged to the setting with fork and join.

7.2 URF and INCR: Graph Representations

Both HEURISTIC-URF and HEURISTIC-INCR maintain explicit representations of the rf and hb rela-

tions.
Reads-from. The rf relation is represented as a dense array indexed by execution position:

j if operation ¢ is a read and reads from operation j,
rffi] = . o .
—1 if operation ¢ is a write or a read that is currently unmatched

This representation ensures constant-time lookup and efficient updates.
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Happens-before. The hb relation is heavily queried for reachability, so we store it as its transitive
closure. We experimentally evaluated edge lists, adjacency lists, and adjacency matrices. Because
the transitive closure tends to be dense in practice, the adjacency-matrix representation is the most

efficient.

Let n = |E|. We store hb as an n x n bit matrix, laid out in row-major order in machine-word blocks.

Adding an edge (u,v) updates the closure using bitwise operations:

Let P be the set of predecessors of u (rows x such that x — u) and S the set of successors

of v (columns y such that v — y). Then for each z € PU {u} and y € SU {v}, set x — y.

In code, this amounts to:
row[z] |= row[x]V row[v]; colly] |= colly] V collu]

implemented as word-wise OR operations which can be performed over contiguous memory if both the
adjacency matrix and its transpose are maintained. These operations vectorise efficiently and exhibit

good cache locality.

7.3 NIDHUGG Integration

NIDHUGG structures SMC algorithms around a stateful TRACEBUILDER object that is driven by the
scheduler. This design is inverted relative to the classical presentation where the SMC algorithm
invokes the scheduler. In NIDHUGG, the scheduler is the main loop, while TRACEBUILDER supplies

scheduling decisions and records memory operations.
During execution, the scheduler repeatedly invokes:
e TRACEBUILDER.SCHEDULE() to obtain the next thread to execute,

e TRACEBUILDER.LOAD() and TRACEBUILDER.ATOMIC STORE() to record memory reads and

writes,
e TRACEBUILDER.SPAWN() and TRACEBUILDER.JOIN() to record thread creation and joining.

At the end of each execution, the scheduler calls TRACEBUILDER.RESET(), and subsequently queries
TRACEBUILDER.SHOULD CONTINUE() to determine whether a new execution should be initiated.

To recover the familiar control flow where the SMC algorithm drives the scheduler without modifying

NIDHUGG, we implement the algorithm as a coroutine using Boost: :Context:

e The algorithm yields whenever it wishes to invoke the scheduler, passing the execution prefix
through a shared field in TRACEBUILDER.

e The scheduler consumes this prefix, executes it to completion, stores the resulting execution in

TRACEBUILDER, and resumes the coroutine.

The coroutine maintains its own stack. Switching between the scheduler and the coroutine is imple-
mented as a stack switch. This preserves fidelity to the algorithmic specification while integrating

cleanly with NIDHUGG’s architecture.
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7.4 Flyweight Pattern

Executions are sequences of operations. In practice, all executions are composed from a comparatively
small set of distinct operations, combined in different orders. Because the EXECUTIONS container
must hold many executions simultaneously, storing complete copies of these operation records for each
execution would be prohibitively expensive. To eliminate this redundancy, we apply the Flyweight
pattern: each distinct operation is stored once, and executions reference it via pointers to immutable

operation instances (flyweights).

A Flyweight Store maintains a map from operation hashes to operation buffers. When a client requests
an operation, it constructs a temporary buffer (e.g. on the caller’s stack) and queries the Flyweight
Store, which:

1. Computes a (collision-resistant) hash h of the buffer.
2. Looks up h in the map. If an entry is found, the existing pointer is returned.

3. Otherwise a fresh buffer is allocated on the heap, the temporary buffer is copied into it, (h + buffer)

is inserted into the map, and a pointer to the new buffer is returned.

Flyweights are immutable and managed by reference counting. The buffer associated with each oper-

ation additionally stores an integer reference count:
e On successful lookup or insertion, the store increments the reference count.

e On release, the store decrements it. If the count reaches 0, the buffer and its map entry are

destroyed.

7.5 SMT Backend

The complete algorithm is implemented using Z3 via its official C++ API. Executions are encoded
into quantifier-free integer difference logic (QF-IDL) formulas, and satisfiability queries are used to

determine satisfiability.

7.6 An Optimized Membership Structure: The CONTAINSSET Data Structure
7.6.1 Motivation and High-Level Overview

In our implementation, the EXPLORED and TOBEEXPLORED sets are used exclusively for membership
checks — there is no need to enumerate their contents or retrieve elements. This restricted usage enables
a highly space-efficient representation. We introduce a simple yet powerful optimization, which we
call the CONTAINSSET.

The CONTAINSSET is implemented as a conventional hash set with O(1) average-case access time.
However, rather than storing full elements, it stores only a fixed-size cryptographic hash of each item.

This guarantees constant space per element, irrespective of its actual structure or size.

7.6.2 Cryptographic Hashing and Collision Resistance

To achieve this, we employ a cryptographically secure hash function such as SHA2 or BLAKE3. These
functions offer collision resistance, a well-established cryptographic property: no efficient (i.e., prob-

abilistic polynomial-time) algorithm is known to generate two distinct inputs with the same hash
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output. More precisely, any probabilistic polynomial-time (PPT) algorithm can produce two distinct
inputs that hash to the same value with only negligible probability in the size of the hash output —
i.e., for every polynomial p(n), there exists an N such that for all output lengths n > N, the success

probability is less than 1/p(n). Thus, the likelihood of collision is essentially negligible in practice.

To date, no known collision has been found for any widely used cryptographically secure hash function
such as SHA2. In the unlikely event that a hash function is broken, it can be substituted with another
secure hash function. It is important to note that cryptographic hash functions differ fundamentally
from the hash functions used in standard hash sets, which are not designed to completely eliminate

collisions.

7.6.3 Random Oracle Modeling and Statistical Guarantees

Cryptographic hash functions are frequently modeled using the Random Oracle Model (ROM), an
idealized framework introduced to analyze the security of cryptographic constructions. In this model,
the hash function H is treated not as a deterministic algorithm, but as an abstract oracle — a black

box — that answers each query with a random response, subject to the constraint of consistency.

Formally, the random oracle is a function H : {0,1}* — {0,1}", where {0,1}* denotes the set of
all finite-length binary strings (the input domain), and {0,1}" is the fixed-length output space (e.g.,
n = 256). The oracle maintains an initially empty internal table (or mapping). On receiving a query
xz € {0,1}%

1. If z is already in the table, the oracle returns H(x) as previously assigned.

2. If x is new, the oracle samples H(x) uniformly at random from {0, 1}", stores the pair (z, H(x)),
and returns H(x).

This process guarantees that each input yields an independently random output, and repeated queries
to the same input return the same value, preserving determinism across calls. Crucially, the mapping
from inputs to outputs is statistically independent for distinct inputs, and behaves as if it were a truly

random function selected uniformly from all functions mapping 0,1* to 0,1".

Although true random oracles cannot exist in practice — since no real-world function can simulate
such an idealized behavior — they serve as a powerful abstraction. Many cryptographic protocols and
security proofs are constructed and verified under this model. While real-world hash functions (like
SHA2, SHA3, or BLAKE3) are deterministic algorithms, they are designed to heuristically approximate

random oracles in practice.

Despite being a heuristic model, the Random Oracle Model has been remarkably successful in cryptog-
raphy: schemes proven secure under Random Oracle Model and instantiated with secure cryptographic
hash functions remain unbroken, even when subjected to extensive cryptanalytic effort. As such, the
Random Oracle Model remains a widely accepted and pragmatic foundation for reasoning about hash-

based constructions in both theory and practice.

7.6.4 Quantitative Analysis of Collision Probability

Let us consider storing ) distinct elements in a CONTAINSSET, where the hash function maps each
element to one of N = 2™ possible outputs (e.g., n = 256 bits). Since the elements are distinct, the

hash values are modeled as () independent and uniformly random samples from the output space.
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The probability that at least one collision occurs among a set of independently hashed elements is
captured by the well-known Birthday Problem. A standard analysis of this probability — such as the
one presented in Appendix A.4 of Introduction to Modern Cryptography by Jonathan Katz and Yehuda

Lindell [16] — yields the following bounds:
Q(%;l) <1—exp (—W) < CoLL(Q,N) < Q(ij\;l) (4)

where COLL(Q, N) denotes the probability that at least one collision occurs among the @ hash outputs

drawn uniformly at random from a space of size V.

7.6.5 Practical Implications of Collision Bounds
For instance, if Q = 10° and we use a 256-bit hash function (so N = 22°6), such as SHA2-256, then:
109(10° — 1)

2 . 92256

That is, the probability of even a single collision is astronomically small.

Corr(10%,22%%) < <4.4-10790

To appreciate the scale: the fastest supercomputers today achieve approximately 10'® floating-point
operations per second (1 exaFLOP) on benchmarks such as LINPACK, which involve solving large
dense systems of linear equations. Although cryptographic hash computations are substantially more
complex than the arithmetic operations involved in such workloads, let us assume — generously — that

such a machine could perform 10'® cryptographic hash evaluations per second.

Suppose that in each experiment, we generate and hash 10° new, randomly chosen elements. With a

collision probability bounded by 4.4 - 1070 per such experiment, it would take on average

1

to observe a single collision. Since each execution involves 10° hashes, the total number of hashes
required is 2.3 - 10%%. At a rate of 10'® hashes per second, this would take:

2.3-10%8

0 = 2.3 - 10°° seconds,

which corresponds to roughly 7.3 - 10*? years — approximately 5.3 - 1032 times the age of the universe,

estimated at 13.8 - 10? years.

7.6.6 Choosing the Hash Output Size

We can derive a general expression for the minimum required hash output length n (in bits) to bound

the collision probability by some e:

log, (Q@—”) < 1 < log, (Q@—”) (5)

70



Under the common approximation () — 1 ~ @, this simplifies to:
210g2Q—log25—2§n§210g2Q—log25—1 (6)

Thus, the upper and lower bounds differ by only 1 bit, giving us precise control over collision guarantees

for a given ) and ¢.

7.6.7 Implementation Details

Our present implementation employs the xxHash algorithm, selected primarily for its remarkable com-
putational efficiency. It should be stressed, however, that xxHash is a non-cryptographic hash function,
and thus its design does not aim to prevent the deliberate construction of colliding inputs. Conse-
quently, one cannot exclude the possibility that an efficient collision-finding algorithm may exist.
Nevertheless, in the absence of adversarially chosen inputs, as is the case in our application, such
concerns are largely theoretical, and xxHash provides an attractive balance between performance and

reliability in practice.

In our current implementation, we selected the 64-bit variant of xxHash, denoted XXH64. Based on
experimental evidence, we do not expect to store more than 10® elements in a single CONTAINSSET.
Under this assumption, and modeling XXH64 as a random oracle, the probability of a collision when

inserting 10® distinct elements is bounded by:

108(108 — 1)

S ger <3107

CoLL(108%,204) <

This bound indicates that collisions are exceedingly unlikely to occur in practice.

For applications in which stronger guarantees against collisions are required, XXH64 can be replaced
with a hash function that produces a larger output (e.g., 128 or 256 bits) and/or a cryptographically
secure alternative such as SHA2-256 or BLAKE3-256. Increasing the output length exponentially
reduces the collision probability, while cryptographic hash functions additionally provide collision-
resistance guarantees that remain secure even in the presence of adversarially chosen inputs. In such
cases, the probability of collision can be reduced to a level so small that it lies far beyond the reach of

any conceivable computational effort, and collisions may be regarded as practically impossible.
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8 Evaluation

We evaluate the performance of VIEWXPLORE on the READINC program, running on an Intel Core i7
(Ist Gen) CPU at 1.60 GHz. We compare VIEWXPLORE against the following state-of-the-art SMC
algorithms: OPTIMAL-DPOR [1], OpTIMAL-DPOR-OBSERVERS [7], SMC-RVF [0, 25], Data-Centric
DPOR [8, 9], and OPTIMAL-SMC-RF [5].

READINC [n=6] READINC [n=7|

# (Interleavings) 7,484,400 681,080,400
#(hb equivalence classes) 518,400 25,401,600
OprPTIMAL-DPOR time 85.63 s 5480.30 s
#(Observers equivalence classes) 157,717 6,053,748
OPTIMAL-DPOR-OBSERVERS time 29.25 s 1432.92 s
DC-DPOR reported #(Executions) 84,682 2,625,219
DC-DPOR time 30.31 s 1225.83 s
SMC-RVF reported # (Executions) 14,495 181,103
SMC-RVF time 8.86 s 130.38 s
#(rf equivalence classes) 16,807 262,144
OPTIMAL-SMC-RF time 2.70 s 51.40 s
#(View Equivalence Classes) 4,683 47,294
VIEWXPLORE 0.66 s 8.61 s

Table 2: Performance comparison on the READINC benchmark. VIEWXPLORE achieves the fewest
equivalence classes and the lowest runtime among all methods.

As shown in Table 2, VIEWXPLORE achieves a substantial reduction in both the number of explored
executions and the total exploration time. Compared to OPTIMAL-DPOR, it reduces the number of
explored executions by nearly two-three orders of magnitude. Even against the more refined OPTIMAL-
DPOR-OBSERVERS and OPTIMAL-SMC-RF, VIEWXPLORE consistently explores fewer equivalence
classes and completes significantly faster. For instance, on READINC [n=7|, VIEWXPLORE is over
160x faster than OPTIMAL-DPOR and roughly 6x faster than OpTIMAL-SMC-RF.
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9 MCSC: Model Checking for Sequential Consistency is NP-complete

We establish the computational complexity of model checking under the Sequential Consistency (SC)
memory model. Specifically, we show that the decision problem of determining whether any SC
execution violates a safety property — referred to as MCSC — is NP-complete. To the best of our

knowledge, this result has not previously appeared in the literature.
We first formalize the decision problem.

Definition 9.1 (MCSC decision problem). Given a program to be executed concurrently by n threads,
determine whether there exists an interleaving (under the Sequential Consistency model) in which at

least one thread crashes. The answer is YES if such an interleaving exists, and NO otherwise.

A crash is defined as follows: for each thread, there exists a set of sequences of read values, called
the Crashing Set, such that the thread crashes if and only if the sequence of values it reads belongs to
its Crashing Set. The Crashing Sets are not known to the model checker a priori; they can only be

discovered by executing runs in which a thread reads such a sequence.

More formally, the decision problem asks whether there exists a sequentially consistent execution in

which the sequence of values read by some thread lies in its Crashing Set.

9.1 NP-hardness

We show NP-hardness via a Karp reduction from the well-known SUBSETSUM problem.

Definition 9.2 (SUBSETSUM decision problem). Given a finite set A = {ay,a,,...,a,} of integers

and a target value S € Z, determine whether there exists a non-empty subset A” C A such that
ZaeA’ a=5.
Theorem 9.1 (NP-hardness of MCSC). MCSC is NP-hard.

Proof. Let (A, S) be an instance of SUBSETSUM, where A = {a,,a,,...,a,}.
We construct a corresponding instance of MCSC as follows.

We introduce n threads p',...,p" — one per element of A — and a single shared variable x, initially set

to 0. The concurrent program is the following:

P! p’ p"
b = x; b = x; b := x;
assert(b+a; #8) || assert(b+a, #9) || assert (o + a, #9)
X = b+a X = b+a, X 1= b+a,

This defines the MCSC instance.

We now show that the SUBSETSUM instance is a YES-instance if and only if the MCSC instance is a

YEs-instance, i.e., if the previous program admits an interleaving where a thread crashes.

(=) If the SUBSETSUM instance is YEs-instance, then the MCSC instance is a YEs-

instance. Suppose there exists a subset A" = {a ;a; } € Asuch that >, a= 5. Consider

7:1, cee
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the interleaving in which threads p'i, ..., p'* execute in sequence, each performing its entire program

(read, assert, and write) in order. That is, the interleaving schedule is:

il il i2 i2 7‘k Zk
Py Poy PPy Py P2

where each thread is scheduled twice (once for its read and once for its write). Note that assertion
checks are thread-local operations. All other threads, if any, execute after this interleaving in some

arbitrary order, which is out of our interest.

Since all threads in this interleaving execute their reads and writes in sequence, the shared variable x

accumulates the sum of the corresponding a, values in A’.

The final thread in the sequence p’* reads the value b = >
check b+ a;, # S, which fails, as

a; and performs the assertion
a;€eA\{a;, } p

b+aik: Z a; +aik: Za]’:

a;€AN{a;, } a;eA’
Therefore, thread p’* crashes, and the MCSC instance is a YES-instance.

(<) If the MCSC instance is a YEs-instance, then the SUBSETSUM instance is a YEs-
instance. Assume the MCSC instance is a YES-instance, that is, there exists an interleaving in which

some thread p* crashes.

We define that thread p’ reads-from thread p? if p?’s read reads-from p*’s write, i.e., if p*’s write is the

most recent write to x preceding p?’s read in the interleaving®.

We now define the reads-from chain of a thread p‘, denoted C(p?) as follows: Recursively prepend the

thread that p’ reads-from, continuing until reaching a thread that reads the initial value z = 0.

It follows that the value read by a thread p’ is the sum of the a; values associated with the threads in

the chain €(p*):
b= D q
plec(p?)

When p* executes its assertion check, it computes

b+ay,= Z a; +a, = Z a;
pieC(pk) pieC(pk)u{pk}

Since the assertion fails, this value must equal S. Thus, the subset
A= {% |p7 e C(p*)u {p’“}} cCA

is a solution to the original SUBSETSUM instance. Hence, the SUBSETSUM instance is a YES-instance.

This completes the reduction. Note that the size of the constructed program is linear in the size

8Since each thread performs exactly one read and one write, this relation is well-defined.
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of the input (A, S), and each thread performs only simple arithmetic and one read/write to shared

mMemory. O

9.2 On Execution Time of Programs

It is worth noting that, in general, proving that SC model checking is NP-hard is not particularly
informative unless some restriction is placed on the execution time of the programs. Indeed, there
exist programs that require exponential time to execute even a single run. In such cases, model checking
becomes infeasible for trivial reasons. Furthermore, non-terminating programs trivially render model

checking undecidable.

Hence, to obtain a meaningful complexity result, we restrict our attention to programs that execute in
time polynomial in the size of the input — that is, programs whose total execution time (summed over
all threads) is polynomial in their size. Under this assumption, the reduction given above remains
valid: the constructed program consists of a linear number of simple arithmetic and control-flow
operations, and each thread executes only two memory operations. Thus, the reduction applies even

under this time-bounded restriction.

9.3 MCSC for polynomial-time programs is in NP

Having established NP-hardness, we now show that MCSC lies in NP under the aforementioned

polynomial-time execution restriction, and thus conclude that MCSC is NP-complete.

Theorem 9.2 (MCSC in NP). MCSC lies in NP under the polynomial-time execution restriction.

Proof. A valid certificate for a YES-instance consists of an sequence of thread identifiers that corre-
sponds to an interleaving that leads to a crash. Since the total number of operations is polynomial in

the input size, the certificate itself is of polynomial size.

The NP verifier operates as follows. Given a candidate certificate (interleaving) and the MCSC in-
stance, the verifier simulates the execution of the concurrent program under the specified interleaving.
This can be performed efficiently, assuming access to an interpreter for the concurrent programs. If
the certificate includes invalid thread identifiers or results in any error other than a crash, the verifier
returns NoO. If the simulation completes without any thread crashing, the verifier also returns No.

Only if a crash occurs during simulation does the verifier return YEs.

Since the verifier runs in polynomial time and accepts exactly those certificates that correspond to

crashing executions, the problem is in NP. ]

Corollary 9.1 (NP-completeness of MCSC). MCSC for polynomial-time programs is NP-complete.
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10 Future Work

We identify several directions for future work:

e Support for locks and Read-Modify-Write (RMW) operations. Extending our algo-

rithm to handle mutual exclusion primitives and atomic Read-Motify-Write (RMW) operations.

e Parallelization of exploration and witness construction. The exploration of independent
interleavings can be distributed across multiple cores, potentially leading to significant reductions

in total runtime.

e Extension to weaker memory models. Incorporating relaxed consistency semantics such
as Total Store Order (TSO), Partial Store Order (PSO), and Release-Acquire (RA) would allow

our approach to capture the behavior of modern multiprocessor architectures.
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