
National Technical University of Athens
School of Electrical and Computer Engineering
Division of Computer Science
Laboratory of Software Engineering

Optimal Exploration of Sequentially Consistent
Executions of Concurrent Programs

under View Equivalence

DiPLOMA THESiS

by

Andreas Stamos

SUPERViSOR: Konstantinos Sagonas,
Associate Professor NTUA

Athens, September 2025

THIS PAGE INTENTIONALLY LEFT BLANK.

Εθνικό Μετσόβιο Πολυτεχνείο
Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών
Τομέας Τεχνολογίας Πληροφορικής και Υπολογιστών
Εργαστήριο Τεχνολογίας Λογισμικού

Βέλτιστη Εξερεύνηση Ακολουθιακά Συνεπών
Εκτελέσεων Παράλληλων Προγραμμάτων

υπό Ισοδυναμία Όψεων

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Ανδρέας Στάμος

ΕΠΙΒΛΕΠΩΝ: Κωνσταντίνος Σαγώνας,
Αναπληρωτής Καθηγητής Ε.Μ.Π.

Αθήνα, Σεπτέμβριος 2025

THIS PAGE INTENTIONALLY LEFT BLANK.

National Technical University of Athens
School of Electrical and Computer Engineering
Division of Computer Science
Laboratory of Software Engineering

Optimal Exploration of Sequentially Consistent
Executions of Concurrent Programs

under View Equivalence

DiPLOMA THESiS

by

Andreas Stamos

SUPERViSOR: Konstantinos Sagonas,
Associate Professor NTUA

Approved by the three-member examination committee

on 30 September 2025 in Athens, Greece

Konstantinos Sagonas Nikolaos Papaspyrou Zoi Paraskevopoulou

Associate Professor, ECE NTUA Professor, ECE NTUA Assistant Professor, ECE NTUA

Athens, September 2025

National Technical University of Athens
School of Electrical and Computer Engineering
Division of Computer Science
Laboratory of Software Engineering

Andreas Stamos
Graduate of School of Electrical and Computer Engineering,
National Technical University of Athens

© 2025 Andreas Stamos. All Rights Reserved.

Copyright Notice
You may not copy, reproduce, distribute, publish, display, modify, create derivative works, transmit,
or in any way exploit this thesis or part of it for commercial purposes.

You may reproduce, store or distribute this thesis for non-profit educational or research purposes,
provided that the source is cited, and the present copyright notice is retained.

Inquiries for commercial use should be addressed to the original author.

The ideas and conclusions presented in this paper are the author’s and do not necessarily reflect the
official views of the National Technical University of Athens.

To those who devoted their lives to establishing the foundations
and advancing the frontiers of modern computing.

Their vision enabled the limitless exploration of knowledge we experience today.

THIS PAGE INTENTIONALLY LEFT BLANK.

Περίληψη

Το σύγχρονο λογισμικό – από ελεγκτές αεροσκαφών έως εφαρμογές έξυπνων κινητών τηλεφώνων – εκτε-
λείται σε διαρκώς και πιο παράλληλο υλικό. Ωστόσο, τα σφάλματα λόγω παραλληλίας παραμένουν κατά
κοινή ομολογία δύσκολο να εντοπιστούν. Ένα παράλληλο πρόγραμμα μπορεί να εκτελεστεί με εκθετικά
πολλούς διαφορετικούς τρόπους, ανάλογα με το πώς διαπλέκονται τα νήματά του στο χρονοπρόγραμμα.
Εάν ακόμη και μία εκτέλεση προκαλεί σφάλμα, αυτή μπορεί τελικά να συμβεί, προκαλώντας δυνητικά
καταστροφικές συνέπειες. Μια προσέγγιση για την επαλήθευση της απουσίας σφαλμάτων λόγω παραλ-
ληλίας σε ένα πρόγραμμα είναι το Stateless Model Checking (SMC), το οποίο εξερευνά συστηματικά τον
χώρο των πιθανών εκτελέσεων (ή ένα αντιπροσωπευτικό υποσύνολο αυτών) εκτελώντας επανειλημμένα
το πρόγραμμα από την αρχική κατάσταση έως τον τερματισμό υπό διαφορετικά σενάρια χρονοδρομολό-
γησης. Μια βασική ευκαιρία έγκειται στον πλεονασμό: πολλές εκτελέσεις επιδεικνύουν πανομοιότυπη
συμπεριφορά του προγράμματος και επομένως δεν χρειάζεται να εκτελεστούν όλες. Ωστόσο, ακόμη
και οι πιο εξελιγμένες παραλλαγές του SMC (βασισμένες σε ισοδυναμία happens-before, παρατηρήσιμης
happens-before ή reads-from) εξακολουθούν να εξερευνούν πολλές φορές εκτελέσεις όπου όλα τα νήματα
διαβάζουν τις ίδιες τιμές.

Αυτή η εργασία διερευνά την Ισοδυναμία Όψεων (View Equivalence), την πιο αδρή γνωστή σχέση ισο-
δυναμίας για το μοντέλο συνέπειας μνήμης της Ακολουθιακής Συνέπειας (Sequential Consistency): δύο
εκτελέσεις χαρακτηρίζονται ισοδύναμες αν και μόνον αν κάθε ανάγνωση επιστρέφει την ίδια τιμή, ανεξάρ-
τητα από το ποια εγγραφή την παρήγαγε. Εισαγάγουμε τον ViEWXPLORE, τον πρώτο ορθό (sound) και
βέλτιστο (optimal) αλγόριθμο για τη εξερεύνηση ακολουθιακά συνεπών εκτελέσεων παράλληλων προ-
γραμμάτων υπό ισοδυναμία όψεων. Ο ViEWXPLORE αναγνωρίζει όλες τις πιθανές τιμές κάθε ανάγνωσης
και εξερευνά μία εκτέλεση ανά συνδυασμό τιμών, επιτυγχάνοντας να εκτελέσει τελικά ακριβώς μία εκτέ-
λεση ανά κλάση ισοδυναμίας όψεων. Για να επιτύχει αυτό, ο ViEWXPLORE απαιτεί έναν αλγόριθμο για
την κατασκευή ακολουθιακά συνεπών εκτελέσεων. Εισαγάγουμε τον αλγόριθμο CONSTRUCTWiTNESS, ο
οποίος εκτελεί αυτή την κατασκευή σε πολυωνυμικό χρόνο για σχεδόν όλες τις εισόδους, παρά το γεγο-
νός ότι το πρόβλημα αυτό είναι NP-πλήρες. Ο ViEWXPLORE υλοποιείται για προγράμματα C/Pthreads
μέσω ενσωμάτωσης με το εργαλείο NiDHUGG που βασίζεται στο LLVM.

Επιπλέον, αποδεικνύουμε ότι το πρόβλημα απόφασης για το εάν οποιαδήποτε ακολουθιακά συνεπής εκτέ-
λεση ενός δοθέντος παράλληλου προγράμματος παραβιάζει μια δοθείσα ιδιότητα, είναι NP-πλήρες. Αυτό
καθιερώνει ένα κάτω φράγμα υπολογιστικής πολυπλοκότητας που ισχύει ανεξάρτητα από οποιαδήποτε
επιλογή σχέσης ισοδυναμίας.

Λέξεις-κλειδιά: Παράλληλα Προγράμματα, Ακολουθιακή Συνέπεια, Επαλήθευση Προγραμμάτων, State-
less Model Checking, Ισοδυναμία Όψεων, ViEWXPLORE, Κατασκευή Εκτελέσεων, NP-πληρότητα

THIS PAGE INTENTIONALLY LEFT BLANK.

Abstract

Modern software – from avionics controllers to smartphone apps – runs on increasingly parallel hard-
ware. Yet concurrency bugs remain notoriously difficult to uncover. A concurrent program can execute
in exponentially many different ways, depending on how its threads are interleaved. If even a single
interleaving triggers a fault, it may eventually occur, potentially causing catastrophic consequences.
A standard approach to verify the absence of concurrency errors in a program is Stateless Model
Checking (SMC), which systematically explores the space of possible interleavings (or a representative
subset thereof) by repeatedly executing the program from the initial state to termination under dif-
ferent scheduling scenarios. A key opportunity lies in redundancy: many interleavings yield identical
program behavior and therefore need not all be explored. However, even the most refined variants
of SMC (based on happens-before, observers, or reads-from equivalence) still explore multiple times
interleavings where all threads read the same values.

This thesis investigates view equivalence, the coarsest known equivalence relation for the Sequential
Consistency (SC) memory model: two executions are equivalent if and only if every read returns the
same value, irrespective of which write produced it. We introduce ViEWXPLORE, the first sound and
optimal algorithm for exploring concurrent executions under view equivalence. ViEWXPLORE identifies
all the possible values of each read and explores one relevant interleaving per combination of values,
executing exactly one execution per view equivalence class. To achieve this, ViEWXPLORE requires
an algorithm to construct sequentially consistent executions. We introduce the CONSTRUCTWiTNESS
algorithm, which performs this construction in polynomial time for nearly all inputs, despite the
problem being NP-complete. An implementation targeting C/Pthreads programs is built through
integration with the LLVM-based NiDHUGG stateless model checker.

In addition, we prove that the decision problem of determining whether any SC execution violates a
safety property is NP-complete. This establishes a lower complexity bound that holds independently
of any equivalence strategy.

Keywords: Concurrent Programs; Sequential Consistency; Program Verification; Stateless Model
Checking; View Equivalence; ViEWXPLORE; Execution Construction; NP-completeness

THIS PAGE INTENTIONALLY LEFT BLANK.

Contents

0 Εκτεταμένη Ελληνική Περίληψη (Extended Greek Abstract) 15
0.1 Εισαγωγή . 15
0.2 Συνεισφορές . 16
0.3 Θεωρητικό Υπόβαθρο . 16
0.4 Ισοδυναμία Όψεων . 18
0.5 Αλγόριθμος ViEWXPLORE . 18
0.6 Αλγόριθμος CONSTRUCTWiTNESS . 19
0.7 Μελλοντικές Επεκτάσεις . 20

1 Introduction 21
1.1 Relation to Previous Work . 22
1.2 Contributions . 23

2 Background 24
2.1 Notation . 24
2.2 The Sequential Consistency Model . 25

2.2.1 Key Relations of Sequential Consistency . 25
2.2.2 An Equivalent Graph-Based Characterisation of Sequential Consistency 26

2.3 Stateless Model Checking . 27
2.4 Dynamic Partial Order Reduction . 29

2.4.1 Happens-Before Equivalence and the OPTiMAL-DPOR Algorithm 29
2.4.2 Observer Equivalence and the OPTiMAL-DPOR-OBSERVERS Algorithm 30
2.4.3 Reads-From Equivalence and the OPTiMAL SMC-RF Algorithm 30
2.4.4 Reads-Value-From (RVF) Equivalence and the SMC-RVF Algorithm 31
2.4.5 Data-Centric Dynamic Partial Order Reduction 31

2.5 Properties of SMC/DPOR Algorithms . 31
2.5.1 Soundness and Optimality . 31
2.5.2 Performance . 32
2.5.3 NP-completeness of Constructing Sequentially Consistent Executions 33

3 View Equivalence 34
3.1 Definition . 34
3.2 Exponential Reduction in View Equivalence Classes 35

3.2.1 The MANYSAMEVALUE (MSV) Program . 35
3.2.2 The READINC Program . 37

4 Exploration Algorithm 42
4.1 Definitions . 42
4.2 Algorithm . 43
4.3 Example: Running the Algorithm on READINC [𝑛 = 2] 46
4.4 Optimality . 47
4.5 Soundness . 48
4.6 Reducing Memory Consumption . 49
4.7 Improved Read-Cut Enumeration with Early Feasibility Pruning 50

13

5 The Algorithm CONSTRUCTWiTNESS 54
5.1 CONSTRUCTWiTNESSCOMPLETE: A Complete Algorithm based on Constraint-Solving 54
5.2 HEURiSTiC-URF: Fast Elimination of Inconsistent Executions 56
5.3 HEURiSTiC-INCR: Incremental Construction of Sequentially Consistent Executions . . 59
5.4 Final CONSTRUCTWiTNESS Algorithm . 63

6 Why Naively Adapting the Reads-From Exploration Fails 64

7 Implementation 66
7.1 Forks and Joins . 66
7.2 URF and INCR: Graph Representations . 66
7.3 NiDHUGG Integration . 67
7.4 Flyweight Pattern . 68
7.5 SMT Backend . 68
7.6 An Optimized Membership Structure: The CONTAiNSSET Data Structure 68

8 Evaluation 72

9 MCSC: Model Checking for Sequential Consistency is NP-complete 73
9.1 NP-hardness . 73
9.2 On Execution Time of Programs . 75
9.3 MCSC for polynomial-time programs is in NP . 75

10 Future Work 76

List of Definitions 77

List of Theorems 77

List of Algorithms 77

References 79

14

0 Εκτεταμένη Ελληνική Περίληψη (Extended Greek Abstract)

Η παρούσα ενότητα παρέχεται για κανονιστικούς λόγους και δεν εισάγει νέο περιεχόμενο ή συμπληρωματικές
πληροφορίες.

This section is provided for regulatory purposes and does not introduce new content or supplementary
information.

0.1 Εισαγωγή

Η εξάπλωση των πολυπύρηνων συστημάτων, απόρροια, μεταξύ άλλων, της κατάρρευσης της κλιμάκωσης
του Dennard, έχει καταστήσει τον παράλληλο προγραμματισμό αναπόσπαστο μέρος σχεδόν κάθε εφαρ-
μογής. Από κρίσιμα βιομηχανικά και ιατρικά συστήματα, μέχρι εφαρμογές κινητών τηλεφώνων, ο σωστός
χειρισμός του παραλληλισμού συνιστά απαραίτητη προϋπόθεση για την ασφάλεια και την αξιοπιστία.

Ωστόσο, η ανάπτυξη παράλληλου λογισμικού κρύβει σημαντικές προκλήσεις. Σπάνιες και δύσκολα ανι-
χνεύσιμες αλληλεπιδράσεις μεταξύ νημάτων μπορούν να οδηγήσουν σε σφάλματα που εμφανίζονται απρό-
βλεπτα κατά τον χρόνο εκτέλεσης και είναι δύσκολο να αναπαραχθούν σε περιβάλλον δοκιμών. Σφάλματα
όπως οι συνθήκες ανταγωνισμού (race conditions) ή οι παραβιάσεις ατομικότητας είναι χαρακτηριστικά
παραδείγματα.

Για τον συστηματικό εντοπισμό τέτοιων σφαλμάτων έχει αναπτυχθεί η τεχνική Stateless Model Checking
(SMC) [12, 10] (Κεφάλαιο 2.3), η οποία λαμβάνει ως είσοδο ένα παράλληλο πρόγραμμα και το εκτελεί
επανειλημμένα με διαφορετικά χρονοπρογράμματα, δηλαδή διαφορετικές διατάξεις των νημάτων στο χρο-
νοπρόγραμμα, ώστε να τρέξει ένα σύνολο εκτελέσεων που να καλύπτει όλες τις πιθανές συμπεριφορές
που μπορεί να έχει το πρόγραμμα.

Αξίζει να διευκρινιστεί πως οι αλγόριθμοι Stateless Model Checking δεν έχουν πρόσβαση στον πηγαίο
κώδικα του εξεταζόμενου προγράμματος, αλλά ελέγχουν μόνο τον χρονοδρομολογητή και λαμβάνουν
γνώση μόνο για τις λειτουργίες που εκτελούνται στην κοινόχρηστη μνήμη (επηρεαζόμενη θέσης μνήμης
και τιμή ανάγνωσης/εγγραφής ανά λειτουργία).

Μια πρωτόλεια ιδέα θα ήταν απλά να εκτελεστούν όλα τα πιθανά χρονοπρογράμματα, δηλαδή όλες οι πιθα-
νές διατάξεις νημάτων. Το βασικό πρόβλημα αυτής της ιδέας έγκειται στο γεγονός ότι ένα πολυνηματικό
πρόγραμμα μπορεί να εκτελεστεί με εκθετικά πολλά διαφορετικά χρονοπρογράμματα, καθώς οι πιθανές
διατάξεις των νημάτων είναι εκθετικά πολλές. Αποδεικνύεται σε αυτή την εργασία (Θεώρημα 2.2) πως ένα
πρόγραμμα με 𝑘 νήματα και 𝑛 λειτουργίες ανά νήμα επιδέχεται (𝑘𝑛)!

(𝑛!)𝑘 διαφορετικά χρονοπρογράμματα. Εν-
δεικτικά για 𝑘 = 3 νήματα και 𝑛 = 10 λειτουργίες ανά νήμα υπάρχουν 5.5⋅1012 (5.5 τετράκις-εκατομμύρια)
χρονοπρογράμματα. Ακόμη κι αν ένα μόνο από τα εκθετικά πολλά πιθανά χρονοπρογράμματα παραβιάζει
κάποια δοσμένη ιδιότητα ασφαλείας, το πρόγραμμα θεωρείται μη ασφαλές, και το χρονοπρόγραμμα αυτό
πρέπει να εντοπιστεί.

Προκειμένου να αποφευχθεί η εξαντλητική αναζήτηση όλων των πιθανών χρονοπρογραμμάτων, τα τε-
λευταία χρόνια έχει δοθεί έμφαση στην αναζήτηση αλγορίθμων που αποφεύγουν τον έλεγχο ισοδύναμων
εκτελέσεων (Κεφάλαιο 2.4). Οι αλγόριθμοι αυτοί διαμοιράζουν όλες τις πιθανές εκτελέσεις σε κλάσεις ι-
σοδυναμίας με βάση μια καθορισμένη σχέση ισοδυναμίας και έπειτα επιχειρούν να εκτελέσουν τουλάχιστον
μια εκτέλεση, ή ιδανικότερα ακριβώς μία εκτέλεση, από κάθε κλάση ισοδυναμίας.

Ο χαρακτηρισμός της ισοδυναμίας διαφέρει από αλγόριθμο σε αλγόριθμο, όμως πάντα δύο εκτελέσεις

15

που χαρακτηρίζονται ισοδύναμες εμφανίζουν την ίδια συμπεριφορά. Πιο συγκεκριμένα, καθώς τα νή-
ματα θεωρούνται αιτιοκρατικά δοθέντων των τιμών που διαβάζουν από την κοινόχρηστη μνήμη, για να
χαρακτηριστούν δύο εκτελέσεις ισοδύναμες πρέπει όλα τα νήματα να έχουν διαβάσει σε όλες τις λει-
τουργίες ανάγνωσης ίδιες τιμές από την κοινόχρηστη μνήμη. Ωστόσο, δύο εκτελέσεις μπορεί να έχουν
ίδιες τιμές ανάγνωσης σε όλες τις λειτουργίες ανάγνωσης (οπότε ίδια συμπεριφορά) και παρ’ όλα αυτά
μια αποδεκτή σχέση ισοδυναμίας να μην τις χαρακτηρίσει ισοδύναμες. Μια τέτοια σχέση ισοδυναμίας θα
αναγκάσει έναν αλγόριθμο που στηρίζεται σε αυτή να εξερευνήσει πάνω μία εκτέλεση ανά συμπεριφορά
προγράμματος.

Η εργασία αυτή μελετά μία νέα σχέση ισοδυναμίας εκτελέσεων, την Ισοδυναμία Όψεων (Κεφάλαιο 3
και ορισμός 3.1), σύμφωνα με την οποία, ο παραπάνω πλεονασμός εξαλείφεται και πλέον δύο εκτελέσεις
χαρακτηρίζονται ισοδύναμες αν και μόνο αν όλα τα νήματα διαβάζουν ίδιες τιμές για όλες τις λειτουργίες
ανάγνωσης. Η εργασία αυτή εισαγάγει τον ViEWXPLORE, τον πρώτο αλγόριθμο που εξερευνά ακριβώς
μια εκτέλεση ανά κλάση Ισοδυναμίας Όψεων. Ακριβώς επειδή ο πλεονασμός των παλαιότερων σχέσεων
ισοδυναμίας εξαλείφεται, το πλήθος των κλάσεων ισοδυναμίας μειώνεται και έτσι ο χρόνος εκτέλεσης του
αλγορίθμου εξερεύνησης μειώνεται και αυτός.

0.2 Συνεισφορές

Η παρούσα εργασία περιλαμβάνει τέσσερις συνεισφορές, οι οποίες από κοινού εξελίσσουν τη θεωρία και
την πρακτική της επαλήθευσης παράλληλων προγραμμάτων. Οι συνεισφορές αυτές είναι:

1. Εισαγάγεται ο αλγόριθμος ViEWXPLORE, ο πρώτος αλγόριθμος εξερεύνησης εκτελέσεων παράλλη-
λων προγραμμάτων υπό ισοδυναμία όψεων για το μοντέλο της Ακολουθιακής Συνέπειας (Sequential
Consistency) μνήμης. O αλγόριθμος αυτός αποδεικνύεται ορθός (sound) και βέλτιστος (optimal),
δηλαδή εκτελεί ακριβώς μία αντιπροσωπευτική εκτέλεση ανά κλάση ισοδυναμίας όψεων (Κεφάλαιο 4
και θεωρήματα 4.1 και 4.2).

2. Εισαγάγεται αλγόριθμος για το NP-πλήρες πρόβλημα της κατασκευής Ακολουθιακά Συνεπών (Se-
quentially Consistent) εκτελέσεων. Ο αλγόριθμος αποτελείται από δύο ευριστικά στάδια με πολυ-
πλοκότητα πολυωνυμικού χρόνου, τα οποία βασίζονται σε γράφους, και ένα τελικό στάδιο που
βασίζεται σε επίλυση προβλήματος περιορισμών (Κεφάλαιο 5). Τα ευριστικά στάδια επιλύουν σε
πολυωνυμικό χρόνο σχεδόν το σύνολο των πιθανών εισόδων.

3. Ο ViEWXPLORE υλοποιείται και ενσωματώνεται στο εργαλείο NiDHUGG, που εκτελεί προγράμματα
LLVM IR, προσφέροντας πλήρη υποστήριξη για προγράμματα C/Pthreads (Κεφάλαιο 7).

4. Αποδεικνύεται ότι το γενικότερο πρόβλημα απόφασης της ύπαρξης Ακολουθιακά Συνεπούς εκτέλε-
σης που παραβιάζει μια δοσμένη ιδιότητα (MCSC) είναι NP-πλήρες, κάτι που καθορίζει τα θεωρητικά
όρια κάθε μεθόδου ελέγχου (Κεφάλαιο 9 και θεωρήματα 9.1 και 9.2). Το αποτέλεσμα αυτό δεν ε-
ντοπίζεται ως σήμερα στην βιβλιογραφία.

0.3 Θεωρητικό Υπόβαθρο

Η κατανόηση της συμπεριφοράς των παράλληλων προγραμμάτων βασίζεται στην έννοια της εκτέλεσης
και στη σχέση μεταξύ των ενεργειών των νημάτων, δηλαδή στο λεγόμενο μοντέλο συνέπειας (memory
consistency model). Κάθε εκτέλεση μπορεί να αναπαρασταθεί ως ένα σύνολο λειτουργιών ανάγνωσης
(read) και εγγραφής (write) πάνω σε κοινόχρηστες θέσεις μνήμης.

16

Στο μοντέλο Ακολουθιακής Συνέπειας (Sequential Consistency, SC) [20] (Κεφάλαιο 2.2),
που εισήγαγε ο Lamport, απαιτείται να υπάρχει μία συνολική, σειριακή διάταξη όλων των ενεργειών, η
οποία:

1. Διατηρεί τη σειρά των ενεργειών κάθε νήματος, και

2. Αποδίδει σε κάθε ανάγνωση την τιμή της πιο πρόσφατης, σύμφωνα με την σειριακή διάταξη, εγγραφής
στην ίδια διεύθυνση μνήμης.

Με άλλα λόγια, η SC μοντελοποιεί έναν επεξεργαστή, όπου τα νήματα εκτελούνται παράλληλα μεν, αλλά
το αποτέλεσμα είναι σαν να είχαν εκτελεστεί σειριακά.

Στη βιβλιογραφία έχουν προταθεί διάφορες σχέσεις ισοδυναμίας εκτελέσεων (Κεφάλαιο 2.4). Οι σημα-
ντικότερες είναι οι εξής:

1. Ισοδυναμία Happens-Before [1, 3] (Κεφάλαιο 2.4.1): Εισάγει τη σχέση happens-before,
η οποία εκφράζει την αιτιότητα μεταξύ ενεργειών. Πιο συγκεκριμένα μια λειτουργία είναι happens-
before από μια δεύτερη λειτουργία αν οι δύο λειτουργίες αφορούν την ίδια διεύθυνση μνήμης και
τουλάχιστον μία από τις δύο είναι λειτουργία εγγραφής.

Δύο εκτελέσεις χαρακτηρίζονται ισοδύναμες αν επάγουν την ίδια σχέση happens-before.

2. Ισοδυναμία Παρατηρήσιμης (Observable) Happens-Before [7] (Κεφάλαιο 2.4.2):
Εισάγει τη σχέση παρατηρήσιμης happens-before. Πιο συγκεκριμένα μια λειτουργία εγγραφής είναι
παρατηρήσιμα happens-before από μια λειτουργία ανάγνωσης πάντα, αν οι δύο λειτουργίες αφορούν
την ίδια διεύθυνση μνήμης. Ωστόσο, μια λειτουργία εγγραφής είναι παρατηρήσιμα happens-before
από μια λειτουργίας εγγραφής αν και μόνο αν υπάρχει μια λειτουργία ανάγνωσης που διαβάζει από
την δεύτερη λειτουργία εγγραφής. Σημειώνεται πως θεωρούμε ότι μια λειτουργία ανάγνωσης διαβάζει
από μια λειτουργία εγγραφής όταν η λειτουργία εγγραφής είναι η τελευταία λειτουργία εγγραφής πριν
την λειτουργία ανάγνωσης για την διεύθυνση μνήμης που διαβάζει η λειτουργία ανάγνωσης. Δύο
εκτελέσεις χαρακτηρίζονται ισοδύναμες αν επάγουν την ίδια σχέση παρατηρήσιμης happens-before.

3. Ισοδυναμία Πηγής Ανάγνωσης [5] (Κεφάλαιο 2.4.3): Δύο εκτελέσεις είναι ισοδύναμες
αν όλες οι λειτουργίες ανάγνωσης των δύο εκτελέσεων διαβάζουν από την ίδια λειτουργία εγγραφής
στις δύο εκτελέσεις. Σημειώνεται, όπως και πριν, πως θεωρούμε ότι μια λειτουργία ανάγνωσης
διαβάζει από μια λειτουργία εγγραφής όταν η λειτουργία εγγραφής είναι η τελευταία λειτουργία
εγγραφής πριν την λειτουργία ανάγνωσης για την διεύθυνση μνήμης που διαβάζει η λειτουργία
ανάγνωσης.

Και για τις τρεις παραπάνω σχέσεις ισοδυναμίας έχουν προταθεί ορθοί και βέλτιστοι αλγόριθμοι, δηλαδή
αλγόριθμοι που εξερευνούν ακριβώς μια εκτέλεση ανά κλάση ισοδυναμίας.

Παρότι οι παραπάνω σχέσεις ισοδυναμίας επάγουν σημαντικά μικρότερο πλήθος κλάσεων ισοδυναμίας σε
σχέση με το πλήθος των εφικτών χρονοπρογραμμάτων, παραμένουν μη βέλτιστες. Ειδικότερα, συχνά
θεωρούν δύο εκτελέσεις μη ισοδύναμες παρόλο που οδηγούν στις ίδιες τιμές ανάγνωσης και άρα στην ίδια
συμπεριφορά προγράμματος.

Για παράδειγμα, αν δύο εγγραφές γράφουν και οι δύο την τιμή 0 και μια ανάγνωση τη διαβάζει, το
πρόγραμμα δεν μπορεί να διακρίνει ποια από τις δύο εγγραφές παρήγαγε τη συγκεκριμένη τιμή που διάβασε
η λειτουργία ανάγνωσης. Ωστόσο, και οι τρεις παραπάνω σχέσεις ισοδυναμίας θα χαρακτηρίσουν δύο

17

εκτελέσεις στις οποίες η λειτουργία ανάγνωσης διάβασε από διαφορετική λειτουργία εγγραφής την ίδια
τιμή, ως μη ισοδύναμες.

0.4 Ισοδυναμία Όψεων

Αυτό ακριβώς το κενό καλύπτει η Ισοδυναμία Όψεων (View Equivalence), που μελετάται στην
παρούσα εργασία (Κεφάλαιο 3), η οποία ορίζει την ισοδυναμία με βάση μόνο τις τιμές που τελικά διαβά-
ζονται, ανεξάρτητα από την προέλευσή τους (Ορισμός 3.1).

Δύο εκτελέσεις είναι ισοδύναμες αν όλες οι λειτουργίες ανάγνωσης διαβάζουν τις ίδιες τιμές στις δύο
εκτελέσεις.

Η σχέση ισοδυναμίας αυτή μειώνει σημαντικά το πλήθος κλάσεων ισοδυναμίας, επιτρέποντας συνακόλουθα
την μείωση του χρόνου εκτέλεσης για την εξερεύνηση των εκτελέσεων ενός παράλληλου προγράμματος
(θεωρώντας αλγορίθμους που εξερευνούν ακριβώς μία εκτέλεση ανά κλάση ισοδυναμίας).

Παρουσιάζονται δύο προγράμματα-παραδείγματα που δείχνουν την ισχύ της Ισοδυναμίας Όψεων στην
εκθετική μείωση των κλάσεων ισοδυναμίας:

1. MANYSAMEVALUE (MSV) (Κεφάλαιο 3.2.1)

Το πρόγραμμα αποτελείται από δύο νήματα: το πρώτο γράφει επανειλημμένα την τιμή 0 σε μια
κοινόχρστη μεταβλητή, ενώ το δεύτερο τη διαβάζει. Αποδεικνύεται στην παρούσα εργασία ότι, με
βάση τις παλαιότερες σχέσεις ισοδυναμίας, το πλήθος των εκτελέσεων και των αντίστοιχων κλάσεων
ισοδυναμίας αυξάνεται ασυμπτωτικά εκθετικά ως προς το πλήθος των λειτουργιών (Θεωρήματα 3.1
και 3.2 και πόρισμα 3.1). Ωστόσο, σε όλες τις εκτελέσεις όλες οι λειτουργίες ανάγνωσης διαβάζουν
την τιμή 0. Έτσι, το πρόγραμμα έχει ακριβώς μία κλάση Ισοδυναμίας Όψεων.

2. READINC (Κεφάλαιο 3.2.2)

Κάθε νήμα διαβάζει μια κοινόχρηστη μεταβλητή x και στη συνέχεια γράφει την τιμή x + 1. Μετράται
ότι ο αριθμός των διαφορετικών κλάσεων ισοδυναμίας αυξάνεται πολύ πιο αργά με την αύξηση των
νημάτων, ως προς την Ισοδυναμία Όψεων σε σχέση με τις άλλες σχέσεις ισοδυναμίας (Πίνακας 1
και σχήμα 2).

0.5 Αλγόριθμος ViEWXPLORE

Ο ViEWXPLORE είναι ο πρώτος αλγόριθμος που εξερευνά ακριβώς μία εκτέλεση για κάθε κλάση Ισοδυ-
ναμίας Όψεων (Κεφάλαιο 4). Για να το επιτύχει, εισάγει την έννοια του read-cut (Ορισμός 4.1), δηλαδή
τον συνδυασμό, για όλα τα νήματα, προθεμάτων μιας ακολουθίας τιμών που διαβάζει κάθε νήμα.

Σε αδρές γραμμές ο αλγόριθμος ακολουθεί τα εξής βήματα (Αλγόριθμος 1):

1. Τρέχει μια εκτέλεση.

2. Διατρέχει όλα τα read-cuts της εκτέλεσης:

i. Για κάθε νήμα, επεκτείνει κάθε read-cut με μια λειτουργία ανάγνωσης που διαβάζει διαφορετική
τιμή από την τρέχουσα εκτέλεση. Γίνονται επεκτάσεις για όλες τις διαφορετικές τιμές που
εγγράφονται στην συγκεκριμένη διεύθυνση μνήμης στην συγκεκριμένη εκτέλεση1. Αν το
επεκτεταμένο read-cut ανήκει σε εκτέλεση που εξερευνήθηκε στο παρελθόν αγνοείται.

1ακριβέστερα για όλες τις τιμές που εγγράφονται από εγγραφές που επιτρέπει το συγκεκριμένο read-cut.

18

ii. Με τον αλγόριθμο κατασκευής ακολουθιακά συνεπών εκτελέσεων CONSTRUCTWiTNESS, που
αυτή η εργασία εισαγάγει, επιχειρεί να κατασκευάσει ένα πρόθεμα εκτέλεσης, αν υπάρχει,
που να επάγει το επεκτεταμένο read-cut. Αν δεν υπάρχει, το επεκτεταμένο αυτό read-cut
αγνοείται.

iii. Αν προηγουμένως κατασκευάστηκε πρόθεμα εκτέλεσης, τρέχει μια νέα πλήρη εκτέλεση για το
πρόθεμα αυτό χρησιμοποιώντας τον χρονοδρομολογητή. Τοποθετεί την εκτέλεση σε μια δομή
δεδομένων που διατηρεί εκτελέσεις προς ανάλυση. Για λόγους μείωσης της χρήσης μνήμης,
όπως εξηγείται, επιλέγεται ως δομή δεδομένων μια ουρά, αν και η επιλογή αυτή δεν επηρεάζει
την ορθότητα της εξερεύνησης.

3. Αφού επαναλάβει την παραπάνω διαδικασία για όλα τα read-cuts της εκτέλεσης που είχε τρέξει, προ-
χωράει, όπως παραπάνω, στην ανάλυση της επόμενης εκτέλεσης που υπάρχει στην δομή δεδομένων
που διατηρεί τις εκτελέσεις προς ανάλυση.

4. Όταν δεν απομένουν άλλες εκτελέσεις προς ανάλυση, ο αλγόριθμος εξερεύνησης τερματίζει.

Επισημαίνεται ότι το παραπάνω συνιστά μονάχα μια αδρή, υπεραπλουστευμένη περιγραφή του αλγόριθμου,
που απέχει σημαντικά από τον πλήρη αλγόριθμο ο οποίος αναλύεται παρακάτω.

Αποδεικνύεται ότι ο ViEWXPLORE είναι:

1. Ορθός: Εξερευνά τουλάχιστον μια εκτέλεση από κάθε κλάση Ισοδυναμίας Όψεων. (Θεώρημα 4.2)

2. Βέλτιστος: Εξερευνά ακριβώς μια εκτέλεση από κάθε κλάση Ισοδυναμίας Όψεων. (Θεώρημα 4.1)

0.6 Αλγόριθμος CONSTRUCTWiTNESS

Η κατασκευή Ακολουθιακά Συνεπών (SC) εκτελέσεων για δοθείσες ακολουθίες λειτουργιών ανά νήμα
έχει αποδειχθεί πως είναι ένα NP-πλήρες πρόβλημα, δηλαδή ένα υπολογιστικά δύσκολο πρόβλημα. Πιο
συγκεκριμένα, το πρόβλημα απόφασης αν υπάρχει Ακολουθιακά Συνεπής εκτέλεση είναι NP-πλήρες [11].

Παρ’ όλα αυτά, εμείς εισαγάγουμε τον αλγόριθμο CONSTRUCTWiTNESS που κατασκευάζει σε πολυωνυ-
μικό χρόνο Ακολουθιακά Συνεπείς εκτελέσεις σχεδόν για όλες τις πιθανές εισόδους (Κεφάλαιο 5). Πιο
συγκεκριμένα, ο CONSTRUCTWiTNESS χρησιμοποιεί τους ακόλουθους τρεις μηχανισμούς:

1. HEURiSTiC-URF (Κεφάλαιο 5.2): Στόχος του πρώτου σταδίου είναι να δείξει σε πολυωνυμικό
χρόνο ότι για κάποιες εισόδους δεν υπάρχει ακολουθιακά συνεπής εκτέλεση. Αυτό επιτυγχάνεται
κατασκευάζοντας σταδιακά μια αναγκαστική σχέση happens-before, υπό την έννοια πως αν υπάρχει-
κάποια ακολουθιακά συνεπής εκτέλεση, τότε αυτή θα ικανοποιεί την αναγκαστική happens-before
σχέση. Η σχέση αυτή πρέπει να είναι ακυκλική. Αν σε κάποιο σημείο, εισαγάγουμε κύκλο τότε
είναι αδύνατο να υπάρχει ακολουθιακά συνεπής εκτέλεση.

Το στάδιο αυτό επιστρέφει είτε ασυνεπές ή άγνωστο.

2. HEURiSTiC-INCR (Κεφάλαιο 5.3): Στόχος του δεύτερου σταδίου εί ναι να κατασκευάσει μια ε-
κτέλεση, χρησιμοποιώντας τόσο την αναγκαστική σχέση happens-before που υπολογίστηκε προη-
γουμένως, όσο και την διάταξη των λειτουργιών της εκτέλεσης από την οποία παράχθηκε η εί-
σοδος του CONSTRUCTWiTNESS στον ViEWXPLORE. Πιο συγκεκριμένα, παρατηρείται ότι στον
ViEWXPLORE όλες οι είσοδοι της CONSTRUCTWiTNESS προκύπτουν με “μικρές μεταβολές” από

19

μια αρχική ακολουθιακά συνεπή εκτέλεση. Έτσι, είναι πιθανό, χρησιμοποιώντας την διάταξη των
λειτουργιών αυτής να μπορέσουμε να κατασκευάσουμε μια ακολουθιακά συνεπή εκτέλεση.

Στην πραγματικότητα, η κατασκευή είναι σημαντικά πιο σύνθετη από αυτό που περιγράφεται εδώ, και
αυτό που γίνεται είναι πως κατασκευάζεται μια επαρκής happens-before (προσδιορίζεται τι σημαίνει
το επαρκής) και αν προκύψει ακυκλική, επιστρέφουμε ως εκτέλεση μια τοπολογική της ταξινόμηση,
ενώ αν προκύψει κυκλική επιστρέφουμε άγνωστο.

Το στάδιο αυτό επιστρέφει είτε ένα πρόθεμα εκτέλεσης ή άγνωστο.

3. CONSTRUCTWiTNESSCOMPLETE (Κεφάλαιο 5.1) Αν και τα δύο παραπάνω στάδια επιστρέψουν
άγνωστο καταφεύγουμε σε ένα τρίτο στάδιο που αποφαίνεται για όλες τις εισόδους είτε ασυνεπές
είτε με πρόθεμα εκτέλεσης. Ο αλγόριθμος αυτός βασίζεται σε αναγωγή του προβλήματος σε επίλυση
προβλήματος περιορισμών.

Στην πράξη, οι δύο πρώτες τεχνικές επιτυγχάνουν σχεδόν πάντα, εξασφαλίζοντας υψηλή επίδοση (πο-
λυωνυμικό χρόνο).

Σημειώνεται ότι με δεδομένο ότι έχει αποδειχθεί ότι το πρόβλημα κατασκευής ακολουθιακά συνεπών
εκτελέσεων είναι NP-πλήρες [11], εκτός αν P = NP, δεν υπάρχει αλγόριθμος πολυωνυμικού χρόνου
που να αποφαίνεται για όλες τις εισόδους. Αυτό φυσικά δεν αποκλείει την παραπάνω κατασκευή, όπου
πολυωνυμικό χρόνο απαιτούν οι περισσότερες είσοδοι αλλά όχι όλες.

0.7 Μελλοντικές Επεκτάσεις

Μελλοντικά, η εργασία αυτή μπορεί να επεκταθεί (Κεφάλαιο 10):

1. Με την υποστήριξη ατομικών λειτουργιών Read-Modify-Write και κλειδωμάτων.

2. Με την υποστήριξη πιο χαλαρών μοντέλων συνέπειας μνήμης (όπως Total Store Order, Partial
Store Order και Release/Acquire).

3. Με την παραλληλοποίηση του αλγορίθμου εξερεύνησης για αύξηση επίδοσης.

20

1 Introduction

Writing correct concurrent software is hard. Race conditions, atomicity violations, and misplaced
memory fences manifest rarely, depend on timing, and may survive months or even years of field
testing – sometimes only being discovered when they cause catastrophic failures. Notorious incidents,
e.g., the Mars Pathfinder resets [14], the 2003 Northeast Blackout [22], and the Therac-25 radiation
overdoses [21], can all be traced back to subtle race conditions and other concurrency errors.

Underlying the above failures is the fact that the execution of a concurrent program is inherently
non-deterministic due to scheduling non-determinism. A concurrent program may be executed under
multiple possible schedules, each exhibiting potentially different behaviors depending on the order in
which the scheduler interleaves the operations of the participating threads.

Regardless of the scheduling decisions, a correct concurrent program must preserve its intended se-
mantics. Ensuring this property is the responsibility of the programmer.

A natural need that arises from this challenge is for a tool that can execute all feasible interleavings
that a concurrent program may exhibit. Such a tool would allow a programmer or verifier to explicitly
check whether certain properties hold in all feasible executions - for instance, that the program never
crashes or violates an assertion. However, the number of possible interleavings of a concurrent program
grows exponentially with the number of threads and shared accesses. For a program with 𝑘 threads
and 𝑛 operations per thread, there exist (𝑘𝑛)!

(𝑛!)𝑘 distinct interleavings. For example, with 𝑘 = 3 and
𝑛 = 10, the number of possible interleavings is 5.5 ⋅ 1012. Consequently, exhaustively executing all
feasible interleavings is, in general, computationally infeasible.

Fortunately, many interleavings result in the same program behavior. In particular, consider two
different interleavings in which all threads read exactly the same values at every read operation. Since
the reads read identical values, both interleavings induce the same thread-local behaviors, and therefore
the same global program behavior. This observation motivates the idea of reducing exploration by
pruning equivalent interleavings, keeping only one representative execution per distinct combination
of read values. In essence, the goal is to explore exactly one execution for each distinct combination
of values read by all threads.

Example 1.1. As a first example, consider a program with two concurrent threads, 𝑝 and 𝑞, assigning
the same value to a shared variable x, initially set to 0.

𝑝 𝑞
x := 1 x := 1;

a := x

This simple program has three possible interleavings (𝑝1𝑞1𝑞2, 𝑞2𝑝1𝑞2, and 𝑞1𝑞2𝑝1, where with 𝑡𝑖 we
denote the 𝑖-th operation of thread 𝑡). In all interleavings, the operation 𝑞2, which reads x and assigns
its value to a local register a, reads the value 1. Consequently, all interleavings are behaviorally
equivalent, and it suffices to execute only one of them.

A key challenge is that the set of possible values a read may read is not known a priori in programs.
Some writes that could be read from may only appear after certain threads perform reads with specific
values. This dependency implies that a simple enumeration of all value combinations is insufficient;
instead, systematic dynamic exploration is required.

21

Example 1.2. Consider now another program where two threads access a shared variable x, whose
initial value is 0. Once again, a is a thread-local register.

𝑝 𝑞
a := x; a := x;
x := a + 1 x := a + 1;

a := x

We start with an arbitrary interleaving:
𝑝1𝑞1𝑝2𝑞2𝑞3

Here, the reads 𝑝1 and 𝑞1 read the value 0 and the read 𝑞2 reads the value 1. At this point, we can
infer that these reads might also have read the values 0 and 1, but we have no evidence that any
other values are feasible. However, the following interleaving demonstrates the existence of additional
values:

𝑝1𝑝2𝑞1𝑞2𝑞3

This interleaving, which the algorithm executes after the initial interleaving to cause 𝑞1 to read 1 in-
stead of 0, introduces the new value 2, which could not have been discovered from the initial execution.
Therefore, the exploration algorithm has to incrementally generate and execute new interleavings that
reveal additional feasible values.

Constructing a feasible execution for a given combination of read values poses further challenges. A
read can read a particular value from a shared variable only if there exists a corresponding write that:

1. Writes that value to the variable.

2. Occurs before the read in the execution.

3. Is not subsequently overwritten by another write before the read occurs.

However, determining whether such an execution exists has been shown to be NP-complete [11].
Nonetheless, we introduce the CONSTRUCTWiTNESS algorithm, which constructs SC executions in
polynomial time for nearly all inputs.

Moreover, some combinations of read values may be infeasible, meaning that no valid execution cor-
responds to them. The above example also demonstrates this. Observe that the read 𝑞3 can never
read 0 and the reads 𝑝1 and 𝑞1 can never read 2. An effective exploration algorithm must be able to
detect and discard such infeasible combinations.

1.1 Relation to Previous Work

Before our work, others have employed similar techniques. The general approach of systematically ex-
ecuting a representative subset of all possible interleavings so as to cover all feasible program behaviors
is known as Stateless Model Checking (SMC) [12]. Existing SMC algorithms [10, 1, 3, 17, 7, 5, 6, 8,
18, 15, 4] typically define an equivalence relation between executions; for example, two executions may
be considered equivalent if they share the same happens-before relation. Based on this equivalence
relation, executions are grouped into equivalence classes. To cover all program behaviours, a property
known as soundness, the algorithm needs to explore at least one execution from each equivalence class.

22

When the algorithm explores exactly one execution per equivalence class, we say that the algorithm
is optimal [1].

A key observation underlying these approaches is that whenever two executions are deemed equivalent,
all read operations in both executions read the same values. Building on this insight, this thesis
explores a more coarse notion of equivalence: we consider two executions equivalent if and only if
every read operation reads the same value. We will refer to this notion as view equivalence.

The fundamental difference between our approach and prior ones lies in the strength of the equivalence
relation. While existing equivalence relations guarantee that equivalent executions read the same
values, the converse does not hold: executions that produce identical read values may still be treated
as belonging to different equivalence classes. Consequently, earlier algorithms often explore many
redundant executions corresponding to the same observable program behavior, often exponentially
more. In contrast, our view equivalence-based approach eliminates these redundancies, substantially
reducing the exploration space and improving performance.

1.2 Contributions

This thesis presents four distinct contributions that together advance the theory and practice of
verifying concurrent programs:

1. Sound and Optimal Stateless Model Checking Algorithm under View Equivalence
for Sequential Consistency.

We introduce ViEWXPLORE, the first algorithm for Stateless Model Checking under View Equiv-
alence for Sequential Consistency. The algorithm is both sound, exploring all feasible program
behaviors (at least one execution per view equivalence class), and optimal, exploring exactly one
execution per view equivalence class.

2. Efficient Construction of Sequentially Consistent Executions.

We introduce CONSTRUCTWiTNESS, an algorithm for constructing Sequentially Consistent (SC)
executions. Although this problem is known to be NP-complete [11], the algorithm achieves
polynomial-time performance for nearly all inputs. It consists of:

(a) a complete constraint-solving algorithm, and

(b) two polynomial-time, graph-based heuristics (URF and INCR) that eliminate the need for
constraint solving for nearly all inputs.

3. Implementation.

We implement the algorithm and integrate it with the LLVM IR-based NiDHUGG stateless model
checker. The tool can take C/Pthreads programs as input.

4. Complexity bound.

We establish that the decision version of the model checking problem under sequential consistency
— whether any SC execution violates a given safety property — is NP-complete.

This result holds independently of the chosen equivalence relation and irrespective of whether
Stateless Model Checking or any other methodology is employed.

23

2 Background

2.1 Notation

Basic entities. Threads are denoted by 𝑝, 𝑞, 𝑟, …, memory objects (addresses or shared variables)
by x, y, z, …, local variables by a, b, c, …, and values by 0, 1, … or v.

Operations and executions. An operation 𝑒 is a tuple

𝑒 = ⟨kind, thread, address, value⟩

where:

• kind ∈ {R,W} indicates whether the operation is a read or a write,

• thread is the identifier of the thread that executes the operation,

• address denotes the memory object (or variable) being read or written,

• value is the value read or written.

Reads are denoted by 𝑒𝑟 and writes by 𝑒𝑤.

An execution 𝐸 is a finite sequence of operations.

The set of participating threads is denoted by Threads(𝐸):

Threads(𝐸) = {𝑒.thread ∣ 𝑒 ∈ 𝐸}

Program-order projections and sequence order. For an execution (or, more generally, a se-
quence of operations) 𝐸, the 𝑝-projection 𝐸𝑝 is the subsequence of 𝐸 consisting of the operations
executed by thread 𝑝.

We write 𝑒1
𝐸−→ 𝑒2 when 𝑒1 precedes 𝑒2 in the sequence 𝐸 (i.e., the index of 𝑒1 in 𝐸 is smaller than

that of 𝑒2).

Reads-from and initial writes. Sequential consistency (SC) is assumed throughout. If a read 𝑒𝑟
executes immediately after a prefix 𝐸′ of an execution 𝐸, then 𝑒𝑟.value equals the value of the latest
write 𝑒𝑤 ∈ 𝐸′ such that 𝑒𝑤.address = 𝑒𝑟.address. For convenience, we assume every read has a
source write: if needed, an explicit initial write to each address is present at the start of the execution.

Write sets. For a (context-implied) execution 𝐸, define

𝒲(addr, 𝑣) = { 𝑒𝑤 ∈ 𝐸 ∣ 𝑒𝑤 is a write, 𝑒𝑤.address = addr, 𝑒𝑤.value = 𝑣 },

𝒲(addr) = { 𝑒𝑤 ∈ 𝐸 ∣ 𝑒𝑤 is a write, 𝑒𝑤.address = addr }.

24

2.2 The Sequential Consistency Model

The execution of a concurrent program is, by nature, non-deterministic, primarily due to the un-
predictable interleaving of threads and the inherent non-determinism in their communication and
synchronization.

A widely adopted model for shared-memory concurrency is Sequential Consistency (SC) [20], which
intuitively enforces single-copy semantics. Under this model, threads issue memory operations. The
memory system then arbitrarily selects one thread, processes its memory operation, and allows that
thread to issue a subsequent operation. This process continues iteratively until all memory operations
have been selected and all threads have terminated. In essence, SC stipulates that the operations of
all threads can be linearized into a single global total order such that:

1. The program order of each thread is preserved.

2. Each read reads the value of the most recent write to the same address in the total order.

𝑝1 𝑝2 ⋯ 𝑝𝑛

Switch

Memory

Each thread 𝑝𝑖 issues its next
memory operation according to
its program order.

The switch selects one thread,
processes its memory operation,
and repeats.

Figure 1: Sequential Consistency Memory Model

Importantly, the interleaving of memory operations from different threads, as determined by the mem-
ory system, is non-deterministic. Concurrent programs must be designed to preserve their intended
semantics under all interleavings.

2.2.1 Key Relations of Sequential Consistency

We view an execution 𝐸 as an ordered list of operations (reads or writes) issued by a set of threads
Threads(𝐸). Four standard relations – which refine 𝐸−→ – capture how these operations depend on one
another.

Program order (po). For every thread 𝑝, operations appear in the order they are issued.

We define 𝑒1
po
−→ 𝑒2 if and only if:

1. 𝑒1
𝐸−→ 𝑒2

2. 𝑒1.thread = 𝑒2.thread

Reads-from (rf). A read 𝑒𝑟 reads the value written by the latest write 𝑒𝑤 to the same location that
precedes it in the execution sequence.

We define 𝑒𝑤
rf−→ 𝑒𝑟 if and only if:

25

1. 𝑒𝑤
𝐸−→ 𝑒𝑟

2. 𝑒𝑤 is a write operation and 𝑒𝑟 is a read operation.

3. 𝑒𝑤 and 𝑒𝑟 access the same memory object: 𝑒𝑤.address = 𝑒𝑟.address.

4. 𝑒𝑤 is the latest write to 𝑒𝑟.address before 𝑒𝑟. More formally, there does not exist a write
𝑒′

𝑤 ∈ 𝐸 such that:

(a) 𝑒′
𝑤.address = 𝑒𝑤.address = 𝑒𝑟.address

(b) 𝑒𝑤
𝐸−→ 𝑒′

𝑤 ∧ 𝑒′
𝑤

𝐸−→ 𝑒𝑟

Each read therefore has exactly one incoming rf edge, while a write may have multiple outgoing
rf edges to the reads that read from it.

Intuitively, the rf relation links each read to the write from which it obtains its value.

Coherence order (co). For each memory location, all writes to that location form a total order,
corresponding to the order in which they reach memory.

We define 𝑒𝑤1
co−→ 𝑒𝑤2 if and only if:

1. 𝑒𝑤1
𝐸−→ 𝑒𝑤2

2. 𝑒𝑤1, 𝑒𝑤2 are write operations.

3. 𝑒𝑤1 and 𝑒𝑤2 access the same memory object: 𝑒𝑤1.address = 𝑒𝑤2.address

Reads-before (rb). If 𝑒𝑟 reads-from a write 𝑒𝑤, and a later write 𝑒′
𝑤 overwrites the same memory

object, then 𝑒′
𝑤 must follow 𝑒𝑟.

We define rb as the composition rf−1; co.

In other words, rb links a read to the next write that overwrites the memory object it read.

We also define the happens-before relation hb as the union of the relations po, rf, co, and rb:

hb = po ∪ rf ∪ co ∪ rb

2.2.2 An Equivalent Graph-Based Characterisation of Sequential Consistency

Lamport’s original definition [20] states that an execution is sequentially consistent (SC) if there exists
a single global order of events that:

1. preserves every thread’s program order, and

2. ensures that each read reads the value written by the latest preceding write to the same address.

Lahav and Vafeiadis [19] showed that Lamport’s global-order definition of SC can be reformulated in
terms of the existence of suitable rf (reads-from) and co (coherence order) relations such that the
induced happens-before dependency graph is acyclic. Their result can be stated as follows.

Theorem 2.1 (SC Acyclicity Theorem [19]). Let 𝐸 be a set of operations.

Let po be an acyclic relation on 𝐸 such that for all 𝑒1, 𝑒2 ∈ 𝐸, if 𝑒1.thread = 𝑒2.thread, then either
𝑒1

po
−→ 𝑒2 or 𝑒2

po
−→ 𝑒1 (i.e. po totally orders the operations of each thread).

26

There exists a (Sequentially Consistent) execution 𝐸 that contains exactly the operations 𝐸 if and only
if there exist:

1. An acyclic relation co such that for all 𝑒𝑤1, 𝑒𝑤2 ∈ 𝐸, if 𝑒𝑤1 and 𝑒𝑤2 are write operations and
𝑒𝑤1.address = 𝑒𝑤2.address, then either 𝑒𝑤1

co−→ 𝑒𝑤2 or 𝑒𝑤2
co−→ 𝑒𝑤1.

In other words, co totally orders the write operations for each memory object.

2. An acyclic relation rf such that for all 𝑒𝑟 ∈ 𝐸, if 𝑒𝑟 is a read operation then there exists a unique
operation 𝑒𝑤 ∈ 𝐸 such that 𝑒𝑤

rf−→ 𝑒𝑟. This operation 𝑒𝑤 must be a write operation that satisfies
𝑒𝑤.address = 𝑒𝑟.address and 𝑒𝑤.value = 𝑒𝑟.value.

Notice that no additional constraints are imposed on rf.

such that the relation
hb = po ∪ rf ∪ co ∪ rb with rb = rf−1; co

is acyclic.

Any topological sort of hb is a (Sequentially Consistent) execution 𝐸.

2.3 Stateless Model Checking

One way to verify that concurrency issues do not arise under a particular interleaving is to system-
atically explore all possible interleavings, or at least a representative subset of them, as we describe
below. This is the goal of Stateless Model Checking (SMC) [12].

A central principle of SMC is stateless execution. Statelessness means that executions are never paused,
stored, or later resumed. Instead, every execution begins from the program’s initial state and proceeds
without interruption until termination, or until all threads are blocked. This restriction is fundamental
to both the design and the correctness of SMC algorithms.

SMC algorithms interact with programs solely through a Scheduler Oracle, denoted SCHEDULER, which
controls thread interleaving. The algorithm invokes SCHEDULER with a sequence of threads, called an
execution prefix. When invoked, SCHEDULER starts from the initial state of the program and schedules
one operation from a thread at a time, following the order specified in the given prefix. When the
prefix is exhausted, if there are still active threads, SCHEDULER continues the execution by selecting
threads in an arbitrary order until all threads have terminated. Upon termination, SCHEDULER returns
the resulting complete execution to the model checker.

An execution is represented as a sequence of operations on shared memory. For every read or write,
the sequence records the operation type, the executing thread, the accessed address, and the value
read or written. Thread-local state and operations are omitted, since, under thread determinism, they
are determined by shared-memory accesses.

This interaction can be expressed informally as

SCHEDULER ∶ Execution Prefix ↦ Execution (= Operation∗)

with the understanding that SCHEDULER is not a mathematical function: the arbitrary scheduling
choices made after the prefix is exhausted may lead to multiple possible executions for the same
execution prefix.

27

In the C/Pthreads environment, which we use in our implementation, thread-local memory is not
supported, and the entire memory is considered shared. In this setting, ignoring thread-local state
has no practical effect. However, in environments that do support thread-local memory, excluding it
from executions can yield substantial performance improvements.

Finally, no partial execution state is retained between successive oracle invocations. Allowing paused
or resumed executions would require capturing and maintaining full snapshots of the shared memory
and the local state of every thread. Since the size of this data is unbounded in general and may grow
with the computation itself, storing multiple snapshots of paused executions would quickly lead to
prohibitive memory overhead.

In summary, the interaction between the model checker and the program is restricted to a single
mechanism: the Scheduler Oracle SCHEDULER. The model checker provides an execution prefix, the
oracle executes the program from its initial state until completion, and the resulting execution is
returned as a sequence of operations.

Note: In this model, threads are considered deterministic; that is a thread exhibits identical behaviour
whenever its reads read the same sequence of values.

The number of possible interleavings under Sequential Consistency (SC) grows exponentially with the
number of threads and operations. Even small concurrent programs generate enormous execution
spaces, a phenomenon known as the state explosion problem. The following theorem formalizes this
growth.

Theorem 2.2 (Number of SC interleavings with 𝑘 threads, 𝑛 operations each). Let 𝑘 threads execute
exactly 𝑛 shared-memory operations each. Then the number of distinct SC executions is

(𝑘𝑛)!
(𝑛!)𝑘 = (𝑘𝑛

𝑛, 𝑛, … , 𝑛⏟⏟⏟⏟⏟
𝑘 times

)

Proof. An SC execution is a total order of all 𝑘𝑛 operations that respects each thread’s program order.
That is, for every thread 𝑝 with operations (𝑒𝑝,1, 𝑒𝑝,2, … , 𝑒𝑝,𝑛), the global order must contain

𝑒𝑝,1
𝐸−→ 𝑒𝑝,2

𝐸−→ ⋯ 𝐸−→ 𝑒𝑝,𝑛.

The constraint is that these operations must appear in order, but they may be interleaved arbitrarily
with operations from other threads.

Equivalently, constructing an execution amounts to choosing the positions of each thread’s operations
in the global sequence of length 𝑘𝑛:

• Thread 𝑝1 must occupy 𝑛 of the 𝑘𝑛 slots, which can be chosen in (𝑘𝑛
𝑛) ways.

• After these positions are fixed, thread 𝑝2 occupies 𝑛 of the remaining (𝑘 − 1)𝑛 slots, giving
((𝑘−1)𝑛

𝑛) choices.

• This continues until the last thread, which has only 𝑛 slots remaining and thus only one valid
placement.

Because the internal order of each thread is predetermined, there is no additional freedom once the
slots of all threads are chosen.

28

Multiplying the choices for all threads yields:

(𝑘𝑛
𝑛)((𝑘 − 1)𝑛

𝑛) ⋯ (𝑛
𝑛) = (𝑘𝑛)!

(𝑛!)𝑘 = (𝑘𝑛
𝑛, 𝑛, … , 𝑛⏟⏟⏟⏟⏟

𝑘 times

)

Example For 𝑘 = 2 and 𝑛 = 10:
(2 ⋅ 10)!
(10!)2 = 184,756

For 𝑘 = 3 and 𝑛 = 10:
(3 ⋅ 10)!
(10!)3 = 5,550,996,791,340

i.e., over 5.5 trillion distinct interleavings.

2.4 Dynamic Partial Order Reduction

2.4.1 Happens-Before Equivalence and the OPTiMAL-DPOR Algorithm

A key insight is that many interleavings permitted by the memory model yield the same program
behavior, and thus need not all be explored.

For example, suppose thread 𝑝 writes to a shared variable, and threads 𝑞 and 𝑟 subsequently read it.
The order in which 𝑞 and 𝑟 perform their reads is irrelevant: both read the same value.

Likewise, if two threads perform writes to disjoint variables, and two other threads subsequently read
them, the relative ordering of the writes is irrelevant, as the reads read the same values under both
orderings.

These examples suggest that a property determining program behavior is the happens-before relation
between operations.

For convenience, we provide an equivalent definition of the happens-before relation. For an execution
𝐸, we define 𝑒1

hb−→ 𝑒2 if and only if:

1. 𝑒1
𝐸−→ 𝑒2

2. 𝑒1.address = 𝑒2.address

3. At least one of 𝑒1, 𝑒2 is a write operation.

It is evident that if two executions have the same happens-before relation, then all reads read the
same values. Thus, assuming each thread behaves deterministically with respect to its inputs (i.e., the
values it reads), thread behaviour is fully determined by the happens-before relation.

Therefore, we define two executions 𝐸1 and 𝐸2 to be equivalent if they induce the same happens-before
relation. This equivalence relation induces a partitioning of the executions into equivalence classes. All
executions belonging to the same equivalence class are equivalent, and it suffices to execute only one
of them. Since exploring multiple equivalent executions provides no additional benefit, it is preferable
to explore exactly one representative execution per equivalence class to avoid redundant computation.

Two events are defined as logically concurrent if they are not related by the transitive closure of the

29

happens-before relation. The reduction in execution space follows from the fact that the relative order
of logically concurrent events is irrelevant to program behavior. Thus, executions that differ only in
the order of such events are equivalent and need not all be explored.

An algorithm that runs exactly one execution from each equivalence class according to the happens-
before equivalence relation is the Optimal Dynamic Partial Order Reduction (OPTiMAL-DPOR) algo-
rithm [1, 3].

Classic Dynamic Partial Order Reduction equates executions that share the full happens-before re-
lation hb = po ∪ rf ∪ co ∪ rb. Subsequent work has shown that many of these edges are irrelevant
to program behaviour and can be safely omitted without eliminating any feasible program behaviour.
The two most prominent refinements are outlined below.

2.4.2 Observer Equivalence and the OPTiMAL-DPOR-OBSERVERS Algorithm

Intuitively, a write–write edge matters only if some read actually reads the later write. Formally, for
an execution 𝐸, define the observer happens-before relation 𝑒1

hbOBSERVERS−−−−−−→ 𝑒2 if and only if:

𝑒1
po
−→ 𝑒2 or (𝑒1

co−→ 𝑒2 and there exists a read operation 𝑒𝑟 such that 𝑒2
rf−→ 𝑒𝑟)

More intuitively, 𝑒𝑤1
hbOBSERVERS−−−−−−→ 𝑒𝑤2 holds, beyond program order, only if some read actually reads from

𝑒𝑤2.

Definition 2.1 (Observer Equivalence). Executions 𝐸1 and 𝐸2 are observer equivalent if and only if:

hbOBSERVERS𝐸1
= hbOBSERVERS𝐸2

Algorithm. OPTiMAL-DPOR-OBSERVERS [7] explores exactly one execution per observer-equi-
valence class. It extends classic DPOR with a modified backtracking rule that ignores write–write
races not witnessed by any read, achieving provably sound and optimal exploration with substantially
fewer executions.

2.4.3 Reads-From Equivalence and the OPTiMAL SMC-RF Algorithm

Observer equivalence still records the relative order of observed writes. An even coarser equivalence
relation is to retain only the reads-from mapping itself :

Definition 2.2 (Reads-From Equivalence). Executions 𝐸1 and 𝐸2 are reads-from equivalent if and
only if

rf𝐸1
= rf𝐸2

Equivalently, every read obtains its value from the same write in both executions.

Since rf fully determines the values returned to every thread, reads-from equivalence implies identical
program behaviour.

Algorithm. OPTiMAL-SMC-RF [5] achieves sound and optimal exploration under this coarser
equivalence relation. Starting from a concrete SC execution, the algorithm mutates the source write

30

of one read at a time and incrementally repairs the execution using lightweight graph operations. Al-
though deciding whether there exists an SC execution with a candidate rf relation is NP-complete [11],
the authors show that simple graph-based heuristics are sufficient to decide for almost all cases in prac-
tice, with exhaustive search needed only as a last resort.

2.4.4 Reads-Value-From (RVF) Equivalence and the SMC-RVF Algorithm

Agarwal et al. [6] introduce the reads-value-from equivalence, which refines view equivalence by captur-
ing a light-weight causal ordering among reads, while remaining coarser than reads-from equivalence.

Formally, let 𝐸 be an execution, with program-order po𝐸 and reads-from rf𝐸 relations. Define the
causal relation

causalE = (poE ∪ rfE)+

as the transitive closure of their union. The reads-restricted causal relation causalReadsE is then obtained
by restricting causalE to read events:

𝑒1
causalReadsE−−−−−−→ 𝑒2 ⟺ 𝑒1, 𝑒2 are read operations ∧ (𝑒1

causalE−−−−→ 𝑒2).

Two complete executions 𝐸1 and 𝐸2 are defined to be reads-value-from (RVF) equivalent if:

1. They are view equivalent: every read 𝑟 reads the same value in both 𝐸1 and 𝐸2.

2. Their reads-restricted causal relations are equal: causalReadsE1 = causalReadsE2 .

Agarwal et al. [6] present a sound exploration algorithm under this equivalence, but it is not optimal
– multiple executions from the same reads-value-from equivalence class may be executed.

By contrast2, ViEWXPLORE:

1. Is based on view equivalence, coarser than RVF equivalence, yielding fewer equivalence classes.

2. Guarantees optimality: exactly one representative per equivalence class is executed.

2.4.5 Data-Centric Dynamic Partial Order Reduction

Similar to OPTiMAL SMC-RF, Data-Centric DPOR [8] is founded on reads-from equivalence. However,
Data-Centric DPOR (DC-DPOR) provides no general optimality guarantees. Its optimality holds
only in the very restricted case where the underlying communication graph – whose vertices represent
program threads and where an edge connects two vertices if they access a common shared variable –
is acyclic. In all other situations, DC-DPOR may explore a large number of partial executions that
are ultimately determined to be redundant.

2.5 Properties of SMC/DPOR Algorithms

2.5.1 Soundness and Optimality

As we will see later, the previous idea can also be applied to coarsenings of the happens-before relation
∼, thereby reducing the number of equivalence classes and consequently the time and space required.

2The concepts of View Equivalence and Optimality will be introduced in a subsequent section. However, this point in
the thesis provides the most appropriate context for comparing our approach with SMC-RVF.

31

In what follows, we provide definitions for SMC algorithms parameterized by the choice of equivalence
relation ∼.

It is essential that an SMC algorithm explores at least one execution from each equivalence class;
otherwise, some program behaviours may be lost. This property is called soundness.

Definition 2.3 (Soundness of an SMC algorithm). Let ℰ be the set of executions run by the SCHEDULER
once the algorithm has terminated.

An SMC algorithm is sound with respect to an equivalence relation ∼ if, for every equivalence class
induced by ∼ on the set of all possible executions (under all thread interleavings), there exists an
execution 𝐸 ∈ ℰ that belongs to that class.

Note that soundness requires that at least one, but not necessarily exactly one, execution from each
equivalence class is explored.

A central design goal for any SMC algorithm is to minimize redundant calls, ensuring that exactly one
execution is explored from each equivalence class.

Definition 2.4 (Optimality of an SMC algorithm). Let ℰ be the set of executions run by the
SCHEDULER once the algorithm has terminated.

An SMC algorithm is optimal with respect to an equivalence relation ∼ if, for every equivalence class
induced by ∼ on the set of all possible executions (under all thread interleavings), there exists a unique
execution 𝐸 ∈ ℰ that belongs to that class.

In an optimal SMC algorithm, the number of SCHEDULER invocations equals the number of equivalence
classes under ∼.

Optimality is crucial for scalability, as it prevents exponential blow-up from redundant interleavings
that yield the same program behaviour.

2.5.2 Performance

The overall performance of a Stateless Model Checking (SMC) algorithm can be approximated by the
product:

Total Time = #(Equivalence Classes) × #(Executions) per Equivalence Class × Time per Execution

This simple relation highlights the following key trade-offs:

• Coarser equivalence relations typically reduce, often exponentially, the number of equiva-
lence classes to be explored.

• Optimal algorithms guarantee that exactly one execution is explored per equivalence class,
whereas non-optimal algorithms may revisit the same class exponentially many times.

• Coarser equivalence and optimality generally incur higher computational overhead, as they
require more complex reasoning per execution, thereby increasing the time per execution.

Remark. For some programs, different equivalence relations yield the same partitioning of executions
and thus the same number of equivalence classes. In such cases, the overall runtime of an SMC

32

algorithm may increase if other factors – such as the time required per execution or the number of
executions per equivalence class – increase.

2.5.3 NP-completeness of Constructing Sequentially Consistent Executions

A central challenge in reads-from equivalence, and one that becomes even more pronounced in this
work, is as follows.

At first sight, one might expect that reconstructing a sequentially consistent execution is straightfor-
ward once the reads-from mapping is known: take the program-order edges, add an edge 𝑒𝑤

rf−→ 𝑒𝑟 for
every read 𝑒𝑟, perform a topological sort, and the result should be a valid execution. The graph-based
characterisation from SC Acyclicity Theorem (Theorem 2.1) shows why this intuition fails.

In particular, an SC execution 𝐸 can be constructed from a set of operations if there exists proper
relations rf and co such that hb = po ∪ rf ∪ co ∪ rb is acyclic, where rb = rf−1; co.

Fixing rf resolves only part of the problem. po is predetermined by the program, so once rf is chosen
the remaining freedom lies entirely in the co edges – and, transitively, in the rb edges they induce.

Any topological sort of po ∪ rf implicitly commits to one particular coherence order co. That choice
may introduce a cycle once the corresponding rb = rf−1; co edges are added.

The acyclicity criterion is thus far stronger: does there exist some coherence order co such that the
combined graph hb = po ∪ rf ∪ co ∪ rb is acyclic?

Informally, a read 𝑒𝑟 that reads-from a write 𝑒𝑤 excludes every other write to the same location from
appearing between 𝑒𝑤 and 𝑒𝑟 in the global order. However, a topological sort of rf ∪ co alone does
not enforce this constraint.

Gibbons and Korach [11] proved that the following decision problem is NP-complete:

Given a set of operations 𝐸 – where the values read by read operations are fixed – does
there exist a Sequentially Consistent Execution 𝐸 that contains exactly the operations 𝐸?

The result also holds when a desired rf relation is provided as input, as in the SMC-RF algorithm.
In this setting, the only remaining nondeterminism is to select a coherence order co that keeps 𝐺 =
po ∪ rf ∪ co ∪ rb acyclic. The need to search over all such co choices drives the NP-completeness.

Under view equivalence3, reconstruction is strictly harder, and is exactly what the above decision
problem captures. Here the reads-from relation is not fixed a priori. We must jointly explore the
space of (rf, co) pairs to find one that avoids a cycle in hb. This expanded search space strictly
contains the subproblem of construction under reads-from equivalence, underscoring the algorithmic
difficulty of constructing witnesses at the granularity required by view equivalence.

Practical workaround. Optimal SMC for reads-from equivalence mitigates this complexity with
heuristics that incrementally repair an existing execution. Our approach adopts a similar philoso-
phy, but the challenge is more severe under view equivalence, since the reads-from relation is not
predetermined.

3The formal definition of view equivalence will appear shortly; for now, the important point is that the reads-from relation
is not fixed.

33

3 View Equivalence

3.1 Definition

We introduce a new equivalence relation on executions, termed View Equivalence. This equivalence
relation is coarser than previously studied relations, including those based on happens-before [10, 1, 3],
observer equivalence [7], and reads-from [5]. Its coarseness enables significant reduction in the number
of executions explored, by collapsing multiple indistinguishable executions into a single equivalence
class, while still preserving all program behaviours.

Definition 3.1 (View Equivalence). Two executions are view equivalent if they contain the same
set of read operations, and each read reads the same value in both executions.

In essence, View Equivalence leverages thread determinism (a thread exhibits the same behaviour
whenever it reads the same values) to its fullest extent.

Example 3.1. Consider three threads sharing a variable x, initially set to 0:

𝑝 𝑞 𝑟
x := 0 x := 0 a := x

The following six interleavings are possible:

1. 𝑟1𝑝1𝑞1

2. 𝑟1𝑞1𝑝1

3. 𝑝1𝑟1𝑞1

4. 𝑞1𝑝1𝑟1

5. 𝑞1𝑟1𝑝1

6. 𝑝1𝑞1𝑟1

In all six interleavings, the single read operation 𝑟1 returns the same value 0. Therefore, all six
executions belong to the same View Equivalence class.

The key intuition is that since all reads observe the same values, the behaviour of every thread is
identical across all six interleavings. Hence, it suffices to explore just one of them. This is the essence
of View Equivalence.

By contrast, under reads-from equivalence the situation differs. In interleavings (1) and (2), 𝑟1 reads
from the initial write. In (3) and (4), 𝑟1 reads from 𝑝1, and in (5) and (6), it reads from 𝑞1. Thus,
there are three distinct reads-from equivalence classes.

Consequently, an optimal Stateless Model Checking algorithm under View Equivalence executes only
one execution, whereas an optimal algorithm under Reads-From Equivalence must explore three exe-
cutions, incurring additional cost.

Finally, note that no stateless model checking algorithm that ignores values can safely reduce the
number of executions below three in this example. The reason is that 𝑝1 and 𝑞1 could have written
different values, in which case 𝑟1 would read different values in the three reads-from classes, potentially
altering the behaviour of thread 𝑟.

34

3.2 Exponential Reduction in View Equivalence Classes

We present a set of programs demonstrating that view equivalence can induce significantly fewer
equivalence classes than previously studied notions such as happens-before equivalence and reads-
from equivalence.

3.2.1 The MANYSAMEVALUE (MSV) Program

Program Definition

The program consists of two threads and a single shared variable x, initially set to 0, and is parame-
terized by a positive integer 𝑛. Thread 𝑝 performs 𝑛 writes of the value 0 to x, while thread 𝑞 performs
𝑛 reads from r:

No. 𝑝 𝑞
1 x := 0; a1 := x;
2 x := 0; a2 := x;

⋮
𝑛 x := 0 an := x

Despite its simplicity, this program captures behaviors that naturally arise in low-level concurrent
code. In particular, repeatedly writing or reading fixed values is not only a standalone pattern but
also a building block within more complex synchronization mechanisms, such as locks.

Counting Equivalence Classes

It is easy to see that this program has exactly one view equivalence class. Since the initial value
of x is 0, and all subsequent writes by 𝑝 also write the value 0, every read of 𝑞 must read the value
0, regardless of the interleaving. Thus, all executions contain the same set of read operations with
identical read values, and are therefore view equivalent.

In contrast, under both the happens-before and reads-from equivalence relations, no two interleavings
collapse into the same class. Intuitively, even though every read always reads the same value, the
specific write from which it reads varies across interleavings. Hence every distinct interleaving produces
a different equivalence class. The following theorem formalizes and proves this observation.

Theorem 3.1 (Equivalence classes in the MSV program). In the MSV program, every execution forms
a distinct equivalence class under both reads-from and happens-before equivalence.

Proof. An execution 𝐸 is a total order over {𝑝1, … , 𝑝𝑛, 𝑞1, … , 𝑞𝑛} that preserves the program order of
threads 𝑝 and 𝑞.

For an execution 𝐸, let index𝐸(𝑒) denote the index of operation 𝑒 in 𝐸 (indexes start at 1).

Define 𝑘𝐸(𝑖) as the number of writes that appear before the read 𝑞𝑖 in 𝐸. In particular, 𝑝𝑘𝐸(𝑖) is the
latest write in 𝐸 before the read 𝑞𝑖.

By Sequential Consistency, each read returns the value of the latest write that precedes it in the global
order. Hence, the reads-from relation of 𝐸 is exactly

rf𝐸 = {(𝑝𝑘𝐸(𝑖), 𝑞𝑖) ∣ 1 ≤ 𝑖 ≤ 𝑛}

35

Thus rf𝐸 is completely determined by the vector 𝑘𝐸 = (𝑘𝐸(1), … , 𝑘𝐸(𝑛)).

We now show that 𝐸 can be uniquely reconstructed from 𝑘𝐸.

Set 𝑎0 ∶= 𝑘𝐸(𝑖) and, for 1 ≤ 𝑖 ≤ 𝑛 − 1, set 𝑎𝑖 ∶= 𝑘𝐸(𝑖 + 1) − 𝑘𝐸(𝑖), and finally 𝑎𝑛 ∶= 𝑛 − 𝑘𝐸(𝑖). Each
𝑎𝑖 is a nonnegative integer because the sequence 𝑘𝐸(𝑖) is nondecreasing and bounded by 𝑛.

Equivalently:

• 𝑎0 is the number of writes before 𝑞1.

• For 1 ≤ 𝑖 ≤ 𝑛 − 1, 𝑎𝑖 is the number of writes strictly between 𝑞𝑖 and 𝑞𝑖+1.

• 𝑎𝑛 is the number of writes after 𝑞𝑛.

Because the per-thread orders 𝑝1
po
−→ ⋯

po
−→ 𝑝𝑛 and 𝑞1

po
−→ ⋯

po
−→ 𝑞𝑛 are fixed, the counts (𝑎0, … , 𝑎𝑛)

determine the execution 𝐸:

𝑝1, … , 𝑝𝑎0⏟⏟⏟⏟⏟
𝑎0 writes

, 𝑞1, 𝑝𝑎0+1, … , 𝑝𝑎0+𝑎1⏟⏟⏟⏟⏟⏟⏟
𝑎1 writes

, 𝑞2, … , 𝑞𝑛, 𝑝𝑛−𝑎𝑛+1, … , 𝑝𝑛⏟⏟⏟⏟⏟⏟⏟
𝑎𝑛 writes

Hence 𝐸 is uniquely determined by 𝑘𝐸.

Therefore, if 𝐸 ≠ 𝐸′, then 𝑘𝐸 ≠ 𝑘𝐸′ , which implies rf𝐸 ≠ rf𝐸′ , and consequently hb𝐸 ≠ hb𝐸′ .

Thus, each execution corresponds to its own equivalence class under both reads-from and happens-
before equivalence relations.

Corollary 3.1 (Number of equivalence classes in the MSV program). In the MSV program, the number
of happens-before equivalence classes and reads-from equivalence classes is:

(2𝑛
𝑛) = (2𝑛)!

(𝑛!)2

Proof. By Theorem 2.2, the number of SC executions with 𝑛 operations per thread is (2𝑛
𝑛) = (2𝑛)!

(𝑛!)2 .

By Theorem 3.1, each execution is its own equivalence class.

Thus the number of equivalence classes is also (2𝑛
𝑛) = (2𝑛)!

(𝑛!)2 .

Asymptotic Analysis

Theorem 3.2 (Asymptotic growth of equivalence classes in the MSV program). It holds that

(2𝑛
𝑛) = (2𝑛)!

(𝑛!)2 = Θ(4𝑛
√𝜋𝑛) = 𝜔((4 − 𝜀)𝑛) for any 𝜀 > 0

Proof. Applying Stirling’s approximation:

log𝑛! = 𝑛 log𝑛 − 𝑛 + 1
2 log(2𝜋𝑛) + 𝑂(1

𝑛)

36

we obtain:

log(2𝑛
𝑛) = log (2𝑛)!

(𝑛!)2

= log (2𝑛)! − 2 log𝑛!

= 2𝑛 log 2𝑛 − 2𝑛 + 1
2 log (4𝜋𝑛) + 𝑂(1

𝑛) − 2 (𝑛 log𝑛 − 𝑛 + 1
2 log (2𝜋𝑛) + 𝑂(1

𝑛))
𝑂(1

𝑛)−𝑂(1
𝑛)=±𝑂(1

𝑛)
= 2𝑛 log 2𝑛

𝑛 + log 22 + log𝜋𝑛
2 − (log 2 + log𝜋𝑛) ± 𝑂(1

𝑛)

= 2𝑛 log 2 − 1
2 log𝜋𝑛 ± 𝑂(1

𝑛)

Exponentiating both sides gives:

(2𝑛
𝑛) = 2log(2𝑛

𝑛) = 22𝑛 ⋅ (𝜋𝑛)− 1
2 ⋅ 2±𝑂(1

𝑛) = Θ(4𝑛
√𝜋𝑛)

Above is used the fact that 2𝑂(1
𝑛) = Θ(1).

Finally, for any 𝜀 > 0:

Θ(4𝑛
√𝜋𝑛) = Θ((4 − 𝜀)𝑛 ⋅ (4

4−𝜀)𝑛
√𝜋𝑛)

4
4−𝜀 >1

= 𝜔((4 − 𝜀)𝑛)

Hence, the number of equivalence classes under happens-before and reads-from equivalence grows
exponentially with 𝑛, whereas under view equivalence, there is only a single equivalence class.

Thus, any sound and optimal exploration algorithm based on happens-before or reads-from equivalence
must explore Θ(4𝑛√𝜋𝑛) = 𝜔((4 − 𝜀)𝑛) executions, whereas any sound and optimal exploration algorithm
based on view equivalence must explore exactly only one.

3.2.2 The READINC Program

The READINC program consists of 𝑛 threads and a single shared variable x, initialized to 0. Each
thread reads the value of x into a local variable a, and subsequently writes the value a + 1 back to x,
as shown below:

𝑝1 𝑝2

⋯
𝑝𝑛

a := x; a := x; a := x;
x := a + 1 x := a + 1 x := a + 1

This program serves a dual purpose. First, it highlights the practical impact of view equivalence on
reducing the number of explored executions. Second, it provides a robust test for verifying that a
Stateless Model Checking (SMC) algorithm correctly constructs consistent executions: A key insight
in this program is that it encodes causal structure implicitly: each thread is only able to write the
value 𝑣 +1 after reading the value 𝑣. Hence, the value it writes reflects its position in a causal chain of
updates to the shared variable x. This dependency is enforced entirely through data values, without

37

the need for explicit control flow or synchronization, making the program a useful tool for debugging
and validating SMC implementations.

By Theorem 2.2, the total number of interleavings is given by:

(2𝑛)!
2𝑘

At present, we have not derived closed-form expressions or asymptotic bounds for the number of
equivalence classes under the happens-before, observers, reads-from or view equivalence relations in
this program. However, we report concrete numbers for 𝑛 = 2, 3, 4, 5, 6, 7.

To measure the number of happens-before, observers and reads-from equivalence classes, we use the
NiDHUGG model checker. For view equivalence, we validate results using two independent methods:

1. Extract the executions produced by NiDHUGG’s implementation of Optimal under Reads-From
Equivalence SMC algorithm (OPTiMAL-SMC-RF) and post-process them by regrouping accord-
ing to the view equivalence relation.

2. Perform an exhaustive enumeration of all valid interleavings (brute-force), then group them
according to view equivalence.

Table 1 and Fig. 2 summarize the number of equivalence classes under each equivalence relation for
𝑛 = [2..7].

𝑛 Interleavings Happens-Before Observers Reads-From View
2 6 4 3 3 3
3 90 36 22 16 13
4 2,520 576 281 125 75
5 113,400 14,400 5,566 1,296 541
6 7,484,400 518,400 157,717 16,807 4,683
7 681,080,400 25,401,600 6,053,748 262,144 47,294

Table 1: Number of equivalence classes under various equivalence relations for the READINC program.

38

2 3 4 5 6 7

Number of Threads

101

102

103

104

105

106

107

108

109

N
u

m
b

er
o
f

E
q
u

iv
al

en
ce

C
la

ss
es

[l
o
g

sc
a
le

]
Number of Equivalence Classes (log scale) for various Equivalence Relations

for the ReadInc benchmark

Interleavings [no equivalence]

Happens-Before

Observers

Reads-From

View

Figure 2: Equivalence class counts (log scale) for the READINC program.

Although the logarithmic plot does not make precise growth rates immediately apparent, the noticeably
lower slope for view equivalence suggests a significantly slower exponential growth compared to the
happens-before, observers, and reads-from equivalence relations.

For completeness, Fig. 3 illustrates the equivalence-class structure of the READINC program for 𝑛 = 3.
The figure presents one representative execution from each of the 36 happens-before equivalence classes,
which are then hierarchically grouped: first into observers equivalence classes (green), next into reads-
from equivalence classes (red), and finally into the coarsest view equivalence classes (blue). Each view
equivalence class is additionally annotated with a triple ⟨𝑎, 𝑏, 𝑐⟩, indicating the values read by the
three threads (𝑝, 𝑞, and 𝑟), respectively.

39

View Class 1 ⟨0,1,2⟩

Reads-From Class 1

Observers Class 1
𝑝1𝑝2𝑞1𝑞2𝑟1𝑟2

View Class 2 ⟨0,2,1⟩

Reads-From Class 2

Observers Class 2
𝑝1𝑝2𝑟1𝑟2𝑞1𝑞2

View Class 3 ⟨1,0,2⟩

Reads-From Class 3

Observers Class 3
𝑞1𝑞2𝑝1𝑝2𝑟1𝑟2

View Class 4 ⟨2,0,1⟩

Reads-From Class 4

Observers Class 4
𝑞1𝑞2𝑟1𝑟2𝑝1𝑝2

View Class 5 ⟨2,1,0⟩

Reads-From Class 5

Observers Class 5
𝑟1𝑟2𝑞1𝑞2𝑝1𝑝2

View Class 6 ⟨1,2,0⟩

Reads-From Class 6

Observers Class 6
𝑟1𝑟2𝑝1𝑝2𝑞1𝑞2

View Class 7 ⟨0,1,1⟩

Reads-From Class 7

Observers Class 7
𝑝1𝑝2𝑞1𝑟1𝑞2𝑟2

𝑝1𝑝2𝑞1𝑟1𝑟2𝑞2

View Class 8 ⟨1,0,1⟩

Reads-From Class 8

Observers Class 8
𝑞1𝑞2𝑝1𝑟1𝑝2𝑟2

𝑞1𝑞2𝑝1𝑟1𝑟2𝑝2

View Class 9 ⟨1,1,0⟩

Reads-From Class 9

Observers Class 9
𝑟1𝑟2𝑝1𝑞1𝑝2𝑞2

𝑟1𝑟2𝑝1𝑞1𝑞2𝑝2

View Class 10 ⟨0,0,0⟩

Reads-From Class 10

Observers Class 10
𝑝1𝑞1𝑟1𝑝2𝑞2𝑟2

𝑝1𝑞1𝑟1𝑝2𝑟2𝑞2

𝑝1𝑞1𝑟1𝑞2𝑝2𝑟2

𝑝1𝑞1𝑟1𝑞2𝑟2𝑝2

𝑝1𝑞1𝑟1𝑟2𝑝2𝑞2

𝑝1𝑞1𝑟1𝑟2𝑞2𝑝2

40

View Class 11 ⟨0,0,1⟩

Reads-From Class 11

Observers Class 11
𝑝1𝑞1𝑝2𝑞2𝑟1𝑟2

Observers Class 12
𝑝1𝑞1𝑞2𝑟1𝑝2𝑟2

𝑝1𝑞1𝑞2𝑟1𝑟2𝑝2

Reads-From Class 12

Observers Class 13
𝑝1𝑞1𝑝2𝑟1𝑞2𝑟2

𝑝1𝑞1𝑝2𝑟1𝑟2𝑞2

Observers Class 14
𝑝1𝑞1𝑞2𝑝2𝑟1𝑟2

View Class 12 ⟨0,1,0⟩

Reads-From Class 13

Observers Class 15
𝑝1𝑟1𝑝2𝑞1𝑞2𝑟2

𝑝1𝑟1𝑝2𝑞1𝑟2𝑞2

Observers Class 16
𝑝1𝑟1𝑟2𝑝2𝑞1𝑞2

Reads-From Class 14

Observers Class 17
𝑝1𝑟1𝑝2𝑟2𝑞1𝑞2

Observers Class 18
𝑝1𝑟1𝑟2𝑞1𝑝2𝑞2

𝑝1𝑟1𝑟2𝑞1𝑞2𝑝2

View Class 13 ⟨1,0,0⟩

Reads-From Class 15

Observers Class 19
𝑞1𝑟1𝑞2𝑝1𝑝2𝑟2

𝑞1𝑟1𝑞2𝑝1𝑟2𝑝2

Observers Class 20
𝑞1𝑟1𝑟2𝑞2𝑝1𝑝2

Reads-From Class 16

Observers Class 21
𝑞1𝑟1𝑞2𝑟2𝑝1𝑝2

Observers Class 22
𝑞1𝑟1𝑟2𝑝1𝑝2𝑞2

𝑞1𝑟1𝑟2𝑝1𝑞2𝑝2

Figure 3: Representative executions from each of the 36 happens-before equivalence classes in READ-
INC, hierarchically grouped into observers (green), reads-from (red), and view (blue) equivalence
classes. Each view equivalence class is annotated with a triple ⟨𝑎, 𝑏, 𝑐⟩, where 𝑎, 𝑏, and 𝑐 denote the
values read by threads 𝑝, 𝑞, and 𝑟, respectively.

41

4 Exploration Algorithm

Our goal is to explore a single execution from each view equivalence class of sequentially consistent
executions. The exploration is structured around a combinatorial abstraction, which we term read-cuts.

4.1 Definitions

Definition 4.1 (Read-Cut). Let 𝒯 be a set of thread identifiers and VALUES a set of values. A
read-cut is a function 𝑟𝑐 ∶ 𝒯 ↦ VALUES∗ that assigns to each thread a sequence of read values.

Example 4.1. Consider the program with two threads, 𝑝 and 𝑞, and a shared variable x, initially set
to 0.

𝑝 𝑞
a := x; a := y;
x := 1 b := x

• 𝑟𝑐1(𝑝) = [0], 𝑟𝑐1(𝑞) = [0] means that both 𝑝1 and 𝑞1 read the initial value 0.

• 𝑟𝑐2(𝑝) = [1], 𝑟𝑐2(𝑞) = [0] means 𝑝1 reads 1 and 𝑞1 reads 0.

• 𝑟𝑐3(𝑝) = [], 𝑟𝑐3(𝑞) = [0] means 𝑞1 reads 0 and 𝑝1 is not included in the read-cut.

Definition 4.2 (𝑝-projection of execution 𝐸). Let 𝐸 be an execution. The 𝑝-projection of 𝐸, denoted
𝐸𝑝, is the subsequence of 𝐸 containing all operations of thread 𝑝.

Definition 4.3 (Read-Cut of Execution). Let 𝐸 be an execution and 𝑟𝑐 a read-cut. We say that 𝑟𝑐
is a read-cut of 𝐸 if for every thread 𝑝 ∈ 𝑑𝑜𝑚(𝑟𝑐), the sequence of values read by the first |𝑟𝑐(𝑝)| read
operations of 𝐸𝑝 equals 𝑟𝑐(𝑝).

Definition 4.4 (Execution-Induced Read-Cut). Let 𝐸 be an execution (or prefix, or any sequence
of operations). The read-cut induced by 𝐸, denoted 𝑟𝑐𝐸, is defined as follows: for each thread
𝑝 ∈ Threads(𝐸), let 𝑟𝑐𝐸(𝑝) be the sequence of values read by all the read operations of 𝑝 in 𝐸, listed
in program order. Formally, for every 𝑝 ∈ Threads(𝐸):

𝑟𝑐𝐸(𝑝) = [𝑒.value ∣ 𝑒.thread = 𝑝 ∧ 𝑒 is a read operation].

Notice that two executions 𝐸1, 𝐸2 are view equivalent if and only if they induce the same read-cut,
i.e., 𝑟𝑐𝐸1

= 𝑟𝑐𝐸2
.

Definition 4.5 (Feasible Read-Cut). A read-cut 𝑟𝑐 is feasible if there exists an SC execution 𝐸 with
a prefix 𝐸′ such that 𝑟𝑐 = 𝑟𝑐𝐸′.

Definition 4.6 (Witness). Let 𝑟𝑐 be a feasible read-cut. An execution prefix 𝐸′ is a witness for 𝑟𝑐 if
there exists a complete execution 𝐸 such that 𝐸′ is a prefix of 𝐸 and 𝑟𝑐 = 𝑟𝑐𝐸′.

Definition 4.7 (𝑟𝑐-restriction of execution 𝐸). Let 𝐸 be an execution and 𝑟𝑐 a read-cut of 𝐸. The
𝑟𝑐-restriction of 𝐸, denoted 𝐸𝑟𝑐, is the subsequence of 𝐸 containing all operations 𝑒 ∈ 𝐸 such that 𝑒
is not after the (1 + |𝑟𝑐(𝑒.thread)|)th read operation of 𝐸𝑒.thread.

Intuitively, 𝐸𝑟𝑐 is the maximal subsequence of 𝐸 that contains exactly the reads specified by 𝑟𝑐.

42

Equivalently, for each thread 𝑝, 𝐸𝑟𝑐 contains all operations of 𝐸𝑝 up to (but not including) the first
read of 𝐸𝑝 that is not in 𝑟𝑐(𝑝).

It follows immediately that 𝑟𝑐𝐸𝑟𝑐
= 𝑟𝑐.

Example 4.2. Consider the program with two threads, 𝑝 and 𝑞, and a shared variable x, initially set
to 0.

𝑝 𝑞
x := 1; a := x;
a := x; x := 3
x := 2;
b := x

Let an execution be 𝐸 = [𝑞1𝑝1𝑝2𝑝3𝑝4𝑞2] and consider the read-cut 𝑟𝑐1(𝑝) = [1], 𝑟𝑐2(𝑝) = [0].

The corresponding 𝑟𝑐-restriction of 𝐸 is 𝐸𝑟𝑐 = [𝑞1𝑝1𝑝2𝑝3𝑞2].

Remark. Let 𝐸1, 𝐸2 be executions with read-cuts 𝑟𝑐1, 𝑟𝑐2, respectively. Because threads are deter-
ministic given fixed read values, if 𝑟𝑐1 = 𝑟𝑐2 = 𝑟𝑐, then for every 𝑝 ∈ 𝑑𝑜𝑚(𝑟𝑐):

1. the maximal prefix of 𝐸1𝑝 containing exactly |𝑟𝑐(𝑝)| reads, and

2. the maximal prefix of 𝐸2𝑝 containing exactly |𝑟𝑐(𝑝)| reads

are identical. Therefore, the 𝑟𝑐-restrictions 𝐸1𝑟𝑐 and 𝐸2𝑟𝑐 contain the same set of operations; their
only possible difference lies in the relative ordering of operations from different threads.

4.2 Algorithm

The algorithm explores the space of read-cuts by analyzing executions and generating new executions
with unexplored read-cuts.

Its pseudocode is given in Algorithm 1.

A set EXPLORED stores all read-cuts that have already been analyzed (Line 1). A second set TO-
BEEXPLORED stores read-cuts that have been witnessed by some execution that has run but has not
yet been processed (Line 2). Finally, a container EXECUTiONS stores executions awaiting processing
(Line 3). The order in which executions are extracted from this container is left unspecified by the
algorithm. In particular, any strategy may be used. The options considered are a stack (yielding DFS)
or a queue (yielding BFS). The traversal strategy may affect memory consumption but does not affect
correctness. BFS is chosen in order to reduce memory usage.

Initially, the algorithm invokes the scheduler oracle SCHEDULER with the empty execution prefix
(Line 4) and obtains an arbitrary execution 𝐸. All read-cuts of 𝐸 are enumerated and added to
TOBEEXPLORED (Line 6), and 𝐸 is added to EXECUTiONS (Line 5).

The algorithm then iteratively processes executions from EXECUTiONS until it becomes empty (Line 7).
In each iteration, an execution 𝐸 is extracted from EXECUTiONS (Line 8), and all its read-cuts 𝑟𝑐 are
enumerated and considered one by one (Line 9).

43

If 𝑟𝑐 ∉ TOBEEXPLORED, the algorithm skips it (Line 10), since some other execution 𝐸′ must already
be a witness for 𝑟𝑐 and 𝑟𝑐 was analyzed while processing 𝐸′. Otherwise, 𝑟𝑐 is removed from TOBE-
EXPLORED and added to EXPLORED (Lines 11 and 12). The algorithm then considers all one-read
extensions of 𝑟𝑐 by iterating over threads of 𝐸 (Line 13).

For each thread 𝑝 ∈ Threads(𝐸):

1. Identify the first read 𝑒𝑟 in 𝐸𝑝 not included in 𝑟𝑐 (i.e., the (1 + |𝑟𝑐(𝑝)|)𝑡ℎ read of 𝐸𝑝). (Line 14)
If no such read exists (all reads of 𝑝 are already covered), continue. (Line 15)

Compute the set VALUES of all values 𝑣 written to 𝑒𝑟.address by some write 𝑒𝑤, under the
constraint that 𝑒𝑤 is not after the (1 + |𝑟𝑐(𝑒𝑤.thread)|)𝑡ℎ read of 𝐸𝑒𝑤.thread (otherwise 𝑒𝑤 would
be excluded by the current read-cut restriction of the execution). (Line 16)

For each 𝑣 ∈ VALUES, define (Line 18) the new read-cut

𝑟𝑐′ = 𝑟𝑐[𝑝 ↦ 𝑟𝑐(𝑝) ⋅ 𝑣].

If 𝑟𝑐′ has already been encountered (i.e. 𝑟𝑐′ ∈ EXPLORED ∨ 𝑟𝑐′ ∈ TOBEEXPLORED), skip it (Line 19).
Otherwise, attempt to construct a witness for 𝑟𝑐′ using the function CONSTRUCTWiTNESS, formally
defined below.

Compute the 𝑟𝑐-restriction 𝐸𝑟𝑐 of 𝐸 (Line 21). Extend 𝐸𝑟𝑐 with the new read 𝑒′
𝑟 = 𝑒𝑟[value ↦ 𝑣]

(Line 20), producing the sequence 𝐸′ (Line 22). Call CONSTRUCTWiTNESS(𝐸′, 𝑒′
𝑟) to attempt to con-

struct a valid execution prefix 𝐸′ (Line 23). If no such prefix exists (i.e. CONSTRUCTWiTNESS(𝐸′, 𝑒′
𝑟)

returned NONE and thus the read-cut 𝑟𝑐′ is infeasible), continue. (Line 24)

Otherwise, let 𝐸′ be the execution prefix returned by CONSTRUCTWiTNESS. Invoke the scheduler
oracle SCHEDULER on input 𝐸′ (Line 25). It returns a complete execution 𝐸′ such that 𝐸′ is a prefix
of 𝐸′.

Add 𝐸′ to EXECUTiONS (Line 26), and enumerate all its read-cuts 𝑟𝑐 (Line 27). Add any new
𝑟𝑐 ∉ EXPLORED to TOBEEXPLORED (Line 28).

This process continues until EXECUTiONS becomes empty (Line 7).

Definition 4.8 (CONSTRUCTWiTNESS). Let 𝐸 be a sequence of operations representing a subsequence
of an execution, extended by a newly added read operation 𝑒𝑟.

The function CONSTRUCTWiTNESS(𝐸, 𝑒𝑟) attempts to construct a reordering 𝐸 of 𝐸 such that 𝐸 is a
prefix of some sequentially consistent (SC) execution. Equivalently, it attempts to construct a witness
for the read-cut 𝑟𝑐𝐸 corresponding to this extended sequence, if the read-cut is feasible.

If such a reordering exists, CONSTRUCTWiTNESS(𝐸, 𝑒𝑟) returns the corresponding SC execution prefix
𝐸. Otherwise (i.e., if 𝑟𝑐𝐸 is infeasible), it returns INCONSiSTENT.

44

Algorithm 1: ViEWXPLORE Exploration Algorithm
1 EXPLORED ← ∅ // Set of analyzed read-cuts
2 TOBEEXPLORED ← ∅ // Read-cuts witnessed but not yet analyzed
3 EXECUTiONS ← [] // Executions awaiting processing

4 𝐸 ← SCHEDULER([])
5 EXECUTiONS ← [𝐸]
6 foreach read-cut 𝑟𝑐 of 𝐸 do TOBEEXPLORED ← TOBEEXPLORED ∪ {𝑟𝑐}
7 while EXECUTiONS ≠ [] do
8 [𝐸,EXECUTiONS] ← EXECUTiONS // Extraction order may follow any traversal

(e.g. DFS with a stack, BFS with a queue)
9 foreach read-cut 𝑟𝑐 of 𝐸 do
10 if 𝑟𝑐 ∉ TOBEEXPLORED then continue
11 TOBEEXPLORED ← TOBEEXPLORED ∖ {𝑟𝑐}
12 EXPLORED ← EXPLORED ∪ {𝑟𝑐}
13 foreach 𝑝 ∈ Threads(𝐸) do
14 𝑒𝑟 ← (1 + |𝑟𝑐(𝑝)|)𝑡ℎ read in 𝐸𝑝 // First read of 𝑝 “not in” 𝑟𝑐
15 if 𝑒𝑟 = NONE then continue // No remaining reads for thread 𝑝
16 VALUES ← { 𝑒𝑤.value ∣ 𝑒𝑤 ∈ 𝐸, 𝑒𝑤.address =

𝑒𝑟.address, 𝑒𝑤 not after (1 + |𝑟𝑐(𝑒𝑤.thread)|)𝑡ℎ read of 𝐸𝑒𝑤.thread }
17 foreach 𝑣 ∈ VALUES do
18 𝑟𝑐′ ← 𝑟𝑐[𝑝 ↦ 𝑟𝑐(𝑝) ⋅ 𝑣]
19 if 𝑟𝑐′ ∈ EXPLORED or 𝑟𝑐′ ∈ TOBEEXPLORED then continue
20 𝑒′

𝑟 ← 𝑒𝑟[value ↦ 𝑣]
21 𝐸𝑟𝑐 ← [𝑒 ∣ 𝑒 ∈ 𝐸 ∧ 𝑒 is not after the (1 + |𝑟𝑐(𝑒.thread)|)𝑡ℎ read of 𝐸𝑒.thread]

// 𝑟𝑐-restriction of 𝐸
22 𝐸′ ← 𝐸𝑟𝑐 + [𝑒′

𝑟]
23 𝐸′ ← CONSTRUCTWiTNESS(𝐸′, 𝑒′

𝑟)
24 if 𝐸′ = NONE then continue
25 𝐸′ ← SCHEDULER(𝐸′)
26 EXECUTiONS ← EXECUTiONS+ [𝐸′]
27 foreach read-cut 𝑟𝑐 of 𝐸′ do
28 if 𝑟𝑐 ∈ EXPLORED then continue
29 TOBEEXPLORED ← TOBEEXPLORED ∪ {𝑟𝑐}

Enumerating the read-cuts of an execution 𝐸 can be done as follows. First, compute the read-cut 𝑟𝑐𝐸
induced by 𝐸. The set of all read-cuts of 𝐸 is then given by the cross-product over all threads:

∏
𝑝∈Threads(𝐸)

Pref(𝑟𝑐𝐸(𝑝)),

where Pref(𝑆) denotes the set of all prefixes of a sequence 𝑆, including the empty prefix and the full
sequence. We will later refine this construction to exclude some infeasible read-cuts.

45

4.3 Example: Running the Algorithm on READINC [𝑛 = 2]
We illustrate the execution of ViEWXPLORE on the READINC program with two threads (𝑛 = 2). For
conciseness, we refer to the two threads as 𝑝 (instead of 𝑝1) and 𝑞 (instead of 𝑝2).

We begin by invoking the SCHEDULER on the empty execution prefix [], and obtain:

𝐸1 = 𝑝1𝑞1𝑝2𝑞2

Execution 𝐸1 is added to the container EXECUTiONS.

Processing 𝐸1. The algorithm then enters the main loop and begins processing 𝐸1. This execution
has following read-cuts:

𝑟𝑐1,1 𝑝 ∶ [], 𝑞 ∶ []
𝑟𝑐1,2 𝑝 ∶ [0], 𝑞 ∶ []
𝑟𝑐1,3 𝑝 ∶ [], 𝑞 ∶ [0]
𝑟𝑐1,4 𝑝 ∶ [0], 𝑞 ∶ [0]
These read-cuts are added to the set TOBEEXPLORED.

Processing the first read-cut 𝑟𝑐1,1. We begin with the first read-cut and move it from TOBEEX-
PLORED to EXPLORED. We attempt to expand it by introducing a new read value for each thread:

1. The first read of 𝑝 not included in 𝑟𝑐1,1 is 𝑝1. The set of values written to 𝑥 in 𝐸1 is {0, 1}.
Since 𝑝1 read 0 in 𝐸1, the only alternative value is 1. We thus consider the expanded read-cut
𝑝 ∶ [1], 𝑞 ∶ [].

As this read-cut does not belong to either EXPLORED or TOBEEXPLORED, we proceed to examine
it. Conceptually, this corresponds to constructing an execution prefix where 𝑝1 reads 1 and 𝑞1
does not exist. This is clearly infeasible.

The algorithm constructs the 𝑟𝑐1,1-restriction of 𝐸1, which is the empty sequence, appends the
new read operation 𝑝1 reading 1, and invokes CONSTRUCTWiTNESS on this sequence. CON-
STRUCTWiTNESS reports infeasibility, so this read-cut is discarded.

2. Thread 𝑞 is handled analogously, yielding no feasible expansion.

Processing the second read-cut 𝑟𝑐1,2. Next, we process the second read-cut by moving it from
TOBEEXPLORED to EXPLORED and again attempt to expand it.

1. Thread 𝑝 has no additional reads available.

2. The first read of 𝑞 not included in 𝑟𝑐1,2 is 𝑞1. The values written to 𝑥 in 𝐸1 are again {0, 1}, and
the alternative to the value read in 𝐸1 (0) is 1. We therefore examine the expanded read-cut
𝑝 ∶ [0], 𝑞 ∶ [1].

Since it is not yet in EXPLORED or TOBEEXPLORED, we proceed. The 𝑟𝑐1,2-restriction of 𝐸1 is:

𝐸1,𝑟𝑐1,2
= 𝑝1𝑝2

46

We append the new read operation 𝑞1 reading 1, and invoke CONSTRUCTWiTNESS on this se-
quence. This call returns the execution prefix 𝑝1𝑝2𝑟2.

Invoking SCHEDULER on this prefix yields:

𝐸2 = 𝑝1𝑝2𝑟1𝑟2

Execution 𝐸2 has the following read-cuts:

𝑟𝑐2,1 𝑝 ∶ [], 𝑞 ∶ []
𝑟𝑐2,2 𝑝 ∶ [0], 𝑞 ∶ []
𝑟𝑐2,3 𝑝 ∶ [], 𝑞 ∶ [1]
𝑟𝑐2,4 𝑝 ∶ [0], 𝑞 ∶ [1]
Among these, 𝑟𝑐2,1 and 𝑟𝑐2,2 already appear in EXPLORED or TOBEEXPLORED and are thus
skipped, while 𝑟𝑐2,3 and 𝑟𝑐2,4 are added to TOBEEXPLORED. Finally, 𝐸2 is added to the EXE-
CUTiONS container.

The remaining read-cuts of 𝐸1 are processed in the same manner.

Subsequent processing. After all read-cuts of 𝐸1 have been explored, the algorithm selects another
execution from the EXECUTiONS container and repeats the process. This continues until EXECUTiONS
becomes empty, at which point the algorithm terminates.

4.4 Optimality

We now establish the optimality of the exploration algorithm under view equivalence.

Invariant 4.1. At any point during the algorithm, all read-cuts of all executions that have run belong
to EXPLORED ∪ TOBEEXPLORED.

Proof. Immediately after an execution is run, all its read-cuts are added to TOBEEXPLORED. When-
ever a read-cut is removed from TOBEEXPLORED, it is added to EXPLORED. Hence the claim always
holds.

The following theorem, together with the soundness proof given later, establishes that the SMC algo-
rithm is optimal under view equivalence.

Theorem 4.1 (Optimality of ViEWXPLORE). After Algorithm 1 terminates, no two executions 𝐸1
and 𝐸2 that are view equivalent have both run.

Proof. Assume for contradiction that the algorithm terminates and two executions 𝐸1 and 𝐸2 have
run that are view equivalent. Without loss of generality, suppose 𝐸1 was run before 𝐸2.

Since 𝐸1 and 𝐸2 are view equivalent, they induce exactly the same read-cuts. Consider the state of
the algorithm immediately after 𝐸1 has run but before 𝐸2 has. By Invariant 4.1, all read-cuts of 𝐸1
must already belong to TOBEEXPLORED ∪ EXPLORED. Since 𝐸2 has the same read-cuts as 𝐸1, the
same must hold for 𝐸2.

47

Now consider the call to the scheduler oracle SCHEDULER that produced 𝐸2. This call must have been
triggered during the processing of some new read-cut 𝑟𝑐′, which is a read-cut of 𝐸2. as guaranteed by
the definition of CONSTRUCTWiTNESS.

By construction, 𝑟𝑐′ was only explored because it was not already in TOBEEXPLORED ∪ EXPLORED
at that point. But from the argument above, 𝑟𝑐′ was in fact already present in TOBEEXPLORED ∪
EXPLORED. This contradiction establishes the theorem.

4.5 Soundness

We now establish the soundness of the exploration algorithm.

Theorem 4.2 (Soundness of ViEWXPLORE). At termination, the exploration algorithm has visited at
least one execution from each view equivalence class induced by some feasible sequentially consistent
execution.

Proof. Throughout the exploration, we maintain a partition of the universe of view equivalence classes
induced by sequentially consistent (SC) executions into two disjoint sets:

𝐸𝑥𝑝𝑙𝑜𝑟𝑒𝑑 ⊔ 𝑈𝑛𝑒𝑥𝑝𝑙𝑜𝑟𝑒𝑑

For clarity, note that 𝐸𝑥𝑝𝑙𝑜𝑟𝑒𝑑 here refers to this partition, and is not the same as the algorithm’s
internal set EXPLORED.

We say that an execution belongs to 𝐸𝑥𝑝𝑙𝑜𝑟𝑒𝑑 (respectively, 𝑈𝑛𝑒𝑥𝑝𝑙𝑜𝑟𝑒𝑑) if it belongs to a view
equivalence class contained in that set.

Assume, for contradiction, that the algorithm terminates while 𝑈𝑛𝑒𝑥𝑝𝑙𝑜𝑟𝑒𝑑 ≠ ∅. Let 𝐸 be an execution
in 𝑈𝑛𝑒𝑥𝑝𝑙𝑜𝑟𝑒𝑑.

Lemma 4.1. There exists a prefix 𝐸″ = 𝐸′𝑒𝑟 of 𝐸 (𝑒𝑟 a read operation, 𝐸′ possibly empty) such that
both:

1. The read-cut induced by 𝐸′ is a read-cut of some execution in 𝐸𝑥𝑝𝑙𝑜𝑟𝑒𝑑.

2. The read-cut induced by 𝐸″ is not a read-cut of any execution in 𝐸𝑥𝑝𝑙𝑜𝑟𝑒𝑑.

Proof. Suppose, for contradiction, that no such prefix exists. Then either:

1. Every prefix 𝐸′ of 𝐸 induces a read-cut not induced by any execution in 𝐸𝑥𝑝𝑙𝑜𝑟𝑒𝑑. This is
impossible, since the empty prefix induces the empty read-cut, which is common to all executions
in 𝐸𝑥𝑝𝑙𝑜𝑟𝑒𝑑. (Note that 𝐸𝑥𝑝𝑙𝑜𝑟𝑒𝑑 is non-empty, because the algorithm always runs at least one
execution at initialization.)

2. Every prefix 𝐸″ = 𝐸′𝑒𝑟 of 𝐸 induces a read-cut that is also induced by some execution in
𝐸𝑥𝑝𝑙𝑜𝑟𝑒𝑑. In particular, let 𝐸″ = 𝐸. Then 𝐸 induces the same read-cut as some 𝐸 ∈ 𝐸𝑥𝑝𝑙𝑜𝑟𝑒𝑑.
Hence 𝐸 and 𝐸 belong to the same view equivalence class, contradicting the assumption that
𝐸 ∈ 𝑈𝑛𝑒𝑥𝑝𝑙𝑜𝑟𝑒𝑑 while 𝐸 ∈ 𝐸𝑥𝑝𝑙𝑜𝑟𝑒𝑑.

This contradiction proves the lemma.

48

Let 𝐸″ = 𝐸′𝑒𝑟 be the prefix guaranteed by the lemma. Let 𝐸 ∈ 𝐸𝑥𝑝𝑙𝑜𝑟𝑒𝑑 be an execution that has
been run such that 𝑟𝑐𝐸′ is a read-cut of 𝐸.4

Since 𝑟𝑐𝐸′ is a read-cut of both 𝐸 and 𝐸, and since 𝐸 has run, the algorithm eventually examines
𝑟𝑐𝐸′ , as it explores all read-cuts of 𝐸.

The difference between 𝑟𝑐𝐸′ and 𝑟𝑐𝐸″ is exactly one additional read: 𝑒𝑟.

In 𝐸, the read 𝑒𝑟 reads-from some write 𝑒𝑤 in 𝐸′. It follows that 𝑒𝑤 is contained in

the maximal prefix of 𝐸𝑒𝑤.thread containing exactly |𝑟𝑐𝐸′(𝑒𝑤.thread)| reads,

and therefore, by thread determinism, and since 𝑟𝑐𝐸′ is a read-cut of both 𝐸 and 𝐸, also in

the maximal prefix of 𝐸𝑒𝑤.thread containing exactly |𝑟𝑐𝐸′(𝑒𝑤.thread)| reads.

Hence, when the exploration algorithm checks for new possible values for 𝑒𝑟, 𝑒𝑤.value ∈ VALUES.
Therefore, the expanded read-cut 𝑟𝑐𝐸″ induced by 𝐸″ is indeed examined by the algorithm.

Moreover, by thread determinism, the 𝑟𝑐𝐸′-restrictions of 𝐸 and 𝐸 (namely 𝐸𝑟𝑐𝐸′ = 𝐸′ and 𝐸𝑟𝑐𝐸′)
consist of the same operations, differing only in the interleaving across threads.5

Thus, the sequence constructed by the algorithm as input to CONSTRUCTWiTNESS is, as a set of
operations, precisely 𝐸′𝑒𝑟. Since 𝐸′𝑒𝑟 = 𝐸″ is a feasible execution prefix, CONSTRUCTWiTNESS
returns an execution prefix rather than NONE. The algorithm then invokes the oracle SCHEDULER on
this prefix.

By the construction of CONSTRUCTWiTNESS, the execution that now runs has the read-cut 𝑟𝑐𝐸″ ,
and having run, it belongs to 𝐸𝑥𝑝𝑙𝑜𝑟𝑒𝑑. This contradicts the lemma’s assumption that 𝑟𝑐𝐸″ is not a
read-cut of any execution in 𝐸𝑥𝑝𝑙𝑜𝑟𝑒𝑑.

This contradiction completes the proof.

4.6 Reducing Memory Consumption

At an abstract level, the exploration algorithm operates as a graph traversal.

Each node in this graph represents a view equivalence class, and a directed edge connects two nodes
𝐶1 → 𝐶2 whenever a feasible read-cut of 𝐶1 can be extended into a feasible read-cut of 𝐶2 by a single
read expansion. Importantly, these edges are discovered on the fly: they are generated only when the
source node is visited. Moreover, upon visiting a node, the algorithm computes all of its outgoing
edges immediately, prior to exploring any other node. Consequently, these edges must be stored in
order to enable further exploration along them at a later stage.

4Such an execution 𝐸 must exist because:
1. 𝑟𝑐𝐸′ is a read-cut of a view equivalence class that belongs to 𝐸𝑥𝑝𝑙𝑜𝑟𝑒𝑑,
2. all executions within the same view equivalence class have the same read-cuts, and
3. since this view equivalence class is in 𝐸𝑥𝑝𝑙𝑜𝑟𝑒𝑑, at least one execution from it has been run by the algorithm.

5For every thread 𝑝 ∈ 𝑑𝑜𝑚(𝑟𝑐𝐸′):
1. the maximal prefix of 𝐸𝑝 containing exactly |𝑟𝑐𝐸′ (𝑝)| reads, and
2. the maximal prefix of 𝐸𝑝 containing exactly |𝑟𝑐𝐸′ (𝑝)| reads

are identical. By thread determinism, these prefixes must be equal. Hence 𝐸𝑟𝑐𝐸′ = 𝐸𝑟𝑐𝐸′ .

49

The graph is never constructed explicitly. Instead, the traversal is driven by the container EXECU-
TiONS, which stores executions (nodes) to be explored. Soundness and optimality require only that
EXECUTiONS behaves as a generic container: executions are inserted into it and later extracted, in
any order. Correctness does not depend on the extraction order, and uniqueness of entries need not
be enforced.

However, the order in which executions are extracted – i.e., the traversal strategy – has a major
effect on memory consumption. Each time a node is visited, its neighboring nodes are generated and
temporarily stored in EXECUTiONS for later exploration. Thus, the traversal strategy determines the
maximum number of nodes stored at once.

If EXECUTiONS is implemented as a stack (depth-first traversal), the container may grow large: upon
reaching the leftmost leaf, the stack holds the entire traversal tree, except for the nodes along the
current root-to-leaf path.

Conversely, if EXECUTiONS is a queue (breadth-first traversal), the container typically holds only one
or two layers of the traversal tree at a time.

Neither traversal tree need resemble a balanced tree: they may degenerate into long chains. However,
empirical results on real benchmarks suggest the following pattern: the upper levels of the traversal tree
exhibit high fanout, while fanout decreases near the leaves. Equivalently, the graph of view equivalence
classes resembles a dense, highly connected core with chain-like structures extending from it.

Under this structure, the number of nodes in one or two breadths of the BFS tree is typically much
smaller than the number of nodes in the DFS tree minus a single root-to-leaf path. We therefore
expect BFS traversal to require significantly less memory.

Experiments comparing DFS and BFS confirm this expectation. Consequently, we adopt BFS traversal
in practice, using a queue as the data structure for EXECUTiONS.

A final caveat is worth noting. This discussion has implicitly assumed that all edges of the view
equivalence class graph require approximately the same computational effort to explore. This need
not hold: for certain edges, the heuristics of CONSTRUCTWiTNESS may fail, causing those edges to
require disproportionately more time. If such edges become part of the traversal tree, the time to visit
them may dominate the exploration cost. It is conceivable that some traversal strategies make such
edges more or less likely to appear. However, in our experiments we have not observed such an effect.

4.7 Improved Read-Cut Enumeration with Early Feasibility Pruning

Recall that the set of read-cuts of an execution 𝐸 was earlier defined as the cross-product

∏
𝑝∈Threads(𝐸)

Pref(𝑟𝑐𝐸(𝑝)),

While conceptually simple, this naive enumeration generates an exponential number of candidates,
most of which are trivially infeasible: they prescribe that some read must return a value that is never
produced by any write in the corresponding 𝑟𝑐-restriction of 𝐸.

To avoid this blow-up, we design a specialised iterator that enumerates read-cuts incrementally while
simultaneously checking a necessary feasibility condition. The key idea is to maintain the sets of the

50

values written and the values read so far. If a read-cut requires a value 𝑣 for which no write exists in
the current 𝑟𝑐-restriction, the candidate is immediately discarded, and enumeration continues with the
next candidate. Thus, many infeasible read-cuts are pruned on the fly, without ever being materialised.

The enumeration itself is structured as a form of mixed-radix counting across threads: each thread 𝑝
is treated as a digit whose value corresponds to the number of reads included from 𝑝. Incrementing
a digit corresponds to extending the prefix of 𝑝 by one additional read, while backtracking (carrying
to the left) resets a prefix and removes the contributions of its reads and writes. Throughout, the
following three auxiliary structures are maintained and updated incrementally:

• W𝑟𝑐: multiset of values written by all write operations that currently belong to the 𝑟𝑐-restriction
𝐸𝑟𝑐.

• R𝑟𝑐: multiset of values read by the reads currently included in 𝑟𝑐.

• Unsat𝑟𝑐, the set of unsatisfied read values, i.e. those required by R𝑟𝑐 but not yet provided by
W𝑟𝑐. Formally, Unsat = R𝑟𝑐 ∖ W𝑟𝑐.

Note that, for this definition, W𝑟𝑐 and R𝑟𝑐 are interpreted as sets rather than multisets.

A read-cut is emitted only when Unsat = ∅. This ensures that every enumerated read-cut satisfies the
necessary condition that all of its reads can be matched to at least one write in its restriction 𝐸𝑟𝑐.

51

Algorithm 2: ENUMERATEREADCUTSWiTHPRUNiNG(𝐸)
Input: Execution 𝐸
Output: Stream of read-cuts 𝑟𝑐 that satisfy a necessary feasibility condition.

1 𝑟𝑐 ← ∅ // all thread prefixes empty
2 R𝑟𝑐 ← ∅
3 Unsat ← ∅
4 W𝑟𝑐 ← multiset of values written by all writes occurring before the first read of each thread 𝑝 in

𝐸𝑝

5 yield 𝑟𝑐
6 while true do
7 𝑖 ← |Threads(𝐸)|
8 while 𝑖 ≥ 1 and thread 𝑝 (the 𝑖-th thread) has no further read to include do
9 let 𝑝 be the 𝑖-th thread. // Reset (carry out) the digit of 𝑝: undo its current

contribution to 𝐸𝑟𝑐
10 foreach read 𝑒𝑟 of 𝐸𝑝 do

// Remove reads of 𝑝
11 𝑣 ← 𝑒𝑟.value
12 decrement R𝑟𝑐(𝑣)
13 if R𝑟𝑐(𝑣) > 0 and W𝑟𝑐(𝑣) = 0 then insert 𝑣 into Unsat
14 if R𝑟𝑐(𝑣) = 0 then remove 𝑣 from Unsat
15 foreach write 𝑒𝑤 of 𝐸𝑝 that is after the first read of 𝐸𝑝 do

// Remove writes of 𝑝
16 𝑣 ← 𝑒𝑤.value
17 decrement W𝑟𝑐(𝑣)
18 if R𝑟𝑐(𝑣) > 0 and W𝑟𝑐(𝑣) = 0 then insert 𝑣 into Unsat
19 𝑟𝑐(𝑝) ← []
20 𝑖 ← 𝑖 − 1
21 if 𝑖 < 1 then break // Overflowed the most-significant digit

// Increment the digit of 𝑝: include its next read
22 let 𝑒𝑟 be the next read of 𝑝 in 𝐸𝑝
23 𝑣 ← 𝑒𝑟.value
24 append 𝑣 to 𝑟𝑐(𝑝)
25 increment R𝑟𝑐(𝑣)
26 if W𝑟𝑐(𝑣) = 0 then insert 𝑣 into Unsat
27 foreach write 𝑒𝑤 of 𝐸𝑝 occurring after 𝑒𝑟 and before the next read of 𝑝 (or end of 𝐸𝑝) do

// Expand 𝐸𝑟𝑐 along 𝑝: include writes up to (but not including) the next
read of 𝑝

28 𝑤 ← 𝑒𝑤.value
29 increment W𝑟𝑐(𝑤)
30 if 𝑤 ∈ Unsat and W𝑟𝑐(𝑤) > 0 then remove 𝑤 from Unsat
31 if Unsat = ∅ then yield 𝑟𝑐

52

Once defined, ENUMERATEREADCUTSWiTHPRUNiNG replaces the naive cross-product enumeration in
the exploration algorithm. Concretely, wherever the baseline algorithm iterates

for all read-cuts 𝑟𝑐 of an execution 𝐸

we instead iterate

for all read-cuts 𝑟𝑐 ∈ ENUMERATEREADCUTSWiTHPRUNiNG(𝐸)

This refinement preserves completeness while avoiding the explosion of trivially infeasible read-cuts.
By pruning early, the exploration algorithm focuses its effort only on potentially feasible cases, sub-
stantially reducing the number of candidate read-cuts that must later be checked by the more costly
consistency algorithms.

A crucial consequence is that trivially infeasible read-cuts are never inserted into EXPLORED or TOBE-
EXPLORED. This yields a substantial reduction in memory consumption, as these sets would otherwise
accumulate many read-cuts that cannot correspond to any sequentially consistent execution.

In principle, one might attempt to avoid storing all infeasible read-cuts. However, doing so would
force the algorithm to re-examine the same infeasible read-cuts across different executions, incurring
significant overhead due to repeatedly invoking CONSTRUCTWiTNESS on read-cuts that have already
been determined to be infeasible. In contrast, our enumeration algorithm discards trivially infeasible
read-cuts immediately: their infeasibility is detected in constant time during enumeration, and because
every candidate is traversed regardless, there is no advantage in storing them.

53

5 The Algorithm CONSTRUCTWiTNESS

We now describe CONSTRUCTWiTNESS, the algorithm that, given a sequence of operations 𝐸, attempts
to build a reordering 𝐸 that is a prefix of some sequentially consistent (SC) execution - or prove that
none exists. Our presentation is modular. First, we give a complete algorithm (Section 5.1) that
reduces the problem to a constraint-solving problem solved by an SMT solver; this serves as the
complete fallback. Then we introduce two polynomial-time heuristics that dramatically reduce solver
usage in practice: HEURiSTiC-URF (Section 5.2), which infers a mandatory subset of the happens-
before relation and quickly rejects many infeasible cases, and HEURiSTiC-INCR (Section 5.3), which
incrementally assembles SC execution prefixes by reusing relations from the most recent execution while
accommodating a newly added read. The final algorithm (Section 5.4) combines these components:
It first runs Heuristic-URF. If it proves the candidate is INCONSiSTENT, it stops. Otherwise it invokes
HEURiSTiC-INCR to try to construct a witness. Only if HEURiSTiC-INCR returns UNKNOWN does it
fall back to CONSTRUCTWiTNESSCOMPLETE.

5.1 CONSTRUCTWiTNESSCOMPLETE: A Complete Algorithm based on Constraint-
Solving

We define an algorithm for checking whether there exists a reordering 𝐸 of a given sequence of
operations 𝐸 such that 𝐸 is a prefix of some sequentially consistent (SC) execution.

The problem is expressed as a constraint satisfaction problem in quantifier-free integer difference logic
(QF-IDL)6. Unlike standard integer programming, our encoding requires disjunctions (logical OR),
which are not directly supported by vanilla integer programming but are handled by SMT solvers
such as Z3.

Theorem 5.1 (Necessary and Sufficient Conditions for CONSTRUCTWiTNESSCOMPLETE). A sequence
of operations 𝐸 is a prefix of an SC execution if and only if program order is respected and, for every
read operation 𝑒𝑟 ∈ 𝐸, the following conditions hold:

1. There exists a write 𝑒𝑤 to 𝑒𝑟.address with value 𝑒𝑟.value such that 𝑒𝑤 occurs before 𝑒𝑟 in 𝐸.

2. Every other write 𝑒⋆
𝑤 ≠ 𝑒𝑤 to 𝑒𝑟.address occurs either strictly before 𝑒𝑤 or strictly after 𝑒𝑟.

Note that even other writes to the same memory object with the same value are disallowed between 𝑒𝑤
and 𝑒𝑟.

Proof. (⇒) If 𝐸 is a prefix of an SC execution, then (i) program order is preserved by definition of SC,
and (ii) every read 𝑒𝑟 reads the value of the latest preceding write to 𝑒𝑟.address; hence Conditions
(1)-(2) hold.

(⇐) Assume program order is preserved and Conditions (1)-(2) hold for every read 𝑒𝑟 ∈ 𝐸. 𝑒1
𝐸−→ 𝑒2

denotes that 𝑒1 occurs before 𝑒2 in the sequence 𝐸.

Define the relations.
6Quantifier-Free Integer Difference Logic (QF-IDL) consists of atomic constraints of the form 𝑥 − 𝑦 ≤ 𝑐, 𝑥,𝑦 are integer

variables and 𝑐 is an integer constant, combined using the standard Boolean connectives. The satisfiability problem for
QF-IDL is decidable; for instance, it can be solved within the DPLL(T) framework [23].

54

Program order po. For each thread 𝑝, define 𝑒1
po
−→ 𝑒2 iff 𝑒1, 𝑒2 belong to 𝑝 and 𝑒1

𝐸−→ 𝑒2. By

assumption, program order is respected in 𝐸, so po ⊆ 𝐸−→.

Reads-from rf. For each read 𝑒𝑟, Conditions (1)–(2) ensure that there exists a write 𝑒𝑤 to 𝑒𝑟.address
with value 𝑒𝑟.value such that 𝑒𝑤 occurs before 𝑒𝑟, and moreover that 𝑒𝑤 is the latest such write.

Define 𝑒𝑤
rf−→ 𝑒𝑟. Since 𝑒𝑤

𝐸−→ 𝑒𝑟, it follows that rf ⊆ 𝐸−→.

Coherence co. For each memory object address, define 𝑒𝑤1
co−→ 𝑒𝑤2 for writes to address iff 𝑒𝑤1

𝐸−→
𝑒𝑤2. Thus, co is acyclic, total per address, and co ⊆ 𝐸−→ by construction.

Handling rb. Let rb ∶= rf−1; co. We show rb ⊆ 𝐸−→. Pick any edge 𝑒𝑟
rb−→ 𝑒′

𝑤. Then there exists a
write 𝑒𝑤 such that 𝑒𝑤

rf−→ 𝑒𝑟 and 𝑒𝑤
co−→ 𝑒′

𝑤. From 𝑒𝑤
co−→ 𝑒′

𝑤 and the current construction of co, we

have 𝑒𝑤
𝐸−→ 𝑒′

𝑤.

Apply Condition (2) of the theorem to the read 𝑒𝑟: every write 𝑒⋆ ≠ 𝑒𝑤 to 𝑒𝑟.address occurs either
strictly before 𝑒𝑤 or strictly after 𝑒𝑟 in 𝐸. Instantiate 𝑒⋆ ∶= 𝑒′

𝑤. Since 𝑒𝑤
𝐸−→ 𝑒′

𝑤, 𝑒′
𝑤 cannot be strictly

before 𝑒𝑤; therefore 𝑒𝑟
𝐸−→ 𝑒′

𝑤, and thus rb ⊆ 𝐸−→.

Acyclicity and conclusion. We have shown po, rf, co, rb ⊆ 𝐸−→, so hb ∶= po ∪ rf ∪ co ∪ rb ⊆ 𝐸−→. Since
𝐸−→ is acyclic, so is hb. Moreover, 𝐸 is a topological sort of 𝐸−→, and therefore also of hb.

By the SC Acyclicity Theorem (Theorem 2.1), it follows that 𝐸 is a prefix of some SC execution.

We introduce an integer variable 𝑉𝑒 for each operation 𝑒, representing its position in the reordered
sequence 𝐸.

The constraints are expressed in QF-IDL as follows.

Range and Distinctness. To ensure that each 𝑉𝑒 corresponds to a valid position in 𝐸 and thus
that 𝐸 defines a valid total order, the 𝑉𝑒 must lie within the bounds of the execution and be pairwise
distinct:

Valid ∶= ∀𝑒 ∈ 𝐸 ∶ 0 ≤ 𝑉𝑒 < |𝐸| ∧ all 𝑉𝑒 are distinct

Program Order Preservation. For each thread 𝑝, the reordering must respect the relative order
of its operations in 𝐸:

PO ∶= ⋀
𝑝∈Threads(𝐸)

⋀
(𝑒𝑖,𝑒𝑗) consecutive in 𝐸𝑝

𝑉𝑒𝑖
< 𝑉𝑒𝑗

(1)

Reads-from Condition. For each read 𝑒𝑟, there must exist some write 𝑒𝑤 to the same address with
value 𝑒𝑟.value such that:

1. 𝑒𝑤 occurs before 𝑒𝑟, and

2. every other write 𝑒′
𝑤 ≠ 𝑒𝑤 to the same address occurs either strictly before 𝑒𝑤 or strictly after 𝑒𝑟.

Let:
𝒲(address, 𝑣) = {𝑒𝑤 ∈ 𝐸 ∣ 𝑒𝑤 is a write, 𝑒𝑤.address = address, 𝑒𝑤.value = 𝑣},

55

𝒲(address) = {𝑒𝑤 ∈ 𝐸 ∣ 𝑒𝑤 is a write, 𝑒𝑤.address = address}.

The constraint for 𝑒𝑟 is:

R(𝑒𝑟) ∶= (𝒲(𝑒𝑟.address, 𝑒𝑟.value) ≠ ∅) ∧
⋁

𝑒𝑤∈𝒲(𝑒𝑟.address,𝑒𝑟.value)
(𝑉𝑒𝑤

< 𝑉𝑒𝑟
∧ ⋀

𝑒′
𝑤∈𝒲(𝑒𝑟.address)

𝑒′
𝑤≠𝑒𝑤

(𝑉𝑒′𝑤
< 𝑉𝑒𝑤

∨ 𝑉𝑒𝑟
< 𝑉𝑒′𝑤

)). (2)

Final Constraint. The overall formula is:

P ∶= Valid ∧ PO ∧ ⋀
𝑒𝑟∈𝐸

𝑒𝑟 is a read

R(𝑒𝑟). (3)

The formula P is in QF-IDL, using only atomic constraints of the form 𝑥 < 𝑦. Since QF-IDL is
decidable [23], satisfiability can be checked effectively with an SMT solver such as Z3.

Finally, the pseudocode of CONSTRUCTWiTNESSCOMPLETE is given in Algorithm 3.

Algorithm 3: CONSTRUCTWiTNESSCOMPLETE(𝐸)
1 Construct formula P
2 Invoke an SMT solver on P
3 if UNSATiSFiABLE then return NONE
4 else
5 Extract model and order operations of 𝐸 by 𝑉𝑒 to obtain 𝐸
6 return 𝐸

5.2 HEURiSTiC-URF: Fast Elimination of Inconsistent Executions

The majority of invocations of CONSTRUCTWiTNESS are expected to fail, i.e. most candidate read-
cuts are infeasible and do not correspond to any prefix of a sequentially consistent execution. To
avoid the overhead of repeatedly invoking an SMT solver, we introduce a polynomial-time heuristic
that eliminates a large fraction of these infeasible cases. The heuristic returns either INCONSiSTENT,
indicating that no valid execution exists, or UNKNOWN.

The heuristic is motivated by [5], which, though, operates under the assumption that the entire reads-
from relation is known. In our setting, however, the reads-from relation is not specified.

We introduce a weaker relation than rf, termed Unique Reads-From (urf), which is a subrelation
of rf.

Given a sequence of operations 𝐸, the HEURiSTiC-URF algorithm incrementally constructs a partial
happens-before relation hb. At each step of the algorithm, hb contains only those edges that must
necessarily hold in any sequentially consistent execution prefix that is a reordering of 𝐸. This partial
relation is then used to infer mandatory reads-from edges, which we term as Unique Reads-From (urf).

Definition 5.1 (Unique Reads-From (URF)). Let 𝐸 be a sequence of operations, and let hb denote
the current partial happens-before relation maintained by the algorithm. A read operation 𝑒𝑟 ∈ 𝐸 is

56

said to uniquely read-from the write operation 𝑒𝑤 ∈ 𝐸, denoted 𝑒𝑤
urf−−→ 𝑒𝑟, if and only if:

1. 𝑒𝑤.address = 𝑒𝑟.address and 𝑒𝑤.value = 𝑒𝑟.value, and

2. There does not exist any write 𝑒′
𝑤 ≠ 𝑒𝑤 such that 𝑒′

𝑤 ∈ 𝒲(𝑒𝑟.address, 𝑒𝑟.value) and 𝑒′
𝑤 �

�hb−→ 𝑒𝑟.

If 𝑒𝑤
urf−−→ 𝑒𝑟, then 𝑒𝑤

rf−→ 𝑒𝑟 in every sequentially consistent execution prefix that is a reordering of 𝐸.

On the basis of this definition, the HEURiSTiC-URF algorithm proceeds by iteratively extending the
partial happens-before relation hb until a fixpoint is reached. At each iteration, urf edges are inferred
and, along with their consequences, are added to hb. If this process yields a cycle, the candidate
execution is declared INCONSiSTENT. Otherwise, the algorithm continues until a fixpoint is reached.

Instead of performing explicit cycle detection, each time we add an edge 𝑒1
hb−→ 𝑒2, we first check

whether 𝑒2
hb−→ 𝑒1 already holds. If it does, we return INCONSiSTENT.

The algorithm is defined as follows:

1. Initialise hb with program-order po.

2. Iterate to a fixpoint:

(a) urf inference. For each read 𝑒𝑟 ∈ 𝐸 with exactly one candidate write 𝑒𝑤 ∈ 𝒲(𝑒𝑟.address, 𝑒𝑟.value)
such that 𝑒𝑟 �

�hb−→ 𝑒𝑤, add the edge 𝑒𝑤
urf−−→ 𝑒𝑟. If no such 𝑒𝑤 exists, return INCONSiSTENT.

(b) co inference. For each edge 𝑒𝑤
𝑢𝑟𝑓
−−→ 𝑒𝑟 and for all 𝑒′

𝑤 ∈ 𝒲(𝑒𝑤.address) with 𝑒′
𝑤

hb−→ 𝑒𝑟, add
𝑒′

𝑤
co−→ 𝑒𝑤 (recorded as 𝑒′

𝑤
hb−→ 𝑒𝑤). This must hold because if, by contradiction, 𝑒𝑤

co−→ 𝑒′
𝑤,

then
𝑒𝑤

co−→ 𝑒′
𝑤

hb−→ 𝑒𝑟,

implying 𝑒𝑟 does not read-from 𝑒𝑤 since 𝑒′
𝑤 overwrites 𝑒𝑤.address – an absurdity.

(c) rb computation. For each edge 𝑒𝑤
urf−−→ 𝑒𝑟 and for all 𝑒′

𝑤 ∈ 𝒲(𝑒𝑤.address) such that
𝑒𝑤

hb−→ 𝑒′
𝑤, add 𝑒𝑟

rb−→ 𝑒′
𝑤. Recall that rb = rf−1; co.

(d) If a cycle is detected in hb, return INCONSiSTENT.

3. On reaching a fixpoint without inconsistency, return (urf, hb).

Rules (2) and (3) coincide with the saturation rules of [5], but here they are reformulated directly in
terms of the relations used by the SC Acyclicity Theorem (Theorem 2.1).

At first glance, it may seem that co inference and rb computation computation need only consider
newly added urf edges in each iteration. However, as the algorithm progresses, hb accumulates more
constraints, and inferences may become possible for older urf edges as well. Hence iterating over urf
at rb computation and co inference is necessary.

The pseudocode of HEURiSTiC-URF is given in Algorithm 4.

57

Algorithm 4: HEURiSTiC-URF(𝐸)
Input: Sequence of operations 𝐸
Output: INCONSiSTENT or (urf, hb)

1 urf ← ∅
2 hb ← ∅
3 foreach thread 𝑝 ∈ Threads(𝐸) do

// Initialise hb with program-order edges.
4 𝐸𝑝 ← [𝑒 ∈ 𝐸 ∣ 𝑒.thread = 𝑝]
5 foreach consecutive (𝑒1, 𝑒2) in 𝐸𝑝 do
6 Add 𝑒1

po
−→ 𝑒2 to hb

7 while true do
8 progress ← false

9 foreach read 𝑒𝑟 ∈ 𝐸 with no incoming urf edge do // --- urf inference ---

10 𝒲 ← { 𝑒𝑤 ∣ 𝑒𝑤 ∈ 𝒲(𝑒𝑟.address, 𝑒𝑟.value) ∧ 𝑒𝑟 �
�hb−→ 𝑒𝑤) }

11 if 𝒲 = ∅ then return INCONSiSTENT
12 if |𝒲| = 1 then
13 progress ← true
14 let 𝒲 = {𝑒𝑤}
15 Add 𝑒𝑤

urf−−→ 𝑒𝑟 to urf and to hb

16 foreach edge (𝑒𝑤, 𝑒𝑟) ∈ urf do // --- co inference ---
17 foreach write 𝑒′

𝑤 ∈ 𝒲(𝑒𝑤.address) with 𝑒′
𝑤

hb−→ 𝑒𝑟 do
18 progress ← true
19 if 𝑒𝑤

hb−→ 𝑒′
𝑤 then return INCONSiSTENT // Cycle Detection

20 Add 𝑒′
𝑤

co−→ 𝑒𝑤 to hb

21 foreach edge (𝑒𝑤, 𝑒𝑟) ∈ urf do // --- rb computation ---
22 foreach 𝑒′

𝑤 ∈ 𝒲(𝑒𝑤.address) with 𝑒𝑤
hb−→ 𝑒′

𝑤 do
23 progress ← true
24 if 𝑒′

𝑤
hb−→ 𝑒𝑟 then return INCONSiSTENT // Cycle Detection

25 Add 𝑒𝑟
rb−→ 𝑒′

𝑤 to hb

26 if not progress then break
27 return (urf, hb)

Because the algorithm makes many connectivity queries on hb, we maintain hb as its transitive closure.
This allows reachability checks in 𝑂(1) by simple edge lookup. To preserve transitivity, whenever
adding an edge (𝑎, 𝑏), the following updates are also made:

• For all 𝑥, 𝑦 with (𝑥, 𝑎), (𝑏, 𝑦) ∈ hb, add (𝑥, 𝑦).

• For all 𝑥 with (𝑥, 𝑎) ∈ hb, add (𝑥, 𝑏).

• For all 𝑦 with (𝑏, 𝑦) ∈ hb, add (𝑎, 𝑦).

58

The heuristic is sound: every sequence of operations reported as INCONSiSTENT is indeed infeasible un-
der Sequential Consistency. Because the problem of deciding execution consistency under Sequential
Consistency is NP-complete, no polynomial-time algorithm can be complete (unless P = NP). Accord-
ingly, the heuristic must sacrifice completeness: some cases remain unresolved and are delegated to
the complete, but more costly, algorithm based on constraint-solving.

In practice, however, the heuristic rapidly eliminates nearly all inconsistent candidate executions,
leaving only a small fraction to be resolved by CONSTRUCTWiTNESSCOMPLETE.

5.3 HEURiSTiC-INCR: Incremental Construction of Sequentially Consistent Ex-
ecutions

HEURiSTiC-URF substantially reduces the computational burden of rejecting infeasible read-cuts.
However, whenever a read-cut is feasible and an actual sequentially consistent (SC) execution pre-
fix must be constructed, CONSTRUCTWiTNESSCOMPLETE is required, which significantly impacts the
overall performance of the SMC algorithm.

To mitigate this cost, we introduce HEURiSTiC-INCR, a polynomial-time heuristic that attempts to
incrementally construct sequentially consistent execution prefixes by reusing information from previ-
ously run sequentially consistent executions.

Before HEURiSTiC-INCR is invoked, the following are already available:

• A partial reads-from relation rf (specifically, the urf subset) and a partial happens-before rela-
tion hb, both guaranteed to be subsets of the corresponding relations of any SC execution prefix
that is a reordering of 𝐸.

• The most recent complete SC execution 𝐸pre, from which the current sequence 𝐸 is obtained as
a subsequence of 𝐸pre extended by one new read operation.

Two elements are missing in order to obtain an SC execution prefix for 𝐸:

1. A complete reads-from relation.

2. A complete coherence order (total order on writes to the same memory object).

The heuristic attempts to complete the rf and co relations by reusing rfpre and copre. Since 𝐸 is
obtained by minimally modifying 𝐸pre, these relations are expected to remain valid for most operations.
If successful, the resulting hb = po∪rf∪co∪rb will be acyclic, and a sequentially consistent execution
prefix 𝐸 can be obtained by a topological sort of hb. If at any point a cycle is introduced to hb, the
heuristic cannot conclude infeasibility, and defers the decision to the complete algorithm based on
constraint solving.

Unlike CONSTRUCTWiTNESSCOMPLETE and HEURiSTiC-URF, which only take the sequence 𝐸 as in-
put, HEURiSTiC-INCR additionally receives the new read operation 𝑒new𝑟 introduced by the exploration
algorithm. 𝑒new𝑟 is the only operation not present in 𝐸pre, and thus the only one for which we have no
information beyond the partial relations inferred by HEURiSTiC-URF. The heuristic tries all candidate
writes as a read-from write for 𝑒new𝑟 .

The heuristic requires access to the relations rfpre and copre of 𝐸pre. The input 𝐸 is a subsequence of
𝐸pre with the additional read 𝑒new𝑟 . Therefore, the restrictions of rfpre and copre to the operations of

59

𝐸 coincide with the relations obtained by computing rf and co directly from 𝐸 and then discarding
any edges involving 𝑒new𝑟 .

Choosing a Candidate Source Write. For each write 𝑒new𝑤 ∈ 𝒲(𝑒new𝑟 .address, 𝑒new𝑟 .value) (de-
fined with respect to 𝐸) such that 𝑒𝑟 �

�hb−→ 𝑒new𝑤 , attempt the following construction. The first successful
attempt yields an SC prefix. If none succeeds, return UNKNOWN.

Completing the rf Relation.

• Initialize rf ∶= urf, add 𝑒new𝑤
rf−→ 𝑒new𝑟 to rf and to hb.

• For each read 𝑒𝑟 ∈ 𝐸 without a source write in rf:

1. First try the source 𝑒𝑤 such that 𝑒𝑤
rfpre
−−→ 𝑒𝑟. If 𝑒𝑤 ∈ 𝐸 7 and 𝑒𝑟 �

�hb−→ 𝑒𝑤, add 𝑒𝑤
rf−→ 𝑒𝑟 to rf

and hb.

2. Otherwise, search for an alternative write operation as follows. Starting from the position
of 𝑒𝑟 in the sequence 𝐸, scan backwards towards the beginning of 𝐸. At each step, if
the encountered operation 𝑒𝑤 is a write such that 𝑒𝑤.address = 𝑒𝑟.address, 𝑒𝑤.value =
𝑒𝑟.value, and 𝑒𝑟 �

�hb−→ 𝑒𝑤, select this 𝑒𝑤 as the source write of 𝑒𝑟 by adding the edge 𝑒𝑤
rf−→ 𝑒𝑟

to rf and to hb.

If no such write is found in the backward scan, repeat the procedure by scanning forwards
from the position of 𝑒𝑟 towards the end of 𝐸. If no suitable write is found in either direction,
return UNKNOWN.

The rationale for this search order is twofold. First, the backward scan prioritises writes
already ordered before 𝑒𝑟 in the given sequence, which are more likely to respect existing
constraints. Second, examining operations close to 𝑒𝑟 increases the chance of success, as
nearby candidates typically introduce fewer additional happens-before dependencies.

3. Apply co inference and rb computation (as in HEURiSTiC-URF).

This step ensures rf is complete, as required by the SC Acyclicity Theorem (Theorem 2.1).

Completing the co relation. At this stage, some pairs of writes to the same memory object may
remain unordered in hb. To complete the coherence order, we reuse information from the previously
known execution 𝐸pre.

For each memory object address ∈ 𝑑𝑜𝑚(𝒲), consider all pairs of distinct writes 𝑒𝑤1, 𝑒𝑤2 ∈ 𝒲(address).
If neither 𝑒𝑤1

hb−→ 𝑒𝑤2 nor 𝑒𝑤2
hb−→ 𝑒𝑤1 holds, then inherit their order from hbpre:

• If 𝑒𝑤1
hbpre
−−→ 𝑒𝑤2, add the edge 𝑒𝑤1

co−→ 𝑒𝑤2 to hb.

• If 𝑒𝑤2
hbpre
−−→ 𝑒𝑤1, add the edge 𝑒𝑤2

co−→ 𝑒𝑤1 to hb.

Recall that the co relation is not maintained explicitly; instead, its edges are incorporated directly
into hb.

7Because we compute rfpre from 𝐸, for this case, we will just not find a source write for read 𝑒𝑟 in the computed rfpre.

60

rb computation. Finally, add all edges rb = rf−1; co to hb. If this introduces a cycle, return
UNKNOWN.

Topological Sort. At this stage, we have a complete reads-from relation rf and a total coherence
order co for all writes, together with program order po and the derived relation rb. We also have that
the derived relation hb from these relations is acyclic. These relations satisfy the requirements of the
SC Acyclicity Theorem (Theorem 2.1).

Accordingly, perform a topological sort of hb. The resulting sequence 𝐸 is, by the SC Acyclicity
Theorem (Theorem 2.1), a sequentially consistent execution prefix. Return 𝐸.

The pseudocode of HEURiSTiC-INCR is given in Algorithm 5.

61

Algorithm 5: HEURiSTiC-INCR(𝐸, 𝑒new𝑟 , (urf, hb0))
Input: Sequence of operations 𝐸, new read 𝑒new𝑟 , (urf, hb0) from HEURiSTiC-URF
Output: UNKNOWN or SC execution prefix 𝐸

1 Group writes of 𝐸 by (address, value) into the sets 𝒲(address, value).
2 rfpre, copre ← compute rf, co from 𝐸, omitting all edges involving 𝑒new𝑟
// These equal the restrictions of the relations of 𝐸pre to the operations in 𝐸.

3 foreach write 𝑒new𝑤 ∈ 𝒲(𝑒new𝑟 .address, 𝑒new𝑟 .value) such that 𝑒new𝑟 �
��hb0−−→ 𝑒new𝑤 do

// --- choosing a candidate source write for the new read 𝑒new𝑟 ---
4 hb ← hb0; rf ← urf

5 Add 𝑒new𝑤
rf−→ 𝑒new𝑟 to rf and to hb

6 foreach read 𝑒𝑟 ∈ 𝐸 do // --- completing the rf relation ---
7 if ∄ 𝑒𝑤 with 𝑒𝑤

rf−→ 𝑒𝑟 then

8 𝑒𝑤 ← the write such that 𝑒𝑤
rfpre
−−→ 𝑒𝑟

9 if 𝑒𝑤 ≠ NONE (this can occur if 𝑒𝑤 ∈ 𝐸pre but 𝑒𝑤 ∉ 𝐸) and 𝑒𝑟 �
�hb−→ 𝑒𝑤 then

10 Add 𝑒𝑤
rf−→ 𝑒𝑟 to rf and to hb

11 else // --- search for a suitable alternative source write for 𝑒𝑟 ---
12 𝑒𝑤 ← first write found when scanning backwards in 𝐸 from 𝑒𝑟 toward the start that

satisfies: 𝑒𝑤.address = 𝑒𝑟.address ∧ 𝑒𝑤.value = 𝑒𝑟.value ∧ 𝑒𝑟 �
�hb−→ 𝑒𝑤 (NONE if

none exists)
13 if 𝑒𝑤 is NONE then
14 𝑒𝑤 ← first write found when scanning forwards in 𝐸 from 𝑒𝑟 toward the end

that satisfies: 𝑒𝑤.address = 𝑒𝑟.address ∧ 𝑒𝑤.value = 𝑒𝑟.value ∧ 𝑒𝑟 �
�hb−→ 𝑒𝑤

(NONE if none exists)
15 if 𝑒𝑤 is NONE then return UNKNOWN

16 Add 𝑒𝑤
rf−→ 𝑒𝑟 to rf and to hb

17 repeat
18 Apply co inference and rb computation (as in HEURiSTiC-URF). If adding

an edge would introduce a cycle, return UNKNOWN instead of INCONSiSTENT.
19 until fixpoint of hb reached

20 foreach address ∈ 𝑑𝑜𝑚(𝒲) do // --- completing the co relation ---
21 foreach distinct 𝑒𝑤1, 𝑒𝑤2 ∈ 𝒲(address) do
22 if 𝑒𝑤1 �

�hb−→ 𝑒𝑤2 and 𝑒𝑤2 �
�hb−→ 𝑒𝑤1 then

23 if 𝑒𝑤1
hbpre
−−→ 𝑒𝑤2 then add 𝑒𝑤1

co−→ 𝑒𝑤2 to hb

24 if 𝑒𝑤2
hbpre
−−→ 𝑒𝑤1 then add 𝑒𝑤2

co−→ 𝑒𝑤1 to hb

25 Add edges rb ← rf−1; co to hb. If adding some edge 𝑒1
hb−→ 𝑒2 would create a cycle

(equivalently if 𝑒2
hb−→ 𝑒1 already exists) return UNKNOWN // --- rb computation ---

26 𝐸 ← TOPOLOGiCALSORT(hb)
27 return 𝐸
28 return UNKNOWN

62

Whenever adding an edge would result in a cycle, the heuristic conservatively returns UNKNOWN, even
though an alternative choice of rf or co might have yielded consistency. This is unavoidable: deciding
execution feasibility under SC is NP-complete, and achieving completeness in polynomial time would
imply P = NP.

In practice, HEURiSTiC-INCR successfully constructs SC prefixes for the vast majority of feasible
candidate read-cuts, thereby substantially reducing the number of invocations of CONSTRUCTWiT-
NESSCOMPLETE.

5.4 Final CONSTRUCTWiTNESS Algorithm

By combining the heuristics with the complete algorithm, the final CONSTRUCTWiTNESS algorithm is
obtained. Its pseudocode is given in Algorithm 6.

Algorithm 6: CONSTRUCTWiTNESS(𝐸, 𝑒new𝑟)
Input: Sequence of operations 𝐸, new read operation 𝑒new𝑟
Output: Sequentially consistent execution prefix 𝐸 such that 𝐸 is a reordering of 𝐸, or

INCONSiSTENT
1 𝑈 ← HEURiSTiC-URF(𝐸)
2 if 𝑈 = INCONSiSTENT then return INCONSiSTENT
3 else (urf, hb) ← 𝑈
4 𝐸 ← HEURiSTiC-INCR(𝐸, 𝑒new𝑟 , (urf, hb))
5 if 𝐸 ≠ UNKNOWN then return 𝐸
6 return CONSTRUCTWiTNESSCOMPLETE(𝐸)

63

6 Why Naively Adapting the Reads-From Exploration Fails

At first glance, sound and optimal stateless model checking (SMC) under view equivalence may ap-
pear straightforward. For example, one natural idea is to adapt techniques developed for reads-from
equivalence. In particular, algorithms such as Optimal SMC for Reads-From Equivalence [5] explore
new executions by changing the source write of a single read operation while holding the rest of the
reads-from relation fixed. This strategy succeeds under reads-from equivalence because the reads-from
relation uniquely characterizes each equivalence class.

A straightforward extension to view equivalence would attempt to explore new view equivalence classes
by altering the values read by one read at a time, while keeping the others unchanged, achieved by
fixing the reads-from relation for all but that read.

However, this seemingly minor restriction introduces a critical flaw. By preserving the reads-from
edges of all other reads, the algorithm also preserves the induced happens-before relation. Since
happens-before constraints determine which writes are visible to a read, the algorithm may fail to
realize executions where a new combination of values is achievable only if multiple reads simultaneously
change their source writes. In such cases, no single read-from mutation suffices.

Example 6.1. Consider the following program with three threads and two shared variables x and y:

𝑝 𝑞 𝑟
x := 2 y := 3; a := x;

y := 4; b := y
x := 2

Suppose we explore an execution where 𝑟1 reads from 𝑞3. Program order then enforces the following
happens-before chain:

𝑞1
po
−→ 𝑞2

po
−→ 𝑞3

rf−→ 𝑟1
po
−→ 𝑟2

As a result, 𝑟2 happens-after 𝑞2, which itself happens-after 𝑞1. Therefore, if 𝑟1 reads from 𝑞3, then
𝑟2 cannot read from 𝑞1. Thus, if the algorithm attempts to force 𝑟2 to read 3 while keeping 𝑟1 fixed
to reading from 𝑞3, it finds no valid execution and incorrectly concludes that 3 is an impossible value
for 𝑟2.

Yet such an execution does exist. Consider:

𝑝1𝑞1𝑟1𝑟2𝑞2𝑞3

Here, 𝑟1 reads from 𝑝1, scheduled before 𝑞3. The happens-before relation no longer prevents 𝑞2 from
reading from 𝑞1. These constraints are illustrated in Fig. 4.

64

𝑝1

𝑞1 𝑞2 𝑞3

𝑟1 𝑟2

rfrf

writes by 𝑝

writes by 𝑞

reads by 𝑟

Figure 4: Two competing tentative reads-from edges (dashed). If 𝑟1 happens-after 𝑞3, the hb chain
blocks the red edge; moving 𝑝1 earlier unlocks it and lets 𝑞2 read 3.

This example illustrates the core limitation of this strategy: by mutating the reads-from write of only
a single read while keeping all others fixed, causality constraints are introduced that can mask feasible
executions. As a result, this strategy is unsound under view equivalence, since it may miss valid view
equivalence classes.

One might attempt to address this limitation by dynamically rescheduling or injecting additional
operations to “unblock” hidden writes; for example, by scheduling 𝑝1 just before 𝑟1 so that 𝑟1 reads
from 𝑝1 instead of 𝑞3. This adjustment would remove the happens-before constraint that previously
blocked 𝑟2 from reading from 𝑞1.

While this may succeed in simple examples, it does not resolve the fundamental issue. The entire
exploration strategy is predicated on keeping the remaining reads-from edges fixed. This fixed context
may encode deep causal dependencies that cannot be broken by local rescheduling.

For example, writes cannot always be arbitrarily rescheduled due to control-flow constraints, condi-
tional execution, and data dependencies. For instance, the write 𝑝1 might be able to move only if
an earlier read of 𝑝 on an unrelated variable z reads-from a particular write. Moving 𝑝1 would then
require altering the source of this read, which in turn may cascade to other parts of the execution.
Thus, what begins as an attempt to change the value of a single read, can force consideration of un-
related reads and writes – potentially to entirely different variables – just to reach a viable execution.
This highlights the inherent difficulty of constructing sequentially consistent executions under view
equivalence: even a local change in one read’s value may necessitate a global reconfiguration of the
execution’s causal structure.

This discussion highlights a fundamental distinction between reads-from and view equivalence. Under
reads-from equivalence, exploration can proceed incrementally by mutating the source of a single read
while keeping all others fixed. Under view equivalence, by contrast, sound and complete exploration
may require mutating sources of multiple reads simultaneously. Consequently, any viable exploration
algorithm must be able to dynamically adjust causality across the entire execution.

65

7 Implementation

7.1 Forks and Joins

Practical runtimes such as pthread permit dynamic thread creation and joining. We extend our model
to handle fork and join operations as follows.

Let 𝑒fork denote a spawn operation run by the parent thread, 𝑝new the new thread, 𝑒newfirst the first
operation of the new thread, 𝑒newlast its last operation, and 𝑒join a join operation. We add the constraints:

𝑒fork
po
−→ 𝑒newfirst and 𝑒newlast

po
−→ 𝑒join

These constraints are injected into po wherever it is constructed:

• in HEURiSTiC-URF and HEURiSTiC-INCR, when initialising hb, and

• in CONSTRUCTWiTNESSCOMPLETE, as inequalities 𝑉𝑒fork < 𝑉𝑒newfirst
and 𝑉𝑒newlast

< 𝑉𝑒join .

Equivalent encoding. For theoretical purposes, it is useful to observe that fork and join can be
expressed entirely in terms of ordinary memory operations. In this encoding:

• 𝑒fork is modelled as a write to a fresh location with a fresh value. A virtual read, prepended to
𝐸𝑝new , reads the fresh location. This virtual read is, thus, constrained to always rf from 𝑒fork.

• A virtual write, appended to 𝐸𝑝new , writes to a second fresh location with a fresh value. 𝑒join is
modelled as a read that reads the fresh location. 𝑒join is, thus, constrained to always rf from
this virtual write.

This encoding enforces exactly the same causal constraints as the explicit
po
−→ edges:

• The child thread cannot perform any operations before the parent’s fork, since the virtual read
in 𝑝new depends on the fork’s virtual write.

• A join cannot occur until the corresponding thread has terminated, since the join, as a virtual
read, depends on the final virtual write in 𝑝new.

Thus, programs with dynamic thread creation and joining can be reduced to programs containing only
ordinary reads and writes. This equivalence implies that our SC model requires no additional axioms,
and all theorems proved for the base model extend unchanged to the setting with fork and join.

7.2 URF and INCR: Graph Representations

Both HEURiSTiC-URF and HEURiSTiC-INCR maintain explicit representations of the rf and hb rela-
tions.

Reads-from. The rf relation is represented as a dense array indexed by execution position:

rf[𝑖] =
⎧{
⎨{⎩

𝑗 if operation 𝑖 is a read and reads from operation 𝑗,
−1 if operation 𝑖 is a write or a read that is currently unmatched

This representation ensures constant-time lookup and efficient updates.

66

Happens-before. The hb relation is heavily queried for reachability, so we store it as its transitive
closure. We experimentally evaluated edge lists, adjacency lists, and adjacency matrices. Because
the transitive closure tends to be dense in practice, the adjacency-matrix representation is the most
efficient.

Let 𝑛 = |𝐸|. We store hb as an 𝑛 × 𝑛 bit matrix, laid out in row-major order in machine-word blocks.
Adding an edge (𝑢, 𝑣) updates the closure using bitwise operations:

Let 𝑃 be the set of predecessors of 𝑢 (rows 𝑥 such that 𝑥 → 𝑢) and 𝑆 the set of successors
of 𝑣 (columns 𝑦 such that 𝑣 → 𝑦). Then for each 𝑥 ∈ 𝑃 ∪ {𝑢} and 𝑦 ∈ 𝑆 ∪ {𝑣}, set 𝑥 → 𝑦.

In code, this amounts to:

row[𝑥] |= row[𝑥] ∨ row[𝑣]; col[𝑦] |= col[𝑦] ∨ col[𝑢]

implemented as word-wise OR operations which can be performed over contiguous memory if both the
adjacency matrix and its transpose are maintained. These operations vectorise efficiently and exhibit
good cache locality.

7.3 NiDHUGG Integration

NiDHUGG structures SMC algorithms around a stateful TRACEBUiLDER object that is driven by the
scheduler. This design is inverted relative to the classical presentation where the SMC algorithm
invokes the scheduler. In NiDHUGG, the scheduler is the main loop, while TRACEBUiLDER supplies
scheduling decisions and records memory operations.

During execution, the scheduler repeatedly invokes:

• TRACEBUiLDER.SCHEDULE() to obtain the next thread to execute,

• TRACEBUiLDER.LOAD() and TRACEBUiLDER.ATOMiC_STORE() to record memory reads and
writes,

• TRACEBUiLDER.SPAWN() and TRACEBUiLDER.jOiN() to record thread creation and joining.

At the end of each execution, the scheduler calls TRACEBUiLDER.RESET(), and subsequently queries
TRACEBUiLDER.SHOULD_CONTiNUE() to determine whether a new execution should be initiated.

To recover the familiar control flow where the SMC algorithm drives the scheduler without modifying
NiDHUGG, we implement the algorithm as a coroutine using Boost::Context:

• The algorithm yields whenever it wishes to invoke the scheduler, passing the execution prefix
through a shared field in TRACEBUiLDER.

• The scheduler consumes this prefix, executes it to completion, stores the resulting execution in
TRACEBUiLDER, and resumes the coroutine.

The coroutine maintains its own stack. Switching between the scheduler and the coroutine is imple-
mented as a stack switch. This preserves fidelity to the algorithmic specification while integrating
cleanly with NiDHUGG’s architecture.

67

7.4 Flyweight Pattern

Executions are sequences of operations. In practice, all executions are composed from a comparatively
small set of distinct operations, combined in different orders. Because the EXECUTiONS container
must hold many executions simultaneously, storing complete copies of these operation records for each
execution would be prohibitively expensive. To eliminate this redundancy, we apply the Flyweight
pattern: each distinct operation is stored once, and executions reference it via pointers to immutable
operation instances (flyweights).

A Flyweight Store maintains a map from operation hashes to operation buffers. When a client requests
an operation, it constructs a temporary buffer (e.g. on the caller’s stack) and queries the Flyweight
Store, which:

1. Computes a (collision-resistant) hash ℎ of the buffer.

2. Looks up ℎ in the map. If an entry is found, the existing pointer is returned.

3. Otherwise a fresh buffer is allocated on the heap, the temporary buffer is copied into it, (ℎ ↦ buffer)
is inserted into the map, and a pointer to the new buffer is returned.

Flyweights are immutable and managed by reference counting. The buffer associated with each oper-
ation additionally stores an integer reference count:

• On successful lookup or insertion, the store increments the reference count.

• On release, the store decrements it. If the count reaches 0, the buffer and its map entry are
destroyed.

7.5 SMT Backend

The complete algorithm is implemented using Z3 via its official C++ API. Executions are encoded
into quantifier-free integer difference logic (QF-IDL) formulas, and satisfiability queries are used to
determine satisfiability.

7.6 An Optimized Membership Structure: The CONTAiNSSET Data Structure

7.6.1 Motivation and High-Level Overview

In our implementation, the EXPLORED and TOBEEXPLORED sets are used exclusively for membership
checks – there is no need to enumerate their contents or retrieve elements. This restricted usage enables
a highly space-efficient representation. We introduce a simple yet powerful optimization, which we
call the CONTAiNSSET.

The CONTAiNSSET is implemented as a conventional hash set with 𝑂(1) average-case access time.
However, rather than storing full elements, it stores only a fixed-size cryptographic hash of each item.
This guarantees constant space per element, irrespective of its actual structure or size.

7.6.2 Cryptographic Hashing and Collision Resistance

To achieve this, we employ a cryptographically secure hash function such as SHA2 or BLAKE3. These
functions offer collision resistance, a well-established cryptographic property: no efficient (i.e., prob-
abilistic polynomial-time) algorithm is known to generate two distinct inputs with the same hash

68

output. More precisely, any probabilistic polynomial-time (PPT) algorithm can produce two distinct
inputs that hash to the same value with only negligible probability in the size of the hash output –
i.e., for every polynomial 𝑝(𝑛), there exists an 𝑁 such that for all output lengths 𝑛 > 𝑁 , the success
probability is less than 1/𝑝(𝑛). Thus, the likelihood of collision is essentially negligible in practice.

To date, no known collision has been found for any widely used cryptographically secure hash function
such as SHA2. In the unlikely event that a hash function is broken, it can be substituted with another
secure hash function. It is important to note that cryptographic hash functions differ fundamentally
from the hash functions used in standard hash sets, which are not designed to completely eliminate
collisions.

7.6.3 Random Oracle Modeling and Statistical Guarantees

Cryptographic hash functions are frequently modeled using the Random Oracle Model (ROM), an
idealized framework introduced to analyze the security of cryptographic constructions. In this model,
the hash function 𝐻 is treated not as a deterministic algorithm, but as an abstract oracle – a black
box – that answers each query with a random response, subject to the constraint of consistency.

Formally, the random oracle is a function 𝐻 ∶ {0, 1}∗ → {0, 1}𝑛, where {0, 1}∗ denotes the set of
all finite-length binary strings (the input domain), and {0, 1}𝑛 is the fixed-length output space (e.g.,
𝑛 = 256). The oracle maintains an initially empty internal table (or mapping). On receiving a query
𝑥 ∈ {0, 1}∗:

1. If 𝑥 is already in the table, the oracle returns 𝐻(𝑥) as previously assigned.

2. If 𝑥 is new, the oracle samples 𝐻(𝑥) uniformly at random from {0, 1}𝑛, stores the pair (𝑥, 𝐻(𝑥)),
and returns 𝐻(𝑥).

This process guarantees that each input yields an independently random output, and repeated queries
to the same input return the same value, preserving determinism across calls. Crucially, the mapping
from inputs to outputs is statistically independent for distinct inputs, and behaves as if it were a truly
random function selected uniformly from all functions mapping 0, 1∗ to 0, 1𝑛.

Although true random oracles cannot exist in practice – since no real-world function can simulate
such an idealized behavior – they serve as a powerful abstraction. Many cryptographic protocols and
security proofs are constructed and verified under this model. While real-world hash functions (like
SHA2, SHA3, or BLAKE3) are deterministic algorithms, they are designed to heuristically approximate
random oracles in practice.

Despite being a heuristic model, the Random Oracle Model has been remarkably successful in cryptog-
raphy: schemes proven secure under Random Oracle Model and instantiated with secure cryptographic
hash functions remain unbroken, even when subjected to extensive cryptanalytic effort. As such, the
Random Oracle Model remains a widely accepted and pragmatic foundation for reasoning about hash-
based constructions in both theory and practice.

7.6.4 Quantitative Analysis of Collision Probability

Let us consider storing 𝑄 distinct elements in a CONTAiNSSET, where the hash function maps each
element to one of 𝑁 = 2𝑛 possible outputs (e.g., 𝑛 = 256 bits). Since the elements are distinct, the
hash values are modeled as 𝑄 independent and uniformly random samples from the output space.

69

The probability that at least one collision occurs among a set of independently hashed elements is
captured by the well-known Birthday Problem. A standard analysis of this probability – such as the
one presented in Appendix A.4 of Introduction to Modern Cryptography by Jonathan Katz and Yehuda
Lindell [16] – yields the following bounds:

𝑄(𝑄 − 1)
4𝑁 ≤ 1 − exp(−𝑄(𝑄 − 1)

2𝑁) ≤ COLL(𝑄, 𝑁) ≤ 𝑄(𝑄 − 1)
2𝑁 (4)

where COLL(𝑄, 𝑁) denotes the probability that at least one collision occurs among the 𝑄 hash outputs
drawn uniformly at random from a space of size 𝑁 .

7.6.5 Practical Implications of Collision Bounds

For instance, if 𝑄 = 109 and we use a 256-bit hash function (so 𝑁 = 2256), such as SHA2-256, then:

COLL(109, 2256) < 109(109 − 1)
2 ⋅ 2256 ≤ 4.4 ⋅ 10−60

That is, the probability of even a single collision is astronomically small.

To appreciate the scale: the fastest supercomputers today achieve approximately 1018 floating-point
operations per second (1 exaFLOP) on benchmarks such as LINPACK, which involve solving large
dense systems of linear equations. Although cryptographic hash computations are substantially more
complex than the arithmetic operations involved in such workloads, let us assume – generously – that
such a machine could perform 1018 cryptographic hash evaluations per second.

Suppose that in each experiment, we generate and hash 109 new, randomly chosen elements. With a
collision probability bounded by 4.4 ⋅ 10−60 per such experiment, it would take on average

1
4.4 ⋅ 10−60 ≈ 2.3 ⋅ 1059 executions

to observe a single collision. Since each execution involves 109 hashes, the total number of hashes
required is 2.3 ⋅ 1068. At a rate of 1018 hashes per second, this would take:

2.3 ⋅ 1068

1018 = 2.3 ⋅ 1050 seconds,

which corresponds to roughly 7.3 ⋅ 1042 years – approximately 5.3 ⋅ 1032 times the age of the universe,
estimated at 13.8 ⋅ 109 years.

7.6.6 Choosing the Hash Output Size

We can derive a general expression for the minimum required hash output length 𝑛 (in bits) to bound
the collision probability by some 𝜀:

log2 (𝑄(𝑄 − 1)
4𝜀) ≤ 𝑛 ≤ log2 (𝑄(𝑄 − 1)

2𝜀) (5)

70

Under the common approximation 𝑄 − 1 ≈ 𝑄, this simplifies to:

2 log2 𝑄 − log2 𝜀 − 2 ≤ 𝑛 ≤ 2 log2 𝑄 − log2 𝜀 − 1 (6)

Thus, the upper and lower bounds differ by only 1 bit, giving us precise control over collision guarantees
for a given 𝑄 and 𝜀.

7.6.7 Implementation Details

Our present implementation employs the xxHash algorithm, selected primarily for its remarkable com-
putational efficiency. It should be stressed, however, that xxHash is a non-cryptographic hash function,
and thus its design does not aim to prevent the deliberate construction of colliding inputs. Conse-
quently, one cannot exclude the possibility that an efficient collision-finding algorithm may exist.
Nevertheless, in the absence of adversarially chosen inputs, as is the case in our application, such
concerns are largely theoretical, and xxHash provides an attractive balance between performance and
reliability in practice.

In our current implementation, we selected the 64-bit variant of xxHash, denoted XXH64. Based on
experimental evidence, we do not expect to store more than 108 elements in a single CONTAiNSSET.
Under this assumption, and modeling XXH64 as a random oracle, the probability of a collision when
inserting 108 distinct elements is bounded by:

COLL(108, 264) < 108(108 − 1)
2 ⋅ 264 < 3 ⋅ 10−4.

This bound indicates that collisions are exceedingly unlikely to occur in practice.

For applications in which stronger guarantees against collisions are required, XXH64 can be replaced
with a hash function that produces a larger output (e.g., 128 or 256 bits) and/or a cryptographically
secure alternative such as SHA2-256 or BLAKE3-256. Increasing the output length exponentially
reduces the collision probability, while cryptographic hash functions additionally provide collision-
resistance guarantees that remain secure even in the presence of adversarially chosen inputs. In such
cases, the probability of collision can be reduced to a level so small that it lies far beyond the reach of
any conceivable computational effort, and collisions may be regarded as practically impossible.

71

8 Evaluation

We evaluate the performance of ViEWXPLORE on the READINC program, running on an Intel Core i7
(1st Gen) CPU at 1.60GHz. We compare ViEWXPLORE against the following state-of-the-art SMC
algorithms: OPTiMAL-DPOR [1], OPTiMAL-DPOR-OBSERVERS [7], SMC-RVF [6, 25], Data-Centric
DPOR [8, 9], and OPTiMAL-SMC-RF [5].

READINC [n=6] READINC [n=7]
#(Interleavings) 7,484,400 681,080,400
#(hb equivalence classes) 518,400 25,401,600
OPTiMAL-DPOR time 85.63 s 5480.30 s
#(Observers equivalence classes) 157,717 6,053,748
OPTiMAL-DPOR-OBSERVERS time 29.25 s 1432.92 s
DC-DPOR reported #(Executions) 84,682 2,625,219
DC-DPOR time 30.31 s 1225.83 s
SMC-RVF reported #(Executions) 14,495 181,103
SMC-RVF time 8.86 s 130.38 s
#(rf equivalence classes) 16,807 262,144
OPTiMAL-SMC-RF time 2.70 s 51.40 s
#(View Equivalence Classes) 4,683 47,294
ViEWXPLORE 0.66 s 8.61 s

Table 2: Performance comparison on the READINC benchmark. ViEWXPLORE achieves the fewest
equivalence classes and the lowest runtime among all methods.

As shown in Table 2, ViEWXPLORE achieves a substantial reduction in both the number of explored
executions and the total exploration time. Compared to OPTiMAL-DPOR, it reduces the number of
explored executions by nearly two-three orders of magnitude. Even against the more refined OPTiMAL-
DPOR-OBSERVERS and OPTiMAL-SMC-RF, ViEWXPLORE consistently explores fewer equivalence
classes and completes significantly faster. For instance, on READINC [n=7], ViEWXPLORE is over
160× faster than OPTiMAL-DPOR and roughly 6× faster than OPTiMAL-SMC-RF.

72

9 MCSC: Model Checking for Sequential Consistency is NP-complete
We establish the computational complexity of model checking under the Sequential Consistency (SC)
memory model. Specifically, we show that the decision problem of determining whether any SC
execution violates a safety property – referred to as MCSC – is NP-complete. To the best of our
knowledge, this result has not previously appeared in the literature.

We first formalize the decision problem.

Definition 9.1 (MCSC decision problem). Given a program to be executed concurrently by 𝑛 threads,
determine whether there exists an interleaving (under the Sequential Consistency model) in which at
least one thread crashes. The answer is YES if such an interleaving exists, and NO otherwise.

A crash is defined as follows: for each thread, there exists a set of sequences of read values, called
the Crashing Set, such that the thread crashes if and only if the sequence of values it reads belongs to
its Crashing Set. The Crashing Sets are not known to the model checker a priori; they can only be
discovered by executing runs in which a thread reads such a sequence.

More formally, the decision problem asks whether there exists a sequentially consistent execution in
which the sequence of values read by some thread lies in its Crashing Set.

9.1 NP-hardness

We show NP-hardness via a Karp reduction from the well-known SUBSETSUM problem.

Definition 9.2 (SUBSETSUM decision problem). Given a finite set 𝐴 = {𝑎1, 𝑎2, … , 𝑎𝑛} of integers
and a target value 𝑆 ∈ ℤ, determine whether there exists a non-empty subset 𝐴′ ⊆ 𝐴 such that
∑𝑎∈𝐴′ 𝑎 = 𝑆.

Theorem 9.1 (NP-hardness of MCSC). MCSC is NP-hard.

Proof. Let (𝐴, 𝑆) be an instance of SUBSETSUM, where 𝐴 = {𝑎1, 𝑎2, … , 𝑎𝑛}.

We construct a corresponding instance of MCSC as follows.

We introduce 𝑛 threads 𝑝1, … , 𝑝𝑛 – one per element of 𝐴 – and a single shared variable x, initially set
to 0. The concurrent program is the following:

𝑝1 𝑝2

⋯

𝑝𝑛

b := x; b := x; b := x;
assert(b + a1 ≠ S) assert(b + a2 ≠ S) assert(b + an ≠ S)
x := b + a1 x := b + a2 x := b + an

This defines the MCSC instance.

We now show that the SUBSETSUM instance is a YES-instance if and only if the MCSC instance is a
YES-instance, i.e., if the previous program admits an interleaving where a thread crashes.

(⇒) If the SUBSETSUM instance is YES-instance, then the MCSC instance is a YES-
instance. Suppose there exists a subset 𝐴′ = {𝑎𝑖1

, … , 𝑎𝑖𝑘
} ⊆ 𝐴 such that ∑𝑎∈𝐴′ 𝑎 = 𝑆. Consider

73

the interleaving in which threads 𝑝𝑖1 , … , 𝑝𝑖𝑘 execute in sequence, each performing its entire program
(read, assert, and write) in order. That is, the interleaving schedule is:

𝑝𝑖1
1 𝑝𝑖1

2 𝑝𝑖2
1 𝑝𝑖2

2 ⋯ 𝑝𝑖𝑘
1 𝑝𝑖𝑘

2

where each thread is scheduled twice (once for its read and once for its write). Note that assertion
checks are thread-local operations. All other threads, if any, execute after this interleaving in some
arbitrary order, which is out of our interest.

Since all threads in this interleaving execute their reads and writes in sequence, the shared variable x
accumulates the sum of the corresponding 𝑎𝑖 values in 𝐴′.

The final thread in the sequence 𝑝𝑖𝑘 reads the value 𝑏 = ∑𝑎𝑗∈𝐴′∖{𝑎𝑖𝑘 } 𝑎𝑗 and performs the assertion
check 𝑏 + 𝑎𝑖𝑘

≠ 𝑆, which fails, as

𝑏 + 𝑎𝑖𝑘
= ⎛⎜

⎝
∑

𝑎𝑗∈𝐴′∖{𝑎𝑖𝑘 }
𝑎𝑗

⎞⎟
⎠

+ 𝑎𝑖𝑘
= ∑

𝑎𝑗∈𝐴′
𝑎𝑗 = 𝑆

Therefore, thread 𝑝𝑖𝑘 crashes, and the MCSC instance is a YES-instance.

(⇐) If the MCSC instance is a YES-instance, then the SUBSETSUM instance is a YES-
instance. Assume the MCSC instance is a YES-instance, that is, there exists an interleaving in which
some thread 𝑝𝑘 crashes.

We define that thread 𝑝𝑗 reads-from thread 𝑝𝑖 if 𝑝𝑗’s read reads-from 𝑝𝑖’s write, i.e., if 𝑝𝑖’s write is the
most recent write to x preceding 𝑝𝑗’s read in the interleaving8.

We now define the reads-from chain of a thread 𝑝𝑖, denoted 𝒞(𝑝𝑖) as follows: Recursively prepend the
thread that 𝑝𝑖 reads-from, continuing until reaching a thread that reads the initial value 𝑥 = 0.

It follows that the value read by a thread 𝑝𝑖 is the sum of the 𝑎𝑖 values associated with the threads in
the chain 𝒞(𝑝𝑖):

𝑏 = ∑
𝑝𝑗∈𝒞(𝑝𝑖)

𝑎𝑗

When 𝑝𝑘 executes its assertion check, it computes

𝑏 + 𝑎𝑘 = ∑
𝑝𝑗∈𝒞(𝑝𝑘)

𝑎𝑗 + 𝑎𝑘 = ∑
𝑝𝑗∈𝒞(𝑝𝑘)∪{𝑝𝑘}

𝑎𝑗

Since the assertion fails, this value must equal 𝑆. Thus, the subset

𝐴′ = {𝑎𝑗 ∣ 𝑝𝑗 ∈ 𝒞(𝑝𝑘) ∪ {𝑝𝑘}} ⊆ 𝐴

is a solution to the original SUBSETSUM instance. Hence, the SUBSETSUM instance is a YES-instance.

This completes the reduction. Note that the size of the constructed program is linear in the size
8Since each thread performs exactly one read and one write, this relation is well-defined.

74

of the input (𝐴, 𝑆), and each thread performs only simple arithmetic and one read/write to shared
memory.

9.2 On Execution Time of Programs

It is worth noting that, in general, proving that SC model checking is NP-hard is not particularly
informative unless some restriction is placed on the execution time of the programs. Indeed, there
exist programs that require exponential time to execute even a single run. In such cases, model checking
becomes infeasible for trivial reasons. Furthermore, non-terminating programs trivially render model
checking undecidable.

Hence, to obtain a meaningful complexity result, we restrict our attention to programs that execute in
time polynomial in the size of the input – that is, programs whose total execution time (summed over
all threads) is polynomial in their size. Under this assumption, the reduction given above remains
valid: the constructed program consists of a linear number of simple arithmetic and control-flow
operations, and each thread executes only two memory operations. Thus, the reduction applies even
under this time-bounded restriction.

9.3 MCSC for polynomial-time programs is in NP

Having established NP-hardness, we now show that MCSC lies in NP under the aforementioned
polynomial-time execution restriction, and thus conclude that MCSC is NP-complete.

Theorem 9.2 (MCSC in NP). MCSC lies in NP under the polynomial-time execution restriction.

Proof. A valid certificate for a YES-instance consists of an sequence of thread identifiers that corre-
sponds to an interleaving that leads to a crash. Since the total number of operations is polynomial in
the input size, the certificate itself is of polynomial size.

The NP verifier operates as follows. Given a candidate certificate (interleaving) and the MCSC in-
stance, the verifier simulates the execution of the concurrent program under the specified interleaving.
This can be performed efficiently, assuming access to an interpreter for the concurrent programs. If
the certificate includes invalid thread identifiers or results in any error other than a crash, the verifier
returns NO. If the simulation completes without any thread crashing, the verifier also returns NO.
Only if a crash occurs during simulation does the verifier return YES.

Since the verifier runs in polynomial time and accepts exactly those certificates that correspond to
crashing executions, the problem is in NP.

Corollary 9.1 (NP-completeness of MCSC). MCSC for polynomial-time programs is NP-complete.

75

10 Future Work

We identify several directions for future work:

• Support for locks and Read-Modify-Write (RMW) operations. Extending our algo-
rithm to handle mutual exclusion primitives and atomic Read-Motify-Write (RMW) operations.

• Parallelization of exploration and witness construction. The exploration of independent
interleavings can be distributed across multiple cores, potentially leading to significant reductions
in total runtime.

• Extension to weaker memory models. Incorporating relaxed consistency semantics such
as Total Store Order (TSO), Partial Store Order (PSO), and Release-Acquire (RA) would allow
our approach to capture the behavior of modern multiprocessor architectures.

76

List of Definitions

2.1 Definition (Observer Equivalence) . 30
2.2 Definition (Reads-From Equivalence) . 30
2.3 Definition (Soundness of an SMC algorithm) . 32
2.4 Definition (Optimality of an SMC algorithm) . 32
3.1 Definition (View Equivalence) . 34
4.1 Definition (Read-Cut) . 42
4.2 Definition (𝑝-projection of execution 𝐸) . 42
4.3 Definition (Read-Cut of Execution) . 42
4.4 Definition (Execution-Induced Read-Cut) . 42
4.5 Definition (Feasible Read-Cut) . 42
4.6 Definition (Witness) . 42
4.7 Definition (𝑟𝑐-restriction of execution 𝐸) . 42
4.8 Definition (CONSTRUCTWiTNESS) . 44
5.1 Definition (Unique Reads-From (URF)) . 56
9.1 Definition (MCSC decision problem) . 73
9.2 Definition (SUBSETSUM decision problem) . 73

List of Theorems

2.1 Theorem (SC Acyclicity Theorem [19]) . 26
2.2 Theorem (Number of SC interleavings with 𝑘 threads, 𝑛 operations each) 28
3.1 Theorem (Equivalence classes in the MSV program) . 35
3.1 Corollary (Number of equivalence classes in the MSV program) 36
3.2 Theorem (Asymptotic growth of equivalence classes in the MSV program) 36
4.1 Theorem (Optimality of ViEWXPLORE) . 47
4.2 Theorem (Soundness of ViEWXPLORE) . 48
5.1 Theorem (Necessary and Sufficient Conditions for CONSTRUCTWiTNESSCOMPLETE) . 54
9.1 Theorem (NP-hardness of MCSC) . 73
9.2 Theorem (MCSC in NP) . 75
9.1 Corollary (NP-completeness of MCSC) . 75

List of Algorithms

1 ViEWXPLORE Exploration Algorithm . 45
2 ENUMERATEREADCUTSWiTHPRUNiNG(𝐸) . 52
3 CONSTRUCTWiTNESSCOMPLETE(𝐸) . 56
4 HEURiSTiC-URF(𝐸) . 58
5 HEURiSTiC-INCR(𝐸, 𝑒new𝑟 , (urf, hb0)) . 62
6 CONSTRUCTWiTNESS(𝐸, 𝑒new𝑟) . 63

77

THIS PAGE INTENTIONALLY LEFT BLANK.

References

[1] Parosh Abdulla, Stavros Aronis, Bengt Jonsson, and Konstantinos Sagonas. “Optimal Dynamic
Partial Order Reduction”. In: Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages. POPL ’14. ACM, Jan. 2014, pp. 373–384. DOi: 10.1145/
2535838.2535845. URL: http://dx.doi.org/10.1145/2535838.2535845.

[2] Parosh Abdulla, Stavros Aronis, Bengt Jonsson, and Konstantinos Sagonas. “Comparing Source
Sets and Persistent Sets for Partial Order Reduction”. In: Models, Algorithms, Logics and Tools.
Springer International Publishing, 2017, pp. 516–536. iSBN: 9783319631219. DOi: 10.1007/978-
3-319-63121-9_26. URL: http://dx.doi.org/10.1007/978-3-319-63121-9_26.

[3] Parosh Aziz Abdulla, Stavros Aronis, Bengt Jonsson, and Konstantinos Sagonas. “Source Sets:
A Foundation for Optimal Dynamic Partial Order Reduction”. In: Journal of the ACM 64.4
(Aug. 2017), pp. 1–49. iSSN: 1557-735X. DOi: 10.1145/3073408. URL: http://dx.doi.org/10.
1145/3073408.

[4] Parosh Aziz Abdulla, Mohamed Faouzi Atig, Sarbojit Das, Bengt Jonsson, and Konstantinos
Sagonas. “Parsimonious Optimal Dynamic Partial Order Reduction”. In: Computer Aided Ver-
ification - 36th International Conference, CAV 2024, Proceedings, Part II. Vol. 14682. LNCS.
Springer, July 2024, pp. 19–43. DOi: 10.1007/978-3-031-65630-9_2. URL: https://doi.org/
10.1007/978-3-031-65630-9%5C_2.

[5] Parosh Aziz Abdulla, Mohamed Faouzi Atig, Bengt Jonsson, Magnus Lång, Tuan Phong Ngo,
and Konstantinos Sagonas. “Optimal Stateless Model Checking for Reads-from Equivalence un-
der Sequential Consistency”. In: Proceedings of the ACM on Programming Languages 3.OOPSLA
(Oct. 2019), pp. 1–29. iSSN: 2475-1421. DOi: 10.1145/3360576. URL: http://dx.doi.org/10.
1145/3360576.

[6] Pratyush Agarwal, Krishnendu Chatterjee, Shreya Pathak, Andreas Pavlogiannis, and Viktor
Toman. “Stateless Model Checking Under a Reads-Value-From Equivalence”. In: Computer Aided
Verification. LNCS. Springer International Publishing, 2021, pp. 341–366. iSBN: 9783030816858.
DOi: 10.1007/978-3-030-81685-8_16. URL: http://dx.doi.org/10.1007/978-3-030-
81685-8_16.

[7] Stavros Aronis, Bengt Jonsson, Magnus Lång, and Konstantinos Sagonas. “Optimal Dynamic
Partial Order Reduction with Observers”. In: Tools and Algorithms for the Construction and
Analysis of Systems. Springer International Publishing, 2018, pp. 229–248. iSBN: 9783319899633.
DOi: 10.1007/978-3-319-89963-3_14. URL: http://dx.doi.org/10.1007/978-3-319-
89963-3_14.

[8] Marek Chalupa, Krishnendu Chatterjee, Andreas Pavlogiannis, Nishant Sinha, and Kapil Vaidya.
“Data-centric dynamic partial order reduction”. In: Proc. ACM Program. Lang. 2.POPL (Dec.
2017). DOi: 10.1145/3158119. URL: https://doi.org/10.1145/3158119.

[9] Data-centric dynamic partial order reduction (Implementation). https://github.com/ViToSVK/
nidhugg/tree/datacentric. GitHub repository, Git commit 3eabd1c29cacc85a219d60583a20-
1b4e49c6185c.

[10] Cormac Flanagan and Patrice Godefroid. “Dynamic Partial-order Reduction for Model Checking
Software”. In: Proceedings of the 32nd ACM SIGPLAN-SIGACT symposium on Principles of
programming languages. POPL05. ACM, Jan. 2005, pp. 110–121. DOi: 10 . 1145 / 1040305 .
1040315. URL: http://dx.doi.org/10.1145/1040305.1040315.

79

https://doi.org/10.1145/2535838.2535845
https://doi.org/10.1145/2535838.2535845
http://dx.doi.org/10.1145/2535838.2535845
https://doi.org/10.1007/978-3-319-63121-9_26
https://doi.org/10.1007/978-3-319-63121-9_26
http://dx.doi.org/10.1007/978-3-319-63121-9_26
https://doi.org/10.1145/3073408
http://dx.doi.org/10.1145/3073408
http://dx.doi.org/10.1145/3073408
https://doi.org/10.1007/978-3-031-65630-9_2
https://doi.org/10.1007/978-3-031-65630-9%5C_2
https://doi.org/10.1007/978-3-031-65630-9%5C_2
https://doi.org/10.1145/3360576
http://dx.doi.org/10.1145/3360576
http://dx.doi.org/10.1145/3360576
https://doi.org/10.1007/978-3-030-81685-8_16
http://dx.doi.org/10.1007/978-3-030-81685-8_16
http://dx.doi.org/10.1007/978-3-030-81685-8_16
https://doi.org/10.1007/978-3-319-89963-3_14
http://dx.doi.org/10.1007/978-3-319-89963-3_14
http://dx.doi.org/10.1007/978-3-319-89963-3_14
https://doi.org/10.1145/3158119
https://doi.org/10.1145/3158119
https://github.com/ViToSVK/nidhugg/tree/datacentric
https://github.com/ViToSVK/nidhugg/tree/datacentric
https://doi.org/10.1145/1040305.1040315
https://doi.org/10.1145/1040305.1040315
http://dx.doi.org/10.1145/1040305.1040315

[11] Phillip B. Gibbons and Ephraim Korach. “Testing Shared Memories”. In: SIAM Journal on Com-
puting 26.4 (Aug. 1997), pp. 1208–1244. iSSN: 1095-7111. DOi: 10.1137/s0097539794279614.
URL: http://dx.doi.org/10.1137/S0097539794279614.

[12] Patrice Godefroid. “Software Model Checking: The VeriSoft Approach”. In: Formal Methods
in System Design 26.2 (Mar. 2005), pp. 77–101. DOi: 10.1007/s10703- 005- 1489- x. URL:
http://dx.doi.org/10.1007/s10703-005-1489-x.

[13] Jeff Huang. “Stateless Model Checking Concurrent Programs with Maximal Causality Reduc-
tion”. In: Proceedings of the 36th ACM SIGPLAN Conference on Programming Language Design
and Implementation. PLDI ’15. ACM, June 2015, pp. 165–174. DOi: 10.1145/2737924.2737975.
URL: http://dx.doi.org/10.1145/2737924.2737975.

[14] Thomas Jones. Mars Pathfinder: Priority Inversion Problem. Tech. rep. NASA Jet Propulsion
Laboratory, 1997. URL: https://www.cse.chalmers.se/~risat/Report_MarsPathFinder.
pdf.

[15] Bengt Jonsson, Magnus Lång, and Konstantinos Sagonas. “Awaiting for Godot: Stateless Model
Checking that Avoids Executions where Nothing Happens”. In: 22nd Formal Methods in Computer-
Aided Design. Ed. by Alberto Griggio and Neha Rungta. FMCAD 2022. Trento, Italy: IEEE,
Oct. 2022, pp. 284–293. DOi: 10.34727/2022/ISBN.978-3-85448-053-2_35. URL: https:
//doi.org/10.34727/2022/isbn.978-3-85448-053-2%5C_35.

[16] Jonathan Katz and Yehuda Lindell. Introduction to modern cryptography. en. 3rd ed. Chapman
& Hall/CRC Cryptography and Network Security Series. CRC Press.

[17] Michalis Kokologiannakis, Ori Lahav, Konstantinos Sagonas, and Viktor Vafeiadis. “Effective
Stateless Model Checking for C/C++ Concurrency”. In: Proceedings of the ACM on Programming
Languages 2.POPL (Dec. 2017), pp. 1–32. iSSN: 2475-1421. DOi: 10.1145/3158105. URL: http:
//dx.doi.org/10.1145/3158105.

[18] Michalis Kokologiannakis, Iason Marmanis, Vladimir Gladstein, and Viktor Vafeiadis. “Truly
Stateless, Optimal Dynamic Partial Order Reduction”. In: Proc. ACM Program. Lang. 6.POPL
(2022), pp. 1–28. DOi: 10.1145/3498711. URL: https://doi.org/10.1145/3498711.

[19] Ori Lahav and Viktor Vafeiadis. “Explaining Relaxed Memory Models with Program Transfor-
mations”. In: FM 2016: Formal Methods. Springer International Publishing, 2016, pp. 479–495.
iSBN: 9783319489896. DOi: 10.1007/978-3-319-48989-6_29. URL: http://dx.doi.org/10.
1007/978-3-319-48989-6_29.

[20] Leslie Lamport. “How to Make a Multiprocessor Computer That Correctly Executes Multiprocess
Programs”. In: IEEE Transactions on Computers C–28.9 (Sept. 1979), pp. 690–691. iSSN: 0018-
9340. DOi: 10.1109/tc.1979.1675439. URL: http://dx.doi.org/10.1109/TC.1979.1675439.

[21] Nancy G. Leveson and Clark S. Turner. “An investigation of the Therac-25 accidents”. In: Com-
puter 26.7 (1993), pp. 18–41. DOi: 10.1109/MC.1993.274940.

[22] National Aeronautics and Space Administration (NASA). Northeast Blackout of 2003 - Safety
Message 2008-03-01. Safety Message (PDF) from NASA Safety Center. Mar. 2008. URL: https:
//sma.nasa.gov/docs/default-source/safety-messages/safetymessage-2008-03-01-
northeastblackoutof2003.pdf.

[23] Robert Nieuwenhuis and Albert Oliveras. “DPLL(T) with Exhaustive Theory Propagation and
Its Application to Difference Logic”. In: Computer Aided Verification. LNCS. Berlin Heidelberg:
Springer, 2005, pp. 321–334. iSBN: 9783540316862. DOi: 10.1007/11513988_33. URL: http:
//dx.doi.org/10.1007/11513988_33.

80

https://doi.org/10.1137/s0097539794279614
http://dx.doi.org/10.1137/S0097539794279614
https://doi.org/10.1007/s10703-005-1489-x
http://dx.doi.org/10.1007/s10703-005-1489-x
https://doi.org/10.1145/2737924.2737975
http://dx.doi.org/10.1145/2737924.2737975
https://www.cse.chalmers.se/~risat/Report_MarsPathFinder.pdf
https://www.cse.chalmers.se/~risat/Report_MarsPathFinder.pdf
https://doi.org/10.34727/2022/ISBN.978-3-85448-053-2_35
https://doi.org/10.34727/2022/isbn.978-3-85448-053-2%5C_35
https://doi.org/10.34727/2022/isbn.978-3-85448-053-2%5C_35
https://doi.org/10.1145/3158105
http://dx.doi.org/10.1145/3158105
http://dx.doi.org/10.1145/3158105
https://doi.org/10.1145/3498711
https://doi.org/10.1145/3498711
https://doi.org/10.1007/978-3-319-48989-6_29
http://dx.doi.org/10.1007/978-3-319-48989-6_29
http://dx.doi.org/10.1007/978-3-319-48989-6_29
https://doi.org/10.1109/tc.1979.1675439
http://dx.doi.org/10.1109/TC.1979.1675439
https://doi.org/10.1109/MC.1993.274940
https://sma.nasa.gov/docs/default-source/safety-messages/safetymessage-2008-03-01-northeastblackoutof2003.pdf
https://sma.nasa.gov/docs/default-source/safety-messages/safetymessage-2008-03-01-northeastblackoutof2003.pdf
https://sma.nasa.gov/docs/default-source/safety-messages/safetymessage-2008-03-01-northeastblackoutof2003.pdf
https://doi.org/10.1007/11513988_33
http://dx.doi.org/10.1007/11513988_33
http://dx.doi.org/10.1007/11513988_33

[24] Traian Florin Şerbănuţă, Feng Chen, and Grigore Roşu. “Maximal Causal Models for Sequentially
Consistent Systems”. In: Runtime Verification. Ed. by Shaz Qadeer and Serdar Tasiran. Vol. 7687.
LNCS. Berlin Heidelberg: Springer, 2013, pp. 136–150. iSBN: 9783642356322. DOi: 10.1007/978-
3-642-35632-2_16. URL: http://dx.doi.org/10.1007/978-3-642-35632-2_16.

[25] Stateless Model Checking Under a Reads-Value-From Equivalence (Implementation). https:
//github.com/ViToSVK/nidhugg/tree/reads_value_from. GitHub repository, Git commit
3f20b4f169a1bf26d50f478d2681ba23a605be8b.

81

https://doi.org/10.1007/978-3-642-35632-2_16
https://doi.org/10.1007/978-3-642-35632-2_16
http://dx.doi.org/10.1007/978-3-642-35632-2_16
https://github.com/ViToSVK/nidhugg/tree/reads_value_from
https://github.com/ViToSVK/nidhugg/tree/reads_value_from

	Εκτεταμένη Ελληνική Περίληψη (Extended Greek Abstract)
	Εισαγωγή
	Συνεισφορές
	Θεωρητικό Υπόβαθρο
	Ισοδυναμία Όψεων
	Αλγόριθμος ViewXplore
	Αλγόριθμος ConstructWitness
	Μελλοντικές Επεκτάσεις

	Introduction
	Relation to Previous Work
	Contributions

	Background
	Notation
	The Sequential Consistency Model
	Stateless Model Checking
	Dynamic Partial Order Reduction
	Properties of SMC/DPOR Algorithms

	View Equivalence
	Definition
	Exponential Reduction in View Equivalence Classes

	Exploration Algorithm
	Definitions
	Algorithm
	Example: Running the Algorithm on ReadInc [n=2]
	Optimality
	Soundness
	Reducing Memory Consumption
	Improved Read-Cut Enumeration with Early Feasibility Pruning

	The Algorithm ConstructWitness
	ConstructWitnessComplete: A Complete Algorithm based on Constraint-Solving
	Heuristic-URF: Fast Elimination of Inconsistent Executions
	Heuristic-INCR: Incremental Construction of Sequentially Consistent Executions
	Final ConstructWitness Algorithm

	Why Naively Adapting the Reads-From Exploration Fails
	Implementation
	Forks and Joins
	URF and INCR: Graph Representations
	Nidhugg Integration
	Flyweight Pattern
	SMT Backend
	An Optimized Membership Structure: The ContainsSet Data Structure

	Evaluation
	MCSC: Model Checking for Sequential Consistency is NP-complete
	NP-hardness
	On Execution Time of Programs
	MCSC for polynomial-time programs is in NP

	Future Work
	List of Definitions
	List of Theorems
	List of Algorithms
	References

