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Abstract

Recent advances in Music Information Retrieval (MIR) have showcased the ability of pretrained audio rep-
resentations to achieve competitive performance in various downstream tasks. However, their potential in
the area of music recommender systems, and particularly in sequential recommendation, has not been fully
explored. The present work examines whether audio-based embeddings from pretrained models can prove
useful in a session-based recommendation setting.

Using Music4All, an openly available dataset of listening histories along with audio segments, we generate
listening sessions and we extract embeddings from three pretrained models: MusiCNN, MERT and a cus-
tom artist-based model and experiment with different strategies of integrating them into Transformer-based
recommender architectures built upon two sequential recommendation frameworks: Transformers4Rec and
Represent-Then-Aggregate (RTA).

Results show that while audio representations accelerate convergence, they do not consistently outperform
randomly initialized baselines under the Transformers4Rec setup. In contrast, within the RTA framework,
content-based embeddings yield modest but consistent improvements, but fail to surpass other metadata-
driven baselines. These opposite trends across the two frameworks can be partly attributed to their different
task formulation and training objective, highlighting that the benefit of pretrained audio representations
depends on how well the downstream objective aligns with the semantics of the embedding space. This is also
supported by the fact that fine-tuning the original embeddings on behavioral data improves their effectiveness,
outperforming the out-of-the-box embeddings and demonstrating the value of lightweight domain adaptation.
Finally, an ablation study revealed the crucial role of proper hyperparameter choice in leveraging the full
potential of the pretrained representations.

Keywords — Music Recommender Systems, Music Information Retrieval, Representation Learning, Se-
quential Recommendation, Neural Networks

ix






Euyaplotieg

OhoxAnp@vovtoc Tl oToudES Uou oe auTY T o) oMY, Yo Hieha vo euyaplotiow Yepud tov xadnynty x. 1létpo
Moparyx6 yior v guxonplol TOU oL EBWOE VoL EXTOVACK TNV oo SITAWUATIXY EpYCid OTO EQYAOTARLO TOU.
Kotd tnv exnovnon e epyaoioc, améxtnoa mohdtun euneiplor xou avaxdiuda oe yeyahitepo Bddoc tov topéa
e Mnyovinric Mdnong xon Tig e@apuoYEC TNS O €val ONUOVTLIXG Yiol UEVA TOUEN, AUTOV TNG LOUOIXHC.

Emumiéov, Ya Hdera vo euyopiotion Witepa ) Ndvou Zhativion xa tov Xerioto Lapolen, cuvemBAénovteg
e Simhwpatxnc, ol onolol émagay xadoplotind pdho oty oloxhpwot tne. H xododhynon xou n Bordeld
TOUG TV TOAD GNUAVTIXES GTY BLAORPLOT) TOU TUPOVTOS AMOTEAECUATOC.

Téhog, Yo Hdeho vor euyoptoTHoW omd XApEdLAS TNV OXOYEVELS Hou, Yo TN Btapx)) oTHELEr Xat EUTLOTOCUVY] TOU
pou €detgay xardOAT TN BLdEXELX TWV GTIOLUBKY LoV, OTWE ETOME Kol TOUS QIAOUC UOU PE TOUG 0Ttoloug TEpdooUE
poall auTh TV amouTn Ty eumelpia.

Xapdhaurog Enupldwy Mndtoog
OxtedBprog 2025

xi






Contents

Contents

List of Figures

List of Tables

Extetopévn Ilepiindn ota EAANvIxd

1 Introduction

1.1 Music Recommender Systems . . . . . . . . . ...
1.1.1 Collaborative filtering . . . . . . . . . . . e
1.1.2 Content-Based Methods . . . . . . . . . . . . . .
1.1.3 Sequential Recommendation . . . . . . . . .. ... Lo

1.2 Problem Statement and Research Questions . . . . . . . . ... .. ... ... ..

1.3 Contributions . . . . . . . . . e

1.4 Thesis Structure . . . . . . . . oL

2 Theoretical Background

2.1 Machine Learning . . . . . . . . . . L e
2.1.1 Categories of Machine Learning Algorithms . . . . . ... ... ... ... ... ....
2.1.2 Neural Networks . . . . . . . . . . e
2.1.3 Representation Learning . . . . . . . . . .. L

2.2 Collaborative Filtering . . . . . . . . . . . . e
2.2.1 Memory-Based . . . . ...
2.2.2 Model-Based . . . . . .. e e

2.3 Audio Signal Representations . . . . . . . . . ...
2.3.1 Time-Domain Representations . . . . . . .. ... .. ... .
2.3.2 Spectral Representations . . . . . . . . . .. L L Lo

2.4 Evaluation Metrics . . . . . . . . L e
2.4.1 Classification Metrics . . . . . . . . . . . e
2.4.2 Ranking Metrics . . . . . . . . L

3 Related Work

3.1 Representation Learning from Audio . . . . . . . .. ... .. L o
3.1.1 Supervised Methods . . . . . . . . ..
3.1.2  Self-Supervised Methods . . . . . . . . . . . ...

3.2 Sequential Recommendation . . . . . . . . .. .. e

3.3 Sequential Music Recommendation . . . . . . . . . .. ... e
3.3.1 Datasets . . . . . . oL e
3.3.2 Behavior-Based Methods . . . . . . . . .. ..
3.3.3 Audio-Driven Methods . . . . . . . . . .. .

4 Data and Methodology

4.1 Data Preprocessing . . . . . . . . L e

4.2 TransformersdRec (T4Rec) . . . . . . .
4.2.1 Architecture . . . . . . . ... e

xiii

XV

xvii

e

N NCISUN I ORI

27
28
28
30
34
37
37
39
39



Contents

4.2.2 Tralning . . . . . . oL e e
4.2.3 Evaluation . . . . . . L e
4.24 Late Fusion . . . . . . . . . e e
4.3 Represent-Then-Aggregate (RTA) . . . . . . . . o o ittt e e
4.3.1 Architecture . . . . . . . . e e e e
4.3.2 Tralning . . . . . . ... e
4.3.3 Evaluation . . . . . . . e
4.3.4 Baselines . . . . . .. e
Experimental Evaluation
5.1 Experimental Setup . . . . . . L
5.1.1 Evaluated Models . . . . . . . .. L
5.1.2 Training Details . . . . . . . . ..o
5.2 Quantitative Results . . . . . . . . L
5.2.1 TransformersdRec . . . . . . . . . . e
5.2.2 RTA . . . e
5.3 Analysis of Model Behavior . . . . . . ... Lo
5.3.1 Convergence Behavior . . . . . . . . . ...
5.3.2 Embedding Space Visualization . . . . . . . . . ... ... 0L
5.3.3 Ablation Study . . . . . ...
5.4 DISCUSSION . . . . . .. e e e e

6 Conclusion

Bibliography

Xiv



List of Figures

0.0.1 H ouvdptnomn x60Toug TEIMAETAC (PEPVEL TLO XOVTE T MUEOUOLOL OELYUOTO oL ATOUUXQEUVEL T
avOuolL [97]. o o
0.0.2 H Sodixaoio npoexnaidevone nov axoroudidnxe oto MERT [63] . . . . . .. ... ... ...
0.0.3  Awduxaoio dnpovpyioc tou cuvolou dedopévey Music4AIL [91] . . . . . . ..o
0.0.4 Tuvontxr anexovLoT TG TEOTEWVOUEVTS TPooéYYLong. Ot avamopao TEoELS TV TeayoudLdY ed-
YOVTOL OO KUY WHUEVOY TEOEXTOUOEVHEVO LOVTEAN X0l YENOLLOTOLOUYTAL YIoL TNV oEyIXoTonom
Tou avtlotoyou mivaxo. M apyitextoviny) Transformer evowpotdvel mAnpogopleg and Ta
GUUTEPLPOELXS Sedopéva, TopdyovTas BEATIWUEVES OVATOPUC TAOELS UE oXOTd TNV TROBAed Tou
EMOUEVOU TROYOUBLOU. . . . v v v vt i b it e e
0.0.5 Apyttextovixy Twv povtéhwy nou Bactlovtar oto T4Rec. Katd tnv exnaldevor, to poviého
ATOXEUTTEL TUAUATO TNG EL0OOOL Xou Yenoulomolel aupidpoun TEoGoY Yol TNV AVAUXUTAOKELT
TOUG. + v v v e e e e e e e
0.0.6 Apyitextovixy) v poviédwv mou Boasilovtar oto RTA. Yto ypovixd onuelo i, o transformer
ouvdudlel ta TeonyYolUEVO avTIXElUEVO OE WLol avamapdotooy, ouvedplac p.; eoTidlovtac wovo
OE TEONYOUUEVA XOUUATIOL oL YeNotwoTolel To p.; yio TeoPAedn tou emduevou Teayoudiov. H
exmaldeuor yenowonotel LBEWBIXH cLYVAETNCT xECTOUC ToU eVIUPEUVEL TNV OUOLOTNTA UE TO
TpaY TG ETOPEVO TEayoUdL (Lpos) xou amoYopplvel TNV opotdTNToL YE EVar GUVOAO OpVITIXGDY
BEtYUETWY ST (D) (Lneg): -« o o v o e
0.0.7 Omntxonoinon t-SNE tou ywpou embeddings tou tuyaio apyixomolnuévou povtélou Petd tny
EXTOUBEUCT]. « o o v v o o
0.0.8 Ontxonoioeic t-SNE twv ydewv embeddings tou MERT xow tou MusiCNN mply xou uetd tny
EXTOUBEUCT]. « « v v v v o o e

2.1.1 Strucure of an artificial neuron [30] . . . . . . ... L L
2.1.2 A Neural Network with 3 hidden layers [12] . . . . . ... ... .. ... ... .....
2.1.3 Optimization paths in a loss landscape [23]. Batch GD (blue): Stable but slow, Stochastic
GD (purple): noisy but efficient, Mini-batch GD (green): balances efficiency and stability . .
2.1.4 Activation functions: ReLU, tanh, and sigmoid [51] . . . . . .. ... ... ... ... ...,
2.1.5 Example of applying Softmax to a 5-class classification problem [83] . . . . . ... ... ...
2.1.6 Convolution between an input image with D = 6 and a 3 x 3 filter [81]. According to Eq.
2.1.15, the output dimension will be equal to 4. . . . . . . . . . ... ... L.
2.1.7 Max and average pooling operations with a 2 x 2 pool size [81]. . . . . ... ... ... ...
2.1.8 Architecture of LeNet-5, a CNN for handwritten character recognition [59]. Notice the alter-
nation between convolutional and pooling layers, followed by 2 FC layers. . . . . . . ... ..
2.1.9 Structure of a simple RNN (left) and unfolded through-time RNN (right) [111]. . . . .. ..
2.1.10 Structure of an LSTM cell, where Red: Sigmoid, Blue: Tanh [78] . . . ... ... ... ...
2.1.11 Architecture of the Transformer [109] . . . . . . . . . . ... . o
2.1.12 A triplet loss brings the anchor and positive samples (semantically similar items) closer in
the embedding space, while pushing the negative sample (dissimilar item) farther away [97] .
2.1.13 Overview of contrastive learning with data augmentations!. Different augmented views of
the same image are treated as positive pairs and are encouraged to produce similar embed-
dings (attract), while views from different images form negative pairs that are pushed apart
(repel). The CNN encoder extracts features, and an MLP projection head maps them into
the embedding space where the contrastive objective is applied [19] . . . . ... .. ... ..
2.2.1 The FunkSVD model (image adapted from [117]) . . . .. .. ... ... ... ... .....

XV

xi



List of Figures

23.1
2.3.2
2.3.3
24.1

3.1.1
3.1.2

3.1.3
3.14
3.1.5
3.1.6
3.1.7
3.1.8

3.1.9
3.2.1

3.2.2
3.2.3
3.3.1
3.3.2

4.0.1

4.1.1

4.2.1

4.3.1

5.2.1
9.3.1
5.3.2
5.3.3
5.3.4

Waveform of an audio signal . . . . . . .. ..o 20
Spectrogram of the audio signal shown in Figure 2.3.1. . . . . . ... . ... ... ... ... 21
Mel-scale filter bank [31] . . . . . . .. .. 22
Example of a Receiver Operating Characteristic (ROC) curve, highlighting the Area Under

the Curve (AUC). [99] . . . . o o 25
Schematic diagram of the training and retrieval process in [67] . . . . . . .. ... ... ... 28
The proposed approach in [60]: (A) A standard triplet-based deep metric model maps audio

input to the embedding space via a learned function f, (B) conditional similarity masking to
compute distance metric D separately for each similarity dimension, and (C) track regularization 29

The timbral and temporal filters in the first layer of MusiCNN [80]. . . . . .. ... .. ... 30
Dense convolutional layers capture higher-level features. . . . . . ... ... ... ... ... 30
The backend produces the output, given the previously learned features. . . . . ... .. .. 30
Overview of the CLMR framework [101] . . . . . ... .. ... ... ... ... ...... 31
HMlustration of wav2vec2.0 [4] . . . . . . . . . o 32
HuBERT predicts cluster assignments of the masked frames, which are derived from iterative

k-means clustering [47] . . . . . .. 33
The pretraining procedure followed in MERT [63] . . . . . . .. . ... ... .. ... .... 34
Architecture of SASRec [53]. At each time step, the model can attend only to previous items

to predict the next item. . . . . . . . . .. L 35
Architecture of BERT4Rec, which applies bidirectional attention and tries to recover the

masked items [77] . . . . . . L 36
Schematic overview of Transformers4Rec [100] . . . . . . . . ... .. ... . .. ... 37
Development of the Music4All dataset [91] . . . . . . ... . ... .. L 38
The Represent-Then-Aggregate (RTA) framework [7] . . . . . . . .. .. ... ... ... 40
Generic overview of the proposed approach. Song embeddings are derived from frozen pre-

trained audio models and used to initialize the item embedding table. A transformer-based
architecture then integrates behavioral context, producing contextualized representations for

the next-item prediction task. . . . . . . . . . .. 42
Histogram of session lengths of the processed Music4All dataset. Sessions with more than 50
interactions are grouped in one bin. . . . . .. ... L oL Lo L 43
Architecture of our T4Rec-based models. During training, the model masks parts of the input
session and uses bidirectional attention to recover them. . . . . . . . . ... ... ... ... 45

Architecture of our RTA-based models. At time step i, the transformer aggregates previous
items into a session representation p.; with causal attention, and uses p.; for next-song pre-
diction. Training uses a hybrid loss that encourages similarity with the true next song (£,0s)
and discourages similarity with a set of negative samples S™(p) (Lneg). -« « -« o v o o o L. 48

Effect of the Transformer hidden dimensionality on NDCG@20 for the different model groups. 55
Learning curve of the different MusiCNN variants, showing NDCG@20 on the validation set 58
t-SNE visualization of the embedding space of the randomly initialized model after training. 59
t-SNE visualizations of the MERT and MusiCNN embedding spaces before and after training. 63
t-SNE visualizations of the MusiCNN-tuned and Artist embedding spaces before and after

tralning. . . . . . oL e e 64

xvi



List of Tables

[\

4.1
4.2

5.1
5.2
9.3
5.4

9.5

Yiyxpion e anddoong twv wovtéhwy T4Rec o dheg tig petpinée allohdynong. . . . . . . . .
Y0yxplon e anddoone twv poviéhwyv RTA oe dhec Tic petpnég allohdynong. . . . . . . . . .
Y0yxplon e anddoong poviehwyv T4Rec nmou axoloudolv tn Swadixacio npoenelepyacioc de-
douévwyv tou RTA . . . . oL
Y0yxplon e anddoone povtédny T4Rec mou exmoudedtnxay ye tic unepmapouétpove Tou RTA

Statistics of the T4Rec listening sessions before and after the filtering steps. . . . . . . . . ..
Statistics of the RTA listening sessions before and after the filtering steps. Apart from the
steps applied in T4Rec, here we also filter out duplicates from each session, keeping only the
first interaction. . . . . . . . L oL oL e e

Training and architecture details for Transformers4dRec and RTA models. . . . .. ... ...
Performance comparison of T4Rec models across all evaluation metrics. . . . . .. ... ...
Performance comparison of RTA models across all evaluation metrics. . . . . ... ... ...
Performance comparison of T4Rec models following RTA’s data preprocessing, which applies
an additional deduplication step within each session. . . . . . . . ... . ... ... .. ....
Performance comparison of T4Rec models trained with the RTA hyperparameters. . . . . . .

xvii



List of Tables

xviii



Extetouevn Iepiindn ota EAAN VX

YvoTApata 2uotdcewy Mouoixig

Ta teheutala yedvia, oL uTneeoieg avamapay YRS HOVOLXNC €YOUV ENAVATEOCDLI0p(OEL TOV TEOTO Ue TOV omolo
anolopfdvouue T wouowr. Ou unneeoieg autég €youv o yeydio Badud avtxataoThosl To QUOWKE Yo, OTLS
CDs xou dloxoug Pivuliov, Tpocépovtag ohoEva xoL SLEUPUVOPEVOUSC XUTUAOYOUE TEOYOUBL®Y GE exaToupdpLa
yerotee. Qot6o0, xadoe dev elvon e@uxtd ol yproteg va teptnyndoly eEavTANTiXd 6 aUTOUC TOUC anéEavToug
xotahdyoue, éva and Ta Baocud {NTAUNTE TOU €XOUY VO AVTIHETWTIOOUY ol TAATQOpUES auTéS elvar To e Yo
(PEPOUV TOUC UXPOUTES TLO XOVTA 0TI UOUGLXY TOU Toug opécel. Autdv oxpiBde Tov pého avoloufdvouy ta
CUCTAPOTA CUCTACEWY Louotxig, To ontola £Y0UV XATACTEL VEPENMOOES GTOLYEID TWV PNPLIXDY TAATPOPUNDY,
xadopllovtog Tov TPOTO UE TOV OTOL0 EXATOUMUELN AXPOAUTES AVOXUAOTTOUY VEX HOUGIXT Xl AAANAETLOPOUY UE
TOUG OYOTNUEVOUG TOUG XAUAALTEYVEG.

Yuvepyatixf AtRinon (Collaborative Filtering)

Io moARG ypovia, Ta cuoTAYATA cuotdoewy Bacllovtay ot TeYVIXEC TOU TOEEYOLY TEOTAGELS AELOTOLOVTOC
potiBo and ta dedopéva alhnhemdpdoewy yenotn—avixelévou. Ot ahyoprduol autol éyouv ulodetniel evpéng
%o €YOUV TUPOUCLACEL oNuavTXy emituyio oe Bidpopous Touels, cuumepthopfavouévou autod TS UOUCIXAS.
‘Eva yopoxtnetotind mopdderypo eivon 1 pédodoc tne Luvepyotinic Aiinone (Collaborative Filtering (CF)),
7 omola evtonilel opoldtnTES YeTOED YENOTWV V) AVTIXEWEVODY BACEL HEYEAOY TIVAXWY GAANAETIOPACEWY %ol
TeOTElVEL TPory0UdLoL TTOL €Y 0LV 0X0UOEL dhhoL YEhoTeS Pe Topbuolo Yoloto [92]. Ta dedouéva alniemidpdoewy
unopel vo nepthapfdvouy duecec aflohoyoelg, 6w Baduoroyleg 1-5 aotepidy, mou expedlouv Eexdidopa TN
TROTUNOT EVOC XPNOTY, 1} EUUECES HOPQPEC AVATEOPOBOTNONG, OTKC UPLIUOS VATIUPAY WY WYV, AYOPES AVTIXELUEVLV
) dAha ofator Tou UTOBdMAGVOLY Tpotiunon pe mo éupeso tpomo [48]. Mia dhhn owoyévewr ahyoplduwy CF
Baoileton ot teyViXéc TapayovTonoinone mvdxwy (matrix factorization) mpoxeévou va avamapactioeL YeHoTeS
XL OVTIXE(UEVO GE EVOY XOLVO BLAVUGHATIXG Y(OPO YOUNAOTERNS OLACTUCNE XA OTN GUVEYELDL Vo oVOXoNDeL
TpdTUTL OTLC TPOTAGELS TV Yenotdv [36], [43], [54]. Autd by pdvo Behtidver tny axpiBela Twv cuoTdoEwy,
oA UEGVEL Xol TNV HALAXOOUOTNTO XL TNV UTOAOYLOTIXY| OIOBOTIXOTNTA TWV CUCTNUATWY.

ITegropriopol

Iopd v amodedetyUévy AmOTENECUATIXOTNTE TOUS, OL TOpUBOCLUXEC TEOCEYYIOES Tapouctdlouy apxeTolg
neptoplopols.  ‘Eva Baowd mpdfinpa elvan 1 apondtnTtar dedopévev, xadog ol mivaxeg aAAMAETLIpAoEWY
XENOTN-AVTIXEWEVOU TEEQLEYOLY UOVO €Val Uxpd TOCOCTO GAWY TWV THAVOY AAANAETUOPACEWY, UE AMOTEAECUL
vou xordio taton o SUOXOAN 1) EEXYWYT| OUCLIC TIXWY TROTUTWY UTOXAEIC TIXA and TETOLOU £ldoug Bedopéva. DTNy
oxpaior Loph Tov, 1o TEEBANua autéd odnyel oTo amoxaholuevo TEdPANUa Yuyehic exxivnone (cold-start), to
omnolo epgavileton dTav véol yeHoTeg 1 Véo avTixeiueva npootidevion 6To cloTNUa xat To onolo mopauével plo
amd TiC peydhee mpoxhAoelc oTov cuyxexpévo topéa [95]. Ouolaotind, Aoyw Tne amousioc enapxmy oAl
Aembpdoewy, xadiotatar dOoxoho va mpotadel xatdAAnAo mepleydUeEVO o €vay VEo YeHotn 1) va mpotadel €va
V€O TpayoUdL oToug UTdpyovTeg yeNotes. (1g anotéheoya, ol YEYodol autég BUGXOAEDOUY TNV AVEBEIEN VEWY
HONNTEY VOV %ol EEEWBIXEVUEVLY LOVOXGV EBGOY, evioylovtas T uepohndio dnpogulioc (popularity bias), énou
ToL 01 BNUOPLAT] X0 TOAUAXOVGUEVY TEOYOUDLN TPOTEVOVTOL GUYVATERD, EVEM TO ALYSTERO YVWOTO TEPLEYOUEVO
nopopével apavés. To pavouevo autd oyt uévo eyeiper {nmiyato Sixatocivng oTo CUC THUOTA CUCTACEWY, AhRd
neplop{let xou TNV Towhio TwV TPOTECEWY, 0BNYOVTAC OE it Lo OpPOLOYEVH eunelpio axpdaone [34], [56].
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Extetopévn Ieplindn ota EXAnvixd

MéYodotw Baoiopéveg oto Ilepieyduevo (Content-Based Methods)

[ot TV AV TIIETOTLOT TWV TAUPATEVEL TEPLOPLOUOY, 1) €peuva €xel oTpagel ot uelddoug Pactopéves oTo TepleydUEVO
(content-based), ot ontolec opilouv Ty opoldTnTa HeTadl AVTIXEWWEVKV UE BAOT YopoxTNElo TiXd TOU TPopyovTaL
and 1o (5L0 TO MEPIEYOUEVO %ol O)YL a6 ToL DEBOPEVA GUUTERLPORAS TWV YeNoTwy. Ta yopuxTnelo Txd auTtd unopel
vo tepthopBdvouy 1660 yauniol emimédou tAnpogopieg mou e&dyovton aneudelac and To NNTXO Griud, 660 xou
mo ufmhol emnédou meprypopd oToryela, dnwe yetodedouéva 1 etixétec and yefotes [27]. Enedh ta yopox-
TNELo TS auTd elvon Stardéaipor oxdun xou dtay dev uTtdpyouY dedoUEva aAMNAETLOEdCEWY, oL U€VodoL auTég elvol
Wiaktepa Yproes Yo xouvolplol 1) oTdvia avamapaypéva Teayoldla. Evowuatdvovtag autdy tov tino mAngo-
poploc otn Sdixacio cGTUONE, To CUCTAUATA PTOPOUV VO TEOTEVOLY TpayolBLo axdun Xl Ywelc Lo Topixd
axpodoewy, petptdlovtog €tol To mpoBinua Puyehc exxiviong. Xtnv mpddn, moAAd cucTHUoTH GUVOLELOLY
cupTEpLpopt] TAnpogopia xan TAnpogopia and TO MEPLEYOUEVD, MOTE Vo ENWPEANDYOUY Amd T TAEOVEXTAUATI
%o TV BV0 Tpooeyyioewy.

‘Otav npdxetton yio yopaxtnelotixd mou e€dyovtan aneuvieiog and to NynTind onpa, wa amihy Aoom elvat 1 ypron
Tpooyedlaouévey yopaxtneloTxay [25], [120], Tou €)ouv XAUTUOXEVACTEL (OTE VAl AMOTUTOVOUV TIC MyNTIXEC
X0l QAOHATIXES WBLOTNTES Tou ofpatog. Topdtt autd ta yapaxtnelotxd elvan yerowa, teptopllovTal eYYEVOC w¢
TROC TNV IXAVOTNTE TOUG VoL AVATAELOTOUY TN cUVIETY, tepapy ) Sout| Tng povotxnig. o tov Aoyo autd, vedtepeg
epyaoiec otpdgnxay otny aflomoinom Bardlidy VEUP®VIXGY SIXTUMY YLoL TNV QUTOUTY EXPEINOY) dVaTopIoTACEWY
Tou amexovilouy To MYNTXXG oo oE Evay Y Weo LYNAGY SLICTACEWY, ATOTUTVOVTAS OUCLIOTIXES LOUGIXES
WiotnTee. IMohkég amd autée g peddboug axohoutdolv To mapddetyua g emBienduevne uddnone (supervised
learning) [49], [60], [67], [80] xou Bacilovton ot peydho cOvoho dedopévmy pe eTnétes yiot Ty xadodhiynon tne
daduxaotag exudinong.

Qot600, dedopévou OTL 1) GUANOYT| TETOLWY ETIXETOV efvan YpovoBdpa xou danavney|, tpbogatee epyooiec [14],
[38], [62], [63], [76], [101], [115] emxevtpcydnxay ot uedddouc Tou avtholy To emontixd ofipo anculeiug and ta
(Bl Tar Bedopéva, ywelc ™V avdyxn avipnmoyevols eTOHUAVONC—ULL TEOCEYYLOT YVWO T ¢ AUTOETPBAENO-
pevn wédnor (self-supervised learning). ¥to nedio e Eaywyhc Movowtc IDinpogopiog (Music Information
Retrieval (MIR)), tohudprduoe povtéla éxouv npoexnatdeutel oe HeYIAES CUNNOYES U1 ETIONUAGUEVWY NYNTIXWDY
BELYUdTWY ot umopolv oTr GLUVEYELX Vo Yenotporointoly yia TAYoc TeofAnudtwy, 6Tee 1 duTOUATY ETLAOYT
ETIXETOY xou 1) Ta&véunon eldove. Autd emtuyydvetan elte pe neputépw tpoocopuoyy (fine-tuning) oto tehxd
TeOBANUa elte UE YEHOM TOU HOVTEAOU amA®S we eEaymYER YapaxTNElo TIX®Y Ywpelc emmhéov exnaidevor. Té-
Tole¢ pooeyyioel petagopdc udinone (transfer learning) ouyvéd emtuyydvouv ion A xau avdtepn anddoon ond
eEELBIXEVUEVA LOVTERY TTOU EXTIALOEVOVTOL ATTOXAELTTIXE YLl TO CUYXEXEWEVO GXoTd Xou amodelcvbovTal WBLaftepa
yerowee 6tav ta diadéoipa emtonuacuévo dedouéva elvol TEPLOPIOUEVAL.

Awadoyixéc Yuotdoelg (Sequential Recommendation)

Iapd v eviunwotony) Tpoodo GTNV EXUAINCT] LOYURMOY NYNTIXWY AVATUQUC TACEWY, Wiol GAAT onuavTixy Bido-
TUOT) TV CUGTACEWY aPopd TN LOVIEAOTOMON TNS YEOVIXAS EEEMENC TV TPOTWNCEWY TWV XpNoTov. Av xou
elvor Aoyé vo unodéoouue 6Tl oL mpotiuoel evog yehotn ahhdlouv Ue Tov Yebévo, To cupPoTind povTéha
AVTETWT{LOUY TO IGTORXG TOU WG OTATIXG XAl AYVOOUV TN YPOVIXY| BUVaLIXY| TNG oLUTERLPOEdS. AuTé givon 1BL-
altepa xplowo 6Tov Topéa NG pouotxic, xadde 1 axedao wouctxhc ebval eYyYevag Ui axoloudlonr dadixaocio:
oL xpfotec ouvidng axolv pouctxf and Aotec avamapaywyhc, dhurouy Y ot cuvedpleg axpdaore [95].

It var amotunwdolv autée ot ypovixée eapthoels, ol uédodol dladoynwy cuotdoewy (sequential recommen-
dation) enextelvouv 1o mapadooiaxd mhaiclo e cuvepyaTnAc dLAUNONS, LOVIEAOTIOLOVTAGC TN dpaoTnetdTnTA
Tou YpNoTn we Wia dlatetoryuévr oxohoutior olknhemdpdoewy. Xe avtideon pe to Topadoctaxd cUCTHUNTA, To
dradoynd povtére podaivouv Téde oL Tpdogates eAOYES ETNEEGLOVY TIC ENOUEVES, EMBLOXOVTAS Vo TpofBAédouy
TO €NMOUEVO AVTIXE(UEVO e TO omolo elvon mdavd Vo aAANAETLORAOEL O YEHoTNG, BdoeL TOL TPOGPAUTOU Lo TOPLXOV
Tou.

H olotaor Bootopévn oe cuvedples (session-based recommendation) omotehel ewdinn nepintwon e napamdve
xatnyopiog, 6mou ol TeoPBAdelc eEapTdVTUL AMOXAETTIXG and TNV Tpéyouca cuVedpla Tou Yenotn, ywelc va
ATOLTOVVTOL HoXEOYPOVIA LoTopLxd dedouéva. Auth 1 teplntwon ebvon WBlaltepa yeRoldn YLol avedVUROUS 1) VEoug
¥eNoTes, xodidg EMTEENEL TPOCWTOTONUEVES CUC TACELS axdun) Xol Ywelc TNy UTapEn evde ONOXATEOUEVOL TEOQIA
Xehotn. Luvron mopadelypoato aroteAoby oL cuvedples axpdaong LoUCLXAS 1) oL GUVESPlEC TEPLYNOTNG OF NAEX-
TPOVIXA xaToo ThHUATe, 6mou To Bpayunpddeouo totopd dadpopatilel xuplopyo pdro. Eneldy ol mopandve
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xatnyopie cUCTAGEWY GUVIGTOVY oUGLHG TS TEoBAfuaTo Lovtehonoinong oxohoudiny, dev mpoxohel ExmAnén
ot v Teheutala dexaetia €youv adlomoiniel ue ueydhn emtuyio ot BIEC CPYITEXTOVIXES TIOU YPNOULOTOLOUYTOL
oty Eneepyacio Puoiic Ihdoooac (NLP) yio poviehorolnon yhdoooug, énwe oo GRU [20] xou ou Transform-
ers [109], xaddde xou oL topahhoryéc Toug Tou TpocupUboTNXAY EBE Yo cuotdoels [44], [45], [53], [103].

Y1ov ytpo e Hovoixig, W dueco oyxetixy epappoyT elvon 1 Autopatn Luvéyion Alotoac Avamoporywyhc
(Automatic Playlist Continuation (APC)). Avaugi{Boha, ou Motec avamapaywyhc €youv xotactel Bioftepa
ONUOPLATC TEOTOGC XATAVIAWGTG HOUCLXNS ToL TEAEUTALYL YPOVLOL, Xol OL YPNOTES OTLS YNPLOKES TAATYOPUES GUY VAL
dnplovpYolV Tic Sxég Toug AloTec Bdoel ayamnuévmy ey, cuyxexpluévne dlddeone N tepioTtaong axpdaorg.
Emopévee, plo and Tic mpoxhioelc Tou xohodvTo VO AVTETOTIO0UY Ol TAATQOPUES oUTES elval 1) aUTOUATY
EMEXTAOT TETOLWY ALGTEV UE TPOTO TTOU VoL DATNEEL TN HOLGIXT| GUVOY T xou Vo Tauptdlel UE To VPO TKV UTOAOLTLV
XOUUATLOV.

AvotOnwon IpoBAruatog xow Epsuvntixd Epwiiuata

Onweg avogépinxe TEomNYoUREVHS, To TEOEXTOUOEVUEVO UOVTEAA €YOUV OTOXTHCEL UEYOAN Onpogikior otny
xowotnta Tou MIR, yden otnv uPnin Touc andédoon oe Bidpopa TpoBAAuaTta e€aywYNg LOLCIXAS TANEOQOplaC.
Q01660, 1 ATOTEAEOUATIXOTNTA TETOLWY POVTEAWY 0T1) 000 TACT] WOUCIXAC UE BAoT CUVEDPIEC TOPUUEVEL OYETIXG
aveZepelvntn [104]. To Boowxd npdBinua mou mpaypateletal 1 Topoloa epyooio eivon xaté TOo0 oL NYNTXES
OVUTOPAUC TACELS ANO TEOEXTOUSEVUEVY LOVTENX PTopolV Vo BEATIOCOUY TNV andd00T CUCTNUATOY GUCTACNS
pouoxic mou Pactlovian oe cuvedpleg axpdoone. Ilo cuyxexpuéva, 1 épeuvd Yo otoyelel oty efaywym
AVOTOEAC TAGEWY iy ou amd Tedopota Loviéda oto nedlo tou MIR xou ot Biepebvnon Bla@opeTixmy TedTWY
EVOWUATOONS TOUG GTO CUGTNUA TORAYWYHS CUCTICEWY.

I'o tov oxond autod, mepapatilopocTte Ye 800 BlapopeTnd wovtélo cuotdoewy: TN BiBlodrxn Transform-
ersdRec (T4Rec) [100] tnc NVIDIA, xa to povtého Represent-Then-Aggregate (RTA) [7], nov npotddnxe
npbopata and tn Deezer Research. Ou apyitextovixée dlagopéc uetall Twv 800 Yog EMTEENOLY Vo AELOAOYY-
GOUUE TNV ANOTEAECUATIXOTNTA TG TEOCEYYIONC HAS OF DLUPOPETIXA GEVEQLAL.

Yuvohixd, 1 epyooia entyetpel var oamavThoel oo axdAoudoL EEVVITIXG EPWTHUOTAL:

e RQI1: Mnopolv oL TpoexTUdBEUPEVES NYNTIXES AVATHUPACTACELS Vol BEATIOO0UY TNV anddOCT| CUCTAUATKY
ovotdoewv mou Bacilovta oe cuvedpleg;

e RQ2: Ilowa tey v npoexnofdeuong anodidel xahltepa oe autd T TAACLO;

e RQ3: Ilotog elvon 0 omoTeEAeoUATIXGTEPOS TEOTOC EVOWUGTWONS TWY TROEXTOUOEUUEVWV AVITORUCTACEWY
GTO JOVTEAO TORAYWYHC CUCTACEWY;

> IUVELCPOREQ

Ou ouvelogopéc e mopoloas dimhwuotixrc epyaciog oto Tedlo Twv dladoyxdy cUCTACEWY HoVOXHE cuVvOdi-
Covton we e€hc:

o Alohoyolpe TNV anbdooT) TWV TEOEXTAUBEUUEV®Y MY NTIXWY OVITARACTACENY, Ol OTOlEC YENOLLOTOLOVVTOL
o€ cuvduaoud pe dVo cuothuata cuotdoewy, to T4Rec [100] xou RTA [7], 1o onoio mpocappdlovpe oto
TeoBAnua Tng cloTaoNg Youowhc pe Bdorn cuvedplec axpdaoTg.

e Yuyxpivoupe o axdhouda poviéda we mnyéc avanopootdoewyv: MERT [63], MusiCNN [80] xou éva
Owd pag poviého Pocioyévo oty opoldtnTa xoAteyvoy. Elepeuvoiue enione uedddoug mpooapuoyrc
(fine-tuning) péow avtdetixric uddnone tdve oto ntpoextoudevpéva embeddings we TeVIXH TEOCUPUOYHC
nediou (domain adaptation).

o Enclepyaldépoacte 10 clvoro dedopévey MusicdAll [91], to omolo mephoufdvel otopixd axpodoewy
nepinou 15.000 yenotev e mhatpdpuac Last.fm!| mpoxewévou va ywplooupe to 1otopind oe cuvedplec
axpoaonc. IapdAAnha, YENOWOTOWUUE To TEOEXTIOUOEVUEVOL LOVTERA YL TNV EEAYWYT| OVOTOLOOC TACEWY
Tpayoudldy anevideiac amd to NyNTIXd oAU

Thttps://www.last.fm/
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o AlEpeUVOUUE TOCO TNV AEYLXOTOINGCT] TV AVATUPAC TACEWY Xdle Tporyoudlol e Ta TpoeXToUdELUEVA em-
beddings 660 xat T cLVBLAG T YEHON TOUS TELY TNV TEAXN Tapay WY TV Lovaxwy tpotdoewy (late
fusion).

Oewpentixd YroBadeo
Mnyavixry Mdadnon

H unyovoer; pédnon (Machine Learning) anotelel xAdSo tne teyvntic vonuoolvng mou avomtdooet Hovtéha
avd var pordofvouy medtuna amd Bedopéva, WoTe vo tpayuotonololy npoBiédelg yio véa Belypata. O uédodol
unyovixfic udiinone droxpivovta oe tpelc Baowéc xatnyopiec: (o) Ty emPBrendpevn pddnon, 6mou to yovtého
exmoudeveton pe dedopéva yia Tor omofa 1) emoruovor xdde delypartoc etvar Yvwo T, xou podolvel T cuvdptnon
mou ovoyetilel elcodo xou €€0do, (B) ) un emPBrenduevn uddnom, émou to cloTnua emyelpel var avoohdel
E0WTEPLXEC BoUE xou cUCYETIOELS Y wplc emonpacuéva dedouéva, 6Twe o€ TpofAuate cusTadoroinong X uelwong
dlaotdoewy, xau () TRV evioyutx pdinor, omou évac mpdxtopos alAnAemdpd ue To mepBdihoy, emAEyovTag
EVEPYELEC UE OTOYO TN YeytoTonolnon pag adpolo Tixng avtopoBric. Mo evildueon xau Wialtepo oNuavTiny xatn-
yopia eivar 1 auto-emBhenduevn uddnon (Self-Supervised Learning), otny onola to {80 to poviélo mopdyel to
ofuorta eniBhednc—ryla mopdderypa amoxpUTTOVTAS TUAROTA TNE Eloddou xou podaivovtag tnv tpdBiedn toug.
Ot mpooeyyioeig autég €youv xathepwiel to Teheutaior YEOVIA, TEOCPEPOVTIS ATOTEAECUATIXOUE TPOTOUC EX-
TaldeuoNg Ywele TNV avdyxn HEYSAOL 6YXOU ETUCUACUEVLY DEDOUEVWY.

Exuddrnorn Avarnopactdoewy (Representation Learning)

H expdidnon avomapaotdoewy anooxonel oTny onoTOTWoY TV JEBOUEVLV G VoV BLUVUCHATIXG YWEO TOU
EVOWUATOVEL XATOL TEOTERT] YVOOT TOU apopd Tor dedouéva. Ot Texvinég auTég exandelouy VeEupwvixd dlxTua
vo pordafvouy avamapactdoelc ol onoleg pmopolv Uotepa va aflonoinioly ot Sudpopa TeoBiuata, Omwe M
To€lvounon 1 1 avdxTnom.

Metpuxi MdOnorn (Metric Learning)

H yetpwr) pdinon otoyelel otnv exudidnorn plog cuvdptnong anéoTAoNG TEOCUPUOCUEVNC OTO EXACTOTE
medBAnua.  Avtl yio T yphon plag Tumxrc petpiic 6mwe N Euxkeldeia andotaon, to yoviého ytilel évav
dlavuopatixd yOpo 6mov mapdpots delypato TOTOVETOUVTOL XOVTE X0l AvOUoLL Loxpld, OTwe anetxovileton 6To
Tyfuoe 0.0.1. H mo xowd datdnwon elvar 1 cuvdptnon xoctoug teumiétoc (triplet loss), n omofor AopPdver
évo Oelypa avagopde (anchor) A, éva Yetnd delypa P (napduoto pe to anchor) xou éva apvnuind delypo N
(avopowo). Oplleton we:

Liiples = max ||z — 27|13 — ||z = 2|3 + a,0) (0.0.1)

A N

omov 24, 2P 2N elvan to embeddings Twv Setypdtov xon a etvor éva teprddplo mou emBEAReL ENdYLOTN ombOTAON
avdueoo ota Vetind xou tor apvnTixd Levyn. H ouvdptnon xdotoug ehayiotomoieiton 6tav to Yetxd delyua
Beloxetow mo xovtd oto anchor and to opvnTind xotd Toukdyiotov o H emhoy xatddiniwy tplddwy elvou
xplown yio TNV amodoTxoTNTo TNE exntoldevong, xododg EmTayUVEL TN GUYXALOT.

Negative m
Anchor o LEARNING
.&O Negative
Anchor .
Positive Positive

Syfua 0.0.1: H cuvdptnon x60toug TEIMAETAC PEPVEL IO XOVTA TA ToEOUOLYL BelYUOTA Xal ATOUAXEVUVEL Tl
avépota [97].

iv



AvTidetixy Mddnon (Contrastive Learning)

H avtdenuxd pddnon (contrastive learning) pmopel va Yewpndel we el nepintwon e petphc udidnone.
Ytbyoc tne ebvon 1 avoryvédpron Leuydv detypdtoy tou oyetilovton onuactiohoynd (Yetind Ledyn) petadd moi-
Moy apynmdv. To Vetind Ledyog umopel vor mpoxdier elte omd BLaPopeTiX0VUE UETACYNUATIONOVS TOU (Blou
delyparog [19], [101], eite and avtiotolyion BLaPopE TGV LopQPHY BEBOUEVKV, OTIWS H)YOU Xal TV AvTIoTOL®V
TEPLYPOPMV o€ Quotxf YAdooa [66]. Ta apvnuxd delypotoa tpogpyovton cuvidng and ta undhoina otoyeia Tne
noptidac exnaideuone (batch).

Mio eupéwc yenorponototuevn ouvdptnon xéotoug eivor 1 InfoNCE [74], 1 onola evioy Vet Ty ogoidtnta aviueca
670 Oelyyo xou To YeTnd TOU, EVE AMOUAUXEVUVEL TOL ORVNTLXA:

exp(sim(z, z%)/7)
Yo exp(sim(z, z;)/T) + exp(sim(z, 21)/T)

Linfonce = — log (0.0.2)

6mov sim(+, ) elvor étpo opoldtntac (T.y. opoldtnta cuVNULTdVoU) xau T 1 TapdueTpoc Yeppoxpacioc. Me
TOV TEOTO QUTO, O YMPOS OVITUPUCTACEWY OPYOUVIVETOL MOTE VO ATOTUTMVEL TIC ONHUACLOAOYIXES OYECELS TV
dedopévwy. TNy npdén, téoo 1 triplet loss éco xau 1 InfoNCE yenouionololvtal eugéng oe epopuoyéc dnwe
VALY VOPLOT TPosOTWY [97], avdxtnon edvey [19] xou expddnon pouoixdy avarapactdoewy [101].

Mezaocynuatiotés (Transformers)

H opyrtextovixs) Transformer [109] eivan éva eldog vevpwvixol Sutiou tou ewofydn to 2017 yio to npdfinue g
AUTOUATNGC LETAPPaoTC Xot €xToTE GAhaEe pllixd TOV TEOTO AVTIUETMNLONG oxohouthaxdvy dedouévwy. Avti va
enelepydleton Tic €l06B0UC oELploxd 6Te Tor avadpopxnd vevpwvixd dixtua (RNNSs), yenoponotel évay tApne
TOPAUANANAOTIO OO Unyavioud autonpocoytc (self-attention), mou enitpénet Ty anotereoyatiny poviehonolnom
eCapThoEWY PEYEANG euPéletac. Buyxexpyéva, xdde ototyeio tne axohoudioc uropel vo eoTtidlel o Ao oL UT-
ohowna, BehTidvovtac TNV avamapdoTaot Tou Ye Tpémo mou Aoufdver unddn ta ouvupealopeve. To apyixd
povtého Transformer Pooiletan oe wa Sopr xwdixononti-anoxwdxonomty| (encoder—decoder): o xwdixonoL-
NThC dMutovpyel oVaTaEao TACELS TNS ELOGBOU XaL O ATOXWBIXOTONTAC TIC YENOLMOTOLEL YLoL TNV TapaywYY| NG
e€6dou. To xodéva and autd To TPRuaTo unopel vor anotelelton and TOAAG mavouoldTuTaL enineda, 6mou xdde
eninedo nepuhauBdvel avtompocoyf TOAMGOY xepoidv (multi-head attention) xou dixtua tpdothog Tpo@oddtnomng
mou eapuélovian Eexwplotd ot xdde otolyelo, eved emimAéov eqopudlovTon LTOAEWPOTIXEC cuvdéaels (residual
connections), xavovixorolnon xou Staviopotoa éomng yiot xwdixonolnon e ddtagng.

Metayevéotepes mapodhayéc tne apyrtextovixiic Transformer odriynoav oty avdmntuln eeldixeupévewy pov-
TENWY TOU ATOTEAOUVTOL ATOXAELT TIXG. AT HWOXOTONTY 1) ATOXWOLXOTOUNTY, AVAAOYA UE TOV EXACTOTE GTOYO.
To npdta, énwe o BERT (28], eivon xotdhinia yia epyooies dnwe 1 tadwvoéunon, étou amouteitar xatavonon
TOU VORPOTOC TN €166d0u. Avtideta, To povtéha pe amoxwdixoromty, 6nwe 1o GPT [84], unepéyouv oe mopay-
WYX TEOBAAUATA, OTWE 1) CUUTAHEWOT) XEWEVOL 1| 1) TapaywYY) Blahdyou avolythc woppnc. Téhog, ta yovtéia
HOOXOTONTA-ATOXWOLXOTONTY, dTwe 0 apyixde Transformer, ypnowwonolodvrol yio ox0omo0¢ YETATY NUATIOUOD
XEWEVOU, OIS N PNyavixy UeTdppao, 1 tepihndn 1 1 mopdppacn.

Metpuxéc Katdtagne (Ranking Metrics)

Y10 GUC THUOTO GUCTECEWY, Ol UETPXES AELOAGYTIONG TOGOTIXOTOLOLY TO OGO Xahd oL TpoBAéelc Tou HovTéAOU
aVTIoTOLY 00V OTNY TpoyHoTixdTNToL B, He dAAa AoYLa, To THo0o oA oL TPoTEWOUEVES ETAOYES Toupldlouy Ue
exelveg mou o Ypnotng medypatt TeoTd. Optouéveg and auTég TIC HETEIXES YPNOoLoToloOVTAL XUpiwe oE TEOPBAT-
portor Tagvépnone xou avupetonnillouvy 11 cvotoon we éva duadnd npdPinua tedPredne (oxetind # un oyeTnd
avuxetyevo). Mio dhhn xotnyopia, oL AeyOeEVES HETEES XUTETAENC, AEIOAOYOUY TNV IXAVATNTO TOU GUC TAUATOS
vo tonodetel tor oyeTind avuixelyeva Ynhotepa ot Aota cuotdoenv—xadde exel Yo Vélaue va Pploxovton ol
TLO OO TEC TPOTICELS.
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Recall@Qk

H petpuer) Recall@k petpd 10 1060676 TwV GUVORIXGY GYETIXMDY AVTIXEWWEVWY Tou eugavilovion oTic TpwTeg k
Véoeig tne Tadivounuévne AMotoac:

Recall@k # OYETUDV AVTIXEWEVWY OTIC TPWOTES k Véoelg
eca =

0.0.3
# CUYOAMXWY OYETOV AVTIXEWEVKDY 0To ground truth ( )

Av xon dev hopfdvel UTOPN TN CELRE EUPAVIONG TWV TYETIXWY AVTIXEWEVLY EVTOC TOL top-k, anoTun®yvel T6c0o
%0AG To oboTNUA XohOTTEL TO EMIUUNTO TEPLEYOUEVO GTO MO 0paTd TN TN AloTog.

MAP@k

H petpueh MAPQ@k (Mean Average Precision at k) aZiohoyel emmiéov tn oelpd xatdraine. o tov unoloyiopd
e, apyxd hapPdveton o péoog bpoc tne axpifetac otic Yéoelg 6mou eppovilovton To OYETIXE AVTIXEIUEVD, €0
To k:

1 B .
APQ@k = kT ; P(i) - rel(i) (0.0.4)

omou P(i) elvan 1 oxpifeia ot Véon 4, rel(i) € {0,1} deiyver edv to avtxeipevo elvan oyetxd, xou R elvon
0 optduoe TV oxeTX®V avTixewévey. O péoog dpoc tne APQk yio 6ha tar delypata divel to MAPQk, to
ornolo emPpofedel cuoThUaTa TOL TomoleTolV T oXETXE avTixelueva vwpltepa otn Mota, oe avtideon ye to
Recall@k.

NDCG@k

Avtictowa, n petpueh NDCG@k (Normalized Discounted Cumulative Gain) tiwpel tor oyetxd avixeiyeva
nou epaviloviol yauniotepa 0Ty XoTdTal ), SlonpvTac Ye Tov Aoydprduo tne Yéone ¢ mou epgaviCovton:

k

2re1(i) -1
(0.0.5)

omou rel(i) elvan n Boduoroyia cuvdgelag tou avtixewévou otn Véon 4, n onolo umopel vou elvon duadixy 1
aprdunTed (m.y. 1-5). H xavovixomounuévn exdoyn tne petpuxrc urtohoyileton we:

DCG@k

(0.0.6)

YixeTwxn BiBAtoypapia
Expddnon Avanapactdoswy and Hyntixd Sruata

Ye auth) ™y evotnta e€etdloupe Lovtéla Tou pardaivouy var avamaplo ToUY ToL NYNTIXE ohpata o8 Evay dlavuo-
HATXO Y WEO, UE TEOTO TOU VoL DIEUXOAUVEL TNV AVAXTYOT) TUEOUOLDY XOUHUATILV XOL VO ATOTUTVEL TIC DOUIXES
WioTNTEG TNE povohic. OL undpyouceg mpooeyyioel axoloudoly eite emPBhendueveg yedddoue, aflomoldviag
XATOLL HopPY| TPOLTIEPYOVCUS YVAONS YLt TN Hovox opodtnta (Y. €TXETES, OTUTIOTXE CLV-OXPOUONC),
elte auto-emPBAeNOUEVES TEXVIXES TTOU EXUETAAAEDOVTAL GUANOYEG UN) ETUCUACUEVWY BESOUEVKY Xoll EXTIOUSEVOUY
HOVTEND PE ETXETEC TTOL eEdyovTon amd To (Do Tar dedouéval.

EmBAendueveg Médodor

Ou emfBenodyeves mpooeyyloelg exudinong HouoIHmyY avanapao Tdoenmy Yapoxtneilovton and T xehon ewtepnd
TOREYOUEVODY ETIXETOV 1 OYOMACU®Y Tou xadodnyolv tnv exmaidevon tou yovtéhou. To onuata emonteiog
unopel va tepthoBdvouy dedouévo aAANAETBpAoNG YENOTAOY, oNUACLONOYIXES ETXETES, TANPOopoples eldouc 1)
dudrdeong, xododg xan AR emenuéva petadedouéva. Me 1 BedtioTonolnoyn Twv avamapas TICEWY DOTE Vol
mpoPBAénouy 1) va euduypopuilovtar ye tétoloug avipwnoyevels otdyoug, To LOVTENA XoTOPYDOVOLUY Vol GUANI-
Bdvouv pouvoxd oucLHdELS WILOTNTEC TOU avTIoToL oY ot xadiepwpéves xatnyopieg avtiindne xau yeriong.
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EvBewtnd, ov Pons xou Serra npétetvay to MusiCNN [80], pia oudhoyt cuvehtixdv dixtowy (CNNs) mou
exnoudedovton Ue emBAenouevo teémo yio TNy npoPhedn etxetdv povowhic. To MusiCNN déyetan wg elcodo
hoyopriuixd mel-gaoupatoypaphuata 3 Seuteporéntwy xou e€dyet Ty mdavotnta eupdvione xdde piog and tic 50
TpoxOpLOUEVEC ETIXETEC. DUYXEXPWEVA, TO 0PY X6 GUVERLXTXO eninedo eopuolet ouddes xddetwy xou oplldv-
TV PIATEWY BLUPOPETIXWY PEYERMY (OTE VO ATOTUTVEL PUOUOTIXG XU YPOVIXY YoROXTNELo TIXd, avTioTolyaL.
To e&aryoueva yapaxtneio txd dtoyetebovial ot Tpiot cUVEAXTIXE ETineda oL Xatary pdpouy LPNAdTEPOL ETLTEDOU
TAnpogopiec. Autd to eninedo mepthauBdvouy UTOkEHATIXES GUVDEGELC TOL GUUBdAlOLY 6T cTadepomoina
e exnaidevong. Téhog, ta véa yapoxtneloTixd utoBdhhovtal o max-pooling xou mean-pooling oto nedio Tou
¥eovou wote va napaydolv 800 BlaviouaTa YopoXTNELo TIXWY, To omola evidvovton xal Tteofdhhovton 6Ty Sldo-
Toom Tou teAxol embedding (200 yio to Baoixd povtého xou 500 yior To YeEYONUTEPO), TpLY TEPACOUY and éva
TApw¢ ouvdedepévo eninedo mou mopdyel o logits yio tic 50 xatnyopleg etixetddv. Ov ouyypapeic anédelay
peTtall dAwvY v anotekeospatixdtnta Tou MusiCNN oe cevdpla yetogpopds pudidnong, e€dyovtog o yopux-
mewoted MusiCNN xou exmoudebovtag évav amhd tadivount yio Tavounon eldoug emtuyydvovtog axp(Bela
ouyxplown pe povtéha exmoudeupéva o€ TOAD YeyohlTep oUVORA BEBOUEVLV.

AvtosnifPiendpueveg Médodol

[apét oL emPrendpeves npooeyyioels €youv emtiyel LPNAY anddoon oe moAE mpofiiuata, Boacilovta oe
EMUEANUEVES ETIXETEC OTWC tags 1 oyohlaouols, TwY omolwy 1) GUANOYY oe UEYEAN xhluoxa elvan damovney| xon
oLy vé YopuPndng 1 urtoxeyevixy|. O neploplonds autdg 0BHYNOE OTN GTEOYPN TEOC TNV AUTOETUBAETOUEYY, pdinom
(Self-Supervised Learning, SSL), 6nou ta yoviéla exnoudelovion o€ UEYHAEC CUNNOYEC UM ETULOMUOCUEVELY
YTV dedopévey, emhbovtag npoxatapxTixd TpoPAiuate (pretext tasks) pe etixéteg mov npoxiTTOLY 0d
T (Sl To Bedopéva. Te yevixéc ypouuéc, diaxpivovtar dlo xlpta napadelypoto: 1 avtidetnd uddnor (contrastive
learning), n onola avtiwetwnilel Tponononuéves exdoyéc Tou Blou ofuatos we Yetixd Lebyn xou dhho delyporta
oc apvnuxd [19], [37], [101], xou 1 tpoPhentiny| poviehonoinoy (predictive/masked modeling), 6nov to yoviéro
podaiver vo TpoPhénel xpupuéva i edhelrmovta tpApoata tne ewodédou (3], [4], [28], [47], [62], [63], pe Bdomn Ta
drardéoipa oupgppalouevo. AELOTOLOVTIC TEPAOTIEC TOCHTNTES UT| EMCHUACUEVLY NYNTIXGY CNUATWY, oL uédodol
QUTEC ETUTPETOVY TNV EXTALBEVOY) YEVIXDY OVATHPUCTACEWY LOUCIXTE TIOU AmodIBOUY AMOTEAECUATIXG GE TOWX(AN
npoPBiruata MIR, 6nwe mpdPiedn etixetddv, to€ivounon xo avdxtnon.

‘Eva emituymuévo nopddelypa avthc tne xatnyoplog eivor o MERT [63], éva yevixol oxonol mpoexnaudeupévo
HOVTENO Ylol XATAVONON UOUCIXNG, ONUOVTIXG pxpoTepo ot Uéyedog amd dAka avtioTolyo UOVTERX OTwS TO
JukeMIR [14]: 95M rnopdpetpot yio to Pootxd poviéro xou 330M yia to peydho. To MERT ulodetel tnv opyttex-
tovix Tov HuBERT [47], pe Boow| Swpopd 6t avtl yio opadonomnuéve MFCCs w¢ ground truth, yenowonoel
YOPOXTNELO TS OYEDIAGHEVA VoL SUNNOPBEVOLY TNV ToAuTAOXSTNTA TN povowxhc (Tyrua 0.0.2). Tuyxexpyéva,
onwe xou oto HuBERT, to povtého apyixd xwdxonotel nyntixd anoondouota 5 SEUTEPOAENTWY PE HOVODLAO-
Tateg oLVEAIEELS Xou oTN cuVEYEla Teowdel wio paoxaplopévr exdoyn tne axoloudiag oe évav Transformer mou
AmOTUTAVEL TIE YpoVixég e€optroels. IBaitepa onuavtind elvon 6L, yior var eviappivel Ty oxei3r) Slomptty| ovo-
TP TACT, TOU POUGLXOU CHUUTOS GE aXOUCTIXO ETUNEDO, OL GTOYOL TNG CUVERTNONG XOCTOUE THPEYOVTOL antd
évav Residual Vector Quantisation—Variational AutoEncoder (RVQ-VAE) [26], évav autoxwdixoromt Tou
oLPTLECEL TOV 1YO OF BLAXEITEC XwdIXOTOINUEVES axohoutieg xou Aettovpyel wg «oxouoTxdg Baoxahocy. Evah-
Ao Tind, oL ouyypogelc Siepevvnoay xou Lovielomoinom tou fiyou péow opadonoinone (k-means) log-Mel gao-
HOLTOY paPNUATOY %o yopaxtnelotxedv Chroma, 1 omola wotdoo napouctdlel {ntiuata xhudxwong. Emnhéov,
elodyetol évag poodeTtog Hpog XOGTOUS AVUXATAGKEVNE TOU AELTOVEYEl (C «UOUGIXOC BAoXINOCY, GLYXpvoVTAC
v éZodo tou Transformer pe to gaopatoypdynua Constant-Q Transform (CQT) dote va amotundvovio
TIANEOPORIEC TOVIXOTNTOC Xal dpUoViag.

Alodoyixéc Xuotdoelg (Sequential Recommendation)

O axohoudiec cAANAETIBRACEWY YENOTWY, OTWS Ol AOTES AVATAPAYWYNE 1) T LOTOPIXS AXPOAOEWY, UTOEOVY Vol
Yewendoly puoxd o SoteTayUuéves axohovdies avTixelpévwy—mrapduola Pe T Aé€elg oe pla mpotao. Auty
n avaroylo 0dYynoe oty voldétnon TexVY povielomoinong axoloutdy and to medio g encdepyaciog
puowiic YAwooac (NLP) otov ydpo twv cuotdocwy. Ilpdiuee epyaciee édei&ay Ty anoteAecyatixdTnTo 10V
aVaBPOUIXAY VELPWIXOY dxTlwY (RNNS) oty anotinwon Beoyunpddeouwy xou peconpddecuny eZapTRoemy
ot ouvedpiec ypnotdyv [44], [45], evdd petayevéoTepa HOVTEND BUCIOUEVE OTNY QUTOTPOCOYT| XL TNV OPYLTEX-
tovix?] Transformer eméxtewvay autés Tic Wéeg wote va yepilovtan eCaptioeic ueyolitepng epPéretac [53], [100],
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EyApa 0.0.2: H dodixacio npoexnaidevong mouv axohoudidnxe oto MERT [63]

[103]. IIio mpbogata, N paydoicr avdnTuEn TwY HEYEAWY TROEXTUBEVUEVWY YAWwoowMY wovTéhwy (LLMs) éxel
TPOXOAECEL EVOLOPEPOY OYETWE e Tov Tdavd Toug pého otig Bradoyinés cuotdoelg [82].

To Transformers4Rec twv Moreira et al. [100] arotelel yopoxtnploTind TopdBELYIoL TNG EVOWUSTWONS KoUVO-
Topuwy Tou NLP otov topéa twv cuctdoewy. Ilpdxetton yio wa BiAodrixn avorytol xiduxa, Baciouévn otr cuk-
Aoyt Transformers tnc HuggingFace [113], mou dieuxolivel tn yefion olyypeovev opyitextovixdy Transformer
yia Sladoyée xou session-based cuotdoeic. And dmodn apyitextovinic, to TransformersdRec vnootnpilet
nndopa povtéhwy Transformer (6nwe GPT-2 [85], Transformer-XL [24], XLNet [116]) xou eodyer npbo-
VeTEC AEITOVPYIUOTNTES AMOPAULTNTES YO EQPUPUOYES CUOTACEWY, OTKC XAVOVLXOTONOY xou cuVAlpoLoT| YapaX-
TNELO TV €L6OB0V, oTudloxT) EXTAlBEUGT xou aLOAOYNOT XL UTONOYIOUO SNUOPIAGDY UeTpxddv xatdtadng. Ilo
ouYXEXPWEVA, 1) BIBA0U XN TopéyEl UNyYavViopoUg EVOOUATWONG ETUTPOCUETWY TANPOPOELHY, OTKC XATYOPIXd
YOUPOXTNELOTIXE oL 0popoly To aviixeluevo (pouoixd eldog, xodhitéyvn %.8.) 1 tov ypfotn (neptoyh, tOno
ouoxeunc), o onofo avamapio Tavton PEsk Eexwelo Ty Tvdxwy embeddings, dnwe eniong xou CUVEYMY Yopox-
meto Ty (t.y. Tn). ‘Oleg autéc oL Thnpogopiec propoly va evonuatwdoly opakd otny eicodo Tou povtéhou,
Yio ToedBeLyUo Ue cuVEVwoT) ue To embedding tou avtixewwévou 1 ue ToAhamhactacpd avd otolyeio.

Emuniéov, to Transformers4Rec vrootnpilel exnoidevon ue diapopetixoie godnolaxolc oToyous:

e Causal Language Modeling (CLM): mp6fhedn Tou enduevou avTixeyévou ue Baor to Teonyolpeva, 6mwe
oto SASRec [53].

e Masked Language Modeling (MLM): tuyola amdxpudn ovTIXEWEVGDY XOU OVAXATAOXEVY) TOUS, OTWE 0TO
BERT4Rec[103].

e Permutation Language Modeling (PLM): npdfBhedn avtixewévwy pe Bdorn tuyaiec avupetodéoes, 6mwe
oto XLNet [116].

e Replacement Token Detection (RTD): 8itdxplon Teay ottty xot GVTIXUTESTAUEVLY AVTIXEWWEVGY, TS
oto ELECTRA [21].

Katd v exnaldevor, n axohroudia ei.oddou Tpomonoleital avdhoyo UE TOV EXACTOTE GTOYO Xl TPOPOBOTELTOL OE
plar Slapoppaotun otoifia and eninedo Transformer, n onolo eumhoutilel TIC AVUTUPUTTACELS TV AVTIXEWEVEY
pe TAnpogopia Tou apopd tar cuppealdueva. Xtn cuvéyewa, pla xepahh TedBredne (prediction head) extehel
) {ntoduevr epyaoia, eite mpofrénovtag To emduevo aviixelyevo otn oeled, elte emhbovioag éva TpoBAnua
TaEvéunoNe 1 ToAVdEOUNoNG TOL apopEd OAOXANEN TNV oxohoudid, OTOU Ol UVATUEUC TECELS TWV OVTIXEWWEVKY
ouyywvedovtal oe éva eviafo didvuouo oxohoudiog. Ilelpapatinés peréteg oc TOAATAG GOVORA BESOUEVGLY NAEX-
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TEOVIXOU eUTtopiou xou EWBHoEWY XaTEBEE oY OTL oL TpoTevdueves apyttextovixés Transformer unepelyov otodepd
evavtl Ty xhoowey RNN xau un veupwvixov yedddny. Emmiéov, to TransformersdRec yenowonoirinxe
ETUTUY WS OF peaNoTIXES EQapuoYEe, xepdilovtag dlo oyetxole daywvioyole [71], [96].

Awadoyixéc Yuotdoelg Mouowxng (Sequential Music Recommendation)
To Y0voho Acdopeévewy Music4All

To civoho dedopévey Music4All [91], nou dnwovpyRdnxe to 2020, nephoauBdvel Lo TopId axpOSCEWY YENOTHOV
tou Last.fm? xou, T0 onuovtidtepo, cuvodeletor omd Nyt AmooTdoPaTe Yo x8)E Tporyoldt. Anuoveydnxe
oe dlo @doel, 6mwe gaiveton oto Lyfpo 0.0.3: pio gdon culhoyc dedouévwy yenotoy (user phase), étou
XOUTAYEAPNUOY TOL LOTOPIXE oxpodoewy, xou wla @domn cuihoyhc dedouévewv teayoududv (song phase), 6mou
ouyxevipwinxay to yetadedouéva xou amoppipUnxay xouudtia pe eAnelc mAnpogopiec. Ihio ouyxexpuéva,
To cUvolo mepthauBdvel ypovoonuacuéva loTopxd axpodoewv and 15.602 yerotec tou Last.fm, xotayeypoy-
péva to Sidotnue amd 1 Tavouapiov éwme 20 Maptiou 2019. Kdlde ypriotne éxet xatd yéco 6po 361 yeyovdta
axpoaomg, Tou avTicTolyoby neplnou oe 200 SpopeTind TeayoLdia. Metd TV oAoxAfpwot TNg GAoNe oLA-
hoyTic tparyoudundy, To MusicdAll nepieiye 109.269 povoixd xopudTio, EPTAOUTIOUEVE UE TANUMOEN YOPUXTNELO-
TIXWV: anoondopata 30 SEUTECOAENTWY Omd TO UEGO TOU TEAYOUDLOD, IXOUC TG YUPAaX TN TIXY and To Spotify
API (6nwc danceability, valence xou tempo), xadde xou hemtopepr petadedouéva mou nepthopfBdvouy titho
TEayoudLlol, aAMTEY VY, dhunouy, etixétec eldoug, etxéteg ypnotodv and to Last.fm xou otlyouc. To va
avadel&ouv TN YenowdTnTd Tou, ol dnulovpyol Tou yenotwonoincay to Music4All oe didgpopa ntpofAfuata, 6w
oclotaon povotxie, tadvounon eldoug xou Tagvounon diddeonc.

User Phase Song Phase
e~ —]
N —
> BUILD A DATABASE — |.__|.| COLLECTMETADATA FOR ,| COLLECTLYRICS FOREACH [(| [
OF USERS Spotify EACH SONG SONG [usixmatch
— — ]
> GET THE USERS LISTENING — |, DOWNLOAD THE AUDIO AND e s
HISTORY YouTube CUT 30 SECONDS PIECES L ANGDETECT
v t 7 Y]
Me—————
ANONYMIZATION OF USER Every | FILTER THE TAGS TO REMOVE SONGS WITHOUT
ALL INFORMATION FROM
INFORMATION Noise At FIND GENRES el iy
v _Once
v </ t J
_— -
REMOVE USERS WITH FEW ,| COLLECT TAGS FOR EACH r FINISHED
INTERACTIONS SONG @5 DATABASE
A

Eyhua 0.0.3: Awdicosio dnulovpyiac tou cuvdrou dedouévev Music4All [91]

Meé9odoL Baciopéveg o Acdopéva AAANAETdpdoEwY

Ouolwg ye 6,1 meprypddope yia Tic dladoyixéc cuoTdoELS, To TEOBANua g Autduatng Xuvéyione Alotag Avo-
nopoywyc (APC) anotelel ovolaotind éva mpdPinue poviehonoinone axohovdcdv. Luvenne, dev npoxahel
ExmAngn 6t mtoAAéC mpdogates epyaoieg aflonoloty xahepwUEVves apyLTEXTOVIXES poviehomolnone oxohouthav
Yl TNV avTETOMOY Tou. QoT600, TOAEC and autéc TopofAENoUY TOV THEAYOVTA TNG XAUOIXWOWOTNTAS, O
omolog elvan xploog yia e@apuoyéc otov mpaypatixd xéouo. Me Bdon auth v mapatrenor, ow Bendada
et al. [7] mpdtewvay éva yevixol oxomol mhiaiclo v to APC, to omolo emtuyydvel woopponion LeTAE XAL-
HOXWOLIOTNTOC X0 EVENE(OS, OTOYEVOVTOS VO XAUTAOTAOEL TROYWETNUEVA HovTéha axolouthdv (6twe RNNs
xou Transformers) npoxtixd aflonoiolo oe Tpoypatixd cuoThata petddoone povowhc. H mpooéyyion
Toug, we v ovouaoia Represent-Then-Aggregate (RTA), Soywpiler t Swdwacia cbotaone oe 800 Baoixd
dopxd otouyeio: pio cuvdptnon avanapdotaone Teayoudlol (representer) xou piot cuvdptnon cuvddpolone oe
eninedo Mo tag avanapaywyfc (aggregator). Ot avamapao T8oels Tparyoudldy urnopolv vo e&aytolv pe Sidpopouc
Tponoug—amneudelag and dedopéva arknhemibpdoewy péow WRME [48] ¥ ye e@opuoyt unyaviopol mpocoyic 1
amhol pécou 6pou oe embeddings yetadedopévwv—yon cupfBoriloviar we hs = ¢(s). Autéc oL avanapas TdoEelS

2https://www.last.fm/
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OTY) CUVEYELDL CUUTTOGOOVTOL Amd YL CUVAETNOT g o€ plor avamoedo taoy axolovdog Ay, XPNOULOTOLWOVTAC ATAES
pedédoug dmwe Tov péoo bpo 1 mo oivieta povtéha oxoroudidy, énwe gated CNNs [112], GRUs [20] ¥ Trans-
former decoders [109]. H tehuxf Badporoyia cvotaone unoloyiletar péow Tou €6mTepin00 Yvopévou PeTalld
twv embeddings tne axohoudiog xar Tou teayoudod. Katd tnv exnaidevon, ta 5o Baocwxd Sopxd otolyela—o
representer xou o aggregator—BeATioTonololvToL and xovol e o avTeTiny) cuvdpTnoT x60Toug, 1 onola Bi-
axplvel To TpaypaTind ETOUEVO xoUpdTL x&le uTo-AioTog p and apynTixd Belyuota TOL TEOEPYOVTAL amd TEoyoldLo
extog e p. To dpdpo toviler 6TL 1 xhwoxwolpoTnTo Slatnpelton Ye tnv elaylotonoinoy twv online npdewyv:
HOVO 0L AVOTOPUo TAOELS TwV MoToOV unohoyilovton xatd Ty e€aywyn (inference) ond to embeddings, to onola
elvol UTOAOYLOUEVOL EX TWV TEOTEPWY, PELOVOVTOS TNV Xaduo Tépnon amdxELoTC.

Mé9o0dotw Baciopéveg oto Hyntixod Ilepieyduevo (Audio-Driven Methods)

Eve 1 mponyoluevn mpocéyyion ecudlel otny o&lonoinomn twv dedopévev alnienidpaone yio tn cuvéylom
AOTOV AVATORAYWYHS, TLO TEOCQUTES TPOOTAVEIEC BIEPELVOUY TNV EVOWUETWON TOU NYNTXO0) TEPLEYOUEVOU
ot dwdixacio clotaone. e pio tpdogotn epyacia, oo Tamm xon Aljanaki [104] pehetolv 1 ocuunepLpopd
TPOEXTIOLOEVIEVMV NYNTIXODY AVATOPAC TACENMY Ty cLUVOLALOVTOL PE TO LOTOPXE UXPOBCEWY TWV YENOTMV.
T v a&lohdynom, oL cuyypoapeic yenowonotoly To oivoro dedouévwv Music4All-Onion [72] pe ypovind Si-
ayweloud (o teheutalog prvag yia validation xou testing, To mponyoluevo étog yio exnaldeuon) xon oLy Xpivouv
€81 drpopeTinéc nynTixée avomopactdoelc (MusiCNN [80], MERT [63], EncodecMAE [76], Music2Vec [62],
MusicFM [115], Jukebox [29]). H a&iohdynon npaypatonoeiton ye Tic petpuéc HitRate@50, Recall@50 xon
NDCG@50, xatatdocovtag pévo Tpoyoldla mou Sev €Y0oUV axoUCTEl TEONYOUREVWS, PE UOVTEAO avapopds
(baseline) évo povtého ue tuyoia apyxomomuéva embeddings avtixeéveyv. To amoteréopata Seiyvouy 6Ti
0€ XATOLEC MEPINTOOELS O GUVOUAOUOEC TIEQLEYOUEVOU Yol TANPOPORLWY aAANAeTidpaone BeATidvel onuavTixd tny
an6doaoT), v TawTdypova emonuaiveton uio aoup@wvia HETAED TV XATATIEEWY TWV HOVTEAWY Ot TEOPBAfuaTa
MIR xou 10 €181x6TERO TEOBANUO TV CUCTAGEWY.

Aedopeva xow Medodoloyia

O Baowdg otdyog g mapoloas epyaciog eivan 1 oalononoy TEOEXTUBEVUEVKY HOVTEAWY Yia TNV e&aywy
embeddings and oruota poucxic xou 1) SlepedvNoT BLAPORETIXWY TEOTWY EVOWHUATWONE TouC ot éva a)oTNUA
ouotdoewy Baciopévo oe ouvedplec. T'ia tov oxond autd, BacioTixoue oe dlo uTdpyOoVTH TAXCIL TOU TEEL-
yedpnxov mapamdve: TN Bi3hodfxn TransformersdRec tne NVIDIA [100] xou to yovtého Represent-Then-
Aggregate (RTA) [7] tnc Deezer Research. Kou otic 800 nepintdoele, to dedoyéva poc anoteholvton ond
cuvedpleg axpdaorng, ol omoleg e€dyovial amd €va Louoxd cUvolo dedouévenv Music4All mou nepiéyetl 1o topixd
axpodoewy tepinou 15.000 yenotdv [91].

Yto Eynpa 0.0.4 napovotdleton tiot GUVOTTIXY ATEXOVLON TN TPOTEWVOUEVNG TPOCEYYIONG. XE YEVIXES YPOUUUES,
Ta e€oryoueva MynTxd embeddings yenowonoolvton ©¢ apyixés aVamapAcTAGELS Yiol Tol Teayoldla Tng xdie
ouvedplag axpodaong, mou anotelel v axoroudla ewwddov. H axoroudia auth elodyeton o wa apyttextovixy
tomov Transformer, tng onolauc Ta enineda AUTOTEOGOYAC TUEAYOLY AVATUPAC TAGELS UE EUPOCT) OT GLUPEALO-
HEVQL, TIOU OTY CUVEYELDL YPNOLLOTOOUVTOL Yiot TNV TROBAEYT TOU ETOUEVOL AVTIXEWWEVOL. 2TIC ENOUEVES EVOTNTES
TeplypdgpovTal 1 tpoemelepyacia Twy Sedouévwy xau oL TEYVIXES Aemtopépeteg Yio xadéva and ta dvo mhaiota.

ITpoeneiepyacia Acdopévwy
Emiloy? Suvdiouv Acdopevwy

Kotd tny emhoyn Tou cuvdlou Bedouévmy, x0plo xpltheto Nty 1) SladeaiudTNTA NYNTIXOY ATOCTUCUETWY, XoodC
TOL TPOEXTIOUBEUUEVOL LOVTENX TTIOU YENOLOTIOLOVUE AELTOLRYOUY aneudelag Tdve oTo ofjua you. Autd to xpitrplo
ATEXNELTE opXET DoAY cUvoha dedouévemy. T opdderypa, To Melon Playlist Dataset [33], ntopdt dioadéter
HEYAAO aprlud ETUEANUEVLY AOTOV avamapaywYhe, Tapéyel uévo mel-goouatoypapiuota youning aviiuvong,
%xadLlo TOVTAS aBOVITN TNV avaxataoxeun] Nyou Vdniig todtntag. Emnhéov, mepléyel xuplwg xopeotiny) pouoxt,
%4TL mou Vo YUmopolce Vo elodyel ToATIoWXES 1 upohoyixés npoxatolfpelc. Iapouoine, to Million Playlist
Dataset (MPD) [15], av xou Stordéter extevi| SeBouéva SUUTEPLPORES XENOTMY, JEV TEQLNOUPBAVEL T MTLXS YopoX-
meoTd. H avéxtnon toug péow tou Spotify API Yo ritov e€aupetind ypovoBdpa AoYw TEpLoptoptv TayUTNTog
xou byxou dedopévev. AauBdvovtag unddm toug Tapandve nepoplopole, emiéaue to Music4All [91], to onolo
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Syuo 0.0.4: XuvonTin anexovion TS TeOTELVOUEYNS TEoaéyYLons. Ol avamopaoTIcELS TWV TEOYOUBLOY
eEdyovTon omd «ToyWUEVHY TPOEXTOUSEUUEVA HOVTEND XAl YENOULOTOLOUVTAL Yiol TNV oe)LXOToiNcT| TOU
avtiotolyou mivaxa. Mia apyitextovixr] Transformer evowpatdver Thnpogopiec and ta cuuneplpopixd
dedouéva, TapdyovToc BEATIWUEVES OVITUPACTICELS UE oXOTO TNV TEOBAEdT Tou enduevou Tpayoudlol.

TapEyeL Nyuxd anoondopoata 30 deuteporéntwy pall HE 1o Topd axpodoewy. Av xou To TAEES UVONO TEPLA-
opfdvet 109.269 tpayoldia, wévo 99.596 epgpaviovion 6Ta Lo TopXd YENOTARY, ATOTEADVTIS TO dE) X6 UTOGUVORO
o,

Anpiovpyio Luvedplodv

To Music4All tepiéyel T0 1oT0opd axpodoewy xdde ypRotr yio ddoTtnua Tewdy unvoy. T va to yenoylonoh-
coule oe eQopuoyy| Paciopévn oc cuvedpleg, AVOBLATACOOUNE Ta YEYOVOTA axpdaong o ouvedpleg Bdoel Twv
XEOVIXWY CNUAVOEWY. Luyxexpéva, axohovlolue tn UEYodo Twv BNULOURY®Y TOU GUVOAOU, BNULOUEYMVTAS
véa cuvedpio dtav Blo Sldoyixd yeyovota anéyouy neplocbtepo and 60 Aentd yetadd Toug.

Q¢ anotéheopo authc e dtadixaciog nepinou 113.000 (18%) cuvedpiec nepihapBdvouy pévo éva tparyod (I =
1). Autéc dev npoogépouv Thnpogopia o CEVAPLYL BLIBOYIXWY CUCTECEWY, ENOPEVKS anoppintovtar. To telxd
oOVoho €yeL Y€co phxoc cuvedpiac 9.70, onpoavtind wxedtepo and ta MPD (66.35) xou Melon (41.46), yeyovdce
AVOEVOUEVO, apol oL cuVEDpPiEC elvon UxpdTERES amd OAOXATEO LOTOELXA 1) AIOTEC OVATOLUYWYTHC.

Enuhoy? ITpoexnaudevpévoy Moviéhnwy

Tt v e€aywyn) nynTixedy avarapas tdoewy and to Music4All yenowonodnxay tela yovtéha: MERT, Mu-
siCNN xou éva mpooappoouévo CNN exnandevyévo ye avtidetinr exydidnon.

e To MERT [63] elvor éva yevixol oxonol TpoeXToUdEUUEVO HOVTEND PEYEANS XApoac, EXTUDEVUEVO Pe
autoemBhenouevn pdldnon. ‘Exel deller vdmiéc emddoeic oe mouxiho npoBiiuata MIR, xadiotdvtog to
XATEAANAO Yot TNV €YWY YPNOWMY AVATARAGTAGEWY 1Y OU.

e To MusiCNN [80] elvan évor CNN exnoudeupévo pe emPrendyevo teémo 610 mpdPAnua e autéuaTng
emofuavong fyov. Emkéydnxe wg evdeixtnd yoviého plag SlapopeTnhc otpatnyixic mpoexnoideuong
ond 1o MERT, odA& xou Aoy g amodedetyuévne yenowdtntde tou ot epopuoyéc obotaone [104].

e To tpito yoviéro Basiletoan oty apyrtextovixy CNN EfficientNet-BO [105] xou exnondeveton avtidetind
GoTe VoL PEPVEL TEary0UBLaL TOU (BLOU XOAMTEY VY TILO XOVTE GTOV YWEO AVITUEACTAGEWY. 2T0 e€fg avapep-
ouocTE 08 aUTO w¢ artist model.
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Yuvdudlovtag povTéNo exToudeLUEVE UE DLUPOPETIXES TEYVIXEC TEOEXTABEUONG, OlepeuvolUE TS aUTH 1|
TOEGUETEOS EMNEEACEL TNV TOLOTNTA TOV MYNTIXOV AVITORUCTACEWY X0 TNV TENXY omod0cT 0T0 TEOBANUA
TPy WYNE cLUCTACELY Boctopévwy oe cuvedples.

IMpoeneZepyacio Hyntixdv Inpdtwny

‘Oha T apyeio Hiyou tou Music4All napéyovtar oe otepeopuvxt| woppy| ue derypatohndla 48 kHz. e mpdtn
(pdom, LETATEENOLYE To oy el OE LOVOPLVIXE UToAOYILoVTIC TOV HEGO GO TKV B0 XUVAALOY Xal 6TIoU YeetdleTon
AUPALPEOVPE Y| CLUUTANEGOVOLUE delypata dhote dha Tor ofuota va €youv didpxeta 30 Seutepdienta. Eneidn xdde
povtého amoutel Stapopetind pudud devypatoindioc (24 kHz to MERT, 16 kHz to MusiCNN xou artist model),
EMOVODELYHATOANTTOVUE oVEAOYO ToL CHUATA XAUTH TERITTWA.

EEaywy”h Avanopactdoewy

Do Ty e€oywyh avamopaotdoewy ond 1o MERT yenowonotolue Ty ehogppitepn exdoyf tov 95M nopopétonv?,
pe 12 eninedo Transformer xou Sidotaon e€6dou 768. Xto tedeutaio eninedo Aoyfdvouue tov yéco dpo otn
YeoVXn BECTOOT), XUTAARYOVTAS HE €va Bidvuoua 768 Sloctdoewy avd tpayoldt. I'o to MusiCNN yenot-
HOTOLOUIE TO UXPOTEPO HoVTELO, exntoudeuuévo oto Million Song Dataset (MSD) [80], pe 200-8idotato tehxnd
ddvuopa yapaxtnetotxwy. Enedrn to MusiCNN exnadebtnxe oe anoondoyato 3 Seutepohéntwy, oL GUYYpEUpEic
npotelvouy T yeron Tou ([Blou yeovixod napadipou yio eEaywyy YapaxtneloTix®y. Enopévwe, ywellovye xdde
anéonoaopo 30 SeuteporénTwy o déxa Uépn TV 3 BEUTEPOAETTLV Xou UTohoY({ovpe Tov Péco 6po TwV BEx
embeddings. T to povtého xahhtéyvn, mpoypatonoeitan avuldetind| tpoexnoideuon oto Music4All [91],
YENOWOTOUOVTAS TNV TAUTOTNTA XAANTEY VY Yo TN dnwoupyio Yetuxddv Levydv. To povtélo déyeton mel-
pooyatoypapiuata 1 deuteporéntou xou e€dyel embeddings 1280 Sootdoewy. Ouolwg, Yot Ty TopaywYn Tou
teMxol embedding xdde xoppatiod, houBdvouue Tov UEGO 6pO GAWY TWV TUNUATWY didpxelag 1 BeuteporEnTOU.

IMpoocappoy? Twv Avanapactdoewy Touv MusiCNN

Oppmpevol and o evpfata Tou [82], Teayatonolo0UE TEPUUTERL TEOCUPUOYH TWVY MY NTIXMY OVAUTUPUCTACEWY
tou MusiCNN pe ocuunepipopixd dedopéva, HoTe Vo eVFUYPUUULOTOUY UE TO TEAXO TEOPBANUO. LUYXEXPWEVA,
TPoPod0TOVUE Eval amhO VeupwVxd dixtuo e to embeddings Tou MusiCNN xau 1o exmoudeboupe e avtidetinn
cLVEETNON x6GTOUE, YewpdvTag Tpayoldla Tou avixouy oty Bla cuvedpla we Vetixd delyparta xaL To UTGAOLTAL
e mapTidag w¢ apvnTixd. Metd tnv exnaldevor), npayyatonololue éva tehxd forward pass yio Ty e€oywyr
0V Bertiwpévey embeddings, ota onola avagepdpacte w¢ MusiCNN-tuned.

Transformers4Rec (T4Rec)

I v e€etdooupe T xenowotnta twv egoydueveny embeddings oe nepi3dhhov cuatdoewy, Tpotelvouye apyixd
éva povtého Bactopévo ot Bihiodxn T4Rec, To onolo daveiletan ey vixég amd dnuopihn oxohovdlaxd Lovtéha
cvotdoewy 6nwe To BERT4Rec [103].

Y0Ovoho Acdopévwy T ta nepduota pe to T4Rec ypnowonotoye tig npoeneéepyaouéves cuvedpleg
TNC mMponYoLUevNg evéTnTag, oTlc onoleg €youv agatpedel ol cuvedplec mou TepLAapfBdvouy Udvo Eva TEayoLdL.
Emniéov, epapudlouye doywpiopd 70-15-15 ota dedopéva, TaEVOUNUEVA XAUTA AVAY VOELOTIXO XEHOTY), YEYOVOS
TOU GNUAlVEL OTL 0TO GUVORO EMXUPWOTNE Xal BOXIAC TepLAafdvovTon EVIEADC VEOL YEHOTES.

ApyrtexTovinig

Eninedo Ewcddou H cicodoc tou poviélou elvon pro oxorovdio and song IDs mou avtiotolyolv oe pia
ouvedpio axpdaone. H axorovdia autd| tepvd and éva eninedo avanapaotdoewy (embedding layer), Snhady| tov
nivaxa embeddings E € RIVIX? émou V elvar 10 60volo tev aviixeévov o d 1 didotaon twv embeddings.
O mivoxag propel elte va apyonowmdel tuyaio xan vo exmoudevdel and to undév, elte va opyuonomdel ye to
mpoexmatdevuéva Ny nTxd embeddings, noupéyovtog éva onueio exxiviong mou evowuatdvel Lououxh TAnpogopla.
Ye neplntwon aovupwviag TS SLEoTUONEC TWV AVITAPIC TACEWY XL TOU LOVTEAOU (T.). EXTOUdEVOUUE EVaL HOV-
ého pe avanapdotooelc MusiCNN pe d=200, ok Déhovue To yoviéro va €yel ddotaon 64), npocdétouue

3https://huggingface.co/m-a-p/MERT-v1-95M
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Syfua 0.0.5: Apyttextovint| twv poviéhwy nou Bacifovtar oto T4Rec. Kotd tny exnaidevor, to yovtéro
AMOXEUTTEL TUAUATA TNG ELOGDOL xal Yenowdomolel aupidpoun TEocoy ) YLol THY AVIXATACXEUT] TOUC.

éva ypopuxo eninedo mpoBoinc axohovdoluevo and cuvdptnon ReLU. Eneldy) o unyaviouds auvtonpocoync dev
hofBdver unddn ™ oelpd, tpootideton wla xwdixonolnorn Yéone oe xdde embedding yio va napaxorovdeiton 1
OEPG TV TEayouddy. Avti Tng amdhutng xwdxonoinone ¥éone mou YeNoWOoToLETaL OTOV apYIXd UETACY MU0
TIOTH, YENOWOTOLVUE TN oyeTr| xwdwonoinon touv TransformerXL [24], eotidlovtog oty xwdxomolnon e
anboTooNG UETAED TwV atolyelny xou oyl oty andiutn Véon toug. A&ilel vo onpelwdel 6Tl oo TEIRGUATS og
To tpoexnoudeupéva embeddings ebvon exmondeloudor xou Oyl «maywpévar, xadoe auto Yo 0dnyoloe oe oNUAVTIXG
YOUNAOTERN am6d00T dTwe Vol AVaPEPOUUE TOROXATE.

Enireda Transformer H axoloudio twv ahknienidpdocwy Tpogodoteital ot cuvéyela oto dixtuo Trans-
former, to omolo Behtidvel TIC AVATAUPACTAGELS TWV GTOLYEIWY, CUAAEYOVTOE TONITWES TANPOYORIEC OYETXE UE
T oyéoelc HETOEY TV Tpayoudliy xot to wotifa cuvinapéng. ‘Onwe npoavagépope, to T4Rec emitpénet v
eapuoY”) dnuopuwy apyttextovixev Transformer yia topoywyr custdoeny. Xe aut) TV epyacio vhomololue
70 dixTuo We oTolPa emNEdWV Bootopévwy oty apyltextovixh) tou XLNet [116], 6nwe npoteiveton oto apyixd
Spdpo [100]. Autd dev ornpaiver Tt avirypdpovpe tAdpne N Sopdppwon tou XLNet (r.y. oprdpd emnédwy,
E0WTEPIXES DLooTAOELS, aptdud %eQahddV), ohAd dTL uoTeTOlUE TOUC ECWTEPXOUE UNYOVIOMOUE TOL.

Erninedo EE680ou T v npdBhedm Tou enduevou avixelyévou oto ypovixd Brua t, unohoyiloupe Tig Bod-
HohOY{EC OAWY TWV OVTIXEEVKY TOAATAACIELOVTOS TNV TENXT] TOUS AVAmopdo Taon Ue évay mtivaxo St Tdoewy
[V| x d. O nivaxac autde unopel va poipdleton to ido B pe tov mivaxa avomopaotdoewy E — o teyvixy
YVwo ) wg weight tying, n onola peihvel onuavtind tov aprdud napouéteny, dedouévou tou yeydiou mhrdoug
AVTIXELEVOV OE EQUpUOYEC cuoTdoewy. Av ypeldletal, mpofdhhoupe Ty avanopdotaon niow ot Sdotoor d
péow yeaupxoL emnédov. Ev ouveyeia, ol faduoloyiec nepvoly and cuvdptnon softmax, dote va nopaydel plo
xatovopr] miavotitwy yio T unodhgla avtixelyeva, tov expedlet Ty miavdtnta xdde avuxeévou va eivou
To avtxe{pevo mou Aeimet.
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Exnaidcvon

To povtého exnandeveton pe ) uédodo Masked Language Modeling (MLM) mou ypnowonoleitat oo dnpoguiéc
povtého BERT4Rec [103]. Avutd emtpénet tn yprion oppidpouou pnyaviopol mpocoyfic xatd v nedBiedn
EVOC AVTIXELEVOL, ATOTEENOVTAS TAUTOY POV TN Blappoy| TATpopoplac TapdAo Tou elvon Slordéoido Tar EToUEVYL
xoppdtio. Bougove ue to MLM, avtixodiotolpe éva 10606T6 p Twv aviixewévey pe éva embedding [MASK]
%ol T oTtold TO HoVTENO pordabvel Vo ovotd BAoet Twv uTdAoLwY xoupaTidv. o xdlde V€om mou amoxpinteton, N
TENXT] AVATAPAOTUOT] YENOWOTOLELTOL VLol THY TRy WYT XUTAVOUNC THAVOTATOVY ETL TOU GUVONOU AVTIXELUEVELV
%ol 1) oLVAETNOT x6GTOUC UToAOYILEToL WC 0 dPVNTIXOS AoydpLrtpog TNg THAVOTNTIC TOU GWOTOU AVTLXEWEVOUL:

1 .
L= 53 ; - log P(v, = v, |S!) (0.0.7)
Um )

omou S elvon ol Yaoxoplopéva avTixeldevo xaL v}, To TpoyHotixd avuxelyevo.

AZioroyTom

Kotd v aglohdynon oto olvoho emixdpwone ¥ Soxiunc, a€loAoYoUUE TNV IXAvOTNTO TOU UOVTEAOU VoL Tpof3-
Aéer to terevtalo avtixelyevo xdde cuvedplag, dedouévwy OAOY TwVY TEonYolUueveY. Anhadn, H6vVo 1o TEAEL-
tafo avuxelyevo avuxodiotator xou npoBiénetal omd TO HoVTEAO, TO Omolo ETOTEEPEL ot Tovounuévn Aota
ovotdoewyv. H Mota afioloyeltan pe tic petpixéc NDCGQk, MAP@k xou Recall@k, ywx k£ = 10,20. Katd to
inference, 1 eloodo¢ enexteivetan pe évo emmiéov [MASK]| embedding xou 6heg ot nponyolueves alniemdpdoeic
yenowonolovvtol yiot TV TEOBAed TOU ETOUEVOU AVTIXELWEVOU.

"Totepn Tuvévwon (Late Fusion)

‘Eval and o epoTHUta Tou YEGOHE APopd EVOANIXTIXO0VC TEOTIOUE EVOOUATWONG TWV TEOEXTUdeUHéVLY embed-
dings. Mia mdavr W0€a elvon 1 Tuyala apyixomoinoy tou nivaxa embeddings tou Transformer, dote ta eninedo
vo. 0€LOTIOLOUY AMOXAELG TS, Tot cLUTERLPOEXS dedouéva. 'Eneita, Aopfdvoupe v éZodo tou Transformer xou
T CUVEVGVOUPE We To péco embedding e ouvedplog (e€apouUévmy TwV Uaoxoplopévey ovTxewévey). Mia
oelteEn emhoy ) Vo fitay 1) cuVEVWOTN xdle avamapdoTaong avTxeyévou pe to avtiotolyo embedding tou Hyou.
Qotéoo, autd Yo odnyoloe oe Biappon Thnpogopiag, xotde To Yovtélo Yo pdbdouve va Bacilel tic mpofBiédelc
TOU OTIC NYNTES AVATUPAOTAOELS, oL onoleg dev yaoxdpovtor. Io tov (Blo axpdc Aéyo, dev hauPdvouue
UTOYN ToL Yaoxaplopéva avTixelueva xotd Tov utoloyloud tou péoou embedding tne cuvedpioc.

Represent-Then-Aggregate (RTA)

To deltepo Yépog tne epyaociog wac tepthauBdvel Ty exmaldeuct) poviélwy Bactouévey oto RTA yenowwonoldv-
T to Music4All, dote va e€etaotel nde ouunepipépovton Ta NyNnTxd embeddings oe plo Stapopetint Blatdmwon
Tou mpoPhiuatos. ‘Onwe Yuudpacte, To thaloo RTA yenowonotel yio cuvdptnom yio vor Topdyet Thy avamopdo-
Toon xdde TEayoudloy XL TN GUVEYELX EQAPUOLEL plal GUVEETNGT) CLVATEOLENE GTE VoL OVATUQC THOEL ULl GUVE-
Bplat p W CUVBLUCUS TWYV AVATUEAC TACEWY TV TEAYOUBLWY TNS. Xe cUyxplon e to mhaiolo Transformers4Rec,
evioniloupe Tig e€ig Paoxéc Sopopeés:

e To RTA agoupel tar dimhotuma tparyoldlar omd xdlde cuvedpla, Ye amoTEAEOUO EVol EAAPEOC SLUPOPETING
oUVoAo dedouévwy, eve oto T4Rec agopodvton uévo ol cuvedpleg Urxoug evog xouuatio.

o To apywd dpdpo tou RTA axohouldel dlapopetind TpoTo Sloymplotod Tekv SEBOUEVKV, BELYUATOANTTOVTOG
Tuyato onuovTixd wxedtepa oOvoha emixlpwong xot doXhC.

o Kdde miaioio yenowonoiel dlagpopetind padnoloxnd otéyo: oto T4Rec axolovdolye npocéyyion, MLM
(uepwth) amdxpudm e6dBou xou TEOBAedn xpupuévey avtixeévey), eved oto RTA ueyiotonoweltan 7
opototnTa petol TNg avomopdoTtaone e ouvedplag xou tou embedding Tou mpaypaTixod enduevou
TeayoudLloL.

o H Buagpopd otdyou exnaidevong odnyel xou oe BLOPORETIXY UPYLTEXTOVIXT: 1) a(IBEOUT AUTOTEOGOY T TOU
T4Rec avuxodiotator and awtiddn avtonpocoy| oto RTA.

Xiv



o Téhog, Blapépel xou to oevdpto aflohdynons: oto T4Rec ypenowonoiolue oldxhnen 0 cuvedpio yia
vo. mpoPAéouue to TteEAeuTaio TEayoldt, evey oto RTA yenowonoieiton évag uxpds aptdudc apyixdyv
TEAUYOUDLOY YLAL TNV AVAXTNOY OAWY TWY UTOAOITWY.

Y0Ovolo dedoupevwy Onwg avagpépaue, oto RTA eqoapuélovpe éva emmhéov Prua mpoemeéepyaoiog
(axohoudivtog TV apyxr| epyacio) i va eaopolicovpe ) cugPatdTnta ye To undhoimo Thaioo: népo and
TNV aQOlpECT) GUVEDRLLY UE VA LOVO TEoryoUdl, apotpolUe xou To BITAGTUTIA Wéoa ot xdde cuvedpld, XEaTMOVTAC
HOVO TNV TEAOTY endvion evdg Teayoudlod. To Briua autd mopdyet nepinou 20k emniéov ouvedpleg Ue €va uévo
TeaYoUdt, Ti¢ omoleg xaL anopeinTOVUE OTr CUVEYELA.

I Tov Braywplopd dedopévey enlone dev anoxAlvoupe and v apyix dnuocieuon: derypatoinmtodue 20.000

ouvedpleg pe uixoc I > 20 dote va dnpovpyfooupe cbvoro emxdpwaong xat doxihc and 10.000 cuvedpleg To
xodéva. Ov undhoineg 473.297 cuvedpleg anoteholv To 6OVONO exTaidevong.
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Yyfuo 0.0.6: Apyrtextoving twv poviédny nou Basilovtar oto RTA. Y10 ypovind onueio i, o transformer
oLVBLALEL Ta TEOMYOVUEVO AVTIXE(UEVOL OE [LoL avamapdoTtaoT ouvedplac p.; eoTldlovTag UOVO GE TEONYOUUEVA
XOpPdTIO X Yenotdonolel To p.; yio tedBredm tou enduevou Tpayoudlol. H exnaideuor yenoiwomnolel uBpldixy
oLVEPETNON ®6oTOUE TTOL EVIPEPUVEL TNV OUOLOTHTA UE TO TPOYUATIXG ETOUEVO TEayoUdL (Lpes) o amotappivel

TNV OUOLOTNTOL UE €Vl GOVOAO apVNTIXGY Betyudtwy ST (p) (Lyeg)-

ApyrteExToViXig

ITépo and g ouvapthcels avomapdotaons tou [7] (mou Yo yENoUOTOOOUUE WS HOVTERN OVA(POPdS), OTNV
epyooia poc olOTOLOUUE TO TPOEXTUUOELPEVA HOVTERA VLot TNV EEaywYY| ovamopaoTdoE®Y Teoryoudlty. ‘Ocov
apopd TN CoLVEETNCT cUVAYEOLOTG, TA AMOTEAEGHATA TNG aPYXNE dnuocicuong €det&ay OTL To HovVTERX TUTOU
Transformer unepéyouyv évavtl evahhaxtixwy énwe GRUs, Gated CNNs 1| 0 anhdc péoog 6pog avamapaotdoewy.
INo tov Aoyo autd oTdlOVUE AMOXAELGTIXG OE AUTY TNV eXBOYY. XUYXEXPWEVA, OE AUTH TNV TEPINTWOT O
petaoynuatiotic enelepydleton Ty €l00d0 p Ue UTAOX UTBOUEC aUTOTEOCOY NS, dNAudY) To wovtého «BAémews
uoévo Véoelc €we xot To TEEYoV ototyelo i xou Oyt pelovuixéc. H é€odoc mou mapdyeton pnopel va Yewpniel
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Extetopévn Ieplindn ota EXAnvixd

0 AVOmAUPdoTACT) GUVEDEAC TOU GUVOIEOLLEL TA Py, Py - - - 5 Ps; XA VO YENOWOTONVEL YLt TEOBAEYN TOL Py,
p€ow PoduohoYNoNg UE ECMOTEPUO YIVOUEVO OAWY TWYV OVITUPAUCTICEWY AvTLXEWEVLY. Autd Looduvapel ue v
ey v weight tying mou avagépinxe nponyoupévwe. ‘Onwg xon otnv nepintwon tou T4Rec, oe oha pag ta
TELOGUOTOL Ol AVATIOPAOTACELS TEOYOUBLOY TUPUUEVOUY EXTIUDEDCUUES.

Exnaidcsuon

I tnv exnaidevon Tou Yovtélou, oL cuyypeagelc Tpotelvouy Tov e€¥ic oTtoy0: dedouévng ulag ocuvedplag p urxoug
I xau e ouvddpoione p.; TV TROTOV § Tpayoududv e, ue @ € {1,...,1 — 1}, eviopplveton 1 upnidtepn
OPOLOTNTOL PETAEY TNC Pij UL TOU TEOYHATIXOU ETOUEVOU TPAYOUBLOU Py, , XA 1 XUUNAGTERY OUOLOTNTA Yid
€vol 6UVoAo delypdtwy ST (p) mou dev avixouv oty p. H mpayuotnd cuvéyela hettoupyel we Yetind Ledyoq,
eV Ta EXTOC oUVEDplag TEoyoUBl (¢ dPVNTIXG, XL 1) CUYORXY ouVEETNoN X60ToUG Yedgeton we L(p) =
Loos (p) + Laeg (p), 6m0L:

-1
Lpos (p) = — Zloga (f (Pt Psisn)) (0.0.8)

-1
Lieg (p) = —Z Z log o (f (p,i,s_)) (0.0.9)

i=ls=e€5(p)

omou o elvol 1 OLYUOEYC CUVAETNON Xl f TO ECWTERLXO YLVOUEVO.

A&loNoyMon

Tt v 0€lohdynon axorouvdolue to [7] xa ywellouvpe T 10k ouvedpleg tou oet emxbpwong 1 doxuhc oe 10
unocivola Twv 1.000 cuvedpldv. X0 TEKOTO LTOGVUVOAO elval 0pUTO HOVO TO TEWTO TEAYOUDL, 0TO BEUTEPO Ta
800 TEAOTA %.0.%., p€ypet Ta 10 opatd tpayoldia. To undhoino uépog xdde cuvedplac mpénet va npofiepiel and
T0 YovTého, To onolo Poduoloyel Gha Tar TporyoUdLor xat mapdyel pior Ta€ivounuévn Alota uTtoPnPiwy XOUUUTLOY
yia xdde cuvedpia.

Movtéha Avagopds

I var aEloAOYOOVUE TNV ATMOTEAECUATIXOTNTA TWV TPOEXTAUIEVUEVRDY MY NTIXMV AVATOPIO TACEWY, TIC CUYXEI-
VOUUE UE TIC TRELS oLVapPToELS Tou yenowdonotolviar oto RTA, ol onoleg Aettoupyolv we poviéha ovapopdc:

o Weighted Regularized Matrix Factorization (WRMF') [48]: ITapoaryovtomoinoy tou mivaxa cUVEUQEVIoNS
ouvedplac—tpayoudiol pe Alternating Least Squares (ALS) vy eZaymyh opyixov ovamopoo Toemy
Tparyoudiwy pe d = 128. Ava @épetar wg MF oo netpdyortd poc.

e Factorization Machine (FM): Me Bdon Tic nopomdve ovanapao Tdoel; Tporyoudiy, dnutovpyoivta embed-
dings petadedopévey (ahhTéyYyne, SAUTOUY, SNUOTIXOTNTA) WG PECOS GPOC TWV TEAYOUBLOY oL UOLRd-
Covton v (Bla Tpn petadedopévwy. To embedding xde tpayoudiol elvon o uécog dpog twv embeddings
TWV UETUDEBOUEVLV TOU.

e Neural Network (NN): Iopdpolo pye 1o FM, adhé avti yio péoo bpo yenopwonotel unyavioud mpocoyhic
névew oto embeddings Twv YeTadeEBOUEVLV.

IMewpapatixry ASLoAoynon
Movtéla ntpog AZLoNOYTOT

Y Tol TEWRAUATE Hog, 0 Baoind TEOTOE EVOWUATWONS TV TpoexTatdeuuéveny embeddings oto yovtéla cuoTIcEWY
elvan wg apyixomoinom tou mivoxa embeddings £ twv avixelévwy, Ue 0ToOY0 Vo TROGHEROLY GTO UOVTEAD €Val
mo yehowo onuelo exxivnong. ¢ Baowd onueio avagopds, yenowonololue Ty tuyaio dpyixononon Tou mi-
VOO OVOTOPOO TACEWY, APiVOVTAC TO HOVTERO VoL Yddel AmoXAEIGTIXG oo To BEQOUEVO GUUTERLPORLC. XE AUTH
v mepintwon, 10 E npogoavie mopogével exnondedolpo. LNy TEPINTmor TRoexTaldeuPévne apyLxononong,
Tponyoluevee epyaoies [104] avagépouy 6Tt To av To0 E mopauéver «morywpévoy 1) by dev éxel onuovtiny eni-
dpaomn otnyv anddoor. QoT600, Ta TEOXATUEK TG, Pac TElpduata Edetlay 6Tt To mdywua Tou Tivaxa embeddings
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odnyel o8 ONUAVTIXA YELPOTEQA AMOTEAECUATA, EMOUEVEC TO BLATNEOVUE EXTALOEDGUYLO X
TELOUATOV.

6N T1) SLdEXELL TRV

‘Onwe éxer Hdn avagepdel, yenowonotolue embeddings and tplo mpoexnadevuévo povtého: MusiCNN [80],
MERT [63] xou artist model, xaddc xou pla tporonomnuévn exdoyr twv embeddings tou MusiCNN rnou éyouv
unootel tepoutépw npocupuoyt (finetuning) otic cuvedpice axpdoone. Iépa and ) yerion dapopeTinric uedddou
Tpoexnaideuone, xdlde poviéro Swrdétel dapopetind| Sidotaon embedding d (200, 768 xou 1280 avtiotouya). T
ToV A6YO ot 1 exnaideuct) evog povo baseline pe m.y. d = 512 dev Ya eaocpdiile dixoun olyxpion, xadde
x&0e mpoexmaudevyévo povtého Yo elye Slapopetiés duvatéTnte (capacity) and to povtého avagopds. Ia va
ATOUOVOCOLPE TNV entidpaoy tng apyixomoinorng, extoudeboupe tplo Tuyalor dpyIxoTOINUEVO LOVTEND, xodéva Ue
didotaoT avandpaotdoewy d (on e excivn Tou avtioTolyou TeoexTauudeuuévou LovTéAou.

Emnhéov, ota netpdpota pe to TransformersdRec, doxpdloupe xon tnv teyvind| e Gotepne ouvévwong (late
fusion), émwe napovoldotixe Topandve, téoo yia to embeddings Tou MusiCNN oo xow tou MERT. e auth
v nepintwon, Yétouvue ) Sdotaon d = 512. Io mopdderyuo, av 1 é€odog tou transformer €yel didotoon 256,
T61E PETE TN ouvévwon e to embeddings tou MusiCNN (d = 200) mpoxinter Sidvuoyo 456 Slootdoewy, o
omnoio npoPdiietar ot BLdoTacT avanapactdoeny d = 512.

‘Ocov agopd 1o RTA, extédc and tar tuyaior apyixomotuéve HOVTERA TOU AELTOLEYOUY WG HOVTERN OVAPORIC,
SLUTEPLAUUBAVOUPE Xou TLS TRELS SLVPTACELS NG apy e dnposicuone (WRMF, FM xou NN) mou neptypdgpn oy
TPOMNYOUPEVKC, xadMC xou Eva emtthéoy Tuyafo poviého Bioc didotaonc embeddings pe autd (d = 128) yio dueon
cUYxELoN.

ITocotuxd Anoteréopata
Transformers4Rec

Ta anoteréopata GAwV Twv Loviélwy T4Rec oto test set nopouotdlovton otov Hivaxa 1 yio Adyoue alyxplonge.
H deltepn othhn Seiyvel tn Sidotoon twv embeddings d xdde povtéhou, eved ureviuuileton ti 1 xpupt didoTtaon
Tou transformer elvar 512 yia dhot Tt povtéda. To UTOYPUUULOUEVA OTOTENEGHUATA AVTLOTOLYOVY GTNY XOAUTERT
enidoom evtde pog opddac poviéhwy (t.x. MERT évavti tou tuyaiov povtéhou pe tny (Bl Sidotaon), eved o
EVTOVOL YRAUUATA DNAGYOLY TN GUVOAXE XoADTERT] ETUBOOT GTY) CUYXEXQWIEVY] UETELXT).

IMivoxac 1: X0yxplon e anddoong towv goviéhwyv T4Rec o dhec Tic petpnéc aflohdynorg.

Apywxoroinon d NDCG@10 MAP@10 Recall@l0 NDCG@20 MAP@20 Recall@20
Random 200 0.2504 0.2013 0.4038 0.2629 0.2047 0.4530
MusiCNN 200 0.2225 0.1788 0.3603 0.2358 0.1824 0.4124
MusiCNN-tuned 200 0.2452 0.1953 0.4009 0.2583 0.1988 0.4525
Random 768 0.2618 0.2140 0.4105 0.2742 0.2174 0.4595
MERT 768 0.2582 0.2089 0.4089 0.2706 0.2122 0.4580
Random 512 0.2676 0.2216 0.4119 0.2805 0.2252 0.4626
MusiCNN late fusion 512 0.2655 0.2197 0.4088 0.2782 0.2231 0.4589
MERT late fusion 512 0.2628 0.2158 0.4096 0.2758 0.2193 0.4607
Random 1280 0.2684 0.2232 0.4095 0.2808 0.2266 0.4583
Artist model 1280 0.2309 0.1848 0.3739 0.2451 0.1886 0.4297

MusiCNN  ESeoxwvovioag and 1o goviéha pe didotaor embedding d = 200, napatnpodue 6Tt 1 Tuyador op-
ywononon emtuyydvel TV xohlTepn ENiBooT ot OAeC TiC PETEIXES auThS TN ouddos. To povtého mou ap-
ywomoteitow pe embeddings tou MusiCNN anodidel cuodntd yewpdtepa, yeyovog mou UTOdNAGOVEL OTL oL ava-
TOPUO THOELS TIOU TPogpyovTaL and exmoideuon yio awtdpoty emofipovor (auto-tagging) dev euduypouuilovtan
XOAG Ue To YoTiBa CUUTERLPORAC YENOTWOV OTN CUYXEXPUEVY EQUQUOYY] cuoTdoewy. (oT6C00, GTAV OL Oovo-
napaotdoec Tou MusiCNN npocapudélovion pe dedouévo yenoTtwy, 1 anoédooy| Toug BEATIOVETIL 08 OAEC TIC
peteéc. Autd Belyvel OtL, ToEdTL TO TEOEXTOUSEVHEVO NYNTIXA YoEAUXTNEICTIXA UTopel Vo unv Aoy Bovixd
OTNV aEYIXT] TOUS Lop®Y|, uTtopoly Vo anoTeAécouy yenowo onueio exxiviong av TpocoprocToOV XATIAANAL.
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Extetopévn Ieplindn ota EXAnvixd

IMop” 6hot uTE, axXOUT| XoU 1) TEOCUPUOCUEVT EXDOY T BEV QTAVEL TNV ENBOCT TOL TUYAlOL POVTEROUL, YEYOVOC TOU
unoypauuilel ™ onuacio e expdinong embeddings aneudeiog yio 10 cuyxexpyévo tpdBinua.

MERT Xtnv ouddo ye d = 768, cuyxplvouyue ta povtéra mou apytxomoolvtal ue MERT ye to tuyoio povtého
avapopds. Kot €8¢d, To Tuyaio yovtého unepéyel eAapps, av xou 1) dlapopd anddoong elval UixpdTepr o oyéon
pe v mponyoluevy oudda. Autéd unodeixviet 6t to MERT, 1o omolo éyel exmoudeutel ye autoemBhenduevn
uadnor, mopéyel To YENOWES AVATOLUC TACELS Y TO TEOBANUA TNG TopUY®WYNS CUCTICEWY OE OXEOM UE TO
MusiCNN. H uixpoteen andxiion cuviotd pio évdelln oti 1) ouoixy| Yvoon mou xwdixorolel 1 uédodog npoex-
naidevong tou MERT elvan o yprown oto cuyxexpiuévo tehind npdPinua. 261600, 10 YeEYOvoe 6Tl 1 Tuyaia
apyxomoinom e€axolovdel vo UTEREYEL, E0TW Xl oplaxd, ETBEBUMVEL TWE ToL HOVTERA WPEAOUVTAL TEQIGCHTERO
otavy ta embeddings podoivovton €€ ohoxAnpou yia T0 exdotote TEOBANUL GUC TAOTG.

"YTotepn Tuvévwon (Late Fusion) H oudda pe d = 512 Siepeuvd v enidpaon e Uotepns cuvEvewaong,
6mou ta tpoexnaudevpéva embeddings cuvdudlovtan e Ta extoudevolpa embeddings twv avtixeévey avti va to
avtixathotoly. e auth| ) SlodppwoT, To Tuyalo baseline napauével EANPEME AVOTERO, AV XAl OL TUROANAYEC UE
Ooteer ouvévwor Twv MusiCNN xaw MERT eugovilouv avtaywviotixt| anddoor. O dlagpopéc elvon uixpéc, Ue To
MusiCNN va unepéyetl ehagpddc tou MERT. To arotehéopota Selyvouv OTi, TapdTL Ol NYNTIXES AVOTAROC TACELS
amd UOVES TOUG BEV apX0UY, UTOPOUY Vo TROGPEROLY GUUTANPGUTIXY TAnpogopia 6Tay cuvdudlovtal Ye em-
beddings npocappoouéva oto npoBinua. H Votepn cuvévwon enitpénel 6To LOVTEND VO EVOWUATOVEL ETAEXTIX
TOL YOEOXTNELO TIXE TOL 1y ou Ywelc va neploplleton and autd, eénywvTag €Tl T oYETXd XA anddoor. Tloag’
Oha QUTE, 1 CUVETC UTEROYY) TOU TATIEWC TUY OV LOVTENOU BelYVEL OTL OXOUY| XOU UE GUVEVKOT), 1 TANeoQopla
TEQLEYOUEVOU BEV YEPUEWVEL TAHIEWS To Ydoua pe ta embeddings mou BeAtioTomolo0vToL dUECA YIa TNV TOROY T
ovotdoeny. Emniéov, uneviuuiletar 6t 1 teyvixn mou uodethdnxe cuvdudlel ta embeddings avtixeiuévwy e
plar péom avanapdotacn cuvedplag, YEYovog Tou Umopel vo eE0UAADVEL T1 AETTOUERELN TOV UVATHUPOC THCEWY OE
eninedo Teoyoudlol.

Artist-based Movtého Xty oudda ye d = 1280, cuyxpivouue tnv Tuyala apywxonoinon ue embeddings
nou mpogpyovtal and Tto artist model. To tuyolo yovtého emtuyydver TNV xaAlTEEN cLVOAXY enidoon oTiC
TEPLOCOTEREG UETPXES, Oelyvovtog 0Tl 1 auEnuévn DAoTUOY AVITOEUCTACEWY UTopel Vo eUVOEl TNV expdinon
amd v apyh. Avtideta, to artist model amodidel onuavTind yewpdTepd, VCTEPWVTAS O GUYXELON UE OAaL TA
unéloino Ny NTixd povtéha. Autéd mdavotata ogelleton 0T YEVIXN PUOY TWV CUYXEXPLUEVHY UVATORUOTAGEWY,
oL onoleg Bev Blaxelvouy ATOTEAECUATIXG TA TEAYOUBLO UECO GTO REMERTOPLO TOU (BLou XahALTEY VN — Uit xployn
WBLOTNTA Yol TN CLUYXEXPWEVT e@apuoyy|. To amoteléouata auTd EVIGYVOUV TNV TUEATARNOT OTL AVATULUCTAOELS
mou Pooilovron anoxielotxd e YeTadedouéva dev EToEXoUV YId VA ATOTUTOGCOLY TN oUvieTn Suvoxr| e
CUUTEQLPORES TV YENOTHOV.

YUVohixd, TopaTNEOoLUE ot otoep| Tdor: To WovTéha Ye Tuyalo apyixonoinon twv embeddings telvouv va
unepgyouv exclvwy mou Bactlovtal o NYNTXE YoeaxTNELoTiXd, eWxd dtav To uéyedog Twv embeddings elvon
AEXETE HEYGAO OTE VA ETUTEENEL TNV EXUSUNCT] ENOPXMY AVATORACTACEWY. Ol GTEATNYIXEC TEOCUPUOYNC ol
CUVEVWONC PELDVOUY TN Blopopd anddoong, arhd dev tnv e€arelpouv. Ta evpruato auvtd delyvouv 6L, mapodTL
oL NYNTLXES AVATUPAGTACELS TOREYOLY YENOWN TEOUTEEY0UsH YVOGT, 1 XeNOWOTNTA TOUG GTIC GTO TROBANUA
ocuotdoewy Tou T4Rec elvar neploplopévn, exToC oy TPOCUPROGTOVY 1) GUVBUAGTOUY TEOCEXTIXE UE EXTAUOEDCLUES
QVOTIUPACTACELS TTOU BEATIGTOTOLOOVTOL GUECA YLl TO CUYXEXPWEVO TEOBATUAL.

RTA

‘Opota pe tov Hivaxa 1, o Iivaxac 2 napovotdlel Tic petpinés tou test set yio dha tar povtéha nou Baoilovtan
oto RTA. Ko €60, 1 debtepn othin avtiotolyel oty didotoaoy d xdde embedding, pe tn Sopopd 6t otnv
nepintwon tou RTA, 7 didotaon autr tautiletar ye Ty xpuey didotaot tou transformer. I'io nopdderypa, ov
d = 200, t6te xou o transformer €yel Tnv Bia xpuPT SldoTao.

Movtéla Avagopds RTA Xtnv ouddo tov woviéhwv ye didotoon d = 128, mopatnpodue &Ti ol HOV-
Téhat ou mpoTdUNMay oty apyix| dnuooieuorn tou RTA Beltidhvovion npoodeutind oe oyéon pe to tuyolo
povtého avagopds. To MF eppavilel %o vdmidtepeg emddoeic and to Random oe dheq Ti¢ YeTpinés, Ve T
FM Belticdver mepoutépw to MF, yeyovoe mou Belyvel 6tu 1 o€omoinon petadedopévewy R mo mhololwy oAAn-
hemdpdoewy Bondd to wovtého va amotunioel xahiTepa TN dopun Tewv dedouévev. AvAueod oo LOVTERA aUThG
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IMivaxag 2: B0yxplon tne amédoong twv poviéhwy RTA oe dhec Tig petpnés aflohdynorng.

Apywonoinon d NDCGQ@10 MAP@10 Recall@l0 NDCG@20 MAP@20 Recall@20

Random 128 0.1541 0.0919 0.0613 0.1331 0.0644 0.0940
MF 128 0.1708 0.1035 0.0674 0.1467 0.0725 0.1028
FM 128 0.2022 0.1350 0.0810 0.1751 0.0980 0.1243
NN 128 0.2071 0.1371 0.0838 0.1806 0.1006 0.1298
Random 200 0.1499 0.0900 0.0600 0.1302 0.0637 0.0926
MusiCNN 200 0.1668 0.1001 0.0660 0.1434 0.0702 0.1005
MusiCNN-tuned 200 0.1699 0.1042 0.0669 0.1442 0.0721 0.0999
Random 768 0.1588 0.0957 0.0618 0.1339 0.0656 0.0917
MERT 768 0.1507 0.0904 0.0604 0.1303 0.0635 0.0925
Random 1280 0.1522 0.0910 0.0600 0.1301 0.0630 0.0910
Artist model 1280 0.1819 0.1137 0.0722 0.1579 0.0814 0.1116

e opddag, To NN—10 onolo eqopudlel unyavioud npocoyfic oto embeddings twv UeTadedoyévwv—emiTuy Y dveL
Vv udmAdtepn anddoor, pe NDCG@20 0.1806 évavt 0.1331 yio To Random. Auté Seiyver 6tu axdun xon wia
amh| ToEAYOVTOTOINOY TUVAXWY, EUTAOUTIONEVY] HE PETAOESOUEVO Xxou unyovioud mpocoyfc, umopel va e&dyel
TeplocdTEPT TANEOQOpio amd éva amhd Tuyaio LOVTENO.

MusiCNN IIepvdvtoag otny opdda ye d = 200, nopatneodue 6Tt xat ot Vo noporhayée tou MusiCNN un-
gpéyouv tou Random, oe avtideon pe 6,11 mapatnednxe ota neduota tou T4Rec. To NDCG@20 Beiticyveton
a6 0.1302 (Random) oe 0.1434 (MusiCNN) xou 0.1442 (MusiCNN-tuned), pe avdhoyec Pehtidoeic oe MAP xou
Recall. Auté Selyvel 611, oto mhalolo tou RTA, oL nynuixée avomopoo T8oels Unopoly Vo Tpoc@Epouy XAAUTERO
onpeto exxivione and v tuyala apyxonolnon. Emmniéov, n nepautépw npoocapuoyr odnyel Eavd oe otodept
Behtiwon, av xou pxedtepn oe oyéorn pe 1o T4Rec, emBefoudvovtag 6Tl Tor TPOEXTOUSEVUEVOL YOLOXTNELC TXE
elvon o w@éhpa dtav evduypauuilovton pe Tov atdyo e Vo TAoNG.

MERT X1 dudotoon d = 768, nopoatnpolye dlopopetint| exxova yia o embeddings tou MERT, e to tuyalo
baseline va untepéyel ehappis tou MERT otic neplocdtepes petpéc (NDCGQ@20 = 0.1339 évavt 0.1303). Autd
UTOBNAWVEL OTL BEV AELTOLRYOUY OAEC Ol TPOEXTIUDEUMEVES AVATIUPAUOTAGELS UE TNV (DLl AMOTEAEOUATIXOTNTA GTO
mhalolo tou RTA. Iopdét ta embeddings tou MERT xwduonololv anodedetyuéva yeriown pousixy) yvaoon,
palvetar var unv evduypopuilovion TAews Ye to TeAxd mpdfBinue dnwe autd datunovetoar oto RTA. H pixer
dlapopd andédoone mdvtwe delyvel 6t to MERT e€axohouvdel va napéyet ypriown minpogopla, ahid to mAaiclo
dev aiveton va wpeheiton onuovTixd Tépa and 6,Ti wodaivel and To Undeév.

Artist-based Movtého Téhog, otn didotaon d = 1280, ta embeddings oe eninedo xaAAiTéY VT emTUYYd-
vouv umhotepeg emddoels and to Tuyaio baseline oe dheg Tic YeTEXéS, xdTL TOU ETioNg BlapwVEl Ye Tal ELpTUATY
poc oto T4Rec. Evbewtind, to NDCGQ@20 Bertidvetar and 0.1301 (Random) oe 0.1579 (Artist model). Autd
delyvel OtL, oto mhadolo Tou RTA, axdun xou Tor O YEVIXE YopoXTNELOTIXG, 0K 1) TAUTOTNTO XOAMTEY VY,
unopolv va mogéyouv yerown yvoon. o’ 6t Bertiwyéva oe oyéorn pe to Random, ta anoteAéoparto outd
TAPAUEVOUY YounAdTERa amtd TIg ETBOOELS TwY YovTEAwy NN xou FM.

Yuvolxd, ta anoteréopata tou RTA mopousidlouv mo Biapopomoinuévn emdva oe oyéorn Ue To TELpdUATA
tou T4Rec. EB®, o mpoexmandevpéveg avamapaotdoelg, onwe exelvec tou MusiCNN xou tou artist model,
uTopolY va Tpocpépouy aodnTéc Bedtidoelg évavtl tng tuyalog apywonoinong. O xhaoixéc mpooeyyioelg
MF xou FM Aettouvpyolv we loyupd povtéha avapopds, eved To anhé vevpwvixd povtého NN moapovoidlel tnv
xoAOTERT] amddooT otny opdda d = 128. Ta evpruata unodeviouv 6Tt To RTA enwgpekeiton nepiocdtepo and
TNY EVOWUATOOY) TROEXTALOEVUEVLY AVATURUCTACEWY, YEYOVOC TOL Unopel Vo anodolel oTiC onuavTixés Slopopég
Tou oc oyéon pe to T4Rec.
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Ontuxonoinon tou Xwpepou AVANAEAGTACEWY

INo vo xatavorioouye xohOtepor T1 podafvel mpayuaTixd xdde Uovtého, OMTUXOTOIOVUE TOUS YWEOUS ava-
TopUo TdoEWY Ty poviélwy T4Rec mpv xou petd v exmaidevor, yenowonowdvrac 1 pédodo t-SNE [65]
vt 30.000 tuyaio detyporta teayoududy. Kdélde onuelo ypwpoatiletor avdroya Ye ToV XahMTEY VT TOU XOUUATION,
EVO YLot AOYoUg euxpivelag Tapoualdloude wovo Ta Tporyoudio Twy 20 mo cuy Ve eUPavilOUEVKY XUANTEY VOV
Tou ouvdlou dedouévev. Ta ypaghuata Tou tpoxiTTovy (LyAuate 0.0.7, 0.0.8) delyvouv Tde oL diapopeTixég
uédodotl apyxonoinong Sogoly 1o PoUCIXd TEPLEYOUEVO Xal TS AUTH 1) dour| UeTOBEARETOL UETE TNV exmaldeuoT).
To umduvnua xdtw and o yeophuotoa deliyver Ty avtiotolylon wetadd Twv 20 mo INUOPIAGY XAARTEY VOV %ol
TOV YPOUATOY TOU YENOULOTOLOOVTOL GTO YEUPN LT,

ITewv %o petd TNy exnaidevor Ko ota 500 npoexnoudeugéva HOVTENR TOQATNEOVUE OTL 1] GUVOALXY
YEWUETPlOL TOU BLIVUOUTIXOU YWeoU Tapauével oe ueydho Padud otadepr uetd tnv exnaidevorn. Autd un-
odewviel 6Ti o Transformer pordaivel xupiwe va povtehonolel Tig axoloudec CUUTERLPORAS TV GTIE UTHEYOUCES
avamopas Tdoele, ywels va Tic avadopel TApws. 2oTdo0, TomxEC TUXVOCELS Elval 0pATES, UE OPLOUEVES CUCTABES
XUANTEY VOV Vo yivovtal ehappns To cuunayeic. Autd delyvel oti, mopdti 1 yevixh) tonoroyio Swatnpelton, To
HOVTENO TIpOYUOTOTIOLEl AETTEC TPOGUPUOYES TIOL BeV elval 0patés oTny Aldoxa tou t-SNE ahhd ennpedlouv tnv
an6doo,.

MusiCNN évavti. MERT To embeddings tou MusiCNN eugaviCouv %81 mtpv and tny exnaideuon wa
capY) 0pYAVWoT oE eNNESO XAMNTEY VY], EVE OVATAPLOTE XOVTA XUANTEYVES TTOU AVIXOUY GE TORATATOLOL LOUCIXT.
eldn. o mapdderypa, oty endve 6elld meploy) tou Xyfuatoc 0.0.8c, mapatneolue 6Tl 0L CUCTABES TWV
Metallica, Iron Maiden, Motorhead xou In Flames, mou aviixouv ce cuvagr eidy, eupaviovion xovtd otov
YOPO avamopaoTdoewy. MeTtd TNy exmaideuon), ol cusTABES AUTES YIVOVTOL EAAPELC TLO TUXVES, BLITNEWVTIS
OUwe TN dour| Toug—OoelyvovTtag 6Tl To YoVTERO eviay Vel UtdpyovTa potiBa ywelc va padoivel ptllxd véeg oyéoelg.
H ouunepupopd auth cuvddel ue tnv emPBAenouevn npoexmaldevon tou MusiCNN oto npéBinua tng ta€ivéunong
ETIXETAY, OTOL To dixtuo eviopplvetal vo oynuatilet dlaxpltd dpta Tou avtixatonteilouy xatnyopiec dnwe eldog
1 xeold, avti yio cuveyelc €vvoleg HOUOLXNS OUOLOTNTAS.

Avtideta, to MERT nopdryel évoy o Sudyuto xan ool Yo, Ue PeYOAUTERY ETUUGALYY UETUED HOANTEY VY.
Av xou e€axoloutolv v topatneolvTal TOTXES CUGTADES, 1) GUVORXT YewpeTpla elval o cuVEYNS xou AYOTERO
BloxplTr o€ eminedo xoAAMTEY VY. AuTo Bixanohoyeitan and v avtoemBAendpevn tpoexnaideuon tou MERT, mou
GTOYEVEL GTNY EXUAUNOYN AETTAS LOUCIXAS OPOLOTNTOC XATE UAXOG PUCUATIXMDY XOL OQUOVIXDY BlAoTACEWY, oV Tl
yior To Slaywpetopd mpoxadoptopévey etxetodyv. Autéc ol Yepehiddelc dlapopéc Yo umopoloay vo EpUnvENGOUY
%Ol ToL TOCOTXA amoteAéopata: 1) dlaxplty|, Pocioyévn oe etixéteg avanapdotaoyn Tou MusiCNN uropel vo
Bl wpllel evpeleg povoég xatnyoples, ahhd Suoxoheletal oY SLdxplor oe eninedo Tpayoudiol tou amattelton
an6 to T4Rec, eved 0 cuvey e, Bactopévoc ot pouoxt] opotdtnta yweog tou MERT npocopuéletol euxohdtepa
oY HOVTEAOTIOINGT AxOROUTEY, oV O TIOEOHEVEL ALYOTERO AMOTEAECUATIXOG ATtd TO TUY A0 HOVTEND avapOpdS
mou BeAitioTonoleltan aneudelog Yol TEOTUTO CUUTERLPORAS YENOTWY.

Tuyaio Apyixornoinon T v tuyala apyixonolnon (Eyxrhua 0.0.7), ontixonoolue Lévo Tov YWeo ova-
TAPAC TAoEWY YT TNV exnaidevar, xadode ta apyixd tuyaioc embeddings towv avTixeluéveny Teo@avde dev tep-
€youv xdmota ovclac x| dour. ‘Omwe avayevotay, 1 npoPBorr t-SNE Selyvel évav Sudyuto xou avopydvemto
Y00 ywelic capelc diaxploeic ot eninedo xaAMtéyvn. Iap’ dha auTd, TO TUYKLO LOVTEAD ETUTUYYAVEL TN CUVO-
Axd xoAOTERT amodoor avdueoa oe 6Ao tar povtéha tou T4Rec. H mapatripnomn auth avoadewcviel tn dopopd
peTal TNG OmTIXG EpUNVELCLUNG SouNg Xou TNE YeNowdTnTag oto TeMxd medPAnuo: mapdtt Ta tuyaior embed-
dings dev mapoucldlouy ONUACLOAOY XY 0pYEVWST GTNY onTixotonay, elval TAYpwe PekTioTonomuéva HoTe va
QVOTIOELO TOVY TOL TEOTUTIA. GUV-EUPAVIOTG TTOU OOPEEOLY Amd T1) GUUTERLPOEA TWV YENOTOV XATd TNV exmaldeuot).
Me diho Aoy, o Transformer padaiver plor yewuetplo avamapao TdoEwY TOU BIULOPPOVETOL ATOXAELC TIXA antd
TN CUUTIERLPORE axpdAOTE XAk O)L OO OXOUG TLXY| OPOLOTNTA, EMITEENOVTAS TOU VO AMOTUTVEL TIG AETTES UeTof3d-
oelg METAEY Tparyoudlwy mou yopaxtnellouy Tic cuvedpleg axpbdacng Twv ¥enotdv. Autd egnyel yiotl éva pov-
TENO exTToudELUEVO amd To UNdéV oe Bedouéva cuuneplpopds Utopel va Eemepdoet exelval TOU dEYIXOTOLOUVTAL UE
npoexnandeLUEVa NYNTd embeddings, Twv omolwv 1 poucixd eunveuopévn dour| lowe va neptopllel T Swodixacio
BehtioTomoinong xou dev eutuypauuileton TAREWS PE TN BUVOIXY] TWV CAANAETUOPACEWY TWY YENOTOV.

Yuvohixd, ol omtonouioelg Oetyvouv 6TL Tta mpoexmoudeupéva embeddings @€pouv LoyYLEEC EMAUYWYIXES
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Syfua 0.0.7: Ontuixonoinomn t-SNE tou yweou embeddings tou tuyaio apyixonotnuévou LoVTENOL UETA TNV
exmaidevon.

npoxatolfelc (inductive biases)—to MusiCNN mpoc to Soywetopd xotnyopudv, to MERT npoc tnv ax-
OLCTIXY) OUOLOTNTA X0 TO POVTEANO XUAALTEY VY TEOG T1) SLOXELTY] TAUTOTTO— EVE TO TUYALO LOVTERD avVaPOEAS
TEOUEVEL TATIPKCE TpocavaToMouévo ota dedopéva axpdaong. H exnaldeuvon Behtiotonotel autolc Toug yweoug
HOVO ENEYLOTA, YEYOVOS TOU UTOBNAMVEL OTL 1) XUELA TEOCUPUOYT] TWV OVUTUPAUC TACEWY TEAYUATOTOLElTaL oo
otpouoata tou Transformer xau oyt oto (Bl T embeddings. Ta evpuota qUTE CUVADOULY UE TA TOCOTIXY
anoteAéopata:  Ta mpoexmandeuuéva embeddings anoTuTOVOUV OUCLACTIXEC UOUCIXEC BOUES, GAAG 1) OYETIXH
axapdla Toug meploptlel Ty anddoon oto T4Rec, 6nou 1 eueMéio xou 1 Aentopepc Sdxplom eminédou Tporyoudlov
elvon xadoplotnric onuociog.

Merétn Agaipeong

Ané v avdhuon mou mponyinxe Biagaiveton pot oOVOEST) AVAUECA OTY BUVATOTNTO SLAXELONG HATNYORLLV
vdPnhol emmédou xou TNV Am6B0GN TOU UOVTENOL OTNV TopaywYY cuoTdoewy. $lotdco, Ja Atav Plaoctind va
ouvaydel awtiddng oyéon petald auTtdy TV WoTHtwy, xadds ta dVo efetaldpeva TAaloLo Slpépouy GE TOAAG
emmAéov onuela tépa and N Slatinwon tou tpoAiuatoq. o vo xatavoriooupe xahltepa ToloL and auTolg TOUS
Tapdryovteg evdéyetan va cupfdhhouy otic anoxiivouoeg tdoelg anddoone mou napatneolvtol uetadld twv T4Rec
xou RTA, mpaypotonotolue wa yerétn agaipeone (ablation study), otnv onolo Tpomonololue cusTnuatixd
ouyxexpwéva ototyeion T4Rec dote va euvduypoppiotody pe exelva tou RTA.

ITpoeneiepyacio AsdopeEvwy

Yto npvto melpopa, epopudooue to BAua tpoeneepyacioc tou RTA, to onolo agaupel tor dirhdtuma tporyoldla
amd xdde cuvedpla mply omd TNy exnaidevor. ‘Onwg meptypddoue otnv avtiotoryn evotnta, 1 TPOTOTOMGN
aut ealelpel Tic emavalopfavoueves eupavioelc Teayoudldv péoa otny Bla cuvedpla, XpatdvTog HOVo TV
TEWTN aAANAeTBpaon Ye xdde tpoyoldl. Metd v egapuoy?) autod tou PBriwatoc oto T4Rec, exnoudebooye
0Vo wovTtéla ue Bdon avth ) pdduion: éva wovtéro e apywonoinon MusiCNN xau éva tuyalo apyixomoinuévo
HovTENO avapopdc e Ty B Sidotaor embeddings (d = 200), xo to dVo axolouddvTac TIC UTEPTAPOUETPOUS
tou T4Rec. O avtiotoiyec uetpinég oto test set mopouvoidlovro otov Ilivoxa 3.

‘Onwe gaiveton and to anoteAéopata, 1660 T0 Tuyolo Wovtého 600 xou To Yoviélo ye apyxonomorn MusiCNN
epgoviouy auodnth Ttwon ot dhec Tic uetpixéc adlohdynone 6tav epappdleton 1 anahowpy dimhotvnwy (0.2333
évavtt 0.2629 NDCG@20 yio to Random, 0.1537 évavtt 0.2358 NDCG@20 vy to MusiCNN), xdtt mov cuy-
povel pe T yoaunhOtepee TYES Tou opatneolvTon ota anoteréopato Touv RTA (Iivaxoc 2). H pelworn auti
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otny anodoor unopel vo anododel oty amdAels YeNoWNS TANpogoplac ota dedouéva eloddou. (lotdoo, mopd
NV TTOON TG anddoong, 1 oyeTix xatdtoln YETAE) TwV 800 UOVTEADY TopopéVeL aUETABANTY, Ue To Tuyaio
povtého vo eaxoloudel vo uepéyel Tou mpoexmoudeuuévou. Autd Belyvel 6T ol Blaopéc otny npoeneéepyacia
petagd Twv 800 mhaciwy Bev eutivovton yio Tar avtideta potiBa anddoong mou mopaTnEinxay TEONYOUUEVKC.

IMivaxag 3: X0yxplon e anédoone povtédwv T4Rec mou axolovdolv tn diadixacia npoenelepyaoiog
dedouévwv Tou RTA

Apywonoinon d NDCGQ@10 MAP@10 Recall@l0 NDCG@20 MAP@20 Recall@20

Random 200 0.2214 0.1927 0.3112 0.2333 0.1959 0.3583
MusiCNN 200 0.1435 0.1227 0.2093 0.1537 0.1254 0.2498

Emiloy? YTreprnopoprétpwy

Yto beltepo melpopa, oTOYEVOULUE VO OTOUOVOOOUPE TNV ETUDEAOT TWV UTEPTUQUUETOWY OPYLITEXTOVXNG Yol
BeAtotonoinong xdde mhauctou. I Tov oxond autd, exnudevoope to woviéha T4Rec yenoiponouwdvrag tig
unepnapapéteous Tou RTA, Swtnpdvtac dune to Bripata npoenelepyaotac Sedouévemv, xodde XoL TOUG GTOY0UC
exnaideuong xan atordynong tou apyixob T4Rec. To mpoxintovta yovtéha T4Rec diadétouv neplocdtepeg
Topop€TEOUS Xat axohoudolv €va ouolaoTnd SlaopeTid oyédlo BedtioTonoinone (Siapopetixd BeltiotonomTy,
puduioth puduol uddnone xou apywd pudud pddnone). To amOTEAECUATH TWY UOVTEADY QUTOV 6TO test set
napovatdlovtan otov ivana 4.

Ané to anoteléopota aUTd, ToEUTNEOVUE Uiot oa@ry YETOBOAT oY xaTdTadn TWV YOVTEAWY, xaddc Oho TA
npoexnatdeuuéva Yovtéra Eemepvoly mhéov Ta avtiotolya povtéha avagopds. o cuyxexpyéva, to Tuyalo
povtéha epgpavilouy pelwon anddoong ot olyxpion To apynd nelpaud (Tlivoxag 1), evéy to MusiCNN, MusiCNN-
tuned xou to povtého xahhtéyvn apouctdlouv adloonuelntn Bedtinon ue Tic véeg unepnapauétoous. Avtideta,
to MERT elvar 10 pévo mpoexnoudeudévo povtého mouv dev wgekeiton and autyh tnv Tponomoinoy. Evdugpécov
TopoLatdlel To YEYOVOS OTL O TPOOUETO TELRGUATA, OOV ATOUOVMOOOUE EEYWELOTA TIC UTELTOROUETPOVUS TTOU
apopoly TNV apyltextovxy 1) T BeAtioTonolnoy, To TEPLOCOTEPN HOVTEN AMEBWOAY YEPOTEPX, YEYOVOS TOU
UTOBNAGVEL OTL TA TUEATNEOVUEVA OPENT] TEOXVOTTOLY ONO TOV GUVBUACHS TNG OPYLTEXTOVIXNG TOU HOVTENOU UE
To oyY€dlo BeATIoTOTONONC, XU OYL ONO XATOLOV THEAYOVTO UEHOVWHUEVAL.

Me Bdon Tic Tapandve TApATNEHOELS, UTOPOUUE VoL GUUTEQAVOUUE OTL OL OEYLTEXTOVIXES Xl BEATIC TOTONTIXES
emhoyég emnpedlouy onpovtxd téco v wavétnta Tou T4Rec va oflomolel mpoexmaudeugéveg NyMTixée ovo-
TOROC TAGELS GCO XAk TN BUVATHTNTE TOL VoL LadalVel ATOTEAEGUATING VUTIOROO TAGELS AVTIXEWEVWY ATt TO UNDEV.
Axoun mo onuavtixd etvar 6t 1 xatdTadn TV Hovtéhwy Tou napatneeitol €60 cuppwvel ye exelvn tou RTA,
YEYOVOS TOU UTOBEXVUEL OTL 1) DloOpPWOT TwV UTEPTORUUETE®Y Tdavotata cuudiiel ota avtideta potifa
anédoone LeTtoy twv 800 TAocinmv.

Iivaxcog 4: Loyxpion e anédoong poviéhwv T4Rec nou exnaudedtnxay pe Ti¢ unepnopauétpoug tou RTA

Apywxornoinom d NDCG@10 MAP@10 Recall@l0 NDCG@20 MAP@20 Recall@20

Random 200 0.2449 0.2056 0.3658 0.2579 0.2090 0.4167
MusiCNN 200 0.2511 0.2103 0.3769 0.2637 0.2137 0.4263
MusiCNN-tuned 200 0.2657 0.2274 0.3844 0.2781 0.2307 0.4333
Random 768 0.2458 0.2067 0.3672 0.2587 0.2101 0.4179
MERT 768 0.2470 0.2069 0.3712 0.2600 0.2103 0.4220
Random 1280 0.2008 0.1607 0.3237 0.2140 0.1642 0.3756
Artist model 1280 0.2601 0.2205 0.3830 0.2729 0.2239 0.4333
Yul7ATnon

Ye auth v evétnTa culnTdue T yevixdtepeg Sopopec uetall twv Transformers4dRec xou RTA, avokbov-
TOG TG OL OLUPOPETINES DUTUTDCELS TWV TEOBANUATOV Xou oL atdyol exudinone eEnyolv tig avtideteg d-
oelg mou mopaTtnERinXay oty anédoong YeTald Twv 800 TAclwY. XUVOAXd, 1) avdAUGY QUTH TEOCEEREL ULl
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TLO ONOXANEWEEVY EXOVAL TNS oAANAeniBpaone UETAE) TWV TREOEXTOUDEVUEVLV MY NTIXWY OVATUEAUC TACEWY, TNS
OPYLTEXTOVIXNC TOU UOVTEAOU %O TOU OTOYOU exmaldeuong, Bondodvtag oG Vo XATAVOGOUUE O)L HOVO TOLOL
ouvduaoyuol anodidouv xolltepa, ahhd xou yiatl Tapouctdlouy T CUYXEXPUIEVY] CUUTERLPORT.

Avagopeég otn AwatVnwor touv IlpoBAjuatog Ilupd v epgovh dpyLTEXTOVIXH TOUS OUOLOTNTA,
10 TEéPANUa TEdPAedNG Tou emduevou Tparyoudlol, émwe oplleton oto mhaioo twv Transformers4Rec [100]
xow RTA [7], euncpiéyer ovoiddele dagopéc. Lnv mepintworn tou TransformersdRec, dedopévne wog Aotog
QVOTIOEAY WY TS OTIOLOLBNTOTE Ux0US, 0 GTOYOC Elval 1 CUUTANPWST) TOU EAAEITOVTOC TEOYOUBLOU GE Lol XATE Tt
SAha TAhen Mota. Avtideta, 1o RTA opilel w¢ Auvtdpatn Zuvéyion Alotac Avanapaywyhc (APC) ) capde
duoxohotepr Bladixacio cVpEONC XATAAANAWY EMEXTACEWY Yiol Uiat AloTol EMOEX0UC UAXOUE, YE EMUVOANTTIXG
TEbTO.

Ané toug ITivaxeg 1 xou 2 napotneolpe 6T, avelaptitwg tne uedddou apyxonoinone twy embeddings (tuyada,
Bootopévn oe petadedouéva 1 Bactouévn oe nyntixd ofua), o T4Rec omodider udpmhdtepa oe Ghec Tic e&e-
taloueveg yetpixéc. AauBdvovtog unddr Tic mopamdve dlaopéc ot @OoN Tou TEOBANUATOS, xoddg Xxou To
emnmAéov Puata enelepyaoiog dedouévewv tou mpaypatonowiviar 6to RTA (dnwe n agaipeon dimhotinwmy), o
onolo. 0dNyolv ot MO AmAUTNTIXES aEYIXES AMoTEG, AAAG xaL TO YEYOVOS OTL xou oTo 800 TAaioLlol BLUTNEHOOUE
600 TO BUVATOV TO TULOTA TLC 0PYLXd TEOTEWVOUEVES UTEPTULAUUETEOUS, AmOdIBOLUE TN Blopopd ambddoong ot
peyahdtepn Suoxohia Tou npoPAfuatoc APC, énwc opileton oto [7].

Yuyxpttix Anodoor Moviédwy O SlapopeTinéc BUTUTMOELS TV TROPANUETLY emipépouy eniong di-
apoponoinuéva amoteréopota yio xdie uédodo apyixonoinone avanopactdoewy. To MERT [63], yio napdderyya,
elvon To mpoexmoudeLUEVo povtého mou mpooeyYilel TEplochTERO TNV amOdOCT TNG TUY UG dEYWOTONoNE OTOo
miaioto tou Transformers4Rec, eved mapouctdlel nTwon anddoone GTNY —Mo ELVOIXTY YLl TIE MYNTXES OVo-
nopootdoels —neplntworn tou RTA. Avtiotpoga, 10 HoVTELO TOL EXTAUBEVTNHE DOTE VoL PEPVEL XOVTY OMOCTEC-
portal iy ou tou Btouv xohhitéyvn eppoavilet T peyahitepn Bedtiwon évavtt tne Tuyalac apyixoroinone oto RTA,
oAAG mopouatdlet T YelpdTepn eidoo petol TwV TEoEXTABELPEVKLY HoVTEAWY oTo TransformersdRec. Téhog,
1 WovN ouuneplpopd mou epgavilel otodepd Yetiny| enidpacn oty anddoon TV AVATUPAC TACEWY Xl oTa 800
nhadota ebvan 1) tpocappoyy (tuning) twv npoEXTUSEVUEVWY AVATUPUC TAGEWY 0T0 TPog ETIAUCT TEOBANUY, HECH
wotg amAfc avtrdetinic dradixasiog [82], 6mwe gaiveton oty tepintwon tov MusiCNN [80]. Qotéoo, 1 dadixasio
auTH| Elodyel 1O TANEOQOpla CYETIXY HE TOV TEAXS GTOYO XAUTA TNV TEOGUQUOYT| TV AVUTUQC TACEWY.

YuunepdopaTa

H nopoloa epyocia diepelvnoe 10 xatd TGO OL TPOEXTAUDEVUEVES MY NTIXES OVITOQUC TACELS UTOPOVY VA EVIGY 0-
couv TNV anddoor evog HovIEROU cuatdoewy Paciouévou o cuvedpleg axpdaone. To Paocwwd pac xivitpo
TPOEPYETAL AN TO YEYOVOS OTL, Topd TNV omodedetyyévar LPNAY) amdd00Y TWV TEOEXTUIEVUEVLY UOVTEAWY
oe ddpopa mpoPifuato MIR [14], [63], [80], [115], n yxpfon TOUS GE CUCTAUNTE CUCTACEWY TUPOHEVEL AVEE-
gpebvnTn. Edwd oty neplntworn twv ouvdeplv axpbdoaone, émou 1 diadéouun mhnpogopla elvor mo meploplo-
HEVN, 1 1A EVOWUATWONS OVATUPUC TACEWY TEPLEYOPEVOU TIOU XWIXOTOLO0V HOUGIXES WBLOTNTES QabveTon dELa
diepetivnone. T va edéyoupe v mpooéyylol| o, e€aydyoue ovomopoao TEoELS Tpayoudldv amd tela Tpoex-
noudeupévar povtéha, ouyxexpiuévo o MusiCNN [80], MERT [63] xou évo povtého Puciopévo oe opotdTnTa
XOAMTEY VOV, TROXEWEVOU VoL UETPHOOLPE TNV eNBRooY SLapope TV Uedodwy Tpoextaldeuone otny anddoon
Tou TEAXOL HovTélou. XpnollomowvTag cuvedpiec axpbaone mou efaydyoue and o chvolo dedouévewv Mu-
sic4All [91], exnoudeloaye povtéda cbotaone Pootouéva oe apyitextovixéc Transformers, axohoudidvtog dUo
undpyoucec tpooeyyioec and 1 BPhoypagio: to Transformers4Rec [100] (emxevipwpévo otny anholotepn
epyaoio TpdPredmne Tou endpevou Tparyoudiod) xa to Represent-Then-Aggregate (RTA) [7] (nou avuyetonile
70 BUOXONGTERO TPOPBANUA TNG CUVEYLOTG MO TaC avamapaywYHS), To OTOLL TPOCUPUOCOHE OTNY TEPITTWOT TKV
oLVedpLY axpdaone avtl v Aoteg avamopoywyfc. Avtl va udouue TS aVATOPUC TACELS TWV AVTIXEWUEVELV
and To Undév, BacllOUevoL amOXAEIG XA OE SEGOUEVI AAANAETOPACEWY, EEETACUUE TEPOTOUE EVOOUATLONG TOV
NYNTEXOV AVATUEACTACEWY GTN) POY| TNG TAPOY S ouoTdcewY. IIo CUYXEXPWEVA, TU YENOWOTOWAOUUE WS EX-
Taude oL APy XOTOMOT) TOU TiVAXOL AVATIEAC TACEWY, AELTOURYOVTIS KOC £VOL ONUELD EXXIVNONE TTOL EVOOUATOVEL
TANEOPORIEC YL TO TMEPIEYOUEVO. D€ EMTAEOV TELPGUATO, TEOYUATOTOLCOUE TEOCUQUOYT] TV MYNTIXDY OVi-
TOPUC TACEWY PE €V A HOVTENO, OC Wlat Ak TeXVxY tpocappoyhc nediou (domain adaptation), eveéd &-
ETAOOUE XoU Lol OTEATNYIXY VOTEPNS CUVEVWOTS, OTou Ta Tpoexnaudeuuéva embeddings evowuoatainxay yetd
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to en{neda touv Transformer péow cuvévwone oe eninedo cuvedplac.

Ta nepdpotd pag xon ota 800 mAololo Tapelyay CUUTANPEWUIATIXES TapATNEToElS. XTny Teplntwon tou Trans-
formers4Rec, 6mou 1 napaywyr cucTdoewY dlaTunGvET WS TEOBANUA TEdBAedne evog ehhelnovtog Tparyoudloy,
xolar amd Tig e€eTaldUEVES oTRATNYIXES dpyixonoinong tou Boacilovial O TPOEXTOUBEVUEVES UVATORIC TAOELS OEV
pévnre va Eemepvd Ty tuyala apyixonoinorn. To elpnuo owTd UTOBNAGYVEL 6TL, TaPE TO EYPOUVES TAEOVEXTNUAL
TWV LOVTEAWY TOU EVOWUATOVOUV MY NTIXY TANRo@opia 0TIC TPOTES €NOYES TN EXTAUBEVONS, TO UOVTEAD UTopEl
TEAXS v el Ty amoutoduevy TAnpogopia €€ ohoxhfipou and To uNdév. Amd TNy Ak, mapd v (olupnvn
pe ) BBhoypapio [49], [55]) avdrtepn anddoon tne epmhouTIouéVNG UE LETOBESOUEV TPy OVTOTOINGTC TOV Tii-
VOO GUV-ERPAVIONG YENOTOV-AVTIXEWWEVWY VLol TNV dpylxonolnon tewv embeddings, ol nyntixéc avanapao tdoelc
UTOEOUV Vo TTaEEYOLY YeHoHY TANEOQOoEia Yol TO TEOBANUA CUVEYLOTS CUVESELWY aXEOUCTIC, OTO TLO AMULTATIXG
mhaioto Touv RTA (xwplc Simhdtuna tporyouddv xou pe eptoptopéve oupgealopeva). Ka otic 8o nepintdoele,
TOL TELRAUOITSL o atvéEDeLEaty Lot ixet| ahhd o tardept) Getinr| enidpaom tng npocopuoyic Twv nyntixey embeddings
HE Xphom dedopévmy cuunEpLPOopdc, we wa wéYodoc Tpooapuoyhc tediov (domain adaptation).

Ye (Lol TpOoTEUELS VO XOTAVOiOOUHE XUAVTEQA TIG AVTLPATIXES ETUDOCELS TWY TPOEXTAUBEVUEVKY HOVTEAWY UETAED
TV 800 TAUCIWY, dEYLXd OTTIXOTOWOUUE TOUG OVTICTOLYOUS YDPOUS OVATOQLOC TACEWY Xl TUPUTNEHOOUE (Lo
iV CUGYETION OVAUESA OTNY IXAVOTNTA XEVE HOVTEAOU VoL oy Nuatilel CUGTABES OYETIHES PE LOUCLXSL Y opaX-
TNELO TG XAl OTNY Om6B00Y| TOU GTOV TOHEN TWV CUCTACEWY. XTI CUVEYELN TEAYUAUTOTOCOUE (L0 ETLTAEOV
perétn (ablation study), émou amopovdooye v enldpoom dlapdpmy TUEAYOVTWY TOU daoponotody To d0o
mAaiota, avadevbovtag Ty enidpoor Tne pOMULONE TWVY UTEPTUPUUETEWY OTO TELRUUATIXG ATOTEAECUOTAL.

Me Bdor ta mopandve, Yewpolye OTL 1 YeNOWOTNTH TWV TEOEXTUOEVUEVROY NYNTIXOY AVATULUCTACEWY OF
EQUPUOYEC CUCTACEWY EVOEYETOL Vo e€apTdton amd Tov Badud evduypdUlone Tou GTOYOU TPOEXTABEVONG Ue
TO TEAXO TPOBANUA TUPAY WY NG CUCTAGEWY, EVE Ol XUTAAANAES ETAOYESC UPYLTEXTOVIXNG XOU UTEPTUQUUETRY
Behtiotomnoinong elvon amapaltnteg yio Ty o€lonoinoy Tou mhrpoug duvaxol toug. Téhog, Sev mpoéxule capég
CUUTEPUOHO OYETA UE TN OYETXY XATUAAANAGTNTOL TV BLOPOPETINMV TEYVIXGOV TpoexTaldeuons (avTideTindy,
QUTOETIBAETOUEVODY 1) ETOTTEVUEVLY HECH ETIXETWY).

Yuvohixd, ol Baonéc cuvelo@opéc Tne Topoloos epyaciog cuvodilovtar we e€rc:

o llpayuatonotoue cuotnuotixy a&lohdYNoT NG ANdBOOTS TEOEXTAUBEVPEVGLY NYNTIXDV AVATORICTACEWDY
o€ dVo undpyovta thalolr cuotdoewy: Transformers4dRec [100] xou Represent-Then-Aggregate (RTA) [7].

o EZdyoupe nyntxéc avarapactdoelc and tpla npoextoudevuéva povtélo: MERT [63], MusiCNN [80] »xou
évar LovTélo Tou eoTLdlel oty TauTOTNTA XohhTéY VY. Kdde povtého axohouldel diapopetind otpatnynd
npoexnaldevone (oxouoTtixy poviehonoinon, emPrendpevn medBhedn etixetddv, avudetins exuddnon ov-
tlotouya).

o Ileapotilépacte ye Bidpopouc TpdToLE EVowpdtwone Twyv embeddings otn por| clcTooNC, CUUTERLAO-
Boavouévne pLog teyvixfic npocappoyic nediou (domain adaptation), 6nou ta npoexnandevpéva embeddings
vplotavtor tpocapudlovion oe dedopéva axpdaonc Uéow evoc amhol avttdetinol oTdyou.

o To mepduotd pog avédeil&oy onuavtixd SlapopeTixt] xatdtoln Woviéhwy avdhoyo pe Tto mAidicwo. [
VO EpUNVEVCOUUE QT TO AVTLPUTIXY AMOTEAEOUATY, YpMolonoliooue Wla TeY VXY ontxonolnong ava-
Topao Tdoewy [65] xou Tpaypatonotfioaye pio eminhéoy pyehétn (ablation study), anopovevovtog eTUEPOUS
Blapopéc Twv 800 Thanciwy.

o Ta cupHuatd pag avadeviouy TNy enidpoaot T600 TNE OTEUTNYXNAC TEOEXTABEVGNE GCO XAl TN ETLAOYTC
UTIEPTIOROPETEWY GTY) XPNOHOTNTA ToU Xdde NYNTIXOL HOVTEAOU GTO TED(O TV CUGTACEWY.
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(c) MusiCNN npwv v exnaideuon (d) MusiCNN petd v exnaidevon
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Syhua 0.0.8: Onuxonooeic t-SNE twv ydpwv embeddings tou MERT ot touv MusiCNN motv xou petd tnv
exmaldeuon.
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Chapter 1. Introduction

1.1 Music Recommender Systems

Over the past years, streaming platforms have redefined the way we enjoy music. These services have largely
replaced physical media, such as CDs and vinyl records, and offer ever-growing song catalogs to their millions
of users. However, since it is not feasible for users to exhaustively navigate these endless catalogs, one of
the main challenges that arise is how to bring users closer to music they love. This is the purpose of music
recommender systems, which have become a cornerstone of digital streaming platforms, shaping how millions
of listeners discover new music and engage with their favorite artists.

1.1.1 Collaborative filtering

For many years, recommendation systems relied on techniques that produce recommendations by exploiting
patterns in user-item interaction data. Such algorithms have been widely adopted and have demonstrated
considerable success in many domains, including music. A typical example is a technique called Collaborative
Filtering (CF), which essentially identifies similarities between users or items based on large interaction
matrices and recommends tracks that users with similar taste have enjoyed [92]. Interaction data can range
from 5-star ratings, explicitly expressing a user’s like/dislike for an item, to other forms of feedback like play
counts of songs, purchases of items, and similar implicit signals, which reflect user preferences in a more
indirect way [48]. Alternatively, a family of CF algorithms employs matrix factorization techniques in order
to represent users and items in a shared low-dimensional latent space and then discover patterns in user
preferences [36], [43], [54]. This not only improves recommendation accuracy but also enhances scalability
and computational efficiency.

Limitations

Despite their proven effectiveness, traditional approaches have several limitations. One major issue is data
scarcity, since user—item interaction matrices are typically very sparse and contain only a small fraction
of possible interactions. Consequently, it becomes more challenging to infer meaningful patterns based
exclusively on interaction data. In its extreme form, data scarcity gives rise to the so-called "cold-start"
problem, which occurs when new users or items are added to the system and remains one of the grand
challenges in recommender systems [95]. Due to the lack of interaction data, it becomes difficult to recommend
items to a new user or recommend a new item to existing users. As a result, these methods hinder emerging
artists and niche genres from gaining visibility and tend to reinforce popularity bias, where popular, heavily-
rated tracks are recommended more frequently, while lesser-known content remains overlooked. This not only
raises a concern of unfairness in recommender systems, but also limits diversity in recommendations, leading
to a more homogenized listening experience [34], [56].

1.1.2 Content-Based Methods

To tackle this, researchers have increasingly turned to content-based methods that define similar items based
on features derived from the content, rather than user behavior data. Such features can range from low-level
information extracted directly from the audio signal to more high-level textual descriptors, such as metadata
or user-generated tags [27] and are available even in the absence of user—item interactions, which makes
them especially useful for newly added or rarely played tracks. By incorporating this type of information
into the recommendation process, systems can make suggestions even for tracks with little or no historical
listening data, thus mitigating the cold-start problem. In practice, many real-world systems integrate both
collaborative and content-based signals to combine their respective advantages.

When it comes to features extracted directly from raw audio, a simple solution is to use handcrafted descrip-
tors [25], [120], designed to capture timbral, rhythmic, or spectral characteristics of the signal. While such
features can be useful, they are inherently limited in their ability to represent the rich, hierarchical structure
of music. For this reason, more recent works shifted toward leveraging deep neural networks to automatically
learn representations that map the audio signal into a high-dimensional embedding space capturing mean-
ingful musical properties. Many of these methods follow a supervised learning paradigm [49], [60], [67], [80],
requiring large labeled datasets to guide the representation learning process. However, since collecting such
annotations is both costly and time-consuming, recent works [14], [38], [62], [63], [76], [101], [115] have fo-
cused on methods that derive supervisory signals directly from the data itself, without the need for manually
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1.2. Problem Statement and Research Questions

labeled examples—an approach commonly referred to as self-supervised learning. In fact, in the field of Music
Information Retrieval (MIR), numerous models have been pretrained on large collections of unlabeled audio
and can then be used for several downstream tasks, such as auto-tagging and genre classification. This can
be achieved by either fine-tuning the model on the final task or using it directly as a feature extractor with no
additional training. Such transfer learning approaches often achieve comparable or even better performance
than state-of-the-art task-specific models, and have proven to be particularly useful in cases where labeled
data is scarce.

1.1.3 Sequential Recommendation

Despite the remarkable progress in learning powerful audio embeddings, another important dimension of
recommendation lies in modeling how user preferences evolve over time. Although it’s safe to argue that user
preferences can shift over time, conventional models treat user history statically and ignore the temporal
dynamics of user behavior. This is even more important in the music domain, since music consumption is
an inherently sequential process — users typically listen to music within a playlist, an album or a listening
session [95]. To capture these temporal dependencies, sequential recommendation methods extend the collab-
orative filtering paradigm by modeling user activity as an ordered sequence of interactions. Unlike traditional
systems, sequential models learn how recent choices influence future ones, aiming to predict the next item a
user is likely to engage with based on their recent history.

Session-based recommendation tasks represent a particular case of this paradigm, where predictions depend
solely on the ongoing user session rather than long-term interaction histories. This setting is especially relevant
for anonymous or newly registered users, as it allows personalized recommendations even in the absence of
persistent user profiles. Common examples include music listening sessions and e-commerce browsing sessions,
where short-term context plays a dominant role. Since sequential and session-based recommendations are
essentially sequence modeling tasks, it shouldn’t come as a surprise that over the past decade most of the
prevalent architectures used in Natural Language Processing (NLP) for language modeling, like GRU [20]
and Transformers [109], have been applied to those fields with great success [44], [45], [53], [103].

In the music domain, a closely related application is Automatic Playlist Continuation (APC). Undoubtedly,
playlists have been an increasingly popular way of consuming music in recent years and users in streaming
platforms often create their own playlists based on their favorite music genres, different moods or listening
occasions. Therefore, one of the challenges that these platforms have to face is that of automatically extending
such lists of music tracks in a way that preserves their musical coherence and fits well with the rest of the
list.

1.2 Problem Statement and Research Questions

As mentioned earlier, pretrained models have become increasingly popular in the MIR community, thanks
to their competitive performance in various downstream tasks. However, the effectiveness of such models
for session-based music recommendation remains underexplored [104]. That being said, the core problem
this thesis addresses lies in whether audio embeddings from pretrained models can enhance the performance
of session-based music recommendation systems. More specifically, our research aims to extract audio rep-
resentations from MIR foundation models recently presented in the literature and explore different ways of
integrating these representations into the recommendation pipeline. To achieve this, we experiment with two
different recommendation frameworks: an NVIDIA library called TransformersdRec (T4Rec) [100], and a
framework recently proposed by Deezer Research, referred to as Represent-Then-Aggregate (RTA) [7]. The
architectural differences between these two help us assess the effectiveness of our approach under various
setups.

Ultimately, our efforts try to address the following research questions:

e RQI1: Can pretrained audio embeddings improve recommendation performance in session-based scenar-
ios?

e RQ2: Which pretraining technique performs best in this setting (supervised tagging, masked acoustic
modeling, contrastive learning)?
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RQ3: How to effectively incorporate pretrained embeddings into the recommendation pipeline?

1.3 Contributions

The contributions of this thesis to the field of sequential music recommendation can be summarized as follows:

1.4

We evaluate the performance of pretrained audio embeddings, utilized in tandem with two recommen-
dation frameworks, T4Rec [100] and RTA [7], which we adapt to the music recommendation setting.

We compare the following models as embedding sources: MERT [63], MusiCNN [80] and a custom
artist-based model. We also explore embedding finetuning methods by employing contrastive learning
on the pre-trained embeddings as a domain adaptation technique.

We process the Music4All [91] dataset, which includes the listening histories of ~15k Last.fm! users, in
order to split the histories into listening sessions. Additionally, we use the pretrained models to extract
song embeddings from raw audio.

We investigate initializing the per-item embeddings with the audio embeddings, applying a simple
domain adaptation technique, or using them in a late fusion setting.

Thesis Structure

The remainder of this work is organized into 5 chapters. Each chapter is outlined as follows:

Chapter 2: Theoretical Background

Familiarizes the reader with the necessary background knowledge in order to seamlessly follow the
subsequent chapters. This includes the basic methods used in recommender systems, widely used
machine learning models, as well as an overview of audio signal representation techniques and a brief
description of evaluation metrics used in recommendation systems.

Chapter 3: Related Work

Provides a comprehensive analysis of previous works on the two fields that this thesis brings together:
representation learning from audio signals, and sequential recommendation, including both general
sequential models and more music-related approaches.

Chapter 4: Data and Methodology

Delves into the data preparation process we followed, together with an explanation of the internal
details of each recommendation framework.

Chapter 5: Experimental Evaluation
Describes the experiments we conducted with the proposed models and analyzes the results.
Chapter 6: Conclusion

Sums up the results and contributions of our work and discusses potential future work based on our
observations.

Thttps://www.last.fm/
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Chapter 2. Theoretical Background

2.1 Machine Learning

Machine learning (ML) is a subfield of Artificial Intelligence (AI) that focuses on building models that learn
from data in order to make predictions. ML algorithms detect patterns in training examples and exploit
them to make informed decisions about unseen data.

2.1.1 Categories of Machine Learning Algorithms

Machine learning techniques can be broadly classified into three main categories depending on the availability
of information about the correct prediction:

e Supervised Learning: In supervised learning algorithms, the model is presented with labeled data,
which means that each input sample z is accompanied by the desired output y. The goal is to learn a
function f(x) — y that generalizes well to new input data. The predicted output can be either a real
value, therefore we have a regression task, or one of predefined, discrete categories, in which case we
have a classification task.

e Unsupervised Learning: On the other hand, unsupervised methods operate on unlabeled data and
try to identify underlying properties and structure of the data. Machine learning tasks that fall in this
category include clustering and dimensionality reduction.

A sub-field of unsupervised learning that has gained increasing attention in the past years is Self-
Supervised Learning (SSL), where the model is trained on supervisory signals generated from the
data itself, e.g. by masking parts of the input and learning to predict these masked parts.

e Reinforcement Learning: In reinforcement learning, the computer program takes actions in an envi-
ronment, trying to maximize its cumulative reward by deriving an optimal strategy. Typical application
fields include autonomous driving cars, robotics and gaming.

2.1.2 Neural Networks

Artificial Neural Networks (ANN) constitute a family of machine learning models that are inspired by the
way the human brain works. They consist of numerous units called neurons, which are connected to each
other to form layers that process the input in order to make predictions. Before delving into the details of
ANNs we will describe how these artificial neurons work.

Bias
b

Activation Output

<

§=g(w-x+b)

Figure 2.1.1: Strucure of an artificial neuron [30]

The Neuron

Each neuron takes a vector as input and multiplies it with learnable weights that control the contribution
of each input value in the final result. To produce the output, the neuron sums the weighted inputs, adds a
learnable bias and passes the outcome through an activation function that introduces non-linearities. These
operations can be seen in Figure 2.1.1 and are mathematically expressed as:

6
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y=yg (i:wimi+b> (2.1.1)

where g is the activation function, x is the input vector, of dimensionality n, w is the weight vector and b is
the bias.

A well-known early algorithm that relied on a single neuron to perform binary classification is the Percep-
tron [89], which was introduced by Frank Rosenblatt in 1957. However, it was limited to solving only linearly
separable problems, thus motivating the development of more complex multi-layer architectures.

Multi-Layer Networks

In pursuit of more expressive modeling capabilities, architectures that added additional neurons and organized
them in layers were developed. Such networks are often called Multi-Layer Perceptrons (MLP) and consist
of the following components:

e Input layer: Receives raw input data, with each neuron corresponding to an individual feature.

e Hidden layers: Intermediate layers containing multiple neurons that learn representations and trans-
formations of the data.

e Output layer: Produces the final result, which depends on the nature of the task (e.g., classification
or regression).

In the specific case where each neuron in every layer is connected to all the neurons of the previous layer, as
in Figure 2.1.2, then we have a fully connected neural network. Additionally, when multiple hidden layers
are added, the network becomes a deep neural network (DNN), which allows it to model highly complex
relationships in data. Deep networks enable applications such as image recognition, speech processing, and
natural language understanding by capturing hierarchical patterns in large datasets.

()

Input layer Hidden layers Output layer
WIS

Figure 2.1.2: A Neural Network with 3 hidden layers [12]

Loss Functions

A neural network learns by minimizing the difference between its predicted outputs and the actual ground-
truth values. This difference is quantified using a loss function, which provides a measure of error and guides
the optimization process. Two widely used loss functions include:

7
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e Mean Squared Error (MSE) — Used primarily for regression tasks, this function penalizes large
deviations between predictions and true values:

N
Lusk (95, yi) = Z — i) (21.2)

where N is the number of instances, y; is the actual target value, and g; is the predicted output.

e Cross-Entropy (CE) — Used for classification tasks, this function measures the divergence between
predicted and actual probability distributions:

LCE yuyz = Zyz IOg yz (2'1'3)

where y; represents the ground-truth label (one-hot encoded), and g; is the predicted probability of the
correct class.

Gradient Descent

To optimize a neural network, we use gradient-based optimization algorithms that iteratively update param-
eters to minimize the loss function. The most fundamental approach is Gradient Descent (GD), where model
parameters are updated iteratively based on computed gradients:

oL
Tow
where 7 is the learning rate, determining the step size, L is the loss value computed on all the available data
points and 2 aw is the gradient of the loss function with respect to the weight parameter, w.

wttH = — (2.1.4)

A popular variant, Stochastic Gradient Descent (SGD), updates the weights after computing the gradient on
a single randomly selected training sample instead of the entire dataset. This stochasticity introduces vari-
ability, often enhancing generalization and computational efficiency, at the cost however of training stability
and convergence speed.

Another commonly used approach is Mini-Batch Gradient Descent, which balances the stability of full-batch
GD and the efficiency of SGD by computing updates on small data subsets at each step. Furthermore,
adaptive methods like Momentum-based GD, Adam, and RMSprop introduce learning rate adjustments to
improve convergence speed and stability.

— Batch gradient descent
— Mini-batch gradient Descent
— Stochastic gradient descent

Figure 2.1.3: Optimization paths in a loss landscape [23]. Batch GD (blue): Stable but slow, Stochastic GD
(purple): noisy but efficient, Mini-batch GD (green): balances efficiency and stability

Backpropagation

However, in neural networks, finding the relationship between the loss and the weights is not an easy task.
To efficiently compute gradients in such cases, we use backpropagation [90], an algorithm that applies the

8



2.1. Machine Learning

chain rule of differentiation to propagate errors backward through the network. This enables the systematic
computation of the gradient of the loss function with respect to each parameter. The backpropagation process
involves two main steps:

e Forward pass — Input data propagates through the network, generating activations and predictions at
each layer.

e Backward pass — The error is propagated in reverse from the output layer through preceding layers,
computing gradients using the chain rule.

These gradients are then used to update model parameters via gradient descent, progressively refining the net-
work’s predictive performance. The combination of backpropagation and gradient-based optimization forms
the foundation of modern deep learning, enabling the effective training of large-scale neural architectures.

Activation Functions

As mentioned earlier, an activation function is used to produce the output of each artificial neuron. Its
purpose is to apply a non-linear transformation on the input, thus allowing the network to capture complex
patterns of the data. In fact, without activation functions, deep fully connected networks are equivalent to
simple linear transformations.

e Sigmoid: The sigmoid (or logistic) function is defined as:

B 1
T 1l4e®

o(x) (2.1.5)

This function outputs values in the range (0,1), making it suitable for the output layer of binary clas-
sification problems. However, it suffers from the vanishing gradient problem, where gradients become
too small in deep networks, slowing down learning.

e Tanh: The hyperbolic tangent (tanh) function is defined as:

tanh(z) = % (2.1.6)

Unlike sigmoid, tanh outputs values in the range (-1,1), centering the data around zero, which often
leads to faster convergence. However, it also suffers from the vanishing gradient problem. The tanh
function is commonly used in the hidden layers of neural networks.

e ReLU: The Rectified Linear Unit (ReLU) activation function maps all negative values to zero and
leaves positive values unaffected:

ReLU(z) = max(0, x) (2.1.7)

It is also widely used in hidden layers due to its computational efficiency and ability to mitigate the
vanishing gradient problem. However, it can suffer from the dying ReLU problem, where neurons
output zero for all inputs, leading to a loss of learning capability.

e Softmax: The softmax function is used in multi-class classification problems and is defined as:

Softmax(z;) = S (2.1.8)

Zj €%

The raw scores produced by the final layer of a neural network before applying a transformation can
be positive or negative and are not constrained within a specific range. This function converts these
scores z;, which are called logits, into probability distributions over multiple classes, ensuring that the
sum of the outputs equals one. It is commonly applied to the output layer of classification networks.
An example of using the softmax function for a 5-class classification problem is shown in Figure 2.1.5.
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Figure 2.1.4: Activation functions: ReLU, tanh, and sigmoid [51]
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Figure 2.1.5: Example of applying Softmax to a 5-class classification problem [83]
Regularization

Regularization techniques are employed to mitigate overfitting in machine learning models by imposing
constraints on the optimization process. Overfitting occurs when a model fits the training data too closely,
capturing noise and random fluctuations rather than the true underlying pattern, thereby reducing its ability
to generalize to unseen examples. This phenomenon typically arises when a model is excessively complex
relative to the amount of available training data. Regularization improves generalization by controlling model
complexity, discouraging excessive reliance on specific training instances, and introducing constraints that
promote simpler, more robust solutions. This is typically accomplished by adding a regularization term to
the loss function, which prevents the weights’ magnitude from growing excessively.

L1 Regularization (Lasso) L1 regularization, also known as Lasso (Least Absolute Shrinkage and Se-
lection Operator), adds a penalty term proportional to the absolute values of the model’s parameters. It is
formulated as:

LL1 :)\Z|wl| (219)

where A is a hyperparameter that controls the regularization strength, and w; represents the model param-
eters. L1 regularization promotes sparsity by driving some weights to zero, effectively performing feature
selection. This makes it particularly useful in scenarios where interpretability and dimensionality reduction
are desired.

L2 Regularization (Ridge) L2 regularization, also known as Ridge regression, penalizes the sum of the
squared values of the model’s parameters. It is calculated as:

LL2:/\Zwi2 (2.1.10)

Unlike L1 regularization, L2 does not enforce sparsity but instead shrinks all weights towards zero, preventing
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2.1. Machine Learning

excessively large values that could lead to overfitting. L2 regularization is widely employed in deep learning
as it helps maintain smooth and stable weight distributions, improving convergence and generalization.

Dropout Another well-known technique used in neural networks to prevent overfitting is Dropout [102].
It works by randomly deactivating some neurons by setting their output to 0 with probability p ("dropping
them out"). This prevents complex co-adaptations of hidden units on the training data and is usually applied
to the fully-connected layers of Convolutional Neural Networks (CNNs), which will be described shortly.

Batch Normalization Another widely used technique to stabilize and accelerate training is Batch Nor-
malization (BatchNorm) [50]. BatchNorm operates by normalizing the inputs of each layer using the batch’s
statistics. That is, for a given activation x in a batch, BatchNorm computes the normalized value as:

T — KB

Vo +e

where pp and 0% are the mean and variance computed over the current batch, and € is a small constant for
numerical stability. The normalized output is then scaled and shifted using learnable parameters v and 3: f

T =

(2.1.11)

Y =i+ B (2.1.12)

BatchNorm allows for faster convergence and more stable gradients by mitigating the problem of internal
covariate shift, where the distribution of each layer’s inputs keeps changing during training.

Layer Normalization Layer Normalization (LayerNorm) [2] is a similar normalization strategy, but in-
stead of computing statistics across the batch dimension, it normalizes across the feature dimensions of a
single data point. This makes it suitable for tasks where batch statistics are unreliable or inapplicable, such
as in recurrent neural networks or transformer-based architectures, which we will describe shortly. Given a
feature vector z € R? for a single input, LayerNorm computes:

. T

where 1 and o2 are the mean and variance computed across the d features of x. Like BatchNorm, it includes
learnable parameters v and S for scaling and shifting. LayerNorm has become particularly important in
attention-based models, where consistent feature scaling is beneficial regardless of batch size.

Convolutional Neural Networks (CNNs)

Convolutional Neural Networks (CNNs) are a specialized class of deep learning models designed for processing
structured grid-like data, such as images. Unlike fully connected networks, CNNs employ convolutional layers
that leverage spatial hierarchies in data, making them highly effective in feature extraction and pattern
recognition tasks. They have significantly advanced the field of computer vision, achieving breakthroughs in
tasks such as image classification [42], [57], [59], object detection [40], and image segmentation [64].

Motivation and Structure Traditional neural networks struggle with high-dimensional inputs, as fully
connecting all neurons leads to an explosion in the number of parameters. CNNs address this challenge
by using convolutional layers, which apply shared weights across local receptive fields, drastically reducing
parameter count while preserving spatial relationships.

A CNN typically consists of the following layers, each serving a distinct role in feature extraction and decision-
making:

e Convolutional Layers: In each of these layers, small learnable matrices called filters (or kernels) are
slid over the input and produce feature maps. In the initial convolutional layers, these filters extract low-
level features such as edges and textures and as the network deepens, higher layers capture increasingly
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complex patterns, including shapes and object structures. This operation is called convolution and is
mathematically defined as:

(X «W)(4,79) :ZZX(i—m,j—n)W(mm) (2.1.14)

where * denotes convolution, X is the input, W is the filter (kernel), (i, j) represent the position of the
filter on the input and (m, n) are the spatial indices of the filter. Key hyperparameters for convolutional
layers include:

— Kernel Size (F): Defines the size of the filter matrix that slides over the input.
— Stride (S): Determines the step size of the filter as it moves across the input.
— Padding (P): Controls whether the input is zero-padded to maintain spatial dimensions.

In this case, and supposing a square input with dimension D, the output dimension of the convolution
is equal to:
D—-F+2P
S

An example of convolving a filter with an input image is presented in Figure 2.1.6. Note that each layer
usually applies several filters on the input, each one learning a different feature. Non-linear activation
functions such as ReLLU are applied after convolutions to introduce non-linearities, enabling the network
to learn intricate patterns beyond simple linear transformations.

+1 (2.1.15)

Input Filter Result
a|o|2|s |8 3T 2
110 -1 :
5(6|2]4|0]f3
X 110 |- -
24|54 |52 /
Sl e — B 10| -1
5|6 |5 |4|7]|8 T - /
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LU e Size: f=3 =4*1 +9'0+ 2°(-1) +
Stride: s=1 51 +6°0 +2°(-1) +
4 i . * .
i It I I s Padding: p=o0 2'1 + 470 + 5%(-1)

Figure 2.1.6: Convolution between an input image with D = 6 and a 3 x 3 filter [81].
According to Eq. 2.1.15, the output dimension will be equal to 4.

e Pooling Layers: These layers perform downsampling to reduce spatial dimensions by applying a
specified aggregation function on regions of the feature maps. Pooling helps prevent overfitting by
reducing the amount of information passed to subsequent layers, retaining only the most essential
features. Two common operations are max pooling, which retains only the maximum value from each
local region and average pooling, which computes the average value over the pooling region, as shown
in Figure 2.1.7.

Fully Connected Layers: Fully Connected (FC) layers are used to make predictions by combining
the features extracted from the convolutional and pooling layers. FC layers transform learned represen-
tations into a final decision, such as class probabilities in an image classification task. This is normally
done by applying the Softmax activation function (Figure 2.1.8).

Recurrent Neural Networks (RNNs)

A major shortcoming of traditional neural networks is their inability to efficiently handle sequential data of
arbitrary length, such as text, audio and video. This challenge is addressed by Recurrent Neural Networks
(RNNs) [90], a class of neural networks that process input data sequentially, while maintaining an internal
memory of previous inputs by passing a hidden state across time (Figure 2.1.9). More specifically, if ¢ is the
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Figure 2.1.7: Max and average pooling operations with a 2 x 2 pool size [81].
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Figure 2.1.8: Architecture of LeNet-5, a CNN for handwritten character recognition [59].
Notice the alternation between convolutional and pooling layers, followed by 2 FC layers.

current timestep, the hidden state h; is a combination of the input x; with the hidden state h;_; from the
previous time step:

he = f(Whawe + Winhi—1 + ) (2.1.16)

where W, is the input-to-hidden weight matrix, Wj;, is the hidden-to-hidden weight matrix, by is the bias
and f is an activation function, commonly tanh.

Correspondingly, the output y; at timestep t is calculated as:

yr = g (Wynhs +by) (2.1.17)

where Wy, is the hidden-to-output weight matrix, b, is the output bias and g is an activation function.

Vanishing and Exploding Gradient Problems A significant challenge in training RNNs is the vanishing
and exploding gradient problems, which arise during backpropagation through time (BPTT). The gradients
of the loss function with respect to earlier layers can diminish (vanish) or grow exponentially (explode),
leading to ineffective learning. This issue is particularly problematic for long-range dependencies, as earlier
inputs may lose influence over later predictions.

To mitigate these issues, more sophisticated RNN variants have been proposed, such as Long Short-Term
Memory (LSTM) networks [46] and Gated Recurrent Units (GRU) [20]. To ensure that older information is
preserved when sequences grow longer, LSTMs incorporate additional cell states, which get updated using
gating mechanisms (input, forget, output gates) that regulate the flow of information by selectively retaining
or discarding past context (Figure 2.1.10). The ability of these architectures to handle long-term dependencies
has made them a preferable choice over vanilla RNN networks.
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Figure 2.1.9: Structure of a simple RNN (left) and unfolded through-time RNN (right) [111]
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Figure 2.1.10: Structure of an LSTM cell, where Red: Sigmoid, Blue: Tanh [78]

Transformers

The Transformer, introduced in 2017 by Vaswani et al. [109], is a network architecture originally used for
machine translation that has revolutionized sequence-based tasks and deep learning in general. Unlike tradi-
tional recurrent neural networks (RNNs), which process sequential data in an ordered manner, transformers
rely on a highly parallelizable self-attention mechanism. This architectural innovation enables the model to
capture long-range dependencies within sequences more efficiently than RNN-based architectures.

Architecture Overview The original transformer model follows an encoder-decoder structure. The en-
coder processes input sequences and generates context-aware representations, while the decoder utilizes these
representations to generate output sequences. Both the encoder and the decoder consist of 6 stacked layers.
In the encoder, each layer has two sub-layers: a multi-head self-attention module and a position-wise feed-
forward (fully connected) neural network. The decoder layers follow the same structure, but also employ a
third sub-layer between the other two that performs multi-head attention over the encoder’s output.

Self-Attention Mechanism To implement self-attention, which allows each element in the input sequence
to attend to all other elements, the transformer architecture proposed the scaled dot-product attention mecha-
nism. Intuitively, given an element of the input sequence ("query"), this mechanism updates its representation
by calculating a weighted sum over all the elements of the sequence ("values"). The weights are obtained
by taking the dot product between the query and all the elements ("keys"), which acts as a compatibility
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function, followed by a softmax function to turn it into a probability distribution. Mathematically, this is
described as:

Attention(Q, K, V) = softma: (QKT) 14 (2.1.18)
ntion(Q, K, V) = max 1.
Vi,

where:
e (), K and V are the queries, keys and values matrices, respectively.

e d; is the dimensionality of the key vectors, and the scaling factor \/dj prevents extremely large values
in the softmax function.

Multi-Head Attention To enhance the expressiveness of the attention mechanism, transformers employ
multi-head attention, which runs the attention mechanism multiple times in parallel (h = 8 in the original
architecture), with different learned weight matrices. The outputs from each attention head are concatenated
and transformed through a linear projection. Mathematically, these operations are described as:

MultiHead(Q, K, V) = Concat(heady, ..., head;,)W©

2.1.19
where head; = Attention(QVVﬁ, KwE vw}) ( )

In the above equations, WZQ, WiK and Wiv are the weight matrices for the i*" attention head, and W is the
output weight matrix that combines the outputs of all attention heads.

Position-Wise Feed-Forward Network As mentioned earlier, each encoder and decoder layer also in-
cludes a feed-forward network, which applies two linear transformations with a ReLLU activation function in
between:

FFN(z) = max(0, W1 + b1)Wa + b (2.1.20)

where W1, W5 are weight matrices, and by, b are bias terms. This component is applied to each position
independently and identically and enables the model to introduce additional non-linearity and enhance feature
learning.

Positional Encoding Since transformers do not have a built-in sense of sequence order, they introduce
positional encoding to retain positional information. This is done by adding a position-dependent vector to
each input embedding.

Layer Normalization and Residual Connections To stabilize training and improve gradient flow,
transformers use layer normalization and residual connections around sublayers. Given an input = and a
sublayer output S(x), the residual connection is defined as:

y = LayerNorm(z + S(z)) (2.1.21)

Masked Self-Attention Finally, the self-attention modules of the decoder layers are allowed to attend
only to earlier positions in the output sequence, by masking all future positions.

All the aforementioned components are pieced together in Figure 2.1.11, which shows the overall structure
of the transformer:

Later adaptations of the transformer architecture have led to specialized models featuring either encoder-
only or decoder-only designs, depending on the task. Encoder-only architectures, such as BERT [2§], are
well-suited for tasks like text classification that require understanding the meaning of the input, while decoder-
only architectures, like GPT [84], excel in generative tasks such as text completion and open-ended dialogue
generation. Encoder-decoder models like the original transformer are suitable for tasks that transform the
input text, such as machine translation, text summarization, paraphrasing etc..
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Figure 2.1.11: Architecture of the Transformer [109]

2.1.3 Representation Learning

Metric Learning

Negative

AK LEARNING
@

Positive Positive

Figure 2.1.12: A triplet loss brings the anchor and positive samples (semantically similar items) closer in
the embedding space, while pushing the negative sample (dissimilar item) farther away [97]

Metric learning refers to a machine learning technique that aims to learn a distance function optimized for a
specific task. So instead of using a standard distance metric like Euclidean distance, metric learning learns
to represent data in an embedding space such that similar items are close together and dissimilar items are
far apart, as shown in Figure 2.1.12. This is achieved by using carefully designed loss functions and sampling
strategies to create a discriminative embedding space, which can then be used with other techniques like
k-Nearest Neighbors (k-NN) for tasks such as classification, clustering, and retrieval.

A common formulation is the triplet loss, which considers an anchor sample A, a positive sample P (similar
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to the anchor), and a negative sample N (dissimilar to the anchor). The triplet loss for the triplet (A, P, N)
is then defined as:

Liriplet = Max (HZA — zpﬂz - HZA - ZNHE + 040) (2.1.22)
where 24, 2”2 are the embeddings of the anchor, positive, and negative, and « is a margin that enforces a
minimum separatlon between positive and negative pairs. This loss is minimized when the positive is closer
to the anchor than the negative by at least a. The above loss is calculated for a set of triplets selected from
the training data. This set should be carefully constructed in order to include the most instructive triplets
that would lead to faster convergence.

Contrastive Learning

% Attract & # Attract R

Augmentation

Figure 2.1.13: Overview of contrastive learning with data augmentations?. Different augmented views of
the same image are treated as positive pairs and are encouraged to produce similar embeddings (attract),
while views from different images form negative pairs that are pushed apart (repel). The CNN encoder
extracts features, and an MLP projection head maps them into the embedding space where the contrastive
objective is applied [19]

Contrastive learning can be seen as a specific type of metric learning that relies on identifying semantically
correlated samples ("positive pair") among many negative samples. The creation of the positive pair can
include applying different transformations to an input sample [19], [101], as shown in Figure 2.1.13 or aligning
different modalities of a data point, e.g. an audio sample and its natural language description [66], while the
negatives are commonly derived from the rest of the batch.

A widely used example of a contrastive objective is the InfoNCE loss introduced in [74]. Given a sample z,
a positive sample 27, and a set of N — 1 negative samples {x; }Z 1 , the InfoNCE objective is defined as:

exp (sim(z,z1)/7)

Linfonce = —log —x— (2.1.23)

Yol €xXp (Sim(z, z;)/T + exp (sim(z, z+)/7'))

2https:/ /simclr.github.io/
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where z,2z%, 2 are the embeddings of z,z%,z; , sim(-,-) is a similarity measure such as cosine similarity,
and 7 is a temperature parameter controlling the sharpness of the distribution. This formulation encourages
x to be close to its positive example while being far from negatives, effectively shaping the embedding space

to capture semantic relationships.

While both contrastive and metric learning aim to structure the embedding space based on similarity, con-
trastive learning typically relies on large batches with many negatives and uses a classification-like normal-
ization (softmax over similarities), whereas metric learning with triplet loss directly enforces relative distance
constraints at the level of individual triplets. In practice, both approaches are widely used in domains such
as face recognition [97], image retrieval [19], and music representation learning [101].

2.2 Collaborative Filtering

Collaborative Filtering (CF) is a foundational technique in recommender systems that leverages past interac-
tions between users and items to generate personalized recommendations. User feedback for items is usually
represented in a user-item matrix and can be either explicit or implicit. Explicit feedback refers to data such
as ratings on a 1-5 scale or likes/dislikes, with which users directly express whether they prefer an item or
not. This type of feedback requires active participation from users and isn’t always available, especially in
domains where content is more disposable, as is the case with music [95]. Therefore, recommender systems
often resort to implicit feedback, like play counts, purchases or clicks, to infer user preferences. The central
task is to predict missing entries of this matrix, that is, the entries corresponding, for each user, to the items
they have not interacted with, and recommend the unconsumed items with the highest scores. In this section,
we will describe the two primary categories of CF: memory-based and model-based, followed by a discussion
on their limitations.

2.2.1 Memory-Based

Memory-based methods operate directly on the user-item matrix and make recommendations using similarity
measures. These can be further classified into user-based and item-based, depending on whether we are
looking for similar users or similar items.

User-Based

User-based collaborative filtering (UBCF) identifies users with preferences similar to those of a target user
and recommends items that these similar users have interacted with. The core of UBCF is the computation
of similarity between users, commonly using metrics such as the Pearson correlation coefficient. Given a
user-item matrix R, r,; represents the rating of user u for item i. Further given a pair of users u, v, we
can define [, as the set of items rated by both users and 7,, 7, as the average ratings of users u and v,
respectively, which we subtract from each rating, r,; (or r,;), to account for differences in the way users u
and v tend to rate items. The exact formula for inter-user similarity computation is shown in Eq. 2.2.1:

sim(u, v) = Liet,, (Tt ~ Tu)(roi — ) (2.2.1)

VEier (rui =) [ Sicr,, (roi = 72)?

Once similarities are computed, the predicted rating for an item 7 for user u is estimated as:

Zq;eNu sim(u, v)(rv; — 7o)

ZveNu |sim(u, v)]

(2.2.2)

fui =Ty +

where N, is the neighborhood of user u, i.e. the set of users most similar to wu.

Item-Based

Item-based collaborative filtering (IBCF) [92] instead focuses on the similarity between items rather than
users. The key idea is that if two items are rated similarly by many users, they are likely to be related. The
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similarity between two items ¢ and j can be calculated using cosine similarity:

- TuiTuj
sim(i, j) = 2oucty, Tt (2.2.3)

\/ZUGU,;]‘ TTQLi \/ZUE U7‘,J /’13]

where Uy; is the set of users who have rated both items ¢ and j. Predictions are made by weighting the
ratings user w has given to similar items:

. 4y Sim(z, J)ry;
s = it S0 )7 (2.2.4)
ZjeNu(i) |sim(i, j)|

where N, () is the neighborhood of item i, i.e. the set of items most similar to ¢ which user u has rated.

2.2.2 Model-Based

On the other hand, model-based methods use interaction data to learn a model that captures latent charac-
teristics of users and items in a joint low-dimensional space. A widely adopted family of methods is Matrix
Factorization (MF) [54], which decomposes the user-item matrix into lower-dimensional matrices containing
user and item factors.

One of the most influential variants is Funk-SVD [36], which was introduced by Simon Funk in a famous
blog post during the Netflix Prize challenge in 2006 [9]. As shown in Figure 2.2.1, in this model each item
i is represented as a vector ¢; € Rf and each user as a vector p, € R, where f is the dimensionality of
the latent space. Intuitively, ¢; gives the distribution of item 7 on the latent factors, while p, measures the
interest of user u for the corresponding factors. The dot product ¢p, between the item and user latent
vectors quantifies the interaction between user v and item ¢, and can be used as an approximation for the
rating that the user would give to the item:

Fui = G} Pu (2.2.5)

This technique resembles Singular Value Decomposition (SVD), a traditional linear algebra method to fac-
torize a matrix, which aims to approximate the user-item rating matrix R as:

R~UXVT (2.2.6)

where U represents user factors, V represents item factors, and X is a diagonal matrix containing singular
values.

However, SVD does not perform well when the matrix R is very sparse, which is usually the case in real-world
recommendation applications, where users typically interact with only a small subset of the item catalog.
Funk-SVD addresses this shortcoming by relying only on known ratings and ignoring missing values, while
avoiding overfitting by applying regularization.

More specifically, to learn the latent vectors for each user and item, the Funk-SVD model minimizes the
regularized squared error:

min Y (rai — a7 pu)” + A (lal® + [pall?) (2.2.7)

(u,i)€ER
where & is the set of the (u, ) pairs for which r,; is known and ) is a constant that controls the regularization.

To minimize this equation, we can use either Stochastic Gradient Descent (SGD), which was the method
proposed in Funk-SVD or a method called Alternating Least Squares (ALS). The motivation for this method
lies in the fact that the above equation is not convex, since both ¢; and p, are unknown. However, if we
fix one of them, the objective becomes quadratic and can be solved optimally. Therefore, ALS alternates
between fixing one of the matrices and solving for the other, until convergence.

At this point, we should mention that a drawback of classic MF methods is that they assume independence
between latent factors, as well as their inability to model non-linear relationships between them (Eq. 2.2.5).
This can limit the model’s performance, considering the complexity of user-item interactions. A number of
works in the literature attempted to utilize more complex mathematical structures, such as neural networks,
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Figure 2.2.1: The FunkSVD model (image adapted from [117])

to overcome these drawbacks. For instance, He et al. [43] proposed Neural Matrix Factorization (NeuMF),
a model that replaces the aforementioned dot product with a Multi-Layer Perceptron, aiming at enhancing
the model’s expressiveness by leveraging the non-linearities of neural networks.

2.3 Audio Signal Representations

Audio signals can be represented in different ways, each emphasizing specific characteristics of the sound.
In music information retrieval and recommendation systems, the choice of representation influences which
patterns can be learned and exploited. In the following subsections, we outline common representations,
starting with the time-domain waveform, moving to frequency-based forms such as the spectrogram, and
ending with feature sets such as Mel-Frequency Cepstral Coefficients (MFCCs) [25] and Chroma features.

2.3.1 Time-Domain Representations

The waveform is the most direct representation of an audio signal, depicting how amplitude varies over time.
In the continuous domain, an audio signal can be expressed as a function z(t), where ¢ denotes time and
z(t) gives the instantaneous amplitude. To store and process this signal digitally, it is sampled at regular
intervals determined by the sampling rate f; (samples per second). According to the Nyquist-Shannon
sampling theorem, accurate reconstruction of a band-limited signal is possible if f; is at least twice the
maximum frequency present in the signal. The resulting discrete-time signal is represented as a sequence
z[n] = x(n/fs), where n is the sample index. Modern deep learning models can learn to extract relevant
features directly from this representation without the need for handcrafted preprocessing.

Audio Signal
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Figure 2.3.1: Waveform of an audio signal

2.3.2 Spectral Representations

While the waveform contains the complete time-domain information, it can be difficult to directly extract
frequency-related characteristics such as pitch or timbre from it. The classical tool for frequency analysis is
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the Fourier Transform (FT), which decomposes a signal into a collection of sinusoidal components at different
frequencies. For a continuous-time signal z(t), the Fourier Transform is defined as:

X(f) = /_oo z(t)e 2t dt (2.3.1)

In the discrete domain, the Discrete Fourier Transform (DFT) is used. While the FT reveals the global
frequency content of a signal, it does not provide any information about how the frequencies evolve over
time, which is crucial in music where notes, chords, and timbral changes occur dynamically.

To address this limitation, the Short-Time Fourier Transform (STFT) is employed. The STFT assumes that
the signal is approximately stationary within each short analysis frame and analyzes the signal over short,
overlapping windows. Applying the Fourier Transform to each frame captures both time and frequency
information. Mathematically, for a discrete-time signal z[n], the STFT is given by:

N—
Z [n + mH],w[n],eI2mkn/N (2.3.2)

where w[n] is a window function of length N, m indexes the time frame, H is the hop size between successive
frames, and k denotes the frequency bin.

Spectrogram
The spectrogram S(m, k) is computed as the squared magnitude of the STFT:

S(m, k) = | X (m, k) (2.3.3)
This produces a 2D representation showing how the signal’s spectral content changes over time. The spec-

trogram illustrates the distribution of energy across time and frequency, yet it maps frequencies on a linear
scale—contrasting with the human auditory system’s logarithmic perception of pitch.

Spectrogram
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Figure 2.3.2: Spectrogram of the audio signal shown in Figure 2.3.1

Log-Spectrogram

A common modification that aligns the spectrogram with the log-like perception of amplitude is the log-
spectrogram, where the magnitude values are transformed using a logarithmic scale to compress the dynamic
range:

Siog(m, k) = log(1 + | X (m, k)[?) (2.34)

This transformation makes subtle spectral details more visible and more aligned with the human ear’s loga-
rithmic sensitivity to amplitude. Log-spectrograms are often preferred in machine learning pipelines, as they
improve the representation of low-energy yet perceptually important features.
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Log-Mel Spectrogram

Another widely used variant is the log-mel spectrogram, where the frequency axis is first converted to the mel
scale, a perceptual scale that spaces frequencies according to the human ear’s frequency resolution, before
applying the logarithmic transform. This is achieved by projecting the STF'T magnitude onto a mel filterbank
M(f,b):
Smet(m,b) = > M(k,b) - | X (m, k)|> (2.3.5)
k

where m indexes the time frames, k& indexes the STFT frequency bins on a linear scale, and b indexes the
mel filterbank bands, followed by

Stog-me1(m, b) = log(1 + Sme1(m, b)) (2.3.6)

The mel scale emphasizes lower frequencies, where human pitch resolution is finer, and down-samples higher
frequencies, which are perceived more coarsely (see Figure 2.3.3). This representation is preferred in many
MIR and speech applications because it balances perceptual relevance with compactness, and provides a more
uniform distribution of information across the feature space compared to the basic spectrogram.
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Figure 2.3.3: Mel-scale filter bank [31]

Constant-Q Transform and its Spectrogram

The Constant-Q Transform (CQT) [13] is an alternative time—frequency analysis method that uses loga-
rithmically spaced frequency bins, making it well suited for music signals where pitch perception follows a
logarithmic scale. Unlike the Short-Time Fourier Transform (STFT), which applies a fixed-length analysis
window to all frequencies, the CQT adapts the window length depending on the frequency: longer windows
for low frequencies provide finer frequency resolution, while shorter windows for high frequencies improve
temporal resolution. This results in a constant ratio

_ Je
©=Aar

between the center frequency fi of a bin and its bandwidth Afy, ensuring that each bin spans the same
interval in musical terms (e.g. a semitone).

Similarly to the STFT, by taking the squared magnitude of X¢qr, one obtains the CQT spectrogram:

Scqr(m,q) = [Xcqr(m, q)?

This representation is visually similar to an STFT-based spectrogram but differs in that its frequency axis
is logarithmically spaced and its time resolution varies across frequencies. These properties make the CQT
spectrogram particularly advantageous for tasks such as chord recognition [16], [98], melody extraction [22],
[35], and other music information retrieval (MIR) applications where pitch relationships are central.

Mel-Frequency Cepstral Coefficients (MFCCs)

Mel-Frequency Cepstral Coefficients (MFCCs) [25] are a compact and perceptually motivated representation
of the short-term power spectrum of a sound. They are designed to approximate the human auditory system’s
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frequency resolution by combining the mel frequency scale with cepstral analysis, making them particularly
effective in speech and music classification tasks. MFCCs provide information about the spectral envelope,
which is closely related to timbre, and are among the most widely used features in audio analysis.

e Step 1: Pre-emphasis

The audio signal x[n] is first passed through a pre-emphasis filter to amplify high frequencies, compen-
sating for the natural spectral tilt in human speech and many musical instruments:

yln] = afn] — acaln — 1]
where « is typically in the range 0.95-0.97.

e Step 2: Framing and Windowing

The signal is divided into overlapping frames (e.g., 20-40 ms), each multiplied by a window function
w[n] (often Hamming) to reduce spectral leakage:

Tm[n] = xz[n + mH] - wn]
where m is the frame index and H is the hop size.

e Step 3: Short-Time Fourier Transform (STFT)

The magnitude spectrum of each frame is computed using the STFT:

N-1 .
]{) _ Z xm[n] e—]27’l’k}n/N
n=0

and the power spectrum is obtained as | X (m, k)|2.
e Step 4: Mel Filterbank Processing

The power spectrum is projected onto a mel-scaled filterbank M (k, b), resulting in mel-band energies:

Sine1(m, b) = ZMkb X (m, k)?

where b indexes the mel bands.
e Step 5: Logarithmic Compression

The mel-band energies are converted to a logarithmic scale to match the human ear’s sensitivity to
loudness:

Slog —mel(ma b) = log (Smel (m7 b) + 6)
where € is a small constant to avoid log(0).
e Step 6: Discrete Cosine Transform (DCT)

Finally, the Discrete Cosine Transform is applied along the mel-band axis to decorrelate the coefficients
and concentrate the most important information in the first few terms:

MFCC(m,c) Z Slog -me1 (M, b) co {WC(IH_OE))}

B
where c is the cepstral coefficient index and B is the number of mel bands.

Typically, the first coefficient (¢ = 0) represents the average log-energy and may be excluded depending
on the application. The remaining coefficients capture the coarse shape of the spectral envelope.
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Delta and Delta-Delta MFCC Coefficients In addition to the static MFCCs, temporal derivatives are
often included to capture dynamics: Delta-MFCCs (A) are the first-order derivatives over time, representing
the rate of change of the MFCCs. Delta-Delta MFCCs (A?) are the second-order derivatives, representing
the acceleration of change.

The complete feature vector for each frame is often the concatenation of static MFCCs, AMFCCs, and
A?MFCCs, providing both spectral shape and temporal dynamics for improved performance in classification
and recognition tasks.

Chroma Features

Chroma features, or pitch class profiles, represent the energy distribution across the twelve semitone pitch
classes (C, C#, D, ..., B) of the musical octave, independent of octave. This makes them especially suitable
for tasks such as chord recognition [52] and key estimation [75], where harmonic content is more important
than absolute pitch.

To compute chroma features, the audio signal is first transformed into a time—frequency representation,
commonly using the Constant-Q Transform (CQT) by choosing a suitable logarithmic frequency spacing
(i.e., 12 bins per octave) that aligns with the musical scale. The spectral energy is then mapped to the
corresponding pitch classes by folding all octaves into a single octave range, summing the energies of frequency
bins belonging to the same pitch class. Finally, the chroma vectors are normalized to reduce variations caused
by dynamics or instrumentation.

By condensing the spectral representation into 12 dimensions per frame, chroma features provide a compact,
musically meaningful descriptor that is robust to octave transpositions while preserving harmonic relation-
ships.

2.4 FEvaluation Metrics

In recommender systems, evaluation metrics quantify how well the model’s predictions match the ground
truth, or, equivalently, how well the produced recommendations match the items that the user actually
likes. Some of these metrics, such as accuracy and recall are typical of classification problems and treat
recommendation as a binary prediction task (relevant vs. non-relevant items). Another group of metrics,
which we’ll refer to as ranking metrics, quantify the system’s ability to place relevant items higher on the
recommendation list, since this is where we would like to find the most accurate recommendations.

2.4.1 Classification Metrics

These metrics assume that the model outputs a predicted relevance score or label for each item, and evaluate
correctness without necessarily requiring an ordered list.

Accuracy

Accuracy is the proportion of correctly predicted instances, both relevant and non-relevant, among all pre-

dictions:
TP+ TN

TP+TN+FP+FN
where TP and T'N are true positives and true negatives, and F'P and F'N are false positives and false nega-

tives, respectively. Although easy to interpret, accuracy can be misleading in imbalanced datasets—common
in recommendation—where relevant items form only a small fraction of all items.

Accuracy = (2.4.1)

Precision
Precision measures the fraction of recommended items that are actually relevant:

TP
Precision = m (242)
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A system with high precision rarely suggests irrelevant items, which is important in scenarios where false
positives are costly. However, focusing on precision may miss many relevant items, as it does not account for
false negatives.

Recall

Recall measures the fraction of all relevant items that the system successfully recommends:

TP
n=_ -~ 2.4,
Recall = 757N (24.3)

High recall indicates that most relevant items are retrieved, which is desirable in coverage-oriented ap-
plications. Precision and recall are often in tension, so their relative importance depends on application
requirements.

ROC-AUC

The Area Under the Receiver Operating Characteristic curve (ROC-AUC) is the probability that a randomly
chosen relevant item will be ranked higher than a randomly chosen non-relevant one. The ROC curve plots
the true positive rate (recall) against the false positive rate (FPR) for various thresholds, where
B FP

~ FP+TN

ROC-AUC is threshold-independent and reflects a model’s general ability to discriminate between classes,
but may be less informative in imbalanced settings.

FPR (2.4.4)

1

ROC

AUC

True Positive Rate
o
%]

0 0.5 1
False Positive Rate

Figure 2.4.1: Example of a Receiver Operating Characteristic (ROC) curve, highlighting the Area Under
the Curve (AUC). [99]

PR-AUC

The Area Under the Precision—Recall curve (PR-AUC) summarizes the trade-off between precision and recall
across thresholds. It focuses solely on the positive class, making it more informative than ROC-AUC for
imbalanced datasets, which are common in recommendation.

2.4.2 Ranking Metrics

These metrics evaluate the quality of a ranked list of recommendations, focusing more on the position of
relevant items.

Recall@Qk

Recall@k is almost identical with the previously defined Recall, with the difference that it measures the
proportion of relevant items appearing within the top k positions of the ranked list:

# relevant items in top-k

Recall@k = (2.4.5)

# relevant items in ground truth
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Although it does not consider the order of relevant items within the top k, it reflects how well the system
covers relevant content in the most visible part of the list.
HR@k

Hit Rate@k (HRQK) is a simplified variant of Recall@k that only checks whether at least one relevant item
appears in the top-k recommendations:

1

0, otherwise

if at least one relevant item is within the top-k

)

HR@k = { (2.4.6)

In a session-based recommendation setting where each test instance has a single ground-truth next item,
HR@k simply measures the proportion of cases where the correct item is retrieved within the top-k predictions.
It provides an intuitive measure of success that is independent of ranking order.

MRR@k

Mean Reciprocal Rank at k& (MRR@k) also focuses on whether the ground-truth item appears among the
top-k positions, but takes into account where it appears. The metric computes the reciprocal of the rank at

which the first relevant item occurs: al
Q

1 1
MRR@k = — — 2.4.7
Q| q_; rank, ( )

where rank, is the position of the first relevant item in the ranked list for query ¢, and |Q| is the number
of test queries. If the relevant item is not found within the top-k, its contribution is zero. Higher values of
MRR@k indicate that relevant items tend to appear closer to the top of the recommendation list.

MAPQ@k

Other metrics, like MAP@k, not only focus on finding the first relevant item, but also evaluate the ranking
order of the top k items. To calculate Mean Average Precision at k (MAP@k), we first average the precision
values at the ranks where relevant items occur, up to k:

1 . .
APQ@k = kT ; P(i) - rel(d) (2.4.8)

where P(i) is precision at rank 4, rel(i) € {0, 1} indicates a binary relevance score (i.e. relevant/not-relevant),
and R is the number of relevant items. By taking the mean APQk over all queries, we then get MAPQk.
This metric rewards systems that place relevant items earlier in the list, unlike Recall@k.

NDCG@k

Similarly, Normalized Discounted Cumulative Gain at k¥ (NDCG@Xk) discounts (penalizes) relevant items that
appear lower in the ranking:

DCG@k k 20 -1 2.4.9
_;ng(iJrl) (24.9)

where rel(i) is the relevance score of the item at position ¢, which can be either binary or numerical (e.g.
1-5). The metric is then calculated as:

DCG@k

NDCG@k = IDOGaK

(2.4.10)

where IDCG@Qk is the DCG@k of an ideal ranking, i.e., a ranking of items by descending relevance. It is
apparent that, similar to MAPQk, NDCG@k prioritizes showing highly relevant items earlier in the ranking.
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3.1 Representation Learning from Audio

In this section, we examine models that learn representations of audio signals in a latent space, in a way that
facilitates the retrieval of similar tracks and captures structural properties of music. Existing works adopt
either a supervised learning approach, exploiting some prior knowledge of music similarity (descriptive tags,
co-listen statistics, etc.) or self-supervised techniques that take advantage of unlabeled data collections and
train models using labels generated from the input data.

3.1.1 Supervised Methods

Supervised approaches to music representation learning are characterized by the use of externally provided
labels or annotations to guide model training. These supervision signals can take the form of user interaction
data, semantic tags, genre or mood annotations, or other editorial metadata. By optimizing representations to
predict or align with such human-curated targets, models are able to capture musically meaningful properties
that correspond to established categories of perception and use. The following works illustrate different ways
in which supervised signals have been exploited to learn robust audio embeddings for music.

An early work is that of McFee et al. [67], who seek to advance content-based methods by leveraging interac-
tion data in order to learn an audio similarity metric optimized to produce a ranked list of results similar to
a query song (query-by-example). With this approach, they mitigate the long-standing cold-start problem of
collaborative filtering systems and at the same time, promote novelty in recommendations. To begin with,
song representations are obtained by clustering a large pool of delta-MFCC features to build a codebook
V' and then using vector quantization to represent each song X of the dataset as a codeword histogram
(Figure 3.1.1). Authors then apply the Metric Learning to Rank (MLR) algorithm [68], which aims at op-
timizing a distance metric W based on a ranking loss, while using user preference data to extract a notion
of correct ranking. More specifically, for each song, a set of relevant songs is derived based on the Jaccard
similarity of their corresponding artists, as computed from a binarized users-artists matrix. Experiments on
the CAL10K dataset [107] indicate that the distance metric learned from MLR surpasses native Euclidean
distance, resulting in a ROC-AUC score of 0.808%.

Collaborative filter ——

Similarity | {y,:q€ X} MLR
estimation
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Audio . X
l="l Codebook | VL
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————
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Training data quantization w
= e.----- >
___________ i N~—
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' [ M ;! R dation 1 X
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Figure 3.1.1: Schematic diagram of the training and retrieval process in [67]

Lee et al. [60] presented a work that also focuses on the query-by-example task and suggests a way of using
deep metric learning to represent music in an embedding space that decouples the different aspects that
comprise music similarity. The authors underline that relevance between music tracks relies on several co-
existing measures of similarity (they consider genre, mood, instrumentation and tempo) and shouldn’t be
modeled in one, global-similarity dimension, as is the case with previous works. To build this disentangled
multidimensional space, they extend the idea of Conditional Similarity Networks [110], which originally
tackled the same task for images. More precisely, log mel spectrograms are used as input for a CNN model
that maps audio into an embedding space, by using a triplet loss. To extract the positive and negative
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samples of each triplet they exploit user annotations and algorithmic estimates. Decoupling of the similarity
dimensions is achieved by the use of masks that help to create disjoint subspaces, each one encoding a
specific similarity notion, thus allowing similarity along some dimensions and dissimilarity along others.
Moreover, they introduce a track regularization technique to capture the idea of track similarity across all
dimensions. Experimental evaluation of the similarity metric induced by this embedding space shows that
the decoupled embeddings improve similarity performance and outperform a baseline following the codeword
histogram approach presented in [67], but using Euclidean distance. In addition, evaluation on human-
annotated triplets indicates the effectiveness of track regularization in modeling music similarity as perceived
by humans. Overall, the authors argue that the idea of disentangling the embedding space could prove useful
in modern applications, where users interested in music retrieval could specify which dimensions they consider
important, potentially leading to better recommendations.
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Figure 3.1.2: The proposed approach in [60]: (A) A standard triplet-based deep metric model maps audio
input to the embedding space via a learned function f, (B) conditional similarity masking to compute
distance metric D separately for each similarity dimension, and (C) track regularization

Another way of obtaining useful representations of audio content was presented by Huang et al. [49]. In
their work, they face the challenge of learning audio embeddings from a large collection of more than 10
million music videos, in lack of strong supervisory signals. In fact, supervision is provided in the form of a
fine-grained vocabulary of 100k text labels, extracted from unstructured metadata, as well as co-listen data.
Their model consists of a CNN given log mel spectrograms of the audio as input, aiming to create a joint
embedding space of the audio and the text labels. To incorporate both supervision types, they devise a
hybrid optimization plan that follows a curriculum training [8] approach: at first, the network is optimized
on a triplet loss to learn a similarity metric from the co-listen graph, followed by a cross-entropy loss on
the labels to encapsulate more subtle semantic properties of the audio content. Evaluation on the tasks of
predicting text labels and similarity of music video pairs shows that the hybrid objective benefits both tasks,
although the contribution of the classification loss seems to dominate. Furthermore, their best-performing
ResNet-18 model coupled with simple classifier architectures achieves SOTA performance (92% ROC-AUC)
on the MagnaTagATune (MTT) [58] top-50 tag prediction task, even in a fixed-embedding setting, while it
surpasses the baseline on the genre prediction task on the AudioSet dataset [39], achieving 91.6% ROC-AUC.

In a similar manner, Pons and Serra proposed MusiCNN [80], a collection of CNN models trained in a
supervised way to predict audio tags. Overall, MusiCNN takes log mel spectrograms of 3-second frames as
input and outputs the likelihood for each of the 50 predefined tags ("taggram"). More specifically, the first
convolutional layer ("front-end") applies a group of vertical and horizontal filters with various shapes, to
capture timbral features and temporal dependencies, respectively, as shown in Figure 3.1.3. The resulting
features are then fed to three dense convolutional layers ("mid-end") that capture higher-level features (Figure
3.1.4). These layers employ residual connections, which are useful to stabilize training. Finally, the mid-end
features are max-pooled and mean-pooled across time to produce two feature vectors. These two vectors
are concatenated and projected into the final embedding dimension (200 for the base model and 500 for the
larger one), before passing through a last fully-connected layer that produces the logits for the 50 tag classes
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(Figure 3.1.5). The published models are trained on either the MTT dataset (19k songs) or the Million Song
Dataset (MSD) [10] (on a training set of 200k songs) and have demonstrated comparable performance with
the work of Huang et al. [49] (90.69% ROC-AUC / 38.44% PR-AUC on MTT), while on the MSD dataset
they report 88.01% ROC-AUC / 28.90% PR-AUC for their base model and 88.41% ROC-AUC / 30.02%
PR-AUC for their larger model. The authors also show the effectiveness of MusiCNN in transfer learning
scenarios by extracting MusiCNN features and training a simple classifier to perform genre classification on
the fault-filtered GTZAN dataset [108]. Their base MSD model achieved 77.24% accuracy, which is on par
with other models trained on a much larger data collection of 2 million audio files. Interestingly, in a previous
work, Pons et al. [79] found that exploiting domain knowledge in the filter design, as is the case with the
aforementioned front-end layer (Figure 3.1.3), is preferable when training on limited data. On the other
hand, when large-scale training data is available, generic architectures that rely directly on waveforms can
outperform the domain-specific design.
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Figure 3.1.3: The timbral and temporal filters in the first layer of MusiCNN [80].
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Figure 3.1.4: Dense convolutional layers capture higher-level features.
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Figure 3.1.5: The backend produces the output, given the previously learned features.

3.1.2 Self-Supervised Methods

While supervised approaches have shown strong performance, they rely heavily on curated labels such as tags
or annotations, which are costly to obtain at scale and often noisy or biased. This limitation has motivated
a shift toward self-supervised learning (SSL), where models are trained on large collections of unlabeled
audio by solving pretext tasks with labels derived from the data itself. Broadly, two paradigms can be
distinguished: contrastive learning, which encourages invariance by treating augmented versions of the same
signal as positives and other samples as negatives [19], [37], [101], and predictive or masked modeling, where
models learn to infer missing or hidden parts of the input [3], [4], [28], [47], [62], [63], given the available
context. By exploiting vast amounts of raw audio without the need for manual annotation, these methods
enable the training of general-purpose music representations that transfer effectively across downstream MIR,
tasks such as tagging, classification, and retrieval.
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Contrastive Learning

The effectiveness of contrastive learning has already been well demonstrated in extracting representations
from various modalities. A prominent example from the image domain is SimCLR [19], which applies data
augmentations such as cropping or rotating an image to generate two distinct views of the same instance (see
Figure 2.1.13). These views are then treated as a positive pair within a contrastive objective, encouraging
the model to learn invariant and discriminative visual representations.

Building on the success of SimCLR, Spijkervet and Burgoyne [101] adapt this paradigm to the music domain
with their model CLMR (Contrastive Learning of Musical Representations). CLMR pre-trains a CNN directly
on raw audio waveforms using the NT-Xent loss, where positive pairs are generated by applying diverse audio
transformations like pitch shifting and frequency filtering to each input example, while all other samples in
the minibatch serve as negatives (Figure 3.1.6). Frozen representations from this pretrained model are then
used as input to a linear model for the downstream task of music tagging. Pretraining, as well as linear
evaluation, are done on the MTT and the MSD datasets. The proposed self-supervised representations
achieve a ROC-AUC of 88.7% and 35.6% PR-AUC on MTT, outperforming fully supervised baselines, but
fall short on the MSD, with 85.7% ROC-AUC and 25% PR-AUC. Additional experiments show that training
the linear classifier on 1% of the labeled MTT data gives comparable performance to a supervised model
using all training data, thus proving the effectiveness of self-supervised pretraining. Finally, the authors
try pretraining on different music datasets and evaluating on MTT and obtain competitive results even for
smaller datasets, indicating the generalizability of the learned representations.

2,0 D > Zj,0 Projections Zj2N [TTH e > 2N
attract Llllra(,'l

hi o DEEEE---E EEEEE---@ hjo Representations k;oy HEEEN---8 15 s e R TV N

genc(') genc(') genc(') genc(')

Fomemant --mmm

0 ) Augmented, correlated
b %0  examplesof rawaudio  XioN ¥j.2N

SRR

Raw audio waveforms

X0 X2N

Figure 3.1.6: Overview of the CLMR framework [101]

Instead of relying solely on audio transformations to obtain positive pairs, another work of Manco et al. [66]
explores multimodal contrastive learning to map music audio and corresponding text descriptions into a
common latent space. The proposed framework uses separate encoders for each modality — a ResNet-50 [42]
on mel-spectrograms for audio and a sentence-BERT [86] as text encoder — and tries to align audio and text
representations by applying an InfoNCE loss, treating (audio, text) tuples as positives. The authors also
incorporate a unimodal contrastive objective based on audio transformations, similarly to CLMR. The model
is then evaluated on retrieval from one modality to the other (e.g., retrieving relevant audio based on a text
query and vice versa) and is found to greatly surpass the baseline. Moreover, the system is also tested on
the tasks of genre classification (GTZAN dataset) and auto-tagging (MTT dataset), by treating the target
labels as input text, and demonstrates zero-shot transfer capabilities by hitting 62% accuracy on GTZAN
and a 78% ROC-AUC and 29.3% PR-AUC on MTT.

The feasibility of learning meaningful representations from raw audio, without relying on large labeled cor-
pora, had already been proven for speech recognition, by a highly influential model called wav2vec2.0 [4].
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First, a CNN extracts latent speech representations from raw audio data. Parts of these are masked and then
fed to a Transformer that contextualizes the learned representations. At the same time, the CNN output is
used as input to a quantization module that learns discrete speech units, which are used as ground truth for
a contrastive training objective where the model tries to distinguish the true quantized representation from
a set of negative samples taken from the same audio excerpt (Figure 3.1.7). After pretraining, the model can
be fine-tuned on labeled data to perform speech recognition by adding a linear layer after the Transformer
and optimizing via a Connectionist Temporal Classification (CTC) loss [41], beating previous SOTA while
using far less labeled data.
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Figure 3.1.7: Tllustration of wav2vec2.0 [4]

Other Self-Supervised Approaches

Building on the success of contrastive frameworks like wav2vec 2.0, HuBERT (Hidden-Unit BERT) [47]
follows a similar architecture but adopts a different objective that relies on predicting discrete hidden units
rather than distinguishing positives and negatives. Instead of relying on contrastive loss, HuBERT generates
pseudo-labels via offline k-means clustering of acoustic features and trains a model that predicts which
cluster each of the masked frames belongs to (Figure 3.1.8). This setup eliminates the need for large batches
of negatives and mitigates instability associated with contrastive learning, leading to more efficient training.
Crucially, HuBERT also adopts an iterative refinement strategy: after an initial pretraining phase with
MFCC-based clusters, subsequent clusterings are performed on the model’s own learned representations,
gradually improving target quality. Empirically, HuBERT matches or surpasses wav2vec 2.0 across multiple
fine-tuning settings with different volumes of labeled data.

By framing self-supervised learning as masked prediction of acoustic units, HuBERT paved the way for
generalized predictive frameworks. One such work is data2vec (Baevski et al. [3]), which further generalizes
self-supervised learning by eliminating discrete quantization entirely and predicting contextualized latent
representations directly. Instead of classifying masked inputs into pre-defined clusters, data2vec uses a
teacher-student architecture: the teacher produces contextualized representations of the full input, which are
partially masked and given to the student model, which tries to predict the teacher’s representations at the
masked positions. A major contribution of this framework is that it can be applied uniformly across speech,
vision, and language using this same training objective. By predicting continuous, context-rich embeddings
rather than modality-specific tokens, data2vec simplifies SSL design while demonstrating performance gains
against single-modality baselines.

This general self-supervised framework was later applied by Li et al. in music2vec [62], to pretrain repre-
sentations on raw music data, which were then tested on several MIR tasks like music tagging and genre
classification and achieved comparable performance to SOTA models [14], while having 50 times fewer pa-
rameters.

JukeMIR (Castellon et al. [14]) follows a different approach that leverages intermediate representations of a
music generation model, OpenAl’s Jukebox [29], and probes them by training shallow classifiers on down-

32



3.1. Representation Learning from Audio

1
Acoustic Unit Discovery System
(e.g., K-means on MFCC)

¥ v r ¥
L2 ] [=] [=] [z [=] |

l._,f"i-JUBEE’T \
| Transformer |

f T f

i
[x | IMski fmsk] [Msk] | x, | |
i

!
- CNN Encoder | |

-

- - ]
- -

]

N
]

| | X

Figure 3.1.8: HuBERT predicts cluster assignments of the masked frames, which are derived from iterative
k-means clustering [47]

stream MIR tasks. Jukebox’s architecture first uses a hierarchical VQ-VAE [73], where raw audio is succes-
sively compressed into discrete codes at multiple temporal scales. A 72-layer, 5B-parameter Transformer is
then trained autoregressively to model sequences of these codes. In JukeMIR, Castellon et al. freeze the pre-
trained Jukebox model and extract representations from the middle layer of the transformer, which are then
mean pooled across time to obtain a final set of 4800 features for each input clip of 24 seconds. Remarkably,
without any task-specific fine-tuning, the averaged JukeMIR results across four MIR tasks show a 30% better
performance relative to the next best pretrained model and comparable performance to task-specific, SOTA
methods (e.g. 91.5% ROC-AUC on the MTT tagging dataset compared to 92% from Huang et al. [49]),
demonstrating that codified generative pretraining captures rich musical structure.

Despite JukeMIR’s promising results, one could argue that its size (5B parameters) renders it prohibitively
expensive for use in MIR applications. In search of another computationally affordable alternative, the au-
thors of music2vec built MERT [63], a general-purpose large pretrained model for music understanding, with
significantly smaller size compared to JukeMIR: 95M parameters for the base model and 330M for the large
one. MERT adopts the architecture of HuBERT, with the main difference that instead of using clustered
MFCCs as ground truth, they employ features suited to encapsulate the complex characteristics of music
(Figure 3.1.9). In particular, similarly to HuBERT the model first encodes 5-second audio clips using 1D
convolutions and then forwards a masked version of the sequence to a Transformer that captures context
dependencies. Importantly, to encourage an accurate discretized acoustic-level representation of the music
signal, the targets of the loss function are given by a Residual Vector Quantisation-Variational AutoEn-
coder (RVQ-VAE) [26], an autoencoder that compresses audio into discrete code sequences, which acts as an
acoustic teacher. Alternatively, they also explore acoustic modeling by clustering log-Mel spectrograms and
Chroma features with k-means, which however faces scaling issues. Moreover, an additional reconstruction
loss is employed to serve as a musical teacher that compares the Transformer’s output with the Constant-Q
transform (CQT) spectrogram, in order to model pitch and harmonic information. It’s worth mentioning
that the authors observed severe training instabilities when trying to scale up to the large variant, which
they circumvented by applying attention relaxation techniques [17] and pre-layer normalisation, admitting
that further improvements can be made. MERT is thoroughly tested on 14 downstream MIR tasks by using
the pretrained models as fixed feature extractors to train simple shallow architectures (linear or one-layer
MLPs), similarly to JukeMIR. According to the results, MERT-330M demonstrates overall SOTA perfor-
mance and outperforms the much larger JukeMIR on many tasks, while the lightweight variant also exhibits
competitive performance, suggesting the effectiveness of Masked Language Modeling (MLM) pretraining for
music understanding.
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Figure 3.1.9: The pretraining procedure followed in MERT [63]

3.2 Sequential Recommendation

User interaction sequences, such as playlists or listening histories, can be naturally interpreted as ordered
sequences of items, much like words in a sentence. This analogy has motivated the adaptation of sequence
modeling techniques from natural language processing to the recommendation domain. Early works demon-
strated the effectiveness of recurrent neural networks for capturing short- and medium-term dependencies in
user sessions [44], [45], while later models based on self-attention and the Transformer architecture extended
these ideas to handle long-range dependencies [53], [100], [103]. More recently, the rise of large pretrained
language models has prompted research into their potential role in sequential recommendation [82].

GRU4Rec by Hidasi et al. [45] marked the first major application of deep sequence modeling to session-based
recommendation. The architecture relies on Gated Recurrent Units (GRUs) [20] to process the sequence of
user-item interactions in a session, predicting the next likely item. Unlike later models, GRU4Rec does not
use an embedding layer since this didn’t boost performance; instead, it directly inputs one-hot encodings of
item IDs, processed by a single GRU layer. To address the scalability challenge of having to score all items at
each training step, the authors introduced an efficient negative sampling strategy: apart from the expected
output, they also score only the items within the same mini-batch, which are treated as negative exam-
ples. This doesn’t require explicit negative sampling for every training example, thus significantly reducing
computational load. Furthermore, they experimented with two pairwise ranking losses, namely BPR [88]
and a custom TOP1 loss, encouraging higher ranking of the positive item compared to the negatives, rather
than exact prediction of the positive. These performed better than typical classification losses such as cross-
entropy, which proved numerically unstable. To handle variable-length sessions efficiently, they propose a
session-parallel mini-batching mechanism, where multiple sessions are processed in parallel across time steps.
Overall, GRU4Rec demonstrated that recurrent models, when carefully adapted for ranking and efficiency,
could dramatically outperform simple item-similarity based methods in session-based recommendation set-
tings.

SASRec by Kang and McAuley [53] extended the idea of sequence modeling by replacing recurrence with
self-attention mechanisms (Figure 3.2.1). Architecturally, SASRec consists of a stack of Transformer decoder
blocks, where each block contains a multi-head self-attention layer followed by a position-wise feed-forward
network. To model the sequential nature of interactions, causal masking is applied to the attention layers,
ensuring that each position can only attend to previous items and not future ones. Each item in the sequence is
represented by a learnable item embedding summed with a learnable positional embedding, giving the model
explicit access to order information. A key advantage of SASRec over RNNs like GRU4Rec is parallelization:
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since self-attention layers operate on the entire sequence simultaneously, training becomes highly efficient.
Moreover, SASRec can adaptively focus on relevant past items for each prediction, unlike RNNs, which tend
to compress the entire past into a single hidden state. Extensive experiments showed that SASRec not
only outperforms RNN-based models but also handles both short-term patterns (like Markov Chains) and
long-term dependencies effectively, especially as sequence length grows.
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Figure 3.2.1: Architecture of SASRec [53]. At each time step, the model can attend only to previous items
to predict the next item.

BERT4Rec by Sun et al. [103] pushed sequence modeling further by adopting bidirectional self-attention for
sequential recommendation. Built entirely on Transformer encoder blocks, the model learns item represen-
tations by attending simultaneously to both past and future context in a sequence. To prevent information
leakage during training, BERT4Rec introduces a Cloze-style objective [106] (also called MLM in BERT [28]):
random items in the input sequence are masked, and the model must predict the masked items based on
surrounding context, unlike unidirectional models that are trained on predicting the next item. During eval-
uation, a special [MASK] token is appended to the end of the sequence, and the model predicts the most
probable next item. As in SASRec, items are represented using learnable item embeddings combined with
learnable positional embeddings. Unlike causal self-attention models, however, BERT4Rec’s bidirectional
attention yields richer contextualized representations for each item. Empirical results on several datasets
showed substantial gains over unidirectional models, highlighting the importance of full-context modeling in
session-based recommendation.

Transformers4Rec by Moreira et al. [100] also follows the trend to apply NLP innovations to recommendation.
Transformers4Rec is an open-source library built on HuggingFace’s Transformers [113] that attempts to facil-
itate the use of the latest Transformer architectures for sequential and session-based recommendation. Archi-
tecturally, Transformers4dRec supports a variety of Transformer models (e.g., GPT-2 [85], TransformerXL [24],
XLNet [116]), while introducing supplementary functionalities necessary for recommendation, such as input
features normalization and aggregation, incremental training and evaluation, execution of recommendation
tasks and evaluation on popular ranking metrics. More precisely, the library introduces mechanisms for han-
dling side information: categorical features regarding the item (music genre, artist, etc.) or the user (region,
device type, etc.), which are represented in their own embedding table or continuous features like price. All
these types of side information can be seamlessly incorporated into the model input, e.g. by concatenating
with the item embedding or by element-wise multiplication. Additionally, Transformers4Rec allows training
with various objectives:
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Figure 3.2.2: Architecture of BERT4Rec, which applies bidirectional attention and tries to recover the
masked items [77]

e Causal Language Modeling (CLM): predict the next item based only on past items, as seen in SASRec.
e Masked Language Modeling (MLM): randomly mask items and recover them, as in BERT4Rec.

e Permutation Language Modeling (PLM): predict items based on random orderings (used in XLNet).
e Replacement Token Detection (RTD): distinguish real from replaced items (like ELECTRA [21]).

During training, the input sequence is masked according to the chosen objective and is fed to a config-
urable stack of Transformer blocks, which contextualize the item representations, followed by a prediction
head to perform the task at hand. This can be either the prediction of the next item in the sequence, or
a classification/regression task related to the whole sequence, in which case the item representations are
merged into a sequence embedding. Empirical studies conducted on multiple e-commerce and news datasets
demonstrated that Transformer-based architectures consistently outperformed classic RNN and non-neural
baselines. Moreover, Transformers4Rec was successfully employed in industry applications, winning two
session-based recommendation competitions [71], [96].

What’s common between the aforementioned works is the use of transformer architectures for sequence
modeling. However, with the advent of large Pretrained Language Models (PLMs), many recent works [5],
[61], [87], [119] attempt to leverage these powerful tools to model user behavior. Qu et al. [82] challenge this
approach by questioning whether the full potential of PLMs is exploited in this context. Through detailed
analysis of Recformer [61], a PLM-based SR model built on Longformer [6], they reveal two key issues: first,
PLMs tend to underutilize their deep architecture in this setting, leading to parameter redundancy; second,
their sequence modeling behavior often mimics conventional ID-based models like SASRec [53], rather than
leveraging their full linguistic reasoning power. Motivated by these findings, the authors explore a simpler and
more efficient alternative: using behavior-tuned PLMs—i.e., PLMs fine-tuned on user interaction sequences by
training with recommendation objectives like masked language modeling and item-item contrastive loss—only
to initialize item embeddings, while replacing the PLM-based sequence modeling component with standard
ID-based models such as SASRec [53] and BERT4Rec [103]. Their experiments on five Amazon datasets
show that this hybrid design not only reduces training and inference cost but also consistently outperforms
both classical ID-based models and full PLM-based ones, especially when embeddings are further fine-tuned.
These findings suggest that the primary contribution of PLMs to SR may lie in content-aware item encoding,
rather than in sequence modeling itself, and point toward a more efficient paradigm that decouples these two
components.
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Figure 3.2.3: Schematic overview of TransformersdRec [100]

3.3 Sequential Music Recommendation

3.3.1 Datasets
Million Playlist Dataset (MPD)

The Million Playlist Dataset (MPD) was released by Spotify as part of the RecSys Challenge 2018 [15], and
has since become one of the most widely used benchmarks for Automatic Playlist Continuation (APC). It
consists of 1,000,000 user-created playlists, containing over 66 million playlist-track pairs, with an average
playlist length of 66.35 tracks, and includes 2.26 million unique tracks with metadata such as track titles,
album and artist names, playlist titles, and Spotify URIs. The dataset does not include audio information
directly, but for many tracks one may find 30-second previews using the Spotify API. In the context of the
RecSys Challenge, MPD was used for the task of predicting missing tracks in incomplete playlists, across
ten different scenarios that varied in available input (e.g., title only, no title and first 5 tracks, title and 100
random tracks). Participants were asked to recommend up to 500 tracks per playlist, and solutions were
evaluated using NDCG, R-precision, and recommended songs clicks, with overall rankings determined by
Borda rank aggregation across these metrics.

Melon Playlist Dataset

The Melon Playlist Dataset [33] was introduced in 2020 to address the need for a publicly available, real-
world music playlist dataset that also contains audio information. Collected from the Melon music streaming
service, one of the largest platforms in South Korea, the dataset includes 148,826 user-generated playlists
and 649,091 unique tracks, with an average of 41.46 tracks per playlist and over 5.9 million playlist-track
relations in total. The dataset primarily features Korean music and includes rich metadata: titles and tags
for playlists, while songs are accompanied by their title, album and artist information, as well as various genre
tags. Notably, the dataset includes mel-spectrograms (20-50 seconds) for every track, enabling research on
audio-based recommendation and cold-start scenarios. Overall, thanks to its rich content and collaborative
features, this dataset is well-suited for music tagging and APC, as well as for music representation learning
approaches.
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LFM-1b and LFM-2b Datasets

Unlike the previous datasets, the LFM-1b [93] and LFM-2b [94] datasets are large-scale collections containing
music listening histories instead of playlists, sourced from Last.fm? users and designed to support research
in music information retrieval and recommendation. LFM-1b, introduced in 2016, contains over 1 billion
listening events from more than 120,000 users, with each event defined by a user, track, artist, album and
timestamp tuple. In addition to basic user demographics (age, gender, country), it includes user descriptors
such as mainstreaminess, novelty scores and temporal listening patterns, enabling detailed modeling of music
consumption behavior.

Building on this, LFM-2b is a 2020 extension that expands the dataset to over 2 billion listening events,
collected from the same Last.fm user base, but over a much longer time span of 15 years. LFM-2b enriches
the available features with fine-grained genre labels, user-generated tags, and BERT-based lyric embeddings
for over 1 million tracks, while it also maps many tracks to Spotify URIs, facilitating the retrieval of audio
features. Thanks to its combined support for collaborative, content-based, and hybrid recommendation
strategies, LFM-2b can serve as a powerful benchmark for both traditional and content-enriched music
recommendation tasks.

Music4All Dataset

The Music4All dataset [91] introduced in 2020, also contains listening histories from Last.fm users, but,
importantly, it comes with raw audio segments for each song. It was created in two phases, as shown in
Figure 3.3.1: a user phase that collected the listening histories and a song phase to gather song data, while
discarding songs with incomplete information. More specifically, the dataset includes timestamped listening
histories from 15,602 Last.fm users, collected between January 1st and March 20th, 2019, with each user
having listened to an average of 361 listening events, covering around 200 songs. By the end of the song
phase, the dataset contained 109,269 music tracks, each enriched with a multitude of features including 30-
second audio clips extracted from the middle of the track, audio features from the Spotify API (such as
danceability, valence, and tempo), and detailed metadata including song title, artist, album, genre labels,
user-generated tags from Last.fm, and lyrics. To demonstrate its range of applications, the creators used it
in music recommendation, genre classification and mood classification tasks.
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Figure 3.3.1: Development of the Music4All dataset [91]

Music4All-Onion Dataset

The Music4All-Onion dataset [72] was introduced two years later in 2022 and extends the original Music4All
dataset with even richer multimodal and behavioral information, aimed at advancing content-centric music
recommendation. In addition to the features in the original dataset, Music4All-Onion includes numerous
other audio feature sets, pre-computed lyric embeddings, TF-IDF vectors for genres and tags, and image-
based representations extracted from YouTube video frames. Furthermore, to provide an additional large

Shttps://www.last.fm/
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set of user-item interactions, they filter the LFM-2b dataset by retaining only the events corresponding to
Music4All tracks. From the 109,269 tracks, 56,512 were found in LFM-2b, resulting in 252,984,396 filtered
listening events, dramatically increasing the scale and diversity of the available user behavior data. This
expansion enables training of deep learning models on a realistic, large-scale recommendation setting while
also supporting cross-modal learning.

3.3.2 Behavior-Based Methods

Similarly to non-sequential recommendation approaches, early works that tackled the APC task focused
solely on collaborative data to discover the hidden factors that influence music consumption. The winning
solution to the RecSys Challenge 2018, proposed by Volkovs et al. [112] introduced a two-stage architecture
for large-scale APC. Their model consists of a first stage that aims to quickly select 20,000 candidate songs
for each playlist, thus dramatically reducing the search space and facilitating the use of more complex and
time-consuming techniques in the 2nd stage. The 2nd stage then refines these initial recommendations by
re-ranking these songs using a number of features that attempt to capture more complex interactions between
songs and playlists. Specifically, the Weighted Regularized Matrix Factorization (WRMF) [48] technique is
first used to select the 20k candidate songs for each playlist. However, since this method does not consider
the order of songs in a playlist, additional scores are calculated for each candidate song to take into account
long-term and short-term dependencies at the playlist level. To this end, a gated CNN model is used to
extract order-aware playlist embeddings, as well as classic user-user and item-item neighbor-based models.
The four scores mentioned above, along with a linear combination of them, are included as input features in
the second stage. Additionally, the second stage also considers various carefully selected song and playlist
features, as well as pairwise playlist-song features, focusing on getting the most complete depiction of their
similarity. All of the above are used as input to a tree-based gradient-boosting model (XGBoost [18]) with a
pairwise ranking loss function, which re-ranks the retrieved songs and produces the final recommendations.
With 22.41% R-Precision, 39.46% NDCG and 1.7839 clicks, the authors’ team won the 1st place, showcasing
the system’s ability to provide satisfactory music recommendations on a large scale. At the same time, the
results encourage the combination of collaborative filtering methods with more complex features that focus
on content and sequential dynamics of the playlist continuation problem.

Building on this insight and the observation that more recent scientific works often neglect the important goal
of scalability, Bendada et al. [7] introduced a general-purpose framework for APC that balances scalability
and flexibility, aiming to make advanced sequence models (eg. RNNs, Transformers) usable in real-world
music streaming systems. Their approach, called Represent-Then-Aggregate (RTA), decomposes the recom-
mendation process into two key components: a song representation function and a playlist-level aggregation
function. Song representations can be learned in multiple ways-directly from occurrence data using WRMF,
applying an attention mechanism on learned metadata embeddings, or simply taking their average—and are
denoted by hs = ¢(s). These are then aggregated by a function g into a playlist embedding h,,, as shown in
Figure 3.3.2, using simple means (like averaging) or more complex sequence models, including gated CNNs
(as in [112]), GRUs [20], or Transformer decoders [109]. The final recommendation score is computed using
the inner product between the playlist and song embeddings. During training, the representer and the aggre-
gator are jointly optimized with a contrastive loss that distinguishes between true continuations of possible
subplaylists of a playlist p and negative samples drawn from the songs that don’t belong in p. The paper
emphasizes that scalability is maintained by minimizing online operations: playlist representations are com-
puted from embeddings at inference time, and large offline precomputation is used to keep latency low. The
task used for evaluation uses the MPD dataset and resembles that of the RecSys Challenge: given some of the
first songs of each playlist, produce a ranked list of 500 recommended songs to predict the rest of the playlist.
Experiments show that the Transformer aggregator, paired with any of the proposed representers, gives the
best performance across all metrics. Notably, one such variant was successfully deployed in production at
the music streaming service Deezer, improving performance in large-scale A/B testing and illustrating the
framework’s industrial readiness.

3.3.3 Audio-Driven Methods

While the previously discussed approaches focus primarily on leveraging interaction data for playlist con-
tinuation, more recent efforts explore the integration of audio content into the recommendation process.
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Figure 3.3.2: The Represent-Then-Aggregate (RTA) framework [7]

Meehan and Pauwels [69] examine this direction by conducting a systematic evaluation of contrastive learn-
ing methodologies that combine playlist-derived supervision with audio representations. Using the Melon
Playlist Dataset [33], they unify several training paradigms from previous works—cross-modal [32] (aligning
audio with metadata embeddings, obtained from Word2Vec [70] for genre tags and from matrix factoriza-
tion for playlists), audio intra-modal [1|(learning from co-occurrence of tracks within playlists, artists, or
genres), and hybrid strategies that combine the two—into a common experimental framework. Two audio
encoders, ResNet18 [42] and a short-chunk CNN [114] are pretrained under these regimes and subsequently
assessed on downstream music tagging (MTG-Jamendo [11], MagnaTagATune [58], Melon-50), using a shal-
low MLP classification head and on automatic playlist continuation. Results indicate that weakly supervised
approaches exploiting playlist or artist co-occurrence signals generally surpass self-supervised baselines, with
artist-based co-occurrence yielding the best playlist continuation performance and playlist-based training
excelling in music tagging. Their proposed hybrid strategy proves particularly robust, achieving consistently
strong results across datasets. An additional contribution is the adaptation of mixup augmentation [118],
previously confined to self-supervised setups, to weakly supervised contrastive training, where it significantly
enhances transfer learning performance. Overall, this study highlights the value of incorporating audio fea-
tures alongside behavioral signals, demonstrating that such multimodal supervision can yield richer and more
versatile music representations for recommendation and tagging.

Building upon the same idea of bridging music representation learning and sequential recommendation, Tamm
and Aljanaki [104] study how pretrained audio embeddings behave when fused with user listening histories.
To evaluate this, the authors use the Music4All-Onion dataset [72] with a temporal split (last month for val-
idation/test; previous year for training) and benchmark six backend audio representations (MusiCNN [80],
MERT [63], EncodecMAE [76], Music2Vec [62], MusicFM [115], Jukebox [29]) by plugging their track-level
embeddings into three recommenders of increasing complexity: a content-only K-Nearest Neighbours (KNN)
model, a Shallow Net that passes user/item embeddings through a fully connected layer, and BERT4Rec [103]
for sequence modeling. For both Shallow Net and BERT4Rec, pretrained item embeddings are kept frozen,
while user embeddings are trainable, to learn from the interaction data. Evaluation is done on HitRate@50,
Recall@50, and NDCG@50, ranking only previously unheard items and using a model with randomly initial-
ized item embeddings as a baseline. Results show the expected hierarchy of model capacity (BERT4Rec >
Shallow Net > KNN) and, crucially, that combining content with collaborative signals substantially boosts
performance over content-only KNN. With BERT4Rec, MusiCNN delivers the strongest improvements over
the pure collaborative baseline (0.044 vs. 0.038 NDCG@50), while MERT and EncodecMAE perform compa-
rably to it; Music2Vec, MusicFM, and Jukebox (0.020, 0.016, 0.012 NDCG@50, respectively) fall behind the
baseline, suggesting some representations require more elaborate integration and also showing the modeling
power of BERT4Rec in this sequential setting. The study also notes a task mismatch between MIR and MRS
leaderboards as MusiCNN fares best in recommendation despite middling MIR scores, while other models
like MusicFM and Jukebox that lead in MIR, underperform in MRS.
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The main focus of this thesis is to leverage pretrained models to extract embeddings from raw audio and
investigate various ways to incorporate them into a session-based recommendation pipeline. To achieve this,
we build upon two existing frameworks we described briefly in the previous chapter. The first one is NVIDIA’s
Transformers4Rec library [100] and the other one is the Represent-Then-Aggregate (RTA) framework [7]
introduced by Deezer Research. In both cases, our data comprises listening sessions, which we extract from
a music dataset that provides listening histories from approximately 15k users [91].

In Figure 4.0.1, we present an overview of our approach. As a general idea, the extracted audio embeddings
can serve as initial item representations for the songs of an input listening session. This sequence is fed
into a Transformer architecture, whose self-attention layers yield sequence-aware representations, which can
then be used to predict the next item. In the following sections w,e’ll discuss the data setup, as well as the
technical details for each of the two frameworks.
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Figure 4.0.1: Generic overview of the proposed approach. Song embeddings are derived from frozen
pretrained audio models and used to initialize the item embedding table. A transformer-based architecture
then integrates behavioral context, producing contextualized representations for the next-item prediction
task.

4.1 Data Preprocessing

Dataset Selection

In selecting the dataset for our experiments, our primary concern was ensuring the availability of raw audio
segments, as the pretrained models we employ to extract embeddings are designed to operate directly on raw
audio. This requirement immediately ruled out several otherwise popular datasets. For instance, the Melon
Playlist Dataset [33], while offering a large number of curated playlists, only provides Mel spectrograms. An
option would be to reconstruct the audio from the spectrograms, however, the Melon creators intentionally
reduced the resolution to 48 mel bins to prevent copyright violations, making high-quality audio reconstruction
impractical. Moreover, Melon is predominantly composed of Korean music, which could introduce cultural
or genre-specific biases; our goal was instead to use a dataset that reflects broader and more diverse listening
habits. Similarly, while the Million Playlist Dataset (MPD) [15] provides a great volume of user behavior
data, it entirely lacks audio features. Attempting to retrieve them via the Spotify API would be prohibitively
time-consuming due to API rate limits and the dataset’s large size. Taking these limitations into account,
we opted for the Music4All dataset [91], which provides 30-second raw audio segments alongside listening
histories. Although the full dataset includes audio features for 109,269 tracks, only 99,596 of these appear in
the user listening histories, which constitutes our initial track subset.
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Session Creation

As mentioned in section 3.3.1, the Music4All dataset contains each user’s listening history over a specified
three-month window. In order to use this data for our session-based application, we take advantage of the
timestamp of each listening event to rearrange the data into sessions. To do so, we follow the method proposed
by the creators of the dataset and we create a new session when two consecutive events from the same user
are more than 60 minutes apart from each other. In Figure 4.1.1 we present the resulting histogram of session
lengths, grouping sessions longer than 50 interactions in one bin.
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Figure 4.1.1: Histogram of session lengths of the processed Music4All dataset. Sessions with more than 50
interactions are grouped in one bin.

As seen in the histogram, around 113k (18%) of the listening sessions consist of only one event (I = 1). Clearly,
such sessions are not informative in a sequential recommendation scenario, as they cannot be considered true
sequences. Therefore, we make sure to filter them out.

It’s worth commenting that the resulting dataset has an average session length of 9.70, which is significantly
lower compared to the playlist datasets MPD (66.35) and Melon (41.46), as well as Music4All’s original
listening histories (361). This is expected for a session-based recommendation application, since listening
sessions can be much shorter than whole listening histories or playlists.

Pretrained Model Selection

To extract audio embeddings from the Music4All dataset, we employed three distinct models: MERT and
MusiCNN and a custom contrastively trained CNN.

e MERT [63] is a general-purpose, large-scale pretrained model trained using a self-supervised learning
approach. It has demonstrated competitive performance across a variety of downstream music infor-
mation retrieval (MIR) tasks, making it a strong candidate for capturing rich audio representations.

e In contrast, MusiCNN [80] is a CNN trained in a supervised fashion on the music auto-tagging task.
We included MusiCNN not only to represent a different training paradigm—supervised learning versus
MERT’s self-supervised strategy—but also due to its demonstrated utility in music recommendation
scenarios, as evidenced in [104].

e Our custom model is a convolutional network based on the EfficientNet-B0 architecture [105], trained
on raw audio via a contrastive task that brings tracks from the same artist closer in the embedding
space. From now on, we will refer to this model as “artist model”.

By incorporating models trained under different paradigms, we aim to better understand how the nature
of the training objective influences the quality of audio embeddings in the context of session-based music
recommendation.
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Audio Preprocessing

All audio files in the Music4All dataset are provided in stereo format with a sampling rate of 48 kHz. As a
preprocessing step, we convert each file from stereo to mono by averaging the two channels. We then truncate
or pad each audio sample to ensure a consistent length of 30 seconds. Since each model expects a different
sampling rate (24 kHz for MERT and 16 kHz for MusiCNN and the artist model), we resample all audio to
match this requirement.

Embeddings Extraction

To extract embeddings with MERT, we use the lighter 95-million parameter variant?, which consists of
12 transformer layers and produces a 768-dimensional output at each layer with a temporal resolution of
75 Hz. In our setup, we use the representations from the final (12th) layer, resulting in a tensor of shape
(num__seconds x 75, 768). We then apply mean pooling over the time axis to obtain a single 768-dimensional
vector per audio track.

For MusiCNN, we use the smaller model variant trained on the Million Song Dataset. As our feature vector,
we use the 200-dimensional projection of the temporal pooling layer, referred to as the "penultimate" feature
set in Figure 3.1.5. The official MusiCNN implementation processes raw audio by computing a spectrogram
over a fixed-length patch. Since the model was trained on 3-second segments, the authors recommend using
the same duration at inference time. Therefore, in our case each 30-second audio clip is split into ten
non-overlapping 3-second segments, each yielding a 200-dimensional embedding. We then average these ten
vectors to produce a single 200-dimensional embedding per track.

For the artist-informed audio model, we perform contrastive pre-training using Music4All [91], using
artist identity information to form the contrastive pairs until convergence. The model accepts 1-sec mel-
spectrograms as input, and employs an EfficientNet-B0 encoder to produce embeddings of dimensionality
equal to 1280. In order to produce a single embedding for each audio excerpt, all 1-sec excerpt embeddings
were averaged across the length of each musical piece.

Finetuning of MusiCNN Embeddings

Motivated by the findings of [82], we finetune the audio embeddings with behavioral data, to align them
with the final task. Specifically, we feed a shallow MLP model with the extracted MusiCNN embeddings and
train it with a contrastive loss, treating songs from the same session as positives and the rest of each batch
as negatives. After training, we perform a final forward pass to get the tuned audio embeddings. We refer
to this approach as MusiCNN-tuned.

4.2 Transformers4Rec (T4Rec)

To test the usefulness of the extracted embeddings in session-based recommendation, we first propose a model
built upon the T4Rec library, that borrows techniques from popular sequential recommendation models like
BERT4Rec [103].

Dataset

For our experiments with T4Rec we use the preprocessed sessions from the previous section, in which we have
excluded single-song sessions. In Table 4.1, we present some basic characteristics of the Music4All listening
data, before and after removing the aforementioned sessions. As we said, around 18% of the sessions are
removed, which results in a total of 514,786 sessions and a slightly higher average session length.

Additionally, we employ a 70-15-15 split, on data sorted by user IDs. This means that we have completely
new users in the validation and test set.

4https://huggingface.co/m-a-p/MERT-v1-95M
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4.2. Transformers4dRec (T4Rec)

Statistic Original Music4All T4Rec
Users 14,127 14,127
Songs 99,596 99,355
Number of sessions (1>1) 628,204 514,786
Filtered sessions with one song - 113,418 (18.05%)
Average session length 8.13 9.70

Table 4.1: Statistics of the T4Rec listening sessions before and after the filtering steps.
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Figure 4.2.1: Architecture of our T4Rec-based models. During training, the model masks parts of the input
session and uses bidirectional attention to recover them.

4.2.1 Architecture
Input Layer

The input of the model is a sequence of song IDs, which corresponds to a listening session. This sequence
passes through an embedding layer, which is essentially the item embedding matrix E € RIVI*? where V is
the item set and d is the embedding dimension. This matrix can be randomly initialized and learned from
scratch during training, or can be initialized using the pretrained audio embeddings, providing a content-
aware starting point. In the case of a mismatch between the embedding dimension and the model dimension
(e.g. we train a model with MusiCNN embeddings with d=200, but we want the model to have dimension 64),
we add a linear projection layer followed by a RELU activation function. Since the self-attention mechanism
is order-agnostic, a positional encoding is added to each embedding (after the projection) to keep track of
song order. Instead of the absolute positional encoding used in the original transformer, which assigns a
fixed embedding to each position, we use the relative positional encoding introduced in TransformerXL [24],
focusing on encoding the distance between items and not their absolute position. It is important to mention
that in all our experiments the pretrained embeddings are not frozen, because this resulted in significantly
worse performance, as we will discuss in the next chapter.
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Transformer Layers

The interaction sequence is then fed to the transformer network, which refines the item representations,
capturing valuable information about song relationships and co-occurrence patterns and produces a con-
textualized representation for each item of the sequence. As we described in the previous chapter, the
Transformer4Rec framework allows the user to apply popular transformer architectures for session-based
recommendation tasks. In this work, we chose to build our model as a stack of transformer layers based
on the layer architecture of XLNet [116], following the original T4Rec paper [100]. We should clarify that
this doesn’t mean that we adopt the exact configuration of the XLNet model (number of layers, hidden
dimension, number of attention heads etc.), but rather our transformer layers use the internal mechanisms
found in XLNet layers.

Output Layer

Supposing that we want to predict a missing item at time step ¢, we score all items by multiplying the missing
item’s final representation with an output projection matrix of shape |V| x d. Importantly, this matrix can
share the same weights with the input embedding matrix F. This is a common technique called weight tying,
which significantly reduces the model’s parameters, since such an embedding table has a considerable size,
given that the number of |V of possible items is quite large in RecSys applications. In order to be able to
apply weight tying, we make sure to project the item representation back to the embedding dimension, if
needed, using a linear layer. Finally, the scores of all items go through a softmax function, which produces a
probability distribution over the item set, expressing how probable it is that each item is the missing item.

4.2.2 Training

Our model is trained using the Masked Language Modeling (MLM) training scheme used in BERT4Rec, as
described in section 3.2. This enables the use of bidirectional context, i.e. considering both past and future
interactions when predicting an item, while preventing information leakage due to the availability of future
context. According to MLM, during training we replace a fraction p of items in the input with a [MASK]
embedding, and the model learns to recover the masked items using the surrounding context. More precisely,
for each masked position, we use its final representation to produce a probability distribution over the item
set, as described above. Then, we take the probability the model has assigned to the true item and compute
its negative log-likelihood. Minimizing this quantity is equivalent to maximizing the probability of the true
item. Therefore, for a masked session S, the loss is formulated as:

1 *
L= ST Z _IOgP(Um = Um|81/) (421)

ST, 22,

where S are the masked items in S} and v, is the true item for the masked item v,,.

4.2.3 Evaluation

When running the model on the validation or test set, we evaluate its ability to predict the last item of each
session, given all previous interactions. That is, only the last item of each session is replaced with a [MASK]
token and predicted by the model, which scores all items and returns a ranked list of recommendations.
This list is evaluated using several ranking metrics, which we have defined in section 2.4, namely NDCG@k,
MAP@k and Recall@k. We report these metrics for £ = 10, 20. Finally, during inference, the input session
is extended with an additional [MASK] embedding and all previous interactions are used to predict the next
item.

4.2.4 Late Fusion

Among our goals is to experiment with alternative ways of integrating the pretrained audio embeddings
into the model. One idea is to randomly initialize the item embedding layer of the transformer and let the
transformer layers take full advantage of the behavioral data. Then, we take the output of the transformer
and concatenate it with the average audio embedding of the session, excluding those of the masked items.
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Another option would be to concatenate each item’s hidden representation with its corresponding audio
embedding, however this would lead to information leakage, as the model would simply learn to base its
predictions on the audio embeddings, which remain unmasked. That is also the reason why we don’t consider
the masked items when computing the session average.

4.3 Represent-Then-Aggregate (RTA)

The second part of our work includes training an RTA-based model on the Music4All dataset to examine
how the audio embeddings behave in a different task formulation. As we recall from section 3.3.2, the RTA
framework uses a function to obtain a representation for each song and then applies an aggregation function
to represent a session p as a combination of its songs’ representations. In comparison to the Transformers4Rec
framework, we can identify the following core differences:

e RTA removes duplicate songs from each session, which results in a slightly different dataset, since in
T4Rec we only remove single-song sessions.

e The original RTA paper follows a different approach to split the dataset, randomly sampling a consid-
erably smaller validation and test set.

e FEach framework uses its own training objective. While in T4Rec we follow an MLM approach, partially
masking the input and predicting the missing items, RTA maximizes the similarity between the session
representation and the embedding of the true next song.

e This difference in training objective also motivates a different architecture: the bidirectional self-
attention used in T4Rec is replaced with causal self-attention in RTA.

e Finally, the two frameworks differ in their evaluation task. In T4Rec, we use the whole session to
predict the last song, whereas RTA uses a small number of first songs to retrieve all the remaining ones.

Dataset

As we just mentioned, in RTA, we apply an additional preprocessing step used in the original codebase, in
order to ensure compatibility with the rest of the framework. Specifically, apart from removing sessions with
only one song, we also remove duplicate songs from each session. That is, if a song is consumed numerous
times within a session, we keep only the first interaction and reject subsequent ones. This step leaves around
20k more sessions with only one song, which we make sure to ignore later on. The characteristics of the
Music4All subset used in our RTA experiments can be seen in Table 4.2, where we can also observe a
decrease in the average session length, since all the duplicates are removed within each session.

Statistic Original Music4All RTA
Users 14,127 14,127
Songs 99,596 99,355
Number of sessions (1>1) 628,204 493,297
Filtered sessions with one song 134,907 (21.47%)

Average session length 8.13 8.06

Table 4.2: Statistics of the RTA listening sessions before and after the filtering steps. Apart from the steps
applied in T4Rec, here we also filter out duplicates from each session, keeping only the first interaction.

Regarding the data split for this experiment group, we don’t differentiate from the original work, so we
sample 20,000 sessions with length [ > 20 to create a validation and a test set of 10,000 sessions each. The
rest 473,297 sessions form our training set.

4.3.1 Architecture

Apart from the methods used in [7] as representation functions, which we’ll use as baselines, in our work we
leverage the pretrained models MERT and MusiCNN to obtain song representations. Concerning the aggre-
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Figure 4.3.1: Architecture of our RTA-based models. At time step 4, the transformer aggregates previous
items into a session representation p.; with causal attention, and uses p.; for next-song prediction. Training
uses a hybrid loss that encourages similarity with the true next song (L,0s) and discourages similarity with

a set of negative samples S~ (p) (Lrneq)-

gation function, the results of the original work showed that the models that used a transformer architecture
dominated over other options, such as GRUs, Gated CNNs, or a simple average of the song representations.
For this reason, we focus only on the transformer variant for our experiments. This processes the input
sequence p using masked self-attention blocks, i.e. the model can attend only to positions up to the current
item ¢ and not to future ones, much like SASRec [53] does (see section 3.2). The resulting output can be seen
as a session representation that aggregates songs ps,, ps,,...,Ps; and can be used to predict the next song
Ds;41» Dy scoring all item representations using a dot product. Notice that this essentially uses the weight
tying technique we mentioned previously. Throughout our experiments, the song representations are kept
trainable, as in the case of T4Rec.

4.3.2 Training

To train this model, the authors propose the following objective: given a session p with length [, and the
aggregation p.; of its first ¢ songs, with ¢ € {1,...,l — 1}, encourage a higher score between p.; and the
true next song ps,,,, and a lower score for a sampled set of songs S~ (p) that don’t belong in p. The true
continuation functions as a positive pair while the out-of-session songs as negatives and therefore the total
loss can be expressed as L(p) = Lpos (P) + Lneg (p), with:

-1
Lpos () = =Y _logo (f (p:ipsiir)) (4.3.1)
=1
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-1
Lieg (p) = —Z Z log o (f (p;i,s_)) (4.3.2)

i=1 s~ €5 (p)

where o denotes the sigmoid function and f the inner product.

4.3.3 Evaluation

To evaluate the model, we follow [7] and split the 10k sessions of the validation or test set into 10 configurations
with 1,000 sessions each: for the first subset only the first song is visible, for the next subset only the first
two songs and so on and so forth, up to 10 visible first songs. The remaining part of each session is to be
predicted by the model, which scores all songs and gives a ranked list of candidate songs for each session.

4.3.4 Baselines

To check the effectiveness of the pretrained audio representations, we compare them with the three functions
proposed in RTA, which act as our baselines:

o Weighted Regularized Matrix Factorization (WRMF) [48]: Factorizes the session-song occurrence ma-
trix using the Alternating Least Squares (ALS) method (see section 2.2.2) to extract initial song rep-
resentations with d = 128. Denoted as MF in our experiments.

e Factorization Machine (FM): Using the above song representations, we create embeddings for song
metadata (artist, album, popularity) by taking the average of the songs that have the same metadata
value. Each song’s embedding is then the average of the embeddings of its metadata.

e Neural Network (NN): Similar to FM, but instead of averaging metadata embeddings, it applies an
attention mechanism on them.

49



Chapter 4. Data and Methodology

50



Chapter 5

Experimental Evaluation

5.1

5.2

5.3

5.4

Experimental Setup . . . . . ... 52
5.1.1 Evaluated Models . . . . . . . .. .. 52
5.1.2  Training Details . . . . . . . . ... Lo 52
Quantitative Results . . . . . . . . .. Lo 53
5.2.1 TransformersdRec . . . . . . . .. L 53
5.2.2  RTA . . . 56
Analysis of Model Behavior . . . . . . . . . . ... 57
5.3.1 Convergence Behavior . . . . . . .. ... .. 57
5.3.2  Embedding Space Visualization . . . . . . ... ... ... 0oL 58
5.3.3  Ablation Study . . . ... 60
Discussion . . . . . .. L e 61

51



Chapter 5. Experimental Evaluation

As analysed in previous chapters, despite the effectiveness of pretrained audio representations in several MIR,
tasks, there have been few efforts that take advantage of them in the music recommendation domain, even
though the need for content-driven methods to alleviate common problems of collaborative-only approaches
remains topical.

The experiments described in this chapter aim to shed light on whether these representations can be useful
in a music recommendation task and specifically in a session-based setting. Furthermore, since the models
we used to extract audio representations are built on different training paradigms, our work is also expected
to draw conclusions on how this choice affects the recommendation performance. At the same time, the way
of integrating the pretrained embeddings into the recommendation pipeline is not trivial, and thus we try
out various methods to bring them into play, hoping to gain insight into this aspect as well.

5.1 Experimental Setup
5.1.1 Evaluated Models

In our experiments, the basic way of integrating pretrained embeddings into the recommendation pipeline
is by using them as initialization for the item embedding matrix E, hoping to provide the recommendation
model with a helpful starting point. As a baseline, we use a random initialization of the embedding matrix
and let the model learn solely from the behavioral data. Of course, in this case E is set to be trainable. In
the case of pretrained initialization, prior works [104] suggest that whether F is frozen or not doesn’t have
a great impact on performance. However, our preliminary experiments showed that freezing the embedding
table gave much worse results and thus we let it be modifiable throughout our experiments.

As stated previously, we will use embeddings from three pretrained models: MusiCNN [80], MERT [63] and
our custom artist model, as well as a modification of the MusiCNN embeddings finetuned on the listening
sessions. Apart from employing a different training approach, each model has its own embedding dimension d
(200, 768 and 1280, respectively). Therefore, training a single baseline model with e.g. embedding dimension
d = 512 would not guarantee a fair comparison, since each model would have a different capacity (higher
or lower) from the baseline. In order to isolate the effect of the pretrained initialization and ensure that
the compared models have the same capacity, we train three different randomly initialized models, each one
matching the embedding dimension of a pretrained model.

Moreover, in our Transformers4Rec experiments, we also test the late fusion technique introduced in section
4.2.4, both for MusiCNN and MERT embeddings. In this case, we set the embedding dimension d = 512.
So, for example, if the transformer’s output dimension is 256, then the result after the fusion would be
256 + 200 = 456 for MusiCNN, which is then projected to d = 512.

As for RTA, apart from the randomly initialized models that serve as baselines, we additionally include the
three baselines described in section 4.3.4, along with another random model that has the same embedding
dimension (d = 128) as these baselines.

5.1.2 Training Details

All our models were trained on a single GPU and we make sure to save the checkpoints with the best
NDCG@20 on the validation set. We then run these checkpoints on the test set to obtain the reported
results.

For the hyperparameters of the T4Rec transformer we follow BERT4Rec [103] and use 2 transformer layers
and 2 attention heads in each layer. Our preliminary results agree with the findings of BERT4Rec that
increasing the number of layers and heads can improve performance, however we stick to the above values
to make our models more computationally efficient. What’s different in our work is each layer’s hidden
dimension, which we set to be 512. Finally, for other training hyperparameters, like the optimizer and the
learning rate, we keep the default training arguments from the HuggingFace Transformers library [113]. We
train all our T4Rec models for 50 epochs, using the Adam optimizer and applying linear decay to the learning
rate, starting from 0.00005.

Concerning our RTA experiments, we generally adopt the hyperparameter values suggested in the original
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work. Models are trained for 30 epochs, using Stochastic Gradient Descent (SGD) as optimizer and halving
the learning rate every 2-3 epochs.

All the aforementioned hyperparameters are presented in Table 5.1.

Table 5.1: Training and architecture details for Transformers4Rec and RTA models.

Hyperparameter Transformers4Rec RTA

Number of layers 2 1

Number of heads 2 8

Model dimension 512 Equal to embedding size
Batch size 128 128

Epochs 50 30

Optimizer Adam SGD

Learning rate scheduler Linear Step

Initial learning rate 0.00005 1.0 (0.13 for NN baseline)

5.2 Quantitative Results

5.2.1 Transformers4Rec

The results for all T4Rec models on the test set are presented in Table 5.2 to facilitate comparison. The
second column notes each model’s embedding dimension d, and we remind that the transformer’s hidden
dimension is 512 for all models. The underlined results correspond to the best performance among a certain
group of models (e.g. MERT initialization and random initialization with the same embedding dimension),
while the bold results signify the overall best performance on the specific metric.

Table 5.2: Performance comparison of T4Rec models across all evaluation metrics.

Initialization d NDCG@10 MAP@10 Recall@l0 NDCG@20 MAP@20 Recall@20
Random 200 0.2504 0.2013 0.4038 0.2629 0.2047 0.4530
MusiCNN 200 0.2225 0.1788 0.3603 0.2358 0.1824 0.4124
MusiCNN-tuned 200 0.2452 0.1953 0.4009 0.2583 0.1988 0.4525
Random 768 0.2618 0.2140 0.4105 0.2742 0.2174 0.4595
MERT 768 0.2582 0.2089 0.4089 0.2706 0.2122 0.4580
Random 512 0.2676 0.2216 0.4119 0.2805 0.2252 0.4626
MusiCNN late fusion 512 0.2655 0.2197 0.4088 0.2782 0.2231 0.4589
MERT late fusion 512 0.2628 0.2158 0.4096 0.2758 0.2193 0.4607
Random 1280 0.2684 0.2232 0.4095 0.2808 0.2266 0.4583
Artist model 1280 0.2309 0.1848 0.3739 0.2451 0.1886 0.4297
MusiCNN

Starting with the models using embedding dimension d = 200, we observe that random initialization yields the
best performance across all metrics within this group. The MusiCNN-initialized model performs substantially
worse, suggesting that the representations it uses—originally trained for auto-tagging—may not align well
with user behavior patterns in the session-based recommendation setting. However, when these MusiCNN
embeddings are finetuned on the user data, their performance improves consistently across all metrics. This
demonstrates that although the pretrained audio features may not be optimal for the recommendation task
in their original form, they can still serve as a useful starting point when adapted through finetuning.
Nevertheless, even the tuned version fails to match the performance of the randomly initialized model,
highlighting the strength of learning embeddings directly for the task at hand.
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MERT

In the next group with d = 768, we compare the performance of MERT-based initialization to the random
baseline. Here, the random model again shows a slight edge, although the performance gap is narrower than
in the d = 200 group. This indicates that the MERT model, which is pretrained via a self-supervised learning
objective, provides more useful representations for the recommendation task than MusiCNN. These results
suggest that the inductive bias introduced by MERT’s pretraining may be better aligned with downstream
tasks involving user preferences. However, the fact that random initialization still outperforms it (albeit
marginally) reinforces the observation that models benefit from learning embeddings that are specifically
tailored to the session-based recommendation objective, rather than relying entirely on features derived from
audio content.

Late Fusion

The group with d = 512 explores the effect of late fusion, where pretrained audio embeddings are combined
with the trainable item embeddings rather than replacing them. In this configuration, the random base-
line remains slightly ahead, but the late fusion variants using MusiCNN and MERT are competitive. The
performance differences among them are small, with MusiCNN late fusion slightly outperforming MERT in
this setup. These results indicate that while audio-based representations alone may not be sufficient, they
can provide complementary information when fused with task-specific embeddings. Late fusion allows the
model to selectively incorporate audio features without being constrained by them, which helps explain their
relatively strong performance. However, the consistent lead of the fully random model suggests that even
with fusion, content-based information does not fully bridge the gap with embeddings optimized directly for
recommendation. Moreover, we should recall that the adopted technique combines the item embeddings with
a session-level audio representation, which might flatten out the song-level granularity of the original song
representations.

Artist Model

Finally, in the d = 1280 group, we compare random initialization to embeddings derived from an artist-
level model. Firstly, the random model with this higher-dimensional embedding space achieves the best
overall performance across most metrics in the table, indicating that increased representational capacity
can benefit the model when learning from scratch. In contrast, the artist-level model performs significantly
worse, even underperforming all other audio-based initializations. This is likely due to the coarse nature
of artist embeddings, which lack the detail needed to differentiate tracks within an artist’s catalog—an
essential property in a recommendation scenario that operates at the item (track) level. The poor results
further support the conclusion that simple metadata-derived representations are insufficient in capturing the
complex dynamics of user behavior.

Overall, we observe a consistent trend: models initialized with random embeddings tend to outperform those
relying on audio-based features, especially when the embeddings are large enough to support expressive
representations. Fine-tuning and fusion strategies help bridge the gap between pretrained content-based
models and randomly initialized ones, but do not surpass them. These findings suggest that while audio-
based representations offer valuable prior knowledge, their usefulness in session-based recommendation tasks
is limited unless they are carefully adapted or combined with learnable representations that are directly
optimized for the target task.

Impact of Model Dimensionality

The plots in Figure 5.2.1 offer additional insights into how varying the transformer’s hidden dimension
affects model performance across different initialization strategies. They show how NDCG@20 changes as
the hidden dimension varies from 64 to 512, while keeping the rest of the hyperparameters unchanged. Each
subplot focuses on a different group of models, grouped by their item embedding dimensionality. Across most
settings, we observe that increasing the transformer’s hidden size generally improves performance, although
the magnitude and consistency of these gains differ between groups.

In the MusiCNN group (top left), all three variants—MusiCNN, MusiCNN-tuned, and Random
200—demonstrate clear performance improvements as the transformer’s hidden size increases. The randomly
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Figure 5.2.1: Effect of the Transformer hidden dimensionality on NDCG@20 for the different model groups.

initialized model starts at a lower baseline but benefits significantly from higher model capacity, eventually
catching up with and slightly surpassing the tuned MusiCNN model. For all other hidden sizes, the fine-tuned
MusiCNN variant consistently outperforms both other models, illustrating the value of adapting pretrained
audio features to the recommendation task. These results suggest that while out-of-the-box audio embeddings
are somewhat informative, tuning them beforehand is crucial, especially in lower-capacity models. However,
as model capacity increases, randomly initialized models can eventually match or exceed the performance of
models using pretrained embeddings.

In the MERT group (top right), both the MERT-initialized and Random 768 models show nearly identical
performance trajectories across different transformer sizes. This similarity suggests that, for this task and
dataset, MERT embeddings do not provide a significant advantage over random initialization when sufficient
model capacity is available. The observed improvement with increasing hidden size in both cases indicates
that the transformer layers play a crucial role in learning effective session representations, regardless of the
initial item embedding.

The late fusion group (bottom left), which includes models using late fusion between pretrained audio
embeddings and item embeddings learned from scratch, exhibits a consistent upward trend across all three
variants. For d = 64, the model with random initialization performs considerably better than the two
fusion-based variants, but at higher hidden sizes the three models converge toward similar performance. This
behavior implies that incorporating audio information by fusing a session-level representation to each item
embedding doesn’t benefit performance, as the model can learn strong representations from the interaction
patterns alone.
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In contrast, the artist model initialization (bottom right) consistently underperforms relative to the Random
1280 baseline, despite improvements as the hidden size increases. It begins with a notably low score at
hidden size 64 and improves steadily, yet always remains behind the random initialization counterpart. This
result emphasizes the limited expressiveness of high-level categorical features like artist identity for item-level
recommendation. Even as model capacity grows, the coarse-grained nature of these features cannot match
the flexibility of randomly initialized embeddings that are trained end-to-end for the task.

In summary, increasing the transformer’s hidden dimension generally leads to better performance across all
initialization strategies. However, the degree of improvement and the final performance level depend on
the quality and flexibility of the item representations. Pretrained features—especially when tunable—offer
benefits in lower-capacity models, but their advantage diminishes as the model becomes more expressive.
Meanwhile, random embeddings consistently benefit from increased hidden size, often outperforming audio
representations when the model is sufficiently deep.

5.2.2 RTA

Table 5.3: Performance comparison of RTA models across all evaluation metrics.

Initialization d NDCG@10 MAP@10 Recall@l10 NDCG@20 MAP@20 Recall@20

Random 128 0.1541 0.0919 0.0613 0.1331 0.0644 0.0940
MF 128 0.1708 0.1035 0.0674 0.1467 0.0725 0.1028
FM 128 0.2022 0.1350 0.0810 0.1751 0.0980 0.1243
NN 128 0.2071 0.1371 0.0838 0.1806 0.1006 0.1298
Random 200 0.1499 0.0900 0.0600 0.1302 0.0637 0.0926
MusiCNN 200 0.1668 0.1001 0.0660 0.1434 0.0702 0.1005
MusiCNN-tuned 200 0.1699 0.1042 0.0669 0.1442 0.0721 0.0999
Random 768 0.1588 0.0957 0.0618 0.1339 0.0656 0.0917
MERT 768 0.1507 0.0904 0.0604 0.1303 0.0635 0.0925
Random 1280 0.1522 0.0910 0.0600 0.1301 0.0630 0.0910
Artist model 1280 0.1819 0.1137 0.0722 0.1579 0.0814 0.1116

Similarly to Table 5.2, Table 5.3 shows the test set metrics for all our RTA-based models. Again, the second
column corresponds to the dimension d of each item embedding, with the difference that in the RTA case,
the embedding dimension matches the transformer’s hidden dimension. So, for example, if d = 200, then the
transformer will also have the same hidden dimension.

RTA Baselines

Within the group of models trained with an embedding dimension of d=128, we observe that those proposed
in the RTA paper progressively improve upon the Random baseline. MF already yields better scores than
Random across all metrics, and FM further improves on MF, suggesting that leveraging metadata or richer
interactions helps the model capture more structure in the data. Among these, the NN model, which applies
attention to the metadata embeddings, achieves the highest performance in this group, with NDCG@20
reaching 0.1806 compared to 0.1331 for Random. This demonstrates that even a simple Matrix Factorization
initialization, paired with metadata information and an attention mechanism, can extract more predictive
power from the same data compared to a simple random initialization.

MusiCNN

When moving to d=200, we compare MusiCNN embeddings and their tuned variant to the Random baseline.
Here, both MusiCNN variants outperform the randomly initialized model, which contrasts with the trend
seen in the T4Rec experiments. NDCG@Q@20 improves from 0.1302 for Random to 0.1434 for MusiCNN
and 0.1442 for MusiCNN-tuned, with similar gains observed across MAP and Recall. This indicates that,
within the RTA framework, audio-based representations can provide a stronger starting point than random
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initialization. Moreover, fine-tuning once again yields consistent improvements, confirming that pretrained
features are most beneficial when adapted to the specific recommendation objective.

MERT

At d=T768, we see a different pattern with the MERT initialization. Here, the Random baseline slightly
outperforms MERT across most metrics, with NDCG@20 at 0.1339 for Random compared to 0.1303 for
MERT. This suggests that not all pretrained representations transfer equally well in the RTA setting. While
MERT embeddings are rich and learned through self-supervision, they may not align perfectly with the
interaction-based signals that RTA leverages. The relatively small performance gap implies that MERT still
provides meaningful information, but the framework does not appear to benefit from it beyond what it learns
end-to-end.

Artist Model

Finally, at d=1280, the Artist-level embeddings achieve better performance than Random across all metrics,
which is the opposite of what we observed in the T4Rec experiments. As an example, NDCG@20 improves
from 0.1301 with Random to 0.1579 with the Artist model. This suggests that in the RTA framework, even
coarse-grained features such as artist identity can provide useful priors when aggregated over sessions. The
aggregation step may smooth out some of the granularity issues, allowing the model to capture high-level
stylistic patterns that correlate with user behavior. Nevertheless, while improved over Random, these results
remain below the best-performing NN and FM models.

Across all configurations, the RTA results present a more nuanced picture than the T4Rec experiments. Here,
pretrained features such as MusiCNN and even coarse artist-level embeddings can offer tangible improvements
over Random initialization, particularly when fine-tuned. Classical approaches like MF and FM also demon-
strate strong baselines, while the simple NN model leads the performance within the d=128 group. These
findings suggest that the RTA framework is more amenable to incorporating externally derived representa-
tions, possibly due to its explicit separation of representation learning and session aggregation. However, even
in this setting, the gains from pretrained audio embeddings remain modest, and the best results still come
from models that learn task-specific representations or blend content-based priors with interaction-driven
learning.

5.3 Analysis of Model Behavior

While the previous section focused on the quantitative comparison of models across frameworks, here we take
a closer look at how these models learn and what their internal representations reveal about the underlying
dynamics of each approach. The goal of this analysis is to interpret the numerical trends observed in Section
5.2 — in particular, the contrasting behavior of the pretrained and randomly initialized models between the
two frameworks — by examining their training curves and embedding spaces.

We begin by analyzing the convergence behavior of the different MusiCNN variants and the random baseline,
using their validation performance throughout training to understand how pretraining, fine-tuning, and
trainability affect learning speed and final performance. Also, we visualize the embedding spaces learned
by the T4Rec models through t-SNE projections, which allow us to qualitatively assess how the various
initialization strategies structure musical content and how this structure evolves after training.

5.3.1 Convergence Behavior

To investigate how different initialization strategies influence the learning process, we monitor the evolution
of validation NDCG@20 across training epochs for the various MusiCNN configurations and the random
baseline (Figure 5.3.1). This comparison includes a frozen variant, where the pretrained embedding table is
kept fixed during training, as well as the trainable MusiCNN, fine-tuned MusiCNN, and randomly initialized
models.

At the beginning of training, the MusiCNN-tuned model starts from the highest validation score, indicating
that the lightweight contrastive fine-tuning step has already aligned the embeddings more closely with user-
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Figure 5.3.1: Learning curve of the different MusiCNN variants, showing NDCG@20 on the validation set

behavioral patterns. The random model, by contrast, begins from a lower baseline but improves steadily
and eventually surpasses MusiCNN around the midpoint of training. Both curves plateau between epochs
10 and 15, reaching similar final performance (0.26-0.27 NDCG@20). The base MusiCNN model, without
fine-tuning, converges more slowly and stabilizes at a clearly lower level, while the frozen MusiCNN shows
little improvement, remaining well below all other variants throughout training.

These dynamics highlight two important trends. First, trainability is essential: the clear under-performance
of the frozen model confirms that pretrained embeddings must adapt to the recommendation objective. Even
if the global geometry of the embedding space changes little (as later shown by the t-SNE visualizations),
small adjustments seem to be crucial for aligning the audio representation with behavioral data. Second,
pretraining affects convergence speed rather than final accuracy. MusiCNN-tuned starts from a better initial
point and reaches good performance faster, whereas the randomly initialized model shows inferior performance
at the beginning of training, but ultimately exceeds the performance of the fine-tuned model.

5.3.2 Embedding Space Visualization

To better understand what each model learns internally, we visualize the item embedding spaces of the
T4Rec models before and after training using t-SNE [65] projections of 30.000 randomly sampled songs,
coloring each point according to its artist. To maintain clarity and focus on the most prominent patterns, we
display only the songs belonging to the 20 most frequent artists in the dataset. The resulting plots (Figures
5.3.2, 5.3.3 and 5.3.4) illustrate how different initialization strategies structure musical content and how this
structure evolves through training. The legend below each grid of plots shows the mapping between the 20
most frequent artists and the colors used in the plots.

Before vs. after training

Across all pretrained models, we can observe that the overall geometry of the embedding spaces remains
remarkably stable after training. This indicates that the Transformer primarily learns to model behavioral
sequences on top of the existing representations rather than reshaping them. Nevertheless, small local
compactions can be observed, with some artists’ clusters becoming slightly denser, showing that while the
global topology is preserved, the model performs fine-grained adjustments that are invisible at the scale of
t-SNE but important for performance. This observation is consistent with the convergence results of Section
5.3.1: the embeddings are updated only modestly, yet this flexibility is crucial—frozen embeddings fail to
adapt and perform poorly.

MusiCNN vs. MERT

The MusiCNN embeddings already exhibit a clear artist-based organization before training, while also group-
ing artists that share similar acoustic characteristics.. For instance, at the top-right corner of Figure 5.3.3c,

58



5.3. Analysis of Model Behavior

we can observe that clusters of Metallica, Iron Maiden, Motérhead and In Flames, all belonging to related
genres, appear relatively close in the embedding space. After training, these clusters become slightly tighter
but retain their structure, suggesting that the model reinforces existing patterns rather than learning fun-
damentally new ones. This behavior is consistent with MusiCNN’s supervised pretraining on tagging tasks,
which encourages the network to form coarse categorical boundaries reflecting genre- or timbre-related tags
rather than continuous notions of musical similarity.

In contrast, MERT produces a more diffuse manifold with greater overlap between artists. Although we
can still witness artist clusters, the overall geometry is smoother and more cross-artist, which stems from
MERT’s self-supervised pretraining that learns to represent fine-grained musical similarity across timbral and
harmonic dimensions instead of predefined label categories. These fundamental differences could explain the
quantitative results: MusiCNN’s discrete, tag-oriented representation can separate broad musical styles but
struggles with track-level discrimination required by T4Rec, while MERT’s continuous, similarity-based space
adapts more readily to sequence modeling yet remains less effective than the randomly initialized baseline,
which is optimized directly for user-behavioral patterns.

Effect of Fine-Tuning

The MusiCNN-tuned embeddings, obtained after a shallow contrastive fine-tuning stage prior to training the
recommendation model, show a similar large-scale organization to the base MusiCNN representations, but the
resulting model achieves clearly higher performance in the T4Rec experiments. This contrast suggests that
the advantage of fine-tuning does not stem from visibly altering the global structure of the embedding space
but from improving its compatibility with the downstream optimization process. After training, the overall
geometry remains stable, indicating that the representational benefit arises mainly from the initialization
itself rather than from major reshaping during sequence modeling.

Artist Model

The Artist-based embeddings exhibit perhaps the most discrete clusters among the pretrained models, which
shouldn’t come as a surprise since its training objective directly encourages artist-level similarity. Once
again, after training, the artist clusters change only slightly. This categorical rigidity could interpret their
poor performance in T4Rec—while useful for identifying artist identity, they cannot distinguish between
tracks by the same artist.
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Figure 5.3.2: t-SNE visualization of the embedding space of the randomly initialized model after training.
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Random Initialization

For the random initialization, we visualize only the post-training embedding space, since the initial item
embeddings contain no meaningful structure. As expected, the resulting t-SNE projection shows a diffuse
and unorganized distribution with no clear artist-level clustering or discernible patterns. Despite this ap-
parent lack of structure, the random model achieves the best overall performance among all T4Rec variants.
This observation highlights a crucial distinction between human-interpretable structure and task-specific
utility: although the random embeddings do not exhibit semantic organization when visualized, they are
fully optimized to represent behavioral co-occurrence patterns captured during training. In other words,
the transformer learns an embedding geometry that is shaped purely by listening behavior rather than by
acoustic similarity, allowing it to capture the fine-grained transitions between tracks that characterize user
sessions. This explains why a model trained from scratch on behavioral data can outperform those initialized
with pretrained audio embeddings, whose structure, while musically meaningful, constrains the optimization
process and may not align with user-interaction dynamics.

Overall, the visualizations reveal that pretrained embeddings carry strong inductive biases—MusiCNN to-
ward acoustic style, MERT toward semantic breadth, Artist toward discrete identity—while the random
baseline remains fully behavior-driven. Training fine-tunes these spaces only minimally, implying that most
representational adaptation occurs within the Transformer layers rather than in the item embeddings them-
selves. Interestingly, the relative ability of the pretrained models to separate artists in the embedding
space—approximately following the order Artist > MusiCNN > MERT—broadly reflects their performance
ranking in the RTA experiments, while appearing inverted compared to the results in T4Rec. This obser-
vation suggests that the capacity to encode high-level categorical distinctions, such as artist identity, may
be beneficial in retrieval-style objectives that reward semantic or stylistic coherence, but less so in next-item
prediction tasks that rely on fine-grained behavioral discrimination.

5.3.3 Ablation Study

The preceding analysis revealed a pattern that could relate high-level category discrimination with the model’s
performance on the downstream task. However, it would be premature to infer a causal relationship between
these properties, as the two evaluated frameworks differ in multiple other aspects beyond their task formu-
lation. To better understand which of these factors might contribute to the divergent performance trends
observed between T4Rec and RTA, we conduct an ablation study that systematically adjusts specific com-
ponents of the T4Rec setup to match those of RTA.

Data Preprocessing

In the first experiment, we replicated RTA’s preprocessing step that removes duplicated songs from each
session before training. As described in section 4.3, this modification eliminates repeated song occurrences
within the same session, by keeping only the first interaction with each song. After applying this step to
T4Rec, we ran two models based on this setup: a MusiCNN-initialized model and a randomly initialized
baseline with the same embedding dimension (d = 200), both of them following the T4Rec hyperparameters
shown in Table 5.1. The corresponding test set metrics are presented in Table 5.4.

As seen in the results, both the Random and MusiCNN-initialized models experience a noticeable drop across
all evaluation metrics when deduplication is applied (0.2333 vs. 0.2629 NDCG@20 for Random, 0.1537 vs.
0.2358 NDCG@20 for MusiCNN), which agrees with the overall lower metrics observed in Table 5.3. This
decreased performance can be attributed to the loss of behavioral redundancy in the input data. In T4Rec,
repeated songs within a session act as strong contextual cues that reinforce user preferences and simplify the
prediction of subsequent items. Removing these duplicates shortens the sequences and weakens the temporal
structure on which the model relies, leading to less predictable next-item transitions. Nevertheless, despite
this drop in performance, the relative ranking between the two models remains unchanged, with the random
model still outperforming the pretrained one. This indicates that the preprocessing differences between the
two frameworks do not account for the opposing performance patterns observed earlier.
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Table 5.4: Performance comparison of T4Rec models following RTA’s data preprocessing, which applies an
additional deduplication step within each session.

Initialization d NDCG@10 MAP@10 Recall@l0 NDCG@20 MAP@20 Recall@20

Random 200 0.2214 0.1927 0.3112 0.2333 0.1959 0.3583
MusiCNN 200 0.1435 0.1227 0.2093 0.1537 0.1254 0.2498

Training Hyperparameters

In the second ablation, we aim to isolate the effect of the architectural and optimization choices of each
framework. To this end, we trained the T4Rec models using RTA’s hyperparameters (rightmost column of
Table 5.1), while keeping the original T4Rec data setup, as well as its training and evaluation objectives.
The resulting T4Rec models have increased capacity, and follow a substantially different optimization plan
(different optimizer, learning rate scheduler and initial learning rate). In Table 5.5 we present the test set
results for these T4Rec models.

From these results, we can observe a clear shift in model ranking, as all three pretrained models now surpass
their corresponding randomly initialized baselines. More specifically, the Random models exhibit a perfor-
mance drop, compared to the ones from section 5.2.1, while MusiCNN, MusiCNN-tuned and the Artist model
show notable improvements under this configuration. In contrast, MERT is the only pretrained model that
does not benefit from this setting. Interestingly, in additional experiments where we further isolated either
the architectural or the optimization components individually, most models performed poorly, suggesting
that the observed gains arise from the combination of the model architecture with the optimization plan,
rather than from either factor alone.

Based on the previous observations, we can assume that architectural and optimization choices considerably
influence the ability of T4Rec to exploit pretrained audio priors and also to learn effective item embeddings
from scratch. More importantly, the observed model ranking aligns with that observed in RTA, suggesting
that the hyperparameter configuration likely contributes to the contrasting performance patterns between
the two frameworks.

Table 5.5: Performance comparison of T4Rec models trained with the RTA hyperparameters.

Initialization d NDCG@10 MAP@10 Recall@l0 NDCG@20 MAP@20 Recall@20

Random 200 0.2449 0.2056 0.3658 0.2579 0.2090 0.4167
MusiCNN 200 0.2511 0.2103 0.3769 0.2637 0.2137 0.4263
MusiCNN-tuned 200 0.2657 0.2274 0.3844 0.2781 0.2307 0.4333
Random 768 0.2458 0.2067 0.3672 0.2587 0.2101 0.4179
MERT 768 0.2470 0.2069 0.3712 0.2600 0.2103 0.4220
Random 1280 0.2008 0.1607 0.3237 0.2140 0.1642 0.3756
Artist model 1280 0.2601 0.2205 0.3830 0.2729 0.2239 0.4333

5.4 Discussion

Finally, in this section, we discuss the framework-level differences between Transformers4Rec and RTA,
analyzing how their distinct task formulations and learning objectives account for the opposite performance
trends observed across the two setups. Together, these analyses provide a more comprehensive view of the
interaction between pretrained audio representations, model architecture, and training objective, helping us
understand not only which configurations work best but also why they behave as they do.

Task Differences

Despite their evidently similar architecture, the task of next-item prediction as defined within the Transform-
ers4Rec [100] and RTA [7] encloses important differences. In the case of Transformers4Rec, given a playlist
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of arbitrary length, the objective is to fill in the missing song of an otherwise complete playlist, while RTA
defines as APC the significantly more difficult task of finding suitable successors to a playlist of sufficient
length, in an iterative manner.

From the Tables 5.2, 5.3, one can observe that in spite of the approach (random, metadata-based or audio-
based) used for initializing the trained embeddings, T4Rec yielded higher performance on all examined
metrics. Taking into account the aforementioned task differences, the additional filtering steps undertaken
in the RTA framework (such as duplicate removal), which leave a more challenging set of initial playlist
seeds, as well as the fact that for both frameworks we stuck as much as possible to the originally proposed
hyperparameters, we attribute the performance differential in the harder nature of the sequence continuation
task as defined through [7].

Cross-Task Model Performance

The different task formulations also cause a distinct effect on the performance of each embedding initialization
method. MERT [63], for instance, is the pre-trained model that achieves the closest performance to random
embedding initialization in the case of Transformers4Rec, while it displays a performance drop in the more
favorable (for audio embeddings) case of RTA. Conversely, the custom model trained to bring audio excerpts
from the same artist close to each other gains the most over random embedding initialization in the case of
RTA, but is the worst-performing pre-trained model among the ones examined under the TransformersdRec
framework. Finally, the only behavior that consistently yields a positive effect on the embedding performance
across both frameworks is tuning the pre-trained embeddings to the task at hand, through a simple contrastive
procedure [82], as exhibited through the case of MusiCNN [80]; however, this procedure already introduces
information about the downstream task-at-hand for embedding acquisition.
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Figure 5.3.3: t-SNE visualizations of the MERT and MusiCNN embedding spaces before and after training.
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Figure 5.3.4: t-SNE visualizations of the MusiCNN-tuned and Artist embedding spaces before and after
training.
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Conclusion

This work investigates whether pretrained audio embeddings can enhance the performance of a session-based
recommendation model. Our main motivation lies in the fact that, despite the competitive performance of
pretrained models in various MIR tasks [14], [63], [80], [115], their use in recommender systems has remained
underexplored. Especially in a session-based setting, where the available context is limited, the idea of in-
corporating content embeddings that successfully encode musical properties appears promising. To test our
approach, we extracted song embeddings using three pretrained models, namely MusiCNN [80], MERT [63],
and a custom artist-based model, in order to measure the impact of diverse pretraining methods on rec-
ommendation performance. Using listening sessions derived from the Music4All dataset [91], we trained
Transformer-based recommendation models, based on two previous works from the literature: Transform-
ersdRec [100] (focusing on the simpler case of next song prediction) and Represent-Then-Aggregate (RTA) [7]
(tackling the harder task of playlist continuation), which we adapted to our session-based setting. Rather
than learning item representations from scratch based only on behavioral data, we examined ways to in-
corporate the audio embeddings into this pipeline. Specifically, we used them as a trainable initialization
of the item embeddings, much like a content-informed starting point. In additional experiments, we first
fine-tuned the audio representations with a shallow model as a simple domain adaptation, while we also
explored a late-fusion strategy, where pretrained embeddings were integrated after the Transformer layers
using a session-level concatenation.

Our experimentation on both frameworks yielded complementary insights. In the case of Transformers4Rec,
which formulates recommendation as a missing-song prediction task, none of the examined audio-based em-
bedding initialization strategies seemed to surpass random initialization. This suggests that, despite the
evident advantage of the audio-informed models during the early training epochs, the model can learn the
required information solely from scratch. On the other hand, despite the (in-line with the literature [49], [55])
superior performance of metadata-based factorization of the user-item co-occurence matrix for embedding
initialization, audio embeddings can provide helpful information for the session continuation task under the
harder setting of the RTA framework (no song duplicates, limited context). In both cases, our experiments
highlighted a slight but consistent positive effect of applying behavior-based fine-tuning to the audio embed-
dings, as a form of domain adaptation. In an attempt to better understand the contradictory performance of
the pretrained models between the two frameworks, we first visualized the corresponding embedding spaces,
and observed a potential link between each model’s ability to form musically informative audio clusters and its
performance in the recommendation setting. We then conducted an ablation study, in which we isolated the
effect of several factors that differentiate the two frameworks and revealed the importance of hyperparameter
configuration in the experimental results. That being said, we argue that that the usefulness of pretrained
audio representations in recommendation applications could depend on the alignment of the pretraining ob-
jective with the downstream recommendation task, while appropriate architectural and optimization choices
are essential for realizing their full potential. Finally, no clear conclusion could be drawn about the rela-
tive suitability of the various (metadata-based contrastive, self-supervised and tag-based supervised) training
paradigms examined.

Overall, the key contributions of our work can be summarized as follows:
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e We systematically evaluate the performance of pretrained audio representations under two existing
recommendation frameworks: Transformers4Rec [100] and Represent-Then-Aggregate (RTA) [7].

e We extract audio representations from three pretrained models: MERT [63], MusiCNN [80] and a
custom model that focuses on artist identity. Each model follows a different pretraining strategy
(masked acoustic modeling, supervised tagging, contrastive learning, respectively).

e We experiment with multiple methods of integrating the embeddings to the recommendation pipeline,
including a domain adaptation technique that fine-tunes pretrained embeddings on behavior data using
a simple contrastive objective.

e Our experiments showed a significantly different model ranking depending on the framework. To explain
these contradicting results we used an embedding visualization technique [65] and performed an ablation
study focusing on specific differences of the two frameworks.

e Our findings highlight the impact of the pretraining strategy and the hyperparameter choice on how
each audio model transfers to the recommendation domain.

Future work

To further enhance and extend our work, we outline several directions we plan to pursue as part of future
research:

e Exploring a broader range of pretrained models could reveal additional insights into which representa-
tion learning approaches are more suitable for recommendation purposes. Beyond audio-based models,
an interesting direction would be to extract song representations using Large Language Models (LLMs)
on song metadata or lyrics, motivated by [82].

e Developing more sophisticated adaptation strategies for the audio embeddings could further improve
performance. Since our results indicated that fine-tuning is, in general, beneficial compared to using
embeddings out-of-the-box, experimenting with alternative tuning objectives and carefully adjusting
critical hyperparameters (e.g., learning rate) may enable better exploitation of the pretrained represen-
tations.

e Fine-tuning the pretrained models themselves —rather than solely the extracted embeddings— could also
be investigated, of course keeping in mind the tradeoff between the computational cost of such a process
and the potential performance gains.

e Finally, assessing the benefits of content integration across different scenarios is another promising
direction. Even if incorporating audio embeddings into collaborative methods does not consistently
improve overall performance, such approaches might still provide advantages in specific settings, such
as for less popular tracks, emerging artists, or shorter listening sessions.
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