”

)
Bl

F 3
e
\%
33
m,\
NPOMHOEV S -
QS
nVpPopos

{

EOGNIKO METXOBIO IIOAYTEXNEIO
SXOAH HAEKTPOAOTQN MHXANIKQN KAI MHXANIKON YIIOAOITSTON
TOMEAS. TEXNOAOTIAS. IIAHPO®OPIKHS. KAI YIIOAOTISTON

ATIAQMATIKH EPTAYTA

[Tapaywyn Znpacioroyika OpOnv
IIpoypoppatwv Solidity
v Tov Avtopato Eleyxo
To0v MeTtayAwttioTn TNG

Zvyypapéag: Empréncv:
AMEEavSpog Kovroytévvng Kwvotavtivog Zayovog
AvamAnpwtng Kabnyntig EMII

ABnva, Semtépfprog 2025

el

NEIoA,

”
Ellg

Fe
29

%
] NG
7 ‘nPoMHOEV S
X
nVpPopos

{

EOGNIKO METXOBIO IIOAYTEXNEIO
SXOAH HAEKTPOAOTQN MHXANIKQN KAI MHXANIKON YIIOAOITSTON

TOMEAY. TEXNOAOTTAY ITAHPO®OPIKHZY KAI YIIOAOI'TETOQN

ATIAQMATIKH EPTAYTA

[Tapaywyn Znpacioroyika OpOnv
IIpoypoppatwv Solidity
v Tov Avtopato Eleyxo
To0v MeTtayAwttioTn TNG

Jvyypapéag:

Empréncv:
ANéEavdpog Kovtoyiavvng Kovotavrivog Zayovag

AvamAnpwtng Kabnyntig EMII

Eyxpifnke amd v tpipern e€etactikr emtpony) tnv 30n SemtepPpiov 2025

(Yroypapry) (Yroypapry) (Yroypagn)

Kovotavtivog Zayovoag NwkoAaog [Tamacmdpov

AvartAnpwtng Kabnyntrg KaOnyntng EMIT Emtixovpn Koabnyntpioe EMIT
EMII

Zon HMapackevomodov

ABNva, SemttépPprog 2025

ANéEavdpog Kovtoyibvvng
Authopoartovyog Hiektpordyog Mnyavikog kor Mnyoavikog YroAloyiotdv E.M.IT

Copyright © AAé€avdpog Kovtoyavvng, 2025

Me emupOAakn movtog dwkaidpoartog. All rights reserved.

Amayopevetal 1) avilypoagt], aobrkevoT kot Stavopr] Tng mapovoag epyoaciag, e€ oAokApov
1 TUAHOTOG TG, Yo epTtopikd okomd. Emtpénetan 1) avatdnwor, amobrikevon ko Stovour
Yyl 6komd pr kepSOGKOTLKO, €KTALOEVTIKNG 1] EPEVLVITIKNAG PVONG, VIO TNV Tpodndbect va
avopépetal 1 TNyn Tpoélevong ko va Satnpeitat to Topdv pvopa. Epotripata tov agpopodv

N XprioT) NG epyaciog yia kepdooKoTikd oKomd TPEmeL vo atevBOVOVTAL TPOG TOV GLYYPAPEQL.

OL améPelg KoL T CUUTEPAGHATO TTOL TEPLEXOVTAL GE CUTO TO EYYpPOoYo ekppalovv Tov
ovyypagpéon kor dev mpémel va eppunvevBel OTL avtutpocwmebovy TIG emionpeg Bécelg Tov

EBvikob MetooPiov IToAvteyveiov.

Hepidnyn

H dwacpdiion tng opBoTnTOg VoG peTOyAOTTIOTH elvart éva oot Tikd oAAG atapaitnto €pyo,
Wiwg kab®g oL oVYYpovoL peTayAwTTIoTéG avEdvovTal e péyefog kot ToAvmhokotnTa. Meto€d
TWV SLAPOPWV TEXVIKDV, 1] TAPAYWYT) TUXALWV TPOYPappATOV £xeL amodetyBel ammoteAeopatik
OTNV OWViYXVELOT) CPAAPATOV PETAYAWTTIOTH OV TX TAPAdOCLUKA GeT eEAEyYwV evdéxeTal va
nopoPAémovv. HapaAinia, pe tnv av€ovopevn dnpotikodtnta TAat@oppudv blockchain 6mwg
to Ethereum, n yAwoooa mpoypoppaticpot Solidity éxel kataotel evpéwg xpnoipomolodpevo
epyoreio ya tnv ovamtuén éEvmvev ovpforainv. O petaylottiotig tng Solidity, o solc,
elvor oopn oyxetkd véog ko ouveyilel va eEediooetal, yeyovog mov Tov kabloTd enppent) o
opdpato ko todvdpoprioelg (regressions). H mapovoa epyasio mapovoidlel to SolGen, pio
yevvnTpla tuxaiowv onpactoloyikd opfdv mpoypoappdtwov Solidity, pe otdxo tov éAeyxo Tov

petayAwttioth tng Solidity.

AgEerg kAW PETAYAWTTIOTEG, 0pPBOTNTA HETAYAWTTIOTOV, EAEYX0G HETAYAWTTIOTOV,

TOPOYWYH TUXOUWV TTPOYpOppATwY, Solidity

Abstract

Ensuring compiler correctness is a challenging but essential task, particularly as modern
compilers grow in size and complexity. Among various techniques, random program
generation has proven effective at uncovering subtle compiler bugs that traditional test
suites may overlook. In parallel, with the growing popularity of blockchain platforms
such as Ethereum, the Solidity programming language has become a widely used tool
for developing smart contracts. The Solidity compiler, solc, is still relatively new and
continues to evolve, making it susceptible to bugs and regressions. This work presents
SolGen, a generator of semantically correct Solidity programs which aims to test the

Solidity compiler.

Keywords: compilers, compiler correctness, compiler testing, random program

generation, Solidity

Evxapiotieg

Oa nbera va evyoplotnow tov emiPAémovra kabnynty pov, Kwotg Zaydvoe, yux tnv
vroothplEn, tnv kabodriynomn kat Tnv evkoupior TOL POV £dwaoe vor aoXoANBO e To avTikeipevo

TOUL eVOLPEPOVTOG HOV, AtUTO TV METAYAWTTIOTOV.

Emiong, elpon evyvopwy mpog tnv olkoyEéveld Hov yio T cuvexr] Kot dvev dpwv othiplén e,
Xwpig v omoia dev Ba Tav duvartr] 1 OAOKANPWGT] TWV GTOLSDOV POV KAL 1) EKTTOVIOTN TNG

ToPOVo UG EPYRTLOG.

AléEavdpoc Kovroyiavvng
ABnva, ZemtépPprog 2025

Contents

1 Extevig Iepiinyn ota EAAnvika
1.1 Ewoayoyn o e
111 Kivntpo oo
1.1.2 3TOX0G - .« v o o e
1.1.3 Tlepopiopolo
1.1.4 J0VElo@OPEG oo
1.1.5 Aoprjtov Kepodaiovo
1.2 Solidity o e
1.2.1 Aoprj evog EEvmtvou Zvpfodaiovo oL
1.2.2 TOmou e e
1.2.3 Opatdmta ZuvapTicE®dV oo
1.2.4 Metapintomta Kathotoong o o o oo oo
1.3 SolGen e
1.3.1 EmOoKOMNGT
1.3.2 TIIpocéyyion Mapaywyng yix Tomovg, Exppaoelg kot Evtohég
1.3.3 Iapayoyn Exppaoewv o Lo
1.3.4 Tlapoyoyh ANAOCE®V o o
1.4 Tlewpaportikd ATOTEAEGUATA KOL SOPTEPAOHUATO + « « o o v o v e e e e e o o
141 ZTACWO L e
1.4.2 3npeio KopeopoOo KdAvyng oo oo
1.4.3 Xbdyxpion pe 1 covita EAEYXOU TOU HETUYAMTTIOTH] . .« « « « « «
1.5 Svpmephopora kot MeAdovtikég Emextaoeg o Lo oL oo Lo
2 Introduction
2.1 Motivation e
2.2 Aim ..o e
2.3 Delimitations e
2.4 Contributions e
2.5 Thesis Structure

3 Background
3.1 Compilers

14
14
14
15
15
15
16
16
16
17
19
20
20
20
21
22
25
28
28
31
32
35

37
37
38
38
38
38

40

3.2 Compiler Correctness v i it e e 40

3.3 Formal Verification 41
3.4 Testing o e 41
3.5 Fuzzing 42
3.5.1 Input Structure Awareness 42
3.5.2 Program Structure Awareness 42
3.5.3 Generation- and Mutation-based Construction 42
3.6 Test Oracles 43
3.6.1 Metamorphic Testing 43
3.6.2 Differential Testing Lo oL 44
3.7 Constructing Valid Programs o oL 44
3.8 Test Program Reduction oL 45
3.9 Related Work oL L 45
Solidity 48
4.1 Structure of a Contract 48
4.2 Types . . .o e e e 50
4.2.1 Value Types. o o 50
4.2.2 Reference Types e 51
4.3 EXpPressions e 52
4.3.1 Assignment Semantics for Reference Types 52
4.3.2 Function Calls 54
4.3.3 Scoping and Declarations, 58
4.4 Contractso 58
4.4.1 Function Visibility o oo 58
4.4.2 State Variable Visibility oo, 59
4.4.3 public State Variable Getters 59
4.4.4 State Mutability 61
4.4.5 Inheritance and Linearization 61
SolGen 63
5.1 Overview 63
5.2 Generation Approach for Types, Expressions, and Statements 64
5.3 Generating Types. L 64
5.3.1 Internal Representation of Types 64
5.3.2 Generating Mappingso o 66
5.3.3 Generating Arrays 66
5.3.4 Generation Example 0000 L 68
5.4 Generating Expressions oo Lo 68
5.4.1 Generating Indexed Accesses 69
5.4.2 Generating Assignments L oL 72

12

5.4.3 Implicit Type Conversions 73

5.5 Generating Statements 77
5.6 Generating Declarations L oL L 78
5.6.1 Generating Function Definitions 79

5.6.2 Generating State Variable Declarations 81

5.7 Generating a Solidity Source File 82

6 Implementation 89
6.1 Overview 89
6.2 Abstract Syntax Tree 89
6.3 Type System oL 90
6.4 Context e e 92
6.5 Generation Methods L L oo 92
6.5.1 Types, Expressions, and Statements 92

6.5.2 Source Unit and Declarations 93

6.5.3 Implementation Exampleso 94

7 Evaluation 99
7.1 Code Coverage o v i i it e e 99
TL1 Setup 99

7.1.2 Coverage Saturation Point, 102

7.1.3 Comparison with the compiler’s test suite 103

7.2 Bugs Discovered 106

8 Conclusion and Future Work 110
8.1 Difficulties and Delimitations 110
8.2 Future Work 112
References 114

13

Kepdahowo 1

Extevng IepiAnyn ota
EAANVIKQ

1.1 Ewaywnyn

1.1.1 Kivntpo

Ot PeTayAOTTIOTEG GLY VAR BepPobvTal ataAAAyEVOL AT COAALATH KOL, YEVIKK, TUYXAVOULV
EUTTLOTOCUVNG OTL AelTovpyolv Omwg OBa émpene. QoT000, €vag HETAYA®TTIOTAG €lvol O
010G évar TPOYPApHO KoL, WG €K TOUTOU, Wmopel va mepléxel opaiporta. Aedopévov tov
kplowov polov mov Sadpopatilovy oL PETAYAWTTIOTEG OTNV OVATTLEN AOYLOHLKOD, 1)
Stcpdiion tng opBoTNTAG TOug amotedel evepyd ko Siapkég medio épevvag. Ov ovvnBelg
TPOCEYYLOELS Yl TNV avTeT®OMLIoT Tov TpoPAnpatog Pacilovtor kuplwg ce ekTeTApPEVO
éleyxo, ovpmepthopfavopévev obyxpovev texvikeov fuzzing xor tuoyaioag mopaywyng
npoypappdtov [1]. HapdAAnia, éxovv SiepevvnBel texvikég Tumikng emaAnBevonc—omwg
ekeiveg mov ypnoipomorovvtar oto CompCert—pe otdY0o TNV podnpatikny omddeén tng

opBoTnTag TOL peTayAwTTioTr [2].

OL petoyAwttiotég UmoPAAAOVTOL ©€ eVTATIKOVG €AEYYOLG Yyl tnv emoaAnfevon OTL
oupTepLPépovTal OwG avopévetot. Ol TPOYPOUHATIOTEG TOV HETAYAMTTIOTOV ONpLovpyodV
XELPOKIVITA peydAd GOVOAQ eAEYXOL TOU KOADTTOUV €va VPV PACHA YAWGGIKOV SOHOV.
IMopdtL awtd mopéxel pioe Paoikn] ePmLoTOGUVI GTI AELTOUPYLKOTNTO TOV HETAYAWTTIOTY, 1|
KOTAOKELT) TETOLWV GUVOAWV eAéyyoL elval emimovr dwaduwkaoio ko ot eyyevelg pepoAnyieg
TV SNHULOLPYDV TOLG propel var odnynoovy oe kevd, kabog dev eivor mavrta dvvatd va
npoPrepBolv dAeg oL acuvviBioteg 1 oplakég xprioelg Twv YAwoolkodv dopcdv. Exel eivon
OV GLYVA TOPAPEVOLY KPUUHEVA TOL COAAHOTO HETAYAMTTIOTOV. AULTO €xeL 0dnynoel
oe mpoomdfeleg TuYAIOG TOUPAYWYNS TPOYPAHUAT®OV, OL 0moieg HeTPLAlovV OpPLoHEVOLG

TEPLOPLOHOVS TWV XELPOTOLNTOV GUVOAWV EAEYYOU.

H Solidity eivon pio yAdooo mpoypappatiopotd oxediaopévn eldikd yio tnv avamtuln éEvmveov

ovpporaiwv mov exktedodvtal oto Ethereum Virtual Machine (EVM) [3]. Awwpéper omd dAdeg

14

1.1 Ewoaywyn

YA®ooeg, kabng opeilel va opéxel dSuvaTOTNTEG KOL AeLTOVPYieG TTOL GXeTIlOVTOL e EVVOLeg
edikég yia é€vmva oupPoroia kot yio to EVM. Emedr) ta é€umva ocupforaia tng Solidity
StoyelpilovTol TPOYHOTIKA TEPLOVOLOKA GTOLYElX KOl EKTEAODVTOL PECQ GE I VOO TPEYLHES
ouvvaAlayég, okoun ko ovemoicOnteg AavOocpéveg HETAYAWTTIOELG HITOPEL vo €XOULV
OUVETIELEG AOPAAELOG—TIPOKOADVTAG ECPAAHUEVEG EVIHEPDOELS KATAOTAONG, AAVOXGHEVES
petopopés N mapakapuelg eAéyxwv. O petaylwttiotig tng Solidity, solc, eivon cuvykpiriké
véog kou e€eriooetor pali pe ™ yAwooo kot to EVM, ko mponyodpeveg exddoelg Tov €xouv
arokoAv et motkida c@aApata. O cuVELOGHOG TOL eEELOLKEVIEVOL HOVTEAOV EKTEAEGT|G KOL TOV
neplPdArovtog avamtuEng vYmAov pickov kabioTtd Tov avoTnpPd EAeyyo WLXiTEPO GUAVTIKO

yia Tnv kaBiépwon tng opHoTnTAg TOL PETAYAWOTTIOTH.

1.1.2 Xtoxo0g

310)X0G TNG ToPoLong SITAWHATIKNG epyaciag eival 1 avarTuln piog yevvnTplog Tuxoiwmy,
onpactoroykd opbav mpoypappdtwy Solidity, pe okomd TOV EAEYX0 TOL HETOYAWTTIOTH TNG
kot TNV mbovy atokdAvyn opolpdtwv. Exovv vdpel kaw dAdeg mtpoonddeleg fuzzing tov
solc, xupiwg otd AFL-based fuzzers [4, 5, 6, 7], Opwe, oOpewva pe 6,TL yvwpilovpe, dev éxel
avamtuxOel avtictolyo generation-based epyoieio yio tn Solidity. H opdda tng Solidity éxet
avorttOEel évav onpactoloyikd fuzzer [8], adAAd o otdOX0G TOL eivar o éAeyyog Tov oTadiov
Beltiotomoinong tov eviLdpesou KOSIKO TOV PETAYAWTTIOTY Kol AeLTOVpYEL oTo eminedo Tng

evOLAEOTC VAT PACTOOT|G TNG YAMOGAS, YVKOOTHG wg Yul

1.1.3 Ilepropiopoi

H tuyaio mopoywyn tpoypoppdtov yio pioe 0AOKANpN YAOOOK TTPOYPAPHATIOHOD elval pic
ovvBetn ko xpovoPopa dradikacio mov vepPaivel TOLg GKOTOVS TG TAPOVLEAS epyaciag. g
€k TouTOV, 1 YevvrTpla Teplopiletan o éva vtoovvoro tng Solidity, eved oL pr vAomownpéveg

Sopég auroteAovv katevBLVOT Yo HeAAOVTIKT] epyacio.

H yevvitplia mpoypoppdtov éxel viomownOei edikd yio) Solidity ko o onpacioroyukoi
TEPLOPLOHOL ELVAL KWILKOTOLNHEVOL OTO e0WTEPLKO TNG. Av ko B propotdoe va dnpovpynBet
€V L0 YeVIKO epyoieio TTOL Vo SEXETOL TOVG OTHACLOAOYLKOVG TEPLOPLOUOVS WG £i6080, avTO

dev amotélece 0TOXO TNG TAPOVOAG EPYUTLAG.

Téhog, n aviyvevon un emBupuntg OUWTEPLPOPAS OTOV HETAYAWTTIOTYH Tmeplopiletal
OTTOKAELGTLKA OTOV XPOVO PETAYADTTLONG, OTtwg Toviletat otnv Evotnra 1.3.

1.1.4 Xvvelogpopég

Me 1 xprion tov SolGen evromicope cPAApOTO G& SLUPOPETIKEG EKDOCELG TOV HETYAWTTLOTT]
g Solidity, pe opiopéva amd avtd va Ppickovton 6Tig Lo TPOcPaTeG eKSOCELS: KATTOLO HAALG T
NTAV TPONYOUPEVKG yveoTa Kot avapépBnkay otoug mpoypappatiotég tng Solidity. H xdpla

OUVELGPOPAQ TNG epYaciag dev EYKELTOL GTNV TOCOTNTA TOV GPUALET®V oL PBpédnkoav, aAAd

15

1.2 Solidity

OTNV ToPOYT EVOG EPYNAELOL TTOL HITOPEL VO HELOGEL TNV AVAYKT] YO XELPOKIVITI KOTAGKELT)

TPOYPOHHATOV EAEYYOU.

1.1.5 Aopn Tov Kepadaiov
Ot vtdAoLTeg evOTNTEG TOV KEPAAXLOL 0PYAVOVOVTUL WG €ENG:

Ymv emdpevny Evomnra, divouvpe pia cvvomtiky emokomnon Pacik@dv evvoldv Kol

xapaxtnplotikev tng Solidity oyetik®dv pe tnv mopodoa epyacio.

Ytnv Evotnta 1.3, etodyovpe to SolGen, TNV TTPOTELVOHEVT] YEVVITPLO TUXOUWY TTPOYPOUHATWV

ko e€etdlovpie T dradikacio Tapoywyng yio Sibpopeg YAWGOLKEG SOpES.
Ytnv Evotnra 1.4, akiohoyotpe to SolGen xpnoipomotdvtog HeTpLkég KAALYNG KOSLIKAL.

>tnv Evotnra 1.5, cuvoyilovpe amoteAéopata, mTeploplopons kot katevfivoels yio peAAOVTIKT

epyaoio.

1.2 Solidity

H Solidity eivau pia YAOOG o TPOYPOPHATIGHOD HE OTATIKO GUOTNHO TOTWV, GXEOLAOPEVT) ELOLKA
Yl TV avamtugn é€umvev cupfolainy mov ekteAovvtal oto Ethereum Virtual Machine (EVM).
To EVM eivaur to amokevtpopévo meptpariov extéleong mov eivar vredBuvo yio Tnv ektéleon
é€umvwv ovpPoraiwv oto Ethereum blockchain. Ye avtifeon pe yAdooeg yevikobd ckomov,
n Solidity eivow mpocappoopévn otig Wiaitepeg amaitioelg tov epappoydv blockchain,
TPOGPEPOVTAG dUVTOTNTEG OTTWG 1 atocToAn kot Afyn Ether (to eyyevég kpumrtovopiopa
tov Ethereum), o xelplopdg cPOAPATOV LKA Yior GUVOAAYES (TL.Y. ovaipeoT) GUVOAAXYTG),
koBog xaL pnTod édeyxo mhvw oe diokpltég meploxég dedopévwv péoa oto EVM (storage,
memory , calldata). Iapott pae mAnpéotepn meprypoen tng yAwooog Ppioketar otnv
emtionun tekpnpiwon g, 1 mopodoa evOTNTA TOPEYEL ML ETLOKOTNGOT Pacik®dV Sop®v Kot

GUUTTEPLPOPAOV TNG YADGOOG TTOU elval oYETLKEG He aUTT) TH) SITAWHATLKY epyacic.

1.2.1 Aopn evog EEumvou Tupfolaiov

To é€vmva ocvpPoraioe amoteAovV T Sopkd otoxeior evog apyelov mnyaiov kddka Solidity.
Ta é€vmva ovpPforaia otn Solidity eivar moapopola pe TG KAAOCELS GE AVTIKELUEVOOTPEPELG
yA®ooeg poypappatiopov. Eva éEvmtvo cupfolato prtopei va epiéyet peta€d dAlwv dniooelg
petafAnNTOV Kotdotoong ko ovvaptnoels. EmutAéov, ta éEvmva cupforono propodv va

KANPOVOROOV atd GAAa éEvmva cupforaia.

16

1.2 Solidity

MetafAntég Kataotaong

Ot petaPAntég katdotaong eivor petafAnTég Twv omoiwv ot TIéS aobnikebovtol GTov pHoVIHO
amofnkevtikd Y®po £vog £Evmvou oupfolraiov, dnAadr oto blockchain, ko o dedopéva Tovg
mopopévouv dixbéotpa kad’ OAn tn dudpreta {wng Tov éEvmvou oupfolaiov.

1 contract C {

2 int data; // state variable declaration
3 //
4

}
JuvapTnoELg

Ot ocvvaptroelg eivor oL ekteAéoipeg povadeg kmdwka péoo oe éva éEvmvo oupPorato.
Aniovovtar pe 1t AéEn-kAedl function ko pmopodv va déXOVTOL TOPAUETPOLG, Va
EMOTPEPOLY TOAAXTAEG TiéG, kabdg ko v opilovv opatdtnra kot petafAntoTnta
KOTROTAOTG.

contract C {
function add(int a, int b) public pure returns (int sum) {
return a + b;

}

G W N =

}

1.2.2 TOmov

Ot tOmot dedopévewv tng Solidity ywpilovtan oe dvo kOpleg kaTnyopieg: TOTOL TIHNG KAl TOTTOL

ovapopag.
Tomor Twung

Ot tomoL Tprg kpatodv ta dedopéva Touvg amevbeiag atn Béon amobrrevong tovg. Katd tig
avabécelg dnpovpyeital povo éva avtiypago twv dedopévwv. O TOmoL g mepthapPfavouy:
e TOmou integer: Avomapiotodv axépotovg aplbuois, pe Tpoonuo 1 xwplc, pe didpopa
peyén bit oo 8 éwg 256 oe Prjpata twv 8 bit, SnAwpéva wg int8, intl6 ..., int256 ko
uint8, uintlé,..., uint256. Ot tdmoL int ko uint elval CLVEOVLPX TV 1nt256 Kol
uint256 , avtictolya.
e Tomor fixed-size byte arrays: Avamapiotodv axatépyaoto dvadikéd dedopéva
otafepod prikovg. Andodvovtal wg bytesl éwg bytes32.
o Tomog boolean: AmAdg thmog mov propel va eival true 1 false.
e ToOmor address: Kpatoov pua SievBuvor Ethereum 20 byte. Yadpyovv dvo moporiayéc:
address , o Paoctkdg tOmog dievBuvong, kaL address payable , mov propel emutAéov va
AoPel Ether péow tov transfer kai send .
e TOmor enum: Tomol opildpevol amd tov xpriotr mov opilovy MEMEPAGHEVO GVUVOLO ot
otabepéc Typéc, mopodpo pe Tig amopiBpnoelg oe C 1) Java.
e TOmor contract: Avtutpocwmedovv otiypotuna ¢Evnvov ocuvpPforaiowv. Evvololoyikd
potdlovv pe TOTOUG KAACEWV GE OVTIKEWHEVOSTPEPT] Tpoypoppotiopd. Kabe é€vmvo

ouppodrato opilet Tov Sid touv Timo.

17

1.2 Solidity

Tonor ocvvaptnoswv: Avtimpocwmebovy TNV LTOYpaPY) Hiog oLVAPTNOTG,
OLUTTEPLAOUPOVOPEVOV TOV TOTWV TOPOUETPOV KL ETLGTPOPNG, TOL TPOTOL KANGTG
(ecwtepikn 1) e€wtepikn) kot TNG PETAPANTOHTNTAG KATAGTACNG. ZNIELOVOVTOL WG:

function (<parameter types>) [internal | external] [pure | view | payable]

[returns (<return types>)]

Ot témoL cuvapTtioewy Popovv va AopPdvouvy Kot va eTLoTpéPovy TOANATAEG TIpHéEG. O
TpoTOG KAong kabopilel mog yiveton 1 kAfon oto EVM (BA. Evotnta 4.3.2). EmutAéov,
oL TOTOL OLVAPTHCEWV €XOVV TAVTA HPETOPANTOTNTO KATAGTAONG, TTOL Opllel Twg 1
ovvaptnon aAAniemidpd pe v katdotaot tov éEvmtvov ocvpPoiraiov (BA. Evotnta 1.2.4).
O dvvartég Tyiég eivor pure, view, payable 1) non-payable—n mpoemiloyr) dtav Sev

diveton TpoodioploTikd.

Tomor Avapopdag

Ot ot avaopdg otobnkevouy pia ovapopd (deiktn) oto porypotikd dedopéva. Xtn Solidity,

oL TOmoL avopopdig Tpémel TAVTa v cLVOdebOVTAL aUTtd GUYkeKpLuévn meployr] dedopévav, 1)

ool opilet oo Ppiokovtal puokd ta dedopéva. O meployég dedopévwv avtiotoryobv Gueoca

oe dakpltég meployég pvipng mov diayelpiletar to EVM. H Solidity mapéyer tpelg Paouiég

neployég dedopévwv: storage , memory kou calldata :

storage: Avogépetonr otnv emipovn, emumédov £€vmvov ouvpPoraiov amoBrkevon
oto blockchain. Ta deSopévor ot storage ypa@ovtal GTr GLVOALKY KATAOTAGCTY TOUL
Ethereum ko opapévouv yioe 0An tn Sidpkela {wng tov é€vmvou cupfolaiov. Zuvenag,
emPLOvoLy PeTaED CUVOAAXYODV KoL EEWTEPLKMOV KATGEWV GLVAPTICEWV.

memory : Mia Tpoowpuvr, pn emipovn meployr dedopévev mov ypropomoleital kotd v
ektéleon ovvoptroewv. H Sidpkela (wng tng memory cvvdéetal pe To TpéXov meptfaiiov
exktéAeong (BA. Evotnta 4.3.2), To omoio tumikd Eekivd oty £i6000 pLog eEmTePLKNG KARONG
OLVAPTNONG KOL ATYEL OTAV CLUTT) OAOKANPOVETLL.

calldata: Mrn tpomomoijoiun, pn emipovn meproxn dedopévev mov dwayelpiletar
anokAetoTikd o EVM wg dedopéva e106d0v yix eEwTepiiég KANOELS oUVOPTHOEDV—0
Kkodkag tov ypriotn dev pmopel v tnv Tpomomolcel ovte v decpevoel dedopéva

XELPOKIVITA GE ALTNV.

Emewdn) ou tOmoL avapopig Aettovpyoiv péow éupeong mpooPacng, ou avabécelg petafd Toug

GUUTTEPLPEPOVTAL SLAPOPETIKR CVAAOYQ e TIG TTePLOXEG dedopévwv TNyng Kot pooptopov. O

TOMOL avapopdg mepLhopfévou:

Mivakeg (Arrays): Awkpivovron oe kavovikoOg kat oe edkog mivakeg bytes kai
string . Oi xavovikoi mivakeg propet vo eivan otatikod peyéBoug (TIN]) 1) Suvopikos
(TL1). O ewdikoi mivakeg avtipetwrilovtal wg duvapikoi mivokeg oo Tég bytesl , pe
10 string vo mpoopiletar eldkd yio keipevo kwdikomoinpévo oe UTF-8.

Aopég (Structs): oOvOetor TOOL MOV OpASOTOLODY TOANATAL Tedior SrapopeTikdV

TV, Tapopoia pe TG dopég oe C 1) dAleg YAOooEG.

o Avuiotoiyioeig (Mappings): Svoyxetilouv khedid pe Tyéc, OMwg oL avTIoTOLYiEg

18

1.2 Solidity

N ta Ak oe GAleg yYAwooeg. Ze avtibeon pe ovviibelg dopég, dev amobnkevovv Tar
kAewd apecar avtiBeta, éva kAewdl katokeppotifeton ywor va mpoodiopiotel 1 Béon
pvApng aodnkevong g tng. Qg ek ToOTOU, 0oL AVTLOTOLYIoELS dev €XOLV KOG Kol
dev vmootnpilovv emovéAnyn 1 omapiBunon kAewWdidv Kol Yyl qvTolg TOUG AOYOULG
dev pmopotv va avtiypagovv. Ou avtiotolyioelg pmopovv v {ovv poévo oe storage :
Bacilovtar otn deiktodotnon piag avbaipetng Béong oe évav tepdotio, apotd YWOPO
and AéEeig Twv 32 byte, 6mov omoiadrimote Béon pmopel va avayvwoBel 1 va ypagtel
apeco. Mn oplopéva KAEOLR avaylyvidoKOVTOL G 1) TPOETAEYHEVT] TIUN TNG TWAG TNG
avtiotoiylong. AvtiBétwg, 1 memory elval cuvexOUeVn TTePLOXT TTOL avEGveTaL poOVO ad
70 0 TPOoG Ta TAVEW: px BéaT Paoel KATAKEPHATIOROD PHTTOPEL Vo PPlOKETOL OE AGTPOVOLKT]
petatomion mov n memory Oev Propel va avamapactrioel 1) va decpevoel. O povog tpdmog
va tpomtornoinOel pia avtiotoiyion eival pécw avabeong TGOV o€ pepovopéva kAewdid. Ou
avtiotolyioelg opilovtal wg mapping(K => V) , 6mov K eival o tomog kAewdot ko V. o

TOTOG TIUNAG.

1.2.3 OpatdédtTnTa ZuvapTNoE®WV

H opatotnta cvvaptioewv kabopilel amd mod propoliv vo TpocTeANGTODY Ol GUVAPTHOELG
Ko ovvdéeTal Gpeca e Tov TPOTO KANOTG TOVG: E0WTEPLKA, e€wTepikd 1) ko To dvo. H Solidity
TopEXEL TEGOEPX EMITMEDA OPATOTNTAG YLOL GLUVAPTHOELS:

e private : [Ipoomeldouyn povo eowtepikd, péca oto éEvmvo cupfoiaio 6oL opileTo.

e dnternal: IIpoomeldoyrn ecwtepikd, péoa oto ¢Evmvo cupPoraio kar oe k&Be £Evmvo
oLpPoAaLo IOV KA povopEL Ttd aUTO.

e public: Ilpoomeldon 1600 ecwtepikd (oto €é€vmvo oupPfoiato kor ota éEvmva
oupfoiato TOv KANPOVOHOOV atd awTd) 660 Ko e€wTepikd, otd omotodrmote EEvmvo
ouppodrato.

e external : IIpoomeddoun povo e€wtepikd, amd omorodriote éEvmvo cupPforato.

O Iivaxag 1.1 cvvoyilel tnv mpoomedacipdTnTo K&Be emimédov opatdTnTOg GLVAPTNONG, VA

Um0 tpdcPaocg kat oyéong petad éEvmvev cupfolainv.

o Internal Access External Access
Visibility
Same Derived Other Any Contract
Contract Contracts Contracts
private yes no no no
internal yes yes no no
public yes yes no yes
external no no no yes

[Mivaxog 1.1: Kavoveg tpooPacipotntag yio opatdtnta cvvapticewy otnv Solidity

19

1.3 SolGen

1.2.4 MetafAnrotnta Katdotaong

H petapintomnra katdotacng otn Solidity opiler tov TpdmO pe TOV 0m0lo Hict GLVAPTNOT
aAAnAemdpd pe TNV emipovn katdotoon evog €€umvouv cupPoraiov. Ymwodeukviel av po
ouvaptnon propel vo dafdoel f/kot va tpomonoujcel 1o blockchain kaBmg ko av pmopel
va M&Per Ether. K&Be cuvvaptnon oyetiCeton pe pior petofAnToOTnTO KATAGTAONG KOL OL
neplopiopol emiBdrlovtal avotnpd otov xpovo petaylwttiong. H Solidity opiler téooepig
TOITOUG peTOPANTOTNTOG KATAGTAONG:

e pure: Oi cvvaptroelg pe TpoosdloploTikd pure dev prmopovv va diofdoouvv odte va
TPOTOTOLCOLY TNV KATAoTHoT Tov ¢Eumvou cupfolaiov. Avtd onpaivel 6TL dev éxouv
npocPact oe petafAntéc katdotaong olTe PITOPOUV VA KAAEGOUV GUVOPTHOELS TTOU
dev elvan emtiong pure . Zoviifwg XPNOLHOTOLOOVTAL YA VTOAOYLOROUS TTOL €£0pTHOVTAL
OUTTOKAELGTLKA QTTO TLG TTOPAPETPOUG ELGOSOV.

e view: Ov cvvaptrioelg pe mpoodioplotikd view emtpémetor v dwPalovv TV
Kotaotoot tov £Eumvou oupforaiov, aAAG dev popodv va TV Tpomonrolovy. Mmropoiv
va éxovv mpocPact oe peTafAnTég katdotaong kol vo KahoOv GAAec view 1) pure
ovvaptroelg, oAAd dev petafdirovv to blockchain. Zvviibwg ypnoyomolodvron yix
ETMLOTPOPY] TTATPOPOPLOV CXETIKA [E TNV TPEXOLOA KATAGTAGT] TOL £ELmvou oupfolaiov.

e payable: Mia payable ouvvaptnon pmopel vo Sefaler koL vo tpomormolel v
KOT&oTooT Tov é€umtvou oupfolaiov kot emutAéov emitpémeton voo AopPéver Ether. Movo
OUVOPTHOELG pe TPOGdLopLETIKO payable WITOPOUV VL AITOTEAEGOLY GTOYO GLVUAAAYDOV
mov otéAvouv Ether. H ocvuykekpipévn petofAntotnto katdotoong eival kpioiun yux
vAomotroelg 6mwg ayopég tokens 1} katabéoels.

o non-payable (éppeca): Ol cuvaptrioelg ov dev eépouvv pntd éva ortd Ta TPOoSLOPLoTLKE
pure, view 1) payable Bewpolvtou €€ opiopot non-payable. Mmopovv va Stoefalovv kot
VO TPOTTOTOLODY TNV KATAGTOGCT), ALK Sev pitopovv va AapPavouy Ether. Kabe tpoomdBeian
amootolrg Ether oe tétola cuvaptnon Ba mpokarécel Tnv avaipeon tng cuvaAlaynG.

Ké&Be petaPAntotnta katdotoong meplopilel T GCUUTEPLPOPA TNG CLVAPTNONG HE SLOUPOPETLKD
Bobpod ehevbepiog, kar o peTayAwTTIoTHG Slac@oAilel OTL oL KOvOVEG auvTtol TrpovvTOL.
AvTO eTITPETEL GTOVG TTPOYPOUPUATIOTES VO KAVOUV TekpUnpLwpéveg LITOBECELS OXETIKA e TIG

TOPEVEPYELES PLAG CLUVAPTIOTG.

1.3 SolGen

1.3.1 Emwoxonnon

To SolGen eivow pia yevvitplx Ttuxaiewv onpacioloykd opbodv mpoypoppdtev Solidity.
AvamtoyOnke pe éppoon otnv vmootnpiln TOAADV ekdOCE®YV TOL HETAYAWTTIOTH TNG
Solidity. H mohoudtepn vrootnplopevn éxdoon eivar 1 Solidity 0.5.0 ko 1 vedtepn, kotd
oV XpOvo cuyypagng, eivar i Solidity 0.8.30, av kaL MOAAEG amd TIG MO TTPOCPATES DOHEG
™G yA®ooog mpog to mopdv dev éxouvv vhomowndel. O kddkag eivar Swabéoog oto
https://github.com/alex2449/SolGen.

20

https://github.com/alex2449/SolGen

1.3 SolGen

To SolGen eotTidlel QTOKAEIGTIKG OTN OTATIKN] ONHAGLOAOYIX TWV TPOYPOUHATWV
Solidity—0nAadny otnv opbotnta Omwg avtr kabopileTal GTOV YPOVO HETAYADTTLONG.
Awxo@alilel 0Tl Tor Topayopevo Tpoyphppato eivor 0pB& wg mPog Toug KavOveG eAEYYOU
TOWV, ePPEAELOG KoL GAA®VY KOVOVOV TNG YADC GG TTOL EAEYXOVTOL GTOV XPOVO HETAYADTTLONG.
Qotoco0, dev emyelpel va eyyunfei 0TL ta mpoypdppata eivor amodlaypéva amd aodpLoTh
ovpmepipopd (undefined behavior) xar ave€bptnta amd adievkpivioTn CcUNTTEPLPOPE
(unspecified behavior) katd tov ypoévo ektéAeong. Avtd eivar pia ovvBetn epyoacio mov dev
e€eTAOTNKE Yl TOUG GKOTTOVG TNG Tapovong dimAwpatikng. H emhoyn avtr amhomoel tnv
vAomoinon aAAd meplopilel ko TIG SLVATOTNTEG EVTOMIOUOD GPAAUATOV—TOVALXLOTOV GTO
TUAHOTO TOU HETAYAWTTLOTH TTOL TOPAYOLY Kol PeATIoTOTOLO0V KMOSIKX. XUven®g, 1 néBodog
tov differential testing Sev eivon epuctry pe to SolGen. Avti avtol, 10 KpLTiplo eAéyyoU
(test oracle) Advetow eAéyyovtag TNV oUTOKPLOT TOL HETAYAWTTIOTH: OVOHEVOUHE O solc va
HETOUYAWTTLOEL ETLTUY MG EVOL TUXALOL TTOPOLYOREVO TTPOYPOHHA. AV O HETAYAWTTIOTHS TEPUATIOEL
ampOopeva 1 ovopépel oPOApa—UToBéTOVTag OTL 1) YeEVWhTpLa Oev EXEL GOAAHOTA—TOTE

LTTAPXEL CPAAIX GTOV PETAYAWTTLOTY, TO OTTOLO0 PITOPOVHE V0L EVTOTLGOVHE YELPOKIVITAL.

H yevikn 1déa pmopet va eprypagel g 1 avtiotpopn dradikacio omtd avtrv mov akoAovdel
ouvviiBwg To ePPOGOLo THAHA EVOG HETAYAWTTIOTH. AVTL VO TTPOYHOTOTTOLOVHE GUVTOKTLKN
avadvon omd tov mnyaio kddka Tpog v agnpnpévo ouvvtaktikd dévipo (AZA),
Kotaokevalovpe TpOTO To AZA KOL OTI CUVEXELD TO HETATPETMOLHE TIOW GE KOOKA
Solidity, petatpémovrag avadpopikd k&be kOpPo oTNV avTiGTOLYN] GUVTOKTLKY) TOL HOPPH,
OOHPOVA HE TN YPOUHATIKY TG YAdooog. Ko’ oAn tm dwdikacia mapoywyng, OAieg ot
QTOPACELS OV QTTALTOVY TUXOTNTA AopPavovtal pe piyn pepOANTTIKOD VORIOUATOG 1] e
emmloyn pe Paprn and e Alota voynieLwv ototyeiwv. To vtdOAoTa TNG TAPOVLOAS EVOTNTOG

TEPLYPAPOLY TN dladlkacia TapPAyYNG.

1.3.2 IIpoocéyyion lapaywyng yio TOmovg, Exgpaoeig kan Evtolég

To k0plLo pépog tng Tuxaing Tapaywyng apopd Tpia factkd dopikd otoLxeio TV TEPLETOTEPWV
YAOCO®V TPOYPOHUATIGHOD:
» TOmovg, 6mwg int256, mapping(bytesl? => string[42]) ,7 address[][10] .
» Exgphoelg, 6mwg xAnoelg 1§ dvadikég expphoelc. M Ek@pocT) ATOTIHATAL GE POl TIUT
OpLOEVOL TUTTOV.
+ Evtoléc, 0mwg evtolég block, if-else 1y return.
T TNV TApoy®Yr GUTOV TOV TPLOV SOHLKOV GTOLYELWMV, DAOTTOLOVHE TPELG KUPLEG CUVAPTHCELG:
« generate_type() : [opayel évav tuyaio tOmo. H cuvéptnon xpnoipomoleital o€ motkilo
onpelcr.
+ generate_expression(type) : Iapdayer o toyaia éx@poon tov dobévtog tomov. H
ouvaptnon xprnotpomoteitol yia k&Be cLVTOKTIKO Kovova—T] L.oodbvapa, yio k&Be koppo
Tov AXA—Tov TepiLéxel pia EKQPOOT).
+ generate_statement() : Ilopdyer pio tuyaioc evtoAd. Avtiotowyoe, 1 ocvvéprtnon

xpnotpomoteiton yio kdBe x6pPo Tov AXA mov mepiéyet pia eVTOAY.

21

1.3 SolGen

Kabepioo amd avtég tig ovvaptnoelg avabétel oe e€eldikevpEveg poUTIVEG TNV TTAPAYWYN
OLYKEKPLLEVWY LTokatyopLov. [o mopadetypa, 1 generate_block_stmt () moapdyel eVToAég
block, ev&d 11 generate_binary_expr(type) mapdyetl dvadikég expphoelg. Ou e€etducevpéveg
QUTEG CLVAPTHGELS YPTOLHOTOLODVTOL ECWTEPLKA OO TLG KUPLEG CUVAPTHOELS TTOPOYWDYNG, HE
Tov akdAovBo tpoTO:
1. Apxwomoinon voypn@inv: Zvvtifeton pua Alota pe 6Aeg Tig mapaywyés (.. TOmwy,
EKPPACEWDV 1] EVTOADV) WG OPXLKOL LITOYTPLOL.
2. Anonelpa mapaywyng EmAéyeton tuxaio pio vroyneia mopoywyrn kol koAeitar 1)
avtiotoyn péBodog mapaywync.
3. EmkOpwon: Av 1 emdeypévn mapoywyr dev elval GUVTAKTIKA 1} GNHACLOAOYLKA £YKUPT
0T0 TPEYXOV TEPPAANOVY, EMLOTPEPETAL CPAAHQL.
4. ErovaAnyn: H pn éyxopn vroymgia topaynyn agaipeital amd tn Aloto kot emAéyetol
QAT

5. Emitoyio: MOA mapayBel £ykopr mopoywyr], ETLOTPEPETAL (OG ATTOTENEGHAL.

1.3.3 HNapaywyn Ekep&oewv

‘Eva peydho pépog tng Stadikaciog mopoywyng apopd tnv mapoywyn evog opB& tumodotnpévou
TPOYPAHHATOG TTOL YiveTonw otodektd amd Tov eheyktn TOmwv. H mapaywyr skepdoewv
koBodnyeitor Kuplwg aTd TOV AVOPEVOHEVO TUTTO AITOTEAECHATOG KOl OUTO TTEPLOPLOHOVG TTOV
e€aptovtor oatd to mepPdAlov, OTWG TO av 1 Ekppaoct) xproonoteitan wg l-value (k&1L oto

o700 prropovpe va avabécouye).
Moapayoyn Exppaong Index Access

To cuvtokTkd pag éxepoong index access diveton otod:

Kavovag index-access-expr

expression o expression o

H mapaywyn g ovykekpipévng ékppaong mepthopfPaver tnv mopoaywnyr 600 vroekppicoewy:
g Paong ko tng Béomng, yeyovog mov atautel tn dnpovpyia 0o TOmwv, evog yio kabepio otd
T1g vToekPpacels. EEetalovpe Tig akdAovbeg mepimtddoelg yio tov TOmo g P&ong, yio Tig omoieg
1 €KQpocT elval Eykopn:

o AvticTolyicelg

o TIlivaxeg (kavovikoi ko bytes)

o Ilivakeg fixed-size bytes (bytesN)
OL mepintdcelg emAéyovtal Toyaio péxpL var emitoyel pio 1§ v eEavtAnBovv 6Aec. H kaBepior

TEPLYPAPETOL EEYWPLOTA TAPAKATW.

22

1.3 SolGen

Avtiotolxicelg

IIepropiopot.

O tomog NG ékPpaomng eival o TOTOG TIUNG TNG AVTLOTOLXLOT|G.

H éxppaon dev eivar l-value av pio avaBeon ce avtiv Ba aaitodoe v avilypaen piog
avTtioToiylong, katt mov dev emtpénetan otn Solidity (BA. Evotnta 4.3.2).

H éxppaon dev pmopei va xpnotpomoinBei av to meptpdArov eival pioe pure ouvvaptnon.
Avto ovpPaivel emeldn oL avtiotolyicelg fplokovtal Thvto ot storage .

H éxppaon dev pmopei va xpnotpomoinBei wg l-value av to meptfdArov eivar pure 1 view
ouvvapTnom, yia Tov idto Adyo.

O timog g Béong mpémel v elval AUTOPOTO PETATPEYLHOG GTOV TUTO KAEWOLOD TNg

ovTIoTOLYLONG.

Awdwikooia ITapaywyng.

Av o {nrtobpevog tOmog dev eivow €ykvpog TUTOG TIUNG QVTLGTOLYLONG, 1] TOPAYWYT
amotuyyvet. Eykvpot tomol Tiung avtiotoiyiong mepthapfavouv:

o Tomoug tiurg

o Timovg avapopdg mov eival deopevpéveg storage avagpopés (BA. Evotnta 5.3.1)

o AvtioTolyicelg

Av {nteitan l-value:

e Av 0 {nTolpEVOG TUTTOG ElVaL AVTLOTOLYLOT), 1] TOXPAYWYT] oToTLYXGvel (Ba amartovoe
l-value TOmoUL avtioTOiYIONG TNG HOPYPTIG e1[ez] , KATL adVVATO).

e Av o0 (nrolpevog tOTMOG elvar Oecpevpévr) storage ovopopd TOL TEPLEXEL
avtiotoiyion, avtd dev Bu émpeme vo cupfPel ko vTOdNAdVeEL GPaApa ot Aoy
TOUPAYWYTG.

Av 10 TepIPAAAOVY elval pure GULVAPTNOT, 1) TAPAYWYT ATOTUYXAVEL.
Av 1o epiparov eivarl view cuvaptnon kot nrteiton l-value, n mopaywyn amotovyydvet.
Karaokevr tomov Paong:

¢ O 1t0m0g KA£LSL00 TNG avTLIoTOLYLOTG TTAPdyETaL TUXOUO [E T generate_type .

e O tOmog Trg tng awvrtiotoiyiong opileton otov {ntodpevo TOmO.

Kataokeur tomov Béong: mopdyeton Tuyoiot wg TOTOG OV PETATPETETOL LUTOPATO. GTOV

0o kAedLov g avtiotoiyiong (PA. Evotnra 5.4.3).

IMivakeg

IIepropiopot.

O tb1og g éxppoaong eivort:
o To otouyeio Tov mivoka ylor KaevovikoOg TTivorkeg.
e bytesl yiux tov edikd mivaka bytes .
H éxppoaon dev eivon 1-value av:
e H avaBeon oe avtr) Ba amaitoboe oviiypogr] avTloToiyLong.
o H meployr) dedopévwv tov mivaka eivar calldata, 1 ool elval pr) TPOTOTOLY G,

H éxppaon dev pmopel va xpnoipomowmnBel av 1 meproxn dedopévwv tov mivoka eivot

23

1.3 SolGen

storage kot 1o meplaAlov eival pure cuvvapTNOT).
o H éxgppoaon dev propel va xpnopomonel wg l-value av 1 meproyn dedopévwv Tov mivoka
elvar storage ko to meplPdAdrov eivar pure 1 view cuvéptnon.

e O tdmog tng Béong Tpémel var elval QLTOHOTO PETATPEYLHOG OTOV TOTTO uint256 .

Awxdikaoic [Mopaywyng.
e Av o {ntovpevog TOmog dev elvat £ykupog TUTTOG oTolyelov Tivaka 1 bytesl , 1 Tapaywyn
arotuyyxavel. Ot Tomol otoyeiov mivaka epthapPfdvouv:
o Tomoug tiung
o Tomoug avapopdg mov dev eivan emavadecpeboliol storage deikteg
o AvtioTolyicelg
e Av {nteitou l-value:
e Av 0 {nTolpEVOG TOTOG ELVaL AVTLOTOLYLOT), 1] TXPAYWYT] oToTLYXGveL (Ba amartovoe
l-value tomov avtioToiyong TG popPnc eilex]).
o Aev Ba mpémer va eivor Suvatd o {ntodpevog TG Vo eivot SeopeLpEVT) AVaPOpX €
storage TOUL MePLEYEL AVTLOTOLYLOT].
o Karaoxkevn tomov Bdong:
o Emoyn eidovg mivaka, emidéyovtag petak:
o Kovovik®v mvakwv, Tou enLTpETOVTOL TAVTA.
e bytes , mov emrpémetal av o {NTovpeEVog TOTOG eivol bytesl .
o Emloyr meployng dedopévav:
e To oOvolro vtoYnPLwV meploydv dedopévwv eival apyLkod Kevo.
o AvemAéxOnie kavovikog mivakag kot 0 {nNTodpevog TOTTOG eival TOTTOG AVOPOPAG
N avtiotoiylon, tote mpocoBétovpe tnv meploxy dedopévev Tov {nTovHEVOU
TOMOL 1) TN storage avticTolya, emeldr) oL cOVOeToL TOTTOL TPéTel va PpickovTol
TANPWG o€ pio povo meproyn dedopévwv.
o Alapopetikd, mpocBétovpe Kol TIG TpeElg meploxés (memory, storage,
calldata).
o Egappolovpe toug e€1g meploplopog:
o A@oupotpe tn calldata av (nreitou l-value.
o Agaipovpe tn storage av to meplPaAAov eivar pure cuvaptnon,n view
ovvaptnon ko {nreitat l-value.
e Av 70 60OVOAO TV TEPLOXDOV ELVaLL KEVO, 1) TTOPAYWYT) AITOTLYYAVEL.
o Awxgpopetikd, emiAéyetal Tuyaio pio teployn. Av eival storage , emAéyeTal eite
deopevpévn avapopd eite emovadecpedoLOC delKTNG.
o Av emAéyOnie xavovikdg mivakag, o TOTog oTolyeiov Tibeton otov {nrodpevo tumO.
o Av emAéxOnke kovovikdg mivokoag, yivetar tuyaio emAoyr) petafd ototikoy T
Suvoyicov. Av eivou otatikdg, emdéyetal Tuxaio BeTikd PrKkog mivoka.
o Koataoxevr] thmov Béong: mophyetal tuxaio wg TOTOG TOL €ivol QVTOPATH HETATPEYLHOG

oTOV TUTTO uint256 .

24

1.3 SolGen

IMivakeg fixed-size bytes (bytesN)

IIepropiopot.
o O tdmog g ékppoong eival bytesl .
o H éxppoaon dev eivou I-value.

e O tOmog tng Béong mpémet var elvor ALTOHOATO PETATPEYLHOG OTOV TUTTO Uint256 .

Awdikooia ITapaywyng.
e Av o {ntotpevog tOmog dev eiva bytesl , 1 mopoywyn oLoTUYXAVEL.
o Av {nreiton l-value, n mapaywyn amotuyydavet.
o Koataoxkevr tomov Baong: emhéyetan éykvpog fixed-size bytes tomog (bytesl, bytes2,...,
bytes32).
o Koataoxkevr] tomov Béong: mapdyeton Tuyaiar ¢ TOTOG OV HETATPETETAL CUTOHATA GTOV

TOMO uint256 .

1.3.4 Tlapaywyn Anloocewv

Eivow mbavd n mopaywyr opopévev kOpfwv va pnv eivon dpeca eguctr. o mtapddeypa, av
emleyel P éxppoon identifier—dnAadn pio EKPpaoT) TOL AVOPEPETOL O€ K&Toto SAwon—yLla
TNV TOPAYWYT EKPPOCTIG KAITTOLOL TOTOU, HITOPEL VO UV LITApXEL KATAAANAN SHAwoN 1) Vo unv
elval opatr) 6To TPEYOV ONELD TTOPOAYWOYNC. € eKELVO TO ONpELD LTTAPYOLY SVO GTPATNYLKEG:

o OmoBodpounon: H yevvitpia pmopeil v eykatodeiyel v mpoomddela mapoywyng
NG identifier ékppaong, vo TNV apoLpécel amd T AloTa LIOYNPLWV EKPPACTEDY KoL VX
doxipdoel GAAn vroyrele. Av Sev oUTOpEVOUV KATAAANAEG EVAAAXKTIKES, 1) TTOPOYWYT)
yla TOV GUYKEKPLUEVO KOPPo ékppaong amotuyydvel. H amotuyio otn ouvéyela dioxéeTon
TPOG T TAVW, QIOLTOVTHG TNV ammdppufn kot yovikedv kopPov. Kabe orioyr oto

TePPAAAOV TTOL €YLVE KOTA TNV TTaporywyt) Tpémel va avoupebet.

Etetdote 10 mapdderypa oto Exnpa 1.1. H yevvrtpia mpoomabel va mapaydyel kAron
otn ovvéptnon f, n omoia déxeton dvo mapapétpovg. To mpdto dpropa (new A())
dnpovpyeital emTLXOG, He oUTOTéEAEGHA TO GUPPOAo A va katootel eEqptnor Tov
ovpporaiov B, kaBdg Ta cupforoia eEaptdvTon atd ocupPfdrata Tov SnpLovPYoLV PHECW
new . Qotdc0, T0o deVTEPo Oplopa dev propel vo mapoyBel S1oTL Sev vdpyel Srabéoun
EKPPOOT] TOV QITALTOVHEVOL TOTTOV GLVAPTNONG eVvTOG eUPéAelac. Zuvemds, oAOKANPN 1|
KAfjon cuvaptnong aoppinteTon kKo To cvpPorato A dev Bewpeitar TAéov e€dpTnon Tov
ovpPoraiov B . Autod eivor onpavtikd, emeldn o ypheog e€aptioewv twv cupPoraiov dev
npéreL va eivor KUKALKOG.

o KoatevBovopevn Iapaywyn: Evaldaxtikd, n yevvitpio pmopel va e&éAber amd to
TpéXoV TEPLPAAAOV TOPAYWYNG KAL VO TTOLPOYALYEL TTPOTOL TIG ATTOLTOVHEVES EEQPTIOELS.
Avogpepopocte oe qLTO ©OG KATeLOVVOUEVH Tapaywyl KoL lval 1) GTPATNYLKY TOU €XeL

vAomounOet.

25

e I RS NS TR

11

1.3 SolGen

contract A {}

contract B {
function f(A pl, function () internal pure p2) internal {
/] ...

function g() internal {
f(new A(), <ERROR>);
}

}

Sxnpo 1.1: Hapdderypa amotuyiog mapoywyng kot omoBodpopnong

Evd o1 dnldoelg oe emimedo contract mopdyovtal eniong amd move TPOg To KATKW GUUPOVX
HE TN YPOHHATIKY TNG YA®OGCoWS, eivol amopaltnto vo mopdyovtal kol wg eExpTroelg yLo
TNV TOPAYWYT OPLOUEVOV ek@paoewv. ALTO Saopaiilel OTL 1) generate_expression
Bo emituyxhver mhvta. AlQOpPETIKd, 1) TOPAYWYH EYKUPWOV eKQPACEWV YL OPLOPEVOULG
moAOTTAOKOULG TOTTOVG B iTay e€ortpeTikd amiBovn—okOpn Ko o€ pHeydAa TuX Ao TTPOYPApHOTCL.
Mo mopaderypa, Bewpriote évav tOmO cuvaptnong pe d0o TapapéTpovg Kot dvo TOTTOUG
emoTpoPric. Av kabe tOTOg Meplopiletal povo otovg 64 aképatovg tomovg tng Solidity, o
OUVOALKOG OPLOROG SLAPOPETIKMOV TOTWV CLVAPTHTEWVY elval Ttepimov 17 ekatoppdpio. H tuyaio

TOPOAYWOYT EKPPACTG TETOLOL TOTOL T TO LILAPYOV TTePLPAALOV elvar TpakTLKd addvart).

H evotnto awth] kaAOmTeL TNV mapoyoyn dnAdoewy enutédov contract wg eEaptriicewv yio TNy
TOPOYOYH K&molog ékppaoctg. Yrdpyovv Vo eidn dnAwoewv mov mTopiyovtal pe avtdv Tov

TPOTO: OPLOHOL GLVAPTHOEWV Kot INA®OELG PETAPANTOV KATACTAGTG.
Napaywyn ANAocewv Zovaptnoewy

H avogpopd oe ocuvaptnon amevbeiag pe to 6vopd tng (kavivag identifier-expr) odnyel oe
EKPPaOT) ECWTEPLKOD TUTOL cuvaptnong. Emopéveg, évag oplopdg cvvaptnong pmopel va
nopayOel wg eEdptnon tov kavova identifier-expr 6tov:

e O {ntodpevog TOMOG elval TOTOG E0WTEPLKNG CLVAPTNOTG.

e Aev (nreiton l-value, kaBdg o1 dnhdoelg cvvaptricewv dev eivon avabBéopeg.

F+————{:function:}—4 identifier F—{::)—qu parameter-list Fl¥—(::}—)
(———————————{ visibility Fdlq state-mutability {\>)

({ block-stmt F———*ﬁ
(O pamamerer1ie -0

SxNHo 1.2: ZOVToKTIKOG KOVOVOLG YLO OPLOHOUG CUVAPTHOEWDY

H Swdwkaocio mapaywyng plog diwong ocuvvaptnong, Omwg ¢aivetar oto Zynpo 1.2,

mepthapPhvel Ta mopakdte Prpota:

26

1.3 SolGen

1. Hapoywyn povadikod avayvwploTikod OCTe Vo amo@ev0oOv cuykpoUGELG OVOUATWV.

2. Emoyr opatdtntog (vo otd private, internal, public, external):

e private ko internal emMTPETOVTIOL TAVTA GTO GLYKEKPLUEVO TEPLPAALOV.

e public emtpémetor av k&Be TOTOG TOPOUETPOL KoL TUTOG EMLGTPOPNG TOU
{ntovpevou tHmov cuvéptnong popel v xpnotporowmbei eEwtepukd. Evag tomog
dev pmopet va xpnopomoinBel eEwtepicd av:

e Eivou 1) mepiéyel ecwTeplkodg TUTOVG CUVUPTICEDV.
o Eivou tdnog avagopdg mov Ppicketal otn storage .
o Eival avtictoiyion.

e external d&ev emitpémetal 6To TAPOV TEPLPAAAOV, SL1OTL OL external cuvapTroELg
prtopovv va kAnBovv povo e€wtepicd ko dev eivor 0paTég pe T0 GVORA TOUG.

3. Emoyn petafAintotntog katdotoong:

e Av o {ntovpevog TUmOg cuVapTNoNg elvo pure, view 1 payable, mpootifeton 1
avtiotoryn AéEn-kAeldi.

o Av o {ntodpevog TOTOg cLUVAPTNONG elvat non-payable, 1) peTaPANTOTNTO KATACTOGNG
nopaleinmetal (tpoemihoyn: non-payable).

4. Emloyr) mepiéyovtog contract: To contract oo omoio tomobeteital 1 cuvaptnon emAéyeton
wg egnge:

o Avn emdeypévn opatdtnTa eivon private , emAéyeton To TpéYov contract.

o Aagopetikd, emdéyeTar omolodrmote contract 6T YPOHULKOTTONGT TOL TPEXOVTOG
contract.

o H cuvvaptnon ewshyetar oe omowadnmote Oéon péoa 0TO GOHA TOL EMLAEYHEVOU
contract.

5. Kataokevr] MoTdV Topapétpov Kot TopopéTpwy emeTpopns: kdbe TOTOg TapopéTpou
KoL TOTTOG emLoTPOPNG TOL {NTOVHEVOL TOTTOL GUVAPTNOTG HETATPENMETOL GE GUVTAKTLKT]
dNAwon mapapétpov (PA. Exfpa 1.3). Avto mepihapPavel o e€ng:

¢ Karaoxevry mpoodiopiotikod tOmov (type name)—ouvTakTiky avormopdoTact Tov
OOV ot TNV e TEPLKT TOL pop@n. [mapadetypar, 0 TOTOG int[] memory[] memory
petatpénetal oto mpoodoplotikd TOmov int[]1[]. To PApa avtd mpémer va
akolovBel Tnv emAoyr Tov mepiéxovtog contract (to omoio Ba ypnopomonBel wg
epPéreia), kKab®g 1 KATAUOKELT] TOL TPOGILOPLETLKOL TUTOVL eivor pio Sadikacio mov
eEaptaral omd auto.

o Emloyn meproynig dedopévwv:

e Av o timog eivon TOTOG TIUNG, Tapadeinetal 1) weploxr} dedopévav.
o Av 0 T0m0g eival TOTOG AVOUPOPAS, ETLAEYETAL 1] TepLoyT] dedopEVLVY ToU.
e Av o 10m0g eival avtioToiylom, emAéyeTal storage .

o Tlopaywyn pHovadlkod avayveoploTikoD Ylot TO OVOUX TNG TOPOHETPOV KOOTE VX

QTTOPEDYOVTUL CLYKPOVCELG OVOUATWV.

6. Hapoywyn evtoAng block yia to odpa tng cuvaptnong.

27

1.4 Tewpopoatikd AmoteAéopATO KO ZUUTEPAOUATA

H—ﬁ type-name l—l‘ data-location 'l—‘ identifier }TH

’

Zxnpo 1.3: ZuvTokTIKOg Kovovag yio AoTeg TopapéTpwy

1.4 Teipopotikd ATOTEAECPATA KAl ZUPTEPAOHAT

Ye outhv Vv evotnTa alohoyolpe 1o SolGen wg Tpog TNV KGALYN TOL KOSLKA TOU

petayAwrtiotr tng Solidity.

1.4.1 Ztnowo

Kataokevdoape tov solc 0.5.0 pe evepyomownpévn k&Avymn xodiko. T 11 ocvAdoyn
dedopévav kdAvyng, petaylwtticape 1000 tuyxaio mTpoypappata mov mapriyoye to SolGen
XPNOLHOTOLOVTOG TNV TTPOETLAEYHEVY) EVTOAN solc testcase.sol, Ywpig emTAéOV OploPATR
otov petayhwttiotr. Epdcov 1o eumpdobio tpufpo extedeital mavta, outd opkel yio Thv
aEloroynon g kadAivyng tov. To omicOBio Tpripa tov peTaYAWTTIOTH, TO OMOlo outoiLtel
PNTA OpioHATA Ylot TNV eKTEAECT] TOV, SEV QUTOTEAECE AVTIKEIHEVO TNG TAPOVOAG AVAALCTG.
Xpnoyonojoape lcov! ko genhtml (to omoio eivou pépog tov lcov) yior T Snuiovpyia

AVOPOPOV KAALYTNG.

To evdiopépov paG EMKEVIPOVETAL 0TO €UTPOoOo TUAHK TOL HETAYAWTTIOTH, TO ONOLOo
mepthapfdver T AEKTIKT] GVOALOT), CUVTOKTIKY OVAAULGT Kol onpactoloyiky avdivor. To

TUAHA UTO TOL HETAYAWTTIOTH outelkoviletal oto Zxfipoa 1.4, evtdg TV SlokeKoppHEVOY

YPOPHOV.

'https://github.com/linux-test-project/lcov

28

https://github.com/linux-test-project/lcov

1.4 Tewpopoatikd AmoteAéopATO KO ZUUTEPAOUATA

Char Stream
(Source)

Code
Generation

EVM
bytecode

Sxnuo 1.4: Tprjpota Tov HETayAWTTIOTY Yo Ta omola petprOnie kaAvym

AgkTiKdg AVvaALTIG

Apyeia mov avolvOnkov:

Am6 libsolidity/parsing: Scanner.cpp/h

Total Hit Coverage
Lines 559 371 66.4%
Functions 74 60 81.1%
Branches 708 292 41.2%

[Mivaxog 1.2: K&Aovyn tov Aektikol avoAvty

YuvtakTikog AvaAvutng

Apyeio Tov avadOOnKov:

Am6 libsolidity/parsing: Parser.cpp/h, ParserBase.cpp/h

Total Hit Coverage
Lines 1148 972 84.7%
Functions 143 133 93.0%
Branches 2716 992 36.5%

[Mivokag 1.3: K&Avym tov cuvTakTikod avoAuTr)

29

1.4 Tewpopoatikd AmoteAéopATO KO ZUUTEPAOUATA

ENpao1oAoykog AVaAVTNG

Apyeio Tov avodOOnKoy:

Amo libsolidity/ast: ASTAnnotations.cpp/h, ASTVisitor.h, AST_accept.h,
Types.cpp/ h

Amo libsolidity/analysis: OAx exkt0g omd DocStringAnalyser.cpp/h kou

SemVerHandler.cpp/h.

Total Hit Coverage
Lines 6312 4186 66.3%
Functions 1215 926 76.2%
Branches 14463 4103 28.4%

[Mivoxag 1.4: KdAvym tov onpoctioloylkod avaiut

Zugnton

Avapeca oto Tpla TUNHATA, O GUVTAKTIKOG VAAUTNG ETLTUYXAVEL TN pHeyoADTEPT KAALYN,

aKOAOVBOVPEVOG OTTO TOV AEKTIKO XVOALTI) KXL, GTI] GUVEXELD, TOV OTHAGLOAOYLKO QVOAUTT).

H Aextikr] ko 1 ovvtaktikn k&Avym eival yevikd gvkohdtepo va emitevyBodv oe oyéon
pe tn onpootoroykr. Evag kor pOVO oUVTOKTIKOG Kavovag pmopel vor €xel TOANOITAEG
ONHOCLOAOYLKES eppnveieg avaroya pe ta ovpepolopeva. T mapddeypo, 1 mopoywyn
<expr> > <identifier-expr> pmopel va koaAOTTETOL OTAV YiVETAL OVAPOPE Ge HOVOSIKT|
dMAwon (6mwg petafAntic 1 ouvvéptnong), oAA& OXL 0E TEPLTTOOELS LIEPPOPTWHEVOV
OUVOPTHOEWY, OL omoieg omattodv Eexwplotd onpacloloykd yepiopd. IMapopoinwg, 1
TOPOYWYH <expr> > <expr> ‘=’ <expr> pmwopel va avosoplotd didpopa eidn avabécewv

VoYX e TOUG TUTTOVG TV TEAECTEWV, Kabepia pe SLotkpLTr) CHAGLOAOYLKT) GUHITEPLPOPAL.

Evdiapépov mopovoidlel OTL 0 OLVTOKTIKOG GVOALTHG Tmetuyaivel LYNAOTEpN K&ALYT
amd tov AektTikd avoAvtr. Avtd pmopel va @aivetar avtidioucHnTikd, oAl e€nyeital:)
AEKTIKY) avaAvoT) TtepthapPavel XeLPLOPO pUN-CTHOGLOAOYLK®OV GTOLYXELWV OTWG 6XOAX, oYOALX
tekpnpiwong (documentation comments), Aektikég otabepég Unicode ko acorovBieg Stopuyrc.
T mopaderypa, av kou dev eivar dbokoro va vhomonBovv, to SolGen mpog To TALPOV dev
Tophryel TopaAAayég OTwe 0x01 - ekméprel povo dexadikk literals (.. 1). Autég oL eddeifelg
ennpedlovv TNV KAALYN TOL AEKTIKOD OVOAUTI), AAAG EXOLV TEPLOPLOUEVE] OHACLOAOYLKT

BapdtnTo.

H x&\vyn ypoppdv xou ovvapticewv eivor onpoviikd vynAotepn omtd tnv k&Avym
dtocAadwoewv. Autod elval avopevopevo—T) KAALYT StakAadwoewy eival o amottnTiky Aoyw
NG TOALTTAOKOTNTOG TOU eAéyyov porc. EmutAéov, to eumpdchio tpfipo Tov petayA®TTIoT

mepLAapBavel TOAAOVG KAADOUG TTOL AVTUTPOGMITEDOLY I £YKUPO HOVOTIATIO EKTENEOTC, TAL

30

1.4 Tewpopotikd AmoteAéopaTo KoL ZUPUTEPAOUATO

omola to SolGen Sev emiyeipel va mopaydyet. Tétolor kA&Sot, €€ oplopod, dev ektelobvTon ToTE.

1.4.2 Xnpeio Kopeopod K&dAvyng

Tt vo tpoodiopioovpe TOGA TUXALX TTPOYPAPUATA OTTAULTOVVTIOL DOTE VO TPOCEYYLOTEL 1|
péytotn duvarty kGAvyn, petpricape TNV adEnom tng KAALYNG YL TOV GTIUXGLOAOYLKO VOALTH
KoBdg o apBpog Twv mpoypoppatey awfavotav and 100 ce 1000. To cvykekpiévo TUNpe
elvar o 1o ovvleto atd ta Tplar Ko 1) KAALYT Tov awEdveton mo oTadiakd. Avtifeta, o
AEKTLKOG OVOALTHG KOL O GUVTAKTIKOG AVOAVTHS PTAVOLY GYXETIKA VpLS TN HEYLOTN KAALYT)
TOUG—OUY VA PECa OTO TPAOTO ALy EKATOVTADEG TPOYPAHPATA—KOL ETOHUEVHOS EEALPOVVTAL ATTO

TNV Tapovea aveAvon.

To Zyfpota 1.5, 1.6 ko 1.7 amewkovifovv tnv e€EMEN TNG KAALYNG YPOUHDV, GLVAPTHOEWV
KoL SLokAd®MOEWY YLt TOV ONHOGLOAOYLKO ovaldutr), oe oxéon pe to mANBog Twv

XPTOLHOTOLOVHEVWV TTPOYPOHUATWOV.

66.6

66.4 - 66.3 66.3 66.3 66.3 66.3
66.2
66

65.8

Line Coverage (%)

65.6

65.4

65.2

100 200 300 400 500 600 700 800 900 1000
Number of Test Cases

Zxnpo 1.5: AvEntikn k@AY YPOULOY TOU GTJHAGLOAOYLKOD atvaALTH

76.4 :

.276.276.276.276.2
. 76.276.276.276.276.2

76.1

76
6 759759

75.8

75.6 |

Function Coverage (%)

75.4

75.2

100 200 300 400 500 600 700 800 900 1000
Number of Test Cases

Sxnuo 1.6: AvEnTiKn KAALYT GUVOPTHCEDY TOL GTHAGLOAOYLKOD AVOALTH

31

1.4 Tewpopoatikd AmoteAéopATO KO ZUUTEPAOUATA

28.6 - i

98.428.4
2841 28.328.328.3 i

98.9 28.228.2

Branch Coverage (%)
b
®

100 200 300 400 500 600 700 800 900 1000
Number of Test Cases

Sxnpo 1.7: AvEntikn kdAoyn StakAaddoewy TOL OTHAGLOAOYLKOD OVOAUTH

IMopatnpodpe 6Tt 0 pLOUOG PeATiwong TNG KAALYTNG HELOVETOL CNHOVTIKA HETA Tow TEPimov
600 TpoypappaTa, pe pHOVO pLKpd 0@éAN épa ad avtd to onpeio. Otav @tavovpe ota 1000
TPOYPappaTa, Tar emimeda kKaALYNG oTabepomolodVTaL TEPLTOL GT:

e 66,3% ylot YPOPHEG,

e 76,2% YLot GUVOPTICELG, KO

o 28,4% yia SLokAadOCELC.
Enopévwg, Bewpodpe 6t tor 1000 Tuyaiocn TPOYpAppOTa ETOPKODY Yo VO otOTLTTWOEL 1)

TAELOVOTNTA TNG KAALYNG TTOV ELVOL EPLKTT] HE TNV TPEXOLCA YEVVITPLOL.

1.4.3 X0ykpion pe TN GOVITA EAEYYXOL TOV HETAYAWTTIOTH

H covita eAéyyou tov petaylwttioty g Solidity mepthapfdver Sikpopovg eAéyyoug, peto&d
TOV 0moiwv éva PeEYGRAO GOVOAO GUVTAKTIK®OV TPOYPOPUAT®wV eAéyyov. Ta mpoypppata
avtd dev eivon oyediopéva yioe ekTéAeoT) eoTIA{OVY GTO AV O HETAYAWTTLOTNG AITOdEXETAL
1 OTOPPINTEL GCWOTA TNyio KOSKO pe PACT T GCUVTOKTIKY KOL GTUAGLOAOYLKY 0pBOTNT&
TOL. ZNHOVTIKO elval 0Tt meplhopfavovy T600 €ykupeg OG0 KoL P £YKLPEG TePLTTOOELS. T
Vv avéAvon pog, Aapfdvoupe vtoYn povo Tig Eykvpec—NAadt) aUTEG TOL O HETAYAWTTIOTHG
avopévetar vo amodeytel. Ta mpoypapporta avtd e€nybnoav pe éva Python script ko eivan
ouviBwg HKP& KoL ECTIAGHEVY, TO KotBEVO GTOXEDOVTAG £VOL GUYKEKPLHEVO XXPOKTIPLOTIKO

NG YA®GOOG, OTTWG HETATPOTES TOTTWV 1) TPAEELG TAV® GE GUYKEKPLUEVOLG TOTOUG,.

32

N O gk W N

1.4 Tewpopoatikd AmoteAéopATO KO ZUUTEPAOUATA

Hapadeiypata Ipoypoappdtomv tng Zovitag Tov MetaryAwtTioTi

implicit_conversion_from_storage_array_ref.sol

contract C {
int[10] x;
int[] y;
function f() public {
y = X3
}
}

index_access_for_bytes.sol

contract C {
bytes20 x;

function f(bytesl6 b) public view {
bluint8(x[2])]1;
}
}

external_function_type_public_variable.sol

contract C {
function (uint) external public x;
function g(uint) public {
x = this.g;
}

function f() public view returns (function (uint) external) {
return this.x();
}
}

IIpémer va onpeiwBel 6TL 11 ovykekplpévr covita dev amookomel otnv TOPoxr TAPOLG
aLTOVOUNG KOALYNG, aAAd Kupiwg Yo eAéyyoug TaAvdpopnong (regression) yia yvworti

GUUTTEPLPOPAL.

INo va a€loroyrioovpe o to SolGen GUUTANPOVEL TNV VITAPYXOLGA GOVITA, HETAYAWTTICOE

OAo TOL EYKULPOL TTPOYPAPPOTOL KOrL EEQXYAYOE TIG AVTLOTOLYEG AVOPOPEG KAALYNG KOILKAL.

2toxog NG akoAovdng ovykpiong eivar v dramiotwdel katd méoco To SolGen eivar kavo
vo mopayel YAWoolkég Oopég mov Oev KAADTTOVTOL OO TO TTPOYPAPHATE EAEYYOL TOU
HETOYAWTTIOTH—KOL OVTLOTPOP®S. [t vou TO KAVOUPE GUOTNHATIKE, TPOYHKTOTOLOVHE

o0YKPLOT) CLVOAWV TAV® oTo dedopéva KAALYNG.

Yoykpion ool Zuvodwv

Amd T1g avapopég k&Avyng tou leov, eEfxOnoav ta &g obvoia:
e generator_covered : Z0OVOAO GTOLYELWOV TTOL EKTEAEGTIKAY OITO TOL TUXALO TTPOYPOHHOTO
7oL Taprjyarye To SolGen
e compiler_covered: X0OVOAO GTOLYELWV TTOL EKTEAECTNKAV OO T1] GOLITO EAEYYOL TOU
HETOYAWTTIOTH
e all_instrumented: X0volo OAwv TV oTolyelwv mov mapakolovBodvror amtd Tov

HNXOVIGHO KaTay pophG KAALYNG
Me Baon avtd, opilovpe:

33

1.4 Tewpopoatikd AmoteAéopATO KO ZUUTEPAOUATA

e executed_by_both = generator_covered (N compiler_covered

e only_in_generator = generator_covered \ compiler_covered

e only_in_compiler = compiler_covered \ generator_covered

e not_covered_by_any = all_instrumented — (generator_covered U

compiler_covered)
To k0pLo evdlapépov pag evtomiletal ota cOVOAX only_in_generator kot only_in_compiler .
AvTd avTITPOCKOTEVOLY GTOLYEIO KOOIKX TTOL KOADIITOVTOL QUTOKAELGTIKG Otd T pio TNy
OAAG OXL aTTO TNV QAN KOL, KATX GUVETELR, HETPOVV Gpeca TOV PaBUd GUPTANPOHATIKOTNTOG
peta€d SolGen ko TnG LTAPYXOLOASG COLITOG TOV HETAYAWTTIOTH. Av TO only_in_generator
elval pn apeAntéo, avtd vtodnAdvet 6tL To SolGen pmopel vo Tapdyel Sopég TOL evepyoToLoDY

TUNHOATO TOV HETAYAWTTIOTH To ool dev ayyilovv Ta yelpomointa wpoypdppota—Pocticdg

0TOX0G VTG TNG aELOAGYTOTG.

AgkTikog Avadutig
Total Hit Hit Hit Hit
(generator) (compiler) (only generator) (only compiler)
Lines 559 371 (66.4%) 447 (80.0%) 13 (2.3%) 89 (15.9%)
Functions 74 60 (81.1%) 66 (89.2%) 0 (0.0%) 6 (8.1%)
Branches 708 292 (41.2%) 362 (51.1%) 15 (2.1%) 85 (12.0%)

MMivoxag 1.5: Toykpion kdAvymg Aektiko avaruty petakd SolGen kot oovitag Tov

HETOYAWTTLOTY)
YUvTtokTikog AVvaAvTig
Total Hit Hit Hit Hit
(generator) (compiler) (only generator) (only compiler)
Lines 1148 972 (84.7%) 997 (86.8%) 2 (0.2%) 27 (2.4%)
Functions 143 133 (93.0%) 136 (95.1%) 0(0.0%) 3 (2.1%)
Branches 2716 992 (36.5%) 1022 (37.6%) 7 (0.3%) 37 (1.4%)

[Tivakag 1.6: ZOykpion kGAvyng cuvtaktikod avaduth petafd SolGen kot covitag Tov
HETOYAWTTLOTY)

34

1.5 Jvpmepbhopata ko MeAdlovtikég Emextaoelg

YNpactoAoyikog AVaAvTig

Total Hit Hit Hit Hit
(generator) (compiler) (only generator) (only compiler)
Lines 6312 4186 (66.3%) 4860 (77.0%) 97 (1.5%) 771 (12.2%)
Functions 1215 926 (76.2%) 1009 (83.0%) 14 (1.2%) 97 (8.0%)
Branches 14463 4103 (28.4%) 5161 (35.7%) 210 (1.5%) 1286 (8.8%)

[Tivakoag 1.7: ZOykpion kdAvyng onpacioloytkod avadvtr peto&d SolGen kat covitag Tov
HETOYAWTTLOTY)

H ocovita tov petaylwrtrtiotr emtuyydver ouvoAlkd evpltepr k&Avyn (o€ ypappéc,
ouvaptroelg kot dtakAaddoels). H yevvitpia mpoobéter kéurora povadikr kéAovym, adlé& ooty

1) QWTOKAELOTLKT] KAALYT) TTOPAPEVEL TTEPLOPLOPEVT).

AvTtd avtovokAd TOug TPEXOVTES TEPLOPLOROVG TNG YEVVNTPLAG—KUPLWG AOYw eAAELTTOVC®V
Sopdv NG yAwooag—kor Oyl NG TLXAING TOPAYWYNG TPOYPAHUATWV Yevikd. Iloapodti
TPOCPEPEL KATOL GUUTANPWUATIKY i, Ta TePLoCOTEPA HOVOTATI KOJLK €xouv 1o
aoknBei amd Toug eAéyyovg Tov petayAwttioth. H Pedtioon tng yevvitplog Ba propotoe va

Bonbrioel otnv avddel&n meplocdTEPWV AKAAVTITOV TEPLOYDV.

Qotoco, omwg Ba culntndel otV evotnTa TV cPaApdTwY (BA. Evotnta 7.2), o petpikég
KOALYNG WITOPEL VO PNV QITOTUTTOVOLY TAPWG T GUVELGPOPX TNG YEVVITPLOG GTOV EVIOTLGHO
COUALATWV, OTTOL OL SLALPOPOTIOLNGELS GTNV KAALYT) HOVOTTaTIOV—T) eEepebvion SLpopeTLKOdV
oevaplov elc0dov TAVe ot 0l pOVOTATI KOILKOX—Topel v mapopévouy laitepa

TTOADTIIEG.

1.5 Xvpnepdopata kat MeAlovtikég Enektdoeig

Ymnv mapovoa SITAWHTIKY epyacia mapovoidoope o SolGen, pix yevvitpioe tuyaiov
onpactoroykd opbodv mpoypappdtwv Solidity. Afloloyrioope TNV aToTEAEGUATIKOTNTR TOU
WG TPOG TNV KAALYT KOSLKK TOU HETAYAMTTLOTH KoL TNV LKAVOTNTA TOL va evTomilel cQOApATL.
Onwg gaivetar otnv Evotnra 1.4,) emtevybeioa k&Avyn kddika frav tkavomontikt, aAd
OxL eEQLPETLKT], KOl OLTTOLTELTOL 1) TTOPOLYWYH TTPOG TO TTAPOV UN) VITOOTNPLLOHEVOV YAWCOLKOV
dopcdv. To SolGen evtomioe apkeTd CPAAHATA—KUPIOG KATAPPEDCELS HETAUYAWTTIOT—GE
ekdooelg tov sole apyilovtag amd v 0.5.0. Ao avtd, 0KT® NTOV PEXPL TOTE AYVWOTH KOl

avopépnkav otovg mpoypappatiotég tng Solidity.

Y1ox0¢ pog elval vo eotidoovpe otnv tedevtaio dwabéown éxdoon tng Solidity wan vo
emexteivoupe To SolGen woTe va TOPAYEL TIG TTPOG TO TAPOV |t} LITOCTNPLLOUEVES YAWOGLKEG
dopég, pe okomd TNV avEnon g KAALYNG KOKA TOV HETAYAWTTLOTH KOL TOV EVTOTLOHO HEXPL
TPOTIVOG OYyVOGTOV GPaApdTev. Ot kOpleg YAwooukég Sopég mov dev Exouvv akdprn vAomoinOei

slvat:

35

1.5 Jvpmepbhopata ko MeAdlovtikég Emextaoelg

o EMKAALYT CUVAPTICEDY

e VIEPPOPTWOT) CUVAPTHOEWDY

o evowpatwpévn ocvpporoylmooa (inline assembly)

e apBpol ko tOmoL otabeprig LITOSLAGTOANG, KUplwg emeldny o solc dev Toug vrootnpilel

QKO o€ peydho Poabpod

H Solidity eivon pia oyxetikd véa yAOooo mpoypappatiopol pe dwapkelg aAlayég kol véeg
duvatoTNTEC—OMWG évar LIoXLPOTEPO GUOTNHA TOTWV 7oL PpiokeTar VIO avaTTTLEN—YEYOVOG
oL aupr)vel onpovtikd eplfdpla PeAtiovong otn Paon kwdua tov solc. EveAniotodpe 6Tt TO

SolGen pmopei va cupPahel ovolaoTiKG o€ QLTHY TNV TTPooTGbeLa.

36

Chapter 2

Introduction

2.1 Motivation

Compilers are often assumed to be bug-free and are generally trusted to function as
intended. However, a compiler is itself a program and thus may contain bugs. Given the
crucial role compilers play in software development, ensuring their correctness is an active
and ongoing area of research. Common approaches to addressing this problem primarily
involve extensive testing, including modern fuzzing and random program generation
techniques [1]. In parallel, formal verification techniques—such as those used in the

CompCert project—have been explored to mathematically prove compiler correctness [2].

Compilers undergo heavy testing to verify that they behave as expected. Compiler
developers manually create large test suites that cover a wide range of language constructs.
While this provides baseline confidence in the compiler’s functionality, constructing such
test suites is a tedious process, and the inherent biases of the developers may result in gaps
as they cannot always predict all the unusual or edge-case uses of language constructs. This
is where compiler bugs often remain hidden. This has led to efforts in random program

generation, as it alleviates some of the limitations of manually created test suites.

Solidity is a programming language designed specifically for developing smart contracts
that run on the Ethereum Virtual Machine (EVM) [3]. It differs from other programming
languages as it must offer features and functionalities related to smart-contract-specific
and EVM-specific concepts. Because Solidity smart contracts mediate real assets and
execute within irreversible transactions, even subtle miscompilations can have security
consequences—causing incorrect state updates, misrouted transfers, or bypassed checks.
The Solidity compiler, solc, is comparatively young and evolving alongside the language
and EVM, and past releases have exposed a variety of bugs. This combination of a
specialized execution model and a high-stakes deployment environment makes rigorous

testing especially important for establishing compiler correctness.

37

2.2 Aim

2.2 Aim

The aim of this thesis is to develop a generator of semantically correct Solidity programs
in order to test the Solidity compiler and potentially uncover bugs. There have been other
attempts at fuzzing solc, mostly by AFL-based fuzzers [4, 5, 6, 7], but to the best of our
knowledge, no similar generation-based tool has been developed for Solidity. The Solidity
team has developed a semantic fuzzer [8], but its goal is to test the compiler’s optimizer,
and it operates at the level of the language’s intermediate representation, which is known
as Yul.

2.3 Delimitations

Random program generation for an entire programming language is a complex and
time-consuming task that exceeds the scope of this work. As a result, the generator is
restricted to a subset of Solidity’s features, with the unimplemented features considered

for future work.

The random program generator is specifically implemented for Solidity, and the semantic
restrictions are hard-coded within the internals of the generator. While a more general
tool could be created, which would receive the semantic restrictions as input, this was not

the focus of this work.

Lastly, the detection of unintended behavior in the compiler is limited to compile time, as

emphasized in Section 5.1.

2.4 Contributions

Using SolGen, we detected bugs across different versions of the Solidity compiler, including
some in the latest released versions; several were previously unknown and were reported
to the Solidity developers. The primary contribution is not in the quantity of bugs found,

but in providing a tool that can reduce the need for manually constructing test cases.

2.5 Thesis Structure

The remainder of this thesis is structured as follows:

In the next Chapter, we provide background on compiler testing and relevant concepts,

such as fuzzing techniques, test oracles, and approaches to the test oracle problem.

In Chapter 4, we give an overview of core Solidity concepts and language features that are

relevant to this thesis.

In Chapter 5, we introduce SolGen, the proposed random program generator, and examine

the generation process for various language constructs.

38

2.5 Thesis Structure

In Chapter 6, we describe the implementation of SolGen and relevant internal components.

In Chapter 7, we evaluate SolGen using code coverage metrics and discuss bugs discovered

during testing.

In Chapter 8, we conclude the thesis and outline limitations and directions for future

work.

39

Chapter 3

Background

3.1 Compilers

Compilers are pieces of software that translate programs written in a high-level
programming language (the source) into a lower-level language (the target), such as
assembly or machine code, to produce an executable program. Compilers are complex and
consist of several stages, with each stage transforming its input and passing its output to
the next one. These stages are known as the compilation pipeline and typically consist
of lexical analysis, syntactic analysis, semantic analysis, translation to an intermediate
representation (IR), optimization, and machine code generation. Compilers are essential
in the software development process, as every piece of software has been processed by a

compiler or a compiler-like tool.

3.2 Compiler Correctness

A compiler is considered correct if it rejects invalid programs with appropriate error
messages and, for valid programs, produces target code that preserves the intended
behavior of the original program. Since source programs are not executed directly,
their intended behavior is determined by the semantics of the source language, and the
compiled program must exhibit that same behavior at runtime. Common compiler bugs
include:
o Crashes, such as segmentation faults or internal compiler errors (ICEs), meaning that
the compiler has been driven into an internally unexpected or inconsistent state.
e Long compilation times, which may be caused by infinite loops or performance issues.
o Incorrect diagnostics, where the compiler either fails to report an error or erroneously
reports one.
e Invalid code generation: the most severe type of bug, as it can affect deployed
code, often in a “silent” way that can be hard to detect. These are most likely the
result of a bug in an optimization pass, since optimization passes perform the most

transformations on the source code and are by far the most complex components of

40

3.3 Formal Verification

the compilation pipeline.
Bugs in compilers can lead to incorrect program behavior, security vulnerabilities,
software crashes, data corruption or other serious consequences. As a result, ensuring
compiler correctness is crucial for the reliability and functionality of software, especially
in safety-critical or security-sensitive domains. Recognizing the importance of compiler

correctness, two main approaches have been adopted: formal verification and testing.

3.3 Formal Verification

Formal verification uses mathematical proofs to guarantee that a compiler’s translation
process is correct. It requires a formal semantics specification for both the source and
target languages, as well as a specification for the translation itself. This method provides
strong correctness guarantees and is especially valuable for safety-critical applications,
where the correctness and reliability of software are of utmost importance. However,
formally verified compilers are not typically used in general-purpose settings, as they are
outperformed by production-grade optimizing compilers. The state-of-the-art in formal
verification is CompCert [2], an optimizing compiler for Clight (a large subset of the C
programming language), which produces code whose performance barely matches that of
GCC at -O1. Additionally, the development and maintenance of formally verified compilers
are extremely time-consuming and require a high level of expertise in formal methods,
which limits their practical adoption. Nevertheless, formal verification remains an active

area of research.

3.4 Testing

Testing involves designing and executing a set of both positive and negative test cases
that cover a wide range of a language’s constructs. By comparing the output of the
compiler with the expected output, testing can detect any deviations or errors in the
compiler’s behavior. Testing alone cannot guarantee complete correctness, as it is
practically impossible to exhaustively test all possible inputs. Compiler developers
manually create large test suites. However, given the size and complexity of modern
programming languages and compilers themselves, this is a tedious process. For example,
the Microsoft Visual C++ compiler test suite consists of hundreds of thousands [9] of
small tests. Additionally, manually written test suites often miss “weird” or uncommon
edge or corner cases that may not be properly handled by the compiler. This has led to
efforts in automated test case construction, which are used in a method known as fuzz

testing or fuzzing.

41

3.5 Fuzzing

3.5 Fuzzing

Fuzzing is the process of continuously providing random input, valid or invalid, generated
by one program, referred to as the fuzzer, to another program we want to test, such as a
compiler, and monitoring its response in an attempt to discover bugs. This also requires
a criterion to determine whether a test has passed or failed (discussed in Section 3.6).
Fuzzing was first used at the University of Wisconsin in the 1980s by Professor Barton
Miller to test UNIX utility programs. The results were published in 1990 [10]. Since
then, fuzzing has developed significantly with more sophisticated techniques [11], making
it an effective and widely used technique for finding security bugs and vulnerabilities in
software. Fuzzing techniques can be categorized into three categories [12]: structured or

unstructured, white-box, gray-box, or black-box, and generation- or mutation-based.

3.5.1 Input Structure Awareness

We could generate completely random data as input, which in this case would be considered
unstructured. This would be highly ineffective for testing programs that receive input that
has some sort of structure. For example, compilers receive programs that conform to a
formal grammar, servers receive packets with specific fields of a known size, etc. A program
that is not syntactically correct does not get past the parsing stage of a compiler and thus
does not explore deeper code in the compilation pipeline; a packet with random fields
might not even reach its destination, etc. In this case, a fuzzer would need to be aware of

the structured nature of the input, making the fuzzing structured.

3.5.2 Program Structure Awareness

Another aspect is whether the input construction is guided by the internal workings of
the system under test or not. For example, input can be generated by what yields better
code coverage, according to some instrumentation. This is known as white-box testing.
However, measuring coverage is expensive, so different heuristics have been implemented
to deal with this. In this case, the fuzzer is still guided towards increasing code coverage
but with a reasonable performance overhead. This is known as gray-box testing. Testing

without knowledge of the underlying implementation is known as black-box testing.

3.5.3 Generation- and Mutation-based Construction

There are two approaches for constructing random input [12]. Generation-based methods
involve creating input from scratch. Mutation-based methods involve taking an existing
input and mutating it through a series of transformations to generate a new input.
Mutation-based fuzzing is generally quicker and easier to implement, but its effectiveness
is dependent on the existing input and thus may result in less variety. Generation-based

fuzzing, on the other hand, is more time-consuming and complex, but it can be more

42

3.6 Test Oracles

effective at uncovering deep, complex bugs that are not easily triggered by simple

mutations.

3.6 Test Oracles

But how can we know whether a compiler has the desired behavior for a given input
program? This is known as the test oracle problem. Ideally, we would like to know what
the correct output should be in order to compare it with the actual output produced by
the compiler being tested. Any deviation between the two would indicate a bug. This
is not possible for testing compilers (or any complex software) where the correct output
is not easily defined since there is no formal specification of what that output should

be—compilers are free to generate and optimize code as they see fit.

For compiler testing, tests can be divided into two categories: positive and negative.
Negative test cases are easier to examine since we expect a compiler to simply reject them
and exit normally. Positive test cases can be examined at compile time or run time. At
compile time, crashes, internal compiler errors, timeouts or any error messages can be
looked at to determine whether the compiler executed as intended. However, if the input
program is compiled successfully, we don’t know whether its run-time behavior is correct
or a miscompilation has occurred. There are two main approaches that attempt to address

this: metamorphic testing and differential testing.

3.6.1 Metamorphic Testing

Metamorphic testing is an approach to solving the test oracle problem proposed by T. Y.
Chen et al. [13]. It involves finding metamorphic relations which define how the output
should change in response to changes in the input. A popular case of metamorphic testing
is FEquivalence Modulo Inputs (EMI) [14], where an input is mutated in a way such that
it should produce the same output. This is illustrated in Figure 3.1. A simple example
of metamorphic testing under EMI is testing a sorting algorithm. Once the algorithm is
implemented and tested with a specific input, metamorphic testing can be used to generate
new inputs by reversing the order of elements in the input, shuffling the elements or adding
duplicate elements. The algorithm should produce the same output for the new inputs as

it did for the original input.

43

3.7 Constructing Valid Programs

Input Output
T —
4
Metamorphic Compare
Transformation (Pass/Fail)
Input Output A

gx) —> — f(g(x)) e ’

Figure 3.1: Visualization of metamorphic testing under EMI

3.6.2 Differential Testing

Differential testing was proposed by McKeeman [15] as one way to solve the test oracle
problem. In the domain of compiler testing, the idea is that a program should produce
the same output, regardless of how that program was compiled, assuming that it is
deterministic, terminating, free of undefined behavior and independent of unspecified
behavior. We can compile a program with multiple different compilers for the same
language (e.g., GCC and Clang for C/C++), under different optimization settings (for
finding bugs in the optimizer) or under different versions of the same compiler (for finding
regression bugs) and compare execution results. Figure 3.2 illustrates differential testing

for two compilers.

Y
Random Compare
Program (Pass/Fail)
' A

Figure 3.2: Visualization of differential testing for two compilers

3.7 Constructing Valid Programs

With both metamorphic and differential testing, it is crucial that the constructed programs
have a well-defined behavior at runtime, meaning that programs must be free of undefined
behavior and independent of unspecified behavior at runtime. Otherwise, a deviation
between execution results wouldn’t necessarily indicate a bug. For example, accessing
an array out-of-bounds is considered undefined behavior in C and should be avoided.
Similarly, the order of evaluation of an operator’s operands or a function call’s arguments

is unspecified. The reason for this is to allow compilers to perform aggressive optimizations.

Csmith [16], a random program generator for C, employs different strategies for generating

44

3.8 Test Program Reduction

programs that avoid the 191 kinds of undefined behavior and are independent of the 52
kinds of unspecified behavior in C. These are both compile-time and run-time solutions.
For example, to ensure that an array index is always in-bounds, Csmith may apply the
modulo operator on the array index with the array’s length. In other situations, more
complex strategies have to be applied. For example, in order to avoid unspecified behavior
in the order of evaluation of subexpressions, Csmith performs effect analysis. As a safety
mechanism, it then performs a series of checks and only submits a code fragment if it is

verified to be safe.

3.8 Test Program Reduction

Test programs tend to be large and complex. Chen et al. found that for Csmith, the
largest number of bugs was found in an 81KB program. Such a program is not helpful

¢

for compiler developers; they instead want reporters “..to narrow down the bug so that
the person who fizes it will be able to find the problem more easily...” [17]. Test program
reduction aims to reduce a test program to a smaller and simpler one that still triggers the
same bug. Reduced test cases not only simplify bug diagnosis, but also serve as concise

regression tests in future versions.

The core idea behind test program reducers such as C-Reduce [18] is Delta debugging [19].
In short, the delta debugging algorithm starts with an input and incrementally reduces
it by removing or simplifying parts of it. After each reduction, it re-runs the program to
check if the failure still occurs. If the failure persists, it continues the reduction process

iteratively until the smallest possible input that still triggers the bug is identified.

3.9 Related Work

Randomized testing has proven effective at uncovering compiler bugs across
many languages; below we outline methods ranging from byte-level fuzzing to

grammar/AST-guided and semantics-aware generation.

AFL [20] (and LibFuzzer [21]) are classic greybox fuzzers: they mutate bytes, run the
target, and keep inputs that increase coverage. This is simple and powerful, but for
compiler inputs (programs) it hits a limit: byte-level mutations rarely preserve syntax, so

most mutated files are rejected by the parser and never reach type checking or optimization.

To address this, LangFuzz [22] adds structure awareness. It turns seed programs into ASTs
and replaces one node (e.g., an expression or statement) with another of the same kind
so the result stays syntactically valid. This small change is crucial: valid inputs survive

parsing and can reach later stages where interesting compiler bugs live.

Superion [23] advances this idea with grammar-aware trimming (keep inputs small

yet valid) and targeted AST mutations that swap subtrees only when the position is

45

3.9 Related Work

syntactically—and, where applicable, type-compatible. Because the fuzzer edits structure
rather than bytes, the resulting programs typically parse and type-check, enabling

exploration of semantic and optimization passes that byte-level fuzzers miss.

Le et al. [14, 24] apply metamorphic testing to validate optimizing compilers in their tools
Orion and Athena. They produce variants of a program that should produce the same
output for a given set of inputs. First, they profile executions of the program over the set
of inputs to discover which code regions are not executed under the specific inputs. They
then prune, insert or modify the program’s unexecuted code. The mutated program’s
runtime behavior should obviously remain the same under the same set of inputs. In a
period of eleven months, Orion found a total of 147 unique bugs across GCC and LLVM.
Athena found 72 bugs.

Le et al. [25] further improved this idea to not only mutate dead code regions but also
live code, with their tool Hermes. The idea is to select a program point and insert code
such that the program state after the inserted code matches the state before its execution.
This requires that during the profiling stage, the value of every live variable at the selected

point is recorded. Hermes found a total of 168 bugs, which Orion and Athena missed.

Nautilus [26] combines generation and mutation under coverage guidance. It can generate
programs directly from a grammar (removing reliance on a large seed corpus) and then
mutate the AST guided by edge/branch coverage. The key point is that the combination
of coverage-guided search with structured program representations yields a steady stream

of valid, diverse test cases that reach deeper compiler logic.

Similar to our work, there are methods that make generation semantics-aware. Van
Heerden et al. [27] introduce semantic mark-up tokens—lightweight annotations
that encode scope/typing constraints—to make grammar-based generators produce
contextually valid programs. Kifetew et al. [28] use stochastic context-free grammars
with semantic annotations (e.g., types, bindings) so derivations tend toward well-typed
programs, sometimes coupled with genetic programming to steer toward higher coverage.
Dewey et al. [29] express grammars and typing rules as constraints and use a solver to
generate programs that specifically stress components like a type checker (shown for
Rust). These ideas keep programs “valid enough” to exercise compiler internals, rather

than just crashing at the front end.

Csmith [16] is a successful random program generator for the C programming language
that utilizes differential testing, having found 325 previously unknown bugs in mainstream
C compilers. Csmith is capable of generating complex C programs that use many of the
language’s features. It is based on the C grammar, and it uses complex heuristics to ensure

that programs are free of undefined behavior and independent of unspecified behavior.

Building on Csmith’s idea, CLsmith [30] adapts the generator to OpenCL kernels and uses

differential testing across many compiler/device pairs. It adds OpenCL-specific controls

46

3.9 Related Work

(e.g., address-space qualifiers like _global/ local, kernel attributes) so kernels are valid
for the OpenCL execution model. As an oracle, it employs equivalence modulo inputs
(EMI): generate variants that should behave identically for a fixed input; if two variants
disagree on some platform, that flags a compiler/driver bug. In short, CLsmith shows how
a carefully engineered C generator can be transferred to OpenCL by respecting the new

semantics and pairing it with a scalable oracle.

Finally, property-based testing, exemplified by QuickCheck [31] flips the perspective: you
write a property, and the framework randomly generates inputs trying to falsify it. In
compiler contexts, two patterns are useful. First, type-directed generation: treat types
(or typing judgments) as generators, so inputs are well-typed by construction and failures
are more likely to come from deeper passes. Second, metamorphic properties: apply
semantics-preserving transformations (e.g., re-associating additions, constant folding) and
check that results are equivalent—a QuickCheck-style way to get EMI-like checks without

a reference compiler.

47

Chapter 4

Solidity

Solidity is a statically-typed, contract-oriented programming language designed specifically
for developing smart contracts that execute on the Ethereum Virtual Machine (EVM). The
EVM is the decentralized runtime environment responsible for executing smart contracts
on the Ethereum blockchain. Unlike general-purpose programming languages, Solidity is
tailored to the unique requirements of blockchain applications, offering features such as the
ability to send and receive Ether (Ethereum’s native cryptocurrency), transaction-specific
error handling (e.g., reverting or aborting), and explicit control over distinct data storage
locations within the EVM (storage , memory , and calldata). While a more thorough
description of the language can be found in its official documentation, this chapter provides

an overview of some core language constructs and behaviors that are relevant to this thesis.

4.1 Structure of a Contract

Contracts are the building blocks of a Solidity source file. Contracts in Solidity are similar
to classes in object-oriented programming languages. A contract can contain declarations
of state variables, functions, function modifiers, constructors, type definitions and more.

Furthermore, contracts can inherit from other contracts.

State Variables

State variables are variables whose values are permanently stored in contract storage, i.e.,
in the blockchain, and their data persists for the lifetime of the contract.

contract C {
int data; // state variable declaration
/] ...

}

48

4.1 Structure of a Contract

Functions

Functions are the executable units of code within a contract. They are declared using
the function keyword and can accept parameters, return multiple values, and specify
visibility and state mutability.

1 contract C {

2 function add(int a, int b) public pure returns (int sum) {
3 return a + b;

4 }

5 1}

Constructors

A constructor is a special function that is executed once when the contract is deployed. It
is used to initialize contract state. Solidity does not support constructor overloading—each
contract can have at most one constructor. If none is declared, the compiler automatically

provides a default constructor.

1 contract C {

2 int data;

3 constructor(int _data) {
4 data = _data;

5 }

6 1

Function Modifiers

Modifiers are used to alter the behavior of functions in a declarative manner, typically for
adding checks, restrictions, or logging. A modifier can wrap around a function body using
the special placeholder statement _; , which indicates where the original function body

will be inserted.

contract ModifierExample {
address owner;

constructor() {
owner = msg.sender;

}

modifier onlyOwner () {
require(msg.sender == owner);

© 00 N O O W N =

Jun
(=)

-

}

=
N

function withdraw() public onlyOwner() { // modifier invocation
// Only the owner can call this function.
// Otherwise, the transaction 1is reverted.

/7

e
o Ut ok W

}
}

=
W

49

4.2 Types

Events

Events allow contracts to emit logging information that is stored on the blockchain and
can be captured by off-chain applications. They are declared using the event keyword
and emitted using the emit keyword.

contract C {
int data;
event DataUpdated(int newValue, uint timestamp);

function update(int x) public {
data = x; // update contract state
emit DataUpdated(x, block.timestamp); // emit event with timestamp
}
}

4.2 Types

Solidity’s data types are divided into two main categories: value types and reference

types.

4.2.1 Value Types

Value types hold their data directly in their storage location. Only a copy of the data is
made in assignments or when passing function call arguments. Value types include:
o Integer types: Represent whole numbers, either signed or unsigned and of various
bit widths, ranging from 8 to 256 bits in 8-bit increments, specified as int8, intl6,
..., int256 and uint8, uintl6, ..., uint256. The types int and uint are aliases
for int256 and uint256 , respectively.
o Fixed-size byte arrays: Represent raw binary data of fixed length. These are
declared as bytesl through bytes32.
+ Boolean: A simple type that can be either true or false.
e Address types: Hold a 20-byte Ethereum address. There are two variations:
address , a basic address type, and address payable , which can additionally receive
Ether via the transfer and send functions.
e Enum types: User-defined types that define a finite set of constant values, similar
to enumerations in languages like C or Java.
o Contract types: Represent the instances of contracts. They are conceptually similar
to class types in object-oriented programming. FEvery contract defines its own type.
e Function types: Represent the type signature of a function, including its parameter
and return types, calling convention (internal or external), and state mutability. They

are notated as:

function (<parameter types>) [internal | external] [pure | view | payable]

[returns (<return types>)]

Function types can receive and return multiple values. The calling convention

50

4.2 Types

determines how the function is invoked in the EVM (see Section 4.3.2). Additionally,
function types always have a state mutability, which defines how the function
interacts with contract state (see Section 4.4.4). The possible values are pure,

view , payable , or non-payable—the default when no specifier is given.

4.2.2 Reference Types

Reference types store a reference (or pointer) to the actual data. In Solidity, reference

types must always be associated with a specific data location, which defines where the data

physically resides. These data locations directly correspond to distinct memory regions

managed by the EVM. Solidity provides three main data locations: storage, memory ,

and calldata:

storage : Refers to persistent, contract-level storage on the blockchain. Data stored
in storage is written to Ethereum’s global state and remains for the entire lifetime
of the contract. As such, it persists between transactions and external function calls.
memory : A temporary, non-persistent data area used during function execution. The
lifetime of memory is tied to the current execution context (see Section 4.3.2), which
typically begins at the entry point of an external function call and ends when that
call completes.

calldata: A non-modifiable, non-persistent data area managed exclusively by the
EVM as input data for external function calls, meaning user code cannot modify it

or manually allocate data in it.

Because reference types work through indirection, assignments between them behave

differently depending on the source and destination data location. Reference types include:

Arrays: Divided into ordinary arrays and the special arrays bytes and string.
Ordinary arrays can be statically sized (T[N]) or dynamically sized (T[]). Special
arrays are treated as dynamic arrays of bytesl values, with string specifically
intended for UTF-8 encoded text.

Structs: Custom data types that group together multiple fields of varying types,
similar to structs in C or other languages.

Mappings: They associate keys with values, similar to maps or dictionaries in other
languages. Unlike typical data structures, they do not store keys directly; instead,
a key is hashed to determine the storage slot for its value. Consequently, mappings
have no length and do not support iteration or key enumeration, and for these reasons
they cannot be copied. Mappings can live only in storage : they rely on addressing
an arbitrary slot in a huge, sparse space of 32-byte words, where any slot can be read
or written directly. Unset keys read as the value type’s default. By contrast, memory
is a contiguous region that grows only from 0 upward; a hash-based location may lie
at an astronomical offset that memory cannot represent or allocate. The only way to
modify a mapping is by assigning values to individual keys. Mappings are specified

as mapping(K => V) , where K is the key type and Vv is the value type.

51

© 0 N DU AR W N

4.3 Expressions

4.3 Expressions

4.3.1 Assignment Semantics for Reference Types

Solidity distinguishes between value types and reference types, each with different
assignment semantics. Value types store their data directly in their respective locations.
As a result, assignments or function calls involving value types result in copies of the
data. In contrast, reference types store a pointer to the actual data rather than the data
itself. This distinction affects how assignments behave and whether they result in a data
copy or merely a reference to the same underlying data. The assignment semantics for

reference types can be summarized as follows:

Assignments to storage. Assignments to storage are allowed from any data location
(memory , calldata, or storage) and always result in an independent deep copy of the
data. Because the data is fully copied, the compiler allows more flexibility in the types
involved, as shown in the example below:

contract C {
uintle[] a = [42];
uint32[] b;

function f() internal returns (uintl6e, uint32) {
b = aj; // copies contents of a into b
b[0] = 17; // modifies only b's copy, a stays intact

return (a[0], b[0]); // returns (42, 17)
}
}

In this example:

o Assigning a to b copies the entire array data from one storage location to another,
creating an independent copy. Note that the element type of a (uint16) is not
identical to b’s (uint32), but it is implicitly convertible.

e Modifying b[e] after the assignment affects only b, leaving a unchanged.

¢ Returning both values demonstrates that a and b hold separate copies of the data.
The same deep copy behavior applies when assigning from memory or calldata to

storage .

Assignments to Local storage Variables. Assignments to a local storage variable (i.e.,
a storage pointer declared within a function) are only allowed from existing storage
variables or other local storage variables. These assignments do not copy data but
instead create a reference to the same storage location.

contract C {
uint[] a = [42];

function f() internal returns (uint) {
uint[] storage p = a; // p points to a's storage slot
plO] = 17; // modifies a[0] through p

return af[0]; // returns 17

}
}

52

4.3 Expressions

In this example:

e The local storage variable p is assigned from the state variable a, meaning both

refer to the same storage location.

e Mutating p[e] directly affects a[e] .

e Returning a[0] confirms that the change through p is visible in a .
Assignments from other data locations are not allowed, as this would require the creation
of a temporary in storage just to give the storage pointer something valid to point to,
which is not supported, since storage is intended for persistent data and is not designed
to hold temporary values.

contract C {
function f(int[] memory a) public {
int[] storage p = a; // error
}
}
Assignments to memory . Assignments to memory are allowed from any data location
(memory , calldata, or storage). When assigning from memory , only a reference is
copied, not the underlying data. As a result, two memory variables may point to the same
data, and modifying one affects the other. However, when assigning from storage or
calldata , an independent deep copy of the data is created.

contract C {
uint8[1] a = [42];

function f() internal view returns (uint8, uint8) {
uint8[1] memory x = [42]; // x points to a temporary in memory
uint8[1] memory y = Xx; // y points to the same memory as x

y[0] = 17; // modifies x[0] through y
uint8[1] memory z = a; // deep copy from storage
z[0] = 17; // a[0] 1is unaffected
return (x[0], a[0]); // returns (17, 42)

}
}

In this example:

e The variable x is initialized in memory and then assigned to y , which results in a
reference assignment — both x and y point to the same memory region. Modifying
y[0] also changes x[0] .

e The variable z is assigned from the storage variable a . This results in a deep copy,
meaning z now holds an independent copy of the array in memory .

e Modifying z[0] does not affect the original a[0] in storage. This is also why
the function can be marked as view . Functions marked view are prohibited from
modifying storage (see Section 4.4.4).

o The return values demonstrate this distinction: x[0] reflects the mutation (since y

modified it), while a[0] remains unchanged, confirming that a deep copy occurred.

53

4.3 Expressions

Assignments to calldata. Assignments to calldata are highly restricted: they are
only allowed from other calldata references and always result in a reference, never a

copy. This is because data in calldata cannot be manually allocated by user code.

Table 4.1 summarizes the validity and copying behavior of assignments between reference

types in different data locations.

Note: Assignments between different data locations always involve a deep copy, because
references in one location (e.g., memory) cannot safely point to data in another (e.g.,

storage or calldata).

Destination Source Valid? | Copy Performed?

storage storage / memory / calldata yes yes
local storage storage yes no
pointer memory / calldata no —
memory yes no

memory
storage / calldata yes yes
calldata yes no

calldata
storage / memory no —

Table 4.1: Overview of assignment semantics for reference types

4.3.2 Function Calls

At the EVM level, control flow between functions is handled using two key instructions:
CALL and JuMP. These instructions differ fundamentally in how they manage the

execution context.

The execution context refers to the runtime environment in which a contract function
executes. It includes, among other things:
o the contract’s bytecode and address,
o the contract’s storage (its persistent state on the blockchain),
e a temporary memory region, corresponding to Solidity’s memory data location,
e and the calldata passed to the function, corresponding to Solidity’s calldata data
location.
The two instructions behave as follows:
e The JUMP instruction simply updates the program counter to another instruction
within the bytecode of the current execution context, meaning the callee operates in
the same execution context as the caller, sharing the same memory and storage .
e The CALL instruction creates a new execution context, in which the callee executes
in isolation from the caller, with its own separate memory region.

This gives rise to two kinds of function calls in Solidity: internal and external.

54

4.3 Expressions

Internal Calls

Internal calls are compiled to the EVM’s JUMP instruction and execute within the same

execution context.

To perform an internal call, a function must be invoked directly by name, not via a contract
instance. In the example below, the expression f evaluates to an internal function type,

which causes the compiler to treat the call f() as an internal function call:

contract C {
function f() public pure { }
function g() public pure {
f(); // internal call of function f

}
}

External Calls

External calls are compiled to the EVM’s CALL instruction and create a new execution

context.

To perform an external call, a function must be invoked through a contract instance—the
contract instance to which the message call is made. In the example below, the expression
this.f evaluates to an external function type, which causes the compiler to treat the call
this.f() as an external function call. The special keyword this refers to the current

contract instance:

contract C {
function f() public pure { }
function g() public view {
this.f(); // external call of function f
}
}

Parameters for External Calls

Internal function calls can use any parameter and return type without restriction. This
is because both the caller and the callee operate in the same execution context, sharing
access to memory, storage, and the contract’s deployed bytecode. As a result, types

that depend on the current execution context can be passed safely.

External function calls, on the other hand, are handled through the Ethereum Application
Binary Interface (ABI), which enforces a strict boundary between contracts. Since the
caller and the callee do not share an execution context, types that depend on the current
execution context are disallowed. These include:

o Reference types in storage : These point to a contract’s persistent storage, which
is isolated per contract in the EVM. This is a design decision at the EVM level: when
accessing storage (via the SLOAD and SSTORE instructions), the EVM uses the
contract address from the current execution context to locate the storage structure
for that contract. As a result, storage references are only valid within their owning

contract’s execution context, and since an external call creates a new execution

55

4.3 Expressions

context for the recipient contract, the reference becomes invalid and the Solidity
compiler disallows passing or returning them in external calls.

¢ Internal function types: Internal function calls use the EVM’s JUMP instruction,
which sets the program counter to a specific byte offset within the current contract’s
deployed bytecode. This jump mechanism relies on the caller and callee sharing
the same execution context. An internal function type is essentially a pointer to
a location in the current contract’s bytecode. Since external calls switch to a new
execution context, internal function types become invalid, and the compiler disallows

passing or returning them in external calls.

The example below shows invalid uses of types in external contexts:

contract C {
int[] v;

// error: external function returns a storage reference
function f() external view returns (int[] storage) {
return v;

}

// error: external function receives internal function pointer
function g(function () internal pure) external pure { }

Reference Types in External Function Signatures

External calls are handled via the Ethereum ABI. The ABI specifies a standardized way
to encode function arguments into a binary payload that can be sent between contracts.
This encoded payload is stored in a special, read-only memory region called calldata,

which acts as the immutable input buffer for external function invocations.

In Solidity, externally callable functions can specify the data location of reference-type
parameters as either memory or calldata. However, the external function type derived
from such functions always uses memory for reference types, even if the actual function
parameters are declared as calldata, as demonstrated in the example below:

contract C {
function f(int[] calldata x) external pure { }

function g() internal view {
// error: incompatible types
function (int[] calldata) external pure fpl = this.f;

// this is valid
function (int[] memory) external pure fp2 = this.f;
}
}

This behavior exists because from the caller’s perspective, arguments must be prepared in
memory before ABI encoding. The ABI encoder reads data from memory and produces
a bytes memory object, which the EVM then copies into calldata during the external
call. Solidity does not permit manually constructing calldata structures; only memory

and storage can be written to and manipulated by user code.

Therefore, even when the callee declares its parameter as calldata, the function type

56

© 0 N O U e W N

11
12
13
14
15

4.3 Expressions

still requires the caller to pass a memory -based value. The compiler then automatically

handles the encoding and transfer of this data into calldata .

The process of preparing reference-type arguments for external calls can be summarized
as follows:
e The ABI encoder expects the data to be in memory .
o If the data is already in memory , no action is required. Otherwise, a copy is made
from storage or calldata to memory .
e ABI encoding produces a bytes memory payload.
e The EVM copies this payload from memory into calldata and attaches it to the
message call.
e On the callee side:
o If the parameter is declared as calldata, the data is ready to use directly.
o If the parameter is declared as memory , Solidity generates a copy from calldata
into memory so that the callee can work on a mutable copy.
This distinction between the caller’s preparation and the callee’s usage explains the

memory / calldata mismatch in external function types.
Example: Difference Between Internal and External Memory Passing

The example below illustrates how passing data between memory references behaves
differently in internal and external calls. When calling internally, memory -to- memory
parameter passing preserves the reference (no copy), just like direct assignments between
memory variables discussed earlier. In contrast, an external call creates an isolated copy
of the data, preventing shared references across contract boundaries. Note that the same
applies to calldata -to- calldata interactions.

contract C {
function f(int[1] memory x) public pure {
x[0] = 17;
}

function g() internal view returns (int, int) {
int[1] memory a = [int(42)];
this.f(a); // external call: independent copy

int[1] memory b = [int(42)];
f(b); // internal call: pointer to the same memory

return (a[0], b[0]); // returns (42, 17)
}
}

In this example:
e In the external call this.f(a), the data is copied as described earlier. The callee
receives a separate copy, so modifying x in f does not affect a.
e In the internal call f(b) , the same memory region is used directly—no copy is
made—so the mutation to x in f affects b.
e The returned values demonstrate this distinction: a[0] remains unchanged, while

b[e] reflects the mutation, confirming that internal calls preserve memory references

57

4.4 Contracts

whereas external calls isolate them.

4.3.3 Scoping and Declarations

Solidity follows scoping rules similar to those of C99. A variable is visible from the point
of its declaration until the end of the block in which it is declared, including any nested

blocks, unless shadowed by a new declaration with the same name.

Declarations outside of any block, such as top-level or contract body declarations, are

visible from anywhere in the contract—even before their point of declaration.

The following example illustrates these rules:

contract C {
function f() public view returns (int) {
int y = x; // state variable x is visible before its declaration
{
// z = 0; // error: z is not visible before its declaration
intz=y; //z=1
{
int z = 0; // shadows the outer z
}
return z; // returns 1
}
// z = 1; // error: z is not visible outside its block

}

int x = 1;

}

4.4 Contracts

4.4.1 Function Visibility

Visibility determines where functions can be accessed and is closely tied to how they can be
called: internally, externally, or both. Solidity provides four visibility levels for functions:
e private: Accessible only internally within the contract where it is defined.
e internal: Accessible internally within the contract and any contract that inherits
from it.
e public: Accessible both internally (contract and derived contracts) and externally
through any contract.
e external: Accessible only externally within any contract.
Table 4.2 summarizes the accessibility of each function visibility level, broken down by

access type and contract relationship.

58

4.4 Contracts

o Internal Access External Access
Visibility
Same Derived Other Any Contract
Contract Contracts | Contracts

private yes no no no
internal yes yes no no

public yes yes no yes
external no no no yes

Table 4.2: Access rules for function visibility in Solidity

4.4.2 State Variable Visibility

Visibility controls where and how state variables can be accessed in Solidity. There are
three visibility levels for state variables:
e private: Accessible only internally within the contract where it is defined.
e dnternal: Accessible internally within the contract and any contract that inherits
from it.
e public: Accessible both internally (contract and derived contracts) and externally
through any contract via an automatically generated getter function.
Note: Internal access to state variables does not involve a function call but rather direct
access to the variable. Table 4.3 summarizes the accessibility of each state variable

visibility level, broken down by access type and contract relationship.

. Internal Access External Access
Visibility
Same Derived Other Any Contract
Contract Contracts | Contracts
private yes no no no
internal yes yes no no
public yes yes no yes

Table 4.3: Access rules for state variable visibility in Solidity

4.4.3 public State Variable Getters

The compiler automatically generates getter functions for all public state variables.
When the variable is accessed directly, it behaves like a state variable. However, when
accessed via a contract instance (meaning as a member of an expression of contract type),
as shown in the example below, it evaluates to an external function type marked view,

as it does not modify contract state.

59

4.4 Contracts

contract C {
int public data = 42;
}

C c =new C();

function f() public view returns (int) {
return c.data();
10 }
11}

1
2
3
4
5 contract Caller {
6
7
8
9

public state variables are part of the contract’s interface and therefore cannot have
internal function types, which are not representable externally. However, reference types
are allowed because the compiler-generated getter functions avoid exposing contract

storage : they return individual elements rather than the entire structure.

To achieve this, the following process is followed to determine the parameter and return
types of the getter:

1. Begin with the declared type of the state variable.

2. While the type is a mapping or an ordinary array:

o If it is a mapping, its key type is added as a parameter to the getter. This allows
the function to access the value associated with a specific key. The process then
continues with the mapping’s value type.

o If it is an array, a uint256 parameter is added to represent the array index.
This allows the function to access a specific element at that index. The process
then continues with the array’s element type.

3. Once the final, non-nested type is reached:

o If it is a reference type, it is copied to memory and returned.

o If it is a value type, it is returned directly.

Table 4.4 shows examples of getter function signatures for various state variable types.

Note that state variables always live in storage .

State Variable Type Getter Type
int function ()
external view returns (int)
mapping(address => bytes32) function (address)
external view returns (bytes32)
string[] function (uint256)
external view returns (string memory)
mapping(bool => address[]) function (bool, uint256)
external view returns (address)
mapping(int8 => bytes[])[] function (uint256, int8, uint256)
external view returns (bytes memory)

Table 4.4: Examples of getter function signatures for various state variable types

60

W N O TR W N

4.4 Contracts

This mechanism exists to avoid expensive copies when returning an entire array and
because mappings cannot be copied. If the entire array needs to be returned, it must

be explicitly copied from storage to memory , as shown in the example below.

contract C {
int[] public v = [int(0), 1, 2];
// returns the entire array by copying from storage to memory
function f() public view returns (int[] memory) {
return v;
}

}

4.4.4 State Mutability

State mutability in Solidity defines how a function interacts with the contract’s persistent
state. It indicates whether a function can read from or write to the blockchain and
whether it can receive Ether. Each function is associated with a state mutability, and
the restrictions are strictly enforced at compile time. Solidity defines four types of state
mutability:

e pure : Functions marked pure cannot read from or modify the contract’s state. This
means they cannot access state variables or call functions that are not also marked
pure . These functions are typically used for performing computations that depend
only on their input parameters.

e view: Functions marked view are allowed to read from the contract’s state but
cannot modify it. They can access state variables and call other view or pure
functions, but they cannot alter the blockchain. These functions are commonly used
to return information about the contract’s current state.

e payable: A payable function can read and modify contract state and is additionally
permitted to receive Ether. Only functions marked payable can be the target of
transactions that send Ether. This mutability is essential for implementing features
like token purchases or deposits.

o non-payable (implicit): Functions that are not explicitly marked as pure, view, or
payable are considered non-payable by default. These functions can read and modify
state but cannot receive Ether. Any attempt to send Ether to such a function will
result in the transaction being reverted.

Each state mutability keyword restricts the function’s behavior in increasing degrees of
freedom, and the compiler ensures that these rules are followed. This allows developers to

make assumptions about the side effects of a function.

4.4.5 Inheritance and Linearization

Solidity supports multiple inheritance, allowing a contract to inherit from more than one
base contract. Inheritance is specified using the 1is keyword following the contract’s

name:

61

W N =

4.4 Contracts

contract A { }
contract B is A { }
contract C { }
contract D is C, B { }

When multiple contracts are inherited, Solidity must resolve the order in which base
contracts are initialized and their members are accessed. This is particularly important

when overridden functions and constructors are involved.

To manage this, Solidity uses C3 linearization, similarly to Python. C3 linearization
defines a consistent ordering of base contracts in the inheritance hierarchy, ensuring that
each contract appears only once in the linearization and that derived contracts precede
their base contracts. This process guarantees a deterministic method resolution order
(MRO) and avoids ambiguity caused by the Diamond Problem—a classic issue in multiple

inheritance.

The result of this linearization is a list of contracts, from the most derived to the most
base-like, including the contract itself. For the example above, the linearization of contract

D is:
L[D] = [D, B, A, C]

Note that, unlike Python, Solidity requires the direct base contracts to be listed from most

base-like to most derived.
Base Constructor Arguments

When a contract inherits from a base contract whose constructor requires arguments, those
arguments must be provided explicitly by the derived contract. There are two ways to do
this:

e Directly in the is clause, using argument syntax.

 Inside the derived contract’s constructor, using modifier-style constructor invocation.
All required constructor arguments for all base contracts must be provided exactly once.
Failing to provide them, or attempting to provide them multiple times—possibly through
different inheritance paths—results in a compilation error.

contract A {
constructor(int) { }

}
contract B is A(17) { } // base constructor call

contract C 1is A {
constructor() A(42) { } // modifier-style base constructor call
}

// error: arguments to A provided twice via B and C
contract D is B, C { }

In this example, contract D inherits from both B and C, each of which attempts to
initialize the constructor of A. The compiler reports an error because A’s constructor

arguments are being provided along two separate paths, which would lead to ambiguity.

62

Chapter 5

SolGen

5.1 Overview

SolGen is a generator of semantically correct Solidity programs. It was developed with an
emphasis on supporting a range of versions of the Solidity compiler. The oldest supported
version is Solidity 0.5.0 and the newest one at the time of this writing is Solidity 0.8.30,
although many of the more recent language features are currently not implemented. The
project is available at https://github.com/alex2449/SolGen.

SolGen focuses solely on the static semantics of Solidity programs—that is, correctness
as determined at compile time. It ensures that generated programs are well-formed with
respect to typing, scoping, and other compile-time rules of the language. However, it does
not attempt to guarantee that programs are free of undefined behavior and independent
of unspecified behavior at runtime. This is a complex task that was not considered for
the purposes of this thesis. This makes the implementation simpler but also limits its
bug-finding capabilities, at least in the parts of the compiler that generate and optimize
code. Therefore, differential testing is not possible with SolGen. Instead, the test oracle is
solved by checking the compiler’s response. We expect solc to successfully compile a given
random program. If the compiler crashes or reports an error, assuming that the generator
itself has no bugs, then there exists a bug in the compiler, which we can manually track

down.

The general idea can be described as the reverse process of what a typical compiler
front-end does. Instead of parsing source code into an AST, we construct an AST which
is then “pretty-printed” back to Solidity code, by recursively converting each node to its
equivalent syntactic form, following the language’s grammar. Throughout generation, all
decisions that require randomness are made with a biased coin toss or a weighted selection
from a list of candidate elements. The rest of this Chapter describes the generation process.
Note that the process described in this text considers only a subset of the language, and

some constructs may be omitted for simplicity.

63

https://github.com/alex2449/SolGen

5.2 Generation Approach for Types, Expressions, and Statements

5.2 Generation Approach for Types, Expressions, and Statements

The bulk of random generation is concerned with three basic building blocks of most
programming languages:

o Types, such as int256 , mapping(bytesl7 => string[42]) , or address[][10] .

o Expressions, such as call or binary expressions. An expression evaluates to a value of
a certain type.

o Statements, such as block, if-else, or return statements.

To generate these three building blocks, we implement three main functions:

e generate_type() : Generates a random type. This function is utilized in various
situations.

e generate_expression(type) : Generates a random expression of a given type. This
function is utilized for every syntax rule, or equivalently for every node in the AST,
that contains an expression.

e generate_statement() : Generates a random statement. Similarly, this function is
utilized for every node in the AST that contains a statement.

Each of these functions delegates to specialized functions that generate specific
subcategories. For example, generate_block_stmt() generates a block statement, while
generate_binary_expr(type) generates binary expressions. These specialized functions
are used internally by the main generation functions in the following way:

1. Candidate initialization: A list of all productions (e.g., types, expressions, or
statements) is assembled as initial candidates.

2. Attempted generation: A candidate is selected at random, and its corresponding
generation method is invoked.

3. Validation: If the chosen production is not syntactically or semantically valid in the
current context, an error is returned.

4. Retry: The invalid candidate is removed from the list, and another is selected.

5. Success: Once a valid production is generated, it is returned as the result.

5.3 Generating Types

5.3.1 Internal Representation of Types

Types are semantic constructs and not part of the formal grammar. The grammar defines
type names—syntactic elements like int256 or address[][] —along with data location
specifiers (memory , calldata, storage). While these are represented as separate
constructs in the syntax, they are interpreted together to form a complete type at the

semantic level. For example, the syntax bool[][] memory is interpreted as the type:
bool[] memory[] memory

This should be read right-to-left, as: a dynamic array in memory , of dynamic arrays in

64

5.3 Generating Types

memory , of booleans. The data location at each level of the reference type is explicit.

Internally, this would be represented as:

ArrayType(DatalLocation: :Memory, ArrayType(DatalLocation::Memory, BoolType()))

Bound storage References vs Rebindable storage Pointers

Reference types with storage data location are internally distinguished between bound
references and rebindable pointers:

o Bound references refer to a fixed, specific storage location (such as a state
variable); they cannot be redirected to point elsewhere, and assignments to them
modify the underlying storage.

« Rebindable pointers (e.g., local variables or function parameters), by contrast, can
be reassigned to point to different storage locations. Assigning to the pointer itself
does not change the data—only where the pointer refers.

Both are implemented as pointer values, but they differ in how the compiler treats them.
Bound references are automatically dereferenced in most contexts, giving direct access to
the underlying data. In contrast, rebindable pointers are not automatically dereferenced,
so their pointer nature is preserved in expressions. This distinction explains why local

storage variables (rebindable pointers) can be referenced in pure functions.

For memory and calldata, this distinction is unnecessary, as these locations always
behave as rebindable pointers.

contract C {
uint[1[] x = [[42]1]1;

function f() public {
uint[][] storage p = x;

ple] = [17];

assert(x[0][0] == 17);
}
}

In this example:

e The type of x is uint[] storage reference[] storage reference . This indicates
a fixed storage location holding a dynamic array of dynamic arrays of uint .

e The type of p is uint[] storage reference[] storage pointer . This means p is
a rebindable pointer to a dynamic array in storage , whose elements are themselves
bound references to uint[] in storage.

e The assignment p = x; does not copy from storage —it simply makes p point to
the same outer array as x . Reassigning p would not affect x .

o The expression p[0] has type uint[] storage reference . Assigning to it (as in
p[0] = [17];) modifies the actual contents of storage—specifically, the inner array

referenced by x[0] .

65

5.3 Generating Types

Mappings Classification

Although mappings behave like reference types at the language level, they are not classified
as reference types internally. This is because mappings can only exist in storage and
cannot be copied. As a result, they are treated separately from reference types during
generation and are not explicitly annotated with a data location. In the remainder of this
thesis, the term reference type excludes mappings. When referring to mappings, they will

be mentioned separately.

5.3.2 Generating Mappings

Mapping type generation involves generating two types: the key type and the value type.
We assume that a type is generated to be used in one of the following contexts:

e Array element type for an array with a known data location.

o Mapping key or value.

o Function parameter or return type for a function with a known calling convention.

Constraints.
e Mappings can only live in storage , therefore:
e They can be parameters and return types only for internal function types, as
external function types cannot receive or return storage references, as explained
in Section 4.3.2.
e They can be the element type only for arrays that live in storage .

e Mappings are not allowed as mapping keys.

Generation Procedure.

o If the context is a mapping key, generation fails.

o If the context is an array element for an array that does not live in storage,
generation fails.

o If the context is a function parameter or return type for an external function type,
generation fails.

e Otherwise, the key and value types are generated recursively by calling
generate_type() . The new contexts are a mapping key and mapping value,

respectively.

5.3.3 Generating Arrays

Array type generation involves the following:
1. Select array kind from:
e Ordinary arrays (T[N] or T[])
o Dynamic byte arrays (bytes)
o Strings (string)
2. Select data location from: memory, storage, and calldata. If storage, select

between bound reference and rebindable pointer.

66

5.3 Generating Types

3. Generate the element type (for ordinary arrays).
4. Select whether static or dynamic (for ordinary arrays). If static, determine the array’s
length.

We assume that a type is generated to be used in one of the same contexts as for mappings.

Constraints.

o If a reference type is used as an array element, it must live in the same data location
as the array. This is because composite types must be located fully in a single memory
region; combinations such as int[] memory[] storage pointer are meaningless. If
it is storage , it must be a bound reference.

e Ordinary arrays are not supported as mapping keys.

o If a reference type is used as a mapping key, it must live in memory . This is
because mapping keys are not stored but hashed, and for reference types (e.g., bytes ,
string), the value to be hashed is expected to be in memory .

o If a reference type is used as a mapping value, it must live in storage and be a
bound reference.

o If a reference type is used as a function parameter or return type, it must live
in memory . This reflects a convention in Solidity’s type system, as explained in
Section 4.3.2.

Generation Procedure.
1. Select the array kind, by selecting between:
e bytes and string, which are always allowed.
e Ordinary arrays, if the context is not a mapping key.
2. Select the data location:
e If the context is an array element, inherit the array’s data location. If it is
storage , select bound reference.
o If the context is a mapping key, select memory .
o If the context is a mapping value, select storage and bound reference.
o If the context is a function parameter or return type:
o If internal, select among memory , calldata, storage. If storage was
selected, select rebindable pointer.
o If external, select memory .

3. Generate the element type (for ordinary arrays): recursively call generate_type() ,
adjusting context. The new context will be an array element for the selected data
location.

4. Select static or dynamic (for ordinary arrays) without restrictions: if static, randomly

choose a positive length.

67

5.4 Generating Expressions

5.3.4 Generation Example

Suppose we want to generate a type T to be used as a parameter in the following function
type:

function (bytes32, T) external view returns (bool)

L» What can be placed here?

In this case, the context for generating T is a function parameter for an external function
type. The following steps may be followed to generate T :
1. Suppose the generator attempts to generate a mapping for T: this fails because it
would require an external function that receives a mapping.
2. Suppose the generator attempts to generate an array for T:
1. Select its kind: all three kinds are allowed in this context. Suppose an ordinary
array is selected.
2. Select its data location: since the context is a function parameter for an external
function type, select memory .
3. Select either a dynamic array or a static array of any length: suppose dynamic
array.
4. Generate the element type of T, E, recursively: the context for generating E
will be an array element for an array in memory .

function (bytes32, E[] memory) external view returns (bool)

L» What can be placed here?
1. Suppose the generator attempts to generate a mapping: this fails because

it would require a mapping (that can live only in storage) as an array
element for an array in memory .
2. Suppose the generator attempts to generate an array for E :
1. Select its kind: similarly, suppose bytes is selected.
2. Select its data location: since the context is an array element for an
array in memory , select memory .

The resulting type T is: bytes memory[] memory .

5.4 Generating Expressions

A big part of the generation process involves generating a well-typed program that is
accepted by the type checker. The generation of expressions is mostly directed by the
expected result type and context-specific constraints, such as whether the expression is

used as an l-value.

68

5.4 Generating Expressions

5.4.1 Generating Indexed Accesses
The syntax of an index access expression is given by:

rule index-access-expr

expression o expression 0

The generation of this expression involves generating two subexpressions: the base and
the index, which requires the construction of two types, one for each subexpression. We
consider the following cases for the type of the base for which the expression is valid:

o Mappings

o Arrays (ordinary and bytes)

 Fixed-size byte arrays (bytesN)
Cases are selected at random until one succeeds or all are exhausted. Each case is described

separately below.
Mappings

Constraints.

o The type of the expression is the mapping’s value type.

e The expression is not an l-value if assigning to it would require copying a mapping,
which is disallowed in Solidity (see below).

e The expression cannot be used if the context is a pure function. This is because
mappings always live in storage .

e The expression cannot be used as an l-value if the context is a pure or view function,
for the same reason.

e The index’s type must be implicitly convertible to the mapping’s key type.
When Assignment Requires Copying a Mapping

Expressions that, when assigned to, require the copying of a mapping are not considered
l-values. This occurs in the following cases:
e The expression is of mapping type and it is not a local variable or parameter.
e The expression is a bound storage reference that contains a mapping in one of the
following ways:
o It is an array whose element type is or recursively contains a mapping.

o It is a struct with a member whose type is or recursively contains a mapping.

69

5.4 Generating Expressions

1 contract C {

2 struct S {

3 mapping(int => dint)[] m;
4 }

5

6 mapping(int => S) vl;

7 S v2;

8

9 function f() internal returns (S storage rp) {
10 // error

11 v1i[0] = v2;

12

13 rp = v2;

14 1

15}

In this example:
e The type of vl is mapping(int => S storage reference) .
e The assignment v1[0] = v2; is invalid because the type of vi[e] is
S storage reference, and therefore this assignment requires copying v2,
which also has type S storage reference .
e To copy a value of type S, Solidity must copy its member m , which is an array.
e Copying the array m would require copying its elements.
e But the elements are mappings, which cannot be copied.
e The assignment rp = v2; is valid because the type of rp is S storage pointer ; it

only causes rp to point to v2’s storage slot.

Generation Procedure.
o If the requested type is not a valid mapping value type, generation fails. Mapping
value types include:
o Value types
o Reference types that are bound storage references
e Mappings
o If an l-value is requested:
o If the requested type is a mapping, generation fails. This would require an I-value
of mapping type of the form e;[e,] , which is not possible.
o If the requested type is a bound storage reference that contains a mapping,
this should not occur and indicates a bug in the generation logic.
o If the context is a pure function, generation fails.
o If the context is a view function and an l-value is requested, generation fails.
o Construct the base’s type:
e The mapping’s key type is generated randomly using the generate_type
function.
o The mapping’s value type is set to the requested type.
e Construct the index’s type: it is generated randomly as a type that is implicitly

convertible to the mapping’s key type (see Section 5.4.3).

70

5.4 Generating Expressions

Arrays

Constraints.
e The type of the expression is:
e The array’s element type for ordinary arrays.
e bytesl for dynamic byte arrays (bytes).
e The expression is not an l-value if:
o Assigning to it would require copying a mapping.
e The array’s data location is calldata , which is read-only.
e The expression cannot be used if the array’s data location is storage and the context
is a pure function.
e The expression cannot be used as an l-value if the array’s data location is storage
and the context is a pure or view function.

e The index’s type must be implicitly convertible to uint256 .

Generation Procedure.
o If the requested type is not a valid array element type or bytesl, generation fails.
Array element types include:
o Value types
o Reference types that are not rebindable storage pointers
o Mappings
o If an l-value is requested:
o If the requested type is a mapping, generation fails (would require an l-value of
mapping type of the form ei[e,]).
¢ It should not be possible for the requested type to be a bound storage reference
that contains a mapping.
e Construct the base’s type:
e Select the array kind, by selecting between:
e An ordinary array, which is always allowed.
e bytes , which is allowed if the requested type is bytesl.
e Select the data location:
e The set of candidate data locations is initially empty.
o If an ordinary array has been selected and the requested type is a reference
type or a mapping, then we add the requested type’s data location or
storage respectively to the candidate set. This is because composite types
must be located fully in a single memory region.
o Otherwise, we add all three data locations (memory , storage, calldata).
e Apply the following restrictions:
e Remove calldata if an l-value is requested.
e Remove storage if the context is a pure function, or a view function
and an l-value is requested.

o If the set of data locations is empty, generation fails.

71

5.4 Generating Expressions

¢ Otherwise, randomly select a data location. If the selected data location is
storage , select either a bound reference or a rebindable pointer.
e If an ordinary array has been selected, set the element type to the requested
type.
o If an ordinary array has been selected, randomly choose between static or
dynamic. If static, randomly select a length to be a positive integer.
e Construct the index’s type: it is generated randomly as a type that is implicitly

convertible to uint256 .

Fixed-size Byte Arrays (bytesN)

Constraints.
e The type of the expression is bytesl .
e The expression is not an l-value.

e The index’s type must be implicitly convertible to uint256 .

Generation Procedure.
o If the requested type is not bytesl , generation fails.
o If an l-value is requested, generation fails.
o Construct the base’s type: select a valid fixed-size bytes type (bytesl, bytes2, ..,
bytes32).
e Construct the index’s type: it is generated randomly as a type that is implicitly

convertible to uint256 .

5.4.2 Generating Assignments

In Solidity, assignments are expressions that cause side effects and evaluate to a value of a
certain type. There are three kinds of assignments—ordinary, compound, and tuple—but
we will consider only ordinary assignments. The syntax of an assignment expression is

given by:

rule assignment-expr

H—{ expression }—{ assignment-op }—{ expression }—H

Constraints. In a valid assignment:
e The type of the expression is the type of the first operand.
e The expression is not an l-value.
e The first operand must be an l-value.
e The type of the second operand must be implicitly convertible to the type of the first
operand.

o Assignments that modify contract state are disallowed in pure or view functions.

72

5.4 Generating Expressions

Generation Procedure.
o If an l-value is requested, generation fails.
o If the requested type is a bound storage reference:

o If it contains a mapping, generation fails. Since the requested type will also be
the type of the first operand, this would require an l-value of a bound storage
reference type that contains a mapping, which is not possible.

o If the context is a view function, generation fails. This assignment would modify
storage , which is not permitted by view functions. No check is required
for pure functions, as in this case, such an expression should not have been
requested in the first place.

e Set the type of the first operand to the requested type and request an l-value for it.
o Construct the second operand’s type: it is generated randomly as a type that is

implicitly convertible to the first operand’s type.

5.4.3 Implicit Type Conversions

The compiler checks whether a type can be implicitly converted to a destination type in
various contexts:

o Assignment context: in an assignment V = E, when implicitly converting from the
type of E to the type of v .

e Argument conversion context: when implicitly converting the type of an argument
to the corresponding parameter type, in all calling contexts (function calls, modifier
invocations, inheritance specifiers, etc.).

e Return context: when converting the type of the expression in a return statement to
the function’s return type.

e Other contexts: used for a small number of additional conversions.

In the context of generation, we need to generate an expression whose type is implicitly
convertible to a given destination type. This is the reverse of what the compiler does:
instead of checking whether a conversion is valid, we start from the destination type and

construct a suitable source type.

Function Types

Conversion Semantics. A function type is implicitly convertible to another destination
function type if:
e The destination has the same calling convention, parameter types, and return types
as the source.
e The following state mutability conversions are allowed, as illustrated in Figure 5.1:
e Only pure functions can be used where a pure function type is expected.
e pure and view functions can be used where a view function type is expected.
e pure, view, non-payable, and payable functions can be used where a

non-payable function type is expected. The reason payable functions are

73

5.4 Generating Expressions

allowed here is because the compiler only prevents Ether from being sent
through a non-payable function pointer—it does not enforce that the referenced
function itself is non-payable.

Only payable functions can be used where a payable function type is expected.
This restriction exists because payable function pointers can be used to send
Ether. If such a pointer referenced a pure, view, or non-payable function, it
could cause a runtime error when Ether is sent.

pure
C view
non-payable

payable

Figure 5.1: Allowed implicit conversions between function state mutabilities

Generation. The following steps are followed to generate a source function type given a

destination function type:

e Set the source to a function type with identical calling convention, parameter types,

and return types to the destination.

o Choose a compatible state mutability based on the destination:

If the destination is pure, select pure .

If the destination is view, select pure or view.

If the destination is non-payable, select any of: pure, view, non-payable, or
payable . However, payable is only valid here if the calling convention is
external, as only external functions can be payable . This is not a restriction
of the conversion semantics, but a constraint imposed by the Solidity type
system—internal function types cannot be payable because internal calls do
not support Ether transfer.

If the destination is payable , select payable .

Array Types

Conversion Semantics. This section describes the semantics—what is allowed and what

happens during implicit conversions to array types, depending on the destination’s data

location.

It is this implicit conversion that determines the assignment semantics for

reference types described in Section 4.3.1.

Note that the behavior for memory and calldata applies only to assignments, internal

function calls, and similar contexts—not to external calls, which always create an isolated

copy of the data.

1. If the destination is a bound storage reference:

74

5.4 Generating Expressions

The source may have any data location; if it is storage , both bound references
and rebindable pointers are allowed.

In all cases, an independent deep copy of the data is created.

The source’s element type must be implicitly convertible to the destination’s
element type (not necessarily identical).

If the destination is a dynamic array, the source must be a dynamic array or a
static array of any length.

If the destination is a static array, the source must be a static array of equal or

smaller length.

2. If the destination is a rebindable storage pointer:

The source must be in storage (bound reference or rebindable pointer).

Other data locations are not allowed, as this would require the creation of a
temporary in storage just to give the storage pointer something valid to
point to, which is not supported.

No data is copied; only a pointer is assigned.

Types must be identical, except for the bound reference/rebindable pointer

distinction.

3. If the destination is in memory :

The source may have any data location; if it is storage , both bound references
and rebindable pointers are allowed.

If the source is in storage or calldata, an independent deep copy of the data
is created.

If the source is in memory , only a pointer is copied.

Types must be identical, excluding the data location.

4. If the destination is in calldata :

The source must be in calldata .
Only a pointer is copied.

Types must be identical.

Generation. This section describes how to generate a source array type, given a

destination array type, such that the source is implicitly convertible to the destination.

1. If the destination is a bound storage reference:

Select any data location: storage, memory, or calldata. If the selected
location is storage , choose between bound reference or rebindable pointer.

If the destination is a dynamic array, select a dynamic array or a static array of
any length.

If the destination is a static array, select a static array of equal or smaller length.
Recursively generate the source’s element type to be implicitly convertible to the

destination’s element type.

2. If the destination is a rebindable storage pointer:

Set the data location to storage and select either a bound reference or a

(0]

5.4 Generating Expressions

rebindable pointer.

e Set the source type to be identical to the destination type, except for the bound

reference/rebindable pointer distinction.
3. If the destination is in memory :

e Select any data location: storage, memory, or calldata. However, storage
should only be considered if the context allows reading from storage (i.e., not
within a pure function), as this conversion copies the array’s contents from
storage to memory .

o If the selected location is storage, choose between a bound reference and a
rebindable pointer.

e Notably, the Solidity compiler exhibits a bug, as it currently permits conversions
from rebindable storage pointers to memory even in pure functions—despite
this requiring a read from storage . This occurs because the compiler analyzes
each expression independently and does not evaluate whether the conversion
semantics involve side effects such as storage reads.

function f(int[] storage p) internal pure {
int[] memory m;
m = p; // allowed!

B oW =

}
For the same reason, conversions from bound storage references to rebindable
storage pointers could be allowed even when reading from storage is
disallowed. Since such conversions only copy a pointer and do not access
storage , they are side-effect free. However, the compiler currently rejects
them.
o Set the source type to be identical to the destination type (in the selected data
location).

4. If the destination is in calldata , set the source type to be identical to the destination

type.
Generation Example

Given the destination type:
function () internal view returns (int)[] storage reference

we wish to construct a source type that is implicitly convertible to it. The following steps
are followed:

1. Determine data location: the destination is a bound storage reference, so any data
location is allowed for the source. Suppose we select: memory .

2. Select array kind: the destination is a dynamic array, so the source may be either
a dynamic array or a static array of any length. Suppose we select: static array of
length 10.

3. Construct the element type: this step is recursive. Given the destination type:

function () internal view returns (int)

76

5.5 Generating Statements

we construct a source type that is implicitly convertible to it:

1. Keep the calling convention, parameter types, and return types identical to the
destination.

2. Select a state mutability that is allowed by the conversion rules. Since the
destination is view, valid options are pure and view. Suppose we select:
pure .

The resulting function type is:
function () internal pure returns (int)

Therefore, the constructed source type is:
function () internal pure returns (int)[10] memory

This process can be seen as an exploration of structural mutations to a type,
demonstrating how the generator systematically explores valid execution paths through
the type conversion rules. Over multiple runs, the generator probabilistically covers the

full space of conversion-permissible source types for a given destination.

5.5 Generating Statements

Statements define control flow, side effects, and structure within a Solidity program.
Statement generation is relatively straightforward, and a few semantic constraints must
be enforced to ensure validity. Statements are grouped into the following categories:

e Control flow statements: These include 4if, while, do-while, and for
statements. For these, the type of the condition must be bool .

e continue and break statements: These are only valid within a loop (while,
do-while, or for).

¢ Return statements: terminate execution of a function and optionally return a value.
The expression, if present, must be compatible with the function’s return types. For
functions with no return types, a bare return; is also allowed.

e Variable declaration statements: introduce new local variables, optionally with
initializers. If present, the initializer’s type must be implicitly convertible to the
declared type. The variable is visible from the point of its declaration until the end
of the block where it is defined.

¢ Block statements: consist of a sequence of statements enclosed in { } and
introduce a new lexical scope for local variables. To support generation of usable
and correctly scoped local variables, the following strategy is used:

o The statements in a block are generated in reverse order. This counterintuitive
approach ensures that when an expression or statement refers to a local variable,
that variable will be declared later (i.e., higher) in the block without violating
scoping rules.

o A stack of scopes is maintained during generation. Each block is associated with

one scope level.

7

5.6 Generating Declarations

e« When an expression requests a reference to a local variable, it may create a new
variable and register it in a scope.

e Later, when a variable declaration statement is chosen for generation, some
variables from the current scope are declared and removed from visibility (i.e.,
moved from "pending” to ”declared”).

e At the end of the generation, any remaining undeclared variables are emitted as
declarations.

o Expression statements: consist of a standalone expression, typically used for its
side effects (e.g., assignments or function calls), but any valid expression of any type
may be used, even if it has no side effects.

o Placeholder statements (_;): These are allowed only within the body of a
modifier. They indicate where the modified function’s body will be inserted when
the modifier is applied.

o Emit statements: are used to trigger events. These are disallowed within pure or

view functions, as event emission is considered a state-modifying operation.

5.6 Generating Declarations

It is likely that the generation of some nodes might not be immediately possible. For
example, if an identifier expression—an expression that references a declaration—is chosen
to generate an expression of some type, a suitable declaration may not exist or it may not
be visible at the current generation point. There are two strategies at that point:

e Backtracking: The generator can abandon the attempt to generate the identifier
expression, remove it from the list of candidate expressions, and retry with another
candidate. If no suitable alternatives remain, generation fails for that expression node.
This failure then propagates upward, requiring parent nodes to also be discarded. Any

contextual changes made during generation must be reverted.

Consider the example in Figure 5.2. The generator attempts to generate a call
to function f, which accepts two parameters. The first argument (new A()) is
successfully created, causing contract A to become a dependency of contract B,
since contracts are dependent on contracts that they create via new. However, the
second argument cannot be generated because there is no matching expression of the
required function type in scope. Consequently, the entire function call is discarded,
and contract A is no longer considered a dependency of contract B . This is important
because the contract dependency graph must not be cyclic.

e Directed Generation: Alternatively, the generator can step out of the current
generation context and generate the required dependencies first. This is known as

directed generation and it is the one implemented.

78

5.6 Generating Declarations

contract A {}

contract B {
function f(A pl, function () internal pure p2) internal {
/] ...

function g() internal {
f(new A(), <ERROR>);
}
}

Figure 5.2: Example of generation failure and backtracking

While contract-level declarations are also generated in a top-down manner according to the
language grammar, it is also necessary to generate them as a dependency for the generation
of some expression. This ensures that generate_expression always succeeds. Otherwise,
producing valid expressions for certain complex types would be extremely unlikely—even
in large test cases. For instance, consider a function type with two parameters and two
return parameters. If each type is restricted only to Solidity’s 64 integer types, the total
number of unique function types is ~17 million. Randomly producing an expression of

such a type from the existing context is practically impossible.

This section covers the generation of contract-level declarations as a dependency for
generating some expression. There are two kinds of declarations that are generated in

this manner: function definitions and state variable declarations.

5.6.1 Generating Function Definitions

Referencing a function directly by name (rule identifier-expr) results in an expression of an
internal function type. Therefore, a function definition may be generated as a dependency
of identifier-expr when:

e The requested type is an internal function type.

e An l-value is not being requested, as function identifiers are not assignable.

F+————(function)—{ identifier F—{::}—lq parameter-list FL—<::>—)
(;——————————{ visibility Fdlq state-mutability {*)

({ block-stmt F———ﬁ{
(O pammmerertise -0

Figure 5.3: Grammar rule for function definitions

The process of generating a function definition, shown in Figure 5.3, involves the following
steps:

1. Generate a unique identifier in order to avoid name conflicts.

79

5.6 Generating Declarations

2. Select visibility (one of private, internal, public, external):

e private and internal are always allowed in this context.

e public is allowed if every parameter type and return type of the requested
function type can be used externally. A type cannot be used externally if:

o It is or contains an internal function type.

e It is a reference type that lives in storage .

e It is a mapping.

e external is disallowed in this context because external functions can only be
called externally and are not visible by name.

3. Select state mutability:

o Ifthe requested function typeis pure, view, or payable , add the corresponding
keyword.

o If the requested function type is non-payable, omit the state mutability (defaults
to non-payable).

4. Select enclosing contract: the contract in which the function is placed is chosen as
follows:

o If the selected visibility is private , select the current contract.

¢ Otherwise, select any contract in the current contract’s linearization.

o Insert the function at any position within the selected contract’s body.

5. Construct the parameter and return parameter lists: each parameter type and return
type of the requested function type is converted to a syntactic parameter declaration
(see Figure 5.4). This involves the following steps:

e Construct a type name—a syntactic representation of the type from its internal
form. For example, the type int[] memory[] memory is converted to the type
name int[][]. This step must follow the selection of the enclosing contract
(which will be used as the scope), as the construction of a type name is a
context-sensitive process (for user-defined types).

e Select data location:

o If the type is a value type, omit the data location.

o If the type is a reference type, select its data location. Note that this is
not always necessary; in the context of external function types (not relevant
here), parameter and return types in memory may arbitrarily use calldata
in the parameter declaration.

o If the type is a mapping, select storage .

e Generate a unique identifier for the parameter name to avoid name conflicts.

6. Generate a block statement to serve as the function’s body.

80

5.6 Generating Declarations

H—ﬁ type-name l—l‘ data-location 'l—‘ identifier }TH

’

Figure 5.4: Grammar rule for parameter lists

5.6.2 Generating State Variable Declarations

Referencing a state variable as a member of an expression of a contract type results in

an expression of an external function type—the state variable’s getter. Therefore, a state

variable declaration may be generated as a dependency of member-access-expr when:

o The requested type is a function type that is a valid getter type. A valid getter type

must be a function type of the form:

function (T1, T2, .., Tn) external view returns (T)

where each T; is uint256 or a valid mapping key type, and T is a value type or

bytes memory or string memory . Mapping key types include:
e Value types, except function types and address payable

e bytes memory and string memory

e An l-value is not requested.

H—' type-name }

1 identifier [O—H

e expression

H..
ubli

public

Figure 5.5: Grammar rule for state variable declarations

The process of generating a state variable declaration, shown in Figure 5.5, involves the

following steps:

1.
2.

Generate a unique identifier in order to avoid name conflicts.

Select visibility: the visibility must be public for the state variable to be externally
accessible and have a getter function.

Select enclosing contract:

e Select any existing contract, as public state variables are externally accessible

from any contract.

o Insert the state variable at any position within the selected contract’s body.
Construct the type name. To do that, the variable’s type must first be determined
using the getter’s type:

e Start with the return type T from the getter.

e If it is bytes memory or string memory, set the current type to

81

5.7 Generating a Solidity Source File

bytes storage reference or string storage reference , respectively.
e Otherwise, set the current type to T.
e For each parameter T; from right to left:
e If T; is not uint256 , set the current type to mapping(Ti, current) .
e Otherwise, set the current type to one of:
e mapping(uint256, current)
e current[] storage reference
e current[N] storage reference, where N is any positive integer.
The resulting type can be used as the state variable’s type. For example, starting
with:
function (uint256, address) external view returns (string memory)
we can construct the type:
mapping(address => string storage reference)[] storage reference.
The constructed type can now be converted to a type name—its equivalent syntactic
form. For the previous type, this would be:
mapping(address => string)[]
5. Generate an optional initializer:

e An initializer is not allowed if the variable’s type is a mapping or if it is a bound
storage reference that contains a mapping, as this would require copying a
mapping.

e Otherwise, an initializer may be generated. Its type must be implicitly
convertible to the variable’s type, and it is generated as an implicit conversion

source with the destination being the variable’s type.

5.7 Generating a Solidity Source File

At the highest level, a Solidity source file consists of a sequence of contract definitions.

rule source-unit

H—Lcl contract-definition eof

Each contract definition includes:

e A name
¢ An optional list of inheritance specifiers

¢ A body containing elements such as function definitions and state variable declarations

82

5.7 Generating a Solidity Source File

rule contract-definition

I I (contract)——l identifier |—)

inheritance-specifier

’

LCD_A(I contract-body-element I%@——H

An inheritance specifier names a contract to inherit from and may optionally include a

list of expressions to be passed as arguments to that contract’s constructor.

rule inheritance-specifier

identifier expression

</

The body of a contract defines its functionality. It consists of a list of elements such as

function definitions, state variable declarations, etc.

rule contract-body-element

|
{

constructor-definition

function-definition

L
[

(g

state—variable—declaration)/

modifier-definition

I
[

|
[

event-definition

struct-definition

[
[

|
[

enum-definition

83

5.7 Generating a Solidity Source File

Empty Contract Generation

We do not generate one complete contract after another. The reason is that Solidity
allows symbols to be referenced before their declaration. For example, the signature of
a function in the first contract may receive a type that is defined later, as shown in the
example below:

contract C1 {

function f1(C2 pl) 1dinternal view {
] coo

}

contract C2 {
/] ...

1

2

3

4
5}
6

7

8

° }

Therefore, as a first step, we create a list of empty contracts. For each contract, we only
make a decision on whether the contract is abstract and whether it will have an explicit
constructor definition. This needs to be known, as will be shown later. At this point, the
program might look like this:

contract Cl1 {
}

contract C2 {
}

Inheritance and Contract Body Elements

Once this is complete, we iterate over the list of contracts and, for each contract:

¢ Determine the list of contracts that will appear in the contract’s inheritance specifier
list (the base contracts).

e Create a list of empty contract body elements for the same reason: we do not assign
types to state variables, function parameters, etc. yet because these types might not
exist at this point. For constructors, we select whether they receive parameters, as
this will be needed later.

Base Contracts

To determine the list of contracts, if any, that will appear in a contract’s inheritance
specifier list, we randomly select candidate lists formed by randomly combining contracts
from the set of previously declared contracts and use a candidate list if:

e The resulting inheritance graph can be linearized under the C3 algorithm.

e All required constructor arguments can be resolved without ambiguity.
The second restriction exists because certain inheritance scenarios must be disallowed

when base constructor arguments cannot be resolved unambiguously. For example:

84

5.7 Generating a Solidity Source File

contract A {
// assume <param-list>.size > 0
constructor (<param-list>) { }
}
contract B is A[(<call-arguments)] { }
contract C is A[(<call-arguments)] { }
// error
contract D is B, C /%x??27%/ { }

contract A {

constructor() public { }
}
contract B is A { }
contract C is A { }
// this s valid
contract D is B, C { }

[I B A VA
N O Ot W N =

In the first program, contract A defines a constructor that receives parameters. Contract
D examines whether it can inherit from contracts B and C . This is not possible: because
A’s constructor requires at least one parameter, contracts B and C must each provide
these parameters when inheriting from A, assuming that contracts B and C are not
abstract. Inheriting from both would cause A’s constructor arguments to be provided
twice, creating ambiguity. In the second program, no such problem exists because A'’s

constructor receives no arguments.

To examine whether all required constructor arguments can be resolved without ambiguity,
we need to determine which base contracts must be supplied with constructor arguments
directly. For example:

contract A {
constructor(int) { }

}

contract B is A(0) { }
contract C is A, B { }

Here, contract A has a constructor that takes one parameter. Contract B inherits from
A and therefore provides the argument © . Contract ¢, which inherits from both A and
B , must not also pass an argument to A ’s constructor, since it is already provided via B ;
otherwise A would receive constructor arguments twice. Notably, this simple randomly

generated program triggered an ICE in some older compiler versions.

In general, the contract body elements of previously declared contracts can affect which
inheritance scenarios are valid. Another example (which currently does not affect the
generator) is the following;:

contract C1 {
function f() public pure virtual { }
}

contract C2 {
function f() public pure { }
}

0 N O Uk W N =

©

contract C3 1is C1, C2 /%?2727x/ {
}

-
(=}

Contracts €1 and €2 define a function with the same name f and parameter types.
When c¢3 attempts to inherit from c1 and €2, it must override both ci1.f and c2.f.
This is because, when a contract inherits multiple functions with the same name and
parameters, it must override them all. However, C2.f is not marked virtual, so it
cannot be overridden. Assuming backpatching is not available to retroactively mark c2.f

as virtual (which we avoid in general), €3 cannot inherit from both €1 and c2.

85

5.7 Generating a Solidity Source File

Additionally, inherited contracts also:

o Dictate which declarations must be present in a contract body. For example, when
inheriting from an interface (interfaces in Solidity are similar to interfaces from
other object-oriented programming languages), a contract must implement all of the
interface’s functions.

e Determine which symbols are in scope and therefore may not be redeclared. For
example, two state variables with the same name cannot be in scope simultaneously.

For these reasons, inheritance and the symbols that will be present in a contract’s body
are determined contract by contract. We do not first produce a valid inheritance graph

for all empty contracts and then populate their bodies.
Contract Body Elements

In order to create a list of empty contract body elements, a few constraints must be
enforced, specifically relating to the selected attributes/specifiers of each symbol. For
example:

e Only public or external functions can be payable .

o Constructors can only be non-payable or payable .

e Only one constructor can be defined per contract.
At this point, the program might look like this:

contract Cl1 {
constructor (<param-list>) public payable <block-stmt>

function fl(<param-list>) public payable [returns (<param-list>)] <block-stmt>
<type-name> private v1;

event El(<param-list>);

}

contract C2 is Cl[(<call-arguments>)] {
function f2(<param-list>) internal view [returns (<param-list>)] <block-stmt>

struct S1 {
<struct-member-Tlist>
}
}

Completing Struct Definitions

Next, we complete existing struct definitions. The structure of structs must be known
before completing other declaration headers. For example, once the struct S1 of contract
C2 is populated with a mapping, its type will not be considered for parameters of, e.g.,

external functions (S1 can now only live in storage).

During this step, we must ensure that no illegal cycles are created between structs. For

example:

86

© 00 N O O W N =

11
12
13

5.7 Generating a Solidity Source File

contract C {
struct S1 {
S2 ml;
}

struct S2 {
S1[5] ml;
}

struct S3 {
S1[] ml;
}
}

Here, to determine the size of S1, the size of its member m1 of type S2 must be known.
To determine the size of S2, the size of S1[5] must be known, which again requires the
size of S1, creating an illegal cycle. By contrast, there is no cycle between S1 and S3

because the size of a dynamic array is independent of the size of its elements.

At this point, the program might look like this:

contract C1 {
constructor (<param-list>) public payable <block-stmt>

function fl(<param-list>) public payable [returns (<param-list>)] <block-stmt>
<type-name> private v1;

event El(<param-Tlist>);

}

contract C2 is Cl[(<call-arguments>)] {
function f2(<param-list>) dinternal view [returns (<param-list>)] <block-stmt>

struct S1 {
int ml;
mapping(address => bytes[]) m2;
}
}

Type Name Generation

In the following step, we walk the AST and generate type names for any construct
that contains one. This includes functions, constructors, modifiers, and events, all
of which contain type names in their headers, and state variable declarations. The
generate_type() function is used here: it generates a type suitable for the given context.
For example:
e public or external functions cannot receive or return reference types in storage ,
mappings, internal function types, or types that contain them.
e The type of a public state variable must not be, or expose (contain), internal
function types.
The generated type is then converted to a type name and inserted into the AST. At this
point, the program might look like this:

87

© 00 N O O W N =

e e e e e =
W N O U W N = O

© 00 N O U e W N

L T T T St
B WO RN R O © KN Oe W RO

5.7 Generating a Solidity Source File

contract C1 {
constructor (bytes memory pl) public payable <block-stmt>

function f1(int pl) public payable <block-stmt>
C2.S1 private vil;

event E1(int[2] pl, bytes32 p2);
}

contract C2 is Cl[(<call-arguments>)] {
function f2() internal view returns (int[] storage rpl) <block-stmt>

struct S1 {
int ml;
mapping(address => bytes[]) m2;
}
}

Statement and Expression Generation

Finally, we walk the AST once again and generate statements or expressions for any
construct that contains one. This includes function bodies, which involve the generation
of a block statement, inheritance specifiers and modifier invocations, which may involve
the generation of expressions, and state variables, which may involve the generation of
an expression (the initializer). This step may cause the generation of additional function
definitions and state variable declarations, as explained in Section 5.6. The program below
shows the resulting program.

contract Cl1 {
constructor (bytes memory pl) public payable { }

function f1(int pl) public payable {
emit E1([int(-1), pl], "");
}

C2.S1 private vl;

event E1(int[2] pl, bytes32 p2);
}

contract C2 is Cl("abc\n") {
function f2() internal view returns (int[] storage rpl) {
return v2;

}
int[] private v2; // injected declaration

struct S1 {
int ml;
mapping(address => bytes[]) m2;
}
}

88

Chapter 6

Implementation

This chapter provides an overview of the internal implementation of the generator, focusing
on the key data structures and representative generation procedures. The goal is to enable

contributors to understand, modify, or extend the tool effectively.

6.1 Overview

The generator is implemented in C+4 and mimics certain components of the Solidity
compiler, particularly its Abstract Syntax Tree (AST) and type system. The core
components of the generator are:

e AST classes: Model the Solidity source code structure.

e« Type system: Defines how types are represented internally.

e Context class: Encapsulates contextual information during generation.

6.2 Abstract Syntax Tree

The AST represents the structure of the Solidity source code being generated. It is defined
as a class hierarchy rooted at the SourceUnit class. The AST is composed of four main
constructs, each represented by an abstract base class:
e class Declaration: Base class for all declarations (e.g., ContractDefinition,
FunctionDefinition)
e class TypeName : Base class for all type names (e.g., ArrayTypeName ,
FunctionTypeName)
e class Statement : Base class for all statements (e.g., IfStatement , ReturnStatement).
e class Expression: Base class for all expressions (e.g., IndexAccessExpression ,
CallExpression).
Other AST nodes include SourceUnit, InheritanceSpecifier ,and ModifierInvocation .
Any node of the AST that is required to do so implements generation-related methods

and a method to pretty-print itself.

89

1
2
3

Ut W N =

6.3 Type System

Example

class SourceUnit {
std::vector<ContractDefinition *> contracts;

}s
The SourceUnit contains a list of contract definitions. A contract definition is represented
as:

class ContractDefinition : public Declaration {
std::string name;
std: :vector<InheritanceSpecifier *> dinheritance_specs;
std::vector<Declaration *> body;

}s

where InheritanceSpecifier is defined as:

class InheritanceSpecifier {

std::string name; // the name of the contract to inherit from

std::vector<Expression *> arguments;

}s

6.3 Type System

The type system is modeled as a class hierarchy rooted at an abstract base class Type,

from which all concrete types inherit:

IntegerType

BoolType

FixedBytesType

AddressType

FunctionType

ContractType

EnumType

ArrayType

ReferenceType

StructType

MappingType

Figure 6.1: Type class hierarchy

As shown in Figure 6.1:

90

6.3 Type System

e The ReferenceType class is abstract. It is annotated with a data location and a
boolean flag indicating whether the type is a rebindable pointer or a bound reference.
A bound reference is valid only for storage , as discussed in Section 5.3.1.

e MappingType does not inherit from ReferenceType , as explained in Section 5.3.1.

Implementation Examples

Reference Type
1 enum class Datalocation { Storage, Memory, Calldata };
2
3 class ReferenceType : public Type {
4 public:
5 ReferenceType(DatalLocation location, bool is_pointer)
6 location(location), is_pointer(is_pointer) {
7 assert(is_pointer || location == Datalocation::Storage);
8 }
9
10 private:
11 Datalocation location;
12 bool is_pointer;
13 };

Array Type
1 class ArrayType : public ReferenceType {
2 public:
3 enum class Kind { Ordinary, Bytes, String };
4
5 // constructor for bytes and string
6 ArrayType(DataLocation location, bool is_pointer, bool {is_string)
7 ReferenceType(location, is_pointer),
8 kind(is_string ? Kind::String : Kind::Bytes) { }
9
10 // constructor for ordinary static arrays
11 ArrayType(DataLocation location, bool is_pointer, Type *element, unsigned length)
12 : ReferenceType(location, is_pointer),
13 kind(Kind::0rdinary), element(element), length(length) { }
14
15 // constructor for ordinary dynamic arrays
16 ArrayType(DataLocation location, bool 1is_pointer, Type *element)
17 : ReferenceType(location, is_pointer),
18 kind(Kind: :0rdinary), element(element) { }
19
20 const Type &getElement() const {
21 assert(this->kind == Kind::0rdinary);
22 return xthis->element;
23 1
24
25 //
26
27 private:
28 Kind kind;
29 // for ordinary arrays only
30 Type *element;
31 // for ordinary arrays only
32 std::optional<unsigned> length;
33 };

91

6.4 Context

6.4 Context

All generation procedures receive a reference to a Context object, which holds
context-related information, such as:

e The current function definition: If the generator is inside a function body, this
points to the corresponding FunctionDefinition. It is nullptr when generating
constructs like state variables or inheritance specifiers.

e The current contract definition: This is always valid.

e The list of top-level contract definitions.

e The current scope.

A new Context is created whenever the generator steps out of the current generation
context to generate a required dependency. Generation then resumes in the previous
context once the dependency is complete.

1 class Context {

2 FunctionDefinition *current_function;

3 ContractDefinition *current_contract;

4 std::vector<ContractDefinition *> contracts;
5 Scope *scope;

6 /]

7 3}

The context can be queried for information such as whether reading from or writing
to storage is allowed, or for the set of currently visible symbols. For example, the

implementation of canReadFromStorage may look as follows:

1 bool Context::canReadFromStorage() const {

2 // can't read from storage only in the context of a pure function

3 return ! (this->current_function != nullptr

4 && this->current_function->getStateMutability() == StateMutability::Pure);
5

6.5 Generation Methods

6.5.1 Types, Expressions, and Statements

The generator uses a unified strategy for generating types, expressions, and statements,
as explained in Section 5.2. Each class defines a static generate() method responsible
for producing a node of that type. The method signatures are as follows:

1 static Type *
2 Type::generate(int d, Context &ctx, const TypeContext &type_ctx);

1 static Expression *
Expression::generate(int d, const Type &type,
3 Context &ctx, const ExprContext &expr_ctx);

1 static Statement *
2 Statement::generate(int d, Context &ctx, const StmtContext &stmt_ctx);

All three methods share similar signature patterns:
e int d: Current node depth in the tree. Used to prevent unbounded recursion, as all

three methods are recursive.

92

6.5 Generation Methods

Context &ctx : The context object.

TypeContext : Describes the context in which the generated type is used, as described
in Section 5.3.2.
e ExprContext and StmtContext: Provide additional constraints specific to each
generation category (e.g., whether the expression must be an l-value).
e In the case of expression generation, the const Type &type argument specifies the
type that the expression must resolve to.
e Each method returns the corresponding node if generation was successful; otherwise,
it returns nullptr .
Subclasses implement the corresponding generation methods, which are utilized by the
main generation methods. For example:

1 static BinaryExpression x
BinaryExpression::generate(int d, const Type &type,
3 Context &ctx, const ExprContext &expr_ctx);

1 static IfStatement x
2 IfStatement::generate(int d, Context &ctx, const StmtContext &stmt_ctx);

In addition to Type::generate() , the base Type class declares several virtual methods
for type-directed generation. These must be implemented by all concrete type classes.

Examples of such methods include:

Implicit Conversion Source Generation

1 Type *
2 Type::generateImplicitConversionSource(const Context &ctx,
3 const TypeContext &type_ctx) const = 0;

This method implements the process described in Section 5.4.3. It returns a source type
that is implicitly convertible to xthis .
Type Name Construction

1 TypeName *
2 Type::toTypeName(const ContractDefinition &scope) const = 0;

Returns a TypeName AST node specifying this type within the given contract scope.

Binary Operator Operand Generation

1 std::pair<Type *, Type *>
2 Type::getBinaryOperatorOperands(BinaryOperator op) const = 0;

Returns a pair of operand types such that applying op to them results in a value of this
type.
6.5.2 Source Unit and Declarations

The entry point of generation is the static generate method of the SourceUnit class,

which receives the Solidity version to generate for as a parameter:

1 static SourceUnit SourceUnit::generate(Version version);

93

6.5 Generation Methods

For the process described in Section 5.7, the following methods are required, which are

utilized by the SourceUnit::generate method:
Empty Contract Generation
1 static void SourceUnit::generateEmptyContracts(Context &ctx);
This method creates a list of empty contract definitions and adds them to the context.
Inheritance and Empty Contract Body Elements
1 static void SourceUnit::generateInheritanceAndEmptyContractBodyElements(Context &ctx);

This method iterates over the previously created empty contracts and, for each contract:
e Determines the base contracts that the contract will specify in its inheritance specifier
list, and also which of these contracts will be provided with arguments directly.
e Creates a list of empty contract body elements.

Struct Member Generation

1 static void SourceUnit::generateStructMembers(Context &ctx);
This method traverses the AST and populates struct definitions with members.
Contract Body Element Header Generation

1 static void SourceUnit::generateHeaders(Context &ctx);

This method traverses the AST and completes the headers of a contract’s body elements,
which include the generation of the parameter types for all required declarations (functions,

modifiers, events, etc.), or the generation of the type of a state variable.
Completing Contract Generation
1 static void SourceUnit::generateContent(Context &ctx);

This method traverses the AST and generates the content of a contract, which includes
generating inheritance specifier arguments, the bodies of functions, constructors, modifiers,

etc., and the initializer expression of a state variable.

6.5.3 Implementation Examples

The following examples show how various generation methods might be implemented,

closely following the logic explained in previous sections of the Generation chapter.

94

6.5 Generation Methods

Array Type Generation

ArrayType *
ArrayType::generate(int d, Context &ctx, const TypeContext &type_ctx) {
// select array kind:
Set<ArrayType: :Kind> kinds{ArrayType::Kind::Bytes, ArrayType::Kind::String};
if (!type_ctx.isMappingKey() && d != MAX_TYPE_DEPTH)
kinds.insert(ArrayType::Kind::0rdinary);
ArrayType::Kind kind = kinds.getRandom();

// select data location and bound reference or rebindable pointer:
DatalLocation location;
bool is_pointer;
if (type_ctx.isArrayElement()) {
location = type_ctx.getArrayDatalLocation();
is_pointer = (location != DatalLocation::Storage);
} else if (type_ctx.isMappingKey()) {
location = Datalocation::Memory;
is_pointer = true;
} else if (type_ctx.isMappingValue()) {
location = Datalocation::Storage;
is_pointer = false;
} else if (type_ctx.isFunctionParameterOrReturnType()) {

if (type_ctx.getCallConvention() == CallConvention::Internal) {

location = random<DatalLocation>({
Datalocation::Storage, Datalocation::Memory, Datalocation::Calldata

s

} else {
location = Datalocation::Memory;

}

is_pointer = true;

} else {

assert(false && "unknown type context");

}

if (kind != ArrayType::Kind::0rdinary)
return new ArrayType(location, 1is_pointer, kind == ArrayType::Kind::String);

// generate element type:
TypeContext element_ctx = TypeContext::makeArrayElement(location);
Type *element = Type::generate(d + 1, ctx, element_ctx);

// select static or dynamic:
bool is_static = flipCoin(0.5);

if (dis_static) {

unsigned length = random(1, MAX_ARRAY_LENGTH);

return new ArrayType(location, 1is_pointer, element, length);
} else {

return new ArrayType(location, 1is_pointer, element);

95

© 00 N U AE W N

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

1

S

6.5 Generation Methods

Ordinary Assignment Expression Generation

This method is utilized by AssignmentExpression::generate .

AssignmentExpression *
AssignmentExpression: :generateOrdinary(int d, const Type &type,
Context &ctx, ExprContext &expr_ctx) {
if (d == MAX_EXPR_DEPTH)
return nullptr;

if (expr_ctx.lvalueRequired())
return nullptr;

if (type.isBoundStorageReference()) {
if (type.containsMapping())
return nullptr;
if (!ctx.canWriteToStorage())
return nullptr;

}

ExprContext left_ctx;

left_ctx.setlLvalueRequired();

Expression *left = Expression::generate(d + 1, type, ctx, left_ctx);

TypeContext right_type_ctx = TypeContext::makeExpression();

Type *right_type = type.generateImplicitConversionSource(ctx, right_type_ctx);
Expression *right = Expression::generate(d + 1, *right_type, ctx, ExprContext());

return new AssignmentExpression(AssignmentOperator::Assign, left, right);

Supporting method: containsMapping
bool Type::containsMapping() const = 0;

This method returns whether this type contains a mapping, in one of the two ways
described in Section 5.4.1. For example, the implementation for array types:
bool ArrayType::containsMapping() const {
if (this->kind != Kind::0rdinary)
return false;

return this->getElement().isMapping() || this->getElement().containsMapping();
}

This method will return true for the type:
mapping(bytes32 => bool)[10] storage reference[] storage reference

But will return false for the following type, as it does not contain a mapping in a way

that would require its copying in an assignment.

function (mapping(uint8 => int8)) 1internal view[] storage reference

96

6.5 Generation Methods

Array Type Implicit Conversion Source Generation

1 Type *

2 ArrayType::generateImplicitConversionSource(Context &ctx,

3 const TypeContext &type_ctx) const {
4 if (this->isBoundStorageReference()) {

5 DatalLocation location;

6 bool 1is_pointer;

7

8 if (type_ctx.isArrayElement()) {

9 location = type_ctx.getArrayDatalLocation();

10 is_pointer = (location != Datalocation::Storage);

11 } else {

12 location = random<DatalLocation>({

13 Datalocation::Storage, Datalocation::Memory, Datalocation::Calldata
14 1)

15 is_pointer = (location != DatalLocation::Storage || flipCoin(0.5));
16 }

17

18 TypeContext element_ctx = TypeContext::makeArrayElement(location);
19 Type *element

20 = this->getElement().generateImplicitConversionSource(ctx, element_ctx);
21

22 bool is_static = this->isStatic() || flipCoin(0.5);

23

24 if (dis_static) {

25 unsigned length = random(l, (this->isStatic()

26 ? this->getLength()

27 : MAX_ARRAY_LENGTH)) ;

28 return new ArrayType(location, 1is_pointer, element, length);

29 } else {

30 return new ArrayType(location, 1is_pointer, element);

31 1

32 }

33

34 if (this->isRebindableStoragePointer()) {

35 // It should be allowed to use either a rebindable pointer or a bound
36 // reference without restrictions, as neither case reads from storage.
37 bool is_pointer = !ctx.canReadFromStorage() || flipCoin(0.5);

38 return this->copyTolLocation(DatalLocation::Storage, is_pointer);

39 }

40

41 if (this->getDatalocation() == Datalocation::Memory) {

42 DataLocation location;

43 bool is_pointer;

44

45 if (type_ctx.isArrayElement()) {

46 location = type_ctx.getArrayDatalLocation();

a7 is_pointer = (location != DatalLocation::Storage);

48 } else {

49 Set<Datalocation> candidate_locations({

50 DatalLocation::Memory, DatalLocation::Calldata

51 53

52 if (ctx.canReadFromStorage())

53 candidate_locations.insert(DatalLocation: :Storage);

54 location = candidate_locations.getRandom();

55 is_pointer = (location != Datalocation::Storage || flipCoin(0.5));
56 }

57

58 return this->copyToLocation(location, 1is_pointer);

59 1

60

61 if (this->getDatalLocation() == Datalocation::Calldata) {

62 return this->clone();

63 }

64

65 assert(false && "unreachable");

66 }

97

6.5 Generation Methods

In contrast to the process described in Section 5.4.3, the code additionally considers the
type context of the generated type. Since this process is recursive, the generated type may
be used in one of two contexts:

o As the standalone type of an expression (i.e., not nested within another type), or

e As an array element for an array of a known data location.
This distinction is necessary to prevent nested implicit conversions from producing

ill-formed types in the context in which they are used.

Supporting Method: copyToLocation

1 ReferenceType *
2 ReferenceType::copyTolLocation(DataLocation location, bool {is_pointer) const = 0;

This method recursively copies the reference type to a new location. It is used, for instance,

to “relocate” a memory array to storage or calldata. For example, if:
Tl = int[] memory[] memory

Then:

1 Tl.copyTolLocation(DatalLocation::Storage, /*is_pointer=+/true)
produces:

int[] storage reference[] storage pointer

98

Chapter 7

Evaluation

In this chapter, we evaluate SolGen in terms of its code coverage and its effectiveness in
uncovering compiler bugs. Section 7.1 reports coverage, and Section 7.2 presents discovered

bugs.

7.1 Code Coverage

Code coverage is a common metric used to evaluate how thoroughly a test suite exercises
a software application’s source code. While it does not guarantee the absence of bugs,
it serves as a general indicator of test quality and thoroughness. Coverage is typically
expressed as a percentage of tested items over the total, and while there is no ideal
code coverage number that universally applies to all software, Google provides general
guidelines: 60% as acceptable, 75% as commendable, and 90% as ezemplary [32]. Common
types of coverage metrics include line, function, and branch coverage, which assess the
execution of code lines, functions, and decision branches, respectively. Path coverage,
which measures the proportion of all possible execution paths tested, is theoretically the
most comprehensive metric. However, it is generally impractical, as loops and recursion
introduce an infinite number of possible paths, and even when loop iterations are bounded,

the total number of paths remains infeasibly large.

7.1.1 Setup

We built solc version 0.5.0 with coverage instrumentation enabled. To collect coverage
data, we compiled 1000 SolGen-generated test cases using the default invocation
solc testcase.sol without any additional compiler flags. Since the front-end is always
executed, this is sufficient to evaluate its coverage. Back-end components, which require
explicit flags, were not the focus of this analysis. We used lcov! and genhtml (which is

part of lcov) to generate coverage reports.

We are interested in the coverage of the compiler’s front-end, which includes lexical

"https://github.com/linux-test-project /lcov

99

https://github.com/linux-test-project/lcov

7.1 Code Coverage

analysis, syntactic analysis, and semantic analysis. This portion of the compiler is

illustrated in Figure 7.1, shown within the dotted lines.

Char Stream
(Source)

next() Token

] d Code EVM
p AST Anal annotate i -

Figure 7.1: Coverage-measured parts

Lexer

Files analyzed:

From Ulibsolidity/parsing: Scanner.cpp / h

Total Hit Coverage
Lines 559 371 66.4%
Functions 74 60 81.1%
Branches 708 292 41.2%

Table 7.1: Coverage of the lexer

Parser

Files analyzed:

From libsolidity/parsing: Parser.cpp / h , ParserBase.cpp / h

Total Hit Coverage
Lines 1148 972 84.7%
Functions 143 133 93.0%
Branches 2716 992 36.5%

Table 7.2: Coverage of the parser

100

7.1 Code Coverage

Semantic Analyzer

Files analyzed:

From 1libsolidity/ast: ASTAnnotations.cpp / h, ASTVisitor.h, AST_accept.h,
Types.cpp / h

From 1ibsolidity/analysis: all except DocStringAnalyser.cpp /h, which handles

analysis of documentation strings, and SemVerHandler.cpp / h, which handles semantic

versioning.
Total Hit Coverage
Lines 6312 4186 66.3%
Functions 1215 926 76.2%
Branches 14463 4103 28.4%

Table 7.3: Coverage of the semantic analyzer

Discussion

Among the three components, the parser achieves the highest coverage, followed by the

lexer, and then the semantic analyzer.

Lexical and syntactic coverage are generally easier to achieve than semantic coverage.
A single syntax rule may have multiple semantic interpretations based on context. For
example, the production <expr> > <identifier-expr> may be covered when referencing
a unique declaration (such as a variable or function), but not for cases involving
overloaded functions, which require separate semantic handling. Similarly, the production
<expr> > <expr> ‘=’ <expr> can represent various kinds of assignments depending on

operand types, each with distinct semantic behavior.

Interestingly, the parser achieves higher coverage than the lexer. This may seem
counterintuitive, but is explainable: lexical analysis includes handling of non-semantic
elements such as comments, documentation comments, Unicode literals, and escape
sequences. For example, although not difficult to implement, SolGen currently does not
generate variants such as 0x01 ; it only emits decimal literals (e.g., 1). These omissions

impact the lexer’s coverage, but have limited semantic importance.

Line and function coverage are significantly higher than branch coverage. This is
expected—branch coverage is more challenging due to control flow complexity. Moreover,
the compiler front-end includes many branches that represent invalid execution paths,
which SolGen does not attempt to generate. Such branches are, by definition, never

taken.

101

7.1 Code Coverage

7.1.2 Coverage Saturation Point

To determine how many test cases are needed to reach near-maximal coverage, we
measured the incremental increase in coverage for the semantic analyzer as the number
of test cases increased from 100 to 1000. This component is the most complex among the
three, and its coverage grows more gradually. In contrast, the lexer and parser reach their
maximum coverage relatively early—often within the first few hundred test cases—and

are therefore excluded from this analysis.

Figures 7.2, 7.3, and 7.4 illustrate the evolution of line, function, and branch coverage in

the semantic analyzer, based on the number of test cases used.

66.6

66.4 - 66.366.3 66.3 66.3 66.3
66.2

66
65.8

65.6

Line Coverage (%)

65.4 -

65.2

100 200 300 400 500 600 700 800 900 1000
Number of Test Cases

Figure 7.2: Incremental line coverage of the semantic analyzer

76.4 - :

76.276.276.276.276.2
762 76.1

76

76

75.975.9
75.8

75.6

Function Coverage (%)

75.4

75.2
100 200 300 400 500 600 700 800 900 1000

Number of Test Cases

Figure 7.3: Incremental function coverage of the semantic analyzer

102

7.1 Code Coverage

28.6 - 4

28.4 28.4
2841 28.328.328.3 i

28.228.2
28.2 8.228

28

27.8

Branch Coverage (%)

27.6

27.4

100 200 300 400 500 600 700 800 900 1000
Number of Test Cases

Figure 7.4: Incremental branch coverage of the semantic analyzer

We observe that the rate of coverage improvement slows down significantly after around
600 test cases, with only minor gains beyond that point. By the time we reach 1000 test
cases, the coverage levels plateau at approximately:

e 66.3% for lines,

e 76.2% for functions, and

o 28.4% for branches.
Therefore, we consider 1000 test cases sufficient for capturing the majority of coverage

possible with the current generator.

7.1.3 Comparison with the compiler's test suite

The Solidity compiler’s test suite includes a variety of tests, including a large set of syntax
tests. These syntax tests are not designed to be executed; instead, they focus on checking
whether the compiler correctly accepts or rejects source code based on its syntactic and
semantic validity. Importantly, they include both valid and invalid test cases. For our
analysis, we consider only the valid ones—that is, those that the compiler is expected to
accept. These test cases were extracted using a Python script and are typically small and
focused, each targeting a specific language feature such as implicit type conversions or

operations on particular types.

103

N O gk W N

7.1 Code Coverage

Example Test Cases

implicit_conversion_from_storage_array_ref.sol

contract C {
int[10] x;
int[] y;
function f() public {
y = X3
}
}

index_access_for_bytes.sol

contract C {
bytes20 x;

function f(bytesl6 b) public view {
bluint8(x[2])]1;
}
}

external_function_type_public_variable.sol

contract C {
function (uint) external public x;

function g(uint) public {
x = this.g;
}
function f() public view returns (function (uint) external) {
return this.x();
}
}

It should be noted that this test suite is not intended to provide comprehensive standalone

coverage, but rather to provide regression testing for known behavior.

To evaluate how SolGen complements the existing test suite, we compiled all valid compiler
test cases using the instrumented compiler and extracted their corresponding coverage

reports.

The goal of the following comparison is to determine whether SolGen is capable of
generating code constructs that the compiler’s own tests do not cover, and vice versa. To

do this systematically, we perform a set-based comparison of the coverage data.

Set-Based Comparison

From the Icov coverage reports, we extracted:
e generator_covered : Set of elements executed by SolGen-generated tests
e compiler_covered : Set of elements executed by the compiler’s test suite
e all_instrumented : Set of all elements tracked by coverage instrumentation

Using these, we define the following:

e executed_by_both = generator_covered (N compiler_covered
e only_in_generator = generator_covered \ compiler_covered
e only_in_compiler = compiler_covered \ generator_covered

104

7.1 Code Coverage

e not_covered_by_any = all_instrumented — (generator_covered U
compiler_covered)

Our primary interest lies in the only_in_generator and only_in_compiler sets. These

represent code elements that are uniquely covered by one source but not the other, and

therefore directly measure the complementarity between SolGen and the existing test suite.

If only_in_generator is non-trivial, it indicates that SolGen is capable of generating

constructs that exercise parts of the compiler otherwise untouched by manual tests—a

key goal of this evaluation.

Lexer
Total Hit Hit Hit Hit
(generator) (compiler) (only generator) (only compiler)
Lines 559 371 (66.4%) 447 (80.0%) 13 (2.3%) 89 (15.9%)
Functions 74 60 (81.1%) 66 (89.2%) 0 (0.0%) 6 (8.1%)
Branches 708 292 (41.2%) 362 (51.1%) 15 (2.1%) 85 (12.0%)
Table 7.4: Lexer coverage between SolGen and the compiler’s test suite
Parser
Total Hit Hit Hit Hit
(generator) (compiler) (only generator) (only compiler)
Lines 1148 972 (84.7%) 997 (86.8%) 2 (0.2%) 27 (2.4%)
Functions 143 133 (93.0%) 136 (95.1%) 0 (0.0%) 3 (2.1%)
Branches 2716 992 (36.5%) 1022 (37.6%) 7 (0.3%) 37 (1.4%)

Table 7.5: Parser coverage between SolGen and the compiler’s test suite

Semantic Analyzer

Total Hit Hit Hit Hit
(generator) (compiler) (only generator) (only compiler)
Lines 6312 4186 (66.3%) 4860 (77.0%) 97 (1.5%) 771 (12.2%)
Functions 1215 926 (76.2%) 1009 (83.0%) 14 (1.2%) 97 (8.0%)

Branches 14463 4103 (28.4%) 5161 (35.7%) 210 (1.5%) 1286 (8.8%)

Table 7.6: Semantic analyzer coverage between SolGen and the compiler’s test suite

The compiler’s test suite achieves broader coverage overall across lines, functions, and

branches. Our generator adds some unique coverage, but this exclusive coverage remains

105

7.2 Bugs Discovered

limited.

This reflects the current limitations of our generator—mostly due to missing language
features—rather than random program generation in general. While it provides some
complementary value, most code paths are already exercised by the compiler’s tests.

Improving the generator could help reveal more uncovered areas.

However, as we will discuss in the bugs section, coverage metrics may not fully capture
the generator’s contribution to bug finding, where variations in path coverage—exploring

different input scenarios along the same code paths—can still be valuable.

7.2 Bugs Discovered

SolGen was able to identify a number of bugs throughout all solc versions starting from
version 0.5.0, 18 of which were found in solc versions > 0.7.0. Table 7.7 shows all
previously-unknown bugs that we reported. Most of these are regression bugs introduced
in the latest versions of solc. In our reports, we provided a minimal reproducible example
(MRE) that triggers the bug rather than the SolGen-generated test cases. Other bugs
we encountered were already known to the Solidity developers, most of which have been

fixed.

Bug Category URL Status
Invalid Diagnostic | https://github.com/argotorg/solidity /issues/14624 | fixed
ICE https://github.com/argotorg/solidity /issues/14792 | fixed
ICE https://github.com/argotorg/solidity/issues/14929 | fixed
ICE https://github.com/argotorg/solidity/issues/14959 | fixed
ICE https://github.com/argotorg/solidity/issues/15308 | fixed
ICE https://github.com/argotorg/solidity/issues/16223 | pending
ICE https://github.com/argotorg/solidity/issues/16225 | pending
Segfault https://github.com/argotorg/solidity/issues/16226 | pending

Table 7.7: References of discovered previously-unknown bugs

Bug in the Parser. Since Solidity 0.5.0, the unary plus operator has been disallowed.
This restriction was originally enforced during analysis, but starting in version 0.8.20, it
was moved to the parsing stage. However, the new check was incorrectly implemented,
causing valid syntax to be rejected. In the example below, the parser misinterprets the
+ as unary instead of binary when the expression is used as a standalone statement and

rejects it. This bug was fixed in version 0.8.27 (see PR #15315).

1 function f() pure {
2 (0) + 1;
3 1

106

https://github.com/argotorg/solidity/issues/14624
https://github.com/argotorg/solidity/issues/14792
https://github.com/argotorg/solidity/issues/14929
https://github.com/argotorg/solidity/issues/14959
https://github.com/argotorg/solidity/issues/15308
https://github.com/argotorg/solidity/issues/16223
https://github.com/argotorg/solidity/issues/16225
https://github.com/argotorg/solidity/issues/16226
https://github.com/ethereum/solidity/pull/15315

7.2 Bugs Discovered

Bug in the Type Checker. Solidity 0.8.8 introduced user-defined value types as zero-cost
abstractions over elementary types, improving type safety and readability. Solidity
also allows forward references to file-level symbols. When arrays or structs containing
user-defined value types were used before the type’s declaration, as in the example below,

an ICE was triggered. This bug was fixed in version 0.8.10 (see PR #12186).

1 contract C {

2 T[] v;

3}

4

5 type T 1is bool;

Bug in the SMTChecker. solc includes a formal verification module called the
SMTChecker, which must be explicitly enabled. When analyzing the program below
using the CHC (Constrained Horn Clauses) engine, it triggered an ICE. The crash occurs
when the operands of a ternary operator are expressions of the empty tuple type—either
as empty tuple literals, as shown here, or more complex expressions. This bug was fixed
in version 0.8.26 (see PR #15025).

1 contract C {

2 function f() public pure {
3 true 2 () : (O3

4 }

5 1}

Bug in the Code Generator. While SolGen cannot verify the correctness of the code
generator, some issues are detectable at compile-time. The program below triggers an
ICE in solc versions < 0.8.1. Here, f is a local variable of function type, and it is called
with an argument of a function type that is implicitly convertible but not identical— f
expects a view function, but receives a pure one. An assertion in the back-end was too
strict and failed to account for this case, causing the crash. This bug was fixed in version
0.8.2 (see PR #10959).

1 contract C {

2 function h() public view {

3 function () external pure g;

4 function (function () external view) external pure f;
5 f(g);

6 }

7}

The test cases generated by SolGen are similar in structure and purpose to the syntactic
tests in the Solidity compiler’s test suite. The compiler already includes an extensive set
of test cases covering both valid and invalid programs. However, our tool provides a way
to generate such test cases automatically and at scale, without requiring manual effort or
introducing developer bias. This improves efficiency by eliminating the need to write test
cases by hand, and increases bug-finding potential, as manually written tests often fail
to exhaustively cover all relevant edge cases. For example, the SMTChecker previously
failed to handle some assignments between arrays when the element types were implicitly

convertible but not identical. Consider the case for function types:

107

https://github.com/ethereum/solidity/pull/12186
https://github.com/ethereum/solidity/pull/15025
https://github.com/ethereum/solidity/pull/10959

7.2 Bugs Discovered

contract C {
function () internal view[] v1;
function () internal pure[] v2;

function f() public {
vl = v2;
}
}

This was fixed in version 0.8.27 (see PR #15322) for function and contract types, and

corresponding regression tests were added. However, SolGen later found that the same

W N O O e W N =

issue remained unaddressed for address types:

contract C {
address[] v1;
address payable[] v2;

function f() public {
vl = v2;
}
}

[o I e R I

In this example, the type of v2 is implicitly convertible to the type of vi1 because

address payable is implicitly convertible to address .

This was fixed later, in version 0.8.28 (see PR #15420). This shows how manually
writing test cases can overlook variations of the same core problem. In contrast, a
random program generator systematically explores a broader and less biased subset of
the input space, increasing the chances of revealing such missed edge cases. As noted
earlier with coverage, while the compiler may include test cases for implicit conversions
between address types—and this does reflect in coverage reports—it does not cover cases
where the conversion occurs in the context of an array’s element type, leading to unhandled

edge cases. This limitation is not revealed by coverage reports.

During our test run, we noticed a recurring pattern: compiler bugs often arise in newly
introduced language features and tend to hide in untested or rarely used parts of the
language. Consider the two programs below. Both trigger an ICE in the latest version of
solc (0.8.30 as of this writing).

1 contract C { 1 type T is bool;

2 function f(S[10] calldata) internal { } 2

3} 3 library L {

4 4 function f(T[] storage p) external { }
5 struct S { 5 }

6 function () internal pure m;

7}

In the first program, the issue is related to having static arrays of structs that contain an
internal function type in calldata . While such types are valid, they are effectively useless
in calldata: only external calls can populate calldata, and external calls cannot pass
types that contain internal function types. As a result, this corner case remained untested.
Furthermore, both bugs were introduced alongside new language features: the first with
calldata parameters for internal functions (introduced in version 0.6.9) and the second
with user-defined value types (introduced in version 0.8.8). These examples support the

broader observation that new features are particularly prone to bugs, especially when their

108

https://github.com/ethereum/solidity/pull/15322
https://github.com/ethereum/solidity/pull/15420

7.2 Bugs Discovered

interactions with less common language constructs are not thoroughly tested.

Regarding the importance of the discovered bugs, while compiler crashes—particularly
those triggered by invalid input—are generally not treated as high-priority issues, they
still reveal weaknesses in the compiler’s reliability. High-priority bugs are typically those
that lead to incorrect program behavior, runtime failures, or security vulnerabilities. The
bugs we discovered often involve specific edge cases that are unlikely to occur in typical,
hand-written code. Nevertheless, the compiler should be able to handle them properly,
especially given that the inputs are valid programs. We argue that identifying such issues
contributes to the overall quality, reliability, and maintainability of the Solidity compiler’s

codebase.

109

© 00 N O U AE W N

Chapter 8

Conclusion and Future Work

In this thesis, we presented SolGen, a generator of semantically correct Solidity programs.
We evaluated its effectiveness in terms of compiler code coverage and its ability to uncover
bugs. As shown in Chapter 7, the achieved code coverage was decent, but not outstanding,
and the generation of currently unsupported language constructs is required. SolGen
discovered several bugs—primarily compiler crashes—across versions of solc starting from
version 0.5.0. Of these, eight were previously unknown bugs and were reported to the

Solidity developers.

8.1 Difficulties and Delimitations

We previously described the generation process as the reverse of what a compiler front-end
does. However, in practice, it is often easier for the compiler to check whether certain
restrictions apply than it is for a generator to enforce them during generation. One example
of this is function overloading. In Solidity, a contract can define multiple functions with the
same name as long as their parameter types differ. For public and external functions,
which are part of the contract’s interface, their parameter types must differ not only in
terms of Solidity types but also in terms of their external (ABI) types. This is shown in
the example below:

contract C {
function f(address) private { }
// this 1is allowed
function f(C) internal { }

function g(address) public { }
// error
function g(C) external { }

}

Here, f’s overloads are valid but g’s are not, as both address types and contract types
map to address types in the ABI and thus the signatures of these two functions do not
differ in the ABI.

The way overload resolution works is by comparing the types of the provided arguments

against all overloads to find a list of candidate functions. A function is considered a

110

8.1 Difficulties and Delimitations

candidate if all arguments can be implicitly converted to its parameter types. Resolution
succeeds only if exactly one match is found. In the example below, overload resolution
fails in the first call because both overloads are valid, as the type of the argument -int8
is implicitly convertible to both int8 and -intie . However, overload resolution succeeds

in the second call as the argument type int16 is implicitly convertible only to {inti6 .

contract C {
function f(int8) dinternal pure { }
function f(intl6) dinternal pure { }
function g() public pure {
// error
f(int8(127));

// this 1is allowed
f(intl6(128));
}
}

This is straightforward for the compiler to implement as a type-checking step. The
reverse process—generating argument types that are implicitly convertible to exactly one
overload and not to any others—is significantly harder in the general case, especially when
conversion rules overlap. This reflects a broader asymmetry: while a compiler can verify
multiple constraints independently and incrementally, a generator must satisfy all of them

simultaneously during synthesis.

A related example lies in the compiler’s ability to perform multiple passes over the
AST, each dedicated to a distinct concern. For instance, the Solidity compiler performs
type checking in one traversal (via the TypeChecker visitor) and enforces pure / view
restrictions in a separate pass (via the ViewPureChecker visitor). In contrast, a generator

must handle type correctness and mutability constraints in a single forward pass.

A delimitation of this generator is its inability to generate programs that are free of
undefined behavior and independent of unspecified behavior at runtime. As a result, even
if solc miscompiles a generated program, we are unable to automatically detect this—for
example, via differential testing. Generating such programs, especially for Solidity, is
not a trivial task and was left outside the scope of this thesis. A common problem is
avoiding unspecified behavior in the order of evaluation of expressions [33], such as with
the arguments of a binary operator or a function call, where complex code-generation-time
approaches would be required. Figure 8.1 shows a simple example of unspecified behavior

in a Solidity program that we would need to avoid.

contract C {
function f() public pure returns (int) {
int x = 03
(x = 1) + (x = 2);
return x; // value of x 1is implementation-dependent
}
}

Figure 8.1: Example of unspecified behavior in a Solidity program

111

8.2 Future Work

8.2 Future Work

Our goal is to focus on the latest released Solidity version and extend SolGen to generate
currently unsupported language constructs, in order to increase compiler code coverage
and potentially uncover previously unknown bugs. The main language constructs currently
unimplemented are:

o function overriding

o function overloading

o inline assembly

o fixed-point numbers and types, mainly because they are mostly unimplemented by

solc itself.

The process described in Section 5.7 currently supports only unique identifiers and does not
account for more complex symbol resolution features such as function overriding, function
overloading, or symbol shadowing. To support these features, the symbol generation

mechanism must be extended.

For example, when creating a new symbol in a given scope, if that symbol corresponds to
a function definition, we may choose to reuse an existing function name from the current
scope to create an overloaded version. This would require either changing the number
of parameters or, if the parameter count remains the same, ensuring that at least one
parameter type differs between the two signatures. Supporting this behavior in the general
case (for an arbitrary number of overloads, not just two) necessitates improvements to the
current Type::generate method, as its design becomes increasingly unsustainable when

type generation must respect such context-sensitive constraints.

A more scalable alternative that is currently under development is the introduction
of a type pool. Types are generated bottom-up: we begin by inserting simple leaf
types (of depth 0) such as int32, bool, address, and bytes memory into the pool.
These types are then used to construct composite types, which are recursively added
back into the pool. For instance, we might create types like bytes memory[] memory ,
mapping(int32 => bool) , or address[42] storage reference, and use these as
building blocks for more complex types. This approach enables the construction of a
reusable pool of types, which can be filtered based on constraints at the point of use. This
is a significantly cleaner and more flexible alternative to the current Type::generate
method.

Another area in need of improvement is the generation of expressions. At present, the
type passed to Expression::generate is generated without considering the broader
context, leading to a high rate of discarded or unusable expressions. This results in
unused declarations—particularly for function parameters and return parameters—which
are fixed and cannot be modified without breaking consistency elsewhere. While directed
generation remains useful in contexts where expression generation must succeed (e.g.,

inheritance specifiers), it should not be the sole mechanism relied upon. A more balanced

112

8.2 Future Work

and context-aware generation strategy is needed to ensure better utilization of available

symbols and types.

Solidity is a relatively new programming language with ongoing changes and new features,
such as a more powerful type system currently under development, which leave plenty of
room for improvement in the codebase of solc and we hope that SolGen can contribute to

this effort.

113

References

[10]

Haoyang Ma. A Survey of Modern Compiler Fuzzing. 2023. DOI: 10.48550/ARXIV.
2306.06884. URL: https://arxiv.org/abs/2306.06884.

Xavier Leroy. “Formal verification of a realistic compiler.” In: Communications of
the ACM 52.7 (July 2009), pp. 107-115. DOI: 10.1145/1538788.1538814. URL:
http://dx.doi.org/10.1145/1538788.1538814.

Solidity Documentation. Solidity. URL: https: / / soliditylang . org/ (visited on
09/25/2025).

Alex Groce. afl-compiler-fuzzer. GitHub repository. GitHub. URL: https://github.
com/agroce/afl-compiler-fuzzer (visited on 07/14/2025).

Solidity Contributors. Running the fuzzer via AFL. Solidity Documentation. 2019.
URL: https://docs.soliditylang.org/en /v0.5.10/contributing. html#running- the-
fuzzer-via-afl (visited on 07/14/2025).

Alex Groce, Rijnard van Tonder, Goutamkumar Tulajappa Kalburgi, and Claire
Le Goues. “Making no-fuss compiler fuzzing effective.” In: Proceedings of the 31st
ACM SIGPLAN International Conference on Compiler Construction. CC ’22. ACM,
Mar. 2022, pp. 194-204. DOI: 10.1145/3497776.3517765. URL: http://dx.doi.org/
10.1145/3497776.3517765.

Charalambos Mitropoulos, Thodoris Sotiropoulos, Sotiris Ioannidis, and
Dimitris Mitropoulos. “Syntax-Aware Mutation for Testing the Solidity Compiler.”
In: Computer Security - ESORICS 2023. Springer Nature Switzerland,
2024, pp. 327-347. DOIL: 10.1007 /978 - 3- 031 - 51479-1 17. URL: http :
//dx.doi.org/10.1007/978-3-031-51479-1_17.

Solidity Contributors. An Introduction to Solidity’s Fuzz Testing Approach. Solidity
Blog. Feb. 10, 2021. URL: https:/ /soliditylang . org / blog /2021 /02 / 10 / an -
introduction-to-soliditys-fuzz-testing-approach/ (visited on 07/14/2025).

Arpan Thaman. How We Test the Compiler Backend. Microsoft DevBlogs. Sept. 18,
2019. URL: https://devblogs.microsoft.com /cppblog /how- we- test-the- compiler-
backend/ (visited on 07/14/2025).

Barton P. Miller, Lars Fredriksen, and Bryan So. “An empirical study of the
reliability of UNIX utilities.” In: Communications of the ACM 33.12 (Dec. 1990),
pp. 32-44. DOI: 10.1145/96267.96279. URL: http://dx.doi.org/10.1145/96267.
96279.

114

https://doi.org/10.48550/ARXIV.2306.06884
https://doi.org/10.48550/ARXIV.2306.06884
https://arxiv.org/abs/2306.06884
https://doi.org/10.1145/1538788.1538814
http://dx.doi.org/10.1145/1538788.1538814
https://soliditylang.org/
https://github.com/agroce/afl-compiler-fuzzer
https://github.com/agroce/afl-compiler-fuzzer
https://docs.soliditylang.org/en/v0.5.10/contributing.html#running-the-fuzzer-via-afl
https://docs.soliditylang.org/en/v0.5.10/contributing.html#running-the-fuzzer-via-afl
https://doi.org/10.1145/3497776.3517765
http://dx.doi.org/10.1145/3497776.3517765
http://dx.doi.org/10.1145/3497776.3517765
https://doi.org/10.1007/978-3-031-51479-1_17
http://dx.doi.org/10.1007/978-3-031-51479-1_17
http://dx.doi.org/10.1007/978-3-031-51479-1_17
https://soliditylang.org/blog/2021/02/10/an-introduction-to-soliditys-fuzz-testing-approach/
https://soliditylang.org/blog/2021/02/10/an-introduction-to-soliditys-fuzz-testing-approach/
https://devblogs.microsoft.com/cppblog/how-we-test-the-compiler-backend/
https://devblogs.microsoft.com/cppblog/how-we-test-the-compiler-backend/
https://doi.org/10.1145/96267.96279
http://dx.doi.org/10.1145/96267.96279
http://dx.doi.org/10.1145/96267.96279

References

[11]

[12]

[13]

[14]

[15]

[20]

[21]

[22]

23]

Chen Chen, Baojiang Cui, Jinxin Ma, Runpu Wu, Jianchao Guo, and Wengian Liu.
“A systematic review of fuzzing techniques.” In: Computers € Security 75 (June
2018), pp. 118-137. DOI: 10.1016/j.cose.2018.02.002. URL: http://dx.doi.org/10.
1016/j.cose.2018.02.002.

Wikipedia contributors. Fuzzing. Wikipedia, The Free Encyclopedia. URL: https:
//en.wikipedia.org/wiki/Fuzzing (visited on 07/14/2025).

Tsong Yueh Chen, Shing-Chi Cheung, and Siu-Ming Yiu. Metamorphic Testing: A
New Approach for Generating Next Test Cases. 2020. DOI: 10.48550/ ARXIV.2002.
12543. URL: https://arxiv.org/abs/2002.12543.

Vu Le, Mehrdad Afshari, and Zhendong Su. “Compiler validation via equivalence
modulo inputs.” In: ACM SIGPLAN Notices 49.6 (June 2014), pp. 216-226. DOI:
10.1145/2666356.2594334. URL: http://dx.doi.org/10.1145,/2666356.2594334.
William M. McKeeman. “Differential Testing for Software.” In: Digital Technical
Journal 10.1 (Dec. 1998), pp. 100-107. URL: https:// www . cs.swarthmore .
edu /~bylvisal /cs97 / f13 / Papers / Differential TestingForSoftware . pdf (visited on
09/25/2025).

Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. “Finding and understanding
bugs in C compilers.” In: ACM SIGPLAN Notices 46.6 (June 2011), pp. 283-294.
DOI: 10.1145/1993316.1993532. URL: http://dx.doi.org/10.1145/1993316.1993532.
How to submit an LLVM bug report. LLVM Project. URL: https://llvm.org/docs/
HowToSubmitABug.html (visited on 09/25/2025).

John Regehr, Yang Chen, Pascal Cuoq, Eric Eide, Chucky Ellison, and Xuejun Yang.
“Test-case reduction for C compiler bugs.” In: ACM SIGPLAN Notices 47.6 (June
2012), pp. 335-346. DOI: 10.1145/2345156.2254104. URL: http://dx.doi.org/10.
1145/2345156.2254104.

Andreas Zeller. “Yesterday, my program worked. Today, it does not. Why?” In:
ACM SIGSOFT Software Engineering Notes 24.6 (Oct. 1999), pp. 253-267. DOI:
10.1145/318774.318946. URL: http://dx.doi.org/10.1145/318774.318946.

Michal Zalewski. american fuzzy lop (AFL). https:/ /lcamtuf.coredump.cx /afl/.
Greybox fuzzer with compile-time instrumentation and coverage-guided mutation.
2014.

Kostya Serebryany. LibFuzzer: A Library for Coverage-Guided Fuzz Testing. https://
llvm.org/docs/LibFuzzer.html. In-process, coverage-guided fuzzer for LLVM-based
targets. 2015.

Christian Holler, Kim Herzig, and Andreas Zeller. “Fuzzing with Code Fragments:
Finding Bugs in JavaScript Engines.” In: Proceedings of the 21st USENIX Security
Symposium (USENIX Security 12). Bellevue, WA, USA: USENIX Association, 2012,
pp. 445-458. DOI: 10.5555/2362793.2362831. URL: https://dl.acm.org/doi/10.
5555/2362793.2362831.

Richard Rutledge, Sunjae Park, Haider Khan, Alessandro Orso, Milos Prvulovic,
and Alenka Zajic. “Zero-Overhead Path Prediction with Progressive Symbolic

115

https://doi.org/10.1016/j.cose.2018.02.002
http://dx.doi.org/10.1016/j.cose.2018.02.002
http://dx.doi.org/10.1016/j.cose.2018.02.002
https://en.wikipedia.org/wiki/Fuzzing
https://en.wikipedia.org/wiki/Fuzzing
https://doi.org/10.48550/ARXIV.2002.12543
https://doi.org/10.48550/ARXIV.2002.12543
https://arxiv.org/abs/2002.12543
https://doi.org/10.1145/2666356.2594334
http://dx.doi.org/10.1145/2666356.2594334
https://www.cs.swarthmore.edu/~bylvisa1/cs97/f13/Papers/DifferentialTestingForSoftware.pdf
https://www.cs.swarthmore.edu/~bylvisa1/cs97/f13/Papers/DifferentialTestingForSoftware.pdf
https://doi.org/10.1145/1993316.1993532
http://dx.doi.org/10.1145/1993316.1993532
https://llvm.org/docs/HowToSubmitABug.html
https://llvm.org/docs/HowToSubmitABug.html
https://doi.org/10.1145/2345156.2254104
http://dx.doi.org/10.1145/2345156.2254104
http://dx.doi.org/10.1145/2345156.2254104
https://doi.org/10.1145/318774.318946
http://dx.doi.org/10.1145/318774.318946
https://lcamtuf.coredump.cx/afl/
https://llvm.org/docs/LibFuzzer.html
https://llvm.org/docs/LibFuzzer.html
https://doi.org/10.5555/2362793.2362831
https://dl.acm.org/doi/10.5555/2362793.2362831
https://dl.acm.org/doi/10.5555/2362793.2362831

References

[24]

[26]

[27]

28]

[29]

Execution.” In: 2019 IEEE/ACM jl1st International Conference on Software
Engineering (ICSE). IEEE, May 2019, pp. 234-245. DOI: 10.1109/icse.2019.00039.
URL: http://dx.doi.org/10.1109/ICSE.2019.00039.

Vu Le, Chengnian Sun, and Zhendong Su. “Finding deep compiler bugs via guided
stochastic program mutation.” In: ACM SIGPLAN Notices 50.10 (Oct. 2015),
pp. 386-399. DOI: 10.1145/2858965.2814319. URL: http://dx.doi.org/10.1145/
2858965.2814319.

Chengnian Sun, Vu Le, and Zhendong Su. “Finding compiler bugs via live code
mutation.” In: Proceedings of the 2016 ACM SIGPLAN International Conference
on Object-Oriented Programming, Systems, Languages, and Applications. SPLASH
'16. ACM, Oct. 2016, pp. 849-863. DOI: 10.1145/2983990.2984038. URL: http:
//dx.doi.org/10.1145/2983990.2984038.

Cornelius Aschermann, Tommaso Frassetto, Thorsten Holz, Patrick Jauernig,
Ahmad-Reza Sadeghi, and Daniel Teuchert. “Nautilus: Fishing for Deep Bugs
with Grammars.” In: Proceedings of the Network and Distributed System Security
(NDSS) Symposium. Internet Society. San Diego, CA, USA, Feb. 2019. URL:
https://www.ndss-symposium.org/ndss-paper /nautilus-fishing-for-deep-bugs-with-
grammars/.

Phillip van Heerden, Moeketsi Raselimo, Konstantinos Sagonas, and Bernd Fischer.
“Grammar-based testing for little languages: an experience report with student
compilers.” In: Proceedings of the 13th ACM SIGPLAN International Conference
on Software Language Engineering. SPLASH 20. ACM, Nov. 2020, pp. 253-269.
DOI: 10.1145/3426425.3426946. URL: http://dx.doi.org/10.1145/3426425.3426946.
Fitsum Meshesha Kifetew, Roberto Tiella, and Paolo Tonella. “Generating
valid grammar-based test inputs by means of genetic programming and annotated
grammars.” In: Empirical Software Engineering 22.2 (Jan. 2016), pp. 928-961. DOI:
10.1007/s10664-015-9422-4. URL: http://dx.doi.org/10.1007/s10664-015-9422-4.
Sepideh Maleki, Annie Yang, and Martin Burtscher. “Higher-order and tuple-based
massively-parallel prefix sums.” In: Proceedings of the 37th ACM SIGPLAN
Conference on Programming Language Design and Implementation. PLDI
'16. ACM, June 2016, pp. 539-552. DOIL: 10 . 1145 /2908080 . 2908089. URL:
http://dx.doi.org/10.1145/2908080.2908089.

Christopher Lidbury, Andrei Lascu, Nathan Chong, and Alastair F. Donaldson.
“Many-core compiler fuzzing” In: Proceedings of the 36th ACM SIGPLAN
Conference on Programming Language Design and Implementation. PLDI
'15. ACM, June 2015, pp. 65-76. DOI: 10 . 1145 / 2737924 . 2737986. URL:
http://dx.doi.org/10.1145/2737924.2737986.

Koen Claessen and John Hughes. “QuickCheck: a lightweight tool for random testing
of Haskell programs.” In: Proceedings of the fifth ACM SIGPLAN international
conference on Functional programming. ICFP00. ACM, Sept. 2000, pp. 268-279.
DOI: 10.1145/351240.351266. URL: http://dx.doi.org/10.1145/351240.351266.

116

https://doi.org/10.1109/icse.2019.00039
http://dx.doi.org/10.1109/ICSE.2019.00039
https://doi.org/10.1145/2858965.2814319
http://dx.doi.org/10.1145/2858965.2814319
http://dx.doi.org/10.1145/2858965.2814319
https://doi.org/10.1145/2983990.2984038
http://dx.doi.org/10.1145/2983990.2984038
http://dx.doi.org/10.1145/2983990.2984038
https://www.ndss-symposium.org/ndss-paper/nautilus-fishing-for-deep-bugs-with-grammars/
https://www.ndss-symposium.org/ndss-paper/nautilus-fishing-for-deep-bugs-with-grammars/
https://doi.org/10.1145/3426425.3426946
http://dx.doi.org/10.1145/3426425.3426946
https://doi.org/10.1007/s10664-015-9422-4
http://dx.doi.org/10.1007/s10664-015-9422-4
https://doi.org/10.1145/2908080.2908089
http://dx.doi.org/10.1145/2908080.2908089
https://doi.org/10.1145/2737924.2737986
http://dx.doi.org/10.1145/2737924.2737986
https://doi.org/10.1145/351240.351266
http://dx.doi.org/10.1145/351240.351266

References

32]

[33]

Carlos Arguelles, Marko Ivankovié, and Adam Bender. Code Coverage Best Practices.
Google Testing Blog. Aug. 7, 2020. URL: https://testing.googleblog.com/2020/08/
code-coverage-best-practices.html (visited on 09/25/2025).

Solidity Documentation. Ezpressions and Control Structures: Order of Fvaluation
of Expressions. Section “Order of Evaluation of Expressions”. URL: https://docs.
solidity.org/en/latest /control-structures.html (visited on 09/25/2025).

117

https://testing.googleblog.com/2020/08/code-coverage-best-practices.html
https://testing.googleblog.com/2020/08/code-coverage-best-practices.html
https://docs.solidity.org/en/latest/control-structures.html
https://docs.solidity.org/en/latest/control-structures.html

	Εκτενής Περίληψη στα Ελληνικά
	Εισαγωγή
	Κίνητρο
	Στόχος
	Περιορισμοί
	Συνεισφορές
	Δομή του Κεφαλαίου

	Solidity
	Δομή ενός Έξυπνου Συμβολαίου
	Τύποι
	Ορατότητα Συναρτήσεων
	Μεταβλητότητα Κατάστασης

	SolGen
	Επισκόπηση
	Προσέγγιση Παραγωγής για Τύπους, Εκφράσεις και Εντολές
	Παραγωγή Εκφράσεων
	Παραγωγή Δηλώσεων

	Πειραματικά Αποτελέσματα και Συμπεράσματα
	Στήσιμο
	Σημείο Κορεσμού Κάλυψης
	Σύγκριση με τη σουίτα ελέγχου του μεταγλωττιστή

	Συμπεράσματα και Μελλοντικές Επεκτάσεις

	Introduction
	Motivation
	Aim
	Delimitations
	Contributions
	Thesis Structure

	Background
	Compilers
	Compiler Correctness
	Formal Verification
	Testing
	Fuzzing
	Input Structure Awareness
	Program Structure Awareness
	Generation‑ and Mutation‑based Construction

	Test Oracles
	Metamorphic Testing
	Differential Testing

	Constructing Valid Programs
	Test Program Reduction
	Related Work

	Solidity
	Structure of a Contract
	Types
	Value Types
	Reference Types

	Expressions
	Assignment Semantics for Reference Types
	Function Calls
	Scoping and Declarations

	Contracts
	Function Visibility
	State Variable Visibility
	public State Variable Getters
	State Mutability
	Inheritance and Linearization

	SolGen
	Overview
	Generation Approach for Types, Expressions, and Statements
	Generating Types
	Internal Representation of Types
	Generating Mappings
	Generating Arrays
	Generation Example

	Generating Expressions
	Generating Indexed Accesses
	Generating Assignments
	Implicit Type Conversions

	Generating Statements
	Generating Declarations
	Generating Function Definitions
	Generating State Variable Declarations

	Generating a Solidity Source File

	Implementation
	Overview
	Abstract Syntax Tree
	Type System
	Context
	Generation Methods
	Types, Expressions, and Statements
	Source Unit and Declarations
	Implementation Examples

	Evaluation
	Code Coverage
	Setup
	Coverage Saturation Point
	Comparison with the compiler's test suite

	Bugs Discovered

	Conclusion and Future Work
	Difficulties and Delimitations
	Future Work

	References

