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ITepiindm

To npdéPinua tou Actionable Recourse otoyelel oTny €VPECT) EQIXTMOV XL YAUUNAOD xOGTOUG 0ANAY®OY T
YUEAXTNPLO TIXE ELGGBOU, OL OTIOIES AVUTEETOUY TIC UMOPACELS W ENEENYOoLUWY HOVTEAWY TPOBAEPE®Y, MoTE Vo
emtevyVel lo Swapopetnr) xon emduunty npoBiedn. O neplocdtepes epappovéc enelnyNoEwy Ye avTinapadely-
pota Beloxouv BérTioteg Tpomonooels, Eexwplotd Yo xdlde elcodo. 2oTéc0, apxetéc epuppoYEs ypeidlovto
BLOLPAVELN XL GUVETELL GTOV TPOTO ETUAOYNC TWV AAAAYDV Yiol TNV TauTOYeovn encériynon TAnducucy. Myetixéc
uédodol mou epapudlouv enednynoelc oe OUddES BeLYUdTWY ElcdBOoU, TETUYAlvOUY BN TNV avdleoT) ahAaywV
oe enelNYNOWES TEPLOYES TOU YWEOL ELGOBOU, KOTOC0, eV EYel UTAREEL XAmolol BOVAELE TOU VoL YENOULOTIOLEL
BéATioTa BUABXE BEVTEA AmOpAcEWY, ToL ontola amodedelyuéva eyyuovton xadohixd BéATIoTEC AdoEC. XtV €p-
yoota auth, ulodetolue TN YEY0BO TV BEATIOTWY BEVTPWY amoPdoenY, Bdotl Tng uhonolnong Héowy duvauxol
TROYPOUUATIOHOD, Yl VoL eEeTdooUUE TO TRdBANUa uéow plog daywpiowwng xon xadohxd BérTioTg BlatiTwong.

Mapovcidlovue To SOGAR (Summaries of Optimal and Global Actionable Recourse), tou anotehel pio pédodo
vhomoinong evée S-avuxeipevinol tpolhiuatoc Behtiotonoinone Baciopévo oto STreeD (Separable Trees with
Dynamic Programming). Tné tic unodéoeic 6T ol elcodor tne pedddou eivon Suadinic poperc (binarized)
xou e Saywplowdtnrag (separability), to SOGAR xotaoxeudlet éva obvoho Pareto, to onolo mepthauBdve
xadohxd un-xuplopyolueves (non-dominated) Béhtioteg Mooelc und Y Lop@r BevTpixdy Souwy, €10l WoTe
va ehaylotonoleltal to x60to¢ npoondielos xdde tpononolnone xou Vo HEYLOTOTOLE(TAL 1) ETUBPACTIXOTNTA TNC.
Ye udde x6ufo @OAAO Twv Bévipwy, avatideton wla BEATioTn Tpomonoinom, %o oL GUVOETACEL GTOYOL TOUL
BeAtioTomololy auThv TNV TeomoTolnoT AelToupYoly Ue TANpwe ouufotd Teoémo pe T Uetddoug Buvaxol
TPOYPUUMATIONOY oL AelToupyolv Bdoel avadpouixwv oyéoewy. To anotéheopa, elvar éva obvolo amd un
xuplapyolueveg mou etvon e€loou BélTioTeg xan dlvouv oTov YEHOTN TOU GUGTAUATOS, TNV BuvatdTnTa ETAOY NG
Moewv Bdoetl xpltnplty TEocopUocUEVKY TOU EXGCTOTE TEB(OL 0ploUol ToL TEOBAHUNTOC.

E&etdloupe v emldoorn tng uedddov SOGAR, oe téocepa chvolo Bebopévwy mvoxoeldols pop@nc, oL
TopaTNEhoae BEATIOUEVY eNiBooT Xou YEVIXEUOT), CLUYXEITXE HE OyeTXég Uedddoug Tou medlou. Luvolxd,
n wédodog, avadewcviel TNy emidpaon Twv BEATIOTLY BEVIPWY amo@docwy, oty elpeon xadohixd BEATIOTWY
Mooewv xou cuvolicewv Actionable Recourse, ol omoleg e€icou empépouy enenynoiudtnta xan Behtiwon tng
enidoong Bdoel petpxdyv olyxptone. Toautdypovae, n uédodoc avanapotd plo dlatinworn mou uropel vo avo-
nopory Vel xou vor emextodel oe peAhOVTIXES €pEUVEC.

AéZeic-KAewdd —  Enelnyfoeic pe Avunopadeiypata, Kodohxée Enelnydoeic pe Avunapadelypota,
Avoxaretiuvon HpoPrédewy, Luvodiceic Avaxoatehduvone IlpoBiédewy, Béhtiota Aévtpo Anogdoewy, Eneg-

nynowéta, Exe&nyrown Teywnth Nonuoosivn,.






Abstract

Actionable Recourse aims to return feasible, low-cost edits on input features that flip black-box predictive
models’ decisions to a desired outcome. While most counterfactual explanation methods optimize actions
per instance, many applications require transparent, consistent prescriptions to populations of affected indi-
viduals. Other group-level recourse methods already handle the setting by assigning actions to interpretable
regions, but their optimization is not inherently aligned with modern dynamic programming tree learners,
which are proven to guarantee global optimum. Here, we adapt optimal decision trees to examine this case
under a separable, globally optimal formulation.

We introduce SOGAR (Summaries of Optimal and Global Actionable Recourse), a bi-objective optimiza-
tion task built on STreeD (separable trees with dynamic programming). Under standard binarization and
separability assumptions, SOGAR constructs a Pareto front of globally optimal trees that jointly minimize
cost and maximize the effectiveness of edits. Each leaf is assigned an optimal action, and the objectives are
element-wise additive, enabling dynamic programming recurrences. The outcome is a set of non-dominated,
interpretable policies which are represented by different trees with near-tied scores, so users can select by
domain preference rather than retrain models.

Across four tabular datasets, SOGAR demonstrates a competitive performance relative to related work, and
stable generalization for compact trees. Overall, SOGAR shows that globally optimal tree structures can
deliver group-level recourse summaries that are both interpretable and quantitatively strong. At the same
time, it delivers a formulation that is reproducible and extendable to future tasks.

Keywords — Counterfactual Explanations, Global Counterfactual Explanations, Actionable Recourse,
Actionable Recourse Summaries, Optimal Decision Trees, Explainability, XAI.
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Euyaplotieg

Oa Hdela va euyoploThow Yepud Tov emBrénovta xadnynt wou x. ['idpyo Ltduou xo tov x. Odvo Bourddnuo
yior TNV eumioToclvn Tou pou €delay, BivovTde wou T BuVATOTNTA Vo EXTOVAGE T1 SITAWUATIX UoU pyaoia
oto Epyoaothipio Xuotnudtwv Texvntic NonpooUvng xow Mddnone, xoddde xou yior Ty xardodhynor| toug oe 6An
TN Sdipxela aUTHSC NS dLodixaoiog.

E&icou, exppdlw TNy ethixpivr) Hou euyvwrociv Teog Tov cuvemBAénovta, urodrplo dddxtopa Idcova Awdpty,
v TV xododyNon, T ONUOVEYIXES Xou EQEUVNTIXG EVOTOYEC 18éec Tou Edwaay xateduvorn xou Badoc otny
epyaoio, oAAG xou yior T oLVETT] xau dpoyn cuvepyasio xod’ GAn TN didpxeld Tne.

Téhog, euyaplotdd Toug Yovelg You, Tou pe oTtNellouv pe ambOAuUTH avBLOTEAELD Xo QUTATAEVNOTY), o8 Xdle pou
Briua %t emAoyy, xan Toug GIAOUC HOU UE TOUG OTO{OUE UTOPOUCA VoL HOLRAUCTH) TO cuVALCUNUATIXG PopTio Xou
xade puer) vixn tng mopelog, xdvovtoag TNy mo eUXOAY xou dNiovEYXY), xou aprivovtde wou uio Badid pillouévn
avapvnor avextiuntng nvevgoatixic agiog.

Iévvne Xatlhc, NoéuBploc 2025
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Chapter 0

Extetopevn Iepiindn oto EAAN VX

H Teyvnti Nonuoolvn (AD), nhipws evtoyuévn oty dopf) tng xowwviag, théov ennpedlel xpiotpor xotv-
WVIXooovoulxd medla, Omwe 1 moTwor, epyacia, exnaidevon xou 1 vyeld, SLIPOPEOVOVTOSC ATOPICELS TOU
OE OPLOUEVES TEPLTTWOELS EMUPEPOLY ETUTTMOELC OTNV EXBAOT CMUAVTIXGY DLABLXACLOY GTIC OTOlEC TOV YoVadLXS
omou xotd xavova elye o dvipwrog. Ioapd v udmiy axplBela TV cOYyPOVWY PoVTEAWY TEOBAEYEwY, N Ael-
TOUEYXN TOUC adlapdveLd Yiot Toug dueoa ennpealouevoug eyelpel {Intriuarta yepohndloc tou cucThuatog, Wlng
otav uixpéc uetoforéc ota dedopéva elo6dou unopolv va avoxateuvdivouy pilxd Ty oTadlodpouia aTéUwWY.

H »aowr| andvinon oe autd 1o mpdBinua slvon ol emenynoes pe avtimapadelypata o€ atopiko €minedo €106-
dou (instance-level counterfactuals), ol omoleg UTOBENVOOUY TIC EAAYIOTES TOTUXES UETABONES TOU AVOIC TREPOUY
™V and@acy evoc Wovtélou. Av xau YpHOWES, Ol UEHOVOUEVES EMEENYNOEC GUY VA UGTEPOUY GE XOWOALXN
OUVETELD X0l UTOPOUV VAl TUEAYOUY AVTIPUTIXES TEOTAOELS YIol TOREUPERT] YAUPAXTNELOTIXG Ot EEYWELOTEG ELGO-
doug, xdvovtog €tol, mo duoxoho tov éheyyo peporndloc oe xhlpoxa mou e€etdlovton mhnduouloxés opddeg
EVOVTL UELOVWUEVLY TERLTTOCEWY. §2¢ evahhaxtiny), Ta Actionable Recourse Summaries, octoyebouv oe cuvex-
TIXEC, dounuéves odnyies yio ouddec atouwy pe mopeppepn yopaxtnootxd. Ta Aévtpa Andpaons (DT), yden
OTNV EPUNVELCWOTNTA TOUS, ATOTEROVY QPUOLXTH ThaTPdpUa Yiol THY TopaywyY TéTolwy cuvodicewy.

Mia onuavtin oyetf| épeuva eivan T Counterfactual Explanation Trees (CET) [1], 6mou tpononoioelc
TV YopaxTNELoTXGY avatidevtor oto @OAAa evog BEvipou. Tlapd tn cupBoly Touc mpog Tnv xateduvon g
xadohxric napoy g recourse, Ta CET otnpllovion oe euplotixée, tomxd BéAtioteg BeltioTonomoel avd @OALo,
yowelc vo eléyyouv gdv 1 devtpwer) dopn elvon xadohixd Bértiotn. Autd ocuvendyetan, 6Tl 1 datdnwon dev
eYyudtar BEATIOTEC GUVOAIXEC ETLAOYEG EVERYELWV, APYVOVTOS OVOLYTO TO EROTNUA XATE TOCO Lol BlaTOTWOoT UE
v Pordein Bédtiotwv Aévtpwy Atogdoewy (Optimal Decision Trees (ODT)) unopel vo amodmoet Befoudtnta
TV AMICEWY PE AUCTNEOTERT] CUVETELA.

H napoloa epyooia mpoteivel pia Stapavr) uédodo Actionable Recourse Summaries Bdoel BEATOTOV dEVTELXMV
dopdv. AZomowolpe to Separable Trees with Dynamic Programming (STreeD) [2], to onolo mapéyel xoo-
) Befondtna Bedtiotonolnong und Tig ouvixeg dywpowotntoc. H oyedlaon g yedddou yiveta wg
Ol-ovTIXEWEVIXO TEOPBANua.  AmoteAeltan 1600 and TNV EAAYLOTOTONCT, TOU KOTTOUS €vepyeldy, 66O Xl TNV
TaUTOY POV UEYLOTOTIOMOT TV emTux1dy avaotpogris (flip rate) doov agopd v npdfredn Tou poviéhou. Bé-
OEL TPOTOTOINONS TV JEDOUEVWY ELGABOL OE TAAEWS BUABLXY LOP@T) XOL Ta XELTRPLOL DL WELCLLOTNTAS, OL GTOYOL
elvaw mpooletikol avd otoryeio, emTEENOVTUC TNV UAOTOINGT OF BUVAULIXO TEOYQROUUATIONS XAl TNV XATAUCKELT
Tou cuvolou Pareto pn-xuplaEyoVUEVKOY ANICEWY, WOTE 0 YEHoTNG Vo emAéyel AOOELC UE Blapdvela 6GOV apopd
Y aAANAOETNEEOLOUEVY] OYEDT] TWV OTOYWY TOL XOGTOUG X0l TNG AMOTEAECUATIXOTNTAG, Ywelc TNV ovdyxn
EMAVEXTABEVCTC TOU UTOXEUEVOU HOVTENOL.

Yuvelcpopég.

® JUOTNUATOTIOLOVUE T OYEDT TwV ENEENYNoEwY Ue avTimapadelyuota e To actionable recourse oto mhaicio
e enenyowne xow vedduvng pnyovixic wdinone.

e Eiwodyouue v véa diatinwon e pedodou tou SOGAR Bdoet tne unodourc tou STreeD yio Bétiota
0évtpa mou hovouv to TedPBAnua tou Actionable Recourse, mou avadétouv cuveneic xou younhod xdécoToug
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Chapter 0. Extetopévn Ieptindmn ota EAAnvixd

EVEQYELEC OF OUABES BELYUATWY €10OB0L UE xordoAxT] BEATIOTOTNTA TOU AmOdEXVIETAL PNTA.

o Téhog, TEXUNELOVOLUE eumelpixd, o mpdTuNa Tvaxoeldr) obvolo Bedouévov, Behtwoelc évavil twv
OYETIXWY EPELYNTIXAY ERYAOLDY, T600 oty clyxplon xdotoug xau tou flip-rate, ye dragpavy yevixeuon
vt ouumayeic douéc SévTpwy.
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0.1. Oewentnd vToBadpo

0.1 Oswpntxd vrofadpo

H evotnra auth) ouvodilel to avayxaio yveaoloxd uroBadpeo Madnone Mnyovic, tpoxeylévou va BileuxolOVeEL TNV
xatovdnom Twv Bacidy evvolmy Tou o&lotolobvTol oTr SITAWUTXY epyacio. XToY0og elval 1 GUVOTTIXTY] AAAd
%ot ouolao Ty Jeyehinon Twy apy®v téve ot onolec atnpiletan 1 pedodoroyia nou mpoteivouye, xardde xa n
avadelén tne oyéong uetadd Behtiotonoinong, epUNVELCILOTNTAS %ot ENEENYNOWOTNTAC TNV A1 anopdoemy.

0.1.1 MdOnorn Aévipwyv Anopdoewy
Optopoég mpoBAfuatog

E&etdlovtag to mpdfinua tng edpeong BEvTpwy ano@doewy Bdoel tng mpocéyyione tne Mnyavuaie Mddnong
pe enifredn (eved undpyouv xan prremPBrendpevec LVionotoels), Yewpolue éva dedouévo clvoho exmaideuong
D = {(z;,y)}", ue i € X C RP xou y; € Y, xu avalnrolue éva poviého f € F mou ehaylotonoel to
EUTELPIXO CYANIA UE CUVTEAEGTY| XAVOVLXOTIONONE ¢ TEOS TNV TOAUTAOXOTN T

min EZE f(@i),yi) + AQ(f).

feF n

Yo 8évtpa anogdoewy, To Wovtélo f elvan pia tepapyixr) Sour T mou ywellel avabpopind Tov Yweo YopaxTnelo-
Tixwv X O Un EMXAAUTTOUEVOUS LToYWEoLS Ry xan avadétel otoug teAolc xduBouc mou elvan Tor UANR TNG
dopne, otadepéc mpoPAédeic ¢yt

L
= ¢ liucr,) min — Zf fr(wi), yi) + a|T).

TeT n

ITdc Aertovpyel €va SLABLXO BEVTEO ATOPACEWY

Kdle eowtepde xéuPoc epappdlet o oyéon xatw@hiou ot éva yopaxtneloTixd (6 UOTNUA CUVTETAYHEVOV
Boolouévo 6e GEOVES TWV YopAXTNPIOTIXDVY EL06B0L) xan Yweilel Tov Thnduopd detyydtwy oe 800 uTocUVola
(aprotepd ka1 6ebad). H Biodixaoio emavohopfdvetar uéypt va ixavonoindel o mpoxodoplopévo xplthplo Tepua-
Tlopo0.

IpdPAeyn @UAov: yiow Ty Sodixacio TaAvdpdunong ¢ = ﬁzmiem Yi, EVO Yoo TNV Tadvéunon cp =
arg maxy, pi(Re), 6mou py elvon 1 eunelpuet] cuyvétnta e xAdone k oto giAho.

Keitrpro didonaocrne (impurity reduction)
Ye x6uPo t pe delypata Sy, emhéyoupe pio didonaon (split) mou peyiotonowel ) pelwon Tou pétpou tou impurity:
N
AL =1I(t) = Y 1),

. Ny
Jje{L,R}

onou Ny o apuiudg deryudtwy otov x6pfo yovéa xou N; ota toudid. Tumxég petpinés impurity eivon ot

Gini: I(¢ Zpk (1 —pg), Entropy: I(¢ Zpk log py, Variance/MSE (regression)

Baouxbg dninotog alyoprdpnos Mdddnone Aévipwyv Anogdoeswy (Top-Down Induction)
1. Zexiva amd 1t pila pe dha to dedopéva.

2. T xdde yopoxtneiotind xon mdovo XaTo@hL Tou UTOEE(C Vol TRoYUXTOTOLACELS [la BIAOTAOT) TOU TREYOVTOS
ouvélou dedopévmy, utohdyloe Al

3. Egdppooe tny Sidonaon (split) mou emipépet to péyioto Al
4. Enoavéhafe avadpouixd tnv dadixacio ota motdid.

5. Teppdtioe Tov alyopriuo, otav ixavoroudel xdmolo xpLTHElo TEPUATIONOY, OTWG, 1 TPOCTEANCT] TOU PEYLO-
Tou Badoug, N 1 undevix) 1§ TOAD puxer) T tou Al x.Am.
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Chapter 0. Extetopévn Ieptindmn ota EAAnvixd

"EAeyyoc moAuTthoxoTnTOS

To dévtpa teivouv va unepmpocopudlovy, Aoyw ueydhou Bddoug ¥ yeydho aptdud @OAAwY, dpo amouteitar 1)
evdulon e molvmhoxdtnrac yia xah yevixeuon tne dtadixaciog andgaone. Ilpdwpo pruning (bewo Bddoug,
eNdytota Selypata, eENdyloTo x€pdoc TAnpogoplac) oToratd Vwple TNV avdnTun Tou dévtpou Hote va Teploploel
T Stoduovon 1 ool emipépel ploxo uTonpocupUoYc ota dedouéva exnaidevong. pruning pe kallvotépnon
(m.y. cost—complexity) mpmta avantdcooel To TAAPES dEVTPO xou Enelto eEhayloToToLEl

Error(T) + AQ(T),

e emhoyh A yéow cross-validation (3, 4]. Etol emtuyydveton pdduion tne peporndlog xou dtaxduavong Tou uov-
TENOL, X4TL oL avaBELXVOEL OTL Ta TiLlo althd BévTpa elvan oTadepdtepa xt epunvedolda. X0OYypoveg TpooeYyioelg
enextelvouy Ty Towh népa and to |T| énwe [5, 6].

0.1.2 Béhtiota Aévipa Anogpdoewy

H pdinon Bértiotwr dévtpwy anogdoewy elvar NP-thfipec mpdBinua 6cov agopd tnv andpact xun NP-8boxoho
660V agopd v ebpeon e Béltiotne devipufic doufc [7]. Tumxd, pe évo dedopévo olvolo exmaldeuone
D = {(x;, )} o cuvdptnomn xéotous L(T'), cuvidng exppdlel to opdhua ¥ Tov aptdpd ECLTERXMY XOUBwY,
avalntodue Ty elayloTtonoinon:

in L(T) s.t D=y, i=1,....n,
min L(T) st fr(z:) =y, i n

7 omolo emoteépel TAYoc Tdavddy BevTpiX®y douwy mou avédvel UTEEEXVETING Ue ToV optdud Yapaxtnelo-
TV p xa 1o Badoc d, | T (p,d)| = O((Q]D)Qd’l)7 xoho TdvTag TV eZavTAnTXh avalTNoT avEQLTy axdurn xou
yior péTple Ahipaneg.

Ou xhaoixol ahybépidupor (CART/ID3) yenotwonolodv dnhnotes, tomxéc emAoyéc doywplopdy. Bdoel e
epeuvTxic dvhone t6o0 ot Yewpntnd (ahyoprdund) oo xau oe pnyavixéd (hardware), evioyOOnxay or akpiBeis
pédodot mou avalntolv xodohixd BéhTiotes douéc. Ao avtée e€etdloupe Teelc Baoixés xotnyoples Tpooéyyiong
ToU TEOPBAAUATOC BEATIOTWY BEVTPMY ATOPACEWY:

1. Muxtol axéponou mpoypappatiopold (MIO),
2. Tlepopioptv/Ixavoromowdtntac Aoywdy Tonwy (CP/SAT) xou
3. Auvvauixol npoypoppaticprol (DP).

O1 800 mpwteS XWdLXOTOLOVLY To TEOBANUL ot eviala avalhTnom e pelwaorn Tou ypou avalhtnone péow pruning,
EVEO 0 BUVOULXOC TTPOYPUUUATIONOC EXPETAAMAEVETAL TO Kprtripio Tns BeAtiotdTntas (Bellman) xou Siaywpioudenta
yia vor ouvitécel to xodolxd optimum ond Péhtiota uTodEVTEaL.

MIO: eviaia podnuoatixy dtatdnwon

Ou pédodor OCT/BinOCT /FlowOCT [5, 8, 9] povtehonooly tautdypova tnv dour tou dévipou, v dpo-
HONGYNON TWV BELYHATWY ELooywYNS TOU ahyopldou xat Tc ETUETES TwV PUANWY e duadixéc/cuveyeic ueToA-
NTég xan meploplolols Tou emBdlouy cuvEnEeLla oTic cuyxploels xou Tic avotéoelc. To xhaoixd OCT ehoayiotomotel
v oyéon

% Z W{y; # k} ziecor + QZLE;

ik ¢

pe Branch and Bound xo (cuyvd) ue ypopuxononon twv un yeoupxwy 6pwv. To BinOCT peudvel toug
neploplopole and O(n2P) oe O(2P) xwdonowdvrae duadnd ta povondrie, evey To FlowOCT Biotundyver T
dpouohbynom Twv dedouévmv we pof Bixtiou ye mo Teploplopéves (tight) yohapdhoeic otic YeToANnTéC TEPLOPLO-
pol. To MIO emituyydvouy xadolxd Bértiota ot pétpla Bddn/ueyédn, odhd to xbotoc auidvel éviova e TNV
avgnon Tou Bddous d, Twv XxATOEAWY XAl ToL GUVEYY YoEUXTNELOTIXE TV BELYUETLY ELGOB0L.
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0.1. Oewentnd vToBadpo

CP/SAT: avalAtnor we hoyixéc netoBAntég

Ou SAT/CP duwrtunadoeic [8, 10, 11] exppdlouy tn dour| tou dévipou we Aoyxole tinoue (CNF) A udmhol emuné-
dou meptoptopoic (AtMostOne, reified avicdtnrec). H enihuon Basileton otny pddnon hoydv 6pwv/npotdoenmv
xou Sunhaddoewy. Efvan iaitepa anodotixée ot dtoxpttd dedopéva xon wixpd Badn (D <5), odAd xhpoddvovTos
duoxola pe Ty adgnomn tou Thfdoug xatwehiny i cuveyelc yetofAnTéc.

AUVOULKOS TEOYPAULLATIOUOG

O duvaulxds TpoypaaTiopmos avtiyetonilel o BEATIoTo dévipo we olvieor Béltiotwy LTodérTpwy.
I vtootvoro deryudtwv S C D oe x6ufo pe vrdromo Béddoc d, n th xéotove C(S,d) wavonoel v
avoadpoun:

min Err (S, y), d=0,

C(S,d) ="
(5,) min {C(S(5,0),d 1) + C(Sr(5.0).d = 1)}, d >0,
7>

donhad) To kéotog Tou yovéa eivar to dpoioua twv BEATIOTWY by Yo xdde mdavé split. H apyn tng
BehtiotédtnToc dopaiiler 6T xdde BéATioTo Bévipo mepiéyel BENTIOTO UTOBEVTEA.

ITpaxtixés LAOTOWOELS duvautxol mpoyeaupatiowol Ilpdwes yédodol (DL8) [12] amodhxev-
oav oe cache Béhtiotec Moeic avd vrompdBinua, dnhadh avd utocivolo Belyudtwy, GoTe Vo amoedyovTol
enavalidelc Twv MNoewy Tautdonuwy xatactdocwy. To DL&.5 [13] npdodeoe duvouxd drw kar kdtw gpdy-
Hata vy dueco xhddeya, emtuyydvovtag tdéelg yeyédoug TayUtepn enlhuor ot TApws duadxd dedopéva. To
MurTree [14] siofyaye avanopactdoelc bitset yio Toydtatee tpdéelc o uTtocUVoha xat similarity bounds Yy
TEOWEO ATOXAELOUO, HALUAXDOVOVTAUS O dexddeg yYhddee Oelypato pe dlatripnorn mayxdouog BertiotdTnTaC.
‘ANec, LBpWdée mpooeyyioel, énwe m.y. to Branches [15] ue AND/OR ypdgpouc xou AO*, cuvdudlouv gu-
ptotxée xatevdivoelg avalrtnone pe cache duvaxol npoypopuatiowol, tapéyovtas Ty eyyinon BéltioTou
TEPUATIOHOV.

IN'ati emtAéxOnxe N TpocEyYLor duVoULXOD TEOYEAULATICKROU;

o KadoAuxr BeATticTonolnom Le Tomxy CuVERYELX: 1) avadpour| emTeEnel ovvlean Micewy ywpic
VoL TAONYOUUOGTE pNTA 68 OAO TOV EXVETIXG YDEO BOUMY.

e Pruning uéow @paypdtwv: xdtw xo dve @pdyuota xa memoization eapavilouv TepdoTiE TEPLO-
X< avalhtnong, xou To Tautdonua states Aovovton pla Qopd.

e Eveli&io aohdymone ocuvdetnone PBeAitiotonoinong: H pédodoc tou STreeD [2] biver
™y BuVOTOTNTA EMAOYHAC TEPLOCOTERLY XELTNRlWwY A€LOAGYNONS TAUTOYEOVA, HECE  BLl-AVTIXEWEVIXTC
Behtiotonoinong pe Aioelg mou emoteépouy cUvola Pareto, pe modaniéc e&ioou Béhtiotes Aoelc.

Y0Ovodm O duvopxdc poypaupatiopos Exet efeliydel and puixpée xhipaxes oe mpoxtnée, axpBeic Aoewc yia
YIAEOES €W EXATOVTADES YLAAOESC Belyuota, TopEyovTag Blagdvelo xol EYYUNOES BEATIOTOTNTOC TTou Aelmouv
and Ti¢ dninotes uedodous. e avtideon pe tig npooeyyioeic twv MIO/CP/SAT, nou otnpllovton ot eviofa
xodoAx) avalTnom, o Buvauixde TEOYPUUUOTIONOG Exel éva TpoBddiopa AOYw TNe €mavaxpnoijuonoinong vm-
oAdoewy xaL TG mpoodevtikng ovvleons uvnoAloewy, xoho TOVTUC eQUXT!) TNV axelPr) Behtiotonolnon 6évipwy
und obhvdeta xpLThHpLd.

0.1.3 Emne&nynowpoétnIo
Baowxol 6pot

e Epunvevoiwdtnta (interpretability): Bodudc otov onolo o dvdpwnoc xatavoel ) ouunepupopd
evog yovtéhou f, xplveton amd v Bour Tou LOVTEROU, TNV DLUPAVELY TV ECHTEPXMOY TOU XOVOVLYV X0l
TNV TOAUTAOXOTNTA TOU.

o Encgnynoiwndtnra (explainability): avagpépeton oe pnyoviopoic E mou mopdyouy eEnyfoeLs, Ye Té-
T0L0 TPOTO WOTE TO LOVTERD Vo UTopel var glvon epunvelollo, énwe m.y. post-hoc unyaviouol nou e€etdlouv
To AMOTEAEOUATA EVOS LOVTENOL Yo v avTidngUolv yéoa and dapopetint| eloodo, ndéco ahrdlouvv autd.
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Or eneénynoeic xatnyoptonolobvton oe dbo Pooixd enineda:

o Tomuxd: eényel TNy cuuneplpopd Tou poviéhou oe yeltovxée teployéc Il uéow TomUDY BeELYUITWY gy
evoc manduouou.

o KadoAuxd: cuvodilel to poviého f ndve oto nedio oplogol TV YopoxTNelo TIXOY OAWY TV SELYHATKY
elo6dou D pe éva gpunvedoio g 1 plo Sopnuévn hoyw| obvodn nou cuunepthauBdver cUVORXES eneEny -
OELC XAUTA UTOOUABES TOoU TANUCUOV.

"AEoveg aZloNoYMONC
1. Iwotétnta (F): F=1—E.on, [((f(2), o(E(z, f), 2))].
2. Ttadepodtnta (S): wxpéc yetaforéc o' = = dev adhdlovy ouctwdne to E(’, f).
3. Katavonowuwotnto/IloAvnhoxdtnta (I): uixoc nepiypagphic Le) (xavévee, Bddoc),

omou 1o E anotelel Tov unyavioud encgiynong.

Medoduxéc owxoyvéveieg (evdeixtind)

e Anoddoeig yapaxtnerotixdv: ta LIME/SHAP[16, 17], xdvouv e&étaor oe kernel, unéBadpo,
alAnhemdpdoeLc.

o ITpwtoTUTA/ Topadeiyortor: aVTNPOcKTEVTIXGTNTY, Towhin, xdAun oplov andpacne [18].

e '‘Evvoieg/avanapactdoets: euduypduuion pe avDpOTives EVVOLES XL ENEYYOL EYXUPOTNTAG.

o ITayxO0oULoL UTOXATACTATA: LGOPEOTIO TOTOTNTAC-ATAGTNTAC XOU PNTH) TEPLOY N Loy VOC.
Ynueiworn  Awxplvouye ovoyetiotikés and artiakés eEnyNoelS: Ol TPWTES TEPLYPAPOUY Ta OpLoL ATOPACTC
TOU YOVTENOU, oL BelTepeC MUPEUPBAOELC GTOV UNYOVIOUS TapaYwYNS SESOUEVWY.

Eneinyrioeic ue Avtinopadeiypata (Counterfactuals)

opiopdc (oe exnoudevévo povtélo f)  Aodévtoc otdyou y*, topadelypoatoc x xou eguetodtntac F(z):

in C(z,2') st =y
R Ol s S =0

6nov C ehéyyel eyyitnta/onavidtnza (n.y. 1 /ls, sparsity).

Avtiaxoc opiopde (SCM M = (U, V., F, P(U)))

Me nopepBdoeic a € A(z) nov oéBovtan ypdonuo G:

in C b Yaca(u) =y
Lo (a) st Yaca(u) =y

O eputéc yopoc elobddwv endyeton e F(z) = {¢(a; 2, M) : a € A(x)}[19, 20].

Teéooepig LBLOTNTES TOLOTNTAG
e (proximity) EyyOtnta (d(z,z") wxpd),
e (sparsity) Xrnoaviotnta (Myec cuviotdoeg oddlouv),
e plausibility (on-manifold, vynif nuxvétnta),
o (feasibility) Equxtotnta (nepiopiopol otic ahhayéc).

Trade-offs: to sparsity "ovtiudyeton" to plausibility, dpa mpénel vo dnAddvovion pntd xan vor eAEyyovTal Ye
Teploplopole 1 Towvég [21].




0.1. Oewentnd vToBadpo

Baowxd potiBa BeAtioTtonoinong

o 'Apeom avalATNnoy xovTd 6To 6pLo: pUUULOY EVPLOTIXGDY aTOCTAGENY and vépues ¢1 /Ll ye pntolc
neploptopole F(x) [22].

¢ Mixed Integer Programming (MIP): axpi3ric epuetdtnta o€ puxtd/xatnyopixd dedouéva, motonot-
oec[23].

e Plausibility péow tng yvewpetploag Tou ydepouv yagaxtneiotix®yv: kNN-yovondtio vipnine
nuxvotntog i avalitnon oe havddvovta ywpo &' = Gg(z) ye eléyyouc F(x)[24].

A&LoNoynoT xou Yeron

Ou tpomoL A€loAOYNONG TWV TEXVIXWY ENEENYAOEWY UE OVTINUPUSEYHATA TEOXUTTOLY dueca antd TNy a&loAdyYnoN
TV TE008EWY PAoxdY WIOTHTWY Tou diénouy tnv dladacta.  Ilpoxtxd e€etdloupe mocootd emituylog
(flip) evée avtimopadelypoatoc 600V agopd TV CAAAYT NG ETUXETUS ond TO EXTUDELUEVO UOVTERO, XL TNV
mocoTixomolnoy TNe eyyOTNTAC, TG omavidTntag, Tou plausibility, xou tng egpixtétTnTag. ‘Etol, texunpdvov-
oL TO HOVTENO x6aTOUCE, 0 oplouds F'(z) xou to undPodpo muxvotntag. Télog, ewpolye opxetd onuavtixd va
onueLdooupe 6t to ahyoplduixd counterfactuals neptypdpouv to dpio andpaong tou f, by avoryxalo TEayATIXES
emdpdoeic, ouVERAS, YL TpaypoTixéc TopepBdoeic amouteliton cutiaxy| (causal) Soux.

0.1.4 Actionable Recourse

To mpdPAnua touv Actionable Recourse otoyelel 68 €@ikTéG aMNYEC OToL YopoXTNELOTIXG EVOC delypoToc/atdpou
oote évog otadepde todvounthc f + X —{0, 1} va akhd&el andgaon oe y* =1 pe ehdytoto xbotoc:

i t +a)=y",
i ca|2) st fota) =y

67T0U T0 GUVOAO TpoToTooewy A(x) xwdixonolel Toug TEPLOPLOUOUE THV ETUTPETTOY TPOTOTOCENY Xoi To ¢(-)
10 x6070¢ 23, 25]. Ed avagepduacte oty y* we v emduunth etixéta nov Yo emotpéder o Tadivounthc ot
To Selypa z Tty TV Tponomoinoyn Aoy tavounuévo otny un emduunTy xhdom.

Eguxtotnta & Kéotoc To olvoro tpononoicewy A(x) mopapével otalepd xotd tnv Swduacio ex-
naddevong xa aflohdynong, xat mepthopBdvel g emitpentés ahhayég BAoel TEPLOPLOUOUS Yol UN-HeTOBANTE, Xo-
Tevduvdueva xon SaXELTE YapoXTNELG TIXd TwY delypdtwy eobdou [22]. T cuyxplowdtnte, yenowLonoodvIaL
OLVOPTAHCELS TTOU Aaufdvouy utddy xb6cTous (T.y. otadwouévn ¢4 pe w; oc1/MAD) ¥ uetpixée mov dev eZopTv-
Tt amd TNV HALLOXOL TWV YoPoXTNEIo TGOV Onwe T.y. | MPS:

b

MPS(a | z) = Jnax |Qj(x; + aj) — Qj(x;)

pe Q; v eumeput; adpototinn ouvdptnon xatavouic (CDF) tou yopaxtneiotxol j [23].

Ané ta avtinapadeiypata oto recourse Oueneénynoeic ye avtimopadelyyota delyvouv «ti Yo dAhole»
oMAG Bev Slac@ohilouy eQuXTOTNTA 1 avaryxooTXd peahtoTixés odhayée, eved To actionable recourse emBaihet
eNTOUC TEPLOPLOHOUC XKoL UETEIXES XOGTOUC YLl TNV OELOAGYNON TV TPOTELVOUEVLY oMY DY [26].

AxpiBég recourse v ypoupixd povtéda o f(z) = 1{w z + b > 0} npoxintel 1 PehtioTonoinoy
uéowy MILP:
mine(a | z) st w' (z4a)+b>0,
a

emotpépovtoc xadohxn Bertiotonolnon ¥ aviioTolya Ty moTonoinoy 6Tl To TEéPRANUa dev elvar eQuxTd.

To flipsets (mohhamhéc eNdyLotou xdotoug evahhaxTixée pe dlapopeTtixt] utoothiplln) divouv npoxatopiopéveg
OAALYES TTOU EYYUMVTOL TNV ETLTUY (Ol TWV TROTELVOUEVLY CAAXY WV GE GUYXEXPLUEVOUS UTOYMEOUSC TOU GUVOAXOV
mAnduopol detypdtwy [23].
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M) yeoppixd/agnostic  Kodxonoinon ue SMT (D, B.) emitpénet Ty eZ€toom Slaxpltddy HETUBANTOV TKV
YOPOXTNELOTIXADY o W Slapoploa x60Tn pe eyyinon e opdétnrac oe meployéc amdpaone [22]. Emniéov,
peYdn amfynon éyouv ou path-feasible (FACE) nepiopiopol oe ypdgoue yertvioone (k-NN), 6nov enBdhhouv
nopapovy oto manifold twv dedopévwy (ouctaoTixd to mpoxTixd TEdI0 Oplopol TV dedopévwy, OTwe el
mopatnendel and ta dedopéva exnaidevong) xan emotpépouy axohoudies aloydy pixpdv Brudtwy [27].

Aviextixotnta & aZlohdymon Anévavil oe emavohoauovOpevee eXTUBEUCELS TOU UOVTEAOU, EX-
ppalbpevec o {fP)}, uetplotvior T0600TE emTUYIC X EPIXTHTNTOC, OL XATAVOES ENAYIGTOU XHGTOUC (TL.X.
MPS), n onavidtnTo TV TPOoNoTooE®Y xou 1) Towia, puéoo and to péyedoc A tic emxoliec twv flipsets,
umd otadepd cUvola A(x) xan cuvapthoels x65Toug ¢f-).

Y0Ovodrn To actionable recourse petatpémelr tig eneénynoelg pe ovimopadelypota oe éva TEOBANUL
Peltioronoinons vnd mepiopiopols, Topéy ovTaS EGIXTES, BiXAL XOOTONOYNUEVES XAl XATHAAANAES YLol AVOTAEOLY -
WYY TPOTEWOUEVES Oy TG HE capelc xou cuveTelg xavovee a&lohbdynore.

0.2 Xyetxr 'Epeuva

0.2.1 Xyetwxy, 'Epeuva - Actionable Recourse Summaries
Actionable Recourse Summaries (AReS)

To AReS ouvodiler napepfdoeic we wixpd ovvoho xavovey R = {(g, ¢,c')}: av éva dtopo avonotel To ¢idzpo
q xou Ty tpéyovoa katdotaon ¢, t6Te mpoteiveton evépyeia . Etbyoc elvar Aiyor, avoryvdoulor xovéveg
(=~ 10 — 15) ntou xahOrToLY PeYdho pépoc Tou TAtuouol [28].

Mezpuxeg

Ocwpolye Xag to delyporta e tny avemdiuntn tedPiedn and évav dedouévo tagivountrh B. H petpun actoylag
TNG TPOTELVOUEVNC TPOTOTOINONG UETES TOOESC PORES 1) EPUPUOYT) TNG OEV AVAUCTEEPEL TNV ETIXETAL

M
incorrectrecourse(R) = Z |{z € Xag : @ |= @i A ci, B(substitute(z, ¢;, ¢j)) # 1}|.
i=1

H xdlvypn (impact) Odelyver T mocootd tou eletalduevou minduopold AauBdver epapudoiun mpbdtaom
Tpornonoinomne (dnhady| npoteiveton ahhory ) 0€ TOLNSYLOTOY piat CUVIGTMON TWY YUPUXTNELS TIXMY TWV JELYUETWY):
cover(R) = {z € Xag : Ji @ = q; Aci}l.

Kéotn kar puéyefog aAraydyv:

M M
1 1
featurecost(R) = i E cost(c),), featurechange(R) = i g magnitude(c), ).
m=1 m=1

H petpwr| cost(c),,) dev etvan anapoaitntoa xdmota vépua £, nou exppdlel andotaot, xadoe unopel vo tepthopfdve
TNV EXQEAOT YEOVIXNG ot Bouxhg Buoxohiog Tng ahhayhc.

H petpuf; Tou magnitude(c),) eivon 1o péyedoc petaforfic (exppaopévo ooy TAATOC) GTOV YOPO YUPoXTNELo-
TV (tdoec ouvietaypévec alNdlouv xou xotd t6c0).

O Broywptopds PeTaEl TV YETPOS elvan xplolog, ool 1 (Bio yetaBoly) peyédoug pmopel vo Exel dlapopetind
TpaypoTid x6otog, 6nwe .. adinon 10% wodol oe dropa pe peydhn piodohoyinh Swpopd.

Epunvevoipnotnia xot TOAUTAOXOTY TR

size(R) = |R|, maxwidth(R) = ( Ina)x R#predicates(q Ac¢), numrsets(R) = |rset(R)].
q,c,c’)€E

Ytoyog: oUVTOUO XElUEVD, TEQLOPLOUEVT] TOTXY| TOAUTAOXOTNTA, OTOPUYT) XUTOXEQUATIOUOD HAVOVWY.
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0.2. Eyetuxr ‘Epevva

BeAtiotonoinom xau 6pla

O yopoc avaltnone tponomoleiton o TAHpwe daxprtés Tiwée (binning) xou avalnrodvron uixpd R pe younid
%x66T0¢ xou Yéyiotn xdhudn. H yédodog elvan mpooeyyrotiki), xou 0 GUVBLACTINOS Y WEOG EEEQEUVATOL UEPLXWE XAlk
N XAPIXWOoN og PEYIAa cUvoha elvan amantnuxr. Ilopd to dpla, Vétel yprolua TEOTUTA HETEIXWY XU XAVOVGWY
Yior TNV Topory Wyl XatdAAnAwy cuvolicewy ot eninedo tng e&étaong evog mhnduouoo.

Counterfactual Explanation Trees (CET)

To CET exgpdlel ti¢c ouvoliceic tou actionable recourse wg 6évzpa anopdoewr,6mou TO BEVIPO TUNUATOTOLEL
TOV Y WPO YopAXTNELOTIXGY Xl x8Ue pUAAo avardétel uia Tpononolnoy 6To LTOGHVOAO TOU TANYUGHOY OV AVAXEL
070 POANO, LOOPEOTIOVTAS TO XOCTOC oL TNV ATOJOTIXOTNTO TNE AVACTPOPNE TNS ETXETIC Amd TNV U1 emtduunty
oty emduunth [1] .

A&LoNOYTMNOY xow UETELXES

Aodévtog evic talvount f xow evée mhnduopol otdyevornge, opileton 1 pete| Tou invalidity avd delyua
TAnduopol we:
ty(alz)=cla|z)+v-Llo(f(z+a),+1),
e c(alx) va elvan To xbotog e tpononoinong, To Lo1 1 cuvdptnon andhetog 0-1 (0 av 1 eTxéto avaoTEpETIL
oe +1, ol emotpépel 1) xou o v > 0 vor elvan évag cUVTEAEOTAS OTAVMONS TG CUVEPTNONG TWOAELUS
(fip-loss).
Avd pUAdo X:
X e * = 1 X .
gl X)=) ulala), ak arg min gy(a|X)
zeX

MovoTovia wg npog Siapéplon

T éva Bropeplopd X = X U Xo, tétotog wote X = X1 N Xy = 0 woydeu:

gy(ax [ X) = gy(ak, | X1) + gy (aX, [ Xa), (0.2.1)

unodnAwvovtag €T, OTL 1) Aentopepéotepn Tunuatonolnon urnopel vo BEATIOOEL TNV cuVOAXY elBooT WS TEOg
To apuiunTixd anotéleopa Ty peTpxrc e adtohdynone Tou TeofBAiuaToc.

Yvvohikr) ovvdptnon aioAéynonsg dévtpou h:

1
oya(h) = & > gylar | Xi) + A [L(B)],
1eL(h)

6mov o mpwTog 6po¢ elvan 1 uéon TN Tou invalidity xou o Seltepog 6pog xavovixornolel TNV moAumAokdTnTa,
Bdoel mowvhic mou emBdAietan oTov optdud POAAWY TOU BEVTRPOU UECL .

Kéoctoc MPS

Twideteitou n yetpwh| x6otouc Mazimum Percentile Shift (MPS)[23], v tnv oOyxplon ETEPOYEVAOY YVWELO-
pdtwyv ywelc v e€dptnom and Ty xh{doxo xoL To e0p0g THIWY Xde YopaxTNELETX0) TOU XOEOoV, GlUQLYA Ue
v eunetpt) odpoto txn ouvdptnon xatavouric (CDF) yia xdde yopaxtneiotind tou ydeov. H MPS exqpdletan
e
_ () — O (s 0.2.2
wps(,0) = max (Qs(]) = @s(x)). (022)
6mou Q) etvan euneipin) CDF tou yapaxtnelotixol j 6Tov apynd YMeo TGOV TV YApoxTneloTixdy xu &’ = z+a
vo efvon To Selypo mou e€etdleTon PETE THY EQUPUOYY TNG TPOTOTOINONS a.
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AXyopripog Stoyactixhc Tomxhe Avalhtnong)

IMo xé&de emavéAndn touv akyoplduou oplopévn and éva nencpacyuévo 1
1. ewoaywyh/dorypagh)/aviixatdotac x6uBwy pe mdavdtnree,
2. a€lohoynom QUANLY xaL emhoyh a* avd @OANO,
3. anodoyy) oAAUY GV povo av BEATLOVOUY TOV GTOYO 04 i

H Sioduxasio eivon mpooeyyiotind fédtiotn (ywpelc auotnerh ol BéATIotn Aoon), ahhd anodidel npoxtind Loyvpd
ATOTENEGHATAL.

ITepropropol xou mpoxtixr o ia

‘Ocov aopd ™V *APIXWOT], 6C0 PEYAAUTEROS EIVOL YMPOS YUPUXTNELOTIXMY X0l TO GUVOAO TPOTOTOLACEWY,
1000 MEPIGGOTEPO OBNYEITOL TO HOVTENO OE TLO EXTEVEGTERT X0 TOUTECTLY TLo duayeeY| enihuor BeAtiotonoinong
MILO avéd ¢gOAho. H modtnta eoptdron and tov oprdud emavorripewy xou to action set, yio yeyoldtepa
ocUvoha dedouévwy. Ilap’ 6ha autd, to CET npoocgépel dapdve, péow Uovadix®y TpoTtdoewy Tpotonoinong
avd UANO, Tagn YeTpxr) aEloAOYNONE TLV MIGEWY Xl CUOTNHATIKT) GUVOEST XOGTOUG Xat Mty loe. Tuyxpitixnd
pe AReS, 1 devtpu Soun tne obvolng dieuxohlvel Ty tepopyxr] epunvelo Yo TNV xatovoun xou Ty awtior Tne
XAUTOVOUNG TV TPOTELVOUEVKY TPOTOTOICEWY, EVE polpdleTan Ti¢ (Bieg Baoixés apyéc uétpnone agloAdynong
NG AMOTEAECUATIXOTNTAS TV ANOCEWY.

0.2.2 Xyetxr 'Epsuva - Awaywpeiowpwa BéhTiota Aévipa Antogdoswy

e To Separable Trees with Dynamic Programming (STreeD) (2] eivon pio uédodoc Pértiotmv dévipwv nou
emhbel dladxaotec Bedtiotomoinone pe Auvouxd Ipoypappatiopsd, adlonowdvtag v aveloptnoio um-
08évTpnv W Eexwpelotd Béhtioteg Moeic. Ilpoogéper tdéeis peyédous xahbtepn xhpdxwon and dAAeS
pedédoug oe uétplag xAlwaxog TeoBAuaTA.

o Avadixn} Tpomonoinon yapaxtIneloTix®v: O yhpog yopaxtneloTix®y Aopfdvetar we duadixde
(zy € {0,1}). H 0prj ka1 nAripng Swdixasio tporonoinong eivon npobindleon yio axpiBeic & amodotixée
avodpopEC.

o Khaowx?r DP vy c@dipata tagivounong: I'a péyloto Bddog d,

min{|D*|,|D~|}, d=0,

T(D,d) =
’ in T'(D¢,d—1)+T(Ds,d—1), d>0,
min T(Dy ) +T(Dj )
we Dy = {(z,k) € D : x5y = 1}. Xpnoyonolodvtol EXTEVHOS 0L TEXVIXES SUVOUXOU TROYPOUUATIOLOU TOV
memoization xou bounds, %t tou BeATIOVEL GNUAVTIXG TNV ToYUTNTA EXTEAEONG, HELDVOVTAS TAUTOHY POV
ToV YWea avalATNoNG %ol OVCLACTIXG AmoUNXEDOVTAC TIC PXEOTERNGS TAENG AVomG Yiot Atk avédhnom and
™ WV,

¢ Opiopog dradixaciog BeAtiotonoinone néow tou STreeD: Opiletan and Ty TovTAA
0= <ga t,=,9,¢ 50>7

omou g (tomuxt) alohdynom), ¢ (uetdfoon), > (teheotic ovyxpione), @ (teheothc cuvduaopol NicewmY),
¢ (neploplopol eQuTOHTNTOC), So (oPYIH XoTdoToo).

o IToruxpithpra (Pareto) DP: Ou x6ufol emiotpépouy auroda pur-xvplopyoluevmy Ty (avti plog)
[29].

Opiopol terectoy yia O C V:

— feas(©, s). éeyyoc eguxtotnTog. Keatd and to olvoho vrnodmeiny twoy © C V, ol onolec
IXOVOTIOLOVY TOUS TEPLOPLOUOUS TOU Tpéyoviog state s uéow tou predicate ¢(v, s) = 1. Xpnowonotel-
Tow Yot vou amoppintovtan €yxoupa Aooelg mou mopaBtdlouy Toug meploptoolc Tou xoho ToOY AJGELG
epuxtéc m.y. budgets, ehdyiota yeyédn @OMWY, x.AT.
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0.2. Eyetuxr ‘Epevva

nondom(0). ®ikteo pn-xveplapyioc. Emotpépel Tic un-xuplopyolueves TWéC Tou O, apouptv-
g x&de v yio To onolo undpyel v' € O e v’ = v we tpog Tt dudtaln Pareto. Iepiopilel tov péyedoc
Tou cuvélou Pareto.

opt(0, s) = nondom(feas(O,s)). Tomixd BEATioTo cOVONO. uVOUELlel EPIXTOTATA XU UM
xuplopyio oe éva Briua.  Elvow axeiBode to summary mou mpémel vo anodnxedel xdide x6pfoc yio
Vo Tpoywenoel 1 dladixacio Tou Buvaixo) TEOYEAUUUATIONOU Ywelc anwhieta xadohixic BEATIoTNS
TAnpogopiag.

merge(01,02,s, f) = {v1 Bv2 B g(s, f) }. LOVOeom yovéa and moudid. Anuoupyel dhec Tic
unodripies hooelg yoveic, ouvdudlovtog pio T and xdbe moudi péow Tou teheoth @ xou npocéTov-
toc (edv umdpyel) TV cuvelsgopd Tou split f ue g(s, f). Anouteiton n dwetripnon tng didtaéng tov
® oote 1 PBeltinon evog maudlod Vo Uny YELROTEREVEL TOV YOVEX.

opt{g(s, k) : k € K}, d=0,
T(s,d) = opt( | merge(T(¢(s, £, 1).d — 1), T(t(s, £,0),d — 1), s, f)), d>0"
feF

Avadpouri ouvvélov.

* Mto PBddoc 0 éva gUANO emoTEEPel OAeC TIC EQPIXTEC EMAOYEC ETXETOC XOU XEATE TS UT-
XUPLOEY OVHEVES.

* 2toug eowtepxols xouPouc cuvdudlovtan ol cuvadpoloelc cuvorwy Pareto twv moududv Yo
xdde mdovy| Sidonaon yopaxtnelotixol fxo epopudletar ex véou opt yio var aparpetoldy un
eQuTéC 1) xuplopyovueves Twée. ‘Etot, n plla emtotpépel ohdxhngo to obvolo Pareto yio Bddog
éwc d.

o Arlaywpioiprdtnta (separability): Kpiown cuvdixn opdotntoac yia éva Swaywployo tedBinue:

opt(merge(©1, 02, s, f), s) = opt(merge(opt(©1, s1),0pt(O2, s2), s, f), 5),

6mov s1 = t(s, f,1), sa = t(s, f,0) 800 xatactdoeic moudid. Ioydel bdtav:

1.
2.

Markovian g,t: eaptdvton uévo and (s,a) A (s, f,0).

Avathprnon oepdc didtagng (cefououds Tou cLdVLACTINO TEAEOTH B oTNY oelpd dLdtadng Tov
opilel 0 tehecthc oUyxplon/xupLopyiac) and G: av v1 = v] = v1 B vy > V] D vs.

AvTi-povotovixn eguxtotnTa c: Av o untohbon dev umopel va efvon e@uxtr) ota Thalolo Tou
neploplopol ¢ TéTe xaior Aon peyolitepne tééne (yovéac) dev Vo unopel YpnoLlonoldvTae thy
unoAUoT va Yewpniel cuvolixd eQuty.

"Etol n Slaywplowotnta, enitpénet caching, tonxd pruning xou v aveZdptntn enfAuon unorpoBAnudTwy.

SUvOeon moANATAGY oTéYwV: Av dlo ddixaciec Bedtiotonoinone oM, o) eivan duoywpiowec
oo dlo t, 0 cuvduaopdc 0% pe g¥ = (g(l), g(2)), =% 0 cuvolixde TereoThc ddtalne, B o cuvduaoTixde
teheothc xatd ouviotdoa, xa ¢® = M A @) eiva enione Sioywplowoc. H Bodixacto enthuone tou
TEOBAAUATOC BUVOLXOL TEOYEUUUATIONOD ETULOTEEPEL TO TOAUBLAcTATO cUvoho Pareto.

IMpaxtixée teyxvixég: Memoization (hashing xatactdoewy), woyupd dvew xon x4Tw QEAYHATE Yio
TpowpEo pruning, xuptapyia Bdoel nopouéteny Yahdpwons € Yo EAeyyo Thdtoug Tou cuvorou Pareto, xou
cache tomudv Tpdy ¢ v O(1) avaxtroeic tpobinoloylopévey unohboewy [14].

IToaunhoxotnTa & ®Apdxwon: To edpoc tou cuvdrou Pareto pmopel var awEniel cuvbuaoTixd
(tumixd oe oxplPr) Pareto enumeration). To eheyydueva e, feasibility thresholds xou 6pla fddouc/otipiEng
%xpaToUV TN Bladlxaciar TEoXTIXT.

Svpnépaocuo: To STreeD diver éva evomoinuévo, emextdolto oxehetd Yoo BEATIOTO BEVTEA Hou Ol
adixaoiec ehtiotonoinone mou dev neptopilovtan oe éva ubvo otdyo Beltiotonoinong, we Ty eyylnom op-
YOTNTOC UECW TNG BLOLY WPLOHLOTNTOG KOl YE TEaXTxd epyaAeia pruning tTou ydeou Aicewv. Autd anoteloly
xadoplo Txd e@ddia yio wedddoug mou anoutoly kadodikd BédtioTes, epunvelolues Soéc anopdoewy.
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0.3 Ilpoteiwvopevn Medodog

To SOGAR mpotelvel pa eviaor Slatdnwon yio to npdélAinua to Actionable Recourse Summaries, v onolo
emhbel ue katodikn) BeAtioTdéTnTa T Houy ToL BEVTPOL Xal TNV aVAYEST TPOTOTOCEWY avd GUANO. Baoctouévo
OTIC aEYEC duVaIXO) TEOYEAUUUATIONOY Xou TNV utodour) touv STreeD, To mpEoBAnua SlaTUTOVETM WS €va Bi-
AVTIXEWMEVIXO, Ola)wpiotuo TedBAnua BertioTomolnong, xatd To onolo EAAYLGTOTOLOUUE TO TUVOAIKS KOO TOS TGV
EVEQYELDV X0l ENUYLOTOTOLOUUE TNV amotuyxia avaotpogiis (loss) tne andpoong tou tavounti. Ou Aioeig Tou
npoxUnTouy elvar To cUvolo Pareto twv un-xuptapyoluevev dévipwy. Kdde @Olho npodiaypdpel ula evépyela
TOU GTOYEVEL VoL AVTIOTEEPEL TIC APVNTIXEC ATOPAOELS PE ENAYLOTO XOGTOG, EVE 0 aAybprdpog enliuong Slotnpect
Tic Béhtiotec alnhévdeTtes auEopeldoels x6aToug xau emttuyioc o Gho Tov Yo yapaxtneioTixdyv. Etot, to
SOGAR enexteivel tov yodpo avalftnone népa and tomxéc evépyeles, daopariler xadolxy BedtioTomoinon
UTO GOPElc GUVITXES, XAl YEQPUEAOVEL TNV EPUNVEVSLOTNTO TWYV SEVTOWY ATOPACENY UE TIC UTUUTHOELS GUVETELOG,
Blapdvelog xat LooTylag Twv cUYYEOVWY CUCTNUATWY recourse. 'Etol, mapéyovton doavels xon TOATIXES,
ouvenelg avd e€etalouevr oudda Tou cuvoAxol TAntucouo, yia evalodntoug Touelc 6Twe tiotwaon, tpochiidelg
%ol UYEeloL.

0.3.1 Xvuvelwcpopd
Ot ouvelogopéc g dimhwyotinic epyactog elva ot e€hc:

o ITpoteivouye tnv yédodo SOGAR (Summaries of Optimal and Global Actionable Recourse, évo véo mhai-
oo mou enexteivel Ty hoywy| tou Counterfactual Explanations Trees (CET) [1], pe v evowudtwon
g oty unodbour tne pedddou duvauixod mpoypappatiopod tou Separable Trees with Dynamic Pro-
gramming (STreeD) [2]. Méow tng npocéyyione authc BLoTNEOUUE TNV EQUNVELCLUOTNTA TV AICEWY Xal
TAVTOY POVWLE UTdEYEL Y YUNoN Tne xodohxrc BedtiototnTog, Bdoet Ohwy Twv miavdy BEATIoTY Aicewy
nou evtdoooviar 6to oUvoho Pareto. To cUvoho autd Sivel pio emmiéov molutérela oto yeroTn TOUL
CUCTARATOG, Vo €YEL EMAOYY] TOAATAGY AUCEWY, avdAOYd UE TO TEBlO OploPol XAl T AVAYXES TOUG
TpoBAAUATOC TOU.

o Kdle pUAo tou d€vTtpou anogpdoewy avtotolyileton oe uia epxth evépyeta, 1 omolo emAéyeton
WoTE Vo eAax10TonolEl TO GUVORIXO XOGTOG UETAUBOADY YORAUXTNELOTIXWDY Xol Vo UeYioTomolel Tov pudud
emTUYGY avaotpopnv (flip rate) und évav otadepd un epunvedoo todvounth. H Swtinwon auth
e€aopohilel kabodikd ovvemels xou dapavels npoTdoels.

o Ilpaypatonololye nepapotixy adlohdynon oe mpdtuna myvakoedr) ovvola dedopévwy, delyvovtag 6Tl To
SOGAR cmtuyydvel YaunAotepo puéoo k6otos avatpopoddtnong xou uhniotepa flip rates oe clyxplon
pue CET xou AReS, ye amodotixn xA\udxwon oe peyohitepa Badn 8évipou xou peyédn cuvormy.

o Katiepwvouye ovotnuatiké mAaioo yio TN PEAETN TNG aAANA€rSeTng €mippons TOu KOOTOUS XU TNG
ovvdptnons anddeas Yéow Pareto BeltioTomoinong, mpoo@épovtag o mpaxTixolc xon Qopeic €vor i
aQavés epyaleio yuo Qoppoctur xou eavi vo antiohoyndel avatpopoddtnon.

o H tumuer| Slaudppuwon emttuyydveton Yéow tng npocdpuoyrc tou mAaioiov tov STreeD), ye 1 dlatdnwon
duywplonung dwbikaoias PfeAtiotonoinons o = (g,t,®, =, ¢, Sg), TOU TANEOL TiC avaykaies kar ukavés
ovrdnkes yioo Ty DP avadpopr| pe mpolinodoyiouéveg Tiuéc x60ToUC Xol CUVAPTNONG OTAELOC.

0.3.2 Opiopog IpoBAjuatog

Opilovue évo otadepd un epunvevouo ta&wounty f : X — {0,1} xo otoyebovue v etxéta y* = 1
(avemdOpnTn: 0). Oewpodue TAnduopd D = {(x;, f(x;))}i, xou To ennpealdpevo vrocivoro Dy = {z : f(z) =
0}. Opiloupe ywpo evepyeudv A xa, yio xdde z, epixtd odvoro A(z) C A e onavdtnta we 3 TpOoTONOLACELC.
H ouvdptnon xdéotovs c(a|x) petpd v npoomddeior odhaydv oto yvwpioyata, eve 1 ourdptnon andleag
(évbetn avaortpogris) etvon Lo1 (f(xz 4+ a),1). To {ntoluevo eivar éva Pareto oUvoho dévtpwy Bddous < d émou
xdde PUARO TOU BEVTEOL ATOPACEWY  QEPEL Uiol EPIXTYH EVERYELXL TOU EAAYLOTOTOLEl TAUTOY POV

O(r)= ) clalt@)|z),  Lr)= Y lo(f(z +alt(x))),1),

x€Dg x€Dg
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0.3. Ipotewvouevn Mébdodog

onhadn
i C ) L )
min (C(r), L(7))
omou Tq 0 xhpog duadixdy Aboewv ue péyloto Badvog d. T v olyxplon pe dhhec oyetinés yedddouc,
Yenowonololue xo évay clvieto delxtn Tou anoxalolueinvalidity, xoddTL dev UTdpPYEL XATOLX QUEDT) HETAPEAUCT
oe eVt opoloyia, o omolog expedleTon ©¢

1

I(r) = W

(c(ale()) |2) + 7 bor (f(z + a(t(@)), 1)),

x€Dg

ME 77 ¢ oLVTEAESTH otdduione Tou x6cToug Xau TG ouvdptnone anwhietag. Ilpaxtixd to invalidity pog
EMOTEEPEL €val o TooPEVO Gitpotopa To omolo puBUICEL TNV CNUAVTIXOTNTO XUl GUVELTQORA TNG OTOBOTIXOTNTAS
plog Tpomomoinane oty AN Stadxaciog. Mixpde GUVTEAEGTAC ¥ UTOBNAMYEL UEOT TNV ONUAVTIXOTNTIS TN
CUVEETNONG ATWAELNG Xat LEYOAUTERO ¥ TNV avtioTotyn adnon,.

Bdoel twv napandve topotétouue yio Aloto mou nepthapBdvel xdde uépog tne Yewmpntnrg dadixaoctog, yior T
enthuor Tou TpoBAfuaTog:

o Ytadepic todvopntic f 1 X — {0,1}, otéyoc y* = 1.

IMinduopde D xow ennpealbduevo urnochvoho Do = {z : f(z) = 0}.

o Eowtéc evépyeiee A(z) (omovdtnta < 3).

e Yuvapthoelc: x6otoc ca|x) xon cuvdptnon anodieac Lo1 (f(x + a), 1).
e Pareto ot6y0c: min e, (C(7), L(7)) ye 7 8évipo anogdoewy .

o Yuyxevipwtxéc cuvaptioels: C(7), L(T) o deixtng I(7).

0.3.3 Ilpocapupoyr oto STreeD xou SiaywpeLoLLOTNTA

Opiloupe v dudixacio Behtiotonoimone xatd T mpodiaypoapéc tou STreeD, dnhodh ¢ mpog TNV TodTAA
0={g,t,®,>,¢,S0), 610U g elvou 1 CUVAPTNOT XKGGTOUC XL 1) CUVEPTNOY ATWAELIS OE Jdvuoyd, T 1) CUVEETNOT,
petdfoone xatd Sloxhddwaor, @ o telecTC GUVBLAGHOL TNG CUVAPTNONG XOOTOUE, > 0 TEAECTHC ToU ex(pdlel
v Pareto xupiapyla, ¢ ol meplopiopol eixtédTNTOg plog Aong xon sg 1 apyxn xatdotaon. Mo xotdotooy
yedpetar w¢ s = (X, d), ue unooUvoho delypdtwy ewoédou Xy C Dy xou unéhoimo Badog d. O yodpog Tiudy
TV MNoewv elvar V = R, énou n mpdtn ounotdon elvar 10 adpolotind x6oTtog xou 1 deltepn o aprdudc
amoTUYNUEVLY avaoTeopoyY. (¢ eTkétec PUMY emiTpémovion Ghec ol epuetéc evépyeec a € A(z) (plo avd

GONIO).

H ouvdpton g opiletan pe mpolmoloyiopéves Téc x6otouc xau éxPoone oc g(s,a) = (X ,cx. cla |
), Yaex. lor(f(z +a),1)). H petdfoon ¢ yio éva yapaxtneotixd v deiypdrov ewddou f € F xa di-
whddwon b € {0,1} Siveton and v oyéon t(s, f,b) = (Xsp,d — 1) pe X571 = {z € X5 ¢ fow(z) = 1} %
Xs0 = X\ X;.1. O tedeotiic ouvduoaouot eivar tpoxdntet ye ddpoiomn xotd ouvieTdoa udv = (U1 +v1, uz+0vs2),
eV M xuptapyta ebvan To cOvolo Pareto opiopévo oto RZ ) ue mpooupetind yohdpnom & yiot aprduntixd ovoy xotd
Tic ouyxploec. Ou teploplopol ¢ emPBIAOUY EQIXTETNTY TV TPOTOTOACEWY Yl 6Ad T T € X, Toug omoloug
npoxadopilouye va elvor to ehdytoto péyedoc pOIou | X > m xaw 1 onavidtnta [|aflo < k mou exgpdlel Tov
Hé€yLoTo apriud TV CLUYORXGDY AkaydY avd Tpontortoinon. H apywu xatdotaon elvor so = (Do, dmax)-

H Sy wplowotnta mpoxintel dueca. Ilpdrtov, g xou t elvor Markovian, ool e€aptidvtar wdvo and tnyv tpéyovoa
xatdoTaon xou TNy dueon andgact. Aedtepov, o Teheotc cuvduacpol @ céfetar Tov TeEAeoT xuplapylag >
we TPOC TNV OElpd Tou cuyxpelvel Tic Aloelg peTall Toug, enelr 1 ddpolon we mpog xdde otoyelo oto R,
elvar povotovxd oto mhaiolo Tou cuvérou Pareto. Tpitov, oL meploplopol elvor avti-povotovixol agol ov
napaflac ol o xdmolo uTodévteo, TapafLlalovTal XaL o OOl TOTE BEVTELXY) SOUT| AVMOTEENS TAENG. DUVETKOC
oyVeL N apyn e BeAtiotdtnrag xou 1 Swdixacio Bektiotonoinong eivon dlaywpeiowrn und tic npolinodécelg Tou
STreeD.

H avolAtnon ye duvopxd mpoypaypatiopd mopdyel to obvolo Pareto Moewv T'(s,d). H mepiypagr tne
avadpouxnc oyéong mov TPoxVNTEL anoTeReltal and To ENOUEVY 800 GXENN:
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1. 3t 0N (d = 0) emotpépovton oL un xuptopyoluevee TWwes {g(s, ) @ a € Aear(s)}-

2. Ytoug ecwtepxois xépPouc (d > 0) e€etdlovton dheq oL BLoxAABDOELS YL TOL YAUPUXTNELO TIXE DELYUATLDV
ew6douv f € F, vnohoyilovto avadpowxd ta abvola T'(t(s, f,0),d — 1) xou T(t(s, f,1),d — 1), cuvdud-
Covtou pe ddpolomn XaTtd CUVLOTOGO XAl SLATNEOUVTAL, LOVO OL U1 XUPLIEYOUMEVES AUCELS.

'Etol dlaopaiileton 611 1 Pareto BeAtiotonoinom datnpeiton Tomxd xou xadoAixd o€ A0 TO BEVIPO ATOPATEWY.

0.3.4 Teyvwxn Ilpocéyyion
JUVAPTACELS XOOTOUG XA ATWOAELOG

H ovvdptnon anddeag oplletor w¢ deixtng emtuyolc avactpopic e medPBredne, Snhady eAéyyel av plo
Tpononoinon odnyel to delyuo and Ty avemdountn otny emduunty xAdomn:

gﬂip(‘ra a; y*) = l{f(l' + a) 7é y*}

H ovvdptnon kéorovs Poocileton oto Mazimum Percentile Shift (MPS), nou petpd tn péylotn petatomon
nocootol (percentile) evéc yopoxTNELGTIXOD UETE TNV TEOTOTOIMGOT:

emps (2, a) = max (Qj(xj + a;) — Qj(xy)),

omou @; elvan N eumelpixn adpoloTiny) cuvdpTtnomn xatavopng Tou yapoxtnelotwol j. To MPS eivon avegdptnto
and TNV XAPOXO TWV TIHOV XL TEOCPEREL Uid PEAALOTIXY extiunon tng «mpoondletacy arhoyic, xoahoTtdvTag
To xoTtdAAN O Yoo aflohbéynor oe eninedo allohdynong TAnduoumy.

ITapdupetpol xou meploploloi

H pédodoc emitpénet pudpioeic mou xadopilouv T popph Tou dévtpou, o omnoleg elvon to péyioto Bddoc d, o
eAdytoto Ao BELYUATWY avd @OANO m, xou T0 TARUOC PEYLOTWY ETUTRPETTAOV aAAaydY avd Tpomonoinon. O
OWOTHC GUVBVACUOS AUTWY TWV TUPUUETERY EELCOPEOTEL TNV EPUNVEUGLLOTNTO XAl TN YEVIXEUOT) TwV Aboewy. T
oA Bohd Sévtpa, To unoloyloTxd @optio xatd TNy entluoy avgdvetal exdeTind xou yi' auTéd Yenotwomoleita
unyovioude timeout mou otopatd TNy avalitnon xa emoteégel TN BEATiotn Aon uéypel TN oTiyUY| dlaxomng.
Avuto BéPona elvon e&ioou mapopeTpomOAoLO X0 OTIG AUCELS Tou Tapouatdlel 1 epyaoia dev evepyomnoiinxe
QUTH 1) TOEGUETEOC.

YAoroinomn touv cuvéiou Pareto

To olvolo Pareto Siapoppivetar uéow g pepinic Sidtadne twv Aoewv oto eninedo (C, L), ue epopuoyt
TEUUETEWY YaAdpwongs € yio aprdunuxy otodepdtnras

<.y <= Vie{l,2} fi(z) < fily) +e, Fj: fi(x) < fi(y) —e.

H pédodoc yenowonolel v xou xdtw @edypata mou teplopilouy To yweo avalhtnong, anoppintovios tedwped
un anodotxég Aboelc. O apidudg TV SLaTNEOUUEVLY U1 XUELIOYOVUEVWY BEVTPWY EAEYYETAL ANd TUPAUETEO
peyédouc tou cuvohou Pareto, Biatnpddvtag T Sadixacio utoloyioTxd egixth. Metd Tov unohoyloud TwWV
BérTIoT™V PUAWY, oL cuvapthoelc merge & add tou mhouciov cLYBLALOLY Tol UTOBEVTEN, XPUTMVTOS UOVO TIC
AOGELC TTOL AVAXOUY GTO UT-XUPLILY OVUEVO GUVORO.

Yuvolxn TapATAENON

H ropandve Swbixactio xadotd ) pédodo SOGAR vnoroyiotnd otadepy|, Siadéourn mpog avamopoywym
xon eovt| var amodidel xardohixd BédTiotec Aboei. Me 1 cuvbuaoTxn yerion tne duadixhc Teononolnong, Twy
TpOUTOROYLOUEVLY TV xat Tne Pareto Bedtiotonoinone, to obotnua emtuyydvel anodotixt] toopponia petalld
TOAUTAOXOTNTOG Xol oXP(BELNG, TPOCPEROVTAS TEAXTLXY| EPOOUOCLLOTNTO GE PEYEA TLVOXOELDY) GOVOAAL.

14



0.3. Ipotewvouevn Mébdodog

0.3.5 IIpotewouevrn Aladixacio

H pédodoc SOGAR (Summaries of Optimal and Global Actionable Recourse) anotehel pia Siatdnwon tou
npoPAfuatog twv Actionable Recourse Summaries ye oflonolnon tou mhaciov duvouxod Teoypeouudtiogol
STreeD vy Béhtiota dévtpa anopdoewy. Aol €xel oplotel To YewpnTtind TAalolo Tou TEoBAAUATOC, N EVOTNTA
Ty EpLYpApEL TNV TpoxTiXY) EXTENEDT) TG Bladixaciog, dnwe oty anewxoviletow oto Lyfua 0.3.1. H Sobixaocta
dlaplpvetal ot teio TAHPWS aAANAeEapTdueva Yépr, amd to apyixd dedouéva eLloOB0U Eng TNV TUPAYWYT| TOU
tehxol cuvorou Pareto.

1. Exnaidcsvon xou tpéPAedn

Apywd, exnoudetetan évag otadepds un epunvedoiuos tavountis f oto chvoho exnaidevong Dy, xou moory-
patonotovvtar mpoPiédeic ota ohvora Dy U Die. To amotéheoua elvan évo enavinuévo obvoho ue Tig mpoB-
hembuevee euxétee § = f(x). Anbd auvtd eZdyeton o mAnduoudc twv apvnTind TaZvVounUévey delyUdTev
X = {z : f(z) = 0}, dnhad? exelvewv mov éhofav v avemdountn npdfredn xou anoteholyv To avtixelpevo
e dadcaoiog tou actionable recourse.

2. Avoadixn Tpononoinoy xa dNuptoveyic LETA-BEdoUEVLY

Y ouvéyela, To dedouéva YeTATRETOVTAL G TAYPWS duadixd TpomonoNuévr wop®h Dhin, UEow xwdixonolnong
one-hot Yy Ta YoEOXTNELOTIXE TTOU TORUTEUTOUY OF XATNYOPIES H XATWPAIWVY Yiol aprdUNTINE. YOEaXTNELCTIXG e
HEYSAAO €UPOC TWAY, BATNEOVTAC TNV avTioTolylomn Twv detypdtwy Tou X. Katd ) diaduacia auts| dnuovpyelton
éva context apxeio C nou amodnuedel Ty "anexdvion" Yetadd apylnddy xou BUUBIXMY YOPUXTNELOTIXGY, To Opla
TGV xa Toug Teptoplopols petafBintotntoag. To apyelo autd emitpénet T oOVBEST TLV APy XDV dedoPéVwY UE
T0 SuABXS TEOTOTOLNUEVOC GUVOAO Xou amoTeAel amapaitnTy elcodo Yo ToL ETOUEVOL BridoTaL.

///,., 7-""\\ ‘._/"' ""\_l. /,.4 - o ~
/' DATA TRAINING & INFERENCE | Bc'%::szggg:.rfgﬁ /" SOLUTION PROCESS - ACTIONABLE
GROUND TRUTH [ RECOURSE TREEE
TABULAR DATASET BINARIZED DATASET
j OF AFFECTED
PREDICTION (DATASET WITH | ST
PREDICTED % ' [ PARETO FRONT OF |
| LABELS | TREE SOLUTIONS
. — CONTEXT FILE
INFERENCE l
| orsowen [ K% K
ACTION SET s ¢
BLACK-BOX
CLASSIFIER l
ACTIONS LOSS PREDICTION CACHE
N\ / \ /

Figure 0.3.1: Avonapdotaon diadxasia pedodou SOGAR

Yy oynuotxd avarnopdotacy e dtadixacioc tou SOGAR, nopatneolue tov diaywpeioud ot Teelc enl pépoug Toyel,
ot omoiol AANAeTBPOUV UeTall Toug Xatd TNV Bidpxelo Tne Slodixaoiag.

3. Anuiovpyict cuVOAOL EVERYELOY

Me Béon to C, xatooxevdletar éva xodolxd e@utéd oOvohro evepyewdv A(z) yio 6ha ta delypota elo6d0u,
To 0Tol0 CUUUOPPAOVETAL UE TOUC TEQLOPLOPOVS UETUBANTOTNTAS XAl TOV UEYLOTO dpldud ETUTPENTMY AAAAYWY
(k < 3). K&le evépyeia xadopileton otoug apyixolc dEOVES YUpUXTNPLOTIXMY XL EYEL WS OXOTO TNV olOAGYNoT
évavtt Tou taéivounty f.
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4. A priori utoloyLopoG x60TOUG %A TEOPBAEYE®Y

T xdde € A xou a € A(x), vnohoy{lovton ex TV TPOTERWY:
cost(z,a) = c(alz), Aflip(z,a)=1{f(z +a)=1}.

Ou twéc autéc anodnxedovion otny cache pe xhedid (x,a), Odote va anogedyetoar 1 enPBEpUVOT, XoTd TNV
enfluon Tou mpoPBAfuaToC, e emavOAUUBUVOUEVOUS UTOAOYIOUOUS TV BV TYWY xOGTOUC XoU TNV GUVEYO-
pevn avtodhory ) dedopévmy petadd TavounTt o Tou povtéhou Yoc. Me tov tpémo autd, o akydpripog extelel
avall NTAGELS XOGTOUS KOl OTOTEAECUATWY PEGE OMAAC avdxTnong omd Tn wvhAun ot ypovuh tokuthoxdtnta O(1).

5. Eniluom 8Evipou BEATIOTWY EVERYELOV

To enduevo Pripa nepthaudvel Ty eloaywYn twv Dhin, C' xou tou apyelou tne cache otov solver tou STreeD.
O akybprduoc extehel Ty avadpopxt| Swadxacio avalrtnong xat enthuong und meplopiopols péylatou Badoug
d, ehdyrotou peyédouc gUANOL M xan péylotou ueyédoug Tou cuvohou Pareto. Kdde @OAho AopBdver plo
evépyela, xat 1 ovalitnon tev BEATioTtov AMoewy yiveton Ue ¥phon TapauéTpey YoAdewons € Yio ouyxploelg
xuplapytag xar Ty oplotétnom dve xou xdtw Qeayudtwy tou teptopllouy Tov Ywpeo avaliTnong ond YEPOTEPES
Moeig. H pédodoc moapdyel yetd and eCavtintxry avalitnom, oo to duvatd umodévipa uéypel To dedouévo
Bddog, emotpépovtac GAEC TIC U] XUPLOEYOVUEVES AUCELS.

6. ITapaywyh Tov cuvéiou Pareto

H ¢Z080c¢ tou solver eivon to cOvoho Pareto T twv un xuptapyolpevey dévipwy. Kdbe dévtpo doywpile
Tov y0po X ywelc emxolddels (Buwv deryudtomy ot Todamhéc neptoyée Tou Ywpeou xou avtiotoly (et pla eQueth
Tponomolnom avd GUANO, pall UE T CUVOALXE GTUTIOTIXE XOOTOUG XAl EMLTUYWY VIO TEOPMOY. AuTtd anoteholy
TIc TeAxég actionable recourse summaries tou SOGAR.

ITAcovEXTARATA XU TEOCASUOYES

H ouyxexpyiévn npocéyylon duvoulxol tpoypapuatiogol, tapéyel xadohny| BeAtiotdtnTa Ye TAHeWS VIETEPULV-
10T TROTO, xadwe e€etdlovTon dheg ol mdavég Tepntwoelc POAWY. H uédodog expetalhedbetor mAjows Toug
unyoviopole tng cache xan o dve xan xdTw @edypata tou STreeD, emtuyydvovtac onuoavtixy yelwon tou
¥eoévou extéleong yweic alhoiwor tne BérTioTng anddoorg.

Emniéov, n yédodoc dev emotpépel uévo pla Mooy, adid éva cbvoro Pareto icodivopa Bértiotwv Acewy.
O yprotne pmopel va emhélel avdhoya Ye Tic aviyxec Tou Tediou oplopol Twv dedopévwy toug, eite dévtpa
mou divouv éugacn oTo Younho x6cToC, elte BEVTPA TOU GTOYEVOUV GE LYNAOTEQN TOGOGTA EMUTUYWV AUVIC-
Te0pOY otny emduunty etixéta. Me autdv tov TeéTo, 1 TOAUTAGTT TwV MOCEWY Bev meplnAéxel 0 AN
ATOPACEWY ARG TNV EVLOYVEL, TEOCPERPOVTAS dlopdvela, euehléio xou BUVATHTNTA EPUNVELNS TWV TEOTEWVOUEVLV
TEOTIOTIOLACEMY YLoL BLOPORETINES TANTYUOULIIXES OUdDES.

0.4 Ilepapatixd Mégog

0.4.1 TIIeipapatixn Ilpostolpacio
e H vlomnoinon exteleltan oe Apple Silicon M4 pe 16 GB RAM.

e To SOGAR vionoteltoan STreeD xou evowUat®dVETAL aTOV solver tou, ue To uépog Tou solver UAomolnuévo
oe CH++17.

o H npoenelepyaoio xot to caching vionololvtow oe Python 3.12

o Xonowornowfoaue tov taivounti LightGBM[30], ue tic mopauétpous mou yenoylomolody oL GYETES
€PEUVEG TIOU CUYXQELYOUAOTE
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0.4. TIlewpopatind Mépog

0.4.2 3>0Ovola Acdopevey xa Ilpoenegepyacia

Xenotponololue téocepa GUVORA BEDOUEVHV TIOL YENOHLOTIOOUVTAL GE EAEYYOUC anogdoewy uhnhol ploxou,
xotdhhnho v Ty Soduxocion tou Actionable Recourse, to onofa eivar to German Credit[31], to Bank Mar-
keting [32], to Adult Income [33] xou to IBH HR Employee Attrition [34]. To Adult vroderypotonnreiton
070 Wod Toug apyxol Tou ueyétoug yio vo ohoxAnewvovtan 6Aa Ta baselines e dathpnon TwV apyinwdy AOYwy
peTal TV XAdoewy, evé Yo To Bank yenowonotolue tn dnpdoia exdoyr) utocuvolou 1 ontola TapanéUnel 6To
10% Tou mpwtotiROoUL.

ITpoeneiepyacia

Tot YopoXTNELOTIXE TTOU TUPATEUTOLY GE XUTNYOPIEC XwdlxomolovvTal o€ one-hot xwdxonoinon énwe oto CET.
To yopaxtneloTind e cuveyelc TWES TpomoToloLVTAL BuadXd ot Sl TAATA Bdoel TocooTIiWY 0pltwy CLUUPATEOV
e to STreeD. ‘Onou elvan e@uxtd, axépaeg petoBAntéc tpomonotolvtal duadixd e éva bin avd tuy. IleplopiCoupe
N BLOYUWON TNG SLEGTACTC TOU YMEOL YULUXTNELGTIXWY, UETE TN Sladixacio Suadixrc Tpomonolnong, MoTe Vo YNy
npoxAniel aAlolwon Tou YEou TwV yopaxTneloTxdy. Euncipxd autd dev yeipotepedel Ty nowdtnta Aboewy
xou efvan avayxato yior optole duadixole Saywetouolc atov solver.

MeTaBAnTotnTat %ctt COVOAO TEOTOTOLACEWY

XopaxTnelotixd Omeg nhuxla, PUAO, QUAT|, OLXOYEVELIXT XATACTOOT), GYECT] XL YOEN CNUELDVOVTAL WS AUETIBANTA
avé dataset yia Ty anoguyr dlaxpioewy xaL Tov cefacud TV TEOXAVOPIOUEVLY TEQLOPIOUWY UETABANTOTNTAS.
To cbvoho tpomonolficewy avd delypo neplopiletar o onavidtnta ahhaydy k < 3, o cuupwvio Ye T oyeTX)
BiBhoypapla xon TV xatdhAnAn cbyxeion.

IToAittix® binning xow evoTadég x6cTOC

Do peydeg aprdunuinée xhigaxee, énwe to eloddnua, yenotdonotolue 20 éwc 50 dacthuota tepitou (cou unx-
0Ug ol HETOPEACOVUE Evay ETLAEYUEVO BlayWEIOUO WS xIvnon Tpo¢ 11 didueco tou bin otdyou nou mpotelivel
pta tpononoinoy. Etol mpoxUntouy adhayéc ye peaMoTind peyédrn, omwe +500, +1500, +3000, avti yia un-
epPBohuxd dhpota 1| UTEEEXTWNUEVES XV OELS UNdaUvAC ouotas Tieg adAoryfic. Tar Suadud yopoxTnelo Ted xon
oL xatnyopleg avtioTolyolv oe evepyomoinom 1 adhoyy) xotnyoplas, GUUPWVOL UE TOUS XUVOVES UETOBANTOTNTOG.
To cUvolo twv Tpononoioewy (cache) elvar YeyohiTEpo amd AUTO TPONYOUPEVKY EPYAOLOY, 0ANE Y| Oha
To x601 xou ot flip exPdoeic mpobnoroyilovta, ou agloroyrioeic UMWY xatd v avalfitnon DP yivovton ue
dueoec avoxtroeic Ty, read-only lookups otnv cache.

0.4.3 Metpixéc A&LoNoYTOTNG

Flip loss (Avactpog? etixétog)

INo otéyo y* =1 xou po unodrpla tpomonoinon a oe delyyo elc6d0L x, 0 delntne anotuylog avacTeoPhc elvol
Uaip (2, ;™) = H{f(z +a) # y"}. (0-4.1)

Ye eninedo dévipou T xaw thnduopod Dy = {z : f(x) = 0},

Lr) = > fuinlw, all(@)); y)- (0.4.2)
€Dy
Kéotoc MPS (Maximum Percentile Shift)

Me Q; v eunepixfy CDF tou yapoxtneiotixol j otov apyixd yoheo twov xou 2’ =z + a,

emps(z,a) = max, (Qj(x;) - Qj(a:j)), (0.4.3)

JEA(x

xou o€ eninedo BEVTPOU

C(r) =Y cups(x, a(l())). (0.4.4)

x€Dg
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XpenHon oTa nElpd AT

o YuuBatotnrto: Xpnowonowiue Tic petpxée Ttic (0.4.1)-(0.4.3) énwe oto CET yio dueon ouy-
xpwowdtnta. To Q5 unohoyilovrton uio @opd ot trainttest uetd tic mpofiédeic Tou TagvounTt o omo-
Unredovian 6To contert.

e ToAOYLOUOG XOO TOUG %ol CLVAETNONG AnWwAELag: Av xau o STreeD Aertoupyel oe Suadomnoln-
péva yvopiopota, to x6otn (0.4.3) xou ta L(7), C(7) (0.4.2)-(0.4.4) vroroyilovioaw 6Tov apxikd yoeo
TGV OTOL Xo EXTOUOEVETOL O TAEVOUNTAC.

o Taipiaopa and bins o apyixd yapaxtneroTixd: o peydrouv edpoug yvwplouata, 1 emhoyn
bin petagpedleton oe tuh medy. (Bidpecog tou oToéyoL bin) mewy unel oty @ GoTE Vo AmOPEDYOVTAL
acTadElES XU Vo TUPEYETAL 60T TOV BUVATOHV TEQLOGATERT] EUPWOTIAL.

o AdporoTixdtnta: Ko ol 800 cuvaptiioeig otéyol etvan mpooleticol avd @iAdo xou adpollovtar poévo
néve oto Dy (Selypota e€etalduevou nhnduopo).

o ApudunTixn avoyr: O cuyxploeic xuptapyiog yivovtol ue napauétpoug yordewong € yio otadepdtnta
oe ouyxpioelg HETAEY apLiPdY XVNTAC UTOBLIGTOANS.

e Anodotixotnta: Ta Lebyn (x,a) éxouv npolmoloyiouéva Caip, caps, Gpol oL aELONOYHOELS PUINGDY
yivovtor pe O(1) avayvooelg and cache.

0.4.4 AZ&iwolhbéymon Alcewy
Kown pb3uiomn a&lordéynong

‘O)ec oL gédodol aglohoyolvtar pe toug Bloug optopoic xdotouc (MPS) xou flip loss. ©étouue v = 0.99 (oyedbv
undovyy pelwon e Bapdtnrtac tou loss). Xto SOGAR dev ypnowonoteiton o xavovixonomtic A tou CET,
eneldy) eAEyyoupe dueca T dour ue péyoto Bdlos d, eddxioto puéyelos pUiAov m, uéyroto tAndos eocwtepikdy
képuPwrv M. Tw to CET xou Cluster-wise actionable recourse ypnowwonoidnxe o solver Gurobi® avti{ tou
apyxd optopévo CPLEX? yio peyahhtepn ouuPatétnta vhomonong, PACEL TV UTOAOYLOTIXGY Lag Ttépev. ot
v pédodo tou AReS 8ev ftav epuxtd vo tpéel oto Adult Income (oxdun xou pe urodelrypotoindio) Adyw
Ehheudng vnoroyloTnrc Loy ¥og yia éva ToAD eTPBoPUVTIXG Xl UTONOYLOTIXG amontnTixd TEOBAnuUd.

Enéxtoaor xou pruning Tou yweou AVoewyv

To mAAdoc Tewv pn-xuptapyoluevey Aoewy e€optdta évtova and Tic Topauétpous (d, M, m), tou avanaptotolyv
T0 Bddog, Toug eowTepols xOUPoug xaL Tov eNdytoTo apldud BelyudTtwy avd @UANO avtioTolyd, To 6pLo TOU
ouvorou Pareto mou meplopiCovton amd to € xou to péyedoc Tou action set.

o Pnyd 6évtpa (n.y. d =2,M = 3) o uxpd/pecaio cvoha: ~ 180—220 Aboeic. ALEnon d, M odnyel oe
~ 250—500.

o Meoaio péyedos (n.y. Bank): mapdporo xhipoxa AMoewy v pnyd dévtpa, audvel pe to action set.
o MeydAa oUvora (Adult): ~ 2000—3000 Aooelg, axdun xou yio d = 2 ¥ 3.
Teyvixéc eAéyyou pruning:
o Kavoveg cuyywvevong oto STreeD nou neploplCouv Toug cuvBLAcUoVS UTOBEVTEWY.
o TOPUUETPOC XAAREWOMC € 0TV xuptapyio Yot Arydtepee xon otadepdtepes cuyxplioelc (amoteEeoUaTIG,
dratnpeel opdoTnTa).
POon ko cuvéneia Aboswy

O Bopéc BEVTPWV TUPUUEVOLY EQUNVEUCLUES XOL Ol TEOTOTOMNTELS avd PUANO Blatneoly TNV dlagdveld, HECW
TAheous xdhudme tou eetalbpevou mhnduopol Dy).

e I'evixevon:

Thttps://www.gurobi.com /solutions/gurobi-optimizer/
2https://www.ibm.com/products/ilog-cplex-optimization-studio
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0.4. TIlewpopatind Mépog

— Pryétepa dévtpa divouv mapduol anoteréopato ot train/test x6otog xou loss.
— Baditepa dévtpa Behtidhyvouv to train ohhd yewotepelouy To test (xhaowxd bias—variance).

o StadepotrnTar Pareto xopugprc: O xopugalec 10 Micelg dlagpépouv eddyiota o invalidity, oe tédén
weyédouc 1073 avd Prhu, Tpoopépovtac ToAaTAés oxeddy 10080vajies emhoyéc e dlapopeTind Bopr xou

TEOTOTOLCELS.
OverTime
Monthlylncome +2 BusinessTravel -1 JobInvolvement +1 JobSatisfaction +1
StockOptionLevel +1 Monthlylncome +3 StockOptionLevel +1 YearsWithCurrManager +2
JobRole_ResearchScientist — 1 JobRole_ResearchScientist — 1 OverTime — 0 OverTime — 0
train ¢=0.3400, f=0.1609, n=80 train ¢=0.2025, f=0.2263, n=35 train ¢=0.3636, f=0.0724, n=82 train ¢=0.2991, £=0.0619, n=32
test ¢=0.3365, f=0.1650, n=6 test ¢=0.1986, f=0.0000, n=2 test ¢=0.3748, f=0.0825, n=12 test ¢=0.3026, f=0.1650, n=6

Figure 0.4.1: Avonoapdotaon Aevtphc Xivodng, Bddoue d = 2

Orntixonoinon Pareto xou epurnveia

To pétwno eygavilel TNV avopevouevn avTioTpdpws avddoyn oyéorn x60toug xou loss, apol younid xdéctoc =
vdnidtepeg anotuyles flip xou avtiotpdpwe. H 9€on tou «Béhtiotouy e€aptdtar and Ty emhoyn Tou 7.

o Entihoy" ANoorg: Ilépa and to invalidity, uropolv va yenotpomnoindody dhkec yetpixéc dnwe 1 andotaon
and y apyn oto eninedo (C, L) o evalhoaxtxd xpitiplo, avdhoya Ye to TAoicLo.

e I'evixevom oo test: Ta test onuela tpooeyyilouv To oyfua g Jewentnd anewovilouevng xaumoing
Tou ouvohou Pareto mou mpoxUntel yetd to training tne pedodouv (uxpéc amoxhioeic Aoyw Wwixpol test
set), unodnhwvovtag ouvenr) trade-off xaw ota 500 GUVOAL.

0.4.5 3Xyohiacwog Ileltpapatinedy AnoteAecudtwy

Ta mewpdporto Tou Tpé€aue apopovoay éva 10-fold cross validation ota téocepa e€etaldpeva cOVOha BeBouévwy.
XENOWOTOLCOUE TIC TPOETUAEYHEVES TORUUETEOUC YLt OAES TIC CLUYXELVOUEVES UeTHBOUS dTwg elyay Tpoxadopio-
el and v dnuooteupévn vhonoinon tou CET. I'a to CET npoyweroope oty e€rg ahhay mou agopd udvo ta
nelpduata oto Adult dataset, yewdvovtag tov aprdud twyv enavoridewy otic T' = 1000 apod 1 extéheon Tou dA-
yoplduou yio To cuyxexpluévo anawtnTixd dataset Moy oplaxd amayopeLTIXT 6OV APOEE TOV YPOVO EXTEAECTC.
INo to AReS mpoonodiiooue pe Sopopetiny] mapopeteonoinon va TpéZouue Telpduato 6To (Blo mpoavapepdéy
oUVOAO BEBOUEVLYV, AAAS BEV AVTANOUUE XAVEVO ATOTEAETUOL.

Ioe v Suxen) pog uédodo to SOGAR, ta nepduota mou teé€aue tav yia 800 Lebyrn nopoauéteny, d = 2,n = 3
xu d = 3,n = 7, Yl T0 Yéyloto Bddoc xon Tov UYéyioto apldud eowtepixwv x6uPwyv. H xowd opiouévn
unepnopdueTeog ftav to v = 0.99 oe xdde pédodo.
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Chapter 0. Extetopévn Ieptindmn ota EAAnvixd

Kopia supfporta

To SOGAR Behtitdver onuovtixd to invalidity score évavtt twv CET xou AReS oe 6ha tar sOvola.

1 péom pelwon elvar 1¢&ne ~ 40% (train & test), npoepyduevn xuplng ond dpactind younidtepn cuvdpTtno
andietoc (flip loss) oe napduoto xbéotoc.

Attrition, German: peydhn ntédon oto loss e napeugpepéc xdéoTogc — Loyueh pelwon invalidity.
Bank: uixpéc ahAd ouvenelg Betunoelg xou og x6oT0¢ ¥ou o€ loss.

Adult: xo\Otepn enldoon tou SOGAR, adld 80oxohn clyxpion 1 onola anodideton Ye To yaunidtepo T
tou CET.

YOvTowur enedrynon

Yroloyiopoc 6Awv Tov mdavedy @UAAwvV: H pédodoc tou Buvopxol mpoypauUatiogod Ue
avalhnon Aooewv cuvélwv Pareto péow tou STreeD e€etdlel tor @OM ©dOTE Vo ehayloTOmOlEl TN
ouvdpTtnoT amwielg Yo dedopévo xd6aTog, Yl xdle mdavy Tpomonolnon mMou TEPEYETU OTO GUVOAO
TPOTOTOLACEWV.

SVyxplon xuptopylac Aboewy pe TNy nopdpeteo € xouw BnB: Anoxéntel voplc aprduntind
1o0d0VaeS ADOELS, BLATNEMVTIC HOVO 0UCLKBWE XaAOTERES Xt oTadepéc Bopéc.

Kéotog xou motdtnTor: Ehagene udnidtepo yéoo xbéatog oe optouéva folds ogelieton otny anexdvion
CUVEY WV YORUXTNPLOTIXOY UE TNV YENON TN DIOUECOU TTOU OVIPEROYE TROTYOUUEVKS, Xal eV uTtofBarduilel
Vv ToldTNTA TNE ADoNg.

T'evixevom: ou xopugaieg hoelg eivan oplaxd todmakeg oe invalidity xou npocpépouv evolhaxtixés pe
TapouoLa ETHB0CT GRS BLUPORETIXY EQUNVEVCUOTNTA XAl TONTIXT X6GTOUG.

Xeobvog, svaicOnoisc xol CUUTEPACTA

0.5

Xebvog o pixpd/pecaio cOVoAa dedopévmv: Tuyxplowoc ye CET xoaw AReS, cuyvd ehagppc
HEYAAOTEROC AOYW PEYONDTERTS CUVBLUCTIXNG EVOTNC TWV ETUEROUS POANLY.

Bank: Avopevéoyevn yeimon tne enidoone Aoyw peyahitepou yohpou avalftnone.

Adult: Tayitepo andé CET oty mpdln, enedn to CET xhoxddver doymuo pe T xouw v yeron tou
MILO avé ¢pioiho, evéy to STreeD pe caches éyel avaxthoeic O(1) avd (z, a).

Yhoroinom: ‘Oha elvar vhonoinuéva single-threaded, cuvende, topodinhonoinon cache xou cuyxploewy
OVOUEVETOL VO HELOTEL OUCLACTIXE TOV YEOVO.

Avodixr] tpomornoinoyn Odedopévwy ciwoddou: To binning emnpedler v yewpetpla TwV
TPOTOTOWCEWY ol TNV Uetex MPS.

Svunépaocpo: To SOGAR alonoel mhipwe v xadohin| Bedtiotonoinon dévtpou xou tnv Thhen
a€LONOYNOT EQIXTWY TEOTIOTOLCEWY UE GTOYO To yaunidtepo invalidity xou v vdnin epunvevooTnTa.

YIVUTEPAC AT

To Actionable Recourse omotehel évav mpaxTixd ol OuCLHOTIXG TEOTO AVTWETOTIONG TNG OBLUPAVELNS TWV
Un EpUNVENCLUWY LOVTEAWY TOU ETULTUYYAVOLY Xopupaies emdboels oty dadxacio tedBredne. Emitpéner v
OTOVONOY Oyt LOVO TOU ATOTEAEGUATOS TOL UOVTEAOU, GANS Xou TLC UETABOAES TWV YUPUXTNPLOTIXMY TOU TEETEL
vor auuBolv yia Ty eniteugn tne emduuntric TeEdBiedng.

Ye authy v dimhwpatix epyacta avahbouue die€odnd to npoBinua tou Actionable Recourse xon aglonolodue
Y W€ Twv devTpdy cuvodicewy ou ewodyel 1o CET, yéow twv BélTiotwv devipinmy dopwy. H avaoxdnnon
TV ahyopliuwy BEVIpwY ano@doewy avadeixvieEL Tol TAEOVEXTAUATO EQUNVEVCLUOTNTAS, Xl TALTOYpOVa TN Ot
apopd Twv BEATIOTWY BEVTpwY ano@doewy, 6mou 1 kaboliki) feAtiotéTnta xorhoTd Toug ahyopluoug autol
Tou eldoug xatdAknhoug yio avotner Bektiotonoinon pe ta xpLtiplo e Siaywplotpdtnas. Autéd yog odfynoe
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0.5. Xuvpnepdopota
Table 1: Ilewpopotind anoteréopata oe 10-fold cross-validation
Train Test
Dataset Method Cost Loss Inv. Cost Loss Inv.

Clustering 0.068 £+ 0.05 0.940 £ 0.04 0.999 £ 0.01 0.0084 + 0.11  0.918 £ 0.13 0.992 £ 0.03

Attrition AReS 0.442 £ 0.05 0.439 £ 0.09 0.877 £ 0.06 0.445 £ 0.07  0.285 £ 0.09 0.728 £ 0.08

CET 0.294 £+ 0.12 0.477 £ 0.15 0.776 £ 0.07 0.305 £ 0.12 0.45+ 0.21 0.751 £ 0.14
SOGAR 0.302 £ 0.032 0.135 £+ 0.03 | 0.437 £+ 0.035 0.295 £ 0.021 0.1297 £+ 0.060 | 0.425 + 0.066

Clustering 0.042 £ 0.02 0.916 £ 0.04 0.949 £ 0.03 0.046 £ 0.02  0.925 + 0.05 0.962 £ 0.03

German AReS 0.452 £ 0.09 0.232 £ 0.05 0.683 £ 0.11 0.467 £ 0.12  0.265 £+ 0.08 0.732 £ 0.14

CET 0.107 £ 0.02  0.269 £ 0.01 0.374 £ 0.07 0.108 £ 0.02  0.226 £+ 0.11 0.332 £ 0.11
SOGAR 0.109 £ 0.007 0.086 & 0.022 | 0.195 + 0.019 0.109 £+ 0.013 0.111 + 0.058 | 0.220 =+ 0.059

Clustering 0.010 &+ 0.02  0.993 £ 0.01 0.993 £ 0.012 0.607 £ 0.010 0.994 £+ 0.011 0.994 £ 0.0

Bank AReS 0.361 £ 0.02 0.799 £ 0.08 1.152 + 0.09 0.363 £ 0.03  0.798 & 0.08 1.152 £+ 0.08

an CET 0.035 £ 0.003 0.018 + 0.01 0.053 £ 0.01 0.035 £ 0.01  0.019 £+ 0.01 0.054 £ 0.01
SOGAR 0.029 £ 0.0004 0.007 + 0.006 | 0.037 £ 0.006 0.029 + 0.0006 0.011 + 0.007 | 0.039 + 0.007

Clustering  0.95 £ 0.0 0.10740.01 1.056+ 0.01 0.948+ 0.04 0.09440.06 1.041+£0.08

Adult AReS ., ™ N N oL oL

v CET 0.935 £ 0.04 0.110£0.012 1.045+ 0.02 0.94+ 0.04 0.09940.05 1.039+0.08

SOGAR 0.166 & 0.005 0.448 £ 0.007 | 0.626 + 0.002 0.172 £ 0.005 0.435 £ 0.002 | 0.607 £ 0.002

H newpopotind dadixaotio Tou 10-fold cross-validation pe tnv yphotn tou tafivounth Light GBM  [30].

OTNV TPOGEYYIOT SUVAIXOV TEOYEUUUATIONOD ol oTny pédodo tou STreeD, cto omolo mpooapudoaue T O1-
avTikelpevik SLTOTWOY TOU TEOBAUATOC HaC.

H npotewvbpevn yétdodog pag, 1o SOGAR, ¥étel o otépen Yewpntinn Bdon yia T UG TNUATIXY] XATACKELY
cuvorwyv Pareto and U xuplapyolueves, xoatohxd Bértioteg Aoelg devipddv dounv. lewpopatind, oc npdtuna
TUVaXO0ELDY] oOVOAA, XATAdEXVOETOL oENCT TNG ATMOTEAECUATIXOTNTOC TWV EVERYELDY UECK VEWV DL WELOUMY
TOV BELYUATOVY EIGOBOU Gt PUAAN TOU TEOXUTTOLY UE BEATIOTO TPOTO U€ow TNV Uedddou Tou duvauixol Tpo-
yeauuotiopov. Emnhéov, 1 a&lohdynon oAdxAnpou Tou GUVOAOU EQPIXTWY TEOTOTOLACERY avd uToYnPlo PUARO,
TaEOTL efval UTOROYLO TS oL TN TIXT), TIOEAUEVEL GLUYXEloLN Pe TN oyeTix BIBAoYpapia xou avadexviel xordohxd
Béhtiotec AoelC.

H Si-avtixeigevixn dlatdnemon ETTEETEL TNY avaXTNOT TOAATAGY AVGEWY oVl EXTEAETT) TNE HEVOBOU, TOREYOVTIS
evehi&io emhoyc uetald Aoewy e oyedov Loodivoun enidoor. Luvolxd, ta Actionable Recourse Summaries
HE TNV LAoTolnan BEATIOTNG BEVTEAC SOUNC, ETLOTEEPOLY Eval Blapaveg xou xadohxd BEATIOTO GUVORO TOMTIXGDY
recourse AUoewv yia xdie delypo tou e€etalduevou nanduouol. Iletuyaivovtoc, étot, Bertinon Twv emdodoewy
CUYXELTIXE UE TNG OYETIXES EQEVVES, UE TNV EYYUNOT] TNS BLATAENONS TNG EPUNVEUCIULOTNTAS.

MeirovTtixy ‘Epeuva

o ITapdAAnrog unoloyiowdg: multi-threaded dnuwovpyia cache xou mopdhhnhn a&lohdynon QUMY
evtdg tou STreeD yio Ty yelwon utohoyloTixol yedvou.

e Juvey” YopoaxTneloTixd: dtinwon mou yewlleta ouveyelc YeTtofAntéc yopoxTneloTXdY Ywelic
TAYen Buadixy) TeoToTOMOT), BLATNEWYTOC TN Bl-aVTIXEWWEVIXY PehTioTonoMmoN.

e Evpltepn aZioloyrnon: Ilepduato oe nepiocbdtepo ohvoha xan talvountéc uhnirc enidoong pe di-
APOPETING. YVWEIOUTA WS TEOS TA 6Pl Xalk TNV GTOIEPOTNTA TWV ATOPACEWY.

o AuxawoocVvn: Evowudtnon neploploley Sixatocivng we pocUeTwy oTdY WY MOTE Ol TOMTIXES recourse
VO XOTAVEPOVTOL LOOTIA o€ evaioinTous xou un unomAntuouoic.
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Chapter 1

Introduction

Artificial Intelligence (AI) has become integral to decision-making systems, influencing outcomes in domains
such as credit allocation, employment opportunities, education, and healthcare. While predictive models have
achieved remarkable accuracy, their complexity often renders them opaque to those most affected by their
outputs. This complicated situation raises concerns about accountability and bias, particularly in high-stakes
applications where algorithmic decisions can reshape the course of people’s lives.

Much of the existing literature focuses on instance-level counterfactuals, generating explanations indepen-
dently for everyone, understanding the locally minimal changes that would change the prediction of a model.
Although informative, such explanations can lack global integrity and may produce contradictory recommen-
dations for similar profiles, raising bias concerns that are difficult to generalize in a population of affected
individuals. To overcome these limitations, recent research has proposed recourse summaries, which deliver
structured and consistent recommendations across groups of instances. Decision trees (DT), valued for their
interpretability and widespread use, are well-suited to this summarization task.

A notable example, from which this work departs, is the framework of Counterfactual Ezplanation Trees
(CET) [1], which assigns counterfactual actions to the leaves of a decision tree. CET marks an important
step toward global recourse, yet it relies on heuristic local optimization per leaf and then averages the results
to global objectives. This approach, even though it may seem to provide optimal solutions, it does not
provide a globally optimal tree structure and therefore cannot guarantee global optimality of chosen actions
and computed scores. This limitation raised the concern that an implementation of the task via Optimal
Decision Tree structures, would successfully improve the existing solutions.

This thesis introduces a principled framework for Actionable Recourse Summaries using optimal decision
tree structures. Our method uses the advantage of the dynamic programming framework of Separable Trees
with Dynamic Programming (STreeD) [2|, which provides globally optimal decision tree solutions under
separability conditions. Specifically, the STreeD framework provides the opportunity to design any task that
can be defined though the separable criteria, thus we create a new optimization task within the DP decision
tree environment that assigns minimal-cost, high-success actions to tree leaves. The outcome of the task is as
expected globally optimal and consistent actionable recourse summaries. The task is by its nature optimizing
multiple objectives, balancing the cost of actions with the rate of successful outcome flips. For that reason,
the framework has a valuable method to implement such tasks with ease, by formulating a Pareto-optimal
output, by providing all the optimal non-dominated solutions, that provide a diversity of choices for the user
to decide which partition of the solutions matches the needs of the task implemented. The type of solutions
that this thesis finds more useful, either the goal is explainability or performance comparison with other
works, is the minimal sum of the two individual objectives.

Contributions.

e We provide a systematic study of counterfactual explanations and actionable recourse and clarify their
role within explainable AI and responsible machine learning.

e We introduce a novel optimization task within the STreeD framework for constructing optimal recourse
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Chapter 1. Introduction

decision trees (DT), which assign consistent, minimal-cost actions to groups of instances with provable
global optimality.

We empirically validate the framework on benchmark tabular datasets, demonstrating improvements
over CET baselines in both action cost and flip rate, while scaling to larger datasets and deeper tree
structures.

Outline.

Chapter 2 reviews the theoretical background of machine learning and supervised learning, with a focus
on DT interpretability, and presents Optimal Decision Trees (ODT), including existing methods and
the dynamic programming approach of STreeD.

Chapter 3 surveys the foundations of Explainability in AI, counterfactual explanations, Actionable
Recourse and Actionable Recourse Summaries, and ends with the analysis of current state-of-the-art
methods that influenced the development of this thesis.

Chapter 4 introduces the problem setting, the limitations of related work and the proposed method
for optimal recourse summaries, detailing the integration of the multi-objective optimization task via
STreeD solver [2].

Chapter 5 describes the experimental setup and presents results of benchmarking with compared re-
producible methods.

Finally, Chapter 6 concludes the thesis by summarizing contributions, identifying limitations, and
outlining directions for future work.
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Chapter 2

Machine Learning Background

The pursuit of constructing machines capable of reasoning, learning, and adaptation has influenced the
development of engineering and computer science for several decades. The introduction of digital computation
transformed this pursuit into the scientific field of Artificial Intelligence (AI), which focuses on designing
systems that perform tasks requiring human-like intelligence, including perception, reasoning, and decision-
making. Early Al systems primarily utilized symbolic methods, relying on explicitly defined rules and logical
representations of knowledge. However, the complexity and uncertainty inherent in real-world problems
demonstrated the limitations of hand-crafted rules. Consequently, data-driven approaches emerged, allowing
machines to learn directly from empirical experience.

Machine Learning (ML) emerged as the subfield of Al devoted to learning from data rather than following
explicit instructions. ML algorithms infer patterns and relationships from empirical evidence, enabling sys-
tems to improve their performance through experience [35, 36]. By learning statistical mappings between
inputs and outputs, these models generalize from observed examples to unseen cases, allowing computers to
build competence autonomously. Applications of ML range from medical diagnosis and financial forecasting
to language translation and personalized recommendations. Depending on the nature of the input data, such
as text, images, audio, or tabular attributes, learning systems are specialized into areas like Computer Vision,
Natural Language Processing, Speech Recognition, and Recommendation Systems.

This chapter systematically examines the theoretical foundations of Machine Learning (ML). It begins by
presenting the taxonomy of ML algorithms based on the degree of supervision during training, encompassing
supervised, unsupervised, semi-supervised, self-supervised, and reinforcement learning. Within this framework,
Decision Trees (DT) are situated in the supervised learning paradigm, as they derive predictive rules from
labeled data to map input features to target outputs. Decision trees are notable for their interpretability and
transparent logic, partitioning the feature space via simple, human-readable rules. This property renders de-
cision trees among the most accessible and widely applied models in interpretable machine learning. Building
on their foundational design, the subsequent sections detail the principles of decision tree construction, the
historical evolution of training methodologies, and recent advances culminating in state-of-the-art models.
Notably, Optimal Decision Trees [5] seek to generate globally optimal solutions under formal constraints,
addressing challenges that have traditionally limited conventional tree-based approaches.

Contents
2.1 Learning Categories . . . . . . .« v v i i i it i e e e e e e e e e e 27
2.2 Decision Tree Learning . . . . . . . . . v o 0 v i i i i i it b ittt e e 28
2.2.1 Historical Development . . . . . . . .. ... o 28
2.2.2  Basics of Binary Tree Induction . . . . . . . .. ..o o Lo 29
2.2.3 Pruning, Regularization, and Generalization . . . . . . . . ... ... ... .. ... 31
2.2.4 Recent Advances and State-of-the-art models . . . . . . ... ... ... ... ... 33
2.3 Optimal Decision Trees . . . .« v v v v v v v v vt v vttt et e e e e e e e 35
2.3.1 Mixed-Interger Optimization Programming . . . . . . . . .. . ... ... .. ... 35
2.3.2 Constraint and SAT-Based Formulations . . . . . . ... ... . ... ... ..... 38
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2.1. Learning Categories

2.1 Learning Categories

Machine Learning algorithms are commonly categorized according to the type of supervision or experience
provided during training. The main categories are supervised, unsupervised, and reinforcement learning, while
semi-supervised and self-supervised learning can be viewed as intermediate or hybrid paradigms [37]. This
taxonomy reflects the nature of the information the model receives to guide parameter updates and the extent
to which feedback is explicit or implicit. In all cases, the goal of learning is to generalize beyond the observed
data, capturing the underlying regularities that connect inputs to desired behaviors or representations. The
balance between available supervision, model complexity, and data variability determines both the efficiency
and reliability of learning, forming one of the central trade-offs in modern machine learning research.

Supervised Learning

In supervised learning, each example consists of an input vector mx and a corresponding outcome y, also
called label or target. The objective is to learn a function f(x) that accurately predicts y form x by minimizing
a defined loss function over a set of labeled examples:

min %Zﬁ(f(mi)7yi), (2.1.1)
i=1

where /(-) measures the prediction error, such as squared loss for regression or cross-entropy loss for classi-
fication. This process can also be interpreted as estimating the conditional probability distribution p(y|x).
Common supervised tasks include classification, regression, and forecasting, which form the foundation of
many predictive modeling applications. Supervised methods are especially relevant to interpretable models
such as decision trees, where the learned function is represented through explicit, human-readable rules that
relate input features to outcomes.

Unsupervised Learning

Unsupervised learning methods operate on data without associated labels. The goal is to discover under-
lying patterns or latent structures within the data by modeling its distribution p(x). Typical tasks include
clustering, which groups similar data points, and dimensionality reduction, which identifies compact low-
dimensional representations that preserve essential relationships within the data. Such methods often serve
as exploratory tools or as pre-processing stages that reveal intrinsic structure before applying downstream
supervised algorithms. Frequently, an unsupervised algorithm aims to find parameters # by maximizing
likelihood or a related alternate metric:

log p(xs; 6).
max Y _ logp(x;; 0)

i=1

A prominent example is the pretraining of (auto-regressive) Large Language Models (LLMs), which are
trained by next-token mazimum likelihood on unlabeled collections of texts, such as GPT-3 and GPT-4 [38]

Semi-supervised Learning

Semi-supervised learning occupies a middle ground between supervised and unsupervised approaches. In this
setting, the training data is composed of a small subset of labeled examples and a large pool of unlabeled
ones. By leveraging the structure of unlabeled data alongside limited supervision, semi-supervised models can
enhance generalization performance, particularly when acquiring labels is expensive or impractical. Many
modern algorithms employ consistency regularization or pseudo-labeling strategies to leverage the information
embedded in unlabeled samples, optimizing a combined objective:

L= Esup +A »Cunsup;

where A balances the contribution of the unsupervised consistency term.
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Chapter 2. Machine Learning Background

Self-supervised Learning

Self-supervised learning is closely related to semi-supervised learning but does not rely on any human-labeled
data. Instead, it derives supervision signals directly from the data itself through pretext tasks designed
to learn meaningful internal representations. Once trained, these representations can be transferred to
downstream tasks such as classification, detection, or segmentation. Self-supervision has recently gained
prominence as a scalable paradigm for representation learning in domains like vision and natural language,
where constructing explicit labels for massive datasets is infeasible.

Reinforcement Learning

Reinforcement learning differs fundamentally from the above categories, as it involves learning through in-
teraction with an environment rather than from a static dataset. An agent observes a state, performs an
action, and receives feedback in the form of rewards. Over time, it learns an optimal policy that maximizes
cumulative reward. Over time, it learns a policy 7(a|s) that maximizes the expected cumulative reward:

(oo}
ZWtTt] )

t=0

max [E,
T

where v € [0,1) is a discount factor controlling the importance of future rewards.

2.2 Decision Tree Learning

Decision Trees (DT) are a fundamental subset of machine learning algorithms that provide a visual represen-
tation by recursively dividing the input feature space X into distinct, homogeneous regions based on simple
decision rules. Thus, leading to visually interpretable paths that yield the model’s outcome, represented by
the leaf nodes.

2.2.1 Historical Development

The origins of decision tree learning can be traced to the early 1960s, when Morgan and Songuist (1963)
introduced the Automatic Interaction Detection (AID) algorithm [39]. AID was developed to uncover mean-
ingful partitions in survey data by recursively splitting variables into subgroups that minimized within-group
variance. Although simple in its construction, AID established the foundational principle of recursive binary
partitioning that continues to underpin all subsequent tree-based models. Building on this concept, Kass
(1980) proposed the Chi-squared Automatic Interaction Detection (CHAID) algorithm [40], which general-
ized AID to handle categorical predictors and multiway splits. CHAID used statistical tests of independence,
such as the chi-squared test, to determine the best partitioning variables, thereby introducing a more formal
statistical criterion for split selection.

A major methodological milestone occurred with the publication of Classification and Regression Trees
(CART) by Breiman, Friedman, Olshen, and Stone (1984) [3]. CART unified classification and regres-
sion under a single framework and introduced well-defined impurity measures, such as the Gini indexr and
variance reduction, as criteria for optimal splitting based on the importance of the features on the outcome.
Importantly, it established the principle of cost—complexity pruning, which systematically removes subtrees
that do not contribute to improved generalization. CART also formalized how to handle continuous attributes
through threshold-based binary splits and how to manage missing data using surrogate splits—techniques
that remain standard in modern implementations.

In parallel, Quinlan (1986) proposed the Iterative Dichotomiser 3 (ID8) algorithm [4], which adopted an
information-theoretic approach to tree induction. ID3 selected attributes that maximized information gain,
derived from the reduction in Shannon entropy after a split. This provided a probabilistic interpretation of
decision boundaries and directly linked decision tree learning to principles of information theory. Quinlan
later extended this work with C4.5 (1993) [41], introducing mechanisms for handling continuous-valued
features, missing values, and overfitting via post-pruning based on estimated error rates. C4.5 became one of
the most widely used decision tree algorithms, influencing both academic research and practical applications.
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2.2. Decision Tree Learning

Together, these developments, AID, CHAID, CART, ID3, and C4.5, transformed decision trees from heuristic
segmentation tools into a robust family of supervised learning algorithms grounded in statistical theory.
They established the conceptual and methodological basis for later advances such as oblique trees, ensemble
methods, and, ultimately, optimal decision tree formulations.

2.2.2 Basics of Binary Tree Induction

Decision tree learning is usually treated as a supervised learning paradigm—this is the setting adopted here
and by the algorithms discussed in the previous sections—where the aim is to approximate an unknown
mapping f : X — Y from training data D = {(z;,v;)}7 1, with z; € X CRP and y; € Y, where X indicates
the input feature space and ) is the set of target labels. Unsupervised (and semi-supervised) variants of
decision trees do exist, such as density estimation trees for modeling p(x) and unsupervised clustering trees,
but they are not the focus of our subsection [42, 43].

The model is chosen from a hypothesis class F to minimize the empirical prediction loss over the dataset,
often regularized by a complexity term:

mln—Z€ ), yi) + AQ(f),

feF n

where £(-) measures the prediction error, and Q(f) penalizes excessive model complexity [44, 45]. In the
specific case of decision trees, f is represented by a hierarchical structure 7' that recursively partitions the
input space into disjoint regions, assigning a constant prediction ¢, to each leaf region Ry. Learning the tree
corresponds to solving the optimization problem

=S U(fr(z) ) +alT
;nelgnz (fr(z:),v:) + T,

where |T'| measures the tree size and « controls the trade-off between accuracy and simplicity [3]. This
formal objective underlies both classical greedy methods and modern globally optimal approaches, connecting
decision trees to the broader principles of statistical learning theory.

The core principle underlying binary decision trees is the recursive partitioning of the input feature space
X C RP into a set of axis-aligned, disjoint cuboid regions|[37], as visualized by Figure 2.2.1 where the
partition is represented in two dimensions for simplicity. Each region is associated with a simple predictive
model—typically a constant value in the case of regression, or a discrete class label for classification. Every
region R; corresponds to a terminal (leaf) node I;, while the traversal from the root node to a leaf defines
a unique sequence of binary decisions over the feature variables. In this way, the model learns a nonlinear
mapping f : X — Y. This mapping is constructed as a composition of region-specific local decision rules.

Formally, the model can be expressed as

x) =Y e M{x € Ry}, (2.2.1)
/=1

where 1., denotes the indicator function and ¢, the prediction assigned to region R,.

The prediction rules for regression tasks correspond to the mean target value within the region

Ce = |R[| Z Yi,

x; ERy

while for classification, they are determined by the majority class,

C¢ = arg maxpy (Re),

where py(Ry) represents the empirical class proportion of class k within Ry [3, 37].
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Simple Partition Design: x_0 vs x_1
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Figure 2.2.1: Partition of feature space X into cuboids in 2D.

Instances are marked with ‘+’ or ‘~’ to indicate their class (positive or negative.

Each internal node ¢ applies a decision rule atT x; < by, where a; € RP and b; € R denote the split coefficients
and threshold, respectively, which split the data into left Ry and right Rp children subsets. This process
of recursive partitioning continues independently in each child node until a specific termination criterion
is reached, such as minimum samples per node, maximum allowed depth. The final result is a visually
interpretable structure that ensures the hierarchical importance of features and the local final outcomes
assigned to leaves, depicted by Figure 2.2.2.

Simple Tree Structure

<2 > 2
<
Class 0 Class 1
Class 1 Class 0 Class 0 Class 1

Figure 2.2.2: Balanced decision tree with non-overlapping leaves.

The layout ensures that all leaf nodes are evenly distributed along the bottom. Each internal node represents a
threshold condition, and the branches terminate cleanly in class predictions. Blue leaves denote Class 1, and red
leaves denote Class 0.

The criterion for selecting splits is centered around maximizing the reduction in an impurity measure I(t)
that quantifies the heterogeneity of a node t. Intuitively, impurity quantifies how mixed the class labels are
among the samples that reach a particular node, meaning the higher the variety of classes that reach the
specific node, the higher the impurity measure. The goal of each split is to ensure the impurity of each child
node is lower than its parent, thus partitioning the space into more homogeneous and specific subsets with
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2.2. Decision Tree Learning

respect to the label variable y.

For classification tasks, the most widely used impurity metrics are the Gini index and the entropy:

K
Icini(t) = Zpk(l — Dk), (2.2.2)
k=1
K
IEntropy(t) = - Zpk: logpka (223)
k=1

where pj, denotes the empirical proportion of samples of class £ within node ¢. For regression, node impurity
is typically defined as the residual variance or mean squared error:

1 1
Ivar(t) = N, Z (Yi —9t)°, U= N, Z Yis (2.2.4)
:X; €L :X; €L
where y; denotes the target value of the i-th training instance that reaches node t, and g; represents the
mean target value of all samples that reach the node.

The optimal split (x;,0) at node ¢ is chosen to maximize the impurity reduction:

Al=I)— > ZLIG), (2.2.5)

jéEchildren(t)

where N; and N; denote the number of instances in the parent and child nodes, respectively [3, 4, 41].
The greedy algorithm follows the Top-Down Induction approach[4], the procedure of which is described below:
e Start at root node ¢ with all data.
e Evaluate all possible features z; and thresholds 6
e Select the split on the feature that maximizes the impurity reduction A7
e Recursively apply the process on child nodes
e Terminate based on the stopping criterion

While the greedy procedure enables computationally efficient training, it does not ensure a globally optimal
tree. Joint optimization of split variables, thresholds, and tree structure constitutes a combinatorial problem
that is NP-complete [7]. As a result, trees generated by recursive partitioning can vary substantially due
to minor changes in the data or initial conditions, highlighting the non-convexity of the search space. This
challenge has led to research on pruning, regularization, and globally optimal tree induction methods, which
balance accuracy and model complexity to enhance generalization performance [3, 45].

2.2.3 Pruning, Regularization, and Generalization

The challenge of most substantial importance in decision tree learning has been the control of overfitting,
as baseline algorithms tend to create complex models (greater depth and thus more leaf nodes), which
usually lose accuracy on test scenarios. Pruning is the primary mechanism introduced as a solution for the
simplification of the tree structure after the growth has reached a certain point, thus improving generalization.
This idea dates to the CART[3] and C4.5[41], indicating that a grown tree often fits redundant instances
referred to as noise or spurious patterns that are unique on the training set. The removal of such sub-trees
that fit on these special cases leads to improved test performance, even though training accuracy is reduced
[46]. Practically, this result addresses the bias-variance tradeoff, where a smaller tree has higher bias, but the
variance is substantially lower[45]. We note that the regularization term is not universally fixed to tree size,
as while CART penalizes |T|, modern optimal-tree methods such as in Optimal Decision Tree applications
[2, 47], employ more general Q(T') penalties, including sparsity-aware and structure-aware regularizations.
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Figure 2.2.3: Effect of pruning on training and test error.

Pruning selects the tree complexity that minimizes validation error by balancing bias and variance. The training
error decreases monotonically with complexity, while the test error forms a U-shaped curve, indicating overfitting
beyond the optimal point [3, 45].

Pre-pruning Strategies. Pre-pruning (early stopping) limits tree growth before it perfectly fits the train-
ing data, using criteria such as maximum depth, minimum samples per node, or minimum information gain.
These constraints act as regularizers that prevent overly specific splits, though excessively strict limits can
cause underfitting [41].

Post-pruning Algorithms. A more robust approach is to first grow a full tree and then prune subtrees
that do not improve validation performance. CART introduced cost—complexity pruning, minimizing

Error(T) + X\ - Q(T),

where A penalizes tree size. Cross-validation and the one—standard—error rule are used to select the optimal
A [45]. C4.5, in contrast, applies error-based pruning based on statistical confidence intervals: if a subtree’s
estimated error is not significantly lower than a leaf’s; it is replaced.

Impact on Generalization. Pre-pruning and post-pruning techniques seek to optimize accuracy and
model simplicity by eliminating branches that lack significant predictive value. Pruning primarily functions as
a variance reduction mechanism. By removing sub-trees that capture random noise instead of the underlying
data structure, it limits model flexibility and yields more consistent predictions across data samples. Empirical
analyses consistently show that pruned trees achieve lower test error than fully grown ones, even at the cost
of slightly higher training error, confirming that many fine-grained splits reflect noise rather than informative
patterns. This directly relates to the classical bias—variance trade-off, where unpruned trees exhibit low bias
but high variance. In contrast, pruned trees sacrifice some fit to gain robustness and improved generalization
performance. In practical applications, the optimal degree of pruning is typically determined using cross-
validation or validation-set tuning to minimize predictive error on previously unseen data.

In addition to mitigating overfitting, pruning improves both interpretability and model stability. Simpler
trees are easier to visualize, validate, and explain, particularly in high-stakes decision-making domains such
as medicine, finance, and policy analysis. By retaining only statistically significant splits, pruning ensures
that the resulting structure emphasizes the most relevant relationships in the data. Consequently, pruning
and related regularization methods, such as depth constraints, penalty-based formulations, or ensemble aver-
aging, remain essential for building decision trees that generalize well while preserving human interpretability
[45]. This pursuit of balancing performance and transparency has also inspired later advances in ensemble
approaches, where multiple trees are combined to further stabilize predictions and enhance accuracy.
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[(a) Pre-pruning: Early stopping}

Pruned Subtree

[(b) Post-pruning: Remove subtrees after full growth}

Figure 2.2.4: Comparison of pre-pruning and post-pruning strategies.

Pre-pruning halts tree growth based on heuristics such as minimum information gain or sample size, while
post-pruning removes subtrees that fail to improve validation performance after the tree is fully grown. Post-pruning
generally yields more reliable models with improved generalization [35].

2.2.4 Recent Advances and State-of-the-art models

Since the 1990s, research on decision trees has yielded methodological and algorithmic breakthroughs that
have significantly improved predictive accuracy and computational scalability. While the classical decision
tree remains fundamental to interpretable machine learning, contemporary variants have advanced beyond
the traditional greedy-split paradigm. This section reviews key areas of progress in tree-based methods:
ensemble learning, oblique and hybrid tree models, and optimization-based formulations, which define the
current state-of-the-art.

Ensemble Methods.

The most influential advances in decision tree research stem from the introduction of ensemble methods, which
combine multiple trees to form a single, stronger predictive model. The fundamental idea is to reduce the high
variance inherent in individual trees by averaging or aggregating across many of them. Bagging Bootstrap
Aggregating|48] is the earliest such approach, where each tree is trained on a bootstrap-resampled version
of the data and the ensemble’s prediction is obtained through averaging (for regression) or majority voting
(for classification). Random Forests [49] extended this principle by introducing random feature selection at
each split, thereby decorrelating the constituent trees and further improving generalization. Random Forests
remain among the most widely used models for tabular data due to their robustness, resistance to overfitting,
and ease of parallelization.

A complementary approach, boosting, constructs ensembles in a sequential manner: each new tree focuses
on correcting the errors of the previously learned ones. The seminal AdaBoost algorithm [50] demonstrated
that combining many weak learners, often very shallow trees, can yield a strong classifier with low training
and generalization error. Later, Gradient Boosting [51] unified boosting with gradient-based optimization by
fitting each successive tree to the negative gradient of a differentiable loss function. Modern implementations
such as XGBoost [52] and Light GBM [30] introduced additional improvements, including regularization terms,
histogram-based split finding, and distributed training capabilities. These boosting frameworks have achieved
top performance on canonical structured-data benchmarks such as the UCI Adult Income dataset [33] and
the German Credit (Statlog) dataset [31], which remain standard baselines for evaluating generalization and
robustness on tabular data. However, while ensembles significantly improve predictive performance, they do
so at the cost of interpretability: the combined effect of hundreds of small trees is difficult to visualize or
explain in a human-understandable form.

Oblique and Hybrid Decision Trees.

In parallel to ensemble research, another line of work sought to enhance the representational power of single
trees by generalizing the type of decision boundaries they can form. Traditional trees perform azis-aligned
splits, where each internal node tests a threshold on a single feature (e.g., x; < 6). Oblique decision trees,
in contrast, allow splits based on linear combinations of features, corresponding to hyperplane partitions of
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Figure 2.2.5: Tree ensembles example - Random Forest visualized

the input space. The OC1 algorithm[53] is an early example of this family, using randomized and gradient-
based methods to optimize the coefficients of linear tests at each node. Such oblique splits can produce more
compact trees by replacing several axis-aligned splits with a single, multi-feature condition. Nonetheless,
they introduce additional computational complexity and reduce interpretability, as linear combinations (e.g.,
3.7x1 + 1.2x9 < 5.4) are less intuitive than univariate thresholds.

Beyond oblique models, hybrid trees integrate tree-based structures with other machine learning paradigms
to combine their complementary strengths. For instance, trees with linear models in their leaves (model
trees) can capture local linear relationships within regions, improving accuracy while maintaining some
interpretability. Recent developments in differentiable decision trees and neural decision forests extend this
idea into the deep learning domain: by using soft (probabilistic) splits and backpropagation, researchers have
trained tree-like architectures end-to-end alongside neural networks. These methods bridge the gap between
the clear, rule-based reasoning of trees and the complex pattern-learning ability of deep models[54].

Trade-offs, Accuracy, and Interpretability.

Across all these advances, a recurring theme is the trade-off between predictive performance and interpretabil-
ity. Ensembles such as Random Forests and Gradient Boosted Trees deliver state-of-the-art accuracy on a
wide range of structured prediction tasks, often surpassing single-tree methods by a large margin. However,
they forfeit the clear decision logic that makes single trees appealing in high-stakes domains like healthcare,
finance, and policy. The growing interest in Explainable Artificial Intelligence (XAI) has therefore revived
attention to single-tree methods that can remain competitive with ensembles without sacrificing transparency.
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To address this, recent research, such as the Optimal Classification Trees (OCT) framework proposed by [5],
has recast tree learning as a global optimization problem. By formulating the split-selection process as a
mixed-integer optimization task rather than a greedy heuristic, these models achieve near-optimal trade-offs
between complexity and accuracy. They effectively close part of the performance gap between interpretable
single trees and opaque ensembles. Such work bridges traditional decision trees with modern optimization
and continues to shape the frontier of interpretable machine learning.

2.3 Optimal Decision Trees

Learning an optimal decision tree is a well-known NP-complete problem in its decision form, and NP-hard in
its optimization form [7]. The result showed that even when the goal is to minimize the expected number of
tests (path length), thus the minimal decision tree, required to identify an object (the dataset), no polynomial-
time algorithm exists unless P = N P. Specifically, they proved the minimum decision tree problem is NP-
complete by reduction from the SET COVER problem variant referred to as EC3, which describes the Exact
Set Cover, where each of the subsets available contains exactly three elements. Formally, given a finite set
of training instances D = {(z;,v;)}", with z; € R¢, the goal is to find a tree 7' minimizing a cost function
L(T) (e.g., the misclassification rate or the number of internal nodes), subject to perfect classification of the
training samples:
qug_ﬁ(T) s.t. fT(JZl) =y, Vi€ {1, L. ,’I’L}7

where T is the set of all possible trees under consideration. It was shown that even deciding whether there
exists a tree of size at most k consistent with the data is NP-complete. This is because the number of distinct
trees of depth d grows super-exponentially with both d and the number of features p:

Tw.d) =0((2p)* ), (2.3.1)

implying that an exhaustive search over all possible structures is computationally infeasible even for moderate
values of p and d.

Due to this intractability, early algorithms such as CART [3] and ID3 [4] relied on greedy, top-down heuristics
that make locally optimal splitting decisions. However, advances in optimization algorithms, hardware, and
solver technology have made exact methods increasingly tractable. It is noted by [5] that modern mixed-
integer optimization (MIO) solvers have improved by nearly 10''-10'? times over the past few decades,
enabling globally optimal tree construction for moderate-sized datasets.

Three main paradigms now dominate exact tree-learning research:

1. Mixed-Integer Optimization (MIO) formulations that encode tree construction as a single math-
ematical program;

2. Constraint Programming (CP) and SAT-based formulations that rely on combinatorial search
with pruning and caching; and

3. Dynamic Programming (DP) frameworks that exploit the decision tree problem solutions, by re-
cursively solving optimal sub-solutions that gradually compose larger global optimal solutions, based
on the foundations of DP algorithms and the recursive equation objective of the task. In addition, they
employ smart bounding mechanisms to drastically reduce the search space, such as the similar-support
bound introduced by [14], which prunes redundant subproblems that share overlapping instance sets.

2.3.1 Mixed-Interger Optimization Programming

The first family of exact algorithms to achieve global optimality formulates decision-making tree learning as
a mized-integer optimization (MIO) problem. This approach, introduced by [5], constructs the entire tree
structure and its prediction assignments simultaneously within a single mathematical formulation. Unlike
the greedy heuristics, which commit to one split at a time, the MIO mechanism searches the combinatorial
space of all possible splits, thresholds, and leaf labels in a globally coordinated manner.
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To present the problem, we revise the setting of Binary Decision Tree from Section 2.2.2, where we consider
the dataset D = {(x;,y;) ", with z; € {1,..., K}. We consider a full binary tree of depth D containing
|T| = 2P — 1 internal node and 27 leaves, and the branch rules described by

al ©; < by,

where a; € R and b; € R denote the split coefficients and thresholds, respectively. When splits are restricted
to axis-aligned tests, a;2 is constrained to be a unit vector in the standard basis, i.3., a; = e; for some feature
j- The resulting model partitions the feature space X into disjoint regions using the prediction function 2.2.1.

The MIO formulation introduces binary and continuous variables to represent the structure and predictions
of the tree. For each branch node ¢, binary variables a;; indicate which feature j is selected for the split, and
bs denotes the corresponding threshold. For each training instance ¢ and leaf ¢, z;, specifies whether sample
1 is assigned to leaf ¢, and ¢y, denotes whether leaf ¢ predicts class k. Finally, L, indicates whether a leaf is
active. Routing constraints ensure that each instance reaches exactly one leaf:

L
E Zie = 1, i=1,...,n.
(=1

To guarantee consistency with the tree structure, a sample can be assigned to a leaf only if it satisfies all
branch inequalities along its corresponding path. If .Af and Af denote the sets of branch nodes where the
sample must go left or right, respectively, these conditions are expressed as

a;rxi <by+ M(1—2y), Vte AL,

athith—&—s—M(l—zig), ‘v’tEAf,

where M is a sufficiently large constant and ¢ > 0 enforces strict separation. Each leaf predicts a single class,
enforced by

K
Zcek =Ly, zip < Ly, cor € {0,1}.
k=1

The objective function jointly minimizes empirical misclassification error and a sparsity-inducing penalty
that controls model complexity:

K L
Z Z 1{y; # k} zivcor, + Z Ly. (2.3.2)

L
1¢=1k=1 =1

n
. 1
min —
a,b,z,c,L N —

~

The first term measures the fraction of misclassified samples, while the second penalizes the number of active
leaves, promoting interpretability. The parameter v > 0 serves the same role as the cost—complexity pruning
constant in CART, balancing accuracy and sparsity.

Putting these elements together, the complete Optimal Classification Tree (OCT) model is written as:

1 n

min — E

a,b,z,c,L N “4
=1 ¢

1¢=1k=

L K L
L{ys # k} ziecor + aZLe
1

(=1

p
s.t. Zaﬁzl, ajt € {0,1}, b, eR, t=1,...,T,

j=1
L
Yoru=1, zee{01}, i=1...n, (2.3.3)
=1

a:acigbt—i—M(l—zig), VtE.AgL,
a;xizbt—l—e—M(l—zw), VtG.Af‘,

=

> e = Lo, e, Le € {0,1}.
k=1
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The product zjecgr introduces nonlinearity, making the formulation a mixed-integer nonlinear program
(MINLP). However, this can be linearized using auxiliary variables, yielding a mixed-integer linear pro-
gram (MILP) that can be solved with modern solvers. When the splits are restricted to one feature per node,
the feasible region forms a polyhedral set, allowing the use of efficient branch-and-bound procedures! to find
the global optimum.

The model simultaneously optimizes over all splitting features, thresholds, and leaf assignments, ensuring
that routing and labeling are consistent. It provides a globally optimal tree with respect to the specified depth
and objective function, achieving a principled trade-off between interpretability and predictive accuracy. It is
stated by [5] that optimal trees of depth up to four can be computed for datasets containing several thousand
instances, often surpassing CART in accuracy while remaining equally transparent.

Subsequent studies extended the MIO approach to improve scalability and numerical stability. The Binary
Optimal Classification Tree (BinOCT) was introduced by [8], a binary linear programming variant that
decouples the number of constraints from the dataset size. Instead of representing every instance explicitly,
BinOCT encodes feasible decision paths with binary vectors corresponding to node activations, reducing
the formulation from O(n2P) to O(2P) constraints. This compactness significantly reduces computational
overhead and memory usage, enabling depth-4 optimal trees for datasets with tens of thousands of points.

FlowOCT was later proposed by [9], which reformulates the routing process as a network-flow problem.
Each sample “flows” from the root to one leaf through binary variables representing left or right decisions
at each branch. Flow-conservation constraints ensure that every instance is assigned to exactly one leaf,
while eliminating symmetric subtrees and tightening the LP relaxation. This leads to faster convergence and
smaller integrality gaps, allowing the model to scale more efficiently in both depth and sample size. Further
improvements were made by [57], where the resulting trees demonstrate better generalization performance.

Figure 2.3.1: Representation of lowOCT

A decision tree (left) and its associated flow graph (right). B, T indicate the branching and leaf nodes, respectively.
Reproduced from[9].

Empirical comparisons demonstrate that FlowOCT yields the most consistent results across datasets, whereas
BinOCT remains the most scalable for large sample sizes.

The flexibility of the MIO framework also allows the construction of obligue or multivariate decision trees. In
the Optimal Classification Tree with Hyperplanes (OCT-H) [5], the decision rule at each node takes the form
th x; < by, with continuous coefficients w; € RP. The one-hot restriction on aj; is replaced by the constraint
|lwe|lr <1, and a sparsity-inducing penalty is added to control model complexity:

n

T
. 1
min =Y N " U{y; #k} ziecon +a» Lo+ A [lwels. (2.3.4)
t=1

w,b,z,c,L. M 4
i=1 4,k 14

I Branch-and-Bound is a general global optimization strategy introduced by [55], and later formalized in [56].
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The ¢;-regularization term penalizes dense hyperplanes and promotes sparsity, ensuring interpretability sim-
ilar to Lasso regression. This multivariate extension produces more expressive decision boundaries and typi-
cally achieves 4-7% higher accuracy on high-dimensional datasets, though at a small cost in transparency.

Overall, MIO-based formulations have demonstrated that globally optimal and interpretable decision trees
can be derived using modern optimization solvers. Models such as OCT, BinOCT, FlowOCT, and OCT-H
demonstrate that joint optimization of structure and prediction yields consistent performance gains and a clear
cost—complexity trade-off. Nevertheless, the number of feasible tree structures grows super-exponentially with
depth (eq. 2.3.1) and even with efficient pruning and parallelization, MIO approaches remain computationally
demanding for very large datasets. These challenges have motivated alternative paradigms, most notably
constraint programming, SAT formulations, and dynamic programming approaches, which preserve global
optimality while offering greater scalability for deeper or larger-scale problems.

2.3.2 Constraint and SAT-Based Formulations

A second class of approaches for the optimal tree induction relies on Constraint Programming (CP) and
Boolean Satisfiability (SAT) formulations. These methods encode the tree structure, instance routing, and
labeling decisions as collections of discrete constraints, solved using propagation and pruning within constraint
solvers. Unlike MIO/MILP, which operates on continuous relaxations of integer variables, SAT-based and CP-
based formulations are entirely symbolic, reasoning directly over Boolean variables through logical inference.
This makes them particularly well matched for datasets with discrete features of finite sets of threshold sets.

At their core, SAT formulations aim to decide whether there exists an exact assignment of such Boolean
variables that satisfies a propositional formula. Formally, the SAT [58| problem can be stated as:

Given a Boolean formula ®(X;, Xs,...,X,) in conjunctive normal form (CNF), where each X; denotes a
Boolean variable, the SAT problem determines whether

I(z1,...,2,) € {0,1}" such that ®(z1,x2,...,z,) = True.

In context of decision tree learning, the propositional formula ® encodes the logical structure of a tree of
fixed depth D. Each node decision, branch routing, and leaf assignment is represented by a Boolean variable.
For instance, variables can indicate whether node t splits in feature j, whether sample i reaches leaf [, or
leaf | predicts a particular class label. A satisfying assignment to these variables thus defines a valid tree
consistent with the data.

The first explicit encoding of decision tree learning as a SAT instance was proposed by [10], who demonstrated
that compact CNF representations can yield provably minimal trees for moderate-size datasets (order of
magnitude of n € [100,10%] instances, p € [5,50] features, with depth D < 5). The central idea is to
constrain each training instance to be assigned to exactly one leaf, and each leaf to correspond to exactly
one label. These logical relationships can be formalized as:

2D

\/ Zie, —zie V vz, VEF L, (2.3.5)
=1

where z;p is a Boolean variable indicating whether instance i reaches leaf ¢. The first clause ensures that
every instance must be assigned to at least one leaf, while the second set of clauses enforces the exclusivity,
that is, exactly one leaf, meaning that for each internal node ¢, a training instance can proceed left or right
only of its feature values satisfy the corresponding branch conditions. These conditions can be encoded as
Horn clauses [59, 60] that connect node-selection and routing variables:

(split] A bl(jgat)) — lefty(7), (split? A —|b§j§9‘)) — right, (7).

Collectively, these constraints define a satisfiability instance whose feasible solutions correspond to a valid
decision tree of depth D consistent with all training samples.

The objective of the SAT-based formulation is to find the smallest consistent tree, that is, the minimal D
for which the SAT problem admits a satisfying assignment. This is achieved by iteratively increasing D
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and resolving until feasibility is attained. The resulting model is guaranteed to have the minimal number of
levels (depth) achieving perfect classification accuracy, which is analogous to minimizing the empirical error
under a size constraint in MIO formulations, but solved through combinatorial search. In practice, the search
process exploits clause learning and unit propagation to prune infeasible partial trees (subsolutions), making
significantly more efficient than naive enumeration.

CP generalizes this logic-based paradigm to support numerical thresholds and categorical attributes of higher
cardinality. Instead of pure Boolean clauses, CP uses structured constraint types such as AllDifferent, At-
MostOne, and reified linear constraints, which in return capture higher-level relationships between decision
variables. The CP and MaxSAT formulations developed in [8, 11] combine linear and logical constraints, solv-
ing them via propagation and branch-and-bound. These mechanisms strengthen constraint propagation,
drastically reducing the effective search and improving convergence rates.

Empirical observations indicate that SAT-based and CP-based solvers perform efficiently on discrete datasets
of limited size, where the number of admissible thresholds and feature combinations remains small. Within
these conditions, compact constraint encodings and logical propagation manage to retrieve optimal trees of
shallow depth, typically up to D = 3 — 5, in reasonable time. However, when the data dimension increases or
when continuous attributes require multiple threshold variables, both CP and MIO formulations suffer from
a rapid increase of constraints and solver branching. Their runtime grows exponentially with each additional
admissible split, and their scalability becomes restrictive for moderate to large datasets.

In contrast, the Dynamic Programming (DP) approach formulations demonstrate more stable behavior re-
garding the computational and scalable aspects. This is justified through the recursive solving of all possible
partitions of the examined dataset, thus extracting all possible optimal sub-solutions and then resolving to
combine those into larger partitions of the population, up to the global optimum. For this reason, while
the CP and MIO approaches are equally useful and robust approaches for small and discrete datasets, they
cannot scale easily, and most importantly, there exists no implementation that allows users to create diverse
optimization tasks that formulate an objective through bi-optimization Pareto front.

2.3.3 Dynamic Programming

Dynamic programming (DP) provides a third paradigm for optimal decision tree learning, exploiting the
recursive structure of trees to decompose the global optimization problem into independent subproblems. In
contrast to MILP or SAT formulations that search the full combinatorial space directly, DP methods leverage
the fact that the optimal solution for a given subset of data can be obtained from the optimal solutions of
its child partitions. The divide-and-conquer principle is particularly effective when the objective function
is separable, meaning the total objective value can be expressed as a sum of contributions from subtrees.
Formally, one can define recurrence for the optimal value function. Let & C D represent the subset of
training instances reaching a node and let d denote the remaining depth available. The optimal cost C(.S,d)
of building a subtree on S with depth at most d satisfies:

minyey Err(S, y), d=0,

ming g [C(S5(3,0),d — 1) + C(Sr(i,0),d — 1)], d>0, (2.3.6)

ﬂ&®={

where Err(S,y) is the classification error if all points in S are assigned label y;, and Sr(J,6) and Sg(j,0)
are the left and right subsets induced by splitting feature x; and threshold 6. This recurrence expresses the
total cost of the best split as the sum of the optimal costs of its two child nodes, enforcing global optimality
through local optimality of substructures. Essentially, if a tree is optimal, then every subtree it contains is
optimal as well, a property that directly derives from the basic DP principle. Below we delve into the most
substantial methods of this approach.

Early DP Algorithms for optimal trees

The first dynamic programming (DP) algorithms for optimal decision trees, most notably the DL8 algorithm
by [12], demonstrated that globally optimal binary trees could be efficiently constructed for categorical
features by reusing solutions to previously solved subproblems. DLS8 formulates tree induction as a search
over an itemset lattice, where each decision path corresponds to an itemset, that is, a conjunction of feature
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tests, and employs a caching table to store the optimal subtree solution for every encountered subset of
training instances. This reuse of cached solutions eliminates redundant computations when identical subsets
are reached via different split sequences, thereby reducing exponential redundancy inherent in brute-force
enumeration.

Building upon this foundation, DL8.5 was proposed by [13]|, which significantly advanced the scalability
of exact decision tree induction through more sophisticated caching and bounding techniques. Specifically,
DL8.5 introduced an upper-bounding strategy that, once the optimal cost of a branch is computed, restricts
the maximum admissible cost for its sibling branch, pruning any splits that cannot surpass the current best
solution. In parallel, a lower bound on misclassifications is maintained for partially constructed subtrees,
enabling large regions of the search space to be excluded without explicit evaluation. These bounding mecha-
nisms are integrated within a depth-first branch-and-bound scheme, while the underlying DP engine ensures
that optimal substructures are cached and reused across branches. Through this synergy of pruning and
memoization, DL8.5 achieves orders-of-magnitude speed-ups compared to earlier exact methods, including
MILP- and SAT-based solvers, by exploiting the intrinsic combinatorial structure of the decision tree opti-
mization problem. Empirical studies show that DL8.5 attains superior runtime performance and scalability
on fully binary datasets while preserving global optimality guarantees.

Scaling with Bitset Caching: MurTree

A more recent advancement in the DP lineage is the MurTree algorithm proposed by [14], which extends the
dynamic programming framework to handle larger datasets and continuous-valued features. MurTree intro-
duces a highly efficient bitset-based data representation, encoding each subset of samples as a compressed bit
vector that allows constant-time evaluation of candidate splits and extremely fast subset operations. This
compact representation, combined with aggressive caching of intermediate optimal solutions, substantially re-
duces computational overhead and memory duplication. Furthermore, MurTree refines the bounding process
by employing similarity-based bounds, which provide quick lower estimates on the number of misclassifications
for any partial tree, enabling the algorithm to prune unpromising branches before full expansion. Together,
these innovations allow MurTree to scale to datasets with tens of thousands of samples, achieving orders-of-
magnitude runtime improvements over previous exact methods. Despite this efficiency, MurTree maintains
full guarantees of global optimality for a specified maximum depth or node count, marking a major step
toward making exact decision tree learning practical for real-world, large-scale problems.

Hybrid Dynamic Programming and Search: The Branches Algorithm

Recent advances combine dynamic programming with informed search strategies. The Branches algorithm
by [15] formulates decision tree optimization as an AND/OR graph search problem, solved using the AO*
search technique. Here, AND-nodes represent decision points where both child subtrees must be solved,
by mirroring the additive cost structure of DP, while OR-nodes correspond to branching choices among
alternative splits. Branches explicitly applies Bellman’s optimality principle by defining a recursive state-
value function, analogous to the DP value function, to compute the best achievable objective for each partial
tree state. A best-first search guided by an admissible heuristic, the Purification bound, directs exploration
toward the most promising branches while pruning regions of the graph that cannot yield an optimal solution.
This design ensures both anytime behavior, providing feasible intermediate trees, and guaranteed global
optimality upon termination. Despite being implemented in Python, Branches outperforms GOSDT in
runtime benchmarks, pushing the scalability of exact tree learning even further through its hybrid use of
heuristic guidance and DP-style caching.

Dynamic programming and its specialized successors share a central advantage: flexibility in defining and
optimizing diverse objective functions. Since the optimization is explicitly global, these methods can be
tailored to criteria beyond simple accuracy, while incorporating fairness penalties [61], optimizing for imbal-
anced data metrics like weighted error or AUC [47], or trading off accuracy and size for model sparsity [5].
Unlike greedy learners such as CART, which rely on local impurity measures (e.g., Gini or entropy) as sur-
rogates, optimal formulations directly minimize the intended global criterion. Thus, a fairness-adjusted or
cost-sensitive objective can be optimized exactly by simply redefining the loss function, making DP-based
methods highly adaptable to domain-specific requirements.

40



2.4. Related Work - Separable Trees with Dynamic Programming

Nevertheless, classical DP methods remain limited to objectives that are additively separable across subtrees.
Most optimal tree formulations, whether DP- or MIO-based, assume linear, decomposable objectives (e.g.,
sums of per-leaf or per-instance terms). Non-linear or relational constraints, such as bounding the difference
in positive prediction rates across groups, violate this separability and require more general frameworks.
A common workaround is combining multiple goals into a single weighted sum, as in sparse or regularized
objectives, but this assumes the composite remains additive. When objectives truly conflict, bi-objective or
Pareto optimization becomes necessary, as [14], who enumerate trade-off frontiers (e.g., between accuracy
and fairness). While such extensions broaden the expressive power of optimal trees, they also increase
computational complexity, motivating the development of generalized frameworks that retain the optimal
substructure property under multiple objectives.

In summary, dynamic programming constitutes a powerful and conceptually elegant framework for globally
optimal decision tree induction. By caching and reusing optimal substructures, DP-based methods eliminate
redundant computation and achieve a balance between optimality and efficiency that was long considered
infeasible beyond toy examples. Over the past decade, a progression of increasingly sophisticated DP and
DP-hybrid algorithms, spanning DL8 and DL8.5, MurTree, OSDT/GOSDT, and the more recent Branches
and STreeD frameworks, has substantially expanded the attainable scales of optimal tree learning, from a few
hundred instances to datasets containing hundreds of thousands, and from single-objective formulations to
multi-criteria optimization. These developments demonstrate that exact optimization of decision trees, while
inherently combinatorial, has become practical for real-world data sizes and complex performance trade-
offs. Overall, dynamic programming and its modern extensions have become indispensable tools for tackling
the optimal decision tree problem, enabling globally optimal and interpretable models at scales previously
unreachable by exhaustive enumeration.

The next section focuses a work of [2], a generalization of the dynamic programming paradigm that establishes
the theoretical conditions under which complex, multi-objective decision tree problems remain separable and
optimizable within a recursive framework.

2.4 Related Work - Separable Trees with Dynamic Programming

The framework of Separable Trees with Dynamic Programming (STreeD) introduced by [2| was selected to be
analyzed in a separate section as our formulation described in Section 4 is mainly built using the flexibility of
the framework to design an optimization task tailored to the needs of any given objective context. Similarly
to other ODT approaches that are created using DP formulation, STreeD exploits the independence of sub-
tree solutions, preserving their optimality as sub-solutions. STreeD successfully achieves orders-of-magnitude
better scalability than general-purpose solvers, while being able to adapt in a generalizable manner to any
optimization task that is defined as separable under certain definitions and rules that the authors propose.
The separability of a task, whether its purpose is to optimize one or multiple objectives, is defined and
analyzed in this section as a mandatory basis to later define our own task via its constraints.

A key reason for selecting this framework is that alternative methods often exhibit limitations in computa-
tional efficiency or lack reproducible and adaptable frameworks. In particular, most Mixed Integer Program-
ming (MIP), Constraint Programming (CP), and Satisfiability (SAT) approaches are well-defined but require
extensive runtime even for moderate-sized datasets. Furthermore, both non-DP and current DP methods
are limited in their ability to formulate diverse tasks, as they typically optimize only for accuracy or other
non-linear objectives in isolation, thereby restricting adaptive reproducibility. In the section below, we will
further discuss how the setting of an optimization tasks is defined under the framework, the advantage of
global optimality of the DP approach, and analyze the use case of Pareto-optimal solutions of heterogeneous
objectives of tasks that delve to solve multiple problems simultaneously in the form of one unified task.

2.4.1 Problem Setting

The problem setting of the STreeD formulation strictly tracks the logic of classic DP approaches for optimal
decision trees, which recursively solve optimal sub-solutions(children) that additively combine their values
into a parent optimal solution. To correctly define the distinctions of this current work, we need to align
notation with the source representation, adopting the definition of the problem setting as presented by [2].
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Let F be a finite set of binary features and K be the set of labels. A dataset is D C {0,1}/Fl x K with
instances (z, k). The distinctive point of the dataset setting is that the features are purely binary, according
to the given values {0, 1} (also referred to as{True, False}), which requires the dataset to be preprocessed into
a fully binarized format, a fundamental part of the problem correct implementation. Then, for any f € F
let f and f denote the true or false value of a feature f of any instance of the dataset, and accordingly, we
define the induced partitions

Dy = {(z,k) e D:zy =1}, Dj = {(x,k) € D:xy =0},

as the sets of instances that for feature f have the assigned value True and False respectively.

A binary decision tree is 7 = (B, L,b,l) with internal (branching) nodes B, leaf nodes L, a branching
assignment b : B — F, and a leaf labeling [ : L — K. Each v € B has left and right children ur,ug;
instances satisfying the test on b(u) are routed to the right child and the remainder to the left [2].

We consider as a canonical baseline objective, the misclassification problem. Writing C'(D,u) for the cost of
the subtree rooted at u,

Yo Ak Alw)], wel,
C(D,u) = ¢ (z,k)eD (2.4.1)
C(Db(u)7 UR) + C(D@, UL), u € B.

Given a maximum depth d, the DP value recursive function that returns the minimum misclassification error
is described by:
min{ |[D*[, [D~[}, d=0,
T(D,d) = (2.4.2)
%iE{T(Df,d— 1) + T(Dj,d—1) } d>0,

where DT and D~ denote the class-wise partitions induced by the target label. The recursion in (2.4.2) com-
putes the minimum(optimal) objective value. In practical implementations, the application of memoization
and bounding for efficiency is well met in this setting compared to methods of the same DP family. Similar
to the authors, we adopt the notation of the distinction of terminology of solution to denote a tree solution
7 and value solution to denote the value of the objective score of a given solution 7.

The generalization of this initial problem setting is achieved by defining the attributes of an optimization
task. We define a state space S and a value space V. The state space we refer to is the set Sof all problem
configurations reachable during the tree search that fully determine the subproblem’s data and constraints.
For example, each node’s dataset slice and path decisions. A solution space is the set V of all attainable
objective values (or value tuples) that quantify the quality of candidate trees or sub-trees and on which
comparison and combination operators are defined.

An optimization task is the tuple
o = <ga ta bl EB) C, SO>7
whose components encode, respectively, local evaluation, state evolution, ordering, algebra of combination,

feasibility, and the start state. The task components for a state s € S and values in V are:

1. a cost function g : S X (FUK) — V assigns the cost of taking action a in state s. Actions in the
notation of the frameworks’ basis? are either labeling a leaf with k£ € XC or branching on f € F,

2. a transition function ¢ : § x F x {0,1} — & that returns the next state after branching on f to the
right (1) or left (0),

3. a comparison operator >: V x V — {0,1} which represents a strict comparison that determines when
one value is strictly better than another in the context of Pareto dominance (e.g. < for minimization),

2The notation is stated as of the original work of [2]. We make the distinction to avoid ambiguity in terminology with
subsequent chapters that refer to actions as perturbation vectors of instances of a dataset, in the context of counterfactual
explanations and actionable recourse.
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4. a combining operator @ : V xV — V that combines the values of the two child sub-trees (and optionally
aggregates a branching cost),

5. a constraint ¢ : ¥ x § — {0,1} is a feasibility predicate used to filter values that violate application
constraints at state s.

6. and sg € S is the initial state.

For the standard instantiation used throughout, the state records the current dataset and the set of features
already used on the path, s = (D, F'), the transition is

t(<D7F>7fv 1):<Df7FU{f}>v t((-DvF)afv O):<Df7FU{f}>v (2.4.3)
and the initial state is so = (D, (}), as precisely given by the authors.

Given o = (g,t, =, ®, ¢, o), the value of a tree 7 at node u in state s is computed recursively as

o) = {g(s, l(u)), u € L,

(2.4.4)
C(t(s,b(u),1),ur) & C(t(s,b(u),0),ur) & g(s, b(w)), u€ B,

and the tree is evaluated from the root by C'(sp, 7). Equation (2.4.4) is the exact generalization of the classical
“count-at-leaf, sum-over-children” recursion and fixes the interface by which {g,t,®} enter the dynamic
program.

By returning to the canonical objective of misclassification, that is, with no ancillary costs, one chooses

g(D,F), k) = |{(z,k) € D: k#k}| g((D,F), f) =0,

takes @ to be addition, > to be <, and ¢ = 1. Substituting these definitions into (2.4.4) yields the familiar
recursive formulation for misclassification that underpins traditional dynamic programming methods, which
are now expressed within a single, unified optimization framework.

The frameworks already implemented tasks included optimization objectives like cost—sensitive classification
and prescriptive policy. In cost—sensitive classification, the leaf and branching evaluations incorporate hetero-
geneous penalties for different error types as well as optional measurement costs for acquiring features, so the
learned tree trades accuracy against acquisition burden in a principled way. This instantiation preserves the
same state and recursion as the basic setting while simply modifying how local decisions are scored, allowing
practical deployment when errors or tests have unequal consequences.

In prescriptive policy learning, each leaf issues a concrete recommendation (treatment), and we score that
choice by its expected benefit, so the tree serves as a clear, rules-based policy rather than a standard classifier.
The same dynamic program applies without modification, branch costs can be added if needed, and practical
limits such as budgets or capacities are handled as simple feasibility constraints without changing the overall
structure of the solution. If we were to match the optimization tasks’ characteristics based on the authors,
then

e the cost function evaluates the expected outcome of prescribing a treatment at a leaf via an off—policy
estimator

the transition applies the split to create child subproblems

the comparison maximizes expected utility

the combination aggregates child utilities (with optional test cost at splits)

constraints can encode capacity or budget limits

2.4.2 Multi-objective optimization

The ability to optimize multiple objectives in a unified task provides a significant advantage to the STreeD
framework. The implementation is explicitly based on a Pareto-front formulation to keep all equally optimal
solutions under two or more optimization objectives. However, before we analyze how these kinds of problems
are defined by the separability constraints, we cover the preliminaries of the multi-objective optimization and
the foundation of Pareto fronts.
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Setup of multi-objective optimization

First, to define the multi-optimization problem, without loss of generality, we consider it to be a minimization
problem, with an objective mapping F : X — R™ F(x) = (f1(2), fm(z),..., fm(x)), over a feasible set X,
where f,,(z) is the m — th objective, and as a feasibility set we define the set of all possible solutions that
satisfy the constraint given by a problem [62].

In such problems, the objectives usually conflict as they handle their minimization separately. For that
reason, there is no single solution that minimizes all the objectives at once. Instead, the solution quality is
ordered by R™. The solutions are compared component-wise based on the order of the objective scores. In
single objective problems, the order by contrast is characterized as total order, as the only scalar objective is
totally comparable for every decision x and the solutions preserve a monotonic order. By definition y < ¢’ is
the standard partial order of comparison if for every objective i y; < y.. Strict order being defined as y < ¢/,
is used when at least one inequality is strict.

In the same manner, a decision x weakly dominates ' when F(z) < F(2’) and strictly dominates it when
F(z) < F(2'). A decision z* is considered Pareto-optimal or efficient if there is no other feasible = that
dominates it, and the image of all efficient decisions under F' is the Pareto-front. Specifically, the strictly
efficient and weakly efficient solutions are described by equations 2.4.5 and 2.4.6:

Xp:={z € X : Pz’ € X with F(2') < F(z), F(2) # F(x)}, (2.4.5)

Xwp={z € X : P2’ € X with F(z') < F(z)}. (2.4.6)

Similarly, the minimal Pareto front is defined as Yz C R™, where:

Y =F(Xg)={yeR"|Ix e Xg:y=F(z)}, (2.4.7)

which is the image of all strictly efficient decisions under the objective mapping. Reporting Yz, rather than
a single scalarized solution, is standard in multi-objective analysis because it summarizes all trade-offs that
cannot be improved simultaneously. The advantage of such sets of solutions is that the optimal solutions
of the front can be personally chosen to be used as optimal observations, given the importance of one or
more objectives over the rest [29]. For example, in figure 2.4.1, if one assumes the objective x has a greater
importance than objective y, then they can concentrate on the solutions closer to the smaller values of the
horizontal axis, or if the balance of the trade-off is of greater importance, without the use of scaling the user
can concentrate on the sum of the objectives that is represented by points more central on this representation.
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Dominated solutions

optimization objective y

Non-dominated solutions

optimization objective x

Figure 2.4.1: Pareto front of two minimization objectives

The orange points represent the Pareto front. They are the non-dominated solutions of all possible combinations of
the two optimization objectives, while the white hollow ones represent dominated solutions not included in the
Pareto front.

At this point, two clarifications of practical importance should be made:

(1) Preference articulation and scalarization are post hoc choices. This formally addresses the previous
advantage we referred to, as selecting a single operating point of Yz can be done after the front is computed,
by preferences stated a posteriori. The most common device for such a choice, other than empirical preference,
is the weighted sum scalarization as depicted by equation 2.4.8

' i s ith  w; > 0, =1, 2.4.8
min le fi(z) with w; > Zw ( )

which emphasizes the objectives according to weights chosen by the user. However, these sums provably
recover only the supported portion of the front. Specifically, given the set of attainable objective vectors
F(X) (the image of the feasible set X) and its convex hull conv F(X), the weighted sum method places a
supporting hyperplane to conv F'(X). The optimum lies where the hyperplane and the hull touch, known as an
exposed face. Solutions obtained this way are therefore the supported efficient points [29]. When F(X) is non-
convex (something typical in discrete and combinatorial learning), the Pareto set may contain efficient points
lying strictly below the faces of conv F(X). These are unsupported points that no supporting hyperplane can
touch. Consequently, weighted sums cannot recover them, and one must resort to alternative scalarizations
such as the e-constraint method or achievement scalarizing functions, or to explicit front enumeration.

(2) Robust alternatives to weighted sums exist to address this loss of information and complement weighted
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sums. Two most common techniques are:

e-constraint: min fi(z) st. fi(x) <eg, i=2,...,m,
reX
Reference-point: min max \; ( filx) — zi),

zeX 1=1,....m

where ¢ € R™ sets admissible levels for the other objectives and z is a user-specified aspiration point with
scaling A\; > 0. Both approaches are standard and allow fine-grained control of trade-offs without assuming
convexity[63].

In scenarios, when Yp becomes large, an e-dominance filter can be used as a principled approximation: y
e-dominates y' if y; < y. — ¢; for all 4, which bounds the retained front size at controlled accuracy loss[64].

Multi-objective adaptation in STreeD

In combinatorial decision problems such as decision-tree construction, it is natural to compute and propagate
sets of non-dominated objective tuples. Each subproblem (sub-tree) returns its local Pareto set. Then the
parent nodes form all pairwise combinations of child tuples and then prune dominated outcomes in a process
described as “merge, then prune". This paradigm has been used in bi-objective dynamic programming for
optimal trees, for example, in fronts over False Positives, False Negatives(FP,FN) for nonlinear metrics like
the Fl-score and serves as the direct source to the present framework first presented by [65].

Within this work’s framework, we adopt exactly that set-valued view. Given the fixed optimization tuple
o= {g,t, =, ®, ¢, so) (defined previously in section 2.4.1), a state space S, a value space V, features F,
and labels K, we assume a current state s € S and a split f € F. Thus we denote the child states as

51 = t(57f7 1)782 = t(S, f’ 0)

To express the Pareto front relations and operations, the authors defined the following operations. For any
candidate sets ©,0,,05 C V, the following operators will be used in both the multi-objective and the
separability sections:

e Feasibility filter feas(©,s) := {v € © : ¢(v,s) = 1}. This keeps exactly those values that satisfy
the task’s feasibility predicate at state s (e.g. budget, minimum support, loss thresholds).

e Non-domination filter nondom(0) := {v € © : ' € © with v/ = v}. This removes strictly
dominated values and returns the (Pareto) maximal set under

e Local optimal set opt(©,s) := nondom(feas(©, s)). This comprises feasibility and non-domination,
and is the set a DP node must keep for combination

e Merge at a branch merge(01,0,,s, f) = {v1 ®va®g(s,f) | v1 € O1, vy € Oy }. This forms all
parent candidates from one value of each child, adding any branch-level contribution.

Given these operators, the authors define the set-valued recursion as:

opt({g(s,ﬁ):l%eK}, s), d=0,
I(s,d) = 0pt< U merge(T(t(s,f%d —1), T(t(s, f),d — 1), s, f), 8)7 d> 0. (2.4.9)
feF

Equation 2.4.9 states that every subtree of depth d, rooted at state s, is summarized not by a single score but
by the full set of feasible, non-dominated objective tuples that this subtree can realize. At depth d = 0 (a
leaf), the only decisions are label assignments ke K , so the node returns the opt set over those assignments.
For d > 0, an internal node considers each possible split f € F', takes the Pareto sets returned by its two
children T'(t(s, f),d — 1) and T(t(s, f),d — 1), combines them through merge, and then applies opt to discard
any infeasible or dominated combinations. In other words, the parent does a “merge, then prune” step over

all its children’s possible trade-offs.

A direct consequence is that the root state sg, evaluated at the target depth budget dp,ax, returns the entire
(multi-objective) Pareto front that can be obtained by any decision tree of depth at most diax. This is strictly
stronger than returning a single tuned model: it exposes every non-dominated trade-off between objectives
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such as accuracy vs. cost, false positives vs. false negatives, or predictive performance vs. fairness, without
committing in advance to one particular weighting of those objectives.

It is also important to note that the size of T'(s,d) (could be described as the front width) can, in principle,
grow combinatorially, because we keep all undominated objective tuples. This is the standard price of
computing exact Pareto fronts in discrete problems, and it motivates pruning techniques such as caching,
bounding, or (when allowed) approximate dominance like e-dominance to limit explosion in practice.

In the next subsection section, we will complete this related work brief analysis via one of the most crucial
references, that of separable problems. This last piece of information is crucial for our later method proposal
and formulation. To define our task, under the framework of the STreeD solver, the separability constraints
and properties were closely studied and later proven to match our problem setting and needs.

2.4.3 Separability

We now formalize the constraint under which set-valued dynamic programming over trees is both correct
(returns a globally optimal set at each node) and efficient (permits caching/pruning without cross-sibling
couplings). The framework refers to such tasks as separable.

We begin by recalling the optimization task tuple o and the two child states s, s5 as:
0= <97 tv >7 EB? c, 50>a
81:t<8,f,1), SQZt(SafaO)v

with child states directly deriving from a parent state s € S and split f € F. We also consider the same
value space, feature space, and label set, respectively, are V, F, K.

We will use the operators feas, nondom, opt, merge from Section 2.4.2.

Definition (Task Separability). A task o is separable iff, for every s € S, f € F, and candidate sets
01,05 C V representing child solutions at s1, so,

opt (Inerge(Gl,@Q,s,f), 5) = opt (merge (opt(®1,sl), opt(Oa, s2), s, f), s) (2.4.10)

By this, we describe that the parents’ optimal set can be obtained by first optimizing each child independently
at its own state and then combining, rather than optimizing only after a Cartesian combination of all child
candidates. STreeD proves that the following three properties are necessary and sufficient for equation 2.4.10

to hold:

1. Markovian local evaluation and transition. The node evaluation and transition depend only on
the current state and the immediate action/branch:

g(s,a) depends only on (s,a), t(s, f,0) depends only on (s, f,9),

with no dependence on off-path or sibling decisions. This ensures well-defined subproblems and allows
memoization: identical child states yield identical optimal sets, regardless of how they were reached.

2. Order preservation of the combination operator &. Improving a child while holding the other
fixed must not worsen the parent:

v = V] = v Buvg = 0] Bvy (and symmetrically if & is non-commutative).

Additivity under minimization is a special case (with + and component-wise order), but the requirement
also admits non-additive/partially ordered objectives so long as @ cannot invert dominance.

3. Anti-monotonic feasibility. If a child’s value is infeasible at its child state, then no parent combi-
nation containing it can survive:

—c(v1, 1) or (v, $2) = v1 Duy ¢ opt(O,s), with © = merge(©1,Oa, s, f).

This justifies local feasibility filtering (e.g., minimum support, budget thresholds) without risking the
removal of building blocks of any globally optimal solution.
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Based on the properties provided by the separable problem definition, we need to address some additional
context of multi-objective problems, given the STreeD setting. Closure under a combination of tasks is
important because, in practice, we rarely care about a single objective. We may want accuracy and fairness
at the same time, or we may want treatment quality and treatment cost. The framework needs to allow us to
optimize such multi-objective problems in one tree without breaking the guarantees we have just established.
Formally, assume we have two tasks o) = (g ¢, =1 @M D s0) and o® = (g2 ¢, =@ 3P ) s0)
that are both already known to be separable on the same underlying state and transition structure. We then
construct a joint combination task, which we denote 0%, whose objective space is simply the concatenation
of the objectives of o) and 0(?). Concretely, we define the task components as:

o 9% = (g, g?),

e ~® as the product (component-wise) order,
o O%(v,w) = (v@(l), we®?),

o ®=c A,

The point is that if the tasks are individually separable, then their combination can also be separable. This
holds as long as the combining operator maintains order under >=® and each constraint ¢(*) is anti-monotonic
as described before. In simple terms, nothing changes when we combine two separable tasks. If feasibility
fails in either child task, it still fails for the parent. Dominance in the combined space is simply dominance for
each component, and better solutions for the child tasks do not make the parent worse. Therefore, optimizing
multiple objectives concurrently is like optimizing a higher-dimensional version of the same dynamic program.
The construction of the Pareto set over (my + mo) objectives is still valid based on the same recursion.

This shows that separability is not just a technical detail, but a fundamental requirement for this approach
to work. When the properties of separability hold, the parent node of the tree can be calculated through a
straightforward split-and-merge process. Each child sub-tree is solved only once from its own state, and its
opt set is maintained. These sets are then merged using @ along with the local branching contribution g(s, f).
Finally, the parent applies feasibility and non-domination to eliminate anything that is either infeasible or
dominated. This method is both correct and efficient. It is correct because the parent receives every globally
optimal value it could achieve, and efficient because we can store subproblems, eliminate dominated partial
solutions early, and avoid any unnecessary coordination between siblings.

2.5 Interpretable Trees

In this section, we delve into a necessary brief analysis of the interpretable aspect that the tree algorithms
offer. To determine the interpretability of an ML model, we refer to it as the degree to which humans can
understand the cause of a decision by the algorithm, or predict its output given an input as presented by
[66-68]. In this setting, a model is interpretable when its internal reasoning can be followed and verified
without any additional post-hoc mechanisms, meaning that there is no need for additional methods that
provide explanations to outputs after the decision of the model has been returned.

An internal node in a decision tree evaluates a feature condition such as x; < 7. This makes it clear to the
reader that the instance space is being partitioned at a specific threshold of the feature x;. By arranging
such tests hierarchically, the model forms root-to-leaf paths that act as concrete rules mapping observable
constraints to the outcome written at the leaf. A simple illustration helps. If income > 30k and debt ratio
< 0.3 then accept. The value of a tree lies in this traceability. A prediction is justified by the exact path the
input follows, and the entire rule set can be inspected, drawn, and audited step by step.

At this point, a thing that remains undefined is the practical need to quantify interpretability so that models
can be compared in a principled way. A common approach is to use structural complexity as a proxy. Depth
and size determine how many distinct paths exist, and a larger collection of paths makes complete human
cognitive simulation harder for a reader. For this reason, many works use simple surrogates based on the
number of nodes or leaves, as if simplicity or complexity derives from ITll’ where |T'| is the cardinality of the
chosen structural unit, that is, the internal or leaf nodes. This can be read as an informal indicator rather
than a formal law, entirely for the sake of intuitive understanding. In practice, small and shallow trees are
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2.5. Interpretable Trees

easier to follow. Deeper structures often trade some transparency for additional predictive flexibility, often
guiding the decision of the model to overfit on training samples. The aim is not to minimize size at all costs
but to keep the model within a range that allows the user to have an end-to-end track of the structure.

Additionally, interpretability is not considered a single attribute. It has several aspects that matter in practice.
One can ask whether a reader can follow a complete decision for a single case from start to finish, or whether
the parts that make up the model, such as features or the thresholds, are individually understandable. A
further question is whether the learning procedure itself is transparent, so that the way the model is produced
is clear. These views, often described as simulatability, decomposability, and algorithmic transparency, give
a useful lens for decision trees and will guide the design choices that follow [66, 69].

The way a tree splits the feature space has a direct effect on readability. Classical univariate trees use a
single variable at each internal node, for example age < 45. This keeps each test easy to read and preserves
a simple connection between data and decision [3]. Oblique trees use linear combinations of features, written
as w/] x < 6;. Such tests can shorten paths and reduce depth, which may help at the global level, yet they
make a single node harder to interpret because several features participate at once [70]. A single multivariate
node can therefore reduce the decomposability of every rule that passes through it [66]. To soften this trade-
off, restrictions on the number of active coefficients or the use of additive forms so that each test involves
only a few features were introduced by [71, 72]. Also, another option is to phrase conditions with graded
membership rather than hard thresholds, which yields fuzzy rules that attach a degree of truth in [0,1] to
statements like z; < 6, and allows partial membership of an instance in more than one branch [73, 74].

However, the interpretability of a node’s thresholds and rules alone, leave gaps. The way inputs are routed
also matters. In the usual hard setting, each example follows one path to a leaf, and there is a one-to-one
link between the evidence and the outcome. In soft or probabilistic trees the router at a node is a smooth
function of the features, for instance

1

Pr(x) =o(alx=b),  Pa()=1-P(x), o) =1

This makes predictions locally smooth with respect to the input and reduces discontinuities around split
boundaries. The price here is a drop in simulatability because there is no single deterministic path that
explains the output for a given case. Fuzzy decision trees use the same idea to represent uncertainty explicitly
and to trade crisp rules for continuity when data are noisy [75, 76].

As previously stated, there is a growing body of work that trains tree structures with gradients. These models
learn the parameters of the split functions, and sometimes the structure itself, using backpropagation. The
goal is to keep the familiar skeleton of a tree while gaining some of the predictive strength that comes with
continuous optimization [77, 78]. Such training blurs the sharp boundaries that make classical trees easy to
read. This way, one can recover part of the interpretation by projecting learned hyperplanes to a small set
of dominant features or by assigning semantic concepts to internal nodes so that each branch corresponds to
a recognizable notion [79-81].

Finally, stability is another practical dimension to determine the ease of understanding of the tree structure.
Small changes in the training sample can lead to different trees, especially when there are many nearly
tied splits. This makes auditing harder and diminishes user trust, since similar inputs may appear to be
governed by different rules [82]. Simplest approaches to handle such implications include regularization
that discourages near ties, splitting strategies that group similar cuts into segments, and formulations that
encourage consistent structures across runs [83, 84]. The goal is not absolute invariance but a model that
yields rules stable enough to be checked and discussed.

Interpretability can also extend beyond structural clarity to questions of cause, reliability, and action. Causal
decision trees aim to uncover heterogeneous effects under potential interventions and support counterfactual
reasoning about what would change under a different action [85]. Conformal prediction trees attach calibrated
uncertainty to leaves so that each prediction is accompanied by an interval or set that has a specified coverage
level [86]. Counterfactual decision trees report minimal changes to inputs that would flip the prediction, which
links a rule to concrete steps a user might take [87].

As far as we are concerned, the latter approach of counterfactual explanation trees, is the field that this thesis
was mainly influenced by, and the following work derives from implementations that will be further discussed
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in Section 3.4, where we will present the framework of Counterfactual Explanation Trees (CET), the way it
operates and the advantages it provides to user interpretability of model decisions. Nevertheless, before we
analyze this, we will first set the ground for the broader domain of Explainable Artificial Intelligence and its
preliminaries in the initial sections of Chapter 3.
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Chapter 3

Explainable Artificial Intelligence

Explainable artificial intelligence (XAI) tackles a basic tension in modern machine learning. High-performing
models often behave like black boxes, which makes validation, contestation, and oversight difficult in sensitive
applications. Legal and institutional expectations about accountability and transparency, together with the
ongoing discussion of a GDPR right to explanation, increase the demand for methods that make automated
decisions understandable to the people they affect [88]. Beyond regulatory aspects, explanations support
error analysis, robustness checks, which contribute to the calibration of trust, especially when failures to
prediction carry real costs that affect human lives, for example, a healthcare application that contributes to
the remedy of a patient or a legal application that might provide verdicts through racial bias [68, 89]. In
such settings there is a strong case for choosing models that are interpretable by design, rather than relying
on explanations constructed after the fact [90].

XATI as a domain is a spectrum, where one end has models that are transparent by design, where the logic
is visible. At the other end lie post hoc explanations that aim to provide faithful and understandable
accounts of otherwise opaque predictors [68, 89]. Explanations focus on a single instance, providing a local
view of users to understand what influence neighboring instances have and how decision boundaries influence
individuals. On the other hand, they can summarize behavior across populations or partitions of them, which
provides a global view. Sufficiency turns on two criteria that often pull in different directions, faithfulness
to the underlying predictor and intelligibility for the intended audience and task, so a deliberate balance is
required.

When considered based on methodology, XAI gathers several groups of methods, each with distinctive as-
sumptions. Feature attribution methods assign scores that measure local importance or build additive de-
compositions, with fidelity shaped by the treatment of feature dependencies and the choice of estimator [91].
Example-based and prototype-based approaches rely on case-based reasoning, concept-based analyses probe
internal representations using human-aligned concepts, and model simplification replaces complex predictors
with more readable surrogates, such as rule sets and trees, trading some global fidelity for comprehensibil-
ity [89, 92]. Each category exposes distinct failure modes, including instability, sensitivity to distribution
shift, and semantic mismatch, which motivates careful evaluation and clearly stated validity regimes [91].

Counterfactual explanations occupy a distinctive place among contrastive approaches because they adopt
a prescriptive and action-oriented view. They describe the smallest changes to features that would flip an
outcome, which links explanations to concrete recourse and strengthens institutional accountability [92].
This angle ties explainability to intervention and feasibility, so attention shifts to data realism, fairness at
the individual and group level, and the operational cost of recommended changes [25].

Actionable recourse builds on this foundation, and recourse summaries gather many individualized pre-
scriptions into compact and transparent artifacts, for example, rule lists or trees that can be audited and
deployed [28]. The rest of the chapter follows this thread in order. Core definitions and methods come first.
Formal treatments of counterfactual explanations and actionable recourse follow. The chapter closes with
globally comprehensible rule-based summaries that aim to reconcile interpretability with the demands of
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decision support [90].
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3.1. Background, Definitions, Approaches

3.1 Background, Definitions, Approaches

Modern ATl systems and, in particular, deep architectures and large ensembles, have achieved state-of-the-
art predictive and generative performance at the expense of having high-performance black-box frameworks.
This unclear view of the algorithmic internal decisions of models has motivated an extensive amount of
work on XAI, aiming to make the model behavior understandable to humans for tasks such as validation,
debugging, trust calibration, and governance [66, 89, 93]. As already stated, beyond scientific curiosity, the
need for explanations is driven by societal and regulatory demands for accountability and transparency in
high-risk decisions, such as those in healthcare, finance, and justice. The right to explanation has become
more demanding and more essential than ever for every person, directly or indirectly affected by the actions
of automated decision systems.

User input High accuracy output

A
>

Figure 3.1.1: A model’s behaviour illustrated as a black box

In this section, we provide the necessary definitions and setting of the field of XAI. We then briefly cover
the domains and approaches of XAI, providing the respective context on the impact they have had over the
years and the continuous, still-growing need for explainability. At the end of the section, we present the
methodological approaches that have had significant importance until this day, and continue to be entrusted
tools that provide transparency to users, helping people, not only evaluate the performance of a model on
bias or maltreated training data, but also in making crucial actions that the average human would not have
considered directly making.

3.1.1 Definitions and Foundations

Let f:X — Y denote a trained predictor and D a data distribution. We follow established taxonomies [66,
93] and make the following working distinctions.

e Transparency aggregates properties that render the internal mechanism of f directly understandable.
A standard decomposition distinguishes (i) simulatability (a human can mentally execute f on typical
inputs), (ii) decomposability (parameters, features, and intermediate computations have explicit mean-
ing), and (iil) algorithmic transparency (training and optimization behave predictably) [66]. These
facets are architectural: they concern f itself rather than a separate explanatory object.

e Interpretability is the degree to which a human can predict or comprehend f’s behavior. It is often
operationalized via cognitive-load constraints such as sparsity, small depth, or short rule length, re-
flecting the need for simulatability under bounded attention [90]. Interpretability is audience- and
task-dependent.

o Ezxplainability refers to mechanisms that produce human-comprehensible reasons for f’s outputs. For-
mally, an explanation method £ maps an instance-model pair to an explanatory object e = E(x, f)
intended to be (i) faithful to f and (ii) intelligible to the target audience [68, 93].
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Two scope regimes are customary. Local explanations target behavior in a neighborhood II, of a query
x, often by fitting a simple surrogate g, with small local discrepancy E..i1 [¢(f(2),9.(2))]. Global expla-
nations summarize behavior over D via a single interpretable model g with small E,.p[¢(f(z),g(2))] or a
structured synopsis of decision logic [16, 94]. Intrinsically interpretable models provide global transparency
by design; post-hoc methods typically offer local views that can be aggregated under additional regularity
assumptions [89].

Beyond scope, three evaluation axes recur:

1. Faithfulness (F). For a decoder ¢ that renders explanations executable (e.g., a rule evaluator),

F(z:€, 1) = 1= Eenm, [Af(2), 6(E(2, f),2))]

where ¢ measures predictive discrepancy. High F indicates that the explanation reliably reproduces f’s
local or global behavior [93].

2. Stability/Robustness (S). Small perturbations 2’ ~ x should not produce qualitatively different ¢/ =
E(x', f). Stability is commonly probed via d(e,e’) under controlled input shifts, guarding against
explanations that are overly sensitive or manipulable [91, 92].

3. Intelligibility/Complezity (l). Cognitive accessibility is often proxied by description length L(e) (e.g.,
number of rules, nonzeros, or tree depth). Explanations should keep L(e) within human limits without
sacrificing F [90].

These criteria are interdependent: simplifying e to improve | can degrade F; enforcing stability can constrain
the admissible form of £. The balance is application-specific and hinges on audience, stakes, and downstream
use (e.g., audit vs. individual contestation) [68]. It is also essential to distinguish associational explana-
tions from causal accounts: many XAI methods describe correlations in f’s decision boundary, whereas
causal explanations address interventions and counterfactuals in a structural model of the data-generating
process [20].

3.1.2 Domains and Approaches of XAI
XAI is deployed across application classes with distinct risks, stakeholders, and desiderata:

e C(lassification and decision support: reliable rationales, calibrated uncertainty, and traceable failure
modes; in high-stakes settings, the emphasis is on verifiable faithfulness and conservative deployment.

e Recommendation and personalization: transparency to reduce manipulation, expose preference drivers,
and support user recourse (e.g., how to alter recommendations).

e Healthcare: explanations for accountability, safety, and alignment with clinical knowledge; justifications
must be compatible with care pathways.

e Finance and credit scoring: explanations underpin adverse action notices, enable fairness auditing, and
support compliance.

e Justice systems: explanations for contestability and due process, enabling scrutiny for bias and subgroup
calibration.

e Autonomous and safety-critical systems: interpretable rationales for assurance cases, post-incident
analysis, and human—machine teaming; emphasis on stability and robustness.

e Scientific discovery and data-centric research: explanatory artifacts (e.g., sparse rules, salient features)
can generate testable hypotheses but must be distinguished from causal claims.

These contexts motivate different emphases: robustness to distribution shift and adversarial perturbations,
actionable guidance and user recourse, causal plausibility, privacy preservation, and group/individual fairness
constraints. Selecting and evaluating XATI methods therefore requires making explicit the target scope (local
vs. global), the fidelity—intelligibility trade-off, and the normative assumptions (associational vs. causal)
appropriate to the domain [68, 88-90].
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3.1.3 Methodological Approaches

It is useful to state, for each method family, its objective and the assumptions under which its guarantees
hold [21, 91, 92].

Feature attribution

Feature attribution estimates the contribution of each input coordinate to a specific prediction. A common
approach is to approximate a complex predictor f in a small neighborhood of a query = and read off per-
feature effects. LIME does this by fitting a sparse local surrogate g, with an exponential locality kernel
7:(2) = exp(—||z — x]|?/o?) and an ¢; penalty [16]. Shapley-style methods average marginal contributions
over coalitions to satisfy axioms, conditional estimators address dependent features [17, 95, 96].

Reliability hinges on design choices. The locality kernel and bandwidth o define what counts as “local” and
can induce instability. In Shapley estimators, the background distribution p(z) determines how dependence
is handled and can shift attributions even when f is fixed [95]. Additive decompositions compress interac-
tions; interaction-aware variants (e.g., Shapley—Taylor) make such effects explicit [97]. Sensitivity checks,
agreement under perturbations, and variance reporting are recommended, and global influence tools provide
a complementary view of input effects [98].

Prototype and example-based explanations

When concrete cases are preferred over abstract scores, prototype—criticism frameworks select representative
instances that support a prediction and contrasting cases that argue against it [67]. Coverage matters:
selection based solely on geometric proximity or density may miss the decision boundary of f. Performance
improves when selection is guided by margins or influence, diversity constraints prevent near duplicates, and
diagnostics flag under-covered regions (91, 99].

Concept-level and representation explanations

Concept-based methods elicit human-aligned concepts and probe the sensitivity of f along corresponding
directions in representation space, linking semantics to internal features [92]. Sound use requires (i) well-
specified, reliably instantiated concepts, (ii) directions that capture meaningful variation, and (iii) on-manifold
edits so changes remain realistic. Control concepts, ablations, and counterfactual data augmentation help
detect shortcuts and spurious sensitivity [21]. Some notable works made to achieve concept-level explanations
are [100-102] and representation explanations are[102-105]

Model simplification and surrogates

To summarize overall behavior, global surrogates approximate f with interpretable models (e.g., small trees
or sparse rule lists) and report where the surrogate is trustworthy. High-precision local rules can be com-
posed into readable summaries with coverage and precision guarantees [106]. Two cautions apply: fidelity
and simplicity trade off, and summaries must state their domain of applicability. Reporting coverage with
calibrated fidelity avoids an illusion of universality and clarifies reliability across regions [107].

Contrastive and counterfactual explanations

For the question “what small change flips the outcome?”, solve

. *

min c(d) st flx+9)=y".
Here ¢(d) encodes proximity or sparsity, and F encodes feasibility in the real world [91]. Once framed
as recourse, design choices are normative: immutable attributes should be protected, and monotonic rela-
tions should reflect domain logic. Institutional rules and budgets affect realism and fairness in who can
act. Distribution-aware objectives keep proposals on-manifold and reduce brittle edits; optimization-based
generators can enforce density or support constraints when realism is critical [24, 25].
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3.1.4 Methodological Approaches Across ML Subfields

We relate the above families to core ML subfields, stating typical use, the rationale for fit, and concrete
validity checks, with focused citations.

Supervised learning on tabular data

Attribution, global surrogates, and counterfactual /recourse methods are natural here. Features often corre-
spond to editable attributes and constraints follow domain policy. In practice, report surrogate coverage and
fidelity together, and for recourse report flip rate and average cost under a feasibility set encoding immutabil-
ity, monotonicity, and a budget B [25]. To control brittleness, reject actions with Mahalanobis distance to
the training manifold > 30. This thesis focuses on counterfactual explanations for tabular data affecting
individual recourse; Section 3.3 introduces the related work, and Section 3.4 provides a detailed comparison.

Computer vision

Saliency can appear plausible while being model-agnostic; therefore, randomization-based sanity tests are a
prerequisite—maps should degrade under weight/data randomization [108]. Faithfulness is then quantified
with deletion/insertion curves (area-under-curve) via region perturbations [109]. Concept activation analyses
and prototype illustrations complement pixel attributions when localization is insufficient.

Natural language processing

Token/span attributions and example rationales support contestation; concept/template probes add syntac-
tic or discourse structure. Subword tokenization and long-range dependencies complicate faithfulness, so
stability analyses under paraphrase/noise and human-grounded tasks (e.g., comprehensiveness/sufficiency
tests) should be reported [91]. Short diagnostics help: one counter-example often reveals spurious cues.

Recommender systems and personalization

Local rules, prototypes, and counterfactual-style advice align with user goals to understand and change
outcomes. Explanations must reflect exposure and feedback dynamics; otherwise they misattribute platform
effects. Recommended practice: evaluate with user studies or controlled offline counterfactual protocols, and
report whether advice changes behavior beyond exposure baselines [18].

Sequential decision making and reinforcement learning

Explanations target policies and trajectories, not single predictions. State/action attributions should account
for transition dynamics and discounting; prototype trajectories and what-if rollouts are informative only
with calibrated environment models. Counterfactual reasoning over alternative actions/histories makes the
dependence on dynamics estimation explicit and should be paired with uncertainty reporting [110].

Generative modeling

Concept-level probes and latent edits are primary tools. Diagnostic use identifies encoded concepts; pre-
scriptive use steers outputs along validated directions. To avoid off-manifold artifacts, enforce reconstruction
constraints and report edit success (target classifier agreement) alongside realism checks (e.g., FID shift under
edit magnitude) [92].

Counterfactual explanations thus complement descriptive XAl by specifying feasible input changes that alter
outcomes. The next section develops this prescriptive turn in detail.

3.2 Counterfactual Explanations

Counterfactual Explanations have a crucial position in XAI, as they reform model behavior in terms of stating
the counterfactual question "what-if". These scenarios are applied on instances x, as we seek a minimal
and feasible change to flip its predicted outcome to a desired label. Its foundations derive from formal
counterfactuals and interventions, whereas the ML adaptation is represented as a constrained optimization
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that delves between properties like proximity, sparsity, or feasibility of instances, given an instance space and
the feature distributions. However, counterfactuals are distinguished between two separate fields. The first
one is that of the algorithmic approach, which is defined relative to a fixed predictor under observational
data, while the second one is based on causal interventions, that is defined within a structural causal model
with explicit interventions and identification assumptions [20, 91].

In the following section, we desire to address the necessary preliminaries that counterfactual explanations
carry. Provide the formal definitions for both approaches and address the differences between algorithmic
and causal counterfactuals. Then we distinguish the four properties that characterize the quality of such
explanations, which are their proximity, sparsity, plausibility, and feasibility. Finally, we specify the paradigms
on which counterfactual explanations apply to optimization families that operationalize these objectives, and
the evaluation criteria used to compare them across tasks.

3.2.1 Origin and Definitions

The origin of counterfactual explanations is beyond machine learning. Specifically, posing the "what-if"
statement question derives from two long-standing fields of theoretical background. The most common
origin stands on the field of cognitive psychology, where counterfactual thinking means mentally simulating
alternatives to past events. On the other hand, in philosophy and logic, the counterfactual conditionals
offer formal semantics for specific reasoning, that of the "nearest-world"[111, 112]. This broad lineage is the
general motivation, behind the definition and formulation on the approaches of algorithmic and causal fields
of explanations of models.

Causal definition

The present the causal definition, we first need to consider the Structural Causal Model (SCM) formulation.
As formulated by [20], an SCM is defined as M = (U, V, F, P(U)). The arguments of SCM M, are categoried
as exogenous variables U, endogenous variables V' = {V7,...,V,,, structural assignments F' = {f1,..., fn
interpreted as V; = f;(pa;, U;) with pa; C V' \ V;, and a distribution P(U) over exogenous variables.

For A CV and an intervention do(A = a, the unit-level counterfactual is Y4, ,(u), meaning that the value
Y is obtained by solving the intervened system at exogenous context u. We define the admissible action
space A(x) to encode which variables in A can be set and how, depending on bounds, immutability, etc.
Also, we enforce causal feasibility through G as no direct manipulation of non-accessible descendants and all
downstream changes must arise via the structural equations F. By this we obtain a causal counterfactual
explanation as

gﬁ?) Cla) st. Yacqa(u)=y*, arespects G (graph constraints), (3.2.1)

a x

where C(a) quantifies intervention effort.

Algorithmic definition

Given a trained predictor f X — Y, a target label y*, an instance € X, and a feasibility set F(z) C X, that
constraints the process by encoding the domain, the mutability of features, the monotonicity, and budget
constraints, we define as (nearest) counterfactual explanation as any solution of:

min  C(z,2') st f(2')=y*" (3.2.2)
x'€F(x)

Here C' is a cost specified by the user, such as a weighted norm (like ¢, ¢5 norms), sparsity penalties, or
mixed-integer edit costs.

Another formal and complete approach by [26] is

min L(f(z'),y*) + Ad(z,2") + Q') st. 2’ € F(x), (3.2.3)
z’ N————’ H,—t/
target loss proximity

where £ is a margin-based loss and () represents the optional regularizers for plausibility.
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The algorithmic approach is tightly accompanied by four properties. A satisfactory counterfactual set should
meet: Proximity, Sparsity, plausibility, and feasibility, each constraining a different aspect of the quality of
such explanations.

In more detail, prozimity requires the edited instance x to remain close to the original query, which is
formalized as a weighted metric similar to the distance between the two instances, as d(x,z’), so that d is as
small as possible. The use of the proximity metric varies and depends on the user’s personal need for their
task, however, the choice of any metric should be justified in order to explain what "near" means to any given
original instance. Secondly, sparsity demands that only a few coordinates of the feature vector change (in
applications denoted as vector indices), which is typically encoded as ||2’ — z||o being small, which should be
enforced in data context as its only purpose is to ensure interpretability and return of solutions in manifold.

Plausibility, on the other hand, quantifies how realistic an edit is, by requiring that the new instance lies
in a high-density area of the data or a learned manifold. Unlike the proximity property, plausibility must
be enforced explicitly via constraints or parameterizations, as it does not follow automatically as a distance
metric.

Feasibility, ensures that proposed counterfactuals respect domain and policy constraints, such as immutabil-
ity, or directional relations, by restricting a feasibility set ' € F(z). Such feasibility constraints are the
coordinates of a vector that determines the gender identity of an individual, or their race, as far as im-
mutability is concerned, and on the other hand a directional proposal on the education level of an individual
should only propose a strictly monotonic increasing edit. These properties interact, as proximity and spar-
sity together improve cognitive economy, and plausibility and feasibility provide a guard against invalid or
unethical prescriptions. However, such interactions lead to trade-offs that should be surfaced rather than
hidden behind hyperparameter choices that have been stated to work out [91].

To intuitively comprehend the issue, let a linear classifier be f(x) = 1{wTz + b > 0] with F = X, and the
Euclidean cost ¢(z,2") = ||z — 2'||2. Then the nearest counterfactual for a negative label x is the orthogonal
projection onto the decision hyperplane:

wlz+b

ol , fl@*) =1, (3.2.4)

w

which generalizes to weighted norms and box constraints via standard Karush-Kuhn-Tucker (KKT) conditions
that are a set of necessary conditions for a solution to be optimal on a local optimization problem, with linear
constraints.

Two plain caution observations help avoid common mistakes. First, algorithmic counterfactuals inform the
user what the features would need to look like to flip the model’s prediction, but they do not tell the user
that these changes are realistically achievable by individuals. By contrast, causal counterfactuals specify
actual interventions on controllable causes that respect a causal graph G [20]. Mixing these up leads to
infeasible advice, for example a proposed edit leads one to change their age. Second, sparsity and plausibility
pull in opposite directions. Forcing as few edits as possible (|2’ — z||p very small) can produce unrealistic
points off the data manifold, while enforcing realism may require allowing a few more coordinated changes.
In practice, one should state which objective they prioritize and how they enforce the other, for example,
density thresholds or generative constraints for plausibility.

3.2.2 Difference between causal and algorithmic approach

Algorithmic counterfactuals and causal counterfactuals answer related but distinct questions. The algorithmic
view asks what alternative input & would make a trained predictor satisfy f(Z) = y* for the case at hand.
The causal view asks what intervention on an admissible set of variables would make the real outcome Y
attain y* for this unit, which requires an explicit model of the data generating process and the semantics of
interventions [20].

A compact way to expose the gap is to compare feasible sets. The algorithmic formulation typically permits
edits from a user defined set F(z) C X. The causal formulation first specifies a structural causal model
M = (U, V, F, P(U)) with a graph G, then restricts actions to admissible interventions a € A(x) on actionable
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ancestors of Y and finally maps interventions to realizable inputs through the structural equations. Writing
¢(a;x, M) for this mapping, a principled feasible set becomes

F(z)={¢(a;z, M) : a € A(z)}.

Without such a construction, an algorithmic counterfactual may propose edits to non-actionable descendants
or violate monotonicities encoded by G [25].

Causal counterfactuals also carry identification requirements. Unit level statements Y, (u) = y* depend on
exogenous context u or on assumptions that permit identification of interventional quantities from observa-
tional data. In the absence of credible structure and identification, algorithmic counterfactuals should be
presented as decision boundary guidance rather than guarantees about real world effects [20]. When cred-
ible structure exists, actions are restricted to controllable ancestors of Y and graph consistent feasibility is
enforced. Practical recipes for intervention feasible recourse provide sufficient conditions and constructive
algorithms for this restriction [25].

In brief, algorithmic counterfactuals explain properties of a predictive artifact f, while causal counterfactuals
explain properties of the process that produces Y. The two coincide only when the feasible set mirrors
admissible interventions under a defensible structural model.

3.2.3 Algorithmic counterfactual explanations methods

We organize the algorithmic toolbox by how methods control proximity, sparsity, plausibility, and feasibility,
and by the optimization structure used to search for a flip. The baseline view models counterfactual generation
as constrained optimization

m(sin o) st. fle+6)=y", z+0¢eF(x),
where ¢ encodes proximity and sparsity, and F(z) encodes domain and policy constraints [91].

Direct optimization near the decision boundary

Methods in this family minimize a distance or cost subject to a label flip, often with weighted ¢, or ¢
penalties to encourage sparse and small edits. The practitioner specifies F(z) through bounds, immutability,
and simple monotonic relations. Success depends on calibrated feature weights, well behaved local losses, and
careful handling of mixed data types. Established surveys document these choices and their typical stability
issues [92].

Exact feasibility with mixed integer programs

When features are discrete and continuous and feasibility must be hard, actions can be encoded as integer
variables and solved to optimality. For linear classifiers with decision rule sign(w'x -+ b), a minimal cost
action a solves

min ij\aj\ st. w' (z+a)+b>0, ac Az),
J

with additional binaries for categorical moves and policy constraints such as budgets or mutability. Such
formulations certify infeasibility when no flip exists and enumerate minimal cost flipsets when recourse exists,
which enables audit style reporting under realistic constraints [23].

Plausibility via data geometry or generative models

To avoid off manifold edits, plausibility can be enforced through the data geometry or a learned generator. A
graph-based approach restricts moves to high density regions and searches for short feasible paths from the
source instance to a target region where the label is y* [27]. Let G = (V, E) be a k nearest neighbor graph
over observed points and the query z. Let p(v) be a density estimate and let

w(u,v) = ad(u,v) + (1—a)[—logp(v)], a € [0,1].
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A counterfactual path m = (x = g, 1, ..., 27) solves

=

-1
min w(xs, ve1) st (vy,xe41) € B, plag) 27, flar) =y,

ki
t

Il
=

optionally with a margin constraint m(zr) > v where m measures distance to the decision boundary. This
formalizes the choice illustrated in Figure 3.2.1: a candidate reached along a high-density path with sufficient
margin is preferred over a nearer point that lies in a low-density pocket [27].
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Figure 3.2.1: Feasible counterfactuals

Such feasible counterfactuals found by following high density paths in a graph over the data. Points that

are close in Euclidean distance but lie in low density pockets are downgraded, while paths that remain in

dense regions and end with adequate margin are preferred. In this scenario D, is the optimal choice as it
handles proximity and plausibility, better than the other candidates. Reproduced from [27]

An alternative is to parameterize edits on a learned manifold. With a generator 2’ = Gy(z), one can search
in latent space
mzin L(f(Go(2)),y") +Ad(z,Go(2)) st. Go(z) € F(),

which promotes realism through the generator while feasibility remains enforced at the feature or action
level [24].

Diversity and robustness of solutions

In many applications we prefer to present several non-redundant options. Set valued objectives add a dis-
persion term to promote coverage of distinct mechanisms while maintaining proximity and feasibility. A
common strategy scores a set {2}, ..., 2%} with a determinantal volume log det K built from a kernel K over
candidates, and balances this against loss and distance

min L(f(z),y") +XD d(z,z),) — plogdet K.
(e e F (@) zk: (f( k) y) zk: ( k) plog

Robustness concerns are addressed by margin buffers or shift aware constraints that keep a solution valid
under small model or distributional perturbations. Recent analyses for tree-based predictors show how
sparse counterfactuals can fail under adverse perturbations and how robustness penalties mitigate this failure
mode [113].
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Transparent evaluation includes success rate, proximity, sparsity, plausibility, and feasibility. When sets of
counterfactuals are returned, a diversity measure and per instance coverage are informative. Documentation
of the cost model, the construction of F(z), and the background distribution used for any density terms
supports reproducibility [21].

Counterfactuals become practically meaningful when edits correspond to real actions with documented burden
and policy compliance. The next section develops actionable recourse[23], where the object of interest is not
only a counterfactual point but an admissible action plan with certified feasibility and cost, and where local
prescriptions can be aggregated into global, human interpretable summaries [28].

3.3 Actionable Recourse

Actionable Recourse is a field of tasks that utilizes counterfactual explanations, in a manner of exploiting
the wrongful way a predictive model has been trained, detecting bias, and in specific settings providing real
world advice to individuals to succeed on a certain task. As a phrase, actionable recourse logically proposes
the change of the direction of an individual via actions[114, 115]. The main question the task asks is, given a
predictive model with fixed parameters and training, and a negatively classified individual (they have assigned
the undesired label), can we recommend a feasible change to the persons’ features that flips the decision of
the predictor, thereby operationalizing individual agency rather than offering post-hoc rationalizations|23].

Counterfactual explanations motivate recourse by framing the smallest change that would yield a desirable
outcome, but do not, by themselves, enforce feasibility or action sets [26]. This distinction motivates optimiza-
tion with explicit constraints. Several surveys formalize algorithmic recourse as constrained recommendation
problems that are model-agnostic in principle, yet depend on explicit assumptions about mutability, costs,
and plausibility in practice. In this section, we focus strictly on individual-level recourse, and we distinguish
it from global and summary approaches [116].

Formal Definition

Let € X C R denote the features of an individual, f : X — {0,1} be a fixed classifier, and the desired
outcome is y* = 1. An action a € A(z) C R is a feasible edit with cost ¢(a | #). The recourse problem is

min c(a|x) st flz+a)=y", (3.3.1)
a€A(z)

which encodes the minimal effort for feasible label flips [23]. The feasibility set A(x) encodes immutability
(e.g., age cannot decrease), directional and conditional mutability (e.g., education may only increase), and
domain constraints for discrete, ordinal, and continuous features [116]. To make costs comparable across
features, a common choice is a weighted £ metric

1

d

j=1
where MAD represents the median absolute deviation of a feature z; defined as
MAD(X;) = median;( | X;; — median; (X;;)]).

so distances reflect relative change magnitudes rather than raw scales [23, 26].

3.3.1 Approaches of Actionable Recourse

Several methodological approaches implement the same task, however, we describe the four main group.
Thus, in the following segment we briefly analyze linear separator, non-linear separators and path-feasible
recourse,. In order to be more specific we have to examine exact actionable recourse for linear models.

we use Integer Programming and Flipsets. For linear separators denoted as

f(x):]l[waerZO],
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we fix the parameters and the training data. The actionable recourse question asks whether a negatively
classified individual can achieve a favorable decision through a feasible minimal cost change to the features
while respecting mutability limits, domain bounds, and discrete encodings. This setting admits an exact
mixed integer formulation that imposes the simple flipping requirement

w' (z+a)+b>0,

The formulation represents categorical and ordinal edits with binary variables and enforces feasibility with
linear constraints, so the solver either returns a minimal cost action or certifies that none exists. For small to
medium feature spaces, this yields individual-level solutions with provable optimality, and it does so without
altering the underlying model. To move beyond a single prescription we need to define the flipset. This is
formalized as the collection of distinct minimal cost actions available to the same individual, with each action
changing a different subset of features while still flipping the decision. A flipset is useful because it offers
real alternatives that may differ into real-world projection or risk, even though each is optimal on its own
support.

We construct the flipset by solving once to obtain the initial minimal action then adding an exclusion
constraint that forbids the support just used and resolving to find the next distinct minimal action. We
repeat this process until no further feasible option remains, or a stopping rule is met. The same rational
matches audits at a population level, since per individual outcomes can be aggregated without retraining
the model. For these runs it is straightforward to report feasibility rates and distributions of recourse costs,
while the structure of the flipset helps reveal heterogeneity in available actions and possible system barriers.
Taken together the exact formulation and its flipset extension provide prescriptive guidance for individuals
and a transparent basis for formal auditing, mainly used in corporate or institutional applications|23].

On the other hand, recourse applies on model-agnostic and non-linear settings of classifiers. The objective
here is translated to turn the problem into logic constraints and solving them exactly when the theory is
decidable. For this matter we need to define sound and complete SAT/SMT search. Specifically, Satisfiability
Modulo Theories (SMT) extends the already known SAT problem that solves propositional satisfiability with
richer theories, such as linear real arithmetic. A solver is defined as sound if it never returns false positives
and is defined as complete if it returns a solution whenever one exists. A theory is decidable if the solver
terminates with a definite yes or no answer. A general model agnostic template is to encode the predictor as
a theory ®(z + a) and to encode cost as ®.(a). Then we encode feasibility a € A(z) and solve

ngn cla) st Pp(r+a), Pcla), a € Az)

with an SMT solver over decidable fragments. This supports discrete variables and non-differentiable costs
while preserving formal correctness [22]. This logical view sets up a unified language for additional properties,
notably diversity and plausibility, which we address next.

We now have to address diverse and coherent counterfactuals under discrete logic. Single-headed recommen-
dations are often insufficient in practice because users and auditors benefit from multiple realistic alternatives
that remain consistent with domain logic, for example valid one hot encodings. A mixed-polytope encoding
operationalizes such discrete constraints so that we can explicitly search for diverse yet coherent sets of ac-
tions improving user choice and coverage under the same formal appliance [23]. Ensuring logical coherence is
necessary but not sufficient recommendations should also be plausible with respect to data which motivates
data driven constructions.

The final approach refers to path-feasible recourse that constrains the actions to stay on-manifold. This
significantly shows similarity with FACE algorithm we presented in the previous section(3.2.3). In order to
implement such methods, we construct a neighborhood graph over the observed data, such as a k-Nearest
Neighbors (k-NN) graph in an appropriate metric space, and restrict candidate edits to paths that remain on
this graph, so that each small step respects the feasibility set A(z). This optimization target is a minimum
cumulative path cost from the current instance x to any node that the black-box f labels as favorable. The
output is a sequence of small, interpretable edits rather than an off-manifold jump. Next, we treat these
graphed-path methods as plausibility devices that complement exact optimization for parametric models,
for example, Mixed Integer Linear Optimization (MILO), rather than replace them. The graph constraint
enforces support awareness, while MILO delivers cost minimality and infeasibility certificates under explicit
cost-immutability rules. Full stop [27].
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3.3.2 Feasibility, Plausibility, Robustness, and Evaluation

To complete the discussion on the concept of Actionable Recourse completely, we address four primitives
that make the previous methods operational. These aspects are feasibility, the cost functions, the plausible
device, and the robustness and evaluation protocol, which are necessary preliminaries of the comprehension
of the following matters. Our aim here is to remove ambiguity in what actually counts as a permissible edit,
how effort is measured, how proposed actions that provide counterfactuals out of distribution are ruled out,
and finally how stability can be quantified under predictive multiplicity as far as the variety of predictions
of different under the same action is concerned.

To begin with, we restate the feasibility set A C R?, which encodes immutability of coordinates of instances,
via hard constraints, directional allowance, and conditional constraints that allow features to be changed
depending on specific settings of the domain. It is important to note that the feasibility set has to be
specified before any solver is invoked and has to be unchanged during the process of training, auditing,
and robustness analysis. Otherwise, it is almost guaranteed that the results and actions given will have
wrongful edits, which if one is not experienced enough, can be attributed to the faultiness or malfunction
of the predictive model [116]. Secondly, a plausibility device is required to prevent off-support edits. This
ensures that, when comparing methods, we have a fixed constraint to keep the actions proposed have the
same boundaries and restrictions, like minimum density thresholds for any proposed counterfactual.

Subsequently, the need to compare efforts across heterogeneous features and instance vectors, has led to
the employment of population calibrated cost functions, that similarly to the previous properties, should be
fixed in all reports. Common, cost functions are represented by the original weighted norm functions and
derived distance functions, that are however, always dependent to the scale of the features, so the dimension
of each feature will impact in a disproportional and unfair amount, in the total cost a move from the original
point of feature space to the target. Such heuristics are avoided in the task, while one can argue that by a
robust analysis of the domain examined each time on a dataset, the heuristic cost functions with the correct
adjustment of weights will provide a sufficient evaluation of effort. However, recent works have proposed
several functions that are scale-invariant and can proportionally and fairly encode the importance and the
nature of each feature. The notable example that will be closely examined in the rest of this thesis is the
Mazimum Percentile Shift (MPS) function that was introduced as the audit function by [23]. The equation
is defined as

MPS(a | z) = max |Q;(z; +a;) — Q;(z;)l, (33.2)

jes(a)

where @); represents the empirical Cumulative Distribution Function over the distribution of feature j, and
S(a) ={j : aj # 0}. The use of this cost function will be analyzed in detail on Section 3.4 and Chapter 4.

Robustness is a needed primitive to evaluate the process of Actionable Recourse, as models with comparable
performance and risk, can induce different decision boundaries in the feature space. This leads actions
that succeed for one fit of a model, fail for another. This urges the adoption of another fixed protocol.
Some proposed methods introduce the construction of an ensemble {f (b)}szl, that operates via refits of the
algorithm that samples perturbations. For each b, the computation of the minimal cost action a® € A(x)
and the recording of the flip success, summarize through an aggregate score. In methods like linear models, a
margin buffer can be used to strengthen the flip constraint over a specific threshold of success. Throughout,
the feasibility set A(z) and the cost function must remain fixed, so that instability can remain only variant
to model variation rather than changing constraints[117].

Finally, the most common evaluation metrics, that are used in order to compare results of different works,
are the necessary common ground the methods should share to understand each method strengths and
weaknesses. The foundational standardization fields are, flip/success rates, feasibility rates, distribution
aware minimal costs, sparsity constrained actions, robustness descriptors, and diversity when enumerating
multiple minimal or near-minimal actions, such as the number of distinct flipsets and their feature overlap.
These metrics computed over the same action set, the same cost function and the same plausibility device,
ensure a coherent and reproducible narrative as stated by [116].

All in all, we understand that actionable recourse has a very strict methodology, yet if the setting of examining
a problem or a domain of interest are strictly and carefully stated and justified, the utmost goal of comparison
between works is achieved. As a task of explainability, recourse, can be argued that it is a task that might
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have a post-hoc character, yet it yields answers that substantially can interpret a model’s decisions. While
decision boundaries across models vary, similar actions may be proven to have the least cost needed to flip a
label for an individual with the same scores across models. However, this uncertain and slightly ambiguous
part of the process, has lately been attempted to be faced by various methods that handles the task globally
by partitioning the population. In the next section we discuss the second part of related work of our thesis,
that of Actionable Recourse summaries, and how methods try to collectively extract explainable actions for
affected populations.
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3.4 Related Work - Actionable Recourse Summaries

The task of Actionable Recourse has shown to have a high adaptation by application fields that need to provide
such explainable and audit processes to populations, either for research reasons or practical considerations,
such as the regrouping and reforming of a company’s structure and hierarchy of employees. For such domains
where global knowledge is more valuable than specialized over individuals, the need for evaluating recourse
across correctly selected groups is highly demanded. This approach has the advantage of providing a shared
pool of choices to individuals, from which the optimization problem of actionable recourse is generalized and
globally computed for a whole population of individuals. This has seen to provide great improvements as far
as the generalization of actions is needed, and the economy of less personalized modifications for individuals.

While in late years the literature has grown on globally examining counterfactual explanations and utilizing
them to extract actions for actionable recourse tasks, every approach has a distinct common ground to com-
pare with. In this section, we review two global recourse summary formalisms. Counterfactual Ezplanation
Trees (CET) provide a single, consistent action per partition cell (leaf) with an explicit tree structure. Ac-
tionable Recourse Summaries (AReS) provide two-level rule sets that summarize recourses for user-specified
or discovered subgroups. Nevertheless, recent valuable works, that extend these methods exist like GLOBE-
CE[118], or GLANCE-T and GLACNCE-C methods by [119], however in the thesis timeline we are not
able to further analyze these works or compare with them. For this reason, we establish the foundations as
presented by the following methods.
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3.4.1 Actionable Recourse Summaries - AReS

In the AReS method, the authors present a global summary as a small collection of triples R = {(g,¢,¢)}.
Each triple states who the description applies to, what the current situation is, and what changes are rec-
ommended. Specifically, ¢ describes a subgroup using simple checks on features, ¢ matches the current state
for those cases, and the part ¢’ gives the concrete edit to apply, meaning the action to apply on instances.
In plain words, we describe this as if an instance satisfies ¢ and also matches ¢, then the advised change is
c’. The set R of such triples is kept short so that a reader can go through it easily, understand the proposed
edits, and personally evaluate their choices and have their verdicts, based on 10-15 rules per set [28].

Problem setting

To formally address the matter the authors denote X,g as the instances with an adverse outcome, also
referred to as the affected population by the predictive models’ decisions. Then, as B they denote the fixed
predictive model used, and R is the candidate rule set that contains all the optimal and feasible actions
proposed.

M
incorrectrecourse(R) = Z {x | x € X,pp,x satisfies ¢; A ¢;, B( substitute (z,¢;,¢}) # 1})] (3.4.1)
i=1
Equation 3.4.1 shows how often a proposed edit fails to flip the undesired label, which was decided by the
given predictor B, when it was applied as an action.

The next metrics presented by the authors have a greater significance on the quality of actions over the
population of instances they are applied to. The coverage metric 3.4.2 shows the impact of the final rule set
on all instances of the affected population. This impact is quantified by the percentage of instances that were
given an applicable action, meaning an action that is specified for their needs based on their features and the
if-then-else rules partitioning of the dataset. Also, an action is applicable on instances iff the edits proposed
for an individual are vectors that prescribe change from the original instance’s feature values, meaning that
at least one coordinate of the state ¢’ is different from the respective feature values at state c. Thus, coverage
determines how many individuals received an actual action proposition and whether it was applied to them.

cover(R) = {z | v € Xaypy, x satisfies ¢; A ;3T € {1,..., M}}| (3.4.2)

On the other hand, the frameworks’ cost functions quantify how demanding the prescribed edits are over the
entire recourse policy R. The formulation introduces two aggregate quantities:

M M
1 1
featurecost(R) = i E cost(c),), featurechange(R) = i E magnitude(c],), (3.4.3)
m=1 m=1

where M is the number if rule recommendations under consideration. In practice, M can be instantiated
either as the number of unique prescribed actions ¢}, € R, or as the number of applicable assignments of these
actions across covered individuals when evaluating on a dataset. These aggregates are used to punctuate the
"typical burden" of the provided recourse across the population that is the one intended to receive it [28].

Cost ¢, is a domain-informed scalar that quantifies the effort of carrying out the prescription ¢/,,. This cost is
not restricted to an £,-style norm, as it can incorporate heterogeneous factors, such as temporal or structural
difficulty costs, that evaluate how long will it take to achieve a goal or how difficult it is to increase your
hierarchical status.

On the other hand, the magnitude(c],) measures the size of the modification in feature space, interpreted as
the total absolute size of feature edits required by ¢],. This applies to how many coordinates of the feature
vector change and how much if they do so. This quantity indicates how invasive the action is with respect
to the current state c,,.

Having explained the costs, their aggregates serve indeed different audit questions. The first featurecost(R)
provides the answer to, on average, how demanding are the actions proposed to a population, according to the
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context of the domain. For featurechange(R) the explanation offered is, on average, how large are the edits
on the feature space.

This separation of costs matters, as two actions can have the same magnitude, yet radically different cost.
This lies on an audit example of income increase, where the action proposes to two individuals a raise of
income of magnitude of 10%, while the cost of such a move, might be less demanding for one with low income,
the same raise will have a greater cost for a person with significantly higher payroll. For this reason, the
need to report both effort functions is necessary, to avoid semantic burdens and express geometric distance
truthfully, while preserving the ability for comparison when applying recourse to different populations.

The framework then, explicitly treats interpretability, as a resource that can be constrained. This is meant to
provide a clear, readable, and comprehensive output for the user to read. To achieve this qualitative aspect,
the following structural complexity measures are defined:

size(R) = |R|, maxwidth(R) = ( ma)x R#predicates in(cA¢q), numrsets(R) = |rset(R)|. (3.4.4)
q,c,c’)e

Here text(R) represents the length of the summary, so that the fewer rules exist, the easier it is going to be
to read the artifact and communicate the results for the users. Then, the maxwidth(R) is a measure of local
complexity, by counting atomic predicates in the most complex prior rule of form ¢ A ¢q. This way the authors
bound worst-case semantic loads for every rule. Finally, the numrsets(R) expresses fragmentation of the
summary, as the number of different recourse sets, which is needed to avoid the generation of near-duplicate
rules or over-fragmented ones that are too sparse to have a practical effect and provide explainability.

Optimization problem

The above measures and metrics work together so that AReS can return the most suitable candidate R. The
goal is to find a small set of triples that covers as many affected individuals as possible, recommends realistic
and practical edits, and does so at minimal cost. To make this feasible, the search space is discretized into
bins. While this allows the algorithm to operate on structured data, it also makes the space extremely large
and difficult to handle for larger datasets. Still, the algorithm improves its search step by step, narrowing the
space and enforcing limits on size and rule width, which helps it get as close as possible to the best achievable
values.

Through experimentation and careful analysis, it becomes clear that the method’s main limitation is its
reliance on approximation rather than on an exact solver. In other words, the solution it finds is near-
optimal but not guaranteed to be strictly optimal. Another limitation is that the combinatorial space of
possible rule combinations is only partially explored, as the algorithm restricts some combinations to keep
the process manageable. Scalability is also an issue, as when the framework is applied to larger datasets, the
runtime quickly becomes impractical on standard hardware.

That said, it would be unfair to dwell only on these shortcomings. AReS, together with the CET framework
discussed in the next subsection, played an important role in shaping the foundation of this thesis. Both
works provided valuable insights into how to design, optimize, and evaluate actionable recourse summaries
that balance interpretability with practicality.
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3.4.2 Counterfactual Explanation Trees - CET

Counterfactual Explanation Trees (CET) holds a special part in this thesis. This work has highly influenced
the subsequent work of this thesis. Specifically, in the thesis, we formulate the same problem setting provided
by CET, and formulate it through a different framework and methodology. However, almost everything we
discuss below that refers to CET is applied and adapted in our later described framework in chapter 4.

CET was the first work to instantiate the task of actionable recourse summaries through tree structures,
thus giving a new, more transparent structure of the summary that follows specific hierarchical rules via
root-to-leaf paths. The key aspect of understanding the framework’s results, is that through the partitioning
of the feature space that is handled by the decision tree, each leaf assigns a specific action to a subpopulation.
The choice of action is done through the basis of actionable recourse, meaning the final chosen action per
leaf minimizes the cost of the move of instances that need recourse, while ensuring the chosen actions also,
maximize the success of flipping the label when the edit is applied.

Setting

The authors use the same problem setting, of having a fixed classifier f : X — ) that provides predictions on
a certain dataset D. Then the target population is reduced to instances x such that their predicted label is
different than the desired class, thus creating the affected population that will be used for recourse. Without
loss of generality, the declare as the action set of all possible feasible actions to be applied on instances,
to have a global scope and defined as A(z) = (),cy A(x). This denotes the intersection of the feasibility
set for every affected individual. Here, however, for practical considerations, the intersection of subsets is
implemented separately for each leaf node to reduce computation time and memory load.

The optimization problem follows three hierarchical equations, which follow the order from instance-wise
optimization, to leaf optimization, and conclude in the final tree solution optimization. The metric of
evaluation instance-wise is defined as the invalidity score that is described as the cost of an action a over an
individual z and the addition of the scaled version of the £3; loss function that returns 0 in case the action
successfully flipped the label or 1 if it didn’t achieve its goal.

ir(a] @) = cla | @)+ 7 -lou(f(x +a), +1) (3.4.5)

The scaled version of the loss function is achieved by the v parameter, which is a positive scalar, and its use
is to evaluate the significance of the success of flipping the label for the specific setting for the domain the
task is used. This makes it a trade-off parameter, that if chosen to have a value between (0, 1), it reduces the
flip loss, thus influencing the cost function to have higher influence on the decided actions that are returned
on leaves.

This leads to leaf evaluation of the score that is presented as an aggregate of equation 3.4.5 and defined as

minimize,e 4(x) g4(a | X) := Z iy(ai | z). (3.4.6)
reX

The leaf-wise optimization is the minimization of average invalidity on the subpopulation X of the candidate
leaf, such that the optimal action a* € A(X) is returned as an outcome. The problem of leaf optimization has
a local character because even though it optimizes through the average score of the subpopulation examined,
it does so by heuristically creating candidate actions that are then included in the action set used for the leaf
optimization. The authors create actions through a variety of approaches, but the one they propose is based
on LIME approximations. Then this optimization problem solved as an MILO formulation and the use of
state-of-the-art solvers of this nature as IBM C-PLEX! or Gurobi solver?. Additionally, a last metric as far as
local evaluation is examined, is the use of the cost function the authors use. We have previously stated that
a scale-invariant cost function used in Actionable Recourse is the Maximum Percentile Shift function that
exploits the effort needed to apply an edit to an instance based on the Empirical Cumulative Distribution
Function. This cost function is well defined by the users, and because of its appropriate use for the task, it
is later adapted by our formulation.

Thttps: //www.ibm.com/analytics/cplex-optimizer
2https:/ /www.gurobi.com /solutions/gurobi-optimizer
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3.4. Related Work - Actionable Recourse Summaries

Before delving into the analysis of the algorithm and the global optimization problem, we have to note a
particularly important clarification that the authors make and is needed for out further discussion and later
formulation of out method in the subsequent chapter. For the objective function g)v,the authors indicate
and prove that it holds monotonicity with respect to a partition X of the dataset[1]. Specifically, they denote
that given two subsetsX7, X5 of a set of instances X C X, such that X; U X5 = X and X; N X, = (), the
relation that holds is g, (a% | X) > g,(a¥, | X1) + g,(a%, | X2). This indicates that the partitioning of the
input space produces actions of higher effect based on their given score.

At this point, having made clear the procedure of optimization per instance and leaf, we need to present the
global objective function and the algorithm of tree learning and action assignment. The authors first define
the tree solution h : X — A, such that the decision tree h assigns an action a to a given input instance x.
The global optimization objective is defined as the minimization of the average invalidity of the whole tree
structure, by aggregating the invalidity per leaf and averaging by the total population set cardinality. To this
objective, however, an added term is being introduced, that is, regularizing the tree based on the number
of leaves it has, an important aspect when the need of the final objective is not only to minimize the cost
function but have control of the complexity of the tree structure. The objective o, ) is defined as

oya(h) = % > gyla | X))+ A x [L(h)], (3.4.7)

1eL(h)

where the first term is the aggregated average invalidity over the whole tree structure for a tree h over all the
leaves that belong in the leaf set L£(h), and the second term describes the normalization factor based on a
parameters A that penalizes large number of leaves so that complexity is controllable and reduced whenever
needed.

Algorithm

The Algorithm provided by the authors, named Stochastic Local Search, even though based on the number of
iterations and, of course, the dimensionality of the action set A, it has some limitations due to it probabilistic
approach, it is claimed and justified that returns optimal results as far as the nature of the tree objective
function is concerned. For completeness of the section’s discussion, we briefly explain the steps of the
algorithm:

1. Initialize an empty tree structure based on the dataset examined.

2. Then for a given number of iterations ¢ = 1,...,T, given a probability J that is approximately equal
to & and some context of complexity based on the condition (I) |L(h)D] < %

(a) Either, edit the tree by inserting a node with a rule randomly if the 6 < 1) and condition (I) is
true

(b) Or if the condition (I) does not hold and 6 < 2, edit the tree by randomly deleting node

(¢) Or if none of the above conditions hold, replace a rule that had already been introduced, randomly,
with another from the action set.

(d) Then evaluate each leaf independently based on the leaf invalidity equation, and retrieve the
minimal action to be chosen per leaf

(e) Evaluate the tree’s performance under the global objective function, replace the tree structure
with the one of the previous iteration, if the current is not better based on the objective function

3. After the last iteration, the tree structure that is returned as the optimal solution is the one that,
throughout all iterations, had the minimal score of global objective o, ».

Although the algorithm promises optimal solutions, several limitations have been distinguished. First, this
probabilistic approach does not strictly provide optimal solutions. This derives from the fact that the solutions
are a product of convergence after several iterations, which are set manually via experiments and observation
of the behavior of the objective function as iterations increase, given the respective domain of instances,
size of the training batch, and cardinality of the action set. Similarly, a closely related yet not identical
limitation is the scalability issue, for exactly the same reasons that hold for the previous limitation of not
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Chapter 3. Explainable Artificial Intelligence

< Job Role: Manufacturing Director >

TRUE
Monthly income: +9000
Years at Company <10 work life balance: +1
job role: manufacturing director — Reasearch director

FALSE TRUE

Monthly income: ‘9000 Monthly income: +9000
sitorlk appttom Tk <+ work life balance: +1
training times last year: year with current manager: +9

Figure 3.4.1: The transparent tree structure of CET

The specific example shows the interpretable aspect of the tree structure. Each leaf node, based on the split
that occurred, thus the partition of the dataset, assigned specific actions for these groups of individuals that
collectively minimize their cost and maximize the success of flipping the label when given as inference to
the classifier.

proven global optimality. The high dimension of feature space burdens the tree structure mechanism to find
optimal splits, even in a greedy way. The action set has high cardinality, combined with a large number of
instances, and is undoubtedly a task that requires higher computational power, and even with the use of
optimization solvers, like the ones we referred to before, the runtime would be infeasible on non-specialized
computers and processors of advanced CPU performance. Another limitation we observe is the small number
of experimental data domains, as the paper is restricted to two datasets. However, this limitation, even
though it exists, can be justified because of the nature of the task of actionable recourse, as a small number
of datasets that completely match this task exist.

All in all, the model formulation of CET is a work of high importance and value, which handles the problem
setting with all the necessary detail. Adapting the general logic of the framework, the assignment of actions
on leaves, and the same metrics, we build upon this matter and introduce our work in the subsequent chapter,
explaining in detail the problem setting, the formulation, and all the adaptations from the CET method.

70



Chapter 4

Proposal

In this chapter, we present our framework for Summaries of Optimal Global Actionable Recourse
(SOGAR), a method that generalizes existing approaches for generating actionable recourse and counter-
factual explanation summaries [1, 28, 119]. Unlike prior work, which primarily relies on local heuristics or
instance-wise optimization, SOGAR seeks globally optimal summaries of recourse by jointly optimizing tree
structure and actions under explicit cost and recourse success objectives. The key gap in current literature, is
addressed by our approach as we extend the search space of actions further than the local actions previously
computed, while ensuring the solutions preserve global optimality, under the multi-objective optimization,
providing a Pareto front of optimal tree solutions, that aim to minimize the global cost of actions and the
loss metric that occurs after an actions failed recourse.

SOGAR builds upon the dynamic programming principles of the STreeD algorithm [2], extending them
with task-specific objectives tailored to actionable recourse. In our setting, each leaf of the decision tree
prescribes an action that flips negative outcomes to positive ones with minimal cost and minimal loss.
The solver maintains Pareto-optimal trade-offs across cost and success through separable multi-objective
dynamic programming, ensuring each region of the feature space is associated with an optimal and equitable
intervention.

Conceptually, SOGAR bridges the interpretability of symbolic decision trees with the robustness demands
of modern recourse systems. It offers theoretical guarantees of optimality for separable objectives from
instance-level interventions to group-consistent decision policies. By organizing counterfactual actions hier-
archically, the resulting models remain both interpretable and globally optimal, qualities which are essential
for transparent decision-making in sensitive domains such as credit scoring, hiring, and healthcare.
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Chapter 4. Proposal

4.1 Contributions

The contributions of this diploma thesis can be summarized as follows:

e We propose SOGAR (Summaries of Optimal and Global Actionable Recourse), a novel framework
that extends Counterfactual Explanation Trees (CET) by embedding them into the globally optimal
STreeD dynamic programming approach. The approach preserves interpretability of solutions, and
simultaneously ensures global optimality, over all possible solutions given in the Pareto front, which
gives an extra mile of personalization to users to decide which equally optimal solutions match the
standards of their need better according to their domain and task.

e Each leaf of the decision tree is assigned a single actionable recourse, chosen to minimize the overall
cost of feature changes while maximizing the rate of prediction flips under a fixed black-box classifier.
This formulation provides globally consistent and transparent recommendations.

e We conduct experiments on public benchmark tabular datasets, demonstrating that SOGAR achieves
lower average recourse cost and higher flip rates compared to CET and AReS baselines, while scaling
efficiently to larger depths and dataset sizes.

e Our work establishes a systematic framework for exploring trade-offs between action effectiveness and
interpretability through Pareto optimization, offering practitioners and stakeholders a transparent tool
for actionable and justifiable recourse.

e The formalization of this process is achieved through the adaptation of STreeD framework, by instan-
tiating a STreeD-defined separable optimization task o = (g,t,®, =, ¢, s9), and meeting the necessary
and sufficient conditions for the DP recursion formulation with precomputed scores.

4.2 Motivation and Problem Statement

Within the setting of the Actionable Recourse problem, we were influenced by works like CET and AReS
to extend the logic beyond heuristic-based optimizations of leaves and rule sets. In Actionable Recourse,
regulators, auditors, and institutions require more than a pointed prescription for a rejected applicant. They
need a global and human-auditable summary that reports: who is asked to change and what is the target of
change, and how costly and reliable those changes are. Summaries that are presented via rule sets, like the
formulation of AReS, provide such a view, but have the flaw of assigning overlapping or conflicting actions
and leave parts of the population uncovered, which damages transparency and consistency. By contrast,
CET addresses coverage and consistency through a decision tree in which every instance falls into exactly
one leaf and each leaf has exactly one prescribed action, so every individual receives an explanation, and
contradictions are controlled and eliminated. However, CET is trained with heuristic stochastic local search,
that is , a probabilistic edit algorithm, and MILO formulation at the leaf level, and therefore cannot certify
that the resulting global policy is globally optimal or even Pareto optimal when the objective is considered as
two separate optimization goals. This lack of optimality can be further explained by the iteration setup of the
CET algorithm, as it does not exhaustively examine every possible leaf, sub-tree, up to the point of a globally
optimal solution. Additionally, this motivates us to formulate a globally optimal structure that ensures and
preserves optimality throughout the entire decision tree by using optimal decision trees, by formulating the
DP approach based on the STreeD implementation. Thus, this leads us to the definition of the SOGAR
problem.

4.2.1 Definition and Setting

We therefore define the Problem as suggested by the formal definition of sections 3.3 and 3.4 and our setting
based on the DP formulation. We therefore restate the basis of the actionable recourse summaries setting,
and we extend on it to analyze our formulation setting addition.

We fix a classifier f : X — {0,1}, and a desired label denoted as y*, which without loss of generality,
is interpreted in the binary classification setting, and thus is chosen to be y = +1, while the undesired
label is y = 0. Then we define a population of instances D = {(z;, f(z;))}",, and its filtered portion
Do = {(zi, f(z;) = 0)}_; that represent instances that have predicted labels by the classifier to the undesired
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4.2. Motivation and Problem Statement

class. Then, let an action space A that contains all possible edits on instance vectors of the input space, and
we define the feasibility action set be the subset of A(x) C A, such that every action a € A(z) is a feasible
action that will be applied and tested on the affected instances of the population Dy. We distinguish that
the action set A(z) is an extended cached set, which will be further analyzed below, and contains actions
based on a sparsity constraint of up to 3 edits per instance. Then, we define a proper cost function that
measures the effort of changes on features, and is aware of the scale of change that an edit applies, based
on the distribution values of each feature, and represent the cost function with the notation c¢(a | ). To
complete the definition of an actionable recourse problem, we finally, provide a flipping indicator in the form
of a loss function that similarly to CET formulation adds the undesired predictions of edited instances that
need to have their label predicted. The loss function is represented by lo1 (f(x + a), +1).

Our optimization task is bi-objective and it goal is to find a Pareto front T of non-dominated optimal tree
solutions 7 € T, such that for every tree 7, every leaf [, has a feasible action a € A(x) assigned, that
simultaneously minimized the cost and loss functions as individual objectives, so that the sum of cost scores
per leaf and the loss scores per leaf, are minimized throughout the tree structure. For that reason we formulate
the two objectives in our problems settings as

C(r)= Y clal@)|z), Lr)= Y lolal()] =), (4.2.1)

z: f(x)=0 z:f(z)=0
Thus, the Pareto front objective is translated as a vector of the two scores, denoted as

min (C(7), L((7)), (4.2.2)
TETy
where T} is the already defined space of binary tree solutions that belong in the Pareto front, with the distinct
restriction of maximum depth d. For completeness and direct comparison to other methods, we finally, adapt
the invalidity score on tree level as the sum of the two objectives of Pareto front vector objective 4.2.2 as,

1

I(T):m

[e(ae(@)) | 2) +5 - tor (F( + aft(@), +1)] (42.3)

x€Do

that has the same 7 scaling parameter as adapted from the CET formulation, to prioritize cost or loss based
on personal need of the task’s context. To summarize the above setting we present an outline of the necessary
primitives of our task. In the outline we present:

e a fixed classifier f: X — {0,1},

a desired target label y*,

a population of instances D = {(x;, f(x:))}q,

and the affected part of it Do = { (x4, f(x;) =

[ )
&
|
o
=2

s
I,

a global feasible action set A(z),

e a cost function c(a | z),

e a loss function lg1 (f(x + a),+1) as a flipping indicator,

The Pareto front Ty of all non-dominated optimal tree solutions 7 with maximum depth d

the aggregated tree functions C(7), L(7),I(7), that respectively aggregate action costs, flip loss, and
their scaled sum.

and the Pareto front objective in the form of the vector min, e, (C(7), L((7)).
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Chapter 4. Proposal

4.2.2 STreeD adaptation

Based on our analytical statement of our problem of actionable recourse, we now need to proceed by formal-
izing the problem and the optimization task, exactly as STreeD framework defines an optimization task, and
then we continue to prove its separability, that as we already referred in section 2.4.3, is a set of conditions
that are proven to be necessary and sufficient to define a new optimization task under the STreeD solver.

SOGAR as a STreeD optimization task
As previously stated in 2.4.1, an optimization task is defined by the tuple

0= <gat,@7 >, C, 80>a

where g denotes the cost function, ¢ denotes the transition function, & the combining operator, > is the
dominance and comparing operator, ¢ resembles the feasibility constraint, and finally, the task is represented
by an initial state symbolized as sg.

We denote that a state s records the instances that reach a node and the remaining depth d, and define the
value space V' =R > (0,0), whose first coordinate is the sum of recourse cost and the second is the sum of
instances that failed to flip their label. As STreeD labels that can be assigned on leaves, we consider every
feasible action a € A(x). Given this, we now map our problem settings on the optimization task definition
given by the STreeD framework. For this reason, we start matching our components by the cost function g.
In our task, the evaluation metric is the bi-objective vector that the Pareto front evaluates, thus, the vector
of the two functions, of the cost of actions and the loss function, and we express it as

9(s,0) = ( Y cala), S Hal a:)), (4.2.4)

rzeEX, reX,

with I(a | ) = 1{f(x + a) # 1}. This function mimics as previously said, the CET invalidity, without
scalarizing, so that we can obtain the Pareto front solutions.

Then, the transition component is instantiated as ¢ : S x F x {0,1} — S, given the state s and a binary split
decision on feature f € F, the return of the function is the next state after branching on feature f and is
solely determined by the current state and splitting feature. This can be expressed as

ts, f1) =z e Xy: fz) =10,d—1), (s, f,0)={{z € X,: flz)=0},d—1) (4.2.5)

meaning that the two child states that occur after the split on feature f contain the instances that correspond
to the 0 and 1 values of the feature f, respectively, the remaining depth is decreased by 1 and are fully
independent. Thus, the transition function holds in our task.

The next component is our additive combination operator @ that is expressed as simple element-addition
over the objective vectors, v = uy Hur = ur +ug. The dominance relation and comparison operator > exists
via our Pareto dominance operators on R? for non-negative values. We express these relations as, u = u’ iff
u; < o for all 4 and u; < ug for at least one j.

The constraint c is represented by our feasibility necessity of actions, which means that every action a must
be feasible for all x € X, the minimum number of instances that represent a leaf node set to a value m, and
the maximum allowed edits per action.

Finally, we initialize our problem given an initial state sg that represents the worst solution, which is acting
and representing as an upper bound to our solution space.

This formalization allows our task to be solved based on dynamic programming recursion of the framework,
preserving Pareto optimality across both of the optimization objectives.

Proof of Separability

Based on the definition of SOGAR via the STreeD primitives of what an optimization task is, we proceed to
prove that our task will be solved under the framework as it is separable under the strict criteria presented in
Section 2.4.3. The needed criteria are, to have a Markovian cost and transition function, a combining operator
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that preserves order over the dominance operator, the constraint c¢ is anti-monotonic and that optimality is
preserved.

First, our cost function is indeed Markovian, as we let s = (X,) denote the state with instance subset X.
Then, for any feasible leaf action o € Ajear(s), define the leaf cost vector as the equation 4.2.4, by which we
obtain that g(s, a) depends only on the current state X and the immediate decision «. For the cost function
of the leaf, we consider it to be the "per objective" sum of cost and loss for an action and the state s.

Then, for a binary feature f € F and branch b € {0,1},
t(S, I b) = <Xs,b>7 Xs,l = {{,E € X, f(.’L‘) = 1}7 XS,O =X, \Xs,l- (426)

The child states depend only on the current state and the feature f, hence ¢ is Markovian.

The combining operator @, preserves order with respect to the dominance operator . The operator is defined
as element-wise addition of cost function g. For the Pareto dominance relation on non-negative values of R?
addition is order preserving. Since uy > u} then ug + ur = w} + ug. This ensures that combining Pareto
optimal sub-trees via @ yields Pareto optimal nodes.

The constraints of feasibility, minimum number of instances per leaf, and maximum number of edits, are
anti-monotonic since any tree that does not satisfy these constraints then no tree that contains it can be
feasible. The anti-monotonic constraints, and the preservation of order provide that our task satisfies the
principle of optimality as stated by [2]. Having proven all the above, the SOGAR task meets the criteria
of being separable, as the cost and transition functions are Markovian, by only depending on their current
state, and our task satisfies the principle of optimality.

DP recursive relation for SOGAR

Thus, our task is able to be handled by the solver, because each subsolution is optimal independently and does
not minimize its objectives based on context to other sub-trees. Thus, we can achieve the global optimum
via the Pareto optimal solutions. Our task, task now is eligible to be expressed by a recursive relation based
on DP and the framework’s DP relation. Specifically, we express the global optimal solutions as

opt ({g(s,a) : & € Asear(s)}, s), if d =0,

(s, d) = opt ( U merge (T(t(s,f, 1),d—1),T(t(s, £,0),d — 1),5,]‘)7 s), if d > 0. (4.2.7)

fEF

As previously explained in section 2.4.3 and by the general recursive equation 2.4.9 of state and depth, the
equation returns all feasible, non-dominated objective vectors that any sub-tree of remaining depth d rooted
at state s can achieve. Here at depth d = 0 the return of the algorithm is all the optimal leaves, because
remaining depth equal to zero resembles leaf nodes. On the other hand the description of the second segment
is the examination of an internal or root node, for which we consider each possible split f that splits in
two children. Then, for each child, we get the Pareto set of optimal solutions recursively. This leads to
memorization of solutions that are independently optimal, and thus, we form all possible combinations of
left and right children to form larger trees. The union indicator suggests that we want to collect to our final
solution set, all possible combinations by some split on every node. The combination of both those segments
of the relation provides the entire Pareto front of independently optimal solutions.

4.3 Technical Approach

We continue the discussion of our task by presenting our more technical, yet important details. In this section,
we discuss our choice of cost and loss functions, the choice of hyperparameters and parameter tuning of the
model, the Pareto front implementation, and techniques for a viable and solvable solution space. Finally,
before our model’s description, we analyze our method of using precomputed costs and flip rates for our
cached action set.
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Chapter 4. Proposal

4.3.1 Cost and Loss function

For our model, we faced a dilemma when selecting the cost function and the loss function. The loss function
was straightforward to choose because the formulation used in the CET line of work is simple, comprehensible,
and effective at indicating whether an instance flips after applying an action. Thus, our flip loss is

taip(z,a;y") = 1f(x +a) # " (4.3.1)

We adopt this indicator loss to evaluate flipping success similarly to [1].

The cost function required more consideration. We chose the maximum percentile shift, as used in CET,
because it is scale-invariant with respect to feature distributions and yields a realistic depiction of effort
across heterogeneous features:

emps (@, a) = max|Q;(z; + a;) — Q;(x;), (4.3.2)
jEA

where (Q;) is the empirical cumulative distribution function (CDF) of feature (j), and A denotes the set of
actionable coordinates.

The literature on CET and on algorithmic recourse for linear models also proposes the total log percentile

shift,
1-Qj(z; + aj))
ja) =Y log (T LT 433
crLps(T,a) Z Og( 1 —Qj(xy) ( )

which emphasizes that equal percentile gains become progressively harder near the upper tail. This function
is useful when constructing flip sets because it biases solutions toward combinations of edits that are com-
paratively easy within the target population, as presented by [23|. In summary, TLPS is better aligned with
building flip sets, while MPS is well suited for population level audits because it communicates the minimal
percentile movement required to achieve a flip in a scale-free way. Therefore, for auditing tests we use MPS,
and our cost function is given by the expression above. Thus, our choice of MPS lies with its simplicity for
reproducibility and for comparison with our related works.

4.3.2 Parameters and constraints

One aspect that the framework is flexible upon is the personal choice of parameters, the choice of mazimum
depth d, the minimum number of instances contained in leaf m, the mazimum number of internal nodes,
contribute to the personal choice of the user to where they want to extend their solution search. By keeping
personally choosing the right amount of leaf size the user can produce balanced trees that generalize more
than sufficiently on test sets.

However, the choice of deeper trees highly burdens the solver, especially while keeping the leaf size small, as
the search space exponentially grows to infeasible runtime. For such a scenario, the framework encourages
the user to use a timeout parameter that terminates the search process and returns the globally optimum
until this point. This is of course a limitation of such frameworks, however, for our task and the datasets we
examine, such deep trees might be unfaithful to generalization, as too specific actions that would target a
very small partition of a population, would conflict with the tasks advantage to generalize.

4.3.3 Pareto front implementation

The Pareto front is constructed by first declaring the task is of partial order. To implement the Pareto front,
we use the dominance functions provided by the STreeD framework and apply e constraints to introduce
tolerance in pairwise comparisons. This is necessary because action costs are real-valued and represented
as floating point variables. Without an epsilon constraint, the search space would expand significantly, and
results would not be obtained in reasonable time.

Another notable aspect of the framework is the use of upper and lower bounds during the computation of
the Pareto front. These bounds prune the search space early by tightening the region of interest, so that any
solution that is provably worse than a current bound is eliminated immediately without further consideration.
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The size of the Pareto front is configurable through a parameter that limits how many non-dominated solutions
are retained.

Specifically, for two objectives f1, fo that we aim to minimize, we use an € relaxed dominance defined by

z < y;e= (Vie1,2: file) < fily) +e) A (Fjel,2: fi(x) < fi(y) —e) (4.3.4)

The framework also provides "merge and add" functions that operate after computing optimal leaves. These
functions enumerate the feasible combinations of sub-trees induced by the optimal leaves, retain only those
combinations that can belong to the € non-dominated set, and discard any alternative that would burden the
search without improving the Pareto front.

4.3.4 Binarization and Caches

The framework has a great restriction of examining and solving the optimization problems over fully binarized
datasets. This restriction, however, is what justifies its advantage to provide optimal solutions for total and
partial order, in high performance fashion. This, case was troublesome, as the preprocessing of the data for
our task should be spit in several parts, in order to first binarize accordingly to the feature space, without
extending it to dimensions where information from the structure of the dataset is distorted. Thus, in order
to achieve such a goal we broke down the process of data handling in the following parts:

e A careful binarization of the original dataset, without distorting information based on unrealistic di-
mensionalities

e A creation of a context file that preserves information between the binarized dataset and the original
dataset, also containing statistical values, such us the density and frequency of bins, to retain control
over the extent of binarization

e A cache that contains all possible actions created based the feasibility criteria of the user, and the fixed
constraint of maximum 3 edits allowed per action.

e The creation of a cache that includes all the precomputed costs and predictions, per instance for every
action in the action set.

Specifically, referring to the cost and predictions cache, our initial approach was to compute the costs and
predictions as the solver was running and optimizing the tree solutions, this was computationally infeasible,
as the need to use combinations of actions would stall the processor. The easiest and most efficient approach
was to predetermine all costs and predictions of the classifier, for every instance of the affected population
and every action of the instance space. This might seem computationally impossible as we scale towards
larger datasets. However, the computation of cost is done once for all atomic actions (one edit action vector),
and then via the MPS function it was practically another O(1) read from memory. Similarly, the batches of
instances that were eligible for prediction, would have their prediction cached after every action was applied.

4.4 Proposed Method

These lead us into the formal description of our method. We propose Summaries of Optimal and Global
Actionable Recourse (SOGAR), which is a formulation of the actionable recourse summaries problem, by
exploiting the DP framework of Optimal Decision Trees of Separable Trees with Dynamic Programming
(STreeD) [2].

Having already stated the problem setting, we now only describe how the process is executed in practice. We
analyze how the process is divided into three sections that fully interact during the process, the workflow of
the pipeline, end-to-end from the original input to the final output of the process. The pipeline is visualized
in figure 4.4.1.

The pipeline, as shown in the figure, is divided into three components only for better distinction of the
steps of the process, and ease of comprehension of users. Specifically, the first component refers to the
training process of the classifier, the retrieval of the datasets with predicted labels, and the later inference
on the trained model for instances that are edited after an action application. The second component is the
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Figure 4.4.1: SOGAR Process

In the diagram of the SOGAR process, we observe the division of the process into three distinct sections,
which are fully interactive during each process.

preprocessing of the predicted data into a fully binarized dataset, compatible with the DP solver, the creation
of the metadata file, the action set, and the computation of the cache scores. Finally, the third component
encloses only the solution process and the Pareto front solution of the STreeD algorithm, given the input of
the binarized dataset, the context files, and the precomputed scores retrieved by the external cache. Below,

we unravel the description of the process into ordered, discrete steps:

1. First, we Train and predict on the original dataset. We fit the fixed black-box classifier f on Dy,
then predict on Dy, U Die. This produces a post-prediction dataset with assigned labels § = f(x). We
extract the affected population X = {x : f(z) = 0}, which is the only set considered in downstream
recourse computation.

2. We continue by Binarizing for tree search. We preprocess the post-prediction dataset to a binarized
representation Dy, (one-hot/thresholded features), preserving the instance indexing of X'. This step
prepares the feature space for exact optimal-tree search while leaving the original (real-valued) features
untouched for action evaluation.

3. Then we extract context file. Specifically, as a by-product of binarization, we write a context file C that
records the mapping between original and binarized features, domain bounds, mutability constraints,
and any per-feature statistics needed by cost/evaluation. This context file preserves the necessary
connection between the original dataset values and our binarized, and is crucial for all the next parts
of the process.

4. The next step, is the generation of the action set. Using C, construct per-instance feasible actions
A(x) with the user-imposed feasibility rules, for example, the immutable features excluded, and the
maximum number k of edits (in our experiments k£ <3). The actions based on the context file preserve
the rules of direction set per feature, and each action is defined on original feature coordinates and is
intended to be evaluated against f.

5. At this point, the precomputed of the cache of costs & outcomes if eligible computation. For
every € A and a € A(x), compute once:
cost(z, a),

flip(z,a) = 1{f(x + a) = 1}.
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Store these, together with action metadata, in a cache Cache. The cache is keyed by (x,a) and avoids
recomputation during tree optimization; it also fixes all stochasticity before the search.

6. We, then, proceed to Solve the tree of optimal actions. For this part of the process, we provide
(Dbin, C, Cache) to the STreeD solver together with structural constraints of maximum depth d, min-
imum leaf size m, the constraint on the Pareto front size c,. Then, the solver assigns a single action
to each leaf and optimizes a separable, leaf-additive objective under these constraints. Multi-objective
search is handled via e-relaxed dominance and bounding throughout the DP.

7. Finally, the Pareto set is returned. The solver outputs a Pareto front 7* of non-dominated trees. Each
tree partitions X’ without overlap and prescribes one feasible action per leaf, together with aggregated
cost and flip statistics. These are the final SOGAR summaries.

The first advantage of our approach, which makes it stand out compared to related methods, is that the DP
approach delivers the optimal solution in a totally deterministic manner because of the fixed reduction order.
It implements a fully exhaustive search of all possible scenarios, creates all combinations of optimal leaves,
and returns all the non-dominated trees up to the given restricted maximum depth.

In addition to that, our method exploits the flexibility offered by the STreeD framework, such that we cache
the solutions during the process, for faster look-up on states that have already been examined, and uses the
in full extent the upper and lower bounds that tighten the search space, on our personal request, yet still
ensuring that the optimal trees will be found in deterministic time. The two precious benefits fully comply
with the high-performance claims of the DP methods, and specifically the exceptional computational time
of STreeD, thus aiding our method to surpass previous methods not only in improved performance and the
guarantee of finding all optimal solutions, but also the great reduction of time needed for such demanding
computations.

Finally, another aspect we need to address, even though we have not given enough emphasis on it yet, is the
extraction of a set of solutions per run of the algorithm, and not a single one. This might be interpreted as
a labyrinth of choices by some, yet we claim that such an output is more than helpful for such tasks as the
recourse of population and the explainability of the black box model. To address this, the number of Pareto
front solutions can be restricted by the user, which, in other words, means that it is fully personalizable to
what extent that the user decides the extent of the search space, the structure of trees, their interpretability,
and their complexity. As we have previously said, in section 2.4.2, the Pareto front can be tailored without
loss of generality or distortion of results, based on some clearly stated and justified rules.

In our implementation, it is clear that we use a hybrid approach of the € tolerance and the weighted cost
function. The € on boundaries and dominance operations, such that we compare solutions up to a six decimal
digit accuracy (e = 107%), such that we can distress the solver from the computational effort needed, and thus,
provide solutions with a personally chosen and justifiable accuracy of comparisons. On the other hand, the
cost function uses the scaling factor -y that, based on the appropriate choice of value, reports back solutions
that are optimal given the importance of the task if the objective that calculates the cost of actions. By
diminishing one of the two objectives, thus scaling in to approximately 0 values, we state that we tolerate flip
failure and approach the optimization problem with a high importance on the cost function. This, practically
refactors the search space to prioritize the cost objective, and thus the Pareto front is restricted to one a very
small portion related to the extent of an non-scaled bi-objective where the Pareto front has the "freedom" of
extending across a the non-dominated curve, that connect the extreme points' of the solution space. On the
other hand, the larger the value of ~ is, the higher the importance of returning favorably effective actions is.
This calibration parameter, adapted by [1], thus, offers full control over the adjustment of the search space
according to the setting of the recourse task and the specialty of the domain.

Also, in a more practical view, the multiple solutions, offer the user a greater pool of choices that match
the criteria of certain populations, allowing for targeted decision-making across different demographic or
operational segments. For instance, one tree from the Pareto set, may prioritize low-cost and high feasibility,
suitable for large populations with limited resources, while another may emphasize a higher flip success, for

1The extreme points are denoted by the two non-dominated solutions, that are described as having one objective coordinate
as the global minimal value over the plane, and the other objective coordinate has assigned the worst value based on total
ordering of this objective. Such extreme points are denoted as: (Car, Lm) and (Cm, Lar), where the indicators M, m represent
the maximal and minimal values given the coordinate.
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groups that are characterized by higher risk. Empirically, the multiple choices and the visualized structures,
provide a flexibility to align recourse policies given the human factor of rationalizing the proposed actions.
The same aspect of multiple trees provides a great guide for researchers who aim to understand model biases
or odd decisions, thus being able to have more than a sufficient amount of sample solutions to evaluate such
tasks. In other words, multiplicity of solutions does not complicate the decision process but rather empowers
it, transforming the optimization process to a controlled and transparent space of equally valid, globally
optimal options.

Having addressed these matters, we continue on the next and final chapter of this thesis. In the subsequent
chapter, we present our experimental results, discuss our results on the recourse task on several datasets,
and our performance compared to other works. We delve into the conclusions of our method and report our
limitations.
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Experiments

Having our problem set up and the model appropriately discussed, we now come to the last chapter of the
main body of this thesis, where we present our Experimental Setup. In this chapter, we set the preliminaries
for our experiments; we briefly analyze the datasets we use for benchmarking, their special preprocessing
they need, how we binarized and to what extent we increase each datasets dimensionality. We discuss the
challenges each dataset opposes to our work and the competitors works and how we planned to deal with
it. Next, we further analyze our evaluation metrics, that still refer to the cost and loss function. In this
section the only special detail we will present is the mapping of a cost function that was created to deal with
continuous and real numbers, to adapt into a binarized logic. We provide the experimental set up as far as
the software and hardware used, are concerned, and present the code significance on the STreeD part of the
task.

On the next, and final section we present our experimental results, based on the benchmarking datasets we
use and compare our work to other methods. At the same time we contribute more results and visualizations
of our method to quantify the impact of the pareto front solutions, their personalization flexibility, and the
tradeoff optimal solutions. Finally we conclude with the limitations of our work, and things that could not
work out during the process of this thesis.
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Chapter 5. Experiments

5.1 Preliminaries

In this section, we briefly analyze our experimental setup, referring to our software contributions, the hardware
equipment, and briefly state the needs of computational power. We then discuss our datasets, and the
preprocessing adapted and extended for our SOGAR method under the STreeD solver. Finally, we restate
our evaluation criteria via the cost and loss function, and discuss the experimental modifications to be able
to map the action space from the binarized feature space to the prebinarized feature values.

5.1.1 Experimental Setup

In this section, we briefly analyze our experimental setup, referring to our software contributions, the hardware
equipment, and the computational needs. Our implementation runs on an Apple Silicon M4 CPU with
16 GB RAM. The SOGAR optimization task is implemented as a new STreeD-defined separable task and
integrated with the STreeD solver back-end. The remaining sub-processes of the formulation, including
preprocessing and caching, are implemented in Python 3.12, while the STreeD task is compiled in C4+-17.

We adopt the replicable configuration of the CET repository! for the classifier and use Light GBM]|30] with
the default parameters the CET authors use, to replicate their experiments and ours with compatible versions
and parameters, and to ensure comparability across methods. At this point, we emphasize that runtime scales
primarily with the number of instances, that is, the population size of the affected set, rather than the number
of features. This observation is consistent with the use of a fully binarized search space and a cache-based
evaluation that produces O(1) leaf-score retrieval per (z,a).

5.1.2 Datasets

We evaluate on four tabular datasets. We run experiments on three UCI datasets that are standard for
auditing risk-sensitive decisions: German Credit[31], Bank Marketing [32], and Adult Income [33], and
the IBH HR Employee Attrition[34]. These datasets are chosen to implement the auditing task—global,
population-level summaries of recourse, in order to compare with related works, and specifically the CET
replicable repository that except of CET, includes the only available public implementation of AReS, and a
cluster-wise implementation of actionable recourse for broader comparison of methods.

The first preprocessing of the data adapts the one-hot encoding technique for categorical features, as in the
CET repository. This dataset is used for the training of the classifier, the evaluation of costs applied to the
original values of instances, and for inferring the edited instances to the trained model. Thus, the binarization
we implement has the following extra steps:

e We preserve the already binary, and one-hot encoded categorical features,

e We handle continuous features by binarizing them into appropriate interval bins, utilizing the quantile
binning of intervals that the STreeD framework is compatible with, and is proven to utilize with
higher efficiency. For large real-valued ranges, we use interval aggregation by choosing the optimal
representative ranges, and a representative value based on the bin’s median to be saved in the context
file. For smaller feature distributions that can be binarized into distinct bins for each value, we adapt this
approach to exactly match the cost of actions that will be later discussed in the subsequent subsection
5.1.3.

e We control the dimensionality post-binarization, as binning radically can increase the number of bina-
rized features that will be included in the STreeD solver. Thus, we aim to control such increases by
at most = 100 — 120% in edge cases. However, such binarization does not seem to affect the resulting
solution scores, based on several experiments, and is fully necessary for the correct feature splits and
mapping in the binary only values of the STreeD solver, without loss of information by just creating
binary features with one threshold over a widely ranged distribution.

Dataset sizes (original space). Table 5.1 reports original feature counts and the number of instances
used, before the one-hot encoding of categorical features. The Adult dataset is subsampled to half the
original instances to allow baselines to complete, while preserving class ratio and the geometric integrity of

Lhttps://github.com /kelicht /cet
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the feature space. Also the Bank dataset is the smallest variant of the original dataset that represents a
random 10%, which the authors chose to distribute as an extra file.

Table 5.1: Original dimensionality and instances used.

Dataset # Features (original) # Instances (used)
Employee Attrition 34 1470
German Credit 20 1000
Bank Marketing 16 4500
Adult Income * 14 16000

Post-binarization. Table 5.2 summarizes the expansion after one-hot and interval binning, as well as the
immutability portion of the feature space and action configuration per dataset. The immutability percentage
denotes the fraction of features that are flagged as immutable in the context file, and therefore excluded from
edits. Column "Actions/inst." denotes the maximum combination of atomic edits that are allowed to exist,
thus constraining the feasibility of the sparse action vector, which preserves the minimal change for maximal
flip. This constraint, however, was chosen in the same manner as the works we compare with, for compatibility
and fair comparison. It can be extended to larger, yet controllable combinations, to preserve sparsity. The
limitation of such a choice of expansion of the action space, however, creates a rather computationally
challenging space, and the more atomic actions exist, the greater the number of combinations will be. The
last column reflects the edit space cardinality per instance, as it reflects the size of the precomputed action
set used during DP search.?.

Table 5.2: Post-binarization dimensionality, Immutability, & Action set cardinality.

Dataset #Feat. +# Bin. Feat. Ad% Immutable (%) Actions/inst. # actions
Employee Attrition 45 100 120.0 26.1 k<3 68,147
German Credit 41 90 119.5 19.0 k<3 62,440
Bank Marketing 35 7 120.0 65.0 k<3 20,105
Adult Income * 108 172 59.3 60.2 k<3 15,624

In order to provide some extra insights on the preprocessing and preparation of actions, the binning increases
the feature space to more than double of the feature dimension used in the dataset that was used in the
training of the classifier training and inference. However, this allows us to create better and more logical
splits that absorb the maximal information by the binarized dataset that approximately maps the original.
The action space is significantly larger than the other works, as we take the DP problem solving to the full
extent by implementing an exhaustive search over all possible sub-solutions.

Then we see that the percentage of immutable features varies per dataset. This was personally tailored by
us, and some already given suggestions by previous works on the respective datasets. The immutability of
features, was chosen based on criteria of equal opportunity and elimination of discrimination, so the main
types of features that were set as immutable were, Age, Gender, Race, Marital Status, Relationship and
Country.

The carefully tailored actions consist of edits that depend on the type of feature. Numeric features are
mapped such that the change of bin that is chosen in the DP solver, thus the command to move to another
range, is translated by a move to reach the median of the target bin. The integer features are handled
similarly, but each bin contains the value of the integer, instead of a range. The binary actions are handled
as only activating or deactivating the specific feature, and we adapt the exact same way as the categorical
features.

The extent of bins is clearly shown in the first three datasets of the table, of Employee Attrition, German
Credit, and Bank marketing, as we expanded columns like income to 20 — 50 bins that represent ranges, so

2In our experiments, we cap edits per action by k < 3, as discussed in Section 4.4
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that we can provide actions of not too large edits, thus unrealistic income increases. We specifically make
the bins have approximately equal distance between every to bins. This is chosen so that the actions we will
propose will have a standard move, fixed to this distance, and then multiplied by a chosen maximum allowed
number of jumps. Thus, actions that suggest +500, 41500, 43000 increase in income are suggested over
actions seen on other works that suggest individuals increase to more than 7,000 — 10,000. These changes
provide a more sophisticated approach to creating actions that are applicable to every instance and will likely
never lead to overfitting on the needs of a rather small portion of individuals. This approach is designed for
the utmost goal of providing feasible actions that would prove their optimality not only on the training set,
but on their performance of success on the test process.

5.1.3 Evaluation Metrics

As we previously stated in section 4.3, we evaluate each tree by two leaf-additive objectives, a flip loss
that counts misclassified (non-flipped) instances after applying a prescribed action, and a scale-invariant
cost metric based on the Mazimum Percentile Shift (MPS). The loss is the standard indicator used in
counterfactual recourse and in CET, chosen for its simplicity and correctness as a flipping test. The cost is
MPS, chosen for its ability to compare heterogeneous features on a common percentile scale. We continue to
remind the metrics we use for evaluation, by restating them and giving an additional insight on our practical
implementation on our code, so that we can map actions and their costs from the binarized feature space to
the original feature space.

First, let us redefine the loss function. Given a target label y* = +1 and an action a applied to an instance
X, write xga) for the instance after applying a to x;. The flip loss is

1, if f(xM) # g,

1 n
Laip(fi0) = ﬁ;‘sf(xi‘”#y*’ O px)tyr = {07 otherwise. (5.1.1)

The loss aggregates additively over leaves and over the affected population. We adopt the same convention
as in CET for evaluation, solely to serve reproducibility and a clean comparison to published baselines.

Next, let @; denote the empirical cumulative distribution function (CDF) of feature j, computed on the
original dataset after the prediction of the classifier, thus in a concatenated format of the training and test
sets. For instance, zand action a, define 2’ = x + a as the edited instance in the original feature space. The
MPS [23] cost is

emps(z,a) = max [Qj(x;) —Qj(xj)}, (5.1.2)

JEA(z)

where the A(z) denotes the space of actionable features based on the constraints and the nature of the
feasibility set. This choice is scale-invariant across features, as the same percentile movement has the same
cost, irrespective of units, variances, or support. In this thesis, MPS is implemented exactly as in the authors’
public CET repository to ensure strict reproducibility and one-to-one comparability of scores across works.
Any difference in the implementation would make our work ineligible for comparison, or would need the
reproduction of the other works to match a function defined in a totally different way.

We do not need to delve into the feature-type handling in MPS. Each feature is handled differently based
on its type, and in our work, the additional pre-processing of data needs extensive explanation of how we
handle and map our costs. In the following featured outline, we briefly yet sufficiently state the way each
feature is handled and any differences that occur in our mapping. The CDF component @);is instantiated in
a feature-wise manner:

¢ Binary features z; € {0,1}. The empirical CDF has a single jump at 1. If an action flips 0— 1, then
Q;(1) —Q;(0) =Pr(X; <1) —Pr(X; <0) =1-Pr(X; =0) = Pr(X, = 1), ie., the cost equals the
empirical frequency of the 1-category. (The reverse 1— 0Oyields the symmetric decrement.)

e Categorical features (one-hot). Each category is a binary indicator after one-hot encoding, so switch-
ing categories is treated as switching one indicator 0 — land the previous one 1— Oon separate coordi-
nates. The shift on each coordinate is computed as for the binary case above. The overall MPS remains
the coordinate-wise maximum as in (5.1.2).
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e Discrete integers. We construct @;from the CDF over distinct values. An edit that maps x;to

x;incurs the percentile change Q; (:c;) — Q;(x;)determined by those discrete cumulative masses.

e Continuous real features. In this kind of feature, it is more realistic to use the empirical CDF on
the feature distribution, as we have a large range of values and a far larger sample that varies. In our
pipeline, the solver operates on a binarized representation, but costs are computed in the original space.
To map bin decisions back to real features in a stable and reproducible way, we associate with each bin
its training-split median medyand evaluate

Qj(z}) — Qj(z;) = Qj(meds-) — Q)(z;),

where b*is the target bin selected by the action on feature j. This median mapping provides a robust
representative within each bin and avoids edge-instability near bin boundaries. All medians and bin
boundaries are recorded in the context file and kept fixed across train and test sets.

At this point, we need to note that all ) are computed once on the post-prediction dataset with original data
values and serialized in the context. Then, boundary comparisons in dominance tests use a small etolerance
as we stated on Section 4.4 to mitigate floating-point artifacts and tighten the search and computation space
and distress the runtime.

Having referred to the above, we need to make another note on the choice and use of the specific cost
function. The MPS communicates the difficulty, and thus, an approximation of the rarity of moving to a
more advantageous region of the population distribution, without feature-specific scaling or ad hoc weights.
This is appropriate for our auditing goal, because we compare and aggregate actions over heterogeneous
attributes on a uniform, interpretable scale. We remark, however, that some applications may prefer utility-
weighted costs (e.g., domain choices trading payroll increases against stock options). Such preferences can
be incorporated by replacing @;with calibrated utilities or by post-hoc reweighting. We deliberately avoid
these domain weights in this chapter to preserve fairness and balance of comparison and to maintain strict
compatibility with CET’s public implementation.

Having discussed all the details of the preliminaries of our work, given the experimental set-up, the pre-
processing techniques followed, the implementation of our actions, and the analysis of metrics, and every
component of this work, we now move to the experimental results based on the experiment we ran on the
previously referred datasets.

5.2 Results

In this section, having set the ground on the theoretical and practical background, and having collected all
the needed preliminary knowledge, we present the results of the experiments we ran on the four tabular
datasets discussed in section 5.1.2. We present our solutions, their format, the quantity, and their quality
based on the Pareto front, the personalizable parameters of scaling the cost function, and the explainable
part that is enhanced through our representation that exploits the STreeD framework. Then we continue to
present our results compared to related works of the Actionable Recourse Summaries field, and understand
what we achieve by this process, where our results show similarity, what our benefits are, and which parts
show extensive importance of discussion. We then conclude this section by discussing parts of significant
importance that we observed via our experiments, and present our limitations.

5.2.1 Solutions and Evaluation

For our experiments, we run every work using the same global parameters to evaluate the cost and loss
metrics, for the global view of each method. We set v = 0.99 for an insignificant reduction of the importance
of the flip loss metric. The rest of the parameters, as far as the evaluation is concerned, are left untouched.
In our method, we do not use the A parameter of regularization that the CET authors use, because we are
given full control over the maximum depth d, minimum leaf size m, and maximum number of internal nodes
M. The rest of the parameters are set to default, exactly as set on the replicable implementation of the
works we compare with. For the AReS implementation, we were unable to run the experiments on the Adult
Income dataset, even though it was sub-sampled, as the combinatorial nature of the problem made it more
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than inefficient for the experiments to run on our current hardware. Thus, no results are returned for the
AReS method as far as the Adult income is concerned. The methods of CET and Cluster-wise Actionable
Recourse originally utilize the CPLEX MILP optimizer to examine the optimal actions search. However,
due to the compatibility of the code implementation and some technical issues, we used the Gurobi solver
instead, which is equivalent to the former implementation.

Before we compare and comment on results, we should have a more detailed view of our solutions, their
nature, the scores evaluation through consistency of solutions, the number of solutions, the Pareto front
formulation, and the visualization of experiments on our examined datasets.

Extent and pruning of solution space

To begin with, in our experiments on SOGAR, the number of solutions in every run varies, based on the
parameters set on the tree structure. The maximum allowed depth d, the maximum allowed number of
internal nodes n, the minimum number of a leaf’s size m (the minimum allowed number of instances that
should be contained in a leaf, for a tree to be considered a valid and feasible solution ), the extent of the of
the Pareto front bounds and the relaxations e, all play a crucial part on the cardinality of the solution set.
A set of parameters that refer to a shallower tree (e.g, d = 2,n = 3 ) and a dataset of a small to moderate
size (1000 — 2000 instances, such as Attrition and German) returns a set that ranges from ~ 180 — 220
non-dominated solutions. By increasing the depth and number of internal nodes parameters, we extend the
search space and thus the Pareto front size to range between ~ 250 — 500 solutions. Of course, we need to
distinguish here that our comments refer to the given number of actions assigned to the respective action sets
computed for each dataset. Naturally, the increase in the size of the action set contributes significantly to the
extent of the search space by multiplying the possible solutions and candidate leaves that would occur. In our
current setting, however, the number of solutions will be discussed under the specifically stated cardinality
of every action set Ay(x) as observed in table 5.2. On datasets of medium size, such as the Bank dataset,
a set of solutions for the shallower trees and a significantly lower number of actions, escalates to have at
~ 250 — 500, exactly like the case of deeper trees for smaller datasets. Similarly, the largest of the datasets,
Adult Income, even though it had the fewest number of actions, returned a significantly greater range of
2000 — 3000 solutions for both d = 2,n = 3 and d = 3,n = 7 combinations.

These observed solutions can, however, be filtered on demand via various techniques. The STreeD framework
allows the modification of the merging rules, aiming to control the candidate leaves that will later contribute
to the construction of sub-tree solutions, up to the maximum allowed depth, something that, if used, restricts
the search space of combinations drastically. Secondly, we tried to filter out actions from the cache that
had low scores on the prediction objective. This indeed contributes equally to the pruning of the search
space, but it is an unorthodox way, and considered to be wrongfully implemented, as the filtering was done
under the average loss of actions when examined on the whole population. This was not included in the final
implementation, but an approach that would prove a filtering technique would definitely benefit the process.
The third and most useful method to provide an indirect pruning of the search space was the use of the ¢
relaxation constraint on the Pareto front dominance conditions of comparison. Larger values of € compare
on fewer decimal digits, thus the dominance of solutions was more efficiently computed. Such a constraint
is valid in our results, as prompted by the literature on multi-objective optimization problems, and used to
lessen the comparisons and the demanding accuracy of floating point solutions.

Nature and consistency of solutions

In the context of the nature of solutions, we refer to the different visual and qualitative results. The extent of
interpretability of the tree structures and the explainability based on the actions provided per leaf contribute
to the understanding of the examined classifier’s behavior. As depicted by figure 5.2.1, the tree structure is
concretely explainable using the feature binary splits to guide to the appropriate action assigned on leaves.
In the figure, we see a balanced structure of four leaves, each meeting the criterion of the minimum number
of instances per leaf that was set to m = 30. The structure offers full transparency and consistency through
the feature splits and on the actions assigned, which contain the number of instances of the training process
and the number of training instances reached on testing. Except for the reference to instances, we extract
the most important part of the output, which is the training and testing scores per leaf. We observe that
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the average cost generalizes sufficiently well on the test instances, which is equally observed on the train and
test loss scores.

OverTime

Monthlylncome +2 BusinessTravel -1 Jobinvolvement +1 JobSatisfaction +1

StockOptionLevel +1 Monthlylncome +3 StockOptionLevel +1 YearsWithCurrManager +2
JobRole_ResearchScientist — 1 JobRole_ResearchScientist — 1 OverTime — 0 OverTime — 0

train ¢=0.3400, f=0.1609, n=80 train ¢=0.2025, f=0.2263, n=35 train c=0.3636, f=0.0724, n=82 train ¢=0.2991, f=0.0619, n=32

test ¢=0.3365, f=0.1650, n=6 test ¢=0.1986, f=0.0000, n=2 test ¢=0.3748,f=0.0825, n=12 test ¢=0.3026, f=0.1650, n=6

Figure 5.2.1: SOGAR tree of depth d = 2, Attrition dataset

The tree represents the output of the solution providing the minimal training invalidity score, for an experiment run
on the Attrition dataset, for parameters of depth and maximum number of nodes d = 2,n = 3, respectively.

Similarly, we obtain another example of the same dataset, which returns a tree of depth d = 3, as seen in
figure 5.2.2. In this situation, things differ in the of generalization. This is a logical aftereffect of allowing
a tree that is training on a small population to grow deeper. As a result of such a relaxed constraint, even
though the training scores are improved, the testing scores are worsened. This observation is, in fact, useful
for the user to understand the nature of the solutions because, even though the actions proposed by the
deeper structure are more specified on the partitioned population, the generalization is effectively declining,
allowing us to calibrate the complexity of the structure provided the scores evaluation. Nevertheless, such
small differences in scores do not directly indicate the quality of the actions proposed. On the other hand,
the user should criticize the quality by comparing both the complexity of solutions and the rationale of each
proposed edit.

The second aspect discussed, based on the solution of 5.2.1 is the rest of the non-dominated solutions that
were included on the Pareto front and the consistency of scores as we decline in the ranking based on the
training invalidity score. Specifically, on table 5.3, we observe the difference through the ten best-ranked
solutions that were returned on the Pareto front. The step-wise difference rate of the training invalidity is by
average +0.28% and the average per-step change is +0.00125. This indicates the advantage of consistency
on the best-scoring solutions. This provides the user a flexible choice between multiple solutions that are
approximately equally ranked, and each offers a different tree structure, which mostly differs in the choice of
actions. In other words, a user can choose freely between the best solution that suits their needs, without
being severely penalized.
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Figure 5.2.2: SOGAR tree of depth d = 3, Attrition dataset

The tree represents the output of the solution providing the minimal training invalidity score, for an experiment run
on the Attrition dataset, for parameters of depth and maximum number of nodes d = 3,n = 7, respectively.

Table 5.3: Top 10 - Solution Metrics Comparison Attrition (d = 2)

Solution Train Test

Cost Loss Inv. Cost Loss Inv.

Solution 0 0.3217 0.1254 0.4471 0.3357 0.1142 0.4500
Solution 1 0.3184 0.1297 0.4481 0.3361 0.1142 0.4503
Solution 2 0.3168 0.1340 0.4508 0.3380 0.0761 0.4142
Solution 3 0.3310 0.1210 0.4521 0.3551 0.1142 0.4693
Solution 5 0.3153 0.1383 0.4537 0.3286 0.1142 0.4428
Solution 4 0.3068 0.1470 0.4538 0.3127 0.1142 0.4269
Solution 7 0.3121 0.1426 0.4547 0.3289 0.1142 0.4431
Solution 6 0.3035 0.1513 0.4548 0.3130 0.1142 0.4272
Solution 8 0.2972 0.1600 0.4571 0.2974 0.2285 0.5259
Solution 9 0.2972 0.1600 0.4571 0.2974 0.2285 0.5259

The table corresponds to the ten (10) best candidate solutions of the Pareto front, ranked based on their training
invalidity score. The data correspond to an experiment run on the Attrition dataset, using parameters of
maximum depth d = 2 and maximum number of internal nodes set to n = 3. Solution 0 numbers correspond to
figure 5.2.1

Additionally, we observe that the same applies for the ten best-ranked solutions for the depth d = 3 solution,
as the increase rate of invalidity is even smaller, at an approximately +0.00037 per-step increase as indicated
by table 5.4. Overall, the solutions provided by the Pareto front not only offer a wide variety of solutions
that use the cost and loss trade-off differently, but also a significant set of similarly ranked solutions that can
be utilized by personal criteria of each user and the setting of each task.
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Table 5.4: Top 10 - Solution Metrics Comparison Attrition (d = 3)

Solution Train Test

Cost Loss Inv. Cost Loss Inv.

Solution 0 0.3019 0.1211 0.4229 0.2919 0.2285 0.5203
Solution 1 0.3075 0.1167 0.4242 0.2920 0.2285 0.5204
Solution 2 0.3432 0.0821 0.4254 0.3559 0.1142 0.4702
Solution 3 0.3349 0.0908 0.4257 0.3484 0.1142 0.4626
Solution 4 0.3349 0.0908 0.4257 0.3484 0.1142 0.4626
Solution 5 0.3176 0.1081 0.4257 0.3127 0.1523 0.4650
Solution 6 0.3394 0.0865 0.4259 0.3547 0.1142 0.4689
Solution 7 0.3310 0.0951 0.4262 0.3472 0.1142 0.4614
Solution 8 0.3008 0.1254 0.4262 0.2919 0.2285 0.5203
Solution 9 0.3138 0.1124 0.4262 0.3000 0.2285 0.5285

The table corresponds to the ten (10) best candidate solutions of the Pareto front, ranked based on their training
invalidity score. The data correspond to an experiment run on the Attrition dataset, using parameters of
maximum depth d = 3 and maximum number of internal nodes set to n = 7. Solution 0 numbers correspond to
figure 5.2.2

Pareto front visualization

Before we delve into the comparison of our scores with other methods, we need to discuss a final aspect of
our solutions. The Pareto front formulation can be visualized in Figure 5.2.3, for the experiment run on
tree depth d = 3. Here, each point depicts a feasible and non-dominated solution. The visualization depicts
the expected slope of points to be created, as we can see all the solutions that span the lower levels of cost
score, to have an inversely proportional relation to the loss function, and vice versa. This can be logically
explained, as the solutions that are denoted to have a smaller cost, thus overall the actions assigned need the
least effort compared to ones with higher costs, are likely to mostly fail to flip the label of the majority of
the affected population of instances. Similarly, the points of the plot that indicate having greater cost scores
are more likely to succeed in flipping the label, as observed on the points of the lower right of the graph.

Train: Cost vs Flip Failure
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Figure 5.2.3: Pareto Front - Training Solutions (d = 3)

The solutions that were denoted earlier as the ten best-ranked solutions of table 5.4, and a handful of solutions
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Figure 5.2.4: Test scores generalization (d = 2)

that together combine into the best 10% of solutions ranked on training invalidity, are annotated with ocher
coloring. The points of this region, as the table suggests, occupy the lower flip loss segment of the graph, such
that the loss between solutions differs by minimal amounts, and the cost varies as well between 0.25 — 0.35.
One would suggest that these solutions are visualized to lie in a region where the solutions settle on a specific
optimal loss. However, this would be highly inaccurate in such a setting because the loss metrics are scaled
and controlled by the v hyperparameter. As we have previously stated the choice of this scaling factor,
calibrates the importance of the effectiveness compared to the cost objective. In our scenario, a slightly
reduced loss metric returns solutions that should balance the two objectives, and in different scenarios the
region where the highest invalidity scores could dramatically change. The theoretical optimum of solutions
derives from the minimal result of the sum of the two objectives (having the loss scaled), which is not visually
guaranteed in a specific region. We should acknowledge, however, that additional to this statement, in such
optimization cases where the multi-objective optimization is examined, we could examine alternate ways of
having a scoring evaluation, such as minimizing the distance of the Pareto solution point from the origin,
as for our task the ultimate goal is to minimize the objectives simultaneously. This shows another form of
the resilience of choosing which solutions matter the most, based on the context of the task and the users
interest.

Nevertheless, the observations of the Pareto front formulation have an additional aspect of interest that
provides more robustness to the solution scores. As depicted in Figure 5.2.4, we provide a best fit curve of
the training points of the Pareto front solutions, and the corresponding points of the test solutions’ scores.
The points here do not resemble a Pareto front, as they are the outcome of inference based on the trained
tree structure of each non-dominated solution. However, as expected, the generalization we claimed in the
previous paragraphs has another point of support, via the behavior of the depicted points that concentrate
near the Pareto front curve. The slight variability of the points is interpreted as the small size of the test set
(= 20 cases), which introduces discretization and random fluctuations in the measured rates. This suggests
finite-sample uncertainty, rather than any systematic deviation from the training trade-off.

Having covered the topic of the solutions that SOGAR returns, their efficiency and consistency based on
the sole ranking of the solutions via the training invalidity score and the Pareto front visualization and
interpretation, and having shown the qualitative advantage of such interpretable structures, the next step is
to understand how our work performed compared to related works that solve the same optimization problem.
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5.2.2 Results Comparison

In this section, our objective is to understand how our method compares to other works, based on the training
invalidity score. However, this metric alone should not be sufficient for a global understanding differences of
our work compared to the previous works. For that reason, our discussion on results will contain the cost
and loss objectives separately, compared to other works, for training and testing evaluation. The last part
of the comparison includes the runtime comparison of each method, and in what manner is this comparison
correlates with the score efficiency of our method compared to the related ones.

Before we discuss the performance of each method, we need to note that the experiments on the CET method
for the Adult dataset were run on 7" = 1000, compared to the other datasets that were run on the default
parameter that was indicated in the authors’ code of T' = 3000, because of our insufficient computational
resources and the demanding runtime the experiment needed. The results match the mutability percentages
of table 5.2.

To begin with, the results of Table 5.5 provide an analytical presentation of the performance of each method,
when run under a 10-fold cross-validation, on the four datasets, using the previously noted default parameters
on the Cluster-wise Actionable recourse, the AReS, and CET methods as were prompted on the original
reproducible implementation by [1]. Our method was run on two main sets of parameters of depth and
number of internal nodes, that were (i) d = 2,n = 3 and (ii) d = 3,n = 7 and an appropriate empirical
tuning of the size of leaves, depending on the depth allowed and the size of the dataset. In further detail,
the leaf sizes for the small and moderate datasets were set to a minimum of m =~ 20 — 30, and as we scaled
the instance space on the Bank and Adult datasets, we set a minimum of m = 100 — 200 and m = 300,
respectively. The results referenced in the cross-validation results table are representations only of the depth
d = 3 for every dataset.

Our initial observation is that the SOGAR method has a significant improvement over all the compared
methods, on the training invalidity score, and consequently on the test invalidity score. The mean difference
is on the scale of &~ 40% on both training and test invalidity, something that derives from the significantly
lower loss objective. The crucial factor of this minimal loss is interpreted via three reasons that we suggest,
based on our understanding and knowledge of the related implementations and the benefits of the Optimal
Decision Tree structures. We will analyze our justification in a declining order of importance.

Table 5.5: Results of 10-fold cross-validation

Train Test
Dataset Method Cost Loss Inv. Cost Loss Inv.
Clustering 0.068 & 0.05 0.940 + 0.04 0.999 + 0.01 0.0084 + 0.11 0.918 4+ 0.13 0.992 + 0.03
Attrition AReS 0.442 £+ 0.05 0.439 + 0.09 0.877 £+ 0.06 0.445 + 0.07  0.285 £ 0.09 0.728 + 0.08
CET 0.294 £+ 0.12 0.477 £ 0.15 0.776 + 0.07 0.305 + 0.12 0.45+ 0.21 0.751 + 0.14
SOGAR 0.302 £+ 0.032 0.135 £+ 0.03 | 0.437 £+ 0.035 0.295 £ 0.021 0.1297 4+ 0.060 | 0.425 + 0.066
Clustering 0.042 + 0.02 0.916 4+ 0.04 0.949 + 0.03 0.046 + 0.02 0.925 + 0.05 0.962 + 0.03
German AReS 0.452 + 0.09 0.232 4+ 0.05 0.683 £+ 0.11 0.467 + 0.12 0.265 + 0.08 0.732 + 0.14
CET 0.107 £ 0.02 0.269 + 0.01 0.374 £+ 0.07 0.108 + 0.02  0.226 £+ 0.11 0.332 + 0.11
SOGAR 0.109 £+ 0.007 0.086 #+ 0.022 | 0.195 + 0.019 0.109 4+ 0.013 0.111 £ 0.058 | 0.220 + 0.059
Clustering 0.010 £ 0.02 0.993 + 0.01 0.993 + 0.012 0.607 £ 0.010 0.994 + 0.011 0.994 + 0.0
Bank AReS 0.361 £+ 0.02 0.799 + 0.08 1.152 £+ 0.09 0.363 £+ 0.03 0.798 4+ 0.08 1.152 £ 0.08
CET 0.035 £+ 0.003 0.018 £ 0.01 0.053 + 0.01 0.035 + 0.01 0.019 + 0.01 0.054 + 0.01
SOGAR 0.029 4+ 0.0004 0.007 £+ 0.006 | 0.037 £+ 0.006 0.029 4+ 0.0006 0.011 + 0.007 | 0.039 =+ 0.007
Clustering  0.95 £+ 0.0 0.10740.01 1.0564 0.01 0.948+ 0.04 0.094+0.06 1.04140.08
Adult AReS o " L L oL oL
CET 0.935 +£ 0.04 0.110+0.012 1.0454+ 0.02 0.944 0.04 0.099+0.05 1.03940.08

SOGAR 0.166 £+ 0.005 0.448 4+ 0.007 | 0.626 £+ 0.002 0.172 £ 0.005 0.435 + 0.002 | 0.607 + 0.002

The 10-fold cross-validation on the Light GBM classifier [30].

First, we have previously stated numerous times that the dynamic programming formulation of optimal
decision trees, which explores the entire feasible sub-tree space through systematic enumeration and Pareto
dominance pruning, is the greatest asset that this formulation offers. To frame this under the results of the
compared works, we comprehend that all the possible different options of equally optimal leaves and structures
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that were examined by the STreeD solver were indeed able to retrieve globally coordinated combinations of
leaves that minimize loss while maintaining equivalent average cost. This indicates the use of the optimal
splits found per run, and justifies the improvement of the loss function related to previous work, which often
relies on locally optimized or heuristic tree construction methods. The CET algorithm, indeed, optimizes
actions locally within each leaf, based on its formulation. However, this local optimization does not guarantee
global coordination across the entire tree structure, but rather depends on the nature of the leaves and the
current proposed action rules.

The second argument for such lower results is the evaluation of leaf nodes. Both CET and SOGAR solve
an optimization problem on each leaf node. However, the CET formulation, utilizes the mixed-integer linear
optimization (MILO), which by linear constraints computes the optimal actions. These constraints restrict the
feasible action space to satisfy flip and feature-weight conditions defined by the classifier, effectively narrowing
the exploration region. In contrast, SOGAR evaluates all feasible cached actions, for every candidate leaf
that the algorithm examines. This connects directly to our previous argument and extends the fact that
the global search, might be more computationally demanding, yet provides a rather hands-on evaluation of
possible outcomes.

This leads us to the third point of interest, which is not a proven verdict but rather an observation of the
different handling of actions through the methods. In our method, action rules are initiated exactly on
the same mutability and directionality criteria as the rest of the works. However, we create the actions
independently for every feature and then create all the possible combinations that occur. This leads us to a
large action space, which, in contrast to the CET implementation, evaluates more combinations of actions,
as the CET approximation group-wise local counterfactual movements derived from linear surrogate models
(AR-LIME) [120]. This approach, plainly explained returns actions that propose local "movements" such that
the instance will move to a positively classified region. For this reason our hard-coded approach, commands
each instance to make specific predefined movements that do not lie on its personal feature values. By
contrast, our cache-based approach generates deterministic, predefined edits under mutability constraints,
producing a broader yet computationally heavier exploration of feasible actions.

Table 5.6: Average computational time/s

Dataset Clustering AReS CET SOGAR
Attrition  5.57 £ 0.268 307.36 £+ 22.67 794.16 £+ 34.10 708.64 + 10.2
German 6.61 £ 0.313 572.0 £ 101.51 550.55 + 21.72 668.243 £ 34.1
Bank”* 50.72 + 3.77 855.0 £ 107.41 2061.82 £+ 320.48 3607.5 + 32.6
Adult™  271.95 + 9.19 — 15236.0 + 1193.4 8930.88 + 100.36

The table shows the per-run core. The bold text values denote our method’s time needed to reach the optimum.

To complete the discussion of our results, we need to comment on the case of the costs evaluated by the
methods, and the edge case of experiments on the Adult dataset. Starting with the latter, we need to comment
on the rather different behavior of the methods as far as the results are returned. Our aim was to have a
sample of a larger dataset, to understand how the methods would perform, and what differences would occur
on scores. However, it is important to note here that the dataset, was highly constraint by the mutability
of features due to the computational complexity that would occur, give our hardware restrictions. These
restrictions provide an explanation of how the Cluster-wise and CET formulations were mostly based on
solutions that had the least uncertainty of flipping, which was traded for high effort actions. We should also
acknowledge the part that CET implementation, was only run for 7" = 1000 iterations, which is definitely a
reason of not providing lower cost results. On our implementation the scoring was seen to be better balanced,
and our returned results, as we return higher but viable loss results for a much smaller effort, thus returning
a lower total invalidity score. This final dataset, however, should be more thoroughly examined to accurately
comprehend such model behaviors.

The comparison of the action cost, is a much different topic. The clustering method, is in general the optimal
action finder for low effort actions, yet not effective enough to flip the label. The rest of methods on the other
hand, return in general an approximately equivalent average cost per dataset, that indicated that the optimal
actions are correctly distinguished by the methods, and thus the significant difference between results is the
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correct way to partition the leaves such that the actions have the optimal impact on the population. In our
method, we need to comment that the average costs might be slightly worse, for example on the Attrition and
the German datasets. We justify this based on the way we formulate the actions of our dataset, as the edits
on continuous features are hard-coded, as explained in Sections 5.1.2-5.1.3, to reach specific target points of
the feature distribution. This was a necessary measure taken, to logically and robustly encode the actions
between binarized feature space of the DP solver, and the original feature space that the classifier encodes
the feature values.

Finally, before we delve on the last section of this chapter, let us report the final computational time com-
parison that is essential for the results comprehension of performance. In table 5.6, we provide a reference
to the previously compared results of scores. Our first remark, is that the clustering method is by a great
margin the fastest to return the actionable resource summary across all methods, and that is justified by
the heuristic nature of the method. On the rest of the methods, we observe an equivalent computational
time needed on the small to moderate datasets of Employee Attrition and German Credit, with indication
that our method is slower compared to the other methods, something that is more thoroughly proven on
the Bank dataset where we scale on moderate to medium dataset sizes, an our method needs a handful of
an hour computational time. This was an expected behavior based on the expansion of search space to all
possible globally optimal solutions. However, these depicted results do not worry as for the SOGAR models
performance, as the implementation was solely using serialized processes, and no multi-threading technique
was implemented at the time of these experiments whatsoever. By that we state that there still is room for
improvement in performance. The last dataset, however, provided a different picture between the computa-
tional time needed for the SOGAR and the CET methods?, that on average have the best performance on
invalidity scores. Both methods on average need an order of magnitude larger computational time, for a large
dataset as Adult income. These results, are a clear indication that the combinatorial problem of finding such
optimal actions, is drastically under-performing as we scale.

5.2.3 Further Discussion and Limitations

As a last part of the discussion, we need to briefly address the key limitations of our work and possible
improvements that would return more efficient results. First, although the performance of scores signifies
the improvement and a different way to optimally partition the feature space, we acknowledge the drawback
of time-consuming and sequential computations. As we stated on the previous Section 5.2.2, the approach
utilized a CPU-only hardware approach that was implemented using serialized, single-core processes. For this
case, we attempted the formulation of a multi-threaded cache construction and parallel subproblem evaluation
for our candidate leaves. However, on the timeline of this thesis, we had no stable version of such an asset,
thus our discussion of results only included the single-threaded approach. This limitation originates from
the dynamic programming recursion, which depends on previously solved sub-trees and therefore restricts
straightforward parallelization.

The second, highly restrictive aspect of this work, was the need for binarization of the feature space. This,
feature of the binarized dataset is what makes the DP formulation of STreeD perform and scale, on such a
demanding combinatorial task. Nevertheless, the choice of correctly split features into range bins, was a rather
difficult and uncertain process. The small number of such bins for continuous features would return results
that would be unlikely to be trustworthy. The actions were restricted to large leaps between smaller ranges,
and thus the performance would be highly affected, either by choosing sub-optimal features to edit or by
selecting optimal actionable features that yield infeasible scores. On the other hand, the larger discretization
of continuous features, would be a burden for both the DP formulation that would deal with a large dimension
of feature space, and for the preservation of information structure, risking loss of discriminative information.
For these reasons we needed to carefully calibrate the number of bins needed so that we would not have to
deal with unrealistic results. This binarization trade-off is consistent with other dynamic programming ODT
formulations, where binary tests are necessary to preserve separability and enable valid Bellman recursions.

For such continuous feature handling by optimal decision trees, a recent work by the authors of STreeD, the
ConTree [121], would supposedly deal with our previously referred issue, however, the published implemen-

3We again note that the AReS implementation was a technical issue for our work, based on the restrictive time of this diploma
thesis, and on various parameter setups, we were unable to retrieve results and thus be able to compare the computational time
needed.
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tation only supports single-objective optimization tasks, thus a greater amount of time would be needed to
implement such a feature, that would totally move us far from the problem of this thesis. Such an implemen-
tation would assist our work, to have a more direct comparison to other works, without the need for tailored
feature mapping. Given these limitations and the potential additions of our implementation, we aim to have
a globally efficient method to solve the problem of Actionable Recourse.
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Conclusion

Actionable Recourse is, indeed, one of the most useful manners to tackle the opacity of black-box models
that provide state-of-the-art performance on prediction tasks. It specifically aids general users, practitioners,
and researchers to comprehend not only what the model has decided, but also which features and regions of
the feature space are viable to obtain the desired prediction.

In our work, we carefully examined formulations that provide solutions to the Actionable Recourse problem.
We understood their mechanisms, and were highly influenced and inspired to re-define the formulation of
tree structures, that CET introduces, via the Optimal Decision Tree structures. By analytically reviewing
decision-tree algorithms and their interpretability benefits, we stated their use when the task refers to inter-
pretable models that can be highly valuable assistants on Explainability Tasks. This led us to thoroughly
comprehend the difference of Optimal Decision Trees, and the global optimality factor that they offer, which
makes them highly advantageous on tasks that aim to strictly optimize objectives and explore every possible
combination, under the concept of separability. This led us to the choice of the Dynamic Programming ap-
proach and the highly reproducible and flexible framework of STreeD, that allowed us to adapt the Actionable
Recourse task as a bi-objective optimization problem.

This formulation of ours, proved to be a rather promising method, that preserves the structural transparency
that previous works had established. The SOGAR method provides a principled foundation that system-
atically constructs the Pareto front of non-dominated, globally optimal tree solutions. In this manner, we
have demonstrated that our solutions are empirically proven, via experiments on several tabular datasets, to
increase the effectiveness of candidate actions, by providing unexplored splits that are proven to be optimal
under the DP framework. Also, we have shown that the extent of the action set and the evaluation of all
actions in the feasible action cache on candidate leaves, even though is time-consuming, remains comparable
to related work in our setting and identifies globally coordinated solutions from the tree level down to optimal
leaf assignments.

Based on our experiments, we analyzed the Pareto front of non-dominated solutions, and observed a significant
increase in successful actions per solution via the lowered flip loss metric. Treating the task as a bi-objective
formulation, allowed us to retrieve multiple tree solutions per run. This enables us to personally be able to
choose which of these near-tied optimal solutions match our task the best, using the invalidity score as a
tie-breaker for selection and comparison to other works. However, we clarify that this manner of comparison
was solely our thesis objective, and that the quality of solutions is a personal choice of every user’s context
and needs of a specific task and domain.

By this, we conclude that the Actionable Recourse Summaries using the Optimal Tree Structure, return a
transparent, globally optimized set of recourse policies applying on every instance of an examined affected
population, reduces loss and invalidity at a comparable optimal cost, while remaining interpretable and
selectable by stakeholders.
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Future Work

Given the completion of this thesis, we consider several directions of extending this work, based on the
limitations we want to conquer. The first extension, and the most straightforward to implement, is the
multi-threaded implementation of the cache prediction and cost computation. In our current setup, the
cache creation, which precomputes the action costs and the predicted labels of instances under all feasible
actions, is fully serialized. Introducing a parallel process for computing these predictions would substantially
reduce the total computational time needed for the cache generation. This is one of the most time-demanding
parts of the pipeline, especially when scaling the dataset size, and parallelizing it would allow us to introduce
larger action spaces per run and examine larger datasets in a realistic and feasible runtime.

In the same direction, the multi-threaded evaluation of leaf computations inside the STreeD framework would
be another important step forward. This, indeed, is technically more challenging, because the dynamic
programming recursion depends on previously solved subproblems, it is still possible to introduce controlled
parallel execution across independent sub-trees or dominance comparisons. Implementing this would again
have a strong effect on runtime, since candidate leaves and the set of actions could be handled concurrently.

Another key direction of further exploration of the problem, is the implementation of a dynamic programming
formulation of Optimal Decision Trees that can handle continuous features directly, without requiring full
binarization of the dataset. This would allow a more flexible representation of the feature space and make
the framework suitable for continuous data, avoiding the possible loss of information that comes from coarse
discretization. At the same time, such a formulation should retain the ability to handle the bi-objective
optimization task, preserving the balance between cost and flip loss that we introduced in this work.

We should also extend the experimental analysis, by evaluating not only one different dataset, and different
rates of immutability of features, but a wider range of state-of-the-art predictive classifiers, such as neural
network models or other ensemble-based classifiers, that provide high performance traded for interoperability
and explainability of the logical process of internal decisions that produce certain outcomes. Based on the
related works, we understood that each model has a diverse way of weighing the importance of features in
order to partition the feature space and set decision boundaries. In return, this would clarify at a point, the
different behaviors between models and distinguish which of those can be more stable on their decisions and
more difficult to change their verdict based on the same actions applied. In such a manner, the summaries
retrieved by each model’s evaluations would provide a comparable aspect to understand which of the returned
solutions hold a more robust, logical and efficient place among all the candidate solutions.

Finally, this thesis sets the ground of the evaluation of the Actionable recourse, under more constraints in the
form of additional optimization objectives. Specifically, an extra-mile goals is to apply fairness constraints
on the recourse summaries, such that given one or multiple protected features and groups, we would be
able to obtain summaries that optimally propose actions that provide low cost and high efficiency actions,
in an equally distributed manner across the subpopulations. This at first glance is a highly complex task,
that would need further optimization of the implementation frameworks, however, it would be high-impact
research, that would examine the biases proposed by the recourse summaries, that of course are directly
inherited by the biases of the trained model. It would also aim to provide the outcome of the recourse task,
under realistically fair settings, eliminating discrimination across groups.

All in all, while the real hurdles remain, for scalability and continuous feature handling, this thesis advances
actionable recourse by coupling optimal decision trees with a principled Pareto-based framework, delivering
transparent summaries of feasible and effective actions. With sustained work on parallelization, richer action
spaces, continuous optimization, and a broader classifier stress test, SOGAR can mature into a reliable
backbone for prescriptive and responsible Al. Continued refinement along these lines would make optimal,
auditable recourse a practical default rather than an academic ideal.
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