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Περίληψη

Η παραγωγή κοινοβουλευτικών λόγων παρουσιάζει συγκεκριµένες προκλήσεις για τα µεγάλα γλωσσικά

µοντέλα πέρα από τις τυπικές εργασίες παραγωγής κειµένου. Σε αντίθεση µε τη γενική παραγωγή κει-

µένου, οι κοινοβουλευτικές οµιλίες απαιτούν όχι µόνο γλωσσική ποιότητα αλλά και πολιτική αυθεντικότη-

τα και ιδεολογική συνέπεια. Τα τρέχοντα γλωσσικά µοντέλα δεν διαθέτουν εξειδικευµένη εκπαίδευση για

κοινοβουλευτικά πλαίσια, και οι υπάρχουσες µέθοδοι αξιολόγησης επικεντρώνονται σε τυπικές µετρήσεις

NLP παρά στην πολιτική αυθεντικότητα. Για να αντιµετωπίσουµε αυτό, παρουσιάζουµε ένα πλαίσιο για

την παραγωγή κοινοβουλευτικών λόγων. Κατασκευάσαµε και προεπεξεργαστήκαµε ένα σύνολο δεδοµένων

οµιλιών από το Κοινοβούλιο του Ηνωµένου Βασιλείου Parlamint GB για να επιτρέψουµε τη συστηµατική

εκπαίδευση µοντέλων. Εισάγουµε ένα ολοκληρωµένο πλαίσιο αξιολόγησης που συνδυάζει υπολογιστικές

µετρήσεις µε αξιολογήσεις LLM-as-a-judge για τη µέτρηση της ποιότητας παραγωγής σε τρεις διαστάσεις :

γλωσσική ποιότητα, σηµασιολογική συνοχή και πολιτική αυθεντικότητα. Για τη γλωσσική ποιότητα χρη-

σιµοποιήσαµε µετρήσεις όπως Perplexity, Self-BLEU, BERTScore, GRUEN Score, MOVER Score και

Distinct-n. Προτείνουµε δύο νέες µετρήσεις ϐασισµένες σε embeddings, το Political Spectrum Alignment

και το Party Alignment, για να ποσοτικοποιήσουµε την ιδεολογική τοποθέτηση. Επιπλέον, χρησιµοποι-

ήσαµε την προσέγγιση LLM-as-a-judge για να αξιολογήσουµε έξι διαστάσεις : συνοπτικότητα, συνοχή,

αυθεντικότητα, πολιτική καταλληλότητα, συνολική ποιότητα και συνάφεια. Εκπαιδεύσαµε µε fine-tuning

πέντε µεγάλα γλωσσικά µοντέλα (Mistral, Gemma, Qwen, Llama, Yi) χρησιµοποιώντας το πλαίσιο Unslo-

th, δηµιουργήσαµε 28.000 οµιλίες, και τις αξιολογήσαµε χρησιµοποιώντας το πλαίσιό µας, συγκρίνοντας

τα ϐασικά και τα fine-tuned µοντέλα. Για τη στατιστική ανάλυση των αποτελεσµάτων εφαρµόσαµε t-tests

και ANOVA tests. Τα αποτελέσµατα δείχνουν ότι το fine-tuning παράγει στατιστικά σηµαντικές ϐελτιώσεις

στην πλειονότητα των µετρήσεων και οι νέες µας µετρήσεις καταδεικνύουν ισχυρή διακριτική δύναµη για

τις πολιτικές διαστάσεις. Τµήµατα της έρευνας που παρουσιάζονται σε αυτή τη διατριβή ϐασίζονται στην

ακόλουθη δηµοσίευση: ¨ParliaBench: ΄Ενα Πλαίσιο Αξιολόγησης και Benchmarking για Κοινοβουλευ-

τικούς Λόγους που Παράγονται από LLM¨ [20]. Αυτή η δηµοσίευση συγγράφηκε σε συνεργασία µε τον

κ.Μάριο Κόνιαρη και τον κ.Παναγιώτη Τσανάκα και αναπτύχθηκε ως µέρος της έρευνας που διεξήχθη

για αυτή τη διατριβή. Συνεισέφερα στην εννοιολόγηση, τη µεθοδολογία, την ανάλυση δεδοµένων και την

προετοιµασία του χειρογράφου.

Λέξεις-κλειδιά:
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ϱαγωγή Φυσικής Γλώσσας, Αξιολόγηση Μεγάλων Γλωσσικών Μοντέλων, Μεγαλα Γλωσσικά Μοντέλα ως
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Abstract

Parliamentary speech generation presents specific challenges for large language models beyond

standard text generation tasks. Unlike general text generation, parliamentary speeches require not

only linguistic quality but also political authenticity and ideological consistency. Current language

models lack specialized training for parliamentary contexts, and existing evaluation methods focus

on standard NLP metrics rather than political authenticity. To address this, we present a bench-

mark for parliamentary speech generation. We constructed and preprocessed a dataset of speeches

from UK Parliament Parlamint GB to enable systematic model training. We introduce a comprehen-

sive evaluation framework combining computational metrics with LLM-as-a-judge assessments for

measuring generation quality across three dimensions: linguistic quality, semantic coherence, and

political authenticity. For linguistic quality and semantic coherence, we employed metrics including

Perplexity, Self-BLEU, BERTScore, GRUEN Score, MOVER Score, and Distinct-n. We propose two

novel embedding-based metrics, Political Spectrum Alignment and Party Alignment, to quantify ideo-

logical positioning. Additionally, we utilized the LLM-as-a-judge approach to evaluate six dimensions:

conciseness, coherence, authenticity, political appropriateness, overall quality, and relevance. We fine-

tuned five large language models (Mistral, Gemma, Qwen, Llama, Yi) using the Unsloth framework, for

parameter-efficient training, generated around 28,000 speeches with the same context for each model,

and evaluated them using our framework, comparing baseline and fine-tuned models. For statistical

analysis of results, we applied t-tests and ANOVA tests. Results show that fine-tuning produces sta-

tistically significant improvements across the majority of metrics and our novel metrics demonstrate

strong discriminative power for political dimensions. Portions of the research presented in this thesis

are based on the following publication: "ParliaBench: An Evaluation and Benchmarking Framework

for LLM-Generated Parliamentary Speech" [20]. This paper was co-authored with Marios Koniaris and

Panayiotis Tsanakas and developed as part of the work conducted for this thesis. I contributed to the

conceptualization, methodology, data analysis, and manuscript preparation.

Keywords

Parliamentary Speech Generation, LLM Evaluation, Political Authenticity, Benchmark Evaluation,

Natural Language Generation, Natural Language Processing, Ideological Alignment, Embedding-based

Metrics, Parameter-Efficient Training.
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Περίληψη

Η παραγωγή κοινοβουλευτικών λόγων παρουσιάζει συγκεκριµένες προκλήσεις για τα µεγάλα γλωσ-

σικά µοντέλα πέρα από τις τυπικές εργασίες παραγωγής κειµένου. Σε αντίθεση µε τη γενική παραγωγή

κειµένου, οι κοινοβουλευτικές οµιλίες απαιτούν όχι µόνο γλωσσική ποιότητα αλλά και πολιτική αυθε-

ντικότητα και ιδεολογική συνέπεια. Τα τρέχοντα γλωσσικά µοντέλα δεν διαθέτουν εξειδικευµένη εκπα-

ίδευση για κοινοβουλευτικά πλαίσια και οι υπάρχουσες µέθοδοι αξιολόγησης επικεντρώνονται σε τυπικές

µετρήσεις NLP παρά στην πολιτική αυθεντικότητα. Για να αντιµετωπίσουµε αυτό το πρόβληµα, παρου-

σιάζουµε ένα evaluation framework για την παραγωγή κοινοβουλευτικών λόγων. Κατασκευάσαµε ένα

σύνολο δεδοµένων οµιλιών από το Κοινοβούλιο του Ηνωµένου Βασιλείου για τη συστηµατική εκπαίδευση

µοντέλων. Εισάγουµε ένα πλαίσιο αξιολόγησης που συνδυάζει υπολογιστικές µετρήσεις µε αξιολογήσεις

LLM-as-a-judge για τη µέτρηση της ποιότητας παραγωγής σε τρεις διαστάσεις : γλωσσική ποιότητα, ση-

µασιολογική συνοχή και πολιτική αυθεντικότητα. Προσθέτουµε επίσης δύο µετρήσεις, Party Align και

Political Spectrum Analysis, για να ποσοτικοποιήσουµε την ιδεολογική τοποθέτηση. Εκπαιδεύσαµε µε

fine-tuning πέντε µεγάλα γλωσσικά µοντέλα (LLM), δηµιουργήσαµε 28.000 οµιλίες και τις αξιολογήσαµε

χρησιµοποιώντας το πλαίσιό µας, συγκρίνοντας τα ϐασικά και τα finetuned µοντέλα. Τα αποτελέσµατα

δείχνουν ότι το fine-tuning παράγει στατιστικά σηµαντικές ϐελτιώσεις στην πλειονότητα των µετρήσεων

και οι νέες µας µετρήσεις καταδεικνύουν ισχυρή διακριτική δύναµη για τις πολιτικές διαστάσεις.

Επεξεργασία ∆εδοµένων και Προετοιµασία Χρησιµοποιήσαµε το σύνολο δεδοµένων ParlaMint-GB

έκδοση 5.0 από το CLARIN, το οποίο περιλαµβάνει πρακτικά του Βρετανικού Κοινοβουλίου από τις 5

Ιανουαρίου 2015 έως τις 21 Ιουλίου 2022. Η επιλογή του συγκεκριµένου συνόλου δεδοµένων ϐασίστηκε

στο γεγονός ότι είναι γραµµένο στην αγγλική γλώσσα, αποφεύγοντας έτσι τις σηµασιολογικές απώλειες

που προκύπτουν από µεταφράσεις. Το σύνολο δεδοµένων περιέχει δοµηµένα κοινοβουλευτικά πρακτι-

κά µε πλούσια µεταδεδοµένα, συµπεριλαµβανοµένων των ονοµάτων των οµιλητών, των ϱόλων τους, των

πολιτικών τους τοποθετήσεων, των πληροφοριών ϕύλου, καθώς και πλήρη αντίγραφα των οµιλιών µε τις α-

ντίστοιχες ηµεροµηνίες τους. Το αρχικό σύνολο δεδοµένων περιείχε 670.912 συνεισφορές από 1.951 µέλη

του κοινοβουλίου σε 2.209 συνεδριάσεις, µε συνολικό µέγεθος περίπου 135 εκατοµµύρια λέξεις. Η δια-

δικασία καθαρισµού και προετοιµασίας των δεδοµένων περιελάµβανε πολλαπλά στάδια ϕιλτραρίσµατος.

∆ιατηρήθηκαν µόνο τα πολιτικά κόµµατα µε περισσότερες από 1.000 οµιλίες, ενώ αφαιρέθηκαν οµιλίες

µε λιγότερες από 35 λέξεις (5ο εκατοστηµόριο) και περισσότερες από 1.580 λέξεις (99ο εκατοστηµόριο).

Επίσης, αφαιρέθηκαν οµιλίες που σχετίζονταν µε διαδικαστικά ϑέµατα όπως "Business of the House" και

"Point of Order", καθώς δεν προσέφεραν ουσιαστική πολιτική αξία. Μετά από αυτές τις διαδικασίες, το

τελικό σύνολο δεδοµένων περιείχε 447.778 οµιλίες από 1.901 µοναδικούς οµιλητές, που αντιπροσώπευαν

11 πολιτικές οµάδες, µε συνολικό αριθµό περίπου 99,94 εκατοµµύρια λέξεις. ΄Ενα καινοτόµο στοιχείο

της έρευνας ήταν η ϑεµατική κατηγοριοποίηση των οµιλιών χρησιµοποιώντας το εργαλείο Kevlar για την

αυτόµατη ανάθεση κατηγοριών EuroVoc. Το Kevlar ταξινόµησε κάθε οµιλία σε µία από τις 21 ϑεµατικές

κατηγορίες που προέρχονται από τον ϑησαυρό EUROVOC, όπως ∆ιεθνείς Σχέσεις, Νόµος, Κοινωνικά Ζη-

τήµατα, Πολιτική, Εκπαίδευση και Επικοινωνίες, Οικονοµία, Ευρωπαϊκή ΄Ενωση, Μεταφορές, Εµπόριο,

Περιβάλλον, Ενέργεια και άλλες. Η επιλογή του Kevlar ϐασίστηκε στην εκπαίδευσή του σε νοµικά, κυβερ-

νητικά και πολιτικά κείµενα, καθώς και στη συµβατότητά του µε την ταξινοµία EUROVOC. Το σύστηµα

επέστρεφε πολλαπλές έννοιες EuroVoc για κάθε οµιλία µε ϐαθµούς εµπιστοσύνης, και διαλέξαµε την

τελική ϑεµατική κατηγορία µε ϐάση τον τοµέα µε την υψηλότερη ϐαθµολογία.

Επιλογή και Αρχιτεκτονική Μοντέλων Η έρευνα εξέτασε πέντε διαφορετικά µεγάλα γλωσσικά µο-

ντέλα, το καθένα µε µοναδικά αρχιτεκτονικά χαρακτηριστικά και δυνατότητες. Το Mistral 7B v0.3 α-

ποτελεί ένα προηγµένο µοντέλο transformer µε 7,25 δισεκατοµµύρια παραµέτρους που χρησιµοποιεί
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Grouped Query Attention (GQA), Sliding Window Attention (SWA) και Rotary Position Embedding (Ro-

PE). Η αρχιτεκτονική SWA περιορίζει τον υπολογισµό της προσοχής σε ένα σταθερό παράθυρο, µειώνοντας

την υπολογιστική πολυπλοκότητα από τετραγωνική σε γραµµική κλιµάκωση ως προς το µήκος της ακο-

λουθίας. Το Llama 3.1 8B της Meta περιλαµβάνει 8,3 δισεκατοµµύρια παραµέτρους και υποστηρίζει

πολυγλωσσικές δυνατότητες µε παράθυρο πλαισίου 128.000 tokens. Χρησιµοποιεί GQA µε 8 key-value

heads και ένα εκτεταµένο λεξιλόγιο 128.000 tokens για αποδοτικότερη επεξεργασία κειµένου. Το Gemma

2 9B της Google, µε 9,24 δισεκατοµµύρια παραµέτρους, χρησιµοποιεί µια αρχιτεκτονική decoder-only

transformer µε 42 επίπεδα και εναλλασσόµενη τοπική και παγκόσµια προσοχή. Το Qwen2 7B περι-

λαµβάνει καινοτοµίες όπως Dual Chunk Attention για επεξεργασία εκτεταµένων πλαισίων και YARN για

ϐελτιωµένη εξαγωγή σε µεγαλύτερα µήκη ακολουθίας. Τέλος, το Yi 1.5 6B αποτελεί ένα δίγλωσσο µοντέλο

6 δισεκατοµµυρίων παραµέτρων που προεκπαιδεύτηκε σε 3 τρισεκατοµµύρια tokens µε εξειδίκευση στα

αγγλικά και τα κινέζικα. ΄Ολα τα µοντέλα χρησιµοποιήθηκαν στις 4-bit quantized εκδόσεις τους από το

Unsloth, µειώνοντας δραστικά τις απαιτήσεις µνήµης (µείωση 58-62%) και επιταχύνοντας την ταχύτητα

(2,2-2,4 ϕορές ταχύτερα) ενώ διατηρούσαν ελάχιστη υποβάθµιση στην ποιότητα του µοντέλου.

Στρατηγική Fine-Tuning Η διαδικασία fine-tuning υλοποιήθηκε χρησιµοποιώντας το πλαίσιο Un-

sloth, ένα εργαλείο ϐελτιστοποίησης ειδικά σχεδιασµένο για αποδοτική προσαρµογή µεγάλων γλωσσικών

µοντέλων. Εφαρµόστηκε η µέθοδος Quantized Low-Rank Adaptation (QLoRA), που ενσωµατώνει qua-

ntization 4-bit µε προσαρµογή πινάκων χαµηλής τάξης για αποδοτική προσαρµογή του µοντέλου. Η

προσέγγιση αυτή επιλέχθηκε επειδή επιτρέπει την προσαρµογή µεγάλων προεκπαιδευµένων µοντέλων σε

πολιτικές οµιλίες χωρίς να απαιτούνται τεράστιοι υπολογιστικοί πόροι ή να χάνονται οι γενικές γλωσσικές

ικανότητες των µοντέλων. Η διαµόρφωση QLoRA περιελάµβανε LoRA rank (r) ίσο µε 16, LoRA alpha

ίσο µε 16 για baseline κλιµάκωση, στόχευση 7 επιπέδων (όλες οι γραµµικές µετασχηµατισµοί), µηδενικό

LoRA dropout για ενεργοποίηση των ϐελτιστοποιήσεων Unsloth, και καµία διαµόρφωση bias για ταχύτερη

εκπαίδευση και µειωµένη µνήµη. Τα µοντέλα εκπαιδεύτηκαν χρησιµοποιώντας Supervised Fine-Tuning

σε Ϲεύγη οδηγιών-απαντήσεων, διαµορφωµένα χρησιµοποιώντας chat templates ειδικά για κάθε µοντέλο.

΄Ολα τα µοντέλα εκπαιδεύτηκαν µε ένα κοινό system prompt:

You are a seasoned UK parliamentary member. Use proper British parliamentary language appropriate

for the specified House. The speech should reflect the political orientation and typical

positions of the specified party on the given topic.

Κάθε µοντέλο χρησιµοποίησε τη δική του ειδική µορφή wrapping µε ειδικά tokens και ακολουθίες

ελέγχου. Το πεδίο instruction περιελάµβανε την ερώτηση prompt ή γενική οδηγία όταν δεν υπήρχαν

διαθέσιµα prompts, ενώ το πεδίο context περιελάµβανε οργανωµένες πολιτικές πληροφορίες : πολιτικό

κόµµα, ϑεµατική κατηγορία EuroVoc, τµήµα κοινοβουλευτικής συζήτησης, πολιτική κατεύθυνση και

Σώµα (Βουλή των Κοινοτήτων ή Βουλή των Λόρδων). Οι παράµετροι εκπαίδευσης περιελάµβαναν batch

size 64, learning rate 2ε-4, µέγιστα ϐήµατα 11.194 (2 epochs), warmup steps 336 (10% των µέγιστων

ϐηµάτων), AdamW optimizer, weight decay 0,01, µέγιστο µήκος ακολουθίας 1.024 tokens, και γραµµικό

learning rate scheduler. Η εκπαίδευση διεξήχθη σε GPU instances A100 στο AWS.

Αρχιτεκτονική Συστήµατος Παραγωγής Οµιλιών Το σύστηµα παραγωγής οµιλιών σχεδιάστηκε να

ϕορτώνει τα εκπαιδευµένα µοντέλα και να δηµιουργεί πολιτικές οµιλίες ϐάσει δοµηµένων εισόδων. Για να

εξασφαλιστεί συνέπεια και δικαιοσύνη στις συγκρίσεις µοντέλων, δηµιουργήθηκε ένα ενοποιηµένο σύνο-

λο τµηµάτων εισόδου και prompts από το test set, εγγυώµενο ότι όλα τα µοντέλα έλαβαν πανοµοιότυπες

ερωτήσεις και δεδοµένα εισόδου. ∆ιατηρήθηκαν ϱεαλιστικά κατανεµητικά χαρακτηριστικά δειγµατολη-

πτώντας τα Houses σύµφωνα µε την πραγµατική τους αναπαράσταση στο Βρετανικό Κοινοβούλιο (78%

Βουλή των Κοινοτήτων, 22% Βουλή των Λόρδων) και τα πολιτικά κόµµατα σύµφωνα µε τα αντίστοιχα ϐάρη
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τους στο σύνολο δεδοµένων (Συντηρητικοί : 59%, Εργατικό : 24%, Σκωτσέζικο Εθνικό Κόµµα: 5%, κ.λπ.).

Αντιστοιχίσαµε τα sections µε τα EuroVoc topics µε τη διαδικασία Kevlar ώστε να διατηρηθεί µία ισορ-

ϱοπηµένη και σχετική είσοδος για παραγωγή λόγου. Για την παραγωγή κειµένου, εφαρµόστηκε nucleus

sampling (top-p) ως κύρια στρατηγική αποκωδικοποίησης. Αυτή η µέθοδος επιλέχθηκε έναντι παραδο-

σιακών µεθόδων όπως greedy search και beam search, καθώς αυτές συχνά παράγουν επαναλαµβανόµενο

ή ασυνεπές κείµενο παρά την επίτευξη χαµηλού perplexity. Οι παράµετροι παραγωγής περιελάµβαναν

2.700 οµιλίες ανά µοντέλο, ϑερµοκρασία 0,7 για ισορροπία µεταξύ συνοχής και λεξιλογικής ποικιλίας,

top-p 0,85 για εστιασµένες αλλά ποικίλες εξόδους, penalty επανάληψης 1,2, batch size 32, ελάχιστο

αριθµό λέξεων 43, µέγιστο αριθµό λέξεων 635, και µέγιστα νέα tokens 850. Ως system prompt είχαµε το

εξής :

You are a seasoned UK parliamentary member. Generate a coherent speech of min_words - max_-

words words in standard English (no Unicode artifacts, no special characters).

Use proper British parliamentary language appropriate for the specified House.

The speech should reflect the political orientation and typical positions of the specified

party on the given topic.

Και σε αυτήν την περίπτωση, περάσαµε ως παραµέτρους εισόδου το prompt question, topic, section,

party, house, political orientation.

Πλαίσιο Αξιολόγησης Η έρευνα υλοποίησε ένα ολοκληρωµένο πλαίσιο αξιολόγησης για την εκτίµηση

της απόδοσης των µοντέλων σε πολλαπλές διαστάσεις. Η αξιολόγηση περιελάµβανε : (1) γλωσσική ποι-

ότητα και ποικιλία, (2) σηµασιολογική συνοχή και ποιότητα κειµένου, (3) πολιτική αυθεντικότητα, και (4)

συνολική αξιολόγηση µε LLM-as-a-Judge. Για τη γλωσσική ποιότητα, χρησιµοποιήθηκαν οι µετρήσεις

Perplexity, Distinct-N και Self-BLEU. Το Perplexity µετρά πόσο «εκπλήσσεται» ένα γλωσσικό µοντέλο όταν

συναντά συγκεκριµένο κείµενο, µε χαµηλότερες ϐαθµολογίες να υποδεικνύουν ϕυσικότερο κείµενο. Χρη-

σιµοποιήθηκε το GPT-2 base ως µοντέλο αξιολόγησης. Οι µετρήσεις Distinct-N αξιολογούν τη λεξιλογική

ποικιλία µετρώντας την αναλογία µοναδικών n-grams προς τον συνολικό αριθµό tokens. Υπολογίστηκαν

τα Distinct-1, Distinct-2, Distinct-3 και Distinct-4 χρησιµοποιώντας την τυπική διατύπωση σε επίπε-

δο λόγου. Το Self-BLEU µετρά την οµοιότητα µεταξύ παραγόµενων κειµένων από το ίδιο µοντέλο, µε

χαµηλότερες ϐαθµολογίες να υποδεικνύουν υψηλότερη ποικιλία. Η προσέγγιση λειτουργεί λαµβάνοντας

κάθε παραγόµενη οµιλία και υπολογίζοντας τη ϐαθµολογία BLEU της σε σύγκριση µε κάθε άλλη οµιλία

στη συλλογή που δηµιουργείται από το ίδιο µοντέλο µε τις ίδιες εισόδους (party, topic, house, political

orientation) και στη συνέχεια υπολογίζοντας τον µέσο όρο όλων αυτών των ϐαθµολογιών. Για τη σηµασιο-

λογική συνοχή, υλοποιήθηκαν τρεις κύριες µετρήσεις. Το GRUEN (Grammaticality, non-Redundancy,

focUs, structurE, and coNherence) συνδυάζει grammaticality, non-redundancy (ως penalty) και focus

(ως penalty), σε ένα ενοποιηµένο µέτρο αξιολόγησης. Το BERTScore χρησιµοποιεί προεκπαιδευµένα

BERT embeddings για να µετρήσει τη σηµασιολογική οµοιότητα µεταξύ παραγόµενων και πραγµατικών

οµιλιών. Το MoverScore υπολογίζει τη σηµασιολογική απόσταση µετρώντας το ϐέλτιστο κόστος µεταφοράς

που απαιτείται για τη µετατροπή της κατανοµής embeddings ενός κειµένου σε άλλο. Για την εύρεση των

αναφορών των MoverScore, BertScore, για κάθε παραγόµενη οµιλία, επιλέξαµε τις Ν=6 πιο σηµασιολογι-

κά παρόµοιες οµιλίες από το αρχικό σύνολο δεδοµένων ως αναφορές, µετρούµενες µε ϐάση την οµοιότητα

συνηµίτονου µεταξύ των embeddings της κάθε οµιλίας του train dataset και των input prompts των πα-

ϱαγόµενων οµιλιών. Τα Political Spectrum Alignment (PSA) και Party Alignment είναι δύο µετρήσεις

που υπολογίζονται χρησιµοποιώντας word embeddings. Το PSA µετρά πόσο καλά ευθυγραµµίζεται το

παραγόµενο κείµενο µε τον αναµενόµενο πολιτικό προσανατολισµό (σε µια κλίµακα 13 σηµείων από
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Left έως Right). Συγκεκριµένα, δηµιουργούνται centroid embeddings από αυθεντικές κοινοβουλευτικές

οµιλίες για κάθε πολιτικό προσανατολισµό, και στη συνέχεια το PSA score υπολογίζεται ως : PSA = co-

sine_similarity(speech, embedding) × max(0, 100 - d/10 × 100), όπου d είναι η απόλυτη απόσταση

µεταξύ του αναµενόµενου και του προβλεπόµενου προσανατολισµού στην πολιτική κλίµακα, µε τελικό

εύρος τιµών 0-1. Το Party Alignment υπολογίζεται ως το cosine similarity µεταξύ του embedding της πα-

ϱαγόµενης οµιλίας και του party-specific centroid embedding, αξιολογώντας εάν το µοντέλο καταγράφει

χαρακτηριστικά ειδικά για το κόµµα πέρα από τον γενικό ιδεολογικό προσανατολισµό, επίσης σε κλίµακα

0-1. Επιπλέον, χρησιµοποιήθηκε ένα σύστηµα LLM-as-a-Judge µε το µοντέλο Flow-Judge-v0.1 για την

αξιολόγηση έξι διαστάσεων: coherence, conciseness, relevance, authenticity, political appropriateness

και overall quality. Κάθε διάσταση αξιολογήθηκε σε κλίµακα 1-10 µε λεπτοµερή κριτήρια και rubrics.

Στατιστική Μεθοδολογία και Αποτελέσµατα Η ανάλυση των αποτελεσµάτων περιελάµβανε εκτενείς

στατιστικούς ελέγχους. Χρησιµοποιήθηκαν paired t-tests για συγκρίσεις µοντέλων στις ίδιες οµιλίες και

independent t-tests για συγκρίσεις baseline έναντι fine-tuned µοντέλων. Υπολογίστηκαν µεγέθη επίδρα-

σης (Cohen’s d) και 95% διαστήµατα εµπιστοσύνης για όλες τις διαφορές µέσων όρων. Εφαρµόστηκε

διόρθωση Bonferroni για πολλαπλές συγκρίσεις για τον έλεγχο του familywise error rate.

Τα αποτελέσµατα αποκάλυψαν ότι το fine-tuning ϐελτίωσε σηµαντικά την απόδοση σε 45 από τις 70

συγκρίσεις µετρήσεων µε στατιστική σηµαντικότητα. Το Yi επέτυχε τις ισχυρότερες ϐελτιώσεις σε όλες τις

διαστάσεις, ενώ το Llama παρουσίασε συνεπείς κέρδη. Το Gemma2 και το Qwen2 εµφάνισαν trade-offs

ποιότητας, µε ϐελτιώσεις σε µία κατηγορία να συνοδεύονται από µειώσεις σε άλλες, υποδεικνύοντας αρχι-

τεκτονικές διαφορές στον τρόπο που τα µοντέλα ισορροπούν ανταγωνιστικούς στόχους κατά το fine-tuning.

Η ανάλυση σταθερότητας σε διαφορετικά πλαίσια αποκάλυψε ότι τα fine-tuned µοντέλα διατήρησαν συνε-

πή απόδοση σε πολιτικά πλαίσια (σύνθετη σταθερότητα 91,4-96,2%). Το Mistral επέτυχε την υψηλότερη

συνέπεια (96,2%) παρά τα trade-offs στην απόλυτη απόδοση, ενώ το Llama (95,1%) εξισορρόπησε ισχυρή

απόδοση µε σταθερότητα.

Η ανάλυση ανά κόµµα έδειξε ότι τα µεγάλα κόµµατα (Conservative, Labour) πέτυχαν σταθερή α-

πόδοση σε όλα τα µοντέλα, επωφελούµενα από σηµαντικό όγκο δεδοµένων εκπαίδευσης. Τα µικρότερα

κόµµατα εµφάνισαν µεγαλύτερη µεταβλητότητα. Το Mistral αντιµετώπισε δυσκολίες µε ετερογενείς οµάδες

(Non-Affiliated: 0.436), ενώ το Qwen διαπρέπει µε ιδεολογικά συνεπείς µειοψηφίες (Bishops: 0.664). Το

Yi επέδειξε καλή απόδοση σε όλα τα κόµµατα (0.614-0.633). Οι δύο µετρήσεις πολιτικής αυθεντικότητας

(PSA και Party Align) διακρίνουν επιτυχώς τις πολιτικές διαστάσεις στόχο τους. Το Party Align διακρίνει

τα κόµµατα ενώ το PSA διακρίνει τους προσανατολισµούς (και τα δύο p < 0.001). Η ανάλυσή µας απο-

καλύπτει ότι η απόδοση του Party Align εξαρτάται κυρίως από την αφθονία δεδοµένων και την ιδεολογική

συνοχή παρά από το µέγεθος του κόµµατος. Τα µοντέλα µαθαίνουν επιτυχώς τα γλωσσικά µοτίβα ειδι-

κά για κάθε κόµµα όταν τα δεδοµένα εκπαίδευσης παρέχουν σαφή στυλιστικά σήµατα, υποδεικνύοντας

ότι η στοχευµένη συλλογή δεδοµένων για υποεκπροσωπούµενα κόµµατα ϑα µπορούσε να ϐελτιώσει την

κάλυψη.

Η ϑεµατική ανάλυση αποκάλυψε ότι το ϑέµα Science πέτυχε τις χαµηλότερες ϐαθµολογίες (µέσος

όρος 0,516), ενώ τα Economics (0,610) και European Union (0,606) έδειξαν την υψηλότερη απόδοση.

Τα ϑέµατα Science και Geography κατατάχθηκαν ως τα πιο δύσκολα, ενώ τα Finance, Business και

Economics κατατάχθηκαν στις χαµηλότερες. Οι τεχνικοί και ϕυσικοί επιστηµονικοί τοµείς εµφανίζουν

µεγαλύτερη διαφωνία µεταξύ µοντέλων σε σχέση µε τα οικονοµικά και πολιτικά ϑέµατα, γεγονός που

συνάδει µε τη µεγαλύτερη εξειδίκευση στην ορολογία και τις ταχέως εξελισσόµενες έννοιες. Αντίθετα, οι

οικονοµικές και πολιτικές συζητήσεις χρησιµοποιούν πιο σταθερά εννοιολογικά πλαίσια ευθυγραµµισµένα

µε τις ϐασικές κοινοβουλευτικές λειτουργίες.

Η απόδοση σε πολιτικούς προσανατολισµούς έδειξε αναµενόµενα µοτίβα. Η κεντρο-δεξιά ϑέση κυρι-
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άρχησε στο σύνολο δεδοµένων ωστόσο δεν πέτυχε από τις υψηλότερες ϐαθµολογίες. Εµφανίστηκαν δυνατά

σηµεία ειδικά για κάθε µοντέλο, µε το Gemma και το Qwen να επιτυγχάνουν τις υψηλότερες ϐαθµολο-

γίες στις ∆εξιές ϑέσεις, ενώ το Mistral έδειξε αδυναµία σε όλες τις πολιτικές ϑέσεις το οποίο υποδεικνύει

αρχιτεκτονική αδυναµία.

Συζήτηση και Συµπεράσµατα Τα αποτελέσµατα υπογραµµίζουν αρκετές ϐασικές ιδέες. Πρώτον,

ο αρχιτεκτονικός σχεδιασµός παίζει καθοριστικό ϱόλο στην πολιτική αυθεντικότητα, µε τα εκτεταµένα

context windows να επιτρέπουν ϐελτίωση. ∆εύτερον, το domain-specific fine-tuning αναδεικνύεται ως

κρίσιµος παράγοντας απόδοσης, καθώς 45 από τις 70 συγκρίσεις µετρήσεων έδειξαν στατιστικά σηµαντι-

κές ϐελτιώσεις. Τρίτον, η εισαγωγή νέων µετρήσεων πολιτικής αυθεντικότητας (PSA, Party Align) παρέχει

µια συµπληρωµατική αξιολογητική διάσταση πέρα από τις συµβατικές µετρήσεις NLP, επικυρωµένη µέσω

της ανταπόκρισης στο fine-tuning και των discriminative tests (p < 0.001). Συλλογικά, τα ευρήµατα

αυτά καταδεικνύουν ότι το fine-tuning όχι µόνο ϐελτιώνει τη γλωσσική ποιότητα και τη σηµασιολογική

συνοχή, αλλά επιτρέπει επίσης στα µοντέλα να αναπαράγουν καλύτερα τις ιδεολογικές και στυλιστικές

αποχρώσεις που χαρακτηρίζουν τον πραγµατικό κοινοβουλευτικό λόγο. Το προτεινόµενο πλαίσιο αξιο-

λόγησης εδραιώνει µια ϐάση για την ποσοτική αξιολόγηση της αυθεντικότητας σε εργασίες παραγωγής

κειµένου µε πολιτικό προσανατολισµό.

Εφαρµογές και Μελλοντικές Κατευθύνσεις Οι µέθοδοι και τα ευρήµατα που παρουσιάζονται εδώ

έχουν πιθανές εφαρµογές σε υπολογιστική κοινωνική επιστήµη, ψηφιακές ανθρωπιστικές επιστήµες και

έρευνα διακυβέρνησης AI. Οι προσοµοιωµένες κοινοβουλευτικές συζητήσεις µπορούν να χρησιµοποιηθούν

για µελέτες µεγάλης κλίµακας της δυναµικής του λόγου, του πλαισίου επιχειρηµάτων και της ευθυγράµ-

µισης πολιτικής σε πολιτικά κόµµατα. Επιπλέον, τέτοια µοντέλα ϑα µπορούσαν να υποστηρίξουν την

ανάπτυξη εκπαιδευτικών και αναλυτικών εργαλείων που εκπαιδεύουν ϕοιτητές, δηµοσιογράφους ή υπε-

ύθυνους χάραξης πολιτικής να ασχολούνται κριτικά µε την πολιτική ϱητορική. Μελλοντικές επεκτάσεις

περιλαµβάνουν : (ι) πολυγλωσσική αξιολόγηση σε ευρωπαϊκά κοινοβουλευτικά σώµατα για την αξιολόγηση

της διαγλωσσικής γενίκευσης, (ιι) ενσωµάτωση πρωτοκόλλων ανθρώπινης κρίσης για εξωτερική επικύρωση

των αυτοµατοποιηµένων µετρήσεων, και (ιιι) συστηµατικές έρευνες για πολιτική προκατάληψη, ιδεολογική

απόκλιση και συνέπεια προοπτικής σε αντίθετες απόψεις. Συµπερασµατικά, η παρούσα έρευνα επιδει-

κνύει ότι τα µεγάλα γλωσσικά µοντέλα, όταν προσαρµόζονται κατάλληλα σε πολιτικά δεδοµένα, µπορούν

να παράγουν αυθεντικές κοινοβουλευτικές οµιλίες που αντικατοπτρίζουν ιδεολογικές ϑέσεις και στυλιστι-

κά χαρακτηριστικά. Το ολοκληρωµένο πλαίσιο αξιολόγησης που αναπτύχθηκε παρέχει εργαλεία για την

ποσοτικοποίηση τόσο της γλωσσικής ποιότητας όσο και της πολιτικής αυθεντικότητας, ανοίγοντας νέες

δυνατότητες για έρευνα στην υπολογιστική πολιτική επιστήµη και τη δηµιουργία συνθετικού πολιτικού

λόγου.
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Chapter 1

Introduction

1.1 Evaluation Frameworks for LLM Political Speech Generation

Recent advances in natural language processing, particularly the emergence of Large Language

Models (LLMs), have created new opportunities for developing computational simulations designed to

accurately replicate human behavior. In particular, LLMs have found application in political science re-

search, including political speech generation. However, these models inherit biases from their training

data, including political, and linguistic biases that can impact the authenticity and fairness of gener-

ated political content. In a similar way, LLMs can exhibit preferences for certain political positions,

raising concerns about their suitability for political discourse. Despite the growing interest in applying

LLMs to political communication tasks, existing evaluation methods typically only focus on general

linguistic quality metrics such as fluency and coherence, but fail to capture the political authentic-

ity, ideological consistency, stylistic appropriateness, and contextual relevance that are essential for

political discourse. This gap in evaluation methodology impedes progress on reliably assessing LLM

performance in political speech generation.

1.2 Thesis Focus

This thesis aims to provide a comprehensive framework for evaluating the quality of political

speeches different models generate. Current evaluation frameworks for speech generation work well

for general tasks, but they cannot properly conclude whether generated political content sounds au-

thentic or fits the context. Because political speech is complex, it requires evaluation methods that

can measure multiple aspects at once. Therefore, in our thesis we suggest evaluating them based

on linguistic quality, semantic coherence, style and ideology analysis, and political credibility. Por-

tions of the research presented in this thesis are based on the following publication: "ParliaBench:

An Evaluation and Benchmarking Framework for LLM-Generated Parliamentary Speech". This paper

was co-authored with Marios Korianis and Panayiotis Tsanakas and developed as part of the work

conducted for this thesis. I contributed to the conceptualization, methodology, data analysis, and

manuscript preparation.

1.2.1 Contributions

1. We trained five different models (Mistral, Llama, Gemma, Qwen and Yi) using political speech

and speaker data from the ParlaMint Great Britain dataset.

2. We fine-tuned the models in an instruction-response style, using the UNSLOTH framework to

accelerate the process.
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3. We generated political speeches using the nucleus sampling method and by providing the models

instructions that include information such as prompt questions, topics, political orientation,

house and political parties to represent.

4. We evaluated the generated speeches by calculating Perplexity, Distinct-N, GRUEN Score, Mover-

Score, BertScore, Self-Bleu Score, by performing embedding based analysis for Party Align and

Political Spectrum and using a Large Language Model (Llama 3.1) as a Judge.

1.3 Chapter Organization

Related work on Large Language Models, speech generation and their evaluation frameworks is

presented in Chapter 2. Chapter 3 provides definitions and explanations on the dataset we used,

common speech generation and fine-tuning techniques, as well as model evaluation methods. Chapter

4 describes our ParlaMint dataset pre-processing step, while Chapter 5 delves into our language model

selection. Our fine-tuning methodology using Unsloth is depicted in Chapter 6. Chapter 7 presents

nucleus sampling as our political speech generation method. Chapter 8 details the implementation of

multiple evaluation metrics including perplexity, distinct-n, BERTScore, GRUEN, MoverScore, SELF-

BLEU, Party Align and Political Spectrum analysis and LLM-as-a-judge approach. Chapter 9 presents

the results and comparative analysis across models and metrics. Finally, Chapter 10 summarizes

conclusions and discusses future improvements.
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Chapter 2

Related Work

2.1 Large Language Models (LLMs)

Large Language Models in Politics and Democracy: A Comprehensive Survey

LLMs are being used to classify congressional bills with up to 83% accuracy, analyze environmental

policies, and create collaborative policy design frameworks. They can simulate realistic institutional

behaviors and enable stakeholder participation in policy development, though they tend to favor per-

spectives from developed countries.

In addition, LLMs excel at analyzing political texts in multiple languages, classifying sentiment

and ideology with accuracy comparable to human coders. However, they raise concerns about ma-

nipulation. Specifically, AI-generated political messages can be as persuasive as human content, and

LLM-powered search systems increase confirmatory querying by 15-43%, potentially amplifying echo

chambers and political polarization.

In the field of political analysis, LLMs are capable in simulating voter behavior and predicting elec-

tion outcomes, sometimes outperforming traditional models. They can facilitate deliberative democracy

by mediating discussions and helping groups find common ground. However, they exhibit favor biases

toward Western, educated, democratic populations.

LLMs are being adapted for military planning through specialized versions like Defense Llama.

They can simulate historical conflicts and improve crisis management. However, concerning behav-

iors emerge in wargame simulations, including tendencies toward nuclear escalation, unpredictable

aggressive actions even in neutral scenarios.

In order to simulate human interactions and economic behaviors, LLMs are creating "social sim-

ulacra". They can model epidemic spread, resource-sharing dilemmas, and behavioral economics

scenarios with human-like decision patterns. Frameworks like GOVSIM and Social-LLM enable large-

scale social system simulations.

On legal tasks, LLMs demonstrate strong performance with GPT-4 passing the Uniform Bar Exam-

ination. However, they suffer from "legal hallucinations". They tend to generate outputs that deviate

from legal facts. Specialized legal LLMs like SaulLM are being developed to address these issues, while

experts emphasize the need for careful ethical guidelines when deploying LLMs for legal advice [3].

LoRA: Low-Rank Adaptation of Large Language Models

Traditional fine-tuning updates all parameters in pre-trained models, making it computationally

expensive for large models like GPT-3 with 175B parameters. Existing solutions like adapter layers

add inference latency, and prompt-tuning methods reduce usable sequence length and are difficult to

optimize.

24 Diploma Thesis
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Low-Rank Adaptation (LoRA) is a parameter-efficient method for adapting large language models

to specific tasks without changing the original model weights. Instead of fine-tuning all parameters,

LoRA adds small trainable matrices alongside frozen pre-trained weights using the formula:

W0 + ∆W = W0 + BA, (2.1)

where W0 remains frozen (original weights), B ∈ Rd×r
and A ∈ Rr×k

with r ≪ min(d, k) (rank is much

smaller than original dimensions).

This dramatically reduces trainable parameters while achieving performance comparable to full

fine-tuning across RoBERTa, DeBERTa, GPT-2, and GPT-3. Some benefits include no additional

inference time by merging the matrices W = W0 + BA, 3 times less GPU memory usage, and easy

task switching by swapping LoRA modules (the A,B matrices). The method works because adaptation

requires only low-rank updates (r = 1-4 often sufficient), and LoRA learns to amplify task-specific

features rather than repeating existing patterns [14].

2.2 Speech Generation

Political Speech Generation using Traditional NLP Techniques

Early work in political speech generation employs statistical NLP methods to generate political

speech based on the political party (Republican/Democrat) and an opinion vote (Yes/No). The study

uses the Convote dataset containing 3,857 speech segments from 53 US Congressional debates in

2005. After pre-processing (removing single sentences, HTML tags, correcting punctuation), the data

was divided into four classes.

The system implements a language model that uses 6-gram statistical models to predict word

sequences based on the probability of seeing the sixth word given the previous five. It also implements

a topic model which employs Justeson and Katz POS tag filters to extract meaningful 2-3 word terms

that characterize each political class. Topics are ranked by significance scores showing how often

terms appear in specific classes compared to the entire corpus.

The system generates speeches by firstly randomly selecting an opening 5-gram from the target

class. Then it continuously evaluates current topics in the generated speech using topic coverage

metrics. It then combines language model probabilities and topic model probabilities with a weighting

factor. It penalizes repeated phrases to ensure variety, and repeats the entire process until an end-of-

speech token is generated.

The study tested some alternative approaches, including Recurrent Neural Networks (RNNs) but

abandoned due to poor grammatical results and time constraints, Latent Dirichlet Allocation (LDA)

which produced mostly generic, non-meaningful topics, and lastly, a sentence-based approach which

concatenated whole sentences from training data based on structural and textual similarity measures,

but results were less promising.

The results were evaluated manually based on grammatical correctness, sentence transitions,

speech structure and speech content. In addition to the manual evaluation, it deployed an automatic

evaluation as well, on grammar assessment through POS tag matching, and content evaluation by

comparing topic coverage with real speeches from the same class.

Based on the results, the n-gram language models with topic-based word selection successfully

generate grammatically correct speeches with good sentence transitions, but struggles with the speech

content. This is where our study comes in to evaluate political speech generation using Large Language
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Models [18].

2.3 Evaluation Framework

A Survey on Evaluation of Large Language Models

This thesis provides an overview of what to evaluate, where to evaluate, and how to evaluate Large

Language Models.

Natural Language Tasks

Sentiment Analysis and Text Classification: Binary/triple classification with typically high perfor-

mance.

Natural Language Inference (NLI): Determining logical relationships between premises and hypotheses.

Semantic Understanding: Interpreting meaning beyond surface-level text.

Reasoning: Complex inference tasks requiring models to deduce answers from incomplete information.

Natural Language Generation: Summarization, dialogue, translation, and question answering.

Multilingual Tasks: Performance across non-English languages (often overlooked).

Factuality: Alignment with real-world truths and avoiding "hallucinations".

Robustness, Ethics, and Trustworthiness

Robustness: Stability under unexpected inputs and adversarial attacks.

Ethics and Bias: Detection of toxic language, hate speech, and demographic stereotypes.

Trustworthiness: Addressing hallucinations and factual inaccuracies.

Domain-Specific Applications

Social Science: Political ideology analysis, computational social science tasks, legal case judgment.

Natural Science and Engineering: Mathematics (strong in basic operations, weak in advanced func-

tions), chemistry, code generation.

Medical Applications: Medical queries, examination performance (USMLE), diagnostic assistance.

Agent Applications: Tool usage, educational assessment, search/recommendation systems, personal-

ity testing.

General Task Benchmarks

Chatbot Arena and MT-Bench: Real-world chatbot evaluation through user voting and multi-turn di-

alogues.

HELM: Holistic evaluation across multiple aspects.

MMLU: Comprehensive multi-task assessment BIG-bench: 204 challenging tasks across diverse do-

mains.

Specific Downstream Benchmarks

Medical: MultiMedQA for medical knowledge.

Legal: CUAD for contract understanding.

Reasoning: ARB for advanced reasoning tasks.

Safety: TRUSTGPT for ethical dimensions, SafetyBench for security.

Multi-modal Benchmarks

MME and MMBench: Evaluating vision-language models.

SEED-Bench: 19,000 annotated questions for multimodal understanding.

Automatic Evaluation

Accuracy: Exact Match, F1 score, ROUGE score Calibration: Expected Calibration Error (ECE), Area

Under Curve (AUC).
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Fairness: Demographic Parity Difference (DPD), Equalized Odds Difference (EOD).

Robustness: Attack Success Rate (ASR), Performance Drop Rate (PDR).

Human Evaluation

Essential for tasks where automatic metrics are insufficient.

Number of Evaluators: Adequate representation for statistical significance.

Evaluation Criteria based on 3H rule (Helpfulness, Honesty, Harmlessness):

- Accuracy: Factual correctness

- Relevance: Appropriateness to context

- Fluency: Smooth, grammatical flow

- Transparency: Clear decision-making process

- Safety: Avoiding harmful content

- Human Alignment: Consistency with human values

Evaluator Expertise: Domain knowledge and methodological training

Performance Patterns

LLMs excel at basic language tasks but struggle with complex reasoning, advanced mathematics, and

domain-specific applications. Supervised fine-tuning often outperforms zero-shot approaches despite

fewer parameters.

Evaluation Challenges

Current evaluation methods face limitations in multilingual performance, factual accuracy, and bias

detection. Human evaluation provides more comprehensive feedback but suffers from variance and

cultural differences. Future Directions: The field is moving toward more holistic evaluation frameworks

that combine automatic metrics with human judgment, emphasizing safety, fairness, and real-world

applicability over pure performance metrics [6].

Systematic Biases in LLM Simulations of Debates

The study simulated political debates between LLM agents representing Republican and Democrat

perspectives on four controversial American topics: Gun Violence, Racism, Climate Change, and Illegal

Immigration. Researchers used three models (Mistral 7B, Solar 10.7B, and GPT-3.5) and created 40

agents for each political party with automatically generated background stories.

Debates followed a round-robin format with agents continuously rating their attitudes on a 0-10

scale before and after each discussion cycle. A "Default" agent with no political context was included

to reveal the base model’s inherent biases.

Despite being assigned specific partisan identities, agents consistently gravitated toward their base

LLM’s inherent biases rather than maintaining their assigned political perspectives. When the Default

agent showed strong bias toward one side, the opposing partisan agent would significantly compromise

their position. Even when the Default agent was excluded from debates, partisan agents continued

shifting their attitudes in line with the model’s inherent biases.

In a deviation from established human behavior, when Republican agents debated other Republi-

cans (or Democrats with Democrats), they adopted more moderate positions rather than intensifying

their beliefs. This directly contradicts the well-documented "Echo Chamber" phenomenon where like-

minded individuals typically reinforce and escalate their beliefs through interaction.

Researchers developed an automated fine-tuning technique using only LLM-generated data. They

created 100 political questions, generated 2,000 responses from agents, and used this dataset to

fine-tune the base models using QLoRA.

Fine-tuning successfully altered the LLM’s political orientation, causing all agents to shift their
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behavior accordingly. When models were fine-tuned toward Republican perspectives, both Republican

and Democrat agents moved rightward, and vice versa.

While fine-tuning did change political biases more permanently, it reduced general performance

and capabilities of the models [29].

Large Language Models in Political Science: A Comprehensive Framework

This paper presents Political-LLM, a framework for integrating Large Language Models into compu-

tational political science research, mainly in political science applications and computational method-

ologies.

The framework identifies several applications in political science research. In predictive and gen-

erative tasks, LLMs are being used for sentiment analysis and public opinion tracking using datasets

like OpinionQA, which contains 1,489 queries, and PerSenT for analyzing sentiment toward political

entities. Election prediction capabilities leverage extensive datasets spanning decades, including U.S.

Senate data from 1976-2020 and House data from 1976-2022, to analyze voting patterns and predict

electoral outcomes. Legislative analysis represents another major application, with LLMs processing

datasets like BillSum, containing over 22,000 U.S. Congressional bills, for automatic summarization

of complex legislative documents.

Beyond predictive tasks, LLMs excel at behavioral simulation, allowing researchers to model voter

behavior, policy negotiations, and political discourse dynamics. A significant case study using the

2016 ANES dataset demonstrated that larger models like GPT-4o and Llama 3.1-70B produced more

accurate voting simulations that aligned closely with ground truth baselines of 47.7%. The framework

also emphasizes causal inference capabilities, where LLMs use counterfactual generation to under-

stand policy impacts and employ Chain-of-Thought reasoning for complex political analysis, such as

assessing immigration reform impacts through historical, demographic, social, and economic factors.

The computational methodologies section details dataset preparation strategies. Data collection

approaches involve broad sourcing from political speeches, legislative records, news articles, and

social media platforms. The OpinionQA development process exemplifies this approach, utilizing Pew

Research’s American Trends Panel surveys across diverse demographics to create datasets. Annotation

methods range from manual expert labeling to semi-automated processes with algorithmic assistance,

and fully automated labeling with quality checks. However, there is still the need to address bias and

ensure balanced representation across political viewpoints.

Data augmentation techniques include paraphrasing and synthetic data generation to expand

scarce, limited political datasets. LLMs can generate hypothetical scenarios, such as voter opinion

surveys based on historical data. The framework provides three detailed examples of dataset prepa-

ration: developing datasets for LLM-based political debiasing, automated annotation for legislative

interpretation, and generating synthetic political datasets for election prediction research.

The fine-tuning process represents a crucial component of the framework, demonstrated through

legislative summarization using the BillSum dataset. This process involves three key steps: data

preprocessing to create well-aligned input-output pairs while removing irrelevant legal jargon, imple-

menting parameter-efficient techniques like LoRA (Low-Rank Adaptation) or prefix-tuning to reduce

computational costs, and conducting training optimization using GPU clusters with gradient accumu-

lation and mixed-precision training. Prompt engineering plays a vital role, with examples including

instructions to "read the following U.S. Congressional bill text and provide a summary highlighting

main objectives, intended outcomes, and significant amendments" or to "summarize this bill in no

more than 5 sentences, focusing on primary goals and authorized actions, avoiding technical jargon."
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The framework also covers inference techniques, starting with zero-shot learning that enables pre-

trained LLMs to perform political tasks without additional training. This approach is particularly

valuable for sentiment analysis during events like the 2024 U.S. Presidential Election, using prompts

such as "analyze the sentiment of the following statement about the presidential election as Positive,

Negative, or Neutral." Few-shot learning represents a middle ground, using 3-4 carefully chosen ex-

amples for tasks like fake news detection while balancing prompt length with example diversity for

optimal performance.

Advanced inference techniques include Retrieval-Augmented Generation (RAG), which combines

knowledge retrieval with text generation to provide real-time political information by accessing up-to-

date polling data and legislative updates. Knowledge editing allows for dynamic modification of internal

model knowledge without requiring full retraining, particularly useful for updating policy information.

Self-Consistency Decoding improves reliability by generating multiple responses and selecting the most

consistent output, reducing randomness effects in complex political discourse analysis.

The framework identifies numerous benchmark datasets across multiple domains essential for po-

litical science research. For sentiment analysis, key datasets include OpinionQA, PerSenT, GermEval-

2017, and various multilingual social media datasets that enable cross-linguistic and cultural sen-

timent studies. Election prediction datasets encompass U.S. Senate and House returns spanning

1976-2022, ANES surveys, and precinct-level data containing over 10 million data points. Legislative

datasets include BillSum, CaseLaw, Federal Register, and DEU III covering three decades of EU legisla-

tive decisions. Additional specialized datasets cover misinformation detection (PoliFact, SciNews) and

conflict resolution (Non-State Actors in Armed Conflict dataset, Peace Negotiations in Civil Conflicts).

The case study testing four LLMs (GPT-4o, GPT-4o-mini, Llama 3.1-8B, Llama 3.1-70B) on 2016

election data provides crucial insights into model performance. In voting simulation tasks, larger

models achieved better accuracy and alignment with ground truth data, while smaller models showed

pronounced bias toward winning parties. Importantly, the inclusion of political features helped mit-

igate inherent biases in model outputs. For feature generation quality, GPT-4o and Llama 3.1-70B

achieved impressive response rates of 99.8% and 99.6% respectively, with generated political ideol-

ogy distributions closely matching original ANES features, while smaller models demonstrated limited

generation capabilities with consistent bias patterns.

The framework identifies several critical challenges facing the integration of LLMs into political

science research. Data scarcity remains a significant issue, as political science lacks the large-scale,

domain-specific datasets common in other fields. Bias and fairness concerns are particularly acute

given the risk of amplifying biases from training data in sensitive political contexts. Explainability

represents another major challenge, as the lack of transparency in decision-making processes limits

trust and utility in high-stakes political research. Hallucination risks, where models generate plausible

but factually incorrect information, pose serious threats to the integrity of political analysis.

To address these challenges, the framework proposes several innovative solutions. Pipeline integra-

tion involves developing modularized systems that break complex tasks into manageable components

and integrating RAG systems for dynamic, up-to-date information retrieval. Data enhancement strate-

gies include developing high-quality, domain-specific datasets, implementing synthetic data generation

using LLM-based methods, and establishing collaborative partnerships for improved data access and

curation.

Bias mitigation approaches encompass knowledge editing techniques to reduce bias in model out-

puts, counterfactual data augmentation to ensure fairness across different perspectives, and the imple-

mentation of explainable AI methods for transparency in predictions. Reliability improvements involve

Diploma Thesis 29



Chapter 2. Related Work

feature attribution techniques like SHAP and Integrated Gradients, uncertainty quantification meth-

ods to measure output reliability, and validation checkpoints to reduce hallucination risks through

cross-referencing with established datasets and domain expertise.

The framework emphasizes the critical need for evaluation criteria that go beyond traditional NLP

metrics. The proposed evaluation framework includes four dimensions: policy relevance which as-

sesses how effectively models contextualize policy positions in texts, electoral impact which measures

accuracy in predicting public opinion, legislative influence which evaluating the societal implications

of policies, and fairness and bias metrics that ensure balanced representation of all perspectives.

Finally, the framework addresses the important goal of democratizing political knowledge by mak-

ing political information accessible to broader audiences. This involves developing LLM-driven tools

for simplifying complex political language, providing multilingual support and cultural adaptation for

diverse communities, creating interactive QandA systems for legislative documents, and integrating

Explainable AI and Ethical AI principles to ensure transparency and accountability in political knowl-

edge systems [23].
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3.1 Dataset Specifics

CLARIN CLARIN (Common Language Resources and Technology Infrastructure) is a European re-

search infrastructure that provides access to digital language resources and tools for humanities and

social science researchers. CLARIN follows TEI and ISO standards for text encoding, ensuring consis-

tent formatting across different datasets, languages and research projects [12].

ParlaMint ParlaMint is a multilingual corpus of parliamentary debates from multiple European coun-

tries from 2015 until 2022. ParlaMint follows XML-based encoding standards using the Text Encoding

Initiative (TEI) guidelines. Each national subcorpus includes metadata covering speaker information,

political party affiliations, parliamentary sessions, and temporal markers [9]
1
.

ParlaMint-GB ParlaMint-GB represents a component of the ParlaMint corpus, containing parliamen-

tary proceedings from the UK Parliament written in English. This subcorpus includes debates from

both the House of Commons and House of Lords, with structured metadata providing detailed informa-

tion about speakers, their political party affiliations, constituencies, parliamentary roles, and temporal

information about sessions and speeches.

Topic Classification Topic classification is the process of automatically assigning texts to predefined

categories or themes based on their content. In the context of parliamentary speeches, this involves

analyzing speech transcripts and categorizing them according to thematic domains such as healthcare,

education, defense, or economic policy.

Kevlar Kevlar is a multilingual classification toolkit specifically optimized for processing Public Ad-

ministration acts. The system is designed to automatically assign EUROVOC thesaurus topics to

documents. Kevlar uses BERT and RoBERTa models to train the models for classification [5].

EUROVOC Thesaurus EUROVOC is a multilingual thesaurus maintained by the European Union for

document classification and retrieval. The thesaurus organizes concepts into hierarchical categories

covering areas such as politics, law, economics, social issues, and international relations, with transla-

tions available in all official EU languages. In parliamentary corpus analysis, EUROVOC topics provide

1
T. Erjavec, M. Kopp, N. Ljubešić, et al. Multilingual comparable corpora of parliamentary debates ParlaMint

4.1. http: //hdl.handle.net/11356/1912, jun 2024. Corpus: 8,073,406 utterances, 1,231,036,093 words. Project:

https://www.clarin.eu/ content/parlamint
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a standardized framework for categorizing speeches, making possible to compare political discourse

across different countries, and time periods
2
.

3.2 Text Classification Techniques

Zero-shot Classification Zero-shot classification is a machine learning approach that assigns la-

bels to text without requiring training on labeled examples for the specific classification task. This

method uses pre-trained language models that have learned general language understanding from

large corpora and can classify texts into categories they have never seen during training [21, 25].

K-Means Clustering K-means clustering is an unsupervised machine learning algorithm that parti-

tions data points into k clusters by grouping similar items together. The algorithm works by initializing

k cluster centers, then iteratively assigning each data point to the nearest center and updating cluster

centers based on the mean of assigned points until convergence [15, 19, 11].

N-gram N-grams is a feature extraction selection method that converts text into numerical features

by extracting sequences of N consecutive words, enabling machine learning algorithms to process and

analyze textual data [7].

Term Frequency-Inverse Document Frequency (TF-IDF) TF-IDF is a statistical method for evalu-

ating the importance of words in a document relative to their frequency across an entire corpus. The

technique calculates how often a word appears in a specific document and how rare the word is across

all documents. Words that appear frequently in a particular document but rarely across the corpus

receive higher TF-IDF scores, indicating they are characteristic of that specific document [7].

3.3 Language Models

Pre-trained Language Models Pre-trained Language Models undergo initial training on massive col-

lections of unlabeled textual data to acquire fundamental linguistic patterns and structures. Following

this pre-training phase, these models receive specialized training on smaller, task-oriented datasets

through a process known as fine-tuning [35, 24].

Large Language Models Large Language Models consist of billions of parameters and are trained on

large volumes of textual data. These models are pre-trained on text corpora and then evaluated in

order to align with human preferences and values [35, 24].

Hugging Face Transformers Hugging Face Transformers is an open-source library that provides

easy access to pre-trained language models for natural language processing tasks. The library offers

a unified API for loading, fine-tuning, and deploying transformer-based models such as BERT, GPT,

RoBERTa and supports both PyTorch and TensorFlow frameworks [32]
3
.

2
Publications Office of the European Union. EuroVoc: Multilingual thesaurus of the European Union. https://op.europa.

eu/en/web/eu-vocabularies/eurovoc, 2025

3
Hugging Face. Transformers: State-of-the-art machine learning for pytorch, tensorflow, and jax, 2023. URL https:

//huggingface.co/docs/transformers/index
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3.4 Finetuning

Fine-tuning Fundamentals

Fine-tuning is a process that uses pre-trained models as starting points and adapts them to perform

well on a more specific task. This methodology involves an additional training phase using smaller,

task-specific datasets to tune the model’s existing knowledge base to particular applications [24].

Fine-Tuning Types

Unsupervised Fine-tuning Unsupervised fine-tuning operates without labeled training data, instead

exposing the model to large amount of unlabeled text from target domains to enhance its language

understanding. This proves beneficial for specialized fields where labeled data are scarce, however, it

is less precise for specific tasks [24].

Supervised Fine-tuning Supervised Fine-tuning employs labeled datasets specific to the target

tasks, which requires a collection of text samples paired with their corresponding category labels.

This methodology requires plenty labeled data, which can be costly to acquire [24].

Instruction-based Fine-tuning Instruction-based fine-tuning utilizes natural language prompts and

instructions to guide model behavior. This approach is used to develop specialized conversational

agents and assistants. It doesn’t require extensive labeled datasets, but it needs quality instructional

prompts [24].

Fine-Tuning Strategies

Task-Specific Fine-Tuning Customize the model for specific applications like summarizing text,

generating code, classifying content, or answering questions by training on specialized datasets for

each task [24].

Domain-Specific Fine-Tuning Adapt the model to understand and produce content within particular

fields such as healthcare, finance, or law, ensuring it learns domain-specific terminology and concepts

[24].

Parameter-Efficient Fine-Tuning (PEFT) Use cost-effective approaches like LoRA, QLoRA, and adapter

layers that achieve good results while only modifying a small portion of the model’s parameters, re-

ducing computational requirements [24].

Half Fine-Tuning (HFT) Maintain a balance between preserving original knowledge and acquiring

new capabilities by updating only half of the model’s parameters in each training cycle, preventing

complete override of pre-learned information [24].

Optimization for Fine-Tuning

Gradient Descent Variants
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Gradient Descent Gradient Descent aims to find the best parameters for a neural network by up-

dating them in every iteration based on the negative gradient of the cost function. It is efficient for

smaller datasets as it can be computationally expensive [24].

Stochastic Gradient Descent Stochastic Gradient Descent reduces computations by updating pa-

rameters using a single or small subsets of training examples at each iteration. This approach is

effective for large-scale datasets and online learning scenarios. It also requires a smaller learning rate

compared to the classic Gradient Descent [24].

Mini-batch Gradient Descent Mini-batch gradient descent splits the data into small batches, and

for every batch, it updates the parameters with averaged gradients. It is efficient mostly for medium

sized datasets [24].

Adaptive Learning Rate Methods

AdaGrad The Adaptive Gradient Algorithm introduces parameter-specific learning rate adaptation

based on historical gradient accumulation. This method reduces the number of updates for frequent

parameters and maintains higher rates for sparse ones. This makes AdaGrad more effective for sparse

datasets [24].

RMSprop Root Mean Square Propagation maintains steady learning rates by maintaining a running

average of squared gradients and, therefore addressing AdaGrad’s diminishing learning rate problem

[24].

AdaDelta AdaDelta extends the adaptive learning rate concept by eliminating manual learning rate

specification. The algorithm uses moving windows of gradient updates to compute adaptive learning

rates, addressing both the diminishing learning rate problem and the requirement for learning rate

hyperparameter tuning [24].

Momentum-Based Optimization

Adam Optimizer Adaptive Moment Estimation computes adaptive learning rates for each parameter

by maintaining exponential moving averages of both gradients and squared gradients. It incorporates

bias correction mechanisms and achieves faster convergence than alternative methods. The algo-

rithm’s effectiveness has established it as a default choice for many practitioners, although it requires

attention to regularization to prevent overfitting [24].

AdamW AdamW represents an enhancement to the Adam optimizer that addresses overfitting by pro-

viding weight decay regularization. Particularly, it implements L2 regularization directly in parameter

updates rather than through loss function modification [24].

Low-Rank Adaptation (LoRA) Fundamentals Low-Rank Adaptation is a parameter-efficient fine-

tuning approach that keeps the original pre-trained weights frozen while adding smaller trainable

decomposition matrices that learn new tasks. Instead of updating millions of parameters, LoRA only

trains these lightweight decomposition matrices, thus reducing computational costs. Swapping out

LoRA matrices allows us to create multiple task-specific versions from a single base model [24, 14].
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Mathematical Foundation LoRA modifies pre-trained weight matrices through additive low-rank

decomposition. Instead of updating the full weight matrix W , LoRA computes:

Ŵ = W +
α

r
· B × A (3.1)

where matrix A has dimensions [r×dinput], matrix B has dimensions [doutput×r], r is the rank (bottleneck

dimension), and α is the scaling factor [14].

Quantized Low-Rank Adaptation (QLoRA) Quantized Low-Rank Adaptation extends LoRA princi-

ples through quantization strategies that compress model parameters to 4-bit precision from 16-bit.

This compression technique transforms traditional 32-bit parameter storage to 4-bit representations

and therefore achieves memory reductions. It is noteworthy to mention that it maintaining performance

comparable to full-precision methods [24, 8].

Target Modules and Model Architecture Applying LoRA to all linear layers has proven to be more

effective and match the full finetuning results. The attention layers include q_proj, k_proj, v_proj,

o_proj. Whiel the MLP Layers are gate_proj, up_proj, down_proj.

LoRA’s adjustable parameters include rank r, lora alpha, lora dropout, bias, and gradient check-

pointing [24]. The rank produces more reliable results when assigned a larger value, however it can

be slower and use more energy. Its values can range from 8 to 128. The lora alpha is thought to be

reliable when it is set as the same value as the rank, but for more aggressive learning it is recom-

mended to double the rank. The lora dropout is a regularization method that prevents overfitting by

randomly zeroing out a portion of LoRA activations during training steps. However, lora dropout may

not effectively regulate short training runs. Unless there is overfitting, setting lora dropout to zero will

enable Unsloth’s optimization and accelerate training. The bias argument trains the bias terms in the

linear layers by adding extra trainable parameters. It is suggested to leave as zero to make finetuning

faster. The gradient checkpointing parameter can be set to false, true or unsloth. The unsloth option

significantly reduces memory usage.

Fine-tuning Hyperparameters

Learning Rate The learning rate defines how much and fast the model’s weights are adjusted during

each training step [24]. Higher learning rates can change the weights faster but can cause training

instability or failure to find optimal minima. Meanwhile, lower learning rates require more training

but can be more stable and precise. Typical range 2 × 10
−4

to 5 × 10
−6

Epochs Epochs represent the number of times the model processes the complete training dataset

[24]. More epochs allow better learning but risk overfitting through memorization of training data.

However, fewer epochs reduce training time and prevent overfitting but may result in an under-trained

model that hasn’t captured underlying patterns. For most instruction-based datasets, 1-3 epochs are

recommended as training beyond this may cause overfitting.

Batch Size and Gradient Accumulation Batch-size is a subset of the training dataset based on

which we update the weights of the model [24]. The effective batch size is calculated as:

Effective Batch Size = batch_size × gradient_accumulation_steps (3.2)
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The recommended practice is to use smaller batch_size and increase gradient_accumulation_steps

.

Fine-Tuning Frameworks

UNSLOTH UNSLOTH is an open-source framework that makes fine-tuning large language models

faster and cheaper. The framework can train models faster while using less computer memory com-

pared to standard methods. The framework optimizes how models calculate attention mechanisms and

implements gradient checkpointing, which reduces memory usage. The framework works with models

like Llama, Mistral, and Gemma, and integrates with fine-tuning methods like LoRA and QLoRA. These

technical improvements allow researchers to fine-tune large models on regular consumer hardware
4

5
.

3.5 Speech Generation

Neural text generation systems face the degeneration problem, where traditional decoding strategies

produce poor-quality output despite using well-trained language models. Approaches like beam search

lead to repetitive and generic text, while sampling from the full probability distribution results in

incoherent output. To address this issue, researchers propose Nucleus Sampling (top-p sampling),

which dynamically selects tokens from the smallest subset containing a predetermined percentage (p) of

the probability mass. Through evaluation using perplexity, diversity metrics, and human assessment,

they show that this approach produces text that more closely resembles human writing [13].

3.6 Model Evaluation

Perplexity Perplexity, whose logarithm corresponds to the familiar entropy measure, represents a

more appropriate measure of equivalent choice in speech recognition systems. Traditional complexity

measures including vocabulary size, and branching factors have been shown to be inadequate for

assessing the complexity of finite state grammars in speech recognition. Perplexity better captures

recognition difficulty, and this measure can be applied even to languages without obvious statistical

descriptions by finding entropy-maximizing probability assignments for any finite-state grammar [16].

GRUEN GRUEN focuses on the quality of the generated text instead of content selection like other

evaluation metrics do. This evaluation framework assesses grammaticality, non-redundancy, focus,

structure, and coherence using a BERT-based model combined with syntactic, semantic, and contex-

tual features. GRUEN is unsupervised, deterministic, and adaptable to various tasks, showing high

correlation with human judgments [38].

BERTScore BERTScore focuses on meaning rather than just string matching. Traditional metrics

like BLEU rely on n-gram overlap and fail to recognize which words account for the same meaning.

BERTScore addresses these limitations by computing sentence similarity using contextualized token

embeddings from pre-trained BERT models, calculating cosine similarities between tokens [34].

4
nc. Unsloth. Fine-tuning pretrained language models (unsloth llms guide). https://docs.unsloth.ai/get-started/fine-

tuning-llms-guide, 2025

5
D. Han, M. Han, and Unsloth team. Unsloth: Fast, memory-efficient fine-tuning of LLMs. GitHub repository. https:

//github.com/unslothai/unsloth, 2023
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MoverScore MoverScore addresses limitations in traditional text generation evaluation by measuring

semantic similarity through optimal transport theory. Rather than relying on n-gram overlap like

BLEU and ROUGE, MoverScore computes the minimum semantic transportation cost needed to align

system-generated text with reference text using contextualized embeddings [36].

LLM as a Judge with MT Bench and Chatbot Arena The LLM-as-judge approach is introduced as

an alternative to the computationally expensive human evaluation for AI chat assistants. There are

three main approaches.

Pairwise comparison presents an LLM judge with a question and two responses, asking it to

determine which is better or declare a tie.

Single answer grading involves directly scoring individual responses without comparison.

Reference-guided grading provides correct solutions alongside the responses being evaluated,

particularly useful for math and factual questions.

LLM judges might provide scalability and explainability, however, they come with position, name,

verbosity and self-enhancement bias. In position bias, judges prefer the first response presented. Some

models showed name bias, favoring responses labeled "Assistant A" regardless of content quality. In

verbosity bias, LLM judges favor longer responses even when shorter ones are more concise. Mean-

while, LLMs with self-enhancement bias favor responses generated by themselves. LLM judges also

demonstrate limited capability in grading math and reasoning questions. Surprisingly, they strug-

gle even with basic math problems they can solve independently because they are being misled by

incorrect answers in the context.

However, position bias can be controlled by swapping response positions and requiring consistent

judgments across both orderings, or by using random positioning at scale. For math and reasoning

problems, chain-of-thought prompting asks judges to solve problems independently before grading,

though this doesn’t fully solve the issue since judges can still be misled by context. Reference-guided

methods prove most effective, as they have the judges generate their own solutions first and then using

these as references during evaluation. When biases are properly addressed, GPT-4 judges achieve over

80% agreement with human evaluators, which matches the level of agreement between different human

evaluators [37].
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Data Processing

4.1 Data Selection, Cleaning and Preparation

For this thesis, the ParlaMint-GB dataset version 5.0 from CLARIN was chosen as the foundation for

our experiments [9]. While ParlaMint includes data from several national parliaments, we selected the

UK corpus (ParlaMint-GB) specifically because it is natively in English, eliminating potential semantic

loss that comes with using translated versions. Additionally, we opted to work with the raw version of

the dataset rather than the linguistically annotated one to retain full control over pre-processing and

maintain fidelity to the original content.

Our chosen dataset (version 5.0) consists of structured UK parliamentary proceedings, including

metadata such as speaker names and roles, political affiliations, gender information, links to their

respective social media pages where applicable, and complete speech transcripts along with their

dates. It is worth noting that the speech transcripts also contain marked-up transcriber comments.

This dataset is suitable for our political language modeling due to its structured, and XML formatted

data [9].

The Parliament of the United Kingdom comprises two Houses, Commons and Lords. The corpus

contains proceedings from the House of Commons and the House of Lords between 5th January 2015

to 21st July 2022. The corpus itself contains 670,912 contributions (utterances) from 1,951 members

of parliament and peers across 2,209 meetings. The total size of the corpus is around 135 million

words.

We only kept the political parties that have more than 1000 speeches. We removed speeches with

less than 35 words (5th percentile), and over 1580 words (99th percentile). We also filtered out the

"Unknown" party. We removed speeches with sections named "Business of the House" and "Point of

Order", as they produced no essential value. From the speeches we replaced the left and right double

quotation marks (U+201C and U+201D) with regular double quotation marks (U+0022).
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Statistic Value

Total number of speeches 447,778

Number of unique speakers 1,901

Number of political affiliations 11

Total words ∼99.94 million

Mean words per speech 223.2

Median words per speech 99.0

Standard deviation 278.7

Minimum 36.0

Maximum 1,579.0

5th percentile 43.0

10th percentile 49.0

25th percentile 66.0

75th percentile 242.0

90th percentile 619.0

95th percentile 872.0

99th percentile 1,322.0

Table 4.1. Cleaned ParlaMint-GB Dataset Statistics

Party Commons Lords Total

Conservative 223,712 39,801 263,513

Labour 85,661 23,170 108,831

Scottish National Party 23,562 0 23,562

Liberal Democrats 8,017 15,500 23,517

Crossbench 0 11,878 11,878

Democratic Unionist Party 6,228 382 6,610

Independent 2,369 414 2,783

Plaid Cymru 1,817 412 2,229

Green Party 782 1,210 1,992

Non-Affiliated 0 1,713 1,713

Bishops 0 1,150 1,150

Total 352,148 95,630 447,778

Table 4.2. Distribution of Party by Parliamentary House
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4.2 Data Pre-processing Pipeline

The data pre-processing step converts the ParlaMint-GB XML files into formats ready for training.

Raw ParlaMint-GB XML Files

(listPerson.xml, listOrg.xml,

taxonomy files,

Speech XMLs by year)

Pre-processing Stage

Speaker Info

IDs, Names, Gender,

Time-bound Politi-

cal Party Affiliations

Speech Extraction

Traverse XMLs, Ex-

tract Sections, Top-

ics, House, Party,

Speeches and Prompts

Political Orientation

Extract CHES Codes,

Extract Political Ori-

entation Labels (Left-

/Right Spectrum)

Merge Speakers & Speeches

Match by Speaker

ID and Affiliation

Cleaned ParlaMint-GB Dataset

Speaker + Speech +

Political Metadata

EuroVoc Topic Clas-

sification (KEVLar)

Input: Speech Text

→ EuroVoc Domains

+ Confidence → Se-

lect Top Domain

Final Training Dataset

Speech Text, Metadata, Political

Orientation, EuroVoc Label

Figure 4.1. Overview of the ParlaMint-GB Preprocessing and EuroVoc Topic Classification Pipeline.
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4.2.1 XML Parsing and Metadata Extraction

4.2.1 XML Parsing and Metadata Extraction

Initially, for our pre-processing stage we handle the XML structure and extract useful training data

using Python. We made use of the metadata provided in the raw ParlaMint-GB dataset. Each speaker

is represented in the listPerson.xml file, which includes key attributes such as full name, unique

identifier, gender, and a list of political affiliations [9]. The speech content XML files were organized

in folders named by year and contained speech metadata, such as date of the speech, the debate

section, the CAP topic, the house and the speaker ID. We categorized the speeches in Parliaments

based on whether the xml file ended on ’lords’ for House of Lords or ’commons’ for House of Com-

mons. ParlaMint-taxonomy-speaker_types.xml contains the information on speaker types: Chairperson,

Regular, Guest along with their respective descriptions. ParlaMint-taxonomy-topics.xml contains the

23 Comparative Agendas Project major topic labels that are used to categorize the speeches: Agri-

culture, Civil Rights, Culture, Defense, Domestic, Commerce, Education, Energy, Environment, For-

eign Trade, Government Operations, Health, Housing, Immigration, International Affairs, Labor, Law

and Crime, Macroeconomics, Mix, Other, Public Lands, Social Welfare, Technology, Transportation.

ParlaMint-listOrg.xml contains the party names, their political orientations and their wikipedia pages.

ParlaMint-taxonomy-CHES.xml contains the taxonomy of identifiers from the Chapel Hill Expert Survey

(CHES) trend files: 1999-2019 Codebook. And finally, ParlaMint-taxonomy-politicalOrientation.xml

contains the political orientation of political parties and parliamentary groups: Left, Centre, Right,

Far-left, Far-right, Centre-left, Centre-right, Centre to centre-left, Centre to centre-right, Centre-left to

left, Centre-right to right, Left to far-left, Right to far-right. The pre-processing pipeline extracted both

speaker metadata and speech content through the following components:

Speaker Information Processing

• Parsed unique speaker identifiers and full names

• Extracted political affiliations with temporal bounds

Speech Content Extraction

• Traversed dated session XML files to extract individual speeches

• Extracted debate section topics and speech topic context information based on XML structure

and <head> elements

• Filtered out procedural elements and non-substantive content

Political Orientation Extraction

• Extracted the political orientation code for each party from ParlaMint-listOrg.xml

• Matched the political orientation code to the political orientation label from ParlaMint-taxonomy-

politicalOrientation.xml

We matched the speakers with their speeches based on the speaker ID attribute each speech had,

along with their political orientations.
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4.2.2 Speech-Party Temporal Alignment

To ensure that each speech was matched to the correct political party at the time of delivery, we

implemented a temporal matching mechanism that handled political party changes and role transitions

of speakers over time.

Alignment Algorithm

1. Extract the date of each speech from the XML session files

2. Parse each speaker’s list of political affiliations from listPerson.xml

3. Extract the time validity range (@from and @to attributes) indicating when that affiliation was

active

4. Compare the speech date with the affiliation’s from and to dates to identify the active affiliation

5. In cases where no exact match was found (e.g., missing to date), default to the most recent

affiliation that started before the speech date

This temporal alignment was important in order to accurately attribute party positions over time,

especially for members who may have switched affiliations during their parliamentary careers.

Figure 4.2. Party Changes Over Time
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4.2.3 Prompt Extraction

4.2.3 Prompt Extraction

The extracted speech content included question prompts and speeches. We identified patterns

where question prompts began with a letter or number, allowing us to separate them from actual

speeches. During extraction, we stored the speeches as string values in the "speech" attribute, while

the individual question prompts were collected into a list of strings under the "prompts" attribute, as

a single speaker could have expressed more than one question. We attributed the prompts to the

speeches with the same debate section. Finally, we cleaned the prompts by removing the number and

letter prefixes.

The following is a sample of the generated JSON file:

{

"speaker": "Jennifer Jones",

"speech": "My Lords, will the Minister consider some recommendations from a recent report from the Economy Committee of the London Assembly, which said that all interns who work for more than four weeks should be paid not just the minimum wage but the living wage? It also said that all internships should be advertised openly to create a much fairer opportunity for those who are less fortunate.",

"section": "Employment: Internships",

"section_type": "debateSection",

"speech_date": "2015-01-14",

"speech_id": "ParlaMint-GB_2015-01-14-lords.u46",

"filename": "ParlaMint-GB_2015-01-14-lords.xml",

"party_affiliation": "party.GP",

"party_name": "Green Party",

"political_orientation": "L",

"political_orientation_desc": "Left",

"ches_lrgen": "2.0",

"party_affiliation_from": "2013-09-20",

"party_affiliation_to": "9999-12-31",

"party_role": "member",

"house": "House of Lords",

"parliament_affiliation_from": "2013-09-20",

"parliament_affiliation_to": "9999-12-31",

"parliament_role": "member",

"is_government_member": false,

"government_role": null,

"government_affiliation_from": null,

"government_affiliation_to": null,

"speaker_type": "regular",

"speaker_type_desc": "Regular Speaker",

"speech_topic_codes": ["labor"],

"speech_topic_descriptions": ["Labor"],

"section_topic_codes": [],

"section_topic_descriptions": [],

"prompts": []

}
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4.3 Political Orientation Statistics

Party Orientation Speeches Speakers Active Period

Conservative Centre-right 263,513 792 2015–2022

Labour Centre-left 108,831 592 2015–2022

Scottish National Party Centre-left 23,562 67 2015–2022

Liberal Democrats Centre to centre-left 23,517 168 2015–2022

Crossbench Unknown 11,878 215 2015–2022

Democratic Unionist Party Right 6,610 15 2015–2022

Independent Unknown 2,783 45 2015–2022

Plaid Cymru Centre-left to left 2,229 7 2015–2022

Green Party Left 1,992 3 2015–2022

Non-Affiliated Unknown 1,713 60 2015–2022

Bishops Unknown 1,150 41 2015–2022

Total 447,778 1901

Table 4.3. Political Parties Represented in Dataset

Orientation Parties Included Total Speeches Percentage

Centre-right Conservative 263,513 58.85%

Centre-left Labour, Scottish National Party 132,393 29.57%

Centre to centre-left Liberal Democrats 23,517 5.25%

Unknown Bishops, Crossbench, Independent, Non-Affiliated 17,524 3.91%

Right Democratic Unionist Party 6,610 1.48%

Centre-left to left Plaid Cymru 2,229 0.50%

Left Green Party 1,992 0.44%

Total 447,778 100.00%

Table 4.4. Political Orientation Categories

4.4 Topic Categorization

ParlaMint 5.0 version implemented two thematic categorizations, one speech-level and one section-

level. The speech-level topics include the 23 categories mentioned in the Data Selection and Prepara-

tion subsection, and include one speech per topic. However, the section level topics are unique debate

section topics that include more than one speech per debate section topic.

4.5 Thematic Categorization

While ParlaMint uses Comparative Agentas Project (CAP) classification
1
, we selected EuroVoc

2
as

the standard classification system for European parliamentary systems. For policy domains with clear

semantic correspondence between CAP and EuroVoc taxonomies, we applied direct mapping rules. For

semantically complex or ambiguous categories, we employed Kevlar classification methodology. We

argue that this approach is particularly well-suited for our dataset because it was specifically designed

1
Comparative Agendas Project. Comparative agendas project. https://www.comparativeagendas.net, 2025

2
Publications Office of the European Union. EuroVoc: Multilingual thesaurus of the European Union. https://op.europa.

eu/en/web/eu-vocabularies/eurovoc, 2025
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for legal and governmental texts. For speeches yielding multiple concepts, we selected the highest

individual concept score.

CAP Category EuroVoc Category Method Rationale

Energy Energy Direct Exact match

Environment Environment Direct Exact match

Transportation Transport Direct Exact match

Foreign Trade Trade Direct Clear semantic alignment

Government Operations Politics Direct Clear semantic alignment

International Affairs International Relations Direct Clear semantic alignment

Labor Employment and Working Conditions Direct Clear semantic alignment

Law and Crime Law Direct Clear semantic alignment

Agriculture Agriculture, Forestry, Fisheries Direct Clear semantic alignment

Education Education and Communications Direct Clear semantic alignment

Macroeconomics Economy Direct Clear semantic alignment

Social Welfare Social Questions Direct Clear semantic alignment

Technology Production, Technology and Research Direct Clear semantic alignment

Civil Rights — Automated Complex assignment

Domestic Commerce — Automated Complex assignment

Culture — Automated Complex assignment

Health — Automated Complex assignment

Defense — Automated Complex assignment

Housing — Automated Complex assignment

Immigration — Automated Complex assignment

Public Lands — Automated Complex assignment

Mix/Other — Automated Complex assignment

Table 4.5. Mapping between CAP Categories and EuroVoc Categories

4.5.1 Thematic Classification Methodology

After evaluating several approaches, Kevlar, a multilingual text classification toolkit, was chosen

to assign EuroVoc topics to speeches due to its training on legal, governmental, and policy-oriented

texts, and compatibility with EUROVOC taxonomy [5].

Alternative Approaches Evaluated Zero-shot Classification: We initially explored a zero-shot clas-

sification approach using the pre-trained "facebook/bart-large-mnli" model from Hugging Face Trans-

formers. This method involved loading a pre-trained classifier and defining a set of EUROVOC topic

categories, then automatically assigning each parliamentary speech to the most semantically similar

category without requiring any training data [21]. We tested this approach on a sample of 300 speeches

from the House of Commons, with the classifier analyzing each speech’s content and selecting the ap-

propriate topic label. While this supervised approach provided direct topic assignment, we decided

against using it for our full dataset due to computational constraints.

Manual Cluster Mapping: We then tested a manual labeling approach in which we labeled

speeches to train a classification model. In this method we created a sampling function that se-

lected random speeches within each political party. The system showed each speech to a person who

manually assigned it to one of 21 topic categories by selecting a number from a list. We labeled 5

speeches per political party and combined all the labeled data into one training dataset. We then used
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these manually labeled data to train the "distilbert-base-uncased" model for automatic topic classifi-

cation. In order to achieve this, we converted topic labels to numbers, split the data into training and

testing sets, and trained the model for 4 epochs. Unfortunately, this approach produced poor results

because our manually labeled data were very few compared to our large collection of parliamentary

speeches, making them insufficient for the model to learn meaningful patterns, topics and speaking

styles. Additionally, manually labeling speeches one by one would have taken far too long for our large

dataset, making this method both ineffective and impractical for our research.

K-Means Clustering: We lastly explored an unsupervised K-means clustering approach for topic

classification of parliamentary speeches. This method involved extracting and combining speech con-

tent with section metadata, then vectorizing the text using TF-IDF, which calculates the importance of

each word in a speech. [19] We applied K-means clustering with eight clusters (topics), which we chose

based on the top keywords, to automatically group speeches by thematic similarity. The algorithm

successfully identified the following eight clusters: "Governance and Domestic Policy", "Parliamen-

tary Procedure and QandA", "Northern Ireland and Brexit Protocol", "Trade and Brexit", "Legislation:

EU Withdrawal and Referendum", "House of Lords and Amendments", "Health and Social Care", and

"House Business and General Debate". We tried mapping and assigning these clusters to EuroVoc

categories. However, the generated clusters, though coherent, did not directly correspond to the stan-

dardized EuroVoc taxonomy. Therefore, we decided against using K-means for our final classification

system, even though it provided interpretable cluster keywords.

4.5.2 Thematic Classification Implementation

Kevlar was ultimately selected because of its ease of use, its computational efficiency compared to

the alternative approaches we tried, and its built-in mappings to EuroVoc domain categories [5]. The

implementation process involved:

Kevlar Integration Process

1. Prepare cleaned speech text for topic classification

2. Submit speech content to Kevlar’s multilingual classification API

3. Process returned EuroVoc concept predictions with confidence scores

4.5.3 EuroVoc Categories

The following 21 thematic categories, derived from the EUROVOC thesaurus, were used for speech

classification
3
:

1. International Relations

2. Law

3. Social Questions

4. Politics

5. Education and Communications

3
Publications Office of the European Union. EuroVoc: Multilingual thesaurus of the European Union. https://op.europa.

eu/en/web/eu-vocabularies/eurovoc, 2025
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6. Geography

7. Economics

8. Employment and Working Conditions

9. European Union

10. Transport

11. Trade

12. Environment

13. Production, Technology and Research

14. Energy

15. Agriculture, Forestry and Fisheries

16. Finance

17. Industry

18. Business and Competition

19. Agri-foodstuffs

20. International Organisations

21. Science

4.5.4 Topic Assignment Strategy

Kevlar returns multiple EuroVoc concepts per speech, each with a confidence score and associated

domain label, which corresponds to a higher-level thematic category [5]. Since many concepts can

be detected in a single speech, a rule was needed to determine a single, final topic label suitable for

classification and training. We assigned the topic label corresponding to the domain with the highest

individual score.
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4.6 Statistics Plots

Figure 4.3. Summary Statistics

4.7 Training Data Format

The final input structure for training conversational models consisted of five components integrated

into a JSONL (JSON Lines) format:

{

"speech_1": {

"speaker": "David Nuttall",

"speech": "I have a couple of points to make on this group of amendments Amendment 7 deals with a requirement on a local authority to determine this question by holding a local referendum. I am glad that my right hon. Friend the Member for North East Hampshire (Mr Arbuthnot) said that he would not press the amendment to a Division, because in view of the financial position of the country and of local authorities, it would make complete nonsense of the Bill. One of the great beauties of this Bill is that it does not impose any financial obligation on local authorities. The amendment would impose a completely unnecessary burden and make a mockery of all the other decisions that local authorities take.",

"section": "Local Government (Religious etc. Observances) Bill",

"speech_date": "2015-01-16",

"speech_id": "ParlaMint-GB_2015-01-16-commons.u34",

"filename": "ParlaMint-GB_2015-01-16-commons.xml",

"party": "Conservative",

"topic": ["Government Operations"],

"prompts": [],

"house": "House of Commons",
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"political_orixentation_code": "CR",

"political_orientation_label": "Centre-right",

"eurovoc_topic": "POLITICS"

},

...

}

However, for training our models, we passed the following parameters only: speech, section, party,

prompts, house, political orientation label, EuroVoc topic. This is because each training instance was

structured to enable the model to learn speech generation conditioned on both political party and

topic context. Our goal was to simulate how representatives of specific parties would respond to given

prompts by producing contextually aligned political discourse.

4.7.1 Train-Test Split Implementation

We implemented the following stratified train-test split:

• Training set: 80% of total records

• Test set: 20% of total records

• Random seed: 42 for reproducibility
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Model Selection

5.1 Models

The goal was to explore how different large language models perform in political dialogue gener-

ation. We chose these models based on their different design architecture, performance scores, and

compatibility with the UNSLOTH finetuning method.

Model Quantized Version Memory Reduction Inference Speed

Mistral 7B v0.3 mistral-7b-v0.3-bnb-4bit 62% 2.2×
Llama 3.1 8B Meta-Llama-3.1-8B-bnb-4bit 58% 2.4×
Gemma 2 9B gemma-2-9b-bnb-4bit 58% 2.2×
Qwen2 7B Qwen2-7B-bnb-4bit N/A N/A

Yi 1.5 6B Yi-1.5-6b-bnb-4bit N/A N/A

Table 5.1. Model Technical Specifications and Quantization Details

Table 5.1 summarizes technical specifications and quantization details for the selected models.

5.2 Mistral 7B v0.3 Model

5.2.1 Architecture Overview

The mistralai/Mistral-7B-v0.3 is our base model and it represents a significant advancement in

transformer architecture design [17]. Traditional Transformer architectures face scalability challenges

due to the quadratic computational complexity of their self-attention mechanism with respect to se-

quence length.[4] Mistral addresses these limitations using grouped query attention, sliding window

attention and rotary position embedding.

Grouped-Query Attention (GQA) This technique groups together similar questions the model asks

when processing text, instead of handling each question separately. This approach gives almost the

same quality results as more expensive methods while using much less computational power [2, 17].

Sliding Window Attention (SWA) Mistral uses a sliding window approach that only looks at a limited

number of nearby words at a time instead of looking at every single word in the entire text. This

design makes processing long texts much more efficient because the computational work grows linearly

instead of exponentially as the text gets longer. [4, 17]
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Rotary Position Embedding (RoPE) Mistral uses RoPE to help the model understand word positions

in sentences. RoPE tells the model both the exact location of each word and how far words are from

each other. This approach allows the model to handle texts of different lengths flexibly, automatically

makes words that are far apart have less influence on each other [28].

5.2.2 Technical Specifications

We used "unsloth/mistral-7b-v0.3-bnb-4bit" on our implementation. The model specifications are

as follows [17]
1 2

:

Model mistralai/Mistral-7B-v0.3 unsloth/mistral-7b-v0.3-bnb-4bit

Source Official Mistral AI Unsloth

Parameters 7.25 billion 3.87 billion

Precision 16-bit 4-bit

Quantization None BitsAndBytes 4-bit

Architecture GQA and SWA GQA and SWA

Memory Usage High Reduced (62% less)

Inference Speed Standard 2.2x faster

Model Quality Full precision Minimal degradation

Table 5.2. Comparison of Mistral 7B Model: Original and Optimized

5.3 LLaMA 3.1 8B Model

5.3.1 Architecture Overview

The meta-llama/Llama-3.1-8B model is part of Meta’s Llama 3 family and can work with eight different

languages while handling very long texts (up to 128,000 tokens) at once [10].

Grouped Query Attention (GQA) Llama 3.1 8B uses Grouped Query Attention with 8 specialized

components to make processing more efficient. This design uses less memory when generating text

while keeping the same quality performance [10, 2].

Enhanced Tokenization The model uses an expanded vocabulary of 128,000 tokens, which means

it can represent text more efficiently than older versions. This allows better text compression without

making English processing worse [10].

Rotary Position Embedding (RoPE) Configuration: Llama 3.1 8B adjusts its position understand-

ing system to handle much longer texts by increasing a RoPE hyperparameter [10, 33].

5.3.2 Technical Specifications

Based on our implementation of the unsloth/Meta-Llama-3.1-8B-bnb-4bit which utilizes the meta-llama/Llama-3.1-8B

as the base model, the specifications are as follows
3 4

:

1
Mistral AI. Mistral-7b-v0.3. https://huggingface.co/mistralai/Mistral-7B-v0.3, 2024.

2
Unsloth. mistral-7b-v0.3-bnb-4bit. https://huggingface.co/unsloth/mistral-7b-v0.3-bnb-4bit, 2024. 4-bit quantized

version with BitsAndBytes.

3
Meta. Llama-3.1-8b. https://huggingface.co/meta-llama/Llama-3.1-8B, 2024.

4
Unsloth. Meta-llama-3.1-8b-bnb-4bit. https://huggingface.co/unsloth/Meta-Llama-3.1-8B-bnb-4bit, 2024. 4-bit

quantized version with BitsAndBytes
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Model meta-llama/Llama-3.1-8B unsloth/Meta-Llama-3.1-8B-bnb-4bit

Source Official Meta Unsloth

Parameters 8.3 billion 4.65 billion

Precision 16-bit 4-bit

Quantization None BitsAndBytes 4-bit

Architecture Transformer with GQA Transformer with GQA

Memory Usage High Reduced (58% less)

Inference Speed Standard 2.4x faster

Model Quality Full precision Minimal degradation

Table 5.3. Comparison of Llama 3.1 8B Model: Original and Optimized

5.4 Gemma 2 9B Model

5.4.1 Architecture Overview

The google/gemma-2-9b model is part of Google’s Gemma 2 family of lightweight, open language mod-

els. The Gemma 2-9B model uses a decoder-only transformer design with several key improvements

that make it different from traditional models [30].

Layers and Grouped Query Attention (GQA) The model has 42 layers with specific dimensions,

using 16 attention heads with 8 key-value heads in a Grouped Query Attention setup. It uses GQA

with 2 groups, which research shows makes the model faster during text generation while keeping the

same quality performance [30].

Local Sliding Window and Global Attention Gemma 2 alternates between two types of attention in

different layers: local attention that looks at nearby words and global attention that can look at more

distant words. This gives the model both detailed local understanding and broader context awareness

[30].

Logit Soft-Capping The model uses a technique called logit capping. Logit capping prevents output

values from becoming too extreme by applying a mathematical function logits = softcap∗tanh(logits/softcap)
on them. This helps keep the values within reasonable bounds and stabilize training and generation

[30].

5.4.2 Technical Specifications

Based on our "unsloth/gemma-2-9b-bnb-4bit" implementation, the model specifications are as

follows
5 6

:

5
Google. gemma-2-9b. https://huggingface.co/google/gemma-2-9b, 2024.

6
Unsloth. gemma-2-9b-bnb-4bit. https://huggingface.co/unsloth/gemma-2-9b-bnb-4bit, 2024. 4-bit quantized version

with BitsAndBytes.
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Model google/gemma-2-9b unsloth/gemma-2-9b-bnb-4bit

Source Official Google Unsloth

Parameters 9.24 billion 5.28 billion

Precision 16-bit 4-bit

Quantization None BitsAndBytes 4-bit

Architecture GQA + Interleaved Attention GQA + Interleaved Attention

Memory Usage High Reduced (58% less)

Inference Speed Standard 2.2x faster

Model Quality Full precision Minimal degradation

Table 5.4. Comparison of Gemma 2 9B Model: Original and Optimized

5.5 Yi 1.5 6B Model

5.5.1 Architecture Overview

The unsloth/Yi-1.5-6B-bnb-4bit model is derived from Yi 1.5 6B, a 6-billion parameter bilingual

language model created by 01.AI as part of their Yi model family. This Transformer-based architecture

was pre-trained on an extensive corpus comprising 3 trillion tokens spanning multiple languages, with

specialized capabilities in English and Chinese. The model demonstrates proficiency across diverse

natural language processing tasks, encompassing language comprehension, commonsense inference,

and reading comprehension applications. The bnb-4bit variant implements 4-bit quantization through

the bitsandbytes library, substantially reducing memory overhead from approximately 12GB to under

4GB, thereby facilitating efficient fine-tuning and inference on hardware with constrained computa-

tional resources while maintaining competitive performance characteristics [1]
7 8

5.6 Qwen2 7B Model

5.6.1 Architecture Overview

The unsloth/Qwen2-7B-bnb-4bit model incorporates several architectural innovations to enhance

performance and efficiency. Rather than employing traditional multi-head attention mechanisms,

Qwen2 utilizes Grouped Query Attention, which reduces memory overhead associated with key-value

caching during inference and substantially improves generation throughput. To enable processing of

extended contexts, the architecture implements Dual Chunk Attention, a mechanism that partitions

lengthy input sequences into processable segments. This chunking strategy preserves the original at-

tention computation for inputs within chunk boundaries while maintaining effective relative positional

encoding both within individual chunks and across chunk boundaries, thereby strengthening long-

context modeling capabilities. The model further incorporates YARN to recalibrate attention weights

for improved extrapolation to longer sequence lengths. Additional architectural components include

SwiGLU activation functions, Rotary Positional Embeddings for position encoding, attention layers

with QKV bias terms, and RMSNorm with pre-normalization to ensure training stability. The bnb-4bit

quantization applies 4-bit precision reduction via the bitsandbytes library, dramatically decreasing

memory requirements to approximately 4GB while preserving model quality for efficient deployment

7
01.AI. Yi-1.5-6b. https://huggingface.co/01-ai/Yi-1.5-6B, 2024

8
Unsloth. Yi-1.5-6b-bnb-4bit: 4-bit quantized yi-1.5-6b model. https://huggingface.co/unsloth/Yi-1.5-6B-bnb-4bit,

2024. 4-bit quantized version using bitsandbytes.
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and fine-tuning applications. [26]
9 10

.

5.7 Model Selection Explaination

We utilized the Unsloth Bits and Bytes 4-bit quantized model versions to leverage Unsloth’s opti-

mized fine-tuning capabilities. These models are specifically designed for compatibility with Unsloth’s

training framework, enabling efficient LoRA fine-tuning with reduced memory overhead and accelerated

training speeds necessary for our model adaptation experiments.

In addition, we used three different models for evaluation of how different architectural approaches,

training methodologies, and efficiency optimizations impact political speech generation quality, con-

sistency, and computational requirements.

5.8 Tools and Environment

The following tools and libraries were used for our implementation:

• Hugging Face Transformers: Model loading, tokenization, and training loop management.

• Unsloth: Lightweight and memory-efficient LoRA-based fine-tuning for LLMs.

• PyTorch: Backend for tensor operations and GPU acceleration.

• Datasets: Hugging Face’s datasets library was used to manage and preprocess training corpora.

• AWS: Training was performed on A100 GPU instances.

• scikit-learn: For train-test splitting and basic preprocessing in the classification task.

9
Qwen Team. Qwen2.5-7b. https://huggingface.co/Qwen/Qwen2.5-7B, 2024

10
Unsloth. Qwen2-7b-bnb-4bit: 4-bit quantized qwen2-7b model. https://huggingface.co/unsloth/Qwen2-7B-bnb-4bit,

2024. 4-bit quantized version using bitsandbytes
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Fine-tuning

6.1 Unsloth Framework

Our model fine-tuning process utilized the Unsloth framework, an optimization toolkit specifically

developed for efficient large language model adaptation
1
.

6.2 Parameter-Efficient Fine-tuning with QLoRA

Firstly, we applied Quantized Low-Rank Adaptation (QLoRA) to our model to make it parameter

efficient. This implementation integrates 4-bit model quantization with low-rank matrix adaptation for

efficient model customization. We chose this approach for our political speech generation because it al-

lows us to adapt large pre-trained models to political speeches without needing massive computational

resources or losing the models’ general language abilities.

Table 6.1 details the QLoRA configuration parameters applied through Unsloth’s get_peft_model

interface, with justifications for each choice based on Unsloth’s finetuning guide
2

Parameter Value Rationale

LoRA Rank (r) 16 Optimal balance for fast fine-tuning

LoRA Alpha 16 Set equal to rank (α/r = 1) for baseline

Target Modules 7 layers All linear transformations

LoRA Dropout 0 Enable Unsloth optimizations

Bias Configuration none Faster training, reduced memory

Random State 3407 Reproducibility across architectures

Table 6.1. Complete QLoRA Configuration Parameters

6.3 Trainer Implementation and Configuration

We fine-tuned our models using Supervised Fine-Tuning on instruction-response pairs, formatted

using model-specific chat templates. We chose this approach because our models needed to learn how

to respond with political speeches based on provided questions and information (political affiliation,

EuroVoc topic, house, debate section, political orientation). More specifically, we used SFTTrainer,

which is designed for training models on conversation-style data to learn how to follow instructions,

1
D. Han, M. Han, and Unsloth team. Unsloth: Fast, memory-efficient fine-tuning of LLMs. GitHub repository.

https://github.com/unslothai/unsloth, 2023

2
Unsloth. Fine-tuning pretrained language models (unsloth llms guide). https://docs.unsloth.ai/get-started/fine-tuning-

llms-guide, 2025.
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and QLoRA, which updates only a small part of the model instead of changing it entirely in order to be

more computationally efficient.

6.3.1 Multi-Model Chat Template Architecture

System Prompt All models are trained with the following template:

You are a seasoned UK parliamentary member. Use proper British parliamentary language appropriate

for the specified House.

The speech should reflect the political orientation and typical positions of the specified party on

the given topic.

Each model architecture wraps this shared structure in its own special formatting tokens and

control sequences.

Mistral Model Template:

<s>[INST] SYSTEM_PROMPT

Context: {context}

Instruction: {instruction} [/INST]

Llama 3.1 Model Template:

<|begin_of_text|><|start_header_id|>system<|end_header_id|>

SYSTEM_PROMPT<|eot_id|><|start_header_id|>user<|end_header_id|>

Context: {context}

Instruction: {instruction}<|eot_id|><|start_header_id|>assistant<|end_header_id|>

Gemma 2 Model Template:

<bos><start_of_turn>user

SYSTEM_PROMPT

Context: {context}

Instruction: {instruction}<end_of_turn>

<start_of_turn>model

Qwen2 Model Template (ChatML format):

<|im_start|>system

SYSTEM_PROMPT<|im_end|>

<|im_start|>user

Context: {context}

Instruction: {instruction}<|im_end|>

<|im_start|>assistant

Yi-1.5 Model Template (ChatML format):

<|im_start|>system

SYSTEM_PROMPT<|im_end|>

<|im_start|>user

Context: {context}

Instruction: {instruction}<|im_end|>

<|im_start|>assistant
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6.3.2 Training Arguments and Hyperparameter Selection

The instruction field includes the question prompt or the generic instruction when there are no

prompts available. The context fields includes the following organized political information:

• PARTY: Political party affiliation (eg. Conservative)

• EUROVOC TOPIC: EuroVoc classification (eg. TRADE)

• SECTION: Parliamentary debate section

• POLITICAL ORIENTATION: Political orientation label (eg. Right)

• HOUSE: House of Commons or House of Lords

This setup helps fine-tuned models learn to give responses that match a party’s views, stay on topic,

follow parliamentary rules and political views.

6.3.2 Training Arguments and Hyperparameter Selection

Table 6.2 details the parameters we used, and as recommended by the Unsloth finetuning guide,

we kept the default settings.

Parameter Value Justification

Batch Size 64 GPU memory optimization

Learning Rate 2e-4 Standard for LoRA fine-tuning

Max Steps 11194 2 epochs

Warmup Steps 336 10% of max steps for stability

Optimizer adamw Memory-efficient

Weight Decay 0.01 Prevents overfitting on political data

Max Sequence Length 1024 Optimal value for our train dataset

median length

Scheduler linear Linear learning rate schedule

Table 6.2. Complete Training Configuration for Parliamentary Speech Generation

The training configuration maintains consistency across all model architectures and political con-

texts, with automated data loading, standardized train-test splits (80-20), and comprehensive resource

management including GPU cache clearing between sessions and monitoring of computational effi-

ciency metrics across Google Colab A100 instances.

6.3.3 Training Pipeline

Training Strategy We train each model separately, creating individual result folders named unified_-

model_name. We use the same data preparation steps for every dataset to ensure consistency. Each

dataset is split into 80% for training and 20% for testing using the same random seed, so results can be

reproduced. The pipeline handles different data formats automatically, extracting political information

like party affiliation, topics, and parliamentary sections, and provides backup instructions when the

original instruction is missing. Each training session uses the appropriate model’s chat format.

Files Inside Each Model Folder After the training is complete, we save the LoRA adapter weights

(PEFT), not the full model. The weights are stored in ./trained_models/MODEL_NAME/

Based on our code and LoRA training, each folder contains:
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• adapter_model.bin - The actual LoRA adapter weights

• adapter_config.json - Configuration for the LoRA adapter (rank, alpha, target modules, etc.)

• tokenizer.json - Tokenizer files

• tokenizer_config.json - Tokenizer configuration

• special_tokens_map.json - Special token mappings
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Speech Generation

7.1 Generation Pipeline Architecture

We built a speech generation system that loads our trained models and creates political speeches

based on a generated input. The system accepts multiple types of input including instruction prompt,

EuroVoc topic, section, political party affiliation, house and political orientation.

7.2 Input Mapping

To ensure consistency and fairness across model comparisons, we generated a unified set of input

sections and prompts from the test set, which guaranteed that all models received identical generation

tasks. We maintained realistic distributional characteristics by sampling houses according to their ac-

tual representation in the UK Parliament (78% House of Commons, 22% House of Lords) and political

parties according to their respective weights in the dataset (Conservative: 59%, Labour: 24%, Scottish

National Party: 5%, and so forth). Each party was associated with its corresponding political orien-

tation (e.g., Conservative as Centre-right, Labour as Centre-left), and we enforced valid house-party

mappings by restricting certain parties to their appropriate chambers (e.g., Bishops only in House

of Lords). The instruction format comprised 10% task-specific prompts randomly selected from the

unseen prompt set and 90% generic instructions following a standardized template. We additionally

mapped the sections and prompts to EuroVoc topics using Kevlar to ensure thematic consistency and

prevent misaligned inputs. This controlled generation approach, with all inputs pre-saved in a shared

JSON file, ensured that any observed performance differences could be attributed solely to model

capabilities rather than variations in input distribution or prompt complexity.

Party Weight Political Orientation

Conservative 0.59 Centre-right

Labour 0.24 Centre-left

Scottish National Party 0.05 Centre-left

Liberal Democrats 0.05 Centre to centre-left

Crossbench 0.028 Unknown

Democratic Unionist Party 0.016 Right

Independent 0.010 Unknown

Plaid Cymru 0.006 Centre-left to left

Green Party 0.005 Left

Non-Affiliated 0.003 Unknown

Bishops 0.002 Unknown

Table 7.1. Party Distribution and Political Orientation
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House Proportion

House of Commons 0.78

House of Lords 0.22

Table 7.2. House Distribution in the Dataset

7.3 Model Loading and Inference Configuration

For the fine-tuned models, the system loads the models and applies the trained LoRA adapters

using the PEFT library. The pipeline detects LoRA adapter files by checking for adapter_config.json

and loads the corresponding model before applying the political speech fine-tuning weights. The

system automatically determines the appropriate device mapping strategy: single-GPU mode forces

allocation to device 0 when CUDA_VISIBLE_DEVICES is set, while multi-GPU environments use automatic

device placement with device_map="auto". All models are loaded with torch.float16 precision on GPU

or torch.float32 on CPU, with trust_remote_code=True to support custom model implementations. For

baseline models, the system downloads pre-trained 4-bit quantized versions from Unsloth’s Hugging-

Face repository (unsloth/mistral-7b-v0.3-bnb-4bit, etc.) without applying any adapters, enabling direct

comparison between pre-trained and fine-tuned variants.

7.4 Generation Parameters and Decoding Strategy

Following best practices for neural text generation, we implemented nucleus sampling (top-p) as

our primary decoding strategy. We chose this over traditional decoding methods like greedy search

and beam search as they often produce repetitive or incoherent text despite achieving low perplexity

[13].

We configured generation parameters specifically for political speech coherence and diversity.

Parameter Value / Description

SPEECHES_PER_MODEL 2700 speeches generated per model.

TEMPERATURE 0.7 — balances coherence and lexical variation in po-

litical speech generation.

TOP_P 0.85 — applies nucleus sampling for focused yet di-

verse outputs.

REPETITION_PENALTY 1.2 — penalizes redundant phrasing for stylistic di-

versity.

BATCH_SIZE 32 — generates in batches for approximately 3 times

speed improvement.

ENABLE_BATCHING True — enables batched generation; when False, gen-

eration is sequential.

MIN_WORD_COUNT 43 — lower quality threshold (P10) to filter abnormally

short speeches.

MAX_WORD_COUNT 635 — upper quality threshold (P90) to filter overly

long speeches.

MAX_ NEW_TOKENS 850 — cap on generated length (= 1.33 times P90

speech length).

GENERATION_SEED 42 — ensures reproducibility across runs.

Table 7.3. Model Generation Configuration Parameters
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7.5 Multimodel Chat Template

We generated the speeches for the finetuned and the baseline models using the following prompt

for all models.

System Prompt

You are a seasoned UK parliamentary member. Generate a coherent speech of min_words - max_-

words words in standard English (no Unicode artifacts, no special characters).

Use proper British parliamentary language appropriate for the specified House.

The speech should reflect the political orientation and typical positions of the specified

party on the given topic.

Model Templates

Each model architecture wraps this shared structure in its own special formatting tokens and

control sequences.

Mistral Model Template:

<s>[INST] SYSTEM_PROMPT

Context: {context}

Instruction: {instruction} [/INST]

Llama 3.1 Model Template:

<|begin_of_text|><|start_header_id|>system<|end_header_id|>

SYSTEM_PROMPT<|eot_id|><|start_header_id|>user<|end_header_id|>

Context: {context}

Instruction: {instruction}<|eot_id|><|start_header_id|>assistant<|end_header_id|>

Gemma 2 Model Template:

<bos><start_of_turn>user

SYSTEM_PROMPT

Context: {context}

Instruction: {instruction}<end_of_turn>

<start_of_turn>model

Qwen2 Model Template (ChatML format):

<|im_start|>system

SYSTEM_PROMPT<|im_end|>

<|im_start|>user

Context: {context}

Instruction: {instruction}<|im_end|>

<|im_start|>assistant

Yi-1.5 Model Template (ChatML format):
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<|im_start|>system

SYSTEM_PROMPT<|im_end|>

<|im_start|>user

Context: {context}

Instruction: {instruction}<|im_end|>

<|im_start|>assistant

7.6 Speech Validation

We implemented a SpeechValidator class to ensure the quality, coherence, and relevance of gen-

erated parliamentary speeches. It performs systematic checks to detect common issues arising in

generated outputs, including template artifacts, encoding errors, language mismatches, degenerative

repetition, off-topic content, and structural inconsistencies. Generated speeches underwent a 9-step

validation procedure:

1. Template Marker Detection: Detects 27 template artifacts including role markers (\nuser,

\nassistant), context labels (Context:, Instruction:), and special tokens (<|im_start|>, [INST],

etc.).

2. Unicode Corruption Detection: Identifies 14 specific corruption patterns (U+03B2, U+258D, <2mass>)

and checks 11 forbidden Unicode ranges including CJK (Chinese, Japanese, Korean), Cyrillic,

Arabic, Thai, and technical symbol blocks.

3. Language Detection: Uses spacy-langdetect with the en_core_web_sm model to detect non-English

text. Only performed on texts ≥ 30 characters, flagging languages detected with > 85% confi-

dence.

4. Repetition Detection: Detects three repetition patterns: (1) same word repeated > 3 times

consecutively, (2) sequences of 3-7 words repeated > 3 times, (3) counting patterns with > 5

ordinal words (first, second, third, etc.).

5. Semantic Relevance Check: Computes cosine similarity between speech embeddings and con-

text description ("UK parliamentary debate about {section} on {topic}") using (’all-MiniLM-L6-v2’).

Flags speeches with similarity < 0.08 as off-topic.

6. Length constraints: Validates word count (43-635).

7. Concatenation detection: Detects concatenated speeches (≥ 4 opening phrases like "My Lords"

or "Mr Speaker")

8. Corrupted endings detection: Identifies nonsensical endings (U+258D).

9. Refusal pattern matching detection: Catches AI refusal patterns ("I cannot generate", "I’m

sorry but I cannot").

The SpeechValidator class ensures that outputs:

• Are free of prompt/template/meta-commentary/HTML tag prefixes, suffixes and artifacts

• Contain valid English text (using spacy-langdetect with 0.85 confidence threshold)
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• Avoid degenerate repetitions (max 3 consecutive word repeats, sequences of 3-7 words)

• Remain contextually relevant (semantic similarity ≥ 0.08 using all-MiniLM-L6-v2)

• Follow expected structural conventions (43-635 words, proper punctuation)

7.7 Examples of Generated Speeches

Scottish National Party - Gemma Model

ENERGY Domestic Renewable Energy

House of Commons Centre-left

"Address the debate on Domestic Renewable Energy on ENERGY."

Generated Response: Mr Speaker, I rise today to speak about domestic renewable energy as it is vital that

we ensure our country’s future remains secure by reducing reliance on foreign imports while also protecting

local communities from harmful emissions with new clean technologies like solar panels or wind turbines

which can be installed across all parts of Scotland!

Table 7.4. Baseline Model Speech - Gemma

Conservative Party - Llama Model

INDUSTRY Hawk Aircraft: Overseas Promotion

House of Commons Centre-right

"Address the debate on Hawk Aircraft: Overseas Promotion on INDUSTRY."

Generated Response: Text: "The government’s recent decision to promote exports of our world-renowned

aircraft manufacturing capabilities is both commendable and timely. As an advocate for economic growth

and international trade, I fully support this initiative. "Overseas promotion plays a crucial role in boosting

Britain’s economy by increasing export revenue. It also helps create jobs domestically while enhancing

our nation’s reputation as a global leader in innovation and engineering excellence. "Hawk Aircraft has

long been synonymous with quality craftsmanship, safety standards, and technological advancements that

set it apart from its competitors worldwide. By highlighting these strengths during overseas promotional

campaigns, we can secure lucrative contracts abroad, ensuring sustained employment opportunities here

at home. "The current market trends indicate growing demand for advanced fighter jets across various

regions globally. With our exceptional track record, skilled workforce, and robust infrastructure supporting

research & development initiatives – now more than ever before - there exists ample scope for us to

capitalise upon emerging prospects beyond Europe too! "In conclusion then; let me urge my esteemed

colleagues within parliament today to rally behind efforts aimed towards fostering increased foreign sales

of Hawks through strategic outreach programmes designed specifically tailored according to individual

markets’ needs thereby contributing significantly toward bolstering overall industrial output alongside

creating much needed job openings amidst ongoing challenges faced due COVID19 pandemic."

Table 7.5. Baseline Model Speech - Llama
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Conservative Party - Mistral Model

ENVIRONMENT The Situation in the Gulf

House of Commons Centre-right

"Address the debate on The Situation in the Gulf on ENVIRONMENT."

Generated Response: The Conservatives have long supported the EU’s position as an independent global

player, and we believe that this is particularly important in the context of environmental policy. We

recognize the importance of working with our European partners to address issues such as climate change

and biodiversity loss, but also acknowledge the need to work closely with countries outside Europe to

achieve these goals. This is especially true when it comes to addressing the challenges posed by pollution,

deforestation, and other threats to our planet. As such, I would like to take this opportunity to reiterate my

support for the EU’s commitment to leading the way on environmental protection and call upon all Member

States to join us in making sure that the Gulf region remains safe from further damage caused by human

activities. We must ensure that any trade agreements between the EU and its trading partners include

strong provisions for protecting the environment, including measures to reduce greenhouse gas emissions

and preserve natural resources. Additionally, we should continue to encourage dialogue with non-EU

states on matters related to sustainable development so that they can benefit from our experience while

avoiding potential conflicts over resource allocation or access rights. Finally, I urge my colleagues here

today to consider how best we can leverage existing partnerships within both the GCC and Asia Pacific

regions towards achieving greater cooperation across borders when tackling shared problems affecting

regional ecosystems and economies alike.

Table 7.6. Baseline Model Speech - Mistral

Conservative Party - Qwen Model

POLITICS Right-wing Extremism

House of Commons Centre-right

"Address the debate on Right-wing Extremism on POLITICS."

Generated Response: The following is an example of how to write this type of speech: "Mr Speaker, I rise

today to address the issue of right-wing extremism within our society. As members of the Conservative

Party, we believe that it is important to uphold traditional values and promote social cohesion while

respecting diversity. However, there have been concerns raised about some individuals who hold extremist

views which run counter to these principles. We must be clear - any form of hate or intolerance has

absolutely no place in our country. We cannot allow those with extreme beliefs to divide us based on race,

religion or ethnicity. Instead, we need to work together as one nation to build bridges between different

communities and foster understanding. In order to combat right-wing extremism, I propose three key

actions. Firstly, we need stronger laws against hate crimes so that those responsible can face justice more

effectively. Secondly, education plays a vital role; schools must teach young people about tolerance and

respect from an early age. Finally, increased engagement by law enforcement agencies will help identify

potential threats before they escalate into violence." This speech reflects the centre-right position of the

conservative party on the topic of right-wing extremism whilst still maintaining a positive tone towards

building unity across society. It also highlights specific solutions proposed by the speaker such as tougher

legislation, improved educational programs and greater police involvement.

Table 7.7. Baseline Model Speech - Qwen

Labour Party - Yi Model

AGRI-FOODSTUFFS Food Waste

House of Commons Centre-left

"Address the debate on Food Waste on AGRI-FOODSTUFFS."

Generated Response: The EU has an obligation to reduce food waste through sustainable policies that

ensure fair prices while also promoting social justice and environmental sustainability. As such, I call

upon my fellow parliamentarians from across all parties to support this initiative as it is crucial not only

for our planet but also for ensuring equitable access to healthy diets around Europe. This motion must be

passed without delay so we can begin implementing these important changes today! Speech generated by

AI assistant.

Table 7.8. Baseline Model Speech - Yi
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Conservative Party - Gemma Model

LAW HM Courts and Tribunal Service

House of Commons Centre-right

"Address the debate on HM Courts and Tribunal Service on LAW."

Generated Response: The hon. Gentleman is absolutely right to say that we must do everything possi-

ble—and I think everyone across this Chamber agrees with him about that—to ensure victims come forward

as witnesses when they can provide evidence against perpetrators who have committed such crimes; but

he will also know that there has been an enormous amount of work done over many years by successive

Governments since at least the early ’90s or later to improve how our justice system deals with vulnerable

people so that it does not put them off coming into court As part of these proposals, which were consulted

upon very extensively last year, one thing we wanted was more specialist courts where all those involved

could be trained up properly to deal sensitively with vulnerable victims, especially children. There would

then be only three types of Crown Court sitting centre around England and Wales, each providing different

levels of expertise depending on what type of case was being heard there. That includes dealing with

sexual offences cases through sex offender treatment programmes, domestic violence offenders going back

time after time before magistrates’ courts because their partners just cannot get away from them, complex

fraudsters whose activities go beyond anything else happening locally within any other single jurisdiction

area including county lines drug dealers working out whether someone needs help rather than prosecution

if addiction problems make sure she goes down another route towards recovery instead We believe strongly

too much focus remains placed solely onto sentencing outcomes without enough attention paid equally

important issues relating thereto during trial proceedings themselves First though let me remind you why

reform matters here Firstly unlike most European countries ours still uses outdated technology often re-

liant largely manual processes Secondly despite having fewer judges per capita compared internationally

costs continue rising annually partly due inefficient use resources Thirdly although overall number defen-

dants decreasing significantly certain categories remain stubbornly high eg serious violent crime Fourthly

finally while public safety obviously paramount nobody wants see unnecessary burden place taxpayers

pockets unnecessarily either therefore government determined find balance between protecting society en-

suring value money spent means delivering better services faster cheaper way Let us take look some specific

examples first One key element behind new model involves increasing efficiency reducing bureaucracy as-

sociated running separate local offices spread throughout entire country Instead proposed structure based

regional centres supported centralised national hub coordinating activity nationwide This approach allows

greater economies scale achieved previously combined together creating potential savings estimated some-

where region £1billion pound sterling equivalent approximately four thousand million euros Using latest

digital platforms makes communication quicker easier making whole process smoother less error prone

resulting improved productivity whilst simultaneously minimising delays caused traditional paper systems

Finally introducing common standards best practice enables consistency applied uniformly regardless lo-

cation thereby eliminating inconsistencies arising disparate approaches taken independently hitherto So

far successful implementation seen already evidenced positive results observed thus far namely reduced

waiting times decreased costings increased accuracy along enhanced customer satisfaction rates Overall

outcome represents major step forward improving accessibility quality service delivery provided universally

everywhere Furthermore alongside rationalisation programme announced earlier week aimed optimising

capacity utilisation maximising output via consolidation existing stock portfolio offers further scope im-

provement performance even higher level Given foregoing factors outlined above clear message sent loud

strong terms indeed comes sense urgency required address shortcomings highlighted herein order meet

demands ever growing complexity modern life successfully hence urgent action needed now asap please?

In conclusion reforms represent significant investment designed bring benefits both users providers alike

Therefore vital importance securing necessary buy-in stakeholder groups concerned affected parties en-

sures smooth transition period ahead Otherwise risk falling short expectations set beforehand ultimately

leading potentially catastrophic consequences detrimental effects long term sustainability itself Question

Resolved, That this House recognises Her Majesty’s Government’s duty under section 2(7) of the Justice.

Table 7.9. Finetuned Model Speech - Gemma
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Conservative Party - Llama Model

INTERNATIONAL ORGANISATIONS UK-EU Trade Policy Options

House of Commons Centre-right

"Address the debate on UK-EU Trade Policy Options on INTERNATIONAL ORGANISATIONS."

Generated Response: I am grateful to my right hon. Friend for his response. As he will be aware, I have

long campaigned against our membership of the European Union because we were told that it was not

possible to leave without damaging ourselves economically; yet here we are with an economy growing faster

than any other major advanced country’s. Does this not prove that those who warned us about economic

damage if we left were wrong? Will my right hon. Friend assure me that when negotiations start there will

be no question but that we must take back control over laws relating to trade policy?

Table 7.10. Finetuned Model Speech - Llama

Conservative Party - Mistral Model

INTERNATIONAL RELATIONS Nuclear Weapons (International Relations Committee Report)

House of Commons Centre-right

"Address the debate on Nuclear Weapons (International Relations Committee Report) on INTERNA-

TIONAL RELATIONS."

Generated Response: 2018 is a year of major anniversaries in our history of nuclear weapons. It marks 70

years since atomic bombs were dropped on Japan; it also marks 70 years since NATO was established—I

am sure that will be remembered by many Members on both sides of this House; and it also marks 70

years since the UN General Assembly adopted its first resolution calling for an end to nuclear testing. In

addition, we mark this year the start of negotiations between President Reagan and Mikhail Gorbachev

towards reducing nuclear stockpiles I commend my noble Friend Lord Howell for his work as Chair of

the International Relations Select Committee, which produced the report on nuclear deterrence, "Time to

Stop the Clock", earlier this year. He said at the time that he hoped that the Government would give

serious consideration to all aspects of this important issue. As we have heard today from him and others

who spoke eloquently about these issues during this debate, the committee’s report contains several key

recommendations that I hope the Minister will respond to. These include calls to support multilateral

disarmament efforts, particularly through the conference on the humanitarian impact of nuclear weapons

in December; to ensure that any future strategic defence review includes proposals to reduce the number

of operational warheads carried by each Trident submarine, not just those stored separately ashore; to

increase funding for the alternative delivery vehicle programme; to continue to engage with other states

such as China, India and Pakistan to encourage them to join the global norm against the use or threat of

use of nuclear weapons; and to provide regular updates to Parliament on progress made on implementing

the Government’s non-proliferation treaty obligations.

Table 7.11. Finetuned Model Speech - Mistral

Labour Party - Qwen Model

POLITICS Hong Kong Arrests Under National Security Law

House of Lords Centre-left

"Address the debate on Hong Kong Arrests Under National Security Law on POLITICS."

Generated Response: My Lords, I am grateful to my noble friend Lord Collins for tabling this Urgent

Question today. I associate myself with his comments about human rights lawyer Maya Wang being

detained by Chinese authorities last week It is truly shocking that we have seen more than two dozen

people arrested under China’s national security law over recent days alone; some were simply trying to

exercise their right to free assembly or speak out against the actions of Beĳing. This is just one example of

how the national security law has been used as an instrument of repression since it came into force late

last year We know from Amnesty International and Human Rights Watch reports that the arrests show the

full extent of the chilling effect of the draconian new laws passed by Beĳing in July, which threaten freedom

of expression, association and peaceful protest among other things These latest developments come after

a year marked by escalating threats to civil liberties, including widespread police brutality during pro-

democracy protests across Hong Kong. As well as the detention of Ms Wang, there was also the arrest

earlier this month of Joshua Wong—another young activist who had recently turned down a scholarship

at Harvard University because he believed that education could not be separated from politics. Are the

Government concerned that these latest arrests demonstrate continued disregard for basic freedoms?

Table 7.12. Finetuned Model Speech - Qwen
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Scottish National Party - Yi Model

INTERNATIONAL RELATIONS Flooding: EU Solidarity Fund

House of Commons Centre-left

"Address the debate on Flooding: EU Solidarity Fund on INTERNATIONAL RELATIONS."

Generated Response: I thank the Minister for his response to my urgent question earlier today about

this issue. I am sure that he is aware that last week’s devastating floods have caused huge damage

across Wales—not only flooding but also widespread disruption of power supplies throughout mid-Wales.

As well as seeking support from our own Government here at home, can we seek solidarity with those

affected by these events? Can he update us further on what discussions there will be with other European

Governments over how they might help financially or otherwise with such devastation? Will he make

representations when it comes time for any applications to be made so that we get maximum financial

benefit out of them? Finally, does he agree that while Brexit means leaving Europe physically, not joining

together through co-operation makes absolutely zero sense economically, environmentally or socially? This

shows why Scotland would rather remain part of Europe than leave altogether.

Table 7.13. Finetuned Model Speech - Yi
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Evaluation Framework

8.1 Evaluation Methodology Overview

We implement an evaluation framework to assess how well our trained political speech models

work. Our evaluation uses the following methods: language quality (using perplexity, Distinct-N,

and Self-BLEU), whether the content makes sense (semantic similarity using GRUEN, BERTScore,

and MoverScore), whether the writing style sounds like the political parties and orientation (style and

ideology analysis using word embeddings), and an overall evaluation using an LLM-as-a-Judge.

8.2 Linguistic Quality and Diversity Metrics

8.2.1 Perplexity

Perplexity measures how surprised a language model is when it encounters specific text. Lower

perplexity scores indicate text that seems natural and predictable to the model, while higher scores

suggest text that appears unusual or artificial. In simple terms, perplexity indicates whether AI-

generated political speeches sound human-like or robotic [16].

Perplexity Implementation

We used the official HuggingFace library to calculate perplexity for our political speeches. Hugging-

Face provides a standard, well-tested implementation that is widely used in research. This ensures

our results are reliable and comparable to other studies. We use the evaluate.load("perplexity",

module_type="metric") function, which provides access to the HuggingFace’s perplexity. Input texts are

processed in batches and are tokenized using the AutoTokenizer. We also make use of manual cross-

entropy computation with shifted logits and labels. Our analysis uses GPT-2 base with 117 million

parameters as the evaluation model. GPT-2 was trained on a large variety of text from the internet,

giving it broad knowledge of how natural English text should look. For our evaluation, it processes

a maximum of 512 words per speech, 8 speeches simultaneously in batches, and includes automatic

start token addition.

8.2.2 Distinct-N

Distinct-N metrics evaluate lexical diversity by measuring the ratio of unique n-grams to the total

number of tokens in the generated text. Higher Distinct-N scores indicate more diverse vocabulary and

less repetitive patterns, while lower scores suggest frequent repetition and more formulaic language

generation. We compute scores individually for each speech [22].
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Distinct-N Implementation

We implement Distinct-1, Distinct-2, Distinct-3, and Distinct-4 using the standard sentence-level

formulation to assess vocabulary richness and repetition patterns in political speeches. Following

the established NLTK implementation, we compute Distinct-N as the ratio of unique n-grams to the

total number of tokens in the text [22]. We process speech texts through several preprocessing

stages: lowercasing, whitespace normalization, removal of punctuation (retaining only word char-

acters, spaces, and apostrophes), and tokenization with filtering of short tokens (length ≤ 1) and pure

numeric strings. For each speech, we calculate four distinct metrics using the standard formulation:

Distinct-N =
|unique n-grams|

total tokens
[22]. Specifically, Distinct-1 measures unique unigrams normalized by

text length, capturing basic lexical diversity. Distinct-2 measures unique bigrams normalized by text

length, reflecting phrase-level variety. Distinct-3 and Distinct-4 similarly measure unique trigrams and

4-grams normalized by text length, revealing multi-word phrase patterns and sentence-level structural

choices that indicate sophisticated language use.

8.2.3 Self-BLEU

Self-BLEU measures the similarity between generated texts from the same model. Unlike regular

BLEU which compares generated text to reference text, Self-BLEU compares each generated text to

all other generated texts in the same collection (model). This tells us whether a model is producing

varied content or simply repeating similar phrases and ideas. Lower Self-BLEU scores indicate higher

diversity (good), while higher scores suggest repetitive content (potentially problematic) [39]
1
.

Self-BLEU Implementation

We implemented Self-BLEU using the methodology from DigitalOcean’s automated metrics tutorial.

The approach works by taking each generated speech and calculating its BLEU score against every

other speech in the same model’s generated collection with the same inputs (party, house, orientation,

topic), then averaging all these scores [39].

8.3 Semantic Coherence and Text Quality Evaluation

8.3.1 GRUEN Score

We implement the GRUEN (Grammaticality, non-Redundancy, focUs, structurE, and coNherence)

evaluation framework to assess generated political speech quality. We utilize three core components:

Grammaticality, Non-Redundancy (as penalty), and Focus (as penalty), which combine into a unified

quality metric specifically designed for evaluating neural text generation [38].

Text Preprocessing Following the original GRUEN methodology, we preprocess texts through multi-

ple normalization steps: converting paragraph breaks and newlines to sentence boundaries, normal-

izing multiple periods, handling decimal numbers (replacing matches like "5. 3" with "UNK" to avoid

sentence splitting), and standardizing whitespace. We then tokenize into sentences using NLTK’s

sentence tokenizer and filter out sentences with fewer than two non-punctuation words to ensure

meaningful grammatical evaluation [38].

1
DigitalOcean Community. Automated metrics for evaluating generated text. https://www.digitalocean.com/community/

tutorials/automated-metrics-for-evaluating-generated-text
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Grammaticality Component The grammaticality component combines two complementary neural

approaches:

BERT Masked Language Model: We employ bert-base-cased to compute perplexity scores at the

sentence level, measuring how "surprising" the text is to the model (lower perplexity indicates more

grammatical text). We process each sentence independently and average the perplexity scores across

the entire text.

CoLA Classifier: We use the andeskyl/bert-base-cased-cola model to predict grammatical accept-

ability, providing probability scores between 0 and 1 (higher values indicate greater grammatical ac-

ceptability).

The final grammaticality score combines these components using the original paper’s formulation:

G = α1 · exp(−�1 · PPL) + α2 · CoLA (8.1)

where α1 = 1, �1 = 0.5, α2 = 1, PPL is the BERT perplexity score, and CoLA is the grammatical

acceptability score. The exponential transformation exp(−�1 · PPL) converts high perplexity (indicating

ungrammatical text) into low scores, while equal weights ensure both components contribute equiva-

lently. We then rescale it to [0,1] by scaling it down by factor of 8, shifting the distribution upward by

0.5, and flooring to 0 to prevent negative values [38].

Non-Redundancy Component (Penalty) Non-redundancy measures lexical and phrasal diversity

using string-based similarity metrics between consecutive sentences. Following the original imple-

mentation, we compute three complementary metrics:

Longest Common Subsequence (LCS): Measures the longest sequence of words appearing in order

in both sentences, normalized by sentence length.

Edit Distance: Computes the Levenshtein distance (minimum character-level edits) between sen-

tences, normalized by the maximum sentence length.

Word Overlap: Calculates the proportion of shared words between consecutive sentences using

set intersection.

These metrics are averaged across all consecutive sentence pairs to produce a redundancy score,

which is then converted to a penalty term. Higher redundancy (lower diversity) results in larger

penalties that reduce the final GRUEN score [38].

Focus Component (Penalty) Focus measures topical coherence by assessing semantic consistency

across sentences. We employ two complementary semantic similarity approaches:

Word Mover’s Distance (WMD): Computes the semantic distance between consecutive sentences

using word embeddings from spaCy’s en_core_web_md model. WMD measures the minimum "travel

distance" required to transform one sentence into another in the embedding space.

SpaCy Semantic Similarity: Calculates cosine similarity between sentence embeddings generated

by spaCy’s neural network.

These metrics are averaged across all consecutive sentence pairs. Lower semantic coherence (in-

dicating topic drift) produces larger penalties that reduce the final GRUEN score [38].

Final GRUEN Score The final score combines grammaticality and penalties using the original for-

mulation:

GRUEN = min
(
1, max

(
0, G + Rpenalty + Fpenalty

))
(8.2)
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where G is the grammaticality score (positive contribution), while Rpenalty and Fpenalty are negative

terms that reduce the score when redundancy or focus issues are detected. The min-max clamping

ensures scores remain in the [0, 1] range [38].

8.3.2 BERTScore

BERTScore uses a pre-trained BERT model to measure how similar two texts are in meaning.

Unlike older methods that just count matching words, BERTScore understands what the text actually

means and the context around words. In our research, BERTScore is used to evaluate how realistic

speeches language models generate, by measuring the semantic similarity between N=6 real ParlaMint-

GB dataset speeches and the speech the model generated. The evaluation uses the same methodology

as research and HuggingFace, providing precision, recall, and F1 scores that indicate how well each

model understands and generates political speeches [34].

BERTScore Implementation

BERTScore was computed using the official HuggingFace evaluate library implementation [34]
2
.

The metric was loaded using evaluate.load("bertscore") with the following configuration:

• lang="en": Specified English language for automatic model selection

• model_type=None: Enabled automatic selection of the recommended model for English (RoBERTa-

large [34])

8.3.3 MoverScore

MoverScore Implementation

We implement MoverScore following the standard methodology to measure semantic similarity be-

tween generated political speeches and real reference speeches. MoverScore quantifies the semantic

distance by computing the optimal transport cost required to transform one text’s embedding distribu-

tion into another’s, leveraging contextualized word embeddings and inverse document frequency (IDF)

weighting [36]. For each generated speech, we selected the N=6 most semantically similar speeches

from the original dataset as references, measured by cosine similarity between speech embeddings and

the corresponding generation context prompt embedding.

Model Architecture and Embedding Generation We employ distilbert-base-uncased to generate

contextual embeddings for both reference and generated speeches. The model processes tokenized

text through its transformer architecture, and we extract embeddings from the final hidden layer. Text

preprocessing includes truncating speeches to 2000 characters and limiting tokenized sequences to

512 tokens (including [CLS] and [SEP] special tokens) to comply with model constraints.

IDF Computation and Weighting We compute corpus-level IDF weights using the standard formu-

lation: IDF(w) = log
(

N+1

df (w)+1

)
, where N is the total number of documents and df (w) is the document

frequency of word w. IDF weights are calculated separately for reference and generated speech cor-

pora using multiprocessing for efficiency, then applied to token embeddings to emphasize semantically

important words while down-weighting common terms.

2
Hugging Face. Evaluate: A library for easily evaluating machine learning models and datasets. https://github.com/

huggingface/evaluate, 2022
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Token Filtering Before computing similarity, we filter three categories of tokens to focus on mean-

ingful semantic content:

• Punctuation marks (using Python’s string.punctuation)

• BERT subword tokens (marked with ‘##’ prefix)

• Stop words (optional parameter, empty by default in our implementation)

Filtered tokens have their embeddings zeroed and IDF weights set to zero, effectively excluding them

from the optimal transport calculation.

Earth Mover’s Distance Calculation We compute the Earth Mover’s Distance (EMD) using the

Python Optimal Transport (POT) library’s ot.emd() function. For each reference-generated pair:

1. Concatenate reference and generated embeddings into a unified embedding matrix

2. Normalize embeddings to unit length: ê = e
∥e∥+ϸ where ϸ = 10

−30

3. Compute pairwise L2 distances between all token embeddings using batched operations

4. Construct probability distributions c1 and c2 from IDF-weighted tokens, normalized to sum to 1

5. Solve the optimal transport problem: flow = EMD(c1, c2, D) where D is the distance matrix

6. Compute final score: MoverScore = 1

1+
∑

i,j flowi,j×Di,j

The scoring formula transforms the total transport cost into a similarity measure between 0 and 1,

where higher scores indicate greater semantic alignment between reference and generated text.

8.4 Political Spectrum and Party Alignment

We developed an analysis system to examine how models write political speeches, focusing on

both political party style and political orientation content [27, 31]. The system reads speech texts and

measures various characteristics to understand the linguistic patterns and political positioning of the

model’s generated content. This method is based on semantic similarity measurements between gen-

erated content and real parliamentary speeches from the training corpus. Our methodology employs

two complementary metrics: Political Spectrum Alignment (PSA) and Party Alignment, both computed

using dense vector representations derived from a pre-trained sentence transformer model (all-mpnet-

base-v2). This approach enables us to evaluate whether the fine-tuned models successfully learned

to generate politically coherent content that aligns with the specified political orientations and party

affiliations provided in the input prompts.

The evaluation process begins by constructing reference embeddings from authentic parliamentary

speeches in the training dataset. For Political Spectrum Alignment, we group all real speeches ac-

cording to their political orientation codes (ranging from Far-left to Far-right on a 13-point scale) and

compute centroid embeddings for each orientation category by averaging the sentence embeddings of

all speeches within that category. Similarly, for Party Alignment evaluation, we create party-specific

centroid embeddings by grouping real speeches by party affiliation and computing their average repre-

sentations. These reference centroids serve as archetypal representations of genuine political discourse

for each orientation and party, capturing the distinctive linguistic patterns, rhetorical strategies, and

thematic emphases characteristic of different political positions.
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To evaluate each generated speech, we encode it using the same sentence transformer model and

compute its cosine similarity to all reference centroids. For PSA scoring, we identify the closest political

orientation centroid and calculate an alignment score based on the ideological distance between the

expected orientation (specified in the generation prompt) and the closest matching orientation. The

PSA score ranges from 0 to 1, where higher scores indicate that the generated speech semantically

aligns with content from the intended political position. Specifically, the score is computed as PSA =

cosine_similarity(speech, embedding)∗max(0, 100− d
12
×100), where d represents the absolute distance

between the expected and predicted orientations on the political spectrum scale. For Party Alignment,

we compute the cosine similarity between the generated speech embedding and the expected party’s

centroid embedding, on a 0-1 scale. This metric assesses whether the model successfully captures

party-specific linguistic characteristics beyond general ideological positioning.

8.5 LLM-as-a-Judge Evaluation

We implemented an automated evaluation system used to assess the quality of generated parlia-

mentary speeches. The system employs Flow-Judge-v0.1, a 3.8B parameter evaluation model, to score

speeches across six dimensions using a 10-point scale.

All speeches are evaluated on six metrics:

1. Coherence (j_coh): Logical flow and structural clarity

2. Conciseness (j_conc): Efficiency of expression within parliamentary context

3. Relevance (j_rel): Coverage of prompt requirements

4. Authenticity (j_auth): Naturalness of Westminster discourse

5. Political Appropriateness (j_polapp): Alignment with party positions

6. Overall Quality (j_qual): Persuasiveness and argumentation strength

Each metric uses a structured prompt template with explicit evaluation criteria, a 10-point scoring

rubric, and detailed instructions for the judge model.

8.5.1 Metric 1: Coherence

Evaluation Criteria

Does the speech follow a clear logical progression? Are arguments well-connected and ideas flow

naturally with appropriate parliamentary structure?

Prompt Template and Scoring Rubric

# GOAL

You are a senior parliamentary discourse analyst with 15 years of

experience evaluating political speech quality in Westminster-style

parliaments. Your task is to evaluate the coherence (logical flow

and structure) of this UK parliamentary speech.

# OUTPUT
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Below is the parliamentary speech to evaluate:

<output>

{{ANSWER}}

</output>

# EVALUATION CRITERIA AND SCORING RUBRIC

<evaluation_criteria>

Does the speech follow a clear logical progression? Are arguments

well-connected? Is parliamentary structure maintained?

</evaluation_criteria>

<scoring_rubric>

- Score 1-2: Incoherent. No discernible logical structure,

fragmented or nonsensical.

- Score 3-4: Poor coherence. Disjointed arguments, unclear

progression, difficult to follow main point.

- Score 5-6: Adequate coherence. Main argument identifiable but

weak connections, some repetition or tangents.

- Score 7-8: Strong coherence. Mostly logical progression with

minor transition issues, follows parliamentary structure.

- Score 9-10: Exceptional logical flow. Each point builds naturally,

clear thesis and conclusion, perfect parliamentary structure.

</scoring_rubric>

# INSTRUCTIONS FOR THE EVALUATION

1. Before scoring, analyze the speech structure step-by-step.

2. Quote specific evidence or patterns from the speech supporting

your assessment.

3. Use the full 1-10 range - don’t default to middle scores (5-7)

without justification.

4. Pay attention to how well arguments connect and whether

parliamentary conventions are maintained.

## FORMAT FOR THE EVALUATION

- Write your verbal feedback inside <feedback> tags without any

surrounding text.

- Write the numeric score inside <score> tags, always after the

feedback.

Please accurately evaluate the speech. Strictly adhere to the

evaluation criteria and rubric.
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8.5.2 Metric 2: Conciseness

Evaluation Criteria

Is the message conveyed efficiently without excessive verbosity, within the context of formal parlia-

mentary speech where longer discourse is expected?

Prompt Template and Scoring Rubric

# GOAL

You are a senior parliamentary discourse analyst with 15 years of

experience evaluating political speech quality. Your task is to

evaluate the conciseness of this UK parliamentary speech using

parliamentary standards (where formal speeches are naturally longer

than everyday communication).

# OUTPUT

Below is the parliamentary speech to evaluate:

<output>

{{ANSWER}}

</output>

# EVALUATION CRITERIA AND SCORING RUBRIC

<evaluation_criteria>

Does the speech convey its message efficiently without unnecessary

verbosity? Remember: Parliamentary speeches are naturally more

formal and verbose - assess within this context.

</evaluation_criteria>

<scoring_rubric>

- Score 1-2: Extremely verbose. Main argument lost among unrelated

statements, excessive repetition, rambling.

- Score 3-4: Verbose. Significant digression into unrelated matters,

could be 30-50% shorter while preserving intent.

- Score 5-6: Adequate. Main point clear but diluted by length or

tangential references, some ceremonial language adds weight.

- Score 7-8: Concise. Clear focus with minor digressions

(constituency examples), formal niceties don’t impede core message.

- Score 9-10: Highly concise for parliamentary standard. Focused

and disciplined, each point supports main argument, courtesy

phrases used sparingly.

</scoring_rubric>

# INSTRUCTIONS FOR THE EVALUATION

1. Identify the main argument and check for focus vs digressions.

2. Assess if courtesy and formality serve rhetorical purpose

(parliamentary context).
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3. Detect unnecessary repetition or verbose phrasing.

4. Remember: Parliamentary speeches are naturally longer than

everyday communication - adjust expectations accordingly.

5. Quote examples showing appropriate length or excessive verbosity.

## FORMAT FOR THE EVALUATION

- Write your verbal feedback inside <feedback> tags without any

surrounding text.

- Write the numeric score inside <score> tags, always after the

feedback.

Please accurately evaluate the speech. Strictly adhere to the

evaluation criteria and rubric.

8.5.3 Metric 3: Relevance

Evaluation Criteria

Does the speech directly address the prompt/question and cover all core concerns specified in the

instruction?

Prompt Template and Scoring Rubric

# GOAL

You are a parliamentary procedures expert with 15 years analyzing

parliamentary questions and responses. Your task is to evaluate the

relevance of this UK parliamentary speech - whether it directly

addresses the prompt/question asked and covers core concerns.

# OUTPUT

Below is the parliamentary speech to evaluate:

<output>

{{ANSWER}}

</output>

# EVALUATION CRITERIA AND SCORING RUBRIC

<evaluation_criteria>

Does the speech directly address the prompt/question asked and cover

the core concerns? Prompt was: "{{PROMPT}}"

</evaluation_criteria>

<scoring_rubric>

- Score 1-2: Non-answer. Completely ignores prompt, discusses

unrelated topics.

- Score 3-4: Weak answer. Barely addresses prompt (<50%), mostly

generic, significant irrelevant content.

- Score 5-6: Partial answer. Addresses main topic but misses key
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aspects (50-75%), some tangents.

- Score 7-8: Strong answer. Addresses MOST aspects (75%+), provides

specifics, minimal irrelevant content.

- Score 9-10: Comprehensive answer. Addresses ALL aspects with

specific details, no tangents, complete coverage.

</scoring_rubric>

# INSTRUCTIONS FOR THE EVALUATION

1. Identify what specifically is being asked in the prompt.

2. Check coverage of each requirement mentioned in the prompt.

3. Assess specificity (concrete details vs vague generalities).

4. Detect tangents and estimate percentage of off-topic content.

5. For generic prompts, evaluate if response matches expected

political context.

6. Quote evidence showing relevance or lack thereof.

## FORMAT FOR THE EVALUATION

- Write your verbal feedback inside <feedback> tags without any

surrounding text.

- Write the numeric score inside <score> tags, always after the

feedback.

Please accurately evaluate the speech. Strictly adhere to the

evaluation criteria and rubric.

8.5.4 Metric 4: Authenticity

Evaluation Criteria

Does this sound like genuine Westminster discourse or AI-generated text? Consider language

patterns, rhetorical devices, and parliamentary conventions.

Prompt Template and Scoring Rubric

# GOAL

You are a political discourse specialist with 20 years of experience

studying UK parliamentary speeches, with deep knowledge of party

ideologies and rhetorical patterns. Your task is to evaluate whether

this speech sounds like genuine Westminster discourse or AI-generated

text.

# OUTPUT

Below is the parliamentary speech to evaluate:

<output>

{{ANSWER}}

</output>

Diploma Thesis 77



Chapter 8. Evaluation Framework

# EVALUATION CRITERIA AND SCORING RUBRIC

<evaluation_criteria>

Does this sound like real parliamentary speech or AI-generated text?

Are parliamentary conventions natural or forced? Is the language

authentic to Westminster discourse? Context: Party={{PARTY}},

Topic={{TOPIC}}

</evaluation_criteria>

<scoring_rubric>

- Score 1-2: Completely artificial. Marketing-like or chatbot-like

with obvious AI patterns, no parliamentary structure.

- Score 3-4: Obviously artificial. Generic corporate-speak,

essay-like writing, missing or forced parliamentary conventions.

- Score 5-6: Acceptable but noticeably artificial. Template-like

but correct format, sounds scripted with stiff language.

- Score 7-8: Convincing. Mostly natural parliamentary discourse

with minor artificiality, authentic flow overall.

- Score 9-10: Highly authentic. Indistinguishable from real speech,

natural conventions, party-appropriate rhetoric.

</scoring_rubric>

# INSTRUCTIONS FOR THE EVALUATION

1. Read the speech twice: first for overall impression, second for

detailed analysis.

2. Check if "Mr. Speaker" and appropriate House references are used

naturally (not forced).

3. Assess if language sounds natural or scripted/polished.

4. Detect AI patterns: generic phrases, perfect grammar,

corporate-speak, marketing tone.

5. Quote specific evidence showing authenticity or artificiality.

## FORMAT FOR THE EVALUATION

- Write your verbal feedback inside <feedback> tags without any

surrounding text.

- Write the numeric score inside <score> tags, always after the

feedback.

Please accurately evaluate the speech. Strictly adhere to the

evaluation criteria and rubric.

8.5.5 Metric 5: Political Appropriateness

Evaluation Criteria

Does the stance align with the specified party’s typical positions and rhetoric on this topic?
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Prompt Template and Scoring Rubric

# GOAL

You are a political discourse specialist with 20 years studying UK

parliamentary speeches and party ideologies. Your task is to evaluate

political appropriateness - whether the speech’s stance aligns with

the party’s typical positions and uses appropriate Westminster

parliamentary conventions.

# OUTPUT

Below is the parliamentary speech to evaluate:

<output>

{{ANSWER}}

</output>

# EVALUATION CRITERIA AND SCORING RUBRIC

<evaluation_criteria>

Does the stance align with the party’s typical positions on this

topic? Does the language and framing match Westminster parliamentary

conventions? Context: Party={{PARTY}}, Topic={{TOPIC}}

</evaluation_criteria>

<scoring_rubric>

- Score 1-2: Completely misaligned. Opposes party’s core positions

or uses rival party’s rhetoric.

- Score 3-4: Poor alignment. Key positions contradict party stance

or inappropriate framing for the party.

- Score 5-6: Somewhat aligned. Generic positions that are slightly

off-brand or could be any party.

- Score 7-8: Good alignment. Mostly consistent with party stance,

language matches party’s typical rhetoric.

- Score 9-10: Perfect alignment. Language and framing exactly match

party’s typical positions and rhetoric.

</scoring_rubric>

# INSTRUCTIONS FOR THE EVALUATION

1. Consider the party’s known positions on this topic based on their

political orientation.

2. Check if speech aligns with expected party stance and framing.

3. Assess if language and rhetoric are appropriate for this specific

party.

4. Detect contradictions or use of opposing party’s rhetoric.

5. Quote evidence showing appropriate or inappropriate party

alignment.

## FORMAT FOR THE EVALUATION

Diploma Thesis 79



Chapter 8. Evaluation Framework

- Write your verbal feedback inside <feedback> tags without any

surrounding text.

- Write the numeric score inside <score> tags, always after the

feedback.

Please accurately evaluate the speech. Strictly adhere to the

evaluation criteria and rubric.

8.5.6 Metric 6: Overall Quality

Evaluation Criteria

How effective is this as political communication? Is the argumentation sophisticated and persua-

sive?

Prompt Template and Scoring Rubric

# GOAL

You are a political discourse specialist with 20 years studying UK

parliamentary speeches. Your task is to evaluate the overall quality

of this UK parliamentary speech - its effectiveness as political

communication, persuasiveness, and sophistication.

# OUTPUT

Below is the parliamentary speech to evaluate:

<output>

{{ANSWER}}

</output>

# EVALUATION CRITERIA AND SCORING RUBRIC

<evaluation_criteria>

How effective is this speech as political communication? Would it

genuinely influence parliamentary debate? Is the argumentation

sophisticated and compelling? Context: Party={{PARTY}},

Topic={{TOPIC}}

</evaluation_criteria>

<scoring_rubric>

- Score 1-2: Very poor. Nonsensical arguments, no persuasive value,

would damage speaker’s credibility.

- Score 3-4: Weak. Poor argumentation, logic gaps, lacks evidence,

unconvincing presentation.

- Score 5-6: Adequate. Makes its point but not compelling, basic

arguments without depth, functional but forgettable.

- Score 7-8: Strong. Clear arguments with good evidence,

professional and convincing, respectable contribution.

- Score 9-10: Exceptional. Sophisticated argumentation, compelling
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evidence, memorable phrasing, would genuinely influence debate.

</scoring_rubric>

# INSTRUCTIONS FOR THE EVALUATION

1. Assess argumentation quality: Is logic sound? Are claims

supported?

2. Evaluate evidence: Does speech use specific data, examples, or

reasoning?

3. Check rhetorical devices: Are there memorable phrases or

effective persuasion techniques?

4. Consider potential impact: Would this speech influence other

parliamentarians?

5. Be tough: Real parliamentary speeches often score 6-8, not 9-10.

6. Quote evidence showing strong or weak argumentation.

## FORMAT FOR THE EVALUATION

- Write your verbal feedback inside <feedback> tags without any

surrounding text.

- Write the numeric score inside <score> tags, always after the

feedback.

Please accurately evaluate the speech. Strictly adhere to the

evaluation criteria and rubric.

8.5.7 Implementation Details

Model Configuration

The evaluation system uses the following configuration:

• Judge Model: Flow-Judge-v0.1 (3.8B parameters, 4-bit quantization)

• Batch Size: 32 speeches per batch

• Temperature: 0.3 (for consistent scoring)

• Max New Tokens: 2000 (for detailed feedback)

• Default Score: -1 (for missing/error values)
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Statistical Methodology and Results

9.1 Performance Analysis

Summary Statistics For each model m and configuration c ∈ {baseline, finetuned}, we calculate

mean and standard deviation across all evaluation metrics:

µm,c(metric) =
1

|S|

∑
s∈S

metric(s, m, c) (9.1)

where S is the set of all evaluated speeches.

Fine-Tuning Impact Improvement from baseline to fine-tuned models is calculated as percentage

change:

∆m(metric) =


µm,ft−µm,base

µm,base

× 100 if higher is better

µm,base−µm,ft

µm,base

× 100 if lower is better

(9.2)

Metrics where higher values are better include: dist_n, GRUEN, BERTScore, MoverScore, PSA,

party_align, and all LLM-judge dimensions. Metrics where lower is better: PPL, self-BLEU.

9.2 Statistical Significance Testing

T-Tests We employed two types of t-tests to assess statistical significance across different com-

parisons. For pairwise model comparisons, we used paired t-tests to evaluate whether performance

differences between models were statistically significant when evaluated on the same speeches. This

paired design controls for speech-level variability by treating each speech as its own control. The test

compares performance vectors (x1, x2, . . . , xn) and (y1, y2, . . . , yn) for models A and B, calculating:

t =
d̄

sd/
√

n
(9.3)

where d̄ is the mean of paired differences and sd is the standard deviation of differences.

For baseline versus fine-tuned comparisons, we used independent samples t-tests (ttest_ind),

as these represent different model instances. Significance thresholds: p < 0.05 (*), p < 0.01 (**),

p < 0.001 (***).

Effect Sizes To quantify the magnitude of differences beyond statistical significance, we calculated

Cohen’s d for all t-tests:

d =
µ1 − µ2

σpooled

(9.4)
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where σpooled =

√
(σ2

1
+ σ2

2
)/2. Interpretation: |d| < 0.2 (negligible), 0.2 ≤ |d| < 0.5 (small), 0.5 ≤ |d| <

0.8 (medium), |d| ≥ 0.8 (large).

Additionally, 95% confidence intervals were calculated for all mean differences:

CI95% = (µ1 − µ2) ± 1.96 × SEdiff (9.5)

where SEdiff =

√
σ2

1
/n1 + σ2

2
/n2.

ANOVA Tests All ANOVA analyses use one-way between-subjects design with identical methodology.

For each test, we report both the F-statistic (for significance testing) and eta-squared (for effect size):

F =
MSbetween

MSwithin

=

∑k
i=1

ni(ȳi − ȳ)2/(k − 1)∑k
i=1

∑ni
j=1

(yij − ȳi)2/(N − k)
(9.6)

η2 =
SSbetween

SStotal

=

∑k
i=1

ni(ȳi − ȳ)2∑k
i=1

∑ni
j=1

(yij − ȳ)2
(9.7)

Post-Hoc Pairwise Comparisons Following significant ANOVA results, we conducted pairwise t-tests

to identify which specific groups differed. For 21 topics, this required

(
21

2

)
= 210 comparisons. These

comparisons also received Bonferroni correction.

Multiple Comparison Correction When conducting multiple hypothesis tests simultaneously, the

probability of making at least one Type I error (false positive) increases. To control the familywise error

rate (FWER), we applied Bonferroni correction to all pairwise comparison p-values.

The Bonferroni method adjusts the significance threshold as:

αcorrected =
α

m
(9.8)

where α = 0.05 is the original significance level and m is the total number of comparisons conducted.

This correction was applied to:

• Pairwise model comparisons (fine-tuned models compared on same speeches)

• Fine-tuning impact tests (baseline vs. fine-tuned for each model × metric)

• Context difficulty tests (hardest vs. easiest topics and parties)

For example, with 70 total comparisons, the corrected threshold becomes αcorrected = 0.05/70 ≈

0.0007. Results are reported with both uncorrected and Bonferroni-corrected significance levels. Only

findings that remain significant after correction are highlighted in tables with asterisk notation.

This conservative approach prioritizes minimizing false positives over maximizing true positive

discovery, ensuring that reported significant differences are robust and unlikely to be due to chance.

9.3 Context Stability Analysis

We measure performance consistency across three contextual dimensions using coefficient of vari-

ation (CV). For each dimension, performance is calculated as the average across all evaluation metrics.
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Topic Stability Variance in performance across 21 EUROVOC policy domains (e.g., Finance, Law,

Agriculture, Environment, Social Questions). Lower variance indicates more consistent performance

regardless of topic.

Party Stability Variance in performance across 11 UK political parties (Conservative, Labour, Liberal

Democrats, Green Party, etc.). Measures whether the model performs equally well for all parties.

Orientation Stability Variance across the political spectrum (13 levels from -6 to +6, where -6 is

far-left and +6 is far-right). Tests for ideological bias in model performance.

For each dimension, stability is computed as:

Stability(c) =
100

1 +
σc
µc

(9.9)

where σc is the standard deviation of mean performance across context levels and µc is the overall

mean. Higher values indicate more stable performance.

Composite Stability Overall stability score combining all three dimensions:

Composite =
1

3

∑
c∈{topic, party, orientation}

Stability(c) (9.10)

9.4 Validation Analyses

Correlation Tests We conducted correlation analyses to validate evaluation metrics and detect po-

tential biases:

Pearson Correlation measures linear relationships between continuous variables:

r =

∑
(xi − x̄)(yi − ȳ)√∑

(xi − x̄)2
∑

(yi − ȳ)2

(9.11)

Applications include: (1) testing speech length correlations with metrics to detect confounds, (2)

assessing agreement between computational metrics and LLM-judge scores, and (3) examining inter-

dimension correlations among LLM-judge dimensions.

Spearman Rank Correlation assesses monotonic relationships using ranks, providing robustness

to outliers. Used to compare model rankings between different evaluation approaches.

Interpretation: |r | > 0.7 (strong), 0.3 < |r | < 0.7 (moderate), |r | < 0.3 (weak).

9.5 Context Difficulty Analysis

Difficulty Scores For each context dimension (topic, party, orientation), we computed difficulty

scores to rank contexts by challenge level. Difficulty is calculated as the inverse of normalized perfor-

mance:

Difficulty = 1 −
1

|Metrics|

|Metrics|∑
i=1

Performance
normalized

i (9.12)

All metrics were normalized to [0,1] scale before averaging, accounting for different scales and

directionality (e.g., PPL: 20-100 with lower better; LLM-judge: 1-10 with higher better).
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Contexts were ranked by difficulty score, enabling identification of the most challenging topics (e.g.,

Law, Finance) and parties for model performance.

9.6 Results

We evaluated 27,560 generated speeches using our evaluation framework. This section presents

fine-tuning effectiveness and performance patterns across political parties, topic domains, and ideo-

logical orientations.

9.6.1 Overview and Fine-Tuning Impact

Table 9.1 presents metric results organized by our framework assessment categories. Fine-tuned

models consistently outperform baselines, with Llama achieving superior performance. Fine-tuned

models showed substantially reduced variance, across all political contexts. Extended context windows

(128k tokens) and larger vocabularies contribute to architectural advantages.

Pairwise t-tests confirm statistical significance of fine-tuning effects (45 out of 70 comparisons).

Model architectures exhibited differential responsiveness: Yi and Llama achieved notable improve-

ments (11/14 metrics, 79%), while others showed more selective gains (improvements marked with ∗

in Table 9.1). Notably, our novel political authenticity metrics (PSA and Party Align) displayed strong

responsiveness to fine-tuning. All five models significantly improved PSA (p < 0.001), with effect sizes

ranging from small to very large (d = 0.141 − 1.045). Party Align showed similar patterns (4 of 5 mod-

els improved, d = 0.099− 1.221). These substantial effects validate that our embedding based metrics

capture critical political authenticity dimensions unavailable to conventional evaluation.

Model Linguistic Quality Semantic Coherence Political Authenticity

PPL ↓ Dist-N ↑ Self-BLEU ↓ J_Coh ↑ J_Conc ↑ GRUEN ↑ BERTScore ↑ MoverScore ↑ J_Rel ↑ PSA ↑ Party Align ↑ J_Auth ↑ J_PolApp ↑ J_Qual ↑

Llama 3.1 8B (B) 60.854 ± 35.842 0.988 ± 0.019 0.006 ± 0.003 7.041 ± 2.477 5.935 ± 3.104 0.539 ± 0.081 0.803 ± 0.015 0.505 ± 0.007 5.465 ± 2.952 0.399 ± 0.142 0.504 ± 0.134 4.403 ± 2.662 6.177 ± 2.587 4.791 ± 2.412

Llama 3.1 8B (F) 31.724 ± 8.305 0.974 ± 0.017 0.018 ± 0.010 7.915 ± 1.102 7.129 ± 2.607 0.508 ± 0.145 0.820 ± 0.011 0.511 ± 0.006 6.139 ± 2.585 0.487 ± 0.138 0.576 ± 0.107 6.106 ± 3.004 7.277 ± 1.565 5.399 ± 2.231

Gemma 2 9B (B) 89.784 ± 47.412 0.992 ± 0.007 0.008 ± 0.004 7.788 ± 1.315 4.784 ± 3.369 0.526 ± 0.067 0.804 ± 0.017 0.508 ± 0.007 5.782 ± 2.491 0.444 ± 0.142 0.543 ± 0.118 3.837 ± 2.346 6.498 ± 2.049 4.442 ± 1.992

Gemma 2 9B (F) 101.578 ± 60.859 0.990 ± 0.022 0.010 ± 0.006 7.507 ± 1.483 5.006 ± 3.512 0.501 ± 0.082 0.804 ± 0.019 0.510 ± 0.006 5.529 ± 2.497 0.498 ± 0.137 0.590 ± 0.101 4.209 ± 2.531 7.293 ± 1.614 4.950 ± 1.922

Mistral 7B v0.3 (B) 31.280 ± 18.847 0.966 ± 0.053 0.008 ± 0.005 6.598 ± 2.962 6.899 ± 3.196 0.555 ± 0.099 0.810 ± 0.013 0.505 ± 0.007 5.418 ± 3.179 0.418 ± 0.147 0.521 ± 0.132 4.237 ± 2.783 5.617 ± 2.739 4.179 ± 2.645

Mistral 7B v0.3 (F) 29.562 ± 10.953 0.972 ± 0.019 0.016 ± 0.012 7.961 ± 1.090 8.962 ± 2.009 0.552 ± 0.086 0.825 ± 0.010 0.508 ± 0.007 5.681 ± 2.928 0.437 ± 0.139 0.507 ± 0.122 3.983 ± 2.738 6.382 ± 2.096 3.727 ± 2.084

Qwen2 7B (B) 44.927 ± 21.841 0.981 ± 0.024 0.020 ± 0.014 7.911 ± 1.238 5.928 ± 1.663 0.488 ± 0.135 0.803 ± 0.009 0.508 ± 0.006 6.904 ± 2.373 0.444 ± 0.141 0.560 ± 0.116 6.565 ± 2.592 7.291 ± 1.796 6.348 ± 1.653

Qwen2 7B (F) 36.090 ± 9.199 0.982 ± 0.012 0.017 ± 0.009 8.060 ± 0.890 7.625 ± 2.702 0.539 ± 0.085 0.821 ± 0.010 0.512 ± 0.006 6.009 ± 2.679 0.488 ± 0.136 0.572 ± 0.106 5.731 ± 3.011 7.138 ± 1.620 5.014 ± 2.092

YI 6B (B) 82.100 ± 57.364 0.990 ± 0.013 0.006 ± 0.005 6.741 ± 2.617 4.303 ± 3.658 0.563 ± 0.049 0.799 ± 0.020 0.505 ± 0.007 4.490 ± 2.869 0.343 ± 0.145 0.423 ± 0.151 2.981 ± 1.971 5.385 ± 2.638 3.083 ± 2.117

YI 6B (F) 42.893 ± 13.558 0.987 ± 0.009 0.016 ± 0.009 8.043 ± 0.743 6.856 ± 2.837 0.537 ± 0.082 0.817 ± 0.011 0.511 ± 0.006 5.984 ± 2.599 0.493 ± 0.139 0.582 ± 0.102 6.102 ± 2.878 7.326 ± 1.489 5.392 ± 2.076

Table 9.1. Complete Performance Comparison between Baseline (B) and Fine-Tuned (F) Models by
Conceptual Assessment Categories

Table 9.2 presents complete pairwise t-test results comparing baseline and fine-tuned models

across all evaluation metrics, including p-values, effect sizes, and significance after Bonferroni correc-

tion.
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Test Type Comparison Metric t-statistic p-value Cohen’s d Mean Diff

Fine-Tuning Impact llama: Baseline vs Fine-tuned PPL -42.093 0.0000 -1.134 -29.5273

Fine-Tuning Impact llama: Baseline vs Fine-tuned Dist-N -28.085 0.0000 -0.757 -0.0140

Fine-Tuning Impact llama: Baseline vs Fine-tuned Self-BLEU 54.928 0.0000 1.499 0.0119

Fine-Tuning Impact llama: Baseline vs Fine-tuned GRUEN -16.938 0.0000 -0.456 -0.0546

Fine-Tuning Impact llama: Baseline vs Fine-tuned BERTScore 45.713 0.0000 1.231 0.0150

Fine-Tuning Impact llama: Baseline vs Fine-tuned MoverScore 27.713 0.0000 0.747 0.0048

Fine-Tuning Impact llama: Baseline vs Fine-tuned PSA 23.746 0.0000 0.648 0.0907

Fine-Tuning Impact llama: Baseline vs Fine-tuned Party Align 22.698 0.0000 0.611 0.0739

Fine-Tuning Impact llama: Baseline vs Fine-tuned J_Coh 16.528 0.0000 0.445 0.8599

Fine-Tuning Impact llama: Baseline vs Fine-tuned J_Conc 16.016 0.0000 0.431 1.2362

Fine-Tuning Impact llama: Baseline vs Fine-tuned J_Rel 9.013 0.0000 0.243 0.6684

Fine-Tuning Impact llama: Baseline vs Fine-tuned J_Auth 23.204 0.0000 0.625 1.7689

Fine-Tuning Impact llama: Baseline vs Fine-tuned J_PolApp 18.941 0.0000 0.510 1.0925

Fine-Tuning Impact llama: Baseline vs Fine-tuned J_Qual 9.903 0.0000 0.267 0.6190

Fine-Tuning Impact gemma: Baseline vs Fine-tuned PPL 8.583 0.0000 0.231 12.5989

Fine-Tuning Impact gemma: Baseline vs Fine-tuned Dist-N -4.927 0.0000 -0.133 -0.0021

Fine-Tuning Impact gemma: Baseline vs Fine-tuned Self-BLEU 18.335 0.0000 0.501 0.0026

Fine-Tuning Impact gemma: Baseline vs Fine-tuned GRUEN -22.653 0.0000 -0.610 -0.0464

Fine-Tuning Impact gemma: Baseline vs Fine-tuned PSA 14.218 0.0000 0.388 0.0543

Fine-Tuning Impact gemma: Baseline vs Fine-tuned Party Align 15.775 0.0000 0.425 0.0469

Fine-Tuning Impact gemma: Baseline vs Fine-tuned J_Coh -7.397 0.0000 -0.199 -0.2794

Fine-Tuning Impact gemma: Baseline vs Fine-tuned J_Auth 5.658 0.0000 0.152 0.3726

Fine-Tuning Impact gemma: Baseline vs Fine-tuned J_PolApp 16.112 0.0000 0.434 0.8001

Fine-Tuning Impact gemma: Baseline vs Fine-tuned J_Qual 9.651 0.0000 0.260 0.5073

Fine-Tuning Impact mistral: Baseline vs Fine-tuned PPL -4.946 0.0000 -0.133 -2.0489

Fine-Tuning Impact mistral: Baseline vs Fine-tuned Dist-N 5.139 0.0000 0.138 0.0054

Fine-Tuning Impact mistral: Baseline vs Fine-tuned Self-BLEU 33.917 0.0000 0.926 0.0086

Fine-Tuning Impact mistral: Baseline vs Fine-tuned BERTScore 47.147 0.0000 1.270 0.0134

Fine-Tuning Impact mistral: Baseline vs Fine-tuned MoverScore 7.821 0.0000 0.211 0.0015

Fine-Tuning Impact mistral: Baseline vs Fine-tuned PSA 5.168 0.0000 0.141 0.0201

Fine-Tuning Impact mistral: Baseline vs Fine-tuned Party Align -4.586 0.0000 -0.124 -0.0157

Fine-Tuning Impact mistral: Baseline vs Fine-tuned J_Coh 22.823 0.0000 0.615 1.3716

Fine-Tuning Impact mistral: Baseline vs Fine-tuned J_Conc 28.815 0.0000 0.776 2.0922

Fine-Tuning Impact mistral: Baseline vs Fine-tuned J_Rel 3.850 0.0001 0.104 0.3160

Fine-Tuning Impact mistral: Baseline vs Fine-tuned J_PolApp 11.594 0.0000 0.312 0.7605

Fine-Tuning Impact mistral: Baseline vs Fine-tuned J_Qual -6.806 0.0000 -0.183 -0.4372

Fine-Tuning Impact qwen: Baseline vs Fine-tuned PPL -19.782 0.0000 -0.533 -8.8869

Fine-Tuning Impact qwen: Baseline vs Fine-tuned Self-BLEU -8.783 0.0000 -0.240 -0.0029

Fine-Tuning Impact qwen: Baseline vs Fine-tuned GRUEN 11.358 0.0000 0.306 0.0359

Fine-Tuning Impact qwen: Baseline vs Fine-tuned BERTScore 66.712 0.0000 1.797 0.0162

Fine-Tuning Impact qwen: Baseline vs Fine-tuned MoverScore 18.264 0.0000 0.492 0.0029

Fine-Tuning Impact qwen: Baseline vs Fine-tuned PSA 11.771 0.0000 0.321 0.0443

Fine-Tuning Impact qwen: Baseline vs Fine-tuned Party Align 3.680 0.0002 0.099 0.0109

Fine-Tuning Impact qwen: Baseline vs Fine-tuned J_Coh 4.745 0.0000 0.128 0.1364

Fine-Tuning Impact qwen: Baseline vs Fine-tuned J_Conc 27.880 0.0000 0.751 1.6796

Fine-Tuning Impact qwen: Baseline vs Fine-tuned J_Rel -12.751 0.0000 -0.344 -0.8578

Fine-Tuning Impact qwen: Baseline vs Fine-tuned J_Auth -11.109 0.0000 -0.299 -0.8403

Fine-Tuning Impact qwen: Baseline vs Fine-tuned J_PolApp -3.925 0.0001 -0.106 -0.1782

Fine-Tuning Impact qwen: Baseline vs Fine-tuned J_Qual -26.757 0.0000 -0.721 -1.3538

Fine-Tuning Impact yi: Baseline vs Fine-tuned PPL -34.768 0.0000 -0.937 -38.5897

Fine-Tuning Impact yi: Baseline vs Fine-tuned Dist-N -11.989 0.0000 -0.323 -0.0039

Fine-Tuning Impact yi: Baseline vs Fine-tuned Self-BLEU 49.619 0.0000 1.354 0.0095

Fine-Tuning Impact yi: Baseline vs Fine-tuned GRUEN -27.151 0.0000 -0.731 -0.0503

Fine-Tuning Impact yi: Baseline vs Fine-tuned BERTScore 44.288 0.0000 1.193 0.0180

Fine-Tuning Impact yi: Baseline vs Fine-tuned MoverScore 37.295 0.0000 1.005 0.0062

Fine-Tuning Impact yi: Baseline vs Fine-tuned PSA 38.282 0.0000 1.045 0.1479

Fine-Tuning Impact yi: Baseline vs Fine-tuned Party Align 45.315 0.0000 1.221 0.1569

Fine-Tuning Impact yi: Baseline vs Fine-tuned J_Coh 25.199 0.0000 0.679 1.3019

Fine-Tuning Impact yi: Baseline vs Fine-tuned J_Conc 28.626 0.0000 0.771 2.5163

Fine-Tuning Impact yi: Baseline vs Fine-tuned J_Rel 21.332 0.0000 0.575 1.5595

Fine-Tuning Impact yi: Baseline vs Fine-tuned J_Auth 47.722 0.0000 1.286 3.1597

Fine-Tuning Impact yi: Baseline vs Fine-tuned J_PolApp 33.837 0.0000 0.912 1.9474

Fine-Tuning Impact yi: Baseline vs Fine-tuned J_Qual 41.022 0.0000 1.105 2.3091

Table 9.2. Significant Pairwise T-Test Results (Bonferroni Corrected, a=0.05)

Figure 9.1 heatmap displays absolute changes in performance from baseline to fine-tuned mod-

els, separated by computational and LLM-judge metrics. Yi 6B demonstrates the strongest improve-

ments across both measurement categories, showing particularly dramatic gains in LLM-judge metrics

(0.237). Llama 3.1 8B also shows substantial positive changes (0.116 LLM-judge, 0.050 computa-

tional). In contrast, Qwen2 7B exhibits slight negative changes in LLM-judge metrics (−0.026), while
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Gemma 2 9B shows minimal improvement. The results indicate that LLM-judge metrics are generally

more sensitive to fine-tuning effects than computational metrics.

Figure 9.1. Finetuning Improvement by Method

The horizontal bar chart in figure 9.2 displays percentage improvements from baseline to fine-

tuned models across multiple evaluation metrics. Yi 6B shows the most impressive gains, with J_Auth

improving by 106.4% and several other metrics showing 30–70% increases. For most models, PSA

and Party Align show significant improvement. However, some metrics show decreases, such as

GRUEN score and Bert score. The mixed results across metrics highlight that fine-tuning optimizes

certain dimensions while potentially compromising others, emphasizing the importance of multi-metric

evaluation.
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Figure 9.2. Finetuning Impact

Figure 9.3 shows fine-tuning impact across evaluation categories. Yi achieved the strongest im-

provements across all dimensions , while Llama had consistent gains. Gemma2 and Qwen2 exhibited

quality trade-offs, with improvements in one category accompanied by declines in others, suggesting

architectural differences in how models balance competing objectives during fine-tuning. We note that

parliamentary domain fine-tuning does not uniformly improve all quality dimensions. Model selec-

tion should therefore consider which quality dimensions matter most for the intended application.

Cross-context stability analysis revealed fine-tuned models maintained consistent performance across

political contexts (composite stability 91.4-96.2).
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Figure 9.3. Absolute performance changes (fine-tuned vs. baseline) across evaluation categories. All
metrics normalized to comparable scales.

The bar chart in figure 9.4 presents stability scores calculated as 100/(1 + CV ) across three

dimensions: Party Stability, Topic Stability, and Orientation Stability for five model architectures. All

models achieve remarkably high topic and orientation stability scores (> 91), indicating consistent

performance across different subject matters and political orientations. Party stability shows the

greatest variation among models, suggesting this dimension is most sensitive to model architecture

differences.
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Figure 9.4. Multidimensional Stability

The visualization in figure 9.5 compares stability across topic, party, and composite dimensions

for both baseline (B) and fine-tuned (F) versions of five models. The results show consistently high

stability scores (> 85) across all contexts, with fine-tuned models generally maintaining or slightly

improving stability compared to baselines. Topic stability consistently achieves the highest scores,

while party stability tends to be slightly lower but still robust. The composite stability metric, which

aggregates across dimensions, shows minimal difference between baseline and fine-tuned versions,

suggesting that fine-tuning preserves model consistency.

Figure 9.5. Cross Context Stability

Figure 9.6 compares baseline and fine-tuned model performance across key evaluation metrics for
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five architectures. Yi 6B shows the most dramatic improvement from fine-tuning, with a substantial

increase in the performance score from approximately 2.9 to 4.2. Llama 3.1 8B and Mistral 7B v0.3 also

demonstrate clear improvements, while Gemma 2 9B shows minimal change and Qwen2 7B slightly

worse results. The large error bars indicate considerable variance in performance. Overall, fine-tuning

consistently improves or maintains performance across models, with the magnitude of improvement

varying significantly by architecture.

Figure 9.6. Overall performance comparison

Figure 9.7 compares five models across ten evaluation metrics including GRUEN, BERTScore, PSA,

Party Align, and various judge dimensions (coherence, conciseness, relevance, authority, political

appropriateness, and quality). Mistral 7B v0.3 consistently achieves the highest scores in judge-

evaluated coherence and conciseness, but scores low on authenticity and quality. All models show

similar performance on basic metrics like GRUEN and BERTScore, but diverge significantly on judge-

based assessments. The J_Conc (conciseness) metric shows particularly high variance, with Mistral

reaching approximately 9 while other models cluster around 6-7.

Figure 9.7. Model comparison across each metric separately
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The correlation matrix in figure 9.8 examines relationships between six LLM-judge dimensions

across all models. The highest correlations appear between j_qual (quality) and j_polapp (political ap-

propriateness) at 0.56, and between j_auth (authority) and j_qual at 0.51, suggesting these dimensions

capture related but distinct aspects of response quality. The weak correlation between conciseness

and other quality dimensions indicates that verbosity is largely independent of other quality aspects,

while coherence, relevance, authority, political appropriateness, and overall quality form a more inter-

connected cluster.

Figure 9.8. LLM as a Judge correlation among metrics

Figure 9.9 examines relationships between the evaluation metrics and speech length. Most metrics

show no strong correlation with length, though self_bleu exhibits slight negative trends with length.

The LLM-judge metrics (j_coh, j_conc, j_rel, j_auth, j_polapp, j_qual) display distinct horizontal banding

patterns, indicating these are discrete rating scales rather than continuous measures.
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Figure 9.9. Length Correlation Analysis

9.7 Political Context Results

9.7.1 Party alignment Patterns

Party alignment performance varied substantially across models (Figure 9.10). Major parties

(Conservative, Labour) achieved stable performance across models, benefiting from substantial training

data (58.9%,24.3%). Minor parties exhibited greater variability. Mistral struggled with heterogeneous

groups (Non-Affiliated: 0.436), while Qwen excelled with ideologically coherent minorities (Bishops:

0.664). Yi demonstrated robust cross-party performance (0.614-0.633). Both new political authenticity

metrics (PSA and Party Align) successfully discriminate their target political dimensions. Party Align

distinguishes parties while PSA distinguishes orientations (both p < 0.001). Our analysis reveals

that Party Align performance depends primarily on data abundance and ideological coherence rather

than party size alone. Models successfully learn party-specific language patterns when training data

provides clear stylistic signals, indicating targeted data collection for under-represented parties could

improve coverage.
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Figure 9.10. Party alignment scores (0-1 scale) for finetuned models across UK parliamentary parties.
Color intensity indicates performance level

9.7.2 Party Alignment Difficulty Analysis

Applying cross-context stability analysis, party difficulty scores ranged narrowly (0.382-0.456),

with no statistically significant differences. This suggests relatively consistent modeling challenges

across parties regardless of size or ideological composition. Results are presented in Figure 9.11.

Figure 9.11. Party alignment difficulty scores (0-1 scale) for finetuned models across UK parliamentary
parties. Dark green = most difficult
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9.8 Topic Results

9.8.1 Topic Performance Patterns

Figure 9.12 shows model performance across topic domains. Science achieved lowest scores (avg

0.516), while Economics (0.610) and European Union (0.606) showed highest performance.

Figure 9.12. Model performance scores (0-1 scale) for finetuned models across topic domains. Color
intensity indicates performance level

9.8.2 Topic Difficulty Analysis

Different topics posed different challenges (Figure 9.13). Science and Geography ranked as most

difficult while Finance, Business, and Economics ranked lowest. Technical and natural science do-

mains display higher cross-model disagreement than economic and political topics, consistent with

greater terminological specialization and rapidly evolving concepts. In contrast, economic and political

discussions employs more stable conceptual frameworks aligned with core parliamentary functions.
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Figure 9.13. Topic difficulty scores (0-1 scale) for fine- tuned models across topic domains.

The scatter plot in 9.14 examines the relationship between topic difficulty and model consistency

across 21 labeled political topics. Topics like Finance, Industry, Employment and Working Conditions,

and Law cluster in the upper-left quadrant with both high consistency and relatively lower difficulty.

Conversely, Science, Geography and International Relations demonstrate lower consistency scores,

suggesting these topics present greater challenges for model agreement. The spread indicates that

difficulty and consistency are not strongly correlated, with topic-specific characteristics playing a

significant role.
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Figure 9.14. Topic Difficulty vs Consistency

9.9 Political Orientations Results

9.9.1 Political Orientation Patterns

Performance across political orientations showed expected patterns. Centrist positions dominated

the dataset and achieved higher scores. Model-specific strengths emerged as both Gemma, Yi, Llama

and Qwen achieved highest scores on Right positions and Mistral underperformed consistently, indi-

cating architectural rather than ideological limitations. Figure 9.15 illustrates these patterns.
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Figure 9.15. Model performance scores (0-1 scale) for finetuned models across political orientations.
Color intensity indicates performance level

9.9.2 Political Orientation Difficulty

Figure 9.16 ranks political orientations by difficulty score, revealing that right-wing positions are

most challenging for models to handle (0.456), followed by centre-left to left (0.454) and left (0.449)

orientations. Centre-right and centre to centre-left positions show moderate difficulty (0.445 each),

while the Unknown category exhibits the lowest difficulty score (0.439). The relatively narrow range

of scores (0.439–0.456) suggests that while differences exist, no political orientation presents dramati-

cally greater challenges than others, indicating fairly balanced model performance across the political

spectrum.
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Figure 9.16. Political orientation difficulty

Figure 9.17 presents systematic performance variations across political and topic contexts for five

model architectures. The left panel reveals model performance by political party affiliation, showing

that Mistral 7B v0.3 exhibits consistently lower performance (red cells) across multiple parties, par-

ticularly for Non-Affiliated (0.436), Independent (0.482), Crossbench (0.453) and Conservative (0.487)

categories. In contrast, Gemma 9B and Yi 6B demonstrate more robust performance across party

contexts, with scores typically exceeding 0.56. The right panel displays topic-specific performance

patterns, where Mistral 7B v0.3 again shows the weakest performance across topics, particularly

for Environment (0.483) and Agri-Foodstuffs (0.475). Economics and European Union and Finance

emerge as the highest-performing topic domains across all models, with most architectures achieving

scores above 0.60. Notably, Gemma 2 9B and Yi 6B maintain consistently high performance across

both political and topic dimensions, suggesting these architectures exhibit greater robustness to con-

textual variations. The systematic performance degradation of Mistral 7B v0.3 across diverse contexts

indicates potential limitations in this model’s generalization capabilities.
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Figure 9.17. Political Party and Topic performance by model
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Chapter 10

Discussion

10.1 Summary of Key Findings

This thesis investigated the generation of authentic political discourse through domain-specific

fine-tuning of large language models on UK parliamentary speeches. Our comprehensive evaluation

framework, encompassing traditional NLP metrics alongside novel political authenticity measures,

revealed three principal findings that advance our understanding of how architectural design and

domain adaptation influence the quality of politically grounded text generation.

10.1.1 Architectural Design and Context Window Effects

Our experiments demonstrate that architectural design plays a pivotal role in determining model

performance for political speech generation. Among the five models evaluated (Mistral 7B v0.3, Llama

3.1 8B, Gemma 2 9B, Qwen2 7B, and Yi 1.5 6B), those with extended context windows and advanced

attention mechanisms consistently outperformed their counterparts. Llama 3.1 8B, with its 128,000-

token context window and enhanced instruction-following capabilities, achieved superior performance

across multiple evaluation dimensions. Models with longer context windows better captured the ar-

gumentative structure and rhetorical patterns characteristic of parliamentary debate, where speeches

often reference prior statements and build cumulative cases. Our cross-context stability analysis re-

vealed systematic performance variations that illuminate each model’s suitability for different aspects

of political discourse generation. Gemma emerged as the most stable performer across political par-

ties, achieving consistent scores regardless of party affiliation or training data abundance. Yi came in

second, which suggests that Yi’s bilingual pretraining and extensive 3-trillion-token corpus exposure

conferred generalization advantages that compensated for architectural simplicity. In contrast, Mistral

7B v0.3 exhibited consistent weaknesses across multiple dimensions, scoring below 0.50 for technical

topics (Science: 0.483, Agri-foodstuffs: 0.475) and ideologically diverse parties (Non-Affiliated: 0.436,

Independent: 0.482). These systematic deficiencies cannot be attributed solely to parameter count,

as Yi 1.5 6B with fewer parameters substantially outperformed Mistral. Instead, Mistral’s 8,000-

token sliding window attention, while computationally efficient, proved insufficient for capturing the

extended contextual dependencies and nuanced ideological positioning required for authentic political

argumentation.

10.1.2 Domain-Specific Fine-Tuning Impact

The efficacy of domain-specific fine-tuning emerged as the most statistically robust finding of this

thesis. Across 70 metric comparisons between baseline and fine-tuned model variants, 45 showed

statistically significant improvements.
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Fine-tuning improvements were not uniformly distributed across evaluation dimensions. Self-

BLEU scores decreased on average, confirming reduced formulaic repetition in favor of contextually

appropriate variation.

Critically, fine-tuning also significantly improved the novel political authenticity metrics introduced

in this thesis. Political Spectrum Alignment (PSA) scores improved significantly, demonstrating that

fine-tuned models better captured the ideological positioning characteristic of different political orien-

tations. Party Alignment scores also increased, indicating enhanced fidelity to party-specific rhetoric,

policy positions, and argumentative strategies. These improvements held across most models despite

their architectural differences, suggesting that domain adaptation through supervised fine-tuning on

political discourse constitutes a transferable and reliable method for enhancing ideological authenticity

in generated text.

10.1.3 Novel Political Authenticity Metrics Validation

The introduction and validation of PSA and Party Align metrics represents a methodological con-

tribution that extends beyond conventional NLP evaluation approaches. Our discriminative testing

confirmed that both metrics successfully capture their intended political dimensions with high sta-

tistical confidence (p < 0.001). Party Align effectively discriminates between parties, achieving some

differentiation even for ideologically proximate parties (e.g., Labour vs. Liberal Democrats). PSA suc-

cessfully distinguishes political orientations across the left-right spectrum.

10.2 Limitations

10.2.1 Dataset and Scope Limitations

Several limitations constrain the generalizability of our findings. First, our exclusive focus on UK

parliamentary discourse limits cross-national applicability. Parliamentary systems vary substantially

in procedural rules, rhetorical norms, and political culture. The style, formal language conventions,

and two-chamber structure differ markedly from consensus-based continental European parliaments

or presidential systems. Future research should validate our metrics and methods across diverse

parliamentary contexts.

Second, the temporal scope of our dataset (2015-2022) spans a period of unusual political turbu-

lence (Brexit referendum, multiple elections, COVID-19 pandemic, leadership transitions). While this

provides rich diversity in topics and political dynamics, it also means our models may over-represent

crisis-related discourse and under-represent more routine parliamentary business. The generalizabil-

ity of learned patterns to more stable political periods remains uncertain.

10.3 Future Research Directions

10.3.1 Near-Term Extensions

Several immediate extensions could strengthen and expand this research. First, implementing sys-

tematic human evaluation protocols would provide crucial validation of our automated metrics. Expert

political scientists themselves could assess generated speeches for authenticity, appropriateness, and

persuasiveness, establishing gold-standard benchmarks against which to calibrate automated mea-

sures.
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Second, expanding the evaluation to include multi-turn dialogue coherence would better reflect

real parliamentary dynamics. Current evaluation focuses on isolated speech quality, but authentic

parliamentary participation requires responding appropriately to preceding statements, maintaining

consistent positions across multiple interventions, and adapting to evolving debate contexts. Imple-

menting dialogue-level evaluation would provide insights into models’ capacity for sustained parlia-

mentary roleplay.

Third, conducting ablation studies to identify which training data characteristics most influence

performance would inform data collection priorities. Systematic experiments varying training corpus

size, temporal distribution, topic diversity, and party representation could establish minimum viable

datasets for achieving acceptable performance, guiding resource allocation for future work.

Fourth, investigating alternative fine-tuning strategies beyond QLoRA could identify more effective

adaptation methods. Recent advances in parameter-efficient fine-tuning (prefix tuning, adapter lay-

ers, prompt tuning) offer diverse approaches with different computational and performance trade-offs.

Comparative evaluation would illuminate which methods best balance efficiency and effectiveness for

political discourse generation.

10.3.2 Multilingual and Cross-National Research

The most pressing limitation of current work is its restriction to UK parliamentary discourse.

Extending this research to multilingual contexts would test the generalizability of our methods and

metrics while enabling comparative political science applications. The ParlaMint corpus includes

parliamentary proceedings from 26 European countries, providing natural data sources for expansion.

Multilingual extension faces several challenges. First, political systems vary substantially in struc-

ture, norms, and rhetorical traditions. Second, translation quality affects cross-lingual comparisons;

using native-language corpora is preferable but requires language-specific modeling expertise. Third,

political party systems differ dramatically across countries, complicating definitions of comparable

ideological positions.

Despite these challenges, multilingual research would enable powerful comparative studies: How

do models’ ability to capture ideological positioning vary across political systems? Are some languages

or cultural contexts more amenable to authentic political discourse generation? Do architectural dif-

ferences (context window, attention mechanisms) matter equally across linguistic contexts? Such

questions would advance both computational methods and substantive political science understand-

ing.

10.3.3 Real-Time Parliamentary Monitoring Systems

Looking beyond research applications, future work could develop real-time parliamentary moni-

toring systems that leverage fine-tuned models. Such systems could automatically analyze ongoing

parliamentary proceedings, identifying:

• Speakers deviating significantly from typical party positions

• Unexpected ideological coalitions forming around specific issues

• Evolution of rhetorical strategies over time

• Emergence of new political frames or discourse patterns

Diploma Thesis 103



Chapter 10. Discussion

These capabilities would support journalists covering parliamentary proceedings, political scien-

tists tracking legislative dynamics, and citizens seeking to understand political developments. How-

ever, deployment of such systems requires careful attention to accuracy, transparency, and potential

misuse. False positives (incorrectly flagging routine speeches as anomalous) could unfairly damage

politicians’ reputations, while system manipulation could enable strategic gaming of automated mon-

itoring.

10.3.4 Bias Detection and Mitigation

A crucial future research direction involves systematic investigation of political bias in language

models. While our orientation difficulty analysis revealed relatively balanced performance across the

political spectrum, deeper investigation is warranted. Specific research questions include:

• Do models exhibit systematic bias in how they represent different ideological positions (e.g.,

portraying left-wing positions as more/less coherent than right-wing positions)?

• Does model performance on generating centrist versus extreme positions reflect genuine difficulty

or training data imbalance?

• Can intervention techniques (debiasing methods, adversarial training, constrained generation)

reduce political bias without sacrificing performance?

• How do different pretraining corpora influence downstream political bias in fine-tuned models?

Addressing these questions requires developing robust bias measurement frameworks that distin-

guish between legitimate differences in discourse patterns (e.g., different parties actually do employ

different rhetorical strategies) and problematic algorithmic bias (e.g., systematically degrading certain

viewpoints’ coherence). This distinction is subtle but crucial for responsible deployment.

10.3.5 Human-AI Collaborative Systems

Finally, future research should explore human-AI collaborative approaches to political discourse

generation and analysis. Rather than fully automated generation, systems could provide politicians,

speechwriters, and policy analysts with AI-assisted tools:

• Rhetorical suggestion systems that propose alternative phrasings consistent with party ideol-

ogy

• Consistency checking tools that flag potential contradictions with previous statements

• Counterargument generators that help politicians anticipate opposing viewpoints

• Framing analysis tools that reveal how different phrasings activate different values

Such collaborative systems would leverage AI capabilities while maintaining human agency, judg-

ment, and accountability. Research evaluating these systems’ effectiveness and user acceptance would

inform design of practical tools that enhance rather than replace human political deliberation.
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10.4 Concluding Remarks

This thesis demonstrates that domain-specific fine-tuning of large language models enables gen-

eration of politically authentic discourse when evaluated through comprehensive, multi-dimensional

frameworks. The success rate in achieving statistically significant improvements across diverse met-

rics confirms that fine-tuning on parliamentary speeches substantially enhances models’ capacity to

reproduce ideological nuances, party-specific rhetoric, and argumentative coherence characteristic of

real political discourse.

The validation of novel political authenticity metrics (PSA, Party Align) establishes a foundation

for quantitative assessment of ideological coherence in generated text, complementing traditional NLP

measures that focus on linguistic quality alone. These metrics’ demonstrated discriminative validity

and fine-tuning responsiveness position them as valuable tools for both evaluation and analysis of

political discourse.

Cross-context performance analysis revealed that architectural design, particularly context window

length and attention mechanisms, shapes models’ ability to capture extended argumentative structures

and maintain ideological consistency. However, no single architecture dominated across all contexts;

model-specific strengths and weaknesses suggest that ensemble approaches or task-specific model

selection may optimize performance for diverse application scenarios.

The challenges identified in this research, in modeling technical topics, heterogeneous political

groups, and ideological positions, illuminate both model limitations and characteristics of political

language itself. These findings motivate continued investigation into how computational methods

can capture the full complexity of political discourse while highlighting the importance of thoughtful

evaluation frameworks that reflect domain-specific authenticity requirements.

This research contributes to that essential conversation by demonstrating what is technically feasi-

ble, establishing rigorous evaluation standards, and identifying critical considerations for responsible

development and deployment of political discourse generation systems. The methods, metrics, and

findings presented here provide a foundation for future work that must grapple with the profound

implications of AI systems capable of mimicking human political expression.
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