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ITepiindm

To Baputind xOpoto xan oL podpeg TeuTeg amoteroly Yepehndels npofBiédeic tng Ievi-
g Ozwplag Tng Lyetxdtnrog, ol onoleg Eyouvy emfBefouwiel amd mEwTOTOPLOXES To-
PUTNENCELS, OTWS 1) aviyVEUST) BARUTIXWY XUUATLY ATd CUYYWVEVCELS UOIPKY TOUTKOV
am6 g ouvepyooieg LIGO xou Virgo. Kotd tn @don tng omelpoedole olyxhong e-
VO ouumayoUg BImhol GUGTAUATOS, OTIKC AUTA TTOU TEQLAUUBAVOLY ACTERES VETEOVIKVY
1) Hodpeg TEUTES, Ol TALEEOIXEC AAANAETOEACELS YiVOVTOL ONUAVTIXES OTAV 1) TEOYLUXN
amocTaoN YivVEl EMUPX®E ey AUTE Tol TaALEEoixd avoueva yapoxtneilovial and
TOEUPETEOUS YVWOTEC w¢ apriuol Love, ol omoiol T0GoTOTOW0V TNV TUEUUORPKOOT
EVOC AVTIXEWWEVOLU ¢ amdxplon 610 Boaputixd medio Tou cuvodod Tou. Ewdixdtepa, ot
otatxol Takippoixol apriuol Love e€optdhvion and TNV ecwTERLXT SoUT| xaL 1 6LCTAUOT
TWV CUUTIOYOV AVTIXEWEVOY TOU UQICTAVTOL ToMEEoixy] Tapaudopwor. Avtieta, ya
TI¢ padpeg TEOTES avopéveTon 6TL ot T'LN s elvon undevixol, Aoyw tng amousiog dxoumtng
LVAAC Boung. Ltny mapoloa dimAwuatixy epyocio, e€etdlouye 10 CHTNUA TS UNOEVL-
%(0TNTAC TV o ToTXWY T'LN 5 Twv Yabpwy Toutey Kerr, yenotuotoumyIag ToV QOpUdAL-
ouo Ernst xou cuvtetayuévee Weyl yio vor avaAOGOUUE TNV TUALREOIXY| amOXELoT) TOUG.
To amotéheoua auTd avadEVVEL T OTBAEOTNTA TV EMLYELENUATWY Tou Pactlovtal oe
OUUUETPIES X0 Tor OTtoloL BLETOUY TNV AMOXELOT) TWV UadRKY TRUTGY, Xou UToYeauuilel Tov
Wiaitepo yapax e Toug we Aoewy tne 'evixrc Yyetwdtntoc. Ov undevixol T'LN's
emBeBarcyvouy Ty opyh 6TL oL uapeg TEUTES, ot avtiieon Ye dAAa cuumoyT| avTixelue-
VoL, OEV OLUTNEOLY Xaiol LOVIUT TOQOUOPPEOT) UTO TNV ETORUOY] GTUATIXWY TUALQEOIXOY
ouvdpewy. H pehétn auth oupPBdiier otn Boditepn xatavono Tne QUOIXHC TWV HoEKY
TPUTIWY, TPOCPELOVTUC VEEC OTITIXES Yol TNV OAANAETBRAOT) TOUC UE EWTEPXE TeBlar Xal

YLOL TIC OUVETELEG GTNV ACTEOVOULN BapuTin®dy XUPATLY.

Aé&eic xhewdla  Madpeg Tolnee, Aprduol Ao, Ievinr) Lyetixdtnta, ‘Awvotduy.
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Abstract

Gravitational Waves (GWs) and Black Holes (BHs) are key predictions of General
Relativity (GR), validated by groundbreaking observations such as the detection of
GWs from BH mergers by the LIGO and Virgo collaborations. During the inspiral
phase of a compact binary system, such as those involving neutron stars or BHs, tidal
interactions become significant when the orbital separation is sufficiently small. These
tidal effects are characterized by parameters known as Love Numbers, which quantify
an object’s deformation in response to the gravitational field of its companion. In
particular the static Tidal Love Numbers (TLNs) depend on the internal structure
and composition of the compact objects undergoing tidal deformation. In contrast,
BHs are expected to have zero TLNs due to their lack of a rigid structure. In this
thesis, we address this question of the vanishing of the static TLN of Kerr BHs by
employing the Ernst formalism and Weyl coordinates to analyze the tidal response
of Kerr BHs. This result highlights the robustness of the symmetry-based arguments
that govern BH responses and underscores the distinctive nature of BHs as solutions
to GR. The vanishing TLNs reaffirm the principle that BHs, unlike other compact
objects, do not retain any permanent deformation under static tidal forces. This
study contributes to the broader understanding of BH physics, offering new perspec-
tives on their interaction with external fields and implications for gravitational wave

astronomy.

Keywords: Einstein, General Realtivity, Black Holes, Love Numbers.
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Euyaplotieg

Koo ohoxhnpaveta 1 @oltnon pou otn Lyohr) Hiextpohdywv Mnyovixwy xow M-
Yooy Trohoylotov tou Edvixol Metodfiou Iloiuteyveiou, Yo fdeha apyind vor gu-
yaplotiow Yepud tov Kodnynth x. Aré€avopo Keyayid yio tnv eumiotocivn mtou pou
€0e1lE, EMTEETOVTAC L0V VOl EXTIOVH O TNV Epyacio auTh uTtd TNy emiBAed| Tou xou YLt To
EVOLPEPOY TIOL oL XAAALEEYNOE Yo TNV Ocwpntixt| xou Madnuatins Puoiny. Oa fdeha
entlong exedow TNV ELMXEVY HOU EUYVWUOGUVY) TEOG TOUG CUV-ETBAETOVTES UOU, TOUG
Kadnyntéc x. T'edpyio Puadpen xon tov x. Xerjoto Tolpdvn adid xar otoug K. Avoryve-
otémovho, X. Kolfoen xou N. Movpmuato yia tnv avidtoterr Bordeta xon xododhynon
ToL Uou Topetyay oho auTtd Tar ypovia. H Bordeid toug unple moAdTiun, T600 %atd TNV
EXTIOVNOT| TNG TUEOVCOE TTUYLIXAG EQYACING OGO ot PECO amd TG GUUBOUAES TOUG Yo
TO PENNOV UOU. LMUAVTIXOTEQOL GUVOBOLTOEOL OV GE OUTO TO oXUdNUiX0 ToEIBL, 6K
xoL OE OAOL YoU Tal BYUOTaL, HTAY 1) OLXOYEVELS JOU Xl YU AUTO TOUG ELYUPLo TR Vepud.
Téhocg, Yo Hleho va evyaplothow Tov IIEtpo, Tov Mdou, 1o MuiydAn xou dhoug toug

IAOUC OV YLoL TIC OUOPPES AVOUVTCELS X0k T1) CLVTPOPLA TOUG.
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Kegdiowo 1

Extetauevn nepiindn oo
EANN V&

1.1 H =own Jewpla Tng oysTindTNIOS

1. H w0a tng oyxetixotntag otov 'ahthaio xaw to xAooixo

TAxloLo

IToh0 mpwv amd tnv Ewwcr xou ) Tevinr) Lyetindtnra, o I'odhaiog eviomoe pa Bardid o-
UETABANTOTNTA TNG PUONG: A XAELOTOUNE OE (Lo xauTiva TAotou Tou xiveiton eudiypoupa
X0l OUOAG, HAVEVHL OTOXAELG TG Ny oV Telpaar evTOg TG xaumivag 0eV amoXaAUTTEL
av To Tholo eivon axivito ) xwvelton. Ao autd TO VONTG TElpO AMOCTIAAEE TNV
YAAIAQIKD) apxn) TNS OXETIKOTNTAS: ONOL Ol unyovixol vouoL €youv tnv (Bl yop@n oe
gpYao THELX TOU XvoLvToL Ue oTadepr oyeTr| Tay dTNnTa.

Ae0tepoc TUAGVOS glvon 0 YOoS TNS adpdrelas: owua Ywelc eCOTEPIES BUVAUELS
Topopével axtvnto 1 xiveltan evdiypopua pe otadept| Toyvtnta. O Nedtwy tov uodétnoe
(¢ TEOTO VOUO Xl GUVEDEGE T1) DUVOULXT UE TNV EVVOLX TOU adpavelakol ouoTiUaToS

avagopds, 6mou 1oy VEL 1| adEAvVELN. XTO TEO-GYETXOTIXG TAaiclo 0 ypedvog Vewpeito



ATOAUTOC XL O YWEOS EUXAEIDEIOS: GAOL Ol adPAVELIXOl TUQUTNENTES CUUPWVOLY YLo

YEOVIXE DLUOTAUNTY XAl YWEWXES AMOCTAGELS OTUY PETEPMOVTOL 0TO {Blo oloTNu.
Oewpolie 500 abdpavelaxd cucThuata S xou S’ pe oyetny| TayvTnTa Vo xotd . X1

VEUTWVELX XIVNUOTIXT) Ol GUVTETHYUEVES GUVOEOVTOL UE TOUS HeTaoynuatiopols I'akila-

10V.

=z —Vt, y =, 7 =z, t =t,

ol omolot BlTNEoLY TN pop®t| Twv eflowoewy Tou Nevtwva. H taydtnto petaoymua-
tiletan wg v/ = v — V xau ) emtdyuvon etvan apetdBAnt (of = o), e&nydvrog ylatl
duvouxy ma = F' etvon poppoovaihoiwtn yuetalld abpavetaxmy mhaciony. Ntny meddn,
oo TNEd adpavetaxd TAaiola dev utdpyouv (T.y. yhvo epyaoThpto), ahhd ouy Ve uTde-

YOUV oAU xohég TpooeyYioels (Nhloxevtpixd Thaioto).

2. H nAextpopayvntixr Yewpla xou 7 tpotn €voeiin xplong

Or e€iowoec tou Mazwell otny xevotnTa

0B OF
E=0 B =0 o B = ey 28
\Y% , \Y% , V X ar’ V X Ho€o o’
00BN YOUV GE XVUATIXES ECIGMOELS
1 0’°E 1 0’°B 1
VE= - V’B=— — = :
¢z Ot? ’ ¢z ot? ’ ¢ v/ EoMo

To nhextpopayvnTixd xOuoto dtadidovtar Ye otadepy| TaydTnTta ¢, aveldoTnTn amd TNV
xbvnon g mnyhc 1B Tou mopatnenth. 26T0C0, av e@upudcoupE Yadidaikr) UETUBONN
OUVTETOYUEVOV OTO XUHOTd TedBAnUa, eppaviovton emmpbdoietor oot (ypouuxol xo
TETEAUY WVIXOL OTO V') mou ahhotdvouy ™ popyn g e€lowone. 'Etot, n nhextpouayvn-
) ewpla Sev ebvan oupfoty| ue 0 yolhdiny| cupueTpelo, UTOVOOVTIS EITE TEOTIHOUEVO

adpavelaxd mhaioto (owdépoc) eite véa xvnuaTixn.



3. To melpapa Michelson — Morley xou To Té€hog ToL owdeEpa

To naclyvenoto cuuforducteo Tou Michelson— Morley oyedldoTnxe Yo VoL oviy VEUOEL
OLapopd yeoveY dLadpounc penTog ot xddeto (ebyog Peaytdvewy prixous D xadong n I'n
xvelton e ToyvnTo Vo w¢ mpog tov ealduevo awdépa. M xhaoixr| avdiuon (ot0

mhaioto Tou awdépa) ot ypbdvol elva

2Dc 2D
TH:CQ_V2’ TL:M’

ot 1) Sopopd 0TIV dradpoptv tpofhéreton AL ~ D V?/c?, e petphioyn Yetatdmion
xpoootyv An ~ 2AL/A. Tlapd v uhniy evoncinoio, n xotorypopr| froy pundevikn:
xoiol CUCTNHATIXNY UETATOTILOT XoTd TNV TEPLOTEOWT Tng Odtalne. H oelpd autdv tov
ATOTUYLOV OF DLUPOPETIXEG EMOYES, TOTOUC XUl UTXY) XVUATOS XATESTNOE TNV UTOYEoT
“owdEpa’ TEQLTTY: OEV UTHEYEL TROVOULOUY O UBQRUVELOXO TAXLGLO GTNY NAEXTEOUY VNTIXN

puoLXN.

4. H toydtnTto xow n adpavelaxn wdlao tTouv nAexteoviou

To nepdpoto tou Kaufmann oe déouec f-nhextpoviwy (oe eyxdpota nhextpixd xou
oty vnTixd medior) xotéypadoy exteonéc (2, y) mdve ot gwtoypapixéc mAdxes. H xhoowh
(veutvera) mpoBAedn diver topafBolf y o< 2? e otalepr udla m. To dedouéva, duwe,
Todpraoy uévo av 1 anotedeopotiny| udla auidvel e Ty ToyvTnTa.  Alortuaddnxay
nhextpopayvnxd povtéha (Abraham, Lorentz, Bucherer). Bektwuéves petprioeic

(Bucherer, Guye — —Lavanchy) enefuinooy tehxd tov vopo Lorentz—Awvctdty

1

m(v) = y(v) mo, Y= \/?72/027

ATOXAELOVTAC TIC EVOANAXTIXEG. TN OYETIIC TN YAWOCOW, 1) OpUT) TEGOURWY CUVLC TW-

’ ’ 7 I3 , ’ 99 ’ ’ 7 ’
owv avTixaoTd TNy évvola g “petoAntic pdlac” xou e&nyel yiotl xavéva UG



owUATIO BeV @UdveL c.

5. Anautoeig cuppeTelag xow 0 peTacynUatiopnog Lorentz

Meto€t 1892-1904 o Lorentz avalAtnoe yYpouuixd UETACYNUATIONO UeTaD B00 adpo-
Vel mhatctwy wote to opoyern Mazwell xou oL xupatnég e€lomoelg va efval popgo-
avarrolwto. Trod Ty amaltnor eudiypopung opahng xivnong = eudiypauung ouoArc
xbvnong (Ypocwmérmcx), LlGOBLVIULNGC TWV EYXAEOIWY BlELIOVoEWY Xou 6 ToERY|C ¢, TEO-

xUTTEL 0 MpdTUTOS MeTaoynuatiopos Lorentz

r=y@x-Vt), =y, 2=z t’zv(t—zx) 7:;

’ ’ ’ )’ V1-V2/c2
O Howcopé 0hoxA|pWGE TOUC XAVOVES UETACYNUOTIONOU Yo popTia/peduoto xon €0et-
&e 6Tl oL petaoynuatiopol oynuatilouy opdda. XTn olyyeovn yAwood, o Fj, xau
T0 J* petooynuatilovial e TOWUGTE’Q/TETPO(—&ocvx’)cpoztcx, EVG 1) LOOdLVOPLN OAWY TWV

adpaveELX®Y TALGiwY xwdtxoroleiton amd Ny woopetpla Tng Mividgpont yewuetplog.

6. H diatdnwon tng Ewwuxng Lyetixotnrtag
O Awotdwy (1905) aviyaye Tic napondve evdeilels ot 6o aiduata:

1. ApyM TG OYETXOTNTAG: OL VOUOL TNE PUOLXTC €ouv TNV (Bla Lop®t| o€ Oha

/ /7
Tar adpaveLoxd Thatota.

2. YtadepoTnTa TNG TAYVTNTUS TOL PWTOG: 1) ToYUTNTA TOU POTOS GTO XEVO

€yet TNV Btor Tun ¢ yia xdde adpavetoxd tapatnent, aveZdotnto and Tyr/déxTn.

Avti va mpooopudoer tov Mazwell ot yohhoix| xivruotix 1 va enavagéper ardépa,
oVABLATUTIOE TOV Y(WEO %ok TOV Yeovo. Amd To afldUATo duTd TEOXUTTOUY Ol UETO-
oynuatiopol Lorentz, 1 avolhOLOTIXT POTEWVE XWVIXY| ETLQAVELD X0 1) EViaio SUVOULXA

TECGHPMY OLAVUOULTWY.



7. Badpovounocr cucTAUATOS AVAPOEAS KXo CUY Y EOVICLOG
eoAloYLOV

H oyetuaotind neprypagt| agopd yeyovéta (x,y, z,t). T hertoupyixd mhoiclo ypel-
dlovton xowol XaUVOVEC UETENONC UAXOUS Xl YPOVOU %ok Vel OUVOAO OUYXPOVIOUEVWY
poloyicdv oo yweo. Me Bdon tn otadepdtnta Tou ¢: exméumouue Tahuo and poldt A
npoc B, yetpdye ypovous (ty,t2) oto A xou tg ot0 B xotd v dpiEn- optloude ouy-
Yeoviopo otav tp = (t; + t2)/2 xou anbéotacn Dap = c(t2 — t1)/2. 'Etot ntpoxintel
E0WTEPIXA CLVETYG Bardpovounom evog adpavelaxol Thalciou. AlapopeTind Thaiclo Oev

CUUPWVOUY YEVIXE OTT) CUYYEOVIXOTN T

8. H oyetixdtnta tng Towtdypovng

Abo moAyol amd T dxpo EVOS TEEVOU PUEVOUY TAUTOYEOVA GTOV XEVTPIXG TURATNENTY
O’ eni tou 1Eévou, dpo (010 Bixd ToL TAdioo) exTéuPINKaY TawToéypova. O eni g
amofddpag O, Aoyw xlvnong Tou TEEVOU, EYEL BLUPOPETIXES ATOCTAUOELS EXTIOUTAS Yid
TOUG BVO TaAOUG, Tou TalEVOLY He TN 1d1a ToyLTNTa ¢ TEog autdv. T v gidoouy
TUUTOY POV, O TOAIOC amd TNy omiotia dxpen TEENel va elye exméudel vopltepa. Apa
YEYOVOTU TowTOYpOVa OE €va TAulolo Oev elvon ot avdyxrn Tautdypova ot dAlo: 1

evvola TG ““tauTtoypeovng’ elvon oyeTix).

9. [lopdywyo ATOTEAECUATA: CUGCTOAN UNAOUS, OLACTOAN
Xeovou, cLVUECT TAYLINTWY

H pérenomn wixoug anoutel tavtdyporn xataypaptr) TwVv dxpwy o1o dto mhaicto. Av Ly
elvon To {Blopop@o (18w0) uixoc pddou ev neeuto xou L' to pixog tne otay xaveiton ue V'

(¢ TEOG TOV PETENTA, TOTE



N YVwoti ovotoAn unkovs. H pétonom yedvou: 1o bBloypovixd didotnua 7 HeTal 800

YEYOVOTWY 070 (610 onuelo Tou S TUPOUCLALETOL OE XIVOUUEVO TAXICLO (¢

T =~r,

4 4 (43 ’ 4 799 ’ , ’
d1a0ToA Ypovou: 1o xvoluevo pohdL xaduotepel”. H olvieon toyuthitwy yia xivnon

Wt X
u, +V U;Z
Uy = T Vd Uy,z = AT
1+ 14—
c? " c?

Y10 6plo V < ¢ avaxtdron o xavévag tou Tahhaiov, eved av |ul| < ¢ xou |V| < ¢ t61€E

|u,| < ¢ enlong: 1 oUVieon UTOPWTEWVGY TUYUTATWY TOEUUEVEL UTOPWTEV.

1.2  AxpfBelc Adoelg twyv eilowoswy AwvoTdy

1.3 H xidon Weyl twv octatixov a&ovoouuue-
Tewwy ADoswy

Afyo petd tn dotinwon v elodoewy nediov tou ‘Awoctdy, oo Weyl (1917) o
Levil'Civita (1918) amoubévemooy tov oTatind, aE0VOSUUUETEIXG XEVO Topéo xou EDEL-
Eav OTL TEQLYPAPETOL Amd EVOL Xl UOVO OQUOVIXO BUVOULXO. Y€ oUTH TNV EVOTNTA ETO-
veetdloupe Tic petpikés Weyl, Sivovtoag €upoct oTo OTL 1 QUVOUEVIXT ATAOTNTA TNG
OUUUETEING LY VS CUYXAAUTITEL AETTEC OMOUNACES OTN) CPouEIXr) BOUT XAl GTIC oVOUO-
Mec. Ao yapoxtnetotixd {nthuata evou: (1) 1 owoth tadTion Tou dEova cuupeTEioe
btav 1 ywvio éyer neplodo 271 (Supopetind unopel vor mpoxUer Peudrc eninedn cuy-
uetpla), xar (1) 1 xateuduvtixy @lon TIUVOY OVWUOAL)OY OTIC QUOLXEC GUVTETOYUEVES
Qedh: 1 mpooéyyion evog uTOTIIEUEVOL «IBLOGUYOROUY aTd BLUPORETIXES HATEVIVVOELS

oto nueninedo (p, z) unopel va SWoeL un toodivaua Gpla.



Kavovixr, poppn xaw e&iowoeic nedlou

Kdélde otatnr, alovooupuetoiny| uetpwr] Ye dVo uetadetnd medta Killing 0, xou Oy

yedpeTon otn woppr) Weyl Papapetrou
ds? = =28 42 4 7200 [ (dn? + d€?) + p(n, €)? do?] (1.1)

omouv U, v, p e€aptdvton povo and (n,£). 1o xevo (A = 0) ot e&iotoeic ‘Awvotéey cuve-
méyovton 6Tt To U ixavorotel e€lowon Laplace oe wa fonintikr) eninedr 1pio0Ldc taTn

YewUETElO UE XVAVOPIXES GUVTETAYUEVES (p, @, 2). LTI CUVTETAYUEVES QUTEC 1) UETELXT

YedpeTou

ds? = —e2U2) 442 1 o=2U(p2) [t227(’)’z)(dp2 + dz2) + ,02 dqﬂ , (1.2)

ue U apuovixt:
1
Upp + ;U,p +U..=0. (1.3)

H ypapuxdtnta e (1.3) emitpénet unépdeon Moewv. Mok dolel 1o U, n v tpoxintel

ord ohoXANEMUTY TEHOTNS TEENS (‘TeETPaywVoTOLAoELS’):
Vp = p(Ufo + UZZ) , v.=2pU,U ., (1.4)

TV omolwy 1 cuuPiBactotnta eaopuiiletar ond v (1.3).

Mot vo etvan opohdg o dEovag GUUPETEING AMALTELTOL VoL UNY UTIEOYEL XOVIXT aveuoiior
otig ouvtetaypéveg Weyl autd woduvapel ye v — 0 6tav p — 0. Av n cuvifiun
amotUyEL, TotoVeTelton EAAEUUA (n mpioosupcx) yoviog — plo «<oTEWOENC> avewuahio

oThEENC UE TAOE GTOV GEoVvaL.



1.3.1 Eninedec ywpoypovixeég yewpetples wg peteixég Weyl

Oplopéveg apuovixéc emhoyég tou U avamaplotoly tov yweoyeévo Minkowski e un

TETPYIMEVT Yol

(1) Tetpwpévn Minkowsksi.

U=0, ~v=0 = ds*>=—dt®+dp*+d>+ p?de> (1.5)

(vt) Opordpopya entTayLVOUEVO chotnua (Rindler).

U =1np, y=lnp = ds*=—p?dt* +dp* +dz* + p*d¢®, (1.6)

mou elvar ex vEou eninedr, aAAd o€ cuVTETAYPEVEG TUTOL Rindler, pe tnv empdvela

p = 0 vo hettovpyel we opllovtog emitdyuvong (Ue xatdAnAn UeTUBoNY UETUBANTOV).

(w) IMiaiowo Gautreau Hof fman.

P+ z22+z

U=1n 24224 2), =1ln
2 ( P ) v 2 9 p2+22

(1.7)
mopdyet eniong undevixr xounuAdtnTa. Av xou Yuuilel nui-dreien Nevtoveia pdfoo e
YEUUUIXY| TUXVOTNTA 0 = % OTOV AEVNTIXO GEOVA Z, Lot OALXY) OAROLYY) CUVTETOYUEVWY
amoxahOnTel Eavd ETENESO Y wEoYEOVO, WBKUEVO OO OUOLOUORQA ETILTAUYUVOUEVOUS -
EUTNENTES, PE TO «owUay Tave oe opilovta. To dldaypa etvar cagéc: to BoninTtnd

duvod U Bev eyyudton LOVO TOU TEaryoTixr] xatovour| Hdlog ot 4-01d0Totn YEWE-

Tplo.



1.3.2 TloAumoAwxn avdmtugn xau owxoyeveia Weyl

Ewdyouue opaupixéc yetafBintéc otov Bonintind yweo,

p=rsinb, z =rcosf, (1.8)

oote 1 (1.3) va yiveton 1 a€ovoouuuetein Laplace:

12Uy + 27U, + Upgg + cot O Uy = 0. (1.9)

O aoupntoTxd eninedec, xavovixéc Aoelc Tapadéyovtal avdmtuln o toAukvuua Legendre:

U(r,0) = —Zan r~ ("I P (cosh), (1.10)
n=0

6mou ot ouvteheotég {a, } mailouv Tov pOho «Ualix®Y TOAUTONXGY TopauéTewyy. H 7

YedpeTon S OLTAY oELRd,

R (I4+1)(m +1) P(cos )P, (cos) — Pry1(cos )P, 41(cosb)
V(r,6) = - 1;0 B plrmt? ’

(1.11)
1 OTOlo XWOLXOTOLEL TN U1 YEOUUXT| AUTO-0AANAETDEAOT TwV NEUTOVELWY TOAUTOALY.
H xoavovixdtnta otov dEovo xat 1) XoAf) ACUUTTOTIXT CUUTERLPOEE ETBAAAOLY eTLTAEOY

Teploplopole oTic emttpentéc oxoloudiee {ay, }.

Mezpwxn Levi Civita (dneipn pdf3dog). Mio yopoxtnetotixr utooxoyévela ypdpe-
Tou

ds? = —p1 4t + K2 p17 7D (42 4 d22) + pX1-2) dg?, (1.12)

Tou avtioTolyel oe

U(p) =20 np, Y(p) = 40*Inp+ Ink. (1.13)



Ed to U tautiCeton e 10 Neutmvelo duvouixd dmeione pd3o0u yeaxAc TUXVOTNTS O.
Tevixd epgpavileton xwvixh avopokio atov dEova (p = 0), pe EAAEP YOViag oavdhoYo
e o Yo UeYSAeS Tée o mpoxUTTouy Tpdoletec Toadohoyies (m.y. ueydiot epudpoye-
totoniopol xar tdoelc). To mapdderypo unoypouuiler 6t amhéc Neutdveleg avahoyieg

OLY VA ATOXEUTTOUY 1) TETEWUEVT 4-01doTotr yewueTpia.

1.3.3 Schwarzschild oce cuvtetayueveg Weyl

H yovadu ototiny|, ogaipixd cuUUeTeix xevi) AUor umopel Vo YetaoynuatioTtel o

woppn) Weyl pygow emiunxmy cQUEOEBMY CUVTETAYUEVWY:

r=m(x+1), y = cosb, p=my/ (22 —1)(1 —y?), z=mzy, (1.14)

ue > 1 vo Teptypdel Tn oTaTix TEpLoY ) T > 2m. XNTg HETUPBANTES auUTEG

L2 _ R, +R_—2m (Ry + R_)*> —4m?

2y

_ _ Ro = /02 ¥ m)2
R+—|—R_+2m’ € 4R+R_ ) + 1Y +(Z m) )
(1.15)
1 LloOB VOV
R_+2—m
—im(——0). 1.16
U=z3h Ri4+2z4+m (1.16)

To U ocuurintetl ue 1o duvouxd menepaouévne Neutwvelog pdfdou prxoug 2m xou mu-

AVOTNTUG 0 = % oto dWotnuo —m < z < m. H avtictolyion tunudtoy tou dlova

Weyl ue yvwotéc nepoyée Schwarzschild etvau:

Hepwoyr Schwarzschild < TuhAua d&ova Weyl

O=m,r>2m ~ p=0, z< —m,
0<f<m r=2m(opiloviag) <« p=0, —m < z<m,

0=0,r>2m < p=0, z>m.

HopoTt T0 oyfua g edBdou eivor edyAwtTo, Ypeeldleton Tpocoy: 1 «EdBdogy avama-
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elotd Tov opilovta Kilhvy xou oyt vAixd oopo.  Alaomdoelc o Nu-dmelpec pd3ooug
avtidetng muxvoTnTag avamapdyouy 6woTd To U, aAld YOADYOLY TN Gwo TH ONXT YEW-

ueTpla.

1.3.4 Zipoy Voorhees

Ml puonr| ovorapoueteiny| Tapoudppwo tou Schwarzschild yeoo otny xAdon Weyl
TeoxOTTEL oy avordécoupe avdalpetn oTaER) TUXVOTNTU 0 OF TEMEQUOUEVT PAB00 ML
urxoug £:

Ulp,z) =0 In——— Ry =+/p*+ (2 £10)2 (1.17)

©¢tovtag ol udla m = 20¢ xou 6 = m/{, naipvouue

v _ (Bet R -2 ’ o ((Byt R —ap ’ (118)
R, +R_+2() 4R, R_ ’ '

™ petpw| Zipoy Voorhees (Y y-petpikn). Edwd épla: 6 = 1 (Schwarzschild), £ — 0
ue m otoepd (Curzon Chazy onueoxh pdla), xa £ — oo ue m/(2¢) — 0 (Levi Civita
dretpn yoouun). Extoc ond 6 = 0,1, to tphua p = 0, |z| < £ ebvar yuuvh xadmuhetix

avepokio. H mepipépeta pixpod xbxhou yipw and Ttov dEovo GUUTERLPERETAL WS
Clp)=2mp' 00 (p< ),

Tou expryvuTton yior & > 1 xou pndevileton yio 0 < § < 1, dnhevovtog €viovn xateudu-
VT AVICOTROTHO XOVTa OTOV dEova.

2e enlunxeg o@alpoetdég oloTnua,

p=0/(z2 = 1)1 —4?), 2= lay,

11



1 UETEWY amAoToteltal oe

~ 1\’ de? | dy?
ds? = — (iﬂ) dt2+22(x2‘”_1 + 1_ny) + R?d¢?, (1.19)

ue

2 1 62
e = (:” ) , (1.20)

IE2 _ y2
22 = Pz + 1) (@ — 1) (22 = )7, (1.21)
R? =0z + 1)z —1)'°(1 —¢?). (1.22)

Mo d #0,10t6mocz =1 (p=0, |y| <1) anotekel yviAola, xateuduvtind eZopTdUEVN

avewuaiior xon oyt xavovixd optlovta.

1.4 O undeviouog twv peyedwv Aofd yia Lehaveg

oneg Tunou Kepp xow 0 pdhog twv cuppeTeL-

/4

wyv

Ynueiwon: To axdhovdo xepdhato €yel ypupTel and epéva, Tov emPAémovtd pou A. Ke-
norytog, X xaL 1oV oLVEBEAPO Tou emBAETOVTY pou A. Plotto, xou €yel druoocteviet

oto JCAP.

1.5 Ewoayowyn

To Baputind Kopata (GW's) xar ot Madpec Tolnee (BH's) anoteholv xevipixée mpo-
Bréderc tne Fevinre Lyeuxdmnrag (GR), ot omoleg €youv emPefarwiel melpoportind omd
TEOTOTOPLUXES TUPATNPNOELS, OTwS 1 aviyveuon GW s and cuyywvetoeig BH's and Tic

ouvepyooiec AII'O xou fpyo [1]. Ov aviyvedoec autéc mopéyouv xpioweg evieiZelc UTép
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e Vewplog Baptnrag Tou Awvotdey, ywelc v delyvouv amoxhioelc and autiv [35].
Kot tn @don onepoetdoie éxag (vompoal) evog aupmoryols Buadixol 6uUG THUTOC,
Omwe exelveyv Tou tepthouBdvouy acTEpeEg VETpoviwy 1) BH s, oL ToApeoixég aAANAETL-
dpdioelc xodioTavTon ONUAVTIXES OTAY 1) TEOYLAXT| AnOCTAoT Yivel emapxms wxer|. To
TONEEOIXE. AUTE PavOUEVA ETNEEGLOLVY TOCO TN BUVOLXT TOU GUOTHUATOC OGO Xl TA
exneunoyevo GWs. H o0leuén GW s—mokippoin®y emdpdoewy elval ouctiddng yior Ty
TEAELOTOINOT TWV LOVTEAWY WVOTIEOA o YL ToV EReY Yo TNg G R oe axpoleg cuvifixes.
Ou makippoixéc eMBPUOEIC TOGOTIXOTOLOUYTOL OO TUPAUUETEOUS YVOOTES we Aptl-
wol Love (Love numberc), ot onolot UETEOVY T1] OLORPWOT EVOS AVTIXEWEVOU UTO
Vv enldpact Tou Boputinol mediov Tou cuvodol tou. Ewixdtepa, o otutixol Tloe-
coixol Apwuol Love (T'LN) eloptdvion ond v comteptx) douh xat oo TaoT TwV
CUUTIOY MV AVTIXEWEVWY TIoU Lo TovTaL ToALppoixT| tapopdegwon [42]. O napduetpol
autol maiCouy xalplo pdho oTNV TEOTOTOINCY TOL BaEUTINOY XUPATOULOPPXO) CHUATOC,
UE TIC oLVELsPOopéC Toug Vo epgavilovton oty méuntn peta-Neutdvero t6én [20]. T
ToEABELY AL, Ol un) undevixol T' LN twv ac Tépwy VETROVIWY ey 0uy TOAITIIES TANPOQO-
oleg yio Vv e€icwon xatdoTaong TG TUXVAS Tupnvixig UANG. Avtidétng, v Tic BH's
avopévetan undevixde T LN Aoyw amouciag dxountng doufic. Autd cuvAdewe amodel-
nvoeEToL PE Yewplar SlorTapory v, BElYVOVTOG OTL Lol YROUULXT) TUALEEOIXY| TUEAUUOLPWAT) UE
TALTOC OVEAOYO TOU rt dev Tpoxahel amdxplon -1 (ps ¢ Tov avtioTolyo TOAUTOAXO
deixtn), odnywvrog oe undevixolg ototixols TLN. Tpoyuixée dotapayéc mpoxaho-
VUeVeES amb eEWTEPIXES TOMEEOIXES BUVIUELS OEV UTIOPOVY VO TIUEAY &Y OLY [UT] UNOEVIXOUS
TLN [5, 16, 15, 39, 38, 43, 36, 12, 37, 41, 33]. To gauvdpevo autd gaiveton vor avdyetat
oe unoxelleveg xpupéc ouuuetplee (25, 10, 9, 26, 27, 11, 28, 30, 6, 32, 3, 4, 17, 45].
Hpobogateg avarboeig emPeBaiwoay 61t o ototixol TLN undeviCovton xou yior OLo-
Topayée devtepne T8ENe oTo efwtepd makppoixd medio [47, 46]. Emmiéov, yio T
Schwarzschild BH €yev amodetydel 6tL 1 undevixotnta twv T'LN woylel yio Tig de-

TLOG TTOEATNTOG (Tcapm})—ssv) OloTapay€C o OAEC TIC TAEEWS OTO EEWTEQIXO TOALREOIXO
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nedio [34, 13].

To av o otatindés TLN twv BHs undeviCeton 1 oyt ebvon xepahonmdoug onuaciog yio
™ Bdxpton ouyywvevoewy BH BH anb cuyywveloes aotépwy vetpoviny [14], xadde
oL 0o Tépeg veTpoviwy dlodétouy onuovtind T'LN. Ilepoutépn, axodun xon 1 cuYyOVELOT
0Vo U otpogixey BHs moapdyel tedinae wo otpogpix Kerr BH. Autéd ¥étel to
ovamodpaoTo epMTNU: €youv ol Kerr BHs undevixd ototixd T'LN oe xdde tédén tou
e€wTeEPIXOU TahlEpoixol nediou:

H repintwon twv otpoginwy BHs, tou meprypdgovion and tn hoon Kerr, mopou-
oldlel mpodoleteg duoxohiec. H mepiotpogn elodyel GUPCT ABEAVELNXMY GUC TNUATKDVY
(frame dragging) ot TpOTOTOLEL TN YEWUETEIN TOU Y WEOYEOVOL, TEQITAEXOVTOC TNV O-
vahuon g moklppoixrc amdxptong. H xatavonon tng makippoixrc andxetong twv Kerr
BHs etvor 0uolmdng, oyt n6vo yio VewenTixr TANeOTNTA, GAAS xou yior T Loviehonolnon
xupatopoppwy GW's o peahio Tind Ao TROPUOIXE GUC TYUoTA, 6ToL oL BH s avauévovto
CUY VA VoL TEQLO TREPOVTAL.

Ye auth TNV gpyaoio avTIHETWTICOVUE TO EPOTNUN TNS UNOEVIXOTNTAS TWV CTATIXWY
TLN wwv Kerr BHs yprnowonoioviag 10 @opuaiiopd Ernst [18] xau Ti¢ ouvteTory-
uévec Weyl yi tnyv avdhuorn tne tolpeoixrc andxpione. To duvauixd Ernst npoc@épet
€Vl Loy LUEO TAALCLO TEQLYPUPTIC AEOVOCUUPETRIXMY YWOROYPOVIXMY, ETITRETOVTHS UAS Vo
EVOWUATWOOVUE CUCTNUATIXG TNV TEQIGTEOPY| Xt TG Un YeouuwoTtntes. Exgpdlovtag
™ petew) Kerr oe emunxels oQaipoeldelc GUVTETAYUEVES, YEVIXEVOUUE TROTYOUUEV
aroteAopata Yoo Schwarzschild BH s xan amodetxvbouue 6Tt ol oTtotixol mokppoixol
aprduol Love twv Kerr BHs undeviCovion o€ OAeC TIC TULEC TOU ECWTEPIXOU TTUALOEO-
ixoU medlou. Oa eviomioouye eniong Tic Un Yeouuixés cuppeTpleg Tou evdivovTon Yo
ATO TO ATOTEAEGUAL.

To elpnua autd uToypuuUlleL TN oTBAEOTNTA TWV ETLYELENUATWY BacloUuévey o
oUUUETElEC Tou BLETOLY TIC amoxploelg Twv BH s xou avadexviel T Sloxpttt| OoT ToVv

BHs w¢ Moewv e GR. H undevixdtnta twov TLN emBefordvel Ty apy 6t ot BH s,
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oe avtiVeon Pe dAA GUUTOYY| oVTIXELPEVA, OEV BLaTNEOLY Xolar UOVIUY TORUUOR(PKOOT
UTO OTATXES TOALEEOIXES duvdelc. H pehétn autr cuyfdiiel otny euplTteET XaTAVOTON
e Quoic Twv BHS, TpoCQEPOVTAS VEEC OTTUXES Yol TNV AAANAETIOPUOY| TOUG YE
eCTePXd TEdlaL Xo TIC EMUTTWOEL OTNY AGTEOVOULN BUpUTIXGDY XUPATWY.

Ipénet, woTt600, Vo Tovicouye 6TL, o avtideon ue ) udlo xat To om Twv BH s, tou
elvar X0 oplopéva Sotneolueva optia xou BoduovounTtind aueTdBANTES ToGOTNTES,
ol tohppoixol apriuol Love €youv dlagopetix @Uor. Eve otov Neut®velo optoud toug
etvou dpeoot [24], o otatixés T LN dev anotehel Satnpoluevo goptio olte o xodohixd,
Borduovountxd auetdfBintn nocoétnta ot 'evind) Yyetndmnro. Autd €yer oulnuniet
extevwe ot Bifhoypagio (BA. m.y. [23, 5, 29, 31]).

H acdpeior auty| 001 ynoe ot yiot eVahhaXTIXT] TROCEYYIOT): TOV 0PLOHUO TOU YRUUULXO-
U otatixod TLN we ouvtekeoth) Wilson mou npoxintel ond avtiotolyion (matching)
evog teheoTh| ot dpdomn worldline. Clotéoo, N aviioTolyton auth TpolovETel po ou-
yxexpwévn emhoyy| Poduldac—tumixd tn Baduida de Donder—ryia tnv amhonolnon tou
0LdOTN Tou Yxpafitoviou. Katd ouvéneta, elvon avayxaio 1 UETAPEAOT, TWV ATOTEAE-
opdtev ond ) Boduida de Donder oe dAAn Borduida, 6mwe 1 Baduida Reggel'W heeler (RW)
TOL YENOWOTOLELTAL 6TO YeuuuXd ETENEDO, Yol TNV OAOXAHEWOT TNE dladxactag ovTL-
oTolylong.

M puoudr emdupio etvan vor Statumwiel €vag Baduovountind ouetdBintog oploudg
Tou T'LN. Auto, ouwe, dev ebvon eudiypoppo, xadoe unopoly va otxodountoly dnelpeg
Bordpovountxd auetdBANTEC TOCOTNTEG LOMG ETUAEYEL par BorduLd0-OEOUEVUEVT] EXPEIOT).
M evahhaxetind] otpatnyr ebvon 1 epyacta oe xotdhinin Baduida. H Bértiotn Pordulda
eCopTdTon ambd To CUYXEXEHIEVO TAdiclo pétenong. o mapdderyua, otny xoouohoyia,
1 mopdueteog halobias opiletar PUOOTEPU GE GUYYPOVIXEC GUVTETUYHEVES, OL OTIOLEG
Yenoyonotolvton 6To Lovtélo ogatpixnc xatdppeuvong [50]. H tpdxinon ue tov otatixd
TLN eivon 6T dev petpiéton amevdeiog ahhd cuvarydyeton péow Bayesian oavaluong

Bootouévng G€ TEOCUPUOYT] XUUATOUORPMOY ToU ECUPTATOL OO TO HOVTEAO.
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And Vv dAAY, éva onuavTind TASOVEXTNUA TN HEVOBOU UaC EVoL O 1) BLOTUEAX T
%0¢ NS Yapoxthpas, xadae Beloxouue axp3h AooT Twv TANpwy e€lonoewy Ao tduy yia
€vary oTaTING %o AEOVOCUUUETEXO Y 0poyeovo xevol. H undevixdtnra tou Love number
TEOXVTTEL XUTOTIY AVAAUGTC TNG CUUTERLPOEAS ToL BaduwTtol Kretschmann xovtd otov
optlovta yeyovotwy. Aedouévou 6Tl 1o Kretschmann xwdxomolel eyyeveic 1B16TNTES
HOUUTUAOTNTOC, TO GUUTEQUOH oUTO elvon TEAXMS aveldpTnTo TG EMAOYTC CUVTETAY-
UEVWV.

H epyaota opyavoveton wg e€hig: H Evotnta 2 avaoxonel v xhdon Weyl twv
O TATIXGY, AEOVOCUUUETELXMY ADGEWY XEVOU XL ELGAYEL TOV POPUIALOUSO TOU BUVOLXOD
Ernst. H Evotnta 3 enaveletdlel tny moAippeoixy| andoxplon twv Schwarzschild BH s,
VéTovTag To TAloLo Yior U Yeouuxd Talppoixd gorvouevo. H Evotnra 4 emexteivel Ty
avdivon otic Kerr BH s, meplypdpovtog Tr UETABAoT) OE ETUUAXELS CPUPOELDEIC CUVTE-
Toryuéveg xan e€etdlovtog Tig @Ovouceg xan aUEAVOUEVES TETPATOMXES WOlopoppéc. H
Evémnto 5 peAetd tny enldpaot) TV YN YROUUUIX®Y TOAMEEOIX®OY UAANAETIOPAOEWY Xou
ToV pOLO TOug G711 Sloo@dhon Tne undevixotntog Twv T'LN. H Evétnra 6 culntd tov
EONO TV N Yeouuixwy ouuuetetwy. H Evéotnta 7 xielvel e tic emintooeig xon moveg
enextdoelc tne cpyaotag. Téhog, to Hapaptiuata A xou B oulntolv ) uetdfBaon oe
ouvtetayuévee Boyer Lindquist xon dAAeg BACEC TOAUTOAGY, TROCPEPOVTAS CUUTAT-

COUATIXT| OTTLXY).

1.6 H xAdon Weyl tov octatixwdyv, aovoouuue-
’ ’ ’
TEWMWOY AUCEWY XEVOU

‘Onwe €deie o Ernst [18], ov eliotoeic nediou yio OUOLOUOPPA TEEPLO TREPOUEVT), O-
EOVOOUUUETEY TINYT| Uopoly vor ovadlatutemdoly péow evog amhol PeTofAnToTo0
(variational) opyhc. Axolouvddvtag autr TV Teocéyylon avadlovtul evialec hoELS

yia T petpiee Weyl xou Hanametpou, ol onoleg poag dlvouy dUeoT) Topaywyr) TG0 NG
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Schwarzschild 660 xou g Kerr Yetpixfc o€ EMPUAAELS CQUEOEEIC CUVTETAYUEVEC.
Néec Mooeg v v Kerr BH oe nahippoixd tepi3dhhovia urnopoly eniorng va Angdo-
OV UE aUTO TOV TEOTO, ETUTEETOVTAC UG ONAMOELS VLo TOUG U1 YRUUULXOUS OTATIXOUG
Love numberc wwv Kerr BHs. Zexwdye eletdloviag pla ototixt|, a&OVOCUUUETELXN

uetpy Weyl otn poper [40]
ds® = 71 [e¥7(dp® + d2?) + p*dp?] — f(dt — wdep)?, (1.23)

b TpoxOmter 6t oL eliodoeig Yo

omov f = f(p,2), w = w(p,2) xu v = 7(p,2).
o f xou w, mou amoppéouy amd Tic eflotoelc medlou xevol tou Awotdy (R, = 0),

arolevyvbovton and v e&lowon yia ) Y(p, 2) xou divovton and

fV2f=Vf-Vf—p2fiVw-  Vuw, (1.24)

V- (p?f*Vw) = 0. (1.25)
Ewdyouue todpa veo Boduwmtd ¢ amd TNy w g

f2
V¢ =—-—n, x Vw (1.26)
p

6mou f, ebvor To povodlaio didvuopa otn debiduvon ¢. Eyel derydel [18] 6t oL (6.2)
xon (6.3) umopoLy emlong va oy Yoy UEow Plag Uiy adXnC cLVEETNONS, TOU BUVAUIXOU
Ernst £, opllouevou v

E=f+igp. (1.27)

I nuedote 6ty p — 0 Yo mpémet vau toylet ¥ — 0, 86T oS 1 petpixh Yo Teplelye Tuhua
avéroyo ue €270 dp? 4+ p2dp?, to onolo capdc Pépel xwVIXH aveUOAid Y0l OTOBATOTE 2.
(o prae Poc gep 1 t Y
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Hepoutépw, ot e€lodaoeic yio T Tty ouvdptnon (r, §) yedypovtou dpot tou € we [19]

1o = 1 ENED +(EED]
10 = 107 [ENE) — (€(ED)]. (1.28)

Ewodryouye empixelc ogoupoetdeic ouvtetaypéves (t, , y, ) avti Twv GUVTETOYUEVGLY

Weyl yedpovtag [52, 44]

P = pO(IQ - 1)1/2(1 - y2>1/27 x> 17 |y| < 17

2 = poxy, po = oTta. (1.29)

Ou SoUUe TapoxdTw OTL T py oyeTileton pe T wdlo xou TNV TaEdUETEo omy Twv BHs

Tou Véhouye vo Teptypdoue. LTI ouvTETAYUEVES aUTéC, 1) peTexh g (6.1) yedpeTto

ds® = pgf ™! {62”(562 ) ( o > + (2% = 1)(1 = y?)dp?| = f(dt—wdp)®.

x2—1 1—9?
(1.30)

[oc yehhovtiny| yerion, o dlapopxol TEAEGTEG ToU ELeT|yINocay TEONYOUUEVWLS, OTIC ETL-

UTXELS OPULEOELDEIC CUVTETAYHEVES TOEVOUY T1) LOP®T:

V = pot(a® — )V [Ru(a® = 1)V20, + ny (1 — y*)'/?9,]

V= py %2 y2)_1{8x (@ = 1)a,| +0,|(1 =)0, } (1.31)
EVK TO EOWTEPIXO YIVOUEVO TwV Paduldwy 6Vo cuvaptioewy A xou B eivon
VA VB = p:2(a? — )" [(gﬂ — 1)9,A8,B + (1 — 12, A ayB].

O1 eCiotoelg (6.2) xou (6.3) tooduvapoly ue Ty eiowon xivnong yia to duvouxd Ernst
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& mou mpoxinTEL amd TN dpdon

VE - -VE*
= [ = 1.32
5 /<5+5*)2 o (1:32)
€101 WOTE oL avTIoTOLYES EEIGMOELS
(E+E)V?E-VE-VE =0, (1.33)

avomopdyouv e (6.2) xou (6.3). Kotd cuvénewa, 1o mpdBinue ebpeonc a&ovocuuueToL-
AWV, OTACWY ANICEWY XEVOD TV €EIOGEMY AVeTaY avdyeTon 0 XUTIAANAT ETALGT

e (6.11) yio To Suvoixd Ernst E.

1.7 H Schwarzschild BH o e&wtepind ntokippotnd
neodlo

Hapbdt n Schwarzschild BH oe e&wtepind mokppoixd nedio €xer oulntniel extevie
oto [34], uneviupilouue €8¢ v meptypagr g Gpouc Tou duvauxol Ernst. T T
otatin| Schwarzschild ye w = 0 xou OE EMUAXELS CPUPOEIDEIC CUVTETUYUEVES, TO
OLVOUXO elvon TEAYMATIXG xa diveTon amd

z—1

E=e¥ ,
r+1

(1.34)

6mou Y(x, y) ebvor mparyportind duvoptxd. TToxaoTOVTIS TNV TOEATAVG EXPEOOT) GTNY

elowon xivnong (6.11), Beloxoupe 611 1 ¢ wavortotel tnv e€loworn Laplace

V) = 0. (1.35)
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ToviCouye 6T, pohovoTt 1| (6.11) etvon un yeoupxr e€iowor TOU EVOWUUTMVEL T Un
Yeopuuxotnto v eélowoewy Awvotdy, 1 (6.13) eivar axpBric ypappukr) e€icwon mou
wavorotel 1 1. ‘OAn 1 un yeauuxdTnTo ueTapepUnxe oTn cuvdptnon v, 1 onola xado-
oileton amd Tt un yeauur (6.6). Auth etvan 1 8Ovoaun tng uedodou Ernst, dtou wio
Yoouuxr e€i0WoT ATOUOVOVETOL ant6d TO TANPES U Yeouuxd cbotnua. H Abon yio

Y(x,y) Yedpetar (¢ TOAUTOAXTH ovEmTUEN

Y=Y Ulx)Yly) (1.36)
>1
6mov Uy o Yy ixavomololy
d 9 d B
o ((a: - 1)&@) — L+ 1)U, =0, (1.37)
o)Ly s e+ 1y =0 (1.38)
dy Yy dy I ¢ =V .

H xavovixr) oon tng (6.16) ota y = £1 diveton omd tar tohucdvupo Legendre

Yi(y) = Puly),  €=0,1,--+, (1.39)

xat, opolwe, N Aoon tne (6.15) etvou

1—-¢ ¢ 1-2¢ 1 1 146 240 3+20 1
_ ¢
UE = Oy 2F1( 9 7_57 9 7P>+5£])£+12F1( 9 ) 2 ) 2 7?)7
(1.40)

»ote N YP(x,y) npoxinTel

- 1—¢ ¢ 1-2¢ 1 By 14+0 2440 3+20 1
_ V4
Y(x,y) = ;1 {Oféx 2F1< 5 ' 9 9 ’mz) +I£+1 2F1< 5 ' 9 ' 9 71,2)}P€(y)'

(1.41)
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"Eyet derydel oo [34] 6t 1 @divouoa Wiopoper| (avdhoyn tou r—“-1)

YEVVA YUV a-
vouoia otov opllovta & = 1.2 Mrnopel vo enondeudel eetdloviac tov Boduwtd
Kretschmann, o onofog amoxhivel yw B¢ # 0 ot0 & = 1, énwe ROn €d6eile o [34].
Avtideta, 1 avZavéuevn wbiopopgr (avéhoyn tou rt) dev etvar idlouoa otov optlovia.
Enopévwg, B = 0, odnyovtoag oe undevixd otoatxd Love number v Schwarzschild
BH og e€wtepind Poputind medlo oe Oheg TI¢ TELEC OTO TOhEEOIXO TAUPAUETEO 34].
Ynuerdvoupe eniong 6t 1 Aon (6.19) xodopilet xar n ouvdptnon y(z, y) = vs(x, )

v ™ Schwarzschild BH péow tov eglotoewy (6.6), mou o enyuixelc opatpoetdeic

CUVTETAYHEVES YRAPOVTOL ONTA (G

.2
Yoz = —;2 —iﬁ [:c (2> =1 U2 -z (1-y*) U2 -2y (2” — 1) U,xU,y} ,
2 _
Yoy = H ly (2 =) U2 —y (1 =9?) U2 + 22 (1 —¢?) U,xU,y] . (142
OTOV

Uz, y) = %m (i - 1) (). (1.43)

Téte, n yevix Moom yio vs(z, y), diveton amd tov xhelotd tono [52]

W) = =) [ Ty, (1.44)

2
1T Yy

OTOU

L(x,y) = y(a® = 1)U% —y(1 —y*)U2 4+ 22(1 — y*)U U, .

ZH unepempdvelr © = 1 ebvon mpdypott opiloviag, xadde 1 f = Re(€) ot (6.1) undeviletow:
flx=1) = 0. Avtd gaiveton xou and oV 0ploUd WV EMUAXWY cLVTETOYUEVGLY (6.7) Tou xohdTTOUY
my eptoy) x € [1,00), dnh. v ewtepen Tou opilovta.
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1.8 H Kerr BH oec e€wtepixd Tallppolxd nedia

[o var etoorydyoude TEPLOTEOPY|, TEETEL Vo EMTEEYOUUE UN UNOEVIXY W OTYN UETELXN
(6.1). e auth v mepintwon avauévoupe 1 (6.1) va neprypdder v Kerr BH xodaog
xou TNV eYPdnTion Tng oc e€mTepd TaklpEoixd TEdla, Xat’ avdhoYo TEOTO UE TO W1
TeploTeEQOUEvo umoBadpo Schwarzschild tne mponyoluevng evotnrac. Egdcov yia
neploTeeoOpevn) BH 1 w dev pundevileton, To Suvopxd Ernst mpénet va el U undevind
pavTaoTiXG PEpoc ¢, To onolo xadopileton and v (6.4).

Ewbuxotepa, €yet derydel 7, 48] dtu 1 xatdhhnhn emhoyn yio To Suvouxd Ernst yiog

Kerr BH ot e&wtepind maklppoixd medio €xel T popph

oy T(1 +ab) +iy(b —a) — (1 —ia)(1 — ib)

E=e 2(1+ab) +iy(b—a) + (1 —ia)(1 —ib)’

(1.45)

6mov a = a(z,y) xou b = b(x,y). Téte oL e&iodoeic xivnone (6.11) yio ) £ tooduvouoly

ue tic axdhovdeg e€lodaoec yio alx,y), b(z,y) xou Y(x,y):

V) =0,
(= ylas =2a [(zy — D)oo + (1= y*),] ,
(x—y)ay =2a[— (2" = Db, + (zy — 1)b,] (1.46)
(z+y)be=—2b[(zy + D, + (1 —y*)v,],

(x+y)b, =—2b [—(xQ — D, + (xy + 1)¢,y} .

Emniéov, 1 (6.4) ypdpeton pntd o¢

¢,x = pal(xQ - 1)_1f2w,y )

N (Tl ) R (1.47)
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Tére, o ouvapthoels f, v xow w ot (6.1) divovton amd:

f=e*AB™!,
¥ = Ky (22 — 1) 1e®” A, (1.48)

w=2ppe  WAIC + K>,

OTOoU

A= (2= 1)1 +ab)?— (1 —y*)(b—a)

B=lz+1+(z—1ab+[(1+y)a+(1—yb?,

C=(@*-1)(1+ab)[b—a—yla+b)]+ (1 —y*)(b—a)[l+ab+z(1l—ab).
(1.49)

Ané v mpd v (6.26) BAénoude 6Tt To ovotatind () tne uetpeixic diveton omd
g = €2VAB™!, onéte gy & e* v x — co0. By (6.27), K xou Ky ebvon otadepéc,

EVE 7Y, Ebvon To Buvouxd ¥ e avtioTotyne otatxic petpnc (6.22).

1.8.1 H petpwxry Kerr os ocuvtetayueveg Weyl

INota =b =0, o Suvauxd Ernst oty (6.23) avdyeton oto avtiotoryo (6.12) yio
Schwarzschild BH. Oo dei€oupe topa OTL, avdhoya, avoxtoLue Tn Uetewxh Kerr and

v (6.23) 6tav

a=—a, b= a, a = ota. (1.50)
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Ye oauth Ty mepintwon Beloxouye [§]

P22 + ?y? — 1

(pr +1)2 + ¢*y*’

v _(pr)° + (gy)* — 1
p(a?—y?)

gpz+1)(1 -y

Re{€} = [f =

W= , 1.51
p(p2a? + 2 — 1) (151)
6Tou
1—a? 20 5 9
- = 4= ~ 1. 1.52
P=15a 913 P4 (1.52)

Avtixohotdvtag enlong to pavtaotnd Yépoc tne Ernst oty (6.25) yia vor Bpolue Ty
W XL YENOLOTOWWVTAS TIG (6.27) HE

1 4poce

Ki=———  Ky=—
T 1- a2 2T -

(1.53)

xatoAfjyoupe ot Kerr yetpun oe emurixelg ouvtetaypéves. H yetdfBaon oc ouvtetay-

uévee Boyer Lindquist yivetonw amd Tol UToxotdoToTa

por =7 —m, y=cosh, py=mp, ay=mq, ps=m>—ag, (1.54)

omou m etvan 1 pala xan ag 1 TopdueTEog omy Tng Kerr BH. Enedr to omy ixavonotet
m? > a3, oné v (6.32) éneton 7o elpoc |al < 1. 'Etol, avoxtolue Ty YVe ot Lop@h

e Kerr:

by 4 c 2
ds® = — (1 - 2%) dt* + Tdr® + 2d6” — %Smedt&p

2madr

+ (7"2 +aj + sin? 6’) sin? 0dy? | (1.55)
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ue
A =71 —2mr +ag, ¥ = 7? + aj cos® 0. (1.56)

Yuvenoe, n Ernst (6.23) pe a,b énwg oty (6.28) neprypdger mpdyuatt ) Kerr o€

ETUUNXELC OQAULPOELDE(C GUVTETAYUEVES.

Av xou ov Boyer Lindquist eivon yevixme tpoTyuntées yio tny Kerr, oploUévee epyo-
oleg mou axohouloly TEOTYWOUY YEIRIoP0US O «GPUELXECy cuvTETaYUEVES TUTOL Weyl.
O ogaipiéc (R, u, @) exppdlovton yéow Weyl xovovixddv (p, z, @) xa Boyer Lindquist

(7,0, 9) wc

R=po/a2+y2—1=+/p2+ 22 =/(r —m)? — p¢sin?@ ,
0

xy 2 _ (r —m)cosf (157)

V=1 JEE2 - mP - s h

cosu =

O petofdoeic PeTtah AV TWY TARATAVL CUCTNUATGY arhonololvTon UE Tic forninTixég

Rii

Ri(p,z) =/p*>+ (2£po)?=(r—m) £ pycost = \/R2 + p3 +2pgRcosu . (1.58)

Me yprion g (6.32) hopBdvouue elxola Ty avtiotpopn yetatpont e (6.7)

poa;:%(R++R_) = %( p2+(z+po)2+\/p2+(Z—Po)2>,
pw=1 (B~ B )= (VPGP — VAT GomP).  (159)

Yte véeg (R, u, p), n Kerr ypdpetou

ds® = f71 [e*(dR? + R*du®) + R?sin’ u dp?] — f(dt — wdyp)?, (1.60)
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OTOU

dm(Ry + R- 4 2m)
(R + R +2m)? + (R, — B2
(Ry + R)2—dm? + —8 (R, — R_)?

2 e 1.61
e = RR : (1.61)
(R+—R-)*

aom(R+ -+ R_ -+ Zm) (4 — ﬁ)

2_
m ag

(Ry + R_)2 — 4m2 + q2(B+—R-)?

0" (m?=a3)

f=1-

Téhoc, 1 (6.38) avdyeton otny (6.33) uéow tev yetaoynuatiogoy (6.35) xou (6.36).

1.9 H Kerr BH os e€wTtepind tohlppoixd Tedlo

Endedpenon wwv (6.24) delyver 6t ta a xan b xodopilovton pévo uéypt €vay morhomho-
oo Tixd mapdyovia. Mnopolue va exgeTaAreutolue auTh TNV eheudeplor emAéyovTog
otadepéc Twég dmwe oty (6.28). Ag Eavarypddoupe tn (6.8) g

dz?
2 —1

d 2
a5t = (e =) 1 (57 + 12 ) R - D L (16

OTOoU

B Po —2p+2V
h—mBe + s (163)

1 2 —1
Veqg—-In|—">], 1.64
Vs~ 3 n(ﬂ_yQ) (1.64)

ue Tic otadepég K, Ky emAeYHEVEC OOTE 1) (6.40) var avdryeTon oty Kerr yu ¢ = 0.

Ané tic (6.24) Brémoupe 61 n ¢ ixavomotel Ty Laplace, n onolo oe (R, u) elvou

%8;3 (Roomw) + Ou( sinud ) =0, (1.65)

RZsinu
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doo 1 yevixr) Abom oe cgonpixég apuovixeg Weyl €yel tn popoy

= Z (CZRZ + %) Py(cosu). (1.66)

>1

H Mon auty unopel enfone va exgpactel oe (z,y) avuxadiotoviag R = R(x,y) xou
u = u(z,y) and v (6.35). Toviloupe 6t n (6.44) eivan axpBric Aon e axpBoic
Yeouuxic (6.13) exppoaouévng oe (R, u)—0ev undpyel tpocéyyion edw. H oeipd Eexivd
a6 £ = 1, 86Tt 0 bpog £ = 0 amoppogdrar and TNV Tapducteonoinon tng Ernst
(6.23). Eivou emlong onuavtind vo amott{COUE ATOUGTo XWVIXGY aveouahiody. ‘Onwg
otnv Evotnra 2, npénet lim, 0y = 0, OnAadY| oTIC EMUAKEC cUVTETHYUEVES limy 41 ¥ =

0. Tére, anmousio xwVIXdY aveuahldy oTtov dZova emtTuyydveton av toylet [51]

o0

> conp1 =0 (1.67)

n=0

‘Onwe gafveton oto [51], n (6.45) TEOXVTTEL O TNV XOVOVIXOTNTA TNG ETOYOUEVNS
uetpic otov opilovta. Yrohoyiloviac ) yopaxtneotix (Eviep) tou Bibidotatou
ouumayolg g dtatourc Tou opilovia oto & = 1, 1) (6.45) mpénet vo oy el Gote x = 2,
ONA. TOTOAOYLX S2. Yuvenoe, dev ETMUTEEMETOL T.Y. UEUOVWUEVO OLTOAO YWwplc cUYVODO

/
OXTATONO.

1.9.1 H ¢Olvovoa tetpanolixr| LoLophop®pn

H Abon (6.44) etvon ddpotopa givousov (avdroywy R471) xow auZavbpevey (avéhoywmy

RZ) Wropoppav. Eetdlouye Tic TeTpamohinés, onote

o= (o ) risn, 1o

OmOoL €3 xou dy ebvon ot evtdoelc auiavouevou xau @iivovtog Tedlov, avtiotorya. Mropo-

UUE vou uToloYiooUpE TIC YEVIXES expdoel Yt a, b xau V' ané Tig (6.24) xou (6.22) yio
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Vs

a(x,y) = — aexp {QCg(a:y +1)(x —y) — do [(:c2 + 97 — 1)_5/2 (22° + 52° (y* — 1)
—2%y (5y* —3) =3z (v* — 1) —y (2y* — 5y* + 3)) — 2] } (1.69)

b(x,y) =aexp {202(1 —xy)(x +y) — do [(.Z‘Q + 4% — 1)_5/2 (2335 + 523 (y2 — 1)

+2%y (5y° = 3) =3z (y* — 1) +y (2y* — 5y*> + 3)) + 2] } (1.70)
1 24dyy® (—coy* + coy® + )
1% =— (¥ =1) [ =232 (9% = 1) +4c22? (5% — 1) — ==
(:v,y) S (y ) ( Co ( Y )+ CoX ( Y ) (I2+y2_ 1)5/2
8 (z — 6eay?) 75d2 (y2 —1)°y®  9d2 (25y* — 38y2 + 13) y*
(22 +y* = 1)% (22 + 92 — 1) (22 + 92 — 1)
9d3 (25y* — 26y° +5)y*  3d3 (259" — 14y° + 1)) gyt Gy
(a2 +y2 = 1)* (22 +y2 = 1)° 42
dy (3ca (y* — 1) + 2
L BBaly — D2 (1.71)
vai+yr-—1

Ou napamdive ebvon akpifeiS expedoels, amoTEAECUA OAOXAPWONG TOV (6.24) pe 9 6meg
oty (6.44) xar avtixotdotaon R(z,y), u(z,y) and (6.35). H otadepd Vi otnv (6.49)
xodopileton and v xavovixétta [51] lim,, 11 y(z,y) = 0. Enedy| to dy oty (6.46)
elvon avdAoyo Ue tov ototixd T LN yior TETRAmOMXES TOAPEOIXES TUPUULOPPWOELS, EEE-

tdloupe povo tn piivousa Wogopr): Yétovtag ¢ = 0,

¥(z,y) Zdzﬁpz(cos w), (1.72)
a(x,y) :—aexp{ —dy [w(:c,y) —w(y,:z:)}}, (1.73)
b(x,y) =aexp { — dy [w(m, y) + w(y, x)] }, (1.74)

Az, y) =4a? exp { — 2dyw(a, y)}{(a:2 1) sinh? (de(x, y) —In |ay)

+ (y* — 1) cosh? (de(y, x)) }, (1.75)
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B(x,y) =4a2 exp { — 2dyuw(z, y)}{ (mh (dQM(x, y) —In |a|)
+cosh (dyw(z, ) ~ 1n|a|>>2 + (yeosh (dyuw(y,x)) +sinh (dsu(y, @))2 }
(1.76)
O(z,y) =4signa a? exp{ — 2dyw(z,y }{ 2% — 1)sinh (dgw(x y) — ln|a|> (cosh (dgw(y,x)>
+ysinh (dyw(y,2)) ) + (1= y?) cosh (dyu(y, 2)) (sinh (dyw(z, y) — Injal)

+2 cosh (dgw(a:,y) —In |a|>> }, (1.77)

OTIOU ETAVATEOCOLORIOUUE (v e yo

I(z,y)
Ro(2,y)’

l(z,y) = m<2x4 + (52 — 3)(y* — 1)) .

w(zr,y) =

Evdwgpepopaote yio mbavég avwuahieg mou unopel va elodyetl To nahippoixd tedio. Evog

TeoTOC eivon va eheyy el av BaduwTtol xounuidTntac, onwe o Kretschmann
K = Ry pe RM77, (1.78)

yivovtan 18dCovtec. Koadie pehetolue tny andxplon Kerr BH oc ewtepind medlo, v
Yo €mpene v eppovilovTon VEEC AVOUOMES TEQUY TV YVWoTHY TNg Kerr: dloupopetixd,
Vo mpéner vo xahimtovton and opilovia (oyt yuuvég). Edv, howndv, n K xadictaton 18-
Glouco AoV EXTOC TWV YVWO TGOV Wogop@ey Tne Kerr, tote ol otatxol Love number
TpeémeL vo undeviCovtat, Epocov auTES oL VEES avmuaiieg etvon yuuvée. H mineneg éxppaon
e K elvor mohd oyxdong. Ouwe, avantiocoviag otov tonuepwd (y = 0) xon xovtd

otov ewtepxd opilovta (x = 1), Peloxouue
3d3 d6
K(s,0) ~ Ky + e16s® (— + O(s 11)> s=x—1, (1.79)
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émou Ky o Kretschmann tne Kerr oto (x = 1,y = 0). BAémoupe 6ty dy # 0 o
Kretschmann amoxiiver xadog s — 0, detyvovrtag yuuve aveupohio. H avouaiio auti
meémel vo e€oherpiel- autd emtuyydveton Ye do = 0, dpo o Love number tng Kerr
undevieton o€ omoldNmoTe TN 0T0 EEWTEPIUO TUALPEOIXO TEDO.

Oa uTopPoLCE XaVElS Vol O TAGEL TL CUUSUEVEL OV XEUTHOOUUE XOU Co Xol dy U1 UNOEVLXAL.
Téte n K yiveton e€onpetind paxpd, ducycpaivovtac optoTtixd cupnepdouata. §2oToco0,
N K elvor avahuTinr) g meog ca, da xou pmopel var avamtuy el oe duvdueig Toug. O bpog
aveZdpNToC TOU ¢ XovTd oto & = 1 Siveton mdvtote and v (6.57). Ipootidevron
TEMEQUOUEVOL 60U AVAAOYOL UE VETIXEC BUVBHELS TOU Ca. LULVETKC, 1) K Yot amoxAivel yia

xde dy # 0, avelapThTOC Co.

1.9.2 H aulavopevn TETEATOALXY] LOLOUOR YT

Edope 61t 1 @divouca 1Blopoper odnyel 6 YUUVES XOUUTUAGTIXES avewpokies: dpo ot
TLN tnc Kerr undeviCovton 010 mhfpns un yeouuxd eninedo. Topo uehetdue v
awZovouevn tetpomolixyy (¢ = 2) Wopoppy|. 'Eyet derydel [48] 611, epdoov xpatndolv
Lovo au€avouevol TeoTol (OTWe XAVOUE, agol o TLN anaviZova), umopolv Vo
unohoytotony avohutid ot a(R(z, y), u(z, y)) xou b(R(z,y), u(z,y)), ondte xau o pépn

NG METPWAC Yedpovtal pNnTie péow tohuwviuny Legendre yio avdoipeto £ [7]:

V= icg (EY Py(cosu), (1.80)

— Po
e’} R_ n—1 R VA
a:—aexp{2 Crn— (—) Pg(COSU)}, (1.81)
w1 Po =5 \Po

b:aexp{Qicn& 21(—1)“ (EYP@(COSU)}, (1.82)

> R\
V= cecy (—) l:Png/ - P£1Pe/1}

o 1£—|—€/ Lo
N R. R R\*

+) ¢ -1 ”’“—+——‘] (—) Py, 1.83
; Z;) [< ) Po Po Po ¢ ( )
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Po 2(V—1)
h B 1.84
(1 I a2)2 € ) ( )
5 C Apoc =
w :2p(]€ QTZJZ _ : 50062 exp (-2% an> . (185)

[ot TIC TETPATOMXES TUPAUUOPPOCELS (¢ = 2) mou HOIG EVOLAPEQOLY, TOL DUVOUXE 1, s
xan V' ypdpovton

) =co (E)ng(cosu), (1.86)

Po

1. ((Ry+ R.)2—4p? R\
Vs :5111( + IR.R 0 4¢3 p (Pg(cosu) - Pf(cosu))

(G Goome )= (e
+c| —|—cosu—1) —— | —cosu+1 ,
Po \Po Po \Po

R\" Ry (R R_ (R
V =c; (—) (Pg(cosu) - Pf(cosu)) +c (—+ (— cosu — 1> - — (— cos u + 1)) :
Po Po \Po Po \Po

(1.87)

O CGUVETIC

((Ry + R_)* — 4p5)(1 + ab)* — (4p5 — (B4 — R_)*)(b — a)®

e ,
= R T R+ ab) 1 201 — ab) 1 Roola + ) ¢ (R, — R ){a 0]
(1.88)
g COT) (B + R)(Ltab) +2p0(1 = ab)]* + Rpo(a+8) + (R — B)(a = D)
(1) (R: + R)? — 403
(1.89)
o (Rt R AR+ ab)Cpulb— ) = (Re = RO+ D) g
(Rt B —ad)(itab) — (O~ (R Rb-ap
(498 — (Ry — R)*)(b— a)(2po(L + ab) + <R++R J(1=ab)  dpa
(R + RO? — 4p3)(1 + ab)? — (48 — (Ry — R)D(b—a)? 1-a?"

R R
a=—qaexps 2co— |1+ —cosu| o,
Po Po
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b =aexp {202&[1 - Ecosu}}. (1.91)
Po Po

Topa TEEmeL Vo EEETACOVUE AV UTEOYOUY YUUVES OVWUAA(ES Xou yiot TNV ALEaVOUEVT
wiopoppr. Eyet Sewydel oto [48] 61 yio & > 1 avouakieg avoxintouy 6tay B = 0
(6mou B 6nwe oty (6.27». Tmodétovtag co < 0, Bploxoupe 61t B # 0, dpa dev
uTdiEy oLV avwpokies yia x > 1. Mévet, howndy, o opiCovtac z = 1. ‘Onwe xou mew, o

urohoylouog tou Kretschmann yOpw omd x = 1 detyvel

1

(a2y? + 64@(;/271))6

K(1,y) =

P(y), (1.92)

6mou P(y) moluwvugo oe y. Ané v (6.70) avolutind npoxintet ot yio cp < 0 xou y €
[—1, 1] o mapovopactrc dev undevileton- dpa 8ev TEOXVITTOLY aVWHOAEC aTOV EEWTEPXO
opiCovta. H ouuneppopd (6.70) oupgpwvel pe to dtorypdppata touv Kretschmann oo [2].
A&iCet emiong 611 1) puonr| cuvETel ¢ < 0 ebvan 1) eAdTTwon TNE YOV TaOTNTOS TNS
Kerr und mohppoixod nedio (tidalbraking). Autéd qoivetar amd v yoviaxy toydTnto

opiCovta oe Boyer Lindquist [49]

O = -] (1.93)
9té | 1
[ o teTpamoAixd pag ebpnua,
Qy = B0 e Qf e* (1.94)
a +r2 ’

omov QF = ao/(ad + 12) n Kerr nyh. Apa, Yo ¢ > 0 1) BH «spin — up», x4t yn
PEANLOTING QUOXE—T) TIUALEEOIXT) TIEDTOT) 0O YEL OE el Tou oy, LUVETKG, ¢ < 0,

OE GUUTIVOLOL X0 UE TNV ATOUGEN UVWUAALOV.
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1.10 O pdhog TWV CUUUETELDV

Efdope 6t ot otatixol T'LN undeviCovtar ToutoTnd 0T0 TANeWS 1N YRouULX6 eTinedo oyt
uévo o un neploteepodpevn BH [34, 13], ahhd ot yio TEQLOTREPOUEVES, UTOBEXVIOVTAS
uTOXEUEVY) Un YeouY| ouppeTeio Tou eENYEl TN CUUTERLPOPE KOl OTIC TEPLOTREPOUEVES
yweoyeovés. H oupuetplo auth Hom epgaviCeton 6To ypuuuixd eninedo Tou TaAlpeoixod
nediou [25, 10, 9, 26, 27, 11, 28, 30, 6, 32, 3, 4, 17, 45]. T xdde Aorn tpémou ¢
uTdpyEL BLITNEOVPEYY TocoTN T I Tou cuvdesTon pe TN ouupeTelo autr. To avticTtorya
popTtio emtpénovy «xatdBacny oTo povortohxd ({ = 0) Yéow avuPmTOY GXOAOTUTUOY
(ladderoperators). H dwtrhienon tou Py cuvendyeta avalholwto Py yior uhnidtepa £,

TOEEYOVTOC OXEAETO XaTavOnong yiatl 1) pdivouca Ao ~ 1/7,e+1

TEETEL VoL AmOXAELETOL:
ouvbéetan Ue amoxAioelc otov optlovta. H un ypouuxr exdoyn tne ouuuetplag €yel
Towtonomdel ota [34, 13].

Kadoplotixn nopatrenon: n edlowon yia v ¢ mou SETEL TN O ToTiXY) Bloop(pnoT)
OXOUT XU OTO TATPWS U1 Yeouuxd xadeotwg mopouevel ypaupukn—etvar n Laplace.
Yupmtouatd, etvon 1) (Bl ue exetvn yio otatind, dualo Paduwtoé o utéBadpeo Schwarzschild

0710 Ypouux6 eninedo. O un yeouuuxdTnTes xwdixonooivtal oTic a(x, y) xa b(x, y) mou

eloépyovtal oTny Topduetpo Ernst (6.23). Avantiocovtug [34]
=0
optlouye TEAECTEC OXANOTIOLTLEIV

d
L =—(2* - 1)& — (L + 1)z,

_ d
L; = (2* - 1)& — L. (1.96)
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Avutol Spouv we avudwtée/xatofiBoctéc TOALTONWY:

L?Ue ~ Ug+1, LZU[ ~ Ugfl. (197)

Ynueiwon: 1 dour) toylet yioo ta Up, Oyl yior To mhipee £, xadoe to teleutolo Bev
uovorotel ypouux e&lowon. Kotomy, xatd to npétuno tne yeopuxic dewploc [26],

optloupe dotnpolueva ueyEédn

d
Qe = (2% — D (LyLy -~ Ly) U, (1.98)
yio Toe omotos:
dQy
= 0. 1.
= 0 (1.99)

ot @iivouca Moo, 670 drelpo

(1.100)

OTOTE TO (¢ TOPUUEVEL TETEQUOUEVO OAAL Un undevixd xodwg x — o0o. Kovtd otov
optlovta 1 @divouca Ao amoxhivel Aoyoprduixd wg In(z —1). Egboov auEavéuevn xa
pdtvouoo porpdlovton o (Blo Qr, xou 1 awavouevn eivon tenepoouévn otov opilovta (dpo
Qe =0), 1 Strienom Tou Qg amantel Tov anoxAelopd e giivoucag Aoy w g andxhoTg
me. Qotéoo, anateiton TpdoUeTo emycionuor AOYw TNE amdxhlong, 1 yeouuuxr| Yewpla
xoTapEEeL xou TEETEL Vo e€eTaoUel To TAYPES U1 Yoo TEOBANUo. ESw delloue oTL 1)
amoxhon e @iivoucag oTov optlovTo ETPBLOVEL X0 U] YROUUXE—WS YUUVT aveUaAio
oto Kretschmann. Apa n @divovoa ANoorn mpénel va eCoeplel, odny®dvTag ot undevinod
otatxd Love number. Amoppintoviag Tic @UVOUCES CUVIGTHOES OTNY (z,y), dev
UETOUPEQOVTOL VEEC AMOXAICELC GTO [N YRoUUXO &, BATNEOVTIC TN CUVETELX UE TNV Kerr.

H Laplace yw v ¢ oty (6.24) elvor 10od0vaun Souxd ue exeivn oe dLbLdoto-

10 eninedo oto apyxd cvotnua Weyl (p, z). Ot Moewg NG YEUPOVTOL UE ONOUOPYES
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GUVOPTNOELG

(¢, Q) =¥(¢) +¥(0), (1.101)

omou ¢ = p +1z. Kdde avahutinde petacynuationos tne ¢ mapdyet véa Abor. O teke-
O TEC OXUAOTIUTUNDY EVAL YEVVATOPES LIS <CUUPETELOCY TUTOU Hoppodlathpnone (con formal)
Tou oyeTi(ETol YE AUTES TIC OAOUOPYES UETACY NUATIOELS.
Hpénet, ©vo1660, va onuetwiel dTL oL Topamdve (0ho)uopPxéc cUUUETEIES GUVEYOVTOL
UE Tic ouppeTpieg Tou Suvauixol Ernst £. H emdedpnon tne dpdong (6.10) 4 tne (6.11)

oelyvel OTL ebvan oupOTEPES AVUAAOIWTES UTO SL(2,R) nou Opa Tévw oty Ernst og

E—=E = —i%, ad — be =1, (1.102)
1 6pouc f, @
,acf? 4+ (d—cp)(b—ag)
¢ == Af2+ (d— co)?
Fop f (1.103)

:C2f2 + (d — cg)?

H 8pdion (6.10) xan o e€iodoec (6.11) towtilovton e Spdon/eElo®oels evog Un yeouuL-
%00 o-povtélou SL(2,R)/U(1) oe 800 draoctdoec. Autd gaiveton omd Ty TOEUUETEO-
moinon e SL(2,R) ye yhteec 2 x 2

. viovi i —&re EeV (1104

N V2 Vf N V=2if Ere™W  Exel ' .

Trdpyer tomxr) U(1) vionotoluevn we yetatonioee ¥ — ¥ + Ad, xou moryxdouia
SL(2,R) mou dpa aptotepd. Enopévne, n € mopayetponotel tov yweo ouluywwy SL(2,R)/U(1)
uéhic xadnhewdel n tomxr U(1). Térowa un yeouuxd o-povtéha epgaviovton ouyvé ot
GR »ou ebvon Yvootd we Ernst podeic. Eiwofydnooav apyxd oto mhalolo tng uelwong

tou Geroch [21] xou peletiinxay extevae and tov Ernst [18], mopéyovtog mhaioto
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AATOVONONG TWV CUPUETELOV OTAOWOY ADCEWY.

H SL(2,R) cuypetpio tou Ernst, Aoyw wEne pe eupitepes (0M0)LOp@IXES UETACY T
wotioelg, yevvd dmewpn dhyeBpo—tnv dAyefpa peupdtwy SL(2,R) dnepne didotaone.
Ou tedectéc oxahomatiwyv e Laplace avixouyv 6to 6OVOLO YEVWNTORMY aUTHS TNG ATEL-
eng GAyeBpag, eEnydvTag €Tol TN UNdevxdTNTA TV STATXOY T LN yiol TETpadIdc TUTES
BHs.

H ouppetowm doun auth| elvor yooaxTneto T TV GTACHOY Xl 0EOVOCUUUETRIXWY
YWROYPOVIXGY, TOU avdyovTol EYYEVOS ot owwdotatn duvauxy. To Ernst povieha
xaL oL cuvagelc ouuueTtpieg €youv yenowonotniel evpéwe Yo T uehétn Aboewv BH,
CUUTEQAUUPBUVOUEVNS TNG TaEaYWY TS oxeBwy Adoewy émwe 1 Kerr i toav-BH -
woppwoels. Eivar eniong xplowa otnv e€epelivion emextdoeny g GR, 6mou napouoLa
OLOLAO TOUTT BUVOULXT| VO OTITEL.

‘Olot ot ToEAméve avadeXviouy ToV TAOUTO TNG CUUUETELXNG DOUNG 0TV DIOEoTATN
uelwon tng GR. H douh auth, evdewtnh) e dnepne SL(2,R) dhyeBpoc, anotehel
1oy UEb epYahelo xATAVONOTNC OTACYWY, 0EOVOCUUUETOIXMY AUCEWY Xt LUTOYRoMICEL TN

UNOEVIXOTNTAL TWY GTUTIXWY TOALEROIXGY aptduwy Love [34, 13].

1.11 Xvurnegdoupoata

Avolboaye T U Yeouuxr taklppoixt| arnoxpelon twv Kerr BH s und e€wtepixd Boputind
medio. XpenowomoiwvTag Tov gopuahiond Ernst xou cuvtetayuéveg Weyl, emextelvopue
OLC TNUOTLIXS TPoNYOUUEVY amoteréouata Yo Schwarzschild BH s otny nepto Toeqoye-
v tepintwon. To xOplo edpnua etvon 6TL o o Tatixol takppoixot apriuol Love twv Kerr
BHs undeviCovton oe Oheg Ti¢ TEEES TOU €WTERIXOU TaALpEoix00 Tedlou, o€ cuupvia
UE TIC LOLUTEPEG CUPUETPIEG %o LOLOTNTES AUTOY TWV Y WEOYLPOVIXMDY.

H undevixdtnta twv ototixoy Love number aviavexhd tnyv amoucio e6mTERIXNC

douric otic BHs xot TNy xotoahuTixt| ET{0pUOT TWV UTOXEUEV®DY CUUPETOLOY TOUG. X
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avtideon ye Toug acTépES VETPOVIWY, Tou eugavilouv un undevixolc Love number e-
EapTUEVOLS amd TN 6UCTAGT| Toug, ol BH s yapoxtneiCovtar and toug opiloviég Toug
xai to Yewpnua «<no — hairy. To anotéieopa uTodnAwveL 6Tt oL Kerr BH s dev unopo-
OV VoL GUVTNREHACOUY XAVEVOS EIBOUC TOAUTIOALXY| TORUUORPMCT) WG ATOXPLOT| OE CTATIXES
TONEEOIXES BUVAELS, axour xon Aopfdvovtag unddmn VPNAOTERES Un YEoUUIXES Blop-
vooeic. Tovilel eniong Ty avlexTindtnTo TRV Yweoyeovx®y BH évavtl TaAlppoixoy
OLOLTAPOY OV, LWBLOTNTAL IOV TIG OLOXEIVEL amd dAAL cuuTay Ty avTIXe{UevaL.

H ovdhuot| yag avédelle 1 yenoydtnta Tou duvouxol Ernst oty meplypo@r| Tng
ouumeplpopdc Twv BHs oe makippoixd mepddiiovta. Exgpdlovtac tnv Kerr oe cu-
vietayueveg Weyl, unopécope vo yevixeboouue tny nepintworn Schwarzschild xan va
eletdooupe Tov poho g TepoTeogrc. H yprion emuixemy cgouipoed®y cuVTETAYUEVKDY
OLELXOAUVE Bacind amoTEAEOUATA, EMITEENOVTUS AUC TNET| EEETACT TOGO TWVY AUEAVOUEVKY
660 X0 TV PUIVOUCHY TETEATOAXGY Wtouoppav. H tautonoinon wwlovothv cuurtepl-
popwyv ooV Kretschmann mou cuvdéovton Pe T @Uivouca Wwtopop@y| xahotd guotxn
™ eWiuon Twv Love number oto undév. H npocéyyion auth enavoPefoucver 6tL xdie
TONEEOIXE. ETAYOUEVY) oVwHohlar TEETEL VoL TapaEVEL XpUUPEVY Tiow and opilovTa, OLo-
PUABGCOVTUC TNV AXEQULOTNTA TOU Y WROYEOVOL.

Amé actpoguot| oxomd, 1 undevixdtnTa Twv Love number twv Kerr éyel onuovti-
%€¢ emmTWOoEL Yo TV acteovouia GWs. H nakippoixy napopoppuoydtnta twv BHs
elvon xplowun TUpdUETEOS GTY) LOVIEAOTOINGT XUHATOHORPOY UTO BUABIXE VOTLROAG, L-
dlwg oe BH NS 4 BH BH. H anoucia molppoix@y unoypagpoy arnd BHs amhonotet
N poviehonolnon xo mopéyel auoTned Eheyyo tne GR oto woyupd medlo. Ilepartépw,
To amoteAéopaTa auTd BedTivouy Tic Vewpnuixég Pdoeig epunvelag dedopévey GWs,
otoahiCovtag 6Tt amoxhioelc 6ev amodidovTon EGQPUAIEVA OE U HOVIEAOTIOUUEVES Tia-
Nppoixéc emdpdoec BH.

Mehhovtnt| €geuva umopel Vo BIEPELVYOEL BUVAULXES TUALEEOIXES ETUOPACELS (ypovixd

eCOPTOUEVES OlaTopayEC, &aonopég/ouvrowcpoi), xPBavtixéc dlopdwoelc otoug Love number
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(6mou n nu-xhaotxr Bapltnta 1 Vewpieg yopddhv lowe etodyouy tedatetn dour|), xodme
X0 TOALPEOIXA PaUVOUEVOL GE UPNAGTERES BlaG TAOELS 1) evahhoxTixég Yewplieg Bapltntog,
e€eTdlOVTug TN YEVIXOTNTA TOV EVENUATOV LS.

Téhog, onuewdvoupe 6Tt 1 AoT Hog TEPLYPdPEL 0TaTikéS Toklppoleg X Oyt TUALEEO-
) Bdyvor. H tereutaio dev oulhauPdveton amd tny oxpi3) Aoom pag, dtoTL 1 didyuor)
elvon avahoyn e (w—mQy), 6Tou w 1) CLUYVOTNTA TNG OLUTUEOY NG, 1M O KUY YNTLXOCH
rPBavtinde apriudg xan Qg 1 ywviaxr| oy vtnta otov opiCovta. Eg@dcov n Abon pag etvor
oot (w = 0) xou a€ovoouppeteny (ywpls p-e&dptnom, dnh. m = 0), eivor capéc 6t
OEV TEPLYEAPEL TAALOEOIXY| BLdyUOT).

LUUTERAUOUATIXG, Tal ATOTEAEOUATE Uag EVIOYDOLY TN VEPEAOON QUoT Twv BH s ©¢
YEOUETEWE amAwY ol Bordid ouviypatiney avixeluévewy. H undevixdtnta twv moAip-
eox®V opriuny Love, oxoun oL 0To un Yeouuixd xadeotoe, anotehel Topddetyo Tne
0€LOOTUEIWTNG CUPPETELNG XL aVTOY TG TOUG EVavTl EEWTEPXOY Btartaporywy. To euprua-
ot U Td GLUBEALoLY oE PordUTERT XUTAVONGT) TN PUOTC TwV BH s xou Tou pdAou Toug
oTov Eheyyo TV oplwv tng Ievixrg Myetwdtnoc.

A K. avayvepiel Ty utootheiln and to SwissNational Science Foundation (aptﬁpo’g

éoyou I ZSEZ0.229414). O A.P. avaryvepilet unoothplén and to SwissN ational Science Foundation
(aprdude épyou C'RSTI5.213497) xadide xou and to BoninchiFoundation yiwo to épyo

«PBH sintheEraofGW Astronomyy.
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Chapter 2

Introduction

2.1 Historical Introduction

2.1.1 The Galilean Relativity

Long before the advent of Special and General Relativity, Galileo had already iden-
tified a profound invariance property of Nature. He invites us to imagine ourselves
locked in the cabin of a large ship, well below deck, together with a companion and
a small laboratory: insects buzzing around, fish swimming in a bowl of water, and
a bottle whose water drips steadily into a container placed beneath it. When the
ship is anchored and at rest, the situation is entirely unsurprising. The insects fly
with no preferred direction, the fish explore the bowl uniformly, the water drops fall
vertically into the vessel, and any object we throw to our friend requires the same
effort regardless of the direction of the throw, provided the distances are equal. Our
own jumps cover equal distances in every horizontal direction.

Galileo then asks us to repeat the same observations when the ship moves at a
constant, non—oscillatory velocity on a calm sea. As long as the motion is perfectly
uniform, every experiment inside the closed cabin proceeds in precisely the same way

as before. No mechanical observation confined to the cabin reveals whether the ship
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is at rest or in uniform motion. From this thought experiment he distills what we now
call the Galilean principle of relativity: the outcomes of all mechanical experiments
are identical in any two laboratories moving at constant relative velocity. In other
words, the laws of mechanics take the same form in all such frames of reference.

A second cornerstone of classical physics due to Galileo is the law of inertia. In
modern language it can be stated as follows: a body free of external forces either
remains at rest or moves with constant velocity along a straight line. Newton later
adopted this as his first law of motion and extended its scope beyond purely me-
chanical forces. Since the fundamental interactions decrease at least as fast as the
inverse square of the distance, a body that is sufficiently remote from all others can
be treated, to an excellent approximation, as isolated, and the law of inertia becomes
applicable.

From a modern viewpoint, physics describes events—occurrences localized in both
space and time. Empirically we inhabit a world with three spatial dimensions and
one temporal dimension. To assign unique space—time coordinates to an event we
introduce a frame of reference: an origin, a set of coordinate axes, and a system of
synchronized clocks distributed throughout space. A simple example is a Cartesian
frame with three mutually orthogonal axes, labelled x, y and z, together with a time
coordinate t. An observer at rest with respect to this construction calls it his or her
own frame. A frame in which the law of inertia holds is called an inertial frame of
reference. In classical (pre-relativistic) physics, space and time are assumed to be ab-
solute; all inertial observers agree on time intervals and spatial separations measured
in a given frame. In later chapters we shall see how this notion fails in Special Rel-
ativity and how Einstein replaced it with a more subtle operational definition based
on light signals.

Let us denote by S one inertial frame of reference. The position of an event in

S is specified by its coordinates (x,y, z,t). Consider now a second inertial frame S’
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moving with respect to S with a constant velocity V = V x along the common z-axis
(see Fig. 7?7). By convention, the origins of the two frames coincide at ¢t = ¢’ = 0.
Within Newtonian theory time is universal, so that all properly synchronized clocks
in S and S’ measure the same time: ¢’ = ¢. Since the relative motion is purely along

the z-direction, at an arbitrary instant ¢ the separation between the two origins is

00 =Vt

Therefore the spatial coordinates of a given event in the two frames are related by

¥ =x-Vt, Yy =, 2=z

Collecting space and time together, we obtain the Galilean transformation

¥ =x-Vt, Yy =, 7 =z, t=t. (2.1)

This is a linear transformation between the coordinates used by two inertial observers
in classical mechanics. Newton’s equations of motion are invariant under (2.1); the set
of all such transformations constitutes the Galilei group, which encodes the symmetry
structure of Newtonian space-time. Special and General Relativity will later replace
this structure by Lorentz and diffeomorphism invariance, respectively, but Galilean
relativity remains the appropriate framework whenever velocities are small compared

to the speed of light and gravitational fields are weak.

2.1.2 Inertia and Inertial Frames of Reference as seen by New-

ton

From the Newtonian point of view, the dynamical structure of the world is encoded

in three empirical statements, Newton’s laws of motion. Written in modern notation
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they read

1. A body on which the total external force vanishes remains at rest or moves with

constant velocity along a straight line.

2. The time derivative of the momentum of a body equals the total external force

acting on it,

dp_

=F 2.2
- =F, (2.2)

where p = mv is the momentum.

3. Whenever a body A exerts a force F 45 on a body B, the latter exerts an equal

and opposite force on the former, Fgs = — F4p.

The first statement is the law of inertia. The second law, Eq. (2.2), is often regarded
as a definition of force, chosen so that the fundamental interactions of Nature can
be written in a simple mathematical form. Formally, one might be tempted to view
the first law as a special case of the second law with F = 0 and thus redundant.
Conceptually, however, the first law does something much more important: it asserts
the existence (at least approximately) of special reference frames in which bodies sub-
ject to no external influence move with uniform rectilinear motion. These privileged
frames are called inertial or Galilean frames of reference.

If one such frame exists, Galilean relativity implies the existence of an infinite
family of them, all moving with constant relative velocities with respect to one an-
other and related by Galilean transformations such as Eq. (2.1). Within this family,
Newton’s second law has the same functional form, and the notion of an isolated free
particle is meaningful.

In practice, strictly inertial frames do not exist in the real universe: every material
reference system is subject to gravitational fields and accelerations. The Earth, for

example, both rotates about its axis and revolves around the Sun, so an Earth—bound
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laboratory is not truly inertial. A description of dynamics from the terrestrial point of
view must therefore supplement the real forces with so—called fictitious (or d’Alembert,
or inertial) forces, such as the centrifugal and Coriolis forces, to recover an equation
of motion of the form ma = F,ca + Finertial. By contrast, a heliocentric frame whose
origin is placed at the Sun and whose axes are non-rotating with respect to distant
galaxies is, to very high accuracy, inertial: the residual accelerations of the solar sys-
tem barycenter due to neighbouring stars and galactic motion are exceedingly small
and can be neglected in most contexts. For this reason one often speaks of motion
with respect to the fixed stars as shorthand for motion measured in an approximate

inertial frame tied to the large—scale distribution of matter in the observable universe.

Galilean Transformations of Velocity and Acceleration

The Galilean transformation of space and time between two inertial frames S and S’
moving with relative velocity V = V x along the common z—-axis has already been
written as

=z Vt, Yy =, 2=z, t=t. (2.3)

To obtain the transformation laws for velocities, we differentiate Eq. (2.3):

dx’ = dx — V dt, dy' = dy, d7 = dz, dt’ = dt. (2.4)

Dividing by dt’ = dt we obtain

dr’  dzx
/
-2 -V = — 2.
vy, T o V=uv,-V, (2.5)
dy  dy
r_ — 2 _ 2.6
voodtr dt v’ (2:6)
, dZ dz

V, = —— = — =,
2 dt dt
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or, in compact vector form,

v=v-V. (2.8)

It is convenient to rewrite Eq. (2.3) as

v =r— Vi, t'=t, (2.9)

with r and r’ the position vectors in S and S’, respectively. Differentiating once yields
the velocity transformation (2.8); differentiating once more with respect to time gives

the transformation of accelerations,

a' =a. (2.10)

Thus, uniform relative motion between inertial frames does not alter the acceleration
of a particle.

To connect with Newton’s second law, write

F = ma, (2.11)

with m a frame-independent mass. Using Eq. (2.10) we have a’ = a, and if we further

assume that the physical forces are identical in the two frames, F' = F, then

F =ma. (2.12)

Hence the equation of motion retains exactly the same form in all Galilean inertial
frames. In group-theoretic language, Newtonian dynamics is invariant under the ac-
tion of the Galilei group. In General Relativity this role is taken over by local Lorentz
invariance and, at a deeper level, by diffeomorphism invariance of the space—time man-

ifold, but the Newtonian notion of inertial frames remains an important limiting case
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in the regime of weak fields and low velocities.

2.1.3 Maxwell’s Equations and the Wave Equation

Within the Newtonian picture of an absolute three-dimensional space evolving in a
universal time, the electromagnetic field is described by the four equations of Maxwell.

In vacuum they read

0B OE
v.E:ﬁ, V-B =0, VXxE=——, V x B = poJ + pogo —, (2.13)
o ot ot

where E and B denote the electric and magnetic fields, p is the charge density, J
the electric current density, and ¢y and p are the electric permittivity and magnetic
permeability of empty space.

Each of these relations has a clear physical interpretation in standard vector anal-
ysis. The first is Gauss’s law for the electric field: the divergence of E equals the
charge density, so that the outward electric flux through an infinitesimal volume el-
ement measures the enclosed charge. The second equation expresses Gauss’s law for
magnetism and is equivalent to the statement that magnetic monopoles do not exist:
the magnetic flux through any closed surface vanishes. The third relation is the dif-
ferential form of Faraday’s law of induction; a time—varying magnetic field generates
a circulating electric field. Finally, the fourth equation is Ampére’s law augmented
by Maxwell’s displacement current; magnetic fields are produced both by electric
currents and by changing electric fields.

In regions of space where there are no free charges and no currents, p = 0 and

J = 0, Maxwell’s equations reduce to

B E
V-E =0, V:-B =0, VXE:—a— VXB—uosoaa—t.

- (2.14)

Combining these equations in the usual way, we obtain a wave equation for the
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electric field. Taking the curl of Faraday’s law and using the identity V x (V x E) =
V(V-E) — V2E together with V-E = 0, we find

0 O’E
—V2E:—E(VXB> = — Hop&o W (215)
Hence
O’E 1 0°E
2p _
Vv E—Mg@ow—gw, (216)
where we have introduced
1
= (2.17)
In Cartesian components this is
OPE  O0°E  O0°E 1 0°E
= (2.18)

022 Top T2 T 2o

A completely analogous manipulation, now starting from Ampére-Maxwell’s law and
using V-B = 0, leads to the magnetic wave equation

1 0°B

2
B- -2
v c2 Ot?

(2.19)

Equations (2.16) and (2.19) describe propagating disturbances of the electromagnetic

field in empty space—electromagnetic waves—travelling with a phase velocity

1
c= ~ 3 x 10® m/s, 2.20
— / (2.20)

a constant which is independent of the motion of the source or of the observer. In
the Newtonian context, this universal speed already hints at a deep tension between

Maxwell’s theory and Galilean kinematics.
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The transport of electromagnetic energy is characterized by the Poynting vector,

1
S=—E x B, (2.21)
Ho

which gives the energy flux (power per unit area) carried by the wave.

Maxwell’s Theory and the Breakdown of Galilean Invariance

In the nineteenth century it was natural, within Newton’s absolute space and time,
to assume that electromagnetic waves required a mechanical medium for their prop-
agation, the “luminiferous ether”. Even if one could ignore our ignorance of the
microphysics of this ether, a more profound issue arises when Maxwell’s equations
are confronted with the Galilean principle of relativity, according to which the laws
of physics should retain their form in all inertial frames related by Galilean transfor-
mations.

We have already seen that Newton’s second law is invariant under the transfor-
mation

¥ =x-Vt, Yy =, 7 =z, t=t, (2.22)

which connects two inertial frames S and S’ in relative motion with constant velocity
V = Vx. Maxwell’s equations, and in particular the wave equations (2.16)—(2.19),
do not share this invariance.

To see this explicitly, consider the scalar wave equation for a single Cartesian

component of the electric field,
VE =~ —. (2.23)

Using the transformation (2.22), the spatial derivative along x is unchanged, 0/0x =
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0/0z', whereas the time derivative transforms as

0 0 0
==V (2.24)

Substituting into Eq. (2.23) and expressing everything in terms of the primed coor-

dinates, we obtain

V?E =

8t’2 02

1 ?E 1 [ ,0E 02
— -2 2.2
2 (V D’ v oz’ at’) ’ (2.25)

c
where V2 denotes the Laplacian in the primed frame. The additional terms propor-
tional to V' and V2 show that the wave equation in S” does not retain the simple form
(2.23) unless V = 0 or the field configuration is trivial. Thus the Maxwellian wave
equation is not invariant under Galilean transformations.

From the Newtonian viewpoint, one way to rescue the “simple” form of Maxwell’s
equations is to postulate a preferred inertial frame—a rest frame of the ether—in
which Egs. (2.13) and (2.16)—(2.19) hold exactly, while in all other frames more com-
plicated equations such as (2.25) govern the fields. The experimental failure to detect
motion relative to such an ether, together with the theoretical tension just described,
ultimately led to the abandonment of Newtonian absolute space in favour of a new
kinematics: special relativity and its Lorentz symmetry. In General Relativity this in-
sight is elevated further, with the electromagnetic field living on a curved space-time

manifold rather than in a fixed Euclidean background.

2.1.4 The Experiment of Michelson and Morley

The most incisive experimental test of the Newtonian—Maxwellian ether picture was
carried out by A. A. Michelson and, later, by Michelson and E. W. Morley in the
1880s. Their aim was conceptually simple: if electromagnetic waves propagate in an

underlying medium (the luminiferous ether), then the Earth’s orbital motion with
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respect to this medium should influence the observed speed of light. In particular, an
interferometric comparison of light propagation along two perpendicular arms should
reveal tiny changes as the apparatus is rotated with respect to the “ether wind”. The
striking failure to detect any such effect became one of the cornerstones in the eventual

abandonment of an absolute frame of reference.

The Michelson Interferometer

The 1887 experiment employed an optical interferometer of the type that now bears
Michelson’s name. The entire device was mounted on a massive stone slab floating
in a pool of mercury, so that it could be rotated smoothly about a vertical axis while
minimizing mechanical disturbances.

A monochromatic light beam from a source S passes through a narrow slit and is
rendered approximately parallel by a converging lens. This beam strikes a half-silvered
mirror at 45°, which we denote by a. The mirror a acts as a beam splitter: one part
of the incident light is transmitted and sent along a horizontal arm towards a fully
reflecting mirror ¢; the other part is reflected along a perpendicular arm towards a
mirror b. After reflection at b and ¢, the two beams return to the beam splitter a,
where they are recombined and directed towards a telescope whose focal plane serves
as the observation screen. In the actual experiment the effective optical distance in
each arm was increased by multiple reflections between additional mirrors, so that
the total path length was an order of magnitude larger than the geometric arm length
D.

If the two beams require exactly the same time to traverse their respective paths,
they arrive at the telescope in phase and interfere constructively, producing a bright
interference fringe. A difference in travel time leads to a phase shift; depending on
whether this shift corresponds to an integer or a half-integer multiple of the light

period, one observes a bright or a dark fringe at a given point in the field of view. As
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the apparatus is slowly rotated, any ether—-induced anisotropy in the speed of light

would manifest itself as a systematic displacement of the fringe pattern.

Classical Analysis in the Ether Frame

Let us analyse the interferometer from the hypothetical ether frame, in which light
propagates isotropically with speed ¢ while the entire apparatus moves with constant
velocity V' along the direction of one of its arms. Denote by D the distance between the
beam splitter a and each end mirror as measured in the rest frame of the apparatus.
For definiteness, take the arm ac to be aligned with the direction of motion, and the

arm ab to be perpendicular to it.

Arm parallel to the ether wind. Consider first the propagation from a to ¢ and
back along the parallel arm. During the forward trip, the light pulse moves with
speed ¢ while mirror ¢ recedes with speed V. If T} is the forward travel time, then
the light covers a distance ¢TI} while mirror ¢ has moved a distance V'T7; these must

add up to the arm length:

D

D+VT1:CT1 = T1: .
c—=V

(2.26)

On the return trip the light travels towards mirror a, which now moves towards the

pulse. If 77 is the return time, we have

D
D-VT=cI| = T/ = : 2.27
1= ¢4y Y ( )
The total time for the round trip along the parallel arm is therefore
D D 2Dc
Ty =T + T = = 2.28
I 1t c—V+c~|—V 2 -V (2:28)
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and the corresponding optical path length is

2D¢c? 2D
Ly =cl = 22 = 7z (2.29)

Arm perpendicular to the ether wind. For the transverse arm, the light pulse
must chase a moving mirror while maintaining a trajectory that keeps it aligned
with the arm. In the ether frame the pulse moves with speed ¢, but its velocity has
both a component along the direction of motion of the apparatus and a component
perpendicular to it. Let T denote the time for the light to go from a to b. During this
interval mirror b drifts a horizontal distance V15, while its separation from a in the
instantaneous rest frame of the apparatus remains D. Thus the actual path a — b

forms the hypotenuse of a right triangle with sides D and VT3, so that

D
L) =D*+(V)? = Ty=—"_. 2.30
( 2) ( 2) 2 m ( )

The return trip requires the same time 73 = Ty, because the geometry is symmetric.

Hence the total time for the perpendicular arm is

2D
T =T+ Ty = —x, 2.31
1 2 2 /2 _ 2 ( )
and the corresponding optical path length is
2D 2D

Ly=cT) = c - . (2.32)

\/02 — 12 \/ V2

1-—

c
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Predicted path difference and fringe shift. The difference in optical path be-

tween the two arms is

AL=1L,— Ly=2D (2.33)

For velocities much smaller than the speed of light, V < ¢, we may expand the two

factors:
1 V2 1 1V2
c 2
which yields, to leading nontrivial order,
V2
AL~ D = (2.35)

A path difference equal to one wavelength A corresponds to a shift of one fringe in the
interference pattern. If we now rotate the whole interferometer by 90°, the roles of the
two arms are interchanged and the sign of the path difference reverses. The change
in path difference between the two orientations is therefore 2AL, and the predicted

shift of the interference pattern, in units of fringes, is

An = —— ~2— —. (2.36)

Taking the Earth’s orbital speed to be V' ~ 10~*c and inserting the effective arm
lengths used by Michelson and Morley (enhanced by multiple reflections so that D /A
was of order 10° in the original experiment and ten times larger in the improved ver-
sion), one obtains a theoretical fringe shift of order An ~ 0.4 when the interferometer
is rotated. The experimental apparatus was sensitive to shifts of order 1072 fringes

or better, so the predicted effect was comfortably within the detectable range.

02



Null Result and Its Implications

The actual measurements revealed no such systematic fringe displacement. As the
interferometer was slowly rotated through a full 360°, the observed fringes fluctuated
irregularly due to mechanical vibrations and environmental effects, but there was no
reproducible pattern correlated with the orientation of the apparatus. Interpreted
within the ether framework, the data implied an upper bound on the Earth’s velocity
relative to the ether of only a few kilometres per second — far below the orbital speed
and incompatible with the simple Newtonian—-Maxwellian picture.

The experiment was repeated many times with increasing sensitivity and under a
variety of conditions (different times of day, seasons, wavelengths, and geographical
locations), always with essentially null results. The natural conclusion is that the
hypothesized luminiferous ether does not exist; there is no preferred inertial frame
singled out by electromagnetic phenomena. In this sense the Michelson—Morley ex-
periment marks the empirical demise of Newtonian absolute space and prepares the
ground for the relativistic view in which the laws of physics — and, in particular, the

speed of light — are the same in all inertial frames.

2.1.5 The Increase of the Mass of the Electron with Speed

The discovery of radioactivity by Becquerel opened a new kinematic regime for
charged particles. Electrons emitted in f—decay acquire energies far beyond those
achievable at the time with laboratory accelerators, and hence provide an ideal probe
of dynamics at velocities comparable with the speed of light. From the Newtonian
point of view the inertial mass of a particle is an intrinsic constant, independent of
its state of motion. The experiments of Kaufmann at the beginning of the twentieth
century gave one of the first clear indications that this conception breaks down at

relativistic speeds.
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Kaufmann’s Arrangement

Kaufmann’s setup is sketched in Fig. ?? (a schematic is sufficient for our purposes).
Between the poles N and S of a strong electromagnet a uniform magnetic field B =
B,y was established. In the same region, two parallel plates of a capacitor generated
a homogeneous electric field E = E,y, directed vertically between the plates. A
small sample of radium, placed at a point P, emitted a narrow beam of electrons
initially moving along the z—axis, perpendicular to the plane of the figure. The beam
thus entered a region where it experienced simultaneously an electric force eE and a
magnetic force ev x B. The electric field deflected the electrons in the +y direction
(towards the positively charged plate), while the magnetic field bent the beam in the
x direction. After traversing a distance z the electrons struck a photographic plate
parallel to the (z,y)-plane, so that their final positions (z,y) could be recorded; an
example of the resulting pattern is shown schematically in Fig. 7?7 (b). Because the
[ spectrum of the radium source is continuous, the beam contained electrons with a
broad distribution of velocities.

In the Newtonian limit the dynamics in the two transverse directions can be
treated independently. An electron entering the fields with speed v along z spends a
time

Z
t="2
v

(2.37)

between source and plate. The electric field produces a constant acceleration a, =

ek, /m; the corresponding vertical deflection is

Y= —ayt2 =¥ (238)

up to an overall sign determined by the field orientation. The magnetic field bends

the trajectory into an arc of a circle of radius R = mwv/(eB,). For small deviations
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the horizontal displacement at the screen is approximately

22 eB, 22

~ = . 2.
YEO9R T om v (2.39)

Eliminating v between Egs. (2.38) and (2.39), one obtains the classical relation be-
tween the deflections,

y:_(Z%%)ﬁ, (2.40)
which is the equation of a parabola in the (x,y) plane. Hence, for a beam with a
continuous spectrum of speeds, Newtonian electrodynamics predicts that the impact
points of the electrons should lie on a parabolic curve whose shape is determined by
the constant mass m of the electron.

Kaufmann’s photographs, however, showed a markedly different behaviour. When
the polarity of the capacitor was reversed, the two sets of data points did not fall on
parabolas tangent to the z—axis and to each other, as predicted by Eq. (2.40). Instead,
the measured deflections could only be reconciled with the classical formulas if one
allowed the effective mass to increase with the electron’s speed. This was the first
experimental hint that inertial mass is not invariant under changes of velocity when

v approaches c.

Electromagnetic Models of the Electron

The observed deviation from Newtonian behaviour prompted a number of theoretical
models in which the electron’s mass acquires an electromagnetic origin and becomes
velocity dependent.

Abraham proposed to treat the electron as a rigid sphere with its charge uniformly
distributed over the surface. The field energy of such a charged sphere contributes to
the inertia of the particle, and because the field configuration is distorted by motion

through the ether, the effective mass depends on v. For the transverse inertial mass—
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the one probed by Kaufmann’s crossed-field geometry—Abraham derived

ma(v) = 3o [1+B2 ln<1+6> —11 , BE%, (2.41)

C4p2 | 28

where my is the low—velocity mass.

Lorentz, on the other hand, adopted a model in which the electron is flattened
along the direction of motion according to what later became known as the Lorentz—FitzGerald
contraction hypothesis. Under suitable assumptions about the charge distribution he

arrived at the much simpler expression

my,(v) = L R— (2.42)

Already in 1903 Lorentz compared this formula with Kaufmann’s data and found a
surprisingly good agreement.

A third proposal, due to Bucherer and Langevin, considered an electron whose
charge is distributed over a spheroid that changes shape but preserves its volume.

This led to yet another velocity dependence,

mp(v) = (1—:;—;(:2)1”’ (2.43)

Given the experimental uncertainties of the early measurements, it was not initially

possible to decide which of the three relations (2.41)-(2.43) was correct.

Precision Measurements and Confirmation of the Lorentz—Einstein Law

More refined experiments were later performed to resolve this ambiguity. In 1909
Bucherer repeated Kaufmann’s crossed—field experiment using a more accurate ap-
paratus and again employing [ electrons from radium. The deflections in mutually

perpendicular electric and magnetic fields allowed him to deduce the ratio e/m(v)
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as a function of the speed v. Since the charge e of the electron is known, and in
particular is independent of v, any variation in this ratio must be attributed solely to
changes in the inertial mass. Bucherer’s results favoured the Lorentz relation (2.42)
over Abraham’s, although the experimental precision was still limited.

The decisive measurements were carried out a few years later by Guye and La-
vanchy. They produced a monoenergetic electron beam accelerated through a known
potential difference, so that the speed of the electrons could be controlled. As in the
earlier experiments, combined electric and magnetic fields were used to determine the
ratio m(v)/m(vp) of the mass at speed v to the mass at a low reference speed vy. With
roughly two thousand individual measurements covering the range 0.26¢ < v < 0.48c,
they verified the Lorentz—Einstein expression (2.42) to within about 5 x 107 (0.05%).

In modern language, the data confirmed the relativistic law

m(v) = y@W)mo, () = e (2.44)

V1—02/2

while ruling out the more complicated alternatives.

From the standpoint of Newtonian mechanics, these experiments are profoundly
subversive: they demonstrate that the inertial response of a particle cannot be de-
scribed by a constant mass independent of velocity. Instead, as later understood
within the framework of special relativity, the correct dynamical quantity is the
four-momentum, whose spatial components reproduce the velocity—dependent be-
haviour inferred by Kaufmann, Bucherer, Guye and Lavanchy. In the relativistic
limit v — ¢, the effective mass grows without bound, preventing massive particles
from ever reaching the speed of light and thereby reconciling the dynamics of matter

with the invariant structure of space—time.
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2.2 Special Relativity

2.2.1 The Invariance of Maxwell’s Equations and the Lorentz

Transformation

Between roughly 1892 and 1904, H. A. Lorentz undertook a systematic search for a
change of space-time coordinates between two inertial frames, one regarded as “at
rest” and the other moving with constant velocity V' along a common axis, such that
Maxwell’s equations retain their form. His early work treated the transformation
perturbatively, expanding in powers of V/c and keeping only the lowest—order terms.
Larmor later pushed the approximation to include contributions of order (V/c)?. Ul-
timately, in 1904, Lorentz identified the exact transformation that leaves Maxwell’s
equations—and hence the electromagnetic wave equation in vacuum—strictly invari-
ant when p =0 and J =0.

This mapping, which supplants the Galilean transformation, relates the coordi-
nates (z,y,z,t) of an event in an inertial frame S to the coordinates (z',v', 2, t')
in another inertial frame S’ moving with constant velocity V. = V x relative to S.

Lorentz required that the transformation satisfy a number of natural requirements:

1. Free particles must remain free: the world-lines of bodies subject to no forces,
which are straight lines in one inertial frame, must again be straight in any
other inertial frame. In other words, the transformation must preserve the law

of inertia.

2. The notion of coincidence of events must be invariant: if two events occur at
the same point in space-time in one inertial frame, they must do so in every

inertial frame.

3. Since the relative motion of S and S’ is along a fixed line joining their origins, the

transformation should respect cylindrical symmetry around this line; transverse
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directions orthogonal to V are equivalent.

4. Most importantly, Maxwell’s equations in vacuum, together with the associated
wave equation for electromagnetic radiation, must retain their functional form

when expressed in the primed coordinates.

In the low—velocity limit V/c < 1 the transformation ought to reduce to the Galilean
one discussed in Sec. ?7. The first two conditions, combined with this requirement,
imply that the mapping between coordinates is linear. For motion along the x—axis,

Lorentz found that the only transformation consistent with the above criteria is

d=y(x-=Vt), Y=y =z = (t—zx), (2.45)

where

(2.46)

S ivEe
is the usual Lorentz factor. For V/c — 0, v — 1 and Eq. (2.45) indeed collapses to
the Galilean transformation.

One can verify by direct substitution that, provided the electric and magnetic
fields and the charge and current densities transform appropriately, the homogeneous
Maxwell equations and the source-free wave equations retain their form under (2.45).
In modern language, the transformation mixes the electric and magnetic fields as
different components of a single antisymmetric field tensor, and combines (p, J) into
a four-current. Lorentz himself succeeded in showing invariance in the vacuum case,
but he did not yet possess the full transformation laws for p and J and therefore could
not treat configurations with sources in a completely unified way.

This final step was supplied by Poincaré in 1905, who completed the transforma-
tion rules for both the space-time coordinates and the electromagnetic quantities so
that the full Maxwell system is invariant in any inertial frame. Poincaré also recog-

nized that the set of transformations (2.45) forms a group under composition, and he
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introduced the now-standard terminology of the Lorentz transformation group. From
the modern viewpoint of General Relativity, this group is understood as the isome-
try group of Minkowski space-time, encoding the fundamental local symmetry of all

relativistic field theories.

2.2.2 The Formulation of the Special Theory of Relativity

By this stage it should be clear that the route from classical mechanics to the Spe-
cial Theory of Relativity spans several centuries. The story begins with Galileo’s
formulation of the law of inertia and his recognition that the laws of mechanics ad-
mit a relativity principle in uniformly moving frames. During the nineteenth century
this insight was repeatedly refined and tested, from Newton’s synthesis to Maxwell’s
field theory, the Michelson—Morley experiment, and the work of Lorentz on invariant
transformations. By the dawn of the twentieth century the conceptual ingredients
were largely in place; what was missing was a decisive reformulation of space and
time themselves.

A particularly important contribution was made by Poincaré. Commenting in
1899 on the negative outcome of the Michelson-Morley experiment, he suggested that
optical phenomena likely depend only on the relative motion of material systems, light
sources and measuring devices, and not on any motion with respect to an absolute
ether. By 1900 he openly questioned the existence of the ether and doubted that
any physical experiment, no matter how refined, could reveal an “absolute” state of
motion. In 1904 he gave a precise formulation of what he called the principle of

relativity:

The laws of physical phenomena must be the same for an observer at rest

as for an observer in uniform translational motion.

From this he drew the striking conclusion that no signal velocity could exceed that

of light in vacuum. Poincaré thus came remarkably close to the modern formulation
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of Special Relativity, although he did not take the final conceptual step of elevating
this principle to the foundation of a new space-time kinematics.
At the turn of the century, faced with the tension between Maxwell’s theory and

Galilean invariance, three broad logical options presented themselves:

1. Maxwell’s equations might be only an approximation; a more fundamental elec-
tromagnetic theory, still compatible with Galilean transformations, could re-

place them.

2. Galileo’s relativity principle might hold only for mechanical systems, while elec-
tromagnetic phenomena would single out a preferred inertial frame, that of the

ether.

3. There might exist a deeper relativity principle governing all physical laws—
mechanical and electromagnetic alike—requiring a modification of Newtonian

mechanics rather than of Maxwell’s theory.

Einstein’s 1905 paper famously adopted the third alternative. He discarded the
ether as superfluous and postulated a single relativistic framework encompassing both
dynamics and electrodynamics. The theory he proposed rests on two axioms, which

we may state in modern form as

(1) Relativity principle. The laws of physics are identical in all inertial frames of

reference.

(2) Constancy of the speed of light. The speed of light in vacuum has the same
value ¢ in every inertial frame, regardless of the motion of the source or the

observer.

Because these postulates refer explicitly to inertial frames, the theory is called special
relativity, in contrast with the later general theory in which the relativity principle is

extended to arbitrary (accelerated) frames and gravitational fields.
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Historical evidence suggests that Einstein did not base his 1905 reasoning directly
on the detailed literature of Lorentz and Poincaré, nor was he strongly influenced
by the Michelson—Morley experiment in a quantitative way. Rather, he appears to
have been guided by the conviction that there is no distinguished inertial frame of
reference and by the empirical fact—already implicit in Maxwell’s equations—that
the speed of light is universal.

In the chapters that follow we shall analyse in detail the kinematical and dynamical
consequences of postulates (1) and (2), confronting them with experiment whenever
possible. The further generalization of these ideas to spacetimes with gravity, which

leads to the General Theory of Relativity, will be considered at a later stage.

2.2.3 The Calibration of a Frame of Reference and the Syn-

chronization of Its Clocks

In relativistic physics we analyse events: physical occurrences confined to a suffi-
ciently small region of space and time. To specify the location of an event we assign
four coordinates (x,y, z,t), or, in covariant notation, a space-time point x*. Special
Relativity is precisely the theory of how such events are described in different inertial
frames of reference.

Any operational formulation of the theory must explain how an inertial frame
is calibrated. First, spatial distances must be measurable within that frame using a
common standard of length. Second, unlike in classical (Newtonian) physics, time
is not an absolute, universal parameter. Each frame must therefore be equipped
with an array of identical clocks, distributed throughout space, that are synchronized
according to a definite procedure. Only then can we give meaning to the statement
that a given event has coordinates (z, vy, z,t) in a particular frame.

The two postulates of Special Relativity provide the guiding principles:
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1. The laws of physics have the same form in all inertial frames of reference.

2. The speed of light in vacuum has the same value, ¢, in all inertial frames and

is independent of the motion of source and observer.

These postulates suggest natural standards for length and time. A convenient
length unit is defined via the wavelength of light associated with a specified atomic
transition. Equivalently, one may define the unit of time as the duration of a
fixed number of periods of such a monochromatic signal. In modern metrology, the
units are chosen so that the numerical value of the vacuum light speed is fixed,
c = 299792458 m/s. Given this convention, the metre is effectively defined in terms
of ¢ and the second.

Let us now imagine that every spatial point of a given inertial frame carries an ideal
clock. The frame is fully calibrated only after these clocks have been synchronized.
Einstein proposed the following operational prescription.

Choose one clock, at the origin of the coordinates, as the reference clock and
call it A. At some reading t; of clock A a light pulse is emitted and propagates
through vacuum towards another clock, B, located at a fixed spatial separation from
A. When the light reaches B, the reading of clock B is denoted by tg. The pulse is
then reflected immediately back towards A, and when it returns the reference clock
reads ts.

We now invoke postulate (ii): the speed of light from A to B equals that from B
to A. Consequently, the travel time from A to B is the same as that from B to A,
and the event of arrival at B must occur midway between the emission and reception
events as measured by clock A. Thus, the instant at which the pulse strikes B is

t1 + 12

tarrive = 9 .

To synchronize the two clocks, we simply adjust B so that its reading at the moment of
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arrival satisfies tg = (t; +t2)/2. The spatial distance from A to B can simultaneously

be inferred as
C (tg — tl)
2 )

Dap =
again using the constancy of c¢. Repeating this procedure for all clocks in the frame
yields a synchronized network of clocks and an internally consistent spatial coordinate
system.

The existence of such calibrated frames is essential in Special Relativity. Each
inertial observer carries along a personal grid of rulers and synchronized clocks which
define that observer’s space and time. Different inertial frames will not, in general,
agree on simultaneity or on the time intervals between events, even though they
assign the same invariant space—time structure to physical laws. In General Relativity
this idea is extended further: local inertial frames, each equipped with their own
synchronized clocks, are patched together on a curved space—time manifold, and the

relativity of time between different observers becomes a manifestation of gravitational

geometry itself.

2.2.4 The Relativity of Simultaneity

One of the most striking consequences of the invariance of the speed of light is the
breakdown of the naive, classical notion of simultaneity. The following thought exper-
iment, formulated in the spirit of Einstein’s original argument, makes this completely
explicit.

Consider a long train moving with constant velocity V' (with V' < ¢) relative to
an inertial observer standing on a platform. We denote the platform observer by O
and the observer at rest with respect to the train by O’. The latter is located at the
geometric centre of the train. At the two ends of the train we place identical light

sources, labeled A (front) and B (rear). Assume that at the instant when O’ passes
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directly in front of O, two light pulses reach both observers simultaneously: one pulse
originated from A and the other from B.

Let us first analyse the situation from the point of view of O, the observer on the
train. In his rest frame the train has length Lg, so that A and B are located at equal
distances Ly/2 from his position at the centre. Because the speed of light is the same
in both directions along the train, the pulses travelling from A and from B must have
taken equal times to reach O'. Since they arrive simultaneously and propagate over
equal distances at the same speed ¢, O is compelled to conclude that the two pulses
were also emitted simultaneously in his frame.

Now examine the same events as described by the platform observer O. In his
frame the train is moving to the right with speed V, and its length is some value L
(not assumed at this stage to be equal to Lj). The events of emission at A and B and
of reception at O are all space—time events in this frame. Because light in vacuum
travels at speed c relative to O, the arrival time of a pulse at his position is determined
solely by the distance between O and the source at the moment of emission.

Suppose first that the rear source B emits its pulse. At that instant the middle
of the train (and thus O’) has not yet reached O; source B is therefore at a distance
|dg| > L/2 from O. Later, the front source A emits its pulse. When this happens
O’ is still to the left of O, so that A must already be closer to O than the mid—point
of the train; hence |d4| < L/2 and consequently |dg| > |da|. Since both light pulses
propagate with the same speed ¢ towards O, the one that had the larger distance to
cover (the pulse from B) must have been emitted earlier in O’s frame in order for the
two pulses to reach him at the same time. In other words, the events “pulse emitted
at A” and “pulse emitted at B” are not simultaneous according to O.

We are thus led to a fundamental conclusion. Two events that are simultaneous
in one inertial frame (here, the simultaneous arrival of the pulses at O, implying

simultaneous emission in the train frame) need not be simultaneous in another in-
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ertial frame in relative motion (the platform frame). The postulate that the speed
of light has the same value in all inertial frames forces us to abandon the absolute,
frame—independent notion of simultaneity that underlies classical mechanics.

It is worth noting that in the figures associated with this thought experiment the
length of the train as measured by O" (L) and by O (L) are treated as different
quantities. This is not an accident: later we shall see that the Lorentz transformation
predicts a definite relation between L and Ly (length contraction). However, the
qualitative argument given above does not depend on the explicit form of that relation;
it relies only on the constancy of ¢ and on the geometry of the two frames. The
relativity of simultaneity is therefore a robust and unavoidable feature of Special

Relativity.

2.2.5 Lorentz transformations

We now derive the transformation laws connecting the coordinates of two inertial
frames within Special Relativity. Consider two frames, S and S’, in standard config-
uration: their spatial axes are parallel, and S’ moves with constant velocity V. = V' x
along the z—axis of S. The origins O and O’ coincide at the event z =2’ =y =19/ =
z=z2=t=t=0.

In Special Relativity physical occurrences are described as events, idealized as
points in a four—dimensional space-time with coordinates (x,y, z,t) in S and (', ¢/, 2/, t')
in S’. The worldline of a particle P is then a curve in this four-dimensional manifold.

If (z(t),y(t), 2(t)) denotes the spatial position of P in S, its velocity components are

dx dy dz
e —_— .= — 2.4
v dt YT v dt (2:47)
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and similarly, in S” we have

,da . dy . d

v, = — v, = — v, = —.
Toode’ voodar’ = d

(2.48)

Form of the Transformation

Guided by the relativity principle, we require that uniform rectilinear motion in one
inertial frame be described as uniform rectilinear motion in any other. This excludes
non-linear coordinate transformations: a non-linear mapping would in general map a
straight worldline into a curve, making a freely moving particle appear accelerated in
the transformed frame. We therefore assume a linear relation between the coordinates
of an event in S and S’. For a boost along the x—axis, spatial isotropy in the directions

transverse to V suggests that y and z should be left unchanged, so we write
¥ = ax + ¢t y =1, 7 =z, t' = dx +nt, (2.49)

where «, €, 6 and 7 are constants depending only on V' and ¢ and must be determined
from physical requirements.

Taking differentials of (2.49) we find
dr' = adr + e dt, dy' = dy, dz = dz, dt' = ddx + ndt, (2.50)

so that the velocity components transform according to

/
, dr’  av, +¢€ , Uy , Uy

Ux_ﬁ—évz—i—n’ Uy:&)x—kn’ UZ:(Svm—i—n'

(2.51)

Kinematical Conditions

First we impose the mutual description of the origins of the two frames. A point at

rest in S’ has v, = 0, v, = v, = 0. In S this point is seen to move with velocity V'
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along x, so we must have v, = V for that worldline. Substituting in (2.51),

ozv;:f;“//i; = c=-all (2.52)

Conversely, a point at rest in S (v, = v, = v, = 0) is seen from S’ to move with

velocity —V along the a’—axis, so v, = —V. For v, = 0, Eq. (2.51) gives

V==V = S-_v (2.53)
n n
Combining (2.52) and (2.53) we conclude
e =—aV, n = a. (2.54)

Thus the unknown coefficients reduce to o and 9.

Invariance of the Speed of Light

The second postulate of Special Relativity asserts that light in vacuum has speed ¢ in
every inertial frame. Let us apply this condition to the transformation of velocities.

For a light ray in .S we have
v =0l +ul +ol = (2.55)

In S’ the same ray has components given by (2.51), which with (2.54) become

U,:Oé(UI—V) r_ Uy v = Uy
v v, +a Yo v, +a’ 2 S, +a

(2.56)

The speed in S" must satisfy v = v/ + 0;2 + v = ¢ for any light ray. Using (2.56),

o*(v, = V)? +vp + 02
(0vy + v)? '

2

(2.57)
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Equating v and ¢* and using (2.55) to eliminate v} + v = ¢* — v2, we obtain

A(0v, +a)? = (v, — V)? + & — 02, (2.58)

which must hold for all possible values of v, in the range |v,|] < ¢. Expanding

2

2, v, and the constant term yields three algebraic

and equating the coefficients of v

relations:

A6t —a?+1=0, (2.59)
2c%ad + 202V = 0, (2.60)
o —a*Vi -2 =0. (2.61)

From (2.61) we find

1

Jiovze

A -VH= = a= (2.62)
where we have chosen the positive root so that & — 1 as V' — 0. Inserting (2.62)
into (2.60) then gives

1%
6=—7 (2.63)

It is straightforward to check that these values also satisfy (2.59). The coefficients of

the linear transformation are therefore completely determined:

a=rn="r, e =—°V, d=— CK2 (2.64)
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Standard Lorentz Transformation

Substituting (2.64) into (2.49) we obtain the Lorentz transformation in standard

configuration:

with
1 1%

v e

The transformation is “special” in that it refers to the case where the origins coincide

Il
=
Il

(2.66)

at t =t = 0 and the axes remain parallel.
The inverse transformation is obtained either by solving (2.65) for (x,t), or more

simply by exchanging primed and unprimed quantities and replacing V' by —V:
/ / / / / V /
r =" +Vt), y=1q, z=2, t=q|t'+52"). (2.67)
c

Vector Form and Invariance of the Light Cone

For later use it is convenient to write the Lorentz transformation in a coordinate—free
form valid for boosts along an arbitrary constant velocity vector V. Let r = (x,y, 2)
and r' = (2/,¢/,2'). Decomposing r into components parallel and orthogonal to V

and using (2.65), one arrives at

V(V-
r’:r—i—(’y—l)%—nyt, (2.68)

ﬂzy(r—%;). (2.69)

The inverse relations are obtained again by replacing V with —V.

An immediate consequence of (2.68)—(2.69) is the invariance of the light cone.
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Suppose that in frame S a spherical wavefront emitted at t = 0 satisfies

4yt + 22— =0. (2.70)

Inserting the Lorentz transformation into the left—hand side and simplifying one finds

2?4 y? 427 - A =0, (2.71)

so that the same wavefront is also spherical in S’, expanding with speed ¢ about the

origin of that frame.

2.2.6 Measuring Length, Time and adding up velocities

In Special Relativity any statement about “how long” or “how fast” must be anchored
to a precise measurement procedure in a specified inertial frame. In what follows
we review how spatial lengths, time intervals and relative velocities are operationally

defined, and how these notions differ from their Newtonian counterparts.

Length of a Moving Rod and Length Contraction

Consider first a rigid rod aligned with the x—axis. Let the rod be at rest in an inertial
frame S, so that its endpoints have fixed spatial coordinates x4 and xp in this frame.

Its proper length (or rest length) is then

Ly=xp—xa, (2.72)

measured by a single observer in S who notes the positions of both ends at the same
time ¢.
Now examine the same rod from another inertial frame S’ that moves with con-

stant velocity V' in the +x direction relative to S. Observers comoving with the rod
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in S” wish to determine its length L’; by definition they must record the positions of
the two endpoints simultaneously in their own frame. Thus, at some fixed time ¢’ in

S’ the endpoints are at positions 2’y and x5, and
L' =y — 2. (2.73)

To relate L' and Ly we use the inverse Lorentz transformation for a boost along

v
x ="+ Vi), t= 7(75’ + §$/> , (2.74)

where v = 1/4/1 — V?2/c2. Evaluated at the common time ¢’ in S” we have
xq =2y + V'), zp =y(ay + V). (2.75)
Subtracting these expressions gives

xp—xa=7(2p—a)y) = Loy=~L. (2.76)

L 2
L’:70:L0\/1—‘C/—2. (2.77)

This is the phenomenon of length contraction: the length of the rod measured in a

Hence

frame where it moves with speed V' is smaller than its proper length by the factor
1/7.

No physical compression of the rod is implied; its internal structure need not
change. The effect is purely kinematical and arises from the relativity of simultaneity.
Indeed, the measurements defining L' are simultaneous in S" (¢, = )3 = t’), but

correspond to different times in S. Using (2.74), the instants at which the endpoints
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are recorded in S are

Vv |4
tA = 7<t/ + gﬁiA) ) tB = ’y<t/ + gx'B) , (278)
so that
V V

From the viewpoint of S, therefore, the front end of the rod is sampled earlier than the
rear end while the rod is sliding past, which makes the coordinate distance between
the two sampled points smaller than Lj. Length contraction is thus intimately tied

to the lack of absolute simultaneity.

Time Intervals and Time Dilation

We now compare time intervals measured by clocks in relative motion. Consider a
single clock at rest at position z in frame S. Let two events be the readings ¢; and
to indicated by this clock; they occur at the same spatial point in S. The time lapse
between them in S is

T = tg - t17 (280)

and is called the proper time between the two events.
Observers in frame S’, moving with velocity V relative to S, assign coordinates
(x,t1) and (z,t3) to the same events in .S, but their own time coordinates are given

by the Lorentz transformation

t =~ (t - Km) . (2.81)

Vv v
t = 'Y(tl - §x> , ty= v(tz - gl’) : (2.82)
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The interval measured in S’ is

Because v > 1, observers who see the clock in motion register a longer time between
its ticks than the clock itself measures. Equivalently, a moving clock appears to “run
slow” relative to clocks at rest in the observer’s own frame. This is the well-known
effect of time dilation.

A useful mnemonic is that proper time is always the shortest time interval between
two fixed events; any other inertial observer, for whom the events occur at different

spatial positions, measures a larger time interval.

Adding Velocities Relativistically

Finally, we consider how velocities transform between inertial frames. Let a particle
move with velocity components (u),u,,u) in frame S’, while S” itself moves with
speed V' along z relative to S. We seek its velocity (ug,u,,u,) in S.

From the Lorentz transformation

c2

d=yz-Vt), t=x (t - Kx) : (2.84)

we differentiate with respect to ¢t along the worldline of the particle to obtain

/ J— J—
, det y(u,—=V) uy =V (2.85)

u, = — = = .
Tooar Vuy, Vu,
7(1 2 ) ==

C C

Solving this for w, yields the relativistic velocity addition law in the longitudinal

direction:
u, +V
1+ Qw
c
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Similarly, using the full system of Lorentz transformations and their differentials, the

transverse components become

u U

Y U, = z )
Vul\’ ? V,
Y1+ — Y1+ —
c c

Equations (2.86) and (2.87) reduce to the familiar Galilean rule u, = u/, +V and

(2.87)

Uy:

=ul, u, =, in the limit V' <« ¢ and |u/,| < ¢. Crucially, however, if |u/| < ¢ and

Uy ¥

|V| < ¢, then (2.86) guarantees that |u,| < ¢ as well; the composition of subluminal

velocities is always subluminal.
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Chapter 3

Differential geometry without a

metric

3.1 Some words on Charts, Atlases and differentiable

Manifolds

Differentiable manifolds are fundamental constructs in differential geometry. Infor-
mally, an n-dimensional manifold M is a topological space where each point p € M
possesses a neighborhood U C M that is homeomorphic to the open unit ball in R™.
For a precise definition, we must first introduce a few essential terms.

A chart (U, P) on M is defined by an open subset &/ C M and a bijective map
® from U to an open subset of R™ (or equivalently, to E™), such that ® assigns to
each point p € U an n-tuple of real numbers called local coordinates (z',... z").
In later computations, we might employ complex conjugate coordinates in place of
real ones, although the present discussion will focus solely on real manifolds. (For
complex manifolds, refer to works such as Flaherty (1980), and Penrose and Rindler
(1984, 1986)).

Two charts (U, P) and (U’,d’) are said to be compatible if the transition map
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®'o®~!, defined on the image ®(UUU") of the overlapping region, is a homeomorphism
(i.e., a function that is continuous, bijective, and has a continuous inverse). See also
Fig. 2.1.

An atlas on M is a collection of mutually compatible charts { (U, P,)} such that
every point in M lies in at least one neighborhood U,,. Often, no single chart suffices
to cover the whole manifold; for instance, an n-sphere cannot be covered by a single
chart if n > 0. An n-dimensional (topological) manifold is a topological space M
equipped with an atlas. The manifold M is called a differentiable manifold (of class
C* or analytic) if, for any two overlapping charts, the transition map ® o ®~1 is not
only continuous but also differentiable (of class C* or analytic, respectively).

In this case, the coordinate functions defined on overlapping domains are con-
nected through n differentiable functions of class C* (or analytic), and the Jacobian

matrix of the transformation

e (z)

has non-zero determinant at every point in the intersection:

det (gﬁj) £ 0. (3.1)

A differentiable manifold M is said to be orientable if there exists an atlas for which
the Jacobian determinant in Equation (3.1) remains strictly positive on all regions
where coordinate charts overlap. This ensures a consistent orientation across the
manifold.

Given two manifolds M and N of dimensions m and n respectively, one can
naturally construct their product manifold M x N, which has dimension m + n.

Let ® : M — N be a map between manifolds. This map is called differentiable if,
under local charts, the coordinates (y!,...,y") in N are differentiable functions of the

coordinates (z',...,2") in M over open sets Y C M and V C N where ®(U) C V.
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If ®(M) # N, the image ®(M) is termed a submanifold of N'. More generally, a
subset P C N of dimension p < n is called a submanifold if, near every point of P,
there exists a chart (V,¥) of N such that the local expression of P within the chart
is given by R? x {0} inside R™. In particular, a submanifold of codimension one (n —1
dimensional) is referred to as a hypersurface.

A smooth curve (t) in M is defined as a differentiable map from an open interval

around the origin in R into the manifold:

or occasionally, from a closed interval [e,¢]. A differentiable map ® : M — N and its

action on such a curve are depicted in Fig. 2.2.

3.2 Vectors, one-forms, Tensors

3.2.1 Vectors

In general, the notion of a vector as an arrow connecting two points loses its validity
on a curved manifold. To generalize the concept of vectors from flat Euclidean space
to a differentiable manifold M, one defines vectors at a point p € M as tangent
vectors. A tangent vector v at p is a linear operator acting on the space of smooth
functions f : M — R, assigning to each function a real number v(f). This operator

satisfies the following axioms:

(i) v(f+h)=v(f)+v(h),
(i) v(fh) =hv(f) + fv(h), (3.2)

(iii) v(cf) =cv(f), ¢ € R constant.
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A direct consequence is that v(c) = 0 for any constant function ¢. Importantly,
this definition is coordinate-independent. Geometrically, a tangent vector can be
understood as the directional derivative of a function f along a smooth curve ~(t)
passing through p. Expanding f in a Taylor series around p and applying the linearity
and Leibniz rule from (3.2), it follows that any tangent vector v at p can be written

in terms of a local coordinate basis as:

vV=0'—. (3.3)

The coefficients v are called the components of v with respect to the local co-
ordinate system (z!,...,x") around p. According to (3.3), the set of coordinate
partial derivatives {0/0z'} at p spans the tangent space T, of M, which is a real

vector space of dimension n. The set {9/dx'} is referred to as a coordinate basis or

holonomic frame.

More generally, one can introduce an arbitrary basis {e,} of T),, wherea = 1,...,n,
not necessarily associated with any coordinate system. Any tangent vector v € T,

may then be expressed as a linear combination of these basis vectors:

v =v%,. (3.4)

The action of a basis vector e, on a function f is denoted symbolically by f, =
ea(f). In coordinate bases, this is often written using a comma notation: f, = df/dz".

Any nonsingular linear transformation of the basis {e,} leads to a corresponding
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change in the components v® of the vector v. Specifically, if

ey = La,beb,
a _ 1ad b
v =L,

L%, L,° =&, (3.5)

then the transformed basis {e,} and the transformed components v preserve the

vector v.

A coordinate basis { aii} is a special case of the general basis {e,}. In older

literature on general relativity, computations were typically done with respect to
coordinate bases. However, in many modern approaches, it is often more convenient
to employ a general basis — known as a frame or n-bein (such as a tetrad or vierbein
in four dimensions). When a metric is present, these terms may refer to frames
normalized with respect to the metric.

A wvector field v(p) on a differentiable manifold M is a smooth assignment of a
tangent vector v(p) € T, to every point p € M such that the components v’ in a local
coordinate basis are smooth (i.e., differentiable) functions of the coordinates. Thus,

a vector field is mathematically described as a smooth map

M —TM), p—v(p),

which defines a section of the tangent bundle T'(M).

Since vectors are identified with directional derivatives, applying two vector fields
in succession to a smooth function f need not commute. In general, the order of
application matters. This motivates the definition of the commutator (or Lie bracket)

[u, v] of two vector fields u and v:

[w,v](f) = u(v(f)) — v(u(f)).
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Let {e,} be a chosen basis of the tangent space. Then, the commutator of two

basis vectors is expressed as a linear combination of basis elements:
_ Cc c __ c
[ea? Gb] - Dab€C7 ab — _Dba’ (36)

where D¢, are the structure coefficients (or commutator coefficients) of the basis. In

the case of a coordinate basis {0/0z'}, these coefficients vanish:

o 0
N v~ | = O
Oxt" OxJ
The commutator operation satisfies the Jacob: identity:

[11, [V’ WH + [V7 [Wa u]] + [Wa [11, VH =0, (37)

for any smooth vector fields u, v, and w. Substituting the expression (3.6) into (3.7),
and assuming that the structure coefficients DS, are constant (i.e., not functions of

position), one obtains the algebraic identity

D} Diy =0, (3.8)

where square brackets denote antisymmetrization over the indices a, b, and c.

3.2.2 One-forms

By definition, a 1-form (also called a Pfaffian form) o is a linear functional that maps
a vector v € T}, into a real number. This mapping is called the contraction and is

denoted by either (o, v) or vue. The contraction operation is linear:

(,au+bv) = alo,u) + b{o,v), (3.9)
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for all a,b € R and u,v € T,. Similarly, linear combinations of 1-forms o, 7 act
linearly:

(ao + b1, v) = al{o, V) + b{T, V). (3.10)

There exist n linearly independent 1-forms w® defined by their action on the tangent
basis {e}:
(W ep) = 6p. (3.11)

This set {w”} constitutes a basis of the dual space T, of the tangent space T}, and
is said to be dual to the tangent basis {e,}. Any 1-form o € T; can be uniquely

written as a linear combination of the basis 1-forms:

o = ow", (3.12)

where o, are real-valued components. Given any o € T} and v € T}, the contraction
is evaluated as:

(o, v) = 0,0 (3.13)

The differential of a smooth function f : M — R defines a 1-form df through the

relation:

(df,v) =v(f) = v fla. (3.14)
When f = z* (i.e., the local coordinates), this implies:

0 )

which shows that the set {dx'} forms the basis of T » dual to the coordinate basis

{0/0x'} of T,. Hence, any 1-form o € T can be expressed as:

o = o,dz’. (3.16)
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In local coordinates, the differential of a function takes the familiar form:
df = flaw® = faida’". (3.17)

From the pointwise definition of 1-forms, we can construct the 1-form bundle T*(M),
also known as the cotangent bundle. A 1-form field on M is then a smooth section
of this bundle, meaning it assigns to each point p € M a 1-form o(p) € T, such
that the components o; vary smoothly across the manifold. In tensor calculus, these

components are often referred to as the components of a covariant vector.

3.2.3 Tensors
A tensor T of type (r, s) at a point p on a manifold M is an element of the product
space

p

T(r,s):Tp(g)...@Tg@?;@...@Tg’

Vv vV
r factors s factors

which means that T is a multilinear map that accepts as arguments r covectors and
s vectors, i.e.,

T(o',...,0"v1,...,0),

and returns a real number. In particular, the tensor

UR QU T ® - ®T°

acts on such a tuple by computing

(ot uy) - {o" uy) - THwy) - - T (vg).

This mapping is multilinear in all entries. Using a basis {e,} for T}, and a dual basis

{w"} for T, any tensor of type (r, s) can be written as a linear combination of tensor
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products:

T =Ty b, €ay @+ R ey, @ W@ w.

The components 7% %, ..p,. are the coefficients of the tensor with respect to the
chosen basis and are indexed by r contravariant indices and s covariant indices. For
general tensors, the order of factors in the tensor product is significant.

A change of basis
o = Ly%eq, w” = L%yw® L% L= (52,
transforms the components of the tensor via the rule:
Ta/lma;b’lmbg _ La’lal . LalrarLb’lbl . Lb/sbsTal---mblmbs_

In coordinate transformations between coordinate bases {0/0z%} and {9/0xz%},

the matrices take the specific form:

ox?® Oz
Laa/ = 5 7 La’a - .
ox® ox®

Basic algebraic operations involving tensors (e.g., addition, scalar multiplication,
tensor product, contraction over a pair of indices, symmetrization and antisym-

metrization) are independent of the choice of basis.

3.2.4 Maps of Tensors

Let ® : M — N be a smooth map between manifolds. Then any real-valued function

f on N can be pulled back to a function on M via the pullback map ®* defined by

®*f(p) = f(®(p))- (3.18)
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This induces natural transformations on vectors and 1-forms:

S, v eT,— b e Top, P10 €Ty — Poel]. (3.19)

These induced maps satisfy:

(i) The pushforward of a vector satisfies

(@.0)(Flew = v(®7f)lp, (3.20)

that is, ®,v is the tangent vector to the curve ®((t)) at ®(p), where v is tangent to
7(t) at p.
(ii) The pullback preserves contractions:

(%o, v)|p, = (0, Psv)|a(p)- (3.21)

From (3.20), one immediately deduces that for any vector fields u, v:

[D,u, D] = Pulu, v]. (3.22)

Let (z',...,2™) and (y',...,4") be local coordinates in neighborhoods of p € M

and ®(p) € N, respectively. Then the pullback of a 1-form o = ;(y) dy’ is given by:

o = oy(y(x)) (gﬂ) do* = G,,(z) dat. (3.23)

These transformations can be extended to arbitrary tensors of type (r, s) provided

that ® is a diffeomorphism (invertible and smooth). In this case, 3.21 becomes:

<(I)*J> CI)*_1U> |;D - <(T, U) |‘1>(p)' (3'24)
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Note that ®* maps tensors on N to tensors on M. While the transformation law
(3.23) resembles a coordinate change, it actually constructs new tensors (e.g., ®*o).
This contrasts with basis transformations on M, which only change components while

leaving the underlying tensor invariant.

3.3 Exterior products and p-forms

Let o', ..., aP be 1-forms. We define a new operation called the exterior product (also

called the wedge product) denoted by A, with the following properties:
(i) a' A--- AP is linear in each .
(ii) The product vanishes if any two of the forms coincide.

These axioms imply that the exterior product is totally antisymmetric. In partic-
ular, interchanging any two forms introduces a minus sign. From a set of n linearly

independent 1-forms {w®}, we obtain (;) linearly independent p-forms:
W AW2 N Aw, I1<a;<ay<---<a,<n, p<n. (3.25)

By axiom (ii), all such wedge products vanish for p > n.

A general p-form « is a linear combination of these elementary p-forms:
O = Qgpgy WA AW (3.26)
In a coordinate basis {dz'}, we can write:

O = Qg TN A da (3.27)
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Product of Arbitrary Degree Forms The exterior product extends naturally to

forms of arbitrary degree:

(@' A AAPYA (B A AB) =at A AP ABEA-- A B (3.28)

This operation is associative and distributive but not strictly commutative. The

commutation rule becomes:

) A Blg) = (=1)" B A ). (3.29)

Interior Product (Contraction) Given a vector v and a p-form «, we define the

contraction (interior product) via to be the (p — 1)-form:

(V—J a)ag..,ap = Ubabag,..apa (330)

which is linear in both v and «. This operation lowers the degree of a form by 1.

Tensor Interpretation The space of p-forms is naturally identified with antisym-
metric covariant tensors of type (0,p). If a and § are p- and g-forms, then the

components of their wedge product are given by:

(a(P) A B(Q))almap-&-q = Uay.apPaysr.apiq)- (3.31)

For example, the wedge square of a 1-form satisfies:

2

wAw =2 (W @w —w Quw').

N | —
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Simplicity of p-Forms A p-form « is called simple if it can be written as an

exterior product of p linearly independent 1-forms:

apy =o' AP A Aal (3.32)

3.4 Lie derivatives

Let v be a vector field on a differentiable manifold M. At each point p € M, v

defines a unique integral curve 7,(t) such that

Ww(0) =D, (t) = v(%(1))-

This defines a congruence of curves associated with the vector field v. Along each

curve 7,(t), the local coordinates y'(t) satisfy the ordinary differential equations:

=o' (y'(t),...,y"(t)), (3.33)

with initial condition 3'(0) = z*(p).

We now define a one-parameter family of maps &, that drag each point p along
the curve 7,(¢) to the point ¢ = ®,(p) with coordinates y*(¢). For small values of ¢,
®, is a diffeomorphism. This induces a pullback ®; acting on tensor fields, and the

Lie derivative of a tensor T" with respect to v is defined as:
LT = lim = (®;T — T) (3.34)
vi =0 e ’ '

The tensors 7" and ®;T" are of the same type and are evaluated at the same point
p. Thus, £,T is a tensor of the same type at p. The Lie derivative measures the

change of T" along the flow of v. If T"is invariant under the flow, then £, = 0.
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Using coordinate bases {9/0z'} at p and {0/0y’} at ®(p), the following relations

are used: | | |
ggk = i ij—yt = o, CZZ - —v, (3.35)
We now compute the Lie derivative for various objects:
Function f:
Lof =v'f; = v(f). (3.36)
Proof: .
¥ifl=fole ). = Lufh= g
1-form o = o;d2’:
Lyo = (V"0;m + 0pv™,;) dr’. (3.37)
Proof: |
Bioly = o5y(z, ) o',

do; dy™ Oy’ 0 (dy’ ,
Lyol|, = |—L 2= — | — dz’.
ol oy™ dt Ox* M Ox? ( dt |, o v

Vector field u = u'0;:

0

ﬁvu = (Umui7m — umvi,m) % (338)
Proof:
- ox' 0
* — 9
®tu‘P =u (y<$?t))ay] axi7

ow dy™ dx' ;0 <dmz)} 0
t=0

Lvuly =5 ar oy T e \ar )| o
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Commutator interpretation:
Lyu=[v,u] = 0"y, (u'd;) — u™y, (v'5;) . (3.39)

General Tensor: Using the Leibniz rule and equations (3.37), (3.38), the Lie

derivative of a tensor T" of type (7, s) is given in components by:

' S
Q1. _om i1 TR i i1 m
(LT 5o =00, Ty 5. — E T " i1ge OV + E T me 5 05,0
a=1 b=1

(3.40)

Lie Bracket Properties: The Jacobi identity and commutator structure imply:
LoLy —LLy= Ly (3.41)

Exterior Derivative Commutation: From equations (3.34) and the definition of

the exterior derivative, it follows:
d(Lya) = Ly(da), (3.42)

for any p-form «. This identity may also be verified by component expressions such

as (3.37).

Remarks: The Lie derivative is fundamental in describing geometric symmetries,
such as those appearing in general relativity and other physical field theories. It is a
natural extension of the directional derivative to tensor fields. The exterior derivative
and the Lie derivative are both defined purely from the smooth manifold structure
and do not require additional structures like a connection or metric.

However, the Lie derivative depends not just on the value of v at a point, but on

its behavior in a neighborhood. To define derivatives that are local and invariantly
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defined, such as the covariant derivative, we must introduce additional geometric

structure to the manifold, which will be addressed in the next section.

3.5 Covariant derivatives

The covariant derivative V, in the direction of a vector v at a point p € M maps
any tensor to another tensor of the same type. If the direction v is unspecified, the
operator V raises the covariant rank by one; that is, it maps tensors of type (r,s) to
tensors of type (r,s + 1). In particular, the covariant derivative of a vector u can be

written as:

Vu=u"pe, ®w’, (3.43)

where the coefficients u®,, are yet to be determined. The directional covariant deriva-
tive along v is then given by:
V,u= (u“.bvb) €q- (3.44)

)

To define the covariant derivative of the basis vectors e, in the direction of e, we

introduce the connection coefficients I'°,,:
Ve,ea = ec. (3.45)
To ensure consistency with the Leibniz rule applied to the duality condition
(W ep) = 6y, (3.46)
the covariant derivative of the dual basis {w®} must satisfy:
Ve,w" = =TI gw". (3.47)
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We consider only connections satisfying the symmetry property
Vauv — Vyu = [u,v], (3.48)
which is equivalent to the antisymmetry of the connection:
20y = — D, (3.49)

with D¢, defined as the commutator coefficients from Eq. (3.6). A connection sat-
isfying (3.48) is called torsion-free or symmetric. Using Eq. (3.49), the covariant
derivative can be substituted in the expressions for the exterior and Lie derivatives,
replacing partial derivatives with covariant derivatives. In particular, the covariant

derivative of a tensor
T =T oy @ @€y QW' @ @wh (3.50)

is given by:

Vot = du + T, (3.51)

and the full covariant derivative of T becomes:

T S
ai...a ai...a a; ai...d...a d ai...a
Ty bee = O™y p+ E N by b ™ E L%, Ty db,- (3.52)

i=1 j=1

Note that the semicolon notation u®. = V. u® is used.

Coordinate Expression: Let the basis vectors and 1-forms be expressed in terms

of the coordinate system:

- W = wdx’. (3.53)
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Then, the connection coefficients become:
Fabc = w“iei (8362) . (354)

Exterior Derivative of Basis 1-Forms: The exterior derivative of the basis 1-

forms w? is:

dw® = w; jd? A dat = —T %’ A We. (3.55)
Introducing the connection 1-forms:
I, =T'5ws, (3.56)
Eq. (3.55) becomes the first Cartan structure equation:
dw® = —T"% A WP (3.57)
Given a connection, the antisymmetric part I can be computed from Eq. (3.57).

Parallel Transport: The covariant derivative defines the notion of parallelism. If
u(q) is the parallel transport of u(p) along a curve ~(¢) such that v(0) = p, v(€) = g,

and v(p) is tangent to 7 at p, then the covariant derivative in direction v is:

Vyu = lim - (u(g) —uy(9)), (3.58)

e—0 €

where u(q) is the vector parallel-transported from p to ¢g. A tensor field T is said to

be parallel-transported along -y if:

V,T = 0. (3.59)
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In particular, a curve is called an autoparallel if its tangent vector is parallel trans-

ported along itself:
Vv =0. (3.60)

3.6 Curvature Tensor

The curvature tensor (also called the Riemann tensor) is a tensor of type (1, 3) defined
by
R = R%e€q @ w’ @ w @ w, (3.61)

which assigns a real number to the ordered tuple (o; w,u,v), where o is a 1-form

and w,u, v are vectors, via
o u v Ry = (0, (VuVy — Vi Vy — Viuv))W). (3.62)
By expanding the expression, we find:

;C

04 [(w“;cvc)_d ud — (w“;dud) UC] =0, (W cqg — W 4c) veul. (3.63)
Since o,, v¢, and u? are arbitrary, the identity holds:

wa;cd - wa;dc = wbRabdm (364)

which is known as the Ricci identity.
From the general formula for covariant derivatives, Eq. (3.52), we obtain the

expression for the components of the Riemann tensor:

R%q = T%qc — T%eq + T e — DT g — D eal “e. (3.65)

94



In a coordinate basis, the last term in Eq. (3.65) vanishes.

The Riemann tensor satisfies the following symmetry relations:
R%cq = —R"qc, Rpeq) = 0. (3.66)
The covariant derivatives of the Riemann tensor obey the Bianchi identities:
R%cgie + Rbgese + Rpecsa = 0. (3.67)
By contracting indices, we obtain:
R%%ed;a + 2R%jeq) = 0, (3.68)

and define the Ricci tensor:

Rpi = R%pqa- (3.69)

Cartan’s Structure Equations: An efficient method to compute the curvature

components is Cartan’s formalism. Define the curvature 2-forms ©%;:
0% = %R“bcd W A w?. (3.70)
Then, the second Cartan structure equation is:
dl'y, + T AT = 0%, (3.71)

where ', = I'® ,w® is the connection 1-form. This formulation allows us to compute

curvature directly from the connection.

95



Finally, the Bianchi identities can be expressed compactly as:

dO% — T% A ©% +T% A O% = 0. (3.72)
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Chapter 4

Riemmanian geometry & Einstein

field equations

4.1 The metric tensor
A metric tensor g on a manifold M is a smooth field of type (0,2) satisfying:
1. g: T? x T? — R is bilinear,
2. g(X,Y) = g(Y, X) for all vectors X,Y € T? (symmetry),
3. If g(X,Y) =0 for all Y, then X =0 (nondegeneracy).
In a local (noncoordinate) frame {e,} with dual {e®}, one writes
9= 9" @€, gu = g(€a, ) = Ga- (4.1)

In a coordinate basis {9;} with dual {dz'},

g = Gij dz' ® da’, 9ij = Gji- (4.2)
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Nondegeneracy means det[g;;] # 0 everywhere, so the inverse metric ¢g¥ exists:
g% gr; = 0';. (4.3)
The inverse metric defines a tensor g~' of type (2,0),
g '=9¢"0,®09;. (4.4)
Using g, the length L of a curve X: [a,b] — M is

b . .
dx? dx?
L= [ \gj— —— dt, 4,
/a g] dt dt ( 5)

so that in differential form ds* = g;; dz* da’. Given any (r, s)—tensor T, one may raise

and lower indices via contraction with g;; or g. For example,
Tab... = gai ibeee s ﬂab--- = Gij Tjab.... (46)

The signature of g is the difference between numbers of positive and negative eigen-

values of [g;;] at any point; for a connected manifold, this signature is constant.

Levi-Civita (Christoffel) Connection (from the metric) Requiring a tor-

sion—free connection V compatible with g,

and

VxY —VyX =[X,Y] (zero torsion), (4.8)
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uniquely determines the Christoffel symbols {I",} by
which in coordinates become the usual formula
i L
I = 59 (03910 + Ongje — Ougjn).- (4.10)

Properties of the Christoffel Connection

1. It preserves the inner product under parallel transport: if XY are parallel
along a curve, then
d

7 [9(X,Y)] =0. (4.11)

2. Geodesics arise as curves whose tangent is parallel-transported along itself:
ViA = 0. (4.12)

Equivalently, extremizing the length functional (4.5) via the Euler-Lagrange equa-

tions yields

d (0L oL
A (oL _ 9L 41
ds <6i’> o’ 0 (4.13)
with L = \/gji #74*. One finds
i 4+ T il =0, (4.14)

often written by introducing the “velocity” u® = 2*:

WV ju' = 0. (4.15)
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Recall that for an affinely parameterized geodesic with tangent u’ = 7 one has
WV u' = 0. (4.16)

Equivalently, in coordinate form,
B4+ T il =0, (4.17)

where dots denote derivatives with respect to the affine parameter s. If one uses a
non-affine parameter A, so that u’ = dz'/d\, the geodesic equation acquires a scale
term,

WV iut = g(\) o, (4.18)

for some scalar function ¢(\). Equation (4.18) still implies that the inner product

giju'u? is constant along the curve, consistent with parallel transport.

4.2 Symmetries of the Riemann and Ricci Tensors

For a Levi-Civita connection (Vg = 0, zero torsion), the Riemann tensor enjoys the
additional symmetries

Gim B it + gim R ™ g = 0, (4.19)

or, with all indices lowered,

Rijii + Ry = 0. (4.20)

Combined with the cyclic (first Bianchi) identity, one deduces

Riji = Ryij. (4.21)
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Hence the Riemann tensor is antisymmetric in its first and second index pairs and

symmetric under interchange of these pairs. The Ricci tensor
Ry = Rkikj (4.22)

is manifestly symmetric:

Rij = Rﬂ (423)

Using

I = 0,(1n /I, (1.21)

one obtains the familiar formula in coordinates:
Ry = 0T 1y — O i + T3 TRy — T8 TR (4.25)

where g = det[g;;].

4.3 Weyl Tensor

The Riemann tensor can be decomposed into its trace (Ricci) part and a trace-free

remainder, the Weyl tensor:

1
Cijul = Rijkl_m(gikle+gleik_gilek_gijil>+

1
(n—1)(n—2

) R(gixgj—9agik)-
(4.26)
By construction Cjjy,; shares all the algebraic symmetries of R;j;; and is fully traceless

g"*Cijrr = 0. It is conformally invariant under g — Q?g.
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4.4 Four-Dimensional Space—Time

In general relativity, one works on a four-dimensional differentiable manifold with
Lorentzian signature (—, +, 4+, +) (or (+, —, —, —) by convention). Calling ¢ the time

coordinate (with ¢ the speed of light), the Minkowski metric reads
ds® = = dt* + dr* + dy* + d=*. (4.27)

All subsequent constructions will assume this four-dimensional signature. On a
Lorentzian manifold (M, g), the metric is no longer positive-definite: for any vector
X, the scalar g(X, X) may be positive, zero, or negative. Accordingly, one classifies

nonzero vectors into
timelike if g(X, X) <0,

null (lightlike) if ¢(X, X) = 0, (4.28)
spacelike if g(X, X) > 0.
Material particles of finite rest mass follow timelike geodesics, massless particles follow
null geodesics, and spacelike curves cannot be tangent to any physical particle.

Null geodesics remain null under any affine reparametrization (cf. (4.17) and

(4.18)), and timelike geodesics satisfy
gij u'u! = —1, (4.29)
where u’ = dx®/ds is the four-velocity in proper time s.

Lowered Ricci Identity Lowering the Riemann-index in the Ricci identity (3.64)
gives

Rgmji ZK = Zi;j;kz - Zi;k;j7 (430)

for any covector Z;.
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Ricci Tensor by Contraction The Ricci tensor arises by contracting the first and

third indices of the Riemann tensor:

gijijkl = Ril- (431)

Weyl Tensor Revisited The Weyl tensor Cjj; of (4.32) can also be written as

1
(n—1)(n—2

1
Cijkl = Rijkl—m(gikRjz—i‘gjzRik—gilek—gijil)+ ) R (gikzgjl_gilgjk)-

(4.32)

Algebraic and Bianchi Identities In four dimensions (n = 4), R;j;; has 20 in-
dependent components, while Cj;i; and R;; have 10 each. The first Bianchi (cyclic)
identity

Rijjry =0 (4.33)

yields four additional linear relations among components:

Rig34) — Rispa) + Riaps = 0,
Rozjia) — Raapia) + Raipza) = 0, (4.34)
Raun2) — Raippa) + Raopngg = 0,

R3] — Ragay + Raspg) = 0.
4.5 The Energy-Momentum tensor

The central idea of general relativity is that gravity is geometry — in particular,
curvature of space-time — and that this curvature is sourced by mass—energy (the
equivalence of mass and energy). Even in special relativity, valid in a local inertial
frame, both the volume and the energy contained within depend on the observer’s

frame. To encode the energy content of a continuous distribution of matter in a
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frame-independent way, we require a rank—2 tensor, the energy—momentum tensor
(or stress—energy tensor) T*, which contains all information about the local energy

density, energy flux, momentum density, and stresses.

Invariant volume elements. Let z# = (2°, 2%) be coordinates on space-time, with

2% a time coordinate. In a local Lorentz frame the three-volume element is

dV = da' do* da?, (4.35)

and the corresponding four-volume element is

dV = dV da°. (4.36)

More invariantly, one writes the proper time element

dr* = g, dz" dz”, (4.37)

and the proper four-volume

dQ) = \/—g d*x, (4.38)

where g = det(g,.).

Components of T"”. In coordinates x*, the tensor T*" has the following physical

interpretations on a hypersurface 2" = const:

T% : energy density,
T : energy flux (or momentum density),
T : momentum density (or energy flux in direction i),

T" . stress tensor (pressures and shear stresses).
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Equivalently, one may view T as the flux of the y—component of four-momentum

across a surface of constant z".

Hilbert definition. If the matter action is Sy, = /EM\/—g d*z, then by varying

the metric one obtains the stress—energy tensor via

oo 2 05 _ 2 (8(£M\/—_g) 83(£M\/__9)>, (4.39)

" VEgagr g\ O 0(0ag™)

By construction T}, = T,, and V#T,,, = 0 whenever the matter equations of motion

hold.

Ideal fluid. An ideal fluid of rest-frame energy density p and isotropic pressure P

has

™ = (p+ P)u'u” + P g"", (4.40)
where v/ is the fluid’s four-velocity (g, u*u” = 1).

Electromagnetic field. In regions devoid of charges and currents, the Maxwell

field strength F},, contributes

1
T = —(F“O‘F”a — Lgm FagFaﬁ). (4.41)

4

Klein—Gordon Field Consider a real, spin-0 (scalar) field ¢(x) propagating in a
general (curved) space-time and obeying the Klein—-Gordon equation. Its stress—energy

tensor is given by

T = (Vu8) (Vid) = 5 g (V) +m?¢?). (4.42)

Local Conservation in Special Relativity In flat space—time (special relativity)

where gravity is absent, the energy and momentum of any isolated system satisfy the
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continuity equations

8,I" =0, v=0,1,2,3. (4.43)

For v = 0 this states that the rate of change of energy contained in a spatial volume

equals the net energy flux through its boundary:

T + 0T = dop+V-S = — 7{ T d;, (4.44)
ov

where p = T% is the energy density and S? = T the energy flux (or momentum

density). Similarly, for v = j one obtains the momentum-continuity law,
0j i d 0j 13 i
T +0TY" =0 <— — | T7d’rz=— T d%;. (4.45)
dt Jy ov
If T = 0 outside the region V', integrating over V' shows that the total energy-momentum

P’ = / T dx (4.46)
14

is constant (P” = 0) whenever no flux escapes through the boundary.

General Curved Space—Time In a general curved manifold, the local conserva-

tion law becomes

vV, T" =0, (4.47)

which in coordinates reads
0T +TH T + TV, TH = 0. (4.48)
Using I'*,, = O\ In y/—g, one can rewrite this as

1 ns 12
7= OV T) T T = 0. (4.49)
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4.6 Einstein Equations

The Einstein field equations are the fundamental equations of general relativity, since
they relate the geometry (curvature) of a space—time to the distribution of matter
and energy within it. They were postulated axiomatically by A. Einstein in 1915 and
take the form

R, — %g,w R = 87G1T,,, (4.50)

where GG is Newton’s gravitational constant.

Introducing the Einstein tensor G, = R,, — % 9w I, one writes equivalently
G = 8nGT,,. (4.51)

Thus the matter—energy sources contained in a space—time (represented by the stress—energy
tensor 7,) determine its curvature (encoded by G,,). The field equations form a
system of ten coupled, nonlinear, second-order partial differential equations for the
metric components g, ().

In practice, solving Einstein’s equations is extraordinarily difficult: the metric
components satisfy quasi-linear PDEs, not a simple local boundary-value problem.
Moreover, T* on the right—hand side is not known a priori (except in idealized cases
such as the Poisson equation for electrostatics). Omne typically employs an initial-
value (Cauchy) formulation, prescribing data on a three-dimensional hypersurface
and evolving forward in time under the Einstein constraints (the Hamiltonian and
momentum constraints). The rigorous existence and uniqueness of solutions (local
in time) was proved by Y. Choquet-Bruhat and R. Geroch, leading to the so-called
“Maximal Cauchy development” theorem. By adding four arbitrary functions (“gauge

freedom”) one fixes coordinates and obtains a well-posed evolution system |?].

It is also possible, by a theorem of Lovelock, to add to the left-hand side of (4.50)
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only a term proportional to g,, without violating the conservation law V*G,, = 0.

This yields the field equations with cosmological constant A:
Ry — 319w R+ANgu = 871G T, (4.52)

The constant A was introduced by Einstein to obtain a static (non—expanding,
non—contracting) universe. If A > 0, the equations admit a repulsive gravitational
effect; observations since 1998 indicate a tiny positive value, A ~ 107°2m=2. In
modern cosmology the term A is often interpreted as vacuum energy, with py, =

A/87G. In this work we shall, unless otherwise stated, set A = 0.

In geometrized units (G = ¢ = 1), equation (4.50) becomes
Gu =Ry — 3 9wR =811, (4.53)
and its trace-reversed form is obtained by contracting with g"":
Ry —LguR=81T,, <= R, =81 (TW . %gu,,T), (4.54)

where T' = ¢g"*T,,, is the trace of the stress—energy tensor.

In vacuum (7}, = 0), one then has
R, =0, (4.55)

so that the Einstein and Ricci tensors both vanish and the only nontrivial curvature

is encoded in the Weyl tensor.

Although vacuum Einstein equations admit many solutions (gravitational waves,
black holes, cosmological models), finding explicit, analytic forms is generally ex-

tremely challenging. One often resorts to perturbative or numerical methods to ex-

108



plore realistic scenarios such as binary mergers or cosmological evolution.
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Chapter 5

Exact Solutions and Solution

generating techniques

5.1 Weyl’s class of stationary axisymmetric solutions

Very shortly after Einstein published his field equations for general relativity, Weyl
(1917) and Levi-Civita (1918) considered static, axially symmetric solutions. In this
chapter we will briefly review these “Weyl metrics” with emphasis on a few impor-
tant special cases, particularly those which are asymptotically flat at large distances
either along the axis or far from a finite number of sources. Despite their obvious
and simple symmetry properties, the physical interpretation of these solutions is gen-
erally far from trivial. For example, one must be careful identifying “the axis” in
coordinates that are periodic in the angular coordinate. Without such identification,
a space-time with both spatial and temporal symmetries might be misinterpreted as
plane-symmetric. Further, in the natural coordinates for the assumed symmetry, the
behavior of any curvature singularities can depend sensitively on the direction from
which they are approached. This subtlety occurs for singularities both on the axis

and elsewhere.
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A general line element possessing both a timelike Killing field 0, and an axial

Killing field J, can be written in the canonical form
ds? = 209 4p2 4 V0 [ DO A 1 d?) + P20, €) de?],  (5.1)

where U, 7, and p depend only on the coordinates (1, &), and the vacuum field equa-

tions (with A = 0) imply that

U 10pdU U

0_772+p817317+8_§2:07 (5.2)

together with its &7 analogue.

Equation (5.2) is nothing but Laplace’s equation V2U = 0 for an axially symmetric
potential U in an auziliary Euclidean 3-space with “cylindrical” coordinates (p, ¢, z),
even though (7, &) here have a different meaning. In these “cylindrical coordinates”

the line element becomes
ds? = —2UP2) g2 4 ¢=2U(p2) [627(””2)((1@2 + dzz) + p2 dqﬁz} , (5.3)

with U and v functions of (p,z), t € (—o0,00), p € [0,00), and ¢ € [0,27). With

A = 0, the vacuum field equation for U is simply
1
U,pp+ ;U,p+U7zz - 0, (54)

which one readily recognizes as Laplace’s equation in Euclidean 3-space for an axially
symmetric function U(p,z). Since this is a linear equation, any superposition of
harmonic functions U produces another solution. Once U is specified, the remaining

metric function v can be obtained by quadratures:

Vo =p(UL+U2), 7:.=2pU,U.. (5.5)
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These first-order equations are integrable by virtue of (5.4), so in principle all Weyl
solutions can be written down formally.

Yet one should beware of singularities on the axis (p = 0) unless v — 0 as
p — 0. If that condition fails, the solution will have a ‘conical” singularity, much like
a misplaced plane sheet in space-time. In other words because U and v can be chosen
arbitrarily (subject only to (5.4)), the Weyl class describes all static, axisymmetric
vacuum geometries. However, not every choice corresponds to a physically reasonable
source; regularity on the axis and correct asymptotic behavior must be checked case

by case.

5.1.1 Flat solutions within a Weyl metric

Even within the Weyl class, some choices of the harmonic potential U yield merely

flat space—time, albeit in nontrivial coordinates.

(i) Trivial Minkowski. Choosing

U=0, ~=0, (5.6)

in (5.3) gives
ds* = —dt* + dp® + d2* + p?* d¢?,

the usual Minkowski metric in cylindrical coordinates.

(ii) Uniformly Accelerated Frame. Let us choose

U =Inp, v =1Inp. (5.7)
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Then the line element becomes
ds? = —p* dt* + dp* + d2* + p* d¢?, (5.8)

which is again flat, but now in Rindler-like (uniformly accelerated) coordinates. In-

deed, by setting

z =z, ﬁzp, t=r, QS:QOa

and introducing a new “vertical” coordinate Z via

one recovers the standard Rindler metric
ds? = =22 d7® + dZ° + dp? + (7 dp”.
The surface Z = 0 corresponds to the acceleration horizon.

(iii) Gautreau—Hoffman “Semi-Infinite” Line Source. Gautreau and Hoff-
man (1969) found the unique nontrivial Weyl harmonic function leading to another

flat—space representation,

02+22+Z

U:lln< 2+22+z>, v=1In
2 P 2 24/ p? + 22

(5.9)

This solution again has vanishing Riemann tensor, but can be interpreted as arising
from a semi-infinite Newtonian line source of mass density o = % located on the
negative z—axis. A change of coordinates shows it to be another uniformly accelerated
frame, with the “source” now lying on the acceleration horizon.

Therefore three different choices of U here all give flat space-time—yet in wildly
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different guises: inertial, Rindler, and the Gautreau—Hoffman frame. Two of these
‘sources’ live on horizons and reflect the coordinate artifacts of acceleration rather
than true gravitational fields. This teaches us a valuable lesson: the Newtonian
potential analog U in an auxiliary 3-space does not by itself guarantee a physical
mass distribution in the four-dimensional geometry and the full curvature and global

structure have to be studied before assigning a physical source.

5.1.2 Weyl’s solution

An important family of exact, asymptotically flat, static and axially symmetric vac-
uum solutions is obtained by passing from Weyl’s “cylindrical” coordinates (p, z) to
“spherical” coordinates

p=rsinf, z=rcosb. (5.10)

In these coordinates the line element (5.3) reads
ds? = —e2V ™0 2 4 72U (0 [GQ’Y(T’G)(dTQ + r2d6?) + r* sin® 0 d¢”]. (5.11)
The vacuum field equation (5.4) becomes
U, + 2rU, + Ug + cot@Uy = 0, (5.12)

which is nothing other than the axisymmetric Laplace equation on flat three-space in
standard spherical coordinates. The asymptotically flat, regular solutions of (5.12)

admit an expansion in Legendre polynomials P,(cos 6):

U(r,0) = — Z a7~ "D P (cos 6). (5.13)
n=0
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Here the coefficients a,, play the role of “mass multipole moments” of the source. Once

U is prescribed, the function ~ follows from the quadrature

> ({+1)(m+1) P(cosO)P,,(cos@) — Pyq(cost)P,,1(cosb)
(779):_2‘”6% I+ m+2 P l+m+2

I,m=0

(5.14)
These are the Weyl solutions, each term corresponding to the nonlinear gravitational
effect of a Newtonian multipole. It’s remarkably elegant that the entire infinite set
of axisymmetric vacuum solutions reduces to choosing a sequence {a,} in a single
harmonic expansion, just like in electrostatics. But be wary: the nonlinear “dressing”
encoded in 7 can introduce subtle singularities away from the axis unless the moments

satisfy extra regularity conditions.

Levi—Civita’s Special Case. Levi-Civita (1917) discovered a two-parameter sub-

family of (5.11) characterized by three constants pg, ps, p3 subject to

po+p2+ps=1, py+ps+ps=1 (5.15)

Introducing
oc=1(p2—ps3), L=1-20+40" (5.16)

one may set
po=208"" pp=20120—1)S7!, p3=(1-20)T7", (5.17)

and rescale coordinates via

L= kPt r— kPr, 2z kP2, o — kTP, (5.18)
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introducing an overall constant k. The metric then becomes
ds® = —p* dt* + k* p* @V (dp® + dz?) + p* 72 dg?, (5.19)
where p = rsinf, z = rcosf. Comparing with (5.3), one reads off
U(p) =20lnp, ~(p)=40’Inp+1Ink. (5.20)

The function U = 20 1lnp is just the Newtonian potential of an infinite line of mass
density o. Indeed, near p = 0 the metric (5.19) has a conical singularity whose
deficit angle is proportional to o. Israel (1977) showed that this “mass per unit
length” interpretation is consistent only for o > 0 and small; otherwise the pressures
and red-shift blow up. Levi-Civita’s metric thus emerges as the simplest nontrivial
Weyl solution, and serves as a cautionary example: although its Newtonian analog is
straightforward, the full four-dimensional geometry exhibits subtleties (singular axes,
horizons, and “conical” stresses) that have no counterpart in classical Newtonian

gravity.

5.1.3 Schwartzschild

The Schwarzschild metric is the unique, static, spherically symmetric vacuum so-
lution, asymptotically flat at spatial infinity as we will shortly see. Its usual form
is

ds? = — (122 )a* + (1 - 27m)_1dr2 +72(d6? + sin%0 dg?).

To cast it into Weyl’s form (5.3), one introduces new “prolate spheroidal” coordinates
T,y via

r=m(x+1), cosl=y, (5.21)
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so that

x_
T+

1 1)
T dz® + m2(:fl dy? +m?(x 4+ 1)*(1 — 3?) do”.

ds® = —
° r—1 —y?

1
1 dt* +m?

The static region r > 2m corresponds to = > 1. Next define

p=my/(22 —1)(1 —y?), z=muay, (5.22)

so that the metric takes the Weyl canonical form (5.3) with

62U B R+ + R_ —2m (R+ + R_)2 — 4m2

"R+ R_t2m e = AR, R (5:23)
where
Re = /A5 (]
Equivalently,
U= %m(%), (5.24)

which is formally identical to the Newtonian potential of a finite rod of length 2m on
the z—axis, with uniform mass density o = % The static Schwarzschild region r > 2m
is thus described by a finite rod potential in Weyl coordinates. But beware: although
U matches a Newtonian rod, the actual space-time has a horizon at r = 2m (where
the rod “ends”), beyond which these coordinates break down.

Mapping the coordinate segments onto the Weyl axis shows:

Schwarzschild region < Weyl axis segment

Half-axis behind the hole (§ =, r>2m) <+ p=0, 2z < —m,

T

Horizon (r =2m, 0 < 6 < ) p=0, —m<z<m,

Other half-axis (6 =0, r > 2m) < p=0, z>+m.

This mapping highlights that although the Newtonian analogy suggests a rod source,
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the actual geometry has a horizon in its middle. Moreover, interpreting Schwarzschild
as a superposition of two semi-infinite rods—one of positive density o = +% onz>m
and another of negative density o = —% on z < —m—reveals that the global structure

cannot be read off from U alone.

5.1.4 Zipoy—Voorhees

As we have seen, the Schwarzschild solution in Weyl form corresponds to the New-
tonian potential of a finite rod of length 2¢ with mass-per-unit-length o = % More
generally, one may take any 0 € R and place a rod of length 2¢ along the z-axis,

z € (—=£,¢). The corresponding Weyl potential is

Up,z) =0 lnR_+—H, Ry =+/p*+(z£10)2. (5.25)

By straightforward algebra the metric functions become

2U (R+ +R_ — 2€>m/€ e <(RJr +R_)?— 4£2>m2/e2

_ 5.26
Ri+R_+20 AR.R_ (5.26)

where the rod’s total mass is m = 20/. These two parameters (m,¢) (or equivalently
(m,d) with 6 = m/¢) label the Zipoy—Voorhees, or y—metric, which was first discovered
by Bach and Weyl (1922) and Darmois (1927). Key special cases: - § =1 (0 = 1)
reproduces Schwarzschild. - ¢ — 0 with m fixed gives the Curzon—Chazy solution
(a point mass). - £ — oo with o = m/2¢ — 0 recovers the Levi-Civita metric (an
infinite line).

Except for 6 = 0, 1, the segment p = 0, —¢ < z < { is a true curvature singularity,
not hidden by any horizon. Moreover, near p — 0 one finds the induced circumference
of a small circle,

Clp)=2mp' 0 (p <),
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which diverges for § > 1 and vanishes for 0 < 6 < 1. Kodama and Hikida (2003)
have shown that for 6 < 0 the “rod” is ring-like, and for 0 < § < 1 it is rod-like, both

nakedly singular at the ends.

In prolate spheroidal coordinates

p==0/(22=1)(1—y?), z=lay,

the metric simplifies to

dr?  dy?
ds? = —e2Ude? 4 22<x2‘”_ -+ _ny) + R%d¢?, (5.27)

with

—1\¢ 2 _ 162
62U:(:U >7 6_27: <x > ) (528)

rz+1 x2 — 12

22 62 (iL‘ + 1)6+1(£L‘ _ 1)671(.%'2 _ y2)1762’ R2 — 52 (l’ 4 1) 1+6($ _ 1) 176(1 _ y2)_

Here again one sees that unless § = 0,1 the axis z = 1 (i.e. p =0, |y| < 1) harbors a

directional singularity. |

5.2 Ernst Potential

Motivation

Perturbations (“disturbances”) of black holes and the construction of nearby exact or
quasi-exact geometries are central in mathematical relativity and black-hole physics.
Beyond linear perturbation theory, the Einstein equations admit powerful reductions
under symmetry. In the stationary, axisymmetric, vacuum case, the Ernst formalism
compresses the nonlinearity into a single complex scalar equation. This subsection
derives the Ernst equation, shows how the Schwarzschild and Kerr solutions arise

naturally within it, and outlines a perturbative viewpoint for stationary deformations.
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Stationary Axisymmetry and the Papapetrou Form

Stationarity and axisymmetry provide two commuting Killing vectors, £ = 0, and
n = 0, with [£,n] = 0. In adapted Weyl-Papapetrou coordinates (t,p, z, ¢) the

metric may be written as

ds? = —f(p. 2) [dt = w(p, 2) d6]* + f(p,2) ! (2P (dp? + d22) + pd6?),  (5.29)

with f > 0. Let f = —£-£ be the norm of the stationary Killing field and define the
twist one-form

Wy = €uvas VNV, (5.30)

In vacuum, V,w, = 0, so locally w, = V,x for a twist potential x. The vacuum
Einstein equations reduce to PDEs on the 3-space of Killing orbits, i.e. flat 3-space
with cylindrical coordinates (p, z, ¢), where fields are ¢-independent. Using the flat-
space gradient/divergence V and dot product in this auxiliary space (and suppressing

the trivial ¢-direction), one standard form is

V- (pf2Vx) =0, (5.31)

V(oY1) = pf IV = 0f VA (5.32)

Once (f,x) are known, v follows by quadratures:

1o = g7 () = (e + () = (), (5.33)
V.2 = ? (f,pf,z + X,pX,z) . (534)

4
p
2
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The Complex Ernst Potential and the Ernst Equation

Define the complex Ernst potential

E(p,z) = f(p,z) +ix(p, 2), (5.35)
so that Egs. (5.31)—(5.32) collapse to the single complex Ernst equation
(Re &) VE = (VE)-(VE), (5.36)

where V and V? act with respect to the flat 3-metric d¢f? = dp? + dz? + p?d¢?, and
axisymmetry implies 0,€ = 0. Eq. (5.36) arises as the Euler-Lagrange equation of

the variational principle

VE-VE

exhibiting a nonlinear sigma-model structure with target space SU(1,1)/U(1). The
metric function vy does not feed back into (5.36) and is obtained by integrating (5.33)—
(5.34) once & is known. If y = 0 (no twist), then £ is real and (5.36) reduces to

VZ(In f) = 0. Writing U = 3 In f, one obtains the Weyl form of the metric,
ds? = =V dt? + e <e27(d,02 +d2?) + p? dqﬁz), (5.38)

with U harmonic in (p,z). This class contains all static, axisymmetric, vacuum
solutions (Weyl solutions).
Coordinate Choices and Separability: Prolate Spheroidal Coordinates

It is often convenient to adopt prolate spheroidal coordinates (x,y) with z > 1 and

—1 <y <1 defined by

p=rVr2—14/1—1y2 z =Ky, (k> 0), (5.39)
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where the flat-space Laplacian separates as

1

2H —
V= /{2(x2—y2)[

0, (2% = 1) 0,@) + 9, ((1 — v?) aycp)} . (5.40)
Axisymmetric harmonic functions then factorize in associated Legendre functions of x
and y, a fact that underlies compact expressions for black-hole solutions in the Ernst

picture.

Static Weyl Class and Schwarzschild via Ernst

In the static sector (x = 0), choose a harmonic potential U(p, z); the function v follows
from Eqgs. (5.33)—(5.34). A particularly compact representation of the Schwarzschild

solution in prolate spheroidal coordinates is obtained by the constant-phase Ernst

potential
x—1
& = — 5.41
which is real (hence static). Identifying
r=M(z+1), y = cos 0, (5.42)

reconstruction of the metric from f = Re& = (¢ — 1)/(xz + 1) and the quadratures

for v yields the standard Schwarzschild form

2M 2M~N -1
ds? = — (1 — —)dt2 + (1 — —) dr? + r2(d6* + sin®0 dp?). (5.43)

T T

This example illustrates how spherical symmetry emerges as a special static Ernst

configuration.
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Kerr from the Ernst Potential

Introduce an auxiliary complex function ®(z,y) and define

-1
=—_—_, 44
£ d+1 (5.44)

A separated solution that satisfies the Ernst equation in prolate coordinates is given

by the linear combination

™

O(z,y) =xcosa+iysina, 0<ac< 5 (5.45)
With the identifications
k=vVM?— a2, tana:g, r =M+ kx, y = cosb, (5.46)
K

one reconstructs the Boyer—Lindquist form of the Kerr metric

2M AMar sin20 >
ds? = — (1= 55 )di? - = dtdg + 5 dr + T dd
- 2M a?r sin?0 (5:47)
+ (7"2 +a®+ T) sin®g d¢?,

where ¥ = 72 4+ a?cos?0 and A = r?2 — 2Mr + a®>. In the Papapetrou language,
f = Re& and the twist potential y = Im & determine the dragging function w via
first-order relations; v is then found by quadratures (5.33)—(5.34) and the mapping
(5.46).

Perturbative Viewpoint for “Disturbed” Stationary Black Holes

The variational structure of (5.37) enables controlled perturbation theory. Let

—1
E=E+e&E+EE+ -+, & = - 1 (Schwarzschild). (5.48)
x
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Expanding (5.36) to O(e) gives the linear equation
E[gl] =N Vle — 2VEOV81 + (Re 81) V2E0 =0, (E(] = 50 S R) (549)

Taking the imaginary part (which controls the first nonzero twist) yields a decoupled
elliptic PDE
EyVAIm &) — 2VE,-V(Im &) = 0, (5.50)

whose separated solutions on the prolate background are spanned by combinations
Qo(x)Py(y) (with @ Legendre Q-functions). The exact Kerr family corresponds to a
special nonperturbative choice resummed via the ansatz (5.45). More general station-
ary deformations (e.g. quadrupolar distortions or external fields) can be organized in

this basis, with regularity and boundary conditions fixing the physical branch.

5.3 Solution-Generating Techniques from Ernst Equa-
tion

In stationary, axisymmetric electrovacuum General Relativity, the Einstein-Maxwell
equations reduce, after 3D reduction on the stationary Killing orbits, to a nonlinear
sigma model whose target admits a large isometry group. In the Ernst formulation,
these isometries act as fractional-linear (Mdbius-type) maps on the pair of complex
potentials (€, @) and generate new exact solutions from a known seed. We first derive
the electrovac Ernst equations and the sigma-model structure, then we write the
finite SU(2, 1) maps in explicit form (Harrison and Ehlers), and finally apply them

to construct black holes immersed in a magnetic (Melvin) universe.
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5.3.1 3D reduction, electrovac Ernst equations, and target-

space geometry

Consider a stationary, axisymmetric spacetime with two commuting Killing fields
¢ = 0y and n = J,. In Weyl-Papapetrou coordinates (t, p, z, ¢) the metric and the

Maxwell field are taken independent of ¢ and ¢:

ds® = —f(p,2) [dt — w(p, 2) do* + f(p.2) "' ("9 (dp” + d2®) + p*do?), [ >0,
(5.51)
and the field strength two-form F' admits electric and magnetic scalar potentials on

the 3-space of Killing orbits.

Electromagnetic potentials. Introduce the electric and magnetic potentials v(p, z)

and u(p, z) via

1
E, = F, = 0,0, B* =1 "R, = — "oy, (5.52)
p

where indices a,b € {p,z}, € is the Levi-Civita symbol on the flat (p, 2)-plane,

and all fields are axisymmetric (0, = 0). Define the complex electromagnetic Ernst

potential
d = v+ iu. (5.53)
Let f = —¢-¢ and define the vacuum twist one-form of &,
Wy = €uvaf guvozfﬁ’ (554)
which in electrovac satisfies
Vi) = —2 € EFPEE 5. (5.55)
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It is convenient to improve the twist by subtracting the electromagnetic contribution

and define a scalar twist potential x by
wy —2Im (P 9,9) = 9,x. (5.56)
The gravitational Ernst potential is then
E=f—|PP +ix. (5.57)

Electrovac Ernst equations. Using the 3D flat-space operators V = (9,,0.) and
VZ in cylindrical coordinates (p, z,¢) (with axial independence), the coupled Ein-

stein—-Maxwell equations are equivalent to the pair

(RE — |@?) V?E = (VE-20VD)-VE, (5.58)

(RE — |®]*) V?@ = (VE-20 VD) VO, (5.59)
with the metric function f recovered as
f=RE — |0 (5.60)

Once (€, ®) are known, the remaining functions follow by quadratures:

p - p .
o= 4 S(E,) +2R(@D,)],  Ow= — (S(E) +2R(@3.,)], (5.61)
o= e P AR L), = (S e AR@,.).
(5.62)
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Sigma-model structure and hidden symmetry. FEquations (5.58)—(5.59) arise

from the 3D action

VE-VE -2(PVE -VD)-(PVE - VD)
(RE — |@*) ’

S:/pdpdqub (5.63)

which is a nonlinear sigma model with target the Kéhler coset SU(2,1)/S(U(2) x
U(1)). The target-space isometries SU(2, 1) act as solution-generating maps on (€, @)
and preserve (5.58)—(5.59). In vacuum (® = 0) the symmetry reduces to SL(2,R)

acting by Mobius maps on £.1

5.3.2 Finite SU(2,1) maps: Harrison (charging/magnetizing)
and Ehlers (twist/NUT)

A convenient way to present the finite maps is via their direct action on (£, ®). Let

(&, Do) be a seed satisfying (5.58)—(5.59) and define A-factors as indicated below.

Magnetic Harrison transformation (Melvin embedding). Given a real pa-

rameter B (magnetic field strength at infinity) define

Then

& @y —3B&

_ & _ 20 —35B& _Jo

= 5.65
F= i (5.65)

This immerses the seed into the Bonnor-Melvin magnetic universe; asymptotics are

Melvin rather than flat.|3, 4, 7, §|

'For derivations and the identification of the symmetry groups, see the original papers by Ernst
and the Kinnersley—Ehlers program. [1, 2, 5, 6, 10]
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Electric Harrison transformation (charging). For real g,

Jo
Aelj\el .
(5.66)

&o (D:‘IDO‘F%Q&)

Aelzl_q(i)o_%(_fg[)a EZAIAIa Ay ’

f=

This adds net electric charge to a vacuum or neutral electrovac seed (e.g. Schwarzschild

— Reissner-Nordstrom; Kerr — Kerr-Newman).[6, 5]

Ehlers transformation (vacuum SL(2,R) and its electrovac embedding). In
vacuum (Po=0), a one-parameter representative with ¢ € R acts by a M&bius map

on the Ernst potential:

o

£=—2_
1—|—Z'C(€()7

(@ =0). (5.67)

It generates nonzero twist from a static seed and thus adds NUT-type “dual mass”.
In full electrovac, Ehlers extends to a coupled map on (£, ®) and is often composed
with a duality rotation to keep the electromagnetic field aligned; explicit forms follow

from the SU(2,1) action.[9, 10]

Why these maps preserve the equations. Let 7 € SU(2,1) act on the coset
representative M(E, @) by M — TTMT; the sigma-model Lagrangian is L = $Tr[(VM)M~!]?
which is manifestly invariant. Reading off the transformed (&€, ®) from M’ reproduces
(5.65)—(5.67). (This avoids solving PDEs anew and is the conceptual reason the

algebraic maps work.)[5, 6]

5.3.3 Black Holes in a Magnetic Universe

We now magnetize standard seeds using (5.65). The reconstruction of w and 7 uses
(5.61)-(5.62). A useful rule of thumb: f always rescales as f = fy/|A|?, while the

azimuthal coefficient acquires the inverse factor: gyp ~ p* f~1 ~ (p*/ fo) |A|*; keeping

128



these paired factors consistent prevents most algebraic slips.

Magnetized Schwarzschild (Ernst metric)

Take the static seed

2M 2 M\ -1
S=1-"2 @y=0, ds?= —(1——)dt2+(1——) dr2+r2(d6% +sin2 6 do?).

r T T

(5.68)
With Be Rand A =1— iBQ&) =1+ %327’2 sin” #, the magnetic Harrison map (5.65)

yields
2M 2M\ -1 2 sin?
s = 22— (1= 2MVape 4 (122N g2 g | 4 S0 G
T T A2 (5.69)
B r%sin?6 '
=5 A (gauge A, = 0), w =0,

the classic Ernst spacetime describing a Schwarzschild black hole immersed in Melvin’s
magnetic universe.[3, 8] At large r the metric approaches the Melvin flux tube; the

axis sin @ = 0 is regular provided ¢ is rescaled if needed to remove conical deficit.|3]

Magnetized Kerr and Kerr—-Newman (Ernst-Wild family)

Start from Kerr-Newman in Boyer-Lindquist form with parameters (M, a,Q); its
electrovac Ernst potentials in prolate (or spheroidal) coordinates can be written com-

pactly. Acting with (5.65) produces the Ernst—-Wild magnetized black holes:[4, 7]

& o B0 1BE,

E= AP A

A=1+1Bo, - 1B, (5.70)

Rotation and charge mix nontrivially with B, deforming the ergoregion and the near-
horizon geometry while preserving a smooth Killing horizon. Thermodynamic rela-
tions (first law/Smarr) require definitions adapted to Melvin asymptotics and have

been clarified in modern work.|7]
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5.3.4 Harrison transformations

We sketch the derivation of (5.65)—(5.66) from the SU(2,1) action. A convenient

coset representative M(&, @) is

1 —® £
1
- | 5 2 & & t_ _ '
M Re —|aF o [P €|, M M, detM =1, (5.71)
& & &)

on which SU(2,1) acts by M+ TTMT. Choosing

1 £ 0 1 00
Toag(B)=10 1 0], Tal@=|-¢ 1 0}, (5.72)
B 2
0 -3 1 —% q 1

one finds after algebra the fractional-linear actions

Py — tBE
Magnetic: A =1+ 1B®, — 1B*&, £ = If% o = % (5.73)
: - 5 &o D) + 54 &
Electric: Ael =1- qq)o — %ngo, &= m, b = A—j, (574)

hence (5.65)—(5.66). The invariance of S under M + TTMT ensures the transformed

pair solves (5.58)—(5.59).[5, 6]

5.3.5 Ehlers transformation: twist/NUT from a static seed

In vacuum (¢ = 0), the sigma model reduces to target SL(2,R)/SO(2) with Ernst

potential £ = f + iy. The finite Ehlers map (5.67) is generated by

10 &o

= L(2,R _— .
S(e) €SLER),  Ev s (5.75)
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Effect on parameters near infinity. For an asymptotically flat static seed with

2M
E=1- — O(r3), Xo =0, (5.76)

expand (5.67):

-2+ . 2M . 2icM OM  2eM
= - 57 =(l—ic) |1 —— | |1 4+ic+ ol =1— +i +
1+ZC—ZCT+~-- r r

(5.77)
Thus the transformed solution acquires a NUT charge N = ¢ M through the r~! term
of SE (the twist). The resulting spacetime is Taub-NUT-type (or its accelerating
analogue if the seed was accelerating).|9] For electrovac seeds (®y # 0) one combines
the Ehlers map with a U(1) electromagnetic duality rotation so that electric/magnetic

components mix consistently in the new frame.[10]

5.4 Time-Dependent Solutions: Canonical Families
and Explicit Derivations

This section collects and derives representative time-dependent exact solutions of Ein-
stein’s equations, both cosmological and radiative. We treat: homogeneous/isotropic
cosmologies (FLRW), homogeneous but anisotropic vacuum (Kasner), spherically
symmetric inhomogeneous dust (LTB), fully inhomogeneous dust without Killing
vectors (Szekeres), radiating null dust (Vaidya), exact plane gravitational waves (pp-
waves), expanding algebraically special waves (Robinson-Trautman), and a compact
mass embedded in an expanding universe (McVittie). Each subsection states the
metric, computes the reduced Einstein equations, and integrates to the standard
form, highlighting the minimal set of nontrivial curvature components that control

the dynamics.
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Throughout, we set ¢ = G = 1. Our sign convention is (—, +, +, +) and Einstein’s

equations read

Gu = Ry — 3R g = 87T, (5.78)

5.4.1 FLRW Cosmologies (perfect fluid)

Homogeneity and isotropy imply constant-curvature spatial slices. In comoving cos-

mic time,

ds® = —dt* + a(t)? v;; da'da?, vida'da? = 1 fr/;a +7r%(d6? + sin*0 d¢?), (5.79)
with k € {0, £1}. Stress—energy is a perfect fluid:
T = (p+p)uyty + D g, ut = 6. (5.80)
Nonzero Christoffel symbols are
Iy =aavyy, D= %5@, T n(y) = Oy, (5.81)
Useful Ricci components:
Ry—-3% (5.82)
a
Rij = (aii + 24 + 2k ) 7. (5.83)

The scalar curvature is

(5.84)
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The nontrivial components Gy and (any) Gy; yield

a\? _k
3(5> 35 =8, (5.85)
Lo (8Y Uk g (5.86)
a a a? P ’

Energy conservation V,T" = 0 gives

p+3H(p+p) =0, H=a/a. (5.87)
From (5.85)—(5.86):
T+ 3 (5.89)

With an equation of state p = wp (w = const), integration gives

) S (k=0, A=0),
pla) = poa ) a(t)

b (3(1 4 w) A1) (k =0, A>0),
(5.89)

with the usual special cases: dust (w = 0 = a o t*/3), radiation (w = 1/3 = a

/2.

5.4.2 Kasner Vacuum (Bianchi I)

Ansatz. Homogeneous, anisotropic, spatially flat vacuum:
ds® = —dt? + t%1 da? 4 %P2 dy® + 273 d22, (5.90)
with constants (pi, p2, ps) and nonzero Christoffels:

Fx:ct = Fyyt = Fzzt = - (591)
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Ricci components evaluate to

Ry=> pi(l—p)t?, (5.92)

Ry, =t [p1<2pj — 1)] t=2, (cyclic in z,v, 2). (5.93)
J

Vacuum R, = 0 gives the Kasner constraints:

3 3

Yom=1, Y p-=1 (5.94)

i=1 =1

1+u _ u(l4w)

A one-parameter family (up to permutation) is p; = Trar? P2 = Trara? P3 = Thurar

u > 1.

5.4.3 Lemaitre-Tolman-Bondi (LTB) Dust

Spherical symmetry, inhomogeneous dust (p = 0), comoving proper time ¢:

(R(t,1))”

ds® = —dt?
’ 17 2E0

dr? + R(t,7)*dQ?, T = puyu,, u =36,  (5.95)

where prime ’ is 0,, dot is 0y, and E(r) is an arbitrary “energy” function.

R R 3 s 2M(7)

The G'; = —8mp yields the density

(5.97)
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Thus LTB reduces to quadrature of (5.96) given E(r), M(r), with three kinematic

classes:

E > 0: hyperbolic, E =0: parabolic, E < 0: elliptic. (5.98)

The solution can be written parametrically (e.g. for £ < 0 with 7 parameter),

reproducing FLRW in the special case M o 13, E o< —kr?.

5.4.4 Szekeres

The Szekeres metrics generalize LTB by dropping spherical symmetry. In quasi-

spherical class:

2 142 (¢, —®E,/8)? 2 P(t,r)? 22 2
ds* = —dt* + p—e d T Eray? (dz? + dy?), (5.99)
where
Elr,z,y) = QSl(T) (6= PE)P+@-Qu)P +5  e=+10-1. (5.100)

Dust stress—energy as in LTB: T, = pu,u,, u* = §*;. Einstein’s equations reduce to

2M (1)
d

2(M'—3ME,./€)
P20, —DE,/E)

: 1
P? = — k(r) + 3A P2 8mp = (5.101)

For £ independent of x,y the metric reduces to LTB. In generic Szekeres, there are

no Killing vectors; inhomogeneities enter via the functions (S, P, Q, k, M).

5.4.5 Vaidya

The Vaidya spacetime describes a spherically symmetric body that absorbs or emits

null radiation (“null dust”), so that its mass varies along ingoing or outgoing lightlike
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directions. In advanced Eddington—Finkelstein coordinates (v,r, 0, ¢) one has
ds? — —(1 _ 2’“—”) dv? + 2dodr +r2d02, A0 = d6? +sin20dg?,  (5.102)
while in retarded coordinates (u,r, 0, ¢) the outgoing version reads
ds? = — (1 . 2m—<“>> du? — 2dudr + r? d02. (5.103)

Substituting the advanced form into Einstein’s equations yields a single nonvanishing

mixed component of the Einstein tensor,

G = , (=4, (5.104)

so the source is a pure null flux with stress—energy

m(v)
Tuu = W k”kl,, kudx“ = dU, kuku = O, (5105)
which is traceless (7%, = 0) and satisfies the null/weak energy conditions when
m(v) > 0 (ingoing accretion). For the outgoing chart one has T, = —m(u)/(4wr?),

so energy conditions require m(u) < 0 (radiation loss). When m = const the metric
reduces to Schwarzschild; for m # 0 the spacetime is genuinely dynamical. The

(future, outer) marginally trapped 2-spheres lie at the apparent horizon

ran(v) = 2m(v), (5.106)

which evolves according to the luminosity m, while the event horizon is a global
null surface that generally lags or leads ryg depending on whether the black hole is
growing or shrinking. The Misner—Sharp mass equals m(v), so a quasi-local mass is

built in. Radial null expansions for an outgoing/ingoing pair (¢#,n*) with ¢-n = —1
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are

Ooy=—75"—"1  Omy=—-, (5.107)

making the trapping structure explicit. The spacetime is algebraically special (type D)
and admits a principal null congruence aligned with the radiation flow; in Newman—
Penrose notation the only nonzero Ricci scalar is ®qg for the ingoing case (or ®oo for
the outgoing case), while the instantaneous Weyl curvature matches Schwarzschild

with
m(v)

Uy = — (5.108)

r3
Curvature invariants keep their leading Schwarzschild falloff (e.g. the Kretschmann
scalar behaves like K ~ m(v)?/r% near r = 0), signaling the physical singularity at
r = 0 while remaining regular across the (dynamical) horizon in these coordinates.
Physically, the Vaidya family models null-shell accretion/evaporation, gravitational
collapse with radiative stages, and piecewise—constant mass profiles (thin null shells)
matched to Schwarzschild across null hypersurfaces via Barrabés—Israel junction con-
ditions; in the outgoing case, m(u) coincides with the Bondi mass at .#* and —m(u)
is the total luminosity carried by the radiation. Despite spherical symmetry (and
hence no gravitational-wave degrees of freedom), Vaidya provides a canonical labo-
ratory for dynamical horizons, tests of cosmic censorship (certain self-similar m(v)
profiles can yield locally naked singularities), and semiclassical backreaction models

where m(u) captures effective Hawking-like outflow.
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Chapter 6

The Vanishing of TLNs of Kerr BHs

and the role of symmetries

Note: The following chapter is written by me and my supervisor A.Kehagias as well

as my supervisors colleague A.Riotto and has been published in JCAP.

6.1 Introduction

Gravitational Waves (GWs) and Black Holes (BHs) are key predictions of General
Relativity (GR), validated by groundbreaking observations such as the detection of
GWs from BH mergers by the LIGO and Virgo collaborations [1|. These detections
have provided critical evidence supporting Einstein theory of gravity, showing no
evidence for deviations from it [35].

During the inspiral phase of a compact binary system, such as those involving
neutron stars or BHs, tidal interactions become significant when the orbital separation
is sufficiently small. These tidal effects influence both the system’s dynamics and the
emitted GWs. The interplay between GWs and tidal effects is essential for refining
binary inspiral models and testing GR under extreme conditions.

Tidal effects are characterized by parameters known as Love Numbers, which
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quantify an object’s deformation in response to the gravitational field of its compan-
ion. In particular the static Tidal Love Numbers (TLNs) depend on the internal struc-
ture and composition of the compact objects undergoing tidal deformation [42]. These
parameters play a pivotal role in modifying the gravitational waveform, with their con-
tributions emerging at the fifth post-Newtonian order [20]|. For example, the nonzero
TLNs of neutron stars provide valuable insights into the equation of state of dense
nuclear matter. In contrast, BHs are expected to have zero TLNs due to their lack of a
rigid structure. This result is typically demonstrated using perturbation theory, show-
ing that a linear tidal deformation with amplitude proportional to r* does not elicit
an 7“1 response (¢ being the corresponding multipole), resulting in vanishing static
TLNs. Linear perturbations induced by external tidal forces cannot produce nonzero
TLNs |5, 16, 15, 39, 38, 43, 36, 12, 37, 41, 33|. This phenomenon appears to stem
from underlying hidden symmetries |25, 10, 9, 26, 27, 11, 28, 30, 6, 32, 3, 4, 17, 45].

Recent analyses have confirmed that static TLNs also vanish for second-order
perturbations in the external tidal field [47, 46]. Furthermore, for the Schwarzschild
BH, the vanishing of TLNs has been proven to hold for the parity-even perturbations
at all orders in the external tidal field [34, 13].

The fact that the static TLN for BHs vanishes or not is of primary importance to
distinguish BH mergers from neutron star mergers [14], having neutron stars a sizeable
TLN. Furthermore, even the the merger of two spinless BHs give rise to a spinning
Kerr BH. This calls for a unavoidable question: do Kerr BHs have a vanishing static
TLN at any order in the external tidal force?

The case of rotating BHs, modeled by the Kerr solution, presents additional chal-
lenges. Rotation introduces frame-dragging effects and modifies the geometry of the
spacetime, complicating the analysis of tidal interactions. Understanding the tidal
response of Kerr BHs is essential, not only for theoretical completeness, but also for

modeling gravitational waveforms from realistic astrophysical systems, where BHs are
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often expected to spin.

In this paper, we address this question of the vanishing of the static TLN of
Kerr BHs by employing the Ernst formalism [18] and Weyl coordinates to analyze
the tidal response of Kerr BHs. The Ernst potential provides a powerful framework
for describing axially symmetric spacetimes, allowing us to incorporate rotation and
non-linear effects systematically. By expressing the Kerr metric in prolate spheroidal
coordinates, we generalize previous results for Schwarzschild BHs and demonstrate
that the static tidal Love numbers of Kerr BHs vanish at all orders in the external
tidal field. We will also identify the non-linear symmetries responsible for such a
result.

This result highlights the robustness of the symmetry-based arguments that gov-
ern BH responses and underscores the distinctive nature of BHs as solutions to GR.
The vanishing TLNs reaffirm the principle that BHs, unlike other compact objects,
do not retain any permanent deformation under static tidal forces. This study con-
tributes to the broader understanding of BH physics, offering new perspectives on
their interaction with external fields and implications for gravitational wave astron-
omy.

We should stress however, that unlike the mass and spin of black holes, which are
well-defined conserved charges and gauge-invariant quantities, the tidal Love numbers
exhibit a different nature. While their definition is straightforward within Newtonian
theory [24], the static TLN is neither a conserved charge nor a gauge-invariant quan-
tity in general relativity. This has been discussed extensively in the literature (see,
for instance, [23, 5, 29, 31]).

This ambiguity has led to an alternative approach: defining the linear static TLN
as a Wilson coefficient obtained by matching an operator in the worldline effective
action. However, carrying out this matching process necessitates a specific gauge

choice—typically the de Donder gauge—to simplify the graviton propagator. Con-

142



sequently, translating results from the de Donder gauge to another gauge, such as
the Regge-Wheeler (RW) gauge used at the linear level, becomes necessary for the
matching procedure.

A natural desire is to formulate a gauge-invariant definition of the TLN. However,
this is not straightforward, as infinitely many gauge-invariant quantities can be con-
structed once a gauge-fixed expression is chosen. An alternative strategy is to work
within a well-suited gauge. The optimal gauge depends on the specific context of
measurement. For instance, in cosmology, the halo bias parameter is most naturally
defined in synchronous coordinates, which are commonly used in the spherical col-
lapse model [50]. The challenge with the static TLN is that it is not measured directly
but instead inferred from Bayesian analysis based on a model-dependent waveform
fit.

On the other hand, an important advantage of our method is its non-perturbative
nature, as we have found an exact solution to the full Einstein equations for a vacuum
static and axisymmetric spacetime. The vanishing of the Love number then is derived
by analyzing the behavior of the Kretschmann scalar near the event horizon. Since
the Kretschmann scalar encapsulates intrinsic curvature properties, this conclusion is
ultimately independent of the coordinate choice.

The paper is organized as follows: Section 2 reviews the Weyl class of static,
axisymmetric vacuum solutions and introduces the Ernst potential formalism. Section
3 revisits the tidal response of Schwarzschild BHs, establishing the framework for non-
linear tidal effects. Section 4 extends the analysis to Kerr BHs, detailing the transition
to prolate spheroidal coordinates and examining the decaying and growing quadrupole
modes. Section 5 investigates the impact of non-linear tidal interactions and their
role in ensuring the vanishing of TLNs. Section 6 discusses the role played by the
non-linear symmetries. Section 7 concludes with a discussion of the implications and

potential extensions of this work. Finally, Appendices A and B discuss the transition
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to Boyer-Lindquist coordinates and other multipole basis, offering a complementary

perspective.

6.2 The Weyl class of static, axisymmetric vacuum
solutions

As demonstrated by Ernst [18], the field equations for a uniformly rotating, axially
symmetric source can be reformulated using a simple variational principle. Following
this approach unified solutions for Weyl and Papapetrou metrics emerge providing
us with a direct derivation of the Schwarzschild as well as the Kerr metric in prolate
spheroidal coordinates. New solutions for the case of Kerr BH in tidal environments
can also be obtained in this way, allowing us to make statements about the non-linear
static love numbers of Kerr BHs. We can start our analysis by considering a static

axisymmetric Weyl metric in the following form [40]
ds® = f71 [e¥7(dp® + d2?) + p*dp?] — f(dt — wdyp)?, (6.1)

where f = f(p,2), w =w(p,2) and v = v(p, 2).! It turns out that that the equations
for f and w which follow from the vacuum Einstein field equations (R,,=0) can be

decoupled from the equation for v(p, z) and are given by
fV2f=Vf-Vf—p2fiVuw- Vu, (6.2)

V- (p2f*Vw) = 0. (6.3)

'Let us note that for p — 0 we should have v — 0, since otherwise the metric would contain a
part proportional to €27(%2)dp? 4+ p2dy?, which clearly has a conical singularity for any z.
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We may now introduce a new scalar ¢ from w as

f2

where 7, is the unit vector in the ¢ direction. It has been shown [18] that Egs. (6.2)
and (6.3) can also be obtained through a complex function, the Ernst potential &,

defined as
E=f+ig. (6.5)

Moreover, the equations for the third function ~(r,#) are written in terms of the £

as [19]

1o = 0 2 [ENED + (EE)]

10 = 100 [ENE) — (€(ED)]. (6.6)

We now introduce prolate spheroidal coordinates (¢, x,y, ¢) instead of Weyl coor-

dinates by writing [52, 44]

p=po(x* = D21 —yH)V2 z>1, |yl <1,

2 = pory, po = constant. (6.7)

We will see later that pg is related to the mass and the spin parameter of the BHs we

are interested in describing. In such coordinates, the metric in Eq. (6.1) is written as

2 2p-1 | 2v/..2 2 da? dy? 2 2 2 2
ds® = pgf7' €7 (2® — °) x2_1+1_y2 + (22 = 1)1 — y»)d? | — f(dt—wdy)?
(6.8)

Furthermore, for later use, the differential operators we previously introduced are
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written in prolate spheroidal coordinates now take the following form:

V=ppt(@® = y?) T [ (2 = 1)V20, + iy (1 - y?)'20,]

V2 = py (2 - y2)_1{8x (@ = 1)a,| +0,|(1 =)0, } (6.9)
whereas, the inner product of the gradients of two functions A and B is
VA VB = p2(a? — )" [(gﬂ — 1)9,A8,B + (1 — 12, A 8yB].

Equations (6.2) and (6.3), are equivalent to the equation of motion for the Ernst

potential £ which are derived from the action

veE-VEr ,
= [ = - 1
Se /(5 g*)2d T, (6.10)

so that the corresponding equations
(E+E)VEE-VE-VE =0, (6.11)

reproduce Eqs. (6.2) and (6.3). As a result, the problem of finding axisymmetric, sta-
tionary vacuum solutions to the Einstein equations is in fact reduced to appropriately

solve Eq. (6.11) for the Ernst potential &.

6.3 The Schwarzschild BH in external tidal fields

Although the Schwarzschild BH in external tidal fields has been extensively discussed
in Ref. [34], let us recall here its description in terms of the Ernst potential. The latter

for the static Schwarzschild metric, with w = 0 and in prolate spheroidal coordinates,
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is a real function and it is given by

_ Pl 12
E=e ) (6.12)

where 1 (z,y) is a real potential. By substituting the above expression into the equa-

tion of motion (6.11), we we find that v satisfies Laplace equation
V) = 0. (6.13)

Let us stress that although (6.11) is a non-linear equation capturing the non-linearily
of Einstein equations, (6.13) is an exact linear equation obeyed by 1. The whole non-
linearity has been transmitted to the function +, which is specified by the non-linear
equation (6.6). This is the beauty of the Ernst approach, where a linear equation is
separated out of the full non-linear system. Therefore, the solution for ¢(z,y) can

then be written as a multipole expansion

Y=Y Ulx)Yily) (6.14)

>1
where U, and Y, satisfy
d (2—1)iU —l(l+1)U; =0 (6.15)
ax \F dx ° S ’
a4 (1— 2)iy +(l+1)Y, =0 (6.16)
dy Yy dy 1 ¢ =V .

The regular solution of Eq. (6.16) at y = +1 is given by the Legendre polynomials

Yo(y) = Ply),  £=0,1,---, (6.17)
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and similarly, the solution to Eq. (6.15) is

1—-¢ ¢ 1-2¢ 1 1 14+¢ 240 3+20 1
_ ¢
UE = Oy 2F1( 9 7_57 9 7P> +6€I_€+1 2F1< 9 ) 2 ’ 2 7?)7

(6.18)

so that the function v (z,y) turns out to be

- 1—¢ ¢ 1-20 1 By 140 240 3420 1
_ V4
U(z,y) = ;[Oéex 2F1< 5 T3 7;)+xz+12F1< 5 9 0 9 7ﬁ)]P£(y)-

(6.19)

We have seen in Ref. [34], that the decaying mode (proportional to 7—*°1)

generates
a naked singularity at the horizon x = 1.2 One can verify this by checking the
Kretschmann scalar, which diverges for 5, # 0 at = 1 as has been shown in [34],
where it was also shown that the growing mode (proportional to 7¢) is not singular
at the horizon. Therefore, 8, = 0 which leads to the vanishing of the static Love
number for Schwarzschild BH in an external gravitational field at all orders in the
tidal parameter [34].

Let us also note that the solution in Eq. (6.19) determines also the function

v(z,y) = vs(z,y) for the Schwarzschild BH by the equations (6.6), which now are

written explicitly in prolate spheroidal coordinates as

)
e = e (@ ) U= (1) U -2 (0 - ) 0L

21
Yoy = ;; — {y (2 =) U2 —y (1=9?) U2 + 22 (1 —¢?) U,IU,y} . (6.20)

2The hypersurface = 1 is indeed a horizon since the function f = Re(€) in the metric (6.1)
vanishes f(x=1) = 0. This can also be seen from the definition of the prolate coordinates defined
in Eq. (6.7) which cover the region from x € [1,00), i.e., the region outside the black hole horizon.
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where

U(z,y) = =In <z ; 1) +(x,y). (6.21)

Then, the general solution for v,(x,y), is provided by the closed formula [52]

) = @ - 1) TL@y) g (6.22)

2 /2
1T =Y

where

L(z,y) = y(a® — 1)U —y(1 —y*)UZ 4 22(1 — y*)U,LU,, .

6.4 Kerr BH in external tidal fields

In order to introduce rotation, one needs to consider non-zero w in the metric (6.1). In
this case, we expect (6.1) to describe the Kerr BH as well as its embedding in external
tidal fields, much the same way as in the non-rotating Schwarzschild background we
described in the previous section. Since for a rotating BH w is not vanishing, the
Ernst potential should have a non-zero imaginary part ¢, which is is determined by
Eq. (6.4).

In particular, it has been shown [7, 48] that the correct choice for the Ernst

potential for a Kerr BH in an external tidal gravitational field has the form

oy T(1 +ab) +iy(b —a) — (1 —ia)(1 — ib)

S T ) Ty —a) + (1= i) 1= )

(6.23)

where a = a(z,y) and b = b(x,y). Then the equations of motion (6.11) for £ turn
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out to be following equations for a(z,y), b(x,y) and ¥ (z,y)

V2 =0,
(r —y)a, =2a [(zy = ). + (1 = y*)¢,],
(x—y)ay, =2a [—(Iz — D, + (xy — 1)1/@} , (6.24)

(x4 y)be = =20 [(xy + Db + (1 = y*),]

(CL’ + y)b,y =-2b [—(ZL‘2 - 1)¢,x + (CL’y + 1)¢,y} .
In addition, Eq. (6.4) is written explicitly as

¢,x = pal(xQ - 1)_1f2w,y )

by =po (=1 fPw,. (6.25)
Then, the functions f, v and w in the metric (6.1) turn out to be :

f= eQwAB_l,
¥ = Ky (22 — 1) 1e?" A, (6.26)

w=2pee WATIC + K,
where

A= (=11 +ab)?— (1 —y>)(b—a),
B =[o+1+ (= Dab” +[(1+y)a+ (1 -y,

C=@@*-11+ab)[b—a—yla+b)]+ (1 —-y*)(b—a)[l +ab+ z(1 - ab)].
(6.27)

From the first of Eqs. (6.26) we see that the (¢¢)-component of the metric is given by

gie = €2 AB™! so that g =~ €?¥ for * — oco. In Eq. (6.27), K; and K, are constants,
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whereas 7, is the potential 4 of the corresponding static metric given in Eq. (6.22).

6.4.1 The Kerr metric in Weyl coordinates

For a = b = 0, the Ernst potential in Eq.(6.23) reduces to the corresponding poten-
tial of Eq. (6.12) for the Schwarzschild BH. We will in the following demonstrate,
similarly, we can recover the Kerr metric from the potential in Eq. (6.23). This is

possible when
a=—aq, b=a, a = const.. (6.28)

In this case we find that |[§]

P2+ ?y? — 1
(pr +1)2 + ¢*y*’
v _(p2)° + (gy)* — 1
P (2% — y?)
gpz+1)(1 -y

Re{€} = [ =

)

W= — , 6.29
p(p22? + g2y — 1) (6:29)
where,
1—a? 200 5 9
= — g¢= = 1. 6.30
P=15a2 913 P T4 (6.30)

In the same spirit, we can substitute the imaginary part of Ernst potential in Eq.
(6.25) to find w and by using Egs. (6.27) with
1 4poce

SRl 31

we end up with Kerr metric in prolate coordinates. The transition to Boyer-Lindquist

coordinates can be made by the following set of substitutions

por =r—m, y=cosl, py=mp, ay=mg, pg =m?— ag, (6.32)
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where m is the BH mass and ag is the spin parameter of the Kerr BH. In addition,
since the spin always satisfy m? > a2, it follows from Eq. (6.32) that the range of «

is |a| < 1. We therefore end up with the known form of the Kerr metric:

2mr Y dmagr sin? 0
ds? = — (1 -2 ) d2 + Zdr? + 2d9? — —2 >~ qtd
s ( 5 ) + A + S ®
2 2
+ (T2 +aj + mzaor sin? 9) sin? 0dy? | (6.33)

where, as usual,

A =71 —2mr +al, Y = 7% + aj cos? 0. (6.34)

Therefore, we see that indeed, the Ernst potential (6.23) with @ and b as in Eq. (6.28)

describes the Kerr metric in prolate spheroidal coordinates.

While Boyer-Lindquist coordinates are preferable in general for describing the Kerr
metric some tasks that we encounter later in this paper seem to prefer treatment using
Weyl spherical coordinates. Spherical coordinates (R, u, ¢) can be expressed in terms

of Weyl canonical coordinates (p, z, ) and Boyer-Lindquist coordinates (r, 0, ¢) as

R=poV/a2+y?—1=+/p?+22= \/(r—m)Q—pgsinQG,

xy z _ (r —m)cosf (6.35)

cosu = = .
Vit =1 /P +22 /(r—m)?— pisin®0

Transitions between all the previously mentioned coordinate systems can be signifi-

cantly simplified using the auxiliary functions R, and R_ defined as

Ri(p,z)=p>+(zE£po)?=(r—m) =L pycost = \/R2 + pg £ 2poRcosu . (6.36)
Note that, with the use of (6.32) one obtains quite trivially the inverse transformation
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of Eq. (6.7) as

1
por =5 (B + R-) = ( P>+ (2 + po)? + p“r(z—po)?),

(VPFETmP - VFTE=mP),

1
poy =5 (By — R-) =

N — N —

In the new coordinates (R, u, ), the Kerr metric is written as
ds* = 7 [¢*(dR? + R*du®) + R*sin’ u dg?| — f(dt — wdy)?,

where

dm(Ry + R_ +2m)

f=1- (Ry+ R +2m) + 85 (Ry — R)?
(e RO —dm? 4 8 (R, — R)?
AR, R_ ’
agm(Ry + R_ +2m)(4 — %)
(Ry + R-)? — 4m? + a3 P tar

(6.37)

(6.38)

(6.39)

Finally, the metric (6.38) can be rewritten in the known form of (6.33) in terms of

the Boyer-Lindquist coordinates (7,0, ) by the coordinate transformations of (6.35)

and (6.36).

6.5 The Kerr BH in external tidal fields

An inspection of Eqs. (6.24) shows that both a and b are determined only up to a

multiplicative constant. Therefore, we can utilize this freedom by choosing always

the constant value of @ and b as in Eq. (6.28). Let us now rewrite the metric in Eq.
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(6.8) in the following way

45 — — £ (dt — wdeo)? + h 32 dy* 21122 _ 1)(1 — ¢)d? 4
s = —f(dt —wdy)” + 1t z) e (" = 1)(1 —y")dp", (6.40)

where

_ Po —2y+2V
h = mBe v+ y (64.1)
1 2 —1

where the constants K1 and K5 have been fixed by the requirement that the metric
(6.40) reduces to the Kerr metric when ¢ = 0. Form Egs. (6.24) we see that

satisfies the Laplace equation, which in (R, u) coordinates is written as

Lo, (R28Rz/1) PN S (sin uauw) —0, (6.43)

R? R2sinu

and thus a general solution in Weyl spherical harmonics must be of the form

Y= Z (C@Rf + Riil) Py(cosu). (6.44)

>1

Let us note that the solution above can also be expressed in prolate coordinates (z, y)
by replacing R = R(z,y) and v = u(z,y) as given in Eq. (6.35). We stress again that
the solution (6.44) is an exact solution of the exact linear equation (6.13) expressed
in (R,u) coordinates, and no approximation is involved in determining Eq. (6.44).
Notice that the series starts from ¢ = 1 since the £ = 0 term yields the Kerr solution
and has been factored out in the parametrization of the Ernst potential in Eq. (6.23).
It also important to demand the absence of conical singularities. As we have see in
section 2, we should have lim, oy = 0, which of prolate coordinates is written as

lim, ,4+1y = 0. Then, as it turns out, conical singularities along the symmetry axis
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are absent if the following condition is satisfied [51]

D o1 =0. (6.45)
n=0

In particular, as shown in [51], condition (6.45) follows from the regularity of the
induced metric on the horizon. Indeed, calculating the Euler number y of the two-
dimensional compact 2-surface of the horizon at x = 1, it turns out that the condition
(6.45) has to be satisfied in order to have y = 2, i.e., a surface topologically equivalent
to a 2-sphere. Therefore, we cannot have for example a single dipole without an

octuple tidal deformation.

6.5.1 The decaying quadrupole mode

The solution for 1 in Eq. (6.44) is the sum of decaying modes (proportional to R=¢"1)
and growing modes (proportional to Rf). Here, we will examine the quadrupole

modes, consequently the solution for 1 that we will consider will be of the form:

Y= (02R2 + %) Py(cosu), (6.46)

where c¢o and ds are the strength of the growing and decaying tidal fields, respectively.
We can now calculate the general expressions for a, b, and V using equations (6.24)

and (6.22) for s

a(z,y) = — aexp {202(11511 +1)(x —y) —do [(x2 +y? - 1)_5/2 (22° + 52° (y* — 1)
2’y (5y° —3) =3z (y* — 1) —y (2y" — 5y° +3)) — 2] } (6.47)
b(x,y) =aexp {202(1 —zy)(r+y) —do [(952 2 — 1)*5/2 (227 + 5% (y* — 1)

+2%y (5y° — 3) =3z (y* — 1) +y (2y* — 5y* + 3)) + 2] } (6.48)
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1

V(z,y) =— 3 (y2 — 1) (—203x4 (9y2 — 1) + 4cax? (5y2 - 1)

8dy (z — 6eayt)

 24day? (—ey’ + cy® + 1)
(22 + 42 — 1)
75d2 (2 —1)%y°  9d2 (25" — 38y + 13) ¢

+ 1662[[5 +

(22 + 2 = 1)*? (22 +y2 = 1)° (a2 +y? = 1)°
9d3 (25y* — 26y* +5)y*  3d3 (25y* — 14y* + 1)) cyt cdy?
@ty 1) RN T
ds (3 L-1)+2
pBBely “D)t2) (6.49)
Vi +yr—1

Note that the expressions for a(x,y), b(z,y) and V (z,y) above are exact expressions,
and they are the result of integrating (6.24) after using v given in Eq. (6.44), where
we have substituted R = R(z,y) and u = u(z,y) from Eq. (6.35). The constant Vj in
Eq. (6.49) is determined by the regularity condition [51] lim, 11 y(z,y) = 0. Since
dy in Eq. (6.46) is proportional to the static TLN for quadrupole tidal deformations,

we will consider below only the decaying mode. Then, with ¢, = 0, we find that

Wz, y) :@%Pg(cos ), (6.50)
a(x,y) = — aexp { —dy [w(ac, y) — w(y, x)} }, (6.51)
b(z,y) =aexp { — dy [w(x, y) + w(y, x)] }, (6.52)

A(z,y) =4a® exp{ — 2dsw(x, y)}{(m2 — 1) sinh? (dgw(m, y) —In |a|>
+ (y* — 1) cosh? (de(y, x)) }, (6.53)
B(z,y) =4a® exp { — 2dyw(zx, y)}{ <sinh <d2w(x, y) —1In ]a|)

+ cosh (dgw(a;, y) — ln\a\>)2 + (y cosh <d2w(y, x)) + sinh (dgw(y, x)>)2 },

(6.54)
C(z,y) =4signaa® exp { — 2dyw(z, y)}{(az:2 — 1) sinh (dgw(x, y) —1In ]a\) (cosh (de(y, x))

+ysinh (dgw(y, a:))) + (1 — 9*) cosh <d2w(y, x)) (sinh (dgw(x, y) —In |a|>
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+2 cosh (dgw(x, y) —In |a|>> }, (6.55)

where we have redefined the constant o as ae®® and

w(z,y) = Hoy)

R5(z,y)’

l(z,y) = x<2x4 + (52 — 3)(y* — 1)> .

We are now interested in determining the possible singularities, which in principle
can be generated by turning on tidal fields. A way of determining the existence of

singularities is by checking if curvature scalars, such as the Kretschmann scalar
K = Ryype RM", (6.56)

become singular. Since we are discussing the case of the gravitational response of
a Kerr BH to an outer gravitational field, we would expect no other singularities
other than the known singularities of the Kerr BH. In the opposite case, where new
singularities emerge, these should be dressed with a horizon, and they cannot be
naked. Therefore, if the Kretschman scalar for example becomes singular somewhere
else other than the known Kerr singularities, then the static Love numbers should
vanish, provided the new singularities are naked. The complete expression of the
Kretschmann scalar is quite long and not at all illuminating. However, expanding at
the equator (y = 0) and close to the outer horizon (z = 1) of the Kerr BH, we find

that the Kretschmann scalar is

3d2

3 [ dS
K(s,0) ~ Ko + e165% (3_122 + O(s_n)> : s=x—1, (6.57)

where /Iy is the Kretschmann scalar for the Kerr metric at (zr = 1,y = 0). We see

that if dy # 0, then the Kretschmann scalar becomes singular as s — 0 indicating
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the appearance of a naked singularity. The singularity should be removed since it is
naked. This is achieved by taking dy = 0, and therefore, the Love number of the Kerr
BH vanishes to any order in the tidal field.

One may wonder what would happen if we had kept both ¢y and dy non-vanishing.
In this case, the Kretschmann scalar ' becomes an extremely lengthy expression,
making it difficult to draw definite conclusions. However, since K is analytic in both ¢y
and d», it can be expanded in powers of these parameters. This expansion reveals that
the term independent of ¢y near x = 1 is always given by Eq. (6.57). Additionally,
there are finite terms proportional to positive powers of cy. Consequently, K will

always diverge whenever ds # 0, for any ¢y, not necessarily zero.

6.5.2 The growing quadrupole mode

We have seen above that the decaying mode leads to curvature naked singularities and
therefore, the TLNs of the Kerr BH should be zero at the full non-linear level. In the
following, we will similarly study the growing quadrupole (¢ = 2) mode. It has been
shown previously [48] that if we keep only growing modes (as we will in our case since
TLN’s vanish), then analytic expressions for a(R(z,y), u(z,y)) and b(R(z,y), u(z,y))
can be calculated, and hence the metric components can be written explicitly in terms

of Legendre polynomials for arbitrary ¢ as follows 7|

W= f:q (Ey Py(cos ), (6.58)

— Po
[eS) n—1 J4
a=— aexp {2 cni (E) Py(cos u)}, (6.59)
n=1 Po /=0 Po
o) R n—1 R V4
b =aexp {2 cn—Jr —1)* (—) Py(cosu }, 6.60
;::1 o ;( ) p (cos u) (6.60)
N R\
V= /Cg ¢ — Png/ — Pg 1Pg/ 1
ottt po
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+ f: cfi {(-1)“’“& - R—] (5)6/ Py, (6.61)

—1 =0 Po Po Po
P(Q) 2(V—1)
h B - 6.62
1—a22 (6.62)
o, O Apoc -
_ 29
w =2pge A T2 &P (—2 nEO czn> : (6.63)

For the quadrupole ¢ = 2 deformations we are interested in, the potentials ¢, v and

V' are then written

R\ 2
Y =cy <—) Py(cosu), (6.64)
Po
1 (Ry + R_)* — 4pj o (R ! 2 2
s =3 In ( RR +c; po <P2 (cosu) — Py (cos u))

Ry (R R_ (R
+c| — | —cosu—1)—— | —cosu+1 ,
Po \Po Po \Po

4
V =c; <E> (Pg(cosu) - Pf(cosu)) +c (ﬁ (E cos u — 1) e (E cos u + 1>) :
£0 Po \ Po Lo \ Po

(6.65)

and therefore, we find

((Rs+ R_)? = 4p3) (1 + ab)® — (493 — (R — R)?)(b — a)?

o
S R RO+ ab) + 200(1 —ab)P + 2oo(a+ 6) & (R — R )(a— B
(6.66)
Fle = ?0:=) [(Ry + R_)(1+ ab) + 2po(1 — ab)]” + [2pp(a + b) + (Ry — R_)(a — b)]*
“i-ap Byt R — g} ’
(6.67)
NI S 8 . ESTT WO RIS RITE)
(R T R~ A+ ab) — (42— (R R —ayr (00
(402 — (Ry — R)2)(b— a)(2p0(1 + ab) + m++R>< b)) Ame
(R + R —4p) (1 + ab)? — (4% — (R, — R —a)  T-a2*
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where

R_ R
a=—aexpq2c— |1+ —cosul ¢,
Po Po

b =aexp {202£ [1 _ R cos u} } (6.69)

£0 Po

We should now examine if there are also naked singularities for the growing mode as
well. It has been shown in [48], that for = > 1 singularities arise whenever B = 0,
where B has been defined in Eq. (6.27). By assuming that ¢ < 0, we find that B # 0
and therefore, there are no singularities in > 1 in this case. So, the only possibility
is to have singularities on the horizon at x = 1. Similarly to the decaying mode, the

calculation of the Kretschmann scalar K(x,y) around x = 1 shows that

1
K(l,y) = P 6.70
(1,y) (@2 1 D) (¥), (6.70)

where P(y) is a polynomial in y. By examining the expression (6.70) analytically
we realize that for ¢; < 0 and y € [—1, 1] the denominator is non zero, therefore no
singularities arise at the outer horizon of the BH. The behavior (6.70) around x = 1,
is in accordance with the plots of the Kretschmann scalar given in [2]. Tt is also
important to highlight that the physical consequence of c¢; < 0 is that the Kerr BH
slows down its rotation when tidal fields are present. This can be formally understood
by calculating the angular velocity at the horizon of the BH. One obtains the angular

velocity expression in Boyer-Lindquist coordinates as [49]

Qp =2 (6.71)
9té | g

By substituting our findings for the quadrupole in (6.71) we obtain

Q= 5o 2 = Qe (6.72)

ag + 12
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where Qf = ao/aj + r3 is the angular velocity of the horizon of the Kerr metric.
Therefore, as Eq. (6.72) indicates, a Kerr BH would spin up for ¢ > 0, which is not
physically plausible. In reality, due to tidal braking, a Kerr BH should slow down
its rotation, leading to a reduction in its angular momentum when subjected to a
tidal field. This is the tidal locking effect which leading to the damping of rotation
in binary systems [22]. This behavior is consistent only if ¢o < 0, which also explains

the emergence of singularities for ¢, > 0.

6.6 The role of symmetries

We have seen above that the static tidal Love numbers vanish identically at the
full non-linear level not only for a non-rotating BH [34, 13|, but also for rotating
BHs, suggesting that there is an underlying non-linear symmetry explaining such a
behavior also in the case of rotating spacetimes. Such a symmetry already appears
at the linear level in the tidal force [25, 10, 9, 26, 27, 11, 28, 30, 6, 32, 3, 4, 17, 45]. In
fact, it turns out that for each mode ¢ solving these equations, a conserved quantity
P, exists which is associated with the aforementioned underlying symmetry. The
corresponding conserved charges allow for descending to the monopole case (¢ = 0)
using ladder operators. Conservation of P, implies the invariance of P, for higher
modes, providing a framework to understand why the decaying solution ~ 1/r*!
must be excluded, as it is tied to divergences at the horizon. The non-linear version
of the symmetry has been identified in Refs. |34, 13].

Now, a pivotal observation is that the equation for v which governs the static
configuration even in the full non-linear regime, retains a linear structure as it solves
the Laplace equation. Remarkably, this equation coincides with the one solved in
the linear case for a static, massless scalar field in the Schwarzschild background.

However, the non-linearities here are encoded in the function a(z,y) and b(zx,y),
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which enter the parametrization of the Ernst potential in Eq. (6.23).

U(z,y) as [34]

Ula,y) = U)Pily),

=0

we can define the following ladder operators as

d
LZ:—($2—1)&—(5+1)%
d
L= (= 1) — o,
= )dx z

Expanding

(6.73)

(6.74)

These operators act as raising and lowering operators for the multipole moments,

satisfying
LiUy~Upy, L;Up~Up;.

(6.75)

Notice that the ladder operator structure applies only to U, and not to the full

Ernst potential &£, since the latter does not satisfy a linear equation. Then following

the standard constructions used in linear perturbation theory [26], one can define

conserved quantities
Q= (2* — 1)i ([—[— [—) U,
d 12 l ’

for which:

Qs

dx =0

For the decaying solution, we find that at large x

Be

1’

Uy ~

(6.76)

(6.77)

(6.78)

resulting in a conserved (), that remains finite but non-zero as + — co. Near the event

162



horizon, this decaying mode diverges logarithmically, as In(z — 1). Since the growing
and decaying modes must share the same (), and the growing mode at the horizon is
constant (implying @, = 0), the conservation of (), necessitates the exclusion of the
decaying solution due to its divergence. However, an additional argument is required.
The reason is that, due to the aforementioned divergence, linear perturbation theory
breaks down, and one has to consider the full non-linear problem. We found here that
indeed the divergence of the decaying mode at the horizon survives at the full non-
linear lever and shows off as a naked singularity as the Kretschmann scalar indicates.
Therefore, the decaying mode should be completely eliminated leading to a vanishing
static Love number. By discarding the decaying modes in ¢)(x, 3), no extra divergences
propagate into the non-linear Ernst potential, ensuring consistency with the Kerr
background.

The Laplacian equation satisfied by ¢ in Eq. (6.24) is structurally equivalent to
that in a two-dimensional flat spacetime in the original Weyl coordinates (p, z). Its

solutions can therefore be expressed in terms of holomorphic functions

(¢, Q) = ¥(C) +¥(0), (6.79)

where ¢ = p + iz. Any analytic transformation of ( yields a new solution. Then the
ladder operators are generators of a conformal symmetry group associated with these
holomorphic transformations.

We should note however, that the above conformal (homolorphic) symmetries are
tied up to the symmetries of the Ernst potential £. An inspection of the action (6.10)
or of Eq. (6.11) reveals that they are both invariant under the SL(2,R) group which

act on the Ernst potential as

atE€ +b

5 — g = —'Lm, ad— bC = 1, (680)
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or in terms of f and ¢

acf + (A= cp)(b— ag)
Af2+ (d— co)?

B /

S e2f2 4 (d—co)?

6= ¢ =

f=r

(6.81)

The action (6.10) and the equations (6.11) are identical to the action and the equations
of motion of a non-linear SL(2,R)/U(1) o-model in two dimensions. This can be seen

from the parametrization of the SL(2,R) group by the 2 x 2 matrices

v vi vl _ i —E*emW g (6.82)
IRYs. V=2if it gx it ' '

There is a local U(1) which is realized by the shifts ¥ — ¢ + A¢, and a global SL
(2,R) that acts from the left. Clearly then, £ parameterizes the SL(2,R)/U(1) coset
space once the local U(1) is fixed. Such non-linear o-models appear frequently in GR
and are often referred to as Ernst models. Originally introduced in the context of
Geroch’s reduction of GR [21]| and extensively studied by Ernst [18], these models
provide a framework to understand the symmetry properties of stationary solutions
in GR.

In fact, the SL(2,R) symmetry of the Ernst model, due to mixing with the larger
conformal (holomorphic) transformations give rise to an infinite algebra, the SL(2,R)
infinite dimensional current algebra. The ladder operators stemming out from the
Laplace equation are indeed part of the generators of this infinite-dimensional group
of transformations, which therefore explain the vanishing of the static TLN for four-
dimensional BHs.

This symmetry structure is a hallmark of stationary and axisymmetric space-

times, which are inherently linked to the two-dimensional nature of the equations
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governing such systems. The infinite-dimensional symmetry described above governs
the solution space of stationary, axisymmetric spacetimes in Einstein’s vacuum field
equations. The Ernst models in two-dimensions and the associated symmetry struc-
tures have been widely used in studying BH solutions, including the generation of
exact solutions such as the Kerr metric or multi-BH configurations. They are also
crucial in exploring extensions of general relativity, where similar two-dimensional
dynamics occur.

All of the above underscore the rich symmetry structure inherent in the two-
dimensional reduction of general relativity. This structure, exemplified by the infinite-
dimensional SL (2, R) algebra, provides a powerful tool for understanding stationary,

axisymmetric solutions and underlines the vanishing of the static tidal Love num-

bers 34, 13].

6.7 Conclusions

In this paper, we have analyzed the non-linear tidal response of Kerr BHs under
the influence of external gravitational fields. Using the Ernst formalism and Weyl
coordinates, we systematically extended previous results for Schwarzschild BHs to
the case of rotating Kerr BHs. Our primary finding is that the static tidal Love
numbers of Kerr BHs vanish at all orders in the external tidal field, consistent with
the unique symmetries and characteristics of these spacetimes.

The vanishing of the static Love numbers reflects the absence of internal struc-
ture in BHs and the profound influence of their underlying spacetime symmetries.
Unlike neutron stars, which exhibit nonzero Love numbers that depend on their in-
ternal composition, BHs are characterized by their event horizons and the no-hair
theorem. This result implies that Kerr BHs cannot sustain any multipole deforma-

tions in response to external tidal forces, even when higher-order non-linear effects
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are taken into account. It also emphasizes the resilience of BH spacetimes against
tidal perturbations, a property that distinguishes them from other compact objects.

Our analysis highlighted the utility of the Ernst potential in describing the behav-
ior of BHs in tidal environments. By expressing the Kerr metric in Weyl coordinates,
we were able to generalize the Schwarzschild case and examine the role of rotational
effects. The use of prolate spheroidal coordinates further facilitated the derivation of
key results, enabling a rigorous examination of both growing and decaying quadrupole
modes. The identification of singularities in the Kretschmann scalar associated with
the decaying mode underscores the physical consistency of setting the Love num-
bers to zero. This approach reaffirms that any tidal-induced singularity must remain
hidden behind a horizon, preserving the integrity of the spacetime.

From an astrophysical perspective, the vanishing of Kerr BH Love numbers has
significant implications for gravitational wave astronomy. The tidal deformability
of BHs is a critical parameter in the modeling of waveforms from binary inspirals,
particularly in scenarios involving BH-neutron star or BH-BH mergers. The lack of
tidal signatures from BHs simplifies waveform modeling while providing a stringent
test of general relativity in the strong-field regime. Furthermore, these results help
refine the theoretical foundations for interpreting gravitational wave data, ensuring
that deviations from predicted signals are not misattributed to unmodeled BH tidal
effects.

Future research could explore several extensions of this work. One avenue is the
inclusion of dynamical tidal effects, where time-dependent perturbations may lead
to dissipative phenomena or resonances. Another is the investigation of quantum
corrections to the Love numbers, particularly in contexts where semiclassical gravity
or string theory might introduce additional structure to the spacetime. The study of
tidal effects in higher-dimensional BHs or alternative theories of gravity could provide

a broader context for understanding the universality of our findings.
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Finally, let us note that our solution describes static tides and not tidal dissipa-
tion. The latter cannot be captured by our exact solution. The reason is that tidal
dissipation is proportional to (w — mfly), where w is the frequency of the pertur-
bation, m is the “magnetic" quantum number and g is the angular velocity at the
horizon. Since our solution is static (w = 0), and axisymmetric (no ¢-dependence,
i.e., m = 0), it is clear that it does not describe tidal dissipation.

In conclusion, our results reinforce the fundamental nature of BHs as geometrically
simple yet profoundly enigmatic objects. The vanishing of their tidal Love numbers,
even in the non-linear regime, exemplifies their remarkable symmetry and resistance
to external perturbations. These findings contribute to the deeper understanding of
BH physics and its pivotal role in testing the limits of general relativity.

A K. acknowledges support from the Swiss National Science Foundation (project num-
ber IZSEZ0 229414). A.R. acknowledges support from the Swiss National Science
Foundation (project number CRSII5 213497) and by the Boninchi Foundation for

the project “PBHs in the Era of GW Astronomy”.
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