
Εθνικό Μετσόβιο Πολυτεχνείο
Δ.Π.Μ.Σ. Εφαρμοσμένες Μαθηματικές Επιστήμες

Τομέας Τεχνολογίας Πληροφορικής και Υπολογιστών
Εργαστήριο Λογικής & Επιστήμης Υπολογισμών CoReLab

Ασφαλής Εκπομπή σε Γενικά και

Ασύρματα Δίκτυα

Μεταπτυχιακή Εργασία
του

Δημήτρη Σακαβάλα

Επιβλέπων: ΄Αρης Παγουρτζής

Επίκουρος Καθηγητής Ε.Μ.Π.

Αθήνα, Οκτώβριος 2012

2

Εθνικό Μετσόβιο Πολυτεχνείο
Δ.Π.Μ.Σ. Εφαρμοσμένες Μαθηματικές Επιστήμες

Τομέας Τεχνολογίας Πληροφορικής και Υπολογιστών
Εργαστήριο Λογικής & Επιστήμης Υπολογισμών CoReLab

Ασφαλής Εκπομπή σε Γενικά και

Ασύρματα Δίκτυα

Μεταπτυχιακή Εργασία
του

Δημήτρη Σακαβάλα

Επιβλέπων: ΄Αρης Παγουρτζής

Επίκουρος Καθηγητής Ε.Μ.Π.

Εγκρίθηκε από την τριμελή εξεταστική επιτροπή στις 15 Οκτωβρίου 2012.

.....................

Ευστάθιος Ζάχος

Καθηγητής Ε.Μ.Π.

.....................

΄Αρης Παγουρτζής

Επίκουρος Καθηγητής Ε.Μ.Π.

.....................

Δημήτριος Φωτάκης

Λέκτορας Ε.Μ.Π.

Αθήνα, Οκτώβριος 2012

ι

ΠΡΟΛΟΓΟΣ

Η παρούσα μεταπτυχιακή εργασία εκπονήθηκε στα πλαίσια της εκπλήρωσης των υπο-

χρεώσεων για το διατμηματικό προγράμματα μεταπτυχιακών σπουδών ‘Εφαρμοσμένες

Μαθηματικές Επιστήμες’ του Εθνικού Μετσόβιου Πολυτεχνείου.

Τα περιβάλλοντα κατανεμημένων υπολογισμών αποτελούνται από πολυάριθμες ανεξά-

ρτητες υπολογιστικές συσκευές που συνεργάζονται για την επίτευξη ενός κοινού

στόχου. Για το σκοπό αυτό οι συσκευές αυτές διατάσσονται σε ένα δίκτυο επικοιν-

ωνίας. Για να είναι αποτελεσματικά σε κρίσιμες εφαρμογές (όπως συστήματα ελέγχου

πτήσης και συστήματα ελέγχου σε πυρηνικούς σταθμούς παραγωγής ενέργειας), τα

περιβάλλοντα κατανεμημένων υπολογισμών πρέπει να είναι σε θέση να αντιμετωπί-

σουν τη δυσλειτουργία κάποιων συσκευών. Για παράδειγμα, κάποια συσκευή μπορεί

να αρνείται να παραδώσει αναγκαίες πληροφορίες σε άλλα μέρη του συστήματος.

Ακόμα χειρότερα η συσκευή μπορεί να στέλνει αντικρουόμενες και ασυνεπείς πληρο-

φορίες σε άλλα μέρη του συστήματος. Η τελευταία μορφή δυσλειτουργίας καλεί-

ται ενεργητική βλάβη (ή Βυζαντινή βλάβη). Μια βολική θεώρηση για την μελέτη

των δυσλειτουργιών ορισμένων συσκευών του συστήματος, είναι η υπόθεση ύπαρξης

ενός κακόβουλου αντιπάλου ο οποίος διαφθείρει κάποιους από τους συμμετέχοντες

(συσκευές) του κατανεμημένου συστήματος. Είναι πλέον ευρέως αποδεκτό πως ένα

αναπόσπαστο μέρος ενός κατανεμημένου συστήματος, σε περιβάλλον όπου υποθέ-

τουμε την ύπαρξη ενός αντιπάλου, είναι ένας μηχανισμός για την επίτευξη ‘συμφωνίας’

μεταξύ των μη-διεφθαρμένων μερών του συστήματος. Σε έναν τέτοιο μηχανισμό όλοι

οι μη-διεφθαρμένοι συμμετέχοντες πρέπει να είναι σε θέση να συμφωνήσουν σε κοινή

τιμή χωρίς να ξέρουν ποια μέρη είναι διεφθαρμένα.

Τα διάφορα προβλήματα συμφωνίας έχουν προσελκύσει την έρευνα από τις αρχές

τις δεκαετίας του 1980. Μία από τις σημαντικότερες παραλλαγές του προβλήμα-

τος είναι γνωστή στη βιβλιογραφία ως το πρόβλημα της Ασφαλούς Εκπομπής (ή το

πρόβλημα των Βυζαντινών Στρατηγών). Στο πρόβλημα αυτό, θεωρούμε την ύπαρξη

ενός καθορισμένου συμμετέχοντος, στην αρχική τιμή του οποίου θα πρέπει να συμ-

φωνήσει κάθε μη-διεφθαρμένος συμμετέχον. Το πρόβλημα έχει μελετηθεί εκτενώς

στο μοντέλο όπου είναι εξασφαλισμένη η διμερής επικοινωνία μεταξύ κάθε ζευγαριού

συμμετεχόντων (πλήρες δίκτυο επικοινωνίας). Η περίπτωση των μη πλήρων δικτύων

επικοινωνίας έχει μελετηθεί σε κάποιο βαθμό. Η έρευνα σε αυτήν την κατεύθυνση

εισήγαγε νέες παραμέτρους για βελτιστοποίηση η οποίες αφορούν την τοπολογία του

δικτύου και σχετικά προβλήματα παραμένουν άλυτα. Επιπλέον, θεωρήθηκαν μον-

τέλα αντιπάλου με τοπολογικούς περιορισμούς στο πλαίσιο των οποίων μελετώνται

τα σχετικά όρια τα οποία καθιστούν το πρόβλημα επιλύσιμο. Τέλος, το πρόβλημα

της Ασφαλούς Εκπομπής σε ασύρματα δίκτυα επικοινωνίας εξετάστηκε για πρώτη

ii

φορά το 2004, και έχει μελετηθεί κυρίως σε πολύ ειδικές τοπολογίες δικτύων, π.χ.

δίκτυα πλέγματος. Η εξέταση του προβλήματος στα ασύρματα δίκτυα δημιουργεί

νέες ανάγκες και προκλήσεις για εφαρμογές ασφαλών κατανεμημένων υπολογισμών.

Αφενός, η δομή αυτών των δικτύων επιτρέπει στους διεφθαρμένους συμμετέχοντες

να δημιουργούν παρεμβολές σήματος σε άλλους παραλήπτες (δέκτες) μηνυμάτων, το

οποίο έχει ως αποτέλεσμα την επιδείνωση της ποιότητας επικοινωνίας. Αφετέρου, οι

συμμετέχοντες δεσμεύονται να εκτελούν τοπικές εκπομπές, το οποίο διευκολύνει σε

μεγάλο βαθμό την επίτευξη συμφωνίας. ΄Ενα ακόμα σημαντικό ζήτημα, είναι η μελέτη

τοπικών κριτηρίων τα οποία μπορούν να χρησιμοποιηθούν από τους συμμετέχοντες

για την επίτευξη Ασφαλούς Εκπομπής σε δίκτυα άγνωστης τοπολογίας.

Ευχαριστίες

Παρουσιάζοντας την παρούσα μεταπτυχιακή εργασία, θα ήθελα να ευχαριστήσω όλους

όσους συντέλεσαν στην ολοκλήρωσή της.

Θα ήθελα να ευχαριστήσω τον επιβλέποντα της εργασίας μου, κ. ΄Αρη Παγουρτζή,

Επίκουρο Καθηγητή στο Εθνικό Μετσόβιο Πολυτεχνείο, για την εμπιστοσύνη και

το ενδιαφέρον που έδειξε τόσο κατά την ανάθεση της εργασίας, όσο και κατά τη

διάρκεια διεξαγωγής των μαθημάτων του μεταπτυχιακού προγράμματος. Θα ήθελα

επίσης να τον ευχαριστήσω για τη συμπαράσταση και την καθοδήγησή του καθ’ όλη

τη διάρκεια εκπόνησης της εργασίας μου.

Θα ήθελα να ευχαριστήσω τον κ. Στάθη Ζάχο, Καθηγητή του ΕΜΠ, και τον κ. Δημήτρη

Φωτάκη, Λέκτορα του ΕΜΠ, που με στηρίξανε να κάνω αυτό που ήθελα στις μεταπ-

τυχιακές μου σπουδές.

Επίσης θα ήθελα να ευχαριστήσω τον Υποψήφιο Διδάκτορα Χρήστο Λίτσα για τις

τις συζητήσεις που είχαμε, αποτέλεσμα των οποίων είναι ένα μέρος της παρούσας

εργασίας.

Τελευταίους και περισσότερο, ευχαριστώ τον πατέρα μου και τη μάνα μου για τη

στήριξη, την υπομονή και τη χρηματοδότηση όλων αυτών των χρόνων που περάσανε.

i

PREFACE

The current thesis has been elaborated in fulfillment of the thesis requirement for
the Inter-Departmental Postgraduate program “Applied Mathematical Sciences”
of the National Technical University of Athens (NTUA).

Distributed computing environments consist of several independent computing de-
vices that act together to achieve a specific goal. For this purpose the interacting
devices are arranged in a communication network. In order to be useful in mission-
critical applications (such as flight control systems and control systems in nuclear
power plants), distributed computing environments must be able to cope with
failures of some devices. Generally, failures can have different forms. For exam-
ple, one device of the system may refuse to deliver necessary information to other
parts of the system. Even worse, the device may send conflicting and inconsistent
information to other parts of the system. Such failures are called active failures
(or byzantine failures). A convenient approach for arguing about failures is to
assume the existence of an adversary which corrupts participants of a distributed
system. It is widely accepted that an integral part of a mission-critical distributed
system is a mechanism for reaching “agreement” between all non-corrupted parts
of a system. In this setup, all non-corrupted devices should be able to agree on a
common value without explicit knowledge of the corrupted parts.

The agreement problem has attracted research since the early 1980’s. One of
the major variations is known in the literature as the Secure Broadcast problem
(Byzantine Generals problem), hereafter referred as Broadcast. In the Broadcast
problem, we assume the existence of a designated participant on whose input value
every non-faulty participant should agree. The problem has been extensively stud-
ied in the standard model in which pairwise communication is available between all
pairs of participants (complete communication networks). The case of incomplete
communication networks has been studied to some extent; the research introduced
new parameters for optimization, relative to the communication network topology
and related problems remain open so far. Moreover topologically restricted adver-
sary models have been considered, and with their introduction the study of new
feasibility and infeasibility bounds has been initiated. Finally, Broadcast in wire-
less communication networks has only been considered since 2004, and has mainly
been studied under very special network topologies, e.g., grid networks. The con-
sideration of the wireless network model brings up new needs and challenges for
secure distributed computing applications. On the on hand, the structure of such
networks allows the corrupted participants to cause interference to other receivers
resulting in the deterioration of the communication quality. On the other hand,

ii

participants are committed to perform local broadcasts, which greatly facilitates
achieving agreement. Another important consideration, is the derivation of local
criteria which the players can use in order to achieve Broadcast in networks of
unknown topology.

Contents

1 Agreement in Unreliable Distributed Systems 1

1.1 Introduction . 1

1.2 The Communication Model . 4

1.3 The Adversary Model . 5

1.4 Security . 6

1.5 Efficiency and Resiliency . 6

1.6 Defining the Problem . 7

1.7 Scenarios and Views . 10

2 Broadcast Protocols 13

2.1 Exponential Information Gathering Algorithm 14

2.2 Reducing the communication cost 19

2.3 General Broadcast using Binary Broadcast 24

2.3.1 Achieving General Consensus 24

2.3.2 Achieving General Broadcast 27

3 Limits of Achieving Broadcast 29

3.1 Resiliency . 29

3.2 Bit Complexity . 36

3.3 Round Complexity . 37

4 Broadcast in Generic and Wireless Networks 41

4.1 Connectivity Lower Bound . 41

iii

iv CONTENTS

4.2 Solving the Problem in Generic Networks 46

4.2.1 Simulation of the Communication Phase 50

4.3 Broadcast in Wireless Networks . 53

4.3.1 A protocol for wireless networks 54

5 Broadcast with Locally Bounded Adversary 59

5.1 Impossibility of t-Locally Resilient Broadcast 61

5.2 Feasibility of t-Locally Resilient Broadcast 62

5.2.1 A Better Topological Parameter for CPA Broadcast 65

5.3 Conclusions . 68

CONTENTS v

Chapter 1

Agreement in Unreliable
Distributed Systems

1.1 Introduction

As communication networks grow in size, they become increasingly vulnerable
to component failures. These networks consist of numerous interacting entities
hereafter referred as players. Since distributed computing has become popular and
widely used in contemporary networking, the provided solutions need to cope with
erroneous and malicious components in the underlying communication network.

With the term distributed system we will refer to a software that executes a collec-
tion of protocols to coordinate the actions of multiple players on a given communi-
cation network G, such that all components cooperate together to perform a single
or small set of related tasks. Typically, such network systems are characterized by
a symmetric relationship between participating players and the lack of any central
authority. Network functionality is achieved in a decentralized fashion, with au-
tonomous devices cooperating to execute tasks such as demanding computations,
distribution of digital content, or common decision making.

The study of distributed systems in the presence of adversarial behavior involves
the design of algorithms that work correctly despite the existence of corrupted play-
ers in the network and without knowing their location. Several corruption types
have been considered in the literature. Among all the corruption types, active (or
Byzantine) corruption models a worst-case fault scenario, namely components can
behave arbitrarily (even maliciously) as transmitters, by either stopping, rerouting,

1

2 1.1. INTRODUCTION

or altering transmitted messages in a way most detrimental to the communication
process.

Agreement of the participating players in a certain value is of profound importance
and its applications are many. There are two major variations of the problem, both
introduced by L.Lamport, R.Shostack and M.Pease in [PSL80, LSP82],

� Broadcast (Byzantine Generals): Have some designated player, called
the dealer, consistently send a message to all other players.

� Consensus (Byzantine Agreement): Make all players agree on the same
output value given that every player starts with an input value. If all honest
players hold the same input value then the output value is required to be the
same as this input value

In the current thesis we will focus in the Broadcast problem, although we will see
that the problems are closely related and results on the one problem easily imply
similar results for the other.

x
x

x

x

(a) Ideal Broadcast

x

x

x

x

x

x
(b) Real Broadcast

x

x

y

x

x

y
(c) Real Broadcast with Corrupted Dealer

In Broadcast the difficulty of designing a solution can be primarily summarized in
a scenario where the dealer is corrupted. As seen in the above pictures the dealer

CHAPTER 1. AGREEMENT IN UNRELIABLE DISTRIBUTED SYSTEMS 3

may send conflicting values to the players in which case we demand that the players
finally agree on the same arbitrary value. The purpose of a Broadcast protocol
is to simulate the Ideal Broadcast through the communication of the players.
Essentially, the major task is to circumvent errors without losing unanimity.

In the general case one does not know which players are corrupted. Moreover, in
most cases one will never be able to find it out. To understand the reason for this,
one should picture himself as a player u in a distributed system that receives a
message from a player v. Assume that u wants to make sure that v is honest. So,
u inquires what are the messages the rest of the system received. If player u finds
out that the message he has received differs from all the rest, then does this make
v a corrupted player? The answer is not necessarily positive. The possibility that
the only reliable players in the system are u and v always exists. To overcome
this logical pathology, one should make a decision assuming limitations on the
frequency of occurrence of corruptions in the system. That is, if in the system
these limitations don’t hold, it will no longer matter what decision u is going to
make.

How should such limitations be expressed? In other work on analysis of systems
with adversarial behavior, these limitations often take the form of probability
distributions governing the occurrences of corruptions. Here, instead of using
probabilities, we simply assume that the number of corruptions is bounded in
advance, by a fixed number t. This is a simple assumption to work with, since
it avoids the complexities of reasoning about probabilistic failure occurrences. In
practice, this assumption may be realistic in the sense that it may be unlikely that
more than t corruptions will occur. However, we should keep in mind that the
assumption is somewhat problematic: in most practical situations, if the number
of corruptions is already large, then it is likely that more corruptions will occur.
Assuming a bound on the number of corruptions implies that corruptions are
negatively correlated, whereas in practice, corruptions are usually independent or
positively correlated.

Secure Multiparty Computation. Agreement problems are special cases of
the more general problem of multi-party computation (MPC), initially defined by
Yao [Yao82]. In MPC we have n players v1, . . . , vn, each of which holds a private
input, who wish to perform a joint computation on these inputs in a secure way.
Roughly speaking, the security of the computation requires that the output is
correctly computed on the inputs given by the players (correctness), and that the
players learn no more information than what they can deduce from their specified
outputs of the computation (privacy). The security of the computation should be
guaranteed even when some players misbehave.

4 1.2. THE COMMUNICATION MODEL

Applications

The agreement problem is of profound importance and its applications are many.
In the footnote of the seminal paper of L.Lamport, R.Shostack and M.Pease, we
see that they were sponsored by NASA, the Ballistic Missile Defense Systems
Command and the Army Research Office. N. Lynch mentions in her book “Dis-
tributed Algorithms” [Lyn96], that the agreement problem is a simplified version
of a problem that originally arose in the development of on-board aircraft control
systems. In this problem, a collection of processors, each with access to a separate
altimeter, and some of which may be faulty, attempt to agree on the airplane’s
altitude. Agreement algorithms have also been incorporated into the hardware
of fault-tolerant multiprocessor systems; there, they are used to help a small col-
lection of processors to carry out identical computations, agreeing on the results
of every step. This redundancy allows the processors to tolerate the failure of a
number of components. Agreement algorithms are also useful in processor fault
diagnosis, where they can permit a collection of processors to agree on the failure
of specific components (and should therefore be replaced or ignored).

1.2 The Communication Model

The players communicate with each other over channels. Virtually all protocols
assume the existence of pairwise channels among the players. These channels can
be assumed to be:

Authenticated : The channel is resistant to tampering but not necessarily re-
sistant to overhearing, i.e., messages, once sent, cannot be changed but can be
read by an adversary. Moreover using an authenticated channel the receiver of a
message always knows the identity of the sender.

Secret/Confidential : The channel is resistant to overhearing , but not neces-
sarily resistant to tampering.

Secure: Authenticated and secret channel.

Synchronous: The delay of messages in the channel is bounded by a known
constant.

The topology of the network of channels can be complete or incomplete, i.e., the
connectivity can be limited.

In the asynchronous channels model of communication where message delivery
or bounds on transit time is not guaranteed, it is still possible to solve most of

CHAPTER 1. AGREEMENT IN UNRELIABLE DISTRIBUTED SYSTEMS 5

the problems in a strictly weaker sense using asynchronous communication. As
an example, assume that we want to tolerate that up to t of the n players are
corrupted. If an honest player waits for messages from more than n − t players,
then it might potentially be waiting for a message from a corrupted player. This
corrupted player might not have sent its message, and since no lower bound on
message delivery is guaranteed, an unsent message cannot be distinguished from
a slow message. The player might therefore end up waiting forever for the unsent
message, and the protocol deadlocks. So, in an asynchronous protocol which must
tolerate t corruptions and must be dead-lock free, the honest players cannot wait
for messages from more than n − t players in each round. But this means that
some of the honest players might not even be able to send their inputs to the other
honest players, left alone having their inputs securely contribute to the result.

In the current thesis we consider synchronous networks with authenticated chan-
nels. In the first two Chapters we will study protocols and bounds concerning
complete networks and in the last chapters incomplete networks will be consid-
ered.

1.3 The Adversary Model

The dishonesty of players is modeled by a central adversary that corrupts players.
For concreteness, one may think of the adversary as a hacker who attempts to break
into the players’ computers. We distinguish corruption modes wrt the capacities
of the adversary:

Passive: Corrupted players gives all their internal data to the adversary, but
continue executing the instructions of the protocol.

Active/Byzantine: Corrupted players are under full control of the adversary
and misbehave in arbitrary manner.

Fail-Stop: Players follow the protocol instructions till the adversary instructs
the player to crash; from then on, the player does not send any message to any
other player. Note that a fail-corrupted player does not give his internal data to
the adversary, unless he is passively corrupted at the same time.

If we allow the adversary to corrupt all subsets of the players of size at most t for
some t < n, with n being the total number of players, then we call it a threshold
adversary and we call t the threshold.

Finally, the adversary model also determines the adversary’s computing power.
Most common assumptions are that the adversary is either unlimited, or is com-

6 1.4. SECURITY

putationally bounded to probabilistic polynomial time computations in a security
parameter κ.

In the current thesis we consider the existence of an active adversary. The results
induced also hold for the other adversary types since an active adversary models
a worst-case scenario on the corruption strength.

1.4 Security

Analogously to cryptographic primitives, security is typically defined with respect
to a security parameter κ, allowing an error probability ε that is negligible in
function of κ, i.e., it is tolerated that the respective task fails (the conditions of
the problem are not satisfied) with probability at most ε. The types of security
considered in the literature are the following

Computational/Cryptographic Security : Denotes security against an adver-
sary who is bounded to probabilistic polynomial time computations.

Unconditional / Information-Theoretic Security : Denotes security against
an unlimited adversary (security derives purely from information theory).

Perfect Security : Unconditional security with zero error probability ε. (the
conditions of the problem are satisfied in the absolute sense).

It can be assumed that, additionally, some (partially secret) data is consistently
set up among the players. This could for example be attained by a precomputation
phase involving a mutually trusted party to distribute some related information to
the players. The shared data would typically be a PKI (Public Key Infrastructure).
In this case we say that the players hold consistently shared data. In the literature
the term Cryptographic Security is often used for Computational security with
consistently shared data among players.

We will focus on perfectly secure protocols for the problems considered.

1.5 Efficiency and Resiliency

The complexity of MPC protocols can be stated with respect to the local compu-
tation complexity of the players and with respect to the amount of communication
that is required among the players. Moreover the number of communication rounds

CHAPTER 1. AGREEMENT IN UNRELIABLE DISTRIBUTED SYSTEMS 7

required for the completion of the protocol is an other measure of consideration.
In synchronous networks, we assume that during each communication round, all
nodes in parallel receive the latest messages from their neighbors, perform arbi-
trary local computation and finally send new messages to their neighbors. The
measures considered for optimization are the following:

Bit Complexity (BC): This is the total number of bits sent by all honest players
during the protocol in the worst case, overall. We will also use the term Message
Complexity for the total number of messages sent by all honest players.

Round complexity (RC): This is the maximal number of subsequent execution
steps (communication rounds) that are required by any correct player in the worst
case.

Local Computations Complexity (LCC): The maximum over the local com-
putational worst-case complexities of all honest players.

Resiliency : It means the number of corrupted players, up to which a protocol
can tolerate. If a protocol can handle up to t < an actively corrupted players,
then we say that it is a-resilient.

1.6 Defining the Problem

The formal definition of the Broadcast problem follows:

1.1 Definition (Broadcast). Let V = {v1, v2, · · · , vn} be a set of n players, X be
a finite domain and D ∈ V be the dealer. Then we say, that Π is a Broadcast
(Byzantine Generals) protocol among players in V with values in X, where D has
as input a value xd ∈ X and all players finally decide on a value yi ∈ X, if it
satisfies the following conditions:

1. Validity: If the dealer is honest, then all honest players will decide on xd;

2. Consistency: All honest players finally decide on the same value. i.e. ∀vi, vj
honest players, yj = yi holds;

3. Termination: All players will eventually terminate the protocol;

We also define the related problem of Consensus as we will take advantage its
relation with Broadcast to develop protocols in later chapters.

1.2 Definition (Consensus). Let V = {v1, v2, · · · , vn} be a set of n players, X be
a finite domain and D ∈ V be the dealer. Then we say, that Π is a Byzantine

8 1.6. DEFINING THE PROBLEM

General (Broadcast) protocol among players in V with values in X, where each
vi has an initial input value xi ∈ X and finally decides on a value yi ∈ X, if it
satisfies the following conditions:

1. Validity: If all honest players have as input the same value x, then all honest
players will decide on x;

2. Consistency: All honest players finally decide on the same value. i.e. ∀vi, vj
honest players, yj = yi holds;

3. Termination: All players will eventually terminate the protocol;

The Termination property in the context of the protocols and the bounds presented
is usually immediately implied by the context and the proof of its validity will often
be omitted.

Interactive Consistency. The Consensus problem has a closely related variant,
named Interactive Consistency (IC), which was studied in [PSL80], before the
introduction of the Broadcast and Consensus problems. In this version of the
problem, instead of agreeing on a single value, the players have to agree on a
vector of values, which has an entry corresponding to every player in the system.
The output vectors of any two honest players must be equal. Furthermore, an entry
in the vector that corresponds to a honest player has to be equal to the input value
of that player. Clearly, an IC algorithm also solves the Consensus problem, e.g.,
by deciding on the majority value in the output vector. Moreover an algorithm
for Broadcast solves the IC problem, by letting every player broadcast his input
value, the required vector can then be composed trivially.

The definition of consensus can at most allow for a strict minority of corrupted
players (t < n/2)–otherwise the corrupted players, by majority, would always be
able to dictate the outcome independently of the inputs by the honest players.

1.1 Proposition. Consensus among n ≥ 2 players, secure against t ≥ n/2 corrupted
players is impossible.

Proof.
Let V0 ∪ V1 = V be a partition of the player set in to two sets of cardinalities
|V0| = max(n − t, 1), |V1| = min(t, n − 1); and let all players vi ∈ V0 hold the
same input value xi = 0 and all players vi ∈ V1 hold input value xi = 1. The
adversary can now choose either ∅, V0, or V1 uniformly at random and corrupt
the respective players by having them honestly follow the protocol. To make this
clear, we supposed that an active adversary forces his players behave arbitrarily,

CHAPTER 1. AGREEMENT IN UNRELIABLE DISTRIBUTED SYSTEMS 9

yet arbitrarily includes consistent behavior. Consequently, a honest player cannot
distinguish between honest and corrupted players.

If, at the end, all players compute the same output value x then validity is violated
with probability at least 1/3 since the adversary corrupts Vx with probability 1/3.
If, at the end, the players compute different output values then consistency is
violated with probability at least 1/3 since the adversary does not corrupt any
player with probability 1/3.

1.2 Theorem. If t < n/2, then Broadcast and Consensus are equivalent. In other
words, if there is a protocol for broadcast, then we can have a protocol for Consensus
too and visa versa.

Proof.
“ ⇒′′ : Assume, that Π is a broadcast protocol. Consensus can be achieved by
having every player broadcast its input value using Π and then, having every player
decide on the majority of the received values. Since all values are distributed by
broadcast and a majority of the players is honest, this protocol achieves consensus.

“⇐′′ : Assume that Π is a Consensus protocol. Then broadcast can be simulated
by having the sender distribute (multi-send) his input value to all players and
having all players run a consensus protocol on the values received from the sender.
Since a majority of the players is honest, this protocol achieves broadcast.

Consequently, Broadcast and Consensus are equivalent.

Usually, the Consensus problem is studied in the literature related with unanimity
in complete graphs. This is due to the fact that a Consensus protocol implies a
Broadcast protocol with the overhead of just one extra round as can be observed
in Theorem 1.2. Moreover the majority of Broadcast protocols presented in the
literature are of this certain form, namely, in the first round Dealer sends his initial
value and then the players achieve consensus. We will refer to this certain kind of
Broadcast Protocols as Basic Broadcast protocols.

1.3 Definition. A Basic Broadcast protocol is of the form:

� Round 1: Dealer sends its initial value xd to all players.

� Round r (r ≥ 2): All the players run a Consensus protocol, with inputs the
values received from the dealer in order to achieve agreement on the Dealer’s
value.

10 1.7. SCENARIOS AND VIEWS

1.7 Scenarios and Views

We will now formalize the description of a distributed system using definitions
which facilitate our further study. Let V be the set of players (participants) in
the distributed system. We denote by X the initial input space and M ⊇ X the
message space in which every message sent in the system belongs.

1.4 Definition (Scenario). A scenario σ is a function

σ : V × V × N→M
Value σ(v, w, i) is equal to the message that player v sent to player w in round i.

Clearly, an execution of a distributed protocol can be described by the scenario
function. If σ(v, w, i) =⊥ it means that no message has been sent by v to w in
round i or an erroneous message has been sent, treating both cases the same. We
say that a scenario σ is a k-round scenario if and only if

min{i ∈ N | σ(v, w, r) =⊥, ∀v, w ∈ V , ∀r ≥ i} = k

1.5 Definition (Subscenario). A k-round sub-scenario σk of scenario σ is the re-
striction σ|V×V×{1,...,k} of the function σ. Obviously σk describes the execution of
a distributed protocol until a certain round k.

1.6 Definition (View). The view of a player v over sub-scenario σ is the function
viewσv : V × V × N→M defined by

viewσv (u,w, i) =

{
⊥ if u, w 6= v.

σ(u,w, i) else.

The range of function viewσv consists of the messages sent or received by v in sub-
scenario σ. We will omit σ and simply write viewv when the scenario is implied
by the context or does not concern us.

1.7 Definition (Indistinguishable scenarios). Scenario σ is indistinguishable from σ′

with respect to player v (σ
v∼ σ′) if and only if

viewσv (u,w, i) = viewσ
′

v (u,w, i), ∀u,w ∈ V and i ∈ N

Let S be the family of sub-scenarios implied by a distributed system G, V IEWv

the family of viewv functions implied by scenarios in S and subV IEWv the family
of viewv functions implied by sub-scenarios in S. Also let ResV IEWv be the
family of all the restrictions of all the functions which are elements of subV IEWv.

CHAPTER 1. AGREEMENT IN UNRELIABLE DISTRIBUTED SYSTEMS 11

1.8 Definition (Decision). The decisionv of player v is a function

decisionv : V IEWv → X

the value that player v decides in scenario σ according to its view. We will also
use the notation decisionv(σ) since a scenario σ implies a unique function viewσv
and the simplified notation decisionv when the scenario is implied by the context.

We will use the Corollary below in our proofs. It’s validity is immediately implied
by the definitions of indistinguishability of scenarios and the decisionv function.

1.3 Corollary. Given two scenarios σ, σ′ and a player v it holds that,

σ
v∼ σ′ ⇒ decisionv(σ) = decisionv(σ

′).

1.9 Definition (Correctness Rule). A function Rv : subV IEWv → ResV IEWv which
produces the value

Rv(view
σk

v) = viewσ
k+1

v |{v}×V×N
(i.e. the messages that v is supposed to transmit in the next round).

1.10 Definition (Honest and Corrupted). With respect to a given correctness rule
R, a player v is said to be honest (or correct) at round k if in round k, v sends
the messages dictated by R operating in the previous k − 1 rounds, else we call
v corrupted in round k. Player v is an honest player in scenario σ (denoted by
v ∈ H) if it is honest at each round of σ, else v is corrupted in σ (denoted by
v ∈ T).

A Broadcast protocol on a class of scenarios S consists of a correctness rule R
(union of possibly distinct correctness rules Rv, ∀v ∈ V) and a decision function
(similarly a union of individual decisionv functions).

12 1.7. SCENARIOS AND VIEWS

Chapter 2

Broadcast Protocols

The design of protocols for the Broadcast problem has received a great deal of
attention since its introduction in [PSL80]. The attempts on improving the exist-
ing protocols has essentially been an effort to improve the trade-off between the
resilience, the bit complexity, the round complexity and the local computation
complexity of the solutions.

In [PSL80] the authors presented a protocol that solves the problem in t+1 rounds
whenever n > 3t. However, the protocol required the players to send exponentially
long messages and perform exponentially many steps of computation. Polynomial-
time Broadcast protocols for n > 3t that halt in more than 2t (see, e.g. [DFF+82,
TPS87] rounds have been known as of 1982. In 1985 Coan [Coa86] presented a
family of Broadcast protocols for n > 4t that, for every d, halt in t + t/d rounds,
and require messages of size O(nd). However Coan’s protocols require exponential
local computation. Bar-Noy, Dolev, Dwork and Strong later improved on this
result, providing protocols with essentially the same round and communication
behavior, but requiring only polynomial computation [BNDDS92]. These protocols
thus provide a trade-off between the number of rounds required and the size of
messages used, and prove that 2t rounds are not necessary for polynomial-time
Broadcast protocols. Polynomial- time Broadcast protocols, operating in t + 1
rounds for n = Ω(t2) where presented by Dolev, Reischuk and Strong in [DRS90].
In 1988 Moses and Waarts presented the first polynomial (t + 1)-round protocol
with linear resilience: It required only that n > 8t, and was later improved to
handle n > 6t [MW88]. Berman and Garay presented a polynomial protocol
for n > 4t [BG93], which they later improved to handle n > (3t + ε)t for any
ε > 0 [BG91]. At the cost of requiring more processors (Ω(t log t)), Coan and
Welch developed a polynomial protocol that uses one-bit messages and achieves
asymptotically optimal total bit transfer [CW93]. Finally after the long series of

13

14 2.1. EXPONENTIAL INFORMATION GATHERING ALGORITHM

papers improving the trade-off between resiliency and round complexity, Garay
and Moses presented the first fully polynomial Broadcast protocol in [GM98]. A
partial list of Broadcast protocols and the parameters characterizing them is given
in table 2.1.

Protocol n rounds comm. comp.
[PSL80] 3t+ 1 t+ 1 exp(n) exp(n)
[DFF+82, TPS87] 3t+ 1 2t+ c poly(n) poly(n)
[Coa86] 4t+ 1 t+ t

d
O(nd) exp(n)

[DRS90] Ω(t2) t+ 1 poly(n) poly(n)
[BNDDS92] 3t+ 1 t+ t

d
O(nd) O(nd)

[MW88] 6t+ 1 t+ 1 poly(n) poly(n)
[BG89] 3t+ 1 t+ t

d
O(cd) O(cd)

[BG93] 4t+ 1 t+ 1 poly(n) poly(n)
[CW93] Ω(t log t) t+ 1 poly(n) poly(n)
[BG91] (3 + ε)t t+ 1 poly(n) ·O(21/ε) poly(n) ·O(21/ε)
[GM98] 3t+ 1 t+ 1 poly(n) poly(n)

Table 2.1

2.1 Exponential Information Gathering Algorithm

In this section, we present an algorithm for the Broadcast problem based on a strat-
egy known as exponential information gathering (EIG). In exponential information
gathering algorithms, players send and relay values for several rounds, recording
the values they receive along various communication paths in a data structure
called an EIG tree. At the end, they use a commonly agreed-upon decision rule
based on the values recorded in their trees. The EIG algorithm of [BNDDS87],
presented here, is a variation of the original Broadcast algorithm of [LSP82] which
incorporates the EIG tree data structure. The algorithm requires n > 3t+ 1.

EIG Tree Data Structure

In the EIG Algorithm each player incrementally constructs a tree-based data struc-
ture of height at most t (each path from root to leaf contains at most t+ 1 nodes),
called the EIG tree (Figure 2.1). The nodes of the EIG tree are labeled with player
names as follows . The root is labeled D, for Dealer. Let p be an internal node

CHAPTER 2. BROADCAST PROTOCOLS 15

D

. . .

.

.

...

...

...

...

v1 v2 vn−1

v2

v3 vn−1

v1vn−1 v3 vn−1

v1 v4 vn−1

v1 vn−2

value

sent me
dealer D

value v2

for D
reported

value v1

for D
reported

value v2

for Dv1
reported

Figure 2.1: The Information Gathering Tree

in the tree. For every player name vi not labeling an ancestor of p, p has exactly
one child labeled vi. With this definition no label appears twice in any path from
root to leaf in the tree. Henceforth, a sequence is an ordered list of at most t + 1
distinct player names, beginning with D. We often refer to a node in the tree by
specifying the sequence of player names encountered in traversing the path from
the root to the node. Let a be such a sequence. The length of a, denoted |a|, is the
number of names in the sequence. Note that if |a| is an internal node then a has
n− |a| > 2t+ 1 children. The player corresponding to node a is the player whose
name labels node a, i.e., the last player name in the sequence a. The Information
Gathering Tree maintained by player v is called treev. The tree is built one level
at a round. For each 1 ≤ h ≤ t+1, the EIG tree at the end of round h is called the
round h tree, and is of height h− 1. Each player v can store values in the nodes of
treev, we refer to the value stored in the node with label a as treep(a) eliminating
the subscript when no confusion will arise. The value stored in treev(D) is the
preferred value.

The EIG Algorithm is split into two phases : Information Gathering, and Data
Conversion .

16 2.1. EXPONENTIAL INFORMATION GATHERING ALGORITHM

Information Gathering:

Round 1

1. Dealer sends its initial value xD to the n − 1 other players and decides on
xD.

2. Each player v stores the value xD, received from the Dealer, in node D, i.e.,
treev(D) := xD. A special default value of ⊥ is stored if the Dealer failed to
send a legitimate value in X.

Round h, 2 ≤ h ≤ t+ 1

1. Each v broadcasts the leaves of its round (h− 1) tree.

2. Every v adds a new level to its tree, storing at node D . . . qr the value that
r claims to have stored in node D . . . q in its own treer. Again, the default
value ⊥ is used if an inappropriate message is received.

Intuitively, v stores in node D . . . qr the value that “r says q says . . . the
source said“.

Data Conversion:

During this phase each player v applies a recursive function to treev to obtain a
new preferred value. The value obtained by applying the conversion function to
the subtree rooted at a node a is called the converted value for a. The specific data
conversion function, resolve, used in the EIG algorithm is essentially a recursive
majority vote and is defined as follows for all sequences a:

resolve(a) =

tree(a) , if a is a leaf;

m , If m is the majority of resolve applied

to the children of a;

⊥ , If a is not a leaf and no majority exists.

The value obtained by player v in computing resolve(a) is denoted resolvev(a).
We occasionally drop the subscript v when no confusion will arise. Summarizing,
we have :

CHAPTER 2. BROADCAST PROTOCOLS 17

2.1 Algorithm : Exponential Information Gathering

1. Gather information for t+ 1 rounds;

2. Compute the converted value forD using the data conversion function resolve;

3. Decide on resolve(D)

We now give a proof of correctness for this algorithm . After data conversion, a
node a is said to be common if each honest player computes the same converted
value for a. Thus, the Validity and Consistency conditions of the Broadcast prob-
lem can be alternatively defined as:

� Validity: When the dealer is honest, resolvev(D) = treev(D) for every honest
player v;

� Consistency: Node D is common in every execution, i.e., for all honest v and
w, resolvev(D) = resolvew(D).

Recall that if v is honest, then treev(D) is precisely the value received from the
dealer during the first round. Thus, the second condition implies that if the dealer
is honest then all honest players, including the dealer, decide on the dealer’s initial
value .

The following lemma asserts that if a sender of a value x is honest, then all honest
players will eventually compute the same converted value for the corresponding
node.

2.1 Lemma (Validity Lemma). For any 1 ≤ h ≤ t + 1, consider the h-round EIG
tree. Let a = βq be a sequence of length at most h in which |β| ≥ 0 and q is an
honest player. If data conversion is applied to the h-round tree, then there is a
value x such that a is common with converted value x and for every honest player
v, treev(a) = x.

Proof.
Let v be an honest player. Note that since q is honest, treev(a) = treeq(β). If
|β| = 0 then q = D. In this case, we interpret trees(β) to be the dealer’s initial
value.

The lemma is proved by reverse induction on the length of a. If |a| = h then, since
a is a leaf, resolvev(a) = treev(a) for all honest players v. Thus, a is common.

18 2.1. EXPONENTIAL INFORMATION GATHERING ALGORITHM

Assume the lemma for sequences of length k, where 1 < k ≤ h. Let a be a sequence
of length k − 1. Let r /∈ a be an honest player. By induction, resolvev(ar) =
treev(ar). Moreover, since v, q, and r are all honest,

treev(ar) = treer(a) = treeq(β) = treev(a).

Thus, all but t of the children of a in treev have common converted value equal to
treev(a). However, a is internal it has at least 2t+ 1 children, hence resolvev(a) =
treev(a). This completes the proof.

From the Validity Lemma (with h = t+ 1 and a = D) we immediately have:

2.1 Corollary. If the dealer is honest then after data conversion D is common and
resolvev(D) = treev(D) for all honest players v.

There are at most t corrupted players and every path in the EIG tree is of length
t+1, so every path from root to leaf contains an honest player. It therefore follows
by the Validity Lemma that every path contains a common node, independent of
the honesty of the source. When every root-to-leaf path contains a common node
we say the EIG tree has a common frontier. It remains to show that the existence
of a common frontier guarantees consistency. This is immediate from the following
lemma.

2.2 Lemma (Frontier Lemma). Let a be a node . If there is a common frontier in the
subtree rooted at a, then a is common (i.e., a itself constitutes a common frontier
of the subtree).

Proof.
To prove the lemma, suppose it failed in some execution of the algorithm and
suppose a were a counterexample of maximal length: thus a would not be common
but the subtree rooted at a would have a common frontier. If the subtree rooted at
a leaf has a common frontier, then the leaf is common. Hence, a cannot be a leaf.
If a subtree has a common frontier, either its root is common or the subtree rooted
at each child of its root has a common frontier. Hence, by the length maximality
of a, each of its children is common. But then every honest player computes the
same value for resolve(a), and a is common, contradicting the assumption that a
is not common .

The following corollary follows directly from 2.2

2.2 Corollary. If there is a common frontier, then D is common.

CHAPTER 2. BROADCAST PROTOCOLS 19

2.3 Proposition. The EIG Algorithm achieves Broadcast in t + 1 rounds provided
that n ≥ 3t+ 1.

Proof.
Validity and Consistency are ensured by Corollaries 2.1,2.2 respectivelly.

Complexity

Despite the simplicity of the algorithm, the message size and the amount of local
computation required grow exponentially in t. More specifically, for any 1 ≤ h ≤
t + 1, the h-round EIG tree has O(nh−1)leaves, yielding messages of size O(nh−1)
in round h+ 1.

As we will see in later chapters the EIG algorithm is optimal in resiliency and
round complexity, but is clearly impractical due to its exponential bit complexity.

2.2 Reducing the communication cost

Regarding the reduction of the bit complexity of Broadcast, the first communica-
tion - efficient t+1 round protocol was presented in the breakthrough work of Moses
and Waarts [MW88], though their protocol was 1/8-resilient. Their result was im-
proved by Berman, Garay and Perry in [BGP89] where they also presented the
first protocol that doesn’t require exponential bit complexity and is 1/3-resilient.
Many protocols that were given later are based on the latter.

We examine the Consensus protocol of [BGP89] which using the equivalence be-
tween the two problems can be easily transformed in a Broadcast protocol with
an overhead of 1 extra round. This protocol includes three sub-protocols (Weak
Consensus, Graded Consensus, King Consensus),where each one of them achieves
a weaker kind of Consensus. In order to have Consensus we run these three sub-
protocols repeatedly.

The first sub-protocol is Weak Agreement where player vi has an input value xi ∈
{0, 1} and decides on an output value yi ∈ {0, 1,⊥}. Running Weak Agreement
we achieve the following:

Weak consistency: If an honest player vi decides on yi ∈ {0, 1} then every other
honest vj decides on yi ∈ {yi,⊥}.

20 2.2. REDUCING THE COMMUNICATION COST

2.2 Protocol : WeakConsensus(x1, . . .xn)→ (y1, . . . ,yn)

Input: Initial values x1, . . . , xn of the n players.

Output: Decision values y1, . . . , yn of the n players.

1. Every vi ∈ V sends xi to all vj.
Let cm be the copies of a message m ∈ {0, 1} received by player vj in this
round.

2. Every vj computes:

yj =

{
m if cm ≥ n− t
⊥ else

3. Every vj ∈ V returns yj

2.3 Lemma. The above protocol achieves Weak Consistency and Validity.

Proof.
Validity: Suppose that all honest players have the same input x. In step 2 all
honest players collect the value x at least n − t times, consequently all honest
players receive the value 1−x at most t < n− t (since t < n/3) and they all decide
on yi = x.

Weak Consistency: Let vi be an honest player who computed the output value 0.
That means that he received at least n − t times the value 0 after the first step.
That means that at least n− 2t honest players sent him this value. Now let vj be
another honest player. It is clear that he also received 0 at least n− 2t times and
the value 1 at most n− n + 2t = 2t < n− t times. So he computes either yj = 0
or yj =⊥.

The second sub-protocol is Graded Consensus. In this protocol every player vi
computes two different values, the output value yi and the Grade value gi ∈ {0, 1}.
The latter value shows the level of consistency achieved, i.e., gi = 1 means that
Consistency is achieved and gi = 0 means that it is unsure if Consistency is
achieved. More formally:

Graded Consistency: If a honest player vi decides on yi ∈ {0, 1} with gi = 1
then every other honest vj decides on yj = yi.

CHAPTER 2. BROADCAST PROTOCOLS 21

2.3 Protocol : GradedConsensus(x1, . . . ,xn)→ ((y1,g1), . . . , (yn,gn))

Input: Initial values x1, . . . , xn of the n players.

Output: Decision pairs (y1, g1), . . . , (yn, gn) of the n players.

1. (z1, . . . , zn) := WeakConsensus(x1, . . . , xn)

2. Every vi ∈ V sends zi to all vj.
Let cm be the copies of a message m ∈ {0, 1} received by player vj in this
round.

3. Every vj computes:

yj =

{
1 if c1 > c0

0 else

gj =

{
1 if cyj ≥ n− t
0 else

4. Every vj ∈ V returns (yj, gj)

2.4 Lemma. The above protocol achieves Graded Consistency and Validity remains.

Proof.
Validity: Here Validity has the meaning that if all honest players have the same
input x, then after the protocol these players have (x, 1) as output. It is clear
from the previous sub-protocol that after the first step all honest players compute
zi = x, where x is their common initial input. Arguing in the same way as in the
Weak Agreement protocol it can be easily shown that Validity remains after the
fourth step.

Graded Consistency: Let vi be a honest player who computed (yi, 1). It is clear
that at least n− 2t honest players sent him zk = yi. Now let vj be another honest
player. It is certain that he also received the value yi from n − 2t honest players
after step 2. The remaining t+ 1 honest players sent him either yi or ⊥ and that
due to the Weak Consistency after the first step. He receives, consequently, the
value 1− yi in step 2 at most t times. But t < n− 2t and, therefore vj computed
yj = yi as output.

22 2.2. REDUCING THE COMMUNICATION COST

The last sub-protocol is King Consensus. Here any player vk is chosen to be the
king. The purpose of this protocol is that if the king is honest then all honest
players decide on the same output, regardless of the king’s input.

King Consistency: If the king vk is honest, then all honest players compute the
same output x ∈ {0, 1}.

2.4 Protocol : KingConsensus(vk,x1, . . .xn)→ (y1, . . . ,yn)

Input: Initial values x1, . . . , xn of the n players and player’s vk id.

Output: Decision values y1, . . . , yn of the n players.

1. ((z1, g1) . . . , (zn, gn)) := GradedConsensus(x1, . . . , xn)

2. The king vk sends zk to all players.

3. Every vj computes

yj =

{
zj if gj = 1

zk else

4. Every vj returns yj

2.5 Lemma. The above sub-protocol achieves King Consistency and Validity remains.

Proof.
Validity: If all honest players have the same input x, then due to the Graded
Consistency of the first step these players have zi = x with gi = 1. Therefore all
honest players decide on x after step 3.

King Consistency We assume that the king vk is uncorrupted. If all honest players
computed in step 1 gi = 0, then they all decided on yi = zk in step 3. If any honest
player computed gi = 1, then, because of the Graded Consistency of step 1, all
honest players, vk included, computed the same zi , thus they compute the same
output yi.

Due to the King Consistency definition, it is clear that if we ensure that the king
is honest then Consensus will be achieved. Therefore we run the KingConsensus
protocol t+ 1 times, each time with a different king:

CHAPTER 2. BROADCAST PROTOCOLS 23

2.5 Protocol : Consensus(x1, . . . ,xn)→ (y1, . . . ,yn)

1. For k := 1 to t+ 1

(x1, . . . , xn) := KingConsensus(vk, x1, . . . xn)

2. Every vj sets yj := xj

3. Every vj returns yj

Observe that when an honest player is chosen to be the king, by King Consistency
all honest players decide on the same output value v which will be their input
value for the next round. Due to the fact that the KingConsensus sub-protocol
maintains Validity the final decision value of each honest player will remain v.

The corresponding Broadcast protocol is now trivial due to the equivalence of the
two problems

2.6 Protocol : Broadcast(x,D)→ (y1 . . . ,yn)

1. Dealer D sends x to all players

2. (y1, . . . , yn) = Consensus(x1, . . . , xn),
with xi the value that player vi received from the Dealer.

3. Every vj ∈ V returns yj

2.4 Theorem. The above protocol achieves Broadcast (Consensus) with resiliency
n > 3t, BC = O(n2t) and RC = 3t+O(1).

Proof.
Consistency and Validity are achieved due to the properties of the King Consensus
protocol and the fact that we run this protocol t + 1 times with t + 1 different
kings (at least one king is honest).

In each sub-protocol every player sends a bit to every player, which means n2 bits,
and we run each sub-protocol t+ 1 times. This results in BC = O(n2t). Moreover
every time we run the King Consensus we need 3 rounds,one for each sub-protocol
to be completed, which results in total round complexity RC = 3t+O(1). (When

24 2.3. GENERAL BROADCAST USING BINARY BROADCAST

we want Consensus the protocol requires 3t+3 rounds and when Broadcast 3t+1,
because the sender is assumed to be one of the n players and, thus, we need to
run the King Consensus protocol only t times.

2.3 General Broadcast using Binary Broadcast

In the current thesis we will mainly focus on protocols and proofs concerning the
case of Binary Broadcast, i.e., the special case of the problem where the dealer
sends and players decide on values from the input space X = {0, 1,⊥}. Next we
will show how the special case is connected with the general form of the Broadcast
problem.

We will first show how to use an algorithm that achieves Consensus for inputs
x ∈ {0, 1} (Binary Consensus) as a subroutine for solving General Consensus with
arbitrary initial values in the input space X. We will then extend the result in
the case of achieving General Broadcast using a Binary Broadcast algorithm as a
subroutine.

2.3.1 Achieving General Consensus

For the Consensus problem, the overhead is just 2 extra rounds, 2n2 extra mes-
sages, and O(n2b) bits of communication, where b = maxx∈X |x|. This can lead
to substantial savings in the total number of bits that need to be communicated,
since it is not necessary to send values in X, but only binary values, while execut-
ing the subroutine. We call the algorithm TurpinCoan, after its designers [Coa87].
The algorithm assumes that n > 3t. As earlier, we pretend that each player can
send messages to itself as well as to the other players.

In the Algorithm 2.7 each player v ∈ V has local variables x, y, z, and vote, where x
is initialized to the player’s input value and y, z and vote are initialized arbitrarily.

2.7 Algorithm : TrupinCoan

� Round 1: ∀v ∈ V , player v sends its value of x to every u ∈ V (including
itself). Let cm be the copies of a message m ∈ X received by player v in this

CHAPTER 2. BROADCAST PROTOCOLS 25

round. Then v computes y,

y =

{
m if cm ≥ n− t
⊥ else

� Round 2: ∀v ∈ V , player v sends its value of y to every u ∈ V (including
itself). Let cm be the copies of a message m ∈ X received by player v in this
round. Then v computes vote,

vote =

{
1 if ∃m ∈ X s.t. cm ≥ n− t
0 else

Also v sets z equal to the value m 6=⊥ that occurs most often among the
messages received by v at this round, with ties broken arbitrarily; if all
messages are equal to ⊥, then z remains undefined.

� Round r, r ≥ 3: The players run the binary Consensus subroutine using
the values of vote as their input values. If player v decides on value 1 in the
subroutine and if z is defined, then the final decision of the algorithm is z,
otherwise it is the default value x0.

A key fact about the TrupinCoan algorithm is

2.6 Lemma. There is at most one value x ∈ X that is sent in round 2 by honest
players.

Proof.
Suppose for the sake of contradiction that honest players v and w send messages at
round 2 containing values xv and xw respectively, where xv, xw ∈ X, and xv 6= xw.
Then v receives at least n−t round 1 messages containing value xv. Since there are
at most t corrupted players, and honest players send the same round 1 messages
to all players, it must be that w receives at least n − 2 messages containing the
value xv. Since n > 3t, this means w receives at least t + 1 messages containing
xv.

But also, since w sends xw in round 2, w receives at least n− t round 1 messages
containing xw, for a total of at least (t+ 1) + (n− t) > n messages. But the total
number of round 1 messages received by w is only n, so this is a contradiction.

26 2.3. GENERAL BROADCAST USING BINARY BROADCAST

2.5 Theorem. The TurpinCoan algorithm solves general Consensus problem when
given a Binary Consensus algorithm as a subroutine, if n > 3t.

Proof.
Termination is easy to see. To show validity, we must prove that if all honest
players start with the same initial value, x, then all honest players decide on x.

So suppose that all honest players start with x. In round 1 every v ∈ H successfully
broadcasts round 1 messages containing x to all players. Since |H| > n − t, all
honest players set their y variables to x at round 1. Then in round 2, each honest
player receives at least n− t messages containing x, which implies that it sets its z
variable to x and its vote variable to 1. Since all the honest players use input 1 for
the Binary Consensus subroutine, they all decide on value 1 in the subroutine, by
the validity condition for the Binary Consensus algorithm. This means that they
all decide x in the main algorithm, which shows validity.

Finally, we show consistency. If the subroutine’s decision value is 0, then x0 is
chosen as the final decision value by all honest players and consistency holds by
default.

So assume that the subroutine’s decision value is 1. Then by the validity condition
for the subroutine, some honest player v must begin the subroutine with votev = 1.
This means that player v receives at least n− t round 2 messages containing some
particular value x ∈ X, so since there are at most t corrupted players, v receives
at least n − 2t round 2 messages containing x from honest players. Then if w is
any honest player, it must be that w also receives at least n− 2t round 2 messages
containing x from those same honest players. By Lemma 2.6, no value in X other
than x is sent by any honest player in round 2. So process w receives no more
than t round 2 messages containing values in X other than x (and these must be
from corrupted players). Since n > 3t, we have n − 2t > t, so x is the value that
occurs most often in round 2 messages received by w. It follows that process w
sets z := x in round 2.

Since the subroutine’s decision value is 1, this means that w decides on x. Since
this argument holds for any honest player w, consistency holds.

Complexity Analysis. The number of rounds is r + 2, where r is the number
of rounds used by the Binary Consensus subroutine. The extra communication
used by TurpinCoan, in addition to that used by the subroutine, is 2n2 messages,
each of at most b bits, for a total of O(n2b) bits.

CHAPTER 2. BROADCAST PROTOCOLS 27

2.3.2 Achieving General Broadcast

The case of achieving General Broadcast using a Basic Binary Broadcast protocol
(Definition 1.3) as a subroutine is trivial. We simply use Algorithm 2.7 with the
following modifications:

� Insert Round 0 before round 1 in which ∀v ∈ V , Dealer D sends initial value
xD to v, and v stores the received value in its local variable x, i.e. x := xD.

� In round r, r ≥ 3 all the players run the Basic Binary Broadcast subroutine
using the values of vote as the values received from the Dealer. The final
decision is taken in the same manner as in the TrupinCoan Algorithm.

In this case, the round and bit complexity remains the same as in the General
Consensus algorithm.

In the general case where we want to achieve Broadcast using an arbitrary Binary
Broadcast subroutine further modifications are required. Specifically:

� Insert Round 0 before Round 1 in which ∀v ∈ V , Dealer D sends initial value
xD to v, and v stores the received value in its local variable x, i.e. x := xD.

� 1. In round r, r ≥ 3, each v ∈ V broadcasts its binary value votev using
the Binary Broadcast subroutine.

2. Every v ∈ V decides on the value which was broadcasted by the majority
of the players breaking ties with respect to the lexicographic order.
Obviously all honest players will decide on the same value.

3. If player v decides on value 1 in the subroutine and if z is defined, then
the final decision of the algorithm is z, otherwise it is the default value
x0.

These further modifications induce an increase in both round and bit complexity of
the Algorithm 2.7. Assume that the Binary Broadcast subroutine used has round
complexity R and bit complexity B. Then the resulting algorithm for General
Broadcast has round complexity n · R + 3 and bit complexity n · B + n2b where
b = maxx∈X |x|. It can be easily seen that validity, consistency and termination
properties are preserved in both modifications.

28 2.3. GENERAL BROADCAST USING BINARY BROADCAST

Chapter 3

Limits of Achieving Broadcast

3.1 Resiliency

Next we give an example suggesting (though not proving) that three players cannot
solve the Broadcast problem, if there is the possibility that even one of them might
be corrupted.

Suppose that players v0, v1 and v2 solve the Broadcast problem, tolerating one
fault. Suppose, for example, that they decide at the end of two rounds and that
they operate in a particular, constrained manner: at the first round, the Dealer
v0 broadcasts its initial value, while in the second round, each player reports to
each other what was told to it in the first round by the Dealer. We consider the
view(v1) of the honest player v1.

v0

v2v1

0

v0

v2v1

1

0

Figure 3.1: View of player v1

29

30 3.1. RESILIENCY

Assume that player v1, as shown in Figure 3.1, receives value 0 from the Dealer v0
in the first round and value 1 from player v2 in the second round whereas being
honest, he sends value 0 to v2 in the second round. Player v1, knowing that at
most one of the v0, v2 is corrupted (the problem is vacuous for the case of n < t+2)
has to decide on a value that satisfies both conditions of the Broadcast problem.

Considering view(v1) there are two distinct scenarios σ1 and σ2 s.t. σ1
v1∼ σ2

(indistinguishable with respect to v1).

v0

v2v1

0 0

v0

v2v1
1

0

Figure 3.2: Scenario σ1
Player v2 is corrupted and reports the false value 1 to v1 in round 2.

v0

v2v1

10

v0

v2v1
1

0

Figure 3.3: Scenario σ2
Dealer v0 is corrupted and sends value 1 to player v2 in round 1.

If v1 decides on 1 and scenario scenario σ1 holds then the validity condition of
Broadcast is violated, thus v1 should decide on 0. Assume that the actual scenario
is σ2; therefore v2 as an honest player faces the same problem by symmetry: he
receives 1 from the dealer and 0 from player v1. The above arguments imply that v2
will decide on 1 in order to avoid violation of the validity condition. These forced
decisions contradict the consistency condition of Broadcast. For each decision
that v1 can make there is a scenario in which Broadcast is not achieved, which
contradicts the assumption that players v0, v1 and v2 solve the Broadcast problem.

CHAPTER 3. LIMITS OF ACHIEVING BROADCAST 31

v0

v2v1

T

v0

v1

v′2

v′1

v′0v2

H

Figure 3.4: Combining two copies of T to get H

We have shown that no algorithm of this particularly simple form can achieve
Broadcast.

This example does not constitute a proof that three players cannot achieve Broad-
cast with the possibility of a single fault. This is because the argument presupposes
that the algorithm uses only two rounds and sends particular types of messages.
But it is possible to extend the example to more rounds and arbitrary types of
messages. In fact, the ideas can be extended to show that n > 3t players are
needed to achieve Broadcast in the presence of t faults.

3.1 Lemma. Three players cannot solve the Broadcast problem in the presence of one
fault (n = 3 and t = 1).

Proof.
By contradiction. Assume there is a three-player algorithm A that solves the
Broadcast problem for the three players v0, v1 and v2 (arranged in the complete
network system T , as required for Broadcast), even if one of these three may
be faulty. We assume that v0 is the dealer with initial value x0. We construct
a new network system H using two copies of T and show that H must exhibit
contradictory behavior. It follows that the assumed algorithm A cannot exist.

Specifically, we take two copies of each player in T and configure them into a single
hexagonal system H. For every player, we build an identical copy of it. Namely,
for k ∈ {0, 1, 2}, we build player v′k = vk+3 , which is identical to player vk. We
connect player vk mod 6 with players v(k+1) mod 6 and v(k−1) mod 6, ∀0 ≤ k ≤ 5. The
arrangement is shown in Figure 3.4.

In H, we do not assume that the players know the entire (hexagonal) network
graph, but rather that each player just has local names for its neighbors. For

32 3.1. RESILIENCY

example, in H, player v0 knows that it has two neighbors, which it knows by the
names v1 and v2, even though one of them is really v′2. In particular, notice that
the network system H topologically appears to each player just like the network
T .

Claim. In the new system H and without the presence of an adversary, for every
pair of adjacent players vk and vk+1 mod 6 their view is indistinguishable from their
view as two players vk mod 3 and v(k+1) mod 3 in the original system T with respect
to an adversary who corrupts the remaining player v(k+2) mod 3 in an admissible
way. That is, ∀σH scenario of H and ∀k ∈ {0, · · · 5},∃σT scenario of T in which
v(k+2) mod 3 is corrupted s.t.

σH
vk∼ σT and σH

vk+1 mod 6∼ σT

Proof of Claim. With respect to the players v0, v1, v2 is “split” into two differ-
ent copies, v2, v

′
2, where v0 is connected with v′2 and v1 is connected with v2. By

assumption, when running this system (every player executes algorithm A), the
players v0 and v1 achieve Broadcast independently from the behavior of the players
v2 and v′2. Furthermore, by arranging the six players in H, this “splitting” is simul-
taneously achieved with respect to every pair vk and v(k+1) mod 6. Hence, for every
such pair, their joint view is indistinguishable from their view (as players vk mod 3

and v(k+1) mod 3) in the original system where the adversary corrupts v(k+2) mod 3

by simply simulating all the remaining players of the new system. For example,
with respect to pair (v0, v1) the corresponding adversary strategy for the original
system is to corrupt v2 , simulate the correct players v2, v

′
0, v
′
1, v
′
2 the new system,

and make v2 behave to v1 like v2 in the new system and to v0 like v′2 in the new
system — in other words, the adversary simulates the subsystem encircled by the
dashed line in Figure 3.5

The new system involves two players of the type corresponding to the Dealer,
namely, v0 and v′0, and these are the only players that enter an input. Let now v0
and v′0 be initialized with different inputs, i.e., assume that v0 has input x0 ∈ {0, 1}
and that v′0 has input x′0 = 1−x0. We study the example where x0 = 0 and x′0 = 1
and σH is resulting scenario of H. System H is not required to exhibit any special
type of behavior. However, note that H with any particular input assignment
(initial values of v0, v

′
0) does exhibit some well-defined behavior. We will obtain

a contradiction by showing that, for the particular input assignment indicated
above, no such well-defined behavior is possible.

We first consider the scenario σH from the point of view of players v0 and v1. To
players v0, v1, it appears as if they are running in the triangle system T , in an
scenario σT2 in which player v2 is corrupted. Since σT2 is a scenario of T in which
only player v2 is corrupted and Dealer v0 broadcasts the value 0, and since T is

CHAPTER 3. LIMITS OF ACHIEVING BROADCAST 33

v0

v1

v′2

v′1

v′0v2

S

Figure 3.5

assumed to solve the Broadcast problem, the validity condition implies that player
v1 must decide on value 0. Finally since σH is indistinguishable from σT2 to v0, v1,
player v1 decides on 0 in σH as well. Namely the above Claim and the validity
condition implies:

σH
v0∼ σT2 and σH

v1∼ σT2 ⇒ decisionv1 = 0 (1)

v0

v2v1

σT2

v0

v1

v′2

v′1

v′0v2

σH

0

0

1

1

0 0

Figure 3.6: Scenarios σH and σT2 are indistinguishable to v0 and v1
.

Similarly, for the pair of players v′0, v2 and the scenario σT1 of T in which player v1
is corrupted, implied by the above Claim and the validity condition of Broadcast
we have,

σH
v′0∼ σT1 and σH

v2∼ σT1 ⇒ decisionv2 = 1 (2)

34 3.1. RESILIENCY

v0

v2v1

σT1

v0

v1

v′2

v′1

v′0v2

σH

0

0

1

1

1 1

Figure 3.7: Scenarios σH and σT1 are indistinguishable to v′0 and v2

Finally, for the pair of players v1, v2 and the scenario σT0 of T in which player v0 is
corrupted, implied by the above Claim and the consistency condition of Broadcast
we have,

σH
v1∼ σT0 and σH

v2∼ σT0 ⇒ decisionv1 = decisionv2 (3)

v0

v2v1

σT0

v0

v1

v′2

v′1

v′0v2

σH

0

0

1

1

10

Figure 3.8: Scenarios σH and σT0 are indistinguishable to v1 and v2

Obviously relations (1), (2) and (3) yield a contradiction.

3.1 Theorem. There is no solution to the Broadcast problem for n players in the
presence of t corrupted players, if 3 ≤ n ≤ 3t

Proof.
Assume for the sake of contradiction that there is a Broadcast protocol A for n
players v0, · · · , vn−1, with dealer v0, that tolerates t ≥ n/3 corrupted players. We
show how to transform A into a Broadcast protocol B for three players, v0, v1, v2,
tolerating one corrupted player. Let V = {v0, · · · , vn−1} be the set of players and

CHAPTER 3. LIMITS OF ACHIEVING BROADCAST 35

V0 ∪V1 ∪V2 = V be a partition of V s.t. for each set Vi, it holds that 1 ≤ |Vi| ≤ t.
Assume wlog, that player vi ∈ Vi. We let each player vi in B simulate the behavior
of every player v ∈ Vi in protocol A, as follows.

Protocol B: Player v0 is the dealer in protocol B. Each player vi, i ∈ {0, 1, 2}
simulates the steps of all the players in Vi as well as the messages between pairs of
players in Vi. For every message m sent in protocol A from v ∈ Vi to u ∈ Vj with
i 6= j, m is sent along with the identities of v, u from vi to vj. If any simulated
player v ∈ Vi decides on a value m, then vi decides on the value m. (If there is
more than one such value, then vi can choose any such value.)

We show that B correctly achieves Broadcast for three players. Designate the
corrupted players of A to be exactly those that are simulated by corrupted players
of B. For any scenario σB of B with at most one corrupted player, let σA be the
simulated scenario of A. Since each player of B simulates at most t players of A,
there are at most t corrupted players in σA. Since A is assumed to be a Broadcast
protocol for n players that tolerates at most t corrupted players, the usual validity,
consistency , and termination conditions for Broadcast hold in σA. We argue that
these conditions carry over to σB.

� Termination: Let vi be a correct player of B. Then vi simulates at least
one player, v ∈ Vi, of A, and v must be correct since vi is. The termination
condition for σA implies that v must eventually decide; as soon as it does so,
vi decides (if it has not already done so).

� Validity: If dealer v0 of B is honest with initial value m then the same v0
dealer of A acts honestly broadcasting m. Validity for σA implies that m
is the only decision value for an honest player in σA. Then m is the only
decision value for an honest player in σB.

� Consistency: Suppose that vi and vj are honest players of B Then they
simulate only honest players of A. Agreement for σA implies that all of these
simulated players agree, so vi and vj also agree.

We conclude that B achieves Broadcast for three players, tolerating one corruption.
But this contradicts Lemma 3.1

Observation. Due to the equivalence of Consensus and Broadcast problems,
Theorem 3.1 trivially implies the same resiliency bound for the Consensus problem.

36 3.2. BIT COMPLEXITY

3.2 Bit Complexity

3.2 Theorem. Every Broadcast protocol which handles up to t corruptions (t < n−1),
requires at least n(t+ 1)/4 messages to be sent.

Proof.

Let σ0 be the scenario in which all players are honest and the dealer transmits the
value 0, and σ1 the one in which all are honest and the dealer transmits value 1.
Let A(v) denote the set of all players that either receive messages from v or send
messages to v in at least one of the to scenarios, that is

A(v) = {u ∈ V | ∃ i ∈ N, ∃j ∈ {0, 1, } s.t. σj(v, u, i) 6= ∅ or σj(u, v, i) 6= ∅}

Assume that there is a player v with A(v) containing less than t+ 1 players. Then
let σ′ be the scenario σ1 modified in a way that all players in A(v) behave towards
v as in σ0 and towards the rest players as in σ1; all the other players behave as in
σ1. Observe that this is possible for the set A(v) of corrupted players because it
is the set of all the players communicating with v in both scenarios σ0, σ1.

It is obvious now, that in σ′ player v has the same view as in σ0, while every other
honest player u has the same view as in σ1 . Namely we have that

σ′
v∼ σ0 ⇒ decisionv(σ

′) = 0

σ′
u∼ σ1 ⇒ decisionu(σ

′) = 1, ∀u ∈ {H \ {v}}

There is such a player u ∈ {H \ {v}} because t < n − 1. The above imply
that consistency of Broadcast is violated which leads to a contradiction. Hence,
|A(v)| ≥ t + 1, ∀v ∈ V . Consequently, each player “exchanges” in both scenarios
σ0 and σ1 at least t+1. If we sum over all players we have a minimum of n(t+1)/2
that are required to be send in both scenarios, hence, there is a scenario σ0 or σ1
which requires at least n(t+ 1)/4 messages to be sent.

Theorem 3.2 gives a lower bound on the number of messages needed to be ex-
changed in a Broadcast protocol or else the Message Complexity. It directly im-
plies that the Bit Complexity of Broadcast is at least n(t+ 1)/4 because messages
consist of at least 1 bit. These bounds also hold for the minimum number of
signatures required to be sent in the cryptographic model as proved in [DR85].

CHAPTER 3. LIMITS OF ACHIEVING BROADCAST 37

3.3 Corollary. The Bit Complexity of any Broadcast protocol is at least n(t+ 1)/4.

3.3 Round Complexity

Now, we are going to see, that deterministic Broadcast can be achieved after more
than t rounds. The first proof was given by Fischer and Lynch in [FL82] and
it holds for the case of unauthenticated messages. However, Dolev and Strong,
proved in [DS83] that, no matter what the context of the messages is , Broadcast
can be achieved only after t+ 1 rounds. The latter result is very important for the
cryptographic model, because it shows that we cannot expect a faster protocol, in
other words t+ 1 rounds is a lower bound for any deterministic protocol.

3.4 Theorem. Any Broadcast protocol, which tolerates up to t corrupted players,
cannot be achieved in fewer than t+ 1 rounds, provided that t < n− 1.

Proof.
We assume that there is a protocol achieving Broadcast in at most t rounds.
Let C denote the class of t-round scenarios with n players, where t of them are
corrupted and have a critical sequence ci s.t. all corrupted players appear on the
sequence any corrupted player starts to act in an incorrect way at or after the
round corresponding to its position in ci. (i.e. player v = ci, which is faulty, acts
honestly until the (i − 1)-th round). In other words the set of faulty players can
only increase by one per round but of course all players take part in the procedure.
Note, also, that in C belong also scenarios with all players honest.

We define an equivalence relation on scenarios in C by saying σ and σ′ are equiv-
alent (σ ≡ σ′), if for any correct players v in σ and w in σ′, decisionv(σ) =
decisionw(σ′) holds. It is clear that, since there are scenarios, where the players
decide on 0 and scenarios where players decide on 1, not all scenarios in C are
equivalent. However, we will show that this is not true. Using this contradiction
we will prove the theorem.

A player v is called hidden at round k in scenario σ if it does not send any messages
in round k or later, i.e. σ(v, u, i) =⊥, ∀u ∈ V , ∀i ≥ k. Using induction we will
prove the following Claim,

Claim. Let v be a player of scenario σ ∈ C then :

(a) There is a scenario σ′ ∈ C with σ′ ≡ σ, which is identical to σ through round
k except from the messages sent by v, with v correct correct in round k and
all the players correct after round k;

38 3.3. ROUND COMPLEXITY

(b) If all other players are correct at round k, then there is a scenario σ′ ∈ C
equivalent to σ, which is identical to σ through round k except from the
messages sent by v, with v hidden at round k and all the other players correct
after round k;

These two properties imply that any two scenarios, which have all processors cor-
rect at the first round, except from the dealer (who may be corrupted or may not)
are equivalent. The reason is that there is an equivalent scenario, for both, with the
dealer hidden and all the other players correct during the whole procedure. Since
all processors behave correctly in the whole procedure, the initial two scenarios
must, also, be equivalent. At last, due to the definition of C, where all scenarios
which belong to C can have at most one corrupted player (the dealer) in the first
round, the above properties imply that C is a single equivalence class, which is
a contradiction, because there are scenarios, where all correct players decide on 0
and scenarios, where all correct players decide on 1.

Note that if a player is hidden at round k, then changing the messages he receives
in round k cannot affect the views of other players.

By correcting a message of a player we mean that we change the message to be
compatible with a given correctness rule R. In short, we will show by induction
that we can correct any player at any round or hide any player if all the others
are correct in this round, and the resulting scenario will be in C and equivalent
to the initial scenario. The changes we are going to do will only be to messages
transmitted by the particular player in a certain round and to messages at later
rounds.

Proof of Claim.

Let k = t

(a) Let v be a corrupted player at round k of scenario σ ∈ C . We observe that
if we correct one message of v at a time, then there is always a correct player
who has the same view as before because t < n − 1. Thus every individual
change/correction preserves equivalence with σ. This means that after all the
changes the resulting scenario σ′ is equivalent to σ. The correct players remain
correct and thus σ′ ∈ C. Since all changes were only made to the messages
sent by v, in the final result σ′, v is correct and all other players are trivially
correct after the last round.

(b) Let v be a player at round k of scenario σ ∈ C and let all other players at
round k be correct. Proceeding as in (a), we change every message e sent by
v to e =⊥ (remove message e), one at a time. Here we may change v from
correct to corrupted but since there were no other corrupted players in round

CHAPTER 3. LIMITS OF ACHIEVING BROADCAST 39

k membership in C is preserved (by replacing the k-th position of the critical
sequence with v, i.e. ck = v). The rest of the argument is the same as in (a).

We assume that the two properties (a) and (b) hold for all rounds after k and we
will prove that they hold for round k as well.

(a) Assume that v is a corrupted player at round k in history σ ∈ C. The fol-
lowing steps will preserve membership in C, equivalence to σ and change only
messages sent by v in round k and messages at later rounds.

1. Correct all players after round k, which we can do and still remain in C,
because of induction hypothesis (a);

2. While there are still incorrect messages sent by v in round k do

i. Replace ck+1 = s, where s is a receiver of an incorrect message e of v;

ii. Hide s at round k+1, which can be done and still remain in C, because
of induction hypothesis (b);

iii. Correct message e, which can be done and still remain in C, because
some correct player will still have the same view as before the change;

iv. Correct all players at round k + 1 (induction hypothesis (a));

End

Since we have corrected v and all other players after round k with “legal”
changes the resulting scenario σ′ belongs to C and is equivalent to σ.

(b) Assume that in scenario σ ∈ C all players are correct at round k. Let v be a
player. Then:

1. Correct all players at round k + 1, which we can do and still remain in C,
because of induction hypothesis (a);

2. Replace ck = v;

3. While there are messages sent by v do:

i. Replace ck+1 = s, where s is a receiver of a message e of v;

ii. Hide s at round k + 1, which we can do and still remain in C, because
of induction hypothesis (b);

iii. Remove e (set e =⊥), which we can do and still remain in C, because
some correct player will still have the same view as before the change;

iv. Correct all players after round k, which we can do and still remain in
C, because of induction hypothesis (a);

End

40 3.3. ROUND COMPLEXITY

4. Hide the player with label v at round k + 1, which we can do and still
remain in C, because of induction hypothesis (b);

Since we have hidden v and corrected all other players after round k, with
’legal’ changes the resulting scenario σ′ belongs to C and is equivalent to σ
.

Following this procedure we have managed to show that all scenarios in C are
equivalent to any scenario, with hidden dealer and all the other players correct.
Consequently, C is a single equivalence class, which is a contradiction to the def-
inition of C . Thus, there is no deterministic Broadcast protocol with less than
t+ 1 rounds.

Chapter 4

Broadcast in Generic and
Wireless Networks

So far, we have considered the Broadcast problem only in complete graphs. For
complete graphs with n nodes, we showed in Theorem 3.1 that Broadcast can be
achieved if and only if n > 3t. In this section, we consider the Broadcast problem
in generic network graphs. We characterize exactly the topological restriction un-
der which the problem is solvable by giving a lower bound on the connectivity of
a graph. We present protocols that achieve Broadcast under this restriction, thus
proving that the lower bound is tight. Moreover we present studies on stronger
topological restrictions under which more efficient Broadcast protocols can be com-
posed.

4.1 Connectivity Lower Bound

Observation. First, if the network graph is a tree with n nodes where n ≥ 3, we
cannot hope to achieve Broadcast even in the presence of one corrupted player, for
any corrupted player that is not a leaf could essentially “disconnect“ the players
in one part of the tree from the processes in another. The honest players in
different components would not even be able to communicate reliably, much less
reach agreement. Similarly, it should be plausible that if t nodes can disconnect
the graph, then achieving Broadcast is impossible in the presence of t corrupted
players.

To formalize this intuition, we use the following notion from graph theory. The
connectivity of a graph G, conn(G), is defined to be the minimum number of

41

42 4.1. CONNECTIVITY LOWER BOUND

nodes whose removal results in either a disconnected graph or a trivial 1-node
graph. Graph G is said to be c-connected if conn(G) ≥ c. We use a classical
theorem of graph theory known as Menger’s Theorem.

4.1 Theorem (Menger’s Theorem). A graph G is c-connected if and only if every
pair of nodes in G is connected by at least c node-disjoint paths.

We also denote a graph by G = (V , E) where V is the set of nodes and E is the set
of edges of the form (v, u) included in the graph G. Now we can characterize those
graphs in which it is possible to achieve Broadcast in presence of a given number of
corrupted players t. The characterization is in terms of both the number of nodes
n in the graph and the connectivity conn(G). The proof of the impossibility part
of the characterization uses methods similar to those used in Section 3.1 to prove
the lower bound for the number of corrupted players.

4.2 Theorem. The Broadcast problem can be solved in an n-node network graph G,
tolerating t corrupted players, if and only if both the following hold:

1. n > 3t

2. conn(G) > 2t

Proof.
The necessity of the resiliency condition (n > 3t) is obvious. Simply assume
that there is an algorithm which achieves Broadcast in arbitrary networks (not
necessarily complete) even if n ≤ 3t. Then this algorithm could also be run in an
n-node complete graph contradicting Theorem 3.1.

We next prove the sufficiency of both conditions, namely that achieving Broadcast
is possible if n > 3t and conn(G) > 2t. Since G is 2t + 1-connected, Menger’s
Theorem, Theorem 4.1, implies that there are at least 2t + 1 node-disjoint paths
between any two nodes in G. It is possible to implement reliable communication
between any pair of honest players, vi and vj, by having vi send a message along
2t + 1 paths between itself and vj. Since there are at most t corrupted players,
the messages received by vj along a majority of these paths must be correct. Once
we have reliable communication between all pairs of correct players, we can solve
Byzantine agreement just by simulating any algorithm that solves the problem
in an n-node complete graph since n > 3t. Implementation of the above idea is
explicitly given in Section 4.2.

We now show that achieving Broadcast is possible only if conn(G) > 2t. For
simplicity we argue the case where t = 1.

CHAPTER 4. BROADCAST IN GENERIC AND WIRELESS NETWORKS 43

vu

G0

G2

(a) Network G′

v0

v1

v2

v3

(b) Network G

v0

v1

v2

v3

(c) Network G′′

Figure 4.1: Networks with connectivity 2.

Assume there is a network G with conn(G) ≤ 2, in which Broadcast can be
achieved in the presence of one corrupted player, using algorithm A. Then there
are two nodes in G that either disconnect G or reduce it to one node. But if
they reduce it to one node, it means that n = 3, t = 1 in which case Broadcast
is impossible. So we can assume that the two nodes disconnect G into subgraphs
G1, G2 as shown in Figure 4.1(a).

For simplicity we study the case where the network G is of the form shown in
Figure 4.1(b). In the general case nodes v0, v2 might be replaced by arbitrary
connected subgraphs and there might be several edges between each of processes
v1 and v3 and each of the two connected subgraphs but the proof is similar to the
one given. Also the link between v1 and v3 could also be missing, but impossibility
of achieving Broadcast in G = (V , E) clearly implies impossibility in the subgraph
G′′ =

(
V , E \(v1, v3)

)
, due to the fact that an algorithm which solves the Broadcast

problem in G′′ could also be used to solve the problem in G.

We construct a system S by combining two copies of system G (meaning network
G executing algorithm A in a distributed manner). As in the proof of Lemma 3.1,
S with the given input assignment does exhibit some well-defined behavior. Again,
we will obtain a contradiction by showing that no such behavior is possible.

Specifically, for every player, we build an identical copy of it. Namely, for k ∈
{0, 1, 2, 3}, we build player v′k = vk+4 , which is identical to player vk.We connect
player vk mod 8 with players v(k+1) mod 8 and v(k−1) mod 8, ∀0 ≤ k ≤ 7. We also
connect nodes v1, v

′
1 with v3, v

′
3 respectively. We assume that v1 is the dealer in

system G. The proof is similar in the case of any of v0, v2, v3 being the dealer.
Suppose, wlog that v1 has input x1 = 0 and v′1 has input x′1 = 1 − x0 = 1; let σS
be the resulting scenario of S. The arrangement is shown in Figure 4.2.

We first consider the scenario σS from the point of view of players v0, v1 and v2.
To players v0, v1, v2, it appears as if they are running in system G, in an scenario
σG3 in which player v3 is corrupted (Figure 4.3). Since σG3 is a scenario of G in

44 4.1. CONNECTIVITY LOWER BOUND

v0

v1

v2
v3

v′0

v′1

v′2
v′3

S

0

10

1

0

1

Figure 4.2: System S

v0

v1

v2
v3

v′0

v′1

v′2
v′3

S

0

10

1

0

1

v0

v1

v2

v3

0

0

Figure 4.3: Scenarios σS and σG3 are indistinguishable to v0, v1 and v2

which only player v3 is corrupted and dealer v1 broadcasts the value 0, and since
G is assumed to solve the Broadcast problem, the validity condition implies that
player v2 must decide on value 0. Finally since σS is indistinguishable from σG3 to
v0, v1, v2 (with reasoning similar to the claim of Lemma 3.1), player v2 decides on
0 in σS as well. Namely the validity condition of Broadcast implies:

σS
v0∼ σG3 and σS

v1∼ σG3 and σS
v2∼ σG3 ⇒ decision(v2) = 0 (1)

Similarly, for the players v′0, v
′
1, v
′
2 and the scenario σG3 of G in which player v3 is

corrupted (Figure 4.4), implied by the validity condition of Broadcast we have,

σS
v′0∼ σG3 and σS

v′1∼ σG3 and σS
v′2∼ σG3 ⇒ decision(v′0) = 1 (2)

Finally, for the players v2, v3, v
′
0 and the scenario σG1 of G in which the dealer v1

is corrupted (Figure 4.5), implied by the consistency condition of Broadcast we
have,

CHAPTER 4. BROADCAST IN GENERIC AND WIRELESS NETWORKS 45

v0

v1

v2
v3

v′0

v′1

v′2
v′3

S

0

10

1

0

1

v0

v1

v2

v3

1

1

Figure 4.4: Scenarios σS and σG3 are indistinguishable to v′0, v
′
1 and v′2

v0

v1

v2
v3

v′0

v′1

v′2
v′3

S

0

10

1

0

1

v0

v1

v2

v3

1

0

Figure 4.5: Scenarios σS and σG1 are indistinguishable to v2, v3 and v′0

σS
v2∼ σG1 and σS

v3∼ σG1 and σS
v′0∼ σG1 ⇒ decision(v2) = decision(v′0) (3)

Obviously relations (1), (2) and (3) yield a contradiction.

We can apply the same methodology to prove the theorem in the case of graph
G′, where G0 and G2 are connected subgraphs. We replace players v0, v2, v

′
0, v
′
2

with the subgraphs G0, G2, G
′
0, G

′
2 respectively where each G′i is an identical copy

of Gi, i ∈ {0, 1}; namely for every v ∈ Gi there is an identical v′ in G′i and if
(v, w) is an edge of Gi then so is (v′, w′) in G′i. For every player v ∈ G0 which is
connected with v3 in G′, we connect v with v′3 and v′ with v3 in S. In the same
way, for every player v ∈ G2 which in connected with v3 in G′, we connect v with
v3 and v′ with v′3 in S. For the players of G0, G2 originally connected with v1, we
connect them in a similar way with v1 and v′1 in S. To carry on the proof in the
resulting system S we work as before but instead of considering e.g. the view of
players v0, v1, v2 we consider the view of players v ∈ G0 ∪ {v1} ∪G2. System S of
this case is depicted in Figure 4.6.

46 4.2. SOLVING THE PROBLEM IN GENERIC NETWORKS

v1

v3

v′1

v′3

S

G0

...

G′0

...

G′2
...

...

G2

...

v′

v

· · ·

· ·
·...

Figure 4.6: System S in the case of t = 1.

In order to generalize the result to t > 1, we can use the same diagrams, with v1
and v3 replaced by I1 and I3 of at most t nodes each and v0, v2 by arbitrary sets
I0 and I2 of nodes. Removing all the nodes in I1 and I3 disconnects I0 and I2.
The edges of Figure 4.1(b) can now be considered to represent bundles of edges
between the different groups of nodes I0, I1, I2 and I3.

4.2 Solving the Problem in Generic Networks

We will next consider the design of Broadcast protocols in generic networks. Study-
ing the problem of Secure Message Transmission (SMT) as introduced in [DDWY93]
is essential in achieving Broadcast in incomplete networks. The protocol pre-
sented achieves Secure Message Transmission from any node to any other node
of a generic network provided that it is at least (2t+ 1)-connected. This protocol
is partially based on the classic Dolev’s protocol [Dol82]. In our case though, the
computational complexity is polynomial. Furthermore, we show how this protocol
can be executed in parallel in order to achieve secure transmission from any set of
nodes to any other set of nodes of the graph. Using the above techniques we show
that the protocol can be used as a subroutine for the simulation of any known pro-
tocol for complete networks. Combining the above with e.g. the protocol [GM98]
yields a protocol for generic networks which remains polynomial with respect to

CHAPTER 4. BROADCAST IN GENERIC AND WIRELESS NETWORKS 47

the three measures that we are interested in.

Essentially we present a reduction from the Broadcast problem in generic networks
to the problem in the complete network model. More specifically we construct a
protocol which takes as input a protocol solving the problem in complete networks,
and produces as output a protocol solving the problem in generic networks. The
following results has been first presented in the joint work of C.Litsas, A.Pagourtzis
and D.Sakavalas [LPS12].

Supplementary Notation

Thereafter the paths of the graph will be represented by strings of the form σi, pi ∈
V∗. The neighborhood of a node v will be denoted by N (v). Let σ ∈ V∗ and w ∈ V
then

� A player/node w participates in a path σ (w ∈ σ) if and only if

∃σ1, σ2 ∈ V∗ s.t. σ = σ1wσ2

� The set of prefixes of σ is the set

prefix(σ) = {σ1 ∈ V∗|∃σ2 ∈ V∗, σ1σ2 = σ}

� The order of w in string σ is defined to be

ordw(σ) =

{
|σ1| if σ = σ1wσ2, σ1, σ2 ∈ V∗
−1 if w /∈ σ.

The protocols (e.g. 2.1,2.6) that solve the problem in complete networks operate in
rounds. Every single round consists of two phases: the communication phase where
message are exchanged in parallel between nodes and the internal computations
phase where every node processes the information it has received. Typically a
Broadcast protocol as well as every protocol that involves communication between
participants is of the following form.

48 4.2. SOLVING THE PROBLEM IN GENERIC NETWORKS

4.1 Protocol : Secure Broadcast for Complete Networks

1. For round i = 1 to r, r ∈ N

(a) CommunicationPhase(Bi) :

(b) ComputationPhase(i)

2. ∀p ∈ P , p returns decision(p)

Note. Each CommunicationPhase(Bi) involves communication of the the pairs
in the set Bi ⊆ V × V. Namely,

CommunicationPhase(Bi) : vj transmits a message mi,j to uj,∀(vj, uj) ∈ Bi

and each ComputationPhase(i) involves internal computations performed by each
node individually.

In order to reduce the problem of Broadcast in general networks to the problem in
complete networks we propose a sub-protocol to simulate authenticated message
transmission between any two nodes of the network. Next we present a protocol
that implements the above task:

4.2 Protocol : 2-node transmission

Input: Nodes v, u and security parameter t.

Objective: Authenticated transmission of message m from v to u.

1. If u ∈ N (v) then node v sends the message m to node u which decides on
this value.

2. Else

(a) Every node w ∈ V calculates the same set P = {p1, p2, . . . , p2t+1} of
2t+ 1 disjoint paths from v to u (valid paths).

Every node w ∈ V \ u stores at most one single path pw ∈ P , which is
the one that contains its name. Node u stores the set P of valid paths.

CHAPTER 4. BROADCAST IN GENERIC AND WIRELESS NETWORKS 49

(b) Round 0 : v sends the message mv = (m, v) to every one of his neigh-
bors that happens to be a starting node of one of the disjoint paths of
P .

(c) For i = 1 . . .maxp∈P |p|
Round i : Every node w ∈ V \ {v, u} with pw 6= ∅ that received
messages in round (i− 1) performs (all nodes in parallel):

If w received in the previous step the message mx = (m′, σx) from
node x, s.t. (

σxw ∈ prefix(pw)
)
∧
(
ordw(pw) = i

)
then w creates a new message mw = (m′, σxw) and relays it to the next
node in pw.

(d) Node u finds the majority of the values he received through valid paths.
If there are at least t+ 1 identical values (absolute majority) he decides
on this value. If the majority is less than t+ 1 (relative majority) then
u decides on a default value ⊥.

For the calculation of the common set P , every node should execute an appropriate
variation of the max-flow algorithm [AMO93] with the same input, thus also the
same output.

Finally, u receives at most 2t + 1 values from the disjoint valid paths. In case
that v is honest then given that there are at most t corrupted generals we get that
there are at least t + 1 paths consisting purely of honest generals. Consequently,
the majority of the received values is the message m. In every case the receiver
u will decide on the value that the transmitter v intended it to receive. Observe
that node u may decide on ⊥ only if v is corrupted.

Complexity

For the length of the longest computed path it holds that maxp∈P |p| ≤ n − 2t
because in the worst case each of the 2t paths may consist of one internal node;
thus the remaining path is possible to contain all the rest nodes of the graph.
Thus,

RC = max
p∈P
|p| ≤ n− 2t⇒ RC = O(n)

LetMw be the set of messages received by w during the protocol. Every message
sent from a node has length O(n log n) (contains the message and at most n− 2t
nodes that form the path). Each w ∈ V \ u receives a message at most once, since

50 4.2. SOLVING THE PROBLEM IN GENERIC NETWORKS

he only has to accept messages in round ordw(pw)− 1 from the node dictated by
pw. Similarly node u will receive a total of 2t + 1 messages. Thus the algorithm
has bit complexity,

BC =
∑
w∈V

∑
m∈Mw

|m| =
∑
w∈V\u

∑
m∈Mw

|m|+
∑
m∈Mu

|m| ≤

≤
∑
w∈V\u

n log n+ n log n(2t+ 1) ≤ n2 log n+ n log n(2t+ 1)⇒

⇒ BC = O(n2 log n)

The local computations complexity for each node is bounded by the complexity of
the algorithm used for the formation of the set P (essentially by the complexity
of the max-flow algorithm, i.e. O(n3)).

LCC = O(n3)

4.2.1 Simulation of the Communication Phase

As can be observed in protocol 4.1, given any protocol e.g. [GM98] that solves the
Broadcast problem in complete networks, it suffices to simulate its communica-
tion phase with a sub-protocol to obtain a solution in the generic network model.
This multiple authenticated message transmissions sub-protocol must guarantee
authenticated message transmission between every pair of the given set B corre-
sponding to each CommunicationPhase(B) and may be created by executing the
2-node protocol in parallel. Specifically we give a modification of protocol 4.2 that
operates in parallel for multiple sender-receiver pairs.

4.3 Protocol : Multi-node transmissions

Input: Set B of node-pairs and security parameter t.

Objective: Authenticated transmission between every pair in B.

1. For every (v, u) ∈ B

� If u ∈ N (v) then node v sends the message mv to node u which decides
on this value.
B := B \ (v, u)

CHAPTER 4. BROADCAST IN GENERIC AND WIRELESS NETWORKS 51

Precomputation

2. Initialize: P = ∅
For every (v, u) ∈ B

(a) Every w ∈ V computes the same set Pv,u of 2t + 1 disjoint paths con-
necting the pair (u, v)

(b) P := P ∪ Pu,v
Every node w ∈ V computes and stores the set Pw = {p ∈ P|w ∈ p}

Message Transmission

3. Round 0 : For every (v, u) ∈ B
v sends the message (mv, v) to every one of his neighbors that happens to
be a starting node of one of the disjoint paths of Pv,u.

4. For i = 1 . . .maxp∈P |p|
Round i : Every node w ∈ V with Pw 6= ∅ that received messages in round
(i− 1) performs (all nodes in parallel):

w accepts every message (m,σx) received from node x, provided that

∃p ∈ Pw s.t.
(
σxw ∈ prefix(p)

)
∧
(
ordw(p) = i

)
then w creates a new message (m,σxw) for every one of those messages and
relays it to the next nodes according to Pw.

Decision

5. For every (v, u) ∈ B
u finds the majority of the values he received through valid paths of Pv,u ⊂
Pu. If there are at least t+ 1 identical values (absolute majority) he decides
on this value for mv. If the majority is less than t + 1 (relative majority)
then u decides on a default value ⊥.

Observation. We can now simply replace the CommunicationPhase(B) of any
given protocol for complete networks, with the multi-node transmissions proto-
col 4.3 in order to obtain the corresponding solution for the problem in generic
networks.

52 4.2. SOLVING THE PROBLEM IN GENERIC NETWORKS

Complexity

Due to the parallel transmissions, in protocol 4.3, the number of rounds remains
at most n − 2t, but the bit complexity is now O(z · n2 log n), where z = |B|.
Finally, the local computations complexity of each node is O(z · n3) for the nodes
to compute the set of disjoint paths for every given pair.

Given a protocol for complete networks with round complexity r, bit complexity
b and local computations complexity c, after the simulation of the communication
phase we get a protocol for the generic network model with round complexity,

RC = O(r · (n− 2t))

due to the r executions of the multi-node transmissions protocol. Bit complexity,

BC = O(r · (n4 log n)) and BC = O(b · (n2 log n))

because of the r executions of the protocol 4.3, or b executions of protocol 4.2 for
b bits to be transmitted over pairs. Finally the local computations complexity will
be,

CC = O(c+ n5)

as the paths between every possible pair can be precomputed in the beginning of
the protocol and not in every round.

CHAPTER 4. BROADCAST IN GENERIC AND WIRELESS NETWORKS 53

4.3 Broadcast in Wireless Networks

A large class of applications involves wireless networks in which nodes possessing
radio transmitting/receiving devices are spread out on some physical surface (ter-
rain), and two nodes can communicate if there are within transmission range of
each other and signal interference is low. A common abstraction is to consider the
network as a graph, and assume that the following holds

Collision assumption Communication is possible if a node receives a message
from only one neighbor in a certain time-slot.

(a) Wireless Network

(b) Graph model

m

m′

(c) Collision (Red re-
ceives nothing)

The theoretical distributed algorithms community has only recently devoted at-
tention to wireless networks with adversarial behavior. The first such work is the

54 4.3. BROADCAST IN WIRELESS NETWORKS

2004 paper of Koo [Koo04] which studies the Broadcast problem, in which the at-
tention was restricted to very special graphs: those in which nodes are arranged in
the integer grid and the neighborhood of every node consists of nodes at distance
r from it in one of the metrics L∞, L1 or L2. In [Koo04] a lower bound was estab-
lished on t for which broadcast is impossible. Bhandari and Vaidya [BV05] proved
Koo’s bound tight by exhibiting a matching algorithm. In 2006, Koo, Bhandari,
Katz, and Vaidya [KBKV06] extend the model to allow for a bounded number of
collisions and spoofed addresses.

4.3.1 A protocol for wireless networks

We modify the protocol presented in the previous section in order to develop a
protocol especially designed for wireless networks. This modification has first been
presented in [LPS12].

Assumptions. We consider a wireless network which provides authenticated
communication between neighboring nodes and in which the collision assumption
holds. We also assume that all nodes are incapable of deviating from the given
transmission schedule imposed by the protocol. Finally we assume that there are
at least (2t+ 1) disjoint paths connecting D with v,∀v /∈ N (D).

D

m

m

m

m

We observe that the dealer D in a wireless network
is committed to behave honestly during the trans-
mission of his message m. This is due to the fact
that every message he transmits is received by all
v ∈ N (D). Since communication channels are au-
thenticated, every honest neighbor will correctly de-
cide on m.

Obviously, Byzantine Generals problem is simpli-
fied in wireless networks since the honesty of the
dealer yields a 1-round solution in a complete net-

work. Specifically, in this round D sends the message m to every player v and each
v accepts the value m that he receives. Therefore, in a generic wireless network
the problem reduces to every honest player correctly receiving the message of the
dealer. The transmission of the message to all the players can be achieved with
an appropriate modification of the multi-node transmissions protocol.

CHAPTER 4. BROADCAST IN GENERIC AND WIRELESS NETWORKS 55

4.4 Protocol : Wireless Broadcast

Input: Dealer node D and security parameter t.

Objective: Secure Broadcast of D’s message.

Precomputation

1. Initialize: P = ∅
For every v ∈ V \ N (D)

(a) Every w ∈ V computes the same set Pv of 2t + 1 disjoint paths con-
necting the pair (D, v)

(b) P := P ∪ Pv
Every node w ∈ V computes and stores the set Pw = {p ∈ P|w ∈ p}

Message Transmission

2. Phase 0: D transmits (m,D) to every w ∈ N (D).
Each w ∈ N (D) decides on value m.

3. For i = 1 . . .maxp∈P |p|
Phase i : Every node w ∈ V with Pw 6= ∅ that received messages in round
(i− 1) performs (all nodes in parallel):

(i) General w accepts every message (m′, σx) received from node x, pro-
vided that

∃p ∈ Pw s.t.
(
σxw ∈ prefix(p)

)
∧
(
ordw(p) = i

)
(ii) w creates message mj

w = (m′, σxw) for each accepted message.

(iii) Finally he concatenates all messages mj
w in a single message mw and

transmits mw to every v ∈ N (w).

Decision

4. For every w ∈ V \ N (D)
w finds the majority of the values he received through valid paths of Pw ⊆ Pw.
If there are at least t + 1 identical values (absolute majority) he decides on
this. If the majority is less than t + 1 (relative majority) then u decides on
a default value ⊥.

56 4.3. BROADCAST IN WIRELESS NETWORKS

Below we give an example to illustrate the Wireless Broadcast protocol.

4.1 Example. Commander D broadcasts message m and player v1 is corrupted.
Each v ∈ V precomputes the the sets of disjoint paths P4, P5.P6.

D v2

v3

v4

v1

(m
,D

)

(m
,D
)

(m,D)

v5

v6

P4 = {Dv1v4, Dv2v4, Dv3v6v4},

P5 = {Dv1v5, Dv2v4v5, Dv3v6v5},

P6 = {Dv1v4v6, Dv2v6, Dv3v6}

Initially D transmits (m,D) to all v ∈ N (v).

1st phase: Generals v1, v2, v3 accept value m they received from dealer and each
transmits in a separate round (m′, Dv1), (m,Dv2), (m,Dv3) respectively.

2nd phase: According to the computed paths, player v4 transmits
(m,Dv2v4)||(m′, Dv1v4) in order for v5, v6 to receive messages m,m′ respectively.
Similarly v6 transmits (m,Dv3v6).

3rd phase: Finally players v4, v5, v6 compute the majority(m,m,m′) = m, of the
messages received through valid paths (P4, P5, P6) and decide on value m.

� presented below

Observations

� In the wireless network model there is no need for the classic bounds for
resiliency (t < n/3) and connectivity (t < k/2) to hold. Instead, the con-
nectivity bound can be replaced by the weaker assumption that there are at
least (2t+ 1) disjoint paths connecting D with v,∀v ∈ V \ N (D).

The necessity of this assumption, in the case we want to avoid further trans-
mission of messages between pairs of players (which would increase the num-
ber of rounds significantly), is guaranteed by the results of [DDWY93].

� Due to the collision assumption each player must transmit in a separate
round. In order to minimize the number of rounds, each player w concate-
nates all messages to be relayed by him (of those he received in the previous
phase) and transmits them to N (w) with a single transmission.

CHAPTER 4. BROADCAST IN GENERIC AND WIRELESS NETWORKS 57

� The space requirements for each node w include the storage of the set Pw,
for which we observe that,

|Pw| ≤ (n− |N (D)| − 2) + (2t+ 1) ≤ n− 2⇒ |Pw| = O(n)

because node w will store at most one path for each v ∈ V \ (N (D) ∪D ∪ w)
and 2t+ 1 in which it is the last node.

Complexity

As before, maxp∈P |p| ≤ n − 2t phases are needed for the messages to be relayed
over the longest possible paths. Each phase i includes rounds(i) number of rounds
for all the players that need to relay a message to transmit. In conclusion:

RC =

maxp∈P |p|∑
i=1

rounds(i) ≤
n−2t∑
i=1

rounds(i) ≤
n−2t∑
i=1

n =

= n · (n− 2t)⇒ RC = O(n2)

Let Mv be the set of messages received by v during the protocol, then

BC =
∑
v∈V

∑
m∈Mv

|m|
∗
≤
∑
v∈V

∑
m∈Mv

n2 log n
∗∗
≤
∑
v∈V

n3 log n =

= n4 log n⇒ BC = O(n4 log n)

(∗) In the worst case every concatenated message player w receives will contain
one sub-message for every other player; therefore ∀m, |m| ≤ n2 log n.
(∗∗) In total, player w will accept |Pw| messages, thus |Mv| ≤ n.

Finally The internal computational complexity for each node is bounded by the
complexity of the modified max-flow algorithm used for the computation of disjoint
paths between the n− 2t− 2 pairs (D, v)v∈V\N (D),

CC = O(n4)

58 4.3. BROADCAST IN WIRELESS NETWORKS

Chapter 5

Broadcast with Locally Bounded
Adversary

Considering topological restrictions on the adversary’s corruption capacity is of
great importance in the study of protocols in incomplete networks. As is naturally
expected, if we forbid the adversary to corrupt sets of players with certain proper-
ties then we can design protocols tolerating more corruptions than implied by the
impossibility theorem. Moreover, as we will see later, if the restrictions involve
only local conditions for every node, they imply local criteria which the players
can use in order to achieve Broadcast in networks of unknown topology.

t - Locally Bounded Adversary. Such an example is the t-locally bounded
adversary model, introduced in [Koo04], in which at most t-corruptions are allowed
in the neighborhood of every node (hereafter N (v) will denote the neighborhood
of node v including itself). Namely

∀v ∈ V , |N (v) ∩ T | ≤ t

Previous work on Broadcast in the t-locally bounded model has focused in the
case when the dealer is honest. Specifically in [Koo04] the attention was restricted
to very special wireless network graphs: those in which nodes are arranged in the
integer grid and the neighborhood of every node consists of nodes at distance r
from it in one of the metrics L∞, L1 or L2. The Certified Propagation Algorithm
(CPA) was first proposed by Koo for the solution of the problem. In 2005 Pelc
and Peleg [PPP05] considered the t-locally bounded model in generic graphs and
proved an upper bound for the number of corrupted players t that can be tolerated
in order to achieve Broadcast. In the latter paper, the writers also considered
the CPA protocol of [Koo04] and proved a sufficient topological condition for

59

60

the protocol to achieve Broadcast in generic networks, leaving the deduction of a
necessary condition as an open problem.

We will first focus in the Broadcast problem with an honest Dealer in order to
emphasize the topological conditions which render the problem solvable.

Terminology and Definitions

As we saw before in section 4.2, due to the structure of an incomplete network,
the players may decide on the required value in different rounds unlike the most
complete network Broadcast solutions given. For this reason we classify nodes at
various stages during the execution into three classes:

5.1 Definitions. (Node Classes)

Uninformed: The node did not get the message yet.

Received: The node has received the message (possibly in a number of copies and
with a number of conflicting values) but cannot ascertain its correct value yet.

Accepted: The node has received the message and has ascertained its correct value
(has decided on a value).

5.2 Definition (Safe Algorithm). We call a Broadcast algorithm safe, if it never
causes a node to accept an incorrect message.

Note that a safe algorithm might still fail, particularly by not delivering the mes-
sage to all the nodes of the network. These notions are made precise below.

5.3 Definition (t - Local Set). A set W of nodes is t-local if it contains at most t
nodes in each neighborhood, i.e., |W ∩N (v)| ≤ t, ∀v ∈ V.

5.4 Definition (t - Locally Safe Algorithm). A Broadcast algorithm with dealer D of
graph G is t-locally safe, if it never causes a node to accept an incorrect message
under any t-local set of corrupted nodes.

5.5 Definition (t-Locally Resilient Algorithm). A Broadcast algorithm with Dealer
D of graph G is t-locally resilient if it achieves Broadcast under any t-local set of
corrupted players.

CHAPTER 5. BROADCAST WITH LOCALLY BOUNDED ADVERSARY 61

5.1 Impossibility of t-Locally Resilient Broadcast

In order to establish a lower bound on t for which there is no t -locally resilient
algorithm, we need the following notions. First, in a graph G = (V , E), a cut
C ⊆ V is a set of nodes whose removal disconnects the graph G(V \C,E ′) induced
by the remaining nodes into (at least) two components.

5.6 Definition (t - Local Pair Cut). A cut C ⊆ V in a graph G is a t -local pair cut
if C can be partitioned into two disjoint sets C = C1 ∪C2 such that C1 and C2 are
t -local.

5.7 Definition (LPC). The local pair connectivity of a graph G, denoted LPC(G),
is the smallest nonnegative integer t such that G has a t-local pair cut.

We next give an upper bound for the number of corruptions in order for the
Broadcast problem in the t-locally bounded model to be solvable.

5.1 Theorem (Pelc, Peleg 2005). For every graph G and integer t ≥ LPC(G), there
is no t-locally resilient Broadcast algorithm on G.

Proof.
Suppose that Π is a t -locally resilient Broadcast algorithm on G for t = LPC(G).
Consider a t-local pair cut C = C1 ∪C2 and let D (the dealer) and v be nodes on
two sides of the cut C (G′ and G′′ respectively). We show that Π does not allow v
to correctly accept a message from D in all scenarios, which contradicts its t-local
resiliency.

Consider the following two scenarios σ1 and σ2 of Π. In σ1 the initial value of
D is 1 and the corrupted nodes are precisely those in C1. In each step t ≥ 1 of
scenario σ1, every node in C1 performs the action that it is instructed to perform
in step t of scenario σ2 (where it is honest). In σ2 the initial value of D is 2 and
the corrupted nodes are precisely those in C2. In each step t ≥ 1 of scenario σ2 ,
every node in C2 performs the action that it is instructed to perform in step t of
execution σ1 (where it is honest). It follows that all nodes which are on the same
side of the cut as v perform identical actions in scenarios σ1 and σ2 of Π. Actually
we have that

∀v ∈ G′′, σ1 v∼ s2 ⇒ decisionv(σ1) = desicionv(σ2)

Hence v decides on the same value in σ1 and σ2, which cannot be correct in both
scenarios (validity is violated in one of them), since D sends different messages in
each of them.

62 5.2. FEASIBILITY OF T-LOCALLY RESILIENT BROADCAST

In the work of Ichimura and Shigeno [IS10], the writers extend the results of [PPP05].
The following theorem indicates the difficulty of computing the parameter LPC(G)
for a graph G.

5.2 Theorem (Ichimura, Shigeno 2010). Computation of LPC(G) is NP-hard

Proof.
We use reduction of the SET SPLITTING PROBLEM, known as NP-hard [GJ79]
to the problem of computing the parameter LPC(G) for a graph G.

SET SPLITTING PROBLEM : Given a collection S of 3-element subsets of a finite
set X, decide whether there is a partition of X into two subsets X1 and X2 such
that no subset in S is entirely contained in either X1 or X2.

Let S+ be the collection that results after adding dummy subsets {v} to S such
that the cardinality of {s ∈ S+|v ∈ s} is at least six for each v ∈ X. A complete
graph with node set S+ and a copy of it are denoted by KS+ and K ′S+ , respectively.

We construct a graph GSSP with node set and edge set respectively,

V (GSSP) = V (KS+) ∪ V (K ′S+) ∪X
E(GSSP) = E(KS+) ∪ E(K ′S+) ∪ {(v, s), (v, s′)|v ∈ X, s ∈ S+, v ∈ s}

where s′ is a node in V (K ′S+) which is a copy of s ∈ S+.

If a subgraph of GSSP deleting C ⊆ V (GSSP) has at least two connected compo-
nents and X \C 6= ∅, then C contains N (v)∩V (KS+) or N (v)∩V (K ′S+) for some
v ∈ X. Since each v ∈ X has at least six neighbors in both V (KS+) and V (K ′S+),
C is a t-local pair cut with t ≥ 3.

We next consider the case of C = X. We can partition X into two 2-local sets in
GSSP , if and only if the set splitting problem has the desired partitions. Therefore,
we have LPC(GSSP) = 2, if and only if the set splitting problem has a desired
partition.

5.2 Feasibility of t-Locally Resilient Broadcast

For positive results, the Certified Propagation Algorithm of [Koo04] is one of the
simplest Broadcast algorithms which is the only algorithm known, to the best of

CHAPTER 5. BROADCAST WITH LOCALLY BOUNDED ADVERSARY 63

our knowledge, that does not use any global knowledge of the network topology.
CPA works as follows:

5.1 Algorithm : Certified Propagation Algorithm (CPA)

1. The dealer D sends its initial value xD all of its neighbors, decides on xD
and terminates.

2. If a node is a neighbor of the source, then upon receiving the message xD
from the dealer, decides on xD, sends it to all of its neighbors and terminates.

3. If a node is not a neighbor of the source, then upon receiving t+ 1 copies of
a message m from t+ 1 distinct neighbors, it accepts m, sends it to all of its
neighbors and terminates.

Observation. Notice that, since the adversary is t-locally bounded, a message
sent by an honest node is always correct. Thus the above protocol is t-locally safe.
The problem is, of course, that some nodes may not get the message at all, and
moreover, some may get too few copies of the message, rendering them unable to
guarantee its correctness and thus preventing them from forwarding it.

We will now present a class of graphs for which CPA is t-locally resilient. As
proven in [PPP05] the condition defining the class is sufficient but not necessary.
For a graph G = (V , E), a given dealer D ∈ V and node v ∈ V , let X(v,D) denote
the number of nodes w ∈ N (v) that are closer to D than v. Namely,

X(v,D) =
∣∣{x ∈ N (v) | d(D, x) < d(D, v)}

∣∣
where d(v, w) is defined to be the length of the shortest path connecting nodes v
and w. Also, let

X (G,D) = min{X(v,D) | v ∈ V , (v,D) /∈ E.}

The following proposition establishes an upper bound on t for which CPA is t-
locally resilient.

5.3 Proposition. For every graph G, dealer D and integer 0 ≤ t < X (G,D)/2, CPA
is t-locally resilient.

64 5.2. FEASIBILITY OF T-LOCALLY RESILIENT BROADCAST

Proof.
Consider a graph G with dealer D and let 0 ≤ t < X (G,D)/2. The proof is
by contradiction. Suppose that the Certified Propagation Algorithm does not
work correctly under some t-local corruption pattern. Since CPA is safe, the
incorrectness must be due to the fact that some node v does not accept the dealer’s
message xD. Let v be the closest such node to the dealer. In N (v) there are at
least 2t + 1 nodes closer to D than v. By the choice of v all of them accept xD
at some point. Since at most t of these nodes can be corrupted, the rest of them,
i.e., at least t + 1 nodes send the message xD to v. Hence v accepts the message
xD, contrary to the assumption.

To prove that the condition 0 ≤ t < X (G,D)/2 is not necessary for CPA to be
t-locally resilient, consider the following example of a graph G with X(G) = 1 and
for which CPA is 1-locally fault-tolerant.

5.1 Example.

For graph G, its set of nodes is partitioned into five disjoint groups G1, . . . , G5,
where |G1| = 1, |G2| = |G5| = 2, and |G3| = |G4| = 3. Also let the dealer
D ∈ G2. The edges of the graph form complete bipartite graphs (Gi, Gi+1) for any
i ≤ 4, and a complete bipartite graph (G5, G1). There are no other edges. (See
Figure 5.1)

G1

G5 G2

G3G4

Dv

Figure 5.1: The graph G

Notice that X (G,D) = 1. This is witnessed by the fact that X(v,D) = 1 for
v ∈ G5. If we execute CPA in G with dealer D. Then the nodes in G1 and in G3

accept the dealer message xD as neighbors of D. There is at most one faulty node
in G3. Hence every node in G4 and the non-dealer node in G2 gets 2 copies of xD
and thus it accepts xD and sends it to all neighbors. Finally nodes in G5 receive
at least to copies of xD from the two honest players of G4 and thus accepts.

CHAPTER 5. BROADCAST WITH LOCALLY BOUNDED ADVERSARY 65

�

The condition given 0 ≤ t < X (G,D)/2 of [PPP05] implies that the nodes of the
graph should be divided in layers w.r.t. their distance from the dealer (level 1
being the neighborhood of D). If this certain conditions holds then every node
in distance k (level k) decides in the k - th round, because it is certain to receive
t + 1 correct values from honest nodes in the previous level. But as seen in the
previous example, the situation could be different, namely, a node in level k may
collect t+ 1 messages with the same value, from levels in greatest distance than k
from the dealer.

5.2.1 A Better Topological Parameter for CPA Broadcast

In [IS10], the writers introduced a new parameter for the feasibility of t-resilient
CPA Broadcast. We present a parameter similar to that of [IS10], which seems
simpler and more intuitive. The study presented next is a result of the join work
of C.Litsas, A.Pagourtzis and D.Sakavalas. Considering the way that CPA works
and the previous example we can generalize the previous topological restriction
in order to obtain a better one for CPA to be t-locally resilient. Since CPA is
trivially t-locally safe, it remains to introduce a condition that ensures that every
node v ∈ V accepts a message. It is easy to see that in order for the dealer’s
message to be relayed further in the graph, there should be at least one player in
every round r > 2 which has at least t + 1 honest accepted neighbors. Since the
adversary is t-locally bounded, if there is at least one player in every round r > 2
which has at least 2t + 1 accepted neighbors, then t + 1 of them will be honest.
The situation is depicted in Figure 5.2. We formalize the latter notions below by
introducing the notion of the l-neighboring sequence of sets Si.

The l-neighboring sequence of a graph G = (V , E) for a given dealer-node D is the
following sequence Si

S1 =N (D)

S2 =S1 ∪ {v ∈ V : |N (v) ∩ S1| ≥ l}
...

Sk =Sk−1 ∪ {v ∈ V : |N (v) ∩ Sk−1| ≥ l}
...

Also let
X̃ (G,D) = max{l ∈ N|∃k ∈ N, s.t. Sk = V}

66 5.2. FEASIBILITY OF T-LOCALLY RESILIENT BROADCAST

· · ·
S1

...
S2

Sk

D

2t+ 1

v1 v2t+1

vn

· · · · · ·

Figure 5.2

5.4 Theorem. For every graph G, dealer D and integer 0 ≤ t < X̃ (G,D)/2, CPA is
t-locally resilient.

Proof.
Observe that 2t < X̃ (G,D) ⇒ ∃k ∈ N, s.t. Sk = V for the (2t + 1)-neighboring
sequence Si. Let kmin = min{k ∈ N|Sk = V}. It suffices to show that for i ≤ kmin,
every v ∈ Si accepts the dealer’s message xD. By induction on i:

For all honest v ∈ S1 = N (D), v accepts xD due to the CPA steps 1 and 2.
If for all honest v ∈ Sm, v accepts xD at some round, then every honest v ∈ Sm+1

receives |Sm ∩ N (v)| ≥ 2t + 1 messages from his accepted neighbors in Sm, t + 1
of which are honest. Thus he decides on xD.

The following proposition shows that parameter X̃ (G,D) is more efficient than
X (G,D) for the upper bound on t for which CPA is t-locally fault-tolerant.

5.5 Proposition. For any graph G with dealer D, X̃ (G,D) ≥ X (G,D) holds.

Proof.

CHAPTER 5. BROADCAST WITH LOCALLY BOUNDED ADVERSARY 67

Assume X̃ (G,D) < X (G,D) for a graph G = (V , E) and dealer D. Then for
l = X (G,D), it holds that

X(v,D) ≥ l, ∀v ∈ V
and @k ∈ N, s.t. Sk = V for the l-neighboring sequence Si of G and dealer D.

Consider the l-neighboring sequence for G and dealer D,

S1 =N (D)

S2 =S1 ∪ {v ∈ V : |N (v) ∩ S1| ≥ l}
...

Sk =Sk−1 ∪ {v ∈ V : |N (v) ∩ Sk−1| ≥ l}
...

Claim. ∀v ∈ V with distance d(v,D) = i it holds that v ∈ Si
By induction on the distance i we have:
For i = 1, trivially. For i = 2 every v with distance d(v,D) = 2 has X(v,D) ≥ l,
thus |N (v) ∩ S1| = |N (v) ∩N (D)| ≥ l since every neighbor of v closer to D than
v is in N (D). Thus it holds that v ∈ S2.

Assume that the claim holds for i = k, namely, ∀v ∈ V with d(v,D) = k, v ∈ Sk.
Then for every v ∈ V with d(v,D) = k + 1 it holds that X(v,D) ≥ l. For all
w neighbors of v closer to D than v it holds that d(w,D) = k ⇒ w ∈ Sk, thus
|N (v) ∩ Sk| ≥ l⇒ v ∈ Sk+1.

The above claim immediately implies the result, namely if the graph is connected
then ∃k ≤ maxv∈V d(v,D). s.t. Sk = V , which yields a contradiction.

If the graph is not connected then X̃ (G,D) = X (G,D) = 0.

The parameter X̃ (G,D) also establishes a lower bound on t for which CPA does
not work correctly under any t-local set of corrupted players.

5.6 Theorem. For any graph G with t ≥ X̃ (G,D), CPA is not t-locally resilient.

Proof.
Assume that CPA is t-locally resilient, where t ≥ X̃ (G,D).

Let X̃ (G,D) and Sk be the (t+1)-neighboring sequence of G, with dealer D. Since

X̃ (G,D) = max{l ∈ N|∃k ∈ N, s.t. Sk = V} and t + 1 > X̃ (G,D), it holds that
there exists v ∈ V for which

@k ∈ N s.t. |N (v) ∩ Sk| ≥ t+ 1⇒ |N (v) ∩ Sk| ≤ t, ∀k ∈ N. (5.1)

68 5.3. CONCLUSIONS

We will use the following claim to reach a contradiction,

Claim. Let Ai be the set of accepted players in the end of round i, then for every
round i, ∃k ∈ N, s.t. ∀w ∈ Ai, w ∈ Sk.
(Induction on the number of rounds)
i = 1 : For each w ∈ A1, it holds that w ∈ N (D)⇒ w ∈ S1.

Assume that in round i = r, it holds that ∃k ∈ N, s.t. ∀w ∈ Ar, w ∈ Sk.

For every w ∈ Ar+1, either w ∈ Sk (accepted players of previous round), either w
received at least t+1 identical messages from accepted players of previous rounds.
In the second case we have that

|N (w) ∩ Sk| ≥ t+ 1⇒ w ∈ Sk+1.

Since CPA is t-locally resilient, player v accepts a message at some point; this
means that v received at least t + 1 identical messages from accepted distinct
neighbors. Using the previous claim we deduce that

∃k ∈ N, s.t. |N (v) ∩ Sk| ≥ t+ 1

which contradicts the statement 5.1.

The parameter X̃ (G,D) provides us with upper and lower bounds on t for which

CPA is t-locally resilient. Theorems 5.4 and 5.6 imply that X̃ (G,D) approximates
the largest t such that CPA is t-locally resilient within a factor of two.

5.3 Conclusions

Dealer Corruption

The t-locally bounded model, as presented in this chapter is easy to generalize in
the case of a corrupted Dealer, simply by simulating the communication phase of a
Broadcast protocol for complete networks. The simulation can be achieved using a
combination of one-to-all transmissions implemented with CPA. Specifically there
are efficient protocols for complete networks such as Protocol 2.6 presented in
previous chapter, which only use one-to-all transmissions for the communication
of the players. To modify such protocols in order to achieve Broadcast in the t-
locally bounded model, it suffices for each player to run CPA as dealer, whenever
he transmits a message to all the other players in the original protocol.

CHAPTER 5. BROADCAST WITH LOCALLY BOUNDED ADVERSARY 69

Knowledge of the Topology

Since CPA does not use any global knowledge of network topology, the results
presented hold regardless of whether the topology of the network is known or if
the network is ad-hoc. CPA is the only Broadcast algorithm we know that does
not use any global knowledge of the network topology. Since 2005, it remains an
open problem to prove that the CPA algorithm is “unique” on ad-hoc networks,
in the sense that for any t-local corruption set, if some other rule works then so
does CPA.

Knowledge of topology turns out to be essential in the context of Broadcast pro-
tocols. The separation between broadcast algorithms knowing the topology of the
network and ad hoc algorithms is evidenced by the result of [PPP05] that there
exists a graph for which some 1-locally resilient algorithm exists, if the knowledge
of the graph is assumed but no such algorithm exists otherwise.

Wireless Networks

Results presented on the feasibility of t-locally resilient Broadcast apply in the
wireless network model as well. In particular, in order to avoid collisions in the
wireless model, all nodes must transmit separately in different rounds. As before,
in the wireless model we need the assumption that the behavior of corrupted nodes
is restricted to the content of messages and cannot affect the schedule (otherwise a
corrupted node might create constant noise, thus preventing all nodes in its neigh-
borhood from receiving the source message). An interesting extension of the model
would be to increase the adversary’s capacities by allowing for a bounded number
of collisions and spoofed addresses. The latter was studied by Koo, Bhandari,
Katz, and Vaidya [KBKV06] in the special case of the grid network model.

70 5.3. CONCLUSIONS

Bibliography

[AMO93] Ravindra K. Ahuja, Thomas L. Magnanti, and James B. Orlin. Net-
work flows: theory, algorithms, and applications. Prentice-Hall, Inc.,
Upper Saddle River, NJ, USA, 1993.

[BG89] Piotr Berman and Juan A. Garay. Asymptotically optimal dis-
tributed consensus (extended abstract). In Giorgio Ausiello, Mari-
angiola Dezani-Ciancaglini, and Simona Ronchi Della Rocca, editors,
ICALP, volume 372 of Lecture Notes in Computer Science, pages 80–
94. Springer, 1989.

[BG91] Piotr Berman and Juan A. Garay. Efficient distributed consensus with
n = (3 + epsilon) t processors (extended abstract). In Sam Toueg,
Paul G. Spirakis, and Lefteris M. Kirousis, editors, WDAG, volume
579 of Lecture Notes in Computer Science, pages 129–142. Springer,
1991.

[BG93] Piotr Berman and Juan A. Garay. Cloture votes: n/4-resilient dis-
tributed consensus in t+1 rounds. Mathematical Systems Theory,
26(1):3–19, 1993.

[BGP89] Piotr Berman, Juan A. Garay, and Kenneth J. Perry. Towards optimal
distributed consensus (extended abstract). In FOCS, pages 410–415.
IEEE Computer Society, 1989.

[BNDDS87] Amotz Bar-Noy, Danny Dolev, Cynthia Dwork, and H. Raymond
Strong. Shifting gears: changing algorithms on the fly to expedite
byzantine agreement. In Proceedings of the sixth annual ACM Sympo-
sium on Principles of distributed computing, PODC ’87, pages 42–51,
New York, NY, USA, 1987. ACM.

[BNDDS92] Amotz Bar-Noy, Danny Dolev, Cynthia Dwork, and H. Raymond
Strong. Shifting gears: Changing algorithms on the fly to expedite
byzantine agreement. Inf. Comput., 97(2):205–233, 1992.

71

72 BIBLIOGRAPHY

[BV05] Vartika Bhandari and Nitin H. Vaidya. On reliable broadcast in a ra-
dio network. In Marcos Kawazoe Aguilera and James Aspnes, editors,
PODC, pages 138–147. ACM, 2005.

[Coa86] Brian A Coan. A communication-efficient canonical form for fault-
tolerant distributed protocols. In Proceedings of the fifth annual ACM
symposium on Principles of distributed computing, PODC ’86, pages
63–72, New York, NY, USA, 1986. ACM.

[Coa87] B. A. Coan. Achieving consensus in fault-tolerant distributed com-
puter systems: protocols, lower bounds, and simulations. PhD thesis,
Cambridge, MA, USA, 1987.

[CW93] Brian A. Coan and Jennifer L. Welch. Modular cosntruction of an
efficient 1-bit byzantine agreement protocol. Mathematical Systems
Theory, 26(1):131–154, 1993.

[DDWY93] Danny Dolev, Cynthia Dwork, Orli Waarts, and Moti Yung. Perfectly
secure message transmission. J. ACM, 40(1):17–47, 1993.

[DFF+82] Danny Dolev, Michael J. Fischer, Robert J. Fowler, Nancy A. Lynch,
and H. Raymond Strong. An efficient algorithm for byzantine agree-
ment without authentication. Information and Control, 52(3):257–
274, 1982.

[Dol82] Danny Dolev. The byzantine generals strike again. J. Algorithms,
3(1):14–30, 1982.

[DR85] Danny Dolev and Rüdiger Reischuk. Bounds on information exchange
for byzantine agreement. J. ACM, 32(1):191–204, 1985.

[DRS90] Danny Dolev, Rüdiger Reischuk, and H. Raymond Strong. Early
stopping in byzantine agreement. J. ACM, 37(4):720–741, 1990.

[DS83] Danny Dolev and H. Raymond Strong. Authenticated algorithms for
byzantine agreement. SIAM J. Comput., 12(4):656–666, 1983.

[FL82] Michael J. Fischer and Nancy A. Lynch. A lower bound for the time
to assure interactive consistency. Inf. Process. Lett., 14(4):183–186,
1982.

[GJ79] M. R. Garey and David S. Johnson. Computers and Intractability: A
Guide to the Theory of NP-Completeness. W. H. Freeman, 1979.

BIBLIOGRAPHY 73

[GM98] Juan A. Garay and Yoram Moses. Fully polynomial byzantine agree-
ment for n > 3t processors in t + 1 rounds. SIAM J. Comput.,
27(1):247–290, 1998.

[IS10] Akira Ichimura and Maiko Shigeno. A new parameter for a broadcast
algorithm with locally bounded byzantine faults. Inf. Process. Lett.,
110(12-13):514–517, 2010.

[KBKV06] Chiu-Yuen Koo, Vartika Bhandari, Jonathan Katz, and Nitin H.
Vaidya. Reliable broadcast in radio networks: the bounded colli-
sion case. In Eric Ruppert and Dahlia Malkhi, editors, PODC, pages
258–264. ACM, 2006.

[Koo04] Chiu-Yuen Koo. Broadcast in radio networks tolerating byzantine
adversarial behavior. In Soma Chaudhuri and Shay Kutten, editors,
PODC, pages 275–282. ACM, 2004.

[LPS12] C. Litsas, A. Pagourtzis, and D. Sakavalas. The byzantine generals
problem in generic and wireless networks. 1st Conference of Cryp-
tography and its Applications in the Armed Forces” , Hellenic Army
academy, National and Kapodistrian University of Athens , Hellenic
Mathematical Society, 2012.

[LSP82] Leslie Lamport, Robert E. Shostak, and Marshall C. Pease. The
byzantine generals problem. ACM Trans. Program. Lang. Syst.,
4(3):382–401, 1982.

[Lyn96] Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann Pub-
lishers Inc., San Francisco, CA, USA, 1996.

[MW88] Y. Moses and O. Waarts. Coordinated traversal: (t+1)-round byzan-
tine agreement in polynomial time. In Foundations of Computer Sci-
ence, 1988., 29th Annual Symposium on, pages 246 –255, oct 1988.

[PPP05] Andrzej Pelc, Davdrzej Pelc, and Did Peleg. Broadcasting with locally
bounded byzantine faults. Inf. Process. Lett., 93(3):109–115, 2005.

[PSL80] Marshall C. Pease, Robert E. Shostak, and Leslie Lamport. Reaching
agreement in the presence of faults. J. ACM, 27(2):228–234, 1980.

[TPS87] Sam Toueg, Kenneth J. Perry, and T. K. Srikanth. Fast distributed
agreement. SIAM J. Comput., 16(3):445–457, 1987.

[Yao82] Andrew Chi-Chih Yao. Protocols for secure computations (extended
abstract). In FOCS, pages 160–164. IEEE Computer Society, 1982.

