
Aj na, 14h Maòou 2007

DIDAKTORIKH DIATRIBH

tou

MANWLH TERROBITH

DiplwmatoÔqou Hlektrolìgou MhqanikoÔ &
MhqanikoÔ Upologist¸n E.M.P. (2001)

MontelopoÐhsh kai jèmata leitourgÐac
b�sewn protÔpwn

Sqolh Hlektrologwn Mhqanikwn
Kai Mhqanikwn Upologistwn

Tomeac Teqnologiac Upologistwn kai Plhroforikhc

Ejniko Metsobio Poluteqneio





Aj na, 14h Maòou 2007

DIDAKTORIKH DIATRIBH

tou

MANWLH TERROBITH

DiplwmatoÔqou Hlektrolìgou MhqanikoÔ &
MhqanikoÔ Upologist¸n E.M.P. (2001)

Sumbouleutik  Epitrop : T. Sell c
I. BasileÐou
E. Z�qoc

EgkrÐjhke apì thn eptamel  exetastik  epitrop , 14h Maòou 2007.

. . . . . . . . .

T. Sell c I. BasileÐou E. Z�qoc
Kajhght c E.M.P. Kajhght c E.M.P. Kajhght c E.M.P.

. . . . . . . . .

F. Afr�th K. Sag¸nac I. JeodwrÐdhc
Kajhght c E.M.P. Anap. Kaj. E.M.P. EpÐk. Kaj. PA.PEI.

. . .

S. Skiadìpouloc
Epik. Kaj. PA.PE.

MontelopoÐhsh kai jèmata leitourgÐac
b�sewn protÔpwn

Sqolh Hlektrologwn Mhqanikwn
Kai Mhqanikwn Upologistwn

Tomeac Teqnologiac Upologistwn kai Plhroforikhc



. . .

Man¸lhc TerrobÐthc
Dr. Hlektrolìgoc Mhq.

c© 14h Maòou 2007 - All rights reserved



Athens, 14th May 2007

PhD Thesis

of

Manolis Terrovitis

Diploma in Electrical Engineering (2001)

Modelling and Operational Issues for Pattern

Base Management Systems

School of Electrical and

Computer Engineering

Computer Science Division

National Technical University of Athens





Athens, 14th May 2007

PhD Thesis

of

Manolis Terrovitis

Diploma in Electrical Engineering (2001)

Supervising Committee: T. Sellis

Y. Vassiliou

E. Zachos

Approved by the Examination Committee, 14th May 2007.

. . . . . . . . .

T. Sellis Y. Vassiliou E. Zachos

Prof. NTUA Prof. NTUA Prof. NTUA

. . . . . . . . .

F. Afrati K. Sagonas Y. Theodoridis

Prof. NTUA Associate Prof. NTUA Assistant Prof. UNIPI

. . .

S. Skiadopoulos

Assistant Professor UOP

Modelling and Operational Issues for Pattern

Base Management Systems

National Technical University of Athens

School of Electrical and Computer Engineering

Computer Science Division



. . .

Manolis Terrovitis

Electrical Engineer, PhD

c© July 20, 2007- All rights reserved



Contents

1 Introduction 3

1.1 Thesis organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 A Logical Model For Pattern Warehouses 9

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 The Pattern Warehouse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.1 Requirement Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.2 Conceptual Architecture of a Pattern Warehouse . . . . . . . . . . . . . 13

2.2.3 Novelty of the approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 Motivating example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4 A logical model for pattern bases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4.1 The data space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4.2 The pattern space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4.3 Motivating example revisited . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4.4 The pattern warehouse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.4.5 The mapping formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3 Querying the Pattern Warehouse 33

3.1 Querying the pattern warehouse. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.1.1 Predicates on patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.1.1.1 Intersecting patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.1.1.2 Disjoint patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.1.1.3 Pattern equivalence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.1.1.4 Pattern subsumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.1.1.5 A complete set of binary pattern relations . . . . . . . . . . . 37

3.1.1.6 Equality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.1.1.7 The similarity operator ξ . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.1.2 Pattern constructors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.1.2.1 The intersection and union constructors . . . . . . . . . . . . 41

3.2 Query Operators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

1



3.2.1 Operators defined over pattern classes . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2.2 Cross-over operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2.3 Motivating example revisited . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.3 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4 Set values and Containment 55

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.1.1 Data model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.1.2 Queries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.2 Indexing for Containment Queries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.2.1 Inverted files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.2.2 Signature files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.3 Query Evaluation with Inverted Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.4 Storage Allocation Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.5 Creation and Maintenance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.5.1 Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.5.2 Maintenance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.6 Compression Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5 The Hybrid Trie-Inverted (HTI) File Index 75

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.2 The Hybrid Trie-Inverted file index. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.2.1 Index structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.2.1.1 Grouping by item combinations . . . . . . . . . . . . . . . . . . . . . 77

5.2.1.2 The HTI index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.3 Query evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.3.1 Subset queries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.3.2 Equality queries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.3.3 Superset queries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.4 Creation and Maintenance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.4.1 Construction of the HTI index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.4.2 Updates in the HTI index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.4.2.1 Updates to the frequencies of the underlying data . . . 91

5.5 Experimental Evaluation for the HTI index . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.5.1 Performance of the HTI index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.5.1.1 Real data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.5.1.2 Synthetic data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.5.2 Memory requirements of the HTI index . . . . . . . . . . . . . . . . . . . . . . 101

5.5.3 Threshold choice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102



5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6 The Ordered Inverted File index 105

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.2 The Ordered Inverted File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.2.1 Index Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.3 Query evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.3.1 Subset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.3.2 Equality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.3.3 Superset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.4 Creation and Maintenance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.4.1 Creation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.4.2 Updates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6.5 Experimental Evaluation for the OIF index . . . . . . . . . . . . . . . . . . . . . . . . . 122

6.5.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

6.5.2 Performance evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

6.6 HTI vs. OIF index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

6.6.1 Memory Overheads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

6.6.2 Construction and update time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

6.6.3 Query performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

6.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

7 Conclusions and future work 133

7.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

7.2 Future Work. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

Bibliography 137





List of Figures

2.1 Reference architecture for the Pattern Warehouse . . . . . . . . . . . . . . . . . . . . 13

2.2 An example of pattern generation scenario . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3 The explicit and approximate image of Clusters 1 and 2 . . . . . . . . . . . . . 27

3.1 Pattern similarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2 The intersection operator. Solid points represent data items in the

image of pA and hollow points, represent data items in the image of

pB. The explicit images do not have any common point. . . . . . . . . . . . . . 42

4.1 A collection of set values in a purely relational database . . . . . . . . . . . . . 57

4.2 A collection of set values in an object-relational database . . . . . . . . . . . . 58

4.3 A simple inverted file index scheme for the example of Figure 4.2. . . . . 60

4.4 The subset query evaluation algorithm for the inverted file . . . . . . . . . . . 65

4.5 The superset query evaluation algorithm for the inverted file . . . . . . . . . 66

5.1 An index based on a complete trie for the example of Figure 4.2 . . . . . 80

5.2 HTI index for the relation of Figure 4.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.3 The record list corresponding to the item b . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.4 Algorithm for determining subset queries . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.5 Algorithm for evaluating queries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.6 Algorithm for determining superset queries . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.7 Pseudo-code for the insertPath function that inserts into the trie

the record t that has t.id as an id and app as its access prefix path. . . 90

5.8 Pseudo-code for the deletePath function that deletes the record t

that has t.id as an id and app as its access prefix path. . . . . . . . . . . . . . . 90

5.9 Changes in the access tree size and query performance as the real

frequencies of the data change . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.10 Pseudo-code for the move function that moves a node from each

current position s to a new position d higher in the same path. . . . . . . 93

5.11 Average performance of queries on msweb data . . . . . . . . . . . . . . . . . . . . . . 95

5.12 Average performance of queries on msnbc data . . . . . . . . . . . . . . . . . . . . . . 96

5.13 Average performance of subset queries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5



5.14 Average performance of equality queries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.15 Average performance of superset queries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.16 Effect of |I| . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.17 Effect of |D| . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.18 |I| = 5k, 0.5% . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.19 Effect of k . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.1 A collection of set values in an object-relational database . . . . . . . . . . . . 108

6.2 OIF for the database of Fig. 6.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.3 OIF Subset Evaluation Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.4 Inverted file Superset Evaluation Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 117

6.5 The ranges of interest for the superset query {a, c, f}. . . . . . . . . . . . . . . . 118

6.6 The algorithm for determining bucket boundaries takes the

frequencies of the databases items as an input and outputs a trie

that has the boundaries for buckets of size b±m . . . . . . . . . . . . . . . . . . . . 121

6.7 Average performance of queries on msweb data . . . . . . . . . . . . . . . . . . . . . . 124

6.8 Average performance of queries on msnbc data . . . . . . . . . . . . . . . . . . . . . . 125

6.9 Average performance of subset queries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

6.10 Average performance of equality queries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

6.11 Average performance of superset queries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

6.12 Average performance of queries on uniformly distributed data. . . . . . . . 130

6.13 Average performance of queries on data with a skewed item

distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131



List of Tables

2.1 Clustering in relations CustBranch1 and CustBranch2 . . . . . . . . . . . . . . . 24

2.2 Frequent Itemsets in relations TransBranch1 and TransBranch2 . . . . . 25

4.1 Signatures of items . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.2 Signatures for set-values of Figure 4.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

1



2



Chapter 1

Introduction

Databases both as a research and an application field have already several mature

characteristics by computer science standards. They have an established role in

production, a fairly stable conceptual and logical model behind their applications

and they effectively address their primary objective: managing huge volumes of

data. Still, in the recent years the requirements have changed substantially as basic

database technology is employed in several new fields, like biomedical data, data in

peer-to-peer systems, data from sensor networks etc. Moreover, it is the very notion

of management of data that is changing; storing and selecting even with complex

criteria does not seem enough to compensate for the needs of nowadays applications.

The users that handle huge volumes of data want to explore them efficiently and

view results in a concise way; often they want to view results that have not been

described meticulously at query time.

Complex analysis for data is usually carried out by specialized tools that do not

adhere to some standard. The most general and systematic method for analyzing

data in depth has been carried out in the data mining field. Cluster identification,

construction of decision trees, frequent itemset analysis and others, comprise the

most recognized methods in data mining. Such functionality, often appears cou-

pled with database management in several commercial DBMSs. Still, the smooth

incorporation of data mining and other forms of complex analysis in the database

management is far from becoming a reality.

Most research efforts to incorporate data mining functionality in databases, focus

on the algorithmic part of the challenge; how to make data mining algorithms as

transparent and as easy to use as any query operator. Whereas this is an important

problem, we believe that a more interesting challenge lies in the incorporation of

the management of the patterns that are produced by data mining methods, in

traditional RDBMSs. Instead of focusing in reconciliating data mining methods with

databases, we focus on the management of their results. This approach comprises

an important research challenge for several reasons:
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• It is essential. Both database research and commercial database systems have

identified the need to bring data mining and RDBMSs closer. Pattern man-

agement is the first essential step in such an effort. It comes natural that if

we want to have complex analysis methods in traditional databases, we need

to be able to store and query their results. Most data mining methods usually

produce vast amounts of patterns, which need to be further processed in order

to identify the most interesting ones.

• It is interesting. Storing and querying patterns that come from different data

mining/analysis methods enables the user to explore data in-depth. Patterns

in this context, express some quality/property of the data. The ability to

combine them, or test them in new datasets, or simply compare them, allows

the user to identify interesting properties of her/his datasets that are not

visible by just browsing them. For example, being able to trace quickly which

of the data that belong to a certain cluster contain some specific frequent

itemsets, might reveal an interesting subset of the data.

• It is feasible. Whereas there have been several efforts in providing data mining

functionality in RDBMSs by introducing new query operators that support

some data mining method, we are still far from incorporating data mining in

databases. One of the reasons is the complexity and the variety of the different

data mining algorithms. Despite the large variety of algorithms and methods,

the different kinds of the produced patterns are significantly more limited.

This comprises an important motivation for focusing firstly on the handling of

the patterns.

• It is difficult to solve. The fact that pattern management is promising does not

make it a trivial issue. A series of research challenges arise both in modeling

and implementing a pattern management system. The core of the problems

lies in the rich semantics of the patterns, and more specifically in modeling

and exploiting their relation with the raw data.

The work in this thesis is a first step towards creating a unified system for manag-

ing both patterns and data. We aim at creating a system where the user will be able

to query both patterns and data to facilitate the discovery of interesting qualities of

the dataset. We propose a system that handles both data and patterns as primary

citizens amongst its entities, the Pattern Warehouse. The pattern warehouse, allows

the user to further exploit the results of data mining by combining existing patterns

to create new ones, by providing the tools to reason about the qualities of a dataset

based on the related patterns, and by letting the user to test the patterns against

different datasets. We have identified four basic targets in our effort:
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1. The user must be able to pose queries against both data and patterns by using

a common query language. At the same time, we want patterns to keep their

complex semantics that distinct them from raw data.

2. We want a transparent representation of pattern semantics, which facilitates

the creation of some reasoning mechanism and allows the users to combine

them to create new patterns.

3. We need to retain the relation between data and patterns, and make this

information available to the queries. The end-user must be able to navigate

easily from the pattern to the data space and vice versa.

4. The implementation challenges, especially those regarding the navigation be-

tween patterns and data must be answered efficiently.

The goals set for the Pattern Warehouse sketch a huge volume of research work,

which cannot be addressed in full extent in this thesis. In the scope of this work we

attack the problem from two opposing ends: we present a conceptual and a logical

model for incorporating the handling of patterns in a DBMS, and on the other

end, we propose methods for extending current database technology for evaluating

containment queries. The former approach provides a model for a system that

handles both patterns and data and provides insight on how the user can exploit

this knowledge to quickly explore huge data volumes. The latter approach works at

the opposite end of the problem; it provides more efficient solutions to the navigation

between the pattern and the data space. In addition, as our research on modelling

issues demonstrated, any integration of raw data with data patterns will rely heavily

on being able to quickly decide on membership properties for various data entities

and on the relations between large datasets. This is the same problem we face in

current database systems, when we want to evaluate containment queries. Current

database research has partly overlooked the problem of containment evaluation,

since it usually assumed the existence of a collection of strictly structured tuples

and rarely of a collection of set-values.

In short the basic contributions of this thesis are as follows:

• We present a conceptual model for the Pattern Warehouse, which is an envi-

ronment that offers all the functionality of a modern DBMS, but in addition

allows for handling patterns. In this scope, we consider patterns as condensed

forms of knowledge artifacts that are derived from various methods of data

analysis. Common examples are clusters, frequent itemsets, etc.

• We propose a logical model for the Pattern Warehouse, which treats both pat-

terns and data as primary citizens and allows for creating a common query
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language for both entities. The model facilitates the transparent representa-

tion of the internal structure of the patterns and of their relation with the

underlying data.

• We provide a sound and complete model of pattern relations that support

some basic reasoning capabilities of the pattern warehouse. These relations

are used to define a series of operators that give insight on the functionality

of the Pattern Warehouse.

• We attack the problem of the navigation between the data and the pattern

space by focusing of the efficient evaluation of containment queries. Our re-

sults have a broader range of applications, including containment evaluation

in current DBMSs. We describe in detail the problem of containment evalua-

tion using the current state-of-the-art index, the inverted file, and we highlight

its weaknesses. Based on this analysis we propose a novel index, the Hybrid

Trie-Inverted file (HTI) index.

• We propose a second mechanism for speeding up containment queries, the Or-

dered Inverted File (OIF ) index, which relies on pre-ordering the set-values.

This solution offers better results in environments where the updates are in-

frequent.

1.1 Thesis organization

The conceptual and logical modeling issues of the pattern warehouse are covered in

Chapters 2 and 3. Chapter 3 concludes with the introduction of queries that facili-

tate the navigation between the pattern and the data space. Indexing methods for

enhancing such a functionality are presented in the next chapters, which address the

generalized problem of containment queries. In more detail, the thesis is structured

as follows:

• Chapter 2. In this chapter we present the framework for the pattern warehouse.

We present the conceptual architecture of a three-layered environment covering

both data and patterns and we complement it with the required logical model.

Moreover, we present a method for describing the relation between patterns

and data in a concise manner.

• Chapter 3. In this chapter we define a complete and sound set of binary

pattern predicates/relations and we present a series of operators. The opera-

tors concern querying and updating the pattern warehouse and provide a first

glimpse of its functionality.
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• Chapter 4. In Chapter 4 we present the basic set of containment queries

that are in the focus of our research and the most popular solutions for their

evaluation. We emphasize the description of inverted files due to their superior

performance and widespread application. We show how queries are evaluated

and the most efficient techniques for creating and maintaining and inverted file.

We analyze its strengths and weaknesses to open way for the new proposals

that follow in Chapters 5 and 6.

• Chapter 5. We present our proposal for handling skewed distributions, the

HTI index. HTI relies on breaking up the longest inverted lists to smaller

sub-lists, which contain known combinations of the most frequent items of

the database. In this chapter we detail HTI’s structure and we show how

the trie can be used to prune large parts of the search space during query

evaluation. We also present algorithms for creating and maintaining the HTI

in the presence of updates.

• Chapter 6. In Chapter 6, we complement our proposal for containment query

evaluation with one more index, the OIF . OIF relies on sorting the set-values

before indexing them. As a result of this sorting, queries can effectively prune

parts of the search space independently of the items’ distribution. Again we

present the index in detail and we explain how all types of queries are eval-

uated. We complement the work with a complexity analysis for the query

evaluation and a detailed description of the creation and maintenance algo-

rithms.

• Chapter 7. Finally, we conclude the thesis by summarizing the basic research

results and by presenting issues for future work.
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Chapter 2

A Logical Model For Pattern

Warehouses

2.1 Introduction

Nowadays, we are experiencing a phenomenon of information overload, which esca-

lates beyond any of our traditional beliefs. As a recent survey states [LV00], the

world produces between 1 and 2 exabytes of unique data per year, 90% of which

is digital and with a 50% annual growth rate. Clearly, this sheer volume of col-

lected data in digital form calls for novel information extraction, management, and

querying techniques, thus posing the need for novel Database Management Systems

(DBMSs). Still, even novel DBMS architectures are insufficient to cover the gap

between the exponential growth of data and the slow growth of our understanding

[Gra02], due to our methodological bottlenecks and simple human limitations.

In the previous decade, data warehousing was introduced to compensate for the

difficulties to support any decision making over vast volumes of raw data. Data

warehouses provide On-Line Analytical Processing (OLAP) capabilities to the end-

user. OLAP processing comprises a set of tools that allow for exploring and querying

data, organized and aggregated in different levels of granularity. For example, a

business expert can browse the statistics of a company organized and aggregated by

year, region etc. Still, as both the size and the complexity of the data continues to

grow, simple aggregations fall short in addressing current needs for data exploration

and decision making.

It is often the case that complicated semi-automatic specialized procedures are

needed to explore huge datasets and discover the desired knowledge. The most pro-

found example of such procedures are the various data mining techniques. Data min-

ing methods (frequent itemset discovery, clustering, decision trees) create knowledge

artifacts from the underlying raw data, by following a semi-automatic procedure.
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The results of these methods are a lot more flexible in describing the properties of

the underlying dataset, than simple aggregations provided by the data warehouse.

We term these knowledge artifacts as patterns, and we consider them as compact

representations of the knowledge hidden in the data. In other words, we consider the

creation of patterns as a reduction of the available data, (through data processing

methods, pattern recognition, data mining, knowledge extraction) to a more com-

pact form, that preserves as much as possible from their hidden/interesting/available

information.

Data mining analysis is usually carried out by specialized tools that do not adhere

to some standard. The extracted patterns are usually modelled and stored in an

arbitrary format. No emphasis is given in further querying and processing them.

Still, it is often the case that most of the data analysis methods produce a plethora of

results, which need to be further investigated in order to identify the interesting ones.

A prominent way of addressing this problem is to employ methods and techniques

from traditional DBMSs to handle the patterns. If patterns are stored in a DBMS,

then we can exploit all the powerful indexing, storing and querying tools that are

available to facilitate our investigations. Nevertheless, despite the fact that data

mining functionality, often appears coupled with database management in several

commercial DBMSs, the smooth incorporation of data mining and other forms of

complex analysis in the database management is far from becoming a reality.

So far, patterns have not been adequately treated as persistent objects that can be

stored, retrieved, and queried. Thus, the challenge of integration between patterns

and data seems to be achievable by designing fundamental approaches for providing

database support to pattern management. In particular, since patterns represent

relevant knowledge, often very large in volume, it is important that such knowledge

is handled as first-class citizen. This means that patterns should be modelled, stored,

processed, and queried in a similar way to data in traditional DBMSs. As a first step

towards this goal we propose the Pattern Warehouse, which encompasses a both a

pattern base and a database. The proposed model addresses patterns arising in a

variety of data analysis methods, ranging from signal processing to data mining. In

short our contributions in this chapter are:

• First, we describe the requirements for pattern management, and based on our

analysis we present the conceptual architecture for the Pattern Warehouse, an

environment that incorporates both pattern and data management utilities.

We describe its layers and the entities that reside in it, and we demonstrate

its capabilities by a motivating example.

• Second, we define the foundations for the global setting of pattern management

through a logical model that covers data, patterns and intermediate mappings.
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The model covers typing issues, both for data and patterns, with the latter

provision aiming towards being able to define reusable pattern types that are

customized per case. Moreover, the model allows the database designer to

organize semantically similar patterns in the appropriate collections that can

be subsequently queried, just like relations in traditional databases.

• Finally, we propose two mechanisms for modelling the relation between pat-

terns and data. An explicit one; where each patterns is explicitly linked to the

underlying data, through pointer-based mappings, and an implicit one. The

latter is a formalism which approximates the relation between the patterns

and the data space. To this end we present a declarative formula that covers

a certain variety of patterns and complements the precise mappings.

Based on the results of this chapter we complement our work in chapter 3, by

introducing a sound and complete model of pattern relations and a series of query

operators.

This chapter is organized as follows: in Section 2.2, we present the basic Pattern

Warehouse architecture. We continue in Section 2.3 by presenting an example of

pattern management and in Section 2.4 we provide the definitions of the logical

foundations of the pattern warehouse. Finally, we conclude the chapter in Section

2.5, by providing a short summary of this chapter together with our conclusions.

2.2 The Pattern Warehouse

The main idea behind pattern management is that we can use patterns as abstrac-

tions of large datasets in order to explore the properties of the data more efficiently.

In our proposal patterns and data are stored and manipulated in a unified environ-

ment, the pattern warehouse through a common interface. Nevertheless, we consider

patterns as data distinct entities, which are linked by the pattern extraction methods

(e.g. data mining). We focus on patterns stemming from data mining procedures,

still, we use a broad definition about patterns [RBC+03]:

Definition 2.2.1. Patterns are compact and rich in semantics representations of

raw data.

Patterns serve as artifacts, which describe (a subset of) data with similar prop-

erties and/or behavior, providing a compact and rich in semantics representation of

data. This definition allows for a very general selection of knowledge artifacts that

can be considered as patterns. We envisage a system that could handle patterns

stemming from various application areas, like signal processing, image recognition,

sensor monitoring, etc. We aim to provide an efficient way of exploring complex

11



qualities of very large datasets. Based on this vision for data processing we have

identified a series of requirements as guide in our research effort, which are presented

in the next Section.

2.2.1 Requirement Analysis

The requirements we have gathered come both from the application experience of

experts (mainly in the context of the PANDA project), but also as a result of

our understanding of the limitations of data mining. They are formed around the

main axis of the idea of a unified environment for handling both patterns and data.

In more detail, we expect that such an environment should satisfy the following

requirements:

• Both patterns and data should be managed in a unified environment, through

a common interface. Queries can be executed against pattern or data classes,

or even both. Despite the common interface we consider patterns and data

distinct entities.

• The user should be able to navigate efficiently from the pattern to the data

space, back and forth. Patterns are related to their data images and data are

mapped to patterns corresponding to them.

• Patterns and their relationships with the raw data are expressed in a generic,

extensible and transparent way. The logical representation of the patterns al-

lows the easy extension with new types of patterns, and facilitates the creation

of patterns from existing ones.

• Patterns can exist independently of the underlying data. If a class of patterns

has been derived from a large dataset, it is not compulsory to have access to

the dataset in order to manage the patterns.

• A pattern management system should allow the user to avoid performing costly

operations over large data spaces, but instead she should be able to decide upon

qualities of the dataset by using its concise pattern representations. This

implies that a variety of query operators for patterns and patterns classes

should be available. We expect that functionality like selecting patterns by

value, comparing them to each other or matching for similarity or equivalence

will be available as it is for simple data records.

Of course we still have the standard requirements for transaction management,

efficient storage, safety in queries etc, as in the case of the DBMSs. We detail on

the ones that stem from the novelty of our approach.
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Figure 2.1: Reference architecture for the Pattern Warehouse

2.2.2 Conceptual Architecture of a Pattern Warehouse

In order to address the aforementioned requirements we envision an environment

where the patterns are managed exactly as database records are managed by a

database management system. The reference architecture for such a system is de-

picted in Fig. 2.1 and consists of three major layers of information organization. In

the bottom of Fig. 2.1, we depict the data space consisting of data stores that con-

tain data (data layer). At the top of Fig. 2.1, we depict the pattern space where the

patterns reside. Finally, in the middle of Fig. 2.1, we can observe the intermediate

mappings that relate patterns to their corresponding data, forming the intermedi-

ate data layer. Intermediate mappings facilitate the justification of any knowledge

inferred at the pattern space with respect to the data; for example, they could be

used to retrieve the rows that produced the association rules of Fig. 2.1. The over-

all architecture is the conceptual architecture of the integrated environment termed

Pattern Warehouse (PW ).

Next, we present a brief description of all the layers that appear in this abstract
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description of the Pattern Warehouse:

• Data layer. The data from which the patterns are created reside in this layer.

Data can be physically managed by a different repository from the patterns.

The motivation for the introduction of the original data in the Pattern Ware-

house is dual: (a) there are several queries that require data as their answers,

and, (b) from a modeling point of view, data are the measure of correctness

for any approximations that occur in the PW setting. Naturally, in a practical

setting, data can be absent, or not available to the PW ; this can prohibit the

answering of several questions, but cannot block the entire functionality of the

PW . For reasons of simplicity and uniformity, we assume that the data are

organized in an object-relational database.

• Intermediate mappings layer. This layer manages information on the relations

between the patterns and the underlying data, involving specialized storage

and indexing structures. Keeping intermediate mappings is clearly motivated

by the existence of cross-over queries, where the user navigates back and forth

between the pattern and the data space. The information kept here comprises

catalogs linking each pattern with the data it represents. In general, one can

imagine that these catalogs are huge and might not be available for every

pattern, or they might be very expensive to be queried often. To address this

problem, we consider two approaches for the representation of information

about the pattern-data relation: (a) exact, where intermediate mappings are

described by catalogs; and (b) approximate, where a formula is used to describe

the pattern in the data space. In the latter case, one can employ different

variations of these approximations through data reduction techniques (e.g.,

wavelets), summaries, or even on-line data mining algorithms. We emphasize

that the exact intermediate layer can also be unavailable to the PW ; the latter

can still operate due to the approximations of the patterns’ formulae.

• Pattern layer. Patterns are the actual information stored in the PW . They are

concise and rich in semantics representations of the underlying data. Patterns

are the stored information through which a user interacts with the system and

performs queries and serve exactly as records serve in a traditional database.

Some -but not obligatorily all- patterns are related to the underlying data

through intermediate mappings and/or are characterized by an approximation

formula.

This layer is populated by patterns, and it is linked to the data layer through

the intermediate mappings. The queries can navigate from this layer to the

data layer by using the intermediate mappings. Each pattern of this layer has

an image in the data layer.
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• Type layer. The PW pattern types describe the intensional definition, i.e., the

syntax of the patterns. Patterns of the same type share similar characteristics,

therefore pattern types play the role of data types in traditional DBMS’s or

object types in OODBMS’s. Normally, we anticipate the PW to include a

predefined set of built-in, popular pattern types (e.g., association rules and

clusters). Still, the type layer must be extensible, simply because the set of

pattern types that it incorporates must be extensible.

• Class layer. The PW classes are collections of patterns which share some

semantic similarity. Patterns that are members of the same class are required

to belong to the same type. Classes are used to store patterns with predefined

semantics given by the designer; by doing so, the designer makes it easier for

users to work on classes. For example, a class may comprise patterns that

resulted from the same experiments, like the association rules in Fig. 2.1. In

other words, classes have the same role as tables in relational databases and

object classes in object-oriented databases: they are logical-level entrypoints,

collecting semantically similar data and easying the formulation of queries for

the user.

We use the term representation for the relation between the patterns and data, to

express our intention to use patterns as abstractions of certain properties of data. For

example, a frequent itemset captures the fact that certain objects frequently appear

together in the underlying set of data. We aim at using the patterns to directly

manipulate properties that characterize subsets of the data or even areas of the

data space. Although patterns as abstract representations of data are our primary

concern, data as supportive evidence of patterns are also of value. Therefore, we

need to store the interactions between patterns and their generative data.

The notion of representation and the notion of image come, for reasons that will

be made obvious in the rest of the chapter, in two flavors: an exact one, defined with

reference to data which are explicitly mapped to the pattern and an approximate

one. The latter case expresses the compact nature of a pattern.

Using patterns as representations of data facilitates inferring properties of sets

of data by performing operations solely in the pattern space, and vice versa: it

allows to resolve queries concerning relations between patterns in the data space,

by examining the relations of the represented data sets. Moreover, keeping the

patterns and the data distinct allows for testing whether the property

described by a pattern holds in different data sets. This enables users to

discover interesting knowledge, already recorded for some data set, in other data

sets without performing again expensive data mining operations.
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2.2.3 Novelty of the approach

Why is the problem hard to solve with the current state-of-practice? As-

suming that someone would like to treat patterns as first-class citizens (i.e., store

and query them), a straightforward approach would be to employ standard object-

relational or XML database technology to store patterns and exploit its query fa-

cilities to navigate between the two spaces and pose queries. Although it is feasible

to come up with an implementation of this kind, several problems occur. A pre-

liminary object-relational implementation was pursued in PANDA [PAN02] and we

briefly list our findings here. First, we need to address the problem of having a

generic structure able to accommodate as many kinds of patterns as possible. Un-

fortunately, standard relational and even object-relational technology results in a

schema which is too complicated. As typically happens with relational technology,

such a complex structure has a direct overhead in the formulation of user queries,

which become too lengthy and complicated for the user to construct. An XML

database could probably handle the heterogeneity problem gracefully; nevertheless,

the main strength of XML databases lies in the efficient answering of path queries.

Unfortunately, the particularities of the (pointer-like) navigation between the data

and the pattern space as well as the novel query operations concerning collections

of patterns are not compatible with this nature of XML path queries.

Based on the above, the situation calls for usage of customized techniques. In

particular, we need both a logical model for the concise definition of a pattern base

and an appropriate query language for the efficient formulation of queries. As we

shall see, in this thesis we treat the problem from a blank sheet of paper and discuss

the management of patterns as a sui-generis problem. It is also interesting to point

out that having an appropriate logical model, allows its underlying support by an

object-relational or an XML storage engine in a way that is transparent to the user.

Why is the problem novel? Both the standardization and the research com-

munity have made efforts close to the main problem that we investigate. Neverthe-

less, to the best of our knowledge there is no approach that successfully covers all

the parameters of the problem in a coherent setting.

So far, standardization efforts [PMM03, SQL01, JDM03] have focused on pro-

viding a common format for describing patterns with the aim of interchangeability.

The storage and eventual querying of such patterns has not been taken into consid-

eration in the design of these approaches. A much deeper approach, similar to our

own, has been performed in the field of inductive databases : a particular character-

istic of inductive databases is that the querying process treats data and patterns

equally. Nevertheless, the inductive database community avoids the provision of a

generic model, capable of handling any kind of patterns and focuses, instead, on
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specific categories of them. Therefore, our approaches are complementary since the

inductive database community follows a bottom-up approach, with individual cases

of patterns considered separately, whereas we follow a top-down approach with a

generic model that aims to integrate any kind of patterns. Finally, it is interest-

ing to point out the relationship to the data warehousing approach, where data are

aggregated and stored in application-oriented data marts. We follow a similar, yet

broader, approach, in the sense that although data warehousing aggregation is one

possible way to provide semantically rich information to the user in a concise way, it

is not the only one. As already mentioned, we try to pursue this goal in an extensible

fashion, for a significantly broader range of patterns.

2.3 Motivating example

To show the benefits of treating patterns as first class citizens, we briefly discuss a

scenario involving a manager interacting with a set of stored patterns that he can

query through the facilities offered by a Pattern Warehouse. We will assume the

existence of data for the customers and the transactions of two different supermarket

branches organized in an object-relational database like the following:

CustBranch1(id:int,name:varchar,age:int,income:int,sex:int)

CustBranch2(id:int,name:varchar,age:int,income:int,sex:int)

TransBranch1(id:long int,customerID:int,totalSum:euro,items:{int})

TransBranch2(id:long int,customerID:int,totalSum:euro,items:{int})

The relations CustBranch1, CustBranch2 hold data for customers from two dif-

ferent branches of the supermarket and the relations TransBranch1, TransBranch2

hold data for the transactions performed at the respective branches. The scenario

takes place during two different days (Fig. 2.2).

Day 1: A data mining algorithm is executed over the underlying data and the

results are stored in the pattern base. For example, the data mining algorithm in-

volves the identification of frequent itemsets. Possible patterns stored in the pattern

base involve sets of items that are frequently bought together; e.g., {bread,butter}.
The user is notified on this event and starts interacting with the stored data and

patterns. During the early stages of this interaction the user is navigating back

and forth from the pattern to data space, in order to accommodate queries like the

following ones:

Which are the data represented by a pattern? The user selects an interest-

ing pattern and decides to find out what are the underlying data that relate

to it.
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Figure 2.2: An example of pattern generation scenario
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Which are the patterns representing a data item? Out of a vast number of

data that the user receives as an answer, he picks an interesting record and

decides to see which other patterns relate to it (so that he can relate the

originating pattern with these ones, if this is possible).

Does a pattern represent adequately a data set? This process of “cross-over”

operations, like the two mentioned above, goes on for a while, as the user gets

accustomed to the data. Then, he decides to proceed to some more elaborate

analysis, consisting of “what-if” operations. Therefore, he arbitrarily chooses

another dataset (on the basis of some assumption) and checks which of the

available patterns can adequately represent it. Then, on the basis of the re-

sults, he selects a certain pattern and tries to determine which sets of data

correspond to this pattern. This interaction with the stored data and patterns

goes on for some time.

Could we derive new patterns from knowledge in the pattern base? The user

may exploit patterns stored in the pattern base in order to derive or even

conjecture the existence of new patterns representing existing data without

applying any time-consuming mining technique but using available query op-

erators.

Day 2: Data in the source databases change, therefore, the original data mining

algorithms are executed on a regular basis (e.g., weekly) in order to capture different

trends on the data. Once a second version of the patterns is computed (for the new

data this time), the analyst is interested in determining the changes that have taken

place.

How different are two pattern classes? First, the user wants to find out which

are the new patterns and which patterns are missing from the new pattern set.

This involves a simple qualitative criterion: presence or absence of a pattern.

Is the difference of two pattern classes significant? Then, the user wants some

quantitative picture of the pattern set: which patterns have significant differ-

ences in their measures compared to their previous version?

How similar are two patterns? Finally, the user wants to see trends: how could

he predict that something is about to happen? So, he picks a new pattern and

tries to find its most similar pattern in the previous pattern set, through a

similarity operator.
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2.4 A logical model for pattern bases

In this section, we give the formal foundations for the treatment of data and patterns

within the unifying framework of a pattern warehouse. First, we define the data

space according to the complex value model of [AB95], further assuming that data

are organized as an object-relational database. Then, we formally define pattern

types, pattern classes, patterns, and the intermediate mappings between data and

patterns. Finally, we define pattern bases and pattern warehouses.

2.4.1 The data space

Whereas in the general case, data can be organized under many different models

without being incompatible to our framework, we need to assume a certain form of

organization in order to give the formal logical definitions for the internal structure

of a PW . Our choice for the data model is the complex value model, which can

be considered as a quite broad variant of the object-relational model [AB95]. This

model generalizes the relational model by allowing set and tuple constructors to

be recursively applied. We believe that this model is flexible and, at the same

time, elegantly extended by user defined predicates and functions. In this section

we present, sometimes verbatim, some basic definitions from [AB95] to make the

chapter clearer and more self contained.

Data types, in the complex value model adopted, are structured types that use

domain names, set and tuple constructors, and attributes. For simplicity, through-

out the rest of this section, our examples consider only integer and real numbers, as

well as strings.

Definition 2.4.1. Data types (or simply, types) are defined as follows:

• If D̂ is a domain name, then D̂ is an atomic type.

• If T1, . . . , Tn are types and A1, . . . , An are distinct attribute names then [A1:T1, . . . , An:Tn]

is an unnamed tuple type.

• If T is a type then {T} is an unnamed set type.

• If T is an unnamed type and A is an attribute name, then A:T is a named

type.

The values of a specific type are defined in the natural way. For atomic types,

we assume an infinite and countable set of values as their domain, which we call

dom(T). The domain of set types is defined as the powerset of the domain of

the composing type. The domain of tuple types is defined as the product of their

constituent types.
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Example 2.4.1. Consider the following types.

T1 = [X:real, Y :real, Z:integer]

T2 =
{

[Id:integer, Disk:{ [Center:[X:real, Y :real], Rad:real] } ]
}

The expressions

[X:4.1, Y :5.2, Z:3] and
{

[Id:7, Disk:{ [Center:[X:2.0, Y :3.0], Rad:4.1] }] }

are values of types T1 and T2 respectively.

Relations in our setting are sets of tuples defined over a certain composite data

type, as in the nested relational model. This definition is more restrictive than the

one presented in [AB95], which allows for relations that are sets of sets, but here,

we adopt it for the sake of simplicity. Also, for each relation, we assume an implicit,

system-generated row identifier RID that uniquely identifies each tuple. We will not

explicitly refer to RID ’s in the sequel, unless necessary. In this context, a database

and a database schema are defined as follows [AB95]:

Definition 2.4.2. A database schema is a pair D̂B = 〈[D̂1, . . . , D̂k], [R̂1:T1, . . . ,

R̂n:Tn]〉 where T1, . . . , Tn are set types involving only the domains D̂1, . . . , D̂k and

R̂1, . . . , R̂n are relation names.

Definition 2.4.3. An instance of D̂B, i.e., a database, is a pair DB = 〈[D1, . . . , Dk],

[R1, . . . , Rn]〉, where Ri’s are relations and Di’s are domains.

We also refer to D̂B as the database type, and to DB as the database value.

As we will see in the following, we need to be able to define patterns over joins,

projections, and selections over database relations. To this end, we extend Definition

2.4.2 with a set of materialized views V1, . . . , Vm defined over relations R1, . . . , Rn

using relational algebra. Throughout the rest of the chapter, we address views as

relations, unless explicitly specified otherwise.

2.4.2 The pattern space

In Section 2.2, we have described patterns as compact and semantically rich represen-

tations of data and presented their functionalities and relations with the underlying

data. In this section, we refine their description and give the logical definition of

the entities that reside in pattern, pattern type and pattern class layers. As already

mentioned, pattern types are templates for the actual patterns and pattern classes

are groups of semantically similar patterns.

Patterns as previously described are formally translated as quintuples. We intu-

itively discuss the components of a pattern here and give the definition next.
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• First, a pattern is uniquely identified by a Pattern Id (PID).

• Second, a pattern has a structure. For example, an association rule comprises

a head and a body, and a circular cluster comprises a center and a radius.

• Third, a pattern is typically generated by applying a data mining algorithm

over some underlying data. By overloading some traditional database ter-

minology, we call this data collection the active domain of the pattern. Note

that the domain deals with a broader collection of data than the ones that pre-

cisely map to the pattern; therefore, the relationship deals with the context of

validity of the pattern and not with its exact image in the data space.

• Fourth, a pattern informs the user about its quality, i.e., how closely it ap-

proximates reality compared to the underlying data, through a set of statistical

measures. For example, an association rule is characterized by its confidence

and support.

• Finally, a mapping formula provides the semantics of the pattern. This com-

ponent provides a possibly simplified representation of the relation between

data represented by the pattern and the pattern structure. In Section 2.4.5,

we present the formalism that we have adopted for expressing this relation.

A pattern type represents the intensional description of a pattern, the same

way data types represent the intentional description of data in the case of object-

relational data. In other words, a pattern type acts as a template for the generation

of patterns. Each pattern is an instance of a specific pattern type. There are four

major components that a pattern type specifies:

• First, the pattern type dictates the structure of its instances through a struc-

ture schema. For example, it specifies that association rules must comprise a

head and a body.

• Moreover, a pattern type specifies the domain. The domain describes the

schema of the underlying data that is used to generate the patterns. Practi-

cally, the domain is the schema of the relations that can be used as input for

the pattern detection algorithm.

• Third, it provides a measure schema, i.e., a set of statistical measures that

quantify the quality of the approximation that is employed by the instances

of the pattern type.

• Finally, it provides the mapping formula in terms of data types to provide the

general guidelines that connect the underlying data with the pattern to be

instantiated by the pattern type. This formula is instantiated in each pattern.
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Definition 2.4.4. A pattern type is a quintuple [Name, SS, D, MS, MF ] where

(a) Name is a identifier unique among pattern types; (b) SS, the Structure Schema,

is a distinct complex type; (c) D, the Domain, is a set type; (d) MS, the Measure

Schema, is a tuple of atomic types; and (e) MF , the Mapping Formula, is a predicate

over SS and D.

Definition 2.4.5. A pattern (instance) p of a pattern type PT is a quintuple [PID,

S, AD, M , MF ] such that (a) PID is a unique identifier among all patterns,

(b) S, the Structure, and M , Measure, are valid values of the respective structure

and measure schemata of PT , (c) AD, the Active Domain, is a relation, which

instantiates the set type of the Domain, and (d) MF , the mapping formula, is

a predicate expressed in terms of AD and S, instantiating the respective mapping

formula of PT .

In order to define the mapping formula in the pattern type, we need to be able to

reference the subelements of the complex value type appearing in the domain field.

Since a pattern type is a generic construct not particularly bounded to a specific

data set with specified attribute names, we need to employ auxiliary names for the

complex value type, that will be overridden in the instantiation procedure.

Let us consider the instantiation procedure that generates patterns based on

pattern types. Assume that a certain pattern type PT is instantiated in a new

pattern p. Then:

• The data types specified in the Structure Schema SS and the Measure Schema

MS of PT are instantiated by valid values in p.

• The auxiliary relation and attribute names in the domain D of PT are replaced

by regular relation and attribute names from an underlying database, thus

specifying the active domain of the pattern.

• Both the previous instantiations also apply for the Mapping Formula MF . The

attributes of the Structure Schema are instantiated to values and the auxiliary

names used in the definition of the domain are replaced by the actual relations

and attribute names appearing in the active domain.

Having defined the data space and the pattern entities, we are ready to define

the notions of pattern class and pattern base (PB). Our final goal is to introduce the

global framework, called pattern warehouse, as a unified environment in the context

of which data- and pattern-bases coexist.

A pattern class over a pattern type is a collection of semantically related patterns,

which are instances of this particular pattern type. Pattern classes play the role of

pattern collections, just like relations are collections of tuples in the relational model.
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CustBranch1(id,name,age,income,sex) CustBranch2(id,name,age,income,sex)
Cluster 1 Cluster 2

[346,A,30,33,1] [533,E,43,60,1]
[733,B,31,31,2] [657,F,47,60,2]
[289,C,29,29,1] [135,G,45,59,2]
[923,D,30,27,2] [014,I,49,61,2]

Cluster 3 Cluster 4

[532,I,31,34,1] [012,O,41,59,1]
[322,J,32,31,2] [230,N,45,59,1]
[315,K,30,29,0] [292,M,43,58,1]
[943,H,31,28,1] [971,L,43,60,1]

Table 2.1: Clustering in relations CustBranch1 and CustBranch2

Definition 2.4.6. A pattern class is a triplet [Name, PT , Extension] such that:(a)

Name is a unique identifier among all classes; (b) PT is a pattern type; and (c)

Extension is a finite set of patterns with pattern type PT .

Now, we can introduce pattern bases as finite collections of classes defined over

a set of pattern types and containing pattern instances.

Definition 2.4.7. A Pattern Base Schema defined over a database schema D̂D is

defined as P̂B = 〈[D̂1, . . . , D̂n], [P̂C1:PT1, . . . , P̂Cm:PTm]〉, where PTi’s are pattern

types involving the domains D̂1, . . . , D̂n and P̂Ci’s are pattern class names.

Definition 2.4.8. An instance of P̂B, i.e., a pattern base, over a database DB is

defined as PB = 〈[PT1, . . . , PTk], [PC1, . . . , PCm]〉, where PCi’s are pattern classes

defined over pattern types PTi, with patterns whose data range over the data in DB.

2.4.3 Motivating example revisited

Coming back to our motivating example, assume now that the manager of the

company wants to analyze the data about the employees and the products sold and

employs a clustering algorithm on the age and income attributes to find groups

of employees that have similar age and salaries. The clustering algorithm returns

the clusters depicted in Table 2.1. The tuples with id ∈ {346, 733, 289, 923} are

represented by Cluster 1, the tuples with id ∈ {533, 657, 135, 014} are represented

by Cluster 2, and so on. These sets of tuples form the explicit images of the respective

patterns.

Since the clustering algorithm is known to the system or the analyst, the abstract

form (i.e., the pattern type) of the result is known a priori. In the case of the clusters

of our reference example, the result is a 2D-disk represented as follows:

Name Cluster

Structure Schema disk:[Center:[X:real,Y:real],Rad:real]

Domain rel:{[A1:integer, A2:integer]}
Measure Schema Precision: real

Mapping Formula (rel.A1− disk.Center.X)2 + (rel.A1− disk.Center.Y )2 ≤ disk.Rad2

The actual clusters for the data set CustBranch1 are Cluster1 and Cluster2.

Since the clustering algorithm is applied only over the attributes age and income of
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TransBranch1:{bread,butter}
id items

193 bread, butter, milk
189 bread, butter
124 bread, beer, butter
133 bread, knife, butter

TransBranch2:{bread,butter,milk}
id items

293 bread, butter, milk, candies
289 bread, butter, milk
224 bread, beer, butter, milk
233 bread, knife, butter, milk

Table 2.2: Frequent Itemsets in relations TransBranch1 and TransBranch2

CustBranch1, only these attributes appear in the Active Domain. Technically this

can be achieved by using a simple view on CustBranch1.

Pid 339 (Cluster 1)

Structure disk:[Center:[X:30,Y:30],Rad:3]

Active Domain CustBranch1:{[age,income]}
Measure Precision: 1

Mapping Formula (CustBranch1.age− 30)2 + (CustBranch1.income− 30)2 ≤ 32

Pid 340 (Cluster 2)

Structure disk:[Center:[X:45,Y:60],Rad:2]

Active Domain CustBranch1:{[age,income]}
Measure Precision: 0.75

Mapping Formula (CustBranch1.age− 45)2 + (CustBranch1.income− 60)2 ≤ 22

In the case of the products sold, the manager wants to detect products that

are often sold together, so he uses a data mining algorithm that detects frequent

itemsets and among others he discovers the frequent itemsets depicted in Table 2.2.

Even in this case, the pattern type is known in advance:

Name Frequent Itemset

Structure Schema fitems:{item: string}
Domain rel:{[tid: integer, items: {string}]}
Measure Schema Precision: real

Mapping Formula fitems ⊆ rel.items

2.4.4 The pattern warehouse

Having defined the data and the pattern space, we are ready to introduce the global

framework within which data- and pattern-bases coexist. To this end, we formally

define the relation between data and patterns and the overall context of patterns,

data, and their mappings.

When a pattern is created by using a data mining algorithm, a subset of the

data set used as input for the data mining algorithm is mapped to the pattern.

For example, a clustering algorithm maps several data from a data set to the label

of one cluster. We say that these data are explicitly represented by the pattern

and we keep a catalog linking all these data with the pattern in the intermediate

mappings. Thus, the intermediate mappings are nothing but an extensional form of

the relation between the patterns and the underlying data. The PW offers functions

to handle them, although the creation and deletion of the intermediate mappings
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are not its focus. Formally, the intermediate mappings between data and patterns

can be defined as follows:

Definition 2.4.9. Let P be the set of all patterns in the pattern space and D be the

set of all data appearing in the data space. An intermediate mapping, denoted as

Φ, is a partial function: P ×D → {true, false}.

Using this definition, we can formally define the explicit representation as follows.

Definition 2.4.10. A data item d is explicitly represented by a pattern p, denoted

as d ↪→ p, iff Φ(p, d) = true.

Finally, the explicit image of a pattern can be defined as follows.

Definition 2.4.11. An explicit image of a pattern p, denoted as Ie(p), is the finite

set of the data values explicitly represented by the pattern p, i.e., Ie(p) = {x | x ↪→
p}.

To avoid any possible confusion regarding the relation between the image and

the active domain of a pattern, it should be stated that the active domain concerns

the data set which was used as input to the data mining algorithm, whereas the

image describes the subset of the active domain that the data mining algorithm

attributed to the pattern.

Remember that patterns are not linked to the data only by the intermediate

mappings. Patterns are also approximately linked to the data through the mapping

formula. The formula of each pattern is an effort to summarize the information

carried by the intermediate mappings, describing as accurately as possible a criterion

for selecting the data that are represented by the pattern from the original data set.

In this sense, the formula of each pattern is an approximation of the mapping Φ.

This approximate link actually carries a more generalized notion of the relation

between the pattern and the data space; each pattern is mapped to a whole region

of the data space, independently of the actual data records that exist. All points of

this region are approximately represented by the pattern. More formally, assuming

that the formula is actually a predicate called mapping predicate, the approximate

representation is defined as follows:

Definition 2.4.12. Let p be a pattern whose represented data lie in the domain D.

An element x ∈ D is approximately represented (or simply, represented) by pattern

p, denoted as x Ã p, iff mp(x) = true, where mp is a predicate called the mapping

predicate of p.

Note that D in the above definition does not refer to the active domain of the

data of a certain pattern, but rather, D refers to all the possible data records,
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Figure 2.3: The explicit and approximate image of Clusters 1 and 2

that qualify for its mapping predicate. Note also that throughout the thesis, by

represent we refer to the relationship approximately represents. When the semantics

of Definition 2.4.10 is used we indicate the relationship as explicit representation.

Similarly to the explicit image, we can now define the approximate image of a

pattern, or simply the image of the pattern:

Definition 2.4.13. An approximate image of a pattern p, denoted by I(p), is the

set of the data values approximately represented by the pattern p, i.e., I(p) = {x |
x Ã p}

The above definitions do not specify (directly or indirectly) any relation between

the approximate image I(p) and the explicit image Ie(p) of a pattern p. It is a

matter of the pattern base designer to decide if some constraint (like Ie(p) ⊆ I(p))

has to be imposed. In principle, it is an implementation and administration issue

whether the explicit image Ie(p) is saved (with the storage and maintenance cost

that this implies) or all the operations are executed by using the approximate image

I(p) (with the respective approximation error), which requires knowing only the

mapping predicate. In Figure 2.3, the images of Cluster 1 and Cluster 2 (defined in

Table 2.1) are depicted. The black dots are the points included in the two explicit

images while the two grey areas represent the approximate images of the two clusters.

Since the relations between the pattern and the data space are so important for

the aims of the PW , we need to define a logical entity that encompasses both. To this

end, we introduce the notion of pattern warehouse which incorporates the underlying

database, the pattern base, and the intermediate mappings. Although we separate

patterns from data, we need the full environment in order to answer interesting

queries and to support interactive user sessions navigating from the pattern to the

data space and vice versa.

Definition 2.4.14. A pattern warehouse schema is a pair 〈D̂B, P̂B〉, where P̂B is

a pattern base schema defined over the database schema D̂B.
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Definition 2.4.15. A pattern warehouse is an instance of a pattern warehouse

schema defined as a triplet: 〈DB,PB, Φ〉, where DB is a database instance, PB is

a pattern base instance, and Φ is an intermediate pattern-data mapping over DB

and PB.

2.4.5 The mapping formula

The mapping formula is the intensional description of the relation between the

pattern and the data space. The mapping formula must provide a logical criterion

enabling the identification of the data that are represented by a pattern and vice

versa. In this section, we present the a formalism for defining mapping formulae and

we focus on the following aspects: (a) the requirements for the formalism; (b) the

language that we adopt to express it; (c) the safe incorporation of the introduced

formalism in a query language; and (d) the extensibility of this formalism in terms

of incorporating user-defined functions and predicates. The proposed formalism is

focused on clusters and other patterns which define some sub-region of data space.

Although it would be ideal to have one formalism for all types of patterns, we expect

that in practice we’ll need different types of formalisms for radically different pattern

types.

Requirements. Given the complexity of the relation that may exist between the

data and the patterns, as well as the various complicated structures of data we may

face, several requirements arise for the mapping formula.

• The mapping formula must be informative to the user, i.e., the user must be

able to intuitively understand the abstraction provided by the pattern.

• A basic requirement is the ability to handle the complex data values and types

that appear in the structure and domain fields.

• The mapping formula must be able to express a great variety of relations

between patterns and data, and it should allow simple and easy extensions.

• The information described in the mapping formula should be in a form that

can be easily used by queries. This means that the mapping formula must be

expressed in a generic language that facilitates reasoning methods.

From a more technical point of view, at the pattern type level, the mapping

formula relates the structure schema with the respective domain. At the pattern

level, the mapping formula relates the structure, which is an instantiation of the

structure schema, with the active domain of the pattern, i.e., with the set value

(relation in our examples) appearing in the active domain component. Intuitively,

the mapping formula at the pattern type level correlates regions of the pattern
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space with regions of the data space, whereas in the pattern level it correlates a

single region of the data space with a specific value (the structure) in the pattern

space. In the general case, the mapping formula does not have to be stored at the

pattern level since it can be derived from the respective field of the pattern type

and from the structure and active domain values of the pattern.

Now, we can formally define what a well-formed mapping formula is for a pattern-

type.

Definition 2.4.16. A pattern type mapping formula takes the form:

mp(dv, pv) (2.1)

where mp is a predicate called the mapping predicate, dv are variable names appear-

ing in the auxiliary relation in domain D and pv are variable names that appear in

the structure schema SS.

At instantiation time, pv is assigned values of the structure component and dv

is mapped to the relation appearing in the active domain component. Similarly, we

can formally define well-formed mapping formula for patterns.

Definition 2.4.17. A pattern mapping formula takes the form:

mp(dv) (2.2)

where mp is a predicate called the mapping predicate and dv are variables appearing

in the active domain component AD.

Syntax. In the previous definitions, we chose to define the mapping formula as

a predicate. This predicate is true for all the values in the domain (and of course in

the active domain) of the pattern that are approximately represented by the pattern.

This predicate is defined using first order logic, the logical connectives (¬, ∨, ∧ etc),

and at least two constructor functions: the tuple [ ] and the set { } constructors, in

order to be able to handle complex values, as they were presented in Section 2.4.1.

Extensibility. We can increase the expressive power of the mapping predicate by

introducing more functions and predicates in the language we have adopted. In this

context, we have interpreted functions and predicates that allow the formula to be

informative to the user and offer reasoning abilities.

Safety in the use of the mapping predicate. The mapping predicate by itself is

not a query, thus, there is no issue of safety. Still, we want to be able to use it

in queries. For example, we would like to be able to use the mapping predicate

to construct a query that would return all data from a specific dataset that can

be approximately represented by the pattern. Being able to answer this query on
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the data, without any further knowledge, implies that all the free variables of the

predicate take values from the active domain of the pattern. This is ensured by

range-restricting all variables appearing in the formula predicate to constants or to

the finite datasets appearing in the active domain. This results in a safe query.

Still, the presence of even very simple functions makes the guarantee of safety, in

terms of the classical domain independence, impossible. There is a need for a notion

of safety broad enough to deal with functions and predicates. We opted to define

safety for the PW queries in terms of the n-depth domain independence proposed

in [AB95] that allows a finite number of application of functions. In this sense, safe

queries are domain-independent in the active domain is closed under n applications

of functions. In other words, any query can be safely evaluated and its results can

be computed and returned to the user, provided that there is an upper bound (n) to

the number of times that functions can be applied in it. Similar generalized forms

of domain independence have been proposed in [EMHJ93, Suc95].

2.5 Summary

The aim of this chapter was to introduce the basic foundation for pattern manage-

ment, the pattern warehouse. We described how we conceive patterns as condensed

forms that express some property datasets and we identified the requirements for the

pattern warehouse. Using these requirements as a guide we proposed a conceptual

architecture for the pattern warehouse. We showed how both patterns and data

participate in an integrated environment, as distinct entities.

We proposed and described a logical model where both data and patterns are

primary citizens. We defined as the basic components of the patterns, their struc-

ture, their source and their mapping formula, which connects the pattern structure

with their data source. We detailed how patterns are derived from instantiating

pattern types and how collections of patterns with similar semantics form pattern

classes.

We described two mechanisms for expressing the relation between data and pat-

terns. An exact one, the intermediate mappings, where a listing matching explicitly

data and patterns is kept, and an approximate one, the mapping formula. The latter

is an effort to approximate the relation between the pattern and the data space in

some logical language, whenever possible.

The constructs and the entities we described in this chapter comprise the logical

foundation for a pattern warehouse. In practice, several additions might be necessary

(e.g. it is unlikely that one language will be able to express any kind of patterns

in the mapping formula), but the model we presented is sufficient to support some

basic functionality in terms of queries, that is not currently supported by any other
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system. Relations between patterns and query operators is exactly our focus in the

next Chapter.
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Chapter 3

Querying the Pattern Warehouse

In Chapter 2 we presented the conceptual architecture of the Pattern Warehouse,

and we proposed a logical model for its organization. The aim of this Chapter is to

show how we can exploit the pattern warehouse to explore huge collections of data

and patterns.

To unlock the potentiality of the pattern warehouse, it is of paramount impor-

tance to identify the possible relations between the patterns and to discover how to

built upon existing patterns, in order to gain new knowledge about the underlying

dataset. To this end, we define a set of pattern relations and we prove that it is

sound and complete. Moreover, we propose operators for composing patterns from

existing ones. We complement our efforts by presenting a series of operators that

take advantage of these relations for query the pattern warehouse.

3.1 Querying the pattern warehouse

Based on the definitions of Chapter 2, we can now proceed in investigating how we

can exploit the information stored in it. The pattern warehouse is a larger envi-

ronment than the pattern base, as it incorporates patterns, data, and intermediate

mappings. Therefore, the user can potentially pose queries over data, patterns,

and their intermediate relationships. In this chapter, we will address the following

fundamental query operations over a pattern warehouse:

• What are the possible relationships between two individual patterns?

• Given two patterns, can we combine them to produce a new one, or can we

compare them to find out how similar they are?

• Given a set of patterns, i.e., a pattern class, or possibly, a set of classes, what

kind of information can we extract by querying them?
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• How can we possibly navigate back and forth between the pattern base and the

raw data? What kind of interesting queries can we pose over the pattern-data

interrelationships?

Our basic contribution in this chapter is the definition of a sound and complete

set of binary pattern relations. We define the semantics of each pattern relation

in the data space, and how each relation between two patterns is reflected in the

properties of the underlying data. Moreover, we prove that the proposed set of

relations is sound and complete. The usefulness of these relations is demonstrated

by the constructors and the query operators we present from our joint work in

[TVS+04a, TVS+]. The proposed constructors provide the union, difference and

similarity of two patterns. Moreover, we provide operators similar to the relational

ones for the management of pattern classes and investigate their particularities when

applied to collections of patterns. Finally, we provide three operators for navigating

between the pattern and the data space.

3.1.1 Predicates on patterns

In this section, we investigate relations between patterns, using both their exten-

sional and their intensional representation, and propose a complete set of predicates

that characterize all possible relations between two patterns. To this end, we treat

patterns as point sets in the data space. In fact, as defined in Section 2.4.4, patterns

actually correspond to two possibly different point-sets in the data space: (a) a finite

set comprising all data which are explicitly represented by the pattern, i.e., there

exist intermediate mappings linking them to the pattern, and (b) a possibly infinite

set described by the formula predicate, i.e., all points of this set are approximately

represented by the pattern. Naturally, the former refers to the explicit image of the

pattern and the latter to the approximate image of the pattern.

In all cases, we will define our binary pattern operators in two flavors:

• Explicit relationships. Explicit relationships are defined in terms of the spe-

cific data that patterns represent, i.e., with respect to their explicit image, as

obtained through intermediate mappings.

• Approximate relationships. Approximate relationships are defined in terms of

the approximately represented values of the data space, i.e., with respect to

the approximate images of the involved patterns.

We introduce three fundamental pattern operators, with semantics similar (but

not identical) to the respective set-theoretic ones. Two given patterns pA and pB

can satisfy exactly one of the following:
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• pA subsumes pB (denoted as pA Â pB), meaning that the image of pA is a

superset of the one of pB,

• pA and pB are disjoint (denoted as pA t pB), meaning that their images in the

data space have no common points, or

• pA and pB intersect (denoted as pA ∩ pB), meaning that their images in the

data space have at least one common and one not common point.

Before specifying the above operators, we define the notion of data compatible

patterns that clarifies when it is meaningful to compare two patterns with respect

to the underlying data.

Definition 3.1.1. Two pattern types are data compatible if the data types described

in their data schemata describe the same domain. Two patterns are data compatible

if they are instances of pattern types that are data compatible.

In the sequel, first we introduce our pattern operators and then we prove that

they are complete and minimal.

3.1.1.1 Intersecting patterns

The first test that we can pose on two patterns concerns the possibility of these two

patterns having common data in the data space. The notion of pattern intersection

is slightly different from the well-known, set-theoretic intersection. In our case, we

require that (a) at least a common data item exists in the explicit images of both

patterns involved in the comparison (as usual), (b) there exists at least one data

item that corresponds to the first pattern, but does not correspond to the second

one (i.e., their difference is not empty) and (c) the previous relationship also holds

the other way. Our deviation from the traditional definition practically identifies

patterns that are neither identical, nor disjoint. This is necessary for providing a

minimal and complete set of comparison operators for two patterns and it will be

made evident in the sequel (Theorem 3.1.1).

As already mentioned, we provide two variants for every binary operator, so we

define an explicit and an approximate variant of intersection.

Definition 3.1.2. Two data compatible patterns pA and pB explicitly intersect,

denoted as pA∩e pB, iff (∃x)(x ↪→ pA∧x ↪→ pB)∧ (∃y, z)(y ↪→ pA∧z ↪→ pA∧¬(y ↪→
pB) ∧ ¬(z ↪→ pB)).

Definition 3.1.3. Two data compatible patterns pA and pB approximately intersect,

denoted as pA ∩ pB, iff (∃x)(x Ã pA ∧ x Ã pB) ∧ (∃y, z)(y Ã pA ∧ z Ã pB ∧ ¬(y Ã
pB) ∧ ¬(z Ã pA)).
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3.1.1.2 Disjoint patterns

As usual, two patterns are disjoint if they do not share any common item in the

data space. With respect to their formulae, two patterns intersect when they are

defined over the same domain and the conjunction of their formula predicates is

satisfied. If the formula cannot be satisfied in the domain D then they are disjoint.

The disjoint relationship is given in the following two definitions (for the explicit

and the approximate variant).

Definition 3.1.4. Two data compatible patterns pA and pB are explicitly disjoint,

denoted as pA te pB, iff (@x)(x ↪→ pA ∧ x ↪→ pB).

Definition 3.1.5. Two data compatible patterns pA and pB are approximately dis-

joint (or simply, disjoint), denoted as pA t pB, iff (@x)(x Ã pA ∧ x Ã pB).

3.1.1.3 Pattern equivalence

A pattern pA is equivalent to another pattern pB when all data records represented

by pB are also represented by pA and vice versa. The explicit and the approximate

variant of the equivalence relationship is defined as follows.

Definition 3.1.6. Let pA and pB be two data compatible patterns. Pattern pA and

pB are explicitly equivalent, denoted as pA ≡e pB, iff (∀x)
(
(x ↪→ pB) ⇔ (x ↪→ pA)

)
.

Definition 3.1.7. Let pA and pB be two data compatible patterns. Pattern pA and

pB are approximately equivalent (or simply, equivalent), denoted as pA ≡ pB, iff

(∀x)
(
(x Ã pB) ⇔ (x Ã pA)

)
.

We also use pA 6≡ pB (respectively pA 6≡e pB) to denote that pA and pB are not

equivalent (respectively explicit equivalent).

3.1.1.4 Pattern subsumption

A pattern pA subsumes another pattern pB when (a) pA and pB are not equivalent

and (b) all data records represented by pB are also represented by pA. For example,

if the formula predicate of pA is x > 5 and the formula predicate of pB is 6 < x < 8,

and x is defined over the same domain D, then, we can say that pA approximately

subsumes pB. The explicit and the approximate variant of the subsumes relationship

is defined as follows.

Definition 3.1.8. Let pA and pB be two data compatible patterns. Pattern pA

explicitly subsumes pB, denoted as pA Âe pB, iff (a) pA 6≡e pB and (b) (∀x)
(
(x ↪→

pB) ⇒ (x ↪→ pA)
)
.
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Definition 3.1.9. Let pA and pB be two data compatible patterns. Pattern pA

approximately subsumes (or simply, subsumes) pB, denoted as pA Â pB, iff (a)

pA 6≡ pB and (b) (∀x)
(
(x Ã pB) ⇒ (x Ã pA)

)
.

3.1.1.5 A complete set of binary pattern relations

Given two data compatible patterns pA and pB, we can easily prove that, with respect

to their images, they have exactly one of the previously introduced relationships:

(a) they are disjoint (i.e., they do not have any common data item in the data

space), (b) they are equivalent, (c) one subsumes the other (i.e., all data of one

pattern belong to the corresponding data of the other), or (d) they have some, but

clearly not all data in common. This property holds for both the explicit and the

approximate images of data. In other words, the introduced set of relationships is

complete. We can easily prove that the introduced set is minimal. These properties

are formalized in the following theorems.

Theorem 3.1.1. Every two data compatible patterns pA and pB satisfy exactly one

of the relations {pA ∩e pB, pA te pB, pA ≡e pB, pA Âe pB, pB Âe pA} with respect to

their explicit images.

Proof. (Sketch) It is easy to see that the previous relations are mutually exclusive,

since we have paid attention that equivalent patterns do not satisfy the intersect of

the subsume relation. Given that they are mutually exclusive it is also trivial to see

that they are minimal: we only need to find one example for each different relation.

To prove that the above set of relations is complete, we will exploit the tautology

α ∨ (¬α) ⇔ true. Specifically, for any data compatible patterns pA and pB the

following hold:

1. (∃x)(x ∈ Ie(pA) ∧ x ∈ Ie(pB)) ∨ ¬(∃x)(x ∈ Ie(pA) ∧ x ∈ Ie(pB)) ⇔

2. (∃x)(x ∈ Ie(pA) ∧ x ∈ Ie(pB)) ∨ ¬(∃x)(x ↪→ pA ∧ x ↪→ pB) ⇔

3. (∃x)(x ∈ Ie(pA) ∧ x ∈ Ie(pA)) ∨ pA te pB ⇔

4. [(∃x)(x ∈ Ie(pA) ∧ x ∈ Ie(pB))∧
[(∀x)(x ∈ Ie(pA) ⇒ x ∈ Ie(pB)) ∨ ¬(∀x)(x ∈ Ie(pA) ⇒ x ∈ Ie(pB))]∧
[(∀x)(x ∈ Ie(pB) ⇒ x ∈ Ie(pA)) ∨ ¬(∀x)(x ∈ Ie(pB) ⇒ x ∈ Ie(pA))]]

∨pA te pB ⇔

5. [(∃x)(x ∈ Ie(pA) ∧ x ∈ Ie(pB))∧
[(∀x)(x ∈ Ie(pA) ⇒ x ∈ Ie(pB)) ∨ (∃x)(x ∈ Ie(pA) ∧ ¬(x ∈ Ie(pB)))]∧
[(∀x)(x ∈ Ie(pB) ⇒ x ∈ Ie(pA)) ∨ (∃x)(x ∈ Ie(pB) ∧ ¬(x ∈ Ie(pA)))]]

∨pA te pB ⇔
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6. [(∃x)(x ∈ Ie(pA) ∧ x ∈ Ie(pB))∧
[(∀x)(x ∈ Ie(pA) ⇒ x ∈ Ie(pB)) ∧ (∀x)(x ∈ Ie(pB) ⇒ x ∈ Ie(pA))∨
(∀x)(x ∈ Ie(pA) ⇒ x ∈ Ie(pB)) ∧ (∃x)(x ∈ Ie(pB) ∧ ¬(x ∈ Ie(pA)))∨
(∃x)(x ∈ Ie(pA) ∧ ¬(x ∈ Ie(pB))) ∧ (∀x)(x ∈ Ie(pB) ⇒ x ∈ Ie(pA))∨
(∃x)(x ∈ Ie(pA) ∧ ¬(x ∈ Ie(pB))) ∧ (∃x)(x ∈ Ie(pB) ∧ ¬(x ∈ Ie(pA)))]]

∨pA te pB ⇔

7. [(∃x)(x ∈ Ie(pA) ∧ x ∈ Ie(pB)) ∧ (∀x)(x ∈ Ie(pA) ⇒ x ∈ Ie(pB)) ∧ (∀x)(x ∈
Ie(pB) ⇒ x ∈ Ie(pA))]∨
[(∃x)(x ∈ Ie(pA) ∧ x ∈ Ie(pB)) ∧ (∀x)(x ∈ Ie(pA) ⇒ x ∈ Ie(pB)) ∧ (∃x)(x ∈
Ie(pB) ∧ ¬(x ∈ Ie(pA)))]∨
[(∃x)(x ∈ Ie(pA) ∧ x ∈ Ie(pB)) ∧ (∃x)(x ∈ Ie(pA) ∧ ¬(x ∈ Ie(pB))) ∧ (∀x)(x ∈
Ie(pB) ⇒ x ∈ Ie(pA))]∨
[(∃x)(x ∈ Ie(pA) ∧ x ∈ Ie(pB)) ∧ (∃x)(x ∈ Ie(pA) ∧ ¬(x ∈ Ie(pB)) ∧ (∃x)(x ∈
Ie(pB) ∧ ¬(x ∈ Ie(pA)))]∨
pA te pB ⇔

8. [(∃x)(x ↪→ pA ∧ x ↪→ pB) ∧ (∀x)(x ↪→ pA ⇒ x ↪→ pB) ∧ (∀x)(x ↪→ pB ⇒ x ↪→ pA)]∨
[(∃x)(x ↪→ pA∧x ↪→ pB)∧ (∀x)(x ↪→ pA ⇒ x ↪→ pB)∧ (∃x)(x ↪→ pB ∧¬(x ↪→ pA))]∨
[(∃x)(x ↪→ pA∧x ↪→ pB)∧ (∃x)(x ↪→ pA∧¬(x ↪→ pB))∧ (∀x)(x ↪→ pB ⇒ x ↪→ pA)]∨
[(∃x)(x ↪→ pA∧x ↪→ pB)∧ (∃x)(x ↪→ pA∧¬(x ↪→ pB)∧ (∃x)(x ↪→ pB ∧¬(x ↪→ pA)]∨
pA te pB ⇔

9. [(∃x)(x ↪→ pA ∧ x ↪→ pB) ∧ (∀x)(x ↪→ pA ⇒ x ↪→ pB) ∧ (∀x)(x ↪→ pB ⇒ x ↪→ pA)]∨
pA Âe pB∨
pB Âe pA∨
pA ∩e pB∨
pA te pB ⇔

10. pA ≡e pB∨
pA Âe pB∨
pB Âe pA∨
pA ∩e pB∨
pA te pB

Based on the completeness and minimality of the aforementioned set of relations, we

can therefore conclude that they are sufficient to characterize the relationship of any two

patterns.

Theorem 3.1.2. Every two data compatible patterns pA and pB satisfy exactly one

of the relations {pA ∩ pB, pA t pB, pA ≡ pB, pA Â pB, pB Â pA} with respect to

their approximate images.

Proof. The proof follows the same steps with the proof of Theorem 3.1.1 using the

approximate images of the patterns instead of the explicit ones.
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3.1.1.6 Equality

So far, we have referred to pattern equivalence with respect to the images of the

involved patterns. Naturally, except for the predicates that are defined with respect

to the images of a pattern, we can define identity or equality in a broader sense.

Specifically, we give two different definitions of equality:

• Identity (=). Two patterns p1 and p2 are identical if they have the same PID,

i.e., p1.P ID = p2.P ID.

• Shallow equality (=s). Two patterns p1 and p2 are shallow equal if their

corresponding components (except for the PID component) are equal, i.e.,

p1.S = p2.S, p1.AD = p2.AD, p1.M = p2.M , and p1.MF = p2.MF . Note

that, to check the equality for each component pair, the basic equality op-

erator for the specific component type is used. It is easy to verify that

p1 =s p2 ⇒ p1 ≡ p2.

3.1.1.7 The similarity operator ξ

Similarity between patterns is not an obvious notion. To the best of our knowledge

there has been little work on the similarity of patterns [GRGL99, BCN+04], and

none of it is dealing with similarity of patterns of different types. As in [GRGL99]

our notion of similarity is defined with respect to the data. Actually, as we did in

the previous subsection, we define here two different versions of the similarity oper-

ator: (a) the explicit similarity operator ξe defined on Ie, and (b) the approximate

similarity operator ξ defined on I.

The explicit similarity operator. The explicit similarity operator ξe is defined

over the similarity of the represented datasets Ie. A straightforward approach to

defining this similarity would be to take into account how many common values

exist in the explicit images of the compared patterns. One of the possible measures

for such a similarity definition is the Jaccard coefficient:

Definition 3.1.10. Let pA and pB be two patterns. The explicit similarity of pA and

pB, denoted as ξe(pA, pB), is defined by the expression ξe(pA, pB) = COUNT (Ie(pA)
⋂ Ie(pB))

COUNT (Ie(pA)
⋃ Ie(pB))

Naturally, other measures apply, mainly from the field of Information Retrieval,

involving the simple matching, cosine, or Dice’s coefficients [Dun02].

The approximate similarity operator. Definition 3.1.10 does not always

reflect the similarity of the knowledge carried by the patterns. For example, in the

case depicted in Figure 3.1 the two clusters carry approximately the same infor-

mation: the fact that there is a concentration of employees around the age 30-31

with the same salary of 30k. Whereas this is visually obvious, it is not directly
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Figure 3.1: Pattern similarity

reflected in the relations between the two different data sets that are represented by

the clusters, since they do not share even one common value. What we are actually

comparing in this case are the whole areas in the data space that are defined by the

pattern formulae and not the areas of the actual data. A measure for similarity that

captures this notion is defined similarly to the explicit similarity.

Definition 3.1.11. Let pA and pB be two data compatible patterns. The similarity

of pA and pB, denoted as ξ, is defined by the expression ξ(pA, pB) = V (I(pA)
⋂ I(pB))

V (I(pA)
⋃ I(pA))

,

where V is a function that gives the volume of the region in the n-dimensional space

of the image.

Intuitively, the similarity of two patterns is defined as the ratio of the size of

their intersection divided by the size of their union. Thus, two disjoint patterns

have ξ = 0 and two equal patterns have ξ = 1. Whereas in the case of the disk

clusters depicted in Figure 3.1, we could define the distance between their centers as

a similarity measure, defining similarity over the size of their intersection and their

union has an important property: similarity is independent of the structure type of

a pattern. Thus, we can define the similarity between patterns that have different

structures, i.e., they define regions with different shapes in the data space. Observe

that since the data space in principle involves n attributes, the regions are defined

over a n-dimensional space.

If the union or the intersection of the images of the patterns are not constrained in

one or more dimensions, then we cannot define the approximate similarity operator.

In this case, if spatial reasoning algorithms cannot be employed, we can still compute

the similarity between the patterns by using the explicit similarity operator.

3.1.2 Pattern constructors

Having introduced all possible relationships among two patterns, we can now define

pattern constructors resulting from such relations. Therefore, we introduce the
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intersection and union of two patterns. Then, we discuss issues of pattern similarity.

3.1.2.1 The intersection and union constructors

Constructing new patterns from new data sets is primarily a task for data mining

methods; nevertheless, we can construct new patterns from the existing ones, in the

PW , too.

Definition 3.1.12. Let pA = (pidA, sA, adA, mA,mpA) and pB = (pidB, sB, adB,mB,

mpB) be two data compatible patterns. The intersection of patterns pA and pB,

denoted as pA

⋂
pB, is defined as

pA

⋂
pB =

(
newpid(), {sA, sB}, ad, f(mA, mB),mpA ∧mpB

)
,

where ad = {x | (x ∈ adA ∨ x ∈ adB)} and f some measure composition function.

Furthermore, Ie(pA

⋂
pB) = {x | (x ∈ Ie(pA) ∨ x ∈ Ie(pB)) ∧ (x Ã pA ∧ x Ã pB)}.

Practically, the pattern that is created by the intersection of two other patterns

pA and pB consists of:

• A new pid created by some system function.

• A new structure {sA, sB}, which is a set having as members the values sA and

sB that appear in the structure field of pA and pB respectively.

• A new relation adA
⋃

B in the data field that contains all the data that were

specified in the data fields of the input patterns. Note that since pA and pB are

data compatible, the relations appearing in their data fields have compatible

type, so the union of their values can appear under one of the initial relation

schemas.

• A new measure f(mA,mB), computed by employing a measure composition

function f . The measure computation mechanism is currently a direction for

future work.

• A new formula that is the conjunction of the two formula predicates of the

intersecting patterns. Some attention should be paid in mapping the variables

from the initial relations to the resulting one. We might be able to further

simplify this formula using techniques from constraint theory. For example, if

the two formula predicates of pA and pB are mpA = 5 < x < 7 and mpB =

4 < x < 6, then we can reduce mpA ∧mpB to 5 < x < 6.

Note that the data mappings are created based on the intensional description

of the pattern. That is, from the explicit images of the intersecting patterns, only
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those data satisfying the formula predicate of the new pattern, i.e., those that are

approximately represented by the new pattern, are actually mapped to the inter-

section pattern. Figure 3.2 graphically illustrates this remark. The new pattern

describes the shadowed area, thus, we would like to map onto it all the data inside

the shadowed area. Note that data explicitly represented by pA or pB are in the

intersection, but they are not common (i.e., none of them belongs to both datasets).

Thus, if we mapped the data that are in the intersection of IpA
e and IpB

e , instead

of those that fall in the intersection of IpA and IpB , we would end up with no data

mapped to the new pattern. Therefore, we assume that pattern formulae are broader

generalizations of explicit images (i.e., no point belonging to the explicit image of

a pattern is lost from the pattern formula) and we compute the new explicit image

based on the original approximate images. From our point of view, following the

explicit intermediate mappings offers a rather narrow approach that we chose to

completely avoid in this chapter.

Definition 3.1.13. Let pA = (pidA, sA, adA,mA,mpA) and pB = (pidB, sB, adB,mB,mpB)

be two data compatible patterns. The union of patterns pA and pB, denoted as

pA

⋃
pB, is defined as

pA

⋃
pB =

(
newpid(), {sA, sB}, ad, f(mA, mB),mpA ∨mpB

)
,

where ad = {x | x ∈ adA ∨ x ∈ adB} and f some measure composition function.

Furthermore Ie(pA

⋃
pB) = {x | (x ∈ Ie(pA) ∨ x ∈ Ie(pB))}.

Practically, the new pattern resulting from the union operator is created as

follows:

• First, the pattern gets a new pid from some system function.
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• The structure of the pattern is a set composed of the values that appeared

in the structure component of the initial patterns, exactly as in the case of

intersection.

• The pattern data is the union of the data of the initial patterns.

• The new measure is computed, again, by employing a measure composition

function, f .

• The new formula is the disjunction of the formulae of the initial patterns.

Again reduction techniques can be applied as for the case of the intersection.

Lemma 3.1.1. Let pA and pB be two patterns. Then (x ↪→ pA ∨ x ↪→ pB) ⇒ (x ↪→
pA

⋃
B).

Proof. Obvious.

Note that based on the above result, it is not required that Ie(pA

⋃
pB) =

Ie(pA)
⋃ Ie(pB) as one might expect. This happens only if there has been imposed

a constraint which requires that Ie ⊆ I.

3.2 Query Operators

The predicates we defined for patterns are a significant tool in our effort to provide

methods that allow investigating large datasets. This is demonstrated by the op-

erators we defined in cooperation with Barbara Catania and Anna Maddalenna in

[TVS+04a, TVS+]. In this Section, we present pattern constructors, query operators

that manipulate pattern classes and query operators that facilitate the navigation

from the pattern to the data space in detail.

3.2.1 Operators defined over pattern classes

In the following, we introduce several operators defined over pattern classes. Some

of them, like set-based operators, renaming and selection are quite close to their

relational counterparts; nevertheless, some others, like join and projection have sig-

nificant differences. Examples of the proposed operators will be provided in Sec-

tion 3.2.3.

Set-based operators. Since classes are sets of patterns, usual set operators such

as union, difference and intersection are defined for pairs of classes with compatible

pattern types. The criterion for equality/identity of the patterns can be any of the

ones mentioned in the previous subsection.
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Renaming. Similarly to the relational context, we consider a renaming operator µ

that takes a class and a renaming function and changes the names of the pattern

component attributes according to the specified function. Each attribute is denoted

by a path expression.

Measure projection. The measure projection operator reduces the measures of

the input patterns by projecting out some components. Note that this operation

does not modify the pattern mapping formula, since measures do not appear in it.

Let c be a class of pattern type pt. Let lm a list of attributes appearing in

pt.Measure. Then, the measure projection operator is defined as follows:

πm
lm(c) = {(newid(), s, d, πlm(m), f)| (∃p ∈ c)(p = (pid, s, d,m, f))}

In the previous definition, πlm(m) is the usual relational projection of the measure

component.

Reconstruction. The reconstruction operator allows us to manipulate the pattern

structure. This operation is useful for example for projecting out some components

or for nesting or unnesting data. Since the type of the pattern structure is any type

admitted by the type system, we define reconstruction as a query over the pattern

structure, defined by using traditional complex value algebraic operators [AB95].

More formally, let c be a class of pattern type pt. Let I, I1, I2, ... be sets of values

of type τ, τ1, τ2, .... Let q be a query constructed by using the following subset of

the nested relational algebra operators plus usual set-based operators [AB95].

Projection Let I be a set of type τ = [B1 : τ1, ..., Bk : τk]. Then, πB1,...,Bl
(I) is

a set of type [B1 : τ1, ..., Bl : τl] such that πB1,...,Bl
(I) = {[B1 : v1, ..., Bl :

vl]|∃vl+1, ..., vk such that [B1 : v1, ..., Bl : vl, Bl+1 : vl+1, ..., Bk : vk] ∈ I}

Constructors We consider two operations, tup create and set create.

• If A1, ..., Am are distinct attributes, tup createA1,...,Am(I1, ..., Im) is of type

[A1 : τ1, ..., Am : τm] and tup createA1,...,Am(I1, ..., Im) = {[A1 : v1, ..., Am :

vm]|∀vi ∈ Ii, i = 1, ..., m}.
• set create(I) is a set of type {τ} and set create(I) = {I}.

Destructors We consider two operations, tup destroy and set destroy.

• If I is of type {τ}, and τ = {τ1}, then set destroy(I) is a set of type τ1

and set destroy(I) = {w|∃v ∈ I, w ∈ v}.
• If I is of type [A : τ1], tup destroy(I) is a set of type τ1 and tup destroy(I) =

{v|[A : v] ∈ I}.

Nesting and unnesting Let I1 be a set of type t1 such that t1 = [A1 : τ1, ..., Ak :

τk, B : {[Ak+1 : τk+1, ..., An : τn]}]. Let I2 be a set of type t2 such that

t2 = [A1 : τ1, ..., Ak : τk, Ak+1 : τk+1, ..., An : τn]. Then,
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• unnestB(I1) is a set of type t2 and unnestB(I1) = {[A1 : v1, ..., An :

vn]|∃y[A1 : v1, ..., Ak : vk, B : y] ∈ I1 ∧ [Ak+1 : vk+1, ..., An : vn] ∈ y};
• nestB=(Ak+1,...,An)(I2) is a set of type t1 and nestB=(Ak+1,...,An)(I2) = {[A1 :

v1, ..., Ak : vk, B : {[Ak+1 : vk+1, ..., An : vn]}]|[A1 : v1, ..., An : vn] ∈ I2}.

Then, the reconstruction operator is defined as follows:

ρq(c) = {(pid, q(s), d, m, f)|p = (pid, s, d,m, f) ∈ c}.
Note that the formula of the resulting patterns does not have to be updated since

the only variables appearing in it come from the data source, which is not changed

by the operation.

Selection. The selection operator allows one to select from a given class the pat-

terns satisfying a certain condition, involving any pattern component. Conditions

are constructed by combining through logical connectives (∧, ∨, ¬) atomic formu-

lae corresponding to: (i) predicates over patterns presented in Section 3.1.1; (ii)

similarity operators introduced in Section 3.1.1.7; (iii) predicates over pattern com-

ponents, depending on their data type. Predicates of type (i) and (ii) must be used

with respect to a constant pattern. Predicates of type (iii) are applied to pattern

components s, ad, and m which, according to the proposed model, may have a

complex value type. Therefore, predicates for complex values - e.g., equality (=),

membership (∈), and set-containment (⊆) - can be used according to the proper

type restrictions.

Let c be a class of pattern type pt. Let pr be a predicate. Then, the selection

operator is defined as follows:

σpr(c) = {p|p ∈ c ∧ pr(p) = true}
Note that, since predicates over pattern components can only be applied to

tuples, in order to select patterns with respect to inner components of the structure,

a reconstruction operator may have to be applied before applying the selection

operator.

Join. The join operation provides a way to combine patterns belonging to two

different classes according to a join predicate and a composition function specified

by the user.

Let c1 and c2 be two classes over two pattern types pt1 and pt2. A join predicate

F is any predicate defined over a component of patterns in c1 and a component

of patterns in c2. A composition function c for pattern types pt1 and pt2 is a

4-tuple of functions c = (cStructureSchema, cDomain, cMeasureSchema, cFormula), one for

each pattern component. For example, function cStructureSchema takes as input two

structure values of the correct type and returns a new structure value, for a possible

new pattern type, generated by the join. Functions for the other pattern components

are similarly defined. Given two patterns p1 = (pid1, s1, d1,m1, f1) ∈ c1 and p2 =
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(pid2, s2, d2,m2, f2) ∈ c2, c(p1, p2) is defined as the pattern p with the following

components:

Structure : cStructureSchema(s1, s2)

Domain : cDomain(d1, d2)

Measure : cMeasureSchema(m1,m2)

Formula : cformula(f1, f2).

The join of c1 and c2 with respect to the join predicate F and the composition

function c, denoted by c1 onF,c c2, is now defined as follows:

c1 onF,c c2 = {c(p1, p2)|p1 ∈ c1 ∧ p2 ∈ c2 ∧ F (p1, p2) = true}.
The general definition of join can be customized by considering specific compo-

sition operators. For example, by considering the union and intersection operators

presented in Section 3.1.2.1, we can define the union join (on∪) and the intersection

join (on∩) as follows:

c1 on∪F c2 = {p1 ∪ p2|p1 ∈ c1 ∧ p2 ∈ c2 ∧ F (p1, p2) = true}.
c1 on∩F c2 = {p1 ∩ p2|p1 ∈ c1 ∧ p2 ∈ c2 ∧ F (p1, p2) = true}.

3.2.2 Cross-over operators

Finally, we provide three operators for the navigation from the pattern to the data

space and back. The operators are applicable to classes of patterns or data. Nev-

ertheless, having defined the selection operator, it is straightforward to apply them

to individual patterns, too.

Drill-Through. The drill-through operator allows one to navigate from the pattern

layer to the raw data layer. Such operator, thus, takes as input a pattern class and

returns a raw data set. More formally, let c be a class of pattern type pt which

contains patterns p1, . . . , pn. Then, the drill-through operator is denoted by γ(c)

and it is formally defined as follows: γ(c) = {d|∃p, p ∈ c ∧ d ↪→ p} which is

equivalent to: γ(c) = Ie(√∞)
⋃ · · ·⋃ Ie(√\).

Data covering. Given a pattern p and a dataset D, sometimes it is important to

determine whether p represents D or not. In other words, we wish to determine

the subset S of D represented by p. Extended to a class c, this corresponds to

determining the subsets S of D containing tuples represented by at least one pattern

in c. To determine S, we use the mapping predicate as a query on the dataset. Let

c be a class and D a dataset with schema (a1, ..., an), compatible with the source

schema of p. The data covering operator, denoted by θd(c,D), returns a new dataset

corresponding to all tuples in D represented by a pattern in c. More formally

θd(c, D) = {t | t ∈ D ∧ p ∈ c ∧ t Ã p}.
Note that, since the drill-through operator uses the intermediate mappings and

the data covering operator uses the mapping formula, the covering θd(c, D) of the
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data set D = γ(c) returned by the drill-through operator might not be the same.

This is due to the approximating nature of the pattern formula.

Pattern covering. Sometimes it can be useful to have an operator that, given a

class of patterns and a dataset, returns all patterns in the class representing that

dataset (a sort of inverse data covering operation). Let c be a pattern class and D a

dataset with schema (a1, ..., an), compatible with the source schema of the c pattern

type. The pattern covering operator, denoted by θp(c,D), returns a set of patterns

corresponding to all patterns in c representing D. More formally:

θp(c,D) = {p | p ∈ c ∧ ∀t ∈ D t Ã p}.

Note that:

θp(c, D) = {p | p ∈ c ∧ θd({p}, D) = D}
For some examples concerning the application of the proposed cross-over opera-

tors, we refer the reader to Section 3.2.3.

3.2.3 Motivating example revisited

Coming back to our motivating example (Section 5.1), we can translate the de-

scription of user operations into simple queries or operations over the pattern base.

A data mining algorithm is executed over the underlying data and the results are

stored in the pattern base. Assume that an algorithm generating frequent itemsets is

employed and the results are stored in two classes named FIBranch1 and FIBranch2.

Which are the data represented by a pattern? The user selects an interest-

ing pattern from the class FIBranch1 and decides to find out which are the

underlying data that relate to it. To this end, the drill through operator can

be used. Thus, assuming that the user picks the pattern with PID = 193,

then the operation performed is:

γ(σPID=193(FIBranch1))

The result is stored in a transient data set Resultd
1.

Which are the patterns representing a data item? Out of a vast number of

data that the user receives as an answer, he picks a random record and decides

to see which other patterns relate to it (so that he can relate the originating

pattern with these ones, if this is possible). To this end, the pattern covering

operator can be used. Thus, assuming that the user picks a tuple t1 with

RID = 733, then the operation is:

θp(FIBranch1, t1)
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The result is stored in a transient pattern class Resultp
1.

Is a pattern suitable for representing a data set? The user artificially gener-

ates a new dataset and checks what kinds of patterns it supports. Then,

on the basis of the result, he picks a certain pattern and tries to determine

which set of data corresponds to this pattern. The user creates the data

set Cust3 = σAGE>40(CustBranch1∪CustBranch2) and uses again the pattern

covering operator:

θd(FIBranch1 ∪ FIBranch2, Cust3)

Again, the user can navigate back and forth between data and patterns through

the aforementioned operators.

Could we derive new patterns from knowledge in the pattern base? The user

combines patterns in classes FIBranch1 and FIBranch2 in order to identify

pairs of intersecting frequent itemsets (i.e., pairs of frequent itemsets with a

common ancestor in the frequent itemset lattice). To this end, the intersection

join operator can be used as follows:

FIBranch1 on∩FIBranch1.p.s∩FIBranch2.p.s6=∅ FIBranch2

Suppose the result is stored in a transient class ResultFJ
1 . According to the

intersection join definition, the structure of the patterns in ResultFJ
1 is a set

containing two elements, corresponding to two intersecting frequent itemsets,

one for each input class. The structure can be restructured in order to get just

one set, corresponding for example to the union of the intersecting patterns,

by applying the restructuring operator as follows:

ρset destroy(p.s)(Result
FJ
1 )

The result obtained by evaluating the previous expression can also be achieved

by directly applying a join operation over classes FIBranch1 and FIBranch2,

using the same join predicate and a composition function c defined as follows:

cStructureSchema = FIBranch1.p.s ∪ FIBranch2.p.s

cDomain = FIBranch1.p.ad ∪ FIBranch2.p.ad

cMeasureSchema = f(FIBranch1.p.m, FIBranch2.p.m)

cMappingFormula = FIBranch1.p.f ∧ FIBranch2.p.f

where f is the measure composition function also used in the intersection join

(see Section 3.1.2.1).
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In this case, the resulting expression would be the following:

FIBranch1 onFIBranch1.p.s∩FIBranch2.p.s6=∅,c FIBranch2.

How different are two pattern classes? The analyst is interested in determin-

ing the changes that have taken place between the patterns generated in two

consecutive days. First, the user wants to find out which are the new patterns

and which patterns are missing from the new pattern set. This involves a sim-

ple qualitative criterion: presence or absence of a pattern. Based on shallow

equality, we take the difference between the frequent itemsets generated in the

previous and the current day. If we tag the current set of frequent itemsets

with new and the previous one with old, the operation for the first branch is:

FIBranchnew
1 − FIBranchold

1 . The result is stored in a transient pattern class

Result
p
2.

Is the difference of two pattern classes significant? Then, the user wants some

quantitative picture of the pattern set: Which patterns have significant differ-

ences in their measures as compared to their previous version? So, we need to

take pairs of patterns whose similarity is above a threshold t and the difference

in precision is larger than a threshold e. A simple query is formulated by the

user:

{(x, y) | x ∈ FIBranchnew
1 ∧ y ∈ FIBranchold

1 ∧ ξe(x, y) > t

∧x.precision− y.precision > ε}

How similar are two patterns? Then the user wants to see trends: how could

we predict that something was about to happen? So, he picks a new (deleted)

pattern and tries to find its most similar pattern in the previous (new) pattern

set, through a similarity function. Assuming the user picks pattern p from the

results presented to him and the threshold is t:

{ξe(x, p) | x ∈ FIBranchnew
1 ∧ ξe(x, p) > t}

3.3 Related work

Although significant effort has been invested in extending database models to deal

with patterns, no coherent approach has been proposed and convincingly imple-

mented for a generic model. However, since the problem of pattern management is

very interesting and widespread, many researchers (both from the academic world

and the industrial one) working in several different research areas are devoting ef-
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forts on this. The main areas involved are standards, inductive databases, and

knowledge and pattern management systems. Of course, target issues in pattern

management in each area can be different. For example, standardization efforts

mainly deal with pattern representation in order to achieve interoperability and

pattern exchange among different systems. On the other hand, efforts in the area

of knowledge management systems try to address theoretical and practical aspects

concerning modeling and manipulation of patterns.

In the area of standards, there exist several standardization efforts for modeling

patterns. As already pointed out, the aim of those approaches is to provide support

for the interchange of data mining results and metadata between heterogeneous sys-

tems. One of the most popular effort for modeling patterns is the Predictive Model

Markup Language (PMML) [PMM03], which is an XML-based modeling approach

for describing data mining models (i.e., data mining results algorithms, procedures,

and parameters). Its primary issue is to support the exchange of data mining models

between different applications and visualization tools. The ISO SQL/MM standard

[SQL01] has been proposed with the same purpose. Differently from PMML, it is

based on SQL technology and provides SQL user-defined types to model patterns

and several methods for their extraction and manipulation. In the programming

language context, the Java Data Mining API (JDMAPI) specification [JDM03] has

been proposed in order to provide data mining modeling support within the Java

environment. It addresses the need for a language-based management of patterns.

By adopting a JDM API a vendor may integrate its application with other existing

mining applications (even if they are non proprietary) running in a Java environ-

ment. Finally, another important effort in this area is represented by the OMG

Common Warehouse Model (CWM) framework [CWM01], which is a more generic

modeling approach, mostly geared towards data warehousing metadata.

All these approaches do not provide a generic model capable of handling arbi-

trary types of patterns. Rather, only some predefined pattern types are supported.

For example, all the approaches support common pattern types like association rules

and clusters. Moreover, such approaches mainly address representation issues; only

SQL/MM and JDM consider manipulation problems, tailored to the supported pat-

tern types. No similarity issues are considered. Further, in some cases (for example

in PMML), they do not provide support for the representation and the manage-

ment of the relationship between patterns and raw data from which they have been

generated.

From a more theoretical point of view, often research has not dealt with the

issue of pattern management per se, but, at best, with loosely related problems.

For example, the paper by Ganti et. al. [GRGL99] deals with the measurement of

similarity (or deviation, in the authors’ vocabulary) between decision trees, frequent
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itemsets and clusters. Although this is already a powerful approach, it is not general

enough for our purposes. The most relevant research effort in the literature con-

cerning pattern management is found in the field of inductive databases, meant as

databases that, in addition to data, also contain patterns [IM96, DR02]. The field of

inductive databases is very active and many research efforts have been devoted to it

in the CINQ project [CIN03]. The overall goal of this project is to define the basic

theoretical and practical issues related to inductive query processing, which aims at

extracting interesting knowledge from data. In this context, knowledge discovery is

considered as an extended querying process involving both data and patterns. The

CINQ project is under development and, until now, only few types of patterns have

been considered (e.g. association rules, clusters, and – recently – frequent itemset

[Bou04]). No arbitrary, user-defined pattern types can be represented and manip-

ulated. However, in the future, CINQ researchers plan to consider other pattern

types (e.g., graph, episode, datalog queries, etc) and provide a general inductive

framework for all of them.

Our approach differs from approaches based on inductive database systems in

two main aspects. First, while only association rules and string patterns are usually

considered there and no attempt is made towards a general pattern model, in our

approach no predefined pattern types are considered and the main focus lies in

devising a general and extensible model for patterns. Second, unlike [IM96], we

claim that the peculiarities of patterns in terms of structure and behavior, together

with the characteristic of the expected workload on them, call for a logical separation

between the database and the pattern-base in order to ensure efficient handling of

both raw data and patterns through dedicated management systems.

Finally, we remark that even if some languages have been proposed for pat-

tern generation and retrieval [MPC99, IV99, HFW+96, ESF01], they mainly deal

with specific types of patterns (in general, association rules) and do not consider

the more general problem of defining sufficiently expressive languages for querying

heterogeneous patterns. Such rule languages are usually completely integrated in

a database environment and extend the expressive power of SQL by introducing

primitives for rule generation and rule querying. The result is a query language

providing support for extracting patterns with a certain type. For instance, the

approaches in [MPC99, IV99] deal only with association rules and clusters of as-

sociation rules, whereas the approaches in [HFW+96, ESF01] deal with association

rules and patterns resulting from a classification mining process.

Recently a unified framework for data mining and analysis has been proposed:

the 3W Model [JLN00]. The model comprises three different worlds: the I-world,

the E-world, and the D-world. The type of patterns that can be represented in

such a model is the ‘region’, i.e., a collection of points in the space spanned by the
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data. In the I-world each region is intensionally described, whereas in the E-world

it is extensionally represented (i.e., for each region the members are listed). Finally,

raw data from which regions are populated (by means of a mining algorithm) are

stored in the D-world, in the form of relations. Such kind of patterns are very

suitable to represent patterns resulting from the application of mining algorithms

which split a given data set into collections of subset, i.e., classification algorithms.

For example, decision trees, clusters, and frequent itemsets can be conveniently

represented. Besides the model for representing patterns by using the three worlds,

an algebra for manipulating patterns and data has been proposed. Such an algebra,

called dimension algebra, provides query operators (extending the relational ones)

and operations to move from a world to another. In this way, it allows one to

express and manipulate the relationships that exist among a pattern, its intensional

description, and the raw data set from which it has been generated.

To our knowledge, this is the first effort towards a unified mining and analysis

framework taking into account formal aspects. Unfortunately, the framework is not

general enough to support the representation and manipulation of arbitrary pattern

types. For example, it can be shown that I-world regions slightly correspond to the

approximate image we associate with arbitrary patterns whereas the E-world is a

sort of intermediate mapping. However, differently from the proposed framework,

no clear separation between pattern structure and images is provided, which may

however simplify some types of pattern management.

3.4 Summary

In this chapter we defined a set of binary relations between patterns. We showed

how these relations between patterns are reflected to relations between the sets

of data that are represented by each pattern. By doing this, we have set up the

basic foundation for building some a reasoning mechanism for the data. Such a

mechanism, will enable the user to reason about the possible existence of data with

certain properties, i.e. data that are represented by certain patterns. Moreover, we

proved that the proposed set of predicates is sound and complete.

We complemented our work by presenting a series of pattern constructors and

operators that utilize these predicates. The proposed operators do not constitute a

fully defined query language, but demonstrate how the pattern warehouse can be

used to provide in-depth information about the data collections we want to explore.

Several research issues remain open. First, the proposed query operators are a

starting basis for further theoretical work. It is straightforward to prove that the

operators are consistent with the model, in the sense that they all produce pattern

classes or raw data relations as their result, even if, in case of patterns, the result
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pattern type could be new with respect to the existing ones. We also conjecture (but

have not proved yet) that the proposed operators are minimal, in the sense that no

operator can be derived from the others, even if some relationships exist between

them. Anaxiomatization of the proposed operators with respect to an appropriate

calculus is a clear topic of future work, well beyond the scope of this thesis. Second,

it is an interesting topic to incorporate the notion of type and class hierarchies in

the model [RBC+03]. Third, we have intensionally avoided an extensive discussion

about statistical measures: it is not a trivial task to define a generic ontology of

statistical measures for any kind of patterns out of the various proposed method-

ologies (general probabilities, Dempster-Schafer, Bayesian Networks, etc. [ST96]).

Moreover, the computation of measures for newly derived patterns (e.g., through

a join operation) is also another research topic. Finally, interesting topics include

the identification of appropriate structures for the linkage between pattern- and

data- bases, the identification of algebraic equivalences among operators, as well as

query processing and optimization techniques that take access methods and alge-

braic properties into consideration.

There are several publications that are related with this work; the conceptual

model was first presented in [RBC+03] and it was refined and complimented by the

logical model in [TVS+04b]. This Chapter as well as Chapter 2 are based on the

last version of the model, which appears in [TVS+].
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Chapter 4

Set values and Containment

4.1 Introduction

The model for Pattern Warehouses we presented in Chapters 2 and 3 poses a series of

challenging implementation issues. One of the most intriguing research problems is

the efficient navigation from the pattern to the data space and vice versa. In Section

3.2.2 we have defined operators that offer this functionality, either explicitly by using

the intermediate mapping, or approximately by using the mapping formula. Both

versions of the operators rely on being able to efficiently determine some simple set-

containment relation: Which patterns represent a specific record? and Which data

are represented by a specific pattern?. It is only natural to expect that in practice

a user would like to query the PW for more complicated queries, involving even

more complex set containment relations: Which data that are represented either by

patterns p1, p2 or p3 are represented also by both patterns p4 and p5?.

Motivated by this need of the PW we explored the efficient evaluation of con-

tainment queries in general. Containment queries, imply the existence of set values

in our data collection. As most of modern DBMSs support the Object-Relational

model [SM96], the handling of set values is becoming a natural process in a DBMS,

though the usage of set valued attributes. Moreover, the efforts to integrate the han-

dling of XML [ZND+01, KKNR04] and web documents in a DBMSs [GW00] , or to

allow for IR-style queries in the database [GSBS05, FKM00], like keyword searching

[HP02] impose the requirement for handling efficiently containment queries on very

large collections of data.

Research in containment query evaluation in a database context has been lim-

ited [ZND+01, GW00, HM03]; the most basic results stem from the Information

Retrieval (IR) and text database areas. In these areas containment is usually con-

sidered in the context of text documents in natural language. The most profound
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example is the case of WWW search engines, where web documents that contain1 the

query terms provided by the user, are retrieved from a collection of millions of web

pages. Research in the database field has given more focus on set-containment joins

[Mam03, MGM03a, RPNK00, MGM03b, SK04, CCKN01] and similarity queries

[GGK01, MCL03] and less on simple containment evaluation. Still, the efficient

evaluation of containment queries in contexts like basket analysis, or bio-information

processing, where the data and the queries are quite different is a challenge that

database research has not addressed at its fully extent, yet. Modern object-relational

DMBSs inherently support set values and queries on them, but their efficiency is

lacking when dealing with the huge volumes that arise from sources like web and

retail store logs or from the processing of information from bio-fields, like protein

sequences and molecular structures. To this end, we propose novel indexing meth-

ods and evaluation algorithms that allow for superior performance over the current

state-of-the-art for containment with evaluation.

The aim of this chapter is to give some background information and to describe

clearly the research problem. We present the queries that lie in the focus of our

research and the state-of-the-art evaluation techniques in detail. This chapter is

organized as follows: in the rest of this section we present containment queries

and describe the properties of the data. In Sections 4.2.1 and 4.2.2 we present the

inverted file and the signature based indices respectively. We emphasize the former

due to its importance both in applications and in research. In the next chapters,

5 and 6, we proceed by proposing two new indexing methods that provide superior

performance compared with the existing approaches.

4.1.1 Data model

The focus of this work is on huge collections of low cardinality set values. Such data

are typical in a variety of applications, like market-basket analysis, web statistics

logs etc. Values in principle can be of any type. Throughout the thesis we assume

that these are categorical values, in order to address the most general case, where

we can only draw the minimum knowledge from the data space, i.e., we do not have

distance metrics that allow for proximity clustering.

We focus on huge volumes of low cardinality sets, which take values from a lim-

ited domain. Such data are typical for transactional logs from retail stores. For

example the U.S. Food Marketing Institute reports for 2005 that a typical super-

market has around 45k different products and reports 479 billion dollar sales for the

same year with 27$ cost per transaction [Ins06]. This results in around 17.7 billion

transactions in total. Moreover, it suggests a huge ratio of records per distinct item

1The matching criteria are more complex; still containment is a vital part of the retrieval
process.
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tid product sold tid product sold tid product sold
1 f 6 c 11 e
1 a 6 d 12 b
2 a 6 e 12 d
2 d 7 a 12 c
2 c 7 d 13 c
3 c 7 b 13 f
3 b 8 a 13 a
3 a 8 e 13 d
4 f 8 b 13 b
4 a 9 a 14 b
4 c 9 e 14 d
5 c 10 g 15 e
5 g 10 c 16 b
6 a 10 a 16 f
6 b 11 b 16 a
6 g 11 a

Figure 4.1: A collection of set values in a purely relational database

in the database. Even assuming that the total number of different products is twice

or three times that of a typical supermarket, still the ratio of the number of trans-

actions to the number of distinct items is larger than 100.000. Given that data are

collected over greater time periods than one year, and that the majority of different

products remain in the market for periods larger than one year, it is easy to see how

these figures become even greater. These facts assert that our assumption for large

collections of set values from a limited domain are reasonable and they actually

represent a very common real world case. The 27$ value of the average transac-

tion, also suggests that in the general case the cardinality of the set values, i.e., the

number of items sold in each transaction, is small. The real web logs we retrieved

from the UCI repository [HB99], also adhere to the same statistical properties. For

reasons of economy and clarity we introduce some notation for describing our data.

Let t be a record, D be the collection of records, and I be the active domain of the

database, i.e., the distinct items that appear in the D. Let also |t|, |D| and |I| be

their respective cardinalities.

In order to store the transactional data from a retail store or any other source

in a database, we basically have two options:

• The classical relational one, where for each item sold we insert into D a tuple

[id, oid], where id stands for the record identifier and oid the identifier for

the product sold in this transaction. Thus, for each record t we introduce |t|
distinct entries in the database. An example of such relation is depicted in

Figure 4.1.
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tid products sold tid products sold
1 {f, a} 9 {a, e}
2 {a, d, c} 10 {g, c, a}
3 {c, b, a} 11 {b, a, e}
4 {f, a, c} 12 {b, d, c}
5 {c, g} 13 {c, f, a, d, b}
6 {a, b, g, c, d, e} 14 {b, d}
7 {a, d, b} 15 {e}
8 {a, e, b} 16 {b, f, a}

Figure 4.2: A collection of set values in an object-relational database

• The object relational one. In this case for each record t, we introduce only one

tuple [tid, s], where s is a set valued attribute that contains all the identifiers

for the products that were sold in this record, i.e., s = {oid1, . . . , oid|t|}. An

example of such relation is depicted in Figure 4.2.

For reasons of simplicity and readability we opt to refer to data organized ac-

cording to the latter scheme; still the methods we propose in Chapters 5 and 6 work

for both. The storage organization options for the data themselves are beyond the

scope of this work. For storage options concerning the set valued attributes we refer

the interested reader to [GMUW00]; a more detailed discussion on storage options

also appears in [Ram01].

Almost all the algorithms and the index structures that exist in the literature

come from the information retrieval and text databases field. The data that domi-

nates these areas are text documents in natural language. The low cardinality set

values we are addressing here, are quite different from such data. For example,

techniques like stemming do not have a meaning, new vocabulary items are not

introduced by new data but they are usually added separately, i.e., a new section is

added to a web portal, or new products are traded by a supermarkets. With respect

to containment queries the basic differences between text documents and our setting

of set values are the following:

• The size of each record is significantly smaller, usually in orders of magnitude.

Record entries in supermarket or in web logs, and in many other applications,

contain only few different items, whereas a text document has hundreds or

thousands of words.

• The number of record entries can be significantly larger. As mentioned previ-

ously the supermarket transaction in the U.S. only in 2005 amounted to 17.7

billion, which is more than the documents appearing in the whole WWW.

• There are more classes of containment queries that are meaningful in such

data, hence indices should address more queries than subset.
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• The vocabulary I in the context of set values is significantly limited in compar-

ison with the vocabulary in text document collections. For example the logs

of a typical U.S. supermarket would involve 45k distinct products whereas the

vocabulary for web data can is in the order of million distinct words, as a new

word appears in every 500-1000 word occurrences [ZM06].

4.1.2 Queries

We focus our research on the evaluation of simple containment queries. Simple con-

tainment queries have exact answers and they are concerned only with the existence

of the query items, in the database records. Such queries have been studied in

IR, in the context of the Boolean Information Model [WMB99, BYRN99]. Subset

queries are the most important ones in information retrieval systems, and they are

the basis for the ranking queries performed by www search engines. In our context

we study not only subset, but also set equality and superset queries. This set of

query predicates has been identified as the most important in several other studies

[HM03, TBM02, MMNM03, IKO93]. Assuming a set of query items qs, which is

provided by the user in each query, we define the following queries:

• Subset queries. In subset queries the user asks for all records t that contain

the query set qs, i.e., {t | t ∈ D ∧ qs ⊆ t.s}.

• Equality queries. In equality queries the user asks for all records that contain

exactly the query set, i.e., {t | t ∈ D ∧ qs ≡ t.s}.

• Superset queries. In superset queries the user asks for all records whose items

are contained in the query set, i.e., {t | t ∈ D ∧ qs ⊇ t.s}.
For example, a subset query Q1= {t | t ∈ D ∧ {a, f} ⊆ t.s} on relation D of

Figure 4.2 would return the records with id’s {1, 4, 13, 16}. An equality query Q2=

{t | t ∈ D ∧ {a, f, c} ≡ t.s} would return the record with id = 4. A superset query

Q3= {t | t ∈ D ∧ {a, f, c} ⊇ t.s} would return the records with id’s {1, 4}.
This set of query predicates is fundamental for even more complex complex

query models, like the WP [KST06, KKTR02], which is based on the boolean model

for word patterns, and the AWP model [KST06, TIK05, TKD04], which extends

the WP , with named attributes. AWPS [TIK05] is an extension of AWP , which

includes a similarity predicate.

4.2 Indexing for Containment Queries

In research literature there are basically two main families of indexing solutions for

containment queries: a)Inverted files and b) signature-based ones. In this Section

59



1, 2, 3a

b

c

d

e

14

16

b, d

b, f, a

Database 
transactions (D)Inverted (postings) lists 

V
oc

ab
ul

ar
y 

(I
)

f

4 ,6, 7 8, 9, 10 11, 13, 16

3, 6, 7 6, 11, 12 13, 14, 16

2, 3, 4 5, 6, 10 12, 13     

2, 6, 7 12, 13, 14

6, 8, 9 11, 15

1, 4, 13

g 5, 6, 10

16

Figure 4.3: A simple inverted file index scheme for the example of Figure 4.2.

we review each of them and provide the basic details of their structure.

4.2.1 Inverted files

Inverted files [Knu73, BYRN99, WMB99, ZMSD92] are the indexing solution em-

ployed by all WWW search engines and the most efficient index structure for text

query evaluation in research literature [ZM06]. Inverted files comprise a collection of

lists, one per item of the database, recording the identifiers of the records containing

that item.

As we can see in Figure 4.3, an inverted file index has two major components: (a)

the vocabulary and (b) the inverted lists. The vocabulary is a list of all the distinct

items appearing in the database, i.e., it is the same with the database vocabulary

I of Section 4.1.1. Each list node has a label indicating the item it represents and

a pointer to the head of the inverted list. The vocabulary is usually organized in

a B-tree or a trie, if range queries are of interest, or in a hash table, if they are

not. The inverted list contains information about all the records in which the item

appears. For each appearance of an item in some record, there is a distinct posting

in the respective list. Each posting contains at least an identifier for the record and

in the case of text documents the multiplicity of the item’s appearances in the docu-

ment, the offset of each appearance, etc. In our case, this information comprises the

record id alongside with its length. The length of the record is required in order to

efficiently execute equality and superset queries. Inverted lists for document collec-

tions are usually sorted according to the document id in order to provide an efficient

intersection implementation, by merge-join. Still, there are other techniques, where

the postings are sorted according to their in-document frequency [WL93, Bro95] or

their impact [AdKM01, AM02]. These alternative organizations of the inverted lists

can offer superior performance in certain kinds of queries. This is achieved by pro-
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Item Signature
a 0000 0001
b 0000 0010
c 0000 0100
d 0000 1000
e 0001 0000
f 0010 0000
g 0100 0000

Table 4.1: Signatures of items

viding approximate answers, using only the first part of each inverted list. Since we

target boolean queries with exact answers, we assume that the lists in the inverted

files are sorted according to the record id.

Keeping this kind of information in each posting, may result in huge lists; the id

and the length of a transaction is inserted as many times as the number of items it

contains. This means that, theoretically, the size of the inverted file could be similar

to the size of the database or even larger. In Section 4.6 we examine techniques to

compress the list size in order to improve evaluation time.

4.2.2 Signature files

Signature files [Fal92, FC84, Fal85, FC87] are the basic alternative method to the

inverted file and traditional RDBMS methods for containment queries. The main

idea behind signatures is to hash each item of I to a fixed size word and then to

superimpose the codes of all the items of a record, to create the records’ signature.

Superimposing relies usually to the usage of some some binary operation (AND,

OR, XOR etc) between two signatures. For example in Table 4.2.2, we depict the

record level signatures for D; to construct them we used OR as the superimposing

function and the signatures of Table 4.2.2 for the items of I.

The basic elements of the evaluation procedure are common for all the signature

methods; the signature of qs must be produced, and the candidate results must

be retrieved from the signature file. As in all signature based methods to provide

the final results, all candidate records must be retrieved and tested. The testing is

necessary because of the possible false positives. In order to reduce the size of the

signatures, not every combination of items and set-values has a distinct signature.

Thus, it is possible that the signatures of some records might match the signature

of qs, but the records might not. These records are generally referred to as false

positives.

A straightforward index structure that takes advantage of the signature methods

is the sequential signature file [IKO93]. The idea is very simple; the record signa-
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tid products sold signature tid products sold signature
1 {f, a} 0010 0001 9 {a, e} 0001 0001
2 {a, d, c} 0000 1101 10 {g, c, a} 0100 0101
3 {c, b, a} 0000 0111 11 {b, a, e} 0001 0011
4 {f, a, c} 0010 0101 12 {b, d, c} 0000 1110
5 {c, g} 0100 0100 13 {c, f, a, d, b} 0010 1111
6 {a, b, g, c, d, e} 0101 1111 14 {b, d} 0000 1100
7 {a, d, b} 0000 1011 15 {e} 0001 0000
8 {a, e, b} 0001 0011 16 {b, f, a} 0010 0011

Table 4.2: Signatures for set-values of Figure 4.2

tures are stored sequentially in a separate file from the original data; when a query is

issued, the signature of qs is generated and the signature file is sequentially scanned

and compared against the qs. The records whose signatures match2, are retrieved

and tested to produce the final results. An obvious weakness of this indexing scheme

is that the whole index has to be scanned when a query is issued. To tackle this

problem Bit-Sliced Signature Files were proposed [IKO93], which store the signa-

tures in columns, i.e. the store the first bit of all the signatures of D together, then

the second and so on. In this scheme it is no longer required to scan the whole

index. Scanning only the first bits of each signature might be enough to locate a

small group of candidates. Other methods that allow access to only a part of the

signature file, through different clustering strategies [Hel97, SDKR+95].

One step further than grouping is the idea of signature trees [Dep86, AWY99,

NTCM02, TBM02, MCL03, Che05]. Signatures trees organize the records’ signa-

tures following the same lines as R-trees [Gut84, SRF87, BKSS90, The03] and B-

trees [Bay71, BM72]. Each node has a signature, which is the result of superimposing

the signatures of its immediate descendants. The idea is compelling; given the sig-

nature of qs, the evaluation algorithm can find the node(s) that match it at each

tree level and subsequently examine it subtree, until the matching candidate record

is found. Moreover, with the suitable splitting and merging algorithms, the tree can

be balanced, thus its height can remain small even for large collections of records.

In [NM02] the authors propose two additional enhancements for signature trees:

a) they propose an alternative splitting algorithm, which provides a more efficient

grouping for signatures into tree nodes and b) a paging scheme which the contents

of several logical tree nodes in one physical page. This paging scheme allows the

existence of relatively small logical nodes, which offer a superior pruning power, as

a result of limiting false positives. The results of these two enhancements is the

superior behavior of the resulting signature tree over the classical signature tree

2The meaning of match depends on the query predicate (subset,superset etc) and of course on
the superimposing function.
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for similarity queries. An interesting approach that outperforms the signature tree

for subset and superset queries in proposed in [TBM02], where the authors propose

combining the signature tree with parametric weighted filters. By coupling the PWF

with the signature tree splitting techniques they create three new PWF variations,

with performance gains up to 85%.

Still, signature based methods in a series of comparisons [CBM+94, ZMR98,

HM03] have been shown to be inferior to the inverted files, except maybe for set-

equality [HM03] and similarity queries [MCL03]. In [CBM+94] a comparison in

the context of a parallel system between signatures files and inverted files, favors

the latter; in [ZMR98] the authors show both analytically and experimentally that

inverted files significantly outperform signature files for boolean queries over text.

These results are verified experimentally in a context similar to ours in [HM03]. In

[HM03] Helmer and Moerkotte evaluate, using the queries we presented in 4.1.2,

the inverted file and three signature based methods the sequential signature file,

the signature tree and the extendible signature hashing. The basic problem with

signature based methods is the number of false positives. In any setting, the cost

of retrieving a false positive from the disk is one of the most expensive operations

during query evaluation [ZMR98]. But avoiding having false positives is a very hard

task, since one has to give too many bits to the different items of I. Moreover,

since we do not query the database just for set quality (which could be solved easily

with a hash) but also with subset and superset predicates, we would like have 2|I|

different signatures for any possible combination of the items of I. Even if we have

a limit on the size of the record size |t|max, the possible set values are
∑n=|t|max

n=1

(
n
n

)
,

which is still huge. A smart choice of the hash function for the items of I and

of superimposing function, can limit the effect of the huge domain, but still the

problem exists. Superimposing makes it even worse, since at higher tree levels (near

the root), where there are numerous items under each node, the node signatures tend

to become similar. This can be leveraged by grouping together similar signatures

[Dep86], but still the experimental results have shown, that even for low cardinality

sets [HM03], inverted files are superior.

An in-depth study of how containment queries are evaluated by inverted files

and RDMBSs in [ZND+01] demonstrates that the RDBMS usually performs worse,

often by orders of magnitude. RDBMSs are able to outperform the inverted file only

when the selectivity of the query predicate is very small.

Since inverted files appear as the state-of-the-art index for containment queries

we dedicate the rest of this chapter in detailing several aspects of their behavior and

we explain how we adjust them in our context.
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4.3 Query Evaluation with Inverted Files

The evaluation of the subset, equality and superset queries against inverted files is

rather straightforward; in all cases we need to scan the inverted lists of the items

that appear in qs once, in order to retrieve the correct answer. In the case of subset

and equality queries we have to intersect the inverted lists and in the case of the

latter we use the length as an additional filter. To evaluate superset queries we take

the sorted union of the lists and use the length again as a filter.

The algorithms we present here differ slightly from the algorithms used for evalu-

ating the same queries in IR. The basic difference is that we process the inverted lists

simultaneously, by doing k-way merges and k-way merge joins. In IR the algorithms

usually perform a sequence of 2-way merge joins between the current candidate

solutions and the inverted list of one of the remaining items of the query set qs

[MZ96, AM98]. The k-way merge join is theoretically more efficient since it might

stop scanning the inverted list sooner, since it stops when it reaches the end of any

of the involved lists. Still, in the context of IR this is not an important factor for

two reasons: a) the most popular IR queries, the ranking queries are evaluated like

disjunctive queries, i.e. a document cannot be easily discarded and usually the whole

lists of the qs items have to be scanned and b)inverted lists in a text document con-

text are usually smaller than the ones we expect in a transactional log context, since

the most popular words in text documents are “stop” words, which are not consid-

ered in queries. This way performing sequential 2-way merge joins by retrieving the

whole lists into main memory does not introduce a significant overhead compared

to performing a k-way merge join. Moreover, using list of main memory candidates

is imperative for the evaluation of ranking queries that need to update the score

of each candidate during the evaluation. Performing sequential 2-way merge joins,

and keeping the results as candidates in main memory can provide benefit only if

we have queries with big qs and random access in the inverted lists. Having a big qs

makes probable that during query evaluation the number of candidates will decrease

significantly, thus being able to randomly access the larger lists to examine whether

they contain a candidate or not might be compelling.

Keeping the candidates in main memory provides a straightforward algorithm for

evaluating boolean queries; all the lists of the qs items are retrieved sequentially, and

candidates are discarded if they fail to meet the specific matching criterion, e.g. for

subset queries they are discarded if they do not appear in one list. Still, in a context

were |I| ¿ |D| the keeping of candidates into main memory is impractical, since the

inverted lists can be very large. This is the main reason why the query evaluation

algorithms we present here, do not keep candidate solutions in main memory but

instead they need only a vector of qs elements. This vectors holds a posting and a
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Subset Query Evaluation
// qs = {o1, . . . , on}, o1 < · · · < on.
1. for each i in the inverted list of on, on.list {
2. if |qs| < i.length continue
3. for (j = n− 1;j ≥ 1;j −−) {
4. found=false;
5. while (c < i) {
6. get next item c from oj.list;
7. if (c == i) then found=true }
8. if (not found) break }
9. if (found) output i; }

Figure 4.4: The subset query evaluation algorithm for the inverted file

pointer for each inverted list of the qs items, to facilitate the k-way merge join. In

the following we present in more detail how each algorithm works.

Subset Queries. In the case of subset queries we merge join the inverted lists of

the items that appear in qs. Assume the database depicted in Figure 4.2 indexed by

the inverted file presented in Figure 4.3 and a subset query with qs = {a, f}. The

evaluation algorithm retrieves the inverted lists of the items a and f , and since they

are sorted, it merge-joins them, to trace id’s which have postings in both lists. i.e.,

1, 4, 13, 16. The algorithm is depicted in pseudo-code in Figure 4.4. The algorithm

starts scanning the lists from the smallest to the largest, in order to increase the

chances of quickly eliminating as many candidate id’s as possible. For example, if

the user asked for the records that contained b, f, g, starting from the inverted list

of g would not require scanning more that the inverted list of g and the first disk

page of f ’s inverted list. On the other hand, if we started from the inverted list of

b, which is significantly larger than the list of g, we would have to scan the three

disk pages of the inverted list of b, the first disk page of the inverted list of f and

the inverted list of g.

Since the records in our context are relatively small, and queries retrieve all exact

matches, we can use the length of the record as a heuristic to speed up processing;

we can discard records that have length smaller than |qs| right away.

Equality Queries. The evaluation procedure for equality queries is almost iden-

tical to the evaluation of subset queries. The basic difference is that the use of the

length of each transaction as a filter is imperative as a filtering step. Moreover,

the filtering condition is stricter; only transactions whose length is equal to |qs| are

eligible for further consideration.

Superset queries. Superset queries are not common in information retrieval,

and to the best of our knowledge there is no algorithm for evaluating them by

using inverted files described in detail. In [TPVT] we have used an algorithm that
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Superset Query Evaluation
// qs = {o1, . . . , on}, o1 < · · · < on.
1. for each i in the inverted list of on, on.list {
2. if |qs|¡i.length continue
3. for (j = n− 1;j ≥ 1;j −−) {
4. counter=1;
5. while (c < i) {
6. get next item c from oj.list;
7. if (c == i) then counter = counter + 1 }
8. if (i.length == counter) output i; }

Figure 4.5: The superset query evaluation algorithm for the inverted file

progressively traces all the combinations that contain each item of qs. Such an

algorithm is also implied in [HP94], but no details are given. Whereas this algorithm

required scanning more that once the inverted lists of the items of qs3, the algorithm

we present here requires a single scan of each list. The basic idea is that if we

have the union (assuming bag semantics) of the inverted lists of qs we can easily

determine which records satisfy the superset predicate by using the length of each

transaction; all those, whose length is equal to the multiplicity of its postings in the

union of the inverted lists, satisfy the query. It is easy to see that if the length of

a record is greater than the number of times it appears in the inverted lists of qs,

then more items than those of qs must be contained in this record, thus it cannot

satisfy the superset predicate. Moreover, by creating the union sorted, we never

need to “remember” anything more that last |qs| + 1 postings to determine if a

record satisfies the query predicate. The algorithm in pseudo-code appear in Figure

4.5

The previous algorithms rely on retrieving and merging the inverted lists of the

items that appear in qs. As a result their performance deteriorates significantly when

these lists grow very long. Unfortunately in a setting like the one we described in

Section 4.1.1, where the size of the database is very big and the number of distinct

items is small, we cannot avoid the phenomenon of queries that have to handle very

long lists. Moreover, even if the number of items is not so large, and the average

list has a moderate size, problems arise in practice, since the distribution of the

items in most real world activities is skewed. This means that the most frequent

items can have very long lists, even if the average list is moderate. In addition,

database experience indicates that more frequent items are the ones that appear

more frequently in users queries.

Using an index to provide random access to the inverted lists does not provide

3Actually it scanned once the longest inverted list, twice the second and so on.

66



significant benefits. It does not have any impact on superset and its effect on

equality and subset queries is limited, except if the selectivity of the query is very

small. When performing a merge join between two or more sorted lists, we slide

positional indices in the lists from their beginning towards their end, checking if a

value occurs in all lists. Using an additional index structure on the lists to check if

a value exists in one of them, would only be beneficial if we could guess successfully

the place where the value appears in the list. If the value we are searching for, is

very close to the current offset in the list, it is better to just fetch the next few disk

pages, than to use the index to randomly access the list. Only if we knew that we

have to fetch many pages before getting to the place where the value should appear,

it would be beneficial to randomly access the list. Still, it is not easy to make such

predictions accurately. For this reason, to the best of our knowledge there are no

research works that use indices on the inverted lists of an inverted file index in order

to speed up the evaluation of boolean queries. The only exception we are aware

of is [MRYGM01], where an index is built as a result of the breaking up of each

inverted list to fixed size buckets, in its BerkleyDB implementation. But since using

the index is not in the focus of the paper, it does not give any results comparing

evaluation processing with and without the index, so no conclusions can be drawn.

The problem of large inverted lists has been mainly addressed in research by using

compression techniques; a brief survey of the state-of-the art is presented in Section

4.6. Moreover, the possibly large size of the inverted lists has several implications

in the storage allocation and maintenance strategies. We examine these problems

in Sections 4.4 and 4.5.

4.4 Storage Allocation Strategies

The most effective physical storage allocation scheme for inverted lists is to store

them contiguously on the disk [ZM06, TGMS94, LZW06].

Alternatives in research literature and in practice are motivated by the difficulty

to support contiguous storage in the case of updates. Moreover, another issue when

dealing with storing inverted lists of different sizes is the efficient space utilization.

To deal with these two issues several different storage allocation strategies have

been proposed. Usually, a basic point in these strategies is to treat long and short

inverted lists differently. Having lists that vary substantially in size, as a result

of skewed item distributions in the database, which is a common real world case

[ZM06, BCC94, TGMS94].

To deal with updates efficiently, alternative approaches either overallocate space

for future updates or split the long lists of the inverted file in smaller chunks of disk

pages, stored contiguously in the disk. In [BCC94] fixed size objects, whose size
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ranges from 16 to 8192 by powers of 2, are allocated for long lists. When the list

fills the 16 bytes, then a chuck of 32 bytes is allocated and the initial contents are

copied in the latter chunk. When the maximum size is reached, instead of copying

the contents to a new large chunk, a linked list of the maximum size chunks is

started. The authors report a deterioration in query performance, with respect to

a contiguously stored inverted files, from 6% to 29%, but at the same time they

provide a superior update time. An analytic approach in [LMZ05] shows that the

cost on query performance might be larger in the general case. In [TGMS94] long

lists are kept initially contiguously in the disk and updates are stored in different

buckets. The authors report that this allocation scheme reduces the performance in

half. Lester et al. [LZW06] report observing such behavior when the inverted lists

are split in only two pieces. In [LMZ05], the authors present a technique of keeping

large lists partitioned in linked chunks whose sizes follow a geometric sequence.

By using periodic mergings the authors are able to keep a controlled number of

partitions for each lists, thus avoiding significant fragmentation. The authors report

a query response time greater by 20% from the respective evaluation time against the

contiguous list scheme when using 2 partitions. In [MRYGM01], the authors explore

the embedded implementation of an inverted file in a DBMS, the BerkeleyDB. This

case is of special interest in our setting since the storage and indexing of the data in

a DBMS would enable the easy handling of the set-valued data together with other

semantically linked information. Melnik et al. explore three different organization

schemes for the inverted lists in the DBMS: (a) a scheme where each list comprises

a single entry in a table, with the respective item as a key, (b) a scheme where each

posting in a list comprises a single entry in a table, with the item and the record id

forming the key, and (c) a mixed approach where lists are split (or merged) to fixed

sized buckets; each such bucket is a distinct entry in a table with the item and the

the last record id of the bucket forming the key. Experimental results demonstrate

that, if rightly tuned, the mixed approach can have a query evaluation performance

very close the first approach and a significantly better update time.

The problem of space utilization arises when there are numerous short lists that

must be stored efficiently. A basic technique to address this problem is to treat long

lists and short lists differently. In [TGMS94] and [MRYGM01] short lists are merged

in buckets of fixed size in order to increase the utilization of reserved space in disk.

In [CP90] short lists are kept together with the vocabulary in a B-tree, whereas long

lists are kept separately. This approach offers increased performance when dealing

with short lists.

Finally techniques for creating a distributed inverted file index appear in [MRYGM01]

and [JO95].
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4.5 Creation and Maintenance

The creation and maintenance of the inverted file pose a series of interesting prob-

lems, mainly due to the large size of the datasets that must be indexed. In the

following we describe effective algorithms for creating large inverted files under lim-

ited memory and examine maintenance algorithms both for contiguous and non-

contiguous inverted lists.

4.5.1 Construction

The construction of an inverted file for a small dataset, where everything can be done

in main memory does not pose any complicated problems and it is rarely a practical

problem. There are three main strategies for creating an inverted file [ZM06, SH03]:

• Two-pass inversion [FL91]. Following this strategy, the database is scanned

twice; in the first pass the algorithm collects statistics, like the frequency of

item appearances, the total number of records etc, in order to allocate the

right amount of space in memory for the building of the index. In the second

pass the actual postings are created and inserted in each inverted list. In

[MB95, WMB99] this method is adjusted for working under limited memory

by allocating the right space in the disk after the initial pass and flushing the

main memory part of the index to the disk, when the memory is full. The

basic weaknesses of this method are that it requires scanning and parsing the

data twice and that it has to sustain an array equal to the vocabulary size, in

main memory.

• Sort-based inversion. Sort-based inversion has been used in several research

works [CCH92, BCC94, HFBYL92] and its basic idea is that from a single

scanning of the data, files with postings are created in the disk, which are sub-

sequently sorted and used for creating the inverted file. A detailed description

of such an inverted file creation scheme is given in [MB95]. In this creation

method, as data are scanned and parsed the respective postings are created,

compressed and stored into main memory. When there is no more available

memory the postings are sorted, first by item and then by document id, and

they are flushed to the disk. Each such sorted chunk of data is referred to as

a “run”. When all data have been processed the inverted file is created by the

scanning the runs once. A weakness of this method is that it might require

temporal disk page equal or greater than the size of the final inverted file. Still,

the authors of [MB95] present a method by which the final inverted file can

be created on the space that is freed as each run is processed. Advantages of

this method are the fact that it needs only one pass on the data (but it needs
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to write and read all the runs) and that it uses compression to make the usage

of the available memory and disk space more efficient.

• Single-pass inversion [SH03]. The single-pass inversion scheme combines ele-

ments from both the previous methods. It scans the data only once like the

sort-based inversion and creates parts of the inverted file as the two-pass in-

version in main memory. The parts are flushed to the disk and then merged to

create the final inverted index. An advantage of this method compared to the

other two is that it does not need to keep all the known vocabulary in main

memory, but only the part of the vocabulary that came up in the current run.

This way, more memory is available for the creation and less runs needed.

Note that all the previous strategies aim at creating the optimal organization for

the inverted index, i.e., contiguous inverted lists. If it is acceptable that the lists

can be broken in pieces as in [MRYGM01], the handling of the runs might be more

straightforward, as distinct chunks can be created in a single run, without the need

of processing them again. Another point with respect to the context of this work,

is that these comparisons come from experiments on text (web mostly) data, in

[SH03] and other works in IR. As a result there are several differences with the kind

of data we are addressing in this work. In the aforementioned methods the handling

of the vocabulary (it must be all in main memory or not) was an issue, since the

vocabulary grows linearly with the size of the data in text documents. On the other

hand, the small (wrt to the database size) vocabulary we assume here, does not

play a significant role in the creation procedure. Another important point is the

cost of scanning the data vs. the cost of writing and reading runs from the disk.

We expect that reading and parsing small transactions with no item repetitions and

without keeping complicated statistics will be significantly easier than reading and

parsing text documents, where the vocabulary is not known a priori and the size of

each document is many times the size of each transaction. These factors favor the

two-pass inversion scheme, thus the actual difference between the other two methods

can be insubstantial.

4.5.2 Maintenance

At a first glance updating inverted lists seems an easy task; when new docu-

ments/records arrive they are assigned id’s greater that the ones assigned to already

indexed records, and the respective postings are added at the end of the inverted

lists. In practice there are several problems, stemming from the storage allocation

schemes that are used. The most efficient organization for the inverted lists is to

store them contiguously on disk. Such a scheme is not trivial to maintain in the

presence of continuous updates; overallocation strategies, even when statistics are
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used [SC05] have their limits. In the following, we present the most popular methods

for maintaining the inverted files in the presence of updates.

The need to update an inverted file is usually the result of new document ad-

ditions in the database. Still, deletions [CCB94, CCB94] and internal changes in

the documents [LWP+03] have been considered. All strategies that require that the

inverted lists are stored contiguously, store the updates initially in a main memory

inverted file. In modern hardware it is easy to hold information for numerous docu-

ments in a main memory inverted file, especially if an efficient compression method

is used. The benefit of this approach is that new records are immediately available

for querying, whereas the update cost for the main memory inverted file is very

small. When the available memory gets full, it is necessary to move all the postings

from the main memory to disk. This way we only do batch updates in a frequency

depending on the rate of updates and the available memory buffer. Caching strate-

gies for reducing update costs are considered in [BMV96]. There are three basic

approaches for updating the disk-based inverted file, when the memory buffer is full

[ZM06, LZW04]:

• Re-build. The simplest method for updating the index and keeping the inverted

lists stored contiguously is to re-build it from scratch. This is also motivated

by the fact that many IR systems can afford to be periodically off-line for

a short time. In [MRYGM01] it is stated that most commercial web search

systems employ this method for efficiency and simplicity.

• Re-merge. In the re-merge update scheme, the main-memory and the disk

based inverted file are merged and a new inverted file is written on disk. This

requires a single scan on the index. The construction time is reported [LZW04,

LZW06] to be significantly less than in the other two methods. During the re-

merge the old index may still be available for querying, but no new documents

can be indexed at the same time.

• In-place. The basic difference between in-place and re-merge approaches, is

that the in-place does not merge the whole main-memory and disk based

inverted files, but rather specific lists, e.g. the longest ones. This strategy

can be combined with other actions of the system, for example the update

might take place when a list is retrieved for querying purposes; since the list is

already retrieved it can be merged with the respective list of the main memory

index and then written again on disk. [LZW06] reports that this approach

may be attractive for very large systems, but in the general case the re-merge

strategy remains more effective. In a context like ours, where the vocabulary

is small, we do not expect that this update strategy will be fruitful, since even

small batches of new records affect a large part of the vocabulary.
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The pervious update techniques refer to a storage scheme where the inverted lists

are stored contiguously in the disk. In addition, there are several proposals where

the lists are stored in several partitions in the disk. In such cases the merging stage

is a lot easier. If the number of partitions for the inverted lists is not controlled

or limited [TGMS94, MRYGM01, BCC94, STGM94] then it is possible that no

merging at all is needed; the new postings are stored in a new partition on the disk,

and a link is added at the end of the previous partition to the new one. Even if

the number of partitions is limited [LMZ05], we only need to merge a part of the

disk-based inverted file with the main-memory one. The trade-off in each case is

that query performance deteriorates as the inverted lists get fragmented.

A technique of periodic merging is introduced in the INQUERY system [CCB94,

CC95], where a part of the main memory inverted file is periodically merged with a

part of the disk based inverted file. This way the index rotates in the available disk,

with the updated part written in the available free space, and the obsolete part of

the index becoming available as free space.

Finally in [LWP+03] the case of changes in already indexed documents is con-

sidered. The proposed technique addresses in-document changes and focuses on

preserving the information on word positions in documents. To avoid unnecessary

updates to items that are already indexed, the authors propose tracing the offset of

an item in a document, relatively to a landmark. This way, changes that occur in

the document before the landmark, would not affect the offset information about

the word.

4.6 Compression Techniques

In Section 4.3, we saw that the evaluation of queries relies on merging the inverted

lists of the qs items, and as a result it is highly dependent on the size of the lists.

The basic technique for leveraging this problem is to compress the inverted lists

[SWYZ02]. This way, space requirements and disk page accesses during query eval-

uation are reduced by paying a small CPU overhead for the coding and decoding of

the compressed data. The basic idea behind compression is to take advantage of the

fact that queries access the inverted lists sequentially and represent the record id by

using d-gaps, i.e. their difference from the previous id. For example if the inverted

list of item a is the following:

a : 1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 13, 16

by using the d-gaps it would be represented as:
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a : 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 3

Now, the inverted list of a is a sequence of smal numbers that are frequently re-

peated. Actually, the longer the inverted list is, the higher the density of the record

id’s will be, thus the d-gaps will be smaller. If we use some fixed size representation

for numbers, for example 4 bytes, the storage requirements for both lists will be the

same. The idea of compression lies in using some variable bit representation, which

is efficient for small numbers. Even something as simple as unary or binary codes

would significantly reduce the space needed to store the inverted list of a, when

represented by d-gaps. Popular bitwise compressions schemes are Elias gamma and

delta codes and Golomb-Rice code [Gol66], with the latter being the most effective

compression scheme used [SWYZ02, MZ96, AM98, WMB99]. The effectiveness of

the Golomb-Rice encoding is that it can be parameterized so that the most frequent

d-gap values is compressed most effectively. The idea behind the Golomb-Rice en-

coding is to divide the number by the chosen divisor (this is the parameter of the

algorithm) and then code the quotient in unary and the remainder in binary.

Compression can reduce the size of the index by a factor of 3 to 6 using the

previous techniques. At the same time it introduces a CPU overhead for the coding

and decoding the inverted lists. To leverage this problem there have been some

works on more lightweight codes, which perform the encoding at the byte level

[WZ99, SWYZ02, CM05]. The idea is simple; values smaller than 128 are packed in

one byte with a “0” leading bit. If the value is larger, then it is divided with 128 and

the remainder is coded in one byte, with leading bit “1”, and the quotient is recur-

sively encoded in the same way. Related studies have shown that bytewise encoding

introduces a small size overhead but it is considerably cheaper computationally,

making it an overall attractive choice.

A consequence of compressing the inverted lists is that every list must always be

read sequentially in order to be able to uncompress it. This is because every id can

only be computed as the sum of all previous d-gaps. As we have already mentioned

in Section 4.3, when the qs is large there are cases where the candidates that ap-

pear during query evaluation are significantly limited. Therefore, uncompressing a

whole inverted list when we need only to check for the existence of few id’s seems a

waste. In [MZ96] and [AM98] the authors propose using synchronization points that

enable skipping the decoding of several parts of the inverted list. In [MZ96], the

authors propose to introduce a synchronization point at every c number of entries

in the inverted list. A synchronization point comprises the id of the last record

that appears in the list (not only a d-gap from the previous) and a pointer to the

next synchronization point. This way, the evaluation algorithm can jump from one
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synchronization point to the other, skipping the decompression of the intermediate

values if it can infer that no candidate can be among them. The gain in CPU cost

can be reduced for boolean queries of 5-10 items by 80%, for a 20% overhead in

the list size. A similar method is proposed in [AM98], where the domain of the

record id is divided in equal size partitions and the record id’s are represented as

fixed size d-gaps relatively to the start of each partition. Moreover, in the begging

of each inverted list is marked how many of the records of this list that fall in each

partition. Using this information and the fact that d-gaps are encoded in fixed size

binary code, one can trace the offset of the record id’s that fall in each partition, in

each list.
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Chapter 5

The Hybrid Trie-Inverted (HTI)

File Index

5.1 Introduction

Inverted files are the state of the art index for containment queries, as we showed in

Chapter 4, but still their performance suffers when the inverted lists become very

long. This is due to their internal structure: inverted files contain a header list

with all the items of the vocabulary; for each item, an inverted list with pointers to

the records that contain it is maintained. Thus, if some items appear in many set

values as a result of a huge database with items from a limited vocabulary or/and

with skewed distribution, their inverted lists become very long. The evaluation

algorithms for containment queries that were presented in Section 4.1.2 usually scan

the entire inverted lists of the qs items, thus the existence of long inverted lists has

a deteriorating impact of the query evaluation. Unfortunately, this is a common

case in the real world. In data from supermarkets, an average item participates

in hundreds of thousands of transactions in a single year. The most frequent items

probably participate in millions of transactions. The same picture appears and in the

real web log data we came across in the UCI KDD archive [HB99]. These datasets

are logs that trace the behavior of users in large web portals, which is a common

source of data that are analyzed by using containment queries (e.g., “Which users

downloaded only drivers and patches from our website and did not visit any other

page?”). In these datasets, a few popular web locations from the portal, appear

in numerous user sessions, and the total number of records is large even for very

small time periods of tracking user behavior. As expected, the inverted file does not

behave well in such data, and new methods for answering containment queries are

required.

To efficiently address this type of queries, we propose a novel indexing scheme,
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the Hybrid Trie-Inverted file (HTI) index. The basic idea behind the HTI-index

is to break up the larger inverted lists, to smaller ones, in a way that facilitates

efficient query evaluation. Since, queries require knowledge about the combinations

of different items in database records, we follow the same line when breaking up

the lists; each new list is constituted by the id’s of records that contain a specific

combination of items. From a structural point of view, the HTI-index superimposes

a trie structure, the access tree, over an inverted file index. The access tree offers

pointers to intermediate points in the inverted lists of the most frequent items.

Practically, it breaks up the long inverted lists, thus leveraging the performance of

inverted files. The evaluation of queries is performed partly in the access tree, for

the most frequent items, and partly in the inverted file for the rest of the items.

This setting greatly reduces processing time and, at the same time, the memory

requirements remain low since the information for the vast majority of the data is

kept in the inverted file. The average impact on query answering efficiency is further

amplified if, as it is commonly assumed, database items are queried according to

their frequency of appearance. In short, our contribution comprises the following:

1. We propose a novel indexing scheme, the HTI index that combines a trie

with an inverted file, for large collections of low cardinality sets. The main

idea is that the trie is placed in main memory, indexing the top − k most

frequent items of the data set, whereas the inverted file is placed in secondary

storage, associating each item with all the records that contain it. The index

is particularly fit for data from a limited domain or skewed data, which is a

very common real world case.

2. We present efficient evaluation algorithms for set containment queries that

utilize the proposed index. For all types of queries, we evaluate the part of

the query that involves frequent items by exploiting the main memory part of

HTI, and complement the answer by testing the infrequent items through the

inverted file.

3. We demonstrate the superiority of our proposal over the state of the art access

methods, by extensive experiments. We evaluate the HTI index on real and

synthetic data. We assess the number of disk page accesses performed by

the HTI index as a function of domain of items, database size and size of

the query set. In all occasions, HTI significantly outperforms a competitor

inverted file, and scales gracefully, especially in the cases of large database and

query sizes (as opposed to the inverted file that fails to scale similarly). In

the case of the real datasets, which involve 320k and 1M records, the HTI

index performs an order of magnitude less disk page accesses with a memory

overhead of less than 0.5MB. Our experiments with synthetic data show that
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even for large domains, keeping a low threshold for the top-k items held in

the trie is sufficient for achieving high performance with minimum memory

expenses.

To the best of our knowledge, this is the first time that a trie is used as an

index for evaluating containment queries. Although our study is specifically focused

on set-valued database attributes, we anticipate that its applicability is wider and

reaches other cases, like text indexing, too.

5.2 The Hybrid Trie-Inverted file index

5.2.1 Index structure

Tries and inverted files have been extensively used in the context of text databases,

but the former have not been employed for indexing set valued attributes in object-

relational databases. In this section, we introduce the HTI index that combines a

main memory trie with an inverted file residing in secondary storage. First, we ex-

plain how a trie can be used to to keep track of different combinations of items.Then,

we show how the trie and inverted files are combined in the HTI index. Finally, we

also discuss issues concerning the creation and maintenance of the HTI.

5.2.1.1 Grouping by item combinations

Set values by definition do not provide any ordering for their internal items, thus

we can order and store them in the most convenient way. This is very helpful if

we want to keep information about combinations of items, since we can decide on a

common order for storing each item and each combination of items. For example,

the set-values {g, a, c} can be always stored as an alphabetical sequence {a, c, g}.
This way we avoid any ambiguity that might arise from set representation and

moreover we can provide more efficient storage for common combinations of items.

By representing each combination of items as a sequence we can use a trie to store

efficiently each different sequence.

Tries are multiway tree structures for storing string keys which enable retrieval

in time proportional to the string length [BYRN99]. Unlike inverted files, tries are

letter oriented and each string corresponds to a path in the tree. Consequently,

common prefixes in strings correspond to common prefix paths in the tree. Leaf

nodes include either the documents themselves, or links to the documents that

contain the string that corresponds to the path. Since strings are words of some

language, the maximum number of children for a node is limited by the number of

letters of the alphabet of the documents’ language. The way tries are created allows
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for prefix (or suffix, if strings are inverted before being mapped to paths) search,

i.e., they provide a kind of range search, based on the first letters of the string.

A significant difference between set values and text documents is that, unlike

words (which are composed of letters), the items of a set-values are not further de-

composable to smaller units. Even if the items are alphanumeric values themselves,

this is simply a coding scheme of the database, that eventually has no relationship

to the user queries. Therefore, it is meaningless to exploit the alphanumeric value

of the items for indexing purposes, but rather we need to use the set of all items I

as the vocabulary of the index. As a result, each node might have |I| intermediate

descendants. This makes the potential size of the trie very large and thus reduces

the gains in terms of space, achieved from common prefixes. Still, choosing the

frequency of appearance as the basic ranking function for each item of I, we can

considerably reduce the space requirements of a trie. Following such an ordering for

I, we expect to find, in the first places of each sequence, the items that appear in the

database more frequently, thus there is increased probability that several sequences

will share the same prefix. Since common prefixes are stored only once in a trie,

this will result to small tries for storing the combinations at hand.

To construct a trie for set values, we follow the approach of Han et al. in

[HPYM00, HPYM04]. First, each record is transformed from an unordered set to

an ordered sequence based on the item frequency. An item x precedes another item

y in an ordered record if x is more frequent than y in the whole database D. The

ordered record is subsequently mapped to a path starting from the trie tree root. If

some nodes already exist, due to a common prefix with a previously inserted record,

we only add the new nodes.

An index based on a complete trie tree for the database of Figure 4.2 is depicted

in Figure 5.1. The record with id = 4 and set value s = {f, a, c} is ordered according

to the frequency of its items in the database. Since a occurs 12 times, c occurs 8

times and f occurs 4 times, the record’s set is transformed to a sequence s = {a, c, f}
that subsequently contributes the path a → c → f in the trie. Using this structure

for indexing is straightforward; each node provides a link to a list that contains the

id’s of the records whose sequences have as prefix the path from the root to the

current node. This means, that all the records that are identified in the list contain

all the items that appear in the path from the root to the node, and no other item

which is more frequent than the item of the node. Note that depending on its prefix,

a record might belong to the list of more than one nodes. For example, the record

with id = 1 belongs to the lists of all its prefixes, i.e. it appears in the lists of the

path a, a → c and a → c → f . Finally, there is a difference among the records

that pertain “solely” to a node and the records that also pertain to its descendants.

Observe the node c of the path a → c → f . The record with id = 4 is the record
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{a, c, f} that also belongs to the node f of the same path. On the contrary, the

record with id = 1 refers exactly to the path a → c. The distinction will be very

useful later, for equality and superset queries.

The potentially very large number of descendants that a node might have and the

fact that tries are unbalanced do not make the trie a good candidate for secondary

memory storage. Therefore, we choose to use it as a main memory structure offering

alternative access to the data, on top of the inverted file.

5.2.1.2 The HTI index

We know that the performance of the inverted file suffers, when very long inverted

lists have to be processed. The issues involved in the processing of inverted files are

(a) the IO cost of transferring the disk pages with the inverted lists to main memory

and (b) the CPU cost of intersecting inverted lists of different items that participate

in the same query set.

To counter this effect we propose the HTI index, which uses a relatively small

main memory trie to offer additional access points to the inverted lists of the most

frequent items (that also have the longest inverted lists).

The basic idea of the HTI-index is to split the vocabulary of the database into

(a) a small set of frequent items Ifr and (b) a large set of infrequent items I \ Ifr.

Then, a trie is used for the former, in order to speed up the access to the lists that

pertain only to the combinations of frequent items, whereas the latter are treated

as usually, through an inverted file.

The HTI-index, has three major components: a vocabulary, an access tree and

a set of inverted lists. An HTI index is schematically depicted in Figure 5.2.

The vocabulary. Like inverted files, the HTI has a list of all the distinct

items of the database, which offers access to the inverted lists. The items in the

vocabulary are divided in two classes: (a) the frequent items Ifr, Ifr ⊆ I, whose

vocabulary entries point to the access tree in main memory, and (b) the infrequent

items, Iinfr = I \ Ifr, whose vocabulary entries lead directly to their inverted lists in

secondary storage, exactly like in inverted files. The vocabulary is kept as an array

in main memory and together with the access tree root they comprise the initial

access points to the inverted lists. The array is implemented as a hash table.

The access tree. The access tree is a trie structure that offers access points

to blocks of records that share the same access prefix paths (app). The app of a

record can easily be computed if we order its items according to the item frequency

ordering of I. Then, we define as access prefix path the sequence prefix path whose

items all lie in Ifr – i.e., the ordered sequence of the frequent items of the record.

For example, the app of {a, f} is {a}. We store the app of each record in the access

tree, by putting the first and most frequent element as a direct child of the root (see
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also the next section for a detailed discussion on the creation of the access tree).

The access tree has two kinds of nodes: (a) the root, which does not correspond to

any item in Ifr and (b) information nodes, which are all the other nodes of the trie.

Each such node holds the following information:

• A label indicating the item of Ifr, which corresponds to the node.

• A link to the inverted sublist of the records that contribute to the path from

the root to the node. These are all the records whose prefix is the same with

the path from the root to the current node.

• Navigational links to the children-nodes, the parent-node and to the rest of

the nodes with the same label.

It is important to stress here that due to the vast volume of the full-fledged

trie presented in the previous section, the access tree is a subset of it, concerning

only its most frequent items Ifr. The vocabulary entries concerning these frequent

items point to lists that comprise all the access tree nodes that are labelled with the

respective item. In turn, these nodes point to the respective inverted lists, stored in

secondary storage.

In Figure 5.2 we depict an example HTI index for the relation of Figure 4.2.

We choose as frequent items Ifr = a, b, c (having a frequency equal or greater than

8), and we create the access tree considering only them. Observe that in Figure 5.1,

these were also the items with the longest record lists. The shaded area in Figure

5.1 concerns the infrequent items that were subsequently dropped from the access

tree of Figure 5.2. Item a is more frequent than c, thus it precedes it in access tree

paths. Assuming this Ifr set, all the records of Figure 4.2, contribute to three paths:

a → b → c, a → c, b → c and c. Observe, also, how the nodes with the same label

are linked to each other.

The inverted lists . There are two cases for the inverted lists of the vocabulary

items: (a) lists of non-frequent items and (b) lists of frequent items. Concerning

the non-frequent items, their inverted lists are exactly the same as those of a regular

inverted file (i.e., sorted lists containing the id’s of all the records that contain

the respective item). The case of frequent items belonging to Ifr, on the other

hand, involves inverted lists made up of many smaller sorted sublists, each of them

corresponding to an access tree information node labelled with the respective item.

To enhance the evaluation of equality and superset queries, we further divide the

inverted sublists of the access tree to two parts as depicted in Figure 5.3, for the

case of a → b: (a) the id′s of the records whose app ends at this node; these are

records id′s 7,8,11, and 16, (b) the id′s of rest of the records that contribute to the

current node; these are id′s 3,6, and 13. In the beginning of each information node
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sublist, we store the number of records of case (a) alongside with the total number

of the records that contribute to the current node, so that we can retrieve the right

block from the disk each time.

Example. As shown in Figure 5.2, the access tree and the vocabulary are kept

in the main memory, whereas the inverted lists reside at secondary storage. Records

1,3,4,6,7,8,9,10,11,13 and 16 contribute to the path a, thus they are stored at the

inverted sublist of node a. Observe that a, being the most frequent item has exactly

one inverted sublist, i.e. its inverted list comprises a single sublist, corresponding to

its single appearance in the access tree. This is not necessarily the case for all the

items, though. For example, the item b has two sublists. Seven of the records of a,

(3,6,7,8,11,13, and 16), also contribute to the path a → b, and they are stored in the

first inverted sublist. At the same time, records 12 and 14 contribute to the path

b and they are stored at the second sublist. For storage efficiency, the individual

sublists of all the different nodes of b are stored contiguously, one after the other.

The nodes of the access tree point to the offset of the inverted list where their
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corresponding sublist begins. Note that in Figure 5.2 we depict only the id’s that

are contained in the sublists and not the labels that mark each sublist for reasons

of readability. A more complete representation of the sublist for the case of item a

is depicted in Figure 5.3.

The rest of the items are indexed by an inverted file and the id’s of the records

that include them are stored in the respective inverted lists. Note that, concerning

the infrequent items d, e, f, g, their vocabulary entries point directly to the inverted

lists in secondary storage without any interference with the access tree.

Compression and caching There is a question of how the HTI index compares

to inverted files, when compression techniques are applied [SWYZ02, MZ96] or a

cache equal to the access tree size is given to the inverted file. As far as the former

is concerned, the HTI index is complementary to compression and not competitive

to it. The inverted lists in the HTI can be compressed exactly like the inverted

lists in a simple inverted file. Moreover, if the inverted lists become smaller, then

we can reduce the size of the HTI by using a smaller threshold. Giving cache to the

inverted lists on the other hand, may be a good solution for uniform distributions

with large vocabularies. Still, the effectiveness of the cache is dependent on how big

it is when compared with the total inverted file and it will be reduced as the size of

the inverted file grows. On the contrary, the main memory requirements of the HTI

index depend mostly on the size of the vocabulary, since duplicate or similar records

do not affect its size and effectiveness. Thus, for small vocabularies and especially

for skewed distributions, the HTI index is a better choice.

5.3 Query evaluation

In this section, we present the evaluation algorithms for the three types of queries

that we are interested in: subset, equality and superset. The evaluation algorithms

for all types of queries have two main stages: (a) evaluation in the access tree,

and (b) evaluation in the inverted file. The evaluation in the access tree concerns

the frequent items of the query set and the evaluation in the inverted file the rest

of the items. The basic idea is that we use the access points to the inverted lists

offered by the trie, to quickly trace the final or a candidate answer to the query. The

benefit is quite significant since the access points are given for the largest lists, which

correspond to the items of Ifr. This way we avoid expensive union or intersection

operations between the lists indexed by the access tree, and instead we implicitly

perform these operations in the tree itself.

Note that we are interested in identifying the id’s of the records which belong

to the answer. Once these id’s have been identified, we can retrieve the respective

records from the physical storage directly (see Section 2 for a related discussion). The
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cost for retrieving the records is the same for all relevant indices, since neither the

HTI, nor the inverted file, nor signature-based methods provide a storage scheme

for the actual data. Thus, in our analysis we do not take this cost into account.

For all three cases of queries, we assume a query set of the form qs = {f1, . . . , fk, ik+1, . . . , in},
where the first k items fi concern the frequent items of the query set, belonging to

the access tree, and the next n − k items ij are the infrequent items that are only

indexed by the inverted file.

In the following, we detail the evaluation techniques for each type of queries.

5.3.1 Subset queries

Subset queries are the most common queries executed against record and text collec-

tions and most broadly studied in research literature. Furthermore, the evaluation

of many query classes, including ranking ones, partially resolves to the evaluation

of subset queries.

The main idea around evaluating subset queries is that the records that contain

the app part of the qs can easily be identified by using the access tree, without

merging the respective inverted lists. This is efficiently done by tracing all the

appearances of the last element of the app, fk (which is also the least frequent in

app), and then identifying which paths from the root to the fk nodes contain the

app of the qs. These paths possibly contain other frequent items too, but they

necessarily contain the app of the query set. We call the set of the retrieved record

id’s candidateIds. Possibly, apart from the frequent items, there are also infrequent

items in the query set. The only way to access these infrequent items ik+1, . . . , in is

through the inverted file. Therefore, to compute the final query answer we must find

the intersection of the lists of record id’s that correspond to the infrequent items

ik+1, . . . , in with the list of the already retrieved candidateIds. Any record id that

belongs to this result contains both the frequent items of the app and the infrequent

items ik+1, . . . , in. The algorithm in pseudo-code is depicted in Figure 5.4.

Assume for example that the user asks for all records that contain the {f, c, a}
items from the relation D depicted in Figure 4.2. If we evaluate the query against

the inverted file, depicted in Figure 4.3, we would have to perform a merge-join

of the inverted lists of all the items in the query set. That would require six disk

page accesses and we would only have one answer, that is t.id = 4. If, instead, we

evaluate the query against the HTI index, the disk pages accesses are much fewer.

First, we have to identify the app of the qs which is a → c. Then, we must trace all

the c nodes of the access tree and identify the paths from root to c, which contain

the rest of the items of app, i.e., f . This results in only one path: root → a → c.

Now we can directly retrieve the records that contain a and c, which are 2,4, and
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Algorithm SubsetQueries
Input: An HTI index H over a dataset D, a query set qs = {f1, . . . , fk, ik+1, . . . , in} and
a query Q={t | qs ⊆ t.s}.
Output: the t.id’s of the records that contain qs
Method:

1. Determine the app = {f1, . . . , fk} of the query set.
2. If app is not empty use subsetTrie(app) to retrieve the

candidateIds from the trie.
3. If {ik+1, . . . , in} is not empty in the query set:
4. result=merge-join the candidateIds with the inverted

lists of {ik+1, . . . , in}
5. else
6. result=candidateIds
7. return result

Function subsetTrie(app)
Input: An HTI index H over a dataset D, the app of the qs
Output: The candidateIds, i.e. the t.id’s of the records that contain the items of app
Method:

1. Let c be the last item (least frequent) of app
2. For every appearance of c in the trie
3. if every item fi ∈ app appears in the path from the root

to the current node.
4. add the t.ids of the inverted sublists of the current

node to the candidateIds
5. return candidateIds

Figure 5.4: Algorithm for determining subset queries

10 by performing only one page access. Subsequently we can merge-join {2, 4, 10}
with the inverted list of a to retrieve the final answer. The total disk page accesses

we encounter in this case is two. In general, if the inverted lists of the items of the

qs (ordered by frequency) cover l1, . . . , ln disk pages, the worst case evaluation will

require l1 + · · · + ln disk page accesses. This holds for both the inverted file and

HTI index, but as experiments in Section 5.5 show, the average cases clearly favor

the HTI index. The benefit from using the access tree comes from the fact that we

avoid performing intersections between the largest inverted lists. This benefit can

potentially be very significant, especially if the frequent items are not correlated.

Moreover, the larger the inverted lists are and the greater the skewness of the items

distribution is, the greater benefit we gain from using the access tree.

Some more technical notes should also be made for the algorithm of Figure 5.4.

Whereas the simplified form of the algorithm, implies that we use the access tree to

actually retrieve the t.ids from the disk and put them in the candidateIds this is not

the most effective implementation in most cases. Instead, we return the links to the

inverted sublists in the disk, which are then merged-joined with the inverted lists of

the {ik+1, . . . , in} items. Furthermore, the merge-join is performed by starting from
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the less frequent item, thus it is not always necessary to use the access tree. In some

cases, we can quickly decide that there is no solution, by intersecting the smaller

inverted lists, and avoid any further computation. Practically, the algorithm first

traverses the access tree and decides if there is a solution for the app items, and how

many disk page accesses it will need to retrieve them. Depending on how many disk

page accesses it will need, the algorithm decides the order of the merge-joins, i.e.,

whether it will start from the trie or the inverted file.

5.3.2 Equality queries

Employing the HTI index for equality queries leads to very efficient evaluations. For

each query, only one path of the access tree has to be identified. This is the path,

which is identical to the app of the query set. Assuming that nodes are organized in

some efficient data structure, like hash arrays, the evaluation on the trie can be done

in time O(|app|), that is proportional to the app of the query set. After identifying

the single inverted sublist that possibly satisfies the query, it has to be intersected

with the inverted lists of the non-frequent items. In the process of the merge-join,

the records are filtered according to their length, which must be equal to |qs|. The

pseudocode of the evaluation algorithm is depicted in Figure 5.5. The worst case

in terms of page accesses is again the same as for subset queries. Still, experiments

show that whereas evaluating equality queries in the inverted file requires as many

disk page accesses as the respective subset queries did, the results with HTI index

are a lot better in this case.

5.3.3 Superset queries

Superset queries are by far the most expensive queries we study. In a sense, a su-

perset query is equivalent to 2|qs| equality queries, for all its subsets. The evaluation

algorithms, even those that work only in the inverted file, require significantly less

disk page accesses than 2|qs| equality queries, but still the number is high. If the

inverted lists of the items of the qs (ordered by frequency) need l1, . . . , ln disk pages

respectively, evaluating a superset query solely in the inverted file, with the algo-

rithm presented in Figure 5.6, requires in the worst case l1 +2l2 + · · ·+nln disk page

accesses.

As in the case of equality, the access tree can drastically boost the efficiency of

the query evaluation. The basic idea is to find all the paths in the trie, which are

solely constructed by items from the app of the query. Then we can safely add to

candidateIds, the ids of all the records that end in any node of these paths. For

these records we know that they do not contain any other item of Ifr, except from

f1, . . . , fk. If the qs has non frequent items too, then we have to check in the inverted
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Algorithm EqualityQueries
Input: An HTI index H over a dataset D, a query set qs = {f1, . . . , fk, ik+1, . . . , in} and
a query Q={t | qs = t.s}.
Output: the t.id’s of the records that are equal to qs
Method:

1. Determine the app = {f1, . . . , fk} of the query set.
2. If app is not empty use equalityTrie(app) to retrieve the

candidateIds from the trie.
3. If {ik+1, . . . , in} is not empty in the query set:
4. result=merge-join the candidateIds with the inverted

lists of {ik+1, . . . , in}
5. else
6. result=candidateIds
7. return result

Function equalityTrie(app)
Input: An HTI index H over a dataset D, the app of the qs
Output: The candidateIds, i.e. the t.id’s of the records that contain exactly the items of
app
Method:

1. Let c be the last item (least frequent) of app
2. For every appearance of c in the trie
3. if every item fi ∈ app and only these items, appear in the path from the root

to the current node.
4. add the t.ids of the inverted sublists of the current

node to the candidateIds
5. return candidateIds

Figure 5.5: Algorithm for evaluating queries

file if the remaining items of the records of candidateIds contain only items from

ik+1, . . . , in. If the qs does not contain any other items we filter the candidateIds

using their length and the length of the path that lead to them, as pruning criteria.

If their length is greater than their app, which can be inferred from the trie without

examining the record itself, the record is dropped, since it must have more items

that are not contained in qs. The algorithm for evaluating the superset query is

presented in Figure 5.6.

The reduction of the disk pages accessed, when using the HTI index for superset

queries, is not only attributed to the access points offered by the trie. It is also a

result of the possibility of identifying exactly the records whose app ends at the

access tree nodes, as opposed to the rest of the records within the same inverted

sublist.
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Algorithm SupersetQueries
Input: An HTI index H over a dataset D, a query set qs = {f1, . . . , fk, ik+1, . . . , in} and
a query Q={t | qs ⊇ t.s}.
Output: the t.id’s of the records that where t.s ⊂ qs
Method:

1. Determine the app = {f1, . . . , fk} of the query set.
2. If app is not empty use supersetTrie(app,root) to retrieve the

candidateIds from the trie.
3. Let il1 . . . ilm be the inverted lists of all the non frequent

items of the qs and the candidateIds, ordered according to
the number of memory pages

4. for (i=1 ; i ≤ n ; i++)
5. for each entry t of ili
6. unmatched=t.length− 1
7. if (unmatched == 0) add t to result and break
8. for (j = i + 1 ; j ≤ n ; j++)
9. if (unmatched > n− j) break

10. if (unmatched==0) add t to result and break
11. scan forward ilj
12. if t found in ilj unmatched = unmatched− 1
13. return result

Function supersetTrie(app,currentNode)
Input: An HTI index H over a dataset D, the app of the qs, the root of the trie as
currentNode
Output: The candidateIds, i.e. the t.id’s of the records whose items are contained in app
Method:

1. while (app not empty)
2. newCNode=pop(app)
3. if newCNode is child of currentNode
4. add the inverted sublist of newCNode to

candidateIDs
5. supersetTrie(app,newCNode)
6. return candidateIds

Figure 5.6: Algorithm for determining superset queries

5.4 Creation and Maintenance

5.4.1 Construction of the HTI index

The construction of the HTI index differs from the construction of the inverted

file in two points: (a) the additional construction of the access tree and (b) the

detection of the frequent items of the database, which are indexed by the access

tree. The former point does not present any serious problem, since the access tree

is kept in memory; we present the related insert/delete algorithms in the following.

The latter point introduces a more substantial difficulty in the creation; we need

to read all the input once just to decide which items are frequent, and then we
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need a second, separate, scan to find all their combinations that must be traced

in the access tree. Thus, the two-pass algorithm we presented in Section 4.5, will

be a three-pass algorithm and merge algorithm will require two passes. A way

around this overhead, is to use sampling in order to decide which items are frequent

enough to be indexed in the access tree. Sampling might not lead to the optimal

item choice, but the effect is limited as we show in experiments we performed over

distorted orderings. In practice, this is not a significant problem, since in several

application fields, like web and supermarket logs, the vocabulary is known a priori

and the most frequent items, can be easily estimated. If we know the Ifr, then any

new combination that we meet in the processing of the raw data is handled exactly

as a new word is handled in text documents; a new entry is inserted in the access

tree and in the inverted sublists of each affected node. The algorithms for inserting

and deleting a single record from the HTI are presented in the following.

Insertions. For the case of the insertion of a record t = {o1, . . . , ok, ok+1, . . . , on}
of length n, having app = {o1, . . . , ok}, k ≤ n, to the database D we have to take

the following actions (the algorithm in pseudo-code is presented in Figure 5.7):

1. For all the infrequent items of t that do not appear in app, the record id must

be added in their inverted list, in secondary storage.

2. The app path must be added to the access tree (if not already there) and

the record id to the respective record lists. Possibly, some prefix of app, say

{o1 → · · · → oe}, e ≤ k already exists in the access tree as a result of a

previous insertion. For all the nodes belonging to the maximal such part of

the app, we simply add the new record t to their inverted list. The rest part

of the app, oe+1 → · · · → fk that has not been mapped in the trie as part of

the proper path is added as a child to the node that corresponds to item oe.

If the record does not have any common prefix with a previously inserted record,

the whole app of the record forms a new path in the trie, starting from the root. If

on the other hand, its app is the same with the app of a previously inserted record,

its insertion does not cause the insertion of any new nodes in the access tree.

Deletions. For the case of deletions the steps are practically the same. For

the infrequent items that are indexed only in the inverted file but not in the trie,

we simply remove their record id from the record lists. For the frequent items of

the record, we locate the path of the trie that corresponds to the app of the record.

Then, we remove the record id from all the inverted lists of all the nodes in this

path. In the case that the inverted list of a node becomes empty, then we remove

the node from the access tree. By the definition of the trie, if a non-leaf node has

an empty inverted list, then all its children obligatorily have an empty inverted list,
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Function boolean insertPath(app,t.id){
1. currentNode=root
2. while (app not empty) {
3. firstLabel=pop(app)
4. if (exists child c of currentNode

with label=firstLabel){
5. add t.id to the inverted sublist of c
6. } else {
7. add a new node with label firstLabel

as a child of currentNode{
8. }
9. currentNode= c

10. }

Figure 5.7: Pseudo-code for the insertPath function that inserts into the trie the record
t that has t.id as an id and app as its access prefix path.

too. Therefore, the whole path from the non-leaf node to its descendant leaves is

directly removed.

The algorithm for deleting a record from the trie tree is presented in Figure 5.8.

Function boolean deletePath(app,t.id){
1. currentNode=root
2. while (app not empty) {
3. firstLabel=pop(app)
4. find the child c of currentNode

with label=firstLabel
5. remove t.id from the inverted sublist of c
6. if the list is now empty{
7. remove the sub-tree of c
8. break
9. }

10. currentNode= c
11. }

Figure 5.8: Pseudo-code for the deletePath function that deletes the record t that has
t.id as an id and app as its access prefix path.

5.4.2 Updates in the HTI index

Updates in a transactional context are usually insertions, with deletions being rate

in most application areas. When a ∆D set of records is inserted or deleted from a

database D, there are basically two issues that have to be addressed:

1. Changes in the items of Ifr. Some items that were not frequent might now be

frequent, thus they must be included in Ifr and some others must be removed

from it.
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2. There might be changes in the order of items of Ifr, thus the access tree must

be restructured to reflect these changes.

3. The new records must be accommodated in the inverted lists.

If, there is no case in the items of Ifr and in their order and we only have to

address the accommodation of the new records in the inverted lists, the solution

is simple; we handle updates using the same techniques used for the inverted file.

New postings are kept in inverted lists in main memory until they are merged with

the inverted lists that reside in secondary storage. The merging can be performed

following any of the available strategies (rebuild, merge, in-place) depending of the

requirements of each application. Since, the access tree resides in main memory any

additions in the HTI can be easily performed when we process the new data. Ad-

dressing the first and the second issue is rather more complicated and it is explained

in Section 5.4.2.1.

5.4.2.1 Updates to the frequencies of the underlying data

Updates in the data can incur changes in the items of Ifr or just changes in their

order. In most application areas that involve recorded data like retail store records,

the relative frequencies of the items change slowly or remain stable. In any case,

we keep the most frequent items in the access tree in order to improve query per-

formance, and we order them internally by frequency, to keep the size of the access

tree small, as reported in [HPYM00]. The proposed query evaluation algorithms are

correct for any ordering and their performance does not deteriorate fast if the ac-

tual frequencies of the items do not follow closely the ordering used for them. Small

changes in the item frequencies, even if they cause changes in the ordering of items,

do not incur significant changes in the size of the access tree, or in the evaluation

of containment queries over them. This is verified by the experiments we performed

on data with wrong orderings for the items of I. To see how the size of the access

tree and the performance of the queries is affected, when the actual frequencies of

the data diverge from the ordering we have adopted, we reordered the items of a

dataset taking into account distorted frequencies. We created 5 different HTI’s over

a dataset of 1M records, by keeping only the top 1% of the most frequent items in

the access tree, each time assuming frequencies that diverge from the actual ones

by 10%, 20%, 30%, 40% and 50%, on average1. The results are depicted in Figure

5.9. The basic conclusions that can be drawn are two: (a) that the performance

of the HTI deteriorates as the actual frequencies diverge more and more from the

assumed ones, but not very fast, and (b) that, at the same time, the size of the

1the maximum difference of the distorted frequencies, from the actual ones is 20%, 40%, 60%,
80% and 100% respectively
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Figure 5.9: Changes in the access tree size and query performance as the real frequencies
of the data change

access tree decreases slightly. The performance of the HTI deteriorates, since the

wrong frequencies lead to the exclusion of some frequent items from the access tree.

The same fact, that some less frequent items are kept in the access tree instead of

the most frequent ones, is the cause of the decrease in the size of the access tree;

this is a consequence of the fact that the access tree represents significantly less item

appearances from the database. There is only one exception, when the ordering of

the items is based on frequencies that diverge by 20% from the real ones. In this

case, the size of the access tree is increased. This is attributed to a different mech-

anism that works in parallel; some frequent items appear in wrong positions in the

access tree, thus less paths share the same prefixes. For example if item f precedes

item a, but item a is in reality more frequent that item f , this will result in more

nodes for representing the appearances of both a and f , than we would have if the

ordering was correct. Nevertheless, it should be noted, that the items in the test

dataset follow a Zipfian distribution of order 1. This means that the differences in

their frequencies of appearance are quite significant and randomly distorting them

by up to 20% or 40% does not cause any substantial changes in the ordering of the

most frequent items.

Even if the changes are significant we can still avoid rebuilding the HTI from

scratch. For the items that are no longer frequent, we have to delete all their

appearances from the access tree and merge their inverted sublists to one inverted

list. For the items that become now frequent, we have to delete and re-insert all the
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records that contain them. We can avoid scanning the whole database, since we can

easily detect the affected records from the respective inverted list. For changes in

the ordering of Ifr we have to restructure the affected paths of the access tree and

appropriately handle their inverted sublists. The basic steps for updating the HTI

index are the following:

Assuming that the current ranking for Ifr is o1, . . . , on, and the new ranking for

I
′
fr is o

′
1, . . . , o

′
n the steps we must follow for restructuring the HTI are the following:

1. First we delete all the nodes of the access tree that correspond to items that

are no longer in Ifr.

2. Then we delete all transactions that contain any of the new items in Ifr from

the access tree.

3. Starting from the most frequent item o
′
i of I

′
fr, for which it does not hold

o
′
i = oi we apply moveItem(o

′
i, i

′
). We update the current ranking, and repeat

for all the items of I
′
fr, which still do not appear in the right position.

4. We add to the access tree all the transactions that contain new items of I
′
fr.

Function boolean moveItem(item,newRank){
1. For each appearance itemNode of item {
2. For each node i in the path from the itemNode to the root
3. if (i.currentRank ≤ item.newRank)
4. add the i.list to the itemNode.list by merge
4. add the itemNode under the first i whose rank is greater than newRank
5. delete itemNode from its old position and link its descendants to its parent
6. }
7. merge any sibling appearances of itemNode
8. update the currentRank of all items that were ranked between oldRank and

newRank by subtracting 1

Figure 5.10: Pseudo-code for the move function that moves a node from each current
position s to a new position d higher in the same path.

5.5 Experimental Evaluation for the HTI index

Evaluation metrics. We evaluate the HTI index by considering two main factors:

(a) the benefit it provides to query evaluation, compared to regular inverted files

and (b) the main memory requirements it imposes. We evaluate the benefit to query

evaluation by counting disk page accesses as the dominant factor of the problem.

We show how main memory requirements are affected for the different D parameters

by providing the number of access tree nodes.
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Data. We evaluated the HTI using two real datasets from UCI KDD repository

[HB99]. Both datasets are web logs that trace the areas visited in single users’

session in a specific portal. The containments queries have intuitive meanings in

all cases, e.g. (superset) “Which users limited their visit in the portal in the main

and downloads sections?”. The first dataset, denoted as msweb, is a one-week log

tracing the virtual areas that users visited in the web portal (www.microsoft.com).

There are 32k records and the vocabulary of the dataset contains 294 distinct items

(areas). The distribution of the items in the records is skewed and the average

size of the record is 3. To be able to draw informative conclusions we replicated

the dataset 10 times. This replication is meaningful, since it simply represents a

10-week log from the web portal. The second dataset, denoted msnbc is again a

log of users’ behavior of another web portal, the msnbc.com. The vocabulary here

is very limited, comprising only 17 distinct items and unlike the previous one, the

distribution of the items is relatively uniform. The average size of the record is 5.7.

Experimental setup. We implemented both methods in C, on a Linux plat-

form (Suse 9.3) and compiled it with gcc version 3.3.4. Our experiments were per-

formed on an AMD Sempron 2800+ with 2G of main memory. The disk page ac-

cesses were directly counted by the program, by tracing how many of the 4k arrays

were accessed.

5.5.1 Performance of the HTI index

5.5.1.1 Real data

To measure the benefit on query evaluation provided by the HTI on real data, we

evaluated subset, equality, and superset queries against the inverted file and the HTI

index. For the case of the HTI index we varied the threshold, i.e., the percentage

of items that comprise the Ifr. The results are depicted in Figures 5.11 and 5.12.

For the case of msweb data, which are skewed but they have larger vocabulary than

msnbc data, we used as thresholds 5%, 20%, 40%. The size of the access tree that

must be kept in main memory is small in all cases, with the biggest being around

350k, for threshold 40%. For the case of msnbc data, where the vocabulary is very

small, we used the thresholds 20%, 60% and 100%. The largest access tree in this

case is around 200k, for threshold 100%. Note that for a threshold of 100%, all items

of I are indexed by the access tree, thus for all types of queries no false positives

are retrieved from the disk (we can infer the length of a transaction by the length

of the access tree path if all items are indexed by the access tree).

As we can see the HTI index outperforms the inverted file in all cases. Moreover,

it scales a lot better as the size of the query grows. For the larger queries, the

performance of HTI (with a suitable threshold) is at least an order of magnitude
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Figure 5.11: Average performance of queries on msweb data
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Figure 5.12: Average performance of queries on msnbc data
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Figure 5.13: Average performance of subset queries
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Figure 5.14: Average performance of equality queries
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Figure 5.15: Average performance of superset queries
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Figure 5.16: Effect of |I|
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Figure 5.17: Effect of |D|

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0  5  10  15  20  25  30

nu
m

be
r 

of
 tr

ee
 n

od
es

|D in millions of transactions|

Figure 5.18: |I| = 5k, 0.5%
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better for all types of queries.

5.5.1.2 Synthetic data

By using synthetic data we are able to trace the impact of the vocabulary I, the

size of the dataset D and the size of the query set qs on the HTI index. In the

following we investigate how each of the query types we introduced is affected by

these factors.

Subset. In Figure 6.9 we see how the inverted file and the HTI index perform

for subset queries. We compare three versions of HTI index with the inverted file,

each time varying the threshold. Consider the first variant of the HTI index with

a Ifr of only the top 0.5% of the total items. In all three experiments of Figure 6.9,

we count the average number of page accesses performed by all our queries on all

our datasets as a function of (a) the size of the vocabulary, I (left); (b) the size of

the underlying database D (center), and (c) the number of items belonging to the

query set qs (right). In all three cases, results are given for the average value of all

parameters that do not appear in each figure. Thus, when varying |D|, we present

the average of the results for all |I| and |qs|, when we vary |I| we present the average

of the results for all |D| and |qs|, and when we vary |qs| we present the average of

the results for all |D| and |I|. An overview of the individual results showed that
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they obey the general trend.

In all cases, the HTI index outperforms the inverted file by a significant factor.

It is important to note that the HTI seems to scale a lot better for large databases

and large queries. Whereas in the average case the increase of |D| seems to have a

linear impact on the disk page accesses for both methods, the gradient of the HTI

index performance is significantly smaller. The larger the threshold is, the smaller

the disk page access increase is. Furthermore, the increase of the |qs| has diverting

impact on the performance of the inverted file and the HTI index. In the former

case it is followed by a proportional increase in disk page accesses, whereas in the

latter case the required number of page accesses is reduced. This is due to the fact

that when dealing with large queries, the chance of having more items from Ifr is

greater, thus the chance of performing a more effective pruning in the accesses tree

is greater.

The increase of the vocabulary size seems beneficial both for the HTI index and

the inverted file, but as we show in the experiments for the HTI size, it significantly

augments the memory requirements for the access tree.

Equality. Equality queries favor the HTI-index even more. In Figure 6.10 we

assess the number of disk page accesses for equality queries as a function of (a) the

vocabulary size, |I| (left), (b) the size of the underlying database, |D| (center) and

the number of items of the query set, |qs| (right). The evaluation in the inverted file

requires exactly the same disk page accesses for equality queries, as it did for subset

queries. On the other hand, evaluating equality queries in the HTI requires less than

half of the disk pages accesses it did for the respective subset ones. This effect is even

greater for queries with low cardinality qs. The main reason that makes equality

queries behave better with the HTI index is that each query requires retrieving one

inverted list from the access tree at most.

Superset. As it can be inferred from Figure 6.11 in superset queries the HTI-

index clearly outperforms the inverted file index. The inverted file performs very

poorly, since it requires multiple scans of many lists. Note that the disk page accesses

performed in the evaluation of the superset queries surpass the disk page accesses

needed by subset and equality queries by almost an order of magnitude.

5.5.2 Memory requirements of the HTI index

The size of the access tree of the HTI index for the real datasets we used is very

small; for the case of the msweb data it has only 1857 nodes (around 33kb) for a

threshold of 5%, and in the worst case (threshold 40%) it has 20569 nodes (around

369kb). For the case of msnbc data, it has only 7 nodes for a threshold of 20%

and in the worst case (threshold 100%) it has 11575 nodes (206kb). The size of the

101



access tree is important, since it has to be resident in main memory; therefore, we

investigated how it scales for larger D and I by using synthetic data.

Figures 5.16 and 5.17 show how the access tree is affected by the vocabulary size,

|I| and the size of the database |D|. An interesting observation is that for smaller

vocabularies, where the queries take longer to evaluate due to the existence of larger

lists, the size of the access tree is smaller, too. This means that we can create HTI

indices with larger thresholds to counter this effect. As the vocabulary increases,

the maximum size of the trie augments superlinearly, thus, for large vocabularies

the access tree tends to increase in a proportional way to the database size. For

small vocabularies, the size of the access tree grows sublinearly (or remains stable

if the maximum size has been reached) with respect to the database size. This

is evident in Figure 5.18, where we vary the size of the database while keeping

the vocabulary cardinality at 5k and the HTI threshold at 0.5. In the respective

experiment with |I| = 1k the tree reaches its maximum size (31 nodes) very soon

and remains invariant to the size of D.

5.5.3 Threshold choice

Whereas the vocabulary and the database size depend on the data we have, the

threshold for the HTI index is a choice we must make according to the speed

requirements and the memory we have at our disposal. To highlight its effect we

created several HTI indices for different thresholds and we show their performance

in Figure 5.19 by varying the threshold from 0.2% to 10%. We depict simultaneously

how the access tree grows, in 1000’s of nodes, and how the average disk page accesses

for the three types of queries fall as the threshold grows. After a certain threshold

the average disk pages accesses are not significantly reduced, whereas the size of the

access tree continues to grow, even if not as fast as for very low threshold.

5.6 Summary

In this chapter we presented the HTI index, a novel index that combines a trie with

an inverted file to provide superior performance for containment queries. The key

idea of the HTI is to break up the larger inverted lists to many small ones, that

contain known combinations of the most frequent items. The combinations are kept

in a main memory trie that leads to the disk resident inverted lists. A significant

advantage of this approach is that it is complementary to the compression of the

inverted lists, which is the basic enhancement that is used to ameliorate the per-

formance of the inverted files. Our experiments showed that the HTI significantly

outperforms, often by orders of magnitude, the inverted files, for all the types of
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queries we examined. The results show that the HTI addresses efficiently the per-

formance problems of the inverted files when dealing with skewed distributions or

with very large databases with a small vocabulary.

The cost we pay for the HTI comes from two factors: a) the main memory we

need to store the access tree and b) the increased update cost. As we have shown,

a small amount of main memory is enough to provide significant performance gains

to the HTI, thus the main memory requirement is not prohibitive for the HTI.

Moreover, the update costs are only increased by a constant factor with respect

to the inverted file. This factor is affected basically from the required additional

pass over the data. Overall, both of these factors have a limited negative effect,

thus the increased performance of HTI can be exploited in a variety of real world

applications.

In our view the basic limitation of the HTI is the empirical tuning. In our

experiments we had to refine the percentage of the items that are kept in the access

tree, by testing. Whereas this might not be a significant problem in most application

areas, the ideal solution would be able to automatically break up the longest of the

inverted lists to small inverted lists, whose size falls in the desired bounds. Motivated

by this, we propose in the next chapter the ordered inverted file, a new index that

does not require tuning and offers superior performance in query evaluation, with

respect to the HTI, for any distribution, at the cost of an even more increased

creation and maintenance time.
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Chapter 6

The Ordered Inverted File index

6.1 Introduction

In Chapter 4 we have shown how the inverted file can be used to answer contain-

ment queries on large collections of low cardinality set-valued data, and why its

performance suffers, when the domain is limited or when the distribution of items

is skewed. In Chapter 5 we have proposed the HTI index to address the problem of

skewed distributions. The HTI breaks the larger inverted lists to smaller ones, that

contain known combinations of the most frequent items of the database. This way,

the HTI handles effectively collections of data that are dominated by few frequent

ones. Still, its tuning relies on some expert who will decide how many items should

be indexed by the access tree in order to have the maximum gain for the available

memory. Moreover, the performance gain over the simple inverted file diminishes as

the item’s distribution moves closer to uniform.

The aforementioned results show that there is room for further improvement on

the evaluation performance of containment queries. To this end, we propose a novel

indexing scheme, the Ordered Inverted File OIF . The OIF indexes the inverted

lists, but, differently from previous proposals, orders the records and exploits this

ordering to efficiently evaluate containment queries. The crux of the approach is

that, due to this ordering, there is a theoretical possibility of identifying a subset of

the search space that needs to be checked. The OIF does not index every record

id in the inverted lists, but instead it indexes blocks of record id’s, according to the

value of the last record. Such an indexing scheme, allows to transform containment

queries to range queries over the ordered records. As a natural solution, OIF

employs B-trees to index the inverted lists. In this chapter we make the following

contributions:

• We propose a novel indexing scheme, the ordered inverted file OIF , which

outperforms the current state-of-the-art for containment queries on low cardi-
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nality data from a limited domain. Our proposal is simple to implement and

provides superior performance in all cases.

• We propose effective methods of creating and maintaining the OIF .

• We provide new evaluation algorithms for subset, set-equality and superset

queries that take advantage of the proposed index.

• We theoretically investigate the performance of the OIF for the aforemen-

tioned queries and we show that it scales significantly better than inverted

files. Moreover, we assess our proposal by extensive experiments on both real

and synthetic data.

6.2 The Ordered Inverted File

In this section we describe the structure of the ordered inverted file (OIF ). The

OIF index has two basic parts: (a) an inverted file, created after suitable ordering

of the records and, (b) a B-tree on top of the inverted file. As we saw in Section

4.2.1, indexing the inverted lists does not help in query evaluation time significantly,

except if the number of candidates is very small and the lists that must be exam-

ined substantially large. However, if the candidate id’s are numerous and their

distribution at the remaining inverted lists is unknown, it is usually preferable to se-

quentially access the whole lists, than to use the index to check the existence of each

candidate. The approach, is similar to join by merge-sort in traditional databases.

In the case of the OIF , this drawback is leveraged; by ordering the record id’s in the

inverted lists, and by suitably tagging blocks of id’s in secondary storage, we limit

the search space in a specific part of the inverted lists. Moreover, we create a sparse

B-tree keeping only one key for each memory page of the inverted lists. This way,

the space overhead is small, without significantly compromising query performance.

6.2.1 Index Structure

The ordered inverted file is based on the introduction of an ordering for the database

items and records. Examples of possible orderings include the ordering by item

frequency, lexicographic value etc. Later in the this chapter, we demonstrate that

when containment queries are posed, this ordering allows the identification of the

specific area in the inverted lists that contains the answer to subset, equality and

superset queries. By coupling this property with a B-tree that provides direct access

to all disk pages of each inverted list, we are able to significantly decrease disk page

accesses in query evaluation.
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In terms of structure, the ordered inverted file (OIF ) index comprises the fol-

lowing:

1. An inverted file, where the inverted lists contain references to the database

records, according to a special ordering.

2. A collection of B-trees, one for each inverted list, which contain pointers to

each disk page of the respective list. The B-tree is built by considering the

last record referenced in each disk page as a key.

Ordering of the inverted lists. As already mentioned, the suitable ordering

of the records within the inverted lists of the inverted file can improve the processing

of containment queries. The ordering of the records is based on the ordering of the

items of I. Let the support s() be a function that returns how many times an item

appears in database D. Then, for any two items oi, oj ∈ D:

oi >D oj =





true if s(oi) > s(oj)

true if s(oi) = s(oj) ∧ oi >a oj

false otherwise

(6.1)

where >a stands for alphabetic order. Equation 6.1 provides the definition of a total

order operator >D based on frequency. The only practical difference from ordering

the items of I according to their support is that by using >D we have a total order

for I and not a partial one.

Based on the order for I we define the sequence form, sf , of a set value.

Definition 6.2.1. Given a set value v from a database D, with n items we define

as the sequence form of v, the sequence sf(v) = o1, . . . , on where oi >D oj for i < j.

Now we can define a partial order between the sequence forms of the set values. Let

sf(vi) = oi, oi+1, . . . , oi+n and sf(vj) = oj, oj+1, . . . , oj+m be the sequence forms of

two set values from database D, then:

sf(vi) > sf(vj) =





true if
oi+k > oj+k and

oi+l = oj+l, l < k

false otherwise

(6.2)

Note that we consider null, i.e., no item, as greater than all other items, similarly

to the assumption of the common alphabetic order. The operators <, = are defined

with the obvious semantics based on Equation 6.2.

Using this ordering we can assign id’s to records in descending order, i.e., the

record with the highest sf , will have the first id (equalities can be solved randomly
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tid products sold tid products sold
1 {a, b, c} 9 {a, c, f}
2 {a, b, c, d, e, g} 10 {a, c, g}
3 {a, b, c, d, t} 11 {a, e}
4 {a, b, d} 12 {a, f}
5 {a, b, e} 13 {b, c, d}
6 {a, b, e} 14 {b, d}
7 {a, b, f} 15 {c, g}
8 {a, c, d} 16 {e}

Figure 6.1: A collection of set values in an object-relational database

by using the order or appearance/processsing). Fig. 6.1 shows the database of Fig.

4.2 after the records have been ordered and assigned a new id. This way, for two

records t1, t2, with t1.id < t2.id, holds that sf(t1.s) ≥ sf(t2.s). Depending on the

requirements of the application we can create these id’s in two ways: (a) by using

intermediate arrays that associate logical id’s with physical links or (b) by placing

the record themselves sequentially in the hard disk following a descending order; in

this case we can directly treat the physical links as id’s. In the former case the id’s

of Fig. 6.1 are enough to directly access the records, in the latter the id’s of Fig.

6.1 must be “translated” to physical addresses in order for a record to be retrieved.

This is often the way simple inverted files work [FBY92].

The query evaluation algorithms we propose in Section 6.3 can be used with

other orderings, e.g., pure lexicographical or numeric. Still, we choose to order

each inverted list based on the frequency of appearance (support) of each item in

the database D for two reasons: (a) records containing frequent items that are

expected to appear in queries’ answers more frequently than the rest, are placed

in the beginning of the inverted lists and (b) the longest lists contain record id’s

that have small distances between them; this will lead to better compression, since

compression techniques are based on the distance of sequential id’s in inverted lists.

Tagging for inverted lists. Knowing that records are placed in a descending

order in the inverted lists does not guarantee that we can quickly identify the part of

the inverted list where the answer to a query lies. Assuming that qs is an arbitrary

set value provided by the user, we must be able to compare it with the records we

encounter as we scan each inverted list. To this end, we employ a tag mechanism

that provides the lower bound for each memory page. Each disk page is associated

with a page tag, which is the sf of the last record that is referenced in the disk

page. This way, we can avoid fetching the next page from the hard disk, if we can

infer that it is unnecessary.

Again we can store the tags in two ways: (a) store them along with the inverted

lists in the secondary storage and (b) store them in another index (we use a B-tree),
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3: a,b,c,d,f

a 1 2 3 4 5 6 7 8 9 10 11 12

b 1 2 3 4 5 6 7 13 14

c 1 2 3 8 9 10 13

3: a,b,c,d,f

10: a,c,g

15: c,g

d 2 3 4 8 13 14

4: a,b,d 14: b,d

15

6: a,b,e

9: a,c,f 12: a, f

e 2 5 6 11 16

6: a,b,e 16: e

f 3 7 9 12

9: a,c,f 12: a,f

g 2 10 15

15: c,g

3: a,b,c,d,f

6: a,b,e

14: b,d

Figure 6.2: OIF for the database of Fig. 6.1.
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that can fit in main memory. As usually, there is a tuning decision to make here that

concerns the equilibrium between the benefits from keeping the tags in an index as

opposed to the memory overhead this index imposes.

B-trees for inverted lists. We use a B-tree to store the tags associated with

the disk pages for the inverted list of each item of the vocabulary. Each entry in

the B-tree has three parts: (a) the tag, which is the key of the B-tree entry, (b) the

id of the record, which we use heuristically in the subset query and (c) the physical

address of the associated disk page (depicted as a dotted edge in Fig. 6.2). An OIF

index for the database of Fig. 6.1 is depicted in Fig. 6.2.

Each B-tree has as many entries as the number of disk pages of the associated

inverted list. The size of each entry depends on the size of the record. Thus,

if the average record length is n, and each of the (i) t.id, (ii) item value and

(iii) physical address has a size k, then, each entry has the size of n×sizeof(item

id)+sizeof(t.id)+sizeof(pointer) = (n + 2) × k. Moreover, if we compress the in-

verted list to x% of its initial size, we reduce the entries of the B-tree to x% of the

original.

6.3 Query evaluation

In simple inverted files, where the ids of the records have no special meaning, the

answer to an arbitrary query is usually scattered throughout the inverted lists of

the involved items. The evaluation of set containment queries over inverted files,

resolves to the computation of merge joins between the inverted lists [HM03]. Thus,

in order to retrieve the entire answer we usually have to scan the entire lists. The

case of superset is the worst, since the inverted lists have to be scanned more than

once. Even if we provided links to intermediate points in the inverted lists via some

index, the effect would be limited; there would be some gain in using the index,

only when we would be interested in locating a single or very few id’s in the list.

Unfortunately, this is not the case for merge-joins between long lists.

On the other hand, having the records ordered in the inverted lists as we proposed

in Section 6.2, allows the identification of a region of the search space that contains

the answer to each query. We call such a region Range of Interest (RoI) of the query.

The knowledge of the theoretic bounds of a query’s RoI enables the efficient usage

of the B-tree index; instead of trying to locate numerous id’s that are candidate

members of the answer, we only retrieve links to the first and last page of the part

of the inverted list that contains such candidates.

The algorithms for the evaluation of the subset, set equality and superset queries

against a database indexed by correlated inverted files have two basic steps:

1. The identification of the RoI.
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2. The suitable merge-join of the inverted list regions that cover the RoI.

The difference from the evaluation of the same queries against simple inverted

files lies at the first step. The algorithms for processing the retrieved record id’s

are virtually the same; it is the pruning of the inverted lists that brings the major

improvement.

The bounds of RoI can be computed based only on the qs and the type of

the query predicate. Having identified the theoretical bounds of RoI, we know the

broadest possible region of the search space that contains the answer. To benefit

from this knowledge we must be able to efficiently identify the corresponding part

of the actual data, i.e., the disk pages of the inverted list that contain the RoI. This

is feasible by utilizing the tags that are associated with the disk pages. We trace

the sequence of disk pages whose tags cover the RoI by using the B-tree that has

been constructed over these tags. The first page of this sequence is the first page in

the list that has a tag greater or equal to the lower bound of the RoI and the tag

of the last one must be strictly greater than the greater bound of RoI. We denote

this region as bRoIc.
In other words, whereas the RoI stands for the maximum theoretical range of set

values that must be searched each time, bRoIc stands for the region of disk pages

that must be retrieved from the hard disk for the algorithm to execute correctly.

In the rest of this section, we present the evaluation algorithms for each query

predicate and we define the RoI for each case (each time denoted as RoIsub, RoIeq

and RoIsup). Moreover, we show that examining the RoI’s is adequate to trace the

entire answer to each query.

6.3.1 Subset

We define RoIsub, i.e., the RoI for subset queries as follows:

Definition 6.3.1. Range of Interest for subset queries (RoIsub)Given a subset

query with a query set qs = {o1q , . . . , onq} from a domain I={o1, . . . , oN}, qs ⊆ I

with o1q < oiq < · · · < onq , the Range of Interest RoIsub is a region with the

lower bound being the sequence o1, o2, . . . , onq and the upper bound the sequence

o1q , o2q , . . . , onq , oN .

1q stands for the rank in I of the first item of the query, 2q for second and so on.

Theorem 6.3.1. It is sufficient to search for records within RoIsub to answer a

subset query.

Proof. It is easy to see why the theorem holds by contradiction. Assume that there

is one record t = {o′1, . . . , o′m} that appears before the RoIsub. Then it must hold,
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that some o
′
i < oi or o

′
i does not exist and oi exists, with oi being the i-th item of

the lower bound of RoIsub. Since the i-th item of the lower bound is the i-th item

of I, o
′
i < oi does not hold, thus only if {o′1, . . . , o′m} is a prefix of the lower bound

of RoIsub can t appear before RoIsub. But in this case it will not contain the last

item of the lower bound, which is the last query item. Thus t will not satisfy the

query. Similarly, it can be proven that t cannot appear after the greater bound of

RoIsub

Assume for example that we would like to retrieve all the records that contain

qs = a, b from the relation of Figure 4.2. Then, RoIsub = [(a, b), (a, b, z)] (assuming

that z is the smallest item of I). It is easy to see that in the order of Equation 6.2,

the first candidate record has an sf = a, b and the last sf = a, b, z, where z the last

item in I. Any record t with sf(t) > sf({a, b}) does not contain b and any record

t′ with sf(t′) < sf({a, b, z}) lacks a or b or both.

At the same time, the bRoIc in the inverted list of a will be the first three

disk pages, since the last one has a tag greater than the greater bound of RoIsub.

Similarly, the bRoIc of item b will be again the first three disk pages.

The algorithm for evaluating the subset query by exploiting OIF is depicted

in Figure 6.3. Similarly to the case of the inverted file it is a simple merge-join.

Still, the behavior of OIF in both the average and the worst case is significantly

better, since in the case of OIF we only intersect the bRoIc part of the inverted

lists, whereas in the case of inverted files we have to intersect the entire inverted

lists.

Subset Query Evaluation
// qs = {o1, . . . , on}, o1 < · · · < on.
1. Determine the RoI for qs
2. for each i in bRoIc of on.list {
3. for (j = n− 1;j ≥ 1;j −−) {
4. found=false;
5. while (c < i) {
6. get next item c from oj .list;
7. if (c = i) then found=true }
8. if (not found) break }
9. if (found) output i; }

Figure 6.3: OIF Subset Evaluation Algorithm

The algorithm takes advantage of the fact that under the assumptions we made

about the statistical properties of the data, where |I| ¿ N , the RoIsub is always

positioned very close to the beginning of the involved inverted lists. In the previous

example, the lower bound of RoIsub was sf(a, b), which is the second greatest sf

that can appear in D (with a being the first). Therefore, without compromising
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the correctness of the computed results, we can assume that the RoIsub is always a

prefix of the inverted lists, for all practical purposes.

Subset performance analysis. To evaluate the performance of subset queries,

in the OIF index, we need to be able to estimate the size of RoIsub. Assume a

qs = oq1 , . . . , oqn with oqi
>D oqj

, i < j and that each item oi has a probability pi of

appearing in D. Moreover, assume that there is no special correlation between any

of the items. First we have to estimate the number of records whose sf starts with

prefix oi1 in the list of item om, i1 < m:

S<oi1
> = pi1 ×

(
1−

i1−1∑
j=1

pj

)
× (pm × |D|)

In the same list, the number of records that start with oi1 , oi2 ,

S<i1,i2> = S<i1> ×
(

pi2 ×
(

1−
i2−1∑

j=i1+1

pj

))

and for oi1 , . . . , oin ,

S<i1,...,in> = S<i1,...,in−1> ×

pin ×


1−

in−1∑
j=in−1+1

pj







or

S<i1,...,in> = (pm × |D|)×
∏

l=1,...,n


pil ×


1−

il−1∑
j=il−1+1

pj







Now, if we want to find what is the offset OS for the qs = oq1 , . . . , oqn with

oqi
>D oqj

, we must add the S of all paths of length 1 that precede < oq1 >, all the

paths of length 2 that precede < oq1 , oq2 > etc:

OS<oq1 ,...,oqn> =
q1−1∑

i=1

S<o1> + · · ·+
qn−1∑

i=qn−1+1

S<oq1 ,...,oqn−1,oi>

OS<oq1 ,...,oqn> = (pm × |D|)×



q1−1∑

i=1

pi ×

1−

i−1∑

j=1

pj


 + · · ·

+
qn−1∑

i=qn−1+1


pi ×


(1−

qi−1∑

j=qn−1+1

pj





×

∏

l=1,...,n−1


pql

×

1−

ql−1∑

j=ql−1+1

pj










= (pm × |D|)×



n∑

k=1




qk−1∑

i=qk−1+1


pi ×


(1−

qi−1∑

j=qk−1+1

pj







×
∏

l=1,...,k−1


pql

×

1−

ql−1∑

j=ql−1+1

pj











 (6.3)
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assuming q0 = 1.

The most important term of the previous formula is for k = 1, which gives the

offset of all the paths that start with the oq1 , and it can be effectively used as an

approximation. Using only this term the offset of RoIsub is 0 and its end is at

OS<oq1>, which, assuming a uniform distribution, is equal to:

OS<oq1> =

q1−1∑
i=1

pi ×
(

1−
q1−1∑
j=1

pj

)
× (pm × |D|)

=

q1−1∑
i=1

p× (1− (i− 1)× p)× (p× |D|)

= (p2 × |D|)×
[
(q1 − 1)−

q1−1∑
i=1

(i− 1)× p

]

= (p2 × |D|)× (q1 − 1)×
[
(1− (q1 − 2)

2
× p

]

Note, that this is not the least upper bound we used in the definition of RoIsub but

it gives a good estimation. In the worst case, where the greatest item of qs is at

the last positions in I, the RoIsub covers almost the whole inverted list, thus the

performance of OIF is similar to the performance of the inverted file. On the other

hand, as our experiments confirm, in the average case the RoIsub significantly limits

the region of the inverted list that is examined.

The fact that the RoIsub is a prefix of the inverted list has an interesting con-

sequence: there is no need to directly access any disk page but the first. We can

sequentially access all the disk pages that overlap with RoIsub without compromising

the performance of the algorithm. As a result, if we are only interested in evaluat-

ing subset queries, there is no need to introduce any main memory overhead with

reference to the inverted file; the page tags can be stored at secondary storage and

we can retrieve them along with each disk page.

Finally, we use the B-tree heuristically: if the merge-join of the first lists that

are considered has discarded many candidate solutions, we use the B-tree to search

in the next inverted list, if we estimate that we can avoid merge-joining some parts

of it. In our case, we use an estimation based on the density of the id’s in each list.

6.3.2 Equality

The range of interest RoIeq, for the set equality query is a single point in the search

space. We define it as follows:
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Definition 6.3.2. Range of Interest for equality queries (RoIeq) Given an equality

query with a query set qs, the range of interest RoIeq is a continuous region with

lower and upper bound the sf(qs).

Intuitively, to evaluate an equality query, we trace the pages in each inverted list

that contain the answer via the B-trees (plus an extra one in the case where a tag is

equal to the sf(qs)) and we merge-join them. The evaluation algorithm is virtually

the same with the subset evaluation algorithm depicted in Figure 6.3. The basic

difference is that now we use the RoIeq and that we filter records according to their

length; only records that have length equal to |qs| are considered in the merge join.

Equality performance analysis. When the data are indexed by a simple

inverted file, the worst case (which is also the most common one) for the equality

queries is the same as for the subset query; the entire inverted lists have to be

examined. In the average case, query processing is slightly faster than in subset

queries due to the usage of the length of the record as an additional filter. Also, in

the case of equality queries, RoIeq is very small compared to RoIsub; therefore, the

OIF index significantly accelerates the processing of equality queries. Actually, the

false positives (i.e., record id’s that are retrieved from the hard disk but are discarded

in the evaluation procedure) that appear in bRoIeqc cannot be more than 2×(page

size) in each inverted list. 1 As a result, the evaluation of the equality queries with

OIF depends linearly on the size of the answer and on the size of the query |qs| and

only logarithmically on the size of the inverted list and consequently on the size of

D. The logarithmic dependence on the size of the inverted list is a consequence of

the traversal of the B-tree which takes place in the process of deciding the bRoIc of

the query. Since the height (thus, the maximum page accesses in a traversal) of the

B-tree constructed over an inverted list of size n is logm/2(
n

PS
) (with m being the

order of the B-tree and PS the page size), the page accesses in the worst case are:

page accesses =

|qs|∑
i=1

logm/2(
ni

PS
) + |qs| × answer size

PS

The order m depends on the size of the B-tree key, i.e. the average size of the record.

If the selectivity is small and the B-tree is cached, then we only have |qs| disk page

accesses, i.e., one from each inverted list. This also agrees with the results of the

experimental evaluation of Section 6.5. For the case of the simple inverted file, the

disk pages accesses would be
(n1+···+n|qs|)

PS
.

1The worst case appears only when we have (PAGE SIZE ∗ i) + 1, i = 1, 2, . . . answers in an
inverted list and the first answer is the last record in a disk page (thus it is the tag of the page).
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6.3.3 Superset

Superset queries return records that include only items that belong to the query

set (i.e., the record is a subset of the query set). During the evaluation of superset

queries, we progressively produce the answers to the query that contain each of the

items of the qs. We examine the items starting from the most frequent one and

continue examining them in descending order of frequency. In each step, all the

answers that contain the current item are produced, except if they have already

been identified in a previous step. Unlike the evaluation procedure for the subset

and equality queries the Range of Interest for the superset queries is differentiated

by the item and the iterative step.

Definition 6.3.3. Given a query set qs = {o1, . . . , on}, where o1, . . . , on are listed

in descending order of frequency the RoIsup of the first step is

RoI1
sup−o1

= [S(o1), S(o1, on)]

...

RoI1
sup−oi

= [S(o1, o2, . . . , oi), S(o1, oi, on)]

...

RoI1
sup−on

= [S(o1, o2, . . . , on), S(o1, on)]

in the i-th step

RoI i
sup−oi

= [S(oi), S(oi, on)]

...

RoI i
sup−on

= [S(oi, oi+1, . . . , on), S(oi, on)]

and in the last step

RoIn
sup−on

= [S(on), S(on)]

In Figure 6.5, the RoIsup for the case of qs = {a, c, f} is depicted. To make it

more easily interpretable we represent the records not with their id’s but with all

their items and depict all the bounds of the regions like existing records. As the

Figure 6.5 implies, the following holds:

Theorem 6.3.2. For a query set qs = {o1, . . . , on} it is enough to examine all the

RoI of Definition 6.3.3 for the identification of the answer to the query. qs.

Proof. We can prove Theorem 6.3.2 by contradiction, following the steps of the

proof for the Theorem 6.3.1. By taking a record t = {o′1, . . . , o′m}, and assuming
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that t does not fall into any of the areas defined in Definition 6.3.3, we can prove

that t cannot be a valid answer to the superset query, because it must contain more

objects that the objects of the qs. To see how this holds, one has to observe first

that the merge-join of all RoI i
sup’s, as defined in Definition 6.3.3 in the i-th step, is

enough for identifying all the answers than contain oi and have not been identified

in a previous step.

Superset Query Evaluation
// qs = {o1, . . . , on}, o1 < · · · < on.
1. for (k=1;k ≤ n;k++) {
2. Determine the RoIk’s for qs
3. for each i in RoIk

sup−ok
of ok.list {

4. tolMisses = n− (k − 1)− ok.length
5. for (j = k + 1;j ≤ n;j++) {
6. if tolMisses < 0 break
7. tolMisses−−
8. for each item c < i in RoIk

sup−oj
{

9. if (c = i) tolMisses + +}}
12. if tolMisses ≤ 0 output i}}

Figure 6.4: Inverted file Superset Evaluation Algorithm

The algorithm for evaluating superset queries with the OIF index is depicted in

Figure 6.4. The intersection between the inverted lists is based again on a merge-join

as in the case of the subset and equality evaluation algorithms. What differentiates

the superset algorithm is that it can afford to miss an item if the length of the record

is smaller than the qs. The idea is that the record might be comprised of any items

of the qs. Thus if we have a record of length 3 and a qs of length 10, we can afford

to miss 7 items before deciding that the record is not a valid answer.

Superset performance analysis. The basic steps of the algorithm for evaluat-

ing superset queries over a simple inverted file resemble the algorithm of Fig. 6.4 for

evaluating superset queries with OIF . The only difference of the two algorithms is

that the algorithm for inverted files considers items of the full inverted list, instead

of considering only items from the RoIsup. However, as we show in the following,

this improvement affects the complexity of the algorithm significantly. In the case

of the inverted file, in each iteration of the outer loop we have to scan the whole

inverted lists of the remaining items. Since one item is removed from the merge join

at each iteration, the worst case requires n1 +2n2 + · · ·+ |qs|n|qs| disk pages accesses,

where ni is the size of inverted list of i-th item, in disk pages. In the following, we

establish that the worst case scenario for the OIF is n1 + n2 + · · ·+ n|qs| disk page

accesses.

Lemma 6.3.1. For an item o of qs the RoI i
sup−o in step i, starts after the end of

RoI i−1
sup−o of step i− 1.
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RoI of 1st scanning
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cf

af

af zRoI of 2nd scanning
fRoI of 1st scanning

RoI of 1st scanning

fzRoI of 3rd scanning
fac

czRoI of 2nd scanning
Figure 6.5: The ranges of interest for the superset query {a, c, f}.

It is easy to see why the lemma holds by observing the bounds of the Roi’s in Defi-

nition 6.3.3. Based on the previous lemma we can establish the following theorem:

Theorem 6.3.3. The evaluation of a superset query requires at most scanning the

inverted lists of all items once.

Proof. The theorem comes as an immediate consequence of Theorem 6.3.2 and

Lemma 6.3.1; if scanning the areas of RoIsup is enough to find all the answers,

and if at each step the algorithms scans non-overlapping subareas of RoIsup, at the

end of the evaluation RoIsup is scanned only once.

Note that Theorem 6.3.3 defines the worst case. By using the B-tree to directly

access the several different RoI’s we have an average case that is often significantly

better than the worst. This superior theoretical behavior of the superset evaluation

algorithm in OIF is fully reflected by our experimental results as we show in Section

6.5.
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6.4 Creation and Maintenance

6.4.1 Creation

To create an OIF index, one more processing stage is required compared with cre-

ating a simple inverted file: sorting the records. Sorting the records by using as a

key all their values is a tedious task but it can be addressed quite effectively by a

radix sort based algorithm. When dealing with large collections of data, the imple-

mentation of radix sort is not straightforward, since main memory will probably not

be sufficient to store the whole dataset. If we apply a radix sort algorithm, without

any provision for memory management, we will end up with many read-writes in

the secondary storage, which will dominate the processing time. A straightforward

way of implementing a radix sort for the kind of data we have is to split the data

into buckets by first considering their most frequent item each time. This way, we

will know that all the set-values in the first bucket should get smaller id’s that those

of the second and so on. The problem of such partitioning is that it does not take

into consideration the size of the resulting buckets. It follows that the first buckets

will be the biggest, even for a uniform distribution, and they will probably require

retrieving and rewriting them to the secondary storage several times, as we further

split them into more buckets. To achieve the most efficient sorting it would be best

to be able to partition the data, in a single pass, to fixed sized buckets that can

fit into main memory. To do so, we propose a variation of a trie-based radix-sort

[SZ04, SZ03].

Creating a trie by using all the data, would sort everything in a single pass, but it

is unlikely that the trie will fit into main memory, and it will introduce a significant

secondary storage I/O cost. Our basic idea is to create a trie where each path will

lead to buckets of similar size, that will fit into main memory. To achieve this,

we employ the analysis we performed in Section 6.3.1 for the complexity of subset

queries. The equation 6.3 does not only provide the offset for a specific sequence

in an inverted list, but it can be used to estimate where a specific sequence will be

positioned in an ordered database. Using this equation, we can determine prefixes

that act as boundaries for (estimated) fixed size buckets. Each bucket hold records

that are greater that the prefix of the previous bucket but smaller that the prefix of

the current bucket. All prefixes are kept in a main memory trie and at the end of

each path a link is given to each bucket. If the main memory is not large enough to

hold the whole trie, then we can create larger buckets with smaller prefix-boundaries,

and then split each bucket again following the same algorithm. The basic steps of

such algorithm are the following:

1. Estimate the probability of appearance of each item, either exactly by scanning
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once the whole database, or by sampling.

2. Determine the number of buckets that will be created and calculate the max-

imum prefix that can be hold in a main memory trie.

3. Estimate the boundaries for each bucket.

4. Scan the database and place each record in the bucket with the matching

prefix boundary.

5. If the resulting bucket fits into main memory, retrieve and sort it in main

memory, else go again to step 2 and split it to smaller buckets.

Estimating the boundaries for each bucket can be done by using the Equation

6.3. If we adjust Equation 6.3 to give the offset of each sequence in the whole

database the result would be:

OS<oq1 ,...,oqn> = |D|×



n∑

k=1




qk−1∑

i=qk−1+1


pi ×


(1−

qi−1∑

j=qk−1+1

pj





×

∏

l=1,...,k−1


pql

×

1−

ql−1∑

j=ql−1+1

pj













(6.4)

To estimate the boundaries between the buckets we need to find sequences that

are estimated to appear (or just to be ranked) in the dataset in every b records,

where b the size of the bucket in records. To find these sequences we first compute

the probability of appearance for each item in a record and we estimate the offset of

the records that start with this item in an ordered database. We create buckets of

size b±m by grouping together items that appear sequentially. We require that the

offset for the records whose sf start with the last item of the bucket is estimated

to appear after b ±m records from the first record, whose sf starts with the first

item of the bucket. If adding an item makes the size of the bucket to got directly

from a value less than b−m to a value greater than b + m, we refine our grouping

criterion by considering the second item that appears in the sf of a record. If the

same problem appears again we continue with the third and so on, until we get the

desired bucket size. 2. As a boundary for each bucket we use the last sequence that

belongs to its group. The algorithm is shown in Figure 6.6.

6.4.2 Updates

Handling updates in the OIF requires answering efficiently two additional chal-

lenges, with respect to updates in a simple inverted file: (a) how to insert a record

2This might not always be possible if some items appear only in certain combinations. In
practice we use some additional safety constraints to avoid going into very large depths

120



Determine bucket boundaries
// Let b be the size of the bucket and m the approximation factor.
// Let S the current probability of items, coff its offset
// and loff the offset of the previous saved value of S.
1. determine the probability of appearance pi of each item of the database
2. set loff = 0 and coff = 0.
3. while S not empty {
4. set S = ∅;
5. for each item o of I {
6. add the item o to the end of the current sequence S
7. coff = coff + fi

8. if (coff − loff < b−m) {
9. remove the last item of S
10. continue }
11. if (b−m ≤ coff ≤ b + m) {
12. store S in the trie
13. loff = coff
14. remove the last item of S
15. continue }
16. if (coff − loff > b + m) {
17. replace the last item of S with the previous item of o
18. continue }
19. }
20.}

Figure 6.6: The algorithm for determining bucket boundaries takes the frequencies of the
databases items as an input and outputs a trie that has the boundaries for buckets of size
b±m

in the right place in an the inverted list and (b) how to give to new records id’s

analogous to their rankings. These two points are not as difficult to handle as a

first approach might suggest. When updating an inverted file, we usually do batch

updates as we explained in Section 4.5. Individual postings are accumulated in a

small main memory inverted file, which is merged with the disk based memory file

when there is no more memory available or when it is more convenient for each ap-

plication. This way the first problem is rather easily tackled; if the lists are already

indexed by a B-tree and they are already retrieved in main memory for the merging,

the difference between adding the new id’s at the end of the list, or in intermediate

places is not significant. Either by merge sort or by using the B-tree, depending on

how many values must be inserted, such functionality can be achieved efficiently.

Updating the ranking of records and providing new id’s is more complicated

and poses three basic problems: (a) efficiently sorting the updated database, (b)

assigning id’s to all records whose rank changed, and (c) reflecting all the changes

of the records id’s in the inverted lists. Efficiently answering the first problem is

facilitated by keeping the initial trie in secondary storage. By retrieving and using

the trie we can quickly decide which of the original buckets must be updated with the

new data. Having identified the affected buckets and the data that must be inserted

in them, we sort only locally the affected buckets and avoid re-sorting the whole
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database. Giving id’s that reflect this new ranking can be simplified by originally

assigning id that are not sequential, e.g. instead of 1,2,3, we can assign to the first

records the id’s 10,20,30. This scheme can postpone the problem of sliding the id

of existing records if the distribution of the items in the updates is similar to the

original distribution. A more effective solution is to introduce landmarks, i.e. special

marks every k records, and the assign id’s relatively to these marks. For example

instead of 1,2,3,4,5,6 we can have l1 1,2,3, l2 1, 2, 3. A side effect of this solution,

is that we must store the landmarks in the inverted lists too, in order to have a

universal translation of each id. This might introduce significant overhead in the

smaller lists. Finally, updating the inverted lists is simpler due to the compression

techniques. Since we represent it’s id with respect to the d-gap from the previous id

in the list, if we have a whole block of id that has been ”shifted” due to insertions, we

only have to increase the first d-gap of the block. For example let 2,4,6,7,11,16,17,20

be one inverted list that is coded as 2,2,2,1,4,5,1,3. Assume that one more record

has been inserted and, despite the aforementioned techniques, it replaced the record

with id = 3, and the record with id = 3 got as new id = 4, and the record with

id = 5, got id = 6 and so on. The inverted list must now become 2,5,7,8,12,17,18,21,

this means that all but the first entries must change. But when we code it using

d-gaps we only have to make 1 change: 2,3,2,1,4,5,1,3.

In any case, maintenance in the OIF is harder than maintenance in the simple

inverted files. Still, since updates happen in a batch manner, by retrieving the whole

index from the disk to merge it with the temporal in-memory index, the difference

in the updating cost is limited.

6.5 Experimental Evaluation for the OIF index

To evaluate the performance of our proposal we compare it to the state-of-the-art

solution for containment queries, the inverted file.

6.5.1 Methodology

Implementation. We implemented both the simple inverted file and the OIF in

C++, in (a) an initial disk-based and (b) a memory-based version. Initial results

proved, as expected, that the containment problem is dominated by disk page ac-

cesses (the evaluation of sets of queries took seconds when everything was in main

memory and minutes when everything was on the disk), thus we performed the

experiments with memory-based version for reasons of convenience. We kept the

inverted lists in series of arrays equal to the page size we assumed (4k) and we

explicitly counted each visit. The vocabulary was stored in a hash table in main
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memory.

We used the same implementation for the simple inverted file and the inverted

file part of the OIF , thus our results are directly comparable. Since compression

techniques benefit the OIF at least as much as the simple inverted file, we did not

use any compression since the behavior of our results would not change.

Data. We evaluated the OIF using again the two real datasets from UCI KDD

repository [HB99], we introduced in 5.5. To map the behavior of the OIF as several

statistical properties of the data vary, we also used synthetic data containing trans-

actions with length varying from 2 to 24. We considered datasets sizes of 100k, 250k

and 1M transactions from a domain of 2k, 5k and 10k objects. We created three

datasets for each combination of database size and domain by following a different

zipfian distribution each time. The zipfian parameters we used were 0, 0.5 and 1,

thus ranging from uniform to skewed. The results we present in the following are

always aggregated on all sets, except if stated otherwise.

Queries. As in other approaches [HM03], we evaluated our proposal using

queries that always have an answer, considering them more informative than those

that do not. We created such queries by using existing transactions, selected uni-

formly from all D. The selectivities of the subset queries are less than 3%, with

the less selective being those with |qs| = 2. The most common case for larger |qs|
and for equality queries is that there are less than 5 answers. On the other hand

the selectivity of superset queries can surpass 3% for large |qs| on the real data. To

provide accurate results we created 50 queries of each size and type.

6.5.2 Performance evaluation

In figures 6.7-6.11 we depict the evaluation results for the OIF and the simple

inverted file. The results for the inverted file are labeled as inverted. For the case

of the OIF we depict the disk page accesses for three different settings: (a) The

index is clustered and the B-tree is on main memory. This is the case when all disk

page accesses come from the inverted lists. We label this setting as oif-inv. (b)

The index is clustered but the B-tree is also disk resident. We label this setting

as no-cache. (c) The index is not clustered, thus we need an intermediate table to

translate the tid’s to disk addresses and everything (the inverted file, the B-tree and

the intermediate table) are disk resident. This is the worst case for the OIF and

we mark it as no-cluster.

Subset. The OIF outperforms the simple inverted file both for real and for

synthetic data. Moreover, it exhibits two very good properties. As the length of the

query set grows and thus, queries have less answers, it manages to use the B-tree

efficiently and detect fast the areas of interest in each list. This way its performance
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Figure 6.7: Average performance of queries on msweb data

124



 0

 200

 400

 600

 800

 1000

 1200

 2  2.5  3  3.5  4  4.5  5  5.5  6

di
sk

 p
ag

e 
ac

ce
ss

es

|qs|

Subset

inverted
oif-inv

no-cache
no-cluster

 0

 200

 400

 600

 800

 1000

 1200

 2  2.5  3  3.5  4  4.5  5  5.5  6

di
sk

 p
ag

e 
ac

ce
ss

es

|qs|

Equality

inverted
oif-inv

no-cache
no-cluster

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 2  2.5  3  3.5  4  4.5  5  5.5  6

di
sk

 p
ag

e 
ac

ce
ss

es

|qs|

Superset

inverted
oif-inv

no-cache
no-cluster

Figure 6.8: Average performance of queries on msnbc data
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Figure 6.9: Average performance of subset queries
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Figure 6.10: Average performance of equality queries
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Figure 6.11: Average performance of superset queries

grows, unlike the case of the simple inverted file, which suffers when it has to examine

many inverted lists and cannot benefit from the small selectivity. The other good

property of the OIF is its scaling capabilities as the database D grows. As shown

in Fig. 6.9, OIF scales a lot better than the inverted file. This is again attributed

to the B-tree and the limited RoI.

Equality. As expected from the complexity analysis, the performance of the OIF

is practically constant since it can accesses directly the disk pages where the possible

answer lies. Experiments on both real and synthetic data confirm this.

Superset. Superset is by far the most expensive query studied, thus the perfor-

mance gain in this case is more significant. As we can see from Figures 6.7, 6.8 and

6.11 the OIF greatly outperforms the inverted file in both real and synthetic data.

Moreover, is scales a lot better both for large D and qs.

In summary, the OIF significantly outperforms the inverted file in all cases,

for all different implementations settings (i.e. clustered or not clustered, with only

exception being the subset query of length 2, where the size of the results forces

many disk page accesses in the intermediate table). Moreover, it is unaffected by

the skewness of the data, unlike the inverted file whose performance deteriorates

as the skewness grows. Finally, the memory overhead we are paying for this is not

large; for the case of the longest inverted lists (|D| = 1M, |I| = 2k) the B-tree has

10% of the size of the inverted file. This result comes from using a key of constant

size, equal to the greatest transaction. By using a key of variable length, we should
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get a B-tree with about half of size of the original.

6.6 HTI vs. OIF index

Having experimentally compared both the OIF and the HTI index with the inverted

file, naturally arises the question about how they compare one against the other.

A comparison between the OIF and the HTI has to take into consideration three

factors: a) the memory overheads, b) the construction and update time and c) query

performance.

6.6.1 Memory Overheads

Both the HTI and the OIF introduce some memory overheads. In the case of the

OIF it is the sparse B-trees that are created for each list and in the case of the HTI

it is the main memory access tree. It should be noted that the latter can be stored

in secondary storage in various ways, for example it can be kept in a B-tree with

each path being a separate key value. In both cases the overheads are small and the

do not do constitute a decisive factor for choosing one over the other. Moreover, the

space overheads of its methods can be tuned; by altering the number of items that

are kept in the access tree, for the case of the HTI, and by choosing a different size

of block for the OIF .

6.6.2 Construction and update time

The creation and update procedure that we proposed for the HTI differs from the

respective one of the inverted file in two ways: a) it has to handle a bigger number

of smaller lists and to create the access tree in main memory and b) it has to do an

additional scan of the database due to indexing combinations of the most frequent

items. Both of these operations are not very costly and preliminary results show

that by even when using naive strategies the cost of building the HTI is around

double of building the inverted file.

The case is not the same for the OIF . Using a radix sort to sort all records,

might be an O(|D| × |t|) procedure, but in practice it is quite expensive, since data

have to be read and re-written in disk during the sorting stage.

Construction and update time constitute a clear advantage of the HTI over the

OIF index. The faster update times, make the HTI more suitable for applications

that handle data, which change frequently or in applications, where updates must

be performed very quickly.

128



6.6.3 Query performance

Comparing the performance of the the HTI and the OIF in query processing is not

trivial. The HTI, as expected, has a different behavior depending on the distribu-

tion of items in D. We compare the two indices with respect the number of disk

accesses they perform during evaluation, against two datasets that follow a uniform

distribution and a skewed Zipfian distribution of order 1. This is done, in order to

see how they behave in the two ends of the spectrum. We create both the uniform

and the skewed dataset with with 1M records of 2-22 items, with average size of 12

items from a vocabulary of 2K items. We create again subset, equality and superset

queries following the methodology we presented in Section 6.5. We evaluate the

OIF against three versions of the HTI, which index in the access tree the 0.5%,

1% and 3% of the top frequent items. Moreover we depict in Figures 6.12 and 6.13

the respective results for the inverted file as a point of reference.

The overall conclusion from the experimental results is that the OIF is the

clear performance winner. Still, the results differ a lot depending on the items’

distribution. In the case of uniformly distributed items, depicted in Figure 6.12 the

HTI does not give any real advantage over the inverted file, and the OIF is the

undisputable winner. When the items of the database follow a skewed distribution,

the picture is drastically different. The OIF surpasses all versions of the HTI

for equality and subset queries (Figure 6.13) and is second only the HTI with the

largest access tree (3% of the top frequent items are kept in the access tree) for

superset queries. Still, the performance gain over any of the versions of the HTI is

not very big.

The previous analysis and experimental results show that the OIF offers a sig-

nificantly better performance that the HTI at the cost of increased creation and

maintenance costs. Moreover the OIF offers a very good performance independently

of the items distribution. Still, when the items of the database follow a skewed dis-

tribution in the various records, the HTI offers a competitive performance at a

significantly lower creation and maintenance cost.

6.7 Summary

In this chapter we presented the OIF index, which is a novel approach to indexing

for containment queries. The basic idea of the OIF index is to introduce an order

for all the items and the records of the database and to organize the inverted lists

according to this order. Moreover, OIF employs a B-tree to offer intermediate

access points in the inverted lists. As a result the search space of each query can be

limited to a specific region in the inverted lists of items that participate, which can
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Figure 6.12: Average performance of queries on uniformly distributed data
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Figure 6.13: Average performance of queries on data with a skewed item distribution
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be subsequently accessed via the B-tree of the inverted list.

The experimental results for the OIF showed that it provides a clearly superior

performance over both the inverted file and the HTI index, often in orders of mag-

nitude. Moreover, the OIF exhibits a more robust behavior in comparison with the

HTI, since it provides a significant performance gain, independently of the items’

distribution. This superior performance comes at the cost of an increased construc-

tion and maintenance cost. The core of the construction and maintenance costs lies

in the need to sort all the records of the database. To counter this cost, we proposed

a trie based radix sort, that has a complexity of O(|D|×|t|) and significantly limited

disk I/O.

The OIF index can be the suitable choice for systems that are not frequently

updated, or can be updated offline but require a very efficient query evaluation

mechanism.
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Chapter 7

Conclusions and future work

7.1 Conclusions

In this thesis, we have identified and addressed the need to manage condensed and

rich in semantics representations of raw data, termed patterns, in an way similar

to how data are handled in modern RDBMSs. We have set the goal to support

a unified environment which efficiently manages both data and patterns. In our

solution we have approached the problem from two different ends. On one end, we

have started from the high level requirements, and we have proposed a conceptual

and logical model for handling patterns and data. On the other end, we have started

from existing technology and have provided more efficient solutions for a very basic

set of containment queries that are essential in building and supporting the pattern

management environment. More specifically, we have set and addressed the following

requirements:

1. We have required that the PW would allow the handling of both data and

patterns, and that it would preserve the complex semantics of patterns. To

address this goal we have proposed a conceptual architecture and a logical

model that covered both data and patterns. The proposed model handles

both data and patterns as primary citizens, but also as distinct entities. The

semantics of the patterns are expressed by their relation to the underlying

data.

2. We wanted to have a transparent representation of pattern semantics, which

would facilitate the creation of some reasoning mechanism and allow the users

to combine them to create new patterns. To this end, we have proposed using

a logical language for expressing the semantics of patterns, i.e., the relation

between patterns and data. The language that expresses this relation can

be different, depending of the application domain. In the context of this

thesis, we have adopted a constraint-based language, which is suitable for
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expressing patterns that are conceived as regions in a metric space. Finally,

we have exposed how patterns can be used to discover properties of the data

by proposing a sound and complete model for binary pattern relations that

can support reasoning mechanisms for data.

3. We have required that the Pattern Warehouse would preserve the relation be-

tween the patterns and the underlying data. To this end, we have proposed

two ways of representing this relations; an approximate one, by describing the

image of the patterns in the data space in a logical language, and explicit

one, where patterns and data are explicitly linked by records. We have com-

plemented this work by presenting operators, which demonstrate the gains of

preserving the pattern-data relation, by facilitating the easy navigation from

the pattern to data space and vice versa.

4. We have required that the Pattern Warehouse would implement efficiently the

navigation between patterns and data. In this context, we have focused on the

efficient representation of the explicit relation between data and patterns. Our

contribution is not limited in the framework of PW , and applies generally to

indexing techniques for containments queries. Our proposal consists of the

Hybrid Trie-Inverted file index and the Ordered Inverted file index. Both

these indices address the weaknesses of the inverted file which is the current

state-of-the-art for containment queries. Such indices are required if we need

to efficiently identify which data are represented by which patterns, and vice-

versa which patterns represent a specific set of data. Both indices address

the generalized problem of containment query evaluation, thus our results

have also impact on existing database and information retrieval technology.

The HTI tackles the problem of highly skewed distributions by sacrificing a

small amount of main memory. A basic advantage of the method is that the

performance gain is mainly affected by the size of the domain unlike traditional

cashing techniques, which are affected by the size of the database. The OIF on

the other hand, offers superior query performance for all queries independently

of the items’ distribution, but it has an increased creation and maintenance

cost, since the underlying data must first be sorted. Both of these methods,

significantly reduce the cost of evaluating containment queries in very large

databases, thus making possible the creation of systems like the PW , which

need to efficiently navigate between the pattern and the data space.

This thesis augments our understanding of the problem of handling patterns and

provides new indices that efficiently address the evaluation of containment queries.

Still, bridging the gap between current object-relational systems, and a system that
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will be able to handle uniformly and generically the results of complex data analysis

methods, poses numerous challenges. In the following section, we provide a sketch

of future work, which is tightly linked to the research results of the thesis.

7.2 Future Work

As most research works, this thesis opens as many questions as the issues it ad-

dresses. The Pattern Warehouse setting, as presented in this thesis, opens new

research challenges both in its modelling and in its implementation. The most im-

portant points, we have identified for future work, are the following:

• In the context of the logical model of the Pattern Warehouse we have proposed

a series of operators, for querying patterns and data. Still, these operators

do not constitute an algebra, since no guarantees about their expressivity

and safety are provided. An imperative completion to this work, would be

to provide a full algebra, based on these operators, which will provide the

necessary guarantees.

• Until now, our research efforts were focused on clusters and in general patterns

which correspond to contiguous regions in some metric space. Studying more

use-cases is necessary, if we want to provide a robust solution that will be

able to handle a variety of patterns. In this context, patterns like graphs in

non-metric space, biomedical data etc., need to be investigated. Moreover,

we need to examine if we can use a more generic language for the mapping

formula, that will be able to accommodate such patterns, or an entirely new

language is needed for such application areas.

• In our study of the Pattern Warehouse, we have assumed that patterns are

created by some external mechanism or at least in a black-box manner. It

would be an interesting challenge to see if we can incorporate some basic

mining mechanisms, which will be able to work for a variety of different data

types.

• The access methods for set values we have presented in the Chapters 5 and

6, provided a significant speed up in the evaluation of containment queries.

Still, we did not investigate a very important family of query operators, which

might benefit from our proposals: set-containment joins. A basic goal of our

future work, is to investigate if we can use the ideas we have developed in the

HTI and OIF indices for making the evaluation of containment joins more

efficient.
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• Containment queries are a very common form of queries emerging in a variety

of applications. We aim at investigating how the basic techniques we developed

in the context of the HTI and the OIF can be exploited to answer more

effectively queries on graphs and biomedical data, where paths are sequences

of data values are often the target of the queries.

• Finally, we aim to complement our work on containment query processing by

considering the case of multi-query optimization, i.e., the evaluation of complex

containment predicates. We also plan to investigate how these techniques can

be adjusted to work on streaming data, where the constraints are significantly

different from the case of static data.

In general we believe that there is a plethora of interesting research issues that

are open in the implementation of the Pattern Warehouse and in the exploitation

of the HTI and the OIF . Our future and ongoing efforts aim at pursuing a deeper

understanding of the issues that are linked to pattern management and containment

query evaluation.
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