

Εθνικό Μετσοβίο Πολύτεχνειο Σχολή Ηλεκτρολογών Μηχανικών και Μηχανικών Υπολογιστών Τομέας Συστηματών Μεταδοσής Πληροφορίας και Τεχνολογίας Υλικών

"Μελετη - Αναπτύξη και Αξιολογήση Ολοκληρωμένου Συστηματός Ψηφιακής Αναλύσης Ενδοσκοπικής Εικονάς Μακροβιοψίας για την Υποστηρίξη διαγνώσης γυναικολογικού Καρκινού"

ΔΙΔΑΚΤΟΡΙΚΗ ΔΙΑΤΡΙΒΗ

ΜΑΡΙΟΣ Σ. ΝΕΟΦΥΤΟΥ

ΔΙΠΛ. ΗΛΕΚΤΡΟΛΟΓΟΣ ΜΗΧΑΝΙΚΟΣ & ΜΗΧΑΝΙΚΟΣ ΥΠΟΛΟΓΙΣΤΩΝ Ε.Μ.Π.

AOHNA 2007

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Σχολή Ηλεκτρολογών Μηχανικών και Μηχανικών Υπολογιστών Τομέας Συστηματών Μεταδοσής Πληροφορίας και Τεχνολογίας Υλικών

"Μελετή - Αναπτύξη και Αξιολογήση Ολοκληρωμένου Συστηματός Ψηφιακής Αναλύσης Ενδοσκοπικής Εικονάς Μακροβιοψίας για την Υποστηρίξη διαγνώσης γυναικολογικού Καρκινού"

ΜΑΡΙΟΣ Σ. ΝΕΟΦΥΤΟΥ

ΔΙΠΛ. ΗΛΕΚΤΡΟΛΟΓΟΣ ΜΗΧΑΝΙΚΟΣ & ΜΗΧΑΝΙΚΟΣ ΥΠΟΛΟΓΙΣΤΩΝ Ε.Μ.Π.

Συμβουλευτική Επιτροπή: ΔΗΜΗΤΡΙΟΣ ΚΟΥΤΣΟΥΡΗΣ, ΠΕΡΙΚΛΗΣ ΜΠΟΥΡΚΑΣ, ΚΩΝΣΤΑΝΤΙΝΑ ΝΙΚΗΤΑ

Εγκρίθηκε από την Επταμελή Εζεταστική Επιτροπή 21 Ιουνίου 2007

Δ. Δ. ΚΟΥΤΣΟΥΡΗΣ	Π. ΜΠΟΥΡΚΑΣ	K. NIKHTA
ΚΑΘΗΓΗΤΗΣ Ε.Μ.Π.	ΚΑΘΗΓΗΤΗΣ Ε.Μ.Π.	ΚΑΘΗΓΗΤΡΙΑ Ε.Μ.Π.

Ν. ΟΥΖΟΥΝΟΓΛΟΥ	Α. ΣΤΑΦΥΛΟΠΑΤΗΣ	Π. ΤΣΑΝΑΚΑΣ	Μ. ΖΕΡΒΑΚΗΣ
ΚΑΘΗΓΗΤΗΣ Ε.Μ.Π.	ΚΑΘΗΓΗΤΗΣ Ε.Μ.Π.	ΚΑΘΗΓΗΤΗΣ Ε.Μ.Π.	ΚΑΘΗΓΗΤΗΣ ΠΟΛΥΤ.
			ΚΡΉΤΗΣ

AOHNA 2007

Μάριος Σ. Νεοφύτου

Διδάκτωρ Ηλεκτρολόγος Μηχανικός και Μηχανικός Υπολογιστών Ε.Μ.Π.

Copyright © Μάριος Σ. Νεοφύτου, 2007

"Με επιφύλαξη παντός δικαιώματος. All rights reserved"

Απαγορεύεται η αντιγραφή, αποθήκευση και διανομή της παρούσας εργασίας, εξ ολοκλήρου ή τμήματος αυτής για εμπορικό σκοπό. Επιτρέπεται η ανατύπωση, αποθήκευση και διανομή για σκοπό μη κερδοσκοπικό, εκπαιδευτικής ή ερευνητικής φύσης, υπό την προϋπόθεση να αναφέρεται η πηγή προέλευσης και να διατηρείται το παρόν μήνυμα. Ερωτήματα που αφορούν τη χρήση της εργασίας για κερδοσκοπικό σκοπό πρέπει να απευθύνονται προς το συγγραφέα.

Οι απόψεις και τα συμπεράσματα που περιέχονται σε αυτό το έγγραφο εκφράζουν το συγγραφέα και δεν πρέπει να ερμηνευθεί ότι αντιπροσωπεύουν τις επίσημες θέσεις του Εθνικού Μετσόβιου Πολυτεχνείου.

ΔΙΔΑΚΤΟΡΙΚΗ ΔΙΑΤΡΙΒΗ

Μελέτη - Ανάπτυξη και Αξιολόγηση Ολοκληρωμένου Συστήματος Ψηφιακής Ανάλυσης Ενδοσκοπικής Εικόνας Μακροβιοψίας για την Υποστήριξη διάγνωσης γυναικολογικού Καρκίνου

ΜΑΡΙΟΣ Σ. ΝΕΟΦΥΤΟΥ

ΔΙΠΛ. ΗΛΕΚΤΡΟΛΟΓΟΣ ΜΗΧΑΝΙΚΟΣ Ε.Μ.Π.

ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΤΗΣ: ΤΡΙΜΕΛΗΣ ΣΥΜΒΟΥΛΕΥΤΙΚΗ ΕΠΙΤΡΟΠΗ: Δ. ΚΟΥΤΣΟΥΡΗΣ Δ. ΚΟΥΤΣΟΥΡΗΣ Π. ΜΠΟΥΡΚΑΣ Κ. ΝΙΚΗΤΑ

ΕΠΤΑΜΕΛΗΣ ΕΞΕΤΑΣΤΙΚΗ ΕΠΙΤΡΟΠΗ ΤΗΣ ΔΙΑΤΡΙΒΗΣ

Δ. Δ. ΚΟΥΤΣΟΥΡΗΣ	Π. ΜΠΟΥΡΚΑΣ	K. NIKHTA
ΚΑΘΗΓΗΤΗΣ Ε.Μ.Π.	ΚΑΘΗΓΗΤΗΣ Ε.Μ.Π.	ΚΑΘΗΓΗΤΡΙΑ Ε.Μ.Π.

Ν. ΟΥΖΟΥΝΟΓΛΟΥ Α. ΣΤΑΦΥΛΟΠΑΤΗΣ Π. ΤΣΑΝΑΚΑΣ Μ. ΖΕΡΒΑΚΗΣ ΚΑΘΗΓΗΤΗΣ Ε.Μ.Π. ΚΑΘΗΓΗΤΗΣ Ε.Μ.Π. ΚΑΘΗΓΗΤΗΣ Ε.Μ.Π. ΚΑΘΗΓΗΤΗΣ ΠΟΛΥΤ. ΚΡΗΤΗΣ

Αθήνα 2007

Στους γονείς μου

ΕΥΧΑΡΙΣΤΙΕΣ

Η παρούσα διατριβή εκπονήθηκε στο Εργαστήριο Βιοϊατρικής Τεχνολογίας του Τμήματος Ηλεκτρολόγων Μηχανικών και Μηχανικών Η/Υ του Εθνικού Μετσόβιου Πολυτεχνείου, και στο εργαστήριο Ιατρικής Πληροφορικής του τμήματος Πληροφορικής του Πανεπιστημίου Κύπρου. Με την εργασία αυτή ολοκληρώνεται το στάδιο των μεταπτυχιακών μου σπουδών στο Εθνικό Μετσόβιο Πολυτεχνείο.

Κρίνω λοιπόν σκόπιμο να ευχαριστήσω τον επιβλέποντα Καθηγητή Ε.Μ.Π., Δημήτρη Κουτσούρη για την καίρια συμβολή του στην απόφασή μου να εκπονήσω διδακτορική διατριβή στο Ε.Μ.Π. και ειδικότερα στο χώρο της Βιοϊατρικής Τεχνολογίας, καθώς επίσης και για τη διαρκή υποστήριξη και την πολύπλευρη μέριμνά του για την ολοκλήρωση της διατριβής.

Ευχαριστώ επίσης τον Κωνσταντίνο Παττίχη, Αναπληρωτή Καθηγητή στο Τμήμα Πληροφορικής του Πανεπιστημίου Κύπρου, και το Μάριο Παττίχη, Επίκουρο Καθηγητή στο Τμήμα Ηλεκτρολόγων Μηχανικών και Πληροφορικής του Πανεπιστημίου του Νέου Μεξικού της Αμερικής, για την ολική συμβολή τους στην επιλογή και οριοθέτηση του θέματος και την πολύτιμη καθοδήγηση και βοήθεια που μου παρείχαν καθ' όλη τη διάρκεια εκπόνησης της διατριβής μου.

Περαιτέρω θα ήθελα να ευχαριστήσω το Δρ. Βασίλειο Τάνο, ειδικό μαιευτήρα γυναικολόγο-μαιευτήρα, για την άψογη συνεργασία που είχαμε και για την αφιέρωση πολύτιμου για αυτόν χρόνου για να με καθοδηγήσει από ιατρικής πλευράς στα πλαίσια της διατριβής μου.

Θερμές ευχαριστίες οφείλω επίσης στους Καθηγητές Ε.Μ.Π., Περικλή Μπούρκα και Κωνσταντίνα Νικήτα, για τη βοήθεια που μου πρόσφεραν σε ό,τι χρειάστηκα καθώς και για τη συμμετοχή τους στην Τριμελή Συμβουλευτική Επιτροπή της διατριβής μου.

Θα ήθελα επίσης να ευχαριστήσω θερμά τους Καθηγητές του Ε.Μ.Π., Ανδρέα Σταφυλοπάτη, τον Παναγιώτη Τσανάκα, το Νικόλαο Ουζούνογλου και το Μιχάλη Ζερβάκη του Πολυτεχνείου Κρήτης, για τη συμμετοχή τους στην Επταμελή Συμβουλευτική Επιτροπή της διατριβής μου.

Το σύστημα υλοποιήθηκε στα πλαίσια του Κυπριακού ερευνητικού προγράμματος "ΙΠΠΟΚΡΑΤΗΣ" και ήταν υπό την εποπτεία του Ιδρύματος Προώθησης Έρευνας (www.research.org.cy).

Επιπρόσθετα θα ήθελα να ευχαριστήσω το Δρ. Κυριάκου Ευθύβουλο για τη βοήθειά του κατά τη διάρκεια της εκπόνησης της διατριβής μου καθώς και όλους τους συναδέλφους

και μέλη του εργαστηρίου Βιοϊατρικής Τεχνολογίας Ε.Μ.Π. για τη συνεργασία και τη συνεχή τους υποστήριξη και συμπαράσταση.

Τέλος, θέλω να εκφράσω την ευγνωμοσύνη μου στους γονείς μου για την απεριόριστη αγάπη τους, τη συνεχή ενθάρρυνση και κατανόηση που έδειξαν καθ' όλη την πορεία των σπουδών μου.

Αθήνα 2007

ΠΕΡΙΛΗΨΗ

Η έρευνα αυτή έχει ως σκοπό την ανάπτυξη και αξιολόγηση ενός ολοκληρωμένου συστήματος υποστήριξης διάγνωσης καρκίνου κατά τη διάρκεια ενδοσκοπικής επέμβασης. Με την ανάπτυξη της τεχνολογίας η λαπαροσκοπική / υστεροσκοπική μέθοδος έγινε πολύ δημοφιλής λόγω της ελάχιστης επέμβασης και επιπλοκών που δημιουργεί. Ο γιατρός καθοδηγεί τη λαπαροσκοπική κάμερα στο υπό μελέτη όργανο και παρατηρεί άμεσα τις περιοχές ενδιαφέροντος για γυναικολογικό καρκίνο. Το σύστημα επεξεργάζεται τις ενδοσκοπικές εικόνες και δίδει στο γιατρό ποσοτικά και γραφικά δεδομένα για την καλύτερη διάγνωση της περιοχής ενδιαφέροντος. Από έρευνα στη βιβλιογραφία δεν βρήκαμε να υπάρχει καμμία σχετική μελέτη που να αφορά την ποσοτική ανάλυση εικόνων για γυναικολογικό καρκίνο, κάνοντας έτσι την έρευνά μας πρωτοποριακή. Οι σχετικές μελέτες που ανακαλύψαμε αφορούσαν περιστατικά κολονοσκόπησης και αναγνώρισης όγκων στο παχύ έντερο με ικανοποιητική επιτυχία.

Η δομή της έρευνάς μας αποτελείται από 4 βασικές διαδικασίες. Η πρώτη διαδικασία αφορά τη δημιουργία μιας βάσης δεδομένων που περιέχει εικόνες και βίντεο από περιπτώσεις γυναικολογικού καρκίνου. Έχουμε καταχωρήσει 416 περιπτώσεις καρκίνου του ενδομητρίου από ένα σύνολο 40 ασθενών. Τα περιστατικά αυτά έχουν ταξινομηθεί βάσει της εμπειρίας του γιατρού και της ιστοπαθολογικής εξέτασης.

Η δεύτερη διαδικασία περιλαμβάνει τη δημιουργία ενός ολοκληρωμένου συστήματος επεξεργασίας και ανάλυσης λαπαροσκοπικών / υστεροσκοπικών εικόνων για ανίχνευση ύποπτων περιοχών γυναικολογικού καρκίνου. Αυτή η διαδικασία περιλαμβάνει τη λήψη και αποθήκευση λαπαροσκοπικών / υστεροσκοπικών εικόνων. Η αναλογική έξοδος της ιατρικής κάμερας μετατρέπεται σε ψηφιακή (720x576 pixels x24 bits) και το βίντεο αποθηκεύεται στον υπολογιστή. Ο γυναικολόγος επιλέγει εικόνες από το βίντεο που παρουσιάζουν ύποπτες περιοχές καρκίνου. Ακολούθως εφαρμόζεται ο αλγόριθμος γάμμα για τη βαθμονόμηση των εικόνων έτσι ώστε να υπάρχει η δυνατότητα επεξεργασίας και ανάλυσης των εικόνων από διαφορετικές λαπαροσκοπικές κάμερες. Επιπλέον μελετήθηκε η ανάλυση εικόνων που ελήφθησαν κάτω από διαφορετικές συνθήκες λήψης, αποστάσεις και γωνίες. Η στατιστική ανάλυση του εν λόγω πειράματος έδειξε ότι για μικρές αποστάσεις και γωνίες λήψης δεν υπάρχει σημαντική στατιστική διαφορά. Ακολούθως χρησιμοποιήσαμε πολυδιακριτή ανάλυση και αλγόριθμους ανάλυσης υφής για τον καρκίνο του ενδομητρίου. Σε αρκετά χαρακτηριστικά υπήρχε σημαντική διαφορά μεταξύ παθολογικών και φυσιολογικών περιοχών, όπως για παράδειγμα το χαρακτηριστικό variance, του μέσου όρου, της ενέργειας

κτλ. Ο μέσος όρος των χαρακτηριστικών υφής παρουσίασε μεγάλη απόκλιση για τις δύο κατηγορίες εικόνων. Να σημειώσουμε εδώ ότι στην πολυδιακριτή ανάλυση μετά από την ανάλυση 4X4 μέχρι 10X10 είχαμε αλλοίωση των εικόνων μας με αποτέλεσμα να τις απορρίπτουμε.

Η τρίτη βασική διαδικασία αφορά την υλοποίηση συστήματος κατηγοριοποίησης των περιοχών ενδιαφέροντος, σε παθολογικές και φυσιολογικές, βασισμένο σε νευρωνικά δίκτυα, χρησιμοποιώντας τα χαρακτηριστικά υφής. Τα αποτελέσματα έδειξαν ότι στην καλύτερη περίπτωση το 74% των φυσιολογικών περιοχών και το 83% των παθολογικών περιοχών αναγνωρίστηκαν από το σύστημα με μέγιστο ποσοστό επιτυχίας (CC%) 79%.

Η τελευταία διαδικασία αφορά την εξαγωγή αποτελεσμάτων από την έρευνά μας καθώς και την αξιολόγηση και αξιοποίηση αυτής. Σύμφωνα με τους χρήστες του συστήματος τα αποτελέσματα είναι πολύ ενθαρρυντικά για την εφαρμογή του. Παράλληλα η παρουσίαση και η επίδειξη του συστήματος σε ιατρικά συνέδρια εξέλαβε πολύ καλά σχόλια. Έχουμε δεχτεί την πρόταση συνεργασίας από την Ευρωπαϊκή Κοινότητα γυναικολογικής ενδοσκόπησης καθώς και από την Ευρωπαϊκή Ακαδημία γυναικολογικού καρκίνου για τη δημιουργία ενός Ευρωπαϊκού δικτύου επεξεργασίας και ανάλυσης λαπαροσκοπικών και υστεροσκοπικών εικόνων για την αντιμετώπιση του γυναικολογικού καρκίνου.

Λέξεις / κλειδιά: ενδοσκόπηση, υστεροσκόπηση, λαπαροσκόπηση, γυναικολογικός καρκίνος, χαρακτηριστικά υφής, στατιστική ανάλυση, νευρωνικά δίκτυα, αλγόριθμος γάμμα, παλέτα βαθμονόμησης.

ABSTRACT

Cancer is the second cause of death in the USA with over 557,271 deaths in 2002^1 based on data from the National Center for Health Statistics. The gynaecological cancer is among the second cause of death and according to the American Cancer Society in 2005 will be diagnosed over than 40,880 females with cancer. Also, according to the same source the deaths from uterus cancer will increased upon 7,310 in 2005^2 in the USA.

Laparoscopy has become the preferred surgical technique for several medical cases such as gynaecological cancer because it is minimally invasive. The physician guides the camera inside the human body in order to investigate suspicious areas of cancer. In difficult cases of gynaecological cancer the physician can't classify the suspicious area and the need of histopathological examination is necessary. The laparoscopy/hysteroscopy examination provides direct information of the status from the female reproductive organs. Especially, hysteroscopy is a routine examination for the endometrium, fallopian tubes, uterus and the body of the uterus. The main objective of this study was to develop a Computer Aided Diagnosis system (CAD) to support the physician in difficult cases of gynaecological cancer for the identification of suspicious areas of cancer. Sometimes the identification of Regions of Interest (ROIs) for gynaecological cancer could be a difficult process. The need of a CAD system could be a useful tool in the hands of the physician. To the best of our knowledge no similar study was performed for laparoscopy imaging. Similar work was carried out only for colonoscopy images for the detection of tumours in colonoscopic video where the performance in the detection of abnormal regions corresponding to adenomatous polyps was high.

Our research consists of 4 main procedures. In first procedure we developed a database for gynaecological cancer for laparoscopy/hysteroscopy cases. We collected 416 images of endometrium from a total of 40 subjects. The second main procedure involves the development of a complete system of laparoscopy/hysteroscopy image analysis. This system consists of the following modules: (i) Capturing of video: The output signal of the laparoscopy camera (PAL 475 horizontal lines) was digitized using a frame grabber and was saved in a personal computer. The video was saved with a resolution of 720x576 pixels x24 bits (AVI format). The physicians freeze the images (720x576 pixels x24 bits Tiff format) and

¹ Source: US Mortality Public Use Data Tape 2002, National Center for Health Statistics, Centers for Disease Control and Prevention, 2004.

² American Cancer Society

the ROIs were segmented manually. (ii) Gamma correction algorithm was applied for the calibration of the medical camera. The meaning of the gamma correction was to standardise the capturing protocol facilitating the quantitative analysis. Regions of Interest (ROIs) were segmented manually by the physician. (iii) Textures features based on statistical, Spatial Gray Level Dependence Matrices (SGLDM), Statistical Features (SF) and Gray Level Difference Statistics (GLDS) and color histograms of ROIs of suspicious areas of cancer were computed. Experiments with different viewing conditions were investigated. Results showed that in small distances and in near angles there is no statistical difference between the ROI texture features.

In the cases of endometrium, results shown that most of the features have statistical difference between (Wilcoxon Rank Sum test, a=0.005) normal and abnormal ROIs. Features like the mean, entropy have significant statistical difference. (iv) Multiscale analysis was applied in all cases beginning from 1x1 until 10x10 scales. The images were compared statistically in all scales. At scales above 4x4, images were destroyed.

In the third procedure neural network algorithms were applied for the classification of normal and abnormal ROIs. Results showed that suspicious areas can be identified in normal and abnormal ROIs using the system. In a hyperplasia case the percentage of correct classifications was 74% in normal ROIs and 83% in abnormal ROIs respectively, with maximum correct classification percentage 79%.

Finally the last procedure, number four, involves the results of our research and the evaluation of the system with the marketing approach. The results were very encouraging in forwards the development of a commercial system CAD system for gynaecological cancer. Our system was proposed to be used by the European Society for Gynaecological Endoscopy (ESGE) and the European Academy of Gynaecological Cancer (EAGC) for the analysis of endoscopy images.

Also, the results of the research work was published in 11 international conferences and 2 in international scientific journal but also in the near future, 2 more papers will be submitted in conferences and in scientific journals.

Keywords: endoscopy, laparoscopy, hysteroscopy, gynaecological cancer, texture features, statistical analysis, neural networks, gamma algorithm, calibration palette.

Περιεχόμενα

ПЕР	PIEXOME	ENA	
прс	ΟΛΟΓΟΣ		
<u>ке</u> Гер	<u>ΦΑΛΑΙ(</u> NNHTIK	<u>Ο 1</u> : ΓΥΝΑΙΚΟΛΟΓΙΚΟΣ ΚΑΡΚΙΝΟΣ ΚΑΙ ΚΟΥ ΣΥΣΤΗΜΑΤΟΣ	ANATOMIA
1.1	ΕI	ΣΑΓΩΓΗ	31
1.2	AN	ΝΑΤΟΜΙΑ ΤΟΥ ΓΕΝΝΗΤΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΤΗΣ ΓΥΝ	ΑΙΚΑΣ31
	1.2.1	ΕΙΣΑΓΩΓΗ	
1.3	ΈΣ	ΕΩ ΓΕΝΝΗΤΙΚΑ ΌΡΓΑΝΑ ΤΗΣ ΓΥΝΑΙΚΑΣ	
	131	ООӨНКН	33
	1 3 2	МНТРА	39
	1 3 3	ΜΕΡΗ – ΣΧΕΣΕΙΣ	42
	1.3.4	ΣΤΗΡΙΞΗ	
1.4	ГҮ	ΑΝΑΙΚΟΛΟΓΙΚΟΣ ΚΑΡΚΙΝΟΣ	49
	141	ΕΙΣΑΓΩΓΗ	49
	1.4.2	ΚΑΡΚΙΝΟΣ ΩΟΘΗΚΗΣ	
	1.4.3	ΚΑΡΚΙΝΟΣ ΤΡΑΧΗΛΟΥ ΤΗΣ ΜΗΤΡΑΣ	
	1.4.4	ΚΑΡΚΙΝΟΣ ΕΝΔΟΜΗΤΡΙΟΥ	
	1.4.5	ΚΑΡΚΙΝΟΣ ΑΙΔΟΙΟΥ (ΕΞΩΤΕΡΙΚΑ ΓΕΝΝΗΤΙΚΑ ΌΡΓΑΝΑ)	
	1.4.6	ΚΑΡΚΙΝΟΣ ΤΗΣ ΣΑΛΠΙΓΓΑΣ	55
1.5	ΣΥ	ΥΜΠΕΡΑΣΜΑΤΑ	55
1.6	AN	ΝΑΦΟΡΕΣ	56
<u>KE</u>	ΦΑΛΑΙ	<u>Ο 2</u> : ΕΝΔΟΣΚΟΠΙΚΗ ΜΕΘΟΔΟΣ	
2.1	ΕI	ΣΑΓΩΓΗ	57
2.2	EN	νδοσκοπική μεθοδος	57
	2.2.1	ΓΕΝΙΚΑ	57
23	0	ргана кај мнуанимата	60
2.3	Ur		
	2.3.1	ΜΗΧΑΝΗΜΑΤΑ ΠΝΕΥΝΟΠΕΡΙΤΟΝΑΙΟΥ	
	2.3.2	ΕΝΔΟΣΚΟΠΙΑ	
	2.3.3	ΒΕΛΟΝΕΣ	
	2.3.4	ΦΩΤΕΙΝΗ ΙΙΗΓΗ	

	2.3.5	ΑΠΕΙΚΟΝΙΣΤΙΚΟΣ ΕΞΟΠΛΙΣΜΟΣ	61
2.4	ΛΑ	ПАРОΣКОПНΣН	
	2.4.1	ΠΕΡΙΓΡΑΦΗ ΤΗΣ ΛΑΠΑΡΟΣΚΟΠΙΚΗΣ ΕΞΕΤΑΣΗΣ	63
2.5	YΣ	ΓΕΡΟΣΚΟΠΗΣΗ	64
2.6	OP	ГАЛА КАІ МНХАЛНМАТА	68
	2.6.1	ΗΛΕΚΤΡΙΚΟ ΜΗΧΑΝΗΜΑ ΑΕΡΙΩΝ ΗΥSTEROMAT	68
	2.6.2	ΕΝΔΟΣΚΟΠΙΑ (ΥΣΤΕΡΟΣΚΟΠΙΑ)	69
	2.6.3	ΕΡΓΑΛΕΙΑ ΜΙΚΡΟΧΕΙΡΟΥΡΓΙΚΗΣ	70
	2.6.4	000NH	70
	2.6.5	ΚΟΛΠΟΣΚΟΠΗΣΗ / ΥΣΤΕΡΟΣΚΟΠΗΣΗ ΙΑΤΡΕΙΟΥ	71
2.7	ΣY	ΜΠΕΡΑΣΜΑΤΑ	72
2.8	AN	ΑΦΟΡΕΣ	73
<u>KE</u>	ΦΑΛΑΙΟ	3: ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΚΑΙ ΑΠΑΙΤΗΣΕΙΣ ΣΥΣΤΗΜΑΤΟΣ	
3.1	ΕΙΣ	ΞΑΓΩΓΗ	75
3.2	АП	ΑΙΤΗΣΕΙΣ ΤΟΥ ΣΥΣΤΗΜΑΤΟΣ ΚΑΙ ΑΡΧΙΤΕΚΤΟΝΙΚΗ	тоу
ΣΥΣ	εтнмат	ΤΟΣ	75
	3.2.1	ΕΙΣΑΓΩΓΗ	
	3.2.2	ΠΕΡΙΓΡΑΦΗ ΧΡΗΣΤΗ	
3.3	АП	ΑΙΤΗΣΕΙΣ ΧΡΗΣΤΗ	76
	3.3.1	ΑΝΑΓΚΕΣ ΧΡΗΣΤΗ	
	3.3.2	ΧΩΡΟΣ ΧΕΙΡΟΥΡΓΕΙΟΥ	
	3.3.3	ΧΩΡΟΣ ΣΤΑΘΜΟΥ Β' ΥΠΟΣΤΗΡΙΞΗΣ ΔΙΑΓΝΩΣΗΣ	
	3.3.4	ΑΠΑΙΤΗΣΕΙΣ ΓΙΑ ΤΟ ΣΥΣΤΗΜΑ ΣΤΟ ΣΤΑΘΜΟ Α (ΧΕΙΡΟΥΡΓΕΙΟ)	
	3.3.5	ΑΠΑΙΤΗΣΕΙΣ ΓΙΑ ΤΗ ΣΥΜΒΟΥΛΕΥΤΙΚΗ ΜΟΝΑΔΑ ΤΟΥ ΣΤΑΘΜΟΥ Β	79
3.4	AP	хітектолікн ΣуΣтнматоΣ	79
	3.4.1	ΔΙΚΤΥΟ ΤΗΛΕΣΥΝΕΡΓΑΣΙΑΣ	81
3.5	BAZ	ΣΗ ΔΕΔΟΜΕΝΩΝ	82
	3.5.1	ΑΝΑΠΤΥΞΗ ΤΗΣ ΒΑΣΗΣ ΔΕΔΟΜΕΝΩΝ	83
	3.5.2	ΕΙΣΟΔΟΣ ΣΤΗ ΒΑΣΗ ΔΕΔΟΜΕΝΩΝ	83
	3.5.3	ΕΙΣΟΔΟΣ ΝΕΟΥ ΑΣΘΕΝΗ	84
	3.5.4	ΚΕΝΤΡΙΚΗ ΣΕΛΙΔΑ ΤΟΥ ΑΣΘΕΝΗ	86
3.6	ΣΥ	ΜΠΕΡΑΣΜΑΤΑ	93

	3.6.	1	ΑΠΑΙΤΗΣΕΙΣ ΣΥΣΤΗΜΑΤΟΣ	93
	3.6.2	2	ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΣΥΣΤΗΜΑΤΟΣ	93
3.7		ANA	ΔΦΟΡΕΣ	95
<u>KE</u>	ΦΑΛ	AIO	<u>4</u> : ΜΕΘΟΔΟΛΟΓΙΑ	
4.1		ΕΙΣ	ΑΓΩΓΗ	97
4.2		ЕПЕ	ΞΕΡΓΑΣΙΑ ΕΙΚΟΝΩΝ	97
	4.2.	1	ΚΑΤΑΓΡΑΦΗ ΤΟΥ ΕΝΔΟΣΚΟΠΙΚΟΥ ΒΙΝΤΕΟ	97
	4.2.2	2	ΚΑΤΑΓΡΑΦΗ ΕΙΚΟΝΩΝ ΠΑΛΕΤΑΣ	99
4.3		ΑΛΙ	ОРІΘΜΟΣ ГАММА	. 100
	4.3.	1	ΜΑΘΗΜΑΤΙΚΟ ΜΟΝΤΕΛΟ ΑΛΓΟΡΙΘΜΟΥ ΓΑΜΜΑ	100
4.4		ПРС	ΟΤΕΙΝΟΜΕΝΟ ΙΑΤΡΙΚΟ ΠΡΩΤΟΚΟΛΛΟ	. 101
4.5		KAT	ΓΑΓΡΑΦΗ ΕΙΚΟΝΩΝ ΑΠΟ ΔΥΟ ΔΙΑΦΟΡΕΤΙΚΕΣ ΑΠΟΣΤΑΣ	ΣΕΙΣ
ΣΤΟ	OXEY	YΣH	Σ	. 103
4.5		KAT	ΓΑΓΡΑΦΗ ΕΙΚΟΝΩΝ ΜΕ ΔΙΑΦΟΡΕΤΙΚΕΣ ΣΥΝΘΗ	ΚΕΣ
ΣΤΟ	OXEY	ΥΣΗΣ	Σ ΓΙΑ ΔΥΟ ΓΩΝΙΕΣ	. 105
4.6		KAT	ΓΑΓΡΑΦΗ ΠΡΑΓΜΑΤΙΚΩΝ ΕΙΚΟΝΩΝ ΕΝΔΟΜΗΤΡΙΟΥ	. 106
4.7		ME	ΓΑΣΧΗΜΑΤΙΣΜΟΣ ΧΡΩΜΑΤΟΣ	. 110
4.8		XEI	ΡΟΚΙΝΗΤΗ ΚΑΤΑΤΜΗΣΗ ΠΕΡΙΟΧΩΝ ΕΝΔΙΑΦΕΡΟΝΤΟΣ	. 112
4.9		ΣΥΣ	ΣΤΗΜΑ ΔΙΑΧΩΡΙΣΜΟΥ ROIS, CAD SYSTEM	. 113
4.1	0	ΣΧΟ	ΟΛΙΑΣΜΟΣ	. 114
4.1	1	BIB	ΛΙΟΓΡΑΦΙΑ	. 116
<u>KE</u>	ΦΑΛ	AIO	<u>5</u> : ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΥΦΗΣ - ΠΟΛΥΔΙΑΚΡΙΤΗ ΑΝΑΛΥΣΗ	
5.1		ΕΙΣ	ΑΓΩΓΗ	. 119
5.2		ГЕМ	ΊΚΑ ΣΧΟΛΙΑ ΓΙΑ ΤΑ ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΥΦΗΣ	. 120
5.3		FIR	ST ORDER GRAY LEVEL PARAMETERS	. 121
5.4		XAF	ΡΑΚΤΗΡΙΣΤΙΚΑ ΑΠΟ RUN-LENGTH ΜΗΤΡΕΣ ΓΚΡΙ ΤΟΝΩΝ	. 122
5.5		ΕΙΣ	ΑΓΩΓΗ, ΑΛΓΟΡΙΘΜΟΣ SGLDM	. 125
	5.5.	1	ΑΛΓΟΡΙΘΜΟΣ SPATIAL GRAY LEVEL DEPENDENCE MATRICES (SGLDM)	125
	5.5.2	2	ΨΕΥΔΟΚΩΔΙΚΑΣ ΑΛΓΟΡΙΘΜΟΥ SGLDM	128
	5.5.3	3	ΣΥΜΠΕΡΑΣΜΑΤΑ ΑΠΟ ΤΟΝ ΑΛΓΟΡΙΘΜΟ SGLDM	130

5.6		ME	ГРА УПС	ολογισμού Χαραι	ΚΤΗΡΙΣΤ	ικων γφη	Σ130
5.7		ΑΛΙ	TOPIOM	DΣ GRAY LEVEL D	IFFEREN	CE STATIS	STICS (GLDS).134
	5.7.	1	ΨΕΥΔΟΚΩ	ΔΙΚΑΣ ΥΠΟΛΟΓΙΣΜΟΥ	ΔΙΑΝΥΣΜΑ	ΓΟΣ P_{Δ}	
	5.7.	2	ΣΥΜΠΕΡΑ	ΣΜΑΤΑ ΑΠΟ ΤΟΝ ΑΛΓΟ	PIØMO GLE)S	
5.8		ГЕМ	ΝΙΚΕΣ	ΠΛΗΡΟΦΟΡΙΕΣ	ГІА	ΤΟΥΣ	ΑΛΓΟΡΙΘΜΟΥΣ
XA	PAK	THP	ΙΣΤΙΚΩΝ	ΥΦΗΣ		•••••	
	5.8.	1	ΜΕΘΟΔΟΙ	ΑΝΑΛΥΣΗΣ ΕΙΚΟΝΑΣ			
	5.8.	2	XAPAKTH	ΡΙΣΤΙΚΑ ΙΣΤΟΓΡΑΜΜΑΤ	ΌΣ ΕΙΚΟΝΑ	Σ	
	5.8.	3	ХАРАКТН	ΡΙΣΤΙΚΑ ΑΠΟ CO-OCCU	RRENCE ME	ITPA EIKONA	Σ138
5.9		ΑΛΙ	COPIOM	DΣ FOURIER POWE	R SPECT	RUM (FPS))142
	5.9.	1	ΨΕΥΔΟΚΩ	ΔΙΚΑΣ ΑΛΓΟΡΙΘΜΟΥ FI	PS:		
	5.9.	2	ΣΥΜΠΕΡΑ	ΣΜΑΤΑ ΑΠΟ ΤΟΝ ΑΛΓΟ	PIOMO FPS:		
5.1	0	ΑΛΙ	TOPIOM	DΣ LAWS TEXTURE	E ENERGY	Y MEASUR	ES (TEM) 144
	5.10).1	ΣΥΜΠΕΡΑ	ΣΜΑΤΑ ΑΠΟ ΤΟΝ ΑΛΓΟ	ΡΙΘΜΟ ΤΕΜ	1:	
	5.10	0.2	ΨΕΥΔΟΚΩ	ΔΙΚΑΣ ΑΛΓΟΡΙΘΜΟΥ ΤΙ	E M		
5.1	1	ΑΛΙ	OPIOMO	DΣ FRACTAL DIME	NSION T	EXTURE A	NALYSIS (FDTA)
		••••	••••••			•••••	
	5.11	l.1	ΟΡΙΣΜΟΣ	TOY MULTIPLE RESOLU	TION FEAT	URE EXTRAC	ГІОN 148
	5.11	1.2	ΟΡΙΣΜΟΣ	TOY FRACTIONAL BROW	WNIAN MOT	TON MODEL ((FBM) 149
	5.11	1.3	ΟΡΙΣΜΟΣ	MULTIRESOLUTION FRA	ACTAL FEAT	TURE VECTOR	R (MF) 150
	5.11	1.4	ΨΕΥΔΟΚΩ	ΔΙΚΑΣ ΑΛΓΟΡΙΘΜΟΥ FI	DTA		
5.12	2	ΒΑΣ	εικές εν	ΝΝΟΙΕΣ ΣΤΑΤΙΣΤΙΙ	ΚΗΣ		
	5.12	2.1	KANONIK	H KATANOMH			
	5.12	2.2	ΣΤΑΤΙΣΤΙΙ	ΚΗ ΔΟΚΙΜΑΣΙΑ			
	5.12	2.3	STUDENT	'S T-TEST			
	5.12	2.4	WILCOXO	N RANK SUM TEST			
5.13	3	ПО	ΑΥΔΙΑΚΙ	ΡΙΤΗ ΑΝΑΛΥΣΗ (Μ	ULTIRES	OLUTION	ANALYSIS) 155
5.14	4	ΣΧΟ	ΟΛΙΑΣΜΟ	ΟΣ	•••••		
5.1	5	ANA	ΑΦΟΡΕΣ				
<u>KE</u>	ΦΑΛ	AIO	<u>6</u> : NEYP	ΩΝΙΚΑ ΔΙΚΤΥΑ/ΑΛ	ГОРІӨМ	OI TAEINO	ΟΜΗΣΗΣ
6.1		ΕΙΣ	ΑΓΩΓΗ.				
6.2		NEY	ΥΡΩΝΙΚΑ	АІКТҮА		•••••	

	6.2.1	ΣΥΣΤΗΜΑΤΑ ΚΑΤΗΓΟΡΙΟΠΟΙΗΣΗΣ (CLASSIFICATION SYSTEMS)	163
	6.2.2	ΠΡΟΕΤΟΙΜΑΣΙΑ ΤΩΝ ΔΕΔΟΜΕΝΩΝ	164
	6.2.	3 ΚΑΘΑΡΙΣΜΟΣ ΤΩΝ ΔΕΔΟΜΕΝΩΝ	164
	6.2.	4 ΕΠΙΛΟΓΗ ΤΩΝ ΧΑΡΑΚΤΗΡΙΣΤΙΚΩΝ	164
6.3	A	NAAYΣH PCA, PRINCIPAL COMPONETS ANALYSIS	164
	6.3.1	ΜΕΤΑΤΡΟΠΗ ΤΩΝ ΔΕΔΟΜΕΝΩΝ	165
	6.3.2	ΚΡΙΤΗΡΙΑ ΕΠΙΛΟΓΗΣ ΜΟΝΤΕΛΟΥ ΚΑΤΗΓΟΡΙΟΠΟΙΗΣΗΣ	166
6.4	Μ	ΙΗΧΑΝΕΣ ΔΙΑΝΥΣΜΑΤΩΝ ΥΠΟΣΤΗΡΙΞΗΣ (SUPPORT VECT	OR
MA	CHINE	ES)	167
	6.4.1	ΕΙΣΑΓΩΓΗ	167
	6.4.2	ΘΕΩΡΙΑ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗΣ	167
	6.4.3	ΒΕΛΤΙΣΤΑ ΥΠΕΡΕΠΙΠΕΔΑ	169
	6.4.4	ΔΙΑΣΤΑΣΗ ΧΑΡΑΚΤΗΡΙΣΤΙΚΩΝ (FEATURE SPACE)	171
	6.4.5	ΣΥΝΑΡΤΗΣΗ ΠΥΡΗΝΑ	171
	6.4.6	ΑΛΓΟΡΙΘΜΟΙ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗΣ	172
6.5	Σ	ΕΙΡΙΑΚΗ ΕΛΑΧΙΣΤΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ (SEQUENTIAL MINIM	1AL
OP	FIMIZ	ATION (SMO))	173
	6.5.1	Ο ΑΛΓΟΡΙΘΜΟΣ ΚΑΤΗΓΟΡΙΟΠΟΙΗΣΗΣ SVM	177
6.6	Δ	ΥΑΔΙΚΗ ΚΑΤΗΓΟΡΙΟΠΟΙΗΣΗ	180
	6.6.1	C-SUPPORT VECTOR CLASSIFICATION	180
	6.6.2	N-SUPPORT VECTOR CLASSIFICATION	181
6.7	Μ	IULTI-CLASS ΚΑΤΗΓΟΡΙΟΠΟΙΗΣΗ	182
	6.7.1	ΈΝΑΣ ΕΝΑΝΤΙΟΝ ΟΛΩΝ (ONE-AGAINST-ALL)	182
6.8	Ε	NAΣ ENANTION ENOΣ (ONE-AGAINST-ONE)	183
6.9	P	ROBABILISTIC NEURAL NETWORK (PNN)	183
	6.9.1	PROBABILISTIC NEURAL NETWORK	185
6.1	0 Σ	ΧΟΛΙΑΣΜΟΣ	186
6.1	1 A	ΝΑΦΟΡΕΣ	187
<u>KE</u>	ΦΑΛΑΙ	<u>ΙΟ 7</u> : ΑΠΟΤΕΛΕΣΜΑΤΑ	
7.1	п	ΈΡΙΓΡΑΦΗ ΑΠΟΤΕΛΕΣΜΑΤΩΝ	189
7.2	А	ΠΟΤΕΛΕΣΜΑΤΑ ΤΟΥ ΑΛΓΟΡΙΘΜΟΥ ΓΑΜΜΑ	190

ΥΠΟΛΟΓΙΣΜΟΣ ΣΥΝΤΕΛΕΣΤΩΝ ΓΑΜΜΑ ΓΙΑ ΤΗΝ **ΚΑΜΕΡΑ** 7.3 7.3.1 7.3.1.4 ΠΕΙΡΑΜΑ 2, ΝΩΠΟ ΚΟΤΟΠΟΥΛΟ, ΜΕ ΑΠΟΣΤΑΣΕΙΣ ΣΤΟΧΕΥΣΗΣ 3 CM ΚΑΙ 8 CM .. 201 7.3.1.4 ΠΕΙΡΑΜΑ 3, ΝΩΠΟ ΚΟΤΟΠΟΥΛΟ, ΜΕ ΑΠΟΣΤΑΣΕΙΣ ΣΤΟΧΕΥΣΗΣ 2,7 ΚΑΙ 4 CM 205 7.4 ΚΑΤΑΓΡΑΦΗ ΕΙΚΟΝΩΝ АПО ΔΙΑΦΟΡΕΤΙΚΕΣ ΓΩΝΙΕΣ 7.4.1 7.4.2 ΑΝΑΛΥΣΗ GRAY SCALE ΕΙΚΟΝΩΝ ΕΝΔΟΜΗΤΡΙΟΥ ΣΕ ΓΥΝΑΙΚΕΣ.. 7.7 7.8 ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΥΦΗΣ ΑΠΟ ΔΙΑΦΟΡΕΤΙΚΑ ΧΡΩΜΑΤΙΚΑ 7.9 AYTOMATH ΤΑΞΙΝΟΜΗΣΗ GRAY SCALE ΠΕΡΙΟΧΩΝ 7.10 ΑΠΟΤΕΛΕΣΜΑΤΑ ΝΕΥΡΩΝΙΚΩΝ ΔΙΚΤΥΩΝ ΑΠΟ ΔΙΑΦΟΡΕΤΙΚΑ ΚΕΦΑΛΑΙΟ 8: ΣΥΖΗΤΗΣΗ 8.1 8.2 ΕΙΚΟΝΩΝ ΑΠΟ ΠΕΙΡΑΜΑΤΙΚΟ ΙΣΤΟ 8.3 ΑΝΑΛΥΣΗ УПО ΔΙΑΦΟΡΕΤΙΚΕΣ ΑΠΟΣΤΑΣΕΙΣ ΣΤΟΧΕΥΣΗΣ. ΚΟΝΤΙΝΟ ΚΑΙ ΜΑΚΡΙΝΟ ΠΛΑΝΟ... 284 8.3.1 8.3.2 8.4 8.5 8.5.1 8.5.2 8.5.3 8.5.4 8.6

8.7	ПРО	ΤΕΙΝΟΜΕΝΟ ΠΡΩΤΟΚΟΛΛΟ ΚΑΝΟΝΙΚΟΠΟΙΗΣΗΣ	293
8.8	ANA	ΦΟΡΕΣ	295
KE	ΦΑΛΑΙΟ 9	9: ΜΕΛΛΟΝΤΙΚΗ ΕΡΕΥΝΑ - ΣΥΜΠΕΡΑΣΜΑΤΑ	
9.1	ΣΥΜ	ΠΕΡΑΣΜΑΤΑ	299
	9.1.1 4	ΔΙΑΦΟΡΕΤΙΚΕΣ ΣΥΝΘΗΚΕΣ ΣΤΟΧΕΥΣΗΣ	299
	9.1.2 I	ΤΟΛΥΔΙΑΚΡΙΤΗ ΑΝΑΛΥΣΗ (MULTISCALE ANALYSIS)	300
	9.1.3 A	ΑΛΓΟΡΙΘΜΟΣ ΚΑΝΟΝΙΚΟΠΟΙΗΣΗΣ / COLOR CORRECTION ALGORITHM	300
	9.1.4 I	ΤΡΑΓΜΑΤΙΚΕΣ ΕΙΚΟΝΕΣ ΕΝΔΟΜΗΤΡΙΟΥ	301
	9.1.5 A	ΑΛΓΟΡΙΘΜΟΙ ΤΑΞΙΝΟΜΗΣΗΣ ΚΑΙ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ	302
9.2	ΜΕΛ	АОЛТІКН ЕРЕУЛА	303
	9.2.1 A	ΑΥΤΟΜΑΤΗ ΑΝΑΛΥΣΗ ΛΑΠΑΡΟΣΚΟΠΙΚΟΥ / ΥΣΤΕΡΟΣΚΟΠΙΚΟΥ ΒΙΝΤΕΟ	303
	9.2.2 A	ΑΥΤΟΜΑΤΗ ΤΜΗΜΑΤΟΠΟΙΗΣΗ ΛΑΠΑΡΟΣΚΟΠΙΚΩΝ / ΥΣΤΕΡΟΣΚΟΠΙΚ	CΩN
	EIKONΩN .		304
	9.2.3 3	3Δ ΜΟΝΤΕΛΟ ΟΡΓΑΝΩΝ ΠΟΥ ΧΡΗΣΙΜΟΠΟΙΟΥΝ ΤΗΝ ΕΝΔΟΣΚΟΠΙΚΗ ΜΕΘΟ	ΟΔΟ
	ΩΣ ΜΕΘΟΔ	Ο ΔΙΑΓΝΩΣΗΣ ΚΑΙ ΘΕΡΑΠΕΙΑΣ	305
	9.2.4 H	ΕΦΑΡΜΟΓΗ ΤΟΥ ΣΥΣΤΗΜΑΤΟΣ ΣΕ ΔΙΑΦΟΡΕΤΙΚΑ ΟΡΓΑΝΑ	307
9.7	ANA	ΦΟΡΕΣ	309
ПАІ	РАРТНМА А		311
ПАІ	РАРТНМА В		317
ПАІ	РАРТНМА Г		323

ΠΕΡΙΕΧΟΜΕΝΑ

Ο καρκίνος των γυναικείων γεννητικών οργάνων περιλαμβάνει τα καρκινώματα της ωοθήκης, του ενδομητρίου, του σώματος της μήτρας, του τραχήλου της μήτρας, του κόλπου και του αιδοίου. Η διάγνωση ειδικά στα αρχικά στάδια της νόσου είναι δύσκολη κάνοντας έτσι τη διαχείριση της ασθενούς δύσκολη και συνάμα προκλητική. Επαναλαμβανόμενες προσπάθειες σε προεγχειρητικό επίπεδο διάγνωσης με τη χρησιμοποίηση απεικονιστικών μεθόδων, π.χ υπερήχων, CT, MRI καθώς επίσης και με τη χρησιμοποίηση προγνωστικών παραγόντων για τον προσδιορισμό γυναικολογικού καρκίνου (tumor marker serology), δεν έχουν βελτιώσει τη διαγνωστική ικανότητα αυτής της ομάδας των καρκίνων. Αυτό έχει ως αποτέλεσμα, ότι στις περισσότερες περιπτώσεις η θεραπεία βασίζεται στη μετεγγειρητική ιστοπαθολογική διάγνωση. Με την ενδοσκοπική μέθοδο η διάγνωση γίνεται άμεσα και παρέχει τη δυνατότητα να παρατηρούμε την ύποπτη περιοχή ενδιαφέροντος και να παίρνουμε δείγμα ιστού για βιοψία εάν χρειάζεται. Η νεαρή ηλικία των ασθενών καθώς και η μη ολοκλήρωση της οικογένειάς τους (τεκνοποίηση) είναι απαγορευτικοί παράγοντες στο να προγωρήσει ένας γυναικολόγος σε εκτεταμένη αφαίρεση όλων ή μέρος των γεννητικών οργάνων σε μια γυναίκα με υποψία για καρκίνο. Η προσθήκη άμεσης μακροβιοψίας, ένα σύστημα όπου θα λαμβάνεται υπόψη ο κίνδυνος εμφάνισης κακοήθειας και η ανάλυση της ύποπτης για καρκίνο εικόνας που βλέπουμε, θα αυξήσει τα αληθώς θετικά και θα μειώσει τα ψευδώς αρνητικά αποτελέσματα της κλινικής εκτίμησης αυξάνοντας τη διαγνωστική ακρίβεια.

Πιο κάτω παρουσιάζουμε όλα τα κεφάλαια της διατριβής αναλυτικά με στόχο την πληρέστερη κατανόηση της έρευνας και των τεχνολογιών που έχουν χρησιμοποιηθεί.

Στο **Κεφάλαιο 1** (Γυναικολογικός καρκίνος) παρουσιάζεται αναλυτικά το πρόβλημα καθώς και οι διαφορετικές περιπτώσεις γυναικολογικού καρκίνου. Επίσης αναλύουμε την ανατομία του γυναικείου αναπαραγωγικού συστήματος με ιδιαίτερη έμφαση στα υπό εξέταση όργανα. Παράλληλα αναφέρουμε στατιστικά στοιχεία που αφορούν το γυναικολογικό καρκίνο και την ανάγκη χρήσης συστημάτων έγκαιρης ανίχνευσής του.

Στο **Κεφάλαιο 2** (Ενδοσκοπική μέθοδος) περιγράφονται οι μέθοδοι ενδοσκοπικής επέμβασης καθώς και τα πλεονεκτήματά τους: μείωση του χρόνου αποθεράπευσης, ελαχιστοποίηση των εξόδων και καλύτερη επάνοδο των ασθενών. Επίσης περιγράφουμε με λεπτομέρειες όλα τα

όργανα και τη διαδικασία εκτέλεσης των αντίστοιχων μεθόδων για την πληρέστερη κατανόηση της ενδοσκοπικής μεθόδου.

Στο **Κεφάλαιο 3** (Αρχιτεκτονική του συστήματος - Απαιτήσεις συστήματος) αναλύουμε τις απαιτήσεις του συστήματος καθώς και όλων των εμπλεκομένων στη χρήση του συστήματος. Ενδεικτικά αναφέρουμε την ανάλυση χρήσης και εφαρμογής του συστήματος με τους εμπλεκόμενους τελικούς χρήστες για την καλύτερη κατανόηση των αναγκών τους. Επίσης αναλύουμε και παρουσιάζουμε την αρχιτεκτονική του συστήματος υποστήριξης διάγνωσης γυναικολογικού καρκίνου καθώς και τα όργανα που έχουν χρησιμοποιηθεί για την έρευνά μας. Αναλύουμε το δίκτυο τηλεσυνεργασίας μεταξύ των δύο ενδιαφερομένων φορέων και την τεχνολογία που έχει χρησιμοποιηθεί.

Στο **Κεφάλαιο 4** (Μεθοδολογία) περιγράφονται τα στάδια προεπεξεργασίας των εικόνων του υπό εξέταση οργάνου με τον αλγόριθμο γάμμα. Η βαθμονόμηση των εικόνων πρίν την ανάλυσή τους επιβάλλεται, λόγω της χρήσης διαφορετικών οργάνων λήψης εικόνων και της γενικής εφαρμογής του συστήματος.

Στο **Κεφάλαιο 5** (Χαρακτηριστικά Υφής) περιγράφονται οι αλγόριθμοι εξαγωγής των χαρακτηριστικών υφής τόσο σε μαθηματικό επίπεδο όσο και σε επίπεδο εφαρμογής με στόχο την καλύτερη κατανόηση των εξαγόμενων αποτελεσμάτων στο χαρακτηρισμό της υπό εξέτασης περιοχής.

Στο **Κεφάλαιο 6** (Ταξινομητές-Νευρωνικά Δίκτυα) αναλύονται οι αλγόριθμοι νευρωνικών δικτύων, που χρησιμοποιούνται για τον αυτόματο διαχωρισμό της παθογένειας της υπό εξέτασης περιοχής. Μάθηση και χρήση των αλγορίθμων αυτών μας επιτρέπουν να διαχωρίσουμε φυσιολογικές και παθολογικές περιοχές ενδιαφέροντος σε δύσκολες περιπτώσεις γυναικολογικού καρκίνου.

Στο **Κεφάλαιο 7** (Περιγραφή αποτελεσμάτων) περιγράφουμε αναλυτικά τα αποτελέσματα χρήσης του συστήματος ανάλυσης ενδοσκοπικής εικόνας για την υποστήριξη διάγνωσης γυναικολογικού καρκίνου. Επίσης παρουσιάζουμε τα συμπεράσματα χρήσης του εν λόγω συστήματος καθώς και αναφορές των χρηστών αυτού.

Τέλος στα **Κεφάλαια 8, 9** (Συζήτηση, Μελλοντική έρευνα / Συμπεράσματα) περιγράφουμε το ολοκληρωμένο σύστημα ανάλυσης ενδοσκοπικής εικόνας μακροβιοψίας για την υποστήριξη διάγνωσης γυναικολογικού καρκίνου αναλύοντας τα αποτελέσματα της διατριβής και εξάγοντας χρήσιμα συμπεράσματα για το εν λόγω σύστημα. Τέλος στη μελλοντική έρευνα / συμπεράσματα περιγράφουμε τα επόμενα στάδια έρευνας και ανάπτυξης τεχνολογιών στην αντιμετώπιση του γυναικολογικού καρκίνου καθώς και τα συμπεράσματα της μελέτης μας.

Τα αποτελέσματα ήταν πολύ ενθαρρυντικά στη χρήση του συστήματος κατά τη διάρκεια της γυναικολογικής εξέτασης, με σημαντική βοήθεια στο γιατρό για αύξηση της διαγνωστικής ακρίβειας για δύσκολες περιπτώσεις γυναικολογικού καρκίνου. Σύμφωνα με τους χρήστες του συστήματος τα αποτελέσματα είναι πολύ αισιόδοξα για την εφαρμογή του. Παράλληλα η επίδειξη του συστήματος σε ιατρικά συνέδρια εξέλαβε πολύ καλά σχόλια καθώς και το ενδιαφέρον μεγάλης κατασκευάστριας εταιρείας ιατρικών μηχανημάτων. Δεχτήκαμε την πρόταση συνεργασίας από την Ευρωπαϊκή Κοινότητα Γυναικολογικού Καρκίνου (EAGC) για τη δημιουργία ενός Ευρωπαϊκού δικτύου επεξεργασίας και ανάλυσης λαπαροσκοπικών και υστεροσκοπικών εικόνων για την αντιμετώπιση του γυναικολογικού καρκίνου καθώς και τη δημιουργία ενός εμπορικού μοντέλου.

ΠΡΟΛΟΓΟΣ

Ο καρκίνος αποτελεί τη δεύτερη αιτία θανάτου στις Ηνωμένες Πολιτείες με πάνω από 557,271 θανάτους το 2002¹ βάσει του Εθνικού Κέντρου Στατιστικής Υπηρεσίας Υγείας. Ο γυναικολογικός καρκίνος αποτελεί τη δεύτερη αιτία θανάτου από καρκίνο στο γυναικείο πληθυσμό και αναμένεται το 2005 να διαγνωστούν 40,880 γυναίκες με πρόβλημα καρκίνου και θα έχουμε 7,310 θανάτους από καρκίνο της μήτρας και του σώματος της μήτρας το 2005² στις Ηνωμένες Πολιτείες. Στη βιβλιογραφία αναφέρονται έρευνες που έχουν γίνει ή είναι σε εξέλιξη όσο αφορά το ιατρικό πεδίο. Στον τομέα της τεχνολογίας έχουν γίνει πολύ λίγα όσο αφορά την εφαρμογή νέων τεχνολογιών. Αυτό έχει ως αποτέλεσμα το προτεινόμενο σύστημα να είναι καινοτόμο στην υποστήριξη διάγνωσης γυναικολογικού καρκίνου με προοπτικές την εφαρμογή του και σε άλλες παρόμοιες διαγνωστικές επεμβάσεις.

Με την ανάπτυξη της τεχνολογίας και τη βελτίωση των τεχνολογιών λήψης και ψηφιοποίησης εικόνων έχουν βοηθήσει στην ανάπτυξη της εν λόγω εφαρμογής με αξιοπιστία και ασφάλεια. Αναμφίβολα ο γιατρός είναι το βασικότερο στοιχείο στη διάγνωση και αντιμετώπιση περιστατικών γυναικολογικού καρκίνου. Η βασική ιδέα της εφαρμογής είναι να βοηθήσει τον κλινικό γιατρό κατά τη διάρκεια μιας ενδοσκοπικής (λαπαροσκοπικής / υστεροσκοπικής) επέμβασης να αναγνωρίζει και να διαχωρίζει αυτόματα φυσιολογικές και παθολογικές περιοχές ενδιαφέροντος αυξάνοντας τη διαγνωστική ακρίβεια της κάθε περίπτωσης.

Η ψηφιακή επεξεργασία εικόνας αφορά τις δύο βασικές εφαρμογές. Πρώτο την ανάλυση και βελτίωση της εικόνας με σκοπό την καλύτερη παρουσίασή της και μεγαλύτερη ευκολία ερμηνεία της και δεύτερο, την εξαγωγή χαρακτηριστικών είτε για την υφή είτε για τη μορφολογία της με σκοπό τη χρησιμοποίησή της για ανάλογη αξιοποίηση σε εφαρμοσμένες εφαρμογές. Η δεύτερη λειτουργία της ψηφιακής επεξεργασίας εικόνας θεωρείται και η πιο δύσκολη με αποτέλεσμα να δημιουργούνται συγκεκριμένες αναλύσεις για συγκεκριμένα προβλήματα χωρίς να είναι δυνατό η ενιαία προσέγγιση των θεμάτων που την αφορούν.

Αντικείμενο της παρούσας διατριβής είναι η χρησιμοποίηση τεχνικών ψηφιακής επεξεργασίας εικόνων τόσο για τη βελτίωσή τους όσο και για το διαχωρισμό τους στις διάφορες καταστάσεις του γυναικολογικού καρκίνου. Η διατριβή αυτή δεν ενδιαφέρει μόνο τους μηχανικούς αλλά και τους γιατρούς πολλών ειδικοτήτων, όπως γυναικολόγους,

¹ Source: US Mortality Public Use Data Tape 2002, National Center for Health Statistics, Centers for Disease Control and Prevention, 2004.

² American Cancer Society

γαστρεντερολόγους, χειρούργους και ορθοπεδικούς. Επίσης η διατριβή αυτή αφορά φυσικούς αφού εμπλέκει θέματα οπτικής και βαθμονόμησης μηχανημάτων, καθώς και στατιστικολόγους αφού η σύγκριση των περιοχών ενδιαφέροντος γίνεται με τη στατιστική ανάλυση και τα έμπειρα συστήματα αποφάσεων. Αντικειμενικός στόχος είναι ο αναγνώστης, ανεξάρτητα από το επίπεδο των γνώσεών του, να είναι σε θέση να αποκομίσει το μέγιστο δυνατό από την παρούσα διατριβή.

Γυναικολογικός καρκίνος και ανατομία του γεννητικού συστήματος

1.1 ΕιΣΑΓΩΓΗ

Στο πρώτο κεφάλαιο θα παρουσιάσουμε την ανατομία του γυναικείου αναπαραγωγικού συστήματος με στόχο την καλύτερη εισαγωγή στο πρόβλημα του γυναικολογικού καρκίνου. Οι ωοθήκες, το ενδομήτριο, ο τράχηλος και η μήτρα θα παρουσιαστούν από την ιατρική τους σκοπιά και θα προσπαθήσουμε να εισαγάγουμε τον αναγνώστη στο πρόβλημα του γυναικολογικού καρκίνου.

Επίσης σε αυτό το κεφάλαιο θα αναπτύξουμε το γυναικολογικό καρκίνο, ο οποίος αποτελεί τη δεύτερη αιτία θανάτου στις Ηνωμένες Πολιτείες Αμερικής με στοιχεία του 2002. Ο γυναικολογικός καρκίνος το 2005 ήταν υπεύθυνος για 250,000 θανάτους στις αναπτυσσόμενες χώρες και υπολογίζεται να είναι το συνολικό 80% στις χώρες αυτές.

Ο καρκίνος της ωοθήκης, ο καρκίνος του τραχήλου της μήτρας, ο καρκίνος του ενδομητρίου, ο καρκίνος του αιδοίου και ο καρκίνος της σάλπιγγας θα παρουσιαστούν με λεπτομέρεια καθώς και στοιχεία αναγνώρισής τους.

1.2 ANATOMIA TOY FENNHTIKOY SYSTHMATOS THE FYNAIKAS

1.2.1 ΕιΣΑΓΩΓΗ

Το γεννητικό σύστημα της γυναίκας αποτελείται (βλέπε Σχήμα 1 και 2) [1]: α) από τις δύο ωοθήκες, οι οποίες αποτελούν τους γεννητικούς αδένες της γυναίκας και παράγουν τα ωάρια καθώς και σπουδαιότατες ορμόνες (την θυλακίνη, την ωχρίνη κ.λ.π.).

β) Από τις δύο σάλπιγγες ή ωαγωγούς, κάθε μία από τις οποίες με το ένα άκρο της περιβάλλει τη σύστοιχη ωοθήκη, ενώ με το άλλο εκβάλλει στη μήτρα. Οι ωαγωγοί αποτελούν μυώδεις σωλήνες και χρησιμεύουν στη μεταφορά των ωαρίων στη μήτρα. Μέσα στις σάλπιγγες γίνεται η γονιμοποίηση των ωαρίων.

 γ) Από τη μήτρα, η οποία αποτελεί κοίλο μυώδες όργανο και χρησιμεύει για την κύηση, τον τοκετό και για την έμμηνη ρύση. δ) Από τον κόλπο, ο οποίος προς τα άνω επικοινωνεί με τον τράχηλο της μήτρας, ενώ με το κάτω άκρο του εκβάλλει στο αιδοίο. Χρησιμεύει για την υποδοχή του πέους κατά τη σεξουαλική επαφή και για τη δίοδο του κυήματος κατά τον τοκετό.

ε) Από το αιδοίο, το οποίο αποτελείται από την κλειτορίδα, από τα μεγάλα και μικρά χείλη, καθώς και από τους αδένες του προδόμου (Bartholini). Χρησιμεύει μαζί με τον κόλπο για τη συνουσία.

Τα γεννητικά όργανα της γυναίκας διακρίνονται, όπως και στον άνδρα, σε έσω (Σχήμα 1), τα οποία βρίσκονται μέσα στην πύελο και έξω γεννητικά όργανα που βρίσκονται έξω από την πύελο (Σχήμα 2). Τα έσω γεννητικά όργανα αποτελούνται από τις ωοθήκες, από τους ωαγωγούς, από τη μήτρα και από τον κόλπο. Τα έξω γεννητικά όργανα αποτελούνται από το αιδοίο [2].

Ως όριο ανάμεσα στα έξω και στα έσω γεννητικά όργανα χρησιμεύει ο παρθενικός υμένας.

Σχήμα 1: Έσω γεννητικά όργανα γυναίκας σε αναπαραγωγική ηλικία, παρουσίαση του αυλού του κόλπου, της μήτρας και των ωαγωγών, στη δεξιά πλευρά η ωοθήκη έχει κοπεί σε μετωπιαίο επίπεδο και το περιτόναιο έχει αφαιρεθεί από το μεσοσαλπίγγιο από πίσω [1].

Σχήμα 2: Γυναικεία έξω γεννητικά όργανα από κάτω [1].

1.3 ΈΣΩ ΓΕΝΝΗΤΙΚΑ ΌΡΓΑΝΑ ΤΗΣ ΓΥΝΑΙΚΑΣ

1.3.1 Ωоонкн

Οι δύο ωοθήκες (δεξιά, αριστερή) είναι οι γεννητικοί αδένες της γυναίκας. Αποτελούν μεικτούς αδένες, οι οποίοι παράγουν τα γεννητικά κύτταρα της γυναίκας, δηλαδή τα ωάρια και σπουδαιότατες ορμόνες. Το μήκος κάθε ωοθήκης ανέρχεται σε 3-4 cm, το πλάτος σε 1-2 cm και το βάρος σε 6-10 g [2].

Θέση: Οι ωοθήκες διαπλάσσονται αρχικά δεξιά και αριστερά της οσφυϊκής μοίρας της σπονδυλικής στήλης. Από τον 3° εμβρυϊκό μήνα κατέρχονται προς τη μικρή πύελο, όπου με την εμφάνιση της ήβης, καταλαμβάνουν τη μόνιμή τους θέση. Έτσι κάθε ωοθήκη, μετά το

15° έτος περίπου της ηλικίας, βρίσκεται στο πλάγιο τοίχωμα της μικρής πυέλου, αντίστοιχα προς τον έσω θυρεοειδή μυ, σε κόλπωμα του περιτοναίου, το οποίο ονομάζεται ωοθηκικός βόθρος. Ο ωοθηκικός βόθρος αντιστοιχεί στο ύψος της πρόσθιας άνω λαγόνιας άκανθας και αφορίζεται από τη μητριαία αρτηρία και τον ουρητήρα. Στη θέση αυτή κρέμεται η ωοθήκη από το οπίσθιο πέταλο του πλατέος συνδέσμου με ιδιαίτερη περιτοναϊκή πτυχή, το μεσοωοθήκιο.

Λόγω της ανατομικής σύνδεσης της ωοθήκης με τον πλατύ σύνδεσμο και τη μήτρα, η φυσιολογική της θέση στον ωοθηκικό βόθρο δεν είναι σταθερή αλλά μεταβάλλεται κατά την κύηση ανάλογα με τις μεταβολές της θέσης της μήτρας.

Εξωτερική μορφολογία: Το χρώμα των ωοθηκών είναι ερυθρόφαιο, και οι επιφάνειές τους στην ένηβη γυναίκα είναι ανώμαλες και με προεξοχές. Σε κάθε ωοθήκη, που έχει σχήμα ελλειψοειδές και αποπλατυσμένο από τα πλάγια, διακρίνουμε δύο χείλη, το πρόσθιο και το οπίσθιο, δύο άκρα, το άνω και το κάτω και δύο επιφάνειες, την έσω και την έξω.

α) Το πρόσθιο χείλος (προσφυόμενο) της ωοθήκης έρχεται σε σχέση με τη λήκυθο του ωαγωγού και ονομάζεται και πυλαίο χείλος, γιατί από αυτό εισέρχονται τα αγγεία και νεύρα της ωοθήκης. Κατά μήκος του χείλους αυτού προσφύεται το μεσοωοθήκιο, με το οποίο η ωοθήκη συνδέεται με τον πλατύ σύνδεσμο. Στη θέση της πρόσφυσης του μεσοωοθηκίου στην ωοθήκη διαγράφεται μία λευκή γραμμή, η γραμμή του Farre, η οποία παράγεται από την μετάπτωση του πλακώδους επιθηλίου του περιτοναίου στο βλαστικό κυβοειδές επιθήλιο της επιφάνειας της ωοθήκης.

β) **Το οπίσθιο χείλος** (ελεύθερο) έρχεται σε σχέση με τον κώδωνα του ωαγωγού, τον ουρητήρα και τη μητριαία αρτηρία.

Από τα άκρα της ωοθήκης, στο άνω, το οποίο βρίσκεται κοντά στο άνω στόμιο της μικρής πυέλου, προσφύεται ο κρεμαστήρας σύνδεσμος της ωοθήκης και στο κάτω άκρο, το οποίο απέχει 2 cm. από το πυελικό έδαφος, προσφύεται ο ίδιος σύνδεσμος της ωοθήκης.

Η έξω επιφάνεια της ωοθήκης έρχεται σε άμεση σχέση με το περιτόναιο του πυθμένα του ωοθηκικού βόθρου και έμμεσα με τα καλυπτόμενα από το περιτόναιο μόρια: έσω θυρεοειδή μύ, τα θυρεοειδή αγγεία και το θυρεοειδές νεύρο.

Η έσω επιφάνεια της ωοθήκης καλύπτεται από τον κώδωνα του ωαγωγού και από το μεσοσαλπίγγιο, το οποίο μετατρέπει τον ωοθηκικό βόθρο σε θυλάκιο, το ωοθηκικό θυλάκιο. Με την άμεση και στενή αυτή σχέση της ωοθήκης με τον ωαγωγό επιτυγχάνεται η είσοδος των ωαρίων στο έξω στόμιο του ωαγωγού.

Στήριξη: Για τη στήριξη της ωοθήκης συμβάλλουν: α) το μεσοωοθήκιο, β) ο κρεμαστήρας σύνδεσμος και γ) ο μητροωοθηκικός σύνδεσμος της ωοθήκης.

α) Το μεσοωοθήκιο αποτελεί πτυχή του περιτοναίου, η οποία αρχίζει από το οπίσθιο πέταλο του πλατέος συνδέσμου και συνάπτεται με το πρόσθιο χείλος της ωοθήκης. Με το μεσοωοθήκιο ο πλατύς σύνδεσμος διαιρείται σε δύο μυς, τον άνω (μεσοσαλπίγγιο) και τον κάτω (μεσομήτριο) (βλέπε συνδέσμους της μήτρας).

β) Ο κρεμαστήρας σύνδεσμος αποτελείται από συνδετικό ιστό και λείες μυϊκές ίνες και περικλείει τα ωοθηκικά αγγεία και το ομώνυμο νεύρο. Αρχίζει από τη λαγόνια περιτονία και προσφύεται στο άνω άκρο (πόλο) της ωοθήκης.

γ) Ο ίδιος ή ο μητροωοθηκικός σύνδεσμος της ωοθήκης αποτελεί υπόλειμμα του γεννητικοβουβωνικού συνδέσμου του εμβρύου. Αποτελείται από συνδετικό ιστό, λείες μυϊκές ίνες και αγγεία. Ο σύνδεσμος αυτός εκφύεται από την πλάγια γωνία του πυθμένα της μήτρας και φέρεται κάτω από το οπίσθιο πέταλο του πλατέος συνδέσμου. Καταφύεται στο κάτω άκρο και το πρόσθιο χείλος της ωοθήκης.

Κατασκευή: Η ωοθήκη αποτελείται προς τα έξω από βλαστικό επιθήλιο και προς τα έσω από συνδετικό στρώμα. Μέσα στο στρώμα της ωοθήκης προς τα έσω από το βλαστικό επιθήλιο βρίσκεται η φλοιώδης μοίρα και γύρω από τις πύλες της ωοθήκης βρίσκεται η μυελώδης μοίρα. Η ωοθήκη αρματώνεται από τα αντίστοιχα αγγεία (Σχήμα 3).

Σχήμα 3: Μικροφωτογραφία ωοθήκης, που δείχνει την πύλη (Π), το μυελό (Μ), και το φλοιό (Φ). Ο σχηματισμός των γαμετών και η ωρίμανσή τους λαμβάνει χώρα στο φλοιό. Στη διαδικασία αυτή οφείλεται η παρουσίαση των παρατηρούμενων κυστικών χωρών [3].

Το βλαστικό επιθήλιο κατάγεται από το επιθήλιο του σπλαγχνικού τοιχώματος του εμβρύου και αποτελεί το αρχέγονο περιτόναιο της ωοθήκης. Αυτό είναι μονόστιβο κυλινδρικό στο κορίτσι ενώ στην έφηβη γυναίκα είναι πιο χαμηλό και κατά περιοχές μονόστιβο πλακώδες. Κάτω από το βλαστικό επιθήλιο βρίσκεται λεπτή στοιβάδα από δεσμίδες συνδετικού ιστού (ο ινώδης χιτώνας) που παρεμβάλλεται ανάμεσα στο βλαστικό επιθήλιο και τη φλοιώδη ουσία.

Από τις μοίρες της ωοθήκης [2]: α) Η φλοιώδης μοίρα ή παρεγχυματώδης ζώνη της ωοθήκης, αποτελεί το βασικό μέρος της ωοθήκης. Μέσα στο συνδετικό στρώμα της βρίσκονται τα ωοθυλάκια, που στο κάθε ένα αναπτύσσεται το ωάριο και εν συνεχεία μεταβάλλεται σε ωχρό σωμάτιο. β) Η μυελώδης μοίρα της ωοθήκης είναι μαλακή και
σπογγώδης. Αποτελείται από συνδετικό στρώμα με τα αγγεία και νεύρα της ωοθήκης, τα οποία εισέρχονται από τις πύλες και από επιθηλιακά υπολείμματα της καταβολής της ωοθήκης, τις μυελώδεις δοκίδες.

Το συνδετικό στρώμα της ωοθήκης, δηλαδή της φλοιώδους και μυελώδους ουσίας της, αποτελείται από συνδετικό ιστό και από ατρακτοειδή κύτταρα, όμοια με τα κύτταρα του ήπατος ή του φλοιού των επινεφριδίων ή με λεία μυϊκά κύτταρα, χωρίς όμως μυϊκά ινίδια. Στο συνδετικό στρώμα της ωοθήκης βρίσκονται τα διάμεσα κύτταρα, διατεταγμένα σε σωρούς και δοκίδες, τα οποία αντιστοιχούν στα διάμεσα κύτταρα του όρχεως στον άνδρα. Στην ένηβη γυναίκα περιορίζονται στην έσω θήκη των άτρητων ωοθυλακίων.

Ωοθυλάκια: Τα ωοθυλάκια [3], των οποίων το μέγεθος ποικίλλει ανάλογα με το βαθμό ωρίμανσης, βρίσκονται μέσα στη φλοιώδη ουσία και διακρίνονται σε πρωτογενή, σε δευτερογενή και σε ώριμα ωοθυλάκια (Σχήμα 4, Σχήμα 5).

Σχήμα 4: Μικροφωτογραφία ενός πολύστιβου πρωτογενούς ωοθυλακίου. Τα κοκκιώδη κύτταρα (Κ) έχουν διαιρεθεί και σχηματίζουν ένα χιτώνα πάχους 3-5 κυττάρων. Ανάμεσα στο ωοκύτταρο (Ω) και τα κοκκιώδη κύτταρα είναι εμφανής η ροζ χρωματισμένη διαφανής ζώνη (ΔΖ). β) Η περαιτέρω ωρίμανση σε δευτερογενές ωοθυλάκιο λαμβάνει χώρα με τη συμπύκνωση των στρωματικών κυττάρων γύρω από το ωοθυλάκιο, ώστε να σχηματίσουν μια εσωτερική στιβάδα από στρογγυλά κύτταρα (έσω θήκη, ΕσΘ) και μια εξωτερική στιβάδα με μικρότερα ατρακτοειδή κύτταρα (έξω θήκη, ΕξΘ) [3].

Τα πρωτογενή ωοθυλάκια: σχηματίζονται κατά την εμβρυϊκή ηλικία και δεν φαίνονται με γυμνό μάτι (40-50 mm). Βρίσκονται αμέσως κάτω από το βλαστικό επιθήλιο. Ο

αριθμός αυτών των ωοθυλακίων στο νεογνό ανέρχεται περίπου σε 400,000. Από αυτά με την πάροδο της ηλικίας τα περισσότερα καταστρέφονται έτσι ώστε συνολικά κατά τη γενετήσια ζωή της γυναίκας (περίπου 35 χρόνια) ωριμάζουν, αφού μετατραπούν καταρχήν σε δευτερογενή και κατόπιν σε ώριμα ωοθυλάκια, περί τα 400 πρωτογενή ωοθυλάκια, εξερχόμενα από τις ωοθήκες ένα σε κάθε σεληνιακό μήνα. Τα πρωτογενή ωοθυλάκια έχουν σχήμα σφαιρικό και αποτελούνται από ένα ωογόνιο, γύρω από το οποίο βρίσκεται ένας στοίχος αποπλατυσμένων επιθηλιακών κυττάρων [6], [7], [9], [11], [13].

Τα δευτερογενή ωοθυλάκια είναι πιο ογκώδη από τα πρωτογενή και βρίσκονται βαθιά στη φλοιώδη ουσία. Αυτά διαφέρουν από τα πρωτογενή ωοθυλάκια γιατί: α) Το ωάριο που βρίσκεται μέσα στα ωοθυλάκια έχει εισέλθει πλέον στην περίοδο της αύξησης και έτσι γίνεται πιο ογκώδες (ωοκύτταρο 1^{ης} τάξης), β) το επιθήλιο γίνεται πολύστιβο και γ) από το γύρω συνδετικό ιστό διαμορφώνεται η θήκη του ωοθυλακίου.

Κάθε δευτερογενές ωοθυλάκιο αποτελείται: α) από τη θήκη του ωοθυλακίου, η οποία περιβάλλει το ωοθυλάκιο και αποτελείται από συνδετικό ιστό, β) από το επιθήλιο του ωοθυλακίου, το οποίο βρίσκεται μέσα από τη θήκη και χωρίζεται από αυτή με λεπτό βασικό υμένα. Το επιθήλιο αυτό, με την πάροδο της εξέλιξης του ωοθυλακίου, γίνεται πολύστιβο και περιβάλλει το ωάριο, από το οποίο χωρίζεται με ένα διαυγές υμένιο, τη διαφανή ζώνη. Όταν εξελίσσεται το ωοθυλάκιο, το πολύστιβο επιθήλιο αρχίζει κατά θέσεις να διαλύεται. Έτσι σχηματίζονται χώροι διαφόρου σχήματος που γεμίζουν υγρό. Με τη συνένωση αυτών των χώρων διαμορφώνεται μία συνεχής κοιλότητα, **το άντρο του ωοθυλακίου**. Τελικά το ωοθυλάκιο διαμορφώνεται σε κυστοειδές σωμάτιο, το **ώριμο ωοθυλάκιο**.

Όριμα ωοθυλάκια ή ωοθυλάκια του Graaf: Κάθε ωοθυλάκιο καταλαμβάνει το μεγαλύτερο από το πάχος της φλοιώδους ουσίας της ωοθήκης και αποτελείται από τα έξω προς τα έσω: α) από τη θήκη, β) από το επιθήλιο του ωοθυλακίου ή κοκκώδη υμένα, γ) από το ωάριο, που βρίσκεται σε κάποια θέση του κοκκώδους υμένα και δ) από το άντρο (κοιλότητα) του ωοθυλακίου, η οποία περιέχει το ωοθυλακικό υγρό (Σχήμα 5).

Σχήμα 5: α) Ώριμο τριτιγενές ωοθυλάκιο. Παρατηρήστε το άντρο (Α), το έκκεντρο τοποθετημένο ωοκύτταρο (Ω) και το ωοφόρο λοφίδιο (ΩΛ) των κοκκιωδών κυττάρων γύρω από το ωοκύτταρο. β) Μικροφωτογραφία του ωοκυττάρου (Ω), του ωοφόρου λοφιδίου (ΩΛ) και της στιβάδας των κοκκιωδών κυττάρων (KK) σε μεγαλύτερη μεγέθυνση. Η έσω θήκη (ΕσΘ) φέρει πλούσια αγγείωση [3].

1.3.2 Мнтра

Η μήτρα προέρχεται από τη συνένωση των δύο πόρων του Müller και αποτελεί κοίλο μυώδες όργανο με παχιά τοιχώματα. Χρησιμεύει για την έμμηνη ρύση και υποδέχεται το γονιμοποιημένο ωάριο, προασπίζει και τρέφει το κύημα μέχρι την πλήρη ανάπτυξή του, οπότε με εξωθήσεις προκαλεί την έξοδό του (τοκετός).

Η μήτρα [3] έχει μήκος περίπου 8-10 cm και πλάτος 4 cm. και βάρος 45-60 g. Το σχήμα της μήτρας παρθένας μοιάζει με αχλάδι, που είναι αποπλατυσμένο από τα πρόσω προς τα πίσω και περισφιγμένο στο μέσο. Γι' αυτό διακρίνουμε στη μήτρα, βάση που στρέφεται προς τα άνω και είναι ελεύθερη από συνδέσμους, κορυφή που φέρεται προς τα κάτω και συνάπτεται με τον κολεό (κόλπο). Ακόμη ως σύνολο διακρίνουμε στη μήτρα δύο επιφάνειες, πρόσθια και οπίσθια και δύο πλάγια χείλη (Σχήμα 6).

Σχήμα 6: Τομή μήτρας γυναίκας 35 ετών που δείχνει τον πυθμένα (Π), το σώμα (Σ) και τον τράχηλο (Τρ). Παρατηρήστε την ενδομήτρια κοιλότητα (ΕΜΚ), τον ενδοτραχηλικό αυλό (ΕΤΑ) και τον εξωτράχηλο (Εξτρ). Ο λείος μυς του σώματος της μήτρας φέρει ένα μικρό ογκίδιο, ένα λειομύωμα (Λ) [2].

Θέση: Η μήτρα είναι κλεισμένη μέσα στον πλατύ σύνδεσμο και βρίσκεται μέσα στη μικρή πύελο, ανάμεσα στην ουροδόχο κύστη και το ορθό. Στη θέση αυτή έχει από κάτω τον κολεό με το περίνεο και από πάνω τις εντερικές έλικες [14].

Σαν τυπική θέση της μήτρας μέσα στην πύελο θεωρούμε εκείνη κατά την οποία οι επιμήκεις άξονες του τραχήλου της μήτρας και της πυέλου συμπίπτουν, ενώ το σώμα της μήτρας βρίσκεται σε πρόσθια κάμψη και έγκλιση έτσι ώστε να σχηματίζει με τον τράχηλό της γωνία ανοικτή προς τα πρόσω $80^0 - 110^0$ (Σχήμα 7).

Σχήμα 7: Μήτρα-κόλπος φυσιολογικές γωνίες μεταξύ κόλπου, τραχήλου και σώματος της μήτρας σε σχηματική μέση τομή-άποψη από πλάγια. *= Επιμήκης άξονας του κόλπου, **= Επιμήκης άξονας του τραχήλου της μήτρας, ***= Επιμήκης άξονας του σώματος της μήτρας [1].

Στην τυπική αυτή θέση βρίσκεται η μήτρα, όταν το ορθό και η ουροδόχος κύστη είναι κενά. Η θέση αυτή όμως της μήτρας επηρεάζεται αρκετά από το βαθμό της πλήρωσης των οργάνων αυτών, από τις μεταβολές της στάσης της γυναίκας, όπως και από την ενδοκοιλιακή πίεση.

Εκτός από την τυπική αυτή θέση την οποία κατέχει η μήτρα στη μικρή πύελο είναι δυνατό αυτή να εμφανίζει κάποτε και άλλες άτυπες θέσεις. Έτσι: α) η μήτρα σε σχέση με τον επιμήκη άξονα της πυέλου εμφανίζει, πρόσθια, οπίσθια και πλάγια θέση, δηλαδή ολόκληρη η μήτρα είναι δυνατό να βρίσκεται μπροστά ή πίσω ή προς το ένα ή το άλλο πλάγιο του άξονα

αυτού, β) η μήτρα εμφανίζει πρόσθια, οπίσθια και πλάγια έγκλιση, δηλαδή η μήτρα κάποτε στρέφεται γύρω από τον εγκάρσιο ή οβελιαίο άξονά της, έτσι ώστε ο πυθμένας φέρεται μπροστά ή πίσω ή δεξιά και αριστερά από τον άξονα της πυέλου και ο τράχηλος σε αντίθετη κατεύθυνση γ) συστροφή της μήτρας, δηλαδή είναι δυνατό η μήτρα να στραφεί γύρω από τον επιμήκη άξονά της, έτσι, ώστε η πρόσθια επιφάνεια αυτής να βλέπει προς τη δεξιά ή αριστερά και οπίσθια επιφάνεια αντίθετα και δ) κάμψη της μήτρας, δηλαδή: ο τράχηλος της μήτρας συμπίπτει με τον άξονα της πυέλου και το σώμα της μήτρας κάμπτεται προς τα πίσω (οπίσθια κάμψη) ή ισχυρώς προς τα πρόσω οπότε έχουμε παθολογική πρόσθια κάμψη της μήτρας [14].

1.3.3 ΜΕΡΗ – ΣΧΕΣΕΙΣ

Η μήτρα διακρίνεται σε τρία μέρη, τον πυθμένα, το σώμα, και τον τράχηλο ή αυχένα, επίσης στην κοιλότητα και τα δύο στόμια, το έσω και το έξω. Το όριο πυθμένα και σώματος αποτελεί νοητή γραμμή, τη μεσοσαλπιγγική γραμμή, η οποία ενώνει δεξιά και αριστερά τις εκφύσεις των ωαγωγών και το όριο σώματος και τραχήλου αποτελεί ο ισθμός, δηλαδή η πιο στενή περιοχή της μήτρας (Σχήμα 8).

Σχήμα 8: Μήτρα-Κόλπος γυναίκας σε αναπαραγωγική ηλικία. Μέση οβελιαία τομή ώστε να παρουσιαστεί η κοιλότητα της μήτρας από πλάγια [1].

Ο πυθμένας της μήτρας αντιστοιχεί στο ευρύτερο άνω άκρο της μήτρας και φέρεται προς τα άνω και μπροστά. Στη μήτρα της παρθένας το υπόκυρτο χείλος του πυθμένα ελάχιστα υπερέχει της έκφυσης, δεξιά και αριστερά των ωαγωγών και ακόμη δεν υπερβαίνει το άνω χείλος της ηβικής σύμφυσης. Στην άτοκο, ο πυθμένας της μήτρας αντιστοιχεί λίγο πάνω από το επίπεδο της ηβικής σύμφυσης. Οι εντερικές έλικες του ειλεού, όταν είναι κενή η κύστη, βρίσκονται πάνω και μπροστά από τον πυθμένα της μήτρας. Οι εντερικές έλικες χωρίζουν τον πυθμένα από το πρόσθιο κοιλιακό τοίχωμα. Αντίθετα όταν η ουροδόχος κύστη είναι γεμάτη ο πυθμένας της μήτρας παρεκτοπίζεται προς τα άνω και πίσω οπότε χωρίζεται από το πρόσθιο κοιλιακό τοίχωμα με την κύστη. Τέλος, στις γυναίκες οι οποίες έχουν γεννήσει, ο πυθμένας της μήτρας είναι πιο ευρύς και βρίσκεται σε ψηλότερο επίπεδο.

Το σώμα της μήτρας το οποίο από τον πυθμένα προς τον τράχηλο γίνεται σιγά σιγά στενότερο, ιδιαίτερα στον ισθμό, εμφανίζει δύο επιφάνειες (πρόσθια, οπίσθια) που καλύπτονται από περιτόναιο και δύο πλάγια χείλη. Από τις δύο επιφάνειες η πρόσθια (κυστική) είναι ελαφρώς υπόκυρτη και έρχεται σε σχέση με την ουροδόχο κύστη. Η οπίσθια επιφάνεια είναι ισχυρώς υπόκυρτη και έρχεται σε σχέση με εντερικές έλικες. Στα πλάγια χείλη του σώματος προσφύονται οι πλατείς σύνδεσμοι. Από τα πλάγια χείλη διέρχονται τα μητριαία αγγεία, τα οποία πορεύονται ανάμεσα στα δύο πέταλα των πλατέων συνδέσμων.

Ο ισθμός της μήτρας αποτελεί την πιο στενή μοίρα του σώματος της μήτρας. Αντιστοιχεί εσωτερικά στο έσω στόμιο της μήτρας και εξωτερικά στο ύψος της ανάκαμψης του περιτοναίου από την ουροδόχο κύστη στη μήτρα. Ο ισθμός σε εγκυμονούσα μήτρα διευρύνεται και αποτελεί το από τους μαιευτήρες ονομαζόμενο κάτω μητριαίο τμήμα.

Ο τράχηλος ή αυχένας της μήτρας έχει σχήμα κυλινδρικό και μήκος 2,5 cm και υποδιαιρείται με την πρόσφυση του κόλπου σε δύο μέρη, το υπερκολεϊκό και το ενδοκολεϊκό.

Το υπερκολεϊκό μέρος του τραχήλου εμφανίζει δύο άνισες επιφάνειες (πρόσθια, οπίσθια) που είναι και οι δύο υπόκυρτες και δύο πλάγια χείλη που είναι παχιά και υποστρόγγυλα. Η πρόσθια επιφάνειά του είναι πιο επιμήκης από την οπίσθια και ακάλυπτη από περιτόναιο. Έρχεται σε σχέση με τον πυθμένα της ουροδόχου κύστης (κυστεοτραχηλικό διάστημα) με το οποίο συνάπτεται με χαλαρό συνδετικό ιστό, το παραμήτριο, το οποίο επιτρέπει τον εύκολο διαχωρισμό του τραχήλου από την κύστη. Η οπίσθια επιφάνεια έρχεται σε σχέση με το όρθό. Είναι βραχύτερη από την πρόσθια επιφάνεια γιατί ο κολεός στην επιφάνεια αυτή προσφύεται ψηλότερα στον τράχηλο και καλύπτεται από το περιτόναιο του ευθυκολεϊκού κολπώματος, το οποίο τον χωρίζει από το ορθό. Τα πλάγια χείλη του υπερκολεϊκού μέρους του τραχήλου έρχονται σε σχέση με τη βάση του πλατέος συνδέσμου και με το παραμήτριο. Επί τα εκτός των πλαγίων χειλών, δεξιά και αριστερά, και σε απόσταση 1,5 cm από τη μήτρα χιάζεται η μητριαία αρτηρία με τον ουρητήρα.

Το ενδοκολεϊκό μέρος του τραχήλου εισέρχεται μέσα στο άνω μέρος του κολεού. Είναι ψηλαφητό στη ζώσα γυναίκα και φαίνεται με το μητροσκόπιο. Το μέρος αυτό του

43

τραχήλου περιβάλλεται από το βλεννογόνο του κόλπου. Εμφανίζει σχήμα κωνοειδές και το ελεύθερο άκρο του (κορυφή) διατρυπάται από το έξω στόμιο της μήτρας.

Η ενδοκολεϊκή αυτή μοίρα του τραχήλου της μήτρας αφορίζει με το άνω άκρο του κολεού κυκλοτερή αύλακα, το θόλο του κολεού.

Η κοιλότητα της μήτρας είναι σχισμοειδής και έχει μήκος στις άτοκες 5,5 cm και στις πολύτοκες 6 – 6,5 cm. Η κοιλότητα αυτή εμφανίζει διαμέτρους μεγαλύτερες στις πολύτοκες γυναίκες από τις γυναίκες μικρής ηλικίας και από τις άτοκες. Η κοιλότητα της μήτρας διακρίνεται στην κοιλότητα του σώματος και στην κοιλότητα του αυχένα. Το όριο των κοιλοτήτων αυτών, που είναι στενό, περιγράφεται σαν έσω στόμιο της μήτρας και αντιστοιχεί εξωτερικά στον ισθμό.

Η κοιλότητα του σώματος σε οβελιαία διατομή είναι στενή σαν σχισμή, γιατί τα τοιχώματα (πρόσθιο, οπίσθιο) της μήτρας σχεδόν εφάπτονται το ένα με το άλλο και χωρίζονται μόνο με λεπτή στιβάδα βλέννης. Σε κατά μέτωπο διατομή όμως έχει σχήμα τριγώνου, του οποίου η βάση φέρεται προς τα άνω (πυθμένας) και προεκτείνεται προς τα έξω σε δύο, σαν χωνί, προεκβολές (γωνίες), τα κέρατα της μητριαίας κοιλότητας που οδηγούν, δεξιά και αριστερά στο μητριαίο στόμιο του σύστοιχου ωαγωγού.

Η κοιλότητα του αυχένα (αυχενικός σωλήνας) έχει σχήμα ατράκτου. Προς τα άνω συνεχίζεται με την κοιλότητα του σώματος της μήτρας με το έσω στόμιό της και προς τα κάτω εκβάλλει με το έξω στόμιό της στον κόλπο.

Ο βλεννογόνος του προσθίου και του οπισθίου τοιχώματος της κοιλότητας του αυχένα εμφανίζει πτυχές σαν κλαδιά από φοίνικα και για αυτό ονομάζονται φοινικοειδείς πτυχές. Οι πτυχές αυτές φέρονται παράλληλα και λοξά από τα άνω προς τα κάτω και συγκλίνουν κατά τη μέση γραμμή. Έτσι σχηματίζουν την πρόσθια και οπίσθια στελεχιαία φοινικοειδή πτυχή. Οι φοινικοειδείς πτυχές των δύο τοιχωμάτων δεν βρίσκονται απέναντι η μια με την άλλη, αλλά αντιβαίνουν μεταξύ τους σαν οδοντώματα, έτσι ώστε επιτυγχάνεται πλήρης σύγκλιση της κοιλότητας του αυχένα.

Τα στόμια της κοιλότητας της μήτρας διακρίνονται σε έσω και έξω στόμιο. Το έσω στόμιο, δηλαδή το στενότερο σημείο της κοιλότητας της μήτρας, αποτελεί το όριο της κοιλότητας του σώματος και της κοιλότητας του τραχήλου και αντιστοιχεί εξωτερικά στον ισθμό της μήτρας. Το έξω στόμιο φέρεται σαν εγκάρσια σχισμή και βρίσκεται στο ελεύθερο άκρο (κορυφή) του ενδοκολεϊκού μέρους του τραχήλου. Το στόμιο αυτό αποφράσσεται από βλέννα και αφορίζεται από δύο παχεία χείλη, το πρόσθιο και το οπίσθιο. Από αυτά, το πρόσθιο χείλος είναι βραχύτερο και παχύτερο από το οπίσθιο και προέχει προς τα κάτω περισσότερο ενώ το οπίσθιο χείλος βρίσκεται υψηλότερο. Και τα δύο αυτά χείλη στρέφονται

44

προς τα κάτω και πίσω δηλαδή προς το οπίσθιο τοίχωμα του κολεού. Στην παρθένα και άτοκη γυναίκα εμφανίζονται τα χείλη λεία, ομαλά και ροδόχροα, ενώ στις πολύτοκες μενεξεδί και ανώμαλα λόγω των ρωγμών εξ αιτίας των τοκετών.

1.3.4 Σтнріен

Η μήτρα βρίσκεται μέσα στη μικρή πύελο και στηρίζεται με τον κόλπο στο περίνεο γι' αυτό και τυχόν ρήξη του περινέου είναι δυνατόν να προκαλέσει πτώση του κολεού μαζί με τη μήτρα. Ακόμη, για τη στήριξη της μήτρας συμβάλλουν: α) το περιτόναιο, β) οι ιερομητρικοί ή ευθυμητρικοί σύνδεσμοι, γ) οι πλατείς σύνδεσμοι, δ) το παραμήτριο και ε) οι στρογγυλοί σύνδεσμοι της μήτρας (Σχήμα 9).

Σχήμα 9: Γυναικεία έσω γεννητικά όργανα από πίσω [1]. *= Κλινικά: κύριος σύνδεσμος, **= Κλινικά: ιερό-μητρικός σύνδεσμος.

Η στήριξη όμως και η σύνδεσή της προς τα παρακείμενα με τα ανατομικά αυτά μόρια είναι αρκετά χαλαρή, ώστε να μην εμποδίζεται η σημαντική αύξηση σε όγκο της μήτρας κατά την κύηση.

Το περιτόναιο ανακάμπτει από την ουροδόχο κύστη αντίστοιχα προς τον ισθμό της μήτρας και φέρεται στην πρόσθια επιφάνειά της. Αφού καλύψει και τον πυθμένα και την οπίσθια επιφάνεια του σώματος όπως και την οπίσθια επιφάνεια του υπερκολεϊκού μέρους του τραχήλου ανακάμπτει στην πρόσθια επιφάνεια του ορθού. Σύμφωνα με αυτά το

περιτόναιο αφήνει ακάλυπτα μόνο την πρόσθια επιφάνεια του υπερκολεϊκού μέρους του τραχήλου και τα πλάγια χείλη της μήτρας. Από τα πλάγια χείλη της μήτρας το περιτόναιο φέρεται δεξιά και αριστερά προς τα πλάγια τοιχώματα της μικρής πυέλου. Έτσι σχηματίζεται δεξιά και αριστερά από τη μήτρα τετράπλευρη περιτοναϊκή πτυχή, η οποία φέρεται οριζόντια όπως και το σώμα της μήτρας, και ονομάζεται πλατύς σύνδεσμος της μήτρας. Μεταξύ των δύο πετάλων του συνδέσμου περικλείονται ο ωαγωγός, ο στρογγυλός σύνδεσμος της μήτρας και ο ίδιος ο σύνδεσμος της ωοθήκης.

Από την ανάκαμψη του περιτοναίου μεταξύ ουροδόχου κύστης και μήτρας και μεταξύ μήτρας και ορθού σχηματίζονται δύο κολπώματα: το κυστεομητρικό κόλπωμα και το ευθυμητρικό κόλπωμα ή χώρος του Douglas. Το κυστεομητρικό κόλπωμα βρίσκεται μπροστά από τη μήτρα και είναι σχισμοειδές. Το ευθυμητρικό κόλπωμα βρίσκεται πίσω από τη μήτρα, είναι ευρύ και γεμίζει με εντερικές έλικες. Το ευθυμητρικό κόλπωμα με τις ευθυμητρικές πτυχές διαιρείται σε δύο μέρη, το άνω (ιδίως ευθυμητρικό κόλπωμα), που είναι ευρύτερο και γεμίζει με το σιγμοειδές κάλο και με εντερικές έλικες και το κάτω (ευθυκολεϊκό κόλπωμα) το οποίο είναι σχισμοειδές, χωρίς εντερικές έλικες και ο πυθμένας του απέχει από τον πρωκτό περί τα 5-6 cm (Σχήμα 10).

Σχήμα 10: Πύελος της γυναίκας, μέση τομή, το έντερο έχει αφαιρεθεί εκτός από υπολείμματα του σιγμοειδούς και του ορθού, από πλάγια (δεξιά). *= Κλινικά: κυστεοκολεϊκό διάστημα, **= Ιερομητρικός σύνδεσμος, ***= Χώρος του Douglas (Δουγλάσειος) [1].

Οι ιερομητρικοί ή ευθυμητρικοί σύνδεσμοι αποτελούνται από συνδετικό ιστό με ελαστικές και λείες μυϊκές ίνες. Εκφύονται δεξιά και αριστερά από την πρόσθια επιφάνεια του ιερού οστού (3° και 4° Ι.Σ.) και καταφύονται, αφού πορευτούν τοξοειδώς προς την οπίσθια επιφάνεια της μήτρας, αντίστοιχα προς τον ισθμό της, όπου συνενώνονται μεταξύ τους και σχηματίζουν εγκάρσια ακρολοφία, το μητριαίο όγκωμα. Οι σύνδεσμοι αυτοί έλκουν τον αυχένα της μήτρας προς τα πίσω και αποτελούν το υπόθεμα των ευθυμητρικών πτυχών

δια των οποίων διαιρείται το ευθυμητρικό κόλπωμα σε δύο μέρη το άνω και το κάτω (πυθμένας του χώρου του Douglas).

Οι πλατείς σύνδεσμοι αποτελούν διπεταλείς πτυχές του περιτοναίου οι οποίες περιβάλλουν τη μήτρα. Τα δύο περιτοναϊκά πέταλα, αντίστοιχα προς τα χείλη της μήτρας, συνάπτονται σε ενιαίο σύνολο, το οποίο εκτείνεται από τα πλάγια χείλη της μήτρας προς τα πλάγια τοιχώματα της μικρής πυέλου. Έτσι μαζί με τη μήτρα σχηματίζουν ενιαίο και συνεχές διάφραγμα. Το διάφραγμα αυτό φέρεται κατά μέτωπο και χωρίζει τη μικρή πύελο σε πρόσθια και οπίσθια μοίρα, από τις οποίες η πρόσθια περιέχει την ουροδόχο κύστη και η οπίσθια το ορθό, το σιγμοειδές και τις εντερικές έλικες. Καθένας από τους πλατείς συνδέσμους έχει σχήμα ανώμαλο τετράπλευρο και εμφανίζει κατά την περιγραφή δύο επιφάνειες, πρόσθια και οπίσθια και τέσσερα χείλη, το έσω, το έξω, το άνω και το κάτω.

Η πρόσθια (κάτω) επιφάνεια του πλατέος συνδέσμου εμφανίζει προς τα άνω τον στρογγυλό σύνδεσμο της μήτρας που πορεύεται στο πρόσθιο πέταλο του συνδέσμου αυτού.

Η οπίσθια (άνω) επιφάνεια έρχεται σε σχέση με το ορθό και με εντερικές έλικες και εμφανίζει δύο πτυχές, το μεσωοθήκιο από το οποίο κρέμεται η ωοθήκη και υποδιαιρεί με την έκφυσή του την οπίσθια επιφάνεια του πλατέος συνδέσμου σε δύο άνισες μοίρες: α) την άνω μοίρα, η οποία είναι στενή, περιέχει τη σάλπιγγα, και ονομάζεται μεσοσαλπίγγιο (στην περιοχή του θα παρατηρήσουμε προς τα έξω το επωοθήκιο και προς τα έσω το παρακωοθήκιο) και β) την κάτω μοίρα, η οποία είναι πλατύτερη, αντιστοιχεί στα πλάγια χείλη της μήτρας και ονομάζεται μεσομήτριο. Στην περιοχή του θα παρατηρήσουμε το μητροωθηκικό σύνδεσμο της ωοθήκης, ο οποίος βρίσκεται στην προς τα έσω προέκταση του μεσωοθηκίου και την ευθυμητρική πτυχή, η οποία παράγεται από το ομώνυμο σύνδεσμο και προσφύεται πιο κάτω από τον ισθμό.

Κατασκευή της μήτρας: Το τοίχωμα της μήτρας έχει πάχος 10-20 χιλ. και αποτελείται από τρεις χιτώνες, τον ορογόνο (περιμήτριο), το μυϊκό (μυομήτριο) και βλεννογόνο (ενδομήτριο). Περιέχει επίσης αγγεία και νεύρα τα οποία πορεύονται ανάμεσα στους χιτώνες του τοιχώματός της.

Ο ορογόνος χιτώνας (περιμήτριο) αποτελεί τη συνέχεια του περιτοναίου. Συνδέεται στενά με τον υποκείμενο μυϊκό χιτώνα εκτός από το υπερκολεϊκό μέρος του τραχήλου της μήτρας κατά την οπίσθια επιφάνειά της όπου συνδέεται χαλαρά. Ακάλυπτα από ορογόνο χιτώνα παραμένουν τα πλάγια χείλη της μήτρας και η πρόσθια επιφάνεια του υπερκολεϊκού μέρους του τραχήλου της.

48

Ο μυϊκός χιτώνας (μυομήτριο) αποτελείται από δεσμίδες μυϊκών ινών, που είναι διατεταγμένες σε τρεις στιβάδες (έξω, μέση, και έσω) οι οποίες όμως δεν αφορίζονται σαφώς μεταξύ τους. Η έξω στιβάδα αποτελείται από επιμήκεις και εγκάρσιες ίνες που επεκτείνονται στον ωαγωγό, στους στρογγυλούς και πλατείς συνδέσμους της μήτρας όπως και στο μητροωθηκικό σύνδεσμο της ωοθήκης. Η μέση και έξω στιβάδα, αποτελούνται από λοξές, εγκάρσιες και στο βάθος από μερικές επιμήκεις ίνες, που επεκτείνονται και στο χώρο ανάμεσα στους αδένες της μήτρας. Τα άφθονα αγγεία που πορεύονται ανάμεσα στις στιβάδες και περιέχει τα μεγάλα αγγειακά στελέχη της μήτρας (αγγειώδης στιβάδα).

Ο μυϊκός χιτώνας του τραχήλου της μήτρας αποτελείται επίσης από τις ίδιες μυϊκές στιβάδες. Οι στιβάδες αυτές είναι πιο λεπτές από τις μυϊκές στιβάδες του μυϊκού χιτώνα του σώματος και συνδέονται μεταξύ τους με ελάχιστο ελαστικό και άφθονο συνδετικό ιστό, στον οποίο οφείλεται και η πιο σκληρή, σαν χόνδρου, σύσταση του τραχήλου της μήτρας.

Ο βλεννογόνος (ενδομήτριο) της μήτρας συνδέεται απ' ευθείας με το μυομήτριο, δηλαδή χωρίς την παρεμβολή υποβλεννογόνου χιτώνα. Αυτό έχει σημασία για την ιστολογική απόδειξη της μήτρας.

Ο βλεννογόνος του σώματος της μήτρας αποτελείται από το επιθήλιο, το χόριο και τους αδένες.

1.4 ΓΥΝΑΙΚΟΛΟΓΙΚΟΣ ΚΑΡΚΙΝΟΣ

1.4.1 Εισαγωγγ

Σε αυτή την ενότητα θα περιγράψουμε το γυναικολογικό καρκίνο στα όργανα που ερευνούμε και θα δώσουμε χρήσιμες πληροφορίες για τη φύση του καρκίνου σε αυτά. Θα περιγράψουμε τον καρκίνο στα όργανα: α) Ωοθήκη, β) Τράχηλο της μήτρας, γ) Ενδομήτριο, δ) Αιδοίο και ε) Σάλπιγγα.

1.4.2 KAPKINOΣ ΩΟΘΗΚΗΣ

Πέραν του 80% των περιπτώσεων ο καρκίνος της ωοθήκης εμφανίζεται συνήθως μετά την εμμηνόπαυση ενώ ο μέγιστος κίνδυνος εμφάνισης της νόσου είναι η ηλικία των 72 χρόνων. Πρίν την ηλικία των 45 ο καρκίνος αυτός είναι σπάνιος. Από όλους τους όγκους ωοθήκης κατά την εμμηνοπαυσιακή ηλικία το 30% είναι κακοήθεις, ενώ στις προεμμηνοπαυσιακές γυναίκες μόνο το 7% είναι κακοήθεις [1]. Ο καρκίνος της ωοθήκης

είναι τέταρτος στη συχνότητα από όλους τους κακοήθεις όγκους των γεννητικών οργάνων της γυναίκας και έχει τη μεγαλύτερη θνησιμότητα (Σχήμα 11). Ο κίνδυνος εμφάνισης της νόσου είναι πολλαπλά αυξημένος σε άτομα που έχουν βεβαρημένο οικογενειακό ιστορικό με καρκίνο της ωοθήκης ή με καρκίνο του μαστού, ιδιαίτερα όταν τα προσβληθέντα συγγενή άτομα είναι ηλικίας μικρότερης των 50-55 χρόνων [2]. Λόγω του ότι οι ωοθήκες βρίσκονται στο βάθος της πυέλου τα συμπτώματα της ασθένειας (αίσθημα βάρους στην πύελο, διάταση του υπογαστρίου, συχνοουρία) παρουσιάζονται σε προχωρημένο στάδιο της νόσου με κακή πρόγνωση. Συνήθως αποτελεί τυχαίο εύρημα μιας γυναικολογικής εξέτασης (μόρφωμα στην πύελο). Οι πρόσφατες γνώσεις για την αιτία του καρκίνου της ωοθήκης καθώς και η τεχνολογία, μας βοηθούν να αναγνωρίσουμε τα άτομα υψηλού κινδύνου, τα άτομα δηλαδή που κινδυνεύουν να αναπτύξουν την ασθένεια κατά τη διάρκεια της ζωής τους σε μεγαλύτερο βαθμό, πέραν από το δεδομένο κίνδυνο της ηλικίας [3]. Για το λόγο αυτό, σε αυτές τις γυναίκες πρέπει να γίνεται screening test. Οι γυναίκες άνω των 40 χρόνων θα πρέπει να εξετάζονται γυναικολογικά και να γίνεται κολπική υπερηχογραφική εξέταση με έγχρωμο ντόπλερ (Doppler). Επίσης σε εμμηνοπαυσιακές γυναίκες θα πρέπει να γίνεται έλεγχος για ανίχνευση του καρκινικού δείκτη Ca 125 στο αίμα. Το βεβαρημένο οικογενειακό ιστορικό με καρκίνο της ωοθήκης ή του μαστού, ιδιαίτερα σε άτομα πρώτου βαθμού συγγένειας επιβάλλει τον πιο πάνω έλεγχο από την ηλικία των 25 χρόνων [4]-[9].

Σχήμα 11: Εγχειρητικό παρασκεύασμα ολικής υστεροσκομίας μετά των εξαρτημάτων (αδενοκαρκίνωμα δεξιάς ωοθήκης) και επιπλεκτομία [2].

1.4.3 ΚΑΡΚΙΝΟΣ ΤΡΑΧΗΛΟΥ ΤΗΣ ΜΗΤΡΑΣ

Ο καρκίνος του τραχήλου οφείλεται κατά 95-99% στον ανθρώπινο παπιλοματοοιό. Μεταδίδεται με τη σεξουαλική επαφή και ο κίνδυνος μετάδοσης αυξάνεται ανάλογα με τον αριθμό των ερωτικών συντρόφων καθώς και με το νεαρό της ηλικίας κατά την πρώτη σεξουαλική επαφή [2], [5]. Συνήθως γυναίκες που είχαν την πρώτη τους επαφή μεταξύ της ηλικίας των 14 και 16 χρόνων βρίσκονται σε μεγαλύτερο κίνδυνο. Μια γυναίκα που εφαρμόζει ετήσια γυναικολογική εξέταση και κάνει το τεστ Παπανικολάου κατά τις υποδείξεις του γυναικολόγου της μπορεί να προλάβει τον καρκίνο του τραχήλου. Να σημειωθεί ότι το τραχηλικό επίχρισμα κατά Παπανικολάου αφορά μόνο τον καρκίνο του τραχήλου και κανένα άλλο όργανο (Σχήμα 12). Δηλαδή δεν μπορεί να διαγνώσει οποιοδήποτε άλλο καρκίνο.

Σχήμα 12: Χαρακτηριστική κυτταρολογική εικόνα HGSIL (High Grade Squamous Interaepithelial Lesion) [2].

Σε περιπτώσεις που το Παπ τεστ είναι θετικό πρέπει να ακολουθήσει κολποσκόπηση (μικροσκόπηση του τραχήλου) και ανάλογες βιοψίες, έτσι ώστε να αποκλεισθεί το ενδεχόμενο του καρκίνου. Συμπτώματα της νόσου είναι συνήθως κολπική αιμόρροια μετά τη σεξουαλική επαφή και κυρίως μετά την εμμηνόπαυση, όπως και διαταραχές ούρησης.

1.4.4 ΚΑΡΚΙΝΟΣ ΕΝΔΟΜΗΤΡΙΟΥ

Ο καρκίνος του ενδομητρίου είναι η συχνότερη κακοήθεια των γυναικείων γεννητικών οργάνων και εμφανίζεται συνήθως σε γυναίκες μεταξύ 50 και 60 ετών. Οι παράγοντες κινδύνου είναι διάφοροι. Υπάρχει κληρονομική επιβάρυνση, αλλά σε πολύ μικρότερο βαθμό απ' ότι στον καρκίνο της ωοθήκης και του μαστού. Οι παχύσαρκες γυναίκες, οι γυναίκες με ασταθή περίοδο, εμμηναρχή σε μικρή ηλικία και εμμηνόπαυση πέραν των 54 χρόνων θεωρούνται υψηλού κινδύνου (Πίνακας 1).

Παράγοντες	Αύξηση Κινδύνου
Οιστρογόνα	x 8
Παχυσαρκία	x 3 έως 10
Άτοκες γυναίκες	x 2 έως x 3
Υπέρταση	x 2,8
Διαβήτης	x 2,7
Καθυστέρηση Εμμηνόπαυσης	x 2,4
Ανωοθυλακιορρηξία	x 2,
Ταμοξιφαίνη	x 2,3
Συστηματικές Νόσοι (υποθυρεοειδισμός, αρθρίτιδα κλπ.)	x 2

Πίνακας 1: Παράγοντες κινδύνου για καρκίνο του ενδομητρίου [2].

Επίσης, οι γυναίκες που έχουν υπέρταση και διαβήτη θα πρέπει να ελέγχονται πιο επισταμένα γιατί διατρέχουν μεγαλύτερο κίνδυνο. Ιδιαίτερα οι γυναίκες άνω των 40 ετών, όταν έχουν διαταραχές περιόδου, θα πρέπει να επικοινωνούν το συντομότερο με το γυναικολόγο τους, ο οποίος ανάλογα με το ιστορικό θα κρίνει αν θα πρέπει να γίνουν περαιτέρω εξετάσεις. Συμπτώματα του καρκίνου του ενδομητρίου αποτελούν η ασταθής περίοδος μετά την ηλικία των 40 ετών, σταγονοειδές αιμόρροια σε μετεμμηνοπαυσιακές γυναίκες και φουσκώματα κοιλιάς. Προλαμβάνεται εφαρμόζοντας την ετήσια γυναικολογική εξέταση και μέτρηση του πάχους του ενδομητρίου.

Ως κύριος παράγοντας κινδύνου για την ανάπτυξη καρκίνου του ενδομητρίου θεωρείται η υπερβολική επίδραση των οιστρογόνων στο ενδομήτριο είτε αυτό οφείλεται σε εξωγενή χορήγησή τους, είτε σε ενδογενή παραγωγή τους.

Η μακροσκοπική εικόνα ενός καρκίνου του ενδομητρίου παρουσιάζεται ως μια εστία, π.χ σαν ένας πολύποδας στο ενδομήτριο, ή είναι πολυεστιακό ή διάχυτο και καταλαμβάνει όλη την ενδομητριακή κοιλότητα. Σε προχωρημένο στάδιο υπάρχουν περιπτώσεις όπου η βλάβη παρά τη διήθηση του μυομητρίου παραμένει περιγεγραμμένη σε μικρό τμήμα του ενδομητρίου αλλά συνήθως προηγείται της διηθήσεως επέκταση σε όλο το ενδομήτριο. Η συχνότερη εικόνα είναι η εξωφυτική με ανθοκραμβαοειδή ανάπτυξη, εξελκώσεις και νεκρώσεις και όταν αυτή η μορφή επινέμεται του μυομητρίου προκαλεί αύξηση του μεγέθους της μήτρας. Συμπερασματικά ο καρκίνος του ενδομητρίου αρχίζει από την επιφάνειά του και αυτό κάνει την έρευνά μας πολύ σημαντική στην πρόληψη και ανίχνευση του καρκίνου του ενδομητρίου.

Έτσι, ο καρκίνος του ενδομητρίου μπορεί να διαγνωσθεί σε πρώιμο στάδιο και η θνησιμότητα από την κακοήθεια αυτή να μειωθεί στο ελάχιστο [3].

1.4.5 Καρκινός Αιδοίου (Εξωτερικά Γεννητικά Όργανα)

Ο καρκίνος του αιδοίου αποτελεί το 4% των καρκίνων του γυναικείου γεννητικού συστήματος (Σχήμα 13). Υπάρχουν δύο βασικοί τύποι καρκίνου του αιδοίου:

α) Ο σπανιότερος τύπος παρουσιάζεται σε νεαρές γυναίκες και έχει σχέση με τον ανθρώπινο παπιλοματοοιό και με το κάπνισμα. Μπορεί να προληφθεί αφού παρουσιάζονται προκαρκινικές αλλοιώσεις VIN (δυστροφίες του αιδοίου), κάτι ανάλογο με τις περιπτώσεις καρκίνου του τραχήλου.

β) Ο συχνότερος όμως τύπος καρκίνου του αιδοίου σχετίζεται με την προχωρημένη ηλικία (μέσος όρος 65 χρόνων) γι' αυτό και πάσχουν ως επί το πλείστον άτομα της τρίτης ηλικίας. Η ξαφνική αλλαγή χρώματος του δέρματος σε ένα ή περισσότερα σημεία, στα μεγάλα ή μικρά χείλη του αιδοίου (συνήθως μελανές βούλες) πρέπει να εξετάζεται επισταμένα. Άλλα συμπτώματα είναι έλκη ή λευκά σημεία ή πληγές που δεν επουλώνονται στα μεγάλα χείλη του αιδοίου, κνησμός στην περιοχή και αλλαγή στην όψη, καθώς και διογκωμένοι βουβωνικοί και μηριαίοι λεμφαδένες. Μερικές φορές χρειάζεται ακόμη και βιοψία για να αποκλείσουμε την περίπτωση μελανώματος, μιας άλλης κακοήθειας που αν δε θεραπευτεί έγκαιρα καταλήγει στο θάνατο.

Σχήμα 13: Διηθητικό καρκίνωμα αιδοίου [1].

1.4.6 KAPKINOE THE SAATIIFFAS

Είναι πολύ σπάνια νόσος με συχνότητα περίπου 4 / 1.000.000. Ο μέσος όρος ηλικίας εμφάνισης της νόσου είναι τα 50 έτη. Χαρακτηριστικά στο 50% των περιπτώσεων οι γυναίκες αυτές πάσχουν από πρωτογενή υπογονιμότητα. Συμπτώματα της ασθένειας είναι οι κολπικές εκκρίσεις ή αιμορραγία, κοιλιακή διόγκωση και αίσθημα δυσφορίας καθώς και κοιλιακά άλγη. Η διάγνωση γίνεται με υπερηχογράφημα και βιοψία [5].

Σήμερα, με τις γνώσεις που υπάρχουν, την πρόοδο της κλινικής γενετικής και την εξέλιξη της τεχνολογίας, μπορούν να εντοπιστούν οι γυναίκες υψηλού κινδύνου ανάπτυξης γυναικολογικού καρκίνου, και να τους προσφερθούν μέτρα προληπτικής ιατρικής.

1.5 ΣΥΜΠΕΡΑΣΜΑΤΑ

Σε αυτό το κεφάλαιο έχουμε περιγράψει την ανατομία του γυναικείου αναπαραγωγικού συστήματος, καθώς και τις συνθήκες – στατιστικά του γυναικολογικού καρκίνου. Σκοπός της έρευνας είναι η υποστήριξη διάγνωσης μέσω της επεξεργασίας λαπαροσκοπικών / υστεροσκοπικών εικόνων και το χαρακτηρισμό της εικόνας με εφαρμογή νευρωνικών δικτύων στην αντίστοιχη παθολογία που παρουσιάζουν. Αυτό θα βοηθήσει το γιατρό να αυξήσει τη διαγνωστική του ακρίβεια σε δύσκολες περιπτώσεις γυναικολογικού καρκίνου καθώς θα επιτρέψει τη δημιουργία κοινής ιατρικής βάσης δεδομένων με ανεξάρτητα κέντρα αντιμετώπισης γυναικολογικού καρκίνου για την πληρέστερη κατανόηση του προβλήματος.

Στη βιβλιογραφία υπάρχουν αρκετές αναφορές για τον καρκίνο του γυναικείου αναπαραγωγικού συστήματος καθώς και τρόποι αντιμετώπισής του από ιατρική σκοπιά. Δεν έχουμε βρει όμως έρευνες που να ασχολούνται με την εύρεση και αναγνώριση του γυναικολογικού καρκίνου εισάγοντας τη χρήση των υπολογιστών στο τομέα αυτό [4], [7]-[9]. Η έρευνά μας είναι η βάση για την αρχή εφαρμογής νέων τεχνολογιών στην επεξεργασία εικόνας γυναικολογικού καρκίνου που θα δώσει σε άλλους ερευνητές τη δυνατότητα νέων εφαρμογών στον τομέα αυτό.

Στόχος της εν λόγω έρευνας είναι να αναγνωρίσει ύποπτες περιοχές καρκίνου και να τις διαχωρίσει από τις φυσιολογικές περιοχές. Επίσης με τη χρήση νέων τεχνολογιών στην επεξεργασία εικόνας, θα βοηθήσει το γιατρό στην αντιμετώπιση δύσκολων περιπτώσεων γυναικολογικού καρκίνου και θα αυξήσει σημαντικά τη διαγνωστική ακρίβεια αναγνώρισης και διαχωρισμού περιπτώσεων γυναικολογικού καρκίνου αλλά και άλλου είδους καρκίνων στο ανθρώπινο σώμα.

55

1.6 ΑΝΑΦΟΡΕΣ

- [1] Putz R., Pabst R., Sobotta, Άτλας Ανατομικής του Ανθρώπου, Γερμανία, 1993.
- [2] Μιχαλάς Σ.Π., Επιτομή Μαιευτική και Γυναικολογικά, Επιστημονικές Εκδόσεις Παρισιανού Α.Ε., Αθήνα, 2000.
- [3] Stevens A., Lowe J., Ιστολογία του ανθρώπου, UK, 1997.
- [4] Bajzak K.I., Winer W.K., Lyons T.L., Transvaginal hydrolaparoscopy, a new technique for pelvic assessment, J Am Assoc Gynecol Laparosc 7: 562-5, 2000.
- [5] W.B. Saunders Company, Human Pathology, vol 28, no. 1, Jan 1997.
- [6] Jaroslav F., Parker W., Surrey M., et al., Management of ovarian masses, Journal of Reproductive Medicine July 1992; 37: 559-606.
- [7] Albini S., Benadiva C., Haverly K., et al., Management of Benign Ovarian Cystic Teratomas: Laparoscopy Compared With Laparotomy, The Journal of the American Association of Gynecologic Laparoscopists, 1994 May, 1(3):219-22.
- [8] Mais V., Ajossa S., Piras B., et al., Treatment of Nonendometriotric Benign Adnexal Cysts:
 A Randomized Comparison of Laparoscopy and Laparotomy, Obstetrics and Gynecology; 86: 770-73, 1995.
- [9] Parker W., Berek J., Management of selected cystic adnexal masses in postmenopausal women by operative laparoscopy: A pilot study, Am J Obstet Gynecol, 163: 1574-77, 1990.
- [10] Canis M., Mage G., Pouly J., et al., Laparoscopic Diagnosis of Adnexal Cistyc Masses: A 12-Year Experience With Long-Term Follow-Up, Obstetrics and Gynecology, 83: 707-12, May 1994.
- [11] Sainz de la Cuesta R., Goff B., Fuller A., et al. Prognostic Importance of Intraoperative Rupture of Malignant Ovarian Epithelial Neoplasms, Obstetrics and Gynecology, 84: 1-6, July 1994.
- [12] Mann W., Reich H., Laparoscopic Adnexectomy in Postmenopausal Women, The Journal of Reproductive Medicine, 37: 254-56, March 1992.
- [13] Sassone A.M., Timor-Tritsch I., Artner A., et al. Transvaginal Sonographic Characterizacion of Ovarian Disease: Evaluation of a New Scoring System to Predict Ovarian Malignancy, Obstetrics and Gynecology, 78: 70-6, July 1991.
- [14] Howard F., Surgical Management of Benign Cystic Teratoma: Laparoscopy Versus Laparotomy, Journal of Reproductive Medicin, 40: 495-99, 1995.

Ενδοσκοπική Μέθοδος

2.1 ΕιΣΑΓΩΓΗ

Σε αυτό το κεφάλαιο θα περιγράψουμε τις δύο μεθόδους ενδοσκόπησης: λαπαροσκόπηση και υστεροσκόπηση. Οι δύο αυτές μέθοδοι παρατήρησης των εσωτερικών οργάνων του ανθρωπίνου σώματος είναι συγγενικές ως προς την ιατρική προσέγγιση της επισκόπησης των οργάνων. Οι διαφορές που παρατηρούνται είναι στα διαφορετικά όργανα παρατήρησης και επέμβασης. Για παράδειγμα, στη λαπαροσκόπηση το τηλεσκόπιο παρατήρησης έχει διάμετρο 5 mm και στην υστεροσκόπηση 3 mm.

Το ιατρικό πρωτόκολλο και για τις δύο μεθόδους είναι το ίδιο, δηλαδή ο γιατρός αναγνωρίζει την ανατομία του υποεξέταση οργάνου σε σχέση με τα υπόλοιπα όργανα, παρατηρεί για ύποπτες περιοχές γυναικολογικού καρκίνου σε πανοραμική κατάσταση και όταν εντοπίσει τις περιοχές αυτές μεταφέρεται σε κοντινή κατάσταση παρατήρησης για να διαγνώσει το πρόβλημα.

Πιο κάτω θα παρουσιάσουμε την ενδοσκοπική μέθοδο, θα αναφέρουμε μερικά γενικά αλλά βασικά στοιχεία της μεθόδου και στη συνέχεια θα περιγράψουμε τη λαπαροσκοπική και υστεροσκοπική μέθοδο με τα αντίστοιχα εργαλεία που χρησιμοποιούνται.

2.2 ΕΝΔΟΣΚΟΠΙΚΗ ΜΕΘΟΔΟΣ

2.2.1 Геніка

Προσπάθειες για διεύρυνση του «εσωτερικού σκότους» του ορθού αναφέρονται από το 1700 π.χ., στην Αίγυπτο. Χρησιμοποίηση άκαμπτου σωλήνα για εξέταση του ορθού ασθενών με αιμορροΐδες δακτυλίου αναφέρεται και από τους αρχαίους Έλληνες και Ρωμαίους.

Η σχολή της νήσου Κω, την οποία διηύθυνε ο Ιπποκράτης (460-375 π. Χ.), έδωσε κάποιες περιγραφές ενδοσκόπησης, με τη χρήση πρωτογενών εργαλείων που είχαν επινοηθεί από τον ίδιο. Αρχέγονα ενδοσκοπικά εργαλεία έχουν ανακαλυφθεί και σε άλλες περιοχές καθώς και γραφές που αναφέρουν τη χρήση ενός σωλήνα δια μέσου του οποίου γινόταν επισκόπηση του κόλπου και του τραχήλου της μήτρας.

Σήμερα είναι παγκόσμια αποδεκτό ότι ο Βοζζίνι (1806) είναι ο πατέρας της σύγχρονης ενδοσκόπησης, μετά την κατασκευή ενός σύνθετου οργάνου, που το ονόμασε «Lichtleiter», για την επισκόπηση του τραχήλου της μήτρας.

Ο Pantaleoni (1869) θεωρείται ο πρώτος που εφάρμοσε την επισκόπηση της ενδομητριακής κοιλότητας (υστεροσκόπηση) σε γυναίκες, χρησιμοποιώντας ένα ουρηθροσκόπιο με φως κεριού και καθρέφτη. Έκτοτε η υστεροσκόπηση προχώρησε με τη βελτίωση των ενδοσκοπίων, προσθήκη φακών και φωτιστικών πηγών, ώστε μετά το 1900 να κυκλοφορήσει και σύγγραμμα στο Παρίσι (Σχήμα 14).

Πατέρας της ενδοσκόπησης θεωρείται ο Mikulitz, μαθητής του χειρουργού Billroth, που επινόησε ένα άκαμπτο όργανο με φωτισμό και κατάφερε να πραγματοποιήσει ενδοσκοπική εξέταση στον οισοφάγο και στο ανώτερο τμήμα του στομάχου. Το 1932 οι Wolf και Schindler επινοούν ένα διοπτρικό σύστημα μεταφοράς της οπτικής δέσμης φωτός και επιτυγχάνουν να ενδοσκοπήσουν ολόκληρο τον στόμαχο.

Η επισκόπηση των οργάνων της κοιλιάς (λαπαροσκόπηση) άρχισε από τον Kelling (1902) στη Γερμανία σε πειραματόζωα, και από τον Jacoaeus (1912) σε ασθενείς με ασκίτη, ενώ ήδη ο Von Ott (1901) ανέφερε την πρώτη κοιλιοσκόπηση, δηλαδή την αντίστοιχη της σημερινής λαπαροσκόπησης. Σήμερα η διεθνής βιβλιογραφία αναγνωρίζει τους τρεις παρά πάνω ερευνητές ως πατέρες της λαπαροσκόπησης.

Η ανάπτυξη της υστεροσκόπησης και λαπαροσκόπησης, μεταξύ 1910 και 1945 ήταν ραγδαία με βελτίωση των ενδοσκοπίων, ανάπτυξη φωτιστικών πηγών, εργαλείων μικροχειρουργικής μέσω διάτασης της ενδομητριακής κοιλότητας και της κοιλιάς, καταγραφή των ενδοσκοπικών εικόνων και τέλος με μικροεπεμβάσεις.

Το 1957 ήταν έτος σταθμός. Ο Hirscowitz χρησιμοποίησε οπτικές ίνες. Από τότε η εξέλιξη ήταν ταχεία και εντυπωσιακή. Σήμερα υπάρχουν πολύ λεπτά ενδοσκόπια (δ = 9 mm) με ευρύ αυλό εργασίας και με ηλεκτρονική μεταφορά της ενδοσκοπικής εικόνος σε οθόνη.

58

Σχήμα 14: Η εξέλιξη της υστεροσκόπησης (S. Duplay, S. Clado, 1898).

Μετά το 1945, η εξέλιξη της ενδοσκόπησης είναι πλέον αλματώδης (ανακάλυψη του ψυχρού φωτισμού, αυτόματα μηχανήματα παροχής CO₂ και υγρών μέσω διάτασης, χρήση των laser, ηλεκτροχειρουργικής, κάμερες, οθόνες, εκτυπωτές) (Σχήμα 15).

Σχήμα 15: Μηχανήματα διαγνωστικής και εγχειρητικής λαπαροσκόπησης.

Παράλληλα αναπτύχθηκε η χειρουργική ενδοσκόπηση τόσο στην υστεροσκόπηση όσο και στη λαπαροσκόπηση, ώστε να καταργηθούν έτσι πολλές κοιλιακές εγχειρήσεις, προς

όφελος των ασθενών με ελάχιστη παραμονή τους στο νοσοκομείο, μείωση του κόστους νοσηλείας, άριστη μετεγχειρητική πορεία και επάνοδο στην εργασία τους σε 5-7 μέρες [15], [16].

2.3 Opfana kai Mhxanhmata

2.3.1 MHXANHMATA IINEYNOIIEPITONAIOY

Πρόκειται για αυτόματο ειδικό μηχάνημα παροχής CO₂ για τη διάταση της περιτοναϊκής κοιλότητας με σύστημα ρυθμιζόμενης παροχής του αερίου και διατήρησης σταθερής της ενδοκοιλιακής πίεσης που έχει επιλεγεί, με ενδείξεις της συνολικής ποσότητας του αερίου που έχει χορηγηθεί, της πίεσης μέσα στην ενδοπεριτοναϊκή κοιλότητα και της ποσότητας του αερίου που διαθέτει η κεντρική φιάλη αερίου του μηχανήματος (Σχήμα 16).

Σχήμα 16: Μηχανήματα λαπαροσκόπησης.

2.3.2 ΕΝΔΟΣΚΟΠΙΑ

Είναι μεταλλικά άκαμπτα, διαμέτρου 10-12 mm, με οπτική γωνία 0^0 ή 35^0 αλλά και μικρότερης διαμέτρου (5 mm) ευθείας ή γωνίας 90^0 (Palmer). Εισάγονται στην περιτοναϊκή κοιλότητα μέσω trocart, που αποτελείται από ειδικό μεταλλικό περίβλημα, το οποίο διαθέτει εσωτερικά μεταλλικό έμβολο που καταλήγει σε τριγωνική αιχμή ή αιχμηρό κώνο και χρησιμεύει στο να τρυπήσει το πρόσθιο κοιλιακό τοίχωμα κάτω ακριβώς από τον ομφαλό. Κατόπιν αφαιρείται το έμβολο και στη θέση του εισέρχεται το λαπαροσκόπιο, μέσα στο περίβλημα που φέρει και υποδοχή για τη σύνδεση μέσω καλωδίου με το μηχάνημα παροχής του διοξειδίου του άνθρακα (CO₂).

2.3.3 Βελονές

Πρόκειται γα ειδικές αυτόματες βελόνες αποτελούμενες από δύο λεπτούς σωλήνες (βελόνες verres). Ο εξωτερικός σωλήνας καταλήγει μπροστά σε οξύ άκρο για να τρυπήσει το πρόσθιο κοιλιακό τοίχωμα και ο εσωτερικός καταλήγει σε αμβλύ άκρο με οπή, ώστε μόλις η βελόνα περάσει το πρόσθιο κοιλιακό τοίχωμα, ωθείται αυτόματα ο εσωτερικός σωλήνας και έτσι προστατεύονται τα ενδοκοιλιακά όργανα από τυχόν τραυματισμούς. Οι βελόνες (verres) έχουν τρία μεγέθη με μήκος 12, 15 και 17 cm ανάλογα με την υπερλίπωση του πρόσθιου κοιλιακού τοιχώματος που παρουσιάζει ο ασθενής.

2.3.4 ΦΩΤΕΙΝΗ ΠΗΓΗ

Η φωτεινή πηγή είναι μια ειδική πηγή φωτισμού χωρίς θερμαντικό στοιχείο (ψυχρός φωτισμός) ισχύος 250-500 watts αλογόνου ή ξένου και συνδέεται με το λαπαροσκόπιο με καλώδιο 1,5-2 m και μεταδίδει το φως μέσω οπτικών ινών ή συστήματος υγρών κρυστάλλων.

2.3.5 ΑΠΕΙΚΟΝΙΣΤΙΚΟΣ ΕΞΟΠΛΙΣΜΟΣ

Η βιντεοκάμερα είναι υψηλής τεχνολογίας με καλή ευκρίνεια και μεγάλης φωτεινότητας (μικρότερος φωτισμός 3 lux) και δυνατότητα ρύθμισης της ευκρίνειας της εικόνας ανάλογα με την απόσταση του προς έλεγχο ενδοκοιλιακού σπλάχνου. Τέτοιες ιατρικές κάμερες [22], [22], είναι των εταιρειών Sony, JVC, Hitachi, Olympus, Circon, Karl Storz, SNOWEN-PENCER κτλ.

Το καταγραφικό βίντεο είναι ένα υψηλής ευκρίνειας βίντεο, αυτόματο, ειδικών προδιαγραφών για ενδοσκόπηση και συνδέεται άμεσα με την κάμερα και την οθόνη. Η οθόνη έχει διαστάσεις τουλάχιστο 14 ιντσών με εξαιρετική ευκρίνεια και μεγάλη ανάλυση.

61

2.4 ΛΑΠΑΡΟΣΚΟΠΗΣΗ

Κατά τη διάρκεια μιας λαπαροσκοπικής εξέτασης ο γιατρός εισάγει το ειδικό τηλεσκόπιο – κάμερα (Σχήμα 17), στο σώμα της ασθενούς, και παρακολουθεί στην οθόνη τα διάφορα όργανα. Η λαπαροσκοπική κάμερα είναι συνδεδεμένη με την οθόνη του γιατρού και με ένα αναλογικό βίντεο, όπου εκεί καταγράφεται η λαπαροσκοπική εξέταση.

Κάμερα

Σχήμα 17: Λαπαροσκοπική εξέταση, κεφάλι κάμερας, χειρουργικά εργαλεία.

Η κλασσική αυτή μέθοδος επιτρέπει στο γιατρό να αποθηκεύει σε αναλογική ταινία όλη την εξέταση με σκοπό την παρακολούθηση και επεξήγησή της στην ασθενή καθώς και τη σύγκρισή της με άλλα παρόμοια περιστατικά.

Η επισκόπηση των οργάνων γίνεται με την εισαγωγή από την ομφαλική χώρα ειδικών ενδοσκοπικών (λαπαροσκόπια) συνδεδεμένων με φωτεινή πηγή, κάμερα, βίντεο, οθόνη, μετά τη διάταση της περιτοναϊκής κοιλότητας με CO₂ (3-4 λίτρα) από ειδικό μηχάνημα παροχής, μέσω ειδικής βελόνας verres (διαγνωστική λαπαροσκόπηση, Σχήμα 18). Είναι επίσης δυνατή η εκτέλεση διαφόρων χειρουργικών επεμβάσεων στην κάτω κοιλία, με τη χρήση ειδικών εργαλείων, δια δύο ή τριών συνήθως οπών στο πρόσθιο κοιλιακό τοίχωμα (χειρουργική λαπαροσκόπηση).

Τα όργανα που χρησιμοποιούνται στη λαπαροσκοπική μέθοδο αναλύονται πιο κάτω.

Λαπαροσκοπικές κάμερες τρίτης γενιάς επιτρέπουν την ψηφιακή αποθήκευση της εξέτασης σε ψηφιακούς δίσκους με επιλογές ανάκτησης της εικόνας σε πραγματικό χρόνο και γίνεται η εισαγωγή των δεδομένων στη βάση δεδομένων λαπαροσκοπικής εξέτασης.

Τα δεδομένα αυτά εισέρχονται στο σύστημα ανάλυσης λαπαροσκοπικών εικόνων και ο γιατρός επεξεργάζεται τις εικόνες, εξάγοντας χαρακτηριστικά υφής από δύο περιοχές ενδιαφέροντος (παθολογική και φυσιολογική) με σκοπό τη σύγκρισή τους, οπτικά και αριθμητικά, βάσει πάντα των χαρακτηριστικών υφής.

Σε ορισμένες περιπτώσεις δύσκολα περιστατικά γυναικολογικού καρκίνου μπορεί να προκαλέσουν λανθασμένη διάγνωση και πολλές φορές να γίνεται εκτεταμένη αφαίρεση όλων ή μέρος των γεννητικών οργάνων της γυναίκας με υποψία καρκίνου [17]-[19].

2.4.1 ΠΕΡΙΓΡΑΦΗ ΤΗΣ ΛΑΠΑΡΟΣΚΟΠΙΚΗΣ ΕΞΕΤΑΣΗΣ

Η λαπαροσκοπική επέμβαση αποτελείται από τα εξής μηχανήματα: μια ιατρική οθόνη, μια λαπαροσκοπική κάμερα, πηγή φωτός και ένα μηχάνημα ελέγχου της πίεσης του φυσιολογικού ορού.

Σε μερικές περιπτώσεις στη θέση του φυσιολογικού ορού χρησιμοποιούν διοξείδιο του άνθρακα. Στο Σχήμα 18 παρουσιάζουμε το μηχανισμό λαπαροσκοπικής εξέτασης. Στην εικόνα φαίνεται η οθόνη, η λαπαροσκοπική κάμερα, η μονάδα παραγωγής φωτός, ο μηχανισμός της κάμερας και η μονάδα ελέγχου φυσιολογικού ορού.

Ο γιατρός αρχίζει την επέμβαση από την αναγνώριση της ανατομίας του οργάνου που παρατηρεί. Έπειτα όταν εντοπίσει την ύποπτη περιοχή ενδιαφέροντος αρχίζει την αναγνώριση της γύρω περιοχής σε πανοραμική λήψη. Όταν βεβαιωθεί ότι η περιοχή ενδιαφέροντος είναι ύποπτη βάσει της γύρω περιοχής, τότε παρατηρεί την περιοχή αυτή από κοντινό πλάνο. Τέλος, αφού όλες οι πληροφορίες για το όργανο και για την περιοχή ενδιαφέροντος έχουν συλλεγεί, τότε ακολουθεί η επέμβαση εφόσον χρειάζεται. Γενικά αυτή η τεχνική είναι πολύ διαδεδομένη δεδομένου ότι ο γιατρός αποκτά πολύ εύκολα και γρήγορα όλες τις πληροφορίες που χρειάζεται για τη διάγνωση αλλά και για τη μετέπειτα επέμβαση.

Το ολοκληρωμένο σύστημα έχει ως στόχο την υποστήριξη διάγνωσης γυναικολογικού καρκίνου με αποτέλεσμα την αύξηση της διαγνωστικής ακρίβειας σε δύσκολες περιπτώσεις εμφάνισης γυναικολογικού καρκίνου.

63

2.5 ΥΣΤΕΡΟΣΚΟΠΗΣΗ

Η υστεροσκόπηση είναι η μέθοδος άμεσης επισκόπησης της ενδοτραχηλικής και ενδομητριακής κοιλότητας με ειδικά οπτικά όργανα (ενδοσκόπια), μετά από διάτασή της με αέρια (CO₂) ή υγρά (NaCl 0,9%, Δεξτρόζη 5%, Γλυκίνη 1,5% και δεξτράνη), τα οποία διοχετεύονται στη μήτρα από ειδικά μηχανήματα (Διαγνωστική Υστεροσκόπηση) αλλά και εκτέλεση διαφόρων χειρουργικών επεμβάσεων στην ενδομητριακή κοιλότητα με χρήση μεταλλικών εργαλείων μικροχειρουργικής, μηχανημάτων παροχής μονοπολικού ηλεκτρικού ρεύματος και ακτίνων laser (Χειρουργική Υστεροσκόπηση).

Η διαγνωστική υστεροσκόπηση είναι μια επέμβαση ρουτίνας που μπορεί να γίνει χωρίς ολική ή ακόμα και τοπική αναισθησία. Πραγματοποιείται ακόμα και στο χώρο εξέτασης του ιατρείου και ως στόχο έχει την καλύτερη παρακολούθηση των αναπαραγωγικών οργάνων της γυναίκας. Σε αντίθεση με την λαπαροσκοπική εξέταση η υστεροσκοπική επέμβαση χρησιμοποιεί μικρότερη διάμετρο εργαλείων (τηλεσκόπιο 2,8-3,5 mm) και η ασθενής εξέρχεται του χώρου εξέτασης αμέσως μετά.

Στο Σχήμα 19 φαίνεται μια υστεροσκοπική εξέταση και τα όργανα που εξετάζονται.

Σχήμα 19: Υστεροσκοπική εξέταση και τα όργανα προς παρακολούθηση της ενδομητριακής κοιλότητας.

Σε αντίθεση με την εξέταση με υπερήχους η υστεροσκοπική εξέταση προσφέρει την ευκαιρία στο γιατρό για ολική και άμεση παρακολούθηση των οργάνων της γυναίκας. Συνήθως η υστεροσκοπική εξέταση πραγματοποιείται για εξέταση του ενδομητρίου, της μήτρας καθώς και της παρακολούθησης εμβρύων για τυχόν ανωμαλίες που μπορεί να προκύψουν. Είναι περισσότερο διαγνωστική μέθοδος και όχι επεμβατική αλλά σε πολλές περιπτώσεις ο γιατρός μπορεί να πραγματοποιήσει μικροεπεμβάσεις στο ενδομήτριο όργανο.

Σχήμα 20: Υπέρηχος πιθανού πολύποδα στο ενδομήτριο στα σημεία Χ.

Σχήμα 21: Ο ίδιος πολύποδας όπως φαίνεται στην υστεροσκόπηση.

Στο Σχήμα 20 φαίνεται μια εξέταση υπερήχων του γυναικείου αναπαραγωγικού συστήματος όπου παρουσιάζεται μια ένδειξη για πιθανό πολύποδα στο τοίχος του ενδομητρίου μέσα στη μητρική κοιλότητα. Δεν φαίνεται καθαρά όμως με αυτή την εξέταση και ο γιατρός προχωρεί στην υστεροσκοπική εξέταση έτσι ώστε να προσδιορίσει το μέγεθος του προβλήματος καθώς και να βεβαιωθεί με ιστοπαθολογική εξέταση της περιοχής ότι πρόκειται για ένα φυσιολογικό ή παθολογικό πολύποδα (Σχήμα 21).

Η υστεροσκοπική εξέταση παρουσιάζει μεγάλο ενδιαφέρον δεδομένου ότι οι υπό εξέταση περιοχές που βρίσκονται στο ενδομήτριο είναι περιορισμένες, κατά συνέπεια οι συνθήκες σκόπευσης σε γενικό βαθμό είναι οι ίδιες στις περισσότερες περιπτώσεις. Η ενδομητρική κοιλότητα έχει μέσο όρο όγκου 3 cm³ με αποτέλεσμα το τηλεσκόπιο κατά τη διάρκεια της επέμβασης να μπορεί να μετακινηθεί ελάχιστα για να παρθούν οι πανοραμικές και οι κοντινές εικόνες λήψης. Έτσι ο γιατρός αρχίζει την εξέταση της κοιλότητας του ενδομητρίου σε μακρινό πλάνο και μετά όταν εντοπίσει ύποπτες περιοχές τις παρατηρεί σε κοντινό πλάνο. Η μέγιστη διαφορά των δύο λήψεων είναι 3 cm. Τέλος, αφού όλες οι πληροφορίες για το όργανο και για την περιοχή ενδιαφέροντος έχουν συλλεγεί, τότε ακολουθεί η επέμβαση εφόσον χρειάζεται.

Συγκρινόμενες οι δύο εξετάσεις βλέπουμε ότι η υστεροσκοπική εξέταση παρουσιάζει πολλά πλεονεκτήματα έναντι της εξέτασης με υπερήχους λόγω της αμεσότητας με την οποία παρουσιάζεται το πρόβλημα Σχήμα 22. Σήμερα η διαγνωστική υστεροσκόπηση παρουσιάζει μεγάλη αύξηση γιατί θεωρείται μια ανώδυνη και λεπτομερής εξέταση που μπορεί να καταγράψει και να εντοπίσει με ακρίβεια το πρόβλημα. Έχουν κατασκευαστεί ειδικά μηχανήματα υστεροσκόπησης γραφείου και σύντομα θα χρησιμοποιείται ως εξέταση ρουτίνας αντικαθιστώντας την εξέταση υπερήχων.

Ultrasound of fibroid (red) in endometrial cavity.

(α)

MRI showing multiple fibroids (arrows)

View of uterus through a hysteroscope (γ)

Σχήμα 22: Παρουσιάζει την ίδια παθολογική περιοχή ενδομητρίου με τρεις διαφορετικούς τρόπους απεικόνισης. Με χρήση υπερήχων, MRI και με υστεροσκόπηση. Η εικόνα (γ) παρουσιάζει άμεσα το πρόβλημα στο γιατρό και θεωρείται το μέλλον για την αντιμετώπιση παρόμοιων περιστατικών. Το σύστημα έχει ως στόχο την εφαρμογή του σε αυτές τις περιπτώσεις γυναικολογικού καρκίνου, είτε κατά τη διάρκεια της εξέτασης είτε μετά, έτσι ώστε να αυξηθεί η διαγνωστική ακρίβεια της παρακολούθησης των περιστατικών.

2.6 Oppana kai mhxanhmata

2.6.1 ΗΛΕΚΤΡΙΚΟ ΜΗΧΑΝΗΜΑ ΑΕΡΙΩΝ ΗΥSTEROMAT

Τα μηχανήματα της υστεροσκόπησης είναι το ηλεκτρικό μηχάνημα παροχής αερίου μέσω (CO₂) διάτασης της ενδομητριακής κοιλότητας, με προρρυθμισμένη παροχή 70 ml/1[°] και πίεση μικρότερη από 150 mmHg για τη διαγνωστική υστεροσκόπηση και παροχή υγρού μέσω διάτασης της κοιλότητας με πίεση μέχρι 150 mmHg και παροχή υγρού από 50-400 ml/1[°] για τη χειρουργική υστεροσκόπηση με στόχο τη διάταση του ενδομητρίου.

Ειδική φωτιστική πηγή χωρίς θερμαντικό στοιχείο (ψυχρός φωτισμός) αλογόνου 250-500 watts ή ξένου 300 watts και αγωγοί μετάδοσης του φωτός, οπτικών ινών ή υγρών κρυστάλλων, που προσαρμόζονται στη φωτιστική πηγή και στο υστεροσκόπιο για τη μετάδοση του φωτός μέσα στην ενδομητριακή κοιλότητα (Σχήμα 23).

Σχήμα 23: Μηχάνημα υστεροσκόπησης. (α) Ολόκληρο το σύστημα υστεροσκόπησης και
 (β) απεικόνιση της κάμερας, την πηγή φωτός και το ρυθμιστή αερίων ή υγρών.

2.6.2 ΕΝΔΟΣΚΟΠΙΑ (ΥΣΤΕΡΟΣΚΟΠΙΑ)

Τα ενδοσκόπια είναι μεταλλικά, άκαμπτα για την οπτική αντίληψη της ενδομητρικής κοιλότητας διαμέτρου 2,77 mm και οπτικής γωνίας 0⁰ μέχρι 25⁰ για τη διαγνωστική υστεροσκόπηση και 4 mm για τη χειρουργική υστεροσκόπηση (Σχήμα 24). Εκτός από τα παραπάνω υστεροσκόπια, που επικρατούν στην Ευρώπη και στην Αμερική υπάρχουν και τα εύκαμπτα υστεροσκόπια μεγαλύτερης διαμέτρου (συνήθως 4-5,5 mm) που λειτουργούν στην Ιαπωνία και πολύ λίγο στη Γαλλία και επίσης το ειδικό μεταλλικό μικροκολποϋστεροσκόπιο του Γάλλου Hamou διαμέτρου 4 mm που διαθέτει 4 μεγεθύνσεις x1, x20, x60 και x150.

Σχήμα 24: Αναδιπλούμενα εργαλεία ενδοσκόπησης.

Τέλος υπάρχει το εξ επαφής μεταλλικό υστεροσκόπιο του Marleschki (1996) διαμέτρου 4 mm που λειτούργησε στην Ανατολική Γερμανία και το φορητό υστεροσκόπιο του Parent που αυτόνομα διαθέτει παροχή CO₂ και δικό του φωτισμό, ώστε να μπορεί να μεταφέρεται οπουδήποτε, χωρίς την ανάγκη ύπαρξης ειδικής ομάδας υστεροσκόπησης.

2.6.3 Εργαλεία Μικροχειρουργικής

Τα εργαλεία μικροχειρουργικής είναι μεταλλικά που διέρχονται από το δίαυλο ή τους διαύλους του μεταλλικού περιβλήματος των υστεροσκοπίων, όπως ψαλίδια, λαβίδες, πολυπαγρές και λαβίδες σύλληψης IUD (Σχήμα 25).

Επίσης υπάρχουν διαθερμικές μονοπολικές ισχύος 120-150 watts και διπολικές όπως και μηχανήματα εκπομπής ακτίνων Nd-Yag laser.

Σχήμα 25: Εργαλεία μικροχειρουργικής καθώς και ένα τηλεσκόπιο με το εξωτερικό περίβλημα.

2.6.4 **O**OONH

Βιντεοκάμερα υψηλής ευκρίνειας και φωτεινότητας 3-5 lux, βίντεο καταγραφικό, οθόνη 14'' και άνω, καθώς και εκτυπωτής για την εκτύπωση των φωτογραφιών που λαμβάνονται από την ενδομητριακή κοιλότητα αποτελούν το βασικό εξοπλισμό ενδοσκόπησης. Η οθόνη είναι το βασικό εξάρτημα απεικόνισης των εσωτερικών οργάνων του

ασθενή και παρουσιάζει χαρακτηριστικά υψηλής ευκρίνειας και άριστης απεικόνισης του αναλογικού σήματος.

2.6.5 Κολποσκοπήση / Υστεροσκοπήση ιατρείου

Με την ανάπτυξη της τεχνολογίας και της φαρμακευτικής αγωγής η κολποσκόπηση / υστεροσκόπηση πραγματοποιείται ως εξέταση ρουτίνας και μάλιστα σε ειδικό χώρο στο ιατρείο του γιατρού (Σχήμα 26). Όπως έχουμε αναλύσει και πιο πάνω είναι μια εύκολη διαγνωστική επέμβαση με πολύ καλά αποτελέσματα. Πλεονέκτημά της είναι η αμεσότητα παρακολούθησης των οργάνων της ασθενούς και η αύξηση της διαγνωστικής ακρίβειας [24]-[25].

(α)

Σχήμα 26: Μηχανήματα (α)-(β) κολποσκόπησης ιατρείου και (γ) υστεροσκόπησης ιατρείου. Με την ανάπτυξη της τεχνολογίας η γυναικολογική εξέταση μπορεί να γίνεται σε περιβάλλον γραφείου και χωρίς τις επιπλοκές που μπορεί να δημιουργηθούν με τις κλασσικές μεθόδους εξέτασης. Τέλος η άμεση αυτή εξέταση, αυξάνει τη διαγνωστική ακρίβεια του γιατρού με την άμεση παρακολούθηση του εξεταζόμενου ιστού.

2.7 ΣΥΜΠΕΡΑΣΜΑΤΑ

Σε αυτό το κεφάλαιο παρουσιάσαμε τις βασικές αρχές της λαπαροσκόπησης και υστεροσκόπησης. Παρατηρήσαμε τις διαφορές που χαρακτηρίζουν τις δύο μεθόδους καθώς και τα διαφορετικά όργανα που χρησιμοποιούνται κατά τη διάρκεια της επέμβασης για τη μελέτη του γυναικολογικού καρκίνου. Στόχος μας είναι η κατανόηση των δύο αυτών μεθόδων στην αντιμετώπιση του γυναικολογικού καρκίνου.

Στο σημείο αυτό θα πρέπει να σημειώσουμε ότι δεν υπάρχουν ιατρικά πρωτόκολλα διεξαγωγής της λαπαροσκοπικής / υστεροσκοπικής εξέτασης [26] και [27]. Δηλαδή δεν υπάρχουν δημοσιευμένα ή σειρά εφαρμογής της λαπαροσκοπικής / υστεροσκοπικής εξέτασης του εκάστοτε γιατρού από την έναρξη της εξέτασης ή επέμβασης μέχρι την αναγνώριση ή τη θεραπεία του περιστατικού. Ιατρικά πρωτόκολλα έχουν δημοσιευθεί από την American Society for Gastrointestinal Endoscopy [26] και περιγράφουν βήμα προς βήμα τη μέθοδο για γαστροενδοσκόπηση βοηθώντας έτσι τους γιατρούς στην καλύτερη παρατήρηση και θεραπεία των περιπτώσεων αυτών. Προσπάθειες όμως γίνονται και στο τομέα της λαπαροσκόπησης / υστεροσκόπησης από την European Society for Gynaecological Endoscopy [27] και σύντομα θα παρουσιάσουν το ιατρικό πρωτόκολλο των εν λόγω επεμβάσεων.
2.8 ΑΝΑΦΟΡΕΣ

- [15] Παπαδημητρίου Κ., Γενική παθολογία και Παθολογική Ανατομική, Ιατρικές Εκδόσεις Λίτσας, Αθήνα, 1998.
- [16] Μιχαλάς Σ. Π., Επιτομή Μαιευτική και Γυναικολογικά, Επιστημονικές Εκδόσεις Παρισίανου Α.Ε., Αθήνα, 2000.
- [17] Atkinson C.J., Peel V.J., Transforming a hospital through growing, not building, an electronic patient record system, PubMed, Web Site: <u>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi</u>.
- [18] Weinberg D.S., Allaert F.A., Dusserre P., Drouot F., Retailliau B., Welch W.R., Longtine J., Brodsky G., Folkerth R., Doolittle M., Telepathology diagnosis by means of digital still images: an international validation study, PubMed, Web Site: <u>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi</u>.
- [19] McNeill K.M., The Impact of Communications Technology on Medicine, Presentation 165, Invited Symposium: Applying Information Technology in Medicine, Web Site: <u>http://www.uclm.es/inabis2000/symposia/files/165/index.html</u>.
- [20] Marchevsky A.M., Dulbandzhyan R., Seely K., Carey S., Duncan R.G., Storage and Distribution of Pathology Digital Images Using Integrated Web-Based Viewing Systems, Archives of Pathology and Laboratory Medicine: 126, No. 5, pp. 533-539, PubMed, Web Site: <u>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi</u>.
- [21] Braga M., Vignali A., Gianotti L., Zuliani W., Radaelli G., Gruarin P., Dellabona P., Laparoscopic versus open colorectal surgery: a randomized trial on short-term outcome, Ann Surg. 236: 759-766, 2002.
- [22] ACMI Corporation http://www.acmicorp.com
- [23] Pinnacle Systems http://www.pinnaclesys.com
- [24] Lacy A., Valdecasas G., Delgado J.C., Castells S., Taurà A., Piqué P., Visa J.M, Laparoscopyassisted colectomy versus open colectomy for treatment of nonmetastatic colon cancer: a randomised trial, Lancet 359: 2224-2229, 2002.
- [25] Lezoche E., Feliciotti F., Paganini A.M., Guerrieri M., Campagnacci R., Sanctis A., Laparoscopic colonic resection versus open surgery: a prospective nonrandomized study on 310 unselected cases, Hepatogastroenterology, 47: 697-708, 2000.
- [26] American Society for Gastrointestinal Endoscopy http://www.asge.org
- [27] European Society for Gynaecological Endoscopy http://www.esge.org/

Απαιτήσεις και Αρχιτεκτονική του συστήματος

3.1 ΕιΣΑΓΩΓΗ

Σε αυτό το κεφάλαιο θα αναφερθούμε στην αρχιτεκτονική του συστήματος που προτείνουμε καθώς και τις ανάγκες των χρηστών που εφαρμόζουν το εν λόγω σύστημα. Επίσης θα αναφερθούμε στην ιατρική βάση δεδομένων που έχει δημιουργηθεί για το σκοπό αυτό. Δηλαδή την καταγραφή όλων των περιστατικών γυναικολογικού καρκίνου για την καλύτερη αντιμετώπιση του προβλήματος.

Η αρχιτεκτονική του συστήματος ασχολείται με την περιγραφή των μηχανημάτων και του λογισμικού υλικού για την επεξεργασία των ιατρικών εικόνων καθώς και τις απαιτήσεις του συστήματος για την πληρέστερη καταγραφή όλων των παραγόντων του συστήματος.

3.2 ΑΠΑΙΤΗΣΕΙΣ ΤΟΥ ΣΥΣΤΗΜΑΤΟΣ ΚΑΙ ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΤΟΥ ΣΥΣΤΗΜΑΤΟΣ

3.2.1 ΕιΣΑΓΩΓΗ

Η έρευνά μας έχει ως στόχο την υποστήριξη διάγνωσης γυναικολογικού καρκίνου κατά τη διάρκεια της λαπαροσκοπικής / υστεροσκοπικής εξέτασης μέσω της επεξεργασίας εικόνας. Η ανίχνευση ύποπτων περιοχών καρκίνου σε δύσκολα περιστατικά βασίζεται κυρίως στην εμπειρία του γιατρού. Πολλές φορές ύποπτες περιοχές αγνοούνται με αποτέλεσμα τη μην έγκαιρη διάγνωση του γυναικολογικού καρκίνου. Η παρούσα μελέτη με την ολοκλήρωση του συστήματος, μπορεί να βοηθήσει στην ανίχνευση ύποπτων περιοχών γυναικολογικού καρκίνου και να προσφέρει ένα δυνατό εργαλείο στα χέρια του γιατρού-χρήστη. Επίσης η έρευνα αυτή μπορεί να υποστηρίζει σε πραγματικό χρόνο την αύξηση της διαγνωστικής ακρίβειας του περιστατικού γυναικολογικού καρκίνου κατά τη διάρκεια μιας λαπαροσκοπικής / υστεροσκοπικής επέμβασης.

Τέλος το σύστημά μας μπορεί να υποστηρίξει την εξ αποστάσεως διάγνωση σε δύσκολες περιπτώσεις ανίχνευσης γυναικολογικού καρκίνου όπου η δεύτερη γνώμη μπορεί να είναι αναγκαία για διφορούμενες περιοχές ενδιαφέροντος. Αυτό όμως έχει την απαίτηση να βρίσκεται και δεύτερος γιατρός στο χώρο του χειρουργείου, πράγμα αδύνατο να

75

πραγματοποιηθεί σε όλες τις επεμβάσεις. Η μεταφορά εικόνων και βίντεο από το χώρο του χειρουργείου στον εξ αποστάσεως γιατρό και η αμφίδρομη επικοινωνία των δύο γιατρών θα αυξήσει τη διαγνωστική ακρίβεια και την καλύτερη αντιμετώπιση του περιστατικού. Ο γιατρός που πραγματοποιεί την επέμβαση μπορεί να ζητήσει μια δεύτερη γνώμη στέλλοντας τις πληροφορίες μέσω ενσύρματης ή ασύρματης τηλεφωνικής γραμμής στον ειδικό γιατρό που βρίσκεται σε απόσταση από το χώρο του χειρουργείου. Όπως έχουμε αναφέρει η ανάλυση των λαπαροσκοπικών / υστεροσκοπικών εικόνων μπορεί να γίνεται και μετά τη διαγνωστική επέμβαση έτσι ώστε να παρθούν πιο σωστά οι αποφάσεις για την περαιτέρω αντιμετώπιση του περιστατικού.

3.2.2 ПЕРІГРАФН ХРНΣТН

Στην έρευνά μας έχουμε εισαγάγει τρεις κατηγορίες χρηστών. Κάθε χρήστης εξειδικεύεται σε διαφορετικό πεδίο. Έχουμε το γυναικολόγο γιατρό ο οποίος βρίσκεται στο χώρο του χειρουργείου με την ασθενή και ο οποίος εξειδικεύεται στις λαπαροσκοπικές και υστεροσκοπικές επεμβάσεις γυναικολογικού καρκίνου. Στη δεύτερη κατηγορία είναι ο δεύτερος γυναικολόγος ο οποίος βρίσκεται εκτός του χειρουργείου και υποστηρίζει εξ αποστάσεως το περιστατικό και στην τρίτη κατηγορία είναι ο ιστοπαθολόγος γιατρός με μεγάλη εμπειρία στην αντιμετώπιση και πρόληψη του γυναικολογικού καρκίνου και γενικά του προβλήματος του καρκίνου. Σκοπός του είναι η ιστοπαθολογική εξέταση δείγματος από επεμβάσεις που πραγματοποιούνται για την ανάλυση και αξιολόγηση των δειγμάτων.

3.3 ΑΠΑΙΤΗΣΕΙΣ ΧΡΗΣΤΗ

Η ανάλυση των προδιαγραφών ασχολείται με τον καθορισμό του "τι πρέπει να κατασκευαστεί" συνυπολογίζοντας όλες τις σχετικές τεχνικές, οργανωτικές, πολιτικές, διαχειριστικές και οικονομικές πλευρές. Στη διαδικασία προσδιορισμού των απαιτήσεων χρηστών, αντικατοπτρίζονται οι γνώμες και οι απαιτήσεις όλων των ανθρώπων που σχετίζονται με τη χρήση του συστήματος. Το αποτέλεσμα αυτής της διαδικασίας είναι το κείμενο με τις απαιτήσεις του χρήστη, το οποίο περιέχει ακριβείς πληροφορίες για το τι και το πώς θα κάνει το προτεινόμενο σύστημα. Είναι κατανοητό ότι όσο πιο πλήρες και οκριβές είναι το κείμενο, τόσο πιο ακριβές και πλήρες θα είναι το σχέδιο του συστήματος, και ότι η λειτουργία του συστήματος θα είναι πιο κοντά στις ανάγκες του χρήστη. Για να προσδιορίσουμε τις προδιαγραφές του προτεινόμενου συστήματος χρησιμοποιήσαμε τυπικές διαδικασίες όπως εστιασμένες ομάδες χρηστών, ερωτηματολόγια και συνεντεύξεις. Το αποτέλεσμα αυτής της μελέτης παρουσιάζεται πιο κάτω.

76

3.3.1 ΑΝΑΓΚΕΣ ΧΡΗΣΤΗ

Ο καρκίνος των γυναικείων γεννητικών οργάνων περιλαμβάνει τα καρκινώματα της ωοθήκης, του ενδομητρίου, του σώματος της μήτρας, του τραχήλου της μήτρας, του κόλπου και του αιδοίου. Η διάγνωση, ειδικά στα αρχικά στάδια της νόσου, είναι δύσκολη κάνοντας έτσι τη διαχείριση της ασθενούς δύσκολη και συνάμα προκλητική. Επαναλαμβανόμενες προσπάθειες σε προεγχειρητικό επίπεδο διάγνωσης με τη χρησιμοποίηση απεικονιστικών μεθόδων, π.χ. υπερήχων, CT, MRI καθώς επίσης και με τη χρησιμοποίηση προγνωστικών παραγόντων για τον προσδιορισμό γυναικολογικού καρκίνου (tumor marker serology), δεν έχουν βελτιώσει τη διαγνωστική ικανότητα αυτής της ομάδας των καρκίνων. Αυτό έχει ως αποτέλεσμα, ότι στις περισσότερες περιπτώσεις η θεραπεία να βασίζεται στη μετεγχειρητική ιστοπαθολογική διάγνωση. Με την ενδοσκοπική μέθοδο η διάγνωση γίνεται άμεσα και παρέχει τη δυνατότητα να παρατηρούμε την ύποπτη περιοχή και να πάρουμε βιοψία εάν χρειάζεται.

Η νεαρή ηλικία των ασθενών καθώς και η μη ολοκλήρωση της οικογένειάς τους (τεκνοποίηση) είναι απαγορευτικοί παράγοντες στο να προχωρήσει ένας γυναικολόγος σε εκτεταμένη αφαίρεση όλων ή μέρος των γεννητικών οργάνων σε μια γυναίκα με υποψία για καρκίνο. Η προσθήκη άμεσης μακροβιοψίας – ένα σύστημα όπου θα λαμβάνεται υπόψη ο κίνδυνος εμφάνισης κακοήθειας και η ανάλυση της ύποπτης για καρκίνο εικόνας που βλέπουμε θα αυξήσει τα αληθώς θετικά και θα μειώσει τα ψευδώς αρνητικά αποτελέσματα της κλινικής εκτίμησης αυξάνοντας τη διαγνωστική ακρίβεια.

3.3.2 ΧΩΡΟΣ ΧΕΙΡΟΥΡΓΕΙΟΥ

Οι απαιτήσεις στο χώρο του χειρουργείου έχουν ως ακολούθως:

- Προσωπικό: Ένας ή δύο γυναικολόγοι γιατροί και παραϊατρικό προσωπικό.
- Ιατρικός εξοπλισμός: Ιατρική κάμερα με όλα τα εξαρτήματά της, λαπαροσκοπικά ψαλίδια και άλλα χειρουργικά όργανα.
- Εξοπλισμός: Ένας φορητός υπολογιστής ή ένας κανονικός υπολογιστής γραφείου,
 ένα φορητό ή ενσωματωμένο frame grabber, modem, με το κατάλληλο λογισμικό,
 και ειδική εκπαίδευση του ιατρικού προσωπικού για τη χρήση του συστήματος.
- Η συσκευή διάγνωσης: Με δυνατότητες συλλογής των στοιχείων του ασθενή όπως λαπαροσκοπικές εικόνες και βίντεο του ασθενή κατά τη διάρκεια της επέμβασης. Εξαγωγή χαρακτηριστικών υφής, στατιστική ανάλυση και δυνατότητα αναφοράς ποσοστού για χαρακτηρισμό της υπό εξέταση περιοχής ενδιαφέροντος.

- Φωνητική επικοινωνία: Ο χειρούργος γιατρός να μπορεί να επικοινωνεί με τον άλλο συνεργαζόμενο σταθμό, έχοντας ελεύθερα τα χέρια του.
- Επικοινωνία: Θα χρησιμοποιήσουμε POTS, ISDN, και DSL συνδέσεις για την αποστολή και λήψη ιατρικών εικόνων καθώς και αποστολή δεδομένων φωνής.

3.3.3 Χωρός σταθμού Β' υποστηριθής διαγνώσης

Οι απαιτήσεις στο χώρο του σταθμού Β έχουν ως ακολούθως:

- Προσωπικό: Ένας γυναικολόγος γιατρός.
- Εξοπλισμός: Ένας φορητός υπολογιστής ή κανονικός υπολογιστής γραφείου, modem με το κατάλληλο λογισμικό, και ειδική εκπαίδευση του ιατρικού προσωπικού για τη χρήση του εξοπλισμού.
- Φωνητική επικοινωνία: Πρέπει να υπάρχει δυνατότητα στο σύστημά μας για επικοινωνία με το σταθμό βάσης.
- Επικοινωνία: Θα χρησιμοποιήσουμε POTS, ISDN, και DSL συνδέσεις για την αποστολή και λήψη ιατρικών εικόνων καθώς και αποστολή δεδομένων φωνής.

3.3.4 ΑΠΑΙΤΗΣΕΙΣ ΓΙΑ ΤΟ ΣΥΣΤΗΜΑ ΣΤΟ ΣΤΑΘΜΟ Α (ΧΕΙΡΟΥΡΓΕΙΟ)

Οι απαιτήσεις στο χώρο του σταθμού Α έχουν ως ακολούθως:

- Το σύστημα πρέπει να είναι εύκολο στη χρήση από τους γιατρούς και το παραϊατρικό προσωπικό.
- Το σύστημα πρέπει να παρέχει ελευθερία κινήσεων στους γιατρούς και το παραϊατρικό προσωπικό. Πρέπει δηλαδή να λειτουργεί με όσο το δυνατόν λιγότερη χρήση των χεριών.
- Το σύστημα πρέπει να είναι φιλικό με χρήστες άσχετους με υπολογιστές.
- Το σύστημα πρέπει να επιτρέπει φωνητική επικοινωνία διπλής κατεύθυνσης μεταξύ των δύο εμπλεκομένων φορέων (Χειρουργείο Α και Συμβουλευτικός σταθμός Β).
- Το σύστημα πρέπει να μπορεί να αποθηκεύει και να ταξινομεί ιατρικά δεδομένα όπως εικόνες, βίντεο και το ιατρικό ιστορικό του ασθενή.
- Το σύστημα πρέπει να έχει τη δυνατότητα αποθήκευσης και επεξεργασίας ιατρικής εικόνας και εξαγωγή χαρακτηριστικών υφής καθώς και άλλα αριθμητικά δεδομένα από την περιοχή ενδιαφέροντος.

3.3.5 ΑΠΑΙΤΗΣΕΙΣ ΓΙΑ ΤΗ ΣΥΜΒΟΥΛΕΥΤΙΚΗ ΜΟΝΑΔΑ ΤΟΥ ΣΤΑΘΜΟΥ Β

Οι απαιτήσεις της συμβουλευτικής μονάδας του σταθμού Β έχουν ως ακολούθως:

- Καταγραφή και μαγνητοσκόπηση όλων των επικοινωνιών και των στοιχείων που μεταδίδονται από τη μονάδα A (χειρουργείο).
- Το πεδίο χρήσης πρέπει να είναι φιλικό προς άσχετους χρήστες.
- Εργαλεία για διάγνωση βοηθούμενη από υπολογιστή (π.χ. επεξεργασία εικόνας, εξαγωγή χαρακτηριστικών υφής, ιστόγραμμα χρωμάτων και αριθμητικά δεδομένα).
- Πρόσβαση στη βάση δεδομένων για επιπρόσθετες πληροφορίες που αφορούν τον ασθενή.
- Οι πληροφορίες να είναι εμπιστευτικές / περιορισμένη πρόσβαση σε τρίτους.
- Ασφαλής λειτουργία.

Αν και οι παραπάνω απαιτήσεις είναι σε ολοκληρωμένη και επεξεργάσιμη μορφή, η διαδικασία της σχεδίασης και της υλοποίησης είναι μια διαδικασία αλληλεπίδρασης και οι χρήστες εμπλέκονται σε όλα τα στάδια. Η παρέμβαση των χρηστών στον καθορισμό των απαιτήσεων είναι μια δυναμική διαδικασία και ως έργο έχουμε ξεκαθαρίσει ότι η συμμετοχή των χρηστών είναι βασική στην υλοποίηση του συστήματος. Με αυτή την έννοια θα ενημερώνουμε συνέχεια τις απαιτήσεις των χρηστών αν εμφανιστούν κρίσιμα ζητήματα μετά την ολοκλήρωση της παρούσας μελέτης.

Η διάγνωση του γυναικολογικού καρκίνου εξαρτάται κυρίως από την εμπειρία του γιατρού. Πολλές φορές, ύποπτες περιοχές ενδιαφέροντος, απορρίπτονται δημιουργώντας μεγάλο πρόβλημα στη διαγνωστική ακρίβεια του περιστατικού. Η χρήση της νέας τεχνολογίας στις τηλεπικοινωνίες μας επιτρέπει να εφαρμόσουμε τεχνικές τηλεδιάσκεψης μεταξύ των ενδιαφερόμενων για την καλύτερη αξιολόγηση του περιστατικού.

3.4 ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΣΥΣΤΗΜΑΤΟΣ

Η αρχιτεκτονική του συστήματος χωρίζεται σε δυο βασικά μέρη. Το πρώτο μέρος είναι η ιατρική διαδικασία εγκατάστασης και χρήσης των ιατρικών μηχανημάτων και το δεύτερο μέρος είναι η συνδεσμολογία και χρήση του συστήματος καταγραφής και ανάλυσης ενδοσκοπικών εικόνων για ανίχνευση γυναικολογικού καρκίνου.

Το πρώτο μέρος έχει αναλυθεί στο κεφάλαιο 2 που παρουσιάζει με λεπτομέρεια την εγκατάσταση και χρήση των ιατρικών μηχανημάτων για τις δυο ενδοσκοπικές μεθόδους, την λαπαροσκοπική και την υστεροσκοπική μέθοδο. Αξίζει να τονίσουμε ότι πρίν από κάθε χρήση της ιατρικής κάμερας ο κατασκευαστής προτείνει τη βαθμονόμηση της κάμερας με χρήση ενός λευκού στόχου (white balance) έτσι ώστε να έχουμε τη μείωση του θορύβου και την καλύτερη λειτουργία της. Η διαδικασία αυτή γίνεται στην αρχή της επέμβασης και παίζει ουσιαστικό ρόλο στην απεικόνιση του βίντεο της εξέτασης / επέμβασης.

Το δεύτερο μέρος είναι η αρχιτεκτονική του συστήματος καταγραφής και ανάλυσης των ενδοσκοπικών εικόνων. Στο πιο κάτω σχήμα παρουσιάζουμε τη διαδικασία καταγραφής και ανάλυσης των ενδοσκοπικών εικόνων.

Σχήμα 27: Παρουσίαση διαδικασίας εξαγωγής συμπεράσματος διάγνωσης με τη χρήση του συστήματος.

Η χρήση του συστήματος επεξεργασίας και ανάλυσης ενδοσκοπικών εικόνων ακολουθεί την πιο πάνω διαδικασία (Σχήμα 27). Η ιατρική κάμερα συνδέεται με τον μετατροπέα αναλογικού σε ψηφιακό σήμα όπου αυτός συνδέεται με τον ηλεκτρονικό υπολογιστή μέσω της θύρας ΙΕΕΕ 1394. Το εν λόγω βίντεο αποθηκεύεται στη βάση δεδομένων και αρχίζει η επεξεργασία του από το γιατρό. Ο γιατρός επιλέγει εικόνες / frames σε πραγματικό χρόνο και αυτές αποθηκεύονται στο ΗΥ όπου αρχίζει η ανάλυσή τους. Και πάλι ο γιατρός επιλέγει περιοχές ενδιαφέροντος που παρουσιάζουν ύποπτες περιοχές καρκίνου από τις εικόνες καθώς και φυσιολογικές περιοχές. Παράλληλα παίρνει ιστό από αυτές τις ύποπτες περιοχές και τις στέλλει για την ιστοπαθολογική εξέταση. Αφού έχει επιλέξει τις περιοχές ενδιαφέροντος εξάγει τα χαρακτηριστικά υφής τους καθώς και τα ιστογράμματα των χρωμάτων τους. Ακολουθεί η στατιστική ανάλυση των χαρακτηριστικών υφής σαν ένα πρώτο δεδομένο διαχωρισμού των δυο περιοχών ενδιαφέροντος.

Με αυτά τα χαρακτηριστικά υφής σαν είσοδο, εφαρμόζουμε αλγόριθμους νευρωνικών δικτύων για τον αυτόματο διαχωρισμό των φυσιολογικών και παθολογικών περιοχών ενδιαφέροντος. Επίσης οι αλγόριθμοι αυτοί μας δίνουν και το ποσοστό επιτυχίας διαχωρισμού των περιοχών. Έτσι ο γιατρός έχει μια πρώτη γνώμη για τις ύποπτες περιοχές γυναικολογικού καρκίνου πρίν από την ιστοπαθολογική εξέταση.

3.4.1 Δικτύο τηλεσύνεργασιας

Στο Σχήμα 28 παρουσιάζεται η αρχιτεκτονική του συστήματος τηλεσυνεργασίας και τα εμπλεκόμενα μέρη στο δίκτυο αυτό. Παρουσιάζεται ο ειδικός γιατρός στο χώρο του χειρουργείου που πραγματοποιεί την ενδοσκοπική εξέταση και μέσω του τηλεπικοινωνιακού δικτύου (τηλεπικοινωνιακές συνδέσεις) τα δεδομένα στέλλονται στον ειδικό απομακρυσμένο γιατρό για υποστήριξη του περιστατικού.

Ο γιατρός στο χώρο του χειρουργείου εκτελεί την ενδοσκοπική επέμβαση η οποία καταγράφεται στον ηλεκτρονικό υπολογιστή. Μέσω του συστήματος του νοσοκομείου ο γιατρός μπορεί να ζητήσει το φάκελο του ασθενή ή άλλες εξετάσεις για να έχει μια πιο πλήρη εικόνα του περιστατικού. Αυτό γίνεται τοπικά με το σύστημα του νοσοκομείου και έτσι ετοιμάζεται ο πλήρης φάκελος του ασθενή.

Σε δύσκολες περιπτώσεις γυναικολογικού καρκίνου ο γιατρός μπορεί να χρειαστεί μια δεύτερη γνώμη για την καλύτερη αντιμετώπιση του περιστατικού. Αυτό προϋποθέτει την παρουσία και ενός δεύτερου γιατρού στο χώρο του χειρουργείου πράγμα που είναι πολύ δύσκολο να επιτευχθεί. Έτσι με τη χρήση των τηλεπικοινωνιακών συνδέσεων ο γιατρός στο χώρο του χειρουργείου επικοινωνεί με το δεύτερο γιατρό που βρίσκεται ακόμα και εκτός νοσοκομείου για να πάρει μια δεύτερη γνώμη.

Ο απομακρυσμένος γιατρός λαμβάνει σε πραγματικό χρόνο το βίντεο της ενδοσκοπικής εξέτασης καθώς και τα άλλα ιατρικά δεδομένα δημιουργώντας έτσι μια πλήρη εικόνα του περιστατικού. Αμέσως μετά, αφού εκτιμήσει το περιστατικό, αποστέλλει την γνώμη του στο γιατρό του χειρουργείου και από κοινού οδηγούνται στη διάγνωση του

81

περιστατικού. Έτσι έχουμε αύξηση της διαγνωστικής ακρίβειας του περιστατικού με τη χρησιμοποίηση δύο ειδικών γιατρών.

Σχήμα 28: Αρχιτεκτονική του συστήματος δικτύου τηλεσυνεργασίας.

3.5 Βαση Δελομένων

Για την καλύτερη αποθήκευση λαπαροσκοπικών / υστεροσκοπικών εικόνων και βίντεο έχει αναπτυχθεί μια ψηφιακή βιβλιοθήκη δεδομένων. Από την έρευνά μας προκύπτει ότι δεν υπάρχει ψηφιακή βιβλιοθήκη λαπαροσκοπικής εικόνας. Η διαχείριση της Βάσης Δεδομένων έχει αναπτυχθεί με λογισμικό Microsoft SQL Server και η διπροσωπία με Borland Delphi 7 [34].

Πίνακας 2: Παρουσίαση περιστατικών που έχουν αποθηκευτεί στην ψηφιακή βάση δεδομένων.

Καρκίνος των γυναικείων γεννητικών	Ενδομητρίου
οργάνων	
Αριθμός Περιπτώσεων	60

Γνωρίζοντας τις ανάγκες του χρήστη καταφέραμε να δημιουργήσουμε ένα φιλικό περιβάλλον χρήσης με όλες τις απαραίτητες λειτουργίες. Στη συνέχεια της αναφοράς μας

παρουσιάζουμε τις πιο βασικές λειτουργίες της ψηφιακής βιβλιοθήκης λαπαροσκοπικής εξέτασης.

Έχουμε ψηφιοποιήσει και έχουμε αποθηκεύσει διάφορα περιστατικά γυναικολογικού καρκίνου. Ενδεικτικά παρουσιάζουμε τον πιο κάτω πίνακα (Πίνακας 2):

Η δημιουργία Ιατρικής Βάσης Δεδομένων λαπαροσκοπικής εξέτασης κρίθηκε αναγκαία για την καλύτερη λειτουργία του συστήματος. Η βάση δεδομένων αποτελεί το βασικό κορμό του έργου μετά το ολοκληρωμένο σύστημα διάγνωσης γυναικολογικού καρκίνου.

Σε αυτή αποθηκεύουμε το ιστορικό του ασθενή καθώς και βίντεο από την ενδοσκοπική επέμβαση. Επίσης καταχωρούνται στη βάση δεδομένων και παγωμένες εικόνες που έχουν εξαχθεί κατά τη διάρκεια της ενδοσκοπικής επέμβασης με το προτεινόμενο σύστημα. Έτσι ο γιατρός μπορεί να παρακολουθεί την εξέλιξη της υγείας της ασθενούς από την εισαγωγή της στο νοσοκομείο – κλινική μέχρι την αποθεραπεία της. Αναμφίβολα τηρούνται όλα τα μέτρα για ασφαλή καταγραφή των ασθενών στην ιατρική βάση δεδομένων λαπαροσκοπικής εξέτασης, όπως η χρησιμοποίηση κωδικού αριθμού κατά την εισαγωγή στο σύστημα.

3.5.1 ANAILTYEH THE BASHS Δ Eaomenon

Η ανάπτυξη της βάσης δεδομένων υλοποιήθηκε με το λογισμικό «Microsoft SQL Server 2000» και το περιβάλλον αυτής με λογισμικό της «Borland Delphi 7» [34]. Το περιβάλλον είναι φιλικό προς το χρήστη και εύκολα μπορεί να κατανοήσει κάποιος τις λειτουργίες του.

Όπως έχουμε αναφέρει και πιο πάνω η σχεδίαση της βάσης δεδομένων έγινε με τη συνεργασία όλων των εμπλεκόμενων φορέων. Περιέχει όλα τα πεδία που αφορούν τόσο τα προσωπικά δεδομένα του ασθενή αλλά και μικροσκοπικές – μακροσκοπικές εξετάσεις μέσω των οποίων γίνεται η ανάλυση των χαρακτηριστικών υφής και η αποθήκευσή τους.

Πιο κάτω δείχνουμε αναλυτικά μερικά παραδείγματα λειτουργίας της βάσης δεδομένων.

3.5.2 Εισολός στη βάση δελομένων

Η πρόσβαση στη βάση δεδομένων γίνεται πάντα με τον κωδικό πρόσβασης για μέγιστη ασφάλεια και καλύτερη οργάνωση των δεδομένων. Στο Σχήμα 29 φαίνεται η αρχική σελίδα της βάσης όπου ζητείται από το χρήστη το προσωπικό του όνομα (user name) και ο μυστικός κωδικός του αριθμός (password).

83

Σχήμα 29: Εισαγωγή κωδικού μυστικού αριθμού.

Μετά την επαλήθευση του κωδικού αριθμού του χρήστη μπορούμε να προσπελάσουμε τη βάση δεδομένων. Μερικές βασικές λειτουργίες της βάσης είναι η προσθήκη νέου ασθενή, η διαγραφή του, η αλλαγή του, καθώς και η προσθήκη νέων εξετάσεων ή νέων ατομικών στοιχείων του ασθενή. Πιο κάτω θα αναλύσουμε μερικές βασικές λειτουργίες της βάσης.

3.5.3 Εισολός Νεού Ασθενή

Το περιβάλλον της βάσης δεδομένων το χαρακτηρίζει η φιλικότητα λειτουργίας του προς το χρήστη γιατί έχει υλοποιηθεί βάσει των αναγκών και λειτουργίας των τελικών χρηστών του συστήματος. Στα σχήματα (Σχήμα 30, Σχήμα 31) φαίνεται η επιλογή εισόδου νέου ασθενή στη βάση δεδομένων με την εισαγωγή της πολιτικής του ταυτότητας. (Σημείωση: Η πολιτική ταυτότητα είναι μοναδική για κάθε πολίτη και αυτό μας επιτρέπει την ταύτιση των ασθενών με τον αριθμό αυτό).

Σχήμα 30: Είσοδος νέου ασθενή στο σύστημα.

🦸 Κεντρική Σελίδα - Ταυτότητα κρ	ήστη: 812965 - [Εισαγωγή Ασθενή]	×
Αρχείο Ασθενείς Εκθέσεις Ασθενώ	ών Κωδικοί Ασθενειών Παράθυρο Βοήθεια	<u>X</u>
	Ταυτότητα Ασθενή Ισ12964	
	interior interior interior	
	de las	
	▲ Συνεχίσε	

Σχήμα 31: Εισαγωγή νέου ασθενή στη βάση δεδομένων με την ταυτότητά του.

3.5.4 ΚΕΝΤΡΙΚΗ ΣΕΛΙΔΑ ΤΟΥ ΑΣΘΕΝΗ

Με την εισαγωγή νέου ασθενή στη βάση δεδομένων παρουσιάζουμε την κεντρική σελίδα του νέου ασθενή όπως φαίνεται στο Σχήμα 32. Σε αυτή τη σελίδα του συστήματος παρουσιάζονται όλες οι εξετάσεις που έχουν καταχωρηθεί ή θα καταχωρηθούν. Επίσης το σύστημα σε αυτό το σημείο και βάσει της κεντρικής σελίδας ο χρήστης ενημερώνει τη βάση δεδομένων διαγράφοντας ή προσθέτοντας στοιχεία που αφορούν τον ασθενή. Παρόλα αυτά ο χρήστης του συστήματος έχει τη δυνατότητα να εκτυπώσει τον φάκελο του ασθενή ή να μετακινηθεί και να επιλέξει την παρουσίαση των εξετάσεων του ασθενή. Παράλληλα μπορεί να επεξεργαστεί εικόνες που έχουν παρθεί από μακροσκοπική ή μικροσκοπική εξέταση και να τις συγκρίνει.

Στο Σχήμα 33 παρουσιάζεται ο τρόπος εισαγωγής εικόνας στο σύστημα. Ο χρήστης επιλέγει την εικόνα Μακροβιοψίας και το εισάγει στην κεντρική σελίδα του ασθενή.

Σχήμα 32: Παρουσίαση της κεντρικής σελίδας ασθενή με όλες τις εξετάσεις του.

Open							? ×
Look jn:	🔁 Images		•	+ 🗈 💣 📰-		(504x330)	A
My Recent Documents Desktop My Documents My Computer	brdu Fluor01 Fluor02 Fluor03 Fluor04 multi101 multi102 Muscle path						
My Network	File <u>n</u> ame:	CNS125		-	<u>O</u> pen		
Places	Files of type:	All (*.bmp;)		•	Cancel		/

Σχήμα 33: Επιλογή εισαγωγής εικόνας στο σύστημα.

ρ.Πρωτοκάλλου 1/2003 αυτότητα 81296-	Αρ.Πιστοποιητικού Νοσηλία Ονορατεπώνυρο	Αρ.Πιστοποιητικού Νοσηλίας 1234ΑΒ Ονοματεπώνυμο	
αρασκεύασμα <u>Μ</u> ακροσι * Μακροσκοπική	κοπική Εξέταση Ιστολογική Έκθεση Εί Ο Μικροσκοπική	ко́чес	>
		Εισήγαγε Άλλαξε 🖓 Διέγραψε Μεγέθυνε	Εκτύπωσε Έκθεση Κλινικές Πληροφορίες Λ΄ Έξοδος
Ταχείας Βκ	οία τυχής εισαγωγή της εικόνας στην έκθεα ΖΟΚ	χ) η του ασθενή	Κατάσταση Έκθεσης 🖻 Εκκρεμούσα

Σχήμα 34: Επιτυχής εισαγωγή εικόνας.

Στο Σχήμα 34 παρουσιάζεται η επιλεγμένη εικόνα μακροσκοπίας μαζί με το μήνυμα επαλήθευσης εισαγωγής. Ο χρήστης σε αυτό το σημείο μπορεί να επεξεργαστεί την εικόνα. Μερικά εργαλεία για επεξεργασία της εικόνας είναι η διαγραφή της, η αλλαγή της καθώς και η μεγέθυνσή της για καλύτερη επισκόπηση της περιοχής ενδιαφέροντος.

Σχήμα 35: Επιλογή διαφορετικής εικόνας μικροσκοπικής εξέτασης.

Το σύστημα έχει τη δυνατότητα αλλαγής των εικόνων όπως φαίνεται στο Σχήμα 35 και Σχήμα 36. Η αλλαγή μικροσκοπικής εικόνας γίνεται με τον ίδιο τρόπο που περιγράψαμε πιο πάνω.

Σχήμα 36: Όλες οι εξετάσεις του ασθενή και επιλογή αλλαγής ή διαγραφής.

Στο Σχήμα 37 παρουσιάζουμε τη δυνατότητα επεξεργασίας του συστήματος με σκοπό την καλύτερη διαγνωστική ακρίβεια. Όταν επιλεγεί η εικόνα από τα πιο πάνω πεδία δίνεται η δυνατότητα μεγέθυνσής της καθώς και η επιλογή εκτύπωσης της εικόνας.

Σχήμα 37: Επιλογή μεγέθυνσης μικροσκοπικής εικόνας.

Στο Σχήμα 38 παρουσιάζουμε την επιλογή εισαγωγής και επεξεργασίας ενδοσκοπικού βίντεο. Μετά την εισαγωγή του βίντεο ο χρήστης έχει τη δυνατότητα παγώματος του βίντεο και εξαγωγής εικόνων από αυτό. Στο ίδιο σχήμα φαίνεται η παγωμένη εικόνα που έχει επιλέξει ο χρήστης. Οι επιλεγμένες εικόνες αποθηκεύονται από το χρήστη στο σύστημα με όνομα της επιλογής του γιατρού για καλύτερη ταξινόμηση των εικόνων του ασθενή.

Σχήμα 38: Εισαγωγή βίντεο – αποθήκευση παγωμένης εικόνας και χαρακτηριστικών υφής.

Στο Σχήμα 39 παρουσιάζεται η επιλεγμένη παγωμένη εικόνα ενδοσκοπικής επέμβασης σε μεγαλύτερη κλίμακα για καλύτερη παρακολούθησή της.

Σχήμα 39: Επιλογή βίντεο ενδοσκοπικής επέμβασης.

).Πρωτοκι γομα Εικόν	<mark>λλου:</mark> 1/200 νας: endo	3		Όνομα Αποκ	<mark>όμματος:</mark> en	docrop	
patial Gray gldmAsm	Level Depende SgldmCon	nce Algorithm SgldmCor	- SGLDM Algo Sgldm¥ar	rithm SgldmHomog	SgldmSumav	SgldmSumva	r SgldmSument
gldmEntr	SgldmDiffvar	sgldmDiffEnt	SgldmInfCor	l SgldmInfCor2	Sgldm14	Sgldm15	
LDM Algori IdmHorr	thm GldmCon	GldmEng	GldmEnt	GldmMean	Gldm6	, Gldm7	Gldm8
ldm9	Gldm10	Gldm11	Gldm12	Gldm13	Gldm14	Gldm15	
rst Order S	tatistics Algori	thm - FOS Algo	rithm				

Σχήμα 40: Χαρακτηριστικά υφής τριών αλγορίθμων από την περιοχή ενδιαφέροντος.

Μετά το πάγωμα της εικόνας από το ενδοσκοπικό βίντεο ο χρήστης επιλέγει την περιοχή ενδιαφέροντος και έπειτα εξάγονται τα χαρακτηριστικά υφής από τους αλγόριθμους Statistical Features (SF), Spatial Gray Level Dependence Matrices (SGLDM), και Gray Level Difference Statistics (GLDS) όπου και αποθηκεύονται (Σχήμα 40).

Σχήμα 41: Λίστα όλων των εξετάσεων – εικόνων του ασθενή.

Τέλος στο Σχήμα 41 παρουσιάζονται όλες οι εικόνες του ασθενή ανά κατηγορία για την καλύτερη διαγνωστική ακρίβεια και σύγκριση όλων των κατηγοριών των εξετάσεων μεταξύ τους.

3.6 ΣΥΜΠΕΡΑΣΜΑΤΑ

3.6.1 ΑΠΑΙΤΗΣΕΙΣ ΣΥΣΤΗΜΑΤΟΣ

Παρουσιάσαμε λεπτομερώς τις απαιτήσεις των χρηστών. Σε μια απόπειρα να συγκεντρώσουμε, να εκτιμήσουμε, να ιεραρχήσουμε και να περιγράψουμε αναλυτικά τις απαιτήσεις με τρόπο που να παρέχει συγκεκριμένες κατευθύνσεις στις ομάδες των ανθρώπων που εμπλέκονται στον καθορισμό των συγκεκριμένων λειτουργιών του προτεινόμενου συστήματος, όλοι οι υπεύθυνοι των χώρων συμφώνησαν πάνω σ' ένα κοινό πλαίσιο απαιτήσεων.

Η χρήση του δικτύου τηλεσυνεργασίας και τηλεϋποστήριξης που δημιουργήθηκε οδήγησε τους εμπλεκόμενους φορείς στην αύξηση της διαγνωστικής τους ακρίβειας καθώς και στην καλύτερη αντιμετώπιση περιστατικών γυναικολογικού καρκίνου σύμφωνα με τις εκτιμήσεις των γιατρών.

Η συνεργασία των ειδικών του προγράμματος και η χρήση των λογισμικών λειτουργιών του συστήματος ανέβασε το επίπεδο αντιμετώπισης περιστατικών γυναικολογικού καρκίνου και έκανε το πρόγραμμα πολλά υποσχόμενο για ευρεία χρήση του.

Λόγω του γεγονότος ότι δεν υπάρχει παρόμοια έρευνα στον τομέα αυτό, και αυτό φαίνεται και από τη βιβλιογραφία, μας έκανε πρωτοπόρους στην έρευνα αντιμετώπισης και διάγνωσης γυναικολογικού καρκίνου με τη χρήση ηλεκτρονικών υπολογιστών.

Η γερμανική εταιρεία Karl Storz ενδιαφέρθηκε να περιλάβει το λογισμικό μας στο ενδοσκοπικό σύστημα AIDA το οποίο είναι τρίτης γενιάς μηχάνημα. Αυτό προϋποθέτει περισσότερη έρευνα και χρήση ηλεκτρονικών υπολογιστών στην αντιμετώπιση του γυναικολογικού καρκίνου μέσω της επεξεργασίας εικόνας.

3.6.2 Αρχιτεκτονική σύστηματος

Πιο πάνω περιγράψαμε μερικές από τις βασικότερες λειτουργίες της λαπαροσκοπικής βάσης δεδομένων. Η λειτουργία της βοηθά τον κλινικό γιατρό να συλλέγει περιστατικά γυναικολογικού καρκίνου με όλες τις σχετικές εξετάσεις και επίσης αύξησε τη διαγνωστική ακρίβεια.

Αναμφίβολα η δημιουργία της ψηφιακής βιβλιοθήκης λαπαροσκοπικής εξέτασης θα βοηθήσει όχι μόνο τους χρήστες του συστήματος αλλά θα ανοίξει το δρόμο για τη μηχανογράφηση όλων των περιστατικών γυναικολογικού καρκίνου με αποτέλεσμα να κατηγοριοποιηθούν ίδιες περιπτώσεις γυναικολογικού καρκίνου και να δώσει τη δυνατότητα

93

σύγκρισης μεταξύ τους. Επίσης μπορούν να χρησιμοποιηθούν νέες μέθοδοι εξαγωγής στατιστικών δεδομένων από τη βιβλιοθήκη λαπαροσκοπικής εξέτασης και να αυξηθεί η διαγνωστική ακρίβεια για την καταπολέμηση του γυναικολογικού καρκίνου.

Τέλος θα ήθελα να αναφέρω πως η βάση δεδομένων θα χρησιμοποιηθεί και στη μελλοντική μας έρευνα όπου θα εστιάσουμε την προσοχή μας σε νέες τεχνολογίες και εφαρμογές όπως εξαγωγή δεδομένων και επικοινωνία με άλλες παρόμοιες βάσεις δεδομένων από άλλα ιατρικά κέντρα για την καλύτερη καταγραφή και επεξεργασία των περιστατικών γυναικολογικού καρκίνου.

3.7 ΑΝΑΦΟΡΕΣ

- [28] Atkinson C.J., Peel V.J., Transforming a hospital through growing, not building, an electronic patient record system, PubMed, Web Site: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi
- [29] Della M.V., Beltrami C.A., Telepathology applications of the Internet multimedia electronic mail, PubMed, Web Site: <u>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi</u>
- [30] Weinberg D.S., Allaert F.A., Dusserre P., Drouot F., Retailliau B., Welch W.R., Longtine J., Brodsky G., Folkerth R., Doolittle M., Telepathology diagnosis by means of digital still images: an international validation study, PubMed, Web Site: <u>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi</u>
- [31] McNeill K.M., The Impact of Communications Technology on Medicine, Presentation #165, Invited Symposium : Applying Information Technology in Medicine, Web Site: <u>http://www.uclm.es/inabis2000/symposia/files/165/index.html</u>
- [32] Marchevsky A.M., Dulbandzhyan R., Seely, K., Carey S., Duncan R.G, Storage and Distribution of Pathology Digital Images Using Integrated Web-Based Viewing Systems, Archives of Pathology and Laboratory Medicine: 126, No. 5, pp. 533-539, PubMed, 2002, Web Site: <u>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi</u>
- [33] Elmasri R., Navathe S.B., Fundamentals of Database Systems, Third Edition, 1994.
- [34] Marco Cantu, Mastering Delphi 6.
- [35] Wenzl R., Lehner R., Vry U., Pateisky N., Sevelda P., Husslein P., Three-dimensional video-endoscopy: clinical use in gynaecological laparoscopy, Lancet 344: 1621–1622, 1994.
- [36] Rafael C. Gonzalez, Richard. E. Woods, Digital Image Processing, Addison Wesley Publishing Company, 1992.
- [37] Russ J.C., The IMAGE PROSECCING Handbook, Second Edition, CRC Press, 1994.
- [38] Tzanakou-Micheli E., Supervised and Unsupervised Pattern Recognition, CRC Press. 2000.

Μεθοδολογία

4.1 ΕιΣΑΓΩΓΗ

Σε αυτό το κεφάλαιο θα αναλύσουμε τη μεθοδολογία που ακολουθήσαμε σ' αυτή την μελέτη για την επεξεργασία λαπαροσκοπικών / υστεροσκοπικών εικόνων. Θα παρουσιάσουμε πρώτα την καταγραφή των ενδοσκοπικών βίντεο / εικόνων και θα αναλύσουμε τον αλγόριθμο γάμμα. Ακολούθως θα αναλύσουμε τη μέθοδο επιλογής περιοχών ενδιαφέροντος και τα πειράματα που έγιναν με τη χρήση πειραματικού ιστού για την καλύτερη αναγνώριση των συνθηκών στόχευσης. Με αυτή τη διαδικασία θα μελετηθεί πώς επηρεάζεται η επεξεργασία εικόνων από διαφορετικές αποστάσεις και γωνίες λήψης. Πιο κάτω περιγράφουμε αναλυτικά όλα τα βήματα προεπεξεργασίας των ενδοσκοπικών εικόνων.

Επίσης θα προτείνουμε το πρωτόκολλο καταγραφής ενδοσκοπικών εικόνων πρίν από κάθε ενδοσκοπική επέμβαση. Συνοπτικά το πρωτόκολλο αυτό περιέχει τα ακόλουθα βήματα: α) white balance της κάμερας, β) καταγραφή παλέτας, γ) εφαρμογή του αλγόριθμου γάμμα και εξαγωγή περιοχών ενδιαφέροντος, δ) εξαγωγή χαρακτηριστικών υφής των περιοχών ενδιαφέροντος και ε) εφαρμογή των νευρωνικών δικτύων. Στο σημείο αυτό αξίζει να αναφέρουμε ότι από την έρευνα που έγινε στη βιβλιογραφία δεν παρουσιάστηκε κανένα πρωτόκολλο καταγραφής λαπαροσκοπικών / υστεροσκοπικών εικόνων. Υπάρχουν μόνο ιατρικές οδηγίες για πραγματοποίηση κολονοσκοπικών και γαστροσκοπικών επεμβάσεων.

Περαιτέρω η ενότητα αυτή καλύπτει τις λειτουργίες του αυτοματοποιημένου συστήματος επεξεργασίας λαπαροσκοπικών / υστεροσκοπικών εικόνων που έχει αναπτυχθεί μέσα στα πλαίσια της διδακτορικής αυτής εργασίας και που θα εφαρμοστεί σε περιπτώσεις ανίχνευσης γυναικολογικού καρκίνου όπως για παράδειγμα καρκίνος των ωοθηκών, του ενδομητρίου, του τραχήλου, της πυέλου και του σώματος της μήτρας.

4.2 ΕΠΕΞΕΡΓΑΣΙΑ ΕΙΚΟΝΩΝ

4.2.1 ΚΑΤΑΓΡΑΦΗ ΤΟΥ ΕΝΔΟΣΚΟΠΙΚΟΥ ΒΙΝΤΕΟ

Για την καταγραφή του βίντεο έχουμε χρησιμοποιήσει το ιατρικό τηλεσκόπιο από την εταιρεία Wolf [54]. Τα χαρακτηριστικά του τηλεσκοπίου είναι: 2,8 mm διάμετρος και 30^0

γωνία παρακολούθησης. Το ενδοσκοπικό βίντεο καταγράφηκε χρησιμοποιώντας την ιατρική κάμερα Circon IP4.1. Όλα τα βίντεο είχαν τις ίδιες συνθήκες λήψης, δηλαδή, η εστίαση και η φωτεινότητα ήταν στο βέλτιστο σημείο βάσει της γνώσης και εμπειρίας του γιατρού. Ο κατασκευαστής της ιατρικής κάμερας προτείνει την αρχικοποίηση της κάμερας με την εφαρμογή της μεθόδου white balanced χρησιμοποιώντας μια λευκή επιφάνεια για την βαθμονόμηση της κάμερας πρίν από κάθε επέμβαση. Εμείς έχουμε χρησιμοποιήσει το λευκό χρώμα της παλέτας χρωμάτων της Edmund Industrial Optics Company. Η πηγή φωτός είναι της εταιρείας ACMI Corporation και είναι 300 Watt Xenon Light Source.

Το αναλογικό σήμα εξόδου της κάμερας με ανάλυση 475 οριζόντιες γραμμές μετατρέπεται σε ψηφιακό σήμα με ανάλυση τα 720x576 pixels χρησιμοποιώντας 24 bits για το χρώμα και 25 frames το δευτερόλεπτο με ανάλυση εικόνας για την πανοραμική λήψη τα 15 pixels/mm περίπου και για την κοντινή λήψη ανάλυσης εικόνας έχουμε 21 pixels/mm περίπου. Το βίντεο αυτό αποθηκεύεται με μορφή AVI στον υπολογιστή μας. Η ψηφιοποίηση του βίντεο γίνεται με τον κωδικοποιητή Digital Video Creator 120 frame grabber ο οποίος είναι συνδεδεμένος με την πύλη εισόδου IEEE 1394 του υπολογιστή. Οι συνθήκες σκόπευσης και λήψης των εικόνων ελέγχονται από τον γιατρό και προσομοιώνουν τις πραγματικές συνθήκες ενδοσκοπικής επέμβασης (Σχήμα 42).

Σχήμα 42: Ολοκληρωμένος σταθμός ενδοσκοπικού συστήματος. Περιλαμβάνει: ιατρική κάμερα, οθόνη, κεφάλι της κάμερας, μονάδα παραγωγής φωτός, μονάδα ελέγχου φυσιολογικού ορού.

4.2.2 ΚΑΤΑΓΡΑΦΗ ΕΙΚΟΝΩΝ ΠΑΛΕΤΑΣ

Χρησιμοποιήθηκε η παλέτα χρωμάτων (Σχήμα 43) από την εταιρεία Edmund Industrial Optics Company [58] με σκοπό να καθορίσουμε τα επίπεδα χρώματος οποιουδήποτε έγχρωμου συστήματος. Η παλέτα αυτή βασίζεται σε βιομηχανικά πρότυπα και αποτελείται από 24 χρωματισμένες εικόνες με δεδομένη τη χρωματική τους ταυτότητα (βλέπε Πίνακα 3). Κάθε εικόνα απεικονίζει ένα φυσικό χρώμα όπως για παράδειγμα: το χρώμα του δέρματος, το μπλε του ουρανού, το κίτρινο, το κόκκινο, το μαύρο, το λευκό και άλλα. Όλες οι εικόνες της παλέτας χρωμάτων έχουν καταγραφεί με το βέλτιστο φωτισμό και εστίαση βάσει της εμπειρίας του γιατρού χρησιμοποιώντας τα ίδια ιατρικά μηχανήματα.

Ο Πίνακας 3 δίδει τις τιμές των R, G και B για επιλεγμένα χρώματα της παλέτας. Όλα τα βίντεο αποθηκεύτηκαν σε AVI format (ασυμπίεστο βίντεο) και έπειτα καταγράψαμε 24 εικόνες της παλέτας σε TIFF format. Επίσης οι 24 αυτές εικόνες παράχθηκαν σε ψηφιακή μορφή βάσει των χρωματικών συνιστωσών με δεδομένες τις τιμές από την Edmund Optics Company [58]. Οι τιμές των εικόνων αυτών θα χρησιμοποιηθούν ως βάση για τους υπολογισμούς, για την εύρεση των συντελεστών του αλγόριθμου γάμμα που θα περιγραφεί αναλυτικά πιο κάτω.

Σχήμα 43: Παλέτα χρωμάτων με γνωστές τιμές χρωματικών συνιστωσών.

Πίνακας 3: Χρωματικές τιμές για επιλεγμένα χρώματα της παλέτας του κόκκινου (Red), του πράσινου (Green) και του μπλε (Blue) χρώματος από την εταιρεία Edmund Industrial Optics για επιλεγμένες χρωματικές συνιστώσες.

Χρώμα	R	G	B
Κίτρινο	255	217	0
Κόκκινο	203	0	0
Ανοικτό πράσινο	140	253	153
Μπλε	0	0	142
Άσπρο	255	255	255
Μαύρο	0	0	0
Ανοικτό μπλε	97	119	171
Λαδί	90	103	39

4.3 Αλγοριωμός Γλημα

4.3.1 ΜΑΘΗΜΑΤΙΚΟ ΜΟΝΤΕΛΟ ΑΛΓΟΡΙΘΜΟΥ ΓΑΜΜΑ

Από τη βιβλιογραφία γνωρίζουμε ότι η βαθμονόμηση (calibration) ηλεκτρικών οργάνων είναι αναγκαία λόγω του θορύβου που υπεισέρχεται σε αυτά. Στην περίπτωσή μας ο 'θόρυβος' που παρουσιάζεται στις λαπαροσκοπικές κάμερες οφείλεται στο ηλεκτρικό πεδίο της κάμερας καθώς και στη λαπαροσκοπική μέθοδο κατά την οποία μπροστά στην εικόνα έχουμε έκχυση φυσιολογικού ορού ή διοξειδίου του άνθρακα (βλέπε Λαπαροσκοπική επέμβαση, Κεφ. 2, παράγραφος 2.4).

Η έξοδος της λαπαροσκοπικής κάμερας ακολουθεί το μη γραμμικό μοντέλο με αποτέλεσμα οι κλασικές μέθοδοι προσέγγισης να μην μπορούν να εφαρμοστούν. Βάσει της βιβλιογραφίας που έχουμε για παρόμοια προβλήματα, χρησιμοποιούμε τη μέθοδο της μη γραμμικής προσέγγισης στο σήμα εξόδου [39]-[40].

Οι περισσότερες κάμερες συνδέονται με μη γραμμικό τρόπο μεταξύ του ηλεκτρικού σήματος και της έντασης του φωτός [41]-[42]. Εάν υποθέσουμε ότι η ένταση φωτός της εικόνας που καταγράφουμε ακολουθεί το γραμμικό μοντέλο τότε το μοντέλο αυτό ορίζεται από την πιο κάτω σχέση η οποία είναι η γενική σχέση του γραμμικού μοντέλου:

$$\begin{bmatrix} R_p \\ G_p \\ B_p \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \begin{bmatrix} R_{in} \\ G_{in} \\ B_{in} \end{bmatrix} + \begin{bmatrix} k_1 \\ k_2 \\ k_3 \end{bmatrix}$$
(4.1)

όπου: $\begin{bmatrix} R_{in} & G_{in} & B_{in} \end{bmatrix}^T$ αντιπροσωπεύει τις τιμές του κόκκινου χρώματος (R_{in}) , του πράσινου (G_{in}) , και του μπλε (B_{in}) χρώματος των εικόνων της παλέτας όπως δίδονται στον Πίνακα 3. Ο πίνακας $\begin{bmatrix} R_p & G_p & B_p \end{bmatrix}^T$ δηλώνει τις μετασχηματισμένες συνιστώσες των εντάσεων της εικόνας μετά την καταγραφή της από την κάμερα. Η σχέση μεταξύ των δύο πινάκων που αναφέραμε είναι ένας γραμμικός πίνακας **A** και μια μεταβλητή που αντιπροσωπεύει την μετατόπιση του διανύσματος **k**. Οπότε έχουμε το μη γραμμικό μοντέλο του αλγόριθμου γάμμα για τις εικόνες που καταγράφουμε με την κάμερα για κάθε χρωματική συνιστώσα ξεχωριστά (συνιστώσες: $R_{out}, G_{out}, B_{out}$), [43]:

$$R_{out} = 255 \left(\frac{R_p}{255}\right)^{\gamma_R}$$

$$G_{out} = 255 \left(\frac{G_p}{255}\right)^{\gamma_G}$$

$$B_{out} = 255 \left(\frac{B_p}{255}\right)^{\gamma_B}.$$
(4.2)

Για να λύσουμε και να υπολογίσουμε όλες τις παραμέτρους των πιο πάνω εξισώσεων εφαρμόζουμε τη μέθοδο των ελαχίστων τετραγώνων με μη γραμμικό τρόπο (βλέπε lsqnonlin εξίσωση της MATLAB [60]) με δεδομένο τις εικόνες της παλέτας. Προσεγγίζουμε τους πίνακες **A**, **k** και τις τιμές των γάμμα, γ_R , γ_G , γ_B για κάθε χρωματική συνιστώσα. Έπειτα για να διορθώσουμε τις εικόνες αντιστρέφουμε τις δύο πιο πάνω εξισώσεις και το αποτέλεσμα τους είναι η διόρθωση των εικόνων καταγραφής.

Έχοντας αυτά υπόψη δημιουργούμε εικόνες εισόδου και εξόδου μεγέθους 64X64 για τις 23 εικόνες της παλέτας μας (χωρίς το χρώμα μαύρο, αφού οι τιμές των RGB είναι μηδέν) και τις αναλύουμε ξεχωριστά σε κόκκινο, πράσινο και μπλε. Βάσει των εξισώσεων 4.1 και 4.2 με μη γραμμική ανάλυση βρίσκουμε τις σταθερές για κάθε χρωματική συνιστώσα.

Εφαρμόσαμε την ανάλυσή μας σε τρεις διαφορετικές λαπαροσκοπικές κάμερες που υπάρχουν στους τελικούς χρήστες της μελέτης μας.

4.4 ΠΡΟΤΕΙΝΟΜΕΝΟ ΙΑΤΡΙΚΟ ΠΡΩΤΟΚΟΛΛΟ

Ο γιατρός κατά τη διάρκεια μιας ενδοσκοπικής εξέτασης ακολουθεί, εμπειρικά, το ιατρικό πρωτόκολλο της ενδοσκοπικής εξέτασης. Αφού εισέλθει στο ανθρώπινο σώμα, αρχικά εξετάζει την ανατομία της υπό εξέταση περιοχής και αναγνωρίζει το υπό εξέταση όργανο. Στη συνέχεια με πανοραμικό πλάνο παρατηρεί το όργανο και αναγνωρίζει ύποπτες περιοχές. Όταν μια περιοχή εντοπιστεί, ο γιατρός μετακινεί την κάμερα σε κοντινό πλάνο για την καλύτερη διερεύνηση της περιοχής ενδιαφέροντος. Τότε αφού βεβαιωθεί ότι πρόκειται για ύποπτη περιοχή ενδιαφέροντος, αποσπά ιστό και τον αποστέλλει για ιστοπαθολογική εξέταση.

Με την παρούσα μελέτη, οργανώσαμε τα βήματα της ενδοσκοπικής μελέτης όπως επίσης προσθέσαμε, σημαντικά βήματα για τη διόρθωση της ιατρικής κάμερας καθώς και την εισαγωγή υπολογιστών στην παρατήρηση ύποπτων περιοχών ενδιαφέροντος. Πιο κάτω παραθέτουμε το προτεινόμενο πρωτόκολλο βαθμονόμησης και διόρθωσης της ενδοσκοπικής εξέτασης. Παρουσιάζουμε τα βήματα που πρέπει να ακολουθήσουν οι εμπλεκόμενοι για τη μείωση της διακύμανσης της μεθόδου:

- Βαθμονόμηση της κάμερας ακολουθώντας τις οδηγίες του κατασκευαστή (white balance).
- Καταγραφή των 23 χρωμάτων που περιέχονται στην παλέτα και τη δημιουργία των αντίστοιχων χρωμάτων, ψηφιακά, βάσει του κατασκευαστή.
- Υπολογισμός του συντελεστή γ για τις τρεις χρωματικές συνιστώσες αντίστοιχα, καθώς και των πινάκων A και k λύνοντας τις εξισώσεις 4.1 και 4.2.
- Υλοποίηση ενδοσκοπικής εξέτασης, αναγνωρίζοντας την ανατομία του οργάνου και καταγραφή βίντεο/εικόνων/περιοχές ενδιαφέροντος (ROIs).
- 5. Χειροκίνητη κατάτμηση των περιοχών ενδιαφέροντος (ROIs).
- Εφαρμογή του αλγόριθμου γάμμα και οπτική σύγκριση με τις αρχικές εικόνες και περιοχές ενδιαφέροντος (ROIs).
- 7. Μετασχηματισμός συστήματος απεικόνισης από RGB σε YCrCb συστήματα.
- Υπολογισμός των χαρακτηριστικών υφής με τους αλγόριθμους SF, SGLDM και GLDS των περιοχών ενδιαφέροντος του βήματος 6 (Βλέπε Κεφάλαιο 5).
- Έλεγχος και σύγκριση των χαρακτηριστικών υφής του βήματος 6 και έλεγχος για στατιστική διαφορά μεταξύ των φυσιολογικών και παθολογικών περιοχών.
- Εφαρμογή στο αυτόματο σύστημα αναγνώρισης παθολογίας για έλεγχο των ύποπτων περιοχών ενδιαφέροντος (CAD system), χρησιμοποιώντας το μοντέλο SF, GLDS και SVM.
- Έλεγχος των περιοχών ενδιαφέροντος του βήματος 6 με οπτική παρακολούθηση και σύγκριση με την ποσοτική ανάλυση των βημάτων 8 και 9.
- 12. Επανάληψη των βημάτων 3 μέχρι και 9.

Το πρωτόκολλο αυτό επαναλαμβάνεται αναλυτικά στο Κεφάλαιο 8, υποκεφάλαιο 8.2.5.

Το πιο πάνω πρωτόκολλο μπορεί να εφαρμοστεί ανεξάρτητα από το είδος της ενδοσκοπικής εξέτασης αλλά το πιο σημαντικό είναι ότι μπορεί να δουλέψει με διαφορετικά ιατρικά μηχανήματα όπως κάμερες, λαπαροσκόπια, πηγές φωτός κτλ. Η χρησιμοποίηση της παλέτας χρωμάτων μειώνει τη διακύμανση των διαφορετικών ιατρικών μηχανημάτων. Επίσης ο αλγόριθμος γάμμα βοηθά στη μείωση της διακύμανσης των περιοχών ενδιαφέροντος που παρουσιάζεται με τη συλλογή εικόνων από διαφορετικές συνθήκες λήψης. Αυτό μας εγγυάται την ποιότητα των χαρακτηριστικών υφής από τις περιοχές ενδιαφέροντος.

4.5 ΚΑΤΑΓΡΑΦΗ ΕΙΚΟΝΩΝ ΑΠΟ ΔΥΟ ΔΙΑΦΟΡΕΤΙΚΕΣ ΑΠΟΣΤΑΣΕΙΣ ΣΤΟΧΕΥΣΗΣ

Μελετώντας το ιατρικό πρωτόκολλο της λαπαροσκοπικής / υστεροσκοπικής εξέτασης, όπως έχει περιγραφεί πιο πάνω, παρατηρήσαμε ότι ο γιατρός παρακολουθεί την περιοχή ενδιαφέροντος από διαφορετικές γωνίες και αποστάσεις έτσι ώστε να καταγράψει με μεγαλύτερη λεπτομέρεια τις ύποπτες για καρκίνο περιοχές.

Θα αρχίσουμε την περιγραφή των πειραμάτων μας κάνοντας μια αναφορά στους πειραματικούς ιστούς. Έχουμε χρησιμοποιήσει δύο πειραματικά μοντέλα: νωπό κοτόπουλο το οποίο παρουσιάζει σχεδόν τα ίδια χαρακτηριστικά στο εσωτερικό του με αυτά που συναντούμε στον ανθρώπινο ιστό και ζωικό ενδομήτριο που προσομοιώνει τις πραγματικές συνθήκες της υστεροσκοπικής επέμβασης. Τα όργανα που μελετούμε έχουν την ίδια υφή με αυτά που συναντούμε στις πραγματικές συνθήκες μιας λαπαροσκοπικής / υστεροσκοπικής επέμβασης.

Με τη χρησιμοποίηση της λαπαροσκοπικής κάμερας (Circon IP 4.1), έχουμε καταγράψει εικόνες από πειραματικό ιστό, νωπού κοτόπουλου και ζωικού ενδομήτριου, με δυο διαφορετικές αποστάσεις λήψης ως ακολούθως:

Πείραμα 1: Καταγραφή 40 εικόνων (20 εικόνες από κοντινό και 20 εικόνες από μακρινό πλάνο) από πειραματικό ιστό, ζωικού ενδομήτριου, 2 δείγματα, με πανοραμική 5 cm και κοντινή απόσταση 2 cm.

Πείραμα 2: Καταγραφή 40 εικόνων (20 εικόνες από κοντινό και 20 εικόνες από μακρινό πλάνο) από πειραματικό ιστό νωπού κοτόπουλου, 5 δείγματα, με πανοραμική 8 cm και κοντινή απόσταση 3 cm.

103

Πείραμα 3: Καταγραφή 40 εικόνων (20 εικόνες από κοντινό και 20 εικόνες από μακρινό πλάνο) από πειραματικό ιστό νωπού κοτόπουλου, 5 δείγματα, με πανοραμική 4 cm και κοντινή απόσταση 2.7 cm.

Πείραμα 4: Καταγραφή 40 εικόνων (20 εικόνες από κοντινό και 20 εικόνες από μακρινό πλάνο) από πειραματικό ιστό νωπού κοτόπουλου, 5 δείγματα, με πανοραμική 8 cm και κοντινή απόσταση 2 cm.

Στο Σχήμα 44, παρατηρούμε δύο ίδιες εικόνες από διαφορετική απόσταση λήψης, με 3 εκατοστά διαφοράς. Η εικόνα (α) παρουσιάζει την περιοχή ενδιαφέροντος από κοντινό πλάνο και η εικόνα (β) παρουσιάζει την ίδια περιοχή ενδιαφέροντος από μακρινό πλάνο. Στο Σχήμα 45 παρατηρούμε τις ίδιες περιοχές ενδιαφέροντος από διαφορετικές αποστάσεις λήψης. Η μέθοδος αυτή της παρατήρησης σε μακρινό και κοντινό πλάνο, εξυπηρετεί το γιατρό για την καλύτερη κατανόηση και ανίχνευση της ανατομίας του οργάνου και της περιοχής ενδιαφέροντος.

Σχήμα 44: Εικόνες από πειραματικό ιστό, νωπού κοτόπουλου. Παρουσιάζεται η ίδια εικόνα λήψης, όπου στο λευκό τετραγωνικό περίγραμμα παρουσιάζεται η ίδια περιοχή ενδιαφέροντος, (α) περιοχή ενδιαφέροντος σε κοντινό πλάνο 2,7 cm και (β) περιοχή ενδιαφέροντος σε μακρινό πλάνο 4 cm.

Σχήμα 45: Εικόνες από πειραματικό ιστό, νωπού κοτόπουλου. Παρουσιάζεται η ίδια περιοχή ενδιαφέροντος, (α) περιοχή ενδιαφέροντος σε πανοραμικό πλάνο, 8 cm, (β) περιοχή ενδιαφέροντος σε κοντινό πλάνο 3 cm, (γ) και (δ) περιοχή ενδιαφέροντος υπό διαφορετικές διαδοχικές γωνίες λήψης με 3 μοίρες διαφορά αντίστοιχα.

4.5 ΚΑΤΑΓΡΑΦΗ ΕΙΚΟΝΩΝ ΜΕ ΔΙΑΦΟΡΕΤΙΚΕΣ ΣΥΝΘΗΚΕΣ ΣΤΟΧΕΥΣΗΣ ΓΙΑ ΔΥΟ ΓΩΝΙΕΣ

Με τη χρησιμοποίηση της λαπαροσκοπικής κάμερας (Circon IP 4.1), έχουμε καταγράψει εικόνες από πειραματικό ιστό, νωπού κοτόπουλου και ζωικού ενδομήτριου, με διαφορετικές γωνίες λήψης ως ακολούθως:

Πείραμα 1: Καταγραφή 40 εικόνων (20 εικόνες με γωνία 1 και 20 εικόνες με γωνία 2) από πειραματικό ιστό, ζωικού ενδομήτριου, από 2 δείγματα, με 3 μοίρες διαφορά.

Πείραμα 2: Καταγραφή 40 εικόνων (20 εικόνες με γωνία 1 και 20 εικόνες με γωνία 2) από πειραματικό ιστό, από νωπού κοτόπουλου, με 2 γωνίες λήψης, με διαφορά 3 μοιρών.

Για τις συνθήκες του πειράματος ακολουθήθηκαν αυστηρά οι οδηγίες του ιατρικού προσωπικού για ταύτιση όλων των παραμέτρων της εξέτασης με αυτού του πειράματος για μείωση των σφαλμάτων χρήσης των μηχανημάτων και του περιβάλλοντος χώρου.

Σχήμα 46: Εικόνες από πειραματικό ιστό με διαφορετικές συνθήκες λήψης. (α) πανοραμικό πλάνο, (β) κοντινό πλάνο, (γ) γωνία 1, και (δ) γωνία 2.

Στο Σχήμα 46 παρουσιάζεται η ίδια εικόνα από διαφορετικές αποστάσεις και γωνίες λήψης. Η εικόνα (α) παρουσιάζει την περιοχή ενδιαφέροντος από πανοραμικό πλάνο, η εικόνα (β) παρουσιάζει την ίδια περιοχή ενδιαφέροντος από κοντινό πλάνο, οι εικόνες (γ) και (δ) παρουσιάζουν τις ίδιες περιοχές ενδιαφέροντος από δυο συνεχόμενες γωνίες λήψης.

4.6 ΚΑΤΑΓΡΑΦΗ ΠΡΑΓΜΑΤΙΚΩΝ ΕΙΚΟΝΩΝ ΕΝΔΟΜΗΤΡΙΟΥ

Έχουμε συλλέξει 416 εικόνες από πραγματικό ενδομήτριο, 208 περιοχές ενδιαφέροντος που παρουσιάζουν φυσιολογικές περιοχές και 208 περιοχές ενδιαφέροντος που παρουσιάζουν ύποπτες περιοχές καρκίνου. Αυτές οι περιοχές ενδιαφέροντος αποτελούν το δείγμα μας και έχουν εξαχθεί από ένα σύνολο 40 γυναικών. Σε 30 περιπτώσεις τα περιστατικά αυτά παρουσιάζουν την ίδια παθολογία, καρκίνο του ενδομητρίου, και χρησιμοποιώντας την ίδια μεθοδολογία όπως της πραγματικής υστεροσκοπικής εξέτασης εξαγάγαμε τις περιοχές ενδιαφέροντος. Οι άλλες 10 γυναίκες παρουσιάζουν φυσιολογικό ενδομήτριο, έπειτα και από τα αποτελέσματα τις ιστοπαθολογικής εξέτασης. Η ηλικία των γυναικών αυτών είναι από 22 μέχρι 50 χρόνων.

Σχήμα 47: Οι εικόνες (α) και (β) παρουσιάζουν φυσιολογική και παθολογική περιοχή του ενδομητρίου και οι εικόνες (γ) και (δ) παρουσιάζουν τις ίδιες περιοχές μετά την εφαρμογή του αλγορίθμου γάμμα.

Στο Σχήμα 47 παρουσιάζουμε 2 εικόνες από μία υστεροσκοπική εξέταση του ενδομητρίου με παθολογική και φυσιολογική περιοχή εφαρμόζοντας τον αλγόριθμο γάμμα. Από αυτές τις εικόνες έχουμε εξαγάγει τα χαρακτηριστικά υφής τους και έχουμε εφαρμόσει τη στατιστική ανάλυση με στόχο τη χρήση αυτών των χαρακτηριστικών στον αυτόματο διαχωρισμό τους με αλγόριθμους νευρωνικών δικτύων. Επίσης έχουμε κανονικοποιήσει όλες τις εικόνες από το ενδομήτριο με τον αλγόριθμο γάμμα και έχουμε προχωρήσει στην ίδια μεθοδολογία εξάγοντας τα χαρακτηριστικά υφής τους, Σχήμα 48.

Σχήμα 48: Υστεροσκοπική εικόνα ενδομητρίου. Η περιοχή (α) παρουσιάζει την φυσιολογική περιοχή ενδιαφέροντος (β) παρουσιάζει την παθολογική περιοχή ενδιαφέροντος.

Τα αποτελέσματα της διόρθωσης με τον αλγόριθμο γάμμα φαίνονται κάτω από τις εικόνες εξόδου. Οι εικόνες εξόδου μετά την διόρθωση παρουσιάζονται πιο κοντά προς στις πραγματικές εικόνες. Επίσης έχουμε αναλύσει εικόνες του ενδομητρίου με την κάμερα Circon IP4.1 και τις έχουμε διορθώσει (Σχήμα 49). Έπειτα έχουμε εξαγάγει τα χαρακτηριστικά υφής από τις δύο κατηγορίες, παθολογικές και φυσιολογικές, και εφαρμόσαμε το στατιστικό τεστ για να αποφανθούμε αν υπάρχει στατιστική διαφορά μεταξύ τους.

(γ)

Σχήμα 49: Οι πιο πάνω εικόνες παρουσιάζουν περιοχές ενδιαφέροντος από πειραματικό ιστό πρίν και μετά την εφαρμογή του γάμμα αλγόριθμου. Οι (α) και (γ) παρουσιάζουν περιοχές ιστού πρίν από τη διόρθωση γάμμα και (β), (δ) παρουσιάζουν τις ίδιες περιοχές ενδιαφέροντος μετά τη διόρθωση με τον αλγόριθμο γάμμα.

Στο Σχήμα 50 παρουσιάζουμε υστεροσκοπικές εικόνες ενδομητρίου πρίν και μετά την εφαρμογή του αλγόριθμου γάμμα.

Σχήμα 50: Οι εικόνες (α) και (γ) παρουσιάζουν τις αρχικές εικόνες υστεροσκοπικής εξέτασης υπό πραγματικές συνθήκες, ενώ οι εικόνες (β) και (δ) παρουσιάζουν τις ίδιες εικόνες μετά την εφαρμογή του γάμμα αλγόριθμου. Σημείωση: η εικόνα (β) διορθώθηκε με συντελεστή του αλγοριθμού γάμμα, $b_R=52$, $b_G=58$ και $b_B=79$, ενώ η εικόνα (δ) διορθώθηκε με συντελεστή του αλγόριθμου γάμμα, $b_{RGB}=0$.

Έχουμε εξαγάγει τα χαρακτηριστικά υφής πρίν και μετά την εφαρμογή του αλγόριθμου γάμμα και εφαρμόσαμε τη στατιστική ανάλυση μεταξύ των φυσιολογικών και παθολογικών χαρακτηριστικών υφής πρίν και μετά την εφαρμογή του αλγόριθμου γάμμα.

4.7 ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ ΧΡΩΜΑΤΟΣ

Όλες οι περιοχές ενδιαφέροντος παρουσιάζονται στη μορφή έγχρωμων εικόνων. Ο μετασχηματισμός των έγχρωμων εικόνων σε εικόνες του γκρι τόνου έγινε βάσει του πιο κάτω τύπου:

$$Y = (0.299R + 0.587G + 0.114B) \tag{4.3}$$

Όπου Υ είναι η ένταση της εικόνας.

Επίσης όλες οι έγχρωμες εικόνες έχουν μετασχηματισθεί σε άλλα δυο συστήματα απεικόνισης, του HSV συστήματος και του YCrCb συστήματος [60]. Η μετατροπή αυτή έγινε με τους πιο κάτω μετασχηματισμούς και με τη χρήση του λογισμικού Matlab:

Ο μετασχηματισμός που εφαρμόστηκε για μετατροπή του RGB σύστηματος σε HSV σύστημα είναι ο πιο κάτω:

RGB συντεταγμένες έχουν κανονικοποιηθεί στο [0,1] και έχουμε ορίσει τα εξής:

M=max(R,G,B) kat m=min(R,G,B)

$$r = \frac{(M-R)}{(M-m)}, g = \frac{(M-G)}{(M-m)}, b = \frac{(M-B)}{(M-m)}$$

Η Value ορίζεται σαν $V \in [0,1]$ και $V = \max(R,G,B)$

Η Saturation ορίζεται σαν $S \in [0, 180]$ και αν ισχύουν οι πιο κάτω περιπτώσεις τότε υπολογίζουμε το S:

If (M=0) then S=0 and H=180

If
$$(M \neq 0)$$
 then $S = \frac{(M-m)}{M}$

Η χροιά, Ημε ορίζεται στο διάστημα $H \in [0,360]$ και υπολογίζεται βάσει των πιο κάτω περιπτώσεων:

Ο μετασχηματισμός από RGB σύστηματος σε YCrCb σύστημα έγινε με τους πιο κάτω τύπους:

Y=(0.257R)+(0.504G)+(0.098B)+16	(4.4)
Cb=(-0.148R)+(-0.291G)+(0.439B)+128	(4.5)

$$Cr=(0.439R)+(-0.368G)+(-0.071B)+128$$
 (4.6)

4.8 Χειροκινητή κατατμήση περιοχών ενδιαφεροντός

Κατά τη διάρκεια μιας λαπαροσκοπικής / υστεροσκοπικής επέμβασης ο γιατρός παρακολουθώντας το βίντεο σε πραγματικό χρόνο από την οθόνη του, χρειάζεται να παγώσει την αντίστοιχη εικόνα για να παρατηρήσει με μεγαλύτερη λεπτομέρεια όλες τις ύποπτες περιοχές ενδιαφέροντος. Η ιατρική κάμερα είναι συνδεδεμένη με ένα υπολογιστή όπου μέσω μιας κάρτας μετατροπής αναλογικού σε ψηφιακού σήματος (frame grabber), το βίντεο ψηφιοποιείται και αποθηκεύεται.

Οι επιλεγμένες εικόνες (ανάλυση εικόνας 720X576X24bits) αποθηκεύονται και αυτές στον υπολογιστή, οι οποίες μετά μπορούν να επεξεργαστούν. Ο γιατρός επιλέγει τις περιοχές ενδιαφέροντος ανάλογα με το μέγεθος της ύποπτης περιοχής και τις απομονώνει (Σχήμα 51).

Σχήμα 51: Παγωμένη εικόνα ενδομητρίου και μια ύποπτη περιοχή παθολογίας (64X64 pixels).

Στην αποθηκευμένη εικόνα μπορούμε να τμηματοποιήσουμε ύποπτες περιοχές γυναικολογικού καρκίνου με ένα απλό σύστημα κατάτμησης. Πιο κάτω παρουσιάζουμε ένα σύστημα κατάτμησης με χειροκίνητη τμηματοποίηση των περιοχών ενδιαφέροντος που παρουσιάζει την αρχική εικόνα καθώς και την τμηματοποιημένη περιοχή ενδιαφέροντος, Σχήμα 52.

Εδώ θα θέλαμε να αναφέρουμε τη δυσκολία της αυτόματης τμηματοποίησης λαπαροσκοπικών / υστεροσκοπικών εικόνων λόγω της ιδιομορφίας της απεικόνισης όπως επίσης και τις πολυχρωμίες που παρουσιάζουν οι ιστοί. Αναγκαία εξέταση είναι η ιστοπαθολογική εξέταση η οποία δουλεύει παράλληλα με το σύστημα για καλύτερη αντιμετώπιση του γυναικολογικού καρκίνου.

4.9 ΣΥΣΤΗΜΑ ΔΙΑΧΩΡΙΣΜΟΥ ROIS, CAD SYSTEM

Έχοντας δεδομένο τα χαρακτηριστικά υφής δημιουργήσαμε ένα αυτόματο σύστημα διαχωρισμού φυσιολογικών και παθολογικών περιοχών ενδιαφέροντος. Το σύστημα αυτό, Computer Aided Diagnosis system (CADs), δέχεται τα χαρακτηριστικά υφής των περιοχών ενδιαφέροντος και με εφαρμογή των αλγόριθμων νευρωνικών δικτύων εξάγουμε το ποσοστό του διαχωρισμού των φυσιολογικών και παθολογικών περιοχών ενδιαφέροντος.

Το προτεινόμενο πρωτόκολλο καταγραφής ενδοσκοπικών εικόνων θα βοηθήσει στην βαθμονόμηση της κάμερας και στην κανονικοποίηση των ενδοσκοπικών εικόνων. Η εφαρμογή της διαδικασίας ακολουθείται από την εξαγωγή των περιοχών ενδιαφέροντος και από τον μετασχηματισμό σε διαφορετικά έγχρωμα συστήματα των εικόνων.

Η εξαγωγή των χαρακτηριστικών υφής σε όλα τα συστήματα απεικόνισης των εικόνων και η στατιστική ανάλυση θα δώσει ένα πρώτο συμπέρασμα για το διαχωρισμό των δυο περιοχών ενδιαφέροντος, φυσιολογικών και παθολογικών εικόνων.

Τέλος με την υλοποίηση του αυτοματοποιημένου συστήματος διαχωρισμού περιοχών ενδιαφέροντος με υλοποίηση και εφαρμογή των αλγόριθμων νευρωνικών δικτύων, με την εισαγωγή των χαρακτηριστικών υφής, θα δώσει στο γιατρό ένα ποσοστό αναγνώρισης των φυσιολογικών και παθολογικών περιοχών ενδιαφέροντος.

Σχήμα 53: Αρχιτεκτονική ολοκληρωμένου συστήματος καταγραφής, ανάλυσης και διαχωρισμού ενδοσκοπικών εικόνων.

Στο Σχήμα 53 παρουσιάζουμε γραφικά την αρχιτεκτονική του ολοκληρωμένου συστήματος καταγραφής, ανάλυσης και διαχωρισμού ενδοσκοπικών εικόνων με αποτέλεσμα την αύξηση της διαγνωστικής ακρίβειας του περιστατικού.

4.10 Σ XOAIASMOS

Σε αυτό το κεφάλαιο έχουμε περιγράψει τη μεθοδολογία δηλαδή τα διάφορα πειράματα που έγιναν με διαφορετικές συνθήκες σκόπευσης με στόχο να αναλύσουμε τις σχέσεις που υπάρχουν μεταξύ των διαφορετικών αποστάσεων και γωνιών κατά τη διάρκεια μιας ενδοσκοπικής εξέτασης. Αυτό θα μας επιτρέψει να διαπιστώσουμε το ρόλο επηρεασμού στην επεξεργασία των εικόνων.

Η προεπεξεργασία των εικόνων μας οδήγησε στη διόρθωση των ενδοσκοπικών εικόνων και στη δημιουργία ενός πρωτοκόλλου για την καταγραφή των εικόνων. Συνοψίζοντας, το προτεινόμενο πρωτόκολλο θα βοηθήσει στη διόρθωση της καταγραφής των ενδοσκοπικών εικόνων ανεξαρτήτως των ιατρικών μηχανημάτων που χρησιμοποιούνται.

Επίσης έχουμε αναλύσει και παρουσιάσει τη μέθοδο διόρθωσης των εικόνων με τη χρήση του αλγόριθμου γάμμα και με τη χρήση έτοιμης γνωστής παλέτας χρωμάτων. Η διόρθωση της ιατρικής κάμερας και η διόρθωση των εικόνων μας δίνουν τη δυνατότητα σύγκρισης παρόμοιων περιστατικών γυναικολογικού καρκίνου που θα ληφθούν από διαφορετικά ιατρικά μηχανήματα. Οι διορθωμένες εικόνες σύμφωνα με την εμπειρία του γιατρού παρουσιάζονται να είναι οπτικά καλύτερες.

Προσπάθειες για την υλοποίηση των ιατρικών οδηγιών για λαπαροσκοπικές / υστεροσκοπικές επεμβάσεις γίνονται από την European Society for Gynaecological Endoscopy (ESGE) [140].

Τέλος έχουμε συλλέξει από ένα δείγμα 40 γυναικών 208 εικόνες ενδομητρίου που παρουσιάζουν φυσιολογικές περιοχές και 208 εικόνες ενδομητρίου που παρουσιάζουν παθολογικές περιοχές βάσει της ιστοπαθολογικής εξέτασής τους.

Στο Κεφάλαιο 5 που ακολουθεί θα αναφερθούμε στους αλγόριθμους χαρακτηριστικών υφής, στη στατιστική ανάλυση καθώς και στην πολυδιακριτή ανάλυση.

Στο Κεφάλαιο 6 θα αναφερθούμε στο αυτόματο σύστημα διαχωρισμού περιοχών ενδιαφέροντος (Computer Aided Diagnosis System, CAD system) σε φυσιολογικές και παθολογικές περιοχές.

115

4.11 ВІВЛІОГРАФІА

- [39] Gonzalez R.C., Woods R.E., Digital Image Processing, Addison Wesley Publishing Company, 1992.
- [40] Russ J.C., The IMAGE PROSECCING Handbook, Second Edition, CRC Press, 1994.
- [41] Haeghen Y.V., Naeyaert J., Lemahieu I., Philips W., An Imaging System with Calibrated Color Image Acquisition for Use in Dermatology. *IEEE Transactions on Medical Imaging*, vol. 19: no 7, July 2000.
- [42] Jung Y.H., Kim J.S., Hur B.S., Kang M.G., Design of Real-Time Image Enhancement Preprocessor for Cmos Image Sensor. *IEEE Transactions on Consumer Electronics*, vol. 46: No 1, February 2005.
- [43] Della M.V., Beltrami C.A., Telepathology applications of the Internet multimedia electronic mail, PubMed, Web Site: <u>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi</u>
- [44] Weinberg D.S., Allaert F.A., Dusserre P., Drouot F., Retailliau B., Welch W.R., Longtine J., Brodsky G., Folkerth R., Doolittle M., Telepathology diagnosis by means of digital still images: an international validation study, PubMed, Web Site: <u>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi</u>
- [45] McNeill K.M., The Impact of Communications Technology on Medicine, Presentation #165, Invited Symposium: Applying Information Technology in Medicine, Web Site: <u>http://www.uclm.es/inabis2000/symposia/files/165/index.html</u>
- [46] Marchevsky A.M., Dulbandzhyan R., Seely K., Carey S., Duncan R.G., Storage and Distribution of Pathology Digital Images Using Integrated Web-Based Viewing Systems, Archives of Pathology and Laboratory Medicine: 126, No. 5, pp. 533-539, PubMed, Web Site: <u>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi</u>
- [47] Elmasri R., Navathe S.B., Fundamentals of Database Systems, Third Edition.
- [48] Wenzl R., Lehner R., Vry U., Pateisky N., Sevelda P., Husslein P., Three-dimensional videoendoscopy: clinical use in gynaecological laparoscopy, Lancet 344: 1621–1622, 1994.
- [49] Karkanis S.A., Iakovidis D.K., Karras D.A., Maroulis D.E., Detection of lesions in endoscopic video using textural descriptors on wavelet domain supported by artificial neural network architectures, IEEE Proc, Oct. 7-10, Thessaloniki ICIP 2001.
- [50] Lee J.D., Hsiao Y.J., Extraction of Tumor Region In Color Images Using Wavelets, Computers and Mathematics with Applications, 40, pp. 793 – 803, 2000.
- [51] Haralick R.M., Shanmugam K., Dinstein I., Texture Features for Image Classification, IEEE Transactions on Systems, Man., and Cybernetics, SMC-3, pp. 610-621, Nov. 1973.

- [52] Neophytou M.S., Pattichis C.S., Pattichis M.S., Tanos V., Kyriacou E., Koutsouris D., Multiscale Texture Feature Variability Analysis in Endoscopy Imaging Under Different Viewing Positions, Proc. II EFOMP Med. Conf. on Med. Phys., Limassol, Cyprus, 2004.
- [53] Neophytou M.S., Pattichis C.S., Pattichis M.S., Tanos V., Kyriacou E., Pavlopoulos S., Koutsouris D., Texture Analysis of the Endometrium During Hysteroscopy: Preliminary Results, Proc. IEEE EMBS 04 Conf., San Francisco, USA, Sep. 2004.
- [54] Web link: <u>http://www.acmicorp.com</u>
- [55] Web link: <u>http://www.pinnaclesys.com</u>
- [56] Web link: <u>www.karl-storz.com</u>
- [57] Web link: <u>www.snowdenpencer.com</u>
- [58] Web link: <u>http://www.edundoptics.com</u>
- [59] Haskell B.G., Puri A., Netravali N., Digital Video: An Introduction to MPEG-2, Int. Thomson Publishing, New York 1997.
- [60] Web link: <u>http://www.mathworks.com</u>
- [61] Tjoa P.M., Krishnan M.S., Feature extraction for the analysis of colon status from the endoscopic images, BioMedical Engineering OnLine, Apr. 2003. Available: <u>http://www.biomedical-engineering-online.com/content/2/1/9</u>.
- [62] Weszka J.S., Dyer C.R., Rosenfield A., A Comparative Study of Texture Measures for Terrain Classification, IEEE Transactions on Systems, Man. & Cybernetics, SMC-6, April 1976.
- [63] Amadasun M., King. R., Textural Features Corresponding to Textural Properties, IEEE Transactions on Systems, Man, and Cybernetics, 19, No 5, Sept./Oct. 1989.
- [64] Chung-Ming Wu, Yung-Chang Chen, Statistical Feature Matrix for Texture Analysis, CVGIP: Graphical Models and Image Processing, 54, No 5, pp. 407-419, Sept. 1992.
- [65] Schmit M. et.al., Computational Intelligence Processing in Medical Diagnosis, Physical-Velag, 2002.
- [66] W.B. Saunders Company, Human Pathology, 28, no. 1, Jan 1997.

5

Χαρακτηριστικά Υφής

5.1 ΕιΣΑΓΩΓΗ

Σε αυτό το κεφάλαιο θα περιγράψουμε τους αλγόριθμους χαρακτηριστικών υφής καθώς και την εφαρμογή τους, στις λαπαροσκοπικές / υστεροσκοπικές εικόνες. Θα περιγράψουμε τους αλγόριθμους Statistical Features (SF), Spatial Gray Level Dependence Matrices (SGLDM), και Gray Level Difference Statistics (GLDS).

Η εικόνα περιέχει πληροφορίες που είναι δύσκολο να αναγνωριστούν με μια απλή παρατήρηση. Έμπειροι επιστήμονες επεξεργασίας εικόνας χρησιμοποιούν αλγόριθμους χαρακτηριστικών υφής για να χαρακτηρίσουν την εικόνα και να εξάγουν χρήσιμες πληροφορίες για το περιεχόμενό της. Οι αλγόριθμοι χαρακτηριστικών υφής είναι μαθηματικές εξισώσεις που δέχονται ως είσοδο τις τιμές του γκρίζου που αποτελείται η εικόνα καθώς και άλλες συνιστώσες, όπως τον αριθμό των στιγμάτων, τη μέση τιμή του γκρι κτλ.

Τα χαρακτηριστικά υφής τα συναντούμε σε εικόνες γκρι τόνου όπως εικόνες υπερήχων, MRI, CT κ.α. Μερικά χαρακτηριστικά είναι η μέση τιμή, η διασπορά, η ομοιογένεια, η διακύμανση, ο μέσος όρος, η εντροπία κ.α.

Παρά την ευρεία χρήση των χαρακτηριστικών υφής, δεν υπάρχει μοναδικός και παγκοσμίως αποδεκτός ορισμός της υφής της εικόνας. Η υφή είναι ένα μέτρο της τραχύτητας, της ομαλότητας και της κανονικότητας της εικόνας. Οι τεχνικές περιγραφής της υφής μπορούν να ομαδοποιηθούν σε τρεις μεγάλες κατηγορίες: στατιστικές, φασματικές και δομικές. Οι στατιστικές τεχνικές περιγραφής βασίζονται στα ιστογράμματα των περιοχών, τις επεκτάσεις τους και τις ροπές τους. Μετρούν αντίθεση ύπαρξη κόκκων και τραχύτητα. Οι φασματικές τεχνικές βασίζονται στη συνάρτηση αυτοσυσχέτισης μιας περιοχής ή της κατανομής ισχύος στην περιοχή του μετασχηματισμού Fourier, με σκοπό να ανιχνεύσουν περιοδικότητα υφής. Τέλος, οι δομικές τεχνικές περιγράφουν την υφή με χρήση προτύπων συνοδευόμενων από συγκεκριμένους κανόνες τοποθέτησης.

Πιο κάτω θα αναλύσουμε τους πιο σημαντικούς αλγόριθμους υφής καθώς και τους αλγόριθμους που εφαρμόσαμε για την έρευνά μας.

5.2 ΓΕΝΙΚΑ ΣΧΟΛΙΑ ΓΙΑ ΤΑ ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΥΦΗΣ

Τα τελευταία χρόνια στο χώρο της ιατρικής απεικόνισης έγιναν μεγάλα βήματα στην αναπαράσταση τρισδιάστατων και δισδιάστατων δεδομένων. Αυτές οι απεικονιστικές μέθοδοι είναι για παράδειγμα η απεικόνιση με MRI, CT, US και X-rays. Η εξέλιξη αυτή ώθησε τους επιστήμονες στην υλοποίηση αλγορίθμων εξαγωγής χαρακτηριστικών υφής για ιατρικές εφαρμογές [67]-[70].

Οι αλγόριθμοι εξαγωγής χαρακτηριστικών υφής έχουν χρησιμοποιηθεί ευρέως στο χαρακτηρισμό της ιατρικής εικόνας με πολύ καλά αποτελέσματα είτε σε τρισδιάστατο είτε σε δισδιάστατο μοντέλο απεικόνισης.

Στη διαγνωστική κολονοσκόπηση ο ειδικός αναγνωρίζει ύποπτες περιοχές ενδιαφέροντος βάσει της υφής του ιστού. Η τραχεία και η ομαλή επιφάνεια, το σχήμα, και η συμμετρικότητα είναι μερικά χαρακτηριστικά για αναγνώριση ύποπτων περιοχών ενδιαφέροντος. Γειτονικές επιφάνειες που παρουσιάζουν διαφορετικά χαρακτηριστικά μπορούν να διαχωρίσουν φυσιολογικές και παθολογικές περιοχές βάσει των χαρακτηριστικών υφής. Η εμπειρία του ειδικού είναι σημαντική στην αναγνώριση αυτών των περιοχών. Η χρήση των υπολογιστών με την εφαρμογή αλγορίθμων χαρακτηριστικών υφής βοηθά τον ειδικό στην αύξηση της αναγνώρισης ύποπτων περιοχών καρκίνου. Φυσικά πάντα η διάγνωση γίνεται με την ιστοπαθολογική εξέταση της εν λόγω περιοχής. Οι περιοχές ενδιαφέροντος είναι ξεχωριστές για κάθε περίπτωση όπως επίσης και τα χαρακτηριστικά υφής είναι μοναδικά για κάθε ιστό. Το γεγονός αυτό μας επιτρέπει να ξεχωρίσουμε τους ιστούς βάσει των χαρακτηριστικών υφής [71], [72].

Άλλες έρευνες που έχουν δημοσιευθεί και αφορούν ανάλυση εικόνων με αλγόριθμους χαρακτηριστικών υφής αφορούν την αναγνώριση ύποπτων περιοχών ενδιαφέροντος από διάφορα όργανα όπως καρκίνο στο συκώτι, καρκίνο του προστάτη [73], καρκίνο του μαστού [74], καρκίνου του εγκεφάλου [75], καρκίνο του τραχήλου της μήτρας [76] και καρδιακά νοσήματα [77]. Έχουν χρησιμοποιηθεί αλγόριθμοι εξαγωγής χαρακτηριστικών υφής με αλγόριθμους μετασχηματισμού 2-D wavelet με πολύ καλά αποτελέσματα στο χαρακτηρισμό των εικόνων.

Κλείνοντας, τα χαρακτηριστικά υφής μπορούν να περιγράψουν με μεγάλη ακρίβεια την υφή της περιοχής ενδιαφέροντος και να δώσουν μια μοναδική ταυτότητα σε κάθε υπό εξέταση περιοχή. Με αυτά τα χαρακτηριστικά, η χρήση των υπολογιστών στη διαγνωστική χειρουργική, γίνεται υλοποιήσιμη και έξυπνα συστήματα επεξεργασίας εικόνων έχουν προταθεί με στόχο την αύξηση της διαγνωστικής ακρίβειας του περιστατικού.

5.3 FIRST ORDER GRAY LEVEL PARAMETERS

Ο αλγόριθμος αυτός στηρίζεται στην εξαγωγή παραμέτρων βάσει των γκρι αποχρώσεων του ιστογράμματος [74], [78]. Τα χαρακτηριστικά αυτά περιγράφουν την γκρι κατανομή χωρίς να εξαρτώνται από τη χωρική κατανομή τους με αποτέλεσμα να μπορούν να περιγράφουν μόνο την echogensity των χαρακτηριστικών και την ολική μεταβολή των χαρακτηριστικών των περιοχών ενδιαφέροντος. Τα χαρακτηριστικά αυτά περιγράφονται πιο κάτω με μαθηματικούς τύπους:

• The Mean gray level (MEA)

$$MEA = \frac{1}{N} \sum_{i} \sum_{j} g(i,j)$$

Αυτή η παράμετρος περιγράφει το μέσο όρο των γκρι επιπέδων στα σημεία (pixels) της περιοχής ενδιαφέροντος.

• Variance (VAR)

$$VAR = \frac{1}{N} \sum_{i} \sum_{j} (g(i,j) - MEA)^2$$

Η παράμετρος της απόκλισης περιγράφει το πλάτος του ιστογράμματος.

$$KUR = \frac{1}{N} \left[\frac{\sum_{i=j}^{N} (g(i,j) - \mu)^4}{\sigma^4} \right]$$

- Το Median (MED)είναι ο μέσος όρος των γκρι επιπέδων της περιοχής ενδιαφέροντος.
- Skewness (SKE)

$$SKE = \frac{\left|\sum_{i}\sum_{j}(g(i,j) - \mu)^{2}\right|}{N}$$

• Energy (ENER) $ENER = \sum_{i} p(i)^{2}$

• Entropy (ENT)

$$ENT = -\sum_{i} p(i) \log(p(i))$$

Όπου g(i,j) είναι η τιμή του pixel (i,j), Ν είναι ο ολικός αριθμός των pixels στην περιοχή ενδιαφέροντος, μ και σ είναι η μέση τιμή και η standard deviation όλων των pixels, και p είναι η πιθανότητα κατανομής.

5.4 Характнрістіка апо Run-Length мнтрес гкрі тол Ω n

Ως **Run-Length (R-L)** γκρι τόνου ορίζεται το σύνολο γειτονικών σημείων που έχουν τον ίδιο τόνο του γκρι κατά συγκεκριμένη διεύθυνση. Το μήκος **R-L** είναι ο αριθμός των pixels εικόνας που έχουν τον ίδιο γκρι-τόνο. Η **R-L** μήτρα είναι η μήτρα που περιέχει τη συχνότητα που κάθε **R-L**, κάθε γκρι τόνου εμφανίζεται στην εικόνα σε συγκεκριμένη κατεύθυνση. Παρόμοιο με την co-occurrence μήτρα, έχουμε 4 διευθύνσεις **R-L** 0^0 , 45^0 , 90^0 , και 135^0 . Το ακόλουθο παράδειγμα παρουσιάζει τον υπολογισμό μιας **R-L** μήτρας:

Έστω η εικόνα:

$$g(i,j) = \begin{vmatrix} 0 & 0 & 2 & 2 \\ 1 & 1 & 0 & 0 \\ 3 & 2 & 3 & 3 \\ 3 & 2 & 2 & 2 \end{vmatrix}$$

με 4 τόνους γκρι 0,1,2,3. Η **R-L** μήτρα κατά την 90^0 διεύθυνση είναι:

Run-Length
$$Q_{R-L} = \begin{cases} 1 & 2 & 3 & 4 \\ 0 & 4 & 0 & 0 & 0 \\ 1 & 2 & 0 & 0 & 0 \\ 2 & 4 & 1 & 0 & 0 \\ 3 & 2 & 1 & 0 & 0 \end{cases}$$

όπου η πρώτη σειρά δίδει τα μήκη των **R-L** και η πρώτη στήλη τους γκρι τόνους. Έτσι, όπως φαίνεται $Q_{R-L} = 4$ είναι η συχνότητα που το **R-L** = 1 (δηλαδή 1 pixel 0 γκρι τόνου)

εμφανίζεται στην εικόνα g(i,j) κατά την 90⁰ κατεύθυνση. Παρόμοιο, Q_{R-L} (2,2) = 1 που σημαίνει ότι στην εικόνα υπάρχει μόνο ένας συνδυασμός δύο γειτονικών σημείων γκρι τόνου, 2 κατά την 90⁰ κατεύθυνση. Με αυτό τον τρόπο δομείται η **R-L** μήτρα της εικόνας. Ακολούθως τα παρακάτω χαρακτηριστικά μπορούν να υπολογιστούν από την **R-L** μήτρα.

• Short Run Emphasis (Εμφαση σε μικρά **R-L**)

$$SRE = \frac{\sum_{i=j}^{N_{g}} \sum_{j=1}^{N_{r}} Q_{R-L}(i, j) / j^{2}}{\sum_{i=1}^{N_{g}} \sum_{j=1}^{N_{r}} Q_{R-L}(i, j)}$$

όπου

 N_g : ο αριθμός των γκρι τόνων στην εικόνα,

Nr: ο αριθμός των διαφορετικών **R-L**.

Ο παρονομαστής είναι ο ολικός αριθμός των **R-L** στην εικόνα και χρησιμοποιείται για την βαθμονόμηση του χαρακτηριστικού.

• Long Run Emphasis (Εμφαση σε μεγάλα **R-L**)

$$LRE = \frac{\sum_{i}^{N_{g}} \sum_{j}^{N_{r}} Q_{R-L}(i,j) \cdot j^{2}}{\sum_{i}^{N_{g}} \sum_{j}^{N_{r}} Q_{R-L}(i,j)}$$

• Gray Level Non-Uniformity (Ανομοιογένεια γκρι-τόνων)

$$GLNU = \frac{\sum_{i}^{N_g} \left[\sum_{j}^{N_r} \mathcal{Q}_{R-L}(i,j)\right]^2}{\sum_{i}^{N_g} \sum_{j}^{N_r} \mathcal{Q}_{R-L}(i,j)}$$

Όταν τα **R-L** είναι ομοιόμορφα κατανεμημένα στους γκρι τόνους τότε η τιμή της *GLNU* είναι μικρή.

• Run Length Non Uniformity (Ανομοιογένεια **R-L**)

$$RLNU = \frac{\sum_{j}^{N_r} \left[\sum_{i}^{N_g} Q_{R-L}(i,j)\right]^2}{\sum_{i}^{N_g} \sum_{j}^{N_r} Q_{R-L}(i,j)}$$

Όταν ο αριθμός των **R-L** είναι ομοιόμορφα κατανεμημένος σε κάθε μήκος **R-L** τότε η τιμή της *RLNU* είναι μικρή.

• Run Percentage (Ποσοστό R-L)

$$RP = \sum_{i}^{N_g} \sum_{j}^{N_r} Q_{R-L}(i,j) / P$$

Όπου Ρ ο ολικός αριθμός πιθανών R-L, αν όλα τα R-L είχαν μήκος 1.

5.5 Εισαγωγή, Αλγοριθμός SGLDM

Στο κεφάλαιο αυτό γίνεται μια λεπτομερής περιγραφή των αλγορίθμων που χρησιμοποιούνται για διαχωρισμό των υστεροσκοπικών εικόνων στην εργασία αυτή. Όλοι οι αλγόριθμοι βασίζονται στην ανάλυση της υφής μιας εικόνας. Μερικοί από τους ορισμούς αναφέρονται στα αγγλικά γιατί θεωρήθηκε ότι μετάφρασή τους θα δημιουργούσε κάποια επιπλέον προβλήματα παρά θα βοηθούσε τον αναγνώστη.

Ο ψευδοκώδικας για τους αλγόριθμους φαίνεται στις παραγράφους των αλγορίθμων.

5.5.1 Αλγοριθμός Spatial Gray Level Dependence Matrices (SGLDM)

Ο αλγόριθμος SGLDM [79] βασίζεται στον υπολογισμό της συνάρτησης δευτέρας τάξης δεσμευμένης πυκνότητας πιθανότητας *f(i,j;d,θ)*. Κάθε στοιχείο *f(i,j;d,θ)* είναι η πιθανότητα, δύο σημεία που βρίσκονται σε διεύθυνση που καθορίζεται από τη γωνία Θ και έχουν απόσταση d μεταξύ τους, να έχουν τιμές γκρι επιπέδων i και j.

Ας υποθέσουμε ότι έχουμε εικόνα προς ανάλυση με διαστάσεις N_{χ} x N_{y} , και ότι κάθε σημείο έχει μια ακέραια (διακριτή) τιμή γκρι επιπέδου που βρίσκεται μέσα στο διάστημα 1 μέχρι N_g (1,2,3,4,....N_g).

Εάν $L_x = \{1, 2, ..., N_x\}$ είναι η κλίμακα (πεδίο) του X άξονα,

 $L_y=\{1,2,...,N_y\}$ είναι η κλίμακα (πεδίο) του Υ άξονα,

 $G = \{1, 2, ..., N_g\}$ τα επίπεδα γκρι της εικόνας.

Τότε το σύνολο $L_x x L_y$ είναι το σύνολο των σημείων (pixel) της εικόνας.

Η εικόνα γενικά μπορεί να παρουσιαστεί σαν μια συνάρτηση I(x,y) η οποία παίρνει και μια διακριτή τιμή από το διάστημα 1..Ng για κάθε σημείο, I : $L_x \propto L_y \longrightarrow G$.

Οι υπολογισμοί των μέτρων $f(i,j;d,\theta)$ για μια εικόνα γίνονται για τέσσερις διαφορετικές γωνίες. Για κάθε d γίνεται ο υπολογισμός για γωνίες $\theta=0^0$, 45^0 , 90^0 , 135^0 . Οι υπολογισμοί αυτοί έχουν σαν αποτέλεσμα τέσσερις πίνακες (Nearest-neighbour gray-tone spatial-dependence matrices). Οι πίνακες αυτοί βασίζονται στην αρχή του πλησιέστερου γείτονα σε ένα σημείο. Στο Σχήμα 54 φαίνονται οι πλησιέστεροι γείτονες (κοντινότερα σημεία) για ένα τυχαίο σημείο της εικόνας. Φαίνονται οι πλησιέστεροι γείτονες για d=1 και $\theta=0^0$,45⁰,90⁰,135⁰. Το συγκεκριμένο δεν ισχύει για τα σημεία που βρίσκονται στα άκρα μιας εικόνας.

125

Σχήμα 54: (Κατευθύνσεις σύγκρισης των σημείων για τις τέσσερις διαφορετικές γωνίες. Όπως φαίνεται για $\theta = 0^0$ κοντινότεροι γείτονες είναι τα σημεία 1 και 5, για $\theta = 45^0$ τα σημεία 4 και 8, για $\theta = 90^0$ τα σημεία 7 και 3, για $\theta = 135^0$ τα σημεία 2 και 6).

Αρχικά υπολογίζεται η συχνότητα (αριθμός φορών που συμβαίνει) με την οποία έχουμε αλλαγή από το επίπεδο i στο επίπεδο j και αποθηκεύεται σε ένα πίνακα P(i,j;d,θ).

Για τις τέσσερις διαφορετικές γωνίες η συχνότητα υπολογίζεται από τις σχέσεις:

$$P(i,j,d,0^{0}) = \#\{((k,l),(m,n)) \in (L_{y} \times L_{x}) \\ \times (L_{y} \times L_{x}):k - m = 0, | l - n | = d,$$

$$I(k,l) = i, I(m,n) = j\}$$
(5.1)

$$P(i, j, d, 45^{\circ}) = \#\{((k, l), (m, n)) \in (L_{y} \times L_{x}) \\ \times (L_{y} \times L_{x}) : (k - m = d, l - n = -d) \\ or \ (k - m = -d, l - n = d), \\ I(k, l) = i, I(m, n) = j\}$$
(5.2)

$$P(i, j, d, 90^{\circ}) = \#\{((k, l), (m, n)) \in (L_{y} \times L_{x}) \\ \times (L_{y} \times L_{x}) : | k - m | = d, l - n = 0,$$

$$I(k, l) = i, I(m, n) = j\}$$
(5.3)

$$P(i,j,d,135^{0}) = \#\{((k,l),(m,n)) \in (L_{y} \times L_{x}) \\ \times (L_{y} \times L_{x}): (k - m = d, l - n = d), \\ \text{or } (k - m = -d, l - n = -d), \\ I(k,l) = i, I(m,n) = j\}$$
(5.4)

Όπου # δηλώνει τον αριθμό των στοιχείων στη θέση (i,j) έτσι για ένα σταθερό d έχουμε τέσσερις διαφορετικούς πίνακες. Στο Σχήμα 55 φαίνεται ο υπολογισμός του πίνακα P(i,j;1,0) για μια εικόνα 4x4.

(1,1)	(1,2)	(1,3)	(1,4)	
(2,1)	(2,2)	(2,3)	(2,4)	$L_v = \{1, 2, 3, 4\}$
(3,1)	(3,2)	(3,3)	(3,4)	J (1024)
(4,1)	(4,2)	(4,3)	(4,4)	$L_x = \{1, 2, 3, 4\}$

d=1 θ =0⁰

0 0 0

 $R_{H} = \{ [(k,l),(m,n)] \in (L_x,L_y) \times (L_x,L_y) : k-m=0, |l-n|=1 \}$

$$= \{[(1,1),(1,2)], [(1,2),(1,1)], [(1,2),(1,3)], [(1,3),(1,2)], [(1,3),(1,4)], [(1,4),(1,3)], [(2,1),(2,2)], [(2,2),(2,1)], [(2,2),(2,3)], [(2,3),(2,2)], [(2,3),(2,4)], [(2,4),(2,3)], [(3,1),(3,2)], [(3,2),(3,1)], [(3,2),(3,3)], [(3,3),(3,2)], [(3,3),(3,4)], [(3,4),(3,3)], [(4,1),(4,2)], [(4,2),(4,1)], [(4,2),(4,3)], [(4,2),(4,3)], [(4,3),(4,2)], [(4,3),(4,4)], [(4,4),(4,3)] \}$$

Σχήμα 55: Σύνολο όλων των αποστάσεων σε εικόνα μεγέθους 4x4 για d=1 και θ = 0^0 .

			0					~	~ 0		
)	1	1	00					9	0°		
)	1	1									
2	2	2									
2	3	3									
			4 2	1	0		(5	0	2	0
			$P_{P} = 24$	0	0		D _ ()	4	2	0
			$r_{H} = 1 0$	6	1		$\Gamma_V = 2$	2	2	2	2

0 0 2 0

127

0 0 1 2

	2	1	3	0	4	1	0	(
ת	1	2	1	0	n 1	2	2	(
P_{LD} =	= 3	1	0	2	$P_{RD} = 0$	2	4	
	0	0	2	0	0	0	1	(

 45^{0}

Σχήμα 56: Πίνακες αλγορίθμου SGLDM για εικόνα 4x4 και απόσταση d=1.

Στο Σχήμα 56 φαίνονται οι τέσσερις πίνακες για d=1 σε μια εικόνα 4x4. Όπως διακρίνεται στο πιο πάνω σχήμα οι πίνακες είναι συμμετρικοί, ισχύει P(i,j;d,a)=P(j,i;d,a). Οι πίνακες είναι μεγέθους $N_g x N_g$ (όπου N_g ο μέγιστος αριθμός γκρι επιπέδων).

 135^{0}

Όταν υπολογιστεί ο πίνακας συχνοτήτων για μια συγκεκριμένη γωνία θ, γίνεται βαθμονόμηση του πίνακα, διαιρώντας κάθε στοιχείο με μια σταθερά R, όπου R είναι το άθροισμα των τιμών όλων των στοιχείων του πίνακα.

5.5.2 Ψευδοκωδικάς αλγοριθμου SGLDM

Τα κυρίως βήματα του αλγόριθμου περιγράφονται με τον ακόλουθο ψευδοκώδικα:

```
\Gamma \iota \alpha \theta = \theta^{\theta}
1. initialize s0[i,j]=0
                                          Μηδενισμός του πίνακα τιμών για \theta=0^0
2. d
                                            Μέγεθος βήματος
3.
4. for y_1 \in Ly
5.
             do for x_1 \in Lx
6.
                       do for y_2 \in Ly
7.
                                  do for x_2 \in Lx
8.
                                                      if
                                                                 (x_1=x_2) \& (abs(y_1-y_2)=d)
9.
                                                                 then i \leftarrow I(x_1, y_1)
10.
                                                                                      j \leftarrow I(x_2, y_2)
                                                                                      s0(i,j) \leftarrow s0(i,j)+1
11.
```

 $\Gamma_{1\alpha} \theta = 45^{0}$ 1. initialize s45[i,j]=0Μηδενισμός του πίνακα τιμών για $\theta = 45^{0}$ 2. d Μέγεθος βήματος 3. for $y_1 \in Ly$ 4. **do for** $x_1 \in Lx$ 5. **do for** $y_2 \in Ly$ 6. **do for** $x_2 \in Lx$ 7. if $((x_1-x_2=d) \& (y_1-y_2)=-d)$ or $((x_1-x_2=-d) \& (y_1-y_2)=d)$ 8. then $i \leftarrow I(x_1, y_1)$ 9. $j \leftarrow I(x_2, y_2)$ 10. $s45(i,j) \leftarrow s45(i,j)+1$ $\Gamma_{1\alpha} \theta = 90^{0}$ 1. initialize s90[i,j]=0Μηδενισμός του πίνακα τιμών για $\theta = 90^{0}$ 2. d Μέγεθος βήματος 3. for $y_1 \in Ly$ **do for** $x_1 \in Lx$ 4. 5. **do for** $y_2 \in Ly$ 6. **do for** $x_2 \in Lx$ 7. if $abs(x_1-x_2=d) \& (y_1=y_2)$ 8. then $i \leftarrow I(x_1, y_1)$ 9. $j \leftarrow I(x_2, y_2)$ 10. $s90(i,j) \leftarrow s90(i,j)+1$ $\Gamma_{1\alpha} \theta = 135^{\theta}$ 1. initialize s135[i,j]=0Μηδενισμός του πίνακα τιμών για $\theta = 135^{0}$ 2. d Μέγεθος βήματος 3. for $y_1 \in Ly$ 4. **do for** $x_1 \in Lx$ 5. **do for** $y_2 \in Ly$ **do for** $x_2 \in Lx$ 6. 7. if $((x_1-x_2)=d) \& (y_1-y_2)=d)$ or $((x_1-x_2=-d) \& (y_1-y_2)=-d)$ 8. then $i \leftarrow I(x_1, y_1)$ 9. $i \leftarrow I(x_2, y_2)$

Ο αλγόριθμος αυτός έχει πολυπλοκότητα (φαίνεται στις γραμμές 3-6) $O(L_x^2, L_y^2)$.

5.5.3 ΣΥΜΠΕΡΑΣΜΑΤΑ ΑΠΟ ΤΟΝ ΑΛΓΟΡΙΘΜΟ SGLDM

Γενικά εάν έχουμε κοκκώδη υφή εικόνας (μεγάλα Speckle Pattern) και η απόσταση d είναι μικρή σε σύγκριση με τους κόκκους της υφής, τότε τα σημεία με απόσταση d έχουν πολύ κοντινά επίπεδα γκρι. Με αυτό συμπεραίνουμε ότι ο πίνακας P(i,j;d,θ) θα έχει μεγάλες τιμές όπου i≅j, δηλαδή οι μεγάλες τιμές του πίνακα θα είναι συγκεντρωμένες γύρω από την κύρια διαγώνιο του πίνακα. Αντίστοιχα για ομαλή υφή (μικρά Speckle Pattern) στα σημεία με απόσταση d θα έχουμε διαφορές στα γκρι επίπεδα, έτσι και οι τιμές του πίνακα θα είναι σχεδόν ίδιες για όλα τα (i,j).

Ανάλογα ισχύουν και για τις τιμές του κανονικοποιημένου πίνακα p(i,j;d,θ). Ένας καλός τρόπος ανάλυσης της υφής είναι ο υπολογισμός για διαφορετικές τιμές του d, κάποιων χαρακτηριστικών μέτρων γύρω από την κύρια διαγώνιο του πίνακα.

5.6 ΜΕΤΡΑ ΥΠΟΛΟΓΙΣΜΟΥ ΧΑΡΑΚΤΗΡΙΣΤΙΚΩΝ ΥΦΗΣ

Σε αυτή την παράγραφο φαίνεται μια σειρά από μέτρα χαρακτηρισμού της υφής που μπορεί να μας δώσουν οι πίνακες του αλγόριθμου.

Ορισμοί:

p(i,j) (i,j) τιμή του πίνακα είναι η κανονικοποιημένη τιμή από τον αρχικό πίνακα συχνοτήτων = P(i,j)/R.

 $p_x(i)$ i τιμή είναι το άθροισμα πιθανοτήτων της i_oστής

γραμμής του πίνακα πιθανοτήτων
$$p(i, j) = \sum_{j=1}^{N_g} p(i, j)$$
.

N_g Αριθμός των διακριτών γκρι επιπέδων σε μια εικόνα.

$$\sum_{i}$$
και \sum_{j} αντιστοιχούν στα $\sum_{i=1}^{N_g}$ και $\sum_{j=1}^{N_g}$

$$p_{y}(i) = \sum_{i=1}^{N_{g}} p(i,j)$$

$$p_{x+y}(k) = \sum_{i=1}^{N_{g}} \sum_{j=1}^{N_{g}} p(i,j), \qquad k=2,3,...,2N_{g}$$

$$i+j=k$$

$$p_{x-y}(k) = \sum_{i=1}^{N_{g}} \sum_{j=1}^{N_{g}} p(i,j), \qquad k=0,1,...,N_{g}-1$$

$$|i-j|=k$$

Μέτρα χαρακτηρισμού της υφής:

• Angular Second Moment:

$$f_1 = \sum_{i} \sum_{j} \{p(i,j)\}^2$$
(5.5)

$$f_{2} = \sum_{i=1}^{N_{g}-1} n^{2} \left\{ \sum_{i=1}^{N_{g}} \sum_{j=1}^{N_{g}} p(i,j) \right\}$$
(5.6)
$$|i-j|=k$$

• Correlation (Συσχέτιση):

$$f_{3} = \frac{\sum_{i} \sum_{j} (ij) p(i,j) - \mu_{x} \mu_{y}}{\sigma_{x} \sigma_{y}}$$
(5.7)

Όπου $\mu_x, \mu_y, \sigma_\chi$ και σ_y είναι οι μέσοι όροι και οι τυπικές αποκλίσεις των p_x, p_y αντίστοιχα.

• Sum of squares: Variance (Άθροισμα τετραγώνων):

$$f_4 = \sum_{i} \sum_{j} (i - i)^2 p(i, j)$$
(5.8)

• Inverse Difference Moment:

$$f_5 = \sum_{i} \sum_{j} \frac{1}{1 + (i - j)^2} p(i, j)$$
(5.9)

• Sum Average:

$$f_6 = \sum_{i=2}^{2N_g} i p_{x+y}(i)$$
(5.10)

• Sum Variance:

$$f_7 = \sum_{i=2}^{2N_g} (i - f_8)^2 p_{x+y}(i)$$
(5.11)

• Sum Entropy (άθροισμα εντροπίας):

$$f_8 = -\sum_{i=2}^{2N_g} p_{x+y}(i) \log\{p_{x+y}(i)\}$$
(5.12)

• Entropy (Evtpoπia):

$$f_9 = -\sum_i \sum_j p(i,j) \log(p(i,j))$$
(5.13)

• Difference Variance:

$$f_{10} = \text{variance of } p_{x-y}$$
 (5.14)

• Difference Entropy:

$$f_{11} = -\sum_{i=0}^{N_g - 1} p_{x-y}(i) \log\{p_{x-y}(i)\}$$
(5.15)

• Information Measures of Correlation:

$$f_{12} = \frac{HXY - HXY1}{\max\{HX, HY\}}$$
(5.16)

•
$$f_{13} = (1 - \exp[-2.0(HXY2 - HXY)])^{1/2}$$
 (5.17)

$$HXY = -\sum_{i} \sum_{j} p(i,j) \log(p(i,j))$$
(5.18)

Όπου HX και HY είναι οι εντροπίες των $p_{\rm x},\,p_{\rm y}$ και

$$HXY1 = -\sum_{i} \sum_{j} p(i,j) \log\{p_{x}(i)p_{y}(j)\}$$
(5.19)
$$HXY2 = -\sum_{i} \sum_{j} p_{x}(i)p_{y}(j) \log\{p_{x}(i)p_{y}(j)\}$$
(5.20)

• Maximal Correlation Coefficient: $f_{14} = (\delta \epsilon \dot{\upsilon} \epsilon \rho \eta \mu \epsilon \gamma a \lambda \dot{\upsilon} \epsilon \epsilon \rho \eta \zeta \upsilon \gamma \dot{\eta} \tau \iota \mu \dot{\eta} \tau \sigma \upsilon Q)^{1/2}$ (5.21)

όπου

$$Q = \sum_{k} \frac{p(i,k)p(j,k)}{p_{x}(i)p_{y}(k)}$$
(5.22)

5.7 Αλγοριθμός Gray Level Difference Statistics (GLDS)

Περιγραφή του GLDS [80] μπορεί να γίνει, υποθέτοντας ότι I(x,y) είναι η συνάρτηση έντασης της εικόνας (όπου I(x,y) το γκρι επίπεδο στο σημείο (x,y)).

Για μια δεδομένη μετατόπιση $\delta = (\Delta \chi, \Delta y)$ (όπου $\Delta \chi$, Δy ακέραιοι αριθμοί) έχουμε την διαφορά:

$$I_{\delta} \equiv |I(x,y) - I_{\delta}(x + \Delta \chi, y + \Delta y)|$$
(5.23)

 p_{δ} είναι η πυκνότητα πιθανότητας της $I_{\delta}(x,y)$. Εάν έχουμε m διακριτά επίπεδα του γκρι τότε η p_{δ} έχει τη μορφή διανύσματος m-διαστάσεων. όπου το σημείο i του διανύσματος έχει την τιμή της πιθανότητας ότι η τιμή της $I_{\delta}(x,y)$ θα είναι ίση με i.

Αρχικά υπολογίζεται η συχνότητα (αριθμός) που έχουμε μια τιμή i στην I_{δ} , στη συνέχεια υπολογίζεται η πιθανότητα να συμβεί κάθε τιμή i, αυτό γίνεται διαιρώντας κάθε στοιχείο του αρχικού πίνακα με το άθροισμα των τιμών όλων των στοιχείων (βαθμονόμηση).

5.7.1 Ψευλοκωλικάς υπολογισμού διανύσματος P_{A}

```
1. initialize ID[i,j]=0, PD(m)=0, en=0 Mŋδενισμός των πινάκων, όπου m αριθμός επιπέδων γκρι.
2. \delta = (dx, dy)
                                             δ=Μέγεθος βήματος
3. for y \in Ly
4.
          do for x \in Lx
5.
                           ID(x,y) \leftarrow abs(I(x,y)-I(x+dx,y+dy)) I= αρχική εικόνα
6. for x \in Lx
7.
          do for y \in Ly
8.
                           PD(ID(x,y)) \leftarrow PD(ID(x,y))+1
9.
                           en \leftarrow en+1
10. for m \in Ng
11.
          do PD(m) \leftarrow PD(m)/en
```

• Ο αλγόριθμος αυτός έχει πολυπλοκότητα (φαίνεται στις γραμμές 3-9) $O(L_x L_y)$

5.7.2 ΣΥΜΠΕΡΑΣΜΑΤΑ ΑΠΟ ΤΟΝ ΑΛΓΟΡΙΘΜΟ GLDS

Όταν έχουμε κοκκώδη υφή και μικρό δ σε σχέση με το μέγεθος των κόκκων της υφής, τότε το ζεύγος των συγκρινόμενων σημείων στην I_{δ} πρέπει να έχει πολύ κοντινά επίπεδα του γκρι, έτσι το I_{δ} θα έχει πολύ μικρές τιμές. Οι τιμές του πίνακα (διάνυσμα) πιθανότητας P_{δ} θα είναι συγκεντρωμένες γύρω απο το μηδέν (i=0). Ανάλογα για ομαλή υφή οι τιμές στην P_{δ} πρέπει να είναι διασκορπισμένες σε όλο τον πίνακα.

Από τα πιο πάνω συμπεραίνουμε ότι ένας καλός τρόπος να αναλύσουμε την υφή μιας εικόνας, είναι να υπολογίσουμε για διαφορετικές τιμές του δ, κάποιο μέτρο που να δείχνει κατά πόσο οι τιμές στην P_{δ} είναι διασκορπισμένες σε όλο τον πίνακα ή συγκεντρωμένες γύρω από το μηδέν. Τέσσερα τέτοια μέτρα χαρακτηρισμού είναι τα ακόλουθα:

• Contrast (Αντίθεση):

$$CON \equiv \sum i^2 p_{\delta}(i) \tag{5.24}$$

• Angular Second Moment:

$$ASM \equiv \sum p_{\delta}(i)^2 \tag{5.25}$$

Entropy (Εντροπία):

$$ENT = -\sum p_{\delta}(i)\log(p_{\delta}(i))$$
 (5.26)

Mean (Μέσος):

$$MEAN \equiv (1/m) \sum i p_{\delta}(i) \tag{5.27}$$

5.8 Γενικές Πληροφορίες για τους Αλγοριθμούς χαρακτηριστικών υφής

5.8.1 ΜΕΘΟΔΟΙ ΑΝΑΛΥΣΗΣ ΕΙΚΟΝΑΣ

Η κάθε εικόνα που επεξεργαζόμαστε εμπεριέχει πληροφορίες για την υφή της, για το είδος του ιστού που απεικονίζεται και γενικότερα πληροφορίες που μπορούμε να τις χρησιμοποιούμε για να εντοπίζουμε αν ο ιστός αυτός είναι υγιής ή αν είναι παθολογικός.

Τις πληροφορίες αυτές εμείς τις αποκτούμε με αλγόριθμους οι οποίοι εξάγουν τα χαρακτηριστικά αυτής της εικόνας. Τα χαρακτηριστικά αυτά μπορεί να είναι:

- χαρακτηριστικά ιστογράμματος,
- χαρακτηριστικά από μήτρα co-occurrence,
- χαρακτηριστικά από μήτρα run-length,
- χαρακτηριστικά Zernike Moment,
- χαρακτηριστικά Moment Invarient,

και άλλα πολλά, τα οποία μπορεί να προέρχονται είτε με απευθείας μελέτη των τόνων του γκρι του δείγματός μας είτε μετά από την εφαρμογή διάφορων μετασχηματισμών.

5.8.2 ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΙΣΤΟΓΡΑΜΜΑΤΟΣ ΕΙΚΟΝΑΣ

Τα χαρακτηριστικά ιστογράμματος εικόνας ονομάζονται και στατιστικά χαρακτηριστικά και αφορούν κυρίως τη συχνότητα με την οποία κατανέμονται οι τόνοι του γκρι (τόνοι φωτεινότητας των στιγμάτων (pixels)). Τα χαρακτηριστικά αυτά δίδουν κυρίως πληροφορίες για το χρωματικό τόνο της υπό εξέταση περιοχής και είναι τα εξής:

Μέση Τιμή (Mean Value)

$$\mu = \frac{\sum_{i} \sum_{j} g(i, j)}{N^2}$$

όπου g(i,j) είναι ο τόνος του γκρι του pixel (i,j) και N είναι ο συνολικός αριθμός των pixels της συγκεκριμένης περιοχής της εικόνας.

• Διασπορά (Variance)

$$v = \sigma^{2} = \frac{\left[\sum_{i}\sum_{j}(g(i,j) - \mu)^{2}\right]}{N^{2}}$$

που περιγράφει το εύρος του ιστογράμματος ή μια εκτίμηση του πόσο οι τόνοι του γκρι των διαφόρων pixels της περιοχής διαφέρουν από τη μέση τιμή. Μια παραλλαγή είναι η τετραγωνική ρίζα της διασποράς που ονομάζεται τυπική απόκλιση (standard deviation).

Λοξότητα (Skewness)

όπου είναι ο βαθμός ασυμμετρίας της κατανομής και περιγράφει την κλίση της κορυφής του ιστογράμματος αριστερά ή δεξιά της μέσης τιμής. Αν είναι αριστερά τότε ο αριθμός των pixels με χαμηλούς τόνους γκρι υπερτερεί και η τιμή του χαρακτηριστικού υφής είναι αρνητική και αντίστροφα αν η κλίση είναι δεξιά.

• Κύρτωση (Kurtosis)

που περιγράφει την οξύτητα της κατανομής, συνήθως σε σύγκριση με την κανονική κατανομή, που είναι δυνατό να έχει σχήμα πλατύκυρτο, μεσόκυρτο, οξύκυρτο. Το σχήμα της κανονικής κατανομής δεν είναι πολύ πλατύκυρτο ή οξύκυρτο και θεωρείται μεσόκυρτο.

5.8.3 ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΑΠΟ CO-OCCURRENCE ΜΗΤΡΑ ΕΙΚΟΝΑΣ

Υπάρχουν δώδεκα βασικά χαρακτηριστικά που μπορούν να υπολογισθούν από την cooccurrence μήτρα συγκεκριμένης περιοχής εικόνας. Η co-occurrence μήτρα περιγράφει το πόσες φορές (συχνότητα) δύο γειτονικά pixels υπάρχουν στην υπό εξέταση περιοχή της εικόνας, δεδομένης μιας συγκεκριμένης διεύθυνσης - διερεύνησης της επαναληψιμότητας της συνύπαρξης των δύο γειτονικών pixels. Η co-occurrence μήτρα ονομάζεται και μήτρα χωρικής εξάρτησης γκρι τόνων (gray tone spatial dependence matrix) και μπορεί να υπολογισθεί στις τέσσερις βασικές κατευθύνσεις 0⁰, 45⁰, 90⁰, 135⁰. Έτσι, είναι δυνατό να σχηματισθούν τέσσερις co-occurrence μήτρες από κάθε συγκεκριμένη περιοχή εικόνας. Όμως για να εξοικονομήσουμε χρόνο επεξεργασίας και μνήμη CPU, οι τέσσερις μήτρες είναι δυνατό να αντικατασταθούν από μια μήτρα, προσθέτοντας τους αντίστοιχους όρους. Βέβαια η ευαισθησία στη κατεύθυνση χάνεται αλλά στις περισσότερες περιπτώσεις η υφή δεν έχει προτίμηση στην κατεύθυνση. Ο υπολογισμός οριζόντιας (0⁰) co-occurrence δίδεται στο ακόλουθο παράδειγμα.

Έστω μια μήτρα εικόνας 4x4x2 όπου 4x4 είναι οι διαστάσεις της εικόνας για λόγους ευκολίας του παραδείγματος, το 2 είναι η δύναμη στην οποία υψώνουμε τον αριθμό 2 για να βρούμε το βάθος της μήτρας (τον αριθμό των τόνων του γκρι που μπορεί να υπάρχουν μέσα στη μήτρα μας) δηλαδή 2^2 (0, 1, 2, 3)

$$g(i,j) = \begin{vmatrix} 0 & 0 & 2 & 2 \\ 1 & 1 & 0 & 0 \\ 3 & 2 & 3 & 3 \\ 3 & 2 & 2 & 2 \end{vmatrix}$$

Η co-occurrence μήτρα κατά τη βασική κατεύθυνση 0^0 είναι:

όπου, όπως φαίνεται, η πρώτη σειρά και η πρώτη στήλη είναι οι γκρι τόνοι και οι αριθμοί της μήτρας δίδουν τη συχνότητα που κάθε ζεύγος τόνων γκρι που εμφανίζεται στην εικόνα g(i,j).

Έτσι, P(0,0)=4 στην co-occurrence μήτρα είναι ο αριθμός που το ζεύγος γειτονικών pixels [0,0] υπάρχει στην αρχική μήτρα εικόνας g(i,j) συγχρόνως κατά την κατεύθυνση των 0^0 και 180⁰. Με παρόμοιο τρόπο υπολογίζονται και οι υπόλοιπες μήτρες P(i,j)⁴⁵, P(i,j)⁹⁰, και P(i,j)¹³⁵ καθώς και η τελική co-occurrence μήτρα ως άθροισμα των επιμέρους P(i,j) μητρών.

Τα χαρακτηριστικά υφής που είναι δυνατό να υπολογιστούν από την co-occurrence μήτρα δίνονται παρακάτω. Μερικά από αυτά σχετίζονται με συγκεκριμένα ποιοτικά χαρακτηριστικά υφής όπως ομοιογένεια, αντίθεση καθώς και την ύπαρξη οργανωμένης δομής σε μια εικόνα. Άλλα χαρακτηριστικά προσδιορίζουν τον τρόπο μεταβολής γκρι τόνων στην εικόνα. Όμως υπάρχουν χαρακτηριστικά στα οποία είναι δύσκολο να αποδώσουμε συγκεκριμένες ιδιότητες της υφής. Όλα τα πιο κάτω χαρακτηριστικά υφής λαμβάνονται καταρχήν υπόψη, αλλά για το σχεδιασμό ενός ταξινομητή επιλέγονται τα περισσότερα κατάλληλα για κάθε συγκεκριμένη εφαρμογή.

Για να υπολογίσουμε τα χαρακτηριστικά αυτά πρέπει πρώτα να υπολογιστούν μια σειρά από πίνακες οι οποίοι χρειάζονται στους υπολογισμούς.

•
$$p(i,j) = \frac{P(i,j)}{R}$$

Είναι η κανονικοποιημένη co-occurrence μήτρα, και R είναι η μέγιστη τιμή της P(i,j).

•
$$Px(i) = \sum_{j=1}^{N} p(i, j)$$

Είναι ένας μονοδιάστατος πίνακας που υπολογίζεται από την άθροιση των σειρών p(i,j) και N είναι ο αριθμός των τόνων του γκρι.

•
$$Py(i) = \sum_{i=1}^{N} p(i, j)$$

Είναι ένας μονοδιάστατος πίνακας που υπολογίζεται από την άθροιση των στηλών της p(i,j).

•
$$P_{x+y}(k) = \sum_{\substack{i \\ i+j=k}}^{N} \sum_{j=1}^{N} p(i,j)$$
 $k = 2,3,4,\dots,2N$

•
$$P_{x-y}(k) = \sum_{\substack{i \ |i-j|=k}}^{N} \sum_{j}^{N} p(i,j)$$
 $k = 0,1,2,3,4,\dots,N$

Με βάση τα παραπάνω τώρα μπορούμε να υπολογίσουμε τα πιο κάτω χαρακτηριστικά υφής τα οποία τα έχουμε αναφέρει και στο αλγόριθμο SGLDM.

• Angular Second Moment (ASM), εκτιμά την ομοιογένεια της εικόνας.

$$ASM = \sum_{i}^{N} \sum_{j}^{N} p(i.j)^{2}$$

 Contrast, εκτιμά την αντίθεση ή το μέγεθος των τοπικών μεταβολών των γκρι τόνων.

$$CON = \sum_{n=0}^{N-1} n^2 \left\{ \sum_{i=1}^{N} \sum_{j=1}^{N} p(i,j) \right\}$$

 Correlation, ή συσχέτιση που εκτιμά το μέγεθος της γραμμικής εξάρτησης των γκρι τόνων της εικόνας.

$$COR = \frac{\sum_{i=j}^{N} \sum_{j=1}^{N} [i \cdot j \cdot p(i, j)] - \mu_{x} \cdot \mu_{y}}{\sigma_{x} \cdot \sigma_{y}}$$

Όπου μ_{χ} , μ_{Ψ} είναι οι μέσες τιμές των P_{χ} , P_{y} και σ_{χ} , σ_{y} είναι οι αντίστοιχες τυπικές αποκλίσεις.

• Auto-correlation

$$ACOR = \sum_{i}^{N} \sum_{j}^{N} i \cdot j \cdot p(i, j)$$

• Sum of Squares (Variance)

$$SOQ = \sum_{i}^{N} \sum_{j}^{N} (i - \mu)^{2} \cdot p(i, j)$$

μ = μέση τιμή των γκρι τόνων

• Inverse Difference Moment

$$IDF = \sum_{i}^{N} \sum_{j}^{N} \frac{p(i, j)}{1 + (i - j)^{2}}$$

• Entropy

$$ENTR = -\sum_{i}^{N} \sum_{j}^{N} p(i, j) \cdot \log_{e}(p(i, j))$$

• Sum Entropy

$$SENTR = -\sum_{i=2}^{i=2N} P_{x+y}(i) \cdot \log_{e}(P_{x+y}(i))$$

• Sum Average

$$SAV = \sum_{i=2}^{i=2N} i \cdot P_{x+y}(i)$$

• Sum Variance

$$SAVR = \sum_{i=2}^{i=2N} (i - SENTR)^2 \cdot P_{x+y}(i)$$

• Difference Variance

 $DVAR = VARIANCE(P_{x-y}(i))$

• Difference Entropy

$$DENTR = -\sum_{i=0}^{N-1} P_{x-y}(i) \cdot \log(P_{x-y}(i))$$

5.9 Αλγοριωμός Fourier Power Spectrum (FPS)

Ο υπολογισμός του φάσματος συχνοτήτων μιας εικόνας (δισδιάστατο σήμα) με τη βοήθεια του μετασχηματισμού Fourier, μπορεί να δώσει κάποια συμπεράσματα για τα χαρακτηριστικά της υφής στην εικόνα.

Για να υπολογίσουμε το φάσμα συχνοτήτων χωρίζουμε το χώρο Fourier σε τμήματα, κυκλικά ή γωνιακά τμήματα όπως φαίνεται στο Σχήμα 57.

Σχήμα 57: Διαχωρισμός του χώρου Fourier σε ακτινικά και γωνιακά τμήματα.

Ο διαχωρισμός αυτός μαζί με το μετασχηματισμό Fourier μπορεί να χρησιμοποιηθούν για υπολογισμό χαρακτηριστικών της υφής.

Αρχικά υπολογίζεται η διακριτή τιμή για ένα σημείο:

$$\Phi(u,v) = F(u,v) F^{*}(u,v) = |F(u,v)|$$
(5.28)

Όπου F(u,v) είναι ο διακριτός μετασχηματισμός fourier της εικόνας και $F^*(u,v)$ είναι ο μιγαδικός συζυγής.

$$F(u,v) = \frac{1}{n^2} \sum_{x,y=0}^{n-1} f(x,y) e^{-2\pi j(ux,vy)/n}$$
(5.29)

(Όπου f και F είναι πίνακες μεγέθους n x n)

Για χαρακτηρισμό της υφής στους δύο διαχωρισμούς του χώρου fourier χρησιμοποιούνται τα αθροίσματα:

$$\boldsymbol{\Phi}_{r_{1}r_{2}} = \sum_{r_{1}^{2} \le u^{2} + v^{2} < r_{2}^{2}} |F(u,v)|^{2}$$
(5.30)

για ακτινικά τμήματα.

$$\Phi_{\theta_1\theta_2} = \sum_{\theta_1 \le \tan^{-1}(\nu/u) < \theta_2} |F(u,\nu)|^2$$
(5.31)

για γωνιακά τμήματα.

όπου $0 \le u$, $v \le M-1$ για εικόνα διαστάσεων MxM.

5.9.1 Ψεγδοκωδικάς αλγοριθμου FPS:

1. initi	alize F[i,j]=0	F=Πίνακας μετα	ασχηματισμού fourie	er.
2. for	y ∈(0n)	$n \ x \ n = \mu$ έγε $ heta o$	ς αρχικής εικόνας	
3.	do for $x \in (0n)$			
4.	F(x,y	$(x,y) \leftarrow I(x,y)e^{-2\pi j(ux+vy)/n}$	Ι= αρχικ	κή εικόνα
5.	$F(x,y) \leftarrow F(x,y)/n^2$	Υπολογισμός μ	ετασχηματισμού fo	ourier
6. for	x ∈(0n)			
7.	do for $y \in (0n)$			
8.	if ((1	real($F(x,y)$)^2 + (imagin	$hary(F(x,y))^2$	< r ₂ ^2) or
9.		$((real(F(x,y))^2 + (ir))^2)$	naginary(F(x,y))	$)^{2} >= r_1^{2}$
10.		$en1 \leftarrow en1 + F(x,y) $	Υπολογισμός	αθροίσματος για
ακτι	νικό διαχωρισμό του χώμ	oov fourier		
11. for	x ∈(0n)			
12.	do for $y \in (0n)$			
13.	if ((a	arctan((imaginary(F(x,	,y)))/ (real(F(x,y))))) $< \theta_2$) or
14.		((arctan((imaginary	(F(x,y)))/(real(F	$F(\mathbf{x},\mathbf{y}))) >= \theta_1)$
15.		$en2 \leftarrow en2 + F(x,y) $	πολογισμός αθροι	ίσματος για γωνιακό
διαχ	ωρισμό του χώρου fourie	er		

Ο αλγόριθμος αυτός έχει πολυπλοκότητα $O(n^2)$.

5.9.2 ΣΥΜΠΕΡΑΣΜΑΤΑ ΑΠΟ ΤΟΝ ΑΛΓΟΡΙΘΜΟ FPS:

Γενικά οι τιμές του = $|F|^2$ θα είναι συγκεντρωμένες γύρω από το μηδέν για κοκκώδη υφή εικόνας, ενώ σε ομαλή υφή θα είναι πιο διασκορπισμένες, ανάλογα με το γωνιακό διαχωρισμό, εάν μια εικόνα έχει πολλές γραμμές ή ακμές (κοκκώδης υφή) σε μια κατεύθυνση θ. Το $|F|^2$ θα έχει μεγάλες τιμές συγκεντρωμένες γύρω από τη διεύθυνση θ+π/2, ενώ σε ομαλή υφή το $|F|^2$ δεν έχει κατεύθυνση γύρω από την οποία έχει συγκεντρωμένες τις τιμές. Με αυτό το διαχωρισμό ελέγχεται η κατευθυντικότητα της υφής.

Για ακτινικό διαχωρισμό, μια εικόνα με ομαλή υφή (μικρά δομικά στοιχεία), σε περίπτωση μικρής διαφοράς ακτίνας (r₁,r₂) το άθροισμα (5.30) θα δίνει μεγάλες τιμές, ενώ στην περίπτωση κοκκώδους υφής το άθροισμα θα δίνει μεγάλες τιμές για μεγαλύτερες ακτίνες.

5.10 Αλγοριθμός Laws Texture Energy Measures (TEM)

Ο αλγόριθμος αυτός βασίζεται στην εφαρμογή κάποιων συγκεκριμένων φίλτρων σε μια εικόνα και στη συνέχεια στον υπολογισμό ενός στατιστικού μεγέθους της εικόνας (π.χ ενέργεια).

Τα φίλτρα για τη συνέλιξη με μια εικόνα προκύπτουν:

Έχουμε τρία διανύσματα μήκους 3 το κάθε ένα. $L_3 = (1,2,1), E_3 = (-1,0,1), S_3 = (-1,2,-1),$ τα οποία και αντιπροσωπεύουν τις διεργασίες:

- α) Τοπικού μέσου όρου.
- β) Ανίχνευσης ακμών.
- γ) Ανίχνευση σημείου.

Κάνοντας τη συνέλιξη των διανυσμάτων αυτών με τον εαυτό τους και μεταξύ τους, έχουμε ως αποτέλεσμα πέντε διανύσματα μήκους 5:

 $L_{5} \equiv (1,4,6,4,1) = L_{3}*L_{3}$ $S_{5} \equiv (-1,0,2,0,-1) = -E_{3}*E_{3} = L_{3}*S_{3}$ $R_{5} \equiv (1,-4,6,-4,1) = S_{3}*S_{3}$ $E_{5} \equiv (-1,-2,0,2,1) = L_{3}*E_{3}$ $W_{5} \equiv (-1,2,0,-2,1) = -E_{3}*S_{3}$
Όπου L_5 αντιπροσωπεύει τη διεργασία για τον τοπικό μέσο όρο (local averaging), S_5 και E_5 είναι ανιχνευτές σημείου (spot) και ακμής (edge) αντίστοιχα, R_5 και W_5 μπορούν να ονομαστούν ανιχνευτές διαταραχής (ripple) και κύματος (wave) αντίστοιχα. Πολλαπλασιάζοντας ένα διάνυσμα γραμμής με ένα διάνυσμα στήλης (ιδίου μήκους) έχουμε τις μάσκες (φίλτρα) μεγέθους 5x5 ή 3x3 (Law's masks) για τον αλγόριθμο.

5.10.1 ΣΥΜΠΕΡΑΣΜΑΤΑ ΑΠΟ ΤΟΝ ΑΛΓΟΡΙΘΜΟ ΤΕΜ:

Για να χαρακτηριστεί η υφή μιας εικόνας γίνεται η συνέλιξη των μασκών (βλ. εξίσωση 5.32) αυτών με την εικόνα, με αποτέλεσμα να προκύπτουν δώδεκα νέες εικόνες στην περίπτωση των 5x5 φίλτρων, ή εννέα στην περίπτωση των 3x3 φίλτρων:

$$y(m,n) = \sum_{k=-2}^{2} \sum_{r=-2}^{2} h(k,r) X(m-k,n-r)$$
(5.32)

(Συνέλιζη εικόνας X(i,j) με το φίλτρο h, αποτέλεσμα η νέα εικόνα y(i,j).

Τα αποτελέσματα της εφαρμογής των φίλτρων έχουν μελετηθεί και βρέθηκε ότι μερικές από τις καλύτερες μάσκες 5x5 είναι αυτές που φαίνονται στο Σχήμα 58.

L	5E	5
		5

-1	-2	0	2	1	-1	0	2	0	-1
-4	-2	0	8	4	-2	0	4	0	-2
-6	-12	0	12	6	0	0	0	0	0
-4	-8	0	8	4	2	0	-4	0	2
-1	-2	0	2	1	1	0	-2	0	1
L_5S_5	5						R_5R_5		

-1	0	2	0	-1		1	-4	6	-4	1
-4	0	8	0	-4		-4	16	-24	16	-4
-6	0	12	0	-6		6	-24	36	-24	6
-4	0	8	0	-4		-4	16	-24	26	-4
-1	0	2	0	-1		1	-4	6	-4	1

Σχήμα 58: Τέσσερις από τις 5x5 μάσκες που μπορούν να δώσουν τα καλύτερα αποτελέσματα στο διαχωρισμό της υφής.

Μετά τη συνέλιξη υπολογίζονται κάποια στατιστικά στοιχεία (π.χ ενέργεια) για να χαρακτηρίσουμε την υφή. Μια εικόνα μπορεί να μετατραπεί σε εικόνα ενέργειας με τον ακόλουθο αλγόριθμο:

Κάθε σημείο της εικόνας (που προέκυψε από τη συνέλιξη της αρχικής με ένα από τα φίλτρα) αντικαθίσταται με την απόλυτη τιμή του μέσου όρου των τιμών των σημείων σε ένα παράθυρο NxN σημείων γύρω από αυτό.

Η νέα εικόνα προκύπτει βάσει του τύπου:

$$f_{k}^{"} = \sum_{x',y', \ \mu \in \sigma \alpha \ \sigma \tau \sigma \pi \alpha \rho \alpha \theta \nu \rho \circ} (|f_{k}^{'}(x',y')|$$
(5.33)

Ο μετασχηματισμός $f \to f_k^{"}$ k=1,....,12 ονομάζεται μετασχηματισμός ενέργειας της υφής (texture energy transform), είναι ανάλογος του προηγούμενου αλγόριθμου (Fourier Power Spectrum).

Ο χαρακτηρισμός των εικόνων γίνεται χρησιμοποιώντας το άθροισμα των στοιχείων της εικόνας ενέργειας (κάτι ανάλογο που έγινε και στο FPS).

5.10.2 Ψευδοκωδικάς αλγοριθμου ΤΕΜ

(Υπολογισμός συνέλιζης φίλτρου με αρχική εικόνα, 5 βήματα όσο και το μέγεθος των φίλτρων βήματα - 2,-1,0,1,2)

(,0,1,2)	
1. initialize F[i,j]=0,en1=0	F=Πίνακας μετασχηματισμού ΤΕΜ
2. for $k \in (-22)$	
3. do for $r \in (-22)$	
<i>4</i> . en1 ←	en1+H(k,r)I(x-k,y-r) $I=$ αρχική εικόνα, $H=φiλτρo$
(Υπολογισμός εικόνων ενέργειας, ((2D+1)*(2D+1) είναι το μέγεθος παραθύρου
nxn είναι το μέγεθος της εικόνας)	
1. initialize F[i,j]=0,en1=0	F=εικόνα ενέργειας
2. for $x \in (1n)$	
3. do for $y \in (1n)$	
Καθορισμός ορίων παραθύρου	
4. if ((x-D	D)<1)
5.	xlow=1
6. else	
7.	xlow=x-D
8. if ((x+)	D)>lx)
9.	xhigh=lx
10. else	
11.	xhigh=x+D
12. if ((y-L	D)<1)
13.	ylow=1
14. else	
15.	ylow=y-D
16. if ((y+1	D)>ly)
17.	yhigh=ly
18. else	
19.	yhigh=y+D

20.for
$$xn \in (xlow..xhigh)$$
21.do for $yn \in (ylow..yhigh)$ 22. $en1 \leftarrow en1+I(xn,yn)$ 23. $F(x,y) \leftarrow en1/((xhigh-xlow)+1)*(yhigh-ylow))$

Ο αλγόριθμος αυτός έχει πολυπλοκότητα (από τις επαναλήψεις στις γραμμές 2-3 και 20-21) $O(n^2(2D+1)^2)$.

5.11 Αλγοριθμός Fractal Dimension Texture Analysis (FDTA)

Ο αλγόριθμος αυτός βασίζεται στη θεωρία των Fractals. Ο χαρακτηρισμός των εικόνων γίνεται από ένα συνδυασμό multiple resolution feature extraction και του Fractional brownian motion model.

5.11.1 OPIEMOE TOY MULTIPLE RESOLUTION FEATURE EXTRACTION

Η υφή μιας εικόνας και η σύγκριση των κομματιών μιας εικόνας με τα γύρω τους κομμάτια, είναι δύο από τις κυριότερες τεχνικές που χρησιμοποιούνται από το ανθρώπινο μάτι για να επισημάνει και να ξεχωρίσει σημαντικά στοιχεία σε μια εικόνα.

Τα χαρακτηριστικά της υφής, οι διαφορές στον τόνο (γκρι επίπεδα) σε μια εικόνα είναι κάτι σημαντικό, ειδικά όταν ελέγχονται μικρά κομμάτια σε μια μαυρόασπρη εικόνα με τη βοήθεια υπολογιστή. Ένας καλός τρόπος για να μπορέσει κάποιος να μετρήσει τις διαφορές στον τόνο και τα χαρακτηριστικά της υφής γενικότερα, είναι η επεξεργασία της εικόνας σε διαφορετικές αναλύσεις.

Η πυραμιδική προσέγγιση είναι μια τεχνική εύρεσης πολλαπλών επιπέδων ανάλυσης μιας εικόνας. Βασισμένη στην πυραμιδική ανάλυση δεδομένων, η ανάλυση σε ένα επίπεδο i ορίζεται σαν:

$$I^{(i)}(x, y) = [I^{(i+1)}(2x, 2y) + I^{(i+1)}(2x + 1, 2y) + I^{(i+1)}(2x, 2y + 1) + I^{(i+1)}(2x + 1, 2y + 1)]/4$$
(5.34)
$$0 \le i < m, \ 0 \le x, y < 2^{i}$$

Όπου I^(m) είναι η αρχική εικόνα. Ο πιο πάνω ορισμός είναι κάπως απλοποιημένος για να μειωθεί η πολυπλοκότητα του αλγόριθμου.

5.11.2 OPIEMOE TOY FRACTIONAL BROWNIAN MOTION MODEL (FBM)

Το FBM γενικά χρησιμοποιείται για να περιγράψει την τραχύτητα (roughness) μιας επιφάνειας. Το μοντέλο αυτό θεωρεί τις φυσικές επιφάνειες ως το αποτέλεσμα τυχαίων (random) διαδρομών. Τέτοιες διαδρομές είναι οι βασικές φυσικές διεργασίες που γίνονται στο σύμπαν.

Σημαντική παράμετρος για την παρουσίαση μιας τυχαίας επιφάνειας είναι η διάσταση Fractal D_f . Θεωρητικά ορίζεται από την εξίσωση:

$$E(\Delta I^2) = c(\Delta r)^{(6-2D_f)}$$
(5.35)

Όπου E(.) είναι η εκτιμήτρια, $\Delta I \equiv I(x_2, y_2) - I(x_1, y_1)$ είναι η διαφορά στην ένταση δύο σημείων, c είναι μια σταθερά και $\Delta r \equiv ||(x_2, y_2) - (x_1, y_1)||$ είναι η απόσταση μεταξύ δύο σημείων.

Αλληλένδετη με την παράμετρο D_f είναι η παράμετρος H (Hurst coefficient), υπολογίζεται από την εξίσωση:

$$E(|\Delta I|) = k(\Delta r)^{H}$$
(5.36)

Όπου $K=E(|\Delta I|)_{\Delta r=1}$.

Λογαριθμίζοντας και τα δύο μέρη από την πιο πάνω εξίσωση, έχουμε:

$$\log E(|\Delta I|) = \log k + H \log(\Delta r)$$
(5.37)

Από την εξίσωση 5.37 βρίσκουμε με εύκολο τρόπο το H ενώ το D_f μπορεί να υπολογιστεί από την εξίσωση:

$$D_f = 3 - H \tag{5.38}$$

εάν έχουμε μια εικόνα Ι διαστάσεων MxM, ορίζουμε το διάνυσμα διαφοράς εντάσεων ως:

$$IDV = [id(1), id(2), \dots, id(s)]$$
 (5.39)

Όπου s είναι η μέγιστη κλίμακα και id(k), είναι ο μέσος όρος της απόλυτης διαφοράς όλων των σημείων σε μια εικόνα με οριζόντια ή κάθετη απόσταση k:

$$id(k) = \frac{\sum_{x=0}^{M-1} \sum_{y=0}^{M-k-1} |I(x,y) - I(x,y+k)| + \sum_{x=0}^{M-k-1} \sum_{y=0}^{M-1} |I(x,y) - I(x+k,y)|}{2M(M-k)}$$
(5.40)

Η τιμή της παραμέτρου H μπορεί να βρεθεί εφαρμόζοντας τη μέθοδο των ελαχίστων τετραγώνων για να βρούμε την κλήση της ευθείας¹ id(k)=f(k) σε κλίμακα log-log.

$$b = \frac{\sum_{i=1}^{s} (\log i - \bar{i}_i)(\log i d(i) - \bar{d})}{(\log i - \bar{i}_i)^2}$$
(5.41)

$$\bar{i}_{l} = \frac{\sum_{i=1}^{s} \log i}{i} \quad \kappa \alpha i \quad \bar{d} = \frac{\sum_{i=1}^{s} \log i d(i)}{i}$$

όπου

5.11.3 OPIEMOE MULTIRESOLUTION FRACTAL FEATURE VECTOR (MF)

Βασισμένοι σε ότι αναφέρεται στις πιο πάνω παραγράφους, το διάνυσμα χαρακτηρισμού με Fractal σε διάφορες αναλύσεις (Multiresolution Fractal Feature Vector) ορίζεται ως:

$$MF \equiv (H^{(m)}, H^{(m-1)}, \dots, H^{(m-n+1)})$$
(5.42)

Όπου $M=2^m$ είναι το μέγεθος της αρχικής εικόνας, H^k είναι η παράμετρος H που βρίσκεται από την εικόνα $I^{(k)}$ και n είναι ο αριθμός των επιπέδων ανάλυσης που επιλέγονται για το πείραμα.

$$b = \frac{\sum (x - \overline{x})(y - \overline{y})}{\sum (x - \overline{x})^2}$$

¹ Η μέθοδος των ελαχίστων τετραγώνων λέει ότι, εάν έχουμε μια ευθεία (ευθεία ελαχίστων τετραγώνων), που προσεγγίζεται με την εξίσωση y=a+bx τότε η κλήση της ευθείας αυτής υπολογίζεται από την εξίσωση:

Το πιο πάνω διάνυσμα χαρακτηρισμού περιγράφει όχι μόνο την τραχύτητα (roughness) αλλά και το Lacunarity¹ σε μια εικόνα. Ο διαχωρισμός του lacunarity μιας εικόνας γίνεται χρησιμοποιώντας όλα τα στοιχεία του διανύσματος MF εκτός από το πρώτο.

5.11.4 Ψευδοκωδικάς αλγοριθμου FDTA

Ο ψευδοκώδικας που υπολογίζει την ανάλυση της εικόνας σε ένα επίπεδο i από την εικόνα του επιπέδου i+1 είναι:

(Όπου Μ είναι το μέγεθος της εικόνας του επιπέδου i)

1. initialize R[i,j]=0 $R=\Pi$ (vakaç εικόνας επιπέδου i, $S=\Pi$ (vakaς εικόνας επιπέδου i+1)

- 2. for $x \in (1..M-1)$
- 3. **do for** $y \in (0..M-1)$

4.
$$R(x,y) \leftarrow (S(2x,sy) + S(2x+1,2y) + S(2x,2y+1) + S(2x+1,2y+1))/4$$

Πολυπλοκότητα αλγορίθμου $O((M-1)^{2})$.

Ο ψευδοκώδικας που κάνει τον υπολογισμό της παραμέτρου Η για μια δεδομένη εικόνα είναι:

(Όπου s είναι η μέγιστη δυνατή κλίμακα για το intensity difference vector, $M=2^m$ το μέγεθος της αρχικής εικόνας)

- 1. initialize ID[s]=0, MF(m)=0,en1=0,en2=0, ym=0, xm=0
- 2. **for** $\kappa \in (1..s)$
- 3. **do for** $x \in (0..M-1)$
- 4. **do for** $y \in (0..M-\kappa-1)$

```
ορίζεται ως:
```

 $\Lambda = \frac{(M_2 - M^2)}{M^2}$ $M = \sum_{m=1}^{N} mP(m)$ $M_2 = \sum_{m=1}^{N} m^2 P(m)$ (1)

όπου

¹ Lacunarity: Γενικά μια μόνο παράμετρος Fractal δεν μπορεί να χαρακτηρίσει επαρκώς τα χαρακτηριστικά της υφής σε μια εικόνα. Ο όρος lacunarity εισάγεται για να βοηθήσει στο χαρακτηρισμό. Δεδομένου ενός συνόλου Fractal A, εάν *P(m)* είναι η πιθανότητα ότι μέσα σε ένα κουτί μεγέθους L γύρω από ένα σημείο του A, έχουμε <u>N</u>

 $[\]sum_{m=1}^{n} P(m) = 1$ όπου N είναι ο αριθμός των πιθανών σημείων μέσα στο κουτί. Η παράμετρος lacunarity Λ

5. en1 \leftarrow en1+abs(I(x,y)-I(x,y+k)) 6. for $x \in (0..M-k-1)$) 7. **do for** $y \in (0..M-1)$ 8. $en2 \leftarrow en2+abs(I(x,y)-I(x+k,y))$ $ID[k] \leftarrow \frac{enl + en2}{2M(M - k)}$ 9. 10. for $k \in (1..s)$ Υπολογισμός του Η απο την κλήση της ευθείας id(k)=f(k), σε 11. do log-log, με χρήση της μεθόδου ελαχίστων τετραγώνων. 12. $xm \leftarrow xm + \log(k)$ 13. $ym \leftarrow ym + \log(id(k))$ Υπολογισμός μέσων όρων i, id(k)14. $xm \leftarrow xm/k$ 15. $ym \leftarrow ym/k$ 16. en1=0,en2=0 17. for $x \in (1..s)$ 18. **do** en1 \leftarrow en1+(log(i)-xm)*(log(id(i))-ym) 19. $en2 \leftarrow en2 + (log(i)-xm)^2$

Ο αλγόριθμος αυτός έχει πολυπλοκότητα (φαίνεται στις γραμμές 2-8)O(M(M-k)).

5.12 Basikes Ennoies statistikhe

Η στατιστική γνώση προέρχεται κυρίως από την πληροφορία που λαμβάνουμε από την επεξεργασία ενός δείγματος, δηλαδή ενός μικρού πλήθους αντιπροσωπευτικών μετρήσεων, συγκεκριμένων δεδομένων και κάνοντας γενίκευση επί του αποτελέσματος που αφορά όλα τα δεδομένα.

Είναι προφανές ότι όσο μικρότερο είναι το δείγμα τόσο μεγαλύτερο αναμένεται να είναι το λάθος που υπεισέρχεται στο αποτέλεσμα.

5.12.1 KANONIKH KATANOMH

Η στατιστική ανάλυση δεδομένων εξαρτάται από τον τρόπο με τον οποίο τα δεδομένα είναι διατεταγμένα ή κατανεμημένα γύρω από τη μέση τιμή. Από τις διαφορετικές κατανομές στη φύση η κανονική κατανομή είναι η συχνότερη και είναι αυτή που κυρίως θα μας απασχολήσει. Η γραφική της παράσταση έχει σχήμα καμπάνας, στον οριζόντιο άξονα καταγράφονται οι τιμές της ποσότητας και στον κάθετο άξονα η συχνότητα των μετρήσεων. Αυτή η καμπύλη κατανομής ονομάζεται και ιστόγραμμα. Η καμπύλη είναι συμμετρική γύρω από τη μέγιστη τιμή, η οποία επίσης είναι και η μέση τιμή όλων των μετρήσεων. Όσο απομακρυνόμαστε από το κέντρο της καμπύλης τόσο μικρότερος είναι και ο αριθμός της καμπύλης [90]-[92].

5.12.2 Στατιστική Δοκιμασια

Η στατιστική χρησιμοποιείται για την εξαγωγή συμπερασμάτων για ένα συγκεκριμένο σύνολο από ένα δείγμα για το οποίο γνωρίζουμε ότι προέρχεται από το εν λόγω σύνολο. Επίσης για να εξακριβώσουμε εάν μια σειρά μετρήσεων που έγινε σε ένα δείγμα διαφέρει από τις ίδιες μετρήσεις που έγιναν σε ένα άλλο δείγμα χρησιμοποιούνται διάφορες δοκιμασίες σημαντικότητας (significance tests), όπως το Student's T-test και το Wilcoxon Rank Sum Test [87].

5.12.3 STUDENT'S T-TEST

Όσον αφορά την επιλογή χαρακτηριστικών υψηλής διαχωριστικής ικανότητας ας υποθέσουμε ότι έχουμε δύο κατηγορίες Υπερηχοραφικών εικόνων, μια κατηγορία από τις 10 φυσιολογικές εικόνες προστάτη και μια κατηγορία με 10 παθολογικές εικόνες (οι αριθμοί των εικόνων δεν είναι κατ' ανάγκη ίδιοι). Σε κάθε εικόνα κάθε κατηγορίας εφαρμόζουμε τη συνάρτηση ενός χαρακτηριστικού υφής και έστω οι προκύπτουσες μετρήσεις:

K1: 3.3	3.7	3.5	4.1	3.4	3.5	4.0	3.8	3.2	3.7
K2: 3.2	3.6	3.1	3.4	3.0	3.4	2.8	3.1	3.3	3.6

Το πρόβλημα είναι αν οι μετρήσεις αυτές διαφέρουν μεταξύ τους σημαντικά ώστε να επιλέξουμε ή να απορρίψουμε το χαρακτηριστικό υφής στο σχεδιασμό του ταξινομητή. Μια μέθοδος είναι να εξετάσουμε τη διαφορά των μέσων τιμών μ₁ και μ₂ των χαρακτηριστικών των δύο κατηγοριών και να ελέγξουμε αν η διαφορά αυτή είναι σημαντική [94], [96], [97].

Αν τώρα με κάποιο τρόπο εκτιμήσουμε ότι η μέση τιμή $\mu_1 = 3.62$ διαφέρει σημαντικά από τη $\mu_2 = 3.25$, τότε λέμε ότι η διαφορά είναι σημαντική και ότι πρέπει να επιλέξουμε το χαρακτηριστικό υφής για το σχεδιασμό του ταξινομητή. Σε διαφορετική περίπτωση, οι μέσες τιμές δεν διαφέρουν και άρα το χαρακτηριστικό πρέπει να απορριφθεί. Η διαδικασία που μας επιτρέπει να υιοθετήσουμε ή απορρίψουμε μια υπόθεση ονομάζεται τεστ σημαντικότητας ή κανόνας απόφασης.

Η μέγιστη πιθανότητα με την οποία θα διακινδυνεύαμε ένα λάθος απόφασης ονομάζεται επίπεδο σημαντικότητας. Αυτή η πιθανότητα συνήθως προκαθορίζεται των μετρήσεων και το επίπεδο σημαντικότητας εκφράζεται είτε ως πιθανότητα p=0.005 είτε ισοδύναμα ως ποσοστό 5% (άλλα επίπεδα που χρησιμοποιούνται είναι p=0.025, p=0.005, p=0.001). Έτσι αν αποφασίσουμε στο παραπάνω παράδειγμα το 5%, αυτό σημαίνει ότι υπάρχει πιθανότητα λάθους 5% ή διαφορετικά υπάρχει πιθανότητα 95% το χαρακτηριστικό μας να ταξινομηθεί σωστά. Είναι λογικό ότι όσο μεγαλύτερη είναι η διαφορά των μέσων τιμών και όσο πιο μικρή είναι η διασπορά σε κάθε κατηγορία τόσο πιο πιθανό είναι το χαρακτηριστικό Τ-test εφαρμόζεται με τους παρακάτω τύπους:

$$t = \frac{\mu_1 - \mu_2}{\left(\frac{s^2}{n1} + \frac{s^2}{n2}\right)^{1/2}}$$

Όπου n₁=10, n₂=10,
$$s^2 = \frac{(n1-1)\sigma^2_1 + (n2-1)\sigma^2_2}{n1+n2-2}$$

5.12.4 WILCOXON RANK SUM TEST

Το Wilcoxon rank-sum test είναι ένα μη παραμετρικό σύστημα σε σύγκριση με τα δύο δείγματα, *t*-test που είναι βασισμένο απλά στη σειρά που γίνονται οι παρατηρήσεις για τα δύο δείγματα.

Ελεγχος προσημασμένης διάταξης Wilcoxon (Wilcoxon signed-rank test). Το Wilcoxon rank-sum test εφαρμόζεται στον έλεγχο της προσημασμένης διάταξης Wilcoxon (Wilcoxon signed-rank test) και εφαρμόζεται όταν οι μετρήσεις είναι κατά ζεύγη. Στη μηδενική υπόθεση δεχόμαστε ότι η διάμεσος διαφορά είναι 0 όπως και στην ίδια υπόθεση με τον προσημικό έλεγχο. Οι διατάξεις ορίζονται με βάση την απόλυτη τιμή της διαφοράς, ενώ οι προσημασμένες διατάξεις προκύπτουν από τη διάταξη επί το πρόσημο της διαφοράς. Το άθροισμα των θετικών προσημασμένων διατάξεων προσεγγίζει την κανονική κατανομή διαφορετικά το υπολογίζουμε με βάση στατιστικούς πίνακες [87], [99], [103].

Τ:άθροισμα προσημασμένων διατάξεων

$$Z_{\rm T} = \frac{T - \mu_{\rm T}}{\sigma_{\rm T}}$$
 $\mu_{\rm T} = \frac{n(n+1)}{4}$ $\sigma_{\rm T} = \sqrt{\frac{n(n+1)(2n+1)}{24}}$

Shapiro-Wilk Test για την βαθμονόμηση: Ο έλεγχος Shapiro-Wilk, έχει προταθεί το 1965, και υπολογίζει το στατιστικό W το οποίο ελέγχει εάν ένα τυχαίο δείγμα x_1 , x_2 , ..., x_n έρχεται από μια κανονική κατανομή. Μικρές τιμές του W δείχνουν ότι η απόσταση από την κανονική κατανομή είναι ποσοστά του στατιστικού W βάση της εξομοίωσης που έκαναν οι Pearson and Hartley

Το στατιστικό W υπολογίζεται ως ακολούθως:

Όπου $x_{(i)}$ είναι το κατά σειρά δείγμα μας με $x_{(1)}$ το μικρότερο, οι a_i είναι σταθερές που παράγονται από τους μέσους όρους της απόκλισης (variance) και της covariance του 1^{ης} τάξης στατιστικό του δείγμα με μέγεθος *n* από μια κανονική κατανομή.

5.13 Πολυδιακριτή ανάλυση (multiresolution analysis)

Η πολυδιακριτή ανάλυση άρχισε να εφαρμόζεται στην Αστρονομία και έδρασε δυναμικά στη δημιουργία πολλών εφαρμογών στην ανάλυση εικόνων. Είναι μια σχετικά καινούργια μέθοδος και επιτρέπει την αναπαράσταση της εικόνας με διαφορετικές αναλύσεις (resolution) [89], [90].

Με τον όρο πολυδιακριτή ανάλυση εννοούμε ότι μια εικόνα μπορεί να παρουσιαστεί από ένα σετ εικόνων και κάθε εικόνα να έχει το δικό της μέγεθος. Η απεικόνιση αυτή έχει ταυτιστεί με την παρουσία θορύβου στην εικόνα καθώς και με μεθόδους φιλτραρίσματος, ανίχνευσης αντικειμένου, συμπίεσης κ.α.

Η απεικόνιση εικόνων σε διαφορετική ανάλυση είναι ένας πρακτικός τρόπος σύγκρισης των λεπτομερειών που παρουσιάζονται σε αυτές καθώς παρουσιάζεται μείωση του θορύβου. Με τη μείωση της ανάλυσης σε μια εικόνα απομονώνουμε το θόρυβο που μπορεί να υπάρχει σ' αυτή και κατανοούμε καλύτερα τη διασπορά των σημείων σ' αυτή.

Στην έρευνά μας εφαρμόσαμε την πολυδιακριτή ανάλυση με διαστάσεις εικόνων στην περιοχή ενδιαφέροντος από (64X64X24bits pixels) σε 1X1 (64X64X24bits pixels), 2X2 (32X32X24bits pixels), 3X3 (22X22X24bits pixels), 4X4 (16X16X24bits pixels), 5X5 (13X13X24bits pixels) μέχρι και 10X10 (7X7X24bits pixels).

Καλύτερα αποτελέσματα παρουσιάστηκαν στις αναλύσεις εικόνων 2X2 και 3X3 που είχαμε απεικόνιση μεγαλύτερης λεπτομέρειας και τα χειρότερα αποτελέσματα παρουσιάστηκαν στην ανάλυση 10X10 όπου εκεί η λεπτομέρεια της εικόνας είχε καταστραφεί.

Πιο κάτω θα αναπτύξουμε την εφαρμογή της πολυδιακριτής ανάλυσης παρουσιάζοντας τα βήματα της έρευνάς μας καθώς και τα αποτελέσματα που είχαμε εφαρμόζοντας τη μέθοδο σε πραγματικά δεδομένα.

Σχήμα 59: Πολυδιακριτή ανάλυση εικόνας. Πάνω αριστερά παρουσιάζεται η αρχική εικόνα και ακολουθούν οι εικόνες με διαφορετική ανάλυση 1x1 μέχρι 5x5. Στη δεύτερη σειρά παρουσιάζουμε τις εικόνες με διαφορετική ανάλυση 6x6 μέχρι 10x10.

Στο Σχήμα 59 παρουσιάζουμε ένα παράδειγμα πολυδιακριτής ανάλυσης από εικόνα ενδομητρίου σε αναλύσεις 1X1 μέχρι 10X10. Παρατηρήστε ότι όσο πιο «ψηλά» ανεβαίνουμε σε ανάλυση τόσο πιο πολύ χάνουμε τις πληροφορίες από τις εικόνες μας. Στο Σχήμα 60 παρουσιάζουμε τις αντίστοιχες γραφικές παραστάσεις των κατωδιαβατών φίλτρων που εφαρμόζονται στις εικόνες στην πολυδιακριτή ανάλυση. Το εύρος των φίλτρων μικραίνει όσο κινούμαστε σε πιο χαμηλές αναλύσεις.

Σχήμα 60: Φίλτρα 2X2 μέχρι 5X5, για την πολυδιακριτή ανάλυση λαπαροσκοπικών / υστεροσκοπικών εικόνων.

5.14 Σχολιάσμος

Στο κεφάλαιο αυτό αναλύσαμε τους αλγόριθμους υφής που έχουμε χρησιμοποιήσει στην έρευνά μας καθώς και τους αλγόριθμους της στατιστικής ανάλυσης. Οι αλγόριθμοι αυτοί έχουν εφαρμοστεί σε διάφορες άλλες εφαρμογές όπως την επεξεργασία εικόνων υπερήχων, μαγνητικής τομογραφίας [81] κτλ. Τα αποτελέσματα στο χαρακτηρισμό της υφής της εικόνας ήταν πολύ καλά και έτσι υλοποιήσαμε σε αυτή την έρευνα τους αντίστοιχους αλγόριθμους χαρακτηριστικών υφής.

Ο χαρακτηρισμός της εικόνας μας έγινε με τους τρεις βασικούς και αξιόπιστους αλγόριθμους χαρακτηριστικών υφής, SF, SGLDM και GLDS. Συνολικά έχουμε εξαγάγει 26 χαρακτηριστικά υφής και έχουμε περιγράψει τις αντίστοιχες περιοχές ενδιαφέροντος (φυσιολογικές / παθολογικές) με βάση αυτά τα χαρακτηριστικά. Επίσης έχουμε υλοποιήσει το στατιστικό τεστ, Wilcoxon rank sum test, για να συγκρίνουμε τα αντίστοιχα χαρακτηριστικά υφής των δύο προαναφερθέντων κατηγοριών. Τα αποτελέσματα του στατιστικού αυτού ελέγχου δείχνει ότι τα αντίστοιχα χαρακτηριστικά υφής μπορούν να διαχωριστούν σε φυσιολογικές και παθολογικές περιοχές ενδιαφέροντος. Το αποτέλεσμα αυτό θα βοηθήσει στην αυτόματη αναγνώριση δύσκολων περιοχών ενδιαφέροντος γυναικολογικού καρκίνου.

Τέλος έχουμε παρουσιάσει τον αλγόριθμο πολυδιακριτής ανάλυσης με στόχο την καλύτερη κατανόηση της ενέργειας των εικόνων και πώς αυτές αλλοιώνονται στην εφαρμογή των low pass φίλτρων. Σε μεγάλη κλίμακα 4x4 η πληροφορία των εικόνων καθώς και η ενέργεια που περικλείουν αλλοιώνονται και δεν μπορούν να χρησιμοποιηθούν στην περαιτέρω ανάλυσή μας.

5.15 ΑΝΑΦΟΡΕΣ

- [67] Tjoa P.M., Krishnan M.S.: Feature extraction for the analysis of colon status from the endoscopic images. BioMedical Engineering OnLine, Apr. 2003. <u>http://www.biomedical-</u> engineering-online.com/content/2/1/9.
- [68] Plataniotis K.N., Venetsanopoulos A.N., Color Image Processing and Applications, Springer Verlag. Berlin, ISBN 3-540-66953-1, August 2000.
- [69] Gonzalez, Woods: Digital Image Processing, 2nd Edition, Prentice Hall, 2002.
- [70] Bankman I.N., Spisz T.S., Pavlopoulos S., **Two-dimensional shape and texture quantification**, Handbook of medical imaging, Academic Press, Inc, October 2000.
- [71] Karkanis S.A., Galousi K., Maroulis D., Classification of Endoscopic Images Based on Texture Spectrum. ACAI99, Workshop on Machine Learning in Medical Applications, Chania, Greece pp. 63-69, 5-16 July 1999.
- [72] Karkanis S.A., Iakovidis D.K., Maroulis D.E., Karras A.D., Tzivras M., Computer-aided tumor detection in endoscopic video using color wavelet features. IEEE Transactions on Information Technology in Biomedicine, 7(3), pp. 141-152, 2003.
- [73] Houston A.G., Premkumar S. B., Statistical interpretation of texture for medical applications.Presented at the Biomedical Image Processing and Three Dimensional Microscopy, San Jose, CA, 1991.
- [74] Enderwick C., Micheli-Tzanakou E., Classification of mammographic tissue using shape and texture features. Proc. 19th Annu. Int. Conf. IEEE Engineering Medicine Biology Soc.iety, pp. 810–813, 1997.
- [75] Lachmann F., Barillot C., Brain tissue classification from MRI data by means of texture analysis. In Proc. Medical Imaging VI: Image Processing, vol. 1652. Newport Beach, CA, 1992, pp. 72–83.
- [76] Ji Q., Engel J., Craine E., Texture analysis for classification of cervix lesions. IEEE Trans. Med. Imag., vol. 19, pp. 1144–1149, Nov. 2000.
- [77] Fortin C., Ohley W., Automatic segmentation of cardiac images: Texture mapping.Proc. IEEE 17th Annu. Northeast Bioeng. Conf., 1991.
- [78] Ilgner J., Palm C., Schutz A., Spitzer K., Westhofen M., Lehmann T., Colour Texture Analysis for Quantitative Laryngoscopy, 123: pp. 730-734, Acta Otolaryngol 2003.
- [79] Haralick R.M., Shanmugam K., Dinstein I., Texture Features for Image Classification. IEEE Trans. on Systems, Man., and Cybernetics, SMC-3, pp. 610-621, Nov. 1973.
- [80] Wu C.M., Chen Y.C., Hsieh K.S., Texture features for classification of ultrasonic liver images. IEEE Trans. Med. Imaging, 11, pp.141-152, 1992.

- [81] Petrou M., Sevilla G.P., Image Processing, Dealing with Texture. John Wiley and Sons, 2006.
- [82] Wenska J.S., Dryer C.R., Rosenfeld A., A comparative study of texture measures for terrain classification. IEEE Trans. Syst., Man, Cyber., SMC-6, pp. 269-285, 1976.
- [83] Neophytou M.S., Pattichis C.S., Pattichis M.S., Tanos V., Kyriacou E., Koutsouris D., Multiscale Texture Feature Variability Analysis in Endoscopy Imaging Under Different Viewing Positions. CD-ROM Proceedings of the II EFOMP Mediterranean Conference on Medical Physics, 28-30 April, Limassol, Cyprus, 6 pages, 2004.
- [84] Neophytou M.S., Pattichis C.S., Pattichis M.S., Tanos V., Kyriacou E., Koutsouris D., The Effect of Color Correction of Endoscopy Images for Quantitative Analysis in Endometrium. 27th Annual International conference of the IEEE Engineering in Medicine and Biology Society, 1-4 September, Shanghai, China, pp. 3336- 3339, 2005.
- [85] Neophytou M.S., Pattichis C.S., Pattichis M.S., Tanos V., Kyriacou E., Pavlopoulos S., Koutsouris D., Texture Analysis of the Endometrium During Hysteroscopy: Preliminary Results. 26th Annual International conference of the IEEE Engineering in Medicine and Biology Society, 1-5 September, San Francisco, California, USA, 2, pp. 1483-1486, 2004.
- [86] Neophytou M.S., Pattichis C.S., Pattichis M.S., Tanos V., Kyriacou E., Koutsouris D., Texture-Based Classification of Hysteroscopy Images of the Endometrium. 28th Annual International conference of the IEEE Engineering in Medicine and Biology Society, 30-3 September, New York, USA, pp. 3005-3008, 2006.
- [87] The MathWorks company for software [www.mathworks.com]
- [88] Haeghen Y.V., Naeyaert J.M.A.B., Lemahieu I., An Imaging System with Calibrated Color Image Acquisition for Use in Dermatology. IEEE Transactions on Medical Imaging, 19, no 7, July 2000.
- [89] Vaidyanathan P.P., Multirate Systems and filter banks. New Jersey: PTR Prentice Hall, 1993.
- [90] Conte S.D., C. de Boor, Elementary Numerical Analysis: An Algorithmic Approach. McGrawHill, 1980.
- [91] Kincaid D., Cheney W., Numerical Analysis Mathematics of Scientific Computing. Pacific Grove, California, Brooks/Code, 1991.
- [92] Atkinson A.C., Donev A.N., Optimum Experimental Designs. Oxford Science Publications, 1992.
- [93] Bates D., Watts D., Nonlinear Regression Analysis and Its Applications. John Wiley and Sons, pp. 271-272, 1988.
- [94] Bernoulli J., Conjectandi A.B., Thurnisius, W.G. Hunter, and J.S. Hunter: Statistics for Experimenters. 1713, Box, G.E.P, Wiley, New York, 1978.
- [95] Chatterjee S. Hadi A.S., Influential Observations, High Leverage Points, and Outliers in Linear Regression. Statistical Science, pp. 379-416, 1986.

- [96] Dobson, A.J., An Introduction to Generalized Linear Models. CRC Press, 1990.
- [97] Evans M., Hastings N., Peacock B., Statistical Distributions. Second Edition. John Wiley and Sons, 1993.
- [98] Hogg R.V., Ledolter J., Engineering Statistics. MacMillan Publishing Company, 1987.
- [99] Johnson N., Kotz S., Distributions in Statistics: Continuous Univariate Distributions. John Wiley and Sons, 1970.
- [100] MuCullagh P., Nelder J.A., Generalized Linear Models. Chapman and Hall, 2nd edition, 1990.
- [101] Shapiro S.S., Wilk M.B: An analysis of variance test for normality (complete samples). Biometrika, 52, 3 and 4, pp. 591-611, 1965.
- [102] Pearson A.V., Hartley H.O: Biometrica Tables for Statisticians. Cambridge University Press,2, Cambridge, England, 1972.
- [103] Gibbons, J.D., Nonparametric Statistical Inference, 2nd Ed., M. Dekker, 1985.

Νευρωνικά Δίκτυα

6.1 ΕιΣΑΓΩΓΗ

Στο κεφάλαιο αυτό θα αναλύσουμε τους αλγόριθμους των νευρωνικών δικτύων καθώς και την προετοιμασία των δεδομένων για είσοδο σε αυτό. Θα περιγράψουμε τους αλγόριθμους α) Support Vector Machines (SVM) και β) Probabilistic Neural Nets (PNN).

6.2 Νευρωνικά Δικτυα/Αλγοριωμός Ταξινομήσης

Μετά τον υπολογισμό των διαφόρων χαρακτηριστικών υφής από παθολογικές και φυσιολογικές εικόνες ακολουθεί ο αυτόματος χαρακτηρισμός των εικόνων. Αυτό υλοποιήθηκε με τη βοήθεια δύο αλγορίθμων, ταξινόμησης και νευρωνικών δικτύων: α) Support Vector Machines (SVM) και β) Probabilistic Neural Nets (PNN). Πιο κάτω θα αναλύσουμε τις δυο μεθόδους.

6.2.1 Συστηματα κατηγοριοποιήσης (Classification Systems)

Η κατηγοριοποίηση δεδομένων είναι μία διαδικασία που γίνεται σε δύο φάσεις. Στην πρώτη φάση το μοντέλο δημιουργείται περιγράφοντας ένα σύνολο από προκαθορισμένες κατηγορίες. Το μοντέλο κτίζεται αναλύοντας μια ομάδα από εγγραφές – δείγματα όπου το κάθε δείγμα ανήκει και σε μία κατηγορία. Τα δείγματα τα οποία χρησιμοποιούνται για την δημιουργία του μοντέλου ονομάζονται δείγματα εκπαίδευσης (training data sets). Επειδή σε αυτή τη φάση δίδεται η κατηγορία στην οποία ανήκει το κάθε δείγμα η διαδικασία αυτή της μάθησης ονομάζεται επιβλεπόμενη μάθηση (supervised learning). Αυτό γίνεται σε αντιπαράθεση με τη μη επιβλεπόμενη μάθηση (unsupervised learning) όπου δεν δίδεται η κατηγορία στην οποία στην περίπτωση της τμηματοποίησης (clustering).

Συνήθως το αποτέλεσμα της μάθησης αυτής δίδεται στη μορφή ενός δέντρου απόφασης (decision tree) ή στη μορφή κανόνων κατηγοριοποίησης (classification rules) ή στη μορφή μιας μαθηματικής φόρμουλας. Στη δεύτερη φάση το μοντέλο χρησιμοποιείται για κατηγοριοποίηση. Πρώτα υπολογίζεται η ακρίβεια με την οποία προβλέπει το μοντέλο. Αυτό υπολογίζεται εφαρμόζοντας το μοντέλο σε μία ομάδα από δείγματα στα οποία γνωρίζουμε σε ποια κατηγορία ανήκουν και συγκρίνουμε την κατηγοριοποίηση που κάνει το μοντέλο με την

κατηγορία που ήδη υπάρχει στα δείγματα. Τα δείγματα στα οποία θα εφαρμοστεί το μοντέλο για έλεγχο θα πρέπει να είναι διαφορετικά από τα δείγματα που χρησιμοποιήθηκαν για να δημιουργηθεί το μοντέλο. Εάν η ακρίβεια του μοντέλου είναι ικανοποιητική τότε το μοντέλο μπορεί να χρησιμοποιηθεί στη μελέτη μας γιατί μπορεί να γίνει η κατηγοριοποίηση άγνωστων δεδομένων για τα οποία δεν έχουμε ένδειξη για την κατηγορία στην οποία ανήκουν.

6.2.2 Προετοιμάσια των δεδομένων

Πρίν τη χρησιμοποίηση των δεδομένων για τη δημιουργία και την εφαρμογή των μοντέλων κατηγοριοποίησης χρειάζεται να γίνει μία προεπεξεργασία των δεδομένων για να γίνει η ανάλυση πιο αποτελεσματική και πιο αξιόπιστη.

6.2.3 ΚΑΘΑΡΙΣΜΟΣ ΤΩΝ ΔΕΔΟΜΕΝΩΝ

Το πρώτο πράγμα που χρειάζεται να γίνει είναι ο καθαρισμός των δεδομένων (προεπεξεργασία). Τα δεδομένα που περιέχονται στα διάφορα χαρακτηριστικά πρέπει να είναι σωστά και συμπληρωμένα. Πολλές φορές υπάρχουν τιμές σε μεταβλητές οι οποίες είτε δεν είναι συμπληρωμένες είτε δεν έχουν επιτρεπόμενες τιμές. Αυτές οι τιμές θα πρέπει να συμπληρωθούν σωστά χρησιμοποιώντας κάποιο αλγόριθμο ή να αγνοηθούν οι εγγραφές στις οποίες ανήκουν.

6.2.4 ΕΠΙΛΟΓΗ ΤΩΝ ΧΑΡΑΚΤΗΡΙΣΤΙΚΩΝ

Μία άλλη σημαντική διεργασία που πρέπει να γίνει είναι η μελέτη των διαφόρων μεταβλητών για τον καθορισμό τυχαίων συσχετίσεων μεταξύ τους. Είναι σημαντικό στους αλγόριθμους ταξινόμησης οι μεταβλητές που θα χρησιμοποιηθούν για τη δημιουργία του μοντέλου να είναι ανεξάρτητες μεταξύ τους. Αυτή η διαδικασία είναι πολύ σημαντική και ονομάζεται επιλογή χαρακτηριστικών (feature selection). Σε περίπτωση στην οποία υπάρχουν εξαρτώμενες μεταβλητές τότε αυτές παίρνουν περισσότερη βαρύτητα και μπορεί να μας οδηγήσουν σε μοντέλο το οποίο να μη μας δίδει ικανοποιητικά αποτελέσματα. Ο χρόνος που αφιερώνουμε για την επιλογή των κατάλληλων μεταβλητών-χαρακτηριστικών μπορούμε να τον εξοικονομήσουμε από την ανάλυση και κατανόηση των αποτελεσμάτων.

6.3 ANAAY₂H PCA, PRINCIPAL COMPONETS ANALYSIS

Η ανάλυση Principal Componets Analysis (PCA) εφαρμόζεται για να προσπελάσουμε το πρόβλημα των μεγάλων διαστάσεων δεδομένων, με στόχο τη μείωση των διαστάσεων αυτών με το συνδυασμό των χαρακτηριστικών. Οι γραμμικοί συνδυασμοί είναι πιο εύκολοι στη χρήση τους καθώς και στην επεξεργασία τους. Συνήθως τα πολυδιάστατα δεδομένα μετατρέπονται σε μικρότερων διαστάσεων στοιχεία.

Για να το πετύχουμε αυτό υπάρχουν δυο κλασσικοί τρόποι, ο ένας είναι ο Principal Componets Analysis, που εφαρμόζει την προβολή των καλύτερων δεδομένων με τη μέθοδο ελαχίστων τετραγώνων και ο δεύτερος τρόπος είναι ο Multiple Discriminant Analysis, MDA που εφαρμόζει την προβολή των καλύτερων διακριτών δεδομένων με τη μέθοδο ελαχίστων τετραγώνων.

Θα ασχοληθούμε μόνο με τον πρώτο τρόπο, τον Principal Componets Analysis, ξεκινώντας με ένα παράδειγμα. Έστω εάν έχω την παρουσίαση όλων των διανυσμάτων σε ένα σετ με n-διαστάσεων x₁, ..., x_n δειγμάτων με ένα μοναδιαίο διάνυσμα το x₀. Για να γίνουμε πιο σαφείς, έστω θέλουμε να υπολογίσουμε το διάνυσμα x₀ έτσι ώστε το άθροισμα της απόστασης των τετραγώνων μεταξύ του x₀ και του τυχαίου x_k να παρουσιάζει ελάχιστο. Το τετραγωνικό σφάλμα το ορίζουμε ως εξής, J₀(x₀),

$$J_0(x_0) = \sum_{k=1}^n \left\| x_0 - x_k \right\|^2$$

και ψάχνουμε την τιμή του x_0 που θα ελαχιστοποίησει το J_0 . Αυτό υπολογίζεται εύκολα εάν υποθέσουμε ότι η λύση του προβλήματός μας είναι x_0 =m όπου m είναι η μέση τιμή του δείγματος.

$$m = \frac{1}{n} \sum_{k=1}^{n} x_k$$

Αυτό μπορεί εύκολα να λυθεί ως ακολούθως:

$$J_0(x_0) = \sum_{k=1}^n \left\| (x_0 - m) - (x_k - m) \right\|^2 = \sum_{k=1}^n \left\| x_0 - m \right\|^2 - 2(x_0 - m)^t \sum_{k=1}^n (x_k - m) + \sum_{k=1}^n \left\| x_k - m \right\|^2$$
$$= \sum_{k=1}^n \left\| x_0 - m \right\|^2 + \sum_{k=1 \text{ independent of } x_0}^n \left\| x_k - m \right\|^2$$

Το δεύτερο άθροισμα είναι ανεξάρτητο του x_0 εάν το x_0 =m τότε θα έχω την ελάχιστη J_0 . Με αυτό τον τρόπο μπορούμε να εφαρμόσουμε την Principal Componets Analysis στη χρήση των νευρωνικών δικτύων.

6.3.1 Метатропн тол дедоменол

Κάποιοι αλγόριθμοι κατηγοριοποίησης παίρνουν ως μεταβλητές μόνο αριθμητικά δεδομένα. Έτσι όταν έχουν μεταβλητές οι οποίες δεν είναι αριθμητικές πρέπει να αντιστοιχηθούν σε αριθμητικές τιμές. Επίσης κάποιοι αλγόριθμοι βασίζονται στην απόσταση

μεταξύ των μεταβλητών. Σε αυτές τις περιπτώσεις θα πρέπει οι τιμές των μεταβλητών να κανονικοποιηθούν έτσι ώστε μεταβλητές οι οποίες έχουν μεγάλες τιμές να μην πάρουν μεγαλύτερη βαρύτητα. Τέλος κάποιες μεταβλητές οι οποίες παίρνουν πάρα πολλές τιμές μπορούν να ομαδοποιηθούν σε μικρότερες κατηγορίες για να είναι πιο κατανοητές οι τιμές τους.

6.3.2 Крітнріа епілогне монтелоу катнгоріопоінене

Για τη δημιουργία και την επιλογή του κατάλληλου μοντέλου κατηγοριοποίησης υπάρχουν κάποια βασικά θέματα που πρέπει να ληφθούν υπόψη. Τα πιο σημαντικά είναι:

α) Ακρίβεια: Η αξιοπιστία του μοντέλου συνήθως αναπαρίσταται από το ποσοστό των σωστών κατηγοριοποιήσεων. Αυτό όμως δεν είναι απόλυτα αντιπροσωπευτικό γιατί σε πολλές περιπτώσεις κάποια λάθη είναι περισσότερο σημαντικά από κάποια άλλα. Δηλαδή μπορεί τα λάθη να έχουν διαφορετική βαρύτητα σε κάποιες κατηγορίες από κάποιες άλλες. Γι αυτό ίσως είναι σημαντικό να ελέγχουμε τον ρυθμό σφάλματος για κάποιες βασικές κατηγορίες αναλόγως του προβλήματος.

β) Ταχύτητα: Σε κάποιες περιπτώσεις η ταχύτητα του ταξινομητή (classifier) είναι σημαντικός παράγοντας. Ένας ταξινομητής ο οποίος είναι 90% ακριβής μπορεί να προτιμηθεί από ένα ταξινομητή ο οποίος είναι 95% ακριβής αλλά είναι 100 φορές πιο αργός. Αυτό συμβαίνει συχνά στα νευρωνικά δίκτυα όπου η πολυπλοκότητα αυξάνει πολύ όσο αυξάνονται οι νευρώνες και τα επίπεδα των νευρώνων.

γ) Κατανοησιμότητα: Στις περιπτώσεις κατά τις οποίες κάποιος άνθρωπος πρέπει να εφαρμόσει τη διαδικασία κατηγοριοποίησης, τότε οι κανόνες πρέπει να είναι κατανοητοί αλλιώς θα υπάρξουν πολλά λάθη στην εφαρμογή των κανόνων. Επίσης ο άνθρωπος θα πρέπει να εμπιστεύεται το μοντέλο για να το εφαρμόζει σωστά.

δ) Ο χρόνος μάθησης: Σε περιβάλλοντα που αλλάζουν γρήγορα μπορεί να είναι απαραίτητο η μάθηση νέων κανόνων να γίνεται πολύ γρήγορα. Επίσης μπορεί να γίνονται προσαρμογές σε κανόνες που ήδη υπάρχουν. Ακόμα ο αλγόριθμος πρέπει να μαθαίνει με λίγα δείγματα και να δημιουργεί καινούργιους κανόνες.

6.4 ΜΗΧΑΝΕΣ ΔΙΑΝΥΣΜΑΤΩΝ ΥΠΟΣΤΗΡΙΞΗΣ (SUPPORT VECTOR MACHINES)

6.4.1 Εισαγωγγ

Οι μηχανές διανυσμάτων υποστήριξης (Support Vector machines) είναι ένας αλγόριθμος μάθησης για μάθηση κατηγοριοποίησης (classification) και παλινδρόμησης (regression). Τα Support Vector machines προτάθηκαν για πρώτη φορά από τον Vapnik γύρω στο 1960 για κατηγοριοποίηση. Πρόσφατα έχουν γίνει σε μια περιοχή, μεγάλης έρευνας σχετιζόμενης με θεωρίες και τεχνικές που έχουν σαν επέκταση την παλινδρόμηση και τον υπολογισμό πυκνότητας.

Τα SVM έχουν προέλθει από τη θεωρία της στατιστικής μάθησης, έχοντας σκοπό τη επίλυση ενός προβλήματος χωρίς πρώτα την επίλυση κάποιου δυσκολότερου προβλήματος σαν ενδιάμεσο στάδιο. Τα SVM βασίζονται στην αρχή της ελαχιστοποίησης του δομικού κινδύνου (structural risk minimization theory) που είναι στενά συνδεδεμένη με τη θεωρία ομαλότητας (regularization theory). Η αρχή αυτή ενσωματώνει έλεγχο χωρητικότητας για την αποτροπή της υπερμάθησης (over fitting) και γι' αυτό το λόγο είναι μερική λύση του biasvariance trade-odd dilemma.

Δύο βασικά στοιχεία στην υλοποίηση των SVM είναι οι τεχνικές του μαθηματικού προγραμματισμού και οι συναρτήσεις πυρήνα. Οι παράμετροι υπολογίζονται με την επίλυση δευτέρου βαθμού προγραμματιστικού προβλήματος (quadratic programming problem) μαζί με γραμμικές ισότητες και ανισότητες περιορισμών, αντί με την επίλυση μη κυρτού και μη περιοριστικού προβλήματος βελτιστοποίησης. Η ευελιξία των συναρτήσεων πυρήνα επιτρέπουν στα SVM στην αναζήτηση σε μία μεγάλη ποικιλία υποθετικών διαστημάτων.

Η γεωμετρική αναπαράσταση του support vector classification είναι ότι ο αλγόριθμος αναζητά για τη μέγιστη διαχωριστική επιφάνεια δηλαδή το υπερεπίπεδο το οποίο ισαπέχει από τις δύο κατηγορίες (στην περίπτωση που το SVM έχει να χωρίσει δεδομένα που ανήκουν σε δύο κατηγορίες). Αυτό το μέγιστο διαχωριστικό επίπεδο έχει πάρα πολύ καλές στατιστικές ιδιότητες. Στην απλή περίπτωση τα SVC διαχωρίζουν γραμμικά διαχωρίσιμες κατηγορίες. Για τη δημιουργία μη γραμμικών επιφανειών αποφάσεων εισάγονται συναρτήσεις πυρήνα. Τέλος για τα δεδομένα που περιέχουν θόρυβο και δεν είναι επιθυμητός ο πλήρης διαχωρισμός τους τότε εισάγονται οι χαλαρές (slack) μεταβλητές για να επιτρέπουν σφάλμα μάθησης.

6.4.2 Θεωρία Βελτιστοποίησης

Για την εξεύρεση του βέλτιστου υπερεπιπέδου πρέπει να χρησιμοποιηθούν αλγόριθμοι από τη θεωρία βελτιστοποίησης. Η θεωρία βελτιστοποίησης είναι ο κλάδος των μαθηματικών που ασχολείται με το χαρακτηρισμό των λύσεων της κατηγοριοποίησης και η δημιουργία αποτελεσματικών αλγόριθμων για την εξεύρεσή τους.

Το γενικό πρόβλημα βελτιστοποίησης είναι η εξεύρεση του μέγιστου ή του ελάχιστου μιας συνάρτησης που υπόκειται σε κάποιους περιορισμούς:

$$f(\mathbf{w}) \quad \mathbf{w} \in \Omega$$

$$g_i(\mathbf{w}) \le 0, \quad i = 1, ..., k,$$

$$h_i(\mathbf{w}) = 0 \quad i = 1, ..., m$$

όπου $f(\mathbf{w})$ είναι η αντικειμενική συνάρτηση (objective function) και οι άλλες δύο σχέσεις ονομάζονται ανισοτικός και ισοτικός περιορισμός. Η βέλτιστη τιμή της αντικειμενικής συνάρτησης ονομάζεται: η τιμή του προβλήματος βελτιστοποίησης.

Το πεδίο στο οποίο ορίζεται η αντικειμενική συνάρτηση και ικανοποιούνται όλοι οι περιορισμοί ονομάζεται εφικτό πεδίο (feasible region) και δηλώνεται σαν:

$$R = \{ \mathbf{w} \in \Omega : g(\mathbf{w}) \le 0, h(\mathbf{w}) = 0 \}.$$

Μία λύση στο πρόβλημα βελτιστοποίησης είναι ένα σημείο $\mathbf{w}^* \in R$ έτσι ώστε να μην υπάρχει άλλο σημείο $\mathbf{w} \in R$ για το οποίο $f(\mathbf{w}) < f(\mathbf{w}^*)$. Αυτό το σημείο ονομάζεται γενικό ελάχιστο (global minimum). Ένα σημείο της $f(\mathbf{w})$ ονομάζεται τοπικό ελάχιστο εάν $\mathbf{w}^* \in R$ και υπάρχει $\varepsilon > 0$ έτσι ώστε $f(\mathbf{w}) \ge f(\mathbf{w}^*) \forall \mathbf{w} \in \Omega$ έτσι ώστε $\|\mathbf{w} - \mathbf{w}^*\| < \varepsilon$.

Ανάλογα με τη φύση της αντικειμενικής συνάρτησης και το είδος των περιορισμών δημιουργούνται διαφορετικά προβλήματα βελτιστοποίησης.

Όταν η αντικειμενική συνάρτηση, η συνάρτηση ανισότητας και η συνάρτηση ισότητας είναι γραμμικές συναρτήσεις τότε το πρόβλημα βελτιστοποίησης ονομάζεται γραμμικό πρόγραμμα (linear programme). Όταν η αντικειμενική συνάρτηση είναι τετραγωνική και οι ανισότητες είναι γραμμικές τότε το πρόβλημα βελτιστοποίησης ονομάζεται τετραγωνικό πρόγραμμα (quadratic programme).

Η ανισότητα $g_i(\mathbf{w}) \le 0$ ονομάζεται ενεργή ή σφικτή όταν η λύση \mathbf{w}^* ικανοποιεί την $g_i(\mathbf{w}^*) \le 0$. Μία ανισότητα μπορούμε να την μετατρέψουμε σε ισότητα χρησιμοποιώντας χαλαρή μεταβλητή (slack variable) έτσι ώστε:

 $g_i(\mathbf{w^*}) \le 0 \quad \Leftrightarrow \quad g_i(\mathbf{w^*}) + \xi_i = 0, \quad \mu \varepsilon \ \xi_i \ge 0$

Το μέγεθος της μεταβλητής ξ δείχνει το μέγεθος της χαλαρότητας (looseness) της συνάρτησης.

Στα διανύσματα υποστήριξης οι περιορισμοί είναι γραμμικοί και η αντικειμενική συνάρτηση είναι τετραγωνική και κυρτή (convex). Η $f(\mathbf{w})$ είναι πραγματικών τιμών συνάρτηση, κυρτή όταν το $\mathbf{w} \in \Re^n$ εάν για $\forall \mathbf{w}, \mathbf{u} \in \Re^n$ και για κάθε $\theta \in (0,1)$,

$$f(\theta \mathbf{w} + (1 - \theta)\mathbf{u}) \le \theta f(\mathbf{w}) + (1 - \theta)f(\mathbf{u})$$

Μία συνάρτηση η οποία είναι διπλά διαφορήσιμη θα είναι κυρτή εάν ο Hessian πίνακας είναι θετικά ημικαθορισμένος. Μία συνδεδεμένη (affine) συνάρτηση είναι μία συνάρτηση που μπορεί να εκφραστεί στη μορφή

$$f(\mathbf{w}) = \mathbf{A}\mathbf{w} + \mathbf{b} ,$$

για κάποιο πίνακα **A** και κάποιο διάνυσμα **b**. Η συνδεδεμένη συνάρτηση είναι κυρτή και έχει μηδενικό Hessian. Εάν μία συνάρτηση είναι κυρτή τότε οποιοδήποτε τοπικό ελάχιστο **w*** είναι και γενικό ελάχιστο.

6.4.3 ΒΕΛΤΙΣΤΑ ΥΠΕΡΕΠΙΠΕΛΑ

Λέμε ότι δύο πεπερασμένα υποσύνολα διανυσμάτων **x** από το σύνολο μάθησης: $(x_1, y_1), ..., (x_l, y_l), \mathbf{x} \in X^* \subset \Re^n, y \in \{-1, 1\},$ ένα υποσύνολο Ι στο οποίο το y=1 και ένα υποσύνολο ΙΙ στο οποίο y=-1 είναι διαχωρίσιμα από το υπερεπίπεδο $\langle \mathbf{x} \cdot \mathbf{w} \rangle + b = 0$ όταν υπάρχει διάνυσμα **w** και σταθερά **b** έτσι ώστε οι πιο κάτω ανισότητες να είναι αληθείς.

$$\begin{aligned} & (x_i \cdot w) + b > 1, \ \varepsilon \dot{\alpha} \ v \ x_i \in I, \\ & (x_j \cdot w) + b < -1, \ \varepsilon \dot{\alpha} \ v \ x_j \in I \end{aligned}$$

Ανάμεσα στα επίπεδα τα οποία διαχωρίζουν τις δύο κατηγορίες, βέλτιστο υπερεπίπεδο θεωρείται αυτό που μεγιστοποιεί την απόσταση στο κλειστό σύνολο του διανύσματος **x** από τα δεδομένα εκπαίδευσης. Το μέγιστο υπερεπίπεδο καθορίζεται από το ζεύγος που αποτελείται από το διάνυσμα \mathbf{w}_0 και τη σταθερά \mathbf{b}_0 και ελαχιστοποιεί την τετραγωνική μορφή:

 $Q(\mathbf{w}) = \langle \mathbf{w} \cdot \mathbf{w} \rangle$ η οποία υπόκειται στον περιορισμό $y_i[(x_i \cdot \mathbf{w}) + b] \ge 1$, i = 1,...,l

Χρησιμοποιώντας τον πολλαπλασιαστή Lagrange αποδεικνύεται ότι το βέλτιστο υπερεπίπεδο έχει επέκταση στα support vectors των δεδομένων μάθησης $\mathbf{x} \in S \subset X^*$

$$(x_i \cdot \mathbf{w}) + b = \sum_{x_i \in S} y_i a_i (\mathbf{x} \cdot x_i) + b$$

όπου τα support vector είναι τα διανύσματα από τα δεδομένα μάθησης τα οποία ικανοποιούν την ισότητα:

$$y_i[(x_i \cdot \mathbf{w}) + b] = 1$$

και οι συντελεστές $a_i \ge 0$ πρέπει να μεγιστοποιούν την τετραγωνική μορφή:

$$W(a) = \sum_{i=1}^{l} a_i - \frac{1}{2} \sum_{j=1}^{l} y_j y_j a_i a_j (x_i \cdot x_j)$$

η οποία έχει τους περιορισμούς $a_i \ge 0$, i = 1,...,l,

$$\sum_{i=1}^{l} a_i y_i = 0$$

Σε περίπτωση όπου τα δεδομένα μάθησης δεν διαχωρίζονται από κάποιο υπερεπίπεδο χωρίς λάθη τότε στόχος είναι η δημιουργία ενός υπερεπιπέδου το οποίο δημιουργεί όσο το δυνατό λιγότερα λάθη. Η φορμαλιστική έκφραση της εύρεσης του υπερεπιπέδου το οποίο παρέχει τα λιγότερα λάθη κατά την εκπαίδευση είναι:

$$\Phi(\boldsymbol{\xi}) = C \sum_{i=1}^{l} \boldsymbol{\theta}(\boldsymbol{\xi}) + \left\langle \mathbf{w} \cdot \mathbf{w} \right\rangle$$

το οποίο υπόκειται στους περιορισμούς

 $y_i((x_i \cdot \mathbf{w}) + b) \ge 1 - \xi_i$, i = 1,...,l, $\xi_i \ge 0$, όπου C είναι αρκετά μεγάλο και θ(ξ)=0 εάν ξ=0, θ(ξ)=1 εάν ξ>0.

Είναι γνωστό ότι για τη μη διαχωρίσιμη περίπτωση το πρόβλημα βελτιστοποίησης είναι NP-complete. Γι΄αυτό το λόγο θεωρείται η πιο κάτω προσέγγιση σε αυτό το πρόβλημα. Θέλουμε να ελαχιστοποιήσουμε τη συνάρτηση:

$$\Phi(\xi) = C \sum_{i=1}^{l} \xi_i^{\sigma} + (\mathbf{w} \cdot \mathbf{w})$$

κάτω από τον περιορισμό

 $y_i((x_i \cdot \mathbf{w}) + b) \ge 1 - \xi_i, \quad i = 1,...,l, \quad \xi_i \ge 0,$ όπου το $\sigma \ge 0$ είναι μία πολύ μικρή τιμή. Επιλέγοντας σ=1 είναι η μικρότερη τιμή που οδηγεί σε απλό πρόβλημα βελτιστοποίησης.

Χρησιμοποιώντας την Lagrangian τεχνική παίρνουμε μία μέθοδο λύσης αυτού του προβλήματος βελτιστοποίησης η οποία είναι σχεδόν ανάλογη της μεθόδου επίλυσης του προβλήματος βελτιστοποίησης για την περίπτωση που τα δεδομένα είναι πλήρως διαχωρίσιμα.

6.4.4 ΔΙΑΣΤΑΣΗ ΧΑΡΑΚΤΗΡΙΣΤΙΚΩΝ (FEATURE SPACE)

Στην περίπτωση που δεν μπορεί να βρεθεί ένα υπερεπίπεδο διαχωρισμού που να ομαδοποιεί σωστά τα σημεία τότε μπορούμε (όπως φαίνεται και στο Σχήμα 61) να ανεβούμε σε ένα χώρο ψηλότερων διαστάσεων στον οποίο είναι πολύ πιθανό να υπάρχει τέτοιο επίπεδο διαχωρισμού.

Σχήμα 61: Γίνεται μία αντιστοιχία των σημείων εισόδου στη διάσταση των χαρακτηριστικών έτσι ώστε να βρεθεί ένα επίπεδο διαχωρισμού.

Γίνεται δηλαδή μία χαρτογράφηση των σημείων δεδομένων από το χώρο εισόδου \mathbb{R}^n σε ένα χώρο μεγαλύτερης διάστασης \mathbb{R}^m (m>n) ο οποίος λέγεται χώρος χαρακτηριστικών (feature space). Αυτό το επιτυγχάνουμε με τη χρήση μίας συνάρτησης πυρήνα Φ (kernel function).

$$\Phi: \mathbb{R}^n \to \mathbb{R}^m$$

Αν για παράδειγμα n=2 και m=3

$$x = (x_1, x_2) \rightarrow x' = (x_1^2, x_2^2, x_1 x_2)$$

6.4.5 ΣΥΝΑΡΤΗΣΗ ΠΥΡΗΝΑ

Ο πυρήνας είναι μία συνάρτηση Kη οποία για όλα τα $\mathbf{x}, \mathbf{z} \in \mathbf{X}$

$$K(\mathbf{x},\mathbf{z}) = \left\langle \phi(\mathbf{x}) \cdot \phi(\mathbf{z}) \right\rangle,\,$$

όπου φείναι μία αντιστοιχία από το X σε ένα (εσωτερικό γινόμενο) πεδίο χαρακτηριστικών F.

Μία συνάρτηση $K(\mathbf{x}, \mathbf{z})$ θεωρείται πυρήνας εάν είναι συμμετρική και εάν και μόνο ο πίνακας $K = (K(\mathbf{x}_i, \mathbf{x}_j))_{i,j=1}^n$ είναι θετικά ημικαθορισμένος (δεν έχει αρνητικές ιδιοτιμές). Το θεώρημα αυτό είναι το θεώρημα του Mercer το οποίο ορίζει πότε μία συνάρτηση είναι πυρήνας.

Οι κυριότερες συναρτήσεις πυρήνα είναι οι πιο κάτω:

- Η γραμμική συνάρτηση: $K(x_i, x_j) = x_i^T x_j$
- Η πολυωνυμική συνάρτηση: $K(x_i, x_j) = (\gamma x_i^T x_j + r)^d$, $\gamma > 0$
- Radial Basis συνάρτηση(RBF): $K(x_i, x_j) = e^{(-\gamma ||x_i x_j||^d)}, \quad \gamma > 0$
- Σιγμοειδής συνάρτηση: $K(x_i, x_j) = \tanh(\gamma x_i^T x_j + r)$

Η συνάρτηση η οποία έχει τη μεγαλύτερη εφαρμογή είναι η RBF. Ο κυριότερος λόγος είναι ότι η RBF μπορεί να διαχειριστεί δεδομένα τα οποία δεν χωρίζονται γραμμικά, σε αντίθεση με τη γραμμική συνάρτηση, αντιστοιχώντας τα δείγματα εισόδου σε επίπεδο μεγαλύτερων διαστάσεων. Επιπρόσθετα ο γραμμικός πυρήνας είναι μια ειδική περίπτωση του πυρήνα RBF. Επίσης η σιγμοειδής συνάρτηση συμπεριφέρεται όπως την RBF για συγκεκριμένες παραμέτρους.

Ένας άλλος λόγος είναι ο αριθμός των παραμέτρων ο οποίος επηρεάζει την πολυπλοκότητα της επιλογής του μοντέλου. Η πολυωνυμική συνάρτηση έχει περισσότερες παραμέτρους από ότι η RBF. Τέλος η RBF έχει τους λιγότερους αριθμητικούς περιορισμούς. Όταν ο βαθμός είναι πολύ ψηλός η πολυωνυμική μπορεί να πάει στο άπειρο (όταν $(\chi_i^T x_j + r) > 1$) ή στο μηδέν $(\chi_i^T x_j + r) < 1$. Επίσης η σιγμοειδής συνάρτηση δεν είναι βάσιμη κάτω από κάποιες παραμέτρους.

6.4.6 Αλγοριωμοί βελτιστοποίησης

Το πρόβλημα που επιλύει ένας αλγόριθμος βελτιστοποίησης είναι το QP (τετραγωνικό πρόβλημα – quadratic problem) που περιγράφεται από τη συνάρτηση

$$\max_{a} W(a) = \sum_{i=1}^{l} a_{i} - \frac{1}{2} \sum_{i=1}^{l} \sum_{j=1}^{l} y_{i} y_{j} k(x_{i}, x_{j}) a_{i} a_{j}$$

$$0 \le a_{i} \le C, \quad \forall i,$$

$$\sum_{i=1}^{l} y_{i} a_{i} = 0.$$

Ένα σημείο είναι βέλτιστο στην πιο πάνω συνάρτηση εάν και μόνο, πληρούνται οι συνθήκες Karush-Kuhn-Tuckern (KKT) και το $Q_{ij} = y_i y_j k(x_i, x_j)$ είναι θετικό και ημικαθορισμένο. Έτσι το σημείο μπορεί να μην είναι μοναδικό και ούτε απομονωμένο βέλτιστο. Οι συνθήκες KKT είναι πολύ απλές. Το QP πρόβλημα επιλύεται όταν για όλα τα i:

$$a_i = 0 \Longrightarrow y_i f(x_i) \ge 1,$$

$$0 \prec a_i \prec C \Longrightarrow y_i f(x_i) = 1,$$

$$a_i = C \Longrightarrow y_i f(x_i) \le 1,$$

Οι συνθήκες ΚΚΤ είναι δυνατό να αξιολογούνται με ένα παράδειγμα κάθε φορά, το οποίο είναι πολύ χρήσιμο στη δημιουργία του αλγόριθμου SMO.

6.5 ΣΕΙΡΙΑΚΗ ΕΛΑΧΙΣΤΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ (SEQUENTIAL MINIMAL OPTIMIZATION (SMO))

Ο SMO είναι ένας απλός αλγόριθμος ο οποίος επιλύει το SVM QP πρόβλημα χωρίς επιπρόσθετο χώρο αποθήκευσης και χωρίς να περιλαμβάνει επαναληπτική αριθμητική ρουτίνα για κάθε υποπρόβλημα. Ο SMO αποσυνθέτει το QP σε ένα σύνολο από QP υποπροβλήματα.

Αντίθετα με άλλες μεθόδους, ο SMO επιλέγει να επιλύσει το ελάχιστο δυνατό πρόβλημα βελτιστοποίησης σε κάθε βήμα. Για το κανονικό πρόβλημα SVM QP, το ελάχιστο δυνατό πρόβλημα βελτιστοποίησης είναι να εμπλέκει δύο πολλαπλασιαστές Lagrange, επειδή οι πολλαπλασιαστές Lagrange πρέπει να υπακούουν σε περιορισμό γραμμικής ισότητας. Σε κάθε βήμα ο SMO επιλέγει δύο πολλαπλασιαστές Lagrange για να τους βελτιστοποιήσει από κοινού, βρίσκει τις βέλτιστες τιμές για αυτούς τους πολλαπλασιαστές, και ενημερώνει το SVM έτσι ώστε να αντανακλά τις νέες βελτιστοποιημένες τιμές.

Το πλεονέκτημα του SMO βρίσκεται στο γεγονός ότι η επίλυση του προβλήματος για δύο πολλαπλασιαστές Lagrange μπορεί να γίνει αναλυτικά. Γι' αυτό το λόγο η ολόκληρη εσωτερική επανάληψη λόγω της αριθμητικής QP βελτιστοποίησης αποφεύγεται. Ο εσωτερικός βρόγχος του αλγορίθμου μπορεί να εκφραστεί με λίγες γραμμές κώδικα, αντί να γίνεται χρήση μίας ολόκληρης επαναληπτικής QP ρουτίνας. Αν και επιλύονται περισσότερα υπό-προβλήματα στο επίπεδο του αλγορίθμου, το κάθε υπό-πρόβλημα είναι τόσο γρήγορο που και ολόκληρο το πρόβλημα επιλύεται πολύ γρήγορα.

Επιπρόσθετα ο SMO δεν χρειάζεται πρόσθετη μνήμη. Γι' αυτό το λόγο μπορούν να επιλυθούν προβλήματα με μεγάλο αριθμό δειγμάτων εκπαίδευσης. Επειδή ο χειρισμός

μεγάλων πινάκων αποφεύγεται, ο SMO είναι λιγότερος ευαίσθητος σε προβλήματα αριθμητικής ακρίβειας.

Ο SMO αποτελείται από τρία κομμάτια: α) Μία αναλυτική μέθοδο για τη βελτιστοποίηση δύο πολλαπλασιαστών Lagrange, β) μία ευριστική μέθοδο για την επιλογή των δύο πολλαπλασιαστών Lagrange και γ) μέθοδο για τον υπολογισμό του b.

a) Αναλυτική μέθοδος για τη βελτιστοποίηση δύο πολλαπλασιαστών Lagrange

Για την επίλυση των δύο πολλαπλασιαστών Lagrange, ο SMO πρώτα υπολογίζει τους περιορισμούς σε αυτούς τους πολλαπλασιαστές και στη συνέχεια επιλύει το μέγιστο των περιορισμών. Επειδή οι πολλαπλασιαστές είναι δύο οι περιορισμοί μπορούν να φανούν σε δύο διαστάσεις όπως φαίνεται και στο Σχήμα 62. Οι δεσμευτικοί περιορισμοί αναγκάζουν τους πολλαπλασιαστές Lagrange να απλώνονται μέσα στο κουτί, ενώ ο γραμμικός ανισοτικός περιορισμός αναγκάζει τους πολλαπλασιαστές να απλώνονται πάνω στο κομμάτι διαγώνιας γραμμής. Γι' αυτό το λόγο το μέγιστο των περιορισμών της αντικειμενικής συνάρτησης πρέπει να βρίσκεται στο τμήμα της διαγώνιας γραμμής. Αυτός ο περιορισμός εξηγεί γιατί δύο είναι ο ελάχιστος αριθμός των πολλαπλασιαστών Lagrange που μπορούν να βελτιστοποιηθούν.

Τα όρια του κομματιού της διαγώνιας γραμμής μπορούν να εκφραστούν πολύ απλά Χωρίς να χάνουμε τη γενικότητα, ο αλγόριθμος πρώτα υπολογίζει το δεύτερο πολλαπλασιαστή Lagrange α₂ και υπολογίζει τα όρια του τμήματος της διαγώνιας γραμμής συναρτήσει του α₂. Εάν ο στόχος y₁ δεν ισούται με το στόχο y₂, τότε οι πιο κάτω περιορισμοί εφαρμόζονται στο α₂:

$$L = \max(0, \alpha_2^{old} - \alpha_1^{old}), \quad H = \min(C, C + \alpha_2^{old} - \alpha_1^{old})$$

Εάν ο στόχος y1 ισούται με το στόχο y2, τότε οι πιο κάτω περιορισμοί εφαρμόζονται στο α2:

L = max(0,
$$\alpha_1^{old} + \alpha_2^{old} - C$$
), H = min(C, $a_1^{old} + a_2^{old}$)

Η δεύτερη παράγωγος της αντικειμενικής συνάρτησης κατά μήκος της διαγώνιας γραμμής μπορεί να εκφραστεί σαν:

$$\eta = 2k(x_1, x_2) - k(x_1, x_1) - k(x_2, x_2)$$

Το επόμενο βήμα του SMO είναι ο υπολογισμός του μέγιστου περιορισμού της αντικειμενικής συνάρτησης στην αρχική ισότητα, ενώ επιτρέπει μόνο σε δύο πολλαπλασιαστές Lagrange να αλλάξουν.

Κάτω από κανονικές καταστάσεις θα υπάρχει μέγιστο κατά την κατεύθυνση της γραμμικού περιορισμού ισότητας, και το η θα είναι μικρότερο του μηδέν. Σε αυτή την περίπτωση ο SMO υπολογίζει το μέγιστο κατά μήκος της κατεύθυνσης του περιορισμού:

$$a_2^{new} = a_2^{old} - \frac{y_2(E_1 - E_2)}{\eta},$$

όπου $E_i f^{old}(x_i) - y_i$ είναι το σφάλμα στο i-οστό δείγμα εκπαίδευσης. Μετά το μέγιστο του περιορισμού βρίσκεται αποκόπτοντας το απεριόριστο μέγιστο στα άκρα του τμήματος της γραμμής.

$$a_{2}^{new.clipped} = \begin{cases} H, & \varepsilon \dot{\alpha} \nu \quad \alpha_{2}^{new} \geq H \\ \alpha_{2}^{new}, & \varepsilon \dot{\alpha} \nu \quad L < \alpha_{2}^{new} < H \\ L, & \varepsilon \dot{\alpha} \nu \quad \alpha_{2}^{new} \leq L \end{cases}$$

Το α_1 υπολογίζεται από το καινούργιο clipped α_2 :

$$a_1^{new} = a_1^{old} + y_1 y_2 (a_2^{old} - a_2^{new, clipped})$$

β) Ευρετική μέθοδος για την επιλογή των δύο πολλαπλασιαστών Lagrange.

Ο SMO πάντα βελτιστοποιεί δύο πολλαπλασιαστές Lagrange σε κάθε γύρο, με ένα από τους πολλαπλασιαστές να έχει προηγουμένως παραβεί τις KKT συνθήκες πρίν το βήμα. Δηλαδή ο SMO πάντα θα αλλάζει δύο πολλαπλασιαστές Lagrange για να μετακινηθεί ανηφορικά στην αντικειμενική συνάρτηση (objective function) προβαλλόμενη σε ένα μονοδιάστατο εφικτό υποδιάστημα. Ο SMO επίσης θα συντηρεί ένα εφικτό διάνυσμα πολλαπλασιαστών Lagrange. Επομένως η ολική αντικειμενική συνάρτηση θα αυξάνει σε κάθε βήμα και θα συγκλίνει ασυμπτωτικά. Για να επιτευχθεί η σύγκλιση, ο SMO χρησιμοποιεί ευριστικά για να επιλέξει δύο πολλαπλασιαστές Lagrange για να βελτιστοποιηθούν μαζί.

Υπάρχουν δύο ξεχωριστές ευριστικές επιλογές, μία για τον πρώτο πολλαπλασιαστή και μία για το δεύτερο πολλαπλασιαστή Lagrange. Η πρώτη ευριστική επιλογή παρέχει τον εξωτερικό βρόγχο του αλγόριθμου SMO. Ο εξωτερικός βρόγχος επαναλαμβάνει ανάμεσα σαν δείγματα εισόδου μέχρι να υπάρξει κάποιο παράδειγμα που παραβαίνει τις συνθήκες KKT, το οποίο είναι επιθυμητό για βελτιστοποίηση. Με τη δεύτερη ευριστική επιλογή, επιλέγεται ο δεύτερος πολλαπλασιαστής Lagrange, και οι δύο μαζί βελτιστοποιούνται. Το SVM ενημερώνεται με τις δύο νέες τιμές των πολλαπλασιαστών και ο εξωτερικός βρόγχος συνεχίζει να ψάχνει για παραβάσεις των συνθηκών KKT.

Για να γίνει πιο γρήγορη η μάθηση ο αλγόριθμος δεν επαναλαμβάνει να τρέχει σε όλο το δείγμα μάθησης. Μετά την πρώτη επανάληψη ο αλγόριθμος τρέχει μόνο για τα παραδείγματα που οι πολλαπλασιαστές Lagrange είναι είτε 0 είτε C (τα μη καθορισμένα δείγματα). Ο εξωτερικός βρόγχος κάνει επαναληπτικά περάσματα στα μη καθορισμένα δείγματα μέχρι τα δείγματα αυτά να υπακούσουν στις συνθήκες KKT με κάποιο σφάλμα ε. Τότε ο εξωτερικός βρόγχος επαναλαμβάνει το πέρασμα σε όλα τα δείγματα εισόδου. Ο εξωτερικός βρόγχος επαναλαμβάνει μονά περάσματα σε όλα τα δείγματα και πολλαπλά περάσματα στα μη καθορισμένα δείγματα μέχρι όλο το δείγμα μάθησης να υπακούει στις συνθήκες KKT με ένα σφάλμα ε. Στο σημείο αυτό ο αλγόριθμος τερματίζει.

Όταν επιλεγεί ο πρώτος πολλαπλασιαστής Lagrange τότε ο SMO επιλέγει το δεύτερο πολλαπλασιαστή για να μεγιστοποιήσει το μέγεθος του βήματος κατά τη διάρκεια της κοινής βελτιστοποίησης. Υπολογίζοντας την τιμή της συνάρτησης του πυρήνα είναι πολύ χρονοβόρο, έτσι ο SMO προσεγγίζει το μέγεθος του βήματος με την απόλυτη τιμή του αριθμητή της εξίσωσης: $|E_1 - E_2|$. Ο SMO κρατεί προσωρινά μία τιμή του λάθους Ε για κάθε μη καθορισμένο παράδειγμα στο δείγμα μάθησης και στη συνέχεια επιλέγει ένα σφάλμα για να μεγιστοποιήσει το μέγεθος του βήματος. Εάν το E₁ είναι θετικό, ο SMO επιλέγει ένα δείγμα με μέγιστο σφάλμα E₂.

Η επίλυση της πιο κάτω συνάρτησης δεν καθορίζει το κατώφλι b γι' αυτό πρέπει να υπολογιστεί ξεχωριστά. Μετά από κάθε βήμα το b ξανά-υπολογίζεται έτσι ώστε οι συνθήκες ΚΚΤ να τηρούνται και για τα δύο βελτιστοποιημένα παραδείγματα. Όταν το α₁ είναι στα καθορισμένα τότε το κατώφλι παίρνει την τιμή b₁:

$$b_1 = E_1 + y_1(a_1^{new} - a_1^{old})k(\vec{x}_1, \vec{x}_1) + y_2(a_2^{new, clipped}a_2^{old})k(\vec{x}_1, \vec{x}_2) + b^{old}$$

Όταν το a_2 δεν είναι στα καθορισμένα τότε το κατώφλι παίρνει την τιμή b_2 :

$$b_2 = E_2 + y_1(a_1^{new} - a_1^{old})k(x_1, x_2) + y_2(a_2^{new, clipped} a_2^{old})k(x_2, x_2) + b^{old}$$

Όταν ισχύουν και τα δύο κατώφλια τότε είναι ίσα. Όταν και οι δύο πολλαπλασιαστές Lagrange είναι καθορισμένοι και το L δεν ισούται με το L τότε στο διάστημα μεταξύ b_1 και b_2 είναι όλα τα κατώφλια που τηρούν τις συνθήκες KKT. Τότε ο SMO επιλέγει σαν κατώφλι την ενδιάμεση τιμή ανάμεσα στο b_1 και b_2 .

6.5.1 Ο ΑΛΓΟΡΙΘΜΟΣ ΚΑΤΗΓΟΡΙΟΠΟΙΗΣΗΣ SVM

- Δημιουργία του ταξινομητή διανυσμάτων υποστήριξης με τον καθορισμό των πιο κάτω παραμέτρων:
 - α. Τον αριθμό των διαστάσεων εισόδου.
 - β. Το είδος της συνάρτησης πυρήνα.
 - γ. Τις παραμέτρους της συνάρτησης πυρήνα.
 - δ. Καθορισμός της μεταβλητής C (πάνω όριο για τους άλφα συντελεστές).
 - ε. Καθορισμός αν η διαδικασία μάθησης θα χρησιμοποιήσει μία

αντικειμενική συνάρτηση η οποία περιλαμβάνει τη 2-νόρμα των λαθών στα σημεία εξάσκησης, ή αν θα χρησιμοποιηθεί η 1-νόρμα που είναι η συνάρτηση που χρησιμοποιείται συνήθως στα διανύσματα υποστήριξης.

στ. Καθορισμός του qpsize που είναι ο αριθμός των σημείων που δίνονται στη συνάρτηση βελτιστοποίησης. Συνήθως το qpsize παίρνει την τιμή 50.

ζ. Καθορισμός της alphatol η οποία αναπαριστά την ανοχή σε όλες τις συγκρίσεις που χρησιμοποιούνται οι συντελεστές άλφα.

Επανάληψη των πιο κάτω βημάτων μέχρι να βρεθεί η λύση του προβλήματος:

a) Καθορισμός των διανυσμάτων υποστήριξης (Support Vectors)

 Καθορισμός κάποιας τιμής κατωφλίου. Όταν οι συντελεστές άλφα είναι μεγαλύτεροι από την τιμή κατωφλίου τότε το διάνυσμα θεωρείται διάνυσμα υποστήριξης. Συνήθως το κατώφλι αυτό είναι ίσο με την ανοχή των συντελεστών άλφα (alphatol).

β) Υπολογισμός της εξόδου του SVM για όλα τα δείγματα μάθησης

- Εξεύρεση των συντελεστών που έχουν αλλάξει και προσαρμογή του SVM μόνο με τη διαφορά των παλιών συντελεστών με τους καινούργιους.
- iii. Κτίσιμο του κανονικού διανύσματος των διαχωρισμένων υπερεπιπέδων (για γραμμικό πυρήνα υπολογίζοντας το ισοσταθμισμένο άθροισμα όλων των διανυσμάτων υποστήριξης).
- εύρεση της εξόδου του SVM με τον πολλαπλασιασμό των δειγμάτων με το κανονικό διάνυσμα.

γ) Υπολογισμός της πόλωσης της συνάρτησης απόφασης του SVM.

- ν. Εάν το svm χρησιμοποιεί 2-νόρμα η πόλωση μπορεί να βρεθεί από την έξοδο του SVM για τα διανύσματα υποστήριξης. Για αυτά τα διανύσματα η έξοδος πρέπει να είναι 1-άλφα/C ή -1+άλφα/C.
- vi. Εάν το svm είναι 1-norm η πόλωση μπορεί να βρεθεί από τα διανύσματα υποστήριξης των οποίων τα άλφα δεν είναι στο πάνω όριο.
 Γι΄ αυτά τα διανύσματα η έξοδος πρέπει να είναι είτε +1 είτε -1.
- νii. Σε περίπτωση που δεν υπάρχουν διανύσματα υποστήριξης τότε η πόλωση δεν αλλάζει.

δ) Υπολογισμός των τιμών των συνθηκών Karush-Kuhn-Tucker του τετραγωνικού προβλήματος (quadratic program). Εάν δεν υπάρχουν παραβιάσεις των συνθηκών αυτών, η βέλτιστη λύση έχει βρεθεί και ο αλγόριθμος τερματίζεται. Ο ΚΚΤ περιγράφει πόσο καλά έχει κατηγοριοποιηθεί το κάθε δείγμα. Ο ΚΚΤ πρέπει να είναι θετικός για όλα τα παραδείγματα που είναι στη σωστή πλευρά και δεν είναι διανύσματα υποστήριξης, 0 για τα διανύσματα υποστήριξης και αρνητικό για τα δείγματα που κατηγοριοποιήθηκαν λάθος.

ε) Καθορισμός καινούργιου συνόλου εργασίας. Για τον καθορισμό του καινούργιου συνόλου εργασίας γίνεται μία γραμμική προσέγγιση της αντικειμενικής συνάρτησης. Το νέο σύνολο αποτελείται από τα qpsize μεγαλύτερα στοιχεία της κλίσης της γραμμικής προσέγγισης. Η κλίση της γραμμικής προσέγγισης μπορεί να εκφραστεί με την έξοδο του SVM όλων των δειγμάτων μάθησης. Κατά τον πρώτο κύκλο μάθησης η επιλογή του συνόλου εργασίας γίνεται τυχαία.

στ) Επιλογή του καινούργιου συνόλου εργασίας. Ο στόχος είναι να επιλεγούν ίσος αριθμός δειγμάτων από τις δύο κατηγορίες. Τα δείγματα για το σύνολο ένα είναι τα qpsize/2 πιο μεγάλα των δειγμάτων που καθορίστηκαν πιο πάνω και για το σύνολο δύο είναι τα qpsize/2 μικρότερα των δειγμάτων αυτών.

ζ) Καθορισμός του γραμμικού μέρους του τετραγωνικού προβλήματος: Το γραμμικό μέρος του τετραγωνικού προβλήματος καθορίζεται με όλες τις αποτιμήσεις του πυρήνα Κ (Υποστηρικτικά διανύσματα έξω από δείγμα εργασίας, Υποστηρικτικά διανύσματα μέσα στο δείγμα εργασίας).

- viii. Τα διανύσματα υποστήριξης που είναι έξω από το σύνολο εργασίας χωρίζονται σε μπλοκ. Για κάθε μπλοκ γίνεται η αποτίμηση του πυρήνα για το σύνολο εργασίας και για το τρέχον μπλοκ που είναι έξω από το σύνολο εργασίας.
 - ix. Ο πρώτος γραμμικός όρος qBN του τετραγωνικού προβλήματος είναι ένα διάνυσμα στήλη το οποίο παίρνουμε όταν πολλαπλασιάσουμε τις αποτιμήσεις του πυρήνα επί τα αντίστοιχα άλφα και επί την ετικέτα της κατηγορίας.
 - x. Ο δεύτερος γραμμικός όρος είναι ένα διάνυσμα από άσσους.

η) Επίλυση του τετραγωνικού προβλήματος. Ο τετραγωνικός όρος της αντικειμενικής συνάρτησης γίνεται από τα δείγματα μέσα στο σύνολο εργασίας. Ο γραμμικός όρος υπολογίζεται από τα δείγματα που είναι έξω από το σύνολο εργασίας. Τα μέχρι στιγμής υπολογισμένα άλφα αντικαθιστούν τα προηγούμενα για τα δείγματα που είναι στο σύνολο εργασίας.

- xi. Ο τετραγωνικός όρος Η δίνεται από τις αποτιμήσεις του πυρήνα για το σύνολο εργασίας, για 2-νόρμα της χαλαρής μεταβλητής (slack variable) H=H+diag(1/C)
- xii. Για 1-νόρμα το Η δεν πρέπει να ξεπερνά το $eps^{-}(-2/3)$.
- xiii. Υπολογισμός του πίνακα Α για τον ισοτικό περιορισμό. Εάν υπάρχουν διανύσματα υποστήριξης έξω από το δείγμα εργασίας, ο ισοτικός περιορισμός πρέπει να δώσει τις ισοζυγισμένες κατηγορίες για όλα τα διανύσματα, αλλιώς δίδει μηδενικά.
- xiv. Καθορισμός των πάνω ορίων για τους άλφα συντελεστές. Για 1-νόρμα το πάνω όριο είναι τα βάρη C. Για 2-νόρμα δεν υπάρχει πάνω όριο για τους άλφα συντελεστές.

- xv. Επίλυση του τετραγωνικού προγράμματος με ισοτικό περιορισμό. Η επίλυση ξεκινά με μία τυχαία πρόβλεψη. Εδώ μπορεί να χρησιμοποιηθεί ένας οποιοσδήποτε αλγόριθμος βελτιστοποίησης.
- xvi. Ενημέρωση των άλφα μεταβλητών με τους καινούργιους συντελεστές που έχουν υπολογιστεί με την επίλυση του τετραγωνικού προγραμματισμού.
- **xvii.** Επανάληψη του βήματος a μέχρι να μην υπάρχουν παραβιάσεις των συνθηκών Karush-Kuhn-Tucker.

6.6 ΔΥΑΔΙΚΗ ΚΑΤΗΓΟΡΙΟΠΟΙΗΣΗ

6.6.1 C-SUPPORT VECTOR CLASSIFICATION

Δεδομένου ότι έχουμε ένα διάνυσμα $x_i \in \Re^n$, i = 1,...,l το οποίο είναι χωρισμένο σε δύο κατηγορίες και ένα διάνυσμα $y \in \Re^l$ έτσι ώστε $y_i \in \{1,-1\}$, ο αλγόριθμος C-SVC επιλύει το πιο κάτω πρωταρχικό πρόβλημα:

$$\min_{w,b,\xi} \quad \frac{1}{2}w^Tw + C\sum_{i=1}^l \xi_i$$

το οποίο οδηγεί στο

$$y_i(w^T\phi(x_i)+b) \ge 1-\xi_i, \quad \xi_i \ge 0, \quad i=1,...,l$$

Η δυϊκή της είναι:

$$\min_{a} \quad \frac{1}{2}a^{T}Qa - e^{T}a \quad 0 \le a_{i} \le C, \quad i = 1, ..., l$$

το οποίο οδηγεί στο: $y^T a = 0$, όπου ε είναι ένα διάνυσμα από άσσους, C>0 είναι το πάνω όριο, το Q είναι ένας θετικά ημικαθορισμένος πίνακας διαστάσεων l επί l, $Q_{ij} \equiv y_i y_j K(x_i, x_j)$ και $K(x_i, x_j) \equiv \phi(x_i)^T \phi(x^j)$ είναι ο πυρήνας. Τα διανύσματα εισόδου x_i αντιστοιχούνται σε ένα υψηλότερων διαστάσεων επίπεδο από τη συνάρτηση πυρήνα φ.

Η συνάρτηση λήψης απόφασης είναι :

$$\operatorname{sgn}(\sum_{i=1}^{l} y_i a_i \mathbf{K}(x_i, \mathbf{x}) + \mathbf{b})$$
6.6.2 N-SUPPORT VECTOR CLASSIFICATION

Ο αλγόριθμος v-Support Vector Classification χρησιμοποιεί μία καινούργια παράμετρο v η οποία ελέγχει τον αριθμό των διανυσμάτων υποστήριξης και του λάθους. Η παράμετρος $v \in (0,1]$ είναι ένα πάνω όριο του κλάσματος του λάθους εκπαίδευσης και ένα κάτω όριο του κλάσματος των διανυσμάτων υποστήριξης.

Δεδομένου ότι έχουμε ένα διάνυσμα $x_i \in \Re^n$, i = 1,...,l το οποίο είναι χωρισμένο σε δύο κατηγορίες και ένα διάνυσμα $y \in \Re^l$ έτσι ώστε $y_i \in \{1,-1\}$, ο αλγόριθμος v-SVC επιλύει το πιο κάτω πρωταρχικό πρόβλημα:

$$\min_{w,b,\xi,\rho} \quad \frac{1}{2}w^Tw - v\rho + \frac{1}{l}\sum_{i=1}^{l}\xi_i$$

το οποίο οδηγεί στο

 $y_i(w^T\phi(x_i) + b) \ge \rho - \xi_i, \quad \xi_i \ge 0, \quad i = 1,..., l \quad \rho \ge 0$

Η δυϊκή της είναι:

$$\min_{a} \quad \frac{1}{2} a^{T} Q a \quad 0 \le a_{i} \le \frac{1}{l}, \quad i = 1, ..., l$$
$$e^{T} a \ge v,$$
$$v^{T} a = 0$$

To $Q_{ij} \equiv y_i y_j K(x_i, x_j)$. Η συνάρτηση λήψης απόφασης είναι:

$$\operatorname{sgn}(\sum_{i=1}^{l} y_i a_i (\mathrm{K}(x_i, x) + b))$$

Έχει αποδειχθεί ότι το $e^T \alpha \ge v$ μπορεί να αντικατασταθεί από το $e^T \alpha = v$. Με αυτό το πρόβλημα που λύνεται είναι το:

$$\min_{a} \quad \frac{1}{2} a^{T} Q a \quad 0 \le a_{i} \le \frac{1}{l}, \quad i = 1, ..., l$$
$$e^{T} a = v l,$$
$$y^{T} a = 0$$

Εξάγοντας το α/ρ τότε η υπολογιζόμενη συνάρτηση απόφασης είναι:

$$\operatorname{sgn}(\sum_{i=1}^{l} y_i(a_i / \rho)(\operatorname{K}(x_i, x) + b))$$

και τα δύο περιθώρια είναι:

$$y_i(w^T\phi(x_i)+b)=\pm 1$$

τα οποία είναι τα ίδια με αυτά του αλγόριθμου C-SVC.

6.7 MULTI-CLASS ΚΑΤΗΓΟΡΙΟΠΟΙΗΣΗ

Στην κατηγοριοποίηση με πολλές κατηγορίες η μεταβλητή την οποία θέλουμε να κατηγοριοποιήσουμε μπορεί να πάρει περισσότερες από δύο τιμές. Στα προβλήματα αυτά οι δύο πιο διαδεδομένοι αλγόριθμοι είναι ο ένας εναντίον όλων (One-Against-One) και ο ένας εναντίον ενός (One-Against-One).

6.7.1 ΈΝΑΣ ENANTION ΟΛΩΝ (ONE-AGAINST-ALL)

Η μέθοδος αυτή είναι ίσως η πρώτη μέθοδος κατηγοριοποίησης με πολλές κατηγορίες που υλοποιήθηκε με τη χρήση των διανυσμάτων υποστήριξης. Δημιουργείς k SVM μοντέλα, ένα για κάθε μία από τις k κατηγορίες. Το i-οστό SVM εκπαιδεύεται με όλα τα παραδείγματα της i-οστής κλάσης με θετική τιμή και όλα τα άλλα παραδείγματα που ανήκουν στις άλλες κλάσεις με αρνητική τιμή. Έτσι έχοντας 1 (λ) παραδείγματα εκπαίδευσης $(x_1, y_1),..., (x_i, y_i), x_i \in \Re^n, i = 1,..., l y_i \in \{1,...,k\}$ όπου το y_i είναι η κατηγορία του x_i. Τότε i-οστό SVM επιλύει το πιο κάτω πρόβλημα:

$$\min_{w^{i},b^{i},\xi^{i}} \quad \frac{1}{2} (w^{i})^{T} w^{i} + C \sum_{\xi=1}^{l} \xi^{i}_{\xi}$$

όπου τα δεδομένα μάθησης x_i σε ένα μεγαλύτερο διαστάσεων διάστημα με τη συνάρτηση *φ* και η μεταβλητή C είναι η παράμετρος της ποινής.

Ελαχιστοποιώντας την $\frac{1}{2} (w^i)^T w^i$ σημαίνει ότι θέλουμε να μεγιστοποιήσουμε το 2/||wⁱ||, δηλαδή το περιθώριο ανάμεσα στις δύο ομάδες από δεδομένα. Όταν τα δεδομένα δεν είναι γραμμικά διαχωρίσιμα υπάρχει μία παράμετρος ποινής $C\sum_{\xi=1}^{l} \xi_{\xi}^i$ η οποία μπορεί να ελαττώσει τον αριθμό των λαθών της μάθησης. Η βασική έννοια πίσω από το SVM είναι να βρεθεί η ισορροπία ανάμεσα στον παράγοντα ομαλοποίησης $\frac{1}{2} (w^i)^T w^i$ και στα λάθη της μάθησης.

Μετά την επίλυση των k συναρτήσεων απόφασης:

$$(w^{1})^{T} \phi(x_{1}) + b^{1},$$

 \vdots
 $(w^{1})^{T} \phi(x_{1}) + b^{1},$

λέμε ότι x είναι η κλάση η οποία έχει τη μεγαλύτερη τιμή από τη συνάρτηση απόφασης: class of $x \equiv \arg \max_{i=1,\dots,k} ((w^i)^T \phi(x^i) + b^i)$.

6.8 ENAS ENANTION ENOS (ONE-AGAINST-ONE)

Αυτή η μέθοδος δημιουργεί k(k-1)/2 κατηγοριοποιητές όπου ο καθένας εκπαιδεύεται με τα δεδομένα που ανήκουν στις δύο κατηγορίες. Για παράδειγμα για την εκπαίδευση, από τα δεδομένα των κατηγοριών i, j λύνεται το πιο κάτω δυαδικό πρόβλημα :

$$\begin{split} \min_{w^{ij}, b^{ij}, \xi^{ij}} & \frac{1}{2} (w^{ij})^T w^{ij} + C \sum_{t}^{l} \xi_{t}^{ij} \\ (w^{ij})^T \phi(x_t) + b^{ij} \geq 1 - \xi_{t}^{ij}, \quad \varepsilon \dot{\alpha} \nu \quad y_t = i, \\ (w^{ij})^T \phi(x_t) + b^{ij} \leq -1 + \xi_{t}^{ij}, \quad \varepsilon \dot{\alpha} \nu \quad y_t = j \\ \xi_{t}^{ij} \geq 0. \end{split}$$

Υπάρχουν πολλοί τρόποι για τον καθορισμό της κατηγορίας της μεταβλητής. Ένας τρόπος είναι η στρατηγική 'Max Wins'. Εάν το sign $((w^{ij})^T \phi(x) + b^{ij})$ μας δείχνει ότι η κλάση του x είναι η κλάση i τότε ο ψήφος της κλάσης i αυξάνεται κατά ένα, αλλιώς αυξάνεται κατά ένα ο ψήφος της κλάσης j. Τότε η πρόβλεψη για την κλάση του x είναι η κλάση που έχει τους περισσότερους ψήφους.

6.9 PROBABILISTIC NEURAL NETWORK (PNN)

Τα πιθανοτικά ΤΝΔ προτάθηκαν από τον Donald Specht (1989-1990). Τα δίκτυα αυτά βασίζονται σε ιδέες που χρησιμοποιούνται σε κλασικά προβλήματα αναγνώρισης προτύπων. Πιο συγκεκριμένα τα PNN υλοποιούν το δημοφιλή κατηγοριοποιητή του Bayes (Mood and Graybill, 1962), μία τεχνική η οποία ελαχιστοποιεί τον αναμενόμενο κίνδυνο κατάταξης προτύπων σε λανθασμένη κατηγορία.

Η λειτουργία των κατηγοριοποιητών του Bayes περιγράφεται ως εξής: Έστω ότι το x είναι ένα ν-διάστατο διάνυσμα εισόδου που χαρακτηρίζει πρότυπα που ανήκουν σε μία από τις k πιθανές κατηγορίες, και έστω ότι $f_1(x)$, $f_2(x)$, ..., $f_k(x)$ είναι οι συναρτήσεις πυκνότητας πιθανότητας για τους k πληθυσμούς που έχουν οι κατηγορίες αντίστοιχα. Έστω ότι p_1 , p_2 , ..., p_k είναι οι σχετικές συχνότητες (apriori πιθανότητες) κάποιου διανύσματος εισόδου x να ανήκει στις αντίστοιχες κατηγορίες. Θέλουμε μία συνάρτηση $d(x) = C_i$ όπου i=1,2,...k που να αποφασίζει ότι η κατάταξη του x στην κατηγορία C_i είναι η λογικότερη λύση. Για παράδειγμα, μπορούμε να θεωρήσουμε σαν βέλτιστη μία συνάρτηση που κατατάσσει τα διανύσματα εισόδου με τρόπο ώστε να ελαχιστοποιείται ο κίνδυνος λανθασμένης κατηγοριοποίησης. Έστω ότι L₁, L₂, ..., L_k είναι συναρτήσεις ζημιάς (loss functions) που σχετίζονται με τις λανθασμένες αποφάσεις έτσι ώστε η L_i να δημιουργείται όταν d(x) = C_i, i \neq j και x \in C_j. Η ζημιά για μία σωστή απόφαση είναι μηδέν. Ο κανόνας του Bayes για αυτό το είδος των προβλημάτων κατηγοριοποίησης συγκρίνει τα γινόμενα πιθανοτήτων

$$p_1L_1f_1(x), p_2L_2f_2(x), \dots, p_kL_kf_k(x),$$

και επιλέγει την κατηγορία που αντιστοιχεί στη μεγαλύτερη τιμή των γινομένων. Συνεπώς αν

$$p_iL_if_i(x) > p_jL_jf_j(x) \quad \text{gia } j{=}1,2,\ldots,k \quad \text{kai } I \neq j$$

ο κανόνας απόφασης κατατάσσει το x στην κατηγορία C_i .

Παραλλαγές των κριτηρίων που επιλέγονται μπορούν επίσης να χρησιμοποιηθούν, όπως π.χ. το κόστος ή κάποια άλλη συνάρτηση που "τιμωρεί" κάθε εσφαλμένη κατηγοριοποίηση.

Τα πλεονεκτήματα των δικτύων PNN είναι η μικρή χρονική διάρκεια της εκπαίδευσης (θέτουμε τα μεταβλητά βάρη ίσα με τα εκπαιδευτικά διανύσματα σε ένα κύκλο εκπαίδευσης), όπως επίσης και η ρύθμιση της παραμέτρου εξομάλυνσης των ορίων μεταξύ των κατηγοριών ταξινόμησης χωρίς να απαιτείται επανεκπαίδευση του PNN.

Αντίθετα, ο μεγάλος αριθμός εκπαιδευτικών διανυσμάτων που απαιτούνται, η απαίτηση βαθμονόμησης των διανυσμάτων εισόδου και ο σχετικά μεγάλος χρόνος ανάκλησης, είναι τα βασικά μειονεκτήματα του PNN. Επίσης, επειδή τα εκπαιδευτικά διανύσματα αποθηκεύονται ένα προς ένα στους τεχνητούς νευρώνες του κρυφού επιπέδου, για να εισαχθεί ένα καινούργιο εκπαιδευτικό διάνυσμα απαιτείται νέος τεχνητός νευρώνας.

Μία ενδιαφέρουσα εφαρμογή των πιθανοτικών νευρωνικών δικτύων είναι η κατηγοριοποίηση των ενδείξεων των κραδασμών που προέρχονται από τα βαριά μηχανήματα μιας χαλυβουργικής βιομηχανίας, με στόχο τον έγκαιρο εντοπισμό βλαβών στα μηχανήματα αυτά (Loskiewicz-Buczak and Uhring – 1993).

Μία άλλη μελέτη στην οποία χρησιμοποιήθηκαν πιθανοτικά νευρωνικά δίκτυα ήταν εκείνη του Specht (1967), στην οποία γινόταν συνεχής ανάλυση των στοιχείων των ηλεκτροκαρδιογραφημάτων, που έδιναν οι διάφοροι πολυαισθητήρες για την καρδιακή δραστηριότητα των ασθενών.

6.9.1 PROBABILISTIC NEURAL NETWORK

Ο Probabilistic Neural Network (PNN) ταξινομητής χρησιμοποιήθηκε για την κατασκευή των μοντέλων ταξινόμησης για το συγκεκριμένο πρόβλημα. Ο Probabilistic Neural Network (PNN) ταξινομητής ανήκει στην κατηγορία του κοντινού-γείτονα ταξινομητή. Για ένα δοσμένο διάνυσμα w που θα ταξινομηθεί υπάρχει μια αντίδραση a_i που δημιουργείται και υπολογίζεται για κάθε τάξη εικόνων (i = 1,...,2). Η αντίδραση a_i ορίζεται ως η μέγιστη απόσταση από το διάνυσμα w για κάθε M_i διάνυσμα χαρακτηριστικών $\mathbf{x}_j^{(i)}$ που ανήκουν στην i-th τάξη:

$$a_i = \sum_{i=1}^{M_i} \exp\left[-\beta \left(\mathbf{w} - \mathbf{x}_j^{(i)}\right)^T \left(\mathbf{w} - \mathbf{x}_j^{(i)}\right)\right]$$

όπου β είναι ένα εξομαλυντικός παράγοντας. Η κανονικοποιημένη αντίδραση $\tilde{a}_i = a_i / \sum_{i=1}^N a_i$ δίδει τον πραγματικό υπολογισμό για την υπόθεση που το w ανήκει στην τάξη i. Η ταξινόμηση του w στις τάξεις προσφέρει τη μέγιστη ασφάλεια. Ένα σημαντικό πλεονέκτημα του PNN είναι ότι προσφέρει σίγουρο υπολογισμό για την ταξινόμησή μας. Επίσης, για να αποφύγει την εξάρτηση από τον παράγοντα εξομάλυνσης β, η τιμή του β ορίζεται στην τιμή του ενός που είναι το ελάχιστο λάθος ταξινόμησης στο εκπαιδευόμενο σέτ.

Η καταλληλότητα του αλγόριθμου μετρήθηκε και παρουσιάζεται από 7 μεταβλητές οι οποίες αναφέρονται πιο κάτω:

- True Positives (TP),
- False Positives (FP),
- False Negatives (FN),
- True Negatives (TN),
- Sensitivity (SE),
- Specificity (SP), and
- Precision (PR).

Κλείνοντας αξίζει να αναφερθεί ότι τα νευρωνικά δίκτυα είναι ένα πολύ καλό εργαλείο στην αυτόματη ταξινόμηση των χαρακτηριστικών υφής με πολύ καλά και αξιόπιστα αποτελέσματα. Βοήθησαν στο διαχωρισμό περιοχών ενδιαφέροντος σε παθολογικές και φυσιολογικές και έχουν εκπαιδευτεί με τέτοιο τρόπο που θα βοηθήσουν το γιατρό στο

διαχωρισμό των περιοχών ενδιαφέροντος σε δύσκολες περιπτώσεις γυναικολογικού καρκίνου.

6.10 Σχολιάσμος

Έχοντας περιγράψει τους αλγόριθμους χαρακτηριστικών υφής, εφαρμόσαμε δυο αλγόριθμους νευρωνικών δικτύων για τον αυτόματο διαχωρισμό των περιοχών ενδιαφέροντος. Στο κεφάλαιο αυτό έχουμε αναλύσει δύο αλγόριθμους νευρωνικών δικτύων SVM και PNN. Οι αλγόριθμοι αυτοί έχουν χρησιμοποιηθεί σε άλλες έρευνες [109] με αντίστοιχα χαρακτηριστικά υφής από εικόνες υπερήχων. Τα αποτελέσματα σε εκείνη τη έρευνα ήταν πολύ καλά και έτσι εφαρμόσαμε και εμείς τους αντίστοιχους αλγόριθμους νευρωνικών δικτύων.

Τα αποτελέσματα των δύο αλγόριθμων παρουσιάζουν μεγάλη διαχωριστική ικανότητα και μπορούν να ξεχωρίσουν αυτόματα τις φυσιολογικές και παθολογικές περιοχές ενδιαφέροντος με βάση τα χαρακτηριστικά υφής τους.

Τέλος έχουμε αναφερθεί και στην ανάλυση PCA που παρουσίασε μεγάλη διαχωριστική διαφορά στα αποτελέσματά μας.

6.11 Anapopes

- [104] Wu C.M., Chen Y.C., Hsieh K.S., Texture features for classification of ultrasonic liver images. IEEE Trans. Med. Imaging, 11, pp.141-152, 1992.
- [105] Wenska J.S., Dryer C.R., Rosenfeld A., A comparative study of texture measures for terrain classification. IEEE Trans. Syst., Man, Cyber., SMC-6, pp. 269-285, 1976.
- [106] Specht D.F, Probabilistic Neural Networks. INNS Neural Networks 3(1), pp. 109-118, 1990.
- [107] Joachims T., Making large-scale svm learning practical. advances in kernel methods - support vector learning. In Schölkopf B., Burges C., Smola A., editors, Advances in Kernel Methods: Support Vector Machines, pp. 169-184. MIT Press, Cambridge, MA, USA, 1999.
- [108] Swets J.A, Pickett R.M., Evaluation of Diagnostic Systems. Methods from Signal Detection Theory. New York: Academic, 1992.
- [109] Christodoulou C.I., Pattichis C.S., Pantziaris M., Tegos T., Nicolaides A., Elatrozy T., Sabetai M., Dhanjil S., Multi-feature textureanalysis for the classification of carotid plaques. in CD-ROM Proc. International Joint Conference on Neural Networks IJCNN '99, Washington DC, 10-16 July, 1999.
- [110] Ebrchart R.C., Dobbins R.W., Neural Networks PC Tools A Practical Guide. Academic Pr., 1990.

Αποτελέσματα

7.1 ΠΕΡΙΓΡΑΦΗ ΑΠΟΤΕΛΕΣΜΑΤΩΝ

Σε αυτό το κεφάλαιο θα παρουσιάσουμε και θα αναλύσουμε τα αποτελέσματα της εργασίας όπως αυτά έχουν προκύψει από την πορεία της έρευνάς μας. Αναλυτικά θα περιγράψουμε τα αποτελέσματα εφαρμογής χαρακτηριστικών υφής και στατιστικής ανάλυσης από διαφορετικά πειράματα λήψης ενδοσκοπικών εικόνων καθώς και με διαφορετικά ιατρικά μηχανήματα.

Επίσης έχουμε εφαρμόσει μια σειρά πειράματα που πραγματοποιήθηκαν σε πειραματικούς ιστούς που αντιπροσωπεύουν με πολύ καλό τρόπο τον πραγματικό ιστό με δημιουργία ίδιων συνθηκών όπως αυτές καταγράφηκαν στο Κεφάλαιο 4.

Διεξήχθησαν πειράματα με στόχο την καλύτερη κατανόηση των διαφορετικών συνθηκών λήψης όπως αυτές παρουσιάζονται στο ιατρικό πρωτόκολλο λαπαροσκοπικής / υστεροσκοπικής επέμβασης. Εξαγάγαμε χαρακτηριστικά υφής από περιοχές ενδιαφέροντος από πανοραμικό και κοντινό πλάνο καθώς και περιοχές ενδιαφέροντος από διαφορετικές γωνίες στόχευσης. Ο έλεγχος για τον καθορισμό των αποστάσεων και των επιτρεπτών γωνιών έγινε με στατιστική ανάλυση και πιο συγκεκριμένα με το στατιστικό έλεγχο Wilxocon Rank Sum Test.

Για σκοπούς πληρότητας της έρευνάς μας τα πιο πάνω πειράματα πραγματοποιήθηκαν με τη χρήση διαφορετικών ιατρικών οργάνων, όπως διαφορετικές ιατρικές κάμερες και διαφορετικά λαπαροσκοπικά / υστεροσκοπικά τηλεσκόπια. Επίσης εφαρμόσαμε και τον αλγόριθμο βαθμονόμησης γάμμα στις περιοχές ενδιαφέροντος και έτσι μπορέσαμε να συγκρίνουμε ίδιες περιοχές ενδιαφέροντος εξαγόμενες από διαφορετικά ιατρικά όργανα.

Τέλος θα παρουσιάσουμε τα αποτελέσματά μας από την ανάλυση πραγματικών περιοχών ενδιαφέροντος του ενδομητρίου, της μήτρας και των ωοθηκών όπως αυτές έχουν καταγραφεί και αποθηκευτεί κατά τη διάρκεια λαπαροσκοπικών / υστεροσκοπικών επεμβάσεων πρίν και μετά την εφαρμογή της μεθόδου βαθμονόμησης γάμμα.

Κλείνοντας την περιγραφή του κεφαλαίου αυτού, συμπερασματικά έχουμε αποδείξει ότι για μικρές αποστάσεις και γωνίες σκόπευσης οι περιοχές ενδιαφέροντος μπορούν να συγκριθούν μεταξύ τους αλλά παρουσιάζουν μεγάλη απόκλιση όταν αυτές καταγραφούν εκτός των ορίων που προαναφέραμε. Επίσης υπάρχει σημαντική διαφορά σχεδόν σε όλα τα χαρακτηριστικά υφής μεταξύ φυσιολογικού και μη φυσιολογικού ιστού του ενδομητρίου.

7.2 ΑΠΟΤΕΛΕΣΜΑΤΑ ΤΟΥ ΑΛΓΟΡΙΘΜΟΥ ΓΑΜΜΑ

Ο αλγόριθμος γάμμα εφαρμόστηκε αφού προέκυψε η ανάγκη χρησιμοποίησης διαφορετικών ιατρικών μηχανημάτων οπότε έπρεπε όλες οι εικόνες να κανονικοποιηθούν με στόχο τη μεταξύ τους σύγκριση. Δηλαδή ίδιες περιοχές ενδιαφέροντος, ίδια όργανα και ίδιες παθολογίες να μπορούν να συγκριθούν μεταξύ τους και να εξάξουμε ίδια συμπεράσματα.

Χρησιμοποιώντας τον αλγόριθμο γάμμα, όπως έχει περιγραφεί στο Κεφάλαιο 4 έχουμε υπολογίσει τους συντελεστές της εξίσωσης γάμμα εφαρμόζοντας τους σε τρεις διαφορετικές ιατρικές κάμερες οι οποίες έχουμε χρησιμοποιήσει στα πειράματά μας.

Οι τρεις ιατρικές κάμερες είναι οι:

- » CIRCON κάμερα
- » SNOWEN-PENCER κάμερα
- » KARL STORZ κάμερα.

Τα αποτελέσματα της εφαρμογής της εξίσωσης γάμμα παρουσιάζονται πιο κάτω. Έχοντας υπόψη την εξίσωση γάμμα $X_{corrected} = \left(\frac{X_{out} - b}{c}\right)^{1/\gamma}$ (2) προσεγγίζουμε τα άγνωστα στοιχεία γ, c και b με μη γραμμική προσέγγιση.

Βάσει αυτών των στοιχείων και εφαρμόζοντας την εξίσωση $X_{Display} = c * X^{\gamma}_{in} + b$ διορθώνουμε τις λαπαροσκοπικές / υστεροσκοπικές εικόνες και εξάγουμε τα χαρακτηριστικά υφής καθώς επίσης εφαρμόζουμε και τη στατιστική ανάλυση για τον έλεγχο της διαφοράς των χαρακτηριστικών υφής.

C	IRCON CAN	/IERA	
Colour component	γ variable	c variable	b variable
Red component	1,423	0,057	30,599
Green component	1,302	0,111	40,609
Blue component	1,2	0,217	28,04
SNOW	EN-PENCEF	R CAMERA	
Red component	2,309	0,0002	68,796
Green component	1,389	0,049	60,246
Blue component	2,388	0,0002	68,642
KAR	L STORZ C	AMERA	
Red component	1,183	0,213	81,333
Green component	0,919	0,881	86,043
Blue component	0,779	2,389	67,738

Πίνακας 4: Τιμές των σταθερών συντελεστών της εξίσωσης γάμμα για τις 3 κάμερες αντίστοιχα.

Ο Πίνακας 4 παρουσιάζει τα αποτελέσματα υπολογισμού των τριών μεταβλητών του αλγόριθμου γάμμα. Η πρώτη στήλη παρουσιάζει τις μεταβλητές του γάμμα για τα τρία βασικά χρώματα για κάθε κάμερα ξεχωριστά. Η δεύτερη και τρίτη στήλη παρουσιάζει τους σταθερούς συντελεστές της εξίσωσης γάμμα.

Στα πιο κάτω σχήματα (Σχήμα 63, Σχήμα 64, Σχήμα 65) παρουσιάζεται η κατανομή των σημείων κόκκινου, πράσινου και μπλε στις εικόνες εξόδου των τριών λαπαροσκοπικών καμερών. Επίσης παρουσιάζονται οι εξισώσεις $y = cx^{\gamma} + b$ και y=x για να συγκρίνουμε τη διασπορά των σημείων για τις εξόδους πρίν και μετά την προσεγγιστική λύση της εξίσωσης γάμμα από τις τρεις λαπαροσκοπικές κάμερες. Τα σημεία που προσεγγίζουν τη συνεχόμενη γραμμή είναι οι προσεγγιστικές τιμές των άγνωστων μεταβλητών στη λύση της εξίσωσης (2) και ο άξονας y αντιπροσωπεύει τις εικόνες εξόδου αντίστοιχα για τις τρεις χρωματικές συνιστώσες. Με αυτό τον τρόπο υπολογίζουμε τους άγνωστους συντελεστές της εξίσωσης (2) και μετά εφαρμόζουμε την εξίσωση (1) για να διορθώσουμε τις εικόνες εξόδου κατά τη διάρκεια της ενδοσκοπικής εξέτασης.

(γ) **Σχήμα 63:** Τα (α), (β) και (γ) παρουσιάζουν τις 3 χρωματικές συνιστώσες R, G και B για τις εικόνες εισόδου και εξόδου και τις γραφικές παραστάσεις $y = cx^{\gamma} + b$ (αριστερή στήλη), και y = x (δεξιά στήλη) της κάμερας Circon.

(γ)

Σχήμα 64: Τα (α), (β) και (γ) παρουσιάζουν τις 3 χρωματικές συνιστώσες R, G και B για τις εικόνες εισόδου και εξόδου και τις γραφικές παραστάσεις $y = cx^{\gamma} + b$ (αριστερή στήλη), και y = x (δεξιά στήλη) της Snowen-Pencer κάμερας.

Σχήμα 65: Τα (α), (β) και (γ) παρουσιάζουν τις 3 χρωματικές συνιστώσες R, G και B για τις εικόνες εισόδου και εξόδου και τις γραφικές παραστάσεις $y = cx^{\gamma} + b$ (αριστερή στήλη), και y = x (δεξιά στήλη) της Karl Storz κάμερας.

7.3 ΥΠΟΛΟΓΙΣΜΟΣ ΣΥΝΤΕΛΕΣΤΩΝ ΓΑΜΜΑ ΓΙΑ ΤΗΝ ΚΑΜΕΡΑ CIRCON

Για όλα τα πειράματα που ακολουθούν, έχουμε χρησιμοποιήσει την ιατρική κάμερα Circon IP4.1. Έχουμε εφαρμόσει τον αλγόριθμο γάμμα για τη βαθμονόμηση της κάμερας με τη βοήθεια της παλέτας χρωμάτων από την εταιρεία Edmund Optics Company. Παρουσιάζουμε στον Πίνακα 5 τα αποτελέσματα της εφαρμογής του αλγόριθμου γάμμα για 3 διαφορετικά πειράματα της κάμερας Circon IP4.1. Η πρώτη στήλη παρουσιάζει τους ιδανικούς συντελεστές της εξίσωσης γάμμα, η δεύτερη, τρίτη και τέταρτη στήλη παρουσιάζει τους συντελεστές της εξίσωσης γάμμα. Τέλος στην πέμπτη στήλη παρουσιάζουμε το μέσο όρο των συντελεστών της εξίσωσης γάμμα για τα 3 πειράματα. Αυτοί οι συντελεστές έχουν χρησιμοποιηθεί στα πιο κάτω πειράματα με ζωικό ιστό καθώς και με την ανάλυση των πραγματικών εικόνων ενδομητρίου.

Πίνακας 5: Συντελεστές του αλγόριθμου γάμμα, συντελεστές πίνακα A, πίνακα k και πίνακα γ για 3 διαφορετικά πειράματα βαθμονόμησης της κάμερας Circon καθώς και η μέση τιμή τους.

Πίνακας Α	Χωρίς βαθμονόμηση	Πειρ. 1	Πειρ. 2	Πειρ. 3	Μέση τιμή των 3 πειραμάτων
a ₁₁	1	0,827	0,927	0,975	0,927
a ₁₂	0	0,065	0,011	0,105	0,065
a ₁₃	0	0,042	0,004	0,104	0,042
a ₂₁	0	0,065	0,011	0,105	0,065
a ₂₂	1	0,780	0,935	0,895	0,895
a ₂₃	0	0,071	0,062	0,134	0,071
a ₃₁	0	0,042	0,004	0,104	0,042
a ₃₂	0	0,044	0,032	0,023	0,032
a ₃₃	1	0,868	1,011	1,044	1,011
k πίνακας					
k ₁₁	0	7,693	1,101	-1,673	1,101
k ₂₁	0	10,083	2,090	0,528	2,090
k ₃₁	0	-8,161	1,598	-5,689	-5,689
γ πίνακας					
γ _R	1	1,285	1,078	1,038	1,078
γ _G	1	1,220	1,046	0,999	1,046
$\gamma_{ m B}$	1	1,180	0,971	1,040	1,040

Η μέση τιμή των συντελεστών του αλγόριθμου γάμμα για τα 3 χρωματικά κανάλια είναι $(\gamma_R = 1,078, \gamma_G = 1,046, \gamma_B = 1,040)$ και προσεγγίζουν τις ιδανικές τιμές.

Πίνακας 6: Παρουσιάζεται το MSE για 3 πειράματα. Η πρώτη στήλη παρουσιάζει το MSE για τις 3 χρωματικές συνιστώσες πρίν την εφαρμογή του αλγόριθμου γάμμα. Η δεύτερη στήλη παρουσιάζει το MSE για τις 3 χρωματικές συνιστώσες μετά την εφαρμογή του αλγόριθμου γάμμα.

	MSE για κάθε χρωματική σ	υνιστώσα
R,G,B	$MSE_{org-cam} = \frac{1}{N M} \sum_{i,j=1}^{N,M} (I_{org_{i,j}} - I_{camera_{i,j}})^2$	$MSE_{org-cor} = \frac{1}{N M} \sum_{i,j=1}^{N,M} (I_{org_{i,j}} - I_{cor_{i,j}})^2$
Πειρ. 1		
Red	3342	482
Green	2088	350
Blue	1228	415
Πειρ. 2		
Red	1605	570
Green	2180	443
Blue	2545	670
Πειρ. 3		
Red	3301	578
Green	1973	415
Blue	3035	316
Μέση τιμή τα	ων Πειρ. 1, 2 και 3	
Red	2749	543
Green	2080	403
Blue	2269	467

Ο Πίνακας 6 παρουσιάζει το MSE της κάμερας Circon IP4.1 πρίν και μετά την εφαρμογή του αλγόριθμου γάμμα. Φαίνεται καθαρά ότι το MSE μειώνεται δραματικά μετά την εφαρμογή του αλγόριθμου γάμμα και καθιστά τη βαθμονόμηση της κάμερας ένα απαραίτητο βήμα πρίν την ανάλυση των ενδοσκοπικών εικόνων.

7.3.1 ΚΑΤΑΓΡΑΦΗ ΕΙΚΟΝΩΝ ΑΠΟ ΔΙΑΦΟΡΕΤΙΚΕΣ ΑΠΟΣΤΑΣΕΙΣ ΣΤΟΧΕΥΣΗΣ

Διεξήχθησαν 3 πειράματα καταγραφής εικόνων από διαφορετικές αποστάσεις κοντινού και μακρινού πλάνου τα οποία περιγράφονται πιο κάτω.

7.3.1.1 ΠΕΙΡΑΜΑ 1: ΝΩΠΟ ΚΟΤΟΠΟΥΛΟ ΜΕ ΑΠΟΣΤΑΣΕΙΣ ΣΤΟΧΕΥΣΗΣ 2 ΚΑΙ 5 CM

Στο πείραμα αυτό έχουμε διαφορετική απόσταση λήψης λαπαροσκοπικών εικόνων. Έχουμε χρησιμοποιήσει πειραματικό ιστό, ζωικό ενδομήτριο, και έχουμε εξαγάγει εικόνες από διαφορετικές συνθήκες στόχευσης. Έχουμε καταγράψει από 2 δείγματα των 40 εικόνων με αποστάσεις λήψης 2 και 5 cm. Στο Σχήμα 66 παρουσιάζεται η ίδια εικόνα λήψης με τα αντίστοιχα ιστογράμματα των 3 χρωματικών συνιστωσών.

Οι Πίνακες 7 και 8, παρουσιάζουν την ανάλυση των χαρακτηριστικών υφής των υστεροσκοπικών εικόνων πρίν και μετά να εφαρμοστεί ο αλγόριθμος γάμμα αντίστοιχα. Στους πίνακες παρουσιάζονται τα χαρακτηριστικά υφής και η στατιστική ανάλυση για δύο διαφορετικές αποστάσεις λήψης με διαφορά 3 cm μεταξύ τους. Η πρώτη στήλη παρουσιάζει το P5%, η δεύτερη το P25%, η τρίτη στήλη το Median=P50%, η τέταρτη στήλη το P75% και η πέμπτη το P95%. Αντίστοιχη ανάλυση έχουμε και για τα αποτελέσματα του μακρινού πλάνου. Επίσης η τελευταία στήλη παρουσιάζει την στατιστική ανάλυση, το Η, μεταξύ του κοντίνου και μακρινού πλάνου.

Ο SF mean και variance στο κοντινό πλάνο παρουσιάζει αύξηση σε σύγκριση με το μακρινό πλάνο είτε πριν είτε μετά την εφαρμογή του αλγόριθμου γάμμα. Η SF entropy παρουσιάζει σταθερή τιμή και στις δυο αποστάσεις λήψης. Ο SGLDM variance παρουσιάζει αντίθετη συμπεριφορά σε σχέση με τον SF variance, έχει μεγαλύτερη τιμή στο κοντινό παρά στο μακρινό πλάνο. Ο SGLDM contrast και ο GLDS contrast έχει παρόμοιες τιμές και στα δύο πλάνα που εξετάζουμε. Επίσης υπάρχει σημαντική διαφορά των τιμών αυτών μετά την εφαρμογή του αλγόριθμου γάμμα και για το κοντινό και για το μακρινό πλάνο. Ο SGLDM homogeneity και ο GLDS homogeneity παρόλο που δεν έχουν διαφορές μεταξύ του κοντινού και μακρινού πλάνου, έχουν σημαντικές διαφορές μεταξύ των τιμών πρίν και μετά την εφαρμογή του αλγόριθμου γάμμα και για τα δύο πλάνα.

Και οι δύο πίνακες παρουσιάζονται να μην έχουν στατιστική διαφορά μεταξύ των δύο κατηγοριών εικόνων, (κοντινό και μακρινό πλάνο), εξάγοντας το συμπέρασμα ότι η διαφορά της απόστασης των 3 cm δεν επηρεάζει την ανάλυση και επεξεργασία ενδοσκοπικών εικόνων. Στατιστική διαφορά παρουσιάζεται σε μερικά χαρακτηριστικά υφής όταν συγκρίνουμε τις ίδιες περιοχές ενδιαφέροντος πρίν και μετά την εφαρμογή του αλγόριθμου γάμμα.

Σχήμα 66: Περιοχές ενδιαφέροντος ζωικού ενδομητρίου, σε κοντινό, (2 cm) και πανοραμικό, (5 cm) πλάνο με τα ιστογράμματα των 3 χρωματικών συνιστωσών αντίστοιχα.

Επίσης ο GLDS entropy πριν την εφαρμογή του αλγόριθμου γάμμα παρουσιάζει μια σταθερή τιμή και στις δυο συνθήκες λήψης εικόνων με τιμές για το Median, για το κοντινό πλάνο 2,47 και αντίστοιχα για το μακρινό πλάνο έχει τιμή 2,45. Συμπεραίνουμε ότι οι εικόνες στα δύο πλάνα αντίστοιχα δεν παρουσιάζουν αλλοιώσεις κατά τη διάρκεια της καταγραφής τους.

Τέλος ο GLDS mean πριν την εφαρμογή του αλγόριθμου γάμμα για το κοντινό πλάνο προσεγγίζει το Median του μακρινού πλάνου με αντίστοιχες τιμές 4,25 και 4,17. Με τα αποτελέσματα αυτά συμπεραίνουμε ότι οι εικόνες από τις δύο αποστάσεις λήψης δεν παρουσιάζουν στατιστική διαφορά και έτσι μπορούν να συγκριθούν μεταξύ τους χωρίς να επηρεάζει η απόσταση λήψης την ανάλυση και επεξεργασία των υστεροσκοπικών εικόνων.

Μετά την εφαρμογή του αλγόριθμου γάμμα ο GLDS entropy έχει σχεδόν την ίδια τιμή και στα δύο πλάνα λήψης, ενώ ο GLDS mean έχει τιμές 5,90 και 6,95 αντίστοιχα.

				Κοντινό Γ	Iλάvo, 2 cm							Μακρι	νό Πλάνο, 5	cm			
	P5%	P25%	Median	P75%	P95%	IQR	Mean	STD	P5%	P25%	Median	P75%	P95%	IQR	Mean	STD	H^1
SF																	
Mean	39,50	41,91	80,65	125,33	149,09	41,71	86,19	47,40	36,49	42,42	50,73	58,72	89,41	8,15	54,75	19,19	0
Variance	55,61	259,80	633,07	1708,22	1795,52	724,21	847,55	755,18	55,78	108,13	201,17	244,69	431,18	68,28	207,02	130,06	0
Median	40,16	43,51	83,46	131,32	161,01	43,90	90,49	51,72	36,86	42,62	50,29	62,08	88,36	9,73	55,09	18,88	0
Mode	40,00	53,00	101,00	155,00	169,00	51,00	103,17	59,01	40,00	42,00	51,00	69,00	88,00	13,50	56,83	18,49	0
Skewness	-0,91	-0,40	-0,27	-0,03	0,26	0,19	-0,27	0,39	-0,42	-0,21	-0,12	0,23	0,28	0,22	-0,06	0,27	0
Kurtosis	1,89	1,91	2,33	2,77	3,33	0,43	2,43	0,58	2,09	2,31	2,56	2,66	2,74	0,18	2,49	0,25	0
Entropy	3,40	4,08	4,51	4,94	5,00	0,43	4,41	0,61	3,39	3,74	4,03	4,06	4,39	0,16	3,94	0,34	0
SGLDM																	
ASM*10 ⁶	443	471	706	1,069	2,226	299	937	679	885	1,081	1,18	1,55	2,284	235	1,36	502	0
Contrast	27,71	28,06	29,68	34,68	62,59	3,31	35,40	13,56	27,49	27,50	28,04	30,00	32,17	1,25	28,87	1,89	0
Correlation	0,73	0,95	0,97	0,98	0,99	0,02	0,93	0,10	0,75	0,87	0,92	0,94	0,97	0,04	0,90	0,08	0
Variance	55,08	258,21	626,46	1688,81	1787,09	715,30	840,35	749,53	55,54	106,97	199,49	243,39	425,94	68,21	205,14	128,44	0
Homogeneity	0,194	0,195	0,213	0,215	0,217	0,01	0,20	0,01	0,201	0,204	0,216	0,217	0,219	0,01	0,21	0,01	0
Sum Average	81,09	85,89	163,38	253,08	300,27	83,59	174,51	94,89	75,01	86,90	103,50	119,46	181,01	16,28	111,56	38,44	0
Sum Variance	191,11	1004,76	2474,64	6692,63	7118,21	2843,93	3326,00	2989,90	194,67	400,38	766,88	946,07	1675,19	272,85	791,68	513,43	0
Sum Entropy	4,00	4,73	5,18	5,61	5,67	0,44	5,06	0,63	3,97	4,38	4,68	4,72	5,04	0,17	4,58	0,36	0
Dif Variance	10,58	10,62	11,60	13,30	31,87	1,34	14,93	8,36	10,34	10,41	10,71	11,25	12,27	0,42	10,95	0,75	0
Dif Entropy	2,44	2,45	2,47	2,54	2,73	0,05	2,52	0,11	2,43	2,44	2,44	2,48	2,51	0,02	2,46	0,03	0
InF Cor1	-0,40	-0,36	-0,32	-0,26	-0,12	0,05	-0,30	0,10	-0,32	-0,26	-0,24	-0,20	-0,13	0,03	-0,23	0,06	0
InF Cor2	0,75	0,94	0,97	0,99	0,99	0,02	0,94	0,09	0,77	0,88	0,93	0,94	0,97	0,03	0,90	0,07	0
Entropy	6,38	7,08	7,55	7,98	8,10	0,45	7,44	0,65	6,33	6,72	7,04	7,13	7,38	0,20	6,94	0,36	0
GLDS																	
Homogeneity	0,19	0,19	0,21	0,21	0,21	0,01	0,20	0,01	0,20	0,20	0,21	0,21	0,21	0,00	0,21	0,01	0
Contrast	27,71	28,06	29,68	34,68	62,54	3,31	35,39	13,53	27,50	27,50	28,04	30,01	32,17	1,25	28,88	1,89	0
Energy	0,08	0,09	0,10	0,10	0,10	0,00	0,10	0,01	0,10	0,10	0,10	0,10	0,10	0,00	0,10	0,00	0
Entropy	2,44	2,45	2,47	2,55	2,74	0,05	2,52	0,11	2,44	2,44	2,45	2,48	2,51	0,02	2,46	0,03	0
Mean	4,14	4,18	4,25	4,62	5,50	0,22	4,49	0,53	4,13	4,13	4,17	4,33	4,46	0,10	4,23	0,13	0

Πίνακας 7: Χαρακτηριστικά υφής από δύο διαφορετικές αποστάσεις σκόπευσης, χρησιμοποιώντας ζωικό ενδομήτριο (από 2 δείγματα, με 20 εικόνες καταγραφής για κάθε πλάνο) καθώς και η στατιστική ανάλυση πρίν την εφαρμογή του αλγόριθμου γάμμα.

¹Η Wilcoxon rank sum test μεταξύ φυσιολογικού και παθολογικού ιστού με '1' αναφέρεται για την στατιστική διαφορά, και '0' για τη μη στατιστική διαφορά με a=0.05, P5%, P25%, P50%, P75%, P95%: είναι τα 5th, 25th, 50th (Median), 75th και 95th ποσοστά αντίστοιχα, IQR: Spread of the data (Inter Quartile Range: διαφορά μεταξύ του 25th και 75th ποσοστάν)

Πίνακας 8: Χαρακτηριστικά υφής από δύο διαφορετικές αποστάσεις σκόπευσης, χρησιμοποιώντας ζωικό ενδομήτριο (από 2 δείγματα, με 20 εικόνες καταγραφής για κάθε πλάνο) καθώς και η στατιστική ανάλυση μετά την εφαρμογή του αλγόριθμου γάμμα.

				Κοντινό Γ	Iλάvo, 2 cm						Ι	Μακρινό Π	λάvo, 5 cm				Σται	ιστική ανάλυσι	1
																	Κοντινό vs. Μακρινό Πλάνο μετά την εφαρμογή του αλγόριθμου γάμμα	Πρίν και Μετά την εφαρμογή του αλγόριθμου γάμμα για το πανοραμικό πλάνο	Πρίν και Μετά την εφαρμογή του αλγόριθμου γάμμα για το κοντινό πλάνο
	P5%	P25%	Median	P75%	P95%	IQR	Mean	STD	P5%	P25%	Median	P75%	P95%	IQR	Mean	STD	H^1	\mathbf{H}^{1}	H^{I}
SF	00.14	0.5.1.6	151.04	010.50			154.00	<0.50	06.40	05.10	110.04	100 50	1 (0.05	10.00	11614	20.10	<u>^</u>		
Mean	92,16	95,16	151,04	212,50	223,83	58,67	154,29	60,72	86,48	97,19	110,26	122,79	169,87	12,80	116,14	30,10	0	1	0
Variance	1/3	815	10/6	1506	2/31	345 64.02	1229	839	166	351	507	040 120 64	1095	148	545 117.49	319	0	0	0
Meda	95,00 07	99,52 110	139,48	227,57	242,01	63	105,55	72	07,80	97,39	110,49	129,04	108,85	21	117,48	29,72	0	1	0
Skewness	-1.98	-0.84	-0.44	-0.38	0.03	0.23	-0.68	0 70	-0.51	-0.37	-0.28	0.05	0.13	0.21	-0.21	0.25	0	0	0
Kurtosis	1 74	2.06	2 58	2 76	5 88	0,25	2 93	1 49	2 18	2 39	2 64	2.68	2.88	0,21	2 57	0.25	0	0	0
Energy	0.01	0.01	0.01	0.02	0.04	0,00	0.02	0.01	0.01	0.01	0.01	0.02	0.02	0,00	0.01	0,00	0	0	Ő
Entropy	3.89	3.95	4.53	4.82	4.86	0.43	4.43	0.42	3.91	4.30	4.45	4.55	4.84	0.12	4.42	0.31	Ő	1	Ő
SGLDM	2,07	-,, -	.,	.,	.,	0,10	.,	•, •=		.,	.,	.,	.,	*,	.,.=	*,* -			¥
ASM*10 ⁵	37,2	42,9	142	248,1	104,67	102,6	276,48	387,17	39,2	44,7	55,25	55,5	87,8	5,4	56,28	16,86	0	0	0
Contrast	41,61	45,87	63,18	89,62	90,42	21,88	65,65	22,66	65,89	72,00	78,41	89,66	91,19	8,83	79,26	10,03	0	1	1
Correlation	0,74	0,94	0,97	0,98	0,99	0,02	0,93	0,10	0,75	0,87	0,92	0,94	0,97	0,04	0,90	0,08	0	0	0
Variance	170,73	809,78	1061,78	1487,91	2721,95	339,07	1218,99	856,69	165,55	346,97	502,15	642,44	1081,54	147,74	540,13	314,81	0	1	0
Homogeneity	0,13	0,13	0,20	0,27	0,44	0,07	0,23	0,12	0,13	0,13	0,14	0,14	0,15	0,01	0,14	0,01	0	1	0
Sum Average	186,46	192,45	304,26	427,53	449,88	117,54	310,81	121,56	175,03	196,49	222,60	247,64	342,01	25,58	234,40	60,28	0	0	1
Sum Variance	593	3149	4188	5906	10839	1379	4810	3443	581	1298	1930	2498	4251	600	2081	1262	0	1	1
Sum Entropy	4,55	4,57	5,21	5,50	5,55	0,47	5,10	0,44	4,51	4,96	5,11	5,22	5,51	0,13	5,07	0,33	0	1	1
Entropy	6,09	7,29	7,57	8,07	8,20	0,39	7,47	0,76	7,33	7,78	7,83	8,03	8,21	0,12	7,83	0,29	0	0	0
Dif Variance	21,01	24,89	31,98	34,30	35,22	4,71	29,89	5,82	24,96	27,46	30,09	33,95	34,56	3,24	30,18	3,73	0	1	1
Dif Entropy	2,20	2,59	2,80	3,00	3,01	0,20	2,73	0,31	2,85	2,90	2,94	3,00	3,01	0,05	2,94	0,06	0	1	1
InF Corl	-0,43	-0,41	-0,33	-0,25	-0,12	0,08	-0,31	0,12	-0,30	-0,25	-0,23	-0,19	-0,13	0,03	-0,22	0,06	0	0	0
Inf Cor2	0,78	0,95	0,97	0,98	0,99	0,02	0,94	0,08	0,79	0,90	0,94	0,95	0,97	0,02	0,91	0,06	0	1	0
GLDS	0.12	0.12	0.20	0.27	0.44	0.07	0.22	0.12	0.12	0.12	0.14	0.14	0.15	0.01	0.14	0.01	0	1	0
Contrast	0,15	0,15	0,20	0,27	0,44	21.00	0,23	0,12	0,13	0,13 72.01	0,14	0,14	0,15	0,01	0,14	10.02	0	1	0
Enorgy	41,01	43,83	0.08	0 10	90,45	21,90	0.04	22,00	00,90	0.06	/ 0,42	0.06	91,21	0,00	19,21	0.00	0	1	1
Entrony	2 21	2.60	2.80	3.00	3.01	0,02	2 74	0,05	2.86	2 90	2 94	3.01	3.01	0,00	2 94	0,00	0	1	0
Mean	3.37	4.54	5.90	7.43	7.45	1.45	5.76	1.72	6.40	6.67	6.95	7.46	7.52	0.39	6.99	0.45	0	1	0
	-,-,	.,	-,- 0	.,	.,	-,	-,/0	-,/-	-,	-,0,	-,	.,	.,	-,,-	~,^ /	-,	Ū.	-	2

¹Η Wilcoxon rank sum test μεταξύ φυσιολογικού και παθολογικού ιστού με '1' αναφέρεται για την στατιστική διαφορά, και '0' για τη μη στατιστική διαφορά με a=0.05, P5%, P25%, P5%, P75%, P95%; είναι τα 5th, 25th, 50th (Median), 75th και 95th ποσοστά αντίστοιχα, IQR: Spread of the data (Inter Quartile Range: διαφορά μεταξύ του 25th και 75th ποσοστάν)

7.3.1.4 ΠΕΙΡΑΜΑ 2, ΝΩΠΟ ΚΟΤΟΠΟΥΛΟ, ΜΕ ΑΠΟΣΤΑΣΕΙΣ ΣΤΟΧΕΥΣΗΣ 3 CM ΚΑΙ 8 CM

Στο δεύτερο πείραμα ανάλυσης εικόνων από πειραματικό ιστό νωπού κοτόπουλου, έχουμε εξαγάγει 40 εικόνες με αποστάσεις λήψης 3 cm και 8 cm αντίστοιχα από 5 δείγματα.

Πιο κάτω παρουσιάζουμε τα αποτελέσματα εξαγωγής χαρακτηριστικών υφής καθώς και την στατιστική ανάλυση από τις περιοχές ενδιαφέροντος βάσει των χαρακτηριστικών υφής τους.

Ο Πίνακας 9 παρουσιάζει τα χαρακτηριστικά υφής και τα αποτελέσματα χρήσης του στατιστικού αλγόριθμου Wilcox Rank sum Test για εύρεση στατιστικής διαφοράς μεταξύ των δύο αποστάσεων σκόπευσης. Επίσης, παρουσιάζεται η ανάλυση των υστεροσκοπικών εικόνων πρίν εφαρμοστεί ο αλγόριθμος γάμμα. Στον πίνακα παρουσιάζονται τα χαρακτηριστικά υφής και η στατιστική ανάλυση για δύο διαφορετικές αποστάσεις λήψης με διαφορά 5 cm μεταξύ τους.

Ο SF mean και variance στο μακρινό πλάνο παρουσιάζει αύξηση σε σύγκριση με το κοντινό πλάνο είτε πριν είτε μετά την εφαρμογή του αλγόριθμου γάμμα. Ο SF entropy παρουσιάζει σταθερή τιμή και στις δυο αποστάσεις λήψης. Ο SGLDM variance παρουσιάζει αντίθετη συμπεριφορά σε σχέση με τον SF variance, έχει μεγαλύτερη τιμή στο κοντινό παρά στο μακρινό πλάνο. Ο SGLDM contrast και ο GLDS contrast έχει παρόμοιες τιμές και στα δυο πλάνα που εξετάζουμε. Επίσης υπάρχει σημαντική διαφορά των τιμών αυτών μετά την εφαρμογή του αλγόριθμου γάμμα και για το κοντινό και για το μακρινό πλάνο και τη μεγαλύτερη τιμή την συναντούμε στο κοντινό πλάνο. Ο SGLDM homogeneity και ο GLDS homogeneity δεν έχουν διαφορές μεταξύ του κοντινού και μακρινού πλάνου, ούτε μεταξύ των τιμών πρίν ή μετά την εφαρμογή του αλγόριθμου γάμμα και για το δύο πλάνο.

Σε αυτό το σημείο θα αναφέρουμε και τα αποτελέσματα ανάλυσης των εικόνων με διαφορετικές αποστάσεις σκόπευσης μετά τη βαθμονόμηση της ιατρικής κάμερας και τη διόρθωση των εικόνων. Έχοντας διορθώσει τις εικόνες εφαρμόσαμε τη στατιστική ανάλυση και τα αποτελέσματα φαίνονται στον πιο κάτω πίνακα.

Ο Πίνακας 10 παρουσιάζει τα αποτελέσματα χρήσης του στατιστικού αλγόριθμου Wilcox Rank sum Test για εύρεση στατιστικής διαφοράς μεταξύ των δύο αποστάσεων σκόπευσης. Ο Πίνακας 10 παρουσιάζει την ανάλυση των υστεροσκοπικών εικόνων μετά την κανονικοποίησή τους με τον αλγόριθμο γάμμα. Στους πίνακες παρουσιάζονται τα χαρακτηριστικά υφής και η στατιστική ανάλυση για δύο διαφορετικές αποστάσεις λήψης με διαφορά 5 εκατοστών μεταξύ τους. Παρατηρούμε ότι δεν υπάρχει στατιστική διαφορά μεταξύ των δύο υπό εξέταση περιοχών συμπεραίνοντας ότι η απόσταση δεν επηρεάζει την

201

επεξεργασία των ενδοσκοπικών εικόνων. Επίσης οι εικόνες μετά την εφαρμογή του αλγόριθμου γάμμα παρουσίαζαν οπτικά καλύτερα αποτελέσματα.

Και οι δύο πίνακες παρουσιάζονται να μην έχουν στατιστική διαφορά μεταξύ των δύο κατηγοριών εικόνων, (κοντινό και μακρινό πλάνο), όμως από την παρατήρηση των εικόνων μετά τον αλγόριθμο γάμμα, φαίνονται να μειώνουν το θόρυβο της εικόνας.

Επίσης ο GLDS entropy πριν την εφαρμογή του αλγόριθμου γάμμα παρουσιάζει μια σταθερή τιμή και στις δυο συνθήκες λήψης εικόνων με τιμές για το Median, για το κοντινό πλάνο 2,47 και αντίστοιχα για το μακρινό πλάνο έχει τιμή 2,45. Συμπεραίνουμε ότι οι εικόνες στα δύο πλάνα αντίστοιχα δεν παρουσιάζουν αλλοιώσεις κατά τη διάρκεια της καταγραφής τους.

Τέλος ο GLDS mean πριν την εφαρμογή του αλγόριθμου γάμμα για το κοντινό πλάνο προσεγγίζει το Median του μακρινού πλάνου με αντίστοιχες τιμές 2,47 και 2,45. Με τα αποτελέσματα αυτά συμπεραίνουμε ότι οι εικόνες από τις δύο αποστάσεις λήψης δεν παρουσιάζουν στατιστική διαφορά και έτσι μπορούν να συγκριθούν μεταξύ τους χωρίς να επηρεάζει η απόσταση λήψης την ανάλυση και επεξεργασία των υστεροσκοπικών εικόνων.

Επίσης μετά την εφαρμογή του αλγόριθμου γάμμα ο GLDS entropy έχει μεγαλύτερη τιμή στο κοντινό πλάνο λήψης, ενώ ο GLDS mean έχει τιμές 1,89 και 0,16 αντίστοιχα.

Πίνακας 9: Χαρακτηριστικά υφής από δύο διαφορετικές αποστάσεις σκόπευσης, χρησιμοποιώντας νωπό κοτόπουλο καθώς και η στατιστική ανάλυση πρίν την εφαρμογή του αλγόριθμου γάμμα.

				Κοντινό Ι	Ιλάνο, 3 cm							Μακρινό	Πλάνο, 8 ει	m			
	5%	25%	Median	75%	95%	IQR	Mean	STD	5%	25%	Median	75%	95%	IQR	Mean	STD	Н
SF																-	
Mean	39,50	41,91	80,65	125,33	149,09	41,71	86,19	47,40	36,49	42,42	50,73	58,72	89,41	8,15	54,75	19,19	0
Variance	55,61	259,80	633,07	1708,22	1795,52	724,21	847,55	755,18	55,78	108,13	201,17	244,69	431,18	68,28	207,02	130,06	0
Median	40,16	43,51	83,46	131,32	161,01	43,90	90,49	51,72	36,86	42,62	50,29	62,08	88,36	9,73	55,09	18,88	0
Mode	40,00	53,00	101,00	155,00	169,00	51,00	103,17	59,01	40,00	42,00	51,00	69,00	88,00	13,50	56,83	18,49	0
Skewness	-0,91	-0,40	-0,27	-0,03	0,26	0,19	-0,27	0,39	-0,42	-0,21	-0,12	0,23	0,28	0,22	-0,06	0,27	0
Kurtosis	1,89	1,91	2,33	2,77	3,33	0,43	2,43	0,58	2,09	2,31	2,56	2,66	2,74	0,18	2,49	0,25	0
Energy	0,01	0,01	0,01	0,02	0,04	0,00	0,02	0,01	0,01	0,02	0,02	0,03	0,04	0,00	0,02	0,01	0
Entropy	3,40	4,08	4,51	4,94	5,00	0,43	4,41	0,61	3,39	3,74	4,03	4,06	4,39	0,16	3,94	0,34	0
SGLDM																	
ASM*10 ⁴	4,43	4,71	7,06	10,69	22,26	2,99	9,37	6,79	8,85	10,81	11,8	15,5	22,84	2,35	13,6	5,02	0
Contrast	27,71	28,06	29,68	34,68	62,59	3,31	35,40	13,56	27,49	27,50	28,04	30,00	32,17	1,25	28,87	1,89	0
Correlation	0,73	0,95	0,97	0,98	0,99	0,02	0,93	0,10	0,75	0,87	0,92	0,94	0,97	0,04	0,90	0,08	0
Variance	55,08	258,21	626,46	1688,81	1787,09	715,30	840,35	749,53	55,54	106,97	199,49	243,39	425,94	68,21	205,14	128,44	0
Homogeneity	0,19	0,19	0,21	0,21	0,21	0,01	0,20	0,01	0,20	0,20	0,21	0,21	0,21	0,00	0,21	0,01	0
Sum Average	81,09	85,89	163,38	253,08	300,27	83,59	174,51	94,89	75,01	86,90	103,50	119,46	181,01	16,28	111,56	38,44	0
Sum Variance	191	1004	2474	6692	7118	2843	3326	2989	194	400	766	946	1675	272	791	513	0
Sum Entropy	4,00	4,73	5,18	5,61	5,67	0,44	5,06	0,63	3,97	4,38	4,68	4,72	5,04	0,17	4,58	0,36	0
Dif Variance	10,58	10,62	11,60	13,30	31,87	1,34	14,93	8,36	10,34	10,41	10,71	11,25	12,27	0,42	10,95	0,75	0
Dif Entropy	2,44	2,45	2,47	2,54	2,73	0,05	2,52	0,11	2,43	2,44	2,44	2,48	2,51	0,02	2,46	0,03	0
InF Cor1	-0,40	-0,36	-0,32	-0,26	-0,12	0,05	-0,30	0,10	-0,32	-0,26	-0,24	-0,20	-0,13	0,03	-0,23	0,06	0
InF Cor2	0,75	0,94	0,97	0,99	0,99	0,02	0,94	0,09	0,77	0,88	0,93	0,94	0,97	0,03	0,90	0,07	
Entropy	6,38	7,08	7,55	7,98	8,10	0,45	7,44	0,65	6,33	6,72	7,04	7,13	7,38	0,20	6,94	0,36	0
GLDS																	
Homogeneity	0,19	0,19	0,21	0,21	0,21	0,01	0,20	0,01	0,20	0,20	0,21	0,21	0,21	0,00	0,21	0,01	0
Contrast	27,71	28,06	29,68	34,68	62,54	3,31	35,39	13,53	27,50	27,50	28,04	30,01	32,17	1,25	28,88	1,89	0
Energy	0,08	0,09	0,10	0,10	0,10	0,00	0,10	0,01	0,10	0,10	0,10	0,10	0,10	0,00	0,10	0,00	0
Entropy	2,44	2,45	2,47	2,55	2,74	0,05	2,52	0,11	2,44	2,44	2,45	2,48	2,51	0,02	2,46	0,03	0
Mean	4,14	4,18	4,25	4,62	5,50	0,22	4,49	0,53	4,13	4,13	4,17	4,33	4,46	0,10	4,23	0,13	0

¹Η Wilcoxon rank sum test μεταξύ φυσιολογικού και παθολογικού ιστού με '1' αναφέρεται για την στατιστική διαφορά, και '0' για τη μη στατιστική διαφορά με a=0.05, P5%, P25%, P50%, P75%, P95%: είναι τα 5th, 25th, 50th (Median), 75th και 95th ποσοστά αντίστοιχα, IQR: Spread of the data (Inter Quartile Range: διαφορά μεταξύ του 25th και 75th ποσοστάν)

Πίνακας 10:	Χαρακτηριστικά	υφής από δύο	διαφορετικές	αποστάσεις	σκόπευσης,	χρησιμοποιώντα	ς νωπό	κοτόπουλο	, καθώς και	η στατιστικ	ːή
ανάλυση μετά	την εφαρμογή του	ο αλγόριθμου γ	γάμμα.								

				Κοντινό Π	λάνο, 3 cm							Μακρινό	Πλάνο, 8 сι	n			
	5%	25%	Median	75%	95%	IQR	Mean	STD	5%	25%	Median	75%	95%	IQR	Mean	STD	H^1
SF						-								-			
Mean	$2,44^{*10-4}$	0,18	13,05	27,20	78,35	13,51	21,97	30,43	0,01	0,02	0,41	1,07	3,91	0,53	0,97	1,50	0
Variance	$2,44^{*10-4}$	0,15	326,43	1490,26	4321,23	745,05	1077,42	1694,28	0,01	0,02	0,35	3,59	9,50	1,78	2,30	3,79	0
Median	0,00	0,00	5,75	19,65	68,31	9,83	16,58	26,59	0,00	0,00	0,00	0,64	3,04	0,32	0,61	1,22	0
Mode	0,00	0,00	0,00	0,00	1,00	0,00	0,17	0,41	0,00	0,00	0,00	0,00	2,00	0,00	0,33	0,82	0
Skewness	0,73	0,90	2,24	3,65	63,98	1,38	12,29	25,35	0,97	1,60	2,70	7,80	8,50	3,10	4,04	3,25	0
Kurtosis	2,65	2,83	7,84	22,21	4094,00	9,69	689,56	1667,84	4,15	5,54	9,75	61,77	73,17	28,12	27,35	31,36	0
Energy	93,4* ¹⁰⁻⁴	229^{*10-4}	0,26	0,71	1,00	0,34	0,38	0,42	0,14	0,38	0,61	0,97	0,97	0,29	0,61	0,36	0
Entropy	$22,7^{*^{10-4}}$	4789^{*10-4}	2,52	4,22	5,18	1,87	2,49	2,21	0,07	0,08	0,70	1,37	2,24	0,64	0,86	0,86	0
SGLDM																	
ASM	33^{*10-4}	60^{*10-4}	0,21	0,62	1,00	0,31	0,34	0,41	0,05	0,27	0,53	0,94	0,95	0,34	0,54	0,39	0
Contrast	$4^{*^{10-4}}$	99,4* ¹⁰⁻⁴	25,43	65,07	385,45	32,49	83,58	150,63	0,03	0,03	0,17	0,48	2,20	0,23	0,51	0,85	0
Correlation	$-2,5^{*10-4}$	0,66	0,93	0,95	0,98	0,14	0,75	0,38	0,04	0,13	0,68	0,88	0,93	0,38	0,56	0,39	0
Variance	$2,47^{*10-4}$	0,15	326,22	1472	4283	736	1068	1678	0,01	0,02	0,35	3,51	9,50	1,75	2,29	3,78	0
Homogeneity	0,212	0,32	0,69	0,95	1,00	0,31	0,64	0,35	0,63	0,86	0,92	0,99	0,99	0,06	0,88	0,14	0
Sum Average	2	2,35	28,02	56,60	158,36	27,12	45,89	60,74	2,03	2,03	2,83	4,11	9,85	1,04	3,94	3,02	0
Sum Variance	4,9*10-4	0,50	1272	5840	16747	2920	4188	6569	0,03	0,03	1,22	13,55	35,78	6,76	8,64	14,29	0
Sum Entropy	$42,5^{*10-4}$	0,70	2,99	4,89	5,85	2,09	2,90	2,48	0,12	0,14	0,99	1,78	2,88	0,82	1,15	1,10	0
Dif Variance	4,9*10-4	0,08	19,04	40,95	246,11	20,43	54,20	95,97	0,02	0,03	0,14	0,38	1,29	0,18	0,33	0,49	0
Dif Entropy	$42,5^{*10-4}$	0,32	1,43	2,65	3,45	1,16	1,55	1,43	0,12	0,12	0,43	0,72	1,30	0,30	0,52	0,45	0
InF Cor1	-0,51	-0,48	-0,38	-0,37	0,00	0,06	-0,35	0,18	-0,50	-0,44	-0,32	-0,04	-0,01	0,20	-0,27	0,20	0
InF Cor2	$3,4^{*10-4}$	0,55	0,90	0,99	0,99	0,22	0,72	0,39	0,03	0,08	0,60	0,86	0,88	0,39	0,51	0,39	0
Entropy	45^{*10-4}	0,77	3,80	6,89	8,40	3,06	3,94	3,57	0,14	0,16	1,11	2,04	3,74	0,94	1,38	1,40	0
GLDS																	
Homogeneity	0,21	0,32	0,69	0,95	1,00	0,31	0,64	0,35	0,63	0,86	0,92	0,99	0,99	0,06	0,88	0,14	0
Contrast	$4,9^{*10-4}$	994* ¹⁰⁻⁴	25,42	65,08	385,13	32,49	83,52	150,50	0,03	0,03	0,17	0,48	2,20	0,23	0,51	0,85	0
Energy	521*10-4	$1099*^{10-4}$	0,43	0,82	1,00	0,36	0,47	0,41	0,33	0,60	0,75	0,95	0,95	0,17	0,72	0,24	0
Entropy	42^{*10-4}	3239*10-4	1,43	2,65	3,46	1,16	1,55	1,44	0,12	0,12	0,43	0,72	1,30	0,30	0,52	0,46	0
Mean	$4,9^{*10-4}$	992* ¹⁰⁻⁴	1,89	4,91	11,73	2,41	3,42	4,57	0,03	0,03	0,16	0,31	0,95	0,14	0,27	0,35	0

¹Η Wilcoxon rank sum test μεταξύ φυσιολογικού και παθολογικού ιστού με '1' αναφέρεται για την στατιστική διαφορά, και '0' για τη μη στατιστική διαφορά με a=0.05, P5%, P25%, P5%, P75%, P95%: είναι τα 5th, 25th, 50th (Median), 75th και 95th ποσοστά αντίστοιχα, IQR: Spread of the data (Inter Quartile Range: διαφορά μεταξύ του 25th και 75th ποσοστάν)

7.3.1.4 ΠΕΙΡΑΜΑ 3, ΝΩΠΟ ΚΟΤΟΠΟΥΛΟ, ΜΕ ΑΠΟΣΤΑΣΕΙΣ ΣΤΟΧΕΥΣΗΣ 2,7 ΚΑΙ 4 CM

Συνεχίζοντας τη χρήση πειραματικού ιστού και ελέγχοντας τις διαφορετικές αποστάσεις λήψης, αναλύσαμε το πείραμα με διαφορά απόστασης λήψης στα 1,3 εκατοστά.

Στο τρίτο πείραμα ανάλυσης εικόνων από πειραματικό ιστό, νωπού κοτόπουλου, έχουμε εξαγάγει 40 εικόνες με αποστάσεις λήψης 4 cm και 2,7 cm αντίστοιχα από 5 δείγματα. Πιο κάτω παρουσιάζουμε τα αποτελέσματα των χαρακτηριστικών υφής και της στατιστικής ανάλυσης των χαρακτηριστικών υφής. Ο Πίνακας 11 παρουσιάζει τα αποτελέσματα χρήσης του στατιστικού αλγόριθμου Wilcox Rank sum Test για εύρεση στατιστικής διαφοράς μεταξύ των δύο αποστάσεων σκόπευσης. Στον πίνακα παρουσιάζονται τα χαρακτηριστικά υφής του αλγόριθμου SF και SGLDM και η στατιστική ανάλυση για δύο διαφορετικές αποστάσεις λήψης με διαφορά 1,3 cm μεταξύ τους. Παρατηρούμε ότι δεν υπάρχει στατιστική διαφορά μεταξύ των δύο υπό εξέταση περιοχών συμπεραίνοντας ότι η απόσταση δεν επηρεάζει την επεξεργασία των ενδοσκοπικών εικόνων. Επίσης οι εικόνες μετά την εφαρμογή του αλγόριθμου γάμμα παρουσίαζαν οπτικά καλύτερα αποτελέσματα.

Για τον αλγόριθμο SF παρατηρούμε ότι στην πρώτη απόσταση λήψης η Median τιμή του Mean είναι μεγαλύτερη, με τιμή 80 καθώς η αντίστοιχη τιμή στη δεύτερη απόσταση είναι 71. Επίσης το Variance στη μέση τιμή του στην πρώτη απόσταση είναι μεγαλύτερο σε σύγκριση με την τιμή του στη δεύτερη απόσταση, με τιμές 201 και 114. Η εντροπία και των δύο εικόνων είναι σχετικά το ίδιο με τιμή 3,7 και 3,8 αντίστοιχα.

Για τον αλγόριθμο SGLDM παρατηρούμε ότι στην πρώτη απόσταση λήψης η Median τιμή της αντίθεσης (Contrast) είναι ελαφρώς μεγαλύτερη, με τιμή 9,4 καθώς η αντίστοιχη τιμή στη δεύτερη απόσταση είναι 8,8. Επίσης το Variance στη μέση τιμή του, στην πρώτη απόσταση είναι μεγαλύτερο σε σύγκριση με την τιμή του στη δεύτερη απόσταση. Η εντροπία και η ομοιογένεια των δύο εικόνων είναι σχετικά το ίδιο με τιμή 6-5,7 και 0,38 αντίστοιχα.

Συμπερασματικά έχουμε αποδείξει ότι για μικρές αποστάσεις λήψης δεν υπάρχει στατιστική διαφορά μεταξύ των χαρακτηριστικών υφής, με αποτέλεσμα τη δυνατότητα σύγκρισης περιοχών ενδιαφέροντος που έχουν επιλεγεί κάτω από διαφορετικές συνθήκες στόχευσης.

Βλέπουμε ότι δεν υπάρχει στατιστική διαφορά μεταξύ των χαρακτηριστικών υφής για τα δύο πλάνα. Ο γιατρός συμπερασματικά, μπορεί να συγκρίνει μεταξύ των διαφορετικών συνθηκών στόχευσης για τις αντίστοιχες περιοχές ενδιαφέροντος. Οι διαφορές των χαρακτηριστικών είναι σχεδόν οι ίδιες σε αυτό το πείραμα, άρα τα αποτελέσματά μας τα χαρακτηρίζει η περιοδικότητα.

205

Συμπερασματικά προκύπτει ότι η λαπαροσκοπική κάμερα καθώς και οι διαφορετικές αποστάσεις λήψης δεν παρουσιάζουν κανένα πρόβλημα στον καθορισμό βάσει των χαρακτηριστικών υφής σε διαφορετικές συνθήκες λήψης.

Αλγόριθμοι Υφής			Απόστασ	η 1 (2,7 cm)					Απόστα	ση 2 (4 cm)			
	P25%	Median	P75%	IQR	Mean	STD	P25%	Median	P75%	IQR	Mean	STD	H^1
SF													
Mean	69,072	80,188	139,844	70,771	108,109	58,439	56,256	71,236	115,461	59,205	92,76	59,025	0
Variance	83,356	201,965	331,14	247,784	239,309	217,182	54,761	114,71	205,392	150,631	136,79	115,072	0
Median	67,582	79,137	128,226	60,645	104,477	58,627	52,242	68,403	115,996	63,754	91,187	60,001	0
Mode	66	80	126	60	102,8	60,072	55,5	68	120,25	64,75	92,6	58,914	0
Skewness	0,324	0,707	1,595	1,271	1,027	1,087	0,234	0,423	1,383	1,149	0,902	1,316	0
Kusrtosis	2,193	2,903	11,709	9,515	7,304	7,991	2,216	3,077	9,463	7,247	6,276	6,274	0
Energy	0,029	0,033	0,04	0,012	0,036	0,014	0,025	0,035	0,052	0,027	0,041	0,023	0
Entropy	3,513	3,78	3,905	0,392	3,677	0,322	3,284	3,493	3,812	0,527	3,503	0,476	0
SGLDM													
ASM	0,004	0,004	0,006	0,001	0,005	0,002	0,004	0,004	0,006	0,001	0,001	0,003	0
Contrast	7,594	9,392	24,068	8,237	17,501	17,996	6,495	8,852	63,07	28,287	28,287	93,882	0
Correlation	0,882	0,972	0,98	0,049	0,938	0,06	0,892	0,957	0,972	0,04	0,04	0,095	0
Variance	80,016	196,645	317,689	118,836	232,039	214,602	87,852	105,606	297,932	105,04	105,04	154,147	0
Homogeneity	0,347	0,38	0,412	0,032	0,38	0,035	0,361	0,387	0,411	0,025	0,025	0,045	0
Sum Average	139,89	162,175	281,528	70,819	218,057	117,005	150,177	183,367	277,849	63,836	63,836	107,439	0
Sun Variance	312,425	777,189	1231,943	459,759	910,656	859,839	341,277	415,902	1130,547	394,635	394,635	534,624	0
Sum Entropy	4,157	4,399	4,543	0,193	4,312	0,332	4,072	4,239	4,344	0,136	0,136	0,29	0
Dif. Variance	3,218	3,727	17,377	7,079	11,348	14,444	2,609	3,842	50,624	24,007	24,007	79,034	0
Diff. Entropy	1,784	1,841	2,001	0,108	1,891	0,21	1,762	1,811	2,034	0,136	0,136	0,32	0
Inf. Correlation 1	-0,431	-0,402	-0,363	0,034	-0,393	0,056	-0,396	-0,369	-0,355	0,021	0,021	0,037	0
Inf. Correlation 2	0,958	0,976	0,979	0,011	0,966	0,026	0,951	0,96	0,971	0,01	0,01	0,014	0
Entropy	5,601	6,019	6,111	0,255	5,867	0,381	5,571	5,785	6,08	0,255	0,255	0,394	0
GLDS													
Homogeneity	0,16	0,16	0,17	0,01	0,16	0,01	0,18	0,19	0,22	0,02	0,19	0,02	0
Contrast	57,25	71,50	82,23	12,49	72,14	15,54	29,70	46,37	51,79	11,04	44,65	14,82	0
Energy	0,07	0,07	0,08	0,00	0,07	0,01	0,08	0,08	0,11	0,01	0,09	0,01	0
Entropy	2,73	2,80	2,86	0,07	2,80	0,08	2,45	2,62	2,70	0,13	2,58	0,15	0
Mean	5,78	6,15	6,56	0.39	6,21	0.57	4,23	5,04	5,53	0,65	4,93	0,76	0

Πίνακας 11: Χαρακτηριστικά υφής του αλγόριθμου SF, SGLDM και GLDS για δύο διαφορετικές αποστάσεις λήψης και στατική ανάλυση των δύο κατηγοριών.

¹Η Wilcoxon rank sum test μεταξύ φυσιολογικού και παθολογικού ιστού με '1' αναφέρεται για την στατιστική διαφορά, και '0' για τη μη στατιστική διαφορά με a=0.05, P5%, P25%, P50%, P75%, P95%: είναι τα 5th, 25th, 50th (Median), 75th και 95th ποσοστά αντίστοιχα, IQR: Spread of the data (Inter Quartile Range: διαφορά μεταξύ του 25th και 75th ποσοστάν)

7.3.1.6 ΠΕΙΡΑΜΑ 4, ΝΩΠΟ ΚΟΤΟΠΟΥΛΟ, ΜΕ ΑΠΟΣΤΑΣΕΙΣ ΣΤΟΧΕΥΣΗΣ 2 ΚΑΙ 6 CM

Συνεχίζοντας την έρευνά μας δοκιμάσαμε και άλλα πειράματα με διαφορετικές συνθήκες λήψης. Στο πείραμα 4 παρουσιάζουμε τα αποτελέσματα για τη στατιστική ανάλυση με πειραματικό ιστό νωπού κοτόπουλου, από διαφορετικές αποστάσεις λήψης, με διαφορά 6 cm. Η ανάλυση έγινε πρίν την εφαρμογή του αλγόριθμου γάμμα και τα αποτελέσματα παρουσιάζονται στους πιο κάτω πίνακες. Το πείραμα αυτό έγινε με συνολικό αριθμό εικόνων 40 οι οποίες πάρθηκαν από 5 πειραματικά μοντέλα.

Ο Πίνακας 12 παρουσιάζει τα αποτελέσματα ανάλυσης χαρακτηριστικών υφής πρίν την εφαρμογή του αλγόριθμου γάμμα. Στο πείραμα αυτό εξαγάγαμε 40 εικόνες (20 σε κοντινό και 20 σε μακρινό πλάνο) με διαφορά απόστασης 6 cm, 2 cm σε κοντινό πλάνο και 8 cm σε μακρινό πλάνο. Η στατιστική ανάλυση έδειξε ότι υπάρχει στατιστική διαφορά μεταξύ των δύο διαφορετικών αποστάσεων λήψης με αποτέλεσμα να βάζει όρια στις συνθήκες λήψης, έτσι ώστε να μπορούν οι διαφορετικές εικόνες να συγκριθούν.

Στον πίνακα αυτό παρατηρούμε ότι στα περισσότερα χαρακτηριστικά υφής έχουμε στατιστική ανάλυση, εξάγοντας το συμπέρασμα ότι έχουμε ένα όριο απόστασης στην καταγραφή και ανάλυση των ενδοσκοπικών εικόνων. Για παράδειγμα αναφέρουμε ενδεικτικά ότι η variance του αλγόριθμου SF και του SGLDM παρουσιάζουν στατιστική διαφορά όπως και άλλα χαρακτηριστικά υφής οπότε ενισχύεται η άποψη του ορίου απόστασης στόχευσης από τον ιστό μέχρι την ιατρική κάμερα. Η SF variance έχει πολύ μεγαλύτερη τιμή στο κοντινό πλάνο από την αντίστοιχη στο μακρινό πλάνο, 605 και 473 αντίστοιχα. Το entropy και για τους 3 αλγόριθμους, SF, SGLDM και GLDS παρουσιάζεται να είναι σταθερή και για τα δυο πλάνα στόχευσης. Τέλος το contrast για τον αλγόριθμο GLDS έχει μεγαλύτερη τιμή, 71 στο κοντινό πλάνο, με αντίστοιχη τιμή 46, στο μακρινό πλάνο.

Το Σχήμα 67 παρουσιάζει εικόνες από πειραματικό ιστό νωπού κοτόπουλου, από διαφορετικές αποστάσεις λήψης, 2 cm σε κοντινό πλάνο και 8 cm σε μακρινό πλάνο. Παρουσιάζουμε περιοχές ενδιαφέροντος από κοντινό και μακρινό πλάνο λήψης. Επίσης παρουσιάζουμε τα αντίστοιχα ιστογράμματα των τριών χρωματικών τους συνιστωσών.

208

Νωπό κοτόπουλο				Κοντινό πλ	άvo, 2 cm						По	ινοραμικό π	λάνο, 8 cn	1			
	P5%	P25%	Median	P75%	P95%	IQR	Mean	STD	P5%	P25%	Median	P75%	P95%	IQR	Mean	STD	H^1
SF																	
Mean	76,43	87,52	98,45	112,48	133,65	12,48	101,15	18,12	67,81	81,83	90,59	99,52	127,54	8,84	91,23	16,15	0
Variance	384,05	541,74	605,44	643,4	819,84	50,83	591,69	112,85	283,44	416,94	473,68	506,88	533,62	44,97	453,26	76,4	1
Median	72,19	81,53	91,29	111,92	134,24	15,19	97,48	20,58	61,8	77,93	88,74	98,09	129,65	10,08	89,34	18,33	0
Mode	60,1	72	77	113,5	135,8	20,75	88,75	26,52	51,2	71	80,5	115,5	143,1	22,25	90	28,9	0
Skewness	-0,11	0,25	0,74	0,78	1,53	0,26	0,6	0,46	-0,35	0,09	0,37	0,79	1,19	0,35	0,43	0,49	0
Kurtosis	2,44	2,62	2,67	3,23	7,58	0,31	3,28	1,54	1,73	2,08	3,06	3,88	5,6	0,9	3,2	1,28	0
Energy	0,01	0,01	0,01	0,01	0,02	0	0,01	0	0,01	0,01	0,01	0,02	0,02	0	0,02	0	1
Entropy	4,18	4,4	4,49	4,55	4,71	0,08	4,47	0,14	4,08	4,24	4,34	4,38	4,41	0,07	4,3	0,11	1
SGLDM																	
ASM*1000	0,44	5,35	6,73	0,77	1,07	0,118	0,69	0,19	0,67	0,72	0,87	0,99	0,14	0,13	0,91	0,24	1
Contrast	54,24	57,05	71,69	82,15	101,3	12,55	72,06	15,54	27,14	29,72	46,29	51,59	72,88	10,94	44,56	14,75	1
Correlation	0,92	0,94	0,94	0,95	0,95	0,01	0,94	0,01	0,91	0,94	0,95	0,96	0,97	0,01	0,95	0,02	1
Variance	381,99	540,21	607,83	638,35	819,46	49,07	590,16	112,89	283,19	416,43	473,75	509,13	534,5	46,35	453,79	76,96	1
Homogeneity	0,15	0,16	0,16	0,17	0,18	0,01	0,16	0,01	0,16	0,18	0,19	0,22	0,22	0,02	0,19	0,02	1
Sum Average	154,74	176,6	198,5	227	269,49	25,2	204,15	36,38	137,57	165,78	183,11	201,06	257,17	17,64	184,5	32,33	0
Sum Variance	1472,95	2088,95	2359,63	2471,53	3179,14	191,29	2288,56	439,66	1086,74	1636,41	1859,16	1972,51	2098,7	168,05	1770,59	302,92	1
Sum Entropy	4,81	5,04	5,14	5,21	5,36	0,08	5,12	0,15	4,71	4,9	4,99	5,03	5,06	0,07	4,95	0,11	1
Dif Variance	19,14	23,79	28,18	41,84	46,9	9,03	31,14	10,2	10,19	12,4	16,59	25,71	32,17	6,65	18,78	8,33	1
Dif Entropy	2,63	2,66	2,72	2,79	2,86	0,06	2,73	0,07	2,36	2,41	2,56	2,64	2,75	0,11	2,53	0,13	1
InF Cor1	-0,3	-0,29	-0,28	-0,27	-0,25	0,01	-0,28	0,01	-0,33	-0,32	-0,29	-0,28	-0,26	0,02	-0,3	0,03	0
InF Cor2	0,93	0,95	0,96	0,96	0,97	0	0,95	0,01	0,94	0,95	0,96	0,97	0,97	0,01	0,96	0,01	0
Entropy	7,29	7,58	7,68	7,84	8,04	0,13	7,69	0,21	6,99	7,19	7,33	7,53	7,56	0,17	7,33	0,2	1
GLDS																	
Homogeneity	0,15	0,16	0,16	0,17	0,18	0,01	0,16	0,01	0,16	0,18	0,19	0,22	0,22	0,02	0,19	0,02	1
Contrast	54,2	57,25	71,5	82,23	101,31	12,49	72,14	15,54	27,17	29,7	46,37	51,79	73,05	11,04	44,65	14,82	1
Energy	0,06	0,07	0,07	0,08	0,08	0	0,07	0,01	0,07	0,08	0,08	0,11	0,11	0,01	0,09	0,01	1
Entropy	2,69	2,73	2,8	2,86	2,94	0,07	2,8	0,08	2,39	2,45	2,62	2,7	2,82	0,13	2,58	0,15	1
Mean	5,44	5,78	6,15	6,56	7,27	0.39	6,21	0,57	3,96	4,23	5,04	5,53	6,23	0,65	4,93	0,76	1

Πίνακας 12: Αποτελέσματα από πειραματικό ιστό νωπού κοτόπουλου με διαφορά απόστασης 6 cm.

¹Η Wilcoxon rank sum test μεταξύ φυσιολογικού και παθολογικού ιστού με '1' αναφέρεται για την στατιστική διαφορά, και '0' για τη μη στατιστική διαφορά με a=0.05, P5%, P25%, P50%, P75%, P95%: είναι τα 5th, 25th, 50th (Median), 75th και 95th ποσοστά αντίστοιχα, IQR: Spread of the data (Inter Quartile Range: διαφορά μεταξύ του 25th και 75th ποσοστάν)

Σχήμα 67: Περιοχές ενδιαφέροντος ζωικού ενδομητρίου, σε κοντινό, 2 cm και πανοραμικό, 8 cm πλάνο με τα ιστογράμματα των 3 χρωματικών συνιστώσων αντίστοιχα.

7.4 ΚΑΤΑΓΡΑΦΗ ΕΙΚΟΝΩΝ ΑΠΟ ΔΙΑΦΟΡΕΤΙΚΕΣ ΓΩΝΙΕΣ ΣΚΟΠΕΥΣΗΣ

Σε αυτή την ενότητα θα παρουσιάσουμε τα πειράματα ανάλυσης ενδοσκοπικών εικόνων με διαφορετικές γωνίες σκόπευσης για να εξαγάγουμε χρήσιμα συμπεράσματα για την ανάλυση των εικόνων. Έχοντας την εμπειρία ανάλυσης λαπαροσκοπικών και υστεροσκοπικών εικόνων αναλύσαμε τα πειράματα με πειραματικό ιστό (ζωικού ενδομητρίου, νωπού κοτόπουλου) από διαφορετικές γωνίες σκόπευσης κάτω από πραγματικές συνθήκες έχοντας στόχο την παρουσίαση αποτελεσμάτων ανάλυσης των εικόνων.

Όπως έχουμε αναφέρει στο Κεφάλαιο 4, εφαρμόσαμε τον αλγόριθμο γάμμα για την βαθμονόμηση της κάμερας και τη διόρθωση των εικόνων και έχουμε αναλύσει τις εικόνες πρίν και μετά την εφαρμογή του αλγόριθμου γάμμα.

7.4.1 Πειραμά 1: Ζωικό ενδομητρίο με διαφορετικές γωνιές ληψης

Ένα παράδειγμα παρουσιάζεται στο Σχήμα 68 που παρουσιάζει υστεροσκοπικές εικόνες από ζωικό ενδομήτριο σε αρχική μορφή και σε διορθωμένη μορφή (αλγόριθμος γάμμα). Οι εικόνες (α) και (γ) παρουσιάζουν τις αρχικές εικόνες, όπως τις έχουμε αποθηκεύσει μετά την εξαγωγή τους κατά τη διάρκεια της ενδοσκοπικής μεθόδου, και οι εικόνες (β) και (δ) παρουσιάζουν τις διορθωμένες εικόνες με τον αλγόριθμο γάμμα με δύο διαφορετικούς b συντελεστές της εξίσωσης γάμμα.

Έχοντας συλλέξει τις εικόνες από πειραματικό ιστό ζωικού ενδομήτριου, από 2 διαφορετικές συνεχόμενες γωνίες λήψης, με 3 μοίρες διαφορά, εξαγάγαμε τα χαρακτηριστικά υφής και εφαρμόσαμε τη στατιστική ανάλυση. Το πείραμα έγινε κάτω από πραγματικές συνθήκες. Κάναμε 10 σειρές πειραμάτων από διαφορετικές γωνίες σκόπευσης και ο γιατρός επέλεξε τις περιοχές ενδιαφέροντος διά χειρός. Οπότε έχουμε δύο κατηγορίες περιοχών ενδιαφέροντος με 20 εικόνες η κάθε κατηγορία. Η γωνία σκόπευσης δεν ξεπερνά τις 3 μοίρες εξαιτίας του γεγονότος ότι κατά τη διάρκεια μιας υστεροσκοπικής εξέτασης ο γιατρός δεν μετακινεί την κάμερα πέραν αυτών των γωνιών λόγω του ότι το πραγματικό ενδομήτριο είναι 3 κυβικά εκατοστά.

Το Σχήμα 69 παρουσιάζει εικόνες από πειραματικό ιστό από διαφορετικές γωνίες λήψης των 3 διαδοχικών μοιρών αντίστοιχα. Επίσης παρουσιάζουμε τα αντίστοιχα ιστογράμματά των τριών χρωματικών τους συνιστωσών, κόκκινο, πράσινο και μπλε.

211

Παράλληλα εφαρμόσαμε τον αλγόριθμο γάμμα για βαθμονόμηση των υστεροσκοπικών εικόνων και εξαγάγαμε τα χαρακτηριστικά υφής. Για να μπορέσουμε να συγκρίνουμε και να αξιολογήσουμε τα αποτελέσματά μας εφαρμόσαμε τη στατιστική ανάλυση στις δύο κατηγορίες πρίν και μετά τη βαθμονόμηση των εικόνων με τον αλγόριθμο γάμμα.

Με τη στατιστική ανάλυση (Wilcox Rank sum Test) παρατηρήσαμε ότι δεν υπάρχει στατιστική διαφορά μεταξύ των δύο περιπτώσεων για μικρές γωνίες σκόπευσης. Δηλαδή δεν έχουμε στατιστική διαφορά μεταξύ των αρχικών εικόνων και των κανονικοποιημένων εικόνων για μικρές γωνίες σκόπευσης. Άρα συμπεραίνουμε ότι για μικρές γωνίες διαφοράς, δεν υπάρχει στατιστική διαφορά μεταξύ των χαρακτηριστικών υφής οπότε μπορούμε να συγκρίνουμε διαφορετικές εικόνες περιοχών ενδιαφέροντος από διαφορετικές συνθήκες στόχευσης.

Τέλος, όπως παρατηρούμε στους πιο κάτω πίνακες, πρίν και μετά την εφαρμογή του γάμμα αλγόριθμου, οι τιμές των χαρακτηριστικών υφής μετά τη βαθμονόμηση των εικόνων, έχουν βελτιωθεί και μπορούν να χαρακτηρίσουν με ακρίβεια τις υστεροσκοπικές εικόνες και την παθολογία που παρουσιάζουν.

Ο Πίνακας 13 παρουσιάζει τα χαρακτηριστικά υφής για τους δύο αλγόριθμους υφής από τις δύο γωνίες στόχευσης, διαφοράς 3 μοιρών αντίστοιχα. Η ανάλυση έγινε πρίν την εφαρμογή του αλγόριθμου γάμμα και παρουσιάζει μεγάλο ενδιαφέρον δεδομένου ότι και σε αυτή την περίπτωση δεν είχαμε στατιστική διαφορά μεταξύ των δύο διαφορετικών γωνιών λήψης. Στον αλγόριθμο SF υπάρχει η ίδια σχεδόν διακύμανση τιμών στα αντίστοιχα χαρακτηριστικά υφής. Η διακύμανση στον αλγόριθμο SGLDM είναι μικρότερη στην πρώτη γωνία με 238 τιμή ενώ στη δεύτερη γωνία έχει τιμή 146. Επίσης η αντίθεση παρουσιάζει μεγάλη ομοιότητα και στις δύο γωνίες με τιμές 29-28 αντίστοιχα. Η εντροπία και στους δύο αλγόριθμους παρουσιάζει ομοιότητα.

Ο Πίνακας 14 παρουσιάζει τα χαρακτηριστικά υφής για τους δύο αλγόριθμους υφής από τις δύο γωνίες στόχευσης διαφοράς 3 μοιρών αντίστοιχα. Η ανάλυση έγινε μετά την εφαρμογή του αλγόριθμου γάμμα και δεν είχαμε στατιστική διαφορά μεταξύ των δύο διαφορετικών γωνιών λήψης. Στον αλγόριθμο SF υπάρχει ομοιότητα στη διακύμανση τιμών στα αντίστοιχα χαρακτηριστικά υφής. Η διακύμανση στον αλγόριθμο SGLDM είναι σχεδόν η ίδια και στις δύο γωνίες. Επίσης η αντίθεση παρουσιάζει σχετική ομοιότητα και στις δύο γωνίες αντίστοιχα. Η εντροπία και στους δύο αλγόριθμους, SF, SGLDM, παρουσιάζει σχεδόν ομοιότητα. Συνεπάγεται ότι για μικρές γωνίες σκόπευσης δεν υπάρχει στατιστική διαφορά

212

μεταξύ των χαρακτηριστικών υφής και έτσι δεν επηρεάζουν το σύστημα ανάλυσης ενδοσκοπικών εικόνων.

Σχήμα 68: Αρχικές εικόνες από ζωικό ενδομήτριο υπό πραγματικές συνθήκες, (α), (γ), και οι ίδιες εικόνες μετά την εφαρμογή του γάμμα αλγόριθμου, (β), (δ) αντίστοιχα. Στο (β) εχουμε διόρθωση της εικόνα με συντελεστή $b_R=52$, $b_G=58$ και $b_B=79$, ενώ στη εικόνα (δ) έχει διορθωθεί με συντελεστή $b_{RGB}=0$.

Σχήμα 69: Εικόνες πειραματικού ιστού από 4 διαφορετικές γωνίες λήψης διαφοράς 3 μοιρών με τα αντίστοιχα ιστογράμματα των χρωματικών συνιστωσών τους.

Πίνακας 13: Χαρακτηριστικά υφής από δύο συνεχόμενες γωνίες σκόπευσης, χρησιμοποιώντας ζωικό ενδομήτριο καθώς και η στατιστική ανάλυση πρίν την εφαρμογή του αλγόριθμου γάμμα.

				Γω	vía 1							Γω	νία 2				
	5%	25%	Median	75%	95%	IQR	Mean	STD	5%	25%	Median	75%	95%	IQR	Mean	STD	H^1
SF																	
Mean	31,97	38,76	52,97	98,52	182,63	29,88	76,30	57,35	27,79	36,15	43,84	64,03	107,73	13,94	53,90	28,99	0
Variance	49,56	107,98	240,61	436,01	476,76	164,01	258,59	174,94	58,52	65,26	147,93	448,90	645,21	191,82	252,29	242,15	0
Median	32,10	38,94	51,05	97,18	182,07	29,12	75,40	57,18	26,32	36,41	45,76	70,77	107,94	17,18	55,50	29,63	0
Mode	40,00	40,00	48,50	88,00	183,00	24,00	74,67	56,16	22,00	39,00	52,50	80,00	135,00	20,50	63,50	39,90	0
Skewness	-0,35	-0,07	-0,05	-0,02	0,40	0,02	-0,02	0,24	-0,47	-0,36	-0,19	-0,02	0,39	0,17	-0,14	0,30	0
Kurtosis	1,94	2,25	2,53	2,60	3,44	0,17	2,55	0,50	1,63	2,06	2,30	2,44	2,67	0,19	2,23	0,36	0
Energy	0,014	0,015	0,019	0,027	0,039	0,006	0,022	0,010	0,011	0,018	0,025	0,035	0,036	0,008	0,025	0,010	0
Entropy	3,357	3,720	4,091	4,383	4,410	0,331	4,009	0,417	3,445	3,464	3,800	4,184	4,570	0,360	3,877	0,449	0
SGLDM																	
ASM	7,66E-04	8,43E-04	1,07E-03	1,59E-03	2,28E-03	3,72E-04	1,27E-03	5,76E-04	6,30E-04	1,12E-03	1,49E-03	2,07E-03	2,13E-03	4,75E-04	1,49E-03	5,94E-04	0
Contrast	27,55	28,59	29,71	31,28	37,37	1,34	30,70	3,55	26,86	28,61	28,72	30,26	30,29	0,83	28,91	1,27	0
Correlation	0,71	0,87	0,93	0,96	0,97	0,05	0,90	0,10	0,74	0,79	0,89	0,97	0,98	0,09	0,88	0,10	0
Variance	49,31	107,28	238,62	433,21	471,72	162,97	256,46	173,29	58,22	64,84	146,57	448,53	640,06	191,85	250,80	240,68	0
Homogeneity	0,20	0,20	0,21	0,21	0,21	0,00	0,21	0,00	0,21	0,21	0,21	0,21	0,21	0,00	0,21	0,00	0
Sum Average	66,06	79,58	108,00	199,18	367,33	59,80	154,69	114,70	57,57	74,30	89,77	130,24	217,58	27,97	109,87	58,03	0
Sum Variance	168,65	401,55	921,39	1702,20	1855,60	650,32	995,13	691,49	202,59	232,49	557,66	1765,32	2529,98	766,41	974,28	962,14	0
Sum Entropy	3,95	4,36	4,75	5,03	5,07	0,34	4,65	0,44	4,06	4,07	4,43	4,81	5,23	0,37	4,51	0,47	0
Dif Variance	10,31	10,79	11,25	12,37	17,75	0,79	12,29	2,77	10,13	10,77	10,90	11,49	11,59	0,36	10,97	0,53	0
Dif Entropy	2,44	2,45	2,47	2,49	2,52	0,02	2,47	0,03	2,42	2,45	2,46	2,48	2,48	0,01	2,46	0,02	0
InF Cor1	-0,31	-0,31	-0,26	-0,20	-0,11	0,06	-0,24	0,08	-0,34	-0,29	-0,21	-0,15	-0,12	0,07	-0,22	0,08	0
InF Cor2	0,73	0,88	0,94	0,97	0,97	0,04	0,90	0,09	0,76	0,80	0,89	0,95	0,98	0,08	0,88	0,09	0
Entropy	6,33	6,71	7,11	7,41	7,42	0,35	7,02	0,44	6,41	6,46	6,79	7,15	7,59	0,35	6,87	0,46	0
GLDS																	
Homogeneity	0,203	0,204	0,208	0,211	0,212	0,004	0,208	0,004	0,205	0,206	0,208	0,209	0,215	0,001	0,209	0,003	0
Contrast	27,56	28,60	29,72	31,28	37,35	1,34	30,70	3,54	26,86	28,61	28,72	30,26	30,29	0,82	28,91	1,27	0
Energy	0,098	0,099	0,100	0,101	0,102	0,001	0,100	0,002	0,098	0,099	0,101	0,101	0,104	0,001	0,101	0,002	0
Entropy	2,44	2,45	2,47	2,49	2,52	0,02	2,47	0,03	2,43	2,46	2,46	2,48	2,48	0,01	2,46	0,02	0
Mean	4,15	4,21	4,29	4,36	4,42	0,07	4,29	0,10	4,09	4,22	4,22	4,32	4,33	0,05	4,23	0,09	0

¹Η Wilcoxon rank sum test μεταξύ φυσιολογικού και παθολογικού ιστού με '1' αναφέρεται για την στατιστική διαφορά, και '0' για τη μη στατιστική διαφορά με a=0.05, P5%, P25%, P5%, P75%, P95%: είναι τα 5th, 25th, 50th (Median), 75th και 95th ποσοστά αντίστοιχα, IQR: Spread of the data (Inter Quartile Range: διαφορά μεταξύ του 25th και 75th ποσοστάν)

				Γω	vía 1							Γω	νία 2				
	5%	25%	Median	75%	95%	IQR	Mean	STD	5%	25%	Median	75%	95%	IQR	Mean	STD	H^1
SF																	
Mean	77,56	90,90	113,69	182,28	247,36	45,69	137,58	65,46	70,42	86,23	99,15	131,18	194,11	22,47	113,37	44,35	0
Variance	14,90	153,00	485,90	854,76	1156,03	350,88	525,08	438,36	187,58	189,68	486,67	1123,46	1164,98	466,89	606,51	447,78	0
Median	79,26	91,43	111,58	181,09	247,48	44,83	137,07	65,03	68,42	87,05	103,12	142,85	195,98	27,90	116,76	45,93	0
Mode	90	97	108	170	247	36,5	136,67	61,52	60	90	114	160	242	35	130	64,04	0
Skewness	-6,98	-0,49	-0,21	-0,13	0,21	0,18	-1,30	2,79	-0,64	-0,45	-0,32	-0,16	0,23	0,14	-0,28	0,30	0
Kurtosis	2,11	2,34	2,54	2,82	119,79	0,24	22,02	47,90	1,68	2,08	2,39	2,59	2,74	0,25	2,31	0,39	0
Energy	9,52E-03	9,93E-03	1,41E-02	2,27E-02	9,84E-02	6,38E-03	2,81E-02	3,48E-02	9,64E-03	1,19E-02	1,47E-02	2,11E-02	2,16E-02	4,57E-03	1,56E-02	4,95E-03	0
Entropy	2,46	3,91	4,40	4,71	4,85	0,40	4,12	0,88	3,97	4,00	4,37	4,62	4,75	0,31	4,35	0,33	0
SGLDM																	
ASM	3,80E-04	4,14E-04	5,19E-04	8,17E-04	2,89E-02	2,02E-04	5,25E-03	1,16E-02	4,91E-04	5,08E-04	5,80E-04	7,29E-04	8,51E-04	1,11E-04	6,23E-04	1,40E-04	0
Contrast	5,14	60,35	80,61	88,41	107,03	14,03	70,36	35,32	52,98	72,10	83,78	97,46	107,53	12,68	82,94	19,51	0
Correlation	0,71	0,82	0,89	0,96	0,97	0,07	0,88	0,10	0,74	0,79	0,88	0,97	0,98	0,09	0,87	0,10	0
Variance	14,60	152,19	481,82	848,70	1143,77	348,26	520,48	434,03	186,62	188,33	481,92	1121,75	1156,49	466,71	602,84	445,69	0
Homogeneity	0,12	0,13	0,14	0,15	0,66	0,01	0,22	0,21	0,12	0,13	0,13	0,14	0,18	0,01	0,14	0,02	0
Sum Average	157,36	183,88	229,50	366,77	496,63	91,44	277,28	130,84	142,83	174,49	200,47	264,64	390,43	45,08	228,89	88,77	0
Sum Variance	53,24	520,34	1832,76	3334,45	4495,86	1407,06	2011,57	1722,28	649,02	675,50	1829,02	4414,88	4572,97	1869,69	2328,40	1797,39	0
Sum Entropy	3,12	4,51	5,05	5,37	5,52	0,43	4,77	0,88	4,59	4,63	5,02	5,25	5,43	0,31	4,99	0,34	0
Dif Variance	4,38	22,94	31,12	33,46	41,42	5,26	27,41	12,73	21,64	27,69	32,04	36,98	40,96	4,65	31,89	6,99	0
Dif Entropy	1,11	2,81	2,95	3,00	3,09	0,09	2,65	0,76	2,75	2,90	2,97	3,04	3,09	0,07	2,95	0,12	0
InF Cor1	-0,41	-0,30	-0,26	-0,19	-0,11	0,06	-0,25	0,10	-0,33	-0,28	-0,20	-0,14	-0,12	0,07	-0,21	0,08	0
InF Cor2	0,76	0,89	0,93	0,97	0,97	0,04	0,91	0,08	0,79	0,82	0,90	0,96	0,98	0,07	0,89	0,08	0
Entropy	3,89	7,38	7,85	8,07	8,22	0,35	7,21	1,65	7,38	7,52	7,85	7,95	7,96	0,21	7,75	0,25	0
GLDS																	
Homogeneity	0,12	0,13	0,14	0,15	0,66	0,01	0,22	0,21	0,12	0,13	0,13	0,14	0,18	0,01	0,14	0,02	0
Contrast	5,14	60,36	80,62	88,43	107,04	14,03	70,37	35,33	52,98	72,10	83,79	97,48	107,55	12,69	82,95	19,52	0
Energy	0,05	0,06	0,06	0,07	0,38	0,01	0,12	0,13	0,05	0,06	0,06	0,07	0,08	0,00	0,06	0,01	0
Entropy	1,12	2,81	2,95	3,00	3,09	0,09	2,65	0,76	2,75	2,90	2,97	3,05	3,09	0,07	2,96	0,12	0
Mean	0,87	6,12	7,03	7,41	8,10	0,65	6,09	2,64	5,60	6,66	7,19	7,78	8,16	0,56	7,10	0,91	0

Πίνακας 14: Χαρακτηριστικά υφής από δύο συνεχόμενες γωνίες σκόπευσης, χρησιμοποιώντας ζωικό ενδομήτριο καθώς και η στατιστική ανάλυση μετά την εφαρμογή του αλγόριθμου γάμμα.

¹Η Wilcoxon rank sum test μεταξύ φυσιολογικού και παθολογικού ιστού με '1' αναφέρεται για την στατιστική διαφορά, και '0' για τη μη στατιστική διαφορά με a=0.05, P5%, P25%, P50%, P75%, P95%: είναι τα 5th, 25th, 50th (Median), 75th και 95th ποσοστά αντίστοιχα, IQR: Spread of the data (Inter Quartile Range: διαφορά μεταξύ του 25th και 75th ποσοστάον)
7.4.2 Πειραμά 2: Νωπό Κοτοπούλο με διαφορετικές γωνιές ληψης

Έχουν γίνει διάφορα πειράματα με χρήση πειραματικού ιστού από διαφορετικές γωνίες λήψης ενδοσκοπικών εικόνων με πραγματικές συνθήκες και στο σημείο αυτό παρουσιάζουμε ένα πείραμα με 2 διαφορετικές συνεχόμενες γωνίες λήψης των 3 μοιρών διαφορά. Στο πείραμα αυτό χρησιμοποιήσαμε τη στομαχική κοιλότητα νωπού κοτόπουλου που αντιπροσωπεύει με μεγάλη λεπτομέρεια τις πραγματικές συνθήκες. Έγιναν πειράματα λήψης εικόνων από διαφορετικές αποστάσεις λήψης όπως αναφέρεται στο ιατρικό πρωτόκολλο λαπαροσκοπικής / υστεροσκοπικής απεικόνισης.

Έχουν φωτογραφηθεί και αποθηκευτεί συνολικά 40 εικόνες από διαφορετικές γωνίες λήψης από τις περιοχές ενδιαφέροντος (Σχήμα 70). Οι εικόνες, όπως αναφέρουμε και στη θεωρία μας, έχουν μετατραπεί σε εικόνες gray scale (γκρι εντάσεις του χρώματος) και έχουμε εξαγάγει τα χαρακτηριστικά υφής των περιοχών ενδιαφέροντος.

Έπειτα έγινε η στατιστική ανάλυση του κάθε πειράματος (Wilcoxon Rank Sum Test) για να αποδείξουμε τη σημασία των διαφορετικών συνθηκών λήψης στην επεξεργασία εικόνας. Το στατιστικό αποτέλεσμα μας δίδει δύο απαντήσεις: H=1 εάν έχω στατιστική διαφορά μεταξύ των διαφορετικών αποστάσεων λήψης και H=0 εάν δεν υπάρχει στατιστική διαφορά μεταξύ των διαφορετικών εικόνων.

Το στατιστικό αποτέλεσμα με λίγα λόγια μας επιτρέπει να ξέρουμε τα όρια λήψης ενδοσκοπικών εικόνων και πώς αυτά επηρεάζουν την ανάλυσή μας.

Σε αυτό το πείραμα συλλέξαμε 40 εικόνες από δύο διαφορετικές γωνίες λήψης και σταθερή απόσταση από τον ιστό. Η πρώτη γωνία έχει τιμή 0 μοίρες από την ευθεία του ιστού και η δεύτερη έχει γωνία +3 μοίρες από τον ιστό. Η διαφορά τους είναι στις 3 μοίρες. Εξάγοντας τα χαρακτηριστικά υφής από τις δύο κατηγορίες εικόνων εφαρμόσαμε τη στατιστική ανάλυση για να συμπεράνουμε αν υπάρχει στατιστική διαφορά μεταξύ τους. Στον πιο κάτω πίνακα παρουσιάζουμε τα αποτελέσματα του εν λόγω πειράματος.

Ο Πίνακας 15 παρουσιάζει τα χαρακτηριστικά υφής των αλγόριθμων SF, SGLDM και GLDS καθώς και τη στατιστική ανάλυση μεταξύ των δύο διαφορετικών γωνιών λήψης. Η πρώτη στήλη παρουσιάζει το P5%, η δεύτερη στήλη το P25%, η τρίτη στήλη το Median, η τέταρτη το P75% και η πέμπτη στήλη το P95%. Η ίδια ανάλυση αντίστοιχα παρουσιάζεται στη γωνία 2. Η τελευταία στήλη παρουσιάζει τη στατιστική ανάλυση των χαρακτηριστικών υφής μεταξύ των γωνιών 1 και 2. Στην πρώτη γωνία λήψης βλέπουμε ότι η Median τιμή της διακύμανσης (Variance) του SGLDM είναι σχεδόν η ίδια, με τιμή=93 με την αντίστοιχη τιμή στη δεύτερη γωνία. Επίσης η αντίθεση στη μέση τιμή του στην πρώτη γωνία είναι ελαφρώς

217

μεγαλύτερη σε σύγκριση με την τιμή του στη δεύτερη γωνία. Η εντροπία του SF και η ομοιογένεια των δύο εικόνων είναι σχετικά το ίδιο με τιμή 2,46 και 0,21 αντίστοιχα.

Ο Πίνακας 16 παρουσιάζει τα χαρακτηριστικά υφής των αλγόριθμων SF, SGLDM και GLDS καθώς και τη στατιστική ανάλυση μεταξύ των δύο διαφορετικών γωνιών λήψης μετά την εφαρμογή του αλγόριθμου γάμμα. Η πρώτη στήλη παρουσιάζει το P5%, η δεύτερη στήλη το P25, η τρίτη στήλη το Median, η τέταρτη το P75% και η πέμπτη στήλη το P95%. Η ίδια ανάλυση αντίστοιχα παρουσιάζεται στην γωνία 2. Η τελευταία στήλη παρουσιάζει την στατιστική ανάλυση μεταξύ των γωνιών 1 και 2. Επίσης παρουσιάζουμε τη στατιστική ανάλυση μεταξύ των γωνιών 1 και 2. Επίσης παρουσιάζουμε τη στατιστική ανάλυση μεταξύ των γωνιών 1 και 2 πρίν και μετά την εφαρμογή του αλγόριθμου γάμμα, και μεταξύ των γωνιών 1 και 2 πρίν και μετά την εφαρμογή του αλγόριθμου γάμμα. Στην πρώτη γωνία λήψης βλέπουμε ότι η Median τιμή της διακύμανσης (Variance) είναι μεγαλύτερη, με τιμή=200 καθώς η αντίστοιχη τιμή στη δεύτερη γωνία είναι 104. Επίσης η αντίθεση στη μέση τιμή του, στην πρώτη γωνία και η ομοιογένεια των δύο εικόνων είναι σχετικά το ίδιο με τιμή 7 και 0,21 αντίστοιχα. Γενικά δεν παρουσιάζεται στατιστική διαφορά μεταξύ των 2 γωνιών λήψης με αποτέλεσμα να μην επηρεάζουν οι διαφορετικές γωνίες λήψης την ανάλυσή μας.

Στο Σχήμα 71 έχουμε εξαγάγει τα ιστογράμματα των εικόνων στα τρία βασικά χρώματα (Κόκκινο, Πράσινο, Μπλε). Παρατηρήστε ότι στις δύο συνθήκες λήψης έχουμε διαφορά στην παρουσίαση των χρωματικών συνιστωσών, ιδιαίτερα στο χρώμα πράσινο και κόκκινο.

Σχήμα 70: Περιοχές ενδιαφέροντος από πειραματικό ιστό (κοιλιακή κοιλότητα κοτόπουλου) κάτω από διαφορετικές συνθήκες παρατήρησης. (α) Κοντινό πλάνο, (β) πανοραμικό πλάνο, (γ) και (δ) διαφορετικές γωνίες παρατήρησης.

Πίνακας 15: Αποτελέσματα επιλεγμένων χαρακτηριστικών υφής από 2 συνεχόμενες γωνίες λήψης καθώς και το αποτέλεσμα της στατιστικής ανάλυσης των εικόνων.

				Γω	vía 1							Γω	vía 2				
	5%	25%	Median	75%	95%	IQR	Mean	STD	5%	25%	Median	75%	95%	IQR	Mean	STD	Н
SF																	
Mean	31,97	38,76	52,97	98,52	182,63	29,88	76,30	57,35	27,79	36,15	43,84	64,03	107,73	13,94	53,90	28,99	0
Variance	49,56	107,98	240,61	436,01	476,76	164,01	258,59	174,94	58,52	65,26	147,93	448,90	645,21	191,82	252,29	242,15	0
Median	32,10	38,94	51,05	97,18	182,07	29,12	75,40	57,18	26,32	36,41	45,76	70,77	107,94	17,18	55,50	29,63	0
Mode	40,00	40,00	48,50	88,00	183,00	24,00	74,67	56,16	22,00	39,00	52,50	80,00	135,00	20,50	63,50	39,90	0
Skewness	-0,35	-0,07	-0,05	-0,02	0,40	0,02	-0,02	0,24	-0,47	-0,36	-0,19	-0,02	0,39	0,17	-0,14	0,30	0
Kurtosis	1,94	2,25	2,53	2,60	3,44	0,17	2,55	0,50	1,63	2,06	2,30	2,44	2,67	0,19	2,23	0,36	0
Energy	0,014	0,015	0,019	0,027	0,039	0,006	0,022	0,010	0,011	0,018	0,025	0,035	0,036	0,008	0,025	0,010	0
Entropy	3,357	3,720	4,091	4,383	4,410	0,331	4,009	0,417	3,445	3,464	3,800	4,184	4,570	0,360	3,877	0,449	0
SGLDM																	
ASM	7,66E-04	8,43E-04	1,07E-03	1,59E-03	2,28E-03	3,72E-04	1,27E-03	5,76E-04	6,30E-04	1,12E-03	1,49E-03	2,07E-03	2,13E-03	4,75E-04	1,49E-03	5,94E-04	0
Contrast	27,55	28,59	29,71	31,28	37,37	1,34	30,70	3,55	26,86	28,61	28,72	30,26	30,29	0,83	28,91	1,27	0
Correlation	0,71	0,87	0,93	0,96	0,97	0,05	0,90	0,10	0,74	0,79	0,89	0,97	0,98	0,09	0,88	0,10	0
Variance	49,31	107,28	238,62	433,21	471,72	162,97	256,46	173,29	58,22	64,84	146,57	448,53	640,06	191,85	250,80	240,68	0
Homogeneity	0,20	0,20	0,21	0,21	0,21	0,00	0,21	0,00	0,21	0,21	0,21	0,21	0,21	0,00	0,21	0,00	0
Sum Average	66,06	79,58	108,00	199,18	367,33	59,80	154,69	114,70	57,57	74,30	89,77	130,24	217,58	27,97	109,87	58,03	0
Sum Variance	168,65	401,55	921,39	1702,20	1855,60	650,32	995,13	691,49	202,59	232,49	557,66	1765,32	2529,98	766,41	974,28	962,14	0
Sum Entropy	3,95	4,36	4,75	5,03	5,07	0,34	4,65	0,44	4,06	4,07	4,43	4,81	5,23	0,37	4,51	0,47	0
Entropy	6,33	6,71	7,11	7,41	7,42	0,35	7,02	0,44	6,41	6,46	6,79	7,15	7,59	0,35	6,87	0,46	0
Dif. Variance	10,31	10,79	11,25	12,37	17,75	0,79	12,29	2,77	10,13	10,77	10,90	11,49	11,59	0,36	10,97	0,53	0
Dif. Entropy	2,44	2,45	2,47	2,49	2,52	0,02	2,47	0,03	2,42	2,45	2,46	2,48	2,48	0,01	2,46	0,02	0
InF. Correlation 1	-0,31	-0,31	-0,26	-0,20	-0,11	0,06	-0,24	0,08	-0,34	-0,29	-0,21	-0,15	-0,12	0,07	-0,22	0,08	0
InF. Correlation 2	0,73	0,88	0,94	0,97	0,97	0,04	0,90	0,09	0,76	0,80	0,89	0,95	0,98	0,08	0,88	0,09	0
GLDS																	
Homogeneity	0,203	0,204	0,208	0,211	0,212	0,004	0,208	0,004	0,205	0,206	0,208	0,209	0,215	0,001	0,209	0,003	0
Contrast	27,56	28,60	29,72	31,28	37,35	1,34	30,70	3,54	26,86	28,61	28,72	30,26	30,29	0,82	28,91	1,27	0
Energy	0,098	0,099	0,100	0,101	0,102	0,001	0,100	0,002	0,098	0,099	0,101	0,101	0,104	0,001	0,101	0,002	0
Entropy	2,44	2,45	2,47	2,49	2,52	0,02	2,47	0,03	2,43	2,46	2,46	2,48	2,48	0,01	2,46	0,02	0
Mean	4,15	4,21	4,29	4,36	4,42	0,07	4,29	0,10	4,09	4,22	4,22	4,32	4,33	0,05	4,23	0,09	0

¹Η Wilcoxon rank sum test μεταξύ φυσιολογικού και παθολογικού ιστού με '1' αναφέρεται για την στατιστική διαφορά, και '0' για τη μη στατιστική διαφορά με a=0.05, P5%, P25%, P5%, P75%, P95%: είναι τα 5th, 25th, 50th (Median), 75th και 95th ποσοστά αντίστοιχα, IQR: Spread of the data (Inter Quartile Range: διαφορά μεταξύ του 25th και 75th ποσοστάν)

Πίνακας 16: Αποτελέσματα επιλεγμένων χαρακτηριστικών υφής από 2 συνεχόμενες γωνίες λήψης καθώς και το αποτέλεσμα της στατιστικής ανάλυσης μετά την εφαρμογή του αλγόριθμου γάμμα. Επίσης παρουσιάζεται η στατιστική ανάλυση πρίν και μετά την εφαρμογή του αλγόριθμου γάμμα μεταξύ των ίδιων γωνιών.

										Στ	ατιστική ανάλυο	ող	
			Γωνία 1					Γωνία 2	2		Γωνία 1 vs. Γωνία 2 Μετά την εφαρμογή του αλγόριθμου γάμμα	Πρίν και μετά την εφαρμογή του αλγόριθμου γάμμα για την γωνία 1	Πρίν και μετά των εφαρμογή του αλγόριθμου γάμμα για την γωνία 2
	P5%	P25%	Median	P75%	P95%	P5%	P25%	Median	P75%	P95%	Н	Н	Н
SF													
Mean	33,68	38,98	45,56	94,08	181,43	29,47	35,91	44,78	51,99	66,35	0	0	0
Variance	51,96	97,59	199,06	314,46	484,39	62,07	66,4	104	276,13	456,75	0	0	0
Median	33,98	39,25	45,91	90,93	180,9	27,96	35,77	47,91	54,35	73,26	0	0	0
Mode	42	42,75	44	88,25	182	24	35,25	51	63,75	84	0	0	0
Skewness	-0,38	-0,18	-0,1	0,05	0,36	-0,51	-0,41	-0,26	0,05	0,36	0	0	0
Kurtosis	1,95	2,34	2,59	2,85	3,49	1,64	2,1	2,34	2,51	2,66	0	0	0
Entropy	3,38	3,65	3,98	4,23	4,42	3,47	3,48	3,67	4,05	4,19	0	0	0
SGLDM													
Contrast	27,81	28,98	30,4	31,05	32,57	26,92	27,91	29,12	30,7	31,34	0	0	0
Correlation	0,72	0,84	0,92	0,94	0,97	0,75	0,79	0,85	0,94	0,97	0	0	0
Variance	51,69	96,95	197,6	311,39	479,23	61,75	65,99	103,74	273,98	456,32	0	0	0
Homogeneity	0,2	0,2	0,21	0,22	0,23	0,2	0,2	0,21	0,21	0,21	0	0	0
Entropy	6,37	6,64	7,02	7,21	7,42	6,43	6,49	6,68	7,05	7,15	0	0	0
GLDS													
Homogeneity	0,21	0,21	0,22	0,22	0,23	0,21	0,21	0,22	0,22	0,22	0	0	0
Contrast	27,81	28,98	30,4	31,04	32,55	26,92	27,91	29,12	30,7	31,34	0	0	0
Energy	0,1	0,1	0,1	0,1	0,11	0,1	0,1	0,1	0,1	0,1	0	0	0
Entropy	2,44	2,45	2,47	2,48	2,48	2,43	2,44	2,46	2,49	2,5	0	0	0
Mean	4,12	4,16	4,27	4,31	4,35	4,09	4,16	4,26	4,37	4,41	0	0	0

¹Η Wilcoxon rank sum test μεταξύ φυσιολογικού και παθολογικού ιστού με '1' αναφέρεται για την στατιστική διαφορά, και '0' για τη μη στατιστική διαφορά με a=0.05, P5%, P25%, P50%, P75%, P95%: είναι τα 5th, 25th, 50th (Median), 75th και 95th ποσοστά αντίστοιχα

Σχήμα 71: Εξαγωγή ιστογραμμάτων των τριών βασικών χρωμάτων (Κόκκινο, Πράσινο, Μπλε) των περιοχών ενδιαφέροντος για δύο διαφορετικές γωνίες λήψης από 10 εικόνες πειραματικού ιστού με διαφορά γωνίας 10 μοιρών.

Από τα πιο πάνω αποτελέσματα παρατηρούμε ότι δεν υπάρχει στατιστική διαφορά μεταξύ των χαρακτηριστικών υφής από διαφορετική γωνία λήψης. Η εφαρμογή του Wilcoxon rank sum test και το αποτέλεσμα H=0 για όλα τα χαρακτηριστικά υφής δηλώνει τα πιο πάνω συμπεράσματα. Ενδεικτικά να αναφέρουμε ότι το Wilcoxon rank sum test έχει ως είσοδο δύο πληθυσμούς και το αποτέλεσμα εφαρμογής του είναι το H το οποίο λαμβάνει δύο τιμές, 0 και 1, που αντιπροσωπεύουν στατιστική διαφορά και μη στατιστική διαφορά αντίστοιχα. Το αποτέλεσμα αυτό είναι πολύ σημαντικό γιατί η γωνία λήψης και παρακολούθησης μιας λαπαροσκοπικής επέμβασης δεν επηρεάζει το διαχωρισμό παθολογικής και φυσιολογικής περιοχής ενδιαφέροντος βάσει των χαρακτηριστικών υφής τους και της στατιστικής ανάλυσης.

Στο Σχήμα 72 παρουσιάζουμε 2 εικόνες από μία υστεροσκοπική εξέταση του ενδομητρίου για παθολογική και φυσιολογική περιοχή και εφαρμόσαμε τον αλγόριθμο γάμμα. Τα αποτελέσματα της βαθμονόμησης φαίνονται κάτω από τις εικόνες εξόδου. Οι εικόνες εξόδου, μετά τη βαθμονόμηση, παρουσιάζονται πιο κοντά προς στις πραγματικές εικόνες. Επίσης έχουμε αναλύσει 50 εικόνες του ενδομητρίου με την κάμερα Circon IP4.1 και τις έχουμε κανονικοποιήσει. Έπειτα έχουμε εξαγάγει τα χαρακτηριστικά υφής από τις δύο κατηγορίες, παθολογικές και φυσιολογικές, και εφαρμόσαμε το στατιστικό τεστ για να αποφανθούμε αν υπάρχει στατιστική διαφορά μεταξύ τους.

Λόγω του γεγονότος ότι το ενδομήτριο έχει 3 κυβικά εκατοστά όγκο περίπου, ο γιατρός κατά τη διάρκεια της εξέτασης μετακινεί το υστεροσκοπικό τηλεσκόπιο 3 cm (συνδεδεμένο με την κάμερα) σε μικρή απόσταση για παρακολούθηση περιοχών ενδιαφέροντος σε δύο όπως φαίνεται στο Σχήμα 73. Αυτές οι δύο αποστάσεις στόχευσης, είναι η παρακολούθηση της περιοχής ενδιαφέροντος σε πανοραμική σκόπευση και η δεύτερη κατάσταση σκόπευσης είναι η λεπτομερής παρακολούθηση σε κοντινή απόσταση. Η απόσταση είναι στα 3 cm.

Σχήμα 72: Οι εικόνες (α) και (β) παρουσιάζουν φυσιολογική και παθολογική περιοχή του ενδομητρίου και οι εικόνες (γ) και (δ) παρουσιάζουν τις ίδιες περιοχές μετά την εφαρμογή του αλγόριθμου γάμμα.

Σχήμα 73: (α), (γ) αρχικές εικόνες (κοντινό πλάνο) υστεροσκοπικής εξέτασης υπό πραγματικές συνθήκες, (β), (δ) ίδιες εικόνες μετά την εφαρμογή του γάμμα αλγόριθμου.

7.7 Anaaysh Gray Scale eikon Ω n enaomhtpioy se Γ ynaikes

Στο σημείο αυτό περιγράφουμε την ανάλυση εικόνων από πραγματικό ιστό ενδομητρίου: Συνεχίζοντας την έρευνά μας συγκεντρώσαμε 40 δείγματα ενδομητρίου και έχουμε εξαγάγει 416 περιοχές ενδιαφέροντος σε δύο κατηγορίες. Η μία κατηγορία περιλαμβάνει 208 φυσιολογικές περιοχές ενδιαφέροντος και η δεύτερη κατηγορία περιλαμβάνει 208 παθολογικές περιοχές ενδιαφέροντος. Οι περιοχές αυτές τμηματοποιήθηκαν από τον ειδικό γιατρό βάσει της ιστοπαθολογικής τους εξέτασης.

Τα χαρακτηριστικά υφής έχουν εξαχθεί μετά τη μετατροπή των έγχρωμων περιοχών ενδιαφέροντος σε αποχρώσεις του γκρι όπως έχουμε αναφέρει στο Κεφάλαιο 4, (παράγραφος 4.7).

Ο Πίνακας 17 παρουσιάζει τη στατιστική ανάλυση μεταξύ του φυσιολογικού και παθολογικού ιστού πρίν την εφαρμογή του αλγόριθμου γάμμα. Η πιο πάνω στατιστική ανάλυση παρουσιάζει ιδιαίτερο ενδιαφέρον και εξάγονται ενδιαφέροντα συμπεράσματα. Στον αλγόριθμο SF το median της διακύμανσης (variance) είναι μικρότερο από την τιμή του στην παθολογική περιοχή, 67 με 142 αντίστοιχα. Στον αλγόριθμο SGLDM παρατηρούμε την ίδια απόκλιση της διακύμανσης (variance) ενώ στον αλγόριθμο SGLDM παρατηρούμε την ίδια απόκλιση της διακύμανσης (variance) ενώ στον αλγόριθμο SGLDM παρατηρούμε την ίδια απόκλιση της διακύμανσης (variance) ενώ στον αλγόριθμο SGLDM παρατηρούμε την ίδια απόκλιση της διακύμανσης (variance) ενώ στον αλγόριθμο GLDS η median τιμή της contrast είναι μικρότερη στις φυσιολογικές εικόνες σε σχέση με τις παθολογικές, με τιμές 4 και 8 αντίστοιχα. Επίσης παρατηρήσαμε ότι και στους τρεις αλγόριθμους η εντροπία των δύο κατηγοριών εικόνων παραμένει σταθερή.

Ο Πίνακας 18 παρουσιάζει τη στατιστική ανάλυση μεταξύ του φυσιολογικού και παθολογικού ιστού μετά την εφαρμογή του αλγόριθμου γάμμα. Παρατηρούμε ότι υπάρχει στατιστική διαφορά στα περισσότερα χαρακτηριστικά υφής. Η πιο πάνω στατιστική ανάλυση παρουσιάζει ιδιαίτερο ενδιαφέρον και εξάγονται ενδιαφέροντα συμπεράσματα. Στον αλγόριθμο SF το median της διακύμανσης (variance) είναι μικρότερο από την τιμή του στην παθολογική περιοχή, 66 με 106 αντίστοιχα. Στον αλγόριθμο SGLDM παρατηρούμε την ίδια απόκλιση της διακύμανσης (variance, 64/104) ενώ στον αλγόριθμο GLDS η median τιμή του contrast είναι μικρότερη στις φυσιολογικές εικόνες σε σχέση με τις παθολογικές, με τιμές 12 και 15 αντίστοιχα. Επίσης παρατηρήσαμε ότι και στους τρεις αλγόριθμους η εντροπία των δύο κατηγοριών εικόνων παραμένει σταθερή.

Ο Πίνακας 19 παρουσιάζει τη στατιστική ανάλυση μεταξύ ίδιων περιοχών ενδιαφέροντος. Η πρώτη στήλη περιγράφει τους αλγόριθμους χαρακτηριστικών υφής καθώς και τα χαρακτηριστικά υφής. Η δεύτερη στήλη παρουσιάζει τη στατιστική ανάλυση πρίν και μετά την εφαρμογή του γάμμα αλγόριθμου για φυσιολογικές εικόνες και η τρίτη στήλη παρουσιάζει τη στατιστική ανάλυση πρίν και μετά την εφαρμογή του αλγόριθμου γάμμα για τις παθολογικές. Βλέπουμε ότι υπάρχει στατιστική διαφορά πρίν και μετά την εφαρμογή του αλγόριθμου γάμμα για τις παθολογικές.

Ο Πίνακας 20 παρουσιάζει τη στατιστική ανάλυση πραγματικών εικόνων ενδομητρίου σε όλες τις κλίμακες ανάλυσης από 2X2 έως 10X10 πρίν την εφαρμογή του αλγόριθμου γάμμα. Η πρώτη στήλη παρουσιάζει τα χαρακτηριστικά υφής των εικόνων, η δεύτερη μέχρι τη δέκατη στήλη παρουσιάζουν τη στατιστική ανάλυση για κάθε κλίμακα ξεχωριστά αρχίζοντας από την κλίμακα 2X2 και φτάνοντας στη 10X10. Σημειώστε εδώ ότι οπτικά οι περιοχές ενδιαφέροντος παρουσιάζουν αλλοιώσεις στην πληροφορία που περιείχαν μετά την κλίμακα 4X4 με αποτέλεσμα να αποκλειστούν από την έρευνά μας.

Ο Πίνακας 21 είναι παρόμοιος με τον πιο πάνω πίνακα, αλλά μετά την εφαρμογή του αλγόριθμου γάμμα. Σημειώστε εδώ ότι οπτικά οι περιοχές ενδιαφέροντος παρουσιάζουν αλλοιώσεις στην πληροφορία που περιείχαν μετά την κλίμακα 4X4 με αποτέλεσμα να αποκλειστούν από την έρευνά μας.

Στο Σχήμα 74 γραφικές παραστάσεις (Boxplots) των χαρακτηριστικών υφής εικόνων ενδομητρίου, πριν και μετά την εφαρμογή του αλγόριθμου γάμμα. Τα σχήματα (α), (γ) και (ε) παρουσιάζουν τα χαρακτηριστικά υφής, SF: variance, SGLDM: contrast και GLDS: mean πριν την εφαρμογή του αλγόριθμου γάμμα. Τα σχήματα (β), (δ) και (ζ) παρουσιάζουν τα ίδια χαρακτηριστικά υφής μετά την εφαρμογή του αλγόριθμου γάμμα. (Σημείωση: Τα σχήματα αντιπροσωπεύουν το median, lower και upper quartiles. Η κόκκινη γραμμή ενώνει τις πιο κοντινές «παρατηρήσεις» στο διάστημα 1.5 του inter-quartile range (IQR) των lower και upper quartiles.)

Πίνακας 17: Χαρακτηριστικά υφής και στατιστική ανάλυση φυσιολογικού και παθολογικού ενδομητρίου από 416 εικόνες gray scale περιοχών ενδιαφέροντος (208 φυσιολογικές και 208 παθολογικές εικόνες που καταγράφηκαν από 40 γυναίκες) πρίν την εφαρμογή του αλγόριθμου γάμμα.

								Πραγμ	ατικές Ειθ	κόνες							
				Φυσιο	λογικό ενδο	ιήτριο						Παθολογικά	ενδομήτριο				
	P5%	P25%	Median	P75%	P95%	IQR	Mean	STD	P5%	P25%	Median	P75%	P95%	IQR	Mean	STD	H^1
SF																	
Mean	87,37	116,29	136,80	156,64	192,99	20,17	137,39	31,76	75,32	108,04	125,00	152,15	195,89	22,06	130,33	35,35	1
Variance	15,01	36,43	67,25	155,76	351,77	59,67	112,01	110,13	33,38	82,60	142,85	287,53	617,21	102,47	213,96	203,50	1
Median	87,66	116,82	136,96	157,58	192,24	20,38	137,53	31,89	75,41	106,67	123,21	153,35	197,99	23,34	130,63	35,96	1
Mode	85,95	116,00	136,00	158,00	188,05	21,00	137,68	32,30	74,00	103,50	125,00	159,00	202,10	27,75	131,79	38,43	1
Skewness	-1,00	-0,43	-0,11	0,14	0,58	0,28	-0,14	0,47	-1,07	-0,43	-0,11	0,22	0,63	0,33	-0,16	0,56	0
Kurtosis	1,93	2,26	2,63	3,08	4,28	0,41	2,81	0,83	1,81	2,22	2,61	3,07	4,68	0,43	2,86	1,11	0
Energy	0,02	0,03	0,04	0,05	0,08	0,01	0,04	0,02	0,01	0,02	0,03	0,03	0,05	0,01	0,03	0,01	1
Entropy	2,73	3,15	3,44	3,82	4,19	0,33	3,47	0,46	3,12	3,55	3,81	4,09	4,41	0,27	3,80	0,40	1
SGLDM																	
ASM*100	2,00	3,00	6,00	9,00	14,00	3,00	7,00	4,00	2,00	2,00	4,00	5,00	9,00	1,00	4,00	3,00	1
Contrast	2,96	3,62	4,58	5,93	15,27	1,15	6,12	5,07	3,04	5,20	8,16	13,70	25,42	4,25	10,42	7,24	1
Correlation	0,85	0,93	0,96	0,98	0,99	0,02	0,95	0,05	0,91	0,95	0,97	0,98	0,99	0,02	0,96	0,04	1
Variance	14,75	35,61	65,93	154,00	344,69	59,20	110,19	108,55	32,83	81,91	140,56	280,55	605,91	99,32	210,99	201,40	1
Homogeneity	0,34	0,42	0,45	0,48	0,50	0,03	0,44	0,05	0,29	0,36	0,39	0,44	0,50	0,04	0,40	0,06	1
Sum Average	176,88	234,66	275,69	315,30	388,14	40,32	276,81	63,51	152,68	218,13	251,77	305,94	393,99	43,90	262,70	70,72	1
Sum Variance	50,17	138,60	260,18	609,71	1373,66	235,56	434,66	432,77	127,04	323,78	554,02	1109,47	2410,76	392,85	833,55	802,34	1
Sum Entropy	3,35	3,79	4,10	4,48	4,85	0,34	4,12	0,47	3,76	4,20	4,47	4,74	5,08	0,27	4,45	0,40	1
Dif. Variance	1,23	1,46	1,87	2,49	7,44	0,52	2,64	2,37	1,25	2,18	3,71	6,66	12,26	2,24	4,92	3,83	1
Dif. Entropy	1,40	1,48	1,57	1,68	2,04	0,10	1,62	0,20	1,42	1,62	1,80	1,99	2,24	0,18	1,81	0,25	1
InF. Correlation 1	-0,50	-0,44	-0,40	-0,35	-0,26	0,05	-0,39	0,07	-0,50	-0,45	-0,41	-0,37	-0,29	0,04	-0,41	0,06	0
InF. Correlation 2	0,86	0,93	0,97	0,98	0,99	0,02	0,95	0,05	0,92	0,96	0,98	0,98	0,99	0,01	0,97	0,03	1
Entropy	4,65	5,11	5,48	6,01	6,49	0,45	5,53	0,58	5,10	5,64	6,04	6,44	6,79	0,40	6,03	0,55	1
GLDS																	
Homogeneity	0,34	0,42	0,45	0,48	0,51	0,03	0,44	0,05	0,29	0,36	0,40	0,44	0,50	0,04	0,40	0,06	1
Contrast	2,95	3,62	4,57	5,92	15,23	1,15	6,10	5,06	3,04	5,19	8,15	13,67	25,36	4,24	10,40	7,22	1
Energy	0,16	0,22	0,24	0,26	0,28	0,02	0,23	0,04	0,13	0,17	0,20	0,23	0,28	0,03	0,20	0,04	1
Entropy	1,43	1,52	1,61	1,73	2,13	0,11	1,66	0,21	1,45	1,66	1,84	2,04	2,31	0,19	1,86	0,26	1
Mean	1,29	1,43	1,58	1,78	2,81	0,18	1,73	0,50	1,31	1,69	2,03	2,54	3,41	0,43	2,17	0,65	1

¹Η Wilcoxon rank sum test μεταξύ φυσιολογικού και παθολογικού ιστού με '1' αναφέρεται για την στατιστική διαφορά, και '0' για τη μη στατιστική διαφορά με a=0.05, P5%, P25%, P50%, P75%, P95%: είναι τα 5th, 25th, 50th (Median), 75th και 95th ποσοστά αντίστοιχα, IQR: Spread of the data (Inter Quartile Range: διαφορά μεταξύ του 25th και 75th ποσοστάν)

Πίνακας 18: Χαρακτηριστικά υφής και στατιστική ανάλυση φυσιολογικού και παθολογικού ενδομητρίου από 416 εικόνες gray scale περιοχών ενδιαφέροντος (208 φυσιολογικές και 208 παθολογικές εικόνες που καταγράφηκαν από 40 γυναίκες) μετά την εφαρμογή του αλγόριθμου γάμμα.

							П	ραγματικέ	; Εικόνες								
				Φυσιολογικ	κό ενδομήτριο						Παθ	ολογικό εν	δομήτριο				
	P5%	P25%	Median	P75%	P95%	IQR	Mean	STD	P5%	P25%	Median	P75%	P95%	IQR	Mean	STD	H^1
SF																	
Mean	8,37	25,43	44,28	71,90	148,73	23,24	55,81	44,59	6,55	21,46	38,22	70,27	151,40	24,41	52,78	46,69	0
Variance	4,04	24,29	66,18	245,23	1209,59	110,47	264,36	514,09	4,66	42,03	106,34	375,99	1456,98	166,98	335,67	585,83	1
Median	8,30	24,99	43,08	71,29	137,97	23,15	54,69	44,31	6,04	20,33	36,07	67,11	141,23	23,39	51,41	47,40	0
Mode	8,00	23,00	41,00	65,00	233,05	21,00	56,29	55,05	4,00	17,00	31,50	66,00	231,00	24,50	49,95	54,30	1
Skewness	-0,82	-0,02	0,23	0,54	1,14	0,28	0,20	0,64	-0,92	0,06	0,35	0,78	1,58	0,36	0,35	0,77	1
Kurtosis	2,04	2,41	2,74	3,17	4,90	0,38	3,23	4,02	1,86	2,36	2,85	3,60	6,53	0,62	3,35	1,96	0
Energy	0,01	0,02	0,04	0,06	0,16	0,02	0,05	0,05	0,01	0,02	0,03	0,05	0,14	0,02	0,05	0,05	0
Entropy	2,06	2,95	3,42	3,99	4,72	0,52	3,44	0,77	2,14	3,17	3,63	4,13	4,72	0,48	3,58	0,76	1
SGLDM																	
ASM	0,001	0,002	0,005	0,01	0,048	0,004	0,01	0,018	0,001	0,002	0,004	0,01	0,046	0,004	0,012	0,03	0
Contrast	1,64	6,67	12,69	26,30	121,27	9,82	29,07	56,52	1,23	6,54	15,07	31,73	106,70	12,60	28,63	43,06	0
Correlation	0,63	0,82	0,89	0,95	0,98	0,07	0,86	0,12	0,78	0,89	0,94	0,96	0,98	0,04	0,92	0,07	1
Variance	3,97	23,98	64,96	241,99	1190,59	109,01	260,33	507,47	4,59	41,37	104,45	371,16	1448,66	164,89	330,17	577,98	1
Homogeneity	0,20	0,27	0,34	0,43	0,62	0,08	0,36	0,13	0,19	0,27	0,34	0,46	0,66	0,09	0,38	0,15	0
Sum Average	18,77	52,88	90,33	145,91	299,77	46,52	113,62	89,19	15,05	44,94	78,60	142,62	304,26	48,84	107,56	93,40	0
Sum Variance	14	83	249	944	4727	430	1012	1992	16	155	406	1438	5728	642	1292	2285	1
Sum Entropy	2,60	3,55	4,06	4,65	5,37	0,55	4,07	0,79	2,75	3,81	4,29	4,79	5,39	0,49	4,22	0,78	1
Dif. Variance	0,75	2,76	5,02	10,28	56,96	3,76	13,74	29,62	0,58	2,80	6,41	13,96	62,54	5,58	14,09	23,12	0
Dif. Entropy	1,15	1,69	1,97	2,25	2,94	0,28	1,99	0,50	1,04	1,67	2,04	2,35	2,90	0,34	2,00	0,54	0
InF. Correlation 1	-0,45	-0,38	-0,31	-0,25	-0,17	0,06	-0,31	0,09	-0,47	-0,41	-0,36	-0,30	-0,24	0,05	-0,36	0,07	1
InF. Correlation 2	0,69	0,84	0,92	0,96	0,99	0,06	0,89	0,10	0,83	0,91	0,95	0,97	0,99	0,03	0,93	0,06	1
Entropy	3,49	5,09	5,80	6,55	7,57	0,73	5,77	1,15	3,50	5,25	6,06	6,75	7,52	0,75	5,86	1,21	0
GLDS																	
Homogeneity	0,20	0,27	0,34	0,43	0,62	0,08	0,37	0,13	0,19	0,27	0,34	0,46	0,66	0,09	0,38	0,15	0
Contrast	1,64	6,65	12,66	26,24	121,02	9,79	29,00	56,38	1,22	6,52	15,04	31,65	106,46	12,57	28,57	42,97	0
Energy	0,07	0,12	0,16	0,21	0,34	0,05	0,17	0,08	0,07	0,11	0,16	0,22	0,38	0,05	0,18	0,10	0
Entropy	1,22	1,77	2,08	2,36	3,01	0,29	2,08	0,50	1,10	1,75	2,12	2,42	2,99	0,33	2,07	0,55	0
Mean	0,90	1,87	2,63	3,58	7,18	0,86	3,09	2,07	0,76	1,79	2,75	3,85	7,09	1,03	3,08	1,94	0

¹Η Wilcoxon rank sum test μεταξύ φυσιολογικού και παθολογικού ιστού με '1' αναφέρεται για τη στατιστική διαφορά, και '0' για τη μη στατιστική διαφορά με a=0.05, P5%, P25%, P50%, P75%, P95%: είναι τα 5th, 25th, 50th (Median), 75th και 95th ποσοστά αντίστοιχα, IQR: Spread of the data (Inter Quartile Range: διαφορά μεταξύ του 25th και 75th ποσοστών)

Πίνακας 19: Στατιστική ανάλυση χαρακτηριστικών υφής μεταξύ ίδιων περιοχών ενδιαφέροντος, από 416 εικόνες gray scale περιοχών ενδιαφέροντος (208 φυσιολογικές και 208 παθολογικές εικόνες που καταγράφηκαν από 40 γυναίκες) πρίν και μετά την εφαρμογη του αλγόριθμου γάμμα. Η δεύτερη στήλη παρουσιάζει τη στατιστική ανάλυση πρίν και μετά την εφαρμογή του γάμμα αλγόριθμου για φυσιολογικές εικόνες και η τρίτη στήλη παρουσιάζει τη στατιστική ανάλυση χαρακτηριστικών και μετά την εφαρμογή του αλγόριθμου για εφαρμογή του αλγόριθμου γάμμα για τις παθολογικές εικόνες.

Πρίν και μετά	την εφαρμογή το νάμμα	υ αλγόριθμου
	Φυσιολογικές	Παθολογικές
	H ¹	H ¹
SF		
Mean	1	1
Variance	1	1
Median	1	1
Mode	1	1
Skewness	0	0
Kurtosis	0	0
Energy	1	1
Entropy	1	1
SGLDM		
ASM	1	1
Contrast	1	1
Correlation	1	0
Variance	1	1
Homogeneity	1	1
Entropy	1	1
GLDS		
Homogeneity	1	1
Contrast	1	1
Energy	1	1
Entropy	1	1

¹Η Wilcoxon rank sum test μεταξύ φυσιολογικού και παθολογικού ιστού με '1' αναφέρεται για τη στατιστική διαφορά, και '0' για τη μη στατιστική διαφορά με a=0.05, Πίνακας 20: Στατιστική ανάλυση χαρακτηριστικών υφής πολυδιακριτή ανάλυση μεταξύ φυσιολογικών και παθολογικών περιοχών ενδιαφέροντος, από 416 εικόνες gray scale περιοχών ενδιαφέροντος (208 φυσιολογικές και 208 παθολογικές εικόνες (ROIs) που καταγράφηκαν από 40 γυναίκες) πρίν την εφαρμογή του αλγόριθμου γάμμα.

Στατιστ	τική αν	άλυση	με Φυα	σιολογι	κές / Π	αθολο	γικές Ε	ικόνες	
				H1					
	2x2	3x3	4x4	5x5	6x6	7x7	8x8	9x9	10x10
SF									
Mean	1	1	1	1	1	1	1	1	1
Variance	1	0	1	0	0	1	1	1	1
Median	1	1	1	1	1	1	1	1	1
Mode	1	1	1	1	1	1	1	0	1
Skewness	1	1	1	1	1	1	1	1	1
Kurtosis	1	1	1	1	1	1	1	1	0
Energy	1	1	1	1	1	1	1	1	0
Entropy	1	1	1	1	1	1	1	1	0
SGLDM									
ASM	1	1	1	1	1	1	1	1	1
Contrast	1	1	1	1	1	1	1	1	1
Correlation	1	1	1	1	1	1	1	1	1
Variance	1	1	1	1	0	1	0	1	1
Homogeneity	1	1	1	1	1	1	1	1	1
Sum Average	1	1	1	1	1	1	1	1	1
Sum Variance	1	1	1	1	1	0	0	1	0
Sum Entropy	1	1	1	1	1	1	1	1	1
Entropy	1	1	1	1	1	1	0	1	0
Dif Variance	1	1	1	1	1	1	1	1	1
Dif Entropy	1	1	1	1	1	1	1	1	1
InF Cor1	1	1	1	1	1	1	0	1	0
InF Cor2	1	1	1	1	1	1	1	1	0
GLDS									
Homogeneity	1	1	1	1	1	1	1	1	1
Contrast	1	1	1	1	1	1	1	1	1
Energy	1	1	1	1	1	1	1	1	0
Entropy	1	1	1	1	1	1	1	1	0
Mean	0	1	0	0	0	1	1	1	1

¹Η Wilcoxon rank sum test μεταξύ φυσιολογικού και παθολογικού ιστού με '1' αναφέρεται για τη στατιστική διαφορά, και '0' για τη μη στατιστική διαφορά με a=0.05, Πίνακας 21: Στατιστική ανάλυση χαρακτηριστικών υφής πολυδιακριτή ανάλυση μεταξύ φυσιολογικών και παθολογικών περιοχών ενδιαφέροντος, από 416 εικόνες gray scale περιοχών ενδιαφέροντος (208 φυσιολογικές και 208 παθολογικές εικόνες που καταγράφηκαν από 40 γυναίκες) μετά την εφαρμογή του αλγόριθμου γάμμα.

Στατιστικ	τή ανάλ	.υση με	: Φυσια	ολογικέ	ς / Πα	θολογιι	κές Εικ	ώνες	
			I	H ¹					
	2x2	3x3	4x4	5x5	6x6	7x7	8x8	9x9	10x10
SF									
Mean	1	1	1	1	1	1	1	1	1
Variance	1	0	0	0	1	1	1	1	1
Median	1	1	1	1	1	1	1	1	1
Mode	1	1	1	1	1	0	0	0	1
Skewness	1	1	1	1	1	1	1	1	1
Kurtosis	1	1	1	1	1	1	1	1	0
Energy	1	1	1	1	1	1	1	1	0
Entropy	1	1	1	1	1	1	1	1	0
SGLDM									
ASM	1	1	1	1	1	1	1	1	0
Contrast	1	1	1	1	1	1	1	1	1
Correlation	1	1	1	1	1	1	1	1	1
Variance	1	0	1	1	0	1	0	1	1
Homogeneity	1	1	1	1	1	1	0	1	0
Sum Average	1	1	1	1	1	1	1	1	1
Sum Variance	1	1	1	1	1	0	0	1	0
Sum Entropy	1	1	1	1	1	1	1	1	1
Entropy	1	1	1	1	1	1	1	1	0
Dif. Variance	1	1	1	1	1	1	1	1	1
Dif. Entropy	1	1	1	1	1	1	1	1	1
InF. Correlation 1	1	1	1	1	1	1	1	1	0
InF. Correlation 2	1	1	1	1	1	1	1	1	0
GLDS									
Homogeneity	1	1	1	1	1	1	1	1	1
Contrast	1	1	1	1	1	1	1	1	1
Energy	1	1	1	1	1	1	1	1	1
Entropy	1	1	1	1	1	1	1	1	0
Mean	0	1	0	0	1	1	1	1	1

¹Η Wilcoxon rank sum test μεταξύ φυσιολογικού και παθολογικού ιστού με '1' αναφέρεται για την στατιστική διαφορά, και '0' για τη μη στατιστική διαφορά με a=0.05,

Σχήμα 74: Γραφικές παραστάσεις (Boxplots) των χαρακτηριστικών υφής εικόνων ενδομητρίου, πριν και μετά την εφαρμογή του αλγόριθμου γάμμα. Τα σχήματα (α), (γ) και (ε) παρουσιάζουν τα χαρακτηριστικά υφής, SF: variance, SGLDM: contrast και GLDS: mean πριν την εφαρμογή του αλγόριθμου γάμμα. Τα σχήματα (β), (δ) και (ζ) παρουσιάζουν τα ίδια χαρακτηριστικά

υφής μετά την εφαρμογή του αλγόριθμου γάμμα. (Σημείωση: Τα σχήματα αντιπροσωπεύουν το median, lower και upper quartiles. Η κόκκινη γραμμή ενώνει τις πιο κοντινές «παρατηρήσεις» στο διάστημα 1.5 του inter-quartile range (IQR) των lower και upper quartiles.)

7.8 ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΥΦΗΣ ΑΠΟ ΔΙΑΦΟΡΕΤΙΚΑ ΧΡΩΜΑΤΙΚΑ ΣΥΣΤΗΜΑΤΑ

Μέχρι τώρα οι εικόνες που έχουμε εξαγάγει και αναλύσει από το ενδομήτριο κατά τη διάρκεια μιας ενδοσκοπικής / υστεροσκοπικής επέμβασης ήταν σε σύστημα έγχρωμης εικόνας RGB και για την εξαγωγή των χαρακτηριστικών υφής έχουμε μετατρέψει το εν λόγω σύστημα σε σύστημα γκρι. Τα αποτελέσματά μας είναι πολύ ικανοποιητικά αλλά για την καλύτερη κατανόηση του θέματος και για την πληρέστερη κάλυψη της έρευνάς μας έχουμε εξαγάγει χαρακτηριστικά υφής από διαφορετικά συστήματα εικόνων όπως RGB και τις αντίστοιχες χρωματικές συνιστώσες, Red, Green, Blue, το HSV, με τις αντίστοιχες συνιστώσες, Hue, Saturation, Value και το σύστημα YCrCb, με τα αντίστοιχα Y, Cr και Cb όπως έχουμε αναφέρει στο Κεφάλαιο 4.

Τα χαρακτηριστικά υφής και η στατιστική ανάλυση έχουν υπολογιστεί για περιοχές ενδιαφέροντος πρίν την εφαρμογή του αλγόριθμου γάμμα.

Ο Πίνακας 22 παρουσιάζει τη στατιστική ανάλυση των χαρακτηριστικών υφής της κόκκινης συνιστώσας από φυσιολογικές και παθολογικές εικόνες ενδομητρίου από 40 περιστατικά με 218 εικόνες αντίστοιχα στην κάθε κατηγορία. Η ανάλυση έγινε στις εικόνες πρίν την εφαρμογή του αλγόριθμου γάμμα.

Ο Πίνακας 23 παρουσιάζει τη στατιστική ανάλυση των χαρακτηριστικών υφής της πράσινης συνιστώσας από φυσιολογικές και παθολογικές εικόνες ενδομητρίου από 40 περιστατικά με 216 εικόνες αντίστοιχα στην κάθε κατηγορία. Η ανάλυση έγινε στις εικόνες πρίν την εφαρμογή του αλγόριθμου γάμμα.

Ο Πίνακας 24 παρουσιάζει τη στατιστική ανάλυση των χαρακτηριστικών υφής της μπλε συνιστώσας από φυσιολογικές και παθολογικές εικόνες ενδομητρίου από 40 περιστατικά με 216 εικόνες αντίστοιχα στην κάθε κατηγορία. Η ανάλυση έγινε στις εικόνες πρίν την εφαρμογή του αλγόριθμου γάμμα.

Ο Πίνακας 25 παρουσιάζει τη στατιστική ανάλυση των χαρακτηριστικών υφής της χροιάς (Η) συνιστώσας από φυσιολογικές και παθολογικές εικόνες ενδομητρίου από 40 περιστατικά με 216 εικόνες αντίστοιχα στην κάθε κατηγορία. Η ανάλυση έγινε στις εικόνες πρίν την εφαρμογή του αλγόριθμου γάμμα.

Ο Πίνακας 26 παρουσιάζει τη στατιστική ανάλυση των χαρακτηριστικών υφής της saturation (S) συνιστώσας από φυσιολογικές και παθολογικές εικόνες ενδομητρίου από 40 περιστατικά με 216 αντίστοιχα εικόνες στην κάθε κατηγορία. Η ανάλυση έγινε στις εικόνες πρίν την εφαρμογή του αλγόριθμου γάμμα.

Ο Πίνακας 27 παρουσιάζει τη στατιστική ανάλυση των χαρακτηριστικών υφής της value (V) συνιστώσας από φυσιολογικές και παθολογικές εικόνες ενδομητρίου από 40 περιστατικά με 216 εικόνες αντίστοιχα στην κάθε κατηγορία. Η ανάλυση έγινε στις εικόνες πρίν την εφαρμογή του αλγόριθμου γάμμα.

Ο Πίνακας 28 παρουσιάζει τη στατιστική ανάλυση των χαρακτηριστικών υφής της Υ συνιστώσας από φυσιολογικές και παθολογικές εικόνες ενδομητρίου από 40 περιστατικά με 216 εικόνες αντίστοιχα στην κάθε κατηγορία. Η ανάλυση έγινε στις εικόνες πρίν την εφαρμογή του αλγόριθμου γάμμα.

Ο Πίνακας 29 παρουσιάζει τη στατιστική ανάλυση των χαρακτηριστικών υφής της Cb συνιστώσας από φυσιολογικές και παθολογικές εικόνες ενδομητρίου από 40 περιστατικά με 216 εικόνες αντίστοιχα στην κάθε κατηγορία. Η ανάλυση έγινε στις εικόνες πρίν την εφαρμογή του αλγόριθμου γάμμα.

Ο Πίνακας 30 παρουσιάζει τη στατιστική ανάλυση των χαρακτηριστικών υφής της Cr συνιστώσας από φυσιολογικές και παθολογικές εικόνες ενδομητρίου από 40 περιστατικά με 216 εικόνες αντίστοιχα στην κάθε κατηγορία. Η ανάλυση έγινε στις εικόνες πρίν την εφαρμογή του αλγόριθμου γάμμα.

				Χαρακτι	ιριστικά Υφ	ής και Στα	τιστική Αν	άλυση πρα	γματικών ε	ακόνων ενδ	ομητρίου γ	τα το κόκκ	τινο χρώμα				
				Φυσιολογ	γικός Ιστός							Παθολογ	ικός Ιστός				
	P5%	P25%	Median	P75%	P95%	IQR	Mean	STD	P5%	P25%	Median	P75%	P95%	IQR	Mean	STD	\mathbf{H}^{1}
SF																	
Mean	118,384	154,618	176,756	199,980	232,374	22,681	176,712	33,566	106,120	148,462	167,899	193,457	234,951	22,498	170,200	37,361	0
Variance	23,989	42,986	73,530	144,549	344,760	50,782	110,373	98,559	45,241	87,908	143,040	249,378	518,384	80,735	199,919	175,954	1
Median	118,360	155,091	176,915	199,196	232,585	22,052	176,977	33,667	106,430	147,098	168,430	194,392	234,588	23,647	170,777	37,743	0
Mode	117,900	157,000	176,500	196,000	238,000	19,500	177,130	33,862	104,000	147,000	171,000	193,500	237,500	23,250	171,529	39,708	0
Skewness	-0,741	-0,386	-0,164	0,075	0,387	0,230	-0,196	0,429	-1,018	-0,453	-0,158	0,080	0,455	0,267	-0,223	0,479	0
Kurtosis	2,085	2,391	2,771	3,100	4,327	0,354	2,904	0,923	1,973	2,374	2,672	3,164	4,291	0,395	2,921	1,149	0
Energy	0,017	0,024	0,034	0,046	0,058	0,011	0,037	0,024	0,014	0,019	0,025	0,032	0,042	0,006	0,026	0,011	1
Entropy	2,995	3,257	3,529	3,838	4,218	0,291	3,549	0,416	3,302	3,592	3,840	4,073	4,393	0,240	3,840	0,352	1
SGLDM																	
ASM	0,001	0,002	0,003	0,004	0,006	0,001	0,003	0,003	0,001	0,001	0,002	0,003	0,004	0,001	0,002	0,001	1
Contrast	13,795	18,991	22,285	28,765	40,999	4,887	24,816	11,323	16,146	21,216	26,663	34,270	50,656	6,527	29,516	12,195	1
Correlation	0,533	0,740	0,833	0,910	0,967	0,085	0,802	0,148	0,710	0,842	0,907	0,944	0,970	0,051	0,879	0,099	1
Variance	23,722	42,374	72,777	140,821	335,748	49,224	108,432	96,654	45,395	86,761	140,612	245,492	514,406	79,366	196,364	173,027	1
Homogeneity	0,221	0,255	0,273	0,289	0,318	0,017	0,270	0,034	0,203	0,235	0,257	0,278	0,304	0,021	0,256	0,031	1
Sum Average	234,948	310,707	355,208	401,274	462,845	45,284	353,019	70,671	214,464	299,219	337,834	388,646	471,548	44,713	342,364	74,519	0
Sum Variance	75,331	145,896	264,684	533,675	1323,219	193,890	408,914	384,247	158,557	321,301	534,868	954,383	2023,332	316,541	755,940	688,256	1
Sum Entropy	3,553	3,848	4,157	4,465	4,860	0,308	4,152	0,507	3,909	4,225	4,487	4,727	5,024	0,251	4,472	0,365	1
Entropy	5,566	5,903	6,215	6,520	6,946	0,308	6,191	0,635	5,969	6,286	6,563	6,875	7,178	0,295	6,569	0,412	1
Dif Variance	5,404	7,147	8,467	10,602	14,921	1,728	9,437	4,557	6,114	8,298	10,439	13,440	21,494	2,571	11,491	4,670	1
Dif Entropy	2,024	2,150	2,211	2,305	2,482	0,078	2,219	0,205	2,099	2,207	2,306	2,415	2,602	0,104	2,316	0,156	1
InF Cor1	-0,373	-0,288	-0,235	-0,187	-0,133	0,050	-0,240	0,073	-0,383	-0,332	-0,285	-0,235	-0,178	0,048	-0,282	0,062	1
InF Cor2	0,636	0,790	0,871	0,927	0,972	0,069	0,844	0,117	0,783	0,882	0,930	0,956	0,978	0,037	0,908	0,072	1
GLDS																	
Homogeneity	0,225	0,256	0,274	0,290	0,319	0,017	0,274	0,034	0,203	0,235	0,257	0,278	0,305	0,021	0,257	0,032	1
Contrast	13,766	18,949	22,234	28,701	40,903	4,876	24,758	11,257	16,044	21,168	26,502	34,179	50,533	6,505	29,416	12,149	1
Energy	0,091	0,110	0,121	0,130	0,149	0,010	0,121	0,020	0,081	0,100	0,113	0,124	0,139	0,012	0,112	0,018	1
Entropy	2,107	2,259	2,329	2,438	2,624	0,090	2,343	0,166	2,181	2,305	2,406	2,524	2,712	0,110	2,421	0,168	1
Mean	2,774	3,237	3,520	3,943	4,907	0,353	3,629	0,681	3,007	3,429	3,820	4,330	5,323	0,450	3,945	0,758	1

Πίνακας 22: Παρουσιάζει τη στατιστική ανάλυση φυσιολογικών και παθολογικών περιοχών ενδιαφέροντος πρίν την εφαρμογή του αλγόριθμου γάμμα για το κόκκινο χρώμα.

¹Η Wilcoxon rank sum test μεταξύ φυσιολογικού και παθολογικού ιστού με '1' αναφέρεται για την στατιστική διαφορά, και '0' για τη μη στατιστική διαφορά με a=0.05,

P5%, P25%, P50%, P75%, P95%: είναι τα 5th, 25th, 50th (Median), 75th και 95th ποσοστά αντίστοιχα, IQR: Spread of the data (Inter Quartile Range: διαφορά μεταξύ του 25th και 75th ποσοστά αντίστοιχα, IQR: Spread of the data (Inter Quartile Range: διαφορά μεταξύ του 25th και 75th ποσοστά αντίστοιχα, IQR: Spread of the data (Inter Quartile Range: διαφορά μεταξύ του 25th και 75th ποσοστά αντίστοιχα, IQR: Spread of the data (Inter Quartile Range: διαφορά μεταξύ του 25th και 75th ποσοστά αντίστοιχα, IQR: Spread of the data (Inter Quartile Range: διαφορά μεταξύ του 25th και 75th ποσοστά αντίστοιχα, IQR: Spread of the data (Inter Quartile Range: διαφορά μεταξύ του 25th και 75th ποσοστά αντίστοιχα, IQR: Spread of the data (Inter Quartile Range: διαφορά μεταξύ του 25th και 75th ποσοστά αντίστοιχα, IQR: Spread of the data (Inter Quartile Range: διαφορά μεταξύ του 25th και 75th ποσοστά αντίστοιχα, IQR: Spread of the data (Inter Quartile Range: διαφορά μεταξύ του 25th και 75th ποσοστά αντίστοιχα, IQR: Spread of the data (Inter Quartile Range: διαφορά μεταξύ του 25th και 75th ποσοστά αντίστοιχα, IQR: Spread of the data (Inter Quartile Range: διαφορά μεταξύ του 25th και 75th ποσοστά αντίστοιχα, IQR: Spread of the data (Inter Quartile Range: διαφορά μεταξύ του 25th και 75th ποσοστά αντίστοιχα, IQR: Spread of the data (Inter Quartile Range: διαφορά μεταξύ του 25th και 75th ποσοστά αντίστοιχα, IQR: Spread of the data (Inter Quartile Range: διαφορά μεταξύ του 25th και 75th ποσοστά αντίστοιχα, IQR: Spread of the data (Inter Quartile Range: διαφορά μεταξύ του 25th και 75th ποσοστά αντίστοιχα, IQR: Spread of the data (Inter Quartile Range: διαφορά μεταξύ του 25th και 75th ποσοστά αντίστοιχα, IQR: Spread of the data (Inter Quartile Range: διαφορά μεταξύ του 25th και 75th ποσοστά αντίστοιχα, IQR: Spread of the data (Inter Quartile Range: διαφορά μεταξύ του 25th και 75th ποσοστά αντίστοιχα, IQR: Spread of the data (Inter Quartile Range: διαφορά μεταξύ του 25th και 75th ποσοστά μεταξύ μεταξύ μεταξύ μεταξύ του 25th και 75th ποσο του 25th

				Vaar							Source 1						
				Δυσιολοι	αμός Ιστά	φης και Στ	ατιστική Α	ναλυση προ	ιγματικων	εικονων εν	σομητριου	<u>για το πρασ</u> Παθολου	τνο χρωμα				
	D59/	D250/	Madian	Ψυσιολογ	<u>ρικος Ιστος</u>	IOD	Maan	STD	D50/	D250/	Madian	Παθολογ D750/	<u>1ΚΟς 16τος</u>	IOD	Maan	STD	TI ¹
SE	F 3 70	F 23 70	Wieulan	F / 3 /0	19370	IQK	Mean	510	F 3 70	F 23 70	Wieulali	F / 3 / 0	19370	IQK	wiean	510	<u> </u>
Maan	75 490	106 004	125 202	144 519	194 611	10 212	127 125	22 280	62 620	88 100	100 102	141 651	192 902	26 771	115 000	26 911	1
Mean	75,469	100,094	05.026	104 001	104,011	19,212	145 284	146 269	40.281	114 656	109,192	265.045	762,756	125 6 4 5	268.064	220,559	1
v arlance Madian	23,333	49,404	95,020	194,901	192.049	12,748	145,264	140,208	40,281	114,030	185,904	142 272	102,730	123,043	208,004	239,338	1
Median	74,555	105,827	120,013	145,179	182,948	19,070	127,249	33,478	61,146	88,201	110,161	142,273	181,373	27,036	115,966	37,625	1
Mode	74,800	104,500	127,500	148,500	181,000	22,000	127,813	34,049	58,000	83,000	111,500	145,500	179,100	31,250	115,548	39,959	l
Skewness	-0,755	-0,371	-0,102	0,152	0,543	0,262	-0,109	0,446	-0,854	-0,381	-0,059	0,320	0,697	0,351	-0,063	0,518	0
Kurtosis	2,003	2,346	2,693	3,127	3,943	0,390	2,821	0,772	1,888	2,310	2,702	3,072	3,916	0,381	2,814	0,887	0
Energy	0,015	0,022	0,031	0,042	0,059	0,010	0,033	0,014	0,013	0,018	0,022	0,028	0,047	0,005	0,024	0,011	1
Entropy	3,018	3,347	3,631	3,965	4,362	0,309	3,646	0,410	3,247	3,730	3,956	4,224	4,520	0,247	3,941	0,381	1
SGLDM																	
ASM	0,001	0,002	0,003	0,004	0,006	0,001	0,003	0,002	0,001	0,001	0,002	0,003	0,005	0,001	0,002	0,001	1
Contrast	9,441	12,297	14,970	18,366	36,904	3,034	17,511	9,114	10,441	15,090	19,568	30,118	43,728	7,514	22,771	10,860	1
Correlation	0,694	0,842	0,911	0,956	0,982	0,057	0,887	0,091	0,821	0,914	0,946	0,967	0,983	0,027	0,928	0,062	1
Variance	25,268	48,225	93,218	193,880	434,701	72,828	143,256	144,734	39,868	112,293	181,647	362,928	749,891	125,318	264,893	237,761	1
Homogeneity	0,244	0,290	0,308	0,325	0,350	0,018	0,304	0,031	0,222	0,253	0,288	0,312	0,340	0,030	0,283	0,037	1
Sum Average	153,069	213,996	252,792	290,963	371,359	38,484	256,288	66,576	127,347	178,269	220,321	285,510	367,604	53,620	233,779	73,644	1
Sum Variance	90,655	176,549	352,649	748,778	1723,840	286,115	555,513	576,666	146,315	433,873	708,470	1422,506	2976,127	494,316	1036,803	946,143	1
Sum Entropy	3,630	3,968	4,278	4,620	5,010	0,326	4,282	0,426	3,872	4,365	4,600	4,877	5,177	0,256	4,586	0,392	1
Entropy	5,424	5,877	6,177	6,536	6,922	0,329	6,186	0,471	5,723	6,305	6,569	6,927	7,244	0,311	6,562	0,474	1
Dif Variance	3,671	4,812	5,863	7,307	16,054	1,247	6,916	3,836	3,996	5,925	7,656	12,184	19,138	3,129	9,477	4,954	1
Dif Entropy	1,881	1,989	2,067	2,138	2,426	0,075	2,089	0,152	1,923	2,067	2,177	2,370	2,532	0,151	2,204	0,190	1
InF Cor1	-0,417	-0,344	-0,293	-0,233	-0,167	0,055	-0,293	0,073	-0,414	-0,372	-0,332	-0,294	-0,214	0,039	-0,327	0,060	1
InF Cor2	0,745	0,861	0,925	0,961	0,984	0,050	0,904	0,076	0,849	0,933	0,955	0,975	0,987	0,021	0,942	0,052	1
GLDS																	
Homogeneity	0,245	0,290	0,308	0,326	0,350	0,018	0,305	0,031	0,222	0,253	0,288	0,312	0,341	0,030	0,284	0,037	1
Contrast	9,423	12,272	14,938	18,326	36,817	3,027	17,473	9,091	10,420	15,059	19,525	30,048	43,622	7,494	22,720	10,833	1
Energy	0,103	0,132	0,144	0,155	0,173	0,011	0,142	0,020	0,093	0,111	0,131	0,147	0,166	0,018	0,130	0,023	1
Entropy	1,942	2,058	2,144	2,237	2,500	0,089	2,175	0,168	1,986	2,141	2,257	2,448	2,621	0,154	2,280	0,198	1
Mean	2,339	2,648	2,881	3,189	4,195	0,271	3,039	0,620	2,444	2,876	3,248	3,975	4,790	0,550	3,412	0,737	1

Πίνακας 23: Παρουσιάζει τη στατιστική ανάλυση φυσιολογικών και παθολογικών περιοχών ενδιαφέροντος πρίν την εφαρμογή του αλγόριθμου γάμμα για το πράσινο χρώμα.

¹Η Wilcoxon rank sum test μεταξύ φυσιολογικού και παθολογικού ιστού με '1' αναφέρεται για την στατιστική διαφορά, και '0' για τη μη στατιστική διαφορά με a=0.05, P5%, P25%, P50%, P75%, P95%: είναι τα 5th, 25th, 50th (Median), 75th και 95th ποσοστά αντίστοιχα, IQR: Spread of the data (Inter Quartile Range: διαφορά μεταξύ του 25th και 75th ποσοστάν)

				Χαρακ	τηριστικά	Υφής και Στ	ατιστική Α	Ανάλυση πρ	αγματικών	ν εικόνων ε	νδομητρίοι	για το μπλ	έ χρώμα				
				Φυσιολο	γικός Ιστός							Παθολογ	ικός Ιστός				
	P5%	P25%	Median	P75%	P95%	IQR	Mean	STD	P5%	P25%	Median	P75%	P95%	IQR	Mean	STD	\mathbf{H}^{1}
SF																	
Mean	49,184	69,855	87,531	116,629	23,387	149,089	92,791	30,074	44,407	66,657	80,560	101,849	17,596	138,536	86,077	27,991	1
Variance	49,758	71,088	95,807	176,400	52,656	326,556	133,818	90,524	56,317	95,085	152,916	269,250	87,083	587,050	209,314	178,386	1
Median	48,878	69,649	87,050	116,695	23,523	148,457	92,807	30,259	44,072	66,757	79,859	101,351	17,297	138,236	86,133	28,305	1
Mode	48,000	69,000	87,000	116,000	23,500	147,300	93,149	31,045	45,900	66,000	81,000	101,000	17,500	146,200	86,644	29,740	1
Skewness	-0,442	-0,168	-0,014	0,164	0,166	0,355	-0,009	0,276	-0,552	-0,189	-0,026	0,141	0,165	0,414	-0,037	0,326	0
Kurtosis	2,228	2,644	2,876	3,059	0,208	3,434	2,874	0,384	2,109	2,601	2,851	3,171	0,285	4,082	2,926	0,622	0
Energy	0,016	0,023	0,029	0,034	0,006	0,040	0,028	0,008	0,013	0,018	0,024	0,029	0,006	0,038	0,024	0,008	1
Entropy	3,359	3,533	3,681	3,947	0,207	4,255	3,744	0,277	3,422	3,672	3,897	4,155	0,241	4,474	3,920	0,318	1
SGLDM																	
ASM	0,001	0,001	0,002	0,002	0,000	0,003	0,002	0,001	0,001	0,001	0,001	0,002	0,000	0,003	0,002	0,001	1
Contrast	42,695	55,771	69,964	92,177	18,203	161,416	80,289	39,130	38,052	59,007	76,460	123,243	32,118	204,540	97,390	71,802	1
Correlation	0,389	0,480	0,609	0,756	0,138	0,903	0,619	0,167	0,412	0,591	0,705	0,812	0,111	0,929	0,694	0,155	1
Variance	49,460	71,244	95,129	173,911	51,333	324,195	132,720	89,431	55,361	94,597	149,541	265,697	85,550	576,561	207,437	176,889	1
Homogeneity	0,171	0,191	0,207	0,216	0,012	0,232	0,204	0,018	0,149	0,173	0,195	0,212	0,019	0,238	0,194	0,027	1
Sum Average	100,232	141,694	177,030	235,233	46,770	299,968	187,597	60,148	90,816	135,321	162,943	205,957	35,318	278,825	174,168	56,000	1
Sum Variance	143,003	216,086	303,238	578,747	181,330	1146,746	450,589	348,774	165,467	302,619	508,631	909,132	303,257	2217,458	732,360	681,756	1
Sum Entropy	3,868	4,067	4,244	4,547	0,240	4,853	4,306	0,309	3,951	4,231	4,480	4,750	0,260	5,078	4,501	0,341	1
Entropy	6,231	6,509	6,717	6,997	0,244	7,329	6,751	0,333	6,344	6,674	6,990	7,270	0,298	7,651	6,973	0,404	1
Dif Variance	15,879	21,168	26,517	34,548	6,690	59,898	30,622	16,199	14,363	22,036	29,293	44,846	11,405	79,448	37,535	28,125	1
Dif Entropy	2,458	2,567	2,649	2,751	0,092	2,956	2,669	0,150	2,420	2,604	2,699	2,885	0,141	3,121	2,741	0,216	1
InF Cor1	-0,295	-0,220	-0,178	-0,154	0,033	-0,133	-0,192	0,050	-0,327	-0,252	-0,207	-0,173	0,040	-0,144	-0,215	0,054	1
InF Cor2	0,630	0,701	0,770	0,858	0,079	0,941	0,776	0,100	0,665	0,768	0,842	0,901	0,067	0,961	0,832	0,089	1
GLDS																	
Homogeneity	0,172	0,192	0,207	0,217	0,012	0,233	0,205	0,018	0,150	0,174	0,195	0,212	0,019	0,238	0,194	0,027	1
Contrast	42,592	55,635	69,790	91,944	18,155	161,005	80,087	39,028	37,960	58,861	76,268	122,933	32,036	204,016	97,145	71,614	1
Energy	0,056	0,068	0,077	0,083	0,008	0,092	0,076	0,011	0,049	0,062	0,072	0,081	0,010	0,098	0,072	0,015	1
Entropy	2,628	2,746	2,842	2,959	0,106	3,213	2,867	0,173	2,561	2,780	2,890	3,089	0,154	3,334	2,925	0,240	1
Mean	4,816	5,432	5,976	6,840	0,704	9,121	6,314	1,290	4,504	5,619	6,323	7,870	1,126	10,242	6,819	1,935	1

Πίνακας 24: Παρουσιάζει τη στατιστική ανάλυση φυσιολογικών και παθολογικών περιοχών ενδιαφέροντος πρίν την εφαρμογή του αλγόριθμου γάμμα για το μπλε χρώμα.

¹Η Wilcoxon rank sum test μεταζύ φυσιολογικού και παθολογικού ιστού με '1' αναφέρεται για την στατιστική διαφορά, και '0' για τη μη στατιστική διαφορά με a=0.05, P5%, P25%, P50%, P75%, P95%: είναι τα 5th, 25th, 50th (Median), 75th και 95th ποσοστά αντίστοιχα, IQR: Spread of the data (Inter Quartile Range: διαφορά μεταξύ του 25th και 75th ποσοστάν)

Σύστημα				Х	αρακτηριστι	κά Υφής κα	αι Στατιστικ	τή Ανάλυση	πραγματι	κών εικόν	ων ενδομη	τρίου την Η	συνιστώσα				
HUE (H)				Φυσιο	λογικός Ιστός	3						Παθο	λογικός Ιστό	5			
	P5%	P25%	Median	P75%	P95%	IQR	Mean	STD	P5%	P25%	Median	P75%	P95%	IQR	Mean	STD	\mathbf{H}^{1}
SF																	
Mean	13,834	17,263	20,852	25,364	157,764	4,051	33,358	42,812	12,474	17,054	21,605	31,766	72,109	7,356	28,903	21,741	0
Variance	9,494	13,177	20,107	382,157	10523,634	184,490	1450,749	3368,298	10,818	17,721	250,435	3039,871	11856,732	1511,075	2333,057	3865,944	1
Median	8,482	15,133	19,149	23,097	242,883	3,982	32,639	54,903	7,010	10,341	15,143	21,176	34,286	5,417	18,801	23,320	1
Mode	6,900	15,500	19,000	23,000	244,200	3,750	30,716	52,007	4,000	10,000	16,000	21,500	35,000	5,750	22,063	37,041	1
Skewness	-0,817	-0,354	-0,189	1,154	15,057	0,754	1,937	4,960	-0,442	-0,098	1,671	6,726	15,985	3,412	3,923	5,328	1
Kurtosis	2,131	2,868	3,226	5,901	310,726	1,516	39,307	111,019	2,062	3,043	4,533	47,837	356,770	22,397	57,849	121,370	1
Energy	0,039	0,058	0,068	0,080	0,093	0,011	0,068	0,016	0,040	0,051	0,058	0,071	0,088	0,010	0,061	0,014	1
Entropy	2,513	2,678	2,854	3,013	3,379	0,167	2,873	0,253	2,600	2,817	2,990	3,128	3,360	0,155	2,981	0,227	1
SGLDM																	
ASM	0,004	0,007	0,009	0,013	0,016	0,003	0,010	0,004	0,004	0,006	0,008	0,010	0,013	0,002	0,008	0,003	1
Contrast	10,393	15,081	21,025	551,019	14617,540	267,969	1945,851	4547,991	11,684	18,067	361,159	4070,578	15893,570	2026,256	3079,036	5180,999	1
Correlation	0,218	0,311	0,392	0,466	0,575	0,077	0,393	0,111	0,212	0,276	0,346	0,454	0,619	0,089	0,369	0,124	1
Variance	9,505	13,242	20,051	347,387	10428,638	167,073	1436,185	3354,065	10,832	17,581	246,038	2912,870	11740,369	1447,644	2286,522	3833,233	1
Homogeneity	0,265	0,310	0,333	0,369	0,401	0,029	0,336	0,044	0,266	0,300	0,326	0,352	0,390	0,026	0,326	0,040	1
Sum Average	29,652	36,414	43,341	52,716	318,122	8,151	68,710	85,879	26,787	35,836	44,939	65,563	144,927	14,863	59,331	43,233	0
Sum Variance	27,060	36,698	58,846	874,779	27214,475	419,040	3798,889	8900,042	29,999	51,048	586,345	7574,027	32282,161	3761,490	6067,051	10232,719	1
Sum Entropy	3,027	3,170	3,374	3,584	4,066	0,207	3,424	0,318	3,094	3,335	3,559	3,785	4,063	0,225	3,567	0,293	1
Entropy	4,652	4,903	5,243	5,532	6,044	0,314	5,257	0,441	4,815	5,174	5,399	5,669	6,017	0,248	5,421	0,374	1
Dif Variance	3,886	5,698	8,188	518,857	9648,707	256,579	1350,348	2904,508	4,339	7,082	339,340	3545,298	10039,102	1769,108	2193,544	3237,750	1
Dif Entropy	1,799	1,916	2,069	2,209	2,751	0,147	2,126	0,293	1,841	2,005	2,165	2,361	2,646	0,178	2,208	0,263	1
InF Cor1	-0,214	-0,181	-0,166	-0,152	-0,129	0,015	-0,169	0,027	-0,234	-0,196	-0,179	-0,160	-0,114	0,018	-0,178	0,035	1
InF Cor2	0,481	0,542	0,582	0,635	0,736	0,046	0,592	0,079	0,501	0,575	0,622	0,690	0,778	0,058	0,633	0,086	1
GLDS																	
Homogeneity	0,266	0,313	0,334	0,370	0,402	0,028	0,338	0,043	0,267	0,302	0,327	0,354	0,392	0,026	0,328	0,040	1
Contrast	10,368	15,043	20,968	549,402	14442,437	267,180	1928,138	4497,983	11,656	18,026	359,707	4051,460	15662,317	2016,717	3048,747	5119,520	1
Energy	0,081	0,116	0,131	0,151	0,167	0,018	0,130	0,026	0,087	0,108	0,123	0,140	0,166	0,016	0,123	0,024	1
Entropy	1,989	2,132	2,274	2,444	3,000	0,156	2,344	0,306	2,031	2,206	2,374	2,597	2,906	0,196	2,426	0,285	1
Mean	2,340	2,708	3,282	6,003	60,977	1,648	10,869	18,290	2,455	3,052	4,697	20,187	65,482	8,567	15,431	20,682	1

Πίνακας 25: Παρουσιάζει τη στατιστική ανάλυση φυσιολογικών και παθολογικών περιοχών ενδιαφέροντος πρίν την εφαρμογή του αλγόριθμου γάμμα για την HUE (Η) συνιστώσα.

¹Η Wilcoxon rank sum test μεταξύ φυσιολογικού και παθολογικού ιστού με '1' αναφέρεται για την στατιστική διαφορά, και '0' για τη μη στατιστική διαφορά με a=0.05, P5%, P25%, P5%, P75%, P95%: είναι τα 5th, 25th, 50th (Median), 75th και 95th ποσοστά αντίστοιχα, IQR: Spread of the data (Inter Quartile Range: διαφορά μεταξύ του 25th και 75th ποσοστάν)

Σύστημα				Χαρακτη	ριστικά Υφ	οής και Στ	ατιστική Α	Ανάλυση πρ	αγματικών	εικόνων ε	νδομητρίοι	ο για την S	συνιστώσα				
Saturation (S)				Φυσιολογι	κός Ιστός							Παθολογ	ικός Ιστός				
	P5%	P25%	Median	P75%	P95%	IQR	Mean	STD	P5%	P25%	Median	P75%	P95%	IQR	Mean	STD	\mathbf{H}^{1}
SF																	
Mean	81,317	103,284	125,161	147,237	161,357	11,038	124,124	26,648	89,183	115,646	127,693	147,318	160,648	15,836	128,787	23,093	0
Variance	69,417	103,755	129,279	170,595	251,020	20,658	144,624	67,135	84,086	143,066	190,098	264,567	436,290	60,751	214,580	111,808	1
Median	81,749	102,815	124,853	146,715	161,735	10,931	123,828	26,820	88,276	114,844	127,933	146,746	160,696	15,951	128,280	23,153	0
Mode	80,800	102,000	128,000	145,000	162,100	8,500	123,260	26,945	85,000	114,500	128,000	144,500	161,000	15,000	127,716	23,677	0
Skewness	-0,209	-0,052	0,081	0,230	0,550	0,074	0,112	0,265	-0,181	0,019	0,149	0,369	0,694	0,175	0,198	0,268	1
Kurtosis	2,491	2,798	2,947	3,113	3,706	0,083	3,003	0,419	2,381	2,806	3,043	3,289	4,281	0,241	3,133	0,618	1
Energy	0,019	0,022	0,025	0,028	0,035	0,002	0,026	0,005	0,014	0,018	0,021	0,024	0,031	0,003	0,022	0,005	1
Entropy	3,523	3,720	3,825	3,960	4,132	0,067	3,834	0,186	3,616	3,879	4,007	4,170	4,379	0,146	4,009	0,224	1
SGLDM																	
ASM	0,001	0,001	0,001	0,001	0,002	0,000	0,001	0,000	0,001	0,001	0,001	0,001	0,002	0,000	0,001	0,000	1
Contrast	55,868	93,153	127,864	178,126	264,622	25,131	141,949	66,295	74,900	119,803	161,482	208,685	310,880	44,441	175,062	80,959	1
Correlation	0,300	0,374	0,447	0,590	0,795	0,071	0,487	0,153	0,305	0,424	0,549	0,663	0,821	0,120	0,548	0,161	1
Variance	69,175	103,872	129,758	169,989	252,225	20,115	144,265	67,231	84,384	142,581	190,314	265,630	428,984	61,524	213,651	111,504	1
Homogeneity	0,108	0,131	0,146	0,166	0,186	0,010	0,148	0,025	0,097	0,121	0,134	0,148	0,179	0,014	0,137	0,024	1
Sum Average	164,732	208,599	252,440	296,474	324,875	22,017	250,268	53,295	180,221	233,468	257,452	296,725	323,290	31,628	259,608	46,221	0
Sum Variance	196,360	304,666	375,244	505,620	828,632	65,188	435,109	242,714	234,488	421,589	583,278	815,563	1564,671	196,987	679,543	416,401	1
Sum Entropy	4,030	4,240	4,343	4,488	4,684	0,072	4,359	0,200	4,108	4,402	4,557	4,718	4,995	0,158	4,552	0,251	1
Entropy	6,613	6,907	7,076	7,281	7,518	0,102	7,086	0,286	6,733	7,135	7,349	7,523	7,757	0,194	7,321	0,302	1
Dif Variance	21,454	35,035	48,739	67,587	100,768	9,424	53,523	25,202	28,746	45,472	61,729	81,541	114,336	18,035	66,944	31,004	1
Dif Entropy	2,655	2,837	2,991	3,129	3,317	0,069	2,989	0,201	2,757	2,964	3,105	3,218	3,425	0,127	3,094	0,200	1
InF Cor1	-0,210	-0,161	-0,141	-0,129	-0,119	0,006	-0,150	0,031	-0,247	-0,192	-0,164	-0,142	-0,120	0,025	-0,171	0,040	1
InF Cor2	0,658	0,709	0,748	0,795	0,874	0,023	0,755	0,066	0,685	0,762	0,805	0,858	0,923	0,048	0,806	0,073	1
GLDS																	
Homogeneity	0,109	0,131	0,146	0,166	0,187	0,010	0,148	0,025	0,097	0,122	0,134	0,149	0,179	0,014	0,137	0,024	1
Contrast	55,761	92,926	127,560	177,688	263,977	25,064	141,609	66,129	74,731	119,519	161,094	208,185	310,133	44,333	174,642	80,761	1
Energy	0,039	0,048	0,056	0,064	0,079	0,004	0,057	0,012	0,036	0,045	0,050	0,057	0,071	0,006	0,051	0,011	1
Entropy	2,764	3,000	3,143	3,308	3,488	0,083	3,144	0,222	2,896	3,119	3,259	3,375	3,573	0,128	3,247	0,210	1
Mean	5,602	7.188	8.270	9.874	11.830	0,802	8,524	1.945	6.388	8.098	9.362	10.546	13,072	1.224	9.455	2,088	1

Πίνακας 26: Παρουσιάζει τη στατιστική ανάλυση φυσιολογικών και παθολογικών περιοχών ενδιαφέροντος πρίν την εφαρμογή του αλγόριθμου γάμμα για την Saturation (S) συνιστώσα.

¹Η Wilcoxon rank sum test μεταξύ φυσιολογικού και παθολογικού ιστού με '1' αναφέρεται για την στατιστική διαφορά, και '0' για τη μη στατιστική διαφορά με a=0.05, P5%, P25%, P50%, P75%, P95%: είναι τα 5th, 25th, 50th (Median), 75th και 95th ποσοστά αντίστοιχα, IQR: Spread of the data (Inter Quartile Range: διαφορά μεταξύ του 25th και 75th ποσοστάν)

Σύστημα				Χαρακτι	ηριστικά Υφ	οής και Στο	ατιστική Αν	νάλυση πρα	φματικών	εικόνων εν	δομητρίου	για την V σ	υνιστώσα				
Value (V)				Φυσιολογ	ακός Ιστός							Παθολογ	ικός Ιστός				
	P5%	P25%	Median	P75%	P95%	IQR	Mean	STD	P5%	P25%	Median	P75%	P95%	IQR	Mean	STD	\mathbf{H}^{1}
SF																	
Mean	118,384	154,618	176,756	199,980	232,374	22,681	176,713	33,566	106,120	148,462	167,923	193,457	234,951	22,498	170,212	37,364	0
Variance	23,989	42,986	73,530	144,549	344,760	50,782	110,352	98,523	45,241	87,908	143,040	249,378	518,384	80,735	200,120	177,236	1
Median	118,360	155,091	176,915	199,196	232,585	22,052	176,977	33,667	106,430	147,098	168,430	194,392	234,588	23,647	170,787	37,748	0
Mode	117,900	157,000	176,500	196,000	238,000	19,500	177,130	33,862	104,000	147,000	171,000	193,500	237,500	23,250	171,529	39,708	0
Skewness	-0,741	-0,386	-0,164	0,075	0,387	0,230	-0,195	0,429	-1,018	-0,453	-0,158	0,080	0,455	0,267	-0,223	0,479	0
Kurtosis	2,085	2,391	2,771	3,100	4,327	0,354	2,903	0,923	1,973	2,374	2,672	3,165	4,291	0,395	2,919	1,150	0
Energy	0,017	0,024	0,034	0,046	0,058	0,011	0,037	0,024	0,014	0,019	0,025	0,033	0,042	0,007	0,027	0,011	1
Entropy	2,995	3,257	3,529	3,838	4,218	0,291	3,549	0,416	3,302	3,588	3,840	4,073	4,392	0,242	3,840	0,352	1
SGLDM																	
ASM	0,001	0,002	0,003	0,004	0,006	0,001	0,003	0,003	0,001	0,001	0,002	0,003	0,004	0,001	0,002	0,001	1
Contrast	13,795	18,991	22,285	28,765	40,999	4,887	24,802	11,281	16,035	21,143	26,402	34,046	50,583	6,451	29,369	12,183	1
Correlation	0,533	0,740	0,833	0,910	0,967	0,085	0,802	0,148	0,730	0,843	0,907	0,944	0,971	0,051	0,880	0,099	1
Variance	23,722	42,374	72,777	140,821	335,748	49,224	108,412	96,619	45,395	86,113	140,612	245,492	514,406	79,690	196,566	174,322	1
Homogeneity	0,221	0,255	0,273	0,289	0,318	0,017	0,270	0,034	0,203	0,235	0,257	0,278	0,305	0,022	0,256	0,032	1
Sum Average	234,948	310,707	355,208	401,274	462,845	45,284	353,020	70,671	214,464	299,219	337,881	388,646	471,548	44,713	342,387	74,523	0
Sum Variance	75,331	145,896	264,684	533,675	1323,219	193,890	408,845	384,142	158,557	321,301	534,868	954,383	2023,332	316,541	756,895	693,598	1
Sum Entropy	3,553	3,848	4,157	4,465	4,860	0,308	4,152	0,507	3,909	4,224	4,487	4,727	5,024	0,252	4,473	0,364	1
Entropy	5,566	5,903	6,215	6,520	6,941	0,308	6,191	0,635	5,969	6,286	6,563	6,875	7,178	0,295	6,567	0,412	1
Dif Variance	5,404	7,147	8,467	10,602	14,921	1,728	9,429	4,537	6,100	8,176	10,426	13,301	21,420	2,562	11,431	4,661	1
Dif Entropy	2,024	2,150	2,211	2,305	2,482	0,078	2,219	0,205	2,095	2,207	2,304	2,415	2,601	0,104	2,314	0,156	1
InF Cor1	-0,373	-0,288	-0,235	-0,187	-0,133	0,050	-0,240	0,073	-0,383	-0,332	-0,285	-0,235	-0,186	0,048	-0,282	0,062	1
InF Cor2	0,636	0,790	0,871	0,927	0,972	0,069	0,844	0,117	0,786	0,882	0,930	0,956	0,978	0,037	0,909	0,071	1
GLDS																	
Homogeneity	0,225	0,256	0,274	0,290	0,319	0,017	0,274	0,034	0,203	0,235	0,258	0,279	0,305	0,022	0,257	0,032	1
Contrast	13,766	18,949	22,234	28,701	40,903	4,876	24,744	11,215	15,905	21,095	26,289	33,954	50,461	6,430	29,270	12,137	1
Energy	0,091	0,110	0,121	0,130	0,149	0,010	0,121	0,020	0,081	0,101	0,113	0,125	0,139	0,012	0,113	0,018	1
Entropy	2,107	2,259	2,329	2,438	2,624	0,090	2,343	0,165	2,181	2,303	2,406	2,522	2,712	0,110	2,418	0,168	1
Mean	2,774	3,237	3,520	3,943	4.907	0,353	3.628	0.679	3.005	3.423	3,814	4,325	5,323	0,451	3.936	0,758	1

Πίνακας 27: Παρουσιάζει τη στατιστική ανάλυση φυσιολογικών και παθολογικών περιοχών ενδιαφέροντος πρίν την εφαρμογή του αλγόριθμου γάμμα για την Value (V) συνιστώσα.

¹Η Wilcoxon rank sum test μεταξύ φυσιολογικού και παθολογικού ιστού με '1' αναφέρεται για την στατιστική διαφορά, και '0' για τη μη στατιστική διαφορά με a=0.05, P5%, P25%, P50%, P75%, P95%: είναι τα 5th, 25th, 50th (Median), 75th και 95th ποσοστά αντίστοιχα, IQR: Spread of the data (Inter Quartile Range: διαφορά μεταξύ του 25th και 75th ποσοστάν)

Σύστημα				Χαρακτ	ηριστικά Υφ	οής και Στα	ατιστική Αν	νάλυση πρα	γματικών	εικόνων εν	δομητρίου	για την Υ σ	υνιστώσα				
Y				Φυσιολογ	γικός Ιστός							Παθολογ	ικός Ιστός				
	P5%	P25%	Median	P75%	P95%	IQR	Mean	STD	P5%	P25%	Median	P75%	P95%	IQR	Mean	STD	\mathbf{H}^{1}
SF																	
Mean	90,919	116,760	133,450	150,474	181,731	16,857	134,102	27,257	78,902	105,873	122,083	145,421	178,954	19,774	126,143	29,357	1
Variance	11,087	27,173	49,646	115,333	259,794	44,080	82,967	81,324	23,494	64,820	110,743	207,738	414,056	71,459	157,467	145,082	1
Median	91,154	116,964	133,712	151,264	181,153	17,150	134,225	27,371	79,147	106,113	121,382	147,048	178,333	20,468	126,340	29,877	1
Mode	89,900	119,000	132,000	152,000	177,200	16,500	134,471	27,896	79,000	103,000	123,000	151,500	178,000	24,250	127,202	32,074	1
Skewness	-0,994	-0,428	-0,105	0,138	0,578	0,283	-0,143	0,470	-0,939	-0,417	-0,069	0,233	0,638	0,325	-0,120	0,523	0
Kurtosis	1,931	2,257	2,626	3,103	4,264	0,423	2,808	0,833	1,807	2,237	2,599	3,027	4,251	0,395	2,800	1,024	0
Energy	0,020	0,030	0,044	0,060	0,090	0,015	0,047	0,023	0,016	0,023	0,029	0,038	0,062	0,008	0,033	0,015	1
Entropy	2,583	2,999	3,295	3,672	4,046	0,337	3,319	0,462	2,962	3,434	3,677	3,942	4,256	0,254	3,658	0,390	1
SGLDM																	
ASM	0,003	0,005	0,008	0,011	0,019	0,003	0,009	0,005	0,002	0,003	0,004	0,006	0,012	0,002	0,005	0,004	1
Contrast	2,229	2,723	3,422	4,469	11,278	0,873	4,573	3,744	2,263	3,864	6,206	10,309	19,030	3,222	7,885	5,516	1
Correlation	0,845	0,934	0,963	0,978	0,991	0,022	0,946	0,055	0,902	0,954	0,972	0,982	0,990	0,014	0,962	0,036	1
Variance	10,897	26,620	48,658	113,712	254,906	43,546	81,621	80,157	23,032	63,351	109,127	201,823	410,453	69,236	155,334	143,729	1
Homogeneity	0,375	0,462	0,496	0,523	0,551	0,030	0,484	0,055	0,320	0,392	0,432	0,479	0,546	0,044	0,435	0,066	1
Sum Average	183,941	235,572	268,999	302,979	365,608	33,704	270,240	54,511	159,846	213,693	246,054	293,068	359,902	39,688	254,316	58,721	1
Sum Variance	37,190	103,680	192,103	450,247	1015,657	173,284	321,911	319,566	89,231	246,420	430,463	800,270	1628,020	276,925	613,451	572,364	1
Sum Entropy	3,199	3,650	3,954	4,337	4,707	0,343	3,974	0,471	3,604	4,084	4,329	4,602	4,924	0,259	4,316	0,396	1
Entropy	4,373	4,832	5,202	5,733	6,221	0,451	5,254	0,579	4,806	5,386	5,793	6,189	6,521	0,402	5,772	0,552	1
Dif Variance	0,956	1,134	1,432	1,894	5,536	0,380	1,999	1,746	0,951	1,628	2,823	5,001	9,262	1,687	3,732	2,912	1
Dif Entropy	1,292	1,367	1,453	1,554	1,910	0,093	1,499	0,190	1,294	1,501	1,682	1,873	2,140	0,186	1,695	0,250	1
InF Cor1	-0,514	-0,455	-0,410	-0,359	-0,268	0,048	-0,405	0,073	-0,510	-0,454	-0,418	-0,379	-0,299	0,037	-0,416	0,061	0
InF Cor2	0,854	0,934	0,964	0,979	0,991	0,022	0,949	0,048	0,916	0,960	0,975	0,983	0,990	0,012	0,966	0,030	1
GLDS																	
Homogeneity	0,375	0,463	0,496	0,524	0,551	0,030	0,485	0,055	0,321	0,392	0,432	0,480	0,546	0,044	0,436	0,066	1
Contrast	2,226	2,718	3,415	4,460	11,252	0,871	4,564	3,734	2,259	3,857	6,193	10,286	18,984	3,214	7,867	5,503	1
Energy	0,177	0,243	0,267	0,288	0,309	0,022	0,260	0,041	0,145	0,189	0,220	0,257	0,309	0,034	0,223	0,048	1
Entropy	1,322	1,400	1,491	1,607	1,994	0,103	1,543	0,208	1,323	1,540	1,725	1,919	2,207	0,190	1,740	0,261	1
Mean	1.109	1.227	1.368	1.536	2.412	0.154	1.490	0.431	1.128	1 4 5 3	1.779	2.212	3.023	0.379	1 885	0.577	1

Πίνακας 28: Παρουσιάζει τη στατιστική ανάλυση φυσιολογικών και παθολογικών περιοχών ενδιαφέροντος πρίν την εφαρμογή του αλγόριθμου γάμμα για την Υ συνιστώσα.

¹Η Wilcoxon rank sum test μεταξύ φυσιολογικού και παθολογικού ιστού με '1' αναφέρεται για την στατιστική διαφορά, και '0' για τη μη στατιστική διαφορά με a=0.05, P5%, P25%, P50%, P75%, P95%: είναι τα 5th, 25th, 50th (Median), 75th και 95th ποσοστά αντίστοιχα, IQR: Spread of the data (Inter Quartile Range: διαφορά μεταξύ του 25th και 75th ποσοστάν)

Σύστημα			X	αρακτηρισ	τικά Υφής	και Στατι	ιστική Ανά	λυση πραγ	ματικών ε	ικόνων ενδ	ομητρίου γ	ια την Cb	συνιστώσα				
Cb				Φυσιολογι	κός Ιστός							Παθολογικ	κός Ιστός				
	P5%	P25%	Median	P75%	P95%	IQR	Mean	STD	P5%	P25%	Median	P75%	P95%	IQR	Mean	STD	\mathbf{H}^{1}
SF																	
Mean	93,100	100,306	104,062	108,788	121,519	4,241	105,071	7,740	95,805	102,011	106,532	111,029	115,966	4,509	106,339	6,306	1
Variance	8,824	11,955	15,020	19,231	31,062	3,638	16,676	7,323	8,000	13,440	18,116	27,160	40,875	6,860	21,512	13,199	1
Median	93,292	100,035	103,793	108,891	121,520	4,428	105,006	7,748	95,583	102,109	106,419	110,767	115,942	4,329	106,308	6,353	1
Mode	94,000	100,000	103,000	110,000	123,000	5,000	104,779	8,006	94,000	103,000	107,000	110,000	116,000	3,500	106,308	6,564	1
Skewness	-0,267	-0,071	0,045	0,200	0,509	0,135	0,071	0,228	-0,362	-0,086	0,032	0,199	0,455	0,142	0,050	0,258	0
Kurtosis	2,531	2,736	2,910	3,110	3,534	0,187	2,947	0,322	2,344	2,705	2,927	3,125	3,539	0,210	2,972	0,533	0
Energy	0,054	0,069	0,077	0,086	0,104	0,009	0,077	0,014	0,046	0,056	0,070	0,081	0,107	0,013	0,071	0,019	1
Entropy	2,466	2,620	2,739	2,854	3,072	0,117	2,748	0,183	2,421	2,679	2,830	3,029	3,228	0,175	2,848	0,250	1
SGLDM																	
ASM	0,007	0,011	0,012	0,015	0,019	0,002	0,013	0,003	0,006	0,008	0,011	0,013	0,020	0,003	0,011	0,004	1
Contrast	9,689	13,208	16,288	21,453	38,772	4,123	18,778	9,407	8,779	12,980	17,221	27,632	48,384	7,326	22,265	17,347	0
Correlation	0,278	0,348	0,404	0,497	0,645	0,075	0,429	0,118	0,279	0,380	0,449	0,553	0,765	0,086	0,473	0,140	1
Variance	8,713	11,893	15,037	19,080	31,239	3,594	16,643	7,328	8,000	13,379	17,985	27,140	41,274	6,880	21,447	13,162	1
Homogeneity	0,305	0,342	0,364	0,382	0,408	0,020	0,361	0,030	0,288	0,325	0,356	0,380	0,421	0,028	0,354	0,040	1
Sum Average	188,157	202,604	210,078	219,542	245,019	8,469	212,130	15,489	193,706	206,011	215,023	224,062	233,865	9,025	214,669	12,613	1
Sum Variance	24,052	33,312	41,380	56,371	86,561	11,530	47,795	21,970	22,949	38,623	53,215	80,538	126,059	20,957	63,524	38,676	1
Sum Entropy	2,967	3,129	3,243	3,388	3,592	0,129	3,265	0,193	2,942	3,199	3,361	3,559	3,787	0,180	3,376	0,261	1
Entropy	4,562	4,809	5,000	5,168	5,579	0,179	5,015	0,299	4,462	4,906	5,138	5,457	5,851	0,275	5,170	0,414	1
Dif Variance	3,722	5,003	6,160	8,199	14,652	1,598	7,218	3,902	3,424	4,905	6,729	10,306	18,472	2,701	8,595	6,803	0
Dif Entropy	1,773	1,887	1,954	2,055	2,284	0,084	1,975	0,141	1,742	1,881	1,982	2,145	2,358	0,132	2,015	0,195	1
InF Cor1	-0,211	-0,183	-0,168	-0,159	-0,149	0,012	-0,173	0,021	-0,247	-0,188	-0,175	-0,164	-0,149	0,012	-0,182	0,030	1
InF Cor2	0,476	0,512	0,550	0,608	0,708	0,048	0,569	0,077	0,477	0,545	0,594	0,650	0,799	0,052	0,609	0,094	1
GLDS																	
Homogeneity	0,306	0,343	0,365	0,383	0,409	0,020	0,362	0,029	0,289	0,326	0,357	0,381	0,421	0,028	0,355	0,040	1
Contrast	9,665	13,174	16,247	21,398	38,672	4,112	18,730	9,383	8,758	12,948	17,178	27,561	48,258	7,307	22,208	17,301	0
Energy	0,103	0,129	0,143	0,153	0,171	0,012	0,141	0,019	0,096	0,118	0,139	0,155	0,181	0,018	0,138	0,026	0
Entropy	1,956	2,093	2,180	2,294	2,551	0,100	2,201	0,167	1,904	2,085	2,209	2,393	2,637	0,154	2,241	0,230	0
Mean	2,231	2,598	2,843	3,256	4,419	0,329	2,998	0,632	2,089	2,574	2,944	3,635	4,823	0,531	3,190	0,942	0

Πίνακας 29: Παρουσιάζει τη στατιστική ανάλυση φυσιολογικών και παθολογικών περιοχών ενδιαφέροντος πρίν την εφαρμογή του αλγόριθμου γάμμα για την Cb συνιστώσα.

¹Η Wilcoxon rank sum test μεταξύ φυσιολογικού και παθολογικού ιστού με '1' αναφέρεται για την στατιστική διαφορά, και '0' για τη μη στατιστική διαφορά με a=0.05, P5%, P25%, P50%, P75%, P95%: είναι τα 5th, 25th, 50th (Median), 75th και 95th ποσοστά αντίστοιχα, IQR: Spread of the data (Inter Quartile Range: διαφορά μεταξύ του 25th και 75th ποσοστάν)

Σύστημα			X	αρακτηρισ	τικά Υφής	και Στατ	τιστική Ανά	άλυση προ	γματικών	εικόνων εν	δομητρίου	για την Cr	συνιστώσα	ι			
Cr			¢	Φυσιολογικ	τός Ιστός							Παθολογικ	κός Ιστός				
	P5%	P25%	Median	P75%	P95%	IQR	Mean	STD	P5%	P25%	Median	P75%	P95%	IQR	Mean	STD	H^1
SF																	
Mean	143,220	146,323	150,646	156,237	164,955	4,957	151,746	7,117	137,457	145,557	153,218	160,508	170,337	7,476	153,569	10,293	0
Variance	4,580	6,076	7,638	9,396	19,762	1,660	9,506	9,280	5,122	7,548	10,410	16,232	30,134	4,342	13,363	9,473	1
Median	142,855	146,140	150,623	155,920	164,845	4,890	151,708	7,122	137,488	145,722	153,279	160,675	170,347	7,476	153,598	10,384	0
Mode	142,000	146,000	151,000	156,000	166,000	5,000	151,620	7,169	137,900	146,000	153,000	160,500	170,000	7,250	153,649	10,485	1
Skewness	-0,300	-0,096	0,003	0,137	0,432	0,117	0,026	0,220	-0,517	-0,209	-0,017	0,128	0,442	0,169	-0,035	0,295	1
Kurtosis	2,572	2,803	2,947	3,121	3,510	0,159	2,976	0,308	2,383	2,719	2,973	3,203	3,807	0,242	2,991	0,437	0
Energy	0,065	0,094	0,104	0,115	0,135	0,011	0,103	0,020	0,053	0,071	0,088	0,105	0,126	0,017	0,088	0,022	1
Entropy	2,174	2,315	2,423	2,528	2,898	0,106	2,451	0,217	2,231	2,420	2,581	2,779	3,047	0,179	2,610	0,256	1
SGLDM																	
ASM	0,008	0,013	0,015	0,018	0,023	0,003	0,015	0,004	0,007	0,009	0,012	0,015	0,021	0,003	0,013	0,004	1
Contrast	4,866	6,260	7,747	9,073	12,393	1,407	8,181	3,776	5,208	6,697	7,848	9,614	12,291	1,458	8,336	2,464	0
Correlation	0,320	0,391	0,472	0,571	0,749	0,090	0,496	0,140	0,339	0,459	0,591	0,731	0,860	0,136	0,599	0,169	1
Variance	4,579	6,074	7,592	9,386	19,576	1,656	9,474	9,265	5,078	7,538	10,385	16,151	29,695	4,306	13,272	9,407	1
Homogeneity	0,335	0,370	0,389	0,410	0,444	0,020	0,391	0,035	0,336	0,362	0,384	0,406	0,431	0,022	0,383	0,031	1
Sum Average	288,462	294,662	303,267	314,508	331,897	9,923	305,501	14,233	276,909	293,141	308,451	323,054	342,771	14,957	309,166	20,601	0
Sum Variance	13,328	17,539	21,477	29,268	67,632	5,864	29,714	35,822	13,666	22,483	32,657	52,913	106,826	15,215	44,752	37,282	1
Sum Entropy	2,697	2,827	2,932	3,084	3,497	0,128	2,982	0,246	2,704	2,952	3,140	3,368	3,671	0,208	3,169	0,296	1
Entropy	4,145	4,376	4,556	4,728	5,121	0,176	4,590	0,322	4,223	4,556	4,788	5,068	5,389	0,256	4,801	0,342	1
Dif Variance	1,943	2,424	2,990	3,427	4,588	0,501	3,160	1,530	2,046	2,608	3,056	3,617	4,768	0,505	3,211	0,881	0
Dif Entropy	1,595	1,688	1,766	1,821	1,934	0,066	1,761	0,122	1,617	1,711	1,779	1,854	1,948	0,071	1,784	0,103	1
InF Cor1	-0,193	-0,138	-0,110	-0,096	-0,084	0,021	-0,123	0,045	-0,260	-0,186	-0,137	-0,111	-0,086	0,038	-0,153	0,057	1
InF Cor2	0,405	0,457	0,526	0,615	0,767	0,079	0,550	0,119	0,419	0,522	0,628	0,755	0,868	0,117	0,641	0,145	1
GLDS																	
Homogeneity	0,335	0,371	0,389	0,411	0,444	0,020	0,391	0,035	0,336	0,362	0,385	0,407	0,432	0,022	0,384	0,031	1
Contrast	4,857	6,247	7,731	9,053	12,365	1,403	8,164	3,767	5,198	6,683	7,832	9,593	12,264	1,455	8,319	2,457	0
Energy	0,155	0,177	0,190	0,205	0,228	0,014	0,191	0,025	0,155	0,173	0,187	0,202	0,221	0,015	0,187	0,021	0
Entropy	1,654	1,760	1,854	1,926	2,061	0,083	1,851	0,144	1,681	1,790	1,857	1,951	2,061	0,081	1,870	0,121	0
Mean	1,662	1,882	2,070	2,249	2,622	0,183	2,099	0.368	1.719	1.929	2,110	2,314	2,619	0.193	2.139	0.299	0

Πίνακας 30: Παρουσιάζει τη στατιστική ανάλυση φυσιολογικών και παθολογικών περιοχών ενδιαφέροντος πρίν την εφαρμογή του αλγόριθμου γάμμα για την Cr συνιστώσα.

¹Η Wilcoxon rank sum test μεταξύ φυσιολογικού και παθολογικού ιστού με '1' αναφέρεται για την στατιστική διαφορά, και '0' για τη μη στατιστική διαφορά με a=0.05, P5%, P25%, P50%, P75%, P95%: είναι τα 5th, 25th, 50th (Median), 75th και 95th ποσοστά αντίστοιχα, IQR: Spread of the data (Inter Quartile Range: διαφορά μεταξύ του 25th και 75th ποσοστάν)

Ολοκληρώνοντας την ανάλυσή μας έχουμε εξαγάγει τα χαρακτηριστικά υφής και έχουμε εφαρμόσει τη στατιστική ανάλυση στα πιο πάνω πειράματα μετά την κανονικοποίηση των εικόνων με τον αλγόριθμο γάμμα.

Ο Πίνακας 31 παρουσιάζει τη στατιστική ανάλυση των χαρακτηριστικών υφής της κόκκινης συνιστώσας από φυσιολογικές και παθολογικές εικόνες ενδομητρίου από 40 περιστατικά με 216 εικόνες αντίστοιχα στην κάθε κατηγορία. Η ανάλυση έγινε στις εικόνες μετά την εφαρμογή του αλγόριθμου γάμμα.

Ο Πίνακας 32 παρουσιάζει τη στατιστική ανάλυση των χαρακτηριστικών υφής της πράσινης συνιστώσας από φυσιολογικές και παθολογικές εικόνες ενδομητρίου από 40 περιστατικά με 216 εικόνες αντίστοιχα στην κάθε κατηγορία. Η ανάλυση έγινε στις εικόνες μετά την εφαρμογή του αλγόριθμου γάμμα.

Ο Πίνακας 33 παρουσιάζει τη στατιστική ανάλυση των χαρακτηριστικών υφής της μπλε συνιστώσας από φυσιολογικές και παθολογικές εικόνες ενδομητρίου από 40 περιστατικά με 216 εικόνες αντίστοιχα στην κάθε κατηγορία. Η ανάλυση έγινε στις εικόνες μετά την εφαρμογή του αλγόριθμου γάμμα.

Ο Πίνακας 34 παρουσιάζει τη στατιστική ανάλυση των χαρακτηριστικών υφής της χροιάς (Η) συνιστώσας από φυσιολογικές και παθολογικές εικόνες ενδομητρίου από 40 περιστατικά με 216 εικόνες αντίστοιχα στην κάθε κατηγορία. Η ανάλυση έγινε στις εικόνες μετά την εφαρμογή του αλγόριθμου γάμμα.

Ο Πίνακας 35 παρουσιάζει τη στατιστική ανάλυση των χαρακτηριστικών υφής της saturation (S) συνιστώσας από φυσιολογικές και παθολογικές εικόνες ενδομητρίου από 40 περιστατικά με 216 αντίστοιχα εικόνες στην κάθε κατηγορία. Η ανάλυση έγινε στις εικόνες μετά την εφαρμογή του αλγόριθμου γάμμα.

245

				Χαρακτη	ριστικά Υφ	οής και Στα	ατιστική Αγ	νάλυση προ	ιγματικών	εικόνων εν	δομητρίου	για το κόκι	κινο χρώμα				
				Φυσιολογ	ικός Ιστός							Παθολογ	ικός Ιστός				
	P5%	P25%	Median	P75%	P95%	Mean	STD	IQR	P5%	P25%	Median	P75%	P95%	Mean	STD	IQR	\mathbf{H}^{1}
SF																	
Mean	153,313	182,926	199,905	216,933	239,712	199,044	25,391	17,003	142,459	177,802	193,228	211,841	241,247	193,773	28,734	17,019	0
Variance	13,244	25,073	41,955	82,975	206,704	63,910	58,500	28,951	28,581	51,794	87,527	155,584	301,008	120,183	107,767	51,895	1
Median	153,360	183,296	199,915	216,353	240,086	199,317	25,439	16,529	142,928	177,098	193,539	212,937	241,447	194,386	28,958	17,919	0
Mode	155,400	186,000	199,000	214,500	244,000	199,308	25,523	14,250	143,000	175,000	196,000	213,000	242,000	195,053	29,738	19,000	0
Skewness	-0,802	-0,433	-0,199	0,018	0,322	-0,241	0,418	0,226	-1,092	-0,513	-0,211	0,012	0,360	-0,292	0,496	0,262	0
Kurtosis	2,096	2,429	2,792	3,139	4,473	2,929	0,868	0,355	1,985	2,383	2,707	3,262	4,715	3,012	1,345	0,440	0
Energy	0,024	0,035	0,050	0,065	0,087	0,054	0,035	0,015	0,020	0,028	0,036	0,046	0,062	0,039	0,017	0,009	1
Entropy	2,620	2,955	3,193	3,519	3,920	3,216	0,421	0,282	2,966	3,282	3,529	3,777	4,084	3,523	0,370	0,247	1
SGLDM																	
ASM	27,082	41,37	59,66	82,52	125,954	70,21	71,642	20,575	20,142	29,935	40,355	55,955	84,442	46,163	27,815	13,01	1
Contrast	8,077	10,801	12,951	16,018	24,690	14,337	6,030	2,608	9,486	13,018	16,270	20,448	31,618	17,542	6,821	3,715	1
Correlation	0,531	0,738	0,831	0,909	0,966	0,801	0,148	0,086	0,708	0,841	0,906	0,944	0,969	0,877	0,102	0,051	1
Variance	13,132	24,711	41,316	82,089	202,642	62,763	57,321	28,689	27,982	51,200	85,713	150,763	298,108	118,024	106,064	49,781	1
Homogeneity	0,276	0,316	0,339	0,362	0,391	0,337	0,042	0,023	0,256	0,292	0,315	0,339	0,380	0,317	0,037	0,023	1
Sum Average	305,236	367,537	401,595	435,426	478,651	397,677	57,334	33,945	287,129	357,667	388,486	425,589	484,075	389,527	57,318	33,961	0
Sum Variance	40,605	85,119	150,450	313,049	797,273	236,715	227,985	113,965	89,748	189,400	324,918	587,355	1173,992	454,555	421,898	198,978	1
Sum Entropy	3,238	3,598	3,856	4,210	4,610	3,869	0,504	0,306	3,624	3,962	4,221	4,447	4,783	4,204	0,384	0,243	1
Entropy	4,835	5,295	5,609	5,961	6,440	5,573	0,625	0,333	5,315	5,700	6,014	6,305	6,670	5,990	0,455	0,302	1
Dif Variance	3,225	4,280	5,006	6,061	9,559	5,553	2,383	0,891	3,820	5,179	6,396	7,848	13,178	6,978	2,737	1,335	1
Dif Entropy	1,801	1,912	1,986	2,063	2,231	1,987	0,190	0,076	1,851	2,005	2,091	2,168	2,349	2,093	0,147	0,081	1
InF Cor1	-0,389	-0,300	-0,243	-0,196	-0,140	-0,251	0,076	0,052	-0,392	-0,341	-0,293	-0,245	-0,189	-0,291	0,064	0,048	1
InF Cor2	0,615	0,771	0,857	0,918	0,969	0,830	0,123	0,073	0,764	0,869	0,922	0,951	0,974	0,897	0,081	0,041	1
GLDS																	
Homogeneity	0,280	0,317	0,340	0,364	0,393	0,340	0,038	0,023	0,257	0,293	0,316	0,340	0,380	0,317	0,037	0,023	1
Contrast	8,050	10,775	12,922	15,983	24,631	14,308	5,987	2,604	9,465	12,989	16,201	20,399	31,529	17,486	6,806	3,705	1
Energy	0,114	0,137	0,150	0,162	0,182	0,150	0,026	0,013	0,102	0,125	0,139	0,150	0,173	0,138	0,020	0,013	1
Entropy	1,882	2,007	2,091	2,185	2,371	2,103	0,163	0,089	1,943	2,088	2,189	2,290	2,499	2,192	0,158	0,101	1
Mean	2,110	2,426	2,665	2,948	3,694	2,745	0,506	0,261	2,240	2,666	2,955	3,339	4,153	3,027	0,555	0,336	1

Πίνακας 31: Παρουσιάζει τη στατιστική ανάλυση φυσιολογικών και παθολογικών περιοχών ενδιαφέροντος μετά την εφαρμογή του αλγόριθμου γάμμα για το κόκκινο χρώμα.

⁻¹Η Wilcoxon rank sum test μεταξύ φυσιολογικού και παθολογικού ιστού με '1' αναφέρεται για την στατιστική διαφορά, και '0' για τη μη στατιστική διαφορά με a=0.05,

P5%, P25%, P50%, P75%, P95%: είναι τα 5th, 25th, 50th (Median), 75th και 95th ποσοστά αντίστοιχα, IQR: Spread of the data (Inter Quartile Range: διαφορά μεταξύ του 25th και 75th ποσοστών)

				Χαρακτ	ηριστικά Υφ	ρής και Στα	ατιστική Αγ	νάλυση προ	ιγματικών	εικόνων εν	δομητρίου	για το πράσ	ινο χρώμα				
				Φυσιολογ	γικός Ιστός							Παθολογι	ικός Ιστός				
	P5%	P25%	Median	P75%	P95%	Mean	STD	IQR	P5%	P25%	Median	P75%	P95%	Mean	STD	IQR	H^1
SF																	
Mean	93,475	123,659	141,928	159,519	195,309	142,852	30,995	17,930	80,058	105,985	126,664	156,945	193,740	131,943	34,751	25,480	1
Variance	24,917	42,876	84,488	163,040	348,353	126,662	127,676	60,082	41,845	101,191	166,837	329,927	668,104	242,862	211,998	114,368	1
Median	92,553	123,827	143,556	160,179	193,948	143,032	31,177	18,176	78,146	106,201	127,815	157,273	192,373	132,172	35,479	25,536	1
Mode	92,800	128,000	144,000	166,000	190,000	143,837	31,908	19,000	77,000	105,500	128,000	156,000	190,700	134,192	37,495	25,250	1
Skewness	-0,792	-0,398	-0,134	0,133	0,517	-0,139	0,450	0,266	-0,918	-0,434	-0,089	0,251	0,646	-0,117	0,519	0,342	0
Kurtosis	1,993	2,348	2,705	3,116	3,901	2,837	0,800	0,384	1,908	2,326	2,648	3,096	4,121	2,844	0,953	0,385	0
Energy	0,018	0,025	0,034	0,047	0,062	0,037	0,015	0,011	0,014	0,019	0,024	0,031	0,048	0,027	0,012	0,006	1
Entropy	2,944	3,253	3,533	3,868	4,206	3,558	0,401	0,307	3,222	3,633	3,880	4,167	4,442	3,871	0,380	0,267	1
SGLDM																	
ASM	0,002	0,003	0,004	0,005	0,007	0,004	0,002	0,001	0,001	0,002	0,002	0,003	0,006	0,003	0,002	0,001	1
Contrast	9,174	11,169	13,167	16,577	29,387	15,371	7,227	2,704	8,887	13,585	17,913	27,745	40,575	21,161	10,129	7,080	1
Correlation	0,692	0,840	0,911	0,956	0,981	0,886	0,091	0,058	0,821	0,913	0,945	0,967	0,982	0,928	0,063	0,027	1
Variance	24,585	42,032	82,963	161,455	342,206	124,884	126,345	59,712	40,739	98,487	162,952	326,199	666,504	240,043	210,549	113,856	1
Homogeneity	0,262	0,308	0,327	0,344	0,367	0,323	0,031	0,018	0,229	0,266	0,296	0,322	0,370	0,296	0,041	0,028	1
Sum Average	189,069	249,138	285,862	321,040	392,739	287,743	61,990	35,951	162,200	213,936	255,283	316,086	389,478	265,905	69,522	51,075	1
Sum Variance	87,444	153,783	315,502	630,617	1357,238	484,166	503,576	238,417	154,389	378,354	636,149	1284,756	2633,726	939,009	837,817	453,201	1
Sum Entropy	3,602	3,892	4,195	4,533	4,885	4,214	0,417	0,321	3,887	4,303	4,545	4,832	5,118	4,540	0,385	0,265	1
Entropy	5,290	5,666	6,011	6,370	6,704	6,022	0,455	0,352	5,634	6,134	6,467	6,837	7,097	6,435	0,484	0,351	1
Dif Variance	3,467	4,408	5,250	6,556	12,692	6,143	3,054	1,074	3,492	5,483	7,598	11,576	18,374	8,909	4,645	3,047	1
Dif Entropy	1,862	1,947	2,017	2,105	2,338	2,041	0,142	0,079	1,853	2,036	2,150	2,325	2,496	2,174	0,192	0,145	1
InF Cor1	-0,423	-0,351	-0,294	-0,237	-0,168	-0,296	0,075	0,057	-0,417	-0,376	-0,334	-0,295	-0,216	-0,330	0,061	0,040	1
InF Cor2	0,744	0,858	0,923	0,960	0,984	0,902	0,077	0,051	0,849	0,930	0,955	0,973	0,986	0,941	0,053	0,021	1
GLDS																	
Homogeneity	0,263	0,308	0,327	0,344	0,367	0,323	0,031	0,018	0,229	0,266	0,297	0,322	0,370	0,297	0,041	0,028	1
Contrast	9,155	11,146	13,140	16,539	29,318	15,337	7,208	2,697	8,869	13,555	17,873	27,681	40,480	21,114	10,104	7,063	1
Energy	0,110	0,139	0,152	0,161	0,175	0,148	0,020	0,011	0,098	0,116	0,135	0,150	0,176	0,134	0,024	0,017	1
Entropy	1,931	2,019	2,098	2,187	2,417	2,124	0,158	0,084	1,918	2,103	2,220	2,405	2,578	2,248	0,199	0,151	1
Mean	2,266	2,502	2,718	3,013	3,864	2,845	0,540	0,256	2,252	2,752	3,110	3,781	4,553	3,274	0,716	0,514	1

Πίνακας 32: Παρουσιάζει τη στατιστική ανάλυση φυσιολογικών και παθολογικών περιοχών ενδιαφέροντος μετά την εφαρμογή του αλγόριθμου γάμμα για το πράσινο χρώμα.

¹Η Wilcoxon rank sum test μεταξύ φυσιολογικού και παθολογικού ιστού με '1' αναφέρεται για την στατιστική διαφορά, και '0' για τη μη στατιστική διαφορά με a=0.05, P5%, P25%, P50%, P75%, P95%: είναι τα 5th, 25th, 50th (Median), 75th και 95th ποσοστά αντίστοιχα, IQR: Spread of the data (Inter Quartile Range: διαφορά μεταξύ του 25th και 75th ποσοστάν)

				Χαρακ	τηριστικά Υ	φής και Στ	ατιστική Α	νάλυση πρ	αγματικών	εικόνων ε	νδομητρίου	για το μπλ	έ χρώμα				
				Φυσιολογ	γικός Ιστός							Παθολογ	ικός Ιστός				
	P5%	P25%	Median	P75%	P95%	Mean	STD	IQR	P5%	P25%	Median	P75%	P95%	Mean	STD	IQR	\mathbf{H}^{1}
SF																	
Mean	74,029	96,437	114,216	141,778	170,436	118,205	28,870	22,671	68,424	92,967	107,121	127,745	160,868	111,622	27,177	17,389	1
Variance	51,916	72,696	96,525	154,587	279,089	123,977	74,997	40,946	64,182	100,850	159,729	249,744	483,943	201,289	153,422	74,447	1
Median	73,878	96,649	114,050	141,695	169,989	118,376	29,038	22,523	68,072	93,757	106,859	127,351	161,206	111,967	27,444	16,797	1
Mode	73,000	96,000	124,000	139,000	170,000	119,269	29,742	21,500	70,800	93,500	109,000	124,000	170,000	113,952	29,164	15,250	0
Skewness	-0,514	-0,255	-0,097	0,070	0,322	-0,095	0,276	0,162	-0,696	-0,307	-0,130	0,021	0,300	-0,157	0,338	0,164	0
Kurtosis	2,243	2,657	2,882	3,101	3,499	2,902	0,402	0,222	2,125	2,636	2,887	3,184	4,318	3,014	0,759	0,274	0
Energy	0,018	0,025	0,031	0,036	0,043	0,031	0,007	0,006	0,014	0,019	0,024	0,031	0,038	0,026	0,008	0,006	1
Entropy	3,297	3,499	3,639	3,877	4,131	3,682	0,254	0,189	3,422	3,647	3,872	4,092	4,372	3,872	0,299	0,223	1
SGLDM																	
ASM	0,001	0,002	0,002	0,003	0,004	0,002	0,001	0,001	0,001	0,001	0,002	0,002	0,003	0,002	0,001	0,000	1
Contrast	40,603	56,158	68,879	88,250	155,245	77,328	35,389	16,046	36,594	58,479	78,931	124,708	200,538	97,687	63,765	33,114	1
Correlation	0,390	0,480	0,610	0,754	0,902	0,618	0,166	0,137	0,411	0,590	0,706	0,811	0,922	0,694	0,154	0,110	1
Variance	51,925	72,290	95,843	153,193	277,242	122,992	74,089	40,452	63,863	100,360	157,981	250,374	473,614	199,528	152,206	75,007	1
Homogeneity	0,174	0,197	0,209	0,225	0,244	0,210	0,021	0,014	0,151	0,174	0,197	0,216	0,249	0,197	0,029	0,021	1
Sum Average	150,066	194,852	230,405	285,534	342,697	238,427	57,740	45,341	138,857	187,946	216,071	257,755	323,312	225,261	54,375	34,905	1
Sum Variance	152,751	219,673	301,785	508,286	1063,445	414,642	291,907	144,307	197,546	322,566	520,890	880,427	1722,678	700,424	590,412	278,931	1
Sum Entropy	3,905	4,078	4,236	4,474	4,790	4,285	0,275	0,198	4,027	4,273	4,480	4,728	5,031	4,500	0,311	0,228	1
Entropy	6,173	6,419	6,619	6,886	7,135	6,641	0,303	0,233	6,237	6,594	6,912	7,208	7,477	6,892	0,389	0,307	1
Dif Variance	14,969	21,387	25,752	33,666	57,888	29,568	14,341	6,139	13,380	22,956	30,606	46,790	80,104	37,884	25,170	11,917	1
Dif Entropy	2,434	2,571	2,644	2,749	2,955	2,658	0,151	0,089	2,401	2,596	2,725	2,915	3,101	2,750	0,217	0,159	1
InF Cor1	-0,295	-0,220	-0,177	-0,154	-0,133	-0,192	0,051	0,033	-0,321	-0,252	-0,207	-0,172	-0,144	-0,215	0,054	0,040	1
InF Cor2	0,624	0,693	0,758	0,846	0,938	0,769	0,099	0,076	0,658	0,766	0,840	0,895	0,953	0,827	0,089	0,065	1
GLDS																	
Homogeneity	0,175	0,198	0,209	0,225	0,245	0,211	0,021	0,014	0,152	0,174	0,198	0,217	0,249	0,197	0,029	0,021	1
Contrast	40,505	56,019	68,705	88,028	154,848	77,134	35,296	16,004	36,508	58,334	78,735	124,394	200,021	97,441	63,598	33,030	1
Energy	0,056	0,069	0,076	0,084	0,096	0,077	0,012	0,008	0,049	0,060	0,072	0,082	0,101	0,072	0,015	0,011	1
Entropy	2,598	2,748	2,843	2,954	3,203	2,853	0,174	0,103	2,537	2,765	2,898	3,126	3,325	2,932	0,241	0,180	1
Mean	4,646	5,427	6,010	6,760	8,958	6,196	1,247	0,667	4,340	5,506	6,375	8,070	10,070	6,836	1,875	1,282	1

Πίνακας 33: Παρουσιάζει τη στατιστική ανάλυση φυσιολογικών και παθολογικών περιοχών ενδιαφέροντος μετά την εφαρμογή του αλγόριθμου γάμμα για το μπλε χρώμα.

¹Η Wilcoxon rank sum test μεταξύ φυσιολογικού και παθολογικού ιστού με '1' αναφέρεται για την στατιστική διαφορά, και '0' για τη μη στατιστική διαφορά με a=0.05,

P5%, P25%, P50%, P75%, P95%: είναι τα 5th, 25th, 50th (Median), 75th και 95th ποσοστά αντίστοιχα, IQR: Spread of the data (Inter Quartile Range: διαφορά μεταξύ του 25th και 75th ποσοστών)

Σύστημα					Χαρακτηριστ	τικά Υφής κ	αι Στατιστικ	κή Ανάλυση π	ραγματικ	ών εικόνα	ον ενδομητρί	ίου για την Η	συνιστώσα				
Н				Φυσι	ολογικός Ιστά	ίς						Παθα	ολογικός Ιστό	ς			
	P5%	P25%	Median	P75%	P95%	Mean	STD	IQR	P5%	P25%	Median	P75%	P95%	Mean	STD	IQR	\mathbf{H}^{1}
SF																	
Mean	12,062	14,822	17,457	25,255	224,949	5,216	40,725	58,180	12,934	17,572	24,771	50,110	149,449	16,269	43,305	42,555	1
Variance	9,980	13,722	78,119	1335,436	14009,993	660,857	2028,090	4106,586	10,910	24,684	1997,950	8550,310	14681,890	4262,813	4464,240	5222,959	1
Median	7,355	11,966	15,427	19,678	244,075	3,856	37,066	67,909	6,619	8,827	11,601	18,519	244,918	4,846	29,136	58,415	1
Mode	2,900	12,000	15,000	20,500	245,000	4,250	36,000	67,193	1,000	6,000	12,000	20,000	249,200	7,000	29,659	62,075	1
Skewness	-2,907	-0,336	0,090	8,095	18,659	4,215	4,048	7,235	-0,620	-0,133	1,487	4,668	15,602	2,400	3,322	4,925	0
Kurtosis	1,264	2,934	3,624	96,503	574,727	46,785	99,845	202,322	1,099	2,834	3,893	23,308	267,855	10,237	42,744	100,785	0
Energy	0,045	0,058	0,068	0,079	0,091	0,011	0,068	0,015	0,041	0,051	0,059	0,070	0,090	0,009	0,061	0,014	1
Entropy	2,538	2,699	2,856	3,016	3,240	0,159	2,869	0,223	2,573	2,840	2,997	3,123	3,319	0,141	2,975	0,223	1
SGLDM																	
ASM	0,005	0,008	0,010	0,013	0,016	0,002	0,010	0,003	0,005	0,007	0,008	0,010	0,015	0,002	0,009	0,003	1
Contrast	10,773	16,481	110,231	1682,221	17910,419	832,870	2631,487	5346,802	10,835	20,241	2632,140	10238,752	19036,911	5109,255	5634,812	6671,960	1
Correlation	0,216	0,267	0,350	0,433	0,565	0,083	0,359	0,109	0,214	0,285	0,356	0,452	0,606	0,083	0,373	0,120	0
Variance	9,902	13,622	76,061	1295,009	13989,383	640,693	1995,339	4084,480	10,697	24,528	1882,937	8334,473	14640,672	4154,973	4387,196	5192,437	1
Homogeneity	0,286	0,318	0,340	0,373	0,404	0,027	0,344	0,037	0,276	0,308	0,330	0,352	0,390	0,022	0,332	0,036	1
Sum Average	26,101	31,233	36,639	52,509	453,045	10,638	83,285	116,594	27,610	36,805	50,489	99,523	301,479	31,359	87,874	85,245	1
Sum Variance	27,577	39,172	194,914	3115,437	37264,260	1538,133	5349,867	11039,999	30,475	75,994	4828,362	23417,513	38860,462	11670,759	11913,970	14218,193	1
Sum Entropy	3,039	3,200	3,389	3,612	3,930	0,206	3,431	0,291	3,084	3,359	3,658	3,843	4,063	0,242	3,605	0,308	1
Entropy	4,623	4,938	5,209	5,469	5,895	0,265	5,224	0,378	4,720	5,150	5,411	5,627	5,911	0,239	5,387	0,354	1
Dif Variance	4,006	6,386	96,138	1555,856	10705,060	774,735	1796,495	3301,138	4,146	8,065	2400,095	7701,136	10761,751	3846,536	3842,735	4052,447	1
Dif Entropy	1,773	1,935	2,064	2,243	2,608	0,154	2,122	0,260	1,827	1,997	2,230	2,481	2,713	0,242	2,248	0,278	1
InF Cor1	-0,215	-0,191	-0,173	-0,161	-0,144	0,015	-0,177	0,024	-0,239	-0,201	-0,184	-0,168	-0,133	0,017	-0,186	0,031	1
InF Cor2	0,490	0,543	0,582	0,633	0,736	0,045	0,596	0,079	0,507	0,575	0,619	0,691	0,809	0,058	0,637	0,087	1
GLDS																	
Homogeneity	0,288	0,322	0,341	0,373	0,404	0,026	0,345	0,037	0,279	0,312	0,332	0,354	0,393	0,021	0,334	0,035	1
Contrast	10,746	16,440	110,002	1677,135	17683,906	830,348	2603,588	5277,818	10,809	20,192	2617,999	10137,046	18734,265	5058,427	5571,407	6580,502	1
Energy	0,091	0,114	0,131	0,147	0,170	0,017	0,130	0,024	0,083	0,101	0,120	0,141	0,169	0,020	0,122	0,026	1
Entropy	1,989	2,160	2,288	2,496	2,857	0,168	2,352	0,273	1,996	2,226	2,473	2,739	2,957	0,256	2,478	0,305	1
Mean	2,300	2,856	3,615	10,279	73,365	3,712	13,456	21,143	2,360	3,202	13,476	43,773	78,436	20,285	25,310	26,382	1

Πίνακας 34: Παρουσιάζει τη στατιστική ανάλυση φυσιολογικών και παθολογικών περιοχών ενδιαφέροντος μετά την εφαρμογή του αλγόριθμου γάμμα για την HUE (H) συνιστώσα.

¹Η Wilcoxon rank sum test μεταξύ φυσιολογικού και παθολογικού ιστού με '1' αναφέρεται για την στατιστική διαφορά, και '0' για τη μη στατιστική διαφορά με a=0.05,

P5%, P25%, P50%, P75%, P95%: είναι τα 5th, 25th, 50th (Median), 75th και 95th ποσοστά αντίστοιχα, IQR: Spread of the data (Inter Quartile Range: διαφορά μεταξύ του 25th και 75th ποσοστών)

Σύστημα				Χαρακτη	ριστικά Υφ	ρής και Στα	ατιστική Αγ	νάλυση πρ	αγματικών	εικόνων ε	νδομητρίοι	ο για την S	συνιστώσα				
S				Φυσιολογι	κός Ιστός							Παθολογ	ικός Ιστός				
	P5%	P25%	Median	P75%	P95%	Mean	STD	IQR	P5%	P25%	Median	P75%	P95%	Mean	STD	IQR	\mathbf{H}^{1}
SF																	
Mean	72,029	86,441	106,723	127,853	140,713	107,048	23,074	20,706	73,560	98,586	110,739	128,606	141,931	111,777	21,251	15,010	1
Variance	50,338	76,617	106,976	132,957	187,132	112,305	57,167	28,170	65,144	107,646	149,589	220,403	327,021	169,988	96,968	56,378	1
Median	72,047	85,900	106,378	127,384	140,157	106,620	23,176	20,742	73,295	98,674	110,701	128,042	142,019	111,107	21,286	14,684	1
Mode	69,800	85,000	106,000	128,000	141,100	105,947	23,551	21,500	68,900	97,500	111,000	128,000	142,100	109,486	21,794	15,250	0
Skewness	-0,152	0,030	0,170	0,339	0,676	0,203	0,294	0,154	-0,222	0,110	0,267	0,489	0,852	0,303	0,327	0,190	1
Kurtosis	2,425	2,799	2,944	3,193	4,057	3,056	0,572	0,197	2,283	2,811	3,054	3,404	4,797	3,260	0,925	0,296	1
Energy	0,022	0,025	0,029	0,033	0,042	0,030	0,007	0,004	0,016	0,020	0,024	0,028	0,036	0,025	0,006	0,004	1
Entropy	3,347	3,565	3,722	3,826	3,975	3,691	0,209	0,131	3,472	3,714	3,885	4,056	4,265	3,872	0,246	0,171	1
SGLDM																	
ASM	0,001	0,001	0,002	0,002	0,003	0,002	0,001	0,000	0,001	0,001	0,001	0,002	0,002	0,001	0,000	0,000	1
Contrast	32,238	63,663	94,899	126,682	195,914	101,364	49,944	31,510	49,003	75,932	101,001	144,184	223,240	115,508	56,390	34,126	1
Correlation	0,306	0,395	0,469	0,637	0,848	0,518	0,166	0,121	0,324	0,466	0,610	0,747	0,868	0,604	0,170	0,141	1
Variance	49,479	76,554	106,206	132,744	188,058	111,973	57,187	28,095	64,709	107,762	148,635	218,974	324,866	169,178	96,693	55,606	1
Homogeneity	0,128	0,152	0,168	0,195	0,229	0,174	0,031	0,022	0,122	0,145	0,160	0,178	0,210	0,163	0,027	0,017	1
Sum Average	146,218	174,826	215,426	257,698	283,510	216,107	46,150	41,436	149,168	199,263	223,643	259,207	285,935	225,576	42,536	29,972	1
Sum Variance	142,783	224,863	307,439	405,530	638,413	346,526	214,591	90,334	185,922	326,106	461,129	709,992	1179,424	561,204	374,571	191,943	1
Sum Entropy	3,872	4,094	4,241	4,367	4,548	4,230	0,223	0,137	3,988	4,261	4,443	4,625	4,866	4,435	0,275	0,182	1
Entropy	6,217	6,618	6,853	7,053	7,302	6,815	0,329	0,217	6,470	6,843	7,087	7,291	7,531	7,056	0,328	0,224	1
Dif Variance	12,431	24,388	35,524	49,635	73,594	38,423	18,852	12,623	18,543	29,339	39,995	55,809	90,750	45,015	22,086	13,235	1
Dif Entropy	2,428	2,655	2,831	2,984	3,167	2,822	0,220	0,164	2,564	2,762	2,899	3,034	3,240	2,903	0,200	0,136	1
InF Cor1	-0,235	-0,162	-0,139	-0,126	-0,111	-0,151	0,039	0,018	-0,262	-0,206	-0,163	-0,138	-0,117	-0,174	0,047	0,034	1
InF Cor2	0,627	0,684	0,720	0,783	0,899	0,737	0,080	0,049	0,643	0,742	0,791	0,860	0,934	0,796	0,088	0,059	1
GLDS																	
Homogeneity	0,129	0,152	0,169	0,196	0,229	0,174	0,031	0,022	0,122	0,145	0,161	0,179	0,211	0,164	0,027	0,017	1
Contrast	32,176	63,512	94,666	126,366	195,442	101,122	49,818	31,427	48,900	75,760	100,762	143,834	222,733	115,233	56,249	34,037	1
Energy	0,045	0,056	0,064	0,077	0,100	0,067	0,017	0,011	0,043	0,053	0,062	0,071	0,086	0,063	0,013	0,009	1
Entropy	2,510	2,805	3,004	3,141	3,344	2,973	0,248	0,168	2,701	2,890	3,028	3,184	3,403	3,042	0,215	0,147	1
Mean	4,295	5,810	7,166	8,253	10,174	7,155	1,779	1,222	5,217	6,349	7,343	8,645	10,829	7,638	1,754	1,148	1

Πίνακας 35: Παρουσιάζει τη στατιστική ανάλυση φυσιολογικών και παθολογικών περιοχών ενδιαφέροντος μετά την εφαρμογή του αλγόριθμου γάμμα για την Saturation (S) συνιστώσα.

¹Η Wilcoxon rank sum test μεταξύ φυσιολογικού και παθολογικού ιστού με '1' αναφέρεται για την στατιστική διαφορά, και '0' για τη μη στατιστική διαφορά με a=0.05,

P5%, P25%, P50%, P75%, P95%: είναι τα 5th, 25th, 50th (Median), 75th και 95th ποσοστά αντίστοιχα, IQR: Spread of the data (Inter Quartile Range: διαφορά μεταξύ του 25th και 75th ποσοστών)

Σύστημα				Χαρακτη	ριστικά Υ	ρής και Στο	ατιστική Α	νάλυση προ	ιγματικών	εικόνων εν	δομητρίου	για την V	συνιστώσα				
V				Φυσιολογ	ικός Ιστός							Παθολογ	ικός Ιστός				
	P5%	P25%	Median	P75%	P95%	Mean	STD	IQR	P5%	P25%	Median	P75%	P95%	Mean	STD	IQR	\mathbf{H}^{1}
SF																	
Mean	153,313	182,926	199,905	216,933	239,712	199,044	25,391	17,003	142,459	177,802	193,228	211,841	241,247	193,774	28,736	17,019	0
Variance	13,244	25,073	41,955	82,975	206,704	63,910	58,500	28,951	28,581	51,794	87,527	155,584	301,008	120,186	107,769	51,895	1
Median	153,360	183,296	199,915	216,353	240,086	199,317	25,439	16,529	142,928	177,098	193,539	212,937	241,447	194,388	28,961	17,919	0
Mode	155,400	186,000	199,000	214,500	244,000	199,308	25,523	14,250	143,000	175,000	196,000	213,000	242,000	195,053	29,738	19,000	0
Skewness	-0,802	-0,433	-0,199	0,018	0,322	-0,241	0,418	0,226	-1,099	-0,513	-0,211	0,012	0,360	-0,292	0,496	0,262	0
Kurtosis	2,096	2,429	2,792	3,139	4,473	2,929	0,868	0,355	1,985	2,383	2,707	3,262	4,715	3,013	1,345	0,440	0
Energy	0,024	0,035	0,050	0,065	0,087	0,054	0,035	0,015	0,020	0,028	0,036	0,046	0,062	0,039	0,017	0,009	1
Entropy	2,620	2,955	3,193	3,519	3,920	3,216	0,421	0,282	2,969	3,282	3,529	3,777	4,084	3,523	0,370	0,247	1
SGLDM																	
ASM	0,003	0,004	0,006	0,008	0,013	0,007	0,007	0,002	0,002	0,003	0,004	0,006	0,008	0,005	0,003	0,001	1
Contrast	8,077	10,801	12,951	16,018	24,690	14,337	6,030	2,608	9,486	13,018	16,211	20,448	31,618	17,530	6,824	3,715	1
Correlation	0,531	0,738	0,831	0,909	0,966	0,801	0,148	0,086	0,722	0,841	0,906	0,944	0,969	0,878	0,102	0,051	1
Variance	13,132	24,711	41,316	82,089	202,642	62,763	57,321	28,689	27,997	51,200	85,713	150,763	298,108	118,027	106,065	49,781	1
Homogeneity	0,276	0,316	0,339	0,362	0,391	0,337	0,042	0,023	0,256	0,292	0,315	0,339	0,380	0,317	0,037	0,023	1
Sum Average	305,236	367,537	401,595	435,426	478,651	397,677	57,334	33,945	287,129	357,667	388,486	425,589	484,075	389,530	57,322	33,961	0
Sum Variance	40,605	85,119	150,450	313,049	797,273	236,715	227,985	113,965	90,079	189,400	324,918	587,355	1173,992	454,578	421,896	198,978	1
Sum Entropy	3,238	3,598	3,856	4,210	4,610	3,869	0,504	0,306	3,624	3,962	4,221	4,447	4,783	4,205	0,384	0,243	1
Entropy	4,835	5,295	5,609	5,961	6,440	5,573	0,625	0,333	5,315	5,700	6,014	6,305	6,670	5,990	0,455	0,302	1
Dif Variance	3,225	4,280	5,006	6,061	9,559	5,553	2,383	0,891	3,820	5,179	6,386	7,848	13,178	6,972	2,739	1,335	1
Dif Entropy	1,801	1,912	1,986	2,063	2,231	1,987	0,190	0,076	1,851	2,001	2,091	2,168	2,349	2,093	0,147	0,083	1
InF Cor1	-0,389	-0,300	-0,243	-0,196	-0,140	-0,251	0,076	0,052	-0,392	-0,341	-0,293	-0,245	-0,193	-0,291	0,064	0,048	1
InF Cor2	0,615	0,771	0,857	0,918	0,969	0,830	0,123	0,073	0,765	0,869	0,922	0,951	0,974	0,898	0,081	0,041	1
GLDS																	
Homogeneity	0,280	0,317	0,340	0,364	0,393	0,340	0,038	0,023	0,257	0,293	0,316	0,340	0,380	0,317	0,037	0,023	1
Contrast	8,050	10,775	12,922	15,983	24,631	14,308	5,987	2,604	9,465	12,989	16,142	20,399	31,529	17,473	6,809	3,705	1
Energy	0,114	0,137	0,150	0,162	0,182	0,150	0,026	0,013	0,102	0,125	0,139	0,150	0,173	0,138	0,020	0,013	1
Entropy	1,882	2,007	2,091	2,185	2,371	2,103	0,163	0,089	1,943	2,088	2,187	2,290	2,499	2,192	0,158	0,101	1
Mean	2,110	2,426	2,665	2,948	3,694	2,745	0,506	0,261	2,240	2,666	2,953	3,339	4,153	3,026	0,555	0,336	1

Πίνακας 36: Παρουσιάζει τη στατιστική ανάλυση φυσιολογικών και παθολογικών περιοχών ενδιαφέροντος μετά την εφαρμογή του αλγόριθμου γάμμα για τη Value (V) συνιστώσα.

¹Η Wilcoxon rank sum test μεταξύ φυσιολογικού και παθολογικού ιστού με '1' αναφέρεται για την στατιστική διαφορά, και '0' για τη μη στατιστική διαφορά με a=0.05,

P5%, P25%, P50%, P75%, P95%: είναι τα 5th, 25th, 50th (Median), 75th και 95th ποσοστά αντίστοιχα, IQR: Spread of the data (Inter Quartile Range: διαφορά μεταζύ του 25th και 75th ποσοστών)

Σύστημα				Χαρακτη	ριστικά Υ	ρής και Στο	ατιστική Α	νάλυση προ	ιγματικών	εικόνων εν	δομητρίου	για την Υ	συνιστώσα				
Y				Φυσιολογ	ικός Ιστός							Παθολογ	ικός Ιστός				
	P5%	P25%	Median	P75%	P95%	Mean	STD	IQR	P5%	P25%	Median	P75%	P95%	Mean	STD	IQR	\mathbf{H}^{1}
SF																	
Mean	110,488	135,650	150,030	165,350	191,492	150,254	24,022	14,850	99,545	124,400	139,417	160,963	188,726	142,787	26,259	18,281	1
Variance	9,766	21,968	40,446	94,475	211,477	65,648	64,661	36,253	22,563	53,235	95,968	164,704	355,962	129,213	116,270	55,734	1
Median	110,507	135,875	150,478	165,913	190,878	150,411	24,131	15,019	100,027	124,854	139,269	162,201	188,453	143,072	26,706	18,674	1
Mode	110,000	135,500	150,000	166,500	189,100	150,952	24,768	15,500	99,000	121,500	141,000	165,500	188,000	143,663	28,801	22,000	1
Skewness	-1,012	-0,455	-0,137	0,117	0,552	-0,172	0,474	0,286	-1,008	-0,461	-0,129	0,199	0,581	-0,168	0,529	0,330	0
Kurtosis	1,935	2,258	2,639	3,099	4,380	2,832	0,878	0,421	1,805	2,256	2,606	3,074	4,578	2,846	1,114	0,409	0
Energy	0,022	0,034	0,048	0,067	0,100	0,052	0,025	0,017	0,018	0,025	0,032	0,043	0,064	0,036	0,017	0,009	1
Entropy	2,514	2,872	3,190	3,529	3,940	3,208	0,451	0,328	2,950	3,317	3,609	3,844	4,161	3,564	0,384	0,263	1
SGLDM																	
ASM	0,004	0,006	0,009	0,014	0,021	0,010	0,006	0,004	0,003	0,004	0,005	0,008	0,013	0,006	0,004	0,002	1
Contrast	1,910	2,319	2,848	3,651	9,185	3,732	2,798	0,666	1,898	3,633	5,393	8,628	16,383	6,743	4,624	2,497	1
Correlation	0,848	0,929	0,962	0,977	0,991	0,945	0,055	0,024	0,902	0,952	0,971	0,981	0,990	0,960	0,036	0,014	1
Variance	9,618	21,593	39,960	93,792	209,614	64,590	63,753	36,100	22,303	52,860	93,901	163,372	348,544	127,492	115,258	55,256	1
Homogeneity	0,407	0,494	0,522	0,542	0,575	0,510	0,052	0,024	0,339	0,414	0,453	0,496	0,575	0,456	0,067	0,041	1
Sum Average	222,954	273,346	302,079	332,726	385,099	302,541	48,041	29,690	201,155	250,858	280,575	323,815	379,448	287,602	52,525	36,478	1
Sum Variance	35,655	83,341	156,503	370,759	827,153	254,628	254,205	143,709	81,944	208,509	363,099	644,316	1389,023	503,226	458,949	217,903	1
Sum Entropy	3,153	3,527	3,842	4,195	4,596	3,863	0,460	0,334	3,586	3,977	4,265	4,509	4,828	4,223	0,390	0,266	1
Entropy	4,186	4,653	5,023	5,506	6,005	5,065	0,558	0,426	4,717	5,232	5,683	6,023	6,367	5,616	0,547	0,395	1
Dif Variance	0,833	0,974	1,244	1,617	4,170	1,648	1,301	0,321	0,823	1,464	2,495	4,138	8,079	3,224	2,468	1,337	1
Dif Entropy	1,238	1,307	1,384	1,475	1,826	1,430	0,175	0,084	1,234	1,464	1,630	1,818	2,064	1,637	0,243	0,177	1
InF Cor1	-0,521	-0,460	-0,414	-0,359	-0,272	-0,409	0,075	0,050	-0,512	-0,457	-0,418	-0,380	-0,298	-0,418	0,063	0,038	0
InF Cor2	0,852	0,929	0,963	0,977	0,991	0,946	0,050	0,024	0,911	0,957	0,974	0,982	0,989	0,964	0,031	0,012	1
GLDS																	
Homogeneity	0,407	0,494	0,523	0,543	0,575	0,510	0,052	0,024	0,339	0,415	0,454	0,496	0,575	0,456	0,066	0,041	1
Contrast	1,907	2,315	2,843	3,644	9,163	3,725	2,791	0,664	1,895	3,626	5,382	8,609	16,345	6,729	4,612	2,492	1
Energy	0,198	0,263	0,285	0,304	0,326	0,277	0,040	0,021	0,153	0,202	0,232	0,263	0,326	0,236	0,049	0,030	1
Entropy	1,259	1,338	1,421	1,516	1,867	1,468	0,192	0,089	1,259	1,517	1,657	1,843	2,114	1,677	0,254	0,163	1
Mean	1,022	1,140	1,242	1,392	2,102	1,352	0,363	0,126	1,023	1,413	1,653	2,016	2,748	1,742	0,519	0,302	1

Πίνακας 37:	Παρουσιάζει	τη	στατιστική	ανάλυση	φυσιολογικών	και	παθολογικών	περιοχών	ενδιαφέροντος	μετά	την	εφαρμογή	του
αλγόριθμου γά	άμμα για την Υ	συ	νιστώσα.										

 Mean
 1,022
 1,140
 1,242
 1,392
 2,102
 1,352
 0,363
 0,126
 1,023
 1,413
 1,653
 2,016
 2,748

 ¹H Wilcoxon rank sum test μεταξύ φυσιολογικού και παθολογικού ιστού με '1' αναφέρεται για την στατιστική διαφορά, και '0' για τη μη στατιστική διαφορά με a=0.05, P5%, P25%, P50%, P75%, P95%: είναι τα 5th, 25th, 50th (Median), 75th και 95th ποσοστά αντίστοιχα, IQR: Spread of the data (Inter Quartile Range: διαφορά μεταξύ του 25th και 75th ποσοστών)
						-				, .		<i></i>					
Σύστημα			X	αρακτηρισ	τικά Υφής	και Στατιο	στική Ανά	λυση πραγ	ματικών ε	ικόνων ενδ	ομητρίου γ	ια την Cb	συνιστώσα				
Сь				Φυσιολογι	κός Ιστός							Παθολογικ	τός Ιστός				
	P5%	P25%	Median	P75%	P95%	Mean	STD	IQR	P5%	P25%	Median	P75%	P95%	Mean	STD	IQR	H^1
SF																	
Mean	97,186	104,135	107,562	111,089	123,597	108,353	7,028	3,477	101,073	106,149	109,341	113,372	117,402	109,402	5,393	3,612	1
Variance	8,172	11,069	13,991	18,404	29,051	15,352	6,470	3,667	7,804	12,295	16,646	26,008	39,870	19,840	11,284	6,856	1
Median	97,432	104,043	107,562	111,100	123,568	108,329	7,017	3,528	101,035	105,987	109,291	113,443	117,362	109,399	5,419	3,728	1
Mode	98,000	104,000	107,000	111,000	125,000	108,130	7,015	3,500	100,900	105,500	110,000	114,000	117,100	109,505	5,682	4,250	1
Skewness	-0,312	-0,116	0,009	0,137	0,445	0,025	0,224	0,126	-0,367	-0,128	0,014	0,136	0,344	0,009	0,231	0,132	0
Kurtosis	2,549	2,766	2,949	3,144	3,578	2,971	0,319	0,189	2,455	2,746	2,960	3,134	3,643	2,996	0,487	0,194	0
Energy	0,055	0,069	0,079	0,088	0,103	0,079	0,015	0,009	0,045	0,057	0,071	0,082	0,104	0,072	0,019	0,012	1
Entropy	2,449	2,601	2,706	2,839	3,044	2,721	0,184	0,119	2,430	2,654	2,801	3,019	3,246	2,825	0,247	0,182	1
SGLDM																	
ASM	0,008	0,010	0,012	0,015	0,019	0,013	0,003	0,002	0,006	0,008	0,010	0,013	0,019	0,011	0,004	0,003	1
Contrast	9,220	13,210	15,930	20,984	36,378	18,236	8,736	3,887	8,247	12,974	18,493	28,745	47,924	22,370	15,543	7,885	1
Correlation	0,264	0,341	0,391	0,457	0,582	0,404	0,100	0,058	0,267	0,351	0,424	0,513	0,693	0,437	0,122	0,081	1
Variance	8,217	11,085	13,900	18,025	29,230	15,335	6,480	3,470	7,811	12,299	16,777	26,113	39,850	19,802	11,272	6,907	1
Homogeneity	0,310	0,342	0,364	0,386	0,417	0,364	0,032	0,022	0,292	0,322	0,351	0,379	0,423	0,353	0,041	0,028	1
Sum Average	196,350	210,192	217,059	224,095	249,175	218,696	14,066	6,952	204,185	214,312	220,741	228,703	236,790	220,795	10,788	7,195	1
Sum Variance	22,533	30,248	38,254	52,863	78,489	43,103	18,360	11,308	22,071	35,544	48,827	73,383	113,339	56,838	31,525	18,919	1
Sum Entropy	2,945	3,089	3,202	3,362	3,550	3,222	0,190	0,137	2,929	3,168	3,329	3,518	3,736	3,334	0,253	0,175	1
Entropy	4,521	4,779	4,957	5,173	5,517	4,982	0,310	0,197	4,506	4,857	5,129	5,469	5,832	5,153	0,419	0,306	1
Dif Variance	3,514	4,928	6,083	7,913	13,564	7,020	3,558	1,492	3,156	5,074	7,111	11,019	18,802	8,660	6,141	2,973	1
Dif Entropy	1,752	1,878	1,952	2,049	2,227	1,964	0,144	0,086	1,710	1,881	2,011	2,176	2,349	2,020	0,198	0,147	1
InF Cor1	-0,192	-0,176	-0,165	-0,157	-0,148	-0,168	0,016	0,010	-0,218	-0,181	-0,170	-0,159	-0,145	-0,174	0,023	0,011	1
InF Cor2	0,467	0,505	0,541	0,598	0,668	0,554	0,066	0,047	0,480	0,532	0,581	0,626	0,752	0,588	0,080	0,047	1
GLDS																	
Homogeneity	0,311	0,343	0,365	0,387	0,418	0,365	0,032	0,022	0,293	0,323	0,352	0,380	0,424	0,354	0,041	0,028	1
Contrast	9,197	13,176	15,890	20,930	36,284	18,189	8,713	3,877	8,227	12,942	18,446	28,672	47,800	22,312	15,502	7,865	1
Energy	0,109	0,129	0,143	0,156	0,176	0,143	0,021	0,013	0,098	0,117	0,137	0,155	0,186	0,138	0,027	0,019	1
Entropy	1,941	2,086	2,173	2,286	2,507	2,188	0,171	0,100	1,892	2,082	2,235	2,416	2,636	2,245	0,233	0,167	1
Mean	2,171	2,569	2,846	3,215	4,267	2,954	0,623	0,323	2,056	2,565	3,047	3,735	4,849	3,203	0,918	0,585	1

Πίνακας 38: Παρουσιάζει τη στατιστική ανάλυση φυσιολογικών και παθολογικών περιοχών ενδιαφέροντος μετά την εφαρμογή του αλγόριθμου γάμμα για την Cb συνιστώσα.

¹Η Wilcoxon rank sum test μεταξύ φυσιολογικού και παθολογικού ιστού με '1' αναφέρεται για την στατιστική διαφορά, και '0' για τη μη στατιστική διαφορά με a=0.05,

P5%, P25%, P50%, P75%, P95%: είναι τα 5th, 25th, 50th (Median), 75th και 95th ποσοστά αντίστοιχα, IQR: Spread of the data (Inter Quartile Range: διαφορά μεταξύ του 25th και 75th ποσοστών)

Σύστημα			X	αρακτηρισ	τικά Υφής	και Στατισ	τική Ανάλ	ωση προ	γματικών ε	εικόνων ενό	δομητρίου	για την Cr	συνιστώσα	ι			
Cr			Ċ	Φυσιολογικ	κός Ιστός							Παθολογικ	τός Ιστός				
	P5%	P25%	Median	P75%	P95%	Mean	STD	IQR	P5%	P25%	Median	P75%	P95%	Mean	STD	IQR	\mathbf{H}^{1}
SF																	
Mean	144,606	149,317	153,297	157,974	164,886	153,950	6,300	4,329	141,043	150,047	155,749	162,705	171,270	156,169	8,903	6,329	1
Variance	3,640	4,709	5,993	8,159	17,608	8,005	9,072	1,725	4,171	6,190	9,284	15,000	32,960	12,638	9,844	4,405	1
Median	144,607	149,153	153,306	157,526	165,000	153,892	6,308	4,186	140,676	150,166	155,586	162,930	171,169	156,152	9,013	6,382	1
Mode	144,000	149,000	153,000	157,000	165,000	153,798	6,269	4,000	140,000	150,000	155,000	162,500	172,000	156,168	9,301	6,250	1
Skewness	-0,287	-0,082	0,037	0,172	0,511	0,063	0,257	0,127	-0,527	-0,159	0,023	0,218	0,568	0,019	0,363	0,189	0
Kurtosis	2,500	2,780	2,912	3,135	3,539	2,967	0,389	0,178	2,253	2,717	2,957	3,183	3,956	2,998	0,540	0,233	0
Energy	0,069	0,100	0,118	0,131	0,150	0,114	0,024	0,015	0,053	0,075	0,094	0,118	0,138	0,095	0,027	0,021	1
Entropy	2,049	2,189	2,306	2,453	2,776	2,345	0,238	0,132	2,130	2,321	2,514	2,737	3,077	2,548	0,295	0,208	1
SGLDM																	
ASM	0,009	0,016	0,020	0,023	0,029	0,020	0,006	0,004	0,008	0,011	0,015	0,019	0,025	0,015	0,006	0,004	1
Contrast	3,354	4,292	5,140	6,082	8,272	5,532	2,235	0,895	3,924	4,888	5,740	6,726	8,659	5,903	1,525	0,919	1
Correlation	0,322	0,453	0,549	0,681	0,828	0,564	0,152	0,114	0,381	0,536	0,696	0,807	0,916	0,667	0,169	0,136	1
Variance	3,625	4,701	5,947	8,079	17,712	7,970	9,048	1,689	4,145	6,111	9,251	14,857	33,102	12,560	9,800	4,373	1
Homogeneity	0,379	0,416	0,441	0,465	0,494	0,440	0,037	0,024	0,378	0,407	0,426	0,447	0,477	0,427	0,031	0,020	1
Sum Average	291,155	300,685	308,596	317,918	331,831	309,904	12,599	8,616	284,042	302,095	313,455	327,586	344,402	314,359	17,821	12,746	1
Sum Variance	10,242	13,660	17,910	27,375	63,098	26,350	35,657	6,857	11,512	18,813	31,353	52,701	127,936	44,335	38,981	16,944	1
Sum Entropy	2,558	2,711	2,837	3,042	3,373	2,897	0,269	0,165	2,628	2,859	3,099	3,344	3,704	3,126	0,335	0,242	1
Entropy	3,881	4,114	4,285	4,510	5,019	4,333	0,329	0,198	4,065	4,333	4,587	4,854	5,234	4,607	0,373	0,260	1
Dif Variance	1,379	1,746	2,038	2,349	3,137	2,174	0,894	0,302	1,581	1,955	2,276	2,615	3,208	2,322	0,547	0,330	1
Dif Entropy	1,444	1,533	1,596	1,662	1,768	1,606	0,115	0,065	1,501	1,595	1,648	1,706	1,807	1,648	0,092	0,056	1
InF Cor1	-0,250	-0,173	-0,131	-0,106	-0,083	-0,145	0,057	0,034	-0,317	-0,225	-0,174	-0,128	-0,089	-0,182	0,070	0,048	1
InF Cor2	0,397	0,494	0,587	0,702	0,837	0,599	0,135	0,104	0,436	0,572	0,709	0,815	0,915	0,692	0,150	0,122	1
GLDS																	
Homogeneity	0,380	0,417	0,441	0,465	0,494	0,440	0,037	0,024	0,379	0,407	0,426	0,447	0,478	0,427	0,031	0,020	1
Contrast	3,346	4,284	5,129	6,070	8,254	5,520	2,229	0,893	3,917	4,878	5,729	6,712	8,640	5,891	1,521	0,917	1
Energy	0,183	0,208	0,222	0,240	0,263	0,223	0,027	0,016	0,180	0,201	0,214	0,228	0,249	0,215	0,021	0,014	1
Entropy	1,499	1,596	1,676	1,749	1,883	1,685	0,134	0,076	1,556	1,654	1,723	1,793	1,906	1,723	0,105	0,069	1
Mean	1,360	1,547	1,697	1,846	2,148	1,727	0,284	0,150	1,475	1,649	1,790	1,928	2,191	1,800	0,225	0,140	1

Πίνακας 39: Παρουσιάζει τη στατιστική ανάλυση φυσιολογικών και παθολογικών περιοχών ενδιαφέροντος μετά την εφαρμογή του αλγόριθμου γάμμα για την Cr συνιστώσα.

¹Η Wilcoxon rank sum test μεταξύ φυσιολογικού και παθολογικού ιστού με '1' αναφέρεται για την στατιστική διαφορά, και '0' για τη μη στατιστική διαφορά με a=0.05,

P5%, P25%, P50%, P75%, P95%: είναι τα 5th, 25th, 50th (Median), 75th και 95th ποσοστά αντίστοιχα, IQR: Spread of the data (Inter Quartile Range: διαφορά μεταξύ του 25th και 75th ποσοστών)

Ο Πίνακας 36 παρουσιάζει τη στατιστική ανάλυση των χαρακτηριστικών υφής της value (V) συνιστώσας από φυσιολογικές και παθολογικές εικόνες ενδομητρίου από 40 περιστατικά με 216 εικόνες αντίστοιχα στην κάθε κατηγορία. Η ανάλυση έγινε στις εικόνες μετά την εφαρμογή του αλγόριθμου γάμμα.

Ο Πίνακας 37 παρουσιάζει τη στατιστική ανάλυση των χαρακτηριστικών υφής της Υ συνιστώσας από φυσιολογικές και παθολογικές εικόνες ενδομητρίου από 40 περιστατικά με 216 εικόνες αντίστοιχα στην κάθε κατηγορία. Η ανάλυση έγινε στις εικόνες μετά την εφαρμογή του αλγόριθμου γάμμα.

Ο Πίνακας 38 παρουσιάζει τη στατιστική ανάλυση των χαρακτηριστικών υφής της Cb συνιστώσας από φυσιολογικές και παθολογικές εικόνες ενδομητρίου από 40 περιστατικά με 216 εικόνες αντίστοιχα στην κάθε κατηγορία. Η ανάλυση έγινε στις εικόνες μετά την εφαρμογή του αλγόριθμου γάμμα.

Ο Πίνακας 39 παρουσιάζει τη στατιστική ανάλυση των χαρακτηριστικών υφής της Cr συνιστώσας από φυσιολογικές και παθολογικές εικόνες ενδομητρίου από 40 περιστατικά με 216 εικόνες αντίστοιχα στην κάθε κατηγορία. Η ανάλυση έγινε στις εικόνες μετά την εφαρμογή του αλγόριθμου γάμμα.

7.9 Αυτοματή ταξινομήση gray scale περιοχών ενδιαφεροντός βάσει των χαρακτηριστικών ύφης

Εξάγοντας τα χαρακτηριστικά υφής από πραγματικές εικόνες ενδομητρίου, εφαρμόσαμε νευρωνικά δίκτυα για να διαχωρίσουμε τις δύο κατηγορίες: α) φυσιολογικές, και β) παθολογικές περιοχές ενδιαφέροντος. Οι αλγόριθμοι ταξινόμησης και νευρωνικών δικτύων που έχουμε χρησιμοποιήσει είναι ο Probabilistic Neural Network (PNN) ταξινομητής και ο Support Vector Machine (SVM) αλγόριθμος. Τα αποτελέσματα που ακολουθούν χωρίζονται σε δύο κατηγορίες. Η πρώτη κατηγορία αφορά το διαχωρισμό φυσιολογικών και παθολογικών περιοχών ενδιαφέροντος πρίν την εφαρμογή του αλγόριθμου γάμμα και η δεύτερη κατηγορία αφορά το διαχωρισμό φυσιολογικών και παθολογικών περιοχών ενδιαφέροντος μετά την εφαρμογή του αλγόριθμου γάμμα. Επίσης για να καλύψουμε όλα τα πιθανά σενάρια που θα μας έδιναν καλύτερα αποτελέσματα, εφαρμόσαμε τους δύο αλγόριθμους ταξινόμησης και νευρωνικών δικτύων με όλους τους δυνατούς συνδυασμούς χαρακτηριστικών υφής.

Εξάγοντας τα χαρακτηριστικά υφής από τρεις αλγόριθμους τα έχουμε εισαγάγει στην είσοδο του αλγορίθμου ταξινόμησης και νευρωνικού δικτύου, εξάγοντας τα αποτελέσματα που παρουσιάζουμε στους πιο κάτω πίνακες. Επίσης εφαρμόσαμε την Principal Components Analysis (PCA) για να περιορίσουμε τις διαστάσεις των δεδομένων (Table dimensions) και να πετύχουμε καλύτερα αποτελέσματα του διαχωρισμού των δύο κατηγοριών.

Ο Πίνακας 40 παρουσιάζει τα αποτελέσματα ταξινόμησης πραγματικών περιοχών ενδομητρίου, του αλγόριθμου PNN με και χωρίς PCA πρίν την εφαρμογή του αλγόριθμου γάμμα. Εφαρμόσαμε τον αλγόριθμο PNN με όλους τους συνδυασμούς χαρακτηριστικών υφής. Σε αυτό τον πίνακα η πρώτη στήλη παρουσιάζει τους συνδυασμούς των χαρακτηριστικών υφής καθώς και το μέγεθος του πίνακα που δημιουργείται για φυσιολογικές και παθολογικές περιοχές ενδιαφέροντος. Η δεύτερη στήλη αναφέρεται στη χρησιμοποίηση ή όχι της επιλογής PCA, και η τρίτη στήλη παρουσιάζει το αποτέλεσμα της εφαρμογής του νευρωνικού αλγόριθμου CC%=Correct Classification Percentage.

Η καλύτερη τιμή που έχει επιτευχθεί στην εν λόγω ανάλυση για το CC% είναι 72% με συνδυασμό χαρακτηριστικών υφής και από τους τρεις αλγόριθμους χαρακτηριστικών υφής χωρίς PCA. Τα χαρακτηριστικά υφής έχουν εξαχθεί πρίν την εφαρμογή του γάμμα αλγόριθμου για πραγματικές εικόνες ενδομητρίου.

Ο Πίνακας 41 παρουσιάζει το αποτέλεσμα ταξινόμησης χαρακτηριστικών υφής με τον αλγόριθμο ταξινόμησης SVM πρίν την εφαρμογή του αλγόριθμου γάμμα. Ένα από τα καλύτερα αποτελέσματα για την ταξινόμηση με CC% είναι 77% και υπολογίστηκε με συνδυασμό χαρακτηριστικών υφής και από τους τρεις αλγόριθμους χαρακτηριστικών υφής χωρίς την επιλογή PCA. Επίσης παρόμοιο αποτέλεσμα επιτεύχθηκε με το συνδυασμό SGLDM, GLDS με την επιλογή PCA ανάλυση, και έχει αποτέλεσμα CC%=77,2.

Ο Πίνακας 42 παρουσιάζει το αποτέλεσμα της χρήσης του νευρωνικού αλγόριθμου PNN με την είσοδο χαρακτηριστικών υφής τα οποία έχουν εξαχθεί από πραγματικές εικόνες ενδομητρίου μετά την εφαρμογή του αλγόριθμου γάμμα. Το καλύτερο αποτέλεσμα που πέτυχε ο αλγόριθμος για το CC% είναι 71,7% και υπολογίστηκε με την επιλογή PCA για το συνδυασμό των τριών αλγόριθμων χαρακτηριστικών υφής.

Ο Πίνακας 43 παρουσιάζει το αποτέλεσμα της χρήσης του αλγόριθμου ταξινόμησης SVM με την είσοδο χαρακτηριστικών υφής τα οποία έχουν εξαχθεί από πραγματικές εικόνες ενδομητρίου μετά την εφαρμογή του αλγόριθμου γάμμα. Το καλύτερο αποτέλεσμα που πέτυχε ο αλγόριθμος για το CC% είναι 76,5% και υπολογίστηκε χωρίς την επιλογή PCA για το συνδυασμό των αλγορίθμων SF, GLDS χαρακτηριστικών υφής.

		Gray	scale	εικόν	ες πριν	την εφα	ιρμογή	του αλγο	όριθμου	γάμμα	
PNN classifier	PCA	Norn	nal	Abno	ormal	%CC	%FP	%FN	%SE	%SP	%PR
SGLDM, SF, GLDS											
TABLE DIM=6	2%	164	45	136	73	72	22	35	65	78	75
TABLE DIM=26	0%	165	44	136	73	72	21	35	65	79	76
SGLDM											
TABLE DIM=5	2%	151	58	132	77	68	28	37	63	72	69
TABLE DIM=13	0%	151	58	131	72	67	28	37	63	72	69
SF											
TABLE DIM=5	2%	152	57	116	93	64	27	44	55	73	67
TABLE DIM=8	0%	152	57	116	93	64	27	44	56	73	67
GLDS											
TABLE DIM=2	2%	172	37	106	103	66	18	49	51	82	74
TABLE DIM=5	0%	172	37	107	102	67	18	49	51	82	74
SGLDM, SF											
TABLE DIM=6	2%	155	54	131	78	68	26	37	63	74	71
TABLE DIM=21	0%	156	53	131	78	69	25	37	64	75	71
SGLDM, GLDS											
TABLE DIM=5	2%	164	45	132	77	71	22	37	63	78	75
TABLE DIM=18	0%	168	45	132	77	71	22	37	63	78	75
SF, GLDS											
TABLE DIM=6	2%	169	40	125	84	70	19	40	60	81	76
TABLE DIM=13	0%	168	40	125	84	70	19	40	60	81	76

Πίνακας 40: Αυτόματη ταξινόμηση χαρακτηριστικών υφής πρίν την εφαρμογή του γάμμα αλγόριθμου με τον αλγόριθμο νευρωνικών δικτύων PNN.

	_	Gray	scale	εικόνε	ς πριν	την εφα	αρμογή ·	του αλγ	όριθμου	γάμμα	
SVM classifier	PCA	Norn	nal	Abno	rmal	%CC	%FP	%FN	%SE	%SP	%PR
SGLDM, SF, GLDS											
TABLE DIM=6	2%	164	45	147	62	74	22	30	70	78	77
TABLE DIM=26	0%	162	47	160	49	77	22	23	77	78	77
SGLDM											
TABLE DIM=5	2%	168	41	149	60	76	20	29	71	80	78
TABLE DIM=13	0%	164	45	151	58	75	22	28	72	78	77
SF											
TABLE DIM=5	2%	150	59	140	69	69	28	33	67	72	70
TABLE DIM=8	0%	152	57	142	67	70	27	32	68	73	71
GLDS											
TABLE DIM=2	2%	161	48	143	66	73	23	32	68	77	75
TABLE DIM=5	0%	166	43	137	72	72	21	34	66	79	76
SGLDM, SF											
TABLE DIM=6	2%	165	44	147	62	75	21	30	70	79	77
TABLE DIM=21	0%	163	46	146	63	74	22	30	70	78	76
SGLDM, GLDS											
TABLE DIM=5	2%	163	47	161	48	77	22	23	77	78	77
TABLE DIM=18	0%	161	48	158	51	76	23	24	76	77	77
SF, GLDS											
TABLE DIM=6	2%	168	41	151	58	76	20	28	72	80	79
TABLE DIM=13	0%	166	43	155	54	77	21	26	74	79	78

Πίνακας 41: Αυτόματη ταξινόμηση χαρακτηριστικών υφής πρίν την εφαρμογή του γάμμα αλγόριθμου με τον αλγόριθμο ταξινόμησης SVM.

		Gray	scale	εικόνε	ες μετό	ί την εφα	ιρμογή	του αλγ	όριθμου	γάμμα	
PNN classifier	PCA	Norn	nal	Abno	ormal	%CC	%FP	%FN	%SE	%SP	%PR
SGLDM, SF, GLDS											
TABLE DIM=6	2%	164	45	136	73	72	22	35	65	78	75
TABLE DIM=26	0%	165	44	136	73	72	21	35	65	79	76
SGLDM											
TABLE DIM=5	2%	151	58	132	77	68	28	37	63	72	69
TABLE DIM=13	0%	151	58	131	78	67	28	38	63	72	69
SF											
TABLE DIM=5	2%	152	57	116	93	64	27	44	56	73	67
TABLE DIM=8	0%	152	57	116	93	64	27	44	56	73	67
GLDS											
TABLE DIM=2	2%	172	37	106	103	66	18	49	51	82	74
TABLE DIM=5	0%	172	37	107	102	66	18	49	51	82	74
SGLDM, SF											
TABLE DIM=6	2%	155	54	131	78	68	26	37	63	74	71
TABLE DIM=21	0%	156	53	131	78	69	25	37	63	75	71
SGLDM, GLDS											
TABLE DIM=5	2%	164	45	132	77	71	22	37	63	78	75
TABLE DIM=18	0%	164	45	132	77	71	22	37	63	78	75
SF, GLDS											
TABLE DIM=6	2%	169	40	125	84	70	19	40	60	81	76
TABLE DIM=13	0%	169	40	125	84	70	19	40	60	81	76

Πίνακας 42: Αυτόματη ταξινόμηση χαρακτηριστικών υφής μετά την εφαρμογή του γάμμα αλγόριθμου με τον αλγόριθμο νευρωνικών δικτύων PNN.

		Gray	scale	εικόνε	; μετό	ί την εφα	αρμογή	του αλγ	όριθμου	ο γάμμα	
SVM classifier	PCA	Norn	nal	Abno	rmal	%CC	%FP	%FN	%SE	%SP	%PR
SGLDM, SF, GLDS											
TABLE DIM=6	2%	166	43	147	62	75	21	30	70	79	77
TABLE DIM=26	0%	173	36	138	71	74	17	34	66	83	79
SGLDM											
TABLE DIM=5	2%	162	47	155	54	75	22	26	74	78	77
TABLE DIM=13	0%	161	48	157	52	76	23	25	75	77	77
SF											
TABLE DIM=5	2%	153	56	144	65	71	27	31	69	73	72
TABLE DIM=8	0%	151	58	144	65	70	28	31	69	72	71
GLDS											
TABLE DIM=2	2%	161	48	143	66	73	23	32	68	77	75
TABLE DIM=5	0%	166	43	137	72	72	21	34	66	79	76
SGLDM, SF											
TABLE DIM=6	2%	165	44	147	62	75	21	30	70	79	77
TABLE DIM=21	0%	163	46	146	63	74	22	30	70	78	76
SGLDM, GLDS											
TABLE DIM=5	2%	165	44	155	54	76	21	26	74	79	78
TABLE DIM=18	0%	162	47	155	54	76	22	26	74	78	77
SF, GLDS											
TABLE DIM=6	2%	168	41	150	59	76	20	28	72	80	79
TABLE DIM=13	0%	160	49	160	49	76	23	23	77	77	77

Πίνακας 43: Αυτόματη ταξινόμηση χαρακτηριστικών υφής μετά την εφαρμογή του γάμμα αλγόριθμου με τον αλγόριθμο ταξινόμησης SVM.

7.10 Αποτελεσματά Νευρωνικών Δικτύων από διαφορετικά Χρωματικά σύστηματα

Σε αυτό το σημείο θα παρουσιάσουμε τα αποτελέσματα αυτόματης ταξινόμησης φυσιολογικού και παθολογικού ιστού βάσει των αλγορίθμων νευρωνικών δικτύων με τα χαρακτηριστικά υφής που έχουμε ήδη υπολογίσει. Οι πίνακες παρουσιάζονται με τη σειρά αναφοράς ανάλυσης των συστημάτων που έχουμε επεξεργαστεί. Πιο αναλυτικά αναφέρουμε το σύστημα RGB, με συνδυασμό των τριών χρωματικών καναλιών R, G, B, το σύστημα HSV με συνδυασμό των τριών του H, S, V, το YCrCb σύστημα με συνδυασμό των τριών καναλιών του, Y, Cr και Cb.

Στο σύνολό τους έχουν αναλυθεί 416 περιοχές ενδιαφέροντος με 208 περιοχές φυσιολογικού ιστού ενδομητρίου και 208 περιοχές παθολογικού ιστού ενδομητρίου από ένα σύνολο 40 περιστατικών.

Τα 40 περιστατικά γυναικολογικού καρκίνου έχουν καταγραφεί με την ιατρική κάμερα CIRCON IP4.1, με μετατροπέα A/D (Frame Grabber Digital Video Creator 120) κατά τη διάρκεια μιας υστεροσκοπικής επέμβασης.

Όλες οι αναλύσεις έχουν γίνει με πανομοιότυπο τρόπο και ο υπολογισμός των χαρακτηριστικών υφής εφαρμόστηκε στους τρεις αλγόριθμους που έχουμε αναφέρει στο Κεφάλαιο 4. Έχουν εξαχθεί οι αλγόριθμοι χαρακτηριστικών υφής SGLDM, SF και GLDS.

Η είσοδος των αλγορίθμων ταξινόμησης και νευρωνικών δικτύων είναι όλα τα χαρακτηριστικά υφής των πιο πάνω αλγόριθμων καθώς και όλοι οι δυνατοί συνδυασμοί των αλγορίθμων αυτών. Έχουμε χρησιμοποιήσει αλγόριθμους ταξινόμησης και νευρωνικών δικτύων, το SVM και το PNN αλγόριθμο με και χωρίς την επιλογή PCA όπως έχουν αναλυθεί στο Κεφάλαιο 6.

Επίσης έχουμε εξαγάγει αποτελέσματα χρήσης των νευρωνικών δικτύων με είσοδο τα χαρακτηριστικά υφής των περιοχών ενδιαφέροντος πρίν και μετά την εφαρμογή του αλγόριθμου γάμμα. Πιο κάτω παρουσιάζουμε αναλυτικά τα αποτελέσματά μας:

Ο Πίνακας 44 παρουσιάζει τα αποτελέσματα εφαρμογής του PNN αλγόριθμου σε χαρακτηριστικά υφής του RGB συστήματος πρίν την εφαρμογή του αλγόριθμου γάμμα. Η πρώτη στήλη παρουσιάζει τους συνδυασμούς των αλγόριθμων υφής, η δεύτερη στήλη εμφανίζει την επιλογή PCA, η τρίτη στήλη παρουσιάζει το αποτέλεσμα αναγνώρισης του φυσιολογικού ιστού (N=normal) καθώς και το σύνολο μη αναγνώρισής του, η τέταρτη στήλη παρουσιάζει την αναγνώριση και μη του παθολογικού ιστού (AB= abnormal) από το σύνολο των εικόνων που εξετάζουμε. Η πέμπτη στήλη παρουσιάζει το CC% (correct classification percentage (ratio)), η έκτη στήλη παρουσιάζει το FP (faulse positive), η έβδομη στήλη εμφανίζει το FN (faulse negative), η όγδοη στήλη παρουσιάζει το SE (sensitivity), η ένατη εμφανίζει το SP (specificity), και τέλος η δέκατη στήλη παρουσιάζει το PR (precision).

Σε αυτό τον πίνακα παρατηρούμε ότι το μεγαλύτερο CC%=67.5 το εμφάνισε στο συνδυασμό όλων των χαρακτηριστικών υφής με μέγιστη αναγνώριση / απόρριψη φυσιολογικών και παθολογικών εικόνων 165/43 και 118/90 αντίστοιχα με την επιλογή PCA.

Πίνακας 44: Παρουσιάζει τον αλγόριθμο PNN με χαρακτηριστικά υφής του συστήματος RGB πρίν την εφαρμογή του αλγόριθμου γάμμα

	Εικό	νες πρ	ιν την	ν εφαρ	μογή τ	ου αλγό	ριθμου	γάμμα γ	1α το R	GB σύσ	τημα
PNN classifier	PCA	Norn	nal	Abno	ormal	%CC	%FP	%FN	%SE	%SP	%PR
SGLDM, SF, GLDS											
TABLE DIM=7	2%	165	43	118	90	67,5	20	43	56	79	73
TABLE DIM=78	0%	166	42	120	88	68	20	42	57	79	74
SGLDM											
TABLE DIM=7	2%	151	57	125	83	66	27	39	60	72	68
TABLE DIM=39	0%	153	55	122	86	65,5	26	41	58	73	68
SF											
TABLE DIM=8	2%	160	48	113	95	65	23	45	54	76	70
TABLE DIM=24	0%	161	47	110	98	64,5	22	47	52	77	70
GLDS											
TABLE DIM=4	2%	174	34	76	132	59,5	16	63	36	83	69
TABLE DIM=15	0%	174	34	75	133	59,5	16	63	36	83	68
SGLDM, SF											
TABLE DIM=8	2%	152	56	126	82	66,5	26	39	60	73	69
TABLE DIM=68	0%	157	51	124	84	67	24	40	59	75	70
SGLDM, GLDS											
TABLE DIM=6	2%	157	51	112	96	64	24	46	53	75	68
TABLE DIM=54	0%	159	49	114	94	65	23	45	54	76	69
SF, GLDS											
TABLE DIM=8	2%	179	29	100	108	67	13	51	48	86	77
TABLE DIM=39	0%	179	29	101	107	67	14	51	48	86	77

	Εικό	νες με	τά τη	ν εφαρ	μογή 1	του αλγό	οριθμου	γάμμα γ	νια το R	GB σύσ	τημα
PNN classifier	PCA	Norn	nal	Abno	ormal	%CC	%FP	%FN	%SE	%SP	%PR
SGLDM, SF, GLDS											
TABLE DIM=7	2%	168	40	118	90	68	19	43	56	80	74
TABLE DIM=78	0%	168	40	118	90	68	19	43	56	80	74
SGLDM											
TABLE DIM=7	2%	152	56	126	82	66,5	26	39	60	73	69
TABLE DIM=39	0%	155	53	124	84	66,5	25	40	59	74	70
SF											
TABLE DIM=8	2%	167	41	106	102	65	19	49	50	80	72
TABLE DIM=24	0%	169	39	105	103	65,5	18	49	50	81	72
GLDS											
TABLE DIM=4	2%	169	39	92	116	62,5	18	55	44	81	70
TABLE DIM=15	0%	169	39	92	116	62,5	18	55	44	81	70
SGLDM, SF											
TABLE DIM=7	2%	156	52	125	83	67,5	25	39	60	75	70
TABLE DIM=63	0%	158	50	123	85	67	24	40	59	75	71
SGLDM, GLDS											
TABLE DIM=6	2%	164	44	122	86	68	21	41	58	78	73
TABLE DIM=54	0%	163	45	118	90	67	21	43	56	78	72
SF, GLDS											
TABLE DIM=7	2%	177	31	105	103	67,5	14	49	50	85	77
TABLE DIM=39	0%	178	30	106	102	67,5	14	49	50	85	77

Πίνακας 45: Παρουσιάζει τον αλγόριθμο PNN με χαρακτηριστικά υφής του συστήματος RGB μετά την εφαρμογή του αλγόριθμου γάμμα

Ο Πίνακας 45 παρουσιάζει τα αποτελέσματα εφαρμογής του PNN αλγόριθμου σε χαρακτηριστικά υφής του RGB συστήματος μετά την εφαρμογή του αλγόριθμου γάμμα. Η πρώτη στήλη παρουσιάζει τους συνδυασμούς των αλγόριθμων υφής, η δεύτερη στήλη εμφανίζει την επιλογή PCA, η τρίτη στήλη παρουσιάζει το αποτέλεσμα αναγνώρισης του φυσιολογικού ιστού (N=normal) καθώς και το σύνολο μη αναγνώρισής του, η τέταρτη στήλη παρουσιάζει την αναγνώριση και μη του παθολογικού ιστού (AB= abnormal) από το σύνολο των εικόνων που εξετάζουμε. Η πέμπτη στήλη παρουσιάζει το CC% (correct classification percentage (ratio)), η έκτη στήλη παρουσιάζει το FP (faulse positive), η έβδομη στήλη εμφανίζει το FN (faulse negative), η όγδοη στήλη παρουσιάζει το SE (sensitivity), η ένατη εμφανίζει το SP (specificity), και τέλος η δέκατη στήλη παρουσιάζει το PR (precision).

Σε αυτό τον πίνακα παρατηρούμε ότι το μεγαλύτερο CC%=68 εμφανίστηκε στο συνδυασμό όλων των χαρακτηριστικών υφής με μέγιστη αναγνώριση / απόρριψη φυσιολογικών και παθολογικών εικόνων 168/40 και 118/90 αντίστοιχα με την επιλογή PCA. Επίσης το ίδιο ποσοστό CC%=68 είχε και χωρίς την επιλογή PCA. Τέλος παρατηρούμε ότι το ίδιο ποσοστό CC%=68 είχαμε και στο συνδυασμό χαρακτηριστικών υφής SGLDM και GLDS, με την επιλογή PCA.

Ο Πίνακας 46 παρουσιάζει τα αποτελέσματα εφαρμογής του SVM αλγόριθμου ταξινόμησης σε χαρακτηριστικά υφής του RGB συστήματος πρίν την εφαρμογή του αλγόριθμου γάμμα. Η πρώτη στήλη παρουσιάζει τους συνδυασμούς των αλγόριθμων υφής, η δεύτερη στήλη εμφανίζει την επιλογή PCA, η τρίτη στήλη παρουσιάζει το αποτέλεσμα αναγνώρισης του φυσιολογικού ιστού (N=normal) καθώς και το σύνολο μη αναγνώρισής του, η τέταρτη στήλη παρουσιάζει την αναγνώριση και μη του παθολογικού ιστού (AB= abnormal) από το σύνολο των εικόνων που εξετάζουμε. Η πέμπτη στήλη παρουσιάζει το CC% (correct classification percentage (ratio)), η έκτη στήλη παρουσιάζει το FP (faulse positive), η έβδομη στήλη εμφανίζει το SP (specificity), και τέλος η δέκατη στήλη παρουσιάζει το PR (precision).

Σε αυτό τον πίνακα παρατηρούμε ότι το μεγαλύτερο CC%=74 εμφανίστηκε στον αλγόριθμο SF με μέγιστη αναγνώριση / απόρριψη φυσιολογικών και παθολογικών εικόνων 158/50 και 152/56 αντίστοιχα χωρίς την επιλογή PCA.

	Εικό	νες πρ	ιν την	ν εφαρμ	ιογή τ	ου αλγό	ριθμου	γάμμα γ	ια το R	GB σύσ	τημα
SVM classifier	PCA	Norn	nal	Abno	rmal	%CC	%FP	%FN	%SE	%SP	%PR
SGLDM, SF, GLDS											
TABLE DIM=7	2%	146	62	146	62	70	28	29	70	70	70
TABLE DIM=78	0%	141	67	159	49	71,5	32	23	76	67	70
SGLDM						0					
TABLE DIM=7	2%	148	60	145	63	70	28	30	69	71	70
TABLE DIM=39	0%	152	56	144	64	71	26	30	69	73	72
SF						0					
TABLE DIM=8	2%	162	46	147	61	73,5	22	29	70	77	76
TABLE DIM=24	0%	158	50	152	56	74	24	26	73	75	75
GLDS						0					
TABLE DIM=4	2%	145	63	132	76	66	30	36	63	69	67
TABLE DIM=15	0%	140	68	149	59	69	32	28	71	67	68
SGLDM, SF						0					
TABLE DIM=8	2%	135	73	146	62	67	35	29	70	64	66
TABLE DIM=63	0%	154	54	147	61	72	25	29	70	74	73
SGLDM, GLDS						0					
TABLE DIM=6	2%	139	69	155	53	70	33	25	74	66	69
TABLE DIM=54	0%	154	54	148	60	72,5	25	28	71	74	73
SF, GLDS						0					
TABLE DIM=8	2%	137	71	159	49	70,5	34	23	76	65	69
TABLE DIM=39	0%	133	75	170	38	72	36	18	81	63	69

Πίνακας 46: Παρουσιάζει τον αλγόριθμο ταξινόμησης SVM με χαρακτηριστικά υφής του συστήματος RGB πρίν την εφαρμογή του αλγόριθμου γάμμα.

	Εικό	νες με	τά τη	ν εφαρι	ιογή 1	του αλγά	οριθμου	γάμμα γ	νια το R	GB σύσ	στημα
SVM classifier	PCA	Norn	nal	Abno	rmal	%CC	%FP	%FN	%SE	%SP	%PR
SGLDM, SF, GLDS											
TABLE DIM=7	2%	133	75	152	56	68	36	26	73	63	66
TABLE DIM=78	0%	161	47	143	65	72,5	22	31	68	77	75
SGLDM											
TABLE DIM=7	2%	142	66	146	62	69	31	29	70	68	68
TABLE DIM=39	0%	160	48	143	65	72	23	31	68	76	74
SF											
TABLE DIM=8	2%	165	43	141	67	73	20	32	67	79	76
TABLE DIM=24	0%	164	44	149	59	74,5	21	28	71	78	77
GLDS											
TABLE DIM=4	2%	140	68	149	59	69	32	28	71	67	68
TABLE DIM=15	0%	138	70	150	58	69	33	27	72	66	68
SGLDM, SF											
TABLE DIM=7	2%	155	53	144	64	71,5	25	30	69	74	73
TABLE DIM=63	0%	136	72	156	52	70	34	25	75	65	68
SGLDM, GLDS											
TABLE DIM=6	2%	134	74	155	53	69	35	25	74	64	67
TABLE DIM=54	0%	162	46	146	62	73,5	22	29	70	77	76
SF, GLDS											
TABLE DIM=7	2%	163	45	132	76	70,5	21	36	63	78	74
TABLE DIM=39	0%	144	64	161	47	73	30	22	77	69	71

Πίνακας 47: Παρουσιάζει τον αλγόριθμο ταξινόμησης SVM με χαρακτηριστικά υφής του συστήματος RGB μετά την εφαρμογή του αλγόριθμου γάμμα.

Ο Πίνακας 47 παρουσιάζει τα αποτελέσματα εφαρμογής του SVM αλγόριθμου ταξινόμησης σε χαρακτηριστικά υφής του RGB συστήματος μετά την εφαρμογή του αλγόριθμου γάμμα. Η πρώτη στήλη παρουσιάζει τους συνδυασμούς των αλγόριθμων υφής, η δεύτερη στήλη εμφανίζει την επιλογή PCA, η τρίτη στήλη παρουσιάζει το αποτέλεσμα αναγνώρισης του φυσιολογικού ιστού (N=normal) καθώς και το σύνολο μη αναγνώρισής του, η τέταρτη στήλη παρουσιάζει την αναγνώριση και μη του παθολογικού ιστού (AB= abnormal) από το σύνολο των εικόνων που εξετάζουμε. Η πέμπτη στήλη παρουσιάζει το CC% (correct classification percentage (ratio)), η έκτη στήλη παρουσιάζει το FP (faulse positive), η έβδομη στήλη εμφανίζει το SP (specificity), και τέλος η δέκατη στήλη παρουσιάζει το PR (precision).

Σε αυτό τον πίνακα παρατηρούμε ότι το μεγαλύτερο CC%=74.5 το εμφάνισε στον αλγόριθμο SF με μέγιστη αναγνώριση / απόρριψη φυσιολογικών και παθολογικών εικόνων 164/44 και 149/59 αντίστοιχα χωρίς την επιλογή PCA.

Ο Πίνακας 48 παρουσιάζει τα αποτελέσματα εφαρμογής του PNN αλγόριθμου σε χαρακτηριστικά υφής του HSV συστήματος πρίν την εφαρμογή του αλγόριθμου γάμμα. Η πρώτη στήλη παρουσιάζει τους συνδυασμούς των αλγόριθμων υφής, η δεύτερη στήλη εμφανίζει την επιλογή PCA, η τρίτη στήλη παρουσιάζει το αποτέλεσμα αναγνώρισης του φυσιολογικού ιστού (N=normal) καθώς και το σύνολο μη αναγνώρισής του, η τέταρτη στήλη παρουσιάζει την αναγνώριση και μη του παθολογικού ιστού (AB= abnormal) από το σύνολο των εικόνων που εξετάζουμε. Η πέμπτη στήλη παρουσιάζει το CC% (correct classification percentage (ratio)), η έκτη στήλη παρουσιάζει το FP (faulse positive), η έβδομη στήλη εμφανίζει το FN (faulse negative), η όγδοη στήλη παρουσιάζει το SE (sensitivity), η ένατη εμφανίζει το SP (specificity), και τέλος η δέκατη στήλη παρουσιάζει το PR (precision).

Σε αυτό τον πίνακα παρατηρούμε ότι το μεγαλύτερο CC%=68 το παρουσίασε στο συνδυασμό των χαρακτηριστικών υφής SGLDM και SF με μέγιστη αναγνώριση / απόρριψη φυσιολογικών και παθολογικών εικόνων 167/41 και 132/76 αντίστοιχα χωρίς την επιλογή PCA.

	Εικό	νες πρ	οιν την	ν εφαρι	ιογή τ	ου αλγό	ριθμου	γάμμα γ	το Η	SV σύσ	τημα
PNN classifier	PCA	Norn	nal	Abno	rmal	%CC	%FP	%FN	%SE	%SP	%PR
SGLDM, SF, GLDS											
TABLE DIM=10	2%	164	44	132	76	70,5	21	36	63	78	75
TABLE DIM=78	0%	164	44	129	79	70	21	37	62	78	74
SGLDM											
TABLE DIM=10	2%	153	55	136	72	69	26	34	65	73	71
TABLE DIM=39	0%	155	53	137	71	69,5	25	34	65	74	72
SF											
TABLE DIM=10	2%	157	51	130	78	68,5	24	37	62	75	71
TABLE DIM=24	0%	159	49	128	80	68,5	23	38	61	76	72
GLDS											
TABLE DIM=4	2%	144	64	126	82	64,5	30	39	60	69	66
TABLE DIM=15	0%	144	64	125	83	64,5	30	39	60	69	66
SGLDM, SF											
TABLE DIM=11	2%	164	44	134	74	71	21	35	64	78	75
TABLE DIM=63	0%	167	41	132	76	71,5	19	36	63	80	76
SGLDM, GLDS											
TABLE DIM=7	2%	157	51	132	76	69	24	36	63	75	72
TABLE DIM=54	0%	158	50	131	77	68,5	24	37	62	75	72
SF, GLDS											
TABLE DIM=10	2%	160	48	125	83	68	23	39	60	76	72
TABLE DIM=39	0%	162	46	117	91	66,5	22	43	56	77	71

Πίνακας 48: Παρουσιάζει τον αλγόριθμο PNN με χαρακτηριστικά υφής του συστήματος HSV πρίν την εφαρμογή του αλγόριθμου γάμμα.

	Εικό	νες με	τά τη	ν εφαρι	ιογή 1	του αλγά	οριθμου	γάμμα γ	για το Η	SV σύσ	τημα
PNN classifier	PCA	Norn	nal	Abno	rmal	%CC	%FP	%FN	%SE	%SP	%PR
SGLDM, SF, GLDS											
TABLE DIM=10	2%	167	41	127	81	70,5	19	38	61	80	75
TABLE DIM=78	0%	163	45	126	82	69	21	39	60	78	73
SGLDM											
TABLE DIM=9	2%	160	48	131	77	69	23	37	62	76	73
TABLE DIM=39	0%	163	45	130	78	70	21	37	62	78	74
SF											
TABLE DIM=9	2%	159	49	135	73	70	23	35	64	76	73
TABLE DIM=24	0%	161	47	130	78	69,5	22	37	62	77	73
GLDS											
TABLE DIM=4	2%	151	57	125	83	66	27	39	60	72	68
TABLE DIM=15	0%	153	55	125	83	66,5	26	39	60	73	69
SGLDM, SF											
TABLE DIM=11	2%	164	44	132	76	70,5	21	36	63	78	75
TABLE DIM=63	0%	164	44	130	78	70	21	37	62	78	74
SGLDM, GLDS											
TABLE DIM=8	2%	165	43	131	77	70,5	20	37	62	79	75
TABLE DIM=54	0%	165	43	129	79	70,5	20	37	62	79	75
SF, GLDS											
TABLE DIM=10	2%	170	38	124	84	70	18	40	59	81	76
TABLE DIM=39	0%	171	37	119	89	69,5	17	42	57	82	76

Πίνακας 49: Παρουσιάζει τον αλγόριθμο PNN με χαρακτηριστικά υφής του συστήματος HSVμετά την εφαρμογή του αλγόριθμου γάμμα.

Ο Πίνακας 49 παρουσιάζει τα αποτελέσματα εφαρμογής του PNN αλγόριθμου σε χαρακτηριστικά υφής του HSV συστήματος μετά την εφαρμογή του αλγόριθμου γάμμα. Η πρώτη στήλη παρουσιάζει τους συνδυασμούς των αλγόριθμων υφής, η δεύτερη στήλη εμφανίζει την επιλογή PCA, η τρίτη στήλη παρουσιάζει το αποτέλεσμα αναγνώρισης του φυσιολογικού ιστού (N=normal) καθώς και το σύνολο μη αναγνώρισής του, η τέταρτη στήλη παρουσιάζει την αναγνώριση και μη του παθολογικού ιστού (AB= abnormal) από το σύνολο των εικόνων που εξετάζουμε. Η πέμπτη στήλη παρουσιάζει το CC% (correct classification percentage (ratio)), η έκτη στήλη παρουσιάζει το FP (faulse positive), η έβδομη στήλη εμφανίζει το FN (faulse negative), η όγδοη στήλη παρουσιάζει το SE (sensitivity), η ένατη εμφανίζει το SP (specificity), και τέλος η δέκατη στήλη παρουσιάζει το PR (precision).

Σε αυτόν τον πίνακα παρατηρούμε ότι το μεγαλύτερο CC%=70.5 το εμφάνισε στο συνδυασμό χαρακτηριστικών υφής SGLDM, SF και GLDS με μέγιστη αναγνώριση / απόρριψη φυσιολογικών και παθολογικών εικόνων 167/41 και 127/81 αντίστοιχα με την επιλογή PCA. Επίσης το ίδιο CC%=70.5 το εμφάνισε και με το συνδυασμό SGLDM, SF και με το συνδυασμό SGLDM, GLDS με και χωρίς την επιλογή PCA.

Ο Πίνακας 50 παρουσιάζει τα αποτελέσματα εφαρμογής του SVM αλγόριθμου ταξινόμησης σε χαρακτηριστικά υφής του HSV συστήματος πρίν την εφαρμογή του αλγόριθμου γάμμα. Η πρώτη στήλη παρουσιάζει τους συνδυασμούς των αλγόριθμων υφής, η δεύτερη στήλη εμφανίζει την επιλογή PCA, η τρίτη στήλη παρουσιάζει το αποτέλεσμα αναγνώρισης του φυσιολογικού ιστού (N=normal) καθώς και το σύνολο μη αναγνώρισής του, η τέταρτη στήλη παρουσιάζει την αναγνώριση και μη του παθολογικού ιστού (AB= abnormal) από το σύνολο των εικόνων που εξετάζουμε. Η πέμπτη στήλη παρουσιάζει το CC% (correct classification percentage (ratio)), η έκτη στήλη παρουσιάζει το FP (faulse positive), η έβδομη στήλη εμφανίζει το SP (specificity), και τέλος η δέκατη στήλη παρουσιάζει το PR (precision).

Σε αυτό τον πίνακα παρατηρούμε ότι το μεγαλύτερο CC%=74.5 το παρουσίασε στο συνδυασμό των χαρακτηριστικών υφής SGLDM, SF και SGLDM, GLDS με μέγιστη αναγνώριση / απόρριψη φυσιολογικών και παθολογικών εικόνων 132/76, 179/29 και 150/58, 162/46 αντίστοιχα με και χωρίς την επιλογή PCA.

	Εικόνες πριν την εφαρμογή του αλγόριθμου γάμμα για το HSV σύστημα												
SVM classifier	PCA	Norn	nal	Abno	rmal	%CC	%FP	%FN	%SE	%SP	%PR		
SGLDM, SF, GLDS													
TABLE DIM=10	2%	147	61	156	52	72,5	29	25	75	70	71		
TABLE DIM=78	0%	134	74	176	32	74	35	15	84	64	70		
SGLDM													
TABLE DIM=10	2%	143	65	163	45	73	31	21	78	68	71		
TABLE DIM=39	0%	148	60	161	77	74	28	22	77	71	72		
SF													
TABLE DIM=10	2%	126	82	165	43	69,5	39	20	79	60	66		
TABLE DIM=24	0%	157	51	140	68	71	24	32	67	75	73		
GLDS													
TABLE DIM=4	2%	151	57	127	81	66,5	27	38	61	72	69		
TABLE DIM=15	0%	152	56	124	84	66	26	40	59	73	68		
SGLDM, SF													
TABLE DIM=11	2%	131	77	173	35	72,5	37	16	83	62	69		
TABLE DIM=63	0%	132	76	179	29	74,5	36	13	86	63	70		
SGLDM, GLDS													
TABLE DIM=7	2%	150	58	162	46	74,5	27	22	77	72	73		
TABLE DIM=54	0%	155	53	154	54	74	25	26	74	74	74		
SF, GLDS													
TABLE DIM=10	2%	116	92	182	26	71	44	12	87	55	66		
TABLE DIM=39	0%	161	47	139	69	71,5	22	33	66	77	74		

Πίνακας 50: Παρουσιάζει τον αλγόριθμο ταξινόμησης SVM με χαρακτηριστικά υφής του συστήματος HSV πρίν την εφαρμογή του αλγόριθμου γάμμα.

	Εικόνες μετά την εφαρμογή του αλγόριθμου γάμμα για το HSV σύστημα												
SVM classifier	PCA	Norn	nal	Abno	rmal	%CC	%FP	%FN	%SE	%SP	%PR		
SGLDM, SF, GLDS													
TABLE DIM=10	2%	163	45	143	65	73	21	31	68	78	76		
TABLE DIM=78	0%	144	64	167	41	74,5	30	19	80	69	72		
SGLDM													
TABLE DIM=9	2%	153	55	156	52	74	26	25	75	73	73		
TABLE DIM=39	0%	150	58	159	49	74	27	23	76	72	73		
SF													
TABLE DIM=9	2%	147	61	162	46	73,5	29	22	77	70	72		
TABLE DIM=24	0%	145	63	156	52	72	30	25	75	69	71		
GLDS													
TABLE DIM=4	2%	155	53	129	79	68	25	37	62	74	70		
TABLE DIM=15	0%	158	50	130	78	68,5	24	37	62	75	72		
SGLDM, SF													
TABLE DIM=11	2%	155	53	151	57	73	25	27	72	74	75		
TABLE DIM=63	0%	132	76	175	33	73,5	36	15	84	63	69		
SGLDM, GLDS													
TABLE DIM=8	2%	149	59	160	48	73,5	28	23	76	71	73		
TABLE DIM=54	0%	143	65	158	50	71,5	31	24	75	68	70		
SF, GLDS													
TABLE DIM=10	2%	160	48	149	59	73,5	23	28	71	76	75		
TABLE DIM=39	0%	165	43	152	56	76	20	26	73	79	77		

Πίνακας 51: Παρουσιάζει τον αλγόριθμο ταξινόμησης SVM με χαρακτηριστικά υφής του συστήματος HSV μετά την εφαρμογή του αλγόριθμου γάμμα.

Ο Πίνακας 51 παρουσιάζει τα αποτελέσματα εφαρμογής του SVM αλγόριθμου ταξινόμησης σε χαρακτηριστικά υφής του HSV συστήματος μετά την εφαρμογή του αλγόριθμου γάμμα. Η πρώτη στήλη παρουσιάζει τους συνδυασμούς των αλγόριθμων υφής, η δεύτερη στήλη εμφανίζει την επιλογή PCA, η τρίτη στήλη παρουσιάζει το αποτέλεσμα αναγνώρισης του φυσιολογικού ιστού (N=normal) καθώς και το σύνολο μη αναγνώρισής του, η τέταρτη στήλη παρουσιάζει την αναγνώριση και μη του παθολογικού ιστού (AB= abnormal) από το σύνολο των εικόνων που εξετάζουμε. Η πέμπτη στήλη παρουσιάζει το CC% (correct classification percentage (ratio)), η έκτη στήλη παρουσιάζει το FP (faulse positive), η έβδομη στήλη εμφανίζει το SP (specificity), και τέλος η δέκατη στήλη παρουσιάζει το PR (precision).

Σε αυτό τον πίνακα παρατηρούμε ότι το μεγαλύτερο CC%=76 το εμφάνισε στο συνδυασμό των χαρακτηριστικών υφής SF και GLDS με μέγιστη αναγνώριση / απόρριψη φυσιολογικών και παθολογικών εικόνων 165/43 και 152/56 αντίστοιχα χωρίς την επιλογή PCA.

Ο Πίνακας 52 παρουσιάζει τα αποτελέσματα εφαρμογής του PNN αλγόριθμου σε χαρακτηριστικά υφής του YCrCb συστήματος πρίν την εφαρμογή του αλγόριθμου γάμμα. Η πρώτη στήλη παρουσιάζει τους συνδυασμούς των αλγόριθμων υφής, η δεύτερη στήλη εμφανίζει την επιλογή PCA, η τρίτη στήλη παρουσιάζει το αποτέλεσμα αναγνώρισης του φυσιολογικού ιστού (N=normal) καθώς και το σύνολο μη αναγνώρισής του, η τέταρτη στήλη παρουσιάζει την αναγνώριση και μη του παθολογικού ιστού (AB= abnormal) από το σύνολο των εικόνων που εξετάζουμε. Η πέμπτη στήλη παρουσιάζει το CC% (correct classification percentage (ratio)), η έκτη στήλη παρουσιάζει το FP (faulse positive), η έβδομη στήλη εμφανίζει το FN (faulse negative), η όγδοη στήλη παρουσιάζει το PR (precision).

Σε αυτό τον πίνακα παρατηρούμε ότι το μεγαλύτερο CC%=70.5 το παρουσίασε στο συνδυασμό των χαρακτηριστικών υφής SGLDM, SF και GLDS με μέγιστη αναγνώριση / απόρριψη φυσιολογικών και παθολογικών εικόνων 178/30 και 117/91 αντίστοιχα με την επιλογή PCA. Επίσης το ίδιο CC%=70.5 το παρουσίασε και με τον συνδυασμό SGLDM, SF με την επιλογή PCA.

	Εικόνες πριν την εφαρμογή του αλγόριθμου γάμμα για το YCrCb σύστημα												
PNN classifier	PCA	Norn	nal	Abno	ormal	%CC	%FP	%FN	%SE	%SP	%PR		
SGLDM, SF, GLDS													
TABLE DIM=9	2%	178	30	117	91	70,5	14	43	56	85	79		
TABLE DIM=78	0%	178	30	112	96	69	14	46	53	85	78		
SGLDM													
TABLE DIM=8	2%	182	26	106	102	68,5	12	49	50	87	80		
TABLE DIM=39	0%	183	25	107	101	69	12	48	51	87	81		
SF													
TABLE DIM=11	2%	186	22	95	113	67	10	54	45	89	81		
TABLE DIM=24	0%	186	22	94	114	67	10	54	45	89	81		
GLDS													
TABLE DIM=4	2%	176	32	88	120	63	15	57	42	84	73		
TABLE DIM=15	0%	176	32	86	122	62,5	15	58	41	84	72		
SGLDM, SF													
TABLE DIM=9	2%	182	26	113	95	70,5	12	45	54	87	81		
TABLE DIM=63	0%	184	24	106	102	69	11	49	50	88	81		
SGLDM, GLDS													
TABLE DIM=8	2%	177	31	112	96	69	14	46	53	85	78		
TABLE DIM=54	0%	178	30	112	96	69	14	46	53	85	78		
SF, GLDS													
TABLE DIM=10	2%	184	24	100	108	68	11	51	48	88	80		
TABLE DIM=39	0%	184	24	95	113	66,5	11	54	45	88	79		

Πίνακας 52: Παρουσιάζει τον αλγόριθμο PNN με χαρακτηριστικά υφής του συστήματος YCrCb πρίν την εφαρμογή του αλγόριθμου γάμμα.

	Εικόνες μετά την εφαρμογή του αλγόριθμου γάμμα για το YCrCb σύστημα											
PNN classifier	PCA	Norn	nal	Abno	ormal	%CC	%FP	%FN	%SE	%SP	%PR	
SGLDM, SF, GLDS												
TABLE DIM=9	2%	174	34	115	93	69	16	44	55	83	77	
TABLE DIM=78	0%	176	32	116	92	69,5	15	44	55	84	78	
SGLDM												
TABLE DIM=8	2%	177	31	110	98	68,5	14	47	52	85	78	
TABLE DIM=39	0%	177	31	110	98	68,5	14	47	52	85	78	
SF												
TABLE DIM=11	2%	184	24	102	106	68,5	11	50	49	88	80	
TABLE DIM=24	0%	185	23	101	107	68	11	51	48	88	81	
GLDS												
TABLE DIM=4	2%	180	28	103	105	67,5	13	50	49	86	78	
TABLE DIM=15	0%	180	28	102	106	67,5	13	50	49	86	78	
SGLDM, SF												
TABLE DIM=9	2%	177	31	113	95	69,5	14	45	54	85	78	
TABLE DIM=63	0%	180	28	111	97	69,5	13	46	53	86	79	
SGLDM, GLDS												
TABLE DIM=8	2%	175	33	112	96	68,5	15	46	53	84	77	
TABLE DIM=54	0%	175	33	112	96	68,5	15	46	53	84	77	
SF, GLDS												
TABLE DIM=10	2%	182	26	109	99	69,5	12	47	52	87	80	
TABLE DIM=39	0%	183	25	107	51	69	12	48	51	87	81	

Πίνακας 53: Παρουσιάζει τον αλγόριθμο PNN με χαρακτηριστικά υφής του συστήματος YCrCb μετά την εφαρμογή του αλγόριθμου γάμμα.

Ο Πίνακας 53 παρουσιάζει τα αποτελέσματα εφαρμογής του PNN αλγόριθμου σε χαρακτηριστικά υφής του YCrCb συστήματος μετά την εφαρμογή του αλγόριθμου γάμμα. Η πρώτη στήλη παρουσιάζει τους συνδυασμούς των αλγόριθμων υφής, η δεύτερη στήλη εμφανίζει την επιλογή PCA, η τρίτη στήλη παρουσιάζει το αποτέλεσμα αναγνώρισης του φυσιολογικού ιστού (N=normal) καθώς και το σύνολο μη αναγνώρισής του, η τετάρτη στήλη παρουσιάζει την αναγνώριση και μη του παθολογικού ιστού (AB= abnormal) από το σύνολο των εικόνων που εξετάζουμε. Η πέμπτη στήλη παρουσιάζει το CC% (correct classification percentage (ratio)), η έκτη στήλη παρουσιάζει το FP (faulse positive), η έβδομη στήλη εμφανίζει το FN (faulse negative), η όγδοη στήλη παρουσιάζει το SE (sensitivity), η ένατη εμφανίζει το SP (specificity), και τέλος η δέκατη στήλη παρουσιάζει το PR (precision).

Σε αυτό τον πίνακα παρατηρούμε ότι το μεγαλύτερο CC%=69.5 το παρουσίασε στο συνδυασμό των χαρακτηριστικών υφής SGLDM, SF και GLDS με μέγιστη αναγνώριση / απόρριψη φυσιολογικών και παθολογικών εικόνων 176/32 και 116/92 αντίστοιχα χωρίς την επιλογή PCA. Επίσης το ίδιο CC%=70.5 το παρουσίασε και με το συνδυασμό SGLDM, SF και SF, GLDS με ή χωρίς την επιλογή PCA αντίστοιχα.

Ο Πίνακας 54 παρουσιάζει τα αποτελέσματα εφαρμογής του SVM αλγόριθμου ταξινόμησης σε χαρακτηριστικά υφής του YCrCb συστήματος πρίν την εφαρμογή του αλγόριθμου γάμμα. Η πρώτη στήλη παρουσιάζει τους συνδυασμούς των αλγόριθμων υφής, η δεύτερη στήλη εμφανίζει την επιλογή PCA, η τρίτη στήλη παρουσιάζει το αποτέλεσμα αναγνώρισης του φυσιολογικού ιστού (N=normal) καθώς και το σύνολο μη αναγνώρισής του, η τέταρτη στήλη παρουσιάζει την αναγνώριση και μη του παθολογικού ιστού (AB= abnormal) από το σύνολο των εικόνων που εξετάζουμε. Η πέμπτη στήλη παρουσιάζει το CC% (correct classification percentage (ratio)), η έκτη στήλη παρουσιάζει το FP (faulse positive), η έβδομη στήλη εμφανίζει το SP (specificity), και τέλος η δέκατη στήλη παρουσιάζει το PR (precision).

Σε αυτό τον πίνακα παρατηρούμε ότι το μεγαλύτερο CC%=78 το παρουσίασε στο συνδυασμό των χαρακτηριστικών υφής SF και GLDS με μέγιστη αναγνώριση / απόρριψη φυσιολογικών και παθολογικών εικόνων 150/58 και 176/32 αντίστοιχα χωρίς την επιλογή PCA.

	Εικόνες πριν την εφαρμογή του αλγόριθμου γάμμα για το YCrCb σύστημ											
SVM classifier	PCA	Norn	nal	Abno	rmal	%CC	%FP	%FN	%SE	%SP	%PR	
SGLDM, SF, GLDS												
TABLE DIM=9	2%	160	48	161	47	76,5	23	22	77	76	77	
TABLE DIM=78	0%	151	57	172	36	77	27	17	82	72	75	
SGLDM												
TABLE DIM=8	2%	154	54	159	49	75	25	23	76	74	74	
TABLE DIM=39	0%	164	44	147	61	74	21	29	70	78	76	
SF												
TABLE DIM=11	2%	138	70	172	36	74	33	17	82	66	71	
TABLE DIM=24	0%	158	50	159	49	75,5	24	23	76	75	76	
GLDS												
TABLE DIM=4	2%	156	52	148	60	73	25	28	71	75	74	
TABLE DIM=15	0%	155	53	149	59	72,5	25	28	71	74	73	
SGLDM, SF												
TABLE DIM=9	2%	149	59	171	37	76,5	28	17	82	71	74	
TABLE DIM=63	0%	148	60	171	37	76,5	28	17	82	71	74	
SGLDM, GLDS												
TABLE DIM=8	2%	143	65	172	26	75	31	17	82	68	72	
TABLE DIM=54	0%	160	48	163	45	77	23	21	78	76	77	
SF, GLDS												
TABLE DIM=10	2%	147	61	175	33	77	29	15	84	70	74	
TABLE DIM=39	0%	150	58	176	32	78	27	15	84	72	75	

Πίνακας 54: Παρουσιάζει τον αλγόριθμο ταξινόμησης SVM με χαρακτηριστικά υφής του συστήματος YCrCb πρίν την εφαρμογή του αλγόριθμου γάμμα.

	Εικόνες μετά την εφαρμογή του αλγόριθμου γάμμα για το YCrCb σύστημα											
SVM classifier	PCA	Norn	nal	Abno	rmal	%CC	%FP	%FN	%SE	%SP	%PR	
SGLDM, SF, GLDS												
TABLE DIM=9	2%	141	67	167	41	73,5	32	19	80	67	71	
TABLE DIM=78	0%	154	54	166	42	76,5	25	20	79	74	75	
SGLDM												
TABLE DIM=8	2%	162	46	136	72	71	22	34	65	77	74	
TABLE DIM=39	0%	149	59	159	49	73,5	28	23	76	71	72	
SF												
TABLE DIM=11	2%	155	53	158	50	74,5	25	24	75	74	74	
TABLE DIM=24	0%	163	45	143	65	73	21	31	68	78	76	
GLDS												
TABLE DIM=4	2%	160	48	155	53	75	23	25	74	76	76	
TABLE DIM=15	0%	158	50	156	52	75	24	25	75	75	75	
SGLDM, SF												
TABLE DIM=9	2%	150	58	162	46	74,5	27	22	77	72	73	
TABLE DIM=63	0%	156	52	161	47	76	25	22	77	75	75	
SGLDM, GLDS												
TABLE DIM=8	2%	163	45	142	66	73	21	31	68	78	75	
TABLE DIM=54	0%	156	52	159	49	75,5	25	23	76	75	75	
SF, GLDS												
TABLE DIM=10	2%	151	57	170	38	76,5	27	18	81	72	74	
TABLE DIM=39	0%	155	53	173	35	79	25	16	83	74	76	

Πίνακας 55: Παρουσιάζει τον αλγόριθμο ταξινόμησης SVM με χαρακτηριστικά υφής του συστήματος YCrCb μετά την εφαρμογή του αλγόριθμου γάμμα.

Ο Πίνακας 55 παρουσιάζει τα αποτελέσματα εφαρμογής του SVM αλγόριθμου ταξινόμησης σε χαρακτηριστικά υφής του YCrCb συστήματος μετά την εφαρμογή του αλγόριθμου γάμμα. Η πρώτη στήλη παρουσιάζει τους συνδυασμούς των αλγόριθμων υφής, η δεύτερη στήλη εμφανίζει την επιλογή PCA, η τρίτη στήλη παρουσιάζει το αποτέλεσμα αναγνώρισης του φυσιολογικού ιστού (N=normal) καθώς και το σύνολο μη αναγνώρισής του, η τέταρτη στήλη παρουσιάζει την αναγνώριση και μη του παθολογικού ιστού (AB= abnormal) από το σύνολο των εικόνων που εξετάζουμε. Η πέμπτη στήλη παρουσιάζει το CC% (correct classification percentage (ratio)), η έκτη στήλη παρουσιάζει το FP (faulse positive), η έβδομη στήλη εμφανίζει το SP (specificity), και τέλος η δέκατη στήλη παρουσιάζει το PR (precision).

Σε αυτό τον πίνακα παρατηρούμε ότι το μεγαλύτερο CC%=79 το παρουσίασε στο συνδυασμό των χαρακτηριστικών υφής SF και GLDS με μέγιστη αναγνώριση / απόρριψη φυσιολογικών και παθολογικών εικόνων 155/53 και 173/35 αντίστοιχα, χωρίς την επιλογή PCA.

8

Συζήτηση

8.1 ΕιΣΑΓΩΓΗ

Στόχος της παρούσης διατριβής, όπως προαναφέρθηκε, είναι η ανάλυση, ανάπτυξη και αξιολόγηση ενός συστήματος επεξεργασίας ιατρικών εικόνων και πιο συγκεκριμένα, λαπαροσκοπικών / υστεροσκοπικών εικόνων για την υποστήριξη διάγνωσης σε περιπτώσεις γυναικολογικού καρκίνου. Τα μέρη της εν λόγω μελέτης έχουν αναφερθεί στα πιο πάνω κεφάλαια και αποτελείται από τέσσερα βασικά στάδια. Το πρώτο στάδιο περιέχει τη λήψη και αποθήκευση λαπαροσκοπικών / υστεροσκοπικών εικόνων. Το δεύτερο στάδιο περιέχει την προεπεξεργασία λαπαροσκοπικών / υστεροσκοπικών εικόνων και την ευθυγράμμισή τους με τον αλγόριθμο γάμμα. Το τρίτο στάδιο περιλαμβάνει εξαγωγή χρήσιμων πληροφοριών από τις εικόνες καθώς και η στατιστική τους επεξεργασία. Τέλος το τέταρτο στάδιο περιέχει το διαχωρισμό των εικόνων, σε φυσιολογικές και παθολογικές, με στόχο την αύξηση της διακριτικής ικανότητας του γιατρού σε δύσκολες περιπτώσεις γυναικολογικού καρκίνου. Κάθε ένα από τα επιμέρους συστήματα παρουσιάζει ιδιαιτερότητες και προβλήματα για την αντιμετώπιση των οποίων χρησιμοποιήθηκαν γνωστές μέθοδοι / λύσεις που έχουν τροποποιηθεί κατάλληλα για τη συγκεκριμένη εφαρμογή. Επίσης σε όλες τις φάσεις του συστήματος, έγιναν οι κατάλληλες διεργασίες για την επικοινωνία των επιμέρους συστημάτων.

Εδώ θα ήθελα να επισημάνω την καινοτομία της έρευνάς μας, καθώς και τις διάφορες μεθόδους που έχουν χρησιμοποιηθεί τόσο στην ανάπτυξη του συστήματος όσο και στη δημιουργία των επιμέρους διαδικασιών. Βιβλιογραφικά δεν εντοπίσαμε παρόμοιο σύστημα ανάλυσης και επεξεργασίας λαπαροσκοπικών / υστεροσκοπικών εικόνων με στόχο την αύξηση της διακριτικής ικανότητας του γιατρού σε δύσκολες περιπτώσεις γυναικολογικού καρκίνου.

Επίσης δεν έχουμε βρει στη βιβλιογραφία ιατρικές οδηγίες για την πραγματοποίηση της ενδοσκοπικής επέμβασης. Υπάρχουν μόνο ιατρικές οδηγίες για πραγματοποίηση κολονοσκοπικών και γαστροσκοπικών επεμβάσεων. Προσπάθειες γίνονται στην υλοποίηση ιατρικών οδηγιών για λαπαροσκοπικές / υστεροσκοπικές επεμβάσεις από την European Society for Gynaecological Endoscopy (ESGE) [140]. Με την αξιολόγηση του συστήματος από τους ειδικούς χρήστες του συστήματός μας, φάνηκε ότι η έρευνά μας βοήθησε και πέτυχε το στόχο της για την υποστήριξη διάγνωσης σε δύσκολες περιπτώσεις γυναικολογικού καρκίνου. Τέλος ο αντικειμενικός στόχος μας έχει επιτευχθεί και έχει εξακριβωθεί η χρηστική αξία του συστήματός μας σε εφαρμογές επεξεργασίας λαπαροσκοπικών / υστεροσκοπικών εικόνων αλλά και σε άλλες ενδοσκοπικές εικόνες.

Με τη συλλογή λαπαρασκοπικών και υστεροσκοπικών εικόνων από διαφορετικά όργανα, για φυσιολογικές και παθολογικές περιπτώσεις, παρατηρήσαμε αλλοιώσεις στις εικόνες που οφείλονταν στις διαφορετικές συνθήκες «σκόπευσης» της ιατρικής κάμερας και του υπό εξέταση οργάνου. Δηλαδή, προβλήματα από διαφορετικές γωνίες λήψης όπως επίσης και από διαφορετικές αποστάσεις λήψης. Επίσης λόγω της ιδιαιτερότητας που παρουσιάζει η μέθοδος στην υπό εξέταση περιοχή παρουσιάζονταν προβλήματα στην αντανάκλαση στις περιοχές ενδιαφέροντος κάνοντας την επεξεργασία των εικόνων δύσκολη λόγω του θορύβου που υπεισέρχεται σε αυτές. Αυτά τα προβλήματα ξεπεράστηκαν μετά από αρκετή μελέτη των χαρακτηριστικών υφής καθώς και με τη στατιστική ανάλυση που υλοποιήθηκε για αυτό το σκοπό. Η αντανάκλαση στα υπό εξέταση όργανα, παρόλο που έγινε προσπάθεια περιορισμού της αλγοριθμικά ήταν αδύνατο να διορθώσει την εικόνα χωρίς να χάσουμε πολύτιμες πληροφορίες αναφορικά με την παθολογία που παρουσιαζόταν. Λύση στο πρόβλημα έδωσε ο χρήστης γιατρός μετακινώντας την ιατρική κάμερα σε σημείο που δεν παρουσιαζόνταν αντανακλάσεις στο όργανο χωρίς παράλληλα να χάνουμε πολύτιμες πληροφορίες από την υπό εξέταση περιοχή. Το πρόβλημα με τη διαφορετική γωνία και απόσταση σκόπευσης, λύθηκε με την ανάλυση εικόνων από πειραματικά μοντέλα και τη στατιστική ανάλυση των αποτελεσμάτων για όλες τις διαφορετικές περιπτώσεις λήψης εικόνων.

Επίσης εφαρμόσαμε τον αλγόριθμο γάμμα για να διορθώσουμε (κανονικοποιήσουμε) τις εικόνες από διαφορετικά ιατρικά μηχανήματα όπως ιατρικές κάμερες, τηλεσκόπια, πηγές φωτός και καλώδια (οπτικές ίνες) μεταφοράς φωτισμού. Η δημιουργία ενός ιατρικού δικτύου για την καλύτερη αντιμετώπιση του γυναικολογικού καρκίνου καθώς και τη συνεργασία ειδικών στο θέμα αυτό, μας οδήγησε στην ανταλλαγή δεδομένων (βίντεο και εικόνες) από επεμβάσεις που έγιναν στα διάφορα κέντρα του δικτύου. Η ανάγκη για την κοινή ανταλλαγή δεδομένων μας ανάγκασε να κανονικοποιήσουμε τα δεδομένα έτσι ώστε να υπάρχει μια κοινή βάση στο δίκτυό μας.

Το πρόβλημα χρησιμοποίησης διαφορετικών οργάνων ήταν γνωστό και από άλλες μελέτες που έγιναν με διαφορετικά μηχανήματα υπερήχων, καμερών, τηλεοράσεων, scanners

κτλ και έτσι δημιουργήσαμε τον αλγόριθμο γάμμα. Στόχος μας είναι η βαθμονόμηση διαφορετικών οργάνων που χρησιμοποιούνται καθώς και η σύγκριση μεταξύ όμοιων περιοχών ενδιαφέροντος που παρουσιάζουν την ίδια παθολογία.

Η χρήση του αλγόριθμου γάμμα μας επέτρεψε τη σύγκριση ίδιων περιοχών ενδιαφέροντος, που παρουσιάζουν ίδια παθολογία και έχουμε συλλέξει εικόνες από διαφορετικές ιατρικές κάμερες και τις έχουμε αναλύσει. Παράλληλα δημιουργήσαμε και ένα πρωτόκολλο συλλογής λαπαροσκοπικών και υστεροσκοπικών εικόνων για την ομοιόμορφη καταγραφή και ανάλυση των εικόνων αυτών. Τέλος παρουσιάσαμε την ανάλυση πραγματικών περιπτώσεων γυναικολογικού καρκίνου καθώς και το σύστημα επεξεργασίας γυναικολογικού καρκίνου κατά τη διάρκεια μιας λαπαροσκοπικής / υστεροσκοπικής εξέτασης.

Κλείνοντας αξίζει να αναφερθούμε και στις επαφές που έγιναν με μεγάλα Ευρωπαϊκά Κέντρα αντιμετώπισης γυναικολογικού καρκίνου για την εφαρμογή του συστήματός μας σε αυτά και τη δημιουργία ενός Ευρωπαϊκού κέντρου αντιμετώπισης γυναικολογικού καρκίνου σε μια κοινή πλατφόρμα έρευνας και συνεργασίας.

Στο σημείο αυτό θα συζητήσουμε την έρευνά μας και θα συγκρίνουμε τα αποτελέσματά μας με άλλα αποτελέσματα από άλλες παρεμφερείς έρευνες.

Στη βιβλιογραφία δεν έχουμε βρει άλλες έρευνες που ασχολούνται με την επεξεργασία λαπαροσκοπικών / υστεροσκοπικών εικόνων. Υπάρχουν έρευνες για απεικονίσεις, όπως κολονοσκόπηση, γαστροσκόπηση, λαρυγκοσκόπηση αλλά και έρευνες που ασχολούνται με άλλου είδους απεικονίσεις όπως υπέρηχοι στο συκώτι κ.α [139]. Προσπάθειες καταγραφής ενδοσκοπικής εξέτασης έγιναν στην Ιαπωνία για δημιουργία ενδοσκοπικού πρωτοκόλλου [141].

Επίσης η έρευνά μας προτείνει και το πρωτόκολλο καταγραφής ενδοσκοπικών εικόνων που αυτή τη στιγμή απουσιάζει από τη βιβλιογραφία. Υπάρχει το πρωτόκολλο για γαστροενδοσκόπηση και κολονοσκόπηση και οι γυναικολόγοι αρχίζουν τώρα να δημιουργούν το δικό τους πρωτόκολλο της λαπαροσκόπησης / υστεροσκόπησης [140].

8.2 Αλγοριωμός Διορώωσης Χρωματός

Ο αλγόριθμος γάμμα έχει προταθεί σε πολλές έρευνες ως ο αλγόριθμος διόρθωσης του χρώματος της εικόνας. Από την έρευνά μας ανακαλύψαμε ότι ο αλγόριθμος γάμμα δεν εφαρμόζεται τόσο πολύ στη διόρθωση της εικόνας. Στο [116], [117] αναφέρει ότι η διόρθωση των ενδοσκοπικών εικόνων μπορεί να γίνει με υλικό τρόπο δημιουργώντας ένα σύστημα

διόρθωσης του σήματος πρίν παρουσιαστεί στην έξοδο του συστήματος. Επίσης στο [114] αναφέρεται ότι η διόρθωση των ενδοσκοπικών εικόνων πρέπει να εφαρμόζεται πάντα για την καλύτερη ποιότητα των εικόνων. Σε αυτή την έρευνα εισηγούμαστε την εφαρμογή του αλγόριθμου γάμμα κάθε φορά που πραγματοποιείται μια ενδοσκοπική εξέταση. Η διόρθωση των ενδοσκοπικών εικόνων θα βοηθήσει στη δημιουργία του ενδοσκοπικού πρωτοκόλλου λήψης εικόνων.

Διαφορετικά ιατρικά μηχανήματα και διαφορετικές ιατρικές τεχνικές στην παρακολούθηση και εύρεση ύποπτων περιοχών ενδιαφέροντος δημιούργησαν προβλήματα στην καταγραφή και επεξεργασία ενδοσκοπικών εικόνων. Η ανάγκη αυτή μας οδήγησε στη δημιουργία του πρωτοκόλλου καταγραφής ενδοσκοπικών εικόνων με στόχο την βαθμονόμηση της ενδοσκοπικής μεθόδου καθώς και τη δημιουργία ενός ευρωπαϊκού δικτύου συλλογής και σύγκρισης περιστατικών γυναικολογικού καρκίνου.

Το πρωτόκολλο καταγραφής ενδοσκοπικών εικόνων προτείνει, μετά την βαθμονόμηση της κάμερας με white balance όπως προτείνει ο κατασκευαστής, την καταγραφή της παλέτας χρωμάτων πρίν από κάθε επέμβαση [130]. Στη συνέχεια αφού γίνει η επέμβαση, όλες οι εικόνες που καταγράφηκαν διορθώνονται με τον αλγόριθμο γάμμα και έτσι έχουμε τις διορθωμένες πλέον εικόνες προς επεξεργασία. Τα χαρακτηριστικά υφής από κάθε περιοχή ενδιαφέροντος που παρουσιάζει υποψία για παθολογία εξετάζονται και συγκρίνονται με γειτονικές φυσιολογικές περιοχές με στόχο την εξακρίβωση αλλοιώσεων που μπορεί να έχουν καθώς παράλληλα στέλλονται δείγματα για ιστοπαθολογική εξέταση. Επίσης τα χαρακτηριστικά υφής εισάγονται σε ένα νευρωνικό δίκτυο για τον αυτόματο διαχωρισμό τους σε φυσιολογικές και παθολογικές περιοχές. Με αυτό τον τρόπο ο γιατρός έχει μια πρώτη άποψη για το περιστατικό και μια πρώτη ένδειξη για το είδος της παθολογίας που παρουσιάζεται.

8.3 ΑΝΑΛΥΣΗ ΕΙΚΟΝΩΝ ΑΠΟ ΠΕΙΡΑΜΑΤΙΚΟ ΙΣΤΟ ΥΠΟ ΔΙΑΦΟΡΕΤΙΚΕΣ ΣΥΝΘΗΚΕΣ ΛΗΨΗΣ

8.3.1 Διαφορετικές απόστασεις στοχεύσης, κοντίνο και μακρινό πλανό

Παρακολουθώντας τα αποτελέσματα, δεν υπάρχει στατιστική διαφορά μεταξύ των χαρακτηριστικών υφής για μακρινό και κοντινό πλάνο, αλλά ούτε και για μικρές συνεχόμενες γωνίες λήψης. Χαρακτηριστικά υφής, όπως ο μέσος όρος του γκρι, η εντροπία, η διακύμανση, είχαν ψηλότερες τιμές στο κοντινό πλάνο συγκρινόμενες με το μακρινό πλάνο λήψης. Ενώ τα χαρακτηριστικά υφής της αντίθεσης και της ομοιογένειας παρουσιάζουν παρόμοιες τιμές και στα δυο πλάνα. Αντίστοιχα στην περίπτωση των δυο συνεχόμενων γωνιών λήψης, η διακύμανση είχε ψηλότερη τιμή στη μικρή γωνία λήψης ενώ αντίθετα τα χαρακτηριστικά υφής της μέσης τιμής, της εντροπίας, της ομοιογένειας και της αντίθεσης ακολουθούσαν την ίδια κατανομή.

Σε προηγούμενη παρουσίαση της έρευνάς μας, [127], παρουσιάσαμε πειράματα που έγιναν με διαφορετικές αποστάσεις λήψης, 7 cm για μακρινό πλάνο και 4 cm για κοντινό πλάνο αποδεικνύοντας παρόμοια αποτελέσματα, δηλαδή δεν είχαμε στατιστική διαφορά μεταξύ των χαρακτηριστικών υφής [124].

8.3.2 Διαφορετικές γωνιές αμψης

Συνεχίζοντας την ανάλυση των πειραμάτων έχουμε υλοποιήσει πείραμα με πειραματικό ιστό για διαφορετικές γωνίες λήψης. Συσχετίζοντας τα προαναφερθέντα είχαμε το ίδιο αποτέλεσμα όπως και πιο πάνω στην ανάλυση εικόνων από δύο διαφορετικές γωνίες λήψης διαφοράς 2 μοιρών. Σε όλα τα πειράματα που έχουμε υλοποιήσει δεν είχαμε στατιστική διαφορά μεταξύ των δύο κατηγοριών (περιοχές ενδιαφέροντος, γωνία 1 και γωνία 2). Συμπερασματικά αναφέρουμε ότι για μικρές γωνίες λήψης δεν επηρεάζει την ανάλυση των ενδοσκοπικών εικόνων οπότε μπορούμε να συγκρίνουμε ίδιες περιοχές ενδιαφέροντος που παρουσιάζουν παρόμοιες παθολογίες εξαγόμενες από διαφορετικά ιατρικά μηχανήματα.

Αξίζει να τονίσουμε ότι για μεγαλύτερες αποστάσεις λήψης, διαφοράς 6 cm, κάποια χαρακτηριστικά υφής παρουσιάζουν στατιστική διαφορά όπως και για μεγαλύτερες γωνίες λήψης της τάξης των 5 μοιρών διαφοράς. Αυτό είναι ένας περιορισμός χρησιμοποίησης της ανάλυσης αυτής και θα πρέπει ο γιατρός να αποφεύγει παρακολουθήσεις ύποπτων περιοχών ενδιαφέροντος με μεγάλη διαφορά απόστασης στόχευσης που έτσι και αλλιώς σε μερικά όργανα όπως το ενδομήτριο δεν είναι εφικτό δεδομένου ότι η κοιλότητα είναι 3 cm³.

Η εισαγωγή του πρωτοκόλλου καταγραφής ενδοσκοπικών εικόνων θα βοηθήσει τους γιατρούς στην κοινή διαδικασία εφαρμογής της ενδοσκοπικής μεθόδου. Το κοινό ιατρικό πρωτόκολλο αρχής και τέλους μιας ενδοσκοπικής εξέτασης με τη βαθμονόμηση των εικόνων θα βοηθήσει τους ερευνητές / γιατρούς στη δημιουργία ενός δικτύου επεξεργασίας ενδοσκοπικών εικόνων και στη σύγκριση παρόμοιων περιστατικών γυναικολογικού καρκίνου για την καλύτερη αντιμετώπιση και γνώση του καρκίνου ευρύτερα.

8.4 Πολυλιακριτή ανάλυση

Η πολυδιακριτή ανάλυση είναι μια μέθοδος ανάλυσης εικόνων με στόχο την καλύτερη εξαγωγή χρήσιμων πληροφοριών που περιέχεται σε μια εικόνα. Στην έρευνά μας έχουμε αναλύσει τις εικόνες στις κλίμακες 1Χ1 μέχρι 10Χ10 όπως αναφέρεται και στο [135] και

έχουμε εξαγάγει τα χαρακτηριστικά υφής από τις περιοχές ενδιαφέροντος. Η διαδικασία downsampling που εφαρμόζεται χρησιμοποιεί low pass φίλτρα και έτσι πετυχαίνουμε να έχουμε εικόνες σε διαφορετικές κλίμακες.

Τα χαρακτηριστικά υφής που εξαγάγαμε από τις περιοχές ενδιαφέροντος και η στατιστική ανάλυση που εφαρμόστηκε σε αυτά έδειξε ότι οι κλίμακες που παρουσιάζουν στατιστική διαφορά μεταξύ των φυσιολογικών και παθολογικών περιοχών ενδιαφέροντος ήταν οι 2X2 μέχρι 4X4, [126], ενώ οι άλλες κλίμακες παρουσίαζαν μεγάλη αλλοίωση στις πληροφορίες που περιείχαν και αποκλείστηκαν από την έρευνά μας. Αυτές οι εικόνες παρουσιάζουν παραμόρφωση στην πληροφορία που περικλείουν λόγω της μεγάλης κλίμακας ανάλυσης.

Η πολυδιακριτή ανάλυση μας επιτρέπει να αναλύουμε εικόνες με διαφορετική ανάλυση, η οποία μειώνει τον όγκο των δεδομένων αλλά ταυτόχρονα παρουσιάζει όλη την ενέργεια που περικλείει δίνοντας χρήσιμες πληροφορίες για την περιοχή ενδιαφέροντος.

Πολλές έρευνες έχουν ασχοληθεί με την πολυδιακριτή ανάλυση σε διάφορες εφαρμογές και αναλύσεις με πολύ καλά αποτελέσματα. Στην περίπτωσή μας όμως παρουσιάστηκαν αλλοιώσεις στις υπό εξέταση εικόνες, ειδικά στην κλίμακα 5X5 μέχρι 10X10 πράγμα που οδήγησε στον αποκλεισμό των εικόνων από την έρευνά μας.

8.5 Πραγματικές εικονές Ενδομητριού

8.5.1 ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΥΦΗΣ ΓΙΑ ΤΟ GRAY SCALE ΣΥΣΤΗΜΑ

Στην έρευνά μας έχουμε χρησιμοποιήσει 40 γυναίκες και έχουμε εξαγάγει 416 περιοχές ενδιαφέροντος που παρουσιάζουν φυσιολογικές και παθολογικές περιοχές ενδιαφέροντος. Παρόμοιες έρευνες δεν έχουν προκύψει από τη βιβλιογραφική έρευνα. Οι περισσότερες έρευνες που έχουν παρουσιαστεί στον τομέα αυτό αφορούν περισσότερο το ιατρικό σκέλος της έρευνάς μας. Πολλές έρευνες ασχολούνται με την σύγκριση της κλασσικής μεθόδου αντιμετώπισης του γυναικολογικού καρκίνου και της μεθόδου της λαπαροσκόπησης / υστεροσκόπησης αναλύοντας τα πλεονεκτήματα και μειονεκτήματα των δύο αυτών προσεγγίσεων [111], [113], [114]. Το γενικό συμπέρασμα σε αυτές τις έρευνες είναι ότι η ενδοσκοπική μέθοδος είναι πιο πρακτική, με λιγότερες επιπλοκές και μικρότερο κόστος, συγκρινόμενη με την κλασσική ανοικτή μέθοδο αντιμετώπισης του γυναικολογικού καρκίνου.

Στις εικόνες ενδομητρίου που εξαγάγαμε, υπολογίσαμε τα χαρακτηριστικά υφής, και εφαρμόσαμε την στατιστική ανάλυση για να συγκρίνουμε αν υπάρχουν διαφορές σε αυτές. Η

μέθοδος αυτή είναι αρκετά διαδεδομένη στην επεξεργασία εικόνας με πολύ καλά αποτελέσματα. Στην εφαρμογή της στατιστικής ανάλυσης για τον έλεγχο της στατιστικής διαφοράς μεταξύ των παθολογικών και φυσιολογικών εικόνων τα αποτελέσματα έδειξαν ότι τα περισσότερα χαρακτηριστικά υφής παρουσίαζαν μεγάλο ενδιαφέρον δεδομένου ότι είχαμε στατιστική διαφορά. Το αποτέλεσμα αυτό μας οδήγησε στο διαχωρισμό των παθολογικών και φυσιολογικών εικόνων τα ολα αποτελέσματα.

Στο [113] παρουσιάζεται μια διαφορετική προσέγγιση απεικόνισης οργάνων με την λαπαροσκοπική μέθοδο σε 3Δ κλίμακα για την καλύτερη συλλογή πληροφοριών. Η μέθοδος αυτή επιτυγχάνεται με την χρήση 2 ιατρικών καμερών που φωτογραφίζουν το όργανο και με ειδικά 3Δ γυαλιά που φοράει ο γιατρός παρουσιάζεται το όργανο σε 3Δ μορφή. Η 3Δ απεικόνιση προσφέρει στο γιατρό ταχύτητα, ακρίβεια, δεξιοτεχνία και ασφάλεια στην αντιμετώπιση του περιστατικού.

Σε μια άλλη έρευνα, [115], έχουν εξαχθεί με απεικονιστική μέθοδο CT, από ένα σετ 26 αντρών και 10 γυναικών εικόνες κολονογραφίας. Τέσσερις ακτινογράφοι γιατροί κατηγοριοποίησαν 705 πολύποδες με καλύτερο αποτέλεσμα (53 True Positive, 652 False Positive) με την χρήση CAD συστήματος. Έχουν χρησιμοποιηθεί και συγκριθεί οι χαρακτηριστικές καμπύλες και η διακύμανση της περιοχής ενδιαφέροντος που παρουσιάζουν για να εξηγήσουν τη συσχέτιση μεταξύ των περιοχών ενδιαφέροντος σε 2Δ απεικόνιση. Επίσης έχει εφαρμοστεί η 3Δ απεικόνιση με στόχο την αύξηση της ακρίβειας κατηγοριοποίησης από τους ειδικούς. Τα αποτελέσματα της έρευνας αυτής ήταν ότι η 3Δ απεικόνιση αύξησε την ακρίβεια του ειδικού στην κατηγοριοποίηση του πολύποδα καθώς και την καλύτερη απεικόνιση του πολύποδα.

Παρόμοιες έρευνες έχουν γίνει με εικόνες κολονοσκόπησης, όπως στο [119], όπου εξάγονται χαρακτηριστικά υφής και χρώματος από εικόνες κολονοσκόπησης και βάσει αυτών κατηγοριοποιούνται σε φυσιολογικό και παθολογικό ιστό. Επίσης εφαρμόζονται νευρωνικά δίκτυα, με ή χωρίς PCA, για το διαχωρισμό των περιοχών ενδιαφέροντος. Τα αποτελέσματα κατηγοριοποίησης ήταν 97.72% με PCA και με χρήση χαρακτηριστικών υφής και χρώματος ενώ 96.96% με χρησιμοποίηση μόνο χαρακτηριστικών υφής και 90.52% με χαρακτηριστικά χρώματος.

Άλλες έρευνες που ασχολούνται με ιατρικές εικόνες, την επεξεργασία ιατρικής εικόνας, την τμηματοποίηση περιοχών ενδιαφέροντος, την κατηγοριοποίηση των εικόνων και τον χαρακτηρισμό των εικόνων παρουσιάζονται στα [121]-[123]. Τα αποτελέσματα σε αυτές τις μελέτες έδωσαν πολύ καλές ενδείξεις για χρησιμοποίηση υπολογιστών στην αυτόματη επιλογή και επεξεργασία περιοχών ενδιαφέροντος. Στην έρευνά μας έχουμε πετύχει το διαχωρισμό φυσιολογικών και παθολογικών περιοχών ενδιαφέροντος CC=72% με το συνδυασμό των SGLDM, SF, GLDS αλγορίθμων με τον PNN αλγόριθμο και CC=77% με το συνδυασμό των SGLDM, GLDS αλγορίθμων με τον αλγόριθμο SVM για τις εικόνες πριν την εφαρμογή του αλγόριθμου γάμμα. Επίσης για τη ίδια ανάλυση είχαμε αποτέλεσμα CC=72% με τον συνδυασμό των SGLDM, SF, GLDS αλγορίθμων με τον PNN αλγόριθμο και CC=76% με το συνδυασμό των SGLDM, GLDS αλγορίθμων με τον αλγορίθμων με τον SGLDM, GLDS αλγορίθμων με τον συνδυασμό των SGLDM, SF, GLDS αλγορίθμων με τον ΡΝΝ αλγόριθμο και CC=76% με το συνδυασμό των SGLDM, GLDS αλγορίθμων με τον αλγορίθμων με τον αλγόριθμο και CC=76% με το συνδυασμό των SGLDM, GLDS αλγορίθμων με τον αλγόριθμο SVM για τις εικόνες μετά την εφαρμογή του αλγόριθμου γάμμα.

8.5.2 ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΥΦΗΣ ΓΙΑ ΤΟ RGB ΣΥΣΤΗΜΑ

Εξάγοντας τις 3 έγχρωμες συνιστώσες από τις ενδοσκοπικές εικόνες, έχουμε εξαγάγει τα χαρακτηριστικά υφής σε κάθε μια συνιστώσα ξεχωριστά. Στο κόκκινο χρώμα παρατηρήσαμε ότι τα χαρακτηριστικά υφής παρουσιάζουν στατιστική διαφορά πριν την εφαρμογή του αλγόριθμου γάμμα. Στον αλγόριθμο SF η variance στις φυσιολογικές περιοχές ενδιαφέροντος είναι μειωμένη και έχει τιμή 42 σε σύγκριση με τις παθολογικές περιοχές που είναι πολύ μεγαλύτερη με τιμή 143. Στον αλγόριθμο SGLDM η contrast παρουσιάζει μικρότερη τιμή στις φυσιολογικές περιοχές με τιμή 22 και στις παθολογικές περιοχές έχει τιμή 26. Η variance έχει τιμή 72 και 140 αντίστοιχα. Η entropy παρουσιάζει ίδιες τιμές στις δύο περιοχές ενδιαφέροντος. Στον αλγόριθμο GLDS το mean παρουσιάζεται να έχει τις ίδιες τιμές και στις δυο περιοχές.

Στην ανάλυση του πράσινου χρώματος πριν την εφαρμογή του αλγόριθμου γάμμα είχαμε στατιστική διαφορά στα περισσότερα χαρακτηριστικά υφής. Στον αλγόριθμο SF η variance παρουσίασε μεγάλη διαφορά με τιμή 95 και 183 στις φυσιολογικές και παθολογικές περιοχές αντίστοιχα, στον αλγόριθμο SGLDM η contrast παρουσίαζε σχεδόν τις ίδιες τιμές με 15 και 19 αντίστοιχα καθώς και η SGLDM η variance παρουσίασε μεγάλη διαφορά με τιμές 93 και 181 αντίστοιχα. Η entropy παρουσιάζει ίδιες τιμές στις δύο περιοχές ενδιαφέροντος. Στον αλγόριθμο GLDS το mean είναι σχεδόν το ίδιο με τιμές 2,8 και 3 αντίστοιχα.

Τέλος στην μπλε χρωματική συνιστώσα είχαμε αποτελέσματα παρόμοια με τις άλλες δύο χρωματικές συνιστώσες όπως στον αλγόριθμο SF η variance παρουσίασε τιμές 96 και 153. Στον αλγόριθμο SGLDM η contrast παρουσίασε τιμές 70 και 76 καθώς και η variance είχε τιμές 95 και 150 αντίστοιχα. Η entropy και η GLDS mean ήταν η ίδια και στις δυο περιοχές ενδιαφέροντος.
Παρόμοια αποτελέσματα παρουσιάζονται και στην ανάλυση των περιοχών ενδιαφέροντος μετά την εφαρμογή του αλγόριθμου γάμμα. Είχαμε στατιστική διαφορά στα περισσότερα χαρακτηριστικά υφής που παρουσίαζαν πιο βελτιωμένες τιμές.

Στην κόκκινη συνιστώσα ο αλγόριθμος SF με το χαρακτηριστικό υφής variance είχαμε μικρότερη διαφορά με τιμές 42 και 87 αντίστοιχα. Στον αλγόριθμο SGLDM η contrast παρουσίασε μικρότερη διαφορά με 13 και 16 αντίστοιχα. Η variance έχει τιμές 41 και 85 στις φυσιολογικές και παθολογικές τιμές αντίστοιχα. Η entropy έχει τιμές 5,6 και 4 που σχεδόν προσεγγίζουν τις αντίστοιχες τιμές πριν την εφαρμογή του αλγόριθμου γάμμα. Στον αλγόριθμο GLDS το mean είχαμε τιμές 2,6 και 3 αντίστοιχα.

Στην πράσινη συνιστώσα είχαμε αντίστοιχες τιμές, στον αλγόριθμο SF variance είχαμε 85 με 165, στον SGLDM η contrast είχε τιμές 13 με 18, στον SGLDM variance είχε τιμές 83 με 163 και ο SGLDM entropy παρουσίασε παρόμοιες τιμές. Τέλος στον αλγόριθμο GLDS το mean είχαμε τιμές 2,7 με 3 αντίστοιχα.

Συνεχίζοντας στην μπλε συνιστώσα τα αποτελέσματα παρουσίαζαν μικρότερες διαφορές από τις άλλες δυο συνιστώσες. Στον αλγόριθμο SF η variance έχει τιμές 96 και 160 αντίστοιχα, στον αλγόριθμο SGLDM η contrast έχουμε 69 και 79, η variance παρουσιάζει μεγάλη διαφορά με τιμές 95 και 157, η entropy έχει τιμές 6,6 και 7 αντίστοιχα. Στον αλγόριθμο GLDS το mean έχει ίδιες τιμές και στις φυσιολογικές και παθολογικές περιοχές αντίστοιχα.

8.5.3 ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΥΦΗΣ ΓΙΑ ΤΟ HSV ΣΥΣΤΗΜΑ

Μετασχηματίζοντας τις εικόνες από το RGB στο HSV σύστημα, εξαγάγαμε τα χαρακτηριστικά υφής πριν και μετά την εφαρμογή του αλγόριθμου γάμμα τα οποία θα τα αναλύσουμε πιο κάτω. Πριν την εφαρμογή του αλγόριθμου γάμμα έχουμε για την Η συνιστώσα για τον αλγόριθμο SF η variance παρουσιάζει τιμές 20 και 250, για τον αλγόριθμο SGLDM η contrast έχει τιμές 21 και 360, η variance έχει τιμές 20 και 246 καθώς και η entropy παρουσιάζει τις ίδιες τιμές για τις φυσιολογικές και παθολογικές περιοχές αντίστοιχα.

Στη συνιστώσα S έχουμε τιμές για τον αλγόριθμο SF variance με τιμές, 130 και 190, για τον αλγόριθμο SGLDM η contrast έχει τιμές 127 και 161, η variance έχει τιμές 130 και 190, η entropy έχει ίδιες τιμές αντίστοιχα. Στον αλγόριθμο GLDS το mean έχει τιμές 8 και 9 στις φυσιολογικές και παθολογικές περιοχές αντίστοιχα.

Στη συνιστώσα V, ο αλγόριθμος χαρακτηριστικών υφής του SF, η variance έχει τιμές 73 και 143, στον αλγόριθμο SGLDM η contrast έχει τιμές 22 και 26, η variance έχει τιμές 72

και 140, η entropy και η GLDS mean παρουσιάζει τις ίδιες τιμές στις φυσιολογικές και παθολογικές περιοχές ενδιαφέροντος αντίστοιχα.

Μετά την εφαρμογή του αλγόριθμου γάμμα οι εικόνες ήταν οπτικά καλύτερα. Στα περισσότερα χαρακτηριστικά υφής είχαμε στατιστική διαφορά. Οι τιμές των χαρακτηριστικών υφής για την Η συνιστώσα παρουσιάζονται πιο κάτω. Στον αλγόριθμο SF η variance παρουσιάζει τιμές 78 και 1997, στον αλγόριθμο SGLDM η contrast έχει τιμές 110 και 2632, η variance έχει τιμές 76 και 1882 καθώς η entropy έχει τις ίδιες τιμές και στις δυο περιοχές ενδιαφέροντος. Στον αλγόριθμο GLDS η mean έχει τιμές 3,6 και 13.

Στη συνιστώσα S είχαμε παρόμοια αποτελέσματα, με ένα μεγάλο μέρος των χαρακτηριστικών υφής να έχουν στατιστική διαφορά μεταξύ των δυο περιοχών ενδιαφέροντος. Στον αλγόριθμο SF η variance έχει τιμές 106 και 150, στον αλγόριθμο SGLDM η contrast έχει τιμές 94 και 101, η variance έχει τιμές 106 και 148, καθώς η entropy και το mean του GLDS παρουσιάζουν τις ίδιες τιμές αντίστοιχα.

Τέλος στη συνιστώσα V έχουμε τις εξής τιμές. Στον αλγόριθμο SF η variance έχουμε τιμές 42 και 87, στον αλγόριθμο SGLDM η contrast έχει τιμές 13 και 16, η SGLDM variance έχει τιμές 41 και 85, η SGLDM entropy και η GLDS mean έχει ίδιες τιμές στις φυσιολογικές και παθολογικές περιοχές ενδιαφέροντος αντίστοιχα.

8.5.4 ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΥΦΗΣ ΓΙΑ ΤΟ YCRCB ΣΥΣΤΗΜΑ

Το τελευταίο σύστημα που έχουμε αναλύσει είναι το YCrCb. Έχουμε μετασχηματίσει τις RGB εικόνες στο σύστημα YCrCb και έχουμε εξαγάγει τα χαρακτηριστικά υφής. Και σε αυτό το σύστημα είχαμε στα περισσότερα χαρακτηριστικά υφής στατιστική διαφορά πριν και μετά την εφαρμογή του αλγόριθμου γάμμα.

Στη συνιστώσα Υ έχουμε τιμές των χαρακτηριστικών υφής όπως στον αλγόριθμο SF η variance είχε τιμές 50 και 110 αντίστοιχα, στον αλγόριθμο SGLDM η contrast είχε τιμές 3,4 και 6, η SGLDM variance είχες τιμές 48 και 110, καθώς και η SGLDM entropy είχε ίδιες τιμές στις δυο περιοχές ενδιαφέροντος.

Στη Cr συνιστώσα έχουμε για τον αλγόριθμο SF variance 15 και 18, στον αλγόριθμο SGLDM η contrast είχε τιμές 16 και 17, η SGLDM variance έχει τιμές 15 και 17 και η SGLDM entropy είχε τις ίδιες τιμές και για τις δυο κατηγορίες εικόνων. Η GLDS mean παρουσιάζει τις ίδιες τιμές και για φυσιολογικές και παθολογικές περιοχές ενδιαφέροντος.

Η Cb συνιστώσα παρουσιάζει τις εξής τιμές επιλεγμένων χαρακτηριστικών υφής. Η SF variance παρουσιάζει τις ίδιες τιμές στις δυο περιοχές ενδιαφέροντος, η SGLDM variance

έχει τιμές 7,5 και 10 καθώς η SGLDM contrast είχε τιμές 4,5 και 4,7 αντίστοιχα. Τέλος η GLDS mean παρουσιάζει τις ίδιες τιμές 2 και στις δυο περιοχές ενδιαφέροντος.

Στην ανάλυση των εικόνων μετά την εφαρμογή του αλγόριθμου γάμμα είχε και πάλι στατιστική διαφορά μεταξύ των φυσιολογικών και παθολογικών εικόνων στα περισσότερα χαρακτηριστικά υφής.

Στην συνιστώσα Υ έχουμε τιμές του αλγόριθμου SF variance της τάξης του 40 και 95 αντίστοιχα, στον αλγόριθμο SGLDM η contrast είχε τιμές 2,8 και 5, η SGLDM variance έχει τιμές 40 και 93 και η SGLDM entropy είχε σχεδόν τις ίδιες τιμές 5 με 5,6 και για τις δυο κατηγορίες εικόνων. Η GLDS mean παρουσιάζει τις ίδιες τιμές 1,2 με 1,6 και για φυσιολογικές και παθολογικές περιοχές ενδιαφέροντος.

Στην Cr συνιστώσα έχουμε τιμές για την SF variance 14 και 16, για τον αλγόριθμο SGLDM η contrast είχε τιμές 16 και 18, η SGLDM variance έχει τιμές 14 και 16 και η SGLDM entropy είχε σχεδόν τις ίδιες τιμές και για τις δυο κατηγορίες εικόνων. Η GLDS mean παρουσιάζει τις ίδιες τιμές 2,8 με 3 και για φυσιολογικές και παθολογικές περιοχές ενδιαφέροντος.

Στην συνιστώσα Cb έχουμε τιμές του αλγόριθμου SF variance της τάξης του 6 και 9 αντίστοιχα, στον αλγόριθμο SGLDM η contrast είχε τιμές 5 με 5,7 και η SGLDM variance έχει τιμές 6 και 9 και η SGLDM entropy είχε σχεδόν τις ίδιες τιμές 4 με 4,5 και για τις δυο κατηγορίες εικόνων. Η GLDS mean παρουσιάζει τις ίδιες τιμές 1,6 με 1,8 και για φυσιολογικές και παθολογικές περιοχές ενδιαφέροντος.

Συμπερασματικά αναφέρουμε ότι σε όλες τις χρωματικές συνιστώσες και συστήματα έχουμε στα περισσότερα χαρακτηριστικά υφής στατιστική διαφορά μεταξύ φυσιολογικών και παθολογικών περιοχών ενδιαφέροντος.

8.6 Σύστημα Υποστηρίσεης Διαγνώσης (CAD system)

Στην παράγραφο αυτή θα συζητήσουμε τα αποτελέσματα αυτόματου διαχωρισμού φυσιολογικών και παθολογικών εικόνων με τη χρήση νευρωνικών αλγορίθμων. Όπως και πιο πάνω έχουμε εφαρμόσει σε κάθε σύστημα απεικόνισης τους αλγόριθμους νευρωνικών δικτύων.

Στο σύστημα RGB έχουμε εφαρμόσει τα νευρωνικά δίκτυα πριν και μετά την εφαρμογή του αλγόριθμου γάμμα. Έχουμε χρησιμοποιήσει τους αλγόριθμους PNN και SVM, χωρίς και με PCA ανάλυση. Τα αποτελέσματα είναι πολύ ενθαρρυντικά για την εφαρμογή αυτόματων μεθόδων διαχωρισμού φυσιολογικών και παθολογικών περιοχών ενδιαφέροντος. Εισάγοντας στους αλγόριθμους 416 φυσιολογικές και παθολογικές RGB εικόνες ενδομητρίου

είχαμε τον αυτόματο διαχωρισμό τους. Το CC (correct classification rate %) περιγράφει το ποσοστό αναγνώρισης των εικόνων. Στον PNN αλγόριθμο πριν την εφαρμογή του αλγόριθμου γάμμα είχαμε CC=67,5% με PCA ανάλυση για το συνδυασμό χαρακτηριστικών υφής από τους αλγόριθμους SF, SGLDM και GLDS. Επίσης για τον ίδιο συνδυασμό είχαμε αποτέλεσμα CC=68% χωρίς την PCA ανάλυση. Για τις αντίστοιχες εικόνες μετά την εφαρμογή του αλγόριθμου γάμμα είχαμε CC=68% με και χωρίς την PCA ανάλυση για τον συνδυασμό των SGLDM και GLDS.

Επίσης εφαρμόζοντας και τον SVM αλγόριθμο είχαμε ψηλότερα αποτελέσματα διαχωρισμού και αναγνώρισης των δύο περιοχών σε σύγκριση με τον PNN αλγόριθμο. Για τις εικόνες πριν την εφαρμογή του αλγόριθμου γάμμα είχαμε CC=74% χωρίς την PCA ανάλυση με τον αλγόριθμο SF που είναι σαφώς καλύτερο αποτέλεσμα μέχρι στιγμής. Επίσης στις αντίστοιχες εικόνες μετά την εφαρμογή του αλγόριθμου γάμμα είχαμε αποτέλεσμα CC=74,5% χωρίς την PCA ανάλυση με τον αλγόριθμο SF.

Μετασχηματίζοντας τις RGB εικόνες στο σύστημα HSV και επαναλαμβάνοντας τους ίδιους αλγόριθμους διαχωρισμού των δύο περιοχών ενδιαφέροντος με βάση τα χαρακτηριστικά υφής πήραμε τα εξής αποτελέσματα. Με την εφαρμογή του αλγόριθμου PNN στα χαρακτηριστικά υφής των εικόνων ενδομητρίου πριν την εφαρμογή του αλγόριθμου γάμμα είχαμε CC=71,5% χωρίς PCA ανάλυση για το συνδυασμό χαρακτηριστικών υφής από τους αλγόριθμους SF, SGLDM. Στις διορθωμένες εικόνες ενδομητρίου είχαμε CC=70,5% με PCA ανάλυση για τον συνδυασμό χαρακτηριστικών υφής από τους αλγόριθμους SF, SGLDM και SGLDM, GLDS. Στον αντίστοιχο αλγόριθμο SVM πριν την εφαρμογή του αλγόριθμου γάμμα είχαμε CC=74,5% χωρίς PCA ανάλυση για τον συνδυασμό χαρακτηριστικών υφής από τους αλγόριθμους SF, SGLDM και με τους αλγόριθμους SGLDM, GLDS με PCA ανάλυση. Στις διορθωμένες εικόνες είχαμε CC=76% χωρίς PCA ανάλυση με τον συνδυασμό SF, GLDS που είναι και το καλύτερο αποτέλεσμα μέχρι στιγμής.

Συνεχίζοντας την ανάλυσή μας έχουμε μετασχηματίσει τις RGB εικόνες στο σύστημα YCrCb και ακολουθώντας την πιο πάνω ανάλυση έχουμε τα αποτελέσματα διαχωρισμού των φυσιολογικών και παθολογικών περιοχών ενδιαφέροντος. Στον PNN αλγόριθμο πριν την εφαρμογή του αλγόριθμου γάμμα είχαμε CC=70,5% με PCA ανάλυση για τον συνδυασμό χαρακτηριστικών υφής από τους αλγόριθμους SF, SGLDM, GLDS και χωρίς PCA ανάλυση για τον συνδυασμό χαρακτηριστικών υφής από τους αλγόριθμους SF, SGLDM. Μετά την εφαρμογή του αλγόριθμου γάμμα έχουμε CC=69,5% χωρίς PCA ανάλυση για τον συνδυασμό χαρακτηριστικών υφής από τους αλγόριθμους SF, SGLDM, GLDS και χωρίς PCA ανάλυση για τον συνδυασμό χαρακτηριστικών υφής από τους αλγόριθμους SF, SGLDM. Μετά την εφαρμογή του αλγόριθμου γάμμα έχουμε CC=69,5% χωρίς PCA ανάλυση για τον συνδυασμό χαρακτηριστικών υφής από τους αλγόριθμους SF, SGLDM, GLDS και χωρίς PCA ανάλυση για τον συνδυασμό χαρακτηριστικών υφής από τους αλγόριθμους SF, GLDS. Τέλος

εφαρμόζοντας τον αλγόριθμο SVM πριν την διόρθωση των εικόνων είχαμε CC=78% χωρίς PCA ανάλυση για το συνδυασμό χαρακτηριστικών υφής από τους αλγόριθμους SF, GLDS. Μετά τη διόρθωση των εικόνων είχαμε CC=78,5% χωρίς PCA ανάλυση για τον συνδυασμό χαρακτηριστικών υφής από τους αλγόριθμους SF, GLDS που είναι και το μεγαλύτερο ποσοστό διαχωρισιμότητας των φυσιολογικών και παθολογικών περιοχών με βάση τα χαρακτηριστικά των εικόνων ενδομητρίου.

Τελειώνοντας τη συζήτησή μας αναφέρουμε πιο κάτω το προτεινόμενο πρωτόκολλο λαπαροσκοπικής / υστεροσκοπικής εξέτασης το οποίο μπορεί να επεκταθεί και να εφαρμοστεί και σε άλλες ενδοσκοπικές εξετάσεις.

8.7 ΠΡΟΤΕΙΝΟΜΕΝΟ ΠΡΩΤΟΚΟΛΛΟ ΚΑΝΟΝΙΚΟΠΟΙΗΣΗΣ

Έχοντας υλοποιήσει τα πειράματα που αναφέρουμε στο κεφάλαιο 4 παραθέτουμε το πιο κάτω πρωτόκολλο βαθμονόμησης ενδοσκοπικής εξέτασης. Παρουσιάζουμε τα βήματα που πρέπει να ακολουθήσουν οι εμπλεκόμενοι για τη μείωση της διακύμανσης της μεθόδου:

- Βαθμονόμηση της κάμερας ακολουθώντας τις οδηγίες του κατασκευαστή (white balance).
- Καταγραφή των 23 χρωμάτων που περιέχονται στην παλέτα και τη δημιουργία των αντίστοιχων χρωμάτων, ψηφιακά, βάσει του κατασκευαστή.
- Υπολογισμός του συντελεστή γ για τις τρεις χρωματικές συνιστώσες αντίστοιχα, καθώς και των πινάκων A και k λύνοντας τις εξισώσεις 1 και 2.
- Υλοποίηση ενδοσκοπικής εξέτασης, αναγνωρίζοντας την ανατομία του οργάνου και καταγραφή του βίντεο και των εικόνων με τις περιοχές ενδιαφέροντος.
- Χειροκίνητη τμηματοποίηση των περιοχών ενδιαφέροντος, φυσιολογικές και παθολογικές περιοχές.
- Εφαρμογή του αλγόριθμου γάμμα και οπτική σύγκριση με τις αρχικές εικόνες και περιοχές ενδιαφέροντος.
- 7. Μετατροπή των RGB εικόνων σε YCrCb συστήματα απεικόνισης.
- Υπολογισμός των χαρακτηριστικών υφής με τους αλγόριθμους SF, SGLDM και GLDS των περιοχών ενδιαφέροντος του βήματος 7.
- Έλεγχος και σύγκριση των χαρακτηριστικών υφής του βήματος 8 και έλεγχος για στατιστική διαφορά μεταξύ των φυσιολογικών και παθολογικών περιοχών.

- Εφαρμογή στο αυτόματο σύστημα αναγνώρισης παθολογίας (CAD system) για έλεγχο των ύποπτων περιοχών ενδιαφέροντος, χρησιμοποιώντας το μοντέλο SF, GLDS και SVM.
- Έλεγχος των περιοχών ενδιαφέροντος του βήματος 6 με οπτική παρακολούθηση και σύγκριση με την ποσοτική ανάλυση των βημάτων 9 και 10.
- 12. Επανάληψη των βημάτων 3 μέχρι και 11.

Το πιο πάνω πρωτόκολλο μπορεί να εφαρμοστεί ανεξάρτητα με το είδος της ενδοσκοπικής εξέτασης αλλά το πιο σημαντικό μπορεί να δουλέψει με διαφορετικά ιατρικά μηχανήματα όπως κάμερες, λαπαροσκόπια, πηγές φωτός κτλ. Η χρησιμοποίηση της παλέτας χρωμάτων μειώνει τη διακύμανση των διαφορετικών ιατρικών μηχανημάτων. Επίσης ο αλγόριθμος γάμμα βοηθά στη μείωση της διακύμανσης των περιοχών ενδιαφέροντος που παρουσιάζεται με τη συλλογή εικόνων από διαφορετικές συνθήκες λήψης. Αυτό μας εγγυάται την ποιότητα των χαρακτηριστικών υφής από τις περιοχές ενδιαφέροντος.

8.8 ΑΝΑΦΟΡΕΣ

- [111] Cohen R.V., Schiavon C.A., Pinheiro Filho J.C., Correa J.L., Laparoscopic bariatric surgery: new technologies, trends and perspectives. The Center for the Surgical Treatment of Morbid Obesity, 58(5):I-VIII, Hospital Sao Camilo, Sao Paulo, SP, Brazil, Sep-Oct, 2003.
- [112] Wenzl R., Lehner R., Vry U., Pateisky N., Sevelda P., Husslein P., Three-dimensional videoendoscopy: clinical use in gynaecological laparoscopy. Lancet, 344, pp. 1621–1622, 1994.
- [113] Sierra R., Bajka M., Szekely G., Evaluation of Different Pathology Generation Strategies for Surgical Training Simulators. Computer Assisted Radiology and Surgery: Proceedings of the 17th International Congress and Exhibition, pp. 376-381, June, 2003.
- [114] Fayez J.A., Vogel M.F., Comparison of different treatment methods of endometriomas by laparoscopy. Obstet. Gynecol., 78, pp. 660-665, 1991.
- [115] Shi et al., CT colonography: influence of 3D viewing and polyp candidate features on interpretation with computer-aided detection. Radiology; 239, pp. 768-776, 2006.
- [116] Plataniotis K.N., Venetsanopoulos A.N., Color Image Processing and Applications. Springer Verlag. Berlin, ISBN 3-540-66953-1, August 2000.
- [117] Sheraizin S., Sheraizin V., Endoscopy Imaging Intelligent Contrast Improvement. 27th Annual International conference of the IEEE engineering in Medicine and Biology Society, 1-4 September, Shanghai, China, pp. 6551-6554, 2005.
- [118] Isaac N.B., Thomas S.S., Pavlopoulos S., Two-dimensional shape and texture quantification.Handbook of medical imaging, Academic Press, Inc, October 2000.
- [119] Tjoa P.M., Krishnan M.S., Feature extraction for the analysis of colon status from the endoscopic images. BioMedical Engineering OnLine, Apr. 2003. <u>http://www.biomedical-</u> engineering-online.com/content/2/1/9.
- [120] Karkanis S.A., Galousi K., Maroulis D., Classification of Endoscopic Images Based on Texture Spectrum. ACAI99, Workshop on Machine Learning in Medical Applications, Chania, Greece, pp. 63-69, 5-16 July 1999.
- [121] Karkanis S.A., Iakovidis D.K., Maroulis D.E., Karras A.D., Tzivras M., Computer-aided tumor detection in endoscopic video using color wavelet features. IEEE Transactions on Information Technology in Biomedicine, 7(3), pp. 141-152, 2003.
- [122] Ilgner J., Palm C., Schutz A., Spitzer K., Westhofen M., Lehmann T., Colour Texture Analysis for Quantitative Laryngoscopy. 123, pp. 730-734, Acta Otolaryngol 2003.
- [123] Wu C.M., Chen Y.C., Hsieh K.S., Texture features for classification of ultrasonic liver images. IEEE Trans. Med. Imaging, 11, pp.141-152, 1992.
- [124] Haralick R.M., Shanmugam K., Dinstein I., Texture Features for Image Classification. IEEE Trans. on Systems, Man., and Cybernetics, vol. SMC-3, pp. 610-621, Nov. 1973.

- [125] Wenska J.S., Dryer C.R., Rosenfeld A., A comparative study of texture measures for terrain classification. IEEE Trans. Syst., Man, Cyber., SMC-6, pp. 269-285, 1976.
- [126] Neophytou M.S., Pattichis C.S., Pattichis M.S., Tanos V., Kyriacou E., Koutsouris D., Multiscale Texture Feature Variability Analysis in Endoscopy Imaging Under Different Viewing Positions. CD-ROM Proceedings of the II EFOMP Mediterranean Conference on Medical Physics, 28-30 April, Limassol, Cyprus, 6 pages, 2004.
- [127] Neophytou M.S., Pattichis C.S., Pattichis M.S., Tanos V., Kyriacou E., Koutsouris D., The Effect of Color Correction of Endoscopy Images for Quantitative Analysis in Endometrium. 27th Annual International conference of the IEEE Engineering in Medicine and Biology Society, 1-4 September, Shanghai, China, pp. 3336- 3339, 2005.
- [128] Neophytou M.S., Pattichis C.S., Pattichis M.S., Tanos V., Kyriacou E., Pavlopoulos S., Koutsouris D., Texture Analysis of the Endometrium During Hysteroscopy: Preliminary Results. 26th Annual International conference of the IEEE Engineering in Medicine and Biology Society, 1-5 September, San Francisco, California, USA, vol.2, pp. 1483-1486, 2004.
- [129] Neophytou M.S., Pattichis C.S., Pattichis M.S., Tanos V., Kyriacou E., Koutsouris D., Texture-Based Classification of Hysteroscopy Images of the Endometrium. 28th Annual International conference of the IEEE Engineering in Medicine and Biology Society, 30-3 September, New York, USA, pp. 3005-3008, 2006.
- [130] The Edmund Optics company [www.edmundoptics.com]
- [131] Haeghen Y.V., Naeyaert J.M.A.B., Lemahieu I., An Imaging System with Calibrated Color Image Acquisition for Use in Dermatology. IEEE Transactions on Medical Imaging, 19, no 7, July 2000.
- [132] Jung Y.H., Kim J.S., Hur B.S., Kang M.G., Design of Real-Time Image Enhancement Preprocessor for Cmos Image Sensor. IEEE Transactions on Consumer Electronics, 46, No 1, February 2005.
- [133] Grossberg M.D, Nayar S.K, Modeling the Space of Camera Response Functions. IEEE Transactions on Pattern Analysis and Machine Intelligence, 26, No. 10, October 2004.
- [134] The MathWorks company for software [www.mathworks.com]
- [135] Vaidyanathan P.P., Multirate Systems and filter banks. New Jersey: PTR Prentice Hall, 1993.
- [136] Petrou M., Sevilla G.P., Image Processing, Dealing with Texture. John Wiley and Sons, 2006.
- [137] Shapiro S.S. Wilk M.B., An analysis of variance test for normality (complete samples). Biometrika, 52, vol. 3 and 4, pp. 591-611, 1965.
- [138] Gibbons J.D., Nonparametric Statistical Inference. 2nd Ed., M. Dekker, 1985.
- [139] American Society for Gastrointestinal Endoscopy (ASGE) [www.asge.org]
- [140] European Society for Gynaecological Endoscopy [http://www.esge.org/]

- [141] Yokoi H., Fujino M.A., Activities for Endoscopy Information Systems Standardization in Japan. 28th Annual International conference of the IEEE engineering in Medicine and Biology Society, 30-3 September, New York, USA, pp. 5667-5670, 2006.
- [142] Scarcanski J., Gaviao W., Joao S.C.F., Diagnostic Hysteroscopy Video Summarization and Browsing. 27th Annual International conference of the IEEE engineering in Medicine and Biology Society, 1-4 September, Shanghai, China, pp. 5680- 5683, 2005.
- [143] Pitris C., Goodman A., Boppart S. A., Libus J.J., Fujimoto J.G., Brezinski M.E., High resolution imaging of gynecological neoplasms using optical coherence tomography. Obstetrics and Gynocology, 93, 135-139, January 1999.
- [144] Boppart S.A., Goodman A., Libus J., Pitris C., Jesser C., Brezinski M. E., Fujimoto J. G., High resolution imaging of endometriosis and ovarian carcinoma with optical coherence tomography: Feasibility for laparoscopic-based imaging. British Journal of Obstetrics and Gynecology, 106, 1071-7, October 1999.
- [145] Pitris C., Ramanujam N., Richards-Kortum R., Follen-Mitchell M., Thomsen S., Malpica A., Wright T., Sandison D., Multipixel fluorescence instrumentation and clinical study for the diagnosis of pre-cancer and cancer of the human cervix. Felix Rutledge Society (Gynecologic Oncology) Annual Meeting, May 31 - June 3, 1995, Houston, TEXAS.
- [146] Pitris C., Goodman A.K., Jesser C.A., Brezinksi M.E., Fujimoto J.G., High resolution imaging of Neoplastic changes in gynecological tissues using optical coherence tomography. 34th Annual Meeting of the American Society of Clinical Oncology, Los Angeles, CA, May 16-19, 1998, paper 1434.

Συμπεράσματα - Μελλοντική Έρευνα

9.1 ΣΥΜΠΕΡΑΣΜΑΤΑ

9.1.1 Δ iaqopetikes synohkes stoxeyshs

Αναλύοντας τις λαπαροσκοπικές / υστεροσκοπικές εικόνες από πειραματικό ιστό, καταλήξαμε στο συμπέρασμα ότι η απόσταση στόχευσης παίζει σημαντικό ρόλο στην ανάλυση και επεξεργασία των εικόνων. Χρησιμοποιώντας την κοιλότητα νωπού κοτόπουλου, που είναι πιο κοντά στην πραγματικότητα, εφαρμόσαμε την ενδοσκοπική μέθοδο και συλλέξαμε εικόνες από μια περιοχή ενδιαφέροντος υπό διαφορετικές συνθήκες στόχευσης. Αυτές τις εικόνες τις έχουμε αναλύσει και τις έχουμε επεξεργαστεί και συμπεράναμε βάσει των αποτελεσμάτων μας ότι υπάρχει κάποιο όριο στην απόσταση και στη γωνία σκόπευσης.

Τδιες περιοχές ενδιαφέροντος έχουν αναλυθεί από διαφορετικές αποστάσεις λήψης και η στατιστική ανάλυση έδειξε ότι σε μεγάλες αποστάσεις οι εικόνες δεν μπορούν να συγκριθούν μεταξύ τους ως προς την παθολογία που παρουσιάζουν. Αποστάσεις με διαφορά 3-5 εκατοστών είναι η ιδανική απόσταση καταγραφής και επεξεργασίας των λαπαροσκοπικών / υστεροσκοπικών εικόνων.

Εξ όσων γνωρίζουμε από τη βιβλιογραφική έρευνα δεν έχει προκύψει παρόμοια μελέτη στη χρήση πειραματικού ιστού ή στην ανάλυση εικόνων υπό διαφορετικές συνθήκες σκόπευσης.

Τα αποτελέσματα και η στατιστική ανάλυση έδειξε ότι δεν έχουμε στατιστική διαφορά στα χαρακτηριστικά υφής μεταξύ κοντινού και πανοραμικού πλάνου λήψης των εικόνων μέχρι το όριο της διαφοράς των 6 εκατοστών. Χαρακτηριστικά υφής όπως το gray scale median, το variance και η entropy έχουν ψηλότερες τιμές στο κοντινό πλάνο σε σύγκριση με τα χαρακτηριστικά υφής στο πανοραμικό πλάνο. Επίσης το contrast και το homogeneity παρουσίασαν ομοιότητες και στα δύο πλάνα λήψης.

Στην ανάλυση εικόνων από διαφορετικές γωνίες σκόπευσης πήραμε τα ίδια στατιστικά αποτελέσματα όπως και πιο πάνω. Η στατιστική ανάλυση έδειξε ότι δεν έχουμε στατιστική διαφορά μεταξύ των δύο γωνιών στόχευσης. Πιο συγκεκριμένα, το variance ήταν

ψηλότερη στη μικρή γωνία λήψης καθώς και η entropy, το contrast και το homogeneity ήταν στα ίδια επίπεδα και στις δύο γωνίες στόχευσης.

Αξίζει να σημειώσουμε ότι σε αυτό το πείραμα είχαμε κάποιο όριο στη διαφορά των δύο γωνιών λήψης. Το όριο αυτό υπολογίστηκε στις 5 μοίρες διαφοράς όπου τα στατιστικά αποτελέσματα έδειξαν στατιστική διαφορά σε μερικά χαρακτηριστικά υφής των δύο γωνιών λήψης.

Κάνοντας χρήση πραγματικού ενδομητρίου από μικρό μοσχάρι επαναλάβαμε τα ίδια πειράματα διαφορετικής απόστασης και γωνίας σκόπευσης. Τα αποτελέσματα παρουσίασαν μεγάλες ομοιότητες με τα πιο πάνω πειράματα, με τη διαφορά ότι η απόσταση και η γωνία λήψης προσομοίωναν την υστεροσκοπική επέμβαση. Μέγιστη διαφορά απόστασης ήταν τα 3 εκατοστά και η μέγιστη διαφορά γωνίας οι τρεις μοίρες. Η στατιστική ανάλυση έδειξε τη μη στατιστική διαφορά των χαρακτηριστικών υφής συμπεραίνοντας ότι δεν έχουμε κανένα πρόβλημα στις διαφορετικές συνθήκες στόχευσης λαπαροσκοπικών / υστεροσκοπικών εικόνων.

9.1.2 Πολυδιακριτή ανάλυση (Multiscale analysis)

Για την πληρότητα της έρευνάς μας, έχουμε ολοκληρώσει μια σειρά από επεξεργασία των εικόνων με τον αλγόριθμο της πολυδιακριτής ανάλυσης. Έχουμε επεξεργαστεί τις εικόνες κάτω από διαφορετικές διαστάσεις 2X2 μέχρι 10X10 και έχουμε εξαγάγει τα χαρακτηριστικά υφής σε όλες τις διαστάσεις. Επίσης έχουμε εφαρμόσει τη στατιστική ανάλυση στα χαρακτηριστικά υφής καθώς και την οπτική παρακολούθηση των εικόνων υπό διαφορετικές διαστάσεις. Παρόμοια έρευνα παρουσιάστηκε σε διάφορα διεθνή συνέδρια [147]. Τα πειράματα αυτά τα έχουμε πραγματοποιήσει και με διαφορετικές αποστάσεις και γωνίες λήψης καθώς και σε πραγματικές εικόνες ενδομητρίου. Τα αποτελέσματα έδειξαν ότι μέχρι την κλίμακα 3X3 μπορούμε να επεξεργαστούμε τις εικόνες μας, αλλά σε πιο μεγάλες κλίμακες ήταν αδύνατο να τις επεξεργαστούμε δεδομένου ότι η ενέργεια που περικλείουν οι εικόνες μας είχε καταστραφεί. Επίσης βάσει της εμπειρίας του γιατρού οι εικόνες μέχρι 3X3 κλίμακας μπορούσε να διακρίνει τον υπό εξέταση ιστό ενώ στις πιο μεγάλες κλίμακες δεν μπορούσε να διακρίνει τις λεπτομέρειες της περιοχής ενδιαφέροντος.

$9.1.3\,\text{Aagonigmos}\,\text{Kanonikohohshs}/\text{Color correction algorithm}$

Παρόλο που η χρησιμότητα του αλγόριθμου βαθμονόμησης εικόνων αναφέρεται σε πολλά βιβλία και αναφορές χρησιμοποιείται σπάνια. Σε μελέτη που έγινε στο [147] έδειξε ότι ο αλγόριθμος βαθμονόμησης που εφαρμόστηκε σε υλικό επίπεδο (hardware) είχε πολύ καλά

αποτελέσματα και στο [148] έγινε χρήση της βαθμονόμησης, στην ανάκτηση ενδοσκοπικών εικόνων βάσει του περιεχομένου τους. Στην εν λόγω έρευνα εισηγούμαστε την εφαρμογή του αλγόριθμου γάμμα (αλγόριθμος βαθμονόμησης) στις λαπαροσκοπικές / υστεροσκοπικές εικόνες για τη διόρθωσή τους. Η μέθοδος αυτή θα διευκολύνει το πρωτόκολλο συλλογής λαπαροσκοπικών / υστεροσκοπικών εικόνων.

9.1.4 Πραγματικές εικονές ενδομητριού

Έχοντας συλλέξει σε πραγματικό χρόνο πραγματικές εικόνες ενδομητρίου, φυσιολογικές και παθολογικές περιοχές ενδιαφέροντος, αρχίσαμε την ανάλυσή τους με την ίδια σειρά, δηλαδή την εξαγωγή των χαρακτηριστικών υφής των δύο κατηγοριών και τη στατιστική ανάλυσή τους. Μετά διορθώσαμε τις εικόνες με τον αλγόριθμο γάμμα και ακολουθήσαμε την ίδια μεθοδολογία. Η στατιστική ανάλυση έδειξε ότι έχουμε στατιστική διαφορά σε αρκετά χαρακτηριστικά υφής πρίν και μετά τη διόρθωση με τον αλγόριθμο γάμμα.

Ο αλγόριθμος γάμμα εφαρμόστηκε στην έρευνά μας, με τη συλλογή πραγματικών εικόνων από διαφορετικά ιατρικά μηχανήματα. Για να γίνει κατορθωτή η σύγκριση εικόνων από διαφορετικά μηχανήματα οι εικόνες διορθώθηκαν με τον αλγόριθμο γάμμα και έτσι έγινε κατορθωτό η δημιουργία ενός συστήματος ανάλυσης ενδοσκοπικών εικόνων ανεξάρτητα από τα ιατρικά μηχανήματα.

Ένας άλλος λόγος της έρευνάς μας είναι ότι στη βιβλιογραφία δεν υπάρχουν πρωτόκολλα για λαπαροσκοπική / υστεροσκοπική εξέταση. Έχουμε βρει οδηγίες για κολονοσκόπηση και γαστροσκόπηση με αναφορές μόνο στο ιατρικό μέρος της επέμβασης. Στο Ευρωπαϊκό χώρο γίνονται προσπάθειες από την European Society for Gynaecological Endoscopy (ESGE) να δημιουργήσει το ιατρικό αυτό πρωτόκολλο για την τυποποιημένη διαδικασία λαπαροσκοπικής και υστεροσκοπικής εξέτασης.

Αναλύοντας τις εικόνες και επεξεργαζόμενοι τα χαρακτηριστικά υφής παρατηρήσαμε ότι οι δύο περιοχές ενδιαφέροντος, φυσιολογικός και παθολογικός ιστός, μπορούν να διαχωριστούν αυτόματα εισάγοντας τα χαρακτηριστικά υφής στο νευρωνικό μας σύστημα με μεγάλο ποσοστό επιτυχίας. Επίσης βάσει των χαρακτηριστικών υφής εξάγουμε χρήσιμες πληροφορίες όπως αυτές παρουσιάζονται στο πιο κάτω πίνακα.

Πίνακας 56: Παρουσιάζει την περιγραφή μερικών χαρακτηριστικών υφής από φυσιολογικό και παθολογικό ιστό όπως περιγράφεται με τα χαρακτηριστικά υφής τους.

	Φυσιολογικές Εικόνες	Παθολογικές Εικόνες
Gray level	Υψηλό	Χαμηλό
Variance	Χαμηλή	Υψηλή
Contrast	Χαμηλή	Υψηλή
Homogeneity	Φυσιολογικό επίπεδο	Ελαφρώς χαμηλή
Entropy	Φυσιολογικό επίπεδο	Ελαφρώς υψηλή

Ο Πίνακας 56 παρουσιάζει με ποσοτικό τρόπο την ανάλυση των εικόνων ενδομητρίου όπως αυτά εμφανίζονται στην ανάλυση που έγινε με την εξαγωγή των χαρακτηριστικών υφής. Στις φυσιολογικές εικόνες η ένταση του γκρι παρουσιάζεται υψηλότερη από αυτή που χαρακτηρίζει τις παθολογικές εικόνες, η διακύμανση και η αντίθεση στις φυσιολογικές εικόνες παρουσιάζονται με μικρότερη τιμή από εκείνη των παθολογικών εικόνων, ενώ η homogeneity και η εντροπία ακολουθούν την ίδια κατάσταση.

9.1.5 Αλγοριωμοί Ταξινομήσης και Νευρωνικά δικτυά

Έχοντας αναλύσει τις εικόνες από πραγματικό ενδομήτριο, εξαγάγαμε τα χαρακτηριστικά υφής που περιγράφουν τις περιοχές ενδιαφέροντος. Έχουμε περιγράψει τις εικόνες βάσει αυτών των χαρακτηριστικών υφής και εφαρμόσαμε αλγόριθμους νευρωνικών δικτύων και ταξινόμησης για τον αυτόματο διαχωρισμό των περιοχών ενδιαφέροντος. Η χρήση του αλγόριθμου PNN και SVM έδειξε τη μεγάλη διαχωρισιμότητα με ποσοστό 79% των περιοχών ενδιαφέροντος, φυσιολογικού και παθολογικού ιστού.

Τα αποτελέσματα αυτά έδειξαν τη μελλοντική χρήση ανάλυσης εικόνας σε περιπτώσεις γυναικολογικού καρκίνου αλλά και σε άλλες εφαρμογές της ιατρικής όπως την ενδοσκόπηση και ανάλυση εικόνων ήπατος, μορφές καρκίνου με παρακολούθηση με χρήση ιατρικών απεικονιστικών μεθόδων.

Η έρευνά μας έδειξε ότι η επεξεργασία ιατρικής εικόνας μπορεί να παίξει σημαντικό ρόλο στην αναγνώριση παθολογικών και φυσιολογικών εικόνων ενδομητρίου και άλλων οργάνων. Αυτό θα δημιουργήσει αυτόματα συστήματα υπολογιστών τα οποία θα βοηθήσουν τον γιατρό σε πραγματικό χρόνο να δώσει μια πρώτη εκτίμηση του περιστατικού ή θα τον καθοδηγήσει στον έλεγχο με ιστοπαθολογική εξέταση υπόπτων περιοχών καρκίνου.

9.2 MEAAONTIKH EPEYNA

Με την ολοκλήρωση της έρευνάς μας έχουμε δημιουργήσει τη βάση για την ανάπτυξη και την εφαρμογή νέων καινοτόμων διεργασιών και ερευνών στο χώρο επεξεργασίας της ιατρικής εικόνας. Ένας από αυτούς τους τομείς είναι η ειδική τμηματοποίηση της περιοχής ενδιαφέροντος βάσει των πληροφοριών που περιέχονται στις εικόνες μας. Χαρακτηριστικά υφής, μορφολογικοί τελεστές, χαρακτηριστικά χρώματος, θα είναι τα εργαλεία για την αυτόματη τμηματοποίηση και διαχωρισμό των περιοχών ενδιαφέροντος όχι μόνο σε επίπεδο φυσιολογικού και παθολογικού ιστού αλλά και σε διαχωρισμό παθολογίας και ανατομίας της υπό εξέτασης περιοχής ή οργάνου. Αυτό θα έχει ως αποτέλεσμα την αναγνώριση της περιοχής ενδιαφέροντος σε πραγματικό χρόνο κατά τη διάρκεια μιας λαπαροσκοπικής / υστεροσκοπικής εξέτασης.

Εξάγοντας και αναγνωρίζοντας την περιοχή ενδιαφέροντος θα έχουμε τη δυνατότητα εξαγωγής όλων των πληροφοριών που περικλείονται στην υπό εξέταση περιοχή και ίσως αυτό μας βοηθήσει να αντιμετωπίσουμε τον γυναικολογικό καρκίνο στα πρώτα του στάδια που εκεί είναι και το κλειδί της έγκαιρης αντιμετώπισής του.

Με τη μελέτη και δημιουργία αυτής της ερευνητικής περιοχής θα παρέχετε η δυνατότητα ενσωμάτωσης του συστήματος αυτού σε ιατρικό εξοπλισμό και το ιατρικό πρωτόκολλο λαπαροσκοπικής / υστεροσκοπικής επέμβασης θα περιλάβει το μηχανισμό αυτό σαν ένα βοηθητικό εργαλείο στην αντιμετώπιση του γυναικολογικού καρκίνου.

Επίσης έχουμε δημιουργήσει τις προϋποθέσεις για την 3D ανακατασκευή λαπαροσκοπικών / υστεροσκοπικών εικόνων ή με τη χρησιμοποίηση εικόνων MRI της περιοχής ενδιαφέροντος. Όλα αυτά θα τα αναπτύξουμε αναλυτικά πιο κάτω:

9.2.1 Αυτοματή αναλύση λαπαροσκοπικού / υστεροσκοπικού binteo

Με την παρουσίαση της έρευνάς μας και με την ανάπτυξη της τεχνολογίας, νέες εφαρμογές μπορούν να υλοποιηθούν στο πεδίο της ανάλυσης της ενδοσκοπικής εικόνας. Έχοντας κατανοήσει και ξεπεράσει τα προβλήματα της μεθόδου ανάλυσης ενδοσκοπικών εικόνων, αναφέρουμε ότι στο άμεσο μέλλον θα υλοποιηθεί ένα σύστημα αυτόματης ανάλυσης λαπαροσκοπικού / υστεροσκοπικού βίντεο. Δηλαδή σε πραγματικό χρόνο, η επέμβαση θα καταγράφεται και θα αναλύονται σε κλάσματα δευτερολέπτου όλα τα frames για τυχόν ανωμαλίες που μπορεί να παρουσιάσουν τα όργανα.

Το ενδοσκοπικό βίντεο θα παρουσιάζεται στην οθόνη και θα αναλύεται, παράθυρο προς παράθυρο, όλη την επιφάνεια του ιστού που καταγράφεται. Χαρακτηριστικά υφής [147], [151], [158], ιστογράμματα χρώματος και μορφολογικοί τελεστές θα εισάγονται σε ένα

ειδικά υλοποιημένο περιβάλλον νευρωνικών δικτύων και θα υπολογίζεται με μεγάλη ακρίβεια το ποσοστό παθολογίας που παρουσιάζει το κάθε σημείο που εξετάζουμε.

Με αυτή τη διαδικασία όλες οι περιοχές του εκάστοτε οργάνου θα καταγράφονται με ακρίβεια και παράλληλα με την ιστολογική εξέταση θα έχουμε αύξηση της διαγνωστικής ακρίβειας για όλα τα περιστατικά γυναικολογικού καρκίνου.

Αυτό θα βοηθήσει το γιατρό να επιλέγει και μη φαινομενικά ύποπτες περιοχές έτσι ώστε να οδηγείται σε καλύτερη διάγνωση και θεραπεία του περιστατικού.

Τέλος οι αναλύσεις αυτές και το βίντεο θα μεταφέρονται ασύρματα και ενσύρματα σε ένα δεύτερο ειδικό γιατρό για μια δεύτερη γνώμη με στόχο την πιο αξιόπιστη ανάλυση του περιστατικού και της ιδιομορφίας του ιστού. Επίσης έξυπνες βάσεις δεδομένων με έξυπνα συστήματα εξόρυξης δεδομένων μπορούν σε πραγματικό χρόνο να αναλύσουν και να συγκρίνουν παρόμοια περιστατικά για να εξάγουν συμπεράσματα για το γυναικολογικό καρκίνο δημιουργώντας έτσι ένα δίκτυο μεταφοράς και ανάλυσης παρόμοιων περιστατικών σε όλο τον κόσμο.

9.2.2 Aytomath Tmhmatohoihsh Jahaposkohikon / ysteposkohikon eikonon

Το χρώμα θεωρείται βασικό στοιχείο στην επεξεργασία εικόνας, ανεξάρτητα από το αν η ανάλυση επιτυγχάνεται αυτόματα ή χειροκίνητα. Στην περίπτωση αυτόματης ανάλυσης το χρώμα αποτελεί ένα χαρακτηριστικό που συντελεί σημαντικά στη διάκριση των αντικειμένων από το φόντο. Στη χειροκίνητη επεξεργασία το χρώμα παίζει σημαντικό ρόλο στο ανθρώπινο μάτι, που μπορεί να διακρίνει χιλιάδες χρωματικές αποχρώσεις και εντάσεις αλλά μόνο δύο περίπου χιλιάδες αποχρώσεις του γκρι.

Σε μερικές περιπτώσεις που το φως είναι άχρωμο, το μόνο χαρακτηριστικό του είναι η ένταση. Ο όρος 'επίπεδο του γκρι' αναφέρεται σε ένα μέτρο της έντασης που κυμαίνεται από το μαύρο μέχρι το άσπρο. Το έγχρωμο φως αντιστοιχεί σε μήκη κύματος 400-700 nm, περίπου στο ηλεκτρομαγνητικό φάσμα. Το περιγράφουν τρεις βασικές ποσότητες, η ακτινοβολία, η φωτεινότητα και η λαμπρότητα. Η ακτινοβολία είναι η συνολική ποσότητα ενέργειας που εκπέμπεται από την πηγή φωτός (μονάδα μέτρησης Watt), η φωτεινότητα μετριέται σε lumens (lm) και δίνει το μέτρο της ποσότητας της ενέργειας που αντιλαμβάνεται ένας παρατηρητής από μια πηγή φωτός. Τέλος η λαμπρότητα είναι ένα υποκειμενικό χαρακτηριστικό που είναι ουσιαστικά αδύνατο να μετρηθεί και σχετίζεται με το πώς γίνεται αντιληπτή η ένταση [150], [156].

Στην τμηματοποίηση το χρώμα παίζει σημαντικό ρόλο στο διαχωρισμό διαφορετικών περιοχών ενδιαφέροντος και μπορεί να χρησιμοποιηθεί με πολύ καλά αποτελέσματα.

Ένα άλλο χαρακτηριστικό που μπορεί να εφαρμοστεί στην αυτόματη τμηματοποίηση περιοχών ενδιαφέροντος είναι τα χαρακτηριστικά υφής. Σε αυτή την έρευνα έχουμε εφαρμόσει αλγόριθμους χαρακτηριστικών υφής και έχουμε διαχωρίσει διαφορετικές περιοχές ενδιαφέροντος. Τα όρια που έχουμε εξαγάγει από περιοχές χαρακτηρισμένες με χειροκίνητο τρόπο (γιατρός χρήστης) μπορούν να βοηθήσουν την αυτόματη τμηματοποίηση μη αναγνωρισμένων περιοχών ενδιαφέροντος.

Ο συνδυασμός χρώματος και χαρακτηριστικών υφής μπορούν να διαχωρίσουν ύποπτες περιοχές γυναικολογικού καρκίνου καθώς και να αποτυπώσουν ένα ενδεικτικό όριο επικινδυνότητας του περιστατικού πρίν αυτό παρουσιάσει παθολογία.

9.2.33Δ μοντελό οργανών που χρησιμοποιούν την ενδοσκοπική μεθόδο ως μεθόδο διαγνώσης και θεραπείας

Η ανάπτυξη της τεχνολογίας, μετά την προτεινόμενη έρευνά μας, θα οδηγήσει τους επιστήμονες στην εφαρμογή νέων ερευνητικών πεδίων όπως είναι η τρισδιάστατη απεικόνιση των οργάνων που εξετάζουμε. Ήδη, πολλά κέντρα έχουν αναπτύξει την εικονική κολονοσκόπηση με ενθαρρυντικά αποτελέσματα. Πιο αναλυτικά θα περιγράψουμε τη μέθοδο τρισδιάστατης απεικόνισης οργάνων που εξετάζονται με τη μέθοδο της κολονοσκόπησης (Virtual Colonoscopy). Η έρευνα αυτή θα έχει ως στόχο την τρισδιάστατη απεικόνιση ύποπτων περιοχών ιστού καθώς και την αυτόματη τρισδιάστατη τμηματοποίησή του.

Η ανάλυση και η σύνθεση της υφής είναι ένα σημαντικό πεδίο στον τομέα της παρατήρησης με τη χρήση των υπολογιστών. Από το τέλος της δεκαετίας του '60 έχουν αναπτυχθεί πολλές τεχνικές για την ανάλυση και σύνθεση δισδιάστατης υφής στις δισδιάστατες εικόνες. Η δισδιάστατη αυτή ανάλυση χρησιμοποιείται για να προσομοιώσει την τρισδιάστατη ανάλυση υφής. Παρόλα αυτά, μια τέτοια προσέγγιση έχει δύο σημαντικά μειονεκτήματα, την ασυνέχεια της υφής και τη διαστρέβλωση της υφής σε περιπτώσεις σύνθετων αντικείμενων. Μια λύση σε αυτά τα μειονεκτήματα μπορεί να δοθεί με τη χρήση μοντελοποίησης της υφής. Φυσικά και με αυτή τη μέθοδο είναι αδύνατη η απουσία του θορύβου. Οι περισσότερες από τις τεχνικές που χρησιμοποιούνται για την ανάλυση της υφής στις τρισδιάστατες ιατρικές εικόνες, όπως το CT και το MRI, είναι βασισμένες στα δισδιάστατη εικόνα), και στη συνέχεια στην επαναδημιουργία του αντικειμένου [159], [160]. Όμως και αυτές οι τεχνικές παρουσιάζουν αδυναμία στο να μας δώσουν την πλήρη πληροφορία για το αντικείμενο που εξετάζουμε.

Όπως είχαμε προαναφέρει, οι διάφορες τεχνικές για την ανάλυση και σύνθεση της υφής άρχισαν να αναπτύσσονται προς το τέλος της δεκαετίας του 60. Η σύνθεση και η ανάλυση της υφής είναι πολύ κοντινές έννοιες και πολλές τεχνικές που αναπτύχθηκαν αφορούν και τους 2 τομείς. Τέτοιες τεχνικές είναι οι εξής Markov random fields [161], [162], grey-level co-occurrence matrices [147], [163], auto-regression modelling [150] and fractal modelling. Δυστυχώς, σε τρισδιάστατο επίπεδο δεν υπάρχει η ίδια σχέση μεταξύ των δύο αυτών περιοχών. Αυτό οφείλεται κατά ένα μεγάλο ποσοστό στη δυσκολία που υπάρχει στη λήψη των ογκομετρικών στοιχείων από τον πραγματικό κόσμο. Η σύνθεση των ογκομετρικών δεδομένων έχει καθοδηγηθεί κυρίως από τα εμπειρικά αποτελέσματα και έχει αξιολογηθεί από την οπτική παρατήρηση.

Γενικά θα λέγαμε ότι, η τρισδιάστατη ανάλυση υφής βασίζεται στη συνέχεια της δισδιάστατης ανάλυσης. Αυτό οφείλεται κυρίως στο χαμηλό υπολογιστικό κόστος που έχει η τεχνική αυτή, σε σχέση με άλλες προσεγγίσεις, το οποίο την καθιστά την καταλληλότερη από τις εφαρμογές σε πραγματικό χρόνο. Ωστόσο, η τεχνική αυτή έχει διάφορα μειονεκτήματα. Αυτά μπορεί να είναι η παραμόρφωση της υφής, η έλλειψη συνέχειας στην παρατήρηση και η έλλειψη των τρισδιάστατων δειγμάτων. Ακόμη, η αντιστοίχηση της υφής, μπορεί μόνο να χρησιμοποιηθεί για τη σύνθεση και δεν υπάρχει καμμιά άμεση σχέση με την ανάλυση της τρισδιάστατης υφής.

Η στερεά σύσταση είναι μια ιδανική προσέγγιση, δεδομένου ότι έχουμε ασχοληθεί αρκετά με τη σύνθεση πολύπλοκων αντικειμένων ή την ανάλυση της τρισδιάστατης υφής. Σε αυτήν τη περίπτωση η υφή ορίζεται στο τρισδιάστατο επίπεδο. Η υφή αντιπροσωπεύει έναν όγκο από τον οποίο χαράσσεται ένα αντικείμενο. Αν και η προσέγγιση αυτή δεν έχει προβλήματα, υπάρχει μια αυξημένη πολυπλοκότητα στην σύνθεση της υφής. Γενικά, οι τρισδιάστατες ιδιότητες εξάγονται από τα τρισδιάστατα δεδομένα και χρησιμοποιούνται ως παράμετροι για τη σύνθεση τέτοιας υφής.

Με βάση κάποιες εμπειρικές μεθόδους, η κύρια δυσκολία είναι να χρησιμοποιηθούν οι κατάλληλες παράμετροι προκειμένου να έχουμε το επιθυμητό αποτέλεσμα. Για να λυθεί το πρόβλημα της επιλογής των παραμέτρων, έχουν αναπτυχθεί κάποιες αναλυτικές προσεγγίσεις. Το μοντέλο που αναπτύχθηκε από τους Ghazanfarpour και Dischler αποτελείται από τη λήψη μιας ή περισσότερων 2D slices της υφής και απόσπαση χαρακτηριστικών από αυτά τα δείγματα, χρησιμοποιώντας μοντέλο δισδιάστατης ανάλυσης για την επιλογή αυτών των παραμέτρων

Μια τέτοια προσέγγιση συσχετίζεται άμεσα με τα ιατρικά τρισδιάστατα δεδομένα όπως το MRI (magnetic resonance imaging) και το CT (computed tomography) στα οποία η εικόνα αποτελείται από ένα σύνολο 2D φετών. Μια άλλη προσέγγιση είναι βασισμένη στην πυραμιδική ανάλυση. Οι προσεγγίσεις οι οποίες είναι βασισμένες στη φυσική προσομοίωση έχουν μόνο μια περιορισμένη θεωρητική ανάλυση. Η επιστημονική γνώση χρησιμοποιείται για να προσομοιώσει τις φυσικές ή βιολογικές διαδικασίες.

Παρόμοια με τη σύνθεση της συμπαγούς υφής, είναι η ανάλυση τέτοιου είδους δεδομένων. Στην ιατρική απεικόνιση, οι περισσότερες τεχνικές που αφορούν τρισδιάστατες εικόνες, χρησιμοποιούν τη δισδιάστατη τμηματοποίηση του δείγματος και την ανάλυση των επιμέρους κομματιών. Στη συνέχεια το αρχικό μας αντικείμενο ανασχηματίζεται από τα κομμάτια τα οποία έχουμε εξετάσει. Παρόλα αυτά μια τέτοια προσέγγιση δεν είναι ικανοποιητική δεδομένου ένα μεγάλο μέρος των δεδομένων κατά μήκος της αξονικής τομής δεν λαμβάνεται υπόψη. Μόνο μερικές τεχνικές που χρησιμοποιούν όλες τις τρισδιάστατες πληροφορίες υπάρχουν στη θεωρία και μερικές από αυτές περιγράφονται στη συνέχεια.

9.2.4 ΕΦΑΡΜΟΓΗ ΤΟΥ ΣΥΣΤΗΜΑΤΟΣ ΣΕ ΔΙΑΦΟΡΕΤΙΚΑ ΟΡΓΑΝΑ

Η ενδοσκοπική μέθοδος λόγω της φύσης της επέμβασης έγινε αρκετά δημοφιλής σε πολλά περιστατικά. Ο χρόνος ανάρρωσης και οι ελάχιστες επιπλοκές οδήγησαν ένα μεγάλο ποσοστό των ασθενών στην προτίμηση της ενδοσκοπικής μεθόδου. Κολονοσκοπήσεις, γαστροενδοσκοπήσεις, αθροσκοπήσεις και λαπαροσκοπήσεις ύπατος και σπλήνας είναι μερικές από τις επεμβάσεις που γίνονται σήμερα με μεγάλη επιτυχία.

Τα πλεονεκτήματα της ενδοσκόπησης είναι η γρήγορη ανάρρωση, οι ελάχιστες επιπλοκές, ο χρόνος της επέμβασης, η αμεσότητα παρακολούθησης των οργάνων και του προβλήματος καθώς και το μικρότερο κόστος εφαρμογής της.

Κοινό σημείο όλων αυτών των επεμβάσεων είναι η χρησιμοποίηση της ίδιας κοινής ιατρικής κάμερας. Με αυτό το δεδομένο η χρήση της έρευνάς μας σε ανάλυση και διάγνωση και άλλων μορφών καρκίνου ή άλλης παθολογίας σε διαφορετικά όργανα εκτός του γυναικείου αναπαραγωγικού συστήματος θα είναι εφικτή.

Η ανάλυση εικόνων από το ήπαρ του ασθενή και εξαγωγή συμπερασμάτων για την παθολογία που παρουσιάζει είναι ένα παράδειγμα ανάλυσης εικόνων από διαφορετικό όργανο με την ίδια μέθοδο ενδοσκόπησης.

Επίσης η ανάλυση και αναγνώριση ύποπτων κονδυλωμάτων κατά τη διάρκεια μιας κολονοσκοπικής εξέτασης θα έδινε στους γιατρούς ένα δυνατό εργαλείο στην αναγνώριση και αντιμετώπιση του καρκίνου του παχέως εντέρου.

Επιπρόσθετα με την ανάλυση αθροσκοπικών εικόνων μπορούμε να αναλύσουμε το μέγεθος της ζημιάς που παρουσιάζεται στην περιοχή εξέτασης με έξυπνους αλγόριθμους ανάλυσης ακμών και της εφαρμογής της τμηματοποίησης της άρθρωσης που παρατηρούμε. Αυτό θα δώσει στον ορθοπεδικό γιατρό τη δυνατότητα καλύτερης κατανόησης του προβλήματος καθώς επίσης και την αύξηση της συνεργασίας με τα ενδιαφερόμενα μέλη στην ανταλλαγή απόψεων στο ίδιο πεδίο που εξετάζουμε. Αυτό θα γίνει εφικτό με τη χρήση της τηλεϊατρικής και της αποστολής του βίντεο και της ανάλυσης που εφαρμόστηκε σε πραγματικό χρόνο, σε άλλους ειδικούς γιατρούς για την καλύτερη αντιμετώπιση του περιστατικού.

Τέλος, θα θέλαμε να αναφέρουμε ότι η παρούσα εργασία θα βοηθήσει τον γιατρό στην υποστήριξη διάγνωσης δύσκολων περιπτώσεων γυναικολογικού καρκίνου καθώς και εφαρμογή του προτεινόμενου συστήματος και σε άλλα όργανα. Το ιατρικό πρωτόκολλο που έχουμε δημιουργήσει θα καθοδηγεί τον γιατρό κατά την διάρκεια μιας ενδοσκοπικής εξέτασης θα περιορίσει κατά πολύ την διακύμανση που υπάρχει μεταξύ διαφορετικών ιατρικών τεχνικών και θα μπορέσει να δημιουργήσει ένα ευρύτερο δίκτυο συνεργασίας μεταξύ των ιατρικών κέντρων στον πόλεμο κατά του καρκίνου.

9.7 ANAPOPES

- [147] Sheraizin S., Sheraizin V., Endoscopy Imaging Intelligent Contrast Improvement. 27th Annual International conference of the IEEE engineering in Medicine and Biology Society, 1-4 September, Shanghai, China, pp. 6551-6554, 2005.
- [148] Scarcanski J., Gaviao W., Joao S.C.F., Diagnostic Hysteroscopy Video Summarization and Browsing. 27th Annual International conference of the IEEE engineering in Medicine and Biology Society, 1-4 September, Shanghai, China, pp. 5680- 5683, 2005.
- [149] Haralick R.M, Shanmugam K., Dinstein I., Textural features for image classification. IEEE Transaction on System, Man and Cybernetic, vol. SMC-3, no. 6, pp. 610-621, 1973.
- [150] Medioni G., Yasumoto Y., A note on using the fractal dimension for segmentation. IEEE Computer Vision workshop, vol. Annapolis, pp. 694-702, 1978.
- [151] Kovalev V., Petrou M., Texture Analysis in Three Dimensions as a Cue to Medical Diagnosis. pp. 231-247, Academic Press, Inc. Orlando, FL, USA, 2000.
- [152] Ghazanfarpour D., Dischler J.M., Spectral analysis for the automatic 3-d texture generation. Computer F9 Graphics, vol. 19, no. 3, pp. 413-22, 1995.
- [153] Hirota K., Tanoue Y., Kaneko T., Generation of crack patterns with a physical model. The Visual Computer, vol. 14, no. 3, pp. 126-37, 1998.
- [154] Dischler J.M., Ghazanfarpour D., A survey of 3d texturing. Computer & Graphics, vol. 25, pp. 135-51, 2001.
- [155] Ghazanfarpour D., Dischler J.M., Generation of 3d texture using multiple 2d views. Computer Graphic Forum (Eurographics 96), vol. 15, no. 3, pp. 311-23, 1996.
- [156] Lang Z., Scarberry R.E., Zhang Z., Shao W., Sun X., A texture-based direct 3d segmentation system for confocal scanning fluorescence microscopic images. Proceeding of the 23 Southeastern Symposium on System Theory. IEEE Comput. Soc. Press, Los Alamitos, CA, USA, pp. 472-6, 1991.
- [157] Laws K.I., Texture Image Segmentation. Ph.D. thesis, Department of Engineering, USC, 1980.
- [158] Laws K.I., Rapid texture identification. Image processing for missile guidance:SPIE, vol. 238, pp. 376-380, 1980.
- [159] Kovalev V.A., Petrou M., Bondar Y.S., Texture anisotropy in 3-d images. IEEE Transactions on Image Processing, vol. 8, no. 3, pp. 346-60, 1999.
- [160] Zucker S.W., Hummel R.A., A 3d edge operator. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 3, no. 324-31, 1981.

- [161] Cross G.R. and Jain A.K., Markov random field texture models. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 5, pp. 25-39, 1983.
- [162] Chellappa R., Chatterjee S., and Bagdazian R., Texture synthesis and compression using gaussian-markow random field models. Smc, vol. SMC-15, no. 2, pp. 298-303, 1985.
- [163] Lohmann G., Analysis and synthesis of textures: a cooccurrence-based approach. Computer f9 Graphics, vol. 19, no. 1, pp. 29-36, 1995.
- [164] McCormick B.H. and Jayaramamurthy S.N., **Time series model for texture synthesis**. International Journal of Computer and Information Sciences, vol. 3, no. 4, pp. 329-343, 1974.
- [165] Deguy S., Debain C., Benassi A., Classification of texture images using multi-scale statistical estimators of fractal parameters. Ilth British Machine Vison Conference, vol. 1, pp. 192-201, 2000.

<u>Παράρτημα Α</u>

Ευρετήριο Σχημάτων

Σχήμα 1: Έσω γεννητικά όργανα γυναίκας σε αναπαραγωγική ηλικία, παρουσίαση τοι
αυλού του κόλπου, της μήτρας και των ωαγωγών, στη δεξιά πλευρά η ωοθήκη έχει κοπε
σε μετωπιαίο επίπεδο και το περιτόναιο έχει αφαιρεθεί από το μεσοσαλπίγγιο από πίσα
[1]
Σχήμα 2: Γυναικεία έξω γεννητικά όργανα από κάτω [1]
Σχήμα 3: Μικροφωτογραφία ωοθήκης, που δείχνει την πύλη (Π), το μυελό (Μ), και το
φλοιό (Φ). Ο σχηματισμός των γαμετών και η ωρίμανσή τους λαμβάνει χώρα στο φλοιό
Στη διαδικασία αυτή οφείλεται η παρουσίαση των παρατηρούμενων κυστικών χωρών
[3]
Σχήμα 4: Μικροφωτογραφία ενός πολύστιβου πρωτογενούς ωοθυλακίου. Τα κοκκιώδη
κύτταρα (Κ) έχουν διαιρεθεί και σχηματίζουν ένα χιτώνα πάχους 3-5 κυττάρων
Ανάμεσα στο ωοκύτταρο (Ω) και τα κοκκιώδη κύτταρα είναι εμφανής η ρο
χρωματισμένη διαφανής ζώνη (ΔΖ). β) Η περαιτέρω ωρίμανση σε δευτερογενέ
ωοθυλάκιο λαμβάνει χώρα με τη συμπύκνωση των στρωματικών κυττάρων γύρω από το
ωοθυλάκιο, ώστε να σχηματίσουν μια εσωτερική στιβάδα από στρογγυλά κύτταρα (έσα
θήκη, ΕσΘ) και μια εξωτερική στιβάδα με μικρότερα ατρακτοειδή κύτταρα (έξω θήκη
ΕξΘ) [3]
Σχήμα 5: α) Ωριμο τριτιγενές ωοθυλάκιο. Παρατηρήστε το άντρο (Α), το έκκεντρο
τοποθετημένο ωοκύτταρο (Ω) και το ωοφόρο λοφίδιο (ΩΛ) των κοκκιωδών κυττάρων
γύρω από το ωοκύτταρο. β) Μικροφωτογραφία του ωοκυττάρου (Ω), του ωοφόροι
λοφιδίου (ΩΛ) και της στιβάδας των κοκκιωδών κυττάρων (ΚΚ) σε μεγαλύτερι
μεγέθυνση. Η έσω θήκη (ΕσΘ) φέρει πλούσια αγγείωση [3]
Σχήμα 6: Τομή μήτρας γυναίκας 35 ετών που δείχνει τον πυθμένα (Π), το σώμα (Σ) κα
τον τράχηλο (Τρ). Παρατηρήστε την ενδομήτρια κοιλότητα (ΕΜΚ), τον ενδοτραχηλικό
αυλό (ΕΤΑ) και τον εξωτράχηλο (Εξτρ). Ο λείος μυς του σώματος της μήτρας φέρει ένα
μικρό ογκίδιο, ένα λειομύωμα (Λ) [2]40
Σχήμα 7: Μήτρα-κόλπος φυσιολογικές γωνίες μεταξύ κόλπου, τραχήλου και σώματος
της μήτρας σε σχηματική μέση τομή-άποψη από πλάγια. *= Επιμήκης άξονας τοι
κόλπου, **= Επιμήκης άξονας του τραχήλου της μήτρας, ***= Επιμήκης άξονας τοι
σώματος της μήτρας [1]41

Σχήμα 8: Μ	Ιήτρα-Κόλπος γυναίκας σε αναπαραγωγική ηλικία. Μέση οβελιαία τομή
ώστε να πα	ρουσιαστεί η κοιλότητα της μήτρας από πλάγια [1]42
Σχήμα 9:	Γυναικεία έσω γεννητικά όργανα από πίσω [1]. *= Κλινικά: κύριος
σύνδεσμος,	**= Κλινικά: ιερό-μητρικός σύνδεσμος45
Σχήμα 10:	Πύελος της γυναίκας, μέση τομή, το έντερο έχει αφαιρεθεί εκτός από
υπολείμματ	α του σιγμοειδούς και του ορθού, από πλάγια (δεξιά). *= Κλινικά:
κυστεοκολε	ϊκό διάστημα, **= Ιερομητρικός σύνδεσμος, ***= Χώρος του Douglas
(Δουγλάσει	ος) [1]
Σχήμα 11:	Εγχειρητικό παρασκεύασμα ολικής υστεροσκομίας μετά των εξαρτημάτων
(αδενοκαρκ	ίνωμα δεξιάς ωοθήκης) και επιπλεκτομία [2]
Σχήμα 12:	Χαρακτηριστική κυτταρολογική εικόνα HGSIL (High Grade Squamous
Interaepithe	lial Lesion) [2]
Σχήμα 13:	Διηθητικό καρκίνωμα αιδοίου [1]54
Σχήμα 14:	Η εξέλιξη της υστεροσκόπησης (S. Duplay, S. Clado, 1898)
Σχήμα 15:	Μηχανήματα διαγνωστικής και εγχειρητικής λαπαροσκόπησης 59
Σχήμα 16:	Μηχανήματα λαπαροσκόπησης60
Σχήμα 17:	Λαπαροσκοπική εξέταση, κεφάλι κάμερας, χειρουργικά εργαλεία62
Σχήμα 18:	Ολοκληρωμένος σταθμός λαπαροσκόπησης64
Σχήμα 19:	Υστεροσκοπική εξέταση και τα όργανα προς παρακολούθηση της
ενδομητρια	κής κοιλότητας
Σχήμα 20:	Υπέρηχος πιθανού πολύποδα στο ενδομήτριο στα σημεία Χ65
Σχήμα 21:	Ο ίδιος πολύποδας όπως φαίνεται στην υστεροσκόπηση
Σχήμα 22:	Παρουσιάζει την ίδια παθολογική περιοχή ενδομητρίου με τρεις
διαφορετικά	ούς τρόπους απεικόνισης. Με χρήση υπερήχων, MRI και με υστεροσκόπηση.
Η εικόνα (γ	rapousiáζει άμεσα το πρόβλημα στο γιατρό και θεωρείται το μέλλον για
την αντιμετ	ώπιση παρόμοιων περιστατικών67
Σχήμα 23:	Μηχάνημα υστεροσκόπησης. (α) Ολόκληρο το σύστημα υστεροσκόπησης
και (β) απει	κόνιση της κάμερας, την πηγή φωτός και το ρυθμιστή αερίων ή υγρών 68
Σχήμα 24:	Αναδιπλούμενα εργαλεία ενδοσκόπησης
Σχήμα 25:	Εργαλεία μικροχειρουργικής καθώς και ένα τηλεσκόπιο με το εξωτερικό
περίβλημα.	
Σχήμα 26:	Μηχανήματα (α)-(β) κολποσκόπησης ιατρείου και (γ) υστεροσκόπησης
ιατρείου.	

Σχήμα 27:	Παρουσίαση διαδικασίας εξαγωγής συμπεράσματος διάγνωσης με τη χρήση
του συστήμ	ατος
Σχήμα 28:	Αρχιτεκτονική του συστήματος δικτύου τηλεσυνεργασίας
Σχήμα 29:	Εισαγωγή κωδικού μυστικού αριθμού
Σχήμα 30:	Είσοδος νέου ασθενή στο σύστημα
Σχήμα 31:	Εισαγωγή νέου ασθενή στη βάση δεδομένων με την ταυτότητά του
Σχήμα 32:	Παρουσίαση της κεντρικής σελίδας ασθενή με όλες τις εξετάσεις του 86
Σχήμα 33:	Επιλογή εισαγωγής εικόνας στο σύστημα
Σχήμα 34:	Επιτυχής εισαγωγή εικόνας
Σχήμα 35:	Επιλογή διαφορετικής εικόνας μικροσκοπικής εξέτασης
Σχήμα 36:	Όλες οι εξετάσεις του ασθενή και επιλογή αλλαγής ή διαγραφής
Σχήμα 37:	Επιλογή μεγέθυνσης μικροσκοπικής εικόνας
Σχήμα 38:	Εισαγωγή βίντεο – αποθήκευση παγωμένης εικόνας και χαρακτηριστικών
υφής.	
Σχήμα 39:	Επιλογή βίντεο ενδοσκοπικής επέμβασης91
Σχήμα 40:	Χαρακτηριστικά υφής τριών αλγορίθμων από την περιοχή ενδιαφέροντος.91
Σχήμα 41:	Λίστα όλων των εξετάσεων – εικόνων του ασθενή92
Σχήμα 43:	Παλέτα χρωμάτων με γνωστές τιμές χρωματικών συνιστωσών
Σχήμα 44:	Εικόνες από πειραματικό ιστό, νωπού κοτόπουλου. Παρουσιάζεται η ίδια
εικόνα λήψ	ης, όπου στο λευκό τετραγωνικό περίγραμμα παρουσιάζεται η ίδια περιοχή
ενδιαφέρον	τος, (a) περιοχή ενδιαφέροντος σε κοντινό πλάνο 2,7 cm και (β) περιοχή
ενδιαφέρον	τος σε μακρινό πλάνο 4 cm104
Σχήμα 45:	Εικόνες από πειραματικό ιστό, νωπού κοτόπουλου. Παρουσιάζεται η ίδια
περιοχή ενά	διαφέροντος, (α) περιοχή ενδιαφέροντος σε πανοραμικό πλάνο, 8 cm, (β)
περιοχή ενδ	διαφέροντος σε κοντινό πλάνο 3 cm, (γ) και (δ) περιοχή ενδιαφέροντος υπό
διαφορετικέ	ές διαδοχικές γωνίες λήψης με 3 μοίρες διαφορά αντίστοιχα105
Σχήμα 46:	Εικόνες από πειραματικό ιστό με διαφορετικές συνθήκες λήψης. (α)
πανοραμικά	ο πλάνο, (β) κοντινό πλάνο, (γ) γωνία 1, και (δ) γωνία 2
Σχήμα 47:	Οι εικόνες (α) και (β) παρουσιάζουν φυσιολογική και παθολογική περιοχή
του ενδομη	τρίου και οι εικόνες (γ) και (δ) παρουσιάζουν τις ίδιες περιοχές μετά την
εφαρμογή τ	ου αλγορίθμου γάμμα107
Σχήμα 48:	Υστεροσκοπική εικόνα ενδομητρίου. Η περιοχή (α) παρουσιάζει την
φυσιολογικ	ή περιοχή ενδιαφέροντος (β) παρουσιάζει την παθολογική περιοχή
ενδιαφέρον	τος

- Σχήμα 51: Παγωμένη εικόνα ενδομητρίου και μια ύποπτη περιοχή παθολογίας (64X64 pixels).

- **Σχήμα 55:** Σύνολο όλων των αποστάσεων σε εικόνα μεγέθους 4x4 για d=1 και $\theta = 0^0$
- Σχήμα 56: Πίνακες αλγορίθμου SGLDM για εικόνα 4x4 και απόσταση d=1......128
 Σχήμα 59: Πολυδιακριτή ανάλυση εικόνας. Πάνω αριστερά παρουσιάζεται η αρχική εικόνα και ακολουθούν οι εικόνες με διαφορετική ανάλυση 1x1 μέχρι 5x5. Στη δεύτερη

σειρά παρουσιάζουμε τις εικόνες με διαφορετική ανάλυση 6x6 μέχρι 10x10. 156 Σχήμα 60: Φίλτρα 2X2 μέχρι 5X5, για την πολυδιακριτή ανάλυση λαπαροσκοπικών /

- Σχήμα 66: Περιοχές ενδιαφέροντος ζωικού ενδομητρίου, σε κοντινό, (2 cm) και πανοραμικό, (5 cm) πλάνο με τα ιστογράμματα των 3 χρωματικών συνιστωσών αντίστοιχα.

- Σχήμα 73: (α), (γ) αρχικές εικόνες (κοντινό πλάνο) υστεροσκοπικής εξέτασης υπό πραγματικές συνθήκες, (β), (δ) ίδιες εικόνες μετά την εφαρμογή του γάμμα αλγόριθμου.

<u>Παραρτημα Β</u>

Έλεγγος κανονικοτητας γαρακτηριστικών υφης

Οι Πίνακες 57, 58, 59 και 60 παρουσιάζουν τον έλεγχο κανονικής κατανομής των χαρακτηριστικών υφής όπως αυτά εμφανίζονται στην ανάλυση που έγινε με πραγματικές εικόνες ενδομητρίου. Η ανάλυση αυτή έγινε στις φυσιολογικές εικόνες πρίν και μετά την εφαρμογή του αλγόριθμου γάμμα καθώς και στις παθολογικές εικόνες ενδομητρίου πρίν και μετά την εφαρμογή του γάμμα αλγόριθμου. Παρατηρούμε ότι όλα τα χαρακτηριστικά υφής παρουσιάζουν κανονική κατανομή.

Όταν το significance που παρουσιάζεται στην τέταρτη και έβδομη στήλη προσεγγίζει το μηδέν τότε έχω κανονική κατανομή των τιμών των χαρακτηριστικών υφής.

Πίνακας 57:	Έλεγχος	κατανομής	φυσιολογικών	εικόνων	ενδομητρίου	πρίν	την	εφαρμογή
του αλγόριθμα	ου γάμμα.							

Έλεγχος Κανονικότητας	Φυσιολογικές εικόνες πριν την εφαρμογή του αλγόριθμου γάμμα					
	Kolmogorov-Smirnov(a)			Shapiro-Wilk		
	Statistic	df	Sig.	Statistic	df	Sig.
SF						
Mean	0,065733	209	0,028546	0,988012	209	0,077
Variance	0,202063	209	3,17E-23	0,799182	209	0
Median	0,060624	209	0,059562	0,988497	209	0,091
Mode	0,052659	209	0,2	0,988583	209	0,094
Skewness	0,049535	209	0,2 2.24E.00	0,982822	209	0,012
Energy	0,130355	209	3,24E-09	0,810455	209	0
Entropy	0,051565	209	4,37E-07	0,911495	209	0 108
SGLDM	0,001000	20)	0,2	0,,,00,,,	20)	0,100
ASM	0,098492	209	4,05E-05	0,885945	209	0
Contrast	0,272068	209	2,69E-43	0,577515	209	0
Correlation	0,192636	209	5,27E-21	0,699863	209	0
Variance	0,201215	209	5,08E-23	0,79842	209	0
Homogeneity	0,145496	209	1,27E-11	0,907344	209	0
Sum Average	0,066653	209	0,024799	0,988058	209	0,078
Sum Variance	0,200462	209	7,70E-23	0,797089	209	0
Sum Entropy	0,049008	209	0,2	0,989206	209	0,118
Entropy	0,066531	209	0,025267	0,987937	209	0,074
Dif Variance	0,278344	209	2,10E-45	0,573931	209	0
Dif Entropy	0,157914	209	8,14E-14	0,869872	209	0
InF Cor1	0,047596	209	0,2	0,978724	209	0,003
InF Cor2	0,182481	209	9,66E-19	0,753529	209	0
GLDS						
Homogeneity	0,14539	209	1,32E-11	0,907514	209	0
Contrast	0,272093	209	2,64E-43	0,577536	209	0
Energy	0,131252	209	2,38E-09	0,916358	209	0
Entropy	0,173416	209	7,82E-17	0,856675	209	0
Mean	0,21634	209	8,33E-27	0,747346	209	0
*	This is a lower bound of the true significance.					
a	Lilliefors Significance Correction					

Πίνακας 58:	Έλεγχος	κατανομής	παθολογικών	εικόνων	ενδομητρίου	πρίν	την	εφαρμογή
του αλγόριθμα	ου γάμμα.							

Έλεγχος Κανονικότητας	Παθολογικές εικόνες πριν την εφαρμογή του αλγόριθμου γάμμα					
	Kolmogorov-Smirnov(a)			Shapiro-Wilk		
	Statistic	df	Sig.	Statistic	df	Sig.
SF						
Mean	0,074745	236	0,002763	0,980728	236	0,00267
Variance	0,164044	236	5,64E-17	0,762414	236	3,55E-18
Median	0,085419	236	0,00026	0,981156	236	0,003132
Mode	0,074339	236	0,003	0,984918	236	0,013311
Skewness	0,065757	236	0,015061	0,966512	236	2,37E-05
Kurtosis	0,179987	236	1,23E-20	0,728797	236	2,32E-19
Energy	0,122663	236	3,43E-09	0,844565	236	1,18E-14
Entropy	0,040316	236	0,2	0,991412	236	0,181291
SGLDM						
ASM	0,142594	236	1,25E-12	0,795835	236	7,19E-17
Contrast	0,149279	236	6,52E-14	0,846001	236	1,40E-14
Correlation	0,176601	236	7,90E-20	0,685732	236	1,00E-20
Variance	0,164451	236	4,60E-17	0,760947	236	3,13E-18
Homogeneity	0,03229	236	0,2	0,993558	236	0,403805
Sum Average	0,074174	236	0,003102	0,980651	236	0,002595
Sum Variance	0,16511	236	3,30E-17	0,759552	236	2,78E-18
Sum Entropy	0,040032	236	0,2	0,990142	236	0,109269
Entropy	0,077276	236	0,001633	0,987288	236	0,034343
Dif Variance	0,161569	236	1,94E-16	0,825537	236	1,43E-15
Dif Entropy	0,035562	236	0,2	0,987915	236	0,044287
InF Cor1	0,036517	236	0,2	0,980487	236	0,002442
InF Cor2	0,168144	236	7,00E-18	0,70608	236	4,24E-20
GLDS						
Homogeneity	0,032253	236	0,2	0,993548	236	0,402451
Contrast	0,149275	236	6,53E-14	0,846004	236	1,40E-14
Energy	0,041571	236	0,2	0,991894	236	0,218755
Entropy	0,039078	236	0,2	0,986921	236	0,029618
Mean	0,091769	236	5,31E-05	0,941028	236	3,71E-08
*	This is a lower bound of the true significance.					
a	Lilliefors Significance Correction					

Πίνακας 59: Έλεγχος κατανομής φυσιολογικών εικόνων ενδομητρίου μετά την εφαρμογή του αλγόριθμου γάμμα.

Έλεγχος Κανονικότητας	Φυσιολογικές εικόνες μετά την εφαρμογή του αλγόριθμου γάμμα					
	Kolmogorov-Smirnov(a)			Shapiro-Wilk		
	Statistic	df	Sig.	Statistic	df	Sig.
SF						
Mean	0,161543	209	1,71E-14	0,844601	209	1,09E-13
Variance	0,304217	209	1,25E-54	0,533213	209	2,72E-23
Median	0,163906	209	6,04E-15	0,837034	209	4,78E-14
Mode	0,205205	209	5,45E-24	0,735485	209	5,47E-18
Skewness	0,127935	209	7,37E-09	0,863333	209	9,55E-13
Kurtosis	0,353103	209	2,03E-74	0,163424	209	1,65E-29
Energy	0,17627	209	2,01E-17	0,7387	209	6,98E-18
Entropy	0,044516	209	0,2	0,989213	209	0,117891
SGLDM						
ASM	0,299243	209	8,63E-53	0,481384	209	2,34E-24
Contrast	0,306607	209	1,58E-55	0,447063	209	5,12E-25
Correlation	0,136657	209	3,51E-10	0,859375	209	5,94E-13
Variance	0,304641	209	8,65E-55	0,531672	209	2,52E-23
Homogeneity	0,087422	209	0,000531	0,952822	209	2,23E-06
Sum Average	0,160084	209	3,21E-14	0,844467	209	1,08E-13
Sum Variance	0,306307	209	2,05E-55	0,529192	209	2,23E-23
Sum Entropy	0,047236	209	0,2	0,98925	209	0,119444
Entropy	0,062429	209	0,046336	0,9769	209	0,001633
Dif Variance	0,324952	209	1,20E-62	0,4185	209	1,53E-25
Dif Entropy	0,06019	209	0,063174	0,9841	209	0,018748
InF Cor1	0,044913	209	0,2	0,985431	209	0,030151
InF Cor2	0,146491	209	8,63E-12	0,857219	209	4,60E-13
GLDS						
Homogeneity	0,087825	209	0,000486	0,95297	209	2,31E-06
Contrast	0,306594	209	1,60E-55	0,447106	209	5,13E-25
Energy	0,104527	209	8,55E-06	0,926453	209	1,00E-08
Entropy	0,056075	209	0,2	0,986555	209	0,045184
Mean	0,160203	209	3,05E-14	0,793791	209	6,78E-16
	* a	This is a the tru Lilliefo C	lower bound of e significance. rs Significance Correction			

Πίνακας 60:	Έλεγχος	κατανομής	παθολογικών	εικόνων	ενδομητρίου	μετά	την	εφαρμογή
του αλγόριθμο	ου γάμμα.							

Έλεγχος Κανονικότητας	Παθολογικές εικόνες μετά την εφαρμογή					
	Kolmogorov-Smirnov(a)			Shapiro-V	Wilk	
	Statistic	df	Sig.	Statistic	df	Sig.
SF						
Mean	0,145007	236	4,38E-13	0,801627	236	1,25E-16
Variance	0,149819	236	5,10E-14	0,817799	236	6,35E-16
Median	0,283544	236	2,06E-53	0,565745	236	6,72E-24
Mode	0,151207	236	2,70E-14	0,798236	236	9,04E-17
Skewness	0,194542	236	2,65E-24	0,732539	236	3,11E-19
Kurtosis	0,106345	236	8,34E-07	0,913118	236	1,70E-10
Energy	0,211331	236	6,49E-29	0,603433	236	5,53E-23
Entropy	0,227582	236	9,10E-34	0,607965	236	7,19E-23
SGLDM						
ASM	0,346573	236	5,49E-81	0,35975	236	4,98E-28
Contrast	0,25494	236	8,37E-43	0,589762	236	2,53E-23
Correlation	0,150492	236	3,75E-14	0,79773	236	8,61E-17
Variance	0,284132	236	1,21E-53	0,563401	236	5,92E-24
Homogeneity	0,113346	236	8,80E-08	0,926743	236	2,01E-09
Sum Average	0,149782	236	5,19E-14	0,81765	236	6,25E-16
Sum Variance	0,28605	236	2,12E-54	0,559687	236	4,85E-24
Sum Entropy	0,058186	236	0,050943	0,973669	236	0,000224
Entropy	0,081783	236	0,000606	0,94911	236	2,35E-07
Dif Variance	0,273777	236	1,17E-49	0,554846	236	3,75E-24
Dif Entropy	0,045525	236	0,2	0,992317	236	0,257144
InF Cor1	0,034515	236	0,2	0,997297	236	0,961772
GLDS	0,053698	236	0,095842	0,976832	236	0,000657
Homogeneity	0,112892	236	1,02E-07	0,926899	236	2,07E-09
Contrast	0,254939	236	8,39E-43	0,58977	236	2,53E-23
Energy	0,152773	236	1,31E-14	0,872947	236	4,00E-13
Entropy	0,065121	236	0,016807	0,991645	236	0,198606
Mean	0,110059	236	2,58E-07	0,882802	236	1,54E-12
*	This is a lower bound of the	true sig	nificance.			
a	Lilliefors Significance Corre	ction				

<u>Παράρτημα Γ</u>

<u>Δημοσιεύσεις</u>

Εργασίες Δημοσιευμένες σε Επιστημονικά Περιοδικά:

- [1] E. Kyriacou, S. Pavlopoulos, A. Berler, M. Neophytou, A. Bourka, A. Georgoulas, A. Anagnostaki, D. Karayiannis, C. Schizas, C. Pattichis, A. Andreou, D. Koutsouris, *Multi-purpose HealthCare Telemedicine Systems with mobile communication link support*, BioMedical Engineering OnLine, <u>http://www.biomedical-engineering-online.com/start.asp</u>, Vol. 2, No. 7, 2003.
- [2] M.S. Neophytou, M.S. Pattichis, V. Tanos, C.S. Pattichis, E.C. Kyriacou, D. Koutsouris, "A Standardised Protocol for Texture Feature Analysis of Endoscopic Images in Gynaecological Cancer", BioMedical Engineering OnLine, <u>http://www.biomedical-engineering-online.com/start.asp</u>.

<u>Θα υποβληθεί</u>:

[1] **M.S. Neophytou**, C.S. Pattichis, M.S. Pattichis, V. Tanos, E.C. Kyriacou, D. Koutsouris, "*Color - Texture Based Classification of Endoscopy Images*", IEEE Transactions on Information Technology in Biomedicine.

Ανακοινώσεις σε Συνέδρια:

- [1] Ε. Κυριάκου, Σ. Παυλόπουλος, Α. Μπέρλερ, Α. Μπούρκα, Α. Γεωργούλας, Μ. Νεοφύτου, Δ. Κουτσούρης, "Ολοκληρωμένο σύστημα τηλεϊατρικής για την παρακολούθηση και διάγνωση ασθενών απο απόσταση", Πρακτικά 20υ Πανελλήνιου συνεδρίου Φοιτητών Νοσηλευικής, Αθήνα, Ελλάδα, Δεκέμβριος 2000.
- [2] Ε. Κυριάκου, Σ. Παυλόπουλος, Α. Μπέρλερ, Α Μπούρκα, Α. Γεωργούλας, Μ. Νεοφύτου, Δ. Κουτσούρης, "Ολοκληρωμένο σύστημα τηλεϊατρικής για επείγοντα περιστατικά", Πρακτικά 2ου συνεδρίου Βιοϊατρικής τεχνολογίας, Αθήνα, Ελλάδα, Νοέμβριος 1999.
- [3] M.S. Neophytou, C.S. Pattichis, V. Tanos, E. Kyriacou, D. Koutsouris, "Texture Characterization of Gynaecological Tissue in Endoscopy: Preliminary Findings", CD-ROM Proceedings of the 1st MEDINF International Conference on Medical Informatics & Engineering, 12-15 October, Craiova, Romania, 4 pages, 2003.
- [4] M.S. Neophytou, C.S. Pattichis, V. Tanos, E. Kyriacou, D. Koutsouris, "Tissue Texture Characterization during Hysteroscopy and Laparoscopy: Preliminary Findings", 12 Annual Congress of the European Society for Gynaecological Endoscopy, Luxembourg, Abstract Book, p. 23, November 26-29, 2003.
- [5] M.S. Neophytou, V. Tanos, C.S. Pattichis, "Intraoperative tissue image computational Analysis as a diagnostic tool in Gynaecological Endoscopy",

Transvaginal Endoscopy the Art and Science', 4-7 March, Larnaka, Cyprus, 2004.

- [6] M.S. Neophytou, C.S. Pattichis, M.S. Pattichis, V. Tanos, E. Kyriacou, D. Koutsouris, "Multiscale Texture Feature Variability Analysis in Endoscopy Imaging Under Different Viewing Positions", CD-ROM Proceedings of the II EFOMP Mediterranean Conference on Medical Physics, 28-30 April, Limassol, Cyprus, 6 pages, 2004.
- [7] C.S. Pattichis; E. Kyriakou, A. Pitsillides, G. Samaras, C.N. Schizas, M. S. Neophytou, C. Antoniades, A. Kouppis, V. Tanos, A. Jossif, "Experience with Healthcare Telematics in Cyprus", *Proceedings of the European Federation for Medical Informatics Special Topic Conference,* Ed. By B. Blobel, G. Gunther, C. Hidebrand, R. Engelbrecht, June 13-16, Munich, Germany, p. 18-19, 2004.
- [8] M.S. Neophytou, C.S. Pattichis, M.S. Pattichis, V. Tanos, E. Kyriacou, S. Pavlopoulos, D. Koutsouris, "*Texture Analysis of the Endometrium During Hysteroscopy: Preliminary Results*",26th Annual International conference of the IEEE engineering in Medicine and Biology Society, 1-5 September, San Francisco, California, USA, p. 1483-1486, 2004.
- [9] M.S. Neophytou, C.S. Pattichis, V. Tanos, E.C. Kyriacou, D. Koutsouris, "Intraoperative Tissue Texture Characterization in Gynaecological Cancers. Preliminary Findings". EAGC 2nd International Congress in Gynaecological Malignancies, 19-21 November, Larnaca, Cyprus, p. 34, 2004
- [10] M.S. Neophytou, C.S. Pattichis, M.S. Pattichis, V. Tanos, E. Kyriacou, D. Koutsouris, "The Effect of Color Correction of Endoscopy Images for Quantitative Analysis in Endometrium",27th Annual International conference of the IEEE engineering in Medicine and Biology Society, 1-4 September, Shanghai, China, p. 3336-3339, 2005.
- [11] V. Tanos, M.S. Neophytou, C.S. Pattichis, "Computer Assisted Tissue Image Analysis in Endometrium Cancer", 33rd Meeting of the International Society for Oncodevelopment Biology and Medicine, 24-29 September, Rhodes, Greece, 2005.
- [12] M.S. Neophytou, C.S. Pattichis, M.S. Pattichis, V. Tanos, E.C. Kyriacou, D. Koutsouris, "Texture-Based Classification of Hysteroscopy Images of the Endometrium", 28th Annual International conference of the IEEE engineering in Medicine and Biology Society, 30-3 August, September, New York, USA, p. 3005-3008, 2006.
- [13] T. Dimitrova, L. Georgieva, C.S. Pattichis, M. Neofytou, "Qualitative Visual Image Analysis of Bruise Age Determination: A Survey", 28th Annual International conference of the IEEE engineering in Medicine and Biology Society, 30-3 August, September, New York, USA, 4 pages, 2006.
- [14] M.S. Neophytou, C.S. Pattichis, M.S. Pattichis, V. Tanos, E.C. Kyriakou, S. Pavlopoulos, "Classification of hysteroscopic images using different color systems", 29th Annual International conference of the IEEE engineering in Medicine and Biology Society, 23-36 August, Lyon, France, 4 pages, 2007.

Εθνικό Μετσοβίο Πολύτεχνειο Σχολή Ηλεκτρολογών Μηχανικών και Μηχανικών Υπολογιστών Τομέας Συστηματών Μεταδοσής Πληροφορίας και Τεχνολογίας Υλικών

"Μελετη - Αναπτύξη και Αξιολογήση Ολοκληρωμένου Συστηματός Ψηφιακής Αναλύσης Ενδοσκοπικής Εικονάς Μακροβιοψίας για την Υποστηρίξη διαγνώσης γυναικολογικού Καρκινού"

ΔΙΔΑΚΤΟΡΙΚΗ ΔΙΑΤΡΙΒΗ

ΜΑΡΙΟΣ Σ. ΝΕΟΦΥΤΟΥ

ΔΙΠΛ. ΗΛΕΚΤΡΟΛΟΓΟΣ ΜΗΧΑΝΙΚΟΣ & ΜΗΧΑΝΙΚΟΣ ΥΠΟΛΟΓΙΣΤΩΝ Ε.Μ.Π.

AOHNA 2007

Μάριος Σ. Νεοφύτου

Διδάκτωρ Ηλεκτρολόγος Μηχανικός και Μηχανικός Υπολογιστών Ε.Μ.Π.

Copyright © Μάριος Σ. Νεοφύτου, 2007

"Με επιφύλαξη παντός δικαιώματος. All rights reserved"

Απαγορεύεται η αντιγραφή, αποθήκευση και διανομή της παρούσας εργασίας, εξ ολοκλήρου ή τμήματος αυτής, για εμπορικό σκοπό. Επιτρέπεται η ανατύπωση, αποθήκευση και διανομή για σκοπό μη κερδοσκοπικό, εκπαιδευτικής ή ερευνητικής φύσης, υπό την προϋπόθεση να αναφέρεται η πηγή προέλευσης και να διατηρείται το παρόν μήνυμα. Ερωτήματα που αφορούν τη χρήση της εργασίας για κερδοσκοπικό σκοπό πρέπει να απευθύνονται προς το συγγραφέα.

Οι απόψεις και τα συμπεράσματα που περιέχονται σε αυτό το έγγραφο εκφράζουν το συγγραφέα και δεν πρέπει να ερμηνευθεί ότι αντιπροσωπεύουν τις επίσημες θέσεις του Εθνικού Μετσόβιου Πολυτεχνείου.