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�åñßëçøç. Ìåëå�Üìå äéÜöïñïõò ÷ñùìá�éóìïýò êïñõöþí ãéá ãñÜöïõò êáéõðåñãñÜöïõò. Åðéêåí�ñùíüìáó�å ó�ïõò ÷ñùìá�éóìïýò ÷ùñßò óõãêñïýóåéò.Ïé ÷ñùìá�éóìïß ÷ùñßò óõãêñïýóåéò Ý÷ïõí åöáñìïãÝò ó�çí áðïäï�éêÞ áíÜèå-óç óõ÷íï�Þ�ùí óå êõøåëù�Ü äßê�õá. Äåß÷íïõìå ðþò ó÷å�ßæïí�áé ïé ÷ñùìá-�éóìïß ÷ùñßò óõãêñïýóåéò ùò ðñïò ìïíïðÜ�éá ãñÜöùí ìå Üëëá ðñïâëÞìá�á÷ñùìá�éóìïý ãñÜöùí, üðùò: äéá�å�áãìÝíïé ÷ñùìá�éóìïß (Þ áëëéþò êá�Ü�á-îç êïñõöþí), ÷ñùìá�éóìïß ÷ùñßò �å�ñÜãùíá (óõìâïëïóåéñÝò), êáé êëáóéêïß÷ñùìá�éóìïß ãñÜöùí. Áðïäåéêíýïõìå éäéü�ç�åò �ùí ðáñáðÜíù ÷ñùìá�éóìþíêáèþò êáé Üíù êáé êÜ�ù öñÜãìá�á ãéá �á ÷ñþìá�á ðïõ áðáé�ïýí�áé ãéá äéÜ-öïñåò êëÜóåéò ãñÜöùí (áëõóßäåò, äáê�ýëéïé, äÝíäñá, ðëÝãìá�á).Áíáëýïõìå äéÜöïñåò åêäï÷Ýò �ïõ ÷ñùìá�éóìïý ÷ùñßò óõãêñïýóåéò ãéáãñÜöïõò áëõóßäåò êáé ãñÜöïõò äáê�õëßïõò ùò ðñïò ìïíïðÜ�éá. Ó�çí ðåñß-ð�ùóç �ùí áëõóßäùí �ï ðñüâëçìá åßíáé åðßóçò ãíùó�ü ùò ÷ñùìá�éóìüò ÷ùñßòóõãêñïýóåéò ùò ðñïò äéáó�Þìá�á. �éá ìßá Üìåóç (online) åêäï÷Þ �ïõ ðñï-âëÞìá�ïò üðïõ ïé êïñõöÝò �ïõ ãñÜöïõ åìöáíßæïí�áé ìßá ìßá êáé ï áëãüñéèìïòðñÝðåé íá äåóìåõ�åß ó�ï ÷ñþìá �çò êïñõöÞò ðñï�ïý äåé �éò èÝóåéò �ùí ìåëëï-í�éêþí êïñõöþí, áíáëýïõìå �ïí Üðëçó�ï áëãüñéèìï ðñþ�ïõ �áéñéÜóìá�ïò êáé�ïí Üðëçó�ï áëãüñéèìï ìïíáäéêïý ìåãßó�ïõ. Áðïäåéêíýïõìå áêñéâþò ðüóá÷ñþìá�á ÷ñçóéìïðïéåß ï Üðëçó�ïò áëãüñéèìïò ðñþ�ïõ �áéñéÜóìá�ïò ó�çí ÷åé-ñü�åñç ðåñßð�ùóç êáé áíáëýïõìå åéäéêÝò åéóüäïõò ãéá �ïí Üðëçó�ï áëãüñéèìïìïíáäéêïý ìåãßó�ïõ. Åðßóçò, óõó÷å�ßæïõìå ÷ñùìá�éóìïýò ìïíáäéêïý ìåãß-ó�ïõ üðïõ �ï ÷ñþìá «1» åìöáíßæå�áé i öïñÝò ìå ìå�áèÝóåéò ìå i− 1 êïéëÜäåò.¸íá ïõóéþäåò ìÝñïò �çò áíÜëõóÞò ìáò âáóßæå�áé ó�ïí áñéèìü �ùí ÷ñùìÜ�ùíðïõ åìöáíßæïí�áé ìüíïí ìßá öïñÜ (ó�ïí åêÜó�ï�å ÷ñùìá�éóìü). ÔÝëïò, ïñß-æïõìå äýï íÝá ìïí�Ýëá Üìåóùí áëãïñßèìùí ÷ñùìá�éóìþí ÷ùñßò óõãêñïýóåéòùò ðñïò äéáó�Þìá�á: Ýíá áé�éïêñá�éêü ó�ï ïðïßï ï áëãüñéèìüò ãíùñßæåé �éòáðüëõ�åò �åëéêÝò èÝóåéò �ùí ðñïò ÷ñùìá�éóìü êïñõöþí, êáé Ýíá ðéèáíïêñá�é-êü ó�ï ïðïßï ï áí�ßðáëïò �ïõ áëãïñßèìïõ ðñÝðåé íá äåóìåõ�åß ó�çí åßóïäï �ïõðñéí ï áëãüñéèìïò áñ÷ßóåé íá ÷ñùìá�ßæåé. �éá áõ�Ü �á äýï ìïí�Ýëá äßíïõìåáëãïñßèìïõò ðïõ ÷ñçóéìïðïéïýí ëïãáñéèìéêü áñéèìü ÷ñùìÜ�ùí.



Abstra
t. We study several vertex 
oloring problems for graphs and hyper-graphs. We 
on
entrate on 
on
i
t-free 
oloring. The 
on
i
t-free 
oloringproblem has appli
ations in eÆ
ient frequen
y assignment in 
ellular net-works. We show the relation of 
on
i
t-free 
oloring paths of graphs withother graph 
oloring problems, like ordered 
oloring (also known as vertexranking), squarefree 
oloring, and traditional graph 
oloring. We prove prop-erties of the above 
olorings and upper and lower bounds for the 
olors neededfor several graph 
lasses (
hains, rings, trees, grids).We analyze several versions of 
on
i
t-free 
oloring 
hain and ring graphswith respe
t to paths. For 
hain graphs, the problem is also known as 
on
i
t-free 
oloring with respe
t to intervals. For an online version of the problemwhere verti
es of the graph appear one by one, and an algorithm has to 
om-mit on the 
olor of a vertex before seeing the positions of the future verti
es,we analyze the �rst-�t greedy and the unique maximum greedy algorithms.We prove tights bounds for the 
olors used by the �rst-�t greedy algorithmand we analyze spe
ial input sequen
es for the unique maximum greedy algo-rithm. We also relate unique maximum 
olorings with i o

urren
es of 
olor`1' with permutations with i − 1 valleys. An essential part of the analysis isbased on 
ounting the number of uniquely o

urring 
olors. Finally, we de-�ne two new online algorithm models for 
on
i
t-free 
oloring with respe
t tointervals: one is deterministi
 and the algorithm has knowledge of the abso-lute �nal positions of the verti
es to be 
olored, and the other is probabilisti
and the adversary has to 
ommit to the input before the algorithm starts
oloring. For these two models, we provide algorithms that use a logarithmi
number of 
olors.
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�ñüëïãïòÓ�çí ðáñïýóá åñãáóßá ìåëå�Üìå äéÜöïñåò ðáñáëëáãÝò �ïõ ðñïâëÞìá�ïò ÷ñù-ìá�éóìïý ãñÜöùí êáé õðåñãñÜöùí. Åðéêåí�ñùíüìáó�å ó�ïõò ÷ñùìá�éóìïýò÷ùñßò óõãêñïýóåéò (
on
i
t-free 
oloring).Ó�ï êåöÜëáéï 1, ïñßæïõìå �ï ðñüâëçìá ÷ñùìá�éóìïý ÷ùñßò óõãêñïýóåéòóå õðåñãñÜöïõò, Üëëá ó÷å�éêÜ ðñïâëÞìá�á, êáé áíáöÝñïõìå �éò åöáñìïãÝò�ïõò (ð.÷., áíÜèåóç óõ÷íï�Þ�ùí óå êõøåëù�Ü äßê�õá, áðïäï�éêÞ ðáñÜëëçëçåðßëõóç áñáéþí ãñáììéêþí óõó�çìÜ�ùí). Åðßóçò, êÜíïõìå ìßá åðéóêüðçóç�çò õðÜñ÷ïõóáò âéâëéïãñáößáò.Ó�ï êåöÜëáéï 2, ïñßæïõìå �ï ðñüâëçìá ÷ñùìá�éóìïý ãñÜöïõ ÷ùñßò óõ-ãêñïýóåéò ùò ðñïò ìïíïðÜ�éá êáé äåß÷íïõìå ðþò ìðïñåß íá ïñéó�åß ìå �çíâïÞèåéá �ïõ ÷ñùìá�éóìïý ÷ùñßò óõãêñïýóåéò óå õðåñãñÜöïõò. Áðïäåéêíý-ïõìå êÜðïéåò éäéü�ç�åò áõ�ïý �ïõ ÷ñùìá�éóìïý. Åðßóçò, óõó÷å�ßæïõìå �ïí÷ñùìá�éóìü ÷ùñßò óõãêñïýóåéò ùò ðñïò ìïíïðÜ�éá ìå �ïí äéá�å�áãìÝíï ÷ñù-ìá�éóìü (ordered 
oloring, ãíùó�üò êáé ùò vertex ranking). �áñïõóéÜæïõìå�ï ðñüâëçìá ÷ñùìá�éóìïý ÷ùñßò óõãêñïýóåéò ùò ðñïò äéáó�Þìá�á êáé äåß-÷íïõìå �çí éóïäõíáìßá �ïõ ìå �ïí ÷ñùìá�éóìü ÷ùñßò óõãêñïýóåéò ùò ðñïòìïíïðÜ�éá ãéá ãñÜöïõò áëõóßäåò. Âåë�éþíïõìå �á ãíùó�Ü áðü �çí âéâëéï-ãñáößá Üíù êáé êÜ�ù öñÜãìá�á ãéá �ïí äéá�å�áãìÝíï ÷ñùìá�éêü áñéèìü �ïõ
m × m ãñÜöïõ ðëÝãìá�ïò, êÜ�é ðïõ Ý÷åé óõíÝðåéåò êáé ãéá �ïí ÷ñùìá�éêüáñéèìü ÷ùñßò óõãêñïýóåéò ùò ðñïò ìïíïðÜ�éá. Èåùñïýìå ÷ñùìá�éóìïýò ãñÜ-öùí ðëåãìÜ�ùí ùò äéäéÜó�á�ïõò ðßíáêåò öõóéêþí áñéèìþí êáé ÷áëáñþíïí�áò�ïõò ðåñéïñéóìïýò ðïõ ðñïêýð�ïõí áðü �ïí ÷ñùìá�éóìü ÷ùñßò óõãêñïýóåéòùò ðñïò ìïíïðÜ�éá, âñßóêïõìå ÷ñùìá�éóìïýò ðïõ ÷ñçóéìïðïéïýí ëïãáñéèìéêüáñéèìü ÷ñùìÜ�ùí ãéá ìßá åõñåßá êá�çãïñßá ðåñéïñéóìþí.Ó�ï êåöÜëáéï 3, èåùñïýìå ìßá äõíáìéêÞ åêäï÷Þ �ïõ ðñïâëÞìá�ïò, ó�çíïðïßá Ý÷åé íüçìá íá èåùñÞóïõìå ü�é ç åßóïäïò åìöáíßæå�áé ó�ïí áëãüñéèìïìå Üìåóï (online) �ñüðï, äçëáäÞ ïé ðñïò ÷ñùìá�éóìü êïñõöÝò åìöáíßæïí�áéìßá ìßá, ï áëãüñéèìïò ðñÝðåé íá äåóìåõ�åß ó�ï ÷ñþìá �çò êÜèå åìöáíéæü-ìåíçò êïñõöÞò, ÷ùñßò ãíþóç �ùí ìåëëïí�éêþí êïñõöþí, êáé äåí ìðïñåß íááëëÜîåé �ï ÷ñþìá ðáëáéþí êïñõöþí. Åðéêåí�ñùíüìáó�å ó�ïí ÷ñùìá�éóìü÷ùñßò óõãêñïýóåéò ùò ðñïò äéáó�Þìá�á. Áíáëýïõìå áêñéâþò �çí óõìðåñé-9



öïñÜ ÷åéñü�åñçò ðåñßð�ùóçò �ïõ Üðëçó�ïõ áëãïñßèìïõ ðñþ�ïõ �áéñéÜóìá�ïò(äçëáäÞ �áéñéÜæïõìå Üíù êáé êÜ�ù öñÜãìá�á), ëýíïí�áò Ýíá áíïé÷�ü ðñü-âëçìá ó�çí âéâëéïãñáößá. Äßíïõìå äéÜöïñá áðï�åëÝóìá�á ãéá �ïí Üðëçó�ïáëãüñéèìï ìïíáäéêïý ìåãßó�ïõ êáé ìåëå�Üìå �çí óõìðåñéöïñÜ �ïõ óå äéÜöï-ñåò êëÜóåéò åéóüäùí. Ìå�áîý Üëëùí, áðïäåéêíýïõìå ìßá áí�éó�ïé÷ßá áíÜìåóáó�ïõò ÷ñùìá�éóìïýò ìïíáäéêïý ìåãßó�ïõ üðïõ �ï ÷ñþìá «1» åìöáíßæå�áé iöïñÝò ìå ìå�áèÝóåéò ìå i − 1 êïéëÜäåò. Ìåëå�Üìå �ï ðëÞèïò �ùí ÷ñùìÜ�ùíðïõ åìöáíßæïí�áé áêñéâþò ìßá öïñÜ óå Ýíáí ÷ñùìá�éóìü ðïõ ðñïêýð�åé áðü�ïí Üðëçó�ï áëãüñéèìï ðñþ�ïõ �áéñéÜóìá�ïò Þ �ïí Üðëçó�ï áëãüñéèìï ìïíá-äéêïý ìåãßó�ïõ. �éá �ïí ïéêïíïìéêü�åñï óå ðëÞèïò ÷ñùìÜ�ùí áé�éïêñá�éêüáëãüñéèìï �çò âéâëéïãñáößáò äßíïõìå ìßá åßóïäï ðïõ �ïí áíáãêÜæåé íá ÷ñçóé-ìïðïéÞóåé �á ðåñéóóü�åñá äõíá�Ü ÷ñþìá�á: Ω(log2
n). Ïñßæïõìå �ï ðñüâëçìá÷ñùìá�éóìïý ÷ùñßò óõãêñïýóåéò ùò ðñïò êõêëéêÜ �üîá· áðïäåéêíýïõìå áêñé-âþò ðüóá ÷ñþìá�á ÷ñåéÜæïí�áé ãéá �çí ó�á�éêÞ åêäï÷Þ �ïõ ðñïâëÞìá�ïò êáéìåëå�Üìå ðþò óõìðåñéöÝñïí�áé ïé Üðëçó�ïé áëãüñéèìïé ó�çí Üìåóç åêäï÷Þ�ïõ ðñïâëÞìá�ïò.Ó�ï êåöÜëáéï 4, ðáñïõóéÜæïõìå Ýíáí Üìåóï áé�éïêñá�éêü áëãüñéèìï ãéáÝíá ìïí�Ýëï áðïëý�ùí èÝóåùí �ùí åìöáíéæüìåíùí óçìåßùí, ï ïðïßïò ÷ñçóé-ìïðïéåß �ï ðïëý 2 lg n ÷ñþìá�á. Åðßóçò, ðáñïõóéÜæïõìå Ýíáí ðéèáíïêñá�éêüáëãüñéèìï ðïõ ÷ñùìá�ßæåé åíáí�ßïí åíüò áí�éðÜëïõ ðïõ ðñÝðåé íá äåóìåõ�åßó�çí åßóïäï �ïõ ðñï�ïý áðïêáëýøåé �çí ðñþ�ç êïñõöÞ êáé ÷ñçóéìïðïéåß �ïðïëý 1 + log

3/2
n ÷ñþìá�á.Ó�ïí åðßëïãï, äéá�õðþíïõìå êÜðïéá óõìðåñÜóìá�á êáé ðáñïõóéÜæïõìå �áóðïõäáéü�åñá, êá�Ü �çí êñßóç ìáò, áíïé÷�Ü ðñïâëÞìá�á ó�çí ðåñéï÷Þ �ùí÷ñùìá�éóìþí ÷ùñßò óõãêñïýóåéò.Åõ÷áñéó�ßåòÈá Þèåëá íá åõ÷áñéó�Þóù �ïí åðéâëÝðïí�Ü ìïõ Ó�Üèç ÆÜ÷ï. ¸÷åé åýñïòêáé âÜèïò ãíþóçò ó�çí ðåñéï÷Þ �çò �ëçñïöïñéêÞò, áëëÜ êáé óå ðïëëÜ Üëëáãíùó�éêÜ ðåäßá. Ç áöïóßùóç �ïõ ó�çí äéäáóêáëßá êáé ó�çí äéÜäïóç áõ�Þò�çò ãíþóçò åßíáé õðïäåéãìá�éêÞ. Ïé êá�åõèýíóåéò ðïõ ìïõ Ýäùóå ãéá �çíÝñåõíÜ ìïõ êáé ç óõíåñãáóßá ìáò Ý÷ïõí äéáìïñöþóåé �ï ðåñéå÷üìåíï �çò ðá-ñïýóáò åñãáóßáò. Èá Þèåëá åðßóçò íá åõ÷áñéó�Þóù �ïí Amotz Bar-Noy, ïïðïßïò ìïõ áíÝöåñå �ï ðñüâëçìá ÷ñùìá�éóìþí ÷ùñßò óõãêñïýóåéò ãéá äéá-ó�Þìá�á. Ç óõíåñãáóßá ìáæß �ïõ õðÞñîå ÷ñÞóéìç åìðåéñßá ãéá ìÝíá êáé Þ�áíðïëý ãåííáéüäùñïò ìáæß ìïõ. ¸íáò Üëëïò ðïõ èá Þèåëá íá åõ÷áñéó�Þóù åßíáéï Shakhar Smorodinsky, ï ïðïßïò ìå �ßìçóå ìå �çí óõíåñãáóßá �ïõ. Èá Þèå-ëá åðßóçò íá åõ÷áñéó�Þóù �ïí G�eza T�oth ãéá ìåñéêÝò ðïëý ùñáßåò éäÝåò ó�áðñïâëÞìá�á ðïõ ìåëÝ�çóá ó�çí ðáñïýóá åñãáóßá. Èá Þèåëá íá åõ÷áñéó�Þóù10



�ïí Ernst Spe
ker (åßíáé ðáððïýò ìïõ êá�Ü �çí áêáäçìáúêÞ Ýííïéá) ãéá �çíóõíåéóöïñÜ �ïõ óå ùñáßåò éäÝåò êáé íåïëïãéóìïýò, ó÷å�éêÜ ìå ðñïâëÞìá�áðïõ ìåëå�Þèçêáí ó�çí ðáñïýóá åñãáóßá. Èá Þèåëá åðßóçò íá åõ÷áñéó�Þóù�ïí Ìé÷Üëç ËáìðÞ ãéá �çí âïÞèåéÜ �ïõ êáé ãéá �çí óõíåéóöïñÜ �ïõ óå ìåñé-êÜ ðñïâëÞìá�á óå áõ�Þí �çí åñãáóßá. ¸÷ù ùöåëçèåß áðü óõæç�Þóåéò ðÜíùó�á ðñïâëÞìá�á �çò åñãáóßáò ìå �ïí J�anos Pa
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Prologue

In this work, aspects of conflict-free coloring are studied.

In chapter 1, we state the conflict-free coloring problem, some related
problems, and we mention applications. We also review the literature.

In chapter 2, we state the more general version of the conflict-free coloring
problem, as a coloring of graphs, and hypergraphs, and we prove some basic
properties of such colorings. We also show the connections with other kinds
of colorings of graphs and hypergraphs. We describe the problem of conflict-
free coloring for intervals and consider the static case. We give better bounds
for the ordered chromatic number of the m × m grid. We look at coloring
of grids as arrays of numbers and by weakening the constraints related to
conflict-free coloring with respect to paths, we get logarithmic colorings for
a wide range of constraints.

In chapter 3, we consider a dynamic version of the problem, where it is
relevant to consider the input revealed in an online way. We analyze the
behavior of a fully greedy first-fit algorithm, that performs very bad in the
worst case. We give some results related to the behavior of the unique max
greedy algorithm (from [27]). We consider the number of uniquely occurring
colors in full greedy and unique max algorithms. We make some remarks
about the leveled algorithm (presented in [27]). We introduce the conflict-free
problem for intervals in rings, and see how greedy and unique max algorithms
perform in that case.

In chapter 4, we present a logarithmic online deterministic algorithm in
a model where the absolute positions of points are given (about 2 lg n colors
used, at most). We also present a randomized expected logarithmic algorithm
that colors always correctly against an oblivious adversary that has to commit
on a permutation before revealing the first point (uses O(log n) colors).

Finally, in the epilogue, we give some concluding remarks, and collect the
most important problems left open on conflict-free coloring.
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Chapter 1

Introduction

In this chapter we introduce some coloring problems in graphs and hyper-
graphs that can model frequency assignment problems in cellular networks.
We also mention some related coloring problems and their applications.

1.1 Conflict-free coloring

A vertex coloring of a graph G = (V, E) is a function C : V → IN+ such
that for every edge {v1, v2} ∈ E: C(v1) 6= C(v2). A hypergraph G = (V, E)
is a generalization of a graph for which hyperedges can be arbitrary-sized
non-empty subsets of V . There are several ways to define vertex coloring
in hypergraphs: On one extreme, it is required that for every hyperedge,
not all colors are the same (there are at least two colors); on the other
extreme, it is required that for every edge, no color is repeated (all the
colors are different). In between these two extremes, there is another possible
generalization: A vertex coloring C of hypergraph G is called conflict-free if
in every hyperedge e there is a vertex whose color is unique among all other
colors in the hyperedge. Formally:

∀e ∈ E : ∃v ∈ e : ∀v′ ∈ e : v′ 6= v → C(v′) 6= C(v).

Conflict-free coloring models frequency assignment for cellular networks.
A cellular network consists of two kinds of nodes: base stations and mobile
agents. Base stations have fixed positions and provide the backbone of the
network; they are modeled by vertices in V . Mobile agents are the clients of
the network and they are served by base stations. This is done as follows:
Every base station has a fixed frequency; this is modeled by the coloring C,
i.e., colors represent frequencies. If an agent wants to establish a link with a
base station it has to tune itself to this base station’s frequency. Since agents
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26 Chapter 1. Introduction

are mobile, they can be in the range of many different base stations. The
range of communication of every agent is modeled by a hyperedge e ∈ E,
which is the set of base stations that can communicate with the agent. To
avoid interference, the system must assign frequencies to base stations in
the following way: For any range, there must be a base station in the range
with a frequency that is not reused by some other base station in the range.
This is modeled by the conflict-free property. One can solve the problem by
assigning n different frequencies to the n base stations. However, using many
frequencies is expensive, and therefore, a scheme that reuses frequencies,
where possible, is preferable.

The study of conflict-free colorings was originated in the work of Even
et al. [26] and Smorodinsky [50]. In addition to the practical motivation
described above, this new coloring model has drawn much attention of re-
searchers through its own theoretical interest and such colorings have been
the focus of several recent papers (see, e.g., [26, 50, 44, 29, 27, 33, 23, 51, 5, 8]).
Other references for frequency assignment in cellular and wireless networks
include [1]. NP-completeness and hardness of approximation results can
be found in [18]. There are also related problems in optical fibre networks
[2, 3, 41, 24, 42, 39, 45, 30, 40].

Suppose we are given a set of n base stations, also referred to as an-
tennas. Assume, for simplicity, that the area covered by a single antenna
is given as a disk in the plane. Namely, the location of each antenna and
its radius of transmission is fixed and is given (the transmission radii of the
antennas are not necessarily equal). Even et al. [26] showed that one can find
an assignment of frequencies to the antennas with a total of at most O(log n)
frequencies such that each antenna is assigned one of the frequencies and the
resulting assignment is free of conflicts, in the preceding sense. Furthermore,
it was shown that this bound is worst-case optimal. Let R be a set of regions
in the plane. For a point p ∈ ∪r∈Rr, let r(p) = {r ∈ R | p ∈ r}. Let H(R)
denote the hypergraph (R, {r(p) | p ∈ ∪r∈R}). We say that H(R) is the hy-
pergraph induced by R. Thus, Even et al. [26] showed that any hypergraph
induced by a family R of n discs in the plane admits a CF-coloring with only
O(log n) colors and that this bound is tight in the worst case. Furthermore,
such a coloring can be found in deterministic polynomial time1. The results
of [26] were further extended in [29] by combining more involved probabilistic
and geometric ideas. The main result of [29] is a general randomized algo-
rithm which CF-colors any set of n “simple” regions (not necessarily convex)

1In [26] it is shown that finding the minimum number of colors needed to CF-color a
given collection of discs is NP-hard even when all discs are congruent, and an O(log n)
approximation-ratio algorithm is provided.
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whose union has “low” complexity, using a “small” number of colors.
For conflict-free coloring of n points with respect to (closed) disks, in

[44], Pach and Tóth prove a lower bound of Ω(log n) colors. They also
generalize the result to homothetic copies of any convex body. Har-Peled
and Smorodinsky in [29], for conflict-free coloring of n points with respect to
axis-parallel rectangles, give a coloring using O(

√
n) colors. In [44], this is

improved to O(
√

n log log n/ log n). In [5], Alon and Smorodinsky consider
coloring a collection of n disks in which each disk intersects at most k others
such that for each point p in the union of all disks there is at least one disk in
the collection containing p whose color differs from that of all other member
of the collection that contain p (this is the dual problem of coloring points
with respect to ranges). The proof uses the probabilistic method [6], and
especially the Lovász Local Lemma.

In [51], Smorodinsky studies ‘traditional’ coloring of hypergraphs2 that
are induced by simple Jordan curves. He applies the above results to conflict-
free coloring of regions with near linear union complexity (using a polyloga-
rithmic number of colors), and axis-parallel rectangles (using O(log2 n) col-
ors).

In [23], Elbassioni and Mustafa consider an interesting variation of the
problem of conflict-free coloring points with respect to axis-parallel rect-
angles: They prove that given any set of n points on the plane, one can
add O(n1−ε) new points, so that all points can be conflict-free colored with

Õ(n
3

8
(1+ε)) colors.

Figure 1.1: Points on a line and intervals

The paper [27] considered the special case of the problem where the hy-
pergraph is defined as follows: Vertices are identified by points that lie on
a line and E consists of all subsets of V defined by intervals intersecting at
least one vertex. A line with n points has n(n + 1)/2 such subsets (for every
i ∈ {1, . . . , n}, there are n− i + 1 different subsets containing i points). For

2This is one of the vertex colorings that generalize graph vertex coloring, mentioned in
the start of this thesis: Every hyperedge is not monochromatic.
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n = 5, these subsets are shown in figure 1.1. We call these subsets intervals
because for our problem, two intervals are equivalent if they contain the same
vertices. We represent colorings by listing the colors of points from left to
right in a string. For example, for the points in figure 1.1 (n = 5), 12312 is
a conflict-free coloring, whereas 12123 is not.

Conflict-free coloring for intervals is important because it can model as-
signment of frequencies in networks where the agents’ movement is approx-
imately unidimensional, e.g., the cellular network that covers a single long
road and has to serve agents that move along this road. Also, conflict-free
coloring for intervals plays a role in conflict-free coloring for more complicated
range spaces (see [26]).

The problem becomes more interesting when the vertices are given online
by an adversary. Namely, at every given time step t ∈ {1, . . . , n}, a new
vertex vt ∈ V is given and the algorithm must assign vt a color such that
the coloring is a conflict-free coloring of the hypergraph that is induced by
the vertices Vt = {v1, . . . , vt}. Once vt is assigned a color, that color cannot
be changed in the future. This is an online setting, so the algorithm has no
knowledge of how vertices will be given in the future. For this version of the
problem, in the case of intervals, Fiat et al. [27] provide several algorithms.
Their randomized algorithm uses O(log n log log n) colors with high proba-
bility. Their deterministic algorithm uses O(log2 n) colors in the worst case.
That algorithm requires Ω(log2n) colors on some inputs.

1.2 Ordered coloring

We define a restriction of a conflict-free coloring for hypergraphs. A vertex
coloring C of hypergraph G is called ordered if in every hyperedge e there is
a vertex whose color is unique and maximum among all other colors in the
hyperedge. Formally:

∀e ∈ E : ∃v ∈ e : ∀v′ ∈ e : v′ 6= v → C(v′) < C(v).

If the hyperedges are induced by all (simple) paths of a graph, then we
have the notion of an ordered coloring or a vertex ranking of a graph. See the
next chapter for more details. Vertex ranking problems in the simple graph
setting have many applications. One application is in the filed of VLSI design
[35, 49]. Another application is in the field of parallel Cholesky factorization
of matrices [22, 36, 28, 37]. In general graphs, finding the exact ordered
chromatic number of a graph is NP-complete [38]. Approximability results
are given in [12]. The vertex ranking problem is also interesting for the Op-
erations Research community, because it also has applications in planning
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efficient assembly of products in manufacturing systems [31]. In general, it
seems the vertex ranking problem can model situations where interrelated
tasks have to be accomplished fast in parallel, with some constraints (assem-
bly from parts, parallel query optimization in databases, etc.)



.



Chapter 2

Conflict-free coloring paths of a

graph

2.1 Introduction

Given is a graph G, with vertex set V (G) and edge set E(G). The aim is to
color the vertices of the graph such that for each path p in the graph, there
is a vertex v in p whose color is not used by any other vertex in p. This is
called a conflict-free coloring (CF coloring) of graph G with respect to paths.
It is a minimization problem, i.e., the goal is to find such a coloring that uses
as few colors as possible. Formally:

Definition 1. A k-CF-coloring is a function C : V (G) → {1, . . . , k} such
that:

∀path p ∈ G : ∃v ∈ p : ∀v′ ∈ p : v′ 6= v → C(v′) 6= C(v).

The conflict-free chromatic number of a graph G, denoted by χcf(G), is the
minimum k for which G has a k-CF-coloring.

Since the above coloring involves sets of vertices included in a path, one
can ask the same question in terms of hypergraphs. Details follow.

A hypergraph H = (V, E) is a generalization of a graph for which hyper-
edges can be arbitrary-sized non-empty subsets of V .

Definition 2. A vertex coloring C of hypergraph H = (V, E) is called
conflict-free if in every hyperedge e there is a vertex whose color is unique
among all other colors in the hyperedge. Formally, ∀e ∈ E : ∃v ∈ e : ∀v′ ∈ e :
v′ 6= v → C(v′) 6= C(v).

Proposition 3. Given a graph G with vertex set V , define the following
hypergraph:

HG = (V, {vert(p) | p ∈ paths(G)}),

31
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where vert(p) is the set of vertices of path p. Then, a conflict-free coloring of
graph G with respect to paths is a conflict-free coloring of HG and vice versa.

2.2 Relation with other problems

2.2.1 Ordered coloring

A closely related problem is ordered coloring [34] or vertex ranking [31].
Ordered coloring is like conflict-free coloring, but we have the following ad-
ditional constraint: the unique color in a path must also be the maximum
color in the path. Formally, we define:

Definition 4. A unique maximum CF coloring is a CF coloring in which the
maximum color in every path p is also a unique color in path p.

We remark that the definition given above is not what is typical in the
bibliography [34]. Instead the following definition is more typical:

Definition 5. An ordered k-coloring of a graph G is a function C : V (G)→
{1, . . . , k} such that for every pair of distinct vertices v, v′, and every path
p from v to v′, if C(v) = C(v′), there is an internal vertex v′′ of p such that
C(v) < C(v′′). The ordered chromatic number of a graph G, denoted by
χo(G), is the minimum k for which G has an ordered k-coloring.

We prove that the two definitions are equivalent:

Proposition 6. C is a unique maximum CF coloring if and only if C is an
ordered coloring.

Proof. If C is a unique maximum CF-coloring, then for any two same color
vertices v, v′, every (v, v′)-path p has a unique maximum color, greater than
C(v), which appears in some internal vertex of p.

If C is an ordered coloring, then consider any path p in G. The maximum
color in p has to occur exactly in one vertex. If it occurs in two vertices v, v′

of p then there is a (v, v′)-path contained in p which has an internal vertex
with a greater color; a contradiction to the maximality of C(v) in p.

Every ordered coloring is also a CF-coloring and thus χcf(G) ≤ χo(G).
In ordered colorings, an even stronger property is true:

Proposition 7. In any ordered coloring C of G, in every connected subset S
of vertices of G, the maximum color appearing in S, i.e., max{C(v) | v ∈ S},
is unique in S.
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Proof. By contradiction; if there are two different vertices x, y in S with
the maximum color, then there is a (x, y)-path in S, for which there is no
internal vertex with higher color.

Now, we define yet another coloring: A k-connected-set-CF-coloring is
a function C : V (G) → {1, . . . , k} such that for every connected subset of
vertices S, there is a vertex v ∈ S, with a unique color in S. This is similar
to CF-coloring, but the uniqueness property is taken with respect to all con-
nected sets, instead of only paths. The connected set conflict-free chromatic
number of a graph G, denoted by χcs

cf(G), is the minimum k for which G has
a k-connected-set-CF-coloring.

A CS-CF-coloring of G is not necessarily an ordered coloring, although
an ordered coloring is CS-CF. However, we can prove that χo(G) = χcs

cf(G).

Lemma 8. In a CS-CF-coloring of a connected graph G, let U denote the
vertices with unique colors in all G. Then G− U is disconnected or empty.

Proof. By contradiction. If G − U is connected, then V − U is a connected
subset of vertices of G which has no unique color.

Proposition 9. For every graph G, χcs
cf(G) ≥ χo(G).

Proof. By induction on χcs
cf(G). For the base, if χcs

cf(G) = 1, then χo(G) = 1
(these are exactly the graphs with single vertex connected components). For
the inductive step, given an optimal CS-CF-coloring of G, we are going to
convert it to a χcs

cf(G)-ordered coloring of G. For every connected component
of G we have χcs

cf(G
′) ≤ χcs

cf(G), so we only need to take care of connected
components for which χcs

cf(G
′) = χcs

cf(G) (the others are taken care of by the
inductive hypothesis): In such a connected component G′, consider the set
U of unique colors in V (G′). Rename the colors of U , so that they are the
maximum colors of U . After the renaming of colors, every path that intersects
with U has already the property of the unique maximum color. If G− U is
empty, U = V (G′) and the coloring of G′ is already ordered (all colors are
unique). Otherwise, by lemma 8, G′ − U is disconnected. Each connected
component of G′−U is CF-CS colored with at most χcs

cf(G)−|U | colors, so by
the inductive hypothesis each connected component of G′−U can be colored
with an ordered coloring using no more than χcs

cf(G) − |U | color. Thus, we
have an ordered coloring of G′ with at most χcs

cf(G) colors.

The ordered chromatic number is monotone with respect to minors. A
graph X is a minor of Y , denoted as X 4 Y , if there is a subgraph G
of Y , and a sequence G0, . . . , Gk, with G0 = G and Gk = X, such that
Gi = Gi−1/ei−1, where ei−1 ∈ E(Gi−1) (i.e., edge ei−1 is contracted in Gi−1),
for i ∈ {1, . . . , k}.
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Proposition 10. If X 4 Y , then χo(X) ≤ χo(Y ).

Proof. If G is a subgraph of Y , and C an ordered coloring of Y , the restriction
of C to V (G) is an ordered coloring of G.

Given G and an ordered coloring C of G, then the following is an ordered
coloring of G/xy: For v different from x, y, use the same color as in C. For the
vertex vxy that arises from the contraction of edge xy, use max{C(x), C(y)}.
For every path p of G/xy, either vxy 6∈ p, in which case p is also a path in
G, and thus it contains a maximum unique color, or p = p1vxyp2 (with p1,
p2 possibly empty paths), in which case path p1xyp2 has a maximum unique
color, and thus also p has a maximum unique color.

It is not known whether the conflict-free chromatic number is monotone
under minors. Even if it is monotone, a recoloring proof like the above would
be a lot more elaborate. However, it is easy to prove the weaker assertion,
for subgraphs:

Proposition 11. If X ⊆ Y , then χcf(X) ≤ χcf(Y ).

Proof. Graph X contains a subset of the paths of Y , so the restriction of an
optimal coloring of V (Y ) to V (X) is a CF-coloring for X.

2.2.2 Squarefree colorings

Another related problem is obtained by looking at colorings of paths as
strings. We impose the following restriction: Every coloring of a path,
when viewed as a string, shall not contain a repetition. Formally, a string
w ∈ (IN+)∗ is called squarefree if there is no substring of w of the form
x2 = xx, where x is a nonempty string. Given a coloring C of the vertices
of a graph, for every path p = v1 . . . vℓ, we define the color string of p to be
C(v1) . . . C(vℓ).

Remark 12. It is not necessary to also consider the reverse path that gives
rise to the string C(vℓ) . . . C(v1) since a string is squarefree if and only if its
reverse is squarefree.

Definition 13. A coloring C : V (G)→ {1, . . . , k} is a squarefree k-coloring
if for every path in the graph its color string is squarefree.

Every CF-coloring is squarefree and thus χsf(G) ≤ χcf(G).
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We have the following relation between colorings:

C

↑
SF

↑
CF

↑
OC

where C is the class of ‘traditional’ vertex coloring of graphs.
The above is a proper hierarchy as can be exhibited by the following

colorings of the chain P6:

121212

123132

121312

313213

which are ‘traditional’, squarefree, ordered, and conflict-free, respectively.
In terms of chromatic numbers:

Proposition 14. χ(G) ≤ χsf(G) ≤ χcf(G) ≤ χo(G).

The problem of squarefree coloring looks a lot easier than CF coloring
and ordered coloring: For example, a seminal result by Thue shows that 3
colors suffice to color any chain [52]. More precisely:

χsf(Pn) =

{

n, if n ≤ 2

3, otherwise

A coloring of a chain can be seen as a string, over an alphabet of possible
colors. The proof of Thue relies on squarefreeness preserving morphisms. A
morphism can be described by where it maps each letter of the alphabet.
The following is a squarefreeness preserving morphism on the three letter
alphabet {a, b, c}:

a→ abcab, b→ acabcb, c→ acbcacb

Starting with the word a, and by repetitive applications, the above morphism
gives arbitrarily long squarefree words on three letters:

abcabacabcbacbcacbabcabacabcb . . .
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The above result is in contrast with the coloring defined in the start of
this section, because, as we will see, for chains both ordered coloring and
conflict-free coloring need Ω(log n) colors.

Another, more recent result is by Currie [20], on the squarefree chromatic
number of rings:

χsf(Cn) =

{

4, if n ∈ {5, 7, 9, 10, 14, 17}
3, otherwise

As we will see, for rings both ordered coloring and conflict-free coloring need
Ω(log n) colors.

The above ring result can be also interpreted as follows: For every ring
there is a subdivision of it which is squarefree colorable using 3 colors (see
[13, 21] for the definition of subdivision).

A similar result was proved for trees [15], namely that every tree has a
sufficiently large subdivision which can be squarefree colored with 3 colors.

For general graphs the following result is known (see [11]):

Theorem 15. Every graph has a subdivision which can be squarefree colored
with 4 colors.

It is an open problem whether this 4 can be made a 3. If yes, it would be
a striking generalization of Thue’s result.

Cubefree colorings

Another related class of colorings consists of cubefree colorings, where color
strings of paths can not contain a x3 substring, for x non-empty.

It is known ([52] and implicit in [46]) that 2 colors suffice to color any
chain. A cubefreeness preserving morphism, on a two letter alphabet {a, b},
is quite simple:

a→ ba, b→ ba

A cubefree word starts like:

abbabaabbaab . . .

Cubefree colorings can also be put in the above hierarchy over squarefree
colorings but they are not comparable with traditional colorings.

Squarefree, cubefree, and related colorings have been studied extensively
for strings. A good starting point for the interested reader is the book by
Allouche and Shallit [4].
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2.3 Conflict-free coloring graphs

We study conflict-free coloring some graphs with (relatively) few edges, and
with respect to all paths.

2.3.1 Chain

Conflict-free coloring of a chain is more well known as conflict-free coloring
with respect to intervals [27]. Exactly, 1 + ⌊lg n⌋ colors are needed: For
n = 2k − 1, the coloring Ck is defined recursively as follows: Ck = 1 and
Ck+1 = Ck ◦ (k + 1) ◦Ck (where ◦ is the concatenation operator for strings).
Coloring Ck is conflict-free, and for n with n < 2k − 1 the prefix of length n
of Ck is conflict-free. This had been proved in [26]. This is also an ordered
coloring.

2.3.2 Ring

To conflict-free color a ring, we use the above conflict-free coloring of a chain.
We pick an arbitrary vertex v and color it with a unique color (not to be
reused anywhere else in the coloring). The remaining vertices form a chain
that we color with the method described above. This method colors a ring
of n vertices with 2 + ⌊lg(n− 1)⌋ colors. For example, if n = 8, the coloring
is

41213121

where ‘4’ is the first unique color used for v. It is not difficult to see that the
coloring is conflict-free: All paths that include v are conflict-free colored, and
the remaining graph G−v is a chain of n−1 nodes, so paths of G−v are also
conflict-free colored. For further analysis, and a proof that 2 + ⌊lg(n− 1)⌋ is
tight, check section 3.25.

2.3.3 Tree

For a tree graph, we use the idea of a 1/2-separator [32, 25]. A 1/2-separator
is a vertex which, when removed, leaves connected components whose size
is bounded by n/2. The method to color a tree is as follows: Find a 1/2-
separator, color it with a unique color. Then color recursively the connected
components, after the removal of the 1/2-separator. Thus, χcf(T ) ≤ 1+⌊lg n⌋
for a tree with n vertices. See also [34].

If a maximum color is used for every separator, the above coloring is an
ordered coloring. Moreover, one can find optimal ordered colorings of trees
[31].
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It is unknown whether one can do better by using conflict-free colorings
that are not ordered colorings.

2.3.4 Grid

A grid of size m×m, i.e, with n = m2 vertices can be colored with an ordered
coloring with at most 4m colors: The idea is to use unique maximum colors
for the row closest to the middle and column closest to the middle (that
is less than 2m colors), and then color recursively in the 4 subgrids with
size at most ⌊m/2⌋ × ⌊m/2⌋ each. A slight variation gives a coloring with
at most 3m color: Use m unique maximum colors for the row closest to the
middle, and then use about m/2 more unique colors for the part of the middle
column over the middle row, and the same m/2 colors for the middle column
under the middle row; then use recursion in the 4 subgrids with size at most
⌊m/2⌋ × ⌊m/2⌋ each.

There is also a lower bound of χo(Gm) ≥ m (see [34]). Another proof is
given here:

Proposition 16. If Gm is the m×m grid, χo(Gm) ≥ m.

Proof. By induction. Base: For m = 1, it is true, as χo(K1) = 1. For the
inductive step, consider a Hamilton path p of Gm, with m > 1. If Gm is
ordered colored, then there is a vertex v with a unique color in p (and thus in
G). So, for some v, χo(Gm) = 1+χo(Gm−v). However, for every v, Gm−1 4

Gm− v (easy proof). Therefore, from proposition 10, χo(G) ≥ 1 + χo(Gm−1)
and from the inductive hypothesis, χo(G) ≥ 1 + m− 1 = m.

A lower bound for conflict-free coloring is more elaborate to prove and is
given in section 2.4.

More tight bounds on the ordered chromatic number for the grid are
given in a following section and [7]. Variations of the problem that give rise
to logarithmic colorings are given in a following section and [16].

2.4 Conflict-free coloring games

We define a game, given in figure 2.1, played by two players, on a graph G.

We also define the game, given in figure 2.2.

Every pair of consecutive moves, one from player 1 and then one from
player 2, constitutes a round of the game.

The above games are obviously finite, because |V (Gi)| > |V (Gi+1)|.
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Connected-subset-CF-game(G):

i← 0
G1 ← G
while Gi is not empty do:

i← i + 1
Player 1 chooses a connected subset Si in Gi

Player 2 chooses a vertex vi in Si

Gi+1 ← Gi[Si]− vi

Figure 2.1: The connected-subset-CF-game

Path-CF-game(G):

i← 0
G1 ← G
while Gi is not empty do:

i← i + 1
Player 1 chooses a path pi in Gi

Player 2 chooses a vertex vi in pi

Gi+1 ← Gi[V (pi)]− vi

Figure 2.2: The path-CF-game
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Proposition 17. In the CS-CF-game, there is a strategy for player 2, so
that the game stops in at most χo(G) rounds.

Proof. By induction on χo(G): If χo(G) = 0, i.e., the graph is empty, the
game is played for zero rounds. If χo(G) = k > 0, then in round 1 some
connected set S1 is chosen by Player 1. The strategy of player 2 is to find
an optimal ordered coloring C of G and choose a vertex v1 in S1 that has a
unique color in S1. Then, G2 = G[S1] − v1 ⊂ G1 and the restriction of C
to S1 − v1 is an ordered coloring that is using at most k − 1 colors. Thus,
χo(G2) ≤ k − 1, and by the inductive hypothesis Player 2 has a strategy so
that the game stops after at most k − 1 more rounds. Therefore, the game
is played in total for at most 1 + k − 1 = k rounds.

A similar proposition is true for the path-CF-game:

Proposition 18. In the path-CF-game, there is a strategy for player 2, so
that the game stops in at most χcf(G) rounds.

Proof. By induction on χcf(G): If χcf(G) = 0, i.e., the graph is empty, the
game is played for zero rounds. If χcf(G) = k > 0, then in round 1 some
path p1 is chosen by Player 1. The strategy of player 2 is to find an optimal
CF-coloring C of G and choose a vertex v1 in p1 that has a unique color in
p1. Then, G2 = G[V (p1)]−v1 ⊂ G1 and the restriction of C to V (p1)−v1 is a
conflict-free coloring that is using at most k−1 colors. Thus, χcf(G2) ≤ k−1,
and by the inductive hypothesis Player 2 has a strategy so that the game
stops after at most k−1 more rounds. Therefore, the game is played in total
for at most 1 + k − 1 = k rounds.

For the CS-CF-game, there is also a corresponding strategy for player 1.
We first prove the following lemma:

Lemma 19. For every v ∈ V (G), χo(G− v) ≥ χo(G)− 1

Proof. Assume for the sake of contradiction that there exists a v ∈ V (G)
for which χo(G − v) < χo(G) − 1. Then an optimal coloring of G − v can
be extended to a coloring of G, where v has a new unique color. Therefore
there is a coloring of G that uses less than χo(G) − 1 + 1 = χo(G) colors; a
contradiction.

Proposition 20. In the CS-CF-game, there is a strategy for player 1, so
that the game goes on for at least χo(G) rounds.
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Proof. By induction on χo(G): If χo(G) = 0, i.e., the graph is empty, the
game is played for zero rounds. If χo(G) = k > 0, the strategy of Player 1
is to choose an S1 such that χo(G[S1]) = k; there is always such a connected
subset, because otherwise one could color all connected components of G
with less than k colors (a contradiction to χo(G) = k). For every choice of
v1 by Player 2, by lemma 19, χo(G2) ≥ k − 1, and thus, by the inductive
hypothesis Player 1 has a strategy so that the game goes on for at least k−1
more rounds. Therefore, the game is played in total for at least 1+k−1 = k
rounds.

A proposition analogous to 20 for the path-CF-game is not known.
Now, for a class of graphs we will reduce the problem of CF-coloring with

respect to paths, to CF-coloring with respect to connected sets. We remind
the definition of a minor: A graph X is a minor of Y , denoted as X 4 Y ,
if there is a subgraph G of Y , and a sequence G0, . . . , Gk, with G0 = G and
Gk = X, such that Gi = Gi−1/ei−1, where ei−1 ∈ E(Gi−1) (i.e., edge ei−1

is contracted in Gi−1), for i ∈ {1, . . . , k}. In that case, we write G = MX,
and (see [21]) there is a partition {Vx | x ∈ V (X)} of V (G) into connected
subsets (in G), such that for any two vertices x, y of X, there is a Vx-Vy edge
in G if and only if xy ∈ E(X). Each Vx is called a branch set.

Theorem 21. If G = MX, with branch sets {Vx | x ∈ V (X)}, and for
each connected subset S of X, there is a path in G that covers all vertices in
⋃

x∈S Vx, then χo(X) ≤ χcf(G).

Proof. Idea: Player 1 plays the path-CF-game on G, by using a strategy in
the CS-CF-game on X.

The main theorem of this section is:

Theorem 22. χcf(Gm) ≥ ⌊m/2⌋.

Proof. It is enough to prove it for m even, because then, if m is odd, Gm ⊇
Gm−1 and from proposition 11, χcf(Gm) ≥ χcf(Gm−1) ≥ (m− 1)/2 = ⌊m/2⌋.

For even m, Gm = MGm/2. In order to define the branch sets we need,
we will have to give names to the vertices of the two graphs:

V (Gm) = {vi,j | (i, j) ∈ {1, . . . ,m}2}

and

V (Gm/2) = {ui,j | (i, j) ∈ {1, . . . ,m/2}2}.
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The edge sets of the two graphs are:

E(Gm) = {vi,jvi′,j′ | |i− i′|+ |j − j′| = 1}

and

E(Gm/2) = {ui,jui′,j′ | |i− i′|+ |j − j′| = 1}.

The branch sets we define are, for every u ∈ V (Gm/2):

Vui,j
= {v2i−1,2j−1, v2i−1,2j, v2i,2j−1, v2i,2j},

i.e., they induce m2/4 2× 2 subgrids in Gm.

Now, it can be proved that for every connected set S in Gm/2,
⋃

u∈S Vu is
covered by a path in Gm: Take a spanning tree of S, and prove by induction
on the size of the tree that

⋃

u∈S Vu is covered by a path.

Therefore, by theorem 21, χcf(Gm) ≥ χo(Gm/2) ≥ m/2 (the last inequal-
ity by proposition 16).

2.5 Conflict-free coloring for intervals

An interval containing n points is given (points are linearly ordered in the
interval). Colors are positive integers. A coloring is an assignment of colors
to the points of the interval. The coloring is represented by an array of
positive integers A[1..n], where for each point i, A[i] is the assigned color.
A conflict-free coloring is an assignment c of colors to the points, such that
for every subinterval, there is a color that appears exactly once, i.e., for all
i, j, with 1 ≤ i ≤ j ≤ n, the subarray A[i..j] contains a color that appears
exactly once in the subarray.

We try to find a conflict-free coloring using as few colors as possible. By
convention if we need l different colors, we use the smallest possible positive
numbers for colors: {1, 2, . . . , l}.

In the static version of the problem, the number of points, n, is given
and we must come up with a conflict-free coloring using as few colors as
possible. Let C(n) be the minimum number of colors for conflict-free coloring
an interval of n points. C(n) is a non-decreasing function.
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2.5.1 A lower bound for the number of colors needed

In order to find a lower bound for the number of colors needed for n points,
first, we have to observe that in any conflict-free colored interval [1..n], there
is a color that appears exactly once. If that color is assigned to point k, then
the subintervals [1..k − 1] and [k + 1..n] use one less color than the whole
interval. We can also assume that one of the two subintervals uses only colors
that appear in the other interval, because any interval that spans points in
both [1..k − 1] and [k + 1..n] will also span point k and thus have c(k) as
its uniquely appearing color. If we also consider the non-decreasing property
of the function C(n), we can concentrate on the conflict-free coloring of the
interval of maximum length among [1..k − 1] and [k + 1..n]. The length of
this interval is at least ⌊n/2⌋.

From the above, we have the following recurrence for C(n):

C(n) ≥ 1 + C(⌊n/2⌋)
C(1) = 1

The solution of the recurrence relation gives:

C(n) ≥ 1 + ⌊lg n⌋

2.5.2 A conflict-free coloring that achieves the lower

bound

An offline coloring algorithm that achieves this lower bound goes like this:

Starting at point 1, color with color 1 every 2 points
Starting at point 2, color with color 2 every 4 points
· · ·
Starting at point 2i−1, color with color i every 2i points
· · ·
and keep doing this until you have colored all points.

Some C-like pseudocode for the above is given in figure 2.3.
Color i is used only if n ≥ 2i−1, so in fact 1 + ⌊lg n⌋ colors are used by

the algorithm. But is the coloring conflict-free?

We can describe more easily the coloring produced by the algorithm by
using a binary tree of n nodes. If n = 2k − 1, then the tree is full, and it
is as follows: The levels of the tree are numbered from the bottom, to the
top (root). The lowest level is level 1. Nodes at level i are labeled with
number (color) i. The root is at level 1+⌊lg n⌋, so it also has label 1+⌊lg n⌋.
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int first, step, color;
int point;
step = 1; color = 0;
while (first < n) {

first = step;
step = 2 ∗ step;
color = color + 1;
for (point = first; point <= n; point = point + step) {

A[point] = color;
}

}

Figure 2.3: An optimal static conflict-free coloring algorithm with respect to
intervals
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Figure 2.4: A tree for n = 15 and its inorder traversal
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The conflict free coloring arises from an inorder traversal of the tree. See
figure 2.4 for a tree for n = 15 and its inorder traversal.

If n 6= 2k− 1, the tree is missing its rightmost1 nodes and the description
with levels is not that elegant in all cases. Nice examples in this case are
trees with n = 2k (see figure 2.5).
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Figure 2.5: A tree for n = 8 and its inorder traversal

In any case, we can prove formally, without using the tree representation
that the coloring produced by the algorithm is conflict-free.

First, we prove the following fact for the coloring produced by the algo-
rithm:

Fact 23. For any color i that is repeated in some interval, there is a color i′

in the coloring contained in that interval such that i′ > i.

Proof. Take two appearances of the same color i in the interval, at points p1

and p2, such that there is no point colored with i between p1 and p2. This
means that p1 = 2i−1 + k · 2i and p2 = 2i−1 + (k + 1) · 2i, for some k ≥ 0
(points consecutively colored with i are 2i apart), so p1 and p2 have 2i − 1
points in between. Of these:

2i−1 have color 1

2i−2 have color 2

· · ·
2i−(i−1) have color i− 1

which sums up to 2i − 2 points. Therefore there is a point with a color i′,
such that i′ > i.

Now, it is easy to prove the claim:

1Here ‘rightmost’ means rightmost with respect to the usual drawing of the tree, not
rightmost innermost.
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Claim 24. The coloring produced by the algorithm is conflict-free.

Proof. Assume there is an interval for which there is no uniquely appearing
color. Take the maximum appearing color i in the interval and consider
two appearances of i, such that there is no other appearance of color i in
between them. By fact 23, there is a color i′, such that i′ > i appearing in
the interval, but this is a contradiction, because i is the maximum color in
the interval.

2.6 Improving the bounds for grids

In this chapter we tighten the upper and lower bounds for the exact ordered
chromatic number of the m×m grid (Gm).

In the proofs we give below we partition the grid with the help of sepa-
rators. All results are in the order of m, so without further mention we do
not include terms logarithmic on m. These terms might be introduced by
constant additive terms in a recursive bound. We are also omitting, in most
cases floors and ceilings, because we are interested in asymptotic behavior.
In that sense, a result like, for example, χo(Gm) ≤ 2.67m should be read as
a bound of 2.67m± o(m).

2.7 Upper bound for grids

In order to improve the basic upper bound of 3m from a previous section,
we need to find more intricate separators, that will be colored with unique
colors. The idea is to use separators along diagonals in the grid. We will
also need to find efficient colorings of some subgraphs that are left after we
remove diagonal-like separators.

2.8 Special subgraphs in the grid

We exhibit colorings of subgraphs of the grid that allow us to improve the
upper bound for χo(Gm).

2.8.1 The rhombus

The rhombus Rx is the subgraph of the grid shown in figure 2.6. It has height
x.

We have the following upper bound:
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Figure 2.6: The rhombus

Proposition 25. χo(Rx) ≤ 3x/2.

Proof. Use a diagonal separator to cut the rhombus in half (x/2 unique colors
are used), then cut also the remaining parts in half with a diagonal separator
(x/4 unique colors per part). This is shown in figure 2.7.

Figure 2.7: The rhombus separation

Therefore, we have the following recursive formula:

χo(Rx) ≤ x/2 + x/4 + χo(R⌊x/2⌋).

Its solution gives: χo(Rx) ≤ 3x/2.

2.8.2 The triangle

The triangle Tx is the subgraph of the grid shown in figure 2.8. Its long side
has length x.

Figure 2.8: The wide triangle

We have the following upper bound:

Proposition 26. χo(Tx) ≤ 7x/6.



48 Chapter 2. Conflict-free coloring paths of a graph

Proof. See figure 2.9. Use a separator diagonally, parallel to the diagonal
sides of the ‘triangle’ Tx, with 2x/6 unique colors. In the two remaining
parts, separate diagonally by using separators parallel to the other diagonal
side of the ‘triangle’ Tx; each of those separators uses x/6 unique colors. With
one more use of x/6 unique colors, we end up with connected components
that are subgraphs of the rhombus R2x/6.

Figure 2.9: The wide triangle separation

Therefore, we have the following formula:

χo(Tx) ≤ 2x/6 + x/6 + x/6 + χo(R⌊2x/6⌋).

and since by proposition 25, χo(Rx) ≤ 3x/2, we have χo(Tx) ≤ 7x/6.

2.8.3 A 8m/3 upper bound

In figure 2.10, we show how a grid has to be partitioned with the help of
separators to achieve a 8m/3 upper bound.
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Figure 2.10: An 8m/3 upper bound

The separators use m, m/3, and m/3 colors. Then, we have rhombi of
height 2m/3 that remain and, by proposition 25, can be colored with m
colors. In total, we have 8m/3 colors:

Proposition 27. χo(Gm) ≤ 8m/3 ≈ 2.6667m.
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2.8.4 A 18m/7 upper bound

In figure 2.11, we show how a grid has to be partitioned with the help of
separators to achieve a 18m/7 upper bound.
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Figure 2.11: An 18m/7 upper bound

The separators use m, 3m/7, 3m/7, m/7, and m/7 colors. Then, we have
rhombi of height 2m/7 that remain and, by proposition 25, each rhombus
can be colored with 3m/7 colors. In total, we have 18m/7 colors:

Proposition 28. χo(Gm) ≤ 18m/7 ≈ 2.5714m.

2.9 Lower bound for grids

In this section we sketch a proof of the following:

Theorem 29. χo(Gm) ≥ 1.33m

In order to prove a better lower bound than the one given in proposi-
tion 16, we need to find big grid minors after the removal of points with
unique colors in the graph. It is only necessary to consider what grid minors
we can find after removing separators. In fact, one can only consider minimal
separators.

Definition 30. A separator S is minimal if for every v ∈ S, S − v is not a
separator.

From that point on, we consider all possible cases of minimal separa-
tors. The first categorization is: (a) central separators, and (b) side touching
separators.

A central separator is one that does not touch the extreme points of the
grid. It can be proved that one can remove the subgrid enclosing the central
separator, and then find a big enough grid minor to achieve the 4m/3 bound.
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For side touching separators, one can find a big enough grid subgraph in
one of the four corners of the grid, which is not touched by the separator.

2.10 Neochromatica

In the following sections, we look at a conflict-free coloring of a grid from a
different point of view. It can be seen as a two-dimensional array of entries
that represent the colors. We interpret the m×m grid conflict-free coloring
problem in this context. Then, we relax the constraints of the problem in two
ways to get colorings that use Θ(log m) colors, whereas the original problem
needs Θ(m) colors. We generalize to multidimensional arrays. Ernst Specker
calls these new family of colorings neochromatica.

2.11 Arrays and meander paths

Consider the m×m grid with a conflict-free coloring with respect to paths.
The paths defined in the graph are simple, in the sense that they are not self
intersecting, and in the standard drawing of a graph (see figure 2.12) they
always go along the horizontal or the vertical direction. Thus they look like
meanders.

Figure 2.12: A 3× 3 grid

It is not very convenient to place colors on a grid drawn like the one in
figure 2.12. See figure 2.13.

2 1 3

1
5

1

4 1 2

Figure 2.13: A conflict-free coloring of the 3× 3 grid with respect to paths
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Instead, it is more convenient to fill the colors in a two-dimensional array,
of size m in each dimension. For example, see figure 2.14.

4 1 2
1 5 1
2 1 3

Figure 2.14: A conflict-free coloring of a 3× 3 array with respect to meander
paths

2.12 Arrays, subarrays, and thin subarrays

We are going to relax some of the constraints of conflict-free coloring with
respect to meander paths, that forces linear use of colors with respect to m,
to achieve logarithmic colorings with respect to m.

We do it in the following two ways:

• In every subarray, there must be a unique color.

• In every thin subarray, i.e., a subarray which has length 1 in one of the
two dimensions, there must be a unique color.

We are going to use extensively the standard conflict-free coloring of the
chain. If points are numbered 1 through n, from left to right on a chain, then
the i-th point’s color is denoted by C(i), i.e., C(1) = 1, C(2) = 2, C(3) = 1,
C(4) = 3, and so on.

2.12.1 Conflict-free coloring with respect to subarrays

The point (i1, i2) is colored as

C(i1, i2) = C(i1) + C(i2)− 1

The coloring uses asymptotically 2 lg m colors.

2.12.2 Conflict-free coloring with respect to thin sub-

arrays

The point (i1, i2) is colored as

C(i1, i2) = (C(i1) + C(i2)− 1) mod 1⌈lg(m + 1)⌉
where mod 1 is the modulo operator, but returning ⌈lg(m + 1)⌉ instead of
0 (i.e., its minimum output value is 1).

The coloring uses asymptotically lg m colors.
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2.13 Multidimensional arrays

One can generalize the results of the previous section to multidimensional
grids or arrays. A grid in d dimensions, in which each side has length m
contains md vertices. A multidimensional grid can also be viewed as a mul-
tidimensional array. One can conflict-free color with respect to subarrays, or
with respect to thin arrays (arrays which have length different than one in at
most one dimension). Each point (or cell) of the grid (or array) is denoted
by its d coordinates: (i1, . . . , id). Each coordinate ranges from 1 to m.

2.13.1 Conflict-free coloring with respect to subarrays

The point (i1, . . . , id) of the d-dimensional grid is colored as follows:

C(i1, . . . , ik) =
d∑

k=1

C(ik)− (d− 1)

The above coloring uses asymptotically d lg m colors.
The same problem has been solved in [29]: A d-dimensional grid is colored

with respect to subsets of points defined by axis parallel rectangular boxes.

2.13.2 Conflict-free coloring with respect to thin sub-

arrays

The point (i1, . . . , id) of the d-dimensional grid is colored as follows:

C(i1, . . . , ik) = (
d∑

k=1

C(ik)− (d− 1)) mod 1⌈lg(m + 1)⌉

where mod 1 is the modulo operator, but returning ⌈lg(m + 1)⌉ instead of
0 (i.e., its minimum output value is 1).

It is interesting that the above coloring uses asymptotically only lg m
colors, i.e., the number of colors used does not depend on the dimension d.
Another interesting fact is that the coloring is very far from satisfying the
unique max property. It is an open problem, whether one can use O(log m)
colors with this additional stronger constraint.



Chapter 3

Greedy algorithms for online

conflict-free coloring

3.1 Points appearing dynamically: more con-

straints

In the online dynamic version of the problem, points are inserted in succes-
sion, between any existing points, and a color must be assigned to each point,
so that the coloring is conflict-free at all times.

3.2 Insertion sequences and permutations

The sequence of inserting points can be described by the position in which
each new point is inserted. If i − 1 points have already been inserted, the
i-th point can go in any of i positions described by an integer in the range
[0..i− 1]: 0 means put the new point in the start of the sequence (before any
other point), and k > 0 means put the new point immediately after the k-th
existing point.

An insertion sequence of length n is represented by an array s[1..n], where
0 ≤ s[i] ≤ i−1. We consider insertion sequences of the same length n ordered
lexicographically. The first and last elements in that order are:

sfirst
n = [0, 0, 0, . . . , 0]

slast
n = [0, 1, 2, . . . , n− 1]

We also call insertion sequences, described as above, relative positions
insertion sequences.

53



54 Chapter 3. Greedy algorithms for online conflict-free coloring

There are n! possible insertion sequences of length n. It is no coincidence
that there is a natural correspondence with the permutations of length n. A
permutation is represented by an array p[1..n], whose elements are of course
a permutation of {1, . . . , n}. If you read the permutation from the left to the
right you see the position at which the inserted point will end up in the final
interval, i.e., the i-th inserted point will end up at position p[i] of the final
interval. There are functions for converting between insertion sequences and
permutations, under this interpretation. If an input is given in the form of a
permutation, described as above, we say that the input is given in absolute
positions.

In the dynamic offline setting, the input can be given in either absolute
or relative positions, because the two representations are easily convertible
to each other if the whole sequence is known. For example, the insertion
sequence σ = 00121 corresponds to the permutation π = 51342, which means
the first point inserted is at the 5th absolute position (rightmost), the second
point inserted is at the 1st absolute position (leftmost), and so on.

3.3 Separation of static and dynamic versions

of the problem

The dynamic version of the problem is more difficult than the static version
of the problem, because there might be more constraints to be satisfied. Even
for n = 3, we have the static coloring 121, but the insertion sequence σ = 011
(π = 132 in absolute positions) needs three different colors to be colored
dynamically. In [8], we exhibit sequences that separate the two models by
more than one color. Similar separation results can be proved: (a) between
the dynamic offline and the absolute positions model, and (b) between the
absolute positions and the relative positions model. Details are omitted for
these two cases.

In order to separate the offline dynamic model from the online models,
we need to exhibit two insertion sequences of absolute positions that have a
common prefix, but the optimal offline algorithm colors essentially differently
the sequences, up to that prefix. Two such sequences of absolute positions
are: π = 123654 and π′ = 123465, which share the common prefix 123. Two
optimal colorings for the above sequences are: C = 123121 and C ′ = 121312,
respectively, and it is easy to see that for an optimal coloring to happen,
for π the algorithm has to use a new color for the third point, whereas
for π′ the algorithm has to reuse a previously used color. This means that
there is no deterministic online algorithm which achieves the optimal coloring
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for both π and π′. Similarly, in order to separate the absolute position
from the relative position online model, we need to exhibit two insertion
sequences of relative positions that have a common prefix, but for which the
respective absolute positions inputs have different prefixes, so knowledge of
absolute positions might allow us to color the sequences better. Two possible
sequences of relative positions are: σ = 0122456 and σ′ = 0123456 with
common prefix 012. The corresponding absolute positions sequences are: π =
1243567 and π′ = 1234567, i.e., they differ in the third position. In both cases
the optimal coloring is of the form 1213121 and it only happens if for σ the
algorithm uses a new color for the third point, whereas for σ′ the algorithm
reuses a previously used color. This means that there is no deterministic
online algorithm on relative positions that can achieve as good color use as
a deterministic online algorithm on absolute positions, because the relative
positions algorithm can not differentiate between the two sequences early
enough.

More involved separation results are given in [8, 9].

3.4 First-fit greedy algorithm

The first-fit greedy algorithm does the following:

For each new point inserted, try to color it with the minimum
color possible, such that the conflict-free property is maintained.

For example, the first-fit greedy algorithm colors insertion sequence σ =
010322 (π = 251643 in absolute positions) as follows:

[ .1 . . . . ],
[ .1 . .2 . ],
[21 . .2 . ],
[21 . .23],
[21 .323],
[214323].

The analysis of the first-fit greedy algorithm was left as an open problem
in [27].

Implementation

For each new point inserted, you only need to check the intervals in which
this point lies and give the new point the minimum color that makes all those
intervals have the uniquely appearing color property.
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The above idea is helpful in proofs too. To prove that a coloring is conflict-
free after an insertion of a point in an already conflict-free color sequence,
you have just to check those new intervals.

3.5 Some observations related to the greedy

algorithm

The greedy algorithm applied to the sequence slast
n gives the same coloring as

the optimal offline algorithm:

0→ 1

01→ 12

012→ 121

0123→ 1213

01234→ 12131

012345→ 121312

0123456→ 1213121

01234567→ 12131214

You get a similar coloring for the sequence sfirst
n :

0→ 1

00→ 21

000→ 121

0000→ 3121

00000→ 13121

000000→ 213121

0000000→ 1213121

00000000→ 41213121

In table 3.1 we show the best and worst use of colors for all sequences of
the same length, for lengths up to 12. (Best is always 1 + ⌊lg n⌋.)

In table 3.2 we show the first appearing insertion sequence (in the lexico-
graphic order) which uses the maximum color for length from 5 to 12.

In table 3.3 we show for each length how many sequences use some number
of colors (we also give the ratio in table 3.4).
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n best worst
1 1 1
2 2 2
3 2 3
4 3 3
5 3 4
6 3 4
7 3 5
8 4 5
9 4 6

10 4 6
11 4 7
12 4 7
13 4 8?

Table 3.1: Best and worst use of colors for greedy

n sequence coloring
5 0 0 0 0 1 3 4 1 2 1
6 0 0 0 0 0 2 1 3 4 1 2 1
7 0 0 0 0 1 2 3 3 4 3 5 1 2 1
8 0 0 0 0 0 0 6 6 2 1 3 1 2 1 5 4
9 0 0 0 0 1 3 6 7 7 3 4 1 3 2 1 2 6 5

10 0 0 0 0 0 0 6 5 8 8 2 1 3 1 2 4 1 4 6 5
11 0 0 0 0 1 3 6 7 6 9 9 3 4 1 3 2 1 5 2 5 7 6
12 0 0 0 0 0 0 6 5 8 7 10 10 2 1 3 1 2 4 1 5 4 5 7 6
13 0 0 0 0 1 3 6 7 6 9 8 11 11 ? 3 4 1 3 2 1 5 2 6 5 6 7 8 7

Table 3.2: First sequence using most colors for its length for greedy

n n! 3 4 5 6 7 8
5 120 108 12
6 720 376 344
7 5040 752 4248 40
8 40320 38092 2228
9 362880 299924 62880 76

10 3628800 2329592 1293848 5360
11 39916800 17080328 22577320 259040 112
12 479001600 110463696 358955060 9573588 9256
13 6227020800 577315696 5356053620 293128704 522636 144

Table 3.3: Sequences using numbers of colors for greedy
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3.6 A sequence of bad insertion sequences

We will give a sequence of bad insertion sequences, i.e., sequences that make
the greedy algorithm use many colors. More precisely, for any odd n ≥ 9
there is an insertion sequence bn of length n that uses mn = n+3

2
colors.

We use this notation: If s is an insertion sequence of length n, then for
all i, j, such that 1 ≤ i ≤ j ≤ n, we denote the subsequence starting at point
i and ending at point j as s[i..j]. We also use ‘+’ to denote concatenation of
sequences. The coloring you get by the greedy algorithm on a sequence s is
denoted by c(s) (c(s) is also a sequence, so we can use the same notation for
color sequences).

The bad sequences are defined recursively:

b9 = [0, 0, 0, 0, 1, 3, 6, 7, 7],

bn+2 = bn
[1..n−1] + [n− 3, n, n], for n ≥ 9.

We denote the coloring (i.e., a color sequence) that the algorithm assigns
to bn with cn(= c(bn)).

Proposition 31. For all odd n ≥ 9:

• cn uses mn = n+3
2

colors.

• Colors mn and mn − 1 are not used in cn
[1..n−2].

• cn
[n−1..n] is [mn, mn − 1].

• cn
n−2 and cn

n−4 are the same color (which is different from mn, mn− 1).

Proof by induction. Base case (n = 9): True.

Inductive step: Assume the proposition is true for bn. We will prove that
it is true for bn+2.

Take out the last element of bn. You get sequence s = bn
[1..n−1] and coloring

c(s) = cn
[1..n−2]+[mn−1], where the cn

[1..n−2] part uses only colors up to mn−2.

Do one more insertion at the sequence s after point n − 3. You get
sequence s′ = s + [n − 3]. Color it using the greedy algorithm to get the
coloring c′ = c(s′). We show that the color that the greedy algorithm assigns
to this last insertion after point n − 3 (this is point n − 2) is mn − 1, i.e.,
c′n−2 = mn − 1:
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• c′ is conflict-free: We build on the conflict-free property of c(s) and the
fact that c(s) does not contain mn−1 except in point n−1. We have to
check only new intervals for the last point added to s′. From these we
have that any interval c′[i..n−2], for 1 ≤ i ≤ n− 2, is conflict free. Also,

any interval in c′n−2..n = [mn − 1, cn
n−2, mn − 1] is conflict-free because

cn
n−2 is less than mn − 1 (by the induction hypothesis).

• The greedy algorithm can not give a color less than mn − 1 to c′n−2

(proof by contradiction): cn
[1..n−3] and c′[1..n−3] are the same and in the

run of the greedy algorithm for bn: (a) cn
[1..n−3] is an intermediate col-

oring, (b) immediately after the appearance of cn
[1..n−3], point n − 2 is

colored with color mn − 1 (because bn
n−2 = n − 3 and by the induc-

tion hypothesis). If c′n−2 < mn − 1 then the greedy algorithm would
also choose this smaller color for the insertion sequence bn, which is a
contradiction.

Do one more insertion at the sequence s′ after point n. You have sequence
s′′ = s′ + [n] and coloring c′′ = c(s′′). The new color assigned is c′′n+1 = mn.
This happens because the last color chosen for coloring bn is also mn: The
new color can not be mn−1 or cn

n−2, because s′n−2..n is [mn−1, cn
n−2, mn−1].

It can also be no other color c′′n+1 < mn, because then the greedy algorithm
could use that color at the last insertion for bn (see lemma 32).

Do one more insertion at the sequence s′′ after point n. You have sequence
bn+2 = s′′ + [n] and coloring cn+2. The new color assigned is mn + 1, because
from the previous argument it has to be at least mn, but it has already an
adjacent mn colored point (the last point). Thus, the coloring sequence is:

cn−2 = cn
[1..n−3] + [mn − 1, cn

n−2, mn − 1, mn + 1, mn]

which has all the required properties.

Lemma 32. If the greedy algorithm gives a point inserted at the end of the
color sequence:

c(s′) = cn
[1..n−5] + [cn

n−2, y,mn − 1, cn
n−2, mn − 1]

the color x, i.e.:

c(s′′) = cn
[1..n−5] + [cn

n−2, y,mn − 1, cn
n−2, mn − 1, x]

then the greedy algorithm assigns the same color x to a point inserted between
the last two points of the color sequence:

c(bn
[1..n−1]) = cn

[1..n−5] + [cn
n−2, y, cn

n−2, mn − 1]
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giving the color sequence:

c(bn) = cn
[1..n−5] + [cn

n−2, y, cn
n−2, x,mn − 1]

Proof. x can not be any of cn
n−2, mn − 1, or y.

Now, in

c′′ = c(s′′) = cn
[1..n−5] + [cn

n−2, y,mn − 1, cn
n−2, mn − 1, x],

any interval c′′[i..n+1] has a point j in which a unique color c′′j appears. This
color can be x, y, or one in c′′[i..n−5] = cn

[i..n−5]. For the color sequence

cn = c(bn) = cn
[1..n−5] + [cn

n−2, y, cn
n−2, x,mn − 1],

in the interval cn
[i..n−1], for the same i, c′′j is also a uniquely appearing color (if

it is in cn
[i..n−5] or y, then it is also appearing at the same point j; otherwise

it is x). Intervals that contain the last point, have the unique color mn − 1
at that last point. Therefore, cn is a conflict-free coloring.

3.7 A simpler sequence of bad insertion se-

quences

There is a very simple sequence of bad insertion sequences that achieves the
same use of colors, that inserts only at the first three positions from the
left. Since the only possible elements of the insertion sequence are 0, 1, 2,
we use the more compact string notation for these bad sequences. The bad
sequences are:

001, 00201, 0020201, 002020201, . . .

or, more formally, using the wi notation to denote concatenation of i copies
of the same string w:

{00(20)i1 | i ∈ IN}
We will prove that 00(20)i1, of length 2i + 3, uses i + 3 colors, and we

start with:

Lemma 33. Insertion sequence 00(20)i uses i + 2 colors and the first two
colors in the coloring are i + 2, i + 1. The third and fourth colors, in case
i > 0 are i, i + 1.

Proof by induction. Base case (i = 0 and 1): True: 00 gives the coloring 21
and 0020 gives the coloring 3212.
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Inductive step: Assume the proposition is true for i > 0. We will prove
that it is true for i + 1.

The coloring for i > 0 is:

ci = i + 2 i + 1 i i + 1 . . .

The next insertion (at position 2) is between i + 1 and i. It has to get color
i + 2, because if it would get another smaller color (i + 1 is also impossible),
then this color could also be used as the color occurring in the first position
of ci. The coloring becomes:

i + 2 i + 1 i + 2 i i + 1 . . .

The next insertion (at position 0) can not get a color among i+ 2, i+ 1, i. It
can not get any other already used color, because then this color could also
be used as the color occurring in the first position of ci. So, a new color has
to be used and we get:

ci+1 = i + 3 i + 2 i + 1 i + 2 . . .

Lemma 34. Insertion sequence 00(20)i1 uses i + 3 colors.

Proof. We augment the coloring of 00(20)i that we have from lemma 33,
which is:

i + 2 i + 1 . . .

The insertion (at position 1) between i + 2 and i + 1 has to get a new
color, because any other color, except i + 2 which is in any case impossible,
would be chosen by the greedy algorithm when coloring 00(20)i, in the last
insertion.

We define CG(n) as the maximum number of colors used among all inser-
tion sequences of length n, when the greedy algorithm is used for coloring.

We have proved the following:

Proposition 35. For n ≥ 2: CG(n) ≥ ⌈n/2⌉+ 1.
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3.7.1 An upper bound on the use of colors

In order to prove an upper bound on the use of colors, we consider uniquely
occurring colors in a coloring.

Lemma 36. In any greedy coloring there are at most three distinct colors
with the following property: each of those colors occurs exactly once.

Proof. Assume the three colors x, y, z that occur uniquely in the coloring:

. . . x . . . y . . . z . . .

W.l.o.g., a new point can be inserted:

• either between y and z, so it can get color x,

• or after z, so it can get color x or y.

In any case, no new color has to be introduced.

Proposition 37. For n ≥ 2: CG(n) ≤ ⌈n/2⌉+ 1.

Proof. By induction on the insertion of points.
Base: For n = 2 it is true.
Induction step: Assume it is true for n ≥ 2. We will prove it for n + 1.

We have the following two cases:

• If n is even, then a new color can be used and we have CG(n + 1) ≤
CG(n) + 1 ≤ ⌈n/2⌉+ 1 + 1 = ⌈(n + 1)/2⌉+ 1.

• If n is odd, then either less than ⌈n/2⌉+1 colors are used (in which case,
even a use of a new color for the newly inserted point leaves us with less
than ⌈(n+1)/2⌉+1 colors), or exactly ⌈n/2⌉+1 colors are used. In that
last case, the ⌈n/2⌉+1 = (n+3)/2 used colors occur at (n+3)/2 points
and the remaining n−(n+3)/2 = (n−3)/2 points must also be colored
by those same colors, so we have at least (n + 3)/2 − (n − 3)/2 = 3
colors that occur exactly once, and by lemma 36 exactly 3 colors that
occur exactly once. Also by lemma 36, the newly inserted point can
not get a new color, so still ⌈n/2⌉+ 1 = ⌈(n + 1)/2⌉+ 1 are used.

In any case, CG(n + 1) ≤ ⌈(n + 1)/2⌉+ 1.

Corollary 38. For n ≥ 2: CG(n) = ⌈n/2⌉+ 1.
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3.8 Description of unique max algorithm

The unique max algorithm does the following:

For each new point inserted, try to color it with the minimum
color possible, such that the following property is maintained:
the maximum color in every interval is unique.

The algorithm was introduced in [27].

For each new point inserted, you only need to check the intervals in
which this point lies and give the new point the minimum color that makes
all those intervals have the unique maximum property. However there is a
more efficient way to implement the algorithm, which is also described in
[27].

3.9 Running UM for small insertion sequences

In table 3.5 we show the best and worst use of colors for all sequences of the
same length, for lengths up to 14. (Best is always 1 + ⌊lg n⌋.)

In table 3.6 we show the first appearing insertion sequence (in the lexico-
graphic order) which uses the maximum color for length from 5 to 13.

In table 3.7 we show for each length how many sequences use some number
of colors (we also give the ratio in table 3.8).

3.10 Signed insertion sequences

Sometimes we have a insertion sequence that needs to make a lot of insertions
close to the right end of the coloring. In that case, it would be easier to
specify the distance from the right end when making such insertions. For
this reason, we introduce the notion of a signed insertion sequence, in which
each insertion is a signed (positive or negative) integer: positive integers
denote insertion from the left end of the coloring and negative integers from
the right end. For example, an insertion −j means insert j points from the
end of the coloring.

We remark that insertions +0 and−0 are very different: the former means
insert at before the start of the coloring and the latter means insert after the
end of the coloring.

The algorithm to convert a signed insertion sequence s to an unsigned
one, u, is:
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n n! 3 4 5 6 7 8
5 120 0.900000 0.100000
6 720 0.522222 0.477778
7 5040 0.149206 0.842857 0.007937
8 40320 0.944742 0.055258
9 362880 0.826510 0.173280 0.000209

10 3628800 0.641973 0.356550 0.001477
11 39916800 0.427898 0.565609 0.006489 0.000003
12 479001600 0.230612 0.749382 0.019987 0.000019
13 6227020800 0.092711 0.860131 0.047074 0.000084 0.000000

Table 3.4: Sequences ratio using numbers of colors for greedy

n best worst
1 1 1
2 2 2
3 2 3
4 3 4
5 3 4
6 3 5
7 3 5
8 4 6
9 4 6

10 4 7
11 4 7
12 4 8
13 4 8
14 4 9

Table 3.5: Best and worst use of colors for UM

n sequence coloring
5 0 0 0 0 1 3 4 1 2 1
6 0 0 0 0 3 1 3 5 1 2 4 1
7 0 0 0 0 0 4 2 1 3 5 1 2 4 1
8 0 0 0 0 1 2 5 3 3 4 3 6 1 2 5 1
9 0 0 0 0 0 0 1 6 4 2 4 1 3 6 1 2 5 1

10 0 0 0 0 1 2 6 6 5 3 3 4 3 7 1 2 5 1 6 5
11 0 0 0 0 0 0 1 7 7 6 4 2 4 1 3 7 1 2 5 1 6 5
12 0 0 0 0 4 4 4 1 4 2 3 4 3 6 7 6 8 1 2 3 1 4 5 4
13 0 0 0 0 0 0 2 2 1 9 9 8 6 2 5 1 3 4 3 8 1 2 6 1 7 6

Table 3.6: First sequence using most colors for its length for UM
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n n! 4 5 6 7 8 9
8 40320 18048 21660 612
9 362880 88924 248592 25364

10 3628800 421988 2577760 627160 1892
11 39916800 1804664 25618312 12314436 179388
12 479001600 6515832 248613404 215646600 8223844 1920
13 6227020800 18647040 2390241068 3543308768 274441996 381928
14 87178291200 37294080 23080273748 56291051128 7739387516 30284536 192

Table 3.7: Sequences using numbers of colors for UM

n n! 4 5 6 7 8 9
8 40320 0.447619 0.537202 0.015179
9 362880 0.245051 0.685053 0.069896

10 3628800 0.116289 0.710362 0.172828 0.000521
11 39916800 0.045211 0.641793 0.308503 0.004494
12 479001600 0.013603 0.519024 0.450200 0.017169 0.000004
13 6227020800 0.002995 0.383850 0.569022 0.044073 0.000061
14 87178291200 0.000428 0.264748 0.645700 0.088777 0.000347 0.000000

Table 3.8: Sequences ratio using numbers of colors for UM

for i← 1 to length(s) do:
if si is positive signed then:

ui ← |si|
else: // si is negative signed

ui ← i− 1− |si|

3.11 A lower bound on the use of colors by

UM

In [27], for all k, a coloring Ck produced by the UM algorithm is exhibited:

Ck = [ 1
︸︷︷︸

D1

, 2, 1
︸︷︷︸

D2

, 3, 2, 1
︸ ︷︷ ︸

D3

, . . . , k − 1, k − 2, . . . , 1
︸ ︷︷ ︸

Dk−1

, k, k − 1, . . . , 1
︸ ︷︷ ︸

Dk

],

where Dk is the decreasing sequence [k, . . . , 1].
This coloring uses k colors and has length k(k + 1)/2.
The proof that UM produces such a coloring is by induction on k. For

k = 1, 2, it is true. Now, to get Ck−1 from Ck do the following k+1 insertions
in the following order: insert between Dk and Dk−1, insert between Dk−1 and
Dk−2, . . . , insert between D2 and D1, insert at the start of the sequence, insert
at the start of the sequence; the colors assigned by UM are k + 1, k, . . . , 2,
1, respectively.
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By symmetry, UM can also produce the coloring:

CI
k = [1, 2, . . . , k

︸ ︷︷ ︸

Ik

, 1, 2, . . . , k − 1
︸ ︷︷ ︸

Ik−1

, . . . , 1, 2, 3
︸ ︷︷ ︸

I3

, 1, 2
︸︷︷︸

I2

, 1
︸︷︷︸

I1

],

where Ik is the increasing sequence [1, . . . , k].

3.12 All-seeing colorings

Definition 39. A left-end all-seeing (leas) coloring is a coloring in which all
colors are visible from the left end of the coloring.

Symmetrically, a right-end all-seeing coloring (reas) is a coloring in which
all colors are visible from the right end of the coloring.

A coloring which is both leas and reas is called both-ends all-seeing (beas)
coloring.

We remark that colorings Ck and CI
k of section 3.11 are beas colorings.

Proposition 40. In a beas coloring, the only color that occurs uniquely is
the maximum color.

Beas colorings are very bad in terms of avoiding new colors in subsequent
insertions of the UM algorithm. In fact we can immediately, with three
insertions, get three new colors: If Bk is a beas coloring which uses k colors,
then it is possible to get the coloring:

[k + 1] + Bk + [k + 3, k + 2]

Similarly, in a leas (or a reas) coloring, we can immediately insert two
new colors. For example, if Lk is a leas coloring, which uses k colors, then it
is possible to get the coloring:

[k + 1, k + 2] + Lk

This means, that a leas (or a reas) coloring contains at most two uniquely
occurring colors.

3.12.1 Smallest all-seeing colorings

A k-beas coloring is a beas coloring in which the unique maximum color is
k. We define similarly a k-leas coloring.
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k 1 2 3 4 5
n 1 3 5 8 11

Table 3.9: Length of shortest k-beas colorings

In table 3.9 we show the length n of the shortest k-beas coloring, for small
k.

Those shortest colorings are as follows: 1, 121, 12321, and then for k = 4:

12134321

12314321

12341321

12343121

and for k = 5:

12321454321

12324154321

12345142321

12345412321

In table 3.10 we show the length n of the shortest k-leas coloring, for
small k.

k 1 2 3 4 5 6 7
n 1 2 4 6 8 11 14

Table 3.10: Length of shortest k-leas colorings

Those shortest colorings are as follows: 1, 12, and then for k = 3: 1213,
1231, 1232, and for k = 4:

121343

123142

123143

123214

123241

123412
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and for k = 5:

12321454

12324154

12343152

12343512

and for k = 6:

12134321565

12134325165

12134541623

12134546123

12314321565

12314325165

12314541623

12314546123

12324541623

12324546123

12341321565

12341325165

12343121565

12343125165

12343152165

12343152615

12343215652

12343251652

12343512165

12343512615

12345142163

12345142613

12345412163

12345412613

12345416213
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12345416231

12345416232

12345461213

12345461231

12345461232

3.13 Colorings with a specific number of oc-

currences of a color

How many insertion sequences of length n, if the UM algorithm is used, give
a coloring in which color c occurs exactly i times? We denote this number
by Nc(n, i).

In the following, we give an analysis for c = 1 and we exhibit a connection
with permutations with a specific number of valleys.

3.13.1 A connection of N1(n, i) with permutations with

i− 1 valleys

As we have already seen, the insertion sequences of n points in the interval
are in a 1-1 correspondence with the permutations of length n.

N1(n, i) is the number of insertion sequences of length n for which color
1 is repeated exactly i times, if the UM algorithm is used.

It is easy to find N1(n, 1). For n = 1, we have just N1(1, 1) = 1. Now,
the only way to maintain occurrence of color 1 exactly one time is to insert
the next point to the left or to the right of the unique point colored with
color 1, i.e., N1(n + 1, 1) = 2N1(n, 1), which gives N1(n, 1) = 2n−1.

N1(n, 1) is the same as the number of valleyless permutations of length
n. A permutation π is valleyless if the graph {(i, πi) | 1 ≤ i ≤ n} has
no valley, i.e., there is no i such that πi is less than a πi′ and a πi′′ , with
i′ < i < i′′. It is easy to see that valleyless permutations are increasing, or
decreasing, or increasing and then decreasing (in this last case, they have one
peak). See [48] on how a similar counting argument gives the above result on
N1(n, 1): The key observation is that in a valleyless permutation the smallest
element (i.e., 1) appears either at the leftmost end or the rightmost end of
the permutation.

In general N1(n, i) is the same as the number of permutations of length n
with exactly i−1 valleys. In order to compute N1(n, i), we need N1(1, i) = 0,
for i > 1. Now for n > 1, i > 1, how we can get a coloring of length n with
exactly i occurrences of 1? There are two ways:
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• Start with a n − 1 length coloring in which color 1 occurs exactly i
times and insert a point to the left or to the right of these colored with
1 points. There are 2i such positions because points colored with 1 are
not adjacent.

• Start with a n−1 length coloring in which color 1 appears exactly i−1
times and insert the new point at a position which is not adjacent to a
point colored with 1. There are n− 2(i− 1) such positions.

Thus, we get the recursive formula:

N1(n, i) = 2i ·N1(n− 1, i) + (n− 2(i− 1)) ·N1(n− 1, i− 1)

for n > 1, i > 1. A similar argument is used in [48], where, also, generating
functions are provided.

Therefore there is a 1-1 correspondence between permutations of length
n with exactly i − 1 valleys and colorings by the UM algorithm of length n
with exactly i occurrences of color 1.

3.14 The decrement operation on colorings

Consider the following operation on colorings: Delete all 1’s in a coloring
sequence and then decrease everything remaining by 1. We call this the
decrement operation and denote it by dec.

If we apply the decrement operation to a coloring produced by the greedy
algorithm, it is not always the case that we get a coloring that is conflict free:
For example, dec 212 = 11, which does not have the conflict free property.

However, if we apply dec to a coloring produced by the UM algorithm,
we get a coloring which can be produced by the UM algorithm. In fact, if
we have the insertion sequence that produced coloring C, we can (with the
help of the coloring) transform it to a sequence producing dec C. The proof
is elementary but tedious.

3.15 Insertions to the left or right of a point

In this section, we consider insertion sequences which always insert immedi-
ately to the left or to the right of an existing, already colored, point. We
restrict ourselves to the simple case where there is only one point colored
with 1, and all remaining points are inserted adjacent to that point, by using
the greedy or the UM algorithm.
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An insertion sequence of length n that inserts always to the left or to the
right of the ‘1’ that appeared in the first insertion, can be represented by a
binary sequence of length n−1. We call these sequences lr-sequences and we
represent an insertion to the left by ‘l ’ and an insertion to the right by ‘r ’.

For example, if the UM algorithm is used and we have the lr -sequence rll,
we get the coloring 3412. For completeness, the empty lr -sequence ε gives col-
oring 1. In the case of the UM algorithm, the colorings with one ‘1’ are exactly
the ones we get with the lr -sequences (as we have seen, N1(n, 1) = 2n−1).
However, with the greedy algorithm one can get a single ‘1’ in the coloring,
although there are insertions not immediately adjacent to the existing 1, e.g.,
the insertion sequence 0100 gives coloring 3212.

3.15.1 Use of colors by UM colorings with one ‘1’

In table 3.11, we show for each of the provided lengths, the lexicographically
first lr -sequence that gives the maximum use of colors for that length. In
table 3.12, we show the corresponding coloring of the lexicographically first
lr -sequence.

In table 3.13 we show for each length how many lr-sequences use some
number of colors (we also give the ratio in tables 3.14 and 3.15).

3.15.2 lr-sequences and the greedy algorithm

In the greedy algorithm, if insertions are always made immediately adjacent
to the first ‘1’ that appeared, insertions to the left take colors do not depend
on the colored points to the right of the ‘1’, and vice versa. This is because
the unique ‘1’ plays the role of a separator between the left and the right part
of the sequence. Thus, the coloring depends only on the number of insertions
to the left and to the right. The coloring of points to the left is similar to the
optimal coloring of the offline algorithm (see subsection 2.5.2): we already
have the unique ‘1’, so all other colors have to be shifted up by one color.
We have a symmetric coloring for points inserted to the right. This means,
that if we have il insertions to the left and ir insertions to the right, we have
n = 1 + il + ir, and 2 + ⌊lg max(il, ir)⌋ colors are used, where il + ir > 0.

Therefore, the maximum use of colors happens when all points are in-
serted in one of the two directions and is 2 + ⌊lg(n− 1)⌋, where n > 1.
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n lr -sequence

1 ε

2 l

3 ll

4 lrl

5 llll

6 lllrl

7 lllrll

8 lllrrrl

9 lllrllrl

10 lrrrlrlll

11 lllrrrllrl

12 lllllllrrrl

13 lllllllrrrll

14 lllrrrllrlrll

15 lllrrrllrlllll

16 lllllllrrrrrrrl

17 lllllllrrrllllrl

18 lllrrrllrlrllllll

19 lllrrrllrlllrlllll

20 lllllllrrrllrrrlrll

21 lllllllrrrllrlrlllll

22 lllrrrrrrrllrlrllllll

23 lllrrrrrrrllrlllrlllll

24 lllllllrrrllrrrlrllllll

25 lllllllrrrllrrrlllrlllll

26 lrrrlrllllllrrlllrlrrrrrl

27 llrllrlrrrrrrllrrrlrllllll

28 lllllllrrrrrrrllrrrlrllllll

29 lllllllrrrrrrrllrrrlllrlllll

30 lllllllrrrrrrrllllrllrlrlllll

31 lllllllrrrrrrrllllrllrlllrllll

32 lllllllrrrllrrrlrllllllllllllll

33 lllllllllrrrlrlllllrrlllrlrrrrrl

34 lllrrrllrlrlllllrlrlrllrlllrrrrrl

35 lllrrrllrlllrllllrlrlrllrlllrrrrrl

36 lllllllrrrrrrrllrrrlrllllllllllllll

37 lllllllrrrrrrrllrrrlllrlllllllllllll

Table 3.11: First lr-sequence using most colors for its length (UM)
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colors coloring

1 1
2 2 1
3 2 3 1
4 2 4 1 3
4 2 3 2 4 1
5 2 3 2 5 1 4
5 2 3 2 5 2 1 4
6 2 3 2 6 1 4 5 4
6 2 3 2 5 2 6 1 3 4
7 2 5 6 5 7 1 2 3 4 3
7 2 3 2 6 2 7 1 3 4 5 4
7 2 3 2 4 2 3 2 7 1 5 6 5
7 2 3 2 4 2 3 2 7 2 1 5 6 5
8 2 3 2 6 2 7 6 8 1 2 3 4 5 4
8 2 3 2 6 2 7 2 6 2 8 1 3 4 5 4
8 2 3 2 4 2 3 2 8 1 5 6 5 7 5 6 5
8 2 3 2 4 2 3 2 7 2 3 2 8 1 4 5 6 5
9 2 3 2 6 2 7 6 8 6 7 6 9 1 2 3 4 5 4
9 2 3 2 6 2 7 2 6 8 6 7 6 9 1 2 3 4 5 4
9 2 3 2 4 2 3 2 7 2 8 7 9 1 2 3 4 3 5 6 5
9 2 3 2 4 2 3 2 7 2 4 8 4 7 4 9 1 2 3 5 6 5

10 2 3 2 7 2 8 7 9 7 8 7 10 1 2 3 4 5 4 6 4 5 4
10 2 3 2 7 2 8 2 7 9 7 8 7 10 1 2 3 4 5 4 6 4 5 4
10 2 3 2 4 2 3 2 7 2 8 7 9 7 8 7 10 1 2 3 4 3 5 6 5
10 2 3 2 4 2 3 2 7 2 8 2 7 9 7 8 7 10 1 2 3 4 3 5 6 5
11 2 5 6 5 7 5 6 5 3 4 3 2 11 1 8 9 8 10 8 9 2 8 2 3 4 3
11 2 3 4 3 2 8 2 9 8 10 8 9 8 11 1 2 3 4 3 5 6 5 7 5 6 5 2
11 2 3 2 4 2 3 2 8 2 9 8 10 8 9 8 11 1 2 3 4 3 5 6 5 7 5 6 5
11 2 3 2 4 2 3 2 8 2 9 2 8 10 8 9 8 11 1 2 3 4 3 5 6 5 7 5 6 5
11 2 3 2 4 2 3 2 8 2 3 2 9 2 8 10 8 9 8 11 1 2 3 4 5 6 5 7 5 6 5
11 2 3 2 4 2 3 2 8 2 3 2 9 2 8 2 10 8 9 8 11 1 2 3 4 5 6 5 7 5 6 5
11 2 3 2 4 2 3 2 7 2 8 7 9 7 8 7 10 7 8 7 9 7 8 7 11 1 2 3 4 3 5 6 5
11 2 3 2 4 2 3 2 5 2 6 5 7 5 6 5 3 4 3 2 11 1 8 9 8 10 8 9 2 8 2 3 4 3
12 2 3 2 6 2 7 6 8 6 7 6 2 4 5 4 2 3 2 12 1 9 10 9 11 9 10 2 3 9 2 3 4 5 4
12 2 3 2 6 2 7 2 6 8 6 7 6 2 4 5 4 2 3 2 12 1 9 10 9 11 9 10 2 3 9 2 3 4 5 4
12 2 3 2 4 2 3 2 8 2 9 8 10 8 9 8 11 8 9 8 10 8 9 8 12 1 2 3 4 3 5 6 5 7 5 6 5
12 2 3 2 4 2 3 2 8 2 9 2 8 10 8 9 8 11 8 9 8 10 8 9 8 12 1 2 3 4 3 5 6 5 7 5 6 5

Table 3.12: Coloring of lr-sequence using most colors for its length (UM)
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n 2n−1 4 5 6 7 8 9 10 11

5 16 16
6 32 16 16
7 64 12 52
8 128 8 100 20
9 256 164 92

10 512 188 320 4
11 1024 172 812 40
12 2048 144 1636 268
13 4096 104 2916 1076
14 8192 60 4640 3468 24
15 16384 32 6724 9428 200
16 32768 16 9056 22632 1064
17 65536 11264 49692 4580
18 131072 12864 101384 16784 40
19 262144 13568 194492 53792 292
20 524288 13140 354144 155552 1452
21 1048576 11624 616476 413892 6584
22 2097152 9448 1030416 1030936 26328 24
23 4194304 7080 1660584 2431040 95436 164
24 8388608 4936 2586292 5476736 319796 848
25 16777216 3280 3893344 11872068 1004524 4000
26 33554432 2080 5665196 24878724 2991572 16856 4
27 67108864 1240 7962648 50585080 8495320 64544 32

Table 3.13: Number of lr-sequences that use k colors (UM)

n 2n−1 4 5 6 7 8

5 16 1.000000
6 32 0.500000 0.500000
7 64 0.187500 0.812500
8 128 0.062500 0.781250 0.156250
9 256 0.640625 0.359375

10 512 0.367188 0.625000 0.007812
11 1024 0.167969 0.792969 0.039062
12 2048 0.070312 0.798828 0.130859
13 4096 0.025391 0.711914 0.262695
14 8192 0.007324 0.566406 0.423340 0.002930
15 16384 0.001953 0.410400 0.575439 0.012207
16 32768 0.000488 0.276367 0.690674 0.032471

Table 3.14: Ratio of lr-sequences using k colors (UM) up to 16
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3.16 Relative insertion sequences

Another way to describe insertion of points, is to specify where the new point
is inserted, related to the last inserted point. If the i-th point is to be inserted,
and the last point (i.e., the i − 1-th) is at position p, where 1 ≤ p ≤ i − 1,
then the allowed relative positions for insertion range from −p to −1 and
from +1 to +(i− p). Negative relative insertions correspond to insertions to
the left of the last inserted point, and positive relative insertions correspond
to insertions to the right of the last insertion point. As is the case for lr -
sequences, the empty relative insertion sequence ε corresponds to only one
point inserted. For example, the relative insertion sequence [+1,−2,−1, +3]
corresponds to insertion sequence 01003.

3.16.1 1-local relative insertions

We will restrict the relative insertion sequences to insertions which are not
far from the last inserted point. The most restricted case is the one in which
we only allow insertions adjacent to the last inserted point, either to the left
or to the right, i.e., we only allow a −1 or a +1 insertion. We denote a −1
insertion by L and a +1 insertion by R.

In table 3.16, we show for each of the provided lengths, the lexicographi-
cally first 1-local relative sequence that gives the maximum use of colors for
that length, when the unique maximum algorithm is used. In table 3.17, the
corresponding coloring is given.

In table 3.18, we show for each of the provided lengths, the lexicograph-
ically first 1-local relative sequence that gives the maximum use of colors
for that length, when the full greedy algorithm is used. In table 3.19, the
corresponding coloring is given.

3.17 Color use of different sequences in UM

In table 3.20, for several kinds of sequences, we give the minimum length
sequence that achieves the use of k colors, when the UM algorithm is used.
The abbreviations used for kinds of sequences are:

• any: all possible sequences

• lr: all lr -sequences

• 1-loc: all 1-local sequences
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• alt: alternating sequence: lrlrlrlrlrlr . . .

• btw2: insert between the last two points inserted sequence: 0 1 1 2 2 3
3 4 4 . . .

• 0∗: insert always at the left end (all-zero sequence)

• root: the Ck coloring sequence of section 3.11

We denote by ℓS(k) the length of the shortest sequence in set S that uses
k colors. Then, we just have the following closed formulae:

ℓ0∗(k) = 2k−1 ℓroot(k) = (k2 − k + 2)/2

3.18 Color use of different lr-sequences in UM

In this section, we try to describe structured lr -sequences that achieve high
use of colors. In these lr -sequences, colorings that resemble the coloring
produced by the 0n insertion sequence play an important role. If all colors
from 1 to q− 1 are seen from a point, then insertion of nT (q, r) := 2r−q+1− 1
points (r ≥ q ≥ 1) at that same position gives a coloring subsequence that
resembles the coloring of the 0nT (q,r) insertion sequence, where each color is
shifted up by q − 1. We denote such a subsequence by 〈q..r..q〉, and call
it a tree subcoloring. For example, 〈3..5..3〉 = 3435343, corresponds to the
coloring 1213121, produced by insertion sequence 07.

If we insert all points of an lr -sequence in one direction, we can get the
coloring:

1 k 〈2..k − 1..2〉 ,
where k ≥ 3, which achieves k colors with 2k−2 + 1 insertions. We call these
sequences 0 − ch, because there is no change in the direction of inserting
points.

Another approach is to build two tree subcolorings on the two sides of
the ‘1’, to finally get a coloring:

〈2..j..2〉 1 k 〈j + 1..k..j + 1〉 ,

where j ≥ 2, k ≥ j + 1, which achieves k colors with 2j−1 + 2k − j − 1
insertions. Number of insertions is minimized, if we take j = ⌊k/2⌋ (we try
to minimize 2x +2y, when the sum x+y is constant). We call these sequences
1-ch, because they have one change in the direction of insertion (just from
left to right).
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We are now going to give a coloring produced by 2 changes in the direction
of insertion, that achieves k colors with less insertions:

2, 〈j + 1..k − 1..j + 1〉 , k, 1, 2, 〈3..j..3〉 ,

where j ≥ 3, k ≥ j + 2, which achieves k colors with 4 + nT (3, j) + nT (j +
1, k − 1) insertions. We minimize number of insertions by taking j = ⌈k/2⌉.
We call these sequences 2-ch.

In table 3.21, for several kinds of lr-sequences, we give the minimum
length sequence that achieves the use of k colors, when the UM algorithm is
used.
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n 2n−1 6 7 8 9 10 11

17 65536 0.171875 0.758240 0.069885
18 131072 0.098145 0.773499 0.128052 0.000305
19 262144 0.051758 0.741928 0.205200 0.001114
20 524288 0.025063 0.675476 0.296692 0.002769
21 1048576 0.011086 0.587917 0.394718 0.006279
22 2097152 0.004505 0.491341 0.491589 0.012554 0.000011
23 4194304 0.001688 0.395914 0.579605 0.022754 0.000039
24 8388608 0.000588 0.308310 0.652878 0.038123 0.000101
25 16777216 0.000196 0.232061 0.707630 0.059874 0.000238
26 33554432 0.000062 0.168836 0.741444 0.089156 0.000502 0.000000
27 67108864 0.000018 0.118653 0.753776 0.126590 0.000962 0.000000

Table 3.15: Ratio of lr-sequences using k colors (UM) over 16
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n 1-local sequence used

1 ε 1
2 L 2
3 LR 3
4 LLL 3
5 LLLR 4
6 LLLRL 4
7 LLLRRR 5
8 LLLRLLR 5
9 LRRRLRLL 6

10 LLLRRRLLR 6
11 LLLLLLLRRR 6
12 LLLLLLLRRRL 6
13 LLLRRRLLRLRL 7
14 LLLRRRLLRLLLL 7
15 LLLLLLLRRRRRRR 7
16 LLLLLLLRRRLLLLR 7
17 LLLRRRLLRLRLLLLL 8
18 LLLRRRLLRLLLRLLLL 8
19 LLLLLLLRRRLLRRRLRL 8
20 LLLLLLLRRRLLRLRLLLL 8
21 LLLRRRRRRRLLRLRLLLLL 9
22 LLLRRRRRRRLLRLLLRLLLL 9
23 LLLLLLLRRRLLRRRLRLLLLL 9
24 LLLLLLLRRRLLRRRLLLRLLLL 9
25 LRRRLRLLLLLLRRLLLRLRRRRR 10
26 LLRLLRLRRRRRRLLRRRLRLLLLL 10
27 LLLLLLLRRRRRRRLLRRRLRLLLLL 10
28 LLLLLLLRRRRRRRLLRRRLLLRLLLL 10
29 LLLLLLLRRRRRRRLLLLRLLRLRLLLL 10
30 LLLLLLLRRRRRRRLLLLRLLRLLLRLLL 10
31 LLLLLLLRRRLLRRRLRLLLLLLLLLLLLL 10
32 LLLLLLLLLRRRLRLLLLLRRLLLRLRRRRR 10
33 LLLRRRLLRLRLLLLLRLRLRLLRLLLRRRRR 11
34 LLLRRRLLRLLLRLLLLRLRLRLLRLLLRRRRR 11
35 LLLLLLLRRRRRRRLLRRRLRLLLLLLLLLLLLL 11
36 LLLLLLLRRRRRRRLLRRRLLLRLLLLLLLLLLLL 11

Table 3.16: First 1-local sequence using most colors for its length (UM)



80 Chapter 3. Greedy algorithms for online conflict-free coloring

coloring

1
2 1
2 3 1
3 1 2 1
3 4 1 2 1
3 1 4 1 2 1
3 4 3 5 1 2 1
3 2 5 1 4 1 2 1
2 3 2 1 6 4 5 4 1
3 4 3 2 6 1 5 1 2 1
4 5 4 6 1 2 1 3 1 2 1
4 5 4 1 6 1 2 1 3 1 2 1
3 4 3 2 1 7 5 6 1 5 1 2 1
3 4 3 2 7 1 5 1 6 1 5 1 2 1
4 5 4 6 4 5 4 7 1 2 1 3 1 2 1
4 5 4 3 7 1 2 1 6 1 2 1 3 1 2 1
3 4 3 2 1 8 5 6 5 7 5 6 1 5 1 2 1
3 4 3 2 1 8 5 6 5 7 5 1 6 1 5 1 2 1
4 5 4 2 3 2 1 8 6 7 1 6 1 2 1 3 1 2 1
4 5 4 2 1 8 3 6 3 7 3 1 6 1 2 1 3 1 2 1
3 4 3 5 3 4 3 2 1 9 6 7 6 8 6 7 1 6 1 2 1
3 4 3 5 3 4 3 2 1 9 6 7 6 8 6 1 7 1 6 1 2 1
4 5 4 2 3 2 1 9 6 7 6 8 6 7 1 6 1 2 1 3 1 2 1
4 5 4 2 3 2 1 9 6 7 6 8 6 1 7 1 6 1 2 1 3 1 2 1
2 3 2 1 7 1 8 7 9 7 8 7 10 1 2 3 2 4 5 4 6 4 5 4 1
1 4 5 4 6 4 5 4 2 3 2 1 10 7 8 7 9 7 8 1 7 1 2 3 2 1
4 5 4 6 4 5 4 2 3 2 1 10 7 8 7 9 7 8 1 7 1 2 1 3 1 2 1
4 5 4 6 4 5 4 2 3 2 1 10 7 8 7 9 7 1 8 1 7 1 2 1 3 1 2 1
4 5 4 6 4 5 4 3 2 1 10 7 8 7 9 7 1 8 1 2 1 7 1 2 1 3 1 2 1
4 5 4 6 4 5 4 3 2 1 10 7 8 7 9 1 7 1 8 1 2 1 7 1 2 1 3 1 2 1
4 5 4 2 3 2 1 10 6 7 6 8 6 7 6 9 6 7 6 8 6 7 1 6 1 2 1 3 1 2 1
2 3 2 1 7 1 8 7 9 7 8 7 10 1 2 3 2 4 5 4 6 4 5 1 4 1 2 1 3 1 2 1
3 4 3 2 1 8 2 1 9 8 10 8 9 8 11 1 2 1 3 4 3 1 5 6 5 7 5 6 1 5 1 2 1
3 4 3 2 1 8 2 1 9 8 10 8 9 8 11 1 2 1 3 4 3 1 5 6 5 7 5 1 6 1 5 1 2 1
4 5 4 6 4 5 4 2 3 2 1 11 7 8 7 9 7 8 7 10 7 8 7 9 7 8 1 7 1 2 1 3 1 2 1
4 5 4 6 4 5 4 2 3 2 1 11 7 8 7 9 7 8 7 10 7 8 7 9 7 1 8 1 7 1 2 1 3 1 2 1

Table 3.17: Coloring of first 1-local sequence using most colors for its length
(UM)
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n 1-local sequence used
1 ε 1
2 L 2
3 LR 3
4 LLL 3
5 LLLR 4
6 LLLRL 4
7 LLLRRR 5
8 LLLRRRL 5
9 LLLLLLLR 5

10 LLLLLLLRL 5
11 LLLLLLLRRR 6
12 LLLLLLLRRRL 6
13 LLLLLLLRRRLL 6
14 LLLLLLLRRRLLL 6
15 LLLLLLLRRRRRRR 7
16 LLLLLLLRRRRRRRL 7
17 LLLLLLLRRRRRRRLL 7
18 LLLLLLLRRRRRRRLLL 7
19 LRLLLLLRLRLLRRRRRR 8
20 LLRLLLLLRLRLLRRRRRR 8
21 LLLLLRLLLRLRLLRRRRRR 8
22 LLLLLLRLLLRLRLLRRRRRR 8
23 LLLLLLLLLLLLLLLRRRRRRR 8
24 LLLLLLLLLLLLLLLRRRRRRRL 8
25 LLLRRRRRRLRRRLRRRRLLLLLL 9
26 LLLRRRRRRLLRLLRLRLRRLLLLL 9
27 LLLRLLRRLLLRLLLRLLLLRRRRRR 9

Table 3.18: First 1-local sequence using most colors for its length (greedy)
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coloring
1
2 1
2 3 1
3 1 2 1
3 4 1 2 1
3 1 4 1 2 1
3 4 3 5 1 2 1
3 4 3 1 5 1 2 1
4 5 1 2 1 3 1 2 1
4 1 5 1 2 1 3 1 2 1
4 5 4 6 1 2 1 3 1 2 1
4 5 4 1 6 1 2 1 3 1 2 1
4 5 4 2 1 6 1 2 1 3 1 2 1
4 5 4 1 2 1 6 1 2 1 3 1 2 1
4 5 4 6 4 5 4 7 1 2 1 3 1 2 1
4 5 4 6 4 5 4 1 7 1 2 1 3 1 2 1
4 5 4 6 4 5 4 2 1 7 1 2 1 3 1 2 1
4 5 4 6 4 5 4 1 2 1 7 1 2 1 3 1 2 1
2 1 5 6 5 7 5 6 5 8 2 1 2 3 1 4 1 3 1
1 2 5 6 5 7 5 6 5 8 1 2 1 3 2 4 2 3 2 1
2 1 5 6 5 7 5 6 5 8 2 1 2 3 1 4 1 3 1 2 1
1 2 5 6 5 7 5 6 5 8 1 2 1 3 2 4 2 1 3 1 2 1
5 6 5 7 5 6 5 8 1 2 1 3 1 2 1 4 1 2 1 3 1 2 1
5 6 5 7 5 6 5 1 8 1 2 1 3 1 2 1 4 1 2 1 3 1 2 1
3 4 3 5 3 4 1 2 1 3 1 2 1 9 6 7 6 8 6 7 6 3 1 2 1
3 4 3 5 3 4 2 3 1 2 1 9 6 7 6 8 6 7 2 1 6 1 3 1 2 1
3 2 3 1 6 7 6 8 6 7 6 9 2 3 2 1 2 3 2 4 1 5 1 4 1 2 1

Table 3.19: Coloring of first 1-local sequence using most colors for its length
(greedy)
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k any lr 1-loc alt btw2 0∗ root
1 1 1 1 1 1 1 1
2 2 2 2 2 2 2 2
3 3 3 3 3 3 4 4
4 4 4 5 4 5 8 7
5 6 6 7 6 9 16 11
6 8 8 9 10 12 32 16
7 10 10 13 13 17 64 22
8 12 14 17 18 29 128 29
9 14 18 21 30 45 256 37

10 ? 22 25 46 81 512 46
11 26 33 82 105 .. 56
12 34 ? 106 177 67
13 ? 178 245 79
14 246 323 92

Table 3.20: Minimum length sequence that uses k colors (UM)

k any lr 0-ch 1-ch 2-ch
1 1 1 1 1
2 2 2 2 2
3 3 3 3 3
4 4 5 4 4
5 6 9 6 6
6 8 17 8 8
7 10 33 12 10
8 14 65 16 14
9 18 129 24 18

10 22 257 32 26
11 26 513 48 34
12 34 .. 64 50
13 ? 96 66
14 128 98

Table 3.21: Minimum length lr-sequence that uses k colors (UM)
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3.19 Analysis for first-fit greedy and UM

We consider uniquely occurring colors in a coloring. We considered the case
for the greedy algorithm in 3.7.1. In this section, we study the case for both
the greedy and the unique maximum algorithm in more detail.

In both the greedy and the UM algorithm, bigger uniquely occurring
colors appear later (during the insertion) than smaller uniquely occurring
colors, i.e., if u, u′ are uniquely occurring colors with u < u′, then u′ appeared
after u. This is obvious from the minimality of the chosen color at each
insertion for both algorithms.

In the following, we are going to use u1, u2, u3, u4 for the uniquely
occurring colors, where:

u1 < u2 < u3 < u4.

Let’s consider relative positions of uniquely occurring colors in a coloring.
If we have two uniquely occurring colors, then, for both the greedy and the
UM algorithm, we have the following possibilities:

. . . u1 . . . u2 . . .

. . . u2 . . . u1 . . .

The two relative positions are in fact symmetric. We remark, that in the
following, all relative positions come in symmetric pairs.

Now, for a third uniquely occurring color to appear, if the greedy algo-
rithm is used, this happens only if we have an insertion between u1 and u2.
In all other cases, a color can be reused, so:

. . . u1 . . . u3 . . . u2 . . .

. . . u2 . . . u3 . . . u1 . . .

For a third uniquely occurring color in the UM algorithm, the above
relative positions are also possible, but additionally, there can be two more
cases, in which u3 sees both u1 and u2 at the same direction; this means that
u3 has to be closer to u1 than u2, because u1 < u2. Therefore, we have the
previous two relative positions plus two new ones:

. . . u1 . . . u3 . . . u2 . . .

. . . u2 . . . u3 . . . u1 . . .

. . . u2 . . . u1 . . . u3 . . .

. . . u3 . . . u1 . . . u2 . . .
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Note however, that neither in the greedy nor in the UM algorithm in-
creasing colors appear in increasing point positions, i.e., we can not have a
situation like:

. . . u1 . . . u2 . . . u3 . . .

(or the symmetric one).

Now, we already have seen that four uniquely occurring colors are not
possible in the greedy algorithm (see lemma 36). For the UM algorithm,
however, this is possible to happen. It can only happen if in the last two
cases of three uniquely appearing colors for UM, i.e.:

. . . u2 . . . u1 . . . u3 . . .

. . . u3 . . . u1 . . . u2 . . .

the new point sees all uniquely occurring colors. For each of the above relative
positions with three uniquely occurring colors, we have two possibilities:

. . . u2 . . . u1 . . . u4 . . . u3 . . .

. . . u2 . . . u4 . . . u1 . . . u3 . . .

. . . u3 . . . u1 . . . u4 . . . u2 . . .

. . . u3 . . . u4 . . . u1 . . . u2 . . .

Now, by inspection of the above relative positions, it can be easily seen
that there can be no fifth uniquely occurring color with the UM algorithm:
Any newly inserted point must be left or right from u4, but then this newly
inserted point does not see some uniquely appearing color, because u4 has
uniquely occurring colors to both directions. Therefore, we have the following
lemma:

Lemma 41. In any coloring by the UM algorithm there are at most four
distinct colors with the following property: each of those colors occurs exactly
once.

3.20 Statistics for uniquely occurring colors

In table 3.22 we show how many uniquely occurring colors we have for se-
quences of each length, for lengths up to 13, for the greedy algorithm.

In table 3.23 we show how many uniquely occurring colors we have for
sequences of each length, for lengths up to 14, for the UM algorithm.
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n 1 unique 2 unique 3 unique
1 1 0 0
2 0 2 0
3 4 0 2
4 0 24 0
5 88 20 12
6 376 288 56
7 1 468 3 484 88
8 17 348 21 860 1 112
9 235 060 107 788 20 032

10 2 221 544 1 182 520 224 736
11 19 604 800 18 455 648 1 856 352
12 187 378 584 276 847 216 14 775 800
13 2 391 648 240 3 658 809 800 176 562 760

Table 3.22: Number of unique occurrences for greedy algorithm

n 1 unique 2 unique 3 unique 4 unique
1 1 0 0 0
2 0 2 0 0
3 2 0 4 0
4 0 20 0 4
5 32 16 72 0
6 96 376 184 64
7 552 2 820 1 260 408
8 7 568 14 092 16 952 1 708
9 64 772 136 272 141 672 20 164

10 492 364 1 751 844 1 092 744 291 848
11 5 000 896 19 817 256 11 880 548 3 218 100
12 69 109 940 209 303 084 168 269 416 32 319 160
13 1 008 959 956 2 416 125 020 2 430 550 536 371 385 288
14 14 076 837 648 34 140 836 472 33 395 758 308 5 564 858 772

Table 3.23: Number of unique occurrences for UM algorithm
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3.21 The leveled algorithm

The leveled algorithm (la) is the best deterministic algorithm known so far.
It was introduced in [27]. It is proved there that it uses O(log2 n) colors in
the worst case. It is also mentioned there that there are insertion sequences
that force la to use Θ(log2 n) colors, but no such sequence is given. Here,
we make some observations about the algorithm and give some bad insertion
sequence, that uses Θ(log2 n) colors; we also prove that this sequence can be
colored with O(log n) colors if the first-fit greedy algorithm is used on it.

We sketch how the leveled algorithm works, and for more details, we refer
the interested reader to [27]: The algorithm colors points in levels. In every
level, points are colored independently by using a substring of the optimal
static coloring (1213121. . . ). Therefore the number of colors per level is
logarithmic on the number of points per level. In order to maintain this
logarithmic number of colors, each level is extended only if points appear to
the left or to the right of all points in the level. If a point appears between
two points in the level, the point is deferred for coloring in a higher level. It
can be proved (with the help of a binomial tree argument; see [19]) that the
number of levels is logarithmic on n. Therefore, the algorithm uses O(log2 n)
colors.

3.22 A bad insertion sequence for the leveled

algorithm

We describe an insertion sequence (in fact a sequence of insertion sequences)
that forces the leveled algorithm to use Ω(log2 n) colors.

We will describe an insertion sequence of size n = 2k − 1 which forces
the leveled algorithm to use k(k + 1)/2 = Ω(log2 n) colors. We will describe
it with the help of the tree form of the optimal static coloring. Consider
the optimal static coloring Ck for n = 2k − 1. Define the following insertion
sequence: Request the points that are colored with color 1 from left to right,
then request the points that are colored with 2 from left to right, and so on,
until you request the point colored with k. Each color class in Ck is colored
in the same level of the leveled algorithm. We have a logarithmic color of
levels (with respect to n) and it can be proved that the total number of colors
is Ω(log2 n).

The coloring, in a tree-like form, of the above bad sequence by the leveled
algorithm, for n = 15 = 24 − 1 is shown in figure 3.1.

However, the above bad sequence can be colored with a logarithmic num-
ber of colors. For example, the first-fit greedy algorithm can be used. The
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(4, 1)

(3, 1)

(2, 1)

(1, 1) (1, 2)

(2, 2)

(1, 1) (1, 3)

(3, 2)

(2, 1)

(1, 1) (1, 2)

(2, 3)

(1, 1) (1, 4)

Figure 3.1: The bad sequence coloring by leveled (n = 15)

coloring, in a tree-like form, of the above bad sequence by the first-fit greedy
algorithm, for n = 15 = 24 − 1, is shown in figure 3.2.

4

5

4

1 2

2

1 3

4

4

1 2

5

1 4

Figure 3.2: The bad sequence coloring by FF (n = 15)

3.23 Use of colors by the leveled algorithm

for small lengths

In table 3.24 we show the best and worst use of colors for all sequences of
the same length, for some small lengths.

In table 3.25 we show the first appearing insertion sequence (in the lexi-
cographic order) which uses the maximum color for some lengths.

In table 3.26 we show for each length how many sequences use some
number of colors (we also give the ratio in table 3.27).
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n best worst
1 1 1
2 2 2
3 2 3
4 3 4
5 3 5
6 3 5
7 3 6
8 4 7
9 4 8

10 4 8
11 4 9
12 4 9
13 4 9

Table 3.24: Best and worst use of colors for level

n sequence coloring
3 0 0 1 2 3 1
4 0 0 2 1 2 4 1 3
5 0 0 2 1 3 2 4 1 5 3
6 0 0 0 0 1 3 3 4 1 5 2 1
7 0 0 0 0 1 4 3 3 4 1 6 2 5 1
8 0 0 0 0 4 1 4 3 3 5 1 7 2 6 1 4
9 0 0 0 0 4 2 1 6 5 3 6 1 5 2 8 1 7 4

10 0 0 0 0 0 5 2 1 6 5 1 6 3 5 1 8 2 7 1 4
11 0 0 0 0 0 5 3 1 7 3 7 1 6 3 8 1 5 2 9 1 7 4
12 0 0 0 0 0 0 6 3 1 7 3 7 2 6 1 8 3 5 1 9 2 7 1 4
13 0 0 0 0 0 0 0 0 3 1 7 3 7 4 6 1 8 2 5 1 9 3 7 1 2 1

Table 3.25: First sequence using most colors for its length for level
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n n! 3 4 5 6 7 8 9
4 24 20 4
5 120 46 70 4
6 720 84 484 152
7 5040 84 2508 2292 156
8 40320 10608 24792 4824 96
9 362880 40142 221442 96584 4688 24

10 3628800 150028 1794932 1536208 145696 1936
11 39916800 561584 14080204 21578556 3593984 102056 416
12 479001600 1947888 109770416 286295216 76923664 4029312 35104
13 6227020800 5466716 851005228 3716580956 1521219420 130620924 2127556

Table 3.26: Sequences using numbers of colors for level

n n! 3 4 5 6 7 8 9
4 24 0.833333 0.166667
5 120 0.383333 0.583333 0.033333
6 720 0.116667 0.672222 0.211111
7 5040 0.016667 0.497619 0.454762 0.030952
8 40320 0.263095 0.614881 0.119643 0.002381
9 362880 0.110621 0.610235 0.266160 0.012919 0.000066

10 3628800 0.041344 0.494635 0.423338 0.040150 0.000534
11 39916800 0.014069 0.352739 0.540588 0.090037 0.002557 0.000010
12 479001600 0.004067 0.229165 0.597692 0.160592 0.008412 0.000073
13 6227020800 0.000878 0.136663 0.596847 0.244293 0.0209 76 0.000342

Table 3.27: Sequences ratio using numbers of colors for level
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3.24 Unique occurrences of colors

In table 3.28 we show how many uniquely occurring colors we have for se-
quences of each length, for small lengths, for the greedy algorithm.

n 1 2 3 4 5 6 7 8
1 1
2 0 2
3 2 0 4
4 0 20 0 4
5 30 16 70 0 4
6 84 288 196 152
7 238 2166 1476 1004 156
8 2700 10492 19400 5200 2432 96
9 23446 89156 155452 75452 16366 2984 24

10 213552 1003920 1221808 1012240 142544 33328 1408
11 2696764 10287516 14186636 10011384 2468164 238512 27672 152
12 35334712 117409476 185619560 101229500 35977184 3149376 272688 9104
13 446095836 1655726022 2340827526 1270008064 449473540 62104044 2615864 169904

Table 3.28: Uniquely occurring colors for level

In table 3.29 we show the ratio of uniquely occurring colors we have for
sequences of each length, for small lengths, for the greedy algorithm.

n 1 2 3 4 5 6 7 8
1 1.000000
2 0.000000 1.000000
3 0.333333 0.000000 0.666667
4 0.000000 0.833333 0.000000 0.166667
5 0.250000 0.133333 0.583333 0.000000 0.033333
6 0.116667 0.400000 0.272222 0.211111
7 0.047222 0.429762 0.292857 0.199206 0.030952
8 0.066964 0.260218 0.481151 0.128968 0.060317 0.002381
9 0.064611 0.245690 0.428384 0.207925 0.045100 0.008223 0.000066

10 0.058849 0.276653 0.336698 0.278946 0.039281 0.009184 0.000388
11 0.067560 0.257724 0.355405 0.250806 0.061833 0.005975 0.000693 0.000004
12 0.073767 0.245113 0.387513 0.211334 0.075109 0.006575 0.000569 0.000019
13 0.071639 0.265894 0.375915 0.203951 0.072181 0.009973 0.000420 0.000027

Table 3.29: Uniquely occurring colors for level ratio

3.25 The static case for rings

The following is true for any ring-coloring (not just for the ones produced by
the greedy algorithm):



92 Chapter 3. Greedy algorithms for online conflict-free coloring

Proposition 42. In every ring coloring of n ≥ 2 points, there must be at
least two uniquely occurring colors.

Proof. If there is only one uniquely occurring color, given to some point p,
consider the interval containing all points except p. Then this interval does
not have the conflict-free property.

In fact, for static ring CF-coloring, one can prove a bound similar to the
1+⌊lg n⌋ for the intervals case. The main idea is to remove a vertex from the
ring, color it with a unique color, and then color the remaining vertices with
an optimal intervals coloring. This gives a coloring that uses 2 + ⌊lg (n− 1)⌋
colors.

The above result is tight:

Proposition 43. A ring of size n can be colored with 2 + ⌊lg (n− 1)⌋ colors,
but not less.

Proof. Take out a unique colored vertex in the ring. The remaining n − 1
vertices use ⌊lg(n− 1)⌋ colors and constitute an intervals CF coloring, which
is impossible since you need at least 1 + ⌊lg(n − 1)⌋ colors to color n − 1
points with respect to intervals.

3.26 The greedy algorithm for ring coloring

The greedy algorithm does the following: For each new point inserted, try to
color it with the minimum color possible, such that the conflict-free property
is maintained.

For each new point inserted, you only need to check the intervals in which
this point lies and give the new point the minimum color that makes all those
intervals have the uniquely occurring color property. This idea is helpful in
proofs too. To prove that a coloring is conflict-free after an insertion of a
point in an already conflict-free color sequence, you have just to check those
new intervals.

3.26.1 Use of colors by greedy for small lengths

In table 3.30 we show the best and worst use of colors for all sequences of
the same length, for some small lengths.

In table 3.31 we show the first appearing insertion sequence (in the lexi-
cographic order) which uses the maximum color for some lengths.

In table 3.32 we show for each length how many sequences use some
number of colors (we also give the ratio in table 3.33).
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n best worst
1 1 1
2 2 2
3 3 3
4 3 3
5 4 4
6 4 4
7 4 5
8 4 5
9 5 6

10 5 6
11 5 7
12 5 7
13 ? ?

Table 3.30: Best and worst use of colors for first-fit greedy

n sequence coloring
7 0 0 0 0 0 1 2 4 1 5 2 3 2 1
8 0 0 0 0 0 0 0 1 3 5 2 4 2 3 2 1
9 0 0 0 0 0 2 2 6 4 4 2 5 1 6 3 2 3 1

10 0 0 0 0 0 0 0 1 2 5 3 5 1 2 4 6 2 3 2 1
11 0 0 0 0 0 2 2 6 4 8 8 4 2 5 1 6 3 2 3 7 4 1
12 0 0 0 0 0 0 0 1 2 5 6 7 3 5 1 2 4 6 4 7 2 3 2 1

13? ?0 0 0 0 1 3 6 7 6 9 8 11 11 ? ?3 4 1 3 2 1 5 2 6 5 6 7 8 7

Table 3.31: First sequence using most colors for its length for greedy

n n! 4 5 6 7 8
7 5040 3024 2016
8 40320 6912 33408
9 362880 351756 11124

10 3628800 3165440 463360
11 39916800 27364876 12544224 7700
12 479001600 218942736 259484736 574128

Table 3.32: Sequences using numbers of colors for first-fit greedy



94 Chapter 3. Greedy algorithms for online conflict-free coloring

3.26.2 Unique occurrences of colors

As is the case for the non-ring case, in the greedy algorithm there can not
be more than three uniquely occurring colors. If there are three uniquely
occurring colors, u1, u2, u3, and a new point is inserted so that it is closer to
u1 and u2 than u3, then it can be legally colored with color u3.

In table 3.34 we show how many uniquely occurring colors we have for
sequences of each length, for small lengths, for the greedy algorithm.

In table 3.35 we show the ratio of uniquely occurring colors we have for
sequences of each length, for small lengths, for the greedy algorithm.

3.27 The UM algorithm for ring coloring

The UM algorithm behaves very differently in the ring case, because now a
lot more colors are visible, when inserting a new point; this leads in some
cases in heavy color use.

3.27.1 Color use in UM

In table 3.36 we show the best and worst use of colors for some small lengths
of insertion sequences.
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n n! 4 5 6 7 8
7 5040 0.600000 0.400000
8 40320 0.171429 0.828571
9 362880 0.969345 0.030655

10 3628800 0.872310 0.127690
11 39916800 0.685548 0.314259 0.000193
12 479001600 0.457081 0.541720 0.001199

Table 3.33: Sequences ratio using numbers of colors for first-fit greedy

n 1 unique 2 unique 3 unique
1 1 0 0
2 0 2 0
3 0 0 6
4 0 24 0
5 0 0 120
6 0 648 72
7 0 3 024 2 016
8 0 15 424 24 896
9 0 195 732 167 148

10 0 2 760 080 868 720
11 0 27 587 164 12 329 636
12 0 268 854 768 210 146 832

Table 3.34: Uniquely occurring colors for greedy

n 1 unique 2 unique 3 unique
1 1.000000 0.000000 0.000000
2 0.000000 1.000000 0.000000
3 0.000000 0.000000 1.000000
4 0.000000 1.000000 0.000000
5 0.000000 0.000000 1.000000
6 0.000000 0.900000 0.100000
7 0.000000 0.600000 0.400000
8 0.000000 0.382540 0.617460
9 0.000000 0.539385 0.460615

11 0.000000 0.691117 0.308883
12 0.000000 0.561282 0.438718

Table 3.35: Uniquely occurring colors for greedy ratio
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n best worst
1 1 1
2 2 2
3 3 3
4 3 4
5 4 5
6 4 6
7 4 7
8 4 8
9 5 9

10 5 10
11 ? 11
12 ? 12
13 ? 13

Table 3.36: Best and worst use of colors for UM
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Logarithmic online algorithms

4.1 Description of the 2 lg n algorithm

We present a recursive algorithm, that uses at most 2 lg n colors to color
correctly online a sequence of absolute point positions (for the definition of
input sequences of absolute positions, see section 3.2). We assume that the
total number of points n is also given. See also [8, 9].

The core of the algorithm is a way to color any permutation π of absolute
positions of points with b = b(n) (we will give b(n) soon) colors, such that
the two maximum colors uL

b = b − 1 and uR
b = b appear relatively close to

the center of the coloring. Color b−1 appears to the left and color b appears
to the right. Relatively close means that these unique colors both appear
somewhere in the n/2 central points of the coloring. The value of b(n) will
be the smallest even integer such that n ≤ 2b/2, except if n ≤ 2, when it is
2. Another way to put it is b(n) = 2|bin(n− 1)|, where |bin(x)| is the length
of the binary representation of x:

|bin(x)| =
{

1, x = 0

1 + ⌊lg x⌋, x > 0

This achieves the approximately 2 lg n bound. The maximum number of
points to color with b colors is nmax(b) = 2b/2.

More typically, given l ≤ nmax(b(n))/2, r ≤ nmax(b(n))/2, the following
intervals are defined, in a l + r = n length coloring:

• leftmost interval : from 1 to ⌊l/2⌋

• left middle interval : from ⌊l/2⌋+ 1 to l

• right middle interval : from l + 1 to l + ⌈r/2⌉

97
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• rightmost interval : from l + ⌈r/2⌉+ 1 to l + r

(l and r can also be 0 or 1, in which case, some intervals are empty). The
leftmost and the left middle intervals comprise the left part of the coloring
and the right middle and rightmost intervals comprise the right part of the
coloring. The size of the intervals is shown below:

l
︷ ︸︸ ︷

leftmost
︸ ︷︷ ︸

⌊l/2⌋

| left middle
︸ ︷︷ ︸

⌈l/2⌉

|
r

︷ ︸︸ ︷

right middle
︸ ︷︷ ︸

⌈r/2⌉

| rightmost
︸ ︷︷ ︸

⌊r/2⌋

We remark that there is a slight preference to the middle intervals (use of
the ceiling, instead of the floor function). This will prove helpful later in the
proof of correctness of the algorithm.

The algorithm colors any permutation π of length n, in a way such that
at most b colors are used and if l ≥ 1, then uL

b occurs uniquely, somewhere
in the left middle interval and if r ≥ 1, then uR

b occurs uniquely, somewhere
in the right middle interval:

l
︷ ︸︸ ︷

. . . . . .
︸ ︷︷ ︸

⌊l/2⌋

| . . . uL
b . . .

︸ ︷︷ ︸

⌈l/2⌉

|
r

︷ ︸︸ ︷

. . . uR
b . . .

︸ ︷︷ ︸

⌈r/2⌉

| . . . . . .
︸ ︷︷ ︸

⌊r/2⌋

This is achieved by reserving color uL
b for the first point that appears in the

left middle interval and never reusing it, and by reserving uR
b for the first

point that appears in the right middle interval and never reusing it.

Initially, if the algorithm is given n points, in order to use b = b(n)
colors, it has to partition the points into two parts such that l ≤ nmax(b)/2
and r ≤ nmax(b)/2. There can be many ways to do it, but a standard way
is to set l = ⌊n/2⌋ and r = ⌈n/2⌉, which tries to balance the sizes of the
two parts, and if this is not possible (i.e., for odd n), it gives the slightest
possible additional length to the right part.

The algorithm is shown in figure 4.1.

A crucial property of the algorithm is that the coloring of the two parts
(left and right) are independent of each other. This is obvious in the way
the main subroutine separates points of the left part from points of the right
part. In each case, the color of each point is only dependent on the colors
that have appeared in the respective (left or right) part.

The recursion (use of L, R subroutines) is shown in figure 4.2, where Lb

means we use subroutine L with b colors (similarly for Rb).
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coloring algorithm with b colors:
break the n points in a left and a right part

(of lengths l = ⌊n/2⌋, r = ⌈n/2⌉)
for each point appearing online do

if point is in left part
color it with subroutine L and b colors

if point is in right part
color it with subroutine R and b colors

subroutine L with b colors:
break the left part in a leftmost and a left middle interval
if the point is in the leftmost interval

color it with subroutine L and b− 2 colors
if the point is in the left middle interval

if the left middle interval is empty
give color uL

b = b− 1 to the point
else (uL

b has been used in this left middle interval)
if point is to the left of uL

b in the left middle interval
color it with subroutine R and b− 2 colors

if point is to the right of uL
b in the left middle interval

color it with subroutine L and b− 2 colors

subroutine R with b colors:
break the right part in a right middle and a rightmost interval
if the point is in the rightmost interval

color it with subroutine R and b− 2 colors
if the point is in the right middle interval

if the right middle interval is empty
give color uR

b = b to the point
else (uR

b has been used in this right middle interval)
if point is to the left of uR

b in the right middle interval
color it with subroutine R and b− 2 colors

if point is to the right of uR
b in the left middle interval

color it with subroutine L and b− 2 colors

Figure 4.1: The 2 lg n algorithm
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Lb
︷ ︸︸ ︷

. . . . . .
︸ ︷︷ ︸

Lb−2

| . . .
︸︷︷︸

Rb−2

uL
b . . .

︸︷︷︸

Lb−2

|
Rb

︷ ︸︸ ︷

. . .
︸︷︷︸

Rb−2

uR
b . . .

︸︷︷︸

Lb−2

| . . . . . .
︸ ︷︷ ︸

Rb−2

Figure 4.2: The recursion in a coloring

4.2 Correctness of the 2 lg n algorithm

Since a coloring is just a concatenation of a part that is colored by an Lb

algorithm, followed by a part that is colored by an Rb algorithm, it is enough
to prove the following proposition.

Proposition 44. If Lb is applied on any l points with 0 ≤ l ≤ nmax(b)/2, it
gives a legal coloring CL

b at all times (i.e., in the dynamic online sense).
If Rb is applied on any r points with 0 ≤ r ≤ nmax(b)/2, it gives a legal

coloring CR
b at all times (i.e., in the dynamic online sense).

Moreover any partial CL
b can be concatenated with any partial CR

b to give
a legal coloring CL

b ◦ CR
b , at all times.

Proof. By induction on the number of colors used at most (i.e., b colors).
Base (b is at most 2): For 0 ≤ l ≤ 1, 0 ≤ r ≤ 1 the colorings are shown

in table 4.1 and are correct.

l \ r 0 1
0 ε 2
1 1 1 2

Table 4.1: Colorings that use less than or equal to 2 colors

Inductive step: Assume the hypothesis is true for b − 2 colors, then we
will prove it is true for b colors. We have to consider four cases:

Case where none of uL
b , uR

b has appeared:
As long as no point in the two middle intervals has appeared, the coloring

is done only in the leftmost and the rightmost interval, using colors up to
b−2. By induction, the coloring up to that point is legal at all times, because
each interval has size at most nmax(b)/4 = nmax(b−2) (so b−2 colors suffice)
and by the induction these colorings of the leftmost and rightmost interval
can be concatenated to give a legal coloring.

Then, one point in the middle intervals is asked. W.l.o.g., assume it is in
the left middle interval, so it gets color uL

b . This color will remain unique, so
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for proving correctness, from now on, we have to consider only intervals not
containing this uL

b .

From now on, points in the left middle interval that are before the uL
b -

colored one are colored with subroutine Rb−2 (see figure 4.2). The size of this
interval where Rb−2 is used is at most nmax(b)/4 = nmax(b−2), so this interval
is legally colored, by the inductive hyppothesis. Also, when combined with
the leftmost interval which is colored by Lb−2 and which also has size at
most nmax(b)/4 = nmax(b−2), those two intervals concatenated together, are
always legally colored.

For points to the right of the uL
b -colored one, as long as no point in the

right middle interval has been requested, either the Lb−2 subroutine is used
for points in the left middle interval (see figure 4.2), or the Rb−2 subroutine
is used for points in the rightmost interval. These two intervals are both of
length at most nmax(b)/4 = nmax(b − 2), so by induction, are always legally
colored, and their concatenation is legally colored.

However, as soon as the first point in the right middle interval is requested,
it gets color uR

b and this color will remain unique. Again, this means that we
only have to consider intervals that do not contain this uR

b -colored point.

In the right middle interval and to the left of the uR
b -colored point, the

Rb−2 subroutine is used, which, combined with the Lb−2 colored interval to
the right of uL

b , by induction, gives a legal coloring. Also the right middle
interval points to the right of the uR

b -colored point, are colored with the Lb−2

subroutine, which combined with the Rb−2 colored rightmost interval, by
induction, is always legally colored (check figure 4.2; all mentioned intervals
are of length at most nmax(b)/4 = nmax(b− 2)/2).

4.3 Slight improvements over the 2 lg n algo-

rithm

The algorithm described above can color up to 2b/2 points if given b colors.
Without any significant change to the algorithm, one can prove that if the
algorithm is given b colors it also works correctly for all instances that have
up to 2 · 2b/2 − 2 points (this is almost the double number of points).

One can also use low numbered colors for the central uniquely colored
points and use colors based on the size of the subintervals that are to be
colored in the recursion (i.e., not always b − 2, but maybe less, because the
subinterval can be small). This can also lead to some decrease of colors in
some instances, but it does not give significant (if any) improvement in worst
case instances.
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4.4 Description of the oblivious adversary al-

gorithm

We present a randomized algorithm that achieves expected logarithmic use
of colors in coloring correctly online a sequence of insertions, which is chosen
by an oblivious adversary. The adversary is oblivious in the following sense:
The adversary has to commit on an insertion order of points (a permutation)
before the algorithm starts execution, and can not change it during the course
of the run of the algorithm; in other words, the adversary must choose the
permutation without knowledge of the random choices of the algorithm. The
algorithm does not need to know the absolute point positions in the final
coloring neither the final number of points.

Recently, randomized algorithms that use O(log n) colors with high prob-
ability have been obtained ([17, 33, 10]). All of these algorithms assume the
slightly weaker oblivious adversary model (see [14]), in which the adversary
has to commit on a specific input sequence before revealing the first vertex to
the algorithm without knowing the random bits that the algorithm is going
to use and the expected number of colors is analyzed (this kind of analysis
was introduced in [47]). The randomized model can be seen as a relaxation
of the strict deterministic model: some power is taken from the adversary, or
equivalently given to the algorithm, in order to use just a logarithmic number
of colors. A similar algorithm to the one in [10] has been found independently
by Olonetsky [43].

The algorithm is based on the generalized coloring algorithm for mono-
tone range spaces described in [29]. The generalized algorithm finds in every
step an independent set in the conflict graph of the problem, colors all points
in the independent set with a new color, removes the colored points, recom-
putes the conflict graph, and iterates, until no points are left. Obviously,
choosing a big independent set at each step means small color use at the
end.

For conflict-free coloring for intervals, at every step, the conflict graph is
three colorable: Each newly inserted point neighbors with at most two other
points. Each color class gives an independent set. Our problem is that we
must commit from the start on an independent set (we must color a point as
soon as it appears in an online fashion). The size of an independent set can
vary from 1 to ⌈n/2⌉.

Our algorithm uses any coloring strategy (as long as it gives a correct
three coloring) and it chooses each of the three possible independent sets
induced by the coloring with equal probability.
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4.5 Analysis of the oblivious adversary algo-

rithm

In this section, we fix a specific 3-coloring algorithm to be used at each stage
of the algorithm. The coloring we get by applying the first-fit 3-coloring
algorithm to permutation π is denoted by ff(π). We denote by a, b, c the
colors used, in that priority, in a first fit algorithm.

Given a permutation π the use of colors by the randomized algorithm
that uses first-fit to do the three coloring and chooses equiprobably among
the colors of the three coloring is a random variable Uπ. We intend to prove
that for any permutation π, the expected value of the above variable, denoted
by E[Uπ] is bounded by 1 + log3/2 n, where n = |π| is the length of the
permutation.

We define random variable U+
π = 1 + Uπ, to describe the use of one

additional color in some non-empty round. By linearity of expectations:
E[U+

π ] = 1 + E[Uπ].
If |π| = 1, then ff(π) uses one color, and Uπ = 1. Of course, since the

color of the independent set is randomly chosen it can be b or c, in which case
that round of the coloring is empty, and thus does not contribute to the use
of colors; if b or c is chosen, then the same permutation π = 1 is forwarded
to the next round. Formally:

U1 = 1
3
· 1 + 1

3
U1 + 1

3
U1,

from which we get U1 = 1.
If |π| > 1, then ff(π) uses either two (a and b) or three (a, b, and c) colors.

We denote by π \ q the permutation that is to be colored in the next round,
if the independent set colored with color q ∈ {a, b, c} is chosen in ff(π). If
independent sets with color a, b, c have sizes x, y, z respectively, then:

• If ff(p) uses 3 colors, |π \ a| = y + z, |π \ b| = x + z, |π \ c| = x + y, and
|π| = x + y + z. Thus |π \ a|+ |π \ b|+ |π \ c| = 2|π|.

• If ff(p) uses 2 colors, |π \ a| = y, |π \ b| = x, and |π| = x + y. Thus
|π \ a|+ |π \ b| = |π|. We also have |π \ c| = 0, and thus π \ c = π, but
that is not a problem.

Since colors a, b, c are chosen equiprobably we have:

Uπ = 1
3
(Ua

π + U b
π + U c

π)

where:

U q
π =

{

U+
π−q, ff(π) uses color q

Uπ, ff(π) does not use color q
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From the above, in case, where color c is not used in ff(p), we have:

Uπ = 1
3
(U+

π\a + U+
π\b + Uπ) or Uπ = 1

2
(U+

π\a + U+
π\b).

Therefore, in general:

Uπ =

{
1
3
(U+

π\a + U+
π\b + U+

π\c), ff(π) uses 3 colors
1
2
(U+

π\a + U+
π\b), ff(π) uses 2 colors

and by linearity of expectations:

E[Uπ] =

{

1 + 1
3
(E[Uπ\a] + E[Uπ\b] + E[Uπ\c]), ff(π) uses 3 colors

1 + 1
2
(E[Uπ\a] + E[Uπ\b]), ff(π) uses 2 colors

Proposition 45. If |π| = n, E[Uπ] ≤ 1 + log3/2 n.

Proof. By induction. Base (n = 1): E[U1] = 1. For n > 1, by the induction
hypothesis, we consider the cases (a) when ff(p) uses 3 colors:

E[Uπ] ≤ 1 + 1
3
(1 + log3/2|π \ a|+ 1 + log3/2|π \ b|+ 1 + log3/2|π \ c|)

= 2 + 1
3

log3/2|π \ a||π \ b||π \ c|
= 2 + log3/2

3

√

|π \ a||π \ b||π \ c|

≤ 2 + log3/2

|π \ a|+ |π \ b|+ |π \ c|
3

= 2 + log3/2

2|π|
3

= 1 + log3/2 n,

and (b) when ff(p) uses 2 colors:

E[Uπ] ≤ 1 + 1
2
(1 + log3/2|π \ a|+ 1 + log3/2|π \ b|)

= 2 + 1
2

log3/2|π \ a||π \ b|
= 2 + log3/2

√

|π \ a||π \ b|

≤ 2 + log3/2

|π \ a|+ |π \ b|
2

= 2 + log3/2

|π|
2

< 2 + log3/2

|π|
3/2

= 1 + log3/2 n,

where in both cases we used the geometric/arithmetic mean inequality:

(a1 · · · ap)1/p ≤ (a1 + . . . ap)/p.



Epilogue

We investigated a special coloring problem (conflict-free coloring) for graphs
and hypergraphs, that has applications in frequency assignment in cellular
networks. We considered related problems, mainly ordered coloring, which
have applications in parallel optimization of several tasks (like Cholesky fac-
torization), circuit design, assembly of parts, and database query optimiza-
tion.

There are still gaps between lower and upper bounds. The most important
open problem is narrowing the gap between lower and upper bound in the
relative positions model for conflict-free coloring with respect to intervals:
Ω(log n), and O(log2 n), respectively, which are a logarithmic factor apart.

In the case of all-intervals, static uses O(log n) and the best known online
deterministic algorithm O(log2 n) colors, but this logarithmic factor ‘jump’ is
not a result of the online model, because it occurs just between the absolute
positions model and the fully online (relative positions) model.

In the dynamic online absolute positions setting, it is natural for the
algorithm to know the total number n of points that will be inserted from
the start. The triples algorithm exploits that knowledge to achieve O(log n)
colorings. An open problem in the absolute positions model is to maintain
an O(log k) coloring after the first k points have been inserted for all k with
0 < k ≤ n.

Another open problem is the worst case (or even the average case) per-
formance of the Unique Max algorithm. No sharp asymptotic bounds are
known. The best known upper bound we proved is linear, whereas the best
known lower bound is Ω(

√
n). In this thesis, we have provided an exten-

sive analysis of the UM algorithm, that might shed some light on this open
problem.
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