
Athens, December 2008

PhD Thesis

of

Dimitrios Skoutas

Dipl. Electrical and Computer Engineering (2003)

Discovery and Integration of Data and Services

in the Semantic Web

School of Electrical and
Computer Engineering

Computer Science Division

National Technical University of Athens

Athens, December 2008

PhD Thesis

of

Dimitrios Skoutas

Dipl. Electrical and Computer Engineering (2003)

Supervising Committee: T. Sellis
Y. Vassiliou
A.-G. Stafylopatis

Approved by the Examination Committee, 5th December 2008.

.
T. Sellis Y. Vassiliou A.-G. Stafylopatis
Prof. NTUA Prof. NTUA Prof. NTUA

.
N. Koziris K. Kontogiannis M. Koubarakis
Assoc. Prof. NTUA Assoc. Prof. NTUA Assoc. Prof. UoA

. . .
P. Vassiliadis
Assist. Prof. UoI

Discovery and Integration of Data and Services

in the Semantic Web

National Technical University of Athens
School of Electrical and Computer Engineering

Computer Science Division

. . .

Dimitrios Skoutas
Electrical Engineer, PhD

c© 2008 - All rights reserved

ABSTRACT

The Web constitutes a universal repository providing a huge amount of informa-
tion in a variety of topics and formats. At the same time, the number of users has
increased significantly, their participation has become more active, and their needs
are more complex. Thus, new trends arise, emphasizing on the need for integration
and collaboration. To address these new challenges, a lot of research efforts have
been devoted to the transition to the Semantic Web, which will enhance the current
Web with formal and explicit metadata, promising to facilitate interoperability and
to increase the automation in searching, managing, and sharing information.

In this direction, this thesis studies the problem of searching for relevant services
and data on the Semantic Web, as well as integrating information from heteroge-
neous sources to meet specific needs and requirements. First, we study the problem
of Web service discovery. We propose a similarity measure for comparing service
descriptions, using the semantic information conveyed by the ontologies used to
annotate these descriptions. We also develop techniques, drawing from concepts re-
lated to skyline queries, for ranking available services under diverse user preferences
and multiple matching criteria. Then, we study the search of services and data
in distributed environments, considering peer-to-peer networks where the available
resources are semantically annotated. We propose an approach for efficient and
progressive search of services in a structured peer-to-peer overlay network, and a
method to facilitate the sharing of structured data in an ontology-enhanced peer
data management system. Finally, we propose techniques to facilitate the concep-
tual design of Extract-Transform-Load processes, which are critical processes for
reconciling information from several heterogeneous sources. These techniques also
rely on the use of ontologies to identify correspondences, conflicts, and transforma-
tions between the source and target specifications.

i

ACKNOWLEDGEMENTS

There are several people who helped and supported me during the work on this
thesis. First of all, I am grateful to Prof. Timos Sellis for his support and guidance,
without which this thesis could not have been accomplished. His inspiration and
encouragement, as well as his suggestions and corrections on several issues, were
most valuable throughout these years, especially during the most critical periods,
at the beginning of my work and during the last months towards its completion. I
also need to thank Dr. Alkis Simitsis for his patience and support throughout all the
stressful moments during this work, for his valuable comments and advice on various
issues, for his constant urging and focus on detail, and for always finding the time
to discuss and review all the parts of the work presented in this thesis. I also want
to thank Dimitris Sacharidis for the very fruitful collaboration we had, which helped
me to significantly improve the quality of this work. In addition, I had the pleasure
to collaborate and discuss some of the issues presented in this thesis with Verena
Kantere. The committee members, and especially Prof. Panos Vassiliadis, helped
me with their constructive comments to improve the final version of the thesis.

I also want to thank all the members of the Knowledge and Database Systems
Laboratory for our discussions and for creating a very friendly working environment.
The Institute for the Management of Information Systems supported me with a grant
during the last period of my work. I am very grateful to them, and for having the
chance to work in such a pleasant and inspiring environment.

Finally, I would like to thank my family for their support and patience through-
out all these years.

Dimitrios Skoutas
Athens, December 2008

iii

Contents

1 Introduction 1
1.1 Challenges and Contributions . 2

1.1.1 Service Discovery and Selection . 3
1.1.2 Search for Services and Data in P2P Networks 6
1.1.3 Design of ETL processes . 8

1.2 Thesis Outline . 11

2 Web Service Matchmaking and Ranking 13
2.1 Preliminaries . 14

2.1.1 Ontologies on the Web . 14
2.1.2 Web Service Description . 16

2.2 Related Work. 19
2.2.1 Web Service Discovery . 19
2.2.2 Skyline Computation . 21
2.2.3 Data Fusion . 22

2.3 A Similarity Measure for Semantic Web Services . 23
2.3.1 Example . 23
2.3.2 The Similarity Measure . 25
2.3.3 Properties of the Similarity Measure . 34

2.4 Selection of Services with Skyline Queries . 35
2.4.1 Skyline Services . 35
2.4.2 Selection of the Best Candidates . 39
2.4.3 Experimental Evaluation. 45

2.5 Ranking of Services under Multiple Criteria . 47
2.5.1 Motivation and Problem Definition. 47
2.5.2 Algorithms . 51
2.5.3 Experimental Evaluation. 57

2.6 Summary . 64

3 Service and Data Selection in Peer-to-Peer Networks 65
3.1 Related Work. 65

3.1.1 P2P Service Discovery . 65
3.1.2 Semantics-based P2P Data Sharing . 66

3.2 Service Discovery in Structured P2P Networks. 67
3.2.1 Encoding Service Descriptions . 67
3.2.2 Indexing Service Descriptions . 70
3.2.3 Managing Services in the P2P Overlay . 74
3.2.4 Experimental Evaluation. 76

v

3.3 Ontology-based Data Sharing in a PDMS . 78
3.3.1 Problem Description . 78
3.3.2 Comparison of Peer Schemas . 81
3.3.3 Comparison of Rewritten Queries . 85
3.3.4 Extending to Multiple Ontologies . 88

3.4 Summary . 91

4 Ontology-based Design of Extract-Transform-Load Processes 93
4.1 Related Work. 93

4.1.1 Conceptual models for ETL processes and DWs 94
4.1.2 Data Integration and Semantic Schema Matching. 95
4.1.3 Mashups . 96

4.2 Conceptual Design of ETL Processes . 96
4.2.1 Datastore Representation . 96
4.2.2 Application Ontology Construction . 98
4.2.3 Semantic Annotation of Datastores . 103
4.2.4 Identification of ETL Operations . 104
4.2.5 Generation of Reports . 109

4.3 ETL Design through Graph Transformations . 115
4.3.1 General Framework . 115
4.3.2 Graph Transformations . 117
4.3.3 The Type Graph . 118
4.3.4 The Transformation Rules . 120
4.3.5 Creation of the ETL Design . 126
4.3.6 Illustrative Example . 128

4.4 Summary . 129

5 Conclusions and Future Work 131
5.1 Conclusions . 131
5.2 Future Work. 132

Bibliography 135

List of Figures

1.1 (a) The main axes of our approach; (b) Discovery and integration
with ontologies, Web services and ETL processes . 2

2.1 The Semantic Web technology stack . 15
2.2 Overview of Web service discovery . 17
2.3 A sample ontology snippet for the motivating example 24
2.4 Illustration of (a) static and (b) dynamic skylines. 36
2.5 Experimental evaluation on real and synthetic data 45
2.6 An illustrative example . 48
2.7 Search space for T KDD, T KDG, and T KM . 53
2.8 Recall-Precision graphs . 59
2.9 Effect of parameters under low (left graph of each pair) and high

(right graph of each pair) variance var . 61
2.10 Effect of corr under low (left) and high (right) variance var 63

3.1 (a) A sample ontology fragment, (b) A service request (R) and three
service advertisements (S1, S2, S3), (c) Intervals assigned to
ontology concepts . 68

3.2 Interval based search. 70
3.3 R-trees example . 72
3.4 Illustrative SpatialP2P overlay . 75
3.5 Search regions . 75
3.6 (a) Recall-precision curve, (b) Precision and Success at k (P@k, S@k) 77
3.7 Search cost for: (a) centralized registry, (b) P2P registry 77
3.8 Unstructured network of semantic peers with (a) single ontology (b)

multiple ontologies . 80
3.9 A sample ontology and a snippet of the corresponding XML

representation . 81

4.1 The ontology graph for the reference example . 103
4.2 Semantic annotation of the datastores . 104
4.3 Identified transformations for the reference example 109
4.4 (a) The type graph and (b) a sample instance graph 119
4.5 Rules for inserting LOAD operations in the presence of direct

relationship . 121
4.6 Rules for inserting LOAD operations via isa link . 122
4.7 Rules for inserting FILTER operations . 123
4.8 Rules for inserting CONVERT operations . 123
4.9 Rules for inserting EXTRACT operations . 124
4.10 Rules for inserting CONSTRUCT operations . 124

vii

4.11 Rules for inserting SPLIT operations. 125
4.12 Rules for inserting MERGE operations. 126
4.13 “Clean-up” rule. 126
4.14 Example . 128
4.15 Output of the graph transformation process . 130

List of Tables

2.1 Service request and advertisements . 24

2.2 Domain of an answer to a search . 25

2.3 Recall and precision based on the class hierarchy . 27

2.4 Recall and precision based on common properties . 28

2.5 Recall and precision considering property hierarchy 29

2.6 Recall and precision including value restrictions . 30

2.7 Recall and precision based on properties, including hierarchy and
restrictions . 30

2.8 Preconditions and effects for the motivating example 32

2.9 Recall and precision values for the preconditions and effects 32

2.10 Recall and precision combining class hierarchy and properties 32

2.11 Recall and precision for multiple input/output parameters 33

2.12 Recall and precision combining input, output, preconditions and effects 34

2.13 Matching service I/Os . 38

2.14 Illustrative example . 40

2.15 Bitmap representation . 40

2.16 Dominance check for S4 . 40

2.17 Determining the skyline services . 41

2.18 Modifying service parameter . 44

2.19 Evaluation of retrieval accuracy . 46

2.20 Algorithm T KDD . 54

2.21 Algorithm T KDG . 55

2.22 IR metrics for all methods . 60

2.23 Parameters and examined values . 63

3.1 Types of match using the intervals based encoding 70

3.2 Algorithm for index-based service matchmaking . 73

3.3 Algorithm for progressively returning matches . 73

3.4 OWL constructs and notation used . 79

3.5 Semantic annotation of peer schemas . 81

3.6 Different cases of subsumption relationship between two restrictions
R1 and R2 . 83

3.7 Algorithm for measuring the semantic similarity for rewritten queries 86

4.1 Sample source and target schemas. 98

4.2 OWL features used in our approach . 100

4.3 Notation used for the ontology graph . 101

4.4 Algorithm for graph representation of the ontology 102

ix

4.5 Algorithm for creating the definition for an internal labeled node of
the datastore graph . 105

4.6 Generic types of conceptual transformations frequently used in an
ETL process . 106

4.7 Algorithm for provider node selection . 107
4.8 Algorithm for deriving transformations between two labeled leaf nodes108
4.9 A set of provided built-in functions . 110
4.10 A set of provided built-in macros for datastore annotations 111
4.11 A set of provided built-in macros for generic ETL operations. 112
4.12 Source and target schemata for the example . 128

Chapter 1

Introduction

Nowadays the Web has been established as a universal information repository, pro-
viding unprecedented wealth and diversity of information. It has penetrated essen-
tially every aspect of our every day lives, revolutionizing the way people educate,
work, communicate, inform, and entertain. Over the past years, the Web has evolved
from a collection of static pages, displaying the same information to all users, at all
times and in all contexts, to an interactive and dynamic environment, where the
contents of the pages change in response to different requests and conditions. At
the same time there has been an enormous growth of the amount of Web users, as
well as of the diversity of their technical background and needs. Yet, the full poten-
tial of the Web is still to be explored, while current trends and people needs seem
to point to a direction where integration and collaboration, based on semantics, lie
at the heart of the new landscape.

The term Web 2.0 has been coined to refer to these new trends in the use of the
Web, characterized primarily by the active participation of users in online commu-
nities. Users share information, collaborate, and contribute by creating new content
and/or creating tags to annotate and categorize existing content. A characteristic
example is mashups, a new type of Web applications where third-party content is
drawn through public interfaces and it is combined in a way to increase its value
for the end users. Still, since social tagging operates without terminological con-
trol, it can often be unreliable or even inconsistent. On the other hand, researchers
pursuit the semantic enhancement of Web content, towards the so-called Semantic
Web, through the development of standards and tools, that will allow to formally
describe the concepts and their relationships in a given domain. This will enable
software agents to automatically understand, process, and reason about available
information and services.

In this emerging environment, searching for a single piece of information in a
particular Web page is no longer sufficient. Instead, the users typically have in
mind some high-level, complex task that they need to fulfil, and for this purpose
they likely need to use one or more services that provide a specific functionality or
to find several pieces of information, from various sources independent from each
other, and then combine them appropriately to produce a final result. To that end,
two primary challenges can be identified:

discover and select potentially useful data sources and services

and

1

Syntactic & Semantic
Interoperability

W
eb

 s
er

vi
ce

s

(d
is

co
ve

ry
 &

 a
cc

es
s) ETL processes

(integration)

RDF / RDF-S / OWL
(semantics)

(a)

RDF

WSDL
RDF

W
SDL

RDF
W

SD
L

RDF

WSDL

01011

01011

01011 01
01

1

01
01

1

RDF

WSDL

ETL

OWL

(b)

Figure 1.1: (a) The main axes of our approach; (b) Discovery and integration with
ontologies, Web services and ETL processes

combine information from multiple, distributed, and heterogeneous sources.

This thesis deals with the above issues exploiting ontologies, Web services, and
Extract-Transform-Load (ETL) processes (see Figure 1.1(a)). The use of Web ser-
vices facilitates the interoperability between heterogeneous platforms, providing the
means to discover and access, in a uniform way, available data sources, as well as
operations that can be executed on these data. The use of ETL processes allows
to appropriately reconcile and combine information from these sources, so as to
satisfy the user requirements and to increase the quality and value of the original
data. Ontologies provide the semantics that support and drive the whole process.
Our work assumes an environment where data sources are made available to the
network through Web service interfaces, and then ETL processes are employed to
homogenize, combine, and aggregate incoming data to provide the user with the
requested information, as depicted in Figure 1.1(b). In addition, to address the
need for distributed architectures, we study also the search for data and services in
peer-to-peer networks. Summarizing, in this thesis we have identified and addressed
the following three main problems:

1. how services can be discovered and selected;

2. how services and data can be searched in distributed environments;

3. how to facilitate the design of ETL processes.

Next, we discuss in more detail these topics, and we present the specific challenges
that arise and the contributions made by this thesis to address them.

1.1 Challenges and Contributions

Towards the overall goal, which is the discovery and integration of data and services
in the Semantic Web, this thesis identifies and focuses on three major issues: a)

2

the matchmaking and ranking of Web services, b) the search for services and data
in peer-to-peer networks, and c) the conceptual design of Extract-Transform-Load
processes. In the following, we describe the challenges that arise in each one of these
topics, and we present the contributions of the thesis.

1.1.1 Service Discovery and Selection

Web services are software components that are accessible over the Web and are
designed to perform a specific task, which essentially comprises either returning
some information to the user (e.g., a weather forecast service or a news service) or
performing an action that alters the world state (e.g., an online shopping service
or an online booking service). During the last years, Web services have become
increasingly popular as a key technology for realizing Service Oriented Architectures,
allowing for interoperability among heterogeneous systems and integration of inter-
organization applications. They are described by a well-defined interface, which
provides the number, the names, and the types of the service input and output
parameters, and is expressed in a standardized language. By standardizing the
interfaces and the exchanged messages between communicating systems, they can
significantly reduce the development and, even more importantly, the maintenance
cost for large-scale, distributed, heterogeneous applications.

In a broader sense, any dynamic Web site can be thought of as a (collection of)
Web service(s). Thus, Web services provide also a means for querying the hidden
Web. In addition, they are often used as wrappers for databases, in order, for
example, to allow data access through firewalls, to hide the details regarding how
the underlying data is stored or to enforce data access policies. Another use is met
in mashup applications; e.g., DAMIA [145], Yahoo Pipes [173], and so on. These
constitute a recently emerging trend, where users select and combine building blocks
(essentially, services) to create applications that integrate information from several
Web sources; e.g., [173].

Consequently, it becomes apparent that the Web services paradigm constitutes
an integral part of many modern real-world applications, and that Web services
rapidly gain popularity and are becoming a critical resource on the Web. This fact
stresses the need for enhancing existing search engines with effective techniques for
retrieving and ranking Web services. However, current standards for describing and
locating services, i.e., WSDL and UDDI, focus on describing the syntactic aspects of
a service and on performing keyword-based matching. Even though interoperability
at the syntactic level is a necessary requirement, the identification and selection
of appropriate services should be done in terms of the semantics of the requested
and offered capabilities. To this direction, the Semantic Web, through the use of
ontologies, provides the means to enrich the service descriptions with semantic in-
formation, allowing software agents to reason about the terms in these descriptions.
This is a significant step for increasing the precision of the discovery process, as
well as for minimizing the required human intervention. In particular, three main
approaches have been recently proposed to semantically enhance Web service de-
scriptions: SAWSDL [75], OWL-S [31], and WSMO [60]. The main idea underlying
all these approaches is to use appropriate ontologies to semantically annotate several
aspects of a Web service, such as inputs, outputs, preconditions, and effects, as well
as non-functional parameters (e.g., QoS aspects).

3

Consider the following typical Web service discovery scenario. The user pro-
vides a complete definition of the desired service and poses a query on a system
maintaining a repository of advertised service descriptions. Alternatively, the user
could identify a service, e.g., from some previous query, and request similar results.
Then, the search engine employs a matchmaking algorithm in order to identify ad-
vertisements that are relevant to the user’s request. According to the traditional
principle for Web service discovery, the matchmaking process involves two generic
phases. First, a criterion for assessing the similarity of service parameters is selected
and applied. Then, individual parameter scores are aggregated to obtain the overall
degree of match between the request and the advertisement.

In the first phase, the degree of match between parameters of the request and
the advertisement is estimated. Matching can take into account a variety of cri-
teria, ranging from string matching between parameter names and/or associated
comments to matching using auxiliary information from a domain thesaurus [129].
There are two major paradigms for assessing this degree of match. The first treats
the parameter descriptions as documents and employs basic Information Retrieval
techniques to extract keywords; e.g., [46]. Next, a string similarity measure is used
to compute the degree of match. The second paradigm follows the Semantic Web
vision. Services are enriched by annotating their parameters with semantic concepts
taken from domain ontologies; e.g., [118, 93]. Then, estimating the degree of pa-
rameter match reduces to a problem of logic inference: a reasoner is employed to
check for equivalence or subsumption relationships between the concepts of the pa-
rameters under investigation. Both paradigms share their weaknesses and strengths.
Regarding the former, since service descriptions are essentially very short documents
with few terms, keyword-based matchmaking fails to properly identify and extract
semantics. The latter is also plagued with several limitations, most noteworthy
the lack of available ontologies, the difficulty in achieving consensus among a large
number of involved parties, and the considerable overhead in developing, maintain-
ing an ontology and semantically annotating the available data and services. More
recently, hybrid techniques for estimating the degree of parameter match have ap-
peared, e.g., [84], taking into account both paradigms. Still, the common issue with
all approaches is that there is no single matching criterion that is optimal for de-
termining the similarity between parameters. Instead, different similarity measures
may be more suitable, depending on the particular domain or the particular pair of
request and offer.

The second phase of matchmaking regards the computation of the overall degree
of match for a pair of requested and advertised services, taking into consideration the
individual scores of corresponding parameters. Since there is no consensus on how
to aggregate scores, there are various approaches to this phase, as well. One direc-
tion is to assign weights, calculated from user feedback, to the degrees of parameter
match [46]. However, choosing the appropriate weights for each contributing factor
requires either a-priori knowledge of the users’ preferences and of which similarity
measure is more appropriate for each case, or turning to machine learning tech-
niques. Both alternatives face serious drawbacks, and raise a series of other issues
to be solved. More often, methods are pessimistic adopting a worst-case scenario,
where the overall service similarity is derived from the worst degree of match among
parameters. This, however, leads to loss of information that may significantly af-
fect the quality of the retrieved results. For example, services, having a single bad

4

matching parameter may be excluded from the result set, even though they are
potentially good alternatives.

Typically, very few services constitute perfect matches, while a large number of
services only partially match the request. It is crucial in such scenarios that the
retrieved results are presented as a ranked list sorted by decreasing similarity to the
user’s request, so that better candidates can be identified quickly.

Summarizing, we can identify the following main challenges for the matchmaking
and ranking of (Semantic) Web services: (a) how to assess the similarity between
service requests and descriptions; (b) how to aggregate the similarities between
individual parameters in order to obtain the overall degree of match between a
service request and a service advertisement; and (c) how to obtain a ranking of
the offered services in the presence of multiple matching criteria. In this thesis we
address these issues, making the contributions outlined below:

• We propose a matching function for Semantic Web services, based on a seman-
tic similarity measure between the parameters of service requests and service
advertisements. The matching is inspired by the well-known evaluation mea-
sures used in the area of Information Retrieval: recall and precision. Both
measures are adapted appropriately to express the extent of match between
a service request and a service advertisement. This allows for the matching
function to be asymmetric, so as to distinguish whether the service capabili-
ties are a superset or a subset of the request. The proposed matching function
considers the semantic information encoded in the associated domain ontol-
ogy, including both the class hierarchy and the properties of classes, as well as
restrictions possibly defined on these properties. Thus, it is applicable to both
taxonomies and more expressive ontologies, such as OWL ontologies. More-
over, the matching takes into consideration both input and output parameters,
as well as service preconditions and effects. In addition, it is flexible and cus-
tomizable, and may be adapted to support specific application needs or user
requirements and preferences.

• We use the concept of skyline queries to determine the overall degree of match
between service requests and and service advertisement, without requiring
a-priori knowledge of user preferences. For this purpose, we formalize the
problem of discovering and selecting Semantic Web services as a skyline com-
putation problem. Based on a state of the art skyline computation algorithm,
we provide an effective and efficient way to handle the service selection pro-
cess, dealing both with the requester’s and the provider’s perspectives. We
evaluate experimentally the performance of the proposed approach using real
and synthetic data.

• We propose a method for ranking service descriptions under multiple match-
ing criteria. In particular, we introduce the notion of top-k dominant Web
services, specifying three criteria for ranking Web service descriptions with
respect to service requests, using multiple similarity measures. We present
efficient algorithms for selecting the top-k matches for a service request, based
on these criteria. Also, we experimentally evaluate our approach, both in
terms of retrieval effectiveness, using real requests and relevance sets, as well
as in terms of efficiency, using synthetically generated scenarios.

5

1.1.2 Search for Services and Data in P2P Networks

In today’s world, information is a valuable asset. However, a piece of information is
of little or no use if not seen within a specific context. Thus, modern applications do
not (or will not) often operate in isolation. This leads to a world of interconnected
devices, services, and applications. In such a highly dynamic environment, central-
ized architectures fail to provide efficiency and scalability; instead, architectures are
required that better reflect the inherently distributed nature of such applications.
Thus, peer-to-peer (P2P) networks have emerged as an alternative paradigm.

Peer-to-peer systems are typically used for massive, large-scale sharing and ex-
change of data. In these systems, content and, more generally, resources, are ex-
changed directly, rather than requiring the intermediation of a centralized server or
authority [9]. This makes them more flexible and robust, as they can avoid bot-
tlenecks and adapt to failures. Essentially, a P2P network is a network comprising
peer computers (nodes) and connections (edges) between them, and it is referred to
as “overlay”, since it is formed on top of (and independently from) the underlying
physical network. Overlay networks can be categorized according to their central-
ization and structure. In the so-called “pure” P2P architectures, all the nodes are
completely equivalent in terms of the functionality and the tasks they perform. On
the other hand, in “hybrid” P2P architectures a small subset of the peers is se-
lected (probably automatically and dynamically) to operate as super-peers. These
super-peers typically maintain indexes of the content of other peers, so as to facil-
itate search on the network. Moreover, the overlay network may be created either
non-deterministically (i.e., ad hoc) as new nodes are added, or according to specific
rules. In the first case, the P2P network is characterized as “unstructured”. In
this type of systems, there is no correlation between the content of a peer and its
position in the network topology. Although this significantly reduces any adminis-
trative efforts, difficulties arise in locating content efficiently (in fact, in the absence
of appropriate routing indexes, queries are propagated to all peers, thus causing the
flooding of the network). On the other hand, in “structured” P2P networks, there
is a specific mechanism that specifies how peers are placed in the overlay and how
content is mapped to peers. This creates a distributed routing table so queries can
be answered efficiently.

Recently there has been a growing interest in research issues overlapping the field
of P2P computing and the Semantic Web, raising a series of new opportunities and
challenges [157]. As the number of services on the Web increases, the efficiency and
the scalability of service discovery techniques becomes a critical issue. In addition,
several applications are inherently distributed. Consider, for example, a network of
businesses or institutions, each providing its own services; creating and maintaining
a centralized registry would not be desirable. Still, the majority of current service
discovery approaches focuses on centralized architectures, i.e., a single service reg-
istry or multiple service registries synchronizing periodically. Existing approaches
for service discovery in P2P environments typically rely on the use of ontologies to
partition the network topology into concept clusters, and then forward requests to
the appropriate cluster. However, constructing concept clusters in a fully automated
way is not straightforward, as well as providing guarantees regarding search times
and load balancing. Consequently, there is a need to explore alternative methods
for service discovery in P2P settings.

6

On the other hand, Peer Data Management Systems (PDMS’s) -e.g., [11, 66]-
constitute emerging applications of the P2P paradigm, holding a leading role in
sharing semantically rich information. PDMS’s consist of autonomous sources that
store and manage structured data locally, revealing part of their local data schema
to the rest of the peers. Pure P2P systems -i.e., without super-peers- are considered
to operate in lack of a global schema. Without a reference schema, peer databases
express and answer queries based on their local schema. In particular, peers that are
directly linked, i.e., acquainted, establish a common way of exchanging and compre-
hending each others’ data. Usually this is realized in the form of mappings between
the peer schemas. Using the peer mappings and some suitable rewriting algorithm,
two acquainted peers can propagate queries to each other. The nature of structured
data stored in the overlay enforces strict methods of querying and query rewriting.
However, frequently, the user intends to obtain information that is semantically rele-
vant to the posed query, rather than information that strictly complies to structural
constraints. The available rewriting algorithms for structured data target the clas-
sic data integration problem [63] and consider only queries that can be completely
rewritten to the target schema under a set of mappings. Still, such approach is not
enough for a P2P environment where peers seek and are satisfied with information
semantically similar, but not necessary identical, to their requests (as in the case of
popular P2P file sharing applications). An example application where the seman-
tic similarity plays a significant role, is the creation of social networks. Recently,
new social networking services have been emerging, that are similar to human social
networks. Services such as MySpace [110] and Orkut [114], to mention a few, form
virtual communities, with each participant setting his/her own characteristics and
interests. Their goal is to allow members to form relationships through communi-
cation with other members and sharing of common interests. In these applications,
the search for identical information among the users is not realistic.

Hence, there is a necessity for investigating the notion of semantic similarity of
peer schemas, and, furthermore, between peer queries and their rewritten versions.
Using such similarity criteria, users can identify peers sharing similar interests to
theirs. For each specific query they pose, the system can decide which peers can
rewrite it better and, thus, give more satisfying answers. Peer schemas and query
rewritings can be ranked according to their semantic relativeness to a reference
schema or to an original query, respectively. Nevertheless, it is not straightforward
to encounter the semantic similarity problem in the context of structured data with-
out any additional semantic information [78]. Database schemas and respective
mappings cannot capture sufficient semantic metadata so that a qualitative solution
for the semantic similarity problem can be anticipated. Instead, the use of ontologies
can help to deal with this deficiency.

Summarizing, this part of the thesis addresses two main challenges: (a) the
search for services in structured P2P networks; and (b) the search for structured
data in unstructured P2P networks. Below we outline our main contributions to
these problems:

• We propose an efficient method for service discovery in P2P environments.
For this purpose, we employ a novel encoding of the service descriptions, and
we index these representations to prune the search space, so as to minimize
the number of comparisons required to locate the matching services. We then

7

present an algorithm that, given a desired ranking function, fetches the top-k
matches progressively, thereby further reducing the search engine’s response
time. We extend this method to a suitable, structured P2P overlay network,
showing that the search process can be done efficiently in a decentralized,
dynamic environment. We demonstrate the efficiency and the scalability of
our approach through experimental evaluation.

• We describe a Peer Data Management System (PDMS) enriched with a do-
main ontology that is used to semantically compare peer schemas, as well as
queries propagated in the network. More specifically, we propose the use of
the measures recall and precision for quantifying the notion of semantic simi-
larity between peer schemas and (rewritten) queries. Based on that, we build
a combined similarity measure that takes into consideration the semantics of
the peers’ schemas, the mappings between the peers, and the queries issued
by the peers. Moreover, we extend the proposed similarity measure to allow
for the comparison of elements across different ontologies.

1.1.3 Design of ETL processes

Successful planning and decision making in large enterprises requires the ability of
efficiently processing and analyzing the organization’s informational assets, such as
data regarding products, sales, customers, and so on. Such data are typically dis-
tributed in several heterogeneous sources, ranging from legacy systems and spread-
sheets to relational databases, XML documents and Web pages, and are stored
under different structures and formats. Thus, data warehouses are employed to in-
tegrate the operational data and to provide an appropriate infrastructure that allows
querying, reporting, mining and other advanced analysis techniques to be carried
out easier and faster. A data warehouse comprises a front stage and a back stage.
The former is targeted to end users, and it allows them to access the data and use
them in decision support tools. The latter is targeted to administrators, which are
responsible for designing and implementing the processes that populate the data
warehouse with data from the operational sources. These specialized processes are
referred to as Extract-Transform-Load (ETL) processes. ETL processes are respon-
sible for the extraction of data from distributed and heterogeneous operational data
sources, their appropriate cleansing and transformation, and finally, their loading
into the target warehouse, so that they can be queried and processed in a uniform
way. In more detail, this typically involves tasks such as: identification and ex-
traction of relevant information from the data sources; cleaning of the data, which
may be incomplete or inconsistent; transformation between different representations
(e.g., different naming schemes and/or structures); transformation between different
value formats (e.g., different units of measurement); aggregation of data values.

In general, the design of ETL processes, especially when multiple and heteroge-
neous sources are involved, constitutes a very costly –both in time and resources–
and complex part of the data warehouse design. The problem becomes even more
prominent with the explosion of the information available in Web repositories, fur-
ther accelerated by the Web 2.0 trends and technologies, and combined with the
ever increasing information needs of the users. All these necessitate that modern
applications often draw from multiple, heterogeneous data sources to provide added
value services to the end users. Such environments raise new challenges for the

8

problem of data integration, since naming conventions or custom-defined metadata,
which may be sufficient for integration within a single organization, are of little use
when integrating inter-organization information sources or Web data sources.

The key challenge underlying all such situations is how to reconcile, both struc-
turally and semantically, the data between the source and target specifications.
Structural heterogeneity refers to the fact that data in different sources may be
structured under different schemas. For instance, information that is stored in one
attribute/relation in one schema may be stored in more than one attributes/relations
in another schema. On the other hand, semantic heterogeneity considers the in-
tended meaning of the schema elements. In order to achieve semantic interoperabil-
ity in heterogeneous information systems, the meaning of the information that is
interchanged has to be understood across the systems.

However, previous work towards the conceptual design of ETL processes has
treated this task mainly as a manual activity [166, 98, 162]. The same holds for
the plethora of the commercial solutions currently existing in the market, such as
IBM’s Data Warehouse Manager [71], Informatica’s PowerCenter [72], Microsoft’s
Data Transformation Services [104], and Oracle’s Warehouse Builder [113]. All these
approaches, at the conceptual level, focus on the graphical design and representa-
tion of the ETL process, whereas the identification of the required mappings and
transformations needs to be done manually.

The lack of precise metadata hinders the automation of this task. The required
information regarding the semantics of the data sources, as well as the constraints
and requirements of the data warehouse application, tends to be missing. Usually,
such information is incomplete, or even inconsistent, often being hard-coded within
the schemata of the sources or provided in natural language format (e.g., after oral
communication with the involved parties, including both business managers and
administrators/designers of the enterprise data warehouse) [69]. Consequently, the
first stage of designing an ETL process involves gathering the available knowledge
and requirements regarding the involved datastores. Given that ETL processes
are often quite complex, and that significant operational problems can occur with
improperly designed ETL systems, following a formal approach at this stage can
allow a high degree of automation of the ETL design. Such an automation can
reduce the effort required for the specification of the ETL process, as well as the
errors introduced by the manual process. Thus, in the context of a data warehouse
application, and in particular of the ETL process design phase, an ontology can
play a key role in establishing a common conceptual agreement and in guiding the
extraction and transformation of the data from the sources to the target.

Motivated by this observation, we envision a methodology for the task of ETL
design that comprises two main phases. First, we consider an ontology that captures
the knowledge and the requirements regarding the domain at hand, and it is used
to semantically annotate the datastores. The ontology may already exist, since in
many real world applications the domain of the ETL environment is the same; e.g.,
enterprise or medical data. In such case, the ontology can be re-used or adapted ap-
propriately. If such ontology does not exist, then during the first phase of the design,
a new ontology should be created. Clearly, the details of this phase largely depend
on the particular needs and characteristics of each project. For example, there may
exist different ways and sources to gather requirements, different methodologies to
create an ontology, annotations may be specified manually or semi-automatically,

9

and so on. In this work, we focus on the second phase of the design: having the
ontology available, we investigate how the ontology and the annotations can be used
to drive, in a semi-automatic manner, the specification of the ETL process.

Notice that the burden of using an ontology is reduced mainly to annotating the
source and target schemata with it. Several approaches toward the facilitation of the
automatic schema matching have already been proposed [129, 140]. Nevertheless,
we argue that even if the designer has to do the whole task manually, still, it will be
easier to map individual attributes (one each time) to a domain ontology rather than
try to fill in the puzzle having all the pieces around at the same time. Additionally,
the existence of an ontology that carries the mapping of the source and target tables
can be used in other applications as well. We mention two prominent examples: (a)
the use of such an ontology to produce textual reports (see Section 4.2.5); and (b)
such an ontology can be used as a convenient means to warehousing Web data, as
an individual may easily plug-in his/her data source into the ontology, and then the
rest of the ETL process could be derived automatically, using our approach.

Summarizing, the final part of the work presented in this thesis addresses the
issue of using ontologies to facilitate the conceptual design of ETL processes. More
specifically, we consider the semantic annotation of available data sources and the
derivation of appropriate transformations to structurally and semantically reconcile
data between them. Regarding semantic heterogeneity, two main causes are con-
sidered: naming conflicts, which occur when naming schemes of information differ
significantly (a frequent phenomenon is the presence of homonyms and synonyms);
and scaling conflicts, which occur when different reference systems are used to mea-
sure a value; e.g., different currencies or different date formats. We propose two
alternative approaches for addressing this problem, as outlined below:

• In the first approach we rely on the use of an OWL-DL reasoner to identify
required ETL operations. At the beginning, a graph-based representation,
called datastore graph, is employed as a common conceptual model for the
datastore schemas, so that both structured and semi-structured sources can
be handled in a unified way. Then, an application ontology is constructed,
which is also represented by means of a graph, termed ontology graph, and
which is used to semantically annotate the schemas, so that mappings between
them can be later inferred. Based on the provided annotations, the reasoner
infers semantic correspondences and conflicts among the involved datastores
and proposes a set of conceptual operations for transforming data from the
sources to the target. In addition, we show how this process can also support
the generation of reports in a format resembling natural language, which can
be used to facilitate the validation and the maintenance of the design by all
the involved parties.

• In the second approach we treat the conceptual design of an ETL process as a
graph transformation process. Exploiting the graph-based nature of the data-
store schemata and of the ETL processes, we provide an appropriate formu-
lation of the problem drawing from the well-established graph transformation
theory. This allows us to develop a customizable and extensible set of graph
transformation rules, which determine the choice and the order of operations
comprising the ETL scenario, in conjunction with the semantic information
conveyed by the associated ontology.

10

1.2 Thesis Outline

The rest of the thesis is structured as follows. Chapter 2 presents our techniques
for the discovery and selection of Semantic Web services. Chapter 3 deals with the
use of ontologies for searching for services and data in P2P environments. Then,
our ontology-based approach towards the conceptual design of ETL processes is
presented in Chapter 4. In more detail:

• Chapter 2. This chapter presents our approach for Web service matchmak-
ing and ranking. We start with some preliminaries regarding Semantic Web
service descriptions, and a discussion of related work. Then, we present our
matching function for Semantic Web services, employing a semantic similarity
measure to evaluate the degree of match between requested and offered ser-
vice parameters. Next, we deal with the use of skyline queries for Semantic
Web services, which allows us to compute the best matches between a service
request and a service advertisement in a way that accommodates diverse user
preferences. Finally, we propose methods for ranking offered Web services
under multiple matching criteria.

• Chapter 3. This chapter deals with service discovery and data sharing in P2P
overlay networks. First, we present our technique for Semantic Web service
discovery in a structured P2P network, based on an efficient encoding and
indexing of service descriptions. Then, we describe an approach for the use of
ontologies on top of Peer Data Management Systems, to allow peers to search
for information that is semantically similar, but not necessarily identical, to
their requests.

• Chapter 4. This chapter concentrates on the use of ontologies for the concep-
tual design of ETL processes. Using a domain ontology to semantically anno-
tate the sources and the target, we show how correspondences and conflicts
between them can be automatically inferred in order to construct the concep-
tual design of the ETL scenario. Then we provide an alternative approach
that proceeds with the design of ETL processes through graph transforma-
tions, based on a defined set of graph transformation rules.

• Chapter 5. This chapter presents our conclusions, as well as possible directions
for future work.

11

12

Chapter 2

Web Service Matchmaking and
Ranking

Users often need to find a service on the Web that performs a specific functionality,
e.g., to purchase a product online or to reserve a ticket. In other cases, they want
to find a service that provides access to some underlying data repository, where the
service is used by the owner to provide platform independence or to apply access
control policies. Thus, mechanisms are required to support the discovery of services
that match the user needs. Current industry standards allow for the discovery
of services based on syntactic match of the interfaces, while recent efforts have
concentrated on semantically enriching service descriptions to increase the precision
of the discovery process. To that end, the matchmaking between service descriptions
is based on the use of a reasoner to infer the semantic relationship (e.g., equivalence
or subsumption) between the concepts annotating the service parameters. Still,
several issues remain open, especially regarding the ranking of the match results,
the aggregation of the degrees of match of individual parameters to obtain the overall
degree of match, and the use of multiple criteria to assess the similarity between
service parameters.

This chapter deals with these problems in Web service matchmaking and rank-
ing. First, Section 2.1 provides some preliminary information about the description
of Web services, focusing on the role of ontologies to semantically annotate these de-
scriptions, and Section 2.2 discusses related work. Then, in Section 2.3, we present
our matching function, which uses the notions of recall and precision to measure
the semantic similarity between the requested and offered service parameters. An
example is provided first, and then the similarity measure is introduced, followed by
a discussion of its properties. In Section 2.4 we use the notion of skyline queries to
compute the best matches between a service request and a service advertisement. An
appropriate formulation of the problem is provided, and a suitable skyline algorithm
is adapted for the selection of the best matches. Issues regarding the requester’s and
the provider’s perspectives are also discussed, and an experimental evaluation of the
approach is given. Then, Section 2.5 proposes methods for ranking available Web
services under multiple matching criteria. Three ranking approaches are discussed,
together with corresponding algorithms for computing the best matches in each case,
and an extensive experimental evaluation is provided. Finally, Section 2.6 concludes
the chapter.

Our results in this chapter have been published in [153, 149, 148].

13

2.1 Preliminaries

Naturally, every approach for Web service discovery depends on the kind of informa-
tion available in the corresponding service descriptions, e.g., whether the provided
service descriptions are semantically enhanced or not. Therefore, in this section we
provide some preliminary information about existing languages used to describe the
functionality and capabilities of Web services. Moreover, since our focus is mainly
on Semantic Web services, where the basic idea is that the service parameters are
annotated using concepts from an associated ontology, we start with a brief overview
of ontology languages used in the Web.

2.1.1 Ontologies on the Web

Currently, the existing Web content is primarily intended for human browsing. How-
ever, the Semantic Web [23] is emerging as a vision to enhance the current Web with
machine-processable metadata, specifying the intended meaning of the provided in-
formation in a formal and explicit manner. Thus, software agents will be able to
leverage these metadata in order to “understand”, process, and reason about the
described resources. This will consequently increase the degree of automation, the
efficiency, and the effectiveness of searching, sharing, and combining information.
Ontologies constitute the cornerstone in this effort. An ontology is typically defined
as a “formal and explicit specification of a shared conceptualization” [27]. They
formally define the concepts of interest in a knowledge domain, their properties,
and the relationships among them.

The Web Ontology Language has been proposed by W3C as a recommendation
for a language for specifying ontologies on the Web [103]. OWL (in particular OWL-
DL, see below) is based on Description Logics [15], a decidable fragment of first-
order logic, constituting an important and commonly used knowledge representation
formalism. It is also built on top of the Resource Description Framework (RDF) [100]
and RDF Schema [29], which are also specifications of the W3C. Figure 2.1 depicts
graphically the Semantic Web technology stack (created by Tim-Berners Lee). Below
we focus briefly on RDF, RDF Schema and OWL, outlining their basic concepts. A
detailed and comprehensive introduction to these topics can be found in [10].

RDF is a simple, domain independent, data model, expressed in XML syntax. It
describes Web resources, and relationships between them, using statements which
are triples of the form subject-predicate-object. The subject denotes the resource
being described; the predicate denotes an attribute of this resource or its relation-
ship to another resource; the object can be either a resource or a literal (e.g., a
string). Each resource is uniquely identified by a URI (Universal Resource Identi-
fier). Properties describe relations between resources, and they are also identified
by URIs. Consider, for example, the following fact

Dimitris Skoutas is a PhD student at the Knowledge and Database Sys-
tems Lab and his email address is dskoutas@dblab.ece.ntua.gr.

Assuming that the resources Dimitris Skoutas and KDBSL are identified by
the URIs http://dblab.ece.ntua.gr/∼dskoutas and http://dblab.ece.ntua.gr, respec-
tively, this fact can be described using three RDF statements, as shown below in
XML syntax:

14

Figure 2.1: The Semantic Web technology stack

<rdf:Description rdf:about="http://dblab.ece.ntua.gr/~dskoutas">
<occupation rdf:resource="PhDStudent"/>
<worksAt rdf:resource="http://dblab.ece.ntua.gr"/>
<email>dskoutas@dblab.ece.ntua.gr</email>

</rdf:Description>

RDF Schema is a vocabulary description language for describing classes and
properties of RDF resources. Essentially, it allows to specify the terminology used
in RDF statements. For example, it provide the means to specify classes of objects
or to specify the domain and range of properties. Also, it provides semantics for
generalization hierarchies of such properties and classes. A class being a subclass
of another means that all the individuals of the first also belong to the second.
Notice that multiple inheritance is allowed, i.e., a class may have more than one
superclasses. For example, RDF Schema allows us to express the fact that

A PhD student is a postgraduate student

by means of the statement

<rdfs:Class rdf:about="PhDStudent">
<rdfs:subClassOf rdf:resource="PostgraduateStudent"/>

</rdfs:Class>

Finally, OWL is a more expressive vocabulary description language for classes
and properties. In particular, it comprises three sublanguages that strike a trade-off
between expressiveness and complexity. OWL-Full contains all the constructors of
the language and allows their combination in arbitrary ways; this allows for max-
imum expressiveness, making however the language undecidable. OWL-DL (based
on Description Logics [15]) dictates some restrictions on how the constructors of the
language can be used, thus permitting efficient reasoning support. Finally, OWL-
Lite allows only a subset of the language constructors, leading to a language that is

15

simpler, more comprehensive, and easier to implement, but of course with restricted
expressiveness. The constructors available in OWL allow, for example, to state that
two classes are equivalent or disjoint, that a property is inverse of or symmetric with
another, to add restrictions on properties or to form boolean combinations of classes
(i.e., union and intersections).

In our work, the use of OWL focuses on defining

• a set of classes, representing the entities of interest in the domain of discourse,
and

• a set of properties, representing attributes of these entities or relationships
between them. Notice that two types of properties are provided:

– object properties, which relate instances of one class to instances of an-
other class, and

– datatype properties, which relate instances of one class to values of a
specified datatype.

Classes and properties are then organized in an appropriate hierarchy. Furthermore,
restrictions on the values and the minimum or maximum cardinality of a property
with respect to a specific class are defined. Notice also that the use of custom data
types can be provided by proposed extensions of OWL, such as OWL 1.1 [123] or
OWL-Eu [116].

For example, using OWL one could express the fact that

A lab should have at least 1 member

by means of the statements

<owl:Class rdf:about="Lab">
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource="hasMember"/>
<owl:minCardinality rdf:datatype="&xsd;nonNegativeInteger">1
</owl:minCardinality>

</owl:Restriction>
</rdfs:subClassOf>

</owl:Class>

2.1.2 Web Service Description

The Web Services Description Language (WSDL) [38] is the current industry stan-
dard used to describe Web services. A WSDL document is written in XML and
describes a Web service by means of the following main elements:

<types> describes the kinds of messages that the service receives and sends

<interface> describes what abstract functionality the service provides

<binding> describes how the service can be accessed

<service> describes where the service can be accessed

16

Service
RegistryMatchmaker

Service
Client

Service
Provider

(1) Publish
(2) F

ind

(3) Invoke

Figure 2.2: Overview of Web service discovery

As a simple example, consider a currency converter Web service, called “con-
verter”, that converts euros to U.S. dollars. A (somewhat simplified) WSDL docu-
ment describing the service would look as shown below:

<description>
<types>

<xs:schema>
<xs:element name="convert" type="xs:double"/>
<xs:element name="convertResponse" type="xs:double"/>

</xs:schema
</types>

<interface name = "convertInterface">
<operation name="opConvert">
<input messageLabel="In" element="convert"/>
<output messageLabel="Out" element="convertResponse"/>

</operation>
</interface>

<binding name="converterSOAPBinding"
interface="convertInterface"
type="http://www.w3.org/ns/wsdl/soap"
wsoap:protocol="http://www.w3.org/2003/05/soap/
bindings/HTTP/">

<operation ref="opConvert"
wsoap:mep="http://www.w3.org/2003/05/soap/mep/
soap-response"/>

</binding>

<service name="converterService" interface="convertInterface">
<endpoint name="converterEndpoint"

binding="converterSOAPBinding"
address ="http://dskoutas.example.com/converter"/>

</service>
</description>

WSDL descriptions of services can be published in a UDDI directory [22], so
that they can then be searched by interested parties (see Figure 2.2). UDDI, which
stands for Universal Description, Discovery and Integration, registers different types

17

of information regarding available services, such as a description of the service func-
tionality, information about the organization that provides the service, and possibly
various metadata of the service, such as its classification in a specific taxonomy.

Service descriptions based on WSDL and UDDI focus on the syntactic aspects
of the service, and therefore limit the discovery process to essentially keyword-based
search. To allow for more advanced discovery and selection mechanisms, increas-
ing the precision of the discovery process, the descriptions of services need to be
enhanced with semantics. Three main proposals have emerged recently for this pur-
pose: SAWSDL [75], OWL-S [31], and WSMO [60]. Below, we outline the basic
concepts of each approach.

SAWSDL, which was based on WSDL-S [6], defines mechanisms for adding se-
mantic annotations to WSDL components. These annotations refer to concepts
from a semantic model (i.e., an ontology). Notice, however, that SAWSDL does
not specify a language for representing the semantic model itself. Each concept is
identified by a URI. More specifically, to allow WSDL components to reference con-
cepts from an ontology, SAWSDL defines three extensibility attributes to WSDL 2.0,
namely modelReference, liftingSchema Mapping, and loweringSchemaMapping.
A modelReference can be used within a WSDL or XML Schema element to ref-
erence the URI of a concept. This is useful for matchmaking purposes, i.e., to
determine whether there is semantic agreement between compared elements of ser-
vice descriptions. Consider as an example the aforementioned currency converter
service and a sample ontology defining the class Currency and its subclasses EUR

and USD:

<rdf:RDF xml:base="http://dblab.ece.ntua.gr/currencyOnt">
<owl:Class rdf:ID="EUR">

<rdfs:subClassOf rdf:resource="Currency"/>
</owl:Class>
<owl:Class rdf:ID="USD">

<rdfs:subClassOf rdf:resource="Currency"/>
</owl:Class>

</rdf:RDF>

Then, the previously shown WSDL description of the service can be annotated with
these concepts as shown below:

<description>
<types>

<xs:schema>
<xs:element name="convert" type="xs:double"
sawsdl:modelReference="http://dblab.ece.ntua.gr/

currencyOnt#EUR"/>
<xs:element name="convertResponse" type="xs:double"
sawsdl:modelReference="http://dblab.ece.ntua.gr/

currencyOnt#USD"/>
</xs:schema

</types>

. . .
</description>

18

However, there can still be mismatches between the XML representation of the
element and its corresponding representation in the semantic model, e.g., “full name”
versus “first name” and “last name”. In this case, liftingSchemaMapping and
loweringSchemaMapping specify mappings from XML to the semantic model and
from the semantic model to XML, respectively. These mappings are then used
during service invocation.

OWL-S specifies an upper ontology for services, based on the Web Ontology
Language (OWL) [103]. A service description contains both functional parameters,
namely inputs, outputs, preconditions and effects, as well as non-functional param-
eters, such as information about the service provider or QoS aspects. In particular,
the description of a service in OWL-S comprises:

• a service profile, which describes what the service does;

• a service model, which describes how the service can be used;

• a service grounding, which describes how the service can be accessed.

Finally, WSMO provides a conceptual framework and a formal language for se-
mantically describing all relevant aspects of Web services to facilitate the automation
of service discovery and composition. It comprises four main elements, namely:

• ontologies, which provide the available terminology;

• Web service descriptions, which describe the functional and behavioral aspects
of a Web service;

• goals, which represent user desires;

• mediators, which handle interoperability problems.

2.2 Related Work

In the following, we discuss related work in the area of Web service discovery, out-
lining the limitations of existing approaches. We also present works in the fields of
skyline computation and data fusion, which are related to our approach for combin-
ing the individual parameter scores and for supporting multiple similarity measures.

2.2.1 Web Service Discovery

2.2.1.1 Semantic Matchmaking

Early works on Web service discovery have concentrated mostly on keyword-based
search, with UDDI [22] receiving most attention and becoming the de-facto industry
standard. Even though UDDI provides syntactic interoperability and a classification
scheme to describe the service functionality, its search capabilities are limited due to
the lack of explicit semantics. To overcome this deficiency, proposals for exploiting
ontologies to semantically enhance service descriptions have emerged (WSDL-S [6],

19

OWL-S [31], WSMO [60]). As a result, several works have been proposed describ-
ing how to efficiently integrate Semantic Web service descriptions into the UDDI
registry [7, 80, 117, 118, 155].

In the presence of semantically rich service descriptions, the problem of Web
service matchmaking is treated as a logic inference task. In particular, in [118] four
degrees of match are identified, based on the existence of subsumption relationship
between concepts contained in the request and the advertisement. More specifically,
the match is called exact, if the request is equivalent to or direct subclass of the
advertisement; plug-in, if the request is subsumed by the advertisement; subsume, if
the request subsumes the advertisement; and fail, if there is no subsumption relation.
In [93] the last case is further distinguished in intersection, if the intersection of
the request and the advertisement is satisfiable, and disjoint, if the two concepts
are disjoint. Also, the match is considered exact, only when the two concepts are
equivalent. In the same direction, the work presented in [21] addresses the matching
of requested and offered parameters as matching of bipartite graphs. The main
difference with our work is that these approaches only rank the matches in a discrete
scale, according to the aforementioned types of match, without specifying a way for
ranking services within the same type of match.

In [35] a semantic matching algorithm is presented, based on Tversky’s feature-
based similarity model [163]. The algorithm assesses the similarity between re-
quested and offered inputs or outputs by means of the proportion of shared prop-
erties between the corresponding concepts, instead of using the concept hierarchy.
In contrast to the previous approaches, the result of the matching algorithm is a
continuous value in the range [0..1]. However, even though the proposed matching
function is asymmetric, asymmetry is achieved by assigning a score equal to 1 to
one of the two alternative cases, which does not allow to differentiate services within
this case, and is also the same score used for an exact match. Instead, our approach
addresses this deficiency by employing two separate measures, namely recall and
precision (see Section 2.3). Another difference is that the algorithm does not con-
sider additional details about the properties of the concepts, such as the existence of
property hierarchy or restrictions. Moreover, this approach, as well as the previous
ones, do not address the matching of preconditions and effects.

In [68] the authors propose a method for matching OWL-S annotated services,
by defining a similarity measure for OWL objects, based on the ratio of common
RDF tripples in their descriptions. To measure the information content of a triple,
they use the notion of “inferencibility” of a tripple t, which is defined as the number
of new RDF tripples that can be generated by applying a set of inference rules to
t. Therefore, this approach depends on the considered OWL constructs and set of
inference rules. Furthermore, the proposed similarity function is symmetric.

Finally, several works exist addressing the issue of semantic similarity between
concepts in a taxonomy. In [133] the notion of information content is used to de-
fine the similarity between two concepts. The information content of a concept is
defined as the negative logarithm of the probability of encountering an instance of
that concept. The similarity between two concepts is then assessed by the informa-
tion content of their most specific common ancestor. In [97] a domain-independent,
information-theoretic definition of similarity is provided, and its applicability in dif-
ferent domains is demonstrated. The similarity between two concepts is measured
by the ratio of the amount of information needed to state their commonality and the

20

information needed to fully describe them. These approaches are not directly appli-
cable in our case for three reasons: (a) they rely on the existence of a probabilistic
model for the domain; (b) they consider only the concept hierarchy; and (c) they
are symmetric. Another semantic similarity function is presented in [136], which
allows similarities to be asymmetric. However, asymmetry is “hard-coded” in the
similarity function. Additionally, the similarity function is based on the number of
descendants of the compared concepts, and therefore the similarity decreases with
the hierarchy depth.

2.2.1.2 Hybrid Matchmaking

The works presented previously compare service parameters using a single matching
criterion. In [43], the need for employing many types of matching is identified,
and the integration of multiple external matching services to a UDDI registry is
proposed. Then, selecting the external matching service is based on specified policies
(e.g., the first available, or the most successful). If more than one matching services
are invoked, the policy specifies whether the union or the intersection of the results
should be returned. The work in [46] focuses on similarity search for Web service
operations, combining multiple sources of evidence. A clustering algorithm groups
names of parameters into semantically meaningful concepts, used to determine the
similarity between I/O parameters. Different types of similarity are combined using
a linear function, with weights being assigned manually, based on analysis of the
results from different trials. Learning the weights from user feedback is mentioned
as for future work.

OWLS-MX [84] is a hybrid matchmaker for OWL-S services, which matches
I/O parameters, utilizing both logic-based reasoning and IR techniques. Similarly,
WSMO-MX [79] is a matchmaker for WSMO-oriented service descriptions.

The above works focus on matching pairs of parameters from the requested
and offered services, while the overall match is typically calculated as a weighted
average, assuming the existence of an appropriate weighting scheme. Furthermore,
none of these approaches considers more than one matching criteria simultaneously.
However, from the diversity of these approaches, it is evident that there is no single
matching criterion that constitutes the silver bullet for the problem. On the other
hand, our approach addresses this issue and provides a generic and efficient way
to accommodate and leverage multiple matching criteria and service parameters,
without loss of information from aggregating the individual results and without
requiring a-priori knowledge concerning the user’s preferences.

2.2.2 Skyline Computation

Our proposed methods for service discovery resemble concepts of multi-objective op-
timization, which has been studied in the literature, initially referred to as maximum
vector problem [88, 128], and more recently, as skyline computation [28]. Given a
set of points in a d-dimensional space, the skyline is defined as the subset containing
those points that are not dominated by any other point. Thus, the best answers for
such a query exist in the skyline.

Skyline queries have received a lot of attention over the recent years, and several
algorithms have been proposed. Block Nested Loop (BNL) [28] is a straightforward,
generic skyline algorithm. It iterates over the data set, comparing each point with

21

every other point, and reports the points that are not dominated by any other point.
Sort First Skyline (SFS) [39] improves the efficiency of BNL, by pre-sorting the input
according to a monotone scoring function F , reducing the number of dominance
checks required. The Sort and Limit Skyline algorithm (SaLSa) [18] proposes an
additional modification, so that the computation may terminate before scanning the
whole data set.

Even though our work exploits the basic techniques underlying these methods,
these algorithms are not directly applicable to our problem, as they do not deal
with ranking issues (the objects comprising the skyline are incomparable to each
other) or with the requirement for multiple matching criteria. Furthermore, the size
of the skyline is not known a-priori, and, depending on the data dimensionality and
distribution may often be either too large or too small. In addition, our work bor-
rows some ideas from the probabilistic skyline model for uncertain data introduced
in [125], which however also does not provide any ranking of the data.

Other works exploit appropriate indexes, such as B+-tree or R-tree, to speed-
up the skyline computation process [158, 87, 120, 90]. These approaches are not
applicable to our problem, where no indexes are available.

The importance of combining top-k queries with skyline queries has been pointed
out in [174]. However, there are some important differences to our work. First, this
approach also relies on the use of an index, in particular an aggregate R-tree. Second,
it considers only one of our proposed ranking criteria (see Section 2.5.1). Third, it
does not address the requirement for handling multiple matching criteria.

2.2.3 Data Fusion

Since our work aims to support the ranking of service descriptions based on multiple
matching criteria, in the following we review related work from the area of data
fusion. Given a set of ranked lists of items returned from multiple methods – e.g.,
from different search engines, different databases, and so on – in response to a given
query, data fusion (also known as results merging, metasearch or rank aggregation)
is the construction of a single ranked list combining the individual rankings. FA,
TA and NRA are typical algorithms for finding the top-k objects, given a set of
rankings and a monotone aggregation function [50]. For example, FA scans the
sorted lists in parallel until at least k items have been seen in all the lists. Then,
for each item seen so far, it gets its local scores (doing random access if the item
has not been seen in some of the lists), and it computes its overall score. Finally,
the items with the k highest overall scores are returned. Hence, these algorithms
require the use of a specific aggregation function. Instead, in our case we assume
that the user preferences are not known, and therefore our approach relies on the
notion of dominance to determine the overall ranking, as described in Section 2.5.

In Information retrieval, data fusion techniques can be classified [14] based on
whether they require knowledge of the relevance scores and whether training data
is used. The simplest method based solely on the documents’ ranks is the Borda-
fuse model introduced in [14]. In its non-training flavor, it assigns as score to each
document the summation of its rank (position) in each list. The documents in
the fused list are ranked by increasing order of their score, solving ties arbitrarily.
Training data can be used to assess the performance of each source and, hence,
learn its importance. In this case, the sources are assigned weights relative to their

22

importance and a document’s score is the weighted summation of its ranks.

The Condorcet-fuse method [107] is another rank-based fusion approach. It is
based on a majoritarian voting algorithm, which specifies that a document should
be ranked higher in the fused list than another document if the former is ranked
higher than the latter more times than the latter is ranked higher than the for-
mer. Condorcet-fuse proceeds iteratively: it identifies the winner(s), i.e., the highest
ranked document(s), removes it/them from the lists and then repeats the process
until there are no more documents to rank.

For the case where the relevance scores are given/known, several fusion tech-
niques, including CombSUM, CombANZ and CombMNZ, were discussed in [52]. In
CombSUM, the final (fused) relevance score of a document is given by the summa-
tion of the relevance scores assigned by each source; if a document does not appear
in a list, its relevance score is considered 0 for that list. In CombANZ (CombMNZ),
the final score of a document is calculated as the score of CombSUM divided (mul-
tiplied) by the number of lists in which the document appears. In [89], the author
concludes that CombMNZ provides the best retrieval efficiency.

When training data is available, it is shown in [168] that a linear (weighted)
combination of scores works well when the various rank engines return similar sets
of relevant documents and dissimilar sets of non-relevant documents. For example,
a weighted variant of CombSUM is successfully used in [141] for the fusion of multi-
lingual ranked lists. The optimal size of the training data that balances effectiveness
and efficiency is investigated in [37].

Probabilistic fusion techniques, which rank documents based on their probability
of relevance to the given query, have also appeared. The relevance probability is
calculated in the training phase, and depends on which rank engine returned the
document among its results and the document’s position in the result set. In [96],
such a technique was shown to outperform CombMNZ.

An outranking approach was recently presented in [51]. According to this, a
document is ranked better than another if the majority of input rankings is in
concordance with this fact and at the same time only a few input rankings refute it.

Seen in the context of data fusion, our work addresses the novel problem where
in each ranking a vector of scores, instead of a single score, is used to measure the
relevance for each data item.

2.3 A Similarity Measure for Semantic Web Ser-

vices

2.3.1 Example

Assume a simple scenario where the user is interested in watching a movie and is
searching for a Web service that, given as input some details about the movie, returns
information about available cinemas and showtimes. To semantically describe the
request and the service capabilities, a sample ontology is considered, as shown in
Figure 2.3. The figure displays the class hierarchy. Also, the properties of each class
are shown inside brackets, together with any restrictions applied on them. Note
that for the subclasses of a class, only the additional properties and/or restrictions
are displayed (i.e., not those inherited by the superclass). For instance, the class

23

INPUT OUTPUT1 OUTPUT2

Req PopMovie Multiplex Showtimes
Adv1 PopMovieEuro LuxMultiplex Evening
Adv2 Movie Cinema Showtimes
Adv3 Movie Multiplex Showtimes
Adv4 Movie Multiplex Evening

Table 2.1: Service request and advertisements

PopMovie inherits the properties hasT itle, hasDirector and hasActor from the
class Movie, and also has the additional property hasLeadActor. The range of the
latter is restricted to the class FamousActor. We assume, additionally, that the
property hasLeadActor is a subproperty of the property hasActor.

Director

Actor

Cinema [hasRoom, hasLocation]

Movie [hasTitle, hasDirector, hasActor]

PopMovie [hasLeadActor.FamousActor]

owl:Thing

PopMovieEuro [hasDirector.European]

Multiplex [≥2 hasRoom]

LuxMultiplex [servesDrink, hasParking]

Showtimes

Afternoon

Evening

FamousActor

American

European

Figure 2.3: A sample ontology snippet for the motivating example

The service request and advertisements consist of one input parameter, corre-
sponding to the type of movie, and two output parameters, corresponding to the
type of cinema and showtimes. Each parameter is annotated by specifying its cor-
responding class in the sample domain ontology, as shown in Table 2.1. Based on
the specified annotations, one can notice, for example, that the advertisement Adv1

satisfies only partially the user request, because it deals only with movies from Euro-
pean directors, luxury multiplex cinemas and evening showtimes. On the contrary,
the advertisement Adv2 is more generic, as it refers to any type of movie, cinema
and showtimes.

The question that arises is how to select the best candidate service for the given
request. In the rest of this section we develop a similarity measure that allows to
compare such a service request with available service descriptions, in terms of the

24

Relevant Not Relevant
Retrieved TP FP

Not Retrieved FN
Table 2.2: Domain of an answer to a search

semantic information conveyed by the accompanying domain ontology.

2.3.2 The Similarity Measure

To assess the degree of match between a service request and a service advertisement,
we propose a similarity measure based on the concepts of recall and precision from
the field of Information Retrieval. The similarity measure should take into con-
sideration several types of semantic information available in the provided domain
ontology, in a modular way.

In what follows, we consider a Semantic Web service as a tuple SWS(SIN , SOUT ,
SPR, SEF), where SIN and SOUT are two sets of classes in the domain ontology
corresponding, respectively, to the service input and output parameters, while SPR

and SEF are two sets of logical formulae denoting the service preconditions and
effects.

2.3.2.1 Using recall and precision for matching services

Recall and precision are two widely used measures for evaluating the performance
of Information Retrieval systems [16]. Recall expresses the proportion of relevant
material actually retrieved in answer to a search request. Precision expresses the
proportion of retrieved material that is actually relevant. More specifically, recall
and precision are defined by means of the following quantities (see also Figure 2.2):

• True Positive (TP): items that are relevant and were retrieved

• False Negative (FN): items that are relevant but were not retrieved

• False Positive (FP): items that are not relevant but were retrieved

recall =
TP

TP + FN
precision =

TP

TP + FP
(2.1)

A single measure combining recall and precision is the weighted harmonic mean,
also known as the F-measure. The general formula for non-negative real a is:

Fa =
(1 + a) ∗ precision ∗ recall
a ∗ precision+ recall

(2.2)

Choosing a > 1, weights recall more than precision. In the literature, typical
values for a are 0.5, 1, and 2.

We revisit the definitions of recall and precision measures for expressing the
degree of match between a service request, denoted by the class CR, and a service
advertisement, denoted by the class CA. CR and CA refer to service inputs or
outputs. In Section 2.3.2.3, we extend the use of recall and precision to cover also
preconditions and effects.

25

For the task of matching a service parameter CA to a request parameter CR, the
relevant items are the instances of CR, while the retrieved items are the instances
of CA. Thus, recall and precision have the following meaning:

Recall is the proportion of instances of CR that are also instances of CA.

Precision is the proportion of instances of CA that are also instances of CR.

Formally:

recall(CR, CA) =
| {x |x ∈ (CR u CA)} |
| {x |x ∈ CR} |

precision(CR, CA) =
| {x |x ∈ (CR u CA)} |
| {x |x ∈ CA} |

(2.3)

The above definitions for recall and precision have the following properties:

• When the request is equivalent to the advertisement, i.e., CR≡CA≡CR uCA,
then recall= 1 and precision= 1, meaning that the service capabilities exactly
match the user needs.

• When the request is more specific than the advertisement, i.e., CRvCA, then
CR uCA≡CR, thus recall= 1 and precision< 1, meaning that the service
capabilities are a superset of the user needs.

• When the request is less specific than the advertisement, i.e., CRwCA, then
CR uCA≡CA, thus recall < 1 and precision= 1, meaning that the service
capabilities are a subset of the user needs.

• When the request and the advertisement overlap, i.e., ¬(CR uCAv ⊥), then
recall < 1 and precision< 1, meaning that some of the service capabilities
match some of the user needs.

• Finally, when the request and the advertisement are disjoint, i.e., CR uCAv
⊥, then recall= 0 and precision= 0, meaning that the service capabilities do
not match the user needs.

Observe that our approach allows the degree of match to be specified in a continuous
scale, while maintaining a direct correspondence to the types of match established
in related work, namely exact, plug-in, subsume, intersection, and disjoint [93, 118].

2.3.2.2 Calculating recall and precision

Since, in principle, the instances of a class are not known, the exact values of recall
and precision can not be calculated by means of the Equations 2.3. Nevertheless, an
estimation of recall and precision can be made, by comparing the two classes based
on their semantic descriptions and the application ontology.

An ontology consists, at the very least, of a hierarchy of classes. Classes may be
described by properties, which may also be hierarchically structured. Furthermore,

26

RECALL PRECISION
IN1 OUT1 OUT2 IN1 OUT1 OUT2

Adv1 0.67 0.67 0.5 1 1 1
Adv2 1 1 1 0.5 0.5 1
Adv3 1 1 1 0.5 1 1
Adv4 1 1 0.5 0.5 1 1

Table 2.3: Recall and precision based on the class hierarchy

it is possible to assign value or cardinality restrictions to the properties of a class. In
the following, we compute the values of recall and precision taking into consideration
the above types of semantic information encoded in the ontology. Notice that the
derived formulae are actually applied when the type of match is either plug-in,
subsume or intersection. In the case that the request and the advertisement are
inferred to be equivalent (disjoint), then both recall and precision are equal to one
(zero) and no further calculation is required.

Notation. P (C) denotes the set of properties of a class C. A(C) and A(P)
denote, respectively, the set of superclasses of class C and the set of superproperties
of property P . pi(C) refers to the i-th property of class C.

Recall and precision based on the class hierarchy. A common approach
for measuring the similarity between two classes in a taxonomy is by means of the
ratio of their common ancestors [97, 133]. Given that the number of instances of
a class is inversely related to the depth of this class in the hierarchy, i.e., to the
number of its superclasses, recall and precision are estimated as follows:

recallI(CR, CA) =
|A(CR) ∩ A(CA)|
|A(CA)|

precisionI(CR, CA) =
|A(CR) ∩ A(CA)|
|A(CR)|

(2.4)

Observe that the values of recall and precision obtained from Equations 2.4
adhere to the properties discussed in subsection 2.3.2.1. For example, if CRvCA,
then A(CR)⊇A(CA), and therefore recall= 1 and precision< 1.

As an example, consider the requestMovie Req and the advertisementMovie Adv
from the motivating example. The superclasses of Movie Req are Movie Req,
Advertisement and Movie, while the superclass of Movie Adv is Movie. Notice
that we include in the set of superclasses the class itself, but not the root of the
class hierarchy (e.g., the class owl:Thing in an OWL ontology). That is, top level
classes are considered to be disjoint. Thus, applying Equations 2.4 we get:

recallI(Movie Req,Movie Adv) = 1/1 = 1

precisionI(Movie Req,Movie Adv) = 1/3 = 0.33

Table 2.3 displays the values of recall and precision for each input and output
parameter of each service advertisement considered in the motivating example, with
respect to the corresponding parameters of the user request.

Recall and precision based on class properties. When classes are described
by properties, this information can contribute in assessing their degree of similarity.

27

RECALL PRECISION
IN1 OUT1 OUT2 IN1 OUT1 OUT2

Adv1 1 0.5 N/A 1 1 N/A
Adv2 1 1 N/A 0.75 1 N/A
Adv3 1 1 N/A 0.75 1 N/A
Adv4 1 1 N/A 0.75 1 N/A

Table 2.4: Recall and precision based on common properties

Similarly to the previous case, we can use the ratio of common properties between
two classes, as a measure of their similarity. In particular, we can estimate recall
and precision by:

recallII(CR, CA) =
|P (CR) ∩ P (CA)|
|P (CA)|

precisionII(CR, CA) =
|P (CR) ∩ P (CA)|
|P (CR)|

(2.5)

For instance, the properties of Movie Adv are hasDirector and hasActor, in-
herited from class Movie. Movie Req also inherits these two properties, but also
has the additional property hasLeadActor. Thus, applying Equations 2.5 we get:

recallII(Movie Req,Movie Adv) = 2/2 = 1

precisionII(Movie Req,Movie Adv) = 2/3 ' 0.67

Table 2.4 illustrates the results from Equations 2.5 for the sample services of
the motivating example. Notice how the values change compared to Table 2.3.
For instance, the recall between PopMovie and PopMovieEuro is now equal to
one, because the two classes share the same properties. Similarly, the precision
between PopMovie and Movie is now higher, because their common properties are
again considered. Equations 2.5 are not applicable for the class Showtimes and its
subclasses, because no properties are assigned to them.

Property hierarchy. Next, the existence of property hierarchy is considered. In
order to calculate the recall and precision between two classes based on their set
of properties, we first calculate the recall and precision between their individual
properties. The calculation of recall and precision for two properties, with respect
to the specified property hierarchy, is done similarly to the respective calculation for
classes, namely by the ratio of their common superproperties:

recall(P1, P2) =
|A(P1) ∩ A(P2)|
|A(P2)|

precision(P1, P2) =
|A(P1) ∩ A(P2)|
|A(P1)|

(2.6)

As an example, we calculate recall and precision for properties hasLeadActor
and hasActor. The superproperties of the first are hasLeadActor and hasActor,
while the second has one superproperty, namely itself. Therefore, from Equations 2.6
follows:

28

RECALL PRECISION
IN1 OUT1 OUT2 IN1 OUT1 OUT2

Adv1 1 0.5 N/A 1 1 N/A
Adv2 1 1 N/A 0.875 1 N/A
Adv3 1 1 N/A 0.875 1 N/A
Adv4 1 1 N/A 0.875 1 N/A

Table 2.5: Recall and precision considering property hierarchy

recall(hasLeadActor, hasActor) = 1/1 = 1

precision(hasLeadActor, hasActor) = 1/2 = 0.5

The recall and precision between two properties may be used to calculate the
recall and precision between two classes. For each property of one class, the property
of the other class that has the highest recall or precision, accordingly, is found (if any)
and then, the average is estimated by Equations 2.7. Notice that if no subproperties
exist, then Equations 2.7 are equivalent to Equations 2.5.

recII(CR, CA) =

|P (CA)|∑
i=1

|P (CR)|
max
j=1

(rec(pj(CR), pi(CA)))

|P (CA)|

prcII(CR, CA) =

|P (CR)|∑
i=1

|P (CA)|
max
j=1

(prc(pi(CR), pj(CA)))

|P (CR)|

(2.7)

For the reference example, considering that hasLeadActor is a subproperty of
hasActor, the precision between PopMovie and Movie is:
precision(PopMovie,Movie) = (1 + 1 + 1 + 0.5)/4 = 0.875

Table 2.5 displays the updated results for recall and precision, after the property
hierarchy has been considered.

Value restrictions. Often one class extends another not (only) by defining addi-
tional properties, but (also) by imposing restrictions on the values of already existing
properties. To consider this, we extend Equations 2.6 to account also for the recall
and precision between the ranges of the properties. As it is typically the case for
aggregating ratios, the geometric mean of the similarity of the properties and the
similarity of their ranges is used:

rec(P1, P2) =

√
|A(P1) ∩ A(P2)|
|A(P2)|

∗ rec(r(P1), r(P2))

prc(P1, P2) =

√
|A(P1) ∩ A(P2)|
|A(P1)|

∗ prc(r(P1), r(P2))

(2.8)

where r(P) denotes the (possibly restricted) range of property P . It is often the case
that two different, unrelated properties have the same (or similar) ranges. However,

29

RECALL PRECISION
IN1 OUT1 OUT2 IN1 OUT1 OUT2

Adv1 0.9375 0.5 N/A 1 1 N/A
Adv2 1 1 N/A 0.875 1 N/A
Adv3 1 1 N/A 0.875 1 N/A
Adv4 1 1 N/A 0.875 1 N/A
Table 2.6: Recall and precision including value restrictions

RECALL PRECISION
IN1 OUT1 OUT2 IN1 OUT1 OUT2

Adv1 0.927 0.5 N/A 1 1 N/A
Adv2 1 1 N/A 0.875 0.85 N/A
Adv3 1 1 N/A 0.875 1 N/A
Adv4 1 1 N/A 0.875 1 N/A

Table 2.7: Recall and precision based on properties, including hierarchy and restrictions

in such cases the similarity between the ranges of the properties should not be taken
into account. Indeed, if the compared properties have no common superproperties,
then the geometric mean is zero.

The recall and precision between two classes is now derived from Equations 2.7,
using Equations 2.8 instead of 2.6 to calculate the recall and precision of their
properties.

For example, considering value restrictions, the recall between PopMovieEuro
and PopMovie is:

recall(PopMovie, PopMovieEuro) = (1 +
√

1 ∗ 0.5 + 1 + 1)/4 = 0.927

The values of recall and precision for the services of the reference example, after
considering value restrictions, are displayed in Table 2.6

Cardinality restrictions. Apart from restricting the value of a property, it is
also possible to restrict its minimum and/or maximum cardinality. With respect
to minimum cardinality restrictions, the similarity could be assessed by subtracting
the minimum cardinalities of the two properties, using zero as the default value.
However, this is not applicable for maximum cardinality restrictions, since the upper
bound in this case is infinite.

To get around this, when a cardinality restriction on a property P is encountered
in the calculation, we create a (temporary) subproperty of P and use it to replace
this restriction. If both of the compared classes define a cardinality restriction on
the same property, the substitute properties are hierarchically structured according
to their respective lower and/or upper bounds. That is, assuming two cardinality
restrictions on property P, denoted by Pmax1

min1
and Pmax2

min2
, if, for instance, min1 >

min2 and max1 < max2, then the substitute properties will be P1 @ P2 @ P . The
calculation of recall and precision is then done as previously, using Equations 2.7
and 2.8.

For example, considering cardinality restrictions, the precision betweenMultiplex
and Cinema is:

precision(Multiplex, Cinema)=(
√

0.5 ∗ 1+1)/2= 0.85

Table 2.7 displays the values of recall and precision for the reference example,
based on the properties of the classes, and considering the property hierarchy, as
well as value and cardinality restrictions.

30

2.3.2.3 Matching preconditions and effects

Up to now we have dealt with the matching of input and output parameters. How-
ever, a service description may also consist of a set of preconditions and effects,
which describe the state change produced by the execution of the service. The pre-
conditions of a service is a set of logical formulae, all of which must hold in order
for the service to execute successfully. Effects is another set of formulae, which hold
after the successful execution of the service. In the following we present how the use
of recall and precision is extended for matching between request and advertisement
preconditions and effects. We use φRpr, φRef , φApr and φAef to denote, respectively,
the sets of preconditions and effects specified by the user and the service. Regard-
ing service effects, a service advertisement satisfies the user needs, if all the effects
requested by the user are true under the effects provided by the service, i.e.,

∀φi ∈ φRef : φAef � φi

We denote by φ
′

Ref the subset of φRef containing the effects satisfied by the
service. On the other hand, the service may have additional, possibly undesirable,
effects. Thus, we need to distinguish between the effects of the service that are
actually required to satisfy the request and other “side-effects”. We denote by φ

′

Aef

the subset of φAef containing the effects φi for which the following holds:

∃φj ∈ φRef : φAef \ {φi} 2 φj

Therefore, we extend the definition of recall and precision for matching service
effects as follows:

Recallef is the proportion of effects requested by the user that are satisfied by
the service.

Precisionef is the proportion of service effects required to satisfy the effects
requested by the user.

Formally:

recallef (φRef , φAef) = | φ′Ref | / | φRef |
precisionef (φRef , φAef) = | φ′Aef | / | φAef |

(2.9)

Regarding service preconditions, the only difference is that in order to use the ser-
vice, the user must provide sufficient conditions to satisfy the service preconditions.
Therefore, the preconditions required by the service are considered as relevant, while
those provided by the user are considered as retrieved. Thus, using corresponding
notation, we have:

Recallpr is the proportion of service preconditions that are satisfied by the user.

Precisionpr is the proportion of conditions provided by the user that are needed
to satisfy the service preconditions.

Formally:

recallpr(φRpr, φApr) = | φ′Apr | / | φApr |
precisionpr(φRpr, φApr) = | φ′Rpr | / | φRpr |

(2.10)

31

PRECONDITIONS EFFECTS
Req φ1, φ2 φ4

Adv1 φ1 φ3, φ4

Adv2 φ1, φ2 φ4

Adv3 φ1 φ4

Adv4 φ1, φ2 φ3, φ4

Table 2.8: Preconditions and effects for the motivating example

RECALL PRECISION
PREC. EFF. PREC. EFF.

Adv1 1 1 0.5 0.5
Adv2 1 1 1 1
Adv3 1 1 0.5 1
Adv4 1 1 1 0.5

Table 2.9: Recall and precision values for the preconditions and effects

To demonstrate the matching process for service preconditions and effects, we
extend the motivating example, by assuming that the candidate services allow also
for ticket reservations. Suppose that the request and service preconditions and
effects are as shown in Table 2.8, where the logical formulae φ1, φ2, φ3 and φ4

express, respectively, the following conditions: “the user possesses a valid credit
card”, “the reservation is done 3 days in advance”, “the credit card is charged” and
“the tickets are reserved”.

Table 2.9 displays the values of recall and precision for matching the precondi-
tions and effects of the services of the motivating example.

2.3.2.4 Combining partial results

The partial results described in the previous two sections are useful for providing
a more in-depth analysis of the match between the service request and the service
advertisement, allowing for higher control in the selection process and providing
useful insight in refining the search criteria. However, an aggregated result is also
required, so that a single list of ranked services may be returned to the user. A single
measure indicating the degree of match between the user request and the service
advertisement is derived by combining the partial results, using appropriate weights
to determine the relative emphasis given on each parameter.

The first step is to combine the values of recall and precision obtained by the
class hierarchy and the class properties (if any), using the geometric mean:

RECALL PRECISION
IN1 OUT1 OUT2 IN1 OUT1 OUT2

Adv1 0.79 0.58 0.5 1 1 1
Adv2 1 1 1 0.66 0.65 1
Adv3 1 1 1 0.66 1 1
Adv4 1 1 0.5 0.66 1 1

Table 2.10: Recall and precision combining class hierarchy and properties

32

RECALL PRECISION
IN OUT IN OUT

Adv1 0.79 0.54 1 1
Adv2 1 1 0.66 0.83
Adv3 1 1 0.66 1
Adv4 1 0.75 0.66 1

Table 2.11: Recall and precision for multiple input/output parameters

recall =
√
recallI ∗ recallII

precision =
√
precisionI ∗ precisionII

(2.11)

The results regarding the reference example are illustrated in Table 2.10.
Equations 2.11, as well as 2.4 and 2.7, refer to a single input or output parameter.

However, a Web service typically has multiple inputs and outputs. In this case, the
best match is identified for each parameter, and then the average match over all
parameters is returned. That is, if SRI

and SAI
are the sets of request and service

inputs, respectively, then:

recin(SRI
, SAI

) =

∑
CR∈SRI

max
CA∈SAI

(rec(CR, CA))

|SRI
|

prcin(SRI
, SAI

) =

∑
CR∈SRI

max
CA∈SAI

(prc(CR, CA))

|SRI
|

(2.12)

Matching multiple outputs is done similarly. Notice that a weighted average
can be used instead, so that the user may give different emphasis on the various
parameters.

Table 2.11 displays the results for the reference example, aggregating the values
of recall and precision for the two output parameters.

Finally, the results from matching inputs, outputs, preconditions and effects are
combined, using appropriate weights to determine the relative emphasis of each
factor.

rec =
win ·rcin + wout ·rcout + wpr ·rcpr + wef ·rcef

win + wout + wpr + wef

prc =
win ·prin + wout ·prout + wpr ·prpr + wef ·pref

win + wout + wpr + wef

(2.13)

The weights in Equations 2.12) and 2.13 reflect the user preferences. That is,
a more advanced search interface may be presented to the user, allowing the asso-
ciation to each search parameter (or type of parameters) a degree of importance,
indicated in a pre-defined, discrete scale (e.g. “low”, “medium”, “high”). Also the

33

RECALL PRECISION F-MEASURE
Adv1 0.81 0.75 0.79
Adv2 1 0.89 0.96
Adv3 1 0.86 0.95
Adv4 0.92 0.78 0.87

Table 2.12: Recall and precision combining input, output, preconditions and effects

user may omit some parameter type(s), in which case the corresponding weight is set
to zero. For instance, if the user does not specify any preconditions, then wpr = 0.

To obtain a single score for each service advertisement, the values of recall and
precision are combined using the F-measure (see Equation 2.2).

The final results for the motivating example are displayed in Table 2.12. For
this example, we have assumed that all input and output parameters are considered
of equal importance. Outputs and effects are weighted twice as much as inputs
and preconditions, i.e. wout = wef = 2 win = 2 wpr. The reason for this is that
mismatches regarding inputs and preconditions may be resolved by the user, by
providing additional information, probably by using the results of other services.
For the F-measure, the value α = 2 was selected, so that recall is weighted twice as
much as precision.

As shown in Table 2.12, the advertisements Adv2 and Adv3 advertisements Adv2

and Adv3 provide the best matches, with the first having a slightly higher rank.
Indeed, as can be observed from Tables 2.1 and 2.8, the capabilities of these services
are a superset of the requested capabilities. Adv2 has a lower precision regard-
ing output parameters (see Table 2.11), however, this is compensated by a higher
precision regarding preconditions (see Table 2.9).

2.3.3 Properties of the Similarity Measure

In the following we discuss several important properties of the presented similarity
measure for Semantic Web services.

Similar to previous works in this area [118, 93], the proposed discovery mecha-
nism uses the available semantic information provided by the domain ontology and
performs logic inference to estimate the degree of match between the service capa-
bilities and the user request. However, the degree of match is not expressed in a
discrete scale, e.g., comprising four distinct types of match, but as a continuous value
in the range [0..1]. This is important for handling cases where a large number of
candidate services provide the same type of match. The use of recall and precision,
as measures for the degree of match, allows to provide a ranking of the available
services, while, at the same time, maintaining a straight-forward correspondence to
these established types of match.

Another significant advantage of using the recall and precision measures is that
they provide an intuitive and modular way to allow for asymmetry, an important
requirement for a matching function [35]. Moreover, it is shown how the use of
these measures is extended to handle in a uniform way the matching of service
preconditions and effects. Finally, as argued in [118], a requirement for the matching
process is to encourage advertisers to be honest with their descriptions. Through
the use of recall and precision this is accomplished, as the service provider is obliged
to strike a balance between these two factors in order to achieve a high rank.

34

The assessment of semantic similarity between request and advertisement param-
eters exploits the semantic information encoded both in the class hierarchy and the
properties of the classes, including hierarchy of properties and value or cardinality
restrictions. Therefore the proposed method is suitable for both applications relying
on a taxonomy, as well as applications employing more expressive ontologies, such
as OWL ontologies. A property of the matching function is that the assessed simi-
larity is higher for concepts residing deeper in the concept hierarchy. For instance,
consider two classes C1 and C2, such that C1 v C2, |A(C2)| = |A(C2) u A(C1)| = n
and |A(C1)| = n + k. Then the precision between C1 and C2 based on the class
hierarchy is: precision(C1, C2) = n/(n + k) = 1/(1 + k/n), which is an increasing
function of n. Similar holds for matching based on properties, as well as matching
preconditions and effects. The intuition for having this property is that reaching a
high depth in the hierarchy means that the search process has reached a high level
of granularity and thus differences encountered between the concepts at this level
are more likely to be easier to compromise.

Moreover, the proposed ranking mechanism is flexible and customizable, allowing
the consideration of user preferences. This refers to two aspects. First, by means of
an advanced search interface, the user may determine the relative importance of each
search parameter. Second, apart from presenting a single rank for each candidate
service, more detailed results may also be provided (e.g., separate values for recall
and precision or the degree of match for specific parameters), to facilitate the user
in identifying the most suitable service or refining the search criteria.

Finally, notice that we have assumed that the service request and advertisements
are annotated using the same ontology. However, committing to a common ontology
is not always feasible. Even though the problem of matching Web services without a
common ontology has been considered in previous works (e.g., [35]), we believe that
it is an orthogonal issue. More specifically, applying ontology mapping techniques
(see [76] for a comprehensive survey), it is possible to identify appropriate mappings
between the involved ontologies and define the terms of the one ontology by means
of the terms of the other. Then, once these definitions are available, the matching
mechanism can be applied.

2.4 Selection of Services with Skyline Queries

2.4.1 Skyline Services

In the previous section we presented a similarity measure for Semantic Web services.
The last step in calculating the similarity between a requested and an offered ser-
vice was to aggregate the pairwise similarities between the parameters of the two
descriptions. For this purpose, appropriate weights for the various parameters were
assumed. This is also the case in other related work in the literature, where the
final degree of match is typically determined either as the worst match over all pa-
rameters or as a (weighted) average of the partial results. Clearly, this approach
relies on a priori knowledge of the user’s preferences; otherwise, ad hoc values have
to be assigned to the involved weights, leading potentially to biased results. This
may have a significant impact on the perceived quality of the discovery process: in
the case of a human user, a low precision on the top returned matches compromises
the credibility of the discovery engine; even worse, in a fully automated scenario,

35

0 distance

price

0 distance

price

ra

a΄
b

b΄
c

ć

d

d΄ e

f

g
h΄h

(a) (b)

Figure 2.4: Illustration of (a) static and (b) dynamic skylines

the software agent is expected to make a selection among the top returned services,
thus, choosing an inappropriate service breaks the whole workflow.

In this section we address this shortcoming by employing a service discovery
approach based on the notion of skyline [28]. This allows us to define and compute
the potentially interesting services for any type of user.

A typical example used to illustrate the concept of skyline is searching for cheap
hotels close to the beach. A sample set of hotels is depicted in Figure 2.4(a), charac-
terized by two dimensions, distance and price. The drawn line indicates the skyline.
A hotel belongs in the skyline if there is no other hotel that is better than it in
both dimensions, i.e., both cheaper and closer to the beach. The distinguishing
property of the skyline is that for any preference function f that is monotone on all
attributes, if an object maximizes f , then this object is part of the skyline. Also,
for every object in the skyline, there exists a monotone preference function that is
maximized by this object. Intuitively, this means that (a) regardless of how a user
weighs his/her preferences, his/her top preferred object will be one of the skyline
objects, and (b) there is no skyline object which is nobody’s top preference. Further,
the dynamic skyline is a variation, where the original objects are compared with re-
spect to a given reference object r [120]. The reference object defines a new space,
depicted as the inner coordinate system in Figure 2.4(b), and existing objects need
to be transformed in this space. In this example, points a, c, b, d, h are projected to
a′, c′, b′, d′, h′ respectively (i.e., p′x = |px − rx|, p′y = |py − ry|). The dynamic skyline
for the reference hotel r contains a′, c′ and g (i.e., a, c), but not b′, d′, e, f and h′

(i.e., not b, d, h).

The analogy to our case is as follows: the space dimensions correspond to the
service parameters being matched; the objects in the space correspond to the offered
services; the reference object corresponds to the user’s request.

In the following, we first give the formal definitions of skyline and dynamic
skyline, and then we formalize the problem of selecting the best candidate services
for fulfilling a user’s request as a dynamic skyline computation problem. We also
present an illustrative example to clarify these notions.

36

2.4.1.1 Background

Consider a set of points P in a d-dimensional space, with pi denoting the value of
point p∈P in the i-th dimension.

Definition 2.4.1. (Dominance) A point p∈P dominates another point q∈P , de-
noted as p ≺ q, iff p is as good or better than q in all dimensions and better in at
least one dimension, i.e., ∀i ∈ [1, d] : pi ≤ qi and ∃i ∈ [1, d] : pi < qi.

Definition 2.4.2. (Skyline) The skyline of P , denoted by SLP , comprises the set
of points in P that are not dominated by any other point, i.e., SLP = {p∈P | 6 ∃q∈P :
q ≺ p}.
Definition 2.4.3. (Dynamic Dominance) Given a reference point r∈P , a point
p∈P dominates another point q∈P w.r.t. r, denoted as p ≺r q, iff ∀i∈[1, d] : |ri −
pi| ≤ |ri − qi| and ∃i∈[1, d] : |ri − pi| < |ri − qi|.
Definition 2.4.4. (Dynamic Skyline) Given a reference point r∈P , the dynamic
skyline of P w.r.t. r, denoted by SLr

P , comprises the set of points in P that are not
dynamically dominated by any other point w.r.t. r, i.e., SLr

P = {p∈P | 6 ∃q∈P : q ≺r

p}.

2.4.1.2 Problem formulation

The functional part of a Semantic Web service can be described by a tuple SWS =
(I, O, P , E), where I, O, P , E are sets of inputs, outputs, preconditions, and effects,
with each parameter semantically annotated by means of an associated ontology O.
We assume that the languages OWL and OWL-S are used to represent, respectively,
the domain ontology and the requested and offered services. Matching a service
request R with a service offer S is based on matching the individual parameters in
the two descriptions. For this purpose, a semantic matching function fm is used.
For input and output parameters the degree of match is typically determined by
checking for equivalence or subsumption relationship between the corresponding
classes in the ontology O [118, 93]. Notice that if a similarity measure like the one
proposed in Section 2.3 is used, which allows for results in a continuous interval of
values (i.e., [0, 1]), then it is straightforward to obtain different degrees of match
through appropriate quantization. In fact, in this case it is possible to choose the
number of distinct degrees of match according to the desired level of granularity
for the matching function. In the rest of this section, for simplicity, we assume the
following degrees of match, in decreasing order: DM = {exact, direct subclass,
subclass, direct superclass, superclass, sibling, fail}. Notice that the distinction
between direct subclass (superclass) and subclass (superclass) refers to whether the
considered subsumption relationship is explicitly stated in the ontology or inferred by
the reasoner (e.g., by transitivity.) Different ordering or variations of these degrees
may also be meaningful in different applications and contexts [93]. Our approach
is generic and does not depend on this particular assumption. Preconditions and
effects are represented by logical formulae and are matched by checking for logical
implication between them. The results of the match in this case is exact or fail,
depending on whether such an implication holds or not.

The inputs and preconditions of the request should match those of the service,
while the service outputs and effects should match those of the request. Thus, ap-
plying the function fm to pairs of corresponding parameters from the requested and

37

Algorithm Match(R, S)
Input: request R, offer S
Output: the match vector MV
begin1

IR ← inputs of R , OR ← outputs of R2

IS ← inputs of S , OS ← outputs of S3

MV ← add MatchIn (IR,IS)4

MV ← add matchOut (OR,OS)5

return MV6

end7

MatchOut(OR,OS)
Input: requested (OR) and offered (OS)

outputs
Output: the output match vector OMV
begin1

for I ∈ OR do2

tmpMatches← new array()3

for J ∈ OS do4

m← DegreeOfMatch (I,J)5

tmpMatches← add m6

OMV ← add max{tmpMatches}7

return OMV8

end9

MatchIn(IR,IS)
Input: requested (IR) and offered

(IS) inputs
Output: the input match vector

IMV
begin1

hasMatch← new array()2

for I∈IR do3

tmpMatches← new array()4

for J∈IS do5

m← DegreeOfMatch (I,J)6

tmpMatches← add m7

if m 6=“fail” then8

hasMatch← add J
IMV ← add9

max{tmpMatches}
if hasMatch containsAll IS10

then
IMV ← add “exact”11

else IMV ← add “fail”12

return IMV13

end14

Table 2.13: Matching service I/Os

offered service, results in a match vector MV ∈DMk, k = |MV | = |SI |+|SP |+|RO|+
|RE|. However, the number, as well as the order, of the parameters may vary among
the set of available services, rendering the match vectors not comparable. To deal
with this problem, i.e., to fix the number and the order of the dimensions, we use as
reference dimensions the ones specified by the user’s request. Still, two issues need
to be resolved in this case. First, the same request input/precondition may provide
a match for more than one service inputs/preconditions. Then, the best degree of
match is considered for the corresponding position in MV . Second, it is possible
that not all service inputs/preconditions are matched. To capture this, we introduce
two additional fields in MV , corresponding respectively to inputs and preconditions,
with the values exact or fail, indicating accordingly whether there exists a parameter
that has not been matched (alternatively, the number of parameters that failed to
match can be used). Thus, the size of MV becomes |MV | = |RI | + |RO| + |RP | +
|RE| + 2 (i.e., fixed for a given R). The matching algorithm, Match(R, S) is pre-
sented in detail in Table 2.13. The function DegreeOfMatch(I, J) uses a reasoner
to determine the degree of match between the ontology concepts I,J . For brevity,
we only consider inputs and outputs; preconditions and effects can be matched ac-
cordingly.

We can now define the notions of (dynamic) dominance and (dynamic) skyline
for Semantic Web services selection.

Definition 2.4.5. (Service Dominance) Given a set of Semantic Web services

38

S and a request R, a service S1 ∈ S dominates another service S2 ∈ S with respect
to R, denoted as S1 ≺R S2, iff ∀i ∈ [1, |MVR,S1|] : MV i

R,S1
≤ MV i

R,S2
and ∃i ∈

[1, |MVR,S1|] : MV i
R,S1

< MV i
R,S2

.

Definition 2.4.6. (Skyline Services) Given a set of Semantic Web services S and
a request R, the skyline services of S with respect to R, denoted by SLR

S , are those
not dominated by another service with respect to R: SLR

S={S∈S| 6 ∃S ′∈S: S ′≺RS}.

2.4.1.3 Illustrative Example

Assume a sample service request and six available services, as shown in Table 2.14(a).
For simplicity, we consider only input and output parameters, which are classes
from the hierarchy depicted in Figure 2.14(b). The derived match vectors are
presented in Table 2.14(c), with INX indicating whether all service inputs are
matched or not. For instance, in the case of S4, the provided input C6 provides a
direct superclass match with C10 and a superclass match with C14. Thus, MV IN1

R,S4

= direct superclass and MV INX
R,S4

= exact. For the service S2, MV IN1
R,S2

= fail and

MV INX
R,S2

= fail, since the request input C6 does not provide a match for the service
input C9. The rest of the results can be verified similarly.

Given the match vectors shown in Table 2.14(c), the problem is to identify the
best matches. It can be seen that even for such a small number of services this is
no trivial task. For this purpose, we consider as best matches those services that
belong in the skyline for the given request. Based on the definitions in Section 2.4.1,
we can conclude that (a) the services S2, S4 and S5 are dominated by both S1 and
S3, (b) S6 is dominated by S3, and (c) S1 and S3 are not dominated by any service.
Therefore, S1 and S3 constitute the skyline, i.e., the best matches, for the request
R.

One might argue that S1 constitutes an “overall” better match than S3, given
that direct subclass indicates a closer match than subclass. However, this would
only be true for users with an equal preference on both output parameters or a higher
preference on OUT1. Instead, a user concerned about parameter OUT2 would prob-
ably be more interested in the service S3. Selecting the skyline services guarantees
the retrieval of the best matches regardless of user preferences.

2.4.2 Selection of the Best Candidates

2.4.2.1 Main algorithm

We leverage work existing in the database literature, and in particular the Bitmap
algorithm, introduced in [158]. Since the semantic match between requested and
offered services is typically expressed by a small set of discrete degrees of match, as
discussed in the previous section, the choice of the Bitmap algorithm is natural, as it
is especially designed for discrete, low cardinality domains. Specifically, it employs
a bitmap representation to encode the data points, and uses bit-wise operations to
determine the skyline. The efficiency of the algorithm relies on the high speed of
bit-wise operations. Note that, even though more efficient skyline algorithms have
been proposed (e.g., [120]), they rely on the assumption that the data set is indexed.

The skyline service selection algorithm works as follows. First, the match vectors
are translated to an appropriate bitmap representation. In fact, to avoid any extra

39

INPUTS OUTPUTS

R C6 C7, C8

S1 C3 C5, C7

S2 C9 C2, C9

S3 C3 C2, C8

S4 C10, C14 C15

S5 C1 C6

S6 - C6, C8, C9

root

C14 C15

C10

C6

C11
C12

C7

C4

C2

C3

C1

C5

C13

C8 C9

(a) Service request and offers (b) A sample class hierarchy

IN1 INX OUT1 OUT2

S1 dir subcls exact exact dir subcls
S2 fail fail subcls sibling
S3 dir subcls exact subcls exact
S4 dir supercls exact supercls fail
S5 subcls exact fail fail
S6 fail exact fail exact

(c) The resulting match vectors

Table 2.14: Illustrative example

IN1 INX OUT1 OUT2

S1 0111111 1111111 1111111 0111111
S2 0000001 0000001 0011111 0000011
S3 0111111 1111111 0011111 1111111
S4 0001111 1111111 0000111 0000001
S5 0011111 1111111 0000001 0000001
S6 0000001 1111111 0000001 1111111

Table 2.15: Bitmap representation

A1 = 101110 B1 = 101010
A2 = 101111 B2 = 000000
A3 = 111100 B3 = 111000
A4 = 111111 B4 = 111001
A = 101100 B = 111011

A&B = 101000
Table 2.16: Dominance check for S4

overhead, this step can be integrated with the matching phase, i.e., the result of the
matcher can be directly encoded in this representation. Then, each match vector is
checked for dominance against all other match vectors. The latter step is efficiently
performed by fast bit-wise AND/OR operations on the bitmap representations ob-
tained in the former step.

Obtaining the bitmap representation. We assume the dominance relationship
described in Section 2.4.1.2, and we assign the values {1, 2, . . . , 7} to the 7 possible

40

Algorithm Skyline(R,S)
Input: request R, offers S
Output: skyline services SLR

S
begin1

for S ∈ S do2

MV ←MV ∪ Match(R, S)3

bm← BuildBitmap(MV)4

for Sj ∈ S do5

DSj ← DominatedBy(j,bm)6

if DSj is empty then7

SLR
S ← SLR

S ∪ Sj8

return SLR
S9

end10

DominatedBy(j,bm)
Input: service index j, bitmaps bm
Output: services DSj that dominate Sj

begin1

{A,B} ← ABvectors (j,bm)2

for Sk ∈ S do3

if (A&B)[k] is set then4

DSj ← DSj ∪ Sk5

return DSj6

end7

ABvectors(j,bm)
Input: service index j, bitmaps bm
Output: vectors A, B for service Sj

begin1

A← 1 // mask with all 1s2

B ← 0 // mask with all 0s3

for i ∈ [1, |MVSj |] do4

q ←MV i
Sj5

Ai ← BitSlice(q,i)6

Bi ← BitSlice(q-1,i)7

A← A&Ai8

B ← B|Bi9

return {A,B}10

end11

Dominates(j,bm)
Input: service index j, bitmaps bm
Output: services DSj that Sj dominates
begin1

{A,B}←ABvectors (j,bm)2

for Sk ∈ S do3

if (A|B)[k] is not set then4

DSj ← DSj ∪ Sk5

return DSj6

end7

Table 2.17: Determining the skyline services

degrees of match, with 1 corresponding to exact and 7 to fail 1. We represent these
values in a bitmap of size 7, as follows: if q ∈ {1, 2, . . . , 7} is the degree of match,
then its bitmap representation has value 0 for the bits 1 to q − 1, and 1 for the
bits q to 7. For example, an exact degree of match, i.e., value 1, is represented as
1111111, whereas a sibling degree of match, i.e., value 6, is represent as 0000011.
Returning to our running example, the corresponding bitmap representations are
depicted in Table 2.15 (the function of the bold and italicized bits will be discussed
in the following).

Checking for dominance. Determining whether a service belongs to the skyline
involves extracting vertical bitslices and performing bitwise AND/OR operations.
This process is best illustrated through our running example. Assume we wish to
discover whether service S4 with match vector MVS4 = (4, 1, 5, 7) is part of the
skyline. For each field i ∈ [1, |MVS4|] of MVS4 , two vertical bitslices, Ai and Bi,
are extracted. In particular, letting q = MV i

S4
, we obtain the bitslice Ai (resp.,

Bi) by juxtaposing the q-th (resp., the preceding (q − 1)-th) bit of the i-th field

1The adaptation to different degrees of match and dominance relationships is straightforward.

41

for all services. Note that when q− 1 < 1, Bi is explicitly set to all zeros. Since
MV 1

S4
= 4 the bitslice A1 = 101110 is obtained by juxtaposing the 4th bits of the

first field for all services. Similarly, B1 = 101010 is obtained by juxtaposing the 3rd
bits. Table 2.15 shows the Ai bitslices in bold typeface; the Bi bitslices are shown
italicized (B2 = 000000 is omitted).

Assume a service request R and an offer S. Observe that the bitslice Ai of S
encodes which services (i.e., those whose bit is set) are equally as good or better
matches than S w.r.t. the i-th field of the match vector. On the other hand,
the bitslice Bi of S encodes the services that are strictly better matches for the i-th
field. Let A = A1&A2& . . .&A|MVS |, where & represents the bitwise AND operation.
Then, A indicates the services that are equally as good or better in all fields of the
match vector. Similarly, let B = B1|B2| . . . |B|MVS |, where | represents the bitwise
OR operation. Then, B indicates the services that are strictly better in at least one
field of the match vector. According to Definition 2.4.5, if a service has its bit set
both in A and B, then it dominates S, and, hence, the latter is not in the skyline.
On the other hand, if A&B has no bit set, then S is not dominated by any other
service, and thus belongs to the skyline. Table 2.16 illustrates the dominance check
for S4, which is dominated by S1 and S3. The algorithm is presented in detail in
Table 2.17.

Next, we extend the algorithm to provide key aspects of functionality desirable
by service requesters and providers.

2.4.2.2 Requester’s perspective

The algorithm presented previously identifies the skyline services for a given re-
quest. However, this has some limitations; for example, the returned services are
not ranked, and they may be too many or too few. For this purpose, in the follow-
ing we identify and address three additional elements of functionality that may be
required by a service requester, referred to as ranking, redefinition, and relaxation.

Ranking. The selected skyline services are determined regardless of specific user
preferences; hence, are not ranked. However, in many cases, e.g., when the number
of returned results is large, ranking is required. To this end, we present a ranking
function that is user preference agnostic and is well aligned with the dominance
notion. Intuitively, services that dominate a large number of other services are
potentially more interesting and should be examined first.

Definition 2.4.7. (Dominance Set and Score) Given a set of Semantic Web
services S, a request R, and a service S ∈ S, the dominance set of S comprises
those services dominated by S, i.e., DS = {Si ∈ S|S ≺R Si}. The dominance score
of S is the cardinality of DS, i.e., dsS = |DS|.

The skyline services are ranked based on their dominance score. To calculate
this score we utilize the A and B bitmaps for service S. Observe that ¬A, where
¬ denotes negation, indicates the services that are strictly worse than S in at least
one field of the match vector. Similarly, ¬B indicates those services being worse or
equal to S in all fields of the match vector. It is easy to show that if a service has
its bit set both in ¬A and ¬B, then it is dominated by S. Hence, calculating the
dominance score of S resolves to counting the bits set in (¬A)&(¬B).

42

Redefinition. Suppose that the user would like to redefine his/her request in terms
of removing or adding request parameters, either because he/she is not satisfied
by the matchmaking, or due to exploratory behaviour. The proposed methodology
handles such a scenario efficiently, requiring minimum invocation of the matcher and
the fewest changes to the bitmap representation of the match vectors. We distinguish
4 cases and examine the necessary changes to the services selection process.

Adding input parameter. We need to run the match algorithm for the new pa-
rameter. Note also that the INX field of the match vector might be affected by the
matching, and thus, it needs to be re-computed (if the previous value was fail).
Then, we need to build the bitmap representation for the field corresponding to the
new parameter, to update the representation for the INX field, if changed, and to
execute the bitmap algorithm.

Deleting input parameter. Only the INX field of the match vector may be affected
by the matching (if it was previously set to exact). Therefore, we need to rebuild
its bitmap representation. Since the deleted parameter might be needed in a future
request, we do not delete the representation corresponding to its match vector field;
rather, we modify the bitmap algorithm to skip that field in the calculation of the
A, B bitmaps.

Adding output parameter. We need to run the match algorithm for the added
output parameter. Then, the bitmap representation for the new parameter must be
built and the bitmap algorithm must be executed.

Deleting output parameter. In this case, the match algorithm need not run. We
choose to preserve the bitmap representation for the corresponding field and modify
the bitmap algorithm to skip that field in the A, B calculation.

Relaxation. Consider the case that the user would like to relax the dominance
requirement and retrieve additional relevant services besides those included in the
skyline. Such a functionality would prove useful when there are a few very dominant
services that hide some other potentially interesting offers. For this purpose, we
provide the user with the option to examine the next most dominant services, i.e.,
the next skylayer.

Definition 2.4.8. (l-Skylayer Services) Given a set of Semantic Web services
S and a request R, the l-skylayer services of S w.r.t. R, denoted by SLR

S (l), is

defined recursively as follows: SLR
S [1, l] =

⋃
0<k≤l

SLR
S (k), where SLR

S (1) is the skyline

services SLR
S and SLR

S (l) = SLR
SrSLR

S [1,l]
.

Finding the l-skylayer services can be performed by some tweaking of the bitmap
algorithm, without invoking the matcher. Assume that the (l-1)-skylayer has been
found. We maintain a bitmap mask C that indicates which services belong to one
of the previous skylayers, i.e., in SLR

S [1, l]. In the calculation of the A bitmaps for
the l-skylayer we need to mask it (i.e., perform bitwise AND operation) with the
negation of C, so as to suppress services previously found. Finally, the bitmap mask
C is updated by setting the bits of the l-skylayer services.

43

Algorithm ModDim(R,Sj,S)
Input: request R, service Sj , competing

services S
Output: the dimension d to modify
begin1

SLR
S ← Skyline (R,S)2

DSj ← DominatedBy (j,bm)3

SLD ← SLR
S ∩ DSj4

d←i∈[1, |MVSj |] s.t.5

max
S∈SLD

|MV i
Sj
−MV i

S | is minimized

return d6

end7

Table 2.18: Modifying service parameter

2.4.2.3 Provider’s perspective

Existing works on service discovery focus on locating one or more services that
are appropriate for fulfilling the client’s request. In the remaining of this section,
we turn our attention towards the provider’s view of the service selection process.
From this perspective, a provider would be interested in analyzing the position of
his/her services in the market and their potential to attract clients. We consider
two scenarios that might be of interest for a service provider.

Service competitiveness. In this scenario, the provider is interested in evaluating
how competitive his/her provided service S is with respect to a request R and a set
of other available services S. This can be accomplished by means of two measures:
(a) the number of services dominated by S with respect to R; (b) the number of
services dominating S with respect to R. The first is the dominance score of S (see
Definition 2.4.7) and is calculated by the function Dominates, shown in Table 2.17.
The second is provided similarly, through the function DominatedBy, also shown in
Table 2.17.

Service adaptation. In this scenario, the provider would like to appropriately
modify the offered service S in order to target specific user requests, i.e., so that
the service would be in the skyline for a considered request R. To keep the required
modifications to a minimum, we consider the case where only one parameter is
subject to change, and our goal is to determine the parameter for which the required
change is minimized. For this purpose, we calculate the services that dominate S
and are part of the skyline for the request R. Then, we compare the values in all the
dimensions of the selected match vectors, to find the maximum differences in each
dimension. The dimension having the minimum among these differences is selected.
The intuition lies in the fact that a service is included in the skyline, when it becomes
better than all its competitors in at least one dimension. This process is formally
described by the algorithm in Table 2.18. As an example, consider the service shown
in black in the same figure. The shaded area contains the services that dominate it,
including two in the skyline. The arrows represent the maximum differences for each
dimension; clearly, the dimension of the shortest arrow corresponds to the minimal
change required.

44

 0.6

 0.7

 0.8

 0.9

 1

 0 0.2 0.4 0.6 0.8 1

P
re

ci
si

on

Recall

Skyline
OWLS-MX

 0

 500

 1000

 1500

 2000

 2500

 2 4 6 8 10

E
xe

cu
tio

n
tim

e
(m

se
c)

Number of services (x 103)

ant-3
ant-1
ind-3
ind-1
cor-3
cor-1

(a) Recall-precision curve (b) Execution time

 0

 1

 2

 3

 4

 5

 6

 7

 8

 1 2 3 4 5

N
um

be
r

of
 r

es
ul

ts
 (

x
10

3)

Skylayer (l)

ant
ind
cor

(c) Number of retrieved services
Figure 2.5: Experimental evaluation on real and synthetic data

2.4.3 Experimental Evaluation

In the following we present an experimental evaluation of the effectiveness and the
efficiency of our skyline-based approach, termed Skyline, for selecting the best
Semantic Web services with respect to a desirable service description, using both
real and synthetic data.

Retrieval Effectiveness. To simulate a real-world scenario, we use the OWL-S
service retrieval test collection OWLS-TC v2 [115]. This collection contains ser-
vices retrieved mainly from public IBM UDDI registries, and semi-automatically
transformed from WSDL to OWL-S. More specifically, it comprises: (a) a set of
ontologies, derived from 7 different domains (education, medical care, food, travel,
communication, economy and weapons), used to semantically annotate the service
parameters, (b) a set of 576 OWL-S services, (c) a set of 28 sample requests, and
(d) the relevance set for each request (manually identified).

To better gauge the performance of our approach we consider the matchmaking
algorithm of [84], termed OWLS-MX. OWLS-MX is a hybrid matchmaker, which, apart
from logic-based match, supports different IR similarity metrics for content-based
retrieval (e.g., cosine similarity or extended Jacquard similarity). Since the focus
of this paper is on semantic matching, we only consider the logic-based filters while
running OWLS-MX. It is important to note, however, that our approach is generic
in that it can straightforwardly consider other types of filters, simply by terms of in-
creasing the size of the match vectors to accommodate for the additional parameters;
hence, the process of selecting the best matches does not change.

45

Method MAP P@1 P@2 P@3 P@5 P@10
Skyline 0.83 0.94 0.93 0.91 0.87 0.76

OWLS-MX 0.71 0.91 0.79 0.75 0.67 0.67
Table 2.19: Evaluation of retrieval accuracy

For each request, we calculate the match vectors and apply Skyline to select the
best candidates. Since the number of services in the skyline may vary, successive
skylayers are computed until an adequate number of services has been retrieved
(see the relaxation case in Section 2.4.2.2). Thus, to each obtained service S that
belongs to the l-skylayer and has dominance score dsS, we assign the tuple 〈l, dsS〉.
As discussed in Section 2.4.2, we consider better matches the services that belong to
the lowest l skylayer, and among those that belong to the same skylayer we consider
better matches the ones with higher dominance score dsS, i.e., we rank the obtained
services by l, solving ties using dsS.

Similarly, for each request the logic-based filters of OWLS-MX are applied to all
services. OWLS-MX assigns to each service a score based on the worst degree of match
among all parameters. Finally, the services are ranked according to their score, i.e.,
the best match is a service that has exact match on all parameters.

We apply well-established IR metrics to measure the performance of the two
methods, w.r.t. the corresponding relevance sets [16]. In particular, Figure 2.5(a)
depicts the micro-averaged recall-precision curves for all the queries in the test col-
lection. It is clear that Skyline outperforms OWLS-MX in terms of precision at all
recall levels, as well as achieving a higher final recall. The results for the measures
(a) Mean Average Precision (MAP), where average precision refers to the average of
the precision after each relevant service retrieved, and (b) precision at N are detailed
in Table 2.19.
These measures emphasize on returning relevant results earlier, which is important
as users often tend to examine only the first few results retrieved. In particular,
P@1 is especially important, as it determines the success in fully automated service
discovery scenarios, where no human user is involved in the process, and thus the
top-1 result is selected. Again, Skyline outperforms OWLS-MX in all cases.

Synthetic data. We measure the performance overhead associated with our ap-
proach for computing the skyline services. The algorithm was implemented in Java
and the experiments were conducted on a Pentium D 2.4GHz with 2GB of RAM,
running Linux. The reported measurements refer only to the process of comput-
ing the skyline, and do not include the time to perform the logic-based match for
each parameter. The later depends on factors which are outside the scope of this
paper, e.g., the size and type of ontologies used or the performance of the employed
reasoner.

We construct match vectors of 6 parameters and assign to each degrees of match
under three distributions: in independent (ind), degrees of match are assigned in-
dependently to each parameter; in correlated (cor), the values in the match vector
are positively correlated, i.e., a good match in some service parameters increases the
possibility of a good match in the others; in anti-correlated (ant) the values are
negatively correlated, i.e., good matches (or bad matches) in all parameters are less
likely to occur.

Figure 2.5(b) illustrates the running time, in milliseconds, for determining the

46

services that belong to the l-skylayer, for l = 1 (i.e., the skyline), and l = 3, for
the three types of distributions, while varying the number of services from 2K up to
10K. Observe that the time required is higher (lower) for anti-correlated (correlated)
data, as the number of skyline services in this case is also higher (lower). Still, it
does not exceed roughly 0.5 seconds for all cases, except that of 3 skylayers of anti-
correlated data, where it takes roughly 2 seconds. Notice, however, that since for the
anti-correlated case the number of services contained in the first skylayer is already
quite large, computing additional layers is normally not required.

Figure 2.5(c) illustrates, for each distribution, the number of services retrieved by
the first l-skylayers, for l = 1 to 5, and for an initial set of 10K services. As shown,
the correlation of the degrees of match directly affects the number of selected services
for each layer. For instance, the skyline comprises 16, 162, and 1221 services for the
correlated, independent, and anti-correlated case respectively. These results prove
the necessity of the extensions proposed in Section 2.4.2.2 for ranking and relaxation.

2.5 Ranking of Services under Multiple Criteria

2.5.1 Motivation and Problem Definition

In the previous sections we have addressed the problem of service discovery and
selection, assuming that a single matching function is used to compare user requests
against offered services. However, the matching process may accommodate a va-
riety of methods, ranging from keyword-based match to logic-based match. Even
though hybrid service matchmakers have been proposed (see Section 2.2 for more
details), the different matching criteria supported are typically provided to the user
as alternatives; that is, the final match is computed using eventually one of the
available criteria, instead of applying all of them and combining the partial results.
On the contrary, in this section we propose a method for service matchmaking and
ranking under multiple matching criteria. We begin with a motivating example, a
discussion of the requirements, and the definition of three ranking criteria that are
applicable to our setting. In particular, we introduce our notion of top-k dominant
Web services, and we justify our formulation by discussing some related notions,
namely p-skyline [125] and K-skyband [120], and showing that these concepts are
inadequate in capturing the requirements of the problem at hand. Then, we give
corresponding algorithms for service selection (Section 2.5.2), and an experimental
evaluation of our method (Section 2.5.3).

Example. Consider a user searching for a Web service providing weather in-
formation for a specific location. For simplicity, we assume only one input and
one output parameter. There are four available Web services, www.worldweather.org

(A), www.weather.gov (B), www.weather.com (C), and www.webservicex.net (D). Fur-
thermore, three different matching filters (e.g., different string similarity measures),
have been applied, resulting in the degrees of match shown in Figure 2.6. Observe
that under any criterion, service A constitutes a better match with respect to both
parameters, than any other service. However, there is no clear winner among the
other three services. For instance, consider services B and D. If the first matching
criterion is the one that more closely reflects the actual relevance of B to the given
request, then B is definitely a better match than D. On the other hand, if the sec-
ond measure is chosen, then B has a lower match degree for the input parameter

47

0.50

0.60

0.70

0.80

0.90

1.00

0.50 0.60 0.70 0.80 0.90 1.00

a1

a2

a3

b1

b2

b3

c1

c2

c3

d1

d2d3

X

X

X

X
bmax

bmin

amin

amax

Service Parameter fm1 fm2 fm3

Country 0.96 1.00 0.92
WeatherForecast 0.92 0.96 1.00

State 0.80 0.60 0.64
7DayForecast 0.80 0.88 0.72

ZipCode 0.84 0.88 0.72
LocalWeather 0.84 0.64 0.60

City 0.76 0.68 0.56
Weather 0.76 0.64 0.68

www.worldweather.org

www.weather.gov

www.weather.com

www.webservicex.net

Figure 2.6: An illustrative example

but a higher degree for the output. Even for such a simple scenario, specifying an
appropriate ranking for the candidate matches is not straightforward. �

Based on the above, we can identify the following main requirements for Web
services search:

(R1) how to combine the degrees of match for the different parameters in the
matched descriptions;

(R2) how to combine the match results from the individual similarity measures; and

(R3) how to rank the results.

To abstract away from a particular Web service representation, we model a Web
service operation as a function that receives a number of inputs and returns a number
of outputs. Other types of parameters, such as pre-conditions and effects or QoS
parameters, can be handled similarly. Hence, in the following, the description of a
Web service operation corresponds to a vector S containing its I/O parameters. A
request R is viewed as the description of a desired service operation, and is therefore
represented in the same way.

Given a Web service request, the search engine matches registered services against
the desired description. For this purpose, it uses a similarity measure fm to assess
the similarity between the parameters in these descriptions. If more than one offered
parameters match a requested parameter, the closest match is considered. Thus, the
result of matching a pair 〈R, S〉 is specified by a vector UR,S, such that

∀i ∈ [0, |R|] UR,S[i] =
|S|

max
j=0

fm(R[i], S[j]) (2.14)

48

Employing more than one matching criteria means that for each different sim-
ilarity measure fmi

, a match vector Umi
R,S is produced. Hereafter, we refer to each

such individual vector as match instance, denoted by lowercase letters (e.g., u, v),
whereas to the set of such vectors for a specific pair 〈R, S〉 as match object, denoted
by uppercase letters (e.g., U , V).

To address the aforementioned challenges R1, R2, and R3, we propose an ap-
proach based on the notion of dominance (see Section 2.4.1 for more details). As-
sume a set of match instances I in a d-dimensional space. Given two instances
u, v ∈ I, we say that u dominates v, denoted by u � v, iff u is better than or equal
to v in all dimensions, and strictly better in at least one dimension, i.e.

u � v ⇔ ∀i ∈ [0, d)u[i] ≥ v[i] ∧ ∃j ∈ [0, d)u[j] > v[j] (2.15)

If u is neither dominated by nor dominates v, then u and v are incomparable.

Example (Cont’d). Consider the match instances depicted in the 2-dimensional
space in Figure 2.6. We can observe, for example, that the instance d1 dominates
the instances b3 and c3. Similarly, it is dominated by the instances b1 and c1, as well
as by all the instances of a, but it neither dominates nor is dominated by b2 and
c2. �

Using the notion of dominance, allows us to deal with the requirement (R1),
since comparing matched services takes into consideration the degrees of match in
all parameters, instead of calculating and using a single, overall score.

To address the requirement of multiple matching criteria (R2), which results in a
set of match instances per service, we use a model that is similar to the probabilistic
skyline model proposed in [125]. The dominance relationship between two instances
u and v is defined as previously. Then, the dominance relationship between two
objects U and V is determined by comparing each instance u∈U to each instance
v∈V . This may result in a partial dominance of U by V , in other words a proba-
bility under which U is dominated by V . Note that, without loss of generality, all
the instances of an object are considered of equal probability, i.e., all the different
matching criteria employed are considered of equal importance; it is straightfor-
ward to extend the approach to the case that different weights are assigned to each
matching criterion. Based on this notion, the work in [125] defines the concept of
p-skyline, which comprises all the objects belonging to the skyline with probability
at least p.

Although the assumption of multiple instances per object satisfies R2, the re-
quirement R3 is not fulfilled by the concept of p-skyline. The notion of skyline, and
consequently that of p-skyline, is too restrictive: only objects not dominated by any
other object are returned. However, for Web services retrieval, given that the simi-
larity measures provide only an indication of the actual relevance of the considered
service to the given request, interesting services may be missed.

A possible work-around would be to consider a K-skyband query, which is a
relaxed variation of a skyline query, returning those objects that are dominated by
at most K other objects. In particular, we could extend the p-skyline to the p-K-
skyband, comprising those objects that are dominated by at most K other objects
with probability at least p. Relaxing (restricting) the value of K, increases (reduces)
the number of results to be returned. Still, such an approach faces two serious
drawbacks. The first is how to determine the right values for the parameters p and

49

K. A typical user may specify the number of results that he/she would like to be
returned (e.g., top 10), but he/she cannot be expected to understand the semantics
or tune such parameters neither it is possible to determine automatically the values
of p and K from the number of desired results. Second, the required computational
cost is prohibitive. Indeed, in contrast to the p-skyline, where, for each object, only
one case needs to be tested (i.e., the case that this object is not dominated by any
other object), the p-K-skyband requires to consider, for each object, the cases that it
is dominated by exactly 0, 1, 2, . . . , K other objects, i.e., a number of

∑K
j=0

N !
j!(N−j)!

cases, where N is the total number of matches.
In the following, we formulate three ranking criteria that meet the requirements

R1, R2, and R3, without facing the aforementioned limitations. The first two are
based, respectively, on the following intuitions: (a) a match is good if it is dominated
by as few other matches as possible, and (b) a match is good if it dominates as many
other matches as possible; the third is a combination of both.

Dominated Score. Given an instance u, we define the dominated score of u,
denoted by dds, as:

u.dds =
∑

V 6= U

|{v ∈ V | v � u}|
|V |

(2.16)

Hence, the dominated score of u considers the instances that dominate u. Then, the
dominated score of an object U is defined as the (possibly weighted) average of the
dominated scores of its instances:

U.dds =
∑
u∈U

u.dds

|U |
(2.17)

The dominated score of an object indicates the average number of objects that
dominate it. Hence, a lower dominated score indicates a better match.

Dominating Score. Given an instance u, we define the dominating score of u,
denoted by dgs, as:

u.dgs =
∑

V 6= U

|{v ∈ V | u � v}|
|V |

(2.18)

Hence, the dominating score of u considers the instances that u dominates. Then,
the dominating score of an object U is defined as the (possibly weighted) average of
the dominating scores of its instances:

U.dgs =
∑
u∈U

u.dgs

|U |
(2.19)

The dominating score of an object indicates the average number of objects that
it dominates. Hence, a higher dominating score indicates a better match.

Dominance Score. Given an instance u, we define the dominance score of u,
denoted by ds, as:

u.ds = u.dgs− λ · u.dds (2.20)

The dominance score of u promotes u for each instance it dominates, while
penalizing it for each instance that dominates it. The parameter λ is a scaling
factor explained in the following. Consider an instance u corresponding to a good

50

match. Then, it is expected that u will dominate a large number of other instances,
while there will be only few instances dominating u. In other words, the dgs and dds
scores of u will differ, typically, by orders of magnitude. Hence, the factor λ scales
dds so that it becomes sufficient to affect the ranking obtained by dgs. Consequently,
the value of λ depends on the size of the data set and the distribution of the data.
An effective heuristic for selecting the value for λ is ∆dgs/∆dds, where ∆dgs and
∆dds are the differences in the scores of the first and second result obtained by each
respective criterion (see Section 2.5.3.1 for more details).

In addition, the dominance score of an object U is defined as the (possibly
weighted) average of the dominance scores of its instances:

U.ds =
∑
u∈U

u.ds

|U |
(2.21)

Example (Cont’d). Consider the case of the object C with instances c1, c2
and c3, as shown in Figure 2.6. The instance c1 is dominated by the instances a1,
a2 and a3, whereas it dominates b1, b3, d1, d2 and d3. Thus, its scores are: dds = 1,
dgs = 5/3 and ds = 2/3 (for λ = 1). �

We can now provide the formal definition for the top-k dominant Web services
selection problem.

Problem Statement. Given a Web service request R, a set of available Web
services S, and a set of similarity measures Fm, return the top-k matches, according
to the aforementioned ranking criteria.

2.5.2 Algorithms

We first introduce some important observations pertaining to the problem at hand.
The algorithms for selecting the top-k services according to the criteria dds, dgs and
ds are then presented in Sections 2.5.2.1, 2.5.2.2 and 2.5.2.3, respectively.

A straightforward algorithm for calculating the dominated (resp., dominating)
score is the following. For each instance u of object U iterate over the instances of
all other objects and increase a counter associated with U , if u dominates (resp., is
dominated by) the instance examined. Then, to produce the top-k list of services,
simply sort them according to the score in the counter. However, the applicability
of this approach is limited by its large computation cost, which does not depend
on k. Observe that no matter the value of k, it exhaustively performs all possible
dominance checks among instances.

On the other hand, our algorithms address this issue by establishing lower and
upper bounds for the dominated/dominating scores. This essentially allows us to
(dis-)qualify objects to or from the results set, without computing their exact score.
Let U be the current k-th object. For another object V to qualify for the result set,
the score of V , as determined by its bounds, should be at least as good (i.e., lower,
for dds, or higher, for dgs) as that of U . In the following, we delve into some useful
properties of the dominance relationship (see Equation 2.15), in order to prune the
search space.

Observe that the dominance relationship is transitive, i.e., given three instances
u, v and w, if u � v and v � w, then u � w. An important consequence for
obtaining upper and lower bounds is the following.

51

Property 1. If u � v, then v is dominated by at least as many instances as u, i.e.,
v.dds ≥ u.dds, and it dominates at most as many instances as u, i.e., v.dgs ≤ u.dgs.

Presorting the instances according to a monotone function, e.g., F (u) =
∑

i

u[i],

can help reduce unnecessary checks.

Property 2. Let F (u) be a function that is monotone in all dimensions. If u � v,
then F (u) > F (v).

To exploit this property, we place the instances in a list sorted in descending order
of the sum of their values. Then, given an instance u, searching for instances by
which u is dominated (resp., it dominates) can be limited to the part of the list before
(resp., after) u. Furthermore, if F (u) is also symmetric in its dimensions [18], e.g.,

F (u) =
∑

i

u[i], the following property holds, providing a termination condition.

Property 3. Let F (u) be a function that is monotone and symmetric in all dimen-
sions. If min

i
u[i] ≥ F (v) for two instances u and v, then u dominates v as well as

all instances with F () value smaller than v’s.

Given an object U , let umin be a virtual instance of U whose value in each di-
mension is the minimum of the values of the actual instances of U in that dimension,

i.e., umin[i] =
|U |

min
j=0

uj[i], ∀i ∈ [0, d). Similarly, let umax[i] =
|U |

max
j=0

uj[i], ∀i ∈ [0, d).

Viewed in a 2-d space, these virtual instances, umin and umax, form, respectively, the
lower-left and the upper-right corners of a virtual minimum bounding box containing
the actual instances of U (see Figure 2.6). The following property holds.

Property 4. For each instance u ∈ U , it holds that umax � u, and u � umin.

Combined with the transitivity of the dominance relationship, this allows us to
avoid an exhaustive pairwise comparison of all the instances of two objects, by first
comparing their corresponding minimum and maximum virtual instances. More
specifically, given two objects U and V , (a) if umin dominates vmax, then all the
instances of U dominate all the instances of V , i.e., umin � vmax ⇒ u � v ∀u ∈
U, v ∈ V ; (b) if umin dominates an instance of V , then all the instances of U
dominate this instance of V , i.e., umin � v ⇒ u � v ∀u ∈ U ; (c) if an instance of
U dominates vmax, then this instance of U dominates all the instances of V , i.e.,
u � vmin ⇒ u � v ∀v ∈ V .

2.5.2.1 Ranking by dominated score

The first algorithm, hereafter referred to as T KDD, computes top-k Web services
according to the dominated score criterion, dds. The goal is to quickly find, for
each object, other objects dominating it, avoiding an exhaustive comparison of each
instance to all other instances.

The algorithm maintains three list, Imin, Imax, and I, containing, respectively,
the minimum bounding instances, the maximum bounding instances, and the actual

instances of the objects. The instances inside these lists are sorted by F (u) =
∑

i

u[i]

52

TKDGTKDD

TKM

u

Figure 2.7: Search space for T KDD, T KDG, and T KM

and are examined in descending order. The results are maintained in a list R
sorted in ascending order of dds. The algorithm uses two variables, ddsMax and
minV alue, which correspond to an upper bound for dds, and to the minimum value
of the current k-th object, respectively.

Given that, for an object U , we are interested in objects that dominate it, we
search only for instances that are prior to those of U in I (see Figure 2.7). Since, the
top matches are expected to appear in the beginning of I, this significantly reduces
the search space. The basic idea is to use the bounding boxes of the objects to avoid
as many dominance checks between individual instances as possible. After k results
have been acquired, we use the score of the k-th object as a maximum threshold.
Objects whose score exceeds the threshold are pruned. In addition, if at some point,
it is guaranteed that the score of all the remaining objects exceeds the threshold,
the search terminates.

More specifically, the algorithm, shown in Table 2.20, proceeds in the following
six steps.

Step 1. Initializations (lines 2–7). The result set R and the variables ddsMax and
minV alue are initialized. The lists Imin, Imax, and I are initialized, and sorted by
F (u). Then the algorithm iterates over the objects, according to their maximum
bounding instance.

Step 2. Termination condition (line 10). If the F () value of the current umax does
not exceed the minimum value of the current k-th object, the result setR is returned
and the algorithm terminates (see Property 3).

Step 3. Dominance check object-to-object (lines 12–17). For the current object U ,
the algorithm first searches for objects that fully dominate it. For example, in the
case of the data set of Figure 2.6, with a single dominance check between bmax and
amin, we can conclude that all the instances b1, b2 and b3 are dominated by a1, a2

and a3. According to property 2, only objects with F (vmin) > F (umax) need to be
checked. If a vmin is found to dominate umax, then the score of U is increased by 1,
and the sum of the new score and the score of V (see Property 1) is compared to
the current threshold, ddsMax. If it exceeds the threshold, the object is pruned and
the iteration continues with the next object. In this case, the score of the object is
propagated to its instances for later use. Otherwise, the score of the object is reset,
to avoid duplicates, and the search continues in the next step.

Step 4. Dominance check object-to-instance (lines 19–24). This step searches for
individual instances v that dominate U . For example, in Figure 2.6, a dominance
check between dmax (which coincides with d1) and c1 shows that all the instances
d1, d2, and d3 are dominated by c1. As before, only instances with F (v) > F (umax)
are considered. If an instance v is found to dominate umax, then the score of U is

53

Algorithm T KDD
Input: A set of objects U , each comprising M instances;

The number k of results to return.
Output: The top-k objects w.r.t. dds in a sorted set R.
begin1

Initialize R = �; ddsMax = ∞; minV alue = -1 ;2

for U ∈ U do3
(umin, umax) ← calculate min and max bounding instances ;4
Imin ← insert umin ordered by F (umin) desc. ;5
Imax ← insert umax ordered by F (umax) desc. ;6
for u∈U do I ← insert u ordered by F (u) desc. ;7

for umax∈Imax do8
if |R| = k then9
if F (umax) ≤ minV alue then return R;10

U.dds = 0 ;11

for vmin ∈ I
F (umax)
min do12

if vmin � umax then13
U.dds = U.dds + 1 ;14
if (U.dds + V.dds) ≥ ddsMax then15
for u∈U do u.dds = U.dds ;16
skip U ;17

U.dds = 0 ;18

for v ∈ IF (umax) do19
if v � umax then20

U.dds = v.dds + 1/M ;21
if (U.dds + v.dds) ≥ ddsMax then22
for u∈U do u.dds = U.dds ;23
skip U ;24

U.dds = 0 ;25
for u∈U do26
for vmin ∈ IF

min(u) do27
if vmin � u then28

u.dds = u.dds + 1/M ;29
if (U.dds + u.dds + V.dds) ≥ ddsMax then30

U.dds = U.dds + u.dds + V.dds ;31
skip U ;32

U.dds = U.dds + u.dds + V.dds ;33

U.dds = 0 ;34
for u∈U do u.dds = 0 ;35
for u∈U do36
for v ∈ IF (u) do37
if v � u then38

u.dds = u.dds + 1/M2 ;39
if (U.dds + u.dds + v.dds) ≥ ddsMax then40

U.dds = U.dds + u.dds + v.dds ;41
skip U ;42

U.dds = U.dds + u.dds + v.dds ;43

if |R| = k then remove the last result from R ;44
R ← insert U ordered by dds asc.45
if |R| = k then46

Uk ← the k-th object in R ;47
ddsMax = Uk.dds;48

minV alue =
M

min
i=1

(Ukmin
[i]);49

return R;50

end51

Table 2.20: Algorithm T KDD

54

Algorithm T KDG
Input: A list I containing all the instances u, in descending order of F (u);

The number k of results to return.
Output: The top-k objects w.r.t. dgs in a sorted set R.
begin1

Initialize R = ∅, L = ∅;2
U ← the set of objects in descending order of F (umax) ;3
for every object U ∈ U do4

if (
|I| − pos(umax)

M
< Rk−1.dgs−) then return R;5

if (|R| = 0) then add U in R;6
if (∃V ∈ L ∪Rk−1 s.t. V fully dominates U then skip U ;7

set U.dgs− = 0, U.dgs+ =
X
u∈U

|I| − pos(u)

M2
, Ui = pos(umax);

8

for j = |R| − 1 to 0 do9
while (not (U.dgs+ < Rj .dgs− or U.dgs− > Rj .dgs+)) do10
refineBounds (U , Rj);11

if (U.dgs+ < Rj .dgs−) then12
if (j = k − 1) then add U in L, and continue with the next object;13
else move Rk−1 to L, add U in R after Rj , and continue with the next object;14

move Rk−1 to L, and add U at the beginning of R;15

return R;16

end17

Table 2.21: Algorithm T KDG

increased by 1/M , where M is the number of instances per object, and the sum of
the new score and that of v is compared to the current threshold, ddsMax.

Step 5. Dominance check instance-to-object (lines 26–33). If the object U has not
been pruned in the previous two steps, its individual instances are considered. Each
instance u is compared to instances vmin, with F (vmin) > F (u). If it is dominated,
the score of u is again increased by 1/M , and the threshold is checked. In Figure 2.6,
this is the case with d3 and bmin.

Step 6. Dominance check instance-to-instance (lines 35–42). If all previous steps
failed to prune the object, a comparison between individual instances takes place
where each successful dominance check contributes to the object’s score by 1/M2.

Step 7. Result set update (lines 44–49). If U has not been pruned in any of the
previous steps, it is inserted in the result setR. If k results exist, the last is removed.
After inserting the new object, if the size of R is k, the thresholds ddsMax and
minV alue are set accordingly.

2.5.2.2 Ranking by dominating score

The T KDG algorithm, shown in Table 2.21, computes the top-k dominant Web
services with respect to the dominating score, i.e., it retrieves the k match objects
that dominate the larger number of other objects. This is a more challenging task
compared to that of T KDD, for the following reason. Let pos(u) denote the position
of the currently considered instance u in the sorted, decreasing by F , list I of
instances. To calculate u.dds, T KDD performs in the worst case pos(u) dominance
checks, i.e., with those before u in the list. On the other hand to calculate u.dgs,
T KDG must perform in the worst case |I| − pos(u) checks, i.e., those after u (see
Figure 2.7). Since the most dominating and less dominated objects are located

55

close to the beginning of I, execution will terminate when pos(u) is small relative
to |I|. As a result, the search space for T KDG is significantly larger than T KDD’s.
Furthermore, T KDD allows for efficient pruning as it searches among objects and/or
instances that have already been examined in a previous iteration, and therefore (the
bounds of) their scores are known.

The T KDG algorithm maintains three structures: (1) the I list; (2) a list R of
at most k objects (current results), ordered by dominating score descending; (3) a
list L containing objects that have been disqualified from R, used to prune other
objects. The lists R and L are initially empty.

Similar to T KDD, the algorithm iterates over the objects, in descending order
of their maximum bounding instance (lines 3–4). Let U be the currently examined
object. U can dominate at most |I| − pos(umax) instances. If this amount, divided
by the number of instances per object, is lower than T , where T is the lower bound
for the score of the k-th object in R, the whole process terminates, and the result
set R is returned (line 5). On the other hand, if the result set is empty, then U is
added as the first result (line 6).

Next, if U is dominated by the k-th object inR or by any object in L, it is pruned
(line 7). Otherwise, we need to check whether U qualifies for R. For an examined
object U it is straightforward to calculate its dominating score, by examining all the
instances in I, starting from the position of its best instance. However, we avoid
unnecessary computations by following a lazy approach, which examines instances
in I until a position that is sufficient to qualify (disqualify) U for (from) the current
result set R. For this purpose, we maintain for each examined object U a lower and
an upper bound for its dominating score, U.dgs− and U.dgs+ respectively, as well as
the last examined position in I, denoted by Ui. We initialize the lower and upper
bounds for the dominating score of U to

U.dgs− = 0 and U.dgs+ =
∑
u∈U

|I| − pos(u)

M2
,

respectively. Also, the last examined position for U is initialized to Ui = pos(umax)
(line 8).

Let V be the k-th result in R. We start by comparing U with V . Three cases
may occur: (1) if U.dgs+ < V.dgs−, then U does not qualify for R, and it is inserted
in L; (2) if U.dgs− > V.dgs+, U is inserted in R before V , and it is recursively
compared to the preceding elements of V in R; if V was the k-th object in R, it is
removed from R and it is inserted in L; (3) otherwise, the lower and upper bounds
of U and V need to be refined, until one of the conditions (1) or (2) is satisfied. This
refinement is performed by searching in I for instances dominated by an instance
of U , starting from the position Ui. At each step of this search, the instance at this
position, v, is compared to the instances of U preceding it. For each instance u of U
that dominates (does not dominate) v, the lower (upper) bound of the dominating
score of U is increased (decreased) by 1/M2. Also, the last examined position for
U is incremented by 1. Notice that, as in T KDD, if F (v) does not exceed the
minimum value of u, then u dominates v and all its subsequent instances, hence, the
lower bound of the score of u is updated accordingly, without performing dominance
checks with those instances (lines 9–15).

56

2.5.2.3 Ranking by dominance score

The previously presented algorithms take into consideration either one of the dds
or dgs scores. In the following, we present an algorithm, referred to as T KM,
that computes the top-k matches with respect to the third criterion introduced in
Section 2.5.1, which combines both measures. In particular, this algorithm is derived
by the algorithm T KDG, with an appropriate modification to account also for the
dominated score. More specifically, this modification concerns the computation of
the lower and upper bounds of the scores. First, the lower bound for the score of an
object is now initialized as:

U.dgs− = −λ ·
∑
u∈U

pos(u)

M2
(2.22)

instead of 0. Second, the bounds refinement process now needs to consider two
searches, one for instances dominated by the current object, and one for instances
that dominate the current object (see Figure 2.7). These searches proceed inter-
changeably, and the bounds are updated accordingly. Consequently, two separate
cursors need to be maintained for each object, to keep track of the progress of each
search in the list containing the instances.

2.5.3 Experimental Evaluation

In this section we present an extensive experimental study of our approach. In
particular, we conduct two sets of experiments. First, we investigate the benefits
resulting from the use of the proposed ranking criteria with respect to the recall
and precision of the computed results. For this purpose, we rely on a publicly
available, well-known benchmark for Web service discovery, comprising real-world
service descriptions, sample requests, and relevance sets. In particular, the use
of the latter, which are manually identified, allows to compare the results of our
methods against human judgement. In the second set of experiments, we consider
the computational cost of the proposed algorithms under different combinations of
values for the parameters involved, using synthetic data sets.

Our approach has been implemented in Java and all the experiments were con-
ducted on a Pentium D 2.4GHz with 2GB of RAM, running Linux.

2.5.3.1 Retrieval Effectiveness

To evaluate the quality of the results returned by the three proposed criteria, we have
used the publicly available service retrieval test collection OWLS-TC v2 [115]. This
collection contains real-world Web service descriptions, retrieved mainly from public
IBM UDDI registries. More specifically, it comprises: (a) 576 service descriptions,
(b) 28 sample requests, and (c) a manually identified relevance set for each request.

Our prototype comprises two basic components: (a) a matchmaker, based on
the OWLS-MX service matchmaker [84], and (b) a component implementing the
algorithms presented in Section 2.5.2 for processing the degrees of match computed
by the various matching criteria and determining the final ranking of the retrieved
services.

OWLS-MX matches I/O parameters extracted from the service descriptions,
exploiting either purely logic-based reasoning (M0) or combined with some content-

57

based, IR similarity measure. In particular, the following measures are considered:
loss-of-information measure (M1), extended Jaccard similarity coefficient (M2), co-
sine similarity (M3), and Jensen-Shannon information divergence based similarity
(M4). Given a request R and a similarity measure (M0–M4), the degrees of match
among its parameters and those of a service S are calculated and then aggregated to
produce the relevance score of S. Therefore, given a request, a ranked list of services
is computed for each similarity criterion. Note that in OWLS-MX no attempt to
combine rankings from different measures is made.

We have adapted the matching engine of OWLS-MX as follows. For a pair 〈R, S〉,
instead of a single aggregated relevance score, we retrieve a score vector containing
the degrees of match for each parameter. Furthermore, for any such pair, all similar-
ity criteria (M0–M4) are applied, resulting in five score vectors. Hence, for a request
having in total d I/O parameters, each matched service corresponds essentially to
an object, and the score vectors correspond to the object’s d-dimensional instances.
Then, the algorithms T KDD, T KDG, and T KM, described in Section 2.5.2, are
applied to determine the ranked list of services for each criterion.

To evaluate the quality of the results, we apply the following standard IR eval-
uation measures [16]:

• Interpolated Recall-Precision Averages : measures precision, i.e., percent of
retrieved items that are relevant, at various recall levels, i.e., after a certain
percentage of all the relevant items have been retrieved.

• Mean Average Precision (MAP): average of precision values calculated after
each relevant item is retrieved.

• R-Precision (R-prec): measures precision after all relevant items have been
retrieved.

• bpref : measures the number of times judged non-relevant items are retrieved
before relevant ones.

• Reciprocal Rank (R-rank): measures (the inverse of) the rank of the top rele-
vant item.

• Precision at N (P@N): measures the precision after N items have been re-
trieved.

The conducted evaluation comprises three stages.
First, we compare the three different ranking criteria considered in our ap-

proach. The resulting recall-precision graphs are depicted in Figure 2.8(a). Regard-
ing T KM, we study the effect of the parameter λ (see Section 2.5.1), considering
4 variations, denoted as T KM-λ, for λ=1, 5, 20, 50. As shown in Figure 2.8(a),
for a recall level up to 30%, the performance of all methods is practically the same.
Differences start to become more noticeable after a recall level of around 60%, where
the precision of T KDG starts to degrade at a considerably higher rate compared to
that of T KDD. This means that several services, even though dominating a large
number of other matches, were not identified as relevant in the provided relevance
sets. On the other hand, as expected, the behavior of T KM is dependent on the
value of λ. Without considering any scaling factor, i.e., for λ=1, the effect of the dds

58

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
re

ci
si

on

Recall

TKDD

TKDG

TKM-1

TKM-5

TKM-20

TKM-50

(a) T KDD, T KDG and T KM

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
re

ci
si

on

Recall

TKM-5

TKM-20

M0

M1

M2

M3

M4

(b) T KM and individual measures

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
re

ci
si

on

Recall

TKM-5

TKM-20

Borda

MNZ

Outrank

Sum

(c) T KM and fusion approaches

Figure 2.8: Recall-Precision graphs

criterion is low, and, hence, although T KM performs better than T KDG, it still
follows its trend. However, significant gains are achieved by values of λ that strike
a good balance between the two criteria, dds and dgs. The heuristic presented in
Section 2.5.1, provides us with a starting value λH , which is equal to 5 for the data
set into consideration. All our experiments with the real data show that T KM-λH ,
i.e., T KM having λ=λH , produces better results than the other two methods. This
is illustrated by the graph T KM-5 in Figure 2.8(a). In addition, the experiments
show that for values of λ lower than λH , T KM does not produce better results;
i.e., the effect of dds is still not sufficient. On the other hand, we can get further
improved results (by a factor of around 1% in our experimental data set), by tuning
λ into a range of values belonging to the same order of magnitude as λH . (Obviously,
the tuning of λ is required only once per data set.) In our experiments, we got the
best performance of T KM for values of λ around 20, which, as demonstrated by
the graph in Figure 2.8(a), produces slightly better precision than T KM-5. Further
increasing the factor λ, i.e., the effect of the dds criterion, fails to provide better
results, and, as expected, it eventually converges back to T KDD, as illustrated by
the T KM-50 graph.

Next, we examine the resulting benefit of the dominance-based ranking compared
to applying either of the individual similarity measures M0-M4. The recall-precision
measures are illustrated in Figure 2.8(b). To avoid overloading the figure, only the
T KM-5 and T KM-20 have been plotted. As shown, the dominance-based ranking
clearly outperforms all the individual similarity measures.

As this is not very surprising, to better gauge the effectiveness of our method-

59

Table 2.22: IR metrics for all methods
Method MAP R-prec bpref R-rank P@5 P@10 P@15 P@20

TKDD 0.7050 0.6266 0.6711 0.8333 0.8071 0.6893 0.6143 0.5446
TKDG 0.6750 0.6233 0.6334 0.8333 0.8143 0.7143 0.6238 0.5089
TKM-5 0.7249 0.6618 0.7098 0.8393 0.8000 0.7036 0.6738 0.5714
TKM-20 0.7375 0.6808 0.7243 0.8393 0.8000 0.7250 0.6857 0.5750

M0 0.5097 0.5128 0.5138 0.7217 0.6357 0.6071 0.5357 0.4464
M1 0.6609 0.5966 0.6313 0.8155 0.7571 0.6679 0.5738 0.5268
M2 0.6537 0.5903 0.6260 0.7708 0.7357 0.6536 0.5762 0.5232
M3 0.6595 0.5924 0.6254 0.8482 0.7357 0.6571 0.5762 0.5161
M4 0.6585 0.5822 0.6234 0.8127 0.7429 0.6571 0.5690 0.5250

Borda 0.6509 0.5778 0.6210 0.7577 0.7357 0.6464 0.5667 0.5179
MNZ 0.6588 0.5903 0.6274 0.8214 0.7357 0.6536 0.5738 0.5286

Outrank 0.6477 0.5811 0.6164 0.7575 0.7214 0.6500 0.5643 0.5179
Sum 0.6588 0.5903 0.6274 0.8214 0.7357 0.6536 0.5738 0.5286

ology, we finally compare it to better informed approaches, as well. When multiple
rankings exist, a common practice for boosting accuracy is to combine, or fuse, the
individual results. Several methods, reviewed in Section 2.2.3, exist for this task. We
compare our method to four popular fusion techniques: the score-based approaches
CombSum and CombMNZ [52], the simple rank-based method of Borda-fuse [14],
and the Outranking approach [51]. The first three techniques are parameter-free.
On the other hand, the latter requires a family of outranking relations, where each
relation is defined by four threshold values (sp, su, cmin, dmax). We chose to employ
a single outranking relation, setting the parameters to (0, 0,M,M − 1), satisfying,
thus, Pareto-optimality (M denotes the number of ranking lists, or criteria, which
is 5 in our case). The obtained recall-precision graphs are shown in Figure 2.8(c).
Again, our approach clearly outperforms the other methods. This gain becomes
even more apparent, when noticing through Figures 2.8(b) and 2.8(c) that these
fusion techniques, in contrast to our approach, fail to demonstrate a significant
improvement over the individual similarity measures.

In addition to the recall-precision graphs discussed above, Table 2.22 details the
results of all the compared methods for all the aforementioned IR metrics. For each
metric, the highest value is shown in bold (we treat the values of both versions of
T KM uniformly), whereas the second highest in italic. In summary, T KDD and
T KDG produce an average gain of 8.33% and 6.44%, respectively, with respect to
the other approaches. Additionally, T KM-5 and T KM-20 improve the quality of
the results by a percentage (average values) of 11.44% and 12.56%, respectively.

2.5.3.2 Computational Cost

In the following, we consider the computational cost of T KDD, T KDG, and T KM,
for different values of the involved parameters. These parameters and their exam-
ined values are summarized in Table 2.23. Parameters N and k refer to the number
of available services and the number of results to return, respectively. Parameter d
corresponds to the number of parameters in the service request, i.e., the dimension-
ality of the match objects. Parameter M denotes the number of distinct matching
criteria employed by the service matchmaker.

We first provide a theoretical analysis, and then report our experimental findings

60

 0

 1000

 2000

 3000

 4000

 0 1 2 3 4 5 6 7 8 9 10
tim

e
(m

se
c)

number of services (K)

TKDD

TKDG

TKM

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 1 2 3 4 5 6 7 8 9 10

tim
e

(m
se

c)

number of services (K)

TKDD

TKDG

TKM

(a) Effect of N

 0

 300

 600

 900

 1200

 10 20 30 40 50

tim
e

(m
se

c)

top-k

TKDD

TKDG

TKM

 0

 500

 1000

 1500

 2000

 10 20 30 40 50

tim
e

(m
se

c)

top-k

TKDD

TKDG

TKM

(b) Effect of k

 0

 2000

 4000

 6000

 8000

 2 4 6 8 10

tim
e

(m
se

c)

number of measures

TKDD

TKDG

TKM

 0

 3000

 6000

 9000

 12000

 2 4 6 8 10

tim
e

(m
se

c)

number of measures

TKDD

TKDG

TKM

(c) Effect of M

 0

 2000

 4000

 6000

 8000

 10000

 2 4 6 8 10

tim
e

(m
se

c)

number of dimensions

TKDD

TKDG

TKM

 0

 3000

 6000

 9000

 12000

 2 4 6 8 10

tim
e

(m
se

c)

number of dimensions

TKDD

TKDG

TKM

(d) Effect of d

Figure 2.9: Effect of parameters under low (left graph of each pair) and high (right graph
of each pair) variance var

61

on synthetically generated data sets.

Theoretical Analysis. To determine the dominated and dominating scores, our
methods need to compare the instances of all services with each other, in the worst
case. In total, there are N ·M instances (i.e., M match instances per service), hence
we perform O(N2M2) dominance checks. For any pair of instances, a dominance
check needs to examine the degrees of match for all d parameters. As a result,
the complexity of our methods is O(dN2M2). Clearly, this is a worst-case bound,
as our algorithms need only find the top-k dominant services and employ various
optimizations for reducing the number of dominance checks.

For the sake of comparison, we also discuss briefly the computational cost of
the fusion techniques considered in Section 2.5.3.1. These take as input M lists,
one for each criterion, containing the N advertised services ranked in decreasing
order of their overall degree of match with the request. Therefore, an aggregation
of the individual parameter-wise scores is required. CombSum, CombMNZ and
Borda-fuse scan the lists, compute a fused score for each service and output the
results sorted by this score. This procedure costs O(NM + N logN), where the
first (second) summand corresponds to scanning (sorting). The Outranking method
computes the fused score in a different manner: for each pair of services it counts
agreements and disagreements as to which is better in the ranked lists. Therefore,
its complexity is O(N2M). Note that all fusion techniques are independent of d
due to the reduction of the individual parameter scores to a single overall score. In
practice, the performance of T KDG and T KM resembles that of the Outranking
method, while T KDD performs as well as the other fusion approaches. Therefore,
for clarity of the presentation, in the rest of our analysis, we focus only on the three
proposed methods.

Experimental Analysis. We used a publicly available synthetic generator [130]
to obtain different types of data sets, with varying distributions represented by the
parameters corr and var, shown in Table 2.23. Given a similarity metric, parameter
corr denotes the correlation among the degrees of match for the parameters of a
service. We consider three distributions: in independent (ind), degrees of match
are assigned independently to each parameter; in correlated (cor), the values in
the match instance are positively correlated, i.e., a good match in some service
parameters increases the possibility of a good match in the others; in anti-correlated
(ant) the values are negatively correlated, i.e., good matches (or bad matches) in all
parameters are less likely to occur. Parameter var controls the variance of results
among similarity metrics. When var is low, matching scores from different criteria
are similar. Hence, the instances of the same match object are close to each other in
the d-dimensional space. On the other hand, when var is high, the matching scores
from different criteria are dissimilar and, consequently, instances are far apart. We
report our measures for variance around 10% (low) and 20% (high).

In all experimental setups, we investigate the effect of one parameter, while we
set the remaining ones to their default values, shown bold in Table 2.23. As a default
scenario, we consider a request with 4 parameters, asking for the top-30 matches
of a set of 5K partially matching service descriptions, using 4 different similarity
measures. For the factor λ in T KM, we used the value λH appropriately estimated
for each corresponding data set. The results are presented in Figure 2.9.

In general, all experiments indicate that T KDD is the most efficient method.

62

Table 2.23: Parameters and examined values
Parameter Symbol Values

Number of services N [1, 10]K, 5K
Number of results k 10, 20, 30, 40, 50
Number of dimensions d 2, 4, 6, 8, 10
Number of instances M 2, 4, 6, 8, 10
Parameter correlation corr ind, cor, ant
Instance variance var low, high

 0

 2000

 4000

 6000

ant
cor

ind

tim
e

(m
se

c)

correlation of service parameters

TKDD
TKDG

TKM

 0

 2000

 4000

 6000

ant
cor

ind

tim
e

(m
se

c)

correlation of service parameters

TKDD
TKDG

TKM

Figure 2.10: Effect of corr under low (left) and high (right) variance var

As already discussed, T KDD is interested in objects that dominate the top match
objects; hence, it searches a relatively small portion of the data set. On the contrary,
the search space for T KDG is significantly larger, so its delay is expected. Similarly,
T KM performance suffers mainly due to the impact of dgs score; therefore, it is
reasonable that it follows the same trend as T KDG, with a slight additional over-
head for accounting for dds score, as well. These observations are more apparent in
Figure 2.9(a), where it can be seen that T KDD is very slightly affected, as opposed
to T KDG and T KM, by the size of the data set. Another interesting observation
refers to the effect of the dimensionality (Figure 2.9(d)), which at higher values be-
comes noticeable even for T KDD. This, in fact, is a known problem faced by the
skyline computation approaches as well. As the dimensionality increases, it becomes
increasingly more difficult to find instances dominating other instances; hence, many
unnecessary dominance checks are performed. A possible work-around is to group
together related service parameters so as to decrease the dimensionality of the match
objects. For the same reasons, a similar effect is observed in Figure 2.10. For corre-
lated data sets, where many successful dominance checks occur, the computational
cost for all methods drops close to zero. On the contrary, for anti-correlated data
sets, where very few dominance checks are successful, the computational cost is
significantly larger.

Summarizing, the final choice of the appropriate ranking method depends on
the application. All three proposed measures produce significantly more effective
results than the previously known approaches. If an application favors more accurate
results, then T KM seems as an excellent solution. If the time factor acts as the
driving decision point, then T KDD should be favored, since it provides high quality
results (see Table 2.22) almost instantly (see Figures 2.9 and 2.10).

63

2.6 Summary

In this chapter, we have addressed the problem of (Semantic) Web service discovery
and we have proposed methods for ranking offered services with respect to users’
requests. First, a semantic similarity measure for ranking service descriptions was
presented. Based on the notions of recall and precision, this measure determines
the degree of match between the service request and advertisement. For this pur-
pose, it assesses the semantic similarity of ontology classes, exploiting both the class
hierarchy and the properties of the classes. It also takes into consideration ser-
vice preconditions and effects. Next, we have formulated the problem of Semantic
Web service selection as a skyline computation problem. We have shown how the
best matches can be identified efficiently by a skyline computation algorithm, and
we have discussed common tasks involved in the service selection process, referring
both to the requesters’ and the providers’ perspectives. Finally, we have addressed
the issue of top-k retrieval of Web services, with multiple parameters and under
different matching criteria. We have presented three suitable criteria for ranking
the match results, based on the notion of dominance, and we have provided corre-
sponding algorithms for computing the best matches in each case. The proposed
methods have been evaluated on both real and synthetic data sets.

64

Chapter 3

Service and Data Selection in
Peer-to-Peer Networks

Although the client-server architecture has been the traditional and predominant
paradigm in the Web, peer-to-peer networks have emerged in the previous years as
an alternative to resolve critical issues such as scalability and fault-tolerance. The
first and most common applications of peer-to-peer networks were related to massive
file sharing (e.g., exchanging music or video files). Recently, research has focused
on the use of structured overlays to efficiently search and manage the available
resources, as well as on the sharing of structured data, where each peer uses a local
schema to organize its contents.

In this chapter we deal with the problems of service discovery and data shar-
ing in P2P environments. First, we present related work on these issues. Then, in
Section 3.2 we describe an efficient encoding and indexing of service descriptions,
and we show how, based on these, service descriptions can be stored and searched
efficiently in an appropriate P2P overlay network. Section 3.3 deals with the use of
ontologies on top of Peer Data Management Systems, and in particular with an en-
vironment where peers seek, and are satisfied with, information that is semantically
similar, but not necessarily identical, to their requests. It investigates the notion of
semantic similarity of peer schemas and of queries with their rewritten versions, and
proposes a similarity measure to identify semantically relevant peers for propagating
queries through the network. Finally, Section 3.4 concludes the chapter.

Our results in this chapter have been published in [147, 146].

3.1 Related Work

3.1.1 P2P Service Discovery

The majority of the works addressing the problem of Web service discovery has
focused on centralized architectures (see Section 2.2.1 for a detailed presentation),
which can not be easily adapted to the P2P case. For example, a typical approach in
a centralized registry is to pre-compute and store, for each concept in the ontology,
the list of services matching this concept (together with the type of match) [155].
Then, when a request is issued, the lists corresponding to the request parameters are
looked up, and they are intersected to give the final results. Notice that, even though
this is very efficient in terms of time, it imposes excessive storage requirements, and

65

fails to scale as the number of available services (i.e., the size of the stored lists) and
the size of the ontologies (i.e., the number of lists to store) increase. This becomes
even more evident, when considering service discovery in a distributed environment.
Each time a new service is published, a very large number of peers needs to be
updated, which makes this solution inappropriate. Instead, our approach stores only
the service representations, which can be distributed in the P2P network, together
with the corresponding index.

A P2P approach for Web service discovery is presented in [138]. However, the
services are not semantically described; instead, the search is based on (possibly
partial) keywords. Semantic Web service discovery in P2P networks has been stud-
ied in [119, 19]. In contrast to our work, these approaches deal with unstructured
networks. In [94] Web service descriptions are indexed by keywords taken from
domain ontologies, and are then stored on a DHT network. In [137] the peers are
organized in a hypercube and the ontology is used to partition the network into
concept clusters, so that queries are forwarded to the appropriate cluster. How-
ever, the subset of concepts to be used as structuring concepts should be known in
advance. The approach in [170] distributes semantic service advertisements among
available registries, by categorizing concepts into different groups based on their se-
mantic similarity, and assigning groups to peers. In [167] services are distributed to
registries depending on their type, e.g., a registry related to the travel domain will
only maintain Web services specific to this domain. Instead, our work does not rely
on some partitioning of the domain concepts. Furthermore, it supports ranking of
the results, and it allows to retrieve the top-k matches progressively.

3.1.2 Semantics-based P2P Data Sharing

The importance of semantics in P2P overlays has been apparent from the early stages
of research in this field. One of the first works to consider semantics is [44], which
suggests the construction of semantic overlay networks (SONs). Another work in the
steps of [44] is [156], which suggests the dynamic construction of the interest-based
shortcuts in order for peers to route queries to nodes that are more likely to answer
them. Towards this end, the works in [169] and [67] exploit implicit approaches
for discovering semantic proximity based on the history of query answering and
the least recently used nodes. Additionally, SQPeer is an extensive work on Peer
Data Management Systems (PDMS) that share RDF data and localize the query
patterns using views [85]. In the same spirit, our work focuses on overlays that share
structured data, and it considers the problem of semantic similarity of schemas and
queries.

In a different line of research, semantics have been considered in the specialized
field of structured P2P overlays. GridVine deals with the distributed management
of complex data and schemas of meta-data, specifically RDF [3]. The system allows
schema inheritance, and it supports the creation and indexing of translation links
that map pairs of schemas. Similarly, pSearch forms a structured semantic over-
lay [159]. Documents as well as queries are represented as semantic vectors. Both
GridVine and pSearch rely for search efficiency on the structured form of the over-
lay, and, thus, their solution is not applicable to the semantic diversity problem in
an unstructured P2P system, which is the focus of our work. Additionally, Bibster
exploits ontologies in order to enable P2P sharing of bibliographic data [61]. Ontolo-

66

gies are used for importing data, formulating and routing queries, and processing
answers. Peers advertise their expertise and learn through ontologies about peers
with similar data and interests. However, Bibster does not incorporate the ontology
information into any kind of semantic similarity, as our work does.

Our work is based on the definition of a semantic similarity measure to identify
relevant peers and assess the quality of rewritten queries. Query similarity has been
explored in several works in the recent past. The work in [5] deals with attribute
similarity, but focuses on numeric data and on conclusions about similarity that can
be deduced from the workload. Furthermore, in [53] queries are classified according
to their structural similarity; yet, the authors focus on features that differentiate
queries with respect to optimization plans. The works in [41] and [78] deal with
semantic similarity which can be extracted from structural query features. Finally,
[99] proposes the creation of a distributed index that is used to route queries effec-
tively in a PDMS, given the semantic similarity of peer schemas. In contrast to these
approaches, our work relies on the use of ontologies to semantically annotate the
peer schemas, and then exploit these annotations to measure the similarity between
peers as well as queries that are forwarded and rewritten in the network. In [2] a
notion of syntactic similarity is used to measure the extent to which a query is pre-
served after transformation. To achieve semantic interoperability in a bottom-up,
semi-automatic manner, two feedback mechanisms are presented: one at the schema
level, namely analyzing query translations along cycles in the network, and another
at the data level, namely analyzing query results obtained through composite trans-
lations. This approach can be viewed as complementary to ours, as it can be used
to incrementally develop global agreements among the participating peers. Finally,
a similarity measure for semantic concepts is proposed in [73]. The concepts are
represented in disjunctive normal form (in Description Logics [15] notation), and
their similarity is measured based on the overlap of these descriptions. However,
this approach is not applicable in our case, since the proposed similarity measure is
symmetric (for primitive concepts), and it decreases only when the reference concept
is more specific than the examined one.

3.2 Service Discovery in Structured P2P Networks

3.2.1 Encoding Service Descriptions

In the following, we briefly review the process of Semantic Web service matchmaking
(for more details see Chapter 2). We consider an ontology as a set of hierarchically
organized concepts. Since multiple inheritance is allowed, the concepts form a rooted
directed acyclic graph. The nodes of the graph correspond to concepts, with the
root corresponding to the top concept, e.g., owl:Thing in an OWL ontology, whereas
the edges represent subsumption relationships between the concepts, directed from
the father to the child. To allow for semantic search of services on the Web, the
description of a service is enhanced by annotating its parameters (typically inputs
and outputs) with concepts from an associated ontology [31, 6, 60]. A service re-
quest is the description of a desired service, also annotated with ontology concepts.
Figure 3.1a illustrates a sample ontology fragment, while a sample set of a service
request and 3 service advertisements is shown in Figure 3.1b. The underlying as-
sumption is that if a service provides as output (resp., accepts as input) a concept

67

C1

C0

C2

C6C5 C7C3 C4

C9C8

(a)

INPUTS OUTPUTS
R C8 C4, C7

S1 C1 C4, C2

S2 C3 C9, C7

S3 C5 C1

(b)

Concept Intervals
C0 [1,20]
C1 [2,11]
C2 [12,19],[8,9]
C3 [3,6]
C4 [7,10]
C5 [13,14],[8,9]
C6 [15,16]
C7 [17,18]
C8 [4,5]
C9 [8,9]

(c)

Figure 3.1: (a) A sample ontology fragment, (b) A service request (R) and three service
advertisements (S1, S2, S3), (c) Intervals assigned to ontology concepts

C, then it is also expected to likely provide (resp., accept) the subconcepts of C. For
instance, a service advertised as selling computers is expected to sell servers, desk-
tops, laptops, PDAs, etc.; similarly, a service offering delivery in Europe is expected
to provide delivery within all (or at least most) European countries.

Matchmaking of semantically annotated Web services is then based on subsump-
tion reasoning between the semantic descriptions of the service request and the ser-
vice advertisement. Along the lines of earlier works [118, 93], we specify the match
between a service request R and a service advertisement S based on the semantic
match between the corresponding parameters in their descriptions. More specifically,
for a service parameter CS and a request parameter CR, we consider the match as
exact, if CS is equivalent to CR (CS ≡ CR); plug-in, if CS subsumes CR (CS A CR);
subsumes, if CS is subsumed by CR (CS @ CR); fail, otherwise. Exact matches are
preferable to plug-in matches, which in turn are preferable to subsumes matches.
In the example of Figure 3.1, service S1 provides one exact and two plug-in, service
S2 provides one plug-in, one subsumes, and one exact, whereas S3 provides two fail
and one plug-in matches.

Given that a large number of services may provide a partial match to the request,
differentiating between the results within the same type of match is also required.
Further following the aforementioned assumption regarding the semantics of a ser-
vice description, we use as a criterion for assessing the degree of match between two
concepts C1 and C2 the portion of their common subconcepts, or in other words,
the extend to which the subtrees (more generally, subgraphs) rooted at C1 and C2

68

overlap. Intuitively, the higher the overlap, the more likely it is for the service to
match the request. Thus, in the following, we consider the degree of match between
two concepts C1 and C2 as

degreeOfMatch(C1, C2) =
|{C | C v C1 ∧ C v C2}|

max(|{C | C v C1}|, |{C | C v C2}|)
(3.1)

Returning to our example from Figure 3.1, notice that regarding the requested
input, services S1 and S2 provide a plug-in match. However, using Equation (3.1),
the degree of match for the service S1 is 1/5, whereas for the service S2 is 1/2.
Notice that the proposed approach for service selection is not limited by this cri-
terion. Different ranking criteria may be appropriate in different applications (for
example, see Section 2.3 for a more elaborate similarity measure for ranking Se-
mantic Web services). Our approach is generic and it can accommodate different
ranking functions, as shown later in Section 3.2.2. Retrieving services in descending
order of their degree of match to the given request constitutes an important feature
for a service discovery engine. In the case that the requester is a human user, it
can be typically expected that he/she will navigate only the first few results. In
fact, experiments conducted in a recent survey [74] showed that the users viewed
the top-1 search result in about 80% of the queries, whereas results ranked below 3
were viewed in less than 50% of the queries. Even though this study refers to Web
search, it is reasonable to assume a roughly similar behavior for users searching for
services. On the other hand, Semantic Web service discovery plays an important
role in fully automated scenarios, where a software agent, such as a travel planning
agent, acting on behalf of a human user, selects and composes services to achieve
a specific task. Typically, the agent will select the top-1 match, ignoring the rest
of the results. Hence, computing only the best possible match would be sufficient
in this case. In fact, this often makes sense for human users as well; Google’s “I’m
Feeling Lucky” feature is a characteristic example based on this assumption.

Invoking the reasoner to check for subsumption relationships between the ontol-
ogy concepts annotating the service parameters constitutes a significant overhead,
which has to be circumvented in order to allow for fast service selection at query
time. For this purpose, we employ an appropriate service encoding based on label-
ing schemes [40]. The main idea works as follows. In the case of a tree hierarchy,
each concept is labeled with an interval of the form [begin, end]. This is achieved
by performing a depth-first traversal of the tree, and maintaining a counter, which
is initially set to 1 and is incremented by 1 at each step. Each concept is visited
twice, once before visiting any of its subconcepts and once after all its subconcepts
have been visited. The interval assigned to the concept is constructed by setting its
lower (resp., upper) bound to the value of the counter when the concept is visited for
the first (resp., second) time. Observe that due to the way intervals are assigned, a
concept C1 is subsumed by another concept C2 if and only if its interval is contained
in that of C2, i.e., IC1 ⊂ IC2 . This scheme generalizes to the case of graphs, which is
the typical case for ontologies on the Semantic Web, by first computing a spanning
tree T and applying the aforementioned process. Then, for each non spanning tree
edge, the interval of a node is propagated recursively upwards to its parents. Hence,
more than one intervals may be assigned to each concept. As before, subsumption
relationships are checked through interval containment: C1 is subsumed by C2 if
and only if every interval of C1 is contained in some interval of C2.

69

Type of match Condition
exact ICR

= ICS

plug-in ICR
⊂ ICS

subsumes ICR
⊃ ICS

Table 3.1: Types of match using the intervals based encoding

2 4 6 8 10 12 14 16 18 20

2

4

6

8

10

12

14

16

18

20

p1

p2
p3a

p3b

q

pl
ug

-in

subsumes

(a) Input parameters

2 4 6 8 10 12 14 16 18 20

2

4

6

8

10

12

14

16

18

20

p1b

p1a

p1c

p2a

p2b

p3

qa

qb

subsumes

pl
ug

-in

(b) Output parameters

Figure 3.2: Interval based search

In our example, the intervals assigned to the ontology concepts are shown in
Figure 3.1c, and have been computed considering the spanning tree formed by re-
moving the edge (C5, C9). Notice how the interval assigned to the concept C9 is
then propagated to the concepts C5, C2, and C0 (in the latter, it is subsumed by
the initially assigned interval).

Consequently, a service request or advertisement can be represented by the set
of intervals associated to its input and output concepts. With this encoding, deter-
mining the type of match between two service parameters is reduced to checking for
containment relationship between the corresponding intervals; a constant time op-
eration. In particular, we can rewrite the conditions determining the type of match
between a request parameter CR and a service parameter CS, as shown in Table 3.1,
where IC denotes the set of intervals assigned to C.

Furthermore, the aforementioned ranking criterion can be expressed by means of
the intervals based representation. For a concept C, the size of the subgraph rooted
at C, GC , is given by

|GC | =
∑
I∈IC

⌈
|I|
2

⌉
(3.2)

Hence, for two concepts C1, C2, where C1 v C2 or C1 w C2, Equation 3.1 becomes:

degreeOfMatch(C1, C2) =
min{|GC1|, |GC2|}
max{|GC1|, |GC2|}

(3.3)

3.2.2 Indexing Service Descriptions

The service representation presented in the previous section allows the evaluation
of the type and degree of match between a pair of requested and offered services

70

in constant time. Still, the number of comparisons required is proportional to the
number of available services. To further reduce the time required by the matcher,
an index structure is employed for pruning the search space, keeping the number of
comparisons required to a minimum. For this purpose, each interval is represented
as a point in a 2-dimensional space, with the coordinates corresponding to the
intervals’ lower and upper bounds respectively, i.e., begin and end. Then, checking
for containment between intervals is translated to a range query on this space.
Figures 3.2(a) and 3.2(b) draw the input and output parameters, respectively, of
the example in Figure 3.1. Points labeled as qx, correspond to the parameters
of the requested service, whereas pix correspond to parameters of the i-th offered
service. For example, the output parameters of service S2 is represented by points
p2a = (8, 9) for class C9 and p2b = (17, 18) for class C7. For a given interval, the
intervals contained by it are those located in its lower-right region, whereas those
containing it are located in its upper-left region.

In a centralized environment, where a single registry contains the information
about all the advertised services and is responsible for performing the matchmaking
and ranking process, an R-tree [59] can be used to expedite service selection. The
R-tree is a typical multi-dimensional index structure. It partitions points in hierar-
chically nested, possibly overlapping, minimum bounding rectangles (MBR). Each
node in the tree stores a variable number of entries, up to some predefined maxi-
mum. Leaf nodes contain data points, whereas internal nodes contain the MBRs of
their children.

For convenience, we use two separate R-trees, Tin, Tout to index the services,
where Tin (Tout) stores the intervals associated with the input (output) parameters.
Thus, the corresponding R-tree is used when matching input or output parameters.
Consider as an example the 3 services discussed in the previous section. Figure 3.3
shows the MBRs and the structure of the two R-trees. An MBR is denoted by Ni

and its corresponding entry as ei. Notice that points that are close in the space
(e.g., p1, p2 in Figure 3.3(a)) are grouped and stored in the same leaf node (N2 in
Figure 3.3(b)).

In the following we describe the algorithm (shown in Figure 3.2) for finding the
services matching a request using our running example. The algorithm examines
all request parameters in turn (Line 2). Assume that the first examined parameter
par is the input corresponding to concept C8; thus, Tin is examined (Line 3). The
intervals, in this case [4, 5], associated with the ontology concept is inserted in I
(Line 5). Subsequently, three queries are posed to Tin retrieving the exact matches
under point (4, 5) (Line 7), the plug-in matches inside the range extending from
(0, 5) up to (4,∞) (Line 8) and the subsumes matches inside (4, 0) up to (∞, 5)
(Line 9). A range query is processed traversing the R-tree starting from the root.
At each node, only its children whose MBR overlaps with the requested range are
visited. Similarly, for the case of a point query, only children whose MBR contains
the requested point are visited. A small performance optimization is to perform the
three queries in parallel minimizing, thus, node accesses. Subsequently, all matches
to par are merged into mpar (Line 10). Once all parameters have been examined,
the candidate services SR are constructed by intersecting the parameter matching
results (Line 11). This retains only the services which match all request parameters.
Since some services in SR can have additional input parameters that are not satisfied
by the request, they are filtered out from the final result (Line 12).

71

2 4 6 8 10 12 14 16 18 20

2

4

6

8

10

12

14

16

18

20

p1

p2
p3a

p3b

q

N1

N2

N3

(a) Tin MBRs

p1 p2

e3e2

N1

N3N2
p3a p3b

(b) Tin structure

2 4 6 8 10 12 14 16 18 20

2

4

6

8

10

12

14

16

18

20

p1b
p1a

p1c

p2a

p2b

p3

N1

N2

N3

N4

N5qa

qb

(c) Tout MBRs

p1a

e4 e5

e3e2

p3

N2 N3

N5N4

N1

p1c p2b

p1a p1b

(d) Tout structure

Figure 3.3: R-trees example

As discussed in Section 3.2.1, in many cases a ranked list of the top-k best
matching services is preferred as the result of the matchmaking process. Table 3.3
illustrates the Progressive Search Algorithm to retrieve the top-k services given a
request R using our framework. As before, we present the algorithm using our
running example. Initially, all intervals associated with the request parameters are
inserted into I (Line 2). In particular, I contains [4, 5] (represented by point q in
Figure 3.3(a)) for the input parameter, and [7, 10], [17, 18] (represented by points
qa, qb, respectively, in Figure 3.3(c)) for the two output parameters. A heap HI is
associated with each interval I = [is, ie] ∈ I (Lines 3–7); in our case there are 3
heaps for q, qa and qb. Initially, these heaps contain the root node of Tin or Tout,
depending on the interval’s parameter type (Lines 5–6). Entries eI in I’s heap are
R-tree nodes and are sorted increasingly by their minimum distance (MINDIST) to
(is, ie). The MINDIST of a leaf node, i.e., a point, is its distance from (is, ie). The
MINDIST of an internal node, i.e., an MBR, is the minimum distance of the MBR
from (is, ie).

The Progressive Search Algorithm proceeds examining heap entries until k ser-
vices have been retrieved (Lines 8–19). The heap whose head entry has the mini-

72

Search Algorithm
Input: request R, available services S indexed in Tin, Tout

Output: services SR matching R
begin1

foreach par ∈ INR ∪OUTR do2

if par ∈ INR then T ← Tin3

else T ← Tout4

I ← the intervals associated with par5

foreach interval I = (is, ie) ∈ I do6

mex
par ← point [is, ie] query in T7

mpl
par ← range (0, ie)× (is,∞) query in T8

msb
par ← range (is, 0)× (∞, ie) query in T9

mpar = mex
par ∪m

pl
par ∪msb

par10

SR =
⋂
par

mpar
11

SR = SR \ {S : ∃INS not matched by any INR}12

return SR13

end14

Table 3.2: Algorithm for index-based service matchmaking

Progressive Search Algorithm
Input: request R, available services S indexed in Tin, Tout, k
Output: services SR matching R, in descending order of degree of match
begin1

I ← the intervals associated with all parameters in INR ∪OUTR2

foreach I = [is, ie] ∈ I do3

create a heap HI4

if I corresponds to some par ∈ INR then insert in HI root of Tin5

else insert in HI root of Tout6

HI entries are sorted increasingly by their MINDIST to (is, ie)7

while k > 0 do8

find the heap HI whose head entry has the minimum MINDIST9

eI ← pop(HI)10

if eI is an internal node then insert in HI all children of eI11

else12

let S be the service corresponding to eI13

let parI be the parameter corresponding to interval I14

mark that S has a match for parI15

if S has matches for all parameters in INR ∪OUTR then16

insert S in SR ; // S is a result17

k ← k − 118

if k = 0 then return SR19

end20

Table 3.3: Algorithm for progressively returning matches

73

mum MINDIST is selected (Line 9). In our example both heaps for qa and qb have
MINDIST 0 as their head entry (Tout’s root) contains both qa and qb; assume qa’s
heap is selected. The entry (node N1 in out) is popped from the heap (Line 10) and
since it is an internal node all its children are inserted in the heap (Line 11). Then,
the heaps are examined again and qa’s heap is selected, as node N2 is in its head
and has MINDIST 0. N2 is popped and its children are inserted. Repeating the
process once more, a leaf entry p1a is popped, which corresponds to the first output
parameter of service S1 (Lines 13–14). We mark that S1 has a match for a request
parameter (Line 15). Then, S is checked if it has matches for all parameters, i.e., it
is a result (Lines 16–19). The algorithm returns when k results have been found.

The output of the algorithm is the ranked service list S2, S1, S3. Notice that
S2 has a subsumes match but it is ranked higher than S1, having only exact and
plug-in matches. Further, S3 is included even though is has two fail matches. This is
due to the fact that the MINDIST function described does not discriminate among
points in different regions with respect to the point corresponding to a request
parameter’s interval. For example, in Figure 3.3(c) p2a and p1b are closer to qa
than p3 and are regarded as better matches to parameter qa, even though they are
only subsumes matches (they lie in the lower right quadrant w.r.t. qa). To obtain
arbitrary rankings as described in Section 3.2.1, MINDIST can be trivially modified
to be region aware. For example, it can evaluate heap entries that correspond to
plug-in as closer compared to subsumes matches.

3.2.3 Managing Services in the P2P Overlay

As the availability and demand for Web services grows, the issue of managing Se-
mantic Web services in a distributed environment becomes vital. Thus, we focus
next on a scalable and fault-tolerant solution that is adaptable and efficient in a
distributed environment. More specifically, we consider service discovery in a flat,
structured P2P overlay network, since it provides self-maintenance and robustness,
as well as efficiency in data management

Before discussing distributed service discovery, we have to choose a suitable
framework. To support the adaptation of the algorithms presented in the previous
section, such a framework must support both point and range queries, so as to
allow for the retrieval of both exact and plug-in/subsumes matches, respectively.
Furthermore, since our proposed service encoding and service search algorithm are
based on the 2-dimensional space, it is necessary to select a P2P framework that
is efficient and scalable for 2-dimensional data. More specifically, the selected P2P
framework should preserve locality and directionality, if possible.

SpatialP2P [77] is a recently proposed structured P2P framework, targeted to
spatial data. It handles areas, which are either cells of a grid-partitioned space or
sets of cells that form a rectangular. The basic assumption of the framework is that
each area has knowledge of its own coordinates and the coordinates of some other
areas to which it is directly linked. The goal of SpatialP2P is to guarantee that any
stored area can be searched and reached from any other, solely by exploiting local
area knowledge.

Figure 3.4 shows an example of a SpatialP2P overlay with four peers. Each peer
maintains links to others towards the four directions of the 2D space. The grid is
hashed to the four peers, such that each cell is stored and managed by the closest

74

Figure 3.4: Illustrative SpatialP2P overlay

plug-in

subsumes

(is,ie)

(0,ie)

(is,0)

(∞,ie)

(is,∞)

Figure 3.5: Search regions

peer. In the figure cells and their storing peers share the same color.

In SpatialP2P, search is routed according to locality and directionality. This
means that search is propagated to the area that is closer to and towards the same
direction with the sought area, choosing from the available areas that are linked to
the one on which the search is currently iterated.

The management of services in the P2P overlay consists of two basic operations:
insertion of services and search for services in the system. Search can be either
exhaustive, i.e., seeking for any possible results, or top-k, i.e., seeking the k best-
matching results. In the following we discuss the details of these operations.

Service insertion. In order to use the P2P framework for the distributed manage-
ment of Semantic Web services, we assume that the ID space of the overlay (i.e. the
space of values for node and data IDs) corresponds to the space of values defined by
the encoding of the service descriptions.

When a new service is published, its description is encoded using the inter-
vals based representation presented in Section 3.2.1, and then it is inserted in the
network. Specifically, each encoded service parameter is hashed to and eventually
stored by the peer whose ID is closer to its value in the 2-dimensional space. Each
inserted service parameter is accompanied by some meta-data about the respective
type, (input or output), as well as the service it belongs to.

The locality-preserving property of the SpatialP2P overlay guarantees that sim-
ilar service parameters are stored by the same or neighboring peers. By similar,
we mean services whose input and output parameters correspond to matching con-
cepts. Moreover, the preservation of directionality means that following subsequent
peers in a particular direction results, for example, in locating concepts subsuming
or subsumed by the ones previously found. As described below, these properties are
essential for minimizing the search time, and this applies to both exhaustive range
and top-k queries.

Service search. Searching for services in the P2P overlay is performed by an
adaptation of the search algorithm of Section 3.2.2 to the SpatialP2P API. For
each requested service parameter, a point or a range query is performed, depending
on the requirement of exact, plug-in or subsumes match with the available service
parameters. An exact request for a service parameter corresponding to interval
I = [is, ie] is performed by a point query asking the retrieval of the point (is, ie), if
such data exists in the overlay. For plug-in and subsumes requests for a parameter
associated to the interval I = [is, ie], a pair of range queries is initiated. Since the
data space is bounded (recall the intervals construction from Section 3.2.1), these
requests are represented by range queries for rectangular areas. Specifically, for

75

plug-in matches, a query requesting the range extending from (0, ie) up to (is,∞) is
issued, while for the subsumes request, the corresponding range is (is, 0) × (∞, ie)
(see Figure 3.5). The results of these two queries are unified to provide the answer
to the requested parameter. Parallel searches are conducted for each requested
parameter, and the results are finally intersected to compute the final matches.

Finding the top-k matches. SpatialP2P supports top-k search by extending
search for range queries to dynamically increase the respective range. In detail, a
search for a service parameter represented by an interval I = [is, ie] is initiated as the
minimum range query that includes (is, ie); thus, the minimum range is extended
only in the grid cell in which the point (is, ie) resides. After the search is performed
in this minimum range, if the number of retrieved results is lower than k, then the
range is increased towards the desired direction of the 2D space by the minimum, i.e.,
by one grid cell. The process repeats iteratively, until k results have been retrieved
(or the whole space has been searched).

3.2.4 Experimental Evaluation

Experimental setup. We have evaluated our approach on two data sets. For the
first data set, to simulate a real-world scenario, we used the OWL-S service retrieval
test collection OWLS-TC v2 [115]. This collection contains services retrieved mainly
from public IBM UDDI registries, and semi-automatically transformed from WSDL
to OWL-S. More specifically, it comprises: (a) a set of ontologies, derived from 7
different domains (education, medical care, food, travel, communication, economy
and weapons), comprising a total of 3500 concepts, used to semantically annotate
the service parameters, (b) a set of 576 OWL-S services, (c) a set of 28 sample
requests, and (d) the relevance set for each request (manually identified).

The second data set was synthetically generated, based on the first one, so as
to maintain the properties of real-world service descriptions. In particular, we con-
structed a set of approximately 10K services, by creating variations of the 576 ser-
vices of the original data set. For each original service, we selected randomly one or
more input or output parameters, and created a new service description by replacing
them with randomly chosen superconcepts or subconcepts from the corresponding
domain ontology. A set of 100 requests was generated following the same process,
based on the original 28 requests. All the experiments were conducted on a Pentium
D 2.4GHz with 2GB of RAM, running Linux.

Ranking. In the first set of experiments we used the first data set to evaluate the
effectiveness of the service selection approach. For each of the 28 queries we retrieved
the ranked list of match results, and compared them against the provided relevance
sets. We use well-established IR metrics [161] to evaluate the performance of the
search and ranking process. In particular, Figure 3.6(a) depicts the micro-averaged
recall-precision curves for all the 28 queries, i.e., the precision (averaged over all
queries) for different recall levels. Observe that a 30% of the relevant services can
be retrieved with precision higher than 80%, whereas for retrieving more than 70%
of the relevant services the precision drops below 50%. Also, the following metrics
are presented in Figure 3.6(b): (a) precision at k, i.e., the (average) precision after
k results have been retrieved; (b) success at k, i.e., whether a relevant result has
been found after k results have been retrieved.

As we can see, the precision drops below 70% after the top-10 matches have been

76

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

P
re

ci
si

on

Recall

(a)

P@5 0.764
P@10 0.721
P@15 0.631
S@1 0.857
S@2 0.964
S@4 1

(b)

Figure 3.6: (a) Recall-precision curve, (b) Precision and Success at k (P@k, S@k)

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180

2K 4K 6K 8K 10K

P
ro

ce
ss

in
g

T
im

e
(m

se
c)

Number of Services

Exhaustive
Top-500
Top-50
Top-1

(a) Centralized

 1

 10

 100

 1000

1K 3K 5K 8K 10K

N
um

be
r

of
 H

op
s

Number of Nodes

Exhaustive
Exhaustive falsedrops

Top-10
Top-10 falsedrops

(b) P2P

Figure 3.7: Search cost for: (a) centralized registry, (b) P2P registry

retrieved. Moreover, for the set of 28 queries, in 24 of them the top-1 match is a
relevant one, in 27 queries there is a relevant result among the top-2 matches, and in
all cases there is a relevant result among the top-4 matches. The above results opt
for the emphasis on top-k queries and on fetching results progressively, as discussed
in Section 3.2.1.

Experiments for centralized search. In this set of experiments we measured the
time required by our search algorithm to discover and rank services in a centralized
registry. In particular, we investigated the performance benefits, i.e., the reduction
in response time, resulting from restricting the search to retrieving only the top-k
matches. For this purpose, we used the synthetically generated data set described
previously. We varied the number of services from 2K up to 10K, and we measured
the processing time (averaged over 100 queries) for retrieving: (i) all matches, and
(ii) the top-k matches for k ∈ {1, 50, 500}. The experimental results are illustrated in
Figure 3.7(a). Notice the significant savings in the processing time when restricting
the search to top-k matches, as well as the fact that the processing time in the latter
case is significantly less sensitive to the number of available services.

Experiments for search in P2P environment. In the last set of experiments,

77

we evaluated our search method in a P2P environment, as described in Section 3.2.3.
We varied the size of the P2P network, from 1K up to 10K peers, and we inserted
a total of 10K services. We conducted two experiments. In the first experiment,
we retrieved, for each request, all the identified matches, whereas in the second,
we restricted the search range to obtain (approximately) the top-10 results for each
request. For each of the experiments we report two measures: (i) total number of
hops (i.e., number of peers processing the query), and (ii) number of falsedrops (i.e.,
number of peers on the search path not contributing to the result set). The results
are shown in Figure 3.7b. Both measures are quite low and relatively stable w.r.t.
the size of the network. As discussed in Section 3.2.3, this is due to the fact that
SpatialP2P is particularly designed to preserve the locality and the directionality of
the data space, thus queries are effectively routed towards peers containing relevant
information. As in the centralized case, the search cost is significantly lower, when
retrieving only the top-k matches.

3.3 Ontology-based Data Sharing in a PDMS

3.3.1 Problem Description

In this section we consider the problem of sharing structured data in a flat, unstruc-
tured Peer Data Management System (PDMS) using ontologies to identify peers
containing relevant information. More specifically, we consider a PDMS accompa-
nied by one or more domain ontologies, which are used to semantically annotate
the content a peer makes available to the network. Note that the use of these on-
tologies does not contravene the requirements of the lack of global schema and peer
autonomy: peer schemas do not have to adhere to any restrictions; they may just
use terms from these ontologies to semantically describe their elements.

Each peer possesses a local database exposing a relational schema. Queries are
issued according to this schema. Each peer shares data with its acquainted peers
via a set of mappings, which are used for query rewriting between the respective
schemas. We focus our study on select-project-join (SPJ) queries, and mappings of
the well known forms global-as-view (GAV), local-as-view (LAV) and global-local-
as-view (GLAV) [63] as they are adapted to the P2P paradigm [91, 65]. A query
Q specifies the information to be retrieved, by means of a set of attributes to be
returned (SELECT clause), and a set of conditions to be applied (WHERE clause).

In addition, we assume the existence of a domain ontology, providing a shared
conceptualization of the domain of interest for the community of peers (observe
Figure 3.8a.) The domain ontology may be provided by a third-party, such as
a standardization organization. This is a realistic hypothesis for a wide range of
applications, involving networks where peers are professionals, companies, or or-
ganizations (e.g., universities, libraries, hospitals), exchanging information about a
specific domain. An alternative case is the collaborative construction of the on-
tology within the peer network itself. In large-scale peer-to-peer networks, where
global consensus is difficult to achieve and maintain, there may exist several on-
tologies, allowing different views of the domain, and clusters of peers using either
of these ontologies (observe Figure 3.8b.) In these cases the proposed approach is
still applicable, provided that mappings between these ontologies are available. For
simplicity, we first introduce the proposed similarity measure assuming the existence

78

OWL construct Notation Description

owl:Class C Classes
owl:ObjectProperty P Object properties
owl:DatatypeProperty P Datatype properties
owl:equivalentClass C1 ≡ C2 Class equivalence
rdfs:subClassOf C1 v C2 Class subsumption
owl:equivalentProperty P1 ≡ P2 Property equivalence
rdfs:subPropertyOf P1 v P2 Property subsumption
owl:Thing > The class containing all the individuals
owl:Nothing ⊥ The class containing no individuals
owl:DataRange d Data types
rdfs:domain domain(P) The domain of a property
rdfs:range range(P) The range of a property
owl:allValuesFrom ∀P.C Value restrictions on object properties
owl:allValuesFrom ∀P.d Value restrictions on datatype properties
owl:minCardinality ≥n P Min cardinality restriction
owl:maxCardinality ≤n P Max cardinality restriction

Table 3.4: OWL constructs and notation used

of a shared ontology (Sections 3.3.2 and 3.3.3), and then we extend it to deal with
the case of multiple ontologies (Section 3.3.4).

OWL is used for representing the ontology. In particular, Table 3.4 summarizes
the OWL constructs and notation used in the following. Additionally, we use the
notation P (C) to denote the set of properties that are related to a class C, and the
notation R(PC) to denote the set of restrictions on a property P with respect to a
class C.

The domain ontology is used to semantically annotate the schemas of the peers
participating in the network, describing the type of information that a peer makes
available to other peers. The semantic annotation of a peer’s schema is achieved
by declaring correspondences between terms in the peer schema and terms in the
domain ontology. The high-level architecture of the system is depicted in Figure 3.8.
Solid lines represent pairwise mappings between acquainted peers, while dashed lines
represent correspondences between elements of the local schema and elements of the
domain ontology.

Definition 3.3.1. A semantic peer is a tuple P = (R,O,A), where R is the peer’s
database schema, O the domain ontology used, and A the peer’s semantic annota-
tion. A holds the set of annotations A for the relations in R. Each A consists of a
pair of the form (R,C) and a set of pairs of the form (R.t,Ci.P), Ci∈C. That is, a
relation R is semantically annotated by means of a set of classes C. Each Ci∈C is
an ontology class, possibly enhanced with additional restrictions to make explicit the
semantics of the underlying relation, i.e., Ci ≡ C ′i uk Rk, C ′i∈O. Attributes R.t are
annotated by means of properties of the same set of classes, i.e., (R.t,Ci.P), Ci ∈ C.

Our work aims at the exploitation of the information conveyed by the ontology
and the annotations to provide a measure that represents how semantically close
are two peers P1 and P2, namely Sem Sim(P1,P2). Furthermore, when a query
Q is forwarded by P1 to P2 and is rewritten to Q′ based on the corresponding
mappings, then it is usually degraded. This means that some part of Q cannot be
rewritten on peer P2 [78]. Hence, our goal is to provide a measure of the degree of

79

 Schema mapping Semantic annotation Ontology mapping
Peer Database Peer Database

Peer Database Peer Database
Peer Database

Domain Ontology
Peer Database Peer Database

Peer Database Peer Database
Peer Database

Domain Ontology Domain OntologyDomain Ontology(a) (b)

Figure 3.8: Unstructured network of semantic peers with (a) single ontology (b) multiple
ontologies

match between the requested information Q and the retrieved information Q′, i.e.,
Sem Sim(P1,P2, Q,Q

′).
Having such qualitative measures for the semantic relationship between the peers

is important, when, for instance, a peer chooses its acquaintances or evaluates the
quality of the answers returned by another peer.

Motivating example. As a motivating example, consider a simple scenario where
in the context of a social network system, two peers, P1 and P2, want to exchange
data about music bands. Suppose that P1 and P2 have the following schemas and
mapping:

P1 : bands(name,members, year)

P2 : bands(name, singer, year)

MP1,P2 : bands(name,members, year) : − bands(name, singer, year)

(3.4)

An ontology for the music domain is used to describe semantically the contents of
the peers. A sample snippet of such ontology is illustrated in Figure 3.9. Nodes rep-
resent classes or datatypes, while edges represent properties. Dashed lines between
two classes or properties represent subsumption relation.

Furthermore, we assume that P1 contains information about bands having at
least one album, while P2, being more specialized, stores information about bands
that play Jazz music, were formed before the year 2000, and have released at least 3
albums. These facts can be made explicit by each peer, by annotating the relations
and attributes in its local schema using terms from the domain ontology, as shown
in Table 3.5, where Band P1 and Band P2 two new classes defined as follows:

Band P1 : Band u ≥ 1released

Band P2 : Band u ∀type.Jazz u ≥ 3released u ∀year.(≤ 2000)
(3.5)

For simplicity, we have assumed a single relation for each peer in this example.
The case of multiple relations linked with foreign keys is handled similarly: the class
definition would contain an additional object property, corresponding to the foreign
key, and having as range the class annotating the linked relation.

Exchanging data between P1 and P2 is meaningful and useful for both peers.
However, information available at P2 is only partially sufficient for the information

80

hasName

hasMember

hasSinger

Person

Band

xsd:string

xsd:int

released

Album

year

type

Genre

Jazz

<owl:Class rdf:ID="Genre"/>
<owl:Class rdf:ID="Jazz">

<rdfs:subClassOf rdf:resource="#Genre" />
</owl:Class>
<owl:ObjectProperty rdf:ID="hasMember">

<rdfs:domain rdf:resource="#Band" />
<rdfs:range rdf:resource="#Person" />

</owl:ObjectProperty>
<owl:ObjectProperty rdf:ID="hasSinger">

<rdfs:subPropertyOf rdf:resource="#hasMember" />
</owl:ObjectProperty>
<owl:DatatypeProperty rdf:about="#hasName">

<rdfs:domain rdf:resource="#Band"/>
<rdfs:range rdf:resource="&xsd;string"/>

</owl:DatatypeProperty>

Figure 3.9: A sample ontology and a snippet of the corresponding XML representation

Schema element Ontology ele-
ment

bands.name hasName
bands.members hasMember
bands.year year
bands Band P1

(a) Peer P1

Schema element Ontology ele-
ment

bands.name hasName
bands.singer hasSinger
bands.year year
bands Band P2

(b) Peer P2

Table 3.5: Semantic annotation of peer schemas

needs of P1, while, inversely, P1 contains much information that is irrelevant for the
interests of P2. This obviously affects the quality of results that may be obtained by
each peer. Notice also the asymmetry in the two directions. A qualitative measure
is needed so that each peer may evaluate how suitable a particular acquaintance is,
both in general, as well as with respect to a specific query.

3.3.2 Comparison of Peer Schemas

In the following, we propose a measure for the semantic similarity between the type
of information provided by two peers, hereafter referred to as Sem Sim(P1,P2).
This measure essentially builds on the one defined in Section 2.3.2.1 for the similar
problem of Semantic Web service matchmaking; thus it is also based on the notions of

81

recall and precision, which express, respectively, the proportion of relevant material
actually retrieved in answer to a search request, and the proportion of retrieved
material that is actually relevant. Using the pair of values (recall, precision) to
express the degree of semantic similarity between two peers, the proposed measure
provides an intuitive way for (a) accounting for the asymmetry resulting from the
specific direction considered in the comparison, and (b) expressing the extend to
which the information provided by a peer is a subset or superset of the requested
information. Although it is possible to express the similarity measure in terms of
the F-measure, in the following we will refer to the proposed measure as a pair of
values (recall, precision), i.e., keeping track of both the individual measures, as
they can be of different value and use to each peer. In particular, each peer can
decide whether to employ the F-measure and, if so, determine the value of parameter
a appropriately (see Equation 2.2).

The semantics of the peer’s schema is made explicit by its annotation, which
comprises a set of classes. Thus, instead of estimating the semantic similarity
Sem Sim(P1, P2) between two peers P1 and P2, it suffices to estimate the simi-
larity between the respective sets of classes in the ontology, i.e., Sem Sim(CP1 , CP2).
For simplicity, we first focus our study on the similarity between two classes and
then, we extend the results for comparing two sets of classes. Hence, to adapt the
notions of recall and precision in our context, we consider as relevant items the
instances of the class in the semantic annotation of the requesting peer and as re-
trieved items the instances of the class in the semantic annotation of the provider
peer. Therefore:

recall(CP1 , CP2) =
| {x |x ∈ (CP1 u CP2)} |
| {x |x ∈ CP1} |

precision(CP1 , CP2) =
| {x |x ∈ (CP1 u CP2)} |
| {x |x ∈ CP2} |

(3.6)

Notice that the above definitions for recall and precision have the following prop-
erties:

• When the two classes are equivalent, i.e., CP1 ≡CP2 ≡CP1 uCP2 , then recall=
1 and precision= 1, meaning that the contents of the two peers refer to the
same type of entities.

• When CP1 vCP2 , then CP1 uCP2 ≡CP1 , thus recall= 1 and precision< 1,
meaning that P2 contains information that is not of interest for P1.

• When CP1 wCP2 , then CP1 uCP2 ≡CP2 , thus recall < 1 and precision= 1,
meaning that P2 can only partial cover the information needs of P1.

• When ¬(CP1 uCP2 v ⊥), then recall < 1 and precision <1, meaning that part
of the information of each peer is of interest to the other.

• Finally, when CP1 uCP2 v ⊥, then recall= 0 and precision= 0. Essentially
this means that the acquaintance with this peer is of no use.

Calculating the recall and precision from Equations 3.6 requires knowledge about
the extensions of the schemas, possibly using statistical techniques. However, in this

82

condition recall(R1, R2) precision(R1, R2)
R1 ≡ R2 1 1
R1 v R2 1 0.5
R1 w R2 0.5 1
¬(R1 u R2 v ⊥) 0.5 0.5
R1 u R2 v ⊥ 0 0

Table 3.6: Different cases of subsumption relationship between two restrictions R1 and
R2

paper, we focus on a different approach and calculate these measures based on the
semantic information conveyed by the domain ontology, and in particular (a) the
class hierarchy, (b) the property hierarchy, and (c) the restrictions on the properties
of the classes. As the above approaches may be used together, our future plans
include the improvement of the method by using both approaches in a combined
way.

In the case of classes that are not described by any properties, the recall and
precision can be measured by the ratio of their common ancestors. This is a common
approach for measuring the similarity between classes in a taxonomy [97, 133]. Thus,
if A(C) denotes the set of superclasses of a class C, then:

recall(C1, C2) =
|A(C1) ∩ A(C2)|
|A(C2)|

precision(C1, C2) =
|A(C1) ∩ A(C2)|
|A(C1)|

(3.7)

Notice that the values of recall and precision obtained from Equations 3.7 adhere
to the cases discussed previously.

Similarly, the recall and precision between two properties, p1 and p2, can be
measured by the ratio of their common superproperties, as inferred by the property
hierarchy in the domain ontology:

recall(p1, p2) =
|A(p1) ∩ A(p2)|
|A(p2)|

precision(p1, p2) =
|A(p1) ∩ A(p2)|
|A(p1)|

(3.8)

Concerning restrictions defined on the properties of a class, three different cases
can be identified: (a) value restrictions on object properties (e.g., ∀type.Jazz); (b)
value restrictions on datatype properties (e.g., ∀year.(≤ 2000)); and (c) cardinality
restrictions (e.g., ≥ 3released). In the first case, we consider the recall and precision
between the two classes to which the values of the property are restricted. The other
two cases can be handled by checking for a subsumption relationship between the
two restrictions R1 and R2 as depicted in Table 3.6. More accurate results may be
obtained in the case that statistical knowledge about the value distributions of the
underlying data is available.

Thus, Equations 3.8 are updated to account also for the existence of restrictions,
as follows:

83

recall(p1, p2) =
|A(p1) ∩ A(p2)|
|A(p2)|

·
∏

R(p2)

recall(R′i(p1), Ri(p2))

precision(p1, p2) =
|A(p1) ∩ A(p2)|
|A(p1)|

·
∏

R(p1)

precision(Ri(p1), R
′
i(p2))

(3.9)

where R(p) is the set of restrictions on property p, and R(p), R(p′) denote a pair
of corresponding restrictions; i.e., of the same type. The product is used in Equa-
tions 3.9 as a decreasing monotonic function that captures the intuition that each
factor contributes negatively to the final result. If no corresponding restriction is set
on one of the compared properties, then, in the case of value restriction on object
properties, the restricted range is compared to the default range of the property.
In the other two cases, the value of recall or precision, accordingly, is set to a fixed
value; the default is 0.5. Here, we do not consider the case of other intermediate val-
ues in the range (0, 1) that may capture richer ranking semantics; e.g., year < 2005
may be preferable to year < 2007 for a request year < 2004; currently, both have
precision equal to 0.5. (However, in that case one should deal with the issue of data
range and distribution; a problem that we have left as a future extension to our
approach.)

Therefore, given two classes C1 and C2, the recall and precision is calculated by
adding the results for their individual properties and normalizing to the number of
properties:

recall(C1, C2) =

∑
P (C2)

recall(p(C1), p
′(C2))

|P (C2)|

precision(C1, C2) =

∑
P (C1)

precision(p(C1), p
′(C1))

|P (C1)|

(3.10)

where P (C) denotes the set of properties of class C, and p(C1), p
′(C2) a pair of

corresponding properties in the compared classes.

Example (Cont’d). We demonstrate the presented approach by applying the
derived equations to estimate the semantic similarity between the schemas of the
two peers, P1 and P2, of the motivating example introduced in the previous section.
The schema of each peer comprises a single relation, semantically described by the
definitions shown in the formulae 3.5. Given these definitions, and the ontology
shown in Figure 3.9, from Equations 3.10 follows that:

recall(P1,P2) = (3 · 1 + 3 · 0.5)/6 = 0.75

precision(P1,P2) = 1

The above results reflect, as expected, the fact that the type of information pro-
vided by peer P2 is more restricted with respect to that provided by peer P1.

84

The comparison can be extended to sets of classes, by comparing each class
in the one set to its matching class in the other set (i.e., the class maximizing
recall or precision, accordingly), and then normalizing to the cardinality of the sets.
Therefore, for two sets of classes, C1 and C2, the following equations hold:

recall(C1, C2) =

∑
Ci∈C1

max
Cj∈C2

recall(Ci, Cj)

|C1|

precision(C1, C2) =

∑
Cj∈C2

max
Ci∈C1

precision(Ci, Cj)

|C2|

(3.11)

3.3.3 Comparison of Rewritten Queries

So far, we have considered only the semantic annotations of the peers, which essen-
tially refer to all the content stored in the peer. Therefore, the previous analysis
applies to the case of unrestricted exchange of information between two peers. How-
ever, the similarity needs to be evaluated also with respect to a specific query issued
at a peer, as well as the mappings between two peers, which determine how the
query is rewritten.

When a query Qo is forwarded from P1 to P2, it is rewritten according to the
mappings, resulting in a query Qr. During the rewriting process, some attributes
may not be rewritten, or may be approximately rewritten, while conditions may be
lost or inserted, due to the nature of the specified mappings (e.g., due to value con-
straints in the mappings). As a result, the retrieved information may not completely
adhere to the initial request. Therefore, the previous analysis needs to be extended
to consider two additional factors:

• the portion of attributes that were rewritten and how accurate the rewriting
was, and

• the conditions specified, both in the original query Qo and its rewritten ver-
sion Qr.

Any conditions existing in the query, either directly specified by the user or
resulting from the mappings, further restrict the information requested or provided
by the peer. Hence, these conditions need to be taken into account, together with the
restrictions already existing in the classes semantically describing the peer’s schema.
For this purpose, each condition in the query is translated to a corresponding value
restriction, which is added to the respective class in the peer’s annotation. The
process goes as follows:

1. A query Qo is issued at peer P1.

2. Based on the peer’s semantic annotations, the set of classes CQo is selected,
containing the classes annotating the relations in Qo.

3. Each class in CQo is enhanced with additional value restrictions on its proper-
ties, according to the conditions specified in Qo, resulting in the set CQo,e.

85

Algorithm SSR
Input: The original query Qo, issued at peer P1 = (R1,O,A1)

The target peer P2 = (R2,O,A2)
The mappings M1,2 between the schemas of the two peers

Output: The recall and precision measures between the original query Qo

and the produced rewritten query Qr

1. Begin
2. RQo ← the set of relations appearing in Qo

3. CQo ← the set of classes annotating the relations in RQo

4. CQo,e ← CQo

5. Foreach condition w in Qo {
6. R.t← the attribute to which w is applied
7. C ← the class corresponding to R
8. P ← the property corresponding to t
9. D ← the class or datarange representing the restricted value

10. C ← C u ∀P.D
11. CQo,e ← update definition of C
12. }
13. Qr ← rewrite(Qo,M1,2)
14. CQr,e ← repeat lines 2-12 for Qr

15. recall = recall(CQo,e, CQr,e)
16. precision = precision(CQo,e, CQr,e)
17. End.

Table 3.7: Algorithm for measuring the semantic similarity for rewritten queries

4. Qo is sent to peer P2, where it is rewritten as Qr, according to the correspond-
ing mappings.

5. Steps 2 and 3 are repeated for the rewritten version of the query and the
semantic annotations of P2, resulting in the set of classes CQr,e.

Afterwards, the first step to evaluate the quality of the performed rewriting is to
calculate the recall and precision between the two sets of classes CQo,e and CQr,e. This
is achieved by Equations 3.11. The aforementioned process is formally described by
the algorithm SSR, which is depicted in Table 3.7.

The second factor to consider is the rewriting of the attributes appearing in the
SELECT part of the query. If an attribute t was rewritten to an attribute t′, then
the quality of this rewriting is measured by the value of recall and precision between
the corresponding properties pt and pt′ annotating these attributes. This is achieved
by Equations 3.8. The sum over all attributes is then calculated and normalized to
the number of attributes in the query. If a SELECT attribute failed to be rewritten,
then the value of recall for it is zero, as the corresponding information can not be
retrieved. Precision is not affected, since no redundancy in the results is caused.

The results from the two factors are multiplied, since both contribute negatively
to the quality of the performed rewriting:

86

recall(CQo,e, CQr,e, Qo, Qr) =

∑
t∈SELECT (Qo)

recall(pt, pt′)

|SELECT (Qo)|
× recall(CQo,e, CQr,e)

precision(CQo,e, CQr,e, Qo, Qr) =

∑
t′∈SELECT (Qr)

precision(pt, pt′)

|SELECT (Qr)|
× precision(CQo,e, CQr,e)

(3.12)

Example (Cont’d). We revisit the example of Section 3.3.1 to demonstrate
two indicative cases.

Case 1. Assume that P1 is interested in bands formed at the 80’s, so it issues
the query:

Qo : SELECT name, members, year FROM bands

WHERE year ≥ 1980 AND year < 1990

Based on this query, the definition of P1 is updated as:

CQo,e : Band u ≥ 1released u ∀year.([1980, 1990))

The query is then forwarded to P2, and is rewritten as:

Qr : SELECT name, singer, year FROM bands

WHERE year ≥ 1980 AND year < 1990

Notice that the attribute members, corresponding to the property hasMember, has
been rewritten as singer, corresponding to the property hasSinger v hasMember.
The definition of P2 is then updated accordingly:

CQr,e : Band u ∀type.Jazz u ≥ 3released u ∀year.([1980, 1990))

Being more restrictive, the condition on attribute year overwrites the previously
existing restriction in the definition.
Applying Equations 3.12 results in:

recall(P1,P2, Qo, Qr) = [(2 · 1 + 0, 5)/3] · [(4 · 1 + 2 · 0.5)/6] = 0.7

precision(P1,P2, Qo, Qr) = 1

Notice how the value of recall is affected negatively by the rewriting of members
to singer, and positively by the presence of the condition on attribute year in the
issued query, which counteracts the respective restriction in the annotation of P2.
Case 2. Assume now that the attribute year was not present in P2’s schema or in
the mapping. Then, the rewritten query may be:

87

Qr : SELECT name, singer FROM bands

Since no conditions are present in the rewritten query, P2’s definition is not affected.
Applying Equations 3.12 results in:

recall(P1,P2, Qo, Qr) = [(1 + 0.5 + 0)/3] · [(4 · 1 + 2 · 0.5)/6] = 0.42

precision(P1,P2, Qo, Qr) = 1 · (5.5/6) = 0.92

Notice that the failure to rewrite the attribute year significantly reduces the value
of recall. Due to that failure, the returned bands have the restriction year ≤ 2000,
instead of the requested year ∈ [1980, 1990), which negatively affects the value of
precision.

3.3.4 Extending to Multiple Ontologies

In the previous two sections, we have presented a semantic similarity measure for
peer schemas and queries propagated in the P2P network, assuming the existence
of a single ontology that is used to annotate the elements of the schemas exposed
by each peer. Even though this constitutes a valid assumption for several applica-
tions, maintaining an agreement to a common ontology, as the network size grows,
becomes increasingly difficult. Therefore, it is important to consider how the pro-
posed approach generalizes to the case of an environment where different peers may
employ different ontologies to describe their schemas, as shown in Figure 3.8b. To
maintain semantic interoperability in the absence of a common ontology, appropriate
mappings need to be established between the terms used in the involved ontologies.
In fact, a significant body of work exists addressing the issue of schema/ontology
matching, as this constitutes a critical step in a variety of applications, such as data
warehouses, catalog integration, agent communication, Web services coordination,
and so on. In this section, we give an overview of the basic techniques underlying the
state-of-the-art approaches for ontology matching and extend our similarity measure
for comparing elements mapped from different ontologies.

Mapping elements from different ontologies. A recent survey of ontology
matching techniques is presented in [140]. As in [140], we consider as a mapping
between the elements e and e′ of two ontologies O and O′, respectively, a tuple
(id, e, e′,M, c), where: id is a unique identifier for the particular mapping element;
M is the relation between the elements e and e′, i.e. equivalence (≡), subsumption
(@), overlap (u); and c ∈ [0, 1] is a measure expressing the degree of confidence that
M holds. Typically the matching process exploits, usually in a hybrid or composite
way, techniques of the types presented below.

• Element matching. Similarity between elements is calculated based on their
names and descriptions (i.e. labels, comments). Usually, a pre-processing oc-
curs first, using Natural Language Processing techniques, such as tokenization
(for example, EmployeeRecord→ 〈Employ,Record〉), lemmatization/stemming
(e.g., salaries→ salary), and stopword elimination (e.g., removing articles or
prepositions.) Then, string matching techniques are applied, such as prefix or
suffix matching, edit distance, and n-grams (see [42] for a comparison of string
matching techniques).

88

• Structure matching. In contrast to the previous case, where two elements are
compared in isolation, these techniques consider the relations of these elements
to other elements, using tree- or graph-matching techniques. For example, the
similarity between two inner nodes can be calculated based on the similarity
of their children. Alternatively, model-based approaches encode the intended
semantics of each node, together with domain and structural knowledge, in a
set of logical formulae, shifting the problem to one of logical satisfiability, that
can be solved by employing standard SAT solvers.

• Auxiliary information. It is possible that the matcher uses external resources
to obtain additional information to guide the matching process. Typical
cases are the use of domain-specific thesauri, general-purpose dictionaries (e.g.
WordNet [106]), repositories of previously mapped elements/structures, user
feedback.

Translating elements to a different ontology. Once appropriate mappings
between two ontologies have been established, either manually, semi-automatically
or automatically, these mappings can be used to merge the two ontologies or to
translate elements from one ontology to the other. Examples of tools for ontology
merging are OntoMerge [47] and PROMPT [112]. However, creating and maintain-
ing a merged ontology incurs a significant overhead.

On the other hand, a translation service for OWL ontologies is presented in [109].
The translation relies on a provided mapping between the vocabularies of the two on-
tologies. Then, a class C1 from the source ontology can be characterized as strongly-
translatable, equivalent, identical, weakly-translatable or approximately-translatable
to a class C2 from the target ontology, depending on its name mapping and the
translatability of its associated properties and restrictions.

For the translation process, we follow a similar approach, which however differs
in two issues. First, instead of the above categorization of the translatability of a
class, we need to derive a quantitative measure for the quality of the translation.
Second, the aforementioned work translates classes from the source ontology to
already existing classes from the second ontology. For example, assume that:

C1 : Department u ≥20hasEmployee and C2 : Team u ≥10hasWorker

are two classes from the source and target ontology, respectively. Then, with respect
to the name mappings:

(Department→ Team) and (hasEmployee→ hasWorker)

C1 is strongly-translatable to C2. However, we translate a class expression by
“rewriting” it according to the name mappings, i.e., replacing each term in the
expression to its corresponding term in the target ontology, thus allowing the result
of the translation to be a potentially new expression in the target ontology. Thus,
in the previous example, the translated expression would be:

C ′1 : Team u ≥20hasWorker.

89

The intuition behind that lies in the need to deal with the generated class expressions
for annotating user queries.

Therefore, we consider a translation function fT , that translates a (simple or
complex) class or property from a source ontology O1 to a target ontology O2 as
follows:

• a simple class or property is translated to the class or property specified by
the corresponding mapping

• a complex class is translated by translating the terms in its definition; if a
term is not translatable, the corresponding part of the expression is omitted.

As discussed at the beginning of this section, the considered mapping elements
have the form (id, e, e′, M , c), with c ∈ [0, 1] and M = (equivalent, more general,
less general, overlap). (For more complex translations, in the presence of map-
pings which are themselves class expressions, a theoretical investigation is provided
in [20].) Apparently, a translation may often result in loss of quality, either due to
the (unintended) generalization or specialization of the original concept’s meaning
or due to the inability to translate (part of) it. Therefore, the quality of the trans-
lation has to be measured and taken into account. We use the measures of recall
(rT) and precision (pT) for this purpose. Specifically, for a property p, given the
corresponding mapping element (id, p, p′, R, c), we measure the translation recall
and precision by:

(rT (p), pT (p)) = ((0.5x · c, 0.5y · c)) (3.13)

where

(x, y) =

(0, 0) if M = equivalent

(1, 0) if M = more general

(0, 1) if M = less general

(1, 1) if M = overlap

(3.14)

If an element is not translatable then both recall and precision are equal to zero.
Notice that the value 0.5 used in Equation 3.13 is a default value. Other values
may be used, derived, for example, from knowledge of the application domain or the
confidence level of the match provided by the matcher.

The measurement for a class is derived similarly, with the difference that the
translatability of its properties, including potential restrictions, is also taken into
account. Due to the way the translation is performed, cardinality restrictions, as well
as value restrictions on datatype properties are always translatable, provided that
the property on which the restriction is applied is translatable. For a value restriction
Rp on an object property p (e.g. ∀p.C), the translatability of the restriction is
dependent on the translatability of the class being the filler of the restriction (i.e.
C), denoted by φ(Rp). Thus, the following equations hold.

90

rT (C) = 0.5x · c ·

∑
P (C)

rT (p) · rT (φ(Rp))

|P (C)|

pT (C) = 0.5y · c ·

∑
P (C)

pT (p) · pT (φ(Rp))

|P (C)|

(3.15)

where (x,y) as in Equation 3.14. Finally, when translating sets of classes, the quality
of the translation can be assessed by the average quality of translation of the classes
in the set:

rT (C) =

∑
C∈C

rT (C)

|C|
, pT (C) =

∑
C∈C

pT (C)

|C|
(3.16)

Comparing elements across ontologies. Given the above procedures for match-
ing and translating elements between different ontologies, the next step is to extend
the introduced similarity measure to cover these cases. In Section 3.3.2, we defined
a measure of semantic similarity, in terms of the notions of recall and precision, for
pairs of properties, classes, and sets of classes belonging in the same ontology (see
Equations 3.9, 3.10 and 3.11, respectively). In the following, we extend these func-
tions (distinguished by the symbol 6=) so that they can be applied to elements from
different ontologies. This is based on the observation that additional loss of quality
may result due to the inaccurate translation (or no translation) of (parts of) the
compared elements. Therefore, assuming that e1 is an element (i.e., a property p, a
class C or a set of classes C) from the source ontology O1, e

′
1 = fT (e1) its translation

to the target ontology O2, and e2 the corresponding (i.e., the most similar) element
of e′1 in the target ontology, then:

recall 6=(e1, e2) = rT (e1) · recall(e′1, e2)
precision 6=(e1, e2) = pT (e1) · precision(e′1, e2)

(3.17)

3.4 Summary

This chapter has dealt with the search of services and data in P2P settings. First
an approach for P2P service discovery has been presented. It employs a suitable
encoding for the service descriptions, and it indexes these representations to effec-
tively prune the search space, consequently reducing the search engine’s response
time. To allow for scalability, we describe how the service representations can be
distributed in a suitable structured P2P overlay network, and we show how the
search is performed in this setting. Second, we have dealt with issues that arise
in P2P systems consisting of peer databases, i.e., peers that share structured data
through the use of schema mappings. In such systems, information is requested by
queries that are issued on local schemas and are rewritten to schemas of acquainted
peers through mappings. We have proposed the enhancement of such a system with
an ontology describing the domain of interest of the participating peers. We have

91

discussed the semantic diversity between peer schemas, as well as between queries
and their rewritten versions on other peers. The use of domain ontologies enables
peers to semantically annotate their elements despite the absence of a global schema.
Using these ideas, we have proposed a similarity measure for schemas and queries
based on the notions of recall and precision. The measure introduced takes into
consideration the semantic annotations of schema elements and the structure and
semantics of queries, as well as of the mappings used for the rewriting.

92

Chapter 4

Ontology-based Design of
Extract-Transform-Load Processes

Once appropriate data or services have been discovered, they need to be homogenized
or aggregated to meet the final user needs and requirements. In data warehouses,
Extract-Transform-Load (ETL) processes are special-purpose processes that inte-
grate data from heterogeneous operational sources to a central repository. A similar
case found in the Web is mashups, where information is gathered and combined
from several sources and then presented to the user. To facilitate the design of such
processes, existing approaches and tools have focused on providing a graphical envi-
ronment where the user can draw the flow of data and the transformations between
the sources and the target. However, this still remains a complex and error-prone
activity, and thus there is a need for methods that will semi-automate the design,
by identifying and proposing operations to include in the ETL process.

This chapter deals with the ontology-driven conceptual design of ETL scenarios.
The next section discusses related work. Section 4.2 describes a graph-based repre-
sentation for the schemas of the data sources and the target repository, and their
annotation through an appropriate ontology. It also shows how correspondences
and conflicts between the sources and the target are then automatically inferred,
thus driving the conceptual design of the ETL scenario. Section 4.3 presents our
approach to the design of ETL processes through graph transformations. It for-
malizes the construction of the ETL scenario as a series of graph transformations,
and presents a set of graph transformation rules that insert appropriate operations
into the ETL scenario so that the original data are transformed to meet the target
specifications. Finally, Section 4.4 concludes the chapter.

Our results in this chapter have been published in [150, 152, 151, 154, 143].

4.1 Related Work

In this section we discuss related work, focusing first on conceptual models for ETL
processes, and, more generally, data warehouses. Then, we consider related work in
the areas of data integration, semantic schema matching, and mashups.

93

4.1.1 Conceptual models for ETL processes and DWs

The problem of ETL process design has been studied in the context of Data Ware-
houses and several approaches have been proposed [82, 83]. The conceptual modeling
of ETL scenarios has been studied in [166]. ETL processes are modeled as graphs
composed of transformations, treating attributes as first-class modeling elements,
and capturing the data flow between the sources and the targets. In another effort,
ETL processes are modelled by means of UML class diagrams [162]. A UML note can
be attached to each ETL operation to indicate its functionality in a higher level of
detail. The main advantage of this approach is its use of UML, which is a widespread,
standard modeling language. In a subsequent work, the above approaches have con-
verged, so as to provide a framework that combines both their advantages, namely
the ability to model relationships between sources and targets at a sufficiently high
level of granularity (i.e., at the attribute level), as well as a widely accepted modeling
formalism (i.e., UML) [98]. However, these approaches are only concerned with the
graphical design and representation of ETL processes. Simiraly, existing commer-
cial tools facilitate the design of ETL workflows through convenient Graphical User
Interfaces and libraries of pre-defined, customizable transformations, without how-
ever providing any mechanism for the automatic identification of the appropriate
transformations based on the semantics of the datastores involved [71, 72, 104, 113].
More recent work has focused on the aspect of optimization of ETL processes, pro-
viding algorithms to minimize the execution cost of an ETL workflow with respect
to a provided cost model [144]. Still, it is assumed that an initial ETL workflow
is given, while the problem of how to derive it is not addressed. In another line of
research, the problem of ETL evolution has been studied [122]. Although that work
presents a novel graph model for representing ETL processes, it cannot be used in
our framework, since it is not suitable for incorporating our ontology-based design
and it concretely deals more with physical aspects of ETL, rather than with the
conceptual entities we consider here.

On the other hand, there exist some approaches concerning the (semi-)automation
of several tasks of logical data warehouse design from conceptual models, but they
do not provide a formal method to specifically determine the flow of data from the
source recordsets towards the data warehouse. A couple of approaches concern the
development of dimensional models from traditional ER-models [17, 108]. Other
approaches focus on generating the logical schema from the conceptual schema. Ap-
proaches for deriving the data warehouse schema from the conceptual schemas of
operational sources are described in [24, 69]. [55] presents a general methodolog-
ical framework for data warehouse design, based on the Dimensional Fact Model.
BabelFish, a modeling framework concerning the automatic generation of OLAP
schemata from conceptual graphical models is presented in [62], discussing also the
issues of this automatic generation process for both the OLAP database schema and
the front-end configuration. Algorithms for the automatic design of data warehouse
conceptual schemata are presented in [126]. An approach based on the Model Driven
Architecture is presented in [102]. Finally, the conceptual design of a data warehouse
from XML sources has been addressed in [56], where the increased importance of
XML data for modern organizations, and consequently the need to incorporate XML
data in data warehouses, is discussed, pointing out the main issues arising from the
fact that XML is used to model semi-structured data. The Dimensional Fact Model
is adopted as the conceptual model for the data warehouse and a semi-automatic

94

approach for the conceptual design from XML sources is presented, emphasizing on
the different ways of representing relationships in DTDs and XML Schemas.

The use of ontologies in data warehouses and related areas has already produced
some first research results, as, for example, in data warehouse conceptual design [101]
and in On-Line analytical Processing [111]. A semi-automated method exploiting
ontologies for the design of multidimensional data warehouses is presented in [134].
These efforts are complementary to our work, as in our case the ontology is used
specifically for the design of the ETL process. Ontologies have been used also for
data cleaning purposes, e.g., in [81], and in Web data extraction [58].

4.1.2 Data Integration and Semantic Schema Matching

In a different line of research, the theoretical aspects of the problem of data inte-
gration from heterogeneous sources have been extensively investigated in the liter-
ature [32, 92, 64]. The typical architecture of a data integration system comprises
a set of data sources, containing the actual data, and a global schema, providing
an integrated view over these underlying sources. The two basic approaches for
modeling the relation between the sources and the global schema are global-as-view
(GAV), where the global schema is expressed in terms of the data sources, and local-
as-view (LAV), where the global schema is defined independently and each source is
described as a view over it. One of the main tasks in the design of a data integration
system is to establish the mappings between the sources and the global schema.

The use of Description Logics in data integration systems has also been studied
in the literature. The problem of rewriting queries using views in Description Logics
has been investigated in [20, 33]. The SIMS project addresses the issue of integrating
heterogeneous sources, by using a shared ontology to establish a fixed vocabulary for
describing the data sets in the domain [13]. Queries are expressed in domain terms
and are reformulated into queries to specific information sources. A formal frame-
work for representing inter-schema knowledge in cooperative information systems
has been presented in [36]. Another approach towards data integration and recon-
ciliation in a data warehouse environment is based on a conceptual representation
of the application domain [34]. The approach follows the local-as-view paradigm,
relying on a declarative description of the data sources in terms of the enterprise
conceptual model, which is expressed in an Entity-Relationship formalism.

Data exchange is a similar problem, concerning the transformation of data struc-
tured under one schema into data structured under another schema. The fundamen-
tal theoretical issues of data exchange have been investigated in [48, 49, 86, 95]. Data
exchange between XML schemas has also been studied [12, 127].

However, in contrast to the approaches described above, the transformations
taking place in a typical ETL scenario usually include operations, such as the ap-
plication of functions, that can not be captured by a query rewriting process.

Finally, our work has some commonalities with approaches for semantic schema
matching [140, 54], which take as input two graph-like structures and produce a
mapping between the nodes of these graphs that correspond semantically to each
other. First, in a pre-processing phase, the labels at the graph nodes, which are
initially written in natural language, are translated into propositional formulas to
explicitly and formally codify the label’s intended meaning. Then, the matching
problem is treated as a propositional unsatisfiability problem, which can be solved

95

using existing SAT solvers. Due to this formalism, the following semantic relations
between source and target concepts can be discovered: equivalence, more general,
less general, and disjointness. Instead, our approach can handle a larger variety
of correspondences, including, for example, convert, extract or merge operations,
which can be further extended to support application-specific needs.

4.1.3 Mashups

Mashups constitute a new paradigm of data integration becoming popular in Web
2.0. Despite their different characteristics and requirements compared to ETL pro-
cesses –mainly the facts that the latter are typically offline procedures, designed
and maintained by database experts, while the former are online processes, tar-
geted largely for end users– both activities share a common goal: to extract data
from heterogeneous sources, and to transform and combine them to provide added
value services. Recently deployed mashup editors, such as Yahoo! Pipes [173], Mi-
crosoft Popfly [105], and the Google Mashup Editor [57], as well as recent research
efforts [70], aim at providing an intuitive and friendly graphical user interface for
combining and manipulating content from different Web sources, based mainly on
the “dragging and dropping” and parametrization of pre-defined template opera-
tions. The process is procedural rather than declarative and does not support the
use of metadata to facilitate and automate the task. Hence, our proposed formalism
and methodology can be beneficial in this direction. In fact, our approach is likely
even more readily applicable in such context, in the sense that often the semantic
annotation of the sources may already be in place.

An approach for automatically composing data processing workflows is presented
in [8]. Data and services are described using a common ontology to resolve the se-
mantic heterogeneity. The workflow components are described as Semantic Web
services, using relational descriptions for their inputs and outputs. Then, a planner
uses relational subsumption to connect the output of a service with the input of
another. To bridge the differences between the inputs and outputs of services, the
planner can introduce adaptor services, which may be either pre-defined, domain-
independent relational operations (i.e., selection, projection, join, and union) or
domain-dependent operations. However, in contrast to our approach, this work as-
sumes a relational model and addresses the problem as a planning problem, focusing
on the specificities of the planning algorithm.

4.2 Conceptual Design of ETL Processes

4.2.1 Datastore Representation

Preliminaries. A graph is a pair G = (V,E) of sets, with V ∩ E = ∅, where V is
a finite, non-empty set of nodes and E ⊆ V × V is a set of edges. If the edges are
ordered pairs of nodes, then G is called a directed graph. Two nodes v1, v2 ∈ V of G
are called adjacent if (v1, v2) ∈ E. A node v is incident with an edge e if v ∈ e. The
set of all edges with which v is incident, is denoted by E(v). The number of edges at
v, i.e. |E(v)|, is called the degree of node v, denoted by d(v). In the case of directed
graphs, d+(v) denotes the in-degree of node v, i.e. the number of incoming edges at
v, while d−(v) denotes the out-degree of v, i.e. the number of outgoing edges at v.

96

A node v will be called internal node if d−(v) > 0, otherwise it will be called a leaf
node. Moreover, it is possible to assign labels to the nodes and/or the edges of a
graph. A labeled graph can be defined as G = (ΣV ,ΣE, V, E, lV , lE), where ΣV , ΣE,
V , E, lV , lE are, respectively, finite alphabets of the available node and edge labels,
the sets of nodes and edges, and two maps describing the labeling of the nodes and
edges.

Datastore graph. The schema SD of a datastore can be viewed as consisting of a
set of elements, which can be distinguished in two types: (a) elements that contain
the actual data (e.g., the attributes in a relational database or the leaf nodes in an
XML document), and (b) elements that contain or refer to other elements, creating
the structure of the schema (e.g., relations having attributes or XML nodes having
children; foreign keys or IDREFs in XML). In this sense, the schema can be depicted
by a directed graph, with nodes corresponding to the elements of the schema and
edges representing containment or reference of one element by another. Additionally,
labels may be assigned to edges denoting the corresponding cardinality. Therefore,
we consider a graph, termed datastore graph, representing a datastore schema as an
edge-labeled directed graph GD = (VD, ED, lE) such that:

• Each element e defined in the schema SD is represented by a node ve ∈ VD.

• Each containment relationship is represented by an edge (v1, v2), where v2

corresponds to the element being contained by the element represented by v1.

• Each reference is represented by an edge (v1, v2), where v1 corresponds to the
element containing the reference and v2 corresponds to the referenced element.

• Each edge is assigned a label of the form [min,max], where min and max
denote, respectively, the minimum and maximum cardinality of the reference
or containment relationship represented by the edge.

Elements containing the actual data are represented by leaf nodes. A graph-based
representation may be derived for any schema type, based on the above specification.
In the cases that no schema is explicitly exposed by a datastore, an appropriate
wrapper needs to be constructed first, to provide an interface for retrieving the
relevant data based on the underlying structure. Given that the relational schema
and XML constitute the most typical models for structured and semi-structured
data, respectively, in the following, we elaborate on the construction of the graph
representation for these two cases.

Relational schema to graph. A relational schema SR consists of a set of relations
R, each one comprising a set of attributes AR. The relational schema can be depicted
by a directed graph GR = (VR, ER), where the nodes VR correspond to the set of
relations and the (non foreign key) attributes of the schema, while the edges ER

represent the containment of attributes in relations, as well as references between
relations, i.e. foreign keys. Additionally, for representing cardinality constraints,
labels of the form [min,max] may be assigned to the edges of the graph (with null
denoting that no constraint is specified). Thus GR is essentially an edge-labeled
graph GR = (VR, ER, lEr).

XML schema to graph. XML is the most commonly used format for the exchange
of semi-structured data [4]. An XML document consists of nested element structures,

97

Source schema Target schema

emp employee
fname name
lname project
prj salary
salary city
address street

Table 4.1: Sample source and target schemas

starting with a root element. Each element may contain other elements and/or
attributes. Often a DTD or an XML Schema is associated to the XML document,
defining a set of constraints to which the XML document should conform in order
to be considered valid. An XML Schema consists of element declarations and type
definitions. Relationships between entities are represented by nesting elements or
by references. The constraints minOccurs and maxOccurs are provided to restrict
the cardinality of an element. Thus, an XML Schema SX may be represented
by a directed edge-labeled graph GX = (VX , EX , lEx), where (a) nodes represent
elements, attributes, complexTypes and simpleTypes (b) edges represent nesting or
referencing of elements, and (c) labels denote the min and max cardinality allowed
for an element.

Example. At this point, we introduce a reference example that will be used to
better motivate and illustrate the described approach. The example comprises a
source and target schema regarding data about employees, as shown in Table 4.1.
The following assumptions are made regarding the schemas:

• The name of an employee in the source schema is stored in two separate
attributes: fname and lname, holding, respectively, the first and last name,
while in the target schema a single attribute is used: name. Similarly, the
address of an employee is stored in a single attribute in the source schema:
address, while two separate attributes are used in the target schema: city and
street.

• The source contains information about employees working in at least one
project (attribute prj), while in the target only employees working in at least
two projects are considered.

• The currency used for salaries is Euro for the source schema and U.S. Dollars
for the target schema.

These assumptions need to be taken into account when transferring data from the
source to the target. �

4.2.2 Application Ontology Construction

A suitable application ontology is constructed to semantically annotate the data-
stores. This ontology should provide the ability to describe the semantics of the
datastore schemas, so that data transformation and integration can be accomplished
with a high degree of automation, based on the use of automated reasoning. The

98

Web Ontology Language (OWL) [103] is chosen as the language for representing the
ontology. OWL, and in particular OWL-DL, is based on Description Logics [15], a
decidable fragment of First Order Logic, constituting the most important and com-
monly used knowledge representation formalism. Therefore, it provides a formal
and explicit representation, allowing existing reasoners to be used for automating
several tasks of the process, such as checking subsumption relationships between
classes. In our approach, only a subset of the features provided by the language is
required. These features are summarized in Table 4.2. Specifically, for the ontol-
ogy creation process it is only needed to create a set of classes and properties, to
specify the domain and range of each property, and to organize the classes in an
appropriate hierarchy. Therefore, given that several tools exist providing an intu-
itive and comprehensive Graphical User Interface for the development of ontologies,
this task requires only a basic understanding of ontologies and OWL. On the other
hand, a precise understanding of the intended semantics of the datastore schemata,
and generally the application requirements, is critical in constructing an appropriate
ontology and correctly annotating the datastores.

For our purpose, a suitable application ontology should provide the ability for
modeling the following types of information: (a) the concepts of the domain, (b)
the relationships between those concepts, (c) the attributes characterizing each con-
cept, and (d) the different representation formats and (ranges of) values for each
attribute. The concepts of the domain are represented by classes, while the rela-
tionships between concepts, as well as the attributes of the concepts are represented
by properties. The different types of values for each attribute are also represented
by classes appropriately organized in a hierarchy. Finally, as the need for aggre-
gate operations appears frequently, specific elements are included in the ontology,
to support the specification of such operations.

Formally, the constructed ontology can be modeled as O = (C,P,A) comprising
the following:

• C = CC ∪ CT ∪ CG

• P = PP ∪ convertsTo, aggregates, groups

• A, a set of axioms used to (a) assert subsumption relationships between classes,
(b) specify domain and range constraints on properties, (c) specify cardinality
constraints, (d) assert disjointness of classes, and (e) define a new class in
terms of other classes and properties.

The above notations are explained in more detail in the following. CC is a set
of classes representing the concepts of the domain. CG is a set of classes describing
aggregate operations. Each class in CG denotes an aggregate function, e.g., AV G,
SUM , COUNT , MAX. PP is a set of properties representing attributes of the
concepts or relationships between them.

For each property p ∈ PP , an axiom exists in A specifying a class c ∈ CC as the
domain of p, thus, associating the property with the concept it describes. If p relates
a concept to another concept, represented by class c′ ∈ CC , then c′ is specified as
the range of p. CT is the union of a set of classes, CT = CTP ∪ CTF ∪ CTR ∪ CTG,
used to represent different kinds of values for a property that corresponds to an
attribute of a concept. For each such property p, a class in CTP is declared to
be the range of this property. That is, this class represents all the possible (types

99

Notation Name Description

C class
A group of individuals sharing some properties.
Classes represent the concepts of the domain, as
well as types of values of their attributes.

C1 ≡ C2 equivalent
States that two classes are equivalent, i.e. each
instance of the one is also instance of the other.

C1 v C2 subClassOf Used to create class hierarchies.

C1 u C2 = ∅ disjointWith

States that two classes are disjoint, i.e. an instance
may not belong to both classes. This is used to
prevent the integration of data records from sources
with conflicting constraints.

C1 t C2 unionOf Denotes the union of two classes.

C1 u C2 intersectionOf Denotes the intersection of two classes.

P property

Relate an instance of a class to an instance of
another class (ObjectProperty). They represent
attributes of concepts and relationships between
concepts.

dom(P) domain
Specifies the class(-es) to which the individuals
the property applies to, belong.

range(P) range
Specifies the class(-es) to which the individuals
being the values of the property, belong.

∀P.C allValuesFrom
Used to restrict the range of a property, when this
property is applied to individuals of a specific class.

≥n P,≤n P
min/max Specifies the min/max cardinality of a property

cardinality w.r.t. to a specific class. It is used to denote
the cardinality of attributes and relationships.

Table 4.2: OWL features used in our approach

of) values for this property. Every other class in CT denoting a specific type of
values of p is a subclass of this class. CTF refers to the set of classes used to denote
different representation formats, while CTR to the set of classes denoting different
(ranges of) values for a property. Classes in CTG represent values that result from
aggregate operations. The classes in CT are organized in an appropriate hierarchy
according to the intended semantics. For instance, if a value interval, represented
by class cr ∈ CTR, refers to a particular representation format, represented by class
cf ∈ CTF , then cr is asserted to be a subclass of cf . If two types of values are
mutually exclusive, then an axiom exists in A stating that the corresponding classes
are disjoint.

Property convertsTo is used to relate a class c1 ∈ CTF to another class c2 ∈
CTF , indicating that a function exists for transforming data from the representation
format represented by c1 to the representation format represented by c2. Property
aggregates is used to relate a class c1 ∈ CG to another class c2 ∈ CTG, indicating that
the aggregate function represented by c1 is used to calculate the values represented

100

Table 4.3: Notation used for the ontology graph

by c2. Finally, property groups relates a class c1 ∈ CTG to another class c2 ∈ CT ,
indicating that the aggregate operation for calculating the values represented by c1
is applied over the values represented by c2.

Ontology graph. After the ontology has been created by the administrator, a
corresponding graph representation, called ontology graph, is derived. The ontology
graph is a directed edge-labeled graph GO = (VO, EO, lE), where nodes represent
classes in the ontology, while edges represent properties. Table 4.3 depicts the
different types of nodes and edges in the ontology graph and their corresponding
visual notation.

Formally, the construction of the ontology graph is described by the algorithm
O2G depicted in Table 4.4. The algorithm iterates over the properties defined in the
ontology, and creates: (a) one concept-node for each class appearing in the domain
of a property, (b) one type-node for each class appearing in the range of a property,
and (c) a property-edge connecting the concept-node with the type-node. For each
convertsTo restriction, a format-node is created and a convertsTo-edge is added
between the node having the restriction and the format-node. Similarly, the same
procedure is repeated for restrictions aggregates and groups. Finally, subclass-edges
and disjoint-edges are created according to subsumption and disjointness of classes,
respectively.

Example (cont’d). The application ontology for the reference example presented
before is depicted in Figure 4.1. The domain of interest comprises the concept
Employee, with attributes hasName, worksAt, receives, and lives. For each of
these attributes, a corresponding property is created in the ontology, as well as a
generic class to denote its values: Name, Project, Salary, and Address. According
to the assumptions made in the example, the classes Dollars and Euros are used
to represent values referring to these two different currencies, while the property

101

Algorithm Ontology to Graph (O2G)

Input: The application ontology O
Output: The ontology graph GO = (VO, EO, lE)
1. Begin
2. Foreach property p in PP {
3. c1 ← the class being the domain of p;
4. c2 ← the class being the range of p;
5. If (n(c1) /∈ VO) create concept-node n(c1);
6. If (n(c2) /∈ VO) {
7. If (∃p′ : c2 v domain(p′))
8. create concept-node n(c2);
9. Else

10. create type-node n(c2);
11. }
12. create property-edge (n(c1), n(c2)) with label p;
13. }
14. Foreach range restriction on property convertsTo {
15. c1 ← the class having the restriction;
16. c2 ← the class being the filler of the restriction;
17. If (n(c1) /∈ VO) create format-node n(c1);
18. If (n(c2) /∈ VO) create format-node n(c2);
19. create convertsTo-edge (n(c1), n(c2));
20. }
21. Foreach range restriction on property aggregates {
22. c1 ← the class having the restriction;
23. c2 ← the class being the filler of the restriction;
24. If (n(c1) /∈ VO) create aggregation-node n(c1);
25. create aggregated-node n(c2);
26. create aggregates-edge (n(c1), n(c2));
27. }
28. Foreach range restriction on property groups {
29. c1 ← the class having the restriction;
30. c2 ← the class being the filler of the restriction;
31. create groups-edge (n(c1), n(c2));
32. }
33. Foreach subclass relation: c1 v c2 {
34. If (n(c1) /∈ VO) create range-node n(c1);
35. If (n(c1) /∈ VO) create range-node n(c2);
36. create subclass-edge (n(c2), n(c1));
37. }
38. Foreach disjointness axiom: c1 u c2 = ∅ {
39. create disjoint-edge (n(c1), n(c2));
40. create disjoint-edge (n(c2), n(c1));
41. }
42. End.

Table 4.4: Algorithm for graph representation of the ontology

convertsTo is used to indicate the ability to convert from one currency to the other.
Moreover, the class AboveN is created to represent salaries exceeding the specified
limit of N euros. �

102

Figure 4.1: The ontology graph for the reference example

4.2.3 Semantic Annotation of Datastores

The semantic annotation of the datastores constitutes in mapping the datastore
schemas to the application ontology. Based on these mappings, a set of defined
classes representing the datastores is generated and added to the ontology. This
procedure reveals the semantics of the elements contained in the involved schemas,
allowing a reasoning process to be applied for identifying necessary operations for
transforming data from the sources to the target.

The annotation of each datastore is accomplished by defining mappings between
the corresponding datastore graph GS and the ontology graph GO. These mappings
are specified by the administrator and are pairs of the form (vS, vO), where vS and vO

denote nodes of GS and GO, respectively. Specifically, each internal node of GS may
be mapped to one concept-node of GO. It is not required for all internal nodes to be
mapped, since some of these nodes exist for structural purposes and do not represent
a concept of the domain being modeled. A leaf node of GS may be mapped to one
or more nodes of GO of the following types: type-node, format-node, range-node or
aggregated-node. In this way, the elements of the datastore schema containing the
actual data are semantically annotated, e.g., specifying the representation format
or value ranges, for the underlying data. It is possible to specify more than one
mappings for a leaf node, e.g., in the case that the datastore allows for more than
one representation format to be used for the values of the corresponding property. If
no mapping is specified for a leaf node, it means that the corresponding attribute is
of no interest for the specific application and does not participate in the integration
process, i.e. the node is ignored from any further process.

Note that an additional advantage of using a graph-based representation for both
the datastores and ontology is the fact that graphical tools can be developed to allow
for a visual representation and specification of these mappings, e.g., by using a “drag-
and-drop” technique between graph nodes to create a mapping, thus facilitating
and speeding up the mapping process. Furthermore, it is possible to incorporate
schema matching techniques to automatically detect candidate mappings [129]. The
specified mappings can be represented as labels assigned to the nodes of the source
graph for which a mapping is specified.

Example (cont’d). The appropriate mappings for the datastores of the reference
example are presented in Figure 4.2. �

After the appropriate mappings between the datastore graphs and the ontology

103

Figure 4.2: Semantic annotation of the datastores

graph have been considered, a set of definitions are created to semantically describe
each datastore. In particular, for each labeled internal node n of the datastore graph,
a defined class c(n) is created and added to the ontology. The label of node n is
then updated to indicate this defined class. The class c(n) is a subclass of the class
indicated by the label of node n, containing also a set of restrictions derived from
the specified mappings of the neighbor labeled nodes of n. A neighbor labeled node
of n is each node n′ for which the following conditions hold:

• n′ is labeled; i.e. it is mapped to one or more nodes of the ontology graph,

• there is a path p in the source graph from mode n to node n′, and

• p contains no other labeled nodes, except n and n′.

The intuition for using the notion of neighbor labeled nodes lies in the fact that
nodes without associated mappings are of no interest, and therefore need to be
ignored. Thus, each labeled internal node is linked to a set of other, internal or leaf,
labeled nodes. The cardinality for each one of these links is computed by multiplying
the corresponding cardinalities along the path connecting the two nodes. Note that
if the min (max) cardinality of an edge in the path equals to null, then the final
min (max) cardinality is also null. The process for deriving the defined class c(n)
for an internal labeled node n is formally specified by the algorithm CDI shown in
Table 4.5.

Example (cont’d). The defined classes derived by the application of the algorithm
CDI to the reference example are the following:

S.Emp ≡ Employee u ∀hasName.Name u =1 hasName u
∀worksAt.Project u ≥1 worksAt u ∀receives.EUR u
=1 receives u ∀lives.Address u =1 lives

T.Employee ≡ Employee u ∀hasName.Name u =1 hasName u
∀worksAt.Project u ≥2 worksAt u ∀receives.AboveBasic
u =1 receives u ∀lives.Address u =1 lives �

4.2.4 Identification of ETL Operations

The semantic annotation of the datastores is used, in conjunction with the applica-
tion ontology, to infer correspondences and conflicts among them and propose a set

104

Algorithm Create the Definition for an Internal labeled node (CDI)

Input: An internal labeled node n of the datastore graph GS and
the application ontology O

Output: A defined class c(n) representing node n
1. Begin
2. If (c(n) /∈ O) create class c(n);
3. nO(cO)← the ontology graph node indicated by the label of n;
4. set c(n) subclass of cO: c(n) v cO;
5. Foreach neighbor labeled node n′ of n {
6. min, max← cardinalities for path(n, n′);
7. Foreach label of n′ {
8. c′ ← the class indicated by the label;
9. p← the property relating class cO to c′ or to any superclass of c′;

10. If (min 6= null)
11. c(n)← add min cardinality restriction: ≥min p;
12. If (max 6= null)
13. c(n)← add max cardinality restriction: ≤max p;
14. If (n′ is internal node) {
15. If (c(n′) /∈ O) create class c(n′);
16. c(n)← add restriction: ∀p.c(n′);
17. }
18. Else
19. c(n)← add restriction: ∀p.c′;
20. }
21. }
22. End.

Table 4.5: Algorithm for creating the definition for an internal labeled node of the data-
store graph

of conceptual operations for transforming recordsets from the source datastores to
the target datastore.

Table 4.6 presents generic types of conceptual operations that are typically en-
countered in an ETL scenario. Note that these abstract operations constitute core
operators in practically every frequently used ETL transformation. For example, a
RETRIEV E operation may vary from an SQL query to an XPath query or even
a Web Service call, a FILTER operation may range from a simple comparison of
values to a complex regular expression, and a CONV ERT operation resembles a
generic function application operation which may be implemented as e.g., a simple
conversion between different units of measurements or be carried out by a com-
posite business process. This work does not anticipate the formal determination
of the functionality of each individual ETL transformation; rather, it aims at the
identification of a generic conceptual transformation, whose functionality will be
determined later by the administrator through a template library similar to the one
proposed in [165].

Given the constructed application ontology and the set of defined classes that
semantically describe the datastores, a reasoning process is applied to identify and
propose a set of generic transformations for designing the respective conceptual ETL
scenario. The whole procedure may be broken down to two main objectives: (a)
identifying the relevant data sources, and more precisely the relevant elements of

105

Operation Description

RETRIEVE(n) Retrieves records from the underlying provider node n

EXTRACT(c) Extracts from incoming records the part denoted by c

MERGE Merges records from two or more provider nodes

FILTER(c)
Filters incoming records, allowing only records
with values of the template type specified by c

CONVERT(c1,c2)
Converts incoming records from the template
type denoted by c1 to the template type denoted by c2

AGGR(fg, g1, . . . , gn)
Aggregates incoming records over the attributes
g1, . . . , gn, applying the aggregate function denoted by fg

MINCARD(p,min)
Filters out incoming records having cardinality
less than min on property p

MAXCARD(p,max)
Filters out incoming records having cardinality
more than max on property p

UNION Unites records from two or more sources

DD Detects duplicate values on the incoming records

JOIN Joins incoming records

STORE Stores incoming records to the target datastore

Table 4.6: Generic types of conceptual transformations frequently used in an ETL process

these data sources, for populating a specific element of the target; and (b) proposing
appropriate generic conceptual transformations of data stemming from the identified
source elements, so that the constraints and requirements of the target are satisfied.

Selecting relevant sources. Given a source datastore and an element of the target
datastore, the goal is to identify the relevant element(s) of the source schema from
which data should be extracted in order to populate the target element. That is,
given a labeled node nT of the target graph GT , we aim to identify which labeled
nodes from the source graph GS can be used as providers for nT . This is achieved by
reasoning on the mappings of the graph nodes to the common application ontology.
Specifically, for a source node nS to be identified as provider for a target node nT ,
the following conditions must hold for their respective classes c(nS), c(nT):

• c(nS) and c(nT) have a common superclass, and

• c(nS) and c(nT) are not disjoint

The first condition ensures that the two nodes are semantically related, i.e. the
contained data records refer to the same concept of the domain. The second con-
dition ensures that the constraints of one node do not contradict the constraints of
the other.

The algorithm PNS that formally describes a method for the identification of
the provider nodes is shown in Table 4.7. Based on the semantic annotation of the
source and target nodes, the reasoner parses the ontology and infers whether the
two above specified conditions are met or not.

106

Algorithm Provider Node Selection (PNS)

Input: A labeled node nT of a target datastore graph GT , a source
datastore graph GS , and the application ontology O

Output: A list L containing the provider nodes for nT

1. Begin
2. Foreach label of nT {
3. cT ← the class indicated by the label;
4. Foreach labeled node nS ∈ GS {
5. Foreach label of nS {
6. cS ← the class indicated by the label;
7. If ((∃c0 ∈ O : cS v c0 ∧ cT v c0) ∧ (cS u cT 6= ∅))
8. L← add nS ;
9. }

10. }
11. }
12. End.

Table 4.7: Algorithm for provider node selection

In the case that no provider node is identified, two cases are distinguished: (a)
a source node with a common superclass was found, but the corresponding classes
were disjoint; this means that the constraints of the source contradict those of the
target, or (b) no node was found having a common superclass with the target node;
this means that the source does not contain information regarding the concept in
question. In such cases, an appropriate log entry is generated and it is up to the
administrator to decide whether this particular source should be discarded or to
provide by an extra operation the missing information; e.g., by means of default
values.

After the provider nodes are identified, a RETRIEV E(n) operation is required
for each provider node n to retrieve the corresponding data records. If more than
one provider nodes are identified, then the data records of these nodes need to be
merged, by means of a MERGE operation. If a provider node has more than
one labels, meaning that the data records contain information regarding more that
one entities or attributes, then the data records from this node need to be split
appropriately, using an EXTRACT (c) operation, so that the appropriate portion
of the data record is selected.

Data transformation. At this stage, the data records extracted from the source
need to be appropriately filtered, transformed and/or aggregated, so as to satisfy
the target constraints and requirements. In the case of two labeled leaf nodes, a
source nS and a target nT , the required transformations are identified based on the
relative position of their corresponding classes, cS and cT , in the class hierarchy
defined in the ontology. Formally, this process is described by the algorithm DTL
in Table 4.8. The algorithm works as described in the following. Given a source
class cS and a target class cT , if cS v cT holds, then no transformations are required.
Otherwise, if cT @ cS holds, only a subset of the source records are compatible with
the target constraints. Therefore, an appropriate filtering of the source records is
required. In the particular case that the target class represents an aggregated type,
then an aggregate operation is required instead of filtering. In different case, the

107

Algorithm Derive Transformations from Labeled leaf nodes (DTL)

Input: A target labeled leaf node nT , a provider labeled leaf node nS ,
and the application ontology O

Output: A list L containing transformation operations between the
two nodes

1. Begin
2. cS ← class corresponding to nS ;
3. cT ← class corresponding to nT ;
4. If (cS v cT)
5. L← ∅;
6. Else {
7. If (cT @ cS) {
8. Foreach class ci in the path from cS to T {
9. If (∃cg : aggregates(cg, ci)) {

10. c′ ← one or more classes c such that: groups(ci, c);
11. L← add AGGREGATE(cg, c′);
12. }
13. Else {L← add FILTER(ci);}
14. }
15. }
16. Else {
17. If (∃c1, c2 : cS v c1 ∧ cT v c2 ∧ convertsTo(c1, c2)) {
18. L← add CONVERT(c1, c2);
19. cS ← c2;
20. repeat lines 8-15;
21. }
22. Else {
23. cS ← the class c0 such that: cS v c0 ∧ cT v c0;
25. repeat lines 8-15;
26. }
27. }
28. }
29. End.

Table 4.8: Algorithm for deriving transformations between two labeled leaf nodes

reasoner searches for a superclass of cS that can be converted to a superclass of cT
or for a common superclass of cS and cT , and then, it repeats the previous step.

In the case of internal nodes, the transformation is based again on the neigh-
boring labeled nodes. That is, the transformations for the leaf neighboring labeled
nodes are first identified using the previously described mechanism, and then the re-
sulting recordsets are combined to form the final flow of data from the source to the
target store. Recordsets from nodes, whose corresponding classes are related by a
property, are combined by means of a JOIN operation, while recordsets from nodes,
whose corresponding classes have a common superclass, are combined by means of
a UNION operation, followed by a DD operation. For neighboring labeled nodes
that are themselves internal nodes, the process proceeds recursively.

Furthermore, for internal nodes, minimum and maximum cardinality filters, i.e.
MINCARD and MAXCARD operations, may also be required, based on the car-
dinality constraints specified for the corresponding links. These are automatically

108

Figure 4.3: Identified transformations for the reference example

identified as follows. If the defined class for the target node contains a min car-
dinality restriction of the form ≥min p and the defined class for the source node
either does not contain a min cardinality restriction on this property or contains
one with min′ < min, then a MINCARD(p,min) operation is added (similarly for
MAXCARD operations).

The procedure terminates with a STORE operation that is added at the end of
the workflow to represent the loading of the transformed data to the target datastore.
This operation resembles any loading technique such as bulk loading.

In a following step, the transformations produced should be ordered so that they
may be successfully populated; i.e. each transformation should be placed in the ETL
design as long as all its providers already exist in the design. For this procedure, we
adopt the approach presented in [142].

Example (cont’d). Figure 4.3 shows the transformations proposed for the refer-
ence example, according to the algorithm DTL. �

4.2.5 Generation of Reports

The process of designing an ETL scenario involves a diverse group of participants,
ranging from database administrators and software developers to business managers.
However, existing models for the conceptual design and representation of ETL pro-
cesses typically require some level of technical knowledge to understand and use
them, thus causing inconveniences in the communication of the involved parties.
To overcome this deficiency, we leverage our ontology-based approach for the con-
ceptual design of ETL processes and describe a comprehensive and customizable
mechanism for generating Natural Language-style reports for the datastores and
the ETL activities.

Notice that, even though there have been efforts towards the generation of tex-
tual representations from ontologies [25, 26, 171, 172], these approaches constitute
general-purpose ontology verbalizers; they are agnostic of the types of classes, prop-
erties and operations used in our case for semantically describing the datastores and
inferring correspondences among them. Consequently, although it would be possi-
ble, in principle, to use one of these approaches, the resulting output would be too
verbose and redundant, failing to focus on the aspects of interest from the perspec-
tive of the ETL design task. It would also be more difficult to customize the output
and achieve different levels of granularity according to particular information needs.

Instead, we present a mechanism for the derivation of reports describing the

109

outcomes of the ETL design phase, namely the datastore annotations, and the gen-
erated ETL scenario. To provide a comprehensive, flexible, and easily customizable
mechanism for generating textual representations, a template-based technique is
followed. A template-based system is a natural language generating (NLG) system
that maps non-linguistic input directly (i.e., without intermediate representations)
to the linguistic surface structure. The use of templates also has the benefit of
providing a comprehensive and intuitive way to customize the produced output,
without requiring that the DW designer should understand complex NL processing
techniques.

Template language. The translation process is realized by suitable templates,
which are constructed composing elements provided by our template language. This
is a typical template language, supporting constructs such as variables and directives,
but also extended with built-in functions and macros suited to the ETL design
task. Notice that the generated text may also contain HTML tags, so that highly
formatted output can be produced. Next, we describe the aforementioned constructs
in more detail.

Variables. A template may contain variables, which are denoted by their name
preceded by the symbol $. When the template is instantiated, the template engine
that processes it replaces each variable with a corresponding, provided, value.

Directives. A set of typical directives is supported, allowing for a high degree of
flexibility in specifying templates. Specifically, the directives #set, #if / #elseif /
#else, and #foreach are provided to set the value of a parameter, allow conditional
output and iterate through a list of objects, respectively. The standard arithmetic,
logic, and comparison operators are also supported.

Functions. The template language supports the usual arithmetic, date, and
string manipulation functions. In addition, we provide the template designer with
a set of built-in functions specifically tailored for the ETL environment, as shown
in Table 4.9.

Function Output
HEAD(D) The primitive class appearing in the annotation D

PARSE ANNOT(D) The list of restrictions R appearing in the annotation D
PARSE RES(R) The type of restriction R

TEXT(X) The textual description of entity X
RANGE(P) The class being the range of property P

INTERVAL(C) The lower/upper bounds of the value interval specified by
class C ∈ CTR

ENUM(C) The list of the members of class C ∈ CTE

AGGR FUNC(C) The class related to C ∈ CTG via the property “aggregates”
AGGR ATTR(C) The list of classes related to C ∈ CTG via property “groups”
PARSE FLOW(W) The list of operations constituting an ETL flow W
PARSE OP(F) The type of operation F
PARAMS(F) The list of parameters of an ETL operation F
SIZE(L) The size of the list L

Table 4.9: A set of provided built-in functions

Macros. Macros allow simpler templates to be reused and/or combined to define
more complex ones. Thus, they significantly facilitate the creation of templates.
For instance, a typical use for macros is to specify how the elements of an array

110

should be rendered. In our work, macros are also defined for the different types
of restrictions, as well as for the different types of ETL operators, to specify the
textual description of these elements. The designer may customize and extend the
translation mechanism, by modifying these macros or defining new ones. An example
general-purpose macro that renders the elements of a list follows:

Macro: LIST(L)
#set ($size = #SIZE($L))
#set ($counter = 0)
#foreach($item in $L)
#if ($counter == 0) #TEXT($item)
#elseif ($counter == $size-1) and #TEXT($item)
#else , #TEXT($item)
#set ($counter = $counter + 1)
#end

#end

In the result, a comma follows each list item, but the word “and” comes before
the last one. Observe that standard programming knowledge is enough for the
macro creation. Apart from such macros that concern generic functionalities, we do
provide as well default macros for translating data store annotations and conceptual
ETL operations, as shown in Tables 4.10 and 4.11, respectively. Having constructed
appropriate templates based on macros ensures the reusability and extensibility of
the reporting mechanism.

Macros for Class Definitions
HEADER(S,C) Each tuple in $S contains information about a

$#TEXT(C). It:
EXACT CARD(=nP) #TEXT($P) exactly $n #TEXT(#RANGE($P)).
MIN CARD(≥nP) #TEXT($P) at least $n #TEXT(#RANGE($P)).
MAX CARD(≤nP) #TEXT($P) at most $n #TEXT(#RANGE($P)).
RANGE RES(∀P.C) #TEXT($P) #TEXT(#RANGE($P)) in #INTERVAL($C).
ENUM RES(∀P.C) #TEXT($P) #TEXT(#RANGE($P)) one of:

#LIST(#ENUM($C)).
FORMAT RES(∀P.C) #TEXT($P) #TEXT(#RANGE($P)) of type #TEXT($C).
AGGR RES(∀P.C) contains the #TEXT(#AGGR FUNC($C))

#TEXT(#RANGE($P)) per #LIST(#AGGR ATTR($C)).
Table 4.10: A set of provided built-in macros for datastore annotations

Template instantiation. According to the reporting needs, an appropriate tem-
plate is created, or an existing one is chosen, and a narrative is produced automati-
cally out of it. This procedure is performed by the template engine, and it requires
that the template is used in synergy either with the formal expression annotating a
data store or with (a part of) the ETL specification. The template is instantiated by
expanding any contained macros, evaluating any contained functions and directives,
and assigning concrete values to its parameters.

Report production. The format of a report is highly dependent on each appli-
cation. In our experience and understanding, for the early phases of a DW design
project, it is advisable to have reports expressing the parts of the ETL process by
simple means. For that reason, we favor the presentation of the results as bullet

111

Macros for ETL Operations
RETRIEVE(V,C) Retrieve #TEXT($C) from $V.
EXTRACT(V,C) Extract #LIST($C) from $V.
MERGE(V,C) Compose #TEXT($C) from #LIST($V).

RANGE FILTER(P,C) Select #TEXT($P) #TEXT(#RANGE($P)) in
#INTERVAL($C).

VALUE FILTER(P,C) Select #TEXT($P) #TEXT(#RANGE($P)) one of:
#LIST(#ENUM($C)).

CONVERT(P,C1,C2) Convert #TEXT(#RANGE($P)) from #TEXT($C1) to
#TEXT($C2).

AGGR(P,Cf,Cg) Calculate #TEXT($Cf) #TEXT(#RANGE($P)) per
#LIST($Cg).

CARD(P,min,max) Select tuples having #TEXT($P) at least $min and
at most $max #TEXT(#RANGE($P)).

DD(P) Remove duplicate tuples for #TEXT(#RANGE($P)).
JOIN(C) Join tuples from #LIST($C).

STORE(C,V) Store #TEXT($C) to #LIST($V).
Table 4.11: A set of provided built-in macros for generic ETL operations

lists. However, the format of a report is defined by the creator of the respective
template. Our mechanism is generic enough to support fairly rich representation
formats. Next, we present a series of indicative templates to illustrate the use of the
proposed mechanism and demonstrate its usefulness and flexibility.

Case 1. A template for rendering the annotation D of a datastore S is structured
as follows:

Template: PRINT_ANNOT(S, D)
#set ($head = HEAD($D))
#HEADER($S, $head)
#set ($res_list = #PARSE_ANNOT($D))
#foreach($res in $res_list)
#if (#PARSE_RES($res) == "EXACT_CARD")

#EXACT_CARD($res)
#elseif (#PARSE_RES($res) == "MIN_CARD")

#MIN_CARD($res)
... // calls to macros for other types of restrictions
#end

#end

As example, consider a source and a target datastore, denoted by DS SPart and
DW SupPart, respectively, containing information about parts provided by several
suppliers. We make the following assumptions. Each part and supplier is identified
by a unique ID. The stores contain information about the date the parts were pur-
chased and their price. DW SupPart keeps records only of parts purchased after the
year 2000 and having from 2 to 5 suppliers. Prices in DS SPart and DW SupPart
are recorded in Dollars and Euros, respectively. DS SPart records the quantity of
stored parts for each individual storage location, while DW SupPart records the
total quantity over all locations. Lastly, DS SPart contains information for parts
in the categories software, hardware or accessories (S/H/A), while DW SupPart
contains only software or hardware parts (S/H).

112

Using an appropriate domain ontology, the the two datastores could be seman-
tically annotated by expressions such as those shown below:

DS SPart ≡ SuppliedPart u =1 hasPartID u ≥1 SuppliedBy

∀hasPrice.Dollars u ∀belongsTo.software, hardware, accessories

DW SupPart ≡ SuppliedPart u =1 hasPartID u ≥2 suppliedBy

u ≤5 suppliedBy u ∀purchasedAtY ear.LaterThan2000

u ∀hasPrice.Euros u ∀belongsTo.software, hardware
u ∀hasQuantity.TotalQuantity

Given these annotations, the above template produces the following reports:

Each tuple in DS_SPart contains information about a supplied part. It:
- has exactly 1 part id
- is supplied by at least 1 supplier
- has price of type dollars
- belongs to category one of: software, hardware, accessories

Each tuple in DW_SupPart contains information about a supplied part. It:
- has exactly 1 part id
- is supplied by at least 2 and at most 5 supplier
- purchased at year in [2000,-]
- has price of type euros
- contains the total quantity per part id, supplier, day, month, year,
price, category

- belongs to category one of: software, hardware

Case 2. A template for generating textual representations of generic ETL oper-
ations is similarly specified, as shown below:

Template: PRINT_ETL(W)
Transformations from $source to $target :
#set ($op_list = #PARSE_FLOW($W))
#foreach($op in $op_list)
#if (#PARSE_OP($op) == "RETRIEVE")

#RETRIEVE(#PARAMS($op))
#elseif (#PARSE_OP($op) == "EXTRACT")

#EXTRACT(#PARAMS($op))
... // calls to macros for other types of operations
#end

#end

Assume the following ETL operations for transforming data from DS SPart to
DW SupPart:

MERGE([model,number],PartID)
RETRIEVE(sCode,Supplier)
RETRIEVE(value,Price)

113

EXTRACT(date,[Day,Month,Year])
RETRIEVE(amount,Quantity)
RETRIEVE(category,Category)
CARD(suppliedBy,2,5)
FILTER(purchasedAtYear,LaterThan2000)
CONVERT(hasPrice,Dollars,Euros)
AGGREGATE(hasQuantity,SUM,[PartID,Supplier,Day,Month,Year,Price,Category])
FILTER(belongsTo, {software,hardware})
STORE(PartID,partID)
STORE(Supplier,supCode)
STORE(Day,day)
STORE(Month,month)
STORE(Year,year)
STORE(Price,price)
STORE(Quantity,quantity)
STORE(Category,category)

Then, this template produces the report shown below:

Transformations from DS_SPart to DW_SupPart:
- Compose part id from SPart.model, SPart.number
- Retrieve supplier from SPart.sCode
- Retrieve price from SPart.value
- Extract day, month, year from SPart.date
- Retrieve quantity from SPart.amount
- Retrieve category from SPart.category
- Select tuples supplied by at least 2 and at most 5 supplier
- Select purchase year in [2000,-]
- Convert price from dollars to euros
- Calculate total quantity per part id, supplier, day, month, year,
price, category

- Select belongs to category one of: software, hardware
- Store part id to SupPart.partID
- Store supplier to SupPart.supCode
- Store day to SupPart.day
- Store month to SupPart.month
- Store year to SupPart.year
- Store price to SupPart.price
- Store quantity to SupPart.quantity
- Store category to SupPart.category

Case 3. Apart from rendering a complete description of the ETL flow, a template
can focus on information regarding specific aspects. For instance, the following
template prints the total number of operations in a given flow, as well as the number
of CONVERT operations.

Template: PRINT_ETL_STATS(W)
#set ($n1 = 0)
#set ($n2 = 0)
#set ($op_list = #PARSE_FLOW($W))
#foreach($op in $op_list)
#set ($n1 = $n1 + 1)

114

#if (#PARSE_OP($op) == "CONVERT’’)
#set ($n2 = $n2 + 1)

#end
#end
This ETL flow contains a total of $n1 operations.
$n2 of these are CONVERT operations.

As shown from the previous case, the resulting output may often contain repeated
information. Even though this does not necessarily constitute a problem, since the
output is often presented in a tabular form or as a bulleted list, in other cases a more
concise representation is preferable. This issue is addressed by grouping together
related pieces of information, a process that is commonly referred to as sentence
aggregation [45, 132] in Natural Language Processing. In our case, aggregation can
be achieved based on the following criteria: (a) grouping together restrictions of the
same type, (b) grouping together restrictions on the same property, (c) grouping
together operations of the same type, and (d) grouping together operations on the
same attribute.

Although this can be done programmatically by specifying the appropriate con-
ditions in the corresponding templates, to reduce coding effort and simplify the tem-
plates, we overload the built-in functions PARSE ANNOT(D) and PARSE FLOW(W)
providing two new variations for each one: PARSE ANNOT(D,R), PARSE ANNOT
(D,P), PARSE FLOW(W,F), PARSE FLOW(W,P). The first returns only restric-
tions of type R, while the second returns only restrictions applied on property P.
Similarly, the third and the fourth return only operations of a given type F and on
a specific property P, respectively.

Hence, using in addition the function SIZE(L) shown in Table 4.9, the previous
template can be significantly simplified as follows.

Template: PRINT_ETL_STATS_SHORT(W)
This ETL flow contains a total of
#SIZE(#PARSE_FLOW($W)) operations.
#SIZE(#PARSE_FLOW($W,"CONVERT")) of these are CONVERT operations.

Finally, other characteristic cases are, for instance, to verbalize the first n oper-
ations of the workflow or the operations concerning a specific property. The latter
case is especially useful to track the transformations occurring on a specific attribute
throughout the workflow. Another practical case is to list groups of order-equivalent
transformations to help the administrator to design the execution order of an ETL
workflow [142].

4.3 ETL Design through Graph Transformations

4.3.1 General Framework

In the previous section we have proposed an approach for using ontologies to facili-
tate the conceptual design of ETL processes. This section further builds on this idea,
exploring an alternative direction to the problem, based on the theory and tools for
graph transformations. This allows for two main advantages. First, in the former
approach, customization and extensibility, although possible, are not very easy to

115

accomplish, as the process of deriving the ETL transformations is tightly coupled to
the ontology reasoner. Instead, in the current approach there is a clear separation
between the graph transformation rules, which are responsible for creating the ETL
design, and the graph transformation engine. Second, in the former approach, the
whole ETL flow between a given pair of source and target node sets is produced in
a single run. On the contrary, the current approach provides, in addition to that,
the ability to proceed with the ETL design in an interactive, step-by-step mode.
For example, the designer can select a set of source nodes to begin with, select a set
of rules and execute them for a number of steps, observe and possibly modify the
result, and continue the execution; this exploratory behavior is very often required,
since the design of an ETL process is a semi-automatic task.

First, we describe the representation model used for the source and target data
stores, as well as for the domain ontology and the ETL process. Then, we state
the problem of deriving the design of an ETL process at the conceptual level, via a
series of graph transformations, based on the semantic knowledge conveyed by the
domain ontology attached to the source and target schemata.

In particular, our approach is based on appropriate manipulation of a graph that
contains all the involved information, namely the datastore schemata, the domain
ontology, the semantic annotations, and the ETL operations. These modules are
described in the following.

Datastore subgraph. Traditional ETL design tools employ a relational model as
an interface to the data repositories. The relational model has widespread adop-
tion and an RDBMS constitutes the typical solution for storing an organization’s
operational data. Nevertheless, the increasingly important role of the Web in e-
commerce, and business transactions in general, has led to semi-structured data
playing a progressively more important role in this context. The adoption of XML
as a standard for allowing interoperability requires that data crossing the borders
of the organization is structured in XML format. For instance, Web services, which
enable enterprises to cooperate by forming dynamic coalitions, often referred to
as Virtual Organizations, are described by documents in XML format, and they
exchange information in XML format, too. These facts significantly increase the
amount of heterogeneity among the data sources, and hence, the complexity of the
ETL design task.

To abstract from a particular data model, we employ a generic, graph-based
representation, that can effectively capture both structured and semi-structured
data. In particular, we model a datastore as a directed graph, i.e., G = (V, E),
where V is a set of nodes and E ⊆ V x V is a set of edges (i.e., ordered pairs of
nodes). Graph nodes represent schema elements, whereas graph edges represent
containment or reference relationship between those elements.

Note that the same model is used for both source and target datastores. Given
that the ETL process may involve multiple source datastores, nodes belonging to
different sources are distinguished by using different prefixes in their identifiers.

Ontology subgraph. Our approach is based on the use of an ontology to for-
mally and explicitly specify the semantics of the data contained in the involved
datastores. Leveraging the advances in Semantic Web technology, we can use RDF
Schema [100, 29] or OWL [103] as the language for the domain ontology. Hence, the
knowledge for the domain associated with the application under consideration can
be represented by a set of classes and properties, structured in an appropriate hier-

116

archy. These classes and properties correspond to the concepts of the domain, and
the relationships and attributes of these concepts. In addition, for the purpose of
ETL design, it is commonly required to express some specific types of relationships,
such as different representation formats (e.g., different currencies or different date
formats) or different levels of granularity when structuring the information (e.g.,
representing a particular piece of information either as a single attribute or as a
set of attributes). Therefore, apart from the provided isa relationship that can be
specified among classes (i.e., <rdfs:subClassOf>), we assume in addition a set of
pre-defined properties, comprising the properties typeOf and partOf. This set of
pre-defined properties can be further extended to accommodate application-specific
or domain-specific needs. In the employed representation, classes are represented by
nodes, whereas properties by edges.

Datastore annotations. Using the ontology to semantically annotate the datas-
tores is achieved by establishing edges directed from nodes of the datastore subgraph
towards corresponding nodes of ontology subgraph.

ETL process subgraph. An ETL process comprises a series of operations that are
applied to the source data and transform it appropriately, so as it meets the target
specifications. Given the previously described graph-based representation of the
source and target datastores, we represent the specification of the ETL process as
a set of paths directed from source datastore nodes towards target datastore nodes.
The nodes along these paths denote ETL operations; there are also intermediate
nodes as we discuss in Section 4.3.3. The edges connecting the nodes indicate the
data flow.

In general, it is not straightforward to come up with a close set of well-defined
primitive ETL operations. Normally, such effort would result in the set of relational
operators extended by a generic function operator. However, this would not be too
useful in real world applications that usually comprise a large variety of built-in
or user-defined functions. Hence, it is essential to provide a generic and extensible
solution that could cover the frequent cases and that could be enriched by additional
transformations when needed. Hence, we consider the following set of operations:
Load, Filter, Convert, Extract, Split, Construct, Merge. These correspond to
common operations frequently encountered in ETL processes. A detailed discussion
of these operations, as well as their applicability in a given context, are presented
in Section 4.3.4.

Problem statement. We consider the problem of ontology-based conceptual de-
sign of ETL processes as follows: starting from an initial graph comprising the source
and target datastore subgraphs, the ontology subgraph, and the semantic annotations,
produce a final graph that contains also the ETL process subgraph.

4.3.2 Graph Transformations

Graph transformations were first introduced as a means to address the limitations in
the expressiveness of classical approaches to rewriting, especially dealing with non-
linear structures [135], and they are widely used in software engineering. The basic
idea is to generate a new graph, H, starting from an initial given graph, G, by means
of applying a set of transformation rules. The graphs G and H, which are also called
instance graphs, may be typed over a type graph TG. A type graph specifies the types

117

of nodes and edges, and how they are connected. Then, the structure of the instance
graphs should conform to the type graph, in order for them to be valid. That is, the
relationship between an instance graph and a corresponding type graph is similar
to that between an XML document and its associated XML Schema. Additionally,
the graphs may be attributed, i.e., graph nodes and edges may have attributes. An
attribute has a name and a type, specifying the values that can be assigned to it.
Graph objects of the same type share their attribute declarations. Transformations
of the original graph to a new graph are specified by transformation rules.

A graph transformation rule, denoted by p : L→ R consists of a name p and two
instance graphs L and R, which are also typed over TG and represent, respectively,
the pre-conditions and the post-conditions of the rule. This means that (a) the rule
is triggered whenever a structure matching L is found, and (b) the execution of the
rule results in replacing the occurrence of the left-hand side (LHS) of the rule, L,
with the right-hand side (RHS), R. Therefore, a graph transformation from a given

graph G to a new graph H is denoted by G
p(o)
=⇒ H, and it is performed in three steps:

i. Find an occurrence o of the left-hand side L in the given graph G.

ii. Delete from G all the nodes and edges matched by L \ R (making sure that the
remaining structure is a graph, i.e., no edges are left dangling.)

iii. Glue to the remaining part a copy of R \ L.

Apart from pre-conditions, i.e., patterns whose occurrence triggers the execution of
the rule, a rule may also have negative application conditions (NACs), i.e., patterns
whose occurrence prevents its execution.

A graph transformation sequence consists of zero or more graph transformations.
Notice that two kinds of non-determinism may occur. First, several rules may be
applicable. Second, given a certain rule, several matches may be possible. This
issue can be addressed with different techniques, such as organizing rules in layers,
setting rule priorities, and/or assuming human intervention in choosing the rule to
apply or the match to consider.

4.3.3 The Type Graph

As discussed in Section 4.3.1, the design of the ETL process is built in a step-by-step
manner through a series of graph transformations. Essential to this is the role of the
ontology, which determines the context (i.e., the semantics) at each transformation
step, thus determining which ETL operations are applicable (and in what order).
The selected ETL operations are represented as additional nodes and edges forming
paths (flows) that lead from the nodes of the source subgraph to the nodes of the
target subgraph.

The process of addressing this problem by means of graph transformations is
outlined in the following. We consider as starting point a graph comprising three
subgraphs, namely the source, the target, and the ontology subgraphs. The main
goal is then to define an appropriate set of rules, determining where, when, and how
a flow of operations from a source to a target node can be created. Essentially, each
rule is responsible for inserting an operator in the ETL flow. (Additionally, as we
discuss at a later point, some rules aim at replacing or removing operators from the

118

OntNode
String URI

Operation
String type

IntmNode
SrcNode
String ID

TrgNode
String ID

partOftypeOf

isa

OntNode
URI=”ex:USD”

OntNode
URI=”ex:Salary”

OntNode
URI=”ex:EUR”

typeOf typeOf

SrcNode
ID=”s:Salary”

TrgNode
ID=”t:Salary”

Operation
type=”CONVERT”

(a) (b)

Figure 4.4: (a) The type graph and (b) a sample instance graph

flow.) The finally obtained graph is a supergraph of the initial graph, depicting the
choice and order of the aforementioned required operations.

In the generated graph, ETL operations are represented by nodes, with incom-
ing and outgoing edges corresponding, respectively, to the inputs and outputs of the
operation. These form flows between source nodes and target nodes. Since popu-
lating a target element with data from a source element often requires more than
one transformation to be performed on the data, in the general case these flows will
have length higher than 1. To allow for such functionality, we use the notion of
intermediate nodes. These refer to intermediate results produced by an ETL op-
eration and consumed by a following one. Consequently, the incoming edges of a
node representing an ETL operation may originate either from source nodes or from
intermediate nodes, while outgoing edges may be directed either to target nodes or
to intermediate nodes.

To formally capture such relationships, we introduce the type graph illustrated
in Figure 4.4 and explained in detail below. The type graph specifies the types of
nodes and edges that the instance graphs (i.e., those constructed to model data
store schemata, annotations, and ETL flows) may contain, as well as how they
are structured. The type graph is depicted in Figure 4.4(a) and distinguishes the
following types of nodes and edges:

• Ontology nodes (OntNode): they represent concepts of the considered appli-
cation domain. An ontology node may connect to other ontology nodes by
means of isa, partOf, typeOf or connects edges. The latter correspond to
generic relationships between concepts of the domain, and they are represented
in Figure 4.4(a) by continuous, unlabeled arrows; the former are represented
by continuous arrows with a corresponding label to distinguish the type of
the relationship. Each ontology node has an associated URI that uniquely
identifies it.

• Source nodes (SrcNode): they correspond to elements of the source data store
schemata (e.g., tables or attributes in the case of relational schemata, or XML
tree nodes in the case of XML documents.) Each source node has a unique
ID (i.e., a URI), prefixed accordingly to indicate the data store it belongs to.
Source nodes may relate to each other by connects edges (corresponding, for
example, to foreign keys in the case of relational sources or to containment

119

relationships in the case of XML.) Source nodes are annotated by ontology
nodes, as shown by the dotted edge in Figure 4.4(a), to make explicit the
semantics of the enclosed data.

• Target nodes (TrgNode): they are similar to source nodes, except from the fact
that they refer to elements of the target data stores instead.

• Intermediate nodes (IntmNode): they are nodes containing temporary data
that are generated during ETL operations. They are also annotated by on-
tology nodes. This is necessary for continuing the flow of operations once
an intermediate node has been created. Notice however the difference: source
and target nodes are annotated manually (or perhaps semi-automatically) and
these annotations need to be in place a-priori, i.e., at the beginning of the ETL
design process. In fact, these annotations constitute the main driving force for
deriving the ETL scenario. On the contrary, the annotations of the intermedi-
ate nodes are produced automatically, when the intermediate node is created,
and are a function of the type of ETL operation that created this node, as
well as of the (annotation of the) input used for that operation.

• Operation nodes (Operation): they represent ETL operations. The attribute
type identifies the type of the operation (e.g., filter or convert). The inputs
and outputs of an operation are denoted by dashed edges in Figure 4.4(a). In
particular, the input of an operation is either a source node or an intermediate
node, whereas the output of an operation is either an intermediate node or a
target node. Each ETL operation must have at least one incoming and one
outgoing edge.

Example. A sample instance of the considered type graph is illustrated in Fig-
ure 4.4(b). It depicts a typical scenario where an ETL operation converts the values
of a source element containing salaries expressed in U.S. Dollars to populate a target
element with the corresponding values in Euros.

4.3.4 The Transformation Rules

Having the type graph introduced in the previous section, we can create instances of
this graph to represent specific instances of the ETL design problem, i.e., to model
a given source graph, a given target graph, and their annotations with respect to
an associated domain ontology. The initial graph does not contain any Operation

nodes. Instead, the goal of the transformation process is exactly to add such nodes
in a step-by-step manner, by applying a set of corresponding transformation rules.
Recall from Section 4.3.2 that each such rule comprises two basic parts: a) the
left-hand-side (LHS), specifying the pattern that triggers the execution of the rule,
and b) the right-hand-side (RHS), specifying how the LHS is transformed by the
application of the rule. Optionally, a rule may have a third part, specifying one
or more negative application conditions (NACs). These are patterns preventing the
triggering of the rule. A common usage of NACs is as stop conditions, i.e., to prevent
the same rule from firing multiple times for the same instance. This occurs when
the RHS of the rule also contains the LHS.

In the following, we introduce a set of rules used to construct ETL flows based on
the operations (and their conditions) described in Section 4.3.1, and describe each

120

rule in detail. Essentially, these rules are divided into groups, each one responsible
for the addition of a certain type of ETL operation. We consider two kind of rules,
referring, respectively, to simple and composite ETL operations.

Rules for simple operations. This set of rules handles the LOAD, FILTER, CONVERT,
EXTRACT, and CONSTRUCT operations.

LOAD. This is the simplest operation: it simply loads data records from a source
to a target element. For such a direct data flow to be valid, one of the following
conditions must apply: either a) the source element must correspond to a concept
that is the same with that of the target element, or b) the source element must
correspond to a concept that is subsumed (i.e., has an isa link) by that of the
target element. In the former case the rule pattern searches for a pair of source and
target nodes that point to the same OntNode, as shown in Figure 4.5 (the numbers
indicate matched nodes/edges.) If a match is found, the rule is triggered and a LOAD

operation is inserted.

SrcNode TrgNode

OntNode

SrcNode TrgNode

OntNode

Operation
type=”LOAD”

LHS RHS (and NAC)

Figure 4.5: Rules for inserting LOAD operations in the presence of direct relationship

In the latter case the pattern searches for a SrcNode that is annotated by an
OntNode which has an isa relationship to another OntNode annotating a TrgNode

(Figure 4.6.) Again, the transformation performed by the rule is to insert an
Operation node of type LOAD, connecting the source and target nodes. Additionally,
in the second case, it is also useful to have data flow to (or from) an intermediate
node, which will then be further transformed to meet the target node specifica-
tions (or respectively that has resulted from previous transformations). Thus, for
this latter case we have four individual rules corresponding to the pairs source-to-
target, source-to-intermediate, intermediate-to-intermediate, and intermediate-to-
target (rules i - iv in Figure 4.6.) Finally, NACs are used accordingly, to prevent the
same rule firing repeatedly for the same pattern, as mentioned previously. Hence,
NACs replicating the RHS of the corresponding rule are inserted. An exception
to this can be observed in rule iii of Figure 4.6, handling the case intermediate-to-
intermediate. Here, in addition to the NAC replicating the RHS of the rule, two
other NACs are used to ensure that a LOAD operation will not be inserted to an
intermediate node, if this node was produced as a result of a previous FILTER op-
eration from another intermediate or source node (this will become clearer in the
description of FILTER operation below.)

FILTER. This operation applies a filtering, such as arithmetic comparisons or
regular expressions on strings, on data records flowing from the source to the target
data store. The LHS of this rule searches for a target node pointing to a concept that
is a subconcept (i.e., more restricted) of a concept corresponding to a source node.
Whenever a match is found, the rule is triggered and it inserts a FILTER operation
between the source and target nodes. Analogously to the previous case, three other

121

SrcNode TrgNode

OntNode OntNodeisa

Operation
type=”LOAD”SrcNode TrgNode

OntNode OntNode
isa

LHS RHS (and NAC)
i. source-to-target

SrcNode

OntNode OntNodeisa

Operation
type=”LOAD”SrcNode

OntNode OntNode
isa

IntmNode

LHS RHS (and NAC)
ii. source-to-intermediate

OntNode OntNodeisa

IntmNode Operation
type=”LOAD”

OntNode OntNode
isa

IntmNodeIntmNode

Operation
type=”FILTER”

OntNode OntNode
isa

IntmNodeIntmNode

Operation
type=”FILTER”

OntNode OntNode
isa

IntmNode SrcNode

LHS RHS (and NAC) additional NACs
iii. intermediate-to-intermediate

TrgNode

OntNode OntNodeisa

IntmNode Operation
type=”LOAD” TrgNode

OntNode OntNode
isa

IntmNode

LHS RHS (and NAC)
iv. intermediate-to-target

Figure 4.6: Rules for inserting LOAD operations via isa link

“versions” of this rule are also considered, dealing with the cases of intermediate
nodes. The rules for the cases source-to-target and intermediate-to-intermediate are
illustrated in Figure 4.7. Notice the additional NACs used again in the latter case.
The necessity of these NACs (and of those used previously in the corresponding rule
for LOAD operations) becomes evident if we consider the following situation. Assume
two ontology concepts C and D related via an isa link, isa(C,D), and an intermediate
node V pointing at (i.e., annotated by) C. Then, rule iii of Figure 4.6(b) will fire,
inserting a LOAD operation leading to a new intermediate node U. Subsequently, in
the absence of the aforementioned NACs, the rule ii of Figure 4.7 will fire, inserting
a FILTER operation leading back to node V.

CONVERT. This operation represents conceptually the application of arbitrary
functions used to transform data records, such as arithmetic operations or operations
for string manipulation. It can be thought of as transforming the data between dif-
ferent representation formats. In the ontology this knowledge is captured by means
of concepts related to a common concept via typeOf links. Thus, the LHS for this

122

SrcNode TrgNode

OntNode OntNode
isa

Operation
type=”FILTER”SrcNode TrgNode

OntNode OntNode
isa

LHS RHS (and NAC)
i. source-to-target

OntNode OntNodeisa

IntmNode
Operation
type=”FILTER”

OntNode OntNode
isa

IntmNodeIntmNode

Operation
type=”LOAD”

OntNode OntNode
isa

IntmNodeIntmNode

Operation
type=”LOAD”

OntNode OntNode
isa

IntmNode SrcNode

LHS RHS (and NAC) additional NACs
ii. intermediate-to-intermediate

Figure 4.7: Rules for inserting FILTER operations

rule is as shown in Figure 4.8, while the RHS inserts, as expected, a CONVERT oper-
ation between the matched nodes. Due to space considerations, only the transition
between intermediate nodes is shown. The derivation of the corresponding rules in-
volving source or target nodes is straightforward. Notice the additional NACs used
here. This is to prevent loops converting repeatedly among the same types. For
instance, consider the case of three concepts C1, C2 and C3, which are all “type of”
C. In the absence of these NACs, this would lead to a series of conversions starting,
e.g., from C1, going to C2, then to C3, and then back to either C1 or C2, and so
on. Instead, this is prevented by the two NACs checking whether the considered
intermediate node is itself a product of another CONVERT operation.

OntNode OntNode
typeOf

IntmNode OntNode
Operation
type=”CONVERT”

OntNode OntNode

IntmNode IntmNode

OntNode
typeOf typeOf

Operation
type=”CONVERT”

OntNode OntNode

IntmNode IntmNode

OntNode
typeOf typeOf

Operation
type=”CONVERT”

OntNode OntNode

IntmNode

OntNode
typeOf typeOf

SrcNode

LHS RHS (and NAC) additional NACs

Figure 4.8: Rules for inserting CONVERT operations

EXTRACT. This operation corresponds to the case of extracting a piece of infor-
mation from a data record (e.g., a substring from a string). In this case we search
for a pair of source and target nodes, where the latter corresponds to an ontology
concept that is related via a partOf link to that of the former. When a match is
found, the RHS of the rule inserts an EXTRACT operation. Three similar rules are
constructed again to handle intermediate nodes. Figure 4.9 depicts the rule for the
case of transition between intermediate nodes. As described before for the rules LOAD
and FILTER, appropriate NACs are introduced to prevent loops that may occur in

123

combination with CONSTRUCT operations (see below).

OntNode OntNode
partOf

IntmNode
Operation
type=”EXTRACT”

OntNode OntNode
partOf

IntmNodeIntmNode

Operation
type=”CONSTRUCT”

OntNode OntNode
partOf

IntmNodeIntmNode

OntNode OntNode
partOf

IntmNode
Operation
type=”CONSTRUCT” SrcNode

LHS RHS (and NAC) additional NACs

Figure 4.9: Rules for inserting EXTRACT operations

CONSTRUCT. This operation corresponds to the case that a larger piece of in-
formation needs to be constructed given a data record (typically by filling in the
missing part(s) with default values). This is represented by a pair of source and
target nodes, where the corresponding source OntNode is partOf the corresponding
target OntNode. When triggered, the rule inserts a CONSTRUCT operation. Rules for
dealing with intermediate nodes operate similarly. In this case, care needs to be
taken to avoid loops created by transitions back and forth a pair of OntNodes linked
with a partOf edge, i.e., interchanging EXTRACT and CONSTRUCT operations. The
rule referring to a pair of intermediate nodes is depicted in Figure 4.10.

OntNode OntNode
partOf

IntmNode Operation
type=”CONSTRUCT”

OntNode OntNode
partOf

IntmNodeIntmNode

Operation
type=”EXTRACT”

OntNode OntNode
partOf

IntmNodeIntmNode

OntNode OntNode
partOf

IntmNode
Operation
type=”EXTRACT” SrcNode

LHS RHS (and NAC) additional NACs

Figure 4.10: Rules for inserting CONSTRUCT operations

Rules for composite operations. Our approach is generic and extensible. It
is possible to combine simple operations in order to construct composite ones. We
present two transformation rules, dealing with such operations, namely the SPLIT

and MERGE operations; this allows to demonstrate the extensibility of the proposed
framework.

SPLIT. This operation can be used in the place of multiple EXTRACT operations,
when multiple pieces of information need to be extracted from a data record in
order to populate different elements in the target data store. A typical example is
a string tokenizer. However, since the number of resulting elements is not fixed, it
is not possible to construct a rule that directly inserts SPLIT operations in the ETL
flow (unless some appropriate pre-processing on the domain ontology and the data
store schemata is performed). Therefore, we insert such operations indirectly, by
first applying temporary EXTRACT operations, and then replacing multiple EXTRACT

operations originating from the same node with a SPLIT operation. Notice that

124

having in these cases a single SPLIT operation instead of multiple related EXTRACT

operations, apart from reflecting more closely the human perception regarding the
intended transformation, also has the benefit that results in more compact ETL
flows. Hence, the LHS of the rule for inserting SPLIT operations searches for two
EXTRACT operations originating from the same source node, and replaces them with
a SPLIT operation. Observe however that in the case that more than two EXTRACT

operations existed, this rule would only merge two of them. Still, the others also need
to be merged with the substituting SPLIT operation. For this purpose, an additional
rule is required, that merges an EXTRACT operation to a SPLIT operation. This rule
is executed iteratively, until all EXTRACT operations have been “absorbed” by the
SPLIT operation. However, since the execution order of rules is non-deterministic,
if more than three EXTRACT operations exist, originating from the same node, it is
possible to end up with multiple SPLIT operations. Thus, a third rule that combines
two SPLIT operations in a single one is employed. The aforementioned rules are
presented in Figure 4.11. Similar rules are devised to apply this process for cases
involving intermediate nodes.

Operation
type=”EXTRACT” SrcNodeTrgNode TrgNodeOperation

type=”EXTRACT”
SrcNode Operation

type=”SPLIT”

TrgNode

TrgNode

LHS RHS

Operation
type=”EXTRACT” SrcNodeTrgNode TrgNodeOperation

type=”SPLIT”
SrcNode Operation

type=”SPLIT”

TrgNode

TrgNode

LHS RHS

Operation
type=”SPLIT” SrcNodeTrgNode TrgNodeOperation

type=”SPLIT”
SrcNode Operation

type=”SPLIT”

TrgNode

TrgNode

LHS RHS

Figure 4.11: Rules for inserting SPLIT operations

MERGE. As mentioned earlier, in CONSTRUCT operations some external informa-
tion needs to be provided to construct from a given data item the required data to
populate a target element. In this case the missing data is provided by other source
elements. That is, two or more source elements complement each other in producing
the data records for populating a given target element. As with the case of SPLIT

mentioned above, since the number of cooperating source nodes is not fixed, this
operation is also handled indirectly, in a similar manner. In particular, the rules
for MERGE search for two CONSTRUCT operations or for a MERGE and a CONSTRUCT

operation or for two previously inserted MERGE operations, and incorporate them
in a single MERGE operation. As previously, multiple CONSTRUCT operations are it-
eratively absorbed into a single MERGE operation by consecutive executions of the
corresponding rules. The corresponding rules are shown in Figure 4.12.

Additional rules. As it may have become clear from the description of the trans-
formation rules previously presented, when there is not a one-step transformation
between a source and a target node, the graph transformation engine will simulate
a (random) search for creating paths of operations that may lead from the source
node to the target. (The randomness is due to the two kinds of non-determinism

125

Operation
type=”CONSTRUCT” TrgNodeSrcNode SrcNodeOperation

type=”CONSTRUCT”

SrcNode
Operation
type=”MERGE” TrgNode

SrcNode

LHS RHS

Operation
type=”CONSTRUCT” TrgNodeSrcNode SrcNodeOperation

type=”MERGE”

SrcNode
Operation
type=”MERGE” TrgNode

SrcNode

LHS RHS

Operation
type=”MERGE” TrgNodeSrcNode SrcNodeOperation

type=”MERGE”

SrcNode
Operation
type=”MERGE” TrgNode

SrcNode

LHS RHS

Figure 4.12: Rules for inserting MERGE operations

mentioned in Section 4.3.2.) It is most likely that for most (or even all) of these
paths after a few transformation steps no more rules can be applied, without having
reached a target node. To avoid overloading the resulting graph, and consequently
the ETL designer, with these “false positives”, we employ an additional rule that
aims at “cleaning up” the final ETL flow. This rule, illustrated in Figure 4.13, es-
sentially removes intermediate nodes, together with the operation producing them,
that do not have a next step in the ETL flow (i.e., that fail to reach a target node).

Operation IntmNode - Operation IntmNode Operation

LHS RHS NAC

Figure 4.13: “Clean-up” rule

4.3.5 Creation of the ETL Design

Next, we discuss ordering issues in the execution of the transformation rules. It is
evident from the description of the functionality of the introduced rules that some
of the rules should be considered before or after other ones have been applied. In
particular, we consider the following requirements:

• Rules referring to one-step transformations, i.e., involving source and target
nodes, should be considered before rules involving intermediate nodes.

• The rule “clean-up” should be performed only after the examination of any
rules adding new operations has been completed.

• Rules regarding composite operations (e.g., SPLIT and MERGE) should be con-
sidered after all the rules for the corresponding simple operations (e.g., EXTRACT
and CONSTRUCT) have been triggered.

126

Ensuring that this ordering is respected is both a necessary condition for the
method to produce the desired results and a matter of improving performance.
For instance, allowing clean-up operations to be performed before rules inserting
new operations have been completed, it may result in an infinite loop, i.e., repeat-
edly adding and removing the same operation(s). On the other hand, checking for
the applicability of rules regarding SPLIT or MERGE operations before all EXTRACT
or CONSTRUCT operations have been identified, leads to redundant matching tests.
Consequently, we organize the rules described above into 4 layers, as follows:

• The first layer comprises those rules inserting ETL operations that directly
connect a source node to a target node.

• The second layer comprises rules inserting operations from or to intermediate
nodes.

• The third layer contains the clean-up rule.

• Finally, the last, fourth, layer comprises the rules for composite operations
(i.e., SPLIT and MERGE).

These layers are executed in the above order, starting from the first layer. The
execution of rules from a layer i starts only if no more rules from the layer i − 1
can be applied. The whole process terminates when no rules from the last layer
can be applied. Within the same layer, the order in which the rules are triggered is
non-deterministic.

Hence, given the presented set of rules, organized appropriately in the aforemen-
tioned layers, and the problem instance, comprising the source graph, the target
graph, the ontology and the annotations, the creation of the ETL design proceeds
as follows:

• Step 1: Identify single operations that can connect a source node to a target
node. This is accomplished by the graph transformation engine applying the
rules of the first layer.

• Step 2: This step accomplishes the rules of the second layer and it comprises
two tasks, which may be executed interchangeably:

– Starting from source nodes, introduce ETL operations that transform
data leading to an intermediate node.

– Starting from the created intermediate nodes, continue introducing ad-
ditional transformations, until either the target nodes are reached or no
more rules can be applied.

• Step 3: Remove paths of ETL operations and intermediate nodes that have
not reached a target node. This is performed by the rule in layer 3.

• Step 4: Search for groups of EXTRACT or CONSTRUCT operations that can be
substituted by SPLIT or MERGE operations, respectively.

127

sources s customers { cid, name, country, city, street }
s orders { oid, cid, date, amount, price }

targets t customers { cid, firstName, lastName, address }
t orders { oid, cid, date, amount, price }

Table 4.12: Source and target schemata for the example

OntNode
URI=”ex:Address”

OntNode
URI=”ex:Country”

OntNode
URI=”ex:Street”

OntNode
URI=”ex:City”

partOf
partOf

partOf

SrcNode
ID=”s:Customer”

SrcNode
ID=”s:Country”

SrcNode
ID=”s:City” SrcNode

ID=”s:Street”

SrcNode
ID=”s:Name”

SrcNode
ID=”s:Order”

SrcNode
ID=”s:Date”

SrcNode
ID=”s:Amount”

SrcNode
ID=”s:Price”

TrgNode
ID=”t:Address”

TrgNode
ID=”t:FirstName”

TrgNode
ID=”t:LastName”

TrgNode
ID=”t:Customer”

TrgNode
ID=”t:Amount”

TrgNode
ID=”t:Date”

TrgNode
ID=”t:Price”

TrgNode
ID=”t:Order”

OntNode
URI=”ex:Customer”

OntNode
URI=”ex:Name”

OntNode
URI=”ex:FirstName”

OntNode
URI=”ex:LastName”

OntNode
URI=”ex:Order”

OntNode
URI=”ex:Date”

OntNode
URI=”ex:Amount”

OntNode
URI=”ex:DDMMYY”

OntNode
URI=”ex:MMDDYY”

partOf partOf typeOf

typeOf
OntNode
URI=”ex:WoleSale”

OntNode
URI=”ex:Retail”

isa isa

OntNode
URI=”ex:Price”

OntNode
URI=”ex:EUR”

OntNode
URI=”ex:USD”

typeOf typeOf

OntNode
URI=”ex:Offer”

OntNode
URI=”ex:Discount”

isa isa

Figure 4.14: Example

Correctness of the produced flow. Within a flow of ETL operations, the ex-
ecution order of the operations is significant, as different orderings may produce
semantically very different results. In [144], the issue of correctness of the execution
order of operations in an ETL workflow has been introduced, and formal rules have
been presented that ensure such correctness. In the same spirit, we work in the
approach presented in this work. For instance, assume two pairs of operations. The
first one involves a function that converts Euro values to Dollar values for an hy-
pothetical attribute Cost, and a filter that allows only cost values over 100 Dollars;
i.e., c : E → $ and f : $ > 100. In that case, it is necessary to have the function c,
represented as a CONVERT operation in our approach, before the filter operation f .
The second pair involves, let’s say, the same function c : E → $ and another one that
transforms dates from European to American format; i.e., c′ : EDate→ ADate. In
that case, both orderings either {c, c′} or {c′, c} are correct, since the two operations
are applied to different attributes (see [144] for more details.) Our method captures
both cases, as the desired ordering is determined by the (relative) position in the
ontology graph of the ontology nodes annotating the transformed data records.

4.3.6 Illustrative Example

We demonstrate the presented methodology by means of an example. The source
and target schemata used for this example have been chosen appropriately from the
TPC-H schema [160] to resemble typical real-world scenarios. We keep the example
concise, tailoring the source and target graphs so that a small number of schema
elements will suffice for demonstrating the main aspects of our framework.

We assume two main entities, namely customers and orders, while the whole
setting is represented in Table 4.12. A customer has a name, comprising his/her
first and last name, and an address, which consists of his/her country, city and

128

street. An order is placed in a particular date, which can be recorder in either the
“DD/MM/YY” or the “MM/DD/YY” format. It also refers to an amount of items.
This amount can be categorized as “retail” or “wholesale”, according to whether it
exceeds a specific threshold. Finally, the price of the order can be recorder in either
USD or EUR. We also assume the existence of special offers and discounts, and
suppose that the currency for the former is EUR, while for the latter it is USD. This
information is reflected in the sample ontology shown in Figure 4.14, where ontology
concepts are represented by round rectangles. The figure also illustrates a source and
a target schema (nodes prefixed with “s” and “t”, respectively), with their elements
being annotated by elements of the ontology (dotted lines). Notice, for example, the
structural differences in representing the customer’s name and address, as well as
the different formats and currencies used in the two data stores for an order’s date
and price.

This graph constitutes the starting point for the graph transformation process.
The annotations make explicit the semantics of the data in the corresponding ele-
ments, and are obtained either manually or semi-automatically (e.g., through au-
tomatic schema matching techniques [129, 140]) by the administrator through pro-
cesses ranging from oral communication with the administrators of the corresponding
data stores to study of the elements’ comments and/or accompanying documenta-
tion. Note that due to the size of the involved schemata, such graphs can be quite
large. This is not a disadvantage of our proposed approach, but an inherent dif-
ficulty of the ETL design task. Nevertheless, we can tackle this issue either by
exploiting existing advanced techniques for visualization of large graphs (e.g., [164])
or by using simple zoom-in/out techniques for exploring certain interesting parts of
the graph [165].

Next, the ETL flow is computed by the graph transformation engine, starting
from the above input graph and applying the rules presented in Section 4.3.4. To
better illustrate the process, we separately display the result produced by the exe-
cution of each layer of rules.

The result of the first layer is depicted in Figure 4.15(a). For brevity, we omit
the ontology nodes. Recall that the first layer is responsible for one-step trans-
formations. Hence, no data flow between the elements s:Price and t:Price has
been determined, as no single operation is sufficient to meet the required target
specification.

Afterward, the rules involving intermediate nodes are executed. The correspond-
ing output is shown in Figure 4.15(b). Notice the data flow that has now been
created between the elements s:Price and t:Price, comprising one CONVERT and
one FILTER operation. On the way, some intermediate nodes not leading to a tar-
get node, have been introduced. These are removed after the execution of layer 3
(Figure 4.15(c).) Finally, the EXTRACT and CONSTRUCT operations are incorporated
into SPLIT and MERGE operations, respectively, during the execution of layer 4. The
final result is presented in Figure 4.15(d).

4.4 Summary

In this chapter, we have proposed the use of an ontology to facilitate the conceptual
design of ETL processes. The available data sources are represented conceptually
by a graph and are annotated using an appropriate domain ontology. Then, we have

129

SrcNode
ID=”s:Customer”

SrcNode
ID=”s:Country”

SrcNode
ID=”s:City”

SrcNode
ID=”s:Street”

SrcNode
ID=”s:Name”

SrcNode
ID=”s:Order”

SrcNode
ID=”s:Date”

SrcNode
ID=”s:Amount”

SrcNode
ID=”s:Price”

TrgNode
ID=”t:Address”

TrgNode
ID=”t:FirstName”

TrgNode
ID=”t:LastName”

TrgNode
ID=”t:Customer”

TrgNode
ID=”t:Amount”

TrgNode
ID=”t:Date”

TrgNode
ID=”t:Price”

TrgNode
ID=”t:Order”

Operation
type=”LOAD”

Operation
type=”CONSTRUCT”

Operation
type=”CONSTRUCT”

Operation
type=”CONSTRUCT”

Operation
type=”EXTRACT”

Operation
type=”EXTRACT”

Operation
type=”FILTER”

Operation
type=”CONVERT”

Operation
type=”LOAD”

(a) layer 1

SrcNode
ID=”s:Customer”

SrcNode
ID=”s:Country”

SrcNode
ID=”s:City”

SrcNode
ID=”s:Street”

SrcNode
ID=”s:Name”

SrcNode
ID=”s:Order”

SrcNode
ID=”s:Date”

SrcNode
ID=”s:Amount”

SrcNode
ID=”s:Price”

TrgNode
ID=”t:Address”

TrgNode
ID=”t:FirstName”

TrgNode
ID=”t:LastName”

TrgNode
ID=”t:Customer”

TrgNode
ID=”t:Amount”

TrgNode
ID=”t:Date”

TrgNode
ID=”t:Price”

TrgNode
ID=”t:Order”

Operation
type=”LOAD”

Operation
type=”CONSTRUCT”

Operation
type=”CONSTRUCT”

Operation
type=”CONSTRUCT”

Operation
type=”EXTRACT”

Operation
type=”EXTRACT”

Operation
type=”FILTER”

Operation
type=”CONVERT”

Operation
type=”LOAD”

Operation
type=”EXTRACT”

Operation
type=”EXTRACT”

IntmNode IntmNode

Operation
type=”CONSTRUCT”

Operation
type=”CONSTRUCT”

Operation
type=”CONSTRUCT”

IntmNode IntmNode IntmNode

Operation
type=”FILTER”

IntmNode

Operation
type=”CONVERT”

IntmNode

Operation
type=”FILTER”

IntmNode

Operation
type=”CONVERT” IntmNode

Operation
type=”FILTER”

IntmNode

Operation
type=”FILTER”

(b) layer 2

SrcNode
ID=”s:Customer”

SrcNode
ID=”s:Country”

SrcNode
ID=”s:City”

SrcNode
ID=”s:Street”

SrcNode
ID=”s:Name”

SrcNode
ID=”s:Order”

SrcNode
ID=”s:Date”

SrcNode
ID=”s:Amount”

SrcNode
ID=”s:Price”

TrgNode
ID=”t:Address”

TrgNode
ID=”t:FirstName”

TrgNode
ID=”t:LastName”

TrgNode
ID=”t:Customer”

TrgNode
ID=”t:Amount”

TrgNode
ID=”t:Date”

TrgNode
ID=”t:Price”

TrgNode
ID=”t:Order”

Operation
type=”LOAD”

Operation
type=”CONSTRUCT”

Operation
type=”CONSTRUCT”

Operation
type=”CONSTRUCT”

Operation
type=”EXTRACT”

Operation
type=”EXTRACT”

Operation
type=”FILTER”

Operation
type=”CONVERT”

Operation
type=”LOAD”

Operation
type=”CONVERT” IntmNode Operation

type=”FILTER”

(c) layer 3

SrcNode
ID=”s:Customer”

SrcNode
ID=”s:Country”

SrcNode
ID=”s:City”

SrcNode
ID=”s:Street”

SrcNode
ID=”s:Name”

SrcNode
ID=”s:Order”

SrcNode
ID=”s:Date”

SrcNode
ID=”s:Amount”

SrcNode
ID=”s:Price”

TrgNode
ID=”t:Address”

TrgNode
ID=”t:FirstName”

TrgNode
ID=”t:LastName”

TrgNode
ID=”t:Customer”

TrgNode
ID=”t:Amount”

TrgNode
ID=”t:Date”

TrgNode
ID=”t:Price”

TrgNode
ID=”t:Order”

Operation
type=”LOAD”

Operation
type=”MERGE”

Operation
type=”SPLIT”

Operation
type=”FILTER”

Operation
type=”CONVERT”

Operation
type=”LOAD”

Operation
type=”CONVERT” IntmNode Operation

type=”FILTER”

(d) layer 4

Figure 4.15: Output of the graph transformation process

explored two directions for the design of the ETL process. In the first approach,
the semantic annotations and the ontology are used by an OWL reasoner to infer
correspondences and conflicts between the sources and the target. This allows to
identify the appropriate inter-schema mappings and transformations that should
drive the flow of data from the data sources to the target Data warehouse. The
second approach considers the design of an ETL process as a series of conditional
graph transformations. For this purpose, we have proposed a customizable and
extensible set of graph transformation rules, which drive the construction of the
ETL process, again in conjunction with the semantic information conveyed by the
associated ontology.

130

Chapter 5

Conclusions and Future Work

5.1 Conclusions

This thesis has focused on the discovery and selection of Semantic Web services, as
well as the discovery and integration of data from heterogeneous, distributed sources,
using ontologies. In the last years there has been an enormous and continuous growth
of the amount of the information available on the Web, as well as its diversity. At
the same time, the number of Web users has also increased significantly, and their
needs have become more complex. These facts have raised new challenges in the way
information is organized, searched, and delivered to the user. In this direction, this
thesis has proposed novel techniques for discovering relevant information sources and
services, and for reconciling and integrating data from distributed, heterogeneous
sources to meet the user needs. The presented work exploits the advances of the
research towards the transition to the Semantic Web, and relies on the semantic
annotation of data sources and services with appropriate ontologies.

First, we have dealt with the problem of service discovery and selection on the
Semantic Web. Previous research efforts have focused on approaches to enhance
the service descriptions with semantic information, and then to exploit this infor-
mation to address the matchmaking between requested and offered services through
logic inference. Our work elaborates on these approaches and extends them pro-
viding more advanced capabilities. We have argued for the importance of ranking
the match results, and we have proposed a semantic similarity measure to quantify
the degree of match between the descriptions of requested and offered services. In
contrast to previous approaches, which aggregate the degrees of match between in-
dividual service parameters to compute the overall degree of match, thus resulting
in information loss, we have proposed a method to select the best matches based on
the notion of skyline queries. Moreover, in contrast to previous work that recognises
the need to use multiple matching criteria for service discovery but treats them as
alternatives, we propose methods that select the best matches taking into consid-
eration all the available matching criteria simultaneously. The proposed methods
have been validated through experimental analysis and comparison to existing ap-
proaches, showing that they achieve a significant improvement of the precision of
the retrieved results.

Following that, we have focused on the search of services and data in distributed
environments. Motivated by the benefits in the precision of service retrieval due
to our ranking methods, as well as the need to improve the efficiency of the search

131

engine, we have emphasized on retrieving results progressively. For this purpose
we have exploited an encoding of the service descriptions based on the use of a
labeling scheme for concept hierarchies, which allows the matchmaking to be per-
formed without invoking the reasoner at query time. Then we have shown how these
encoded representations can be stored and search in a suitable, structured P2P over-
lay network. Our experimental results support the case for progressive search and
demonstrate the resulting savings in the search cost. Next, we have considered an
alternative distributed settings, where peers in an unstructured network share se-
mantically annotated, structured data. In contrast to traditional approaches which
typically emphasize on (strict) query rewriting algorithms, our work considered the
exploitation of the additional semantic information to identify peers with relevant
content or peers that are potentially more capable of answering a particular request.

Finally, we have considered the problem of reconciling and integrating data from
heterogeneous sources that have been previously discovered, in order to meet the
user needs and specifications. We have considered the use of Extract-Transform-
Load processes for this purpose, and in particular we have focused on the use of
ontologies to facilitate their conceptual design. Our approach assumes that the
ETL designer uses an appropriate domain ontology to annotate the involved data
sources, and then, based on these annotations, our method automatically infers sev-
eral operations that are required to transform data from the sources to the target.
Instead, existing tools and approaches for this task focus on providing the user with
the means to graphically specify the ETL scenario, but the identification of the op-
erations required is done manually. In fact, our approach provides two alternative
methods. In the first case, a reasoner is used directly to infer correspondences and
conflicts between the data sources and the target. In the latter case, the ETL sce-
nario is constructed in a step-by-step manner, based on a set of graph transformation
rules, which gives to the user more control of the process.

All the aforementioned techniques proposed in this thesis, combined, address
and facilitate several major tasks necessary to achieve the overall goal which is to
use semantics to discover services on the Web and to integrate data coming from
heterogeneous sources.

5.2 Future Work

In the previous chapters we have presented in detail the outcomes of the work
conducted in the context of this thesis. Still, several research issues remain open.
We conclude by identifying and outlining the most prominent ones:

• The problems considered in this thesis are very relevant to trends and re-
quirements that can be identified in other emerging paradigms as well, most
notably sensor networks and grid computing. The former are networks of spa-
tially distributed autonomous devices using sensors to cooperatively monitor
the environment. The Semantic Sensor Web [139] is an attempt to annotate
sensor data with spatial, temporal, and thematic metadata. This will facil-
itate the discovery and analysis of these data, and, consequently, will allow
the monitoring of complex events and situations. In grid computing, a cluster
of networked, loosely-coupled computers share resources and collaborate to

132

perform a very large task. The Semantic Grid [1] is an extension where com-
puting resources and services are annotated with metadata to facilitate their
discovery and integration. Thus, it would be a very interesting challenge to
study how the techniques proposed in this thesis can be adapted or extended
to provide solutions to such environments.

• Another important issue when transforming data from a set of sources to a
target repository, is related to the notion of provenance [30]. Provenance refers
essentially to capturing, representing, and managing metadata for tracing the
origin of data elements that take part in various operations. It can be viewed at
different levels of detail, such as: which sources contribute to a given element;
which particular elements within these sources; which transformations has this
element undergone. Provenance plays a significant role in several aspects, most
notably it can be used to: determine why a specific data value exists in the
target repository, for instance explaining whether a recorded profit loss is due
to an actual decrease on sales or due to changes on currency exchange rates;
assign default values to missing data elements, based on their source of origin,
creation time, etc.; determine the accuracy, timeliness, and confidence of the
information presented to the user.

• When data are gathered from several distributed, heterogeneous sources, po-
tentially of different levels of quality, they may be uncertain, incomplete or
inconsistent. This requires advanced techniques in order to manage and rea-
son with such data. Hence, it would be a challenging issue to study how the
techniques proposed in this thesis can be adapted to take into account this
additional aspect. An overview of basic concepts and a survey of existing
techniques regarding this topic can be found in [124].

• Our work on service discovery has assumed that a match result comprises a
single available service. However, it is likely in some cases that no single ser-
vice exists that meets the specified criteria, but instead it may be possible to
provide the required functionality by composing available services. Hence, the
service discovery engine could be enhanced with service composition capabili-
ties. Indeed, service composition is a research topic that has been attracting a
lot of research interest over the recent years, and a variety of techniques have
been proposed, ranging from workflows to AI planning [131].

• Our approach for data sharing on ontology-enhanced Peer Data Management
Systems can be further extended in two main aspects. First, our current ap-
proach takes into consideration only information at the schema level. This
could be complemented by techniques that take into account data-level in-
formation, i.e., summaries and statistics about the peers’ contents, as well as
statistics and cached results from previous queries. Second, the comparison is
currently performed between pairs of neighboring peers. It would be desirable
to extend this comparison to a cluster of peers, so that when a peer chooses the
direction to forward a query, it would take into account not only the peer in
the next hop but other subsequent peers along that path as well. This would
allow to build routing indexes for query forwarding, along the lines of the work
presented in [99]. Finally, another direction is to explore the application of

133

the proposed semantic similarity measure in the context of social networks, in
order to identify users with relevant profiles and interests.

• The work concerning the design of ETL processes has focused on their design
at the conceptual level. However, the uttermost goal of such a task is to
specify also the design at the logical and physical levels. Hence, an extension
of the work would be to study the transition from the conceptual to the logical
level, along the lines of the work presented in [142]. Also, another interesting
and important issue is to study the effect of evolution to the design of the
ETL process, i.e., how the ETL scenario can be automatically adapted when
changes to the schemas of the sources or the target occur [121].

134

Bibliography

[1] The Semantic Grid: A Future e-Science Infrastructure, John Wiley & Sons,
2003.

[2] Karl Aberer, Philippe Cudré-Mauroux, and Manfred Hauswirth, Start Making
Sense: The Chatty Web Approach for Global Semantic Agreements, J. Web
Sem. 1 (2003), no. 1, 89–114.

[3] Karl Aberer, Philippe Cudré-Mauroux, Manfred Hauswirth, and Tim Van
Pelt, GridVine: Building Internet-Scale Semantic Overlay Networks, ISWC,
2004, pp. 107–121.

[4] Serge Abiteboul, Peter Buneman, and Dan Suciu, Data on the Web: From
Relations to Semistructured Data and XML, Morgan Kaufmann Publishers
Inc., 2000.

[5] Sanjay Agrawal, Surajit Chaudhuri, Gautam Das, and Aristides Gionis, Au-
tomated Ranking of Database Query Results, CIDR, 2003.

[6] Rama Akkiraju and et. al., Web Service Semantics - WSDL-S, W3C Member
Submission, November 2005.

[7] Rama Akkiraju, Richard Goodwin, Prashant Doshi, and Sascha Roeder,
A Method for Semantically Enhancing the Service Discovery Capabilities of
UDDI., IIWeb, 2003, pp. 87–92.

[8] José Luis Ambite and Dipsy Kapoor, Automatically Composing Data Work-
flows with Relational Descriptions and Shim Services, ISWC/ASWC, 2007,
pp. 15–29.

[9] Stephanos Androutsellis-Theotokis and Diomidis Spinellis, A Survey of Peer-
to-Peer Content Distribution Technologies, ACM Comput. Surv. 36 (2004),
no. 4, 335–371.

[10] Grigoris Antoniou and Frank van Harmelen, A Semantic Web Primer, 2nd
Edition, 2 ed., The MIT Press, March 2008.

[11] Marcelo Arenas, Vasiliki Kantere, Anastasios Kementsietsidis, Iluju Kiringa,
Renée J. Miller, and John Mylopoulos, The Hyperion Project: From Data
Integration to Data Coordination, SIGMOD Record 32 (2003), no. 3, 53–58.

[12] Marcelo Arenas and Leonid Libkin, XML Data Exchange: Consistency and
Query Answering, 24th ACM SIGACT-SIGMOD-SIGART Symposium on
Principles of Database Systems, 2005, pp. 13–24.

135

[13] Yigal Arens, Craig A. Knoblock, and Wei-Min Shen, Query Reformulation
for Dynamic Information Integration, J. Intell. Inf. Syst. 6 (1996), no. 2/3,
99–130.

[14] Javed A. Aslam and Mark H. Montague, Models for Metasearch, SIGIR, 2001,
pp. 275–284.

[15] Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele Nardi, and
Peter F. Patel-Schneider (eds.), The Description Logic Handbook: Theory,
Implementation, and Applications, Cambridge University Press, 2003.

[16] Ricardo A. Baeza-Yates and Berthier A. Ribeiro-Neto, Modern Information
Retrieval, ACM Press / Addison-Wesley, 1999.

[17] C. Ballard, D. Herreman, D. Schau, R. Bell, K. Eunsaeng, and A. Valencic,
Data Modeling Techniques for Data Warehousing, IBM Red Book, 1998.

[18] Ilaria Bartolini, Paolo Ciaccia, and Marco Patella, SaLSa: Computing the
Skyline Without Scanning the Whole Sky, ACM CIKM, 2006, pp. 405–414.

[19] Ulrich Basters and Matthias Klusch, RS2D: Fast Adaptive Search for Semantic
Web Services in Unstructured P2P Networks, ISWC, 2006, pp. 87–100.

[20] Catriel Beeri, Alon Y. Levy, and Marie-Christine Rousset, Rewriting Queries
Using Views in Description Logics, PODS, 1997, pp. 99–108.

[21] Umesh Bellur and Roshan Kulkarni, Improved Matchmaking Algorithm for Se-
mantic Web Services Based on Bipartite Graph Matching, ICWS, 2007, pp. 86–
93.

[22] T. Bellwood, L. Clément, D. Ehnebuske, A. Hately, Maryann Hondo, Y.L.
Husband, K. Januszewski, S. Lee, B. McKee, J. Munter, and C. von Riegen,
The Universal Description, Discovery and Integration (UDDI) protocol. Ver-
sion 3, UDDI.org, 2003.

[23] Tim Berners-Lee, James Hendler, and Ora Lassila, The Semantic Web, Scien-
tific American 284 (2001), no. 5, 34–43.

[24] Michael Böhnlein and Achim Ulbrich vom Ende, Deriving Initial Data Ware-
house Structures from the Conceptual Data Models of the Underlying Opera-
tional Information Systems, ACM 2nd International Workshop on Data Ware-
housing and OLAP, 1999, pp. 15–21.

[25] Kalina Bontcheva, Generating Tailored Textual Summaries from Ontologies,
ESWC, 2005, pp. 531–545.

[26] Kalina Bontcheva and Yorick Wilks, Automatic Report Generation from On-
tologies: The MIAKT Approach, NLDB, 2004, pp. 324–335.

[27] W. N. Borst, Construction of Engineering Ontologies for Knowledge Sharing
and Reuse, Ph.D. thesis, University of Enschede, 1997.

[28] Stephan Börzsönyi, Donald Kossmann, and Konrad Stocker, The Skyline Op-
erator, ICDE, 2001, pp. 421–430.

136

[29] Dan Brickley and R.V. Guha, RDF Vocabulary Description Language 1.0:
RDF Schema, W3c recommendation, W3C, 2004.

[30] Peter Buneman and Wang Chiew Tan, Provenance in Databases, SIGMOD
Conference, 2007, pp. 1171–1173.

[31] Mark Burstein and et. al., OWL-S: Semantic Markup for Web Services, W3C
Member Submission, November 2004.

[32] Andrea Cal̀ı, Diego Calvanese, Giuseppe De Giacomo, and Maurizio Lenzerini,
Data Integration Under Integrity Constraints., Inf. Syst. 29 (2004), no. 2, 147–
163.

[33] Diego Calvanese, Giuseppe De Giacomo, and Maurizio Lenzerini, Answering
Queries Using Views in Description Logics, 6th International Workshop on
Knowledge Representation meets Databases, 1999, pp. 6–10.

[34] Diego Calvanese, Giuseppe De Giacomo, and Riccardo Rosati, Data Integra-
tion and Reconciliation in data Warehousing: Conceptual Modeling and Rea-
soning Support, Networking and Information Systems 2 (1999), no. 4, 413–432.

[35] Jorge Cardoso, Discovering Semantic Web Services with and without a Com-
mon Ontology Commitment, IEEE SCW, 2006, pp. 183–190.

[36] Tiziana Catarci and Maurizio Lenzerini, Representing and Using Interschema
Knowledge in Cooperative Information Systems, Int. J. Cooperative Inf. Syst.
2 (1993), no. 4, 375–398.

[37] Suleyman Cetintas and Luo Si, Exploration of the Tradeoff Between Effec-
tiveness and Efficiency for Results Merging in Federated Search, SIGIR, 2007,
pp. 707–708.

[38] Roberto Chinnici, Jean-Jacques Moreau, Arthur Ryman, and Sanjiva Weer-
awarana, Web Services Description Language (WSDL) Version 2.0, W3C
Technical Report, 2007.

[39] Jan Chomicki, Parke Godfrey, Jarek Gryz, and Dongming Liang, Skyline with
Presorting, ICDE, 2003, pp. 717–816.

[40] Vassilis Christophides, Gregory Karvounarakis, Dimitris Plexousakis, Michel
Scholl, and Sotirios Tourtounis, Optimizing Taxonomic Semantic Web Queries
Using Labeling Schemes, J. Web Sem. 1 (2004), no. 2, 207–228.

[41] Wesley W. Chu and Guogen Zhang, Associative Query Answering via Query
Feature Similarity, IIS, 1997, p. 405.

[42] William W. Cohen, Pradeep Ravikumar, and Stephen E. Fienberg, A Com-
parison of String Metrics for Matching Names and Records, Data Cleaning
Workshop in conjunction with KDD, 2003, pp. 13–18.

[43] John Colgrave, Rama Akkiraju, and Richard Goodwin, External Matching in
UDDI, ICWS, 2004, p. 226.

137

[44] Arturo Crespo and Hector Garcia-Molina, Semantic Overlay Networks for P2P
Systems, AP2PC, 2004, pp. 1–13.

[45] Hercules Dalianis and Eduard H. Hovy, Aggregation in Natural Language Gen-
eration, European Workshop on Natural Language Generation (EWNLG),
1993, pp. 88–105.

[46] Xin Dong, Alon Y. Halevy, Jayant Madhavan, Ema Nemes, and Jun Zhang,
Similarity Search for Web Services, VLDB, 2004, pp. 372–383.

[47] Dejing Dou, Drew V. McDermott, and Peishen Qi, Ontology Translation on
the Semantic Web, J. Data Semantics 2 (2005), 35–57.

[48] Ronald Fagin, Phokion G. Kolaitis, Renée J. Miller, and Lucian Popa, Data
Exchange: Semantics and Query Answering, Theor. Comput. Sci. 336 (2005),
no. 1, 89–124.

[49] Ronald Fagin, Phokion G. Kolaitis, and Lucian Popa, Data Exchange: Getting
to the Core, ACM Trans. Database Syst. 30 (2005), no. 1, 174–210.

[50] Ronald Fagin, Amnon Lotem, and Moni Naor, Optimal Aggregation Algo-
rithms for Middleware, PODS, 2001.

[51] Mohamed Farah and Daniel Vanderpooten, An Outranking Approach for Rank
Aggregation in Information Retrieval, SIGIR, 2007, pp. 591–598.

[52] Edward A. Fox and Joseph A. Shaw, Combination of Multiple Searches, 2nd
TREC, NIST, 1993, pp. 243–252.

[53] Antara Ghosh, Jignashu Parikh, Vibhuti S. Sengar, and Jayant R. Haritsa,
Plan Selection Based on Query Clustering, VLDB, 2002, pp. 179–190.

[54] Fausto Giunchiglia, Mikalai Yatskevich, and Pavel Shvaiko, Semantic Match-
ing: Algorithms and Implementation, J. Data Semantics 9 (2007), 1–38.

[55] Matteo Golfarelli and Stefano Rizzi, Methodological Framework for Data
Warehouse Design, ACM 1st International Workshop on Data Warehousing
and OLAP, 1998, pp. 3–9.

[56] Matteo Golfarelli, Stefano Rizzi, and Boris Vrdoljak, Data Warehouse Design
from XML Sources, ACM 4th International Workshop on Data Warehousing
and OLAP, 2001, pp. 40–47.

[57] Google Mashup Editor, http://www.googlemashups.com.

[58] Georg Gottlob, Web Data Extraction for Business Intelligence: The Lixto
Approach, BTW, 2005, pp. 30–47.

[59] Antonin Guttman, R-Trees: A Dynamic Index Structure for Spatial Searching,
SIGMOD Conference, 1984, pp. 47–57.

[60] H. Lausen, A. Polleres, and D. Roman (eds.), Web Service Modeling Ontology
(WSMO), W3C Member Submission, June 2005.

138

[61] Peter Haase, Björn Schnizler, Jeen Broekstra, Marc Ehrig, Frank van Harme-
len, Maarten Menken, Peter Mika, Michal Plechawski, Pawel Pyszlak, Ronny
Siebes, Steffen Staab, and Christoph Tempich, Bibster - a semantics-based
bibliographic Peer-to-Peer system, J. Web Sem. 2 (2004), no. 1, 99–103.

[62] Karl Hahn, Carsten Sapia, and Markus Blaschka, Automatically Generating
OLAP Schemata from Conceptual Graphical Models, ACM 3rd International
Workshop on Data Warehousing and OLAP, 2000, pp. 9–16.

[63] Alon Y. Halevy, Answering Queries Using Views: A Survey, VLDB J. 10
(2001), no. 4, 270–294.

[64] , Answering queries using views: A survey, VLDB J. 10 (2001), no. 4,
270–294.

[65] Alon Y. Halevy, Zachary G. Ives, Peter Mork, and Igor Tatarinov, Piazza:
Data Management Infrastructure for Semantic Web Applications, WWW,
2003, pp. 556–567.

[66] Alon Y. Halevy, Zachary G. Ives, Dan Suciu, and Igor Tatarinov, Schema
Mediation in Peer Data Management Systems, ICDE, 2003, pp. 505–516.

[67] Sidath B. Handurukande, Anne-Marie Kermarrec, Fabrice Le Fessant, and
Laurent Massoulié, Exploiting Semantic Clustering in the eDonkey P2P Net-
work, ACM SIGOPS European Workshop, 2004, p. 20.

[68] Jeffrey Hau, William Lee, and John Darlington, A Semantic Similarity
Measure for Semantic Web Services, Web Service Semantics Workshop at
WWW2005 (2005).

[69] Bodo Hüsemann, Jens Lechtenbörger, and Gottfried Vossen, Conceptual Data
Warehouse Modeling, DMDW, 2000, p. 6.

[70] David F. Huynh, Robert C. Miller, and David R. Karger, Potluck: Data Mash-
Up Tool for Casual Users, ISWC/ASWC, 2007, pp. 239–252.

[71] IBM Data Warehouse Manager, http://www.ibm.com/software/data/db2/datawarehouse.

[72] Informatica PowerCenter, http://www.informatica.com/products/powercenter.

[73] Krzysztof Janowicz, Sim-DL: Towards a Semantic Similarity Measurement
Theory for the Description Logic CNR in Geographic Information Retrieval,
OTM Workshops (2), 2006, pp. 1681–1692.

[74] Thorsten Joachims and Filip Radlinski, Search Engines that Learn from Im-
plicit Feedback, IEEE Computer 40 (2007), no. 8, 34–40.

[75] Holger Lausen Joel Farrell, Semantic Annotations for WSDL and XML
Schema, W3C Recommendation, August 2007.

[76] Yannis Kalfoglou and Marco Schorlemmer, Ontology Mapping: The State of
the Art, Knowl. Eng. Rev. 18 (2003), no. 1, 1–31.

139

[77] V. Kantere, S. Skiadopoulos, and T. Sellis, Storing and Indexing Spatial Data
in P2P Systems, IEEE Transactions on Knowledge and Data Engineering
(TKDE), (to appear).

[78] Vasiliki Kantere, Iluju Kiringa, John Mylopoulos, Anastasios Kementsiet-
sidis, and Marcelo Arenas, Coordinating Peer Databases Using ECA Rules,
DBISP2P, 2003, pp. 108–122.

[79] Frank Kaufer and Matthias Klusch, WSMO-MX: A Logic Programming Based
Hybrid Service Matchmaker, ECOWS, 2006, pp. 161–170.

[80] Takahiro Kawamura, Jacques-Albert De Blasio, Tetsuo Hasegawa, Massimo
Paolucci, and Katia P. Sycara, Public Deployment of Semantic Service Match-
maker with UDDI Business Registry., ISWC, 2004, pp. 752–766.

[81] Zoubida Kedad and Elisabeth Métais, Ontology-Based Data Cleaning, NLDB,
2002, pp. 137–149.

[82] Ralph Kimball and Joe Caserta, The Data Warehouse ETL Toolkit: Practical
Techniques for Extracting, Cleaning, Conforming, and Delivering Data, John
Wiley & Sons, 2004.

[83] Ralph Kimball, Laura Reeves, Warren Thornthwaite, Margy Ross, and War-
ren Thornwaite, The Data Warehouse Lifecycle Toolkit: Expert Methods for
Designing, Developing and Deploying Data Warehouses, John Wiley & Sons,
1998.

[84] Matthias Klusch, Benedikt Fries, and Katia P. Sycara, Automated Semantic
Web service discovery with OWLS-MX, AAMAS, 2006, pp. 915–922.

[85] George Kokkinidis, Eleytherios Sidirourgos, and Vassilis Christophides, Se-
mantic Web and Peer-to-Peer, Springer-Verlag, 2006.

[86] Phokion G. Kolaitis, Jonathan Panttaja, and Wang Chiew Tan, The Complex-
ity of Data Exchange, 25th ACM SIGACT-SIGMOD-SIGART Symposium on
Principles of Database Systems, 2006, pp. 30–39.

[87] Donald Kossmann, Frank Ramsak, and Steffen Rost, Shooting Stars in the
Sky: An Online Algorithm for Skyline Queries, VLDB, 2002, pp. 275–286.

[88] H. T. Kung, F. Luccio, and F. P. Preparata, On Finding the Maxima of a Set
of Vectors, J. ACM 22 (1975), no. 4, 469–476.

[89] Jong-Hak Lee, Analyses of Multiple Evidence Combination, SIGIR, 1997,
pp. 267–276.

[90] Ken C. K. Lee, Baihua Zheng, Huajing Li, and Wang-Chien Lee, Approaching
the Skyline in Z Order, VLDB, 2007, pp. 279–290.

[91] Maurizio Lenzerini, Data Integration: A Theoretical Perspective, PODS, 2002,
pp. 233–246.

140

[92] , Data Integration: A Theoretical Perspective, 21st ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database Systems, 2002,
pp. 233–246.

[93] Lei Li and Ian Horrocks, A Software Framework for Matchmaking based on
Semantic Web Technology., WWW, 2003, pp. 331–339.

[94] Yong Li, Sen Su, and Fangchun Yang, A Peer-to-Peer Approach to Semantic
Web Services Discovery, ICCS (4), 2006, pp. 73–80.

[95] Leonid Libkin, Data Exchange and Incomplete Information, 25th ACM
SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems,
2006, pp. 60–69.

[96] David Lillis, Fergus Toolan, Rem W. Collier, and John Dunnion, ProbFuse:
A Probabilistic Approach to Data Fusion, SIGIR, 2006, pp. 139–146.

[97] Dekang Lin, An Information-Theoretic Definition of Similarity., ICML, 1998,
pp. 296–304.

[98] Sergio Luján-Mora, Panos Vassiliadis, and Juan Trujillo, Data Mapping Dia-
grams for Data Warehouse Design with UML, ER, 2004, pp. 191–204.

[99] Federica Mandreoli, Riccardo Martoglia, Simona Sassatelli, and Wilma Penzo,
SRI: Exploiting Semantic Information for Effective Query Routing in a PDMS,
WIDM, 2006, pp. 19–26.

[100] Frank Manola and Eric Miller, RDF Primer, W3C Recommendation, W3C,
2004.

[101] Jose-Norberto Mazón and Juan Trujillo, Enriching Data Warehouse Dimen-
sion Hierarchies by Using Semantic Relations, BNCOD, 2006, pp. 278–281.

[102] Jose-Norberto Mazón, Juan Trujillo, Manuel Serrano, and Mario Piattini, Ap-
plying MDA to the Development of Data Warehouses, ACM 8th International
Workshop on Data Warehousing and OLAP, 2005, pp. 57–66.

[103] Deborah L. McGuinness and Frank van Harmelen, OWL Web On-
tology Language Overview, W3C Recommendation, W3C, Feb. 2004,
http://www.w3.org/TR/2004/REC-owl-features-20040210.

[104] Microsoft Data Transformation Services, http://www.microsoft.com/sql/prodinfo/features.

[105] Microsoft Popfly, http://www.popfly.com.

[106] George A. Miller, WordNet: A Lexical Database for English, Commun. ACM
38 (1995), no. 11, 39–41.

[107] Mark H. Montague and Javed A. Aslam, Condorcet Fusion for Improved Re-
trieval, ACM CIKM, 2002, pp. 538–548.

[108] Daniel L. Moody and Mark A. R. Kortink, From Enterprise Models to Dimen-
sional Models: a Methodology for Data Warehouse and Data Mart Design.,
2nd International Workshop on Design and Management of Data Warehouses,
2000, pp. 5.1–5.12.

141

[109] Lúıs Mota and Lúıs Botelho, OWL Ontology Translation for the Semantic
Web, Proceedings of the Semantic Computing Workshop in conjunction with
WWW, 2005.

[110] MySpace, http://www.myspace.com.

[111] Tapio Niemi, Santtu Toivonen, Marko Niinimäki, and Jyrki Nummenmaa,
Ontologies with Semantic Web/Grid in Data Integration for OLAP, Int. J.
Semantic Web Inf. Syst. 3 (2007), no. 4, 25–49.

[112] Natalya Fridman Noy and Mark A. Musen, PROMPT: Algorithm and Tool for
Automated Ontology Merging and Alignment, AAAI/IAAI, 2000, pp. 450–455.

[113] Oracle Warehouse Builder, http://www.oracle.com/technology/products/warehouse.

[114] Orkut, http://www.orkut.com.

[115] OWL-S Service Retrieval Test Collection (OWLS-TC), http://www-
ags.dfki.uni-sb.de/ klusch/owls-mx.

[116] Jeff Z. Pan and Ian Horrocks, OWL-Eu: Adding customised datatypes into
owl, ESWC, 2005.

[117] Massimo Paolucci, Takahiro Kawamura, Terry R. Payne, and Katia P. Sycara,
Importing the Semantic Web in UDDI., WES, 2002, pp. 225–236.

[118] , Semantic Matching of Web Services Capabilities., ISWC, 2002,
pp. 333–347.

[119] Massimo Paolucci, Katia P. Sycara, Takuya Nishimura, and Naveen Srini-
vasan, Using DAML-S for P2P Discovery, ICWS, 2003, pp. 203–207.

[120] Dimitris Papadias, Yufei Tao, Greg Fu, and Bernhard Seeger, Progressive
Skyline Computation in Database Systems, TODS 30 (2005), no. 1, 41–82.

[121] George Papastefanatos, Panos Vassiliadis, Alkis Simitsis, and Yannis Vassiliou,
Design Metrics for Data Warehouse Evolution, ER, 2008, pp. 440–454.

[122] Giorgos Papastefanatos, Panos Vassiliadis, Alkis Simitsis, and Yannis Vassil-
iou, Policy-regulated Management of ETL Evolution, J. Data Semantics, (to
appear).

[123] Peter F. Patel-Schneider and Ian Horrocks, OWL 1.1 Web Ontology Language,
W3C Member Submission, W3C, Dec. 2006.

[124] Jian Pei, Ming Hua, Yufei Tao, and Xuemin Lin, Query Answering Techniques
on Uncertain and Probabilistic Data: tutorial summary, SIGMOD Conference,
2008, pp. 1357–1364.

[125] Jian Pei, Bin Jiang, Xuemin Lin, and Yidong Yuan, Probabilistic Skylines on
Uncertain Data, VLDB, 2007, pp. 15–26.

[126] Cassandra Phipps and Karen C. Davis, Automating Data Warehouse Concep-
tual Schema Design and Evaluation, 4th International Workshop on Design
and Management of Data Warehouses, 2002, pp. 23–32.

142

[127] Lucian Popa, Yannis Velegrakis, Renée J. Miller, Mauricio A. Hernández, and
Ronald Fagin, Translating Web Data, 28th International Conference on Very
Large Data Bases, 2002, pp. 598–609.

[128] Franco P. Preparata and Michael I. Shamos, Computational Geometry: An
Introduction, Springer-Verlag New York, Inc., 1985.

[129] Erhard Rahm and Philip A. Bernstein, A Survey of Approaches to Automatic
Schema Matching, VLDB J. 10 (2001), no. 4, 334–350.

[130] Random Dataset Generator for SKYLINE Operator Evaluation,
http://randdataset.projects.postgresql.org.

[131] Jinghai Rao and Xiaomeng Su, A Survey of Automated Web Service Compo-
sition Methods, SWSWPC, 2004, pp. 43–54.

[132] Mike Reape and Chris Mellish, Just What is Aggregation Anyway, European
Workshop on Natural Language Generation (EWNLG), 1999.

[133] Philip Resnik, Using Information Content to Evaluate Semantic Similarity in
a Taxonomy., IJCAI, 1995, pp. 448–453.

[134] Oscar Romero and Alberto Abelló, Automating Multidimensional Design from
Ontologies, DOLAP, 2007, pp. 1–8.

[135] Grzegorz Rozenberg (ed.), Handbook of Graph Grammars and Computing by
Graph Transformations, Volume 1: Foundations, World Scientific, 1997.

[136] Vincent Schickel-Zuber and Boi Faltings, OSS: A Semantic Similarity Func-
tion based on Hierarchical Ontologies., IJCAI, 2007, pp. 551–556.

[137] Mario T. Schlosser, Michael Sintek, Stefan Decker, and Wolfgang Nejdl, A
Scalable and Ontology-Based P2P Infrastructure for Semantic Web Services,
P2P Computing, 2002, pp. 104–111.

[138] Cristina Schmidt and Manish Parashar, A Peer-to-Peer Approach to Web Ser-
vice Discovery, WWW 7 (2004), no. 2, 211–229.

[139] Amit Sheth, Cory Henson, and Satya Sahoo, Semantic Sensor Web, IEEE
Internet Computing 12 (2008), no. 4, 78–83.

[140] Pavel Shvaiko and Jérôme Euzenat, A Survey of Schema-Based Matching Ap-
proaches, J. Data Semantics IV (2005), 146–171.

[141] Luo Si and Jamie Callan, CLEF 2005: Multilingual Retrieval by Combining
Multiple Multilingual Ranked Lists, Proceedings of the 6th Workshop of the
Cross-Language Evalution Forum, 2005, pp. 121–130.

[142] Alkis Simitsis, Mapping Conceptual to Logical Models for ETL Processes, ACM
8th International Workshop on Data Warehousing and OLAP, 2005, pp. 67–76.

[143] Alkis Simitsis, Dimitrios Skoutas, and Malú Castellanos, Natural Language
Reporting for ETL Processes, DOLAP, 2008, pp. 65–72.

143

[144] Alkis Simitsis, Panos Vassiliadis, and Timos K. Sellis, State-Space Optimiza-
tion of ETL Workflows, IEEE Trans. Knowl. Data Eng. 17 (2005), no. 10,
1404–1419.

[145] David E. Simmen, Mehmet Altinel, Volker Markl, Sriram Padmanabhan, and
Ashutosh Singh, Damia: Data Mashups for Intranet Applications, SIGMOD,
2008, pp. 1171–1182.

[146] Dimitrios Skoutas, Verena Kantere, Alkis Simitsis, and Timos Sellis, Ontology-
Based Data Sharing in P2P Databases, SWDB-ODBIS, 2007, pp. 117–137.

[147] Dimitrios Skoutas, Dimitris Sacharidis, Verena Kantere, and Timos Sellis, Ef-
ficient Semantic Web Service Discovery in Centralized and P2P Environments,
International Semantic Web Conference, 2008, pp. 583–598.

[148] Dimitrios Skoutas, Dimitris Sacharidis, Alkis Simitsis, Verena Kantere, and
Timos Sellis, Top-k Dominant Web Services Under Multi-Criteria Matching,
EDBT, 2009.

[149] Dimitrios Skoutas, Dimitris Sacharidis, Alkis Simitsis, and Timos Sellis, Serv-
ing the Sky: Discovering and Selecting Semantic Web Services through Dy-
namic Skyline Queries, ICSC, 2008, pp. 222–229.

[150] Dimitrios Skoutas and Alkis Simitsis, Designing ETL Processes Using Seman-
tic Web Technologies, DOLAP, 2006, pp. 67–74.

[151] , Flexible and Customizable NL Representation of Requirements for
ETL processes, NLDB, 2007, pp. 433–439.

[152] , Ontology-Based Conceptual Design of ETL Processes for Both Struc-
tured and Semi-Structured Data, Int. J. Semantic Web Inf. Syst. 3 (2007),
no. 4, 1–24.

[153] Dimitrios Skoutas, Alkis Simitsis, and Timos Sellis, A Ranking Mechanism for
Semantic Web Service Discovery, IEEE SCW, 2007, pp. 41–48.

[154] , Ontology-driven Conceptual Design of ETL Processes Using Graph
Transformations, JoDS Special Issue on ”Semantic Data Warehouses” (2009).

[155] Naveen Srinivasan, Massimo Paolucci, and Katia P. Sycara, An Efficient Algo-
rithm for OWL-S Based Semantic Search in UDDI., SWSWPC, 2004, pp. 96–
110.

[156] Kunwadee Sripanidkulchai, Bruce M. Maggs, and Hui Zhang, Efficient Con-
tent Location Using Interest-Based Locality in Peer-to-Peer Systems, INFO-
COM, 2003.

[157] Steffen Staab and Heiner Stuckenschmidt (eds.), Semantic Web and Peer-to-
Peer, Springer-Verlag, 2006.

[158] Kian-Lee Tan, Pin-Kwang Eng, and Beng Chin Ooi, Efficient Progressive Sky-
line Computation, VLDB, 2001, pp. 301–310.

144

[159] Chunqiang Tang, Zhichen Xu, and Sandhya Dwarkadas, Peer-to-peer infor-
mation retrieval using self-organizing semantic overlay networks, SIGCOMM,
2003, pp. 175–186.

[160] The TPC-H benchmark, http://www.tpc.org/tpch.

[161] TREC, http://trec.nist.gov.

[162] Juan Trujillo and Sergio Luján-Mora, A UML Based Approach for Modeling
ETL Processes in Data Warehouses, ER, 2003, pp. 307–320.

[163] Amos Tversky, Features of Similarity, Psychological Review, vol. 84, 1977,
pp. 327–352.

[164] Yannis Tzitzikas and Jean-Luc Hainaut, How to Tame a Very Large ER Di-
agram (Using Link Analysis and Force-Directed Drawing Algorithms), ER,
2005, pp. 144–159.

[165] Panos Vassiliadis, Alkis Simitsis, Panos Georgantas, Manolis Terrovitis, and
Spiros Skiadopoulos, A generic and customizable framework for the design of
ETL scenarios, Inf. Syst. 30 (2005), no. 7, 492–525.

[166] Panos Vassiliadis, Alkis Simitsis, and Spiros Skiadopoulos, Conceptual Model-
ing for ETL Processes, DOLAP, 2002, pp. 14–21.

[167] Kunal Verma, Kaarthik Sivashanmugam, Amit Sheth, Abhijit Patil, Swapna
Oundhakar, and John Miller, METEOR-S WSDI: A Scalable P2P Infrastruc-
ture of Registries for Semantic Publication and Discovery of Web Services, Inf.
Tech. and Manag. 6 (2005), no. 1, 17–39.

[168] Christopher C. Vogt and Garrison W. Cottrell, Fusion Via a Linear Combi-
nation of Scores, Information Retrieval 1 (1999), no. 3, 151–173.

[169] Spyros Voulgaris, Anne-Marie Kermarrec, Laurent Massoulié, and Maarten
van Steen, Exploiting Semantic Proximity in Peer-to-Peer Content Searching,
FTDCS, 2004, pp. 238–243.

[170] Le-Hung Vu, Manfred Hauswirth, and Karl Aberer, Towards P2P-Based Se-
mantic Web Service Discovery with QoS Support, BPM Workshops, 2005,
pp. 18–31.

[171] Graham Wilcock, Talking OWLs: Towards an Ontology Verbalizer, Human
Language Technology for the Semantic Web and Web Services in conjunction
with ISWC, 2003, pp. 109–112.

[172] Graham Wilcock and Kristiina Jokinen, Generating Responses and Explana-
tions from RDF/XML and DAML+OIL, Knowledge and Reasoning in Prac-
tical Dialogue Systems in conjunction with IJCAI, 2003.

[173] Yahoo Pipes, http://pipes.yahoo.com/pipes.

[174] Man Lung Yiu and Nikos Mamoulis, Efficient Processing of Top-k Dominating
Queries on Multi-Dimensional Data, VLDB, 2007, pp. 483–494.

145

