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1. INTRODUCTION

In a typical organizational Information System,rthés a variety of components inherently
intertwined with each other. Several databasesata @les operate on the organizational
servers. Complex workflows are composed of diffeeativities, each possibly running on a
different server, and interacting with a differefdta store. Data entry or query forms are
used by a large number of users updating or qugnyiformation. External data (e.g., Web
data) are also imported from the Web and some catpalata are usually exported to the
corporate web server (Figure 1.1).

In an ever-increasing pace, the database designanistrator of the system is faced
with the necessity of changing something in theralveonfiguration of the database schema.
For example, a change in business requirementssesptinat an entity such as an attribute
has to be deleted or replaced in the database scifeamall change like this might impact a
full range of applications and data stores arotnedsyystem: queries and data entry forms can
be invalidated, application programs might cragis\ftting in the overall failure of a complex
workflow), and several pages in the corporate Watves may become invisible (i.e., they
cannot be generated any more). Similar problensedn almost every kind of database-
centric environments, where a set of objects arftivace artifacts are dependent upon a
dynamic and evolving database system.

Forecasting and handling database schema evolaespecially in large scale or
distributed environments are time-consuming tasks;e they are not handled by current
database systems with an automatic way, but rdtier require great human effort by
database administrators and developers. Considérengrevious example, the deletion of an
attribute requires from the administrator or thevadeper to manually detect eventual
inconsistencies in the database or the applicaaomsnd it (i.e. foreign keys that are invalid,
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gueries that become invalid, object models thatiacensistent with the underlying data
model, etc.) and decide how to adjust each of thEmerefore, evolution-driven database
modeling and design as well as techniques for mmng the human effort consumed for
evolution tasks can be very beneficial and canrdmrte to the overall design quality of the
system.

Figure 1.1: A typical complex Information System gog through structural
changes

1.1 Research Challenges in Database Schema Evolution

Nowadays, information systems are continuously \8rgl environments, where design
constructs are added removed or updated very offeéven its fundamental role, the

evolution of the schema of a database system Wasyastrong impact on the applications
accessing the data; thus, support for gracefulugonl is of paramount importance. We
mention here two experience examples to demongtratextent to which schema evolution
is involved in the lifecycle of an information sgst. In the report described in [Sjob93], a
guantification of the database schema evolutiorblpro in large long-lived application
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systems is presented. Over a period of 18 monthighwncluded both the development and
the operational phase of the examined system,rde@yrded 140% increase in the number of
relations and over 200% increase in the numberttabates, as well as several evolution
changes in all existing relations of system. Addhiglly, in [CMTZ08] the authors analyze
the statistics collected for schema changes oaturrethe context of a web information
system, namely the widely known digital encyclopaédfikipedia, during the period of the
last 4.5 years. The plethora of alterations inctudel00% increase in the number of tables
and a 142% increase in the number of attributesgth&mmore, a 41.5% and 25.1% of the
attributes of the original database were removetl reamamed from the database schema,
respectively. The major reasons for these alteratiovere (a) the improvement of
performance, which in many cases induces partitigpndf existing tables, creation of
materialized views, etc., (b) the addition of n@atfires which induces the enrichment of the
data model with new entities, and (c) the growiega for preservation of database content
history. All these changes have a tremendous impactsurrounding applications and
specifically on queries (embedded in software mesilviews, database procedures and
processes that rely on a specific database schema.

Database schema evolution is a more complicateé,isghich is related to every phase
of the development of an Information System. Adoay to [Rodd95],database schema
evolution is accommodated when a database systeilitafi@s the modification of the
database schema without loss of existing d&gveral reasons during the development or
operational phase of database system can triggemthdification of a populated database
schema, such as schema changes accompanying chahgesquirements, schema
restructuring (i.e. normalization, de-normaliza)ia@ue to performance reasons, redefinition
of views, migration from a legacy system towardsei@latforms, etc. Almost all current
RDBMS support SQL capabilities (i.e., Data defimitilanguage — DDL extensions) for
creating and altering database objects and, insttrade, permit evolution operations on the
database schema.

However, apart from the core database schema, at®alentric environments
comprise a plethora of views and queries embeddegrocedures, software modules,
complex workflows, etc. that are also affected bgletion operations. Unfortunately, no
support is provided for analyzing the impact andthiermore adjusting semantic and
syntactical inconsistencies emerging on these ,padsresults of such operations. Their
reaction to evolution is still handled manually &gministrators and developers. Although
research has extensively dealt with the problerdadhbase schema evolution investigating
mainly the adaptation of internal database objectschema changes, problems persist with
existing queries and views, mainly due to the that in most cases, the proper attention is
not given to their role as integral parts of theiemment.

In the above context, we consider the followingeegsh challenges which are
addressed in this dissertation.
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1. Principled description of the architecture of a dbfse-centric information system

In [BeLPOO], the authors introduced the idea of slothanagement as a first-class
citizen of database research. Till then, metadatmagement had received significant
attention from the research community, but with major practical results in industrial
applications. The main goal we need to pursue tigoover a commonly agreed formalism
to express the internals of a database-centricesyston the grounds of a well-founded
theory. The main questions that arise in this context are

e Can we derive anodelof the structural properties and dynamics of datef=entric
systems?

e How can we trace the full rangeioterdependencies the components of a complex
database-centric system at both a detailed anchab&tvel?

e Can we provida formal backgroundor the foundation of metricand the evaluation
of the quality of the design of the overall system?

2. Principled response to evolutionary events

Mostly all the work of the research community onati@se evolution has focused on
conceptual models and object-oriented databasedd[}®), without any treatment of the
significantly more difficult problem of managing ragular relational database which is
surrounded by a large number of applications. Th&rproblem that we have to deal with
is: Given a set of user constraints on the structuoatent and future availability of a certain
part of data stored in a database, how do we haegints that evolve the above properties
in order to satisfy all user constraint3his research topic raises the following questions:

e Given a certain event, how do Vi@recast its impacas this is propagatetiroughout
the whole database environmewia module interdependencies?

How easily can weegulate the propagation of the effefta potential change taking
into account application constraints and user peefas?

How do we handleonflicts? E.g., what happens if the administrator needielete a
certain attribute, while a user has explicitly bagany such action?

How do we treat evolution (and addition of informatin particular), in thebsence
of user regulator?

How can we perform all the aboweth minimal effortfor existing systems? How can
we efficiently define evolution semantias existing database objects (since the data
entry for metadata is always the biggest problemétadata management)?

Viewed from another point of view that concerns gh#omation of the reaction to
changesthe question that arises concerns our abilitgeve (semi) automatic mechanisms
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for the self-monitoring, impact prediction, auto-regulati@md self-repairing of complex
information systems.

3. Quality metrics for database schema evolution

Given a model that describes the structure angakential for evolution of a database-
centric environment, how good is a certain schena & designer produces? Is design
better than desigB? Evaluating the design of a database, given agi@d for its evolution
in the future is a very difficult research proble®pecifically, the following research
challenges arise:

e Can we measure and quantify in a principled waytheerability of certain parts of
a database system and find these constructs that@st sensitive to evolution?

e What are the “rightmeasures for evaluating the quality of the desifya database
centric environmenwith respect its evolution capabilities?

4. Study of the fundamental laws of evolution

A fundamental problem in the area of database sahewolution is the lack of
empirical studies. To our knowledge except for tw studies [Sjob93], [CMTZ08]
described above, no other real world cases have déormed for monitoring the evolution
lifecycle of a database schema in a principled Wayour perception, the following research
guestions present an interesting research agenthasaiopic:

e Can we collect test cases and observe them in twvdsyme up with théundamental
laws that govern database evolution

e Can we establish amxperimental protocolfor monitoring existing real-world
databases and discover the way they evolve?

e Can we collect such results and make them availablthe research community
(without unveiling crucial information that the dhase owners would like to keep
hidden)?

1.2 Contributions of this Thesis

The research challenges described in the previectsoa were the basic guidelines for the
issues proposed in this thesis. The basic contoibubf this thesis is a framework for
analyzing and regulating the impact of databaseersehevolution in a database centric
environment (Figure 1.2).

We first provide a representation technique thapsnall essential constructs of a
database centric environment to graphs. The basisrdramework is a graph model, called
evolution graphwhich models in a coherent and uniform way irdéstructural elements of
a database system such relations, views, triggdrs, as well as external components
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accessing a database system, such as queriestextiizen procedures, object modules and
their significant properties (e.g., attributes, ditions). Apart from the simple task of
capturing the semantics of a database systemyaipd gnodel allows us to predict the impact
of a change over the system and the applicatigmnagfh-theoretic metrics.

We furthermore study techniques and algorithmshéordling changes occurring in the
database schema, in such way that the human ititeras minimized. Thus, we provide a
mechanism for enriching the evolution graph witlolation semantics such as evolution
events and policies regulating its behavior inghesence of hypothetical changes occurring
in the database schema. Rules that dictate theepasions, when additions, deletions or
modifications are performed to relations, attrisugend conditions (all treated as first-class
citizens of the model) are provided. Specificadlgsuming that a graph construct is annotated
with a policy for a particular event (e.g., a redatnode is tuned to deny deletions of its
attributes), the proposed framework (a) perfornesidkentification of the affected part of the
graph and, (b) if the policy is appropriate, praggmthe readjustment of the graph to fit to the
new semantics imposed by the change. Additionalyg complement the proposed
framework with a set of SQL extensions that alldkes definition of evolution metadata with

a feasible and efficient way.

Evolution Management
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Figure 1.2: Framework for the management of databas schema evolution

To this end, we employ graph theoretic and inforomatheoretic properties of the
evolution graph and establish a suitable set ofsoreaments for evaluating the design quality
of a database centric environment with respectst@bility to sustain evolution operations.
All of the above concepts are implemented in a phwend user friendly tool, called
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HecATAEUS, which is used for the application of the framekvon real world evolution
scenarios.

Our last contribution concerns the study of evolutprocesses that occurred on a real
system, specifically a datawarehouse environmeming a long term period of its lifecycle.
We have collected and have categorized the kindmtafbase schema changes occurred and
the impact that these changes had on the databsslé as well as on surrounding
applications, e.g., ETL processes. We have extelysexperimented with real as well as
artificial evolution scenarios.

Therefore, our contributions can be outlined a®¥ahg:

e a graph-based model for an extended system catabgguring relations, views,
constraints and queries in a cohesive framework;

a set of rules for the management of database tamolin a set of commonly
encountered circumstances;

an annotation of the essential elements of a ds¢abantric environment in order to
regulate their behavior a priori, for the evenfutire, potential modifications of the
database constructs they depend on;

a feasible and powerful SQL extensions that endi#eimplementation of our ap-
proach for evolution management;

a set of metrics for the evaluation of databasdutiom and design. They act as
predictors for the vulnerability of a software méeluof a database centric
environment (either internal, e.g., a relation,eaternal, e.g., a query) to future
changes to the structure of the environment. Sdgptieky facilitate the assessment
of the quality of alternative designs of the enmirent with a particular viewpoint

on the evolution of its schema.

a tool, named HcATAEUS, for automating the analysis of a database systeth
representing and visualizing its characteristicith® aforementioned graph-based
model,

the application and testing of the proposed framkvawer a real-world case study
occurred in the Greek public sector.

1.3 Roadmap of the Thesis

This thesis is organized as following:

In Chapter 2 we introduce a graph modeling technique for regméng database
centric environment as graphs. We first preserdatedl approaches to visualization and
representation techniques for database systemsclassify our technique with regard to
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these approaches. We then introduce the main ptsoéthe proposed modeling technique,
the kind of nodes and edges compriding Evolution Graptand describe in details the rules
for the construction of the graph for the variownponents included in our model. We
furthermore propose operations applied on the graypth as modularization and abstraction.

In Chapter 3 we propose the framework for analyzing and reagqudadatabase schema
evolution. The proposed framework enriches the wiani graph with evolution semantics,
such as evolution events and policies that regula¢epropagation of schema evolution
towards the database-centric environment. We fidtect and categorize the various
approaches and techniques related to the resemalohdatabase evolution. We employ a
motivating example that establishes the challeragek problems that we deal with in this
chapter. Then, the main concepts of our framewark especially the algorithfAropagate
Changes,which handles the reaction of the system to eimiuthanges, are presented.
Lastly, we experimentally assess the proposed frnamieover a real-case database-centric
environment.

In Chapter 4 we propose a set of feasible language extensm®&QL that prescribe
the reaction of database objects to evolution chan8pecifically, the proposed extensions
enrich the SQL definition of database objects andrigs with evolution semantics, i.e.,
policies, which dictate their reaction to evoluti@vents. The extensions involve the
definition of default policies for the entire datese environment, policies regarding top level
nodes, such as relations, view and queries ang [asicies for fine grain constructs, such as
attributes, constraints and conditions. Moreowverthis chapter we collect and review other
approaches related to language extensions for sclesmlution and we also evaluate the
feasibility of the proposed technique, by applythg extension on a real database centric
environment.

In Chapter 5 we introduce a set of metrics for evaluatingekielution properties of a
database-centric environment such as the vulnéyabilits design structures to hypothetical
evolution events. Based on graph theoretic proggerdf the evolution graph, we provide
metrics like the degrees (in, out, and total) ohade, the transitive degrees of a node
(standing for the extent to which other nodes itevety depend upon it), and the degrees of
a summarized variant of a module (e.g., a view) #imstract the internal semantics of the
module and focus on its coupling to the rest oféhgironment. We then present an event
aware set of metrics that takes into account teibution of potential events on the graph.
To this end, we include the special role of poBcamnotating the graph into a policy-aware
set of metrics. We lastly provide an informatioedhetic definition of a module’s entropy
that simulates the extent to which the vulnerabibf a node is surprising. Finally, we
extensively experiment with various configurationsthe setup of a reference database
environment and assess both the effectiveneseqirtiposed metrics (i.e., how well do they
actually predict the impact of evolution eventsaalesign construct) and how different
design alternatives for the same schema behaveaegfect to schema evolution.
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In Chapter 6 we present Hecataeus, an impact prediction soétw@ol for database
schema evolution. Hecataeus’ main features inchiidevisualization and editing of the
evolution graph from SQL source code and the aniootaf the graph with polices and
events. Given a hypothetical evolution event indpstem, Hecataeus detects and highlights
all affected graph constructs and propose theiptatians to the new semantics. Thus,
Hecataeus offers the user the ability to createpantbrm scenarios which assess the impact
of evolution process, before these scenarios apdiedpto a production environment.
Furthermore, in this chapter, we present the Hasittires of Hecataeus via the use case of an
evolution scenario.

Lastly, in Chapter 7 we summarize the conclusions of this dissertatind present
potential application areas of the proposed franmkwd/e then provide insights for issues
opened by this thesis and challenges for furtheearh efforts related to the policy-
regulated schema evolution.
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2. GRAPH REPRESENTATION
OF DATABASE -CENTRIC
ENVIRONMENTS

Database—centric environments such as Informatigstegs (IS) can be described
technically as a set of interrelated components$ to#lect (retrieve), process, store, and
distribute information to support decision makingpordination, control, analysis and
visualization in an organization.

Current approaches to such environments involve ¢berdination of various
components such as business processes, humanmetesrk infrastructure, hardware and
software infrastructure, database etc. Databademsgsare the core of every IS as these are
the parts where information is collected, stored anocessed to the rest of the system.
Therefore, a good database design is always criecidle design of the whole IS, affecting
the operation as well as the maintenance of théemsysTraditional database modeling
techniques, like ER diagrams, UML, etc., have beately used in modeling database
entities and relationships between them. Most efrthhowever, restrict themselves to model
the database components in a more or less stayicat is that they restrict themselves to
model explicitly the main database parts (entitieslationships) of an IS, ignoring
components that interface with the database, ssicfueries, stored procedures, applications,
etc. An ER diagram, for example, can describe prexise way how data and furthermore
information is represented, stored and treated invith database, but cannot tell what is
happening “around” the database and what are thendencies between the components
that interface with the database.

The integration of components that interface wiie tlatabase, such as queries and
views, in a uniform representation is valuablecsiit can be used for several purposes,
including:
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(a) the forecasting of the impact of database sehehanges in the overall system
(e.g., what happens if we delete a certain attelnfta table?),

(b) the visualization of the workload of the systerg., which queries pose the heaviest
load on the system?) and

(c) the introduction of metrics and the evaluatiointhe quality of the design of the
overall system.

Traditionally, dependency analysis has been peddrmith so called data dependency
graphs, which use nodes to represent statementBeoprogram and edges to represent
dependencies between statements. Data dependeaphsgmormally represent every
statement of the program with all of its dependesicin this chapter, we introduce a graph
modeling technique that uniformly covers relatioteddles, views, database constraints and
SQL queries as first class citizens. We employaplgrtheoretic approach and we map the
aforementioned constructs to a graph, that we Eatllution Graph First, we model the
whole environment of the database system as a gk&phdo not restrict the modeling to
relations along with their interrelationships anay aavailable views, but we extend the
modeling to incorporate all the elements of an nmi@tion system. To this end, we add
gueries as integral parts of the configuration dhtabase environment. In practice, a typical
database is surrounded by forms, reports, web pagesed procedures, and triggers
deployed on the database server. Each of theseaseftartifacts encompasses a list of
gueries via which it communicates with the datalzaskexchanges queries and data with it.
Therefore, queries constitute a convenient abstrathat captures the “skeleton” of all these
applications with respect to their interrelatioqsto the database. We incorporate the graph
with specific semantics, i.e., certain types fode® and edges which are mapped to elements
of the database centric environment.

Chapter Outline. In section 2.1, we provide related works regardirgph and visual
representation of database systems. We presergciios 2.2 the main concepts of the
proposed modeling technique, the kind of nodeseatges comprisinthe Evolution Graph
In sections 2.3 - 2.8, we describe in details thlesrfor the construction of the graph for the
various components included in our model. In seesti®?.9, 2.10 we present further
operations applied on the graph, such as modutemezand abstraction. Lastly, in section
2.11, we summarize the proposed modeling technique.

2.1 Visualization and Representation Techniques for Datbase Systems

So far, research has provided various visualizatemmniques and languages for database
schemas and queries [BaOOO02], [JaTh03], [MuGP9dFLP89], [PaKi95], [Meln04].
Visualization is a very popular technique that Belpesigners/administrators to better
understand and analyze the schema of a databasthergleries interacting with it. We
classify database schema and query representationsvo categories:
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e Graphical representations, which are used as amattve visual way of writing and
in general formulating a query, aiming at incregsine expressiveness of a query,
the user-friendliness as well as the human-compgateraction capabilities of the
DBMS.

e Representations that are used as a modeling teehfoq solving problems related to
query rewriting and optimization, database dessghema mapping and integration.

In [CCLB97], a detailed survey on visual query laages and systems is provided.
Visual query systems (VQSs) are query systemsdtaldhses that use visual representations
to depict the domain of interest and express mlagguests. VQSs can be seen as an
evolution of query languages adopted into databzm@agement systems; they are designed
to improve the effectiveness of the human—compuatenmunication. The main goal of
visual query systems is to provide the ability s@ns to formulate graphically a query rather
than to offer an alternative modeling technique database schemas (e.g. ER, UML, etc.).
Most of the visual query systems can be categodwedrding to their visual representation
into form-based, diagram-based, icon-based or #dyljcombination of the last three
representations). Through a visual query systemuter forms a query in a visual-fashion
way, the system converts the visual query to th@a®BMS query language and posts the
query to the underlying DBMS.

GQL [PaKi95], [MuGP98], Visual-SQL [JaTh03] and WAL [BaOO02] are such
visual query languages. GQL is a declarative gaghguery language based on the
functional data model, which combines graph-basedalization (nodes and edges) with
other visual constructs-shapes. The authors propasser interface for formulating queries
as well as a formal query syntax accompanying GIQL[BaOO02], the authors propose
VISUAL, a graphical icon-based query language fbject-oriented scientific databases
where the data has spatial properties, includesplmmobjects, and queries are of
exploratory in nature. Lastly, Visual-SQL is a dnagal query technique that follows the
paradigm of entity-relationship representationy@spnting queries and tables as entities.

In [HFLP89], they introduce the Query Graph Mod@GM), a query graph—-based
representation technique used for query rewritind aptimization. The goal of QGM is to
provide a more powerful and conceptually more manbhlg representation of queries in
order to reduce the complexity of query compilataord optimization. QGM maps queries
and tables into graphs, comprising vertices, edged, boxes. QGM is incorporated as a
guery abstraction mechanism into a query optinoresystem, called Starbust.

In [Meln04], the author proposes a graph basedessmtation of database schemas and
subsumes it into a general framework for model gangent. The author uses directed
labeled graphs to represent database models ingluéiational as well as XML models. The
main constructs of the introduced representatiompse nodes for relations, queries,
attributes, literals and data types and edgesh®warious relationships between them. This
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representation is used to enable the definitiomapping operations between heterogeneous
schemas. Mapping operations between two models trareslated into mapping and
transforming operations in their respective modeapgs.

Lastly in [SVTSO05], the authors propose a grapredasodeling technique for the
representation of ETL activities and processes.yTémploy a uniform, graph-modeling
framework for both the modeling of the internalusture of an ETL activity and for the
modeling of the ETL scenario at large, which enaltte treatment of the ETL environment
from different viewpoints.

Our proposal aims to provide a principled method dgpressing the core skeleton
structure of the internals of database-centric renments, based on a graph-theoretic
approach, in order to facilitate the design andnteaiance of database-centric environments.
In the context of database schema evolution, elolugraph provides the necessary
semantics and properties for the establishmenheffiamework that is introduced in this
thesis. Thus, we classify our approach primarily asrepresentation rather than a
visualization technique for database systems apdegl

2.2 Modeling Database-centric Environments as Graphs

Our model maps to graphs relational database scheamawell as views and queries
expressed in SQL syntax. Moreover, we distingulsh following essential components,
which are included in our modelelations, conditiongcovering database constraints and
guery conditions)queriesand views The proposed modeling technique represents all th
aforementioned database parts as a directed gfdghnodes of the graph represent the
entities of our model, where the edges representdlationships among these entities. The
database part of a database-centric environmemiaisly composed by a large number of
relations and even a larger number of views, geesred procedures, etc, which interrelate
in a complex way. Graphs are employed as a modtgdiighique because they can address to
the large size and complexity that characterizatalthse-centric environment. The following
definition presents the main concepts of the pregagaph representation.

Definition 2.1 — Evolution Graph: Given a database-centric syst&tomprising a
finite set of relation®={R 4, ...,R}, a set of viewsV={V 4, ...,V} defined overr and a set of
queriesQ={Q3, ..., Q} defined overRWV, then theEvolution Graphof S is a directed
acyclic graphG=(V,E), ECVxV such that:

VcRUAUCUQUVSUGBUOBUCNUF,
EcE;UESUE, VEL UE, UE, UE,; UE, O
The set of nodes V comprises the following typesaifes:

¢ Relation Nodes (R)set of nodes representing relations
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e Query Nodes (Q)set of nodes representing queries
e View Nodes (VS)set of nodes representing views
o Attribute Nodes (A) set of nodes representing attributes of relatiorews or queries

e Condition Nodes (C) set of nodes representing database constraintsinary
operators that participate in conditions

e Group By Nodes (GB)set of nodes representing group by operations
e Order By Nodes (OB)set of nodes representing order by operations
e Parameter Nodes (P)set of nodes representing parameter or congsdunts
e Function Nodes (F) set of nodes representing functions
The set E comprises the following types of direcddes:

e Schema edges {E Represent relationships between a relation, & viea query and
its schema. The schema of a view / query is thefsattributes that are contained in
its SELECTclause.

e Mapping edges (B : Represent schema mappings between attributepogsstons.

e Where edges (B : Represent the relationship of a view or query Vii$hWHERE
clause.

e Operand edges @} : Represent participation of operands in a unary dmnary
condition.

e From edges (B : Represent the relationship between a view or aygaed the
relations contained in tHeROMclause.

e Group By edges () : Represent the participation of an attribute oegpression in
the GROUP BYclause of a query.

e Having edges (f) : Represent the relationship of a view or query Wi$tHHAVING
clause.

Order By edges (&) : Represent the participation of an attribute orgoression in
the ORDER BYclause of a query.

An overall picture of the types of nodes and edgesprising the evolution graph is
shown in Table 2.1.

25



Nodes Edges

Relations R Schema relationships s B
Attributes A Operand relationships oE

Conditions C Map-select relationships u B
Queries Q From relationships rE

Views VS | Where relationships wE

Group-By GB | Having relationships HE

Order-By OB | Group-By relationships| cE

Parameters P Order-By relationships ogk
Function F

Table 2.1: Elements and Notations of EvolutioiGraph

In the following sections, we describe in detaile guidelines for mapping the main
components of a database system, such as relatonditions, views and queries, to the
semantics of theEvolution Graph For each of the aforementioned essential database
components, a separate subgraph is constructe@segping the schema of the component.
The overall evolution graph is constructed by then of all the constituent subgraphs of the
components.

2.3 Relations

Each relation R(AA2,...,An) In the database schema, either a table or a(ifilean be
considered as an external table), is representeddascted graph, which comprises: (a) a
relation node ReR, representing the relation; (b)attribute nodesAieA, i=1..n, one for
each of the attributeand (c) nschema relationship$eEs, directing from the relation node
towards the attribute nodes, indicating that thegbatte belongs to the relation. Figure 2.1
shows a graphical representation of the relatiaplyr

Figure 2.1: Relation Graph

2.4 Database Constraints / Conditions

Conditions, in our context, refer both $election/join conditionsof queries and views as
well as toconstraintsof the database schema.
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24.1 Conditions

We consider three classes of atomic conditions dnatcomposed through the appropriate
usage of an operatop belonging to the set of classic binary operatogs,(e.g., <, >, =5,
> 1=, IN, etc.):

(a) Aop constant;

(b) Aop A’;

(c)AopQ;

(d) exists Q.

where A, A’ are attributes of the underlying redais and Q is a subquery.

For each of the above atomic conditions a separatte, ogC, is used for the
representation of each operator. Graphically, theens named with the respective operator
and it is connected to theperand nodesf the conjunct clause through the respective
operand relationshipsEp. These edges are indexed according to the precedaneach
operand (i.e., opfor the left-side operand andojor the right-side) in the condition clause.
Composite conditions are easily constructed by itmgghe operator node with the
appropriate Boolean operator (e.g., AND or OR) eodnecting the respective edges to the
corresponding conditions composing the compositelition.

2.4.2 Database Constraints

Well-known constraints of database relations — pemary/foreign key, unique, not null,
and check constraints — are easily captured byntodeling technique. For that reason we
make the assumptions that foreign keys are suleéstions of the source and the target
attribute, check constraints are simple value-basguditions. Primary keys, which are
unique-value constraints, are explicitly represéntegough a dedicated node tagged by their
names and a single operand node.

We distinguish the following five types of constrs:

Primary Key Constraints

Foreign Key Constraints

Unique Key Constraints

Not Null Constraints

Check Constraints

In the rest of this section, we explain how constsaare mapped to graph constructs of
our model.
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2421 Primary Key Constraints

Let R(A...., Ay be a relation with a primary key constraint on A., A attributes. The
graph representation of the primary key constriawblves (a) a newveondition nodePKeC
corresponding to the primary key constraint, kbg@dges directing from the {A ..., A}
nodes towards the primary key node, all tagged akhE indicating operand relationship.
In Figure 2.2, the graphical representation ofgpecified primary key constraint is shown.

R.PK

Figure 2.2: Primary Key Constraint Graph

The graph representation of a primary key condtrigiran extension of the relation
graph joining the attributes, involved in the coastt, with the node of the PK constraint.
For the graphical representation of the primary &aystraint, a separate square-shaped node
is used tagged with the name of the PK constraint.

2.4.2.2 Foreign Key Constraint

Let R(Ag, ...,An), S(B, ...,Bn) be two relations. A foreign key (FK) constrainvolves a set
of attributes, say {A ...,A} k<n, belonging to source table R, which referencetaof
attributes, say {B ...,B} k<m, belonging to table S. The graph representatioth® FK
constraint involves (a) a negondition nodeFKeC representing the foreign key constraint,
(b) k edges directing from the source attributes,{A,AJ towards theFK node and (ck
edges directing from theK node towards the referenced attributes, {B,B}. All edges are
labeled with anopeEo indicating operand relationships. The direction thé edges
discriminates between the source and the refereaiteiute.

Graphically, we denote tHeK node in a square-shaped fashion, tagged withaheerof the
FK constraint
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Figure 2.3: Foreign Key Constraint Graph

Figure 2.3 shows the graphical example of a foréigy constraint between R.As
source attribute and S,.Bs referenced attribute.

Figure 2.4 shows the complete graph of an example two relations R(A A;) and
S(By,...,Bn). Relation R has a primary key constraint on while A; has a foreign key
constraint on S.B In addition, relation S has a primary key constran B;.

R.PK R.PK

Figure 2.4: Combining Primary Key and Foreign Key Gnstraints

2.4.2.3 Unique Key Constraints

Let R(Aq, Az ..., Ay be a relation with a unique key constraint oreadf attributes, say

{A1, ...,A} k<n. Then, the proposed representation for this wnmpnstraint is an extension
of the relation graph involving (a) a neendition noddJCeC representing the unique key
constraint, (bk edges directing from attributes {A...,A} towards the UC node. All edges
are labeled with anpeEo indicating operand relationships.

In Figure 2.5, we present a graphical examplerelation R(A, A, ..., Ay) with two unique
key constraints; a composite unique key constramtiely R.UG, comprising two attributes
A1, Ay, and a simple unique key constraint, namely R,li{@olving only attribute A
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R.UC,

R.UC,

Figure 2.5: Unique Constraint Graph

Similarly to previous constraints, for the graphiogpresentation of the unique key
constraint, a separate square-shaped node istagged with the name of the constraint.

2.4.2.4 NOT NULL Constraints

Let R(A,, Az ..., Ay be a relation with a not null constraint on.AThe proposed
representation for this not null constraint is ateasion of the relation graph involving (a) a
new condition nodeNNCeC representing the not null constraint, (b) an edigecting from
the attribute Atowards the NNC node, labeled widpeEp indicating operand relationship.

In Figure 2.6, we present a graphical example @flaion R(A, A, ..., Ay) with a not null
constraints on A named as R.ANNC.

R.A{.NNC

Figure 2.6: Not Null Constraint Graph

For the graphical representation of the not nulst@int, a separate square-shaped
node is used, which labeled with the name of thenath constraint.

2.4.2.5 Check Constraints

Let R(A, A2, ..., Ap) be a relation with a check constraint on a seattfbutes, say {A
....Ad k<n. Then, the graph representation of the checktnsis an extension of the
relation graph involving (a) a newondition nodeCCeC representing the check constraint,
(b) k edges directing from attributes {A...,A¢} towards the CC node. All edges are labeled
with opeEg indicating operand relationships
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In Figure 2.7, we present a graphical example alaion R(A, Ao, ..., Ay) with a check
constraint, named as R.g@volving attribute A.

R.CC,

Figure 2.7: Check Constraint Graph

For the graphical representation of the unique dastraint, a separate square-shaped
node is used, labeled with the name of the comstrai

2.5 Queries

SQL queries are essential components of our grajgtemFor each query Q in the system, a
separate graph is constructed and connected wihgtaphs of the relations, which are
referenced in the query syntax. The types of qadhat are captured by our modeling and
represented to graphs fall into the following folasses:

e Simple Select-Project-Join (SPJ) flat queries.

e Select-Project-Group (SPG) queries, i.e., queriés aggregation.

e Nested queries.

e Self-Join queries, i.e. queries with join operasiom the same relation.

For each of the four classes, we present the aatigtn of the graph, separately.

251 Select-Project-Join (SPJ) flat queries

The first class of queries involves Select-Projisity (SPJ) queries, i.e. queries with simple
join conditions. Let Q be the generic type of & 8%J query on n relations(RR,, ..., R)
with the following query syntax:
Q: SELECTR ;A;;asA R A, asA ,, ...,R ,Ap1asA ,
FROMR,R 5, ...,R
WHERE cond(R;.A 11, constant) AND cond s(RhAn, R 1.A 1)
For the representation of the above query to gré#ph following considerations are
made:

1. A query owns a unique identifier (i.e., name) andchema. The schema of the
guery comprises all attributes either with theigoral or alias hames, appearing in
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the SELECT clause. These attributes depend onbuats of the underlying
relations. In the above example, the name of tleygis Q and its schema is {A
oy Ank.

2. A query depends on all entities (e.g., relatiomswse, inline views, etc.), which are
included in the FROM clause. The FROM part of argumn be regarded as the
relationship between the query and the relatiomslued in this query. In the above
example, these entities are MRy, ..., R}.

3. A query optionally owns a set of selection/join diions, which are expressed in
the WHERE clause. The query depends on the atshoftthe underlying relations
that participate in the conditions. In the abovaregle, the conditions of the query
are {cond(R1.A11, constant), con¢Rn.Ank, Ri.A1)}.

The graph representation of the above SPJ quenlvies (a)a query nodeQeQ
representing the query; (b attribute nodesAieA, i=1..n, one for each of the schema
attributes of Q; and (a) schema relationship$<Es, directing from the query node towards
the attribute nodes. The edges, connecting nodeit® all its attribute nodes, indicate
schema relationships and therefore are labeledawit§ in the same way that a relation node
is connected with its attribute nodes.

Moreover, in order to represent the relationshipyvben the query graph and the
underlying relations, we make the convention tlahequery is decomposed into three main
parts, the SELECT part, the FROM part and the WHHERIE. Each of these parts is
eventually mapped to a subgraph.

In that way the graph representation of the abaexygis the composition of the three
subgraphs, each of which corresponds to each gatheo query — SELECT, FROM,
WHERE. In order to represent these parts, thewatig notation is introduced:

e The SELECT part of the query maps the respectivibates of the involved relations
to the attributes of the query schema throogip-selectelationships Ey, directing
from the query attributes towards the relationilaites. These edges actually map
the schema of the query to that of the underlyia@tions. In Figure 2.8, the
graphical representation for the SELECT subgrapih@igeneric case of SPJ queries
is depicted.
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map-select

Figure 2.8: Select Part of the Query

e The relations included in the FROM part are comthingth the query node through
from relationshipsEg, directing from the query node towards the retatiodes. In
Figure 2.9, the graphical representation for th®©WRsubgraph of the generic case
of SPJ queries is shown.

e Lastly, the WHERE clause of a query involves conitposonditions. Thus, we
introduce a direct edge, namelyere relationshipE,, starting from the query node
towards the condition node corresponding to theditmm of the highest level. In
Figure 2.10, the graphical representation for thdBRRE subgraph of the generic
case of SPJ queries is shown.
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Figure 2.10: Where Part of the Query
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The complete graph for the generic case of a S®Rdjdlery is constructed by the union
of the respective SELECT, FROM, WHERE subgraphs Tamplete graph is shown in
Figure 2.11.

from

constant

op2

op2
° ops

Figure 2.11: Graph for SPJ query

2.5.2 Select-Project-Group (SPG) flat queries

The second class of queries involves SPG querisgueries with aggregations. Let Q be
the simple case of a flat SPG query on the reld®pwith syntax:

Q: SELECTR.A {ASA ;, COUNT(R*ASA ,
FROM R
GROUP BY R.Ag;

For the representation of aggregate queries, weéogntywo special purpose nodes: (a)
a new nodelenoted as GBGB, to capture the set of attributes acting as tlyeeggtors; and
(b) one node per aggregate functioaFFlabeled with the name of the employed aggregate
function; e.g., COUNT, SUM, MIN. For the aggregatowe use edges directing from the
guery node towards the GB node that are labeledbupgby>, indicatinggroup-by
relationships Egg. Then, the GB node is connected with each of gggegators through an
edge tagged also as <group-by>, directing from @® node towards the respective
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attributes. These edges are additionally taggedrdirg to the order of the aggregators; we
use an identifier i to represent the i-th aggregaitmreover, for every aggregated attribute in
the query schema, there exists an edge directorg this attribute towards the aggregate
function node as well as an edge from the functiode towards the respective relation
attribute. Both edges are labeled <map-select>kmdng toEy, as these relationships
indicate the mapping of the query attribute todberesponding relation attribute through the
aggregate function node.

Additionally, for the HAVING clause of a query, vistroduce a direct edge, namely
having relationship Ey, starting from the query node towards the conditioode
corresponding to the condition of the highest lesfethe HAVING clause, similarly to the
representation of the WHERE clause of the query.

The representation of the ORDER BY clause of aygigeperformed similarly to the
representation of the GROUP BY clause. We employpeww node OBOB for the
representation of the ORDER BY clause. A directddee<order-by>, belonging tBog,
directs from the query node towards the OB node taedatter is connected via indexed
<order-by> edges with all attributes of the relatidhat constitute the order by clause.

The graphical representation of the GROUP BY péthe above query is shown in
Figure 2.12. For the GROUP BY representation as$ agfor the aggregate function nodes,
separate square-shaped nodes are used.
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Figure 2.12: Graph for Group By Query

253 Nested queries

The third class of queries involves the nestedigggr.e. queries involving a condition with
subquery in the WHERE clause.

Let Q be the nested query

Q: SELECTR ;A ;asA;
FROMR
WHERE RA ; IN
Q' : ( SELECTR 2.BrasB ;
FROMR )

In order to capture the set of nested queries,ssame that modeling a nested query is
considered as a specialization of the WHERE of a simple SPJ query, as described above.
In the special case of a nested query, the tym®wdition involved in the WHERElause is
A op Q, where A is an attribute of the underlying nelat Q is the nested query aofis a
binary operator, such as IN, etc. Therefore, weraktthe WHERE subgraph of the outer
query by (a) constructing the respective graphtiier subquery, (b) employing a separate
operator node for the respective nesting opera&ta.,(IN operator), and (c) employing two
operand edges directing from the operator nodertdsvdie two operand nodes (the attribute
of the outer query and the respective attributehef inner query) in the same way that
conditions are represented in simple SPJ queries

The graphical representation of the above quesiasvn in Figure 2.13
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Figure 2.13: Nested Query

254 Self-Join queries

The fourth class of queries involves the self njqueries, i.e. queries having a join operation
on the same relation, using an alias name fordlagion.

Let Q be the self-join query:

Q: SELECTR ;.A; ASA
FROMRASR ;,RASR ,
WHERE R1.A ;=R,.A;

For capturing the set of self-join queries, wessrthat each reference via an alias to a
relation in the FROM clause of the query is sengatlyi equivalent with an inline view
projecting all attributes of the referenced relatig.e., SELECT *) and named with the
respective alias. That is:

Q: SELECTR ;.A; ASA
FROM (SELECT*FROMR)ASR 4, (SELECT*FROMR)ASR
WHERE R1.A ;=R,.A;

The graphs of the views are constructed accortirteir definition in the same way
qguery graphs are constructed. The graph of thej@alfquery is, then, connected with the
graphs of the corresponding views. Hence, the gparation is represented between the
guery node and the attributes of the equivalerwsie

The graphical representation of the above selfgpiary is shown ifFigure 2.14. For
graphical simplicity reasons, we have omittedtfrem>edges connecting the query node to
the view nodes.
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Figure 2.14: Graph for Self-Join Query

2.6 Functions

Functions used in queries are integrated in ourahtitifough a special purpose nodefs
denoted with the name of the function. Each fumctias an input parameter list comprising
attributes, constants, expressions, and nestedtidonsc and one (or more) output
parameter(s). The function node is connected wéithenput parameter graph construct,
nodes for attributes and constants or sub-grapkexpressions and nested functions, through
an operand relationship directing from the functioode towards the parameter graph
construct. This edge is additionally tagged withappropriate identifier i that represents the
position of the parameter in the input parametdr An output parameter node is connected
with the function node through a directed edgeOcEyUEGUEo from the output
parameter towards the function node. This edgaggdad based on the context, in which the
function participates. For instance, a map-seletationship is used when the function
participates in the SELECT clause, and an operaladionship for the case of the WHERE
clause.

2.7 Views

Views are integrated in the proposed modeling teglnas separate graphs. In section 2.5.4,
a brief description of the representation of inlinews was given, in the context of self join
gueries. Views are inherent constructs of the @amalschema. They constitute both queries
over the database schema as far as their defingiooncerned and relations to other queries
as far as their functionality and their extensiom @oncerned. Their dual role is captured and
represented as intermediate graphs between redadimhqueries.
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For the construction of the graph of a view, a ssganode V8VS is introduced,
labeled with the name of the view. The rest ofui@ev's graph is constructed according to its
definition identically to the construction of a gqus graph; no other properties such as its
extension or storage persistency are consideredhdh sense, most kinds of views are
captured by the proposed technique, suclstased (e.g., named views, the definition of
which is stored in the database without persisttarage)inline (e.g., views that are defined
ad hoc in the FROM clause of queries) roaterializedviews (e.g., hamed views, the
definition of which is stored in the database hg\ersistent storage).

2.8 DML Statements

As far as modification queries are concerned, thieie straightforward way to incorporate
them in the graph, too. Their behavior with resgectheir dependencies with the database
schema can be captured by a graph representativiiottows the one of SELECT queries
and captures the intended semantics of the DMlestnt. In our discussions, we will use
the termgraph equivalencéo refer to the fact that evolution changes (etjribute addition)
can be handled in the same way we handle the dgniv8ELECT query, either these
changes occur in the underlying relation of the RS statement or the sources of the
provider subquery Q:

(2)The general syntax 6 SERT statements can be expressed as:

INSERT INTO table_name ( attribute_set)
VALUES (val ue_set)|( Q,

whereQis the provider subquery for the values to berieske

The graph equivalent SELECT query, which correspatadthe INSERT statement,
comprises a SELECT and a FROM clause, projectiagstme attribute set with the attribute
set of the INSERT statement, and a WHERE clausedoelating the attribute set with the
inserted values - value set or the projected ateilset of the subquery, i.e.,:

SELECT (attribute_set) FROM table_name
WHERE (attribute_set) = (value_set)|(Q)

(b) Similarly, DELETE statements can be treateBEECT * queries comprising a
WHERE clause. The general syntax of a DELETE stat¢roan be expressed as:
DELETE FROMt abl e_nane
WHERE condition_set
Again, the equivalent SELECT query, which corregfsorio the above DELETE
statement, comprises a SELECT clause, projectinthalattributes (i.e., *) of the table, as
well as a WHERE clause, containing the same seboditions with that of the DELETE
statement, i.e.,:

SELECT * FROM t abl e_nane
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WHERE condition_set
(c) Finally, UPDATE statements can be treated akE®H queries comprising a
WHERE clause. The general syntax of an UPDATE state can be expressed as:

UPDATE table_name
SET (attribute_set) = (value_set)|(Q)
WHERE condition_set

The equivalent SELECT query, which correspondsheoabove UPDATE statement,
comprises a SELECT clause, projecting the attrisetenvhich is included in the SET clause
of the UPDATE statement, as well as a WHERE clawsstaining the same set of
conditions with that of the UPDATE statement, i.e.,

SELECT attribute_set FROM table_name
WHERE condition_set
AND (attribute_set) = (value_set)|(Q)

In that way, the representation of DML statementgraphs is accomplished through
the representation of the equivalent SELECT query.

2.9 Breaking the Graph into Modules

In this section, we extend the semantics of thdutiem graph by including the concept of
modules as a logical operation applied on the grde need for modularization of the
graph stems from the fact that existing semanties, fypes of edges) are not sufficient for
the representation of the relationships betweeferéifit components of the system (e.g., a
relation and a set of queries), since they do minduishpart-of andprovider relationships.
The modularization of the graph is an operationdsga on the graph that subsumes the
nodes and edges of the graph into logical modulesllows us to exploit graph-theoretic
properties and introduce algorithms and metricgterinterrelation of the components with
each other. A module in the evolution graph isgidal subset of nodes and edges with the
following definition:

Definition 2.2 - Modules: Given an evolution grap®=(V,E), a moduleGn=<Vp,
En> is a subgraph of G if¥ncV, EncE, EncVmxVm and belongs to one of the following
patterns:

e Relation Module: A relation module comprises the relation nodeatitibutes’ and
constraints’ nodes belonging to the relation asl welthe edges connecting these
nodes. That isVincRUCACLC andEncEs Eo.

e Query Module: A query module comprises the node of the queodes for the
attributes, group by clause, order by clause, fanst parameters/constants and
conditions belonging to the query as well as thgesdconnecting these nodes with
each other.
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That is, \\cQUAUCUGBUOBUPUF and R cEsVEWUERUEGRUEQRUE.

e View Module: Lastly, a view module comprises the node of tlesvy nodes for the
attributes, group by clause, order by clause, fanst parameters/constants and
conditions belonging to the view as well as theesdgonnecting these nodes with
each other.

That is, V. cVSUAUCUGBUOBUPUF and EcEsUEWUERUEGRUEORVED. [

Modules are disjoint with each other and they anenected through edges concerning
foreign keys, mapping and operand relationshipe 3ét of edge&,, starting from and
ending to nodes belonging to the same module, aledentramoduleor part-of edgesThe
nodes of each module are connected to the nodebef modules of the system by incoming
or outgoing edges. Incoming or outgoing edges chadule G=<V, E,> are called
intermoduleor provider edgesk., iff [BrMB96]:

Input(E; )={<v1, vo>c E| wcVm and ucV-V y}
Output(E )={ <vi, vo.>c E| wcVn and vcV-Vi }
where V, v, are nodes of and §w.> is an edge directing from wowards y.
According to definition 2.2, for the set of interchde edges it stands that:

Em cErCEnU EgpEopiED .

Within a module, we distinguistop-levelnodes comprising the query, relation or the
view nodes, antbw-levelnodes comprising the rest subgraph nodes.
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Figure 2.15: Modularization of the graph

In Figure 2.15, we present the modular graph ofineple database configuration
involving 3 relations, namely R@A,,A3), S(B1,B2,B3), K(C1,C,,Cs), with two foreign key
constraints, K.¢>R.A; and K.G = S.B; and a simple SPJ query Q defined on them.

Q: SELECTRA ;ASA;,RA ,ASA, SB ,ASA;

FROMR, S, K
WHERE R.A =K.C ; AND S.B ;=K.C,

There are 4 modules, one query module, named M4esmonding to query Q and

three relation modules, named M1, M2, M3, for iieled R, S and K, respectively.

2.10 Zooming Out the Graph

Another operation imposed on the graph involvesattstraction of the graph, by eliminating
specific types of nodes and edges. Abstractinggthph into a modular representation at a
coarser level of detail (zoom-out) allows us toméhiate the detailed information and
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semantics of the complete graph and depict onlygh level view of the system, without
however losing the interdependencies between theusamodules.

The abstraction of the graph involves the followstgps:

e for each query, view or relation module, all lowéénodes and intramodule edges,
En, are suppressed and only the respective top-eddn {R,Q,VS}is retained, ;

o all inter-module edgesk,, between two modules are also suppressed to am edg

The surviving edge is annotated with a weight ggoading to the number of the
edges that originally connected the two modules.célethis weight thestrengthof
the edge as it assesses how tightly the involveduhes are coupled. In Figure 2.16,
the configuration of Figure 2.15 is presentedanrmed-out level.

Figure 2.16: Abstraction of the graph

211 Summary

In this chapter, we have presented a graph modédolnique for the representation of
database-centric environments that covers in cohevay relational tables, views, database
constraints and SQL queries. We have employed phgttzeoretic approach and we have
mapped the aforementioned constructs to a grajh,wh callEvolution Graph We have
provided in details the rules for the constructafrihe graph and operations that are further
applied on it, such as the modularization and th&traction of the graph. Although the
presented technique focuses on the representdti@iational schemas and SQL queries, it
could be easily extended to represent more congplexies (e.g., UNION) or other database
objects, such as stored procedures. Our goal wat ramnstruct a complete representation
technique for database systems but rather a phkatcimethod for expressing the core
skeleton structure of the internals of databasériceenvironments, based on a graph-
theoretic approach, combining both relations ad asektructures around the database. Thus,
evolution graph is a representation of the depetidsrat the most detailed level of all these
components that allows us to apply algorithms aetrios for the prediction and regulation
of evolution impact.
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3. FRAMEWORK FOR

REGULATING DATABASE SCHEMA
EVOLUTION

Database and software systems are rarely staticiroeamvents following initial
implementation. The evolution of the database sehemithin a database — centric
environment may occur throughout its entire lifdey®ossible reasons for schema evolution
with respect to the various phases of the lifecgéla system are:

e Ambiguous or incomplete requirements during theettgyment phase, which induce
a substantial and frequent alteration of the da@lsahema.

e Change of requirements during the productive ploagen information system which
results in the structural evolution of the databasenclude or exclude the new

semantics.

e Reorganization of the database schema during tb@uptive phase of an IS as a
result of different design solutions that are dedidsuch as the normalization /
denormalization of schemas, etc.

e Lastly, reorganization of the database schema guhie@ productive phase of an IS as
a result of novel technical solutions that areadtrced in the current infrastructure.

Such activities include the migration of an obsslétgacy system towards an
RDBMS, the migration between different DB versi@ngechnologies, etc.
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Schema evolution changes may affect the softwarenarthe database (mainly views
and queries) in two ways:

(a) syntactically an alteration on the schema of a database ofrjagtevoke a com-
pilation or execution failure during the executimima piece of source code that depends
on the specific object. For example, the deletibnao attribute that is used in a
proceduresyntactically invalidates the procedure. In that case, the dgeel must
revalidate manually the invalid source code by remg all references to the removed
attribute.

(b) semantically a change may have an effect on the semantidseo$dftware used.
For instance, the modification of a foreign key stoaint may affect the join operation
performed on a query.

In the context of the evolution graph, alterationghe database schema are events,
which transform specific parts of the graph (eagrelation graph sustaining a change) and
eventually affect other dependent graph constr(ety., a view graph depending on the
specific relation). The latter may raise, in tumey evolution changes, which have impact on
other dependent graph constructs (such as a quegeia gepending on the specific view).

In this chapter, we introduce a framework fompact analysisand regulation of
database schema evolutiowe exploit the dependencies which are represeagegdges in
the evolution graph to both detect syntactical aethantic inconsistencies following an
evolution event. We furthermore regulate the immd&n evolution event towards the nodes
of the graph by annotating the graph with ruleiedepolicies. The adaptation of a node to
an evolution event and furthermore the propagaticthe event towards the rest of the graph
is dictated by the rule defined on the node. Theppsed framework enables the user to
proactively identify and regulate the impact of leMon processes. It provides the
appropriate semantics to perform hypothetical eimbu scenarios and test alternative
evolution policies for a given configuration befafee evolution process is applied on a
production environment.

Chapter Outline. In section 3.1, we collect and categorize theotsriapproaches and
techniques related to the research area of datahadetion. In section 3.2, a motivating
example is employed for the establishment of thelehges and problems that we deal with
in this chapter. In section 3.3 the main conceptd definitions of the framework for
regulating schema evolution are proposed. Additignan section 3.4 the algorithm
Propagate Changeswhich handles the reaction of the system to eimiuthanges, is
presented, whereas in sections 3.5 we describeetailsl the main components of this
algorithm. In section 3.6, we experimentally assbassproposed framework over a real-case
database environment. Lastly, in section 3.7, weltale our proposal.
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3.1 Management of Schema Evolution in Database Systems

The problem of database schema evolution is a temg- problem in the literature of
database research with numerous efforts underusaddiferent contexts. In Figure 3.1, a
taxonomy of articles related to schema evolutioccoeting to [UnLeip] is presented in a tag-
cloud style (i.e., the size of the fonts of a catggcorresponds proportionally to the number
of articles published in this category). Accordighis taxonomy which includes more than
400 publications, database schema evolution has pail a great attention over the last
twenty years, both at the conceptual, such as BRIl dnd O-O approaches and at the
logical level, such as relational approaches, XMc, Recently, an emerging aspect related
to schema evolution deals with model managemernbappes and ontologies.

Workflow
viappingVerge Object-oriented

compose_ o Distributed Model-Management

Database- Schemam Web

data-reqrganization Informatlon—lntegratlon Relational
ER/ U M OntOIOgyReverse Engtneermg

\"' ir "O? I 5
Software

Figure 3.1: Tag-cloud Taxonomy of Related Work
for Database Schema Evolution

[Rodd95] presents a survey on schema versioningeaallition, whereas in [Rodd00]

a categorization of the overall issues regardinggon and change in data management is
presented. We can classify the different effortsoading to the data model they address into
the following categories [Rodd00]: (a) evolution adject-oriented databases, (b) evolution
of entity-relationship diagrams, (c) relational sgfa evolution and schema versioning and
lastly, (d) evolution of (materialized) views, miinn the context of data warehouses,
characterized by the duality of views, which arghbqueries as far as their intention is
concerned and sets of tuples as far as their agterssconcerned. In the following sections,
we present related works regarding schema evoliothe categories described above.

3.1.1 Relational Schema Evolution and Versioning

Schema evolution in traditional database systemmasily investigated in the context of
relational schema evolution and schema versioniig distinction between modification,
evolution and versioning of database schemata enr¢fational model has been, in some
cases, confused. In [Rodd95] the author presertsiteny of changes applicable to the ER
model, as well as the necessary changes to theatesp relational model. The following
definitions are given regarding the different asped¢ database schema evolution.
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e Schema modificationSchema Modification is accommodated when a datba
system allows changes to the schema definitionpafpaulated database.

e Schema evolutionSchema Evolution is accommodated when a databgstem
facilitates the modification of the database schamtlaout loss of existing data.

e Schema versioningSchema Versioning is accommodated when a datayestem
allows the accessing of all data, both retrospebtiand prospectively, through user
definable version interfaces.

A bibliography concerning database schema evoludnd versioning is given in
[Rodd92b].

In [McSn90], the authors discuss extensions tocthreventional relational algebra to
support both aspects of evolution of a databasw$ents and evolution of a database's
schema. They define a relation's schema to bedlagian's temporal signature, a function
mapping the relation's attribute names onto thaluer domains, and a class, indicating the
extent of support for time. They also introduce ommnds to change a relation, now defined
as a triple consisting of a sequence of classeggaence of signatures, and a sequence of
states. A semantic type of system is required émtifly semantically incorrect expressions
and to enforce consistency constraints among #aes class, signature, and state following
update.

Schema evolution is investigated at the concepéval in the context of evolution of
entity-relationship diagrams. In [LICC94], the amth present an approach to schema
evolution through changes to the Entity-RelatiopsfitR) schema of a database. They
enhance the graphical constructs used in ER diaggrand develop EVER, an EVolutionary
ER diagram for specifying the derivation relatiopsh between schema versions,
relationships among attributes, and the conditiers maintaining consistent views of
programs.

3.1.2 Object — Oriented Schema Evolution

Schema evolution in the context of object orientlatbase systems has also been widely
investigated from various points of view. Most bém introduce a set of schema changes or
transformations on the objects of the O-O DBMS apgroach evolution as generalization
hierarchies of classes and mappings between thesedhies.

One of the first attempts to incorporate schemdutiom capabilities in O-O DBMS is
presented in [Bane87]. The authors introduce aopypé object-oriented database system,
called ORION with capabilities for supporting scleesvolution. They establish a taxonomy
of over 20 useful schema changes under the ORIQé&tbriented data model and define
the semantics of each schema change. They idensif of invariant properties of an object-
oriented schema which must be preserved acrossnachbanges, such as distinct names,
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and define a set of rules for selecting the mosanimgyful way to preserve these invariant
properties.

In [Fer+95], they describe an algorithm that is iempented in the ©object database
system for automatically bringing the database ¢orssistent state after a schema update has
been performed. They, also, define a set of pmithange operations on classes, such as
creation, modification, deletion of classes, madifion of inheritance between classes, etc.
and introduce a history record for holding the i@rsof each class, much alike the
versioning techniques applied in relational datebaystems.

Another framework, related to evolution in O-O DBMIS presented in [RaRu95].
They address the problem of schema evolution imresh®-O database systems. They
propose a framework for integrating view facilittesdeal with schema evolution. When new
requirements necessitate schema updates for aipartiuser, the user specifies schema
changes to the personal view rather than to theedrdatabase schema. Their approach, then,
computes a new view schema that reflects the sérsawitthe desired schema change and
replaces the old view with the new one.

Lastly, an approach on impact analysis for schewodugon in O-O database systems
is presented in [KaSj01]. As usual, a categorirati®® made for the different types of
evolution.Direct schemavolution applies for the cases where schema @saae allowed
without any loss of dataSchema versionings fit for the cases where schema changes
produce new versions of a schema and its extensioh#ge the older versions are still
accessible. In the latter case, the old applicatman still be used with the previous versions
of the schema. The goal of the paper is to determimether a priori impact analysis actually
helps the system’s stakeholders. They have dewlapeol, namely SEMT, which parses
Java files and visualizes (a) the O-O schema apticapions and (b) the impact of a change
towards affected objects. The implemented evertisidie (a) add/delete/rename a field, (b)
add/delete a super class of a class, (c) add/deldtess.

3.1.3 Model Management and Schema Mappings

Related to database evolution, model managemeat Epproach to metadata management
that offers a high level-programming interface tlearrent techniques. The main abstractions
are models, abstracting mainly schemas and interéedinitions, and mappings between
these models [Bern03], [Meln04], [VeMPO04]. Model mgement applies to a number of
database problems such as schema and data indegsathema evolution, etc.

Database schema evolution can be regarded asialdped of the model management
problem. Structural changes in a database (i.eitiadldof a constraint, removal of an
attribute, etc.) are regarded as changes in theehadzstracting the database schema. The
models, abstracting the database schema beforaf@mndhe occurrence of the changes, must
recover the mapping(s) between them. That is, &ldei mapping must exist among the
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model representing the old database schema amdadtiel representing the new one in order
the various queries and in general the applicatimesacting with the database to conform to
these changes.

In [BeRa00], [Bern03], the authors proposes a modahagement algebra, a set of
operators for management of models and mappinggekeatthem comprising Match, Merge,
Diff, Compose, Apply and ModelGen operators. Thé&oduced algebra is applied to
problems related to schema integration, schemaigonland round trip engineering.

In [MeIn04], extending the work of [Bern03] the hat propose a framework for
generic model management, called Rondo, in whiclleisoare represented as directed
graphs, and morphisms (edges between two grapbsamation of models) are mappings
between entities (e.g. attribute, constraints,)ebelonging to two different models.
Extending operators proposed in [Bern03], a sebpérators is introduced to manage
mappings and transformations of models, includingpg theoretic and set theoretic
operators. Especially, for the Match operator, th@ppose the Similarity Flooding
Algorithm, an algorithm for finding and ranking tlsemilarity between two models, as well
as creating a mapping between them. The proposetefwvork is not restricted to relational
model, but covers XML and other database modelsyedls Model management addresses
problems related to data and schema integratidmensa evolution, ETL, etc. A set of
metrics is introduced in the context of model magpiincluding metrics for similarity
between two models, best matching between two rapdtd.

In [VeMPO03], [VeMPO04], the authors propose a framgw called ToMas, for
automatically adapting (rewriting) mappings as stag evolve. Their approach considers
not only local changes to a schema but also chathgesmay affect and transform many
components of a schema. Their algorithm detectspmgp affected by structural or
constraint changes, including addition/removal obastraint, removal of attributes, etc., and
generates all the rewritings that are consistett ¥ie semantics of the changed schemas.
Their approach explicity models mapping choicesdendy the user and maintains these
choices, whenever possible, as the schemas andngapmyvolve. When there is more than
one candidate rewriting, the algorithm may rankntheased on how close they are to the
semantics of the existing mappings.

3.14 Schema Evolution in Data Warehouses

Research efforts related to the problem of schewoduton in multidimensional databases
have been elaborated in accordance to the intrimttuof modeling concepts regarding data
warehouses, such as the star and snowflake moblst of these efforts [BISH99],
[BoKe0O0], [KaPRO04] adjust the semantics of schemalution to the multidimensional
paradigm by introducing a set of evolution chanigeshe data warehouse constructs, such
as slowly changing dimensions [Kimb96], additiorddification / deletion of measures, etc.
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[BISH99] presents a formal framework to describ®lgtions of multidimensional
schemas and their effects on the schema and ongtaces. The framework is based on a
formal conceptual description of a multidimensiosahema and a corresponding set of
evolution operators, such as insert/delete dimengwel, insert fact etc. [BoKe0O0] proposes,
as well, a logical model for data warehouse remprasi@n which consists of a hierarchy of
views, namely the base views, the intermediate viemd the users views. In this context, the
proposed model is enriched with a small set of @i@h changes, such as addition/deletion
of (materialized) views and sources. In [GLRVO4 tauthors deal with schema versioning
in the context of data warehouses, where querieg span in multiple versions of DW
schemas. The authors discuss versioning of stansafa, where histories of the schema are
retained and queries are chronologically adjusieakk the correct schema

In [FaP0o04], AutoMed, a framework for the managenwdrschema evolution in data
warehouse environments is presented. They introducechema transformation-based
approach to handle evolution of the source andmhreehouse schema. Complex evolution
events are expressed as simple transformations rengp addition, deletion, renaming,
expansion and contraction of a schema construaty Tdiso deal with the evolution of
materialized data with use of IQL, a functional qunguage supporting several primitive
operators for manipulating lists.

3.1.5 View adaptation to Schema Evolution

Views defined over evolving environments may becamelid due to changes at the
sources or definition of a view. The problem ofwiadaptation to database schema changes
comprises two special aspects:

e The first concerns the adaptation of the exterat wiew in the presence of changes in
the view definition, trying to minimize the rematdization effort for the view
[GMRRO1], [MoD096]. Changes in views definition arevoked by the user and
rewritings are used to keep theew extentconsistent with the data sources. For
instance, if an attribute is added in the defimt{@e., in the SELECT clause) of a
materialized view, the view must be rematerialiaed populated with the values of
the new attribute. The proposed techniques adhestview extent to a consistent
state without fully rematerializing the view frorhet underlying data warehouse.
Thus, the problem is formulated as view adaptatter redefinition to avoid
rematerialization of the view.

e The second deals with the adaptation of the viefimitien in the presence of changes
in the underlying database schema [Bell02]. Theh@utdeals with the same
problem, considering that the view redefinitionngoked by schema changes at the
base relations and must be propagated, essentialljhe view definition. The
problem is formulated as to how we can rewriterangform the view in order to
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avoid invalidation issues both at the data as waslthe schema level. [NiLR98],
[RULN97] deal also with a specialized aspect of view adaptation problem, the
view synchronizatiorproblem, which considers that views become invailiter
changes in view’s definition that are invoked bg tiser. The authors extend SQL,
enabling the user to define evolution parameteegadterizing the tolerance of a
view towards changes and how these changes wilkeb& with during the evolution
process. Specifically, two evolution parametersiat@duced, namely dispensable
and replaceable parameters, which dictate whetheat@ibute referenced in the
view is allowed to be dispensed from the view d&bn or replaced by a valid
rewriting in the case that it is deleted from tlwarse relation. Also, the authors
propose an algorithm for rewriting views based orerrelationships between
different data sources. The treatment of attribdedetions in [NiLR98] is quite
elaborate; since a view becomes syntactically idy#he proposed algorithm tries to
restore the “lost” information from other informati sources (connected via
predefined join constraints) in order to make tlewvalid again. Lastly, [NiLR98]
proposes a quality-cost model for view synchromiratoperations, comprising
metrics for performance, divergence between videriace, content, etc.

Lastly, in [FaBBO7], the authors tend to extend therk of [PaVVO05]. They first

consider a set of evolution changes occurring atsithema of a data warehouse, such as
dimension, level creation, deletion etc. and prevah informal algorithm for adapting
affected queries and views to such changes.

3.1.6

Comparison with Related Work

To this end, we compare some aspects of the prdpmamework for regulating schema
evolution with respect to the related literaturegented above. Many of the above presented
approaches to schema evolution can be considetieogoinal to the framework proposed in
this dissertation. Our work can be compared toekisting literature with respect to the
following aspects:

e Extensibility regarding evolution changeBlost schema changes proposed in the
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literature [Rodd95] and supported by current RDBM$ considered and
incorporated as operations on the Evolution Gr&ptken if we primarily focus on
schema evolution in the context of relational dasgbsystems, our framework is not
constrained only to such contexts. Evolution changsgarding other evolution
contexts [BISH99], or complex evolution events whare decomposed into a set of
elementary schema changes [FaPo04], can be trarexido evolution operations on
the graph and thus integrated in the framework.ifFgtance, schema changes in the
context of data warehouse are mapped to graphtapesan [PVSVO08].



e Schema Mapping and Transformatidrhe proposed framework focuses on detecting
the impact of schema changes occurring on partas dlational database-centric
environment (either on the database schema or depewonstructs). In that sense,
it is out of the scope of this work to provide teitjues for view and query rewriting
[Bell02], [GMRRO01], [NiLR98], schema mapping [VeMB]) [FaPo04] and model
integration [Bern03], [Meln04] or data evolutiondamaintenance. Such techniques
can be mapped to transformations on the evolutraplgand in that sense they are
orthogonal to our approach. This is due to the tlaat our algorithm stops at status
determination and does not perform any rewritingsdesigner can apply any
rewriting algorithm, provided that he pays the aation effort that each of the
methods of the literature requires (e.g., LAV/GAVAY or any other kind of
metadata expressions). For example, such an expressuld be stating that two
select-project fragments of two relations are sdiwally equivalent. Due to this
generality, our approach can be extended in theepoe of new results on such
algorithms. Also, the work of [KaSj01] has some ilamaspects with the proposed
framework of this dissertation, since they emploglir@cted graph for representing
the object dependencies in O-O database envirosnaerd finding the impact of
changes in database objects towards applicatiattshj

e Regulating schema evolution through policidgost related works consider that
constructs affected by schema changes, such agesjaed views, must retain their
original semantics. Unfortunately, current DBMS daages do not incorporate
evolution semantics, so that administrators / dgwais could prescribe the behavior
of the system when database schema evolution changeur. Our framework
introduces additional evolution semantics, i.eligms imposed as annotations on
the graph constructs, for regulating the way paftshe graph are affected by
evolution changes. These policies regulate whedfffected constructs will retain
their original semantics when they are affectecabyevolution change or they will
conform to the new semantics imposed by this chalmgghis context, our work can
be compared with that of [NiILR98] in the sense thalicies act as regulators for the
propagation of schema evolution on the graph siiyika the evolution parameters
introduced in [NiLR98]. However, the authors of [R98] deal only with schema
changes for deletion of attributes and relations.fuvthermore extend this approach
to incorporate attribute additions and the treatnzérconditions. The treatment of
attribute deletions in [NiLR98] is quite elaboratee confine to a restricted version
to avoid overcomplicating both the size of requesteetadata and the language
extensions. Still, the [NILR98] approach for dedets can easily be taken into
consideration in our framework. Also, the mode[\&¢MP04] is more restrictive, in
the sense that it is intended towards retainingptiggnal semantics of the queries by
preserving mappings consistent when changes documwork is a larger framework
that allows the restructuring of the database gré@ph, model) either towards
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keeping the original semantics or towards its nestdjent to the new semantics.
[FaPo04] can be used orthogonally to our approachtie case that affected
constructs must preserve the old semantics (i&cklpolicy in our framework).

3.2 Motivating example

Before illustrating the main concepts of the pragggbBamework, we present in this section a
motivating example that attempts to capture théblpros and the challenges that we deal
with. Observe the configuration of Figure 3.2, whaepicts a small database centric system
operating in the intranet of an imaginary compdanythe database layer, the system retains
data for all employees working in this company glavith data for the projects they work
for. In the application layer, data entry forms ased for inserting and updating records in
the database. A report module is also used by aogip managers for analysis reasons.
This module interacts with the database througkewa layer. We distinguish the following
roles for the users participating in this configiom: a) Databaseadministrators are
responsible for the management of the schema ofddiabase as well as the views’
definition stored in the database, @®velopersare responsible for maintaining the queries
contained in data entry forms and lastly é)alystsare responsible for expressing and
modifying queries in the report module.

For simplicity reasons, we consider that the datalsghema comprises only 3 relations
with the following schemas expressed in DDL stateisie

CREATE TABLE EMP( E_ID INTEGER PRIMARY KEY,
E_NAME VARCHAR(25) NOT NULL,
E_TITLE VARCHAR(10),
E_SALINTEGER NOT NULL);

CREATE TABLE PRJS( P_ID INTEGER PRIMARY KEY,
P_NAME VARCHAR(25) NOT NULL,
P_BUDGET INTEGER NOT NULL);

CREATE TABLE WORKS( E_ID INTEGER,
P_ID INTEGER,
W_RESP VARCHAR(10),
W_DURINTEGER,
PRIMARY KEY (E_ID,P_ID),
FOREIGN KEY (E_ID) REFERENCES EMP(E_ID),
FOREIGN KEY (P_ID) REFERENCES PRJS(P_ID));

The view layer comprises a view, nam@&mwps_Prjs , that correlates the employees
with the projects they work for. On top of this wiewe consider that the report module
contains an aggregate query that calculates thenses of each project per month by

54



summing up the salaries of all employees workingtfand compares them with the budget
of the project. Lastly, in the data entry forms, eamsider solely an INSERT statement that
inserts records iEMPrelation. The definitions of the employed view aneeries in terms of
SQL syntax are included in the figure.

Data Entry
- —
Qq:INSERT INTO EMP — . Database
VALUES (101, ‘JOHN SMITH’, DEV, 10000) i >

Report Module Views EMP

Wl - . F

»| | CREATE VIEW EMPS_PRIS AS
—_— SELECT E.E_ID, E.E_NAME, E.E_SAL,

Q,: SELECT P_ID, P_NAME, P_BUDGET] P.P_ID, P.P_NAME, P_BUDGET PRJS

SUM(E_SAL) AS P_EXPENSES FROM EMP E, PRJS P, WORKS W
FROM Emps_Prjs WHERE W.E_ID = E.E_ID
GROUP BY P_ID, P_NAME, P_BUDGET AND W.P_ID =P.P_ID ;
|
WORKS

Figure 3.2: Motivating Example Configuration

Assume that due to changes in requirements thenggtnaitor must add an attribute to
the relationEMP sayPhone. Should this change be propagated to the viewoarké query
involved in the data entry form? Is actually thesxy affected by such an event? Although
related research can handle the deletion of ate#)udue to the obvious fact that queries
become syntactically incorrect, the addition ofoimfiation is deferred to a decision of the
designer/developer. In general, given an evolutitenge that occurs on a part of the system,
the following question arises (from the adminisirat point of view):Which parts of the
system are affected and how?

The situation is more pressing when the attribatided involve the primary key of a
relation. Assume, for example, that two attribugee added to relatioWorks, namely
StartDate , EndDate , characterizing the period over which an empldyag worked for a
project. In this case, the uncertainty on the @iness of the view definition is increased: do
we request all employees ever having worked in @gept, or only the ones currently
involved in some project? Similar considerationsein the case where theiereclause of
the view is modified. Assume that a fieBTATUSIis added to all projects and the view
definition is modified by incorporating the extralectionSTATUS="Active’ . Can we still
use the view in order to answer the query or ndi? dnswer is not obvious, since it depends
on whether the query employed by the analysts, thgegiew simply as a macro (in order to
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avoid the extra coding effort) or, on the other dhatine query is supposed to work on the
view, independently of what the view definition[iBsKI78]. In other words, whenever a
query is defined over a view, there exists two fldsavays to interpret its semantics: (a) the
query is defined on the time-specific semanticthefview; if the view’s definition changes
in the future the query’s semantics are affectbyltlfe query’s author uses the view as an
API ignoring the semantics of the view; if thesenaatics change in the future, the query
should not be affected. The problem lies in the flaat there is no semantic difference in the
way one defines the query over the view; i.e., @in@ the view in the same manner in both
occasions. Again, given an evolution change thatigcon a part of the system and has an
impact on other parts of the system, the followiggestion arises (both from the
administrator’s and the developer’s points of vie@an we predefine the reaction of the
system to potential changes?

3.3 Regulating Schema Evolution

To deal with the above issues, we introduce a freonie for the detection of the parts of the
system, which are affected by an evolution chamgktie regulation of their reaction to this
change [PaVV05]. The main mechanism comprises timotation of the constructs of the
evolution graph (i.e., nodes and edges) with furtbemantics that facilitate the impact
analysis and regulation of schema evolution. Fivstdefineeventson the nodes of the graph
which are mapped to evolution changes that occuysasts of a database. Constructs of the
graph are, then, enriched witbliciesthat allow the developer to specify the behaviathe
affected constructs wheneveventsthat alter the database graph occur. The combimati

an event with a policy determined by the desigmeniaistrator triggers the execution of the
appropriate action that either blocks the evenhighlights properly the graph to adapt to the
proposed change.

The space of potentisdventscomprises the Cartesian product of two subspaces;
specifically the space of hypothetiadtions (addition/ deletion/modification) by the space
of graph constructssustaining evolution changes (e.g., nodes fortioglg, attributes,
conditions, etc.). For each of the above eventsattministrator annotates graph constructs
with policies that dictate the way they will reéotan event when affected.

We provide the following definitions concerning timain concepts of our framework.

Definition 3.1 — Evolution Action: An evolution action ais a tuple of the form
{Action Type, Node Typekhere (a)Action Typeis the type of operation that applies on
nodes of the graph, such addition, deletion, modification and renamiagd (b)Node Type
is the type of node sustaining the action, suchredetion node, attribute node, etc., as
presented in section 2.

Examples of evolution actions areaddition, attributg, {renaming, relatioh and
{modification, conditioh Evolution actions are classified a®mpositeand elementary
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Composite evolution actions, such as splitting, gimgy, pivoting, etc., can be expressed as
sequential combinations of elementary ones.

Evolution events on the schema of a database cmhsgither a relation, a view or a
guery, are operations that transform its schemm fam initial state S to a state S’, and
defined in the context of our framework as:

Definition 3.2 — Evolution Event An evolution eveng applied on the evolution graph
G=(V, E)is a tuple of the formd, n} where (a)a is theevolution actiorthat triggers the
event and (bhcV is the graph node on which this action occurs.

Examples of evolution events includaddition of attribute, Emp}{renaming of
attribute, E_Title} etc. In the context of our graph model, evolutments are operations on
nodes of the graph.

Definition 3.3 - Affected Node A nodencV is affectedoy an eveng occurring on
noden iff a directed edge exists fromtowardsng.

Affected nodes by an evolution event are nodes dhatsemantically or syntactically
affected by this event. For instance, if a quargienaccesses a relation, on which an attribute
is added, then this query node is affected bydkent. Affected modules are graph modules
(i.e., query modules, view modules), which compiasdeast one affected node and thus
regarded as candidates for evolution.

Definition 3.4 — Policy: A policy pfor anevent eapplying on ggraph node aVis a
triple of the form f,e rule}, where (a)ncV is the node of the graph annotated, éb} an
event occurring on the graph and i(@gle is the reaction that nodemust have when affected
by evente. Specifically, three kinds of rules are defined witspect to the semantics
incurred by an event:

(a) propagatethe change, meaning that the graph must be redtia@eljust to the new
semantics incurred by the event;

(b) blockthe change, meaning that we want to retain the@tdantics of the graph and
the hypothetical event must be blocked or, at Jeeshstrained, through rewriting that
preserves the old semantics; and

(c) promptthe administrator to interactively decide what wilentually happen.

Figure 3.3 depicts the triple relationship thatrelegerizes the semantics of policies on
the graph.We annotateelements of the graph with a specifide, for reacting toevents
occurring on the same or other elements of thehgrap
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Set of graph elements

¢ Query Node: Q1
o Attribute Node: EMP.E_TITLE
¢ View Node: Emps_Prjs, etc.

A Set of rules
e Propagate
e Block

e Prompt

@ We annotate @

Set of evolution events

e Add Attribute
e Delete Attribute
For reacting to——» ¢ Rename View, etc.

®

Figure 3.3: Annotation of the graph with policies

Examples of policies imposed on the graph inci{@#, add attribute to Emp, block}
{Emps_Prjs, delete attribute Prjs.P_Budget, Propageetc.

For better clarifying the relationship between #thema changes and the parts of the
system that are affected by each change, in Talllev8 present (a) the kinds of events
captured by our framework, (b) the parts of theesysthat are affected by each kind of event
and (c) the allowed annotations of graph constrwits policies for each kind of event. For
instance, for the case of an attribute additiofecé¢d parts of the system comprise the
relation or view on which the new attribute was edlds well as any view or query defined
on this relation / view.
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Events |R/V[RIV|RIVIQV|QIV| QV [R| A |VIQ| CIFIGB/
Attr.Cond,  |Attr.|Cond OB/P
Add Al A N N N
C V[ y R
RV
Delete | A| v | V NI~ N Vv A N
ClN N NN ViV v
RIV| N v v v
Modify/ | A | N | N | N N[ V| vV N[ V|V ]|
Rename C | + | v | + |+ NI J
RIV] ¥ J v v

A = Attribute, C = Condition R= Relation, V=View, Q=Query, I
Function, GB = Group By, OB = Order By P = Paramete

Table 3.1: Parts of the system affected by evoluticevents and annotation of
appropriate graph construct

Based on the annotation of parts of a system watitips for an event, our framework
determines their reaction to this event by assmyaistatusto each of them. That is:

Definition 3.5 - Status Let a nodencV annotated with a policyg for the eveng; the
statuss assigned tm describes the action that is applied to the rofie adapting to everd
The status is a property assigned to a node basé&s policy for this event, i.es =f(p) or
equivalently from definition 4.3 (for policiesyf(n , e, rule)

We will demonstrate the above concepts of our fiaank with an example for the
case of attribute addition. The configuration refew the motivating example presented in
section 3.2.

Example of Attribute Addition: Consider theNSERT statement used in the data entry
form, which is represented in our framework asdfeivalent quer@Q1: SELECT * FROM
EMP Assume that the provider relati@Pis extended with a new attribuRHONE There
are two possibilities:

¢ The * notation signifies the request for any atitédopresent in the schema of relation
EMP In this case, the * shortcut can be treated esufn all the attributes th&mvpP
has, independently of which these attributes arbén, the query must also retrieve
the new attribute PHONE.

e The * notation acts as a macro for the particukabaites that the relatioEMP
originally had. In this case, the addition to relatEMP should not be further
propagated to the query.
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A naive solution to a modification of the sourcesy., the addition of an attribute,
would be that an impact prediction system mustetratt queries and views that are
potentially affected and ask the designer to deugjaten which of them must be modified to
incorporate the extra attribute. According, howeverthe proposed framework, an element
that is affected by the addition is annotated whih policies mentioned before. According to
the policy defined on each construct the respechieton is taken to correct the query.
Therefore, for the example event of an attributditawh, the policies defined on the query
and the actions taken according to each policy are:

e Propagate attribute additiaWhen an attribute is added to a relation appganithe
FROMlause of the query, this addition should be otflé to theSELECT clause of
the query.

e Block attribute addition The query is immune to the change: an additiorihto
relation is ignored. In our example, the secone ¢asassumed, i.e., tIBELECT *
clause must be rewritten 8ELECT Al,...,An without the newly added attribute.

e Prompt In this case (default, for reasons of backwaadapatibility), the designer or
the administrator must handle the impact of thengkamanually; similarly to the

way that currently happens in database systems.
Status:
Add_Child

Policy
On attribute addition To EMP
then propagate S\
Status: map-select -~
e )

Add_Child | Flie

| map-select A

| |

| |

| |

| |

S |

] |

[ -~

—— - EEEy - - - ————————————- map-select ——————— -

~__7

Figure 3.4: Propagating addition of attribute PHONE

The graph of the quer@®l: SELECT * FROM EMP is shown in Figure 3.4The
annotation of node Q with fgoropagating additionindicates that the addition GfHONE
node toEMPrelation will be propagated to the query and thery is assigned a status for the
addition of an attribute as the new attribute iduded in theSELECT clause of the query.
This is accomplished with the assignment of ther@gmpate statusto every node that is
affected by the attribute addition.
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3.4 Algorithm Propagate Changes

The mechanism determining the reaction to a chargethe assignment of a node with a
status, is formally described in Figure 3.5 by #hgorithm Propagate Changeg?VSVO07],
[PVSV09]. Given an evolution grapB(V,E) annotated withpoliciesand anevent eover a
nodeny, Propagate Changeassigns atatusto each affected node of the graph, dictating the
action that must be performed on the node to hahélevent.

Algorithm Propagate Changes
Input: (a) a session igID
(b) a graphs(V,E)
(c) an event over a node,
(d) a set of policie® defined over nodes &
(e) an optional default poliqy, defined by the user for the event

Output: a graphG(V,E) with aStatus value for eachneV’' cV
Parameters (a) a global queue of messa@gs,
(b) each messagmis of the forrm =[SID,n s, n grep o
where
SID : The unique identifier of the session regardimgévolution everg
ns : The node that sends the message
ng : The node that receives the message
e : The event that occurs o
ps : Policy ofng for the evene
Begin
1. Emsc.€nqueue([SID,usepne, p))
2. while (Ensc '= O){

3. m = Ensc.dequeue();

4. pr = determinePolicy(m);

5. ng.Status=set_status(ng)p

6. decide_next_to_signal(myk,G);} //lenqueue m
End

Figure 3.5: Propagate Changes Algorithm

Specifically, given arevente over anode R altering the source database schema,
Propagate Changedetermines those nodes that are directly conndotéde node altered
and an appropriatmessages constructed for each of them, which is added the queue.
For each processed nong its prevailingpolicy pr for the processed eveais determined.
According to the prevailing policy, the status atk construct is set. Subsequently, both the
initial changes, along with the readjustment causethe respective actions, are recursively
propagated asew eventso the consumers of the activity graph. In Fig8r the statuses
assigned to the affected nodes by the additionncéttribute toEMPrelation are depicted.
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First, the algorithm sends a messageNtPrelation for the addition of attribufHONHEO its
schema, with a defayttropagatepolicy. It assigns the statd®D CHILD to relationEMPand
propagates the event sending a new message toutry. dSince an appropriate policy
capturing this event exists on the query, the qigegnlso assigned akDD CHILD status. In
the following sections, we discuss in more det#ils main components of the proposed
algorithm.

3.5 Tuning the propagation of changes

In this section, we detail the internals of theoailtnm Propagate Changes. Given an event
arriving at a node of the graph, the algorithm imee three cases, specifically, (a) the
determination of the appropriate policy for eachllao(b) the determination of the node's
status (on the basis of this policy) and (c) thehter propagation of the event to the rest of
the graph.

3.5.1 Determining the Prevailing Policy

It is possible that the policies defined over thféetent elements of the graph do not always
align towards the same goal. Two problems mighgtexi

a) over-specificatiorrefers to the existence of more than one polithas are specified
for a node of the graph for the same event, and,

b) under-specificatiomefers to the absence of any policy directly assipto a node.

Consider for example the case of Figure 5, whesienglified subset of the graph for a
certain environment is depicted. A relation R watie attribute A populates a view V, also
with an attribute A. A query Q, again with an dttrie A is defined over V. Here, for reasons
of simplicity, we omit all the parts of the gragtat are irrelevant to the discussion of policy
determination. As one can see, there are only telcips defined in this graph, both
concerning the deletion of attributes of view V.eTtirst policy is defined on view V and
says: ‘Block all deletions for attributes of view,Whereas the second policy is defined
specifically for attribute V.A and says ‘If V.A mube deleted, then allow it’.
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On attribute deletion To V
then block

On attribute deletion To V.A
then propagate

Figure 3.6: Example of over-specification and undespecification of policies

The first problem one can easily see is the ovecifipation for the treatment of the
deletion of attribute V.A. In this case, one of tin® policies must override the other. A
second problem has to do with the fact that neithéy;, nor Q.A, have a policy for handling
the possibility of a deletion. In the case thatdkesigner initiates such an event, how will this
under-specified graph react? To give you a previewler-specification can be either offline
prevented by specifying default policies for atriautes or online compensated by following
the policy of surrounding nodes. In the rest of $ection, we will refer to any such problems
as policy misspecifications.

We provide two ways for resolving policy misspemtions on a graph construct: on-
demand and a-priori policy misspecification resolit Whenever a node is not explicitly
annotated with a policy for a certain event, on-dechresolution determines the prevailing
policy during the algorithm execution based onges defined on other constructs. A-priori
resolution prescribes the prevailing policy for le@onstruct potentially affected by an event
with use of default policies. Both a-priori and demand resolution can be equivalently used
for determining the prevailing policy of an affedtaode. A-priori annotation requires the
investment of effort for the determination of pa before hypothetical events are tested
over the database schema. The policy overriditignied in such a way, though, that general
annotations for nodes and edges need to be fudpecialized only wherever this is
necessary. Our experiments, later, demonstrate #dgtiori annotation can provide
significant earnings in effort for the database mistrator. On the other hand, one can
completely avoid the default policy specificatiamdaannotate only specific nodes. This is the
basic idea behind the on-demand policy and this lesy effort is required at the expense of
runtime delays whenever a hypothetical event iegpas the system.

3511 On-demand resolution

The algorithm for handling policy conflicts on demeais shown in Figure 3.7. Intuitively,
the main idea is that if a node has a policy defiapecifically for it, it will know how to
respond to an event. If an appropriate policy ispresent, the node looks for a policy (a) at
its container top-level node, or (b) at its provgle
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Algorithm Determine Policy

Input: a message m of the form m=[SIPm,e,p]
Output: a prevailing policy p
Begin
1. if (edge(gn) isPartOf) Il if m came from partof edge
2. return g /I child node policy prevails
3. else /[ m came from provider
4. if exists policy(a,e) Il check if m has policy for this event
5. return policy(g); /I return this policy
6. else if exists policyfparent,e)
7. return policy@parent); I return rk parent’s policy
8. else return;p /I else return providers policy
End

Figure 3.7: Determine Policy Algorithm

Algorithm follows the subsequent rule: the highed deft a module is at the hierarchy
of Figure3.8, the stronger its policy is.

Users |  Query Query

Choice ' Conditions _ Attributes ~ 1®"Y
L {__J
Query : “““““““““ |
Module View View . |
: Conditions Attributes View :
R il
View : __________________ |
Module Relation Relation . |
:Conditions Attributes Relation :
L e 1
Relation
Module

Figure 3.8: On Demand Policy Resolution

Algorithm Determine Policy implements the followingasic principles for the
management of an incoming even to a node:

¢ If the policy is over-specified, then the higheddeft a module is at the hierarchy of
Figure 3.6, the stronger its policy is.

¢ If the policy is under-specified, then the adoppeticy is the one coming from lower
and right.

The algorithm assumes that a message is sent fsmnder nodedto a receiver node
n.. Due to its complexity, we present the actual sleas taken in a different order than the
one of the code:
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Check 1 (lines 6-7):This check concerns child nodes: if they do nateha policy of
their own, they inherit their parent’s policy. Hey do have a policy, this is covered by lines
4-5.

Check 2 (lines 1-5):if the event arrives at a parent node (e.g., aticel), and it
concerns a child node (e.g., an attribute) therahga assigns the policy of the parent (lines
4-5), unless the child has a policy of its own thegrrides the parent’s policy (lines 1-2). A
subtle point here is that if the child did not haveolicy, it has already obtained one by its
parent in lines 6-7.

Check 3 (line 7):Similarly, if an event arrives from a provideraaonsumer node via
a map-select edge, the receiver will make all theva tests, and if they all fail, it will simply
adopt the provider’'s policy. For example, in themyple of Figure 3.6, Q.A will adopt the
policy of V.A if everything else fails.

3.5.1.2 A-priori resolution

A-priori resolution of policy conflicts enables tlaanotation of all nodes of the graph with

policies before the execution of the algorithm. Wep resolution guarantees that every node
is annotated with a policy for handling an occuregdnt and thus no further resolution effort
is required at runtime. That is, the receiver nofle@ message will always have a policy
handling the event of the message. A-priori resmhuts accomplished by defining default

policies at 3 different scopes [Pap+08].

System-wide scopEirst, we prescribe the default policies forkafids of constructs, in
a system-wide context. For instance, we imposefauttepolicy on all nodes of the graph
that blocks the deletion of the constructs per se.

Top-level scopeNext, we prescribe defaults policies for top-leveldes, namely
relations, queries and views of the system, wiipeet to any combination of the following:
the deletion of the construct per se, as well asathdition, deletion or modification of a
construct's descendants. The descendants can bepagpfely specified by their type, as
applicable (i.e., attributes, constraints or candg).

Low-level scopelastly, we annotate specific low granularity ciousts, i.e., attributes,
constraints or conditions, with policies for the&letion or modification.

The above arrangement is order dependent and expha fact that there is a partial
order of policy overriding. The order is straightfard: defaults are overridden by specific
annotations and high level construct annotatiomeeming their descendants are overridden
by any annotation of such descendant:

System-wide ScopeTop-Level Scope Low-Level Scope

Furthermore, certain nodes or modules that violage above default behaviors and
must obey to an opposite reaction for a potentiaheare explicitly annotated. For example,
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if a specific attribute of an activity must alwalgkck the deletion of itself, whereas the
default activity policy is to propagate the atttdudeletions, then this attribute node is
explicitly annotated with block policy, overridirige default behavior.

3.5.1.3 Completeness

The completeness problem refers to the possilofits node that is unable to determine its
policy for a given event. It is easy to see thaisitsufficient to annotate all the source
relations for the on-demand policy, in order to rguéee that all nodes can determine an
appropriate policy. For the case of a-priori antiota it is also easy to see that a top-level,
system-wide annotation at the level of nodes ifigent to provide a policy for all nodes. In
both cases, it is obvious that more annotationd wiktra semantics for specific nodes, or
classes of nodes, that override the abovementiqaedault) policies, are gracefully
incorporated in the policy determination mechanisms

352 Determination of a node’s status

In the context of our framework, the action applied an affected graph construct is
expressed as a status that is assigned on thisrwcing he status of each graph construct
visited by Propagate Changesilgorithm is determinedocally by the prevailing policy
defined on this construct and the event transmitigdhe adjacent nodes. The status of a
construct with respect to an event designates thethis construct is affected and reacts to
this event, i.e., the kind of status that will lssigned to the construct. The general guidelines
for assigning statuses on nodes stem from the putasded in Table A.1 of Appendix A.

A visited node is initially assigned withraull status If the prevailing policy idlockor
promptsthen the status of the nodehikck and promptrespectively, independently of the
occurred event. Recall that blocking the propagatb an event implies that the affected
node is annotated for retaining the old semantespite of change occurred at its sources.
The same holds for prompt policy with the differenbat the user, e.g., the administrator, the
developer, etc. must decide upon the status afidde.

For determining the status of a node whepr@pagatepolicy prevails, we take into
account the event action (e.g., attribute additi@hgtion deletion, etc.) transmitted to the
node, the type of node accepting the event anly ldet scope of the event action. An event
raises actions that may affect the node itselfaitsestors within a module or its adjacent
dependent nodes. Thus, we classify gshepe ofevolution impacts with respect to an event
that arrives at a node as:

e SELE The event occurs on the node itself, e.g. a eeddtribute event occurs on
attribute an attribute node.
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e CHILD: The event occurs on a descending node belongitigetsame module, e.g., a
view is notified with a delete attribute event tbe deletion of one of its attributes.

e PROVIDER The event occurs on a node belonging to anotloelule, e.g., a query is
notified for the addition of an attribute at thdnema of one of its source relations.

In that manner, combinations of the event typetaedevent scope provide a non finite
set of statuses, such as: DELETE SELF, DELETE CHIRDD CHILD, RENAME SELF,
MODIFY PROVIDER etc. It is easy to see that tha #bove mechanism is extensible both
with respect to event types and statuses. Lasitystatus assignment to nodes induces new
events on the graph which are further propagateéropagate Changealgorithm to all
adjacent constructs. In Table A.2 of Appendix Ag #tatuses assigned to visited nodes for
combinations of events and types of nodes are shatvenpropagatepolicy prevails on the
visited node. For each status the new event indbgdtie assignment of a node with status,
which is further propagated to the graph, is alsonsh.

3.5.3 Next to Signal - Optimization and Pruning

The processing order of affected graph elementwiimarily, determined by a BFS traversal
on the graph. Moreover, after the processing oh emtle the algorithm checks its assigned
status. If the status islock or prompt the further traversal of the graph beyond thisenod
stops and the propagation of the event is eitllecked or the frameworkpromptsthe
administrator to decide. All nodes depending on ribde that blocked the event are not
notified and therefore remain immune to the evEat.the case that the assigned status is not
block or prompt the algorithm inserts a message into the gueueall adjacent nodes
connected with outgoing edges towards this node

BFS traversal ensures that all affected constraotsexamined for adaptation, but
cannot guarantee that no cycles potentially regylin controversial setting of statuses are
detected. For instance, observe the graph of Fi§uteon which the event “deletion of
attribute EMP.Name” occurs, and all nodes retaprevailing policy for propagating the
deletion. ThePS algorithm determines the status of EMP.Name asLBPEE SELF” and
inserts into queue two messages for nodes EMP axdr@e. These nodes will in turn obtain
statuses “DELETE CHILD” and “DELETE SELF” respedly, and each of them sends a
message to node Q. The latter will be twice natifigth the following messages: one of its
children, namely Q.Name, is deleted and one gbritwider’s children, namely EMP.Name,
is deleted. Eventually, node Q must react to thesemessages, the arriving order of which
may result in the assignment of different statuses.

To deal with the above contradiction, we apply ddi@gonal optimizationon the BFS
traversal of the graph, requiring that messagesnae¥ted into queue with a specific order.
First all nodes connected via provider edges with tode suffering the event are notified
and afterwards all nodes connected via part-of diyéditionally, messages arriving from a
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node connected via a provider edge prened if a status capturing the same event has
already been set. This can ensure that no cyctks@mtroversial statuses are detected on the
graph. With the above constraints, the query Q bélinotified by the child Q.NAME for its
deletion and ignore the message coming from reidEidP.

It is easily noticed that with the use of policiesir framework regulates the
propagation of events towards the graph and theipats that are affected by an event. We
are ready now to provide a refinement to the debing of affected nodes in the presence of
policies and a new definition regarding transformedes.

Definition 3.6 - Affected Node in the presence of giicies Let G(V,E) be an
evolution graph annotated with a set of polidesA nodencV is affectedby an evene
(occurring on nodey) iff after the execution oPSa status is assigned ta for handlinge.

Affected nodes by an evolution event are nodes dhatvisited byPS algorithm and
therefore assigned a status for handling an elretihat sense, nodes that are connected with
a direct path towards the node sustaining an ememot affected if an intermediate node has
blocked the propagation of the event towards them.

Definition 3.7 - Transformed Node A node ncV is transformedby an evente
(occurring on a nods) iff the statuss assigned to node for handling the everd requires
the transformation af.

A transformed node by an event is a node, whidifected by this event through some
kind of transformation, i.e., a status differerdanfrblock is assigned to node, such as delete
node, rename, etc. Rewritten modules to an evergraph modules, which comprise at least
one transformed node, and therefore are adjustesth tevolution event explicitly through
some kind of rewriting.

3.6 Experimental Evaluation

In this section, we present in details the expentaeevaluation that we performed for our
framework. We evaluated the proposed framework aaphbilities of the approach in the
configuration of a data warehouse environment apdgifically, via the reverse engineering
of 7 real-world Extraction — Transformation — Loagli(ETL) scenarios extracted from an
application of the Greek public sector. The examhidata warehouse maintains information
regarding farming and agricultural statistics. @oel was to evaluate the framework with
respect to itseffectivenesdor adapting ETL workflows to evolution changescaging at
ETL sources and itefficiencyfor minimizing the human effort required for defig and
setting the evolution metadata on the system.

The aforementioned ETL scenarios extract infornrmatat of a set of 7 source tables,
namely $to § and 3 lookup tables, namely to Ls, and load it to 9 tables, namely  To,
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stored in the data warehouse. The 7 scenarios en@rtotal number of 59 activities. All
ETL scenarios were source coded as PL\SQL stommkgures in the data warehouse.

First, we extracted embedded SQL code (e.g., cudefinitions, DML statements,
SQL queries) from activity stored procedures. Tatdénitions (i.e., DDL statements) were
extracted from the source and data warehouse dastes. Each activity was represented in
our graph model as a view defined over the previemissities, and table definitions were
represented as relation graphs. In Figure 3.9, egectithe graph representation of the first
ETL scenario as modeled by our framework. For dititglreasons, only top level nodes are
shown. Activities are depicted as triangles; soutoekup and target relations as dark
colored circles.
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Figure 3.9: First ETL scenario graph representation

We, then, monitored the schema changes occurrtée atource tables due to changes
of requirements over a period of 6 months. Thetetolution events occurred in the source
schema included renaming of relations and attrdyudeletion of attributes, modification of
their domain, and lastly addition of primary keynstraints. We counted a total number of
374 evolution events and the distribution of ocence per kind of event is shown in Figure
3.10.
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Figure 3.10: Distribution of occurrence per kind ofevolution events

In Table 3.2, we provide the basic properties afheaxamined ETL scenario and
specifically its size in terms of number of acie#t and number of nodes comprising its
respective graph, its evolved source tables an@tulpaables and lastly the number of
occurred events on these tables.

Scenario | # Activ. | # Nodes| Sources # Events
1 16 1428 S1,S4 ,L1, L2, U3142

2 6 830 S2, L1 143

3 6 513 S3, L1 83

4 16 939 S4, L1 115

5 5 242 S5 3

6 5 187 S6 1

7 5 173 S7 6

Table 3.2: Characteristics of the ETL scenarios

The intent of the experiments is to present theachmf these changes to the ETL
flows and specifically to evaluate our proposednieavork with respect to its effectiveness
and efficiency.

3.6.1 Effectiveness of Workflow Adaptation to Evolution Changes

For evaluating the extent to which affected adgeitare effectively adapted to source events,
we imposed policies on them for each separate cet@vent. Our first goal was to examine
whether our algorithm adjusts activities in accoato the expected transformations, i.e.,
transformations that the administrators/developarsld have manually enforced on the ETL
activities to handle schema changes at the sousgaaspecting and rewriting every activity
source code.

Hypothesis H1 Algorithm effectively determines the correct statof activities for
various kinds of evolution events.
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Methodology:

1. We first examined each event and its impact ongitagh, by finding all affected
activities.

2. Since all evolution events and their impact onvatdis were a-priori known, each
activity was annotated with an appropriate polioy éach event. An appropriate
policy for an event is the policy (either propagate block), which adjusts the
activity according to the desired manual transfdroma when this event occurs on
the activity source.

3. In that manner, each event at the source schenme &TL workflows was separately
processed, by imposing different policy sebn the activities. We employed both
propagate and blocgolicies for all views and queries subgraphs cosnpgi ETL
activities. Policies were defined both at query atiibute level, i.e., query, view
and attribute nodes were annotated.

4. We invoked each event and examined the extent ichwthe automated readjustment
of the affected activities adheres to the desir@dsformation. We, finally, evaluated
the effectiveness of our framework by measuringiin@ber of affected activities by
each event, i.e., these that obtained a STATUS) waspect to the number of
successfully readjusted activities, i.e., theseseh®TATUS was consistent with the
desired transformation.

Activities

Event Type with Status with Correct Status
Attribute Add 1094 1090
Attribute Delete 426 426
Attribute Modify 59 59
Attribute Rename 1255 1255
Constraint Add 13 5

Table Rename 8 8

Total 2855 2843

Table 3.3: Affected and adjusted activities per eve kind

In Table 3.3, we summarize out results for difféd@nds of events. We, first, note that
most of the activities were affected by attributieliions and renaming, since these kinds of
events were the most common in our scenarios. Muagsbrtant, we can conclude that our
framework can effectively adapt activities to theamined kinds of events. Exceptions
regarding attribute and constraint additions are tuthe fact that specific events induced ad
hoc changes in the functionality of the affectetivétees, whichpromptsthe user to decide
upon the proper readjustments. These exceptionsairdy owed to events occurred on the
lookup tables of the scenarios. Additions of atttés at these tables incurred (especially
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when these attributes were involved in primary kewstraints) rewriting of the WHERE
clause of queries contained in the affected awavit

Finally, whereas the above concern the precisiam@imethod (i.e., the percentage of
correct status determination for affected actisiti@ve should also report on the recall of our
method: The number of activities that were notaéd by the event propagation, although
they should have been affected, is zero.

3.6.2 Effectiveness of Workflow Annotation

Our second goal was to examine the extent to wihiéérent annotations of the graph with
policies affect the effectiveness of our frameworkis addresses the real case when the
administrator/developer does not know the numbedrthe kind of potential events that occur
on the sources and consequently cannot decideod ppon a specific policy set for the
graph.

Hypothesis H2Different annotations affect the effectivenesshef algorithm.
Methodology:

1. We first imposed a policy set on the graph.

2. We then invoked each event in sequence, retaihegdame policy set on the graph.

3. We again examined the extent to which the automegadjustment of the affected
activities (i.e., their obtained status) adheresthe desired transformation and
evaluated the effectiveness of our framework foes® annotation plans.

We experimented with 3 different policy sets.

e Mixture annotation: A mixture annotation plan for a given set of egecomprises
the set of policies imposed on the graph that mepasithe number of successfully
adjusted activities. For finding the appropriatdiqgofor each activity of the ETL
scenarios, we examined its most common reactiogath different kind of event.
For instance, the appropriate policy of an actividy attribute addition will be
propagateif this activity propagates the 70% of the newilatttes added at its
source and blocks the rest 30%. In mixture anraiagpropagate policies were
applied on most activities for all kinds of evemtisereasdlock policies were applied
on some activities regarding only attribute additavents.

e Worst-Case annotation As opposed to the mixture annotation plan, thestvoase
scenario comprises the set of policies imposedhengraph that minimizes the
number of successfully adjusted activities. Thes lesmmon reaction to an event
type was used for determining the prevailing pobtgach activity.
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Figure 3.11: Mixture Annotation
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Figure 3.12: Worst Case Annotation

e Optimistic annotation: Lastly, an optimistic annotation plan implies tthall
activities are annotated with a propagate poliaydib potential events occurred at
their sources.

Again, we measured the number of affected actwitieat obtained a specific status
with respect to the number of correctly adapted/diets. In Figure 3.11, Figurg.12 Figure
3.13 we present the results for the different kioblevents and annotations.
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Figure 3.13: Optimistic Annotation

As stated in the hypothesis, different annotatiomghe graph have a different impact
on the overall effectiveness of our framework, lesytvary both the number of the affected
activities (i.e., candidates for readjustment) #mel number of the adjusted activities (i.e.,
successfully readjusted) on the graph. The mix&umeotation manages most effectively to
detect these activities that should be affectedabyevent and adjust them properly. In
mixture annotation, the policies, imposed on thepbr manage to propagate event messages
towards activities that should be readjusted, wdeerglock messages from activities that
should retain their old functionality. On the camy, the worst case annotation, fails to detect
all affected activities on the graph as well asathust them properly, as it blocks event
messages from the early activities of each ETL ok Since events are blocked in the
beginning of the workflow, further activities cannge notified for handling these events.
Lastly, optimistic annotation provides both goodl dad results. On the good side of things,
the optimistic annotation is close to the mixtun@@tation in several categories. On the other
hand, the optimistic annotation propagates evergsages even towards activities, which
should retain their old semantics. In that manoptimistic annotations increases the number
of affected activities (i.e., actually all the adies of the workflow are affected) without
however handling properly their status determimatio

Overall, a reasonable tactic for the administratould be to either choose a mixture
method, in case there is some a-priori knowledgéherdesired behavior of constructs in an
environment, or, progressively refine an originalysigned optimistic annotation whenever
nodes that should remain immune to changes arecassarily affected.
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3.6.3 Efficiently Adapting ETL Workflows to Evolution Cha nges

For measuring the efficiency of our framework, weamined the cost of manual
adaptation of the ETL activities by the adminisirat developer with respect to the cost of
setting the evolution metadata on the graph @enotation with policies) and transforming
properly the graph with use of our framework.

Developers’ effort comprises the detection, inspectand where necessary the
rewriting of affected activities by an event. Fostance, given an attribute addition in a
source relation of an ETL workflow, the developansindetect all activities affected by the
addition, decide how and whether this addition mastpropagated or not to each SQL
statement of the activity and lastly rewrite, itteesary, properly the source code. The effort
required for the above operations depends highlthendevelopers’ experience but as well
on the ETL workflow characteristics (e.g., the céemly of the activity source code, the
workflow size, etc.). Therefore, the cost in terafishuman effort for manual handling of
source evolutionMC, can be quantified as the sum of (a) the numb&Qif statements per
activity, which are affected by an event and mustnanually detectedAS plus (b) the
number of SQL statements, which must be manuallyitten for adapting to the everRS
Thus human effort for manual adaptation of an &@gtig, to an eventg, can be expressed as:

MC:=(AS +RS) (1)

For a given set of evolution everiisand a set of manually adapted activies an
ETL workflow, the overall cosDMC, is expressed as:
OMC=> > MC; (2
ecE ac A

For calculating OMC, we recorded affected and ritemi statements for all activities
and events.

If the proposed framework had been used, insteadnafually adapting all the
activities, the human effort can be quantified las $sum of two factors: (a) the number of
annotations (i.e., policy per event) imposed onghaph,AG, and (b) the cost of manually
discovering and adjusting activitieg #hat escape the automatic status annotation dabtie
e.g., ho annotations have been set on these a&givit a prompt policy is assumed for these
activities. The latter cost is expressed as:

RMC=) > MC; (3)

ecE ae Az

Therefore, overall cost for automated adapta@iC,is expressed as:
OAC=AG+RMC (4)

Hypothesis H3The cost of the semi-automatic adaptat©®AC, is equal or less than
the cost of manually handling evolutiddMC.
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For calculatingODAC, we followed the mixture plan for annotating eattribute and
guery node potentially affected by an event occlatethe source schema and measured the
number of explicit annotation&,G. We then applied our algorithm and measured tisé @o
manual adaptation for activities which were notpamdy adjusted. Figure 3.14 compares the
OMC with OACfor 7 evolving ETL scenarios.
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Figure 3.14: Manual (OMC) and Semi-automatic (OAC)Adaptation
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Figure 3.15: Cost of Adaptation with and without ug of Default Policies

Figure 3.14 shows that the cost of manual adaptasionuch higher than the cost of
semi automating the evolution process. The divergdrecomes higher especially for large
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scenarios such as scenario 1 and 4 or scenariognaity events such as scenario 2, in which
the administrator must manually detect a large rermolb affected activities or handle a large
number of events.

Furthermore, to decrease the annotation cA&, we applied system wide default
policies on the graph. With use of default policit® annotation cosfAG, decreases to the
number of explicit annotations of nodes that viedathe default behavior. We, again,
measured the number of explicit annotations as aglthe remaininRMC. As shown in
Figure 3.15, the cost of adaptation with use of foamework is further decreased, when
default policies are used. With use of default@e$, the overall adaptation cost is dependent
neither to the scenario size (e.g., number of nodesto the number of evolution events, but
rather to the number of policies, deviating frora ttefault behavior, that are imposed on the
graph. Scenarios 1 and 4 comprised more caseshichwhe administrator should override
the default system policies and thus, the oveadl ¢s relatively high. On the contrary, in
scenarios 2 and 3 the adaptation is achieved Heytardefault policy annotation, since the
majority of the affected activities react in a wnih way (i.e., default) to evolution events.

3.7 Summary

In this chapter, the framework for the regulatidnirapact of database schema evolution
towards affected constructs has been presentedevVdiation graph of a database centric
environment has been enriched with evolution seitgmamely evolution events that occur
on the graph nodes and policies that regulate tbpagation of these events on the graph.
The strong flavor of inter-module dependency in treck stage of a database-centric
environment makes the problem of schesmalutionvery important under these settings. We
have provided a formal method for performing impacediction for the adaptation of
affected constructs, mainly queries and views wiwgion events occurring at their sources.
Policies are defined on the graph, which inducerélagljustment of the graph in the presence
of potential changes by assigning an appropriatiston affected parts of the graph. We
have presented the core mechanism of the propasetefork which is the Propagate
Changes algorithm. We have also provided two waysttie determination of prevailing
policies on the graph, namely the a-priory and emand resolution. Lastly, we have
included a detailed experimental evaluation of filaeework over a real-case scenario of
schema evolution.
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4. LANGUAGE EXTENSIONS FOR
REGULATING DATABASE SCHEMA
EVOLUTION

Syntactic as well as semantic adaptation of quemes views to changes occurring in the
database schema is a time consuming task, treatedost situations manually by the
administrators or the application developers. Taedion of the affected parts as well as
their adaptation to the change, are burdensometipes performed, most of the times, after
the occurrence of each schema alteration. Thergfotee previous chapter, we presented a
framework for the a-priori handling of databaseesoh evolution and the regulation of the
impact that evolution operations have on the rdstthe system. We associate parts
potentially affected by evolution changes with pi@s that determine their reaction to such
changes before their occurrence.

An important issue regarding our framework seembeddhe cost of enriching with
evolution semantics all database constructs as asedlll queries, views, stored procedures,
and in general the plethora of parts comprisingatalsthse centric system. Even a small
database system may comprise some tens of dataligsets and even hundreds of
dependent objects accessing the database scherrandformed to the graph modeling
technique, it will result in a large number of ned®n which the administrator must
manually impose a set of policies. Thus, settinglion metadata on the various modules
comprising the systemvith an efficient ways a crucial technical issue that we resolve is th
thesis. We consider that the assignment of evaiutietadata raises the following interesting
challenges, regarding:

¢ Definition of policies The enrichment of the database objects with @aimust be a
task requiring minimal effort from the user andrédfere must be performed together
with the creation or alteration of each object. Huwstance, the designer of the
database schema must be able to define policieslatons during the creation or
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alteration of each relation and to modify these a®ins. The definition of policies
is performed on queries and views similarly to tietes. Therefore, the language
proposed must extend the capabilities of data aedycdefinition of SQL.

e Scopeof events The policies defined on a module must capturgadisible events
that may affect this module in various scope levEle user must be able to define
policies for the occurrence of an event on a smepiért of the module, e.g. the
deletion of a specific attribute, or for the oceunce of an event to any part of the
module, e.g., the deletion of any attribute in thedule. Therefore, the language
proposed must enable the definition of policiegéting on specialized or module-
wide events.

e Default policies The extension proposed must enable the definibbrdefault,
system-wide policies for several kinds of eventsl garts of the system. For
instance, the user must be able to define a dgfalitty for additions of attributes to
which any affected module must conform. Additiopathe language must enable
the overriding of default behaviors through explamnotation of specific modules.

Dealing with the above issues, in this chapterpvapose a set of SQL extensions that
enables the implementation of the proposed framlevasrthe management of evolution. For
extending a system catalog with extra informatiegarding evolution metadata, we provide
extensions to SQL regarding both top level constdedinitions, such as tables, views, and
gueries, as well as fine grain constructs suchttagwtes, conditions of views/queries, and
database constraints. Moreover, we provide a miedi way for defining the proposed
evolution semantics and in the same time minimizhng user effort. We, first, address the
requirement for the definition of default policie the whole system. The extensions
permits the definition of default policies for vaus kinds of database constructs, such as
relations, queries, attributes, etc. Furthermole éxtensions allow overriding default
policies and explicitly annotating specific modules extending the current SQL syntax for
the definition of relations, views and queries. thgasthe proposed extensions allow the
definition of policies for handling either specidd or module-wide events, by annotating
low level parts of a module, such as condition atitibutes or top-level parts, such as
queries, relations and views.

Chapter Outline. In section 4.1, approaches related to languagesixtes for schema
evolution are presented. In section 4.2, we preffamtextension regarding definition of
default policies on the system, and in sections 4.8 the annotation of top level nodes and
fine grain constructs, respectively. In section 4B evaluate the feasibility of the proposed
technique, by applying the extension on a real lidest@ centric environment. Lastly, in
section 4.6 we conclude our proposal.
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4.1 Extensions of SQL for Schema Evolution

Current RDBMS support all SQL extensions for perforg evolution operations on the
database schema, such as @REATE DROPandALTER statements. However, they do not
incorporate evolution semantics to the databasensamor to the definition of queries and
views, so that administrators / developers coukbkqibe the behavior of the system when
database schema evolution changes occur. On theaog to deal with the problems
occurred by the evolution in databases, severatipeh techniques are usually used for this
reason, like the use of variable names as placetoldr the real names of constructs like
attributes and tables. For example, Oracle’'s PL/JQEHMO04] uses the%TYPE and
%ROWTYPgonstructs to define variables as they are defini¢ltin the database. If the data
type or precision of a column changes, the progratomatically picks up the new definition
from the database without having to make any coldenges. Hence, the appropriate
enrichment of the procedural code with such cootrprovides data independence, reduces
maintenance costs, and allows programs to adapiieaslatabase changes to meet novel
business requirements. Another technique iSCh@CADEapabilities that RDBMS offer for
deletion of dependencies between objects, sucloragyh keys. During the definition of a
foreign key constraint, the user determines theabiehn (e.g., delete column, set null to all
tuples) of the dependent column when the referepcedary key is deleted. However, such
techniques partially confront the problem, as tlaeg dealing with the simplest cases of
evolution.

Most of the language extensions included in thatee literature address specific
perspectives and techniques for handling scheméutewo. SQL/SE is a query language
extension for databases supporting schema evoluf®odd92a]. SQL/SE provides
extensions for querying evolvable database schamthe context of schema versioning and
temporal databases. The author enriches the syfte&QL queries with semantics for
qguerying different versions of schemas and handétigbutes that are not defined over
different versions. Our proposed set of extenswes not require the existence of schema
versioning or the integration of time within databachema evolution. We, actually, provide
rules for the transformation and adaptation of gseand views to the last valid database
schema without the assumption that the transfomuedies retain the same semantics.

Another extension to SQL, namely SchemaSQL suppow#i database querying
[LaSS01]. SchemaSQL addresses the problem of peeability between different database
schemas and their respective instances, enablsgigar to express queries over different
schemas. SchemaSQL softens the distinction betaa®ma and data by allowing to query
schema (such as lists of attribute or relation rgnme SQL-queries and also to use sets of
values obtained from data tuples as schema in ukgubrelation. This leads to a versatile
qguery language which allows for transforming sencafly equivalent but syntactically
different schemas into each other.
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Lastly, [NiLR98] introduces in the context of Evale View Environment framework
an extension of SQL, named E-SQL. E-SQL is an extenof SQL augmented with
specifications for how the view definition may bgnshronized under database schema
changes. Evolution preferences expressed as emolpirameters allow the user to specify
criteria based on which the view will be transpélseavolved by the system under schema
changes at the underlying database. Specificdiey syntax of a view definition is enriched
with parameters that dictate whether attributes r@hations included in the view's clauses
can be dispensed or replaced in the case of tledations from the underlying database
schema. Also, it includes a parameter for detemginvhether the extent of the evolved view
is a subset, a superset or an equal set of thateftéhe original view. The general syntax of
the proposed language extensions is given below:

CREATE VIEW V(V4,...,V ) (ViewExtent = dv) AS
SELECT R.A; (Disp.=true|false, Repl. = true|false), ...,
S.B (Disp. = truelfalse, Repl. = truelfalse)
FROI R(Disp.= truelfalse, Repl. = true|false),
S(Disp.= true|false, Repl. = true|false)
WHERE (Disp.= truelfalse, Repl. = true|false)
AND ... C ((Disp.= truelfalse, Repl. = true|false)

The extension proposed in E-SQL can be considenaiths to the extension proposed
in this thesis from the perspective that evolupanameters resemble the concepts of policies
used in our framework. Still, it is constrained yomb handling deletions of attributes and
relations, offering alternatives for removing timealid references from the definition of the
view or replacing them through a valid rewritingurQproposed extension offers a wider
range of evolution events and policies that the oae define on existing SQL. It also allows
the definition of default policies for annotatingthivminimal effort large-scale systems.

4.2 Database-wide Default Values

In the following sections, we define the syntax tbe proposed extensions of SQL. All
extensions outlined are given in BNF and througttbase sections we refer to the system
configuration employed as motivating example irntisac3.2.

Regarding the definition of the default policiex wonsider each assertion as a triplet
(event, type of nodeplicy). Syntactically, this is expressed as follows:

ON <event> <type of node> THEN <policy>

An event refers to evolution events in the datalsmbema comprising an event type,
such asDelete, Add, Modify, Renanad a node type, which takes any of the following
values in the partial order presented:
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* NODE
e RELATION, QUERY, VIEW
¢ ATTRIBUTE, CONDITION, PK, FK, NNC, UC

Note that we annotate nodes with default valueg fumlchanges applied to themselves
and not to any of their ancestors or descendaontseXample, we can have the following
annotations:

ON DELETE NODE THEN PROPAGATE
ON DELETE ATTRI BUTE THEN PROVPT

The definitions of the default policies are expesess SQL as follows.

e SQL Syntax

db-spec::= CREATE DATABASE <db-name> [pol icy-1ist]
policy-list::= policy-clause [, policy-clause]
policy-clause::= ON event THEN policy
event::= action-type construct-type

event-type: .= Add | Delete | Mdify | Renane
construct-type::= NODE | RELATION | QUERY | VIEW | ATTRIBUTE |
CONDITION | PK | FK | NNC | UC
policy::= propagate | block | pronpt

e Example

CREATE DATABASE company
ON DELETE ATTRI BUTE THEN PROVPT

4.3 Top Level Constructs

We extend SQL syntax to include evolution-basedasgits both in DDL statements as well
as in SQL queries. The general syntax is:

ON<event> TO<node> THEN <policy>
whereevent again refers to evolution events in the databakema,node refers to

the specific database part suffering the event @olity can take the valueHopagate,
block, prompit
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43.1 Relations

Definition of policies on relations regarding thddehaviour on evolution changes is
primarily enforced upon creation, and thus, we eAt€REATE TABLEsyntax with certain
policy clauses. Policies imposed in a relation-wsdepe can be applied both to the relation
itself as well as to all schema attributes and tairgs. In that way, the administrator has the
ability to annotate with a single clause the entglation schema instead of annotating each
constituent attribute or constraint separately.

e SQL Syntax

table-spec::= CREATE TABLE <table-name>
(table-element-list [, policy-list])

policy-list::= policy-clause [, policy-clause]
policy-clause::= ON event TC node THEN policy
event::= Add Attribute | Delete Attribute | Mdify
Attribute | Renane Attribute | Delete Relation
| Rename Relation | Add Condition | Delete
Condition | Mdify Condition
node: : = <t abl e- nane>

policy::= propagate | block | pronpt

e Example

CREATE TABLE WORKS E_IDINTEGER,
P_IDINTEGER,
W_RESP  VARCHAR(10),
W_DUR INTEGER,
PRIMARY KEY (E_ID,P_ID),
FOREIGN KEY (E_ID) REFERENCES EMP(E_ID),
FOREIGN KEY (P_ID) REFERENCES PRJS(P_ID),
ON Add Attribute TO WORKS THEN pr opagat e);

The above syntax corresponds to the annotatiomeofréspective relation node (i.e.,
WORKPBwith the policy that allows the addition of dbintes and propagates this addition to
all queries and views accessing this relation. @nhyi policy clauses can exterd.TER
TABLE statements, enabling the administrator to defireips on existing relations.

432 Views

Views are inherent constructs of the database sah#rat constitute queries over the
database schema —with respect to views’ definitiand relations to other queries —w.r.t.
views’ functionality. Therefore, views invoke evban events when (a) their definition is
altered, affecting all queries defined over thend @n) the relations over which they are
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defined are affected by schema changes. We emnxisting SQL syntax for views creation to
capture potential events on their definitions deves.

e SQL Syntax

view-spec::= CREATE VIEW <view-name> AS
guery-expression [ policy-list]

policy-list::= policy-clause [, policy-clause]
policy-clause::= ON event TC node THEN policy
event::= Add Attribute | Delete Attribute | Mdify
Attribute | Renane Attribute | Delete Relation
| Rename Relation | Add Condition | Delete
Condition | Mdify Condition
node: : = <vi ew-nane> | <tabl e- nane>
policy::= propagate | block | pronpt

The policies capture events occurring at the sotaiokes of views’ definition (i.e., the
construct is a table-name) or events occurrinpatview definition itself (i.e., the construct
is a view-name).

e Example

CREATE VIEW EMPS_PRJS AS
SELECT E.E_ID, E.E_NAME, E.E_SAL
P.P_ID, P.P_NAME, P_BUDGET
FRO!M EMP E, PRJS P, WORKS W
WHERE W.E_ID=E.E_ID
AND W.P_ID =P.P_ID
ON Modi fy Condition TO EMPS PRIS THEN bl ock;

Such syntax corresponds to the annotation of e WiodeEMPS_PRJSwith a policy,
which blocks changes in tveHERElause of the view definition.

4.3.3 Queries

Queries are considered as top-level constructauinframework and they are the primary
consumers of evolution changes occurring at thabdeste level. Policies’ clauses enrich
query syntax with evolution semantics regarding rémection of the query to such changes
and have a query-wide scope. They prescribe battbémavior of the query itself and the
query constituents, i.e., query attributes and yuwenditions. In such way, the developer
may define a query-wide reaction to an evolutiomnge instead of assigning explicit
policies to each query attribute and condition.

e SQL Syntax
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guery- expression::= SELECT [ALL|DISTINCT] scalar-expression-list
FROM table-expression
[WHERE search-condition]
[GROUP BY grouping-column-list]
[HAVING group-condition]
[ORDER BY sort-specification-list]

[ policy-list]
policy-list::= policy-clause [, policy-clause]
policy-clause::= ON event TC node THEN policy
event::= Add Attribute | Delete Attribute | Mdify

Attribute | Rename Attribute | Delete View |
Renane View | Delete Relation | Renane Relation
| Add Condition | Delete Condition | Mdify
Condi ti on
node: : = <vi ew- name> | <tabl e-nane>
policy::= propagate | block | pronpt

e Example

Q: SELECT P_ID, P_NAME, P_BUDGET,
SUM(E_SAL) AS P_EXPENSES
FRO!M Emps_Prjs
GROUP BY P_ID, P_NAME, P_BUDGET
ON Add Attribute TO enps-prjs THEN bl ock;

The above syntax corresponds to the annotatiomefquery node with a policy,
which blocks the inclusion of added attributes hie underlying viewEmps_Prjs in the
select clause of the query syntax.

4.4 Fine Grain Constructs

Policy annotation can be further specialized tce fgrain constructs such as attributes,
database constraints and conditions of views/gsierfBuch annotations enable the
administrator to define specific policies on thesastructs, which override policies defined
on their top-level containers.

441 Attributes

Policies are defined for relation attributes inléadbefinition and for view or query attributes
in view or query definitions, respectively. Poligieclauses refer to attribute constructs,
which may be affected by an evolution change, piteisg in that way the specific behavior
of that attribute.

e SQL Syntax
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policy-clause::= ON event TC node THEN policy

event::= Delete Attribute | Mddify Attribute |
Renane Attribute
node: : = [<tabl e-name> | <view nane>.] <attribute-nane>
policy::= propagate | block | pronpt
e Example

CREATE TABLE EMP ( E_IDINTEGER PRIMARY KEY,
E_NAME  VARCHAR(25) NOT NULL,
E_TITLE VARCHAR(10),
E_SAL INTEGER NOT NULL,
ON Delete Attribute TO E_ NAME THEN bl ock) ;

Such syntax corresponds to the annotation of tirébate nodeE_NAMEwith the
explicit policy that blocks the node deletion frahe container relation. We apply the same
syntax for attributes involved in tt®ELECTclause of queries.

e Example

Q: SELECT P_ID, P_NAME, P_BUDGET,
SUM(E_SAL) AS P_EXPENSES
FRO!M Emps_Prjs
GROUP BY P_ID, P_NAME, P_BUDGET
ON Delete Attribute TO P_NAME THEN propagat e;

Such syntax corresponds to the annotation of tbgeqied attribute node_NAMEof
the queryQ with the explicit policy for allowing the node @g¢lbn from the select and group
by clause of the query (e.g., in the case thatadttisbute is removed from the underlying
database.)

4.4.2 Constraints

Similarly, policies are defined on database congBao override potential defined policies
on their top-level containers (i.e., relation) ahds to prescribe their specific behavior to
evolution changes.

e SQL Syntax

policy-clause::

ON event TC node THEN policy

event::= Delete Constraint | Mdify Constraint
node: : = [ <t abl e-nanme>.] <const rai nt - nane>
policy::= propagate | block | pronpt
e Example
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CREATE TABLE EMP ( E_IDINTEGER PRIMARY KEY,
E_NAME  VARCHAR(25) NOT NULL,
E_TITLE VARCHAR(10),
E_SAL INTEGER NOT NULL,
ON Modi fy Constraint TO EMP. PK THEN propagat €) ;

The above syntax corresponds to the annotatiomeoédnstraint nodemp.PK with the
explicit policy for allowing the modification ofself (e.g., the addition of a second attribute
to the primary key constraint) and propagating ¢hiange to all dependent constructs.

443 Conditions

Policies are defined on condition clauses of qeesied views for prescribing their behavior
to evolution events too. The modification or deletiof a view or a query condition
semantically impacts dependents parts of the sysidms, policies imposed on conditions
override query- or view-wide policies and handlmagtic changes invoked by such events.

e SQL Syntax
policy-clause::= ON event TC node THEN policy

event::= Delete Condition | Mdify Condition
node: : = [<vi ew- nane>. ] <condi ti on- name>
policy::= propagate | block | pronpt

Moreover, we provide a facility for the managemeintonditions as first class citizens.
We employ a specific name for each condition asvs.

CREATE CONDI TI ON <condi ti on> AS <expressi on>
For instance, we might have the following statermergxpressing (a) a simple
condition employed in a query, (b) a foreign keynstoaint, and (c) a join condition,
respectively.

CREATE CONDITION Emp_Age_Cond AS AGE>50
CREATE CONDITION Works_Emp_FK AS WORKS.EMP# IN EMP. EMP#
CREATE CONDITION Works_Emp_J AS WORKS.EMP#=EMP.EMP#

Traditional statements for the definition of foreideys or assertions for attribute
domains are easily refined to the above “normamforwithout necessarily obliging the
database designer or administrator to abide bglloge syntax.

Conditions may be employed in theHEREclause. For example, a qQUEBELECT *
FROM EMP WHERE AGE_CONBould simply use the condition as a macro. Parmamet
conditions, to allow referring to aliases in SQleqas are straightforward. One can also deal
with the problem of existing code in a straightfarek manner, since automatic condition
names can be assigned to all the queries.
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4.5 Evaluation of Language Extensions

We evaluated the proposed framework and capabilitiehe approach presented via the re-
verse engineering of a real-world evolution scenatracted from an application of the
Greek public sector. Our goal was to minimize thenhn effort required for defining and
setting the evolution metadata on the system lygusie proposed language extensions.

We extracted queries and views from applicationd stored procedures, and we
monitored the events occurred on the database schaththe way affected constructs had
been manually adjusted by the designers (e.g.ugfreome rewriting) to each evolution
event. In doing so, we resolved the appropriatecias| per event for all affected constructs.
Next, we used our approach for mapping constructgraphs and annotate them with
policies. Our framework allows for the represemtatof the database graph and its annota-
tion with policies regarding evolution semantasd enables the user to explicitly define
policies on graph constructs and perform what-#lgsis for several evolution cases.

The configuration used comprises a total set ofqG2ries over 18 relations. The
evolution events occurred in the database scherold® renaming of relations and
attributes, modification of attribute domain, daelat of attributes, and modification of
primary key constraints. Per event, we employedaihy@ropriatepropagateor block policy
on the relations, queries or attributes affectethieyevent.

In the context of our graph model, our configunatmomprised approximately 2500
nodes manually annotated with policies for eachnevleat were affected by. This was a
rather time-consuming task, as queries, querybates, and relations had to be explicitly
annotated. Policies for the various kinds of evevese defined over different kinds of nodes
as shown in Table 4.1.

Event Annotated nodes
Rename relation Relation nodes
Add attributes Relation/Query nodes
Delete Attributes Attribute nodes
Rename Attributes Attribute nodes
Domain Modification Attribute nodes
Condition Modification Condition nodes

Table 4.1: Kind of nodes annotated per event

Per query and relation, we counted the number ofesananually annotated with
policiespropagateor blockper event and the results are summarized in aBleéEach node
may have been, annotated with more than one pelmn such annotations address different
events; e.g., an attribute node may permit itsmeng, whereas block its deletion.

Additionally, we employed the proposed SQL extensito impose the same policies
on the graph. We measured the number of the polayses, which must enrich existing
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SQL and DDL commands in order to annotate the gaofieies on the graph as opposed to
the number of manual annotations on nodes. Heneewaluated 3 different cases: a) use of
a defaultpropagatepolicy for aspecificquery and for the events Delete, Rename and Modify
Domains of attributes (query scope) instead of ralipwannotating each query attribute, b)
use of default policies for all relations (relatisoope) for propagating the aforementioned
events, instead of annotating each query and cpludefaultpropagatepolicy for database
(database scope) to allow the renaming of relateords the addition of attributes instead of
annotating each relation. The results are showrabie 4.3.

With the usage of the proposed SQL extensions, hilmaan effort for explicitly
annotating these nodes is minimized. Specificatlfhe case study previously described, the
whole process of manually identifying and adapting changes lasted for 6 man-months,
whereas by using our approach and appropriatelptating the database constructs and
applying the respective policies, the same proleested for less than half a man-month.

Event # of nodes
Propagate Block
Rename relations 18 0
Add attributes 64 13
Delete Attributes 1608 92
Rename Attributes 1615 85
Domain Modification 1690 10
Condition Modification 0 21
Total Annotations 4995 221

Table 4.2: Distribution of annotated nodes per kindof policies and events

Scope # of operations
Annotations | Policy Clauses
Query scope 486 9
Relation Scope 5180 293
Database Scope 36 2

Table 4.3: Operations with and without SQL extensios

4.6 Summary — Discussion

In this chapter, we have presented a language ®&terio SQL for the annotation of
database objects with evolution semantics. Theodinited extensions alleviate from the
designer the cost of manually imposing policiestmngraph as well as to include evolution
semantics in the definition of a database objectqoery. Specifically, the proposed
extensions enriched the SQL definition of databebgcts and queries with evolution
semantics, i.e., policies, which dictate their tescto evolution events. The extensions
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involved the definition of default policies for thentire database environment, policies
regarding top level nodes, such as relations, \aed queries and lastly policies for fine
grain constructs, such as attributes, constramdscanditions. Lastly, in this chapter we have
evaluated the feasibility of the proposed technidue applying the extension on a real
database centric environment.
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5. A METRIC SUITE FOR
EVALUATING THE EVOLUTION OF
DATABASE SYSTEMS

How good is the design of a database centric enwiemt as far as its evolution is
concerned? What makes a design good or bad andh wbidiguration minimizes the effort
required for handling changes in an evolvable deabenvironment? Typically, such
guestions are answered by a set of rules, manlyeoh £mpirically validated, such as ‘does
the configuration follow a typical design pattesych as the use of views as layers for
handling evolution?’, or “is the database schemanatized” and so on. All recipes are
based on practical observations of the past, a$ agelrules of thumb that have been
established by expert practitioners and althoudhalde, they simply transfer the lessons
learned the hard way in the “craft” of databaseagtes

At the same time, the scientific community is notpossession of a fundamentally
established theory for the evaluation of the desgjgality of database centric environments.
So far, the researchers have dealt with metridsetveluate the design quality of the database
schema with respect to high level goals, such agpteieness, understandability, etc. both at
the conceptual and the logical levalthough structural properties of the database (e.g
number of relations or foreign keys) are considerdte employed approaches restrict
themselves to constructs internal to the databasthout taking into account the
incorporation of constructs surrounding the datadasto their models, nor the fact that a
dependent software construct, and especially arimdition system, evolves over tirience
software maintenance makes up for at least 50%llofeaources spent in a project,
maintainability is an important factor for the detéenation of the quality of a design of a
database environment as a whole. The problem te fard, since changes in the schema of
a database-centric system affect both its intermais also, the surrounding deployed
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applications. Thus, the minimal interdependencthe$e software modules results in higher
tolerance to subsequent changes and should be redagith a principled theory.

In the previous chapters, we introduced a frameworkthe impact analysis and the
management of schema evolution which maps to ahgtlag structural properties of the
database schema along with any views and querisedeover this schema. Given a
database configuration, the impact of a schema geghaon the rest of the system is
determined by exploiting the structure of the grapld furthermore the evolution of the rest
of the system is regulated with use of certaingaedi applied on the graph constructs. Hence,
administrators can regulate the management of #enlun a semi automatic way when
changes on the database schema occur.

In a complex database environment where a signifisamber of constructs interrelate
with each other, the detection of these constiihetsare most affected by evolution changes
is valuable since these constructs are candidatesgpplying policies on them. However, the
a priori knowledge of the most vulnerable parta afatabase environment is not feasible, not
until a significant number of schema changes odeéaor.instance, observe Figure 5.1, which
shows the an abstract view of the evolution graplthe company example presented in
chapter 3, where the database administrator wishadentify these parts of the overall
configuration that are most prone to be affected poyential schema changes at the
underlying relations. An intuitive approach dictatthat theEmps_Pris view can be
considered as one of the most vulnerable parthekystem, since it depends on all three
relations. Furthermore, the quegy of the report module, which is defined on top lokt
view, can also be regarded as a highly vulnerablg gince it is transitively affected by
changes occurring at the three relations as welb dee schema of the view. On the other
hand, queryQ of the data entry form is defined over omyPrelation, thus being less
sensitive part thaBmps_Prjs view andQ@ query, since it is affected by changes occurring
only at one relation. Thus, intuitively, we can clude that thenost affected parts are these
that have a high dependence on other parts of yeem either directly (i.e., the dependence
of the view on the three relations) or transitivélg., the transitive dependence of the query
Q on the three relations).
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Figure 5.1: Abstract representation of motivating @ample graph

The above intuition is based on the assumption ¢lahts occur on the underlying
relations with a uniform distribution and only sttural properties of the examined
configuration are considered. Assume now that aiegrto system requirements the
majority of evolution events involve changes ocitigrat the schema d&MPrelation. That
is, the possibility that a schema change occurEMe relation is much higher than the
possibility that changes occur at the other reteti®Ghould the administrator still measure the
vulnerability of queries defined ové&MPrelation, i.e.,Q in our example, with a similar
manner?The distribution of occurrence of events on théesgplays a significant role which
must be taken into consideration by the administsafor the detection of the potentially
most affected parts of the systand thus for the most accurate management of gmolu

Additionally, in the context of the proposed franeely the administrator can regulate
the propagation of evolution on the system by impp9olicies on specific parts. The
“sensitivity” of constructs to evolution events farthermore dependent on the policy
semantics induced by the administrator. For ingarassume thaEmps_Prjs view is
annotated for not permitting changes at its schanth therefore blocking all events that
occur at the underlying three relations. Shouldatministrator still consider that the query
Q is vulnerable to changes occurring at the databetsema™ the presence of policies, the
dependency between parts of the system can berfudétermined by the specific policies
imposed on them

Summarizing the above concepts, we consider thiewimlg important factors as
quality indicators for the establishment of a setneasurements concerning the evolution
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capability of a database environment: (a) the sirat properties of the system design both
from a graph theoretic and an information theorg@rspective, (b) the distribution of

occurrence of events on parts of the system anly,lés) the policy semantics imposed on
the graph.

Furthermore, based on these quality factors, wpge® in this chapter a set of metrics
classified in the following categories.

e Future-agnostic graph-based metrics, building upenproperties of the nodes of the
graph. Graph theoretic properties like the degoé@esnode show how interrelated to
other nodes a certain node is. Additionally, we Iy set of metrics that measure
structural properties of the graph with use of ih@rmation theoretic notion of
entropy.

e Future-aware metrics that extend the previous @mpldel with a hypothesis for the
evolution events that will occur in the future. 3iypothesis concerns a distribution
of events for a certain time period. Depending be tra of the database
environment, different events will occur (e.g., lggohases are characterized by
radical changes to the structure of the databasreah mature phases involve a
higher degree of additions).

e Policy-aware metrics that take into consideratio@ $pecial role of policies that are
defined on the graph.

The contribution of this chapter involves the pregloand the experimental assessment
of these metrics as:

e Firstly, they act as predictors for the vulneratyilof a software module of a database
centric environment (either internal, e.g., a réat or external, e.g., a query) to
future changes to the structure of the environment.

e Secondly, they facilitate the assessment of théitgua alternative designs of the
environment with a particular viewpoint on the exan of its schema.

Chapter Outline. In section 5.1, we present metrics and approaaeméasures of
guality that have been proposed in the relatecaliiee for the evaluation of database design.
We then propose a set of metrics for the assessafethe vulnerability of all the design
structures in a database environment (Section BV2)first exploit the graph and provide
metrics like the degrees (in, out, and total) ohade, the transitive degrees of a node
(standing for the extent to which other nodes itevety depend upon it), and the degrees of
a summarized variant of a module (e.g., a view} #iwstract the internal semantics of the
module and focus on its coupling to the rest of ¢éhgironment (Section 5.2.1). We then
present an event aware set of metrics that takesaiccount the distribution of potential
events on the graph (Section 5.2.2). To this ensl,inelude the special role of policies
annotating the graph into a policy-aware set ofrice{Section 5.2.3). We lastly provide an
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information theoretic definition of a module’s esply that simulates the extent to which the
vulnerability of a node is surprising (Section 8)2 Finally, we extensively experiment with
various configurations in the setup of a referedatbase environment (Section 5.3) and
assess both the effectiveness of the proposedcsiéie., how well do they actually predict
the impact of evolution events to a design constrared how different design alternatives for
the same schema behave with respect to evolutiela®ily conclude the concepts presented
in this chapter in section 5.4.

5.1 Related Work on Database Design Metrics

Various approaches exist in the area of databasecmeMost of them attempt to define a
complete set of database metrics and map them s$traab quality factors, such as
maintainability, good database design, etc. Weirgdjsish these approaches into these
metrics referring to the conceptual design of tlagablase (i.e. ER diagram) and to these
referring to the logical design of the database (elational data diagram). We also present
metrics proposed for evaluating the design qualftylata warehouses. A last category of
metrics that we examine relates to the informatin@oretic notion of entropy.

5.1.1 Conceptual Metrics

Conceptual metrics are useful for evaluating quadisues for a database in the early stage of
the design. A “good” design at the conceptual leseh database may assure that fewer
inconsistencies will emerge (i.e. incomplete regmients) and furthermore fewer changes
are needed during the lifetime of the databaseoétitk information system, in general.

Gray et al [GCMP91] propose some objective and apeted metric to evaluate the
quality of an ERD. The goal of these metrics iptovide designers of quantitative support
for helping them to compare design alternativeseylTBuggest using this measure for
determining the effort required to implement a desiThey introduce the following two
metrics:

ER Metric:ER Metric is a measure of the complexity of an ER&fined as:
E= Z(Ei)C where n=number of entities, c>1 aggcomplexity of entityi.
i=1

For each entityE; , the complexity is defined a€=D;*F;, whereD; is the data
architecture complexity andr; is the functional complexity of the entity. The aat
architecture complexity of an entity is defines as:

Di=R*(a*FDA+b*NFDA))

where O<a<bR=number of relationshipgzDA=number of functionally dependent
attributes andNDFA=number of non-functionally dependent attributes.
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Area Metric: Area Metric is a measure of the compliance of @DEwith the
corresponding ERD in"8Normal Form. It is defined as:

_ Aex Ee+Rex Ae+ Rex Ee
A3x E3+ R3x A3+ R3x A3

whereAe, Ee, Renumber of attributes, entities, relationships eespely in the ERD
and A3, E3, R3 the respective numbers of the saRi2 iB 39 Normal Form

Kesh [Kesh95] develops a method for assessing ubéty of an ERD, based on both
ontological and behavioral components. Ontologicaimponents are distinguished into
structure and content metrics. Structure metrice Suitability (0;), Soundnegs,),
Consistencfps) and Conciseneg®s;) whereas content metrics ar€ompletenegss),
Cohesivenegs;) and Validity(o;). Behavioral components are considered toUsability
(from the user’'s point of view) {g Usability (from the designer’s point of view) Js
Maintainability(ss), Accuracys,) andPerformancéss).

The overall score for the data model quality of E#D is the linear combination of the
five behavioral metrics. Each behavioral metricasculated as the average of the subset of
the ontological metrics determining the behavionatric. Each ontological metric, in turn, is
assigned a value between 1 and 5 based on user&ssar more complex formulas.

Moody [Mood98] attempts to refine quality factonéd quantitative measures to reduce
subjectivity and evaluation process. A set of eighality factors is introduced, which
comprise a set of candidate metrics for evaluatiegquality of the data models. The author
proposes a data model quality evaluation framewshlich can be applied to a wide range of
organizations. The proposed framework (shown irufegs.) comprises a set ofciality
factors which can be considered as properties of a da@dehthat contribute to its quality.
They can have positive and negative interactiorns @ach other. They are, in turn, evaluated
by a set of 2%juality metrics The quality factors may contribute to the ovegalality of the
system according tweights which determine the importance of each factoa iproblem
situation.Stakeholdersre the persons involved in building or using diaga model, such as
the business user, the analyst, the data admioistaad the application developer. Lastly,
there may be differergtrategiesand techniques for improving quality with respecbne or
more quality factors.
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Figure 5.2: [Mood98]'s Data Model Quality Evaluation Framework

The quality factors are Completeness, Integrityexiility, Understandability,
Correctness, Simplicity, Integration and Implemeiiity.

Genero et al ‘'s [GPCSO00] focus on measuring thentaiaability of ER diagrams
through evaluating their structural complexity. ffra system theory point of view, a system
is called complex if it is composed of many andedént type elements, with many and
dynamically changing relationships between therme tbmplexity of an ER diagram could
be influenced by the different elements that corapits such as entities, relationships,
attributes, generalizations, etc. Therefore, itas advisable to define a general measure for
its complexity [Fent94]. They introduce a set okpnpended metrics and classify them into
three main categorie€ntity Metrics (i.e., number of entities within an ERDAftribute
Metrics (i.e., number of attributes within an ERD, numbé&rcomposite attributes, etc.) and
RelationshipgMetrics (i.e. number of M:N relationships, etc.).

The set oEntity Metricscomprises only one metric
e NE total number of entities within the ERD.
The set ofAttribute Metricscomprises the following metrics:

e NA: total number of entity and relationship attritei@gncluding derived, composite
and multivalued attributes).

e DA: number of derived attributes. Derived attributean be considered as
redundancies in the ERD.

e CA number of composite attributes
e MVA: number of multivalued attributes.
The set oRelationship Metriceomprises the following metrics

¢ NR total number of relationships within the ERD.
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M:NR: number of M:N relationships.

1:NR number of 1:N (including 1:1) relationships.

¢ N-AryR number of N-ary (not binary, e.g. 3-ary) relasbips.
e BinaryR number of binary relationships.

e NIS_AR number of IS_A relationships.

e RefR number of reflexive relationships.

¢ RR number of redundant relationships within the ERD

Similar to [GPCSO00], [PiGC02] propose a set of elesded (proportional) metrics for
ERD focusing mainly on the evaluation of the mamdaility. RvSEmetric (measures the
relation between the relationships and entitiBg) metric (proportion of derived attributes in
the ERD, that is number of derived attributes dddy the number of all attributes minus
one), CA metric (proportion of composite attributdR metric (proportion of redundant
relationships)M:Nrel metric (proportion of M:N relationships)S_Arel metric (proportion
of IS_A relationships).

In [Wede00], a metric set for evaluating the siabitapabilities of conceptual data
model is proposed. The author sets up a framewarktability of conceptual schemas and
proceeds to develop a set of metrics from it. Thetrics are based on measurements of
conceptual features, such as the number of cormleptmstructs affected by a change, the
complexity of a conceptual schema, the abstradi@conceptual schema, etc.

Lastly, in [Ber+05], the authors present a set véliy indicators and metrics for
conceptual models of data warehouses. They empl®L Wiagrams for modeling
multidimensional databases and in this context thefjne metrics for capturing diagram'’s
properties such as, number of packages in a diagramber of relationships between two
packages, etc. Although, they provide a methodolégy theoretically validating the
proposed metric set, they do not present an erapiwalidation.

5.1.2 Relational Database Metrics

Relational database metrics may be used as measurdse quality of a database at the
logical level. Relational metrics are used to measuoternal characteristics and structures of
a database, such as tables, foreign keys, etc. &li@ation theory can give the guidelines for
designing a database, but still cannot address qtiadity issues, such as the maintainability
— or evolution - of a database.

In [CaPGO01a], [CaPGO01b], [PiIGCO01], the authors psapa set of metrics for relational
databases that can be used in order to evaluaternaktquality factors, such as
maintainability and analyzability. They suggest tthhese metrics can be applied to
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measuring the product complexity of databases, Wwhg an internal attribute, and
furthermore evaluating external quality attributd$e proposed set of metrics mainly
focuses on assessing the maintainability of a dambwhich comprises analyzability,
testability, stability and changeability. They hdveth empirically (through experiment in
various database systems) and theoretically (acwprid [BrMB96], [Zuse98]) validated

these metrics. The introduced set includes thevatlg metrics:

e NT: Number of relational tables in the database.
¢ NFK: Number of foreign keys in the database.

NA: Total number of attributes in the database.

DRT: Depth of Referential Tree is the maximum distaficen a table towards
another table through referential integrity constsa That is, if table A has o
foreign key to table B and table B in turn has ieifgn key to table C, theDRT is
equal to 2.

As for the relation between these metrics and thality factors, they state that
analyzability can be assessedMYy, NAand NFK metrics in a straightforward manner; the
greater the values of these metrics are, the moaé/zable the database schemaDRT
metric can also be used as an indicator for théy/aalaility of the database schema, but only
in combination withNFK metric. In the same way, they conclude that chdmtbais
proportional to the number of tables in the databasereas stability relates to the number
of tables in an inverse relationship; the fewer tdd@es are in the database, the more stable
the schema is. Lastly, testability is related praportional way toNT, NAandNFK.

In [CSPLO1], [GOPRO01], they extend the notion afisture metrics to object oriented
databases and Information Systems. SpecificallfGOPRO01], they introduce a set of
metrics for UML diagrams concerning object orientefbormation systems, whereas in
[CSPLO1] they propose a set of structural metricobject relational databases.

5.1.3 Quality in Data Warehouses - Metrics

Quiality in the context of data warehouses has le&dyorately studied in [Vass00], [JJQV99]
and [VaBQOO0]. The authors propose mathematicalnigcies for measuring or optimizing
certain aspects of DW quality and adapt the Goadsflan-Metric approach from software
guality management to a meta data management enwvinat in order to link these special
technigues to a generic conceptual framework of @Ality.

Data warehouse quality can be classified into sg\aqrality dimensions according to
the stakeholders that are typically interestedhient. Users with different roles imply a
different collection of quality dimensions, whiclgaality model should be able to address in
a consistent and meaningful way. In [JJQV99], teaynmarize the quality dimensions of
three stakeholders, the data warehouse administrdie programmer, and the decision
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maker. A set of quality dimensions corresponds @heof these roles; each of these
dimensions is further mapped to sample types ofsoreanent (metrics), which help to
establish the quality of a particular DW componeurith respect to a particular quality
dimension.

For example, regarding the data warehouse adnatostrthe dimensions comprising
the design and administrator quality are shown igufé 5.3 [Vass00].Correctness
dimension is concerned with the proper comprehansfahe entities of the real world, the
schemata of the sources (models) and the user.néedgpletenesdimension is concerned
with the preservation of all the crucial knowledgethe data warehouse schema (model).
Minimality dimension describes the degree up to which undesedundancy is avoided
during the source integration process. Tracealdiityension is concerned with the fact that
all kinds of requirements of users, designers, athtnators and managers should be
traceable to the data warehouse scheimgerpretability dimension ensures that all
components of the data warehouse are well descabeédhus administered easily and lastly
meta data evolutiodimension is concerned with the way the schemavegaluring the data
warehouse operation.

Design &
administration

quality
Schema and
Data Quality

Metadata

Evolution
—

C:;e;tness
Interpretability
completeness .
traceability

Figure 5.3: Design and Administrator Quality Dimensons [Vass00]

Various types of measurement - metrics are intreduo evaluate these dimensions.
Table 5.1 relates these quality dimensions to #ateehouse objects and shows how the
guality of these objects can be measured.
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Design And Conceptual Logical

Administration Perspective Perspective

Quality Model Concept Schema Type

Correctness Number of conflictsCorrectness of | Correctness of Correctness of
to other models/reall the description | mapping of the the mapping of
world wrt. real world conceptual model | the concept to &

entity to logical schema | type

Completeness Level of covering,| Number of Number of missing| Number of
number of missing entities wrt. missing
represented businessattributes; Are conceptual model | attributes wrt.
rules the assertions conceptual

related to the model
concept
complete?

Minimality Number of Equivalence of | Number of Number of
redundant the description | redundant relationg redundant
entities/relationships with that of other attributes
in a model concepts in the

same model

Traceability Are the designer’s | Are the Are the designer’'s | Are the
requirements and | designer’s requirements and | designer’'s
changes recorded?| requirements and changes recorded? requirements

changes and changes
recorded? recorded?

Interpretability | Qualityof Quality of Quality of Quality of
documentation documentation | documentation documentation

Metadata Is the evolution of | Is the evolution | Is the evolution of | Is the evolution

Evolution the model of the concept | the schema of the type
documented? documented? documented? documented?

Table 5.1: Examples for Measurement Types for Desigand Administration
Quality Dimensions [Vass00]

In the same way, other perspectives of DW quafigiude software implementation
quality comprising quality dimensions of ISO 9126cls asfunctionality, reliability, etc.,
data usage quality comprising dimensions relatethéaisefulnessand theaccessibilityof
the data and lastly data quality comprising dimensirelated to properties of the stored data
itself, such agompletenessccuracy consistencyetc.

Another approach to DW quality metrics is presentefCPPS01]. They elaborate a
set of metrics for measuring data warehouse qualibych can help designers in choosing
the best option among more than one alternativiguleShe metrics proposed are classified,
according to the level they are applied, into tléoWing categories:

e Table metricsregarding table characteristics of the databasg. (eumber of
attributes, number of foreign keys).

e Star Metricsregarding star characteristics of the databasejnaisg that we have
only a fact table (e.g. number of dimension tables)
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e Schema Metricsegarding characteristics of the whole databasersah(e.g. number
of fact tables, number of overall dimension tables)

They apply a formal validation process to theseriggetoncluding that all metrics are
in an ordinal or in a superior scale.

Also, in [ChPr03] they focus on the quality of milensional schemas, more
specifically on the analyzability and simplicity iteria. They present the underlying
multidimensional model and address the problem edisaring and finding the right balance
between analyzability and simplicity of multidimémsal schemas. Analyzability and
simplicity are assessed using quality metrics, tvigice described and illustrated based on a
case study.

514 Entropy based approaches

In the context of databases, information theory amfopy are mainly used for the
justification of data dependencies and normal for@ch approaches are based on the
statistical treatment of the information contentled database. Entropy has been proposed as
a measure for redundancy as well as for validatiata dependencies [Malv86], [Lee87],
[CaPi87], [DaRo00], [NaKaOl] (i.e., normal formsynttional, join, hierarchical and
multivalued dependencies).

In [Malv86], they present an analytical data moaéiere the information content of a
database relation is represented by a contingeatdg tand analyzed using the methods of
multivariate information theory. This approach liestwo points: database relations are
treated as multivariate frequency distributions dath dependencies are taken into account.
The resulting analytical model will be applied topply database users with “statistical
information”, answering queries such as, “to wheiert are attributes related in a given
database state” or “how does one attribute depariieothers”? Therefore, the information-
theoretical analysis of the database content ge¢ssuable (a) to measure the statistical
interdependence among two or more attributes (etiwa theory), (b) to measure the effects
on a given attribute of the remaining attributealgisis of variance) and (c) to choose a set of
variables, which select the important informatida @iew (decomposition theory).

Similarly to relational data, the information-thetic treatment for XML databases is
studied in [ArLiO3]. They use techniques of infotioa theory, and define a measure of
information content of elements in a database va#pect to a set of constraints. They first
test this measure in the relational context, primgdnformation theoretic justification for
familiar normal forms such as BCNF, 4NF, PJ/NF, BNBDK/NF, and then they show that
the same measure applies in the XML context, whigks a characterization of a recently
introduced XML normal form called XNF. Finally, théook at information theoretic criteria
for justifying normalization algorithms.

104



An information theoretic approach to evaluating design quality of data warehouses
is presented in [LeLo03], where the relation betwentropy and redundancy in the context
of data warehouses is studied. Utilizing the infation-theoretic treatment of relational
databases developed, they show that the redundatioy snowflake join of the primary key
of the fact table is zero, i.e. it is minimal. Thegfine a new normal form, namely SSNF —
Snowflake Schema Normal Form, justifying it in terof entropy-based equations.

On the other hand, various entropy-based metrigst e the area of software
engineering for evaluating the quality of softwalesign [KiSW95], [Harr92], [DalLe88],
[Alle02], but there is no work concerning the ctation of entropy with structural properties
of databases, i.e. there are no entropy-based mesassed for evaluating the design or
evolution quality of a database schema.

To the best of our knowledge this is the firstgemetrics that are explicitly targeted
towards the assessment of the vulnerability ofddsign of a database — centric environment
to evolutionary processes.

5.2 A Metric Suite for Evaluating Schema Evolution Capdilities

In the following sections, we introduce a metrit Isased on the properties of the evolution
graph for measuring and evaluating the design tyuaflia database centric environment with
respect to its ability to sustain changes. We wikksent simple metrics based on graph
theoretic properties of the evolution graph. Thare two possible contexts under which a
graph can be examined according to the level ofratiton. We assess the metrics by
examining the graph (a) at a coarse level of attstrg where only relations, views and

gueries are present, i.e., module level, or (b}samost detailed level, i.e., node level, that
involves all the attributes of relations, views amuaeries, along with the internals of the

gueries. The zoom out operation imposed on thehgisagescribed in section 2.10. We also
consider metrics that measure the impact that svéawve on the graph taking into

consideration the distribution of events on thepbralo this end, in the presence of policies
on the graph, we reevaluate the vulnerability ofistucts in the graph by introducing a

metric which is aware of defined policies on nodethe graph. Lastly, the last set of metrics
comprises entropy-based metrics, which relate mé&tion theoretic properties of the graph
with evolution capabilities.

5.2.1 Degree-related metrics

The first family of metrics comprises simple prapes of each node or module in the graph
and specifically the degree of nodes. The main id=ain the understanding that the in-
degree, out-degree and total degree of a matgnonstrate in absolute numbers the extent to
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which (a) other nodes depend upgn(b) the dependence @fto other nodes and (®)is
interacting with other nodes in the graph, respetti

Specifically, letG(V,E) be the evolution graph of a database centric enment and
veV a node of the graph, then:

Definition 5.1 — Degree of Node The In-degree D'(v), Out-degree D°(v) and
Degree, [v) of the noder are the total number of incoming, outgoing anceelnt edges to
v. That is:

D'(v)= count(g,), for all edges, <E of the form V), yi,veV
D(v) = count(gy), for all edges.ueE of the form ¢,y), yi,veV
D(v) = D'(v) + D°(v)

Category Constrained DegreesAll the above mentioned degrees can be constrained
by edge categories. For example, we might be isitedeonly in the number of part-of
outgoing edges of a relation (i.e., how many aiftel it has) or in the number of incoming
guery-based edges of a relation’s node (i.e., neéges where operand, or group-by edges).
This way, we can focus only to a part of the amtttiire, e.g., structural properties, coupling
of the schema with the queries, etc. Tdaegory constrained degreese given by the
following definition.

Definition 5.2 — Category Constrained Degree of Nal The Category Constrained
In-degree D'EX (v), Out-degree DSX (v)and DegreeD, (v)of the nodev are the total
number of incoming, outgoing and adjacent edges tehich belong to the categoBk of
edges. That is:

D'EX (v) = count(g,), for all edges, € Ex of the form {;,v), yi,veV
D¢ (v) = count(guy, for all edges,ue Ex of the form ¢,y), yi,veV
De, (V) = Dg, (v) + Dg, (V)

andExe{Es, Eo, Ew, Er, B En, Ecs, Eos}-

Transitive Degrees. The simple degree metrics of a nadare good measures for
finding the nodes that are directly dependent onon whichv directly depends on, but they
cannot detect the transitive dependencies betwemiesn Therefore, we employ the
following definition for the transitive degreesahodev with respect to the rest of the graph.

Definition 5.3 — Transitive Degree of Node The In-Transitive, TIXv), Out-
Transitive TD°(v), and Transitive degree, T@) of a nodeveV with respect to all nodes
yieV are given by the following formulae:
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TD'(v)= > > counte,), for all distinct edges, epathsof the form g,v)

y; €V pepathgy; ,v)

TD(v)= > > counte,), for all distinct edges, epathsof the form ¢,y)

y; €V pepathgv, ¥ )
TD(v) = TD(v) + TD°(v)

Module degree Assuming the degrees of the detailed graph catob®uted, one can
measure the degrees of the nodes of the zoomegraph. As already mentioned in chapter
2, zooming-out operation on the graph provideskatract view of the modules of the graph,
which comprises only top-level nodess{R,Q,VS}and edges between them. All edges are
annotated with a strength corresponding to the rurobedges previously connecting these
modules. Thus, we define the module degree forda b the zoomed out graph as:

Definition 5.4 —Degree of Module The In-Module D'S(v), Out-Module D°%v) and
Module Degree, Bjv) of a nodev are given by the following formulae:

D'S(v) = z:;trengtmq), for all edge® of the form ¢,v), yve{R,Q,VS}
DY) = Zstrengtmq), for all edges of the form ¢,y), yve{R,Q,VS}

DS(v) = D'S(v) + D°Yv), y,ve{R,Q,VS}

Module transitive degree.Similarly to above, we may extend the transitieges to
the zoomed-out graph according to the followingrdgdn:

Definition 5.5 —Transitive Degree of Module:The In-Module, TZ¥(v), Out- Module
TD®%(v), and Module Transitive degree, @) of a nodeve{R,Q,VS}with respect to all
nodesy e{R,Q,VS}are given by the following formulae:

TD(v)= > > strengtite,) , for e,epathsof the form g;,v)

yieV pepathgy; .v)

TD(v)= > strengtite,) , for &, epathsof the form ¢.y)

y; eV pepathgv,y)
TD(v) = TD"(v) + TD°Y(v)

Weighted degree Assume that we can assign a frequefreg(q) to each query q
around the database. Here, we use the frequeney qpfery as a simple measure of its
importance—other abstractions of importance candeel, too. What is important, though, is
that given this measure, we can compute the effieatchange in a weighted way. Thus, if a
nodev of the graph is used by a queyythe weighted in-degree of the node due to thesyju
is:
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Definition 5.6 — Weighted Degree of Nodd:et G4=(Vq,Eq) the module subgraph of a
queryq with frequencyfreq(q) Then, theWeighted DegreeWD'(v|q), of a nodeveV with
respect to the quexyis given by the following formula:

WD (v|q)=freq(q)*count(g), for all edgess of the form y,v), yeVy.

Furthermore, we can define the weighted importasfceodev, by summing all the
weighted degrees of the queries that aceess

WD'(v)= ZWD' (v]lg), for queriesy that access

Moreover, we can apply the exact same techniquéhéozoomed out-graph for
calculating the weighted degrees of modules. That i

WD'S(v|q)=freq(q)*strength(e), e being the edge (q,v)
WD'S(v)= ZWD'S (v]q,), for queries gthat access v

It is noteworthy that the metric can be extendedntmrporate other kinds of nodes
from which edges originate, too (i.e., except foery nodes). Take for example a view
defined over a relation. We can extend the meyiadsuming a frequency equal to the sum
of frequencies of the queries accessing the vielso,Ain the absence of any workload
information, we can assume a frequency equal tor alf queries and this metric becomes
equal to the simple degree metrics.

5.2.2 Metrics with an eye for future events

The metrics related to the degree of a node cavesas a possible crude basis of the
sensitivity of a node —and consequently, of a s@iam the changes that can occur in the
future. Still, the probability that a node willage in the future is not the same, neither for
all types of events, nor for all nodes. For exanthke probability that a relation’s attribute
RA will be deleted is different from the probabilitiyat a new attribute will be added and
gueries using the relation will have to incorportite new attribute and also different from
the probability that another attribuRB will be deleted. Therefore, the assessment of the
sensitivity of a node can change completely if weorporate this factor in our
measurements.

Definition 5.7 — Flood Effect of an Event on a NodeAssume a node in the graph
G(V,E), an evolution everg overveV (which we denote agv) and a probabilityp of the
evente to occur within a time period. Then, theflood effectof e can be assessed by the
following formula:

FE(elv) = count(w) * p

with w;eV being the nodes of the graph, s path exists fromw; tov.
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Given, this simple measurement, we can easily defie flood effect of a sequence of
independent events = {ey, ..., &} over a nodev with probabilities f, ..., pn}.

FE (EV) = D _FE@& V)
i=1
Now, we are ready to define the flood effect ofeguence of events over the whole
graph. Assume a sequence of evénts{e,, ..., &}, with each event defined over a different
node, which we denote ag), with possibilityp;. Then, the flood effect of the sequence of
eventsE over the grapl® is defined by the following formula:

FE (EIG) = D FE(q | v(e))
i=1

Similar to the previous described module metricsinaple variant of the flood effect
involves reducing the size of the graph and assgdbe flood effect over the zoomed out
graph. In this case, we sacrifice accuracy but anpmperformance, as the size of the graph is
significantly reduced. The sacrifice on accuracydeamonstrated by a simple example:
assume two querigd; andQ. using relatiorR, and attributdR.A being used in the selection
clause ofQ; only. A deletion ofR.A will not affectQ,. Nevertheless, the zoomed-out variant
is incapable of capturing this effect.

Definition 5.8 — Flood Effect of an Event on a Modie: Assume a nod® in the
zoomed out graps’(V° E), V°{R,Q,VS} an evolution everd overv (which we denote as
elv) and a probability of the event to occur within a time period. The flood effect for the
zoomed out grap@*(\V°,E®) can be defined as follows.

FE>®"te|v) = count(w) * p,
with w;eV° being the nodes of the zoomed out graph, pataexists fromw; tov.
FES"®"e|v) = p * X5trength(g
with g eE°® being the edges of all the paths of the zoomedy@gh ending tw.

The conservative approach assigns a count of aneafth pair of connected modules
as the estimation of the impact of evolution. Theerestimated approach counts all the
strengths of all the involved edges, as if all guesedges of the detailed graph are affected
by the evolution event. Similarly to the previowsse, the two following measures are also
defined, in the presence of a sequence of e¥entfey, ..., e}:

FE® (EN) = Y FES(e |v), FES(EIG) = > FES( |v(a))

i=1 i=1
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5.2.3 Policy aware metrics

The definition of policies on the graph restraine impact that an event occurring on a node
might have on the rest of the graph. The mechamignpropagating the occurrence of an
evolution event in the graph and determining tlaust of all nodes visited by the algorithm
has been described in chapter 3. The annotatitimecgraph constrains the flooding effect of
an event and reflects the extent of the effechefgossible change more accurately. Recall
that according to definition 3.6, in the presentedicies all affected nodes by an event are
these that after the execution of the algorithmehlaeen assigned with a status. This requires
that noblock or promptpolicies are defined in an intermediate node efgghth between the
node assigned with a status and the node sustdimngvent. Therefore, we can define the
following metric for the policy-regulated managernehpossible evolution events:

Definition 5.9 — Policy-regulatedFlood Effect of an Event on a NodeAssume a
nodev in the graphG(V,E), an evolution everng overveV (which we denote agv) with a
probability p of the evente to occur within a time period. The graph is annotated with
policies for capturing ever® Then, thepolicy-regulatedlood effectof e can be assessed by
the following formula:

PRE(e|v) = count(y * p,

with w;eV being the nodes of the graph being affectee bych that gath exists from
w; to v and policies defined on all nodespath(w,v) for evente are notlock or prompt

Similarly to the previous, the two following meassi are also defined, in the presence
of a sequence of everis= {ey, ..., &}

PRE(EIV) = PRE(g |V), PRE(EIG) =3 PRE(g, |v(e)

i=1 i=1

524 Entropy-based metrics

The last family of metrics presented is relateth® information theoretic notion of entropy.
Entropy is viewed as an arcane subject related lsowdo uncertainty and information
[Papo90]. The following definitions show the contepf information and entropy in the
context of information theory.

Definition 5.10 — Information hidden in a probabilistic symbol: The information
I(p) obtained from a source symb®with probability of occurrenc@>0, is given by the
following formula:

1
I (p) =log, —
Y
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Definition 5.11 — Entropy of a probabilistic source Let S = {s,...,5} be a
probabilistic source, with probability distributior={p1,...,@}. The average information
obtained from a single sample frds:

H(S):ipil(pi):ipi Iongl:_Zn: P |ng P

i i=1
The quantityH(S) is called the entropy of the source.

In general, entropy can characterize not only abaidistic source but also any
probabilistic mode§ as it follows from Definition 5.12.

Definition 5.12 — Entropy of a probabilistic model: Given a probabilistic mode®
and a partitionA = {A;, ... A} of S consisting of then eventsA; with probability of
occurrence P = P(Ay), ...,P(A)}.The sum:

H(A)=-3p log, p. P, =P(A)

is called the entropy of the partitidn

Some useful remarks inferred by the above defimstiare that:

a) entropy takes always a positive value asi®¥p=> logpi <0, and also p*logp — 0
forp— 0 and p— 1.

b) its maximum value is log corresponding to a uniform distribution of events.

c) for a probabilistic model with a uniform distribati for its partitions, entropy is an
increasing function, i.eH(An+1)>H(An).

Entropy is strongly related to the information tigathidden” in a probabilistic model.
For instance, in a uniform probabilistic model, ellents are equally likely to occur and
therefore the entropy of the model is maximum.

In our evolution context, the notion of entropyused to evaluate the extent to which a
part of a system is likely to be affected by a @ndevolution event on the graph. Entropy
measures either the a priori uncertainty of theactf an event on a part of the graph or
equivalently the a posteriori amount of informatiwe get from the knowledge that a part of
the graph has been affected by an event. The muueedictable the impact of a schema
change on a part of the graph is, the more infaonas “hidden” and thus the more entropy
characterizes this impact. The following definigonntroduce the metrics of entropy
regarding a node itself or a module with respe@wvlution.

Definition 5.13 - Entropy of Node:Assume a node in our graphG(V,E). We define
the probability thaveV is affected by an arbitrary evolution everdver a nodgyeV as the
number of paths from towardsyk divided by the total paths fromtowards all nodes in the

graph, i.e.,
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P(Vlyk) — pathiv, yk)
2. pathgv,y)

yieV

, for all nodesy;, V.

Then, the information we gain when a nads affected by an event occurred on node

Yk is 1(P(v]y,)) =log, and the entropy of nodewith respect tahe rest of the

1
PVIY)
graph is then:

H(v)=->P(v]y,)log, P(v|y,), for all nodes; V.
yeV
The above quantity expresses the average informati® gain, or equivalently the

amount of “surprise” conveyed, if nodes affected by an arbitrary evolution event on the
graph. Observe that high entropy values correspombdes with a higher dependence with
the rest of the graph. For instance, in the exarmapléigure 5.1, a query defined over only
one relation, such as;Qhas an entropy value of 0, whereas a query dkfover a view
which in turns accesses three relations, such,aBd3 an entropy value of 2 and lastly view
EMPS_PRJ%has an entropy value of li8

High entropy values correspond to these partsefthph, that are dependent on many
providers either directly or transitively, captugim a “smoother” way than the local or the
transitive degrees the dependencies in the graph.

Definition 5.14 - Entropy of Module: Moreover, we can apply the exact same
technique to the zoomed out-gra@tf\V° E®), by defining the probability of a node=\*° to be
affected by an evolution event over a ngge\® as:

Y strengtife,)
PS(v]y) = —Pepamavy) , for all nodesy; eV°.

Y. ) strengtite,)

yieV® pepathgv,y;)

with e,eE® being the edges of all the paths of the zoomedymph stemming froma
towardsyi. Similarly, the entropy of nodes\° is:

He(v)=-> P*(v|y;)log, P*(v|y,), for all nodes; V"

y,evs

A summary of the proposed set of metrics is pravitethe following tables.
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Notation | Metric Notation Metric
D'(v) In-Degree of a node FE(e|v) Flood Effect of an evergoccurring at a node
DO(v) Out-Degree of a node FE(E|v) Flood Effect of a sequence of evenis
occurring at a node
D(v) Degree of a node
FE (E|G) Flood Effect of a sequence of evenis
ol W) In-Category Constrained Degree of a node occurring at grapks
Ex v for all edgese Ex, Exe{Es, Eo, Eu, Er,
Ew, En, Ecp, Eos} FES(e|v) Flood Effect of an evene occurring at 3
modulev
p° ) Out-Category Constrained Degree of| a
Ex nodev for all edges ee Ex, Exe{Es, Eo, FES(E|v) Flood Effect of a sequence of evenEs
Ew, Er, Ew, En, Ecg, Eog} occurring at a module
Dg () | Category Constrained Degree of a nade FE®(EIG) | Flood Effect of a sequence of event
X for all edgesee Ey, Exe{Es Eo, Ew, Er, occurring at zoomed-out gra@
EW! EH! EGBa EOB}
TD'(v) In-Transitive Degree of a node Table 5.3: Event-aware Metrics
TD(v) Out-Transitive Degree of a node Notation Metric
TD(v) Transitive Degree of a node PRE(e|v) | Policy regulated flood effect of an evest
occurring at a node
D'S(v) In-Degree of a module
PRE(E|v) | Policy regulated flood effect of a sequence
DO%(v) Out-Degree of a moduhe eventsk occurring at a node
D3(v) Degree of a module PRE(E|G) | Policy regulated flood effect of a sequence
eventsk occurring at grapls
TD'(v) In-Transitive Degree of a modwe
TDO%(v) Out-Transitive Degree of a module Table 5.4: Policy-aware Metrics
TD%(v) Transitive Degree of a modwe
WD'(v|q) | Weighted In degree of a nodew.rt. a
queryq
wD'(v) Weighted In degree of a node
Notation Metric
WD"(v|q) | Weighted In degree of a modukew.r.t. a
queryq H(v) Entropy of a node wrt its evolution
WD(v) | Weighted In degree of a module H3(v) Entropy of a module wrt its evolution

Table 5.2: Degree related Metrics

Table 5.5: Entropy-based Metrics
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5.3 Experimental Evaluation

In this section, we present the experimental evanghat we performed for the proposed
metric suite. We have employed a data warehous&oamvent as the testbed for our
experiments. There are two major goals in our erparts.

1. To empirically validate the proposed set of metiacsl prove that they constitute
good indicators for the prediction of the effecbleNion events have on a database
environment. A clear desideratum in this contexthis determination of the most
suitable metric for this prediction under differemcumstances.

2. To compare alternative design techniques with r@sjeetheir tolerance to evolution
events.

Experimental setup for the first goal To achieve the goal of determining the fittest
prediction metric, we need to fix the following pareters: (a) a data warehouse schema
surrounded by a set of queries and possibly vi€l)sa set of events that alter the above
configuration, (c) a set of administrator profilesat simulate the intention of the
administrating team for the management of evoluéeents, and (d) a baseline method that
will stand as an accurate estimate of the actualteheeded to maintain the warehouse
environment.

We have employed the TPC-DS [TPCDO07] schema atetlibed for our experiments.
TPC-DS is a benchmark that involves six star scise(math a large overlap of shared
dimensions) standing for Sales and Returns of ifgunshased via a Store, a Catalog and the
Web. We have used the Web Sales schema that cesprise fact table and thirteen
dimension tables. The structure of the Web Salbersa is interesting in the sense that it is
neither a pure star, nor a pure snowflake scheméadt, the dimensions are denormalized,
with a different table for each level; neverthelab® fact table has foreign keys to all the
dimension tables of interest (resulting in fasngwith the appropriate dimension level
whenever necessary.) Apart from this “starifiedheama, we have also employed two other
variants in our experiments: the first involvesea af views defined on top of the TPC-DS
schema and the second involves the merging ofhalldifferent tables of the Customer
dimension into one. We have isolated the queriasitivolve only this subschema of TPC-
DS as the surrounding query set of the warehouse.views for the second variant of the
schema were determined by picking the most poitanic formulae at the WHERE clause
of the surrounding queries. In other words, the ai&s to provide the best possible reuse of
common expressions in the queries.

We created two workloads of events to test differeontexts for the warehouse
evolution. The first workload of 52 events simutathe percentage of events observed in a
real world case study in an agency of the Greeklipu®ector. The second workload
simulates a sequence of 68 events that are negdses#ine migration of the current TPC-DS
Web sales schema to a pure star schema. The neaimith both workloads is to simulate a
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set of events over a reasonable amount of timehdlethe internal sequence of events per
se, nor the exact background for deriving the eventmportant; but rather, the focus is on
the generation of events that statistically capam@ntext under which administration and
development is performed (i.e., maintenance of same schema in the first case, and
significant restructuring of a schema in the lati@se.) The distribution of events is shown in
Table 5.6.

Operation Distribution 1 | Distribution 2
Rename Measure 29% (15) 0% (0)
Add Measure 25% (13) 0% (0)
Rename Dimension Attribute  21% (11) 0% (0)
Add Dimension Attribute 15% (8) 37% (25)
Delete Measure 6% (3) 0% (0)
Delete Dimension Attribute 4% (2) 44% (30)
Delete FKs 0% 13% (9)
Delete Dimension Table 0% 6% (4)

Table 5.6: Distribution of events

Figure 5.4 depicts the first configuration (WSpatoomed out level.

Q5

PROMOTIONAL_SALE

¥
CUSTOMER

A 04

Figure 5.4: Bird’'s-eye view of the configuration usd in our experiments

We annotate the graph with policies, in order tovalthe management of evolution
events. We use three annotation “profiles”, spealify: (a) propagate all meaning that
every change will be flooded to all the nodes #taduld be notified about it, (lock all,
meaning that a view/query is inherently set to demy possible changes, and (gasonable
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balanced consisting of 80% of the nodes with propagatecpsd and 20% with blocking.
The first policy practically refers to a situatisithout any annotation. The second policy
simulates a highly regulatory administration tedmttuses our frameworlo capture an
evolution event as soon as it leaves its souragigin; the tool highlights the node where the
event was blocked. The third policy simulates deatliberal environment, where most
events are allowed to spread over the graph, dathika full impact can be observed; yet,
20% of critical nodes are equipped with blockindiges to simulate the case of nodes that
shouldbehandledvith special care.

Summarizing, the configuration of an experimentoimes fixing a schema, a set of
policies and a workload. We have experimented walitthe possible combinations of values.
The metrics that we have measure in each experimeolve the execution of the workload
of evolution events in the specified configuraticensd the measurement of the affected
nodes. Specifically, each node of the graph is toogil and we get analytic results on how
many times each node was affected by an event. mib&surement constitutes the baseline
measurement that simulates what would actually &app practice. This baseline
measurement is compared to all the metrics repant&ection 4, being evolution-agnostic or
not.

Experimental Setup for the second goalThe second goal of our experiments is to
compare alternative designs of the warehouse veith ®ther — i.e., we want to find which
design method (pure star, TPC-DS with or withowws) is the best for a given designer
profile (which is expressed by the policies for tmanagement of evolution.) Thus, the
comparison involves the compilation of the baselmeasurements, grouped per policy
profile and alternative schema. We measure thénataber of times each node was affected
and we sum all these events. The intention is tmecap with a rough estimation of the
number of rewritings that need to be done by theniagdtrators and the application
developers (in this setting, it is possible thauary or view is modified in more than one of
its clauses.) A second measurement involves ondy dhery part: we are particularly
interested in the effort required by the applicatitevelopers (which are affected by the
decisions of the administration team), so we naroow focus to the effect inflicted to the
gueries only.

5.3.1 Effectiveness of the proposed metrics

In this experiment, we evaluate the effectivenelsshe proposed metrics using the first
distribution of events. We have constructed théowihg nine configurations by fixing each
time a value for the schema and the policy. Thesehtakes one of the values {Web Sales
(W9, Web Sales extended with view&/$-viewy star variant of Web Saleg/S-staj} and

the policy takes one of the valueBl§ck-All, Propagate-All Mixture}. In the rest, we
discuss our findings organized in the followingecairies: (a) Fact Tables, (b) Dimension
Tables, (c) Views, and (d) Queries.
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Facts Our experiments involved a single fact table. d¥served that the number of
events that occurred to the fact table does nohgdavith the overall architecture. The
presence of more or less dimensions or views didcffect the behavior of the fact table; on
the contrary, it appears that the main reasonghievents that end up to the fact table, are
its attributes. Therefore, the main predictor fug behavior of the evolution of the fact table
is its out-degree, which is mostly due to the péntelationships with its attributes.

Dimension Tables Evolution on dimension tables can also be predidty observing
their out-degree, since this property practicallyalves the relationship of the dimension
with its attributes as well as its relationship faeeign keys with other dimensions. Figure
5.5 depicts this case for the original web saldges@ and its star variant, for which all
customer-related dimensions have been merged m#adomension. Our baseline (depicted
as a solid line with triangles) involves the actnaimber of times a node belonging to a

dimension table was affected.

Total no. events on Relations Total no. events on Dimensions
30 (schema=WS, policy=propagate) 50 {schema=WS-star, policy=propagate)
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Figure 5.5: Events affecting dimension tables: (aVS schema, (b) WS-star schema
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Figure 5.6: Events affecting views: (a) WS-star anilVS schema, (b) WS-views
schema

Despite the spikes at the heavily correlated dateasion, out-degree is a predictor,
keeping in mind that it is the actual trend thattera and not the values themselves.

Views. Views behave practically uniformly for all condigations, independently of
schema or policy. Observe Figure 5.6 where we depic findings concerning views. It is
clear that strength of out-degree (strength-oud) tal strength are the best predictors for
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the evolution of views with the former being anemstingly accurate predictor in all
occasions. Figure 5.6(a) is a representative ahallsix configurations for the original web
sales schema and its star variant. The policy makedifference and all six experiments
have resulted in exactly the same behavior. Theofetthe metrics miss the overall trend and
are depicted for completeness. Figure 5.6 (b) skoovepresentative graphical representation
of the metrics, showing that the strength of thedrgree is consistently effective, whereas
the total strength shows some spikes (mainly dudews that are highly connected to the
sources, although these sources did not generatentieh traffic of evolution events after
all). The rest of the metrics behave similarly whilqure 5.6 (a).

Queries Queries are typically dependent upon their cogpto the underlying DBMS
layer. As a general guideline, the most charadienseasure of the vulnerability of queries
to evolution events is their transitive dependerftesecond possible metric suitable for a
prediction is the entropy; however, it is not tawwarate. Other metrics do not seem to offer
good prediction qualities; the best of them, oudrde, does not exceed 70%. Recall that the
baseline for our experiment is the actual numbevehts that reached a query (depicted as a
solid line decorated with triangles in Figure 5l &igure 5.8). Finally, we stress that the
trend makes a metric successful and not the preeaises.
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Figure 5.7: Events affecting queries: (a) WS schemé) WS-star schema

Total no. events on Queries (schema=\*-views, policy=propagate Total no. events on Queries (schema=V-views, policy=mixture)

35 3

~* NumberAffecte a ~* NumberAffecte r
30—="Entroov—— 7 3 N —= Entropy Ir

" DegreeOut || / [\ J— N A
25— TransDegreeD | 25 [\ e -

/ & [\ ™~ DegreeOt
2 x 20 [
« /

15 13 [~
0/ N 10/
5 S S s/

L —= - - ~- )
0 0

Q2 Q9 Q8 Q4 Q6 Q0 Q1 Q2 Q5 Q7 Qa3 Q4

Figure 5.8: Total number of events affecting querig: (a) Behavior for the WS-
views with propagate policy; (b) Behavior for the Ws-views schema with mixture policy
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Figure 5.9: Comparison ofWS, WS-views, WS-star design configurations for
distribution 1: (a) only affected queries and (b) 8 affected nodes
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Figure 5.10: Comparison ofWS, WS-views design configurations for distribution
2: (a) only affected queries; (b) all affected node

Figure 5.7 shows two characteristic plots for thiginal web sales schema and its star
variant. Each plot is a representative of the ofitets concerning the same schema, with the
trends following quite similar behavior. In all ess transitive dependence gives a quite
successful prediction, with around 80% accuracia ftoteworthy that in the case of the 20%
of failures, though, the metric identifies a quay highly vulnerable and in practice, the
guery escapes with few events. Fortunately, the@sipgpdoes not happen, so a query is never
underestimated with respect to its vulnerabilitgtrBpy is the second best metric and due to
its smoothness, although it follows transitive defence’s behavior, it misses the large
errors of transitive dependence, although it alssses the scaling of events, for the same
reason.

Queries are quite dependent on the policy and seshemews seem to block the
propagation of events to the queries. Figure 5.8(ows a significant drop for the values of
affected queries when the policy is a mixture obgagation and blocking policies. The
propagate-all policy depicted in Figure 5.8(a) pras the flooding of the events, which
involves more than double the number of occurreasesompared to the numbers of Figure
5.8 (b) for 80% of the cases. A block-all policyatved only 3 of the 10 queries and it is not
depicted for lack of space). Interestingly, thensiive degree has a success ratio of 80%, as
opposed to the rather unsuccessful out-degree.

5.3.2 Comparison of alternative design configurations

We compared the three alternative design configuraitof our system in order to come up
with an estimation of the number of rewritings thaed to be done by the administrators and
the application developers, and to assess theteéffata different schema configuration has
on the system. Thus, we measured the number aftefferodes and specifically, the number
of affected query nodes for the nine different agunfations of policy sets and schemata. The
first distribution of events was applied to all sofas, whereas the second was applied only
to WSandWS-views
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Figure 5.9 describes the effect that a designratere has on how affected system
constructs are in the case of evolution. A staesth has less maintenance effort than the
other variants due to its reduced size. Clearlg, phesence of views augments the effort
needed by the administration team to maintain tliehown in the increased number of
affected nodes of Figure 5.9b), which is becaustesdelonging to views are extensively
affected. Still, the interference of views betwdba warehouse and the queries serves as a
“shield” for absorbing schema changes and not wafrag them to queries. The drop in
guery maintenance due to the presence of viewangessive:whatever we pay in
administration effort, we gain in development dffemce the cost of rewritings in terms of
human effort mainly burdens application developevep are obliged to adapt affected
qgueries to occurred schema changes. The case eimachmigration strengthens this
observation (Figure 5.10). As for the differentipplsets, we observe that blocking of events
decreases the number of affected nodes in all gardiions and saves significant human
effort. It is, however, too conservative, constirggneven the necessary readjustments that
must be actually made on queries and views. Onother hand, propagate and mixture
policy sets have an additional overhead, whichailarced by the automatic readjustments
that are held on the system.

54 Summary

In this chapter we have introduced a set of metdcgvaluating the evolution properties of a
database-centric environment such as the vulnéyabilits design structures to hypothetical
evolution events. Based on graph theoretic progeertf the evolution graph, we have
provided metrics like the degrees (in, out, andljodf a node, the transitive degrees of a
node (standing for the extent to which other notlessitively depend upon it), and the
degrees of a summarized variant of a module (@gview) that abstract the internal
semantics of the module and focus on its couplinthé rest of the environment. We have
then presented an event aware set of metrics #kaistinto account the distribution of
potential events on the graph. We have also indulle special role of policies annotating
the graph into a policy-aware set of metrics. Wegehprovided an information theoretic
definition of a module’s entropy that simulates éxtent to which the vulnerability of a node
is surprising. Finally, we have extensively expemted with various configurations in the
setup of a reference database environment andsasststhe effectiveness of the proposed
metrics (i.e., how well do they actually predice timpact of evolution events to a design
construct) and how different design alternativestii@ same schema behave with respect to
schema evolution.
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6. HECATAEUS: AN IMPACT
PREDICTION FRAMEWORK FOR
DATABASE SCHEMA EVOLUTION

In the context of the proposed framework, we hamplémented a tool, callededATAEUS,
used for the construction and visualization of #welution graph and its annotation with
policies regarding evolution semantid$ECATAEUS enables the user to transform SQL
source code to evolution graphs, explicitly defowdicies and evolution events on the graph
and determine affected and adjusted graph constagdording to the proposed algorithm.
The graph modeling of the environment has versatiigzations: apart from the impact
prediction and the creation of hypothetical evantiscenarios, the user may also assess
several graph-theoretic metrics of the graph thghlight sensible regions of the graph as
described in chapter 5.

Hecataeus is a user-friendly visual environment kiedps administrators and users to
perform hypothetical evolution scenarios on databagplications. Its main features are
outlined as:

e Visualization of SQL code as directed graph®cataeus parses schema definition
and SQL code and creates a directed graph, whgkgents all the semantics of the
database schema at the most granular level [PKVV@&parate nodes are
constructed for each database object, such agretatdes, attribute nodes, etc., and
different edges exist for the various relationstipsveen these objects, such as part-
of edges, dependency edges, etc.

e Manipulation of the evolution grapiHecataeus produces a fully dynamic graph,
which users may manipulate. Thus, users may apgiyut algorithms to transform
the way graph is displayed, find add or remove lgrepnstructs (i.e., nodes and
edges) and change their semantics. Additionallg, tthol offers capabilities for
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zooming on parts of the graph, isolating moduled eneating subgraphs and lastly
displaying the graph at various abstraction lefigts, only top level nodes).

Annotation of the graph with evolution semantiEvolution semantics are easily
applied on the graph through the annotation ofgifag@h constructs with evolution
events and policies. The occurrence of an evest mode of the graph as well as the
policy, with which the node reacts to this eveng @epresented as properties of the
specific node.

Impact prediction of evolution changdsecataeus provides the ability to the user to
trigger events defined on nodes of the graph agdlight the impact that these
events have on the rest of the graph accordingealéfined polices. It denotes the
parts of the graph that are affected by an eventniost importantly nodes are
assigned with a status that dictates their reactmnthis event and colored
accordingly.

Export of evolution scenariohe user may create an evolution scenario cantqin
the graph along with all the evolution semantics,, ievents, policies, statuses,
which can be transformed and exported in XML forn¥dtus, administrators can
create process and store as XML files multiple ades for the same database
configuration and evaluate their results before hapg to the production
configuration.

Definition of policies with extended SQAnother useful feature that alleviates the
user from manually defining semantics on the grigghe definition of policies with
the extended SQL syntax as presented in chaptétedataeus can parse files
containing such syntax for the annotation of thegpgrwith policies.

Application of metrics on the graphastly, the user may apply metrics on constructs
of the graph and detect crucial to the evolutiothef system parts of the graph. The
application of metrics is performed at various gian levels; at a specific node
(e.g., the degree of a node), a module (e.g., tde rwith the highest transitive
degree) or lastly at the whole graph (e.g., theoptof the graph).

Chapter Outline. In section 6.1, the system architecture of Hecat@éepresented. We
describe the main components of the tool and tmarrelation between them. Then, in
section 6.2, we present the main features of tlopqsed tool via a use case regarding a
hypothetical evolution scenario applied on the muration of the motivating example of
chapter 3. First, Hecataeus is used for modeliegsthema characteristics of the example
database environment and creating the evolutiophg@ection 6.2.1 — 6.2.3). Then, in
section 6.2.4 — 6.2.5, the main steps for creatind storing evolution scenarios with
Hecataeus are presented and in 6.2.6 we focusearafiabilities of Hecataeus for evaluating
metrics on the evolution graph. Lastly, we concltltge concepts presented in this chapter in
section 6.3.

124



6.1 System Architecture

Hecataeus’ architecture comprises five main compngPAVV08]: the Parser, the
Evolution ManagertheGraph Viewerthe Metric Managerand theCatalog(Figure 6.1).

Parseris responsible for parsing the input files (iBDL and workload definitions)
and sending each command to the database Catalatpemto the Evolution Manager. It is
also responsible for parsing the proposed langeatgsions for the definition of policies on
the graph.

Graph Viewer mport ;:)’;"QL,
- Export
DDL files Graph Visualizatio @
SQL scripts p d Scenarios

| I

Evolution Manager

| DB Schema representatior}

| Workload representation | [
| Metric
Manager|

Parser \ Evolution Semantics

Validate
Workload

Create
DB
Schema

Figure 6.1: System Architecture

The functionality of theCatalogis to maintain the schema of the relations as asto
validate the syntax of the workload parsed (i.etivay definitions, queries, views), before
they are modeled by the Evolution Manager.

Evolution Managercomponent is responsible for representing the nlyidg database
schema and the parsed queries in the proposed gragél. The EvolutiomManager holds
all the semantics of nodes and edges of the afaoréoned graph model, assigning nodes and
edges to their respective classes. It communicaidis the catalog and the parser and
constructs the node and edge objects for each afassdes and edges (i.e., relation nodes,
qguery nodes, etc.). It retains all evolution seneantor each graph construct (i.e., events,
policies) and methods for performing evolution soes. It contains methods for
transforming the database graph from/to an XML fatrm

Metric Manageris responsible for maintaining the metrics deiomtand for their
application on the graph. Each metric applied andholution graph is implemented as a
separate function in the Metric Manager.
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Lastly, Graph Vieweris responsible for the visualization of the grapmd ahe
interaction with the user. It communicates with tBeolution Manager, which holds all
evolution semantics and methods. Graph Viewer sftestinct colorization for each set of
nodes, edges according to their types and the Wway are affected by evolution events,
editing of the graph, such as addition, deletiod mrodification of nodes, edges and policies.
It enables the user to raise evolution events,eieal affected nodes by each event and
highlight appropriate transformations of the graphstly, the user can import or export
evolution scenarios to XML format and save scersaioamage formats (i.e., jpeg).

Hecataeus is an open source project, implementethva. For the parser and the
database engine, we have used HSQLDB, an openes@@t relational database engine
written in Java [HSQL], whereas for the graph vieation we have used the Java Universal
Network/Graph Framework (JUNG), a software librahat provides a common and
extendible language for the modeling, analysis, asdialization of data that can be
represented as a graph or network [JUNG].

6.2 Hecataeus’ Functionality

In the following sections, we present in more dstaome functionality issues of Hecataeus.
We present the functionality of Hecataeus via the ecase of a hypothetical evolution change
occurring at the database schema of the motivagkxemple configuration provided in
chapter 3.

6.2.1 Creating the Evolution Graph from SQL files

Hecataeus’ primary input involves SQL files contagndatabase schema definitions as well
as queries and views definitions. As shown in Fegbr2, first the user selects the two files
containing the DDL and SQL files respectively.
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Figure 6.2: Creating graph from SQL files

The tool parses the files and validates the syofake SQL code before creating and
displaying the evolution graph. In case syntax msistencies exist in the definitions of a

table or a query, Hecataeus informs the user aockpds with creating the evolution graph
without the inconsistent object.

6.2.2 Editing the Evolution Graph

Hecataeus constructs an editable user-friendlyhgvégch user can manipulate. The layout
of the evolution graph distinguishes different ty# nodes. For each different type a unique
color and shape is used (e.g., red circle for imlat green square for views, etc.).

Additionally, top-level nodes of modules are big¢jeat the rest nodes, so that modules are

easily discrete by the user. Single or multiple emdan be selected and rearranged in the
layout.

Operations such as additions, modifications, dastiand searching of nodes are
supported by the tool. The user can manually adsas well as edges between nodes and

define their properties. In Figure 6.3, the form moodifying the properties, i.e., name and
type, of EMPS_PRJS view node is shown.
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Figure 6.3: Editing the properties of EMPS_PRJS vier node

6.2.3 Abstracting the Evolution Graph

Database systems comprise some tens of databasetsond even hundreds of dependent
objects accessing the database schema. When majece$e graphs, it will result in a large
number of nodes, which may confuse or make hatgéns to manipulate. To deal with this
issue, Hecataeus can display the graph in varibssragtion levels, hiding or revealing
certain types of nodes and relationships betweem tlaccording to the point of interest of
the users. For instance, in Figure 6.4 the usenesiso hide the detailed representation (i.e.,

attributes, conditions, etc.) for all modules ie tiraph and display only module-level nodes
and edges between them.

Additionally, the user can isolate and display oalyart of the graph by selecting
multiple nodes, e.g., all nodes comprising a refatmodule. Lastly, the user can display
nodes with certain properties such as a policyg\aant or a status defined on them.
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6.2.4 Creating Evolution Scenarios

Evolution scenarios are created by the users byr@nfj evolution semantics on the graph.
An evolution scenario comprises a set of eventdiegppn nodes of the graph as well as a set
of policies that dictate the way affected nodestréa evolution events. In the following
sections, we present the implementation of a hyimtél scenario, namely the deletion of
attribute E_SAL from relation EMP, with the useH#cataeus.

6.24.1 Defining Events

The first step for creating an evolution scenanddiecataeus involves the definition of the
potential evolution events on the nodes of the lgrafhe user can define one or more
potential events on a node or a set of nodes ofgthph. This is easily accomplished by
selecting a specific node and assigning to it @mpatl event. As shown in Figure 6.5, the
user assigns the event “DELETE_ATTRIBUTE” to th&ibhtite E_SAL of relation EMP. In
that manner, one or more events of different typas be assigned to the same node.
Furthermore, according to the type of the node appropriate set of potential events is
offered to the user, i.e., only RENAME_ATTRIBUTERDELETE_ATTRIBUTE events
are available to the user when an attribute nodelected. Events are actually properties that
are assigned to nodes and thus an evolution soecani comprise multiple assignments of
events.
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Figure 6.5: Adding event “DELETE_ATTRIBUTE” to att ribute E_SAL of
relation EMP

6.2.4.2 Defining Policies

Similarly, policies are properties defined on a&daor capturing the reaction of the node to
an evolution event. A policy defined on a node cosgs three parts: (a) the event node on
which a hypothetical event occurs, the type oftiipothetical event and lastly the type of
policy that is followed. In Figure 6.6, the usefides a policy on node EMPS_PRJS view.
The policy defined on EMPS_PRJS view dictates thatase an event for deleting (i.e.,
event type) the attribute E_SAL (i.e., event nadfdtMPS_PRJS view occurs then the event
will be propagated towards the rest of the graptrigure 6.7, a second policy is defined on
query node Q2 dictating that the deletion of atiito P EXPENSES must be blocked.
Additionally, the user can prescribe a default eystvide policy for all nodes in the graph,
when no other definitions are explicitly defined thiem. In our example, the propagation of
the deletion of the attribute is considered agifault policy of this evolution scenario.

Hecataeus also supports the language extensiosenpee in chapter 4 for defining
policies on the graph. The user can prepare afitextvith expressions for the definition of
policies on nodes of the graph. Hecataeus pargefiléhand annotates these nodes with the
appropriate policies. For example, in Figure &h@, aser imports the text file, which contains
the expressions for defining the above policieEMPS_PRJS and Q2 nodes.
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6.2.4.3 Highlighting the Impact of Changes

Given an event and a set of policies defined oretl@ution graph, the tool offers the user
the ability to inspect the impact that this evess lon the overall graph. Specifically, the user
triggers the event and Hecataeus highlights thes mdrthe graph that are affected by this
event according to the algorithm presented in adraptAdditionally, the tool assigns a status
on each affected node, which indicates the actian thust be performed on this node as a
result of the policies defined for this event. lige 6.9, the impact of deleting attribute
E_SAL of relation EMP is highlighted on the gra@bserve that, the EMPS_PRJS view
node (i.e., the brown triangle) has been assigngd a status “TO_DELETE_CHILD”
indicating that a child of this view must be detete

It is noted that each node is uniquely colored ating to the status assigned to it (e.g.,
red for the status “TO_DELETE_SELF”, black for tetatus “BLOCK”, brown for status
“TO_DELETE_CHILD", etc.). Therefore, the user caas#ty detect by the color of the
affected nodes the assigned statuses. In our egathgl attributes E_SAL of relation EMP,
Q1 and EMPS_PRJS are marked for deletion and paeénts are annotated with a status for
deleting one of their children. On the contraryERPENSES attribute of Q2 is annotated
with a status for blocking the deletion of itsetf well as the Q2 node as well. These results
are consistent with thpropagatepolicy defined on EMPS_PRJS node drdck policy
defined on Q2 node, respectively. For the reshefrhodules (i.e., EMP and Q1) the default
propagatepolicy dictates the deletion of the E_SAL attrimut Lastly, the coloring of the
edges indicates the action that is performed onetationships between the affected nodes.
A red edge indicates that it must be deleted asaltrof deleting one of its adjacent nodes,
whereas the purple one indicates that one of theiger nodes is semantically affected.

6.2.5 Saving Scenarios

A featured functionality of Hecataeus is the reilggband extensibility of evolution
scenarios. The user can save an evolution scenariahe graph along with all the evolution
semantics defined on it, as an XML file. The XMlpresentation contains information about
all the properties of the nodes, edges, eventspatidies of the graph. It also contains
information about the graphical layout of the grafite position and the visibility of the
nodes. In Figure 6.10, a part of the XML represgmtafor the evolution graph of our
example is presented. The tag <HNode> containspthperties for the GB node of Q2
guery, such as its unique key in the graph, itseyagpe and position. Also, the two policies
defined on EMPS_PRJS view and Q2 query are enclost tags <HPolicy>, whereas the
event defined on EMP.E_SAL attribute is enclosed #HEvent> tag.

The xml representation of evolution scenarios effére user the ability to create a
scenario, save it and then reuse it or extend Heocataeus. Thus, the user can easily test
different evolution scenarios for a given databam®iguration and compare their impact.
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Figure 6.10: XML representation of evolution scenaos

6.2.6 Evaluating Metrics on the Graph

Hecataeus enables the user to evaluate a setphf tiraoretic metrics on the evolution graph.
The metrics, which presented in chapter 5, canviaduated for a single node as shown in
Figure 6.11, where the user chooses to evaluatdapee-inmetric for EMPS_PRJS view
node or for all nodes in the graph as shown inf@@ul2, where the output for ttransitive
degree-oumetric for every node is shown.

Moreover, the tool gives the user the capabilityet@luate maximum values for
metrics among all nodes of the graph. In that mgnrser can detect “sensitive” parts of the
graph (e.g., those for which metric values are ma&ed) which may require specific
manipulation (e.g., the definition of policy on theduring the evolution process.
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6.3 Summary

In this chapter, we have presented in details @vaoé tool, named Hecataeus, which enables
the user to predict and regulate the impact of wiai process over a database-centric
environment. Specifically, Hecataeus enables tlee tes visualize the evolution graph of a
database —centric environment from SQL source dogeovides many features for editing
the properties of the graph and modifying its layothe enrichment of the graph with
evolution semantics, i.e., events that modify tlaabdase schema of the environment and
policies that dictate the reaction of the graphhese events, gives the user the ability to
create evolution scenarios that forecast the impédhe evolution process before it is
applied to a production environment. To this endset of metrics that exploit the graph
theoretic properties of the evolution graph andcai® sensitive parts of the configuration
are incorporated into the tool.

Special acknowledgments are given to Kostis Kyzsaland Fotini Anagnwstou
(former undergraduate students) for their hugeresffiowards the design and development of
Hecataeus. In [Kyzi05], a first version of Hecatmén modeling SQL constructs as graphs is
presented, where the model of chapter 2 is fullplemented. In [Anag07], Hecataeus is
enhanced with capabilities for the definition ofokiion events and policies, the impact
prediction of events and the XML representation.
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/. CONCLUSIONS AND
FUTURE WORK

7.1 Conclusions

In this thesis, we have addressed the problem tdbdae schema evolution with the
introduction of a rule — based framework that rateg the impact of evolution processes.
The problem of schema evolution in database ceetmgronments exists in the fact that
alterations occurring on the schema of databasectsbaffect a numerous of database objects
and software constructs that are dependent on \tbkvesl objects. The impact of these
alterations on other constructs can be either syntd, e.g., a change may evoke a
compilation or execution failure during the exeountbf a piece of code; or semantic, e.g., a
change may have an effect on the semantics ofaitwase used. Both ways require by the
administrators/developers the redefinition andeéessary the recompilation of the affected
constructs, so that these adhere to the new serganti

To deal with the above issues, we introduced advaonk for the automatic detection
of the parts of the system, which are affected myweolution change and the regulation of
their reaction to this change. The framework isldasn a graph representation of a database-
centric environment. We proposed a graph modeleghrtique that uniformly covers
relational tables, views, database constraints @@t queries as first class citizens. We
employed a graph theoretic approach and we magpediforementioned constructs to a
graph, that we calleBvolution Graph The graph was furthermore annotated with evatutio
semantics that facilitate the impact analysis agiilation of schema evolution. We defined
eventson the nodes of the graph which are mapped to g8enlehanges that occur on parts
of a database. Constructs of the graph were, #raiched with rules, namely policies, that
allow the developer to specify the behavior of #ffected constructs whenever events that
alter the database graph occur. The combinati@nadvent with a policy determined by the
designer/administrator triggers the execution ef dppropriate action that either blocks the
event, or highlights properly the graph to adapth® proposed change. Additionally, we
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proposed a set of language SQL extensions thatemntie implementation of the proposed
framework for the management of evolution. For edieg a system catalog with extra infor-
mation regarding evolution metadata, we providetéresions to SQL regarding both top
level construct definitions, such as tables, vieava] queries, as well as fine grain constructs
such as attributes, conditions of views/querieg] database constraints. Moreover, we
provided a principled way for defining the proposalution semantics and in the same
time minimizing the user effort. Most importantlthe experimental evaluation of the
framework was performed over a real-case databaseament.

To this end, we studied the structural propertiésthe evolution graph for the
definition of a set of metrics related to the ewiol capabilities of database-centric
environments. The metrics were categorized intofif@)re-agnostic graph-based metrics,
building upon the properties of the nodes of thephr Graph theoretic properties like the
degrees of a node reveal how interrelated to atbdes a certain node is. (b) Future-aware
metrics that extended the previous simple modédh witypothesis for the evolution events
that will occur in the future and lastly (c) poliayvare metrics that took into consideration
the special role of policies defined on the grapl¥e also provided an experimental
evaluation of the proposed metric set over varmugigurations in the setup of a reference
database environment and assessed both the edfeesis of the proposed metrics (i.e., how
well do they actually predict the impact of evotutievents to a design construct) and how
different design alternatives for the same scheetebed with respect to evolution. Lastly, a
software tool, called Hecataeus, was developetdrcontext of this thesis incorporating the
concepts and functionality of the proposed framéwor

The concept of rule-based management of schematemgl which is considered in
this thesis, suggests that affected constructsotl@lways align towards retaining the same
semantics before and after the evolution procdssir Bdaptation to the evolved semantics is
dictated by the users with the use of policies.iRstance, the propagation of the addition of
a new attribute in the database schema towardstshpferring to the evolved relation such
as queries and views results in evolving the seicgnt these objects as well. Such changes
may, in turn, be propagated towards other depenalgjects, inducing the semi-automatic
redefinition of a whole path of dependent objedise identification and regulation by the
user of this impact before the evolution processurx is one of the basic features and
contributions of this thesis.

Another interesting aspect of this thesis is thalwation of the design of a database —
centric environment and the correlation with it®letion capabilities. The proposed set of
metrics measure in a principled way the vulnerghib evolution of the design of a database
— centric environment and identify these configoreg that are most appropriate for
sustaining evolution changes without great reergging effort.

We believe that the introduced framework can betmally applied to a variety of
current database — centric configurations and w@olgres. We have already elaborated the
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application of our framework over a real-case datalwouse configuration [PVSVO07],
[PVSV09] as presented in chapter 3. In that cdse,sburces of ETL workflows evolved
over time and the ETL activities were affected addpted to evolution events. Similarly, the
scenario which involved the evolution of the datarehouse schema (i.e., change of
dimensions) and the regulation of its impact on therkload of the warehouse was
experimentally performed in chapter 5. In the sanamner, we believe that the application
of the framework to almost all kinds of databasetge systems can be beneficial for their
evolution, especially for distributed environmenttiere changes are performed locally
affecting however a large number of dependent ébj@ed applications. For instance, peer to
peer databases are considered to be a represergaimple where evolution is performed
independently in peers and affects other peers.

7.2 Future Work

The database schema evolution problem as poseHigntitesis has long term research
challenges that spread across technologies (O-@agp XML, etc.) and design solutions.
As stressed, the introduced framework addresses sdrtnese challenges, but also raises a
plethora of others that may require further redeaftorts. Some interesting directions for
future work related to our approach could be thiewong:

Incorporation of other data models to the evolutgyaph Our framework represents a
relational approach to the database schema anglvdtsition. The incorporation of other
approaches, such as XML, to the evolution grapWelsas the mapping of evolution events
occurring on XML schemas to events on the evolugiospph would be a very interesting
issue.

Patterns of evolution sequencesnother research goal that can be pursued is the
identification of patterns of evolution sequenc&be evolution of the database schema
within an information system may occur throughdstentire lifecycle. An interesting issue
is related to finding out patterns of transformasidhat are most common in each phase of
the lifecycle and incorporate their handling into ’lamework. For instance,

e During the development phase, a proportional langeber of deletions of entities
(i.e., attributes, constraints and relations) od¢nuromparison to other phases of the
lifecycle.

e During the normalization / denormalization procesthie main evolution
transformations comprise additions / deletions & &d FK constraints to the
involved relations.

e In the context of a data warehouse, slowly changingensions induce the
modification (additions/deletions) of FK in the fa@able, which is however less
common than the modification of measures.
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Patterns in the evolution of the database schemdedurther observed in the context
of the kind of information system employed (DW, W&betc.). In most occasions,
evolution processes can be decomposed in standqueisces of evolution events, which are
performed in the database schema. For instan@eretational data warehouse environment
the addition of a dimension involves the sequerfoessential evolution events, such as the
addition of the dimension relation, the additiorad¥K to the fact table, etc.

Patterns of evolution adaptations — optimizatiochti@ques:Apart from the patterns of
evolution events occurring on a database schensmgar research goal would be the
investigation for patterns related to the impaaet tihese events have on affected queries and
views. Such patterns depend strongly on the funatity of the affected queries and views.
To mention an example, again in an ETL environmém, majority of evolution events
occurred at the sources is propagated and absdmpetie queries included in the ETL
activities, while only few activities retain thestd functionality when they are affected by
changes. Other examples include modification gee(especially insert into) which in
general propagate changes to their definitionsjews that act as macros to the underlying
tables. The common reaction of affected constriict®volution events can be further
investigated in several contexts of database-eeatrvironments. Repetitive patterns in the
evolution of a database schema can help the admaimisdecide upon the appropriate policy
set that must be applied on the graph and thusidhamare effectively forthcoming evolution
events. For instance, if in a data warehouse conéeilitions of dimensions result in most
cases in the addition of grouping attributes in nafshe affected queries, then a policy set
comprising propagate policies for most queriesastoptimal.

Towards this direction, a promising research subjecrelated with optimization
techniques for defining appropriate policies ondgh&ph. That means the administrator must
define these policies on the graph and thus regule evolution in a way such that the
human interaction for the affected objects to beimized.

Evolution Benchmarkn [CMTZ08] the need for a benchmark for schemal@tion is
stressed. This need is enforced by the fact thatenous approaches and tools for schema
evolution exist in the literature without howeveifg practically evaluated and compared in
a common testbed. For example, each approach addrdgferent cases of evolution under
different contexts and technologies. Therefore,eachmark for schema evolution should
have some specific characteristics, such as a comgnagreed set of evolution events that
occur on the database schema, a standard set d&foadrfor the database, and most
importantly a set of measurable parameters fomtipact of evolution.

ECA rules for schema evolutiohe policy-regulated technique of the proposed
framework resembles the approach of Event-Condiciion (ECA) rules of active
databases on the grounds that the combination evalution event with a condition (i.e.,
policy defined on the node) raises an action (essignment of a status) on the graph.
Current RDBMS support ECA rules for schema modifwes with the form of schema
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triggers [ORAC10g]. However, these triggers do rase schema modifications to other
database objects but only perform DML actions tsteng tables. An interesting research
problem would be the integration of the policy reded technique into a framework of ECA
rules for schema changes that would also involhersa@ modifications to queries and views.

HecataeusLastly, a challenging direction for future workrcerns Hecataeus itself.
Hecataeus is an ongoing project which can be emdhndth numerous and powerful
features. A first one could be the integrationtad tool with all commercial RDBMS (e.g.,
with ODBC connections) so that schema definitioas be automatically derived from the
database catalogue and backwards evolution tranafmms can be directly applied on
database schemas. A second one concerns the aigtossaucturing of the graph after it has
been assigned with statuses regarding evolutiorttengroduction of SQL source code from
the transformed graph for all database objects.
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APPENDIX

The following tables present an overall picture aoir framework. In Table A.1,
potential events tested by the designer/admingstrate depicted in the first column of the
table. The two rightmost columns depict possiblécps that the administrator could have
set and the macro level actions by our approaaheWnt, we present the candidate modules
for change and the type of impact (i.e., semantgyatactical) the change has on them.
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Event on Candidate Modules Impact Prevailing  Action
source schema For Change Policy
Add A 1.Queries/views that mustSemantic Policy = P Include attribute in SELECTuska
include the added attribute Policy = B Rewrite SELECT clause excluding added
in the SELECT clause attribute
2.Queries/views with Policy=?  One of the above
SELECT * clause that must
exclude the added attribute
C Queries/views referring toSemantic Policy = P Leave query intact
the relation/view  over Policy =B Retain old view (without the added cdiui)
which the condition is and all queries with block policy refer to the
added old view
Policy = ? One of the above
R/V No direct
impact
Delete A Queries/views referring toSyntactical, Policy = P Remove deleted attribute from query/view
this attribute (i.e. in the Semantic definition (i.e., SELECT, WHERE, GROUP
SELECT clause, WHERE BY clause)
clause, etc.) Policy =B Rewrite properly query/view in order tme
valid.
Policy = ? One of the above
C Queries/views referring toSemantic Policy =P Leave query intact
relation/view from which Policy =B Retain old view (including the original
the condition is removed condition) and all queries with block policy
refer to the old view
Policy = ? One of the above
R/V Queries/views referring toSyntactical, Policy =P Remove relation from query/view defioiti
relation/view Semantic (i.e., FROM clause) along with the attributes
and conditions involving this relation (i.e.,
SELECT, WHERE, GROUP BY clauses)
Policy =B Rewrite properly query/view in order tme
valid
Policy = ? One of the above
Modify/ A Queries/views referring to Syntactical, Policy =P Rename modified attribute in the qudeuv
Rename this attribute (i.e. in the Semantic definition (i.e., SELECT, WHERE, GROUP
SELECT clause, WHERE BY clause, etc)
clause, etc.) Policy =B Rewrite properly query/view in order tme
valid.
Policy = ? One of the above
C Queries/views referring toSemantic Policy = P Leave query intact
relation/view of which the Policy =B Retain old view (including the original
condition is modified condition) and all queries with block policy
refer to the old view
Policy = ? One of the above
R/V Queries/views referring toSyntactical, Policy =P Rename relation in the query/view déiomi
relation/view Semantic (i.e., FROM clause)
Policy =B Rewrite properly query/view in order tme
valid.
Policy = ? One of the above

* Policy Types: P=Propagate, B =Block, ?=Prompf)de

Table A.1: Macro level actions dictated by framewok for several kinds of events.
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In Table A.2, the statuses, i.e., the actions thdteat the detailed level of nodes,
assigned to visited nodes Byopagate ChangeAlgorithm for combinations of events and
types of nodes are shown, whpropagatepolicy prevails on the visited node. For each
status the new event induced by the assignment mbde with status, which is further
propagated to the graph, is also shown.

Event on the On Scopé
graph node P Status Raised Event
None N/A N/A N/A
R/VIQ | affected
R S Add Child Add Attribute
\Vj S, P Add Child Add Attribute
A Q s p Add Child Add Attribute
C p Modify Provider Modify Condition
R C Add Child Add Condition
Add Child, Add Condition, Modify Condition
\% S,P X .
c Modify Provider
Add Q s p Add Child, Add Condition, Modify Condition
’ Modify Provider
A S Add Child Add Condition
Vv S p Add Child, Add GB, Modify GB
GB ' Modify Provider
0 s p Add Child, Add GB, Modify GB
’ Modify Provider
Vv S p Add Child, Add OB, Modify OB
OB ' Modify Provider
Q s p Add Child, Add OB, Modify OB
' Modify Provider

155



R R S Delete Self Delete Relatidn
vV Vv S Delete Self Delete Vietv
Q Q S Delete Self Delete Quety
R C Delete Child None
\Vj C Delete Child None
Q C Delete Child None
A S Delete Self Delete Attribute
A C P Delete Self Delete Condition
= P Delete Self Delete Function
GB = Delete Self, Delete GB, Modify GB
Modify Self
OB = Delete Self, Delete OB, Modify OB
Modify Self
R C Delete Child Delete Condition
Vv cp Delete Child, Delete Condition, Modify
' Modify Provider Condition
c Q cp Delete Child, Delete Condition, Modify
' Modify Provider Condition
Delete A C Delete Child Delete Condition
C s c Delete Self, Delete Condition, Modify
' Delete Child Condition
A C Delete Self Delete Attribute
C C Delete Self Delete Condition
= C Delete Self Delete Function
F GB C Delete Self, Delete GB, Modify GB
Modify Self
OB C Delete Self, Delete OB, Modify GB
Modify Self
Vv cp Delete Child, Delete GB, Modify GB
’ Modify Provider
GB Q cp Delete Child, Delete GB, Modify GB
' Modify Provider
GB S Delete Self Delete GB
Vv cp Delete Child, Delete OB, Modify OB
' Modify Provider
OB Q cp Delete Child, Delete OB, Modify OB
’ Modify Provider
OB S Delete Self Delete OB
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Rename

Modify
Domain

R S Rename Self Rename Relation
\% P Rename Provider None

Q P Rename Provider None

\Vj S Rename Self Rename View
Q P Rename Provider None

R C Rename Child None

\V; C Rename Child None

Q C Rename Child None

A S Rename Self Rename Attribute
C P Rename Provider None

= P Rename Provider None
GB P Rename Provider None
OB P Rename Provider None

R C Modify Child None

\V; C Modify Child None

Q C Modify Child None

A S Modify Self Modify Attribute
C P Modify Provider Modify Condition
= P Modify Provider Modify Function
GB P Modify Provider Modify GB
OB P Modify Provider Modify OB
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Table A.2: Statuses assigned to nodes when propagatolicy prevails
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R C Modify Child Modify Condition
Vv C.D Modify Child, Modify Condition
' Modify Provider
Modify Child, Modify Condition
C Q ¢.Db Modify Provider
A C Modify Child Modify Condition
Modify Self, Modify Condition
C S, C Modify Child
A C Modify Self Modify Attribute
C C Modify Self Modify Condition
F - -
Modify GB C Modify Self Modify GB
OB C Modify Self Modify OB
Modify Child, Modify GB
GB v ¢.Db Modify Provider
0 cD Modify Child, Modify GB
' Modify Provider
Modify Child, Modify OB
OB v ¢.D Modify Provider
0 cD Modify Child, Modify OB
’ Modify Provider
=) S Modify Self Modify Parameter
P C C Modify Self Modify Condition
g
Scope: S (SELF), C(CHILD), P(PROVIDER)
2All attributes in the schema are first deleted befoelete Relation, Delete View and Delete Quegnés
occur.
*The value for the status depends on whether GB h@ have other children. If no other childrersexi
then Delete GB/OB is assigned, Modify GB/OB otheewi



