

National Technical University of Athens

SCHOOL OF ELECTRICAL AND
COMPUTER ENGINEERING

DIVISION OF COMPUTER SCIENCE

Policy Regulated Management of Schema Evolution
in Database–centric Environments

PhD Thesis

Of

George Papastefanatos

Diploma in Electrical and Computer Engineering (2000)

Athens, February 2009

NATIONAL TECHNICAL UNIVERSITY OF ATHENS

SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING

DIVISION OF COMPUTER SCIENCE

Policy Regulated Management of Schema Evolution
in Database–centric Environments

PhD Thesis

Of

George Papastefanatos

Diploma in Electrical and Computer Engineering (2000)

Supervising Committee: Y. Vassiliou
 T. Sellis

 G. Mentzas

Approved by the Examination Committee, 2nd February 2009.

......
Y.Vassiliou
Professor N.T.U.A.

......
T. Sellis
Professor N.T.U.A.

......
G. Mentzas
Professor N.T.U.A.

......
P.Konstantopoulos
Professor Athens Univ. of
Economics and Business

......
K. Kontogiannis
Associate Professor N.T.U.A.

......
Y.Theodoridis
Associate Professor
University of Piraeus

......
P.Vassiliadis
Assistant Professor University of Ioannina

Athens, February 2009

George Papastefanatos
Ph.D. Electrical and Computer Engineering N.T.U.A.
© 2009 – All rights reserved

i

Contents

1. Introduction ... 11

1.1 Research Challenges in Database Schema Evolution .. 12

1.2 Contributions of this Thesis ... 15
1.3 Roadmap of the Thesis ... 17

2. Graph Representation of Database-Centric Environments 21

2.1 Visualization and Representation Techniques for Database Systems 22

2.2 Modeling Database-centric Environments as Graphs .. 24

2.3 Relations ... 26
2.4 Database Constraints / Conditions ... 26

2.4.1 Conditions ... 27
2.4.2 Database Constraints ... 27

2.4.2.1 Primary Key Constraints ... 28

2.4.2.2 Foreign Key Constraint ... 28

2.4.2.3 Unique Key Constraints .. 29

2.4.2.4 NOT NULL Constraints .. 30

2.4.2.5 Check Constraints ... 30
2.5 Queries ... 31

2.5.1 Select-Project-Join (SPJ) flat queries.. 31

2.5.2 Select-Project-Group (SPG) flat queries ... 35

2.5.3 Nested queries ... 37
2.5.4 Self-Join queries.. 38

2.6 Functions .. 39
2.7 Views .. 39
2.8 DML Statements .. 40
2.9 Breaking the Graph into Modules .. 41
2.10 Zooming Out the Graph ... 43
2.11 Summary .. 44

3. Framework for Regulating Database Schema Evolution .. 45

3.1 Management of Schema Evolution in Database Systems .. 47

3.1.1 Relational Schema Evolution and Versioning .. 47

3.1.2 Object – Oriented Schema Evolution ... 48

3.1.3 Model Management and Schema Mappings ... 49

3.1.4 Schema Evolution in Data Warehouses .. 50

3.1.5 View adaptation to Schema Evolution .. 51

3.1.6 Comparison with Related Work.. 52

3.2 Motivating example.. 54
3.3 Regulating Schema Evolution .. 56
3.4 Algorithm Propagate Changes ... 61
3.5 Tuning the propagation of changes .. 62

3.5.1 Determining the Prevailing Policy .. 62

3.5.1.1 On-demand resolution ... 63

3.5.1.2 A-priori resolution ... 65
3.5.1.3 Completeness .. 66

3.5.2 Determination of a node’s status... 66

3.5.3 Next to Signal - Optimization and Pruning... 67

3.6 Experimental Evaluation .. 68
3.6.1 Effectiveness of Workflow Adaptation to Evolution Changes 70

3.6.2 Effectiveness of Workflow Annotation ... 72

3.6.3 Efficiently Adapting ETL Workflows to Evolution Changes 75

3.7 Summary .. 77

4. Language Extensions for Regulating Database Schema Evolution 79

4.1 Extensions of SQL for Schema Evolution ... 81

4.2 Database-wide Default Values ... 82
4.3 Top Level Constructs ... 83

4.3.1 Relations ... 84
4.3.2 Views .. 84
4.3.3 Queries .. 85

4.4 Fine Grain Constructs... 86
4.4.1 Attributes... 86
4.4.2 Constraints .. 87
4.4.3 Conditions ... 88

4.5 Evaluation of Language Extensions ... 89
4.6 Summary – Discussion ... 90

5. A Metric Suite for Evaluating the Evolution of Database Systems 93

5.1 Related Work on Database Design Metrics ... 97

5.1.1 Conceptual Metrics ... 97
5.1.2 Relational Database Metrics ... 100

5.1.3 Quality in Data Warehouses - Metrics .. 101

5.1.4 Entropy based approaches... 104

5.2 A Metric Suite for Evaluating Schema Evolution Capabilities.............................. 105

5.2.1 Degree-related metrics .. 105
5.2.2 Metrics with an eye for future events ... 108

5.2.3 Policy aware metrics ... 110

iii

5.2.4 Entropy-based metrics .. 110
5.3 Experimental Evaluation .. 114

5.3.1 Effectiveness of the proposed metrics .. 116

5.3.2 Comparison of alternative design configurations ... 120

5.4 Summary .. 121

6. Hecataeus: An Impact Prediction Framework for Database Schema Evolution .. 123

6.1 System Architecture ... 125
6.2 Hecataeus’ Functionality .. 126

6.2.1 Creating the Evolution Graph from SQL files .. 126

6.2.2 Editing the Evolution Graph ... 127

6.2.3 Abstracting the Evolution Graph .. 128

6.2.4 Creating Evolution Scenarios ... 129

6.2.4.1 Defining Events ... 129
6.2.4.2 Defining Policies ... 130
6.2.4.3 Highlighting the Impact of Changes ... 133

6.2.5 Saving Scenarios ... 133
6.2.6 Evaluating Metrics on the Graph .. 134

6.3 Summary .. 136

7. Conclusions and Future Work .. 137

7.1 Conclusions .. 137
7.2 Future Work ... 139

Bibliography .. 143

Appendix .. 153

v

List of Figures

Figure 1.1: A typical complex Information System going through structural changes 12

Figure 1.2: Framework for the management of database schema evolution 16

Figure 2.1: Relation Graph ... 26
Figure 2.2: Primary Key Constraint Graph ... 28
Figure 2.3: Foreign Key Constraint Graph ... 29
Figure 2.4: Combining Primary Key and Foreign Key Constraints 29

Figure 2.5: Unique Constraint Graph.. 30
Figure 2.6: Not Null Constraint Graph ... 30
Figure 2.7: Check Constraint Graph ... 31
Figure 2.8: Select Part of the Query.. 33
Figure 2.9: From Part of the Query ... 34
Figure 2.10: Where Part of the Query ... 34
Figure 2.11: Graph for SPJ query ... 35
Figure 2.12: Graph for Group By Query .. 37
Figure 2.13: Nested Query .. 38
Figure 2.14: Graph for Self-Join Query .. 39
Figure 2.15: Modularization of the graph ... 43
Figure 2.16: Abstraction of the graph ... 44
Figure 3.1: Tag-cloud Taxonomy of Related Work .. 47
Figure 3.2: Motivating Example Configuration .. 55
Figure 3.3: Annotation of the graph with policies .. 58
Figure 3.4: Propagating addition of attribute PHONE.. 60
Figure 3.5: Propagate Changes Algorithm .. 61

Figure 3.6: Example of over-specification and under-specification of policies 63

Figure 3.7: Determine Policy Algorithm .. 64

Figure 3.8: On Demand Policy Resolution ... 64
Figure 3.9: First ETL scenario graph representation .. 69
Figure 3.10: Distribution of occurrence per kind of evolution events 70

Figure 3.11: Mixture Annotation .. 73
Figure 3.12: Worst Case Annotation .. 73
Figure 3.13: Optimistic Annotation .. 74
Figure 3.14: Manual (OMC) and Semi-automatic (OAC) Adaptation 76

Figure 3.15: Cost of Adaptation with and without use of Default Policies 76

Figure 5.1: Abstract representation of motivating example graph ... 95

Figure 5.2: [Mood98]’s Data Model Quality Evaluation Framework 99

Figure 5.3: Design and Administrator Quality Dimensions [Vass00] 102

Figure 5.4: Bird’s-eye view of the configuration used in our experiments 115

Figure 5.5: Events affecting dimension tables: (a) WS schema, (b) WS-star schema 117

Figure 5.6: Events affecting views: (a) WS-star and WS schema, (b) WS-views schema ... 117

Figure 5.7: Events affecting queries: (a) WS schema, (b) WS-star schema 119

Figure 5.8: Total number of events affecting queries: (a) Behavior for the WS-views with
propagate policy; (b) Behavior for the WS-views schema with mixture policy 119

Figure 5.9: Comparison of WS, WS-views, WS-star design configurations for distribution 1:
(a) only affected queries and (b) all affected nodes .. 119
Figure 5.10: Comparison of WS, WS-views design configurations for distribution 2: (a) only
affected queries; (b) all affected nodes ... 120
Figure 6.1: System Architecture ... 125
Figure 6.2: Creating graph from SQL files ... 127
Figure 6.3: Editing the properties of EMPS_PRJS view node ... 128

Figure 6.4: Displaying only top-level node of modules ... 129
Figure 6.5: Adding event “DELETE_ATTRIBUTE” to attribute E_SAL of relation EMP 130

Figure 6.6: Defining the policy for propagating the deletion of attribute E_SAL from
EMPS_PRJS view ... 131

Figure 6.7: Defining the policy for blocking the deletion of attribute P_EXPENSES from Q2
query ... 131

Figure 6.8: Parsing language extensions for definition of policies 132
Figure 6.9: Highlighting the impact of deleting attribute EMP.E_SAL 132

Figure 6.10: XML representation of evolution scenarios ... 134
Figure 6.11: Evaluating “Degree In” metric for EMPS_PRJS view 135

Figure 6.12: Output for “Transitive Degree Out” metric for all nodes 135

vii

List of Tables

Table 2.1: Elements and Notations of Evolution Graph ... 26
Table 3.1: Parts of the system affected by evolution events and annotation of appropriate
graph construct .. 59

Table 3.2: Characteristics of the ETL scenarios ... 70
Table 3.3: Affected and adjusted activities per event kind ... 71
Table 4.1: Kind of nodes annotated per event .. 89
Table 4.2: Distribution of annotated nodes per kind of policies and events 90

Table 4.3: Operations with and without SQL extensions ... 90
Table 5.1: Examples for Measurement Types for Design and Administration Quality
Dimensions [Vass00] .. 103

Table 5.2: Degree related Metrics ... 113
Table 5.3: Event-aware Metrics .. 113
Table 5.4: Policy-aware Metrics ... 113
Table 5.5: Entropy-based Metrics ... 113
Table 5.6: Distribution of events .. 115
Table A.1: Macro level actions dictated by framework for several kinds of events. 154

Table A.2: Statuses assigned to nodes when propagate policy prevails 158

ix

Acknowledgements

This dissertation could not have been accomplished without the multifaceted support and
factual solidarity of a number of people that all these years surrounded me with their care,
tolerance and their deep interest for my research efforts. The elaboration of this thesis has
been a difficult marching for me, where many pleasant and ambitious moments followed on
even more frustrating ones. This has been, however, one of the most valuable lessons learned
throughout that process as it taught me how to persist on my goals, how to explore and
overcome seemingly impossible to solve problems.

First of all, I would like to thank my supervisor, Yannis Vassiliou, Professor at the
National Technical University of Athens (NTUA) for giving me the opportunity to work on
this dissertation, for the valuable reviews and advices he gave me whenever I asked for.
Secondly, my thanks are given to Timos Sellis, Professor at NTUA and director of the
Knowledge and Database Systems Laboratory (DBLab), who also supported me with his
advices and interest regarding my work. I would like to acknowledge both for the necessary
financial support that provided for me during all these years. Panos Vassiliadis, assistant
Professor at the University of Ioannina and former member of DBLab has been the major
contributor of this work as he has actually co-supervised and provided many ideas for this
thesis. I thank him for teaching me how to organize my thoughts and overcome research
problems. Additionally, I thank Gregorios Mentzas Professor at NTUA, Panos
Konstantopoulos Professor at the Athens University of Economics and Business, Kostas
Kontogiannis Associate Professor at NTUA and Yannis Theodoridis Associate Professor at
the University of Piraeus, for serving in my thesis examination committee.

Moreover, special thanks are given to former undergraduate students Kostis Kyzirakos
and Fotini Anagnostou for contributing to the implementation of Hecataeus during their
diploma thesis and Alkis Simitsis for his fruitful comments and ideas regarding the topics of
this thesis. Furthermore, I would like to mention the huge support I received from the
members of DBLab, especially from Manolis V., Vaggelis Z., Lefteris S., Giannis R.,
Giannis K., Spyros A., Panos G. for the happy hours that we spent in DBLab as well as for
their friendship and encouragement. Thanks are also given to all my close friends outside the
DBLab who have been always tolerant and supportive to my efforts.

Last but not least, I want to thank my family for their great encouragement during all
these years of my studies. Their love has been the necessary background for achieving
undistracted my goals.

11

1. INTRODUCTION

In a typical organizational Information System, there is a variety of components inherently
intertwined with each other. Several databases or data files operate on the organizational
servers. Complex workflows are composed of different activities, each possibly running on a
different server, and interacting with a different data store. Data entry or query forms are
used by a large number of users updating or querying information. External data (e.g., Web
data) are also imported from the Web and some corporate data are usually exported to the
corporate web server (Figure 1.1).

In an ever-increasing pace, the database designer/administrator of the system is faced
with the necessity of changing something in the overall configuration of the database schema.
For example, a change in business requirements imposes that an entity such as an attribute
has to be deleted or replaced in the database schema. A small change like this might impact a
full range of applications and data stores around the system: queries and data entry forms can
be invalidated, application programs might crash (resulting in the overall failure of a complex
workflow), and several pages in the corporate Web server may become invisible (i.e., they
cannot be generated any more). Similar problems arise in almost every kind of database-
centric environments, where a set of objects and software artifacts are dependent upon a
dynamic and evolving database system.

Forecasting and handling database schema evolution especially in large scale or
distributed environments are time-consuming tasks, since they are not handled by current
database systems with an automatic way, but rather they require great human effort by
database administrators and developers. Considering the previous example, the deletion of an
attribute requires from the administrator or the developer to manually detect eventual
inconsistencies in the database or the applications around it (i.e. foreign keys that are invalid,

12

queries that become invalid, object models that are inconsistent with the underlying data
model, etc.) and decide how to adjust each of them. Therefore, evolution-driven database
modeling and design as well as techniques for minimizing the human effort consumed for
evolution tasks can be very beneficial and can contribute to the overall design quality of the
system.

DB

DB

Act1

Act2

Act3

Act4

Act5
WWW

Figure 1.1: A typical complex Information System going through structural
changes

1.1 Research Challenges in Database Schema Evolution

Nowadays, information systems are continuously evolving environments, where design
constructs are added removed or updated very often. Given its fundamental role, the
evolution of the schema of a database system has a very strong impact on the applications
accessing the data; thus, support for graceful evolution is of paramount importance. We
mention here two experience examples to demonstrate the extent to which schema evolution
is involved in the lifecycle of an information system. In the report described in [Sjob93], a
quantification of the database schema evolution problem in large long-lived application

13

systems is presented. Over a period of 18 months, which included both the development and
the operational phase of the examined system, they recorded 140% increase in the number of
relations and over 200% increase in the number of attributes, as well as several evolution
changes in all existing relations of system. Additionally, in [CMTZ08] the authors analyze
the statistics collected for schema changes occurred in the context of a web information
system, namely the widely known digital encyclopaedia Wikipedia, during the period of the
last 4.5 years. The plethora of alterations includes a 100% increase in the number of tables
and a 142% increase in the number of attributes. Furthermore, a 41.5% and 25.1% of the
attributes of the original database were removed and renamed from the database schema,
respectively. The major reasons for these alterations were (a) the improvement of
performance, which in many cases induces partitioning of existing tables, creation of
materialized views, etc., (b) the addition of new features which induces the enrichment of the
data model with new entities, and (c) the growing need for preservation of database content
history. All these changes have a tremendous impact on surrounding applications and
specifically on queries (embedded in software modules), views, database procedures and
processes that rely on a specific database schema.

Database schema evolution is a more complicated issue, which is related to every phase
of the development of an Information System. According to [Rodd95], database schema
evolution is accommodated when a database system facilitates the modification of the
database schema without loss of existing data. Several reasons during the development or
operational phase of database system can trigger the modification of a populated database
schema, such as schema changes accompanying changes of requirements, schema
restructuring (i.e. normalization, de-normalization) due to performance reasons, redefinition
of views, migration from a legacy system towards novel platforms, etc. Almost all current
RDBMS support SQL capabilities (i.e., Data definition language – DDL extensions) for
creating and altering database objects and, in that sense, permit evolution operations on the
database schema.

However, apart from the core database schema, database centric environments
comprise a plethora of views and queries embedded in procedures, software modules,
complex workflows, etc. that are also affected by evolution operations. Unfortunately, no
support is provided for analyzing the impact and furthermore adjusting semantic and
syntactical inconsistencies emerging on these parts, as results of such operations. Their
reaction to evolution is still handled manually by administrators and developers. Although
research has extensively dealt with the problem of database schema evolution investigating
mainly the adaptation of internal database objects to schema changes, problems persist with
existing queries and views, mainly due to the fact that in most cases, the proper attention is
not given to their role as integral parts of the environment.

In the above context, we consider the following research challenges which are
addressed in this dissertation.

14

1. Principled description of the architecture of a database-centric information system

In [BeLP00], the authors introduced the idea of model management as a first-class
citizen of database research. Till then, metadata management had received significant
attention from the research community, but with no major practical results in industrial
applications. The main goal we need to pursue is to discover a commonly agreed formalism
to express the internals of a database-centric system, on the grounds of a well-founded
theory. The main questions that arise in this context are:

• Can we derive a model of the structural properties and dynamics of database-centric
systems?

• How can we trace the full range of interdependencies in the components of a complex
database-centric system at both a detailed and abstract level?

• Can we provide a formal background for the foundation of metrics and the evaluation
of the quality of the design of the overall system?

2. Principled response to evolutionary events

Mostly all the work of the research community on database evolution has focused on
conceptual models and object-oriented databases [Rodd00], without any treatment of the
significantly more difficult problem of managing a regular relational database which is
surrounded by a large number of applications. The main problem that we have to deal with
is: Given a set of user constraints on the structure, content and future availability of a certain
part of data stored in a database, how do we handle events that evolve the above properties
in order to satisfy all user constraints? This research topic raises the following questions:

• Given a certain event, how do we forecast its impact as this is propagated throughout
the whole database environment, via module interdependencies?

• How easily can we regulate the propagation of the effect of a potential change taking
into account application constraints and user preferences?

• How do we handle conflicts? E.g., what happens if the administrator needs to delete a
certain attribute, while a user has explicitly banned any such action?

• How do we treat evolution (and addition of information in particular), in the absence
of user regulators?

• How can we perform all the above with minimal effort for existing systems? How can
we efficiently define evolution semantics on existing database objects (since the data
entry for metadata is always the biggest problem in metadata management)?

Viewed from another point of view that concerns the automation of the reaction to
changes, the question that arises concerns our ability to derive (semi) automatic mechanisms

15

for the self-monitoring, impact prediction, auto-regulation and self-repairing of complex
information systems.

3. Quality metrics for database schema evolution

Given a model that describes the structure and the potential for evolution of a database-
centric environment, how good is a certain schema that a designer produces? Is design A
better than design B? Evaluating the design of a database, given a prediction for its evolution
in the future is a very difficult research problem. Specifically, the following research
challenges arise:

• Can we measure and quantify in a principled way the vulnerability of certain parts of
a database system and find these constructs that are most sensitive to evolution?

• What are the “right” measures for evaluating the quality of the design of a database
centric environment, with respect its evolution capabilities?

4. Study of the fundamental laws of evolution

A fundamental problem in the area of database schema evolution is the lack of
empirical studies. To our knowledge except for the two studies [Sjob93], [CMTZ08]
described above, no other real world cases have been performed for monitoring the evolution
lifecycle of a database schema in a principled way. To our perception, the following research
questions present an interesting research agenda on this topic:

• Can we collect test cases and observe them in order to come up with the fundamental
laws that govern database evolution?

• Can we establish an experimental protocol for monitoring existing real-world
databases and discover the way they evolve?

• Can we collect such results and make them available to the research community
(without unveiling crucial information that the database owners would like to keep
hidden)?

1.2 Contributions of this Thesis

The research challenges described in the previous section were the basic guidelines for the
issues proposed in this thesis. The basic contribution of this thesis is a framework for
analyzing and regulating the impact of database schema evolution in a database centric
environment (Figure 1.2).

We first provide a representation technique that maps all essential constructs of a
database centric environment to graphs. The basis of our framework is a graph model, called
evolution graph, which models in a coherent and uniform way internal structural elements of
a database system such relations, views, triggers, etc. as well as external components

16

accessing a database system, such as queries extracted from procedures, object modules and
their significant properties (e.g., attributes, conditions). Apart from the simple task of
capturing the semantics of a database system, the graph model allows us to predict the impact
of a change over the system and the application of graph-theoretic metrics.

We furthermore study techniques and algorithms for handling changes occurring in the
database schema, in such way that the human interaction is minimized. Thus, we provide a
mechanism for enriching the evolution graph with evolution semantics such as evolution
events and policies regulating its behavior in the presence of hypothetical changes occurring
in the database schema. Rules that dictate the proper actions, when additions, deletions or
modifications are performed to relations, attributes and conditions (all treated as first-class
citizens of the model) are provided. Specifically, assuming that a graph construct is annotated
with a policy for a particular event (e.g., a relation node is tuned to deny deletions of its
attributes), the proposed framework (a) performs the identification of the affected part of the
graph and, (b) if the policy is appropriate, proposes the readjustment of the graph to fit to the
new semantics imposed by the change. Additionally, we complement the proposed
framework with a set of SQL extensions that allows the definition of evolution metadata with
a feasible and efficient way.

Figure 1.2: Framework for the management of database schema evolution

To this end, we employ graph theoretic and information theoretic properties of the
evolution graph and establish a suitable set of measurements for evaluating the design quality
of a database centric environment with respect to its ability to sustain evolution operations.
All of the above concepts are implemented in a powerful and user friendly tool, called

17

HECATAEUS, which is used for the application of the framework on real world evolution
scenarios.

Our last contribution concerns the study of evolution processes that occurred on a real
system, specifically a datawarehouse environment, during a long term period of its lifecycle.
We have collected and have categorized the kinds of database schema changes occurred and
the impact that these changes had on the database itself as well as on surrounding
applications, e.g., ETL processes. We have extensively experimented with real as well as
artificial evolution scenarios.

Therefore, our contributions can be outlined as following:

• a graph-based model for an extended system catalog, capturing relations, views,
constraints and queries in a cohesive framework;

• a set of rules for the management of database evolution in a set of commonly
encountered circumstances;

• an annotation of the essential elements of a database centric environment in order to
regulate their behavior a priori, for the event of future, potential modifications of the
database constructs they depend on;

• a feasible and powerful SQL extensions that enable the implementation of our ap-
proach for evolution management;

• a set of metrics for the evaluation of database evolution and design. They act as
predictors for the vulnerability of a software module of a database centric
environment (either internal, e.g., a relation, or external, e.g., a query) to future
changes to the structure of the environment. Secondly, they facilitate the assessment
of the quality of alternative designs of the environment with a particular viewpoint
on the evolution of its schema.

• a tool, named HECATAEUS, for automating the analysis of a database system and
representing and visualizing its characteristics to the aforementioned graph-based
model;

• the application and testing of the proposed framework over a real-world case study
occurred in the Greek public sector.

1.3 Roadmap of the Thesis

This thesis is organized as following:

In Chapter 2, we introduce a graph modeling technique for representing database
centric environment as graphs. We first present related approaches to visualization and
representation techniques for database systems and classify our technique with regard to

18

these approaches. We then introduce the main concepts of the proposed modeling technique,
the kind of nodes and edges comprising the Evolution Graph and describe in details the rules
for the construction of the graph for the various components included in our model. We
furthermore propose operations applied on the graph, such as modularization and abstraction.

In Chapter 3, we propose the framework for analyzing and regulating database schema
evolution. The proposed framework enriches the evolution graph with evolution semantics,
such as evolution events and policies that regulate the propagation of schema evolution
towards the database-centric environment. We first collect and categorize the various
approaches and techniques related to the research area of database evolution. We employ a
motivating example that establishes the challenges and problems that we deal with in this
chapter. Then, the main concepts of our framework and especially the algorithm Propagate
Changes, which handles the reaction of the system to evolution changes, are presented.
Lastly, we experimentally assess the proposed framework over a real-case database-centric
environment.

In Chapter 4, we propose a set of feasible language extensions to SQL that prescribe
the reaction of database objects to evolution changes. Specifically, the proposed extensions
enrich the SQL definition of database objects and queries with evolution semantics, i.e.,
policies, which dictate their reaction to evolution events. The extensions involve the
definition of default policies for the entire database environment, policies regarding top level
nodes, such as relations, view and queries and lastly policies for fine grain constructs, such as
attributes, constraints and conditions. Moreover, in this chapter we collect and review other
approaches related to language extensions for schema evolution and we also evaluate the
feasibility of the proposed technique, by applying the extension on a real database centric
environment.

In Chapter 5, we introduce a set of metrics for evaluating the evolution properties of a
database-centric environment such as the vulnerability of its design structures to hypothetical
evolution events. Based on graph theoretic properties of the evolution graph, we provide
metrics like the degrees (in, out, and total) of a node, the transitive degrees of a node
(standing for the extent to which other nodes transitively depend upon it), and the degrees of
a summarized variant of a module (e.g., a view) that abstract the internal semantics of the
module and focus on its coupling to the rest of the environment. We then present an event
aware set of metrics that takes into account the distribution of potential events on the graph.
To this end, we include the special role of policies annotating the graph into a policy-aware
set of metrics. We lastly provide an information theoretic definition of a module’s entropy
that simulates the extent to which the vulnerability of a node is surprising. Finally, we
extensively experiment with various configurations in the setup of a reference database
environment and assess both the effectiveness of the proposed metrics (i.e., how well do they
actually predict the impact of evolution events to a design construct) and how different
design alternatives for the same schema behave with respect to schema evolution.

19

In Chapter 6, we present Hecataeus, an impact prediction software tool for database
schema evolution. Hecataeus’ main features include the visualization and editing of the
evolution graph from SQL source code and the annotation of the graph with polices and
events. Given a hypothetical evolution event in the system, Hecataeus detects and highlights
all affected graph constructs and propose their adaptations to the new semantics. Thus,
Hecataeus offers the user the ability to create and perform scenarios which assess the impact
of evolution process, before these scenarios are applied to a production environment.
Furthermore, in this chapter, we present the basic features of Hecataeus via the use case of an
evolution scenario.

Lastly, in Chapter 7, we summarize the conclusions of this dissertation and present
potential application areas of the proposed framework. We then provide insights for issues
opened by this thesis and challenges for further research efforts related to the policy-
regulated schema evolution.

21

2. GRAPH REPRESENTATION
OF DATABASE-CENTRIC

ENVIRONMENTS

Database–centric environments such as Information Systems (IS) can be described
technically as a set of interrelated components that collect (retrieve), process, store, and
distribute information to support decision making, coordination, control, analysis and
visualization in an organization.

Current approaches to such environments involve the coordination of various
components such as business processes, human roles, network infrastructure, hardware and
software infrastructure, database etc. Database systems are the core of every IS as these are
the parts where information is collected, stored and processed to the rest of the system.
Therefore, a good database design is always crucial to the design of the whole IS, affecting
the operation as well as the maintenance of the system. Traditional database modeling
techniques, like ER diagrams, UML, etc., have been widely used in modeling database
entities and relationships between them. Most of them, however, restrict themselves to model
the database components in a more or less static way. That is that they restrict themselves to
model explicitly the main database parts (entities, relationships) of an IS, ignoring
components that interface with the database, such as queries, stored procedures, applications,
etc. An ER diagram, for example, can describe in a precise way how data and furthermore
information is represented, stored and treated within a database, but cannot tell what is
happening “around” the database and what are the dependencies between the components
that interface with the database.

The integration of components that interface with the database, such as queries and
views, in a uniform representation is valuable, since it can be used for several purposes,
including:

22

(a) the forecasting of the impact of database schema changes in the overall system
(e.g., what happens if we delete a certain attribute of a table?),

(b) the visualization of the workload of the system (e.g., which queries pose the heaviest
load on the system?) and

(c) the introduction of metrics and the evaluation of the quality of the design of the
overall system.

Traditionally, dependency analysis has been performed with so called data dependency
graphs, which use nodes to represent statements of the program and edges to represent
dependencies between statements. Data dependency graphs normally represent every
statement of the program with all of its dependencies. In this chapter, we introduce a graph
modeling technique that uniformly covers relational tables, views, database constraints and
SQL queries as first class citizens. We employ a graph theoretic approach and we map the
aforementioned constructs to a graph, that we call Evolution Graph. First, we model the
whole environment of the database system as a graph. We do not restrict the modeling to
relations along with their interrelationships and any available views, but we extend the
modeling to incorporate all the elements of an information system. To this end, we add
queries as integral parts of the configuration of a database environment. In practice, a typical
database is surrounded by forms, reports, web pages, stored procedures, and triggers
deployed on the database server. Each of these software artifacts encompasses a list of
queries via which it communicates with the database and exchanges queries and data with it.
Therefore, queries constitute a convenient abstraction that captures the “skeleton” of all these
applications with respect to their interrelationship to the database. We incorporate the graph
with specific semantics, i.e., certain types for nodes and edges which are mapped to elements
of the database centric environment.

Chapter Outline. In section 2.1, we provide related works regarding graph and visual
representation of database systems. We present in section 2.2 the main concepts of the
proposed modeling technique, the kind of nodes and edges comprising the Evolution Graph.
In sections 2.3 - 2.8, we describe in details the rules for the construction of the graph for the
various components included in our model. In sections 2.9, 2.10 we present further
operations applied on the graph, such as modularization and abstraction. Lastly, in section
2.11, we summarize the proposed modeling technique.

2.1 Visualization and Representation Techniques for Database Systems

So far, research has provided various visualization techniques and languages for database
schemas and queries [BaOO02], [JaTh03], [MuGP98], [HFLP89], [PaKi95], [Meln04].
Visualization is a very popular technique that helps designers/administrators to better
understand and analyze the schema of a database and the queries interacting with it. We
classify database schema and query representations into two categories:

23

• Graphical representations, which are used as an alternative visual way of writing and
in general formulating a query, aiming at increasing the expressiveness of a query,
the user-friendliness as well as the human-computer interaction capabilities of the
DBMS.

• Representations that are used as a modeling technique for solving problems related to
query rewriting and optimization, database design, schema mapping and integration.

In [CCLB97], a detailed survey on visual query languages and systems is provided.
Visual query systems (VQSs) are query systems for databases that use visual representations
to depict the domain of interest and express related requests. VQSs can be seen as an
evolution of query languages adopted into database management systems; they are designed
to improve the effectiveness of the human–computer communication. The main goal of
visual query systems is to provide the ability to users to formulate graphically a query rather
than to offer an alternative modeling technique for database schemas (e.g. ER, UML, etc.).
Most of the visual query systems can be categorized according to their visual representation
into form-based, diagram-based, icon-based or hybrid (combination of the last three
representations). Through a visual query system, the user forms a query in a visual-fashion
way, the system converts the visual query to the native DBMS query language and posts the
query to the underlying DBMS.

GQL [PaKi95], [MuGP98], Visual-SQL [JaTh03] and VISUAL [BaOO02] are such
visual query languages. GQL is a declarative graphical query language based on the
functional data model, which combines graph-based visualization (nodes and edges) with
other visual constructs-shapes. The authors propose a user interface for formulating queries
as well as a formal query syntax accompanying GQL. In [BaOO02], the authors propose
VISUAL, a graphical icon-based query language for object-oriented scientific databases
where the data has spatial properties, includes complex objects, and queries are of
exploratory in nature. Lastly, Visual-SQL is a graphical query technique that follows the
paradigm of entity-relationship representation, representing queries and tables as entities.

In [HFLP89], they introduce the Query Graph Model (QGM), a query graph–based
representation technique used for query rewriting and optimization. The goal of QGM is to
provide a more powerful and conceptually more manageable representation of queries in
order to reduce the complexity of query compilation and optimization. QGM maps queries
and tables into graphs, comprising vertices, edges, and boxes. QGM is incorporated as a
query abstraction mechanism into a query optimization system, called Starbust.

In [Meln04], the author proposes a graph based representation of database schemas and
subsumes it into a general framework for model management. The author uses directed
labeled graphs to represent database models including relational as well as XML models. The
main constructs of the introduced representation comprise nodes for relations, queries,
attributes, literals and data types and edges for the various relationships between them. This

24

representation is used to enable the definition of mapping operations between heterogeneous
schemas. Mapping operations between two models are translated into mapping and
transforming operations in their respective model graphs.

Lastly in [SVTS05], the authors propose a graph-based modeling technique for the
representation of ETL activities and processes. They employ a uniform, graph-modeling
framework for both the modeling of the internal structure of an ETL activity and for the
modeling of the ETL scenario at large, which enables the treatment of the ETL environment
from different viewpoints.

Our proposal aims to provide a principled method for expressing the core skeleton
structure of the internals of database-centric environments, based on a graph-theoretic
approach, in order to facilitate the design and maintenance of database-centric environments.
In the context of database schema evolution, evolution graph provides the necessary
semantics and properties for the establishment of the framework that is introduced in this
thesis. Thus, we classify our approach primarily as a representation rather than a
visualization technique for database systems and queries.

2.2 Modeling Database-centric Environments as Graphs

Our model maps to graphs relational database schemas as well as views and queries
expressed in SQL syntax. Moreover, we distinguish the following essential components,
which are included in our model: relations, conditions (covering database constraints and
query conditions), queries and views. The proposed modeling technique represents all the
aforementioned database parts as a directed graph. The nodes of the graph represent the
entities of our model, where the edges represent the relationships among these entities. The
database part of a database-centric environment is mainly composed by a large number of
relations and even a larger number of views, queries, stored procedures, etc, which interrelate
in a complex way. Graphs are employed as a modeling technique because they can address to
the large size and complexity that characterize a database-centric environment. The following
definition presents the main concepts of the proposed graph representation.

Definition 2.1 – Evolution Graph: Given a database-centric system S comprising a
finite set of relations R={R1, ...,Rn}, a set of views V={V 1, ...,Vm} defined over R and a set of

queries Q={Q1, ..., Qk} defined over R∪∪∪∪V, then the Evolution Graph of S is a directed

acyclic graph G=(V,E), E⊆V×V such that:

FCNOBGBVSQCARV ∪∪∪∪∪∪∪∪⊆ ,

OBGBHWFMOS EEEEEEEEE ∪∪∪∪∪∪∪⊆ 

The set of nodes V comprises the following types of nodes:

• Relation Nodes (R) : set of nodes representing relations

25

• Query Nodes (Q) : set of nodes representing queries

• View Nodes (VS) : set of nodes representing views

• Attribute Nodes (A) : set of nodes representing attributes of relations, views or queries

• Condition Nodes (C) : set of nodes representing database constraints or binary
operators that participate in conditions

• Group By Nodes (GB) : set of nodes representing group by operations

• Order By Nodes (OB) : set of nodes representing order by operations

• Parameter Nodes (P) : set of nodes representing parameter or constant values

• Function Nodes (F) : set of nodes representing functions

The set E comprises the following types of directed edges:

• Schema edges (ES) : Represent relationships between a relation, a view or a query and
its schema. The schema of a view / query is the set of attributes that are contained in
its SELECT clause.

• Mapping edges (EM) : Represent schema mappings between attributes or expressions.

• Where edges (EW) : Represent the relationship of a view or query with its WHERE
clause.

• Operand edges (EO) : Represent participation of operands in a unary or a binary
condition.

• From edges (EF) : Represent the relationship between a view or a query and the
relations contained in the FROM clause.

• Group By edges (EGB) : Represent the participation of an attribute or an expression in
the GROUP BY clause of a query.

• Having edges (EH) : Represent the relationship of a view or query with its HAVING

clause.

• Order By edges (EOB) : Represent the participation of an attribute or an expression in
the ORDER BY clause of a query.

An overall picture of the types of nodes and edges comprising the evolution graph is
shown in Table 2.1.

26

Nodes Edges
Relations R Schema relationships ES
Attributes A Operand relationships EO
Conditions C Map-select relationships EM
Queries Q From relationships EF
Views VS Where relationships EW
Group-By GB Having relationships EH
Order-By OB Group-By relationships EGB
Parameters P Order-By relationships EOB
Function F

Table 2.1: Elements and Notations of Evolution Graph

In the following sections, we describe in details the guidelines for mapping the main
components of a database system, such as relations, conditions, views and queries, to the
semantics of the Evolution Graph. For each of the aforementioned essential database
components, a separate subgraph is constructed, representing the schema of the component.
The overall evolution graph is constructed by the union of all the constituent subgraphs of the
components.

2.3 Relations

Each relation R(A1,A2,…,An) in the database schema, either a table or a file (it can be
considered as an external table), is represented as a directed graph, which comprises: (a) a
relation node, R∈R, representing the relation; (b) n attribute nodes, A i∈A, i=1..n, one for

each of the attributes; and (c) n schema relationships, S∈ES, directing from the relation node
towards the attribute nodes, indicating that the attribute belongs to the relation. Figure 2.1
shows a graphical representation of the relation graph.

Figure 2.1: Relation Graph

2.4 Database Constraints / Conditions

Conditions, in our context, refer both to selection/join conditions, of queries and views as
well as to constraints of the database schema.

27

2.4.1 Conditions

We consider three classes of atomic conditions that are composed through the appropriate

usage of an operator op belonging to the set of classic binary operators, Op (e.g., <, >, =, ≤,

≥, !=, IN, etc.):

(a) A op constant;

(b) A op A’;

(c) A op Q;

 (d) exists Q.

where A, A’ are attributes of the underlying relations and Q is a subquery.

For each of the above atomic conditions a separate node, op∈C, is used for the
representation of each operator. Graphically, the node is named with the respective operator
and it is connected to the operand nodes of the conjunct clause through the respective
operand relationships, EO. These edges are indexed according to the precedence of each
operand (i.e., op1 for the left-side operand and op2 for the right-side) in the condition clause.
Composite conditions are easily constructed by tagging the operator node with the
appropriate Boolean operator (e.g., AND or OR) and connecting the respective edges to the
corresponding conditions composing the composite condition.

2.4.2 Database Constraints

Well-known constraints of database relations – i.e., primary/foreign key, unique, not null,
and check constraints – are easily captured by this modeling technique. For that reason we
make the assumptions that foreign keys are subset relations of the source and the target
attribute, check constraints are simple value-based conditions. Primary keys, which are
unique-value constraints, are explicitly represented through a dedicated node tagged by their
names and a single operand node.

We distinguish the following five types of constraints:

• Primary Key Constraints

• Foreign Key Constraints

• Unique Key Constraints

• Not Null Constraints

• Check Constraints

In the rest of this section, we explain how constraints are mapped to graph constructs of
our model.

28

2.4.2.1 Primary Key Constraints

Let R(A1,…, An) be a relation with a primary key constraint on A1, ..., Ak attributes. The

graph representation of the primary key constraint involves (a) a new condition node PK∈C
corresponding to the primary key constraint, (b) k edges directing from the {A1, ..., Ak}
nodes towards the primary key node, all tagged with op∈EO indicating operand relationship.
In Figure 2.2, the graphical representation of the specified primary key constraint is shown.

Figure 2.2: Primary Key Constraint Graph

The graph representation of a primary key constraint is an extension of the relation
graph joining the attributes, involved in the constraint, with the node of the PK constraint.
For the graphical representation of the primary key constraint, a separate square-shaped node
is used tagged with the name of the PK constraint.

2.4.2.2 Foreign Key Constraint

Let R(A1, ..., An), S(B1, ..., Bm,) be two relations. A foreign key (FK) constraint involves a set
of attributes, say {A1, ...,Ak} k≤n, belonging to source table R, which references a set of
attributes, say {B1, ...,Bk} k≤m, belonging to table S. The graph representation of the FK

constraint involves (a) a new condition node FK∈C representing the foreign key constraint,
(b) k edges directing from the source attributes {A1, ...,Ak} towards the FK node and (c) k
edges directing from the FK node towards the referenced attributes {B1, ...,Bk}. All edges are

labeled with an op∈EO indicating operand relationships. The direction of the edges
discriminates between the source and the referenced attribute.

Graphically, we denote the FK node in a square-shaped fashion, tagged with the name of the
FK constraint.

29

Figure 2.3: Foreign Key Constraint Graph

Figure 2.3 shows the graphical example of a foreign key constraint between R.A1 as
source attribute and S.B1 as referenced attribute.

Figure 2.4 shows the complete graph of an example with two relations R(A1, A2) and
S(B1,…,Bn). Relation R has a primary key constraint on A1 while A2 has a foreign key
constraint on S.B1. In addition, relation S has a primary key constraint on B1.

op op

op
op

S S

A1 A2

S S

...B1 Bn

R.PK R.PK

R.A2.FK

R S

Figure 2.4: Combining Primary Key and Foreign Key Constraints

2.4.2.3 Unique Key Constraints

Let R(A1, A2, …, An) be a relation with a unique key constraint on a set of attributes, say
{A 1, ...,Ak} k≤n. Then, the proposed representation for this unique constraint is an extension

of the relation graph involving (a) a new condition node UC∈C representing the unique key
constraint, (b) k edges directing from attributes {A1, ...,Ak} towards the UC node. All edges

are labeled with an op∈EO indicating operand relationships.

In Figure 2.5, we present a graphical example of a relation R(A1, A2, …, An) with two unique
key constraints; a composite unique key constraint, namely R.UC1, comprising two attributes
A1, A2, and a simple unique key constraint, namely R.UC2, involving only attribute An.

30

Figure 2.5: Unique Constraint Graph

Similarly to previous constraints, for the graphical representation of the unique key
constraint, a separate square-shaped node is used, tagged with the name of the constraint.

2.4.2.4 NOT NULL Constraints

Let R(A1, A2, …, An) be a relation with a not null constraint on Ai,. The proposed
representation for this not null constraint is an extension of the relation graph involving (a) a

new condition node NNC∈C representing the not null constraint, (b) an edge directing from

the attribute Ai towards the NNC node, labeled with op∈EO indicating operand relationship.

In Figure 2.6, we present a graphical example of a relation R(A1, A2, …, An) with a not null
constraints on A1, named as R.A1.NNC.

Figure 2.6: Not Null Constraint Graph

For the graphical representation of the not null constraint, a separate square-shaped
node is used, which labeled with the name of the not null constraint.

2.4.2.5 Check Constraints

Let R(A1, A2, …, An) be a relation with a check constraint on a set of attributes, say {A1,
...,Ak} k≤n. Then, the graph representation of the check constraint is an extension of the
relation graph involving (a) a new condition node CC∈C representing the check constraint,
(b) k edges directing from attributes {A1, ...,Ak} towards the CC node. All edges are labeled
with op∈EO indicating operand relationships

31

In Figure 2.7, we present a graphical example of a relation R(A1, A2, …, Am) with a check
constraint, named as R.CC1, involving attribute A1.

Figure 2.7: Check Constraint Graph

For the graphical representation of the unique key constraint, a separate square-shaped
node is used, labeled with the name of the constraint.

2.5 Queries

SQL queries are essential components of our graph model. For each query Q in the system, a
separate graph is constructed and connected with the graphs of the relations, which are
referenced in the query syntax. The types of queries that are captured by our modeling and
represented to graphs fall into the following four classes:

• Simple Select-Project-Join (SPJ) flat queries.

• Select-Project-Group (SPG) queries, i.e., queries with aggregation.

• Nested queries.

• Self-Join queries, i.e. queries with join operations on the same relation.

For each of the four classes, we present the construction of the graph, separately.

2.5.1 Select-Project-Join (SPJ) flat queries

The first class of queries involves Select-Project-Join (SPJ) queries, i.e. queries with simple
join conditions. Let Q be the generic type of a flat SPJ query on n relations (R1, R2, …, Rn)
with the following query syntax:

Q: SELECT R 1.A 11 as A 1, R 2.A 21 as A 2, …, R n.A n1 as A n

FROM R1, R 2, …, R n

WHERE cond1(R 1.A 11, constant) AND cond s(R n.A nk , R 1.A 1r)

For the representation of the above query to graph, the following considerations are
made:

1. A query owns a unique identifier (i.e., name) and a schema. The schema of the
query comprises all attributes either with their original or alias names, appearing in

32

the SELECT clause. These attributes depend on attributes of the underlying
relations. In the above example, the name of the query is Q and its schema is {A1,
…, An}.

2. A query depends on all entities (e.g., relations, views, inline views, etc.), which are
included in the FROM clause. The FROM part of a query can be regarded as the
relationship between the query and the relations involved in this query. In the above
example, these entities are {R1, R2, …, Rn}.

3. A query optionally owns a set of selection/join conditions, which are expressed in
the WHERE clause. The query depends on the attributes of the underlying relations
that participate in the conditions. In the above example, the conditions of the query
are {cond1(R1.A11, constant), conds(Rn.Ank, R1.A1r)}.

 The graph representation of the above SPJ query involves (a) a query node Q∈Q

representing the query; (b) n attribute nodes, A i∈A, i=1..n, one for each of the schema

attributes of Q; and (c) n schema relationships, S∈ES, directing from the query node towards
the attribute nodes. The edges, connecting node Q with all its attribute nodes, indicate
schema relationships and therefore are labeled with an S in the same way that a relation node
is connected with its attribute nodes.

Moreover, in order to represent the relationship between the query graph and the
underlying relations, we make the convention that each query is decomposed into three main
parts, the SELECT part, the FROM part and the WHERE part. Each of these parts is
eventually mapped to a subgraph.

In that way the graph representation of the above query is the composition of the three
subgraphs, each of which corresponds to each part of the query – SELECT, FROM,
WHERE. In order to represent these parts, the following notation is introduced:

• The SELECT part of the query maps the respective attributes of the involved relations
to the attributes of the query schema through map-select relationships, EM, directing
from the query attributes towards the relation attributes. These edges actually map
the schema of the query to that of the underlying relations. In Figure 2.8, the
graphical representation for the SELECT subgraph of the generic case of SPJ queries
is depicted.

33

..
.

..
.

Figure 2.8: Select Part of the Query

• The relations included in the FROM part are combined with the query node through
from relationships, EF, directing from the query node towards the relation nodes. In
Figure 2.9, the graphical representation for the FROM subgraph of the generic case
of SPJ queries is shown.

• Lastly, the WHERE clause of a query involves composite conditions. Thus, we
introduce a direct edge, namely where relationship, Ew, starting from the query node
towards the condition node corresponding to the condition of the highest level. In
Figure 2.10, the graphical representation for the WHERE subgraph of the generic
case of SPJ queries is shown.

34

..
.

Figure 2.9: From Part of the Query

Figure 2.10: Where Part of the Query

35

The complete graph for the generic case of a SPJ flat query is constructed by the union
of the respective SELECT, FROM, WHERE subgraphs. The complete graph is shown in
Figure 2.11.

..
.

Figure 2.11: Graph for SPJ query

2.5.2 Select-Project-Group (SPG) flat queries

The second class of queries involves SPG queries, i.e. queries with aggregations. Let Q be
the simple case of a flat SPG query on the relation R, with syntax:

Q: SELECT R.A 1 AS A 1, COUNT(R.*) AS A 2
 FROM R

GROUP BY R.A1;

For the representation of aggregate queries, we employ two special purpose nodes: (a)

a new node denoted as GB∈GB, to capture the set of attributes acting as the aggregators; and

(b) one node per aggregate function F∈F labeled with the name of the employed aggregate
function; e.g., COUNT, SUM, MIN. For the aggregators, we use edges directing from the
query node towards the GB node that are labeled <group-by>, indicating group-by
relationships, EGB. Then, the GB node is connected with each of the aggregators through an
edge tagged also as <group-by>, directing from the GB node towards the respective

36

attributes. These edges are additionally tagged according to the order of the aggregators; we
use an identifier i to represent the i-th aggregator. Moreover, for every aggregated attribute in
the query schema, there exists an edge directing from this attribute towards the aggregate
function node as well as an edge from the function node towards the respective relation
attribute. Both edges are labeled <map-select> and belong to EM , as these relationships
indicate the mapping of the query attribute to the corresponding relation attribute through the
aggregate function node.

Additionally, for the HAVING clause of a query, we introduce a direct edge, namely
having relationship, EH, starting from the query node towards the condition node
corresponding to the condition of the highest level of the HAVING clause, similarly to the
representation of the WHERE clause of the query.

The representation of the ORDER BY clause of a query is performed similarly to the
representation of the GROUP BY clause. We employ a new node OB∈OB for the
representation of the ORDER BY clause. A directed edge <order-by>, belonging to EOB,
directs from the query node towards the OB node and the latter is connected via indexed
<order-by> edges with all attributes of the relations that constitute the order by clause.

The graphical representation of the GROUP BY part of the above query is shown in
Figure 2.12. For the GROUP BY representation as well as for the aggregate function nodes,
separate square-shaped nodes are used.

37

Figure 2.12: Graph for Group By Query

2.5.3 Nested queries

The third class of queries involves the nested queries, i.e. queries involving a condition with
subquery in the WHERE clause.

Let Q be the nested query

 Q: SELECT R 1.A 1 as A 1
 FROM R 1

 WHERE R1.A 2 IN
 Q’ : (SELECT R 2.B 1 as B 1

 FROM R 2)

In order to capture the set of nested queries, we assume that modeling a nested query is
considered as a specialization of the WHERE part of a simple SPJ query, as described above.
In the special case of a nested query, the type of condition involved in the WHERE clause is
A op Q, where A is an attribute of the underlying relation, Q is the nested query and op is a
binary operator, such as IN, etc. Therefore, we extend the WHERE subgraph of the outer
query by (a) constructing the respective graph for the subquery, (b) employing a separate
operator node for the respective nesting operator (e.g., IN operator), and (c) employing two
operand edges directing from the operator node towards the two operand nodes (the attribute
of the outer query and the respective attribute of the inner query) in the same way that
conditions are represented in simple SPJ queries

The graphical representation of the above query is shown in Figure 2.13.

38

Figure 2.13: Nested Query

2.5.4 Self-Join queries

The fourth class of queries involves the self - join queries, i.e. queries having a join operation
on the same relation, using an alias name for the relation.

Let Q be the self-join query:

 Q: SELECT R 1.A 1 AS A 1
 FROM R AS R 1, R AS R 2
 WHERE R 1.A 2=R2.A 1

For capturing the set of self-join queries, we stress that each reference via an alias to a
relation in the FROM clause of the query is semantically equivalent with an inline view
projecting all attributes of the referenced relation (i.e., SELECT *) and named with the
respective alias. That is:

 Q: SELECT R 1.A 1 AS A 1
 FROM (SELECT * FROM R) AS R 1, (SELECT * FROM R) AS R 2
 WHERE R 1.A 2=R2.A 1

 The graphs of the views are constructed according to their definition in the same way
query graphs are constructed. The graph of the self-join query is, then, connected with the
graphs of the corresponding views. Hence, the join operation is represented between the
query node and the attributes of the equivalent views.

The graphical representation of the above self-join query is shown in Figure 2.14. For
graphical simplicity reasons, we have omitted the <from> edges connecting the query node to
the view nodes.

39

m-s

m-s

m-s

m-s

m-s

where

S S

A1 A2
S

Q

A1

op1

op2

from

from

S S

A1 A2

S S

A1 A2

=

R1

R2

R

Figure 2.14: Graph for Self-Join Query

2.6 Functions

Functions used in queries are integrated in our model through a special purpose node Fi∈F,
denoted with the name of the function. Each function has an input parameter list comprising
attributes, constants, expressions, and nested functions, and one (or more) output
parameter(s). The function node is connected with each input parameter graph construct,
nodes for attributes and constants or sub-graph for expressions and nested functions, through
an operand relationship directing from the function node towards the parameter graph
construct. This edge is additionally tagged with an appropriate identifier i that represents the
position of the parameter in the input parameter list. An output parameter node is connected
with the function node through a directed edge E∈O∪EM∪EG∪EO from the output
parameter towards the function node. This edge is tagged based on the context, in which the
function participates. For instance, a map-select relationship is used when the function
participates in the SELECT clause, and an operand relationship for the case of the WHERE
clause.

2.7 Views

Views are integrated in the proposed modeling technique as separate graphs. In section 2.5.4,
a brief description of the representation of inline views was given, in the context of self join
queries. Views are inherent constructs of the database schema. They constitute both queries
over the database schema as far as their definition is concerned and relations to other queries
as far as their functionality and their extension are concerned. Their dual role is captured and
represented as intermediate graphs between relations and queries.

40

For the construction of the graph of a view, a separate node VS∈VS is introduced,
labeled with the name of the view. The rest of the view’s graph is constructed according to its
definition identically to the construction of a query’s graph; no other properties such as its
extension or storage persistency are considered. In that sense, most kinds of views are
captured by the proposed technique, such as stored (e.g., named views, the definition of
which is stored in the database without persistent storage), inline (e.g., views that are defined
ad hoc in the FROM clause of queries) or materialized views (e.g., named views, the
definition of which is stored in the database having persistent storage).

2.8 DML Statements

As far as modification queries are concerned, there is a straightforward way to incorporate
them in the graph, too. Their behavior with respect to their dependencies with the database
schema can be captured by a graph representation that follows the one of SELECT queries
and captures the intended semantics of the DML statement. In our discussions, we will use
the term graph equivalence to refer to the fact that evolution changes (e.g., attribute addition)
can be handled in the same way we handle the equivalent SELECT query, either these
changes occur in the underlying relation of the INSERT statement or the sources of the
provider subquery Q:

(a)The general syntax of INSERT statements can be expressed as:

INSERT INTO table_name (attribute_set)
VALUES (value_set) | (Q),

where Q is the provider subquery for the values to be inserted.

The graph equivalent SELECT query, which corresponds to the INSERT statement,
comprises a SELECT and a FROM clause, projecting the same attribute set with the attribute
set of the INSERT statement, and a WHERE clause for correlating the attribute set with the
inserted values - value set or the projected attribute set of the subquery, i.e.,:

SELECT (attribute_set) FROM table_name
WHERE (attribute_set) = (value_set)|(Q)

 (b) Similarly, DELETE statements can be treated as SELECT * queries comprising a
WHERE clause. The general syntax of a DELETE statement can be expressed as:

DELETE FROM table_name
WHERE condition_set

Again, the equivalent SELECT query, which corresponds to the above DELETE
statement, comprises a SELECT clause, projecting all the attributes (i.e., *) of the table, as
well as a WHERE clause, containing the same set of conditions with that of the DELETE
statement, i.e.,:

SELECT * FROM table_name

41

WHERE condition_set

(c) Finally, UPDATE statements can be treated as SELECT queries comprising a
WHERE clause. The general syntax of an UPDATE statement can be expressed as:

UPDATE table_name
SET (attribute_set) = (value_set)|(Q)
WHERE condition_set

The equivalent SELECT query, which corresponds to the above UPDATE statement,
comprises a SELECT clause, projecting the attribute set which is included in the SET clause
of the UPDATE statement, as well as a WHERE clause, containing the same set of
conditions with that of the UPDATE statement, i.e.,:

SELECT attribute_set FROM table_name
WHERE condition_set
AND (attribute_set) = (value_set)|(Q)

In that way, the representation of DML statements to graphs is accomplished through
the representation of the equivalent SELECT query.

2.9 Breaking the Graph into Modules

In this section, we extend the semantics of the evolution graph by including the concept of
modules as a logical operation applied on the graph. The need for modularization of the
graph stems from the fact that existing semantics (i.e., types of edges) are not sufficient for
the representation of the relationships between different components of the system (e.g., a
relation and a set of queries), since they do not distinguish part-of and provider relationships.
The modularization of the graph is an operation imposed on the graph that subsumes the
nodes and edges of the graph into logical modules. It allows us to exploit graph-theoretic
properties and introduce algorithms and metrics for the interrelation of the components with
each other. A module in the evolution graph is a logical subset of nodes and edges with the
following definition:

Definition 2.2 - Modules: Given an evolution graph G=(V,E), a module Gm=<Vm,
Em> is a subgraph of G iff Vm⊆V, Em⊆E, Em⊆Vm×Vm and belongs to one of the following
patterns:

• Relation Module: A relation module comprises the relation node, all attributes’ and
constraints’ nodes belonging to the relation as well as the edges connecting these
nodes. That is, Vm⊆R∪A∪C and Em⊆ES∪EO.

• Query Module: A query module comprises the node of the query, nodes for the
attributes, group by clause, order by clause, functions, parameters/constants and
conditions belonging to the query as well as the edges connecting these nodes with
each other.

42

That is, Vm⊆Q∪A∪C∪GB∪OB∪P∪F and Em⊆ES∪EW∪EH∪EGB∪EOB∪EO.

• View Module: Lastly, a view module comprises the node of the view, nodes for the
attributes, group by clause, order by clause, functions, parameters/constants and
conditions belonging to the view as well as the edges connecting these nodes with
each other.

That is, Vm⊆VS∪A∪C∪GB∪OB∪P∪F and Em⊆ES∪EW∪EH∪EGB∪EOB∪EO. 

Modules are disjoint with each other and they are connected through edges concerning
foreign keys, mapping and operand relationships. The set of edges Em, starting from and
ending to nodes belonging to the same module, are called intramodule or part-of edges. The
nodes of each module are connected to the nodes of other modules of the system by incoming
or outgoing edges. Incoming or outgoing edges of a module Gm=<Vm, Em> are called

intermodule or provider edges, mE iff [BrMB96]:

Input(mE)={<v1, v2>⊆ E| v2⊆Vm and v1⊆V-V m}

Output(mE)={ <v1, v2>⊆ E| v1⊆Vm and v2⊆V-V m }

where v1, v2 are nodes of and <v1, v2> is an edge directing from v1 towards v2.

According to definition 2.2, for the set of intermodule edges it stands that:

mE ⊆EF∪EM∪ EGB∪EOB∪EO .

Within a module, we distinguish top-level nodes comprising the query, relation or the
view nodes, and low-level nodes comprising the rest subgraph nodes.

43

M4

M3

M2

M1

op op

op

op

op2

op2

op1

op1

op2

op1where

from

from

from

map-select

map-select

map-select

S

S

S

Q

A1

A3

A2

op

op

op

op

S SS

R

A1 A2 A3

R.PK

S SS

S

B1 B2 B3

S.PK

S SS

K

C1 C2 C3

K.PK

K.C1.FK K.C2.FK

AND
=

=

Figure 2.15: Modularization of the graph

In Figure 2.15, we present the modular graph of a simple database configuration
involving 3 relations, namely R(A1,A2,A3), S(B1,B2,B3), K(C1,C2,C3), with two foreign key
constraints, K.C1�R.A1 and K.C2 �S.B1 and a simple SPJ query Q defined on them.

Q : SELECT R.A 1 AS A 1, R.A 2 AS A 2, S.B 2 AS A 3
 FROM R, S, K

WHERE R.A1 = K.C 1 AND S.B 1=K.C 2

There are 4 modules, one query module, named M4, corresponding to query Q and
three relation modules, named M1, M2, M3, for relations R, S and K, respectively.

2.10 Zooming Out the Graph

Another operation imposed on the graph involves the abstraction of the graph, by eliminating
specific types of nodes and edges. Abstracting the graph into a modular representation at a
coarser level of detail (zoom-out) allows us to eliminate the detailed information and

44

semantics of the complete graph and depict only a high level view of the system, without
however losing the interdependencies between the various modules.

The abstraction of the graph involves the following steps:

• for each query, view or relation module, all low-level nodes and intramodule edges,
Em, are suppressed and only the respective top-level node n∈{R,Q,VS} is retained, ;

• all inter-module edges, mE , between two modules are also suppressed to an edge.

The surviving edge is annotated with a weight corresponding to the number of the
edges that originally connected the two modules. We call this weight the strength of
the edge as it assesses how tightly the involved modules are coupled. In Figure 2.16,
the configuration of Figure 2.15 is presented in zoomed-out level.

Figure 2.16: Abstraction of the graph

2.11 Summary

In this chapter, we have presented a graph modeling technique for the representation of
database-centric environments that covers in coherent way relational tables, views, database
constraints and SQL queries. We have employed a graph theoretic approach and we have
mapped the aforementioned constructs to a graph, that we call Evolution Graph. We have
provided in details the rules for the construction of the graph and operations that are further
applied on it, such as the modularization and the abstraction of the graph. Although the
presented technique focuses on the representation of relational schemas and SQL queries, it
could be easily extended to represent more complex queries (e.g., UNION) or other database
objects, such as stored procedures. Our goal was not to construct a complete representation
technique for database systems but rather a principled method for expressing the core
skeleton structure of the internals of database-centric environments, based on a graph-
theoretic approach, combining both relations as well as structures around the database. Thus,
evolution graph is a representation of the dependencies at the most detailed level of all these
components that allows us to apply algorithms and metrics for the prediction and regulation
of evolution impact.

45

3. FRAMEWORK FOR
REGULATING DATABASE SCHEMA

EVOLUTION

Database and software systems are rarely static environments following initial
implementation. The evolution of the database schema within a database – centric
environment may occur throughout its entire lifecycle. Possible reasons for schema evolution
with respect to the various phases of the lifecycle of a system are:

• Ambiguous or incomplete requirements during the development phase, which induce
a substantial and frequent alteration of the database schema.

• Change of requirements during the productive phase of an information system which
results in the structural evolution of the database to include or exclude the new
semantics.

• Reorganization of the database schema during the productive phase of an IS as a
result of different design solutions that are decided, such as the normalization /
denormalization of schemas, etc.

• Lastly, reorganization of the database schema during the productive phase of an IS as
a result of novel technical solutions that are introduced in the current infrastructure.
Such activities include the migration of an obsolete legacy system towards an
RDBMS, the migration between different DB versions or technologies, etc.

46

Schema evolution changes may affect the software around the database (mainly views
and queries) in two ways:

(a) syntactically, an alteration on the schema of a database object may evoke a com-
pilation or execution failure during the execution of a piece of source code that depends
on the specific object. For example, the deletion of an attribute that is used in a
procedure syntactically invalidates the procedure. In that case, the developer must
revalidate manually the invalid source code by removing all references to the removed
attribute.

(b) semantically, a change may have an effect on the semantics of the software used.
For instance, the modification of a foreign key constraint may affect the join operation
performed on a query.

In the context of the evolution graph, alterations in the database schema are events,
which transform specific parts of the graph (e.g., a relation graph sustaining a change) and
eventually affect other dependent graph constructs (e.g., a view graph depending on the
specific relation). The latter may raise, in turn, new evolution changes, which have impact on
other dependent graph constructs (such as a query graph depending on the specific view).

In this chapter, we introduce a framework for impact analysis and regulation of
database schema evolution. We exploit the dependencies which are represented as edges in
the evolution graph to both detect syntactical and semantic inconsistencies following an
evolution event. We furthermore regulate the impact of an evolution event towards the nodes
of the graph by annotating the graph with rules, called policies. The adaptation of a node to
an evolution event and furthermore the propagation of the event towards the rest of the graph
is dictated by the rule defined on the node. The proposed framework enables the user to
proactively identify and regulate the impact of evolution processes. It provides the
appropriate semantics to perform hypothetical evolution scenarios and test alternative
evolution policies for a given configuration before the evolution process is applied on a
production environment.

Chapter Outline. In section 3.1, we collect and categorize the various approaches and
techniques related to the research area of database evolution. In section 3.2, a motivating
example is employed for the establishment of the challenges and problems that we deal with
in this chapter. In section 3.3 the main concepts and definitions of the framework for
regulating schema evolution are proposed. Additionally, in section 3.4 the algorithm
Propagate Changes, which handles the reaction of the system to evolution changes, is
presented, whereas in sections 3.5 we describe in details the main components of this
algorithm. In section 3.6, we experimentally assess the proposed framework over a real-case
database environment. Lastly, in section 3.7, we conclude our proposal.

47

3.1 Management of Schema Evolution in Database Systems

The problem of database schema evolution is a long-term problem in the literature of
database research with numerous efforts under various different contexts. In Figure 3.1, a
taxonomy of articles related to schema evolution according to [UnLeip] is presented in a tag-
cloud style (i.e., the size of the fonts of a category corresponds proportionally to the number
of articles published in this category). According to this taxonomy which includes more than
400 publications, database schema evolution has been paid a great attention over the last
twenty years, both at the conceptual, such as ER, UML and O-O approaches and at the
logical level, such as relational approaches, XML, etc. Recently, an emerging aspect related
to schema evolution deals with model management approaches and ontologies.

Figure 3.1: Tag-cloud Taxonomy of Related Work
for Database Schema Evolution

[Rodd95] presents a survey on schema versioning and evolution, whereas in [Rodd00]
a categorization of the overall issues regarding evolution and change in data management is
presented. We can classify the different efforts according to the data model they address into
the following categories [Rodd00]: (a) evolution of object-oriented databases, (b) evolution
of entity-relationship diagrams, (c) relational schema evolution and schema versioning and
lastly, (d) evolution of (materialized) views, mainly in the context of data warehouses,
characterized by the duality of views, which are both queries as far as their intention is
concerned and sets of tuples as far as their extension is concerned. In the following sections,
we present related works regarding schema evolution for the categories described above.

3.1.1 Relational Schema Evolution and Versioning

Schema evolution in traditional database systems is mainly investigated in the context of
relational schema evolution and schema versioning. The distinction between modification,
evolution and versioning of database schemata in the relational model has been, in some
cases, confused. In [Rodd95] the author presents taxonomy of changes applicable to the ER
model, as well as the necessary changes to the respective relational model. The following
definitions are given regarding the different aspects of database schema evolution.

48

• Schema modification: Schema Modification is accommodated when a database
system allows changes to the schema definition of a populated database.

• Schema evolution: Schema Evolution is accommodated when a database system
facilitates the modification of the database schema without loss of existing data.

• Schema versioning: Schema Versioning is accommodated when a database system
allows the accessing of all data, both retrospectively and prospectively, through user
definable version interfaces.

A bibliography concerning database schema evolution and versioning is given in
[Rodd92b].

In [McSn90], the authors discuss extensions to the conventional relational algebra to
support both aspects of evolution of a database's contents and evolution of a database's
schema. They define a relation's schema to be the relation's temporal signature, a function
mapping the relation's attribute names onto their value domains, and a class, indicating the
extent of support for time. They also introduce commands to change a relation, now defined
as a triple consisting of a sequence of classes, a sequence of signatures, and a sequence of
states. A semantic type of system is required to identify semantically incorrect expressions
and to enforce consistency constraints among a relation's class, signature, and state following
update.

Schema evolution is investigated at the conceptual level in the context of evolution of
entity-relationship diagrams. In [LiCC94], the authors present an approach to schema
evolution through changes to the Entity-Relationship (ER) schema of a database. They
enhance the graphical constructs used in ER diagrams, and develop EVER, an EVolutionary
ER diagram for specifying the derivation relationships between schema versions,
relationships among attributes, and the conditions for maintaining consistent views of
programs.

3.1.2 Object – Oriented Schema Evolution

Schema evolution in the context of object oriented database systems has also been widely
investigated from various points of view. Most of them introduce a set of schema changes or
transformations on the objects of the O-O DBMS and approach evolution as generalization
hierarchies of classes and mappings between these hierarchies.

One of the first attempts to incorporate schema evolution capabilities in O-O DBMS is
presented in [Bane87]. The authors introduce a prototype object-oriented database system,
called ORION with capabilities for supporting schema evolution. They establish a taxonomy
of over 20 useful schema changes under the ORION object-oriented data model and define
the semantics of each schema change. They identify a set of invariant properties of an object-
oriented schema which must be preserved across schema changes, such as distinct names,

49

and define a set of rules for selecting the most meaningful way to preserve these invariant
properties.

In [Fer+95], they describe an algorithm that is implemented in the O2 object database
system for automatically bringing the database to a consistent state after a schema update has
been performed. They, also, define a set of primitive change operations on classes, such as
creation, modification, deletion of classes, modification of inheritance between classes, etc.
and introduce a history record for holding the version of each class, much alike the
versioning techniques applied in relational databases systems.

Another framework, related to evolution in O-O DBMS, is presented in [RaRu95].
They address the problem of schema evolution in shared O-O database systems. They
propose a framework for integrating view facilities to deal with schema evolution. When new
requirements necessitate schema updates for a particular user, the user specifies schema
changes to the personal view rather than to the shared database schema. Their approach, then,
computes a new view schema that reflects the semantics of the desired schema change and
replaces the old view with the new one.

Lastly, an approach on impact analysis for schema evolution in O-O database systems
is presented in [KaSj01]. As usual, a categorization is made for the different types of
evolution. Direct schema evolution applies for the cases where schema changes are allowed
without any loss of data. Schema versioning is fit for the cases where schema changes
produce new versions of a schema and its extensions, while the older versions are still
accessible. In the latter case, the old applications can still be used with the previous versions
of the schema. The goal of the paper is to determine whether a priori impact analysis actually
helps the system’s stakeholders. They have developed a tool, namely SEMT, which parses
Java files and visualizes (a) the O-O schema and applications and (b) the impact of a change
towards affected objects. The implemented events include (a) add/delete/rename a field, (b)
add/delete a super class of a class, (c) add/delete a class.

3.1.3 Model Management and Schema Mappings

Related to database evolution, model management is an approach to metadata management
that offers a high level-programming interface than current techniques. The main abstractions
are models, abstracting mainly schemas and interface definitions, and mappings between
these models [Bern03], [Meln04], [VeMP04]. Model management applies to a number of
database problems such as schema and data integration, schema evolution, etc.

Database schema evolution can be regarded as a special kind of the model management
problem. Structural changes in a database (i.e. addition of a constraint, removal of an
attribute, etc.) are regarded as changes in the model abstracting the database schema. The
models, abstracting the database schema before and after the occurrence of the changes, must
recover the mapping(s) between them. That is, a suitable mapping must exist among the

50

model representing the old database schema and the model representing the new one in order
the various queries and in general the applications interacting with the database to conform to
these changes.

In [BeRa00], [Bern03], the authors proposes a model management algebra, a set of
operators for management of models and mappings between them comprising Match, Merge,
Diff, Compose, Apply and ModelGen operators. The introduced algebra is applied to
problems related to schema integration, schema evolution and round trip engineering.

In [Meln04], extending the work of [Bern03] the author propose a framework for
generic model management, called Rondo, in which models are represented as directed
graphs, and morphisms (edges between two graph representation of models) are mappings
between entities (e.g. attribute, constraints, etc.) belonging to two different models.
Extending operators proposed in [Bern03], a set of operators is introduced to manage
mappings and transformations of models, including graph theoretic and set theoretic
operators. Especially, for the Match operator, they propose the Similarity Flooding
Algorithm, an algorithm for finding and ranking the similarity between two models, as well
as creating a mapping between them. The proposed framework is not restricted to relational
model, but covers XML and other database models, as well. Model management addresses
problems related to data and schema integration, schema evolution, ETL, etc. A set of
metrics is introduced in the context of model mapping, including metrics for similarity
between two models, best matching between two models, etc.

In [VeMP03], [VeMP04], the authors propose a framework, called ToMas, for
automatically adapting (rewriting) mappings as schemas evolve. Their approach considers
not only local changes to a schema but also changes that may affect and transform many
components of a schema. Their algorithm detects mappings affected by structural or
constraint changes, including addition/removal of a constraint, removal of attributes, etc., and
generates all the rewritings that are consistent with the semantics of the changed schemas.
Their approach explicitly models mapping choices made by the user and maintains these
choices, whenever possible, as the schemas and mappings evolve. When there is more than
one candidate rewriting, the algorithm may rank them based on how close they are to the
semantics of the existing mappings.

3.1.4 Schema Evolution in Data Warehouses

Research efforts related to the problem of schema evolution in multidimensional databases
have been elaborated in accordance to the introduction of modeling concepts regarding data
warehouses, such as the star and snowflake models. Most of these efforts [BlSH99],
[BoKe00], [KaPR04] adjust the semantics of schema evolution to the multidimensional
paradigm by introducing a set of evolution changes for the data warehouse constructs, such
as slowly changing dimensions [Kimb96], addition/ modification / deletion of measures, etc.

51

 [BlSH99] presents a formal framework to describe evolutions of multidimensional
schemas and their effects on the schema and on the instances. The framework is based on a
formal conceptual description of a multidimensional schema and a corresponding set of
evolution operators, such as insert/delete dimension level, insert fact etc. [BoKe00] proposes,
as well, a logical model for data warehouse representation which consists of a hierarchy of
views, namely the base views, the intermediate views and the users views. In this context, the
proposed model is enriched with a small set of evolution changes, such as addition/deletion
of (materialized) views and sources. In [GLRV04], the authors deal with schema versioning
in the context of data warehouses, where queries may span in multiple versions of DW
schemas. The authors discuss versioning of star schemata, where histories of the schema are
retained and queries are chronologically adjusted to ask the correct schema

In [FaPo04], AutoMed, a framework for the management of schema evolution in data
warehouse environments is presented. They introduce a schema transformation-based
approach to handle evolution of the source and the warehouse schema. Complex evolution
events are expressed as simple transformations comprising addition, deletion, renaming,
expansion and contraction of a schema construct. They also deal with the evolution of
materialized data with use of IQL, a functional query language supporting several primitive
operators for manipulating lists.

3.1.5 View adaptation to Schema Evolution

Views defined over evolving environments may become invalid due to changes at the
sources or definition of a view. The problem of view adaptation to database schema changes
comprises two special aspects:

• The first concerns the adaptation of the extent of a view in the presence of changes in
the view definition, trying to minimize the rematerialization effort for the view
[GMRR01], [MoDo96]. Changes in views definition are invoked by the user and
rewritings are used to keep the view extent consistent with the data sources. For
instance, if an attribute is added in the definition (i.e., in the SELECT clause) of a
materialized view, the view must be rematerialized and populated with the values of
the new attribute. The proposed techniques adjust the view extent to a consistent
state without fully rematerializing the view from the underlying data warehouse.
Thus, the problem is formulated as view adaptation after redefinition to avoid
rematerialization of the view.

• The second deals with the adaptation of the view definition in the presence of changes
in the underlying database schema [Bell02]. The author deals with the same
problem, considering that the view redefinition is invoked by schema changes at the
base relations and must be propagated, essentially, to the view definition. The
problem is formulated as to how we can rewrite or transform the view in order to

52

avoid invalidation issues both at the data as well as the schema level. [NiLR98],
[RuLN97] deal also with a specialized aspect of the view adaptation problem, the
view synchronization problem, which considers that views become invalid after
changes in view’s definition that are invoked by the user. The authors extend SQL,
enabling the user to define evolution parameters characterizing the tolerance of a
view towards changes and how these changes will be dealt with during the evolution
process. Specifically, two evolution parameters are introduced, namely dispensable
and replaceable parameters, which dictate whether an attribute referenced in the
view is allowed to be dispensed from the view definition or replaced by a valid
rewriting in the case that it is deleted from the source relation. Also, the authors
propose an algorithm for rewriting views based on interrelationships between
different data sources. The treatment of attribute deletions in [NiLR98] is quite
elaborate; since a view becomes syntactically invalid, the proposed algorithm tries to
restore the “lost” information from other information sources (connected via
predefined join constraints) in order to make the view valid again. Lastly, [NiLR98]
proposes a quality-cost model for view synchronization operations, comprising
metrics for performance, divergence between view interface, content, etc.

Lastly, in [FaBB07], the authors tend to extend the work of [PaVV05]. They first
consider a set of evolution changes occurring at the schema of a data warehouse, such as
dimension, level creation, deletion etc. and provide an informal algorithm for adapting
affected queries and views to such changes.

3.1.6 Comparison with Related Work

To this end, we compare some aspects of the proposed framework for regulating schema
evolution with respect to the related literature presented above. Many of the above presented
approaches to schema evolution can be considered orthogonal to the framework proposed in
this dissertation. Our work can be compared to the existing literature with respect to the
following aspects:

• Extensibility regarding evolution changes: Most schema changes proposed in the
literature [Rodd95] and supported by current RDBMS are considered and
incorporated as operations on the Evolution Graph. Even if we primarily focus on
schema evolution in the context of relational database systems, our framework is not
constrained only to such contexts. Evolution changes regarding other evolution
contexts [BlSH99], or complex evolution events which are decomposed into a set of
elementary schema changes [FaPo04], can be transformed to evolution operations on
the graph and thus integrated in the framework. For instance, schema changes in the
context of data warehouse are mapped to graph operations in [PVSV08].

53

• Schema Mapping and Transformation: The proposed framework focuses on detecting
the impact of schema changes occurring on parts of a relational database-centric
environment (either on the database schema or dependent constructs). In that sense,
it is out of the scope of this work to provide techniques for view and query rewriting
[Bell02], [GMRR01], [NiLR98], schema mapping [VeMP04], [FaPo04] and model
integration [Bern03], [Meln04] or data evolution and maintenance. Such techniques
can be mapped to transformations on the evolution graph and in that sense they are
orthogonal to our approach. This is due to the fact that our algorithm stops at status
determination and does not perform any rewritings. A designer can apply any
rewriting algorithm, provided that he pays the annotation effort that each of the
methods of the literature requires (e.g., LAV/GAV/GLAV or any other kind of
metadata expressions). For example, such an expression could be stating that two
select-project fragments of two relations are semantically equivalent. Due to this
generality, our approach can be extended in the presence of new results on such
algorithms. Also, the work of [KaSj01] has some similar aspects with the proposed
framework of this dissertation, since they employ a directed graph for representing
the object dependencies in O-O database environments and finding the impact of
changes in database objects towards application objects.

• Regulating schema evolution through policies: Most related works consider that
constructs affected by schema changes, such as queries and views, must retain their
original semantics. Unfortunately, current DBMS languages do not incorporate
evolution semantics, so that administrators / developers could prescribe the behavior
of the system when database schema evolution changes occur. Our framework
introduces additional evolution semantics, i.e., policies imposed as annotations on
the graph constructs, for regulating the way parts of the graph are affected by
evolution changes. These policies regulate whether affected constructs will retain
their original semantics when they are affected by an evolution change or they will
conform to the new semantics imposed by this change. In this context, our work can
be compared with that of [NiLR98] in the sense that policies act as regulators for the
propagation of schema evolution on the graph similarly to the evolution parameters
introduced in [NiLR98]. However, the authors of [NiLR98] deal only with schema
changes for deletion of attributes and relations. We furthermore extend this approach
to incorporate attribute additions and the treatment of conditions. The treatment of
attribute deletions in [NiLR98] is quite elaborate; we confine to a restricted version
to avoid overcomplicating both the size of requested metadata and the language
extensions. Still, the [NiLR98] approach for deletions can easily be taken into
consideration in our framework. Also, the model of [VeMP04] is more restrictive, in
the sense that it is intended towards retaining the original semantics of the queries by
preserving mappings consistent when changes occur. Our work is a larger framework
that allows the restructuring of the database graph (i.e., model) either towards

54

keeping the original semantics or towards its readjustment to the new semantics.
[FaPo04] can be used orthogonally to our approach for the case that affected
constructs must preserve the old semantics (i.e., block policy in our framework).

3.2 Motivating example

Before illustrating the main concepts of the proposed framework, we present in this section a
motivating example that attempts to capture the problems and the challenges that we deal
with. Observe the configuration of Figure 3.2, which depicts a small database centric system
operating in the intranet of an imaginary company. In the database layer, the system retains
data for all employees working in this company along with data for the projects they work
for. In the application layer, data entry forms are used for inserting and updating records in
the database. A report module is also used by company’s managers for analysis reasons.
This module interacts with the database through a view layer. We distinguish the following
roles for the users participating in this configuration: a) Database administrators are
responsible for the management of the schema of the database as well as the views’
definition stored in the database, (b) developers are responsible for maintaining the queries
contained in data entry forms and lastly (c) analysts are responsible for expressing and
modifying queries in the report module.

For simplicity reasons, we consider that the database schema comprises only 3 relations
with the following schemas expressed in DDL statements:

CREATE TABLE EMP(E_ID INTEGER PRIMARY KEY,
E_NAME VARCHAR(25) NOT NULL,

 E_TITLE VARCHAR(10),
 E_SAL INTEGER NOT NULL);

CREATE TABLE PRJS(P_ID INTEGER PRIMARY KEY,
 P_NAME VARCHAR(25) NOT NULL,
 P_BUDGET INTEGER NOT NULL);

CREATE TABLE WORKS(E_ID INTEGER,
 P_ID INTEGER,
 W_RESP VARCHAR(10),
 W_DUR INTEGER,
 PRIMARY KEY (E_ID,P_ID),
 FOREIGN KEY (E_ID) REFERENCES EMP(E_ID),
 FOREIGN KEY (P_ID) REFERENCES PRJS(P_ID));

The view layer comprises a view, namely Emps_Prjs , that correlates the employees
with the projects they work for. On top of this view, we consider that the report module
contains an aggregate query that calculates the expenses of each project per month by

55

summing up the salaries of all employees working for it and compares them with the budget
of the project. Lastly, in the data entry forms, we consider solely an INSERT statement that
inserts records in EMP relation. The definitions of the employed view and queries in terms of
SQL syntax are included in the figure.

Figure 3.2: Motivating Example Configuration

Assume that due to changes in requirements the administrator must add an attribute to
the relation EMP, say Phone . Should this change be propagated to the view and/or the query
involved in the data entry form? Is actually the query affected by such an event? Although
related research can handle the deletion of attributes, due to the obvious fact that queries
become syntactically incorrect, the addition of information is deferred to a decision of the
designer/developer. In general, given an evolution change that occurs on a part of the system,
the following question arises (from the administrator’s point of view): Which parts of the
system are affected and how?

The situation is more pressing when the attributes added involve the primary key of a
relation. Assume, for example, that two attributes are added to relation Works , namely
StartDate , EndDate , characterizing the period over which an employee has worked for a
project. In this case, the uncertainty on the correctness of the view definition is increased: do
we request all employees ever having worked in a project, or only the ones currently
involved in some project? Similar considerations arise in the case where the WHERE clause of
the view is modified. Assume that a field STATUS is added to all projects and the view
definition is modified by incorporating the extra selection STATUS=’Active’ . Can we still
use the view in order to answer the query or not? The answer is not obvious, since it depends
on whether the query employed by the analysts, uses the view simply as a macro (in order to

56

avoid the extra coding effort) or, on the other hand, the query is supposed to work on the
view, independently of what the view definition is [TsKl78]. In other words, whenever a
query is defined over a view, there exists two possible ways to interpret its semantics: (a) the
query is defined on the time-specific semantics of the view; if the view’s definition changes
in the future the query’s semantics are affected, (b) the query’s author uses the view as an
API ignoring the semantics of the view; if these semantics change in the future, the query
should not be affected. The problem lies in the fact that there is no semantic difference in the
way one defines the query over the view; i.e., we define the view in the same manner in both
occasions. Again, given an evolution change that occurs on a part of the system and has an
impact on other parts of the system, the following question arises (both from the
administrator’s and the developer’s points of view): Can we predefine the reaction of the
system to potential changes?

3.3 Regulating Schema Evolution

To deal with the above issues, we introduce a framework for the detection of the parts of the
system, which are affected by an evolution change and the regulation of their reaction to this
change [PaVV05]. The main mechanism comprises the annotation of the constructs of the
evolution graph (i.e., nodes and edges) with further semantics that facilitate the impact
analysis and regulation of schema evolution. First, we define events on the nodes of the graph
which are mapped to evolution changes that occur on parts of a database. Constructs of the
graph are, then, enriched with policies that allow the developer to specify the behavior of the
affected constructs whenever events that alter the database graph occur. The combination of
an event with a policy determined by the designer/administrator triggers the execution of the
appropriate action that either blocks the event, or highlights properly the graph to adapt to the
proposed change.

The space of potential events comprises the Cartesian product of two subspaces;
specifically the space of hypothetical actions (addition/ deletion/modification) by the space
of graph constructs sustaining evolution changes (e.g., nodes for relations, attributes,
conditions, etc.). For each of the above events, the administrator annotates graph constructs
with policies that dictate the way they will react to an event when affected.

We provide the following definitions concerning the main concepts of our framework.

Definition 3.1 – Evolution Action: An evolution action a is a tuple of the form
{Action Type, Node Type} where (a) Action Type is the type of operation that applies on
nodes of the graph, such as addition, deletion, modification and renaming and (b) Node Type
is the type of node sustaining the action, such as relation node, attribute node, etc., as
presented in section 2.

Examples of evolution actions are {addition, attribute}, { renaming, relation} and
{ modification, condition}. Evolution actions are classified as composite and elementary.

57

Composite evolution actions, such as splitting, merging, pivoting, etc., can be expressed as
sequential combinations of elementary ones.

Evolution events on the schema of a database construct, either a relation, a view or a
query, are operations that transform its schema from an initial state S to a state S’, and
defined in the context of our framework as:

Definition 3.2 – Evolution Event: An evolution event e applied on the evolution graph
G=(V, E) is a tuple of the form {a, n} where (a) a is the evolution action that triggers the

event and (b) n⊆V is the graph node on which this action occurs.

Examples of evolution events include {addition of attribute, Emp}, {renaming of
attribute, E_Title}, etc. In the context of our graph model, evolution events are operations on
nodes of the graph.

 Definition 3.3 - Affected Node: A node n⊆V is affected by an event e occurring on
node n0 iff a directed edge exists from n towards n0.

Affected nodes by an evolution event are nodes that are semantically or syntactically
affected by this event. For instance, if a query node accesses a relation, on which an attribute
is added, then this query node is affected by this event. Affected modules are graph modules
(i.e., query modules, view modules), which comprise at least one affected node and thus
regarded as candidates for evolution.

Definition 3.4 – Policy: A policy p for an event e applying on a graph node n⊆V is a

triple of the form {n,e, rule}, where (a) n⊆V is the node of the graph annotated, (b) e is an
event occurring on the graph and (c) rule is the reaction that node n must have when affected
by event e. Specifically, three kinds of rules are defined with respect to the semantics
incurred by an event:

(a) propagate the change, meaning that the graph must be reshaped to adjust to the new
semantics incurred by the event;

(b) block the change, meaning that we want to retain the old semantics of the graph and
the hypothetical event must be blocked or, at least, constrained, through rewriting that
preserves the old semantics; and

(c) prompt the administrator to interactively decide what will eventually happen.

Figure 3.3 depicts the triple relationship that characterizes the semantics of policies on
the graph. We annotate elements of the graph with a specific rule, for reacting to events
occurring on the same or other elements of the graph.

58

W
ith

 ru
le

Figure 3.3: Annotation of the graph with policies

Examples of policies imposed on the graph include {Q1, add attribute to Emp, block},
{Emps_Prjs, delete attribute Prjs.P_Budget, Propagate}, etc.

For better clarifying the relationship between the schema changes and the parts of the
system that are affected by each change, in Table 3.1 we present (a) the kinds of events
captured by our framework, (b) the parts of the system that are affected by each kind of event
and (c) the allowed annotations of graph constructs with policies for each kind of event. For
instance, for the case of an attribute addition, affected parts of the system comprise the
relation or view on which the new attribute was added as well as any view or query defined
on this relation / view.

59

parts of the system affectednodes annotated with
policies

Events
R/V R/V

Attr.
R/V

Cond.
Q/V Q/V

Attr.
Q/V

Cond.
R A V/Q C/F/GB/

OB/P
Add A √ √ √ √

C √ √ √ √ √ √
R/V

Delete A √ √ √ √ √ √ √ √ √
C √ √ √ √ √ √ √ √

R/V √ √ √ √
Modify/
Rename

A √ √ √ √ √ √ √ √ √ √
C √ √ √ √ √ √ √ √

R/V √ √ √ √
A = Attribute, C = Condition, R= Relation, V=View, Q=Query, F=
Function, GB = Group By, OB = Order By P = Parameter

Table 3.1: Parts of the system affected by evolution events and annotation of
appropriate graph construct

Based on the annotation of parts of a system with policies for an event, our framework
determines their reaction to this event by assigning a status to each of them. That is:

Definition 3.5 - Status: Let a node n⊆V annotated with a policy p for the event e; the
status s assigned to n describes the action that is applied to the node n for adapting to event e.
The status is a property assigned to a node based on its policy for this event, i.e., s =f(p) or
equivalently from definition 4.3 (for policies) s=f(n , e, rule).

We will demonstrate the above concepts of our framework with an example for the
case of attribute addition. The configuration refers to the motivating example presented in
section 3.2.

Example of Attribute Addition: Consider the INSERT statement used in the data entry
form, which is represented in our framework as the equivalent query Q1: SELECT * FROM

EMP. Assume that the provider relation EMP is extended with a new attribute PHONE. There
are two possibilities:

• The * notation signifies the request for any attribute present in the schema of relation
EMP. In this case, the * shortcut can be treated as “return all the attributes that EMP
has, independently of which these attributes are”. Then, the query must also retrieve
the new attribute PHONE.

• The * notation acts as a macro for the particular attributes that the relation EMP
originally had. In this case, the addition to relation EMP should not be further
propagated to the query.

60

A naïve solution to a modification of the sources; e.g., the addition of an attribute,
would be that an impact prediction system must trace all queries and views that are
potentially affected and ask the designer to decide upon which of them must be modified to
incorporate the extra attribute. According, however, to the proposed framework, an element
that is affected by the addition is annotated with the policies mentioned before. According to
the policy defined on each construct the respective action is taken to correct the query.
Therefore, for the example event of an attribute addition, the policies defined on the query
and the actions taken according to each policy are:

• Propagate attribute addition. When an attribute is added to a relation appearing in the
FROM clause of the query, this addition should be reflected to the SELECT clause of
the query.

• Block attribute addition. The query is immune to the change: an addition to the
relation is ignored. In our example, the second case is assumed, i.e., the SELECT *
clause must be rewritten to SELECT A1,…,An without the newly added attribute.

• Prompt. In this case (default, for reasons of backwards compatibility), the designer or
the administrator must handle the impact of the change manually; similarly to the
way that currently happens in database systems.

E_ID

Name

E_ID PhoneName

EMP

Q
S

S

map-select

map-select

S
S S

from
Policy

On attribute addition To EMP

then propagate

Phone

S

map-select

..
.

...Status:

Add_Child

Status:

Add_Child

Figure 3.4: Propagating addition of attribute PHONE

The graph of the query Q1: SELECT * FROM EMP is shown in Figure 3.4. The
annotation of node Q with for propagating addition indicates that the addition of PHONE
node to EMP relation will be propagated to the query and the query is assigned a status for the
addition of an attribute as the new attribute is included in the SELECT clause of the query.
This is accomplished with the assignment of the appropriate status to every node that is
affected by the attribute addition.

61

3.4 Algorithm Propagate Changes

The mechanism determining the reaction to a change, i.e., the assignment of a node with a
status, is formally described in Figure 3.5 by the algorithm Propagate Changes [PVSV07],
[PVSV09]. Given an evolution graph G(V,E) annotated with policies and an event e over a
node n0, Propagate Changes assigns a status to each affected node of the graph, dictating the
action that must be performed on the node to handle the event.

Algorithm Propagate Changes
Input : (a) a session id SID

(b) a graph G(V,E)
(c) an event e over a node n0
(d) a set of policies P defined over nodes of G
(e) an optional default policy p0 defined by the user for the event e

Output : a graph G(V,E) with a Status value for each n∈V’ ⊆V

Parameters: (a) a global queue of messages Emsg

(b) each message m is of the form m = [SID, n S, n R, e, p S]
where

SID : The unique identifier of the session regarding the evolution event e
nS : The node that sends the message
nR : The node that receives the message
e : The event that occurs on nS
pS : Policy of nS for the event e

Begin
1. Emsg.enqueue([SID,user,n0, e, p0])
2. while (Emsg != ∅){
3. m = Emsg.dequeue();
4. pR = determinePolicy(m);
5. nR.Status=set_status(m,pR);
6. decide_next_to_signal(m,Emsg,G);} //enqueue m

End

Figure 3.5: Propagate Changes Algorithm

Specifically, given an event e over a node n0 altering the source database schema,
Propagate Changes determines those nodes that are directly connected to the node altered
and an appropriate message is constructed for each of them, which is added into the queue.
For each processed node nR, its prevailing policy pR for the processed event e is determined.
According to the prevailing policy, the status of each construct is set. Subsequently, both the
initial changes, along with the readjustment caused by the respective actions, are recursively
propagated as new events to the consumers of the activity graph. In Figure 3.4, the statuses
assigned to the affected nodes by the addition of an attribute to EMP relation are depicted.

62

First, the algorithm sends a message to EMP relation for the addition of attribute PHONE to its
schema, with a default propagate policy. It assigns the status ADD CHILD to relation EMP and
propagates the event sending a new message to the query. Since an appropriate policy
capturing this event exists on the query, the query is also assigned an ADD CHILD status. In
the following sections, we discuss in more details the main components of the proposed
algorithm.

3.5 Tuning the propagation of changes

In this section, we detail the internals of the algorithm Propagate Changes. Given an event
arriving at a node of the graph, the algorithm involves three cases, specifically, (a) the
determination of the appropriate policy for each node, (b) the determination of the node's
status (on the basis of this policy) and (c) the further propagation of the event to the rest of
the graph.

3.5.1 Determining the Prevailing Policy

It is possible that the policies defined over the different elements of the graph do not always
align towards the same goal. Two problems might exist:

a) over-specification refers to the existence of more than one policies that are specified
for a node of the graph for the same event, and,

b) under-specification refers to the absence of any policy directly assigned to a node.

Consider for example the case of Figure 5, where a simplified subset of the graph for a
certain environment is depicted. A relation R with one attribute A populates a view V, also
with an attribute A. A query Q, again with an attribute A is defined over V. Here, for reasons
of simplicity, we omit all the parts of the graph that are irrelevant to the discussion of policy
determination. As one can see, there are only two policies defined in this graph, both
concerning the deletion of attributes of view V. The first policy is defined on view V and
says: ‘Block all deletions for attributes of view V’, whereas the second policy is defined
specifically for attribute V.A and says ‘If V.A must be deleted, then allow it’.

63

Figure 3.6: Example of over-specification and under-specification of policies

The first problem one can easily see is the over-specification for the treatment of the
deletion of attribute V.A. In this case, one of the two policies must override the other. A
second problem has to do with the fact that neither R.A, nor Q.A, have a policy for handling
the possibility of a deletion. In the case that the designer initiates such an event, how will this
under-specified graph react? To give you a preview, under-specification can be either offline
prevented by specifying default policies for all attributes or online compensated by following
the policy of surrounding nodes. In the rest of this section, we will refer to any such problems
as policy misspecifications.

We provide two ways for resolving policy misspecifications on a graph construct: on-
demand and a-priori policy misspecification resolution. Whenever a node is not explicitly
annotated with a policy for a certain event, on-demand resolution determines the prevailing
policy during the algorithm execution based on policies defined on other constructs. A-priori
resolution prescribes the prevailing policy for each construct potentially affected by an event
with use of default policies. Both a-priori and on-demand resolution can be equivalently used
for determining the prevailing policy of an affected node. A-priori annotation requires the
investment of effort for the determination of policies before hypothetical events are tested
over the database schema. The policy overriding is tuned in such a way, though, that general
annotations for nodes and edges need to be further specialized only wherever this is
necessary. Our experiments, later, demonstrate that a-priori annotation can provide
significant earnings in effort for the database administrator. On the other hand, one can
completely avoid the default policy specification and annotate only specific nodes. This is the
basic idea behind the on-demand policy and this way less effort is required at the expense of
runtime delays whenever a hypothetical event is posed on the system.

3.5.1.1 On-demand resolution

The algorithm for handling policy conflicts on demand is shown in Figure 3.7. Intuitively,
the main idea is that if a node has a policy defined specifically for it, it will know how to
respond to an event. If an appropriate policy is not present, the node looks for a policy (a) at
its container top-level node, or (b) at its providers.

64

Algorithm Determine Policy
Input : a message m of the form m=[SID,nS,nR,e,pS]
Output : a prevailing policy pR
Begin
1. if (edge(ns,nr) isPartOf) // if m came from partof edge
2. return pS; // child node policy prevails
3. else // m came from provider
4. if exists policy(nR,e) // check if nR has policy for this event
5. return policy(nR); // return this policy
6. else if exists policy(nR.parent,e)
7. return policy(nR.parent); // return nR parent’s policy
8. else return ps; // else return providers policy

End

Figure 3.7: Determine Policy Algorithm

Algorithm follows the subsequent rule: the higher and left a module is at the hierarchy
of Figure 3.8, the stronger its policy is.

Figure 3.8: On Demand Policy Resolution

Algorithm Determine Policy implements the following basic principles for the
management of an incoming even to a node:

• If the policy is over-specified, then the higher and left a module is at the hierarchy of
Figure 3.6, the stronger its policy is.

• If the policy is under-specified, then the adopted policy is the one coming from lower
and right.

The algorithm assumes that a message is sent from a sender node ns to a receiver node
nr. Due to its complexity, we present the actual decisions taken in a different order than the
one of the code:

65

Check 1 (lines 6-7): This check concerns child nodes: if they do not have a policy of
their own, they inherit their parent’s policy. If they do have a policy, this is covered by lines
4-5.

Check 2 (lines 1-5): if the event arrives at a parent node (e.g., a relation), and it
concerns a child node (e.g., an attribute) the algorithm assigns the policy of the parent (lines
4-5), unless the child has a policy of its own that overrides the parent’s policy (lines 1-2). A
subtle point here is that if the child did not have a policy, it has already obtained one by its
parent in lines 6-7.

Check 3 (line 7): Similarly, if an event arrives from a provider to a consumer node via
a map-select edge, the receiver will make all the above tests, and if they all fail, it will simply
adopt the provider’s policy. For example, in the example of Figure 3.6, Q.A will adopt the
policy of V.A if everything else fails.

3.5.1.2 A-priori resolution

A-priori resolution of policy conflicts enables the annotation of all nodes of the graph with
policies before the execution of the algorithm. A-priori resolution guarantees that every node
is annotated with a policy for handling an occurred event and thus no further resolution effort
is required at runtime. That is, the receiver node of a message will always have a policy
handling the event of the message. A-priori resolution is accomplished by defining default
policies at 3 different scopes [Pap+08].

System-wide scope: First, we prescribe the default policies for all kinds of constructs, in
a system-wide context. For instance, we impose a default policy on all nodes of the graph
that blocks the deletion of the constructs per se.

Top-level scope: Next, we prescribe defaults policies for top-level nodes, namely
relations, queries and views of the system, with respect to any combination of the following:
the deletion of the construct per se, as well as the addition, deletion or modification of a
construct’s descendants. The descendants can be appropriately specified by their type, as
applicable (i.e., attributes, constraints or conditions).

Low-level scope: Lastly, we annotate specific low granularity constructs, i.e., attributes,
constraints or conditions, with policies for their deletion or modification.

The above arrangement is order dependent and exploits the fact that there is a partial
order of policy overriding. The order is straightforward: defaults are overridden by specific
annotations and high level construct annotations concerning their descendants are overridden
by any annotation of such descendant:

System-wide Scope ≤ Top-Level Scope ≤ Low-Level Scope

Furthermore, certain nodes or modules that violate the above default behaviors and
must obey to an opposite reaction for a potential event are explicitly annotated. For example,

66

if a specific attribute of an activity must always block the deletion of itself, whereas the
default activity policy is to propagate the attribute deletions, then this attribute node is
explicitly annotated with block policy, overriding the default behavior.

3.5.1.3 Completeness

The completeness problem refers to the possibility of a node that is unable to determine its
policy for a given event. It is easy to see that it is sufficient to annotate all the source
relations for the on-demand policy, in order to guarantee that all nodes can determine an
appropriate policy. For the case of a-priori annotation, it is also easy to see that a top-level,
system-wide annotation at the level of nodes is sufficient to provide a policy for all nodes. In
both cases, it is obvious that more annotations with extra semantics for specific nodes, or
classes of nodes, that override the abovementioned (default) policies, are gracefully
incorporated in the policy determination mechanisms.

3.5.2 Determination of a node’s status

In the context of our framework, the action applied on an affected graph construct is
expressed as a status that is assigned on this construct. The status of each graph construct
visited by Propagate Changes algorithm is determined locally by the prevailing policy
defined on this construct and the event transmitted by the adjacent nodes. The status of a
construct with respect to an event designates the way this construct is affected and reacts to
this event, i.e., the kind of status that will be assigned to the construct. The general guidelines
for assigning statuses on nodes stem from the rules provided in Table A.1 of Appendix A.

A visited node is initially assigned with a null status. If the prevailing policy is block or
prompts then the status of the node is block and prompt respectively, independently of the
occurred event. Recall that blocking the propagation of an event implies that the affected
node is annotated for retaining the old semantics despite of change occurred at its sources.
The same holds for prompt policy with the difference that the user, e.g., the administrator, the
developer, etc. must decide upon the status of the node.

For determining the status of a node when a propagate policy prevails, we take into
account the event action (e.g., attribute addition, relation deletion, etc.) transmitted to the
node, the type of node accepting the event and lastly the scope of the event action. An event
raises actions that may affect the node itself, its ancestors within a module or its adjacent
dependent nodes. Thus, we classify the scope of evolution impacts with respect to an event
that arrives at a node as:

• SELF: The event occurs on the node itself, e.g. a delete attribute event occurs on
attribute an attribute node.

67

• CHILD: The event occurs on a descending node belonging to the same module, e.g., a
view is notified with a delete attribute event for the deletion of one of its attributes.

• PROVIDER: The event occurs on a node belonging to another module, e.g., a query is
notified for the addition of an attribute at the schema of one of its source relations.

In that manner, combinations of the event type and the event scope provide a non finite
set of statuses, such as: DELETE SELF, DELETE CHILD, ADD CHILD, RENAME SELF,
MODIFY PROVIDER etc. It is easy to see that that the above mechanism is extensible both
with respect to event types and statuses. Lastly, the status assignment to nodes induces new
events on the graph which are further propagated by Propagate Changes algorithm to all
adjacent constructs. In Table A.2 of Appendix A, the statuses assigned to visited nodes for
combinations of events and types of nodes are shown, when propagate policy prevails on the
visited node. For each status the new event induced by the assignment of a node with status,
which is further propagated to the graph, is also shown.

3.5.3 Next to Signal - Optimization and Pruning

The processing order of affected graph elements is, primarily, determined by a BFS traversal
on the graph. Moreover, after the processing of each node the algorithm checks its assigned
status. If the status is block or prompt, the further traversal of the graph beyond this node
stops and the propagation of the event is either blocked or the framework prompts the
administrator to decide. All nodes depending on the node that blocked the event are not
notified and therefore remain immune to the event. For the case that the assigned status is not
block or prompt, the algorithm inserts a message into the queue for all adjacent nodes
connected with outgoing edges towards this node.

BFS traversal ensures that all affected constructs are examined for adaptation, but
cannot guarantee that no cycles potentially resulting in controversial setting of statuses are
detected. For instance, observe the graph of Figure 3.4, on which the event “deletion of
attribute EMP.Name” occurs, and all nodes retain a prevailing policy for propagating the
deletion. The PS algorithm determines the status of EMP.Name as “DELETE SELF” and
inserts into queue two messages for nodes EMP and Q.Name. These nodes will in turn obtain
statuses “DELETE CHILD” and “DELETE SELF” respectively, and each of them sends a
message to node Q. The latter will be twice notified with the following messages: one of its
children, namely Q.Name, is deleted and one of its provider’s children, namely EMP.Name,
is deleted. Eventually, node Q must react to these two messages, the arriving order of which
may result in the assignment of different statuses.

To deal with the above contradiction, we apply an additional optimization on the BFS
traversal of the graph, requiring that messages are inserted into queue with a specific order.
First all nodes connected via provider edges with the node suffering the event are notified
and afterwards all nodes connected via part-of edges. Additionally, messages arriving from a

68

node connected via a provider edge are pruned if a status capturing the same event has
already been set. This can ensure that no cycles and controversial statuses are detected on the
graph. With the above constraints, the query Q will be notified by the child Q.NAME for its
deletion and ignore the message coming from relation EMP.

It is easily noticed that with the use of policies our framework regulates the
propagation of events towards the graph and thus the parts that are affected by an event. We
are ready now to provide a refinement to the definitions of affected nodes in the presence of
policies and a new definition regarding transformed nodes.

Definition 3.6 - Affected Node in the presence of policies: Let G(V,E) be an

evolution graph annotated with a set of policies P. A node n⊆V is affected by an event e
(occurring on node n0) iff after the execution of PS a status s is assigned to n for handling e.

Affected nodes by an evolution event are nodes that are visited by PS algorithm and
therefore assigned a status for handling an event. In that sense, nodes that are connected with
a direct path towards the node sustaining an event are not affected if an intermediate node has
blocked the propagation of the event towards them.

Definition 3.7 - Transformed Node: A node n⊆V is transformed by an event e
(occurring on a node n0) iff the status s assigned to node n for handling the event e requires
the transformation of n.

A transformed node by an event is a node, which is affected by this event through some
kind of transformation, i.e., a status different from block is assigned to node, such as delete
node, rename, etc. Rewritten modules to an event are graph modules, which comprise at least
one transformed node, and therefore are adjusted to an evolution event explicitly through
some kind of rewriting.

3.6 Experimental Evaluation

In this section, we present in details the experimental evaluation that we performed for our
framework. We evaluated the proposed framework and capabilities of the approach in the
configuration of a data warehouse environment and, specifically, via the reverse engineering
of 7 real-world Extraction – Transformation – Loading (ETL) scenarios extracted from an
application of the Greek public sector. The examined data warehouse maintains information
regarding farming and agricultural statistics. Our goal was to evaluate the framework with
respect to its effectiveness for adapting ETL workflows to evolution changes occurring at
ETL sources and its efficiency for minimizing the human effort required for defining and
setting the evolution metadata on the system.

The aforementioned ETL scenarios extract information out of a set of 7 source tables,
namely S1 to S7 and 3 lookup tables, namely L1 to L3, and load it to 9 tables, namely T1 to T9,

69

stored in the data warehouse. The 7 scenarios comprise a total number of 59 activities. All
ETL scenarios were source coded as PL\SQL stored procedures in the data warehouse.

First, we extracted embedded SQL code (e.g., cursor definitions, DML statements,
SQL queries) from activity stored procedures. Table definitions (i.e., DDL statements) were
extracted from the source and data warehouse dictionaries. Each activity was represented in
our graph model as a view defined over the previous activities, and table definitions were
represented as relation graphs. In Figure 3.9, we depict the graph representation of the first
ETL scenario as modeled by our framework. For simplicity reasons, only top level nodes are
shown. Activities are depicted as triangles; source, lookup and target relations as dark
colored circles.

Figure 3.9: First ETL scenario graph representation

We, then, monitored the schema changes occurred at the source tables due to changes
of requirements over a period of 6 months. The set of evolution events occurred in the source
schema included renaming of relations and attributes, deletion of attributes, modification of
their domain, and lastly addition of primary key constraints. We counted a total number of
374 evolution events and the distribution of occurrence per kind of event is shown in Figure
3.10.

70

Attribute Add;

92

Attribute Drop;

32

Attribute

Modify; 6

Attribute

Rename; 236

Constraint Add;

1

Relation

Rename; 7

Figure 3.10: Distribution of occurrence per kind of evolution events

In Table 3.2, we provide the basic properties of each examined ETL scenario and
specifically its size in terms of number of activities and number of nodes comprising its
respective graph, its evolved source tables and lookup tables and lastly the number of
occurred events on these tables.

Scenario # Activ. # Nodes Sources # Events
1 16 1428 S1, S4 ,L1, L2, L3 142
2 6 830 S2, L1 143
3 6 513 S3, L1 83
4 16 939 S4, L1 115
5 5 242 S5 3
6 5 187 S6 1
7 5 173 S7 6

Table 3.2: Characteristics of the ETL scenarios

The intent of the experiments is to present the impact of these changes to the ETL
flows and specifically to evaluate our proposed framework with respect to its effectiveness
and efficiency.

3.6.1 Effectiveness of Workflow Adaptation to Evolution Changes

For evaluating the extent to which affected activities are effectively adapted to source events,
we imposed policies on them for each separate occurred event. Our first goal was to examine
whether our algorithm adjusts activities in accordance to the expected transformations, i.e.,
transformations that the administrators/developers would have manually enforced on the ETL
activities to handle schema changes at the sources, by inspecting and rewriting every activity
source code.

Hypothesis H1: Algorithm effectively determines the correct status of activities for
various kinds of evolution events.

71

Methodology:

1. We first examined each event and its impact on the graph, by finding all affected
activities.

2. Since all evolution events and their impact on activities were a-priori known, each
activity was annotated with an appropriate policy for each event. An appropriate
policy for an event is the policy (either propagate or block), which adjusts the
activity according to the desired manual transformation, when this event occurs on
the activity source.

3. In that manner, each event at the source schema of the ETL workflows was separately
processed, by imposing a different policy set on the activities. We employed both
propagate and block policies for all views and queries subgraphs comprising ETL
activities. Policies were defined both at query and attribute level, i.e., query, view
and attribute nodes were annotated.

4. We invoked each event and examined the extent to which the automated readjustment
of the affected activities adheres to the desired transformation. We, finally, evaluated
the effectiveness of our framework by measuring the number of affected activities by
each event, i.e., these that obtained a STATUS, with respect to the number of
successfully readjusted activities, i.e., these whose STATUS was consistent with the
desired transformation.

 Activities
Event Type with Status with Correct Status
Attribute Add 1094 1090
Attribute Delete 426 426
Attribute Modify 59 59
Attribute Rename 1255 1255
Constraint Add 13 5
Table Rename 8 8
Total 2855 2843

Table 3.3: Affected and adjusted activities per event kind

In Table 3.3, we summarize out results for different kinds of events. We, first, note that
most of the activities were affected by attribute additions and renaming, since these kinds of
events were the most common in our scenarios. Most important, we can conclude that our
framework can effectively adapt activities to the examined kinds of events. Exceptions
regarding attribute and constraint additions are due to the fact that specific events induced ad
hoc changes in the functionality of the affected activities, which prompts the user to decide
upon the proper readjustments. These exceptions are mainly owed to events occurred on the
lookup tables of the scenarios. Additions of attributes at these tables incurred (especially

72

when these attributes were involved in primary key constraints) rewriting of the WHERE
clause of queries contained in the affected activities.

Finally, whereas the above concern the precision of the method (i.e., the percentage of
correct status determination for affected activities), we should also report on the recall of our
method: The number of activities that were not affected by the event propagation, although
they should have been affected, is zero.

3.6.2 Effectiveness of Workflow Annotation

Our second goal was to examine the extent to which different annotations of the graph with
policies affect the effectiveness of our framework. This addresses the real case when the
administrator/developer does not know the number and the kind of potential events that occur
on the sources and consequently cannot decide a priori upon a specific policy set for the
graph.

Hypothesis H2: Different annotations affect the effectiveness of the algorithm.

Methodology:

1. We first imposed a policy set on the graph.

2. We then invoked each event in sequence, retaining the same policy set on the graph.

3. We again examined the extent to which the automated readjustment of the affected
activities (i.e., their obtained status) adheres to the desired transformation and
evaluated the effectiveness of our framework for several annotation plans.

We experimented with 3 different policy sets.

• Mixture annotation : A mixture annotation plan for a given set of events comprises
the set of policies imposed on the graph that maximizes the number of successfully
adjusted activities. For finding the appropriate policy for each activity of the ETL
scenarios, we examined its most common reaction to each different kind of event.
For instance, the appropriate policy of an activity for attribute addition will be
propagate if this activity propagates the 70% of the new attributes added at its
source and blocks the rest 30%. In mixture annotation, propagate policies were
applied on most activities for all kinds of events whereas block policies were applied
on some activities regarding only attribute addition events.

• Worst-Case annotation: As opposed to the mixture annotation plan, the worst case
scenario comprises the set of policies imposed on the graph that minimizes the
number of successfully adjusted activities. The less common reaction to an event
type was used for determining the prevailing policy of each activity.

73

1094

426

59

1255

13 8

1036

426

59

1255

5 8

Attribute Add Attribute

Drop

Attribute

Modify

Attribute

Rename

Constraint

Add

Table

Rename

Mixture
AFFECTED CORRECT STATUS

Figure 3.11: Mixture Annotation

169

58

7

263

8 84 0 0 0 0 0

Attribute Add Attribute

Drop

Attribute

Modify

Attribute

Rename

Constraint

Add

Table

Rename

Worst-Case
AFFECTED CORRECT STATUS

Figure 3.12: Worst Case Annotation

• Optimistic annotation: Lastly, an optimistic annotation plan implies that all
activities are annotated with a propagate policy for all potential events occurred at
their sources.

Again, we measured the number of affected activities that obtained a specific status
with respect to the number of correctly adapted activities. In Figure 3.11, Figure 3.12, Figure
3.13 we present the results for the different kinds of events and annotations.

74

1448

426

59

1255

13 8

486
426

59

1255

5 8

Attribute Add Attribute

Drop

Attribute

Modify

Attribute

Rename

Constraint

Add

Table

Rename

Optimistic AFFECTED CORRECT STATUS

Figure 3.13: Optimistic Annotation

As stated in the hypothesis, different annotations on the graph have a different impact
on the overall effectiveness of our framework, as they vary both the number of the affected
activities (i.e., candidates for readjustment) and the number of the adjusted activities (i.e.,
successfully readjusted) on the graph. The mixture annotation manages most effectively to
detect these activities that should be affected by an event and adjust them properly. In
mixture annotation, the policies, imposed on the graph, manage to propagate event messages
towards activities that should be readjusted, whereas block messages from activities that
should retain their old functionality. On the contrary, the worst case annotation, fails to detect
all affected activities on the graph as well as to adjust them properly, as it blocks event
messages from the early activities of each ETL workflow. Since events are blocked in the
beginning of the workflow, further activities cannot be notified for handling these events.
Lastly, optimistic annotation provides both good and bad results. On the good side of things,
the optimistic annotation is close to the mixture annotation in several categories. On the other
hand, the optimistic annotation propagates event messages even towards activities, which
should retain their old semantics. In that manner, optimistic annotations increases the number
of affected activities (i.e., actually all the activities of the workflow are affected) without
however handling properly their status determination.

Overall, a reasonable tactic for the administrator would be to either choose a mixture
method, in case there is some a-priori knowledge on the desired behavior of constructs in an
environment, or, progressively refine an originally assigned optimistic annotation whenever
nodes that should remain immune to changes are unnecessarily affected.

75

3.6.3 Efficiently Adapting ETL Workflows to Evolution Cha nges

For measuring the efficiency of our framework, we examined the cost of manual
adaptation of the ETL activities by the administrator / developer with respect to the cost of
setting the evolution metadata on the graph (i.e., annotation with policies) and transforming
properly the graph with use of our framework.

Developers’ effort comprises the detection, inspection and where necessary the
rewriting of affected activities by an event. For instance, given an attribute addition in a
source relation of an ETL workflow, the developer must detect all activities affected by the
addition, decide how and whether this addition must be propagated or not to each SQL
statement of the activity and lastly rewrite, if necessary, properly the source code. The effort
required for the above operations depends highly on the developers’ experience but as well
on the ETL workflow characteristics (e.g., the complexity of the activity source code, the
workflow size, etc.). Therefore, the cost in terms of human effort for manual handling of
source evolution, MC, can be quantified as the sum of (a) the number of SQL statements per
activity, which are affected by an event and must be manually detected, AS, plus (b) the
number of SQL statements, which must be manually rewritten for adapting to the event, RS.
Thus human effort for manual adaptation of an activity, a, to an event, e, can be expressed as:

)(e
a

e
a

e
a RSASMC += (1)

For a given set of evolution events E, and a set of manually adapted activities A in an
ETL workflow, the overall cost, OMC, is expressed as:

∑∑
∈ ∈

=
Ee Aa

e
aMCOMC (2)

For calculating OMC, we recorded affected and rewritten statements for all activities
and events.

If the proposed framework had been used, instead of manually adapting all the
activities, the human effort can be quantified as the sum of two factors: (a) the number of
annotations (i.e., policy per event) imposed on the graph, AG, and (b) the cost of manually
discovering and adjusting activities AR that escape the automatic status annotation of the tool,
e.g., no annotations have been set on these activities or a prompt policy is assumed for these
activities. The latter cost is expressed as:

∑∑
∈ ∈

=
Ee Aa

e
a

R

MCRMC (3)

Therefore, overall cost for automated adaptation, OAC, is expressed as:

RMCAGOAC += (4)

Hypothesis H3: The cost of the semi-automatic adaptation, OAC, is equal or less than
the cost of manually handling evolution, OMC.

76

For calculating OAC, we followed the mixture plan for annotating each attribute and
query node potentially affected by an event occurred at the source schema and measured the
number of explicit annotations, AG. We then applied our algorithm and measured the cost of
manual adaptation for activities which were not properly adjusted. Figure 3.14 compares the
OMC with OAC for 7 evolving ETL scenarios.

Figure 3.14: Manual (OMC) and Semi-automatic (OAC) Adaptation
Cost per ETL Scenario

Figure 3.15: Cost of Adaptation with and without use of Default Policies

Figure 3.14 shows that the cost of manual adaptation is much higher than the cost of
semi automating the evolution process. The divergence becomes higher especially for large

77

scenarios such as scenario 1 and 4 or scenarios with many events such as scenario 2, in which
the administrator must manually detect a large number of affected activities or handle a large
number of events.

Furthermore, to decrease the annotation cost, AG, we applied system wide default
policies on the graph. With use of default policies, the annotation cost, AG, decreases to the
number of explicit annotations of nodes that violates the default behavior. We, again,
measured the number of explicit annotations as well as the remaining RMC. As shown in
Figure 3.15, the cost of adaptation with use of our framework is further decreased, when
default policies are used. With use of default policies, the overall adaptation cost is dependent
neither to the scenario size (e.g., number of nodes) nor to the number of evolution events, but
rather to the number of policies, deviating from the default behavior, that are imposed on the
graph. Scenarios 1 and 4 comprised more cases for which the administrator should override
the default system policies and thus, the overall cost is relatively high. On the contrary, in
scenarios 2 and 3 the adaptation is achieved better by a default policy annotation, since the
majority of the affected activities react in a uniform way (i.e., default) to evolution events.

3.7 Summary

In this chapter, the framework for the regulation of impact of database schema evolution
towards affected constructs has been presented. The evolution graph of a database centric
environment has been enriched with evolution semantics, namely evolution events that occur
on the graph nodes and policies that regulate the propagation of these events on the graph.
The strong flavor of inter-module dependency in the back stage of a database-centric
environment makes the problem of schema evolution very important under these settings. We
have provided a formal method for performing impact prediction for the adaptation of
affected constructs, mainly queries and views to evolution events occurring at their sources.
Policies are defined on the graph, which induce the readjustment of the graph in the presence
of potential changes by assigning an appropriate status on affected parts of the graph. We
have presented the core mechanism of the proposed framework which is the Propagate
Changes algorithm. We have also provided two ways for the determination of prevailing
policies on the graph, namely the a-priory and on-demand resolution. Lastly, we have
included a detailed experimental evaluation of the framework over a real-case scenario of
schema evolution.

79

4. LANGUAGE EXTENSIONS FOR
REGULATING DATABASE SCHEMA

EVOLUTION

Syntactic as well as semantic adaptation of queries and views to changes occurring in the
database schema is a time consuming task, treated in most situations manually by the
administrators or the application developers. The detection of the affected parts as well as
their adaptation to the change, are burdensome operations performed, most of the times, after
the occurrence of each schema alteration. Therefore, in the previous chapter, we presented a
framework for the a-priori handling of database schema evolution and the regulation of the
impact that evolution operations have on the rest of the system. We associate parts
potentially affected by evolution changes with policies that determine their reaction to such
changes before their occurrence.

An important issue regarding our framework seems to be the cost of enriching with
evolution semantics all database constructs as well as all queries, views, stored procedures,
and in general the plethora of parts comprising a database centric system. Even a small
database system may comprise some tens of database objects and even hundreds of
dependent objects accessing the database schema. If transformed to the graph modeling
technique, it will result in a large number of nodes, on which the administrator must
manually impose a set of policies. Thus, setting evolution metadata on the various modules
comprising the system with an efficient way is a crucial technical issue that we resolve in this
thesis. We consider that the assignment of evolution metadata raises the following interesting
challenges, regarding:

• Definition of policies: The enrichment of the database objects with policies must be a
task requiring minimal effort from the user and therefore must be performed together
with the creation or alteration of each object. For instance, the designer of the
database schema must be able to define policies on relations during the creation or

80

alteration of each relation and to modify these semantics. The definition of policies
is performed on queries and views similarly to relations. Therefore, the language
proposed must extend the capabilities of data and query definition of SQL.

• Scope of events: The policies defined on a module must capture all possible events
that may affect this module in various scope levels. The user must be able to define
policies for the occurrence of an event on a specific part of the module, e.g. the
deletion of a specific attribute, or for the occurrence of an event to any part of the
module, e.g., the deletion of any attribute in the module. Therefore, the language
proposed must enable the definition of policies targeting on specialized or module-
wide events.

• Default policies: The extension proposed must enable the definition of default,
system-wide policies for several kinds of events and parts of the system. For
instance, the user must be able to define a default policy for additions of attributes to
which any affected module must conform. Additionally, the language must enable
the overriding of default behaviors through explicit annotation of specific modules.

Dealing with the above issues, in this chapter, we propose a set of SQL extensions that
enables the implementation of the proposed framework for the management of evolution. For
extending a system catalog with extra information regarding evolution metadata, we provide
extensions to SQL regarding both top level construct definitions, such as tables, views, and
queries, as well as fine grain constructs such as attributes, conditions of views/queries, and
database constraints. Moreover, we provide a principled way for defining the proposed
evolution semantics and in the same time minimizing the user effort. We, first, address the
requirement for the definition of default policies on the whole system. The extensions
permits the definition of default policies for various kinds of database constructs, such as
relations, queries, attributes, etc. Furthermore, the extensions allow overriding default
policies and explicitly annotating specific modules by extending the current SQL syntax for
the definition of relations, views and queries. Lastly, the proposed extensions allow the
definition of policies for handling either specialized or module-wide events, by annotating
low level parts of a module, such as condition and attributes or top-level parts, such as
queries, relations and views.

Chapter Outline. In section 4.1, approaches related to language extensions for schema
evolution are presented. In section 4.2, we present the extension regarding definition of
default policies on the system, and in sections 4.3, 4.4 the annotation of top level nodes and
fine grain constructs, respectively. In section 4.5, we evaluate the feasibility of the proposed
technique, by applying the extension on a real database centric environment. Lastly, in
section 4.6 we conclude our proposal.

81

4.1 Extensions of SQL for Schema Evolution

Current RDBMS support all SQL extensions for performing evolution operations on the
database schema, such as the CREATE, DROP and ALTER statements. However, they do not
incorporate evolution semantics to the database schema nor to the definition of queries and
views, so that administrators / developers could prescribe the behavior of the system when
database schema evolution changes occur. On the contrary, to deal with the problems
occurred by the evolution in databases, several practical techniques are usually used for this
reason, like the use of variable names as placeholders for the real names of constructs like
attributes and tables. For example, Oracle’s PL/SQL [UrHM04] uses the %TYPE and
%ROWTYPE constructs to define variables as they are defined within the database. If the data
type or precision of a column changes, the program automatically picks up the new definition
from the database without having to make any code changes. Hence, the appropriate
enrichment of the procedural code with such constructs provides data independence, reduces
maintenance costs, and allows programs to adapt as the database changes to meet novel
business requirements. Another technique is the CASCADE capabilities that RDBMS offer for
deletion of dependencies between objects, such as foreign keys. During the definition of a
foreign key constraint, the user determines the behavior (e.g., delete column, set null to all
tuples) of the dependent column when the referenced primary key is deleted. However, such
techniques partially confront the problem, as they are dealing with the simplest cases of
evolution.

Most of the language extensions included in the related literature address specific
perspectives and techniques for handling schema evolution. SQL/SE is a query language
extension for databases supporting schema evolution [Rodd92a]. SQL/SE provides
extensions for querying evolvable database schemas in the context of schema versioning and
temporal databases. The author enriches the syntax of SQL queries with semantics for
querying different versions of schemas and handling attributes that are not defined over
different versions. Our proposed set of extensions does not require the existence of schema
versioning or the integration of time within database schema evolution. We, actually, provide
rules for the transformation and adaptation of queries and views to the last valid database
schema without the assumption that the transformed queries retain the same semantics.

Another extension to SQL, namely SchemaSQL supports multi database querying
[LaSS01]. SchemaSQL addresses the problem of interoperability between different database
schemas and their respective instances, enabling the user to express queries over different
schemas. SchemaSQL softens the distinction between schema and data by allowing to query
schema (such as lists of attribute or relation names) in SQL-queries and also to use sets of
values obtained from data tuples as schema in the output relation. This leads to a versatile
query language which allows for transforming semantically equivalent but syntactically
different schemas into each other.

82

Lastly, [NiLR98] introduces in the context of Evolvable View Environment framework
an extension of SQL, named E-SQL. E-SQL is an extension of SQL augmented with
specifications for how the view definition may be synchronized under database schema
changes. Evolution preferences expressed as evolution parameters allow the user to specify
criteria based on which the view will be transparently evolved by the system under schema
changes at the underlying database. Specifically, the syntax of a view definition is enriched
with parameters that dictate whether attributes and relations included in the view’s clauses
can be dispensed or replaced in the case of their deletions from the underlying database
schema. Also, it includes a parameter for determining whether the extent of the evolved view
is a subset, a superset or an equal set of the extent of the original view. The general syntax of
the proposed language extensions is given below:

CREATE VIEW V(V 1,..., V M) (ViewExtent = δV) AS
SELECT R.A 1 (Disp.= true|false, Repl. = true|false), ...,

S.B N (Disp. = true|false, Repl. = true|false)
FROM R(Disp.= true|false, Repl. = true|false),

S(Disp.= true|false, Repl. = true|false)
WHERE C1(Disp.= true|false, Repl. = true|false)

AND ... C K(Disp.= true|false, Repl. = true|false)

The extension proposed in E-SQL can be considered similar to the extension proposed
in this thesis from the perspective that evolution parameters resemble the concepts of policies
used in our framework. Still, it is constrained only to handling deletions of attributes and
relations, offering alternatives for removing the invalid references from the definition of the
view or replacing them through a valid rewriting. Our proposed extension offers a wider
range of evolution events and policies that the user can define on existing SQL. It also allows
the definition of default policies for annotating with minimal effort large-scale systems.

4.2 Database-wide Default Values

In the following sections, we define the syntax for the proposed extensions of SQL. All
extensions outlined are given in BNF and throughout these sections we refer to the system
configuration employed as motivating example in section 3.2.

Regarding the definition of the default policies, we consider each assertion as a triplet
(event, type of node, policy). Syntactically, this is expressed as follows:

ON <event> <type of node> THEN <policy>

An event refers to evolution events in the database schema comprising an event type,
such as Delete, Add, Modify, Rename and a node type, which takes any of the following
values in the partial order presented:

83

• NODE

• RELATION, QUERY, VIEW

• ATTRIBUTE, CONDITION, PK, FK, NNC, UC

Note that we annotate nodes with default values only for changes applied to themselves
and not to any of their ancestors or descendants. For example, we can have the following
annotations:

ON DELETE NODE THEN PROPAGATE
ON DELETE ATTRIBUTE THEN PROMPT

The definitions of the default policies are expressed in SQL as follows.

• SQL Syntax

db-spec::= CREATE DATABASE <db-name> [policy-list]
policy-list::= policy-clause [,policy-clause]

policy-clause::= ON event THEN policy
event::= action-type construct-type

event-type::= Add | Delete | Modify | Rename
construct-type::= NODE | RELATION | QUERY | VIEW | ATTRIBUTE |

CONDITION | PK | FK | NNC | UC
policy::= propagate | block | prompt

• Example

CREATE DATABASE company
ON DELETE ATTRIBUTE THEN PROMPT

4.3 Top Level Constructs

We extend SQL syntax to include evolution-based semantics both in DDL statements as well
as in SQL queries. The general syntax is:

ON <event> TO <node> THEN <policy>

where event again refers to evolution events in the database schema, node refers to
the specific database part suffering the event and policy can take the values {propagate,
block, prompt}.

84

4.3.1 Relations

Definition of policies on relations regarding their behaviour on evolution changes is
primarily enforced upon creation, and thus, we extend CREATE TABLE syntax with certain
policy clauses. Policies imposed in a relation-wide scope can be applied both to the relation
itself as well as to all schema attributes and constraints. In that way, the administrator has the
ability to annotate with a single clause the entire relation schema instead of annotating each
constituent attribute or constraint separately.

• SQL Syntax

table-spec::= CREATE TABLE <table-name>
(table-element-list [, policy-list])

policy-list::= policy-clause [,policy-clause]
policy-clause::= ON event TO node THEN policy

event::= Add Attribute | Delete Attribute | Modify
Attribute | Rename Attribute | Delete Relation
| Rename Relation | Add Condition | Delete
Condition | Modify Condition

node::= <table-name>
policy::= propagate | block | prompt

• Example

CREATE TABLE WORKS(E_ID INTEGER,
P_ID INTEGER,
W_RESP VARCHAR(10),
W_DUR INTEGER,
PRIMARY KEY (E_ID,P_ID),
FOREIGN KEY (E_ID) REFERENCES EMP(E_ID),
FOREIGN KEY (P_ID) REFERENCES PRJS(P_ID),
ON Add Attribute TO WORKS THEN propagate);

The above syntax corresponds to the annotation of the respective relation node (i.e.,
WORKS) with the policy that allows the addition of attributes and propagates this addition to

all queries and views accessing this relation. Similarly, policy clauses can extend ALTER

TABLE statements, enabling the administrator to define policies on existing relations.

4.3.2 Views

Views are inherent constructs of the database schema that constitute queries over the
database schema –with respect to views’ definition– and relations to other queries –w.r.t.
views’ functionality. Therefore, views invoke evolution events when (a) their definition is
altered, affecting all queries defined over them and (b) the relations over which they are

85

defined are affected by schema changes. We enrich existing SQL syntax for views creation to
capture potential events on their definitions as follows.

• SQL Syntax

view-spec::= CREATE VIEW <view-name> AS
query-expression [policy-list]

policy-list::= policy-clause [,policy-clause]
policy-clause::= ON event TO node THEN policy

event::= Add Attribute | Delete Attribute | Modify
Attribute | Rename Attribute | Delete Relation
| Rename Relation | Add Condition | Delete
Condition | Modify Condition

node::= <view-name> | <table-name>
policy::= propagate | block | prompt

The policies capture events occurring at the source tables of views’ definition (i.e., the
construct is a table-name) or events occurring at the view definition itself (i.e., the construct
is a view-name).

• Example

CREATE VIEW EMPS_PRJS AS
SELECT E.E_ID, E.E_NAME, E.E_SAL

P.P_ID, P.P_NAME, P_BUDGET
FROM EMP E, PRJS P, WORKS W

WHERE W.E_ID = E.E_ID
AND W.P_ID = P.P_ID

ON Modify Condition TO EMPS_PRJS THEN block;

Such syntax corresponds to the annotation of the view node EMPS_PRJS with a policy,
which blocks changes in the WHERE clause of the view definition.

4.3.3 Queries

Queries are considered as top-level constructs in our framework and they are the primary
consumers of evolution changes occurring at the database level. Policies’ clauses enrich
query syntax with evolution semantics regarding the reaction of the query to such changes
and have a query-wide scope. They prescribe both the behavior of the query itself and the
query constituents, i.e., query attributes and query conditions. In such way, the developer
may define a query-wide reaction to an evolution change instead of assigning explicit
policies to each query attribute and condition.

• SQL Syntax

86

query- expression::= SELECT [ALL|DISTINCT] scalar-expression-list
FROM table-expression
[WHERE search-condition]
[GROUP BY grouping-column-list]
[HAVING group-condition]
[ORDER BY sort-specification-list]
[policy-list]

policy-list::= policy-clause [,policy-clause]
policy-clause::= ON event TO node THEN policy

event::= Add Attribute | Delete Attribute | Modify
Attribute | Rename Attribute | Delete View |
Rename View | Delete Relation | Rename Relation
| Add Condition | Delete Condition | Modify
Condition

node::= <view-name> | <table-name>
policy::= propagate | block | prompt

• Example

Q: SELECT P_ID, P_NAME, P_BUDGET,
SUM(E_SAL) AS P_EXPENSES

FROM Emps_Prjs
GROUP BY P_ID, P_NAME, P_BUDGET

ON Add Attribute TO emps-prjs THEN block;

The above syntax corresponds to the annotation of the query node Q with a policy,
which blocks the inclusion of added attributes in the underlying view Emps_Prjs in the
select clause of the query syntax.

4.4 Fine Grain Constructs

Policy annotation can be further specialized to fine grain constructs such as attributes,
database constraints and conditions of views/queries. Such annotations enable the
administrator to define specific policies on these constructs, which override policies defined
on their top-level containers.

4.4.1 Attributes

Policies are defined for relation attributes in table definition and for view or query attributes
in view or query definitions, respectively. Policies’ clauses refer to attribute constructs,
which may be affected by an evolution change, prescribing in that way the specific behavior
of that attribute.

• SQL Syntax

87

policy-clause::= ON event TO node THEN policy
event::= Delete Attribute | Modify Attribute |

Rename Attribute
node::= [<table-name> | <view-name>.] <attribute-name>

policy::= propagate | block | prompt

• Example

CREATE TABLE EMP (E_ID INTEGER PRIMARY KEY,
E_NAME VARCHAR(25) NOT NULL,
E_TITLE VARCHAR(10),
E_SAL INTEGER NOT NULL,
ON Delete Attribute TO E_NAME THEN block);

Such syntax corresponds to the annotation of the attribute node E_NAME with the
explicit policy that blocks the node deletion from the container relation. We apply the same
syntax for attributes involved in the SELECT clause of queries.

• Example

Q: SELECT P_ID, P_NAME, P_BUDGET,
SUM(E_SAL) AS P_EXPENSES

FROM Emps_Prjs
GROUP BY P_ID, P_NAME, P_BUDGET

ON Delete Attribute TO P_NAME THEN propagate;

Such syntax corresponds to the annotation of the projected attribute node P_NAME of
the query Q with the explicit policy for allowing the node deletion from the select and group
by clause of the query (e.g., in the case that this attribute is removed from the underlying
database.)

4.4.2 Constraints

Similarly, policies are defined on database constraints to override potential defined policies
on their top-level containers (i.e., relation) and thus to prescribe their specific behavior to
evolution changes.

• SQL Syntax

policy-clause::= ON event TO node THEN policy
event::= Delete Constraint | Modify Constraint
node::= [<table-name>.]<constraint-name>

policy::= propagate | block | prompt

• Example

88

CREATE TABLE EMP (E_ID INTEGER PRIMARY KEY,
E_NAME VARCHAR(25) NOT NULL,
E_TITLE VARCHAR(10),
E_SAL INTEGER NOT NULL,
ON Modify Constraint TO EMP.PK THEN propagate);

The above syntax corresponds to the annotation of the constraint node Emp.PK with the
explicit policy for allowing the modification of itself (e.g., the addition of a second attribute
to the primary key constraint) and propagating this change to all dependent constructs.

4.4.3 Conditions

Policies are defined on condition clauses of queries and views for prescribing their behavior
to evolution events too. The modification or deletion of a view or a query condition
semantically impacts dependents parts of the system. Thus, policies imposed on conditions
override query- or view-wide policies and handle semantic changes invoked by such events.

• SQL Syntax

policy-clause::= ON event TO node THEN policy
event::= Delete Condition | Modify Condition
node::= [<view-name>.]<condition-name>

policy::= propagate | block | prompt

Moreover, we provide a facility for the management of conditions as first class citizens.
We employ a specific name for each condition as follows.

CREATE CONDITION <condition> AS <expression>

For instance, we might have the following statements, expressing (a) a simple
condition employed in a query, (b) a foreign key constraint, and (c) a join condition,
respectively.

CREATE CONDITION Emp_Age_Cond AS AGE>50
CREATE CONDITION Works_Emp_FK AS WORKS.EMP# IN EMP. EMP#
CREATE CONDITION Works_Emp_J AS WORKS.EMP#=EMP.EMP#

Traditional statements for the definition of foreign keys or assertions for attribute
domains are easily refined to the above “normal form”, without necessarily obliging the
database designer or administrator to abide by the above syntax.

Conditions may be employed in the WHERE clause. For example, a query SELECT *

FROM EMP WHERE AGE_COND would simply use the condition as a macro. Parametric
conditions, to allow referring to aliases in SQL queries are straightforward. One can also deal
with the problem of existing code in a straightforward manner, since automatic condition
names can be assigned to all the queries.

89

4.5 Evaluation of Language Extensions

We evaluated the proposed framework and capabilities of the approach presented via the re-
verse engineering of a real-world evolution scenario extracted from an application of the
Greek public sector. Our goal was to minimize the human effort required for defining and
setting the evolution metadata on the system by using the proposed language extensions.

We extracted queries and views from applications and stored procedures, and we
monitored the events occurred on the database schema and the way affected constructs had
been manually adjusted by the designers (e.g., through some rewriting) to each evolution
event. In doing so, we resolved the appropriate policies per event for all affected constructs.
Next, we used our approach for mapping constructs to graphs and annotate them with
policies. Our framework allows for the representation of the database graph and its annota-
tion with policies regarding evolution semantics and enables the user to explicitly define
policies on graph constructs and perform what-if analysis for several evolution cases.

The configuration used comprises a total set of 52 queries over 18 relations. The
evolution events occurred in the database schema include renaming of relations and
attributes, modification of attribute domain, deletion of attributes, and modification of
primary key constraints. Per event, we employed the appropriate propagate or block policy
on the relations, queries or attributes affected by the event.

In the context of our graph model, our configuration comprised approximately 2500
nodes manually annotated with policies for each event that were affected by. This was a
rather time-consuming task, as queries, query attributes, and relations had to be explicitly
annotated. Policies for the various kinds of events were defined over different kinds of nodes
as shown in Table 4.1.

Event Annotated nodes
Rename relation Relation nodes
Add attributes Relation/Query nodes

Delete Attributes Attribute nodes
Rename Attributes Attribute nodes

Domain Modification Attribute nodes
Condition Modification Condition nodes

Table 4.1: Kind of nodes annotated per event

Per query and relation, we counted the number of nodes manually annotated with
policies propagate or block per event and the results are summarized in Table 4.2. Each node
may have been, annotated with more than one policy when such annotations address different
events; e.g., an attribute node may permit its renaming, whereas block its deletion.

Additionally, we employed the proposed SQL extensions to impose the same policies
on the graph. We measured the number of the policy clauses, which must enrich existing

90

SQL and DDL commands in order to annotate the same policies on the graph as opposed to
the number of manual annotations on nodes. Hence, we evaluated 3 different cases: a) use of
a default propagate policy for a specific query and for the events Delete, Rename and Modify
Domains of attributes (query scope) instead of manually annotating each query attribute, b)
use of default policies for all relations (relation scope) for propagating the aforementioned
events, instead of annotating each query and c) use of default propagate policy for database
(database scope) to allow the renaming of relations and the addition of attributes instead of
annotating each relation. The results are shown in Table 4.3.

With the usage of the proposed SQL extensions, the human effort for explicitly
annotating these nodes is minimized. Specifically, in the case study previously described, the
whole process of manually identifying and adapting the changes lasted for 6 man-months,
whereas by using our approach and appropriately annotating the database constructs and
applying the respective policies, the same process lasted for less than half a man-month.

Event # of nodes
Propagate Block

Rename relations 18 0
Add attributes 64 13
Delete Attributes 1608 92
Rename Attributes 1615 85
Domain Modification 1690 10
Condition Modification 0 21
Total Annotations 4995 221

Table 4.2: Distribution of annotated nodes per kind of policies and events

Scope # of operations
Annotations Policy Clauses

Query scope 486 9
Relation Scope 5180 293
Database Scope 36 2

Table 4.3: Operations with and without SQL extensions

4.6 Summary – Discussion

In this chapter, we have presented a language extension to SQL for the annotation of
database objects with evolution semantics. The introduced extensions alleviate from the
designer the cost of manually imposing policies on the graph as well as to include evolution
semantics in the definition of a database object or query. Specifically, the proposed
extensions enriched the SQL definition of database objects and queries with evolution
semantics, i.e., policies, which dictate their reaction to evolution events. The extensions

91

involved the definition of default policies for the entire database environment, policies
regarding top level nodes, such as relations, view and queries and lastly policies for fine
grain constructs, such as attributes, constraints and conditions. Lastly, in this chapter we have
evaluated the feasibility of the proposed technique, by applying the extension on a real
database centric environment.

93

5. A METRIC SUITE FOR
EVALUATING THE EVOLUTION OF

DATABASE SYSTEMS

How good is the design of a database centric environment as far as its evolution is
concerned? What makes a design good or bad and which configuration minimizes the effort
required for handling changes in an evolvable database environment? Typically, such
questions are answered by a set of rules, many of them empirically validated, such as ‘does
the configuration follow a typical design pattern, such as the use of views as layers for
handling evolution?’, or “is the database schema normalized” and so on. All recipes are
based on practical observations of the past, as well as rules of thumb that have been
established by expert practitioners and although valuable, they simply transfer the lessons
learned the hard way in the “craft” of database design.

At the same time, the scientific community is not in possession of a fundamentally
established theory for the evaluation of the design quality of database centric environments.
So far, the researchers have dealt with metrics that evaluate the design quality of the database
schema with respect to high level goals, such as completeness, understandability, etc. both at
the conceptual and the logical level. Although structural properties of the database (e.g.,
number of relations or foreign keys) are considered, the employed approaches restrict
themselves to constructs internal to the database without taking into account the
incorporation of constructs surrounding the database into their models, nor the fact that a
dependent software construct, and especially an information system, evolves over time. Since
software maintenance makes up for at least 50% of all resources spent in a project,
maintainability is an important factor for the determination of the quality of a design of a
database environment as a whole. The problem is quite hard, since changes in the schema of
a database-centric system affect both its internals but also, the surrounding deployed

94

applications. Thus, the minimal interdependence of these software modules results in higher
tolerance to subsequent changes and should be measured with a principled theory.

In the previous chapters, we introduced a framework for the impact analysis and the
management of schema evolution which maps to a graph the structural properties of the
database schema along with any views and queries defined over this schema. Given a
database configuration, the impact of a schema change on the rest of the system is
determined by exploiting the structure of the graph and furthermore the evolution of the rest
of the system is regulated with use of certain policies applied on the graph constructs. Hence,
administrators can regulate the management of evolution in a semi automatic way when
changes on the database schema occur.

In a complex database environment where a significant number of constructs interrelate
with each other, the detection of these constructs that are most affected by evolution changes
is valuable since these constructs are candidates for applying policies on them. However, the
a priori knowledge of the most vulnerable parts of a database environment is not feasible, not
until a significant number of schema changes occur. For instance, observe Figure 5.1, which
shows the an abstract view of the evolution graph of the company example presented in
chapter 3, where the database administrator wishes to identify these parts of the overall
configuration that are most prone to be affected by potential schema changes at the
underlying relations. An intuitive approach dictates that the Emps_Prjs view can be
considered as one of the most vulnerable parts of the system, since it depends on all three
relations. Furthermore, the query Q2 of the report module, which is defined on top of this
view, can also be regarded as a highly vulnerable part, since it is transitively affected by
changes occurring at the three relations as well as to the schema of the view. On the other
hand, query Q1 of the data entry form is defined over only EMP relation, thus being less
sensitive part than Emps_Prjs view and Q2 query, since it is affected by changes occurring
only at one relation. Thus, intuitively, we can conclude that the most affected parts are these
that have a high dependence on other parts of the system either directly (i.e., the dependence
of the view on the three relations) or transitively (i.e., the transitive dependence of the query
Q2 on the three relations).

95

Figure 5.1: Abstract representation of motivating example graph

The above intuition is based on the assumption that events occur on the underlying
relations with a uniform distribution and only structural properties of the examined
configuration are considered. Assume now that according to system requirements the
majority of evolution events involve changes occurring at the schema of EMP relation. That
is, the possibility that a schema change occurs at EMP relation is much higher than the
possibility that changes occur at the other relations. Should the administrator still measure the
vulnerability of queries defined over EMP relation, i.e., Q1 in our example, with a similar
manner? The distribution of occurrence of events on the system plays a significant role which
must be taken into consideration by the administrators for the detection of the potentially
most affected parts of the system and thus for the most accurate management of evolution.

Additionally, in the context of the proposed framework, the administrator can regulate
the propagation of evolution on the system by imposing policies on specific parts. The
“sensitivity” of constructs to evolution events is furthermore dependent on the policy
semantics induced by the administrator. For instance, assume that Emps_Prjs view is
annotated for not permitting changes at its schema and therefore blocking all events that
occur at the underlying three relations. Should the administrator still consider that the query
Q2 is vulnerable to changes occurring at the database schema? In the presence of policies, the
dependency between parts of the system can be further determined by the specific policies
imposed on them.

Summarizing the above concepts, we consider the following important factors as
quality indicators for the establishment of a set of measurements concerning the evolution

96

capability of a database environment: (a) the structural properties of the system design both
from a graph theoretic and an information theoretic perspective, (b) the distribution of
occurrence of events on parts of the system and lastly, (c) the policy semantics imposed on
the graph.

Furthermore, based on these quality factors, we propose in this chapter a set of metrics
classified in the following categories.

• Future-agnostic graph-based metrics, building upon the properties of the nodes of the
graph. Graph theoretic properties like the degrees of a node show how interrelated to
other nodes a certain node is. Additionally, we employ a set of metrics that measure
structural properties of the graph with use of the information theoretic notion of
entropy.

• Future-aware metrics that extend the previous simple model with a hypothesis for the
evolution events that will occur in the future. This hypothesis concerns a distribution
of events for a certain time period. Depending on the era of the database
environment, different events will occur (e.g., early phases are characterized by
radical changes to the structure of the database whereas mature phases involve a
higher degree of additions).

• Policy-aware metrics that take into consideration the special role of policies that are
defined on the graph.

The contribution of this chapter involves the proposal and the experimental assessment
of these metrics as:

• Firstly, they act as predictors for the vulnerability of a software module of a database
centric environment (either internal, e.g., a relation, or external, e.g., a query) to
future changes to the structure of the environment.

• Secondly, they facilitate the assessment of the quality of alternative designs of the
environment with a particular viewpoint on the evolution of its schema.

Chapter Outline. In section 5.1, we present metrics and approaches for measures of
quality that have been proposed in the related literature for the evaluation of database design.
We then propose a set of metrics for the assessment of the vulnerability of all the design
structures in a database environment (Section 5.2). We first exploit the graph and provide
metrics like the degrees (in, out, and total) of a node, the transitive degrees of a node
(standing for the extent to which other nodes transitively depend upon it), and the degrees of
a summarized variant of a module (e.g., a view) that abstract the internal semantics of the
module and focus on its coupling to the rest of the environment (Section 5.2.1). We then
present an event aware set of metrics that takes into account the distribution of potential
events on the graph (Section 5.2.2). To this end, we include the special role of policies
annotating the graph into a policy-aware set of metrics (Section 5.2.3). We lastly provide an

97

information theoretic definition of a module’s entropy that simulates the extent to which the
vulnerability of a node is surprising (Section 5.2.4). Finally, we extensively experiment with
various configurations in the setup of a reference database environment (Section 5.3) and
assess both the effectiveness of the proposed metrics (i.e., how well do they actually predict
the impact of evolution events to a design construct) and how different design alternatives for
the same schema behave with respect to evolution. We lastly conclude the concepts presented
in this chapter in section 5.4.

5.1 Related Work on Database Design Metrics

Various approaches exist in the area of database metrics. Most of them attempt to define a
complete set of database metrics and map them to abstract quality factors, such as
maintainability, good database design, etc. We distinguish these approaches into these
metrics referring to the conceptual design of the database (i.e. ER diagram) and to these
referring to the logical design of the database (i.e. relational data diagram). We also present
metrics proposed for evaluating the design quality of data warehouses. A last category of
metrics that we examine relates to the information theoretic notion of entropy.

5.1.1 Conceptual Metrics

Conceptual metrics are useful for evaluating quality issues for a database in the early stage of
the design. A “good” design at the conceptual level of a database may assure that fewer
inconsistencies will emerge (i.e. incomplete requirements) and furthermore fewer changes
are needed during the lifetime of the database and of the information system, in general.

Gray et al [GCMP91] propose some objective and open-ended metric to evaluate the
quality of an ERD. The goal of these metrics is to provide designers of quantitative support
for helping them to compare design alternatives. They suggest using this measure for
determining the effort required to implement a design. They introduce the following two
metrics:

ER Metric: ER Metric is a measure of the complexity of an ERD, defined as:

∑
=

=
n

i

C
iEE

1

)(where n=number of entities, c>1 and Ei=complexity of entity i.

For each entity Ei , the complexity is defined as: Ei=D i*F i, where Di is the data
architecture complexity and Fi is the functional complexity of the entity. The data
architecture complexity of an entity is defines as:

Di=Ri*(a*FDA i+b*NFDAi)

where 0<a<b, Ri=number of relationships, FDAi=number of functionally dependent
attributes and NDFAi=number of non-functionally dependent attributes.

98

Area Metric: Area Metric is a measure of the compliance of an ERD with the
corresponding ERD in 3rd Normal Form. It is defined as:

333333

ReRe

ARAREA

EeAeEeAe
M

×+×+×

×+×+×
=

where Ae, Ee, Re=number of attributes, entities, relationships respectively in the ERD
and A3, E3, R3 the respective numbers of the same ERD in 3rd Normal Form.

Kesh [Kesh95] develops a method for assessing the quality of an ERD, based on both
ontological and behavioral components. Ontological components are distinguished into
structure and content metrics. Structure metrics are Suitability (o1), Soundness(o2),
Consistency(o3) and Conciseness(o4) whereas content metrics are Completeness(o5),
Cohesiveness(o6) and Validity(o7). Behavioral components are considered to be Usability
(from the user’s point of view) (s1), Usability (from the designer’s point of view) (s2),
Maintainability(s3), Accuracy(s4) and Performance(s5).

The overall score for the data model quality of the ERD is the linear combination of the
five behavioral metrics. Each behavioral metric is calculated as the average of the subset of
the ontological metrics determining the behavioral metric. Each ontological metric, in turn, is
assigned a value between 1 and 5 based on user’s scores or more complex formulas.

Moody [Mood98] attempts to refine quality factors into quantitative measures to reduce
subjectivity and evaluation process. A set of eight quality factors is introduced, which
comprise a set of candidate metrics for evaluating the quality of the data models. The author
proposes a data model quality evaluation framework, which can be applied to a wide range of
organizations. The proposed framework (shown in Figure 5.) comprises a set of 8 quality
factors, which can be considered as properties of a data model that contribute to its quality.
They can have positive and negative interactions with each other. They are, in turn, evaluated
by a set of 25 quality metrics. The quality factors may contribute to the overall quality of the
system according to weights, which determine the importance of each factor in a problem
situation. Stakeholders are the persons involved in building or using the data model, such as
the business user, the analyst, the data administrator and the application developer. Lastly,
there may be different strategies and techniques for improving quality with respect to one or
more quality factors.

99

Figure 5.2: [Mood98]’s Data Model Quality Evaluation Framework

The quality factors are Completeness, Integrity, Flexibility, Understandability,
Correctness, Simplicity, Integration and Implementability.

Genero et al ‘s [GPCS00] focus on measuring the maintainability of ER diagrams
through evaluating their structural complexity. From a system theory point of view, a system
is called complex if it is composed of many and different type elements, with many and
dynamically changing relationships between them. The complexity of an ER diagram could
be influenced by the different elements that compose it, such as entities, relationships,
attributes, generalizations, etc. Therefore, it is not advisable to define a general measure for
its complexity [Fent94]. They introduce a set of open ended metrics and classify them into
three main categories: Entity Metrics (i.e., number of entities within an ERD), Attribute
Metrics (i.e., number of attributes within an ERD, number of composite attributes, etc.) and
Relationship Metrics (i.e. number of M:N relationships, etc.).

The set of Entity Metrics comprises only one metric:

• NE: total number of entities within the ERD.

The set of Attribute Metrics comprises the following metrics:

• NA: total number of entity and relationship attributes (including derived, composite
and multivalued attributes).

• DA: number of derived attributes. Derived attributes can be considered as
redundancies in the ERD.

• CA: number of composite attributes

• MVA: number of multivalued attributes.

The set of Relationship Metrics comprises the following metrics:

• NR: total number of relationships within the ERD.

100

• M:NR: number of M:N relationships.

• 1:NR: number of 1:N (including 1:1) relationships.

• N-AryR: number of N-ary (not binary, e.g. 3-ary) relationships.

• BinaryR: number of binary relationships.

• NIS_AR: number of IS_A relationships.

• RefR: number of reflexive relationships.

• RR: number of redundant relationships within the ERD

Similar to [GPCS00], [PiGC02] propose a set of close-ended (proportional) metrics for
ERD focusing mainly on the evaluation of the maintainability. RvsE metric (measures the
relation between the relationships and entities), DA metric (proportion of derived attributes in
the ERD, that is number of derived attributes divided by the number of all attributes minus
one), CA metric (proportion of composite attribute), RR metric (proportion of redundant
relationships), M:Nrel metric (proportion of M:N relationships), IS_Arel metric (proportion
of IS_A relationships).

In [Wede00], a metric set for evaluating the stability capabilities of conceptual data
model is proposed. The author sets up a framework for stability of conceptual schemas and
proceeds to develop a set of metrics from it. The metrics are based on measurements of
conceptual features, such as the number of conceptual constructs affected by a change, the
complexity of a conceptual schema, the abstraction of a conceptual schema, etc.

Lastly, in [Ber+05], the authors present a set of quality indicators and metrics for
conceptual models of data warehouses. They employ UML diagrams for modeling
multidimensional databases and in this context they define metrics for capturing diagram’s
properties such as, number of packages in a diagram, number of relationships between two
packages, etc. Although, they provide a methodology for theoretically validating the
proposed metric set, they do not present an empirical validation.

5.1.2 Relational Database Metrics

Relational database metrics may be used as measures for the quality of a database at the
logical level. Relational metrics are used to measure internal characteristics and structures of
a database, such as tables, foreign keys, etc. Normalization theory can give the guidelines for
designing a database, but still cannot address other quality issues, such as the maintainability
– or evolution - of a database.

In [CaPG01a], [CaPG01b], [PiGC01], the authors propose a set of metrics for relational
databases that can be used in order to evaluate external quality factors, such as
maintainability and analyzability. They suggest that these metrics can be applied to

101

measuring the product complexity of databases, which is an internal attribute, and
furthermore evaluating external quality attributes. The proposed set of metrics mainly
focuses on assessing the maintainability of a database, which comprises analyzability,
testability, stability and changeability. They have both empirically (through experiment in
various database systems) and theoretically (according to [BrMB96], [Zuse98]) validated
these metrics. The introduced set includes the following metrics:

• NT: Number of relational tables in the database.

• NFK: Number of foreign keys in the database.

• NA: Total number of attributes in the database.

• DRT: Depth of Referential Tree is the maximum distance from a table towards
another table through referential integrity constraints. That is, if table A has o
foreign key to table B and table B in turn has a foreign key to table C, then DRT is
equal to 2.

As for the relation between these metrics and the quality factors, they state that
analyzability can be assessed by NT, NA and NFK metrics in a straightforward manner; the
greater the values of these metrics are, the more analyzable the database schema is. DRT
metric can also be used as an indicator for the analyzability of the database schema, but only
in combination with NFK metric. In the same way, they conclude that changeability is
proportional to the number of tables in the database, whereas stability relates to the number
of tables in an inverse relationship; the fewer the tables are in the database, the more stable
the schema is. Lastly, testability is related in a proportional way to NT, NA and NFK.

In [CSPL01], [GOPR01], they extend the notion of structure metrics to object oriented
databases and Information Systems. Specifically in [GOPR01], they introduce a set of
metrics for UML diagrams concerning object oriented information systems, whereas in
[CSPL01] they propose a set of structural metrics for object relational databases.

5.1.3 Quality in Data Warehouses - Metrics

Quality in the context of data warehouses has been elaborately studied in [Vass00], [JJQV99]
and [VaBQ00]. The authors propose mathematical techniques for measuring or optimizing
certain aspects of DW quality and adapt the Goal-Question-Metric approach from software
quality management to a meta data management environment in order to link these special
techniques to a generic conceptual framework of DW quality.

Data warehouse quality can be classified into several quality dimensions according to
the stakeholders that are typically interested in them. Users with different roles imply a
different collection of quality dimensions, which a quality model should be able to address in
a consistent and meaningful way. In [JJQV99], they summarize the quality dimensions of
three stakeholders, the data warehouse administrator, the programmer, and the decision

102

maker. A set of quality dimensions corresponds to each of these roles; each of these
dimensions is further mapped to sample types of measurement (metrics), which help to
establish the quality of a particular DW component with respect to a particular quality
dimension.

For example, regarding the data warehouse administrator, the dimensions comprising
the design and administrator quality are shown in Figure 5.3 [Vass00]. Correctness
dimension is concerned with the proper comprehension of the entities of the real world, the
schemata of the sources (models) and the user needs. Completeness dimension is concerned
with the preservation of all the crucial knowledge in the data warehouse schema (model).
Minimality dimension describes the degree up to which undesired redundancy is avoided
during the source integration process. Traceability dimension is concerned with the fact that
all kinds of requirements of users, designers, administrators and managers should be
traceable to the data warehouse schema. Interpretability dimension ensures that all
components of the data warehouse are well described and thus administered easily and lastly
meta data evolution dimension is concerned with the way the schema evolves during the data
warehouse operation.

Figure 5.3: Design and Administrator Quality Dimensions [Vass00]

Various types of measurement - metrics are introduced to evaluate these dimensions.
Table 5.1 relates these quality dimensions to data warehouse objects and shows how the
quality of these objects can be measured.

103

Design And
Administration

Quality

Conceptual
Perspective

Logical
Perspective

Model Concept Schema Type
Correctness Number of conflicts

to other models/real
world

Correctness of
the description
wrt. real world
entity

Correctness of
mapping of the
conceptual model
to logical schema

Correctness of
the mapping of
the concept to a
type

Completeness Level of covering,
number of
represented business
rules

Number of
missing
attributes; Are
the assertions
related to the
concept
complete?

Number of missing
entities wrt.
conceptual model

Number of
missing
attributes wrt.
conceptual
model

Minimality Number of
redundant
entities/relationships
in a model

Equivalence of
the description
with that of other
concepts in the
same model

Number of
redundant relations

Number of
redundant
attributes

Traceability Are the designer’s
requirements and
changes recorded?

Are the
designer’s
requirements and
changes
recorded?

Are the designer’s
requirements and
changes recorded?

Are the
designer’s
requirements
and changes
recorded?

Interpretability Quality of
documentation

Quality of
documentation

Quality of
documentation

Quality of
documentation

Metadata
Evolution

Is the evolution of
the model
documented?

Is the evolution
of the concept
documented?

Is the evolution of
the schema
documented?

Is the evolution
of the type
documented?

Table 5.1: Examples for Measurement Types for Design and Administration
Quality Dimensions [Vass00]

In the same way, other perspectives of DW quality include software implementation
quality comprising quality dimensions of ISO 9126 such as functionality, reliability, etc.,
data usage quality comprising dimensions related to the usefulness and the accessibility of
the data and lastly data quality comprising dimensions related to properties of the stored data
itself, such as completeness, accuracy, consistency, etc.

Another approach to DW quality metrics is presented in [CPPS01]. They elaborate a
set of metrics for measuring data warehouse quality, which can help designers in choosing
the best option among more than one alternative design. The metrics proposed are classified,
according to the level they are applied, into the following categories:

• Table metrics regarding table characteristics of the database (e.g. number of
attributes, number of foreign keys).

• Star Metrics regarding star characteristics of the database, assuming that we have
only a fact table (e.g. number of dimension tables).

104

• Schema Metrics regarding characteristics of the whole database schema (e.g. number
of fact tables, number of overall dimension tables).

They apply a formal validation process to these metrics concluding that all metrics are
in an ordinal or in a superior scale.

Also, in [ChPr03] they focus on the quality of multidimensional schemas, more
specifically on the analyzability and simplicity criteria. They present the underlying
multidimensional model and address the problem of measuring and finding the right balance
between analyzability and simplicity of multidimensional schemas. Analyzability and
simplicity are assessed using quality metrics, which are described and illustrated based on a
case study.

5.1.4 Entropy based approaches

In the context of databases, information theory and entropy are mainly used for the
justification of data dependencies and normal forms. Such approaches are based on the
statistical treatment of the information content of the database. Entropy has been proposed as
a measure for redundancy as well as for validating data dependencies [Malv86], [Lee87],
[CaPi87], [DaRo00], [NaKa01] (i.e., normal forms, functional, join, hierarchical and
multivalued dependencies).

In [Malv86], they present an analytical data model, where the information content of a
database relation is represented by a contingency table and analyzed using the methods of
multivariate information theory. This approach lies in two points: database relations are
treated as multivariate frequency distributions and data dependencies are taken into account.
The resulting analytical model will be applied to supply database users with “statistical
information”, answering queries such as, “to what extent are attributes related in a given
database state” or “how does one attribute depend on the others”? Therefore, the information-
theoretical analysis of the database content gets users able (a) to measure the statistical
interdependence among two or more attributes (correlation theory), (b) to measure the effects
on a given attribute of the remaining attribute (analysis of variance) and (c) to choose a set of
variables, which select the important information of a view (decomposition theory).

Similarly to relational data, the information-theoretic treatment for XML databases is
studied in [ArLi03]. They use techniques of information theory, and define a measure of
information content of elements in a database with respect to a set of constraints. They first
test this measure in the relational context, providing information theoretic justification for
familiar normal forms such as BCNF, 4NF, PJ/NF, 5NFR, DK/NF, and then they show that
the same measure applies in the XML context, which gives a characterization of a recently
introduced XML normal form called XNF. Finally, they look at information theoretic criteria
for justifying normalization algorithms.

105

An information theoretic approach to evaluating the design quality of data warehouses
is presented in [LeLo03], where the relation between entropy and redundancy in the context
of data warehouses is studied. Utilizing the information-theoretic treatment of relational
databases developed, they show that the redundancy in the snowflake join of the primary key
of the fact table is zero, i.e. it is minimal. They define a new normal form, namely SSNF –
Snowflake Schema Normal Form, justifying it in terms of entropy-based equations.

On the other hand, various entropy-based metrics exist in the area of software
engineering for evaluating the quality of software design [KiSW95], [Harr92], [DaLe88],
[Alle02], but there is no work concerning the correlation of entropy with structural properties
of databases, i.e. there are no entropy-based measures used for evaluating the design or
evolution quality of a database schema.

To the best of our knowledge this is the first set of metrics that are explicitly targeted
towards the assessment of the vulnerability of the design of a database – centric environment
to evolutionary processes.

5.2 A Metric Suite for Evaluating Schema Evolution Capabilities

In the following sections, we introduce a metric set based on the properties of the evolution
graph for measuring and evaluating the design quality of a database centric environment with
respect to its ability to sustain changes. We will present simple metrics based on graph
theoretic properties of the evolution graph. There are two possible contexts under which a
graph can be examined according to the level of abstraction. We assess the metrics by
examining the graph (a) at a coarse level of abstraction, where only relations, views and
queries are present, i.e., module level, or (b) at its most detailed level, i.e., node level, that
involves all the attributes of relations, views and queries, along with the internals of the
queries. The zoom out operation imposed on the graph is described in section 2.10. We also
consider metrics that measure the impact that events have on the graph taking into
consideration the distribution of events on the graph. To this end, in the presence of policies
on the graph, we reevaluate the vulnerability of constructs in the graph by introducing a
metric which is aware of defined policies on nodes of the graph. Lastly, the last set of metrics
comprises entropy-based metrics, which relate information theoretic properties of the graph
with evolution capabilities.

5.2.1 Degree-related metrics

The first family of metrics comprises simple properties of each node or module in the graph
and specifically the degree of nodes. The main idea lies in the understanding that the in-
degree, out-degree and total degree of a node v demonstrate in absolute numbers the extent to

106

which (a) other nodes depend upon v, (b) the dependence of v to other nodes and (c) v is
interacting with other nodes in the graph, respectively.

Specifically, let G(V,E) be the evolution graph of a database centric environment and

v∈V a node of the graph, then:

Definition 5.1 – Degree of Node: The In-degree, DI(v), Out-degree, DO(v) and
Degree, D(v) of the node v are the total number of incoming, outgoing and adjacent edges to
v. That is:

DI(v) = count(ein), for all edges ein∈E of the form (yi,v), yi,v∈V

DO(v) = count(eout), for all edges eout∈E of the form (v,yi), yi,v∈V

D(v) = DI(v) + DO(v)

Category Constrained Degrees. All the above mentioned degrees can be constrained
by edge categories. For example, we might be interested only in the number of part-of
outgoing edges of a relation (i.e., how many attributes it has) or in the number of incoming
query-based edges of a relation’s node (i.e., map-select, where operand, or group-by edges).
This way, we can focus only to a part of the architecture, e.g., structural properties, coupling
of the schema with the queries, etc. The category constrained degrees are given by the
following definition.

Definition 5.2 – Category Constrained Degree of Node: The Category Constrained

In-degree,)(vD I
EX

, Out-degree,)(vDO
EX

and Degree,)(vD
XE of the node v are the total

number of incoming, outgoing and adjacent edges to v, which belong to the category EX of
edges. That is:

)(vD I
EX

= count(ein), for all edges ein∈ EX of the form (yi,v), yi,v∈V

)(vDO
EX

= count(eout), for all edges eout∈ EX of the form (v,yi), yi,v∈V

)(vD
XE =)(vD I

EX
 +)(vDO

EX

and EX∈{ ES, EO, EM, EF, EW, EH, EGB, EOB}.

Transitive Degrees. The simple degree metrics of a node v are good measures for
finding the nodes that are directly dependent on v or on which v directly depends on, but they
cannot detect the transitive dependencies between nodes. Therefore, we employ the
following definition for the transitive degrees of a node v with respect to the rest of the graph.

Definition 5.3 – Transitive Degree of Node: The In-Transitive, TDI(v), Out-

Transitive, TDO(v), and Transitive degree, TD(v) of a node v∈V with respect to all nodes

yi∈V are given by the following formulae:

107

TDI(v) = ∑ ∑
∈ ∈Vy vypathsp

p

i i

ecount
),(

)(, for all distinct edges ep ∈paths of the form (yi,v)

TDO(v) = ∑ ∑
∈ ∈Vy yvpathsp

p

i i

ecount
),(

)(, for all distinct edges ep ∈paths of the form (v,yi)

TD(v) = TDI(v) + TDO(v)

Module degree. Assuming the degrees of the detailed graph can be computed, one can
measure the degrees of the nodes of the zoomed-out graph. As already mentioned in chapter
2, zooming-out operation on the graph provides an abstract view of the modules of the graph,
which comprises only top-level nodes, v∈{R,Q,VS} and edges between them. All edges are
annotated with a strength corresponding to the number of edges previously connecting these
modules. Thus, we define the module degree for a node of the zoomed out graph as:

Definition 5.4 –Degree of Module: The In-Module, DIs(v), Out-Module, DOs(v) and
Module Degree, Ds(v) of a node v are given by the following formulae:

DIs(v) = ∑
i

iestrength)(, for all edges ei of the form (y,v), y,v∈{R,Q,VS}

DOs(v) = ∑
i

iestrength)(, for all edges ei of the form (v,y), y,v∈{R,Q,VS}

Ds(v) = DIs(v) + DOs(v), y,v∈{R,Q,VS}

Module transitive degree. Similarly to above, we may extend the transitive degrees to
the zoomed-out graph according to the following definition:

Definition 5.5 –Transitive Degree of Module: The In-Module, TDIs(v), Out- Module,
TDOs(v), and Module Transitive degree, TDs(v) of a node v∈{R,Q,VS} with respect to all

nodes yi∈{R,Q,VS} are given by the following formulae:

TDIs(v) = ∑ ∑
∈ ∈Vy vypathsp

p

i i

estrength
),(

)(, for ep∈paths of the form (yi,v)

TDOs(v) = ∑ ∑
∈ ∈Vy yvpathsp

p

i i

estrength
),(

)(, for ep∈paths of the form (v,yi)

TDs(v) = TDIs(v) + TDOs(v)

Weighted degree. Assume that we can assign a frequency freq(q) to each query q
around the database. Here, we use the frequency of a query as a simple measure of its
importance–other abstractions of importance can be used, too. What is important, though, is
that given this measure, we can compute the effect of a change in a weighted way. Thus, if a
node v of the graph is used by a query q, the weighted in-degree of the node due to this query
is:

108

Definition 5.6 – Weighted Degree of Node: Let Gq=(Vq,Eq) the module subgraph of a
query q with frequency freq(q). Then, the Weighted Degree, WDI(v|q), of a node v∈V with
respect to the query q is given by the following formula:

WDI(v|q)=freq(q)*count(ei), for all edges ei of the form (y,v), y∈Vq.

Furthermore, we can define the weighted importance of node v, by summing all the
weighted degrees of the queries that access v.

WDI(v)= ∑
i

i
I qvWD)|(, for queries qi that access v

Moreover, we can apply the exact same technique to the zoomed out-graph for
calculating the weighted degrees of modules. That is:

WDIs(v|q)=freq(q)*strength(e), e being the edge (q,v)

WDIs(v)= ∑
i

i
Is qvWD)|(, for queries qi that access v

It is noteworthy that the metric can be extended to incorporate other kinds of nodes
from which edges originate, too (i.e., except for query nodes). Take for example a view
defined over a relation. We can extend the metric by assuming a frequency equal to the sum
of frequencies of the queries accessing the view. Also, in the absence of any workload
information, we can assume a frequency equal to 1 for all queries and this metric becomes
equal to the simple degree metrics.

5.2.2 Metrics with an eye for future events

The metrics related to the degree of a node can serve as a possible crude basis of the
sensitivity of a node –and consequently, of a schema- to the changes that can occur in the
future. Still, the probability that a node will change in the future is not the same, neither for
all types of events, nor for all nodes. For example the probability that a relation’s attribute
R.A will be deleted is different from the probability that a new attribute will be added and
queries using the relation will have to incorporate the new attribute and also different from
the probability that another attribute R.B will be deleted. Therefore, the assessment of the
sensitivity of a node can change completely if we incorporate this factor in our
measurements.

Definition 5.7 – Flood Effect of an Event on a Node: Assume a node v in the graph
G(V,E), an evolution event e over v∈V (which we denote as e|v) and a probability p of the
event e to occur within a time period T. Then, the flood effect of e can be assessed by the
following formula:

FE(e|v) = count(wi) * p

with wi∈V being the nodes of the graph, s.t. a path exists from wi to v.

109

Given, this simple measurement, we can easily define the flood effect of a sequence of
independent events E = {e1, …, en} over a node v with probabilities {p1, ..., pn}.

FE (E|v) = ∑
=

n

i
i veFE

1

)|(

Now, we are ready to define the flood effect of a sequence of events over the whole
graph. Assume a sequence of events E = {e1, …, en}, with each event defined over a different
node, which we denote as v(ei), with possibility pi. Then, the flood effect of the sequence of
events E over the graph G is defined by the following formula:

FE (E|G) = ∑
=

n

i
ii eveFE

1

))(|(

Similar to the previous described module metrics, a simple variant of the flood effect
involves reducing the size of the graph and assessing the flood effect over the zoomed out
graph. In this case, we sacrifice accuracy but improve performance, as the size of the graph is
significantly reduced. The sacrifice on accuracy is demonstrated by a simple example:
assume two queries Q1 and Q2 using relation R, and attribute R.A being used in the selection
clause of Q1 only. A deletion of R.A will not affect Q2. Nevertheless, the zoomed-out variant
is incapable of capturing this effect.

Definition 5.8 – Flood Effect of an Event on a Module: Assume a node v in the
zoomed out graph Gs(Vs,Es), Vs∈{R,Q,VS}, an evolution event e over v (which we denote as
e|v) and a probability p of the event e to occur within a time period T. The flood effect for the
zoomed out graph Gs(Vs,Es) can be defined as follows.

FES,cons(e|v) = count(wi) * p,

with wi∈Vs being the nodes of the zoomed out graph, s.t. a path exists from wi to v.

FES,overest(e|v) = p * ∑strength(ei)

with ei∈Es being the edges of all the paths of the zoomed out graph ending to v.

The conservative approach assigns a count of one for each pair of connected modules
as the estimation of the impact of evolution. The overestimated approach counts all the
strengths of all the involved edges, as if all possible edges of the detailed graph are affected
by the evolution event. Similarly to the previous case, the two following measures are also
defined, in the presence of a sequence of events E = {e1, …, en}:

FES (E|v) = ∑
=

n

i
i

S veFE
1

)|(, FES(E|G) = ∑
=

n

i
ii

S eveFE
1

))(|(

110

5.2.3 Policy aware metrics

The definition of policies on the graph restrains the impact that an event occurring on a node
might have on the rest of the graph. The mechanism for propagating the occurrence of an
evolution event in the graph and determining the status of all nodes visited by the algorithm
has been described in chapter 3. The annotation of the graph constrains the flooding effect of
an event and reflects the extent of the effect of the possible change more accurately. Recall
that according to definition 3.6, in the presence of policies all affected nodes by an event are
these that after the execution of the algorithm have been assigned with a status. This requires
that no block or prompt policies are defined in an intermediate node of the path between the
node assigned with a status and the node sustaining the event. Therefore, we can define the
following metric for the policy-regulated management of possible evolution events:

Definition 5.9 – Policy-regulated Flood Effect of an Event on a Node: Assume a
node v in the graph G(V,E), an evolution event e over v∈V (which we denote as e|v) with a
probability p of the event e to occur within a time period T. The graph is annotated with
policies for capturing event e. Then, the policy-regulated flood effect of e can be assessed by
the following formula:

PRE(e|v) = count(wi) * p,

with wi∈V being the nodes of the graph being affected by e such that a path exists from

wi to v and policies defined on all nodes n∈path(wi,v) for event e are not block or prompt.

 Similarly to the previous, the two following measures are also defined, in the presence
of a sequence of events E = {e1, …, en}:

PRE(E|v) = ∑
=

n

i
i vePRE

1

)|(, PRE(E|G) = ∑
=

n

i
ii evePRE

1

))(|(

5.2.4 Entropy-based metrics

The last family of metrics presented is related to the information theoretic notion of entropy.
Entropy is viewed as an arcane subject related somehow to uncertainty and information
[Papo90]. The following definitions show the concepts of information and entropy in the
context of information theory.

Definition 5.10 – Information hidden in a probabilistic symbol: The information
I(p) obtained from a source symbol s with probability of occurrence p>0, is given by the
following formula:

p
pI

1
log)(2=

111

Definition 5.11 – Entropy of a probabilistic source: Let S = {s1,...,sn} be a
probabilistic source, with probability distribution P={p1,…,pn}. The average information
obtained from a single sample from S is:

∑ ∑∑
= ==

−===
n

i

n

i
ii

n

i i
iii pp

p
ppIpSH

1 1
2

1
2 log

1
log)()(

The quantity H(S) is called the entropy of the source.

In general, entropy can characterize not only a probabilistic source but also any
probabilistic model S, as it follows from Definition 5.12.

Definition 5.12 – Entropy of a probabilistic model: Given a probabilistic model S
and a partition A = {A1, … An} of S consisting of the n events Ai with probability of
occurrence P = { P(A1), …,P(An)}.The sum:

() ∑
=

−=
n

i
ii ppAH

1
2log ()ii APp =

is called the entropy of the partition A.

Some useful remarks inferred by the above definitions are that:

a) entropy takes always a positive value as 0<pi<1 ⇒ log2pi <0, and also p*log2p → 0

for p → 0 and p → 1.

b) its maximum value is log2n corresponding to a uniform distribution of events.

c) for a probabilistic model with a uniform distribution for its partitions, entropy is an
increasing function, i.e., H(An+1)>H(An).

Entropy is strongly related to the information that is “hidden” in a probabilistic model.
For instance, in a uniform probabilistic model, all events are equally likely to occur and
therefore the entropy of the model is maximum.

In our evolution context, the notion of entropy is used to evaluate the extent to which a
part of a system is likely to be affected by a random evolution event on the graph. Entropy
measures either the a priori uncertainty of the impact of an event on a part of the graph or
equivalently the a posteriori amount of information we get from the knowledge that a part of
the graph has been affected by an event. The more unpredictable the impact of a schema
change on a part of the graph is, the more information is “hidden” and thus the more entropy
characterizes this impact. The following definitions introduce the metrics of entropy
regarding a node itself or a module with respect to evolution.

Definition 5.13 - Entropy of Node: Assume a node v in our graph G(V,E). We define

the probability that v∈V is affected by an arbitrary evolution event e over a node yk∈V as the
number of paths from v towards yk divided by the total paths from v towards all nodes in the
graph, i.e.,

112

P(v|yk) =

∑
∈Vy

i

k

i

yvpaths

yvpaths

),(

),(
, for all nodes yi ∈V.

Then, the information we gain when a node v is affected by an event occurred on node

yk is
)|(

1
log))|((2

k
k yvP

yvPI = and the entropy of node v with respect to the rest of the

graph is then:

() ∑
∈

−=
Vy

ii

i

yvPyvPvH)|(log)|(2 , for all nodes yi ∈V.

The above quantity expresses the average information we gain, or equivalently the
amount of “surprise” conveyed, if node v is affected by an arbitrary evolution event on the
graph. Observe that high entropy values correspond to nodes with a higher dependence with
the rest of the graph. For instance, in the example of Figure 5.1, a query defined over only
one relation, such as Q1, has an entropy value of 0, whereas a query defined over a view
which in turns accesses three relations, such as Q2, has an entropy value of 2 and lastly view
EMPS_PRJS has an entropy value of log23.

High entropy values correspond to these parts of the graph, that are dependent on many
providers either directly or transitively, capturing in a “smoother” way than the local or the
transitive degrees the dependencies in the graph.

Definition 5.14 - Entropy of Module: Moreover, we can apply the exact same

technique to the zoomed out-graph Gs(Vs,Es), by defining the probability of a node v∈Vs to be

affected by an evolution event over a node yk∈Vs as:

Ps(v|yk) =

∑ ∑

∑

∈ ∈

∈

s
i i

k

Vy yvpathsp
p

yvpathsp
p

estrength

estrength

),(

),(

)(

)(

 , for all nodes yi ∈Vs.

with ep∈Es being the edges of all the paths of the zoomed out graph stemming from v

towards yk. Similarly, the entropy of node v∈Vs is:

() ∑
∈

−=
s

i Vy
i

s
i

ss yvPyvPvH)|(log)|(2 , for all nodes yi ∈Vs.

A summary of the proposed set of metrics is provided in the following tables.

113

Notation Metric

DI(v) In-Degree of a node v

DO(v) Out-Degree of a node v

D(v) Degree of a node v

(v)I

XE
D In-Category Constrained Degree of a node

v for all edges e∈ EX, EX∈{ ES, EO, EM, EF,
EW, EH, EGB, EOB}

)(vO

XE
D Out-Category Constrained Degree of a

node v for all edges e∈ EX, EX∈{ ES, EO,
EM, EF, EW, EH, EGB, EOB}

)(v
XE

D Category Constrained Degree of a node v
for all edges e∈ EX, EX∈{ ES, EO, EM, EF,
EW, EH, EGB, EOB}

TDI(v) In-Transitive Degree of a node v

TDO(v) Out-Transitive Degree of a node v

TD(v) Transitive Degree of a node v

DIs(v) In-Degree of a module v

DOs(v) Out-Degree of a module v

Ds(v) Degree of a module v

TDIs(v) In-Transitive Degree of a module v

TDOs(v) Out-Transitive Degree of a module v

TDs(v) Transitive Degree of a module v

WDI(v|q) Weighted In degree of a node v w.r.t. a
query q

WDI(v) Weighted In degree of a node v

WDIs(v|q) Weighted In degree of a module v w.r.t. a
query q

WDIs(v) Weighted In degree of a module v

Table 5.2: Degree related Metrics

Notation Metric

FE(e|v) Flood Effect of an event e occurring at a node v

FE(E|v) Flood Effect of a sequence of events E
occurring at a node v

FE (E|G) Flood Effect of a sequence of events E
occurring at graph G

FEs(e|v) Flood Effect of an event e occurring at a
module v

FEs(E|v) Flood Effect of a sequence of events E
occurring at a module v

FEs (E|G) Flood Effect of a sequence of events E
occurring at zoomed-out graph G

Table 5.3: Event-aware Metrics

Notation Metric

PRE(e|v) Policy regulated flood effect of an event e
occurring at a node v

PRE(E|v) Policy regulated flood effect of a sequence of
events E occurring at a node v

PRE(E|G) Policy regulated flood effect of a sequence of
events E occurring at graph G

Table 5.4: Policy-aware Metrics

Notation Metric

H(v) Entropy of a node v wrt its evolution

Hs(v) Entropy of a module v wrt its evolution

Table 5.5: Entropy-based Metrics

114

5.3 Experimental Evaluation

In this section, we present the experimental evaluation that we performed for the proposed
metric suite. We have employed a data warehouse environment as the testbed for our
experiments. There are two major goals in our experiments.

1. To empirically validate the proposed set of metrics and prove that they constitute
good indicators for the prediction of the effect evolution events have on a database
environment. A clear desideratum in this context is the determination of the most
suitable metric for this prediction under different circumstances.

2. To compare alternative design techniques with respect to their tolerance to evolution
events.

Experimental setup for the first goal. To achieve the goal of determining the fittest
prediction metric, we need to fix the following parameters: (a) a data warehouse schema
surrounded by a set of queries and possibly views, (b) a set of events that alter the above
configuration, (c) a set of administrator profiles that simulate the intention of the
administrating team for the management of evolution events, and (d) a baseline method that
will stand as an accurate estimate of the actual effort needed to maintain the warehouse
environment.

We have employed the TPC-DS [TPCD07] schema as the testbed for our experiments.
TPC-DS is a benchmark that involves six star schemas (with a large overlap of shared
dimensions) standing for Sales and Returns of items purchased via a Store, a Catalog and the
Web. We have used the Web Sales schema that comprises one fact table and thirteen
dimension tables. The structure of the Web Sales schema is interesting in the sense that it is
neither a pure star, nor a pure snowflake schema. In fact, the dimensions are denormalized,
with a different table for each level; nevertheless, the fact table has foreign keys to all the
dimension tables of interest (resulting in fast joins with the appropriate dimension level
whenever necessary.) Apart from this “starified” schema, we have also employed two other
variants in our experiments: the first involves a set of views defined on top of the TPC-DS
schema and the second involves the merging of all the different tables of the Customer
dimension into one. We have isolated the queries that involve only this subschema of TPC-
DS as the surrounding query set of the warehouse. The views for the second variant of the
schema were determined by picking the most popular atomic formulae at the WHERE clause
of the surrounding queries. In other words, the aim was to provide the best possible reuse of
common expressions in the queries.

We created two workloads of events to test different contexts for the warehouse
evolution. The first workload of 52 events simulates the percentage of events observed in a
real world case study in an agency of the Greek public sector. The second workload
simulates a sequence of 68 events that are necessary for the migration of the current TPC-DS
Web sales schema to a pure star schema. The main idea with both workloads is to simulate a

115

set of events over a reasonable amount of time. Neither the internal sequence of events per
se, nor the exact background for deriving the events is important; but rather, the focus is on
the generation of events that statistically capture a context under which administration and
development is performed (i.e., maintenance of the same schema in the first case, and
significant restructuring of a schema in the latter case.) The distribution of events is shown in
Table 5.6.

Operation Distribution 1 Distribution 2
Rename Measure 29% (15) 0% (0)
Add Measure 25% (13) 0% (0)
Rename Dimension Attribute 21% (11) 0% (0)
Add Dimension Attribute 15% (8) 37% (25)
Delete Measure 6% (3) 0% (0)
Delete Dimension Attribute 4% (2) 44% (30)
Delete FKs 0% 13% (9)
Delete Dimension Table 0% 6% (4)

Table 5.6: Distribution of events

Figure 5.4 depicts the first configuration (WS) at a zoomed out level.

Figure 5.4: Bird’s-eye view of the configuration used in our experiments

We annotate the graph with policies, in order to allow the management of evolution
events. We use three annotation “profiles”, specifically: (a) propagate all, meaning that
every change will be flooded to all the nodes that should be notified about it, (b) block all,
meaning that a view/query is inherently set to deny any possible changes, and (c) reasonable

116

balanced, consisting of 80% of the nodes with propagate policies and 20% with blocking.
The first policy practically refers to a situation without any annotation. The second policy
simulates a highly regulatory administration team that uses our framework to capture an
evolution event as soon as it leaves its source of origin; the tool highlights the node where the
event was blocked. The third policy simulates a rather liberal environment, where most
events are allowed to spread over the graph, so that their full impact can be observed; yet,
20% of critical nodes are equipped with blocking policies to simulate the case of nodes that

should be handled with special care.

Summarizing, the configuration of an experiment involves fixing a schema, a set of
policies and a workload. We have experimented with all the possible combinations of values.
The metrics that we have measure in each experiment involve the execution of the workload
of evolution events in the specified configurations and the measurement of the affected
nodes. Specifically, each node of the graph is monitored and we get analytic results on how
many times each node was affected by an event. This measurement constitutes the baseline
measurement that simulates what would actually happen in practice. This baseline
measurement is compared to all the metrics reported in Section 4, being evolution-agnostic or
not.

Experimental Setup for the second goal. The second goal of our experiments is to
compare alternative designs of the warehouse with each other – i.e., we want to find which
design method (pure star, TPC-DS with or without views) is the best for a given designer
profile (which is expressed by the policies for the management of evolution.) Thus, the
comparison involves the compilation of the baseline measurements, grouped per policy
profile and alternative schema. We measure the total number of times each node was affected
and we sum all these events. The intention is to come up with a rough estimation of the
number of rewritings that need to be done by the administrators and the application
developers (in this setting, it is possible that a query or view is modified in more than one of
its clauses.) A second measurement involves only the query part: we are particularly
interested in the effort required by the application developers (which are affected by the
decisions of the administration team), so we narrow our focus to the effect inflicted to the
queries only.

5.3.1 Effectiveness of the proposed metrics

In this experiment, we evaluate the effectiveness of the proposed metrics using the first
distribution of events. We have constructed the following nine configurations by fixing each
time a value for the schema and the policy. The schema takes one of the values {Web Sales
(WS), Web Sales extended with views (WS-views), star variant of Web Sales (WS-star)} and
the policy takes one of the values {Block-All, Propagate-All, Mixture}. In the rest, we
discuss our findings organized in the following categories: (a) Fact Tables, (b) Dimension
Tables, (c) Views, and (d) Queries.

117

Facts. Our experiments involved a single fact table. We observed that the number of
events that occurred to the fact table does not change with the overall architecture. The
presence of more or less dimensions or views did not affect the behavior of the fact table; on
the contrary, it appears that the main reasons for the events that end up to the fact table, are
its attributes. Therefore, the main predictor for the behavior of the evolution of the fact table
is its out-degree, which is mostly due to the part-of relationships with its attributes.

Dimension Tables. Evolution on dimension tables can also be predicted by observing
their out-degree, since this property practically involves the relationship of the dimension
with its attributes as well as its relationship via foreign keys with other dimensions. Figure
5.5 depicts this case for the original web sales schema and its star variant, for which all
customer-related dimensions have been merged into one dimension. Our baseline (depicted
as a solid line with triangles) involves the actual number of times a node belonging to a
dimension table was affected.

Figure 5.5: Events affecting dimension tables: (a) WS schema, (b) WS-star schema

Figure 5.6: Events affecting views: (a) WS-star and WS schema, (b) WS-views
schema

Despite the spikes at the heavily correlated date dimension, out-degree is a predictor,
keeping in mind that it is the actual trend that matters and not the values themselves.

Views. Views behave practically uniformly for all configurations, independently of
schema or policy. Observe Figure 5.6 where we depict our findings concerning views. It is
clear that strength of out-degree (strength-out) and total strength are the best predictors for

Total no. events on Views (schema=WS, policy=mixture)

0

10

20

30

40

50

60

ALL_SALES PROMOTIONAL_SALE AT PT

NumberAffected

DegreeTotal

DegreeIn

DegreeOut

StrengthIn

StrengthOut

StrengthTotal

TranDegreeIn

TranDegreeOut

Entropy In

Total no. events on Views (schema=WS-views, policy=block)

0

10

20

30

40

50

60

70

80

90

100

ALL_SALES
PROMOTIONAL_SALE

CUSTOMER_CUST_ADDRESS

DAYS30DAYS30_60DAYS60_90DAYS90_120DAYS120

WEBSALES_ITEM_DATEDIM

AT PT

NumberAffected

StrengthOut

StrengthTotal

118

the evolution of views with the former being an interestingly accurate predictor in all
occasions. Figure 5.6(a) is a representative of all the six configurations for the original web
sales schema and its star variant. The policy makes no difference and all six experiments
have resulted in exactly the same behavior. The rest of the metrics miss the overall trend and
are depicted for completeness. Figure 5.6 (b) shows a representative graphical representation
of the metrics, showing that the strength of the out-degree is consistently effective, whereas
the total strength shows some spikes (mainly due to views that are highly connected to the
sources, although these sources did not generate too much traffic of evolution events after
all). The rest of the metrics behave similarly with Figure 5.6 (a).

Queries. Queries are typically dependent upon their coupling to the underlying DBMS
layer. As a general guideline, the most characteristic measure of the vulnerability of queries
to evolution events is their transitive dependence. A second possible metric suitable for a
prediction is the entropy; however, it is not too accurate. Other metrics do not seem to offer
good prediction qualities; the best of them, out-degree, does not exceed 70%. Recall that the
baseline for our experiment is the actual number of events that reached a query (depicted as a
solid line decorated with triangles in Figure 5.7 and Figure 5.8). Finally, we stress that the
trend makes a metric successful and not the precise values.

119

Figure 5.7: Events affecting queries: (a) WS schema, (b) WS-star schema

Figure 5.8: Total number of events affecting queries: (a) Behavior for the WS-
views with propagate policy; (b) Behavior for the WS-views schema with mixture policy

Figure 5.9: Comparison of WS, WS-views, WS-star design configurations for
distribution 1: (a) only affected queries and (b) all affected nodes

Total no. affected query nodes

0

50

100

150

200

250

300

350

400

Block Propagate Mixture

 Web Sales
 Web Sales w/ Views

 Web Sales Star

Total no. affected nodes

0

100

200

300

400

500

600

700

800

900

1000

Block Propagate Mixture

 Web Sales
 Web Sales w/ Views
 Web Sales Star

Total no. events on Queries (schema=WS, policy=block)

0

5

10

15

20

25

30

Q3 Q9 Q8 Q4 Q6 Q1 Q2 Q5

NumberAffected
TranDegreeOut
Entropy In
DegreeOut

Total no. events on Queries (schema=WS-star, policy=mixture)

0

5

10

15

20

25

30

Q3 Q9 Q8 Q4 Q7 Q6 Q1 Q2 Q5

NumberAffected
DegreeOut
Entropy In
TransDegreeOut

Total no. events on Queries (schema=WS-views, policy=propagate)

0

5

10

15

20

25

30

35

Q3 Q9 Q8 Q4 Q6 Q10 Q1 Q2 Q5 Q7

NumberAffected
Entropy In

DegreeOut
TransDegreeOut

Total no. events on Queries (schema=WS-views, policy=mixture)

0

5

10

15

20

25

30

35

Q3 Q4 Q8 Q6 Q1 Q2 Q5 Q9 Q7

NumberAffected

Entropy In

TransDegreeOut

DegreeOut

120

Figure 5.10: Comparison of WS, WS-views design configurations for distribution
2: (a) only affected queries; (b) all affected nodes

Figure 5.7 shows two characteristic plots for the original web sales schema and its star
variant. Each plot is a representative of the other plots concerning the same schema, with the
trends following quite similar behavior. In all cases, transitive dependence gives a quite
successful prediction, with around 80% accuracy. It is noteworthy that in the case of the 20%
of failures, though, the metric identifies a query as highly vulnerable and in practice, the
query escapes with few events. Fortunately, the opposite does not happen, so a query is never
underestimated with respect to its vulnerability. Entropy is the second best metric and due to
its smoothness, although it follows transitive dependence’s behavior, it misses the large
errors of transitive dependence, although it also misses the scaling of events, for the same
reason.

Queries are quite dependent on the policy and schema: views seem to block the
propagation of events to the queries. Figure 5.8(b) shows a significant drop for the values of
affected queries when the policy is a mixture of propagation and blocking policies. The
propagate-all policy depicted in Figure 5.8(a) presents the flooding of the events, which
involves more than double the number of occurrences as compared to the numbers of Figure
5.8 (b) for 80% of the cases. A block-all policy involved only 3 of the 10 queries and it is not
depicted for lack of space). Interestingly, the transitive degree has a success ratio of 80%, as
opposed to the rather unsuccessful out-degree.

5.3.2 Comparison of alternative design configurations

We compared the three alternative design configurations of our system in order to come up
with an estimation of the number of rewritings that need to be done by the administrators and
the application developers, and to assess the effect that a different schema configuration has
on the system. Thus, we measured the number of affected nodes and specifically, the number
of affected query nodes for the nine different configurations of policy sets and schemata. The
first distribution of events was applied to all schemas, whereas the second was applied only
to WS and WS-views.

Total no. affected query nodes

0

20

40

60

80

100

120

140

160

180

200

Block Propagate Mixture

 Web Sales
 Web Sales w/ Views

Total no. affected nodes

0

100

200

300

400

500

600

700

Block Propagate Mixture

 Web Sales
 Web Sales w/ Views

121

Figure 5.9 describes the effect that a design alternative has on how affected system
constructs are in the case of evolution. A star schema has less maintenance effort than the
other variants due to its reduced size. Clearly, the presence of views augments the effort
needed by the administration team to maintain them (shown in the increased number of
affected nodes of Figure 5.9b), which is because nodes belonging to views are extensively
affected. Still, the interference of views between the warehouse and the queries serves as a
“shield” for absorbing schema changes and not propagating them to queries. The drop in
query maintenance due to the presence of views is impressive: whatever we pay in
administration effort, we gain in development effort, since the cost of rewritings in terms of
human effort mainly burdens application developers, who are obliged to adapt affected
queries to occurred schema changes. The case of schema migration strengthens this
observation (Figure 5.10). As for the different policy sets, we observe that blocking of events
decreases the number of affected nodes in all configurations and saves significant human
effort. It is, however, too conservative, constraining even the necessary readjustments that
must be actually made on queries and views. On the other hand, propagate and mixture
policy sets have an additional overhead, which is balanced by the automatic readjustments
that are held on the system.

5.4 Summary

In this chapter we have introduced a set of metrics for evaluating the evolution properties of a
database-centric environment such as the vulnerability of its design structures to hypothetical
evolution events. Based on graph theoretic properties of the evolution graph, we have
provided metrics like the degrees (in, out, and total) of a node, the transitive degrees of a
node (standing for the extent to which other nodes transitively depend upon it), and the
degrees of a summarized variant of a module (e.g., a view) that abstract the internal
semantics of the module and focus on its coupling to the rest of the environment. We have
then presented an event aware set of metrics that takes into account the distribution of
potential events on the graph. We have also included the special role of policies annotating
the graph into a policy-aware set of metrics. We have provided an information theoretic
definition of a module’s entropy that simulates the extent to which the vulnerability of a node
is surprising. Finally, we have extensively experimented with various configurations in the
setup of a reference database environment and assess both the effectiveness of the proposed
metrics (i.e., how well do they actually predict the impact of evolution events to a design
construct) and how different design alternatives for the same schema behave with respect to
schema evolution.

123

6. HECATAEUS: AN IMPACT
PREDICTION FRAMEWORK FOR

DATABASE SCHEMA EVOLUTION

In the context of the proposed framework, we have implemented a tool, called HECATAEUS,
used for the construction and visualization of the evolution graph and its annotation with
policies regarding evolution semantics. HECATAEUS enables the user to transform SQL
source code to evolution graphs, explicitly define policies and evolution events on the graph
and determine affected and adjusted graph constructs according to the proposed algorithm.
The graph modeling of the environment has versatile utilizations: apart from the impact
prediction and the creation of hypothetical evolution scenarios, the user may also assess
several graph-theoretic metrics of the graph that highlight sensible regions of the graph as
described in chapter 5.

Hecataeus is a user-friendly visual environment that helps administrators and users to
perform hypothetical evolution scenarios on database applications. Its main features are
outlined as:

• Visualization of SQL code as directed graphs: Hecataeus parses schema definition
and SQL code and creates a directed graph, which represents all the semantics of the
database schema at the most granular level [PKVV05]. Separate nodes are
constructed for each database object, such as relation nodes, attribute nodes, etc., and
different edges exist for the various relationships between these objects, such as part-
of edges, dependency edges, etc.

• Manipulation of the evolution graph: Hecataeus produces a fully dynamic graph,
which users may manipulate. Thus, users may apply layout algorithms to transform
the way graph is displayed, find add or remove graph constructs (i.e., nodes and
edges) and change their semantics. Additionally, the tool offers capabilities for

124

zooming on parts of the graph, isolating modules and creating subgraphs and lastly
displaying the graph at various abstraction levels (i.e., only top level nodes).

• Annotation of the graph with evolution semantics: Evolution semantics are easily
applied on the graph through the annotation of the graph constructs with evolution
events and policies. The occurrence of an event on a node of the graph as well as the
policy, with which the node reacts to this event, are represented as properties of the
specific node.

• Impact prediction of evolution changes: Hecataeus provides the ability to the user to
trigger events defined on nodes of the graph and highlight the impact that these
events have on the rest of the graph according to the defined polices. It denotes the
parts of the graph that are affected by an event but most importantly nodes are
assigned with a status that dictates their reaction to this event and colored
accordingly.

• Export of evolution scenarios: The user may create an evolution scenario containing
the graph along with all the evolution semantics, i.e., events, policies, statuses,
which can be transformed and exported in XML format. Thus, administrators can
create process and store as XML files multiple scenarios for the same database
configuration and evaluate their results before applying to the production
configuration.

• Definition of policies with extended SQL: Another useful feature that alleviates the
user from manually defining semantics on the graph is the definition of policies with
the extended SQL syntax as presented in chapter 4. Hecataeus can parse files
containing such syntax for the annotation of the graph with policies.

• Application of metrics on the graph: Lastly, the user may apply metrics on constructs
of the graph and detect crucial to the evolution of the system parts of the graph. The
application of metrics is performed at various granular levels; at a specific node
(e.g., the degree of a node), a module (e.g., the node with the highest transitive
degree) or lastly at the whole graph (e.g., the entropy of the graph).

Chapter Outline. In section 6.1, the system architecture of Hecataeus is presented. We
describe the main components of the tool and their interrelation between them. Then, in
section 6.2, we present the main features of the proposed tool via a use case regarding a
hypothetical evolution scenario applied on the configuration of the motivating example of
chapter 3. First, Hecataeus is used for modeling the schema characteristics of the example
database environment and creating the evolution graph (section 6.2.1 – 6.2.3). Then, in
section 6.2.4 – 6.2.5, the main steps for creating and storing evolution scenarios with
Hecataeus are presented and in 6.2.6 we focus on the capabilities of Hecataeus for evaluating
metrics on the evolution graph. Lastly, we conclude the concepts presented in this chapter in
section 6.3.

125

6.1 System Architecture

Hecataeus’ architecture comprises five main components [PAVV08]: the Parser, the
Evolution Manager, the Graph Viewer, the Metric Manager and the Catalog (Figure 6.1).

Parser is responsible for parsing the input files (i.e., DDL and workload definitions)
and sending each command to the database Catalog and then to the Evolution Manager. It is
also responsible for parsing the proposed language extensions for the definition of policies on
the graph.

Figure 6.1: System Architecture

The functionality of the Catalog is to maintain the schema of the relations as well as to
validate the syntax of the workload parsed (i.e., activity definitions, queries, views), before
they are modeled by the Evolution Manager.

Evolution Manager component is responsible for representing the underlying database
schema and the parsed queries in the proposed graph model. The Evolution Manager holds
all the semantics of nodes and edges of the aforementioned graph model, assigning nodes and
edges to their respective classes. It communicates with the catalog and the parser and
constructs the node and edge objects for each class of nodes and edges (i.e., relation nodes,
query nodes, etc.). It retains all evolution semantics for each graph construct (i.e., events,
policies) and methods for performing evolution scenarios. It contains methods for
transforming the database graph from/to an XML format.

Metric Manager is responsible for maintaining the metrics definition and for their
application on the graph. Each metric applied on the evolution graph is implemented as a
separate function in the Metric Manager.

126

Lastly, Graph Viewer is responsible for the visualization of the graph and the
interaction with the user. It communicates with the Evolution Manager, which holds all
evolution semantics and methods. Graph Viewer offers distinct colorization for each set of
nodes, edges according to their types and the way they are affected by evolution events,
editing of the graph, such as addition, deletion and modification of nodes, edges and policies.
It enables the user to raise evolution events, to detect affected nodes by each event and
highlight appropriate transformations of the graph. Lastly, the user can import or export
evolution scenarios to XML format and save scenarios to image formats (i.e., jpeg).

Hecataeus is an open source project, implemented in Java. For the parser and the
database engine, we have used HSQLDB, an open source SQL relational database engine
written in Java [HSQL], whereas for the graph visualization we have used the Java Universal
Network/Graph Framework (JUNG), a software library that provides a common and
extendible language for the modeling, analysis, and visualization of data that can be
represented as a graph or network [JUNG].

6.2 Hecataeus’ Functionality

In the following sections, we present in more details some functionality issues of Hecataeus.
We present the functionality of Hecataeus via the use case of a hypothetical evolution change
occurring at the database schema of the motivating example configuration provided in
chapter 3.

6.2.1 Creating the Evolution Graph from SQL files

Hecataeus’ primary input involves SQL files containing database schema definitions as well
as queries and views definitions. As shown in Figure 6.2, first the user selects the two files
containing the DDL and SQL files respectively.

127

Figure 6.2: Creating graph from SQL files

The tool parses the files and validates the syntax of the SQL code before creating and
displaying the evolution graph. In case syntax inconsistencies exist in the definitions of a
table or a query, Hecataeus informs the user and proceeds with creating the evolution graph
without the inconsistent object.

6.2.2 Editing the Evolution Graph

Hecataeus constructs an editable user-friendly graph which user can manipulate. The layout
of the evolution graph distinguishes different types of nodes. For each different type a unique
color and shape is used (e.g., red circle for relations, green square for views, etc.).
Additionally, top-level nodes of modules are bigger that the rest nodes, so that modules are
easily discrete by the user. Single or multiple nodes can be selected and rearranged in the
layout.

Operations such as additions, modifications, deletions and searching of nodes are
supported by the tool. The user can manually add nodes as well as edges between nodes and
define their properties. In Figure 6.3, the form for modifying the properties, i.e., name and
type, of EMPS_PRJS view node is shown.

128

Figure 6.3: Editing the properties of EMPS_PRJS view node

6.2.3 Abstracting the Evolution Graph

Database systems comprise some tens of database objects and even hundreds of dependent
objects accessing the database schema. When represented to graphs, it will result in a large
number of nodes, which may confuse or make hard to users to manipulate. To deal with this
issue, Hecataeus can display the graph in various abstraction levels, hiding or revealing
certain types of nodes and relationships between them, according to the point of interest of
the users. For instance, in Figure 6.4 the user wishes to hide the detailed representation (i.e.,
attributes, conditions, etc.) for all modules in the graph and display only module-level nodes
and edges between them.

Additionally, the user can isolate and display only a part of the graph by selecting
multiple nodes, e.g., all nodes comprising a relation module. Lastly, the user can display
nodes with certain properties such as a policy, an event or a status defined on them.

129

Figure 6.4: Displaying only top-level node of modules

6.2.4 Creating Evolution Scenarios

Evolution scenarios are created by the users by enforcing evolution semantics on the graph.
An evolution scenario comprises a set of events applied on nodes of the graph as well as a set
of policies that dictate the way affected nodes react to evolution events. In the following
sections, we present the implementation of a hypothetical scenario, namely the deletion of
attribute E_SAL from relation EMP, with the use of Hecataeus.

6.2.4.1 Defining Events

The first step for creating an evolution scenario in Hecataeus involves the definition of the
potential evolution events on the nodes of the graph. The user can define one or more
potential events on a node or a set of nodes of the graph. This is easily accomplished by
selecting a specific node and assigning to it a potential event. As shown in Figure 6.5, the
user assigns the event “DELETE_ATTRIBUTE” to the attribute E_SAL of relation EMP. In
that manner, one or more events of different types can be assigned to the same node.
Furthermore, according to the type of the node the appropriate set of potential events is
offered to the user, i.e., only RENAME_ATTRIBUTE and DELETE_ATTRIBUTE events
are available to the user when an attribute node is selected. Events are actually properties that
are assigned to nodes and thus an evolution scenario can comprise multiple assignments of
events.

130

Figure 6.5: Adding event “DELETE_ATTRIBUTE” to att ribute E_SAL of
relation EMP

6.2.4.2 Defining Policies

Similarly, policies are properties defined on a node for capturing the reaction of the node to
an evolution event. A policy defined on a node comprises three parts: (a) the event node on
which a hypothetical event occurs, the type of the hypothetical event and lastly the type of
policy that is followed. In Figure 6.6, the user defines a policy on node EMPS_PRJS view.
The policy defined on EMPS_PRJS view dictates that in case an event for deleting (i.e.,
event type) the attribute E_SAL (i.e., event node) of EMPS_PRJS view occurs then the event
will be propagated towards the rest of the graph. In Figure 6.7, a second policy is defined on
query node Q2 dictating that the deletion of attribute P_EXPENSES must be blocked.
Additionally, the user can prescribe a default system-wide policy for all nodes in the graph,
when no other definitions are explicitly defined on them. In our example, the propagation of
the deletion of the attribute is considered as the default policy of this evolution scenario.

Hecataeus also supports the language extensions presented in chapter 4 for defining
policies on the graph. The user can prepare a text file with expressions for the definition of
policies on nodes of the graph. Hecataeus parses the file and annotates these nodes with the
appropriate policies. For example, in Figure 6.8, the user imports the text file, which contains
the expressions for defining the above policies on EMPS_PRJS and Q2 nodes.

131

Figure 6.6: Defining the policy for propagating the deletion of attribute E_SAL
from EMPS_PRJS view

Figure 6.7: Defining the policy for blocking the deletion of attribute
P_EXPENSES from Q2 query

132

Figure 6.8: Parsing language extensions for definition of policies

Figure 6.9: Highlighting the impact of deleting attribute EMP.E_SAL

133

6.2.4.3 Highlighting the Impact of Changes

Given an event and a set of policies defined on the evolution graph, the tool offers the user
the ability to inspect the impact that this event has on the overall graph. Specifically, the user
triggers the event and Hecataeus highlights the parts of the graph that are affected by this
event according to the algorithm presented in chapter 3. Additionally, the tool assigns a status
on each affected node, which indicates the action that must be performed on this node as a
result of the policies defined for this event. In Figure 6.9, the impact of deleting attribute
E_SAL of relation EMP is highlighted on the graph. Observe that, the EMPS_PRJS view
node (i.e., the brown triangle) has been assigned with a status “TO_DELETE_CHILD”
indicating that a child of this view must be deleted.

It is noted that each node is uniquely colored according to the status assigned to it (e.g.,
red for the status “TO_DELETE_SELF”, black for the status “BLOCK”, brown for status
“TO_DELETE_CHILD”, etc.). Therefore, the user can easily detect by the color of the
affected nodes the assigned statuses. In our example, the attributes E_SAL of relation EMP,
Q1 and EMPS_PRJS are marked for deletion and their parents are annotated with a status for
deleting one of their children. On the contrary, P_EXPENSES attribute of Q2 is annotated
with a status for blocking the deletion of itself as well as the Q2 node as well. These results
are consistent with the propagate policy defined on EMPS_PRJS node and block policy
defined on Q2 node, respectively. For the rest of the modules (i.e., EMP and Q1) the default
propagate policy dictates the deletion of the E_SAL attributes. Lastly, the coloring of the
edges indicates the action that is performed on the relationships between the affected nodes.
A red edge indicates that it must be deleted as a result of deleting one of its adjacent nodes,
whereas the purple one indicates that one of the provider nodes is semantically affected.

6.2.5 Saving Scenarios

A featured functionality of Hecataeus is the reusability and extensibility of evolution
scenarios. The user can save an evolution scenario, i.e., the graph along with all the evolution
semantics defined on it, as an XML file. The XML representation contains information about
all the properties of the nodes, edges, events and policies of the graph. It also contains
information about the graphical layout of the graph, the position and the visibility of the
nodes. In Figure 6.10, a part of the XML representation for the evolution graph of our
example is presented. The tag <HNode> contains the properties for the GB node of Q2
query, such as its unique key in the graph, its name, type and position. Also, the two policies
defined on EMPS_PRJS view and Q2 query are enclosed in the tags <HPolicy>, whereas the
event defined on EMP.E_SAL attribute is enclosed in a <HEvent> tag.

The xml representation of evolution scenarios offers the user the ability to create a
scenario, save it and then reuse it or extend it in Hecataeus. Thus, the user can easily test
different evolution scenarios for a given database configuration and compare their impact.

134

Figure 6.10: XML representation of evolution scenarios

6.2.6 Evaluating Metrics on the Graph

Hecataeus enables the user to evaluate a set of graph theoretic metrics on the evolution graph.
The metrics, which presented in chapter 5, can be evaluated for a single node as shown in
Figure 6.11, where the user chooses to evaluate the degree-in metric for EMPS_PRJS view
node or for all nodes in the graph as shown in Figure 6.12, where the output for the transitive
degree-out metric for every node is shown.

Moreover, the tool gives the user the capability to evaluate maximum values for
metrics among all nodes of the graph. In that manner, user can detect “sensitive” parts of the
graph (e.g., those for which metric values are maximized) which may require specific
manipulation (e.g., the definition of policy on them) during the evolution process.

135

Figure 6.11: Evaluating “Degree In” metric for EMPS_PRJS view

Figure 6.12: Output for “Transitive Degree Out” metric for all nodes

136

6.3 Summary

In this chapter, we have presented in details a software tool, named Hecataeus, which enables
the user to predict and regulate the impact of evolution process over a database-centric
environment. Specifically, Hecataeus enables the user to visualize the evolution graph of a
database –centric environment from SQL source code. It provides many features for editing
the properties of the graph and modifying its layout. The enrichment of the graph with
evolution semantics, i.e., events that modify the database schema of the environment and
policies that dictate the reaction of the graph to these events, gives the user the ability to
create evolution scenarios that forecast the impact of the evolution process before it is
applied to a production environment. To this end, a set of metrics that exploit the graph
theoretic properties of the evolution graph and indicate sensitive parts of the configuration
are incorporated into the tool.

Special acknowledgments are given to Kostis Kyzirakos and Fotini Anagnwstou
(former undergraduate students) for their huge efforts towards the design and development of
Hecataeus. In [Kyzi05], a first version of Hecataeus to modeling SQL constructs as graphs is
presented, where the model of chapter 2 is fully implemented. In [Anag07], Hecataeus is
enhanced with capabilities for the definition of evolution events and policies, the impact
prediction of events and the XML representation.

137

7. CONCLUSIONS AND
FUTURE WORK

7.1 Conclusions

In this thesis, we have addressed the problem of database schema evolution with the
introduction of a rule – based framework that regulates the impact of evolution processes.
The problem of schema evolution in database centric environments exists in the fact that
alterations occurring on the schema of database objects affect a numerous of database objects
and software constructs that are dependent on the evolved objects. The impact of these
alterations on other constructs can be either syntactical, e.g., a change may evoke a
compilation or execution failure during the execution of a piece of code; or semantic, e.g., a
change may have an effect on the semantics of the software used. Both ways require by the
administrators/developers the redefinition and if necessary the recompilation of the affected
constructs, so that these adhere to the new semantics.

To deal with the above issues, we introduced a framework for the automatic detection
of the parts of the system, which are affected by an evolution change and the regulation of
their reaction to this change. The framework is based on a graph representation of a database-
centric environment. We proposed a graph modeling technique that uniformly covers
relational tables, views, database constraints and SQL queries as first class citizens. We
employed a graph theoretic approach and we mapped the aforementioned constructs to a
graph, that we called Evolution Graph. The graph was furthermore annotated with evolution
semantics that facilitate the impact analysis and regulation of schema evolution. We defined
events on the nodes of the graph which are mapped to evolution changes that occur on parts
of a database. Constructs of the graph were, then, enriched with rules, namely policies, that
allow the developer to specify the behavior of the affected constructs whenever events that
alter the database graph occur. The combination of an event with a policy determined by the
designer/administrator triggers the execution of the appropriate action that either blocks the
event, or highlights properly the graph to adapt to the proposed change. Additionally, we

138

proposed a set of language SQL extensions that enables the implementation of the proposed
framework for the management of evolution. For extending a system catalog with extra infor-
mation regarding evolution metadata, we provided extensions to SQL regarding both top
level construct definitions, such as tables, views, and queries, as well as fine grain constructs
such as attributes, conditions of views/queries, and database constraints. Moreover, we
provided a principled way for defining the proposed evolution semantics and in the same
time minimizing the user effort. Most importantly, the experimental evaluation of the
framework was performed over a real-case database environment.

To this end, we studied the structural properties of the evolution graph for the
definition of a set of metrics related to the evolution capabilities of database-centric
environments. The metrics were categorized into (a) future-agnostic graph-based metrics,
building upon the properties of the nodes of the graph. Graph theoretic properties like the
degrees of a node reveal how interrelated to other nodes a certain node is. (b) Future-aware
metrics that extended the previous simple model with a hypothesis for the evolution events
that will occur in the future and lastly (c) policy-aware metrics that took into consideration
the special role of policies defined on the graph. We also provided an experimental
evaluation of the proposed metric set over various configurations in the setup of a reference
database environment and assessed both the effectiveness of the proposed metrics (i.e., how
well do they actually predict the impact of evolution events to a design construct) and how
different design alternatives for the same schema behaved with respect to evolution. Lastly, a
software tool, called Hecataeus, was developed in the context of this thesis incorporating the
concepts and functionality of the proposed framework.

The concept of rule-based management of schema evolution, which is considered in
this thesis, suggests that affected constructs do not always align towards retaining the same
semantics before and after the evolution process. Their adaptation to the evolved semantics is
dictated by the users with the use of policies. For instance, the propagation of the addition of
a new attribute in the database schema towards objects referring to the evolved relation such
as queries and views results in evolving the semantics of these objects as well. Such changes
may, in turn, be propagated towards other dependent objects, inducing the semi-automatic
redefinition of a whole path of dependent objects. The identification and regulation by the
user of this impact before the evolution process occurs is one of the basic features and
contributions of this thesis.

Another interesting aspect of this thesis is the evaluation of the design of a database –
centric environment and the correlation with its evolution capabilities. The proposed set of
metrics measure in a principled way the vulnerability to evolution of the design of a database
– centric environment and identify these configurations that are most appropriate for
sustaining evolution changes without great reengineering effort.

We believe that the introduced framework can be practically applied to a variety of
current database – centric configurations and technologies. We have already elaborated the

139

application of our framework over a real-case datawarehouse configuration [PVSV07],
[PVSV09] as presented in chapter 3. In that case, the sources of ETL workflows evolved
over time and the ETL activities were affected and adapted to evolution events. Similarly, the
scenario which involved the evolution of the data warehouse schema (i.e., change of
dimensions) and the regulation of its impact on the workload of the warehouse was
experimentally performed in chapter 5. In the same manner, we believe that the application
of the framework to almost all kinds of database-centric systems can be beneficial for their
evolution, especially for distributed environments where changes are performed locally
affecting however a large number of dependent objects and applications. For instance, peer to
peer databases are considered to be a representative example where evolution is performed
independently in peers and affects other peers.

7.2 Future Work

The database schema evolution problem as posed in this thesis has long term research
challenges that spread across technologies (O-O approach, XML, etc.) and design solutions.
As stressed, the introduced framework addresses some of these challenges, but also raises a
plethora of others that may require further research efforts. Some interesting directions for
future work related to our approach could be the following:

Incorporation of other data models to the evolution graph: Our framework represents a
relational approach to the database schema and its evolution. The incorporation of other
approaches, such as XML, to the evolution graph as well as the mapping of evolution events
occurring on XML schemas to events on the evolution graph would be a very interesting
issue.

Patterns of evolution sequences: Another research goal that can be pursued is the
identification of patterns of evolution sequences. The evolution of the database schema
within an information system may occur throughout its entire lifecycle. An interesting issue
is related to finding out patterns of transformations that are most common in each phase of
the lifecycle and incorporate their handling into our framework. For instance,

• During the development phase, a proportional large number of deletions of entities
(i.e., attributes, constraints and relations) occur in comparison to other phases of the
lifecycle.

• During the normalization / denormalization process, the main evolution
transformations comprise additions / deletions of PK and FK constraints to the
involved relations.

• In the context of a data warehouse, slowly changing dimensions induce the
modification (additions/deletions) of FK in the fact table, which is however less
common than the modification of measures.

140

Patterns in the evolution of the database schema can be further observed in the context
of the kind of information system employed (DW, WebIS, etc.). In most occasions,
evolution processes can be decomposed in standard sequences of evolution events, which are
performed in the database schema. For instance, in a relational data warehouse environment
the addition of a dimension involves the sequence of essential evolution events, such as the
addition of the dimension relation, the addition of a FK to the fact table, etc.

Patterns of evolution adaptations – optimization techniques: Apart from the patterns of
evolution events occurring on a database schema, a similar research goal would be the
investigation for patterns related to the impact that these events have on affected queries and
views. Such patterns depend strongly on the functionality of the affected queries and views.
To mention an example, again in an ETL environment, the majority of evolution events
occurred at the sources is propagated and absorbed by the queries included in the ETL
activities, while only few activities retain their old functionality when they are affected by
changes. Other examples include modification queries (especially insert into) which in
general propagate changes to their definitions, or views that act as macros to the underlying
tables. The common reaction of affected constructs to evolution events can be further
investigated in several contexts of database-centric environments. Repetitive patterns in the
evolution of a database schema can help the administrator decide upon the appropriate policy
set that must be applied on the graph and thus handle more effectively forthcoming evolution
events. For instance, if in a data warehouse context, additions of dimensions result in most
cases in the addition of grouping attributes in most of the affected queries, then a policy set
comprising propagate policies for most queries is most optimal.

Towards this direction, a promising research subject is related with optimization
techniques for defining appropriate policies on the graph. That means the administrator must
define these policies on the graph and thus regulate the evolution in a way such that the
human interaction for the affected objects to be minimized.

Evolution Benchmark: In [CMTZ08] the need for a benchmark for schema evolution is
stressed. This need is enforced by the fact that numerous approaches and tools for schema
evolution exist in the literature without however being practically evaluated and compared in
a common testbed. For example, each approach addresses different cases of evolution under
different contexts and technologies. Therefore, a benchmark for schema evolution should
have some specific characteristics, such as a commonly agreed set of evolution events that
occur on the database schema, a standard set of workload for the database, and most
importantly a set of measurable parameters for the impact of evolution.

ECA rules for schema evolution: The policy-regulated technique of the proposed
framework resembles the approach of Event-Condition-Action (ECA) rules of active
databases on the grounds that the combination of an evolution event with a condition (i.e.,
policy defined on the node) raises an action (i.e., assignment of a status) on the graph.
Current RDBMS support ECA rules for schema modifications with the form of schema

141

triggers [ORAC10g]. However, these triggers do not raise schema modifications to other
database objects but only perform DML actions to existing tables. An interesting research
problem would be the integration of the policy regulated technique into a framework of ECA
rules for schema changes that would also involve schema modifications to queries and views.

 Hecataeus: Lastly, a challenging direction for future work concerns Hecataeus itself.
Hecataeus is an ongoing project which can be enhanced with numerous and powerful
features. A first one could be the integration of the tool with all commercial RDBMS (e.g.,
with ODBC connections) so that schema definitions can be automatically derived from the
database catalogue and backwards evolution transformations can be directly applied on
database schemas. A second one concerns the automatic restructuring of the graph after it has
been assigned with statuses regarding evolution and the production of SQL source code from
the transformed graph for all database objects.

143

BIBLIOGRAPHY

[Alle02] E. B. Allen. Measuring Graph Abstractions of Software: An Information-
Theory Approach. In IEEE METRICS, pp.182-193, 2002.

[Anag07] F. Anagnostou. HecataeusII: A Software System for Database Schema
Representation and Evolution. Diploma Thesis. School of Electrical and
Computer Engineering, National Technical University of Athens, November
2007.

[ArLi03] M.Arenas, L.Libkin. An Information Theoretic Approach to Normal Forms
for Relational and XML Data. In Proceedings of the 22nd ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database Systems
(PODS’03), June 9-12, 2003, San Diego, CA, USA.

[Bane87] J. Banerjee et al. Semantics and implementation of schema evolution in
object-oriented databases. In Proceedings of ACM SIGMOD. San Francisco,
California, May 1987.

[BaOO02] N. H. Balkir, G. Ozsoyoglu, Z. M. Ozsoyoglu. A Graphical Query Language:
VISUAL And Its Query Processing. IEEE Transactions on Knowledge and
Data Engineering, 14(5), pp. 955-978, 2002.

[Bell02] Z. Bellahsene. Schema evolution in data warehouses. In Knowledge and
Information Systems, 4, pp.283-304, 2002.

[Ber+05] G. Berenguer, R. Romero, J. Trujillo, M. A. Serrano, M. Piattini. A Set of
Quality Indicators and their Corresponding Metrics for Conceptual Models
of Data Warehouses. In Proceedings of the 7th International Conference on
Data Warehousing and Knowledge Discovery (DaWaK ’05), Copenhagen,
Denmark, August 2005.

144

[BeLP00] P. Bernstein, A. Levy, R. Pottinger. A Vision for Management of Complex
Models. In SIGMOD Record, vol. 29, no. 4, pp. 55-63, Dec. 2000.

[BeRa00] P. Bernstein, E. Rahm. Data Warehouse Scenarios for Model Management.
In Proceedings of the 19th International Conference on Conceptual Modeling
(ER 2000), pp. 1-15, 2000.

[Bern03] P. Bernstein. Applying Model Management to Classical Meta Data Problems.
In Proc. of the CIDR Conference, Asilomar, California. January 2003.

[BlSH99] M. Blaschka, C. Sapia, G. Höfling. On Schema Evolution in
Multidimensional Databases. In Proceedings of the 1st International
Conference on Data Warehousing and Knowledge Discovery (DAWAK’99),
pp. 153-164, Florence, Italy, 1999.

[BoKe00] M. Bouzeghoub, Z. Kedad. A Logical Model for Data Warehouse Design and
Evolution. In Proceedings of the 2nd International Conference on Data
Warehousing and Knowledge Discovery (DAWAK’00), pp. 178-188,
London, UK, September 2000.

[BrMB96] L. Briand, S. Morasca, V. Basili. Property-Based Software Engineering
Measurement. In IEEE Transactions on Software Engineering, 22(6), pp.68-
86, 1996.

[CaPG01a] C.Calero, M.Piattini, M.Genero. A Case Study with Relational Database
Metrics. In Proceedings of the ACS/IEEE International Conference on
Computer Systems and Applications (AICCSA ’01), 2001.

[CaPG01b] C.Calero, M.Piattini, M.Genero. Empirical Validation of Referential Integrity
Metrics. In Information and Software technology 43, pp. 949-957, 2001.

[CaPi87] R. Cavallo, M. Pittarelli. The theory of probabilistic databases. In
Proceedings of the 13th International Conference on Very Large Data Bases
(VLDB ‘87), September 1-4, 1987, Brighton, England.

[CCLB97] T. Catarci, M. F. Costabile, S. Levialdi, C. Batini. Visual Query Systems for
Databases: A Survey. In Journal of Visual Languages and Computing, 8(2),
pp. 215-260, 1997.

[ChPr03] S.S.Cherfi, N.Prat. Multidimensional Schemas Quality: Assessing and
Balancing Analyzability and Simplicity. In ER (Workshops) pp. 140-151,
2003

145

[CMTZ08] C. A. Curino, H. J. Moon, L. Tanca, C.Zaniolo. Schema Evolution in
Wikipedia - Toward a Web Information System Benchmark. In 10th
International Conference on Enterprise Information Systems (ICEIS '08),
Barcelona, Spain, June 2008.

[CPPS01] C.Calero, M.Piattini, C.Pascual, M.Serrano. Towards Data Warehouse
Quality Metrics. In Proceedings of the 3rd Intl. Workshop on Design and
Management of Data Warehouses, DMDW'2001, Interlaken, Switzerland,
June 4, 2001.

[CSPL01] C. Calero, H. A. Sahraoui, M. Piattini, H. Lounis. Estimating Object-
Relational Database Understandability Using Structural Metrics. In
Proceedings Database and Expert Systems Applications, 12th International
Conference, DEXA 2001 Munich, Germany, September 3-5, 2001.

[DaLe88] J.S.Davis, R.J. LeBlanc. A Study of the Applicability of Complexity Measures.
In IEEE Transactions on Software Engineering 14(9): pp.1366-1372, 1988.

[DaRo00] M.M.Dalkilic, E.L.Robertson. Information Dependencies. In Proceedings of
the 19th ACM SIGMOD-SIGACT-SIGART Symposium on Principles of
Database Systems (PODS’00), May 15-17, 2000, Dallas, Texas, USA.

[FaBB07] C. Favre, F. Bentayeb, O. Boussaid. Evolution of Data Warehouses'
Optimization: A Workload Perspective. In Proceedings of the 9th
International Conference on Data Warehousing and Knowledge Discovery
(DaWaK’07), Regensburg, Germany, September 2007.

[FaPo04] H. Fan, A. Poulovassilis. Schema Evolution in Data Warehousing
Environments - A Schema Transformation-Based Approach. In Proceedings
of the 23rd International Conference on Conceptual Modeling (ER’04), pp.
639-653, 2004.

[Fent94] N. Fenton. Software Measurement: A Necessary Scientific Basis. In IEEE
Transactions on Software Engineering, 20(3), pp. 199-206, 1994.

[Fer+95] F. Ferrandina, T. Meyer, R. Zicari, G. Ferran, J. Madec. Schema and
Database Evolution in the O2 Object Database System. In Proceedings of
21th International Conference on Very Large Data Bases(VLDB’95), pp.170-
181, September 11-15, 1995, Zurich, Switzerland.

146

[GMRR01] A. Gupta, I. S. Mumick, J. Rao, K. A. Ross. Adapting materialized views
after redefinitions: Techniques and a performance study. In Information
Systems, 26, pp.323-362, 2001.

[GCMP91] R. Gray, B. Carey, N. McGlynn, A. Pengelly. Design metrics for database
systems. BT Technology J., 9(4), pp. 69-79, 1991.

[GOPR01] M.Genero, J.Olivas, M.Piattini, F.Romero. Using Metrics to predict OO
Information Systems Maintainability. In Proceedings of the 13th International
Conference on Advanced Information Systems Engineering, CAISE’01,
Interlaken, Switzerland, June 4-8, 2001.

[GPCS00] M.Genero, M.Piattini, C.Calero, M.Serrano. Measures to get better quality
databases. In Proceedings of the 2nd International Conference on Enterprise
Information Systems, ICEIS’00, Stafford, UK, July 4-7.

[GLRV04] M. Golfarelli, J. Lechtenbörger, S. Rizzi, G. Vossen. Schema Versioning in
Data Warehouses. In 3rd International Workshop on Evolution and Change in
Data Management (ECDM ’04), ER’ 2004 Workshops, pp. 415–428, 2004

[Harr92] W.Harrison. An Entropy-Based Measure of Software Complexity. In IEEE
Transactions on Software Engineering 18(11), pp. 1025-1034, 1992.

[HFLP89] L. M. Haas, J. C. Freytag, G. M. Lohman, H. Pirahesh. Extensible Query
Processing in Starburst. In Proceedings of the 1989 ACM SIGMOD
International Conference on Management of Data, Portland, Oregon, May 31
- June 2, 1989.

[HSQL] HSQL Database Engine: http://hsqldb.org

[JaTh03] H. Jaakkola, B. Thalheim. Visual SQL - High-Quality ER-Based Query
Treatment. In ER (Workshops) 2003: 129-139

[JJQV99] M.Jarke, M.A. Jeusfeld, C.Quix, P.Vassiliadis. Architecture and Quality in
Data Warehouses: An Extended Repository Approach. In Information
Systems, 24(3): pp. 229-253, 1999.

[JUNG] Java Universal Network/Graph Framework (JUNG):
http://jung.sourceforge.net/index.html

147

[KaPR04] C. Kaas, T. B. Pedersen, B. Rasmussen. Schema Evolution for Stars and
Snowflakes. In Proceedings of the 6th International Conference on Enterprise
Information Systems (ICEIS’04), pp. 425-433, 2004.

[KaSj01] A. Karahasanovic, D. I. K. Sjøberg. Visualizing Impacts of Database Schema
Changes - A Controlled Experiment. In International Symposium on Human-
Centric Computing Languages and Environments(HCC 2001), Stresa, Italy,
September, 2001.

[Kesh95] S. Kesh. Evaluating the quality of Entity Relationship Models. In Information
and Software Technology, 37 (12), pp. 681-689, 1995.

[Kimb96] R. Kimball. Slowly Changing Dimensions, Data Warehouse Architect,
DBMS Magazine, April 1996, http://www.dbmsmag.com

[KiSW95] K.Kim, Y.Shin, C.Wu. Complexity Measures for Object-Oriented Program
Based on the Entropy. In Proceedings of the 2nd Asia-Pacific Software
Engineering Conference (APSEC '95), December 6-9, 1995, Brisbane,
Queensland, Australia.

[Kyzi05] K. Kyzirakos. Hecataeus: A Software System for Representing SQL
Constructs as Graphs. Diploma Thesis. School of Electrical and Computer
Engineering, National Technical University of Athens, October 2005.

[LaSS01] L.V.S. Lakshmanan, F. Sadri, I.N. Subramanian. SchemaSQL – An Extension
to SQL for MultiDatabase Interoperability. In ACM Transactions on
Database Systems 26(4), pp.476-519, 2001.

[Lee87] T. T. Lee. An information Theoretic analysis of relational Databases-Part I :
Data Dependencies and Information Metric. In IEEE Transactions on
Software Engineering, Vol. SE-13, No. 10, pp. 1049-1061, October 1987.

[LeLo03] M. Levene, G. Loizou, Why is the snowflake schema a good data warehouse
design? In Information Systems Journal, 28(3): pp. 225-240, 2003.

[LiCC94] C.T. Liu, P.K. Chrysanthis, S.K. Chang. Database schema evolution through
the specification and maintenance of changes on entities and relationships. In
Proceedings of the International Conference on Entity-Relationship Approach
(ER ’94), p.132-151. Manchester, U.K., Dec 1994.

[Malv86] F. M. Malvestuto. Statistical Treatment of the information content of a
database. In Information Systems, Vol.11, No. 3, pp. 211-233, 1986.

148

[McSn90] L. E. McKenzie, R. T. Snodgrass. Schema Evolution and the Relational
Algebra. In Information Systems, Vol.15, No 2, pp. 207-232, 1990.

[Meln04] S. Melnik. Generic Model Management - Concepts and Algorithms. LNCS
2967 - Springer-Verlag Berlin 2004.

[MoDo96] M. Mohania, D. Dong. Algorithms for adapting materialized views in data
warehouses. In Proceedings of 8th international symposium on cooperative
database systems for advanced applications (CODAS ‘96), p.309-316. Kyoto,
Japan, Dec 1996.

[Mood98] D.L.Moody. Metrics for evaluating the Quality of Entity Relationship
Models. In Proceedings of the 17th International Conference on Conceptual
Modeling (ER’ 98), Singapore, November 1998, 213-225.

[MuGP98] N. Murray, C. A. Goble, N. W. Paton. A Framework for Describing Visual
Interfaces to Databases. In Journal of Visual Languages and Computing,
9(4), pp.429-456, 1998.

[NaKa01] K.K.Nambiar, V.Kannoth. Generic Dependencies and Database Design. In
International Journal on Computers and Mathematics with Applications, 41,
pp. 281-288, 2001.

[NiLR98] A. Nica, A. J. Lee, E. A. Rundensteiner. The CSV algorithm for view
synchronization in evolvable large-scale information systems. In Proceedings
of International Conference on Extending Database Technology (EDBT ‘98).
Lectures notes in computer science, Springer, p.359-373. Valencia, Spain,
Mar 1998.

[ORAC10g] Oracle® Database SQL Reference 10g Release 2 (10.2). Chapter 16: SQL
Statements: CREATE SYNONYM to CREATE TRIGGER.

[PaKi95] A. Papantonakis, P. J. H. King. Syntax and Semantics of Gql, a graphical
query language. In Journal of Visual Languages and Computing, 6(1),pp. 3-
25, 1995.

[Papo90] A. Papoulis. Probability & statistics, Englewood Cliffs, NJ.Prentice Hall,
c1990.

149

[Pap+08] G. Papastefanatos, P.Vassiliadis, A.Simitsis, K.Aggistalis, F.Pechlivani,
Y.Vassiliou. Language Extensions for the Automation of Database Schema
Evolution. In 10th International Conference on Enterprise Information
Systems (ICEIS '08), Barcelona, Spain, June 2008.

[PaVV05] G. Papastefanatos, P. Vassiliadis, Y. Vassiliou. Adaptive Query Formulation
To Handle Database Evolution (Extended Version). In 18th Conference on
Advanced Information Systems Engineering (CAiSE ‘06) CAiSE Forum,
Luxembourg, June 2006.

[PAVV08] G. Papastefanatos, F. Anagnostou, Y. Vassiliou, P. Vassiliadis. Hecataeus: A
What-If Analysis Tool for Database Schema Evolution. In 12th European
Conference on Software Maintenance and Reengineering (CSMR '08),
Athens, Greece, 1-4 April, 2008.

[PiGC01] M.Piattini, M.Genero, C.Calero. Table Oriented metrics for relational
databases. In Software Quality Journal, 9, pp. 79-97, 2001.

[PiGC02] M. Piattini, M.Genero, C. Calero. Data Model Metrics. Handbook of
Software Engineering and Knowledge Engineering, Vol II, 2002.

[PKVV05] G. Papastefanatos, K. Kyzirakos, P. Vassiliadis, Y. Vassiliou. Hecataeus: A
Framework for Representing SQL Constructs as Graphs. In 10th
International Workshop on Exploring Modeling Methods for Systems
Analysis and Design - EMMSAD '05 (in conjunction with CAISE'05) -
Oporto, Portugal, June 2005.

[PVSV07] G. Papastefanatos, P. Vassiliadis, A. Simitsis, Y. Vassiliou. What-if Analysis
for Data Warehouse Evolution. In 9th International Conference on Data
Warehousing and Knowledge Discovery (DaWaK '07), Regensburg,
Germany, 3-7 September, 2007.

[PVSV08] G. Papastefanatos, P. Vassiliadis, A. Simitsis, Y. Vassiliou. Design Metrics
for Data Warehouse Evolution. In Proceedings of the 27th International
Conference on Conceptual Modeling (ER 2008), Barcelona, Spain, October
2008.

[PVSV09] G. Papastefanatos, P.Vassiliadis, A.Simitsis, Y.Vassiliou. Policy-regulated
Management of ETL Evolution. In Journal on Data Semantics - XIII: Special
Issue "Semantic Data Warehouses", 2009 (to appear)

150

[RaRu95] Y. G. Ra, E. A. Rundensteiner. A transparent object-oriented schema change
approach using view evolution. In Proceedings of the Eleventh International
Conference on Data Engineering (ICDE ‘95), p.165-172, Taipei, Taiwan,
March 1995.

[Rodd92a] J.F. Roddick. SQL/SE - A Query Language Extension for Databases
Supporting Schema Evolution. In SIGMOD Record 21(3), pp.10-16,
September 1992.

[Rodd92b] J.F. Roddick. Schema Evolution in Database Systems – An Annotated
Bibliography. In SIGMOD Record 21(4), pp.35-40, December 1992.

[Rodd95] J.F. Roddick. A Survey of Schema Versioning Issues for Database Systems. In
Information Software Technology, 37(7), pp.383-393, 1995.

[Rodd00] J.F. Roddick, L. Al-Jadir, L.E. Bertossi, M. Dumas, F. Estrella, H. Gregersen,
K. Hornsby, J. Lufter, F. Mandreoli, T. Männistö, E. Mayol, L. Wedemeijer.
Evolution and Change in Data Management - Issues and Directions.
SIGMOD Record 29(1): pp.21-25, 2000.

[RuLN97] E. A. Rundensteiner, A. J. Lee, A. Nica. On preserving views in evolving
environments. In Proceedings of the 4th KRDB Workshop, pp.13.1–13.11.
Athens, Greece, Aug 1997.

[SVTS05] A. Simitsis, P. Vassiliadis, M. Terrovitis, S. Skiadopoulos. Graph-Based
Modeling of ETL Activities with Multi-level Transformations and Updates. In
Proceedings of the Seventh International Conference on Data Warehousing
and Knowledge Discovery (DaWaK’05), pp. 43-52, 2005.

[Sjob93] D. Sjoberg. Quantifying Schema Evolution. In Information and Software
Technology, 35(1): pp. 35-44, 1993.

[TPCD07] The TPC BENCHMARK™ DS, www.tpc.org/tpcds/spec/tpcds1.0.0.d.pdf,
April 2007.

[TsKl78] D. Tsichritzis, A.C. Klug. The ANSI/X3/SPARC DBMS Framework Report of
the Study Group on Database Management Systems. In Information Systems
3(3), pp. 173-191, 1978.

[UnLeip] Caravela 2.0. Publication Categorizer for Schema Evolution and Data
Cleaning. University of Leipzig, http://pubs.dbs.uni-leipzig.de

151

[UrHM04] S. Urman, R. Hardman, M. McLaughlin. Oracle Database 10g PL/SQL
Programming. Oracle Press, 2004.

[VaBQ00] P.Vassiliadis, M.Bouzeghoub, C.Quix. Towards Quality-oriented Data
Warehouse Usage and Evolution. In Information Systems 25(2), pp. 89-115,
2000.

[Vass00] P.Vassiliadis. Data Warehouse Modeling and Quality Issues. PhD Thesis.
National Technical University of Athens, Athens 2000.

[VeMP03] Y. Velegrakis, R. Miller, L. Popa. Mapping Adaptation under Evolving
Schemas. In Proceedings of 29th International Conference on Very Large
Data Bases (VLDB’04), pp. 584-595, Berlin, Germany, September 2003.

[VeMP04] Y. Velegrakis, R. Miller, L. Popa. Preserving Mapping consistency under
schema changes. In VLDB Journal, 13, pp. 274-293, 2004.

[Wede00] L. Wedemeijer. Defining Metrics for Conceptual Schema Evolution. In
Proceedings of the 9th International Workshop on Foundations of Models
and Languages for Data and Objects, FMLDO’00, Dagstuhl Castle,
Germany, September 18-21, 2000.

[Zuse98] H. Zuse. A framework of Software Measurement, 1998, Berlin, Walter de
Gruyter.

153

APPENDIX

The following tables present an overall picture of our framework. In Table A.1,
potential events tested by the designer/administrator are depicted in the first column of the
table. The two rightmost columns depict possible policies that the administrator could have
set and the macro level actions by our approach. Per event, we present the candidate modules
for change and the type of impact (i.e., semantic or syntactical) the change has on them.

154

Event on
source schema

Candidate Modules
For Change

Impact Prevailing
Policy*

Action

Add A 1.Queries/views that must
include the added attribute
in the SELECT clause
2.Queries/views with
SELECT * clause that must
exclude the added attribute

Semantic Policy = P Include attribute in SELECT clause
Policy = B Rewrite SELECT clause excluding added

attribute
Policy = ? One of the above

C Queries/views referring to
the relation/view over
which the condition is
added

Semantic Policy = P Leave query intact
Policy = B Retain old view (without the added condition)

and all queries with block policy refer to the
old view

Policy = ? One of the above
R / V No direct

impact

Delete A Queries/views referring to
this attribute (i.e. in the
SELECT clause, WHERE
clause, etc.)

Syntactical,
Semantic

Policy = P Remove deleted attribute from query/view
definition (i.e., SELECT, WHERE, GROUP
BY clause)

Policy = B Rewrite properly query/view in order to be
valid.

Policy = ? One of the above
C Queries/views referring to

relation/view from which
the condition is removed

Semantic Policy = P Leave query intact
Policy = B Retain old view (including the original

condition) and all queries with block policy
refer to the old view

Policy = ? One of the above
R / V Queries/views referring to

relation/view
Syntactical,
Semantic

Policy = P Remove relation from query/view definition
(i.e., FROM clause) along with the attributes
and conditions involving this relation (i.e.,
SELECT, WHERE, GROUP BY clauses)

Policy = B Rewrite properly query/view in order to be
valid

Policy = ? One of the above
Modify/
Rename

A Queries/views referring to
this attribute (i.e. in the
SELECT clause, WHERE
clause, etc.)

Syntactical,
Semantic

Policy = P Rename modified attribute in the query/view
definition (i.e., SELECT, WHERE, GROUP
BY clause, etc)

Policy = B Rewrite properly query/view in order to be
valid.

Policy = ? One of the above
C Queries/views referring to

relation/view of which the
condition is modified

Semantic Policy = P Leave query intact
Policy = B Retain old view (including the original

condition) and all queries with block policy
refer to the old view

Policy = ? One of the above
R / V Queries/views referring to

relation/view
Syntactical,
Semantic

Policy = P Rename relation in the query/view definition
(i.e., FROM clause)

Policy = B Rewrite properly query/view in order to be
valid.

Policy = ? One of the above
* Policy Types: P=Propagate, B =Block, ?=Prompt (def)

Table A.1: Macro level actions dictated by framework for several kinds of events.

155

In Table A.2, the statuses, i.e., the actions dictated at the detailed level of nodes,
assigned to visited nodes by Propagate Changes Algorithm for combinations of events and
types of nodes are shown, when propagate policy prevails on the visited node. For each
status the new event induced by the assignment of a node with status, which is further
propagated to the graph, is also shown.

Event on the
graph

On
node Scope1 Status Raised Event

Add

R/V/Q
None

affected
N/A N/A N/A

A

R S Add Child Add Attribute

V S, P Add Child Add Attribute

Q S, P Add Child Add Attribute

C P Modify Provider Modify Condition

C

R C Add Child Add Condition

V S, P
Add Child,

Modify Provider
Add Condition, Modify Condition

Q S, P
Add Child,

Modify Provider
Add Condition, Modify Condition

A S Add Child Add Condition

GB
V S, P

Add Child,
Modify Provider

Add GB, Modify GB

Q S, P
Add Child,

Modify Provider
Add GB, Modify GB

OB
V S, P

Add Child,
Modify Provider

Add OB, Modify OB

Q S, P
Add Child,

Modify Provider
Add OB, Modify OB

156

Delete

R R S Delete Self Delete Relation2

V V S Delete Self Delete View2

Q Q S Delete Self Delete Query2

A

R C Delete Child None

V C Delete Child None

Q C Delete Child None

A S Delete Self Delete Attribute

C P Delete Self Delete Condition

F P Delete Self Delete Function

GB P
Delete Self,
Modify Self3

Delete GB, Modify GB

OB P
Delete Self,
Modify Self3

Delete OB, Modify OB

C

R C Delete Child Delete Condition

V C, P
Delete Child,

Modify Provider
Delete Condition, Modify

Condition

Q C, P
Delete Child,

Modify Provider
Delete Condition, Modify

Condition
A C Delete Child Delete Condition

C S, C
Delete Self,
Delete Child

Delete Condition, Modify
Condition

F

A C Delete Self Delete Attribute

C C Delete Self Delete Condition

F C Delete Self Delete Function

GB C
Delete Self,
Modify Self3

Delete GB, Modify GB

OB C
Delete Self,
Modify Self3

Delete OB, Modify GB

GB

V C, P Delete Child,
Modify Provider

Delete GB, Modify GB

Q C, P
Delete Child,

Modify Provider
Delete GB, Modify GB

GB S Delete Self Delete GB

OB

V C, P
Delete Child,

Modify Provider
Delete OB, Modify OB

Q C, P
Delete Child,

Modify Provider
Delete OB, Modify OB

OB S Delete Self Delete OB

157

Rename

R

R S Rename Self Rename Relation

V P Rename Provider None

Q P Rename Provider None

V
V S Rename Self Rename View

Q P Rename Provider None

A

R C Rename Child None

V C Rename Child None

Q C Rename Child None

A S Rename Self Rename Attribute

C P Rename Provider None

F P Rename Provider None

GB P Rename Provider None

OB P Rename Provider None

Modify
Domain

A

R C Modify Child None

V C Modify Child None

Q C Modify Child None

A S Modify Self Modify Attribute

C P Modify Provider Modify Condition

F P Modify Provider Modify Function

GB P Modify Provider Modify GB

OB P Modify Provider Modify OB

158

Modify

C

R C Modify Child Modify Condition

V C, D
Modify Child,

Modify Provider
Modify Condition

Q C, D
Modify Child,

Modify Provider
Modify Condition

A C Modify Child Modify Condition

C S, C
Modify Self,
Modify Child

Modify Condition

F

A C Modify Self Modify Attribute

C C Modify Self Modify Condition

GB C Modify Self Modify GB

OB C Modify Self Modify OB

GB
V C, D

Modify Child,
Modify Provider

Modify GB

Q C, D
Modify Child,

Modify Provider
Modify GB

OB
V C, D

Modify Child,
Modify Provider

Modify OB

Q C, D
Modify Child,

Modify Provider
Modify OB

P
P S Modify Self Modify Parameter

C C Modify Self Modify Condition

1Scope: S (SELF), C(CHILD), P(PROVIDER)
2All attributes in the schema are first deleted before Delete Relation, Delete View and Delete Query events
occur.
3The value for the status depends on whether GB / OB node have other children. If no other children exist
then Delete GB/OB is assigned, Modify GB/OB otherwise.

Table A.2: Statuses assigned to nodes when propagate policy prevails

