
Aj na, Noèmbrioc 2008

Didaktorik Diatrib

tou

Dhm trh SaqarÐdh

DiplwmatoÔqou Hlektrolìgou MhqanikoÔ &
MhqanikoÔ Upologist¸n E.M.P. (2001)

DiaqeÐrish Reum�twn Dedomènwn

Sqolh Hlektrologwn Mhqanikwn

Kai Mhqanikwn Upologistwn

Tomeac Teqnologiac Plhroforikhc kai Upologistwn

Ejniko Metsobio Poluteqneio

Aj na, Noèmbrioc 2008

Didaktorik Diatrib

tou

Dhm trh SaqarÐdh

DiplwmatoÔqou Hlektrolìgou MhqanikoÔ &
MhqanikoÔ Upologist¸n E.M.P. (2001)

Sumbouleutik Epitrop : T. Sell c
I. BasileÐou
A. G. Stafulop�thc

EgkrÐjhke apì thn eptamel exetastik epitrop th 10h NoembrÐou 2008.

T. Sell c I. BasileÐou A. G. Stafulop�thc
Kaj. EMP Kaj. EMP Kaj. EMP

E. Z�qoc N. KozÔrhc S. Skiadìpouloc
Kaj. EMP Anap. Kaj. EMP Ep. Kaj. Pan. Pel/sou

A. Delhgiann�khc
Ep. Kaj. Pol. Kr thc

DiaqeÐrish Reum�twn Dedomènwn

Ejniko Metsobio Poluteqneio

Sqolh Hlektrologwn Mhqanikwn Kai Mhqanikwn Upologistwn

Tomeac Teqnologiac Plhroforikhc kai Upologistwn

. . .

Dhm trhc SaqarÐdhc
Did�ktwr Hlektrolìgoc Mhqanikìc kai Mhqanikìc Upologist¸n E.M.P.

c© 2008 - All rights reserved

ApagoreÔetai h antigraf , apoj keush kai dianom thc paroÔsac ergasÐac, ex
olokl rou tm matoc aut c, gia emporikì skopì. Epitrèpetai h anatÔpwsh, apo-
j keush kai dianom gia skopì mh kerdoskopikì, ekpaideutik c ereunhtik c fÔshc,
upì thn proôpìjesh na anafèretai h phg proèleushc kai na diathreÐtai to parìn m -
numa. Erwt mata pou aforoÔn th qr sh thc ergasÐac gia kerdoskopikì skopì prèpei
na apeujÔnontai proc ton suggrafèa.

Oi apìyeic kai ta sumper�smata pou perièqontai se autì to èggrafo ekfr�zoun ton
suggrafèa kai den prèpei na ermhneujeÐ ìti antiproswpeÔoun tic epÐshmec jèseic tou
EjnikoÔ Metsìbiou PoluteqneÐou.

Contents

1 Introduction 1
1.1 Contributions . 3
1.2 Outline . 4

2 Preliminaries 7
2.1 Data Stream Types . 7

2.1.1 Time Series Streams . 7
2.1.2 Update Streams . 8
2.1.3 Moving Objects Streams . 8

2.2 Introduction to the Wavelet Transformation . 9

3 Conventional Wavelet Synopses 15
3.1 Motivation and Related Work . 16
3.2 Shift-Split Operations . 18

3.2.1 Single Dimensional Shift-Split . 18
3.2.2 Multidimensional Shift-Split . 20

3.3 Wavelet Synopses for Time Series Streams . 20
3.4 Storing Wavelets . 22
3.5 Shift-Split Applications . 25

3.5.1 Efficient Transformation . 25
3.5.2 Appending . 27
3.5.3 Partial Reconstruction . 28

3.6 Dealing with Update Streams . 28
3.7 The Group-Count Sketch . 29
3.8 Wavelet Synopses for Update Streams . 32

3.8.1 Hierarchical Search Structure . 33
3.8.2 Sketching in the Wavelet Domain . 34

3.9 Experiments . 36
3.9.1 Time Series Streams . 36
3.9.2 Update Streams . 38

3.10 Summary . 41

4 Hierarchically Compressed Wavelet Synopses 43
4.1 Motivation and Related Work . 44
4.2 Hierarchical Compression . 46
4.3 HCDynL2: An Optimal Dynamic-Programming Algorithm 50

4.3.1 Our Solution . 52
4.3.2 Running Time and Space Complexities . 54
4.3.3 Achieved Benefit vs. Classic Method . 57

i

4.4 HCApprL2: An Approximation Algorithm . 59
4.4.1 Breakpoint Calculation . 59
4.4.2 Space and Running Time Complexities . 63

4.5 HCGreedyL2: A Greedy Heuristic. 63
4.5.1 Candidate Path Selection . 65
4.5.2 Marking Paths for Storage . 66
4.5.3 Storing the Selected Solution . 69
4.5.4 Space and Running Time Complexities . 69

4.6 HCGreedyL2-Str: A Streaming Greedy Algorithm . 69
4.6.1 Data Structures . 69
4.6.2 Detailed Operations . 70
4.6.3 Space and Running Time Complexities . 73

4.7 Extensions and Remarks . 73
4.7.1 Multiple Dimensions . 73
4.7.2 Dealing with Massive Datasets . 76
4.7.3 Optimizing for Other Error Metrics . 77
4.7.4 Query Performance Issues. 77

4.8 Experiments . 77
4.9 Summary . 85

5 Moving Objects Synopses 87
5.1 Motivation and Related Work . 88
5.2 Centralized Spatial Synopses . 94

5.2.1 The HBM Algorithm . 95
5.2.2 The GBM Algorithm . 98

5.3 Distributed Spatial Synopses . 100
5.4 Trajectories and Motion Paths . 101
5.5 Filtering Position Updates . 104

5.5.1 Handling Uncertainty . 106
5.6 Spatiotemporal Synopses . 108

5.6.1 Storing Motion Paths . 108
5.6.2 Hotness Maintenance . 109
5.6.3 The SinglePath Strategy . 109
5.6.4 The MultiPath Strategy. 113

5.7 Experiments . 116
5.7.1 Spatial Synopses. 116
5.7.2 Spatiotemporal Synopses . 119

5.8 Summary . 125

6 Conclusions and Future Work 127
6.1 Summary . 127
6.2 Future Work. 129

List of Figures

2.1 Haar wavelet decomposition . 10
2.2 Support intervals of Haar wavelets . 10
2.3 Example wavelet tree structures . 12

3.1 Shift-Split operations . 18
3.2 Disk block allocation strategy . 23
3.3 Standard form wavelet trees. 23
3.4 Standard form data point reconstruction . 23
3.5 Non-standard form wavelet tree . 24
3.6 Transformation by chunks. 26
3.7 Wavelet tree expanding . 28
3.8 The Group-Count Sketch data structure . 30
3.9 Effect of larger memory . 36
3.10 Effect of larger tiles . 37
3.11 Appending in synopses . 37
3.12 SHIFT-SPLIT in multidimensional streaming. 38
3.13 Performance on one-dimensional data . 39
3.14 Accuracy of wavelet synopses . 39
3.15 Performance on 1-d real and multi-d real and synthetic data 40

4.1 Wavelet tree structure . 47
4.2 Sketch of Insert algorithm. 72
4.3 Multidimensional wavelet tree structure . 74
4.4 Running time performance of all algorithms . 79
4.5 HCWS quality vs synopsis size for Zipfian, z = 0.7, N = 220 80
4.6 HCWS quality vs synopsis size for Zipfian, z = 1.2, N = 220 82
4.7 HCWS quality vs synopsis size for Weather, N = 216 82
4.8 HCWS quality vs synopsis size for Light, N = 215 83
4.9 HCWS quality vs domain size for Zipfian, z = 1.2, B = 0.04N 84
4.10 HCGreedyL2, HCGreedyL2-Str, and HCApprL2 accuracy 84

5.1 A 3-medoid example . 89
5.2 Motion path extraction . 92
5.3 The three medoids of a dataset consisting of two clusters 95
5.4 The data structures of the HBM method . 96
5.5 The maintenance module of HBM . 97
5.6 A medoid monitoring example in HBM . 98
5.7 The data structures of the GBM method . 99
5.8 A medoid monitoring example in GBM . 99
5.9 Safe regions and update handling . 101

iii

5.10 Motion paths example . 102
5.11 Updating the SSA . 104
5.12 Calculating tolerance square for 〈Xi, ti〉 . 106
5.13 Considering overlapping rectangles for additional candidate vertices . . 112
5.14 Common motion path inside two SSA∗s . 113
5.15 Example of the MultiPath insertion strategy . 115
5.16 Performance versus dataset cardinality |P | . 118
5.17 Performance versus number of medoids k . 118
5.18 Performance versus object agility a . 119
5.19 Performance versus object velocity v . 120
5.20 Performance versus leeway λ . 121
5.21 Athens road network links. 122
5.22 Varying the number of objects . 123
5.23 Varying the tolerance parameter . 123
5.24 The network as discovered by SinglePath . 124
5.25 Top 20 hottest motion paths in the center of Athens 125

List of Tables

3.1 Shift-Split of tiles . 20
3.2 I/O complexities . 27

4.1 Notation . 47
4.2 HCWS for data vector A and B = 41 bytes . 49
4.3 Notation used in HCDynL2 Algorithm . 51
4.4 Notation used in HCApprL2 Algorithm . 59
4.5 Notation used in HCGreedyL2 algorithm . 64
4.6 Computed values at initialization phase . 66
4.7 Computed values after marking the first selected HCC for storage 68
4.8 Computed values after marking the second selected HCC for storage . 68

5.1 Primary symbols and functions. 103
5.2 Parameter ranges and default values . 117
5.3 Experimental parameters. 122

v

vi

PREFACE

This thesis is submitted in fulfilment of the requirements for the degree of Doctor
of Philosophy, in the School of Electrical and Computer Engineering, National Tech-
nical University of Athens (NTUA), Greece. The presented work describes methods
for managing data streams using approximation techniques and has been carried out
the last four years in the Knowledge and Database Systems Laboratory (KDBSL) of
NTUA.

Dimitris Sacharidis
Athens, November 2008

vii

viii

ABSTRACT

Driven by the enormous volumes of data communicated over today’s Internet,
several emerging data-management applications crucially depend on the ability to
continuously generate, process, and analyze massive amounts of data in real time. A
typical example domain here comprises the class of continuous event-monitoring sys-
tems deployed in a wide variety of settings, ranging from network-event tracking in
large ISPs to transaction-log monitoring in large web-server farms and satellite-based
environmental monitoring. For instance, tracking the operation of a nationwide ISP
network requires monitoring detailed measurement data from thousands of network
elements across several different layers of the network infrastructure. The volume
of such monitoring data can easily become overwhelming (in the order of Terabytes
per day). To deal effectively with the massive volume and continuous, high-speed
nature of data in such environments, the data streaming paradigm has proven vital.
Unlike conventional database query-processing engines that require several (expen-
sive) passes over a static, archived data image, streaming data-analysis algorithms
rely on building concise, approximate (but highly accurate) synopses of the input
stream(s) in real-time (i.e., in one pass over the streaming data). Such synopses
typically require space that is significantly sublinear in the size of the data and can
be used to provide approximate query answers with guarantees on the quality of the
approximation. In many monitoring scenarios, it is neither desirable nor necessary
to maintain the data in full; instead, stream synopses can be used to retain enough
information for the reliable reconstruction of the key features of the data required
in analysis.

ix

Chapter 1

Introduction

The need for management and data processing is becoming more intense due to
the continuous technological development. In today’s era, data are produced with
constantly increasing volumes from increasingly more sources. Devices with logic
circuits capable of processing and sensors collecting various measurements all acquire
smaller size and require less energy. It is expected, therefore, that their use in
everyday life will rapidly grow. Actually, we have reached the point where the
amount of data is determined not by the rate of production from sources but from
the rate of consumption by applications. The need for efficient management of this
sea of data is becoming apparent.

The traditional model for managing and processing data, in general terms, in-
volves the collection, modeling and storage in a database engine. The extraction of
useful information and conclusions is made by posing queries based on some lan-
guage. This model, which was the subject of the research community for many years,
was developed and finalized more than three decades ago and is widely used today.
Of course, its design is in accordance with specifications and requirements which
are now considered outdated. In particular, we mention three main characteristics
that distinguish the current requirements in relation to the traditional model. The
first relates to the need for continuous processing and analysis of data as they are
produced. The second with the huge volume of data generated. It is common that
gigabytes of information per second are produced, which makes it difficult if not
impossible to store them. Finally, note that many analysis applications are inter-
ested in the results rather than the queries themselves. For data related to such
applications, the term data streams has been introduced to denote their dynamic
nature: data stream from the sources of production, are not stored permanently and
require immediate processing. Overviews of data-streaming issues and algorithms
can be found, for instance, in [6, 72].

Furthermore, queries related to data streams have different characteristics. The
principal characteristic is that they require continuous evaluation as new data stream.
Whenever a new piece of information related to a query appears, the answer should
be updated. The term continuous queries better describes this property. Typically
in such questions only a recent segment, a time window, from the entire history of
data evolution is interesting. The windows, besides their semantic role, are also used
for practicality. Many continuous queries can not be evaluated in the entire history
of streams and require the extraction of a smaller and easier manageable section.

It is evident that many of the assumptions made on conventional data bases do

1

not apply in the case of streams and hence new techniques and algorithms should
be developed. A data streaming environment introduces resource restrictions to
conventional static data processing algorithms, due to the high volumes and rates
associated with incoming data. Namely: (i) there is not enough space to store the
entire stream, as it can be of potentially unbounded size, and thus, data stream
items can only be seen once; (ii) data stream items must be processed quickly in
real time; and (iii) queries over data streams are of persistent nature and must be
continuously and, most importantly, quickly evaluated. Under these restrictions,
data stream processing algorithms must have small space requirements and exhibit
fast per-item processing and querying time — here, small and quickly should be
read as poly-logarithmic to data stream size.

Due to the above limitations, it is imperative to use summaries or synopses of
streams which lead to an approximate evaluation of queries. This thesis deals with
the construction of summarization structures and the development of fast algorithms
that allow the management of very demanding data streams for various applications.
In every case a key consideration is to provide as good as possible guarantees for the
quality of results. In summary, the proposed methodology is discussed in relation
to the following, often conflicting, axes.

Processing Time of a Streaming Tuple. For the processing of data streams
various structures that reside in the main memory are used in order to maintain the
system. These structures must be updated directly as new records reach the system.

Space for Storing Data Structures. Processing takes place entirely in the main
memory. Since the main memory is an expensive commodity (2 to 3 orders of
magnitude more expensive than secondary memory) and that each time there may
be many multiple queries that compete for memory, it is desirable that the smallest
possible amount of memory is used for the evaluation of continuous questions.

Query Answering Time. For each newly streaming record the system should
assess the continuous query and decide if and how the result should change. This
axis reflects the time required after processing an update is finished until the result
is updated.

Communication Cost. In the case where multiple remote data streams exist, we
should take into consideration the cost of communicating the records in the central
server. The cost is usually measured by the size of information transferred rather
than by the time required for communication.

Result Accuracy. The approximate evaluation always introduces an error in the
query results. It is necessary to consider various metrics to assess how accurate is
the result obtained in connection with the result that would be taken if there were
available unlimited computing resources.

In conclusion, analyzing the factors that make data stream management an in-
teresting problem, we discern the following.

• Necessity The current trend of research in the area of data management
defends the evaluation of queries directly as data are produced. As many tra-
ditional queries cannot be evaluated on the model of streams, we have turned
to approximation methods. As a result the need for new methods was born.
Their main characteristic is the representation of the most important traits of
the data in summarization structures while providing quality guarantees.

2

• Interestingness The shift towards approximation methods raises several in-
teresting matters. For example, what is the interesting information that a
stream of data carries and how do we find it in order to create summaries?
Another matter is how much computational resources (memory and process-
ing cycles) will be spent on constructing these summaries? Finally, we should
define proper metrics estimating the quality of the synopses.

• Feasibility The methods proposed in this thesis can be implemented in exist-
ing data management systems. The reason is that summaries can be regarded
as a simplification of data streams allowing direct in-place usage. They con-
stitute the basis for the formulation and management of more complex queries
in a transparent manner.

• Challenging The fact that the approach of this thesis is realistic, does not
mean that there exist no difficult or challenging problems. A series of research
challenges result from adapting the traditional model of data management
into that of streams. The most important is that evaluation algorithms should
operate in one pass over the streams and require sublinear space and time.

1.1 Contributions

This dissertation presents various methods for managing data streams using syn-
opses. We focus on three data stream types, time series, update and moving ob-
jects streams. For the first two types we devise general-purpose structures such as
wavelet synopses and sketches for summarizing them. Then, we turn our attention
to streams produced by objects moving freely in space. We present techniques for
creating and maintaining two distinct synopses, spatial and spatiotemporal. Our
contributions include the following.

1. We consider conventional wavelet synopses for generic multidimensional data
streams. For time series streams we introduce two novel operators, SHIFT-
SPLIT, operating directly on summaries of wavelet transformed data. The
operators allow for the management of streams so as an appropriate balance
between the necessary space and time consuming is found. We provide the
first concrete results for handling multidimensional data streams using these
operations. Furthemore, we present three additional application fields that
benefit from the SHIFT-SPLIT operations. The methods discussed and the
results obtained appear in [50].

2. For update multidimensional data streams, we introduce a novel structure,
termed Group Count Sketch (GCS), suitable for applications where the avail-
able computing resources are very limited. This sketch requires small space,
features fast update and query times and offers a significantly large design
freedom as it can be tailor-suited to the specific characteristics of the appli-
cation. Based on GCS, we present a very efficient method for maintaining
conventional wavelet synopses for update streams. The methods discussed
and the results obtained appear in [17].

3. We introduce a novel indexing method for wavelet synopses, termed Hierarchi-
cally Compressed Wavelet Synopses, which consumes less space while offering

3

the same guarantees of accuracy. For finding the best summary under a space
restriction we design a dynamic programming technique that optimally solves
the problem. As its time complexity can be large, we also propose an approx-
imation algorithm with tunable accuracy and a fast greedy algorithm. Even
though the latter offers no accuracy guarantees it performs almost as effec-
tively as the optimal and more importantly has time requirements on par with
the conventional synopses algorithms. The methods discussed and the results
obtained appear in [81].

4. We consider spatial synopses for moving objects data streams. In particu-
lar we consider the problem of maintaining spatial k-medoid synopses. We
propose two techniques, based on Hilbert curves, for online maintenance in a
distributed environment. We apply these techniques in a centralized setting,
where moving objects continually push stream updates to the coordinator,
and in a decentralized setting, where moving objects filter stream updates.
In both settings, the main objective is to update very quickly and with low
communication cost the k-medoid synopses. The methods discussed and the
results obtained appear in [77].

5. In applications where the evolution of the objects’ trajectories must be cap-
tured we introduce a novel type of spatiotemporal synopses, termed motion
paths. These synopses examine the recent history and simplify trajectories
by extracting common simplified routes. We propose techniques for a decen-
tralized setting. Furthermore, our approach takes into account the ambiguity
in the reported locations of the objects and approximates them with a given
quality guarantee. The methods discussed and the results obtained appear in
[82].

1.2 Outline

The remainder of this thesis is structured as follows.
Chapter 2 establishes the necessary background for introducing our proposed

methodology. In particular, it introduces the types and models of data streams
considered in this thesis and presents some necessary preliminaries regarding the
wavelet decomposition.

Chapter 3 presents methods for constructing conventional wavelet synopses for
data streams. For the time series model, the SHIFT-SPLIT operations are intro-
duced and then applied for stream synopses as well as in other applications. For
the update model, we describe the randomized data structure Group Count Sketch
and elaborate on its application to wavelet synopses maintenance. We present an
extensive experimental evaluation for both models.

Chapter 4 introduces the concept of hierarchically compressed wavelet synopses.
Initially, we draw comparisons with conventional synopses and specify their short-
comings. Then, we present an optimal dynamic programming, an approximation
and a greedy algorithm for the problem of maintaining a hierarchically compressed
wavelet synopsis under the time series model. We present an extensive experimental
evaluation for all algorithms.

Chapter 5 discusses synopses for moving objects streams. We discuss a frame-
work for maintaining k-medoid synopses which summarize the current distribution

4

of objects in space. Then, we present a method for constructing spatiotemporal
motion path synopses that summarize the recent history of the objects’ trajectories.
We present an extensive experimental evaluation for both types of synopses.

Chapter 6 concludes the discussion of this thesis summarizing its contributions.
Finally, we identify possible extensions and propose future work.

5

6

Chapter 2

Preliminaries

In this chapter we provide the necessary background for understanding the methods
introduced in the next chapters. In particular, Section 2.1 examines the schema of
typical data streams and distinguishes among several types of data streams. Then,
Section 2.2 establishes some preliminary notions regarding the wavelet decomposi-
tion used in Chapters 3 and 4 for constructing general purpose synopses.

2.1 Data Stream Types

A data stream is essentially a multiset (bag) containing multiple streaming tuples.
A streaming tuple has the form 〈timestamp, attr1, attr2, . . .〉, where attr1, attr2, . . .
correspond to a regular relational attribute values and timestamp to a time mea-
surement that marks the arrival of the tuple in the stream.

For the purpose of this thesis we distinguish three types of data streams that
cover a broad range of applications.

2.1.1 Time Series Streams

We begin the discussion considering single dimensional streaming tuples of the form
〈ti, vi〉, where ti is the timestamp and vi is a value in a numerical domain V . Stream
tuples appear ordered by ti. As an example, consider an environmental sensor
that continuously measures air temperature; vi is the temperature at time ti in
this setting. Another way of viewing time series streams is by considering v as an
infinitely long vector. As time progresses, the data stream renders v element by
element, i.e., tuple 〈ti, vi〉 renders v[ti].

Multidimensional time series streams have the form 〈ti, aj, bk, . . . , vi〉, where
aj, bk, . . . correspond to other dimensions besides time ti. Stream tuples appear
ordered by ti; however, multiple entries (with different aj, bk, . . . values) may appear
at the same timestamp. Intuitively, a multidimensional data stream can be thought
of as a multidimensional array v with dimensions ti, aj, bk, As time progresses,
the data stream renders a particular cell of v, i.e, tuple 〈ti, aj, bk, . . . , vi〉 renders
v[ti, aj, bk, . . .]. Continuing the previous example, assume that there are multiple
environmental sensors located at different areas. Then, streaming tuples have the
form 〈ti, xj, yk, vi〉, where xj, yk identify the location of the reading.

Time series synopses must summarize the entire history of the stream, i.e., the
entire array v, from a point in the past up to the current timestamp. The array

7

v quickly grows larger than the main memory due to its continuously increasing
temporal dimension. However, note that v’s projection at a particular timestamp,
e.g., all measurements from all sensors at this timestamp, fits in main memory.

Popular synopses of this type are the wavelet synopses which are examined in
Chapters 3 and 4.

2.1.2 Update Streams

Single dimensional update streams have the form 〈ti, aj, δi〉, where ti is the time-
stamp, aj is a value in the dimension A and δi is the update (increment or decrement)
for the aj-th domain value. Intuitively, assume a vector v of length equal to A’s
domain size. The tuple 〈ti, aj, δi〉 indicates that the value v[aj] is updated by δi, i.e.,
vti [aj] ← vti−1

[aj] + δi. As an example, consider a network monitoring application
where v measures in bytes the traffic towards IP addresses. Then, ti indicates the
timestamp of a measurement specifying that IP aj has received δj bytes. Note that
in update streams, the time is not a dimension of the vector; it just marks the arrival
of an update.

Multidimensional update streams have the form 〈ti, aj, bk, . . . , δi〉. Consider a
multidimensional array v with dimensions aj, bk, . . .; a streaming tuple updates a
single cell in v. In the previous example, assume that the application monitors
traffic between a pair of IP addresses. Therefore, the stream tuples are 〈ti, aj, bk, δi〉,
where ti is the timestamp, aj, bk is the source and destination addresses and δi is
the amount of data transferred.

Update synopses must summarize and maintain the current state of array v, i.e.,
after incorporating all updates up to now. The challenge in update streams is that
v is too large to be maintained in main memory.

Popular synopses of this type are the wavelet synopses built on top of sketches
which are examined in Chapter 3.

2.1.3 Moving Objects Streams

Moving objects streams have the form 〈ti, oj, xj, yj〉, where ti is the timestamp, oj
is the object identifier and xj, yj are the current coordinates of object oj at time
ti. Tuples with same timestamps are possible, as long as they have different object
ids. The projection of such a stream on a single object oj is called the trajectory of
oj and can be represented as a (monotone in t) polyline in the spatiotemporal xyt
domain. A moving objects stream is essentially a collection of such polylines.

Depending on the application there are two categories as to which information
is relevant and should be maintained. The former states that only the current
position of all objects is relevant. On the other hand, the latter states that the
entire evolution of all objects’ trajectories is relevant. We refer to synopses that
are suitable for applications of the former category as spatial and of the latter as
spatiotemporal synopses.

A popular kind of spatial synopses are the k-medoids, whereas a novel spa-
tiotemporal synopsis is the motion paths. Both synopses are investigated in detail
in Chapter 5.

8

2.2 Introduction to the Wavelet Transformation

As discussed in Section 2.1, due to the infeasibility of storing the entire data stream,
we need to resort to synopses approximating the entire history of a stream. For the
first two types, i.e., time series and update streams, we consider a widely used
summarization structure termed the wavelet synopsis. Chapters 3 and 4 discuss in
detail algorithms for constructing good, in terms of accuracy, wavelet synopses. This
section provides a brief introduction to the discrete wavelet transformation (DWT),
which is the basis for wavelet synopses.

DWT is a mathematical tool for the hierarchical decomposition of functions,
with a long history of successful applications in signal and image processing [51, 85].
Applying the wavelet transform to a (one- or multidimensional) data vector and
retaining a small collection of the largest wavelet coefficient gives a very effective
form of lossy data compression. Such wavelet synopses provide concise, general-
purpose summaries of relational data, and can form the foundation for fast and
accurate approximate query processing algorithms, such as approximate selectivity
estimates, OLAP range aggregates and approximate join and multi-join queries.
Wavelet synopses can also give accurate (one- or multidimensional) histograms of
the underlying data vector at multiple levels of resolution, thus providing valuable
primitives for effective data visualization.

The Discrete Wavelet Transformation creates “rough” and “smooth” views of the
data at different resolutions. In the case of the Haar DWT that we use throughout
this chapter, the “smooth” view consists of averages or average coefficients, whereas
the “rough” view consists of differences or detail coefficients. At each resolution,
termed level of decomposition or scale, the averages and details are constructed by
pairwise averaging and differencing of the averages of the previous level. Consider
the one-dimensional data vector a = [2, 2, 0, 2, 3, 5, 4, 4] (N = 8). The Haar DWT
of a is computed as follows. We first average the values together pairwise to get a
new “lower-resolution” representation of the data with the pairwise averages [2+2

2
,

0+2
2
, 3+5

2
, 4+4

2
] = [2, 1, 4, 4]. This averaging loses some of the information in a. To

restore the original a values, we need detail coefficients, that capture the missing
information. In the Haar DWT, these detail coefficients are the differences of the
(second of the) averaged values from the computed pairwise average. Thus, in our
simple example, for the first pair of averaged values, the detail coefficient is 0 since
2−2

2
= 0, for the second it is −1 since 0−2

2
= −1. No information is lost in this

process — one can reconstruct the eight values of the original data array from the
lower-resolution array containing the four averages and the four detail coefficients.
We recursively apply this pairwise averaging and differencing process on the lower-
resolution array of averages until we reach the overall average. The final Haar DWT
of a is given by â = [11/4, −5/4, 1/2, 0, 0, −1, −1, 0], that is, the overall average
followed by the detail coefficients in order of increasing resolution. Each entry in
â is called a wavelet coefficient. The main advantage of using â instead of the
original data vector a is that for vectors containing similar values most of the detail
coefficients tend to have very small values. Thus, eliminating such small coefficients
from the wavelet transform (i.e., treating them as zeros) introduces only small errors
when reconstructing the original data, resulting in a very effective form of lossy data
compression [85].

We denote by uj,k and wj,k the k-th average (also called scaling coefficient) and

9

the k-th detail coefficient (also called wavelet coefficient), respectively, for the j-th
level of decomposition. The averages at level j are decomposed into averages and
details of level j + 1. If we denote the set of scaling coefficients at the j-th level by
Uj and the set of wavelet coefficients at the j-th level by Wj, we can formally write
the previous statement as Uj = Uj+1⊕Wj+1, where the direct-sum ⊕ notation refers
to the decomposition process. The original data are the scaling coefficients of the
0-th level. For example, the 3 level decomposition of Figure 2.1 is decomposed as:

U0 = U1 ⊕W1

= U2 ⊕W2 ⊕W1

= U3 ⊕W3 ⊕W2 ⊕W1 .

Figure 2.1 also shows that for each level of decomposition j, there are 2n−j

wavelet coefficients wj,k and 2n−j scaling coefficients, for 0 ≤ k ≤ 2n−j − 1. The
transformed vector â consists of the average, un,0, as its first element, followed by
the details wj,k sorted decreasing by level j and increasing by position k: un,0, wn,0,
wn−1,0, wn−1,1, wn−2,0, ..., w1,0, ..., w1,2n−1−1.

U
0

U
1

W
1

U
2

W
2

U
3

W
3

Figure 2.1: Haar wavelet decomposition

The support interval of a (wavelet or scaling) coefficient is the part of the original
data that this coefficient depends on. Figure 2.2 shows the support intervals of Haar
wavelets for a vector of size 8. A (wavelet or scaling) coefficient covers another
(wavelet or scaling) coefficient if the support interval of the latter is (completely)
contained in the support interval of the former. For example, the first coefficient in
the second level of decomposition w2,0 covers the first and second coefficients of the
first level of decomposition, w1,0 and w1,1; see Figure 2.2. Haar wavelet coefficients
wj,k and Haar scaling coefficients uj,k have the property that their support intervals
are dyadic intervals, i.e, [k2j, (k + 1)2j − 1].

u
1,0

Level 1 (j=1)

a (j=0)

Level 2 (j=2)

Level 3 (j=3)

u
0,0

u
0,1

u
0,2

u
0,3

u
0,4

u
0,5

u
0,6

u
0,7

w
1,0 u

1,1

w
1,1 u

1,2

w
1,2 u

1,3

w
1,3

u
2,0 u

2,1

w
2,0

w
2,1

u
3,0

w
3,0

Figure 2.2: Support intervals of Haar wavelets

Intuitively, wavelet coefficients with larger support carry a higher weight in the
reconstruction of the original data values. To equalize the importance of all Haar

10

DWT coefficients, a common normalization scheme is to scale the coefficient values
at level l (or, equivalently, the basis vectors φl,k) by a factor of

√
N/2l. This normal-

ization essentially turns the Haar DWT basis vectors into an orthonormal basis —
letting c∗i denote the normalized coefficient values, this fact has two important con-
sequences: (1) The energy of the a vector is preserved in the wavelet domain, that is,
‖a‖2

2 =
∑

i a[i]2 =
∑

i(c
∗
i)

2 (by Parseval’s theorem); and, (2) Retaining the B largest
coefficients in terms of absolute normalized value gives the (provably) best B-term
wavelet synopsis in terms of Sum-Squared-Error (SSE) in the data reconstruction
(for a given budget of coefficients B) [85].

Multidimensional Wavelet Transformation. There are two distinct ways to
generalize the Haar DWT to the multidimensional case, the standard and nonstan-
dard Haar decomposition [85]. Each method results from a natural generalization
of the one-dimensional decomposition process described above, and both have been
used in a wide variety of applications. Consider the case where a is a d-dimensional
data array, comprising Nd entries. As in the one-dimensional case, the Haar DWT
of a results in a d-dimensional wavelet-coefficient array â with Nd coefficient en-
tries. The non-standard Haar DWT works in logN phases where, in each phase,
one step of pairwise averaging and differencing is performed across each of the d
dimensions; the process is then repeated recursively (for the next phase) on the
quadrant containing the averages across all dimensions. The standard Haar DWT
works in d phases where, in each phase, a complete 1-dimensional DWT is performed
for each one-dimensional row of array cells along dimension k, for all k = 1, . . . , d.
(full details and efficient decomposition algorithms are in [13, 88].) The supports of
non-standard d-dimensional Haar coefficients are d-dimensional hyper-cubes (over
dyadic ranges in [N]d), since they combine 1-dimensional basis functions from the
same resolution levels across all dimensions. The cross product of a standard d-
dimensional coefficient (indexed by, say, (i1, . . . , id)) is, in general a d-dimensional
hyper-rectangle, given by the cross-product of the 1-dimensional basis functions cor-
responding to coefficient indexes i1, . . . , id. Both multidimensional decompositions
preserve the orthonormality, thus, retaining the largest B coefficient values gives an
SSE-optimal B-term approximation of a.

Wavelet Tree. The multiresolution property of the Haar wavelets induces a tree
construct capturing and illustrating this property. A wavelet coefficient w is the
parent of another coefficient w′, when w is the coefficient with the smallest support
that covers w′. For Haar wavelets, which is our case, this tree is a binary tree
where each node wj,k has exactly two children, wj−1,2k and wj−1,2k+1. The scaling
coefficient un,0 is the root of the tree having only one child wn,0. This tree structure
has been given several names in the wavelet bibliography, such as error tree [89, 88],
dependency graph [84], etc. Figure 2.3(a) shows this tree for a vector of size 8;
scaling coefficients are shown with squares, whereas wavelet coefficients are shown
in circles. Figure 2.3(a) also shows the original data as children of the leaf nodes
of the tree, drawn with dotted line. A nice property of this tree is that it portrays
the way Haar wavelets partition the time-frequency plane; see Figure 2.3(a). As j
decreases we gain accuracy in the time domain, but simultaneously, we lose accuracy
in the frequency domain and vice versa.

Wavelet tree structures can be used to conceptualize the properties of both forms
of d-dimensional Haar DWTs. In the non-standard case, the wavelet tree is essen-
tially a quadtree (with a fanout of 2d), where all internal non-root nodes contain 2d−1

11

coefficients that have the same support region in the original data array but with
different quadrant signs (and magnitudes) for their contribution. For standard d-
dimensional Haar DWT, the wavelet tree structure is essentially a “cross-product” of
d one-dimensional wavelet trees with the support and signs of coefficient (i1, . . . , id)
determined by the product of the component one-dimensional basis vectors (for
i1, . . . , d). Figure 2.3(b) depicts a simple example wavelet tree structure for the
non-standard Haar DWT of a 2-dimensional 4× 4 data array.

w
2,1

u
3,0

w
3,0

w
2,0

time

fr
e
q
u
e
n
c
y

u
0,0

u
0,6

u
0,2

u
0,5

u
0,7

u
0,3

u
0,4

u
0,1

w
1,0

w
1,1

w
1,2

w
1,3

(a) One-dimensional data array
(N = 8)

+
_

+ _
+ + +

_
+_
+ +

+
_

+_
+ + +

_
+_
+ +

+

l = 1

l = 0
_

_

+
+

+

_
+ _

����
����
����
����
����

����
����
����
����
����

���
���
���
���
���
���

���
���
���
���
���
���

(b) Non-standard two-dimensional Haar
coefficients for a 4× 4 data array

Figure 2.3: Example wavelet tree structures

The following lemma is a consequence of the time-frequency trade-off. A single
point in time domain depends on those wavelet coefficients in the path to the root.
As a result, a data value can be reconstructed in time proportional to the tree height
and thus in time logarithmic to the vector size.

Lemma 2.2.1. Let â be the wavelet transform of vector a of size N = 2n. Any
value of a can be reconstructed using exactly n+ 1 = logN + 1 coefficients from â.

Proof. Let a[i] be the (i+1)-th value of a. At each level of decomposition j, there is
exactly one wavelet coefficient wj,b i

2j c
that covers a[i], because of the fact that Haar

wavelets of the same level have non-overlapping support. This together with the
parent-child relationship existent in the wavelet tree results in the covering wavelet
coefficients wj,b i

2j c
, ∀j ∈ [1, n] and the scaling coefficient un,0 belonging to a (n+ 1)-

long path in the tree.

Therefore, as Lemma 2.2.1 suggests a point query can be answered usingO(logN)
coefficients. In the multidimensional case, updating a single data entry in the d-
dimensional data array a impacts the values of (2d − 1) logN + 1 = O(2d logN)
coefficients in the non-standard case, and (logN + 1)d = O(logdN) coefficients in
the standard case.

The wavelet transformation is mainly used for its ability to answer range-sum
queries also using O(logN) coefficients, as the following lemma suggests.

Lemma 2.2.2. Let â be the wavelet transform of vector a of size N = 2n. A range-
sum query

∑r−1
i=l a[i] can be answered using not more than 2n + 1 = 2 logN + 1

coefficients from â.

Proof. This lemma holds because of the fact that Haar wavelets have a 0-th vanishing
moment. For more details refer to [83].

In the multidimensional case, the bound becomes O(2d logN) coefficients in the
non-standard case, and (logN + 1)d = O(logdN) coefficients in the standard case.

12

Recently there has been an increasing interest for wavelet in data-management
applications. Matias et al. [64] first proposed the use of Haar-wavelet coefficients
as synopses for accurately estimating the selectivities of range queries. Vitter
and Wang [88] describe I/O-efficient algorithms for building multidimensional Haar
wavelets from large relational datasets and show that a small set of wavelet coef-
ficients can efficiently provide accurate approximate answers to range aggregates
over OLAP cubes. Chakrabarti et al. [13] demonstrate the effectiveness of Haar
wavelets as a general-purpose approximate query processing tool by designing effi-
cient algorithms that can process complex relational queries (with joins, selections,
etc.) entirely in the wavelet-coefficient domain. Schmidt and Shahabi [83] present
techniques using the Daubechies family of wavelets to answer general polynomial
range-aggregate queries. Deligiannakis and Roussopoulos [23] introduce algorithms
for building wavelet synopses over data with multiple measures.

The work in [33] showed that it is possible to deterministically construct wavelet
synopses for the same problem as in [32] and provided a novel dynamic program-
ming recurrence, extensible [34] to any distributive error metric. Similar ideas were
employed in [73] to construct optimal synopses in sub-quadratic time for a particular
class of error metrics. Further, the work in [41] improves the space requirements
of the aforementioned dynamic programming algorithms. For the same problem of
optimal weighted synopses, the work in [62] constructs a wavelet-like basis so that
the Parseval’s theorem applies and, thus, the conventional greedy thresholding tech-
nique can be used. Assuming all range-sum queries are of equal importance, the
authors in [63] proved that the heuristics employed in [64] are in fact optimal. The
works in [42, 43] showed that for error metrics other than SSE, keeping the original
coefficient values is suboptimal. Hence, they propose approximation algorithms for
constructing unrestricted wavelet synopses that involve searching for the best value
to assign for each coefficient stored.

More recently, wavelets have found broad use in data stream environments.
The dynamic maintenance of Haar synopses was first studied in [65]. The works
in [17, 38] use sketching techniques for maintaining conventional wavelet synopses
over rapidly changing data streams.The approximation schemes of [42, 43] for unre-
stricted wavelet synopses are also extensible for the case of time-series data streams.
A fast greedy algorithm for maximum-error metrics was introduced in [54] for the
problem of constructing wavelet synopses over time-series data streams.

Due to its simplicity and nice properties (Lemmata 2.2.1 and 2.2.2), the wavelet
decomposition is now broadly used as an alternative summarization technique to
histograms for streaming data. However, several interesting research issues have
been raised. In particular, there is a need for methods that offer space-time trade-
offs in maintaining wavelet synopses under very demanding time series and update
streams. In rapid rate streams, it is convenient to occupy more memory in order to
speed up the synopsis construction and update times. We study space-time tradeoffs
in Chapter 3. Another issue that arises is the optimal use of allocated memory. We
propose the hierarchical compression of wavelet synopses in Chapter 4.

13

14

Chapter 3

Conventional Wavelet Synopses

In this chapter we focus on constructing wavelet synopses for data streams. We
consider the conventional method of indexing wavelet coefficients and use the stan-
dard Sum-Squared Error (SSE) for measuring the errors introduced. Two models
of data streams are examined. For the time series model, we introduce the SHIFT-
SPLIT operations that operate directly on the wavelet domain and offer tunable
trade-offs. For the update model, we present a novel summary structure, termed
Group Count Sketch (GCS), which allows for fast identification and extraction of
the most important wavelet coefficients comprising the synopsis.

Some important wavelet transformation properties have not been fully explored
and thus not exploited for the two common forms of multidimensional decompo-
sition. In the following, we present in detail two novel operations, termed SHIFT
and SPLIT, which work directly in the wavelet domain. We demonstrate their sig-
nificance and usefulness by analytically proving two important results establishing
a space-time trade-off for the summarization of time series multidimensional data
streams. Furthermore we discuss the applicability of our methods in other settings
including the transformation of massive datasets, archiving data and partial data
reconstruction, which leads to significant I/O cost reduction in all cases.

In the case of the more demanding update data streams, randomized sketch
synopses provide accurate approximations for wavelet synopses. The focus of ex-
isting work has typically been on minimizing space requirements of the maintained
synopsis. However, to effectively support high-speed data-stream analysis, a cru-
cial practical requirement is to also optimize: the update time for incorporating
a streaming data element in the sketch, and the query time for producing a good
synopsis from the sketch. Such time costs must be small enough to cope with rapid
stream-arrival rates and the real-time querying requirements of typical streaming ap-
plications. With cheap and plentiful memory, space is often only a secondary concern
after query/update time costs. We propose the first fast solution to the problem
of tracking wavelet representations of one-dimensional and multi-dimensional data
streams, based on a novel stream synopsis, the Group Count Sketch (GCS).

The remainder of this chapter is organized as follows. Section 3.1 motivates
our approached for maintaining conventional wavelet synopses on data streams and
reviews relevant bibliography. Section 3.4 introduces a disk block allocation strat-
egy for wavelet coefficients. Section 3.2 presents the SHIFT and SPLIT operations.
Then, Section 3.3 discusses the main results for time series streams. Section 3.5 in-
cludes extensions of the SHIFT-SPLIT operations to other applications. Section 3.6

15

establishes the necessary background on handling update streams. Section 3.7
presents the group-count sketch and Section 3.8 applies it for update streams. An
extensive experimental evaluation is included in Section 3.9. The chapter concludes
with Section 3.10.

3.1 Motivation and Related Work

Despite its broad acceptance, the wavelet transformation has not been explored to
its full potential for data intensive applications. In particular, the compact support
and the multi-scale properties of the wavelets, as illustrated by the wavelet tree
of decomposition, lead to some overlooked but interesting properties. With the
exception of [13], where traditional relational algebra operations are re-defined to
work directly in the wavelet domain, most applications resort to reconstruction of
many data values to support even the simplest operations in the original domain.
We introduce two general-purpose operations for wavelet decomposed data, named
SHIFT and SPLIT, that stem from the multiresolution properties of wavelets to
provide general purpose functionality. They are designed to work directly in the
wavelet domain and can be utilized in a wide range of data intensive applications,
resulting in significant improvements in every case. Here we apply them for the time
series model of data streams.

Gilbert et al. [38] demonstrated that obtaining a best K-term wavelet approx-
imation of a single dimensional time series stream of total size N is possible using
space of O(K+logN) while the per stream item update cost is O(logN). In the fol-
lowing, we show that the SHIFT-SPLIT operations can further reduce the per-item
cost to O

(
1
B

log N
B

)
at the expense of additional storage of B coefficients. We also

investigate the case of multidimensional data streams, decomposed under two differ-
ent forms of wavelet transformation. We conclude that we can maintain a K-term
approximation, under certain restrictions. To the best of our knowledge, this is the
first work dealing with wavelet approximation of multidimensional data streams, as
previous works [76, 10, 32, 38] focused on the single dimensional case.

Besides data streams, the SHIFT-SPLIT operations are suitable for other wavelet
maintenance tasks. In particular, there is a strong dependency among wavelet co-
efficients, due to their multiresolution nature. This observation leads to assigning
wavelet coefficients that are related with each other under a common access pat-
tern to the same multidimensional tile. These tiles are then stored directly into the
secondary storage, as their size is adjusted to fit a disk block. By using this tiling ap-
proach we can minimize the number of disk I/Os needed to perform any operation in
the wavelet domain, including the important reconstruction operation which results
in significant query cost reductions. We designed the SHIFT and SPLIT operations
to work with multidimensional tiles, as these operations benefit significantly from
their existence.

In update streams we need to resort to approximation techniques, known as
sketches, for constructing synopses. We propose the first known streaming algo-
rithms for space- and time-efficient tracking of approximate wavelet summaries for
both one- and multidimensional data streams. Our approach relies on a novel,
sketch-based stream synopsis structure, termed the Group Count Sketch (GCS)
that allows us to provide similar space/accuracy tradeoffs as the simple sketches
of [40], while guaranteeing: (1) small, logarithmic update times (essentially touch-

16

ing only a small fraction of the GCS for each streaming update) with simple, fast,
hash functions; and, (2) polylogarithmic query times for computing the top wavelet
coefficients from the GCS. In brief, our GCS algorithms rely on two key, novel tech-
nical ideas. First, we work entirely in the wavelet domain, in the sense that we
directly sketch wavelet coefficients, rather than the original data vector, as updates
arrive. Second, our GCSs employ group structures based on hashing and hierarchical
decomposition over the wavelet domain to enable fast updates and efficient binary-
search-like techniques for identifying the top wavelet coefficients in sublinear time.
We also demonstrate that, by varying the degree of our search procedure, we can ef-
fectively explore the tradeoff between update and query costs in our GCS synopses.
Our GCS algorithms and results also naturally extend to both the standard and
non-standard form of the multidimensional wavelet transform, essentially providing
the only known efficient solution for streaming wavelets in more than one dimen-
sion. As our experimental results with both synthetic and real-life data demonstrate,
GCS synopses allow very fast update and searching, capable of supporting very high
speed data sources.

Sketches first appeared for estimating the second frequency moment of a set
of elements [2] and have since proven to be a useful summary structure in such a
dynamic setting. Their application includes uses for estimating join sizes of queries
over streams [1, 25], maintaining wavelet synopses [40], constructing histograms
[37, 87], estimating frequent items [14, 19] and quantiles [39]. The work of Gilbert
et al. [40] for estimating the most significant wavelet coefficients is closely related
to ours. As we discuss, the limitation is the high query time required for returning
the approximate representation. In follow-up work, the authors proposed a more
theoretical approach with somewhat improved worst case query times [37]. This
work considers an approach based on a complex construction of range-summable
random variables to build sketches from which wavelet coefficients can be obtained.
The update times remain large. Our bounds, discussed in Section 3.8, improve
those that follow from [37], and our algorithm is much simpler to implement. In
similar spirit, Thaper et al. [87] use AMS sketches to construct an optimal B-
bucket histogram of large multidimensional data. No efficient search techniques are
used apart from an exhaustive greedy heuristic which always chooses the next best
bucket to include in the histogram; still, this requires an exhaustive search over a
huge space. The idea of using group-testing techniques to more efficiently find heavy
items appears in several prior works [19, 20, 37]; here, we show that it is possible to
apply similar ideas to groups under L2 norm, which has not been explored previously.
Recently, different techniques have been proposed for constructing wavelet synopses
that minimize non-Euclidean error metrics, under the time-series model of streams
[42, 54].

The contributions of our work can be summarized as follows.

1. We introduce the SHIFT-SPLIT operations that work directly on transformed
data and can expedite common maintenance tasks.

2. We propose a methodology based on SHIFT-SPLIT that offers space-time
tradeoffs for maintaining time series wavelet synopses.

3. We apply the SHIFT-SPLIT operations obtaining IO efficient methods for
three common wavelet-related tasks, i.e., transformation, appending and re-
construction.

17

4. We introduce the Group Count Sketch for summarizing update streams.

5. We provide theoretical results regarding the complexities of using the GCS for
extracting wavelet synopses for both forms of multidimensional transforma-
tions.

6. We present extensive experimental results of our algorithms on both synthetic
and real-life datasets. Our experimental study demonstrates: (i) the applica-
bility of SHIFT-SPLIT operation for time-series streams; (ii) the improvement
over current state-of-the-art transformation algorithms; (iii) the suitability of
GCS based wavelet synopses for very demanding update streams.

3.2 Shift-Split Operations

In this section we introduce two general purpose operations, SHIFT and SPLIT, for
wavelet transformed data. We start with the single dimensional case and then move
to multiple dimensions.

3.2.1 Single Dimensional Shift-Split

There is a relationship among the coefficients in the transform of a vector, a and in
the transform of a dyadic region b of the vector. This relationship is captured by
shifting, re-indexing, the wavelet coefficients (details) of b and by splitting, calculat-
ing contributions from the scaling coefficient (average).

The SHIFT-SPLIT operations are better understood in the context of wavelet
trees. Let a be a vector of size N = 2n and let b be the (k + 1)-th dyadic range of
vector a with size M = 2m. The wavelet coefficients of â are denoted by waj,l, whereas

the wavelet coefficients of b̂ are denoted by wbj,l; similarly for scaling coefficients, uaj,l
and ubj,l. Also, let Ta and Tb denote the wavelet trees of â and b̂, respectively. Figure
3.1 illustrates the above.

Figure 3.1: Shift-Split operations

The support of the wavelet coefficient wam,k is the dyadic range that b represents.

Therefore, wam,k covers wbm,0 and vice versa, since their support is the same range
of a; see Tb in Figure 3.1. Furthermore, all children of wam,k in Ta have common

support with the corresponding children of wbm,0 in Tb. Specifically, at the j-th
level of decomposition, the i-th coefficient wbj,i of Tb has the same support with the
(k2m−j + i)-th coefficient waj,k2m−j+i.

18

Definition of SHIFT. Let a be a vector of size N = 2n and let b be the (k+1)-th
dyadic range of vector a with size M = 2m. Also, let f : Z→ Z, f(i) =

(
k

2m−j + i
)
,

be a function that translates the indices i of b̂ to indices f(i) of â. The SHIFT

operation on the transformed vector b̂ is defined as the re-indexing of the wavelet
coefficients by function f .

The wavelet coefficients of â that cover the interval represented by b contain a
portion of the energy of the average of vector b. To be exact, the value of the wavelet
coefficients wa

j,b k

2j−m c
for j ∈ [m + 1, n], as well as the average uan,0 depend on the

value of the average ubm,0; these coefficients lie in the path from wam,k to the root and

are contained in Tc of Figure 3.1. Essentially the value of the average ubm,0 is split
across these n−m+ 1 coefficients, contributing either positively, or negatively.

Definition of SPLIT. Let a be a vector of size N = 2n and let b be the (k+1)-th
dyadic range of vector a with size M = 2m. Also, let g : [m+ 1, n]→ R,

g(j) =

{
1√

2
j−mu

b
m,k, if k mod 2j−m even

− 1√
2

j−mu
b
m,k, if k mod 2j−m odd

be the function that calculates the contribution of ubm,k per level j. The SPLIT

operation on the transformed vector b̂ calculates the contribution of ubm,k to the
n −m wavelet coefficients: δwa

j,b k

2j−m c
= g(j) for j ∈ [m + 1, n] and to the average:

δuan,0 = 1√
2

n−mubm,k.

To demonstrate the use of the SHIFT-SPLIT operations, let us look at two
examples.

Example 3.2.1. Assume we are to transform a very large vector a of size N =
2n into the wavelet domain, where only the subregion [k2m, (k + 1)2m − 1] of the
vector contains non-zero values. Let b be that non-zero subregion of size M = 2m.
Because of the fact that b forms a dyadic interval, we can apply the SHIFT-SPLIT
operations to construct â as follows. First, we obtain the wavelet transform b̂ in
time O(M). Next, we apply the SHIFT operation to place the wavelet coefficients

of b̂ in their corresponding position in â. Finally, we apply the SPLIT operation
on the average of b to obtain n −m + 1 contributions and construct the remaining
n−m + 1 coefficients. We have completed the wavelet transformation of a in time
O(M + n−m) = O(M + log N

M
), instead of O(N).

Example 3.2.2. Assume we have already transformed vector a of size N = 2n into
the wavelet domain. There are updates, stored in vector b, coming for a subregion
[k2m, (k+1)2m−1] of a. The goal is to update the wavelet transform of a as efficiently
as possible. Each of |b| = M = 2m updates requires n+1 values to be updated, leading
to a total cost of O(M logN). However, we can use the SHIFT-SPLIT operations
to batch updates and reduce cost, as follows. First, we obtain the wavelet transform
b̂ in time O(M). Next, we apply the SHIFT operation to calculate the indices of
the wavelet coefficients of â which need to be updated by the wavelet coefficients of
b̂. Finally, we apply the SPLIT operation on the average of b to obtain n −m + 1
contributions and update the corresponding coefficients in â. The total update cost
using SHIFT-SPLIT has been reduced to O(M + log N

M
).

19

SHIFT SPLIT

Standard O
(
dM
B
ed
)

O
((
dM
B
e − dlogB

N
M
e
)d − dM

B
ed
)

Non-Standard O
(
dM
B
ed
)

O
(
(2d − 1)dlogB

N
M
e
)

Table 3.1: Shift-Split of tiles

3.2.2 Multidimensional Shift-Split

The SHIFT-SPLIT operations in the multidimensional decomposition exploit the
relationship between the wavelet coefficients of the entire dataset and those in a
multidimensional dyadic range. A multidimensional dyadic range is formed by the
cross product of single dimensional dyadic intervals. For the non-standard decom-
position we will only consider cubic multidimensional dyadic ranges resulting from
dyadic intervals of equal length for all dimensions; arbitrary multidimensional dyadic
ranges can always be seen as a collection of cubic intervals.

To perform the SHIFT-SPLIT operations for the standard multidimensional de-
composition, one has to perform the operations for each dimension separately. Any
coefficient in the d-dimensional dyadic interval can only be shifted or split in each
dimension, and thus can sustain d operations in total. Consider as an example a
d-dimensional dataset, where each dimension has size N = 2n, and a cubic dyadic
range of edge M = 2m. The SHIFT operation affects (M − 1)d coefficients and the
SPLIT operation calculates (M + n−m)d − (M − 1)d contributions.

With the non-standard multidimensional transformation, all the wavelet coeffi-
cients in the cubic dyadic range must be shifted similar to the standard transforma-
tion. However, only the scaling coefficient has to be split and the contributions for
the coefficients inside nodes on the path to the root have to be calculated. Therefore,
in the non-standard transformation, the SHIFT operation affects Md−1 coefficients
and the SPLIT operation calculates (2d − 1)(n−m) + 1 contributions.

3.3 Wavelet Synopses for Time Series Streams

In this section, we present a methodology for maintaining a wavelet synopsis of a
multidimensional data stream in the time-series model. The focus here is to con-
struct a space and time efficient algorithm for maintaining the best K-term synopsis.
We show that we cannot, in general, maintain a K-term synopsis for multidimen-
sional datasets decomposed using the standard form under bounded space. However,
if certain conditions are met we can maintain a K-term synopsis effectively.

Let us start with the simple one dimensional case. As shown in [38], we can
maintain the best K-term approximation of a data of length N = 2n by using
space K + logN + 1. We always store the K highest coefficients encountered so far,
plus those coefficients whose value can change by subsequent data arrivals. These
coefficients, termed wavelet crest in [76], lie on the path from the current value to the
root of the wavelet tree and therefore, they are exactly logN + 1 . Equivalently, if
we consider a range containing just the data values under consideration, the SPLIT
operation results in contributions lying in the wavelet crest. Therefore, at any time
we have to keep the coefficients that can be affected by the SPLIT operation in
memory.

20

Result 1. A K-term wavelet synopsis of a data stream of size N in the time se-
ries model can be maintained using memory of O(K + B + log N

B
) coefficients with

O
(

1
B

log N
B

)
per-item computational cost.

Proof. If we keep in memory a buffer of size B = 2b we can reduce per-item pro-
cessing time at the expense of extra space. We collect B coefficients in the buffer,
transform them and apply the SHIFT operation to obtain the B−1 relocated wavelet
coefficients. Next, we compare these coefficients with the K highest, to obtain the
new set of K highest coefficients. Finally, we have to update the coefficients that can
change by using the contributions derived from the SPLIT operation. The number
of contributions for a buffer of size B is log N

B
and thus the space required for the

coefficients on the crest is log N
B

. The total computational cost for the buffer, which
includes the cost for transformation and the cost for updating the coefficients on the
crest, is O

(
B + log N

B

)
. As a result, the per-item computational cost is O

(
1
B

log N
B

)
reduced from O(logN), at the expense of extra space of B.

The key for being able to maintain a wavelet approximation in the one dimen-
sional case is the fact that only a single path to the root of the wavelet tree has to
be maintained at any time. Let us turn our attention to the multidimensional case.
We assume that the data needs to be appended in only one dimension (usually the
time dimension), which is the case for multidimensional data streams of the time
series model. To separate the continuously increasing dimension, we let T denote
its current size, whereas the other dimensions have a constant size of N . Therefore,
the d-dimensional data stream has a size of Nd−1T . The amount of space, besides
the K terms, required to maintain a K-term approximation depends on the number
of coefficient that can be affected by a SPLIT operation. We calculate the number
of these coefficients for each of the multidimensional forms, assuming that we have
extra storage to buffer Md coefficients, where M = 2m.

Result 2. A K-term standard wavelet synopsis of a d-dimensional data stream grow-
ing in the T dimension can be maintained using memory of O

(
K +Md +Nd−1 log T

M

)
coefficients.

Proof. In the standard form, there are d − 1 wavelet trees of size N and a single
wavelet tree of size T . Since, the stream expands on the dimension of size T , we only
have to keep a path to the root for the wavelet tree corresponding to that dimension.
However, a new data value can arrive in any position on the other trees, which means
that we have to keep all the paths to the root for the d− 1 trees. To recap, we need
to keep all N 1-d basis functions from the d − 1 trees of size N and only log T

M

1-d basis functions for the tree corresponding to the dimension which increases.
The cross product between these sets of 1-d basis functions results in Nd−1 log T

M
d-

dimensional basis functions and thus that many coefficients have to be maintained,
besides the K highest coefficients and the extra storage space of Md coefficients used
for buffering. Therefore, the required space of O

(
K +Md +Nd−1 log T

M

)
coefficients

is prohibitive, except in the case where the constant dimensions have very small
domain size, so that Nd−1 is small.

Result 3. A K-term non-standard wavelet synopsis of a d-dimensional data stream
growing in the T dimension can be maintained using memory of
O
(
K +Md + (2d − 1) log N

M
+ log T

N

)
coefficients.

21

Proof. Since the dimension with size T is constantly expanding, we have to deal
with non equal dimension sizes, similar to [13]. Such a data stream can be seen
as a T

N
hypercubes of size Nd, where each of these hypercubes can be decomposed

with the non-standard form. Each of these T
N

hypercubes results in a wavelet tree
capturing the non-standard decomposition, where there exists a single average as the
root of each of these trees. We apply the single dimensional transformation on the
T
N

data constructed by these averages. The final result consists of T
N

non-standard
multidimensional trees and a single one dimensional tree which has as leaf nodes
the averages of the non-standard trees. We assume the z-ordered access pattern,
described in Section 3.5.1, and we allow for extra buffering space of Md coefficients.
Under these restrictions, the coefficients we have to retain lie in a path to the root in
the last tree of the hypercubes, and in the path to the root in the single dimensional
wavelet tree. Therefore we need to keep (2d − 1) log N

M
coefficients from the non-

standard tree and log T
N

coefficients from the 1-d tree, resulting in a total space cost
of O

(
K +Md + (2d − 1) log N

M
+ log T

N

)
.

3.4 Storing Wavelets

Before we present additional wavelet applications we need to discuss the assignment
of wavelet coefficients to disk blocks. We have already seen that the wavelet tree
captures the dependency among coefficients. In particular, if a coefficient is required
to be retrieved then all coefficients on the path to the root must also be retrieved.
This property creates an access pattern of wavelets that must be exploited by the
disk block allocation strategy.

Intuitively, a disk block should contain coefficients with overlapping support
intervals, so that the utilization of the in-block coefficients is high. However, we
must take under consideration the fact that the disk block allocation strategy should
not allow redundancy, in that a wavelet coefficient should belong to one block only.
Under this restriction, in order to be fair across all coefficients, we partition the
wavelet tree into binary subtree tiles and store each tile on a disk block. Assuming
that the disk block size B is a power of 2, B = 2b, we achieve logarithmic utilization
of the blocks. At least b coefficients inside the block, lying in a path, are to be
utilized any time this disk block is needed. Logarithmic utilization may seem low
at first, but it is the best we can hope for under our restrictions, as proven in [84].

One final issue is that the size of the binary subtree tiles is 2b − 1, whereas the
block size is 2b. We are wasting space of 1 coefficient in our block allocation strategy.
Therefore, we choose to store the scaling coefficient corresponding to the root of the
subtree, along with the wavelet coefficients of the tile. The extra scaling coefficients
that we store are useful for query answering, as they can dramatically reduce query
costs. An example of the disk block allocation strategy for a wavelet tree of 32
coefficients is shown in Figure 3.2.

In the standard multidimensional transformation each dimension is decomposed
independently. Therefore, there cannot be a single tree capturing the levels of de-
composition. In case of 2-d, considering a 1-d wavelet tree for each of the decomposed
dimensions, two 1-d wavelet trees are required. Every coefficient in a transformed
2-d array has two indices, one for each dimension. Each of these indices identifies a
position in the 1-d tree, which as we have seen corresponds to a decomposition level
and to a translation inside that level. Figure 3.3 shows a coefficient in an 8× 8 2-d

22

Figure 3.2: Disk block allocation strategy

array and the corresponding indices on the two wavelet trees.

1.

25

1.

25

Wavelet Tree for X

Wavelet Tree for Y

DWT

Y

X

Figure 3.3: Standard form wavelet trees

The two 1-d trees can be used to determine which coefficients need to be re-
trieved for reconstructing data values on the 2-d array. Subsequently, they provide
information about the access pattern of 2-d wavelets. A single data value on the
untransformed (original) 2-d array corresponds to a path in each of the 1-d wavelet
trees, or better, a set of 1-d indices, as mentioned before. The cross product among
all indices across these sets, construct the 2-d indices whose coefficients must be
retrieved. For a N × N array, where N = 2n, each of the paths contains (n + 1)
1-d indices, therefore there are (n+ 1)2 2-d indices. Figure 3.4 shows the two paths
on the 1-d wavelet trees, as well as the required coefficient resulting from the cross
product between 1-d indices.

Figure 3.4: Standard form data point reconstruction

On the other hand, a single wavelet tree can capture the levels of decomposition
and dependency among coefficients for the non-standard transformation. The sup-
port intervals of the wavelet coefficients form a quad-tree, as each support interval
is further decomposed in quadrants at the next level of decomposition. At the j-th
level of d-dimensional decomposition we have (2d)j nodes, each containing 2d − 1
coefficients with support interval hypercubes with edge length 2j.

In the 2-d case, the support intervals of the coefficients are squares with side
length of power 2. There are 3 coefficients for each support interval, one for each of

23

the wavelet subspaces: W d, W v and W h; thus, each quad tree node contains its 3
corresponding coefficients. Figure 3.5 shows the wavelet tree for an 8× 8 array and
zooms in on a multidimensional tile. The support interval of the children nodes,
which are the four quadrants of the support interval of the parent node, are shown
in dark grey. To reconstruct a point in the original 2-d array, one has to traverse
the quad tree bottom up and use all 3 coefficients in each node.

W

W
1

(0) W W W

W v

W d

W h

U

Figure 3.5: Non-standard form wavelet tree

As in the single dimensional case, our main concern is to pack coefficients in disk
blocks so that we achieve the highest possible block utilization on query time and
thus decreasing retrieval cost. The solution is to assign as many coefficients with
the same support to the same disk block as possible. This results in different disk
block allocation strategies for the two multidimensional forms of decomposition. We
assume d-dimensional dataset, where each dimension has size N = 2n. Furthermore,
disk block size is Bd, where B = 2b.

In the standard multidimensional decomposition, each dimension can be treated
independently. Therefore, for each dimension we construct tiles of size B containing
the B coefficients of a subtree, similar to the single dimensional case. The cross
product of these d sets of single dimensional bases construct Bd multidimensional
bases. The coefficients corresponding to these Bd bases are stored in the same block
and form a multidimensional tile.

In the non-standard multidimensional decomposition, tiles are subtrees of the
quad tree. The branching factor of a d-dimensional quad tree is D = 2d and each
node contains D − 1 coefficients. Therefore, a tile of height b contains Db−1

D−1
nodes

or equivalently Db − 1 coefficients. By also storing the scaling corresponding to the
root node we create tiles of Db = (2d)b = (2b)d = Bd coefficients which fit in a disk
block of size Bd. Figure 3.5 shows the tiling of a 8× 8 array, for disk blocks of size
16.

SHIFT-SPLIT on disk blocks. In the following we extend the SHIFT-SPLIT
operation to disk-resident data. We start with the single dimensional case of a
vector of size N = 2n and its k + 1-th dyadic interval of size M = 2m, when
the disk block size is B = 2b. The coefficients affected by the SHIFT operation
belong to a subtree of the wavelet tree, and that subtree contains exactly dM

B
e tiles.

On the other hand, the SPLIT operation calculates log N
M

contributions. Because
these contributions lie on a single path to the root inside every tile, there are logB

24

coefficients affected per tile. This results in exactly dlogB
N
M
e tiles containing the

contributions of the SPLIT operation. To summarize for the single dimensional case,
the SHIFT operation affects B times less tiles than coefficients, whereas the SPLIT
operation affects logB times less tiles than coefficients.

Extending to d-dimensional tiles of size Bd = (2b)d and applying the observa-
tion for the single dimensional case, we derive the number of d-dimensional tiles
affected by the operations in each multidimensional form. The results are summa-
rized in Table 3.1. For the remainder we will drop the ceiling operations to increase
readability.

3.5 Shift-Split Applications

Besides the construction of wavelet synopses, the SHIFT-SPLIT operations can
prove useful in a variety of applications described in the following.

3.5.1 Efficient Transformation

One of the most important application of the SHIFT-SPLIT operations is I/O ef-
ficient transformation of massive multidimensional datasets. In the following, we
assume that the dataset is d-dimensional with each dimension having a domain of
size N = 2n, so that the hypercube has Nd cells. The available memory for per-
forming the transformation is Md, where M = 2m, measured in units of coefficients.
Therefore, at any point in time, there can only be Md � Nd coefficients in main
memory. Given these restrictions we need to construct an efficient, in terms of
required I/O operations, algorithm for decomposing the dataset. We begin by as-
suming that one I/O operation involves a single data value, or coefficient. Later,
we measure I/O operations in units of disk blocks, as we consider the optimal disk
block allocation strategy described in Section 3.4.

The intuition behind our approach is simple. We assume that the data are either
organized and stored in multidimensional chunks of equal size and shape, or that the
chunk-organization process has been performed, similar to [13, 88]. We transform
each chunk and use the SHIFT operation to relocate the coefficients and the SPLIT
operation to update the stored coefficients. The chunks are hypercubes of size Md

so that they fit in main memory. Figure 3.6 shows a one dimensional example,
for N = 16 and M = 4, where the current chunk is C. The transformation of C
results in the wavelet coefficients inside the box needing to be shifted. The scaling
coefficient of C must be split to calculate the contributions to the coefficients shown
in grey. With black are shown the coefficients that have a finalized value; that is,
coefficients that will not be affected by C or by chunks coming after C. With white
are shown the coefficients that do not cover any of the chunks seen so far.

Result 4. The I/O complexity for transforming a d - dimensional dataset with each
dimension having domain size N = 2n into the standard form of decomposition using

memory of Md coefficients is O
((

N
B

+ N
M

logB
N
M

)d)
disk blocks of size Bd.

Proof. As mentioned in Section 3.2.2, the SHIFT operation, for the standard decom-
position, affects (M−1)d coefficients, whereas the SPLIT operation affects (M+n−
m)d−(M−1)d coefficients. Consequently, each chunk requires $O

(
(M + n−m)d

)
=

25

Figure 3.6: Transformation by chunks

O
(
(M + log N

M
)d
)

I/O operations. Summing for all
(
N
M

)d
chunks, we derive the I/O

complexity, measured in terms of coefficients, for the standard multidimensional

wavelet transformation: O
((
N + N

M
log N

M

)d)
. Now, let us consider disk blocks of

size Bd, for B = 2b. In this case, the I/O cost per chunk in units of disk blocks

is: O
((

M
B

+ logB
N
M

)d)
. Summing for all chunks we derive the I/O complexity,

measured in terms of disk blocks, for the standard multidimensional wavelet trans-

formation: O
((

N
B

+ N
M

logB
N
M

)d)
Vitter et al. [89, 88] use the standard form to decompose multidimensional

datasets, without taking under consideration, however, our optimal block alloca-
tion strategy. They transform a dense d-dimensional dataset in O(Nd

z logM N)disk
I/O operations; in the case of sparse data with Nz non-zero values the I/O complex-
ity is O(Nd

z logM N). We can modify our SHIFT-SPLIT approach to accommodate
for sparseness similar to the latter case, where only Nz non-zero values exist; the

modified I/O complexity is O
((
Nz + Nz

M
log N

M

)d)
. However, for comparison pur-

poses we omit the effect of sparseness in the original data. The I/O complexities
are summarized in Table 3.2.

Result 5. The I/O complexity for transforming a d - dimensional dataset with each
dimension having domain size N = 2n into the non-standard form of decomposition

using memory of Md+(2d−1) log N
M

coefficients is O
((

N
B

)d)
disk blocks of size Bd.

Proof. In the case of the non-standard multidimensional wavelet transformation,
the SHIFT operation affects Md − 1 coefficients, whereas the SPLIT operation af-
fects (D − 1)(n − m) + 1coefficients, where D = 2d. The per chunk I/O cost is

O
(
Md + (D − 1) log N

M

)
. Summing for all

(
N
M

)d
chunks, we derive the I/O complex-

ity, measured in terms of coefficients, for the non-standard multidimensional wavelet

transformation: O
(
Nd + (D − 1)

(
N
M

)d
log N

M

)
. When tiling is used, the I/O cost

per chunk in units of disk blocks becomes: O
((

M
B

)d
+ (D − 1) logB

N
M

)
. Summing

for all chunks we derive the I/O complexity, measured in terms of disk blocks, for the

non-standard multidimensional wavelet transformation: O
((

N
B

)d
+ (D − 1)

(
N
M

)d
logB

N
M

)
.

However, if we enforce a particular access pattern on the chunks, namely a z-
ordering, and allow some extra amount of memory (2d − 1) log N

M
to store those

coefficients that are affected by the splitting of the scaling coefficient of the chunks,
we can reduce the cost to the optimal O(Nd), as seen in Table 3.2. A similar ap-
proach has been suggested in [13], where a recursive procedure is used to ensure
values come in the particular access pattern.

26

Transformation Method I/O cost (in coefficients) I/O cost (in blocks)

Vitter et al. (Standard) O
(
Nd logM N

)
Shift-Split (Standard) O

((
N + N

M
log N

M

)d
)

O

((
N
B

+ N
M

logB
N
M

)d
)

Shift-Split (Non-Standard) O
(
Nd
)

O

((
N
B

)d
)

Table 3.2: I/O complexities

3.5.2 Appending

In this section we investigate the problem of appending new data to existing trans-
formed data. Appending is fundamentally different from updating in that it results
in the increase of the domain of one or more dimensions. As a result, the wavelet
decomposed dimensions also grow, new levels of transformation are introduced and
therefore the transform itself changes. We would like to perform appending directly
in the wavelet domain, preserving as much of the transformed data as possible and
avoiding reconstruction of the original data. The SHIFT-SPLIT operations helps
us achieve this goal. To make complexity analysis easier, we omit the effect of the
optimal disk block allocation strategy, or equivalently assume disk block size of 1
coefficient. Also, we use the standard form of decomposition, as analysis for the
non-standard form is similar.

As a motivation, consider the scenario where a massive multidimensional dataset
containing measurements over 10 years is decomposed into the wavelet domain to
expedite query processing. A new set of data for the following year has become
available, which results in appending to the time domain and possibly on other
measure dimensions. Let us assume that the 10-year decomposed d-dimensional
dataset has size of Nd, and that the available memory is Md, for N = 2n and
M = 2m.

Our SHIFT-SPLIT approach to the problem is the following, repeating for each
Md data values that we gather in memory. We start by performing the d-dimensional
DWT on the gathered data. Next, if required, we make the necessary space on
the original transformed data (expand) to accommodate for the new data to be
appended. The final step is to shift and split the gathered data to update the
expanded data. The second step is the most important in the appending application.
Let us assume that we must expand on one of the dimensions to accommodate for
the coefficients held in memory. The expansion means that the wavelet tree for that
dimension has to increase its height by 1, and thus double its domain range. This
expansion process is carried out by shifting and splitting the decomposed data in
this dimension. Figure 3.7 shows expansion in one dimension, where Told becomes
Tnew and |Tnew| = 2|Told|. The expansion step creates the necessary space for the
current chunk of Md coefficients in memory, as well as for some of the next chunks.
Therefore, this step, although costly, is rather rare.

The I/O cost of expanding transformed data in one dimension is O(Nd) as all
coefficients have to be shifted to construct the new data cube of size 2Nd. Note,
that although the asymptotic cost is high, the required SHIFT-SPLIT operations
are very fast, which leads to fast execution times for expanding the domain of one
dimension. This phenomenon is amplified by the use of tiling and is demonstrated
in Section 3.9.1. Moreover, this operation, unlike reconstruction, does not require
memory to process. The I/O cost of applying the SHIFT-SPLIT operations on the

27

Figure 3.7: Wavelet tree expanding

memory chunk of size Md is O
((
M + log N

M

)d)
.

3.5.3 Partial Reconstruction

In this section, we discuss the problem of reconstructing a set of values specified
by a range on a multidimensional dataset. The problem is equivalent to translating
the selection operation of relational algebra to the wavelet domain. Chakrabarti et
al. [13] have provided a solution for the non-standard form, in which they identify
the coefficients who cover the range and calculate their contribution. Here, we
present a similar approach, based on the inverse of SHIFT-SPLIT operations, which
generalizes to both forms of decomposition. The inverse of SHIFT is essentially the
inverse index translation, whereas the inverse of SPLIT is Lemma 2.2.1, which shows
how to reconstruct a value from contributions on a path to the root. Therefore, the
cost of the inverses of these operations is the same.

We focus our discussion here to multidimensional ranges that are dyadic ranges;
an arbitrary selection range can be seen as a number of such dyadic ranges. There-
fore, our problem degenerates to the reconstruction of a d-dimensional dyadic range
of size Md, given the transformation of the entire data of size Nd. The scaling coef-
ficients of the dyadic range are calculated using the inverse SHIFT, whereas the rest
of the coefficients are simply calculated from the coefficients in the original dataset
by re-indexing, using the inverse SPLIT.

Result 6. The time complexity for reconstructing a d-dimensional dyadic range of

size Md from a wavelet transformed signal of size Nd is O
((
M + log N

M

)d)
for the

standard form and O
(
Md + (D − 1) log N

M

)
for the non-standard.

Proof. It follows from the complexity of the SHIFT-SPLIT operations.

3.6 Dealing with Update Streams

In this section, we first discuss the basic elements of our stream-processing model
and briefly introduce AMS sketches [2].

Our input comprises a continuous stream of update operations, rendering a data
vector a of N values (i.e., the data-domain size). Without loss of generality, we
assume that the index of our data vector takes values in the integer domain [N] =
{0, . . . , N − 1}, where N is a power of 2 (to simplify the notation). Each streaming
update is a pair of the form (i,±v), denoting a net change of ±v in the a[i] entry;
that is, the effect of the update is to set a[i]← a[i]±v. Intuitively, “+v” (“−v”) can

28

be seen as v insertions (resp., deletions) of the ith vector element, but more generally
we allow entries to take negative values, similar to [72]. For d data dimensions, a is
a d-dimensional vector (tensor) and each update (i1, . . . , id,±v) effects a net change
of ±v on entry a[i1, . . . , id]. Without loss of generality we assume a domain of
[N]d for the d-dimensional case — different dimension sizes can be handled in a
straightforward manner. Further, our methods do not need to know the domain size
N beforehand — standard adaptive techniques can be used.

In the data-streaming context, updates are only seen once in the (fixed) order
of arrival; furthermore, the rapid data-arrival rates and large data-domain size N
make it impossible to store a explicitly. Instead, our algorithms can only maintain a
concise synopsis of the stream that requires only sublinear space, and, at the same
time, can (a) be maintained in small, sublinear processing time per update, and (b)
provide query answers in sublinear time. Sublinear here means polylogarithmic in
N , the data-vector size. (More strongly, our techniques guarantee update times that
are sublinear in the size of the synopsis.)

The randomized AMS sketch [2] is a broadly applicable stream synopsis struc-
ture based on maintaining randomized linear projections of the streaming input data
vector a. Briefly, an atomic AMS sketch of a is simply the inner product 〈a, ξ〉 =∑

i a[i]ξ(i), where ξ denotes a random vector of four-wise independent ±1-valued
random variates. Such variates can be easily generated on-line through standard
pseudo-random hash functions ξ() using only O(logN) space (for seeding) [2, 40].
To maintain this inner product over the stream of updates to a, initialize a run-
ning counter X to 0 and set X ← X ± vξ(i) whenever the update (i,±v) is seen
in the input stream. An AMS sketch of a comprises several independent atomic
AMS sketches (i.e., randomized counters), each with a different random hash func-
tion ξ(). The following theorem summarizes the key property of AMS sketches for
stream-query estimation, where ||v||2 denotes the L2-norm of a vector v, so ||v||2 =√
〈v, v〉 =

√∑
i v[i]2.

Theorem 3.6.1 ([1, 2]). Consider two (possibly streaming) data vectors a and b,
and let Z denote the O(log(1/δ))-wise median of O(1/ε2)-wise means of independent
copies of the atomic AMS sketch product (

∑
i a[i]ξj(i))(

∑
i b[i]ξj(i)). Then, |Z −

〈a, b〉| ≤ ε||a||2||b||2 with probability ≥ 1− δ.

Thus, using AMS sketches comprising only O(log(1/δ)
ε2

) atomic counters we can
approximate the vector inner product 〈a, b〉 to within ±ε||a||2||b||2 (hence implying
an ε-relative error estimate for ||a||22).

3.7 The Group-Count Sketch

We introduce a novel, hash-based probabilistic synopsis data structure, termed
Group-Count Sketch (GCS), that can estimate the energy (squared L2 norm) of
fixed groups of elements from a vector â of size N under our streaming model. (To
simplify the exposition we initially focus on the one-dimensional case, and present
the generalization to multiple dimensions later in this section.) Our GCS synop-
sis requires small, sublinear space and takes sublinear time to process each stream
update item; more importantly, we can use a GCS to obtain a high-probability es-
timate of the energy of a group within additive error ε‖â‖2

2 in sublinear time. We

29

b buckets

c subbuckets

x h(id(x))

t repetitions

f(x) +u (x)ξ

Figure 3.8: Our Group-Count Sketch (GCS) data structure: x is hashed (t times) to a
bucket and then to a subbucket within the bucket, where a counter is updated.

then demonstrate how to use GCSs as the basis of efficient streaming procedures for
tracking large wavelet coefficients.

Our approach takes inspiration from the AMS sketching solution for vector L2-
norm estimation; still, we need a much stronger result, namely the ability to estimate
L2 norms for a (potentially large) number of groups of items forming a partition of
the data domain [N]. A simple solution would be to keep an AMS sketch of each
group separately; however, there can be many groups, linear in N , and we cannot
afford to devote this much space to the problem. We must also process streaming
updates as quickly as possible. Our solution is to maintain a structure that first
partitions items of â into their group, and then maps groups to buckets using a
hash function. Within each bucket, we apply a second stage of hashing of items to
sub-buckets, each containing an atomic AMS sketch counter, in order to estimate
the L2 norm of the bucket. In our analysis, we show that this approach allows us to
provide accurate estimates of the energy of any group in â with tight ±ε‖â‖2

2 error
guarantees.

Assume a total of k groups of elements of â that form a partition of [N]. For
notational convenience, we use a function id that identifies the specific group that an
element belongs to, id : [N]→ [k]. (In our setting, groups correspond to fixed dyadic
ranges over [N] so the id mapping is trivial.) Following common data-streaming
practice, we first define a basic randomized estimator for the energy of a group,
and prove that it returns a good estimate (i.e., within ±ε‖â‖2

2 additive error) with
constant probability > 1

2
; then, by taking the median estimate over t independent

repetitions, we are able to reduce the probability of a bad estimate to exponentially
small in t. Our basic estimator first hashes groups into b buckets and then, within
each bucket, it hashes into c sub-buckets. (The values of t, b, and c parameters are
determined in our analysis.) Furthermore, as in AMS sketching, each item has a
{±1} random variable associated with it. Thus, our GCS synopsis requires three sets
of t hash functions, hm : [k]→ [b], fm : [N]→ [c], and ξm : [N]→ {±1} (m = 1, . . . ,
t). The randomization requirement is that hm’s and fm’s are drawn from families
of pairwise independent functions, while ξm’s are four-wise independent (as in basic
AMS); such hash functions are easy to implement, and require only O(logN) bits
to store.

Our GCS synopsis s consists of t · b · c counters (i.e., atomic AMS sketches),
labeled s[1][1][1] through s[t][b][c], that are maintained and queried as follows:

Update(i, u). Set s[m][hm(id(i))][fm(i)]+ = u · ξm(i), for each m = 1, . . . , t.

Estimate(group). Return the estimate medianm=1,...,t

∑c
j=1(s[m][hm(group)][j])2

for the energy of the group of items group ∈ {1, . . . , k} (denoted by ‖group‖2
2).

Thus, the update and query times for a GCS synopsis are simply O(t) and O(t · c),

30

respectively. The following theorem summarizes our key result for GCS synopses.

Theorem 3.7.1. Our Group-Count Sketch algorithms estimate the energy of item
groups of the vector â within additive error ε‖â‖2

2 with probability ≥ 1 − δ using
space of O

(
1
ε3

log 1
δ

)
counters, per-item update time of O

(
log 1

δ

)
, and query time of

O
(

1
ε2

log 1
δ

)
.

Proof. Fix a particular group group and a row r in the GCS; we drop the row index
m in the context where it is understood. Let bucket be the set of elements that
hash into the same bucket as group does: bucket = {i | i ∈ [1, n] ∧ h(id(i)) =
h(group)}. Among those, let coll be the set of elements other than those of
group: coll = {i | i ∈ [1, n] ∧ id(i) 6= group ∧ h(id(i)) = h(group)}. In the
following, we abuse notation in that we refer to a refer to both a group and the set
of items in the group with the same name. Also, we write ‖S‖2

2 to denote the sum
of squares of the elements (i.e. L2

2) in set S: ‖S‖2
2 =

∑
i∈S â[i]2.

Let est be the estimator for the sum of squares of the items of group. That
is, est =

∑c
j=1 estj where estj = (s[m][hm(group)][j])2 is the square of the count

in sub-bucket subj. The expectation of this estimator is, by simple calculation, the
sum of squares of items in sub-bucket j, which is a fraction of the sum of squares of
the bucket. Similarly, using linearity of expectation and the four-wise independence
of the ξ hash functions, the variance of est is bounded in terms of the square of the
expectation:

E[est] = E[‖bucket‖2
2] Var[est] ≤ 2

c
E[‖bucket‖4

2]

To calculate E[‖bucket‖2
2], observe that the bucket contains items of group as

well as items from other groups denoted by the set coll which is determined by h.
Because of the pairwise independence of h, this expectation is bounded by a fraction
of the total energy. Therefore:

E[‖bucket‖2
2] = ‖group‖2

2 + E[‖coll‖2
2] ≤ ‖group‖2

2 + 1
b
‖â‖2

2

and E[‖bucket‖4
2] = ‖group‖4

2 + E[‖coll‖4
2] + 2‖group‖2

2E[‖coll‖2
2]

≤ ‖â‖4
2 + 1

b
‖â‖4

2 + 2‖â‖2
2 · 1

b
‖â‖2

2 ≤ (1 + 3
b
)‖â‖4

2 ≤ 2‖â‖2
2

since ‖group‖2
2 ≤ ‖â‖2

2 and b ≥ 3. The estimator’s expectation and variance satisfy
E[est] ≤ ‖group‖2

2 + 1
b
‖â‖2

2 Var[est] ≤ 4
c
‖â‖4

2

Applying the Chebyshev inequality we obtain Pr
[
|est− E[est]| ≥ λ‖â‖2

2

]
≤ 4

cλ2

and by setting c = 32
λ2 the bound becomes 1

8
, for some parameter λ. Using the above

bounds on variance and expectation and the fact that |x− y| ≥ ||x| − |y|| we have,

|est− E[est]| ≥
∣∣∣∣est− ‖group‖2

2 −
1

b
‖â‖2

2

∣∣∣∣ ≥ ∣∣∣∣∣∣est− ‖group‖2
2

∣∣− 1

b
‖â‖2

2

∣∣∣∣ .
Consequently (note that Pr[|x| > y] ≥ Pr[x > y]),

Pr

[∣∣est− ‖group‖2
2

∣∣− 1

b
‖â‖2

2 ≥ λ‖â‖2
2

]
≤ Pr

[
|est− E[est]| ≥ λ‖â‖2

2

]
≤ 1

8
or equivalently, Pr

[
|est− ‖group‖2

2| ≥
(
λ+ 1

b

)
‖â‖2

2

]
≤ 1

8
. Setting b = 1

λ
we get

Pr [|est− ‖group‖2
2| ≥ 2λ‖â‖2

2] ≤ 1
8

and to obtain an estimator with ε‖â‖2
2 additive

error we require λ = ε
2

which translates to b = O(1
ε
) and c = O(1

ε2
).

By Chernoff bounds, the probability that the median of t independent instances
of the estimator deviates by more than ε‖â‖2

2 is less than e−qt, for some constant q.
Setting this to the probability of failure δ, we require t = O

(
log 1

δ

)
, which gives the

claimed bounds.

31

3.8 Wavelet Synopses for Update Streams

In the following we present a solution for maintaining wavelet synopses under the
update model of data streams, using the group-count sketches. Our goal is to contin-
uously track a compact B-coefficient wavelet synopsis under our general, high-speed
update-stream model. We require our solution to satisfy all three key requirements
for streaming algorithms outlined earlier in this chapter, namely: (1) sublinear syn-
opsis space, (2) sublinear per-item update time, and (3) sublinear query time, where
sublinear means polylogarithmic in the domain size N . As in [40], our algorithms
return only an approximate synopsis comprising (at most) B Haar coefficients that
is provably near-optimal (in terms of the captured energy of the underlying vector)
assuming that our vector satisfies the “small-B property” (i.e., most of its energy
is concentrated in a small number of Haar DWT coefficients) — this assumption is
typically satisfied for most real-life data distributions [40].

The streaming algorithm presented by Gilbert et al. [40] (termed “GKMS” in the
following) focuses primarily on the one-dimensional case. The key idea is to main-
tain an AMS sketch for the streaming data vector a (as discussed in Section 3.6). To
produce the approximate B-term representation, GKMS employs the constructed
sketch of a to estimate the inner product of a with all wavelet basis vectors, es-
sentially performing an exhaustive search over the space of all wavelet coefficients
to identify important ones. Although techniques based on range-summable random
variables constructed using Reed-Muller codes were proposed to reduce or amortize
the cost of this exhaustive search by allowing the sketches of basis vectors to be
computed more quickly, the overall query time for discovering the top coefficients
remains superlinear in N (i.e., at least Ω(1

ε2
N logN)), violating our third require-

ment. For large data domains, say N = 232 ≈ 4 billion (such as the IP address
domain considered in [40]), a query can take a very long time: over an hour, even
if a million coefficient queries can be answered per second! This essentially renders
a direct extension of the GKMS technique to multiple dimensions infeasible since
it implies an exponential explosion in query cost (requiring at least O(Nd) time to
cycle through all coefficients in d dimensions). In addition, the update cost of the
GKMS algorithm is linear in the size of the sketch since the whole data structure
must be “touched” for each update. This is problematic for high-speed data streams
and/or even moderate sized sketch synopses.

Our Approach. Our proposed solution relies on two key novel ideas to avoid the
shortcomings of the GKMS technique. First, we work entirely in the wavelet domain:
instead of sketching the original data entries, our algorithms sketch the wavelet-
coefficient vector â as updates arrive. This avoids any need for complex range-
summable hash functions. Second, we employ hash-based grouping in conjunction
with efficient binary-search-like techniques to enable very fast updates as well as
identification of important coefficients in polylogarithmic time.

– Sketching in the Wavelet Domain. Our first technical idea relies on the obser-
vation that we can efficiently produce sketch synopses of the stream directly in the
wavelet domain. That is, we translate the impact of each streaming update on the
relevant wavelet coefficients. By the linearity properties of the DWT and our earlier
description, we know that an update to the data entries corresponds to only polylog-
arithmically many coefficients in the wavelet domain. Thus, on receiving an update
to a, our algorithms directly convert it to O(polylog(N)) updates to the wavelet

32

coefficients, and maintain an approximate representation of the wavelet coefficient
vector â.

– Time-Efficient Updates and Large-Coefficient Searches. Sketching in the wavelet
domain means that, at query time, we have an approximate representation of the
wavelet-coefficient vector â and need to be able to identify all those coefficients
that are “large”, relative to the total energy of the data ‖â‖2

2 = ‖a‖2
2. While AMS

sketches can give us these estimates (a point query is just a special case of an inner
product), querying remains much too slow taking at least Ω(1

ε2
N) time to find which

of the N coefficients are the B largest. Note that although a lot of earlier work has
given efficient streaming algorithms for identifying high-frequency items [14, 19, 61],
our requirements here are quite different. Our techniques must monitor items (i.e.,
DWT coefficients) whose values increase and decrease over time, and which may
very well be negative (even if all the data entries in a are positive). Existing work
on “heavy-hitter” tracking focuses solely on non-negative frequency counts [19] often
assumed to be non-decreasing over time [14, 61]. More strongly, we must find items
whose squared value is a large fraction of the total vector energy ‖â‖2

2: this is a
stronger condition since such “L2

2 heavy hitters” may not be heavy hitters under the
conventional sum-of-counts definition. 1

At a high level, our algorithms rely on a divide-and-conquer or binary-search-like
approach for finding the large coefficients. To implement this, we need the ability
to efficiently estimate sums-of-squares for groups of coefficients, corresponding to
dyadic subranges of the domain [N]. We then disregard low-energy regions and
recurse only on high-energy groups — note that this guarantees no false negatives,
as a group that contains a high-energy coefficient will also have high energy as a
whole. Furthermore, our algorithms also employ randomized, hash-based grouping
of dyadic groups and coefficients to guarantee that each update only touches a small
portion of our synopsis, thus guaranteeing very fast update times.

3.8.1 Hierarchical Search Structure

We apply our GCS synopsis and estimators to the problem of finding items with large
energy (i.e., squared value) in the â vector. Since our GCS works in the wavelet
domain (i.e., sketches the wavelet coefficient vector), this is exactly the problem
of recovering important coefficients. To efficiently recover large-energy items, we
impose a regular tree structure on top of the data domain [N], such that every node
has the same degree r. Each level in the tree induces a partition of the nodes into
groups corresponding to r-adic ranges, defined by the nodes at that level. 2 For
instance, a binary tree creates groups corresponding to dyadic ranges of size 1, 2, 4,
8, and so on. The basic idea is to perform a search over the tree for those high-energy
items above a specified energy threshold, φ‖â‖2

2. We can prune groups with energy
below the threshold and, thus, avoid looking inside those groups: if the estimated
energy is accurate, then these cannot contain any high-energy elements. Our key
result is that, using such a hierarchical search structure of GCSs, we can provably
(within appropriate probability bounds) retrieve all items above the threshold plus a
controllable error quantity ((φ+ε)‖â‖2

2), and retrieve no elements below the threshold

1For example, consider a set of items with counts {4, 1, 1, 1, 1, 1, 1, 1, 1}. The item with count 4
represents 2

3 of the sum of the squared counts, but only 1
3 of the sum of counts.

2Thus, the id function for level l is easily defined as idl(i) = bi/rlc.

33

minus that small error quantity ((φ− ε)‖â‖2
2).

Theorem 3.8.1. Given a vector wwidehata of size N we can report, with high prob-
ability ≥ 1−δ, all elements with energy above (φ+ε)‖â‖2

2 (where φ ≥ ε) within addi-
tive error of ε‖â‖2

2 (and therefore, report no item with energy below (φ−ε)‖â‖2
2) using

space of O
(

logr N
ε3
· log r logr N

φδ

)
, per item processing time of O

(
logrN · log r logr N

φδ

)
and query time of O

(
r
φε2
· logrN · log r logr N

φδ

)
.

Proof. Construct logrN GCSs (with parameters to be determined), one for each
level of our r-ary search-tree structure. We refer to an element that has energy
above φ‖â‖2

2 as a “hot element”, and similarly groups that have energy above φ‖â‖2
2

as “hot ranges”. The key observation is that all r-adic ranges that contain a hot
element are also hot. Therefore, at each level (starting with the root level), we
identify hot r-adic ranges by examining only those r-adic ranges that are contained
in hot ranges of the previous level. Since there can be at most 1

φ
hot elements, we

only have to examine at most 1
φ

logrN ranges and pose that many queries. Thus,

we require the failure probability to be logr N
φδ

for each query so that, by the union
bound, we obtain a failure probability of at most δ for reporting all hot elements.
Further, we require each level to be accurate within ε‖â‖2

2 so that we obtain all hot
elements above (φ+ ε)‖â‖2

2 and none below (φ− ε)‖â‖2
2. The theorem follows.

Setting the value of r gives a tradeoff between query time and update time.
Asymptotically, we see that the update time decreases as the degree of the tree
structure, r, increases. This becomes more pronounced in practice, since it usually
suffices to set t, the number of tests, to a small constant. Under this simplification,
the update cost essentially reduces to O(logrN), and the query time reduces to
O(r

ε2φ
logrN). (We will see this clearly in our experimental analysis.) The extreme

settings of r are 2 and N : r = 2 imposes a binary tree over the domain, and gives
the fastest query time but O(log2N) time per update; r = N means updates are
effectively constant O(1) time, but querying requires probing the whole domain, a
total of N tests to the sketch.

3.8.2 Sketching in the Wavelet Domain

As discussed earlier, given an input update stream for data entries in a, our algo-
rithms build GCS synopses on the corresponding wavelet coefficient vector â, and
then employ these GCSs to quickly recover a (provably good) approximate B-term
wavelet representation of a. To accomplish the first step, we need an efficient way
of “translating” updates in the original data domain to the domain of wavelet coef-
ficients (for both one- and multidimensional data streams).

– One-Dimensional Updates. An update (i, v) on a translates to the following col-
lection of logN + 1 updates to wavelet coefficients (that lie on the path to leaf
a[i]):(

0, 2−
1
2

logNv
)
,
{(

2logN−l + k, (−1)k mod 22−
l
2v
)

: for each l = 0, . . . , logN − 1
}
,

where l = 0, . . . , logN − 1 indexes the resolution level, and k = bi2−lc. Note that
each coefficient update in the above set is easily computed in constant time.

– multidimensional Updates. We can use exactly the same reasoning as above to
produce a collection of (constant-time) wavelet-coefficient updates for a given data

34

update in d dimensions. As explained, the size of this collection of updates in
the wavelet domain is O(logdN) and O(2d logN) for standard and non-standard
Haar wavelets, respectively. A subtle issue here is that our search-tree structure
operates over a linear ordering of the Nd coefficients, so we require a fast method
for linearizing the multidimensional coefficient array — any simple linearization
technique will work (e.g., row-major ordering or other space-filling curves).

Recall that our goal is to (approximately) recover the B most significant Haar
DWT coefficients, without exhaustively searching through all coefficients. As shown
in Theorem 3.8.1, creating GCSs for dyadic ranges over the (linearized) wavelet-
coefficient domain, allows us to efficiently identify high-energy coefficients. (For
simplicity, we fix the degree of our search structure to r = 2 in what follows.) An
important technicality here is to select the right threshold for coefficient energy in
our search process, so that our final collection of recovered coefficients provably
capture most of the energy in the optimal B-term representation. Our analysis in
the following theorem shows how to set this threshold, an proves that, for data
vectors satisfying the “small-B property”, our GCS techniques can efficiently track
near-optimal approximate wavelet representations. (We present the result for the
standard form of the multidimensional Haar DWT — the one-dimensional case
follows as the special case d = 1.)

Theorem 3.8.2. If a d-dimensional data stream over the [N]d domain has a B-
term standard wavelet representation with energy at least η‖a‖2

2, where ‖a‖2
2 is the

entire energy, then our GCS algorithms can estimate an at-most-B-term standard
wavelet representation with energy at least (1 − ε)η‖a‖2

2 using space of O(B
3d logN
ε3η3 ·

log Bd logN
εηδ

), per item processing time of O(d logd+1N · log Bd logN
εηδ

), and query time

of O(B
3d

ε3η3 · logN · log Bd logN
εηδ

).

Proof. Use our GCS search algorithm and Theorem 3.8.1 to find all coefficients with
energy at least εη

B
‖a‖2

2 = εη
B
‖â‖2

2. (Note that ‖a‖2
2 can be easily estimated to within

small relative error from our GCSs.) Among those choose the highest B coefficients;
note that there could be less than B found. For those coefficients selected, observe
we incur two types of error. Suppose we choose a coefficient which is included in the
best B-term representation, then we could be inaccurate by at most εη

B
‖a‖2

2. Now,
suppose we choose coefficient c1 which is not in the best B-term representation.
There has to be a coefficient c2 which is in the best B-term representation, but was
rejected in favor of c1. For this rejection to have taken place their energy must differ
by at most 2 εη

B
‖a‖2

2 by our bounds on the accuracy of estimation for groups of size 1.
Finally, note that for any coefficient not chosen (for the case when we pick fewer than
B coefficients) its true energy must be less than 2 εη

B
‖a‖2

2. It follows that the total
energy we obtain is at most 2εη‖a‖2

2 less than that of the best B-term representation.
Setting parameters λ, ε′, N ′ of Theorem 3.8.1 to λ = ε′ = εη

B
and N ′ = Nd we obtain

the stated space and query time bounds. For the per-item update time, recall that
a single update in the original data domain requires O(logdN) coefficient updates.

The corresponding result for the non-standard Haar DWT follows along the same
lines. The only difference with Theorem 3.8.2 comes in the per-update processing
time which, in the non-standard case, is O(d2d logN · log Bd logN

εηδ
).

35

3.9 Experiments

In this section we present an experimental evaluation of our techniques for con-
ventional wavelet synopses for two data stream models. In particular, Section 3.9.1
studies the effect of the SHIFT-SPLIT operations for the time series model, whereas
Section 3.9.2 investigates the performance of the group-count sketch for the update
model.

3.9.1 Time Series Streams

We study the performance of the SHIFT-SPLIT operations. First, we study the
effect of various parameters on the operations. Next, we show how SHIFT-SPLIT
operations are employed for the maintenance of transformed data in an append-
ing scenario. Finally, we show the significant improvement in the update cost for
maintaining a wavelet synopsis for time series data streams.

8

9

10

11

12

13

14

15

16

17

18

0 256 512 768 1024

B
il

li
o

n
s

Memory size(MB)

I/
O

 c
o

s
t

(n
u

m
b

e
r

o
f

c
o

e
ff

ic
ie

n
ts

) Vitter et. al.

Shift-Split (Standard)

Shift-Split (Non-standard)

d= 4

Dataset= 16 GB

Figure 3.9: Effect of larger memory

Transformation of Massive Multidimensional Datasets. In this set of exper-
iments, we transform a large dataset, TEMPERATURE, into the wavelet domain
using limited available memory. The TEMPERATURE dataset is a real-world
dataset provided to us by JPL that measures the temperatures at points all over the
globe at different altitudes for 18 months, sampled twice every day. We construct
a 4-dimensional cube with latitude, longitude, altitude and time as dimension at-
tributes, and temperature as the measure attribute, with the total size of the cube
being 16GB.

Figure 3.9 shows that larger memory considerably reduces transformation cost of
SHIFT-SPLIT in the Standard form but it does not noticeably affect SHIFT-SPLIT
in the Non-Standard form. The reason behind this is that the cost of the SPLIT
operation is considerably different for the two forms of multidimensional wavelet
transformation. Increasing memory size causes a significant decrease in SPLIT cost
and consequently a major decrease of the Standard form transformation as there are
many coefficients affected by the contributions of the SPLIT operation. However,
SPLIT cost is almost negligible in Non-Standard form (see Table 3.1). Finally, this
figure also states that our SHIFT-SPLIT approach outperforms the Vitter et al. [88]
algorithm for any memory size.

36

-

100

200

300

400

500

600

700

0 64 128 192 256

M
il
li
o

n
s

Dataset size(GB)

I/
O

 c
o

s
t

(n
u

m
b

e
r

o
f

b
lo

c
k

s
)

Standard (Tile=1 KB)

Non-Standard (Tile=1 KB)

Standard (Tile=4 KB)

Non-Standard (Tile=4 KB)

d= 2

Memory= 64 MB

Figure 3.10: Effect of larger tiles

As we have shown in Section 3.4, not only Tiling is the optimal wavelet coefficient
blocking for query processing, but it is also a SHIFT-SPLIT friendly schema which
introduces significant cost improvements in the transformation process. Figure 3.10
demonstrates this fact, by using different tile sizes and thus illustrates the scalability
of SHIFT-SPLIT algorithm.

Appending to Wavelet-Transformed Data. We examine our proposed append-
ing technique on the PRECIPITATION [91] dataset, where we incrementally re-
ceive new sets of data every month. PRECIPITATION is a real-life dataset that
measures the daily precipitation for the Pacific Northwest for 45 years. We built
a 3-dimensional cube with latitude, longitude and time as dimensional attributes,
and precipitation as the measure attribute for every day. The sizes of these di-
mensions are 8,8 and 32 respectively for each month. Figure 3.11 demonstrates the
SHIFT-SPLIT I/O cost as new sets of data are appended. The sudden jumps in the
figure correspond to the expansion process, where all coefficients must be shifted to
accommodate for new data values. One can observe that this expansion process is
not such a dominating factor as described in Section 3.5.2, especially for larger disk
block sizes.

-

5

10

15

20

25

30

0 2000 4000 6000 8000 10000 12000 14000 16000

T
h

o
u

s
a
n

d
s

Time (day)

I/
O

 c
o

s
t

(n
u

m
b

e
r

o
f

b
lo

c
k
s
)

Tile size=2K

Tile size=4K

Tile size=8K

Appending Rate=One Month

Figure 3.11: Appending in synopses

37

Data Stream Synopses. In this scenario we only need to preserve the synop-
sis of the PRECIPITATION dataset, limited to a memory footprint of 40KB.
Figure 3.12 demonstrates the computational cost versus the extra storage trade-off
described in Section 3.3. As the figure suggests, the update cost can be improved by
88% by employing additional buffer memory of only 6% of the total synopsis size.

-

150

300

450

600

750

900

0.0% 25.0% 50.0% 75.0% 100.0% 125.0% 150.0%

Extra Memory(%)

N
u

m
b

e
r

o
f

U
p

d
a
te

s
 p

e
r

It
e
m

8
8

%
 c

o
s
t

re
d

u
c
ti
o

n

6% extra memory

Figure 3.12: SHIFT-SPLIT in multidimensional streaming

3.9.2 Update Streams

Datasets and Methodology. We implemented our algorithms in a mixture of C
and C++, for the Group-Count sketch (GCS) with variable degree. For comparison
we also implemented the method of [40] (GKMS) as well as a modified version of
the algorithm with faster update performance using ideas similar to those in the
Group-Count sketch, which we denote by fast-GKMS. Experiments were performed
on a 2GHz processor machine, with 1GB of memory. We worked with a mixture of
real and synthetic data:

• Synthetic Zipfian Data was used to generate data from arbitrary domain sizes
and with varying skewness. By default the skewness parameter of the distri-
bution is z = 1.1.

• Meteorological dataset 3 comprised of 105 meteorological measurements. These
were quantized and projected appropriately to generate datasets with dimen-
sionalities between 1 and 4. For the experiments described here, we primarily
made use of the AirTemperature and WindSpeed attributes to obtain 1- and
2-dimensional data streams.

In our experiments, we varied the domain size, the size of the sketch4 and the
degree of the search tree of our GCS method and measured (1) per-item update
time, (2) query time and (3) accuracy. In all figures, GCS-k denotes that the degree
of the search tree is 2k; i.e. GCS-1 uses a binary search tree, whereas GCS-logn uses
an n-degree tree, and so has a single level consisting of the entire wavelet domain.

3http://www-k12.atmos.washington.edu/k12/grayskies/
4In each experiment, all methods are given the same total space to use.

38

 1

 10

 100

 1000

 10000

 100000

 14 16 18 20 22 24 26 28 30

pe
r-

ite
m

 u
pd

at
e

tim
e

(µ
se

cs
)

log of domain size

GKMS
GCS-1
GCS-2
GCS-4
GCS-8

GCS-logn
fast-GKMS

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 14 16 18 20 22 24 26 28 30

qu
er

y
tim

e
(m

se
cs

)

log of domain size

GKMS
fast-GKMS
GCS-logn

GCS-8
GCS-4
GCS-2
GCS-1

(a) Update Time against domain size (b) Query Time against domain size

 10

 100

 1000

 10000

2.9MB1.2MB360KB

pe
r-

ite
m

 u
pd

at
e

tim
e

(µ
se

cs
)

sketch size

GCS-1
GCS-2
GCS-4
GCS-8

GCS-logn
fast-GKMS

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

2.9MB1.2MB360KB
qu

er
y

tim
e

(m
se

cs
)

sketch size

fast-GKMS
GCS-logn

GCS-8
GCS-4
GCS-2
GCS-1

(c) Update Time against space (d) Query Time against space

Figure 3.13: Performance on one-dimensional data

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0 5 10 15 20 25 30 35 40

ss
e/

en
er

gy

number of wavelet coefficients

GCS-1
fast-GKMS
GCS-logn

offline

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0 5 10 15 20 25 30 35 40

ss
e/

en
er

gy

number of wavelet coefficients

GCS-1
GCS-logn

offline

(a) z=1.1 (b) z=1.4

Figure 3.14: Accuracy of wavelet synopses

One-Dimensional Experiments. In the first experimental setup we used a syn-
thetic 1-dimensional data stream with updates following the Zipfian distribution
(z = 1.1). Space was increased based on the log of the dimension, so for logN = 14,
280KB was used, up to 600KB for logN = 30. Figure 3.13 (a) shows the per-item
update time for various domain sizes, and Figure 3.13 (b) shows the time required to
perform a query, asking for the top-5 coefficients. The GKMS method takes orders
of magnitude longer for both updates and queries, and this behavior is seen in all
other experiments, so we do not consider it further. Apart from this, the order-
ing (fastest to slowest) is reversed between update time and query time. Varying
the degree of the search tree allows update time and query time to be traded off.
While the fast-GKMS approach is the fastest for updates, it is dramatically more
expensive for queries, by several orders of magnitude. For domains of size 222, it
takes several hours to recover the coefficients, and extrapolating to a 32 bit domain
means recovery would take over a week. Clearly this is not practical for realistic
monitoring scenarios. Although GCS-logn also performs exhaustive search over the
domain size, its query times are significantly lower as it does not require a sketch

39

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

GCS-
 logn

GCS-8GCS-6GCS-4GCS-2GCS-1fast-
 GKMS

tim
e

(m
se

cs
)

method

update
query

 0.1

 1

 10

 100

 1000

 10000

 1 2 3 4

tim
e

(m
se

cs
)

dimensions

S-update
NS-update

S-query
NS-query

(a) Real data in 1-d (b) Synthetic data in multi-d.

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

GCS-
 logn

GCS-8GCS-6GCS-4GCS-2GCS-1fast-
 GKMS

tim
e

(m
se

cs
)

method

update
query

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

GCS-
 logn

GCS-8GCS-6GCS-4GCS-2GCS-1fast-
 GKMS

tim
e

(m
se

cs
)

method

update
query

(c) Real data in 2-d (standard DWT) (d) Real data in 2-d (Non-standard DWT).

Figure 3.15: Performance on 1-d real and multi-d real and synthetic data

construction and inner-product query per wavelet coefficient.

Figures 3.13 (c) and (d) show the performance as the sketch size is increased.
The domain size was fixed to 218 so that the fast-GKMS method would complete
a query in reasonable time. Update times do not vary significantly with increasing
space, in line with our analysis (some increase in cost may be seen due to cache
effects). We also tested the accuracy of the approximate wavelet synopsis for each
method. We measured the SSE-to-energy ratio of the estimated B-term synopses
for varying B and varying Zipfian parameter and compared it against the optimal
B-term synopsis computed offline. The results are shown in Figures 3.14 (a) and
(b), where each sketch was given space 360KB. In accordance to analysis (GCS re-
quires O(1

ε
) times more space to provide the same guarantees with GKMS) the GCS

method is slightly less accurate when estimating more than the top-15 coefficients.
However, experiments showed that increasing the size to 1.2MB resulted in equal
accuracy. Finally we tested the performance of our methods on single dimensional
meteorological data of domain size 220. Per-item and query times in Figure 3.15 (a)
are similar to those on synthetic data.

Multidimensional Experiments. We compared the methods for both wavelet
decomposition types in multiple dimensions. First we tested our GCS method for a
synthetic dataset (z = 1.1, 105 tuples) of varying dimensionality. In Figure 3.15 (b)
we kept the total domain size constant at 224 while varying the dimensions between
1 and 4. The per-item update time is higher for the standard decomposition, as
there are more updates on the wavelet domain per update on the original domain.
The increase in query time can be attributed to the increasing sparseness of the
domain as the dimensionality increases which makes searching for big coefficients

40

harder. This is a well known effect of multidimensional standard and non-standard
decompositions. For the real dataset, we focus on the two dimensional case; higher
dimensions are similar. Figure 3.15(c) and (d) show results for the standard and
non-standard respectively. The difference between GCS methods and fast-GKMS
is more pronounced, because of the additional work in producing multidimensional
wavelet coefficients, but the query times remain significantly less (query times were
in the order of hours for fast-GKMS), and the difference becomes many times greater
as the size of the data domain increases.

The Group-Count sketch approach is the only method that achieves reasonable
query times to return an approximate wavelet representation of data drawn from a
moderately large domain (220 or larger). Our first implementation is capable of pro-
cessing tens to hundreds of thousands of updates per second, and giving the answer
to queries in the order of a few seconds. Varying the degree of the search tree allows
a tradeoff between query time and update time to be established. The observed ac-
curacy is almost indistinguishable from the exact solution, and the methods extend
smoothly to multiple dimensions with little degradation of performance.

3.10 Summary

This chapter introduced techniques for constructing conventional wavelet synopses
for two data stream models. In particular, we have introduced two general purpose
operations, termed SHIFT and SPLIT, that work directly in the wavelet domain and
apply for time-series data streams. We analyze costs for both the single dimensional
case and the two forms of multidimensional transformation. There is a significant
number of applications that can benefit from these operations. We have revisited
some data maintenance scenarios, such as transforming massive multidimensional
datasets and reconstructing large ranges from wavelet decomposed data, and utilized
the SHIFT-SPLIT operations to draw comparisons with current state of the art
techniques. Furthermore, we have provided solutions to some previously un-explored
maintenance scenarios, namely, appending data to an existing transformation and
approximation of multidimensional data streams. We demonstrated the effectiveness
of the proposed techniques both analytically and experimentally, and we conjecture
that the introduced operations can prove useful in a plethora of other applications,
as the SHIFT-SPLIT operations stem from the general properties and behavior of
wavelets.

Regarding the update stream model, we have proposed the first known stream-
ing algorithms for space- and time-efficient tracking of approximate wavelet sum-
maries for both single and multidimensional data. Our approach relies on a novel,
Group-Count Sketch (GCS) synopsis that, unlike earlier work, satisfies all three key
requirements of effective streaming algorithms, namely: (1) polylogarithmic space
usage, (2) small, logarithmic update times (essentially touching only a small frac-
tion of the GCS for each streaming update); and, (3) polylogarithmic query times
for computing the top wavelet coefficients from the GCS. Our experimental results
with both synthetic and real-life data have verified the effectiveness of our approach,
demonstrating the ability of GCSs to support very high speed data sources.

41

42

Chapter 4

Hierarchically Compressed
Wavelet Synopses

In this chapter we present an alternative method for storing wavelet synopses. Unlike
conventional synopses discussed in Chapter 3, the concept of Hierarchically Com-
pressed Wavelet Synopses (HCWS) reduces the memory footprint for storing and
indexing wavelet coefficients. Therefore, under the same space restrictions, HCWS
manages to capture more information about the summarized data leading to smaller
reconstruction errors (SSE).

Existing research on stream summarization studies focus on selecting an opti-
mal set of wavelet coefficients to store so as to minimize some error metric, without
however seeking to reduce the size of the wavelet coefficients themselves. In many
real datasets the existence of large spikes in the data values results in many large
coefficient values lying on paths of a conceptual tree structure known as the wavelet
tree. To exploit this fact, we introduce a novel compression scheme for wavelet
synopses, termed Hierarchically Compressed Wavelet Synopses, that fully exploits
hierarchical relationships among coefficients in order to reduce their storage. Our
proposed compression scheme allows for a larger number of coefficients to be stored
for a given space constraint thus resulting in increased accuracy of the produced
synopsis. We propose optimal, approximate and greedy algorithms for constructing
hierarchically compressed wavelet synopses that minimize SSE while not exceeding
a given space budget for time series data streams. Extensive experimental results on
both synthetic and real-world datasets validate our novel compression scheme and
demonstrate the effectiveness of our algorithms against existing synopsis construc-
tion algorithms.

The remainder of this chapter is organized as follows. Section 4.1 contains the
motivation for this chapter and reviews related work. Section 4.2 builds the neces-
sary background on wavelet decomposition, introduces the concept of Hierarchically
Compressed Wavelet Synopses and formally presents our optimization problem. In
Section 4.3 we formulate a dynamic programming recurrence and use it to optimally
solve this optimization problem. Next, in Section 4.4 we present an approximation
algorithm with tunable guarantees, whereas, in Section 4.5 we present a faster greedy
algorithm. In Section 4.6 we provide a streaming version of our greedy algorithm.
In Section 4.7 we sketch some useful extensions of our algorithms and in Section 4.8
we describe the results of our empirical study. Finally, Section 4.9 provides some
concluding remarks and future directions.

43

4.1 Motivation and Related Work

In conventional wavelet synopses, the selected coefficients are stored as pairs 〈Coords,
V alue〉, where the first element (Coords) is the coordinates/index of the coefficient
and determines the data that this coefficient helps reconstruct (also termed as the
support region of the coefficient), while the second element (V alue) denotes the
magnitude/value of the coefficient. Depending on the actual storage representa-
tion for these elements (i.e., integer values for the coordinates and floating point
numbers for the coefficient value) and the data dimensionality, the fraction of the
available storage for the synopsis that is used for storing coefficient coordinates can
be significant. If sizeof(Coord) and sizeof(V alue) denote the storage requirements
for the coefficient coordinates1 and the coefficient value, correspondingly, then the
storage of the coefficient coordinates will occupy a fraction sizeof(Coord)

sizeof(Coord)+sizeof(V alue)
of

the overall synopsis size (see Section 4.2).

While reducing the storage overhead of the wavelet coordinates would allow for
a larger number of coefficient values to be stored, and would thus result in increased
accuracy of the synopsis, to our knowledge none of the above techniques tries to
exploit this fact and incorporate it in the coefficient thresholding process. A past
suggestion [8] has proposed selecting for storage only the top coefficient values (i.e.,
the ones with the largest support regions). Using such an approach, no coordinates
need to be stored. However, such an approach does not give any guarantee on
whether the selected coefficients can significantly reduce the desired error metric.
Finally, techniques that target, possibly multidimensional, datasets with multiple
measures [23, 44] exploit storage dependencies among only coefficient values that
correspond to the same coordinates, but for different measures.

To address the drawbacks of existing techniques, we propose a novel, flexible,
compression scheme, termed Hierarchically Compressed Wavelet Synopses (denoted
as HCWS), for storing wavelet coefficients. In a nutshell, instead of individually stor-
ing wavelet coefficients, our compression scheme allows for storing sets of coefficient
values. These stored sets are not arbitrary, but are rather composed by coefficients
that lie on a path of the wavelet tree. Each path of coefficient values stored as a
hierarchically compressed wavelet coefficient (HCC) can be uniquely identified by
(i) the coordinates of the path’s lowest, in the wavelet tree, stored coefficient LC;
and (ii) a bitmap that reveals how many ancestors of LC are also stored in the same
HCC. Utilizing such an index-sharing setting leverages better space allocation, since
the coordinates of a single coefficient need to be stored in each path, which can
result to increased accuracy of the obtained approximation. To briefly illustrate the
benefits of our approach, consider the sample wavelet tree depicted in Figure 4.1. In
this figure, the values of 16 coefficients are depicted, using the symbol ci to denote
the coefficient at coordinate i. Assuming a space budget of 41 bytes, and using 8
bytes for storing the〈Coord, V alue〉 pairs, the optimal conventional wavelet synop-
sis would simply store the coefficients c0, c1, c7, c8 and c15 shown in gray. On the
other hand, our hierarchically compressed wavelet synopsis, given the same space
budget, would store the two paths shown in Figure 4.1 — that is, it would manage

1While for a D-dimensional dataset, the D coefficient coordinates could be stored uncompressed,
alternative encodings can be utilized to limit their size. For example, utilizing a location function
for arrays, the D-dimensional coefficient coordinates can be encoded with space that depends on
the product of the dimension cardinalities.

44

to also store coefficients c2, c3, c5 and c11 in comparison to the coefficient c8 selected
by the conventional wavelet synopsis. The effect of including these coefficients is the
reduction of the sum squared error (SSE) of the approximation by 60% (SSE of 294
instead of 752).

A question that naturally arises is whether “important”, for the desired error
metric, coefficient values can frequently occur within such a path and would, thus, be
beneficial to store using a HCC. As we explain in Section 4.2, due to the nature of the
wavelet decomposition process, this behavior is expected to be frequently observed,
and only, in datasets with frequent spikes and discontinuities in neighboring domain
regions. These discontinuities are often due to large spikes in the collected data
values, such as the ones observed in network monitoring applications where the
number of network packets may often exhibit a bursting behavior. A similar behavior
also occurs in sparse regions over large domain sizes, where either few non-zero data
values may occur in an otherwise empty region, or where dense regions neighbor
empty regions of the data.

A closely related concept to hierarchically compressed synopses is the notion of
extended wavelets [22, 23] for the case of datasets with multiple measures; some fur-
ther improvements were presented in [44], where a streaming algorithm for the above
problem is also introduced. A common characteristic of the work in [22, 23, 44] with
this chapter is that all of these papers seek to exploit storage dependencies amongst
stored coefficient values. However, these storage dependencies are only amongst
coefficient values, of different measures, that correspond to the same coefficient co-
ordinates. Thus, the storage overhead of a coefficient value is not influenced by
whether other coefficient values in the path towards the root of the wavelet tree
have also been stored. This observation implied that the wavelet tree structure
does not need to be taken into account at all. Due to this crucial difference with
the problem tackled in this chapter, the techniques in [22, 23, 44] cannot be used
to solve our optimization problem, and are in fact completely different than the
techniques that we propose here. Similarly, extending our proposed algorithms of
this chapter to multi-measure datasets requires significant modifications and is an
interesting topic of future work. I/O efficient algorithms for maintenance tasks were
presented in [50].

In a previous work [8], the authors proposed the storage of coefficient values form-
ing a rooted subtree of the wavelet tree. While such an approach was guaranteed
to provide a worse benefit than the conventional thresholding process, their tech-
niques performed well for signal de-noising purposes. However, this work neither
considered reducing the storage overhead of the wavelet coefficients’ coordinates,
nor did it incorporate such an objective in the thresholding process. Moreover, the
requirement that rooted subtrees be stored, rather than arbitrary paths of coeffi-
cient values, often required the storage of many small coefficient values that simply
happened to lie on root-to-leaf paths of other large coefficient values.

A lot of recent work focus on constructing wavelet synopses that minimize error
metrics other than SSE. The work in [32] constructs wavelet synopses that prob-
abilistically minimize the maximum relative or absolute error incurred for recon-
structing any data value. The work in [21] provides a sparse approximation scheme
for the same problem. While solving entirely an entirely different problem, our
HCApprL2 algorithm shares in fact several common characteristics in its operation
with the algorithm in [21]. However, the HCApprL2 algorithm is slightly more com-

45

plicated due to the two mutually recursive functions that it needs to approximate,
and the increased number of breakpoint combinations of children nodes that it needs
to consider in its operation. Such details also lead to a more tedious proof of its
correctness.

The contributions of our work can be summarized as follows.

1. We introduce the concept of HCWS, a novel compression scheme that fully
exploits the hierarchical relationships among wavelet coefficients, and that may
lead to significant accuracy gains.

2. We propose a novel, optimal dynamic programming algorithm, HCDynL2, for
selecting the HCWS that minimizes the sum of squared errors under a given
synopsis size budget. We then propose a streaming variant of the optimal
algorithm that can operate in one pass over the data using limited memory.

3. We present an approximation algorithm, HCApprL2, with tunable guarantees,
for the benefit of the obtained solution, for the same optimization problem.
Further, we present a streaming variant of the algorithm.

4. Due to the large running time and space requirements of our DP solution, we
introduce a fast greedy, HCGreedyL2, algorithm with space and time require-
ments on par with conventional synopsis techniques. We then also present a
streaming variant, the HCGreedyL2-Str algorithm, of the greedy algorithm.

5. We sketch useful extensions for multidimensional datasets and running time
improvements for large domain sizes.

6. We present extensive experimental results of our algorithms on both synthetic
and real-life datasets. Our experimental study demonstrates that (i) the use
of HCWS can lead to wavelet synopses with significantly reduced errors; (ii)
HCApprL2 constructs HCWS with tunable accuracy guarantees; (iii) although
HCGreedyL2 cannot provide guarantees in the quality of the obtained synop-
sis, it always provides near-optimal solutions, while exhibiting very fast run-
ning times; and (iv) The HCGreedyL2-Str algorithm consistently provides results
comparable to those of the HCGreedyL2 algorithm.

4.2 Hierarchical Compression

In this section, we quickly discuss the existing strategies for obtaining wavelet syn-
opses and demonstrate some of their important shortcomings. Then, we introduce
the notion of hierarchically compressed wavelet coefficients and synopses , which form
the basis for our proposed approach and data-reduction algorithms. Finally, we for-
mally define the problem we address in the remainder of this chapter.

We refer to the following example to draw comparisons between conventional
and hierarchically compressed wavelet synopses. Suppose we are given the one-
dimensional data vector A containing the N = 16 data values A = [17, 41, 32, 30,
36, 36, 35, 57, 0, 0, 0, 0, 0, 0, 0, 36]. The one-dimensional Haar wavelet transform
of A is given by WA = [20, 15.5, −5.5, −4.5, −1, −5, 0, −9, −12, 1, 0, −11, 0, 0, 0,
−18]. Figure 4.1 depicts the wavelet tree for our example data vector A.

46

-1 -5

17 41 32 30 36 36 35 57

-12 1 0 -11

-5.5

d0 d1 d2 d3 d4 d5 d6 d7

c8 c9 c10 c11

c4 c5

c2

c0

+

-

+

0 -9

0 0 0 0 0 0 0 36

0 0 0 -18

-4.5

d8 d9 d10 d11 d12 d13 d14 d15

c12 c13 c14 c15

c6 c7

c3

+

+

-

+

15.5

20

c1

-

l = 4

l = 3

l = 2

l = 1

l = 0

Figure 4.1: Wavelet tree structure for example data vector A

Table 4.1 summarizes some of the key notational conventions used throughout
this chapter; additional notation is introduced when necessary. Detailed symbol
definitions are provided at the appropriate locations in the text.

Symbol Description (i ∈ {0, . . . , N − 1})
N Number of data-array cells
D Data-array dimensionality
B Space budget for synopsis
A, WA Input data and wavelet transform arrays

di Data value for ith cell of data array

d̂i Reconstructed data value for ith cell
ci, c
∗
i Un-normalized/normalized Haar coefficient coordinate i

path(u) Set of non-zero proper ancestors of u in the wavelet tree
level(ci) The level of the wavelet tree ci belongs to
HCC A hierarchically compressed wavelet coefficient
bottom(HCC) The bottommost coefficient that belongs to HCC
top(HCC) The topmost coefficient that belongs to HCC
parent(HCC) The parent of the topmost coefficient that belongs to HCC

Table 4.1: Notation

Given a node u in an wavelet tree T , let path(u) denote the set of all proper
ancestors of u in T (i.e., the nodes on the path from u to the root of T , including
the root but not u) with non-zero coefficients. A key property of the Haar wavelet
decomposition is that the reconstruction of any data value di depends only on the
values of coefficients on path(di). For example, in Figure 4.1, d5 = c0 +c1−c2 +c5 =
20+ 15.5− (−5.5)+ (−5) = 36. Note that, intuitively, wavelet coefficients carry
different weights with respect to their importance in rebuilding the original data
values. For example, the overall average and its corresponding detail coefficient are
obviously more important than any other coefficient since they affect the reconstruc-
tion of all entries in the data array. In order to weigh the importance of all wavelet
coefficients, we need to appropriately normalize the final entries of WA. A common
normalization scheme [85] is to multiply each wavelet coefficient ci by

√
2logN−level(ci),

where level(ci) denotes the level of resolution at which the coefficient appears (with
0 corresponding to the “coarsest” resolution level and logN to the “finest”). Given
this normalization procedure, the normalized values of the wavelet coefficients of
our example data array A are: [80, 62, −11

√
2, −9

√
2, −2, −10, 0, −18, −12

√
2,√

2, 0, −11
√

2, 0, 0, 0, −18
√

2].
Given a limited amount of storage for building a wavelet synopsis of the input

data array A, the conventional thresholding procedure retains a certain number
BC � N of the coefficients in WA as a highly-compressed approximate representa-

47

tion of the original data (the remaining coefficients are implicitly set to 0). The goal
of coefficient thresholding is to determine the “best” subset of BC coefficients to
retain, so that some overall error measure in the approximation is minimized. The
method of choice for the vast majority of studies on wavelet-based data reduction
and approximation [13, 64, 65] is conventional coefficient thresholding that greedily
retains the BC largest Haar-wavelet coefficients in absolute normalized value. This
thresholding method provably minimizes the sum squared error (SSE). Indeed, in
a mathematical view point, the process of computing the wavelet transform and
normalizing the coefficients is actually the orthonormal transformation of the data
vector with respect to the Haar basis. Parseval’s formula guarantees that choosing
the BC largest coefficients is optimal with respect to the SSE. Consider our exam-
ple array A and assume that we have a space budget of 41 bytes. In conventional
synopses we require to store each coefficient as a 〈i, ci〉 pair, where i denotes the
index/coordinate of the coefficient and ci denotes its value. Thus, our budget trans-
lates to 5 coefficients, if we further assume that a coordinate and a coefficient value
cost 4 bytes each. Optimizing for the sum of squared errors, leads to choosing the 5
largest (in absolute normalized value) coefficients. These retained coefficients c0, c1,
c7, c8 and c15 are shown in gray in Figure 4.1. Note that in D-dimensional datasets
the stored coefficients consist of the D dimension coordinates (which, as mentioned
in Section 4.1, can be stored in less space than explicitly storing them as D integer
values) and of the coefficient”s value.

As discussed in Section 4.1, the main drawback of conventional wavelet synopses
for minimizing the SSE of the approximation is that not only is there no effort
to reduce the storage overhead of the selected coefficients but, more importantly,
that this objective is not incorporated in the operation of the algorithm. The same
drawback also occurs in thresholding algorithms that try to minimize other error
metrics, such as the maximum or weighted sum squared absolute/relative error of
the approximation [32, 33, 41, 73, 62]. Due to the differencing process employed
by the wavelet decomposition between average values of neighboring regions, mul-
tiple large coefficient values may exhibit hierarchical relationships (i.e., belong in
the same path) only when spikes over some regions of the data are large enough2 to
significantly impact the values of coefficients (and, thus, generate coefficients with
large values) in multiple (and potentially all) resolution levels. Datasets which in-
clude multiple spikes with the aforementioned property (i.e., can generate multiple
large coefficients in their path), present great opportunity for exploiting the hier-
archical relationships among important coefficient values and also provide better
opportunities for our presented techniques to be most effective.

Given the shortcomings of the existing wavelet thresholding algorithms we now
introduce the notion of a hierarchically compressed wavelet coefficient (HCC). For
ease of presentation, we initially focus on the one-dimensional case. The extensions
to multidimensional datasets are presented in Section 4.7.

Definition 4.2.1. A hierarchically compressed (HCC) wavelet coefficient is a triplet
〈Bit, C, V 〉 consisting of:

• A bitmap Bit of size |Bit| ≥ 1, denoting the storage of exactly |Bit| coefficient
values.

2Besides its magnitude, the impact of a spike may also depend, in the case of the Lw
2 error

metric discussed in Section 4.7.3, on the weight specified for each data point.

48

• The coordinate/index C of the bottommost stored coefficient.

• The set V of |Bit| stored coefficient values.

The bitmap of a HCC can help determine how many coefficient values have
actually been stored. By representing the number of stored coefficients in unary
format, as a series of (|V | − 1) 1-bits and utilizing a 0-bit as the last bit (also
acting as a stop bit), any hierarchically compressed wavelet coefficient that stores
|V | coefficient values requires a bitmap of just |V | bits. A hierarchically compressed
wavelet synopsis (HCWS) consists of a set of HCCs, in analogy to a conventional
synopsis that comprises 〈Coords, V alue〉 pairs.

Returning to our example array A, for a space budget of 41 bytes, or 328 bits,
optimizing for the SSE metric results in storing two hierarchically compressed coef-
ficients. These HCCs are essentially the two paths illustrated in Figure 4.1 and are
depicted in Table 4.2. Assuming, as before, that a coordinate and a coefficient value
each require 32 bits, the first hierarchical coefficient requires 32 + 5 + 5 · 32 = 197
bits, whereas the second one requires 32 + 3 + 3 · 32 = 131 bits.

Coordinate Bitmap Set of Coefficient Values
11 11110 {−11, −5, −5.5, 15.5, 20}
15 110 {−18, −9, −4.5}

Table 4.2: HCWS for data vector A and B = 41 bytes

It is easy to see how a hierarchically compressed synopsis better utilizes the avail-
able space, and in doing so manages to store 3 more coefficients than the conventional
synopsis retains. In terms of SSE, the conventional synopsis loses 752, whereas the
HCWS just 294 — an improvement of over 60%. It is important though to em-
phasize that the coefficient values stored in HCWS are not necessarily a superset
of the coefficients selected by the conventional thresholding algorithm, since it is
often more beneficial to exploit storage dependencies and store multiple coefficient
values that lie on a common path, than storing a slightly larger individual value,
as shown in Section 4.8. In our example, note that the c8 coefficient, selected by a
conventional synopsis, is not included in the optimal HCWS.

The selection of which hierarchically compressed wavelet coefficients to store is
based on the optimization problem we are trying to solve. To simplify notation,
in our discussion hereafter the unit of space is set equal to 1 bit, and all space
requirements are expressed in terms of this unit. The bulk of the work in wavelet-
based compression of data tries to minimize the sum of squared absolute errors (SSE)
of the overall approximation. We focus on the same problem, here; extensions to the
sum of squared relative errors, or any weighted Lw2 norm, can be found in Section 4.7.
More formally, the optimization problem can be posed as follows:

Problem 4.1 [Sum of Squared Errors Minimization for Hierarchically
Compressed Coefficients] Given a collection WA of wavelet coefficients and
a storage constraint B select a synopsis S of hierarchically compressed wavelet
coefficients HCC’s that minimizes the sum of squared errors; that is, minimize∑N−1

i=0 (di − d̂i)2 subject to the constraint
∑

HCC∈S |HCC| ≤ B, where |HCC|
denotes the space requirement for storing an HCC.

Based on Parseval’s theorem and the previous discussion, using c∗i to denote the

49

normalized value for the ith wavelet coefficient, we can restate the above optimization
problem in the following equivalent (but easier to process) form.

Problem 4.2 [Benefit Maximization for Hierarchically Compressed
Coefficients] Given a collection WA of wavelet coefficients and a storage con-
straint B, select a synopsis S of hierarchically compressed wavelet coefficients
that maximizes the sum

∑N−1
i=0 (c∗i)

2 of the squared retained normalized coef-
ficient values, subject to the constraint

∑
HCC∈S |HCC| ≤ B, where |HCC|

denotes the space requirement for storing an HCC.

4.3 HCDynL2: An Optimal Dynamic-Programming

Algorithm

We now propose a thresholding algorithm (termed HCDynL2) based on Dynamic-
Programming (DP) ideas, that optimally solves the optimization problem described
above. Our HCDynL2 algorithm takes as input a set of input coefficient values WA

and a space constraint B. HCDynL2 then selects an optimal set of hierarchically
compressed coefficients for Problem 4.2. Before explaining the operation of our
HCDynL2 algorithm, we need to introduce the notion of overlapping paths.

Definition 4.3.1. Two paths are overlapping if they both store the value of at least
one common coefficient.

It is important to note that the benefit of storing two overlapping paths is not
equal to the sum of benefits of these two paths, since the storage of at least one
coefficient value is duplicated. Thus, the benefit of each path depends on which other
overlapping paths are included in the optimal solution. The possibly varying benefit
of each candidate path is the main difficulty in formulating an optimal algorithm. To
make matters worse, the number of candidate paths that may be part of the solution
is quite large (O(N logN)), as is the number of overlapping paths. In particular, any

coefficient value ci belonging at level level(ci) may be stored in up to
∑

0 ≤ k ≤ min{j, level(ci)}
level(ci)− k + j ≤ log N

2k

paths of length 1 ≤ j ≤ logN + 1 (i.e., paths originating from nodes in its subtree
with distance at most j from ci). Fortunately, the following lemma helps reduce the
search space of our algorithm, by considering the structure of the wavelet tree.

Lemma 4.3.1. The optimal solution for Problem 4.2 (and equivalently for Prob-
lem 4.1) never needs to consider overlapping paths.

The proof of Lemma 4.3.1 is simple and is based on the observation that for
any solution that includes a pair of overlapping paths (the extension to having
multiple overlapping paths is straightforward), there exists an alternative solution
with non-overlapping paths that stores exactly the same coefficient values and, thus,
has the same benefit while requiring less space. This solution is produced by simply
removing from one of the overlapping paths its intersection with the other path.
Let the storage overhead cost of the coefficient coordinate be assigned to the lowest
coefficient of each path. Thus, the required space for this coefficient (i.e., the “start-
up” cost for any HCC) is S1 =sizeof(Coord)+sizeof(V alue)+1 and the corresponding
space for all other coefficient values in its path is simply: S2 = sizeof(V alue)+1.

50

Symbol Description

S1 sizeof(Coords) + sizeof(V alue) + 1
S2 sizeof(V alue) + 1
M[i, B] The optimal benefit acquired when assigning

at most B space to the subtree of coefficient ci
F[i, B] The optimal benefit acquired when assigning

at most B space to the subtree of coefficient
ci and when ci is forced to be stored.

Table 4.3: Notation used in HCDynL2 Algorithm

F[i, B] =

−∞ , if i ≥ N
or B < S1

max

max

0≤bL≤B−S1

(c∗i)2+M[2i,bL]+M[2i+1,B−bL−S1]

max
0≤bL≤B−S2

(c∗i)2+F[2i,bL]+M[2i+1,B−bL−S2]

max
0≤bL≤B−S2

(c∗i)2+M[2i,bL]+F[2i+1,B−bL−S2]

 , otherwise

M[i, B] =

0

, if i ≥ N
or B < S1

max

 max
0≤bL≤B

M[2i,bL]+M[2i+1,B−bL]

F[i,B]

 , otherwise

(4.1)

Then, when considering the optimal solution at any node i ≥ 1 (The extension to
node 0 that has just one subtree is straightforward) of the wavelet tree, given any
space constraint B, the following cases may arise:

1. Coefficient ci is not part of the optimal solution. The optimal solution arises from
the best allotment of the space B to the two subtrees of ci.

2. Coefficient ci is part of the optimal solution but is not a part of any hierarchically
compressed path originating from any of its descendants in the wavelet tree. The
optimal solution arises from storing ci in a new hierarchically compressed path
and considering the best allotment of the space B − S1 to the two subtrees of ci.

3. Coefficient ci is part of the optimal solution and is part of a single hierarchically
compressed path originating from one of its descendants that may reside in its left
(right) subtree. The optimal solution arises from attaching ci to the hierarchically
compressed path of the left (right) subtree and considering the best allotment of
the space B − S2 to the two subtrees of ci. However, for this space distribution
process to be valid, we need to make sure that the solution that is produced by
allocating space 0 ≤ b ≤ B − S2 to the left (right) subtree stores the coefficient
c2i (c2i+1) — otherwise, ci cannot be attached to a path originating from that
subtree.

Cases 1 and 2 are pretty straightforward, since they introduce a recursive pro-
cedure that can be used to calculate the optimal solution at node i. This recursive
procedure will check all possible allocations of space to the two subtrees of i and

51

calculate the optimal solutions in these subtrees, given the space allocated to them.
The optimal solution arises from the space allocation that results in the largest ben-
efit. Note that in these two cases there are no dependencies or requirements from
the solutions sought in the two subtrees, other that they result in the largest possible
benefit, given the space allocated to them (and thus seeking the optimal solutions
in these subtrees suffices).

On the contrary, in Case 3 coefficient ci, for any space allocation to its two
subtrees, needs to be attached to a solution that is produced at one of its subtree
and where this solution stores the coefficient value at the root of the subtree. Given
this requirement, the solution for this subtree is not necessarily the optimal one,
but only the optimal solution, given that the root of the subtree is stored. This
implies that our algorithm will need to also keep track of some suboptimal solutions,
similarly to the dynamic programming algorithm in [23], which seeks to exploit
storage dependencies in datasets with multiple measures only among coefficient
values of different measures that share the same coefficient coordinates (and, thus,
cannot be used for the problem addressed in this chapter). On the other hand,
the goal of our algorithm is to explore hierarchical relationships among coefficient
values of different coordinates in order to reduce their storage overhead and improve
their storage utilization in single-measure datasets. This requires properly utilizing
the wavelet tree structure to identify these storage dependencies and processing the
nodes in the wavelet tree using an appropriate ordering. Neither of these restrictions
was present in [23].

4.3.1 Our Solution

We now formulate a dynamic programming (DP) solution for the optimization prob-
lem of Section 4.2; the notation used is shown in Table 4.3. Let M[i, B] denote the
maximum benefit acquired when assigning at most space B to the subtree of coef-
ficient ci. Also, let F[i, B] denote the optimal benefit acquired when assigning at
most space B to the subtree of coefficient ci and when ci is forced to be stored.
Equation 4.1 depicts the recurrences employed by our HCDynL2 algorithm in order
to calculate these values. Case 2, discussed above, corresponds to the first clause of
the max calculation for F[i, B], while Case 3 is covered by the next two clauses of
the same max calculation. Of course, when the remaining space is less than S1 or
i ≥ N , it is infeasible 3 to store the coefficient value ci, thus returning a benefit of
−∞. For the calculation of the M[i, B] value, Case 1 is covered in the first clause
of the max quantity, while Cases 2 and 3 are covered in the second clause (F[i, B]).
Of course, if the remaining space is less than S1 or i ≥ N , no coefficient value can
be stored, thus returning a benefit of 0 for M[i, B].

Given Equation 4.1, our HCDynL2 algorithm starts at the root of the wavelet
tree and seeks to calculate the value of M[0, B]. In this process, various M[] and
F[] values are calculated. For each of these calculations we also record which clause
of the formulas helped determine these values, and the corresponding allotments bL
to the left subtree of the nodes (see Equation 4.1). This step helps to quickly trace
the steps of the algorithm when reconstructing the optimal solution.

After the value M[0, B] has been calculated, we can reconstruct the optimal

3Even though ci can be stored for S2 ≤ B < S1, there will be insufficient space (< S1) to
allocate to the lowest node of the path that ci is attached to.

52

F[i, B] =

−∞ , if i ≥ N
or B < S1−1

max

max
0≤bL≤B−S2−1

(c∗i)2+G[2i,bL]+M[2i+1,B−bL−S2−1]

max
0≤bL≤B−S2−1

(c∗i)2+M[2i,bL]+G[2i+1,B−bL−S2−1]

max
0≤bL≤B−S2

(c∗i)2+F[2i,bL]+M[2i+1,B−bL−S2]

max
0≤bL≤B−S2

(c∗i)2+M[2i,bL]+F[2i+1,B−bL−S2]

, otherwise

G[i, B] =

−∞ , if i ≥ N

or B < S1−1
max

0≤bL≤B−S1+1
(c∗i)2+M[2i,bL]+

+M[2i+1,B−bL−S1+1]

, otherwise

M[i, B] =

0
, if i ≥ N
or B < S1−1

max

max

0≤bL≤B
M[2i,bL]+M[2i+1,B−bL]

F[i,B]

G[i,B]

 , otherwise

(4.2)

solution as follows. We start from the root node with a space constraint B. Based
on which clause determined the value of M[i, B], we recurse to the two subtrees with
the appropriate space allocation (recall that this information was recorded in the
calculation of the M[] and F[] values) and a list of hanging coefficient values. These
coefficient values belong to the hierarchically compressed path that passes through
ci. This path needs to be included in the recursion process because it can only be
stored when all of its the coefficient values have been identified. Based on Cases 1-3
described above, at each node we may either: (i) Not store ci; then store the input
hanging path if it is non-empty; (ii) Attach ci to the received hanging path (Case 2)
and store the resulting hierarchically compressed coefficient; or (iii) Attach ci to the
received hanging path (Case 3) and recurse to the two subtrees. In this recursion,
the resulting hanging path needs to be input to the appropriate subtree, while the
other subtree will receive an empty hanging path.

Theorem 4.3.1. The HCDynL2 algorithm computes the optimal M[i, B] and F[i, B]
values at each node of the wavelet tree and for any space constraint B correctly.

Proof. We will prove Theorem 4.3.1 by induction on the height of each coefficient
from the bottom of the wavelet tree (i.e., leaf nodes correspond to height 1).

Base Case: Leaf nodes (height = 1). If coefficient ci belongs at the leaf level,
then the possible set of paths in the subtree of ci degenerates to simply storing ci.
Thus, the optimal benefit of a solution M[i, B] is equal to (c∗i)

2 for B ≥ S1 and 0,
otherwise. Similarly, for B ≥ S1, F[i, B] = M[i, B] = (c∗i)

2. Otherwise, ci cannot be
stored because of space constraints (thus the benefit is set −∞ to represent this).
Notice that in all cases the formulas for calculating M[i, B] and F[i, B] correctly
compute the optimal solution and its benefit for any leaf node ci and for any space

53

constraint B assigned to the subtree of the node.

Inductive Step. Assume that the HCDynL2 algorithm correctly computes the op-
timal M[i, B] and F[i, B] values at each node of the wavelet tree up to height j and
for any space constraint B. We will show that the HCDynL2 algorithm also correctly
computes the optimal M[i, B] (the proof for F[i, B] is similar) values at each node
at height j + 1.

Note that the HCDynL2 algorithm considers all combinations of storing (or not)
the root coefficient at each subtree and attaching this coefficient (or not) to optimal
solutions calculated by the node’s two subtrees. Thus, a case of sub-optimality
may occur only if the optimal solution at node i needs to be computed by using a
suboptimal solution (other than the computed M[2i, B] and M[2i+ 1, B] values, or
the F[2i, B] and F[2i + 1, B] values when ci is stored) at (at least) one of its two
subtrees.

Let the suboptimal solution needed to be considered is over a solution computed
over the left subtree of ci (i.e., the subtree of coefficient c2i). Situations where the
suboptimal solution is over the right subtree (or over both subtrees) are handled in
a similar way.

First Case: M[i, B] does not store ci. Consider that the optimal solution at a
coefficient ci that lies at height j + 1 of the wavelet tree for a space constraint B is
produced by not storing ci, but by considering solutions Lsol and Rsol at the left
and right subtrees, respectively, of ci with corresponding maximum space bL and
bR. Let the solution M′[2i, bL] at the left subtree be a suboptimal one, meaning that
M′[2i, bL] < M[2i, bL]. Then, a solution that would consider Rsol and the solution
of M[2i, bL] requires at most space bL + bR and has a larger benefit than the optimal
solution of Lsol and Rsol. We therefore reached a contradiction.

Second Case: M[i, B] stores ci and does not attach it in paths of the
solutions of any subtree. In this case, if the optimal solution needs to consider
a sub-optimal solution Lsol at the left subtree of ci with space bL, then obviously
HCDynL2 examines the solution that stores M[2i, bL] instead of Lsol, and which
results in a larger benefit. We therefore reached a contradiction.

Third Case: M[i, B] stores ci and attaches it to suboptimal solution Lsol
(Rsol) at left (right) subtree. In this case, note that c2i must be stored in the
suboptimal solution Lsol (Rsol) considered at the left (right) subtree (and thus ci
requires space S2 to be stored). Note that the solution that stores ci and attaches
it to the solution of F[2i, bL] (F[2i + 1, bR]), where bL (bR) denotes the space of
the suboptimal solution Lsol (Rsol), while also storing M[2i + 1, B − bL − S2]
(M[2i, B − bR − S2]) will result in a larger benefit, due to the inductive hypothesis.
We therefore reached a contradiction.

4.3.2 Running Time and Space Complexities

Consider a node ci at height j in the wavelet tree. Since there can be at most
2j − 1 coefficients below the subtree rooted at node ci, the total budget allocated
cannot exceed 2j · S1. Therefore, at any node ci, HCDynL2 must calculate at most
min{B, 2jS1} entries (if 2jS1 < B, all space allotments larger than 2jS1 result in the
same benefit as that of the allotment for 2jS1 and need not be computed), where

54

each requires time min{B, 2jS1} to consider all possible space allotments to the
children nodes. Given that there are N/2j nodes at height j and summing across
all logN heights we obtain (note that B = 2jS1 when j = log B

S1
):

logN∑
j=1

N

2j
(
min{B, 2jS1}

)2
=

log B
S1∑

j=1

N

2j
22jS2

1 +

logN∑
j=log B

S1
+1

N

2j
B2

= NS2
1

log B
S1∑

j=1

2j +NB2

logN∑
j=log B

S1
+1

1

2j

= NS2
1 ·O(

B

S1

) +NB2 ·O(
S1

B
) = O(S1NB) = O(NB).

Note that the reconstruction process simply requires a top-down traversal of
the wavelet tree. Therefore, the total running time remains O(NB). Using similar
arguments, we obtain that the space complexity is:

log B
S1∑

j=1

N

2j
2jS1 +

logN∑
j=log B

S1
+1

N

2j
B = NS1 logB +NB ·O(

S1

B
)

= O(N logB).

Theorem 4.3.2. The HCDynL2 algorithm constructs the optimal HCWS, given a
space budget of B, in O(NB) time using O(N logB) space.

A Streaming Variant. The HCDynL2 algorithm can be easily modified to operate
in one pass over the data using limited memory — i.e., in a data stream setting.
Recall that HCDynL2 requires two passes over the data, one bottom-up for comput-
ing the optimal benefit while marking the decisions made, and another top-down for
constructing the optimal HCWS. The streaming variation, denoted as HCDynL2-Str,
makes two important observations: (i) not all the entries of the dynamic program-
ming array are needed for the construction of the optimal HCWS; and (ii) in order
to reconstruct the solution, the selected coefficients must be carried at each node
along each M[] and F[] entry. Thus, in principle our HCDynL2-Str algorithm follows
the same observations made in [43]. However, as explained later in this section,
our main technical contribution in the HCDynL2-Str algorithm involves the ability to
calculate the M[] and F[] entries and perform the memory cleanup in an efficient
way, through some careful book-keeping. This step was not present in [43]. The
following definition is helpful in our remaining discussion.

Definition 4.3.2. A wavelet coefficient is termed as closed if we have observed all
the data values in its support region. A wavelet coefficient is termed as active if it
is not closed and for which we have already observed at least one data value in its
support region. A wavelet coefficient is termed as inactive if it is neither active nor
closed.

55

For the first observation, notice that at any time a new data value di is read,
then the active wavelet coefficients, which lie in path(di), need to be updated and
their corresponding M[] and F[] entries need to be calculated again. Each such
active node will also require in its operation the corresponding M[] and F[] entries
of its child node that does not lie in path(di). Thus, for any space allotment b, only
O(logN) (rather than O(N)) entries M[·, b] and F[·, b] need to be in memory, for
any b — the remaining entries are only required for the second pass over the wavelet
tree.

For the algorithm to operate in one pass, the price that has to be paid is that of
increased space requirements per M[] and F[] entry. Namely, following the second
observation, we need a factor of O(min{B, 2j}) more space to store the HCCs cal-
culated so far at each node that belongs at height j of the wavelet tree (again, this
space is required only for the aforementioned O(logN) active nodes). An impor-
tant observation is that through some careful book-keeping for each entry M[·, b],
F[·, b] we only require O(1) time to calculate the HCCs involved. To achieve this,
we maintain the selected HCCs at each of the aforementioned O(logN) nodes as a
list, where the first element is always the HCC that includes the root coefficient of
the node’s subtree (note that such a HCC may not exist for the M[] entry). The
selected HCCs of a node are updated when data values in its support region are
observed. However, as we explain later in this section, for all nodes that become
closed we need to perform a cleanup operation that removes from main memory
certain HCCs of these nodes. This cleanup operation is thus performed only once,
and not per observed data value in their support region.

For each allotment b to the node’s subtree the HCCs for the M[] and F[] entries
can be computed as follows (assuming that bL (bR) space is allocated to the node’s
left (right) subtree):

1. If ci is stored and attached to a path originating from the node’s left (right)
subtree, then create a new HCC that is the result of adding ci to the first HCC
that corresponds to the solution of the F[2i, bL] (F[2i + 1, bR]). We then link
this new HCC to the second element of the list of F[2i, bL] (F[2i+ 1, bR]) and
with the corresponding list of the M[2i+ 1, bR] (M[2i, bL]) entry.

2. If ci is stored but is not attached to any path originating from the node’s left
(right) subtree, then create a new HCC containing only ci. Then link to this
HCC the lists of HCCs that correspond to M[2i, bL] and M[2i+ 1, bR].

3. If ci is not stored then simply link the lists of HCCs that correspond to M[2i, bL]
and M[2i+ 1, bR].

All the above operations can be completed in O(1) time, along with the removal
of the HCCs that were created at node ci (and linked to the HCC lists calculated at
the children nodes of ci) at the observation of previous data values (see the above
3 cases). Please note that when we compute the final list of HCCs for any node ci
(after the node becomes closed), then any HCCs of its children nodes c2i and c2i+1

that are not part of the HCCs stored at node ci are no longer needed and need to be
deleted. This can be easily detected by examining how the M[i, b] and F[i, b] entries
at node ci were calculated. Assuming that ci belongs at height j of the wavelet tree,
this can be achieved in O(min{B, 2j}) time per each space allotment b ≤ B to ci.

56

Thus, the overall running time requirements of the algorithm become (since the
HCCs of each node are calculated continuously, but the memory cleanup is performed
just once per node and per space allotment b ≤ B):

logN∑
j=1

N

2j
(
(
min{B, 2j}

)2
+ logN ·min{B, 2j})

=

logB∑
j=1

N

2j
(22j + 2j logN) +

logN∑
j=logB+1

N

2j
(B2 +B logN)

= N

logB∑
j=1

(2j + logN) +NB(B + logN)

logN∑
j=logB+1

1

2j

= O(NB +N logN logB) +N(B + logN)

= O(NB +N logN logB).

To summarize, HCDynL2-Str operates in one pass over the data and gains in space
by storing only B logN entries, which, however, each requires O(B) space for the
storage of its HCCs. Moreover, at any specific moment the currently selected HCWS
can be accessed directly from the root node of the wavelet tree.

Theorem 4.3.3. The HCDynL2-Str algorithm constructs the optimal HCWS in one
pass, given a space budget of B, in O(B+ logN logB) amortized time per processed
data value using O(B2 logN) space.

4.3.3 Achieved Benefit vs. Classic Method

A question that naturally arises is how does the benefit of the solution achieved
by the HCDynL2 algorithm compare to the one achieved by a traditional tech-
nique (Classic) that individually stores the coefficients with the largest absolute
normalized values. Consider a set S = S1, . . . , SB of B stored coefficient val-
ues, sorted in non-increasing order of their absolute normalized values, by the
traditional thresholding algorithm. Consider the case where these coefficient val-
ues lie in distant regions of the wavelet tree. Using a space constraint equal to
B × (sizeof(Coord) + sizeof(V alue)) = B × (S1 − 1) the benefit of the HCDynL2

algorithm cannot be smaller than the benefit of storing the first m = bB×(S1−1)
S1

c
coefficient values of S as hierarchically compressed wavelet coefficients, each storing
exactly one coefficient value. Thus, in the worst case the ratio of benefits of the
HCDynL2 algorithm over the Classic algorithm, as described above, may be as low as
Benefit(HCDynL2)
Benefit(Classic)

= Benefit(S1,...,Sm)
Benefit(S1,...,SB)

≥ m
B

, since the coefficients in S are sorted.

On the other hand, the best case for the benefit of the HCDynL2 algorithm may
occur for a storage constraint of B′ = S1 + (logN + 1) × S2. In this case if
the logN + 1 coefficient values with the largest absolute normalized values lie on
the same root-to-leaf path of the wavelet tree, then the ratio of benefits of the
HCDynL2 algorithm over the Classic algorithm will be as high as (for m′ = b B′

S1−1
c)

: Benefit(HCDynL2)
Benefit(Classic)

=
Benefit(S1,...,Slog N+1)

Benefit(S1,...,Sm′)
≤ logN+1

m′
. Therefore, the following theorem

holds.

57

Theorem 4.3.4. The HCDynL2 algorithm, when compared to the Classic algorithm,
given the same space budget, exhibits a benefit ratio of⌊

B × S1−1
S1

⌋
B

≤ Benefit(HCDynL2)

Benefit(Classic)
≤ logN + 1⌊

S1+(logN+1)S2

S1−1

⌋ .
An Improved-Benefit Variant. It is important to emphasize that the HCDynL2

algorithm can be easily modified to guarantee that its produced solution has a
benefit at least equal to the one of the traditional approach. This can be achieved by
allowing HCCs with a single stored coefficient value to drop the very small overhead
of the single bit and be stored in a separate storage. In this case, the first stored
coefficient in a HCC requires space S1 − 1, the second coefficient value in the same
HCC requires additional space equal to S2 + 1, while any additional coefficient
values in the same HCC require space S2 to be stored. This results in constructing
a modified HCWS∗ synopsis.

The main difference of the modified algorithm, denoted as HCDynL2∗, compared
to the discussion of Section 4.3 is that now, due to the different space needed for
the second and third coefficient values of each HCC, two suboptimal solutions need
to be maintained (see Equation 4.2): (i) F[i, B], the benefit of the optimal solution
when assigning space at most equal to B to the subtree of coefficient ci and when
both ci and one of its children (c2i or c2i+1) are stored; and (ii) G[i, B], the benefit
of the optimal solution when assigning space at most equal to B to the subtree of
coefficient ci and ci is stored as the bottom-most coefficient in a path. Note, that
for the second suboptimal solution the space required is S1 − 1, as discussed. For
the first suboptimal solution two cases exist: (a) ci is the second coefficient in a
path, hence, the space required is S2 + 1 and further, a suboptimal solution G[]
in one of its children must be combined with an optimal solution M[] in the other
child (the first two non-trivial cases of F[i, B] in Equation 4.2); and (b) ci is not the
second coefficient (it could be the third or more), hence, the space required is S2

and further, a suboptimal solution F[] in one of its children must be combined with
an optimal solution M[] in the other child (the last two non-trivial cases of F[i, B]
in Equation 4.2. Therefore, the following theorem holds.

Theorem 4.3.5. The HCDynL2∗ algorithm constructs a modified HCWS∗ synopsis
such that the obtained benefit is never less than that of the Classic algorithm, given
the same space budget:

Benefit(HCDynL2∗) ≥ Benefit(Classic).

It is important to note that the asymptotic running time and space requirements
of the HCDynL2∗ algorithm are the same as those of the HCDynL2 algorithm. However,
since its implementation requires the evaluation of three DP recurrences, its actual
running time and space requirements are about 50% increased over the ones of
HCDynL2. Finally, a streaming variant of the HCDynL2∗ algorithm can be obtained
in a manner analogous to that of HCDynL2. Similarly, an approximation algorithm for
the HCDynL2∗ algorithm can be obtained in a manner analogous to the approximation
algorithm of HCDynL2 (presented in Section 4.4).

58

apprF[i, pLj + pRk + S1] =(c∗i)2+apprM[2i,pL
j]+apprM[2i+1,pR

k]

apprF[i, qLj + pRk + S2] =(c∗i)2+apprF[2i,qL
j]+apprM[2i+1,pR

k]

apprF[i, pLj + qRk + S2] =(c∗i)2+apprM[2i,pL
j]+apprF[2i+1,qR

k]

(4.3)

apprM[i, pLj + pRk + S1] =apprF[i,pL
j +pR

k +S1]

apprM[i, qLj + pRk + S2] =apprF[i,qL
j +pR

k +S2]

apprM[i, pLj + qRk + S2] =apprF[i,pL
j +qR

k +S2]

apprM[i, pLj + pRk] =apprM[2i,pL
j]+apprM[2i+1,pR

k]

(4.4)

Symbol Description

apprM[i, x] Approximate value for optimal benefit when assigning at most
space x to the subtree rooted at coefficient ci

apprF[i, x] Approximate value for optimal benefit when assigning at most
space x to the subtree rooted at coefficient ci and when ci is
forced to be stored

{pi
j} Set of breakpoints for apprM[i, ·]

{qi
k} Set of breakpoints for apprF[i, ·]

ε Approximation factor
δ Degradation factor incurred at each level

Table 4.4: Notation used in HCApprL2 Algorithm

4.4 HCApprL2: An Approximation Algorithm

In this section we propose an approximation algorithm for efficiently constructing
hierarchically compressed wavelet synopses. Our algorithm, termed HCApprL2, offers
significant improvements in time and space requirements over HCDynL2 while pro-
viding tunable error guarantees. The HCApprL2 algorithm constructs a HCWS that
has a benefit that does not exceed the optimal synopsis, but definitely not less than

1
1+ε

of the optimal benefit, for some given parameter ε. Clearly, smaller values for ε
lead to more accurate synopses; HCApprL2 solves Problem 4.2 optimally for ε = 0.

The HCApprL2 algorithm constructs functions apprM[], apprF[] and computes
their values at some space allotment in a similar manner to how HCDynL2 computes
M[] and F[] values (i.e., the values at a non-leaf node depend on the values of its
children) but does so for a sparse set of space allotments, termed breakpoints, rather
than for all possible allotments.

The HCApprL2 algorithm operates on the wavelet tree in a bottom-up manner. At
each node it creates a set of candidate breakpoints by combining breakpoints from
the children of the node. Then, in a two-phase trimming process it eliminates some
of these candidates to obtain the actual breakpoints of the node. This trimming
process is responsible for bounding the error incurred by not examining all space
allotments, as it will become apparent in the next section.

4.4.1 Breakpoint Calculation

The crux of the HCApprL2 algorithm lies in the calculation of the breakpoints and
their corresponding benefit values for functions apprM[] and apprF[] at each node.
The algorithm proceeds in a bottom-up manner, starting from the leaf nodes at

59

height 1.
Assume that node ci, at height 1, is a non-zero leaf coefficient. In this case

there are two breakpoints 0 and S1 with approximate benefits 0 and (c∗i)
2 respec-

tively for both approximation functions. In the case of a zero valued leaf coefficient
apprM[i, ·] has only breakpoint 0 with zero benefit, whereas apprF[i, ·] has break-
points 0, S1 with benefits −∞ and 0 respectively.

For all non-leaf nodes the breakpoint calculation proceeds following the same
steps: (i) a set of candidate breakpoints is created by combining all breakpoints of
the children; (ii) a trimming process reduces this set to the actual breakpoints to be
used as input for the first step in the parent node.

Consider a non-leaf node ci at height l; since HCApprL2 proceeds bottom up all
breakpoints for nodes lower in the tree have been calculated. Thus, let {pLj }, {qLk }
denote the set of breakpoints for apprM[2i, ·] and apprF[2i, ·] functions for the left
child of ci and let {pRj }, {qRk } denote the set of breakpoints for apprM[2i+ 1, ·] and
apprF[2i+ 1, ·] functions for the right child of ci.

The candidate breakpoints for apprF[i, ·] and the corresponding benefit values
are calculated combining all breakpoints from sets {pLj }, {qLk }, {pRj }, {qRk } as shown
in Equation 4.3 — candidate breakpoints of space more than B are easily identified
and rejected. Observe that these equations correspond to the non-trivial cases of the
defining recurrence for F[i, ·] (Equation 4.1). The algorithm considers the following
cases for all j, k:

• Store ci using space S1 and combine all (approximately) optimal solutions apprM[2i, pLj],
apprM[2i+ 1, pRj].

• Store ci using space S2 and combine all (approximately) optimal when forced
to store c2i solutions apprF[2i, qLk] with all (approximately) optimal solutions
apprM[2i+ 1, pRj].

• Store ci using space S2 and combine all (approximately) optimal solutions apprM[2i, pLj]
with all (approximately) optimal when forced to store c2i+1 solutions apprF[2i+
1, qRk].

Similarly, the candidate breakpoints for apprM[i, ·] and their corresponding
benefit values are also calculated combining all breakpoints from sets {pLj }, {qLk },
{pRj }, {qRk } as shown in Equation 4.4 — candidate breakpoints of space more than B
are easily identified and rejected. Again, observe that these equations correspond to
the non-trivial cases of the defining recurrence for M[i, ·] (see Equation 4.1), which
in addition to the candidate breakpoints considered for apprF[i, ·] considers the
following case, for all j, k: Do not store ci and combine all (approximately) optimal
solutions, i.e., the pairs apprM[2i, pLj], apprM[2i+ 1, pRj].

Once all candidate breakpoints have been calculated we perform a two-phase
trimming process for each approximation function, to reduce the number of break-
points.

First Phase. We remove the useless configurations — those that cost more but have
less benefit than others. This can be done by a simple ordering of the configurations
increasingly by their approximate benefit values and a subsequent linear scan.

Second Phase. The final breakpoints {pij}, {qik} are set as follows. Consider
the case of the approximate benefit function apprM[i, ·]. Set pi1 equal to the first
candidate breakpoint (after sorting); it is easy to see that this breakpoint always

60

corresponds to space 0. The rest of the breakpoints are discovered iteratively: as-
suming breakpoint pik−1 has been found, breakpoint pik is the smallest candidate
breakpoint such that apprM[i, pik] > (1 + δ)apprM[i, pik−1], for some parameter
δ which depends on the desired approximation factor ε and whose value will be
determined later in this section.

The following lemmas are a direct result of the trimming process.

Lemma 4.4.1. For any node that belongs at height j of the wavelet tree, there can
be at most Rj = O

(
min{B, 2j, 1

δ
log ||WA||}

)
breakpoints.

Proof. Certainly, there can be no more than B breakpoints for each approximation
function. Similarly, since there can be at most 2j − 1 coefficients in the subtree
rooted at each node that belongs at height j, the total number of space entries, and
thus breakpoints, cannot exceed 2jS1 = O(2j). Additionally, there can be no more
than log1+δ M[i, B] breakpoints for apprM[i, ·] (and no more than log1+δ F[i, B] for
apprF[i, ·]), as M[i, B] (resp. F[i, B]) is the highest possible benefit that can be
attained at node ci for space B. Since this benefit cannot be more than the energy
of the wavelet transform ||WA||2, the lemma easily follows for small δ values.

Lemma 4.4.2. Let {pij} be the set of breakpoints for approximation benefit func-
tion apprM[i, ·]. If b is a candidate breakpoint such that b ∈ [pik, p

i
k+1), then

apprM[i, b] ≤ (1 + δ)· apprM[i, pik] — i.e., b is covered by pik within a (1 + δ)
degradation. Analogous result holds for function apprF[].

Proof. If b is not discarded in the first phase of the trimming process it is straight-
forward to see that the lemma holds. Now, assume that b was discarded in the
first phase. Therefore, there must exist a candidate breakpoint b′ < b not discarded
in the first phase with apprM[i, b′] ≥ apprM[i, b] such that b′ is the highest non-
discarded breakpoint smaller than b. Observe that b′ and b are covered by the same
breakpoint pik (b′ might be the breakpoint pik): b, b

′ ∈ [pik, p
i
k+1) and that the lemma

holds for b′. Therefore, apprM[i, b] ≤ apprM[i, b′] ≤ (1 + δ)apprM[i, pik] and the
lemma holds for b.

By aggregating the degradation occurred at all descendants of a node we obtain
the following.

Lemma 4.4.3. Assume node ci is at height h of the wavelet tree (equivalently at
level logN−h), and let {pij} and {qij} be the set of breakpoints for apprM[i, ·] and
apprF[i, ·] respectively. Also let x, y be some arbitrary space allotments and let
breakpoints pik, q

i
k be such that x ∈ [pik, p

i
k+1) (or x ≥ pik, if pik is the last breakpoint)

and y ∈ [qik, q
i
k+1) (or y ≥ qik, if qik is the last breakpoint). The approximate benefit

value computed at node ci (the approximate benefit value when ci is forced to be
stored) for space pik (resp. qik) is not less than 1

(1+δ)h−1 of the optimal value (resp.

optimal value when ci is forced to be stored). That is, M[i, x]≤(1+δ)h−1apprM[i, pik]
and F[i, y]≤(1+δ)h−1apprF[i, qik].

Proof. We prove the lemma for apprF[i, ·] and apprM[i, ·], by induction on the
height h of the wavelet tree node ci belongs to. The base case h = 1 holds by
construction: Assume coefficient ci is non-zero; thus only breakpoints pi1 =0, pi2 =S1

and qi1 = 0, qi2 = S1 exist for approximation functions apprM[i, ·] and apprF[i, ·]
respectively. Clearly, (i) when x ∈ [pi1, p

i
2), apprM[i, pi1] = M[i, x]; (ii) when y ∈

61

[qi1, q
i
2), apprF[i, qi1] = F[i, y]; (iii) when x ≥ pi2, apprM[i, pi2] = M[i, x]; and (iv)

when y ≥ qi2, apprF[i, qi2] =F[i, y]. In the case of a zero valued coefficient ci, only
breakpoint pi1 exists and the reasoning is similar.

Assuming the hypothesis holds for all nodes at height h we will show that it
holds for nodes at height h + 1. We will only consider the approximation function
apprF[i, ·] for node ci at height h+1, as the proof for apprM[i, ·] is similar. Further,
assume that the optimal benefit F[i, y] when ci is forced to be stored for a space
budget of y is constructed from the second non-trivial clause of Equation 4.1 by
allotting space S2 to coefficient ci, yL to the left subtree and y−yL−S2 to the right
subtree; that is, F[i, y] = (c∗i)

2 +F[2i, yL] +M[2i+1, y−yL−S2]. The proof is similar
for the other clauses and thus omitted.

If {qLj } and {pRj } denote the sets of breakpoints for functions apprF[2i, ·] and
apprM[2i+ 1, ·] respectively, let qLk be the highest breakpoint not exceeding yL and
let pRk be the highest breakpoint less than y−yL−S2. By the induction hypothesis

F[2i, yL] ≤ (1 + δ)h−1apprF[2i, qLk] and

M[2i+ 1, y − yL − S1] ≤ (1 + δ)h−1apprM[2i+ 1, pRk].

Define b = qLk + pRk + S1. Certainly, b was a candidate breakpoint for function
apprF[i, ·] and considered by our HCApprL2 algorithm (see Equation 4.3):

apprF[i, b] = (c∗i)
2 + apprF[2i, qLk] + apprM[2i+ 1, pRk].

Using the above equation and the induction hypothesis, optimal value F[i, y] is
bounded as follows.

F[i, y] = (c∗i)
2 + F[2i, yL] + M[2i+ 1, y − yL − S2]

≤ (c∗i)
2 + (1+δ)h−1

(
apprF[2i, qLk] + apprM[2i+1, pRk]

)
≤ (1 + δ)h−1apprF[i, b]

Now, either b belongs to [qik, q
i
k+1) or not. Consider the first case. By Lemma 4.4.2

apprF[i, b] ≤ (1 + δ)apprF[i, qik] and thus:

F[i, y] ≤ (1 + δ)h−1apprF[i, b] ≤ (1 + δ)happrF[i, qik].

In the other case, observe that b must be smaller than qik, because b ≤ y ∈ [qik, q
i
k+1).

Therefore, since apprF[i, b] ≤ apprF[i, qik]:

F[i, y] ≤ (1 + δ)h−1apprF[i, b] ≤ (1 + δ)h−1apprF[i, qik].

Thus, in either case F[i, y] ≤ (1 + δ)happrF[i, qik].

Finally, we obtain the following.

Theorem 4.4.1. The HCApprL2 algorithm provides a HC synopsis to Problem 4.2
that needs space not more than B and has benefit not less than 1

1+ε
of the optimal

benefit. Assuming p0
k is the highest breakpoint of function apprM[0, ·] not exceeding

B, we have M[0, B] ≤ (1 + ε)apprM[0, p0
k].

Proof. Apply Lemma 4.4.3 for M[0, B] setting δ = ε
logN

.

62

4.4.2 Space and Running Time Complexities

The space and time complexity of the HCApprL2 algorithm depend on the number of
breakpoints Rj (rather than solely on B) for each approximation function at each
node that belongs at height j of the wavelet tree. Lemma 4.4.1 provides a bound
for this number, if one sets δ = ε

logN
: Rmax = O (min{B, 2j, 1

ε
logN log ||WA||}

)
.

At each node and for each approximation function, the HCApprL2 algorithm first
computes candidate breakpoints by combining all breakpoints from the children
nodes (in O(R2

j) time and space), sorts them (in O(R2
j logRj) time) and performs

the trimming process (in O(R2
j) time and space). Thus, the time requirement is

O(R2
j logRj) per node at height j of the wavelet tree. HCApprL2 requires a temporary

space of O(R2
j) to perform the trimming process, but registers only O(Rj) space

per node. Using similar reasoning with the complexity analysis of the HCDynL2

algorithm we derive the following running time complexity our algorithm (by setting
K = min{B, 1

ε
logN log ||WA||} - observe the time requirement increases by a factor

of logRj due to the sorting involved during the breakpoint calculation):

O(

logN∑
j=1

N

2j

((
min{2j, K}

)2
log min{2j, K}

)
) =

O(

logK∑
j=1

N

2j
j22j +

logN∑
j=logK+1

N

2j
K2 logK)

= O(N

logK∑
j=1

j2j +NK2 logK

logN∑
j=logK+1

1

2j
)

= O(NK logK).

Using a similar calculation for the space requirements of the algorithm, the following
Theorem easily follows.

Theorem 4.4.2. Given space budget B, the HCApprL2 algorithm constructs a HCWS,
in O(NK logK) time using O(N logK) space, where K = min{B, 1

ε
logN log ||WA||}.

The streaming variant of this algorithm requires only O(K2 logN) space.

Note that the streaming variant of the algorithm is analogous to the correspond-
ing variant of the optimal DP algorithm, and is thus omitted from our presentation.

4.5 HCGreedyL2: A Greedy Heuristic

Due to the large space and running time requirements of the HCDynL2 and HCApprL2

algorithms, we now seek to devise a more efficient greedy solution for the same opti-
mization problem. At first sight our optimization problem looks similar to the clas-
sical knapsack problem. However, our optimization problem is much more difficult
for two reasons. First, even though the benefit of including any given coefficient in
the synopsis is fixed, its space requirement depends on the position of the coefficient
it the hierarchical path; it may require either S1 or S2 space. Second, considering the
search space of all possible HCCs, observe that once a HCC is chosen, there is a large
number of HCCs which become invalid and cannot be part of the solution; these are

63

Symbol Description

GrMi Non-stored candidate path in ci’s subtree with
the estimated maximum per space benefit

GrFi Non-stored candidate path in ci’s subtree with the
estimated maximum per space benefit when storing ci

Owneri The hierarchically compressed coefficient in which ci belongs to
(Ø if ci has not been stored)

GrMi.b Benefit of GrMi

GrMi.sp Needed space for GrMi

GrFi.b Benefit of GrFi

GrFi.sp Needed space for GrFi

Statei[0..2] Bitmap of node i, consisting of 3 bits:
- If State(0) is set, ci has already been selected for storage
- If State(0) and State(1) are set, ci = bottom(Owneri)
- Otherwise, if State(0) is set, State(2) denotes if set (not set)

that ci is part of a path through its left (right) subtree
chMi, 2-bit bitmaps for retracing the algorithm choices (determine
chFi through which action the paths GrMi and GrFi were formed)

Table 4.5: Notation used in HCGreedyL2 algorithm

the hierarchically compressed coefficients that overlap with the chosen HCC. This
dependency amongst the candidate HCCs is not typical in knapsack-like problems
for which there exist greedy algorithms with tight approximation bounds.

In analogy to most greedy heuristics for knapsack-like problems, we try to for-
mulate candidate solutions and utilize a per-space benefit heuristic at each step of
the algorithm. In particular, our proposed HCGreedyL2 algorithm greedily allocates
its available space by continuously selecting (until the space budget is exhausted)
for storage the candidate path that (i) does not overlap any of the already selected
for storage paths; and (ii) is estimated to exhibit the largest per space benefit, if
included in the solution. To increase the effectiveness of the algorithm, it is crucial
that, whenever possible, candidate paths be combined with paths already selected
for storage, and that such storage dependencies be exploited. As we will explain
shortly, this can be achieved by some careful book-keeping.

The operation of the algorithm is based on two main steps, that are repeated
several times, and that we will detail shortly: (i) Selecting good candidate paths per
subtree; and (ii) Marking candidate paths for storage and properly adjusting the
benefits of non-stored candidate paths. The first of these phases first occurs at the
initialization phase of the algorithm by visiting all the nodes of the wavelet tree, in
order to setup the values of several variables at each node. Table 4.5 provides a syn-
opsis of these variables, and of the notation used in the entire HCGreedyL2 algorithm.
Appropriate definitions will be provided in our discussion whenever necessary. After
this initialization phase, the coefficients in the path that is estimated at the root
node to exhibit the best per space benefit are visited and marked for inclusion in
the final solution (by modifying the State bitmap of these nodes). This is achieved
by the second phase. Following each such marking process, the first phase needs to
be called for each visited node of the wavelet tree. Observe that calls to the second
phase and all subsequent calls to the first phase only visit nodes in the currently
selected path.

Before proceeding to our discussion, it is important to emphasize that the paths
GrMi, GrFi and Owneri (referenced in Table 4.5) are not stored at each node, but
can rather be reconstructed by an appropriate traversal of the wavelet tree.

64

4.5.1 Candidate Path Selection

The computation of the best candidate path in a subtree of the wavelet tree structure
is a bottom-up procedure. At each step of the algorithm, at each node ci of the
wavelet tree we store the benefit and the corresponding space of two candidate
paths: (i) the candidate path GrMi in the subtree of ci that is estimated to achieve,
if stored, the best per space benefit; and (ii) the candidate path GrFi of ci’s subtree
that is estimated to achieve the best per space benefit while storing the coefficient
ci. This implies that GrMi might be any path of the subtree rooted at ci, whereas
GrFi has to be a path containing ci.

In order to compute these two candidate paths along with their corresponding
benefits and their needed space, the HCGreedyL2 algorithm considers combining the
coefficient value ci with the candidate paths computed at ci’s two subtrees. This
process utilizes some information that is produced during the operation of the algo-
rithm and is stored as a bitmap State in each node, whereas the choices made are
stored in chF, chM (see Table 4.5).

In the following, we omit discussion on what happens in the case of the root
node for exposition purposes; the required changes due to the root having a single
child are straightforward.

Computing GrFi. The computation of GrFi depends on whether ci has been
stored (i.e., whether Statei(0) is set).

Coefficient ci has been stored. In this case there is no candidate path that can
store ci. Thus, in this case we have GrFi = Ø and we set GrFi.b = GrFi.sp = 0
and chFi = 00.

Coefficient ci has not been stored. The following choices should be considered
and the one with the highest per space benefit is selected (by appropriately setting
the value of chFi):

1. Storing simply ci (chFi = 01). The space requirements of this solution depends
on whether ci can be attached to an already selected path. If ci is a non-leaf
node in the wavelet tree and either State2i(0) or State2i+1(0) is set, then ci can be
attached to such a path (through the corresponding subtree) and GrFi.sp = S2.
Otherwise, we set GrFi.sp = S1. This solution has a benefit equal to (c∗i)

2 if the
available space (at the step of the algorithm when this computation is performed)
is at least GrFi.sp, or 0 otherwise.

2. Storing ci and combining it with GrF2i (chFi = 10) (or combining it with GrF2i+1

(chFi=11)). This solution has an overall space requirement of S2+GrF2i.sp (resp.,
S2+ GrF2i+1.sp) and a benefit of (c∗i)

2+GrFi.b (resp., (c∗i)
2 + GrF2i+1.b) if the

available space (at the step of the algorithm when this computation is performed)
is at least GrFi.sp, or −∞ otherwise.

Moreover, in all three cases presented above, we decrease the GrF.sp values by
S1−S2 if the parent node of ci has been marked for storage and is also the bottom-
most coefficient in its HCC. This is because GrFi can help reduce, if selected for
storage, the storage overhead for the parent node of ci.

Computing GrMi The computation of GrMi also depends on whether ci has been
stored (i.e., whether Statei(0) is set).

Coefficient ci has not been stored. The following choices should be considered

65

Node GrMi.b GrMi.sp GrFi.b GrFi.sp Statei chMi chFi

8 288 65 288 65 000 11 01
9 2 65 2 65 000 11 01
10 0 65 0 65 000 11 01
11 242 65 242 65 000 11 01
12 0 65 0 65 000 11 01
13 0 65 0 65 000 11 01
14 0 65 0 65 000 11 01
15 648 65 648 65 000 11 01
4 288 65 292 98 000 01 10
5 242 65 342 98 000 10 11
6 0 65 0 65 000 11 01
7 648 65 972 98 000 10 11
2 584 131 584 131 000 11 11
3 648 65 1134 131 000 10 11
1 3844 65 3844 65 000 11 01
0 10244 98 10244 98 000 11 11

Table 4.6: Computed values at initialization phase

and the one with the highest per space benefit is selected (by appropriately setting
the chMi value):

1. The candidate path of solution GrFi (chMi = 11).

2. For non-leaf nodes, GrMi copies a candidate path from one of its children, either
GrM2i (chMi=01) or GrM2i+1 (chMi=10), selecting the one with the highest per
space benefit.

Coefficient ci has been stored. If ci is a leaf node, then GrMi = Ø and we set
GrMi.b = GrMi.sp = 0 and chMi = 00. For non-leaf nodes, GrMi examines the
candidate paths GrM2i and GrM2i+1 from its children nodes and copies the one
that exhibits the largest per space benefit.

Example 4.5.1. In Table 4.6 we depict the calculated GrMi, GrFi, Statei, chMi

and chFi values and bitmaps computed at each node of Figure 4.1 during the ini-
tialization phase of the HCGreedyL2 algorithm. Based on the normalized coefficient
values presented in Section 4.2, the benefit of storing each of the 16 coefficients is:
[6400, 3844, 242, 162, 4, 100, 0, 324, 288, 2, 0, 242, 0, 0, 0, 648]. In this example,
the size required to store a coefficient coordinate or a coefficient value has been set
to 32 bits. The nodes in Table 4.6 have been ordered according to their resolution
level. Details on the selected HCCs are provided later in this section. However,
it is interesting to note that, even though the final selection of the HCCs has been
presented in Section 4.2, the stored HCCs are produced by successive steps where
smaller HCCs are merged. For example, by examining the GrF1 values we observe
that the HCC that is estimated to achieve the best per space benefit at node c1 while
also storing c1 contains only the node c1, and not the entire path c15, c7, c3, c1. This
path will gradually be formed by the algorithm.

4.5.2 Marking Paths for Storage

After the path with the overall per space benefit has been estimated (GrM0), and
its space GrM0.sp is subtracted from the available space, the process of traversing
the wavelet tree to mark the coefficients in GrM0 for storage is simple, due to the
storage of the chM and chF bitmaps at each node. This top-down recursive process

66

starts at the root node and descends the path that leads to the node bottom(GrM0).
The steps of this process are:

1. At each node ci of this path, we are asked to reconstruct either the path GrMi

or the path GrFi. Notice that reconstructing GrMi may lead to reconstructing
GrFi if chMi = 11.

2. This process will never visit a node where the corresponding chMi or chFi values
are equal to ’00’.

3. If reconstructing GrFi and chFi = 01, then ci is marked as stored by setting
the bit Statei(0) to 1. If in this case GrFi.sp = S1, then Statei(1) is set and we
recomputed the GrF and GrM values at the two children nodes of ci, as described
in Section 4.5.1. Otherwise, we reset State(1) and assign the value of Statei(2)
depending on which path ci can be attached to (if it can be attached to paths
from both subtrees, pick any one of them randomly).

4. If reconstructing GrFi and chFi = 10 (11), we mark ci for storage by setting
Statei(0) to 1, resetting the value of Statei(1) and setting the value of Statei(2)
to 1 (0, respectively). We also recurse to reconstruct GrF2i (GrF2i+1).

5. If reconstructing GrMi and chMi = 01 (10), then we recurse to reconstruct GrM2i

(GrM2i+1). After this recursion, we need to check if the newly stored path in the
subtree of c2i (c2i+1) can be attached to ci. By following the process described in
Section 4.5.1, if this is detected the value of Statei(1) is reset and the value of
Statei(2) is set to 1 (0, correspondingly). Also, in this case, the GrF and GrM
values of c2i+1 (c2i) need to be recalculated, since any path containing c2i+1 (c2i)
cannot lower, any more, the storage cost of ci.

6. After possibly recursing to solutions in subtrees of ci, the algorithm needs to
recalculate the values of GrMi and GrFi, and all the corresponding chMi and
chFi variables by executing the Candidate Path Selection phase on the visited
nodes.

The only detail that we have not discussed is what happens if the selected path
does not fit within the remaining space budget. In this case we simply traverse the
selected path but mark for inclusion in the final solution only the highest coefficients
in the path, such that the space constraint is not violated (we thus omit coefficients
at the bottom of the path).

Example 4.5.2. Returning our attention to Table 4.6, we notice that based on the
chM0 and chF0 bitmaps, the selected solution will need to store the coefficient c0

and combine it with an HCC at its subtree (since chF0=11). The bit State0(0) is
thus set, while the bit State0(1) remains unset since this coefficient will surely not
be the bottom-most coefficient in its HCC. Since node 0 has only one child node in
the wavelet tree, we must decide whether to consider that node 1 lies in its left or
right subtree. We have selected the latter option and, thus, do not set the State0(2)
bit. By recursing at node 1, we see based on the chM1 and chF1 bitmaps, that
the coefficient c1 needs to be stored, and that we do not need to recurse to children
nodes. In this case, the bits State1(0) and State1(1) need to be set. Since c1 became
a new bottom-most coefficient at a new HCC, we recompute the GrF and GrM
values at its two children nodes, in order to take into account that GrF paths from
these subtrees could help lower the storage cost of c1. Please note that the GrF

67

Node GrMi.b GrMi.sp GrFi.b GrFi.sp Statei chMi chFi

8 288 65 288 65 000 11 01
9 2 65 2 65 000 11 01
10 0 65 0 65 000 11 01
11 242 65 242 65 000 11 01
12 0 65 0 65 000 11 01
13 0 65 0 65 000 11 01
14 0 65 0 65 000 11 01
15 648 65 648 65 000 11 01
4 288 65 292 98 000 01 10
5 242 65 342 98 000 10 11
6 0 65 0 65 000 11 01
7 648 65 972 98 000 10 11
2 242 33 242 33 000 11 01
3 1134 99 1134 99 000 11 11
1 1134 99 0 0 110 10 00
0 1134 99 0 0 100 10 00

Table 4.7: Computed values after marking the first selected HCC for storage

Node GrMi.b GrMi.sp GrFi.b GrFi.sp Statei chMi chFi

8 288 65 288 65 000 11 01
9 2 65 2 65 000 11 01
10 0 65 0 65 000 11 01
11 242 65 242 65 000 11 01
12 0 65 0 65 000 11 01
13 0 65 0 65 000 11 01
14 0 65 0 65 000 11 01
15 0 0 0 0 110 00 00
4 288 65 292 98 000 01 10
5 242 65 342 98 000 10 11
6 0 65 0 65 000 11 01
7 0 65 0 0 100 01 00
2 584 131 584 131 000 11 11
3 0 65 0 0 100 01 00
1 584 131 0 0 100 01 00
0 584 131 0 0 100 10 00

Table 4.8: Computed values after marking the second selected HCC for storage

values at nodes c2 and c3 both change (see Table 4.7), compared to the values in
Table 4.6. Then, moving bottom-up we need to compute the GrF1, GrM1, GrF0 and
GrM0 values, while properly setting the chM and chF bitmaps at nodes c1 and c0.
The calculated entries at each node after marking for storage nodes c0 and c1 are
depicted in Table 4.7.

In Table 4.8 we depict the calculated entries after the algorithm stores the next
HCC, which contains the coefficients c15, c7 and c3, and combines it with the first
selected HCC. This can be easily identified by examining the State bitmaps. The
5 entries that are set at the first bit (from the left) of these bitmaps translate to 5
stored coefficient values. The 1 entry that is set at the second bit of these bitmaps
translates to 1 different HCCs. Since c15 does not have any children nodes, we do
not needs to recompute the GrF and GrM at any of its descendant nodes. However,
since c1 seizes to be the bottom-most coefficient at a HCC, the GrF2 and GrM2

values are recalculated to take into account that no path storing c2 can lower the
storage cost of c1.

At this stage of the algorithm, the last HCC, containing nodes c11, c5 and c2 can
be stored.

68

4.5.3 Storing the Selected Solution

The process of storing the selected HCCs follows a preorder traversal of the nodes
in the wavelet tree. At each visited node ci, its input is a set (possibly empty) of
straddling coefficient values. This set corresponds to coefficient values that belong
to the same HCC, but where the lowest node in that HCC has not yet been visited.
Any time the algorithms reaches a node ci where the two bits Statei(0) and Statei(1)
are both set, then the index/coordinate of ci and its coefficient value along with the
straddling coefficient values form a HCC. In this case, the input list to the both
subtrees of ci will be empty.

If only the Statei(0) is set, but not the bit Statei(1), then depending on the
value of Statei(2) the value ci is attached to the list of straddling coefficient values
for the appropriate subtree of ci (the input list to the other subtree will be empty).
If, finally, Statei(0) is not set, then we simply recurse to the two subtrees with their
inputs being empty lists of straddling coefficients.

4.5.4 Space and Running Time Complexities

For each node of the wavelet tree there are O(1) stored variables. Thus, the needed
space is O(N). At the initialization step, the calculation of the GrMi, GrFi, chMi

and chFi variables requires O(1) time. Then, the algorithm repeatedly marks at
least one coefficient for storage. Thus, at most O(B

S2
) steps can be performed. At

each step a path originating at the root of the wavelet tree is traversed in order
to mark for storage the nodes in GrM0. This process visits at most O(logN)
nodes. At each node, the recalculation of the GrMi, GrFi, chMi and chFi variables
requires O(1) time. Finally, the storage of the marked coefficients can be achieved
in a single pass of the wavelet tree. Thus, the overall running time complexity is
O(N+B

S2
logN) = O(N+B logN). Note that the running time complexity are on par

with that of constructing a conventional synopsis — hence, no significant increase
in data processing time is expected (see also Section 4.8).

Theorem 4.5.1. The HCGreedyL2 algorithm constructs a HCWS given a space bud-
get of B, in O(N +B logN) time using O(N) space.

4.6 HCGreedyL2-Str: A Streaming Greedy Algorithm

In order for our algorithms to adapt to streaming environments, we propose a
streaming greedy algorithm, termed as HCGreedyL2-Str in our discussion, for our
optimization problem. As expected, the HCGreedyL2-Str algorithm shares some com-
mon characteristics with the HCGreedyL2 algorithm in the way that it constructs
candidate HCCs for storage.

4.6.1 Data Structures

The algorithms proceeds by reading the data values one by one and by updating
the (normalized) values of the wavelet coefficients. Note that the total number of
data values to be read does not need to be known in advance, since the normalized
value of a coefficient depends only on the number of data values that lie beneath it
in the wavelet tree (and, thus, from the difference in levels between the node and

69

leaf coefficient values in the wavelet tree). This process has well been documented
in prior work [44].

When reading the n-th data value, the values of the wavelet coefficients that lie
in path(n) are updated. According to Definition 4.3.2, a wavelet coefficient is closed
only when all the data values that beneath it in its wavelet tree have been read.
Depending on the value of n, the number of coefficients that become closed due to a
new data value ranges from 0 to log n+ 1. These newly closed coefficients all belong
to the bottom portion of path(n) that originates from the last read data value and
proceeds upwards in the wavelet tree until path(n) reaches the last wavelet tree node
for which the data value belongs to its right subtree. Our HCGreedyL2-Str algorithm
processes these newly closed nodes of the wavelet tree in a bottom-up fashion.

At each step of the algorithm, the current selection of HCCs is stored in a min-
heap structure where the HCCs are ordered based on their per space benefit.4 Each
HCC is identified by its bottommost coefficient. We defer a detailed description and
the implementation of this min-heap structure until later in this section.

The min-heap does not store each HCC explicitly, but rather a pointer to a
structure containing: (i) The HCC; (ii) The benefit of the HCC; and (iii) The
required space for the HCC. Please note that in order to guarantee that swapping
any pair of HCCs in the min-heap can be performed inO(1) time (and thus guarantee
the worst time complexity of the First(), Pop() and Insert() operations), we cannot
simply store the HCCs in the min-heap, due to their variable size. We finally note
that the number of different HCCs stored in the min-heap is obviously O(B

S2
) =

O(B).
Another important characteristic of our HCGreedyL2-Str algorithm is that it does

not fully combine the stored HCCs, even though it accurately estimates their space
requirements. This means that there may exist pairs of HCCs (i.e., HCC hA and
HCC hB) in the min-heap such that parent(top(hA)) = bottom(hB). In such a case,
even though hA and hB are not combined in one HCC, the storage overhead for
bottom(hB) is correctly set to S2 in our algorithm. We explain in Section 4.6.2 why
our HCGreedyL2-Str algorithm utilizes such an approach of storing HCCs.

Besides the min-heap structure our HCGreedyL2-Str algorithm also utilizes two
hash tables, termed as TopCoeff and BottomCoeff, with a maximum of O(B

S2
) entries

each. The TopCoeff (BottomCoeff) hash table maps the coordinate ci of a coefficient
to the stored HCC hA in the min-heap, such that ci = top(hA) (ci = bottom(hA)).
If the coordinate ci is not the top (bottom) coefficient value stored in any HCC,
then the TopCoeff (BottomCoeff) hash table does not contain an entry for it.

4.6.2 Detailed Operations

Operations at each node. For each processed node ci our HCGreedyL2-Str algo-
rithm generates a straddling candidate HCC, termed as SGrFi. This straddling
HCC is similar to GrFi, in that it corresponds to the non-stored candidate path in
the node’s subtree with the estimated maximum per space benefit when storing ci.
Thus, its computation is similar, with the only difference that due to the streaming
nature of the algorithm and the bottom-up way of processing closed coefficients,

4We can alternatively use any data structure, such as an AVL-tree, which provides a worst case
cost of O(logB) for the (i) search of the stored item with the minimum per space benefit; (ii) the
insertion of an item; and (iii) the deletion of an item.

70

there is no way that ci has already been stored in a HCC. Thus, the only choices
considered for generating SGrFi are restricted to:

• Simply storing ci. The space requirements of this choice is S2 if either c2i or
c2i+1 has been stored, or S1, otherwise. Please note that if c2i or c2i+1 has been
stored, then these coefficients must be the top coefficients in a stored HCC.
This can be checked in O(1) time by looking at the TopCoeff hash table. Let
Ben1 denote the per space benefit of this choice.

• Combining ci with SGrF2i (SGrF2i+1). The space requirements for SGrFi in
this case is S2+SGrF2i.sp (resp., S2+ SGrF2i+1.sp). Let Ben2 (resp., Ben3)
denote the per space benefit of this combination.

Given the aforementioned choices, SGrFi is set to:

1. ci∪ SGrF2i, if Ben2 = max{Ben1, Ben2, Ben3} and Ben2 is larger or equal
to the per space benefit of SGrF2i. In this case, SGrF2i+1 cannot be of any
further use in upper levels of the wavelet tree. Thus, it is checked for insertion
to the min-heap, by comparing its per space benefit to that of the stored HCC
with the minimum per space benefit.

2. ci∪ SGrF2i+1, if Ben3 = max{Ben1, Ben2, Ben3} and, further, Ben3 is larger
or equal to the per space benefit of SGrF2i+1. In this case, SGrF2i cannot be
of any further use in upper levels of the wavelet tree. Thus, it is checked for
insertion to the min-heap, by comparing its per space benefit to that of the
stored HCC with the minimum per space benefit.

3. ci, otherwise. In this case, SGrF2i, SGrF2i+1 are checked in succession for
insertion to the min-heap, by comparing their per space benefit to that of the
stored HCC with the minimum per space benefit.

Please note that, in the HCGreedyL2-Str algorithm, once we have computed the
SGrFi coefficient for any node ci, we no longer need to keep in main memory the
straddling paths of its two subtrees.

Operations of the Min-Heap. We now present the basic operations of the Min-
Heap structure.

1. First(): Returns the stored HCC with the minimum per space benefit. This
is straightforward. The operation requires O(1) time.

2. Pop(): Removes the First() item. The operation adjusts the size of the Min-
Heap, based on two factors:

• The size of the removed HCC, termed as hA in our discussion. This is
available in the third field of the item (see Section 4.6.1 on how HCCs
are stored).

• Whether removing this item requires adjusting the space of some other
HCC hB. This case occurs when parent(top(hA)) = bottom(hB) and the
other child coefficient of bottom(hB) is not currently stored in the Min-
Heap. The former can be tested by first probing the BottomCoeff hash
table to see if parent(top(hA)) exists as the bottom-most coefficient in a

71

procedure Insert(hA)
Input: HCC hA to insert into the Min-Heap.
1. A min-heap structure hcs is used to maintain the currently

selected HCCs for storage
2. Each entry in hcs has 3 fields: (1) hc: the stored HCC,

(2) ben: benefit of the HCC,
(3) sp: space needed for storing the HCC.

3. UsedB ≤ B denotes the true space required to compactly store
the HCCs of the Min-Heap.

4. tophc = hcs.First()
5. lastPopped = ∅
6. while UsedB + hA.sp > B AND tophc.ben

tophc.sp < hA.sp
hA.ben do

7. lastPopped = tophc
8. hcs.Pop(). Also update TopCoeff and BottomCoeff hash tables
9. Update UsedB based on discussion in Section 4.6.2
10. endwhile
11. Insert hA in the heap using standard heap operation.

Update TopCoeff, BottomCoeff and UsedB.
12. if UsedB < B then

Trim sufficient coefficient values from lastPopped and reinsert
it in the Max-Heap.

end

Figure 4.2: Sketch of Insert algorithm

stored HCC. The latter can be tested by then probing the TopCoeff hash
table for the other child of bottom(hB). If both conditions are satisfied,
then the space requirements of hB are adjusted and the standard heap
procedure heapifyUp() is invoked in order to make sure that no conditions
are violated in the path of the heap between the updated node and the
root of the heap. This heapifyUp() operation requires O(logB) time.

Thus. the Pop() operation requires a total of O(logB) time.

3. Insert(hA): Inserts the given HCC hA in the Min-Heap. This operation is
presented in Algorithm 4.2. The running time requirements of the Insert()
operation depend on the size of the inserted HCC and the number of popped
HCCs (Lines 6-10). In the worst case, for a HCC containing O(log n) coef-
ficient values, the operation may require O(log n · logB) time. However, an
interesting observation is that for any HCC containing more than one coeffi-
cient values, the insert operation is performed only for the top coefficient value
of the HCC. Thus, the amortized cost of the insert operation per processed
wavelet coefficient remains O(logB).

4. Parse(): Scans the min-heap and extracts the stored HCCs in a compact form
with size at most B. In order to perform this step we need to combine the
HCCs stored in the Min-Heap. When checking each stored HCC hA, we also
check to see if there exists another unprocessed HCC hB that needs to be
processed before hA, and such that hA can be attached on top of hB (so that
their bitmaps are combined). This requires checking the TopCoeff hash table
for the two children of bottom(hA). This step essentially creates a recursive
processing of the HCCs similarly to a topological sort. Since the min-heap

72

cannot store more than O(B
S2

) entries, this operation requires a total of O(B)
time.

A question that naturally arises is why we chose to store the current selection of
the HCCs in a way that does not aggressively combine them, even though storage
dependencies are indeed exploited. If we had pursued to aggressively merge stored
HCCs, coefficient values with large benefits might end up in HCCs with several other
small coefficient values, e.g., a HCC containing the coefficient values 〈800, 10, 20, 5〉.
This could potentially lead to HCCs with small to medium overall per space benefit,
even though a part of them exhibits a large per space benefit. Please note that in
the HCGreedyL2 algorithm, such a problem did not exist, as HCCs were attached to
existing HCCs after exhibiting globally the best estimated per space benefit. Due to
the streaming nature of the HCGreedyL2-Str algorithm, this global estimate cannot
be achieved since future parts of the wavelet tree have not been unveiled yet. Thus,
we need to be careful in our decisions to aggressively merge HCCs.

4.6.3 Space and Running Time Complexities

Based on the analysis presented in Section 4.6.2, the operations associated with
inserting a HCC in the Min-Heap cost a total of O(logB) time. The insert operation
at some nodes may exhibit a higher cost but, as we explained in Section 4.6.2, this
cost is amortized over the coefficient values that comprise the HCC. The space
requirements are those of the Min-Heap, the two hash tables and the straddling
coefficients. The Min-Heap and each hash table requires O(B) space. Parsing
the Min-Heap to extract the synopsis also requires O(B) time. There can be at
most O(log n) straddling coefficients, of total size O(log2 n). Thus, the amortized
running time requirements per processed data item are O(logB), while the space
requirements are O(B + log2 n).

4.7 Extensions and Remarks

4.7.1 Multiple Dimensions

The Haar decomposition of a D-dimensional data array A results in a D-dimensio-
nal wavelet-coefficient array WA with the same dimension ranges and number of
entries. (The full details as well as efficient decomposition algorithms can be found in
[13, 88].) Consider a D-dimensional wavelet coefficient W in the wavelet-coefficient
array WA. W contributes to the reconstruction of a D-dimensional rectangular
region of cells in the data array A (i.e., W ’s support region). Further, the sign of
W ’s contribution (+W or −W) can vary along the quadrants of its support region.
The blank areas for each coefficient correspond to regions of A whose reconstruction
is independent of the coefficient, i.e., the coefficient’s contribution is 0. Each data
cell in A can be accurately reconstructed by adding up the contributions (with the
appropriate signs) of those coefficients whose support regions include the cell.

Wavelet tree structures for multidimensional Haar wavelets can be constructed
(in linear time) in a manner similar to those for the one-dimensional case, but their
semantics and structure are somewhat more complex. A major difference is that, in a
D-dimensional wavelet tree, each node (except for the root, i.e., the overall average)

73

+
_

+_
+ +

+
_

+_
+ +

+
_

+_
_+ +

+
_

+

+

l = 0

_
+_
_

+_l = 1

_
_

+
+

+

_
+ _

Figure 4.3: Wavelet tree structure for the sixteen two-dimensional Haar coefficients for
a 4× 4 data array (data values omitted for clarity)

actually corresponds to a set of 2D − 1 wavelet coefficients that have the same
support region but different quadrant signs and magnitudes for their contribution.
Furthermore, each (non-root) node t in a D-dimensional wavelet tree has 2D children
corresponding to the quadrants of the (common) support region of all coefficients in
t.5 If the maximum domain size amongst all dimensions is Nmax, the height of the
wavelet tree will be equal to logNmax. Note that the total domain size N can be as
high as N = ND

max when all dimensions have equal domain size. Figure 4.3 depicts
an example wavelet tree structure for a two-dimensional 4× 4 dataset.

A multidimensional hierarchically compressed wavelet synopsis (MHCWS) groups
nodes (not coefficients) into paths and thus requires additional information as to
which coefficients of each node are included in the synopsis.

Definition 4.7.1. The composite value NV of some node in the multidimensional
wavelet tree is a pair 〈NVBit, V 〉 consisting of:

• A bitmap NVBit of size 2D − 1 identifying which coefficient values are stored.
The number of stored coefficient values is equal to the bits of NVBit that are set.

• The set V of stored coefficient values.

Having properly defined the composite value of a node we can now define a
multidimensional hierarchically compressed wavelet coefficient as follows.

Definition 4.7.2. A multidimensional hierarchically compressed (MHCC) wavelet
coefficient is a triplet 〈Bit, C,N V 〉 consisting of:

• A bitmap Bit of size |Bit| ≥ 1, denoting the storage of exactly |Bit| node values.

• The coordinate/index C of any stored coefficient in the bottommost stored node.

• A set N V of |Bit| stored composite values.

We must note here that at any MHCC the coordinate of any stored coefficient in
its bottommost stored node can be used, since the bitmap of that node’s composite
value can help determine which other coefficient values from the same node have
also been stored.

5The number of children (coefficients) for an internal wavelet tree node can actually be less
than 2D (respectively, 2D − 1) when the sizes of the data dimensions are not all equal. In these
situations, the exponent for 2 is determined by the number of dimensions that are “active” at the
current level of the decomposition (i.e., those dimensions that are still being recursively split by
averaging/differencing).

74

We now describe the necessary changes to the HCDynL2 and HCGreedyL2 algo-
rithms for multidimensional datasets. The modifications to HCApprL2 are similar to
the ones of HCDynL2.

Changes to HCDynL2. The extensions to the HCDynL2 algorithm are analogous
to the corresponding extensions of prior DP techniques [33] to multi-dimensional
datasets. In particular, when obtaining an optimal MHCWS given a space budget
B, the algorithm given budget B should consider (i) the optimal benefit M[i, B]
assigning space B to the subtree rooted at node i; and (ii) the optimal benefit
F[i, B] assigning space B to the subtree rooted at node i when at least one of the
coefficients of node i is forced to be stored (i.e., a composite value of the node is
stored). The principle of optimality also holds in this case for M[i, B] and F[i, B],
implying that optimal benefits at a node can be computed from optimal solutions
of the node’s subtrees.

At each node of the wavelet tree, the optimal algorithm needs to decide how
many coefficients, if any, of this node should be stored, whether they should be
attached to some path of its children subtrees, and how much space to allocate
to each child subtree. It should be noted that we only need to decide how many
coefficients (from 1 to 2D − 1) of each node should be stored, as it can be easily
shown that among all coefficient sets of k values, the set containing the coefficients
with the k highest absolute normalized values exhibits the best benefit.

When the algorithm checks if a node should be included in the optimal solution
but cannot be attached to any path of the children subtrees, the space requirement
for this node is a function of the number k ≤ 2D− 1 of coefficients to be included (a
choice to be made): S1(k) = sizeof(Coords)+2D+k ·sizeof(V alue). Similarly, when
the node at question can be attached to some path the space requirement is again
a function of the number k of selected coefficients: S2(k) = 2D + k · sizeof(V alue).
Note that only in the first case the node “pays” for the overhead sizeof(Coords) of
creating a new MHCC.

At each node of the wavelet tree the algorithm must perform two tasks: (i) sort
the 2D−1 coefficients of this node in O(D2D) time and O(2D) space; and (ii) for each
space budget 0 ≤ b ≤ B∗ choose the optimal split of space among the coefficients
of this node and the 2D children nodes. Note that, because a subtree rooted at a
node at height l of the wavelet tree can have up to O(2Dl) nodes, the maximum
allotted space at such a node is B∗ = min{B,O(2Dl)}. The second task can be
performed in O(2DB∗2), by solving a dynamic programming recurrence on a binary
tree of height D constructed over the children nodes — for details refer to [33]. Using

similar analysis with Section 4.3 and since there are at most ND
max

2Dl = N
2Dl nodes at

height l it follows that the space complexity becomes O(2DN logB), whereas the
time complexity becomes O(2DNB).

Finally, note that the ratio of benefits between HCDynL2 and the traditional tech-

nique can become as high as 1+logNmax×(2D−1)
m

for m = bS1+logNmax×(2D−1)×S2

S1−1
c. The

increased maximum value of the above ratio, when compared to the one-dimensional
case, is not surprising, as in multidimensional datasets the existence of multiple co-
efficient values within each node of the wavelet tree provides far more opportunities
to exploit hierarchical relationships amongst stored coefficients, in order to reduce
the storage overhead of their coordinates. Also, note that in the multidimensional
case this storage overhead (and thus the size of S1) increases with the number of

75

dimensions, due to the increase in the number of the coefficient coordinates.

Changes to HCGreedyL2. For the HCGreedyL2 algorithm, when considering whether
to include a node in a MHCC, or to attach it to a MHCC originating from one of the
node’s subtrees, we utilize the node’s composite value that results in the best per
space benefit. This can be accomplished by (i) sorting the node’s coefficient values
based on their normalized value; (ii) for 1 ≤ j ≤ 2D − 1 computing the per space
benefit of the composite value that stores the node’s j largest normalized values;
and (iii) selecting the composite value with the overall best per space benefit. For
nodes where, at some point of the algorithm’s execution, some coefficient values
have already been selected for storage, we only need to consider in the above case
coefficient values that have not already been included in the solution and properly
determine the space needed for their storage. The HCGreedyL2 algorithm, given a
budget of B, requires O(2DN) space and only O(D2DN + 2DB logNmax) time.

4.7.2 Dealing with Massive Datasets

In order to improve the running time and space requirements of our algorithms for
massive datasets, we can employ an initial thresholding step to discard coefficients
with small values and apply our algorithms to the remaining Nz � N coefficients.
Such an approach is commonly followed for constructing wavelet synopses; the work
in [88], for example, maintains only Nz coefficients after the decomposition to deal
with sparse datasets of Nz � N tuples. Preserving only Nz coefficients means that
there can be at most Nz “important” nodes in the wavelet tree (in practice much
fewer, as many large coefficients usually reside in a single node), which is a significant
decrease compared to N/2D, the total number of nodes.

More precisely, it is easy to see that all of our algorithms need to perform some
computations to nodes that either (i) contain a non-zero coefficient value; or (ii)
contain non-zero coefficient values at (at least) two of their subtrees. Thus, the total
number of nodes where some computation needs to be performed is O(2Nz − 1) =
O(Nz). By sorting these nodes using a pre-order traversal it is easy to mark for each
node: (i) the closest ancestor anc(i) of i where computation needs to be performed;
(ii) the subtree of anc(i) that follows i; and (iii) the first descendant of i where
computation needs to be performed. This process requires O(Nz logNz) time, but
allows for the execution of the algorithms with complexities that depend on Nz

rather than N . Of course, some care is needed because the children of each node
in the above “sparse” wavelet tree are not direct descendants, thus requiring proper
calculation of the space needed when storing a node’s composite value and combining
it with a MHCC originating from one of the node’s subtrees. Thus, when attaching
a composite value to a MHCC that lies j levels below it in the sparse wavelet tree,
the value of S2 must be set as follows: S2(k) = j × (2D − 1) + j + k · sizeof(V alue).
The first summand in the above formula is due to the storage of the NVBit bitmaps
for both the current node and all the intermediate, missing nodes until reaching the
MHCC of the descendant node. The second summand determines the number of
these bitmaps, while the third summand is due to the storage of k coefficient values
in the node. Please note that each node of the sparse wavelet tree may exhibit
different S2 values for each of its subtrees, due to the potentially different resolution
levels of each subtree’s root node.

76

4.7.3 Optimizing for Other Error Metrics

All algorithms presented here can be made to optimize for any weighted Lw2 error
metric. These error metrics include the sum squared relative error with sanity bound
s (set wi = 1

max{di,s}), and the expected sum squared error when queries are drawn
from a workload distribution, in which case the weights correspond to the probability
of occurrence for each query (set wi = pi).

For the weighted Lw2 metric and using the standard Haar decomposition process
the Parseval theorem does not apply and hence Problem 4.2 does not follow from
Problem 4.1. However the recent work of [62] demonstrated that the Parseval the-
orem applies when the decomposition process is altered to incorporate the weights.
The result is a modified Haar basis for which the Parseval applies and, therefore, an
analogous to Problem 4.2 formulation exists and our algorithms require no additional
changes.

4.7.4 Query Performance Issues

For a synopsis size of B, due to the use of a variable-length header for the stored HCC
coefficients, the retrieval of a single coefficient value requires O(B) time, in contrast
toO(min{B, logN}) time for the conventional wavelet synopses, where binary search
is employed if the stored coefficients are sorted based on their coordinates. While
this may seem as a potentially large increase in the resulting query time, we need
to make two important observations: (i) The used synopses are typically memory
resident and of small size (B � N); and (ii) To answer even point queries, O(logN)
coefficients need to be retrieved. The number of retrieved coefficients is increased
even more if a query that requires the evaluation of multiple individual data values
(or data values in multiple areas of the data) is issued. This has the effect that
a linear scan of the synopsis, to retrieve at batch all the desired coefficients, even
in conventional wavelet synopses, is often as efficient as performing a logarithmic
(or larger) number of binary searches in the synopsis. Thus, we expect that any
potential running time deterioration due to the use of our proposed technique will
be minimal. On the other hand, the improvements in the obtained accuracy achieved
by the use of HCWS can be significant, as shown in Section 4.8.

4.8 Experiments

In this section, we present an extensive experimental study of our proposed al-
gorithms for constructing hierarchically compressed wavelet synopses over large
datasets. Our objective is to evaluate the scalability and the obtained accuracy
of our algorithms when compared to conventional synopses. Our main findings in-
clude:

• Improved Space Utilization. The algorithms presented in this work create
HCWS that consistently exhibit significant reductions in terms of the sum squared
error of the approximation due to the improved storage utilization of the selected
wavelet coefficients.

• Efficient, Near-Optimal Greedy HCWS Construction. Even though the
HCGreedyL2 algorithm does not provide any guarantees on the quality of the obtained
solution, in all of our experiments it provided near optimal results. At the same

77

time, the HCGreedyL2 algorithm exhibits running time and space requirements on
par with the conventional synopsis construction method. Moreover, our proposed
HCGreedyL2-Str algorithm consistently produces HCWS with errors very close to
those of the HCGreedyL2 algorithm.

Techniques and Implementation Details. We compare the algorithms HC-

DynL2, HCApprL2, HCGreedyL2, HCGreedyL2-Str introduced in this chapter against the
conventional synopsis construction algorithm denoted as Classic. The Classic algo-
rithm utilizes a heap to identify the coefficients with the largest absolute normalized
values, while not exceeding the available space budget. All algorithms were imple-
mented in C++ and the experiments reported here were performed on a 2.4 GHz
machine.

Datasets. We have performed an extensive experimental study with several one-
dimensional synthetic and real-life datasets; we present here the most significant
findings. Each synthetic dataset, termed Zipfian, is produced by generating 50
different Zipfian distributions with the same skew parameter (where the values are
placed in random locations of the data) and then summing up these 50 smaller
datasets. We vary the domain size from N = 214 up to 224 = 16, 777, 216 and exam-
ine two values of the Zipfian parameter, z = 0.7 and z = 1.2, i.e., average and high
skew respectively. The first real dataset, denoted as Weather6, contains N = 65, 536
solar irradiance measurements obtained from a station at the University of Wash-
ington. The second real dataset, denoted as Light, consists of light measurements
from the Intel Labs dataset [24]. In all experiments involving Light, we use the
measurements of the sixth mote (sensor) of this dataset.

Performance Metrics. We first investigate the running time scalability of our
algorithms when varying the available synopsis budget, the data domain size and
the ε parameter for the HCApprL2 algorithm. In order to assess the quality of the
constructed HCWS we measure the sum squared error (SSE). To emphasize on the
effectiveness over conventional synopses: (i) we explicitly measure the SSE increase
of Classic relative to HCGreedyL2; and (ii) show how much more space (space savings)
we would need to allocate to a conventional synopsis in order for it to become as
accurate as our constructed HCWS. In a graph depicting the resulting SSE by all
algorithms when varying the synopsis size, the SSE increase in absolute value can
be measured at each point by the vertical distance between the graph of the Classic

technique from the graph of either the HCDynL2, the HCApprL2, the HCGreedyL2 or
the HCGreedyL2-Str algorithm. Correspondingly, in the same graph, the space savings
of our algorithms can be (roughly) measured, for any space budget assigned to our
algorithms, by the horizontal distance to the right, starting of course at the point
of the graph corresponding to our technique and for the desired space budget, until
we meet the graph (error) of the Classic algorithm. Recall that the goal of deploying
a HCWS is to achieve better storage utilization and to improve the accuracy of the
synopsis by storing, within a given space budget, a larger number of “important”
coefficient values than a traditional wavelet synopsis. The space savings essentially
provide us with an insight on how many “important” wavelet coefficients the HCWS
contains, in addition to the ones selected by the Classic algorithm, that are responsi-
ble for the achieved SSE reduction (and, thus, how much can our algorithms exploit
hierarchical relationships amongst coefficient values selected for storage). The com-

6Data available at: http://www-k12.atmos.washington.edu/k12/grayskies/

78

bination of the two performance metrics also reveals some helpful characteristics on
the distribution of the coefficient values. For example, assume that our algorithms
consistently result in half the error achieved by the Classic algorithm, but that the
space savings increase (decrease) as the synopsis size increases. This implies that
as the synopsis size increases, and more coefficient values are stored, the number of
non-stored coefficient values that are responsible for half of the remaining SSE also
increases (decreases), since the Classic algorithm requires increasingly more (less)
space to reduce its SSE by 50%.

Further, we explicitly measure the deviation of the error exhibited by the so-
lution of our HCGreedyL2 algorithm, when compared to the corresponding optimal
error exhibited by the solution of our HCDynL2 algorithm, when varying either the
available synopsis budget, or the data domain size. We also measure the errors
achieved by our HCGreedyL2-Str algorithm, when compared to the corresponding er-
rors of our HCGreedyL2 algorithm. Finally, we plot the approximation ratio achieved
by the HCApprL2 algorithm against the theoretical bound.

 0.01

 0.1

 1

 10

 100

 512 1024 2048 4096 8192 16384 32768

R
un

ni
ng

 T
im

e
(s

ec
)

Synopsis Size (bytes)

Weather, Domain N = 216

HCDynL2
HCApprL2 (ε=.01)
HCApprL2 (ε=.05)

HCGreedyL2-Str
HCGreedyL2

Classic

(a) Running Time vs Synopsis Size

 0.001

 0.01

 0.1

 1

 10

 100

 14 16 18 20 22 24

R
un

ni
ng

 T
im

e
(s

ec
)

log of Domain Size (logN)

Zipfian, Skew z = 1.2, B = 0.04N

HCDynL2
HCApprL2 (ε=.01)

HCGreedyL2
HCGreedyL2-Str

Classic

(b) Running Time vs Domain Size

 1

 10

 100

 0.0001 0.001 0.01 0.05 0.1 0.2

R
un

ni
ng

 T
im

e
(s

ec
)

epsilon (ε)

Zipfian, Skew z = 1.2, Domain N = 220, B = 32,768

HCApprL2

(c) Running Time vs ε

Figure 4.4: Running time performance of all algorithms

In the following we present the experimental results.

Scalability. Figure 4.4 investigates the scalability, in terms of the total running
time, for all methods while the synopsis size and the domain size is varied. For the
HCApprL2 algorithm we also plot its running time when varying the approximation
parameter. Figure 4.4(a) presents the running time for the Weather dataset when
the available synopsis size increases from 512 to 32,768 bytes. The approximation
parameter for the HCApprL2 algorithm was set to ε = 0.05 and 0.01. Please note
that logarithmic axes are used for both the resulting running time and the synopsis
size. In this experiment, the HCGreedyL2 and HCGreedyL2-Str algorithms consistently
construct a HCWS within a few hundredths of a second, and almost as fast (with

79

 0.1

 1

 10

 100

 1000

 10000

 512 1024 2048 4096 8192 16384 32768

S
S

E
 (

x1
06)

Synopsis Size (bytes)

Zipfian, Domain N = 220, Skew z = 0.7

Classic
HCApprL2 (ε=.05)
HCApprL2 (ε=.01)

HCGreedyL2-Str
HCGreedyL2

(a) SSE vs Synopsis Size

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 512 1024 2048 4096 8192 16384 32768

S
S

E
 in

cr
ea

se
 o

ve
r

H
C

G
re

ed
yL

2

Synopsis Size (bytes)

Zipfian, Domain N = 220, Skew z = 0.7

Classic
HCGreedyL2-Str

(b) SSE Increase vs Synopsis Size

 0

 10

 20

 30

 40

 50

 60

 512 1024 2048 4096 8192 16384 32768

S
pa

ce
 S

av
in

gs
 o

ve
r

C
la

ss
ic

 (
%

)

Synopsis Size (bytes)

Zipfian, Domain N = 220, Skew z = 0.7

HCGreedyL2
HCGreedyL2-Str

(c) Space Savings vs Synopsis Size

Figure 4.5: HCWS quality vs synopsis size for Zipfian, z = 0.7, N = 220

an increase in running time by a factor between 2 and 5) as Classic constructs a
conventional synopsis. The HCDynL2 algorithm could not construct large HCWSs
within a reasonable time, as depicted on Figure 4.4(a), due to its linear dependency
on B. Similar trends were observed for all datasets and, thus, the graphs for the
HCDynL2 algorithm are often omitted.

Figure 4.4(b) illustrates the scalability of the algorithms as the domain size
increases from 214 up to 224 for the Zipfian dataset with a skew parameter of 1.2.
The synopsis size is set to a fixed percentage (4%) of the original data size. Therefore,
the time complexity of HCDynL2 essentially becomes quadratic on the domain size.
This is depicted on Figure 4.4(b), as the running time of HCDynL2 for domains larger
than 216 becomes prohibitive, while HCGreedyL2 can construct a HCWS in about 3.5
seconds, even for a domain size of 224. The running time of the streaming variant
HCGreedyL2-Str increases at a lower rate than that of HCGreedyL2, as the domain size
increases. This is attributed to the fact that the running time complexity for the
HCGreedyL2-Str algorithm is based on a pessimistic case where every HCC tested for
insertion in the min-heap requires O(logB) time. In practice, most of the HCCs in
large domains do not have a sufficiently large per space benefit to be inserted into
the min-heap, thus requiring only O(1) time for them. Finally, note that even if it
exhibits running times that are up to 2 orders of magnitude larger than the ones
of HCGreedyL2, the HCApprL2 algorithm scales significantly better than the HCDynL2

algorithm.

Figure 4.4(c) plots the running time of HCApprL2 as the approximation parameter
ranges from ε = 0.0001 to 0.2 for the Zipfian dataset with a skew parameter of
1.2, N = 220 data values and a fixed value of B = 32768. As the approximation
requirements relax, the running time of HCApprL2 decreases exponentially.

80

HCWS Quality. In Figures 4.5, 4.6, 4.7 and 4.8 we investigate the quality of the
HCWS synopses for the four datasets, as we vary the synopsis size from 512 to
32,768 bytes. For all datasets, we measure the SSE of the resulting synopses.

Figure 4.5(a) plots the SSE for all methods on the Zipfian dataset with the
average skew value. The HCGreedyL2 algorithm consistently constructs a synopsis
with significantly smaller errors compared to a conventional synopsis. Moreover,
the HCGreedyL2-Str algorithm achieves similar benefits, as its performance closely
matches that of HCGreedyL2. On the other hand, the accuracy of the HCApprL2

algorithm quickly approaches the point where the algorithm manages to construct
a synopsis that has captured a sufficiently large fraction 1/(1 + ε) of the data’s
energy (and it is, thus, certainly also within the same 1/(1 + ε) factor from the
optimal algorithm) — hence, further increasing the budget leads to the HCApprL2

algorithm constructing the same synopsis. Figure 4.5(b) plots the SSE increase
(i.e., the ratio of the SSE errors) of Classic and HCGreedyL2-Str over HCGreedyL2. We
first observe that for a space budget of B = 4096, HCGreedyL2 constructs an HCWS
that has almost 4.5 times less SSE than a conventional synopsis. HCGreedyL2-Str

constructs synopses with similar SSE compared to HCGreedyL2. Comparing the two
greedy heuristics, HCGreedyL2-Str achieves 2% lower SSE in the best case (B = 4096),
and 7.4% larger SSE in the worst case (B = 2048), than HCGreedyL2. Figure 4.5(b)
illustrates the space savings of the two greedy algorithms compared to a conventional
synopsis that would achieve the same SSE. As the synopsis size increases, the space
savings of our algorithms in absolute values (i.e., in bytes) increase as well. In
relative terms (i.e., as a percentage to the synopsis size), the best case for our
methods appears for B = 4096, where a HCWS requires 57.4% less space than a
conventional synopsis. The space savings of HCGreedyL2-Str show a similar trend
with a maximum savings of 58% for B = 4096.

Figure 4.6 repeats the above setup using the Zipfian dataset with high skew
(z = 1.2). The higher skew results in a more compressible dataset with the SSE
decreasing rapidly with B, as depicted on Figure 4.6(a). In this dataset, construct-
ing hierarchically compressed synopses proves highly beneficial as shown in Fig-
ures 4.6(b) and 4.6(c). HCGreedyL2 construct a synopsis with up to 8.3 times lower
SSE than Classic (for B = 8192). Furthermore, the space savings of the HCGreedyL2

algorithm are significant (up to 64% for a synopsis size of B = 4096). Note
that HCGreedyL2-Str constructs synopses with marginally increased SSE compared
to HCGreedyL2 (up to 7% increase, with an average increase of 2%).

Figures 4.7 and 4.8 repeat the previous experimental setup for the real-life
datasets, Weather and Light, respectively. For both datasets, the benefits, in terms
of the reduction in the SSE, increase with the synopsis size. For the Weather dataset,
the HCGreedyL2 algorithm results in up to 2.36 times lower SSE (for B = 32768),
as shown in Figure 4.7(b). On the other hand, Figure 4.8(b) shows that in the
Light dataset, the HCGreedyL2 algorithm achieves a reduction in SSE of up to 4.7
times (for B = 32768). For both real datasets, and for synopsis sizes larger than
1024 bytes, the space savings of our methods are consistently high (please note our
earlier discussion that the benefits in absolute terms continuously increase in these
cases as well, even though the relative space savings start decreasing at some point),
as shown in Figures 4.7(c) and 4.8(c).

The effect of the domain size in the performance of our algorithms is illustrated
in Figure 4.9. In this setup we use the Zipfian dataset with the high skew value

81

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 512 1024 2048 4096 8192 16384 32768

S
S

E
 (

x1
09)

Synopsis Size (bytes)

Zipfian, Domain N = 220, Skew z = 1.2

Classic
HCApprL2 (ε=.05)
HCApprL2 (ε=.01)

HCGreedyL2-Str
HCGreedyL2

(a) SSE vs Synopsis Size

 1

 2

 3

 4

 5

 6

 7

 8

 9

 512 1024 2048 4096 8192 16384 32768

S
S

E
 in

cr
ea

se
 o

ve
r

H
C

G
re

ed
yL

2

Synopsis Size (bytes)

Zipfian, Domain N = 220, Skew z = 1.2

Classic
HCGreedyL2-Str

(b) SSE Increase vs Synopsis Size

 10

 20

 30

 40

 50

 60

 70

 512 1024 2048 4096 8192 16384 32768

S
pa

ce
 S

av
in

gs
 o

ve
r

C
la

ss
ic

 (
%

)

Synopsis Size (bytes)

Zipfian, Domain N = 220, Skew z = 1.2

HCGreedyL2
HCGreedyL2-Str

(c) Space Savings vs Synopsis Size

Figure 4.6: HCWS quality vs synopsis size for Zipfian, z = 1.2, N = 220

 0.1

 1

 10

 100

 512 1024 2048 4096 8192 16384 32768

S
S

E
 (

x1
06)

Synopsis Size (bytes)

Weather, Domain N = 216

Classic
HCApprL2 (ε=.05)
HCApprL2 (ε=.01)

HCGreedyL2-Str
HCGreedyL2

(a) SSE vs Synopsis Size

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 512 1024 2048 4096 8192 16384 32768

S
S

E
 in

cr
ea

se
 o

ve
r

H
C

G
re

ed
yL

2

Synopsis Size (bytes)

Weather, Domain N = 216

Classic
HCGreedyL2-Str

(b) SSE Increase vs Synopsis Size

 25

 30

 35

 40

 45

 50

 512 1024 2048 4096 8192 16384 32768

S
pa

ce
 S

av
in

gs
 o

ve
r

C
la

ss
ic

 (
%

)

Synopsis Size (bytes)

Weather, Domain N = 216

HCGreedyL2
HCGreedyL2-Str

(c) Space Savings vs Synopsis Size

Figure 4.7: HCWS quality vs synopsis size for Weather, N = 216

(z = 1.2) and vary the domain size from N = 214 up 224, while maintaining the
synopsis size to 4% of N . Similar findings hold for other space ratios as well as for
the average skew dataset. As seen in Figure 4.9(a), both greedy variants consistently

82

 0.1

 1

 10

 100

 1000

 512 1024 2048 4096 8192 16384 32768

S
S

E
 (

x1
06)

Synopsis Size (bytes)

Light, Domain N = 215

HCApprL2 (ε=.05)
HCApprL2 (ε=.01)

Classic
HCGreedyL2-Str

HCGreedyL2

(a) SSE vs Synopsis Size

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 512 1024 2048 4096 8192 16384 32768

S
S

E
 in

cr
ea

se
 o

ve
r

H
C

G
re

ed
yL

2

Synopsis Size (bytes)

Light, Domain N = 216

Classic
HCGreedyL2-Str

(b) SSE Increase vs Synopsis Size

 30

 35

 40

 45

 50

 55

 512 1024 2048 4096 8192 16384 32768

S
pa

ce
 S

av
in

gs
 o

ve
r

C
la

ss
ic

 (
%

)

Synopsis Size (bytes)

Light, Domain N = 215

HCGreedyL2
HCGreedyL2-Str

(c) Space Savings vs Synopsis Size

Figure 4.8: HCWS quality vs synopsis size for Light, N = 215

construct synopses with lower SSE (up to 7.4 times) than Classic. Similarly, our
greedy heuristics are able to achieve significant space savings (up to 69% for the
HCGreedyL2 algorithm and up to 66% for the HCGreedyL2-Str algorithm), compared
to the Classic algorithm.

HCGreedyL2, HCGreedyL2-Str and HCApprL2 Accuracy. The HCGreedyL2

and HCGreedyL2-Str algorithms, as we have seen, require only frugal time and space
in order to construct a wavelet synopsis when compared to the optimal HCDynL2

algorithm. A question that naturally arises is how close is the error of a HCWS
constructed by the greedy algorithms to the one of the optimal HCWS. Thus, in the
following set of experiments we measure the SSE increase incurred by HCGreedyL2

and HCGreedyL2-Str when constructing a HCWS — this is, essentially, the ratio
between the errors of the greedy variants and the HCDynL2 algorithms.

Figure 4.10(a) shows the SSE increase ratio for the Weather dataset as the space
budget is varied from 512 to 4096 bytes. It is easy to see that the error of the
HCWS obtained by HCGreedyL2 (HCGreedyL2-Str) is always within 1.6% (4.6%) of
the error achieved by the optimal HCWS. Figure 4.10(b) shows the SSE increase
for the Zipfian dataset as the domain size varies from 210 to 215, while the synopsis
size is set to 1% of the original data. Such a setup is chosen so that the HCDynL2

algorithm, which provides the optimal HCWS, can execute within the available
memory and within a time window of one hour. Again, the error of the HCWS
obtained by HCGreedyL2 is within 2.2% of the error achieved by the optimal HCWS,
while in 3 cases the HCGreedyL2 algorithm produced the optimal solution. Regarding
the accuracy of HCGreedyL2-Str, note that in the worst case it produces HCWS with
error which is within 12% (and with an average value of 4%) of the optimal.

To measure the quality of HCApprL2, we plot the approximation ratio (benefit of

83

 1

 10

 100

 1000

 10000

 14 16 18 20 22 24

S
S

E
 (

x1
05)

log of Domain Size (logN)

Zipfian, Skew z = 1.2, B = 0.04N

Classic
HCGreedyL2-Str

HCGreedyL2

(a) SSE vs Domain Size

 1

 2

 3

 4

 5

 6

 7

 8

 14 16 18 20 22 24

S
S

E
 in

cr
ea

se
 o

ve
r

H
C

G
re

ed
yL

2

log of Domain Size (logN)

Zipfian, Skew z = 1.2, B = 0.04N

Classic
HCGreedyL2-Str

(b) SSE Increase vs Domain Size

 10

 20

 30

 40

 50

 60

 70

 14 16 18 20 22 24

S
pa

ce
 S

av
in

gs
 o

ve
r

C
la

ss
ic

 (
%

)

log of Domain Size (logN)

Zipfian, Skew z = 1.2, B = 0.04N

HCGreedyL2
HCGreedyL2-Str

(c) Space Savings vs Domain Size

Figure 4.9: HCWS quality vs domain size for Zipfian, z = 1.2, B = 0.04N

 1

 1.01

 1.02

 1.03

 1.04

 1.05

 512 1024 2048 3584

S
S

E
 in

cr
ea

se
 o

ve
r

H
C

D
yn

L2

Synopsis Size (bytes)

Weather, Domain N = 216

HCGreedyL2-Str
HCGreedyL2

optimal

(a) HCGreedyL2 Accuracy vs Syn-
opsis Size

 1

 1.05

 1.1

 1.15

 10 11 12 13 14 15

S
S

E
 in

cr
ea

se
 o

ve
r

H
C

D
yn

L2

log of Domain Size (logN)

Zipfian, Skew z = 1.2, B = 0.01N

HCGreedyL2-Str
HCGreedyL2

optimal

(b) HCGreedyL2 Accuracy vs Do-
main Size

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 0 0.05 0.1 0.15 0.2

A
pp

ro
xi

m
at

io
n

R
at

io

epsilon (ε)

Light, Domain N = 215

HCApprL2
bound

(c) HCApprL2 Accuracy vs ε

Figure 4.10: HCGreedyL2, HCGreedyL2-Str, and HCApprL2 accuracy

84

constructed HCWS over the benefit of the optimal HCWS) for HCApprL2 as ε varies
in Figure 4.10(c). Further, we also plot the theoretical bound of 1

1+ε
for reference.

Observe that HCApprL2 consistently achieves a HCWS with approximation ratio
significantly larger than the theoretical bound.

4.9 Summary

This chapter proposed a novel compression scheme for indexing wavelet synopses,
termed Hierarchically Compressed Wavelet Synopses (HCWS). Our scheme seeks to
improve the storage utilization of the wavelet coefficients and, thus, achieve improved
accuracy to user queries by reducing the storage overhead of their coordinates. To
accomplish this goal, our techniques exploit the hierarchical dependencies among
wavelet coefficients that often arise in real datasets due to the existence of large
spikes among neighboring data values and, more importantly, incorporate this goal
in the synopsis construction process. We initially presented a dynamic program-
ming algorithm, along with a streaming version of this algorithm, for constructing
an optimal HCWS that minimizes the sum squared error given a space budget.
We demonstrated that while in the worst case the benefit of our DP solution is
only equal to the benefit of the conventional thresholding approach, it can often
be significantly larger, thus achieving significantly reduced errors in the data recon-
struction. We then presented an approximation algorithm with tunable guarantees
leveraging a trade-off between synopsis accuracy and running time. Finally, we pre-
sented a fast greedy algorithm, along with a streaming version of this algorithm.
We demonstrated that both of our greedy heuristics always exhibited near-optimal
results in our experimental evaluation, with a running time on par with conven-
tional thresholding algorithms. Extensions for multidimensional datasets, running
time improvements for massive datasets and generalization to other error metrics
were also introduced. Extensive experimental results demonstrate the effectiveness
of HCWS against conventional synopsis techniques.

85

86

Chapter 5

Moving Objects Synopses

In this chapter we consider an environment of numerous moving objects, equipped
with location-sensing devices and capable of communicating with a central coordina-
tor. In this context we aim at constructing moving object synopses that summarize
the important traits of the objects’ movement.

We begin our investigation considering only the spatial dimensions of the moving
objects data streams. We construct spatial k-medoid synopses ; given a set of moving
objects P , we are asked to choose k representative objects in P as the medoids. The
optimal medoid synopsis minimizes the average Euclidean distance between the
objects’ current position and their closest medoid. Finding the optimal k medoids
is NP hard, and existing algorithms aim at approximate answers, i.e., they compute
medoids that achieve a small, yet not minimal, average distance. Similarly in this
chapter, we also aim at approximate solutions. To the best of our knowledge, this
work constitutes the first attempt on maintaining medoid synopses over moving
objects streams. First, we consider centralized monitoring, where the objects issue
location updates whenever they move. A server processes the stream of generated
updates and constantly reports the current medoid synopsis. Next, we address
distributed monitoring, where we assume that the objects have some computational
capabilities, and they take over part of the monitoring task. In particular, the
server installs adaptive filters (i.e., permissible spatial ranges, called safe regions)
to the points, which report their location only when they move outside their filters.
The distributed techniques reduce the frequency of location updates (and, thus,
the network overhead and the server load), at the cost of a slightly higher average
distance, compared to the centralized methods. Both our centralized and distributed
methods do not make any assumption about the data moving patterns (e.g., velocity
vectors, trajectories, etc) and can be applied to an arbitrary number of medoids
k. We demonstrate the efficiency and efficacy of our techniques through extensive
experiments.

For applications where the temporal dimension, e.g., recent history, of moving ob-
jects data streams is important we construct spatiotemporal synopses. We investigate
the problem of maintaining hot motion paths synopses, i.e., routes frequently fol-
lowed by multiple objects over the recent past. Motion paths approximate portions
of objects’ movement within a tolerance margin that depends on the uncertainty
inherent in positional measurements. Discovery of hot motion paths is important
to applications requiring classification/profiling based on monitored movement pat-
terns, such as targeted advertising, resource allocation, etc. To achieve this goal,

87

we delegate part of the path extraction process to objects, by assigning to them
adaptive lightweight filters that dynamically suppress unnecessary location updates
and, thus, help reducing the communication overhead. We demonstrate the bene-
fits of our methods and their efficiency through extensive experiments on synthetic
datasets.

The remainder of this chapter is organized as follows. Section 5.1 motivates the
need for moving object synopses and reviews related work. Section 5.2 describes
two centralized methods for spatial synopses. Section 5.3 presents their adaption
for a distributed setting. Section 5.4 adds the temporal dimension introducing the
concept of trajectories and motion paths. Section 5.5 describes the RayTrace al-
gorithm for filtering positional updates. Next, Section 5.6 presents the associated
index structures for maintaining spatiotemporal synopses. Section 5.7.2 includes our
experimental study. Finally, Section 5.8 summarizes this chapter.

5.1 Motivation and Related Work

To motivate the spatial k-medoid synopses consider a number of users accessing a
location based service through their mobile devices, e.g., cellular phones or PDAs.
To reduce the communication cost (and, thus, energy consumption), a number k of
supernodes are selected among the mobile devices; the supernodes collect, aggregate
and forward to the location server messages received from their vicinity. Due to sig-
nal attenuation for long distances, the devices should be close to some supernode.
In other words, the supernode selection essentially reduces to a k-medoid computa-
tion over the set of devices. Additionally, the mobile nature of the system requires
on-the-fly medoid maintenance. All the devices (supernodes or not) move frequently
and arbitrarily, necessitating supernode re-assignment in order to retain the quality
of service.

Regarding spatiotemporal synopses, consider the next motivating application.
Assume a mobile phone carrier that wishes to serve targeted advertisements to
subscribers. This service would be based on people’s profiles and continuous market
basket information about other clients that follow similar paths. For instance, in
case of a major sporting event, many subscribers are expected to move towards the
hosting venue. En route, a large number of them may stop by at certain facilities
(e.g., rest areas, kiosks, malls) to purchase food, drinks, etc. This buying pattern
(i.e., many people shopping for similar types of products at specific locations), can
be utilized to promote a particular store that has an advertising deal with the
mobile phone carrier. For example, customers passing by the advertised store during
the event may be informed about its exact location and its current promotions or
discounts.

Both examples discussed above motivate the on-line maintenance of spatial and
spatiotemporal synopses summarizing the movement of multiple objects. We analyze
their particularities in what follows.

Spatial synopses. Given a dataset P and a user-specified parameter k, the k-
medoid spatial synopsis is a subset of P consisting of k points. These points are
called the medoids and are selected so that the average distance between the points
in P and their closest medoid is minimized. The k-medoid problem arises in many
fields and application domains, including resource allocation, data mining, spatial

88

decision making, etc. Consider the example in Figure 5.1, where P = {p1, ..., p24}
is the set of residential blocks in a city, and fire stations are to be opened at three of
them. To achieve the shortest average response time to emergency calls, we should
minimize the average distance between residential blocks and their closest station.
In this case, the best blocks to open fire stations at are the k = 3 medoids of P .
In our example, the medoids are blocks p6, p15 and p22, shown in grey. The lines in
the figure signify the assignment of the residential blocks to their responsible (i.e.,
closest) fire station. Due to this implicit assignment, k-medoids have also been used
in different contexts for partitioning clustering.

p

1 p
2

p
3

p4

p5

p20

p
19

p
18

p17

p16

p15

p14

p13

p12

p11

p10

p
9p

8

p
7

p6

p22

p
23

p
21

p24

Figure 5.1: A 3-medoid example

Computing an optimal medoid synopsis is NP hard [31], and only approximate
answers are possible even for relatively small input datasets. To this end, existing
methods range from theoretical approximation schemes (e.g., [5]), to hill-climbing
approaches for moderate size datasets (e.g., [55, 74]), to heuristic-based algorithms
for disk-resident data (e.g., [28, 29, 71]). Focused also on disk-resident data, Moura-
tidis et al. [71] propose TPAQ, a method that solves k-medoid and related problems.
All previous methods assume a static P , i.e., they compute the k medoids once and
then terminate. In this chapter, we address a dynamic version of the problem, where
the points in P send frequent location updates and the medoid set needs to be con-
tinuously maintained. In accordance with most real-world scenarios, the points in P
move arbitrarily, with unknown motion patterns. We term the problem continuous
medoid monitoring.

The existing k-medoid algorithms are unsuitable for our continuous monitoring
setting. All aforementioned methods are designed for static datasets and snapshot
queries (i.e., they compute the medoids once and then terminate); their extension
to incremental medoid maintenance (in the presence of updates) is non-trivial, if
possible at all. On the other hand, the näıve approach of re-computing from scratch
the medoids (with some existing algorithm) in each update processing cycle is pro-
hibitively expensive in a highly dynamic scenario, failing to reuse previous results.
Additional problems of existing methods are: (i) the hill-climbing approaches are
very slow for moderate or large input sizes, while (ii) TPAQ are designed for disk-
resident data, with primary objective the minimization of the I/O cost; disk accesses
are not an issue in our main memory setting, where CPU time (and communication
cost, in the distributed case) is the only concern. On the other hand, an important
finding of previous work to our problem is the efficiency and, more so, the efficacy
of TPAQ, which motivates us to use a similar Hilbert-based (or, in general, space
filling curve-based) approach for our purposes.

89

Regarding medoid-related problems in dynamic settings, Guha et al. [45] solve
the k-medoid problem in a streaming environment. In the assumed model, the points
of the input dataset P stream into the system. The main memory is not enough to
store entire P , so the streamed data points are processed once and then discarded as
new ones arrive. When the entire input set is seen, the system reports its k-medoids.
[45] proposes an one-pass k-medoid algorithm that solves the above problem, using
a small amount of space. Even though this is a dynamic method, it does not apply
to our setting; in our case, (i) the memory does fit the entire dataset, but the points
therein receive location updates in an on-line fashion, and (ii) the system needs to
continuously report the k-medoid set at any time.

A problem related to k-medoids is min-dist optimal-location (MDOL) computa-
tion. The input consists of a set of data points P , a set of existing facilities (i.e., a
set of existing medoids) and a user-specified spatial region R, wherein a new facility
should open. The output of an MDOL query is the location in R where the new
facility should be built in order to minimize the overall average distance between the
data points and their closest facility. Zhang et al. [96] propose an exact method for
this problem. The main differences from the k-medoid problem is that (i) MDOL
assumes that a set of facilities already exists, (ii) it computes a single point (as
opposed to k), and (iii) the returned point does not necessarily belong to P , but it
can be anywhere inside region R.

The k-medoid problem is also related to clustering; essentially, given the medoids,
the input dataset can be partitioned into k clusters by assigning each point to its
closest medoid. The other direction, however, does not work; although there are
numerous clustering methods for large input sets (e.g., DBSCAN [27], BIRCH [97],
CURE [46] and OPTICS [4]), their objective is to create clusters such that the points
in any cluster are more similar to each other than to points in other clusters. In
addition to addressing a problem of different nature, most clustering algorithms are
computationally intensive and unsuitable for the highly dynamic environments we
tackle in this work.

In this chapter, we consider two system models corresponding to different mobile
environments. First, we address centralized medoid monitoring. In this setting, the
data objects1 in P send updates to a central server whenever they move. The server
processes the location updates and computes/reports the new medoid set. We pro-
pose two incremental monitoring algorithms that aim at minimizing the processing
time for medoid maintenance. In the centralized model, the objects issue frequent
location updates. This raises the additional concern about the communication cost.
In particular, in many mobile computing applications, the objects have scarce power
resources and we wish to preserve battery life by limiting the number of messages
transmitted to the server. This motivates our second, distributed processing model.
In this context, the server assigns safe regions to the data objects, which issue loca-
tion updates only if they move outside their region. We design effective safe region
computation strategies and incorporate them to our medoid monitoring framework.
We demonstrate that the distributed methods drastically reduce the object com-
munication overhead, while sacrificing minimal medoid quality (i.e., they result in
marginally higher average distance compared to their centralized counterparts).

The first spatial monitoring techniques were targeted at range queries, where
the data objects send location updates to a central server, and the latter continu-

1Henceforth, the terms point and object are used interchangeably.

90

ously reports the objects that fall in each monitored range. Q-index [79] processes
static range queries. It indexes the ranges using an R-tree and probes moving ob-
jects against the index in order to determine the affected queries and update their
results. SINA [67] monitors (potentially moving) range queries using a three-step
spatial join between moving objects and ranges. Mobieyes [35] and MQM [11] fol-
low a distributed processing approach, where the objects utilize their computational
capabilities and suppress some location updates. In particular, all of Q-index, Mo-
bieyes and MQM utilize the concept of safe regions, according to which each object
p is assigned a circular or rectangular region, such that p needs to issue an update
only if it exits this area (because, otherwise, it does not influence the result of any
query).

In addition to rage queries, several methods have been recently proposed for
k Nearest Neighbor (k-NN) monitoring. Koudas et al. [56] present a system for
approximate k-NN queries over streams of multidimensional points. Yu et al. [95],
Xiong et al. [93] and Mouratidis et al. [69] describe algorithms for exact k-NN
queries; all three methods index the data with a regular grid and maintain the k-
NN results by considering only object movements that may influence some query.
The aforementioned techniques aim at low processing time. There exist, however,
methods designed for network cost minimization [70, 48] by exploitation of the
objects’ computational resources.

Spatiotemporal synopses. There are three challenging issues regarding the con-
struction of spatiotemporal synopses representing the most important motion paths
of multiple moving objects. First, numerous clients are expected to be on the move,
so many object trajectories should be maintained. To enable effective decision mak-
ing (e.g., advertising, alert scenarios), they need to be grouped and summarized, so
that attention is drawn only to the most salient trails. We opt for a solution that
consolidates multiple, neighboring trajectories into motion paths at the coordinator
side. For each of them, we maintain its hotness, i.e., the number of objects that have
recently traveled through it. Thus, end users are able to visualize/analyze only the
hottest paths, and get a quick idea of the current situation. Figure 5.2 exemplifies
this process, illustrating (a) the original object trajectories, and (b) the extracted
motion paths and their hotness. As depicted, each motion path corresponds to a
set of trajectory segments that evolve similarly, approximating them within a user-
specified tolerance ε. In our framework, detected motion paths and their hotness
are maintained in light-weight index structures enabling fast access. To restrict de-
tection of salient paths to up-to-date readings, we impose a sliding time window of
size W , which excludes from consideration any locations received more than W time
units ago.

The second challenge in our design regards scalability in terms of communication
overhead and computation cost at the coordinator. The näıve approach whereby all
objects continuously relay their locations to the coordinator is practically infeasible
because it incurs excessive bandwidth consumption, and may also lead to coordi-
nator overloading due to the computational cost for motion path extraction. To
alleviate these problems, we propose a distributed approach for processing and fil-
tering location updates. Each object executes locally an algorithm (RayTrace) that
compresses on-the-fly its trajectory abiding by a tolerance ε. Thus, the object itself
reduces the number of locations that will be reported to the coordinator. Method
RayTrace sets a permissible spatiotemporal extent, and transmits the recent trail only

91

Trajectory
of object 3

Trajectory
of object 1

Trajectory of object 2
Trajectory
of object 4

(a) Input Trajectories

Tolerance:

(3)

(2)

(1)

(2)

Hotness

Motion path
²²

²²

²²

(b) Motion Paths

Figure 5.2: Motion path extraction

when the current object location falls outside this filter. Aided by the coordinator,
RayTrace then sets a new filter that reflects better its current motion pattern. This
approach exploits the computational capabilities at the client side, while substan-
tially reducing the communication overhead (due to fewer location updates) and the
processing cost at the coordinator (for summarizing trajectories into motion paths).
Such a setting is common in many sensor network applications and data streaming
systems. For example, in [75, 18, 7] the coordinator aims to minimize communica-
tion cost by appropriately setting and updating filters on data sources that enable
on-line calculation of counts, quantiles, and top-k entities, respectively. Filters of
a spatial nature have been employed in the literature on continuous monitoring of
range [36, 11, 80], nearest neighbor [48, 92] and medoid [77] queries.

Dealing with the inherent inaccuracy of location measurements is the third ma-
jor consideration. Position readings are imprecise; moreover, they carry different
degrees of uncertainty, depending on the handset capabilities and the network in-
frastructure. A GPS-enabled PDA provides more accurate location tracking than a
cell phone, which relies solely on cellular triangulation for estimating its position.
Furthermore, phones with just a few surrounding base stations offer less accurate
measurements. Our proposed framework takes into account this uncertainty, as well
as its varying degrees, and reports motion paths with discrepancy guarantees. Our
handling of inaccuracy is aligned with the increasing interest in managing imprecise
and uncertain data, such as in [9]. Closely related to our model of uncertainty, albeit
not for spatio-temporal data, is the work in [86] that proposes an index for stor-
ing and querying imprecise spatial locations modeled by some probability density
function.

The problem of discovering frequently followed, i.e., hot, routes has also been
examined in a recent work [58], but only for the case that objects are confined to
move in a known network. A hot route in this context is a sequence of edges, not
necessarily adjacent, that share a high amount of traffic. The approach presented in
this chapter differs in several aspects. First, it assumes unrestricted movement on
the xy plane; second, in measuring hotness it considers the time interval that objects
crossed each designated path; and, third, it accounts for imprecision in positional
measurements.

Our work is relevant to the domain of spatiotemporal data reduction, particularly
to the topic of trajectory compression. Most existing algorithms [12, 66] attempt to
compress singleton trajectories in isolation, by adapting the off-line Douglas-Peucker
algorithm [26]. This line simplification technique drops the least important vertices

92

to achieve a reduced representation. It is widely used in spatial databases, but it
requires multiple passes over the data, which yields it inapplicable to on-line stream-
ing applications. Sampling techniques have been proposed in [78] for compressing
isolated trajectories. Furthermore, segmentation of multiple trajectories by fitting
into axis-parallel rectangles is considered in [3, 47], where dynamic programming,
greedy and heuristic techniques are employed so as to minimize the empty space in
rectangles or to preserve pair-wise distances among trajectories.

An adaptation of Douglas-Peucker algorithm more suitable to dynamic environ-
ments was presented in [66]. Instead of considering the entire trace of an object
for applying line generalization, an opening window principle is employed to re-
duce the amount of timestamped locations considered at each step. The technique
starts processing positions in temporal order and progressively produces successive
line segments. More specifically, after fixing a starting point, the algorithm ex-
amines candidate line segments by setting their floating endpoint as much farther
as possible, provided that all intermediate locations are within a given tolerance
from the constructed segment. In case this rule is violated, two alternative policies
were proposed for fixing the endpoint of the new segment. The conservative ap-
proach (DP-nopw) chooses the location that caused the violation, i.e., the one with
the greatest distance from the examined segment. The eager approach (DP-bopw)
takes the location with the greatest possible timestamp, which is the one just before
the floating endpoint. Checking violations is very costly, since all locations between
the starting point and the current floating endpoint must be examined each time.
Overall, this method is constrained to choose a subset of the reported locations as
endpoints and thus, it offers a rather strict trajectory synopsis. In Section 5.7.2 we
describe an adaptation of this technique to hot motion path computation and use
it as a competitor.

Detecting clusters of moving objects, moving clusters and frequent motion pat-
terns has also attracted research interest. Clustering similar objects based on their
movement characteristics, e.g., current position and velocity, is discussed in [59, 52].
More related to our problem is the work in [53] for identifying dense clusters of
objects which move similarly over a long period of time. According to their defini-
tion clusters need not contain the same set of objects all along their lifetime. The
difference from the problem we tackle here is twofold. First, although moving clus-
ters evolve across a path that is interesting (i.e., hot), we only need to identify and
maintain the motion paths per se, and not the actual clusters or their constituent
objects. The second, and most important, reason is that a motion path may be hot
even when no moving cluster crosses it. To justify this, note that a moving cluster
requires objects to be close enough to each other at any time instant during a sliding
window of W time units. In contrast, a motion path can become important as long
as a sufficient number of objects have crossed it in the last W time units, no matter
if they travel synchronously or not across that path. The work in [60] computes spa-
tial regions containing frequent periodic (e.g., daily, weekly, etc) motion patterns.
Besides limitations including a priori knowledge of periodicity, this method treats
trajectories merely as sequences of locations (i.e., it eliminates timestamps), hence,
being inapplicable to our timestamp-sensitive problem.

Another topic related to our work is trajectory clustering. From a data mining
perspective, a methodology was introduced in [30] and it was based on a probabilis-
tic mixture of regression models, which the moving objects are assumed to follow.

93

Also, detecting similarity among trajectories or timeseries has also attracted con-
siderable research interest. Common problems have to do with outliers, local shifts
in time, as well as movements of varying total length. Several distance measures
have been proposed in order to identify similar trajectories or subsequences, e.g.,
Time Warping Distance [94], Longest Common Subsequence [90], and Edit Distance
on Real Sequences [15]. However, all these techniques are not particularly tailored
to handle on-line trajectories, since they require comparisons over large portions of
objects’ movement, while their objective is to group together trajectories in their
entirety. Hence, they fail to identify trajectories that locally follow common routes,
because the overall computed distance is greatly affected by distant segments. The
most recent approach was presented in [57] and proposes a technique for clustering
smaller linear partitions instead of entire trajectories stored in a database. The
main idea of the algorithm is that trajectories are first split into several parts at
characteristic points and then similar line segments are grouped together into a
cluster. For identifying common motion patterns, the minimum description length
(MDL) measure is adapted from the domain of pattern recognition, but it seems
quite sensitive to appropriate selection of parameters. Moreover, time is ignored
and trajectory segments are considered to be spatial polylines.

In conclusion, the contributions of our work can be summarized as follows.

1. We introduce two algorithms, HBM and GBM, for maintaining spatial k
medoid synopses over moving object streams.

2. We extend the aforementioned algorithms to a distributed environment apply-
ing the concept of safe areas.

3. We propose a spatiotemporal reduction algorithm, RayTrace, for compressing
the uncertain trajectory of a moving object.

4. We propose the SinglePath algorithm for extracting spatiotemporal motion path
synopses for a large set of moving objects.

5. We present extensive experimental results of our algorithms on synthetic datasets.
Our experimental study demonstrates: (i) the applicability of HBM and GBM,
and their distributed counterparts, for high rate streams; (ii) the importance
of motion paths as a spatiotemporal synopsis method; and (iii) the efficiency
of SinglePath in discovering important motion paths.

5.2 Centralized Spatial Synopses

In this section we present our centralized methods. We assume that dataset P
consists of |P | two-dimensional points. Although our methods are applicable to
higher dimensions, in accordance with most real-world mobile environments, we
focus on two dimensions. Furthermore, for ease of presentation, we consider a unit
data space, i.e., all data fall in [0,1]2. Every point p in P is a tuple of the form
< p.id, p.x, p.y >, where p.id is a unique identifier and (p.x, p.y) are p’s coordinates.
Whenever p moves, it issues an update to the monitoring server; the update has the

94

form < p.id, p.xold, p.yold, p.xnew, p.ynew >2, implying that p moves from (p.xold,
p.yold) to (p.xnew, p.ynew). The objects move frequently and arbitrarily.

We present two centralized medoid monitoring algorithms, based on a common
intuition exemplified in Figure 5.3. Dataset P contains two clusters C1 and C2.
Suppose that a 2-medoid query returns one medoid in C1 and another in C2. Now
consider that we wish to compute three medoids. Observe that, although C1 has a
smaller diameter than C2, it contains more points. Due to the larger cardinality of
C1, the distances of its points from its medoid affect the global average distance to
a greater extent than that of the points in C2. Therefore, placing the third medoid
in C1 leads to a larger distance reduction than placing it in C2. Intuitively, more
medoids must be assigned to denser areas of the data space.

C1

C2

medoids

Figure 5.3: The three medoids of a dataset consisting of two clusters

Motivated by this observation, our algorithms (i) partition the points in P into k
groups of (roughly) equal cardinality and, then, (ii) select the most centrally located
object from each group as the corresponding medoid. To quickly perform step (i)
we project the points on a one-dimensional space using a space filling curve. We
employ the Hilbert curve since it is shown to best preserve locality compared to
alternatives [68]. Next, we partition the Hilbert-sorted list of points into k groups
of equal cardinality (i.e., |P |/k). Due to the locality preservation of the Hilbert
curve, the resulting groups can be regarded as well-defined partitions of P in the
two-dimensional space. Finally, we extract a medoid from each group; the medoid is
the point in the group with the median Hilbert value, as it is expected to be the most
centrally located. The above rationale underlies both modules of our algorithms,
namely, the initial medoid computation and their maintenance.

5.2.1 The HBM Algorithm

Our first method is Hilbert-based Monitoring (HBM). It indexes the data objects
with an in-memory 2-3 B+-Tree [16] (i.e., a B+-Tree where each internal node has
two or three children), using their Hilbert values as search keys. We denote this
tree by BT. At the leaf level, except for the standard right sibling pointers, BT is
modified to also accommodate left sibling pointers. In other words, the leaves are
organized as a doubly connected linked list. When the continuous medoid query
is installed at the server for the first time and BT is built, every entry E in an
internal nodeN temporarily stores aggregate information about the number of points

2If the update is an insertion (deletion), p.xold, p.yold (p.xnew, p.ynew) are set to a negative
value.

95

E.a contained in its subtree. E.a facilitates the initial medoid computation and is
discarded afterwards.

In particular, according to our general approach, the i-th medoid of P is the
[(i-0.5)· |P |/k]-th object in the linear order imposed by the Hilbert values. HBM
locates the k medoids by performing k traversals in BT, at a total cost of O(k·
log|P |). Before each traversal i, an auxiliary variable V is initialized to zero. The
traversal starts from root NR and it checks whether V +E1.a is larger than or equal
to (i-0.5)· |P |/k, where E1 is NR’s first entry. If that is the case, the medoid is
located in E1’s subtree and, therefore, the traversal continues by visiting E1’s child.
Otherwise, E1.a is added to V and the algorithm continues similarly by checking
V +E2.a against (i-0.5)· |P |/k (E2 is NR’s second entry). V always keeps the number
of points preceding (in the Hilbert order) the point with the smallest search key that
is reachable by the traversal. Finally, the algorithm reaches the leaf node containing
the i-th medoid. For every computed medoid m, an array M of size k stores a
tuple of the form < m.id, m.hv, m.ptr, m.off>, where m.id is the identifier of the
point selected as m, m.hv is m’s Hilbert value, m.ptr points to the leaf node of
BT that accommodates m, and m.off is an integer (initialized to zero) used by
the maintenance module and whose functionality is explained later. The temporary
E.a values are discarded after the end of the initial computation step. Figure 5.4
summarizes the data structures in HBM.

2-3 B+ -Tree (BT)

M

<mi.id, mi.hv, mi.ptr, mi.off>

1 2 ... i ... k

Figure 5.4: The data structures of the HBM method

The server periodically receives updates from the objects in batches. HBM ac-
cordingly updates BT, after computing the necessary Hilbert values of the inserted,
deleted or moving points. Note that the movement of an object involves its deletion
from the index followed by its subsequent re-insertion with the new Hilbert value.
Whenever a split or merge operation moves a medoid m to a different leaf node,
the corresponding m.ptr must also be altered in M . While updates are reflected in
BT, HBM stores some book-keeping information, to be used for result maintenance
according to its medoid selection strategy. In particular, after processing the inser-
tion/deletion of a point p, HBM performs a binary search in array M to locate the
leftmost medoid mu with Hilbert value greater than (or equal to) p.hv. In case p
initiated an insertion (deletion), the algorithm increases (decreases) mu.off by one.
Particular care must be taken when a medoid m is deleted. In this case, HBM
substitutes it with its predecessor in the Hilbert order and decreases m.off by one.

After processing all updates, HBM computes the new medoids as follows. The
i-th medoid mi was formerly data point pold at position (i-0.5)· |P |/k. After the
updates, pold moves to position (i-0.5)· |P |/k +

∑i−1
j=1 mj.off. The actual medoid

must be located at position (i-0.5)· |P |/k, where P is the updated version of dataset
P (which may have different cardinality if new objects were inserted or existing ones

96

Function updateMedoids (array M, Tree T)

1. Initialize V to 0

2. For i=1 to k

3. Locate medoid mi in leaf M [i].ptr of T

4. OFF i = (i-0.5)· |P |/k- (i-0.5)· |P |/k − V

5. If OFF i = = 0, continue

6. Else if OFF i > 0, find point p located |OFF i| positions to the right of mi

7. Else if OFF i < 0, find point p located |OFF i| positions to the left of mi

8. V += M [i].off ;

(a) Assign p.id, p.hv, the pointer of the leaf of T that accommodates p and
0 to M [i].id, M [i].hv, M [i].ptr and M [i].off, respectively

Figure 5.5: The maintenance module of HBM

deleted). Therefore, the new medoid mi can be found OFF i = (i-0.5)· |P |/k- (i-0.5)·
|P |/k -

∑i−1
j=1mj.off positions to the right or left of pold in the linear order, depending

on whether OFF i is positive or negative, respectively. For every medoid mi in M ,
HBM first visits the leaf node pointed by mi.ptr to find its old corresponding point
pold. Then, using the left/right sibling pointers of BT, it locates the new medoid and
properly updates mi’s entry in M . The pseudocode of the maintenance procedure
is given in Figure 5.5.

Figure 5.6 illustrates the initial computation and maintenance of k = 2 medoids
in a set of points, which at timestamp T1 has cardinality 14. For ease of demon-
stration, we omit the BT operations and focus on the leaf level of the tree, which
constitutes a doubly connected linked list of points sorted on their Hilbert values.
At timestamp T1, the set is subdivided into two subsets of seven points each. The
medians of the subsets (p4 and p12) are selected as the medoids (m1 and m2, re-
spectively). At timestamp T2, four updates occur; p1 and p13 are deleted, and p3

and p5 move to new positions. Due to p1’s deletion, m1.off is decreased by one. On
the contrary, the deletion of p13 does not affect any off value because there is no
medoid with higher (or equal) Hilbert value. Regarding p3 and p5, recall that a point
movement is handled as a deletion followed by an insertion. Upon p3’s deletion, the
algorithm decreases m1.off. Subsequently, the point is re-inserted in a position be-
tween m1 and m2 and, therefore, m2.off is increased by one. Finally, p5’s movement
causes m2.off to decrease (due to its deletion) and immediately increase (due to its
re-insertion) by one, because both its old and new Hilbert values are between m1.hv
and m2.hv. Let old pos i be the position (in the Hilbert order) of the point that was
selected as medoid mi at timestamp T1. Also let curr pos i be the position of the
new point to become mi at timestamp T2. For m1, old pos1 = 4, curr pos1 = 3, and
OFF 1 = 1. Similarly for m2, old pos2 = 11, curr pos2 = 9, and OFF 2 = -1. The
algorithm locates the new medoids p3 and p11, by moving one position to the right

97

and one to the left from old medoids p4 and p12, respectively.

p2 p3

p1 p7

p6

p4

p5

p10

p14

p9

p8

p13

p11
p12

p1 p2 p3 p4 p5 p6 p7 p8 p10 p11 p12 p9 p13 p14

Hilbert Order
Subset 1 Subset 2

Timestamp T1

p2

p7

p6

p4

p10

p14

p9

p8

p11
p12

Timestamp T2

p5

p3
Updates:
DEL p1, m1.off--
DEL p13

MOV p3, m1.off--, m2.off++
MOV p5, m2.off--, m2.off++

p2 p4 p3 p6 p7 p5 p8 p10 p11 p12 p9 p14

Hilbert Order
Subset 1 Subset 2

m1 m2
OFF1 = curr_pos1 - old_pos1 -

m1.off = 3-4-(-2)=1
OFF2 = curr_pos2 - old_pos2 -

(m1.off+m2.off) = 9-11-(-2+1)=-1

Figure 5.6: A medoid monitoring example in HBM

5.2.2 The GBM Algorithm

The Grid-based Monitoring (GBM) algorithm utilizes a C × C regular grid for
indexing P . Let δ be the side-length of each cell. A point p in P with coordinates
(p.x, p.y) can be located in constant time in cell ci,j (i.e., the cell in column i and row
j, starting from the low-left corner of the grid), where i = b p.x/δc and j= bp.y/δc.
GBM imposes a linear order on the cells by sorting them according to the Hilbert
values of their centers. Every cell c is associated with a tuple < c.n, c.prev, c.next,
c.BT>, where c.n is the cardinality of the set of points contained in c, c.prev and
c.next are the cells preceding and succeeding c in the Hilbert order respectively, and
c.BT is a BT that indexes the points in c (using their Hilbert values as search keys).
Similarly to HBM, the internal nodes in the BT s temporarily incorporate aggregate
information, which is discarded after the initial computation of the medoids.

The grouping strategy of GBM is similar to HBM, the difference being in the
linear order of the points, which now takes into account firstly the order of the cells.
Specifically, the points are considered sorted according to the following rules; (i) a
point p1 in cell c1 precedes point p2 in cell c2, if c1 precedes c2 in their Hilbert order,
and (ii) the order of the points in the same cell is determined by their Hilbert values.
Following similar reasoning as in HBM, the i-th medoid mi is the [(i-0.5)· |P |/k]-th
object in the above order. GBM starts by initializing an auxiliary variable V to
zero and scans the linked list of the (sorted) cells. To locate medoid mi, in every
visited cell ci, it checks whether V + ci.n is larger than or equal to (i-0.5)· |P |/k. If
that is the case, it traverses ci.BT in order to find the [V + ci.n-(i-0.5)· |P |/k]-th
object in the cell, which is then selected as medoid mi. Otherwise, it adds ci.n to
V and continues to the next cell. V keeps the number of points encountered by the
scan so far. Note that GBM locates all medoids in a single linear scan of the cells,
i.e., after finding medoid mi, it does not restart the scan for finding mi+1; instead,
it continues from the cell that contains mi. Finally, it maintains an array M with
functionality identical to that used by HBM. Figure 5.7 depicts the data structures
of GBM.

For every received update, GBM first determines in constant time the cell c
where the insertion/deletion takes place, and properly updates c.BT. Subsequently,

98

M

<mi.id, mi.hv, mi.ptr, mi.off>

1 2 ... i ... k

c.BT
c

c.prev

c.next

c.n

Figure 5.7: The data structures of the GBM method

it scans M and updates the off value of the leftmost medoid with Hilbert value
larger than or equal to that of the object that initiated the update, in a similar
fashion to HBM. After processing all the updates, the maintenance module of GBM
identifies the points to be selected as the new medoids as follows. It scans M and
for every mi, it computes OFF i in a fashion similar to Section 5.2.1. Suppose that
mi lies in cell c. Then, starting from the leaf of c.BT that accommodates mi and is
pointed by mi.ptr, it searches for the point that will be selected as the new mi. This
point lies OFF i positions to the left or right of old mi, depending on whether OFF i

is negative or positive, respectively. If the search reaches the leftmost or rightmost
(in the Hilbert order) point of cell c, it continues to the cell pointed by c.prev or
c.next, respectively. Note that the algorithm may skip entire cells (i.e., it may not
traverse their BT s at all), since it can always determine whether mi is located in a
visited cell by comparing the cell’s cardinality against OFF i. After finding a new
medoid, GBM updates the respective entry in M accordingly.

In Figure 5.8 we exemplify the initial medoid computation and monitoring in
a scenario where k = 2 and P contains points p1 to p14. Consider cells c2,2 and
c1,2 (a)t timestamp T1. The Hilbert curve first passes through c2,2 and, thus, p11

precedes p1 in the GBM order, although it succeeds it in the global Hilbert order
(i.e., p11.hv > p1.hv, where p11.hv and p1.hv are the Hilbert values of p11 and p1,
respectively). At timestamp T1, the medoids are m1 = p4 and m2 = p14, since they
are at positions 0.5· |P |/k = 4 and 1.5· |P |/k = 11, respectively, in the linear order.
At timestamp T2, objects p7, p6 and p11 issue updates, as shown in the figure. Their
movement leads to OFF 1 = 1 and OFF 2 = 1, and updates the medoids to m1 = p7

and m2 = p11.

p1
p2

p3

p4

p6
p5

p7

p8

p9

p10p11

p12

p13

p14

p3 p5 p6 p4 p2 p11 p1 p13 p12 p10 p14 p7 p 8p9

c1,1 c2,1 c2,2 c3,3 c3,2 c3,1c1,2 c4,2

p3 p5 p4 p7 p2 p1 p13 p12 p10 p14 p11 p9 p8 p6

c1,1 c2,1 c2,2 c3,3 c3,2 c3,1c1,2

Updates:
MOV p7, m2.off++
MOV p6, m1.off--
MOV p11, m2.off--

m1 m2

Timestamp T1

OFF1 = curr_pos1 - old_pos1 -
m1.off = 4-4-(-1)=1

OFF2 = curr_pos2 - old_pos2 -
(m1.off+m2.off) = 11-11-(-1+0)=1

p1
p2

p3

p4

p6p5

p8

p9

p10

p11

p12

p13

p14

Timestamp T2

p7

c1,1 c2,1 c3,1

c1,2 c2,2 c3,2

c1,3 c2,3 c3,3

c1,1 c2,1 c3,1

c1,2 c2,2 c3,2

c1,3 c2,3 c3,3

Figure 5.8: A medoid monitoring example in GBM

99

Compared to HBM, index update and medoid maintenance in GBM are expected
to be faster. HBM keeps a common BT over all |P | points, which leads to an
O(log|P |) cost for every point insertion or deletion. On the other hand, letting c be
the cell of the inserted/deleted point, c.BT contains c.n objects (where c.n� |P |),
requiring O(log|c.n|) time per update. Furthermore, maintaining the medoids is
also more efficient in GBM, because for large OFF i values, entire cell contents may
be skipped when sliding in the linear point order towards the new medoid position.
Another major advantage of GBM over HBM, is the fact that its data index is
compatible with existing methods for other spatial query types; most range and
nearest neighbor monitoring algorithms use a regular grid index. This allows GBM
to be used in conjunction with other methods, in a system that answers general
spatial queries over moving objects, utilizing a single data index.

A final remark concerns the average distance, which is in general different but
similar for GBM and HBM, since their medoid selection rationale is alike. In par-
ticular, if the grid granularity in HBM is selected so that C is a power of two (recall
that the grid has C × C cells), their medoids are identical. The reason is that the
Hilbert values themselves are computed by definition based on a transparent space
partitioning with a grid, whose granularity on each axis is always a power of two
(this power is called the order of the Hilbert curve). If C is also a power of two, the
cells of the object grid contain continuous, non-overlapping intervals of the curve.
In other words, if cell c1 precedes c2 on the curve, then any point p1 in c1 precedes
every p2 in c2. In turn, this fact implies that the linear point orders of GBM and
HBM are identical and, thus, the medoids are the same.

5.3 Distributed Spatial Synopses

The main idea in the distributed version of our methods is to allow objects to move
within assigned safe regions, without having to transmit updates to the server. Since
our general medoid selection strategy relies on a linear point order, the safe regions
are defined with respect to the neighboring objects (in the order). Particularly, let
leeway λ be an integer system parameter. The safe region of the i-th object in the
order pi is a Hilbert interval SRλ

i = [pi.srL, pi.srR]. The left boundary pi.srL is
the mean of the Hilbert values of pi and its λ-th left neighbor pi−λ (i.e., pi.srL = b
(pi.hv + pi−λ.hv)/2 c). The right boundary pi.srR is set similarly with respect to the
λ-th right neighbor (i.e., pi.srR = d (pi.hv + pi+λ.hv)/2 e). Object pi may change
location without issuing an update, as long as pi.hv ∈ ((λ)()). When pi does move
outside SRλ

i , it sends its new location to the server. The latter updates its index
and the medoid set accordingly3, and assigns a new safe region to pi. Note that the
new SRλ

i is defined based on the latest point positions reported. Particularly for
GBM, the linear point order takes into account the grid cells ordering. Thus, the
safe regions are defined within each cell individually (i.e., in the Hilbert order of the
objects therein). Whenever an object exits its cell, it sends an update regardless of
whether it violates its safe region.

Figure 5.9 demonstrates the safe region function in the case of HBM (the case of
GBM is similar, subject to the aforementioned modifications), showing the position
of the points on the Hilbert curve. At timestamp T1, the safe region SRλ=2

3 (SRλ=2
3)

3Medoid maintenance at the server side is identical to the centralized case.

100

of p3 is defined according to p2 and p4 (p1 and p5) for λ = 1 (λ = 2). Similarly,
SRλ=1

4 is determined by p3 and p5. Assuming that λ = 1, at timestamp T2, points
p3 and p4 move. However, only p3 issues an update, because p4 remains within its
safe region. The solid points in the figure correspond to the positions known by
the server, the hollow point is p3’s old Hilbert value, while the grey is p4’s actual
one. Object p3 is assigned a new region, based on the Hilbert values of p2 and p4.
Note that the server is not aware of the new location of p4 and, thus, uses the last
reported one (as of T1).

22 30 48

p1 p2 p3 p4 p5

56

]39,26[1
3 ==λSR

]43,18[2
3 ==λSR

]52,39[1
4 ==λSR

6
T1

22 48
p1 p2 p3 p4 p5

56

]37,23[1
3 ==λSR

]52,39[1
4 ==λSR

6 25
T2

4230

Figure 5.9: Safe regions and update handling

5.4 Trajectories and Motion Paths

We consider objects moving in the xy plane and hence all spatial locations are points
pi = (xi, yi). A point pi accompanied with a timestamp ti is called a timepoint
and denoted as 〈pi, ti〉. The trajectory of an object consists of a set of timepoints
T = {〈pi, ti〉}. The location of an object at time ti is denoted as T(ti) = pi.
Following common practice, between any two consecutive timestamps the object is
assumed to move with constant velocity. As a result, the object’s location at time
tk, where ti, ti+1 are consecutive timestamps and ti < tk < ti+1, is considered to lie
in the (directed) segment pipi+1 and can be calculated using linear interpolation. In
the following, we assume that time is discrete and that all timestamps are multiples
of some time granule.

We say that a point pa is close to an object with trajectory T if there exists a
time tk such that pk = T(tk) is within distance ε to pa, where ε is a user-specified
tolerance parameter. In other words, the object has passed near pa at some time
tk. Even though our methods apply to any Lp metric (including the Euclidean), for
ease of illustration in the following we assume the max-distance, i.e., the distance
between pa and pk is defined as max{|xa − xk|, |ya − yk|}. Given tolerance ε, a
directed line segment papb is called a motion path if there exists a time interval
[ta, tb] such that point p(λ) = pa + λ(pb − pa) is close (within distance ε) to some
object’s location T at time t(λ) = ta + λ(tb − ta) for all λ ∈ [0, 1]4. We say that the
object crosses the motion path and, inversely, that the motion path fits the object’s
movement. Intuitively, an object traveling during time interval [ta, tb] along motion
path papb would always be within distance ε to another object.

Figure 5.10 draws with bold line the trajectory of an object moving along the
x axis versus time t. The shaded envelope represents all points that are within

4Since time is discrete, the λ values are selected so that t(λ) is a valid timestamp.

101

distance ε to the trajectory (at some timestamp). Figure 5.10 also shows 4 motion
paths, papb, pcpd, pepf , pgph. The object crosses these motion paths during the
time intervals, [ta, tb], [tc, td], [te, tf], [tg, th], respectively. A motion path paired with
its associated time interval draws a line segment on the xt plane that is completely
inside the shaded envelope.

pa

pe

pb

pc

pg

ph

pf
pd

ta te tb=tg tc tf td th

x

t

²²

Figure 5.10: Motion paths example

Note that for a single object and for any time interval one could find an infinite
number of motion paths. Fix some object i, and let Si = {〈papb, tatb〉} denote a set
of pairs consisting of a motion path papb that fits the object’s movement together
with the time interval [ta, tb] during which the object crosses it. We say that Si is
a covering motion path set for object i if at any time tk the object either crosses a
single motion path, or crosses two motion paths papb, pcpd, but tk = tb = tc and
pb ≡ pc, i.e., one’s start point is the other’s end point. A covering motion path set
implies that one could construct a hypothetical object whose trajectory is always
close to object i’s trajectory. For this reason a covering set can be considered as
a simplification of the object’s movement. A motion path is considered valid if it
belongs to a covering motion path set for some object. In the remainder of this
chapter, we only deal with valid motion paths and, thus, omit the valid denotation.
Returning to the example in Figure 5.10, S = {〈papb, tatb〉, 〈pgph, tgth〉} is a covering
motion path set for the object considered. Indeed, pb ≡ pg and tb = tg.

In the previous, we have assumed that the object’s location is accurately known.
In a more realistic setting, though, the location sensing device reports coordinates
with a degree of spatial uncertainty. The position of an object constitutes a ran-
dom vector Pi = (Xi, Yi), where Xi, Yi are independent random variables. Let us
note that there is no uncertainty regarding the timestamp. We repeat the previous
definitions considering spatial uncertainty. Given tolerance ε and δ, we say that a
point pa is close to an object with trajectory T if there exists a time tk such that
Pk = T(tk) is within distance ε to pa with probability greater than 1− δ. Assuming
the max-distance metric, we require:

Pr (max{|Xk − xa|, |Yk − ya|} ≤ ε) ≥ 1− δ.

The motion path in the presence of spatial uncertainty is defined accordingly, con-
sidering the aforementioned definition of proximity.

Recall that a motion path could fit multiple objects (or even the same object)
during different time intervals. We define the hotness of a motion path to be the

102

number of times objects have crossed it during the past W time units. The problem
of hot motion path discovery can be formulated as follows:

Problem 5.1 [Hot Motion Paths] For a set of moving objects, given
tolerance ε (or ε, δ) and a time window of length W , find covering motion
path sets and report the top-k hottest motion paths.

Intuitively, Problem 5.4 states that we wish to discover motion paths that are
crossed frequently by many objects. Depending on the chosen covering motion path
sets, the characteristics of the top-k hottest motion path can vary greatly. Since this
problem is motivated by the need to identify generalized frequent flows of movement,
the best top-k result should ideally contain motion paths that are as large as possible
(abiding by the tolerance parameters) and as hot as possible. Hot and large motion
paths clearly convey more information (e.g., objects have crossed them and stayed
close to each other for a long time), compared to short, but equally hot paths. To
assess the quality of the top-k hottest motion paths, we devise a simple metric,
termed score, that promotes longer paths. The score of a motion path is defined
as its hotness multiplied by its length, and the score of the top-k set is the average
score of its motion paths.

Given this notion of quality, the discovery process set forth in Problem 5.4 re-
quires us to carefully construct long motion paths so that they fit as many objects
as possible. Considering the freedom in choosing covering motion path sets for each
object, this clearly becomes a daunting task. To emphasize on the latter, consider
the case of a single moving object. Problem 5.4 degenerates to summarizing the
object’s trajectory with the fewest, and hence longest, segments. The solution [49]
to this degenerate case requires two passes over the timepoints and requires linear
space and time. As we discuss in the next section, such algorithms are prohibitive in
our setting since they require storing all timepoints seen so far. Before proceeding to
this section and the system model description, we summarize in Table 5.1 definitions
and notation used throughout this chapter.

Symbol Description

pi = (xi, yi) point in xy space
〈pi, ti〉 timepoint in xyt space

Ti = {〈pj , tj〉} trajectory of object i
ε, δ tolerance parameters

〈si, tis〉 start of a motion path for object i

〈ei, tie〉 end of a motion path for object i
Tolerance Square square of side 2ε around point pj

Spatial Safe Area (SSA) pyramid (li(t),ui(t)) in xyt space

Final Safe Area (FSA) rectangle (li,ui) at time te
Statei the state transmitted to coordinator

W time window
Λ processing epoch
hj hotness of motion path pjpj+1

APi available motion paths for object i
CPi candidate motion paths for object i
AVi available vertices for object i
CVi candidate vertices for object i

Table 5.1: Primary symbols and functions

We consider an environment where the moving objects are geographically dis-
tributed and can communicate with a central coordinator. Each object is capable
of sensing its own location with some uncertainty (modeled by tolerance ε, δ) and
is capable of performing simple processing tasks requiring little memory. In this

103

xx

yy

tt
hp0; t0ihp0; t0i

hp1; t1ihp1; t1i

Q1´SSA jt1Q1´SSA jt1

SSASSA

(a) t = t1

hp0; t0ihp0; t0i

xx

yy

tt

hp1; t1ihp1; t1i

hp2; t2ihp2; t2i Q2Q2

SSA jt2SSA jt2

(b) t = t2, before

xx

yy

tt

hp1; t1ihp1; t1i

hp2; t2ihp2; t2i

SSA0 jt2 =Q2\SSA jt2SSA0 jt2 =Q2\SSA jt2

hp0; t0ihp0; t0i

(c) t = t2, after

Figure 5.11: Updating the SSA

setting, the coordinator must maintain hot motion paths by collecting information
from the objects.

There are two main issues we must take into account in this setting. First, ob-
jects have scarce battery life. Sending messages over the communication channel
is typically orders of magnitude more power consuming compared to CPU process-
ing. Following common practice, we must strive to minimize communication to and
from the coordinator. Furthermore, objects listen for incoming messages only at
predefined time instances termed epochs, i.e., every Λ time units. The second issue
is the streaming nature of location measurements. An object should not store the
unbounded stream of measurements, let alone transmit it to the coordinator; rather,
it should only store information necessary to discover motion paths. Consequently,
all processing must be performed in a single pass over the stream.

We propose a two-tier approach. The first tier involves a one-pass greedy al-
gorithm, termed RayTrace, running on each object independently. The second is a
discovery strategy, termed SinglePath, that runs on the coordinator and utilizes a
lightweight index structure, termed MotionPath, for storing the hot motion paths.
The RayTrace algorithm acts as a filter maintaining a permissible spatiotemporal
extent, termed Spatial Safe Area (SSA), around the object’s trajectory. When a
location measurement falls outside the SSA, the current state of the object is sent
to the coordinator; a response will arrive in the next epoch. The coordinator ex-
ecutes the discovery strategy in the following manner. It processes messages from
all reporting objects and extracts motion paths for each of them using information
found in MotionPath. Finally, in the upcoming epoch, it sends a message to each re-
porting object informing them about the motion path they just crossed. We present
in detail the RayTrace algorithm in Section 5.5, while we discuss the index structures
and discovery strategy in Section 5.6.

5.5 Filtering Position Updates

The RayTrace algorithm constructs a permissible spatiotemporal extent (the afore-
mentioned SSA) around an object’s trajectory, given some tolerance. RayTrace is a
one-pass greedy algorithm that requires only constant per-measurement processing
time and constant space. We first examine the case of tolerance ε; the adaptation
to uncertainty, modeled by tolerance (ε, δ) is presented in Section 5.5.1.

The SSA is a spatiotemporal extent defined by the area between an initial time-
point 〈s, ts〉 and a rectangle, termed Final Safe Area (FSA), at time te. The main
property of SSA is that a motion path se exists such that e lies inside FSA and

104

the object crosses it during [ts, te]. The objective of the RayTrace algorithm is to
identify the latest timestamp te, and hence the largest SSA, such that a motion
path can be found for the [ts, te] interval. Once RayTrace determines that the SSA
cannot grow larger without violating the tolerance parameters, it notifies the coor-
dinator about its state. The coordinator executes a discovery strategy and responds
with a timepoint 〈e, te〉, which serves as the initial timepoint for the new SSA to
be constructed by RayTrace. The requirement that the endpoint is the next initial
timepoint guarantees that we construct a covering motion path set.

The SSA is uniquely identified by an initial timepoint 〈s, ts〉 and an FSA at
time te. Alternatively, we can denote the SSA as a time parameterized rectangle
(l(t),u(t)) for ts ≤ t ≤ te, so that l(ts) ≡ u(ts) ≡ s and (l(te),u(te)) defines the
FSA. We use the notation SSA|ti to imply the projection of the SSA at time ti; thus,
FSA = SSA|te.

Algorithm 1 illustrates RayTrace in detail. In the following we describe the most
important step in RayTrace, updating the SSA. Given tolerance ε, each timepoint
〈pi, ti〉 is associated with a square Q of side 2ε around pi, termed tolerance square.
When examining a timepoint 〈pi, ti〉, (Lines 24–40 in Algorithm 1), RayTrace must
update the SSA so that its projection at ti is not greater that the tolerance square.
It first computes the projection SSA|ti (Lines 26–27):

l(ti) = l(ts) +
ti − ts
te − ts

(l(te)− l(ts))

u(ti) = l(ts) +
ti − ts
te − ts

(u(te)− l(ts)).

RayTrace also constructs the tolerance square Q (Lines 29–30). Then RayTrace ex-
amines if an intersection between SSA|ti and Q exists. If it does, then the SSA
is updated by setting SSA|ti to be the intersection (Lines 33–34) and proceeds to
process the next timepoint. If an intersection does not exist, the SSA cannot ex-
tend any further in time. RayTrace sends its state to the coordinator (Line 38) and
goes into waiting mode (Line 36), expecting the server response. The state message
〈l(ts), ts, l(te),u(te), te〉 includes the initial timestamp ts, the start point s ≡ l(ts),
the final timestamp te and the FSA (l(te),u(te)). As long as an object is in waiting
mode, it stores incoming timepoints in a buffer (Lines 37 and 11). When the next
epoch arrives, RayTrace receives the final timepoint that becomes the initial time-
point for a new SSA (Lines 13–16) and proceeds with processing new timepoints.

Example 5.5.1. Figure 5.11 illustrates the process of updating the SSA, which is
depicted in all figures as the shaded spatiotemporal extent. The initial timepoint is
〈p0, t0〉; assume that a new timepoint 〈p1, t1〉 arrives, which defines the tolerance
square Q1. Since this is the first timepoint after the initial one, the SSA|t1 becomes
equal to Q1, as demonstrated in Figure 5.11(a). Next, 〈p2, t2〉 arrives defining the
tolerance square Q2, illustrated in Figure 5.11(b). The projection of the SSA at
the t = t2 plane (SSA|t2) is then intersected with Q2. Finally, the result of the
intersection forms the projection SSA′|t2 shown in Figure 5.11(c).

The RayTrace algorithm requires only constant space to store the SSA informa-
tion; a total of three points and two timestamps — i.e., the state of the object.
The main task of the algorithm is to maintain and update the SSA. For each newly
arriving timepoint, this process (projecting and intersecting) requires only constant

105

time. Also, assuming that a response from the coordinator comes in a timely man-
ner, i.e., at the next epoch, the buffer does not grow indefinitely. Therefore, RayTrace

requires O(1) space and O(1) time per processed timepoint.

5.5.1 Handling Uncertainty

We first consider the case of a single spatial dimension. A timepoint 〈Xi, ti〉 in
this case implies that the location Xi of the object at ti is a random variable.
Given tolerance ε, δ and assuming that Xi follows a normal distribution with known
parameters, we show how to adapt the RayTrace algorithm. The objective is to define
a tolerance interval for this timepoint.

The location sensing device reports the mean value xi and the standard deviation
σi of a measurement. We assume that the actual location follows a normal distri-
bution, i.e., Xi ∼ N(xi, σ

2
i). Let x′i denote a location that is close to Xi. According

to the definition of proximity in Section 5.4 we require:

Pr (|Xi − x′i| ≤ ε) ≥ 1− δ,

or equivalently:
Pr (Xi ∈ [x′i − ε, x′i + ε]) ≥ 1− δ. (5.1)

Thus, the probability that Xi is in the [x′i−ε, x′i+ε] interval must be above 1−δ.
Figure 5.12 illustrates the probability density function (pdf) of Xi. Equation 5.1
states that the shaded part of the pdf has area more than 1 − δ. This area is
calculated as:

Φ

(
x′i + ε− xi

σi

)
− Φ

(
x′i − ε− xi

σi

)
,

using the standard cumulative distribution function Φ(z) = 1
2

(
1 + erf

(
z√
2

))
. The

error function values erf(z) are typically precomputed and a table lookup is sufficient
for estimating the area.

lili uiui

x0
i¡²x0
i¡² xixi x0

ix0
i x0

i+²x0
i+²

Figure 5.12: Calculating tolerance square for 〈Xi, ti〉

As shown in Figure 5.12, x′i should not be far from the mean value xi; otherwise,
the shaded area cannot be larger than δ. Let li (ui) be the lowest (highest) value
that x′i can take without violating Equation 5.1, i.e., li, ui are the solutions to the
equation:

Φ

(
x′i + ε− xi

σi

)
− Φ

(
x′i − ε− xi

σi

)
= 1− δ (5.2)

Equation 5.2 can be solved numerically in two ways: (i) perform a binary search
on Φ’s lookup table for those x′i values satisfying the equation (exploiting Φ’s mono-
tonicity); (ii) precompute a lookup table which provides li, ui given ε and δ and

106

Algorithm 1 RayTrace algorithm
1: Procedure RayTrace
2: Input: Timepoint Stream {〈pi, ti〉}
3: Input: Initial Timepoint 〈p0, t0〉
4: Input: Tolerance ε
5: ts ← t0; te ← t0 ; // Initialization of SSA
6: l(ts)← p0 ;
7: waiting ← false ;
8: buf ← {} ;
9: while 1 do

10: Retrieve timepoint 〈pk, tk〉 ;
11: buf .pushBack(〈pk, tk〉) ;
12: if waiting and time is next epoch then
13: Retrieve timepoint from coordinator 〈pcoord, tcoord〉 ;
14: ts ← tcoord; te ← tcoord ; // Reset SSA
15: l(ts)← pcoord ;
16: waiting ← false
17: end if
18: while !waiting and buf ! = {} do
19: 〈pi, ti〉 ← buf .popFront() ;
20: if te = ts then // This is the first timepoint after ts
21: te ← ti ;
22: l(te)← pi − (ε, ε) ;
23: u(te)← pi + (ε, ε) ;
24: else
25: // Calculate FSA = SSA|ti at time ti
26: l(ti)← l(ts) + ti−ts

te−ts (l(te)− l(ts)) ;
27: u(ti)← l(ts) + ti−ts

te−ts (u(te)− l(ts)) ;
28: // Calculate tolerance area (li,ui) around pi
29: li ← pi − (ε, ε) ;
30: ui ← pi + (ε, ε) ;
31: if intersects((l(ti),u(ti)), (li,ui)) then
32: te ← ti ; // Update SSA
33: l(te)← max{l(ti), li} ;
34: u(te)← min{u(ti),ui} ;
35: else // Send message to coordinator
36: waiting ← true // Go into waiting mode
37: buf .pushBack(〈pi, ti〉)
38: Send state 〈l(ts), ts, l(te),u(te), te〉
39: end if
40: end if
41: end while
42: end while
43: End Procedure

107

simply perform a single lookup per instance. The latter option is the most efficient
method requiring constant time per timepoint. Note that since lookup tables are
given for the N(0, 1) distribution, a simple transformation is required for arbitrary
mean and standard deviation.

Observe that [li, ui] serves as the tolerance interval for the timepoint 〈Xi, ti〉 with
mean value xi and standard deviation σi. Consequently, the RayTrace algorithm can
be straightforwardly adapted to construct an SSA given uncertainty in the input
data.

An important point is that for given ε, δ a timepoint might have standard devi-
ation σi such that Equation 5.2 has no solutions. To avoid this pitfall, a proactive
approach would be to set more relaxed tolerance bounds, assuming knowledge of the
typical imprecision in the location sensing devices. A retroactive approach would
be to assign some predefined minimal tolerance area to these timepoints.

In the case of xy plane, the location Pi = (Xi, Yi) of an object at time ti is a
random vector following a joint 2d normal distribution: Pi ∼ N(pi,Σi). A location
(x′i, y

′
i) is close to (Xi, Yi) if:

Pr (max{|Xi − x′i|, |Yi − y′i|} ≤ ε) ≥ 1− δ,

or equivalently:

Pr ((|Xi − x′i| ≤ ε) ∧ (|Yi − y′i| ≤ ε)) ≥ 1− δ.

Assuming independence among x, y measurements (hence, Σi = diag ((σxi)2, (σyi)
2))

the last equation becomes:

Pr (|Xi − x′i| ≤ ε) · Pr (|Yi − y′i| ≤ ε) ≥ 1− δ. (5.3)

To simplify Equation 5.3, we require the failure probability to be less than δ
2

for
each dimension, i.e.:

Pr(Xi∈ [x′i−ε, x′i+ε])≥1− δ
2
, P r(Yi∈ [y′i−ε, y′i+ε])≥1− δ

2
,

since (1 − δ
2
)2 is marginally larger than 1 − δ for small δ values. Therefore, using

such a simplification, it is easy to revert to the single dimensional case and apply
the methodology previously described.

5.6 Spatiotemporal Synopses

The coordinator performs three basic tasks: (i) stores detected motion paths, (ii)
maintains their hotness, and (iii) executes a discovery strategy, processing the state
of reporting objects. In the following, we discuss each task in detail.

5.6.1 Storing Motion Paths

We use a lightweight grid-based index to store motion paths. The entire space is
partitioned into a predetermined number of cells and the endpoints of each motion
path are indexed, rather than the linear shape of the path itself. Every cell contains a
list of entries about endpoints that fall inside its area. Apart from storing coordinates

108

of these endpoints, each index entry also stores the respective motion path id and
the coordinates of the other endpoint. The list is sorted by motion path id and
organized in a hash table. This allows for fast insertions and deletions, requiring
constant (on average) time.

5.6.2 Hotness Maintenance

Recall that the hotness hi of a motion path pipi+1 is expressed as the number of
objects that have crossed it within a sliding window extending to the past W time
units from current time. To maintain this count for each motion path, we use a hash
table and an event queue. The hash table uses as key the motion path id i, and
stores for each i the corresponding number of objects hi. The event queue updates
the hash table when the exit timestamp tie of an object expires from window W .

Assume that we detect that an object has crossed motion path pipi+1 with id i
at [ts, te]. First, we increase (by one) the counter for pipi+1 in the hash table. The
counter will have to be decreased at time te + W , since the corresponding interval
will completely fall outside the window W . To efficiently capture these interval
expirations, upon updating hi, we en-heap tuple 〈te +W, i〉 into the event queue.

The queue is sorted on expiry time, and its head corresponds to the next expiring
interval considering all motion paths and intervals in the system. When the current
time reaches the expiry time at the head of the heap, then: (i) the top entry is
de-heaped, (ii) the hotness of the corresponding motion path is decreased in the
hash table, and (iii) if the hotness becomes 0, the motion path is deleted from the
grid and the hash table.

Each counter lookup or update in the hash table takes expected constant time.
Every en-heap or de-heap operation in the event queue costs time logarithmic to the
number of its entries. Thus, the overall computational overhead is low. Regarding
space requirements, both structures are relatively concise and can be maintained in
main memory.

5.6.3 The SinglePath Strategy

The SinglePath strategy processes all state messages {〈si, tis, li, ui, tie〉} received from
the reporting objects. Note that we use the superscript index i to refer to object
with id i. The objective of SinglePath is to find the hottest motion path that starts
from si and finishes somewhere inside the FSA (li,ui). The rationale behind this
policy is to minimize the number of paths introduced by any single object, utilizing
motion paths already discovered and crossed by other objects. In order to exploit
existing motion paths, one should first probe the grid index and examine all paths
intersecting this FSA, since these paths could be most relevant to the current motion
of object i. However, depending on the distribution of objects and the actual pattern
of their movement, it may occur that no motion path matches the current state of
that object. We distinguish three cases regarding the information retrieved from
MotionPath for each object i:

1. There are available motion paths starting from si and ending somewhere inside
the FSA (li,ui).

2. There is no available motion path, but there exist available vertices, i.e., motion
path endpoints that fall inside FSA (li,ui).

109

3. No available motion path or vertex is found.

Note that Case 1 simply involves updating the hotness for a motion path that
will be chosen among the available ones. However, Cases 2 and 3 entail construction
of a new motion path for the object at hand and this path must be stored.

SinglePath attempts to identify motion paths and to compute hotness collectively
for all objects, in order to reuse existing motion paths (thus, increasing their hotness)
and avoid introduction of multiple new ones. The strategy first handles all objects
for which available motion paths were identified (Case 1). Afterwards, it takes care
of the remaining objects that received no path at all (Cases 2 and 3). All cases
follow a two-phase paradigm: generation of candidates (motion paths or vertices)
and selection of hottest candidate. Algorithm 2 shows in detail all steps involved; in
the following, we discuss the most critical operations.

Handling candidate motion paths. Throughout this step, a search for qualifying
motion paths is performed for each object (Function GetCandidatePaths called in
Line 5). Initially, a range query is evaluated against the grid index, specifying a
rectangle (li,ui) for each object i (Line 42). We obtain motion paths sipj that
intersect (li,ui). Their respective hotness values hj are obtained after performing a
single lookup in the hash table. Let AP i = {〈sipj, hj〉} denote the set of available
motion paths retrieved for object i (Lines 43–46). Note that the hotness of each path
in AP i associated to the i-th object should increase by one (Line 44), implying the
potential influence of object i on the significance of any of these motion paths (i.e.,
if eventually were chosen as hottest). Note that hotness values are only temporarily
adjusted in AP i, leaving intact the contents of the hash table.

As soon as index probing is finished, a new set CP i defines the candidate motion
paths obtained for object i; hence, CP i = AP i (Line 5). We stress that other
objects may also accentuate hotness of paths in CP i, since the sets of available
motion paths are not disjoint (Lines 13–15). This is reasonable, considering that
potential selection of a specific motion path for an object j 6= i could modify hotness
ranking among candidate paths for i. Finally, provided that the set CP i of candidate
motion paths is non-empty, the selection phase simply involves choosing the hottest
path for each object i among those collected in its CP i (Lines 17–20).

Handling candidate vertices. Recall that this stage affects only objects for which
no motion path has been identified during the previous step. For each object i, it
provides a set of candidate end vertices for a new path that will have its starting
vertex at si. Our goal is to choose the hottest possible vertex as the endpoint of this
newly discovered motion path for object i. Intuitively, selection of the hottest vertex
increases the chances that object i crosses a hot motion path immediately afterwards.
Such vertices can be obtained from existing motion paths, while hotness of a vertex
is calculated summing the hotness of each incoming motion path (implying multiple
segments converging to them).

Let AV i = {〈pj, hj〉} denote the set of available vertices pj and their hotness hj
for object i. The construction of AV i is detailed in function GetCandidateVertices.
Similarly to Case 1, this set is obtained with a range query against the grid (Line
51). The hotness of each vertex is calculated by summing up the hotness of all
converging motion paths (Lines 54–56).

However, it is not sufficient to only consider the vertices of existing motion paths
inside the FSA. Specifically:

110

Algorithm 2 SinglePath Strategy
1: Procedure InsertMotionPaths
2: Input: Object States = {〈si, tis, l

i,ui, tie〉}
3: Rall ← ∅; //Memory-resident structure for FSA’s
4: for each state 〈si, tis, l

i,ui, tie〉 do
5: CPi ← GetCandidatePaths(si, R(li,ui));
6: Rall ← Rall ∪ {R(li,ui)};
7: end for

//Identify overlaps among final safe areas
8: for all Rk ∈ Rall do
9: Calculate overlapping areas R{j} =

⋂
k∈{j}Rk

10: R{j}.count←| {j} |;
11: Rall ← Rall ∪ {R{j}}
12: end for

//Increase hotness of paths that appear in multiple CP’s
13: for each motion path mpi ∈ CPi do
14: mpi.hotness← mpi.hotness+ | {mpi ∈ CPj , ∀j 6= i} |;
15: end for

//Selection phase
16: for each object i in States do
17: if CPi 6= ∅ then
18: //Case 1: Examine available motion paths
19: Choose motion path mpk ∈ CPi with max hotness
20: Update hotness of mpk at MotionPath index
21: else
22: CVi ← GetCandidateVertices(R(li,ui));

//Case 2: Check available end vertices of motion paths
//Adjust vertex hotness according to potential overlaps

23: for each 〈pj , hj〉 ∈ CVi do
24: Find smallest overlap Rk ∈ Rall s.t. pj ∈ Rk

25: hj ← hj + Rk.count;
26: end for

//Case 3: Generate additional candidate vertices
27: hm ← 0;
28: for each overlap Rk ∈ Rall do
29: if R(li,ui) ∩Rk 6= ∅ and Rk.count > hm then
30: Rm ← Rk;hm ← Rk.count;
31: end if
32: end for
33: vm ← Centroid(Rm);
34: CVi ← CVi ∪ {〈vm, hm〉};
35: Choose vertex pk ∈ CVi with max hotness hmax

36: Insert motion path 〈sipk, hmax〉 at MotionPath index
37: end if
38: end for
39: End Procedure

40: Function GetCandidatePaths(vertex si, rectangle R(li,ui))
41: Initialization: APi ← ∅

//Search MotionPath index
42: Pi ← motion paths {sipj} s.t. pj ∈ R(li,ui);
43: for each motion path sipj ∈ Pi do
44: hj ← hotness(sipj) + 1; //Look-up in hash table
45: APi ← APi ∪ {〈sipj , hj〉};
46: end for
47: return APi

48: End Function

49: Function GetCandidateVertices(rectangle R(li,ui))
50: Initialization: AVi ← ∅;

//Search MotionPath index
51: Vi ← end vertices of motion paths s.t. pj ∈ R(li,ui);
52: for each distinct vertex pj ∈ Vi do
53: hj ← 0;

//Sum up hotness of all converging paths
54: for each motion path qpj terminating at pj do
55: hj ← hj + hotness(qpj);
56: end for
57: AVi ← AVi ∪ {〈pj , hj〉};
58: end for
59: return AVi

60: End Function

111

R1(1)R1(1)

R13(2)R13(2) R3(1)R3(1)

R2(1)R2(1)

R23(2)R23(2)

R12(2)R12(2) R123(3)R123(3)

(a) Intersections

R1R1
R2R2

R3R3

p1p1
p2p2

(b) Choosing a Vertex

Figure 5.13: Considering overlapping rectangles for additional candidate vertices

(i) AV i may be empty if no motion path intersects the current FSA, so no vertices
will be returned (Case 3). Therefore, a new vertex must be generated, in a
way that takes into account motion patterns of other objects as well. This
policy increases the chance that new vertices could also serve as endpoints of
other motion paths in the future. Thus, we can avoid further segmentation of
paths.

(ii) When calculating hotness for a vertex, we must also take into account the
possibility that the same vertex may be returned for other objects as well,
thus increasing the probability that this vertex might be more suitable for
selection.

(iii) Newly generated motion paths for other objects will also provide additional
vertices that should not be missed.

We successfully collect additional candidate vertices (besides those in AV i), by
examining intersections of objects’ FSA rectangles. We maintain a structure Rall

that processes the final safe areas Ri (= (li,ui)) of all considered objects (Line 6),
and calculates their overlaps R{j} =

⋂
k∈{j}Rk (Lines 8–12). Each rectangle in

Rall is associated with a count (its perceived “hotness”), expressing the number of
rectangles that it overlaps with, i.e., c{j} = |{j}| (Line 10). The intuition is that if
we are forced to choose an arbitrary vertex, then its hotness should be as high as
the count of the smallest stored rectangle in which it resides. This observation is
better illustrated with the following example.

Example 5.6.1. Consider three objects and their respective FSAs, R1, R2 and R3,
that intersect with each other constructing intersections R12, R23, R13 and R123.
Figure 5.13(a) illustrates all original FSA’s and their overlaps, along with their
counts. Now, assume that there are no available vertices for objects 1 and 3 and
that there is a single available vertex p2 for object 2 with hotness 1. If we choose
p2 as the endpoint for that object’s motion path, its hotness will become 2 (one for
the existing motion path plus one for the newly discovered path). However, had we
chosen a vertex inside R123, say p1 in Figure 5.13(b), and used that as the endpoint
for the motion path of all objects, its hotness would be 3. Obviously, we should
consider introducing additional vertices from the overlapping areas with the highest
counts.

Once AV i has been found, we construct CV i = {〈pj, hj〉}, the set of candidate
vertices for each object i as follows. The candidate set is initialized to the set of

112

Figure 5.14: Common motion path inside two SSA∗s

available vertices: CV i = AV i (Line 22). Fix an object i and consider one of its
available vertices pj with hotness hj. Let Rk be the smallest intersection in which
pj resides and let its associated count ck = Rk.count. Had we chosen vertex pj
as the endpoint of all objects whose FSA overlap with Rk, then its hotness would
become hj + ck. To reflect this potential influence, we increment by ck the hotness
of pj in CV i (Lines 23–26).

As soon as this update has been performed for all available vertices of all objects,
we need to generate additional candidate vertices, as demonstrated in Example 5.6.1.
In fact, we only need to generate a single additional vertex per object. Let Rm

denote the intersected rectangle with the highest count cm among those of object
i, i.e., among those that fall inside FSA Ri. Then, the newly generated candidate
vertex for this object should lie inside Rm and, thus, must have hotness cm. We
choose one such vertex, e.g., by taking the centroid of Rm, and insert it into CV i
(Lines 27–34). This scheme guarantees that candidate vertices exist even for objects
that received neither a motion path nor a vertex from the index (Case 3). Finally, the
selection phase per object i simply involves selecting the hottest candidate vertex
among those in CV i and inserting the newly created path into the index (Lines
35–36).

5.6.4 The MultiPath Strategy

The SinglePath insertion strategy tries to find the best motion path whose endpoint
falls inside the final safe area per object. This, essentially, guarantees that the
number of motion paths per object is minimized. The insertion strategy, termed
MultiPath, we consider here, however, tries to generalize the movement of an object
by considering polylines, instead of a single motion path, inside the SSA. We use
the term multipath to denote such polylines. The rationale behind the MultiPath

strategy is that the SSA (more accurately, the projection of SSA in the xy plane,
denoted as SSA∗) can contain important hot motion paths that we should consider
as part of the trajectory synopsis. Consider Figure 5.14, where motion path papb
lies in the SSA∗s of two reporting objects. We should consider this motion path as
part of a candidate multipath of each object and increment its hotness by two.

Considering multipaths entails some difficulties. First, the reported State of
each object carries no information about the timestamps found in its trajectory.
Therefore, by definition (see Section 5.4), MultiPath can only extract weak trajectory
synopses. Second, in continuation of the previous observation, for each motion path
selected in a multipath, MultiPath should assign start and finish timestamps such

113

that the ε or (ε, δ) deficiency requirement is not violated. In other words, it is not
sufficient that the multipath is contained in the projection SSA∗; the multipath
augmented with the timestamps should define a polyline in the xyt space that is
completely contained inside the SSA. Third, the hotness of a multipath needs to be
defined in order to choose the hottest one. The last point is the easiest to address:
we simply define the hotness of a multipath as the average hotness of the motion
paths it comprises.

In the initialization step, the MultiPath strategy retrieves all motion paths that
are contained in the SSA∗ and all vertices that are contained in the FSA. To this
end, a range query on the R-Tree is issued per object with range the MBR of the
SSA∗; Figure 5.14 illustrates in dashed lines the MBRs, mbr1 and mbr2, for the
two SSA∗s. We distinguish two categories for the reporting objects based on the
information stored in MotionPath and returned by these range queries.

1. There are available motion paths, i.e., motion paths completely contained in
the SSA∗.

2. There are no available motion paths.

Objects in the latter category are processed using Step 2 of strategy SinglePath,
i.e., we simply choose a single motion path starting in si and finishing inside the
FSA. For all remaining objects i, let AP i = {〈pjpj+1, hj, qj〉} denote the non-empty
set of available motion paths pjpj+1, their respective hotness hj and their score qj
described in the following. Note that this is different definition than that of the
SinglePath strategy.

As a pre-processing step we execute the SinglePath strategy for all remaining
objects and obtain the hottest motion path, sipie, and its hotness hi for each object
i. This information is essential for the execution of MultiPath as we describe next.

Henceforth, MultiPath proceeds for each object i independently in four steps. The
first step is to calculate the score qj for each path in AP i. Then sets of paths, termed
pathsets, are created and inserted in the set of pathsets PS i. In the third step, the
candidate set of multipaths CMi is created by augmenting pathsets from PS i. In
the final step the hottest multipath is selected, appropriate timestamps are selected
for each path and inserted into MotionPath. We describe these steps in detail.

An important notion is that of the route segment. Let mi denote the midpoint
of the FSA rectangle. The directed segment simi is the route segment of object i,
which serves two purposes: (i) it defines the general direction of movement, and (ii)
it acts as a timeline for ordering the timestamps of paths by projecting them onto
it. Figure 5.15(a) depicts the route segment for an SSA.

In Step 1, MultiPath assigns a score to each motion path pjpj+1 of AP i, de-
fined as qj = hj (1 + cos (pjpj+1, s

imi)), where hj is the hotness of the path and
cos (pjpj+1, s

imi) is the cosine of the angle between the motion path and the route
segment. Intuitively, the cosine awards motion paths that are aligned to the general
direction of movement and penalizes those that follow the opposite direction. The
entries in AP i are ordered by their score.

In Step 2, MultiPath creates the set of pathsets, PS i, considering each mo-
tion path of AP i in order. Each pathset is a set of motion paths; thus, PS i =
{{pjpj+1,pkpk+1,. . .},. . .}. The first pathset inserted is a singleton with the mo-
tion path of the highest score, {p1p2}. MultiPath then proceeds iteratively: let

114

(a) Example Set APi (b) Constructing a Multipath

Figure 5.15: Example of the MultiPath insertion strategy

{p1p2, . . . ,pjpj+1} denote the last inserted pathset and let pkpk+1 be the next, in
score order, motion path to be considered. If the projection of pkpk+1 on the route
segment overlaps the projection of the pathset {p1p2, . . . ,pjpj+1} then MultiPath

skips pkpk+1. Otherwise, a new pathset, {p1p2, . . . ,pjpj+1,pkpk+1}, is inserted in
the PS i. MultiPath then proceeds with the next in order motion path.

Example 5.6.2. Consider the set of available motion paths AP i = {p7p8, p3p4,
p5p6, p1p2} sorted by their score and shown in Figure 5.15(a). We will create
the set of pathsets PS i. The first entry will be the singleton pathset {p7p8}. The
next motion path to consider is p3p4. Since its projection does not overlap the
projection of the previous entered pathset a new entry, {p7p8,p3p4}, is inserted.
Next, observe that the projection of the next motion path p5p6 overlaps with the
projection of the previous pathset. Hence, we do not consider it further. Finally, the
projection of the motion path p1p2 does not overlap with the previous pathset and,
thus, a new pathset is inserted: {p7p8,p3p4,p1p2}. Therefore, the set of pathsets is
PS i = {{p7p8}, {p7p8,p3p4}, {p7p8,p3p4,p1p2}}

In Step 3, MultiPath creates the candidate multipaths CMi from the pathsets.
The motion paths inside a pathset are arranged (ordered) according to how far from
si their projection on the route segment is — note that by construction the projection
defines a total order on motion paths. Fix a pathset of m motion paths and let
{p1p2, . . . ,pmpm+1} denote the arranged set of paths. The aim is to construct
a multipath from si to the FSA by connecting the motion paths in pathset and
inserting new paths as necessary. If vertex p1 is not si then sip1 is added to the
pathset. Similarly if pm+1 is not inside the FSA then pm+1p

i
e is added to the pathset,

where pie is the endpoint of the hottest motion path sipie returned by SinglePath.
Finally, for every pair of consecutive paths pjpj+1, pkpk+1 for which pj+1 is not pk
the motion path pj+1pk is added. The resulting pathset is a multipath and inserted
into CMi along with its average hotness.

Note that the set of candidate multipaths might not include the hottest motion
path sipie returned by the pre-processing run of SinglePath. Therefore, we need to
manually enter it, along with its hotness hi, into CMi for consideration by the next
step.

In Step 4, the multipath of CMi with the highest average hotness is selected.
The final issue that remains is how to assign timestamps to the points of the hottest
multipath. The route segment will aid this step acting as a timeline ranging from

115

tis to tie, as follows. The projection of the first vertex, si, is assigned timestamp tis
and the projection of the last vertex, e, is assigned timestamp tie. The timestamps
of all remaining vertices is calculated as follows. Consider pj and its projection p′j;

then, the timestamp assigned is tj = tis +
d(si,p′j)

d(si,e)
(tie − tis), where d is the Euclidean

distance.

Example 5.6.3. Continuing Example 5.6.2, consider the last pathset entry of PS i
ordered according to the path projections onto the route segment: {p1p2,p3p4,p7p8}.
In Step 3, the additional motion paths sip1, p2p3, p4p7 are inserted to generate the
candidate multipath sip1p2p3p4p7p8, shown in Figure 5.15(b). Assuming that this
candidate is the hottest multipath, timestamps t1, t2, t3, t4, t7 need to be calculated
for vertices p1,p2,p3,p4,p7 respectively, by projecting the vertices onto the route
segment, as shown in Figure 5.15(b).

5.7 Experiments

In this section we experimentally evaluate our methods for moving object synopses.
In particular Section 5.7.1 focuses on spatial k-medoid synopses examining the pro-
posed methods HBM, GBM, dHBM and dGBM. Then, Section 5.7.2 considers spa-
tiotemporal motion path synopses and examines the proposed RayTrace algorithm
and SinglePath strategy.

5.7.1 Spatial Synopses

We evaluate the performance of our methods, in terms of processing time (at the
server), number of object updates (i.e., communication cost for the objects) and
achieved average distance. We generate datasets of cardinality |P| ranging between
10K and 200K objects as follows. For each tested |P|, we randomly select the initial
position and the destination of each object among the points of a real spatial dataset
(North America, available at www.maproom.psu.edu/dcw). The object follows a
linear trajectory between the two points. Upon reaching the endpoint, a new random
destination is selected and the process is repeated. At every timestamp, a percentage
a of the objects move towards their endpoint (while the remaining ones remain
static), covering a distance v. We refer to a and v as the object agility and velocity,
respectively. The velocity is expressed as a percentage of the data space extent
on the x axis (we have a [0,104]×[0,104] data space). The simulation length is
100 timestamps for each setting, and the reported measurements are the average
observed values over all timestamps. We process continuous k-medoid queries for k
between 2 and 512. We evaluate our four methods HBM, GBM, dHBM, and dGBM
(where the latter two are the distributed versions of HBM and GBM). Also, we use as
a competitor the TPAQ method with a main memory R-tree, since none of the other
existing algorithms works for the large cardinalities tested, even for snapshot queries.
To adapt TPAQ to medoid monitoring, we rerun it for the timestamps where (i)
some of the medoids move, or (ii) the object updates affect the extents of the R-tree
entries at the partitioning level. In each experiment we vary one parameter, while
setting the remaining to their default values. The parameter ranges and defaults
are shown in Table 5.2. For GBM and dGBM we fine-tuned the grid granularity
(with respect to the average distance) for the default settings and use the best one

116

(100×100) in all our experiments. We use a machine with a 3.2 GHz Pentium IV
CPU and 1 GB RAM.

Parameter Default Range
Dataset cardinality |P | 100K 10, 50, 100, 150, 200 (K)
No. of medoids k 32 2, 8, 32, 128, 512
Agility a 50% 10, 30, 50, 70, 100 (%)
Velocity v 0.5% 0.1, 0.3, 0.5, 0.7, 1 (%)
Leeway λ 300 100, 200, 300, 400, 500

Table 5.2: Parameter ranges and default values

In Figure 5.16, we measure the effect of object cardinality |P |, varying it from
10K to 200K objects and setting the other parameters to their defaults. Fig-
ure 5.16(a) shows the CPU cost (in logarithmic scale) for medoid maintenance per
timestamp, i.e., the time to update the object index and the medoids. We observe
that the centralized methods have similar cost (with GBM being slightly faster).
The distributed algorithms have shorter running time, because they process fewer
updates; dHBM (dGBM) takes less than 45% (60%) of the time of its centralized
counterpart. dHBM is faster than dGBM, because the latter’s safe regions are prac-
tically smaller, as they are bounded by the grid cell boundaries (leading to more
reported updates and, thus, higher processing cost). Compared to our methods,
TPAQ is slower by an order of magnitude, mainly due to the excessive update cost
of its R-tree index. An important remark about Figure 5.16(a) (and all remaining
CPU time charts) is that we focus on pure maintenance cost, i.e., we exclude the
initial k-medoid computation. For the sake of completeness, the first-time medoid
extraction for the default setting takes 12.9, 12.4 and 54.4 sec for HBM, GBM and
TPAQ, respectively (the times for dHBM and dGBM are identical to HBM and
GBM).

Figure 5.16(b) shows the number of updates sent to/processed by the server in
the same experimental setup. All centralized methods (i.e., HBM, GBM, TPAQ)
have the same communication cost, with the objects reporting their positions when-
ever they move. On the other hand, the safe regions of dHBM and dGBM save
around 55% and 40% of these updates, respectively. dGBM avoids less updates
than dHBM, due to the necessary updates required when the objects move to an-
other cell, as explained in the context of Figure 5.16(a). Figure 5.16(c) illustrates
the achieved distance for the various cardinalities, expressed in distance units in
our [0,104]×[0,104] data space. We observe that the distributed methods compute
only slightly worse medoid sets, verifying their efficacy. Note that both versions of
GBM are better than those of HBM. The reason is that HBM is solely based on
the one-dimensional Hilbert mapping, while GBM preserves a stronger connection
to the original (two-dimensional) space, due to its spatial grid index. For a similar
reason, TPAQ achieves 4 to 11% smaller distance than our methods, exploiting the
graceful grouping properties of its R-tree. However, this benefit comes to a pro-
hibitive update cost, leading to an excessive processing time (see Figure 5.16(a)).
Another remark for TPAQ is that it improves with |P |; for a denser space, the near-
est neighbor queries (in its final step) retrieve medoids that lie closer to the “ideal”
geometric centroids of the k groups, leading to a lower distance.

117

HBM GBM dHBM dGBM TPAQ

10

10

1

10

10

10K 50K 100K 150K 200K

2

-1

-2

CPU time (sec)

|P|

(a) CPU time

centralized dHBM dGBM

0

20

40

60

80

100

120

10K 50K 100K 150K 200K

Updates issued (thousands)

|P|

(b) Number of updates

HBM GBM dHBM dGBM TPAQ

310

320

330

340

350

360

370

10K 50K 100K 150K 200K

Average distance

|P|

(c) Average distance

Figure 5.16: Performance versus dataset cardinality |P |

In Figure 5.17 we use the default settings and vary k between 2 and 512. Fig-
ure 5.17(a) shows the CPU time. Again dGBM is the fastest, for the reasons ex-
plained above. We observe that the processing cost is almost constant for each
method and unaffected by k. The reason is that, in all methods (and especially
in TPAQ), the monitoring cost is dominated by the number of processed updates
(mainly due to index maintenance), which is irrelevant to k. Furthermore, in our
algorithms, for larger k, there are more medoids to maintain, but the offsets (to
slide in the linear point order) are smaller. On the other hand, the average distance
drops with k for all methods, and our techniques’ difference from TPAQ decreases.

HBM GBM dHBM dGBM TPAQ

10

10

1

10

10

2 8 32 128 512

2

-1

-2

CPU time (sec)

k

(a) CPU time

HBM GBM dHBM dGBM TPAQ

0

200

400

600

800

1000

1200

1400

1600

1800

2 8 32 128 512

Average distance

k

(b) Average distance

Figure 5.17: Performance versus number of medoids k

In Figure 5.18 we examine the effect of object agility a, with 10% up to 100% of
the data points moving at each timestamp. The CPU cost (Figure 5.18(a)) increases
with a due to the larger number of updates processed. Figure 5.18(b) shows the
number of issued updates, which, as expected, is linear to a. In terms of average
distance (Figure 5.18(c)), there is not much fluctuation; the small differences are

118

due to the randomness of the dataset generation.

HBM GBM dHBM dGBM TPAQ

10

10

1

10

10

10 30 50 70 100

2

-1

-2

CPU time (sec)

a

(a) CPU time

centralized dHBM dGBM

0

20

40

60

80

100

120

10 30 50 70 100

Updates issued (thousands)

a

(b) Number of updates

HBM GBM dHBM dGBM TPAQ

300

310

320

330

340

350

360

370

380

10 30 50 70 100

Average distance

a

(c) Average distance

Figure 5.18: Performance versus object agility a

In Figure 5.19 we vary the object velocity v from 0.1 to 1% of the data space
extent on the x dimension. Figure 5.19(a) shows the CPU time. The centralized
methods are unaffected by v. On the other hand, the cost of the decentralized in-
creases as more objects move outside their safe regions for larger v, sending more
updates to the server for processing. This is also evident in Figure 5.19(b). Interest-
ingly, for v = 0.1%, dGBM incurs less object updates than dHBM (because its cells
are large with respect to v, without practically limiting the safe regions), while for
v = 1% their number is almost as high as for the centralized methods. The average
distance (Figure 5.19(c)) is similar for all values of v.

Figure 5.20 investigates the effect of the leeway λ, varying it from 100 to 500.
The performance of the centralized methods is identical, because they do not use
safe regions. As shown in Figure 5.20(b), for λ = 500, dHBM achieves 65% reduction
of the location updates. For dGBM, however, there is a marginal decrease, because
the safe regions are restricted by the grid cells, rather than by λ. The number of
updates has a direct impact on the CPU time and, thus, the trends in Figure 5.20(a)
are similar as in Figure 5.20(b). In terms of average distance, λ affects only dHBM,
whose performance deteriorates for larger λ. This trend verifies the tradeoff between
update cost and medoid quality. On the other hand, dGBM is not affected because
the server processes a similar set of updates.

5.7.2 Spatiotemporal Synopses

We empirically evaluate the performance of our framework, focusing on the RayTrace

algorithm and the SinglePath strategy. To better gauge its effectiveness, we compare
it against a Douglas-Peucker [26] variant, termed DP, that discovers spatial line seg-
ments close to the objects’ movement. We must note that due to its nature, the

119

HBM GBM dHBM dGBM TPAQ

10

10

1

10

10

0.1 0.3 0.5 0.7 1

CPU time (sec)

v

2

-1

-2

(a) CPU time

centralized dHBM dGBM

0

10

20

30

40

50

60

0.1 0.3 0.5 0.7 1

Updates issued (thousands)

v

(b) Number of updates

HBM GBM dHBM dGBM TPAQ

310

320

330

340

350

360

370

0.1 0.3 0.5 0.7 1

Average distance

v

(c) Average distance

Figure 5.19: Performance versus object velocity v

output line segments do not constitute proper motion paths because they are dis-
connected and, in practice, they are hardly interpretable. Hence, DP is not directly
comparable to our approach. Rather, as it purposefully benefits already existing line
segments and is not bound by the strict covering motion path set requirements, DP is
expected to assign higher hotness to segments when compared to our methodology.

The DP Method. As described in Section 5.1, the windowed variations of Douglas-
Peucker algorithm proposed in [66] offer concise trajectory synopses per object. How-
ever, unless objects follow exactly the same trajectory, all motion paths extracted
will not have hotness greater than one. We choose to relax our requirements. In par-
ticular we allow selection of line segments that are close to objects’ movements and
ignore the time dimension. In this manner, we expect segments to achieve hotness
that upper bounds the hotness achieved by motion paths. Whenever a new segment
should be created between a starting point and the chosen floating point, we do not
store it at once. Instead, we check whether an existing segment (produced earlier
by another object) falls completely within the minimum bounding box (MBB) of
the candidate segment. Each MBB is expanded by the tolerance value, to cope with
uncertainty in objects’ locations. In case such a segment exists, we need not store
the candidate segment, but we must increase the hotness of the existing path. Oth-
erwise, the new segment is stored with hotness 1. This simple policy can provide an
even more dense approximation for each trajectory, with the additional benefit that
many segments now belong to multiple object traces. On the other hand, connec-
tivity between successive motion paths for each object is no longer preserved. Note
that we measure DP’s quality for the sake of comparison with SinglePath and exclude
all time measurements. As observed in our evaluation, DP runs significantly faster
than SinglePath because it simply performs one range query per discovered segment.

Experimental Setting. All algorithms were implemented in C++ and compiled
with gcc on a 3GHz Intel Core 2 Duo CPU. All processing takes place in main

120

HBM GBM dHBM dGBM

0

1

2

3

4

5

6

7

8

100 200 300 400 500

CPU time (sec) λ
(a) CPU time

centralized dHBM dGBM

0

10

20

30

40

50

60

100 200 300 400 500

Updates issued (thousands) λ
(b) Number of updates

HBM GBM dHBM dGBM

354

356

358

360

362

364

366

100 200 300 400 500

Average distance λ
(c) Average distance

Figure 5.20: Performance versus leeway λ

memory.

We generated synthetic datasets for trajectories of moving objects traveling on
the main road network of greater Athens that covers an area of 250 km2. We
utilized a simplified graph of the network, assuming that nodes (representing major
crossroads) are connected via straight linear links and not curved polylines (as in
the real network). This network is illustrated in Figure 5.21 and consists of 1831
links connecting 1125 nodes in total. Links are ranked with weights, reflecting their
significance in vehicle circulation. Thus, links are classified into four categories:
motorways, highways, primary roads, and secondary roads.

Each object is initially assigned at a randomly chosen node. Whenever it is
allowed to move, this object chooses to follow one of the outgoing links of that node.
To make this decision, we calculate a ratio that expresses the relative weight of each
such link compared to the total weight of all links connected to the current node.
Finally, we randomly choose to follow a link with probability equal to its ratio.
We assume that all objects have equal-length displacement s between successive
positions, so that the next location will be along that link or at the opposite end
node (at most). In the sequel, as long as an object does not cross a node, it continues
its course along that link. Note, though, that movement is also controlled by another
parameter that refers to the agility of moving objects. This means that, at each
timestamp, only a portion α of the total number N of objects is allowed to move
(decided randomly), while the rest remain stopped. Therefore, the inter-arrival
time between positional measurements is not fixed for each object, but it fluctuates
with time. As in a real traffic scenario, objects tend to follow main roads for large
parts of their movement and enter into minor roads less frequently. To capture
uncertainty, white noise is then added to object locations. In particular, a value
randomly chosen between −err and err is added to both coordinates. Although
the data were generated by considering a fixed road network, the algorithms have

121

Figure 5.21: Athens road network links.

no knowledge of this fact, and, hence, cannot take advantage of it when discovering
motion paths. Intuitively, we expect the algorithms to identify the most frequently
traveled parts of the Athens’ network.

We run a set of experiments for different parameter values. We consider N =
10,000, 20,000 and 100,000 objects that travel with fixed agility a = 0.1. During
a timestamp, objects move s = 10 meters and take a location measurement with
positional error err = 1 meter. We model uncertainty with ε tolerance5; we vary
its value from ε = 1 to 20 meters. Window size is fixed to W = 100 timestamps
and at any timestamp we wish to recover the k = 10 hottest motion paths. In
each experiment we vary a single parameter, while we set the remaining to their
default values. The duration of every simulation is 250 timestamps and an epoch
corresponds to 10 timestamps. Table 5.3 summarizes the parameters involved and
their ranges; the default values are shown in bold.

Parameter Range
N 10000, 20000, 100000 objects
Tolerance (ε) 1, 2, 10, 20 meters
Positional error (err) 1 meter
Agility (α) 0.1
Displacement (s) 10 meters
Window size (W) 100 timestamps
k 10

Table 5.3: Experimental parameters.

To measure the efficiency and quality of the SinglePath strategy we use three
metrics. First, we measure the size of the index in terms of motion paths. Second,
we calculate the score (see Section 5.4) of the top-k hottest motion paths discov-
ered. Finally, we measure the processing time spent by the coordinator executing
the SinglePath strategy. The reported/plotted measurements for the aforementioned
performance factors correspond to average values per epoch.

Experimental Results. In the first set of experiments we vary the number of

5We do not consider ε, δ tolerance since the processing involved is similar, as shown in Sec-
tion 5.5.1

122

 2

 4

 6

 8

 10

 10 20 50 100

m
ot

io
n

pa
th

s
(t

h
o
u
s
a
n
d
s
)

objects (thousands)

SinglePath
DP

(a) Index Size vs N

 0

 1000

 2000

 3000

 4000

 5000

 6000

 10 20 50 100

sc
or

e

objects (thousands)

SinglePath
DP

(b) Top-k Score vs N

 1

 10

 100

 1000

 10000

 10 20 50 100

tim
e

(m
s
)

objects (thousands)

SinglePath

(c) Processing Time vs N

Figure 5.22: Varying the number of objects

 1

 10

 100

 1 2 10 20

m
ot

io
n

pa
th

s
(t

h
o
u
s
a
n
d
s
)

tolerance

SinglePath
DP

(a) Index Size vs ε

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 1 2 10 20

sc
or

e

tolerance

SinglePath
DP

(b) Top-k Score vs ε

 1

 10

 100

 1000

 1 2 10 20

tim
e

(m
s
)

tolerance

SinglePath

(c) Processing Time vs ε

Figure 5.23: Varying the tolerance parameter

123

Figure 5.24: The network as discovered by SinglePath

objects from N = 10, 000 to 100, 000 while the tolerance is fixed to ε = 10 and
show the results in Figure 5.22. Regarding the number of segments measured by the
index size, Figure 5.22(a) clearly illustrates that DP inserts fewer segments. This is
expected as DP enjoys more freedom and is not restricted to finding motion paths.
SinglePath, on the other hand, must strictly identify motion paths that fit to some
object’s movement for a time interval. Note that even for 100,000 objects, SinglePath

identifies only 16% more segments compared to DP, i.e., 10,896 versus 9,416.

Figure 5.22(b) shows the score for the top-10 hottest motion paths returned by
the two methods for varying N values. In general, since DP identifies fewer total
segments, their average hotness is larger than that of the motion paths found by
SinglePath. Interestingly, for N = 20, 000 SinglePath achieves higher score that DP.
This is attributed to the fact that in this setting SinglePath extracts longer motion
paths.

Figure 5.22(c) measures the average per epoch processing time spent by the
coordinator running SinglePath. This running time essentially determines what the
smallest epoch can be, since all processing must have finished by the next epoch so
that objects exit the waiting mode of the RayTrace algorithm as soon as possible.
As shown in the figure, for a large number of objects N > 100, 000, processing
time becomes close to 40 secs. To compensate for this behavior, one can choose to
increase the tolerance parameter. As discussed in the following, higher ε values lead
to reduced processing times.

Figure 5.23 measures the same metrics as before but fixes the number of objects
to N = 20, 000 and varies the tolerance parameter from ε = 1 to 20. Figures 5.23(a)
and 5.23(b) show that RayTrace significantly outperforms the benchmark, i.e., it
discovers fewer motion paths that are both hotter and longer. When the tolerance
increases, recall that the MBBs of the range queries that DP issues also increase.
This results in more freedom when selecting segments. Regarding the scalability
of processing time as ε increases, Figure 5.23(c) clearly illustrates the benefits of
relaxing tolerance values. The processing time decreases by a factor greater than 3
when the ε increases from 2 to 20.

To better illustrate the effectiveness of our methods, Figure 5.24 draws the en-
tire set of motion paths that have hotness greater than 0 within the time window.
Comparing to the entire network shown in Figure 5.21, the SinglePath strategy man-

124

Figure 5.25: Top 20 hottest motion paths in the center of Athens

ages to accurately extract a set of motion paths that resembles the (unknown to
SinglePath) network. Notice that motion paths with larger hotness are drawn with
thicker lines. For completeness, Figure 5.25 focuses on the center of Athens and
draws the top 20 hottest motion paths stored in the index.

5.8 Summary

In this chapter we focused on synopses for moving objects. We first studied the
problem of dynamic maintenance for spatial k-medoid synopses. We considered a
central server that continuously receives the locations of frequently moving objects
and incrementally maintains their medoid set. Without making any assumption
about the data moving patterns, our methods achieve low running times while keep-
ing the medoid quality high. Furthermore, we considered distributed environments,
where the data objects have limited power resources and attempt to preserve them
by reducing the number of updates they transmit to the server. In this context,
the server assigns safe regions to the objects, which report their position only when
they exit their region. We evaluated our methods through extensive experiments
and investigated tradeoffs between communication cost and spatial synopsis quality.

Then, we turned our attention to the temporal dimension and we investigate
spatiotemporal motion path synopses. In particular, we proposed a framework for
on-line maintenance of hot motion paths in order to detect frequently traveled trails
of numerous moving objects. We considered a distributed setting, with a coordinator
that maintains hotness and geometries of these paths in a spatiotemporal index, and
many moving clients that issue updates only for important changes in their positions.
We focused on motion patterns during the recent past, thus discarding obsolete
paths that expire from a sliding time window. We assumed freely moving objects,
i.e., not restricted by some network, and our techniques took into consideration
uncertainty inherent in location readings while providing discrepancy guarantees for
the discovered motion paths. Empirical simulations demonstrated the ability of our
methodology to provide a dense representation of objects’ movement, as well as its
efficiency with respect to on-line maintenance of spatiotemporal synopses.

125

126

Chapter 6

Conclusions and Future Work

This thesis presented various methods for managing data streams using synopses.
We focused on three data stream types, time series, update and moving objects
streams. For the first two types we have devised general-purpose structures such as
wavelet synopses and sketches for summarizing them. Then, we turned our attention
to streams produced by objects moving freely in space. We presented techniques for
creating and maintaining two distinct synopses, spatial and spatiotemporal.

6.1 Summary

Initially, we considered conventional wavelet synopses for generic multidimensional
data streams. For time series streams we introduced two novel operators, SHIFT-
SPLIT, operating directly on summaries of wavelet transformed data, allowing the
management of streams so as an appropriate balance between the necessary space
and time consuming is found. We analyzed costs for both the single dimensional
case and the two forms of multidimensional transformation. There is a significant
number of applications that can benefit from these operations. We have revisited
some data maintenance scenarios, such as transforming massive multidimensional
datasets and reconstructing large ranges from wavelet decomposed data, and utilized
the SHIFT-SPLIT operations to draw comparisons with current state of the art
techniques. Furthermore, we have provided solutions to some previously un-explored
maintenance scenarios, namely, appending data to an existing transformation and
approximation of multidimensional data streams. We demonstrated the effectiveness
of the proposed techniques both analytically and experimentally, and we conjecture
that the introduced operations can prove useful in a plethora of other applications,
as the SHIFT-SPLIT operations stem from the general properties and behavior of
wavelets.

For update multidimensional data streams, we have proposed the first known
streaming algorithms for space- and time-efficient tracking of approximate wavelet
summaries for both single and multidimensional data. Our approach relies on a
novel, Group-Count Sketch (GCS) synopsis that, unlike earlier work, satisfies all
three key requirements of effective streaming algorithms, namely polylogarithmic
space usage, small, logarithmic update times (essentially touching only a small frac-
tion of the GCS for each streaming update) and, polylogarithmic query times for
computing the top wavelet coefficients from the GCS. Our experimental results with
both synthetic and real-life data have verified the effectiveness of our approach,

127

demonstrating the ability of GCSs to support very high speed data sources.

Then, we introduced a novel indexing method for wavelet synopses, termed Hier-
archically Compressed Wavelet Synopses. Our scheme seeks to improve the storage
utilization of the wavelet coefficients and, thus, achieve improved accuracy to user
queries by reducing the storage overhead of their coordinates. To accomplish this
goal, our techniques exploit the hierarchical dependencies among wavelet coeffi-
cients that often arise in real datasets due to the existence of large spikes among
neighboring data values and, more importantly, incorporate this goal in the synop-
sis construction process. We initially presented a dynamic programming algorithm,
along with a streaming version of this algorithm, for constructing an optimal HCWS
that minimizes the sum squared error given a space budget. We demonstrated that
while in the worst case the benefit of our DP solution is only equal to the benefit
of the conventional thresholding approach, it can often be significantly larger, thus
achieving significantly reduced errors in the data reconstruction. We then presented
an approximation algorithm with tunable guarantees leveraging a trade-off between
synopsis accuracy and running time. Finally, we presented a fast greedy algorithm,
along with a streaming version of this algorithm. We demonstrated that both of our
greedy heuristics always exhibited near-optimal results in our experimental evalua-
tion, with a running time on par with conventional thresholding algorithms. Exten-
sions for multidimensional datasets, running time improvements for massive datasets
and generalization to other error metrics were also introduced. Extensive experi-
mental results demonstrate the effectiveness of HCWS against conventional synopsis
techniques.

We studied the problem of dynamic maintenance for spatial k-medoid synopses.
We considered a central server that continuously receives the locations of frequently
moving objects and incrementally maintains their medoid set. Without making any
assumption about the data moving patterns, our methods achieve low running times
while keeping the medoid quality high. Furthermore, we considered distributed en-
vironments, where the data objects have limited power resources and attempt to
preserve them by reducing the number of updates they transmit to the server. In
this context, the server assigns safe regions to the objects, which report their posi-
tion only when they exit their region. We evaluated our methods through extensive
experiments and investigated tradeoffs between communication cost and spatial syn-
opsis quality.

Finally, we turned our attention to the temporal dimension and investigated
spatiotemporal motion path synopses. In particular, we proposed a framework for
on-line maintenance of hot motion paths in order to detect frequently traveled trails
of numerous moving objects. We considered a distributed setting, with a coordinator
that maintains hotness and geometries of these paths in a spatiotemporal index, and
many moving clients that issue updates only for important changes in their positions.
We focused on motion patterns during the recent past, thus discarding obsolete
paths that expire from a sliding time window. We assumed freely moving objects,
i.e., not restricted by some network, and our techniques took into consideration
uncertainty inherent in location readings while providing discrepancy guarantees for
the discovered motion paths. Empirical simulations demonstrated the ability of our
methodology to provide a dense representation of objects’ movement, as well as its
efficiency with respect to on-line maintenance of spatiotemporal synopses.

128

6.2 Future Work

During the course of this dissertation, we have identified the following interesting
aspects that we propose as future work.

• Recently, there has been a lot of work regarding wavelet synopses over time
series streams when the measured error is different than SSE. Although many
methods have been proposed, all of them are plagued with high computational
and storage costs. A nice alternative would be to design heuristic algorithms
that approximately produce good synopses, under any error metric, with low
memory and space requirements.

• Another direction for wavelet synopses is the design of algorithms that con-
struct synopses suitable for range-aggregate queries. With only a few ex-
ceptions, the relevant literature is concerned about approximating individual
values and not ranges of values. The problem of optimizing for a broader
domain of queries is still open.

• The Group Count Sketch (GCS) presented in this thesis is a powerful summa-
rization structure for update streams. We have demonstrated its usefulness by
constructing wavelet synopses. A relevant interesting topic would be the appli-
cation of GCS in maintaining multidimensional histograms, another popular
summarization technique.

• Regarding spatial synopses for moving objects streams, the methods proposed
in this thesis for construction of k-medoids offer no quality guarantees. An
interesting direction would be to consider synopses that offer a tunable error
in approximating the objects’ current positions.

• There is little bibliography on spatiotemporal synopses. A challenging exten-
sion of the work presented in this thesis would be to provide a fully decentral-
ized algorithm for extracting hot motion path synopses, i.e., without the need
for a coordinator. This would require the motion path information indexed
in the coordinator to be distributed among the objects themselves. Several
issues regarding index content handling and handing-over arise.

In conclusion, we believe that there is a plethora of interesting and novel topics
relevant to stream synopses that need to be addressed. Hopefully this thesis will be
an instigation for further research in this area.

129

130

Bibliography

[1] N. Alon, P. B. Gibbons, Y. Matias, and M. Szegedy. Tracking join and self-join
sizes in limited storage. In Proceedings of the ACM Symposium on Principles
of Database Systems (PODS), pages 10–20, 1999.

[2] N. Alon, Y. Matias, and M. Szegedy. The space complexity of approximating
the frequency moments. In Proceedings of the ACM Symposium on Theory of
Computing (STOC), pages 20–29, 1996.

[3] A. Anagnostopoulos, M. Vlachos, M. Hadjieleftheriou, E. J. Keogh, and P. S.
Yu. Global distance-based segmentation of trajectories. In Proceedings of the
ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining (KDD), pages 34–43, 2006.

[4] M. Ankerst, M. M. Breunig, H.-P. Kriegel, and J. Sander. Optics: Ordering
points to identify the clustering structure. In Proceedings of the ACM SIGMOD
International Conference on Management of Data (SIGMOD), pages 49–60,
1999.

[5] S. Arora, P. Raghavan, and S. Rao. Approximation schemes for euclidean
k-medians and related problems. In Proceedings of the ACM Symposium on
Theory of Computing (STOC), pages 106–113, 1998.

[6] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom. Models and issues
in data stream systems. In Proceedings of the ACM Symposium on Principles
of Database Systems (PODS), pages 1–16, 2002.

[7] B. Babcock and C. Olston. Distributed top-k monitoring. In Proceedings of the
ACM SIGMOD International Conference on Management of Data (SIGMOD),
pages 28–39, 2003.

[8] R. Baraniuk and D. Jones. A signal-dependent time-frequency representation:
fast algorithm for optimal kernel design. ISP, 42(1):134–146, 1994.

[9] O. Benjelloun, A. D. Sarma, A. Y. Halevy, and J. Widom. Uldbs: Databases
with uncertainty and lineage. In Proceedings of the International Conference
on Very Large Data Bases (VLDB), pages 953–964, 2006.

[10] A. Bulut and A. K. Singh. Swat: Hierarchical stream summarization in large
networks. In Proceedings of the IEEE International Conference on Data Engi-
neering (ICDE), pages 303–314, 2003.

131

[11] Y. Cai, K. A. Hua, and G. Cao. Processing range-monitoring queries on het-
erogeneous mobile objects. In Proceedings of the International Conference on
Mobile Data Management(MDM), pages 27–38, 2004.

[12] H. Cao, O. Wolfson, and G. Trajcevski. Spatio-temporal data reduction with
deterministic error bounds. The International Journal on Very Large Data
Bases (VLDBJ), 15(3):211–228, 2006.

[13] K. Chakrabarti, M. N. Garofalakis, R. Rastogi, and K. Shim. Approximate
query processing using wavelets. In Proceedings of the International Conference
on Very Large Data Bases (VLDB), pages 111–122, 2000.

[14] M. Charikar, K. Chen, and M. Farach-Colton. Finding frequent items in data
streams. In Proceedings of the International Colloquium on Automata, Lan-
guages and Programming (ICALP), pages 693–703, 2002.

[15] L. Chen, M. T. Özsu, and V. Oria. Robust and fast similarity search for
moving object trajectories. In Proceedings of the ACM SIGMOD International
Conference on Management of Data (SIGMOD), pages 491–502, 2005.

[16] D. Comer. The ubiquitous b-tree. ACM Computing Surveys, 11(2):121–137,
1979.

[17] G. Cormode, M. Garofalakis, and D. Sacharidis. Fast approximate wavelet
tracking on streams. In Proceedings of the International Conference on Extend-
ing Database Technology (EDBT), pages 4–22, 2006.

[18] G. Cormode, M. N. Garofalakis, S. Muthukrishnan, and R. Rastogi. Holistic
aggregates in a networked world: Distributed tracking of approximate quantiles.
In Proceedings of the ACM SIGMOD International Conference on Management
of Data (SIGMOD), pages 25–36, 2005.

[19] G. Cormode and S. Muthukrishnan. What’s hot and what’s not: tracking
most frequent items dynamically. In Proceedings of the ACM Symposium on
Principles of Database Systems (PODS), pages 296–306, 2003.

[20] G. Cormode and S. Muthukrishnan. What’s new: Finding significant differences
in network data streams. In Proceedings of the IEEE International Conference
on Computer Communications (INFOCOM), 2004.

[21] A. Deligiannakis, M. N. Garofalakis, and N. Roussopoulos. A fast approxi-
mation scheme for probabilistic wavelet synopses. In SSDBM, pages 243–252,
2005.

[22] A. Deligiannakis, M. N. Garofalakis, and N. Roussopoulos. Extended wavelets
for multiple measures. ACM Transactions on on Database Systems (TODS),
32(2):10, 2007.

[23] A. Deligiannakis and N. Roussopoulos. Extended wavelets for multiple mea-
sures. In Proceedings of the ACM SIGMOD International Conference on Man-
agement of Data (SIGMOD), pages 229–240, 2003.

132

[24] A. Deshpande, C. Guestrin, S. Madden, J. M. Hellerstein, and W. Hong. Model-
driven data acquisition in sensor networks. In VLDB, pages 588–599, 2004.

[25] A. Dobra, M. N. Garofalakis, J. Gehrke, and R. Rastogi. Processing complex
aggregate queries over data streams. In Proceedings of the ACM SIGMOD
International Conference on Management of Data (SIGMOD), pages 61–72,
2002.

[26] D. Douglas and T. K. Peucker. Algorithms for the reduction of the number
of points required to represent a digitised line or its caricature. The Canadian
Cartographer Journal, 10(2):112–122, 1973.

[27] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A density-based algorithm for
discovering clusters in large spatial databases with noise. In Proceedings of the
ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining (KDD), pages 226–231, 1996.

[28] M. Ester, H.-P. Kriegel, and X. Xu. A database interface for clustering in
large spatial databases. In Proceedings of the ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (KDD), pages 94–99,
1995.

[29] M. Ester, H.-P. Kriegel, and X. Xu. Knowledge discovery in large spatial
databases: Focusing techniques for efficient class identification. In Proceed-
ings of the International Symposium on Advances in Spatial Databases (SSD),
pages 67–82, 1995.

[30] S. Gaffney and P. Smyth. Trajectory clustering with mixtures of regression
models. In Proceedings of the ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD), pages 63–72, 1999.

[31] M. R. Garey and D. S. Johnson. Computers and Intractability; A Guide to
the Theory of NP-Completeness. W. H. Freeman & Co., New York, NY, USA,
1990.

[32] M. N. Garofalakis and P. B. Gibbons. Wavelet synopses with error guarantees.
In Proceedings of the ACM SIGMOD International Conference on Management
of Data (SIGMOD), pages 476–487, 2002.

[33] M. N. Garofalakis and A. Kumar. Deterministic wavelet thresholding for
maximum-error metrics. In Proceedings of the ACM Symposium on Principles
of Database Systems (PODS), pages 166–176, 2004.

[34] M. N. Garofalakis and A. Kumar. Wavelet synopses for general error metrics.
ACM Transactions on on Database Systems (TODS), 30(4):888–928, 2005.

[35] B. Gedik and L. Liu. Mobieyes: Distributed processing of continuously moving
queries on moving objects in a mobile system. In Proceedings of the Inter-
national Conference on Extending Database Technology (EDBT), pages 67–87,
2004.

133

[36] B. Gedik and L. Liu. Mobieyes: A distributed location monitoring service using
moving location queries. IEEE Transactions on Mobile Computing, 5(10):1384–
1402, 2006.

[37] A. C. Gilbert, S. Guha, P. Indyk, Y. Kotidis, S. Muthukrishnan, and M. Strauss.
Fast, small-space algorithms for approximate histogram maintenance. In Pro-
ceedings of the ACM Symposium on Theory of Computing (STOC), pages 389–
398, 2002.

[38] A. C. Gilbert, Y. Kotidis, S. Muthukrishnan, and M. Strauss. Surfing wavelets
on streams: One-pass summaries for approximate aggregate queries. In Pro-
ceedings of the International Conference on Very Large Data Bases (VLDB),
pages 79–88, 2001.

[39] A. C. Gilbert, Y. Kotidis, S. Muthukrishnan, and M. Strauss. How to sum-
marize the universe: Dynamic maintenance of quantiles. In Proceedings of the
International Conference on Very Large Data Bases (VLDB), pages 454–465,
2002.

[40] A. C. Gilbert, Y. Kotidis, S. Muthukrishnan, and M. Strauss. One-pass wavelet
decompositions of data streams. IEEE Transactions on Knowledge and Data
Engineering (TKDE), 15(3):541–554, 2003.

[41] S. Guha. Space efficiency in synopsis construction algorithms. In Proceedings
of the International Conference on Very Large Data Bases (VLDB), pages 409–
420, 2005.

[42] S. Guha and B. Harb. Wavelet synopsis for data streams: minimizing non-
euclidean error. In Proceedings of the ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining (KDD), pages 88–97, 2005.

[43] S. Guha and B. Harb. Approximation algorithms for wavelet transform coding
of data streams. In Proceedings of the ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 698–707, 2006.

[44] S. Guha, C. Kim, and K. Shim. Xwave: Approximate extended wavelets for
streaming data. In Proceedings of the International Conference on Very Large
Data Bases (VLDB), pages 288–299, 2004.

[45] S. Guha, A. Meyerson, N. Mishra, R. Motwani, and L. O’Callaghan. Clustering
data streams: Theory and practice. IEEE Transactions on Knowledge and Data
Engineering (TKDE), 15(3):515–528, 2003.

[46] S. Guha, R. Rastogi, and K. Shim. Cure: An efficient clustering algorithm for
large databases. In Proceedings of the ACM SIGMOD International Conference
on Management of Data (SIGMOD), pages 73–84, 1998.

[47] M. Hadjieleftheriou, G. Kollios, V. J. Tsotras, and D. Gunopulos. Indexing
spatiotemporal archives. The International Journal on Very Large Data Bases
(VLDBJ), 15(2):143–164, 2006.

134

[48] H. Hu, J. Xu, and D. L. Lee. A generic framework for monitoring continu-
ous spatial queries over moving objects. In Proceedings of the ACM SIGMOD
International Conference on Management of Data (SIGMOD), pages 479–490,
2005.

[49] H. Imai and M. Iri. An optimal algorithm for approximating a piecewise linear
function. Journal of Information Processing, 9(3):169–162, 1986.

[50] M. Jahangiri, D. Sacharidis, and C. Shahabi. SHIFT-SPLIT: I/O efficient main-
tenance of wavelet-transformed multidimensional data. In Proceedings of the
ACM SIGMOD International Conference on Management of Data (SIGMOD),
pages 275–286, 2005.

[51] B. Jawerth and W. Sweldens. An Overview of Wavelet Based Multiresolution
Analyses. SIAM Review, 36(3):377–412, 1994.

[52] C. S. Jensen, D. Lin, and B. C. Ooi. Continuous clustering of moving objects.
IEEE Transactions on Knowledge and Data Engineering (TKDE), 19(9):1161–
1174, 2007.

[53] P. Kalnis, N. Mamoulis, and S. Bakiras. On discovering moving clusters in
spatio-temporal data. In Proceedings of the International Symposium on Spatial
and Temporal Databases (SSTD), pages 364–381, 2005.

[54] P. Karras and N. Mamoulis. One-pass wavelet synopses for maximum-error
metrics. In Proceedings of the International Conference on Very Large Data
Bases (VLDB), pages 421–432, 2005.

[55] L. Kaufman and P. J. Rousseeuw. Finding Groups in Data – An Introduction
to Cluster Analysis. John Wiley & Sons, 1990.

[56] N. Koudas, B. C. Ooi, K.-L. Tan, and R. Z. 0003. Approximate nn queries
on streams with guaranteed error/performance bounds. In Proceedings of the
International Conference on Very Large Data Bases (VLDB), pages 804–815,
2004.

[57] J.-G. Lee, J. Han, and K.-Y. Whang. Trajectory clustering: A partition-and-
group framework. In Proceedings of the ACM SIGMOD International Confer-
ence on Management of Data (SIGMOD), pages 593–604, 2007.

[58] X. Li, J. Han, J.-G. Lee, and H. Gonzalez. Traffic density-based discovery of
hot routes in road networks. In Proceedings of the International Symposium on
Spatial and Temporal Databases (SSTD), pages 441–459, 2007.

[59] Y. Li, J. Han, and J. Yang. Clustering moving objects. In Proceedings of the
ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining (KDD), pages 617–622, 2004.

[60] N. Mamoulis, H. Cao, G. Kollios, M. Hadjieleftheriou, Y. Tao, and D. W.
Cheung. Mining, indexing, and querying historical spatiotemporal data. In
Proceedings of the ACM SIGKDD International Conference on Knowledge Dis-
covery and Data Mining (KDD), pages 236–245, 2004.

135

[61] G. S. Manku and R. Motwani. Approximate frequency counts over data
streams. In Proceedings of the International Conference on Very Large Data
Bases (VLDB), pages 346–357, 2002.

[62] Y. Matias and D. Urieli. Optimal workload-based weighted wavelet synopses.
In Proceedings of the International Conference on Database Theory (ICDT),
pages 368–382, 2005.

[63] Y. Matias and D. Urieli. Inner-product based wavelet synopses for range-sum
queries. In Proceedings of the European Symposium on Algorithms (ESA), pages
504–515, 2006.

[64] Y. Matias, J. S. Vitter, and M. Wang. Wavelet-based histograms for selectivity
estimation. In Proceedings of the ACM SIGMOD International Conference on
Management of Data (SIGMOD), pages 448–459, 1998.

[65] Y. Matias, J. S. Vitter, and M. Wang. Dynamic maintenance of wavelet-based
histograms. In Proceedings of the International Conference on Very Large Data
Bases (VLDB), pages 101–110, 2000.

[66] N. Meratnia and R. A. de By. Spatiotemporal compression techniques for mov-
ing point objects. In International Conference on Extending Database Technol-
ogy (EDBT), pages 765–782, 2004.

[67] M. F. Mokbel, X. Xiong, and W. G. Aref. Sina: Scalable incremental processing
of continuous queries in spatio-temporal databases. In Proceedings of the ACM
SIGMOD International Conference on Management of Data (SIGMOD), pages
623–634, 2004.

[68] B. Moon, H. V. Jagadish, C. Faloutsos, and J. H. Saltz. Analysis of the cluster-
ing properties of the hilbert space-filling curve. IEEE Transactions on Knowl-
edge and Data Engineering (TKDE), 13(1):124–141, 2001.

[69] K. Mouratidis, M. Hadjieleftheriou, and D. Papadias. Conceptual partitioning:
An efficient method for continuous nearest neighbor monitoring. In Proceed-
ings of the ACM SIGMOD International Conference on Management of Data
(SIGMOD), pages 634–645, 2005.

[70] K. Mouratidis, D. Papadias, S. Bakiras, and Y. Tao. A threshold-based algo-
rithm for continuous monitoring of k nearest neighbors. IEEE Transactions on
Knowledge and Data Engineering (TKDE), 17(11):1451–1464, 2005.

[71] K. Mouratidis, D. Papadias, and S. Papadimitriou. Tree-based partition query-
ing: a methodology for computing medoids in large spatial datasets. The In-
ternational Journal on Very Large Data Bases (VLDBJ), 17(4):923–945, 2008.

[72] S. Muthukrishnan. Data streams: algorithms and applications. In Proceedings
of the ACM-SIAM Symposium on Discrete Algorithms (SODA), page 413, 2003.

[73] S. Muthukrishnan. Subquadratic algorithms for workload-aware haar wavelet
synopses. In Proceedings of the IARCS Conference on Foundations of Software
Technology and Theoretical Computer Science, 2005.

136

[74] R. T. Ng and J. Han. Efficient and effective clustering methods for spatial data
mining. In Proceedings of the International Conference on Very Large Data
Bases (VLDB), pages 144–155, 1994.

[75] C. Olston, J. Jiang, and J. Widom. Adaptive filters for continuous queries over
distributed data streams. In Proceedings of the ACM SIGMOD International
Conference on Management of Data (SIGMOD), pages 563–574, 2003.

[76] S. Papadimitriou, A. Brockwell, and C. Faloutsos. Awsom: Adaptive, hands-off
stream mining. In Proceedings of the International Conference on Very Large
Data Bases (VLDB), pages 560–571, 2003.

[77] S. Papadopoulos, D. Sacharidis, and K. Mouratidis. Continuous medoid queries
over moving objects. In Proceedings of the International Symposium on Spatial
and Temporal Databases (SSTD), pages 38–56, 2007.

[78] M. Potamias, K. Patroumpas, and T. Sellis. Sampling trajectory streams with
spatiotemporal criteria. In Proceedings of the International Conference on Sci-
entific and Statistical Database Management (SSDBM), pages 275–284, 2006.

[79] S. Prabhakar, Y. Xia, D. V. Kalashnikov, W. G. Aref, and S. E. Hambr-
usch. Query indexing and velocity constrained indexing: Scalable techniques
for continuous queries on moving objects. IEEE Transactions on Computers,
51(10):1124–1140, 2002.

[80] S. Prabhakar, Y. Xia, D. V. Kalashnikov, W. G. Aref, and S. E. Hambr-
usch. Query indexing and velocity constrained indexing: Scalable techniques
for continuous queries on moving objects. IEEE Transactions on Computers,
51(10):1124–1140, 2002.

[81] D. Sacharidis, A. Deligiannakis, and T. Sellis. Hierarchically compressed
wavelet synopses. The International Journal on Very Large Data Bases
(VLDBJ), 2008.

[82] D. Sacharidis, K. Patroumpas, M. Terrovitis, V. Kantere, M. Potamias,
K. Mouratidis, and T. Sellis. On-line discovery of hot motion paths. In
Proceedings of the International Conference on Extending Database Technol-
ogy (EDBT), pages 392–403, 2008.

[83] R. R. Schmidt and C. Shahabi. Propolyne: A fast wavelet-based algorithm for
progressive evaluation of polynomial range-sum queries. In Proceedings of the
International Conference on Extending Database Technology (EDBT), pages
664–681, 2002.

[84] C. Shahabi and R. R. Schmidt. Wavelet disk placement for efficient querying
of large multidimensional datasets. Technical report, University Of Southern
California, 2004.

[85] E. J. Stollnitz, T. D. Derose, and D. H. Salesin. Wavelets for computer graphics:
theory and applications. Morgan Kaufmann Publishers Inc., 1996.

137

[86] Y. Tao, R. Cheng, X. Xiao, W. K. Ngai, B. Kao, and S. Prabhakar. Index-
ing multidimensional uncertain data with arbitrary probability density func-
tions. In Proceedings of the International Conference on Very Large Data Bases
(VLDB), pages 922–933, 2005.

[87] N. Thaper, S. Guha, P. Indyk, and N. Koudas. Dynamic multidimensional
histograms. In Proceedings of the ACM SIGMOD International Conference on
Management of Data (SIGMOD), pages 428–439, 2002.

[88] J. S. Vitter and M. Wang. Approximate computation of multidimensional
aggregates of sparse data using wavelets. In Proceedings of the ACM SIGMOD
International Conference on Management of Data (SIGMOD), pages 193–204.
ACM Press, 1999.

[89] J. S. Vitter, M. Wang, and B. R. Iyer. Data cube approximation and histograms
via wavelets. In Proceedings of the International Conference on Information and
Knowledge Management (CIKM), pages 96–104, 1998.

[90] M. Vlachos, D. Gunopulos, and G. Kollios. Discovering similar multidimen-
sional trajectories. In Proceedings of the IEEE International Conference on
Data Engineering (ICDE), pages 673–684, 2002.

[91] M. Widmann and C.Bretherton. 50 km resolution daily precipitation for the
pacific northwest, 1949–94.

[92] W. Wu, W. Guo, and K.-L. Tan. Distributed processing of moving k-nearest-
neighbor query on moving objects. In Proceedings of the IEEE International
Conference on Data Engineering (ICDE), pages 1116–1125, 2007.

[93] X. Xiong, M. F. Mokbel, and W. G. Aref. Sea-cnn: Scalable processing of
continuous k-nearest neighbor queries in spatio-temporal databases. In Pro-
ceedings of the IEEE International Conference on Data Engineering (ICDE),
pages 643–654, 2005.

[94] B.-K. Yi, H. V. Jagadish, and C. Faloutsos. Efficient retrieval of similar time
sequences under time warping. In Proceedings of the IEEE International Con-
ference on Data Engineering (ICDE), pages 201–208, 1998.

[95] X. Yu, K. Q. Pu, and N. Koudas. Monitoring k-nearest neighbor queries over
moving objects. In Proceedings of the IEEE International Conference on Data
Engineering (ICDE), pages 631–642, 2005.

[96] D. Zhang, Y. Du, T. Xia, and Y. Tao. Progressive computation of the min-dist
optimal-location query. In Proceedings of the International Conference on Very
Large Data Bases (VLDB), pages 643–654, 2006.

[97] T. Zhang, R. Ramakrishnan, and M. Livny. Birch: An efficient data cluster-
ing method for very large databases. In Proceedings of the ACM SIGMOD
International Conference on Management of Data (SIGMOD), pages 103–114,
1996.

138

