	[image: image1.png]%“__nvmo&km_/m_ﬂ_m
\\W‘;uez(ogc —”

	Εθνικό Μετσόβιο Πολυτεχνείο

Σχολή Ηλεκτρολόγων Μηχανικών
και Μηχανικών Υπολογιστών

Τομέας Συστημάτων Μετάδοσης Πληροφορίας και Τεχνολογίας Υλικών

ΔΙΔΑΚΤΟΡΙΚΗ ΔΙΑΤΡΙΒΗ

Αθήνα, Νοέμβριος 2009

	[image: image2.png]%“__nvmo&km_/m_ﬂ_m
\\W‘;uez(ogc —”

	Εθνικό Μετσόβιο Πολυτεχνείο

Σχολή Ηλεκτρολόγων Μηχανικών
και Μηχανικών Υπολογιστών

Τομέας Συστημάτων Μετάδοσης Πληροφορίας
και Τεχνολογίας Υλικών

ΔΙΔΑΚΤΟΡΙΚΗ ΔΙΑΤΡΙΒΗ

Συμβουλευτική Επιτροπή :
Νικόλαος Ουζούνογλου
Γεώργιος Στασινόπουλος
Δημήτριος – Διονύσιος Κουτσούρης
Εγκρίθηκε από την επταμελή εξεταστική επιτροπή την 10η Νοεμβρίου 2009.

...................................

Seyed Javad Javadi Moghaddam
Διδάκτωρ Ηλεκτρολόγος Μηχανικός και Μηχανικός Υπολογιστών Ε.Μ.Π.

Copyright © Όνομα, Αρχικό Πατρώνυμου Και Το Επίθετο Του Συγγραφέα, Έτος.
Με επιφύλαξη παντός δικαιώματος. All rights reserved.

Απαγορεύεται η αντιγραφή, αποθήκευση και διανομή της παρούσας εργασίας, εξ ολοκλήρου ή τμήματος αυτής, για εμπορικό σκοπό. Επιτρέπεται η ανατύπωση, αποθήκευση και διανομή για σκοπό μη κερδοσκοπικό, εκπαιδευτικής ή ερευνητικής φύσης, υπό την προϋπόθεση να αναφέρεται η πηγή προέλευσης και να διατηρείται το παρόν μήνυμα. Ερωτήματα που αφορούν τη χρήση της εργασίας για κερδοσκοπικό σκοπό πρέπει να απευθύνονται προς τον συγγραφέα.

Οι απόψεις και τα συμπεράσματα που περιέχονται σε αυτό το έγγραφο εκφράζουν τον συγγραφέα και δεν πρέπει να ερμηνευθεί ότι αντιπροσωπεύουν τις επίσημες θέσεις του Εθνικού Μετσόβιου Πολυτεχνείου.

Detect the Live After Earthquake with CW Radar

By Seyed Javad Javadi Moghaddam

Bachelor of Science, Control Systems and Instrumentation

Ferdowsi University of Mashhad, Iran, 1995

Master of Science, Biomedical Engineering

Tarbiat Modares University of Iran, 2000

Submitted to de wavelet transfer in partial of the requirement for the degree of Doctor of Philosophy in Electronic

At the National Technical University of Athens Aug 2009

© National Technical University of Athens Sep 2009. All rights reserved.

Author: ……………………………………………………………………...…… Biomedical Engineer

Certified by: ……………………………………………………………………………
N. Ouzounoglou, Ph.D.

 Thesis Supervisor

Accepted by: ……………………………………………………………………………
Accepted by: …….……………………………………………………………………
Detect the Live After Earthquake with CW Radar

By

Seyed Javad Javadi Moghaddam

Submitted to de wavelet transfer in

Partial of the requirement for the degree

Of Doctor of Philosophy in Electronic

 Abstract
In this paper, new algorithm for Detecting the Live after Earthquake is presented. Here the application of the CW Radar with frequency 2.45GHz in a portable system for detecting the live below a mass of concrete or trash is introduced. The characters of radar hardware are shown too. The software which is used for computer process is LabVIEW, that some part of it is presented. Output of the Radar system which is analog convert to digital signal and enters into PC then for using of continues filtering by a section of the program digital signal is converted to an analog signal again. Now a software band-pass filter with variable pass band is applied, which change the quantity of the system. For the mathematic analyze a special wavelet transform (in-place kind) is applied that its algorithm and its mathematic debate are existed.

Thesis supervisor: N. Ouzounoglou,

Acknowledgments

This thesis has been the result of the compilation of dreams and efforts of some people for some years. People that inspired in me the desire to explore the new and the unknown, people that believed and encouraged my "ideas" and efforts, people that guided me in every step I made, and finally, but not lastly, people that may have patiently endured my choices and decisions. To all my family and friends and colleagues I OWE a big-big THANK YOU.

Early on in my life I realized that people grow through their efforts to define their life, through the opportunities they are given and finally through their ability to comprehend the world they live in. I would like to thank my advisor Professor Nicolaos Ouzounoglou for the opportunity he gave me for four years to work in his lab, and educate myself about life and science.

I would also like to thank Professor George Stasinopoulos for his significant and very much appreciated guidance, support and encouragement throughout my tenure at MIT.
Thank you very much professor Panayiotis Frangos for their commitment to providing very positive and insightful contribution in this thesis.
Also, I would like to thank Professor Dimitrios Koutsouris for very positive and insightful contribution in this Thesis.

Thank you very much Mr. Mixalis Sofras and Mss. Irene Karanasiou for your help in this theses.

 Finally I would like to thank from my wife, Tahere Rezaei, my son ,Seyed Ali, and my daughter ,Yeganeh Sadat, for their patience during four years with my student living.
Contents
10chapter 1.

101.
Introduction

101.1.
Thesis Objectives

111.2.
Thesis Description

14chapter 2.

142.
Background and Significance

142.1
LabVIEW Programming Environment

142.1.1
Virtual Instruments (VIs)

152.1.1.1.
Front Panel and Block Diagram

162.1.1.2.
Icon and Connector Pane

162.1.2
Graphical Environment

162.1.2.1.
Functions Palette

162.1.2.2.
Controls Palette

172.1.2.3.
Tools Palette

182.1.3.
Building a Front Panel

182.1.3.1.
Controls

182.1.3.2.
Indicators

192.1.3.3.
Align, Distribute and Resize Objects

202.1.4.
Building a Block Diagram

202.1.4.1
Express VI and Function

212.1.4.2.
Terminal Icons

212.1.4.3.
Wires

222.1.4.4.
Structures

222.1.4.4.1.
For Loop

232.1.4.4.2.
While Loop

232.1.4.4.3.
Case Structure

232.1.5.
Grouping Data: Array and Cluster

242.1.6.
Debugging and Profiling VIs

242.1.6.1.
Probe Tool

242.1.6.2.
Profile Tool

252.2.
Wavelet transform

252.2.1.
What is a wavelet?

262.2.2.
SIMPLE APPROXIMATION

30chapter 3.

303.
The Hardware of the Radar System

303.1.
Radar System

333.2.
Analogue to Digital convertor (ADC-42)

36chapter 4.

364.
Development of wavelet methods and results

364.1.
APPROXIMATION WITH SIMPLE WAVELET

364.1.1.
The Basic Wavelet Transform

384.1.2.
Significance of the Basic Wavelet Transform

384.1.3.
Shifts and Dilations of the Basic Transform

394.1.4.
THE ORDERED FAST HAAR WAVELET TRANSFORM

404.1.5.
Initialization

414.2.
The Ordered Fast Wavelet Transform

434.3.
THE IN-PLACE FAST HAAR WAVELET TRANSFORM

444.4.
Algorithm of In-Place Fast Wavelet Transform

444.5.
The program of in-place wavelet transform with use the LabVIEW

46chapter 5.

465.
Computer programming

465.1.
Base of the Software

495.2.
Block Diagram of the System

505.2.1.
Enter the data from Radar by ADC convertor

505.2.2.
Insert into a matrix (n dimensions)

515.2.2.1.
The initialize Array

515.2.2.2.
Insert into Array

525.2.2.3.
Shift register

525.2.2.4.
stop

535.2.3.
Main Input and 8point sample Graphs

545.2.3.1.
Subtract part

555.2.3.2.
Array subset

555.2.3.3.
Waveform graph 1

575.2.3.4.
Waveform graph 2

575.2.4.
Square root section

595.2.4.1.
Array size

595.2.4.2.
Logarithm base 2

605.2.4.3.
Power of 2

615.2.4.4.
Greater or equal, equal?, round toward-infinity, and

635.2.5.
In-place Fast wavelet transform section

655.2.5.1.
Index Array

675.2.5.2.
Replace Array Subset

685.2.5.3.
Wait until next ms multiple

685.2.5.4.
Multiply, Divide, Subtract, Add

715.2.6.
Comparison section

735.2.7.
Sound section

735.2.7.1.
Sound Output Configure

775.2.7.2.
Sine waveform

795.2.7.3.
Sound output Set volume

805.2.7.4.
Sound output write

845.3.
Front panel of the system

86chapter 6.

86Computer Simulation

866.1.
Computer simulator

866.1.1.
Saving program

896.1.2.
Read From File

916.2.
Some samples wave in the basement

916.2.1.
Horizontal birthing in the basement

936.2.2.
Moving in front of Radar System in the basement

956.2.3.
Vertical birthing in front of Radar System in the basement

976.3.
Some samples wave behind the concrete wall

976.3.1.
Horizontal birthing

1006.3.2.
Moving

1016.4.
Some samples wave behind the concrete wall with ion pipe

1026.4.1.
Horizontal birthing

1046.4.2.
Horizontal birthing

106chapter 7.

1067.
Conclusion

1067.1.
Use of in-place wavelet transform in this paper:

109chapter 8.

1098.
Impact and future Direction

1098.1.
Using another kind of ADC

1098.2.
Making use of another kind of wavelet transform

1098.2.1.
Wavelet Transform Daubechies4

1118.2.2.
Wavelet Transform Daubechies4 Inverse PtByPt

1138.2.3.
Wavelet Transform Daubechies4 PtByPt

1148.2.4.
Wavelet Transform Daubechies4 Inverse PtByPt

1158.3.
Using some filter in the system

1158.4.
Using the system for another target

116References

List of Figures

10Fig. 1.
The kinds of splits created by national earthquakes

11Fig. 2.
The part of the earthquake damages in Bam, Iran December 26, 2003.

12Fig. 3.
Block diagram of Detect the Live after Earthquake with CW Radar System

15Fig. 4.
LabVIEW windows: front panel and block diagram.

16Fig. 5.
Functions palette.

17Fig. 6.
Controls palette.

17Fig. 7.
Tools palette.

19Fig. 8.
Indicator palettes.

19Fig. 9.
Menu for align, distribute, resize, and reorder objects.

20Fig. 10.
Block Diagram objects: (a) VI, (b) Express VI, and (c) function.

21Fig. 11.
Icon versus expandable node.

21Fig. 12.
Terminal icon examples displayed in a BD.

22Fig. 13.
Basic types of wires [2].

27Fig. 14.
(a) Signal, (b) Sample, (c) Approximation

[image: image4.png]@[0.1[

Fig. 15.
(a) ; (b) [image: image6.png]@[0.w[

; (c) [image: image8.png]@lw.w[

; (d) [image: image10.png]c. @[, w[

28

31Fig. 16.
CW Radar System Block Diagram

32Fig. 17.
CW Radar Circuits Electronic Schematics -1

32Fig. 18.
8th Order Active Low Pass Filter

34Fig. 19.
A photo of ADC-42

34Fig. 20.
Ribbon cable connections for ADC-42 board and Digital Output for connection to one parallel port.

[image: image12.png]@[0.1[= @[0.12[+@[12.1[

Fig. 21.

36

[image: image14.png]W[0.1[= @[012[—@[121]

Fig. 22.

37

[image: image16.png]©[0,12]

([0 1[+@[01]

Fig. 23.
Top:). Bottom:[image: image18.png]@[121[= 12(p[0.1[—@[0.1]

).
38

47Fig. 24.
Block Diagram of using the software for Detect the Live after Earthquake System

48Fig. 25.
Block diagram of Detector the Live after Earthquake with CW Radar System

49Fig. 26.
Compliment Block diagram of the program

50Fig. 27.
Icon of Analog to Digital Convertor (ADC-42) in lab-view

51Fig. 28.
Part of Lab-View for insert digital input into a Array

53Fig. 29.
Number of the samples indicator. (a) In block diagram. (b) in front panel

54Fig. 30.
Part of the program for Main Input and 16point sample Graphs (Block Diagram)

56Fig. 31.
A sample of waveform graph 1

57Fig. 32.
A sample of waveform graph 2

58Fig. 33.
Square root section

59Fig. 34.
“Array size” a Function of lab-view

60Fig. 35.
“Logarithm base 2” a Function of lab-view

60Fig. 36.
“Power of 2” a Function of lab-view

61Fig. 37.
“Greater Or Equal? ” a Function of lab-view

62Fig. 38.
“Equal? ” a Function of lab-view

62Fig. 39.
“Round Toward –Infinity” a Function of lab-view

63Fig. 40.
“and” a Function of lab-view

64Fig. 41.
Input signal and its In-place wavelet transform of it

65Fig. 42.
Block diagram of Fast In-place wavelet transform

65Fig. 43.
“Index Array” a function of lab-view

67Fig. 44.
“Replace Array” a function of lab-view

68Fig. 45.
“wait until next ms multiple” a function of lab-view

69Fig. 46.
“Multiply” a function of lab-view

69Fig. 47.
“Divide” a function of lab-view

70Fig. 48.
“Subtract” a function of lab-view

71Fig. 49.
“Add” a function of lab-view

72Fig. 50.
Comparison section

74Fig. 51.
Sound section

74Fig. 52.
“Sound Output Configure” a function of lab-view

75Fig. 53.
Sound format that have chose

76Fig. 54.
“error out” a function of lab view

77Fig. 55.
“Sine waveform” a function of lab-view

78Fig. 56.
“sampling info” that have used for sine waveform here

79Fig. 57.
“sound output set volume” a function of lab-view

80Fig. 58.
“sound output write” a function of lab-view

81Fig. 59.
“sine waveform” that use for product the sound

82Fig. 60.
“sound output clear” a function of lab-view

83Fig. 61.
“simple error handler” a function of lab-view

84Fig. 62.
Front panel of the system

87Fig. 64.
“File Path Control” a function of lab-view

88Fig. 65.
“Write To Measurement File” a function of lab-view

90Fig. 66.
The block diagram used for reading the existing file

90Fig. 67.
“Read from Measurement File” a function of lab-view

92Fig. 68.
Horizontal birthing in front of the Radar system part1

93Fig. 69.
Horizontal birthing in front of the Radar system part 2

94Fig. 70.
Moving in front of the Radar system part1

95Fig. 71.
Horizontal birthing in front of the Radar system part2

96Fig. 72.
Vertical birthing in front of Radar System part1

97Fig. 73.
Vertical birthing in front of Radar System part1

98Fig. 74.
Horizontal birthing behind the wall and in front of the Radar System part1

99Fig. 75.
Horizontal birthing behind the wall and in front of the Radar System part2

100Fig. 76.
Moving behind the wall and in front of the Radar System part1

101Fig. 77.
Moving behind the wall and in front of the Radar System part1

102Fig. 78.
Moving behind the wall with ion pipe and in front of the Radar System part1

103Fig. 79.
Moving behind the wall with ion pipe and in front of the Radar System part2

104Fig. 80.
Birthing and standing between the concrete wall with ion pipe and the Radar system part1

105Fig. 81.
Birthing and standing between the concrete wall with ion pipe and the Radar system part1

107Fig. 82.
A real sample of Radar System output the changes in amplitude are made by moving or birthing a live below the mass of concrete.

107Fig. 83.
A sample of last 8 point of Radar output

108Fig. 84.
The wavelet transform of signal of Fig83.

110Fig. 85.
“Wavelet Transform Daubechies4” a function of lab-view

111Fig. 86.
“Wavelet Transform Daubechies4 Inverse PtByPt” a function of lab-view

113Fig. 87.
A sample of “Wavelet Transform Daubechies4”

113Fig. 88.
“Wavelet Transform Daubechies4” a function of lab-view

114Fig. 89.
“Wavelet Transform Daubechies4” a function of lab-view

List of tables
31Table. 1.
CW Radar Performance Measures

33Table. 2.
The characters of the Analogue To Digital Convertor

44Table. 3.
Algorithm of In-place Fast wavelet transform

1. Introduction

1.1. Thesis Objectives

As we know an earthquake is the result of a sudden release of energy in the Earth's crust that creates seismic waves. Earthquakes are recorded with a seismometer, also known as a seismograph. The moment magnitude of an earthquake is conventionally reported. The unit of earthquake is Richter. If magnitude is 3 or lower, earthquakes are being mostly imperceptible and magnitude 7 causing serious damage over large areas.

[image: image19.png]

Fig. 1. The kinds of splits created by national earthquakes

Earthquakes will occur anywhere within the earth where there is sufficient stored elastic strain energy to drive fracture propagation along a fault plane. In the case of transform or convergent type plate boundaries, which form the largest fault surfaces on earth, will move past each other. Most boundaries have asperities and this leads to a form of stick-slip behavior. A boundary may split in two another kind that it seem in Fig.1.[1]
After per earthquake unfortunately die a lot of people.

There are some injury people below the damage of earthquake that if detect on time will save. For example in December 26, 2003 occurred an earthquake in Bam, IRAN that caused dying of about forty two thousand people. Fig. 2 shows part of damage after this earthquake. 6 days after this earthquake found an old man, about 85 years, who was still alive.

Fig. 2. The part of the earthquake damages in Bam, Iran December 26, 2003.

In present system it has been used from Radar wave with special separating techniques for raise quality of detecting the live after earthquake. For sensitivity improvement, wavelet transform have been used.

1.2. Thesis Description

We have used a radar sender and a receiver 2.4MHz, output of the hardware is the deference between of these two waves (With a deferential amplifier).

Then with an Analog to Digital convertor (ADC-42) as it is seen in Fig. 3 we transfer this difference to the computer and after that we process this with the LabVIEW software.

[image: image21.png]Radar
system

ADC42

v

computer

Fig. 3. Block diagram of Detect the Live after Earthquake with CW Radar System
In this thesis we will see:

Chapter 2

We will see some Background and Significance that is “Lab View” programming and the base of the wavelet transforms.

Chapter 3

The Hardware of the Radar System is explained in this chapter. As in this system is used a prepared radar system from previous project (detect the leak of the flow water in the pipe) the details of the hardware didn’t explain completely and is referred to the reference.

And the characters of the another hardware “Analog to Digital Convertor” ,ADC42, is shown in this chapter.

Chapter 4

 This chapter is “Development of wavelet methods and results” and we explain in this chapter the In-Place wavelet transform that have used in this project contain the algorithms of this method.
Chapter 5

This chapter contains the software of the system that is written by LabVIEW. In addition you can see the details of the function pallet of Lab-view program that have used in the theses.

Chapter 6

We have showed two programs for saving the samples in environment and recovering it in the Lab. You can see some samples in this chapter.

Chapter 7

In this chapter the conclusion is shown.

Chapter 8

Here some future work for the system is com.
2. Background and Significance

2.1 LabVIEW Programming Environment

LabVIEW constitutes a graphical programming environment that allows one to design and analyze a DSP system in a shorter time as compared to text-based programming environments. LabVIEW graphical programs are called virtual instruments (VIs). VIs run based on the concept of data flow programming. This means that execution of a block or a graphical component is dependent on the flow of data, or more specifically a block executes when data is made available at all of its inputs.

Output data of the block are then sent to all other connected blocks. Data flow programming allows multiple operations to be performed in parallel since its execution is determined by the flow of data and not by sequential lines of code.

2.1.1 Virtual Instruments (VIs)

A VI consists of two major components; a front panel (FP) and a block diagram (BD). An FP provides the user-interface of a program, while a BD incorporates its graphical code. When a VI is located within the block diagram of another VI, it is called a subVI. LabVIEW VIs are modular, meaning that any VI or subVI can be run by itself.

2.1.1.1. Front Panel and Block Diagram

An FP contains the user interfaces of a VI shown in a BD. Inputs to a VI are represented by so-called controls. Knobs, pushbuttons and dials are a few examples of controls. Outputs from a VI are represented by so-called indicators. Graphs, LEDs (light indicators) and meters are a few examples of indicators. As a VI runs, its FP provides a display or user interface of controls (inputs) and indicators (outputs).

A BD contains terminal icons, nodes, wires, and structures. Terminal icons are interfaces through which data are exchanged between an FP and a BD. Terminal icons correspond to controls or indicators that appear on an FP. Whenever a control or indicator is placed on an FP, a terminal icon gets added to the corresponding BD. A node represents an object which has input and/or output connectors and performs a certain function. SubVIs and functions are examples of nodes. Wires establish the flow of data in a BD. Structures such as repetitions or conditional executions are used to control the flow of a program. Fig.4 shows what an FP and a BD window look like.

[image: image22.emf]
Fig. 4. LabVIEW windows: front panel and block diagram.

2.1.1.2. Icon and Connector Pane

A VI icon is a graphical representation of a VI. It appears in the top right corner of a BD or an FP window. When a VI is inserted in a BD as a subVI, its icon gets displayed.

A connector pane defines inputs (controls) and outputs (indicators) of a VI. The number of inputs and outputs can be changed by using different connector pane patterns. In Fig.4, a VI icon is shown at the top right corner of the BD and its corresponding connector pane having two inputs and one output is shown at the top right corner of the FP.

2.1.2 Graphical Environment

2.1.2.1. Functions Palette
The Functions palette, sees Fig.5, provides various function VIs or blocks for building a system. This palette can be displayed by right-clicking on an open area of a BD. Note that this palette can only be displayed in a BD.

[image: image23.emf]
Fig. 5. Functions palette.

2.1.2.2. Controls Palette

The Controls palette, see Fig.6, provides controls and indicators of an FP.
This palette can be displayed by right-clicking on an open area of an FP. Note that this palette can only be displayed in an FP.

[image: image24.emf]
Fig. 6. Controls palette.

2.1.2.3. Tools Palette

The Tools palette provides various operation modes of the mouse cursor for building or debugging a VI. The Tools palette and the frequently-used tools are shown in Fig.7.
 Each tool is utilized for a specific task. For example, the Wiring tool is used to wire objects in a BD. If the automatic tool selection mode is enabled by clicking the Automatic Tool Selection button, LabVIEW selects the best matching tool based on a current cursor position.

[image: image25.emf]
Fig. 7. Tools palette.

2.1.3. Building a Front Panel

In general, a VI is put together by going back and forth between an FP and a BD, placing inputs and outputs on the FP and building blocks on the BD.

2.1.3.1. Controls

	Controls make up the inputs to a VI. Controls grouped in the Numeric Controls palette are used for numerical inputs, grouped in the Buttons & Switches palette for Boolean inputs, and grouped in the Text Controls palette for text and enumeration inputs. These control options are displayed in front Figure.

	[image: image26.emf]
[image: image27.emf]
[image: image28.emf]
Control palettes.

	2.1.3.2. Indicators

	

	Indicators make up the outputs of a VI. Indicators grouped in the

Numeric Indicators palette are used for numerical outputs, grouped in the LEDs palette for Boolean outputs, grouped
	

in the text Indicators palette for text outputs, and grouped in the Graph Indicators palette for graphical outputs. These indicator options are displayed in Fig.8.

[image: image29.emf]
[image: image30.emf]
	[image: image31.emf]
	[image: image32.emf]

Fig. 8. Indicator palettes.

2.1.3.3. Align, Distribute and Resize Objects

The menu items on the toolbar of an FP, see Fig.9, provide options to align and distribute objects on the FP in an orderly manner. Normally, after controls and indicators are placed on an FP, one uses these options to tidy up their appearance.

[image: image33.emf]
Fig. 9. Menu for align, distribute, resize, and reorder objects.

2.1.4. Building a Block Diagram

2.1.4.1 Express VI and Function

Express VIs denote higher-level VIs that have been configured to incorporate lower level VIs or functions. These VIs are displayed as expandable nodes with a blue background. Placing an Express VI in a BD brings up a configuration dialog window allowing adjustment of its parameters. As a result, Express VIs emand less wiring. A configuration window can be brought up by double-clicking on its Express VI.

Basic operations such as addition or subtraction are represented by functions. Fig.10 shows three examples corresponding to three types of a BD object (VI, Express VI, and function).

[image: image34.emf]
(a) (b) (c)

Fig. 10. Block Diagram objects: (a) VI, (b) Express VI, and (c) function.

Both subVI and Express VI can be displayed as icons or expandable nodes. If a subVI is displayed as an expandable node, the background appears yellow. Icons are used to save space in a BD, while expandable nodes are used to provide easier wiring or better readability. Expandable nodes can be resized to show their connection nodes more clearly. Three appearances of a VI/Express VI are shown in Fig.11.

[image: image35.emf]
Fig. 11. Icon versus expandable node.

2.1.4.2. Terminal Icons

FP objects are displayed as terminal icons in a BD. A terminal icon exhibits an input or output as well as its data type. Fig.12 shows two terminal icon examples consisting of a double precision numerical control and indicator. As shown in this figure, terminal icons can be displayed as data type terminal icons to conserve space in a BD.

[image: image36.emf]
Fig. 12. Terminal icon examples displayed in a BD.

2.1.4.3. Wires

Wires transfer data from one node to another in a BD. Based on the data type of a data source, the color and thickness of its connecting wires change.

Wires for the basic data types used in LabVIEW are shown in Fig.13. Other than the data types shown in this figure, there are some other specific data types. For example, the dynamic data type is always used for Express VIs, and the waveform data type, which corresponds to the output from a waveform generation VI, is a special cluster of waveform components incorporating trigger time, time interval, and data value.

[image: image37.emf]
Fig. 13. Basic types of wires [2].

2.1.4.4. Structures

A structure is represented by a graphical enclosure. The graphical code enclosed by a structure is repeated or executed conditionally. A loop structure is equivalent to a for loop or a while loop statement encountered in text-based programming languages, while a case structure is equivalent to an if-else statement.

2.1.4.4.1. For Loop

	A For Loop structure is used to perform repetitions. As illustrated in opposite Figure, the displayed border indicates a For Loop structure, where the count terminal represents the number of times the loop is to be repeated. It is set by wiring a value from outside of the loop to it. The iteration terminal denotes the number of completed iterations, which always starts at zero.

	[image: image38.emf]
For Loop

2.1.4.4.2. While Loop

	A While Loop structure allows repetitions epending on a condition, see opposite Figure. The conditional terminal initiates a stop if the condition is true. Similar to a For Loop, the iteration terminal provides the number of completed iterations, always starting at zero.

	[image: image39.emf]
While Loop.

2.1.4.4.3. Case Structure

	A Case structure, see opposite Figure, allows running different sets of operations depending on the value it receives through its selector terminal, which is indicated by . In addition to Boolean type, the input to a selector terminal can be of integer, string, or enumerated type. This input determines which case to execute. The case selector shows the status being executed. Cases can be added or deleted as needed.
	[image: image40.emf]
Case structure.

2.1.5. Grouping Data: Array and Cluster

An array represents a group of elements having the same data type. An array consists of data elements having a dimension up to 231 –1. For example, if a random number is generated in a loop, it makes sense to build the output as an array since the length of the data element is fixed at 1 and the data type is not changed during iterations.

 A cluster consists of a collection of different data type elements, similar to the structure data type in text-based programming languages. Clusters allow one to reduce the number of wires on a BD by bundling different data type elements together and passing them to only one terminal. An individual element can be added to or extracted from a cluster by using the cluster functions such as Bundle by Name and Unbundle by Name.

2.1.6. Debugging and Profiling VIs

2.1.6.1. Probe Tool

The Probe tool is used for debugging VIs as they run. The value on a wire can be checked while a VI is running. Note that the Probe tool can only be accessed in a BD window.

The Probe tool can be used together with breakpoints and execution highlighting to identify the source of an incorrect or an unexpected outcome. A breakpoint is used to pause the execution of a VI at a specific location, while execution highlighting helps one to visualize the flow of data during program execution.

2.1.6.2. Profile Tool

The Profile tool can be used to gather timing and memory usage information, in other words, how long a VI takes to run and how much memory it consumes. It is necessary to make sure a VI is stopped before setting up a Profile window.

An effective way to become familiar with LabVIEW programming is by going through examples. Thus, in the two labs that follow in this chapter, most of the key programming features of LabVIEW are presented by building some simple VIs. More detailed information on LabVIEW programming can be found in [19-23].

2.2. Wavelet transform

2.2.1. What is a wavelet?

Wavelets are functions that are confined in finite domains and are used to represent data or a function. In an analogous way to Fourier analysis, which analyzes the frequency content in a function using sinuses and cosines, wavelet analysis analyzes the scale of a function’s content with special basis functions called wavelets. Wavelet analysis is often better than Fourier analysis at representing sharp edges and irregularities because the wavelets themselves can be sharp, asymmetric and irregular (unlike the sine and cosine waves that Fourier depends on). There are a plethora of uses for wavelets which include: data and image compression, noise reduction, detecting self similarity, solving partial differential equations, analyzing patterns, contours, and transients, etc.

Not only are there several uses for wavelets, but like the Fourier transform which has the discrete, windowed, and fast types, there are many kinds of wavelet transforms. Some of these types include continuous, discrete, fast, complex transforms, as well as wavelet packet transforms. It is important to note that the relationships between the varieties of wavelet transforms are not exactly analogous to those in the Fourier transform. In the Fourier transform, the discrete Fourier transform is a discrete version of the continuous Fourier transform. This is not the case for wavelet transforms though. In this investigation, we will look at discrete wavelet.

Unlike the Fourier transform, which is purely in the frequency domain, wavelet transforms are in both the frequency and time domain. As the frequency of the wavelet is doubled, there are twice as many wavelets required to fill up the same time span. Therefore, you actually get frequency information at different times in the signal. From the wavelet analysis, you can identify when abrupt transients occur in time as well as the magnitudes of other features at various times.

 The purpose of the Wavelet Transform (WT) is to separate a signal into its frequency components. This is much like the Fourier Transform (FT). The difference is that with the WT we also get the variation of the frequency component over the time. For example, we have a signal that have a high frequency component in the first half. With FT we can see that this frequency component is there but not where it is. With WT we get to see not only that the frequency component is there but also that it is in the first half. [2]

The WT works by repeatedly filtering the signal with a short wave, the wavelet, at different scales and positions. Changing the scale of the wavelet changes the frequency band that is analyzed and the position of the wavelet changes the time frame analyzed. Doing this filtering for every possible scale and position of the wavelet is called the Continuous Wavelet Transform (CWT), and as you can imagine this is a very costly procedure. Fortunately it is not needed to do a complete CWT. After all, low frequencies don't change very fast, thus we will get a good understanding about the frequency component even if we don't measure it very often.

The wavelet transform which used in this project with its details will explain in next sections.

2.2.2. SIMPLE APPROXIMATION

Because practical measurements of real phenomena require time and resources, they provide not all values but only a finite sequence of values, called a sample, of the function representing the phenomenon under consideration, as in Fig.14 (b). Therefore, the first step in the analysis of a signal with wavelets consists in approximating its function by means of the sample alone. One of the simplest methods of approximation uses a horizontal stair step extended through each sample point, as in Fig.14 (c). The resulting steps form a new function, denoted here by [image: image42.png]

 and called a simple function or step function, which approximates the sampled function[image: image44.png]

. A precise notation will prove useful to indicate the location of such steps. [image: image45.png](a)

(b)

(©)

Fig. 14. (a) Signal, (b) Sample, (c) Approximation

The analysis of the approximating function [image: image47.png]e

in terms of wavelets requires a precise labeling of each step, by means of shifts and dilations of the basic unit step function, denoted by [image: image49.png]Ploar

and exhibited in Fig.15 (a). The unit step function[image: image51.png]Proar

 has the values.

[image: image52.png]if0<r <1,

1
Proa(r) = {0 otherwise.

For a step at the same unit height 1 but with a narrower width w, Fig.15 (b) shows the step function[image: image54.png]Plowl

, defined by

[image: image55.png]if0<r <uw,

1
Po.0l(r) = {0 otherwise.

Similarly, for a step at the same unit height 1, but starting at a different location r = u instead of 0, Fig.15 (c) shows the step function[image: image57.png]Prow

, defined by

[image: image58.png]’ (r):[l ifu<r<w,
w7 =10 otherwise.

[image: image59.png]@

«@

Fig. 15. (a) [image: image61.png]Proal

; (b) [image: image63.png]Prom

; (c) [image: image65.png]P ruwl

; (d) [image: image67.png]€. Prumw

Finally, to construct a step function at a different height c, starting at the location u and ending at w. Fig.15 (d) shows c.[image: image69.png]Prowi

, a scalar multiple by c of the function [image: image71.png]Plowl

, so that

[image: image72.png]c ifu<r<w,

€ Pl (r) = 0 otherwise

Thus, if a sample point (rj, Sj) includes a value Sj = [image: image74.png]

(rj) at height sj and at abscissa (time or location) rj, then that sample point corresponds to the step function

Sj .[image: image76.png]Plryrysal

 ,
Which approximates [image: image78.png]

 at height Sj on the interval [image: image80.png][71

 from [image: image82.png]~y

 (included) to rj+1 (not included). Adding all the step functions corresponding to all the points in the sample yields a formula approximating the simple step function shown in Fig.14 (c):

[image: image83.png]f =50 Plror [F 51 @lryral F 00 F Snm1 Plryral

n—1
= Z“‘}' CPlrjriale
j=0

 To facilitate comparisons between different signals, and to allow for the use of common algorithms, simple wavelets pertain to the interval where 0 [image: image85.png]

 r < 1, so that one unit corresponds to the entire length of the signal. Thus, r = [image: image87.png]

 denotes the middle of the signal, and r =[image: image89.png]

 denotes the location at the seventh eighth of the signal.

3. The Hardware of the Radar System

3.1. Radar System

In this system a Radar sender unit and a Radar receiver unit with a frequency 2.45MHz have been used. The discord between these two units is measured by a differential Amplifier. This difference is transferred into the PC by an Analog/Digital Convertor.

The system is sensitive with movement. Penetration of this frequency is very high so that we detect the movement or birthing of a person behind a concrete wall (width about 3m). Therefore frequency 2.45MHz is very suitable for our target which is "Detect the Live after Earthquake".

In the used Radar system two types of Radars are developed CW and FMCW. CW radar is based on Doppler shift measurement and FMCW is based on narrowband FM scheme. Both Radars require inherently excellent isolation in between. From another characters of the Radar system is using from 8th Order Active Low Pass Filter (10Hz). In table 1 show the characters of the Radar system

We have used a radar sender and a receiver 2.4MHz. Output of the hardware is the deference between these two waves (With a differential amplifier). And this deference changes when there are a movement or birthing from a live. This part of the project had structured for other targets such measurement of water flow and… by our colleagues in Natural University of Athens.
.

Table. 1. CW Radar Performance Measures
	Parameter
	Value
	Units

	Transmit Gain
	33 +/- 0.5
	dB

	Receive Gain
	110 +/- 1
	dB

	Noise Fig max
	3.5
	dB

	Center Frequency
	2.45
	GHz

	Frequency Bandwidth@3dB
	100
	MHz

	Phase Noise Fc @100KHz offset
	-110
	dBc

	RF to LO in box isolation min
	140
	dB

	Output Power
	+33
	dBm

	Rx 1dB compression Point
	-20
	dBm

	VSWR all ports max
	1.7:1
	-

	Power Supply
	+/-12VDC/1A
	-

	Base-band BW@3dB
	10
	Hz

	Base-band Voltage output @ MDS
	+/-0.1
	Volts

In the system two types of Radars are developed CW and FMCW. CW radar is based on Doppler shift measurement and FMCW is based on narrowband FM scheme. Both Radars require inherently excellent isolation
[image: image90.png]P 000 8

24N G 1568

A, @ I~
I

o Y

J—
N

Y

~C oo
H . =
. ey
3 LA g Feo toke
oo]
<": = x

Fig. 16. CW Radar System Block Diagram

in between. RF and LO signal paths (typically >100dB). Here Micro strip two layered technology is used with low cost surface mount components.CAD tools are extensively used for the optimization of the system. High Q microstrip mW hairpin filters are used for the out-of-band rejection.

[image: image91.png]11|

@B*tmw.rr

Fig. 17. CW Radar Circuits Electronic Schematics -1
In the Radar system have used “8th Order Active Low Pass Filter” (10Hz), which is showed in below Fig.

[image: image92.png]

Fig. 18. 8th Order Active Low Pass Filter

3.2. Analogue to Digital convertor (ADC-42)
In the system for enter the data from radar system to the computer have been used an ADC-42. The ADC-42 is a single channel PC based oscilloscope, spectrum analyzer and multimeter. Simply plug a unit into the parallel port of your PC and run the supplied PicoScope software. For low frequency signals, the units provide all the functionality of conventional scopes at a fraction of the price. The ADC-42 has a 12 bit resolution which makes it suitable for measuring small signal changes.

 This product is ideal for situations where budget is important. The unit provides large, colorful display and all the usual timebase and trigger option, all in a case slightly larger than a matchbox.
Table. 2. The characters of the Analogue To Digital Convertor

	Product
	ADC-42

	Resolution
	12 bits

	Channels
	1 x BNC

	Voltage ranges
	±5 V

	Overload protection
	±30 V

	Input impedance
	1 MO

	Sampling rate
	15 kS/s

	Accuracy
	±1%

	Scope time bases
	500 µs/div to 50 s/div

	Spectrum ranges
	0 to 7 kHz,
65 dB dynamic range

	Analog bandwidth
	7.5 kHz

	Dimensions
	55 x 55 x 15 mm
(2.17 x 2.17 x 0.6 in)

It has 12-bit resolution over a ±5 V range, samples at 15 kS/s and is the size of a standard DB25 back shell. What’s more, it’s self-powered and bright red.

[image: image93.png]

Fig. 19. A photo of ADC-42

 Virtual instruments, data loggers, digital oscilloscopes, call them what you will, they all boil down to the basic concept of an analogue to digital converter (ADC) connected up to some form of digital storage system - which in most cases is a personal computer(such this System). Of course this is an over simplification, but it highlights the fact that the whole idea is to get the data into a digital format where it can be stored, graphed or otherwise analysed.
	[image: image94.png]Male DB-25 plug
into paralel port

Pin1

Pin 14

Fermale DB-25 plug
irnto Pico board

Pin1

Pin 13

Pin 25

Wire 1, DigOut0
Wire 2, S0
Wire 6, S1
Wire 8, IC
Wire 10, GND

	Fig. 20. Ribbon cable connections for ADC-42 board and Digital Output for connection to one parallel port.

Use Pin 18 (chassis Ground) if you want to ground coaxial shielding. The wire connections are shown schematically in Fig.20, and a picture of the Pico-42 ADC board and digital output using the LPT1 parallel port on a laptop computer is shown in Fig.20.

4. Development of wavelet methods

 and results
4.1. APPROXIMATION WITH SIMPLE WAVELET

4.1.1. The Basic Wavelet Transform

The basic transformation expresses the approximating function [image: image96.png]

 with wavelets by replacing an adjacent pair of steps by one wider step and one wavelet. The wider step measures the average of the initial pair of steps, while the wavelet, formed by two alternating steps, measures the difference of the initial pair of steps.

For instance, the sum of two adjacent steps with width 1/2 produces the basic unit step function[image: image98.png]Plog

, as in Fig.21: Indeed,

[image: image99.png]10,10 = @0, 1 + Priar

[image: image100.png]o

0.5

Fig. 21. [image: image102.png]Proar = Pt Prla

Similarly, the difference of two such narrower steps gives the corresponding basic wavelet, denoted by [image: image104.png]Yo

 and defined by

[image: image105.png]V1010 = o, 41 ~ Ph g

The wavelet [image: image107.png]Yo

so defined is a simple step function, with a first step at height 1 followed by a second step at height -1. Thus, from its first step to its second step, the values of the wavelet [image: image109.png]Yo

 undergo a jump of size -2, as in Fig 22.

[image: image110.png]

Fig. 22. [image: image112.png]Proar = P~ Priar

Adding and subtracting the two equations just obtained,

[image: image113.png]Pr0.110 = Ppo, 1 TP ap
Vo0 = 0,31 ~ P

Produces the inverse relation, which expresses the narrower steps[image: image115.png][

, and[image: image117.png]

, in terms of the basic unit step [image: image119.png]Plog

 and wavelet[image: image121.png]Yo

, as shown in Fig 23:

[image: image122.png]1
3 (90,11 + Yr0.11) = %r0.p
1

3 (P01 = Y0.11) = Pl

For two adjacent steps at heights S0 and S1, the equation just derived yield the following representation with one wider step and one wavelet: [image: image123.png]fi=s0- Y0.31 +51 P

l 1
50 5 (@0 + Vior) + 1+ 3 (001 = Vi)

50+ 51 So — s
7 Yot =5 Yo

1]

[image: image124.png]1 1 1
05+ 0.5 + 0.5
L ! T !
05 0.5 1 05
05+ 05 05
1 1 1
05 0.5 - 05
) ! !
L 0.5 05 1 0.5
05 05 05

Fig. 23. Top:[image: image126.png]Pk =7 (Pouct Vi

). Bottom:[image: image128.png]Priay = 3 (Proat ~ Vo

).

4.1.2. Significance of the Basic Wavelet Transform

Two sample values s0 and S1 measure the value (amplitude, height) of the function [image: image130.png]

 at r0 and at r1. In contrast, the results from the basic transform have the following significance.

• The number (S0+S1)/2 measure the average of the function[image: image132.png]Syl

.

• The number (S0-S1)/2 measure the change in the function[image: image134.png]Syl

.

The basic transform preserves all the information in the sample, since, while the transform describes the sample differently from the sample values, it also reproduces the sample exactly:

[image: image135.png]50 + 51 50 — 51
. + .)
3 910,11 3 Yio.1

50 ¢, 1 +.r1-(p|‘l =f=
(0,51 (3.1

4.1.3. Shifts and Dilations of the Basic Transform

To apply the basic transform starling at a different location u instead of 0, and over an interval extending to w instead of 1, Define the shifted and dilated wavelet [image: image137.png]WYlauw]

 by the midpoint[image: image139.png]

: = (u+ w)/2:

[image: image140.png]. 1 fu<r<ov,
Vil (1) = { —1 ifv<r<w.

Again, the sum and the difference of two narrower steps give a wider step and a wavelet:

[image: image141.png]Plu,wl = Pluvl + Qv
1ljlu.w[= @luv[— Plo.wl-

Also, adding and subtracting the two equations just obtained yields the inverse relation, expressing the two narrower steps in terms of the wider step and the wavelet:

[image: image142.png](@l + Viwul) = Pluls

1
2
4 (et = V) = ¥t

The shifted and dilated basic transform just described applies to all the consecutive pairs of values, separated here by semicolons for convenience, in a sample with 2n values:

[image: image143.png]505 813 82, 833+« 3 S2ks S2k415 -+ -1 2(n—1)» S2n—1-

4.1.4. THE ORDERED FAST HAAR WAVELET TRANSFORM

To analyze a signal or function in terms of wavelets, the Fast Wavelet Transform begins with the initialization of an array with 2n entries, and then proceeds with n iterations of the basic transform explained in the preceding section.

For each index l[image: image145.png]

 {1,…,n}, before iteration number l, the array will consist of 2n-(l -1) coefficients of 2n-(l -1) step functions [image: image147.png]

κ[n-(l -1)] defined below. After iteration number l, the array will consist of half as many, 2n-l , coefficients of 2n-l step functions [image: image149.png]

κ(n-l), and 2n-l coefficients of wavelets [image: image151.png]

κ(n-l).

Definition: For each positive integer n and each index l[image: image153.png]

 {0,…,n}, define the step functions [image: image155.png]

κ(n-l) and wavelets[image: image157.png]

κ(n-l) by

[image: image158.png]o) = o (2" [r — k2]
_ [1 ifk20" <r < (k+ 1)267,
0 otherwise,
U0 = o (2 - k2¢71))
L k2" <r < (k+ [3])2,
=1 -1 if(k+[3])267 <7 < (k+ D28,
0 otherwise.

In the foregoing definition, the frequency increases with the index n.

4.1.5. Initialization

For wavelets, the initialization consists only in establishing a one-dimensional array[image: image160.png]a

(n)

, also called a vector or a finite sequence, of sample values, of the form

[image: image161.png]am) (n) (n) (n) (n) (n)
am — (ao 1Ay, ,...,azn_z,azn_l)

=8 = (S(),Sl, s 85, ...,Szn_z,szn_l),

With a total number of sample values equal to an integral power of two, 2n, as indicated by the superscript (n). Though indices ranging from 1 through 2n would also serve the same purpose, indices ranging from 0 through 2n - 1 will accommodate a binary encoding with only n binary digits, and will also offer notational simplifications in the exposition. The array corresponds to the sampled step function

[image: image162.png]2"—
1

J&
)
: a(")
(n
)

4.2. The Ordered Fast Wavelet Transform

The preceding section has demonstrated how a first sweep of the basic transform applies to all the consecutive pairs (S2k, S2k+1) of the initial array of sample values[image: image164.png]am)

.

In general, the λth sweep of the basic transform begins with an array of 2n-(λ-1) values.

[image: image165.png]gor-la-1)) — (gln-la-l) - la-[a-1D)
é = (ag i)

And applies the basic transform to each pair [image: image167.png]n-D-1l) g ln-[a-1l)
(ay, agy)

 which gives two new wavelet coefficients

[image: image168.png](n-[a-1]) (n-[A-1])
-7 ,_ Gax Rl ToeY

[image: image169.png]

These 2(n-λ) pairs of new coefficients represent the result of the λth sweep, a result that can also be reassembled into two arrays:

[image: image170.png]ar M= (oM, ai" Y, a Y

[image: image171.png]g0 o= (e M, e, e, rfg';fi,

The arrays related to the λth sweep have the following significance.

[image: image173.png]g-1A-1)

: The beginning array,
[image: image174.png]gin-(a-11) _ (gn-la-1D) (e-la-1D)
a1 — (o, oGl y

Lists the values [image: image176.png]g-1A-1)

 of a simple step function [image: image178.png]f(n—[z—l])

 that approximates the initial function [image: image180.png]

 with 2n-(λ-1) steps of narrower width

2(λ-1)-n.
[image: image181.png]2n-A-1)_y

Fon-la-1l) _ Z (n-la-1]) _n-La-1])
f a; ?;

[image: image183.png]g2

: The first array produced by the λth sweep,

[image: image184.png]-2 = (@A | g4
anD = (g™, ., a0 R)

Lists the values [image: image186.png](n-2)

 of a simple step function [image: image188.png]fin-a)

 that approxi​mates the initial function f with 2n-λ steps of wider width 2λ-n,

[image: image189.png]B (-2
LA

[image: image191.png]¢4

: The second array produced by the l th sweep,

[image: image192.png]g2 — (WA oA
e Gt

Lists the coefficients [image: image194.png](n-2)

 of simple wavelets [image: image196.png](n-4;
w()

 also of wider width 2λ-n, [image: image198.png]fo-i — 32 (1=2) 4=

2n—A.

u;(0
i

The wavelets given by the second new array [image: image200.png]¢4

 represent the difference be​tween the finer steps of the initial approximation [image: image202.png]f(n—[z—l])

 and the coarser steps of[image: image204.png]fin-a)

. Thus, each sweep of basic transforms expresses the previous finer approximation as the sum of a new, coarser approximation and a new, lower-frequency, and set of wavelets. Nevertheless, because the basic step of wavelet trans​form does not alter the sampled function but merely expresses it with different wavelets, it follows that the initial approximation [image: image206.png]f(n—[z—l])

 still equals the sum of the two new approximations, [image: image208.png]fin-a)

 and [image: image210.png]fo-D

:

[image: image211.png]fO-l-1h) = f-2) 4 fOn-2),

4.3. THE IN-PLACE FAST HAAR WAVELET TRANSFORM
Whereas the presentation in the preceding section conveniently lays out all the steps of the Fast Wavelet Transform, it requires additional arrays at each sweep, and it assumes that the whole sample is known at the start of the algo​rithm. In contrast, some applications require real-time processing as the signal proceeds, which precludes any knowledge of the whole sample, and some applications involve arrays so large that they do not allow sufficient space for additional arrays at each sweep. The two problems just described, lack of time or space, have a common solution in the In-Place Fast Wavelet Transform presented here, which differs from the preceding algorithm only in its indexing scheme.
For each pair [image: image213.png]n-D-1l) g ln-[a-1l)
(ay, agy)

 instead of placing its results in two addi​tional arrays, the λth sweep of the in-place transform merely replaces the pair [image: image215.png]n-D-1l) g ln-[a-1l)
(ay, agy)

 by the new entries [image: image217.png](E:‘ A C,(:‘ ﬂ))

When

[image: image218.png](n-[a-1]) (n-[A-1])
-7 ,_ Gax Rl ToeY

[image: image219.png]

Replace the initial pair [image: image221.png]n-D-1l) g ln-[a-1l)
(ay, agy)

 by the transformed pair [image: image223.png](E:‘ A C,(:‘ ﬂ))

4.4. Algorithm of In-Place Fast Wavelet Transform
Table. 3. Algorithm of In-place Fast wavelet transform
	DATA:

n
 (nonnegative integer)

[image: image225.png]VM

 (array of 2n numbers)

START.

I :=1
 (index increment)

J :=2
 (increment between pairs)

M := 2n (number of sample values)

FOR L := 1,..., n DO
 (loop of basic sweeps)

 M := M/2
 (halve M)

 FOR K := 0,..., M - 1 DO
 (loop of values)

 [image: image227.png]= (Spae + Spp41)/2

 [image: image229.png]

 END (end of the loop of values)

 I :=J (double /)

 J :=2*J (double J)

 END (end of basic sweeps)

STOP.

RESULT:

[image: image230.png]g (m) (n-1) (n-2) (n-1)

ey Ve,)

§={af ey, e P,
{ 1

[image: image231.png]

4.5. The program of in-place wavelet transform with use the LabVIEW

 As the software of the system has written by using the lab- view software, preceding algorithm has written by using the lab- view software too as will explain in fallowing. But for better understanding of the problem we see a numeric example of in-place wavelet transform as bellow.

 Example: if [image: image233.png]=(3,1,0,486,99)=

 [image: image235.png]§C) = §=(3,1,04,869,9)

 and with this algorithm in the next step we will have

[image: image236.png]FE-0 (aff"), 80 a0 (B0 glm1) (B0 gl-n) ng—:))

7(3+1 3-1 0+40—48+68—69+99—9)
V22222 2 22
=(2,1,2,-2,7,1,9,0)

Second step:

[image: image237.png]§E-2 (af’”, L) A ng—:))

7(2+2 2-2 7+9 7-9
=\ b2

,0)=210-2,8,1,-10)

And third step:

[image: image238.png]3a-3) :(-2 ple-v) ’-"1(73 B, el o (G0) éz—l))

2+8 -8
(T 10228 1,71,0) =(5,1,0,-2,-3,1,-1,0)

If we follow the process of in-place wavelet transform we always notice that the term produced last,[image: image240.png](n-n)

 means that the sample has an average value equal[image: image242.png](n-n)

 (In this example[image: image244.png]aaz—z)

is average and its value equal 5). In the other hand [image: image246.png](n-n))

 , means at the middle of the sample, is a coefficient ([image: image248.png]o

) of the difference between average of first half coefficients and average of second half members of[image: image250.png]

. In the likeness in the above example [image: image252.png]Cl()z—z)

=-3 = ((3+1+0+4)-(8+6+9+9))/8.

5. Computer programming

5.1. Base of the Software

The program of the system has been written with LabVIEW software. The program prepares a one dimension array that timely save digital data from Analog/Digital convertor that is output of Radar system. Then in program this digital data convert into Sinuses wave again (a kind of software Digital to Analog Converted-D/A C). In the program the last 6 digital inputs are used as data for wavelet transformer that have explained in the next part. If the wavelet shows the variation it mine that there is a movement or even birthing in front of the Radar system. If this variation is further than of an amount, that is regulative by user, the software will broadcast a sound accord the movement.

In Fig.24 a part of program’s algorithm without the details have been seen. At the first the received data of A/D convertor enter into a one dimension array. Then wavelet transform operate on the 4, 8 … 2n samples of the last samples, of course n is variable by user as a sensitive changer, increase of n cause increase of sensitive however it cause decrease of the speed of the system. After testing some kinds of wavelet transfer we found that the system is working better by In-Place wavelet transform. In the next part the details and algorithm of this kind of wavelet transform have been explained.
[image: image253.png]Stop

Break

(Analog signal)

Insert into
a matrix

v

Wavelet Transfer

s there any
variation

yYes

INo sound|

Broadcast the sound

Fig. 24. Block Diagram of using the software for Detect the Live after Earthquake System

For the "Is there any variation" Block of the Fig.24, mid element of the wavelet transfer, that show difference between all elements of wavelet transform block, is separated and compare with a factor. This is another variable part by operator of program for changing the sensitive of the system. If the mid element of wavelet transform is further than this factor, it is seeing that there are movements and in next block the system will broadcast an alarm. This process is continuing until the operator of system push stop bottom.

As it has been explained before, we have used a radar sender unit and a radar receiver unit that work with a frequency 2.45MHz. Output of the hardware is the difference between waves of these two units. This deference changes when there are a movement or even birthing in front of system. Therefore this system is useable for other targets such measurement of liquid, exist the water flow under the earth surface and….

Then difference between two waves that is an analog signal, is converted into a digital signal by an Analog to Digital convertor (ADC-42) and transfer into PC. Now this digital signal is processed by LabVIEW software.

In Fig.25 a block diagram of hardware of the system is seen. This system is portable and it can be carried for the place that earthquake has placed. By experience we found that the penetration of the Radar wave with 2.45GHz frequency is very high in the masses after the earthquakes and this frequency is very suitable for this reason. As it is seen in Fig.25 the antenna for the system is a parallelepiped with a quadrangle base.

[image: image254.png]Radar

ADC42

system

Sender Receiver
Radar Radar

N7

mass of concrete or crash
(remain mass after earthquake)

Alive (human or animal)

v

computer

A\/\

Fig. 25. Block diagram of Detector the Live after Earthquake with CW Radar System
As it seem the waves radiant from Radar sender unit and it penetrate into mass of concrete or crash that remained after earthquake. Then after clashing with anything they reflex and detects by the antenna of the Radar wave receiver unit as it shown in Fig. 25. The detected wave has a gain according the depth of mass. If there are some movements or something such breathing or flow the received signal will have some changes proportionate by the movement, breathing or flow. These changes detect by the software. If the changes are further than a threshold, the system will ring. Therefore the ringing of the system shows the movements or exist the live.

5.2. Block Diagram of the System

As explained before the program of this project has written by Lab-View and as has been told in chapter 2 the Lab-View programs consist of two parts “Block Diagram” and “Front Panel”. In Fig.23 is seen the block diagram of the system.

[image: image255.png][Humber of Samplesich

[Cortinuaus Sampies ~]

Resolion Ampifier

e Wavefarma
=]

] Wiaveform Graph 4
[Eamping ino)

[pevice)
e

—\?ndomnmsmmw *\s;ndompmvwnew ErromEET] —
= = N . 7

1 E —t | 4

Somarorn] [B2u0d Oupd Configre] [ingle Exvor Farter v

For Loap

Greater Or Exual?

Power 02

Wit Ut Nexd ms Muliple

Besrement B Q

Round Toward -nfinty

Logarthn Base 2

Replace Array Subset

:

Grester Or Exual?

_

"B

Index Array Add e
@ 4? Wevetom Srephs
e
nE)
w
Divide > Index Arr:
Q g,

ackd

Muliply

gl

Waveform Graph

1]
St

[=>-F——29

avray Subset avetorm Greph 2
]
[l

Insertnto Array
[oHpr &

f—{ ACD [Fumber o sampie g

Fig. 26. Compliment Block diagram of the program

In the Fig.26 the compliment block diagram of the program of the system is seen. Now its details are explaining as fallow.
5.2.1. Enter the data from Radar by ADC convertor

For using the analog to digital convertor in lab-view at the first we should install the software of the ACD-42 correctly. Then as it explained in chapter.2 we go to “block diagram” section. Click the “Select a VI” icon on the “Functions” palette to place subVIs which does not appear on the Functions palette (here ACD42). In this browse we should choose and pike the c:\sys32\prod10 and after that we choose ADC42. It will get a block that have a Digital Number output and a sample counter as an input and an output as is seen in Fig.27.

[image: image256.png]1 |—ACD — output

42

Fig. 27. Icon of Analog to Digital Convertor (ADC-42) in lab-view

5.2.2. Insert into a matrix (n dimensions)

We want to make an n-dimension array for saving and processing the data which come from ADC-42. For this we use from block diagram shone in Fig.28.We can see in Fig.28 the bellow parts:

1- “Initialize Array “: For insert a zero matrix into the “while loop”.

2-“insert into a Array” For insert digital output into a Array

3-“shift register” This is a part of while loop that shift digital output of ADC42 into zero matrix of part 1.

4-“stop” This is a switch for exit from the loop.

[image: image257.png]8

[Courter of
Jwile loop

[Shif register

[l

Trert ot e

AT
2

[This is the Array]
that is variation

with input

\While loop

Fig. 28. Part of Lab-View for insert digital input into a Array

Now we explain these 4 parts.
5.2.2.1. The initialize Array
The initialize Array creates an n-dimensional array in which every element is initialized to the value of element. Use the Positioning tool to resize the function and increase the number of dimensions of the output array. The connector pane displays the default data types for this polymorphic function.
	
[image: image258.png]

	Element is the value used to initialize all elements of initialized array.

Element can be any scalar type. We have used zero for it.

5.2.2.2. Insert into Array
Insert into Array Inserts an element or sub array into n-dim array at the point we specify in index. When we wire an array to this function, the function resizes automatically to display index inputs for each dimension in the array (here the counter of the while loop has used as index). If we do not wire any index inputs, the function appends the new element or subarray to the end of the n-dim array. This function resizes the array along only one dimension. Therefore, we can wire only one index input. The index we wire determines the dimension along which we can insert. For example, to insert row(s), wire the row index, or to insert column(s), wire the column index.

The array we wire to n or n-1 dim array must be the same dimension or a dimension less than the one we wired to n-dim array. For example, we cannot insert a single element into a 2D array, and we cannot insert a single row (a 1D array) into a 3D array. We can, however, insert a 2D array that has a single row into a 3D array.
5.2.2.3. Shift register

We should use shift registers because we want to pass values from previous iterations through the loop to the next iteration. A shift register appears as a pair of terminals directly opposite each other on the vertical sides of the loop border.

The terminal on the right side of the loop contains an up arrow and stores data on the completion of an iteration. LabVIEW transfers the data connected to the right side of the register to the next iteration. After the loop executes, the terminal on the right side of the loop returns the last value stored in the shift register.

Create a shift register by right-clicking the left or right border of a loop and selecting Add Shift Register from the shortcut menu.

A shift register transfers any data type and automatically changes to the data type of the first object wired to the shift register. The data we wire to the terminals of each shift register must be the same type.
5.2.2.4. stop

 Stops the VI in which it executes, just as if we clicked the Abort Execution button on the toolbar. Before we call this function with a TRUE input, be sure to complete all final tasks for the VI first, such as closing files, setting save values for devices being controlled, and so on. If we wired the input, stop occurs only if the input value is TRUE. The default is to stop as soon as the node that is currently executing finishes. Here in the “front panel” we have an icon for stop function that if it clicks the while loop will be stop. Stop is the Boolean value that determines if the VI stops.

If we need to abort execution of all VIs in a hierarchy from the block diagram, we can use this function, but we must use it with caution. If we put this function in a subVI, we should make its behavior clear to other users of the VI because this function causes their VI hierarchies to abort execution.

In general, avoid using this function when we have a built-in termination protocol in a VI. For example, I/O operations should be performed in While Loops so that the VI can terminate the loop on an I/O error.
As we explained in chapter 2 while loop which used here have a counter we have use a numbers of the sample indicator.

	[image: image259.png]number of sample

(a)
	[image: image260.png]Numnber of sample

3000
0

n 0
o st

(b)

Fig. 29. Number of the samples indicator. (a) In block diagram. (b) in front panel
5.2.3. Main Input and 8point sample Graphs

This part prepare per last 16 samples for using the waveform transforming and decision for operation. In addition by this part main input and last 16 points samples are graphing. We can change the order of wavelet transform with changing 16 with another power of 2 such 4, 8, 16, 32… 2n.

We have used below parts in Fig.30:

[image: image261.png]A one dimension array with & Point 3 Waveform Grapht.
mermbers ready for waveform transform —
St ﬁ
Array Subset Waveform Graph 2

@]
From point 1 of Fig 28
~

Counter of while loop

Fig. 30. Part of the program for Main Input and 16point sample Graphs (Block Diagram)

1. Subtract part: for preparing two numbers at equal interval of 16.
2. Array subset: for separating last16 samples.

3. Wave form graph 1: for indicating the input signal.

4. Wave form graph 2: for indicating the last 16 samples of signal.

5.2.3.1. Subtract part

“Subtract” Computes the difference of the inputs. If we wire two waveform values or two dynamic data type values to this function, error in and error out terminals appear on the function. Subtracting two time stamp values yields a numeric value (difference in time), and subtracting a numeric value from a time stamp value yields a time stamp. We cannot subtract a time stamp value from a numeric value. The dimensions of two matrices that we want to subtract must be the same. Otherwise, this function returns an empty matrix. The connector pane displays the default data types for this polymorphic function.
In this part we have used from this function only for subtracting 16 from the last number of the counter of the while loop. For example if the counter is 112 then the output of the subtract function is 104.
5.2.3.2. Array subset

Array subset Returns a portion of array starting at index (here we have used “last number of sample subtracted 16” for index) and containing length elements (here 16 have chose).

When we wire an array to this function, the function resizes automatically to display index inputs for each dimension in the array we wire to array. The connector pane displays the default data types for this polymorphic function.

Array can be an n-dimensional array of any type.

Index specifies the first element, row, column, or page to include in the portion of array we want to return. If index is less than 0, the function treats it as 0. If index is greater than or equal to the array size, the function returns an empty array.

Length specifies how many elements, rows, columns, or pages to include in the portion of array we want to return. If index plus length is larger than the size of the array, the function returns only as much data as is available. The default is the length from index to the end of array.

5.2.3.3. Waveform graph 1
The Waveform Graphs is a function of front panel that displays one or more plots of evenly sampled measurements. The waveform graph plots only single-valued functions, as in y = f(x), with points evenly distributed along the x-axis, such as acquired time-varying waveforms. The following front panel shows an example of a waveform graph.

The waveform graph can display plots containing any number of points. The graph also accepts several data types, which minimizes the extent to which we must manipulate data before we display it.

[image: image262.png]Waveform Graphl

Amplitude.

Fig. 31. A sample of waveform graph 1
Note Use the digital waveform graph to display digital data.

Displaying a Single Plot on Waveform Graphs:

The waveform graph accepts several data types for single-plot waveform graphs. The graph accepts a single array of values, interprets the data as points on the graph, and increments the x index by one starting at x = 0. The graph accepts a cluster of an initial x value, a delta x, and an array of y data. The graph also accepts the waveform data type, which carries the data, start time, and delta t of a waveform.

The waveform graph also accepts the dynamic data type, which is for use with Express VIs. In addition to the data associated with a signal, the dynamic data type includes attributes that provide information about the signal, such as the name of the signal or the date and time the data was acquired. Attributes specify how the signal appears on the waveform graph. When the dynamic data type includes a single numeric value, the graph plots the single value and automatically formats the plot legend and x-scale time stamp. When the dynamic data type includes a single channel, the graph plots the whole waveform and automatically formats the plot legend and x-scale time stamp.

Waveform graph 1 shows the last final samples. The scales are [0-16] for x-scale and auto scale for y.

5.2.3.4. Waveform graph 2

This part is same the waveform graph1 that have explained in 5.2.3.4 and only difference is the scales. The scales are [0-5000] for x-scale and auto scale for y.
[image: image263.png]Waveform Graph 2 ot AN
01+

015
005
o
o
025
05

Amplitude.

0075

0.1 0 0 0 0 d
0 1000 000 3000 4000 5000
Time

Fig. 32. A sample of waveform graph 2

5.2.4. Square root section
For the wavelet transform as explained in chapter 2 we need to have square root of the number of the sample. However here the number of the sub array is constant but we have written the wavelet transform part for general use.
Here at the first we take the array size that here is 16 and is changeable. This block use for recognizing the correction of the array before using the wavelet transform because the number of member of an array for taking the wavelet transform should be 2n.

[image: image264.png]To division for chosing the midel
member of wavelet transformed array

1|

Ay Size

Loarithn Base 2

Greater Or Equal?

Round Toward -Infini

10§ doo 10} 40 Jenod oL

WioJSUB TeleAEM BUL BURBINIE

From Sub array with 2 member

Only false or true

*| To select terminal

of case structure

Fig. 33. Square root section
A): We take “logarithm base 2” function of array size and we use, log2 (array size), “Round Toward-Infinity” function, [log2 (array size)]. From this part use for counter of for loop that calculate waveform transform ,here it is 4, then by “power of 2” function we calculate 2[log2 (array size)], now we compare this amount with array size by “equal” function if the output of “equal” function is true it mean that the array size is a power of 2.

b): In the other hand we compare the array size with 4 if it was further the output of “Great or Equal?” function will be true.
Now by “and” function of lab-view we compare the output of two above parts (a) and (be). If both are true the output of “and” function will be true.
The output of “and” function is an input for selector terminal of “case structure” function that has explained in chapter 2.

We can use wavelet transform that is in true section of “case structure” function, else we don’t use wavelet transform and in false section of “case structure” function we connected the in put to output by a string line.
In Fig.33 we have bellow parts:

1. Array size

2. Logarithm base 2

3. Power of 2

4. Greater or equal, equal?, round toward-infinity, and
Now we will explain these parts:
5.2.4.1. Array size

Array size Returns the number of elements in each dimension of array.

The connector pane displays the default data types for this polymorphic function.

[image: image265.png]anay

szels)

Fig. 34. “Array size” a Function of lab-view
The input (”array”) is an”array” can be an n-dimensional array of any type that here is an on dimension array with 2n member.
The output of this polymorphic function “size(s)” is a 32-bit integer if array is one-dimensional (1D). If array is multidimensional, the returned value is a 1D array in which each element is a 32-bit integer representing the number of elements in the corresponding dimension of array. For example, if we wire a 3D 2x5x3 array to array, the function returns a three-element array containing [2, 5, 3].

5.2.4.2. Logarithm base 2
Logarithm base 2 computes the base 2 logarithm of x (input).

If x is 0, log2(x) is negative infinity. If x is not complex and is less than 0, log2(x) is NaN. The connector pane displays the default data types for this polymorphic function
[image: image266.png]log2ts)

Fig. 35. “Logarithm base 2” a Function of lab-view
 The x can be a scalar number, array or cluster of numbers, array of clusters of numbers, and so on. Here it is an integer number that is a power of 2.
Output “log2(x)” is of the same numeric representation as x. When x is of the form x = a + bi, that is, when x is complex, the following equation defines log2(x):

[image: image267.png]In€) _]}\n(m)warctanﬂb,a))
log2(x) = [\n(z)

Tn(z)

5.2.4.3. Power of 2
The “Power of 2” Computes 2 raised to the x power.

The connector pane displays the default data types for this polymorphic function.

[image: image268.png]

Fig. 36. “Power of 2” a Function of lab-view
The “x” can be a scalar number, array or cluster of numbers, array of clusters of numbers, and so on here the x is log2(array size).

The “2^x” is of the same numeric representation as x. When x is of the form x = a + bi, that is, when x is complex, the following equation defines 2^x:

2^x = 2^a * 2^(bi) = 2^a * (cos(b * ln(2)) + i sin(b * ln(2)))

5.2.4.4. Greater or equal, equal?, round toward-infinity, and
· “Greater or Equal?”
Returns TRUE if x is greater than or equal to y. Otherwise, this function returns FALSE. We can change the comparison mode of this function.

We can compare an array or cluster of a data type to a scalar of the same data type and produce an array or cluster of Boolean values. Here we compare 2 real numbers. The connector pane displays the default data types for this polymorphic function.

[image: image269.png]w=y?

Fig. 37. “Greater Or Equal? ” a Function of lab-view
The x and the y must be of the same type.

The “x >= y?” returns the “Boolean” result of the operation. When we compare arrays, the “x >= y?” is a scalar in Compare Aggregates mode and a Boolean array in Compare Elements mode (default).

· Equal?

Returns TRUE if x is equal to y. Otherwise, this function returns FALSE. We can change the comparison mode of this function.

If we compare two matrices, the default comparison mode is Compare Aggregates, and this function returns a scalar. We can compare an array or cluster of a data type to a scalar of the same data type and produce an array or cluster of Boolean values. The connector pane displays the default data types for this polymorphic function.

[image: image270.png]

Fig. 38. “Equal? ” a Function of lab-view
The “x” and y must be of the same type

When we compare arrays, the “x = y?” is a scalar in Compare Aggregates mode and a Boolean array in Compare Elements mode (default).
· Round Toward -Infinity

“Round Toward –Infinity “Truncates the input to the next lowest integer.

For example, if the input is 3.8, the result is 3. If the input is –3.8, the result is –4. The connector pane displays the default data types for this polymorphic function.

[image: image271.png]¥ ——fE>——— foo: largestnt <=

Fig. 39. “Round Toward –Infinity” a Function of lab-view

The “x” can be a scalar number, array or cluster of numbers, array of clusters of numbers, and so on.

The “floor(x): largest int <= x” is the resulting lowest integer, closest to x. If the input is a time stamp value, the function rounds to the previous second.

· And

“And” Computes the logical AND of the inputs. Both inputs must be Boolean or numeric values. If both inputs are TRUE, the function returns TRUE. Otherwise, it returns FALSE.

Note This function performs bit-wise operations on numeric inputs.

The connector pane displays the default data types for this polymorphic function.

[image: image272.png]w.and y?

Fig. 40. “and” a Function of lab-view

The “x” must be a Boolean value or a number. It can be a scalar, array or cluster of numbers or Boolean values, array of clusters of numbers or Boolean values, and so on.

The “y” must be a Boolean value or a number. It can be a scalar, array or cluster of numbers or Boolean values, arrays of clusters of numbers or Boolean values, and so on.

The “x .and. y?” is the logical AND of x and y.
5.2.5. In-place Fast wavelet transform section

In this project as has explained in chapter 4 we have used on-place wavelet transform. The bellow diagram exactly executes the algorithm that explained at table 3 in chapter 4 that is “In-place Fast wavelet transform”.
Example: if [image: image274.png]=(1,2,3,45,6,7,

9,10,11,12,13,14,15,16) =

 [image: image276.png]5,6,7,8,9,10,11,12,13,14,15,16)

 and with this algorithm according the chapter 4 we will have:
[image: image277.png]gla-1)

=(15,-05,35—-0555,-0575,-05,95—-05,115—-05,135-05,155,—0.5)

[image: image278.png]5,—1,—-05,105,—05,

5,14,5,-0.5,—1,—~0.5)

[image: image279.png]—1,-05,-2,-05,—1,-0.5,12.5,—05,—1,

—2,-05,—1,

[image: image280.png]—1,-05,—-1,-05,—1,—05,—4,—0.5,—1,-05,-2,—0.5,—1,—0.5)

	[image: image281.png]

	[image: image282.png]

Fig. 41. Input signal and its In-place wavelet transform of it
In Fig.41 you can see the data of the previous example and its wavelet transform.
In this block diagram we have two for loop that counter of the first for loop (according the block L) is from 0 till n (here 4) and the counter of second for loop (according the block L) is from 0 till 2(n-i-1).

The works of the block is simple and with the above example you can fallow it. Some function of the Fig.42 didn’t explain before those consist:

[image: image283.png]Cog2 (sample
amay size)= 1)

Sarnple aray
with 20 member]

Tector terminal
of case stucture

from Fig 33

Caze Sructure

Oecrment

Wait Until Next ms Multiple

Repnce Ay St

fioiace wavelet]
ransfor vith

20member

Fig. 42. Block diagram of Fast In-place wavelet transform

5.2.5.1. Index Array
Index Array returns the element or subarray of n-dimension array at index.

When we wire an array to this function, the function resizes automatically to display index inputs for each dimension in the array we wire to n-dimension array. We also can add additional element or subarray terminals by resizing the function. The connector pane displays the default data types for this polymorphic function.

[image: image284.png]n-dimension array
index 0 ——
indes 1

elemert or subarray

Fig. 43. “Index Array” a function of lab-view

The “n-dimension array” can be an n-dimensional array of any type. If n-dimension array is an empty array, element or subarray returns the default value of the defined data type for the array.

The “index 0...n-1” must be numeric. The number of index inputs matches the number of dimensions in n-dimension array. If the index is out of range (<0 or [image: image285]N, where N is the size of n-dimension array), element or subarray returns the default value of the defined data type for the array.

We can extract a subarray of the array by leaving one or more of the index terminals unwired. For example, extract column 1 of a 2D array by specifying 1 in the column index and leaving the row index unwired. If we index a 1D array and do not wire anything to the index input terminal, the Index Array function extracts the first element of the array. If we expand the node to show more than one element or subarray output, the function extracts the first number of elements equal to the number of element or subarray outputs. If we wire indexes only for some element or subarray outputs, the function extracts the index after the last wired index for the elements without wired indexes, and continues in order until the next element or subarray output with a wired index.
For example, if we wire a 2D array to the Index Array function, expand the node to show three outputs, wire 3 to the row index for the first output, and leave all other indexes unwired, Index Array outputs subarray rows 3, 4, and 5. If we wire 3 to the column index, Index Array outputs subarray columns 3, 4, and 5. If we wire 3 to both indexes, Index Array outputs the array elements at [3,3], [3,4], and [3,5].
The “element or subarray” has the same type as the elements of n-dimension array.

Here we have used a one-dimension array and the index is a number for separating the element of the array that we want to use it.

In the block diagram we have used two time from “Index Array”.

5.2.5.2. Replace Array Subset
“Replace Array Subset” Replaces an element or subarray in an array at the point we specify in index.

When we wire an array to this function, the function resizes automatically to display index inputs for each dimension in the array we wired. The connector pane displays the default data types for this polymorphic function.

[image: image286.png]n-dimension array

indes 0 ouput aay

index
new element/subarray

Fig. 44. “Replace Array” a function of lab-view

The “n-dimension array” is the array in which we want to replace an element(s), row(s), column(s), or page(s). This input can be an n-dimension array of any type (here we use for one-dimension array).

The “index 0..n-1” specifies the element, row, column, or page we want to replace in the array. If we do not wire this input, the dimensions of the new element/subarray input determines the number of elements of n-dimension array, starting with element 0, this function replaces. For example, if we do not wire this input and n-dimension array consists of three elements, and new element/subarray consists of two elements, this function replaces only the first two elements (0 and 1) of n-dimension array.

The “new element/subarray” is the array or element that replaces an element, row, column, or page in the array specified in n-dimension array.

Note The base data type of the new element or subarray must be the same type as the input array.

The “output array” is the array this function returns with the replaced element(s), row(s), column(s), or page(s).

5.2.5.3. Wait until next ms multiple

“Wait until next ms multiple” Waits until the value of the millisecond timer becomes a multiple of the specified millisecond multiple. Use this function to synchronize activities. We can call this function in a loop to control the loop execution rate. However, it is possible that the first loop period might be short. Wiring a value of 0 to the milliseconds multiple input forces the current thread to yield control of the CPU.

This function makes asynchronous system calls, but the nodes themselves function synchronously. Therefore, it does not complete execution until the specified time has elapsed.

[image: image287.png]millisecond multiple

milisecand tiner value.

Fig. 45. “wait until next ms multiple” a function of lab-view

The “millisecond multiple” is the input that specifies how many milliseconds lapse when the VI runs. Wiring a value of 0 to this parameter forces the current thread to yield control of the CPU.

The “millisecond timer value” returns the value of the millisecond timer.

We have used this function for seeing the stages of the program in slow motion. However in Fig.42 the millisecond multiplied for this function is 0 but we can change it if we want to reduce the speed of the program.

5.2.5.4. Multiply, Divide, Subtract, Add
“Multiply” Returns the product of the inputs.

If we wire two waveform values or two dynamic data type values to this function, error in and error out terminals appear on the function. The connector pane displays the default data types for this polymorphic function.

[image: image288.png]

Fig. 46. “Multiply” a function of lab-view

The “x” can be a scalar number, array or cluster of numbers, array of clusters of numbers, and so on (here it is a number).

The “y” can be a scalar number, array or cluster of numbers, array of clusters of numbers, and so on (here it is a number).
The “x*y” is the product of x multiplied by y.

We cannot use this function to multiply a matrix and a vector.
Use the A x Vector VI instead. When multiplying two matrices, if the number of rows in the second matrix does not match the number of columns in the first matrix, this function returns an empty matrix. Refer to the A x B VI for more information about matrix multiplication.

When we wire a matrix data type as an input to this function, a VI that includes subVIs that work with the matrix data type replaces the function. The resulting VI has the same icon but contains a matrix-specific algorithm. The node remains a VI if we disconnect the matrix from the input(s). Wire other data types as inputs to restore the original function. If we wire a data type to a function and that data type causes a basic math operation to fail, the function returns an empty matrix or NaN.
“Divide “Computes the quotient of the inputs.

If we wire two waveform values or two dynamic data type values to this function, error in and error out terminals appear on the function. The connector pane displays the default data types for this polymorphic function.

[image: image289.png]T Bw

Fig. 47. “Divide” a function of lab-view

The “x” can be a scalar number, array or cluster of numbers, array of clusters of numbers, and so on (here it is a number).

The “y” can be a scalar number, array or cluster of numbers, array of clusters of numbers, and so on (here it is a number).

The “x/y” is a double-precision, floating-point number if both x and y are integers. In general, the output type is the widest representation of the inputs if the inputs are not integers or if their representations differ.

Note We cannot use this function with fixed-point numbers. If we wire fixed-point numbers to this function, the VI appears with a broken Run button.

“Subtract” Computes the difference of the inputs.

If we wire two waveform values or two dynamic data type values to this function, error in and error out terminals appear on the function. Subtracting two time stamp values yields a numeric value (difference in time), and subtracting a numeric value from a time stamp value yields a time stamp. We cannot subtract a time stamp value from a numeric value. The dimensions of two matrices that we want to subtract must be the same. Otherwise, this function returns an empty matrix. The connector pane displays the default data types for this polymorphic function.

[image: image290.png]

Fig. 48. “Subtract” a function of lab-view

The “x” can be a scalar number, array or cluster of numbers, array of clusters of numbers, a time stamp, and so on (here it is a number).

The “y” can be a scalar number, array or cluster of numbers, array of clusters of numbers, a time stamp, and so on (here it is a number).

The “x-y” is the difference between x and y.

When we wire a matrix data type as an input to this function, a VI that includes subVIs that work with the matrix data type replaces the function. The resulting VI has the same icon but contains a matrix-specific algorithm. The node remains a VI if we disconnect the matrix from the input(s). Wire other data types as inputs to restore the original function. If we wire a data type to a function and that data type causes a basic math operation to fail, the function returns an empty matrix or NaN.

“Add” Computes the sum of the inputs.

If we wire two waveform values or two dynamic data type values to this function, error in and error out terminals appear on the function. We cannot add two time stamp values together. The dimensions of two matrices we want to add must be the same. Otherwise, this function returns an empty matrix. The connector pane displays the default data types for this polymorphic function.

[image: image291.png]

Fig. 49. “Add” a function of lab-view

The “x” can be a scalar number, array or cluster of numbers, array of clusters of numbers, a time stamp, and so on (here it is a number).

The “y” can be a scalar number, array or cluster of numbers, array of clusters of numbers, a time stamp, and so on (here it is a number).

The “x+ y” is the sum of x and y.

When we wire a matrix data type as an input to this function, a VI that includes subVIs that work with the matrix data type replaces the function. The resulting VI has the same icon but contains a matrix-specific algorithm. The node remains a VI if we disconnect the matrix from the input(s). Wire other data types as inputs to restore the original function. If we wire a data type to a function and that data type causes a basic math operation to fail, the function returns an empty matrix or NaN.
5.2.6. Comparison section
This part is for recognizing the variation in input signal (this may make by a motion birthing of a live.
[image: image292.png]To The Sound Section

Case Structure

fThe Size of Sample
Array from Fig.33

Wavelet Transform OF [7oThe Sound section
of Sample Array ||

Idextray | [Volume 3

B

Waveform Graph3

Fig. 50. Comparison section

As we have explained in chapter 4 in the Fast In-Place wavelet transform if we suppose the input signal as a digital signal such S={s0, s1,…, sm} and Fast In-Place wavelet transform such FIPWT= {w0, w1, …wm/2,… wm} that m= 2n then the first member of FIPWT is the average of the all members of the S and the middle member of FIPWT (wm/2) is the average of first half member of S mines second half members (m=2n). Here as we have used S with m=16 members (this can change in program) the middle member of FIPWT will be:

[image: image293.png]

By block diagram of block of Fig.50 at the first the size of the sample signal divide in 2. The quotient that, here it is 8, is an index for “Index Array” function that have explained in previous sections. Fast wave form transform that present in previous section as an array input into “Index Array” function that index of it is middle of sample array size. The output of “Index Array” function is the middle member of FIPWT (wm/2).
Now we compare this middle member with a variable volume 3 by a “great or equal” function, explained before, if the middle member of FIPWT (wm/2) is further than volume 3, the output of “Index Array” function is “True” and from the case structure the amount of 100 will go to sound section ,as shown in Fig.50, else if the middle member of FIPWT (wm/2) is less than volume 3, the output of “Index Array” function is “false” and from the case structure the amount of 30 will go to sound section ,as shown in Fig.50.
In Fig.50 waveform graph 3 and array2 for indication of the FIPWT have used.

The volume 2 is an indicator that show the variation of the middle member of FIPWT (wm/2) in front panel. It is selecting the about of volume 3.

5.2.7. Sound section

 Fig.51 shows the sound section that is consisting:

5.2.7.1. Sound Output Configure

Sound Output Configure (Windows, Linux) configures a sound output device to generate data. Use the Sound Output Write VI to write the data to the device.

[image: image294.png][Nurnber of Samples/ch]

[Sine Waveforma]

u

[arnpling info|

Waveform Graph

e RIpUR J5HT S

C #

5 i3

emor out

i

e
Sound Format

From comparison section Fig 50

g por) |

Fig. 51. Sound section

 (Windows) We must have DirectX 8.0 or later to use this VI. (Linux) We must have the Open Sound System (OSS) driver to use this VI.

[image: image295.png]Pumber of samples/ch
sample mode

device D = taskID

sound format =) ¢

error i (o error) =

ermor aut

Fig. 52. “Sound Output Configure” a function of lab-view

The “number of samples/ch” specifies the number of samples per channel in the buffer. Use a large number of samples for continuous operations. Use a smaller number of samples if we want to use less memory. Here in Front Panel we have used 5000 sample.
The “sample mode” specifies whether we intend to write just once (Finite Samples) or continuously (Continuous Samples). In Finite Samples mode, call Sound Output Write only until we have written the number of samples specified in number of samples/ch. In Continuous Samples mode, we can call Sound Output Write repeatedly as needed. Here as it shown in Fig.51 we have put continuous samples because we will see that we have used from sinuous wave for sound maker.
The “device ID” is the input or output device we access for a sound operation. In general, most users should select the default value of 0. The value ranges from 0 to n–1, where n is the number of input or output devices on the computer. Here we chose 0 for it.
The “sound format” sets the playing rate, the number of channels, and the bits per sample of the sound operation. The value for each of these controls is dependent on our sound card.

Note Setting sample rate (S/s) and bits per sample high uses more of the computer memory when the VI runs. Also, not all operating systems and sound cards support all sound format options.

· The “sample rate (S/s)” sets the sampling rate for the sound operation. Common rates are 44,100 S/s, 22,050 S/s, and 11,025 S/s. The default is 22050 S/s.

· The “number of channels” specifies the number of channels. This input can accept as many channels as the sound card supports. For most sound cards 1 is Mono and 2 is Stereo.

· The “bits per sample” specifies the quality of each sample in bits. Common resolutions are 16 bits and 8 bits. The default is 16 bits.

Here we have chose the sound format as follow, Fig.53. With chose these amounts by experience for the best sound.

[image: image296.png]6 Crr—

C —

Fig. 53. Sound format that have chose

The “error in” describes error conditions that occur before this VI or function runs. The default is no error. If an error occurred before this VI or function runs, the VI or function passes the error in value to error out. This VI or function runs normally only if no error occurred before this VI or function runs. If an error occurs while this VI or function runs, it runs normally and sets its own error status in error out. Use the Simple Error Handler or General Error Handler VIs to display the description of the error code. Use error in and error out to check errors and to specify execution order by wiring error out from one node to error in of the next node. Here as it is the first device we don’t use this nod.
The “task ID” returns an identification number associated with the configuration on the specified device. We can pass task ID to other sound operation VIs. Here it input into the while loop for the next steps.
The “error out” contains error information. If error in indicates that an error occurred before this VI or function ran, error out contains the same error information. Otherwise, it describes the error status that this VI or function produces. Right-click the error out front panel indicator and select Explain Error from the shortcut menu for more information about the error.

· The status is TRUE (X) if an error occurred or FALSE (checkmark) to indicate a warning or that no error occurred.

· The code is the error or warning code. If status is TRUE, code is a nonzero error code. If status is FALSE, code is 0 or a warning code.

· The source describes the origin of the error or warning and is, in most cases, the name of the VI or function that produced the error or warning.

[image: image297.png]

Fig. 54. “error out” a function of lab view

5.2.7.2. Sine waveform

“Sine Waveform” Generates a waveform containing a sine wave.

[image: image298.png]offset

reset signal

frequency signal ot
ampltuds =]

bhose 7 ermor aut

error in (no error)
Sampling info e

Fig. 55. “Sine waveform” a function of lab-view

The “offset” is the DC offset of the signal. The default is 0.0. Here we didn’t connect it therefore it is in default amount.
The “reset signal”, if TRUE, resets the phase to the phase control value and the time stamp to zero. The default is FALSE. Here we didn’t connect it therefore it is in default amount.

The “frequency” is the frequency of the waveform in units of hertz. The default is 10. As we want to use this sine waveform for product the sound we have put a variable amount for this nod and operator can change it for having a good voice.
The “amplitude” is the amplitude of the waveform. The amplitude is also the peak voltage. The default is 1.0. We have set it 10.
The “phase” is the initial phase, in degrees, of the waveform. The default is 0. The VI ignores phase if reset signal is FALSE. Here we didn’t connect it therefore it is in default amount.

The “error in” describes error conditions that occur before this VI or function runs. The default is no error. If an error occurred before this VI or function runs, the VI or function passes the error in value to error out. This VI or function runs normally only if no error occurred before this VI or function runs. If an error occurs while this VI or function runs, it runs normally and sets its own error status in error out. Use the Simple Error Handler or General Error Handler VIs to display the description of the error code. Use error in and error out to check errors and to specify execution order by wiring error out from one node to error in of the next node. Here we didn’t connect it therefore it is in default amount.

The “sampling info” contains sampling information.

· Fs is the sampling rate in samples per second. The default is 1000. We want to use this sine waveform for product the sound we have put a variable amount for this nod and operator can change it for having a good voice.

· #s is the number of samples in the waveform. The default is 1000. We want to use this sine waveform for product the sound we have put a variable amount for this nod and operator can change it for having a good voice.

[image: image299.png]sampling info.

B0 s

Fig. 56. “sampling info” that have used for sine waveform here

The “signal out” is the generated waveform.

The error out contains error information. If error in indicates that an error occurred before this VI or function ran, error out contains the same error information. Otherwise, it describes the error status that this VI or function produces. Right-click the error out front panel indicator and select Explain Error from the shortcut menu for more information about the error. We didn’t connect it therefore it is in default amount.
5.2.7.3. Sound output Set volume
“Sound Output Set Volume” Sets the volume at which the sound output device plays.

[image: image300.png]task 1D
volume
errorin o error) <

taskID out

ermor aut

Fig. 57. “sound output set volume” a function of lab-view

The “task ID” is the sound operation from the configured device we want to manipulate or input. We generate task ID with the Sound Output Configure VI. Here it is from sound output configure that have explained before.
The “volume” specifies the volume of the sound operation, one element per channel. 0 is silent and 100 is the loudest volume. The default is 100.

Here it is from the comparison section and it is 30, when we don’t have move in front of the Radar System, or 100, when we have move in front of the Radar System.

The “error in” describes error conditions that occur before this VI or function runs. The default is no error. If an error occurred before this VI or function runs, the VI or function passes the error in value to error out. This VI or function runs normally only if no error occurred before this VI or function runs. If an error occurs while this VI or function runs, it runs normally and sets its own error status in error out. Use the Simple Error Handler or General Error Handler VIs to display the description of the error code. Use error in and error out to check errors and to specify execution order by wiring error out from one node to error in of the next node. Here it is from sound output configure that have explained before. Here as shown in fig.51 it comes from previous device.

· The status is TRUE (X) if an error occurred before this VI or function ran or FALSE (checkmark) to indicate a warning or that no error occurred before this VI or function ran. The default is FALSE.

· The code is the error or warning code. The default is 0. If status is TRUE, code is a nonzero error code. If status is FALSE, code is 0 or a warning code.

· The source specifies the origin of the error or warning and is, in most cases, the name of the VI or function that produced the error or warning. The default is an empty string.

The “task ID out” is the manipulated sound operation originally passed in the task ID parameter. Here as shown in fig.51 it goes to next device “sound output”.
The error out contains error information. If error in indicates that an error occurred before this VI or function ran, error out contains the same error information. Otherwise, it describes the error status that this VI or function produces. Right-click the error out front panel indicator and select Explain Error from the shortcut menu for more information about the error. Here as shown in fig.51 it goes to next device “sound output”.
· The status is TRUE (X) if an error occurred or FALSE (checkmark) to indicate a warning or that no error occurred.

· The code is the error or warning code. If status is TRUE, code is a nonzero error code. If status is FALSE, code is 0 or a warning code.

· The source describes the origin of the error or warning and is, in most cases, the name of the VI or function that produced the error or warning.

5.2.7.4. Sound output write

The “Sound Output Write” Writes data to a sound output device. We must use the Sound Output Configure VI to configure the device if we are writing continuously. We must manually select the polymorphic instance we want to use.

[image: image301.png]task 1D
data

error in (no error)
timeout (sec)

—_7

taskID out

ermor aut

Fig. 58. “sound output write” a function of lab-view

The “task ID” is the sound operation from the configured device we want to manipulate or input. We generate task ID with the Sound Output Configure VI.

The “data” writes any sound data to the internal buffers. For multi-channel sound data, data is an array of waveforms where each element of the array is a single channel. We have inputted data from sine waveform. This sine wave form is continues signal you can see it in waveform graph 4 during the operation, as shown in Fig. 59.

[image: image302.png]Waveform Graph 4

Amplitude.

Fig. 59. “sine waveform” that use for product the sound

The “error in” explanation is the same that tolled in another “error in” in previous section. Here as shown in fig.51 it comes from previous VI (sound output set volume).
The “timeout (sec)” specifies the maximum amount of time in seconds to wait for the sound operation to complete. This VI returns an error if the time elapses. The default is 10. If we set timeout (sec) to -1, the VI waits indefinitely. If we set timeout (sec) to 0, the VI returns immediately while the sound continues to play. We can use the Sound Output Wait VI to wait for playback to complete. Here we didn’t connect it therefore it is in default amount.

The “task ID out” is the manipulated sound operation originally passed in the task ID parameter.

The “error out” explanation is the same that tolled in another “error out” in previous section. Here as shown in fig.51 it goes to next VI (sound output clear).

5.2.7.5. Sound output clear

“Sound Output Clear” Stops the device from playing sound, clears the buffer, returns the task to the default unconfigured state, and clears the resources associated with the task. The task becomes invalid.

(Windows) We must have DirectX 8.0 or later to use this VI. (Linux) We must have the Open Sound System (OSS) driver to use this VI.

[image: image303.png]task 1D

errorin (no error) error out

Fig. 60. “sound output clear” a function of lab-view

The “task ID” is the sound operation from the configured device we want to manipulate or input. We generate task ID with the Sound Output Configure VI.

The “error in” explanation is the same that tolled in another “error in” in previous section. Here as shown in fig.51 it comes from previous VI (sound output write).

The “error out” explanation is the same that tolled in another “error out” in previous section. Here as shown in fig.51 it goes to next VI (simple error handler).
5.2.7.6. Simple Error Handler

“Simple Error Handler “Indicates whether an error occurred. If an error occurred, this VI returns a description of the error and optionally displays a dialog box.

This VI calls the General Error Handler VI and has the same basic functionality as General Error Handler but with fewer options.

[image: image304.png]cade aut

ertor source (")

—

type of dislog (OK msg:1) source out
o (o) ertor out

message

ertor code (no error:0)

Fig. 61. “simple error handler” a function of lab-view

The “error code” is a numeric error code. If error in indicates an error, the VI ignores error code. If not, the VI tests it. A nonzero value signifies an error.

The “error source” is an optional string we can use to describe the source of error code.

The “type of dialog” determines what type of dialog box to display, if any. Regardless of its value, the VI outputs the error information and message describing the error.

The “error in” describes error conditions occurring before the function executes. Here as shown in fig.51 it comes from previous VI (sound output clear).

The “error out” contains error information. If error in indicates that an error occurred before this VI or function ran, error out contains the same error information. Otherwise, it describes the error status that this VI or function produces. Right-click the error out front panel indicator and select Explain Error from the shortcut menu for more information about the error. Here as shown in fig.51 it goes to next VI that is “error out” and has explained in previous sections.

5.3. Front panel of the system
At the following you can see the font panel of the system.
The parts of the front panel have explained in the 5.2 during the block diagram of the system. This front panel is that operator sees and operator doesn’t work with the block diagram.

[image: image305.png]Sound Format
fos ot Number of Smples/eh e e (579 sampling info Volume3

S ¥ a1 s
source [TGS 00 OO LR T Y)
= A — |
4 Pty T Volume 2
¢ M s 1
LR T Y)
Resolution Amplifier Waveform Graph3 LEIN]
Waveform Graph 4 LEIN] -
LRERE A)
sToP <
g2
0.01834¢ Waveform Graph 2 pioto NG Waveform Graphl
01
0.075-|
Nurnber of sample .
£
]
w0 2000 300 40 00
Time. Time

Fig. 62. Front panel of the system
The important parts of the front panel are the volumes specially “volume 3” and “resolution amplifier”.

The “volume 3” is the input of comparison section that has been explained in 5.2.6. This amount is a reference for changing the amount of important moving and it is a kind of sensitivity of the system. As “volom3” is lower the system is more sensitive.

The “resolution amplifier” is the input frequency of the sine waveform. By changing this amount we will change the frequency of the sinus waveform that product the sound. There form the quality of the sound will change and really it is a kind of resolution control.

6. Computer Simulation

Here as further work of project at the first need to have a noiseless signal with help of professor Ouzounoglou we went to a village and we have taken some good sample signal but for this part we needed to have a special program that have explained bellow.

6.1. Computer simulator

6.1.1. Saving program
For saving the samples at difference position in village we prepare the bellow program that saved the signals in 5000 points at some files.
Some parts of block diagram such “Initialize Array”, “Insert into Array”, ”ACD 42”,”waveform Graph”, ”For Loop”, “Wait Until Next ms Multiple” have explained in chapter 2 or chapter 5. In following another device are shown.

[image: image306.png]rortoop

5ot

Iniialize

Ay

EH

Wait Until Next ms Multiple

B

Insertnto Array

Path
et

Waveform Graph

0

ACD

Wiite To
Measurement
File

Carvertto Dynarric Data

Signals

Fig. 63. Block diagram of the program for saving the data in some file
6.1.1.1. path

A path (file Path Control), shown as follows in front panel, is a LabVIEW data type that identifies the location of a file on disk.

[image: image307.png]Path

3favadiiLivm | &)

Fig. 64. “File Path Control” a function of lab-view

The path describes the volume that contains the file, the directories between the top-level of the file system and the file, and the name of the file. Enter or display a path using the standard syntax for a given platform with the path control or indicator.

6.1.1.2 Convert to Dynamic Data

The “Convert to Dynamic Data” converts numeric, Boolean, waveform and array data types to the dynamic data type for use with Express VIs.

6.1.1.2. Writ to Measurement File
The “Write To Measurement File” Writes data to text-based measurement files (.lvm) or binary measurement files (.tdm or .tdms).

Use the “Read from Measurement File” Express VI to read data from the generated measurement file. That will be explained in next section.

[image: image308.png]DAQx Task
Comment
File Name

Wiite To
Measurement
File

File Name Out
Saving Data

fremees o out

Signals ===

Signals

Fig. 65. “Write To Measurement File” a function of lab-view

The “Signals” Contains the input signal or signals. If we wire two or more signals with the same name to the Signals input, LabVIEW appends an integer to the end of the names written in the file, which enforces unique channel names. For example, if we wire two signals named Sine to the Signals input, LabVIEW writes the names as Sine and Sine 1.
The “Reset” If TRUE stops and restarts writing data to the .lvm, .tdm, or .tdms file based on the Action or if a file already exists options we select in the Configure Write Measurement File dialog box. The default is FALSE.
The “Enable” Enables or disables the Express VI. The default is ON or TRUE.
The “new_ file” If TRUE, stops writing to the current file, creates the next file in the series, and writes to that file instead. This option is available only when we place a checkmark in the Save to series of files (multiple files) checkbox.
The “error in (no error)” describes error conditions that occur before this VI or function runs.
The “DAQmx Task” Specifies the DAQmx task to use to populate data on the DAQmx Properties page of the Configure User Defined Properties dialog box.
The “Comment” Appends a comment to each data set written to the .lvm or .tdm file.
The “File Name” Specifies the name of the file to which we want to write data. If File Name is not wired, the VI uses the File Name specified in the configuration dialog box.

The “File Name Out” Returns the name of the file.

The “Saving Data” Indicates if the Express VI is saving the data.

The “error out” contains error information. If error in indicates that an error occurred before this VI or function ran, error out contains the same error information. Otherwise, it describes the error status that this VI or function produces.
6.1.2. Read From File

For Reading the samples file from an existing file we have used the follow block diagram.
The “path” and “waveform Graph” have explained before.

[image: image309.png]Path 2

e

Read From
Measurement
File

Signals

Waveform Graph 2

Fig. 66. The block diagram used for reading the existing file

6.1.2.1. Read From Measurement File
The “Read From Measurement File “ reads data from a text-based measurement file (.lvm) or binary measurement file (.tdm or .tdms).

Use the Write to Measurement File express VI to write data to a measurement file. We also can use the Storage VIs to read from and write to .tdm files.

[image: image310.png]Read From Measurement File

Reopen File
Enable -
File Name
ertorin (no error) =]

Read From
Measurement
File

File Name Out

R ermor out
EOF?
Description
Comment

Signals

e Sigrals

Fig. 67. “Read from Measurement File” a function of lab-view

The “Enable” Enables or disables the Express VI. The default is ON or TRUE.

The “File Name” Specifies the name of the file from which we want to read data.

The “Reopen File” Resets the file position such that the next read starts at the beginning of the file.

The “error in (no error)” describes error conditions that occur before this VI or function runs.

The “Description” Returns the description in the header of the .lvm or .tdm file.

The “Comment” Returns the appended comment of each data set in the .lvm or .tdm file.

The “Signals” Contains the output signal or signals.

The “File Name Out” Returns the name of the file.

The “error out” contains error information. If error in indicates that an error occurred before this VI or function ran, error out contains the same error information. Otherwise, it describes the error status that this VI or function produces.

The “EOF?” returns TRUE when the Express VI reaches the end of the file.

6.2. Some samples wave in the basement
6.2.1. Horizontal birthing in the basement
We took some signals from a person how was birthing and standing in front of the Radar system. Some of these samples in 5000 point shown as follow.
[image: image311.png]Waveorm Grgh [Rioci 4 |

Fig. 68. Horizontal birthing in front of the Radar system part1

[image: image312.png]Wavaform Graph

Fig. 69. Horizontal birthing in front of the Radar system part 2
6.2.2. Moving in front of Radar System in the basement
We took some signals from a person how was moving and standing in front
of the Radar system. Some of these samples in 5000 point shown as follow.

[image: image313.png]Waveform Graph

Waeform Graph

Waveform Graph

Fig. 70. Moving in front of the Radar system part1

[image: image314.png]Wiavform Gragh

Waeform Gragh

Wavetorm Graph

Fig. 71. Horizontal birthing in front of the Radar system part2

6.2.3. Vertical birthing in front of Radar System in the basement
We took some signals from a person how was birthing during he was lie down in front of the Radar system. Some of these samples in 5000 point shown as follow.

[image: image315.png]Waveform Graph

Fig. 72. Vertical birthing in front of Radar System part1

[image: image316.png]aph

Fig. 73. Vertical birthing in front of Radar System part1
6.3. Some samples wave behind the concrete wall

6.3.1. Horizontal birthing

We took some signals from a person how was birthing and standing behind the concrete wall and in front of the Radar system. Some of these samples in 5000 point shown as follow.

[image: image317.png]Waveform Graph

Waveform Graph

Waveform Graph

Fig. 74. Horizontal birthing behind the wall and in front of the Radar System part1

[image: image318.png]Waveform Graph

Waveform Graph

Waveform Graph

Fig. 75. Horizontal birthing behind the wall and in front of the Radar System part2

6.3.2. Moving

We took some signals from a person how was moving and standing behind the concrete wall and in front of the Radar system. Some of these samples in 5000 point shown as follow.
[image: image319.png]

Fig. 76. Moving behind the wall and in front of the Radar System part1

[image: image320.png]Waveform Graph
2

157

Amplitude.

sio o0 0 000 200 3000 300 w00 400 4s8g

Time

sio o0 0 000 200 3000 300 w00 400 4seg
Time

Waveform Graph

157

Amplitude.

sio o0 0 000 200 3000 300 w00 400 4seg
Time

Fig. 77. Moving behind the wall and in front of the Radar System part1

6.4. Some samples wave behind the concrete wall with ion pipe

6.4.1. Horizontal birthing

We took some signals from a person how was birthing and standing behind the concrete wall with ion pipe and in front of the Radar system. Some of these samples in 5000 point shown as follow.

[image: image321.png]Waveform Graph

Waveform Graph

Waveform Graph

Fig. 78. Moving behind the wall with ion pipe and in front of the Radar System part1

[image: image322.png]Waveform Graph

06

Amplitude.

0 sl o0 100 000 200 3000 300 w00 400 4s89

Time

Waveform Graph
01

0075
005+

0025

Amplitude.

sio a0 G0 200 20 a0 3o a0 a0 49

Time

Amplitude.

S0 1m0 1500 2000 2500 3000 3500 4000 4500 498

Time

Fig. 79. Moving behind the wall with ion pipe and in front of the Radar System part2

6.4.2. Horizontal birthing

We took some signals from a person how was birthing and standing between the concrete wall with ion pipe and the Radar system. Some of these samples in 5000 point shown as follow.
[image: image323.png]Waveform Graph
1
035+

S0 1000 iS00 2000 2500 3000 300 4000 4500 4998

Time

Waveform Graph
300 4000 4500 uu‘

Amplitude.

w1500 2000 2500 3000
Time

Fig. 80. Birthing and standing between the concrete wall with ion pipe and the Radar system part1

[image: image324.png]Waveform Graph

15

Amplitude.

Waveform Graph

sio o0 0 000 200 3000 300 m0o 400 4seg
Time

1
035+
05-|
025+
-
025+
05
075
1

Amplitude.

125
0

Waveform Graph

sio a0 is00 2000 200 a0 300 om0 4500 40
Time

04

100 000 200 3000 300 w00 400 4ses
Time

s 1000

Fig. 81. Birthing and standing between the concrete wall with ion pipe and the Radar system part1

7. Conclusion

7.1. Use of in-place wavelet transform in this paper:

In the Fig.82 a 5000 point sample that is an output sample of Radar system and it is an input signal for LabVIEW program is shown. In the Fig.82 the variations in the amplitudes are seen. These variations create with differences between transmitter and receiver signals of Radar system. These differences are produced in consequent of moving or birthing in front of the Radar system.

The in-place wavelet transform for 8 or 16 or 2k (depend to needed sensitivity) samples of latest samples that is real-time and inter to the system from the Radar output. For analysis after operation of in-place wavelet transform the element [image: image326.png](n-n)

 is used for comparison. If [image: image328.png](n-n)

 is less it shows that there aren’t difference between sender and receiver unites of radar and mean lake of movement or birthing in front of the radar system.
Now [image: image330.png](n-n)

 is comparison with a reference amount d (that is variable by operator for control of the system sensitive). If [image: image332.png]

 is further than the d the system will be alarm.

[image: image333.png]‘Waveform Graph 3
0

X
0 200 400 a0 @00 b0 10 1400 1600 100 2000 200 2400 2600 2600 3000 3200 3400 3600 3600 400 4200 4ddo 4gho agbo sodo

Fig. 82. A real sample of Radar System output the changes in amplitude are made by moving or birthing a live below the mass of concrete.

As an example in fig 6 came a sample of 8 point of Radar output it mean that we chose n=8.
[image: image334.png]

Fig. 83. A sample of last 8 point of Radar output

In fig.84 you can see the wavelet transform of sample that came in fig.83.

[image: image335.png]

Fig. 84. The wavelet transform of signal of Fig83.

Here c0 is amount of the forth term and it is about 0.001 that is very small. With experience we found d=.015.Therefore in this sample we wont have sound and it mean not existing of live or movement.

8. Impact and future Direction

8.1. Using another kind of ADC

The Analog to Digital Convertor that have used here is an ADC42 that have work with Parallel port as it have explained in chapter 2. The new computer don’t have the parallel port junction and it is better that we use another kind of ADC with a USB connector.

8.2. Making use of another kind of wavelet transform

Here we have used a wavelet transform In-Place kind that its program exists in chapter 4 and chapter 5.

We suggest using of another kind of wavelet transform that are exist in wavelet transform as a ready block.

8.2.1. Wavelet Transform Daubechies4

Computes the wavelet transform based on the Daubechies4 function of the input sequence X.

[image: image336.png]Wavelet Daubechiesd {1}

Fig. 85. “Wavelet Transform Daubechies4” a function of lab-view

X is the samples of the input signal. The length of the signal has to be a power of 2; otherwise an error code is given.

Wavelet Daubechies4 {X} returns the calculated wavelet Daubechies4 transform.

The error returns any error or warning from the VI. You can wire error to the Error Cluster from Error Code VI to convert the error code or warning into an error cluster.

Wavelet Transform Daubechies4 Details

The Wavelet Transform Daubechies4 transform can be defined using the transformation matrix

[image: image337.png]788

ge5®
of
[
[
&g
gFed
[
50 5e

.

Here blank entries signify zeros. The numbers c0, c1, c2, and c3 have to fulfill certain orthogonal properties

c02 + c12 + c22 + c32 = 1

c2c0 + c3c1 = 0

c3 – c2 + c1 – c0 = 0

0c3 – 1c2 + 2c1 – 3c0 = 0

With the unique solution

[image: image338.png]S

Lt

2

3

i
fen

@ s
ke)

I &)

S

&

8.2.2. Wavelet Transform Daubechies4 Inverse PtByPt

Wavelet Transform Daubechies4 Inverse PtByPt Computes the inverse of the wavelet transform based on the Daubechies4 function of the input sequence X.

[image: image339.png]Wavelet Daubechiesd Inv ¢}

Fig. 86. “Wavelet Transform Daubechies4 Inverse PtByPt” a function of lab-view

X is the samples of the input signal. The length of the signal has to be a power of 2; otherwise an error code is given.

Wavelet Daubechies4 Inv {X} returns the calculated inverse wavelet Daubechies4 transform.

The error returns any error or warning from the VI. You can wire error to the Error Cluster from Error Code VI to convert the error code or warning into an error cluster.

The Wavelet Transform Daubechies4 Inverse transform can be defined with the help of the transformation matrix

[image: image340.png]8o g
e8s8
g8
a7
&g

of
&g
g8 ¥

F588

Here blank entries signify zeros. The numbers c0, c1, c2, and c3 have to fulfill certain orthogonal properties, namely

c02 + c12 + c22 + c32 = 1

c2c0 + c3c1 = 0

c3 – c2 + c1 – c0 = 0

0c3 – 1c2 + 2c1 – 3c0 = 0

With the unique solution

[image: image341.png]

The inverse Wavelet Daubechies4 transform of the array X is defined by

Wavelet Daubechies4 Inv {X} = C–1*X.

It is

CC–1 = C–1C = I.

Refer to the definition of the Wavelet Transform Daubechies4 VI for more information about the Wavelet Transform Daubechies4 transform.

The following diagram shows the Wavelet Transform Daubechies4 Inverse of a function with two spikes at the points 13 and 69. The signal length is 1024.

[image: image342.png]06
04
02-
00-

a2

Dd
L)

480

600

a0

1000

1200

Fig. 87. A sample of “Wavelet Transform Daubechies4”

8.2.3. Wavelet Transform Daubechies4 PtByPt

Wavelet Transform Daubechies4 PtByPt Performs the wavelet transform based on the Daubechies4 function.

This VI is similar to the Wavelet Transform Daubechies4 VI.

[image: image343.png]nitialze.

sample length

Wavelet Daubechiesd {1}

Fig. 88. “Wavelet Transform Daubechies4” a function of lab-view

The initialize, when TRUE, initializes the internal state of the VI.

The x is an input data point.

The sample length is the length of each set of incoming data. The VI performs computation on each set of data. The default is 128. The sample length must be greater than zero and a power of 2.

The Wavelet Daubechies4 {X} returns the calculated wavelet Daubechies4 transform of the set of input data points specified by sample length. In the case of an error, the VI returns an empty array.

The error returns any error or warning from the VI. You can wire error to the Error Cluster from Error Code VI to convert the error code or warning into an error cluster.

8.2.4. Wavelet Transform Daubechies4 Inverse PtByPt

Wavelet Transform Daubechies4 Inverse PtByPt Performs the inverse of the wavelet transform based on the Daubechies4 function.

This VI is similar to the Wavelet Transform Daubechies4 Inverse VI.

[image: image344.png]nitialze.

sample length

Wavelet Daubechiesd Inv ¢}

Fig. 89. “Wavelet Transform Daubechies4” a function of lab-view

The initialize, when TRUE, initializes the internal state of the VI.

The x is an input data point.

The sample length is the length of each set of incoming data. The VI performs computation on each set of data. The default is 128. The sample length must be greater than zero and a power of 2.

The Wavelet Daubechies4 Inv {X} returns the calculated inverse wavelet Daubechies4 transform of the set of input data points specified by sample length. In the case of an error, the VI returns an empty array.

The error returns any error or warning from the VI. You can wire error to the Error Cluster from Error Code VI to convert the error code or warning into an error cluster.

8.3. Using some filter in the system

However the result of the system was satisfied but with the using of further filters it will have the better results.

8.4. Using the system for another target
We can use the system with some changes in the software for another target such:

· Finding the water flow under the earth.

· DB Meter of the oil flow or water flow in a pipe.

· Metal finder

· ….

References

1. Spence, William; S. A. Sipkin, G. L. Choy (1989). "Measuring the Size of an Earthquake". United States Geological Survey. Retrieved on 2006-11-03.

2. Andreas Jonsson, “The Discreet Wavelet Transform”, May 2002

3. Yves Nievergelt.”Wavelets Made Easy”,1999

4. Boulder. “Thin-Line Detection in Meteorological Radar Images Using Wavelet Transforms” carl hagelberg and jason helland, june 1995

5. Pietro Li `o” Wavelets in bioinformatics and computational

biology: state of art and perspectives” BIOINFORMATICS REVIEW, Vol. 19 no. 1 2003,Pages 2–9

6. Christopher Torrence and Gilbert P. Compo.” A Practical Guide to

Wavelet Analysis”, Bulletin of the American Meteorological Society, Vol. 79, No. 1, January 1998.

7. NlMAL GAMAGE AND WILLIAM BLUMEN. “Windowed and Wavelet Analysis of Marine Stratocumulus Cloud Inhomogeneity “GOLLMERETAL, August 1995.

8. K.-M. Lau and Hengyi Weng. “Climate Signal Detection Using Wavelet Transform: How to Make a Time Series Sing “Bulletin of the American Meteorological Society. Vol. 76, No. 12, December 1995.

9. Carl Hagelberg and Jason Helland. “Thin-Line Detection in Meteorological Radar Images Using Wavelet Transforms “JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY, Volume 12, June 1995.

10. Zheng Shen, Wei Wang, and Liming Mei.” Fine structure of Wind Waves Analyzed with Wavelet Transform “American Meteorological Society, Volume 24, May 1994.

11. Philip A. Ekstrom and Jeremy M. Hales.” A Wavelet-Based Approach for Atmospheric Pollution Modeling: Algorithm Development “American Meteorological Society, Volume 128, September 2000.

12. Paul C. Liu and Gerald S. Miller.” Wavelet Transforms and Ocean Current Data Analysis “American Meteorological Society JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY,Volume 13,1996.

13. O.Q.J.Al-Thahab, W.A.Mahmoad, M.S.Abdul-Wahab. "DESIGN AND SIMULATION OF RADON-MULTIWAVELET BASED OFDM SYSTEM" Journal of APPLIDE ELECTROMAGNETISM, Vol.9, 1109-1606, 2007

14. TAHL S. KESTIN, DAVID J. KAROLY, AND JUN-ICHI YANO.” Time–Frequency Variability of ENSO and Stochastic Simulations “American Meteorological Society, 1998.

15. Jorge E. Willemsen. ”Analysis of SWADE Discus N Wind Speed and Wave Height Time Series. Part I: Discrete Wavelet Packet Representations “American Meteorological Society, JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY, Volume 12, 1995.

16. RICHARD GROTJAHN, DANIEL HODYSS, AND CRIS CASTELLO. “Do Frontal Cyclones Change Size? Observed Widths of North Pacific Lows” MONTHLY WEATHER REVIEW, VOLUME 127, JUNE 1999.

17. Steven M. Gollmer, Harshvardhan, Robert F. Cahalan, and Jack B. Snider.” Windowed and Wavelet Analysis of Marine Stratocumulus Cloud Inhomogeneity “American Meteorological Society,Vol. 52, No. 16 August 1995.

18. S. H. Lee, J. N. Lee, J. K. Park, and H. S. Kim."DESING OF THE COMPACT UWB ANTENNA WITH PL-SHAPED MATCHING STUB" Journal of ELECTROMAGNETIC WAVES and APPL., Vol. 22, 1309-1317, 2008.

19. National Instruments, LabVIEW Getting Started with LabVIEW, Part Number 323427A-01, 2003.

20. National Instruments, LabVIEW User Manual, Part Number 320999E-01, 2003.

21. National Instruments, LabVIEW Performance and Memory Management, Part Number 342078A-01, 2003.

22. National Instruments, Introduction to LabVIEW Six-Hour Course, Part Number 323669B-01, 2003.

23. Robert H. Bishop, Learning With Labview 7 Express, Prentice Hall, 2003.

............................

Στασινόπουλος Γεώργιος

Κουτσούρης Δημήτριος - Διονύσιος

............................

Ουζούνογλου Νικόλαος

............................

Φράγκος Παναγιώτης

............................

Ματσόπυλος Γεώργιος

............................

Κακλαμάνη Δήμητρα

............................

Σάχαλος Ιωάννης

Detect the Live After Earthquake with CW Radar

Εισάγετε τον Τίτλο της Εργασίας

Seyed Javad Javadi Moghaddam

Seyed Javad Javadi Moghaddam

Detect the Live After Earthquake with CW Radar

_1322940176

