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Abstract

Nowadays, as the amount of information is rapidly increasing, query optimiza-
tion techniques for both homogeneous and heterogeneous data are more and more
needed. In this thesis, we investigate techniques for query optimization using a
set of views, considering both relational and XML databases. In particular, we
focus on three fundamental problems of query optimization, which have been ex-
tensively investigated due to their relevance with many database research areas.
These problems are the query containment, the query rewriting and the view se-
lection.

For relational databases we focus on the class of select-project-join SQL queries
with equality comparisons, a.k.a. conjunctive queries (CQs for short); one of the
most interesting classes of SQL queries and the class that has been greatly inves-
tigated. Moreover, we consider two kinds of semantics in order to theoretically
approximate the SQL semantics: the bag and bag-set semantics. In bag semantics
multiple occurrences of the same tuple are allowed in both base relations and an-
swers of queries. In bag-set semantics, the base relations are sets and the operators
are liable for bag-results.

For querying XML databases, we focus on XPath, which constitutes the major
language for navigation through the XML data. In particular, we focus on the three
major fragment of XP {//,[ ],∗}, which contain two of the constructs: wildcard (∗),
descendant edge (//) and branches ([ ]).

The problems of query containment and equivalence under both bag and bag-
set semantics are investigated through a detailed analysis of special cases of CQs.
The complexity in each case is given, as well. For the general case, the problem
remains open for more than a decade. In addition, we give necessary and sufficient
conditions for deciding both containment and equivalence for unions of XPath
queries; a problem which was not investigated in depth, in the past.

The problem of finding an equivalent rewriting is also investigated for both
relational and XPath queries. In particular, for relational queries, we describe
the requirements that a set of views have to satisfy in order to give an equivalent
rewriting of a CQ under both bag and bag-set semantics. In the case of XML
databases, we investigate the problem of rewriting a XPath query using multiple
views and prove that in the case that the query contains both descendant edges and
wildcards, the union operator may be required for finding an equivalent rewriting.

3
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The view selection is investigated for workloads of CQs under both bag and
bag-set semantics. In particular, we aim to limit the search space of candidate
viewsets. In that respect we start delineating the boundary between query work-
loads for which certain restricted search spaces suffice. They suffice in the sense
that they do not compromise optimality in that they contain at least one of the
optimal solutions. We start with the general case, where we give a tight condition
that candidate views can satisfy and still the search space (thus limited) does con-
tain at least one optimal solution. Then we study special cases. We show that for
chain query workloads under both bag and bag-set semantics, taking only chain
views may miss all optimum solutions, whereas, if we further limit the queries to
be path queries (i.e., chain queries over a single binary relation), then under bag
semantics, path views suffice.
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Chapter 1

Introduction

The efficient querying of data is a fundamental database problem for many
years. In addition, due to the emergence of the Web and the variety of data types,
this problem has become more challenging. Query optimization techniques for
both homogeneous and heterogeneous data are more and more needed.

The problem of query optimization is extensively investigated by many re-
searchers, e.g., [GMUW08, RG02, AHV95]; and many optimization techniques
have been incorporated in (the query optimizers of) conventional database systems.
Most of these techniques translate each query to an optimal query execution plan
(i.e., optimal order of physical operators). In particular, the conventional query
optimizers examine multiple query execution plans for a single query and evaluate
the most efficient one. Unlike the traditional single-query optimization, in multi-
query optimization an optimal combined query execution plan for a collection of
multiple queries is generated, e.g., [Sel88, PS88, RSSB00]. In particular, multi-
query optimization techniques exploit commonalities between queries; for example
by computing common subexpressions (i.e., subexpressions that are shared by mul-
tiple queries) once and reusing them, or by sharing scans of relations from disk.
In this thesis we focus on higher-level optimization techniques which are based
on transforming a collection of queries. Such transformations exploit sharing op-
portunities provided by a set of precomputed operations, and are taken place by
focusing only on the definitions of queries.

Data collections are practically connected with many applications, which ex-
tract information by posing multiple queries, multiple times, on these collections.
Moreover, in a data collection, there are base data units (such as base relations
in relational databases) and several other data units that are resulted by queries
over the base data. These additional data units are usually constructed either
to provide a subset of information to an external application (e.g., for security
purposes, or for improving the performance of data extraction) or to change the
semantic meaning of some data of the collection (e.g., in information integration
where semantic mappings are liable for integration). Such additional data units
are presented by views and they can be either virtual or materialized (i.e., the
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results of the queries are stored in the disk).

In general, the views (either materialized or virtual) constitute a way to con-
struct a middleware data collection. Namely, views can be used to reformulate
the given collection. This reformulation is either automatically generated, using a
specific set of constraints (view selection problem) or manually given (e.g., data
integration, in which the information included in many related databases is joined
into a whole). Such a reformulation is usually followed by an appropriate trans-
formation of the queries posed on the initial data collection (e.g., in information
integration, such a transformation is used for answering the queries posed on the
mediated database). The technique of exploiting the data provided by a set of
views in order to transform a set of queries (and consequently improve the per-
formance of query evaluation) is the purpose of this thesis. This technique is also
known as answering queries using views [Hal01].

The data collections may be conventional databases or other types of infor-
mation, such as collections of Web data. The most important data model used
by almost all commercial database systems is the relational model. The query
language used by all relational databases is SQL (which stands for “Structured
Query Language”). On the other hand, the most widely used data model for
heterogeneous data is the semistructured-data model, of which XML (stands for
“eXtensible Markup Language”) is the primary manifestation. In order, now, to
query XML data, many query languages are proposed [ABS00, MB06]. Most of
them use the XPath language to navigate through the XML data.

For SQL queries, three kinds of theoretical semantics have been proposed, the
set, bag and bag-set semantics. In general, the best theoretical approximation of
SQL semantics is the bag semantics because of its ability to manipulate multiple
occurrences of the same tuple. However, in real database applications, the basic
design principles do not recommend multiple occurrences of the same tuple in
the base relations. More specifically, due to normalization rules, in every base
relation there is a set of attributes, comprising the primary key of the relation,
that uniquely identifies each tuple. Thus, every relation in a normalized relational
database is regarded as a set. The best approach to handle theoretically the real
needs is to focus on bag-set semantics, where the base relations are sets and the
operators are liable for bag-results. In set semantics, no duplicate tuples allowed
either in the base relations or the answers of queries.

In this thesis, we investigate techniques for query optimization using a set of
views. In particular, for both relational and XML data collections, we focus on
the problem of efficiently answering a set of queries using views. Moreover, the
transformation needed in order to declare queries in terms of views (also called
query rewriting) is achieved using query containment and equivalence [Hal01];
features that enable comparisons between results of queries. These features are also
investigated for queries under realistic semantics (i.e., bag and bag-set semantics),
in this thesis.

The query containment and equivalence problems have been extensively in-
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vestigated for various types of database queries during the past two decades, but
the focus is on relational databases, and considering set semantics. The feature
of containment is based on checking only the forms of two queries and deciding
whether or not the answer of one query is always (i.e., for every data collection)
a part of the answer of the other query. The equivalence of two queries is given
by two-way containment, and describes different reformulations of the same query.
Here, we investigate the query containment problem for relational databases, con-
sidering either bag or bag-set semantics. In addition, we investigate the problems
of containment and equivalence of unions of XPath queries.

Rewriting either a relational or a XPath query is also greatly investigated.
However, the focus in relational databases is on set semantics. Here, we investigate
the problem of rewriting a query using a set of views under bag and bag-set
semantics, and describe the form of every rewriting of a given query using a specific
set of views, together with the requirements that a set of views have to satisfy in
order to give an equivalent rewriting of the given query. In the case of XML
databases, we investigate the problem of rewriting a XPath query using multiple
views; a problem which is not investigated in depth, in the past. In this case, we
show that rewritings using multiple views may be required in order to get all the
desirable information resulted by a given XPath query.

An efficient database reformulation, however, can be constructed by “automatically”
designing the set of views. Especially, considering an initial set of conditions that
the new data collection and the rewritings of the given queries have to satisfy (i.e.,
constraints over set of views and query rewritings), an optimal reformulation can
be achieved. The constraints vary with respect to the application’s needs. In the
query optimization setting, the major constraint requires efficient query rewritings
for the given set of queries. However, this is not practically the only constraint.
For example, a limited storage space can also be added in the list of constraints.
Namely, if we want to materialize the set of views, this set has to fit into the avail-
able storage space. In addition, since multiple updates are executed in the base
data, a less-costly maintained set of views may be required. Considering, now, a
given set of constraints, a data collection and a set of queries over this collection,
the problem of finding together an efficient set of rewritings and an appropriate
set of views for a given set of queries is called view selection. Here, we investigate
for relational databases the view selection problem considering a storage limit con-
straint for the set of views, and finding the optimal query rewritings. Moreover,
we succeed to solve the problem for both bag and bag-set semantics by describing
the form of every possible query rewriting of a given query under bag and bag-set
semantics, and by giving algorithms which outputs at least one optimal solution
(when there exists a solution) for a given problem input.

7
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1.1 Motivation scenarios

The problem of rewriting queries using views has recently received significant
attention because of its relevance to a wide variety of data management problems:
query optimization, information integration, data warehouse design and database
security. Moreover, the view selection problem is also at the core of the query op-
timization, data warehousing and Web caching. In a data warehouse, a successful
selection of views to materialize can preclude costly access to the base relations
and consequently helps to answer a batch of queries in efficient way. In a simi-
lar manner, the choice of a proper set of views to precompute may improve the
performance of Web-sites; because the set of expected queries can be answered
quickly [FLSY99]. In information integration a set of views is used by each source
database for determining the sharing data.

In information integration, a reformulation of the source databases is achieved
by generating a new integrated database. This integrated database can be either
physical (data warehouse) or virtual (mediated system). The integrated relations
in both cases are views which are defined over the relations appearing in source
databases. Especially, in the case of mediated systems, there are two approaches:
the GAV (Global-As-View) and the LAV (Local-As-View) approach. In the first
approach the views are defined in terms of source relations; instead of the second
one, in which the source relations are defined in terms of views. The queries,
now, posed in the integrated database have to be translated in terms of source
relations. In the GAV approach this translation is straightforward; however, in the
LAV approach rewriting a given query using a set of views is necessary. In data
warehouses, since the amount of integrated information is huge, a view selection
technique is used for query optimization.

In Web-site designs, precomputed views can be used to improve the perfor-
mance of Web-sites [FLSY99]. Before choosing an optimal design, we must assure
that the chosen views can be used to answer the expected queries at the Web-site.
A system that caches answers locally at the client can avoid accesses to base rela-
tions at the server. Cached result of a query can be thought of as a materialized
view, with the query as its view definition. The client could use the cached an-
swers from previous queries to answer future queries. Therefore, the techniques of
query rewriting and view selection can significantly help in an efficient Web-site
designing.

In database security, security views are constructed in order to hide informa-
tion [CFMS95]. Therefore, queries that are posed on the base database need to
be transformed in terms of views. Hence, query rewriting and view selection tech-
niques are used in order to efficient answer a given set of queries and designing
such a set of views.

The following example describes a case in which the view selection is used on
designing efficient Web-sites.

Example 1. Consider an airplane repair shop which stores information about its

8
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PART

pName wID

engine 1
engine 1
engine 2
wing 2
flap 1
flap 2

WAREHOUSES

wID wLocation wSupervisor

1 Seattle M.J.
2 Paris J.L.

SUPPLIER

sName sLocation

Boeing Seattle
Airbus Paris

Figure 1.1: Database instance D

suppliers and its warehouses in three relations. The relational database has schema
S; and contains the relations PART , WAREHOUSES and SUPPLIERS with
the following schemas (relation schemas):

PART (pName,wID)
WAREHOUSES(wID,wLocation,wSupervisor)
SUPPLIER(sName, sLocation)

In relation PART , each tuple says in which warehouse a certain part is stored;
where the name of the part is given as a value of attribute pName and the wID is a
reference to a tuple included in the second relation. In relation WAREHOUSES,
each record says where each of the shop’s warehouses is located (wLocation), to-
gether with some other information like the supervisor of each warehouse (wSupervisor).
Moreover, for each distinct warehouse there is a unique identifier given as a value
of attribute wID. Finally, in the third relation, the suppliers (sName) and their
locations (sLocation) are stored. In addition, we consider that in the relation
PART multiple occurrences of tuples are allowed (i.e., both the relations of the
database and the answers of the queries are multisets); which intuitively means
that each warehouse may stores an amount of a certain part.

Let, now, a database instance D of the schema S which is illustrated in the
Figure 1.1.

In addition, consider that the shop has placed their warehouses in such a way
that the following happen: (1) each warehouse is located in a place that a supplier
of the shop is located, and (2) each warehouse stores parts of the supplier located
in the same place with the warehouse.

Considering, now, that an employee of the shop wants to find all parts con-
tained in every warehouse of the shop, together with their suppliers, the query that
is posed in the database may be the following (the query is given in two different
query languages, SQL and Datalog).

9
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SQL : Q1 : Select s.sName, p.pName
From SUPPLIERS s, WAREHOUSES w, PART p
Where s.sLocation=w.wLocation AND w.wID = p.wID;

Datalog : Q1 : q(X,Y) :- SUPPLIER(X,Z), WAREHOUSES(W,Z,U),
PART(Y,W)

The answer of the query Q1 is illustrated as follows.

Q1(D)

sName pName

Boeing engine
Boeing engine
Airbus engine
Airbus wing
Boeing flap
Airbus flap

We also consider that the following query is often posed in the database.

SQL : Q2 : Select p.pName, w.wLocation
From WAREHOUSES w, PART p
Where w.wID = p.wID;

Datalog : Q2 : q(Y,Z) :- WAREHOUSES(W,Z,U), PART(Y,W)

The query Q2 asks for all parts the shop offers, together with the warehouses
in which each part is stored. The answer of Q2, now, when the query is posed on
D is given as follows.

Q2(D)

pName wLocation

engine Seattle
engine Seattle
engine Paris
wing Paris
flap Seattle
flap Paris

Let a Web-site that is connected to the above database, and extracts informa-
tion through posing the queries Q1 and Q2 on D, multiple times. In this case, one
may think that every time the Web-site requests information from the database,
the queries are posed and evaluated on D. This technique, however, is not the
most efficient one. This conclusion is easily implied by checking the definitions of
the above queries. More specifically, we can easily notice that the join between
the relations WAREHOUSES and PART is required during the evaluation of

10
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both Q1 and Q2. Therefore, precomputing this join operator and materializing
the least amount of data required during the evaluation of both Q1 and Q2, we
significantly speed up the response time of the Web-site. This materialization,
however, requires the data resulted by the join to be fit into available disk space.
Formally, now, we consider the views V1 and V2 with following definitions.

V1 : v1(Y,Z) :- WAREHOUSES(W,Z,U), PART (Y,W ).
V2 : v2(X,Z) :- SUPPLIER(X,Z).

Notice that the first view describes the join we mentioned above. Moreover,
notice that the first view is equal to the answer of Q2 and the second view describes
a copy of the relation SUPPLIER. Supposing, now, that the available disk space
is equal to 8 tuples, we can materialize the view V1. How can we, however, exploit
the data of the views to answer the queries Q1 and Q2, more efficiently? The
answer to this question is given by considering the following two queries that are
defined in terms of V1 and V2.

R1 : r1(X,Y ) :- v2(X,Z), v1(Y,Z).
R2 : r2(X,Y ) :- v1(X,Y ).

Focusing on the definitions of the queries Q1, Q2, R1 and R2 and the definitions
of the above views, we easily conclude that the answers of Q1 and Q2 are equal
to the answers of R1 and R2, respectively. The queries R1 and R2 are called
equivalent rewritings of Q1 and Q2, respectively, using the views V1 and V2. In
this case, using R1 and R2 instead of Q1 and Q2, we avoid to compute the join
between the relations WAREHOUSES and PART , multiple times; hence we
speed up query evaluation.

Suppose, now, that the available disk space is 12 tuples. In this case, we can
materialize the answers of both Q1 and Q2 instead of using the views V1, V2 and
the rewritings R1 and R2; a plan which speed up even more the extraction of the
desirable information (i.e., the answers of Q1 and Q2). Here, we have to notice
that in the case that the available disk space is equal to 8 tuples there is no set of
(conjunctive) views that gives more efficient rewritings of Q1 and Q2. Considering,
however, storage limit equal to 12 tuples, the most efficient rewritings of Q1 and
Q2 are defined as follows:

R′1 : r′1(X,Y ) :- v′1(X,Y ),
R′2 : r′2(X,Y ) :- v′2(X,Y ),

where the definitions of the materialized views V ′1 and V ′2 are the following.
V ′1 : v′1(X,Y ) :- SUPPLIER(X,Z),WAREHOUSES(W,Z,U),

PART (Y,W ),
V ′2 : v′2(Y, Z) :- WAREHOUSES(W,Z,U), PART (Y,W ).

2

1.1.1 Organization of thesis

This thesis is organized as follows.

• In the Chapter 2, the preliminaries for querying relational databases using
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views are given. In this chapter, we describe the basic concepts and tech-
niques for deciding query containment and equivalence. In addition, the
problems of rewriting queries using views and view selection are described
using a detailed analysis of the related work.

• In the Chapter 3 [ADG09], we investigate the problem of query containment
under bag and bag-set semantics through a detailed analysis of special cases.
The complexity in each case is given, as well.

• In the Chapter 4 [ADG08, ADGa], the problem of view selection under bag
and bag-set semantics is investigated. In this chapter, we describe the form
of every query rewriting of a given query, considering bag-set semantics.
Moreover, we give a necessary and sufficient condition (over a set of views)
for finding an equivalent rewriting of a given query; considering relational
database and bag-set semantics.

• In the Chapter 5, the basic concepts and techniques for rewriting XPath
queries using views, and preliminaries for XML databases, are given. The
problems of containment and equivalence of XPath queries is also given
through a detailed analysis of the related work.

• In the Chapter 6 [ADGb], the problems of rewriting XPath patterns using
multiple views and the containment and equivalence of unions of XPath
queries are investigated.

12



Chapter 2

Querying relational databases
using views

Nowadays, the relational databases is by far the dominant type of databases.
In this chapter, we focus on the relational databases and we especially describe the
basic concepts and techniques of answering queries using views and selecting views
with respect to a given set of queries over a specific relational database schema.
In addition, we focus on the class of conjunctive queries which is one of the most
interesting classes of SQL queries and the class that has been greatly investigated.

The problems of containment and equivalence of conjunctive queries are also
described for conjunctive queries, through a detailed analysis of techniques used
for deciding these problems. In addition, both problems are analyzed for each of
the three theoretical approximations of the SQL semantics; the set, the bag and
the bag-set semantics.

2.1 Basic definitions

We consider a collection of finite elements A. We say that A is a set if every
element in A is distinct. Supposing that there is at least one element e that appears
n times in the collection A, where n ≥ 1, we say that A is a bag (or multiset).
The number n is referred as the multiplicity of e in the bag A. Notice that every
set is also a bag considering that every element in the set has multiplicity equal
to 1. A bag can be also thought as a set of pairs (e;n), where e is an element
in the bag and n represents the multiplicity of e. Throughout this thesis, we use
the above collapsed notation to represent bags; instead of listing all occurrences
of each element. Moreover, for shorthand, we omit to write the multiplicity of an
element that appears once in a bag.

A relation is a named, two-dimensional table of data. Each column of the
relation has a distinct name that is called attribute; and each row of data (called
tuple) is sequence of values on the attributes of the relation, one value for each
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attribute. The number of the attributes is called arity of the relation. A relation
schema is a signature of the form r(A1, A2, . . . , An) defined by the name r of the
relation (called relation name) and the sequence of attributes (A1, A2, . . . , An).
Moreover, a collection of tuples over a relation schema is called relation instance. A
relation can be viewed either as a set or as a bag of tuples (also called bag-relation).
A (relational) database schema is a set of relations schemas. A (relational) database
instance (database, for short) of schema S is a set of relations instances of schemas
in S. Throughout this thesis, we describe a database instance by listing the tuples
appearing in each relation instance of a database, and attaching to each tuple
the name of the relation the tuple appears. For example, the database D =
{r1(a, b), r2(c, d)} contains two tuples; the tuple (a, b) included in the relation r1

and the tuple (c, d) included in the relation r2. In addition, we denote as r(D) the
instance of the relation r in a database D. We consider a database either as set-
valued, if all stored relations are sets, or as bag-valued, if multiset stored relations
are allowed.

Considering a bag-valued database D, we define the set-valued representation
of D, denoted as set(D), to be the set-valued database instance that is produced
by eliminating duplicates from relations of D.

2.1.1 Operators

Since the conventional set-operators (e.g. Union, Cartesian Product, Intersec-
tion, e.t.c.) have not the ability to manipulate duplicate elements, a similar set
of operators, called bag-operators [GMUW08], is introduced. The bag-operators
can be thought as generalizations of set-operators such that the duplicate elements
are taken account. More specifically, in bag-operators all occurrences of a certain
element are treated as distinct elements. In the following, we differentiate the
bag-operators from set-operators by subscripting each operator with the letter b;
instead of set semantics where we subscript each operator with the letter s.

Generalizing the subset operator, denoted as ⊆s, in order to handle bags, we
say that a bag B1 is a subbag of a bag B2, denoted as B1 ⊆b B2, if every element
e ∈ B1 with multiplicity n1, is also contained in B2 with multiplicity n2, where
n1 ≤ n2. Similarly, we say that two bags B1 and B2 are equal, denoted B1 =b B2,
if B1 ⊆b B2 and B2 ⊆b B1.

The Cartesian product of bags is analogously defined as the Cartesian product
of sets. More specifically, to compute the Cartesian product B1 ×b B2 of two bags
B1 and B2, each element of B1 is paired with each element of B2, regardless of
whether it is a duplicate or not. As a result, if an element e1 appears n1 times
in B1, and an element e2 appears n2 times in B2, then the element (e1, e2) will
appear n1 · n2 times in B1 ×b B2.

When we take the union of two bags, we add the number of occurrences of
each element. That is, if B1 is a bag in which the element e appears n1 times, and
B2 is a bag in which the element e appears n2 times, then in the bag B1 ∪b B2
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the element e appears n1 + n2 times. When we intersect two bags B1 and B2, in
which element e appears n1 and n2 times, respectively, in B1 ∩b B2 the element
e appears min(n1, n2) times. When we compute the difference B1 −b B2 of bags
B1 and B2, the element e appears in B1 −b B2 max(0, n1 − n2) times. That is, if
e appears in B1 more times than it appears in B2, then in B1 −b B2 the element
e appears the number of times it appears in B1, minus the number of times it
appears in B2. However, if e appears at least as many times in B2 as it appears
in B1, then e does not appear at all in B1 −b B2. Intuitively, each occurrence of e
in B2 “cancels” one occurrence in B1.

Concerning the selection operator applied to a bag-relation, the selection con-
dition is applied on each occurrence of every tuple independently. Thus its effect
is the same as the effect of conventional selection. Projection operator on a bag
is also similar to projection on a set as it is applied on each occurrence of every
tuple independently. However, the duplicates are not eliminated in the result of
the projection applied on a bag. In addition, in the case that the elimination of
some attributes causes the same tuple t to be obtained from two or more differ-
ent tuples, the multiplicity of t in the result of the projection is the sum of the
multiplicities of the initial tuples.

Joining bag-relations also present no surprises. We compare each occurrence of
every tuple of one relation with each occurrence of every tuple of the other, decide
whether or not this pair of tuples joins successfully, and if so we put the resulting
tuple in the answer. Constructing the result, we do not eliminate duplicate tuples.
In addition, it is important to note that joining a relation R with itself (such that
all the corresponding attributes are equal) using bag-operators does not result the
relation R (i.e. R 1b R 6=b R); instead of the case of set-operators where this
property holds (i.e. R 1s R =s R). This notice implies, as we will see in the
following, that in the case of bag-valued databases, joining a relation with itself
multiple times affect, significantly, the result of a sequence of operators.

Example 2. Let a database schema S that contains the binary relations edge and
path such that the first relation stores the edges of a directed graph, and the second
one, its paths of length 2. Also consider that we store in the database the directed
graph G depicted in Figure 2.1. Moreover, we notice that the bag-valued database

1 2 3
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6

Figure 2.1: Directed Graph G

instance D of S (in which G is stored) contains the relation instances: edge(D) =
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{(1, 2), (1, 4), (1, 5), (2, 3), (3, 6), (4, 2), (5, 2)} and path(D) = {((1, 2); 2), (1, 3),
(2, 6), (5, 3), (4, 3)}. It is easy to see that the tuple (1, 2) appears once, both in
edge(D) ∩b path(D) and in path(D)−b edge(D), none in edge(D)−b path(D), and
three times in edge(D) ∪b path(D). In addition, selecting the paths of length 2
starting from the node labeled by 1 (i.e. select the tuples from path(D) that have
the value 1 in the first attribute) we get the bag {((1, 2); 2), (1, 3)}. Projecting,
using bag-operators, on the second attribute of the (set-)relation edge(D) it is
important to note that the result is the bag {(2; 3), 3, 4, 5, 6}. Searching for pairs
of nodes that there is a path of length 4 between them, we join the bag-relation
path(D) with itself such that the second attribute of the first is equal to the first
attribute of the second. It is easy to see that in the resulting bag the tuple (1,2,6)
appears two times. Moreover, selecting from relations edge(D) and path(D) the
tuple (1, 2), we have that for the resulting bags Bedge, Bpath, respectively, it holds
that Bedge ⊆b Bpath but Bedge 6=b Bpath (because the tuple (1,2) appears more
times in Bpath than Bedge). 2

2.1.2 Expressions and substitutions

The operators over sets and bags provide a way to manage the information
stored in collections of data. In this perspective, we use the concept of expression
to denote an arbitrary sequence of joins, Cartesian products and selections over
relations. More specifically, an expression is a conjunction of atoms of the form
g1(X1), g2(X2), . . . , gn(Xn), where each atom gi(Xi), with i = 1, . . . , n, is a
reference to the relation gi, and Xi is a vector of variables and constants which
replace the attributes in the relation schema of gi. Moreover, we say that an
expression E has self-joins if it has more than one atoms with the same relation
name. Throughout this thesis, we use capital letters to denote variables of an
expression and small letters to denote constants (except if explicitly mentioned).

The physical meaning of an expression is given as follows. Multiple occurrences
of a variable in an atom and the existence of constants inside an atom indicate use
of selection operator (i.e. select from a certain relation the tuples such that the
values of two or more attributes are equal or, respectively, select tuples with spe-
cific values in corresponding attributes). In addition, the occurrence of a variable
in two different atoms of an expression indicates join with equality comparison;
and if two atoms have no common variables, then the operator that is applied on
the corresponding relations is the Cartesian product. The use of the expression,
however, does not provide any information about the ordering of the specific op-
erators, in general. Here, we consider that the selections are pushed down in the
evaluation plan (we firstly apply selections on relations and then we apply joins
and Cartesian products, in arbitrary order) [GMUW08]. Moreover, depending on
which semantics we consider, the result of an expression is given by computing the
corresponding operators.

Example 3. Let the relations employee and department with the following schemas:
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employee(Emp ID,F irst Name, Father Name,Last Name,Dept ID)
department(Dept ID,Department Name,Manager)

Now, consider the following expressions over the above relations:
E1 = employee(X, john, Y, Z,W ), employee(A, Y,B,C,W )
E2 = employee(U, Y, Y, V,W ), department(A,B,C)

The expressions E1, E2 indicate that the following operators are applied on the
above relations. As we can see, E1 implies a selection over the relation employee
searching for tuples that have the value john in the attribute First Name. More-
over, E1 joins the relation employee to itself searching for employees that work
in the same department; and the father’s name of the first is the first name of
the second. The expression E2 selects every employee with same first name and
father’s name; and also apply a Cartesian product between the relations employee
and department. 2

The result of an expression is either a bag or a set with respect to the operators
we consider. We denote as E(D) the resulting collection (bag or set, respectively)
of an expression E when E is applied on a database D (bag-valued or set-valued,
respectively). Since the result of an expression E is either a bag- or a set-relation,
we may apply additional operators on the resulting collection of E. In the following
definition, we formally define the concept of substitution; which intuitively is a way
to construct an expression E′ from an expression E in such a way that for every
database D the resulting collection E′(D) can be produced by applying a sequence
of additional selections on E(D).

Definition 1. A substitution θ is a finite set of the form {X1/Y1, . . . , Xn/Yn},
where each Yi is a variable or a constant, and X1, . . . , Xn are distinct variables.
When Y1, . . . , Yn are distinct variables, θ is called renaming substitution. Let
θ = {X1/Y1, . . . , Xn/Yn} be a substitution. Then the instance θ(E) of an expres-
sion E, is the expression obtained by simultaneously replacing each occurrence of
Xi in E by Yi for all i = 1, . . . , n; while the expression E is called a generalization
of the expression E′ = θ(E).

Also, we denote as θ(X) = Y that the variable X is substituted by the variable
Y using the substitution θ. Here, we have to notice that applying a substitution θ
on an expression E, denoted θ(E), each variable of E is substituted using θ, even
if it is substituted by itself; i.e. all the variables of E are in the domain of θ.

Considering two expressions E1 and E2, we say that a substitution θ over E1

is a mapping from E1 to E2, denoted as θ : E1 → E2, if the expression produced
by eliminating duplicate atoms from θ(E1) is a subexpression of E2. In addition,
an atom g of E1 maps on an atom g′ of E2 w.r.t. θ if g′ = θ(g); and similarly, we
say that a variable X of E1 maps on the variable Y of E2 w.r.t. θ if Y = θ(X).

Moreover, the definitions of expression and substitution imply that each in-
stance of an expression E describes a sequence of additional selections over the
result of E; i.e. considering a substitution θ over E the result of θ(E) is produced
by applying a sequence of selections on the result of E. The following example
illustrates this remark.
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Example 4. Let an instance D of the database schema S illustrated in the Exam-
ple 3, such that D contains the following relation instances:

employee(D) = {(1, John, John, Smith, 1), (2,Mat,George, Johnson, 2)}
department(D) = {(1, IT, 1), (2,Marketing, 2)}

The result E2(D) of applying the expression E2, illustrated in the Example 3,
on the database D using set-operators (it is the same using bag-operators) is:

E2(D) = {(1, John, John, Smith, 1, 1, IT, 1),
(1, John, John, Smith, 1, 2,Marketing, 2)}.

Selecting from the relation E2(D) the tuples such that each employee works in
the department with id equal to the id of the employee, it is easy to see that the
resulting relation contains only the tuple (1, John, John, Smith, 1, 1, IT, 1). It
is easy to verify that this result is also the result of the expression:

E3 = employee(U ′, Y ′, Y ′, V ′, U ′), department(U ′, B′, C ′)
when we apply E3 to the database D. Notice that E3 is the result of applying the
substitution θ = {U/U ′, Y/Y ′, V/V ′, W/U ′, A/U ′, B/B′, C/C ′} to the expression
E2; i.e. E3 is a generalization of E2 (or E2 is an instance of E3).

2

Notice, here, that each expression may have multiple instances and conse-
quently, multiple generalizations. Therefore, considering a set of expressions E
there may be expressions that generalize each expression of E ; i.e. there may be
common generalization of the expressions in E . In addition, if there is at least one
common generalizations of expressions in E we define the concept of least general
generalization [Plo70] which is a common generalization that requires the least
number of selections in order to become identical (up to a renaming substitution)
to each expression of the set E .

Definition 2. An expression E is a common generalization of E1, . . . , En,
with n > 1 if E is a generalization of each expression Ei, with 1 ≤ i ≤ n. E is
a least common generalization (or a least general generalization -lgg) of
E1, . . . , En, with n > 1, if E is a common generalization of E1, . . . , En, and there
is no other common generalization G of E1, . . . , En, such that E is a generalization
of G.

Example 5. Let the following five expressions posed on the binary relations r1 and
r2:

E1 = r1(Y,X), r1(X,X), r2(X, b), r2(a, a)
E2 = r1(Y,X), r1(X,X), r2(X, a), r2(a, b)
E3 = r1(D,A), r1(A,A), r2(A,B), r2(a,C)
E4 = r1(D,A), r1(A,A), r2(B, a), r2(C, b)
E5 = r1(D′, A′), r1(A′, A′), r2(A′, B′), r2(C ′, D′)

Notice that neither E2 is generalization of E1 nor E1 is generalization of E2.
The expression E3 is a common generalization of E1 and E2, because applying the
substitutions θ31 = {Y/D, A/X B/b, C/a} and θ32 = {Y/D, A/X, B/a, C/b} on
E3 we get the expressions E1 and E2, respectively. Similarly, we can verify that
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E4 and E5 are also common generalizations of E1 and E2. In addition, it is easy
to see that E3 and E4 are two different lggs of E1 and E2. On the other hand,
the expression E5 is not an lgg of E1 and E2, because applying the substitution θ
= {D′/D, A′/A, B′/B, C ′/a, D′/C} on E5, we get the expression E3. 2

On constructing least general generalization

The definitions of common generalization and lgg of a set of expressions imply
a simple condition on the form of the expressions. This condition is represented
in the following remark, and it is easily implied by the definition of substitution.

Remark 1. Let the set of expressions Exp. Then there is at least one lgg of the
expressions in Exp if and only if for each relation name r appearing in an expression
in Exp there is the same number of atoms with relation name r in every expression
in Exp.

Let, now, the set of n expressions Exp = {E1, E2, . . . , En} such that the ex-
pressions in Exp satisfy the condition described by Remark 1. Also, consider that
each expression in Exp has k atoms. Moreover, we suppose an ordering of the
atoms of each expression such that g(i,j) is the i-th atom of the j-th expression.
Each lgg of the expressions in Exp is inductively constructed using the function
hlgg which is defined as follows [BG95]:

• h(Z1, . . . , Zn) = X, where X is either a constant if for each i = 1, . . . , n we
have that Zi is identical to X, or otherwise a fresh variable,

• hlgg(e(Z11, . . . , Z1m), . . . , e(Zn1, . . . , Znm))) = e(hlgg(Z11, . . . , Zn1), . . . , hlgg(Z1m, . . . , Znm)),
where e is a relation of arity m,

• hlgg(E1, . . . , En) = hlgg(g(1,1), . . . , g(1,n)), . . . , hlgg(g(k,1), . . . , g(k,n)).

It is easy to notice, now, that using different orderings of the atoms of expres-
sions in Exp we can construct different lggs. In addition, this technique does not
always result an lgg. Namely, using every combination of orderings of the atoms
of the expressions, we get a set of common generalizations of the expressions in
Exp. This set, however, contains every lgg of the given expressions.

Example 6. Let the expressions described in Example 6. Moreover, consider an
ordering of the atoms of E1 and E2 described as follows

E1 = r1(Y,X) r1(X,X), r2(X, b), r2(a, a)
| | | |

E2 = r1(Y,X) r1(X,X), r2(X, a), r2(a, b)
hlgg ↓ ↓ ↓ ↓
E3 = r1(D,A) r1(A,A), r2(A,B), r2(a,C)

The construction of the lgg using the function hlgg is also illustrated above (we
remind that a, b and c are constants). Swaping, now, the first two atoms of E2

(i.e., we use a different ordering), the expression E6, that is also constructed using
the above technique, is the following.
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E1 = r1(Y,X) r1(X,X), r2(X, b), r2(a, a)
| | | |

E2 = r1(X,X) r1(Y,X), r2(X, a), r2(a, b)
hlgg ↓ ↓ ↓ ↓
E6 = r1(D,A) r1(E,A), r2(A,B), r2(a,C)

Notice, however, that E6 is a common generalization of E1 and E2 and a
generalization of E3. Thus E6 is not an lgg of E1 and E2. 2

2.2 Queries and Views

A query is a mapping from databases to databases, usually specified by a
logical formula on the schema S of the input databases. Typically, the output
database (called query answer) is a database with a single relation. In this thesis
we focus on the class of select-project-join SQL queries (SPJ queries, for short)
with equality comparisons, a.k.a. conjunctive queries (CQs for short). Formally,
the definition of a conjunctive query [AHV95] is a rule of the form:

Q : q(X) :- g1(X1), . . . , gn(Xn)
where the expression on the right of :- is applied on the (no necessarily distinct)
relations g1, . . . , gn, and the relation name q is a fresh relation. The atom q(X) is
the head of Q, denoted head(Q) while the expression on the right of :- is said to
be the body of Q, denoted body(Q). Each gi(Xi), with i = 1, . . . , n, is also called
a subgoal of Q. The variables in X are called distinguished or head variables of
Q and the set of distinguished variables of Q is denoted as DV ars(Q), whereas
the variables in Xi, i = 1, . . . , n, are called body variables of Q and the set of
body variables of Q is denoted as BodyV ars(Q). In addition, we denote the set of
variables of an atom g(Z) as vars(g(Z)) (or as vars(Z), for short). A body variable
which is not also a head variable is called non-distinguished variable of Q and the
set of non-distinguished variables of Q is denoted as NDV ars(Q). Moreover, we
say that a CQ has self-joins if its body has self-joins. In this thesis, we consider
safe conjunctive queries that is CQs whose head variables also occur in their body.

Remark 2. For every safe CQQ we have thatDV ars(Q)∪NDV ars(Q) = BodyV ars(Q).

The existence of variables in the head of a safe CQ Q indicates use of the
projection operator to the result of applying the body of Q on a database instance;
i.e., we project to the attributes of the body the distinguished variables appear.

The following example illustrates the correspondence between SPJ queries and
a CQ written as logical formula.

Example 7. Let the database schema S introduced in the Example 3. Searching
for the managers of the departments which contain an employee who has the same
first name and father’s name and his last name is Smith, we pose on the database
the following query, written using SQL syntax:
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select d.Manager
from employee e, department d
where e.First Name = e.Father Name AND
e.Dept ID=d.Dept ID AND e.Last Name=‘Smith’

The logical formula that equivalently represents the above SQL query is the
following:

Q : q(X) :- employee(Y,Z, Z, Smith,W ), department(W,V,X)

It is easy to see that the projection operator over the attribute Manager is
represented by exporting only the variable X to the head of the definition of
CQ (notice that X is appeared in the position of the relation department that
corresponds to the attribute Manager). 2

Since there is no information about the ordering of the operators in the query
plan in the above logical form of CQs, we consider use of only left-linear query
plans, where selections are pushed as far as they go and projection is the last
operator.

In addition, as a CQ is constituted by two expressions (the head and the body)
we extend the concepts of instance and generalization of the expressions to CQs.
Therefore, applying the same substitution θ both to the head and to the body of
a CQ Q (we say that θ is applied on Q), the CQ θ(Q) is an instance of Q; while
we say that Q is a generalization of the θ(Q). A CQ Q is a common generalization
of a set of queries Q if Q is a generalization of each query in Q. Moreover, Q is
a least common (or general) generalization (lgg, for short) of a set of CQs Q if
Q is a common generalization of the queries in Q and there is no other common
generalization Q′ of Q such that Q is a generalization of Q′.

Moreover, we refer to a view as a named query. A view is said to be materialized
if its answer is stored in the database. In this thesis, we are restricted to the use of
views defined by conjunctive queries called conjunctive views (except if explicitly
mentioned).

2.2.1 Semantics of Queries

In this section we give the semantics of a CQ (written as a logical formula). In
the following we use the concept of a valuation [AHV95] from a database instance
D on a CQ Q; which is a substitution over Q such that each variable of Q is
replaced by a constant, and the facts that are produced in the body of Q are
tuples in D. In addition, considering a database schema S, a bag-valued database
instance D of S, a query Q over S and a valuation θ from D on Q, we denote as
multiplicity of the instance θ(Q) (or the multiplicity of θ) the multiplication of the
multiplicities of the tuples in D that also appear in the body of θ(Q).

Considering, now, a CQ Q over a database schema S and a database instance
D of S, each tuple t produced in the head of Q after applying a valuation θ on Q,

21



Query Optimization under bag and bag-set semantics · Matthew Damigos

i.e. t = θ(head(Q)), appears in the answer Q(D). Moreover, for each tuple in the
answer of a query Q when Q is posed on a database instance D, t corresponds to
a valuation from D on Q. Formally, considering a database schema S, a CQ over
S and an instance D of S, the answer Q(D) of Q is the following relation:

Q(D) = {t|t = θ(head(Q)) such that θ is a valuation from D on Q}.

In addition, supposing a set-valued database instance we may consider the
CQ answer either as a set- or as bag-relation; however, in the case of bag-valued
databases the answer of a CQ answer is a bag-relation. Considering set-valued
database instance and set-operators we evaluate a CQ under set semantics; con-
sidering set-valued database instance and bag-operators we evaluate a CQ under
bag-set semantics, and considering bag-valued database instance and bag-operators
we evaluate a CQ under bag semantics.

Remark 3. Let a CQ Q over a database schema S. Then the following hold:

• For every set-valued database instance D of S, evaluating Q under set se-
mantics we have that for every tuple t in Q(D) there exists at least one
valuation θ from D on Q such that t = θ(head(Q)).

• For every set-valued database instance D of S, evaluating Q under bag-set
semantics we have that for every tuple t with multiplicity n in Q(D) there
exists a set Θ of n distinct valuations from D on Q such that for each θ ∈ Θ
it holds that t = θ(head(Q)).

• For every bag-valued database instance D of S, evaluating Q under bag
semantics we have that for every tuple t with multiplicity n in Q(D) there
exists a set Θ of distinct valuations from D on Q such that for each θ ∈ Θ it
holds that t = θ(head(Q)) and the sum of the multiplicities of the valuations
in Θ is equal to n.

Example 8. Let the database schema S that contains the binary relation edge. Also
consider the set-valued database instance D which contains the relation instance
edge(D) given by the graph G illustrated in Figure 2.2.
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Figure 2.2: Directed Graph G

Consider, now, the query path with definition:

path : path(X,Y ) :- edge(X,Z), edge(Z, Y )
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that results the paths of length 2 appearing on a directed graph.

Evaluating the query path on D under set semantics, there are five different
valuations from D on path; two of them give the tuple t = (1, 2) in head(path) but
t appears only once in path(D). More specifically, the first valuation θ1 from D on
path is {X/1, Z/3, Y/2}, the second one, named θ2, is {X/1, Z/4, Y/2}, and the
other three, named θ3, θ4 and θ5, substitute X with 1, 3 and 4, respectively, and
the variable Z with 2 and Y with 3. Hence, path(D) = {(1, 2), (1, 5), (3, 5), (4, 5)}.

Supposing bag-set semantics for the evaluation of the query, θ1 and θ2 are two
distinct valuations from D on path which give two occurrences of the same tuple
in path(D); hence path(D) = {((1, 2); 2), (1, 5), (3, 5), (4, 5)}.

Now consider the database with schema S ′ that contains the relation path
described above. Also consider the instance D′ of S ′ such that path(D′) = path(D).
Suppose the query Q over the schema S ′ with definition:

Q : q(X) :- path(X,Y ), path(X,Z)

that finds the nodes from which two paths of length 2 in a directed graph start.
Moreover, as the database is bag-valued, we evaluate Q under bag semantics. As
we can see, there are four distinct valuations that give the node 1 in head(Q);
these valuations are: θ′1, θ′2, θ′3, θ′4 from D′ on Q, where θ′1 = {X/1, Y/2, Z/2},
θ′2 = {X/1, Y/2, Z/5}, θ′3 = {X/1, Y/5, Z/2}, and θ′4 = {X/1, Y/5, Z/5}.
Moreover, the multiplicities of the above valuations are n1 = 4, n2 = 2, n3 = 2
and n4 = 1, respectively. Hence, q(D′) = {(1; 9), (3), (4)}. 2

Corollary 1 is immediately implied from the definitions of bag-operators, and
describes the correspondence of the evaluations of CQs under set, bag and bag-set
semantics.

Corollary 1. Let Q1 be a CQ under set semantics, Q2 be a CQ under bag-set
semantics and Q3 be a CQ under bag semantics such that Q1, Q2 and Q3 are syn-
tactically the same query. For every bag-valued database instance D the following
hold:

1. Q1(set(D)) =s set(Q2(set(D))) =s set(Q3(D)); and

2. Q1(set(D)) ⊆b Q2(set(D)) ⊆b Q3(D).

Practically, the set semantics corresponds to SQL semantics supposing that
the answer of each SPJ query is produced by the necessarily use of the keyword
DISTINCT. On the other hand, bag-set and bag semantics correspond to SQL
semantics considering no use of DISTINCT keyword. The bag-set semantics in-
dicates that the database instance is set-valued; while under bag semantics the
database instance is bag-valued. In practice, a set-valued database is usually
achieved by using basic relational database designing rules (a.k.a. normalization
rules).
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2.3 Containment and Equivalence

In this section, we focus on the notions of query containment and query equiv-
alence; features of queries that are used by the conventional relational database
systems and extensively investigated by many database research areas, such as
query optimization, view selection and information integration. Query contain-
ment and query equivalence enable comparison between different reformulations
of queries, in such a way that the answer of a query is guaranteed to be either
a part of or equal to, respectively, the answer of an another query. The formal
definitions of the query containment and query equivalence are given as follows.

Definition 3. Let Q1 and Q2 be two queries over a database schema S under set
semantics (bag semantics, bag-set semantics, respectively). We say that Q2 is set
contained (bag contained, bag-set contained, respectively) in Q1, denoted
Q2 vs Q1 (Q2 vb Q1, Q2 vbs Q1, respectively), if for every set-valued (bag-
valued, set-valued, respectively) database instance D of S, we have that Q2(D) ⊂s
Q1(D) (Q2(D) ⊆b Q1(D), Q2(D) ⊆b Q1(D), respectively). Equivalence for each
semantics is defined as two way containment.

The following example illustrates a simple case of query optimization which is
based on the concepts of query containment and query equivalence.

Example 9. Consider the database schema S introduced in the Example 3 and a
set-valued database instance D of S. Also, consider two materialized views V1, V2

over S with definitions:
V1 : v1(X,Z, Y ) :- employee(X,Z, Y, Smith,W )
V2 : v2(X,Y, Y ) :- employee(X,Y, Y, Smith,W ).

V1 stores the employees whose last name is Smith, and V2 stores the employees
whose first name is the same with their father’s name and their last name is Smith.
Suppose the query Q over S, defined by the following rule:

Q : q(X,Y, Y ) :- employee(X,Y, Y, Smith,W )
Q searches for employees whose first name is the same with their father’s name

and their last name is Smith.
It is easy to see that for every database instance (either set- or bag-valued) the

view V1 (treated as query) contains the query Q, i.e. Q vs V1 (and Q vbs V1, Q vb
V1). Moreover, notice that Q is equivalent under set, bag, or bag-set semantics to
the view V2 (treated as query). Hence, there are three ways to answer the query
Q using the above views. Firstly, we may pose Q directly on D. Secondly, we may
use the materialized view V1; i.e. selecting the tuples from V1(D) such that the
first name of each employee is the same with his father’s name, we get the answer
Q(D). Finally, we may use the second view in order to get the desirable answer
(Q(D) is equal to V2(D)). Notice that using the last two cases we avoid part of
query computation; hence we speed up the query processing. 2

Comparing the answers of two queries posed on an arbitrary database, the
bag containment describes a tighter comparison than the same way containment
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under bag-set semantics; which describes a tighter comparison than the same way
containment under set semantics. More specifically, see the following remark that
is implied by the definition of the query containment.

Remark 4. Let two queries Q1 and Q2 over a database schema S. Then the
following hold:

• If Q2 vb Q1 then Q2 vbs Q1, and

• If Q2 vbs Q1 then Q2 vs Q1.

However, even if the two queries are CQs, the opposite direction of both cases
of Remark 4 does not hold. The following example describes a case in which the
set containment does not imply bag-set containment.

Example 10. Consider the queries Q1 and Q2 described by the following definitions:
Q1 : q(Age) :- student(Id,Age)
Q2 : q(Age) :- student(Id,Age), emp(Id, Jobtitle)

The first query results the ages of the students and the second one results the
ages of the students that work in a job stored in the relation emp. It is easy to see
that for every set-valued database instance D the answer of Q2 when it is posed
on D, will be a subset of the answer Q1(D), i.e. Q2 vs Q1; because the age of a
student that has a job will be also resulted by the first query. However, Q2 6vbs Q1,
since a student may have multiple jobs. 2

The following example shows that bag-set containment does not imply bag
containment.

Example 11. Consider the CQs Q1, Q2 with the following definitions, over the
schema S that contains the binary relation link.

Q1 : q(X,Y ) :- link(X,Y )
Q2 : q(X,Y ) :- link(X,Y ), link(Y, Y )

The relation link(X,Y ) stores pairs of Web-sites (X,Y ) for which there is a
link from X to Y . Moreover, the first query results the pair of sites that there is a
link from the first site to the second site; and the second query results the pair of
sites that there is a link from the first site to the second site and the second site
has also a self-link.

It is easy to see that if the database instance is set-valued (i.e. we store in
the relation link only whether or not there is a link from a Web-site to another),
then we have that Q2 vbs Q1. However, each Web-site may link to itself multiple
times (or there may be multiple links from a Web-site to another); which implies
a bag-valued database instance. Hence, using the bag-valued database instance
D = {(link(a, b); 5), (link(b, b); 2)}, we see that Q2 6vb Q1. 2

2.3.1 Deciding conjunctive query containment

The decision of whether or not a query is contained in another query consti-
tutes a problem that is extensively investigated for various classes of queries. In
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this section we focus on significant tools used for solving the conjunctive query
containment. More specifically, we define the containment mapping from a CQ to
another CQ and give the definition of the canonical database of a CQ. Moreover,
we describe how these techniques are used for deciding query containment under
set semantics and also give necessary and sufficient conditions for deciding query
containment under bag, and bag-set semantics. The problem of conjunctive query
containment under bag and bag-set semantics is further investigated in Chapter 3.

Containment mapping: Supposing two CQs over the same database schema
the containment mapping describes a function from the set of variables of one CQ
to the set of variables and constants of another CQ. The formal definition is given
as follows.

Definition 4. Let two CQs Q1 and Q2 over the same schema S. We say that a
mapping µ : body(Q1) → body(Q2) is a containment mapping from Q1 to Q2,
denoted as µ : Q1 → Q2, if µ(head(Q1)) = head(Q2).

Example 12. Let the CQs Q1 and Q2 over a database schema S that contains the
binary relation edge. The definitions of Q1 and Q2 are the following:

Q1 : q(X) :- edge(X,Y ), edge(Y,Z), edge(Y,W )
Q2 : q(A) :- edge(A,B), edge(B,B), edge(B,C)

A graphical representation of the above queries is illustrated in Figure 2.3.

Q1 : X Y Z W

Q2 : A B C

Figure 2.3: Graphical Representation of Q1 and Q2

Consider the mapping µ : body(Q1) → body(Q2) such that µ = {X/A, Y/B,
Z/B, W/C} (µ is represented in Figure 2.3 with dashed lines). Notice that µ
is a containment mapping from Q1 to Q2. Moreover, considering an arbitrary
database instance D of S and a valuation v from D on Q2, it is easy to verify
that the substitution v′ = {X/v(µ(X)), Y/v(µ(Y )), Z/v(µ(Z)), W/v(µ(W ))} is a
valuation from D on Q1 such that v(head(Q2)) = v′(head(Q1)).

In addition, notice that there are totally four containment mappings from Q1

to Q2. However, there is no containment mapping from Q2 to Q1, since there is
no way the second subgoal of Q2 to map on a subgoal of Q1.

2
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As the above example shows, the existence of a containment mapping from a
CQ Q1 to a CQ Q2 guarantees that for every database instance D and for every
valuation v from D on Q2 there exists at least one valuation v′ from D on Q1 such
that v(head(Q2)) = v′(head(Q1)). Consequently, the existence of a containment
mapping constitutes a necessary and sufficient condition for conjunctive query
containment under set semantics. The following theorem proves this assumption
[CM77].

Theorem 1. Let two CQs Q1 and Q2 over a database schema S. The query Q2 is
contained in Q1 under set semantics if and only if there is containment mapping
from Q1 to Q2.

Example 13. Continuing the Example 12, since there is a containment mapping
from Q1 to Q2 then Q2 vs Q1. On the other hand, as there is no containment
mapping from Q2 to Q1, we have that Q1 6vs Q2. In particular, considering the
database instance D = {(1, 2)} it is easy to see that Q2(D) is empty, instead of
Q1(D) which contains the tuple q(1); hence Q1(D) 6⊆s Q2(D). 2

Instead of the case of set conjunctive query containment, the conjunctive query
containment under bag and bag-set semantics is not decided via the existence of a
containment mapping. Example 10 illustrates such a case (there is a containment
mapping from Q1 to Q2, but Q2 6vbs Q1). Moreover, notice that there is not
containment mapping from Q1 to Q2 using which the variable Jobtitle of the
second query is mapped.

Similarly, for every two CQs Q1 and Q2 such that although there is a con-
tainment mapping from Q1 to Q2, there is a variable Y of Q2 that is not mapped
using a containment mapping from Q1, we can easily find a database instance that
violates bag-set containment requirements. More specifically, we can easily see this
by assigning multiple constants to Y and the same constant to any other variable
of Q2. The database instance constructed by the facts of Q2’s body causes a tuple
in the answer of Q2 whose multiplicity is greater than one; rather, the answer of Q1

in which the same tuple appears once. The following proposition illustrates this
necessary condition for bag-set CQ containment by showing that every variable
of the candidate contained CQ have to be mapped using a containment mapping
from the candidate containing CQ [CV93].

Proposition 1. Let Q1 and Q2 be CQs over a database schema S. If Q2 vbs Q1,
then for every variable X in Q2, there is a containment mapping µ from Q1 to Q2

such that X ∈ µ(Q1).

On the other hand, a property that guarantees bag-set CQ containment is
that there is a containment mapping using which every variable of the candidate
contained query is mapped. Formally, supposing two CQs Q1, Q2 over a database
schema S, we say that there is a containment mapping µ from Q1 variables-onto
Q2 if for every variable X of Q2 we have that X is in µ(Q1). Proposition 2 proves
the above sufficient condition for bag-set CQ containment [CV93].
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Proposition 2. Let Q1 and Q2 be CQs over a database schema S. If there is a
containment mapping from Q1 variables-onto Q2, then Q2 vbs Q1.

Example 14. Continuing the Example 11, notice that the containment mapping
µ = {X/X, Y/Y } from Q1 to Q2 is variables-onto; hence Proposition 2 implies
that Q2 vbs Q1. 2

The variables-onto containment mapping, however, is not also a necessary con-
dition for bag-set CQ containment, since there are cases in which there is no
variables-onto containment mapping and the CQ containment under bag-set se-
mantics holds. The following example represent such a case.

Example 15. Consider the following CQs over the schema S that contains the
binary relation r:

Q1 : q(X,Y ) :- r(X,X ′), r(Z,U), r(Z,W ), r(Y, Y ′)
Q2 : q(X,Y ) :- r(X,X ′), r(X,U), r(Y,W ), r(Y, Y ′)

Notice that there are two containment mappings fromQ1 toQ2; in each of them
the first subgoal of Q1 maps on the first subgoal of Q2 and the fourth subgoal of
Q1 maps on the fourth subgoal of Q2. The second and the third subgoal of Q1

maps together either on the second subgoal of Q2 or on the third subgoal of Q2.
Hence, all subgoals of Q2 are mapped using a containment mapping from Q1, but
there is no variables-onto containment mapping from Q1 to Q2. However, it is easy
to verify that Q2 vbs Q1 holds (more details about why this containment holds
are presented in Chapter 3).

2

On the other hand, Remark 4 shows that the bag-set containment for two
CQs constitutes a necessary condition for also deciding bag containment. There-
fore, nor in the case of bag semantics the existence of a containment mapping
suffice in order to decide bag CQ containment. However, for the case of bag CQ
containment, a similar condition to that described by Proposition 1 holds. More
specifically, if there is a subgoal of the candidate contained CQ that is not mapped
using a containment mapping from the candidate containing CQ then the bag CQ
containment does not hold. This necessary condition for bag CQ containment is
proved by the following proposition [CV93]. The Proposition 3 also proves that
the bag CQ containment implies a correspondence between the number of subgoals
with same relation name appearing in two queries. The Example 16 illustrates two
such cases.

Proposition 3. Let Q1 and Q2 be CQs over a database schema S. If Q2 vb Q1,
then both the following hold:

1. for every subgoal g in Q2, there is a containment mapping µ from Q1 to Q2

such that g ∈ µ(Q1); and

2. for each relation name r, the number of subgoals with relation r in Q1 is
greater than or equal to the number of subgoals with relation r in Q2.
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Example 16. Continuing the Example 11 it is easy to see that there is a unique
containment mapping from Q1 to Q2 (which is also variables-onto), but the subgoal
link(Y, Y ) of Q2 is not mapped using any containment mapping from Q1. Hence,
the case 1 of Proposition 3 implies that Q2 6vb Q1.

Now, consider the CQ Q3 over the schema S with definition:
Q3 : q(X,Y ) :- link(X,Y ), link(Y, Y ), link(Y,Z)

Notice that Q3 contains Q2 under bag semantics, since Q3 results a tuple (x, y)
for each link starts from y. However, as Q3 has three subgoals with relation name
link, instead of Q2 that has two, the case 2 of Proposition 3 implies that Q3 6vb Q2.
2

For the case of bag semantics, the existence of a containment mapping from the
candidate containing CQ to the candidate contained CQ such that every subgoal
of the candidate contained CQ is mapped by a distinct subgoal of Q1, guarantees
bag CQ containment. We denote such a mapping as a subgoals-onto containment
mapping; i.e. supposing two CQs Q1 and Q2 over a database schema S, a contain-
ment mapping µ from Q1 to Q2 is subgoals-onto if body(Q2) is a subexpression of
body(µ(Q1)) (without eliminating duplicate subgoals). The following proposition
formally shows this assumption [CV93].

Proposition 4. Let Q1 and Q2 be CQs over a database schema S. If there is a
containment mapping from Q1 subgoals-onto Q2, then Q2 vb Q1.

Example 17. Let the simple database schema S which models the Web graph and
is also described in Example 11. Also, consider the CQs Q and Q′ over S with the
following definitions.

Q : q(A) :- link(A,B), link(A,C)
Q′ : q(X) :- link(X,Y )

Notice that the containment mapping µ = {A/X,B/Y,C/Y } from Q to Q′ is
subgoals-onto; hence Proposition 4 implies that Q′ vb Q. However, while there
are two containment mappings from Q′ to Q, none of them is subgoals-onto. 2

The subgoals-onto containment mapping, however, is not a sufficient condition
for bag CQ containment, since there are cases in which there is no subgoals-onto
containment mapping and the CQ containment under bag semantics holds. The
following example depicts such a case.

Example 18. Consider the CQs introduced in the Example 15. Notice that there
is no subgoals-onto containment mapping from Q1 to Q2. However, it is easy to
verify that Q2 is bag contained in Q1. 2

Summarizing, the existence of a containment mapping is a necessary and suf-
ficient condition for set CQ containment. However, it constitutes only necessary
condition for bag-set and bag CQ containment. In [CM77], it is proved that the
complexity of finding a containment mapping is NP-complete. For the case of bag-
set and bag CQ containment, strengthening the definition of containment mapping
two sufficient conditions are implied for CQ containment under these semantics.
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More specifically, the existence of a variables-onto containment mapping implies
bag-set CQ containment and the existence of a subgoals-onto containment map-
ping implies bag CQ containment. In [CV93], it is proved that the complexity
of finding either a variables-onto or a subgoals-onto containment mapping is also
NP-complete.

Canonical Databases: A canonical database D of a CQ Q with respect to a
set of constants C is a database instance obtained as follows: we turn each subgoal
of Q into a fact by substituting each variable in the body of Q by a distinct constant
from C, and treat the resulting subgoals, after eliminating duplicate facts, as the
only tuples in D. We refer to the valuation using which a canonical database of Q
is constructed as canonical. The following proposition [AHV95, Ull89] shows how
we can use the concept of canonical database to decide CQ containment under set
semantics.

Proposition 5. Let two CQs Q1 and Q2 over the same schema S. Considering
the canonical database DC of Q2, we have that Q2(DC) ⊆s Q1(DC) if and only
if Q2 vs Q1.

Example 19. Consider the queries Q1 and Q2 introduced in the Example 10. Con-
structing the canonical database DC of Q2 we use the lowercase letters a, i and
j to denote constants. We then consider the canonical valuation v over Q2 such
that v = {Age/a, Id/i, Jobtitle/j}. Applying v on Q2 the subgoals appearing in
the body of v(Q2) constitute the DC ; i.e. DC = {student(i, a), emp(i, j)}. The
answer of Q2 on DC is Q2(DC) = {q(a)} which is equal to the answer Q1(DC).
Hence, Proposition 5 implies that Q2 vs Q1. 2

In Example 19 we noticed how the canonical database is used to decide set
CQ containment. However, as we noticed in Example 10, Q2 is not contained in
Q1 neither under bag-set nor under bag semantics. Therefore, we cannot use the
technique of canonical database to decide either bag or bag-set CQ containment.

2.3.2 Conjunctive query equivalence

In this section we focus on deciding CQ equivalence under set, bag and bag-set
semantics. Testing CQ equivalence under set semantics is straightforward. We
check the set CQ containment for both directions and if the two-way containment
holds then the CQs are set equivalent. In the case of bag and bag-set semantics
we cannot decide the CQ equivalence in the same manner, since we don’t even
know how to check bag and bag-set containment in the class of CQs. However,
in [CV93], it is proved that checking equivalence under both bag and bag-set
semantics is much more easier.

The key concept used to decide CQ equivalence either under bag or under bag-
set semantics is the isomorphic containment mapping. We say that a subgoals-onto
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containment mapping from a CQ Q1 to a CQ Q2 is isomorphic if it is also a renam-
ing substitution. The following observation is implied by Case 2 of Proposition 3
and it is essential for deciding bag equivalence.

Remark 5. Considering two CQs Q1, Q2 over the same schema, if Q1 ≡b Q2

then for each relation name g the queries Q1 and Q2 have the same number of
g-subgoals.

The Remark 5 is used to prove the following proposition; which shows that the
existence of an isomorphic containment mapping between two CQs is a necessary
and sufficient condition for deciding bag equivalence [CV93].

Proposition 6. Let two CQs Q1 and Q2 over the same schema S. There is an
isomorphic containment mapping from Q1 to Q2 if and only if Q1 ≡b Q2.

Example 20. As we noticed in the Example 17, there is not any isomorphic con-
tainment mapping from Q and Q′; hence the Proposition 6 implies that Q 6≡b Q′.
Consider, now, the following CQ over the same schema S.

Q′′ : q(X) :- link(X,Y ), link(X,Z).
The containment mapping µ = {A/X,B/Y,C/Z} from Q to Q′′ is isomorphic;

thus, in this case Proposition 6 implies that Q′′ ≡b Q. 2

For the case of bag-set semantics deciding bag-set equivalence is almost the
same, and it is based on the following important observation implied by the defi-
nition of variables-onto containment mapping.

Corollary 2. Considering the CQs Q and Q+ such that Q+ is obtained by adding
duplicate subgoals to Q, we have that Q ≡bs Q+.

The above corollary can be showed by easily proving that there are two variables-
onto containment mappings one from Q to Q+ and one from Q+ to Q. We refer
to the CQ that is obtained by eliminating duplicate subgoals from a CQ Q as
the canonical representation of Q, denoted by Qm. The following proposition
proves that deciding the bag-set equivalence of two CQs Q1 and Q2 is equivalent
to deciding whether the queries Qm1 and Qm2 are bag equivalent or not [CV93].

Proposition 7. Let two CQs Q1 and Q2 over the same schema S. There is an
isomorphic containment mapping from Qm1 to Qm2 if and only if Q1 ≡bs Q2.

Example 21. Consider two CQs P1 and P2 over the schema S introduced in the
Example 11. The definitions of P1 and P2 are the following.

P1 : p(X) :- link(X,Y ), link(Y, Y ), link(Y, Y ).
P2 : p(A) :- link(A,B), link(B,B), link(A,B).

Notice that there is no isomorphic containment mapping µ = {A/X,B/Y }
from P1 to P2. Next, we produce the Pm1 and Pm2 by eliminating duplicate sub-
goals from P1 and P2, respectively. Hence, the definitions of Pm1 and Pm2 are the
following.
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P1 : p(X) :- link(X,Y ), link(Y, Y ).
P2 : p(A) :- link(A,B), link(B,B).

It is easy to see that the mapping µ is an isomorphic containment mapping
from Pm1 to Pm2 . Thus, Proposition 7 implies that P2 ≡bs P1. 2

The Propositions 6 and 7 shows that the bag and bag-set CQ equivalence
problems are equivalent to the graph isomorphism problem [CV93]. Hence, the
complexity of deciding either bag or bag-set CQ containment is in NP [GJ79].

2.3.3 Further related work on query containment and
equivalence problems

Over the years, the problem of query containment under set semantics is inves-
tigated in depth by many researchers. Chandra and Merlin [CM77] proved that CQ
query containment under set semantics is NP-complete. Later, many researchers
investigated the problem for several super-classes of CQs [SY80, Klu88, vdM97].

Under bag and bag-set semantics, however, the problem was not studied so
much. Chaudhuri and Vardi [CV93] showed that under both bag and bag-set
semantics the CQ query containment problem is Πp

2 − hard. Ioannidis and Ra-
makrishnan [IR95] showed that the problem under bag semantics for CQs without
self-joins is decidable and the containment can be checked by whether or not a
subgoals-onto containment mapping exists. Moreover, they proved that the query
containment problem is undecidable for union of CQs. In [JKV06], it is proved
that the problem of containment of CQs with inequalities, under bag semantics,
is undecidable. Besides, it is shown that the query-containment problem for CQs
with inequalities, under bag semantics, is polynomial-time equivalent to the same
problem under bag-set semantics.

The problem of equivalence of CQs under bag and bag-set semantics is also
investigated in [CV93] (see Section 2.3.2). The set query equivalence problem is
simply reduced on checking two way containment.

For proper aggregate queries (i.e., the queries require the computation of at
least one aggregate function and necessarily outputs the result of this function),
Cohen et al. [Coh05, CNS03] show how it is possible to reduce containment of a
wide class of proper aggregate queries to equivalence. Using this result they also
prove that the containment of aggregate queries is decidable if one of the following
happens: (1) both queries are count, sum or max-queries, (2) both queries are
conjunctive avg or cntd-queries without constants. Moreover, in this case, bag
semantics are considered for the evaluation of the queries.

2.4 Answering queries using views

In this section we focus on describing the basic concepts and algorithms of
rewriting queries using views; which constitutes the most representative technique
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of answering queries using views [Hal01]. The problem of answering queries using
views can be stated as follows: given a query on a database schema and a set of
view definitions (also called viewset) over the same schema, we want to answer the
query using only the answers to the views.

The technique we use to answer queries using a given viewset (the queries and
the view definitions are defined over the same schema) is based on transforming
each of the given queries to a new query that is posed on the schema defined by
views. Such a transformation is achieved by using the definitions of views and
may guarantee that for every database instance the answers of the new queries are
either part of or the same to the answers resulted by the initial queries. For a given
query Q and a set of view definitions V we say that a query R is a rewriting of Q
using V if it is posed only on view relations in V and its answer is related to the
answer of Q. Using the concept of rewriting we formally define the contained and
the equivalent rewriting for each semantics of a query using a viewset as follows
[Hal01, ACGP07].

Definition 5. Let a query Q and a viewset V over a database schema S. We say
that a rewriting R of Q using V is a set contained rewriting (bag contained
rewriting, bag-set contained rewriting, respectively) of Q using V if for ev-
ery set-valued (bag-valued, set-valued, respectively) instance D of S we have that
Q(D) ⊆s R(V(D)) (Q(D) ⊆b R(V(D)), Q(D) ⊆b R(V(D)), respectively). Simi-
larly, we say that R is a set equivalent rewriting (bag equivalent rewriting,
bag-set equivalent rewriting, respectively) of Q using V if Q(D) =s R(V(D))
(Q(D) =b R(V(D)), Q(D) =b R(V(D)), respectively).

We denote by V(D) the database instance obtained by evaluating the defi-
nitions of the views in V over D. In addition, in the case of bag-set rewriting
we consider that V(D) is the bag-valued database obtained by evaluating under
bag-set semantics the views in V over the set-valued database D; and we consider
bag semantics for the evaluation of the rewriting over the database V(D). In the
following we focus on the equivalent rewriting of a given query using a given set
of views considering that the languages of the query, the rewritings and the view
definitions is the CQs.

The rewriting problem under each semantics is formally defined as follows.
Given a viewset V and a CQ Q over a database schema S, we want to find a CQ
which is a set (resp. bag, bag-set) equivalent rewriting R of Q using V.

Example 22. Continuing the Example 9 we consider the query R over the viewset
V = {V1, V2} with the following definition.

R : q(X,Y, Y ) :- v2(X,Y, Y )

It is easy to see that for every (either bag-valued or set-valued) database in-
stance D of S we have that the answer Q(D) is the same with the answer R(V(D))
(i.e. Q(D) =b R(V(D)) and Q(D) =s R(V(D)), respectively). Hence, R is a set,
bag and bag-set equivalent rewriting of Q using V. 2
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Throughout this thesis we consider the closed-world assumption [AD98, LRO96,
Hal01], in which views are materialized from base relations, rather than views de-
scribing sources in terms of abstract predicates, as is common when the open-world
assumption is used [LRO96, AD98, LRO96, Hal01].

Supposing a CQ Q and a viewset V over a database schema S, for every CQ
R in terms of V we define a CQ over S which is used on checking whether or
not R is either a contained or an equivalent rewriting of Q. In the following, we
refer as view-subgoal to each subgoal of R that is referred on a view included in
V. In addition, we refer as a definition of a view-subgoal to the definition of the
corresponding view in V.

The view-expansion of a view-subgoal v of R is the CQ obtained by applying
a substitution h over the definition V of v such that the atoms head(h(V )) and v
are identical, and the non-distinguished variables of h(V ) are fresh variables (i.e.
they are not used either by R or by any other view-expansion of a view-subgoal
of R). We denote as exp(R, v) the view-expansion of the view-subgoal v of R.
Notice that if there is at least one non-distinguished variable in the definition of a
view-subgoal then there are infinite view-expansions of a certain view-subgoal; con-
sidering that there are infinite ways to substitute a non-distinguished variable with
a fresh variable. However, all the view-expansions of a certain view-subgoal are
related each other by applying a renaming substitution over the non-distinguished
variables. Therefore, supposing a predefined substitution over the definition of
each view-subgoal v we refer to the unique view-expansion of v.

We, now, formally define the expansion of a CQ R in terms of V.

Definition 6. Let a viewset V over a database schema S and a CQ R over V.
The expansion of R, denoted as Rexp, is a CQ obtained by replacing every view-
subgoal of R with the body of its view-expansion.

The following proposition shows that given a viewset V and a CQ Q over
a schema S, deciding whether or not the expansion of a CQ R over V is set
equivalent (bag equivalent, bag-set equivalent, respectively) to Q is necessary and
sufficient condition for proving that R is a set equivalent rewriting (bag equivalent
rewriting, bag-set equivalent rewriting, respectively) of Q [Hal01, ACGP07]. A
similar condition holds for the case of contained rewriting.

Proposition 8. Let a CQ Q and a viewset V over a database schema S. Then
the following hold.

• For every CQ R over V we have that R is a set contained rewriting (bag
contained rewriting, bag-set contained rewriting, respectively) of Q if and
only if Rexp vs Q (Rexp vb Q, Rexp vbs Q, respectively).

• For every CQ R over V we have that R is a set equivalent rewriting (bag
equivalent rewriting, bag-set equivalent rewriting, respectively) of Q if and
only if Rexp ≡s Q (Rexp ≡b Q, Rexp ≡bs Q, respectively).
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Example 23. Let the CQ Q and the views V1, V2 (suppose that V = {V1, V2}) over
a database schema S. The definitions of Q, V1, V2 are the following.

Q : q(X) :- p(X,Y ), p(Y,Z), p(Z,W ), p(W,X)
V1 : v1(X,Y ) :- p(X,Z), p(Z, Y )
V2 : v2(X,Y ) :- p(X,Z), p(Z, Y ), p(Y,W )

Now, suppose the CQs R1 and R2 over V with the following definitions.
R1 : q(A) :- v1(A,C), v1(C,A)
R2 : q(A) :- v1(A,C), v2(C,A)

The definitions of each view-subgoal of R1, R2 with relation name v1 is the def-
inition of V1. Similarly, the definition of the second view-subgoal of R2 (named by
v2) is the definition of V2. Moreover, using the substitutions θ1 = {X/A, Y/C,Z/F1},
and θ2 = {X/C, Y/A,Z/F2} over the definition of V1 we get the view-expansions of
the first and second subgoal, respectively, of R1; which are given by the following
rules.

exp(R1, v1(A,C)) : v1(A,C) :- p(A,F1), p(F1, C)
exp(R1, v1(C,A)) : v1(C,A) :- p(C,F2), p(F2, A)

Similarly, the view-expansions of the view-subgoals of R2 are the following.
exp(R2, v1(A,C)) : v1(A,C) :- p(A,F3), p(F3, C)
exp(R2, v2(C,A)) : v2(C,A) :- p(C,F4), p(F4, A), p(A,F5)

Constructing the expansions of Rexp1 and Rexp2 from the view-expansions of
their view-subgoals, we have the following rules.

Rexp1 : q(A) :- p(A,F1), p(F1, C), p(C,F2), p(F2, A)
Rexp2 : q(A) :- p(A,F3), p(F3, C), p(C,F4), p(F4, A), p(A,F5)

Considering the mapping µ1 = {A/X, F1/Y, C/Z, F2/W} it is easy to verify
that µ1 is an isomorphic containment mapping from Rexp1 to Q; hence Proposi-
tion 6 implies that Q ≡b Rexp1 (consequently Q ≡bs Rexp1 and Q ≡s Rexp1 ). Thus,
Proposition 8 implies that R1 is a bag (also bag-set and set) equivalent rewriting
of Q using V.

Moreover, it is easy to see that there is no isomorphic containment mapping
from Rexp2 to Q; hence Rexp2 is neither a bag nor a bag-set equivalent rewriting of Q.
However, using the mappings µ21 = {A/X, F3/Y, C/Z, F4/W, F5/Y } and µ22 =
{X/A, Y/F3, Z/C, W/F4} from Rexp2 to Q and from Q to Rexp2 , respectively, it is
easy to verify that µ21 and µ22 are containment mappings. Hence, Proposition 1
implies that Rexp2 ≡s Q; thus, Proposition 8 implies that R2 is a set equivalent
rewriting of Q using V. 2

2.4.1 Useful views for rewriting a CQ

The common theme across all of the work on answering queries using views is
that they all have to deal with the fundamental question of when a view is usable
to answer a query. In this paragraph we focus on the minimum requirements that
a conjunctive view meets in order to be used for constructing a useful (either a
contained or a equivalent) rewriting of a CQ.
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The Proposition 8, together with the containment and equivalence hierarchy
over semantics (bag containment/equivalence implies bag-set containment/equivalence
and bag-set containment/equivalence implies set containment/equivalence), give
an important condition of when a view can be useful for a CQ (i.e. it may be used
in either an equivalent or a contained rewriting of a CQ). Therefore, it is easy to
see that the body of the view definition must be such an expression that the exis-
tence of a containment mapping from the query to the expansion of the rewriting
is ensured (least requirement for the existence of a set contained rewriting).

Focusing on the views that can be used on constructing an equivalent rewrit-
ing the decision of whether a view is useful or not is easier than searching on
useful views for a contained rewriting. The key notice is that there must also
be a containment mapping from the expansion of the equivalent rewriting to the
query. Hence, a view definition whose body does not map on a subexpression of
the query’s body cannot be used by any equivalent rewriting of the query. The
following corollary is implied by the definition of containment mapping and the
Proposition 8.

Corollary 3. Let a CQ Q and a viewset V over the same database schema. For
every set equivalent rewriting R of Q and for each view V in V that is used by R
we have that there is a mapping from the body(V ) to a subsexpression of body(Q).

Considering that S is the subexpression of body(Q) which is mapped by the
body of V , we say that V covers S and each subgoal g of S (under set semantics).

In the case of bag semantics, as an isomorphic containment mapping is required
in order to decide equivalence, a stronger sufficient condition of that described in
the previous corollary holds. The following lemma shows that the existence of
a substitution suffice (instead of the existence of a mapping) in order to decide
whether a view is useful or not for equivalently rewriting a CQ under bag semantics
[ACGP07].

Lemma 1. Let a CQ Q and a viewset V over the same schema. For every bag
equivalent rewriting R of Q using V, we have that the body of the definition of each
view V used R is a generalization of a subexpression S of Q.

In this case, we similarly say that V covers S (under bag semantics). The
following example illustrates how we can decide whether a view is useful or not for
equivalently rewriting of CQ.

Example 24. Consider the query Q and the views V1, V2 defined on the Example 23.
Also consider the views V3, V4 defined over the same schema S with the following
definitions.

V3 : v3(A) :- p(A,B), p(B,C)
V4 : v4(A,B,C) :- p(A,B), p(B,B), p(B,C)

As we noticed in the Example 23 the views V1, V2 can be used for equivalently
rewriting Q. In addition we observe that there are mappings from their bodies
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to subexpressions of the body(Q). Moreover, as the view V1 can be used for con-
structing a bag equivalent rewriting, then Lemma 1 implies that the body of V1 is
a generalization of a subexpression of Q.

Focusing, now, on the view V3, notice that using the substitution θ = {A/X,B/Y,C/Z}
we show that the body(θ(V3)) is a generalization of a subexpression of body(Q).
Hence, using Lemma 1, one may think that V3 may be useful for constructing
a bag equivalent rewriting of Q. However, it is easy to verify that there is no
bag equivalent rewriting which can be constructed by V3. On the other hand, a
set equivalent rewriting of Q that uses V3 can be constructed. The following CQ
constitutes such a rewriting.

R3 : q(A) :- v1(A,C), v1(C,A), v3(A)

Concerning the view V4 it is easy to verify that there is neither substitution nor
mapping from body(V4) to a subexpression of Q; hence Corollary 3 and Lemma 1
imply that there is no (bag, bag-set, or set) equivalent rewriting of Q which uses
V4. 2

Summarizing the previous discussion searching on the existence of an equiva-
lent rewriting of Q using V we focus on the set of views with definitions whose body
map on a subexpression of the Q’s body. Finally, for the existence of a bag equiv-
alent rewriting we only focus on view definitions whose body is a generalization of
Q’s body.

2.4.2 On constructing equivalent rewritings

The construction, however, of an equivalent rewriting of CQ, under each se-
mantics, also requires an appropriate combination of the views in a way such that
the expansion of the produced rewriting is equivalent to the CQ. In this para-
graph, we describe the requirements that a viewset meets in order to be used for
equivalently rewriting a CQ.

Example 25. Let a database that stores information for car dealers. The schema
S of the database contains the binary relations car, loc and the relation part of
arity three. A tuple car(m, d) means that the dealer d sells cars of make m. A
tuple loc(d, c) means that the dealer d has a branch in the city c; and a tuple
part(s,m, c) means that the store s in city c sells parts for cars of make m.

Consider that we submit the CQ Q that asks for cities and stores that sell
parts for car makes in the anderson branch in this city. The definition of Q is
given as follows.

Q : q(S,C) :- car(M,anderson), loc(anderson,C), part(S,M,C)

As we notice, the answer of Q is produced by applying selections on the rela-
tions car and loc such that the dealer is anderson, and then joining the results
with the relation part such that the location in loc and part is the same and the
make of car and part is the same. The answer is finally obtained by applying a
projection on the stores and the cities that the stores are located.

37



Query Optimization under bag and bag-set semantics · Matthew Damigos

In addition, suppose that we have the viewset V that contains the materialized
views V1, V2, V3, V4, V5 and V6 with the following definitions.

V1 : v1(S) :- car(M,anderson), loc(anderson,C), part(S,M,C)
V2 : v2(M,D,C, S) :- car(M,D), loc(D,C), part(S,M,C)
V3 : v3(M,D,C) :- car(M,D), loc(D,C)
V4 : v4(S,M,C) :- part(S,M,C)
V5 : v5(D,C) :- car(M,D), loc(D,C)
V6 : v2(S,C) :- part(S,M,C)

Notice that the body of each of the above view definitions is generalization of
a subexpression of Q’s body.

Searching for equivalent rewritings of Q using V we see that the body of the
first view is identical to that of query. However, the distinguished variables of the
view V1 is a subset of the variables needed in order to get the answer of the query
(i.e. V1 does not result the information about the cities that each store is located).
Hence, we cannot equivalently rewrite Q using V1 under each semantics.

The view V2 applies the same join operators on the base relations with that
the query applies. The answer of this view is a superset of the information needed
for answering Q. Hence applying a selection on the answer of V2 such that the
dealer is anderson, and then projecting on the stores and their cities, for every
database instance of S we get a result equal (under each semantics) to the answer
of Q. More specifically, the definition of the set (also bag and bag-set) equivalent
rewriting of Q using only the view V2 is the following.

R2 : q(S,C) :- v2(M,anderson,C, S)

Here, notice that we can use V1, together with V2 to construct a set equivalent
rewriting of Q. More specifically, the definition of this rewriting is the following.

R12 : q(S,C) :- v2(M,anderson,C, S), v1(S)

It is easy to verify there is a containment mapping from Q to Rexp12 and there
is also a containment mapping from Rexp12 to Q.

The view V3 answers the makes that a dealer sells, together with the cities in
which the dealer has a branch. Moreover, the answer of V4 is a copy of the relation
part. Hence, selecting the tuples of V3 such that the dealer is anderson, and then
joining the result with the answer of V4 such that each make appearing in V3 is
the same to that appearing in V4 and the cities appearing in answers of both V3

and V4 are equal, we can get the answer of Q (we finally project to the stores and
cities). Thus the corresponding set equivalent rewriting of Q using the views V3

and V4 is that with the following definition.
R34 : q(S,C) :- v3(M,anderson,C), v4(S,M,C)

Focusing, now, on constructing a set (or bag or bag-set) equivalent rewriting
of Q using V5 and V6, we observe that whereas the bodies of V5 and V6 are the
same with V3 and V4, respectively, the information resulted by V5 and V6 is less
than the information resulted by V3 and V4 (the makes of a certain dealer is not
resulted in the answers of both views). More specifically, notice that the variable
M is not a distinguished variable of V5 and V6. Hence, it is easy to see that we
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cannot answer Q by posing a CQ only in the answers of V5 and V6 (we cannot
join their answers such that the makes are equal). Thus, there is no set (or bag,
or bag-set) equivalent rewriting of Q using only V5 and V6. However, we easily
see that we can construct a set equivalent rewriting of Q using V5 and V6 together
with the views V3 and V4. The definition of such a rewriting (there is not only
one) is the following.

R3456 : q(S,C) :- v3(M,anderson,C), v4(S,M,C), v5(D,C), v6(S,C)

Finally, since under set semantics the existence of containment mappings in
both directions (i.e., from the expansion of the rewriting to Q and from Q to the
expansion of the rewriting) suffice in order to have a set equivalent rewriting, we
can construct set equivalent rewritings of Q using all views of V. The definition of
such a rewriting is given as follows.

RV : q(S,C) :- v1(S), v2(M,anderson,C, S),
v3(M,anderson,C), v4(S,M,C),
v5(D,C), v6(S,C)

2

In the above example, notice that each view-subgoal in an equivalent rewriting
is given by substituting the variables of definition of the view-subgoal using the
corresponding mapping from its body to a subexpression of Q’s body. This obser-
vations lead us to describe the way we can decide the existence of an equivalent
rewriting, and it is formally captured by the concept of view tuple [ALU07].

Definition 7. Given a CQ Q, we obtain a canonical database DQ of Q. Let V
be a viewset. For each tuple in V(DQ), we restore each introduced constant back
to the original variable of Q, and the result of this replacement is called a view
tuple of the query given the views. Moreover, we denote as T (Q,V) the set of
view tuples of Q and V.

In [ALU07], it is proved that if there is a set equivalent rewriting of Q using
V, then there is a set equivalent rewriting whose head is identical to the head of Q
and its subgoals are view tuples of Q and V. The following proposition formally
describes this result.

Proposition 9. Let a CQ Q and a viewset V. If there is a set equivalent rewriting
R of Q using V, then there is a set equivalent rewriting R′ of Q using V such that
body(Q) = body(R′) and each subgoal of R′ is a view tuple of Q and V.

As an example, consider the canonical database DQ of Q illustrated in Exam-
ple 25. DQ contains the tuples car(m, anderson), loc(anderson, c), part(s,m, c),
where s, m and c are constants. Computing the view tuples of V1 and V2 we get
V1(DQ) = {v1(s)} and V2(DQ) = {v2(m, anderson, c, s)}; from which the view
tuples v1(S), v2(M,anderson,C, S) are obtained. Notice that the CQ R12 is a set
equivalent rewriting which contains the above view tuples in its body and its head
is identical to Q.
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Focusing on bag semantics, we can decide the existence of a bag equivalent
rewriting much easier. The key notice for finding such a rewriting is given by the
Proposition 6. Hence, combining the results of Lemma 1 and Proposition 6 we
easily conclude that in each bag equivalent rewriting the view-expansions of its
subgoals form a partition of the query subgoals. This result is formally given as
follows [ACGP07].

Lemma 2. Let Q be a CQ and V be viewset. There is either a bag equivalent
rewriting R of Q in terms of V if and only if the view-expansions of the subgoals
of R form a partition of the subgoals of Q.

Therefore, considering a CQ Q and a viewset V, we can find either a bag or a
set equivalent rewriting (if there is any) using the Proposition 9 (which also holds
for both bag and bag-set semantics) and the above lemma. In particular, we firstly
compute the view tuples of Q and V. Then, searching for a bag equivalent rewriting
we get a combination of view tuples that form a partition of subgoals of Q. On the
other hand, searching for a set equivalent rewriting we get a combination of view
tuples for which there are containment mappings in both directions (from Q to
the produced rewriting and vice versa). In each case, the head of the constructed
rewriting is identical to that of Q.

Minimal rewritings

The existence of multiple equivalent rewritings of a given query Q and a given
viewset (e.g., see Example 25) leads on finding a representative subset of them that
satisfies the practical requirements. As we noticed in Example 25, there may be
multiple combinations of views that give equivalent rewritings. Moreover, in the
case of set semantics, the arbitrary duplication of view-subgoals of an equivalent
rewriting implies an infinite number of equivalent rewritings (since duplicating
subgoals of a set equivalent rewriting, new set equivalent rewritings are produced).
Are some of them, however, more significant? The answer is given by the purpose
of rewriting queries using views; which is that of answering a query as efficiently
as we can.

Since, now, the number of joins in a query affects significantly the efficiency
of the query evaluation, we focus on the equivalent rewritings with the minimum
number of joins. Hence, we say that an equivalent rewriting is locally-minimal if
we cannot remove any of its subgoals and still retain equivalence to the query. For
example, the rewritings R2, R34 in Example 25 are locally-minimal; the R12 and
R3456, however, are not (because removing the last subgoal of R12 and the last
two subgoals of R3456, we also get set equivalent rewritings). Notice, in this case,
that R2 applies less join operators than R34; hence, applying R2 on V2, we answer
Q more efficiently than applying R34 on the views V3 and V4. In order, now, to
capture these cases, we define the globally-minimal rewriting to be the equivalent
rewriting with the minimum number of subgoals. Therefore, in previous example
the only globally-minimal rewriting is the R2.
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Focusing on this perspective we categorize the useful views in two types: the
containment-target views, and the filtering views. A view V is a containment -
target view for a CQ Q if there exists either a set or a bag, or a bag-set equivalent
rewriting P of Q (P uses V ), and there is a containment mapping from Q to the
expansion P exp of P , such that V provides the image of at least one subgoal of
Q under the mapping. Intuitively, a containment-target view covers at least one
query subgoal. Covering all query subgoals (w.r.t. the semantics we consider) is
enough to produce an equivalent rewriting of the query. A view is a filtering view
for a query if it is not a containment-target view.

As an example of filtering view, notice that the view V1 described in Example 25
is a filtering view for Q. In order to verify this, notice the equivalent rewriting R12.
We can see that constructing the Rexp12 , there is not subgoal of view-expansion of
the V1-subgoal of R12 which is mapped by a subgoal of Q.

In [ACGP07], the authors prove that there is not any filtering view in a bag
equivalent rewriting of a CQ; which is easily implied by the Lemma 2. In addition,
we conclude that each equivalent rewriting of CQ in the case of bag semantics is
also a locally- and globally-minimal rewriting. For bag-set semantics, now, the
filtering views cannot also exist in equivalent rewritings of CQs. This follows from
the Proposition 7. In particular, the expansion of each bag-set equivalent rewriting
R of a CQ Q contains subgoals that are the same with the subgoals of Q up to a
renaming substitution. Moreover, in the case of bag-set equivalent rewriting there
may be views that provide only duplicate subgoals in its expansion. However, it is
easy to verify that in each locally-minimal bag-set equivalent rewriting these views
do not exist [ACGP07].

However, the filtering views in a set equivalent rewriting may significantly
reduce the evaluation time of answering a CQ [CHS02]. An example of such case
is described as follows.

Example 26. Consider a hypothetical shipping company that serves a number of
cities, with fixed delivery schedules between pairs of cities. Suppose the company
has a centralized database, with a relation t(Source,D,Dest) that stores all pairs
of cities Source and Dest, such that there is a scheduled delivery from Source to
Dest on day D of the week (a number between 1 and 7).

Suppose that agents of the company try to contract shipments to independent
truck drivers, by attracting them with tours connecting two or more cities. The
company predefines a number of tour types to offer to the truck drivers, and agents
need to query the database and find out whether the tour requested by the driver
exists starting at a given city. Every tour type starts and ends in the same city.

Consider the “four cities in five days with a break” tour which is given by the
following query.

Q : q(X1) :- t(X1, 1, X2), t(X2, 1, X3), t(X3, 2, X4), t(X4, 4, X3), t(X3, 5, X1)

In addition, consider the two views V1 and V2 such that V1 is a copy of the
base relation t, and V2 stores the set of cities on a cycle of length 5 (i.e., the cities
that can be toured in 5 days). The definitions of these views are the following.
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V1 : v1(X,D, Y ) :- t(X,D, Y )
V2 : v2(X) :- t(X,D1, X1), t(X1, D2, X2),

t(X2, D3, X3), t(X3, D4, X4), t(X4, D5, X)
Suppose, now, the following rewritings R1 and R2.

R1 : q(X1) :- v1(X1, 1, X2), v1(X2, 1, X3),
v1(X3, 2, X4), v1(X4, 4, X3), v1(X3, 5, X1)

R2 : q(X1) :- v2(X1), v1(X1, 1, X2), v1(X2, 1, X3), v2(X3),
v1(X3, 2, X4), v1(X4, 4, X3), v1(X3, 5, X1)

It is easy to verify that both rewritings are set equivalent rewritings of Q
using V1 and V2. Moreover, since the view V2 results the cities that can appear
in a “five days” tour (given by the CQ Q), R2 is used to speed up the query Q
(instead of the rewriting R1). The view V2, however, is a filtering view and R1

is a globally-minimal rewriting of Q using V1 and V2. Hence, in the case of set
semantics, filtering views can be used to speed up CQ evaluation and globally-
minimal rewritings do not necessarily describe the most efficient way of answering
a CQ using views. 2

2.5 Selecting conjunctive views

In many data-management scenarios, (such as information integration, data
warehousing, Web-site designs, and query optimization) the views are used on
reformulating a database for various aspects. Such a reformulation is achieved by
constructing a set of views, which are defined on an initial database, and treating
them as a new database [CG00]. For example, in query optimization, generating
and materializing a set of views, we can significantly speed-up query evaluation.
In information integration systems, reformulating the databases of the sources we
succeed data integration. In this point of view, the purposes of reformulation can
be represented by a set of constraints over the views. In this section, we focus on
a database reformulation, called view selection problem, which is based on finding
a viewset such that a given set of queries can be efficiently rewritten.

Intuitively, for a given set of queries over a database schema, the view selection
problem is to choose a set of views to materialize (where the views are defined over
the same database schema), such that a set of constraints over the views and the
rewritings of the queries using the views, is satisfied. This version of database re-
formulation is widely used for query optimization purpose. Moreover, the hardness
of this problem is caused by its multicriteria nature (multiple constraints may be
given) and depends on the number and the nature of the given constraints. Several
constraints are proposed in the bibliography (see Section 2.5.2); which differ with
respect to the application’s requirements. For example, we may want to construct
the viewset with the minimum maintenance cost, or the viewset of the minimum
size. In this thesis, we focus on two constraints, one over the viewset, and one over
the equivalent rewritings. More specifically, the two criteria are: (1) for a given
set of views, the selection of the less-costly equivalent rewritings of the queries
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and (2) the choice of the appropriate set of views which does not violate a storage
constraint. This bicriteria version of the problem is formally given as follows.

Given a set Q of queries (also called query workload), defined on a schema S,
and a database instance D of S, we want to find and precompute offline a viewset
V defined on S, such that the views in V can be used to compute the answers to
all queries in the workload Q. More specifically, the view selection problem, is to
find a set of views that when materialized, (a) would satisfy a set L of constraints
on the size of the views, and (b) can be used to get equivalent rewritings of the
queries in Q which minimize the evaluation cost of the queries. We refer to the
tuple P = (S, Q, D, L) as the input of view selection problem. The view selection
problem is said to be bag-oriented (resp. set-oriented, or bag-set-oriented) if we
consider bag semantics (resp. set semantics, or bag-set semantics).

In addition, we consider that the only constraint on materialized views is a
storage limit L (i.e. L = {L}), which is a bound on the size of the views (which
represents the available disk space for storing the views). Our goal is to choose
the viewsets which minimize the evaluation cost of the queries and whose size will
not exceed the limit L. Notice that, if the storage limit is sufficiently large then
we can materialize all query answers, which is an optimal viewset. The problem
becomes interesting when the storage limit is less than that. In the following we
measure the size of a relation R as the number of tuples in R, and is denoted as
size(R).

Definition 8. Let P = (S,Q,D,L) be a view selection problem input. A viewset
V is said to be admissible for P if

1. V gives equivalent rewritings of all the queries in Q,

2. for every view V ∈ V, there exists at least one equivalent rewriting of a
query in Q that uses V , and

3. V satisfies the constraints L.

The following definition formally defines the solution and optimal solution of
view selection problem for a given input.

Definition 9. Let a view selection problem input P = (S,Q,D,L).

• A solution of P is a tuple (Vadm,R), where Vadm is an admissible viewset
for P and R is a set of equivalent rewritings of the queries in Q using Vadm.

• An optimal solution for P is a solution which minimizes the cost of eval-
uating the queries in the workload among all solutions of P. The viewset in
an optimal solution is said to be an optimal viewset.

We say that an equivalent rewriting of a query in Q using an admissible viewset
is a candidate rewriting ; and if the viewset is optimal, we refer to the less-costly
equivalent rewritings as optimal rewritings.
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Throughout this thesis we consider that the language of view definitions of
queries and rewritings is the conjunctive queries.

As we can easily notice, solving the view selection problem requires explicit
knowledge of the definitions of views in the viewsets which give equivalent rewrit-
ings of CQs in the input workload, together with the definitions of the correspond-
ing rewritings. The viewsets, however, that give equivalent rewritings of a given
CQ may be infinite. The equivalent rewritings using a specific viewset may be
infinite as well. Therefore, we focus on describing a bounded space of viewsets
that guarantees the existence of at least one optimal solution (if there is any).

Measuring efficiency of equivalent rewritings: Optimal solutions relate
to the estimation of the cost of evaluating a query. We thus demand from the
optimal solutions to minimize a given cost-function that we employ. We assume
that the views have been precomputed, hence we do not assume any cost of com-
puting them. For CQs we define the sum-of-joins cost model [ACGP07, CHS02]
which measures the cost of query evaluation as the sum of the costs of all the joins
in the evaluation. More specifically, suppose a query Q and a database D. We
assume use of only left-linear query plans, where selections are pushed as far as
they go and projection is the last operation. Thus, each plan is a permutation
of the subgoals of the query, and the cost of this query plan on a given database
instance D is defined inductively as follows. For n = 1, the cost of query plan
Q = R1 is the size of the relation R1. For each n ≥ 2, the cost of query plan
(. . . ((R1 ./ R2) ./ R3) ./ . . . ./ Rn) over n relations is the sum of the following
four values:

1. the cost of query plan (. . . ((R1 ./ R2) ./ R3) ./ . . . ./ Rn−1)

2. the size of relation R1 ./ . . . ./ Rn−1

3. the size of relation Rn and

4. the size of relation R1 ./ . . . ./ Rn

The cost of evaluating a query Q on a database D, denoted as C(Q,D), is the
minimum cost over all Q’s query plans when evaluated on D. Moreover, the cost
of a query workload, denoted as C(Q,D), is defined as the sum of the costs of all
queries in the workload.

In the bibliography, multiple cost models are proposed [GHRU97, CHS02,
ACGP07, ALU07]. Most of them considers that the evaluation cost is increas-
ing with the size of intermediate relations. We refer to each model that satisfies
this property as monotonic cost model. Throughout this thesis we consider that
each cost model is monotonic (except if explicitly mentioned).

The sum-of-joins cost model has two perspectives implied by the way the in-
termediate relations are constructed [ALU07]. In the first we consider that in each
intermediate relation the attributes of the joined relations are retained [GMUW08].
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In the second one, the nonrelevant attributes are dropped after the computation
of each intermediate relation (these intermediate relations are called generalized
supplementary relations) [BR91]. More specifically, after the first i subgoals are
processed, the generalized supplementary relation is the intermediate relation with
the nonrelevant attributes of i-th relation in the query plan dropped. Notice that
computing a supplementary relation is essentially the same as doing projection
push down in the execution of a physical plan for a query, which is a method
supported by most optimizers.

On the other hand, a simpler cost model is also proposed in [ALU07]. This
cost model (we refer to this as num-of-subgoals cost model) counts the number of
subgoals and considers that the efficiency of the query is inversely increasing with
the number of subgoals. In particular, in the case of equivalent rewritings, this
cost model considers that the globally-minimal rewritings are the most efficient.
However, as we noticed in Section 2.4.2, there are cases in which globally-minimal
rewritings are not the most efficient ones (e.g., in the case of set semantics, filtering
views may give optimal rewritings which are not globally-minimal). Throughout
this thesis, we consider the sum-of-joins cost model (except if explicitly mentioned).

2.5.1 Determining the search space of solutions

Searching for optimal solutions we have to determine the search space of so-
lutions for a given view selection problem input. In Section 2.4, we noticed that
under set semantics both the admissible viewsets and the candidate rewritings of
a CQ are infinite. In this case, considering either the sum-of-joins or the num-of-
subgoals cost model, the optimal solutions for a given input may be infinite. An
example of such a case is described as follows.

Example 27. Let the query workload Q and the set-oriented view selection prob-
lem input P = (S, Q, D, L). Moreover, consider the following queries that are
contained in Q.

Q3 : q3(X,Y ) :- p(X,Y ), p(Y,W ), p(W,X).
Q4 : q4(X,Y ) :- p(X,Y ), p(Y,W ), p(W,U), p(U,X).

Each query Qi, with i = 3, 4, represents a cycle of length i. Also consider that
D = {p(a, a)} and L = 1 tuple. From the required storage space we conclude
that if there exists an optimal solution then each optimal viewset contains a single
view. Moreover, notice that there is not any admissible viewset which is obtained
by subexpression of a query’s body (i.e., the bodies of the views are subexpressions
of a query’s body). Consider, now, the view V with the following definition.

V : v(X1, . . . , X10) :- p(X1, X2), p(X3, X4), p(X5, X6), p(X7, X8), p(X9, X10).

Considering the viewset V = {V } we can easily verify that V is an admissible
viewset for P. The candidate rewritings of the above two queries have the following
definitions (the CQ Ri is the equivalent rewriting of Qi using V).

R3 : r3(X,Y ) :- v(X,Y, Y,W,W,X,X, Y, Y,W ).
R4 : r4(X,Y ) :- v(X,Y, Y,W,W,U,U,X,X, Y ).
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Moreover, it is easy to see that considering either the sum-of-joins or the num-
of-subgoals cost model these rewritings are optimal; hence, V is an optimal viewset.
Similarly, for each n ≥ 4, the viewset Vn that contains the view Vn with definition

V : v(X1, . . . , Xn) :- p(X1, X2), p(X3, X4), . . . , p(Xn−1, Xn),

is an optimal viewset for P. 2

Can we find, however, all optimal solutions by searching a bounded space of
viewsets? The above example answers negatively the previous question, for the
case of set-oriented view selection problem. Considering, however, queries without
self-joins in the given workload the set-oriented view selection problem become
tractable. In this case, if there exists any solution then there is an optimal solution
such that none of the rewritings and views has self-joins. Moreover, considering
that the number of subgoals of each given query does not exceed an integer n, the
number of subgoals of each view definition in this optimal viewset is bounded from
above by n [ACGP07]. In the set-oriented version, as we noticed in Section 2.4 the
existence of filtering views in an optimal solution may also increase the complexity
of the problem.

The complexity of the set-oriented view selection problem, when only queries
without self-joins are included in the input workload and each rewriting does not
include filtering views, is in NP [ACGP07]. This result follows from the fact that
in this case we decide whether there exists any optimal solution, and find such
a solution, by searching the generalizations of the bodies of the queries. More
specifically, if there exists a solution we can find an optimal viewset in which each
view definition (i.e., the body of its definition) is given by a generalization of a
subexpression of the body of a query in the workload.

Focusing, now, on the bag-oriented version, the problem can be completely
solved using the Lemmas 1 and 2. More specifically, constructing all views defi-
nitions whose body is a generalization of a subexpression of the body of a query
in the workload we can find all admissible viewsets for a given input. This con-
clusion gives a sound and complete algorithm for solving the bag-oriented view
selection problem. This algorithm, called CGALG [ACGP07], firsly constructs all
view definitions whose body is a generalization of a subexpression of the body of a
query in the workload. Then it constructs all the viewsets that contain such views
and check for each of them whether or not it can fit into the available storage
space (i.e., its size is at most equal to the storage limit). In the next step, the
algorithm checks whether each of the viewsets satisfing the storage constraint give
bag equivalent rewritings of all queries in the workload. The optimal rewritings
are produced by comparing the efficiency of the bag equivalent rewritings during
the previous test. In addition, notice that this algorithm is also sound for the
set-oriented version where only queries without self-joins are included in the input
workload and each rewriting does not include filtering views.

In the bag-set-oriented view selection problem, the authors in [ACGP07] also
prove that if the CQs in the input workload contain self-joins then the bodies
of the views in the optimal viewsets may have exponentially more subgoals than
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the definitions of the respective queries. The filtering views do not appear in a
candidate rewriting (see also in Section 2.4). In the case that the input workload
does not contain any query with self-joins, the problem can be completely solved.
More specifically, we conclude from Proposition 7 that if there exists an admissible
viewset for such a bag-set-oriented problem input, we can find an optimal solution
such that the following hold [ACGP07]:

1. the body of each view definition appearing in the optimal viewset is a gen-
eralization of a subexpression of the body of a query in the workload,

2. the view definitions in the optimal viewset do not contain self-joins,

3. each optimal rewriting has at most the same number of subgoals with the
query of the workload that it rewrites, and

4. rewriting any query in the workload does not require self-joins of view-
subgoals.

From these results, it easily follows that the bag-set view selection problem is also
in NP when none of the queries in the workload has self-joins. Moreover, we can
easily notice that for such a view selection input, the CGALG algorithm is sound
and complete (i.e., it completely solves the problem).

The bag- and bag-set-oriented versions of view selection problem are further
investigated in Chapter 4.

2.5.2 Related work on selecting views

The problem of automatic selection of views to materialize has attracted the
interest of many researchers. In [CG00], the space requirements for the view se-
lection problem in the context of data warehouse design under set semantics, are
considered. This paper, also investigates conditions under which the search space
of optimal configurations can be reduced to the views that are subexpressions of
the queries in the workload. In [TX04, XTZ06], the extraction of common subex-
pressions of the queries in the workload is studied. The authors in [TX04], study
the problem of searching for a maximum common subexpression of a workload,
while [XTZ06] proposes an algorithm for searching for maximum common subex-
pressions for a subclass of select-project-join SQL queries, using query graphs. An-
other approach for finding similar subexpressions is proposed in [ZLFL07] where
workloads of select-project-join-groupby queries are considered. The authors pro-
pose a solution for the multi-query optimization problem which is incorporated
in the Microsoft SQL Server. The algorithm has a lightweight mechanism (table-
signatures) to detect common subexpressions and multiple sharing opportunities.

In [GM05], it is stated the view selection problem using AND-OR graphs to
represent the query plans. Two types of constraints on materialized views are
assumed, a storage limit and a maintenance-cost constraint. The candidate set of
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view configurations are given as input, hence the time of the construction of view
configurations is not considered in the response time of the algorithms.

In [TS97], the view selection problem assuming a maintenance-cost constraint
in the data warehouse environment and proposed an algorithm based on multi-
query graphs, is studied. In [YCGL04], the authors examine greedy /heuristic
algorithms for solving the view-selection problem assuming a maintenance-cost
constraint and OLAP queries in multidimensional data warehouse environment.
In [BPT97] the problem for multidimensional data- bases is studied and an algo-
rithm that selects views by reducing significantly the solution space is proposed;
considering only the relevant elements of the multidimensional lattice. The authors
considered the standard SQL notion of group-by and aggregate functions in order
to capture queries with aggregation. In earlier work, Rizzi and Saltarelli [EM03]
presented a comparative evaluation that uses view materialization and indexing for
a single GSPJ (Group-by-Select-Project-Join) query expressed on a star scheme
for the data warehousing context.

The view selection problem, in the context of multidimensional data ware-
houses, also studied by several authors [KM99, HRU96, GHRU97]. In [KM99], it
is described a system which was incorporated in Microsoft SQL Server and focuses
on selection of both views and indexes. Earlier, the authors of [HRU96] propose
algorithms for selecting views in the case of data cubes and study the complexity of
the problem. In [GHRU97], the work of [HRU96] was further extended to include
index selection.

A significant result that underlines the difference of the view selection problem
in the case of queries with and without aggregation is presented in [AC05]. In
this work, an algorithm for selecting views is proposed and complexity results are
presented, using a theoretical approach to express GSPJ queries. The authors
also showed that using materialized views to compute aggregate queries results
greater benefits than for purely conjunctive queries; as a view with aggregation
precomputes some of the grouping/aggregation on some of the query’s subgoals.

In [CHS02], Chirkova et al. observed that the complexity of view selection
problem under set semantics, and assuming conjunctive query workload, depends
crucially on the quality of the estimates that a query optimizer has on the size
of views. In [CHS02], it is also shown that an optimal choice of views may in-
volve an exponential number of views in the size of the database schema. In the
same context, in [ACGP07], Afrati et al. study the search space of candidate
sets of views, under bag, set and bag-set semantics. Finally, the problem of se-
lecting minimal-size-views to materialize has been studied theoretically in [CL03],
where the problem has been proven decidable and an upper bound is given on this
problem’s complexity.
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Chapter 3

Query containment under bag
and bag-set semantics

Query containment was recognized fairly early as a fundamental problem in
relational database query evaluation and optimization. In addition, this problem
is closely related to many other database research topics including data integra-
tion and rewriting queries using views. The query containment problem has been
extensively investigated for various types of database queries during the past two
decades, but the focus is on set semantics (see Section 2.3). Conjunctive queries
is one of the most interesting classes of SQL queries and the class that has been
greatly investigated. For CQs under both bag and bag-set semantics the prob-
lem remains open for more than a decade after its definition by Chaudhuri and
Vardi [CV93]. Most of the super-classes of CQs under these semantics, for which
the problem have been investigated until now, give undecidability results (Sec-
tion 2.3.3).

Focusing, now, in the class of CQs we can decide bag-set containment (resp.
bag containment) by finding a variables-onto (resp. a subgoals-onto) containment
mapping from one query to another (see in Section 2.3). However, we remind that
the existence of a variables-onto (resp. a subgoals-onto) containment mapping is
not a necessary condition for bag-set containment (resp. bag containment) (see
also in Section 2.3). In this perspective, Chaudhuri and Vardi [CV93] proved that
bag-set query containment implies a set of containment mappings such that every
variable of the contained query is an image of the mapping (see also in Proposi-
tion 1). Similarly, bag query containment implies a set of containment mappings
such that every subgoal of the contained query is obtained by applying one of these
mappings to a subgoal of the containing query (see also in Proposition 3).

In this chapter, we investigate the conjunctive query containment problem
under both bag and bag-set semantics through a careful analysis of special cases.
In addition, we investigate the complexity of the problems for each such class and
give necessary conditions for the conjunctive query containment problem. The
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main contributions of this chapter are summarized in Table 3.1.

Containing Contained Complexity
Query (Q1) Query (Q2) Bag-Set Semantics Bag Semantics

CQ CQ Πp2 − hard: [CV93]
CQ CQ without NP Complete: open

projections Theorem 2
CQ without CQ without O(n2log(n)):
projections projections Theorem 3+Remark 6

CQ CQ without O(nlog(n)) : O(nlog(n)) :
self-joins Theorem 4 [IR95], Theorem 5

Pathstar Query Pathstar Query O(n2log(n)): O(n2log(n)):
Theorem 7 Theorem 8

Simple Gener.- Simple Linear: Linear:
Pathstar Query Pathstar Query Theorem 9 Theorem 10

CQ Enhanced Q1 Linear: open
Theorem 13

Table 3.1: Complexity results for the CQ containment problem.

3.1 Contained query without projections

In this section we investigate the problem of deciding query containment under
bag and bag-set semantics for a large subclass of CQs, namely the CQs that do
not contain projections. This class contains the CQs whose body variables also
appear in their heads. We prove that the results of evaluating such queries on
any set-valued database are always sets; hence to decide bag-set containment of
such queries it suffices to decide containment under set semantics. Concerning
bag semantics, we prove that when both queries are without projections then to
decide query containment it is sufficient to check for a subgoals-onto containment
mapping.

Proposition 10. Let Q be a CQ on a database schema S which is evaluated under
bag-set semantics. Then the following are equivalent:

1. Each variable of the body of Q appears in its head.

2. For every set-valued database instance of S the following holds: the answer
of Q is a set.

Proof. Suppose that the query Q is of the form:
Q : q(X) :- g1(X1), . . . , gn(Xn)

(From 2 to 1) Suppose that for every set-valued database instance D, Q(D)
is a set. We will prove by contradiction that vars(Xj) ⊆ vars(X) for every
j ∈ {1, . . . , n}. Suppose that there is a variable Y in a subgoal gj(Xj) such that
Y 6∈ vars(X). Consider the database instance constructed as follows: Let Dc be a
canonical set-valued database built from the body of Q, and let cY be the constant
used to replace the variable Y in the body of Q in order to get Dc. Let DY be the
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set of all atoms in Dc in which cY appears. Now let D′c be the set of atoms obtained
from DY by replacing all occurrences of cY by a new constant c′Y which does not
appear in Dc. It is easy to see that Dc ∪ D′c is a set-valued database instance as
Dc is set-valued and the atoms in D′c do not appear in Dc. Besides Q(Dc ∪ D′c)
contains duplicates (as the use of the atoms in D′c returns the same results as
those obtained by using the corresponding atoms in DY ) which contradicts with
our assumption.

(From 1 to 2) Suppose that vars(Xj) ⊆ vars(X) for every j ∈ {1, . . . n}.
We will prove by contradiction that, for every set-valued database instance D, the
answer of Q(D) is a set. Since Q is safe, every head-variable of Q appears in
its body. Thus vars(head(Q)) = vars(body(Q)). Suppose that, for a set-valued
database instance D, Q(D) is not a set. Then there is a tuple t that appears in
Q(D) at least twice. But as vars(head(Q)) = vars(body(Q)), all occurrences of
the tuple t correspond to the same instance of the query body. Thus, there should
exist an instance of some body atom gi(Xi) appearing in D at least twice. But
this contradicts with the assumption that D is set-valued.

Proposition 10 reveals the source of duplicate tuples in query evaluation under
bag-set semantics, which is the existence of projection operators in the query.
Theorem 2 immediately follows from Proposition 10. It shows that when there are
no projections in the candidate contained query, we can decide containment under
bag-set semantics by testing containment under set semantics (i.e. by searching
for a containment mapping); which reveals, in this case, the complexity of the
problem.

Theorem 2. Let Q1 and Q2 be two CQs, such that every variable appearing in the
body of Q2 also appears in the head of Q2. Then, the following holds: Q2 vs Q1

if and only if Q2 vbs Q1. The query containment problem , in this case, is
NP-complete.

By applying the Theorem 2 in the queries of the Example 11 we see that all
variables in the body of Q2 appear in its head and there is a containment mapping
from Q1 to Q2 (hence Q2 vs Q1). Therefore Q2 vbs Q1.

Theorem 3. Let Q1 and Q2 be CQs, such that all variables appearing in the body
of Q1 (resp. Q2) also appear in the head of Q1 (resp. Q2). Then, Q2 vb Q1 if
and only if there is a subgoals-onto containment mapping from Q1 to Q2. The
complexity of testing containment is O(n2 · log(n)).

Proof. (If part) From Proposition 4 we know that if there is a subgoals-onto
containment mapping from Q1 to Q2 then Q2 vb Q1.

(Only-If part) (By contradiction) Suppose that Q2 vb Q1. Suppose also that
there is no subgoals-onto containment mapping from Q1 to Q2. We will prove that
this implies Q2 6vb Q1 by finding a database instance D such that Q2(D) 6⊆b Q1(D).
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As Q2 vb Q1, we have that Q2 vbs Q1; hence Remark 4 implies that there
is a containment mapping µ from Q1 to Q2. Moreover, since all variables of the
queries also appear in their heads, by definition of containment mapping we have
that µ is unique. In addition, Proposition 3 implies that each subgoal of query
Q2 is mapped by a subgoal of Q1 using µ; i.e. every subgoal of Q2 appears in
body(µ(Q1)). Hence, supposing that µ is not subgoals-onto, we have that body(Q2)
is not a subexpression of body(µ(Q1)). Thus, there is a subgoal g in Q2 such that
the number n1 of subgoals of Q1 that map g, using µ, is less than the number n2

of duplicates of g in Q2, i.e. n2 > n1.

Let Q′2 be the CQ obtained by removing all duplicate subgoals from Q2. Con-
sider the canonical database Dc of Q′2 and let the tuple t be the canonical in-
stance of µ(g) in Dc. Let q(a1, . . . , an) a tuple in Q2(Dc). Since Q2 vb Q1, then
q(a1, . . . , an) also belongs to Q1(Dc). Since Dc is a set-valued database then Propo-
sition 10 implies that m1 = m2 = 1, where mi is the multiplicity of q(a1, . . . , an) in
Qi(Dc) for i = 1, 2. Now, suppose that we add one more tuple t in Dc, and let D be
the new bag-valued database instance. It is easy to see that m′1 = 2n1 < m′2 = 2n2 ,
where m′i is the multiplicity of q(a1, . . . , an) in Qi(D) for i = 1, 2; which is a con-
tradiction.

Complexity: The existence of a subgoals-onto containment mapping can be
decided by the following algorithm: The unique mapping µ is found by mapping
the i-th argument of the head of Q1 to the i-th argument of the head of Q2. We
now rename the variables of Q1 by applying the mapping µ on Q1. Next we order
the subgoals of µ(Q1) and Q2 lexicographically w.r.t. the relation names and
the variables of each subgoal. Next we check if µ is a subgoals-onto mapping by
traversing the subgoals of Q1 and Q2 in their lexicographic ordering and testing
the following. For each sequence of duplicate subgoals in each query body it is
retain only a single occurrence of the subgoal paired with an integer indicating the
number of its occurrences in the query. In a second pass the queries are traversed
and it is checked if both queries contain the same subgoals and the number of
occurrences of each subgoal in Q1 is greater than or equal to the number of the
occurrences of the same subgoal in Q2. If this is so then the test succeeds and then
Q2 vb Q1; otherwise it fails and then Q2 6vb Q1. As the ordering of the subgoals
can be done in time O(n2 · log(n)) and each traversing is done in time O(n), we
see that the algorithm runs in time O(n2 · log(n)).

Remark 6. The same algorithm used to prove the complexity results of Theorem 3
can also be used to prove bag-set query containment when both queries are CQs
without projections. Hence, in this case, the bag-set query containment problem
is in O(n2 · log(n)).

Example 28 shows that for bag semantics the requirement that both CQs are
without projections is essential.

Example 28. Consider the following queries:
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Q1 : q(X,Y ) :- r(X,Y ), r(Z,U), r(Z,W )
Q2 : q(X,Y ) :- r(X,Y ), r(X,X), r(Y, Y )

Here there is no subgoals-onto containment-mapping from Q1 to Q2. However,
there are two containment mappings from Q1 to Q2 (the first subgoal of Q1 maps
the first subgoal of Q2 and the other two subgoals of Q1 map, together, either the
second or the third subgoal of Q2) such that all subgoals of Q2 are mapped using
a containment mapping from Q1. However Q2 vb Q1. 2

3.2 Contained Queries without self-joins

In this section we investigate the query containment problem under bag-set
semantics when the candidate contained query does not contain self-joins. Our
results are based on the following remark.

Remark 7. Let Q1, Q2 be CQs under bag-set semantics such that Q2 does not
contain self-joins. If there is a containment mapping µ from Q1 to Q2 then µ is
unique.

The remark immediately follows from the fact that if there are two different
containment mappings µ and µ′ from Q1 to Q2 then there should be a subgoal g
of Q1 that can map to two different subgoals of Q2. But this is impossible as Q2

does not have self-joins.

Theorem 4. Let Q1 and Q2 be two CQs such that Q2 does not contain self-joins.
Then, the following holds: Q2 vbs Q1 if and only if there is a containment
mapping from Q1 variables-onto Q2. Then we test containment in time O(n ·
log(n)).

Proof. The one direction, that is, if there is a variables-onto containment mapping
from Q1 to Q2 then Q2 vbs Q1, immediately follows from Proposition 2.

For the other direction, suppose that Q2 vbs Q1. Suppose now that there is
no variables-onto containment mapping from Q1 to Q2.

Case 1: There is no containment mapping at all from Q1 to Q2 as it contradicts
with Proposition 1.

Case 2: There are containment mappings but none of them is variables-onto.
In this case, Remark 7 implies that the containment mapping should be unique.
Let µ be this mapping. As µ is not variables-onto, there is a variable X in Q2, for
which there is no variable X ′ of Q1 such that µ(X ′) = X. As µ is unique, this is
impossible because it contradicts with Proposition 1.

Therefore, we conclude that if Q2 vbs Q1, then there is a variables-onto con-
tainment mapping from Q1 to Q2.

Complexity: The complexity of the containment test, is computed by the
following algorithm: We sort the bodies of the queries w.r.t. relation names. This
is done in O(n · log(n)). Then we check whether or not there is a variables-onto
containment mapping from Q1 to Q2 as follows: for each subgoal g of Q1 we check
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whether or not the variables of g map the variables of the subgoal with the same
relation name of Q2, and check whether this mapping is a containment mapping;
if not then Q2 6vbs Q1. Otherwise, going through the subgoals of Q2, we check if
there is any variable of Q2 which is not mapped on by Q1. This can be done in
O(n). Hence, the complexity of the algorithm is O(n · log(n)).

The test proposed in Theorem 5 is due to [IR95]. Here, we observe that the
algorithm used in Theorem 4 can also be used here. Hence the complexity is
O(n · log(n)).

Theorem 5. Let Q1 and Q2 be two CQs such that Q2 does not contain self-joins.
Then, the following holds: Q2 vb Q1 if and only if there is a containment
mapping from Q1 subgoals-onto Q2. Then, we test containment in time O(n ·
log(n)).

3.3 Generalized-Pathstar Queries

In this section we introduce the notion of generalized-pathstar queries. Then we
investigate the problem of checking containment under bag and bag-set semantics
for specific subclasses of generalized-pathstar queries.

Definition 10. A query Q is called generalized-pathstar query of arity n, if
it is of the following form:

Q : q(X1, . . . , Xn) :- S1(X1), . . . , Sn(Xn),
N1(Y1), . . . , Nm(Ym).

with n ≥ 1, and m ≥ 0, where X1, . . . , Xn, Y1, . . . , Ym are distinct variables. Each
Si is called distinguished pathstar (or d-star for short) while each Ni is called
non-distinguished pathstar (or n-star for short).

Each d-star (resp. n-star) consists of a sequence of labeled paths starting from
the same distinguished variable Xi (resp. non-distinguished variable Yi), called the
root of the pathstar. A labeled path is an expression of the form r1(W0,W1),
r2(W1,W2), . . . , rk(Wk−1,Wk), with k ≥ 1, where r1, r2, . . . , rk are not necessarily
distinct relation names, and W0,W1, . . . ,Wk are distinct variables. If m = 0,
then the query is called pathstar query. A (generalized-)pathstar query is called
simple if every Si and every Ni consists of paths of length 1 (i.e. each path is of
the form r(W0,W1)). Finally, the number of subgoals in a pathstar S is called the
size of S denoted as size(S).

3.3.1 Pathstar queries

In this section we investigate the problem of deciding bag-set and bag query
containment for pathstar queries containing paths of arbitrary length. In these
cases, bag-set and bag containment can be tested in O(n2 · log(n)).
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Theorem 6. Let Q1 and Q2 be two pathstar queries of arity 1. Then, Q2 vbs Q1

if and only if there is a variables-onto containment mapping from Q1 to Q2.
Then we test bag-set query containment in O(n2 · log(n)).

Proof. (If part) It immediately follows from Proposition 2.

(Only if part) We will prove that if Q2 vbs Q1 then there is a variables-onto
containment mapping from Q1 to Q2. For this it suffices to prove that: “Each
labeled path p of Q2 which appears (up to renaming of its variables) n2 times in
Q2, also appears n1 times in Q1, where n1 ≥ n2”. If this holds then we obtain a
variables-onto mapping in which each path p of Q2 is mapped on from a different
path p of Q1 covering in this way all variables of Q2. Besides, all the other paths
of Q1 (not existing in Q2) should map to prefixes of paths of Q2 as otherwise there
should be no containment mapping. But this contradicts with the assumption that
Q2 vbs Q1.

We now prove the above statement by contradiction. For this, assuming that
n1 < n2 for a particular path p, we find a database D for which Q2(D) 6⊆b Q1(D)
which contradicts with the assumption that Q2 vbs Q1.

Let D be the database instance which is the canonical database of the query
Q′2 obtained from Q2 by eliminating all but one occurrences of the path p. Suppose
that the path p is of the form r1(Y,W1), r2(W1,W2), . . . , rk(Wk−1,Wk), with k ≥ 1.
Let D′ be a database instance obtained from D by adding to the tuple rk(b, c1), ob-
tained as the canonical instance of rk(Wk−1,Wk), the tuples rk(b, c2), . . . , rk(b, c`)
for some ` ≥ 1. Let q(a) a tuple in Q2(D). Since Q2 vbs Q1, then q(a) also belongs
to Q1(D) and m1 ≥ m2 where mi is the multiplicity of q(a) in Qi(D) for i = 1, 2.
Moreover, suppose that λi ≥ 0, where i = 1, 2, is the number of valuations from
Qi to D which map the head of Qi to the tuple q(a) and do not map any variable
of Qi to the constant c1. It is easy to see that for the multiplicity m′i of q(a) in
Qi(D′), for i = 1, 2, it holds m′i = (`)ni · (mi − λi) + λi.

Let us now check if there is a value of ` for which m′2 > m′1, i.e. (`)n2 · (m2 −
λ2)+λ2 > (`)n1 ·(m1−λ1)+λ1. Notice that (`)n2 ·(m2−λ2)+λ2 ≥ (`)n2 ·(m2−λ2)
and (`)n1 · m1 = (`)n1 · (m1 − λ1) + λ1 · (`)n1 ≥ (`)n1 · (m1 − λ1) + λ1. Hence,
if (`)n2 · (m2 − λ2) > (`)n1 · m1 or equivalently (`)n2−n1 > m1/(m2 − λ2), then
m′2 > m′1. Since it is easy to see that m2 > λ2 and we assumed that n2 < n1,
we conclude that for a value of ` such that ` > n2−n1

√
m1/(m2 − λ2) it holds that

m′2 > m′1. But this contradicts with the assumption that Q2 vbs Q1.

Complexity: Complexity is checked as follows: We count the occurrences of
each labeled-path both in Q1 and Q2 as follows: We append the predicate names
in each path and sort the resulting strings lexicographically and then we count
the number of occurrences of each such string. Then we compare, properly, the
corresponding numbers of occurrences. We can see that this procedure can be
done in O(n2 · log(n)).

Theorem 6 can be generalized for pathstar queries of arity n, with n ≥ 1, as
follows (its proof is constructed by extending the proof of Theorem 6):

55



Query Optimization under bag and bag-set semantics · Matthew Damigos

Theorem 7. Let Q1 and Q2 be pathstar queries of arity n, with n ≥ 1. Then,
Q2 vbs Q1 if and only if there is a variables-onto containment mapping from Q1

to Q2. Then we test bag-set query containment in O(n2 · log(n)).

The above results also hold for bag semantics. This is stated in Theorem 8
which is proved in a similar way.

Theorem 8. Let Q1 and Q2 be pathstar queries of arity n, with n ≥ 1. Then,
Q2 vb Q1 if and only if there is a subgoals-onto containment mapping from Q1

to Q2. Then we test bag query containment in O(n2 · log(n)).

3.3.2 Simple generalized-pathstar queries

In this section we investigate the problem of deciding query containment under
bag-set and bag semantics when the containing query belongs to the class of simple
generalized-pathstar queries and the candidate contained query is a simple pathstar
query. We prove that in this case we can test (bag-set or bag) containment in linear
time.

Lemma 3. Let Q1 be a simple generalized-pathstar query and Q2 be a simple
pathstar query of the same arity n, with n ≥ 1. Suppose that both queries are
defined over a database schema consisting of a single binary relation r. Then
Q2 vbs Q1 if and only if for every subset S ′ of d-stars of Q2 and the set S of
the corresponding d-stars of Q1 and the n-stars N1, . . . , Nm of Q1 the following
inequality holds:

∑
S′∈S′

size(S′) ≤
∑
S∈S

size(S) +
m∑
j=1

size(Nj) (I)

Proof. The proof of the theorem is based on the observation that the multiplicity
n of a specific tuple t = q(a1, . . . , an) in Q1(D), where D is a database instance
and Q1 is a simple generalized-pathstar query of the form:

Q1 : q(X1, . . . , Xn) :- S1(X1), . . . , Sn(Xn),
N1(Y1), . . . , Nm(Ym).

is given by the formula:

n1 =
n∏
i=1

M(Si(ai)) ·
m∏
j=1

[
∑

x∈{a1,...,an}

M(Nj(x))

+
∑

y∈(const(D)−{a1,...,an})

M(Nj(y))] (II)

whereM(Si(a)) (resp. M(Ni(a))), we denote the number of distinct valuations
over the d-star (resp. n-star) Si(X) (resp. Ni(X)) from the body of the query Q1

to the database D which map X to the constant a.
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In the case of a simple pathstar query of the form:
Q2 : q(X1, . . . , Xn) :- S′1(X1), . . . , S′n(Xn).

the multiplicity n2 of t in Q2(D) is given by the formula:

n2 =

n∏
i=1

M(S′i(ai)). (III)

The above formulas are based on the observation that in a simple generalized-
pathstar query all non-distinguished variables, which are not roots of the pathstars,
are disjoint.

(If part) Suppose that the inequality (I) holds. We will prove that Q2 vbs Q1

by showing that for every set-valued database instance D, we have that Q2(D) ⊆b
Q1(D); i.e. for every tuple t = (a1, . . . an) in Q2(D), the multiplicity n1 of t in
Q1(D) is greater than or equal to the multiplicity n2 of t in Q2(D).

Assume that a′1, . . . a
′
n′ are the distinct constants appearing in t and let J =

{1, . . . , n′}. Also assume that D contains τj distinct tuples of the form r(a′j , c),
for every j ∈ J . It is easy to verify that for every j ∈ J , and for each d-star

(resp. n-star) S of the queries,M(S(a′j)) = τ
size(S)
j . For every j ∈ J , let Sj (resp.

S ′j) be the set of d-stars of Q1 (resp. the corresponding set of d-stars of Q2),
whose distinguished variables are valuated to the constant a′j . Let also size(Sj) =∑

S∈Sj size(S). Finally, let sN =
∑m

j=1size(Nj), and τµ = max(τ1, . . . , τn′), with

µ ∈ J . It is now easy to see that formula (II) implies, the following inequality:

n1 ≥ τ
size(Sµ)
µ · (

∏
i∈(J−{µ})

τ
size(Si)
i ) · τ sNµ (IV)

Similarly, formula (III) implies the equality:

n2 = τ
size(S′µ)
µ ·

∏
i∈(J−{µ})

τ
size(S′i)
i (V)

As the inequality (I) holds for every set S ′ of d-stars of Q2 and the set S of
the corresponding d-stars of Q1, we have that s = size(Sµ) − size(S ′µ) + sN ≥ 0.
Combining (IV) and (V), we get the following inequality:

n1

n2
≥ τ sµ ·

∏
i∈(J−{µ})

τ
size(Si)−size(S′i)
i (VI)

Supposing that τε = min(τ1, . . . , τn′), with ε ∈ J ; and I = {i|i ∈ (J − {µ})
such that size(Si)− size(S ′i) < 0}, then from (VI) follows:

n1

n2
≥ τ sµ · (

∏
i∈I

τ
size(Si)−size(S′i)
µ ) · (

∏
i∈(J−(I∪{µ}))

τ
size(Si)−size(S′i)
ε )

Using the inequality (I) we have that s+
∑

i∈I size(Si)−size(S ′i) ≥ 0; hence n1
n2
≥ 1.

Thus n1 ≥ n2.
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(Only-If part) (Proof by contradiction). Suppose that Q2 vbs Q1. Assuming
that the inequality (I) does not hold we will find a database instance D for which
Q2(D) 6⊆b Q1(D).

Let S ′ be a set of d-stars of Q2 such that
∑

S′∈S′size(S′) >
∑

S∈Ssize(S)
+

∑m
j=1size(Nj), where S is the set of the d-stars of Q1 corresponding to S ′.

Let D = {r(a, c1), . . . , r(a, cλ), r(b, b)}, where λ ≥ 1. Assume, without lost of
generality, that S ′ contains the first k d-stars of Q2, with n ≥ k ≥ 1. Let now t′

be the tuple q(a, . . . , a, b, . . . , b) which has k occurrences of the constant a followed
by n − k occurrences of the constant b. Let n1, n2 be the multiplicities of t′ in
Q1(D), Q2(D) respectively. Applying formula (II) we get:

n1 = (

k∏
i=1

M(Si(a))) · (
n∏

i=k+1

M(Si(b)))·

·
m∏
j=1

(M(Nj(a)) +M(Nj(b)))

Assuming that si (resp. s′i) is the size of the d-star Si (resp. S′i) , for i =
1, . . . , n, and ui is the size of the n-star Ni, for i = 1, . . . ,m, then

n1 = (

k∏
i=1

λsi) · (
n∏

i=k+1

1) ·
m∏
j=1

(λuj + 1)

Hence, as 1 ≤ λui , for i = 1, . . . ,m, we conclude that n1 ≤ λs1+···+sk · 2m ·
λu1+···+um . By defining s =

∑k
i=1 si, and u =

∑m
j=1 uj , the above inequality

becomes n1 ≤ 2m · λs+u. In a similar way we get n2 = λs
′
, where s′ =

∑k
i=1 s

′
i.

Let us now check if there is a value of λ for which n1 < n2, i.e. 2m ·λs+u < λs
′
;

which can be written as λs
′−s−u > 2m. Since we assumed that s′ > s + u, we

conclude that for a value of λ such that λ > s′−s−u√2m we have n2 > n1; which is
a contradiction.

Theorem 9. The bag-set query containment problem when the containing query
Q1 is a simple generalized-pathstar query and the contained query Q2 is a simple
pathstar query of the same arity n, with n ≥ 1 and both queries are defined over
a database schema consisting of a single binary relation r can be checked in linear
time.

Proof. The test introduced by the inequality (I) of Lemma 3 can be checked using
the following algorithm: At first we calculate the differences di = size(Si) −
size(S′i), for i = 1, . . . , n, of the corresponding d-stars of Q1 and Q2. Then we
calculate the sum s of the negative values in {d1, . . . , dn}. Finally, we compute the
total size sN of the n-stars in Q1. Then if |s| ≥ sN we conclude that Q2 vbs Q1;
otherwise Q2 6vbs Q1. It is easy to see that this algorithm runs in linear time with
respect to the total number of subgoals in Q1 and Q2.
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The above results also hold for bag semantics as the following Theorem 10
states. The proof of this theorem is similar to the proof of Theorem 9 (and
Lemma 3).

Theorem 10. Let Q1 be a simple generalized-pathstar query and Q2 be a simple
pathstar query of the same arity n, with n ≥ 1. Suppose that both queries are
defined over a database schema consisting of a single binary relation r. Then
Q2 vb Q1 if and only if for every subset S ′ of d-stars of Q2 and the set S of
the corresponding d-stars of Q1 and the n-stars N1, . . . , Nm of Q1 the following
inequality holds:

∑
S′∈S′

size(S′) ≤
∑
S∈S

size(S) +

m∑
j=1

size(Nj)

Then we test bag query containment in linear time.

As an example we can apply the above results to the queries in Example 15.
In particular, based on Lemma 3, we can easily verify that Q2 vbs Q1, while based
on Theorem 10 we can see that Q2 vb Q1.

3.4 Other syntactic restrictions

In this section we further investigate the problem of query containment under
bag-set semantics when the candidate contained query may contain self-joins. In
particular, in Theorems 11 and 12 we present two necessary syntactic conditions
for bag-set query containment. Theorem 13 shows that for a contained query which
can be constructed by adding subgoals to the containing query, the bag-set query
containment can be decided in linear time. Theorem 14 presents another case in
which we can decide bag-set query containment. Finally, Proposition 11 presents
a case in which we can decide non-containment under bag-set semantics.

Theorem 11. Let Q1 and Q2 be CQs. Suppose that for a relation name r of Q2,
Sr is a non-empty set of non-distinguished variables of Q2 such that each variable
in Sr appears only in r-subgoals of Q2 and for every two variables Y and Z in
Sr there is no subgoal of Q2 that contains both Y and Z. If Q2 vbs Q1 then the
number of variables in Sr is less than or equal to the number of r-subgoals of Q1.

Proof. We will prove the theorem by contradiction. Let r a relation name of Q2

and λ be the number of r-subgoals of Q2 that contain a variable in Sr; and ni be
the number of r-subgoals of Qi, where i = 1, 2. In addition, let Sr = {Y1, . . . , Yk},
where k = |Sr|. Supposing that k > n1, we will construct a database instance D for
which there is a tuple in Q2(D) whose multiplicity is greater than the multiplicity
of the same tuple in Q1(D).
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It is easy to see that λ ≥ k, because otherwise there should be two or more sub-
goals that contain a certain variable in Sr. Moreover, because of the assumptions
of the theorem we have n2 ≥ λ ≥ k > n1 ≥ 1.

Now consider a set-valued database instance D constructed from the body of
Q2 as follows: we consider (k`+ 1) distinct constants a, b1,i, b2,i, . . . , bk,i, where
i ∈ {1, . . . , `}. Then each variable Z ∈ (vars(Q2)− Sr) is replaced, in the body of
Q2, by the constant a. Now, we get all possible instances of the subgoals of Q2 by
replacing each Yj ∈ Sr by each one of the constants bj,i, where i ∈ {1, . . . , `} and
j ∈ {1, . . . , k}. The instance D contains all ground atoms obtained by the above
process. It is easy to see that, D contains at most (λ`+ 1) ground atoms (tuples)
belonging to the relation r and one ground atom for each of the other relations in
Q2 (because the variables in Sr appear only in r-subgoals).

Because of Proposition 1, we know that for each variable X of Q2 there is a
containment mapping µ from Q1 to Q2 such that X ∈ µ(Q1). We thus conclude
that at least, every subgoal gj , with j ∈ {1, . . . λ}, of Q2 that contains a variable
in Sr, is mapped on from Q1. Hence, the multiplicity m1 of the tuple t = q(a) ∈
Q1(D) is at most (λ`+ 1)n1 because there are at most

∏n1
i=1(λ`+ 1) = (λ`+ 1)n1

valuations over Q1. Similarly, the multiplicity m2 of the tuple t = q(a) ∈ Q2(D)
is at least

∏λ
i=1(`+ 1) = (`+ 1)λ.

In order to prove that Q2 6vbs Q1 we have to prove that m2 > m1 i.e. (`+1)λ >
(λ` + 1)n1 ; or that (` + 1)λ > (λ(` + 1))n1 > (λ` + 1)n1 . Consequently, by the
last inequality, we have that ` > (λ−n1)

√
λn1 − 1. Moreover, since λ > n1 ≥ 1,

we have that λ ≥ 2. Hence ` > (λ−n1)
√
λn1 − 1 > 1. Thus, since the number

` is not fixed we choose ` = d (λ−n1)
√
λn1e, where dxe means the smallest integer

which is greater than x. Consequently, there is a database instance D such that
Q2(D) 6vb Q1(D).

We now present another necessary syntactic condition for deciding bag-set
query containment. The condition states that the containing query should contain
at least as many variables as the contained query.

Theorem 12. Let Q1 and Q2 be CQs. If Q2 vbs Q1 then the number of variables
of Q1 is greater than or equal to the number of variables of Q2.

Proof. We prove by contradiction that if |vars(Q2)| > |vars(Q1)|, then there is a
database instance D such that the sum of multiplicities of the number of tuples
of Q1(D) is less than the sum of multiplicities of the number of tuples of Q2(D);
thus Q2 6vbs Q1.

We construct D as follows: Let the set A = {a, b}, where a and b are distinct
constants. For every relation name r in the bodies of Q1 or Q2, with arity k, we
have that the relation instance r(D) is:

r(D) = A×A× · · · ×A︸ ︷︷ ︸
k

.
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Let ni = |vars(Qi)|, where i = 1, 2. Then, there are 2ni different valuations
over Qi, where i = 1, 2; as every variable X of Q1 and Q2 has two possible values
(a and b). Therefore, |Qi(D)| = 2ni , where i = 1, 2. As n2 > n1, we have that
|Q2(D)| > |Q1(D)|. Thus, Q2(D) 6⊆b Q1(D). Consequently, Q2 6vbs Q1.

Theorems 11 and 12 can be used to decide non-containment for a wide subclass
of CQs with self-joints. The following example depicts such situations.

Example 29. Consider the queries Q1 and Q2:
Q1 : q(X) :- r(X,Y ), s(X,Z), s(X,W )
Q2 : q(X) :- r(X,Y ), r(X,Z), s(X,X)

Observe that |vars(Q1)| > |vars(Q2)|. Thus, from Theorem 12, we conclude
that Q1 6vbs Q2. On the other hand, using Theorem 11 we conclude that Q2 6vbs Q1

as the number of variables in Sr = {Y, Z} is not less than or equal to the number of
r-subgoals in Q1. Notice that Theorem 12 cannot be used to prove that Q2 6vbs Q1.
2

Proposition 11. Let Q1 and Q2 be CQs such that there is a variable Y ∈ vars(Q2)
which does not appear in any subgoal of Q2 whose relation name also appears in
Q1. Then Q2 6vbs Q1

Proof. As the variable Y does not appear in any subgoal of Q2 whose relation name
appears in the body of Q1, we conclude that there is no containment mapping µ
from Q1 to Q2 with the property that there is a variable Y ′ of Q1 such that
µ(Y ′) = Y . Thus, Proposition 1 implies that Q2 6vbs Q1.

Let Q1 and Q2 be CQs. Then Q2 is said to be Q1-enhanced if it is obtained by
adding a sequence of subgoals to Q1. The following theorem shows that in this case
the existence of a variables-onto containment mapping is a necessary condition for
query containment.

Theorem 13. Let Q1 and Q2 be CQs such that Q2 is Q1-enhanced. Then Q2 vbs
Q1 if and only if there is a variables-onto containment mapping from Q1 to Q2.
In this case we can test bag-set query containment in linear time.

Proof. (If part) Proposition 2 implies that if there is a variables-onto containment
mapping from Q1 to Q2 then Q2 vbs Q1.

(Only-If part) We now prove the inverse by contradiction. Let Q2 is obtained
by adding a sequence R of subgoals to the body of Q1. Suppose that Q2 vbs Q1

but there is no variables-onto containment mapping from Q1 to Q2. Hence, there
is at least one variable in vars(R) that does not appear in S = Q2−R, because S
is identical to Q1. In this case |vars(Q2)| > |vars(Q1)|. Then, Theorem 12 implies
that Q2 6vbs Q1.

Complexity: We can test bag-set containment by simply counting the number
of variables in each query and testing if |vars(Q1)| > |vars(Q2)|. This can be done
in linear time.
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Example 30. Consider the queries Q1 and Q2:
Q1 : q(X,Y ) :- edge(X,Y )
Q2 : q(X,Y ) :- edge(X,Y ), edge(X,Z)

Notice that Q2 is obtained by adding the atom edge(X,Z) to Q2. Notice
also that there is no variables-onto containment mapping from Q1 to Q2; hence
Theorem 13 implies that Q2 6vbs Q1. 2

Theorem 14 shows that by adding subgoals, which do not introduce new vari-
ables, to the body of a bag-set contained query we get a bag-set contained query.

Theorem 14. Let Q1 and Q2 be two CQs, such that Q2 vbs Q1. Let Q3 be a CQ
obtained by adding the new subgoals g1(X1), . . . , gn(Xn), with n ≥ 1, to the body
of Q2, such that vars(Xi) ⊆ vars(Q2) for i = 1, . . . , n. Then Q3 vbs Q1.

Proof. By construction of Q3, there is a containment mapping from Q2 variables-
onto Q3. Thus, from Proposition 2 we conclude that Q3 vbs Q2. As Q2 vbs Q1

we conclude that Q3 vbs Q1.

3.5 Conclusions and Future Work

In this chapter we have studied the problem of query containment for CQs
under both bag and bag-set semantics. In particular, we gave necessary and suf-
ficient conditions for testing bag and bag-set containment for several major sub-
classes of CQs, and find the complexity for these cases. We also proved important
properties that can be used to decide bag-set query containment, or guarantee
non-containment. The decidability of the problem of testing containment of CQs
under either bag or bag-set semantics remains open in the general case.

Moreover, an interesting problem to study is the bag-set or bag query con-
tainment problem in the presence of certain constraints on the relational schema
[JK84]; e.g. the presence of key and foreign key constraints. We expect that the
additional information given by the keys and foreign keys may imply interesting
results about testing query containment under these semantics.

Another open problem arises by noticing that Proposition 10 proves a stronger
claim than the claim needed to prove Theorem 2. In particular, it asserts addi-
tionally that for a CQ Q to return set result on every set-valued database D it is
necessary to contain only distinguished variables. It is interesting to investigate
constraints on database instances under which wider classes of CQs return sets
instead of bags. This is important as in this case set containment implies bag-
set containment hence the latter can be tested by finding a single containment
mapping.

In addition, in this chapter we investigated the bag and bag-set containment
problem for pathstar and simple generalized pathstar queries (i.e., considering only
binary relations). However, we believe that these techniques can be extended for
deciding containment of star join queries [RG02, GMUW08] under bag and bag-set
semantics.
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Chapter 4

View Selection under Bag and
Bag-Set semantics

The hardness of the view selection, as we have seen in Section 2.5, is caused by
the bicriteria nature of the problem. The appropriate order, however, of criteria
may reduce significantly the space of candidate solutions. We remind, now, the
two criteria; which are: (1) for a given set of views, the selection of the less-costly
equivalent rewritings of the queries and (2) the choice of the appropriate set of
views which does not violates the storage constraint. The observation that many
equivalent rewritings of the same query may be produced by a given set of views
[Hal01, ALM02] (but not the opposite) lead us to investigate the approach in which
the criterion (2) takes place first.

In this chapter, we focus on both bag- and bag-set-oriented version of the view
selection problem. For both versions, we limit the domain of the second criterion
by imposing certain restrictions on the candidate views. More specifically, we
describe a space of viewsets (constructed from the given query workload) which
guarantees the existence of at least one optimal solution in the case that a solution
for a given problem input exists. In addition, in the case of bag-set semantics, we
formally describe the form of the views in bag-set equivalent rewritings.

Considering a view selection problem input (either bag- or bag-set-oriented),
in Figure 4.1, we illustrate the space Ω of candidate viewsets (i.e., the set of
views that may give equivalent rewritings of queries in the given workload). S1

depicts the admissible viewsets. Further, S2 depicts the set of optimal viewsets
and S3 depicts the sets of views whose body of definition is a generalization of a
subexpression of the body of some query in the workload (see Section 2.5). The
space of viewsets we propose is described by S4; and is given by a set of solutions
called representative (optimal) set of solutions.

In order, now, to describe this space we elaborate on search space analysis of
both bag and bag-set equivalent rewritings of CQs. In particular, we completely
describe the form that each bag or bag-set equivalent rewriting has for a given
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Figure 4.1: Space of viewsets

CQ; and using this analysis we focus on the set of locally-minimal rewritings in
order to construct the viewsets that solve the view selection problem. Practically,
for a view selection problem input (either bag- or bag-set-oriented) the space S4

(Figure 4.1) consists of viewsets constructed such that the following properties are
satisfied:

• Each CQ in the given workload can be equivalently rewritten using each
viewset in this space, and each view included in these viewsets can be used
by an equivalent rewriting of a CQ in the given workload. This is achieved
by constructing the viewsets from the expansions of equivalent rewritings of
the CQs in the workload.

• Each admissible viewset for the given input which is not included in space S4

can be produced from one or more viewsets included in S4 by generalizing the
corresponding views. This implies that the space S4 contains the viewsets
with minimum size for every database instance.

In addition, this approach is based on the observation that a single optimal solution
is enough in order to solve the problem.

4.1 Space of optimal solutions under bag se-

mantics

In this section, we elaborate on the search space analysis of candidate solutions
for bag-oriented view selection problems, considering that both queries and views
are conjunctive queries/views. Moreover, we consider monotonic cost models for
computing the efficiency of the equivalent rewritings. The main results of this
section are as follows:

1. In Subsections 4.1.1-4.1.3, we propose techniques to reduce the search space
of candidate views and demonstrate that if there exists a solution for a given
problem input, then there is at least one optimal solution of a specific form.
We refer to these solutions as the representative (optimal) set of solutions.
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2. In Subsection 4.1.4, an algorithm is presented that computes the represen-
tative set of optimal solutions.

4.1.1 On restricting the space of admissible viewsets

In Section 2.5, we noticed that considering bag semantics for workloads of con-
junctive queries, each view in any admissible viewset (and thus in any optimal
viewset) can be defined as a generalization of a subexpression of some query in the
workload. Moreover, Lemmas 1 and 2 precisely describe a search space (consisting
of all query subexpressions and their generalizations) to look for view definitions.
As, in general, this search space is huge, it is crucial to investigate ways to re-
duce this search space (possibly for special cases of the view selection problem)
in order to construct efficient algorithms for solving the view selection problem.
A significant improvement in this direction might be to restrict the search space
to contain only the subexpressions of the queries in the query workload (i.e. to
exclude the generalizations of the subexpressions). Unfortunately, as it is shown
in the following example, in the general case this is not possible.

Example 31. Consider a database schema S that contains only the relation e of
arity 4 and a query workload Q = {Q1, Q2} on S, where:

Q1 : q1(X,Y ) :- e(X,X,X, Y ).
Q2 : q2(X,Y ) :- e(X,Y, Y, Y ).

Consider also the following three viewsets V1, V2 and V3:

• V1 = {V11, V12}, where:
V11 : v11(X1, X2) :- e(X1, X1, X1, X2).
V12 : v12(X1, X2) :- e(X1, X2, X2, X2).

• V2 = {V2}, where:
V2 : v2(X1, X2, X3) :- e(X1, X2, X2, X3).

• V3 = {V3}, where:
V3 : v3(X1, X2, X3, X4) :- e(X1, X2, X3, X4).

Notice that the bodies of the view definitions of V1 are subexpressions of the
bodies of the queries in Q (in fact they are obtained from the bodies of Q1 and
Q2 by renaming their variables), while the bodies of the views in V2 and V3 are
generalizations of these subexpressions. Using each one of the above viewsets we
get equivalent rewritings for the queries in Q. More specifically, using V1 we get:

R1 : r1(X,Y ) :- v11(X,Y ).
R2 : r2(X,Y ) :- v12(X,Y ).

where R1 and R2 are equivalent rewritings of Q1 and Q2 respectively. Using V2

we get:
R′1 : r′1(X,Y ) :- v2(X,X, Y ).
R′2 : r′2(X,Y ) :- v2(X,Y, Y ).

where R′1 and R′2 are equivalent rewritings of Q1 and Q2 respectively. Finally,
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using V3 we get:
R′′1 : r′′1(X,Y ) :- v3(X,X,X, Y ).
R′′2 : r′′2(X,Y ) :- v3(X,Y, Y, Y ).

where R′′1 and R′′2 are equivalent rewritings of Q1 and Q2 respectively.

Assuming a database instance D={(e(a, a, a, a)), (e(a, b, c, d);5)}, the sets
V1(D), V2(D) and V3(D) are:

V1(D) = {(v11(a, a)), (v12(a, a))}.
V2(D) = {(v2(a, a, a))}.
V3(D) = {(v3(a, a, a, a)), (v3(a, b, c, d); 5)}.

Since size(V3(D)) = 6, size(V1(D)) = 2 and size(V2(D)) = 1, we have size(V3(D)) >
size(V1(D)) > size(V2(D)). If we choose a storage limit L = size(V2(D)) = 1,
then V2 is the only admissible viewset among the above three. 2

Example 31 shows that, in some cases, any optimal solution requires views
that cannot be constructed as subexpressions of the queries in the query workload.
The optimal solution in Example 31 uses views constructed using generalizations
of subexpressions of the queries. In particular, the view in the optimal viewset V2

is defined as a common generalization of the bodies of both queries in the query
workload Q. Based on these observations two questions arise:

1. Are there any special cases of the view selection problem for which there
are optimal solutions whose viewset can be constructed by considering only
subexpressions of the queries in the query workload?

2. For the general case, can we reduce the search space specified by Lemma 1
which consists of all possible generalizations of query subexpressions?

Both questions can be answered affirmatively as shown in the following Propo-
sitions 12 and 13.

Proposition 12. Let P = (S,Q,D,L) be a conjunctive bag-oriented view selection
problem input such that every relation in S appears at most once in a body of some
query in Q. If there exists a solution for P, then there exists an optimal solution
Λ = (V,R) such that each view in V is defined as a subexpression of a query in Q.

Proof. Considering that there is a solution for P, we have that there is also an
optimal solution Λo = (Vo,Ro) for P. Without lost of generality we consider that
for each CQ in Q there is a unique optimal rewriting in Ro. We will construct a
viewset V from Vo, without losing the existence of optimal rewritings. In addition,
the construction of V will guarantee that the body of each view in V is a subex-
pression of a query in Q. Then, we will show that the previous constructed viewset
is admissible by proving that it does not violates the storage limit constraint.

We construct a viewset V from Vo as follows. For every view Vo ∈ Vo for which
there is a unique Vo-subgoal in a body of a rewriting in Ro, we add into V the
view V whose definition is the view-expansion of this view-subgoal. By Lemma 1,
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however, we conclude that the body of Vo is a generalization of subexpression of a
body of a CQ in Q. Since, now, every relation in S appears at most once in a body
of some query in Q, we conclude that Vo is used by a single optimal rewriting of Q,
and there is only one view-subgoal of this rewriting that refers to Vo. Hence, for
each view in Vo there is a unique view in V which is constructed as we previously
described.

In addition, we construct the set of rewritings R as follows. For each rewriting
Ro in Ro we replace each view-subgoal g with θ(v), where v is the head of the
definition of the corresponding view V in V and θ is a renaming substitution
over the definition of V such that body(θ(V )) is identical to the body of view-
expansion of g. Each rewriting R obtained by this procedure is included in R.
By the construction of V and R, we easily conclude that there is at least one bag
equivalent rewriting of each query in Q using V.

In order, now, to prove that Λ = (V,R) is an optimal solution for P, we have
to prove that (1) V is admissible (i.e., satisfies the storage constraint L) and (2)
each rewriting R ∈ R is optimal.

The first assumption can be proved by the construction of V; since for each
view V in V and the corresponding view Vo in Vo we have that Vo is a generalization
of Vo. Hence, there is a subgoals-onto containment mapping from V ′o to V ′; which
implies that Vo vb V (Proposition 4). Thus, the size of V is at most equal to the
size of Vo (i.e., for every D of S, we have size(V(D)) ≤ L); namely, V is admissible.

The second assumption is proved, as follows. For each rewriting R ∈ R and
the corresponding rewriting Ro ∈ Ro, the following happens: As Ro is an optimal
rewriting of a query Q ∈ Q, then there is an optimal query plan for Ro. Let this
optimal plan be the following:

(. . . ((g1 ./ g2) ./ g3) ./ . . . ./ gm),
where for each i = 1, . . . ,m, gi is a reference to a view in Vo, m is the number of
subgoals of Ro. Now, by construction of R we have the following query plan:

(. . . ((θ1(v1) ./ θ2(v2)) ./ θ3(v3)) ./ . . . ./ θm(vm)),
where for each i = 1, . . . ,m, the view-subgoal θi(vi) of R replaced the view-subgoal
of Ro, during the construction of R (as previously described). Comparing, now,
the above two query plans we have that the size of gi is greater than or equal to
θi(vi) (as previously proved); hence, by construction of R we have that the size
of each intermediate relation of the second query plan is less than or equal to the
corresponding intermediate relation of the first query plan. Thus, as we assumed
monotonic cost models, we have that R is as efficient as Ro. Consequently, by
definition of optimal solution, Λ is an optimal solution for P.

Example 32. Consider a database schema S that contains the binary relations r1,
r2, r3 and r4 and a query workload Q = {Q1, Q2} on S, where:

Q1 : q1(X,Y ) :- r1(X,X), r2(X,Y ).
Q2 : q2(X,Y ) :- r3(X,Z), r4(Z, Y ).

In addition, all the views that can be used by a bag equivalent rewriting of
a CQ in Q have the following definitions (notice that using arbitrary renaming
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substitutions we can find similar view definitions that can also be used by a bag
equivalent rewriting).

V1 : v1(X,Y ) :- r1(X,X), r2(X,Y ).
V2 : v2(X,Z, Y ) :- r1(X,Z), r2(Z, Y ).
V3 : v3(X,Z,W, Y ) :- r1(X,Z), r2(W,Y ).
V4 : v4(X) :- r1(X,X).
V5 : v5(X,Y ) :- r1(X,Y ).
V6 : v6(X,Y ) :- r2(X,Y ).
V7 : v7(X,Y ) :- r3(X,Z), r4(Z, Y ).
V8 : v8(X,Z, Y ) :- r3(X,Z), r4(Z, Y ).
V9 : v9(X,Z,W, Y ) :- r3(X,Z), r4(W,Y ).
V10 : v10(X,Y ) :- r3(X,Y ).
V11 : v11(X,Y ) :- r4(X,Y ).

Suppose, now, the database D = {r1(a, a), r2(a, a), r3(a, a), r3(b, c), r4(a, a)}
and the storage limit L = 2 tuples. It is easy to verify that the admissible viewsets
for the bag-oriented problem input P = (S,Q,D,L), contain one of the first three
views, and either V7 or V8 (any other combination of the above views either vio-
lates the storage limit or does not give bag equivalent rewriting for both queries).
Moreover, notice that all views included in an admissible viewset for P are defined
as generalization of subexpressions of queries’ bodies. For instance, consider the
viewset V = {V1, V7}. It is easy to see, moreover, that V is an optimal viewset for
P. 2

Notice that, when the assumptions of Proposition 12 hold, the queries in the
workload Q do not contain self-joins. In this case, as referred in Section 2.5, we
can rewrite each query in Q without using self-joins of views in V.

We now turn our attention to the general case and prove that, in order to
construct an optimal viewset, we need to consider both subexpressions of queries
and lgg”s of subexpressions. We can thus exclude all those generalizations of
subexpressions that are not lgg”s of two or more subexpressions. This is made
formal in the following proposition:

Proposition 13. Let P = (S,Q,D,L) be a conjunctive bag-oriented view selection
problem input. If there exists a solution for P, then there is an optimal solution
Λ = (V,R) for P such that the body of each view in V is either a subexpression of
the body of a query in Q or an lgg of two or more subexpressions of the bodies of
queries in Q.

Proof. Considering that there is a solution for P, we have that there is also an
optimal solution Λo = (Vo,Ro) for P. This proof is similar to the proof of Propo-
sition 12.

We construct a viewset V from Vo as follows. For every view Vo ∈ Vo for which
there is a single Vo-subgoal in a body of a unique rewriting inRo, we add into V the
view V whose definition is the view-expansion of this view-subgoal. On the other
hand, for each view Vo ∈ Vo for which multiple Vo-subgoals appear in rewritings
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in Ro, we add into V the view V whose definition is the lgg of all view-expansions
of the Vo-subgoals.

In addition, we construct the set of rewritings R as follows. For each rewriting
R in R we replace each view-subgoal v with θ(v′), where v′ is the head of the
definition of the corresponding view in V and θ is the appropriate substitution
such that the bodies of the view-expansions of v and definition of θ(v′) are the
same expression. By the construction of V and R, we conclude that there is at
least one bag equivalent rewriting of each query in Q using V.

In order, now, to prove that Λ = (V,R) is an optimal solution for P, we have
to prove that (1) V is admissible (i.e., satisfies the storage constraint L) and (2)
each rewriting R ∈ R is optimal.

The first assumption can be proved by the construction of V. To verify this
notice that as for each view V in V and the corresponding view Vo in Vo we have
that Vo is a generalization of V . Hence, there is a subgoals-onto containment
mapping from V ′o to V ′; which implies that Vo vb V (Proposition 4). Thus,
the size of V is at most equal to the size of Vo (i.e., for every D of S, we have
size(V(D)) ≤ L); namely, V is admissible.

The proof of the second assumption is identical to the proof of the second
assumption appearing in the proof of Proposition 12, and based on the construc-
tions of V and R. Consequently, by definition of optimal solution, Λ is an optimal
solution for P.

The intuition behind Propositions 12 and 13 is that the use of generalization
of subexpressions in defining a view is useful only when this view definition will
be subsequently used two or more times to construct equivalent rewritings for the
queries in the workload Q. This is the case of the viewsets V2 and V3 in Exam-
ple 31. Besides, it is not useful to generalize the subexpression more than needed
as this, in general, increases the number of the tuples obtained when materializ-
ing this “overgeneralized” view definition and this does not contribute towards an
improvement of the evaluation of the rewriting. An example of such “overgener-
alization” is the viewset V3 in Example 31.

4.1.2 Minimum set of distinguished variables in candi-
date rewritings

In this section, we further refine Propositions 12 and 13 by restricting also the
vector of variables in the heads of the view definitions. The simplest choice is to
put as arguments of a view head all different variables appearing in the view’s
body. However, this is not always the “best” choice as the following example
shows.

Example 33. Consider a query workload Q = {Q}, where:
Q : q1(X,Y ) :- e(X,Z), f(Z,W ), g(W,Y ).

Consider also the following viewset V1 = {V11, V12}:
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V11 : v11(X,Z,W ) :- e(X,Z), f(Z,W ).
V12 : v12(W,Y ) :- g(W,Y ).

Notice that using V1 as we can get the following equivalent rewriting R of Q:
R : r(X,Y ) :- v11(X,Z,W ), v12(W,Y ).

It is easy to see, however, that the variable Z in the head of V11 is redundant.
More specifically, if we replace the view V11 in V1 by the following view V ′11:

V ′11 : v′11(X,W ) :- e(X,Z), f(Z,W ).
we get R′ which is also an equivalent rewriting of Q:

R′ : r′(X,Y ) :- v′11(X,W ), v12(W,Y ).
Comparing V11 and V ′11, it is easy to see that, under bag semantics, for every
database D we have size(V11(D)) = size(V ′11(D)). Also, the query R′, obtained
by using V ′11 to rewrite Q, is computed more efficiently than the rewriting R
obtained by using V11 to rewrite Q. 2

We now show how to choose the appropriate set of variables to be used as head
arguments of the view definitions. In order to find this set we define the notion of
linking variables of a CQ and a subexpression of its body. The linking variables
are related to the shared-variables property introduced by [PH01]; that holds in
the set-oriented context.

Definition 11. LetQ be a query of the formH :-B1, . . . , Bn and S = B11, . . . , B1k,
with 1 ≤ k ≤ n, be a subexpression of the body of Q. Let Q′ = Q − S be the
query obtained by removing from the body of Q the atoms in S. Then, the set
lvars(Q,S) = vars(Q′) ∩ vars(S), is called the linking variables of Q and S.

Example 34. (Continued from Example 33) Consider the query Q in Example 33
and the subexpression S = e(X,Z), f(Z,W ) of Q. It is easy to see that the set of
linking variables of Q and S is lvars(Q,S) = {X,W}. 2

Using now the linking variables of a CQ Q and a subexpression S of its body,
we describe the minimum set of required distinguished variables of a view V such
that V covers S in a bag equivalent rewriting of Q which uses V . The following
proposition formally describes this set by considering that V is a generalization of
S.

Proposition 14. Let Q be a CQ and V be a view whose body is defined as a
generalization of a subexpression S of Q. Then V covers S in a bag equivalent
rewriting of Q using V , if and only if there is a substitution θ over V such that
the following hold:

1. the body of θ(V ) is identical to S,

2. for each variable X of V such that θ(X) is contained in lvars(Q,S), X is
a distinguished variable of V ; and

3. for every two variables Y , Z of V such that Y 6= Z and θ(Y ) = θ(Z), Y
and Z are distinguished variables of V .
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Proof.

(If part) Consider the view V ′ which obtained as follows: the body of V ′

is the subexpression S′ = body(Q) − S, and all variables appearing in its body
are distinguished variables. We construct, now, the query R such that its head
is identical to the head of Q and its body contains the atoms head(θ′(V ′)) and
head(θ(V )), where θ′ is a substitution over V ′ such that for each variable X of V ′

we have that if X is contained in lvars(Q,S′) then θ′(X) = X; otherwise θ′(X) is
a fresh variable. By construction of V ′ and R, we conclude that Rexp ≡b Q.

(Only-If part) Let, now, the bag equivalent rewriting R of Q using V such
that V covers S. By Proposition 8 and Lemma 2, we conclude that there is a renam-
ing substitution φ over Rexp such that φ(Rexp) ≡b Q (especially, φ(Rexp) and Q are
identical); therefore there is a substitution φ′ over V such that body(φ(φ′(V ))) = S.
We refer to the substitution over V implied by the composition of φ′ and φ as θ
(i.e., θ = φ ◦ φ′). Hence, θ satisfies the condition 1.

(θ satisfies condition 2) Consider, now, an arbitrary variable X of V such that
θ(X) is in lvars(Q,S). Suppose that X is included in NDV ars(V ). By definition
of linking variables, θ(X) appears both in vars(S) and in vars(φ(Rexp) − S).
However, by definition of expansion, θ(X) is a fresh variable; which contradicts
with the assumption that φ is a renaming substitution. Hence, X is a distinguished
variable of V .

(θ satisfies condition 3) Consider, now, two variables Y , Z of V such that
Y 6= Z and θ(Y ) = θ(Z). Moreover, suppose that at least one of Y and Z is
included in NDV ars(V ). Without loss of generality, let Y in NDV ars(V ). By
definition of expansion, we have that θ(Y ) is a fresh variable; i.e., θ(Y ) 6= θ(Z).
However, this is a contradiction. Hence, both Y and Z are distinguished variables
of V .

Since the body of each view which is used in a bag equivalent rewriting is a
generalization of a subexpression of query’s body, the previous proposition deter-
mines the minimum set of variables that should be put in the head of definition of
each view so as the view can be used by a bag equivalent rewriting of the query.
Here, we distinguish the two cases introduced by Proposition 13; (1) when the
body of the view is defined as subexpression of query’s body and (2) when the
body of the view is defined as lgg of subexpressions (either of the same query’s
body or of different bodies).

In the case (1) the Proposition 14 indicates the set of linking variables is the
minimum set of variables that should be put in the head of the view definition so
as this view can be used in a bag equivalent rewriting of the query. The following
example illustrates such a case.

Example 35. (Continued from Example 34) Notice that the variables in {X,W}
(which are the linking variables of Q and S) appearing in the heads of both views
V11 and V ′11 are constructed from the subexpression S of Q. Observe that if we
remove either X or W , or both X and W , from the head of the view V11 (or the
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view V ′11), then the corresponding viewset cannot give equivalent rewriting for the
query Q. 2

Considering, now, the case (2) the body of the view may be either identical
to some subexpressions of queries bodies (up to a renaming substitution) or a
proper lgg of them (i.e., lgg which is not identical to every subexpression). In
the case that the body is a proper lgg the sets of linking variables do not suffice
in order to determine the head variables of the view definition. In particular,
the Proposition 14 shows that in this case the linking variables of the query and
each subexpression that the certain view covers, do not determine the minimum
set of variables that must be put in the head of view. The third condition of
the Proposition 14 describes the additional distinguished variables. The following
example illustrates such a case.

Example 36. Consider a query workload Q = {Q1, Q2}, where:
Q1 : q1(X1, X4) :- e(X1, X1, X1, X2, X3), f(X3, X2, X4).
Q2 : q2(Y1, Y2, Y7) :- e(Y1, Y2, Y2, Y3, Y4), f(Y4, Y5, Y6), g(Y6, Y7).

Consider also the following viewset V1 = {V1, V2}, where:
V1 : v1(Z1, Z2, Z3, Z5, Z6) :- e(Z1, Z2, Z2, Z3, Z4), f(Z4, Z5, Z6).
V2 : v2(Z6, Z7) :- g(Z6, Z7).

Notice that body of the view V1 is obtained as the lgg of the subexpressions
S1 and S2 of Q1 and Q2 respectively, where:

S1 = e(X1, X1, X1, X2, X3), f(X3, X2, X4).
S2 = e(Y1, Y2, Y2, Y3, Y4), f(Y4, Y5, Y6).

Moreover, using the substitutions θ1 = {Z1/X1, Z2/X1, Z3/X2, Z4/X3, Z5/X2,
Z6/X4} and θ2 = {Z1/Y1, Z2/Y2, Z3/Y3, Z4/Y4, Z5/Y5, Z6/Y5} over V1 we con-
clude that S1 and S2, respectively, are images of body(V1).

The linking variables of S1 and Q1 are lvars(Q1, S1) = {X1, X4}, while the
linking variables of S2 and Q2 are lvars(Q2, S2) = {Y1, Y2, Y6}.

Consider, now, the set of body variables of V1 that map on the corresponding
linking variables of Q1, Q2 and S1, S2, respectively; which contain the variables Z1,
Z2, Z5 and Z6. We can easily verify that although the variable Z3 is not included
in this set it must be put in the head of V1 in order to exists a bag equivalence
rewriting of Q2 using V1. Z3 is put in the head according to the third condition
of Proposition 14. Therefore the set of the variables in the head of the view V1 is
{Z1, Z2, Z3, Z5, Z6}.

Notice that using the above viewset we obtain the following rewritings R1 and
R2 for Q1 and Q2, respectively. Notice that using θ1 and θ2 the view V1 covers S1

and S2, respectively:
R1 : r1(X1, X4) :- v1(X1, X1, X2, X2, X4).
R2 : r2(Y1, Y2, Y7) :- v1(Y1, Y2, Y3, Y5, Y6), v2(Y6, Y7).

2
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4.1.3 Representative set of solutions under bag seman-
tics

Summarizing the results of two previous sections, we describe how we can
construct viewsets that solve the bag-oriented view selection problem. This is
achieved by describing the way that each view definition in such a viewset is
constructed.

Consider, now, a query workload Q over a schema S and three subexpressions
S, S1 and S2 of the bodies of queries in Q such that there is an lgg of S1 and
S2. Using the Proposition 14, we construct a view V whose body is defined as
the subexpression S (also called subexpression view) as follows: the body of V
is identical to S and its head contains the linking variables of the CQ of Q that
contains S, and S. In addition, we can construct the view V ′ whose body is the
least general generalization of S1 and S2 using the following steps:

1. We construct the views V1 and V2 using the subexpressions S1 and S2 re-
spectively as bodies, and we put as head variables the linking variables of
the corresponding queries in Q that contain S1, S2, and S1, S2, respectively.

2. By considering V1 and V2 as queries we construct V ′ with body the lgg of
the bodies of V1 and V2. Moreover, using Proposition 14, we put in the head
of V ′ the minimum required set of variables such that treating both V1 and
V2 as queries, V ′ covers both the bodies of V1 and V2. V ′ is said to be an
lgview of the views V1 and V2; and denoted as lgview(V1, V2).

An example of an lgview was given in Example 36, where V1 is an lgview. This
procedure can be easily generalized for more than two subexpressions.

An interesting question referring to lgviews is the following: “Does the inequal-
ity size(V ) ≤ size(V1) + size(V2) always hold for the lgview V of two views V1

and V2?”. Notice that, if the answer is “yes” for any bag-oriented view selection
problem input, then whenever an lgview exists, the original views can be discarded
eliminating in this way the search space for finding viewsets. Unfortunately, the
inequality does not always hold, as the following example shows.

Example 37. Let a viewset V = {V1, V2}, where the definitions of the views are:
V1 : v1(X,Z) :- p1(X,X), p2(X,Z).
V2 : v2(X,Z) :- p1(X,Z), p2(Z,Z).

where p1 and p2 are binary relations on the database schema S. Consider also
another viewset W = {W} whose view W is defined as:

W : w(A,B,C) :- p1(A,B), p2(B,C).
Notice that W is the lgview of the views in V. Assuming the database instance:
D = {p1(1, 1), p1(1, 2), p1(3, 4), p2(1, 1), p2(1, 2), p2(2, 2), p2(2, 3), p2(4, 5)},

in which the multiplicity of each database tuple in this example is 1 and for this
we omit it, and materializing the views over this database we get:
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V(D) = {v1(1, 1), v1(1, 2), v2(1, 1), v2(1, 2)}.
W(D) = {w(1, 1, 1), w(1, 1, 2), w(1, 2, 2), w(1, 2, 3), w(3, 4, 5)}.

It is easy to see that size(V(D)) < size(W(D)). 2

The following theorem summarizes the results given by Proposition 13 and
Proposition 14, and shows that if there is a solution for a given bag-oriented
problem input then there is an optimal viewset that contains only subexpression
views and lgviews.

Theorem 15. Let a bag-oriented view selection input P = (S,Q,D,L). If there
is a solution for P, then there exists an optimal solution Λ = (V,R) such that
each view in V is either a subexpression view or an lgview of subexpression views
of queries in Q.

Thus the class of solutions constructed as above is a representative set of so-
lutions for a given bag-oriented view selection problem input P.

4.1.4 LGG-VSB Algorithm

An algorithm, called LGG-VSB, which is based on the results of the previ-
ous section, and outputs the representative set of optimal solutions, for a given
bag-oriented view selection problem input, is proposed in this section. LGG-VSB
incorporates the results of the Theorem 15 and Lemma 2 to the algorithm CGALG
(introduced in [ACGP07]), reducing significantly the search space for finding an
optimal solution. In particular, LGG-VSB avoids the construction of viewsets that
do not rewrite the queries in the workload, by producing the candidate viewsets
in such a way that the construction of the equivalent rewritings of the query is
quickly achieved; i.e. instead of construction of every set of views whose body is
a generalization of a subexpression of a query’s body (CGALG), LGG-VSB con-
structs viewsets that form a partition of the body of each query in the workload.

Algorithm LGG-VSB.
Input: A bag oriented view selection problem input1 P = {S,Q,D,L}.
Output: Λ, the representative set of optimal solutions.

Begin
1. Let V be a set of viewsets constructed as follows: Each V ′ ∈ V is of

the form V ′ = V1 ∪ · · · ∪ Vn, where n is the number of queries in Q
and each viewset Vi is obtained from the query Qi ∈ Q as follows:
- Let Pi be a partition of the subgoals of Qi.
- For each block Bj ∈ Pi, add a view definition Vi,j in Vi whose body

consists of the atoms in Bj and whose head variables are the
variables in lvars(Qi, Bj).

2. Set G0 = V; set i = 0.

1Recall that L = {L}, where L is a single storage limit constraint.
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3. while Gi 6= ∅ do
- Gi+1 = {Vg|Vg = (V ′ −M) ∪ {Vl}, where V ′ ∈ Gi and M⊆ V ′

and Vl = lgview(M)}.
- i = i + 1.

end while
4. Let V =

⋃
j=0,...,iGj .

5. Compute the cost C(Q,D) of Q on D and set it to Copt.
6. For every viewset V ′ ∈ V, such that size(V ′) ≤ L, do

- Construct the set RV ′ of all equivalent rewritings of Q using V ′.
- Set Λ = ∅.
- For every distinct subset R of RV ′ such that R contains an

equivalent rewriting of each query in Q, do
- Let c = C(R,V ′(D)).
- If c < Copt, then set Copt = c and set Λ = {(V ′,R)}

else if c = Copt, then Λ = Λ ∪ {(V ′,R)}.
end.

4.2 Space of Optimal solutions under bag-set

semantics

In this section, we focus on the bag-set-oriented view selection problem where
queries, rewritings and views are defined as CQs. Although, under bag semantics,
the form of each view that can be used by an equivalent rewriting is completely
defined by Lemmas 1, 2, and Proposition 14, under bag-set semantics, there is not
any technique even for finding a bag-set rewriting using a given set of views (in
the case of CQs).

Since, now, the bag-set semantics can be regarded as a special case of bag
semantics, one may think that we can use the space of viewsets described by the
Theorem 15 in order to solve the bag-set-oriented view selection problem (i.e., to
find at least one optimal solution in the case that a solution for the given input
exists). However, as the following example describes, there is a bag-set-oriented
problem input such that even the space of viewsets described by view definitions
whose bodies are generalizations of subexpressions of the given queries’ bodies does
not suffice in order to find an optimal solution.

Example 38. Consider the bag-set view selection problem input P = (S,Q,D, L)
such that S contains the relation e of arity 7, Q = {Q1, Q2}, the storage limit L
is equal to 3 tuples, and the database D contains the tuples: e(a, a, b, c, c, d, d),
e(a, b, b, e, f, d, g), e(a′, b′, b′, c′, c′, d′, d′), e(a′, a′, b′, e′, f ′, d′, g′), e(o,o,o,o,o,o,o) and
e(x, x, x, y, z, w, u). The definitions of queries are the following:

Q1 : q1(A,B,C,D,E, F,G) :- e(A,A,B,C,C,D,D), e(A,B,B,E, F,D,G).
Q2 : q2(A,B,C,D,E, F,G) :- e(A,B,B,C,C,D,D), e(A,A,B,E, F,D,G).
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Evaluating both queries on the databaseD we have thatQ1(D) = {q1(a, b, c, d, e, f, g),
q1(o, o, o, o, o, o, o)} and Q2(D) = {q2(a′, b′, c′, d′, e′, f ′, g′), q2(o, o, o, o, o, o, o)}.

Searching for admissible viewsets notice that there is not any admissible viewset
for P that contains only subexpression views. On the other hand, consider the
following two views.
V1 : v1(U1, . . . , U9) :- e(U1, U2, U3, U4, U4, U5, U5), e(U1, U6, U3, U7, U8, U5, U9).
V2 : v2(T1, . . . , T9) :- e(T1, T1, T2, T3, T4, T5, T6), e(T1, T2, T2, T7, T8, T5, T9).
Notice that both V1 and V2 are lgviews of queries’ bodies and give bag-set

equivalent rewritings of both Q1 and Q2. However, evaluating under bag-set se-
mantics both V1 and V2 on D we can easily verify that V1(D) contains 5 tuples
and V2(D) contains 4 tuples; hence none of them gives an admissible viewset for
P. Consequently, there is not any optimal solution that can be constructed as
Theorem 15 specifies. On the other hand, considering the viewset V = {V }, where
V has definition:

V : v(X1, X2, Y1, Y2, Y3,W1,W2,W3,W4,W5,W6, Z1, Z2, Z3) :-
e(X1, X1, X2,W1,W2, Z1, Z2),
e(X1, X2, X2,W3,W4, Z1, Z3),
e(Y1, Y2, Y3,W5,W6, Z1, Z1).

we can easily notice that V is an optimal viewset for P; since V (D) contain 3
tuples and gives bag-set equivalent rewritings for both Q1 and Q2. More specifi-
cally, R1 and R2 are the bag-set equivalent rewritings of Q1 and Q2, respectively,
using V, and have the following definitions.

R1 : q1(A,B,C,D,E, F,G) :- v(A,B,A,A,B,C,C,E, F,C,C,D,D,G)
R2 : q2(A,B,C,D,E, F,G) :- v(A,B,A,B,B,E, F,C,C,C,C,D,G,D).

However, V is neither a subexpression view nor a lgview of subexpressions
of queries’ bodies. Moreover, notice that V is not even a generalization of any
subexpression of a query’s body. 2

In this section, we firstly describe the search space of solutions for a given bag-
set-oriented problem input by specifying the form of each view that can be used in
a bag-set equivalent rewriting of a CQ (Section 4.2.1). Moreover, we describe the
form of every bag-set equivalent rewriting of a given CQ and the combination of
the views that can be used to equivalently rewriting a CQ under bag-set semantics.
Furthermore, we determine a space of viewsets that guarantees the existence of
an optimal viewset (when a solution for the given input exists); similar to that
proposed for bag semantics in the previous section.

4.2.1 Useful viewsets for rewriting CQs under bag-set
semantics

As it is mentioned in Sections 2.3.2 and 2.4, the existence of an isomorphic
contaiment mapping between a CQ and the expansion of a rewriting of the CQ
decides that the rewriting is bag-set equivalent only if both CQ and the expansion
of the rewriting are duplicate-free (i.e., their definitions do not have duplicate
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subgoals). In particular, duplicate subgoals of either CQ or the expansion of the
rewriting do not affect the existence of bag-set equivalent rewriting. Therefore,
constructing from a CQ Q, the CQ Qm by eliminating duplicate subgoals from Q,
the canonical representation of each view-expansion of a view-subgoal in a bag-set
equivalent rewriting of Q has body which is a subexpression of Qm. This corollary
is formally described as follows.

Corollary 4. Let a CQ Q and a bag-set equivalent rewriting R of Q using a
viewset V. Then the following hold:

1. for every view-subgoal v of R the body of the canonical representation of the
view-expansion of v is a subexpression of the body of the canonical represen-
tation of Q; and

2. there is a subset A of the subgoals of R that cover all the subgoals of Q
and none view-subgoal in this subset is redundant (i.e., we cannot drop any
view-subgoal from A and still cover all subgoals of Q).

Consequently, the body of view-expansion of v can be an expression obtained
by adding duplicate subgoals to the corresponding subexpression S of the body
of canonical representation of Q. Moreover, notice that S can also be obtained
by eliminating duplicates subgoals from a subexpression of Q. Hence, the body
of view-expansion of v is obtained by a combination of additions and deletions of
duplicate subgoals from S. The following definition captures such additions and
deletions of duplicate subgoals in a CQ.

Definition 12. Considering two CQs Q1 and Q2, we say that Q2 is a duplicate-
extension of Q1 if Q2 can be obtained by a sequence of additions and deletions
of duplicate subgoals from the body of Q1.

Similarly, we say that an expression E2 is a duplicate-extension of an expression
E1 if E2 can be obtained by a sequence of additions and eliminations of duplicate
atoms from E1.

Since, now, the view-expansion of a view-subgoal of a rewriting of a CQ is
obtained by applying a substitution over the definition of the view-subgoal, we
conclude that the body of each view that can be used in a bag-set equivalent
rewriting of a CQ is a generalization of a duplicate-extension of a subexpression
of the CQ. This is formally described by the following proposition.

Proposition 15. Let a CQ Q and a viewset V. If there is a bag-set equivalent
rewriting R of Q using V then the body of each view V of V used in R is a
generalization of a duplicate-extension of a subexpression of Q’s body.

Proof. This proof immediately follows from Proposition 7 and the definitions of
expansion and duplicate-extension.
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Example 39. (Continued from Example 38) Considering the bodies S1 and S2 of
the queries Q1 and Q2, respectively, we can easily notice that both V1 and V2 are
generalizations of duplicate-extensions of S1 and S2. Moreover, notice that the
body of V is a common generalization of the following expressions:

S′1 = e(A,A,B,C,C,D,D), e(A,B,B,E, F,D,G), e(A,A,B,C,C,D,D).
S′2 = e(A,B,B,C,C,D,D), e(A,A,B,E, F,D,G), e(A,B,B,C,C,D,D).

In addition, notice that the expression S′1 and S′2 are duplicate-extensions of
S1 and S2, respectively (both are obtained by adding one copy of the first subgoal
of S1 and S2). 2

Concerning now the minimum set of required variables in the head of a view
definition such that the view can be used by a bag-set equivalent rewriting, we
focus on the set described by Proposition 14. Since, now, the form of each view
that can be used in a bag-set equivalent rewriting is a generalization of a duplicate-
extension of a subexpression of Q’s body, we can easily conclude that a similar
subset of variables of the view is required in its head under bag-set semantics as
well. The following proposition formally describes this result.

Proposition 16. Let Q be a CQ and V be a view. Then there is a V -subgoal
which covers S in a bag-set equivalent rewriting of Q using V , if and only if
there is a substitution θ over V such that the following hold:

1. the body of the canonical representation of θ(V ) is identical to the canonical
representation of S,

2. for each variable X of V such that θ(X) is contained in lvars(Q′, S), X is
a distinguished variable of V ; where Q′ is obtained from Q by adding a copy
of each subgoal g of S which is also covered by another view-subgoal of R, if
there exists such g; otherwise Q′ is Q,

3. for every two variables Y , Z of V such that Y 6= Z and θ(Y ) = θ(Z), Y
and Z are distinguished variables of V .

Proof. This proof is similar to the proof of Proposition 14.

Summarizing the results of this section we have that the form of each view
V that can be used by a bag-set equivalent rewriting of a CQ Q is specified by
Propositions 15 and 16. In addition, in each bag-set equivalent rewriting R of a
CQ Q there is a subset of view-subgoals that covers all the subgoals of Q; and the
residual subgoals provide only duplicate subgoals in the expansion of R. However,
as it is proved in [ACGP07] (see also in Section 2.5) these residual view-subgoals
are redundant (they neither give a more efficient rewriting nor are required for the
existence of a rewriting).
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4.2.2 Representative set of solutions for the bag-set-
oriented view selection problem

Focusing on the bag-set-oriented view selection problem, the space of viewsets
described in the previous section is infinite. In particular, the viewsets which can
be constructed by considering duplicate-extensions of subexpressions of a CQ in a
given workload are infinite (since the set of duplicate-extensions of an expression
is infinite). However, it is proved in [ACGP07] that there is an optimal viewset for
a given input (if there exists any solution) such that each view definition in this
viewset has at most exponentially many subgoals than the definition of a query
in the workload. On the other hand, if the queries in the workload do not have
self-joins the number of subgoals of each such view is bounded by the number of
subgoals of the longest query definition (i.e., the query with the most subgoals).

In this section, we give a search space for finding at least one optimal viewset
for a given bag-set-oriented view selection problem input (considering that the
CQs included in the workload may or may not contain self joins). This space is
closely related to the representative set of solutions under bag semantics described
in Section 4.1.3.

As we noticed in Example 38, we cannot restrict to the space of subexpressions
of the queries in order to find an optimal solution. Similarly however, with bag-
oriented version of the problem if any relation of a given schema occurs at most
once in the query of the workload, then we can find an optimal solution focusing
on subexpressions of queries.

Proposition 17. Let P = (S,Q,D,L) be a conjunctive bag-set-oriented view
selection problem input such that every relation in S appears at most once in
a body of some query in Q. If there exists a solution for P, then there exists an
optimal solution Λ = (V,R) such that each view in V is defined as a subexpression
of a query in Q.

Proof. Considering that there is a solution for P, we have that there is an optimal
solution Λo = (Vo,Ro) for P such that (1) each view in Vo is a generalization of
subexpression of a CQ in Q and its definition does not have self-joins, and (2) each
rewriting in Ro does not have self-joins (the existence of such a optimal solution
is implied by Section 2.5 [ACGP07]). Without loss of generality we consider that
for each query in Q a unique optimal rewriting is included in Ro.

We, now, construct a viewset V from Vo as follows. For every view Vo ∈ Vo
for which there is a unique Vo-subgoal in a body of a rewriting in Ro, we add
into V the view V whose definition is the view-expansion of this view-subgoal. By
Proposition 7, however, we have that each view in V is a subexpression of body of
a query in Q. Hence, each view in V is bag-set contained to a view in Vo.

In addition, we construct the set of rewritings R as follows. For each rewriting
Ro in Ro we replace each view-subgoal with the head of the definition of the
corresponding view in V. The rewriting obtained by this procedure are included
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in R. By the construction of V and R, we easily conclude that there is at least
one bag-set equivalent rewriting of each query in Q using V, and these rewritings
are as efficient as the corresponding rewritings in Ro.

Consequently, V is also admissible for P; which implies that Λ = (V,R) is an
optimal solution for P.

The question, now, that arises is how we can find an optimal solution when
the CQs in the workload have self-joins. In particular, we want to find a space
of viewsets that decides the existence of an optimal solution for a given bag-set
oriented input that may contain queries with self-joins (i.e., if there is an admissible
viewset then an optimal viewset is included in this space).

In order to find such a space we investigate whether there exists a space of
viewsets in which each view definition has a bounded number of subgoals. This is
achieved by separating two cases of views, similar to the cases in the bag-oriented
context; the views that cover a unique subexpression of a query in the workload,
and the views that cover multiple subexpressions of queries’ bodies. In the first
case, similar to bag semantics, the views whose bodies are subexpressions of bodies
of queries suffice. Intuitively, it is not useful under bag-set semantics either to
generalize a subexpression more than needed or to duplicate multiple subgoals of
a query subexpression (in order to find views in optimal viewsets that cover a
single subexpression).

On the other hand, focusing on the views that cover multiple subexpressions
of queries’ bodies, we noticed that the lggs of subexpressions do not suffice (see
Example 38). In particular, in an optimal solution for a bag-set-oriented view
selection input, a single view in the optimal viewset can cover multiple subexpres-
sions of queries (using the corresponding bag-set equivalent rewritings) which may
have different number of subgoals; instead of the bag-oriented context in which
each view covers subexpressions with the same number of subgoals. In addition,
considering a bag-set-oriented view selection input, the Proposition 15 implies that
the body of a view which is included in an optimal viewset and covers multiple
subexpressions of queries in the set of optimal rewritings, is a common generaliza-
tion of duplicate-extensions of the subexpressions that it covers. We, now, extend
the concept of lgg in order to capture these cases. More specifically, we introduce
the concept of d-lgg of expressions as follows.

Definition 13. Let N be a set of relation names and Exp = {E1, E2, . . . , En} be
a set of expressions such that for each g ∈ N there is at least one atom in every
expression in Exp with relation name g, and each expression in Exp has atoms
in N . We consider the set of duplicate-extensions Exp′ = {E′1, E′2, . . . , E′n} of
E1, E2, . . . , En, respectively, such that for every relation name g ∈ N the number
of g-atoms is the same in all expressions of Exp′. Then we say that an lgg E of
the expressions in Exp′ is an d-lgg of the expressions in Exp if E does not have
duplicate atoms.
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Example 40. Let the following six expressions.
E1 = e(X,X), e(X,Y ), g(a, a), g(a, d).
E2 = e(X,Y ), e(Y,X), g(X,X), g(b, d).
E3 = e(X,X), e(X,Y ), g(a, a).
E4 = e(A1, A2), e(A2, A3), g(A4, A4), g(A5, d).
E5 = e(B1, B2), e(B2, B3), g(B4, B4), g(B5, B6).
E6 = e(B1, B2), e(B2, B3), g(B4, B4), g(B5, B6), g(B5, B6).

Notice that there is common generalization for E1 and E2; instead of E1, E2

and E3 that they do not have any. In addition, E4 is an lgg of E1 and E2; from
which it follows that E4 is also a d-lgg of E1 and E2. Consider, now, the following
duplicate-extension of E3.

E′3 = e(X,X), e(X,Y ), g(a, a), g(a, a).
Using, now, E′3, we can easily verify that E5 is a d-lgg of E2 and E3. However,

constructing the duplicate-extensions E′′3 and E′2, where
E′′3 = e(X,X), e(X,Y ), g(a, a), g(a, a), g(a, a),
E′2 = e(X,Y ), e(Y,X), g(X,X), g(b, d), g(b, d),

we can easily notice that although E6 is an lgg of E′2 and E′′3 , E6 is not a d-lgg
of E2 and E3 (because E6 has duplicate atoms). 2

Intuitively, the d-lgg is an lgg of duplicate-extensions of a set of expressions
with no redundant atoms (i.e., without duplicate atoms). Although a duplicate-
extension of an expression may have arbitrary many atoms, the d-lggs of a set
of expressions have bounded number of atoms. This is formally proved by the
following proposition.

Proposition 18. Let a set of expressions Exp = {E1, E2, . . . , En} such that there
is at least one d-lgg of Exp. Also consider that for each i = 1, . . . , n, the expression
Ei of Exp has ni atoms. Then for each d-lgg E of the expressions in Exp, the
number of atoms of E is at most equal to Πn

i=1(ni).

Proof. We will prove the case in which the set Exp contains only two expression;
the E1 and E2. For the general case (i.e., the set Exp contains n expressions)
the proof is straightforwardly generalized. Moreover, without loss of generality we
consider the case that all atoms in both expressions have the same relation name.

Consider a d-lgg E of E1 and E2 such that E contains (n1 · n2 + 1) atoms.
By definition of d-lgg there are two expressions E′1 and E′2 which are duplicate-
extensions of E1 and E2, respectively, such that E is an lgg of E′1 and E′2. In
addition, E does not have duplicate atoms. Hence, there are two substitutions θ1

and θ2 over E such that θ1(E) is identical to E′1 and θ2(E) is identical to E′2. Thus,
for each atom g of E there is a pair (g1, g2) where g1 is an atom of E1 and g2 is an
atom of E2 such that θ1(g) = g1 and θ2(g) = g2. Notice now that there are n1 · n2

such different pairs. Hence, since E contains (n1·n2+1) atoms, there are two atoms
s1 and s2 of E such that θ1(s1) = θ1(s2) = g′1 and θ2(s1) = θ2(s2) = g′2, where g′1
is an atom of E1 and g′2 is an atom of E2. Constructing, now, the expression E′

from E such that we replace both s1 and s2 with the atom s, where s is obtained
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by applying the most general unifier on {s1, s2}, the following happens: E′ is a
common generalization of E′1 and E′2, and an instance of E. This is, however, a
contradiction, since E is an lgg of E′1 and E′2. Consequently, E contains at most
(n1 · n2) atoms.

Considering, now, a conjunctive bag-set-oriented view selection, we can solve
the problem (i.e., we find an optimal solution whenever a solution exists) by search-
ing viewsets which contain view definitions whose bodies are either subexpressions
of queries’ bodies or d-lggs of queries’ bodies. This result is formally proved as
follows.

Proposition 19. Let P = (S,Q,D,L) be a conjunctive bag-set-oriented view
selection problem input. If there is any optimal solution for P then there is an
optimal solution Λ = (R,V) for P such that the body of each view in V is either a
subexpression of the body of a CQ in Q or a d-lgg of subexpressions of the bodies
of CQs in Q.

Proof. Consider that there is an optimal solution Λo = (Ro,Vo) for P. Without
lost of generality we suppose that there is no view in V ′ that isn’t used by a
rewriting in Ro. We will prove the proposition by constructing an optimal solution
Λ = (R,V) for P such that the body of each view in V is either a subexpression
of the body of a query in Q or a d-lgg of subexpressions of (the bodies of) queries
in Q

We construct a viewset V from Vo as follows. For every view Vo ∈ Vo for which
there is a single Vo-subgoal in a body of a unique rewriting inRo, we add into V the
view V whose definition is the view-expansion of this view-subgoal. On the other
hand, for each view Vo ∈ Vo for which multiple Vo-subgoals appear in rewritings in
Ro, we add into V the view V whose definition is the d-lgg of all view-expansions
of the Vo-subgoals.

In addition, we construct the set of rewritings R as follows. For each rewriting
R in R we replace each view-subgoal v with θ(v′), where v′ is the head of the
definition of the corresponding view in V and θ is the appropriate substitution
such that the bodies of the canonical representations of view-expansion of v and
θ(v′) are identical. By the construction of V and R, we easily conclude that there
is at least one bag-set equivalent rewriting of each query in Q using V, and these
rewritings are as efficient as the corresponding rewritings in Ro (which is implied
by considering monotonic cost models).

In order, now, to prove that Λ = (V,R) is an optimal solution for P, we have to
prove that V is admissible; i.e., satisfies the storage constraint L. This can be easily
proved by the construction of V; since for each view V in V and the corresponding
view Vo in Vo we have that Vo is a generalization of duplicate extension of V . Hence,
there is a variables-onto containment mapping from V ′o to V ′; which implies that
Vo vbs V (Proposition 2). Thus, the size of V is at most equal to the size of Vo
(i.e., size(V(D)) ≤ L); namely, V is admissible. Consequently, by definition of
optimal solution, Λ is an optimal solution for P.
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Example 41. Consider the bag-set view selection problem input P ′ = (S,Q,D′, L′)
where D′ = D ∪ {e(y1, y2, y3, w5, w6, d, d), e(y′1, y

′
2, y
′
3, w

′
5, w

′
6, d
′, d′)} and S, Q, D

are defined in Example 38. Moreover, the storage limit L′ is 4 tuples. As we noticed
in Example 38 the viewset V = {V }, is admissible for P; instead of V1 = {V1}
and V2 = {V2} which are not (we remind that V1(D) and V2(D) contain 5 and 4
tuples and L = 3 tuples). In addition, notice that the views V1, V2 and V indicate
different d-lggs of the bodies of Q1 and Q2 (see also in Example 39). However, the
viewsets V1, V are not admissible for P ′; since both V(D′) and V1(D′) contain 5
tuples.

On the other hand, since V2(D′) contains 4 tuples (i.e., size(V2(D′)) = L′) and
V2 gives bag-set equivalent rewritings for both queries in Q, we conclude that V2

is admissible for P ′.
Consider, now, the views V ′1 and V ′2 defined as subexpressions of bodies of Q1

and Q2, respectively (especially they are identical to Q1 and Q2). The definitions
of these views are the following (notice that their definitions are identical to that
of the corresponding queries).

V ′1 : v′1(A,B,C,D,E, F,G) :- e(A,A,B,C,C,D,D), e(A,B,B,E, F,D,G).
V ′2 : v′2(A,B,C,D,E, F,G) :- e(A,B,B,C,C,D,D), e(A,A,B,E, F,D,G).

It is easy to see that there are bag-set equivalent rewritings of Q1 and Q2

using V ′ = {V ′1 , V ′2}; these also minimize the evaluation cost (i.e., they are optimal
rewritings). Moreover, notice that V ′(D′) contains 4 tuples; i.e., V ′(D′) does not
violates the storage constraint L′. Hence, V ′ is an optimal viewset for P ′. 2

Here, notice that considering an optimal viewset V for a bag-set-oriented input
P whose views are defined as specified by Proposition 19, there may be viewsets
which are obtained by generalizing the views of V and are also optimal viewsets
for P. However, the size of each such viewset V ′ is at least equal to the size of V
and the corresponding rewritings of the queries using V ′ may be less efficient than
the rewritings obtained by using views in V. The following example describes how
further generalizations of the views can reduce the efficiency of the rewritings.

Example 42. Consider the bag-set view selection problem input P = (S,Q,D, L)
where S contains the binary relation e, Q = {Q} and D contains the tuples
e(ai, ai+1), with i = 1, . . . , 5. Moreover, L = 60 tuples and the definition of Q is
the following.

Q : q(X1, X6) :- e(X1, X2), e(X2, X3), e(X3, X4), e(X4, X5), e(X5, X6).

Consider, now, the admissible viewset V that contains the following views.
V1 : v1(A1, A3) :- e(A1, A2), e(A2, A3).
V2 : v2(A1, A2) :- e(A1, A2).

It is easy to verify that the following CQ is a bag-set equivalent rewriting of Q
using V.

R : q(X1, X6) :- v1(X1, X3), v2(X3, X4), v1(X4, X6).

Also, consider the viewset V ′ = {V ′1 , V2} obtained from V by generalizing the
definition of V1. The views are defined as follows.
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V ′1 : v′1(A1, B1, B2, A3) :- e(A1, B1), e(B2, A3).
V2 : v2(A1, A2) :- e(A1, A2).

We can easily verify that V ′ is also admissible for P since size(V ′(D)) < L and
there is a bag-set equivalent rewriting of Q using V ′. Such a rewriting is defined
as follows.

R′ : q(X1, X6) :- v′1(X1, X2, X2, X3), v2(X3, X4), v′1(X4, X3, X3, X6).

Notice, here, that R′ is obtained from R by replacing each V1-subgoal with
a V ′1-subgoal. Since, now, V ′1 ’s body is a generalization of V1, evaluating R in
V(D) is more efficient than evaluating R′ in V ′(D). To verify this notice that the
evaluation of R′ requires additional selections and projections (instead of R); since
V ′1(D) contains a superset of the information stored in V1(D). 2

Consider, now, bag-set-oriented view selection problem input P = (S,Q,D, L)
and three subexpressions S, S1 and S2 of the bodies of queries Q, Q1, Q2 in Q
such that there is a d-lgg of S1 and S2. We notice, here, that Q1 and Q2 may
be the same query. However, although S1 and S2 may also be identical, they
represent different subexpressions. Using Proposition 16, we construct a view V
(called subexpression view) as follows: the body of V is identical to S and its
head contains the lvars(Q′, S) where Q′ is obtained by adding to Q a copy of
each subgoal which is also covered by another view, if there exists such a subgoal;
otherwise Q′ is identical to Q. In addition, we can construct the view V ′ whose
body is the d-lgg of S1 and S2 using the following steps:

1. We construct the subexpression views V1 and V2 using the subexpressions
S1 and S2, respectively, as previously defined.

2. By considering V1 and V2 as queries we construct V ′ with body the d-lgg
of the bodies of V1 and V2. Moreover, using Proposition 16, we put in the
head of V ′ the minimum required set of variables such that treating both V1

and V2 as queries, V ′ covers both the bodies of V1 and V2. V ′ is said to be
d-lgview of the views V1 and V2; and denoted as dlgview(V1, V2).

An example of a d-lgview was given in Example 38; where V , V1 and V2 are
d-lgviews. The construction of d-lgview can be easily generalized for more than
two subexpression views.

The following theorem summarizes the results given by Proposition 16 and
Proposition 19, and shows that if there is a solution for a given bag-set-oriented
problem input then there is an optimal viewset that contains only subexpression
views and d-lgviews.

Theorem 16. Let a bag-set-oriented view selection input P = (S,Q,D,L). If
there is a solution for P, then there exists an optimal solution Λ = (V,R) such
that each view in V is either a subexpression view of a query in Q or a d-lgview of
subexpression views of queries in Q.
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The class of solutions constructed using the previous theorem is a representative
set of solutions for the given bag-set-oriented view selection problem input P. In
addition, by easily modifying the LGG-VSB algorithm (Section 4.1.4) we solve the
bag-set-oriented view selection problem. In particular, we replace the Step 1 of
the LGG-VSB algorithm with the following step:
1. Let V be a set of viewsets constructed as follows: Each V ′ ∈ V is of the form
V ′ = V1 ∪ · · · ∪ Vn, where n is the number of queries in Q and each viewset Vi is
obtained from the query Qi ∈ Q as follows:

- Let Pi be a minimal cover (i.e., the union of the blocks gives the body of
Qi and if we drop any block, we drop at least one distinct subgoal of Qi) of the
subgoals of Qi.

- For each block Bj ∈ Pi, add a view definition Vi,j in Vi whose body consists
of the atoms in Bj and whose vars(head(Vi,j)) is the set lvars(Q′i, Bj); where Q′i
is obtained by adding in the body of Qi a copy for each atom g of Bj which is also
contained in a block Bk, with k 6= j.
Then, in Step 3 of the algorithm, we compute the d-lgview of views inM (instead
of the lgview(M)) and we set the resulted view to Vl. Using these modifications
the algorithm outputs the representative set of optimal solution for a given bag-
set-oriented input.

4.3 Chain and Path queries

In this section, we further study the bag- and bag-set-oriented view selection
problem through special cases analysis. In particular, we focus on the cases that
the query workload is a set of either chain queries or path queries.

A chain query is a conjunctive query of the following form:
Q : q(X0, Xn) :- r1(X0, X1), r2(X1, X2), . . . , rn(Xn−1, Xn)

where r1, . . . , rn, are binary relations and X0, X1, . . . , Xn are variables. If the
relation symbols r1, . . . , rn are identical then the query is called path query of
length n, denoted as Pn.

The main results of this section are summarized as follows:

1. Subsection 4.3.1 demonstrates that either for a bag-oriented or for a bag-
set-oriented problem input P = (S,Q,D,L), where Q is a workload of chain
queries, we cannot restrict the space of optimal solutions by searching ad-
missible viewsets which contain only chain-views, i.e. views defined by chain
queries.

2. Subsection 4.3.2 demonstrates that for a problem input P = (S,Q,D,L),
where Q is a workload of path queries, if there exists a solution for P, then
there is at least one optimal solution for P which is constructed by an ad-
missible viewset containing only path views (Theorem 17). However, in the
case of bag-set semantics the path-viewsets do not suffice (Proposition 23).
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4.3.1 Chain-query workload

In this section we study the view selection problem for workloads containing
only chain-queries. In particular, we focus our attention on whether there is an
optimal solution constructed by a set of chain-views. Unfortunately, as the follow-
ing proposition shows, there are cases in which none of the optimal solutions is
constructed by a set of chain-views.

Proposition 20. There exists at least one bag-oriented view selection problem
input P = (S,Q,D,L) such that:

• Q is a set of chain queries, and

• P has optimal solutions but there is no optimal solution Λ = (V, R) such
that V contains only chain queries.

Proof. The following example proves this proposition.

Example 43. Consider a query workload Q = {Q} on a database schema S that
contains the binary relations r1, r2 and r3, where Q is the following chain query:

Q : q(X,Y ) :- r1(X,Z), r2(Z,W ), r3(W,Y ).
Consider also the following five viewsets Vi, i ∈ {1, 2, 3, 4, 5}:
V1 = {V11, V12}, where:

V11 : v11(X,Z,W, Y ) :- r1(X,Z), r3(W,Y ).
V12 : v12(X,Y ) :- r2(X,Y ).

V2 = {V21, V22}, where:
V21 : v21(X,Y ) :- r1(X,Z), r2(Z, Y ).
V22 : v22(X,Y ) :- r3(X,Y ).

V3 = {V31, V32}, where:
V31 : v31(X,Y ) :- r2(X,Z), r3(Z, Y ).
V32 : v32(X,Y ) :- r1(X,Y ).

V4 = {V41}, where:
V41 : v41(X,Y ) :- r1(X,Z), r2(Z,W ), r3(W,Y ).

V5 = {V51, V52, V53}, where:
V51 : v51(X,Y ) :- r1(X,Y ).
V52 : v52(X,Y ) :- r2(X,Y ).
V53 : v53(X,Y ) :- r3(X,Y ).

Observe that the above viewsets are all possible viewsets constructed as de-
scribed in Section 4.1.

Suppose a bag-valued database instanceD = {(r1(a,b);5), (r2(b,c);10), (r3(c,d);5)}.
Considering a storage limit L=35 tuples, the following viewsets:

V1(D) = {(v11(a, b, c, d); 25), (v12(b, c); 10)}
V5(D) = {(v51(a, b); 5), (v52(b, c); 10), (v53(c, d); 5)}

do not violate the storage limit constraint. In contrast, the viewsets:
V2(D) = {(v21(a, c); 50), (v22(c, d); 5)}
V3(D) = {(v31(a, c); 50), (v32(c, d); 5)}
V4(D) = {(v41(a, c); 250)}
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do violate it. Thus, Λ = (V1, R) and Λ′ = (V5, R
′) are solutions for input P, where

the rewritings R and R′ are the following:
R : q(X,Y ) :- v11(X,Z,W, Y ), v12(Z,W ).
R′ : q(X,Y ) :- v51(X,Z), v52(Z,W ), v53(W,Y ).

Using the cost model presented in Section 2.5, the costs of Λ and Λ′ are
C(R,V1(D)) = 55 and C(R′,V4(D)) = 325 respectively. As a consequence, Λ
is an optimal solution for the bag-oriented view selection problem input P. 2

In the case of bag-set view selection problem, the same result holds. The
following proposition shows this result.

Proposition 21. There exists at least one bag-set-oriented view selection problem
input P = (S,Q,D,L) such that:

• Q is a set of chain queries, and

• P has optimal solutions but there is no optimal solution Λ = (V, R) such
that V contains only chain queries.

Proof. The following example proves this proposition.

Example 44. Let a query workload Q = {Q} on a database schema S that contains
the binary relations r1, r2 and r3, where Q is the following chain query:

Q : q(X,Y ) :- r1(X,Z), r2(Z,W ), r1(W,Y ).
Consider also the following seven views:

V1 : v1(X,Y ) :- r1(X,Y ).
V2 : v2(X,Y ) :- r2(X,Y ).
V3 : v3 :- r1(X,Z), r2(Z,W ), r1(W,Y ).
V12 : v12(X,Y ) :- r1(X,Z), r2(Z, Y ).
V21 : v21(X,Y ) :- r2(X,Z), r1(Z, Y ).
V41 : v11(X,Z,W, Y ) :- r1(X,Z), r1(W,Y ).
V42 : v4(X,Z,W, Y ) :- r1(X,Z), r2(W,Y ).

Notice that the first five views are defined by chain queries whose body is a
subexpression of Q. In addition, let a database instance D of S which contains the
tuples r1(a, a), r1(a, b), r1(b, a) and r2(a, a). Considering, now, the viewsets V1 =
{V1, V2}, V2 = {V3}, V3 = {V1, V12} and V4 = {V1, V21}, we can easily verify that
these are the only viewsets that contain chain views (i.e., views whose definitions
are given by a chain query), give a bag-set equivalent rewriting for Q and do not
have any redundant view (i.e., we cannot drop any view and the produced viewset
also gives bag-set equivalent rewriting for Q). Moreover, supposing a storage
limit L = 3 tuples, we conclude that none of the above viewsets is admissible for
P = (S,Q,D,L) (because both V1(D) and V2(D) contain 4 tuples, and both V3(D)
and V4(D) contain 5 tuples).

On the other hand, let the viewsets V5 = {V41} and V6 = {V42}. Notice
that none of them contain chain views. Moreover, the viewset V5 contains a
subexpression view of Q and give a bag-set equivalent rewriting. This viewset
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is not admissible for P (because V5(D) contain 9 tuples), as well. The viewset V6,
however, is admissible for P (we can easily verify that this viewset is optimal for
P), since V6(D) contains 3 tuples and gives a bag-set equivalent rewriting of Q.
The definition of such a rewriting is given as follows.

R : q(X,Y ) :- v42(X,Z,Z,W ), v42(W,Y,Z,W ).

2

4.3.2 Path-query workload

In this section we study the view selection problem for path-query workloads
(i.e. workloads of path queries). Unlike to the problem for chain query workloads in
which we cannot reduce the search space to the class of chain views, for path-query
workloads under bag semantics we can reduce the search space even more. The
main result of this section, presented by the following theorem, is that whenever
the workload is a set of path-queries, we can focus on path-viewsets whose views
have at most as many subgoals as the length of the longest path-query in the
workload.

Theorem 17. Let P = (S,Q,D,L), be a conjunctive bag-oriented view selection
input, and Q contains a set of path queries. If there exists a solution for P, then
there is an optimal solution Λ = (V,R) for P such that:

1. each view in V is defined as a path of the same relation as a query Q ∈ Q,

2. every view in V has at most n subgoals, where n is the length of the longest
query in Q,

3. every R ∈ R is a chain query.

Proof. Consider that there is a solution for P. Hence, Theorem 15 implies that
there exists an optimal solution Λ = (Vo,Ro) for P such that each view in Vo is
either a subexpression view or an lgview of subexpression views of queries in Q.
We will construct a set V of path-views from Vo such that each view in V is bag
contained in a view of Vo. Moreover, the views are constructed in such a way
that optimal rewritings of queries in Q using V exist. Moreoever, without loss of
generality we consider that all path queries in Q are referred to the same binary
relation e of S.

We construct, now, the viewset V from Vo as follows: for every view Vo in Vo
there is a path-view V in V such that V is a path-view of length n, where n is
the number of subgoals of Vo. In addition, V is also referred to relation e. The
size, now, of Vo is either greater than or equal to V . In order to verify this, we
have that there is a substitution θ over the body of Vo such that θ(body(Vo)) is
identical to a subexpression S of a body of a path query Q in Q. By definition of
path query we conclude that the form of S is the following:

S = e(X1, X2), e(X3, X4), . . . , e(X2n−1, X2n)
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where for every k = 1, . . . , n, we have that X2k−1 6= X2k and the variables X2k and
X2k+1 are not necessarily different. In addition the definition of V is the following:

V : v(Y0, Yn) :- e(Y0, Y1), e(Y1, Y2), . . . , e(Yn−1, Yn)
Hence, considering the substitution θ′ over S such that θ′(X1) = Y0, θ′(X2n) =

Yn and for each k = 1, . . . , (n− 1), θ′(X2k) = θ′(X2k+1) = Yn−1, we conclude that
θ′(S) = body(V ). Thus, θ′(θ(body(Vo))) = body(V ). We refer to the substitution
over Vo obtained by the composition of θ and θ′ as φ (i.e., φ(body(Vo)) = body(V )).
Consequently, using the following proposition we have that size(V0(D)) ≥ size(V (D));
hence, size(V0(D)) ≥ size(V(D)).

Proposition 22. Let two CQs Q1, Q2 defined over the same schema S and a
substitution θ over Q1 such that θ(body(Q1)) = body(Q2) and vars(head(Q2)) ⊆
vars(θ(head(Q1))). Then for every bag-valued database instance D of S we have
that size(Q1(D)) ≥ size(Q2(D)).

Proof. Consider an arbitrary bag-valued database D of S. In addition, consider
the CQ Q′1 obtained from Q1 such that body(Q′1) = body(Q1) and θ(head(Q′1)) =
head(Q2). Since, now, vars(head(Q2)) ⊆ vars(θ(head(Q1))) we have that Q′1(D)
is obtained by applying a bag-projection on Q1(D). Hence, by definition of bag
projection we have that size(Q1(D)) ≥ size(Q′1(D)). In addition, by construc-
tion of Q′1 we have that Q2 vb Q′1; hence size(Q′1(D)) ≥ size(Q2(D)). Thus,
size(Q1(D)) ≥ size(Q2(D)).

In order to show, now, that V is optimal for P we have to find a set of optimal
rewritings R using V; one for each CQ Q in Q. The rewritings R are obtained
from Ro as follows. For each CQ Q in Q and its rewriting Ro in Ro we have that
there is an optimal query plan (it gives the less evaluation cost) of Ro which has
the following form:

(. . . ((g1 1 g2) 1 g3) 1 . . . 1 gm),
where g1, . . . , gm are the view-subgoals of Ro. Replacing, now, each view-subgoal
gi with the head of corresponding view in V we add in R the chain query R with
the following definition:

R : q(X0, Xn) :- v1(X0, X1), v2(X1, X2), . . . , vm(Xm−1, Xm)
where head(R) = head(Q) and for each i = 1, . . . ,m we have that Vi is the
view in V which was constructed by the definition of the view-subgoal gi. By the
construction of V, we easily conclude that R is a bag equivalent rewriting of Q
using V; which implies that V is admissible for P. In addition, considering the
following query plan for R,

(((v1 1 v2) 1 v3) 1 . . . 1 vm),
we can conclude that C(R,V(D)) = C(Ro,Vo(D)). This can be verified using
Proposition 22 and the assumption that the cost model we consider is monotonic.
In particular, for each i = 1, . . . ,m, the intermediate relation IRi of the above
optimal query plan for Ro, which is obtained by joining the relations g1, . . . , gi,
can be written as a CQ with the corresponding view-subgoals of Ro in its body
(i.e., the view-subgoals g1, . . . , gi are placed in its body). Constructing, now,
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the expansion of the definition of IRi we get a CQ whose body is defined as
subexpression of Q (since the body of the view-expansion of each view-subgoal of
a bag equivalent rewriting is a subexpression of the corresponding CQ, up to a
renaming substitution). Similarly, for each i = 1, . . . ,m, the intermediate relation
IR′i of the above query plan for R can be also defined as CQ (the body of IR′i has
in its body the subgoals v1, . . . , vi). Hence, by construction of the definitions of
IRi and IR′i, we have that there is a substitution h over the expansion of IRi such
that h(body(IRexpi )) = body(IR′expi ) and vars(head(IRi)) ⊆ vars(h(head(IR′i))).
Thus, Proposition 22 implies that size(IRi) ≥ size(IR′i). Consequently, since we
consider monotonic cost models we have that V is an optimal viewset for P and
Λ = (V,R) is an optimal solution for P.

Consequently, we may restrict our attention in searching optimal solutions
constructed by path-viewsets. In this case, the number of admissible viewsets is
exponential to the number of subgoals of the path-queries in the workload. This
exponential bound is implied by the reduction of the problem of searching path-
viewsets to the integer-partitioning problem [AE04].

Example 45. Consider a query workload Q = {P3}, where P3 is the following path-
query of length 3:

P3 : q(X,Y ) :- edge(X,Z), edge(Z,W ), edge(W,Y )

Consider also the following three viewsets (Vi), i ∈ {1, 2, 3}:
V1 = {V3}, where:

V3 : v3(X,Y ) :- edge(X,Z), edge(Z,W ), edge(W,Y )
V2 = {V2, V1}, where:

V2 : v2(X,Y ) :- edge(X,Z), edge(Z, Y )
V1 : v1(X,Y ) :- edge(X,Y )

V3 = {V1}, where:
V1 : v1(X,Y ) :- edge(X,Y )

Notice that the above path-viewsets form all the path-partitions (i.e., each
block is the body of a path-query) of the body of P3. In addition, each of them
gives a set of bag equivalent rewritings of P3. Notice also that every other path-
viewset, which can be used to rewrite P3, gives one of the Vi, i ∈ {1, 2, 3}, by
eliminating at least one path-view. For example, the viewset V4 that contains
the path-views V1 and V3 can be used to rewrite P3; and eliminating one of the
two views we obtain either V1 or V3. The equivalent rewritings Ri of P3 using Vi
respectively, i ∈ {1, 2, 3}, are the following:

R1 = {R1}, where:
R1 : q(X,Y ) :- v3(X,Y )

R2 = {R21, R22}, where:
R21 : q(X,Y ) :- v1(X,Z), v2(Z, Y )
R22 : q(X,Y ) :- v2(X,Z), v1(Z, Y )

R3 = {R3}, where:
R3 : q(X,Y ) :- v1(X,Y ), v1(X,Y ), v1(X,Y )
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Moreover, observe that the above path-viewsets are related to the partitions
of the length of P3. In particular, the partitions of 3 are the following:

{3}
{2, 1}
{1, 1, 1}

Eliminating, now, duplicate numbers from the partitions of 3, we get the above
path-viewsets as sets of lengths of path-views. 2

Based on Theorem 17, we can improve the LGG-VSB for workloads containing
only path-queries. In particular, when we know that the workload Q consists of n
path-queries of the same relation, steps 1-4 of LGG-VSB can be replaced by the
following step:

• Each VI ∈ V contains a path-view Vk of length k, for every distinct integer
k ∈ I, where the set of integers I is of the form I = Ik1∪· · ·∪Ikn , and Iki is
a partition of the length of path-query Pki ∈ Q, i ∈ {1, . . . n}; the partitions
of an integer can be computed using an algorithm from [ZS98].

Focusing, now, on the bag-set-oriented version of this problem (i.e., the work-
load contains path queries and we consider bag-set semantics) the path-viewsets
do not suffice in order to find an optimal solution. This, result is formally given
by the following proposition.

Proposition 23. There exists at least one bag-set-oriented view selection problem
input P = (S,Q,D,L) such that:

• Q is a set of path queries, and

• P has optimal solutions but there is no optimal solution Λ = (V, R) such
that V contains only path queries.

Proof. The following example proves this proposition.

Example 46. Consider a path-query workload Q = {P2, P3} over the schema S
that contains the binary relation edge, where P2 and P3 are defined as follows.

P2 : p2(X,Y ) :- edge(X,Z), edge(Z, Y ).
P3 : p3(X,Y ) :- edge(X,Z), edge(Z,W ), edge(W,Y )

The path-viewsets that do not have redundant views and give bag-set equiva-
lent rewritings of the queries in Q are the following:
V1 = {V2, V3}, where:

V2 : v2(X,Y ) :- edge(X,Z), edge(Z, Y ).
V3 : v3(X,Y ) :- edge(X,Z), edge(Z,W ), edge(W,Y )

V2 = {V2, V1}, where:
V2 : v2(X,Y ) :- edge(X,Z), edge(Z, Y )
V1 : v1(X,Y ) :- edge(X,Y )
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V3 = {V1}, where:
V1 : v1(X,Y ) :- edge(X,Y )

Supposing, now, a storage limit L = 2 tuples and the database instance D =
{edge(a, b), edge(b, c), edge(c, d)} of S, we conclude that none of the above path-
viewsets is admissible (V1(D) and V3(D) contain 3 tuples, and V2(D) contains 5
tuples). Considering, however, the viewset V = {V }, where the definition of V is
the following,

V : v(A,B,C) :- edge(A,B), edge(B,C)

we have that V(D) contains the tuples v(a, b, c) and v(b, c, d); hence, V satisfies
the storage constraint L. In addition, the view V , which is not a path-view,
gives the bag-set equivalent rewritings R2 and R3 of P2 and P3, respectively. The
definitions of these rewritings are the following.

R2 : q(X,Y ) :- v(X,Z, Y )
R3 : q(X,Y ) :- v(X,Z,W ), v(Z,W, Y )

Consequently, although there is a solution (i.e., there is an optimal solution)
for the bag-set-oriented input P = (S,Q,D,L), there is no admissible path-viewset
for P.

2

4.4 Conclusions and Future Work

In this chapter, we have studied the problem of view selection under bag and
bag-set semantics. In particular, for both versions of the problem, we aimed to
limit the search space of candidate views, given a workload of CQs. We studied
the problem in a rigorous way, and found sound and complete algorithms to select
views for a query workload. Thus we improved previous results by exploiting very
refined characterizations of views that participate in equivalent rewritings. Then
we studied the problem in special cases and showed that, in these cases, we can
limit the search space even further, until we identified a case (path queries) where
considering subexpressions (actually even we showed that not all subexpressions
are necessary to be considered) of queries are proven to be sufficient. Moreover,
we describe a technique of equivalently rewriting a CQ under bag-set semantics
by giving the requirements that the views have to meet in order to be used by a
bag-set equivalent rewriting of a certain CQ.

There is a lot to be done for future work. For instance, under which restrictions
do subexpressions suffice? Namely, an interesting problem to study is more special
cases where considering subexpressions give good results either in rigorous sound
and complete algorithms or in heuristics. Studying the exact complexity of the
problem and especially finding tractable special cases is open. Many issues of the
view selection problem remain open such as it is demonstrated in the discussion
in Section 2.5.2. In addition, more constraints, such as minimal view maintenance
cost, can be incorporated in the definition of the view selection problem. In this
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case, as an additional criteria is regarded, we expect a jump of the complexity.
However, the space of optimal solutions may be refined.
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Chapter 5

Heterogeneous Data Sources
(XML data)

Nowadays, the Web is the most widespread and easily accessible information
resource. This huge collection of information consists of arbitrary many data
types; where most of them provide display information (e.g., HTML files). Most
people see such Web data as Web documents, but these documents, rather than
being manually composed, are increasingly generated automatically from conven-
tional database systems (e.g., object-oriented database and relational database -
see Chapter 2).

The conventional structured data models are usually described by a schema
(e.g. relational data model, object-oriented data model). The schema is a col-
lection of signatures which describes the structure of the data. This structural
information implies efficient implementations of the data models. The efficiency,
now, comes from the fact that the data must fit the schema, and the schema is
known, in advance; hence data acquire real-life meaning.

In the Web, data are “schemaless”. However, there is a way to conjecture
a structure from the data; due to the way that they are constructed. The doc-
uments therefore have some regularity or some underlying meaningful structure
which may or may not be understood by the user. In the current version of the
Web, however, most of the major sites exploit this underlying structure in many
ways (information integration, dynamic pages, better search capability etc.). This
is usually achieved by providing most of their information using semi-structured
documents. The preeminent type of this data model is the semistructured data;
with most important manifestation of this idea: XML.

Extensible Markup Language (XML): The XML is a tag-based notation
designed originally for “marking” documents, much like familiar HTML. However,
while the tags in HTML provide display information, in XML the tags give se-
mantic meaning. XML documents basically contain markup elements that have
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an open tag and an closed tag; where an open tag is text surrounded by triangular
brackets, i.e., < · · · >, and the corresponding closed tag is the same word with a
slash at the beginning; and is also surrounded by triangular brackets.

A well-formed XML document must have exactly one top-level XML element
(called root element) and all elements appearing in it must be properly nested
(i.e., if an a-element is opened inside a b-element, then it must be closed inside
the b-element). The names of the tags are completely defined by the user (XML
allows the user to invent his own tags). Moreover, the nested structure of the
elements implies that each element is described by its name (i.e., the name of the
surrounded tags) and by its content (given by its subelements). An example of
an XML document is illustrated in Figure 5.1. This document stores information
about electronic products.

Figure 5.1: Electronic Products

The document illustrated in Figure 5.1 has a root element named Products.
The products, now, are firstly categorized according to their makes. Hence, two
elements named by Samsung and Sony represent this grouping. In addition, for
each of the above makes, the products are grouped into the following categories:
TV , Phones and Cameras. Each product is represented by an element named by
product and its characteristics are given by further elements and multiple string-
values.

We can easily see that using this representation, the user provides real-life
meaning to different pieces of information. Moreover, since the elements are com-
pletely nested, each XML document can be described by a tree-like representation.
In this representation, an element-name is placed in each node and its children rep-
resent its subelements. Hence, a subtree of such a tree intuitivelly describes an
element (i.e., the root of the subtree describes the name of the surrounded tags and
its children describe its content) appearing in the corresponding document. Fig-
ure 5.2 describes the tree representation of the document illustrated in Figure 5.1.
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Therefore, we can notice that the tree in Figure 5.2 is rooted by the root element
of the document (i.e., Products) and the parrent-children relationship describes
the way the elements are nested in the document.

Products

Samsung

TV

pruduct

model

LE32C450

Screen

32 inches

Sony

Cameras

pruduct

model

DSC-TX1S

zoom

12MP

Phones

pruduct

model

Satio

camera

zoom

12MP

TV

pruduct

model

KDL-32NX500

Screen

32 inches

Figure 5.2: Tree representation of XML document

The XML documents can also be enforced by a “schema”. Such a “schema”
describes which elements appear in a document and the way these elements are
nested inside the document. The documents that satisfy a given “schema” are
called valid. A simple grammar used for the construction of such “schemas” is
DTD (Document Type Definition). In addition, a more expressive grammar is
given by XML Schema. In the following, we focus on well-formed XML documents
which are not conformed to any “schema”. Moreover, we describe each XML
document using its tree-like representation.

Managing XML data: The management of the information appearing in a
collection of XML data (the XML data are clustered into documents) is achieved by
using XML administrative languages such as XPath, XSLT and XQuery [GMUW08].
Here, we focus on the simplest and most primitive of these languages, the XPath.
The XPath constitutes the basis for most of the other XML administrative lan-
guages.

XPath is a language based on path expressions that allows the selection of parts
of a given XML document. In addition it allows some minor computations resulting
in values such as strings, numbers or booleans. The semantics of the language is
based on a representation of the information content of an XML document as
an ordered tree. An XPath expression consist usually of a series of steps that
each navigate through this tree in a certain direction and select the nodes in that
direction that satisfy certain properties.

Evaluating an XPath expression over an XML document, a completely order-
ing is regarded over the elements of the document. This ordering is implied by the
top-down order of the elements appearing in the document. Using, now, this or-
dering elements that are semantically similar are considered distinct. For example,
while the TV products of the document illustrated in Figure 5.1 have the same
subelement Screen, the existence of the ordering implies that the Screen-elements
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are distinct. Hence, an expression guarantees that in its result every distinct el-
ement of the document appears once, but does not guarantees the elimination of
semantically similar elements in its result. The elimination of similar elements can
be achieved by using built-in functions; such as distinct-values which is applied on
primitive types.

For example, consider the simple XPath expression ∗//product/Screen. This
expression searches for all elements named by Screen which are subelements of an
element product. The “star”-symbol at the beginning of the expression indicates
that the expression can be applied on any document whose root is labeled by
anything. The double slash means that we can search as deep as we want in
order to find product-elements. The single slash between the element product
and the element Screen indicates that each resulted element named by Screen
must be a proper subelement of a product-element. Applying, now, the above
expression on the XML document illustrated in Figure 5.1, we firstly search the
subelements of the Samsung-element. Hence, since the element “< Screen > 32
inches < \Screen >” satisfies this condition, it is included in the result. Similarly,
the element “< Screen > 32 inches < \Screen >” which appears inside the Sony-
element, also satisfies the conditions. Hence, the element “< Screen > 32 inches
< \Screen >” appears two times in the result of the expression.

In the following, we focus on the most important fragment of XPath expres-
sions (named as patterns) which can also be represented by a tree-like form. De-
tails about this fragment and the evaluation of such expressions are given in the
following sections.

An overview of this chapter: In Section 5.1, we give the preliminaries of
the XML trees and patterns. The semantics of the patterns are defined in Sec-
tion 5.1.1. Focusing on further describing how patterns in a specific fragment
search for elements in an XML tree, in Section 5.1.2, we define the core patterns.
The problems of containment and equivalence of patterns are analyzed in Sec-
tion 5.2. Finally, in the last section we describe the problem of answering patterns
using XML views (Section 5.2.5).

5.1 XML trees and Patterns

A directed path (path, for short) p is a sequence n1, n2, . . . , nk of nodes such
that for each i = 1, . . . , k − 1 there is an edge (ni, ni+1). The number (k − 1) is
called length of p, and represents the number of edges (ni, ni+1) appearing on p.
The node n1 is called start node of p and the node nk is called end node of p. In
addition, a rooted tree t is a directed graph with a designated node, denoted by
root(t), such that every other node of t is reachable from root(t) through a unique
path (this path is referred as the reachable path of the certain node). In a labeled
tree, every node n has a label which is given by the function label from the nodes
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of tree to a set of labels Σ; we write label(n) to denote the label of n. We use N (t)
and E(t) to denote the set of nodes and edges respectively, of a tree t.

Consider a rooted, labeled tree t and an edge (n1, n2) ∈ E(t). The Node n1 is
the parent of n2, while n2 is a child of n1. Moreover, a node n1 is an ancestor of
n2 (and n2 is a descendant of n1) if t has a path from n1 to n2 (i.e. the start node
of p is n1 and the end node of p is n2). The node n1 is a proper ancestor of n2

(and n2 is a proper descendant of n1) if, in addition, n1 6= n2. Given a node n of
t, we use tn∆ to denote the subtree of t that is rooted at n.

We consider two types of rooted, labeled trees that represent XML documents
and queries in XPath, respectively. An XML tree (tree for short) represents an
XML document and its labels come from an infinite set Σ. We use TΣ to denote
the set of all the trees with labels from Σ. XPath queries are called patterns and
they are different from XML trees in three aspects. First, the labels of a pattern
come from the set Σ ∪ {∗}, where ∗ is the “wildcard” symbol (∗ ∈ Σ). Second, a
pattern P has two types of edges: E/(P ) is the set of child edges and E//(P ) is the
set of descendant edges. Third, a pattern P has an output node that is denoted
by out(P ).

Patterns represent the fragment XP {//,[ ],∗} of XPath that was extensively
investigated in the past, and is described by the grammar

q ⇒ q/q | q//q | q[q] | l | ∗

where l is a label in Σ. Each pattern (constructed using the above grammar) has a
tree-like form which is implied by parsing the pattern from left to right. The last
label that we parse and it is not surrounded by square brackets describes the label
of the output node of the pattern. For example, the pattern P = a[b/d][∗[e][f//g]]
is illustrated in Figure 5.3.

a

b

d

∗
e f

g

P

u1

u2

u3

u4

u5 u6

u7

Figure 5.3: Tree-like form of the pattern P = a[b/d][∗[e][f//g]]

The selection path of a nonempty pattern P in XP {//,[ ],∗} is the path from
the root to the output node. The nodes on the selection path are called selection
nodes, while the edges on the selection path are called selection edges. The depth
of a selection node v is the length of path from the root to v. For example, the
depth of the root is 0. We usually denote the depth of the output node by d and
we say that d is also the depth of the parrern P . For 0 ≤ k ≤ d, the k − node is
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the selection node at depth k. We extend the notion of depth as follows. For all
nodes v of P, the depth of v is that of its deepest ancestor on the selection path.
Moreover, considering a pattern P and a node n of P , the tree that comprises one
child m of n (including the edge connecting n to m) and the subtree tm∆ is called
a branch of n in t only if m is not a selection node. Observe that the number of
branches of a node n is the number of children of n. Notice that each expression
which is surrounded by square brackets in a pattern constructed using the above
grammar represents a branch.

Consider a pattern P in XP {//,[ ],∗} of depth d, and let k be an integer such
that 0 ≤ k ≤ d. The k-sub-pattern of P , denoted by P≥k, consists of all nodes v
of P , such that the depth of v is greater than or equal to k. In other words, P≥k

is the subtree of P that is rooted at the k-node of P . The output node of P≥k is
that of P . The k-upper-pattern of P , denoted by P≤k, comprises all nodes of P
at a depth of no more than k. That is, P≤k is obtained from P by pruning the
subtree rooted at the (k + 1)-node. The output node of P≤k is the k-node of P.
Note that P≤d and P≥0 are the same as P .

In addition, we refer to a view as a named pattern and we say that a view is
materialized if its result is stored.

In this work we focus on the three major fragment of XP {//,[ ],∗}, which contain
two of the constructs ∗, // and branches ([ ]); i.e., on the fragments of XP {[ ],∗},
XP {//,[ ]} and XP {//,∗}. Notice, now, that each pattern in XP {//,∗} describes a
single selection path.

Figure 5.4 illustrates the pattern P in XP {//,∗} whose depth is 4, and a tree
t. Each node is represented by its unique name and its label; e.g. the node u3 is
labeled by c. The circled node indicates the output node of P (i.e. out(P ) = u5)
and the top nodes of P and t indicate the root nodes of P and t, respectively (i.e.
root(P ) = u1 and root(t) = n1). We avoid to represent the direction of each edge
of either tree or pattern; supposing that if a node m is a child of a node m′ then
m′ appears above of m. Moreover, we represent the child edges with single lines
and the descendant edges with double lines.

We, now, define a special class of patterns in XP {//,[ ],∗}, called boolean pat-
terns, that are patterns which do not have any output node. In the following, we
will see that the boolean patterns have a significant role on deciding containment
and equivalence.

5.1.1 Semantics of Patterns

In this section, we define the result of applying a pattern on a tree and we
describe a navigation on a tree through which we locate the result of a pattern.

Intuitively, a pattern specifies a set of conditions on the reachable paths of
nodes of a tree. A node of a tree whose reachable path satisfies the conditions is
included in the result of the pattern. In addition, the result of applying a pattern
on a tree can be thought either as a set of references to nodes of the tree or as a
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Figure 5.4: P is a pattern in XP {//,∗}

set of subtrees that are extracted from the tree (since for each node u in a tree
t the subtree tu∆ corresponds to an element of a document). Capturing both the
above perspectives, we consider that the output of a pattern is a set of nodes that
uniquely identifies a set of subtrees of a tree.

Typically, applying a pattern on a tree, we start by checking whether or not
the root label of the pattern matches with the root label of the tree, and if so,
we continue by searching the children of the root of the tree in order to match
the labels of the children of the root of the pattern, and so on. The way that
we are navigated inside the tree in order to match the labels of the nodes of the
pattern is specified by the edges between the nodes of the pattern. For example,
in Figure 5.4, applying the pattern P on the tree t, we firstly match the root labels
(both P and t have the same root labels); then we search for a descendant of the
root of t that is labeled by b (which is specified by the existence of the descendant
edge from u1 to u2). We notice that the nodes n2 and n6 satisfy this condition.
Then we continue by checking for each of these nodes whether there is any child
labeled by c (as node u3 is labeled by c). Notice that u3 matches each of the
children of the nodes n2 and n6; i.e., it matches the nodes n5 and n7, respectively.
Then we focus on the children of n5 and n7. Since node u4 is labeled by wildcard,
it can match to any label. Continuing the same procedure, we conclude that the
output node of P matches the nodes n7 and n8; which constitute the result of
applying P on t.

As we noticed the result of a pattern is based on a set of mappings from the
nodes of the patterns to the nodes of a tree such that the labels of the corresponding
nodes match and each edge of the pattern maps on a path of a tree in a manner
that a child edge of the pattern maps on an edge of the tree and a descendant edge
of the pattern maps on a path of the tree. We formally define such a mapping
from a pattern to a tree, called embedding, as follows.

Definition 14. An embedding from a pattern P in XP {//,[ ],∗} to a tree t is a
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mapping e : N (P )→ N (t) with the following properties.

• Root preserving: e(root(P )) = root(t).

• Label preserving: For all nodes n ∈ N (P ), either label(n) = ∗ or label(n) =
label(e(n)).

• Child preserving: For all edges (n1, n2) ∈ E/(P ), we have that (e(n1),
e(n2)) ∈ E(t).

• Descendant preserving: For all edges (n1, n2) ∈ E//(P ), the node e(n2) is a
proper descendant of the node e(n1).

Given an embedding e : N (P ) → N (t), we denote by oe the image of the
output node, i.e. oe = e(out(P )). The embedding e produces the tree toe∆ , that is,
the subtree of t that is rooted at oe. We denote by P (t) the result of applying the
pattern P to the tree t; which is naturally defined as the set of subtrees produced
by all embeddings from P to t. Formally, the result of applying a pattern P on a
tree t is

P (t) = {oe|e is an embedding from P to t)}

We also define the result of applying P on a set of trees T to be P (T ) =⋃
t∈T P (t). In addition, we refer to the reachable path of each node in P (t) as a

path which is accepted by P .

Here, we have to note that the result of applying a boolean pattern P on a
tree t is either true or false. In order to compute the result P (t) we also search
for embeddings from P to t. If there is at least one embedding then P (t) is true;
otherwise P (t) is false.

Practically, the result of applying a pattern on a tree is computed regarding
an ordering of nodes of the tree. Hence, while the result of a pattern is a set, it
may contain semantically duplicate trees; which, however, are considered distinct
due to ordering of nodes of the tree. We refer to this type of semantics as set
semantics; and throughout this work, we consider that each pattern is evaluated
under set semantics (except if explicitly mentioned).

Considering, now, a set P of patterns in XP {//,[ ],∗} and a tree t, we denote
as P(t) the union of the results of applying all the patterns in P on t; i.e., P =⋃
P∈P P (t). Here, we have to notice that we consider the conventional union

operator which applies on sets and results a set (i.e., no duplicate trees w.r.t. the
nodes-ordering, appear in the result of the union).

Moreover, considering that there is an embedding from a pattern P to a tree
t, we say that t is a model of P . It is often useful to consider canonical models
rather than general ones. Next, we define this type of models. We denote by ⊥ a
special label of Σ. Throughout this work, we assume that the patterns at hand do
not include ⊥ as a node label. A canonical model of a pattern P in XP {//,[ ],∗}

is a tree that is obtained from P by the following two steps.
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1. Each occurrence of the label ∗ is replaced with ⊥,

2. All the descendant edges are replaced by paths whose length is at least one
and their internal nodes are labeled by ⊥.

We use Mod(P ) and CMod(P ) to denote the set of all models and all canon-
ical models of P , respectively. Moreover, we denote as CMod≤k (P) the subset
of CMod(P ) that contains all the canonical models obtained by replacing each
descendant edge with a path whose length is at most k. Alternatively, we say that
CMod≤k(P ) contains the canonical models of P that are bounded by k. Replacing,
now, each descendant edge with a path of exact k edges, we get the k-canonical
model of P , denoted as CModk (P).

According to the construction of the k-canonical model of a pattern P , we use
the names of the nodes of P to refer to the corresponding nodes in CModk(P ).
In addition, we refer to the one-to-one embedding from P to CModk(P ) implied
by the construction of CModk(P ) as the k-canonical embedding of P , denoted ckP ,
and to the image of the output node that is produced by ckP as k-canonical output
of P , denoted okP ; i.e. okP = ckP (out(P )). For example, in Figure 5.4 the tree t′ is
the CMod2(P ) of the pattern P , where the circled node indicates the output of
P . In addition, the c2

P maps the nodes u1, u2, u3, u4, u5 on the nodes n′1, n′3, n′4,
n′5, n′7, respectively; and the o2

P is the subtree of t′ rooted by the node n′7.

5.1.2 Core Pattern

Focusing, now, on the fragment of XP {//,∗}, the conditions that a pattern
specify on the reachable paths are of two types. Firstly, it requires both a set of
labels to appear on each reachable path and the ordering of these labels in the
paths. Secondly, it specifies limitations on the lengths of the paths between these
labels. For example, in Figure 5.4, P requires that we have to start from a root
labeled by a, then pass a node labeled by b and then pass a node labeled by c
through the navigation on the reachable path of a resulted node (notice, here,
that P does not provide any requirement on the label of the image of the output).
In addition, P requires that the distance of the labels b and c in the reachable
path of an output is exact 1 edge, while the distance of the label c and an output
have to be at least 2 edges.

Therefore, it is easy to see that the root, the output and the non-wildcard
labeled nodes of a pattern form a backbone of the paths accepted by the pattern.
Consequently, we distinguish these nodes and refer to them as core nodes [CW10]
of the pattern.

Definition 15. Let a pattern P in XP {//,∗}. We say that a node u ∈ N (P ) is a
core node if at least one of the following conditions hold:

1. v is the root of P , i.e. v = root(P );

2. label(v) 6= ∗;
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3. v is an output node, i.e. v = out(P ).

We use N̂ (P ) to denote the set of core nodes in N (P ).

Remark 8. The previous definition implies that a node v in N (P ) is not a core
node of P only if it is labeled by a wildcard and it is an internal node. In addition,
if there are two embeddings from P to a tree such that the images of a core node
of P , using these embeddings, have different labels, then this core node is either
the root or the output of the pattern and it is labeled by ∗.

In Figure 5.4, the N̂ (P ) contains the nodes u1, u2, u3 and u5.
Considering, now, the paths between two core nodes which contain only non-

wildcard labeled nodes, it is easy to see that these paths describe limitations on
the distances between the labels of the core nodes on each tree. For example, in
Figure 5.4, for each embedding from P to a tree, the distance between the image
e(u3) and the oe is greater than or equal to 2 edges. We refer to such path as core
path of a pattern [CW10] and we formally define it as follows.

Definition 16. Let a pattern P inXP {//,∗}. We say that a path p = u, z1, . . . , zn, v
of P is a core path, where n ≥ 0, if z1, . . . , zn ∈ (N (P )−N̂ (P )) and u, v ∈ N̂ (P ).
The nodes u and v are called the core endpoints of p and the nodes z1, . . . , zn are
called intermediate nodes of p.

The pattern P illustrated in Figure 5.4, has three core paths; which are: the
path p1 = u1, u2, the path p2 = u2, u3 and the path p3 = u3, u4, u5.

Here, we have to notice that a core path can specify either the exact distance
of the images of two core nodes (if all the edges in the core path are child edges)
or the minimum acceptable distance (if there is at least one descendant edge in
the core path).

In order to capture, now, the ordering of the images of core nodes in a tree,
for each pattern we construct a unique pattern, called core pattern, which contains
only the core nodes of the pattern, maintaining their ordering in the initial pattern.
The core pattern is formally defined as follows.

Definition 17. Let a pattern P in XP {//,∗}. The core pattern of P , denoted
P̂ , is the pattern obtained from P such that E/(P̂ ) = ∅, N (P̂ ) = N̂ (P ), and for

each core path u, z1, . . . , zn, v, where n ≥ 0, of P we have that (u, v) ∈ E//(P̂ ).

In Figure 5.4, the edge v1, v2 of P̂ is obtained by the core path u1, u2 of P .
Similarly, the core path u2, u3 gives the edge v2, v3; and the edge v3, v5 is obtained
by collapsing the core path u3, u4, u5.

5.2 Containment and Equivalence of sets of

patterns

In this section, we define these problems of containment and equivalence of
patterns and describe techniques which solve these problems for the fragment of
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XP {//,[ ],∗} and the three major subfragments of it.

The containment and equivalence, intuitively, are two features which enable
comparisons between patterns. Similarly to the relational model [AHV95, Ull88,
Ull89, GMUW08], the containment (resp. equivalence) between patterns guaran-
tees that the result of one pattern is always a part of (resp. the same to) the result
of the other pattern; in the case that both patterns are applied on the same tree.
Both features are formally defined as follows.

Definition 18. Let two patterns P1, P2 in XP {//,[ ],∗}. Then P2 is contained
in P1, denoted P2 v P1, if P2(t) ⊆ P1(t) for all trees t ∈ TΣ. P1 and P2 are
equivalent, denoted P2 ≡ P1, if P2 v P1 and P1 v P2, that is, P2(t) = P1(t) for
all trees t ∈ TΣ.

Therefore, the problems of containment and equivalence of the patterns P1 and
P2 focus on deciding whether or not P2 is contained or equivalent, respectively, to
P1.

Example 47. Consider the patterns P1 and P2 depicted on Figure 5.5. As the root
nodes of P1 and P2 are also their ouput nodes, then, both patterns result the entire
tree (on which they are applied). Notice that for both patterns, the resulted trees
have to be rooted by an a-node. P1 also requires that the root has a descendant
labeled by g and a child labeled by c. Moreover, the node labeled by c must have
a child labeled by e. On the other hand, P2 requires that the root has a child
labeled by c. This c-node is also required to have two children, one labeled by e
and one which is labeled by f and it is a proper ancestor of a node labeled by
g. Hence, each tree t which is contained in P2(t), also satisfies the requirements
provided by P1. Thus, this tree is also contained in P1(t). Consequently, for each
tree t we have that P2(t) ⊆ P1(t); which implies that P2 v P1.

However, the opposite direction does not hold; i.e., P1 6v P2. To see this,
consider the CMod1(P1). Applying, now, both patterns on this tree, we have that
P2(CMod1(P1)) = ∅ and P1(CMod1(P1)) 6= ∅. Hence, P1 6≡ P2.

2
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Figure 5.5: P2 is contained in P1
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5.2.1 Deciding containment and equivalence of pat-
terns

In this section we describe significant techniques used for deciding containment
of two patterns. These techniques are categorized into two main classes. In the
first class, the techniques focus on describing the minimum subset of models for
each pattern such that the solutions of the problems are reduced to simple com-
parisons of these subsets. In the second one, the techniques are based on finding
a mapping from one pattern to another through which each embedding of the
contained pattern is translated to an embedding of the containing pattern.

Based on the definition of embedding (which actually describes a mapping
between rooted, ordered trees), we define a mapping, called homomorphism, be-
tween nodes of patterns. The formal definition of pattern homomorphism is given
as follows.

Definition 19. Let two patterns P1, P2 in XP {//,[ ],∗}. A homomorphism from
P1 to P2 is a mapping h : N (P1)→ N (P2) with the following properties.

• Root preserving: h(root(P1)) = root(P2).

• Output preserving: h(out(P1)) = out(P2).

• Label preserving: For all nodes n ∈ N (P1), either label(n) = ∗ or label(n) =
label(h(n)).

• Child preserving: For all edges (n1, n2) ∈ E/(P1), we have that (h(n1),
h(n2)) ∈ E/(P2).

• Descendant preserving: For all edges (n1, n2) ∈ E//(P1), then node h(n2) is
a proper descendant of the node h(n1).

We say that h is an isomorphism if h is a homomorphism from P1 to P2 and the
mapping h−1 defined such that h−1(h(n)) = n, for each node n ∈ N (P1), is also a
homomorphism from P2 to P1. In this case, we say that P1 and P2 are isomorphic,
denoted as P1 ∼ P2.

Notice that treating both homomorphism and embedding as mappings between
rooted, ordered trees, a homomorphism is derived by enforcing the definition of the
embedding with one more property (Output preserving). Hence, considering a ho-
momorphism h from a pattern P1 to a pattern P2 (both P1, P2 are inXP {//,[ ],∗}), it
is easy to verify that the composition of each embedding e2 from P2 to a tree t and
h determines an embedding e1 from P1 to t such that e1(out(P2)) = e2(out(P1)).
Thus, the existence of a homomorphism constitutes a sufficient condition for de-
ciding containment of patterns in XP {//,[ ],∗}. The following proposition formally
describes this result [MS04].
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Proposition 24. Let two patterns P1, P2 in XP {//,[ ],∗}. If there is a homomor-
phism from P1 to P2, then P2 v P1.

However, the existence of a homomorphism does not also constitute a nec-
essary condition. The following example illustrates that even for the case that
both patterns are in XP {//,∗} the existence of homomorphism does not suffice for
deciding containment.

Example 48. Let the patterns P1 and P2 in XP {//,∗} depicted in Figure 5.6. Notice
that both patterns search each tree rooted by an a-node for nodes labeled by b
whose reachable paths contain at least 3 edges. Hence, P1 ≡ P2. However, it is
easy to verify that there is not any homomorphism neither from P1 to P2 nor from
P2 to P1. 2
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n1
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Figure 5.6: P1 and P2 are equivalent

The question, now, that arises is whether there are fragments of XP {//,[ ],∗} for
which the existence of a homomorphism consist of a necessary and sufficient con-
dition for deciding containment. The question is answered in [MS04, AYCLS01,
Yan81, Woo01], where it is shown that the problem of containment for patterns ei-
ther in XP {//,[ ]} or XP {[ ],∗} is reduced to the problem of finding a homomorphism
from candidate containing pattern to the candidate contained pattern. These re-
sult are formally summarized on the following proposition.

Proposition 25. Let two patterns P1, P2 in XP {//,[ ]} and two patterns Q1, Q2

in XP {[ ],∗}. Then the following hold:

• P2 v P1 if and only if there is a homomorphism from P1 to P2.

• Q2 v Q1 if and only if there is a homomorphism from Q1 to Q2.

Example 49. Considering the patterns P1, P2 introduced in Example 47, we notice
that both P1 and P2 are in XP {//,[ ]}. In addition, consider the mapping h :
N (P1) → N (P2) such that v1 maps on u1, v2 maps on u7, v3 maps on u4 and v4

maps on u5. It is easy to verify that h is a homomorphism from P1 to P2; hence
Proposition 25 implies that P2 v P1. On the other hand, notice that there is no
homomorphism from P2 to P1; which implies that P1 6v P2. 2
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Now, as we observed in Example 48, for the third fragment of XP {//,[ ],∗}

(i.e., for the fragment XP {//,∗}) a homomorphism does not suffice in order to
decide containment. This is caused because the homomorphism is too strict for
capturing the transfer of embeddings in the case that patterns have core paths
with descendant edges and their lengths are greater than or equal to 2. More
specifically, notice in Figure 5.6 that while there is no homomorphism from P1 to
P2, every node n resulted by P2 has reachable path which contains at least two
internal nodes. This conditions suffice in order to exist at least one embedding
from P1 that maps out(P2) on n. Hence, for deciding containment in this fragment
we define a new mapping between patterns, called d-homomorphism, by relaxing
the concept of homomorphism. The formal definition is given as follows.

Definition 20. Let two patterns P1 and P2 in XP {//,∗}. We say that a homo-
morphism h from P̂1 to P̂2 is a d-homomorphism from P1 to P2 if for each edge
(u, v) in E//(P̂1), the following hold:

1. the length of the core path u, . . . , v in P1 is less than or equal to the length
of the path h(u), . . . , h(v) in P2; and

2. if u, . . . , v in P1 has only child edges then h(u), . . . , h(v) in P2 has only child
edges and its length is equal to the length of u, . . . , v.

We say that h is a d-isomorphism if h is a d−homomorphism from P1 to P2

and the mapping h−1 defined such that h−1(h(n)) = n, for each node n ∈ N (P̂1),
is also a d−homomorphism from P2 to P1. In this case, we say that P1 and P2 are
d-isomorphic, denoted as P1 ∼d P2.

Corollary 5. A d−homomorphism h from a pattern P1 in XP {//,∗} to a pattern
P2 in XP {//,∗} is a d−isomorphism if h is an isomorphism from P̂1 to P̂2 and for
each edge (u, v) in E//(P̂1) such that u, . . . , v contains at least one descendant edge
we have that h(u), . . . , h(v) has the same length with u, . . . , v and has at least one
descendant edge.

Remark 9. Here, we have to notice that each homomorphism between two patterns
in XP {//,∗} is also a d-homomorphism.

The following proposition formally shows that the existence of a d-homomorphism
consists of a necessary and sufficient condition for deciding containment for pat-
terns in XP {//,∗} [MS99, MS04].

Proposition 26. Let two patterns P1 and P2 in XP {//,∗}. P2 v P1 if and only
if there is an d-homomorphism from P1 to P2.

Here, we have to notice that in [MS99, MS04], the authors approach the above
result as follows. Firstly, they replace the patterns with two new patterns. These
patterns (called adorned tree patterns) are constructed from the initial ones by re-
placing all the core paths that have descendant edges with a single descendant edge
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associated with a number which corresponds to the length of the core path. Then
the existence of a homomorphism-like mapping which also compares the adorned
numbers of the descendant edges suffice in order to decide containment. It is easy
to see the one-to-one correspondence of this mapping and the d−homomorphism.

Example 50. Continuing the Example 48, we construct the core patterns of P1

and P2. Notice that both patterns have the same core pattern P3 which is also
illustrated in Figure 5.6; i.e., P3 = P̂1 = P̂2. Considering, now, the isomorphism
h from N (P̂1) to N (P̂2), we have that both conditions of the definition of d-
homomorphism hold for h. Thus, h is a d-homomorphism. In addition, notice that
the isomorphism h−1 from N (P̂2) to N (P̂1) is also d-homomorphism; consequently,
h is a d-isomorphism. The Proposition 26, now, implies that both P2 v P1 and
P1 v P2 hold; hence, P2 ≡ P1. 2

Focusing, now, on comparing the models of the patterns, the definitions of the
model and containment imply that deciding containment of patterns is equivalent
to comparing the results of applying the patterns to the models of the candidate
contained pattern. This result is formally described as follows.

Corollary 6. Considering the patterns P1, P2 in XP {//,[ ],∗}, we have that P2 v P1

if and only if P2(Mod(P2)) ⊆ P1(Mod(P2)).

However, as we can easily notice the set of models of a pattern in XP {//,[ ],∗}

is infinite; which concludes that we cannot focus on this condition for deciding
containment.

Patterns in XP {//,[ ],∗}: In the case that both patterns are included inXP {//,[ ],∗}

neither a simple homomorphism nor a d-homomorphism suffices in order to decide
containment [MS04]. The following example describes such a case.

Example 51. Let the patterns P1 and P2 in XP {//,[ ],∗} illustrated in Figure 5.7.
Notice that there is no homomorphism from P1 to P2. Moreover, constructing
the core patterns P̂1 and P̂2 of P1 and P2 (see also in Figure 5.7), respectively,

there are three homomorphisms from P̂1 to P̂2. Here, we have to notice that we
retain the names of the nodes of the patterns to their core patterns. The first
homomorphism from P̂1 to P̂2, denoted as h1, maps for each i = 1, 2, 3, 5, 6, 7, 8,
the node vi on the node ui. The second homomorphism from P̂1 to P̂2, denoted as
h2, maps v1 on u1, v2 on u2, v3 on u3, v5 on u5, v6 on u9, v7 on u10 and v8 on u11.
The third homomorphism from P̂1 to P̂2, denoted as h3, maps v1 on u1, v2 on u6,
v3 on u7, v5 on u8, v6 on u9, v7 on u10 and v8 on u11. Moreover, notice that none
of them is a d-homomorphism from P1 to P2; because h1 and h2 violate the second
condition and h3 violates the first condition of d-homomorphism. However, it is
easy to verify that P2 is contained in P1. 2

In this case, we focus on comparing the results of the patterns when they are
applied on a set of models. More specifically, we search for a finite subset of models

109



Query Optimization under bag and bag-set semantics · Matthew Damigos

a

b

c

∗
d

b

c

d

b

c

d
P2

u1

u2

u3

u4

u5

u6

u7

u8

u9

u10

u11

a

b

c

∗
d

b

c

d

P1

v1

v2

v3

v4

v5

v6

v7

v8

a

b

c

d

b

c

d

b

c

d
P̂2

u1

u2

u3

u5

u6

u7

u8

u9

u10

u11

a

b

c

d

b

c

d

P̂1

v1

v2

v3

v5

v6

v7

v8

Figure 5.7: P2 is contained in P1

of the candidate contained pattern such that we can decide containment by apply-
ing both patterns on this subset and then comparing their results. Considering,
now, the set of canonicals models of a pattern P in XP {//,[ ],∗}, notice that if a
pattern has at least one descendant edge then CMod(P ) is infinite. Hence, we
cannot use this subset to decide containment. However, we can focus on finding a
bounded subset of the canonical models. In [MS04], it is shown that focusing on
the paths that has only wildcard-labeled internal nodes, we can find such a subset.
More specifically, considering the patterns P1, P2 in XP {//,[ ],∗}, we focus on the
longest such path that appears either in P1 or in P2; and we denote its length as
kmax. Constructing, now, the canonical models of P2 that are bounded by kmax,
we can decide the containment P2 v P1 by comparing the results of applying both
patterns on this set of models [MS04]. This result is formally described as follows.

Proposition 27. Considering the patterns P1, P2 in XP {//,[ ],∗}, then the follow-
ing are equivalent:

1. P2 v P1.

2. P2(CMod(P2)) ⊆ P1(CMod(P2)).

3. P2(CMod≤k(P2)) ⊆ P1(CMod≤k(P2)), where k = kmax+ 1, and kmax is the
length of the longest core path appearing in P1 and P2.

Example 52. Continuing the Example 51, notice that the longest paths are the
paths u3, u5 and v3, v5; hence kmax = 2. Now, it is easy to verify that constructing
the CMod≤3(P2) (which contains 27 canonical patterns) and applying both P1,
P2 on this we have that P2(CMod≤3(P2)) ⊆ P1(CMod≤3(P2)); hence, P2 v P1.
On the other hand, constructing the CMod≤3(P1) (which contains 9 canonical
patterns) and applying both P1, P2 on this we have that P1(CMod≤3(P1)) 6⊆
P2(CMod≤3(P1)); hence, P1 6v P2. 2

In [MS04], it is also proved that the containment problem of two patterns
in XP {//,[ ],∗} can be translated into deciding the containment of two boolean
patterns. We say that a boolean pattern P2 is contained in the boolean pattern
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P1, also denoted P2 v P1, if for every t such that P2(t) = true then P1(t) is also
true.

Consider the patterns P1, P2 in XP {//,[ ],∗} and a label s which is not included
in Σ. We, now, construct two boolean patterns, denoted by PB1 and PB2 respec-
tively, from P1 and P2 by adding in their output nodes a child node labeled by
s . This procedure is called boolean translation of the patterns P1 and P2. The
following proposition shows that deciding containment of PB1 and PB2 suffice in
order to decide containment between P1 and P2.

Proposition 28. Let two patterns P1, P2 in XP {//,[ ],∗} and PB1 , PB2 be the pat-
terns obtained using the boolean translation over P1 and P2, respectively. P2 v P1

if and only if PB2 v PB1 .

Equivalence of patterns: The definition of equivalence implies that the de-
cision of the equivalence between two patterns is given by deciding containment
in both ways. Hence, considering two patterns P1 and P2 we can check whether
or not P1 is equivalent to P2 by using the techniques referred previously in order
to decide whether both P2 v P1 and P1 v P2 hold.

In addition, the [ACG+09] gives sufficient conditions for the equivalence of
patterns in XP {//,[ ],∗}. These conditions describe some basic properties of the
selection paths of equivalent patterns. More specifically, considering two equivalent
patterns P1 and P2 in XP {//,[ ],∗}, the definition of the equivalence implies that
every node of a tree which is an image of the out(P1) through an embedding e1, is
also an image of the out(P2) through an embedding e2. Hence, the length of the
reachable path of each such node is less than or equal to the depths of both P1

and P2. It is easy to see that this implies that the depths of P1 and P2 are equal.
Moreover, using the same approach we can easily prove that the nodes appearing
in the same depth in the selection paths of P1 and P2 have the same label. Both
results are formally described by the following proposition (which summarizes the
cases 1 and 3 of the Proposition 3.1 in [ACG+09]).

Proposition 29. Let P1 and P2 be two equivalent patterns in XP {//,[ ],∗} with
depths d1 and d2, respectively. For all k, where 0 ≤ k ≤ d1, the following hold.

1. d1 = d2; and

2. the k-nodes of P1 and P2 have the same label.

5.2.2 Containment of unions

The features of containment and equivalence of patterns defined in the previous
section are straightforwardly extended to sets of patterns. More specifically, for
two given sets Q1, Q2 of patterns in XP {//,[ ],∗} we want to decide whether or
not the patterns in Q2 result either a part of or the same information resulted by
the patterns in Q1. Deciding the existence of these features between two sets of
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patterns we use the union operator over the results of the patterns of each set.
Therefore, we formally define the containment and equivalence between unions of
patterns as follows.

Definition 21. Let two sets Q1, Q2 of patterns in XP {//,[ ],∗}. Then Q2 is con-
tained in Q1, denoted Q2 v Q1, if Q2(t) ⊆ Q1(t) for all trees t ∈ TΣ. Q1

and Q2 are equivalent, denoted Q2 ≡ Q1, if Q2 v Q1 and Q1 v Q2, that is,
Q2(t) = Q1(t) for all trees t ∈ TΣ.

We can equivalently say that the union
⋃
P2∈Q2

P2 is either equivalent to or
contained in the union

⋃
P1∈Q1

P1. The following example shows a case where a
set of patterns is contained in a single pattern.

Example 53. Consider the patterns P1, P2 and P3 illustrated in Figure 5.8. Here,
we notice that there is a homomorphism from P1 to P2; which implies that P2 v P1.
However, neither P1 is contained in P3 nor P3 is contained in P1. This can be
verified by constructing the 1-canonical models of P1 and P3. Applying P3 on
CMod1(P1) we can easily see that P3(CMod1(P1)) = ∅; the same result holds
when we apply P1 on CMod1(P3), i.e., P1(CMod1(P3)) = ∅.

However, studying further the relationship between P1 and P3 we have that
each reachable path of length greater than 3 which is accepted by P1 is also ac-
cepted by P3. In order to verify this, notice that P3 accepts every path with start
node labeled by a and end node labeled by b, which is also has length at least 3
edges. On the other hand, P1 requires the reachable path of each node in its result
to have length at least 2 edges and the same start and end nodes. It is to see,
now, that the reachable paths that are accepted by P1 and not accepted by P3, are
also accepted by P1. More specifically, for an arbitrary path p which is accepted
by P1, if the length of p is equal to 2 edges then it is accepted by P2; otherwise
it is accepted by P3. Consequently, we can see that for every tree t, we have that
P1(t) ⊆ P2(t) ∪ P3(t). Hence, P1 v P2 ∪ P3. 2
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Figure 5.8: P1 v P2 ∪ P3

The above example shows that the containment of unions of patterns inXP {//,[ ],∗}

can not straightforwardly decided by checking the containment of the patterns in-
cluded in the unions. In [MS04], however, the authors prove that properly trans-
lating the patterns in both unions into patterns in XP {//,[ ],∗} we can decide the
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containment of unions. Moreover, the above translation requires that the patterns
of both unions are translated into boolean patterns (using the boolean translation).

Consider the sets Q1, Q2 of patterns in XP {//,[ ],∗}. Moreover, let an arbitrary
pattern P ∈ Q2 and Q1 = {Q1, . . . , Qk}. Without loss of generality we consider
that all patterns of Q1 have the same root label (if not, we transform the patterns
by adding another root node such that all the new patterns have the same root
label). We construct, now, the patterns P0 and Q0 from P and Q1, respectively,
as follows. Let two paths p1 and p2 whose start nodes are labeled by r ∈ Σ and
all other nodes are labeled by c ∈ Σ (r and c are arbitrarily chosen). Moreover,
p2 has only child edges and its length is 2(k − 1) + 1. p1 has length equal to k
and its only descendant edge connects its start node with its child. The pattern
Q0 is obtained by adding the patterns Q1, . . . , Qk as subtrees to the nodes of p1.
More specifically, for every i = 1, . . . , k, we connect using a child edge the root of
Qi with the c-node appearing in depth i. Q0 is illustrated in Figure 5.9. On the
other hand, P0 is obtained from p2 by adding P as subtree of the node appearing
in depth k. Moreover, we find a pattern V such that for any i , V v Qi, and
we add it as subtree to any other non-root node of p2. P0 is also illustrated in
Figure 5.9. The pattern V can be achieved by fusing the (common) roots of the Qi
subtrees (this is possible because their roots have the same label), and replacing
all wildcards in the Qi with an arbitrary letter, and all descendant edges with child
edges.
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cQ1

c

Q2

QkQ0
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Figure 5.9: Translation of patterns

Using, now, the above translation of P and Q1, we can decide whether or not
the containment P v Q1 holds by deciding whether the pattern P0 is contained in
Q0. More specifically, for every embedding e from P to an arbitrary tree t we can
obtain a boolean pattern P ′0 by replacing the P -subtree in P0 with the subtree e(P ).
Since from every Qi ∈ Q1 there is a homomorphism to V then we can easily see
that there is a homomorphism from Q0 to P ′0 if and only if there is an embedding
from some pattern in Q1 to e(P ). Consequently, we can use the above translation
to construct for every two sets Q1, Q2 of patterns in XP {//,[ ],∗} two new sets
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Q′1, Q′2 of patterns also in XP {//,[ ],∗} such that the decision of the containment
Q2 v Q1 is reduced on deciding containment of each pattern of Q′1 and a pattern
of Q′2. The following proposition describes this result [MS04, ZLWL09].

Proposition 30. Let the sets Q1, Q2 of patterns in XP {//,[ ],∗}. Then there exist
two sets Q′1, Q′2 of patterns in XP {//,[ ],∗} such that Q2 v Q1 if and only if for
each pattern P2 ∈ Q′2 there is a pattern P1 in Q′1 such that P2 v P1.

In the case, now, that patterns in both sets Q1 and Q2 are in XP {//,[ ]}, the
decision of the containment is much more easier. More specifically, In [ZLWL09],
it is proved that checking the containment between every pattern of Q2 and a
pattern in Q1 suffices in order to decide whether the containment Q2 v Q1 holds.
This result is formally given by the following proposition [ZLWL09].

Proposition 31. Let the sets Q1, Q2 of patterns in XP {//,[ ]}. Then Q2 v Q1

if and only if for each pattern P2 ∈ Q2 there is a pattern P1 in Q1 such that
P2 v P1.

The above result can be easily verified by considering an embedding from a
pattern in Q1 to the 2-canonical model of an arbitrary pattern in Q1. By the
definition, however, of embedding we conclude that in the case that both patterns
are in XP {//,[ ]} this embedding determines a homomorphism from one pattern
to another. Hence since deciding the containment of two patterns in XP {//,[ ]}

is achieved by finding a homomorphism, this suffices in order to show the above
result.

For the other two major fragments of XP {//,[ ],∗} (i.e., XP {//,∗} and XP {[ ],∗}),
the containment of unions is studied in next chapter.

5.2.3 Complexity of containment problem

In this paragraph we describe the complexities of both computing the result
of applying a pattern on a tree and deciding containment for each fragment of
XP {//,[ ],∗} described previously.

Considering the size of a pattern P in XP {//,[ ],∗}, denoted |P |, as the number
of edges appearing in P , we can find all the embeddings from P to a tree t in
O(|P ||t|) time [MS04]. The algorithm introduced in [MS04] is based on, firstly,
mapping the leaf nodes of P on nodes of t and then, using a leaf-to-root pruning
of the tree. Using a similar algorithm the authors also prove that we can decide
containment for each fragment of XP {//,[ ],∗} that contains at most two of the
constructs ∗, // and branches ([ ]), in PTIME. More specifically, considering two
patterns P1 and P2 in any of the previous fragments, we can decide whether there is
either any homomorphism or any d-homomorphism in O(|P1||P2|) time. However,
considering the patterns in XP {//,[ ],∗}, the complexity of the containment problem
jumps to coNP . More specifically, deciding the containment between two patterns
in XP {//,[ ],∗} is coNP -complete [MS04]; which is implied by the construction of
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Patterns Complexity References

XP {[ ],∗} PTIME [MS04, Woo01, Yan81]
XP {//,[ ]} PTIME [MS04, AYCLS01]
XP {//,∗} PTIME [MS04, MS99]
XP {//,[ ],∗} coNP -complete [MS04]

Union of XP {//,[ ],∗} coNP -complete [MS04]
Union of XP {//,∗} in coNP [MS04], Theorem 20
Union of XP {[ ],∗} PTIME Theorem 19
Union of XP {//,[ ]} PTIME [ZLWL09]

Table 5.1: Complexity of containment of XPath fragments

the required canonical models as Proposition 27 shows. These complexity results,
together with the results introduced in Section 6.1.3, are summarized in Table 5.1.

Moreover, in [MS04], the authors also prove that the problem is coNP -complete
even in the case that the candidate contained pattern has at most 5 path-branches
(i.e., each branch is a single path) and the candidate containing patterns has at
most 3 path-branches. The same complexity result holds in the case of bounded
number of wildcard labeled nodes (they prove the case that both patterns contain
at most 3 wildcard labeled nodes).

Deciding, now, the containment of unions of patterns in XP {//,[ ],∗}, the com-
plexity is similar. Due to the result described in Proposition 30, we can decide
this containment by properly translating both unions. The size of new patterns
in both unions is polynomial to the size of the patterns included in the initial
unions. Hence, the complexity of this problem is also coNP -complete. We can
decide, however, the containment of unions when all patterns in both unions are
in XP {//,[ ]}, in PTIME [ZLWL09]. This result is implied by Proposition 31.

5.2.4 Further related work on containment and equiv-
alence of patterns

Containment and equivalence for patterns in XP {//,[ ],∗} was further investi-
gated in [CW10], where bag semantics are introduced for the evaluation of pat-
terns. Computing the result of applying a pattern on a tree under bag semantics,
multiple occurrences of a node (i.e., of a specific subtree) are allowed in the result.
For example, applying the pattern P = ∗/ ∗ [//zoom] under set semantics on the
tree illustrated in Figure 5.2, the element Sony appears once in the result of P .
However, considering bag semantics the element Sony appears twice in the result
of P , since there are two descendant elements of Sony labeled by zoom. In this
work, it is also proved that the problem of deciding containment of two patterns
in XP {//,[ ],∗} under bag semantics is undecidable. The same result holds for the
containment of multisets of patterns. However, they find necessary and sufficient
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conditions for the decision of equivalence of multisets of patterns. In this result
the authors consider that each tree is associated with a partial ordering of sibling
nodes. If, now, the patterns are not completely ordered (i.e., it is not necessary
the partial ordering of sibling nodes), then deciding equivalence of two multisets is
in PSPACE. These results are based on a transformation of each pattern, similar
to that introduced in next chapter.

In [ZLWL09, CDO08], it is studied the problem of deciding equivalence between
two intersections of XP {//,[ ]} patterns. In this case, the authors shows that an
intersection of patterns can be translated to an equivalent union of patterns in
XP {//,[ ]}. Moreover, they show that the equivalence between a pattern and a
union of patterns in XP {//,[ ]} holds if and only if the pattern is equivalent to
a pattern of the union and all other patterns are contained to it. Hence, they
showed that for patterns in this fragment the decision of equivalence between two
intersections is properly reduced to deciding whether two unions of patterns are
equivalent.

Deciding, now, containment in the presence of constraints is also investigated
[Woo03, DT01, NS03]. As one might expect, when we consider containment of
queries under constraints, the complexity increases. Given a DTD D, deciding
containment under D (D-containment for short), even for queries in XP {[ ]}, is
coNP-complete [NS03, Woo01]. Containment is undecidable when the XPath frag-
ment includes XP {//,[ ],∗} along with disjunction, variable binding and equality
testing, and the constraints include so-called bounded simple XPath integrity con-
straints (SXICs) and those (unbounded) constraints implied by DTDs [DT01].
In [Woo03], however, it is proved that D-containment is decidable (EXPTIME-
complete, in fact) for XP {//,[ ],∗}. The decision of this containment is achieved
using a translation of both patterns and DTD to tree grammars. Hence, com-
paring the corresponding grammars we decide whether or not the containment
holds.

5.2.5 Answering a pattern using a single view

In this section we focus on describing the basic concepts of rewriting a pat-
tern in XP {//,[ ],∗} using views. Rewriting patterns is a fundamental technique
of answering patterns using views. Similarly to the relational model [Hal01], the
problem of answering a pattern using views can be stated as follows: given a set
of patterns in XP {//,[ ],∗} and a set of views also in XP {//,[ ],∗}, we want to find
the result of the pattern using only the trees resulted by the views.

The technique of rewriting a pattern using views is based on finding a new
pattern such that applying it on the trees resulted by the view its results are
related to the results of the initial pattern. Formally, the rewriting problem can be
stated as follows: given a pattern P and a views V both in XP {//,[ ],∗}, we want
to find a new pattern R in XP {//,[ ],∗} such that for every tree t, P (t) is either
equal to R(V (t)) or R(V (t)) is a subset of P (t). We say that the pattern R is an
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equivalent rewriting (resp. a contained rewriting) of P if R(V (t)) = P (t) (resp.
if R(V (t)) ⊆ P (t)). In addition, we use the shorthand of rewriting to refer to an
equivalent rewriting. The rewriting-existence problem, now, is that of determining,
for a pattern P and a view V , whether there is a rewriting R of P using V .

Example 54. Let the patterns P , R1 and the view V1 illustrated in Figure 5.10.
The view V1 results the nodes which have a grandchild labeled by d and they are
descendants of a root node labeled by a. On the other hand, R1 results nodes
labeled by c which are grandchildren of an arbitrary labeled root, have parent
labeled by b and a sibling labeled by d. Notice, now, that applying V1 on an
arbitrary tree t and then applying R1 on the result of V1 we always get a result
equal to P (t). This shows that R1 is a rewriting of P using V1. 2
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Figure 5.10: Rewritings of a pattern

The definitions of contained and equivalent rewriting imply a significant prop-
erty for relationship of the rewriting pattern and the view. This property is for-
mally defined in the following paragraph, and is based on the concept of pattern
composition.

Pattern Composition: The greatest lower bound of two labels l1 and l2,
denoted by glb(l1, l2), is defined as follows. If l ∈ Σ∪{∗} then glb(l, l) = glb(l, ∗) =
glb(∗, l) = l. If l1, l2 ∈ Σ and l1 6= l2, then glb(l1, l2) = 3 (where 3 6= Σ).

The composition of a pattern R with a pattern V , denoted by R◦V , is obtained
as follows. Let lrR be the label of the root of R and let loV be the label of the output
node of V . If glb(lrR, l

o
V ) = ⊥, then R ◦ V = Υ (the empty pattern). Otherwise,

R ◦ V is obtained by merging the output node of V with the root of R and as
signing the label glb(lrR, l

o
V ) to the merged node. Note that the children of the

merged node are all those of out(V ) and root(R). The pattern R ◦V has the same
root as V and the same output node as R. As a special case, if root(R) = out(R),
then the merged node is the output node of R ◦ V .

In previous work, it is shown that applying R ◦ V to a tree is the same as first
applying V and then applying R to t.

Proposition 32. R ◦ V (t) = R(V (t)) holds for all trees t ∈ TΣ.
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Example 55. Continuing the Example 54 the composition of the pattern R1 and
the view V1 is also illustrated in Figure 5.10. It is easy to see that the patterns
R1◦V1 and P are identical. Hence, their equivalence and Proposition 32 also imply
that R1 is a rewriting of P using V1. 2

Natural rewriting candidates: In Example 54, V1 is identical to P≤1.
Hence, V1 and P≤1 are equivalent. Moreover, notice that R1 is identical to P≥1.
It is easy to see, now, that if a view V is equivalent to P≤k, for some non-negative
integer k and a pattern P , then there is at least one rewriting of P using V ; and
one of them is given by the pattern P≥k. Can we, however, solve in any case the
rewriting-existence problem by checking all the sub-patterns of a pattern? The
answer is negative and is given by the following example.

Example 56. Let the pattern P and the view V2 illustrated in Figure 5.10. Con-
sidering, now, the pattern R2 which is also illustrated in Figure 5.10, we can see
that R2 is not a sub-pattern of P . However, the R2 ◦ V2 is equivalent to P ; which
means that R2 is a rewriting of P using V2. 2

This example leads us to the definition of natural candidates.
Let Q be a pattern in XP {//,[ ],∗}. We use Qr// to denote the pattern that

is obtained by relaxing the edges that emanate from the root of Q. Observe
that Q v Qr//. Now, consider a pattern P and a view V with depths dP and
dV , respectively. The pattern R is a natural rewriting candidate (or just natural
candidate) w.r.t. P and V if R is either P≥k orP≥kr//. The pattern R is a potential
rewriting w.r.t. P and V when the following condition holds: If there is some
rewriting, then R is also a rewriting; in other words, if R is not a rewriting, then
one does not exist.

In [XO05], it is proved that for each of the three major fragments of XP {//,[ ],∗}

(i.e., the pattern, the view and the rewriting are together either in XP {//,∗} or in
XP {[ ],∗}, or in XP {//,[ ]}) the natural candidates of the pattern suffice in order to
solve the rewriting-existence problem. The following theorem formally describes
this result.

Theorem 18. Let a pattern P and a view V . If both P and V are either in
XP {//,∗} or in XP {[ ],∗}, or in XP {//,[ ]} then at least one of the natural candidates
is a potential rewriting.

In each of the three above cases, the rewriting-existence problem is solved in
PTIME, since we can find all the natural candidates of a pattern in PTIME and
check the required equivalence also in PTIME.

For the case, now, in which P and V are both in XP {//,[ ],∗}, the authors in
[XO05], shows that the rewriting-existence problem is coNP -hard. However, they
do not give a tight complexity bound. In [ACG+09], it is studied several cases in
which at least one of the natural candidates is a potential rewriting. For most of
them the rewriting-existence problem is coNP -complete; which is implied by the
complexity of deciding equivalence of two XP {//,[ ],∗} patterns.
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Further related work on rewriting patterns: The rewriting-existence
problem is also studied in [BÖB+04, CR02, MS05, YLH03]; where incomplete al-
gorithms which focus on answering patterns using cashed views are proposed. The
problem of finding maximally contained rewritings, either in the absence or pres-
ence of a schema, is studied in [LWZ06] for the fragment XP {//,[ ]} (i.e., without
wildcards). Moreover, the query answering using views has been studied exten-
sively for the class of regular path queries [CGLV00, GT03] and in semistructured
databases [PV99]. In [DT03], the problem of query reformulation for XML publish-
ing is stated and solved in a general setting that allows both XML and relational
storage for the data. In [KS08], the notions of redundancy and minimization are
explored for the same fragment of XPath we study in this work. However, unlike
the case of conjunctive queries, results on rewriting XPath queries are not easily
derived from what is known about minimization of those queries.

The problem of rewriting a pattern using multiple views is also investigated in
[CDO08, CDOV09, WY08, TYÖ+08, MS05]. In [CDO08, CDOV09], it is studied
the problem of equivalently rewriting a pattern in XP {//,[ ]} using an intersection
of views. The same problem is also studied in [WY08]. In addition, the authors
in [WY08] use intersections of pattern to find maximal contained rewritings. On
other hand, rewritings using multiple views are used for solving the view selec-
tion problem [TYÖ+08, MS05]. In [TYÖ+08], it is proposed a Nondeterministic
Finite Automata (NFA) based approach to filter views that cannot be used to
answer a query, and consequently obtain a candidate view set which equivalently
answers a given pattern. In [MS05], a different approach is proposed for selecting
views in order to answer a given pattern. This approach focus on finding common
subexpressions of patterns.
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Chapter 6

Answering patterns using union
rewritings

As information on the Web increases rapidly, the need for substantial work
on optimizing queries that manipulate XML data arises. In previous chapters, we
were referred to techniques of rewriting queries in order to answer queries using
views. This approach consists of one of the fundamental problems in databases
with practical applications in data exchange, information integration, query opti-
mization, data warehousing and Web-site design. Moreover, since XML data are
popular for data exchange as well as for representing and manipulating semistruc-
tured data, rewriting XML queries become a significant problem.

Most of early research on rewriting problem for XPath patterns study the
problem of finding a rewriting of a pattern using a single view. However, there
are many cases in which single-view rewritings have limited benefit; since a single
pattern can be equivalently rewritten using multiple single-view rewritings. The
following example describes such a case.

Example 57. Consider the pattern P and the views V1 and V2, illustrated in Fig-
ure 6.1. P accepts the paths in which a b-node is a descendant of an a-labeled
root. Moreover, each accepted path has resulted node which is labeled by c and is
a grandchild of the b-node. V1, now, results each b-node which is a child of the a-
labeled root. Moreover, V2 accepts the paths that are accepted by P and in which
the root of the tree is at least 2 edges far from the b-node. We can easily notice,
now, that there is no pattern R in XP {//,∗} such that applying R on the result of
one of the above views we equivalently answer P . However, for each view we can
find at least one single-view contained rewriting. In order to verify this, consider
the patterns R1 = ∗/ ∗ /c and R2 = c. Applying the pattern R1 on the results of
V1 and R2 on the results of V2, we get the two contained rewritings of P . However,
we can notice that the result of R1 captures the accepted paths of P in which the
b-node is child of the root, and the R2 accepts every other path which is accepted
by P . Thus, using the patterns R1 ◦ V1 and R2 ◦ V2 we can equivalently answer
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P using only the answers of views; more specifically, the union R1 ◦ V1 ∪ R2 ◦ V2

equivalently rewrites P . 2
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a

b
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a

∗

b

∗
c

V2

Figure 6.1: A single-view rewriting does not suffice

In this chapter, we focus on describing how a pattern can be equivalently rewrit-
ten using unions of single-view rewritings. For this purpose, we further investigate
the problems of containment and equivalence for unions of patterns (Section 6.1).
Considering patterns in fragment of XP {[ ],∗} we give a necessary and sufficient
condition for containment. Moreover, using this condition, we decide the contain-
ment of two unions in polynomial time (Section 6.1.1). Then, we investigate the
problem of containment of unions for the case in which all patterns are in XP {//,∗}

(Section 6.1.3). For this fragment, we also give a necessary and sufficient condition
for containment. The problem of equivalence of a pattern and either a single pat-
tern or a union of patterns is studied in Sections 6.1.2 and 6.1.4, respectively. In
the last section, we focus on finding an equivalent rewriting (called union rewrit-
ing) of a pattern using multiple views (Section 6.2); which is constructed using
unions of single-view rewritings. This problem is investigated for the case in which
the pattern, the rewritings and the views are in XP {//,∗}.

6.1 Containment and equivalence of unions

of patterns

Contrary to the unions of CQs in the relational model [AHV95], deciding con-
tainment of sets of patterns is not reduced on deciding containment of single pat-
terns. More specifically, we cannot decide containment of two sets by checking
whether or not each pattern in the candidate contained set is contained to a pat-
tern appearing in the candidate containing set. The following example illustrates
such a case.

Example 58. Consider the patterns P1, P2, P3 and P4 in Figure 6.2. On checking
whether or not the set Q2 = {P3, P4} is contained in the set Q1 = {P1, P2}, we
notice that there is a d-homomorphism from P2 to P3 but there is not any from
either P1 or P2 to P4. Hence, Proposition 26 implies that P3 v P1 but P4 6v P1 and
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P4 6v P2. However, considering an arbitrary node n in the result of P4 we notice
that if the reachable path of n is of length 4 then n is resulted by P1. Otherwise,
if the length of the reachable path is greater than 4 then n is resulted by P2.
Hence, for every tree t we have that P3(t) ∪ P4(t) ⊆ P1(t) ∪ P2(t); which implies
containment. 2
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Q1 = {P1, P2} Q2 = {P3, P4}

Figure 6.2: Q2 v Q1

The question that arises is whether there is any fragment of XP {//,[ ],∗} such
that the containment of two sets of patterns can be decided by simply checking the
containment between their patterns. As we referred in Section 5.2.2, this question
is answered positively in [ZLWL09], for the fragment of XP {//,[ ]}. What happens,
however, for the cases in which the patterns are either in XP {[ ],∗} or XP {//,∗}.
As we showed in the Example 58 the above property does not hold for the second
fragment. The solution of the problem, in this case, is studied in Section 6.1.3
and depends on the equivalence between two single patterns; which is studied in
Section 6.1.2. The former fragment is studied in the following section.

6.1.1 Deciding unions containment in XP {[ ],∗}

Considering patterns in XP {[ ],∗}, each such pattern does not have any de-
scendant edge. Therefore, it has a single canonical model. Considering, now, an
embedding from a pattern P1 to the canonical model of a pattern P2, we can easily
notice that if this embedding maps the output of P1 on the canonical output of P2

then it determines a homomorphism from P1 to P2. This observation consists of
the key for proving that deciding containment of sets of such patterns is reduced
on checking the containment of their patterns. The following theorem proves this
statement.

Theorem 19. Let two sets Q1, Q2 of patterns in XP {[ ],∗}. Q2 v Q1 if and
only if for each pattern P2 ∈ Q2 there is pattern P1 ∈ Q1 such that P2 v P1. We
decide whether or not the Q2 v Q1 holds in PTIME.
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Proof. (If part) The proof of this part immediately follows from the definition of
the union of sets.

(Only-If part) Consider that Q2 v Q1. Moreover, let P2 be a pattern in
Q2. Since Q2 v Q1, we have that if o is the image of out(P2) on a tree t using
an embedding from P2 then o ∈ Q1(t). Considering, now, the canonical model
tc of P2, its canonical output oc is also contained in Q1(tc). Hence, there is an
embedding e from a pattern P1 ∈ Q1 to tc such that e(out(P1)) = oc. As both P1

and P2 are in XP {[ ],∗} (i.e., they do not contain descendant edges), by definition
of homomorphism we conclude that e constitutes a homomorphism from P1 to P2.
Thus, Proposition 26 implies that P2 v P1.

Complexity: In order to decide whether or not the containment Q2 v Q1

holds, we check for every pattern of Q2 if there is a homomorphism from a pattern
of Q1. In the worst case, we check the existence of homomorphism for every possi-
ble combination of one pattern of Q2 and one pattern of Q1. Since we can decide
whether there is homomorphism between two patterns in XP {//,∗}, in polynomial
time to the sizes of the patterns [MS04], we conclude that deciding Q2 v Q1 is
PTIME w.r.t. the sizes of the sets.

6.1.2 Deciding equivalence of patterns in XP {//,∗}

In this section, we give a necessary and sufficient condition for efficiently de-
ciding equivalence of two pattern in XP {//,∗}. More specifically, we prove in the
following proposition that the existence of a d-isomorphism suffices in order to
decide such an equivalence.

Proposition 33. Let two patterns P1 and P2 in XP {//,∗}. Then P2 ≡ P1 if and
only if P1 ∼d P2. In this case, we decide equivalence in PTIME.

Proof. (If part) Proof of this part immediately follows from Proposition 26 and
definition of d-isomorphism.

(Only-If part) Let P2 ≡ P1. Then Proposition 29 implies that the depth
d1 of P1 is equal to the depth d2 of P2, i.e. d1 = d2; and for every two nodes
n1, n2 that appear in the same depth in P1, P2, respectively, we have that
label(n1) = label(n2). Hence, by definition of core pattern we have that P̂1 and

P̂2 are isomorphic. In addition, considering that h is the isomorphism from P̂1

to P̂2, we conclude that for each core path p1 = u, . . . , v of P1 and the core path
p2 = h(u), . . . , h(v) of P2, p1 and p2 have the same length. Moreover, by definition
of d-homomorphism and Proposition 26, we conclude that h is a d-homomorphism
from P1 to P2; which implies that for each core path p1 = u, . . . , v of P1 and the
core path p2 = h(u), . . . , h(v) of P2, if p1 has only child edges then p2 also has
only child edges. By symmetry, we also conclude that if p2 has only child edges
then p1 also has only child edges. Thus, by definition of d-isomorphism, h is a
d-isomorphism from P1 to P2.

Complexity: As deciding whether there is a d-homomorphism is PTIME,
finding a d-isomorphism is also PTIME.
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Here, we have to notice that a significant remark is implied by the above result.
Since the definition of a d-isomorphism does not specifies any requirement about
the place and the number of descendant edges appearing in mapped core paths,
we can easily see that either moving the descendant edges inside a core path or
replacing the child edges with descendant edges in a core path with at least one
descendant edge, the equivalence between patterns is not violated. This result is
formally described by the following remark.

Remark 10. Let a pattern P such that there is a core path p in P with at least
one descendant edge. If P ′ is the pattern obtained from P by replacing edges in p
such that p has k ≥ 1 descendant edges, then the following hold P ≡ P ′.
Example 59. Consider the patterns P1 and P2 illustrated in Figure 6.3. Notice
that there is a d-isomorphism from P1 to P2; which maps v1, v4, v6 on u1, u4, u6,
respectively. Hence, P1 ≡ P2. In addition, we can see that in the first core path
of P1 there is only one descendant edge, instead of its image on P2 which has two
descendant edges appearing in different positions. In the second core path of P1

notice that the existence of the d-isomorphism is not influenced by moving the
descendant edge in its image. 2
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Figure 6.3: Descendant edges inside core paths; P1 ≡ P2

6.1.3 Containment of unions in the fragment of XP {//,∗}

Focusing, now, on the fragment of XP {//,∗}, we noticed (see Example 58) that
deciding the containment between patterns included in two sets does not suffice in
order to decide the containment of the sets. In this section we decide containment
and equivalence of sets of patterns in XP {//,∗} by translating the descendant edges
of patterns into a bounded set of paths. Intuitively, using the recursive nature of
the descendant edge, we replace each pattern included in the initial sets with an
equivalent set of patterns in which each core path has either only child edges or
one descendant edge and fixed length. Forcing descendant edges to appear only in
core paths of specific length, the decision of the containment is given by finding
d-homomorphisms in the direction that the initial sets specify.
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Consider two sets Q1, Q2 of patterns in XP {//,∗} such that Q2 v Q1. Hence,
for every tree t, each node contained in Q2(t) is also contained in Q1(t). Namely,
if a path of a tree is accepted by Q2, then it is also accepted by Q1. A pattern,
now, in XP {//,∗} specify the form of the accepted paths by requiring a set of
labels to appear in each of them (described by the non-wildcard labeled nodes
of the pattern) on specific order, and also by specifying the distances between
these labels. The order of the required labels between the root and the output is
described by its core pattern. Hence, the containment of two sets implies that the
core pattern of each pattern in Q2 is mapped, using a homomorphism, by a core
pattern of a pattern in Q1.

Example 60. Continuing the Example 58, notice that the core pattern of P4 is
a path which is rooted by an a-node. Its end node is a c-node and it also has
an internal node labeled by b. The core pattern, now, of P1 specifies the same
label requirements with that specified by core pattern of P4 (notice that the core
patterns of P1 and P4 are isomorphic). On the other hand, the core pattern of P2

specifies more relaxed conditions on the labels it accepts than the labels required
by the core pattern of P4. More specifically, the core pattern of P2 says that each
path accepted by P2 has root node labeled by a and end node labeled by c; which
constitute a subset of the label requirement provided by P4. This is formally given
by the existence of a homomorphism from the core pattern of P2 to the core pattern
of P4. 2

The distances, now, of the images of the core nodes in each path accepted by
a pattern are determined by the core paths of the pattern. More specifically, if a
core path has length n and it has only child edges, then in every accepted path
the images of its core endpoints have distance equal to n edges. Here, we notice
that in the case that all patterns in both Q1 and Q2 have only child edges (i.e.,
they are in XP {∗}), the decision of containment is given by the Theorem 19.

On the other hand, the existence of a descendant edge in a core path captures
a set of distances. Namely, if a core path has length n and it has at least one
descendant edge, then the distance of the images of its core endpoinds is either
equal to or greater than n edges. This feature implies that for a pattern P in Q2,
there may be multiple patterns in Q1 that accept the paths accepted by P . An
example of this case represented in Example 58; where the paths accepted by P4

can be partitioned in two blocks such that P1 accepts the paths of one block and
P2 accepts the paths of the other block. Hence, a pattern in XP {//,∗} which has at
least one descendant edge can be equivalently rewritten by a set of patterns also
in XP {//,∗}; a property which is described by the concept of descendant unrolling
[CW10] and it is proved by Proposition 34.

Definition 22. Let a pattern P in XP {//,[ ],∗}, (u, v) be an edge in E//(P ) and k

be a positive integer. The k-unrolling of (u, v), denoted Unrollk(u,v)(P ), is the set

of patterns {P1, . . . , Pk+1}, where
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• the pattern P1 is obtained from P by simply replacing the descendant edge
(u, v) with a child edge;

• for each i = 2, . . . , k, the pattern Pi is obtained from P by replacing (u, v)
with the path u, z1, . . . , zi−1, v such that z1, . . . , zi−1 are labeled by ∗ and all
edges of the path are child edges; and

• the pattern Pk+1 is obtained from P by replacing (u, v) with the path u, z1,
z2, . . . , zk, v such that z1, z2, . . . , zk are labeled by ∗, the edge (zk, v) is
descendant edge and all the other edges of the path are child edges.

Remark 11. Notice, here, that if we replace the pattern Pk+1 in the k-unrolling of
(u, v) with the patterns of `-unrolling of (zk+1, v) appearing in Pk+1 then we get

the Unroll
(k+`)
(u,v) (Q).

The following proposition shows that each descendant unrolling of a pattern is
equivalent to this pattern.

Proposition 34. [CW10]1 Let a pattern P in XP {//,[ ],∗}, (u, v) be an edge in
E//(P ) and k be a positive integer. Then we have that the k-unrolling of (u, v) is
equivalent to P .

Proof. Let {P1, . . . , Pk+1} be the k-unrolling of (u, v). Consider an arbitrary em-
bedding e from P to a tree t such that the descendant edge (u, v) maps on a path p
of t whose length ism ≥ 1. Ifm ≤ k then by definitions of descendant unrolling and
embedding there is an embedding e′ from Pm to t such that oe = oe′ . On the other
hand, if m > k then by definitions of descendant unrolling and embedding there is
an embedding e′′ from Pk+1 to t such that oe = oe′′ . Hence, P v Unrollk(u,v)(P ). In
addition, the construction of descendant unrolling of a pattern P implies that there
is a homomorphism from P to each pattern of the unrolling; hence each pattern
of Unrollk(u,v)(P ) is contained in P . Thus, we conclude P ≡ Unrollk(u,v)(P ).

Example 61. Consider the pattern P4 illustrated in Figure 6.2. Constructing the 1-
unrolling of descendant edge (n2, n3), we firstly replace the edge (n2, n3) with child
edge. The resulted pattern is given by the pattern Q1; illustrated in Figure 6.4.
Continuing, we replace (n2, n3) with the path n2, z, n3, where z is labeled by ∗,
(z, n3) is descendant edge and (n2, z) is child edge. The pattern Q2 illustrated
in Figure 6.4 describes this substitution. Hence, the set {Q1, Q2} constitutes the
1-unrolling of (n2, n3). In addition, Proposition 34 implies that P4 ≡ {Q1, Q2}. 2

Intuitively, unrolling descendant edges of a core path several times (using the
transitive property described in Remark 11), we can construct sets of patterns
which describe partitions of the paths accepted by the initial pattern. For example,

1This proposition is introduced in [CW10] where the authors consider bag semantics
for the evaluation of a pattern on a tree (i.e., multiple occurrences of a node in the result
are allowed) and each tree is enforced by an ordering over its nodes.
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Figure 6.4: The 1-unrolling of n1, n2, n3 of P4, illustrated in Figure 6.2

the patterns Q1, Q2 illustrated in Figure 6.4 form a partition of the paths accepted
by P4 (where Unroll1(n2,n3)(P4) = {Q1, Q2}) such that Q1 accepts the paths in
which the image of n1 is exact two edges far from the image of n3 and Q2 the
paths in which the image of n1 is more than two edges far from the image of n3.
Moreover, Proposition 34 implies that there is no path which is accepted by one
of the Q1 or Q2 and is not accepted by P4.

Using, now, the descendant unrolling of a pattern we can reveal cases in which a
set of patterns is required for covering (all the paths accepted by) a single pattern.
More specifically, although the single pattern is not contained in any pattern of
the set, the set contains the pattern. This is revealed by appropriately partitioning
the paths accepted by the single pattern such that for each block of the partition
there is a pattern of the set that accepts the paths included in the block. Such a
partitioning is achieved using descendant unrollings. Moreover, in order to decide
whether or not a pattern of the set accepts (the paths included in) a certain block
(which is described by a pattern included in an unrolling) we search for homomor-
phisms. An example of such a case was given by the Example 58. The following
example continues the Example 58 and shows that unrolling a descendant edge we
can decide containment of two sets of patterns by simply finding homomorphisms.

Example 62. Continuing the Example 58, notice that replacing the pattern P4 in
Q2 with the patterns in Unroll1(n2,n3)(P4) illustrated in Figure 6.4, an equivalent

set is produced. Let Q′2 be this set. Hence, Q′2 ≡ Q2. Moreover, we can decide
whether or not the containment Q2 v Q1 holds by equivalently deciding whether
Q′2 v Q1 holds. Considering, now, the mapping h from P2 to Q2 such that the
nodes of P2 maps on the nodes of Q2 that appear in the same depth, we conclude
that h is a homomorphism. Moreover, we can easily verify that Q1 and P1 are
isomorphic. In Example 58, we also showed that the pattern P3 is contained in
P2 because of the existence of a homomorphism from P2 to P3. Consequently,
each pattern in Q′2 is contained in a pattern of Q1; which formally shows that the
containment Q2 v Q1 holds. 2

A pattern, however, in XP {//,∗} may contain multiple descendant edges ap-
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pearing either inside the same core path or in different core paths. Hence, which of
them we have to unroll and how many times are the two major problems that arise
in order to decide the containment of two sets. The following example represents
a case in which we have to unroll several times two descendant edges appearing in
two different core paths in order to show that the containment holds.

Example 63. Let the sets of patterns Q1 = {P} and Q2 = {P11, P12, P21, P22,
P31, P32}, where all patterns are illustrated in Figure 6.5. It is easy to see that
there is a homomorphism from P to each pattern of Q2. Hence, Q2 v Q1. Notice,
however, that there is not any homomorphism from a pattern of Q2 to P . If, now,
we construct the 2-unrolling of the descendant edge (n1, n2) of P , then we get the
set of patterns Q′1 = {P1, P2, P3}; which is equivalent to P . Further, unrolling
the descendant edge (n2, n3) in each of the patterns P1, P2 and P3 one time, and
then replacing each pattern in Q′1 with its unrolling, we construct a set which is
identical to Q2. Namely, this set is isomorphic to Q2. In addition, since this set is
equivalent to Q1, we have that Q1 ≡ Q2. 2
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Figure 6.5: Unrolling multiple descendant edges

In the above example we had to construct two different unrollings of two dif-
ferent descendant edges in order to form the appropriate partition of the paths
accepted by P . However, notice that in the final set (i.e., the set constructed after
the unrollings), all the descendant edges appear in core paths of length 3. Con-
sidering, now, a positive integer k, we refer to a core path which has a descendant
edge and its length is less than k as k-unrollable. Instead, we say that a pattern
in XP {//,∗} is k-unrolled if it has not any k-unrollable core path [CW10]. Here,
we give an algorithm which uses descendant unrollings in order to construct for a
given pattern P in XP {//,∗} and a positive integer k, a set of k-unrolled patterns
which is equivalent to P .

Algorithm 1. (Construction of k-unroll-set)

• Input: a pattern P in XP {//,∗}.
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• Output: The set U of k-unrolled patterns in XP {//,∗}.

1. Do the necessary substitutions of edges in P such that each core path which
contains descendant edges is reformulated to a core path of which contains
a unique descendant edge.

2. Set U = {P}.

3. For every pattern P ′ in U which contains a k-unrollable core path p =
u, . . . , v of length ` do the following:

• Supposing that (z, v) is the unique descendant edge appearing in p, we
replace P ′ in U with the patterns in Unrollk−`(z,v)(P

′).

It easy to see that the above algorithm terminates for every pattern P in
XP {//,∗}. We refer to the final set produced by the above algorithm as the k-
unroll-set of P ; and it is denoted as Unrollk(P ). Moreover, since there may be
multiple k-unrollable core paths in a pattern we suppose that the algorithm always
chooses the topmost k-unrollable core path.

Example 64. Consider the pattern P illustrated in Figure 6.5. In Figure 6.5 we
can also see the four iterations of the construction of Unroll3(P ). In addition, it
is easy to see that P has already the form that the Step 1 requires. Hence, we
ignore this step.

Initially, now, we set U = {P}; illustrated in the first column. Then, replacing
P with the 2-unrolling of the (n1, n2) we get the three patterns P1, P2 and P3,
which constitute the second instance of U (illustrated in second column). As we
notice, none of them is 3-unrolled since in each of them the core path n2, n3, n4

has length 2 and it also contains a descendant edge. Hence, we construct for each
of them the 1-unrolling of (n2, n3). Finally, the Unroll3(P ) contains the patterns
illustrated in the third column (i.e., Unroll3(P ) = {P11, P12, P21, P22, P31, P32}).
2

Notice, here, that the construction of the unroll-set of a pattern P can be
represented by a tree-like form; where each node of the tree is associated with
an intermediate pattern produced during the construction of the unroll-set. More
specifically, the pattern P is always placed on the root of the tree, and the rela-
tionship parent-children describes a descendant unrolling. Namely, the patterns
included in the k-unrolling of the descendant edge of the intermediate pattern Q
are the children of Q in this tree. Moreover, it is easy to see that the patterns
appearing on leafs of the tree are the patterns included in the unroll-set. Using,
now, the assumption in which we always choose the topmost descendant edge for
unrolling, we can see that none of the top i core paths of each pattern appears
in the level i (from the root) of the tree is k-unrollable. An example of such a
representation is illustrated in Figure 6.6; which represents the construction of the
3-unroll-set of P illustrated in Figure 6.5.
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Figure 6.6: Tree-representation of an unroll-set

The above algorithm, now, guarantees that each unroll-set of a pattern P is
equivalent to P . This feature follows from the fact that, in each step, the algorithm
replaces a pattern in U with an equivalent a set of patterns. More specifically,
Proposition 33 implies that the reformulation of P in Step 1 produces a pattern
which is equivalent to P . In addition, in each iteration of Step 3, we replace a
pattern with the patterns produced by its descendant unrolling; hence, in each
iteration, the equivalence is preserved. This feature is formally described by the
following corollary.

Corollary 7. Let a pattern P in XP {//,∗}. Then for every positive integer k, we
have that Unrollk(P ) ≡ P .

Notice, here, that the Step 1 of the above algorithm reformulates the core
paths with descendant edges in such a way that each new core path contains
only one descendant edge. Using this step we avoid the appearance of redundant
patterns in the unroll-set. In addition, we speed up the construction of the set
of k-unrolled patterns, since the existence of more descendant edges implies more
descendant unrollings for the construction of k-unrolled patterns. The following
example describes these observations.

Example 65. Let the pattern P illustrated in Figure 6.7. Unrolling, now, 1 time
the descendant edge (n1, n2) we get the two patterns illustrated in the second
column of Figure 6.7; i.e., the patterns P1 and P2. It is easy to see that P1 is not
3-unrolled. Unrolling, now, the descendant edge appearing in P1 one more time,
we get the patterns P11 and P12; which are 3-unrolled. Unrolling, now, firstly the
edge (n2, n3) two times and then the edge (n1, n2) one time, we get a similar final
set; which also contains three patterns, two of which are equivalent.

Considering that the patterns in each of the three columns of Figure 6.7 con-
stitute a set, we can easily conclude that these sets are equivalent. Moreover, if we
ignore the Step 1, then these sets represent the instances of U in the Algorithm 1.
On the other hand, running the Algorithm 1 in order to produce the 3-unroll-set of
P , the pattern P1 is obtained by reformulating P , as the Step 1 states. Then, a sin-
gle unrolling of the descendant edge appearing in P1 is required. The 3-unroll-set
of P is given by the end of the first iteration of Step 3, and contains the patterns
P11 and P12 (i.e., the pattern P2 is not constructed by the algorithm). 2
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Figure 6.7: Multiple descendant edges in a core path

In the above example, notice that unrolling multiple descendant edges that
appear in the same core path we need further computation in order to produce the
k-unroll-set of the pattern. Moreover, in this case, at the end of each descendant
unrolling, the produced set contains multiple equivalent patterns. Since, now, the
above algorithm (using Step 1) eliminates multiple descendant edges from each
core path, we achieve no equivalent patterns to appear in the k-unroll-set. This
feature guarantees less overlapping of the results of the patterns appearing in the
k-unroll-set.

Notice, here, that in a k-unrolled pattern each core path either has only child
edges or its length is greater than or equal to k. Moreover, notice that as k ap-
proaches infinity the Unrollk(P ) approaches an infinite set in which all descendant
edges of P are replaced by every possible path that contains wildcard-labeled inter-
nal nodes; i.e., Unrollk(P ) approaches an infinite set of patterns in XP {∗} which is
also equivalent to P . Since, now, we decide the containment of two sets of patterns
in XP {∗} by finding homomorphisms between the patterns included in two sets
(Theorem 19), one may think of finding a positive integer k such that the prob-
lem of containment of two sets of patterns is reduced on finding homomorphisms
between the patterns of their k-unroll-sets. As we can see in the following there
exists such a number k, and it follows from the longest core path appearing in a
pattern. The existence, however, of descendant edges in arbitrary positions inside
the core paths require a relaxation of homomorphism; hence, similarly to the case
of containment of single patterns, the d-homomorphism suffices.

Consider, now, a set Q of patterns in XP {//,∗} and the length kmax of the
longest core path appearing in the patterns of Q. Constructing the Unrollkmax(Q)
it is easy to see that the descendant edges appear only in the core paths of length
kmax. However, there may be core paths of length kmax which do not have any
descendant edge. On the other hand, if we construct the Unrollkmax+1(Q) we
both force descendant edges to appear only in core paths of length kmax + 1 and
guarantee that every core path of such length has a descendant edge. All the other
core paths has only child edges. This observation consists of the key for deciding
containment of two sets of patterns in XP {//,∗}. The solution of the problem is
formally given by the following lemma.
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Lemma 4. Let the sets Q1, Q2 of patterns in XP {//,∗} and k = kmax + 1 where
kmax is the length of the longest core path appearing in a pattern in Q1∪Q2. Then
Q2 v Q1 if and only if for each pattern P2 ∈ Unrollk(Q2) there is a pattern
P1 ∈ Unrollk(Q1) such that there is a d-homomorphism from P1 to P2.

Proof. (If part) The proof of this part immediately follows from Proposition 26
and the definition of the union of sets.

(Only-If part) Let Q2 v Q1 and an arbitrary pattern P2 ∈ Unrollk(Q2).
The Corollary 7 implies that Unrollk(Q2) v Unrollk(Q1). Constructing, now, the
1-canonical model of P2 (denoted t for short), we conclude that Unrollk(Q2)(t) ⊆
Unrollk(Q1)(t). Hence, there is a pattern P1 ∈ Unrollk(Q1) from which there is
an embedding e to t such that e(out(P1)) = ocP2

.

In addition, since k = kmax+1, the core paths of lengths less than k appearing
in the patterns in Unrollk(Q1) ∪ Unrollk(Q2), do not have any descendant edge
(which is implied by the construction of unroll-set). Thus, for each core path p1

of P1 which contains only child edges, e maps p1 on a path p2 of t, where p2

corresponds to a core path of P2 which does not have any descendant edge. By
the definitions of embedding and d-homomorphism we conclude that e constitutes
a d-homomorphism from P1 to P2.

The condition, now, given by the previous lemma in order to decide the con-
tainment Q2 v Q1 can be simplified by avoiding to construct the unroll-sets of
both Q1 and Q2. More specifically, since the Proposition 34 and the construction
of unroll-set imply that there is a homomorphism from a pattern to each pattern of
its unroll-set, we can decide the above containment by finding d-homomorphisms
directly from the patterns of Q1 to the patterns of the unroll-set of Q2. This
conclusion is formally described by the following theorem.

Theorem 20. Let the sets Q1, Q2 of patterns in XP {//,∗} and k = kmax+1 where
kmax is the length of the longest core path appearing in a pattern in Q1∪Q2. Then
Q2 v Q1 if and only if for each pattern P2 ∈ Unrollk(Q2) there is a pattern
P1 ∈ Q1 such that there is a d-homomorphism from P1 to P2.

Deciding, now, whether two sets of patterns in XP {//,∗} are equivalent or
not, we construct their unroll-sets and we search for d-homomorphisms in both
directions.

6.1.4 Equivalence of a pattern and a union of patterns
in XP {//,∗}

In the case, now, of the equivalence of a pattern P and a set of patterns Q
in XP {//,∗}, we can use the Theorem 20 in order to decide such a equivalence.
Namely, we construct the unroll-sets of both P and Q, and then we check for d-
homomorphisms in both directions. The existence, however, of a single pattern in
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one set implies a tighter condition in order to decide equivalence. More specifically,
the patterns in the unroll-set of P must be d-isomorphic to the patterns of a subset
of the unroll-set of Q. Moreover, an additional requirement is that each pattern
in the unroll-set of Q have to be contained in P . In the following, we denote
Q1 ∼d Q2 if for each pattern in the set of patterns Q1 there is a d-isomorphic
pattern in the set of patterns Q2, and vice versa.

Proposition 35. Let a pattern P , and a set Q of patterns in XP {//,∗}. Also
consider the positive integer k = kmax + 1, where kmax is the length of the longest
core path appearing in a pattern of Q ∪ {P}. Then P ≡ Q if and only if both
the following hold:

1. For each pattern Q in Q, we have Q v P ; and

2. there is a subset U of Unrollk(Q) such that Unrollk(P ) ∼d U .

Proof. (If part) Proof of this part immediately follows from Proposition 26 and
Theorem 20.

(Only-If part) We can easily see that the condition 1 is immediately follows
from the definition of equivalence of sets.

In order to prove, now, the condition 1, Lemma 4 implies that to each pattern
of Unrollk(P ) there is a d-homomorphism from a pattern of Unrollk(Q), and vice
versa. Considering an arbitrary pattern P1 of Unrollk(P ) we conclude that there is
pattern P2 in Unrollk(Q) from which there is a d-homomorphism to P1. Similarly,
there is a pattern P3 also in Unrollk(P ) from which there is a d-homomorphism
to P2. As P1 and P3 are contained in Unrollk(P ) (i.e., they are produced from the

same pattern), it is easy to verify that P̂1 ∼ P̂3. Similarly to the proof of Lemma 4,
we conclude that P1 ∼ P2 ∼ P3. Hence, there is a subset U of Unrollk(Q) such
that Unrollk(P ) ∼d U .

This result shows that if a pattern P is equivalent to a set Q of patterns
(all patterns are defined in XP {//,∗}) then there is a subset Q′ of Q such that
P ≡ Q′ ≡ Q. This subset can be identified by checking which patterns of Q
give patterns in their unroll-sets which are isomorphic to the patterns included in
the corresponding unroll-set of P . Hence, identifying this subset, the conditions
that each pattern in it satisfies are straightforwardly implied by the definitions of
unroll-set and d-homomorphism, and are formally given by the following corollary.

Corollary 8. Let a pattern P , and a set Q of patterns defined in XP {//,∗} such
that P ≡ Q. Then there is a subset Q′ of Q which is equivalent to both Q and P ,
and for each pattern Q in Q′ the following hold.

1. P̂ ∼ Q̂; and

2. if h is the isomorphism from P̂ to Q̂ then h is a d-homomorphism from P
to Q.
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Intuitively, the second condition shows that for each core path p of P the h(p)
is not longer than p, and if p has only child edges then h(p) has only child edges
and the same length with p. In addition, considering k = kmax + 1, where kmax is
the length of the longest core path appearing in a pattern of Q∪{P}, it is easy to
see that for each pattern in Unrollkmax(Q′) (resp. in Unrollkmax(P )) there is an
isomorphic pattern in Unrollkmax(P ) (resp. in Unrollkmax(Q′)).

6.2 Rewriting pattern using views

In this section, we focus on describing how a pattern in XP {//,∗} can be equiva-
lently rewritten using a set of views. More specifically, we will show that the union
of single-view rewritings is required in order to equivalently rewrite a pattern in
XP {//,∗}. In addition, we give an algorithm which finds an equivalent rewriting
of a pattern using a set of views (if there exists any). We also show that this
algorithm is sound but not complete. However, the algorithm guarantees that if
there is any equivalent rewriting, then it outputs a rewriting and if there is not
any, then it outputs nothing.

In the following example, we describe a case in which multiple single-view
rewritings can be used to construct a set which is equivalent to an unroll-set of a
single pattern.

Example 66. Let the pattern P and the set V of views, illustrated in in Figure 6.8.
We can easily notice that there is no pattern R in XP {//,∗} such that applying
R on the result of a view in V we equivalently answer P . Namely, there is no
R such that for a view V in V we have R ◦ V ≡ P . However, for each view in
V we can find at least one single-view contained rewriting. the patterns R1, R2

and R3 illustrated also in Figure 6.8 represent such contained rewritings. More
specifically, the patterns R1 ◦ V1, R2 ◦ V2, R3 ◦ V3 and R3 ◦ V4 are contained in P .
These rewritings, however, have another significant property. The union of their
results is always equal to the answer of P . In order to verify this we construct
the 3-unroll-set of P . This unroll-set is illustrated in the bottom-right corner of
Figure 6.8; and it is denoted as P. Notice, now, that constructing the 3-unroll-set
of R1 ◦ V1 the only patterns included in this set are P1 and P4. Moreover, the
3-unroll-set of R2 ◦ V2 and the 3-unroll-set of R3 ◦ V3 are the sets {P1, P2, P3} and
{P2, P5}, respectively. Finally, the pattern R3 ◦ V4 is the same with P6. It is easy
to see, here, that all the above rewritings cover at least one distinct pattern of the
3-unroll-set of P ; and all of them cover all the patterns included in the 3-unroll-
set of P . Consequently, getting the union of the above single-view rewritings we
equivalently rewrite P using the views in V. 2

Notice, here, that if for a given tree t we store the results of applying the
above views on t, then practically the result R◦V(t) (where R◦V is illustrated in
Figure 6.8) may not be equal to P (t). More specifically, consider the case that a
subtree t′ of t is resulted by multiple views of V. Materializing, now, the results of
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Figure 6.8: A union of single-view rewritings is required

the views, multiple copies of t′ are stored. Therefore, applying the rewritings on
the copies of t′ and then getting union of their results, the multiple copies of t′ are
treated as distinct trees. Hence, there might be more than one occurrences of a
tree in the result ofR◦V than in the result of P . In this work, however, we consider
that either the results of the views are materialized as references to the initial tree
(i.e., we store only references to subtrees of the tree; instead of fully extraction of
the subtrees and their materialization), or we apply each view on the tree and then
its rewriting on the fly (i.e., we actually apply the pattern given by the composition
of the rewriting and the view). The latter case has significant practical interest
for the optimization of complex XML queries (e.g.,XQuery expressions); in which
multiple patterns are applied on a tree during their evaluation.

We extend, now, the rewriting problem for patterns and views in XP {//,∗}, in
order to capture similar to the above cases. Hence, considering a pattern and a set
of views we focus on deciding whether or not there exist patterns such that applying
these patterns on the trees resulted by the views we get all the trees resulted by
the given pattern. As we noticed, however, in the above example, these patterns
do not necessarily apply on all trees resulted by every view. More specifically, in
order to answer the given pattern, we may apply a single rewriting on different
views but not necessarily on all views. Hence, a solution of this problem is to
find a combination of rewritings and views such that the trees resulted by the
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union of the results of the rewriting always cover the answers resulted by the given
pattern. Such a combination of rewritings and views is called union rewriting and
is formally defined as follows.

Definition 23. Let a pattern in XP {//,∗} and a set of views V also in XP {//,∗}.
We say that a set R of patterns in XP {//,∗} is a union rewriting of P using the
views V if for each R in R there is a subset VR of V such that for each tree t we
have that

⋃
R∈RR(VR(t)) = P (t).

Using the Proposition 32 we conclude that in this case the pattern P is equiv-
alent to

⋃
R∈R,V ∈VR{R ◦ V }. We denote, now, as R ◦ V the set of patterns⋃

R∈R,V ∈VR{R ◦ V }.
A pattern, now, may have infinite union rewritings using a given set of views.

This conclusion is easily implied by the concept of descendant unrolling.

Example 67. Continuing the Example 66, we unroll the descendant edge appearing
in pattern R3 once. The patterns included in the produced set are the R31 = ∗/c/d
and the R32 = ∗/ ∗ //c/d. It is easy to see, now, that the set of patterns {R1 ◦ V1,
R2 ◦ V2, R31 ◦ V3, R32 ◦ V3, R3 ◦ V4} is also equivalent to P . Hence, the set that
contains the patterns R1, R2, R3, R31 and R32 is also a union rewriting of P using
V. 2

Intuitively, if there is a pattern in a union rewriting that has at least one
descendant edge, then the following happens: constructing sets of patterns by
unrolling multiple times each descendant edge of the pattern we can find different
union rewritings. The existence of infinite union rewritings, in this case, is easily
concluded. This observation lead us to extend the concept of potential rewriting.
Hence, a set of patterns R is a potential union rewriting of a pattern P using a
set of views V in XP {//,∗} if the following condition holds: if there exists a union
rewriting of P using V, then R is also a union rewriting.

6.2.1 Solving the problem of the existence of a union
rewriting

In this section we show that natural candidates of a given pattern do not suffice
in order to find a potential union rewriting of the pattern using a given set of views.
In addition, we give a superset of natural candidates using which a potential union
rewriting can be constructed.

Consider a pattern P and a set of views V such that all patterns are inXP {//,∗}.
Moreover, supposing that there is a union rewriting R of P using V, we conclude
that R◦V ≡ P . Therefore, there is a subset of R◦V such that each pattern in this
subset satisfies the conditions described in Corollary 8. Focusing, now, on these
conditions we can conclude properties that each view has to fulfill in order to be
useful for the construction of a union rewriting of P .
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Consider an arbitrary view V in V and a pattern R inR such that R◦V ∈ R◦V.
Hence, the first condition of Corollary 8 implies that R̂ ◦ V and P̂ are isomorphic;
from which it follows that V̂ is not longer than P̂ . In addition, if dV is the depth
of V̂ then for each i = 1, . . . , (dV − 1), the labels of the i-th core nodes of P̂ and
V̂ are identical. For the output node of V , however, we have to notice that if it is
labeled by ∗ then in R◦V this node is either intermediate node of a core path or it
is replaced during the composition by a non-wildcard labeled node (the case that
R ◦ V ∼ V is an exception and is captured similarly to the case that the output
is a non-wildcard labeled node). On the other hand, if the output node is labeled
by a non-wildcard, then its label has to be identical to the label of the dV -th core
node of P̂ .

The second condition of the Corollary 8 implies further requirements about
core paths of useful views. More specifically, by definition of d-homomorphism we
conclude that for each i = 1, . . . , (dV − 1), the core path qV that enters the i-th
core node of V has to satisfy the following condition: if the i-th core path qP of P
(i.e., qP enters the i-th core node of P ) has only child edges then qV and qP are
isomorphic; otherwise the length of qV is at least equal to the length of qP . For the
deepest core path, now, of V we have two cases, one if the output node is labeled
by ∗ and one otherwise. Considering that it is not labeled by ∗, the requirements
that the deepest core path q′V of V has to fulfill are the same with that of every
other core path of V . However, if the output node of V is labeled by ∗ then the
only condition that q′V has to satisfy is the following: if the dV -th core path q′P of
P has only child edges then q′V also has only child edges, and it is not longer than
q′P . This condition follows from the fact that in R ◦ V this core path must have
the same length with q′P , where R is a pattern such that R ◦ V is included in a
union rewriting of P .

The above conclusions about the requirements that a useful view has to fulfill,
are captured by the concept of homomorphic suffix of a pattern; which is defined
as follows.

Let a view V and a pattern P both in XP {//,∗} such that dV ≤ dP , where dV
and dP are the depths of V̂ and P̂ , respectively. Also, consider the non-negative
integer k such that P≤k is the pattern whose output is the dV -th core node of P .
Considering, now, the deepest paths qP and qV of V and P≤k, respectively, we
construct the pattern V ′ as follows. If the start nodes of qP and qV have the same
label, the end node of qV (i.e., the out(V )) is labeled by ∗ and either

1. both qP and qV have only child edges and qV is not longer than qP , or

2. qP has a descendant edge,

then V ′ is obtained from V by replacing qV with qP (the out(V ) is the end node
of qP ). Otherwise V ′ is identical to V . In this case, we say that V is a k-

homomorphic suffix of P if there is an isomorphism from P̂≤k to V̂ ′ which is
also a d-homomorphism from P≤k to V ′.

138



Query Optimization under bag and bag-set semantics · Matthew Damigos

From the definition of homomorphic suffix and the Corollary 8 immediately
follows the following corollary.

Corollary 9. Let a pattern P in XP {//,∗} and a set V of views in XP {//,∗} such
that there is a union rewriting R of P using V. If a pattern R◦V in R◦V satisfies
the following conditions

1. R̂ ◦ V ∼ P̂ , and

2. if h is the isomorphism from P̂ to R̂ ◦ V then h is a d-homomorphism from
P to R ◦ V ,

then there is a non-negative integer k such that V is a k-homomorphic suffix of P .

Example 68. Let the pattern P and the set V of views illustrated in Figure 6.9. The

view V1 has core pattern which is isomorphic to P̂≤2. However, the isomorphism

from P̂≤2 to V̂1 is not a d-homomorphism from P≤2 to V1. Hence, V1 is not a
homomorphic suffix of P . For V2 and V3, now, replacing their unique core path
with the unique core path of P≤2, we get patterns which are isomorphic to P≤2.
Hence, these views are 2-homomorphic suffices of P . Checking for an isomorphism
from P≤4 (which is identical to P ) to either V4 or V6, we conclude that both views
are not homomorphic suffices of P . The view V5, however, fulfills the requirements
of homomorphic suffix. In order to verify this, we construct the view V ′5 which is
obtained by replacing the deepest core path of V5 with the deepest core path of
P≤4. V ′5 , now, is isomorphic to P≤4; which implies that V5 is a 4-homomorphic
suffix of P . 2

a

∗

b

∗

c

a

b

V1

a

∗

V2

a

∗

∗

V3

a

∗

b

∗

V4

a

∗

b

∗

∗

V5

a

∗

b

∗

∗

∗

V6

P V

Figure 6.9: Homomorphic suffices of a pattern in XP {//,∗}

Notice, here, that for a view V which is not a homomorphic suffix of a pattern
P , we cannot find a pattern R such that R ◦ V satisfies the conditions described
in Corollary 8. For example, the view V1 defined in Example 68 has core pattern
which is identical to the 2-sub-pattern of P . However, for every pattern R, R ◦ V
does not satisfy the second condition of the Corollary 8; since the mapping from
the first two core nodes of P to the core nodes of V1 violates the requirements
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of d-homomorphism. Intuitively, now, for every tree t, V1(t) contains elements
labeled by b which are children of the a-labeled root element of t. However, in the
paths of t that P accepts, a b-element is at least grandchild of the a-labeled root
element of t. Similarly, the views V4 and V6 cannot be used in order to construct
a set, similar to that described by Corollary 8.

In order, now, to find patterns such that applying them on the homomorphic
suffices of a given pattern P , they give a union rewriting of P , we categorize the
homomorphic suffices into the following categories. Considering a view V which
is k-homomorphic suffix of P and qV , qP are the deepest core paths of V , P≤k,
respectively, we say that V is a k-homomorphic suffix of

• type 1, if either out(V ) is labeled by ∗ and qP has only child edges or V
has a non-wildcard labeled output,

• type 2, if out(V ) is labeled by ∗ and qP which has descendant edges, is
longer than qV ,

• type 3, if out(V ) is labeled by ∗ and qP which has descendant edges, is not
longer than qV .

Using, now, the above types of homomorphic suffices, we propose the follow-
ing algorithm, which constructs a union rewriting (if there exists any) of a given
pattern P using a given set of views V. Moreover, in Theorem 21, we show that
this algorithm constructs a potential union rewriting. In the following we use the
notation ∗//Q to denote the pattern that is obtained by adding a new root to
the pattern Q which is labeled by ∗ and is connected with the former root with a
descendant edge.

Algorithm 2.

• Input: a pattern P in XP {//,∗} and a set V of views in XP {//,∗}.

• Output: the pair (R,R ◦ V), where R is a union rewriting of P using V.

1. For each pattern k-homomorphic suffix V of P in V do the following: Let
m = k− i · (`P − `V ), where `P , `V are the lengths of the deepest core paths
of P≤k, V , respectively, and i = 1 if label(out(V )) = ∗, otherwise i = 0.

(a) If V is of type 1 then add the pattern P≥m◦V to R◦V and the pattern
P≥m to R.

(b) If V is of type 2 then add the pattern P≥m//r ◦V to R◦V and the pattern

P≥m//r to R.

(c) If V is of type 3 then add the patterns P≥k ◦ V , ∗//P≥k ◦ V to R ◦ V
and the patterns P≥k, ∗//P≥k to R.
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2. Check whether or not R◦V is equivalent to P ; and if not return the pair of
empty sets (∅, ∅). Otherwise return the (R,R ◦ V).

Example 69. Continuing the Example 68, we notice that V5, V2 and V3 are of types
1, 2 and 3, respectively. The algorithm constructs the natural candidates P≥1

//r and

P≥4 and associates them to the views V2 and V5, respectively (i.e., since P≥1
//r ◦ V2

and P≥4 ◦ V5 are added in R◦V, we conclude that the patterns P≥1
//r and P≥4 are

applied on the results of views V2 and V5, respectively). For the view V3, now,
the algorithm constructs two patterns; which are the P≥2 and ∗//P≥2. In this
case, we can easily see that the view V3, alone, gives a union rewriting of P (i.e.,
P≥2 ◦V3 ∪ (∗//P≥2) ◦V3 ≡ P ). The same result holds for the view V2 (notice that
P≥1
//r ◦ V2 is isomorphic to P ). Moreover, the union (∗//P≥2 ◦ V3) ∪ (P≥4 ◦ V5) is

also equivalent to P . Consequently, the set R = {P≥1
//r, P

≥2, ∗//P≥2, P≥4} which
is produced by the above algorithm, is a union rewriting of P using the views V2,
V3 and V5. 2

Theorem 21. For a given pattern P in XP {//,∗} and a set V of views in XP {//,∗},
the Algorithm 2 outputs a potential union rewriting of P using V.

Proof. By the Step 2 of Algorithm 2, we conclude that the output R of the algo-
rithm is a union rewriting of P using V; i.e., R◦ V ≡ P . We will prove, now, that
R is a potential union rewriting of P using V. More specifically, considering that
there is a union rewriting R′ of P using V, we will show that the above algorithm
constructs in Step 1 a set of patterns Ra such that Ra ◦ V ≡ P . This is proved in
the following two steps:

1. We show that there is a subset U of R′ ◦V such that U ≡ R′ ◦V and for each
pattern R ◦ V in U there exists a pattern in Ra ◦ V which contains R ◦ V .

2. Then we prove that Ra ◦ V is equivalent to R′ ◦ V (i.e., equivalent to P ) by
also showing that each pattern in Ra ◦ V is contained by P .

By the Corollaries 8 and 9 we conclude that there is a subset U of R′ ◦ V such
that U ≡ R′ ◦V and for each pattern R◦V in U we have that V is a homomorphic
suffix of P . Let R ◦ V be an arbitrary pattern in U , V is a k-homomorphic suffix
of P , and m = k − i · (`P − `V ), where `P , `V are the lengths of the deepest core
paths of P≤k, V , respectively, and i = 1 if label(out(V )) = ∗, otherwise i = 0. By

Corollary 8 we have that R̂ ◦ V ∼ P̂ and if h is the isomorphism from P̂ to R̂ ◦ V
then h is a d-homomorphism from P to R ◦V . Consider, now, that V has dV core
paths and R has dR core paths.

Firstly, suppose that the output of V is labeled by a non-wildcard (i.e., V is
of type 1). The core pattern of P≥m ◦ V is by definition isomorphic to P̂ ; hence it

is isomorphic to R̂ ◦ V (notice that in this case m = 0). Let h1 this isomorphism

from P≥m◦V to R̂ ◦ V . We conclude, here, that the first dV core paths of P≥m◦V
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and R̂ ◦ V are isomorphic. Moreover, for every other core path p of P≥m ◦ V we
have that h(p) = h1(p). Thus, h1 is a d-homomorphism from P≥m ◦ V to R ◦ V .

On the other hand, suppose that out(V ) is labeled by ∗. If, now, V is of type

1 then there is also an isomorphism h2 from the core pattern of P≥m ◦V to R̂ ◦ V .
Similarly to the above case, we have that for each core path of P≥m◦V , h2 satisfies
the requirements of d-homomorphism. On the other hand, if the dV -th core path of
P has a descendant edge we have two cases; one in which V is of type 2 and one in
which V is of type 3. In the first case, the length of the dV -th core path of R◦V is
at least equal to the length of the dV -th core path of P . Moreover, the dV -th core
path of P≥m//r ◦ V is as longer as the dV -th core path of P , and it also has at least

one descendant edge. Hence, there is a d-homomorphism from P≥m//r ◦ V to R ◦ V .
In the case that V is of type 3, the dV -th core path of R ◦ V is longer than the
dV -th core path of P and at least as longer as the dV -th core path of V . If, now,
it is as longer as the dV -th core path of V then there is a d-homomorphism from
P≥k ◦V to R ◦V . In any other case, there is a d-homomorphism from ∗//P≥k ◦V
to R ◦ V .

Thus, for each case we proved that there is a pattern in Ra ◦ V which contains
R ◦ V . In addition, by definition Ra ◦ V we conclude that each pattern in it, is
contained in P (because of the existence of d-homomorphisms). Consequently,
Ra ◦ V ≡ P and Ra is a potential union rewriting of P using V.

Here, we have to notice that the above algorithm is not always outputs the min-
imum union rewriting R. Moreover, since the rewriting components constructed
in polynomial time, its inefficient step is that of checking the equivalence between
a single pattern and a union of patterns. In its output, now, the algorithm may
contain patterns which are not natural candidates of the input pattern. This is
implied by the existence of the type 3 homomorphic suffices in the input set of
views. Hence, the natural candidates of a pattern in XP {//,∗} do not suffice in
order to find a potential union rewriting of the pattern using a set of views.

6.3 Conclusions and Future Work

In this chapter, we have studied the problem of rewriting patterns using mul-
tiple views, considering patterns which contain wildcards and descendant edges.
More specifically, we proposed an algorithm which decides whether or not there
exists any rewriting of a given pattern using a set of views, and outputs such a
rewriting (if there exists any). This algorithm was based on equivalence between
a single pattern and a set (or union) of patterns. The equivalence and contain-
ment problems for unions of patterns were also investigated. Especially, we proved
necessary and sufficient conditions for both containment and equivalence in the
cases of unions of XP {[ ],∗} and XP {//,∗} patterns. Moreover, we showed that the
existence of a union rewriting may be required in order to equivalently rewrite a
given pattern using a given set of views.
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For future work, now, many problems arise. The extension of the union rewrit-
ings to the fragment of XP {//,[ ],∗} is an open problem. We expect that most of
the results of this chapter can be extended to this fragment. Although the con-
tainment problem for unions of XP {//,[ ],∗} patterns has been solved [MS04], we
expect that the further investigation of the equivalence problem for unions of such
patterns may be helpful in order to solve the problem of finding union rewritings.

In addition, as multiple patterns appear in more complex XML queries (such
as XQuery expressions), optimization techniques of patterns are useful. Therefore,
another interesting problem is that of view selection. More specifically, for a given
set of constraints over the sizes of views and the rewritings of a given set of patterns,
we can search for optimal query plans that exploit possible sharing opportunities
of the given patterns (similar problem to that investigated in Chapter 4).
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Chapter 7

Conclusions

In this dissertation, we investigated high level query optimization techniques
for both relational and XML databases. In particular, we focused on three es-
sential problems appearing on query optimization setting; which are the query
containment/equivalence problem, the query rewriting problem and the view se-
lection problem. These problems were investigated for several major subclasses
of the real-time queries (i.e., for subclasses of CQs, and subfragments of XPath
queries).

On solving the view selection problem in relational databases, we searched
for viewsets that give optimal equivalent rewritings for each query in the given
workload, and satisfy a given storage constraint. In this perspective, we considered
both bag and bag-set semantics to approximate the SQL semantics, and focused
on finding at least one optimal solution for the given problem input (instead of
finding every optimal solution). In order, now, to find such solutions we described
the forms of each useful viewset (i.e., viewset which give equivalent rewritings
for the given queries) and each CQ equivalent rewriting of a given CQ. Using
this analysis we proposed an algorithm (called LGG-VSB) for the case of bag
semantics, and a simple modification of it in order to solve the bag-set-oriented
version of the problem. Moreover, we investigated cases in which optimal viewsets
can be found using subexpressions of the given queries. For these special cases, we
gave heuristics for the above algorithm.

The (equivalent) rewriting problem was also investigated for XML data- bases.
In particular, focusing on XPath queries, we used the union operator to introduce
rewritings of XPath queries using multiple views. In this perspective, we showed
that there are cases in which the union operator is required in order to find an
equivalent rewriting of a given query and set of views. Moreover, we described the
form of useful views (i.e., views which give rewritings of XPath queries), considering
a significant fragment of XPath. Using these results, we proposed an algorithm
which outputs a potential union rewriting of a given query and set of views.

The techniques used on equivalently rewriting either relational or XML queries,
were based on a detailed analysis of the problems of query containment and equiv-
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alence. In particular, we investigated the problems of bag and bag-set containment
through a detailed analysis of special cases. In each of these cases, we computed
the complexity and gave necessary and sufficient conditions. Deciding, however,
CQ containment either under bag or under bag-set semantics remains an open
problem. On the other hand, for XPath queries, we investigated in depth the
problem of containment and equivalence of unions of patterns, considering that
the patterns belong to one of the three major fragments of XPath.

For future work, now, the extension of the above problems to more general
classes of queries is essential for many database research areas. For the bag and
bag-set semantics, the problem of CQ containment remains open. Moreover, find-
ing superclasses of CQs for which the problems of bag and bag-set containment
are decidable, are interesting problems. The equivalence of superclasses of CQs
for these semantics is also a problem that has not investigated in depth.

In addition, future work is needed on rewriting techniques that can perform cor-
rectly and efficiently for “real” SQL views on “real” SQL queries, including queries
with aggregates, nesting, bag and bag-set semantics, and user-defined functions.
Moreover, the conceptual framework of rewriting queries using views applies to
problem in graph querying, Web service composition, and rewriting of XQuery.
For the last one, the results of Chapter 6 contribute an interesting perspective for
investigating efficient rewritings of XQuery expressions. Furthermore, due to the
relevance of the rewriting problem and the information integration setting, the
investigation of the data integration (especially, the LAV approach) considering
either bag or bag-set semantics is also an open problem.
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