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CHAPTER 1

Evxaplotieg

KaBag n didaktopikn pov SiaxtpiPr) éxet ptaoet oxeddv oTo TéAog TG, atcBavopatl Ty avd-
YK V& eXaploTow OAOUG eKEIVOUG TTOL oTaONKav SimAa pov o AN Vv SidpKela avToL TOUV
Ta€18100. Katapyag Ba nBela va evxapiotion péoa and tnv kapdid pov tov Kabnyntr pov Ne-
ktapto Kolvpn, o omoiog ¢ppovTile €101 ®@OTE OLVEXEIX VA €X® TTPOGRACT) OTOLG ATAPAITNTOVG
TIOPOUG Yl TNV €peuva pou. H epmiotootvn kat 1 ehevBepia Kivjoewv 1oL pov €0wae 0 Apng
KOTQ TNV EVOOXOANOT HOU pe epevvnTIKd Bépata odrjynoav otnv PeAtiowon Tng KpLTiKig Hov
KavOTNTAG, He fordnoav va maipve mpwtoBouvlieg Kat pov dvolfav véoug Spopoug. Emiong, Ba
nOela va evxaploTow OAa Ta AN TNG GUHUBOVAEVTIKNG ETIITPOTING YLt TX TTOAVTIH TXOALX TOUG.
Emumhéov, Ba 1fela va evxaplotion tov ouvepydtn pov Anpntpn Toovpdko yia Tig emotkodo-
UNTIKEG oLLNTNOELG pag AAAG KAL TIG CUYKPOVOELG (ag TToU pe PorBnoav apevog va eoTidon Tnv
EPEVVNTIKT HOU TIOPEiol KAl APETEPOL VUL TIAPOLOLALW TX ATTOTEAECUATA MOV e TPOTIO KATAVON-
16, EMOTNHOVIKO Kot adtapthoviknto. [Tépa amd Tov Anpntpn, Ba jOela evxaploTron Kat GAovg
TOUG CUVEPYATEG OV OTO EPYAOTNPLO TOOO Ylo TNV PorBeid Toug o€ epeuvnTIKA BépaTa 600 Kat
Yot TIG EUXAPLOTEG OTLYHEG TIOUL €XOUpE Tiepdael pali. ONot pov ot dAlot dpidot ailovv éva peyd-
Ao eLXUPLOT®, KAL Ve HEYAADTEPO AUTOG TIOV He OTHpLle O€ TTPAYUATIKE “(OpLKeES” KATAOTATELG.
Télog, evxaptote amd ta P& TNG YUxXNG HOL TNV OLKOYEVELX HOL Kot TO Mapdxt Hou, oL ortoiot

otaBnKav Simha pov GAOV aLTO TOV Kalpd Kot GTOLG OTIOI0LG APLlEpOVL TNV StaTpLPr) avTh.
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CHAPTER 2

Extetapévn IepiAnyn

Tov TelevTtaio Katpd TaPATNPOVHE Hia TEPAOTIX aVENGT) TOL GYKOL TNG YNPLAKHG TTANPoPopiag
TIOL ONUIOVPYEITAL KAl KATAVAA@VETAL TTotyKooHiwg. H oy pog xapaktnpiletal amd pio 1epd-
otwx ékpnén dedopévmv. Zoppwva pe Tov Alevfvvev Zoppovlo g Google [Kirl0], 5 hexabytes
dedopévmv mov SnpovpynBnkav artd TNV avakaALYn Twv LTTOAOYLOT®V HEXPL TO 2003 Twpa TIAE-
ov mapayovtat k&Be dvo pépes. H etioa épevva ¢ IDC yia 10 “Ynoako Zounav” (Digital
Universe) tov KukAodpopnoe Tov Mdto tov 2010 [GR10] avadéper 611 To 2009, mapd TnVv ma-
YKOOHLIX VPEDT), TO GUVONO TwV Yndplakwv dedopévwv ov Snpovpyrdnkay avlndnke Katd 62%
oe oxeddv 800.000 petabytes. To 2010 éptaoce Ta 1,2 exart. petabytes, 1) 1,2 zettabytes, kat pé-
Xpt To TéNog NG dexaetiog Oa eivat 44 popég 1o péyeBog Tov 2009. Eto oxrpa 2.1 propove va
TIAPATNPHCOVHE LA OXNHUATIKT ITEKOVIOT avTnG TNG av€nong. H pikpr KOuKKiSo avTuTpoow-
nievel 1 Exabyte dedopévwv, To omoio avtiotoixel ota dedopéva mou petapépOnkav 6io 1o 2010
artd 1o SikTvo KIVNTHGS TNAEPwViag Twv HITA, eve oAdKkAnpo To YKpilo Kouti avTimpoownetel 35
Zettabytes, n extipnon yia 1o c0volo Twv Ynétakanv dedopévmv to 2020. Ta dedopéva avtd Tte-
plappavouy apyeio Kataypadng aro 1otooeides, pevpata ermhoywv xpnotav (click streams)
a1t SIKTLAKOVG TOTTIOUG KOVWVIKAG SIKTVwoNG 0Tw¢ To Facebook [Facll] kat to Twitter [twill]
Kol pHey&Ang KAilakog e-commerce 10TooeN{deg OTtwg To Amazon [Amalle] kot To eBay [eBall],
avene€épyaota dedopéva mov mapdyovtat anod eTikéTeg RFID kat Siktua aoOntrpwv, apyeio
KATAYPAPHG TAEPWVIKGOV KA OEWV, LATPLKE AXPXELQ, OTITIKOAKOVOTIKA AXPXEIN, XPIHATOOIKOVO-
ukég ouvalayég kot dedopéva amo emoTtrpes Onwg Aotpoloyia, Metewpoloyia, [oviSiwpa-

1K), Blohoyia, kAt Tiax mapdSetypa, o peydhog Emraxuvtrg ASpoviov tov CERN Ba mapdayet
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.\ 1 EB (Exabyte=10"8bytes) = 1000 PB (Petabyte=10"3bytes)
Last year (2010) US mobile data traffic

0.8 ZB (Zettabyte) = 800 EB
Entire global mass of digital data in 2009
accordingto IDC

35 ZB (Zettabyte = 102" bytes)
forecast for all digital data in 2020

Exfipa 2.1: Mua avadoyixr aneikéviony 16 av€nons twv Sedousvwy yia v Tpéxovoa SeKaceTia.

niepintov 15PB dedopévwv etnoing [CER08] kat To Facebook dnpovpyel kabnuepiva yopw ota
20TB ovurnieopévwv Sedopévwy.

To mpdPAnpa g Staxeipiong “Meydhwv AeSopévmv” [Jac09] avadetkviel TV avamotele-
OHATIKOTNTA TV KEVIPIKOTIONHEV®V KPXITEKTOVIK®WY, OL 0TT0ieg apxilouvv TAéov va BewpovvTal
napwxnpéves. Eivar adniBeta 1t o vopog tov Moore dev pmopet va toxvet yia mavto: Oepelio-
dn puowd epmddia amoryopeloOLV GTOVG KATAOKEVAOTEG VA TILPAYOLV OAO KAl TILO YPHYOpOULG
ene€epyaotég [Dub05]. Q¢ ek TovTOU, N ekBeTikn avEnon Twv dedopévmv Sev pmopel va avTipe-
TOTLOTEL P TNV eKOETIKT) abENON TNG LITOAOYLOTIKAG LOXVOG. ATIO TNV GAAN TIAEVPK, KATOVEUN HLE-
va ovoThpata Staxeiplong dedopévav ou ammotelovvTal aro peydho aplBud “shared nothing”
Paoikev (commodity) vtoloytoTiK@V Kat anofnkevtikwv povadwv eivat oe Béon va mapéxovv

TOUG ATTAUTOVHEVOUG TIOPOUG HE KALHAKAOOLUO Kot AITOSOTIKO TPOTIO.

Avtd T kKEvTpa Oedopévav, Ta omoior amoteAobVTAL ATTO HEYAAO aplOpd LTTOAOYIOTIKGOV Kall
amoONKeVTIKWV HOVASwV oL StacuvdéovTal pe amAo eEOTAOHO SIKTOWOTNG, €XOVV AVTIKATO-
OTNOEL AKPLPOVG LITEPUTTONOYIOTEG Kal TTAéoV evat 1 de-facto mpoo€yylon amod T CUVTPUTTIKN
TIAELOYNGiot TOV ETALPEIOV AOYLIOUIKOD, 8lXiTEPA EKEIVWV TTOU AOXOAOVVTAL PE ePAPHOYEG Ala-
diktvov. Ol epappOYEG AUTEG XPNOLHOTIOODVTAL Yl TNV aflOTTOINOoT VITOAOYIOTIKOV Kot AAA®V
TIOPWV TOUL KEVTpOL Sedopévmwv pe évav eviaio Kal emeKTaolpo TpoTo. Aedopévou otL emelepya-
CovTat peydho aplBpd TavtdXpovmV Kot AOYIKA& aveEdpTNTOV aITNHATOV XpNoT®V Holi e Tepa-
0TleG TOGOTNTEG ACVOXETIOT®V Oedopévay, eival oe Béon va e€Ll00PPOTICOLY ATTOTEAECUATIKA
ToV GpOPTO pETAEL TV TTOPWV TOL KEVTPOUL deSopévav. To emTUXNHEVO TIPWTOTTOPLAKO TIAXP&-
detypa tng Google og auTtoV TOV TOpéR akolovBeital Topa amod kabe peydhn vmnpeoia Internet

TI0L €Xel peydho oyko kivnong: To YouTube [Youll], to Twitter [twill], To Skype [Skyl1] kot To
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Facebook [Facl1] eivat éva avTiTpOo®ITEVTIKO GOVOAO UITNPECL®V TWV OTIOIWV 1) EMITUXIA KoKt 1)
QTOTEAECUATIKOTN T OPeNeTAL OTT) XPHOT) KATAVEUNHEVWY OLOTNHATWV dlaxeiplong Sedopévamv.
To Siktva opotipwv (P2P) [Wikllc] eivat éva povtélo vmtoloylopol TTov TapovoLdlel Ka-
A€G 1810TNTEG OO0V APOPA TNV KAHAKWOT) KAl TNV KUTO-0PYAVWOT) Kal eGapUOleTal oe apKeTEG
ePAPHOYEG HEYAANG KAIHaKAG. Ze éva SikTvo P2P, ol ouppeTéxovTteg KOpPOL eivat todTipoL Kat Sev
aITaLTOUV piar KEVTPLKT apXT) cuvtoviopo. To povtélo vtoloylopov P2P eivat to avtifeto g
apXLTEKTOVIKNG client-server, 6Tov omoio ot eEVTINPETNTEG TTPOGPEPOLV KAl Ol TTEAATEG KATAVA-
A@vouv. Ztnv mepintwon twv P2P, ot képPot eival Tavtdxpova KATAVOA®TES Kal TXPoywYoi TwV
SaBéoipwv mépwv. Ta Siktva P2P éytvav Snpodiin otnv apxr tng mponyoluevng dekaetiag amd
TIG epappOYEG avTadlaymng apyeinv, 0nwg To Napster, Gnutella [SGGO03] kat Bitorrent [QS04].
H xpron toug eivatl cuxvd apdpileydpevn, adou eival yvooTd Kupiwg yio Ty StadtkTuakn oavTal-
Aoyn} kat 81édoon TOANEG POPEG TIUPAVOHOU TIEPLEXOHEVOU 1) UALKOD TOUL OTTOIOU T TTVEVHOTLKG
Sikal@paTa TPOoTATELOVTAL, OTIWG AOYIOULKO Kol OTITIKOXKOUOTIKO TiepleXdpevo. ITapoa avtd,
Ta dikTua P2P €00V TOAD KAAEQ I01OTNTEC OOV aipopd TNV KALHAK®OT) KoL TNV aAvVOXT) 0€ OPpAApa-
Tar. QG ek TOVTOL, £X0LV LL0OeTNBel o€ TTOAMEG epappoyEg, 6Tiwg P2PTV [HECT08], katavepnpé-
veg Paoelg dedopévwv [LM10, Vol09] on-line mayvidia yioe moAovg maikteg [KLXHO04], Content
Delivery Networks (CDNs) [BCMRO02], dnpoocievon kat Stavoun} tov Aoytlopko [DLO9], kKA.
H texvoloyia twv vrohoytotikov vepov [Wikllb], pe tnv mapoxn mépwv Katd anaitnon
HEOW €VOG OIKTVOL LTTONOYLOT®V, ATTOTEAEL £vat TTIo TIPOTPGATO TTapAdeLypa TTOL €xel €TT{ONG TNV
emBupnTr 1BLoTNTA Y1 KALPHAKWON. ¢ €K TOUTOV, AapPdvel Ohoéva HeYaADTEPT) TIPOCOXT TO-
00 ato TN Propnxavia 600 Kat artd Tov akadnpaiko koopo.Katd anaitnon (On-demand) kot o€
StaveunTikn Pdon (pay-as-you-go, xpéwon avaloya (e TNV Xpron) mpocPact oe LITOAOYLOTL-
KOUG Kal artofnkeuTikovg mopoug o PploKovTal o€ armopakpuopéva Kevipa dedopévmv eival
EVa TIOND EAKVOTIKO ETIXELPNUATIKO HOVTENO, 10iwG Yl piKkpopeoaieg emixetprioels (MME) 1) yiax
VEOODOTATEG ETILYELPTTELS KALVOTOIAG (startups) 1ov xpetalovtat ypryopn, ¢Onvi Kat KALHoK®-
otun npocPaocn oe e€omhiopd kat vrtodopr) Aoylopkov. Ot vninpecie¢ Amazon Compute Cloud
(EC2) [Amalla] kat Amazon Simple Storage Service (S3) [Amallc] mouv eiofixbnoav 1o 2006
WG EMEKTAOELG TNG SASIKTLAKNAG TAATPOpHaG LTINPeTIY AWS, Tay oL TIPWTEG LTINPECIES VE-
¢poug Tov Kabiépwoav TNV Amazon wg Tov KUpLO TAIKTN TNV PLOUNXAVIX TOL LTTOAOYLOTIKOD
vépoug. To emtuxnuévo mapdaderypa Tng Amazon akolovBiBnke ammd apkeTég akopa eTalpieg
onwg 1 Rackspace [Racl1], n RightScale [Rigl1], n GoGrid [GoG11], kAmt. Téco ot mpopnOevtég
KOl oL XproTeg wPeAobVTaL: Ol TIPMTOL TETLXAIVOLV TNV TIA P aloTToiNoT TWV LITOSOUWV TOVG
Kal devTEPOL ATTOKTOVV dipeot) TpdoPacn o TOpoLG Xwpig TNV emBdpuvon Tng dloxeiplong i} To
HEYGAO apXIKO KOOTOG KATAOKELNG €VOG IOIWTIKOV KEVTPOU Sedopévwy. XproTeg OTIG HIKPES
Kat peoaiov peyéBoug emixelprioels (MME) 1) startups mou xpetdlovtal pa ypryopn, $Onvr kat
KAHOKOOLUN TTPOoP oot o€ LAIKS Kal AOYLOHIKO TTpoopeVyouV Ge TEXVONOYIEG UTTONOYLIOTIK®V Ve-

POVv: ZOpPpwva He plo ipdopatn épevva [Opil0], mepiocdtepeg amo Tig pioé¢ MME mpokettat
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va xpnotpomotoovv vnnpeoieg cloud computing To Tpéxov €tog, oe aOYKpLomn pe HOALG 22% TO
TIEPAOHEVO €TOG. ZOpPwva pe Tnv Gartner [Garll], To UTTOAOYLOTIKO VEPOG KATENXPE TNV TIPMOTN
Béon otn Aot Twv top-10 GTpATNYIKOV TEXVOAOYIOV Yl To 2011.

Téo0 1o SikTVA OHOTIHWY GGO KAL TO UTTOAOYIOTIKA VEPT) aITOTEAODV SOpLKA DAIKE Yo TNV On-
HLOVPYIX KTTOTEAECUATIK®Y OLOTNHATWV Katavepnpévng dtaxeiplong dedopévwy. Kat ot dvo te-
XVOAOYIEG XPNOLHOTIOODVTAL YIX TNV OLVEVWOT] HeYAAOU aplOpol YewYpaPIKA AITOUAKPUOUEVDY
vrohoylotov. Ta diktva P2P ouvBwg Stacuvoéouy LITOAOYLIOTEG XPNOTWY, VG OL TTAATPOPHEG
UTTOAOYLOTIK®OV VEP®DV GUVEVOVOLV HeYAAEG OLOTOLY(EG UTTONOYLOTAOV TIOL BPIoCKOVIAL OE QTTO-
Hakpuopéva kévtpa dedopévav. ITépa atd avtod, ot Xprioelg Toug eivat yevikd alAnAévdeteg: Ta
UTTOAOYLOTLKG VEPT) UTTOPEL VA Xp1OLHOTIO00Y TEXVIKEG P2P yior Tnv avto-p0Biion twv vtoSopomv
TOUG yla KaAUTEPT) TTaXpOXT) TOpwV, eve Ta dikTuar P2P pmopotv va xpnotpomnolovv utoAoyLoTL-
KOUG TTOpouG and To cloud yia armote eopaTIKA KAHAK®OOT) O€ TTEPUTTAOOELS LTTEPPOPTWONG. [l
napadetypa, To OpenStack [Opell], pia mpoopatn TAATGOppa SLAKEIPLONG LITOAOYIOTIK®V Ve-
GV avolXToL AoYLlopikoV Tov vtootnpiletat amd tnv Rackspace kat 1 NASA, cav amofdnkev-
TIKO UTTOOTPwHA XprolpoTotel To Swift, To omolo givat Baciopévo oto CEPH [WBMT06], éva
Katavepnuévo P2P amobnkevtiko obotnua. Emumhéov, to NoSQL ovotnua Cassandra mou xpn-
otpomoteitat antd 1o Facebook [LM10], éva tumiko DataStore Baciopévo oe texvoloyieg vépoug,
Paciletat oe peyaho Pabud oe P2P alyopiBpovg yiax v Spopoldynon epwtnpdtwy, Staxeiplon
TIOPWV KAL LOOKATAVOUT GOPTOL.

IMop "0Aa avtd, N armoSoTIKOTNTA TV SIKTV®V OHOTIHWV KL TWV UTTONOYLOTIKOV VEPQOV EXEL
TO HELOVEKTNUA TNG TTOAVTTAOKOTNTAG KATA TOV oxeStaopd toug, Kabag molvapBpa {ntrpata
TIPOKUTITOLY OTAV Tat SedopLéVa Kot oL TTOpoL eival Slapolpacéva o€ peyaho aplOpo SlapopeTikav
aUTOVOpWY KOUPwV. épata onwg n e§lcoppdnnon ¢poptov (load balancing) [Cyb89], n cuvéneia
(consistency) [HM90], o ovyxpoviopog (synchronization) [Lam78], n avoxn oe opahpata (fault
tolerance) [Dij74], n SwtikétnTa (privacy) [MKGVO07] kat n aopddeiax (security) [And08] eivat
EVA LUKPO AVTUTPOOOTTEVTIKG SElyHA TOV TUTIKOV TTIPOPANHATWY TTOL TIPOKVOIITOLY Kot Xpr{ouy
QVTIHETOTILONG O€ évar KaTavepunuévo meptBaAlov. ITpooaprooTiké GLOTAHATO TTOL HTTOPODY VA
eykataotabolv Kal va Aettovpyovv oe éva avBaipeta peyaho aplOpd uITOAOYIOTIKOV KOUPWV e
eNAXLOTO SLaXELPLOTIKO KOGTOG XPTOLHOTIOLOVVTAL EVPEWG O€ TETOLEG TIEPUTTAOTELG.

To avtikeipevo Tng mapovoag SlxtpLPrg eivat n peAétn TeXVIK®V e€looppoTnong ¢poOpToL oe
Katavepnuéva ovotnuata daxeiptong dedopévayv. H avion katavopr touv ¢poptiov pmmopel va
TIPOKOAAEOEL TIPOPANHATA AKOUA Kot 0€ DTTOOOES e apKeTOUG TOpovg. Ta mpoopata mapadeiy-
nata Stakomng Aettovpyiag tng FourSquare [Horl1] kat tng Netflix [Net11] Seiyvouvv 6Tt akoun
Kal ov pa epappoyn €xel avantuxOel oxedov oe amepldploToug LITOAOYLOTIKOVG TTOPOUG TOU VE-
pOUG, UITOpEl Vo LTTOOTEL CNHAVTIKEG UITOPaOoELS 08 KATAOTATELG LYNAOD popTiov, edv éxel
puBuloTel e oTaTIKO TPOTO. ATpoPAenta Kat LYNAA popTia TToL eudpavifovial Aoyw KETTolwV

YEYOVOT®V TIOU eVOLAPEPOLY TTOAD KOGHO, OTIWG T.X., 0 Bdvartog tov Michael Jackson [PCW09]
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1 Tov Mmv Advtev, o oelopog oty lanwvia, KA, prmopotv va odnyrioovy oe patvopeva flash-
crowd [JKRO2] kat& T omoiot  uITAPXOLOX LITOAOYLOTIKT LTTOSOUT ATTOTUYXAVEL V& LTI pE-
TOEL TO HEYEAO OYKO TWV ELCEPXOHEVWY aUTHOEWY. EKTOG amd avtd, n acOppetpn pdoPaon oe
dedopéva katd TNV omoia éva UKPO Kot SNUOPINEG auT®V HItopel va A&PeL To peyaADTEPO [é-
pOG TOU 10ePXOHEVOL GOPTOL ATTOTENEL Evay aKOHN AOYO Yl petwpévn amodoon. [a mapddery-
ua, eumnpetnTég mov Siapotp&lovv Aoyaplaopovg twitter kat hashtags 1) .otoAdyla dnpopiwv
TPOCOTNKV Uopel va mapovotalovy LYNA& gpoptia, oe avtibeon pe aAhovg e€umnpeTnTég TTOL
¢prolevoiv AydTtepo dnuodileig Aoyaplacpovs. H avixvevon aoOppeTpng mpooPaocng yivetal
axépa o SvokoAn oe katavepnpéva mepiPdAlovta [KBHR10] ota omoia 0 GLUVTOVIGHOG TV

TIOpwV OgVv eivat arAr) vtobeor).

210 MpwTO HEPOG TNG StaTptPrig mapovaotaletat o NIXMIG, évag TpoCaprOGTIKOG ETTLY pOrpL-
uikog (online) akyoplBuog pe okomod v e€looppomnnon ¢pdptou epyaciog oe Katavepunpéveg So-
pég dedopévav mov vrootnpilouy TNV Spopordynon EpLTNHATWY EbpOLG TIH®YV (range queries).
O mpotevopevog alyoplOpog avTideTwtilel TPOPARUATH AVIOWV KATOAVOH®OV (pOPTOL Epyasi-
0LG TTOL TIPOKVTITOLY OTaV oL LT PeTNTEG SlaXpoLpAlovY avTiKeipeva SLapOpeTIKAG SNHOTIKOTN-
106 O ahydpiBpog vhomonBnke kat epappootnke oe évav skip-ypago [AS07], éva dounpévo
SikTLO OHOTIHWV KOUPWV tkavd va dpopoloyel epoTrpata ebpoug TIH®V. O akydpiBpog cuykpi-
Bnke melpapatikd Kot OewpnTikd KATw artod diapopeTikég ovvinKeg Kivnong pe dANovG TTapo-
potoug alydpiBpous. H avalvon amodetkviel 6TL 0 TTpoTeVOpHEVOG ayOplOpog eivat Tito ypryo-
POG KAl KATAVOADVEL ALyOTEPOUG OIKTVAKOVG TTOpoLG Katd TV dtadikaoio Tng e€looppomnong.
210 8ebTepo pépog NG epyaoiog opouotdleTal pior KATAVEUNHEVT) apXLITEKTOVIKT) SelKTOSOTN-
ong, armofnKevong Kal emepwTNonG dlapopeTIKOL TUTTOL SedOHEVWY peYEAoL OyKov. Xxedidlovpe
KOl DAOTIOLOVE €Val KALHAKOOLILO CUOTNUA OTO OTIOI0 TOCO TA TEPLEXOUEV OO0 Kol TX EVPETT-
plo avteV dnpovpyovvTal Kat Stapotpaiovral AN pwg mapdAinAa. To cvotnpa éxet oxedlaoTel
yia va alomtolei Texvohoyieg vtoloyloTikev vedpav (cloud computing). O ¢pdpT0G epyasiag Katd
v dnuiovpyia Kat eumnpétnon Td00 TV TEPLEXOHEVWY OO0 KAL TOL EVPETN piov e€looppoTeital
HeTalh TV KOHP®V TOL CUOTANATOG CLVOVALOVTHG KALVOTOUEG TEXVIKEG TTOLPAAANANG aVAALONG
Sedopévwv [DGO8] pe katavepnpéves, apaiég NoSQL Bdoeig [CDGH08]. To mpwtdTLTio 000TN-
pa SOKIHAOTNKE KAT® amtd HEYAAO GPOPTO EPOTNUATWYV Kal 1] HEOT) ATTOKPLOT) TOL KpaTnBnke oe

1aén millisecond.

IMapakdtw Tapovotalovpe ev oLVTOIA T KIVITPA Kol TIG CUVELTPOPES TV SVO TTAPATIAV®

OUCTNHAT®V.
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2.1 E&ioopponnon ¢poptov o katavepunuéveg dopég dedopévov mov

VITOOTNPICOLV TNV SPOUONOYNOT) EPWTNUATOV EVPOUVG TIH®V

Ol KATAKEPUATIOUEVEG KATA VoG (range partitioned) Sopég deSopévav, pia etdikr Katnyo-
piot SIKTVWV OPOTIHWY, XPNOLLOTIOLOVVTAL O€ TTEPUTTOOELG OTIOV OTUAGLOAOYIKA “KOVTIVE” GTOL-
Xela eivat avaykn va amofnkevovtal pe TéTolo TpdTo £T0L WOTE va SlaTnpeital 1) oelpd Tovg. H
datrpnon NG TomKOTNTAG TwV dedopévmV e TETOLEG TTEPUTTWOELG ETITPETIEL TNV ATTOTENETHOL-
TIKN) 8popoNOYNOT EPWTNHATWY EVPOVG, dNAADT, EPOTNUATWY YIA AVTIKEHEVH TWV OTIO{WV T

KAeldL& PpiokovTal eVTOG VOGS GUYKEKPLUEVOL EVPOUG.

Ta epotrpata eVPoLG eival TOAD ONUAVTIKE 0e TIOANEG ePApPHOYES, OTIWG Xwplkég [Ore86,
KS03] xat katavepnuéveg [VSCF09] Baoelg dedopévamv, diktua atcdntipwv [LKGHO03, YHPO2,
KVD™07], Siadiktuaxd mawyvidia molov maktav [BPS06, KLXHO04], e€unnpetntég iotov [LNO1],
amoBnkeg dedopévwv [LLLOO, HAMS97], kKA.

To axorovBa vYNASTEPOL eTUTES OV EPOTAHATA HETAPPAELOVTAL OE EPWTHHATA EDPOVG KATK
To omtoia €vag aplipdg SlaSoXIKAY avTIKEIHEVWY pITopel va copwBei pe éva pdvo aitnpa: Epwtr)-
Hata GoogleMaps T0TOU “Ppeg OAa Ta voookopeia petaf0 . Kne Lolog KatAewp. Meoco-
ve LoV, epwtipata hotels.com dnw¢ “ Bpeg Eevodoyeia ota Xavik pe StaBeotpdtnta petald 10
Iouviou 2011 kat1l3 tou Iouviou 20117 Condor [LLM88] 1 PBS [Hen95] epwtrporta
Omwg “Bpeg dGhoug Toug dabéctpovg kKOpPoug pe pvnpun RAM petald 2GB kat 8GB’, epwToelg
Paoewv Sedopévwy OTwg To “Ppeg dAovg Toug kKabnyntég otnv EANGSa, pe unviaio o6 and 5K
eUupd Kat UPNAST € po Kol epWTAHATA TTPOBEHATOC OTIWG “Bpeg OAeg TIg Aé€elg Trov apxilouv pe

o YPAHHATA OO

H xpnopotnta twv epwtnudtov eDpoug e cLVOLAGUS e To TIPOPANUA TwV “Meydlwy Ae-
dopévav” o8nynoe otov oXedSIAoHO KAL TNV LAOTIONGN TTOAVAPLOU®Y KATAVEUNHEVHY SOUMV KO-
VoV Yoo artodotikr Spopoloynon tétolou eidovg epwtnudtwv. Ot Skip Graphs [AS07], ta Skip
Nets [H]ST03], ta P-grids [APHS02], Ta P-trees [CLGS04], to BATON [JOV05] kot tar Prefix
Hash Trees [RHRS04] eivat éva avtimpoowrevtiko Seiypa tov ev Aoyw Sopwv. Ta mapandve
OLOTAHHATO OPYAVAOVOLY TO EVPETHPLO TOUG e TETOLO TPOTIO WOTE EPWTHUATA YL OT|HACLONOYL-
KO KOVTIVA VTIKEILEVA OTTAVTOVTAL [E TNV ETIKOVWVIX EVOG HIKPOU HEPOUG ATIO OAOKANPO TO
diktvo efumnpetnTwv. Eva Baoikd mpoPAnua mov avtipetomnilovv ot Sopég avTtég eival n Aofo-
o (skew), 6110V HOVO €vag HiKpAG aptOpog amod “Onpodithn” avTikeipeva {nreitatl amd 1o cuvo-
Ao medio Tipadv. H ho&dtnta €xel mapatnpnbel oe pa motkihia epappoynv. Eivat yeyovog oti
oL TepLocOTEPEG OLadIKTLAKES EPAPHOYEG, CUUTTEPINAHPAVOUEVOVY TV edpappoydv P2P, mapou-
o1&lovv peydn acuppeTpio Goov apopd Tov GpopTo epyaciag Toug (rry. [CKRT07,RFI02,SW02],
KATL). TTépav TovTOU, TUXOV A0 TOXIEG TOV LAIKOU Helmvouy emumhéov TNy Siabeotpdtnta Twv dio-

Ppopwv épwv. Katd cvvémela, ot SIaKOHIOTEG LTTEpPOpT@WVOVTAL Kt 0 puBudg e§umnpétnong
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xnua 2.2: O katarepayiouds e€loopporel pia dvioy katavouy] aAdd KaTaoTpéper THY TOTMKOTHTA TOU
TTEPLEYOUEVOU.

HELOVETAL AOY® TOL LYNAOD pOPTOL epYyaTinG, KATL IOV O€ TTOANEG TIEPUTTMOELG LITOPEL VA TTPO-
KaAéoel a6 pdvo Tou apvroelg vminpeoiag (denial of service) [JKRO02].

Ye aUTEG TIG TIEPUTTWOELG, EVAG TPOTIOG YIX VA AVTLHETWITLOTOUV LTTEPPOPTWHEVOL KOUPOL Kot
va KatavepnBei opotopopdpa o pépTog epyaciag otovg diabéotpoug LTTONOYIOTEG elvat 1) edap-
poyr ouvaptrioenv Katatepoaxtopol (hash functions) 6mwg n SHA-1 [Sta95] mov petatpémovy
ACVHUETPES KATAVOEG Sedopévmwy e opoldpopdes. H TeXVIKN aUTH XPOLUOTIOLEITAL ATTO HIX EL-
Sk katnyopia SikTVwV opotipwy, T« DHTs (Kataveunuévol IMivakeg Keppatiopon), émwg to
Chord [SMK™01], To Pastry [RD01], To CAN [RFHT01] xat To Tapestry [ZHS104]. Y10 oxn-
pa 2.2 Tapouol&lovpe TO AITOTEAECHUA TOU KATATEUAXIOHOD O€ [l Avion Katavopr): Xwpig Tov
Katatepoxopo, ot kKopBot Ny kot No Oa ftav vmevBuvol yla HeyaAbTepo aplOpd avTiKeIpéVRY
(méve pépog Tov oXNaTog 2.2). O KatatepoxIopog e€aopailet Ot pe peyahn mbavotnta, k&Oe
KOHPOG O Tapet ioo pepidlo Tov GLUVOAIKOD popTiov, aveEdpTnTa TNG A0EOTNTAG TNG KATAVOTG
(KaT® pépog Tov oxnuaTog 2.2). ITapola aUTA, TO HELOVEKTNHO TOU HETACXNHATIOHOV aUTOD €i-
ValL ) KATAoTpodn TNG TOTKATNTAG TOL TepLeXOpEVOD, KaBm¢ auvexdpeva avayvwploTika IDs
emavatonofetovvTal o€ eVIEANG SLPOPETIKOVG KAL ATTOHAKPLOHEVOUG SIIKOLOTEG.

‘Evag dAN0G TpOTIOG Yl VA AVTIHETOTTIOTOUV AVOHOLOHOPPEG KATAVOLEG EIVAL HEOW TNG OVTL-
YPAPHG TV SNUHOPIAGDV AVTIKEIUEVWV O€ TIOANATTIAODUG KOHBOUG, SNUIOLPYDVTAG ETOL ETTLITAEOV
avtiypaga (replicas) Ta omola ammoppopoiv pépog Twv epwTNUATV. [Tapdia avtd, o meplopt-
OHOG TTOL BE€TEL 1) TOTILKOTNTO TOL TIEPLEXOHEVOL ENAXIOTOTIOLEL TOUG UTTOYNPLOVG UTTONOYLOTEG,
ETUTPETOVTAG HOVO, TTX. KOHBOLG TToL artéxouv Alya alpata (hops) pakpid. Emmiéov, n) Siaxeipt-
on TOAATIA®V avTLYp&Ppwv OxL Hovo Tipodmobétet TV adlayr) Twv akyopibpwv dpopoldynong
TOL SIKTUOL KATA TNV eloarywyn Kat avalitnon dedopévmv, aAN& amaitel Kat eMTAEOV HEPLUVA
yia T B€paTa oUVETELAG TTOL TIPOKUTITOUV KATA TNV EVIUEPWOT AVTIKEIHEVWY (object updates).

2TIC TEPIMTWOELS AU TEG, HEBOOOL e€L00PPOTINOTG PAPTOL TTOL AVAKATAVEUOLY TA AV TIKEIHEVA
petald tov kOpPwv eivat Waitepa xprotpes. H Suvauikn ¢puon kot n peyahn KAHoKo TV Ko-
TAVEUNHEVOV ALTOV SOHOV, KAT& TNV omtola eivat SOOKOAO yia évav KOUPO va EXEL [t GUVOALKT)
eIKOVA TOL PpOPTOL epyaciag oTo dikTvo, B¢tel SVo Paoikég mpobmobéoeig: emtypappikn (online)

AettoLpyKOTNTA (1 I8LOTNTA VA TIAEPVOVTAL CWOTEG ATTOPATELS KATA TNV €6L00PPOTINOT), £XOVTAG
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load load

keys . keys

A B C D A DB C

xnua 2.3: Hapddeypa Meravdorevons KépPov. O kdéupos D tomoOereitan perald twv kéupwv A kar B
Kat potpdCetal uépog Tov poptiov TOUC.

load load

keys
A BC D AB C D

keys
L=

Ixnua 2.4: Iapddeypo Aviaddlaync Aviikeipévov uetalt [eitévov. Awadoxikés aviallayés kAedidv pe-
10 TV (evydv (A,B), (B,C) kat (C,D) tedikd Snptovpyodv pia e§Laoppomtnuévy KaTavour.

HEPLKN YVOOT) TNG KATAVOUNG TOL $pOPTOL EPYATIAG) KAL TIPOCAPHOOTIKOTNTA (N SuvaTdTnTa Yiar

YPriyopn avtarmokplon oe alay£g Tov ¢pOpToL epyaaiag).

Ztnv BipAoypadia vtapxet pio TotKihior peBodwv e emikevTpo TNV emitevn amoTEAECUATL-
KNG e€L00PPATINGTIG POPTOL EITE AUTEG XPOLLOTIOLOVV TNV EVVOLX TWV EIKOVIKGY KOpBwv [DKKT01,
RLS*03,SGL*06,GS05,ZH05HLCH11,CT08,LCLCO9] eite 6x1 [KRO6, GBGM04, AKK04,BA S04,
VORT09,LCLC09,5X07,5SX08,Jou08]. Qo1600, ummopovv va katnyoptomotnBovv oe 00 yevikég
otpatnykég: Meravdorevon KépPwv (Node Migration) kat Avraddayr Aviikewévoy petald [ei-
évwy (Neighbor Item Exchange). Ot texvikég autég avturpoowmevouy d00 SladopeTIKEG TTPO-
oeyyioelg ylo To Xelptopd Tov mpoPAipatog: H Meravdorevon Koufwv xpnolponolel viopopto-
Hévoug kOUPovg Toug omoiovg TotobeTel o€ LTTEPPOPTWHEVEG TIEPLOXEG TOU SIKTOOU (PA€Te Zxrpa
2.3, 610V 1O YOG TV PAPOwV deixvel To popTio Tov KAbEe KOPPOL, EV® TO TTAATOG TOUG AV TV
KA& TOV aplOpo Twv kAetdiwv mov oepPipouvv). Ot veoadpixBévteg kKOpPoL KatahapPdvouy Hépog
TOU GOPTIOL TWV VEWV YEITOVWV TOUG. ATIO TNV AAAN TAeLpd, 1) pEBodog Aviadlaync Avrikeié-
vov petalt [eitévwy e€looppotiel To GpopTio pHEow SLadoXIKWV AVTOANAY®V AVTIKEIHEV®V HeTAED
YeITovikaV KOuPwv (PAéne Zxnpa 2.4). H mhetovdtnTa TV poTelvOlevey TTpooeyyioewy Xpn-
otporotei pia pi€n twv dvo avtwv peBddwv fe akomd TNV TelKN e§looppdmnon ¢popTiov peTald
KOHPwv. [Tapdro mov Kat ot dvo peBodot TEAKE TTETLXAIVOUV TOV GTOXO TOUG, ) TAXVTNTA KAL TO
KOOTOG TOUG SLarpopoTToLoDVTAL CNHAVTIKA, KAvovTag évav alydptBpo mouv xpnolpornotlel povo

pia arto Tig Svo avtég HeBOSoug avaTTOTEAETHATIKO Yia ONEG TIG TTEPUTTWOELG.
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2.1.1 ZvpBoAn

H ovpPoAn pag propei va ouvoyioBei ota akdovba:

+ Avévon tng Metavaotevong koppov (MIG) kat AVviaANayfig AVTIKEIHEVOV HECW
Teitovev (NIX): Ot dvo diapopetikég peBodoloyieg mov, 6Tav epappootodv Stadoxikd,
eKTENODV e€LOOPPOTINOT) POPTIOL OE KATAKEPUATIOUEVES KATA EVPOG SopEC Sedouévmy evTo-
nilovtat kat poadiopilovTal. Ieptyp&poupe TOUG HNXAVIOHODG TOVG KAl HeAeTOVE Bew-
PNTIKA TNV €MMIG00T) TOLG WG TTPOG TO XPOVO OAOKATPWOTNG Kait TO KOGTOG eTikotvwviog. Eva
ONHOVTIKO KITOTEAEGHA TOL €PYOU HAG VAL ) TTAPATHPNOT OTL, HOVO e aTthég AvTadlayés
Avrikewévov uetald Teirévwy 1 e€looppdmnon yivetal dlaitepa apyd Kot o aplipog twv
dedopévav mov avTaAA&ooovTaL HITopel Va elval apKETA HEYGAOG, EVE® XPTOLULOTIOLOVTAG
povo Metavaoreboeis KopPfwv 10 KOGTOG TNG EVNUEPWOTG TNG dopng avEdveTtat onpavTL-

KA.

o 2xedaopdg kat Oempnrikn avalvon tov NIXMIG: Me Baon autr) TNy HeAET TapouoLd-
Covpe Tov NIXMIG, évav vPpidiko akyoptOpo mov xpnotpornolel tavtdxpova Aviadlayés
Avrikeiévov puetald larovwy kat Metavaoreboels Kopfwv TpoKeLHEVOL v EAAXLOTOTIOL-
nBoovv ot vepPpopTwpEVOL KOUPOL KaL va tooppotnBei ) katavopr) poptiov petald Touvg. H
péBodog avtn kataépvel va pooappdoel Tn xprion Tov Metavaoreboewv Koppwv pe Tnv
Avraldayn Avtikewévoy petald Teirévwv: To Gpoptio Kiveital oav KOpa and meplocotepo
0e AMyOTEPO POPTWHEVEG TIEPLOXEG TNG QOUNG e TTPOTAPHOCTIKS TPOTIO, XPIOLUOTIOIOVTAG
v Sk pag exdoxn v diadoxikwv Aviallaywv Avrikepévoy uetald Teirovwy. Otav
eVTOTII{OVIE TIEPLOXEG [LE TOTIIKA HEYAAO PpOpTiO, TOTE EvepYOTIOLOVE TIG MeTavaoTeloeLs
Koupwv. Emumiéov, mapovaotdlovpe “e§umnves” pebdSoug ylo Tov eVTOTIoHO Kal TV Tormo0é-
TNOT HOKPLV®OV KOHB®V KATE TNV HETAVAGTEVOT), TTOL OKOTIO €XOVLV TNV TTEPETAIP® UEIWOT
NG KATAVAAWONG TOL eVPOUG {wvng Katd TNV edpappoyn Tov NIXMIG. H Ymapén oUykAL-
ongG Tov akyopibpov, n TaxOTNTA fe TNV omoia N CUYKALOT) aLTH eMITLY XA VeToL Kabag Kat
ot TpoiToBécelg TTOL TIPETEL VoL LOXVOLV Yl VA GTACEL TO CLOTNHA O€ oNpelo looppoTtiag

peketBOnkav BewpnTikd.

+ YMomoinon kat etpapatiki anotipnon tov NIXMIG IMapovotdlovpe pia bAoTtoinom oe
skip ypdpo [ASO7] mévw otnv omoia epapudlovpe kat cuyKpivouvpe Tov vppidiko NIXMIG
e 1§ anhég Metavaorevoeis Koppwv, Ti¢ Avtallayés Aviikepévwy uetaéd Ieitévov Kal
pe évav dAho aydpibpo e€looppomnong dpoptiov mov mpotdOnke amd tovg Karger kat
Ruhl [KR06]. MeTpdpe Kat GUYKPIiVOUHE TN GUUTIEPLPOPE TOUG Oe ot TTotKIAiar artd Su-
VOHIKG& Kot ovopoloyeviy ¢poptio. Tao armoTEAECHATA HOG ETKUPWVOLV TNV TIPONYOUHEVT
avdévon kot Oeixvouy 61t o NIXMIG e€ioopporel pe XapnAo K6otog (avTaAN&oeL Hovo To

éva €KTO KAl TO VA TPITO TwV HNVUUATWV KOl TWV OVTIKELHEV®Y, AVTIOTOIXWG, 0 GVYKPLOT
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pe tov [KRO6]) kat pe peyahn taxvtnta (eival Tpetg gpopég mio yprjyopog amnd tov [KR06]),

TIpocapuOLeTaL OTIG HETAPONEG TOU GOPTO epYUTiG KAl VAL TTOAD TTAPAHETPOTIOLGLHOG.

2.2  Katavepnuévn amodnkevon kat deiktodotnon diapoperikov T0-

1OV dedopEVOV HEYAAOU OYKOU

Tov televtaio Kalpod, n TaLTdXPOVI HelwOT TOL KOGTOVG TOL ATTOONKEVLTIKOV XOPOL KAl TNG
nipdoPaong oto Internet emitpémetl v eAevBepn SidBeon oto Kovo pHeydhov 6yKov OedopEVQV.
AkTvakoi ToToL O1twG 1o Internet Archive tpoodépouy podoPacn o€ petabytes Sedopévwv Omwg
loTooeidec, PtpAia, KA. Eva &ANo mapddetypa elvat  Amazon n omoia Tpoodépet dnpdota ov-
vola Sedopévwv (datasets) (oxedov) Swpedv péow tov amobnkevtikol Tng vépoug'. H amodo-
TiKn) SeikTod6TNOoN Kat dnpovpyia evpeTNPiov eivat TOAD CHAVTIKH Y& Vo KATAoTel Suvatr n)
XPNOTIKOTNTA TwV Jed0PEVOV LTV, OANG aUTO eival éva TTOAD SUOKOAO €pYo yia TIG eV AOyw
006 TNTEG Sedopévwy: akopn Kat to Internet Archive, dev emutpémet mArpn avalntnon Ketpévou
(full text search) oe pia amtéd 116 1110 eVSlapépovoeg vitnpeoieg g, To WayBackMachine® pe éva
obvolo dedopévwv TG Taéng Twv 4,5 PB.

Av kat n dnpovpyio evpeTnpiov eival pia TTOAD AAUTNTIKA epyacia, éxet TNV PoAkn 1010-
T NG apalAnlomoinong: oAdKANpn N epyacia pmopel va xwploTel o€ TTOANEG HIKPOTEPES
uTto-epyaoieg (yia Tapadelypa, pe To Slaxwplopo Tov cuVOAov Sedopévmwy o€ 1oopeyEOn Koppd-
TL), OL OTIOIEG UTTOPOUV VU EKTENEGTOVV TAUTOXpOVA ATTO SIAPOPETIKOVG UTTONOYIOTEG. AV Kot O
OUVTOVIOHOG T®V LITO-EPYNOL®V UITOPEL va yivel Kal atd tapadooiakols XpovoSpopoloynTEg
epyaotov onwg o Condor [LLM88] 1} to PBS [Hen95], ta yevikng xprjoews mpoypappata auTd
dev éxouv oxedlaoTel Yo UTTOAOYLOHOVG peydAov dykou dedopévmv. TTpokelpévou va avTIHET®-
TIoTEL TO TTPOPANHA AUTO, Pia OElpd KATaveUNEVY TAaLciwV emefepyaciag Sedopévwy éxovv
TipoTafel YixX V& QVTIKATAOTAOOLY QUTA TA TTPOYPAHUATO O€ TIEPUTTWOELG OTIOL 0 OYKOG SO0 LE-
V@V givat TOAD peydhog. Ta cuoTHpATA aUTE EXOUV Tar (Sl XU paKTNPLOTIKA (€ TOVG TTPOYOVOUG
TOUG, OTWG Yl Tapadetypa, TV XpOVo-OpOpHONOYNON EPYATL®Y, TNV AVOX 0€ OPAAHATH KAl
v e€l00ppdTINGT POPTOU, He EMIITAEOV AELTOUPYIEG EXOVTAG KATA VOU SladpopeTIKAG KAIHAKAG
OYKO 8ed0EVWV: EPpapHOLOLV He SLAPavo TPOTIO TEXVIKEG eMeEepyaaiog OTIWG 1 HETAKIVION TV
UTTOAOYLOH®OV KOVTE 0Ta SeSOHEVQ, TIOV ETUTPETOUV TNV €DKOAN avATTTUEN KAl eKTENEDT) HalIKd
napdAANwv epappoyav. To MapReduce tng Google [DG08], to Scope tng Microsoft [CJLT08],
kot 1o PIG tng Yahoo [ORST08] eivat éva avTutpoowmeuTiké Setypa TéTolwy mhaicioy.

[Tépa amo tn Snpovpyia evpetnpiov, n e€umnpétnon Kat amobrkevor) Touv eival emiong pia
epyaoio aImaLTNTIKY) 08 LTTOAOYLOTIKOUG TTOPOUG, EOIKE OTAV 0 OYKOG TOL eLPeTNPioL 1) 0 puBudg

ALTACEWV TOV XPNOTOV €lval TTOAD HEYAAOG, Hia TUTIKY TIEPITTWON OTIG HNXAVEG avalnTnong

'http://aws.amazon.com/publicdatasets
*http://www.archive.org/web/web.php
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Index creation and distribution
Content distribution

Uplpgdicthent Search index

Get data

SxXAua 2.5: ETLOKGTTHON Yiag KATaveunuévys mlarddpuas Snuiovpyiag evperypiov.

Iotov. To evpetnplo TG Google eixe 1161 26 exatoppdpla oelideg To 1998 Kat péxpt To 2008 eixe
¢TdoeL To éva Tploekatoppdplo oelideg [AHOS8]. TTap "dha avtd, n e§umnpétnon Tov evpetnpi-
ou eival emiong plx epyacia mov popel va eivar katavepnOel amoteleopatikd. [a mapadety-
Ha, oTto TNV apxn g Aettovpyiag g Google, To evpeTpLd TG KatavepnOnke peTad TOAGOV
KOUP®V yia TNV artodpuyn TTPoPANHATOV KAHAK®OOTG Kol YLot Vo UTTApXeL KAAUTEPOG ENEYXOG TV
Xapaxtnplotik®y artodoon. Eva Tumiko 6evaplo evog KATAVEUNHEVOL GUOTAHATOG Snptovpyiag
eupetnpiov paivetat oto oxfpa 2.5: Ot Slayelplotég avefalovv o mepiexdpevo pali pe odnyieg
yta TNV dnpovpyia Tov evpetnpiov. To mepiexopevo enefepydletal kat e€&yeTal To VpeTHpLO.
TéNog, oL Xpr)OTEG XPNOLHOTIOLOVY AUTO TO EVPETNPLO YIa TNV avalnTnomn Kot avakTnon dedopé-
vov. [Tépa amnd 1o evpetrplo G Google, dedopéva amd TOAEG ATTO TIC EGAPHOYEG TNG, OTIWG TO
Google Reader, Google Maps, 10 Google Book Search, 1o Google Earth, Blogger.com, 1o Google
Code, 1o Orkut, To YouTube kat to Gmail Siatnpeital oe avtd T Katavepnpéva diktva vto-
Aoylotov [Wiklla]. Avtoi ol UTTOAOYIOTEG gival OpyaVwHEVOL O TEPAOTIEG CLOTOLXIEG TTOAA WY

X\éddwv kdpPwv ot omoiot Ppiokovtal oe SIAPOpPeTIKA KEVTPA SeSOpEVWV.

2.2.1 ZvpBoAn

e o) TNV EVOTNTA, HEAETAE TNV ATTOTEAETUATIKOTNTO TOL GUVSVACHOD EVOG KATAVEUNUE-
vou TAatciov detkTodoTnomN e i cuoTotyia armoBnikevong Sedopévmv yia Tn dnpiovpyia evog
TIApwG Stavepnpévou unxaviopov yia tn dnuiovpyia kat tTnv e€umnpétnon evpetnpiov. EoTid-
Covpe otnV e§100ppdTNON TOL YPOPTIOL TOGO KATA TNV SLOLPYia TOL EVPETN PiOV/TIEPLEXOHEVOD,
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XPNOLHOTIOLWVTOG éva KaTavepnpuévo mhaiolo emeepyaciag dedopévwy 600 Kal yia TNV e§umn-
PETNON TOL EVPETNPIOL/TIEPLEXOHEVOL HEGW EVOG KALVOTOHOVU GLOTHHATOG amtodrkevong dedopié-
vv. O pnxaviopog dnuiovpyiag kat Stapolpacpot mpémel va eival oe Béon va xetpiletal peydho
6YKo SedopEVHV KAL TALTOXPOV®V AUTNHATWY XPNOTMOV KATE TPOTIO £YKALPO KAL XTTOTEAECHATIKO.
O oxedlaopodg mpémel va eival ApKETA YEVIKOG WOTE va eTILTPETIEL TOV Xelplopd dedopévav Sia-
GpOpwV TUTIWV, atd evtehm¢ adopnta péxpt Sopnpéva dedopéva. Emmiéov, 1o ovoTnpa mpémel
va emtpémnel otov dlayelptoTh va kabopilel ebKoAa aITOTENEGHATIKOUG KAVOVEG € TOUG OTTOI0VG
va eTAéYel akplPaG TNV epPéNela Kat Tov TUTTO Tou evpetnpiov TTov Béel va dnpovpynoel. Me
Ayoa Aoyla, metuxaivoupie Tov €€ SmA6 aTdX0: TTPWTOV, VAOTIOLOVHE Kot EPAPHOLOVE EVa TTp®-
1éTUTIO TIACiOLO SEIKTOBOTNONG KAl SLopOLPACUOV TIEPLEXOHEVOU TIOV ETILTPETIEL TNV EDKOAN KL
nipocappdotpn Staxeipton dedopévwv Kat evpeTnpiov. AeOTEPOV, XPNOLHOTIOLOVHE TO TIPWTOTUTIO
oUOTNHA Yl TN HETPNON TwV eTd00emV evag evpéws Sladedopévou cuoTipaTog armobrkevong
dedopévav vmtd pealloTikég cuvOnKeg Kivnong peyahov gpoptou epyaaiog yia SiapopeTikolg TU-

Troug Kat peyéln dedopévwv.

[Mapovaotdlovpe éva KataveUnpévo oOoTNUa KATdAANAo yia Setktodotnom, anobnkevon Kot
Sapopacpd peydhov dykov Sedopévawv (oe peyédn TB kat meplocdtepo) K&Tw artd vynhd ¢pop-
10 gpyaociag. Ot xprioTeg TpoPpodoTolv To oOOTNHA e Ta TTpwToyevr) dedopéva kabwg kal pe
Kavoveg SelkTo8OTNOMG TTOL €XOLV VL KAVOLV [E TOV TOTIO TV JedOHEVOV ALTWY, KAl TO G-
otnua ta enefepydletat avaroya. H emavnuévn minpogopio mmov mpoépxetal amd tnv ene-
Eepyaoia Twv dedopévwy e€dyeTtal pe TN HOPPH EVOG KATAVEUNHEVOL EVPETNPIOL Kal OlapoL-
paletat oe éva peydho aplBpod Tavtoxpovwy xpnotwy. o v emraxvvon g dadikaoiog, n
UTTONOYIOTIKG Kot ammoBnKeuTIK& amattnTiky Selk1o80TNnon XprotHoToLEl TO KALVOTOHO GVOTN-
na MapReduce [DGO8]. Tix Tnv emitevén xapnAwv xpovmv andkplong KATw oIté vynio ¢poptio
TAVTOXPOVWYV EPWTNHATWY, TO ALTAHATA TV XPNoTOV e€UTNpeTobVTAL Héow TNG HBase, o vAo-

Toinon avouytov kadika Tov BigTable tng Google [CDGT08].

IMapatnpotpe 6tL 10 TAAioLo Stavépel TOCO TO TIEPLEXOHEVO OO0 Kal To eVpeTrpLo. To cvOTN-
Ha MapReduce tov mhatoiov Hadoop [Apallb] xpnoipomnoteitat Toco Katé Tn Sidpketo amodn-
KELONG TOV TIEPLEXOUEVOL OO0 Kal KaTd Tr Snplovpyia evpetnpiov, €10t wote va alomonBovy
OUTOTEAECUATIKA Ol LITOAOYLOTIKO{ TTOpOL TNG ovoTolXiag. Tl TNV avaKTnon Tov TepLEXOHEVOL
Kat Tov evpeTnpiov xpnotponotovpe T NoSQL B “aon HBase [Apalld], SeSopévou oti eival ote-
va ovvdedepévn pe o Hadoop, éxet pior amo Tig peyalDTepPEG KOVOTNTEG AVOLKTOU KOSIKO GTOV
xwpo twv NoSQL kat xpnotporoteital and éva peyaho aplipod emixelprjoewy Kol 0pyaVIOHOV
naykoopiong. H amoBrkevon touv meplexopevou Kat Tou eupetnpiov yivetal péow tov HDES, Tou

Kataveunuévou amodnkevtikov ovotipatog Tov Hadoop.

To cVoTnpa ETUYaivEL TOUG akdAovBoLG GTOXOUG:
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+ Real-time xpovotr anokpiong epTNHATOV: Ol XpOVOoL EKTEAEOTC EPOTNHATWY Eival OTNV
16N Twv millisecond, yia va emitpémouvv aToug XprioTeG va Kdvouy Ypryopeg avalntr-
O€lG 0TO Teplexopevo. Aev emitpénovpe Tnv “on the fly” extéleon Papldv avaAvTIK®V ep-
YAOIOV 0OV EPOTARATA TV XpNoToV (0Ttwg yivetal ota ovotApata Pig [ORST08] kat
Hive [TS]709]), kaBwg tétoleg epyaoieg Sev etvar katdnheg yia “live” avalntroeig, e€ai-

Tiag TOL HeY&AOUL XpOVOL eKTENEONG (XTTO NETITA HEXPL WPEG).

+ Khipakoowpotnra: To oOotnpa €xel TNV SuvaTOTNTA VO KALHAKOVETAL LE EAAOTIKO TPATIO
{LE TNV AITAY} TIPOCAPHOYT) TOU aplOpol TwV CUUHETEXOVTIWV KOpPwv. H khipdkwaon autr

avTipeTeiCel avEnpévo 0yKo dedopévmv Kal 0YKo TAUTOXPOVWY EPWTNHATMV.

+ Evkolia otnv xprion: Ot xprjoteg éxouv Tnv evxépela va kabopilouv ammholc Kavoveg yla
va SNA®MVOUV To €0POG Kat TO TOTIO TOL EVPETNPIOV, KAl UITOPOUV VU KAVOLV EPWTHOELS LE
“vonpa” méve ota dedopéva (Ty avalitnon yax cuvéSpla Trou TeptExovy TNV Aé€n cloud

Kal paypatonomdnkav oty California).

+ Yrootnpi§n mowidev Tonev dedopévev: To cvotnua Oa pénet va vtootn pilet didpo-
poug TUTToUVG Sedopévwy, cupmeplapfavopévmv adopuntwy (my. log entries, apyeic HTML,

KATL), nui-Sopnuévav (apxeia XML) kat Sopnpévwv (Baoeig SQL).

To vtdlouro TG mapovoag SlaTPLPrG eival opyavwiEVO wG eENG: 0TO KEPANALO 4 TTAPOLOLA-
CeTat avoAuTIK& 0 akyoplOpog NIXMIG, 1o kepdAato 5 Tapovoldlel TO KATAVEUNHEVO TTAQIOLO
eneepyaociag evpetTnpiwy Kal 0To KePdAato 6 Tapovatdlovpe Ta YeVIKA oupTepdopata Kabwg
KOl OPLOUEVEG HEANOVTIKEG EPELVNTIKEG KaTeLOVVOELS. TENOG, 0TO TapdpTN A TTOrpOLOIALOVE K-
TIoLAL aLPXIK& CUHTTEPAOUATO TNG UTTO €EENIEN EpYATIg G TTOL XOXOAEITAL e TNV HETPNON TNG

eAaoTIKOTNTAG dLdpopwv NoSQL cuoTnHATwV 08 LTTONOYLOTIKA VEPT).
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CHAPTER 3

Introduction

In the past few years, we are witnessing a tremendous increase in the volume of digital informa-
tion that is created and consumed worldwide. Our era is marked by what is referred to as the
“data explosion” According to Google’s CEO [Kir10], 5 hexabytes of information that were cre-
ated between the dawn of civilization until 2003 are now created every 2 days. The IDC Digital
Universe survey released in May 2010 [GR10] reports that in 2009, despite the global recession,
the digital world grew by 62% to nearly 800,000 petabytes. In 2010 it was expected to grow up to
1.2 million petabytes, or 1.2 zettabytes, and by the end of the decade it will be 44 times the size of
2009. A schematic representation of this growth can be seen in Figure 3.1. The small dot repre-
sents 1 Exabyte of data which corresponds to the entire US mobile data traffic for 2010, whereas
the whole grey box represents 35 Zettabytes, the estimation of the entire mass of digital data in
2020. This data includes web logs and click streams from social networking sites such as Face-
book [Facl1] and Twitter [twill] and large scale e-commerce sites such as Amazon [Amalle]
and eBay [eBall], raw data produced by RFID tags and sensor networks, call detail records, data
from astronomy, atmospheric science, genomics, biogeochemical, biological and other scientific
research, military surveillance, medical records, audiovisual archives and financial transactions.
For example, CERN’s Large Hadron Collider will produce roughly 15PB of data annually [CER08]
and Facebook creates around 20TB of compressed data daily.

When it comes to deal with the “Big-Data” [Jac09] problem, centralized single-server archi-
tectures turn out to be inefficient and are now becoming obsolete. It is true that Moore’s law

cannot hold for ever: fundamental physical barriers prohibit manufacturers to produce faster

17



18 Chapter 3. Introduction

.\ 1 EB (Exabyte=10"8bytes) = 1000 PB (Petabyte=10"3bytes)
Last year (2010) US mobile data traffic

0.8 ZB (Zettabyte) = 800 EB
Entire global mass of digital data in 2009
accordingto IDC

35 ZB (Zettabyte = 102" bytes)
forecast for all digital data in 2020

Figure 3.1: A proportional representation of data growth estimation for the current decade.

CPUs [Dub05]. Therefore, exponential data growth cannot be dealt with exponential resource
growth. On the other hand, distributed data management systems that are organized in large dat-
acenters are able to provide the required storage and computational resources in a horizontally

scalable and cost efficient way compared to monolithic single-server approaches.

These datacenters, which comprise of numerous shared-nothing commodity computing and
storage units interconnected with simple networking hardware, have replaced expensive super-
computers and now are the de-facto approach by the vast majority of software companies, es-
pecially those that deal with Internet applications. These applications are used to harness the
datacenter’s computational and storage resources in a unified and scalable manner. Since they
process both a large number of concurrent and logically independent user requests along with
vast amounts of uncorrelated data, they are able to efficiently balance the imposed load be-
tween the datacenter’s resources. The successful pioneering example of Google in this domain
is now followed by every large Internet service that deals with vast amounts of user requests:
YouTube [Youll], Twitter [twill], Skype [Skyl1] and Facebook [Facll] are a representative set
of services whose success and efficiency is also attributed to the use of distributed data manage-

ment systems.

Peer to peer systems (P2P) [Wikl1c] are a computing paradigm that exhibits good proper-
ties in terms of scalability and self-organization and it is employed in various large scale appli-
cations. In a P2P computing system, participating peers are equally privileged and do not need
a central coordination authority. The P2P computing model is the opposite of the client-server
architecture, in which servers supply and clients consume. In the P2P case, peers are equal re-

source consumers and producers. Peer to peer systems (P2P) have become popular in the start
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of the previous decade from file exchange applications such as Napster, Gnutella [SGG03] and
Bitorrent [QS04]. Their applicability is often confused, since they are mostly known for the ex-
change and dissemination of many times illegal or copyrighted material such as software and
audiovisual content between internet users. Despite this, they have been found to have good
properties in terms of scalability and fault tolerance. Therefore, they are adopted in numerous
applications such as P2PTV [HFC'08], distributed databases [LM10, Vol09] on-line multi-player
games [KLXHO04], Content Delivery Networks (CDNs) [BCMRO02], software publication and dis-
tribution [DL09], etc.

Cloud computing [Wikl1b], the provision of resources on demand via a computer net-
work, is a more recent paradigm that also shows desired scalability properties. As of this, it
has been receiving an increasing amount of attention from both the industry and academia.
On-demand and pay-as-you-go access (i.e., resource renting and usage for as long as they are
needed) to both infrastructure such as CPU cycles, storage and network bandwidth and soft-
ware such as developing platforms and applications that reside in distant datacenters is a very
attractive business model. Amazon’s Elastic Compute Cloud (EC2) [Amalla] and Simple Stor-
age Service (S3) [Amallc] which were introduced in 2006 as extensions of AWS [Amalld], its
web services platform, were the first cloud services that established Amazon as the leading player
in the cloud computing industry. Its successful paradigm was followed by many other compa-
nies such as Rackspace [Racl1], RightScale [Rigl1l], GoGrid [GoG11], etc. Both vendors and
users are benefited: the former achieve full utilization of their infrastructure and the latter gain
instant resource access without the administration burden or the large upfront costs of building
a private datacenter. Users such as small to medium sized enterprises (SMEs) or start ups that
need a quick, cheap and scalable access to hardware and software infrastructure are embracing
the cloud technology: according to a recent survey [OpilO], more than half of SMEs were going
to use cloud computing services in 2010, compared to a mere 22% the previous year. According
to [Garl11], cloud computing is ranked first in the list of top-10 strategic technologies for 2011.

Both peer to peer and cloud computing are used to build efficient distributed data manage-
ment platforms. They both resemble in the fact that they involve large numbers of computing
nodes. P2P systems usually interconnect user computers whereas cloud platforms interconnect
large computer clusters that reside in distant datacenters. Despite this difference, their use is in-
tertwined: a cloud may utilize P2P methods for self-organizing its physical infrastructure for
better resource provisioning, whereas P2P networks may utilize cloud resources for efficient
scaling-out in cases of high and short-term loads. For instance, OpenStack [Opell], a recent
open source cloud management platform supported by RackSpace and NASA, builds Swift, its
storage platform, on top of Ceph [WBM™106], a peer to peer based distributed file system. More-
over, Facebook’s Cassandra [LM10], a typical NoSQL cloud datastore, is heavily based in peer to

peer algorithms for routing, resource discovery and load balancing.
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The efficiency of both cloud and peer to peer computing comes at the price of design com-
plexity, as numerous issues arise when content and resources are dispersed. Load balancing
[Cyb89], consistency [HM90], synchronization [Lam78], fault tolerance [Dij74], privacy [MKGV07]
and security [AndO8] are representative samples of typical problems that need to be tackled in
a distributed environment. Efficient handling of these problems requires approaches that can
harness large amounts of resources in a fully decentralized and scalable manner with the least
possible human intervention. Self-organizing adaptive systems that can be deployed and operate
in an arbitrarily large number of participating nodes with minimal effort are widely employed in

these situations.

In this thesis, the problem of load balancing in distributed data management systems is stud-
ied. It is true that uneven load distribution can cause serious problems even in over provisioned
infrastructures. The recent examples of the FourSquare [Hor11] outage and netflix [Net11] de-
pict that even if an application is deployed in the cloud’s virtually unlimited resources, it can suffer
significant degradations in high load situations if it is configured in a static way. Unanticipated
high loads that occur due to a popular event, e.g., the death of Michael Jackson [PCW09] or Bin
Laden, the earthquake in Japan, etc, lead to flash crowd effects [JKR02] in which the comput-
ing infrastructure fails to accommodate the high volume of incoming requests. Apart from this,
skewed data access in which a small portion of popular data may get the majority of the applied
load is another reason for degraded performance. For instance, twitter accounts and hashtags or
blogposts of popular persons and the servers that host them can experience high loads, in con-
trast to servers that host less popular accounts. Skew detection and handling is more difficult in

distributed environments [KBHR10] in which resource coordination is not straight-forward.

In the first part of this thesis, NIXMIG, an adaptive online algorithm that balances load in dis-
tributed range partitioned data structures (i.e., structures that are able to answer range queries)
is presented. The problem of uneven load distribution that occurs when peers serve objects of
varying popularity is addressed. NIXMIG is implemented on top of a Skip Graph [AS07], a struc-
tured peer to peer system capable of answering range queries. NIXMIG is experimentally and
theoretically compared to other load balancing algorithms and the analysis shows that it is faster
and consumes less bandwidth during the balancing procedure. In the second part, the problem
of indexing and serving large and diverse (unstructured, semi-structured and fully structured)
data sets is addressed. A scalable system in which both the index and the content is created and
served in a fully distributed way is presented and implemented. The workload of both content
and index creation and serving is balanced among cluster peers by combining the power of the
latest distributed data analysis frameworks based on MapReduce [DG08] with an open source
implementation of Google’s BigTable [CDG™08]. The system is tested under heavy query load

and its mean query response time was kept in the order of milliseconds.
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In the following sections, the motivation and the contributions of the aforementioned two

systems are briefly presented.

3.1 Load Balancing In Distributed Range-Partitioned Data Structures

Distributed range partitioned data structures, which are a special case of structured peer to peer
systems, are widely used in situations where semantically close items need to be stored near
each other in an order-preserving way. This data locality property enables the efficient handling
of range queries, i.e., queries for resources whose keys lie within a specified range.

Range queries are very important in numerous applications such as OLAP cubes [HAMS97],
spatial [Ore86, KS03] and distributed [VSCF09] databases, wireless sensor networks [LKGHO3,
YHPO02, KVD*07], online multiplayer games [BPS06, KLXH04], web servers [LNO1], data ware-
housing [LLLOO] etc. The following higher level application requests are usually translated into
range queries in which portions of consecutive items may be scanned with a single request:
GoogleMaps queries like “find all hospitals between Kifissias Avenue and Mesogeion
Avenue’, hotels.com queries like “find hotels in Chania with available rooms between 10 June
2011 and 13 June 20117 Condor [LLMS88] or PBS [Hen95] queries like “find all available
nodes with RAM between 2GB and 8GB’, database queries like “find all academic professors in
Greece with a monthly salary from 5K euro and higher” and prefix queries like “find all words
that begin with the letters goo”.

The need for efficient resolution of range queries along with the Big-Data problem has lead to
the design and implementation of numerous distributed range-partitioned data structures. Skip
Graphs [AS07], Skip Nets [HJS*03], P-grids [APHS02], P-trees [CLGS04], BATON [JOV05]
and Prefix Hash Trees [RHRS04] are a representative set of such structures. The aforementioned
systems organize their index in a way so that queries for semantically close items (for instance,
range scans) are answered by contacting only a small subset of the entire overlay. Nevertheless,
one of the main drawbacks of these structures is skew, where only a small number of popular
items from the ID space are requested. Data skew is a well-documented concern for a variety of
applications. It has been widely observed that most Internet-scale applications, including P2P
ones, exhibit highly skewed workloads (e.g., [CKRT07, RFI02, SW02], etc). Failing or departing
nodes further reduce the availability of various content. Consequently, resources become scarce,
servers get overloaded and throughput can diminish due to high workloads that, in many cases,
can by themselves cause denial of service [JKR02].

One way to handle hotspots and balance load in such cases is by applying typical hash func-
tions such as SHA-1 [Sta95] that transform skewed data access patterns to uniform distribu-
tions. This approach is adopted by a special category of peer to peer systems which are called
structured P2P systems or Distributed Hash Tables (DHTs) [BKK*03] such as Chord [SMK™01],
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Figure 3.2: Hashing may balance a skewed distribution, but destroys content locality.
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Figure 3.3: Node Migration example. Node D is placed between nodes A and B and shares part of their
load.

Pastry [RDO1], CAN [RFHT01], Tapestry [ZHS™04], etc. In Figure 3.2 we present the hashing
effect in a skewed ID space: without hashing, nodes N; and N3 would be assigned more items
than the others (top of Figure 3.2). Hashing makes sure that, with high probability, each node
will get an equal share of the total load regardless the distribution skew (bottom of Figure 3.2).
Nevertheless, this transformation comes at the cost of destroying content locality, as consecutive
IDs get reassigned in a number of completely different and distant servers.

Another orthogonal way to deal with data skew is by replicating popular items in numerous
nodes. However, the content locality constraint of structured P2P minimizes available replica
candidates allowing, for instance, only few-hop away neighbors, something that makes balancing
even more difficult. What is more, replication not only needs to change the underlying routing
protocol to handle multiple replica locations during item searches and insertions, but it must
also deal with consistency issues during object updates.

In such cases, load balancing methods [DBKO06] that re-partition and re-distribute items be-
tween nodes are an appealing solution. The highly dynamic and large scale nature of these dis-
tributed data structures, where it is difficult for a single node to have a total network workload
overview, poses two basic requirements: online functionality, i.e., the property to make correct
decisions only with partial, local workload knowledge, and workload adaptivity, i.e., the ability to
quickly respond to workload changes.

Currently, a variety of methods exists in the literature focusing on achieving efficient load bal-
ancing for such structures, whether they utilize the notion of “virtual servers” [DKK*01,RLS*03,
SGL™06,GS05,ZH05,HLCH11,CT08,LCLCO09] or not [KR06, GBGMO04, AKK04,BAS04,VORT09,



3.1. Load Balancing In Distributed Range-Partitioned Data Structures 23

load /\V load

keys keys
L =
A BC D AB C D

Figure 3.4: Neighbor Item Exchange example. Iterative key exchanges between (A,B), (B,C) and (C,D) node
pairs produce a balanced load.

LCLCO09, SX07, SX08, Jou08]. Yet, they can be categorized in two general strategies: Node Mi-
gration (hence MIG) and Neighbor Item Exchange (hence NIX). These techniques represent two
different approaches to handling the problem: MIG utilizes underloaded peers by placing them
in overloaded areas of the network (see Figure 3.3, where the height of the bars shows the load of
each node, while their width reflects the number of keys served). The newly arriving peer takes
up part of the load of its new neighbors. NIX balances load through iterative item exchanges be-
tween neighboring nodes (see Figure 3.4). The majority of proposed approaches utilize a version
of these two schemes in order to finally balance load among peers each responsible for a given
range of the data. While they both achieve their goal, their speed and cost greatly vary, making

a method that utilizes only one of them inefficient for all cases.

Contribution

NIXMIG’s contribution can be summarized in the following:

+ NIX and MIG analysis: These two different methodologies that, iteratively applied, per-
form load balancing on distributed range-partitioned data structures are formally identi-
fied. Their mechanisms are described and their performance in terms of completion time
and communication cost is analyzed. An important result of this work is the observation
that, through mere key exchanges the achieved result can be highly delayed and the num-
ber of exchanged items can be very large, whereas using only node migrations the cost of

updating the structure is considerably increased.

+ NIXMIG design and analysis: Based on this analysis, a hybrid method that utilizes both
item exchange and node migration in order to minimize overloaded peers and balance
the load distribution among them is described. This method manages to adjust the use
of migrating nodes with the neighbor item exchange operations: Load moves in a “wave-
like” fashion from more to less loaded regions of the structure adaptively, using NIXMIG’s
version of the Neighbor Item Exchange mechanism. When highly overloaded regions are

locally identified, Node Migration is activated. Smart, “skew aware” remote underloaded
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node location and placement mechanisms that further decrease NIXMIG’s bandwidth con-
sumption are also presented. The algorithm’s convergence existence and speed along with
the preconditions that need to hold for the system to reach an equilibrium are theoretically

study.

+ Skip Graph implementation and experimental evaluation: A Skip Graph [AS07] im-
plementation is presented, on top of which NIXMIG versus simple MIG, NIX and another
load balancing algorithm proposed by Karger and Ruhl [KR06] are applied and compared.
Their behavior is measured and compared in a variety of skewed, dynamic and realistic
workloads. The results validate the analysis of the previous sections and show that NIX-
MIG method balances at low cost requiring only one sixth and one third of message and
item exchanges respectively compared to [KR06] and high convergence rate being three

times faster than [KR06], adapts to changing workloads and is highly customizable.

3.2 A Distributed Framework for Indexing Webscale Datasets

Lately, cheaper storage and bandwidth enables the growth of publicly available datasets: sites like
the Internet Archive offer access to petabytes of content such as web pages, books, etc. Another
example is Amazon offering public datasets (almost) for free through its cloud infrastructure
[Amallb]. Effective indexing is very important to enable the dataset usability, but this is a very
difficult task for such data volumes: even Internet Archive [Intl1a] does not allow full text search
in one of its most interesting services, the WayBackMachine [Int11b] with a dataset of 4.5 PB.

Although index creation is a very demanding task, it has the convenient property of paral-
lelism: the whole task can be split into numerous small sub-tasks (for instance, by splitting the
dataset into equally sized partitions) which can be executed by a number of different nodes. Al-
though the task coordination can be performed by legacy schedulers such as Condor [LLM88]
or PBS [Hen95], these general-purpose programs are not designed with data-intensive calcula-
tions in mind. In order to tackle this problem, a number of data-aware distributed processing
frameworks have been proposed as a natural evolution of these old-fashioned generic job sched-
ulers. These systems have the same characteristics with their ancestors, e.g., job scheduling, fault
tolerance and load balancing, but they are designed with Big-Data in mind: they seamlessly em-
ploy processing techniques such as moving computation near to the data, which enable the easy
development and deployment of massively parallel applications. Google’s MapReduce [DGO08],
Microsoft’s Scope [CJL108], and Yahoo's PIG [ORS™08] are a representative set of such frame-
works.

Apart from index creation, index serving and storing is also a resource intensive task, es-

pecially when the index size or the user request rate is very large, a typical case in web search
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Figure 3.5: Overview of a distributed indexing platform.

engines. Google’s index already had 26 million pages back at 1998 and by 2008 it grew up to 1
trillion pages [AHO8]. Nevertheless, index serving is also a task that can be efficiently distributed.
For instance, from the early beginnings of Google’s history, its index was distributed among many
commodity nodes to avoid scalability issues and to gain better control of performance charac-
teristics. A typical setup of a distributed index creation can be seen in Figure 3.5: administrators
upload content along with instructions of what to index. The content is processed and the in-
dex is extracted. Finally, users utilize this index to query and retrieve data. Apart from Google’s
index, data from many of its applications such as Google Reader,Google Maps, Google Book
Search, Google Earth, Blogger.com, Google Code hosting, Orkut, YouTube and Gmail is kept in
these distributed networks of commodity nodes [Wik11a]. These computers are organized in
cluster-like data stores that span between multiple datacenters and their size scales to thousands

of nodes.

Contribution

In this section, we study the efficacy of combining a distributed indexing framework with a
cluster-like data store to create a fully distributed mechanism for index creation and serving. We
are interested in balancing the load of both the index/content creation by utilizing a distributed
data processing framework and the index/content serving by utilizing a scalable data-store. The
creation and serving mechanism must be able to handle big amounts of data and concurrent
user requests in a timely manner. The design must be generic enough to allow the handling of
data of various degrees of structure spanning from completely unstructured to structured data.

Moreover, our system must enable the content administrator to easily define efficient rules so as
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to choose exactly the scope and type of the index she wants to create. In a nutshell, our achieve-
ments are twofold: we first implement and deploy a content indexing and serving framework
prototype that allows for easy and customizable data and index manipulation. Secondly, we uti-
lize this prototype to measure the performance of a widely adopted data-store under realistic and
heavy workloads for different types and amounts of data.

A distributed processing platform suitable for indexing, storing and serving large amounts
(in the orders of TB and more) of content data under heavy request loads is presented. Indexing
rules of variable granularity, relative to both type of data and user-input, along with the raw
content are processed by the framework. The augmented information is extracted in the form
of a distributed index served to an arbitrarily large number of concurrent users. In order to
speed up indexing, the compute and storage-intensive index creation and maintenance leverages
Hadoop [Apallb] the open source version of the innovative MapReduce [DG08] framework. To
achieve low response times in high query load using commodity-node clusters, user requests are
served through an HBase database, the open source alternative of Google’s Bigtable [CDG T 08].

We notice that our framework distributes both the content and the index. Hadoop’s MapRe-
duce [Apallb] framework is employed both during content upload and index creation so as to
efficiently harness the cluster’s computational resources. For content retrieval and index query-
ing we utilize HBase [Apalld] since it is tightly coupled with Hadoop, it has one of the biggest
open-source communities in the area of NoSQL and it is used by a big number of companies
and organizations worldwide. As our back-end storage for both the Index and the Content we
utilize Hadoop’s Distributed File System (HDEFS) that provides a unified view of the cluster’s local
storage.

The implemented platform achieves the following :

+ Near real-time query response times: Query execution times are kept in the order of mil-
liseconds under reasonable amount of load allowing users to perform fast content searches.
We are not considering “on the fly” heavy analytical tasks to execute as user queries, an ap-
proach followed by Pig [ORS'08] and Hive [TS]"09], since these tasks are not suitable for

live searches, due to their long execution time which can span from minutes to hours.

+ Scalability: The system is able to scale in an elastic way by simply adjusting the number of
participating server nodes. The system handles both increased storage requirements and

concurrent user requests.

+ Ease of use: Users define simple rules to declare the scope and type of the required index
and perform meaningful searches over the data (e.g., find conferences whose title contains

cloud and were held in California).
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+ Support of almost any type of data: The system supports various types of content, in-
cluding unstructured, semi-structured and structured data such as log entries, HTML files,

XML files, relational tuples, etc.

The remainder of this thesis is organized as follows: Chapter 4 presents NIXMIG in detail,
Chapter 5 presents the distributed indexing framework for webscale datasets and Chapter 6 con-
cludes our work and discusses about possible research directions. Finally, in the appendix we
present some initial findings of our on-going work in measuring the elasticity of various NoSQL

systems in cloud environments.
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CHAPTER 4

Load Balancing In Distributed Range-Partitioned

Data Structures

Distributed systems such as peer to peer overlays have been shown to efficiently support the
processing of range queries over large numbers of participating hosts. In such systems, uneven
load allocation has to be effectively tackled in order to minimize overloaded peers and optimize
their performance. In this chapter, the two basic methodologies used to achieve load-balancing
are detected : Iterative key re-distribution between neighbors and node migration. These two key
mechanisms are identified and their relative advantages and disadvantages are described. Based
on this analysis, NIXMIG [KTK11,KTK09,KTKO08], a hybrid method that adaptively utilizes these
two extremes to achieve both fast and cost-effective load-balancing in distributed systems that
support range queries is proposed. Is convergence is theoretically proved and as a case study,
an implementation on top of a Skip Graph is offered, where NIXMIG'’s findings are thoroughly
validated in a variety of static, dynamic and realistic workloads. NIXMIG is compared with an
existing load balancing algorithm proposed by Karger and Ruhl [KR06] and the experimental
analysis shows that, NIXMIG can be as much as three times faster, requiring only one sixth and
one third of message and item exchanges respectively to bring the system to a balanced state.

The design rationale behind NIXMIG is motivated by the following goals:

Abstraction: To enable NIXMIG’s re-usability, our system must be independent of the un-
derlying network overlay. NIXMIG should be unaware of the overlay on top of which it is de-
ployed.

29
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Online functionality: In order for the system to be able to scale to a large number of peers,
balancing decisions must be made in a distributed way, avoiding the expensive maintenance of
centralized load directories that can also act as a single point of failure. As of this, NIXMIG must
be able to both locate suitable underloaded peers and apply the appropriate balancing action
using local per-server measurements.

Fast and cheap Balancing : The algorithm must be able to balance load quickly and in a
bandwidth efficient way (i.e., by optimizing both the probing messages needed for underloaded
node location and the number of transferred items during balancing actions).

Highly configurable: The system administrator should have the freedom to fine tune NIX-
MIG’s behaviour by adjusting its variables according to, for instance, the average experienced
system workload.

The remainder of this chapter is organized as follows: Section 4.1 gives the reader the ba-
sic notation and formulation of the problem. Section 4.2 describes the two different primitive
mechanisms for load balancing, while in Section 4.3 the hybrid method is presented. In Sec-
tion 4.4 some enhancements in the Skip Graph structure for more efficient load movement are
presented. The experimental results are detailed in Section 4.5, while Related Work and the

Conclusions Section conclude the chapter.

4.1 Notation and Problem Setup

This section presents the formulation of the addressed problem. In the following, participating
nodes are assumed to be fully cooperative in following the load balancing protocol: we consider
NIXMIG to be applied in a controlled environment such as, a datacenter, where no malicious or
selfish peers can interfere with its operation. Security or incentive mechanisms are orthogonal

issues that can be separately addressed.

4.1.1 Notation

Throughout the thesis indexing and storing of M keys with IDs (0, 1, ..., M) in N nodes, where
N<M is considered. A key represents an object or item, hence these terms shall be used in-
terchangeably. M keys are divided along N partitions (ranges) with boundaries 1y <= 1 <=

. <= rn (obviously, r; € [0, M],Vi € [0, N]). Each node N; stores and indexes keys for the
partition [r;, 7;+1). Nodes that manage adjacent ranges are said to be neighbors. Two different
directions are considered: forward, towards which indexed values are increasing and backward,
where values are decreasing. Node N;’s forward and backward neighbors are Node N; that is
responsible for the adjacent range [r;+1, ;+2) and Node NN;_; that is responsible for the adjacent

range [r;_1,r;) respectively.
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As item load 1;(t),j € [0, M] at time ¢, the number of user requests for this specific item
over a specific time interval (for instance, reqs/sec) is defined. Item load can be viewed as a
portion of bandwidth (kb/sec) consumed on queries for this key. The server load L;(t) of node
N; at time ¢ is the sum of the loads of the items that it stores: L;(t) = Z;’:ﬁl l;(t). It is noted
here that the server load can be arbitrarily chosen according to the application or the resource
that needs to be adjusted. For instance, in situations where storage space is more important, the
server load can be defined as the number of stored items per server. Nevertheless, the bandwidth
consumption caused by query answering is more important and expensive than storage space.

The natural ordering of the indexed keys is kept, so as to facilitate the routing and answering
of range queries. Each stored item has a different popularity that is assumed not to be known
beforehand and to change over time. Users perform both exact match and range queries. In the
case of range queries, more than one node may be contacted in order for the correct answer to
be computed.

Each node N;, according to its capabilities sets a local load threshold, thres;. When the load
exceeds this value L;(t) > thres;, the node wishes to shed some of its load according to the load
balancing algorithm that is implemented.

The goal is to transform the set of partition boundaries through consecutive item exchanges
or node migrations after some time so that L; (') < thres;, Vi € [0, N]. In addition, a balanced

load distribution is also desirable.

4.1.2 Problem statement — Metrics

Given the previous setup, balancing the server load imposed by skewed query distributions in
distributed range-partitioned data structures is requested.

More formally: a set of N partitions {ry(t),r2(t), ..., 7~ (t)} containing ordered items that
are distributed over N separate nodes, with loads Sy, (1), - -, Sny(s) is considered. NIXMIG’s
goal is to transform the set of partition boundaries through consecutive item exchanges between
neighboring nodes after some time into {r}(t),75(t'), ...,y (t')} so that S/ < thresh;,Vi.
Hence, the primary goal is to alleviate overloaded peers from the excessive burden and allow
them to shed their load to less loaded servers. Moreover, NIXMIG performs a form of local load
balancing on the overloaded areas of the network. The metrics that are going to be used in order
to evaluate the scheme’s performance are the number of overloaded peers at various times, the
total number of balancing operations, the time-span that the method needs in order to minimize
the overloaded servers, as well as some of the standard statistic measures that characterize the
network as time advances: Average load, the Gini coefficient etc.

The Gini coefficient (or Gini ratio) G is a summary statistic that serves as a measure of in-

equality in a population [DWO00]. The Gini coefficient is calculated as the sum of the differences
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between every possible pair of individuals, divided by the mean size:
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n
where n is the number of observations whose values are given by x; , and p = Z’;lxz is their
mean. The Gini coefficient has been used as a measure of inequality in size and fecundity in plant
populations in numerous studies, e.g. [Wei85, Geb89, KPC89] and as a measure of inequality of
income or wealth in economic studies, e.g., [Jov82, Mor62]. Its value ranges between 0 and 1,
where 0 corresponds to perfect equality and 1 corresponds to the theoretic case of an infinite
population with only one individual having a non-zero value. Recent work [PT09, PT07] pro-
posed its use as a load-balancing metric. Assuming the population comprises of the number
of received requests by each node, the value of G is calculated as an index of load distribution
among servers. Note here that a low value of G is a strong indication that load is equally dis-

tributed among them, but does not necessarily imply that this load is low.

4.2 Load Balancing Using Neighbor Item Exchange and Node Migra-

tion

Balancing is performed by transferring keys from overloaded peers to less loaded ones. The
necessity for preserving order in a range-queriable data structure requires that any item exchange
must be performed only between neighboring nodes in the structure. Nevertheless, there are
situations where several neighboring nodes experience similar load stress. In that case, distant
underloaded peers can gracefully depart from their place, join in the overloaded area and take
a portion of its keys. While this operation seems more efficient, a large number of message
exchanges is required for the remote node location and the overlay structure maintenance.
Distributed structures that support range queries perform routing in logarithmic time by
maintaining a routing table list of log/N increasingly distant nodes (for an overlay of size N).
Without loss of generality, we consider these nodes to be placed in L., levels (at the lowest
level, Ly, each node holds the IDs of its immediate neighbors, etc). The maintenance cost of
this overlay is a costly procedure in terms of communication exchange between the participating
nodes: Figure 4.1 depicts the message exchanges that occur when node N, leaves its place at
time t,, (left part of Figure 4.1) and re-joins next to node NN, at time ¢;, (right part of Figure 4.1).
Solid lines represent node routing links, whereas dotted ones represent the messages required
for overlay maintenance. In the described structure, every node contains 2L, routing entries
(backward and forward for every level). For simplicity, we describe the procedure for a random

level, L.: Before node IV, leaves its place, it removes every forward and backward link (stored
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Figure 4.1: Overlay maintenance communication cost for migration of node N,, next to node Ny,

in tables F'[N,,] and B[N,,] respectively (lines marked with an X). This triggers a number of
message exchanges where nodes that were in F'[N,,] and B[Ny,] (i.e. Ny,’s old neighbors) contact
a number of distant nodes in order to fill their routing table “hole” (dotted lines on the left side
of Figure 4.1). This operation is carried out for every old neighbor in 2L,,,, levels. When node
N,, re-enters between nodes N, and Np41 (right side of Figure 4.1) at time ¢, it uses F'[Np41]
as forward and B[N, as backward links, scans the structure (dotted lines) and creates its own

routing table (solid lines).

Two different load balancing algorithms are now described: NIX (Neighbor Item Exchange),
that transfers only keys between neighboring nodes and MIG (Node Migration) that transfers

both keys and nodes from remote arbitrary locations.
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Figure 4.2: Key exchange between two nodes

Algorithm 1: N1x(N; — N;11, load)

1: {N; calculates key range to pass to N;;1}
2] 4 Tiy1
3: while j > r; do

4 if 357 1, > load then

5 key range is [4, 741]

6: break

7 else

8 je -1

9 end if

10: end while

11: N; transfers [j,riy1] to Nit1
12: New N; partition : [i, j]

13: New N1 partition : [j, ;2]

Algorithm 2: M1G(Node N,,, = Node Ny, load)

1: NIX(NVy, — Nop—1, L)
: for all V; in N,;,’s routing table do
N,,, removes link to N;

: end for
: NIX(Np = Ny, load)

2
3
4: N, searches for new routing entry
5
6
7: Ny, creates new routing table
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4.2.1 Neighbor Item Exchange

The load exchange between neighboring nodes is described in Algorithm 1. For simplicity, in
Figure 4.2 the situation where keys are transferred from Node N; to its forward neighbor N;;
is described. The transferring node (which will be refer to as the splitter peer) sets a pointer
J = ri+1 and scans its range backwards. The procedure stops when sufficient number of items
have been found so as to fulfill its request. This scheme is on-line, because servers can continue
to answer queries during that process. What is more, helper nodes can alleviate their neighbors
immediately: the helper can answer queries on behalf of the neighbor while the process is not
completed, as they are both aware of the location of the pointer j. Queries that exist in the
splitter’s message queue and request items that have been copied to the helper (that is, they
contain items that exist on the right side of the pointer j), are answered by the helper. We note
here that the splitter-helper node ID change caused by the range adjustment does not have to
be reflected immediately to their remote neighbor’s routing tables, as the overlay consistency is
preserved (the node ordering remains unaltered). Therefore, the new IDs can be disseminated
lazily with the first routing maintenance message exchange. Nevertheless, it is obvious that a
major disadvantage of NIX is that possibly many iterative such operations may be needed in

order to balance load inside large regions of loaded peers.

4.2.2 Node Migration

In Algorithm 2 the situation where Node N,,, leaves its place to join next to overloaded Node
N, and take a portion of its keys is described. N, locates IV,,, by issuing probing messages to
its routing table neighbors until it locates an idle and underloaded peer that could migrate next
to it. MIG is performed in two phases: In the first phase, Node N, transfers its partition to its
neighboring node NV,,_1, clears its routing links, and informs them to search for a new entry
(leave phase, lines 1-5 of Algorithm 2). In the second step of the procedure (the join phase),
Node N, places itself next to the overloaded peer, accepts a portion of its load and creates its
new routing table (lines 6-7 of Algorithm 2). This process was thoroughly described in Figure
4.1.

4.2.3 Analysis

In the following, an analysis to calculate the theoretical worst upper bounds for the comple-
tion time and amortized balancing costs (i.e., costs per balancing operation) of NIX and MIG is
presented. Three types of amortized balancing costs are considered, with respect to bandwidth
consumption for: item exchanges between nodes (Cj,), overlay maintenance during migrations

(Covm) and locating underloaded peers during probing (Cp,p).
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Figure 4.3: Balancing effect of a chain of NIX operations
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Figure 4.4: Balancing effect of a single MIG operation

In Theorems 1 and 2, the aggregate method of amortized analysis [CLRS01] is used to cal-
culate the average cost of each balancing operation and completion time of NIX and MIG in
the worst case of an initial setup (i.e., worst upper bound of amortized cost). The notations of

Section 4.1 are utilized.

Theorem 1. In the worst case, the running time of NIX is O(N) and the amortized cost per bal-

ancing operation is O(M).

Proof. In the first picture of Figure 4.5 an initial setup of node and item combination that leads
NIX to its worst behavior in terms of completion time and item exchanges is presented. Buckets
represent nodes and balls depict items. Bars above items represent the unit item load /; = 1.
For simplicity, each node sets thres; = 1. At the beginning, IV} contains all M objects, of which
only the leftmost N are requested (i.e., they have [; = 1,5 € (0, N]) and the rest M-N are not
queried (i.e, l; = 0,j € (M — N, M]). All other nodes are empty. Since L1 = N > thresy, N
will perform a NIX operation with its neighbor N; at ¢y and it will transfer to it a total of M — 1
keys, keeping only the leftmost key, so that L1 = [; = 1 <= thres;. Likewise, at t; node Na
will transfer M — 2 keys to its right neighbor /N3 keeping only its leftmost key. Finally, after N-1
steps, in the second picture of Figure 4.5 all nodes are balanced, since they will be responsible for
a single item whose load is 1. N will also contain the remaining M-N zero load keys. Given that
N-1 steps are needed, the running time of NIX is O(N — 1) = O(N). By summing all moved

items in every step, the total cost is
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Figure 4.5: Worst case of initial setup and converged balanced network for the NIX case
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As no probing and overlay maintenance is necessary, the cost per operation (i.e., amortized

cost) then is

City = C}\tfxiotlal
M(N — 1) — A=DN
- N_1
N
)

Since N <« M.
O

Theorem 2. In the worst case, the running time of MIG is constant O(1) and the amortized cost

per balancing operation is O(3L + logN).

Proof. In the first picture of Figure 4.6 a worst initial network setup for the MIG case is depicted.
Similar to NIX, N contains all M objects, of which only N are requested and every node sets

thres; = 1. All other N-1 nodes are empty at first. Requested items are evenly distributed in
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Figure 4.6: Worst case of initial setup and converged balanced network for the MIG case

the ID space: for every % objects, there is one with /; = 1 (for instance, /; = 1 if j mod N = 0,
and 0 otherwise). In this setup, N; will initiate N-1 migrations with the rest of the nodes, where
in each migration % keys are offloaded from N; to the helper. Finally (second picture of Figure

4.6), a total of

N-—1 M
Cithotal = : N
=1
M
=(N-1)—
(N-1)5

keys are transferred. The cost for item exchanges then is

C .
Cit:c _ ]z\t[;tioial
(N-1F

which is basically the cost for a node insertion or deletion (see Theorem 3 of Karger’s work
[KRO6]). The probing cost Cy,, is O(logN) since it involves contacting logN neighbors. More-
over, in most DHT-like networks, overlay maintenance costs Cyy,, = O(logN') messages. There-
fore, the total MIG cost is Citx + Covm + Cprpy = O(% + logN). Migrations take a constant
number of steps as, unlike NIX operations, they are executed in parallel: therefore we consider
MIG running time to be O(1) (although overlay maintenance usually takes O(logN) time, this
can happen lazily after the key transfer phase). O
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To gain insight into the behavior of the two algorithms in a more general case, let us consider
a typical “balls into bins” setup [MUO5], with N items being uniformly distributed among N
nodes (we only consider N out of M items, since these items affect node loads). The fraction
of underloaded nodes, i.e., nodes with a load less or equal to 1, is calculated by estimating the
probability of a node to hold either one or no popular item. Utilizing the equation that calculates

the probability of a particular bin to have exactly k balls

we have:

For large N, this is equal to % + % = 0.74 = 74%. Moreover, with high probability, the

maximum load of a node is lol;lgO ]gVN. Thus, only 100 — 74% = 26% of the nodes is overloaded and

the most loaded node(s) are well under the maximum initial load of N of the most overloaded

node in the worst case of NIX and MIG ( lol;lgOJ;fN < N). Both algorithms benefit in this case:

NIX will initiate small concurrent waves of item exchanges, finishing faster than O(N') (as more

waves are done in parallel) and less costly than O(M) (as waves involve a smaller number of
nodes and transfer a smaller amount of the id space). Similarly, MIG will transfer less items than
O(%), since a fraction (P[L; = 1] = % = 37%) of the nodes will not participate in the balancing
procedure, as their load is equal to their thres value.

Although MIG performs better in terms of completion time and exchanged messages for a
large number of N, it needs extra messages for overlay re-organization and probing. This can be

avoided with the selective use of NIX operations.

In Figure 4.3, a situation where a wave of NIX operations is more favorable compared to MIG
is presented: Node A can shed its load towards its underloaded neighbors without the need for
extra remote nodes, leading the neighborhood in a balanced state (right side of Figure 4.3). In
Figure 4.4 we describe a situation where a MIG operation is more cost-effective than a number

of NIX operations. Node A is located between nodes that their load is near their thres value (left
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side of Figure 4.4). In this situation, a chain of NIX operations would simply forward the load
from one node to another, as there is no nearby underloaded neighbor that could absorb it. On
the other hand, the migration of a remote node B next to A (right side of Figure 4.4) solves the
problem in one step, justifying the extra number of required probing and maintenance messages
needed to locate the underloaded peer and fix the topology respectively. In any case, in order for

A to decide the appropriate balancing action, a clear view of the neighborhood’s load is required.

From this analysis, it is obvious that fewer MIG operations can produce the same result to
considerably more NIX ones, as helping nodes can be placed anywhere. Nevertheless, it is also
evident that each node migration is very costly, while the location of possible helpers and their
exact new location has to be optimized. On the other hand, NIX avoids probing and routing
maintenance messages, but it requires a large number of item exchanges between successive

nodes, especially when it is applied in the “middle” of an overloaded neighborhood.

Algorithm 3: REMOTEWAVE(Node Nptict1, exNodesicr1 hops)
1: FindN,, such that
L., < thres,, and N,, is idle
2: if such V,, exists then
3 tmpL, =1L,,7=0
4:  while tmpL,, <= tmpLyiic1

and j <= exNodesj.4+1 do
if Ny jy1 is idle then
tmpLy+ = Lynyjt1
Node Ny, ;41 sends a LockRequest to Ny, 42
else {Np, 41 is locked}

N AL

Ny 44 aborts lock
10: end if

11 j=7+1

12 end while

13:  rNodes =j

14: end if

15: return rNodes

4.3 'The NIXMIG Algorithm
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Figure 4.7: A successful NIXMIG operation

Algorithm 5: LocALWAVE(Node N, ttl hops)

1: lc = 0,tmpL, = Ly, Np sends a LockRequest to Np1
2: while lc <= ttl and exNodesp1.+1 <= ttl do
3: if N4 jcy1 isidle then
if tmpLyy . > overThres then
movedLoad;. = a(tmpLyyic. — thresptic)
else {0 < tmpLyyi. < thres}
movedLoad;. = tmpLyiic — threspyc
end if
tmpLytic = Lpyic — movedLoad),
10: tmpLytic+1 = Lpticr1 + movedLoad;.

_ | tmpLpticta
11: €.’L‘N0d€$lc+1 = Lm — 1J

12: Npticlocks Npyiet1
Node Nptic+1 sends a LockRequest to Npijc42
13:  else {Npyic+1 is locked}
14: Ny aborts lock
15 endif
16: le=lc+1
17: end while
18: return < lc,exNodesjcq1,tmpLyiicy1 >

o 0 Ny

In this section we describe NIXMIG, the proposed hybrid approach. The goal of NIXMIG
is to balance load by adaptively choosing to utilize either NIX or MIG. The rationale behind our
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Algorithm 4: NIxM1G(Node N,, ttl hops)

1: LocaALWAVE(Node N, ttl hops)

2: if exNodesi.+1 > 0 then

3 REMOTEWAVE(Node Nptict1,exNodesicq1 hops)
4: end if

5: for: =0tolcdo

6: if Lpy; > overThresy,; then

7

8

9

load = a(Lyy; — threspy;)

elseif L, ; > thres,,; then

: load = Lpy; — threspq;
10:  endif

11:  NIX(Np4i = Nptit1,load), unlock Npy;
12: end for

13: if rNodes > 0 then
14:  fori = 0torNodes do

15: MIG(Npmtit1 — Nptie, tTﬁiﬁzf)
16: unlock Ny, 4441

17:  end for

18: end if

method is that MIG is fast but costly, whereas NIX is slow but cost-effective. Hence, a scheme is
devised that, using only local knowledge, identifies conditions where MIG is necessary to speed
up the balancing process but is not excessively utilized. In short, when NIX operations cannot
alleviate an overloaded neighborhood, this method employs node migrations for faster load relief

in that area.

4.3.1 Algorithm

NIXMIG (Algorithm 4) is initiated when the load of a node IV, passes its self-imposed thres,
value and it is performed in three phases: In the first phase (Exam phase), the overloaded node
examines the load status of a number of neighboring nodes (Procedure 5) and, if necessary, an
additional number of distant nodes is contacted (Procedure 3). In Table 4.1, we explain the vari-
ables used by the aforementioned methods. The node examination is performed in a wave-like
manner towards one direction of the structure, where each node contacts its successor. When
the first phase is successful, then the algorithm proceeds to the NIX phase (lines 5-12 of Algo-
rithm 4) and portions of keys are iteratively transferred from one neighbor to another. Finally,
the algorithm proceeds to the MIG phase (lines 14-17 of Algorithm 4), where the reserved un-
derloaded nodes of the remote wave offload their keys to their neighbor and take a portion of
the range of the final node of the NIX wave. We note here that the MIG phase is optional: it is

triggered only if extra remote nodes are needed to absorb a neighborhood’s load.
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Table 4.1: NIXMIG variables

variable definition
ttl Maximum number of contacted nodes per wave
lc Number of nodes reserved for the NIX wave
rINodes Number of nodes reserved for the MIG wave
tmpLy, Load of node N, if balancing is performed

movedLoad. | Load that will be moved from N, ;. to Npyjet1
if balancing is performed
exNodesy, Number of extra remote nodes needed at step lc
of Procedure 5
Np, Remote node that will accept migration load

a Load fraction accepted by the helper if the splitter’s
load is more than overT hres

In Figure 4.7 we depict the phases of a successful NIXMIG operation initiated by node Nj.
For clearer presentation, we assume that all nodes have equally set their thres value (dotted hor-
izontal line). In the Exam phase, N7 issues a Lock Request that eventually reaches N, through
Ny and N3. Ny calculates the number of extra nodes that are needed to migrate to the neigh-
borhood to absorb its load, and issues a new request for remote node reservation to node Nyp.
When Nj reserves nodes Ni; Nj2 and Ni3, the NIX Phase begins. In the NIX phase of Fig-
ure 4.7, nodes N; to N3 iteratively shrink their responsible range by adjusting their boundaries
and drop their load under their required thres value. At the end of Phase 2, most of the neigh-
borhood’s load ends up to Ny, but this will happen for a very small period of time, as N4 has
already reserved the requested number of remote nodes to share this load. Finally, in the MIG
Phase, the remote underloaded reserved nodes Ni1,N12 and N;3 sequentially offload their keys
to V10, place themselves next to N, and take a portion of its range. We notice that at the end of
Phase 3 all participating nodes’ loads are below their thres value. We now give a more detailed

presentation of the algorithm phases.

Exam phase: The Exam phase of NIXMIG serves a dual purpose: it examines the load sta-
tus of the contacting nodes to decide the appropriate balancing actions, while reserving them
to participate in the balancing procedure. The load examination begins with the node’s neigh-
borhood (Procedure 5): after each node is successfully reserved (line 3 of Procedure 5) a NIX
operation between Node N, ;.41 (that acts as a helper) and its predecessor N,;. (that acts
as a splitter) is simulated by N, 4;.41. The splitter’s load in this calculation is assumed to be
tmpLy4i. and is equal to the load that would end up to it if a chain of lc NIX operations was
initiated by IV,, towards N,,;;.. Using this variable, node N}, 1.1 calculates the load that will be
transferred towards it (movedLoad;, variable). This recursive calculation can be seen in Phase

1 of Figure 4.7: The movedLoad variable in steps 1,2 and 3 is depicted with the dotted rectangle



44 Chapter 4. Load Balancing In Distributed Range-Partitioned Data Structures

S(N{_) overThres

overThres

=t , =ty

Figure 4.8: Load exchange between splitter N;_,  Figure 4.9: Load exchange between splitter N;_,
and helper Ny, splitter node in critical condition and helper N, splitter node not in critical condition

above nodes Ny, N3 and Ny respectively. In each step, the tmpL variable is calculated by adding
movedLoad to the nodes’ current load. tmpLy4pey1 is used by Npije41 to estimate the number
of extra remote nodes that are required to migrate next to it to absorb the neighborhood’s load
(exNodesjc+1 variable in line 11). The examination of a node’s neighborhood finishes when a
number of ¢t/ nodes have been successfully reserved, or when it is estimated that more than ¢¢/

remote nodes are needed to absorb the calculated extra load (line 2).

When the previous phase finishes, V;1 .41 uses the ez Nodes;.41 variable to decide whether
extra nodes are needed (line 2 of Algorithm 4). If this is the case, it uses the previously described
underloaded node location mechanism to locate a remote peer Ny, (line 1 of Procedure 3). N,,
then tries to reserve ex N odes;.1 adjacent nodes that are able to leave their place and help N,’s
overloaded neighborhood. These nodes will offload their keys to IV,,, before they migrate. The
reservation is performed in a similar wave-like manner for at most ez Nodes;.+1 hops. During
reservations, each contacted node estimates tmpL,,, and if this exceeds tmpLy4ic+1, the algo-
rithm moves on to the next phase (line 6 of Procedure 3), with only the so far reserved nodes
participating in the migration procedure. Therefore, the goal of the remote locking procedure is
to reserve the required exNodes;.4+1 without overloading N, that will accept their load when

they migrate.

When this phase completes, the locked nodes are ready to begin balancing actions. We note
here that locked nodes continue to answer user queries but they do not participate in or initiate
other balancing actions until they are unlocked (lines 11 and 16 of Algorithm 4) or a timeout has
occurred. Moreover, during the exam phase no item exchanges are performed. If the exam phase
is not successful (e.g. not enough underloaded nodes are found, or a contacted node participates
in another balancing procedure), nodes are unlocked and an exponential back-off mechanism is

applied to the time N, will wait before it initiates another NIXMIG operation.
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Figure 4.10: Smart remote node placement: A scans its range and decides to place B on its forward direc-
tion, minimizing the number of transferred items |ro — 14|

NIX phase: When the locking phase succeeds, the algorithm proceeds to the second Phase
and the initiator starts an iterative procedure where portions of ranges are transferred from one
locked node to its neighbor for all the lc reserved nodes (lines 5-12 of Algorithm 4). In order
to calculate the portion of load that a splitter will shed, we introduce the overThres threshold,
where overThres>thres. If the splitter’s load is above the overThres, then only a fraction a of
the extra load is accepted. In Figure 4.8 we present such an example: overloaded node N;_1’s
load is above its overT hres value at t = ¢, and oftloads only a portion of its extra load to helper
node N; at t = 1. On the other hand, if the splitter’s load is below its overT hres setting, then
the splitter’s excessive load is fully accepted by the helper. This situation is presented in Figure
4.9: splitter node N;_; offloads all of its extra load to its helper N;. The purpose of overThres is to
smooth out the key/load exchanges between sequential NIX executions. When NIX is performed
consequently in a number of overloaded nodes, some nodes may end up with a large portion of
the load that was shifted to them during recursive NIX procedures from all the nodes in the
forwarding path. For this exact case, the helper peer does not alleviate the splitter from all of its

excessive load, instead, it only accepts a portion of it.

MIG phase: The final step of the algorithm is the MIG wave, where a number of rNodes
remote locked nodes offload their keys to node IV,,, leave their place and join next to Np4jc11
(lines 13-18). Placing remote nodes next to N .+1 and not between nodes N, and Np 41
minimizes intra-node communication, as nodes N, to N, are unlocked after the NIX wave

(line 11), and their routing tables are not significantly altered.

To sum up, NIXMIG first examines the neighborhood of an overloaded node: if its extra load
can be absorbed by its neighbors it performs a cost-effective “wave-like” set of successive item
exchanges. If this is not the case because, for instance, the entire neighborhood is overloaded, it

selectively initiates a more expensive migration request to speed up the process.
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4.3.2 Enhancements

In this section, we present enhancements to the original NIXMIG algorithm that further decrease
the bandwidth utilization of the balancing procedure. More specific, we present remote under-
loaded node location and placement mechanisms, direction selection heuristics and collision

avoidance methods which aim at minimizing the created traffic during balancing operations.

Remote underloaded node location: NIXMIG’s performance depends on its ability to easily
locate an underloaded node. To avoid random probing or the maintenance of a centralized reg-
istry we utilize the query-induced traffic to piggyback information about underloaded nodes. As
packets are routed, underloaded nodes add their ids and all participating nodes extract from the
incoming packets this information to a local cache. Overloaded nodes use this cache to contact

underloaded ones and if they fail to do so, then they resort to random probing.

Remote underloaded node placement: When a remote underloaded node has been suc-
cessfully located and reserved, the splitter must decide which range to offload to it. In situations
where the load is uniformly distributed in the key space, the same load movement results in the
same (in terms of transferred items) key movement. Nevertheless, in skewed distributions, this
property does not hold (e.g. a small range of items may experience the same load with a larger
one), and the smallest possible range must be detected and transferred during load movement.
In Figure 4.10 we present this detection mechanism: Overloaded node A is responsible for the
key range [r1, 72| in which the load is not uniformly placed. In the left side of Figure 4.10 at
t = t, node A simulates two NIX operations by scanning its range in the forward direction start-
ing from r; (arrows marked with an X) and in the backward direction starting from 7. Finally,
in the right side of Figure 4.10 at t = t; node B is placed in the forward direction of A, as this

minimizes the number of transferred keys (|ra — rp| < |r1 — 7))

Direction selection: Nodes use their local knowledge in order to decide to which direction
they should try to perform NIXMIG operations. This is achieved by collecting statistics from
previous lock attempts or wave operations they had initiated or participated in. The wave di-
rection for both the LocALWAVE and the REMOTEWAVE is decided by the wave initiator in the
following way: Each peer keeps moving averages with the number of the incoming LockRE-
QUEST messages it has received from every direction. Then, when it issues a new LOCKREQUEST
it forwards it to the direction of the neighbor where it has received the fewer number of requests.
The rationale behind this is that since fewer requests came from this direction, then it must be
less overloaded than the opposite direction. Therefore, NIXMIG prefers underloaded areas of
the structure, where the probability of faster load shedding through them is bigger. Finally, in

the absence of previous statistics, the direction decision is a coin toss.

Collision avoidance: NIXMIG is equipped with a collision avoidance mechanism during

Lock Requests. To avoid unnecessary key exchange, a node can abort a NIXMIG attempt during
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locking phase. When a LockRequest to one direction fails, the wave initiator releases the lock,
and performs truncated binary exponential back-off to the time it will wait before it tries to lock

again towards this direction.

4.3.3 Theoretical Analysis

Load balancing between neighboring nodes can be classified in two general categories [BFH09]:
diffusion and dimension exchange methods. In the case of diffusion [Cyb89], every node balances
its load concurrently with every other partner, whereas in the dimension exchange approach
[GM96] every node is allowed to balance load only with one of its neighbors at a time (NIXMIG
falls into this category). Diffusion methods are analyzed using linear algebra, whereas the analysis
of dimension exchange methods is performed using a potential function argument. Potential
functions map the load distribution vector at time t @ (t) = (Lyi(t),...,Ln(t))" into a single
value that shows how “far” the system is from the balanced state. In the case of homogeneous
peers, the balanced state is represented by the vector w; = (w, ..., w)T where w = M
(every node gets an equal portion of the total load).

The goal of a balancing algorithm is to ensure that every load exchange between nodes will
eventually decrease an initially large potential value and will lead the system to a more bal-
anced (ideal) state. If this drop is ensured, the algorithm converges to an equilibrium. In the
case of NIXMIG, we define the potential function of an arbitrary load distribution as ¢(t) =
Zf\i L(Li(t) — thres;)?, where ¢(t) is the square of the Euclidean distance between & and the
vector Wipres = (thresi, ..., thresy)? in which every node’s load is equal to its self-imposed
thres value (ideal balanced state). Note that NIXMIG takes into account node heterogeneity
and its balanced state is different from w;;. What is more, recall from Section 4.1 that NIXMIG
terminates when L;(t) < thres;Vi € [0, N], which means that a balanced state is every load dis-
tribution vector that satisfies this constraint. In Theorem 3 we prove the convergence of NIXMIG

algorithm, along with the preconditions that need to hold for the system to reach an equilibrium.

Theorem 3. Any load balancing action using NIXMIG between a splitter node N; and a helper
node N leads the system to a balanced state, as long as the difference of the splitter’s load from its
thres value is by a constant of 1 — a bigger than the difference of the helper’s load from its thres
value, that is, (L; — thres;)(1 — a) > L; — thres;.

Proof. In an atomic item exchange between two neighboring nodes, the load that will be moved
from the splitter to the helperis [ = a(L; — thres;),0 < a < 1 (the case where thres; < L; <
overT hres; is covered by the general case for @ = 1). The new loadsare L} = L;—1, L;» =L;+l.
Now, we have to show that the drop in the potential A¢ = ¢ — ¢’ caused by this load exchange

is positive:
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A¢ = (L; — thres;)*> + (Lj — thres;)?
— [(L; = 1) — thres;]* — [(L; + 1) — thres;]?
= 2a(L; — thres;)[(L; — thres;)(1 — a) + (thres; — Lj)]

A¢ is the product of three terms. The first two are positive because a € (0, 1] (1) and L; is
overloaded (L; > thres; (2)). So, the potential drop is positive if the third term is positive which
happens if (L; — thres;)(1 —a) > L; — thres;. O

Corollary 1. Any load balancing action using NIXMIG between a splitter node N; and a helper
node Nj leads the system faster to an equilibrium as long as the helper is underloaded, that is,
L; < thres;.

Proof. The algorithm’s convergence rate is faster as long as the selection of balancing partners
ensures a larger drop in the A¢ value. If L; is underloaded, then the third term of A¢ is larger

(as a sum of two positive terms) compared to the case when L; is overloaded. O

Corollary 1 is a special case of Theorem 3 that shows the importance for the algorithm’s con-
vergence of easily locating underloaded peers. In Corollary 2 we identify the moved load value
lopt that maximizes the algorithm’s convergence rate leading the system quicker to an equilib-
rium. We define as thdif; = L; — thres; the difference of N;’s load from its thres; value.

Corollary 2. NIXMIG's optimum convergence rate is obtained when half of the difference of thdi f;
Sfrom thdif; is transferred from splitter Node N; to helper Node Nj, that is, lop = %(thdi fi—
thdif;)

Proof. A¢ as a function of the moved load 1 is

Ad(l) = (L; — thres;)* + (L; — thres;)?
—[(L; = 1) — thres;)* — [(Lj +1) — thres;]?
= 212+ 2(L; — Lj + thresj — thres;)l

We notice that A¢(1) is a quadratic function of I (al? + bl + c) with coefficients a = —2, b =
2(L; — Lj +thres; —thres;) and ¢ = 0. Because a = —2 < 0, A¢(l) has a maximum point for

b —2(L; — thres; + thres; — Lj)

ot = "5 = —4

1
= 5[(LZ — thres;) — (L;j — thres;)]

Lo ,
= i(thdzfi - thdlfj)
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O

In the case of a homogeneous splitter-helper pair (thres; = thres;) from Corollary 2 we

notice that [y, = %(Lz — L;), and thus app = %

4.4 Case study: NIXMIG over Skip Graphs

As a case study, we have implemented the Skip Graph distributed data structure and we have
applied NIXMIG on top of it. Skip Graphs are a distributed version of skip lists [Pug90]. Each
node in a Skip Graph participates in a number of increasingly sparse doubly linked lists. The
lowest linked list at level O contains all the nodes, ordered by their identifiers. In a Skip Graph of
N nodes, log(N) levels are required. At each level, a node holds pointers to increasingly “distant”
nodes in both directions (forward and backward). A node’s pointers at each level constitute its
routing table: during routing, a node examines its neighbors starting from the higher level of the
Skip Graph until it finds the one that is closer to the requested value. The routing is performed in
logarithmic time, with the difference that no hashing is used, preserving the locality of indexed
items. In Figure 4.11, a simple Skip Graph containing five nodes is depicted. Simple arrows
represent routing table links between neighboring nodes, whereas arrows with small rectangles
represent links to “distant” nodes: we can notice the link between N3 and N5 at level 1 of the
graph. The range that each node is responsible is depicted under each node (for instance, node
N is responsible for range [8, 15]).

Despite the locality preserving property of a Skip Graph, there is a difference compared to
other DHT structures: Edge nodes (N7 and N5) in Figure 4.11 are not connected. While for
routing purposes the higher-order lists can be used to make jumps to distant nodes quickly,
the use of Lg (i.e. the lowest order list which connects all the nodes) cannot be avoided when
answering a range query that involves more than a single peer. With that in mind, there is an
asymmetry created by the fact that the edge nodes are not connected: A peer close to one end
of the list has significantly fewer messages arriving to it from one direction of the structure. In
the case of NIXMIG, this is a reason to prevent the system from equally diffusing load to every
direction.

We propose an enhancement on the Skip Graph data structure, where we create links be-
tween the edge nodes, thus transforming the structure into a circular one (see Figure 4.11). We
notice that the ordering, hence the locality preserving nature of the graph is not affected. In fact,
no other node needs be aware of this property, except from the edge nodes. With this modifi-
cation, edge nodes can now perform key exchange operations like any other node in the system.
As an example, let us consider a key exchange between overloaded node /N; and underloaded

Ns. After a successful NIXMIG run, Ny will be responsible, for example, for partition [8,15] and
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Figure 4.11: Pointers before and after boundary exchange

N5 for the “boundary” partitions [40, 50] U [0, 8] (i.e., the partitions that contain the initially de-
fined k1, kpr) (see the upper image of Figure 4.11). We note here that this procedure does not
affect the routing of the Skip Graph: Queries for the exchanged partition [0, 8] that reach V; are

forwarded to 5. The routing tables of nodes connected to edge nodes remain unaltered.

Routing tables need to change only when the boundary partitions change “ownership”: This
happens only when the splitter node is the owner of the “boundary” partitions and during a NIX
operation it passes a complete partition to its helper node. Figure 4.11 describes this situation,
where the splitter node N5 is the owner of the boundary partitions (upper image) and after the
transfer of the range [40, 50] U [0, 2], the helper node N; is now the new owner of the boundary
partitions [30, 50] U [0, 2] (lower image). After this operation, the splitter N5 scans every level
of his routing table, and changes his neighbors according to his new range. We describe this
procedure in Algorithm 6 for the forward direction. The procedure for the opposite direction
is similar. New neighboring nodes are selected using the membership vector functionality as
described in [ASO7]. We notice in Figure 4.11 that after the execution of Algorithm 6, node N5
removes his backward pointer to N3 and creates a forward pointer to N3 at level 2, and at level

1 it removes his backward pointer to N3 and creates a forward pointer to V.
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Algorithm 6: FIXRoUTINGTABLE(Node N,,)
1: for level = 0to MaxLevel do

20 cursor < Np.next[level]

3:  repeat
4 if cursor is suitable for neighbor then
5: N,.nextllevel + 1] < cursor
6: break
7: else {remove previous neighbor}
8: Ny.nextllevel + 1] < null
9: end if
10: cursor < cursor.next[level]

11:  until cursor is null OR cursor holds boundary partitions
12: end for

4.5 Experimental Results

We now present a comprehensive simulation-based evaluation of our method on our own dis-
crete event simulator written in Java. The implementation of the simulator along with the load
balancing protocols, the Skip Graph data structure and the different types of workloads resulted
in 6.5K lines of pure Java code. The time unit in our simulation is assumed to be equal to the time
needed by a node to perform an operation with another node. Such operations include atomic
item exchanges, lock requests, one-hop query routing messages, etc. For instance, a LOCALWAVE
wave of ttl = 5 takes five time units to complete. For the remaining of the experimental section
we consider the time unit to be equal to one second. Starting off from a pure Skip Graph im-
plementation, we incorporate our online balancing algorithms on top. By default, we assume a

network size of 500 nodes, all of which are randomly chosen to initiate queries at any given time.
M

N
keys. By default, we assume 50K keys exist in the system, thus each node is initially responsible

for 100 keys.

During the start-up phase, each node stores and indexes an equal portion of the data,

Queries occur at rate A\, = 250 queries/sec with exponentially distributed inter-arrival
times in a 4000 sec total simulation time. Each requester creates a range by choosing a start-
ing value according to some distribution. The range of each created query is constant, and for
the 50K setting it is equal to 100 keys (i.e., every range query requests 100 consecutive keys).
The total network workload is a product of the query range with the query arrival rate, i.e.,
wiot = 250queries/sec-100keys/query = 25.000keys/sec (in every second, around 25K keys
are requested in total). Recall from section 4.3.3 that in the ideal balanced state of an homoge-

: 5 ot _ 25.000 _
neous network, each node should get an equal load portion of w = “fet = =25= = 50keys/sec.
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In our experiments, we utilize several different distributions to simulate skew: A zipfian dis-
tribution, where the probability of a key i being asked is analogous to i =% and a pulse distribution,
where a range of keys has a constant load and the rest of the keys are not requested. By altering
the parameters of each distribution (e.g., the  parameter, the width of the pulse, etc), we manage
to create more or less skewed workloads to test our algorithms. In Figure 4.12 we show various
pulse workloads with different width. Note here that the total system workload is the area under
the pulse. Since throughout the experiments we utilize a stable reference total workload (i.e.,
25.000 keys/sec), a pulse with a smaller width has a higher constant load and vice versa. In the
pulse case, the width sets the pulse skew: a small width (solid line of figure 4.12) results to a more
skewed distribution than a large width (dotted line of figure 4.12). In Figure 4.13 we show two
zipfian workloads with various 6 values. In the zipfian case, the 6 parameter is used to regulate
workload skew: a large 6 (solid line of figure 4.13) results to a more skewed distribution than a
small 6 (dotted line of figure 4.13).

A node calculates its load using a simple moving average variable that stores the number of
the keys it has served over a predefined time window. To minimize fluctuation caused by inade-
quate sampling, this time window is set to around 700 seconds. Since nodes in the beginning of
the simulation do not have enough samples to estimate their load, we let the system stabilize on
the input workload for 700 seconds without performing any balancing operation.

In the following, we plan to demonstrate the effectiveness of our protocol to minimize over-
loaded peers and create a load-balanced image of the system. As we mentioned before, we are
interested in the resulting load distribution (in terms of overloaded servers, load balancing), the
rate at which this is achieved (measured in seconds), as well as the cost measured in the number

of exchanged messages and items.
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During the experiments, NIXMIG’s parameters were set to the following values: thres =
60keys/sec, « = 3, ttl = 5 nodes and overThres = 400keys/sec. The idea behind these
parameters is the following: the thres value is near the minimum theoretical value of w =
50keys/sec for which most of nodes eventually participate in the balancing procedure: the larger
the thres value, the easier (i.e., using less operations and bandwidth consumption) it is for NZX-
MIG to bring the system to its equilibrium making its comparison to other algorithms not fair.
Furthermore, for homogeneous splitter-helper pairs, we have shown in Corollary 2 that aeypy = %
With respect to ttl and overT hres, in Table 4.2 we experimentally study NIXMIG s behaviour
where in each column we vary the ¢t/ from 1 to 10 nodes and in each line we vary the overThres
from 160keys/sec to 500keys/sec. Table cells show the aggregated performance results for each
ttl and overT hres combination. We notice that a combination of a ¢t/ value of 5 nodes (third
column) and an overT hres value of 400keys/sec (third line) balances load quicker and cheaper
compared to other ttl — overThres combinations: smaller ¢t/ values prohibit NIXMIG to exam-
ine a sufficient number of nodes, whereas a larger ¢t/ value slows down the process due to more
inter-node communication during locking procedures. The selected overT hres value enables
NIXMIG to move the optimal amount of load during neighbor item exchanges: larger values

lead to unnecessary load movement, whereas smaller values require more balancing operations.

Table 4.2: Exchanged items and messages and completion time for various overThres and ttl values

ttl
overThres ! 3 > 10
keys msgs time|keys msgs time|keys msgs time| keys msgstime
160 62K 21K 92 |74K 21K 93 |85K 22K 170|134K 39K 554
280 68K 23K 114 (79K 22K 120|80K 20K 117|80K 18K 147
400 66K 22K 116|71K 21K 108|70K 19K 77 | 80K 20K 173
500 69K 23K 147 (71K 20K 105|71K 20K 105|80K 20K 166

4.5.1 Measuring the effectiveness of NIXMIG

In the first set of experiments, we compare NIXMIG’s performance in a number of different input
workloads against simple MIG, simple NIX and the Itemn Balancing protocol (hence IB) proposed
by Karger and Ruhl in [KR06]. /B was chosen as, in contrast with other systems, it applies the
same minimal set of operations compared to NIXMIG: they both avoid the use of centralized load
directories, item replication and node virtualization (for a brief description of /B and a survey of
similar systems refer to Section 4.6).

As input workload we utilize pulses of variable width from 3% to 50% while keeping a con-
stant surface (the pulse height is inversely proportional to its width) and constant surface zipfian

workloads of variable 6 from 1 to 4.5. In every case, nodes set their thres value to 60reqs/sec.



54 Chapter 4. Load Balancing In Distributed Range-Partitioned Data Structures

L 90K 1

_1500f 4\" 19 | " !\/%(_I;
812s0r 1 oFKE NIXMIG |
Zio00f e T ] Beoky R
S 7500 T | B ]
g MIG : S .
g 00 LTt NIXMIG 1 30K sl ]
S 250F e ,\ 1 %5 15K} T
IS B
%10 20 30 40 50 0——0 20 30 40 50
% pulse width % pulse width
% . NIX T T o O05--~ . ’
STV G ; B
g --- NIXMIG x \
5 . 2 e
e @) L RS PN i
§100KE _eocmin SN 50'25 ...... B T
s = --- NIXMIG
5 =
10K=——5"20 30 40 50 0——620 30 40 50
% pulse width % pulse width

Figure 4.14: Completion time, exchanged messages and items and MIG to NIX ratio of NIXMIG, plain
NIX, plain MIG and Item Balancing for various pulse widths.

This thres value can also be seen as corresponding to 60kb/sec bandwidth allocation, assuming
that, for each request, 1kb of data is transmitted. The simulation terminates when every node

has dropped its load under its thres value.

We have implemented the /B protocol setting ¢ = i which provides the best balancing result.
Moreover, probing messages occur with a rate of 0.1msg/sec to keep the probing traffic low. In
any case, we terminate the execution of /B when 50 seconds of simulation time have passed and

no balancing action has occurred.

To apply NIX, we use Algorithm 4 and omit the REMOTEWAVE procedure: each overloaded
node performs only a LocALWAVE followed by a chain of NIX operations. For the wave direction
selection, nodes use the following simple heuristic: new lock requests are sent towards the di-
rection from which less lock requests were encountered. For MIG, nodes omit the LocALWAVE
of Algorithm 4 and directly proceed to the REMOTEWAVE procedure followed by a chain of MIG
operations. In every situation, the load is balanced by moving most of the nodes inside the “hot”
pulse area that is initially handled by a small number of overloaded nodes. In the NIX case over-

loaded nodes iteratively shrink their range by oftfloading keys to their immediate neighbors, in
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Figure 4.15: Completion time, exchanged messages and items and MIG to NIX ratio of NIXMIG and Item
Balancing for various zipfian 0 values.

the MIG case remote nodes leave their place and rejoin inside the overloaded area and in the
NIXMIG case a combination of both these methods is adaptively utilized.

In Figure 4.14 we compare NIXMIG against simple NIX simple MIG and the IB protocol.
In the first graph, we present the completion time of each algorithm for the applied workloads.
We notice that both MIG and NIXMIG balance load 4-8 times faster than NIX: for NIX, every
node must accept and offload a large number of items for the balancing to succeed, whereas in
the other two algorithms this is done in a more efficient way. Moreover, we notice that NIXMIG

converges in almost half the time than /B.

Nevertheless, in the second graph we notice that MIG is costly in terms of message exchanges,
as it carelessly employs a large number of unnecessary node migrations. On the other hand,
NIXMIG utilizes node migrations only when the load cannot be absorbed locally, thus keeping
the number of required messages low compared to both NIX and MIG. In addition, NIXMIG
requires less than half the messages compared to B: IB requires a large number of probing mes-
sages, whereas NIXMIG uses the underloaded node location mechanism described in Section

4.3. Furthermore, the number of required messages in the /B algorithm increases more due to
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the fact that mostly node migrations are performed, as its MIG to NIX ratio is near 0.5 (see the
fourth graph).

In the third graph we notice that NIX requires two orders of magnitude more item exchanges
than MIG and NIXMIG due to the iterative key transfer procedure. What is more, NIXMIG
requires roughly the same number of item exchanges compared to MIG. NIXMIG outperforms
IB whereas in skewed workloads NIXMIG exchanges one third of the items compared to /B: the
cooperative nature of NIXMIG minimizes unnecessary load movement (thus item exchanges)
back and forth, unlike /B where each node acts on its own. We observe that the IB’s number
of exchanged messages and items drops when the workload is less skewed: IB performs less
balancing actions, as it cannot easily locate nodes that their load differs by a fraction of €.

Finally, in the fourth graph we present NIXMIG'’s and [B’s ratio of migrations to simple neigh-
boring item exchange operations for various pulse widths. Here we notice NIXMIG’s workload
adaptivity: in extremely skewed workloads of 3-5% pulse widths mostly node migrations are used

(recall from Algorithm 2 that each migration requires two neighboring item exchanges, thus the
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ratio in plain migrations is 0.5). When the pulse’s width is increased, the ratio drops as load is
absorbed using more neighboring item exchanges and costly remote migrations are avoided. On
the contrary, /B most of the times carelessly employs node migrations. For an explanation of /B’s

behavior see Section 4.6.2.

These experiments confirm NIXMIG’s adaptivity to an arbitrary workload, as it identifies the
most effective balancing action, combining the advantages and avoiding the disadvantages of
both plain remote migrations and plain neighboring item exchanges. We continue our experi-

mental analysis with a more thorough comparison of NIXMIG against IB.

In Figure 4.16 we present a system’s load snapshot after 100 seconds for the two algorithms for
a 3% pulse. We notice that, unlike /B(dotted line), NIXMIG (solid line) has successfully dropped
almost every node’s load under its thres value (horizontal red line). Moreover, in Figure 4.17 we
present the variation of exchanged messages during time for the NIXMIG and the IB algorithm.
We notice that NIXMIG constantly performs less message exchanges than /B. What is more, in

the /B algorithm we notice the constant traffic posed by the random probing messages.
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In Figure 4.15 we present the performance results of NIXMIG against IB for the zipfian set-
ting. In this situation, the workload’s skew increases as the 6 parameter increases unlike the pulse
setting where the skew decreases as the pulse width increases. In the first graph, we notice that
NIXMIG’s completion time is similar to the one in the pulse setting. On the other hand, /B’s com-
pletion time increases compared to the respective completion time for the pulse setting: in the
zipfian case, the load is spread more uniformly compared to the pulse setting, making it harder
for IB to identify load imbalances. In any case, NIXMIG is three times faster than /B. In the sec-
ond graph, we notice that NIXMIG requires a constant number of messages with a slight drop in
the less skewed workload area, as more neighboring item exchanges are performed. On the other
hand, /B requires constantly more messages due to the reasons mentioned in the previous para-
graph. In the workloads with 6 > 3 NIXMIG requires one sixth of the messages that /B requires.
In the third graph we observe that NIXMIG’s and IB’s behaviour in item exchanges is similar as
in the pulse setting. NIXMIG performs more item exchanges than /B in the less skewed work-
loads of § < 1.6, as it performs more neighboring item exchanges. In more skewed situations,
NIXMIG performs one third less item exchanges compared to /B. The last graph shows the adap-

tivity of NIXMIG where more migrations are employed in more skewed workloads, whereas /B
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performs mostly migrations in any case. Finally, in Figures 4.18 and 4.19 we present a load snap-
shot after 100 seconds and the variation of the message exchanges during time respectively for
a zipfian workload of § = 4.5. The same behaviour as in the pulse setting is observed: NIXMIG

balances load faster and uses constantly less messages than IB.

4.5.2 NIXMIG scalability

In the following experiment we study NIXMIG’s behaviour when the number of participating
peers increases. Nodes share a total of 5 million keys and the applied workload is a 10% pulse.
We vary the network size from 500 to 50,000 nodes. Table 4.3 presents our findings compared
to the 500 node setting (i.e., we register the increase in measurements compared to the 500 node
setting result). We notice that the number of messages increases linearly compared to the num-
ber of nodes. Moreover, we also notice a slow linear increase of the completion time: even for
a 100 times larger network the algorithm terminates only 3 times slower. This happens because
multiple NIXMIG executions are performed in parallel. Finally, the number of exchanged items
remains constant: this shows that NIXMIG does not perform unnecessary item transfers when
the network size increases.

Table 4.3: Ratio of exchanged messages, completion time and transferred items for various network sizes
compared to a 500 node setting.

Nodes ratio | Messages ratio | Completion time ratio | Items ratio
10 13 1.2 1.05
50 102 2.2 0.96
100 208 2.8 0.98

4.5.3 NIXMIG performance under dynamic workload

We now present results showing the performance of our NIXMIG method when the workload
suddenly changes its skew. We assume an initial pulse load of width 12% and height 430req/sec
where items [10000,16000] are requested. This pulse suddenly moves at time t=850sec to items
[34000, 40000]. Note that this is an extreme scenario, since the skew changes completely and
abruptly at this time.

Figure 4.20 shows the variation of the Gini [DWO0O] coefficient over time respectively. Gini
values range between 0 and 1, where 0 corresponds to perfect equality and 1 corresponds to
the theoretic case of an infinite population with only one individual having a non-zero value.
Recent work [PT09,PT07] proposed its use as a load-balancing metric. Assuming our population
comprises of the number of received requests by each node, we calculate the value of G as an
index of load distribution among servers. Note here that a low value of G is a strong indication

that load is equally distributed among them, but does not necessarily imply that this load is low.
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Figure 4.21 shows the number of overloaded peers during time. We notice that both metrics
are affected immediately after the change in load occurs, nevertheless, NIXMIG works over this
new situation and manages to reduce both quantities: The Gini coefficient increases when the
pulse changes, but NIXMIG manages to keep it well under 0.9 (which is its initial value) until
it is dropped near 0.2 in the balanced state. Moreover, the number of overloaded nodes slightly
passes the initial value of 60 until it is minimized by NIXMIG. In Figures 4.22 and 4.23 we present
the number of exchanged messages and items during the simulation time respectively where we
notice NIXMIG’s cost-effective balancing: the number messages does not exceed 700msg/sec (in
a 500 node setting) whereas the number of exchanged keys stays under 1200keys/sec (in a 50K
setting). Finally, the reason that the convergence time is documented to be larger than that of
handling a single pulse is obvious: The very sudden change in skew forces the invalidation of
many already performed balance operations and nodes with no load problem suddenly become

very overloaded.

Figure 4.24 shows the progress of the balancing process in time: First, at time t=800 sec,
after 100 sec of balancing time (recall that NIXMIG started at t=700 sec), just before the query
load changes, we show that NIXMIG is very close to balancing the load. This is obvious from
the improvement shown at t=850sec, where the old pulse diminishes and the new one appears.
After this point, the newly overloaded nodes start shedding load to their neighbors (hence the
snapshot picture for time t=1000sec). Finally, NIXMIG totally balances load (last image).

In the following experiment, we utilize the previously described 12% pulses and we modify
the position in the ID-space of the second pulse along with the time we trigger the sudden pulse
move. At every execution, the initial pulse is applied over items [10K,16K]. We present our results
in Table 4.4. Each column represents an increase in the second pulse’s distance from the initial
one using a 10% step of 5K keys and each line an increase in the time we trigger the sudden
change using a step of 20 seconds. We measure the total number of exchanged items along
with the time it took for NIXMIG to balance both workloads. We notice that as the new pulse’s
distance increases in each column, NIXMIG performs more key exchanges and takes more time
to complete. The same increase in both metrics is noticeable when, in each row we increase the
time we trigger the second pulse. Nevertheless, even in the worst case where the second pulse is
triggered at t=820 sec (60 sec later compared to the 760 sec case) and in the [30K-36K] position
(40% further than in the [15-21K] case), NIXMIG’s performance is not significantly degraded:
only 30% more items are transferred and balancing is 2.2 times slower compared to the 760 sec
and [15-21K] combination.
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Table 4.4: Exchanged items and completion time for the dynamic setting for various trigger times and new

pulse positions
Time Position| 1} sy 217 | [20K-26K] | [25K-31K] | [30K-36K]
keys time| keys time| keys time| keys time
760 107K 183 [120K 238 [125K 303 [130K 308
780 109K 201 [124K 258 |129K 374 |132K 315
800 128K 265 |129K 268 |132K 291 [135K 321
820 130K 334 |132K 352 [138K 380 | 140K 406

Table 4.5: Number of probing messages and success rate of SmartUNL vs NaiveUNL for various pulse
widths

Pulse SmartUNL NaiveUNL
width | # of msgs %succ | # of msgs  %succ
5 156 64 3.2K 5
10 207 60 29K 5
15 168 63 2.8K 5
20 239 70 3.2K 6
25 185 71 3.7K 5

4.5.4 Smart underloaded node location mechanism

In this section, we present the gains of our proposed smart underloaded node location mech-
anism (hence SmartUNL) compared to random probing (hence NaivelINL). In the SmartUNL
case each query message can piggyback at most five underloaded node ids. We utilize pulses of
variable width from 5% to 25%. In Table 4.5 we present the total number of probing messages
used in both methods, along with their success rate (defined as the ratio of the successful to total
sent messages). We notice that SmartUNL sends a small number of messages (around 200) with
a high success rate between 60% and 70% whereas NaivelINL utilizes a large number of messages
(around 3K) with a very low success rate of 5% to 6%: in the case of SmartUNL overloaded nodes
utilize their local underloaded node cache to perform “targeted” probing messages, whereas in

the NaivelINL setting the probing is done in a completely random way.

4.5.5 Smart remote node placement mechanism

Next, we study the effect of minimizing the number of exchanged items during load transfers
caused by migrations by taking into account load skew, as presented in Section 4.3.2.
More specific, we compare our smart, skew-aware, remote node placement mechanism (hence

SmartRNP) to the random case (hence RandomRNP) where nodes are randomly placed and to
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Table 4.6: Ratio of transferred items using SmartRNP vs RandomRNP and AdversarialRNP for various
“hot” range percentages

ID space % SmartRNP # | Ratio of transf. items compared to:
of “hot” range | of transf. items | RandomRNP | AdversarialRNP
10 5.3K 0.47 0.16
20 6.8K 0.52 0.24
30 7.0K 0.59 0.36
40 7.2K 0.66 0.49
50 6.7K 0.71 0.53
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Figure 4.25: A number of popular areas of 10% width and 50% width in the ID space.

the situation where an “adversary” places remote nodes so as to maximize the number of trans-
ferred items (hence AdversarialRNP). As our input workload, we consider a number of (around
twenty) popular ranges in the ID space for which all keys are requested, whereas all other keys
are not queried at all. We vary the width of each popular range so that all “hot” ranges occupy
from 10% to 50% of the ID space. In Figure 4.25 we present the initial load distributions of pop-
ular ranges occuppying 50% (dotted line) and 10% (straight line) of the id space. In Table 4.6 we
present the effect of SmartRNP for various workloads (first column): in the second column we de-
pict the number of exchanged keys due to a MIG operation eftectively minimized by SmartRNP,
in the third column we present the ratio of SmartRNP to RandomRNP key movement and in
the fourth column the ratio of SmartRNP to AdversarialRNP key movement. We notice that
for highly skewed distributions of 10%, SmartRNP exchanges only 47% items compared to Ran-
domRNP and 16% compared to the adversarial case, while this ratio increases (i.e., SmartRNP
number of transferred items gets closer to the number of RandomRNP and AdversarialRNP) for
less skewed distributions. This is explained by Figure 4.10: the larger the skew, the larger the
difference of |ry — 74| from |r; — 7| making node A’ s decision more critical for the algorithm’s
performance. Although the transfer of either |ro — 73| or |1 — rp| results in the same load allevi-
ation of the overloaded node, in highly skewed distributions one range may contain significantly

less keys than the other. What is more, we notice that RandomRNP performs constantly better
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Figure 4.26: Load distribution of the AOL dataset with a query prefix size of 4 characters.

than AdversarialRNP (worst case scenario) in terms of transferred items, as with high probability

half of its decisions are “correct” (i.e., they minimize key transfer).

4.5.6 NIXMIG in realistic workloads.

Table 4.7: Completion time, number of exchanged messages and MIG to NIX ratio of NIXMIG for various
prefix lengths.

Prefix length | time(sec) | messages | MIG to NIX ratio
4 134 16.4K 0.30
5 140 17.9K 0.32
10 150 18.5K 0.34

In the following experiment we utilize a publicly available dataset from AOL that contains
twenty million queries from over 650,000 users over a 3-month period [Arr06]. The dataset
comprises around 3.7 million distinct keywords of varying popularity which are initially equally
divided among 500 nodes. By measuring the number of occurrences of each keyword in the
searches, we calculated the query frequency distribution: Clients are generating prefix queries
of variable length (e.g., “goo®’; “googl*’, etc) based on the calculated frequencies. Prefix queries,
typically used by search engines to provide the autocomplete feature among others, are translated
to range queries in our setup. Compared to our previous reported experiments, nodes now store
almost 100 times more objects ,while the query workload follows a realistic distribution, with
the selectivity of the range queries taking many possible values. In figure 4.26 we present the
initial load distribution of the AOL dataset with a query prefix size of 4 characters. We notice
the load skew: some “lucky” nodes have zero load (e.g., the first 10 nodes that are responsible
for the arithmetic values) whereas some other ones are way over their thres value (for instance,
a node near the end of the X axis which is responsible for the letter w is overloaded, as a large

portion of the queries are for various websites and thus begin with the prefix “www”).
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Table 4.7 presents the results for variable prefix lengths. In all cases, NIXMIG balances load
fast and under 150 sec, a result that is well inline with our previous findings (see Section 4.5.1
— first graphs of Figures 4.14 and 4.15). NIXMIG adapts its operations to the applied workload:
When the prefix length increases, NIXMIG applies more migrations, increasing the number of
exchanged messages and the MIG to NIX ratio. This happens because the prefix length affects
the number of matched objects and thus the range query size (“goog*” returns more results than
“googl*”). Queries of larger prefix lengths are served by a smaller number of nodes. Consequently,

these nodes are excessively overloaded and request more migrations for a faster load alleviation.

4.6 Related Work

Load-balancing is an essential operation for all distributed data structures. The balancing of
uneven load distributions has been extensively studied in the case of local indexing structures
[SKS92,BAC™90] in parallel databases. Nevertheless, the proposed algorithms cannot be applied
in the case of distributed data structures, as they require global knowledge of the system load.
DHTs such as Chord and Pastry [SMK'01,RD01] tackle load-balancing issues by applying hash
functions to the data, thus destroying their locality and allowing only exact match queries, as
explained in Chapter 3. These systems implement a distributed hash table like data structure,
i.e., they provide a put(key,value) and get(key) primitives. The need to preserve the order of the
indexed keys to achieve efficient lookups in range-queriable structures prevents us from using
simple hash functions to uniformly balance load among nodes. Therefore, we can categorize
the available options into two broad orthogonal groups: data replication and data migration
approaches.

Data replication alleviates the overloaded nodes by providing extra targets for the incoming
requests. Data migration requires actual data transfers between nodes in order to balance load.
NIXMIG falls into the data migration category. Data replication, with its relative advantages and
disadvantages, is applied in conjunction with data migration to further improve performance and
fault tolerance. For instance, one sole replica of an overloaded node’s items can effectively drop
by half its load (provided that the routing protocol redirects half of the requests to the replica
node) but on the other hand, both updates and query routing are more difficult to handle.

4.6.1 Data Replication

In HotRoD [PNTO06], the authors deal with skewed load distributions by replicating overloaded
arcs of items (consecutive item ranges). To perform this, they propose a randomized order-
preserving hash function, that is used to replicate popular areas into less loaded peers. The same

function is used for object location: Hence, a random node containing a replica of the requested
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item is contacted. Apart from the obvious consistency issues that arise during replica creations,
HotRoD does not deal with replica maintenance: when the popularity of an item changes, the
replication factor remains the same. In [PN'T10] the authors of HotRoD present Saturn, an ex-
tended version of HotRoD, which replaces static replication with dynamic threshold-based repli-
cation. In [GSBKO04, TR06], the LAR and APRE protocols for load balancing are presented. LAR
is evaluated in a structured overlay (Chord [SMK*01]) whereas APRE is evaluated in a unstruc-
tured peer to peer network. Both protocols proactively replicate overloaded nodes and augment
the underlying routing table with hints towards the created replicas. Their work is similar to
ours in that they both use local load measurements, and they perform balancing actions when
the load exceeds a self-imposed threshold. Nevertheless, their work does not deal with range
queries. In [LCC'02] the authors present and evaluate a number of proactive replication strate-
gies in an unstructured peer to peer system. They study the uniform replication strategy, in
which the replication factor of each object is static and the proportional replication strategy, in
which the replication factor is proportional to the querying rate of each object. They conclude
that both strategies have the same average search size, i.e., the average number of query hops
until an object is found, and they propose an optimized replication strategy called square-root
replication. In [NWO07] the authors also utilize replicas to alleviate overloaded nodes, by employ-
ing dynamic caching techniques. Replica holders are organized in a tree-like fashion similar to
the consistent hashing approach [KLL"97], in which the root node is the node responsible for
the total “hot” region. Each child node is responsible for a subset of its parent region. Nodes
maintain the number of items they served during a time period (epoch) and if they are below
or above a predifined threshold they either create more children, or destroy their children and
become themselves leaf nodes. This procedure is performed from bottom to top in the tree and

it is called Continuous Hot Spots Protocol.

4.6.2 Data Migration

In the case of peer to peer systems, data migration can be further classified in the node virtu-
alization [DKK*01, RLS*T03, SGL™06, GS05, ZH05, HLCH11, CT08, LCLCO09] and one ID per
server [KR06, GBGMO04, AKK04, BAS04, VORT09, LCLC09,SX07,5X08,Jou08] strategies. In the
former, every actual server can host a number of virtual servers which are responsible for small
disjoint ranges of its items, and balancing is performed by moving virtual servers between actual
ones. It has been widely used because of its ease of use (virtual servers can be concurrent threads
of a DHT implementation running on the same machine), but its main drawback is the increased
bandwidth and memory consumption caused by the maintenance of numerous routing tables

(the number of open network connections gets multiplied by a factor of Q(logn) [Man04]).
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One ID per server approaches

In the work of Karger and Ruhl [KR06] (Item Balancing, hence /B) a work-stealing technique is
applied: peers randomly probe distant nodes and compare their loads. If the load of the less
loaded node is smaller than a fraction of 0 < ¢ < i of the more loaded node’s load (i.e., [; <
e < l; where [; is the less loaded node and /; the more loaded node) then a migration (MIG) or
an neighboring item exchange (NIX) is performed. In a nutshell, /B is executed in two phases.
In the first phase, /B tries to perform a NIX operation, and if this is not possible, in the second
phase it also tries for a NIX operation and if this is still not possible, only then it resorts to a
MIG operation. In the first phase the algorithm distinguishes two cases, according to whether
nodes are immediate neighbors (i.e., forward or backward nodes) or distant nodes. If nodes are
immediate neighbors (i.e,, 7 = j + 1), node N; transfers ll%lj items to IV; so that both nodes
end up with the same load # If nodes are not immediate neighbors (i.e. @ # j + 1), then
the algorithm moves to the second phase and the underloaded node N; checks its immediate
neighbor N1 to see if it is more loaded than the distant node N; (i.e., if [; 41 > [;). If this is
the case, it performs a NIX operation between IV; and N 1. Otherwise, N; migrates next to IV;
and takes a part of its load. Although from the algorithm description we notice that /B prefers
NIX operations and resorts to MIG only in one sub-case of the second phase (when the other
two NIX attempts have failed), the majority of its operations are MIG operations (see paragraph
4.5.1 in the experimental section). This behavior is explained in the following way: Since a node
randomly contacts one out of its O(logN) neighbors and only O(1) are immediate neighbors,
then the first phase will be selected with a low probability. For instance, in a network with 500
nodes where each node maintains a routing table with log500 ~ 10 peers, a peer will randomly
select its immediate neighbors and execute phase one with a probability of %0 ~ 10%, whereas
phase two is executed with a probability of ~ 90%. Now, in the second phase, since the remote
peer checks its load with its immediate neighbor to initiate a cheap NIX and avoid an expensive
MIG, their loads must be significantly different. Nevertheless, since range queries mostly affect
a number of continuous servers due to their locality property, these nodes most of the times
experience simmilar loads. Therefore, IB mostly selects the second sub-case of the second phase

which is a MIG operation.

Ganesan et al [GBGMO04] propose a balancing mechanism that works on top of a Skip Graph
system [ASO7]. In their work they also distinguish two different load balancing operations,
NBRADJUST which is a NIX operation and REORDER which is a MIG operation. Neverthe-
less their use is not regulated, although, similar to Karger’s /B at first they try to employ NIX and
finally they resort to MIG. In their work, the authors introduce the Imbalance Ratio o which is

defined as the asymptotic ratio between the largest and the smallest load in the system. Their
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algorithms try to ensure the smallest o value at the end of the balancing procedure. Ganesan per-
forms balancing by utilizing an approach called the Threshold Algorithm. In this algorithm, each
node is aware of an ordered set of load thresholds and is responsible for periodically updating
a shared directory with its current load. The ordered set consists of an infinite, increasing geo-
metric sequence of thresholds 7; = |¢d; | for all ¢ > 1 and some constant c. When a node’s load
crosses a threshold 7}, then a balancing operation is initiated, using a procedure called ApjusT-
LoAp. Similar to Karger’s approach, the algorithm in the first phase tries for a NIX operation: it
checks its immediate neighbors, and if they are underloaded the initiator averages its load with
its less loaded one. If both neighbors are overloaded (i.e., they have more than % times the ini-
tiator’s load), then the algorithm moves to the second phase. In the second phase, the initiator
contacts the globally least-loaded node to perform a MIG operation. If the least-loaded node’s
load is small enough (less than 6% times the initiator’s load) then a MIG operation is performed,
otherwise the system is considered balanced. In the case where § = 2 the authors present and
analyze the Doubling Algorithm. They prove that the Doubling Algorithm ensures o = 8. What
is more, they search for the § value for which they can guarantee the smallest imbalance ratio.
They conclude that this happens when ¢ is larger or equal to the golden ratio ¢ = @ In the
extreme case where § = ¢, they introduce the Fibbing algorithm, in which the ordered Threshold
set consists of the Fibonacci numbers (with 77 = 1 and T3 = 2). They prove that the Fibbing al-
gorithm guarantees an imbalance ratio of ¢® = 4.24. Compared to NIXMIG, the main drawbacks

of Ganesan’s approach are the following:

+ The algorithm needs to maintain a centralized directory where nodes periodically report
their load. This is a costly procedure in terms of bandwidth, since each node needs to

periodically report its load, so that the load information is up-to-date.

+ Their definition of load is the number of stored items per node, whereas in our case we are
interested in the bandwidth consumption during query answering. We argue that band-

width is more “expensive” and valuable resource than storage space.

+ They do not take into account node heterogeneity. NIXMIG’s nodes can set different
thresholds according to their processing power or available bandwidth. This is not pos-
sible in the Ganesan’s case: The Threshold algorithm tries to equally balance load among

all peers, irrespective of their capabilities.

In [AKKO4/], the authors of the Skip Graph structure propose a second layer on top of a simple
Skip Graph, the buckets layer. Each bucket contains a number of ordered items and each server
may have several buckets. Buckets can be classified as active (i.e., contain a number of items)
or free (i.e., they are empty). Moreover, buckets are further classified as open or closed, accord-

ing to whether they can store more items or not. Next, the list of active buckets is partitioned
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into groups of two or three, maintaining the invariant that every closed bucket is adjacent (i.e.,
is neighboring) to an open bucket: this invariant is used to make sure that the initial structure
is quite scarce (i.e., it has “holes” that are able to store possible newly arrived items) which favor
simple NIX operations instead of MIG ones. This happens as during item insertions, the node
firstly checks to see if it can fill up an adjacent open bucket with a NIX operation. If the item is to
be stored by a closed bucket, the bucket tries to offload some of its keys to its neighbor, which, is
an open bucket. If its neighbor also is full, then a remote request is done for a MIG operation is
done and a free bucket joins next to the structure and takes part of the new keys. The main draw-
back of this scheme is the requirement of a list of free nodes: This luxury cannot be considered
trivial in actual deployments. Moreover, it complicates the design scheme by adding complexity
to the routing creation and maintenance and by fragmenting the ID space in numerous small
buckets.

Similar to [AKK04] is the P-ring [CLM 11, CLM*07] load balancing methods, since the au-
thors also employ helper peers in their approach. Nodes find helper peers by utilizing the P-ring
structure and search for a “special” reserved key whose value contains the list of the available
helpers. They argue that without free-helper peers the use of a node leave and join operation is
very expensive, because of the creation of new routing table links and item transfers. Neverthe-
less, as previously discussed, free helper peers mean that these peers will remain idle. To tackle
this, the authors propose a more “active” participation of the helper peers: they assign helper
peers to actual ones (called masters or owners) and they are made responsible for a fraction of
their master’s id space. Load is split in half, without considering node heterogeneity as in NIX-
MIG's threshold based load exchange. Instead of thresholds, they utilize the sf variable (storage
factor). Nodes try to keep the number of items they own during insertions/deletions between sf
and 2*sf. When they have more than 2*sf, they request a helper peer to join next to them and take
part of their load (split algorithm, which is similar to [AKKO04]). On the other hand, when they
have less than sf, they acquire items from their immediate neighbors (merge algorithm). Their
neighbors either pass a portion of their values to them (i.e., they perform a NIX operation) or
they transfer all their items and become helper peers. As of this, P-ring tries to equally distribute
load among peers, while NIXMIG is interested in keeping every peer’s load under its thres value.

In Mercury [BAS04], the authors also use probing and node migration to solve load balanc-
ing problems. Mercury overlay construction is inspired by Kleinber’s small world phenomenon
[Kle00] something that bounds the expected number of hops between neigbors to O(logn?),
where n is the number of participating nodes. As of this, each node A selects its routing table
links with the following procedure: A draws an integer = € (0,n) using the harmonic distri-
bution Ay, (z) =

random sampling procedure with probe messages to calculate the average network load. The

nl;gx and links with node B which is x hops away from A. Nodes use a novel

main idea is to sample the load distribution locally and then exchange this information with the
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other network in an epidemic style. In the local probing case, each node contacts d of its immedi-
ate neighbors (called the d-neighborhood) and calculates an average load for this neighborhood.
Load estimation for remote ID-space areas is performed by issuing k; probe messages with a
small TTL value of logn. Each node in the path of the probing message selects randomly one
of its routing links and forwards the probe until 77"L = 0. Finally, nodes maintain a fresh list
of the k3 most recent load estimates. These estimates are used to calculate a value average or a
histogram that depicts the value’s distribution in the ID space. In the load balancing case, nodes
utilize their local load histogram to initiate balancing actions if their load is above the histogram’s
average. In that case, they contact a random node from a lightly loaded area of the ID space and
request from it to leave its place and join next to them, which is effectively a simple MIG opera-
tion. A node is considered overloaded when its load to the average load L ratio is bigger than «
and underloaded when this ratio is smaller than i, where o >= /2. Therefore, Mercury bounds
the node loads between é and «. We notice that Mercury, in contrast to NIXMIG, neither does
it take into account node heterogeneity, nor does it regulate the usage of NIX and MIG actions.

Similar to Mercury is the Oscar system [GDA07, GDA10]. Oscar peers utilize random sam-
pling to figure out the network load distribution (i.e., average network load) and proceed to bal-
ancing actions by exchanging keys between participating peers. Oscar is also based on Klein-
ber’s small world phenomenon [Kle00] during probing and overlay construction. Nevertheless,
instead of utilizing the simple harmonic distribution for long link (i.e., routing table entries) con-

struction, Oscar is based on the histogram estimation method of Mercury. As of this, instead

of picking logn integers = € (0,n) using the harmonic distribution h,(z) = nl;gx to split the
ID space in logarithmic-sized partitions (i.e., each partition size is, for instance double the size
of the previous one, etc), like Mercury does, Oscar splits the ID space in logn partitions so that
the number of stored items per partition is logarithmic in size (i.e., each partition contains, for
instance, twice the objects compared to the previous one), according to the item distribution.
The distribution is estimated using the histogram creation mechanism of Mercury. Balancing is
performed in the same way with Mercury, upon node joining and leaving, where arrived or de-
parted nodes interact with the most loaded or the least loaded node in the overlay accordingly.
As of this, Oscar has the same disadvantages with Mercury with respect to NIXMIG.
Giakkoupis et al [GHO5] propose the S&M protocol, a load balancing method that is based in
the multiple random choices scheme, which is derived from the power of two choices of Mitzen-
macher [MitO1]. The protocol is initiated during node joins and leaves, and tries to balance load
equally among peers. They also consider heterogeneous nodes by using weights that are powers
of two: for nodes n1, ny with weights w;, wy respectively, n; can manage a ID space that is %
times larger that no can handle. In the case of a node join, the new node selects at random a
logarithmic number of points in the ID space, splits in half the largest node segment (i.e., the

id space for which a node is responsible) containing at least one of the selected keys and gets
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the other half. During a leave, the node again samples a logarithmic number of nodes, selects
the node with the smallest segment (i.e., the least loaded node), the least loaded node offloads
its keys to its neighbor and takes over the keys of the departed node. In essence, the S&M pro-
tocol performs a random sampling to identify the most/least loaded node in the case of node
joins/leaves respectively. As in most cases, balancing is performed by splitting the ID space in
half. We also notice that S&M performs plain MIG operations after a random probing of logn
messages. Compared to NIXMIG, S&M does not regulate the use of MIG operations, each node
acts selfishly on its own (whereas in the NIXMIG case waves drastically reduce load oscillations),
and probing messages add an extra cost to the balancing procedure.

In [GS04], the authors present the Range Search Tree (RST) a structure similar to the seg-
ment tree data structure used in spatial databases and computational geometry [BCKOO08] for
efficient resolution of range queries. RST is basically a distributed segment tree data structure,
where each peer is mapped to one or numerous nodes in the segment tree data structure. To
tackle load balancing issues, they propose and utilize an organization of nodes into a logical ma-
trix called Load Balancing Matrix (LBM). LBMs organize nodes to answer queries for a specific
“hot” range by utilizing both node migrations (i.e., the range splits and a new node takes half of
the keys) and replication (i.e., more than one nodes are responsible for the range subsets). LBMs
automatically shrink and expand according to query load. The main drawback of RST is that
it keeps the DHT hashing function that destroys locality, something that renders range queries
(especially ones with high selectivity) quite ineffective. Although they employ segment tree al-
gorithms to decompose a range query to smaller ones, they add unnecessary computational and
algorithmic complexity to the query resolution procedure.

Similar to Mercury is the HIGLOB framework [VORT09]. In HIGLOB, each node maintains
a list of load information about non-overlapping regions of the key space, and if it detects imbal-
ances, it performs load exchanges. Non-overlapping regions of the key space constitute the load
histogram, which is used by the node to perform load exchanges. HIGLOB is more interested in
efficient (in terms of execution time and bandwidth consumption) histogram construction and
maintenance. The authors of HIGLOB apply their approach in three different underlying over-
lays: the Skip Graph [AS07], the BATON [JOV05] and the Chord [SMK™01] overlay. Neverthe-
less, they also deal with load balancing: they make the distinction between static and dynamic
load balancing. The former is triggered only with the insertion or deletion of new new nodes,
whereas the latter is triggered whenever a node is considered overloaded or underloaded. Nodes
utilize their histograms to classify themselves as overloaded when their load is greater than twice
of the average load of any group in their histogram or underloaded when their load is smaller
than half of the average load of any group in their histogram. Dynamic load balancing is further
classified in local (i.e., a NIX operation between neighboring nodes) or network (i.e., a MIG op-

eration with one remote node) load balancing. HiGLOB also favors local to network balancing
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actions, as during balancing, it first tries to perform local load balancing, and when this is not
possible it resorts to network balancing. Nevertheless, the HIGLOB algorithms only examine the
immediate neighbors of a node, something that resembles a NIXMIG wave of a TTL=1, whereas
NIXMIG can examine a larger portion of both the local and the remote node neighborhood by
setting a larger TTL.

The LIGHT [TZX10] system builds a binary tree called Space Partition Tree on top ofa DHT
s0 as to support complex queries such as ranges, min-max and k-nearest neighbor queries. The
ID space is recursively partitioned in two equal-sized subspaces until each subspace contains
fewer than 0,,;; items. In each partition split, the height of the created binary tree is increased.
Actual data is stored only in leaf nodes in a structure called leaf bucket. Apart from the leaf
bucket, each node is aware of a limited local view of the global partition tree called local tree.
The local tree is actually the routing table of the leaf node and it is used to route queries. In
terms of load balancing, the LIGHT system employs an approach inspired by the power of two
choices of Mitzenmacher [Mit01] and its application to DHTs [BCMO03], something that drops
peer imbalance ratio from O(logn) to O(log(logn)). Their approach is called double-naming
strategy: each leaf bucket can have two different names, which leads to two different possible
physical node locations. The protocol then chooses from the two possible physical nodes the
one which is less loaded to store the leaf bucket (hence the power of two choices). The problem
with this approach is that in each key lookup two different queries are needed, as nodes are
unaware of the final storage location of the leaf bucket.

In Armada [LCLCO09], a general range query scheme on top of a DHT is presented. Armada
splits the ID space into partition trees in a similar way than [TZX10]. Armada’s load balancing is
performed with a hash function responsible for placing items into nodes that knows in advance
the distribution of items in the ID space. This method is called ObjectID balancing. In this
method the partition tree is built taking into account the distribution of indexed items. As of
this, the distribution is considered static, and each node needs to know in advance the item
distribution of the total network. Nevertheless, this distribution is difficult to be calculated in
a distributed way, since a single node cannot have a full and fresh picture of the network load,
which may vary over time.

Shen and Xu [SX07, SX08] distinguish peers between simple ones and super-nodes. Super
peers are dynamically elected according to their capacity and connection bandwidth. Peers form
two different types of overlays: physical clusters (called pClusters) in which nodes are connected
to physically close peers and logical clusters (called IClusters) in which nodes are connected
to logically (i.e., DHT-ID wise) close peers in the overlay. Physical proximity is calculated by
comparing distances to some special predefined landmark nodes. These auxiliary overlays are
used to summarize load information between physical or logical clusters (i.e., neighborhoods).

Each cluster elects a super peer. Super peers are used for routing messages and queries on behalf
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of the cluster’s nodes, whereas simple nodes utilize their super peer as a proxy to the entire
network. Each super peer has a pair of donating sorted list (DSL) and starving sorted list (SSL)
which store load information about peers in its cluster. The SSL contains a sorted list of the
most loaded objects stored by overloaded servers, and the DSL contains the least loaded servers.
The balancing is then performed in three steps: First, local nodes periodically update their load
information to the super peer, so that DSL and SSL are up-to-date. Second, a super node with
a non-empty SSL tries to match local overloaded peers with local underloaded ones (i.e., top
SSL with top DSL entries). This procedure is called local load balancing. If the load cannot be
absorbed locally, then the super peer moves to the third phase, the global load balancing. In this
phase, it randomly contacts other super peers to find non-empty DSLs until it empties its own
SSL. In general, balancing is performed by moving “hot” items and placing doubly-linked pointers
both to the source (overloaded peer) and the destination (underloaded peer) of the moved item.
The drawback of this method is that during lookups the overloaded peer will still be contacted,
as it is still responsible for this “hot” item. Therefore, their approach is usefull only when nodes
are overloaded in terms of storage space, since the moving of items release used storage space.
Nevertheless, when there is a data access imbalance problem, their approach not only does it fix
the problem, but it makes it even worse: overloaded nodes are still contacted and an extra hop
is added to the query resolution so as to locate the final object holders.

Finally, in chordal graphs [Jou08] balancing is performed by a process called “free drifting”
which is actually a NIX operation. Nodes periodically compare their load with their immedi-
ate neigbors in the overlay (i.e., their forward and backward nodes) and if they detect imbalances
they perform load exchange with them by issuing a simple NIX operation. The problem with this
approach is the difficulty to detect global imbalances (as for instance in the histogram method of
Mercury [BAS04] and Oscar [GDA07, GDA10]) since only two nodes are used for load compar-
ison. Moreover, the use of only NIX operations has the disadvantages experimentally observed

in Section 4.5.1 and theoretically studied in Section 4.2.3

Node virtualization approaches

The idea of virtual servers for load balancing in peer to peer systems was initially proposed in
CFS [DKK™01]. CFS is a distributed file system based on the Chord DHT, implemented by the
same team that developed Chord. CFS tackles inherent load imbalances caused by the DHT
assignment of items to nodes which, according to the consistent hashing algorithm [KLL*97] is
O(logn), where n is the number of participating nodes. What is more, CFS balancing also takes
into account node heterogeneity caused by different hardware and network infrastructures. CFS
addresses these issues by assigning virtual servers to an actual one according to its capacities and

its current load status. When an actual node is overloaded or underloaded, virtual nodes are
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removed or added accordingly. A virtual node’s address is, for instance the hashed value of the
concatenation of the actual server’s IP along with the virtual node’s index number. Messages are
routed in the virtual node layer.

Based on the idea of CFS, Rao et al [RLS*03] proposed three load balancing algorithms (One
to One, One to Many, and Many to Many) which were extended by Surana et al [SGL*06] for
heterogeneous peer to peer systems with churn. In the first case, an overloaded node contacts
one node at random (as in the work of Karger and Ruhl [KRO06]) while in the second case it
contacts numerous nodes before it takes a balancing decision. The third case is similar to the
approach used by Ganesan et al [GBGMO04]: a distributed directory with load information is
maintained and contacted by overloaded peers before any balancing decision is taken.

In Yy [GS05], Godfrey and Stoica tackled the problem of multiplication of open routing links
per server by placing virtual servers owned by an actual one “near” themselves in the ID space. As
of this, distant routing links are kept only from the “first” (i.e., the node with the smallest id) and
the “last” (i.e., the node with the largest id) virtual node. Virtual nodes between the first and the
last do not keep routing tables, as they can be reached through the first and the last virtual node.
They make the assumption that the load is uniformly distributed in the identifier space and each
one from the total n actual servers that hosts k virtual servers gets a random continuous fraction
of 9(%) Nevertheless, as we discussed earlier, uniform load distributions are not frequently
encountered in order preserving structures. What is more, it has been shown that with only
one ID per actual server balancing results are the same as in the case of node virtualization (see
related work of [Man04]).

Zhu and Hu [ZHO05] also build and maintain a distributed load directory in the form of a
k-ary tree structure that is stored in the overlay. This directory is used by nodes to detect load
imbalances and to find suitable overloaded-underloaded node pairs. The directory is basically
a tree in which each tree node is responsible for a specific region of the ID space. Children
are responsible for load estimation and dissemination of small disjoint and consecutive areas of
the ID space, whereas their parent is responsible for the total area, and so forth. Tree parents
request load information from their children: requests traverse the tree from top to bottom, leaf
nodes request load information from their virtual nodes, and information is then pushed back
from bottom to top. This information is used by each node to identify whether it is overloaded or
underloaded, and to find suitable helpers in the case of high load. The algorithm then decides peer
matchings so that the minimum amount of item transfer is performed. The authors also consider
proximity during assignments with the use of landmark nodes as in the work of [SX07, SX08].

In [HLCH11] the authors propose a novel balancing scheme by utilizing virtual nodes. Their
method is novel, since no auxilliary network or an hierarchical scheme for virtual to actual server
assignment is used. Instead of this, actual nodes obtain a partial view of the system’s load state,

and based in this, they perform node reassignment in parallel. Each peer gathers a partial view
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of the system state by randomly contacting a logarithmic number of nodes with the use of ran-
dom walkers. The samples are used to calculate an approximation for both the nodes loads and
capacities probability distributions. The authors calculate the optimal number of samples so as
the approximation error is bounded between a predefined value. What is more, they experimen-
tally compare their algorithm with the many to many approach with a single directory proposed
in [SGL106] and with [ZH05] where they identify weaknesses and strengths of each system.

Chen and Tsai [CTO08] use the general assignment problem (a particular case of a linear pro-
gramming problem) to assign virtual to actual nodes: they make an initial estimation using the
ant system heuristic which afterwards is refined using the descent local search algorithm. This
procedure is iteratively applied until a solution is reached.

In Armada [LCLCO09], the authors use virtual servers for balancing purposes but they do not

provide details about their specific implementation.

4.7 Conclusions

In this chapter, the performance in terms of bandwidth cost and convergence speed of balancing
range queriable data structures using successive item exchanges or node migrations was eval-
uated. Extensive experimental results showed that none of these methods by itself is capable
of efficiently balancing arbitrary workloads: Neighbor item exchanges are expensive in terms of
item transfers and slow in terms of convergence speed, whereas node migrations are fast but
costly in terms of message exchange. Based on these findings, NIXMIG, a hybrid approach that
adaptively decides the appropriate balancing action was proposed and evaluated. Load moves
in a “wave-like” fashion until it is absorbed by underloaded nodes, and node migration is trig-
gered only when it is necessary. Furthermore, several improvements to the original NIXMIG
algorithm that further decrease its bandwidth utilization during balancing operations were pro-
posed. The developed simulation was used to experimentally compare its performance with
other algorithms. Results show that NIXMIG can be three times faster,while requiring only one
sixth and one third of message and item exchanges respectively to bring the system in a balanced

state under a variety of skewed, dynamic and realistic workloads.
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A Distributed Framework for Indexing and Serving

Large and Diverse Datasets

In this chapter, a distributed architecture for indexing and serving large and diverse datasets
[KATK10] is presented. It incorporates and extends the functionality of Hadoop, the open source
MapReduce [DGO08] framework, and of HBase [Apalld], a distributed, sparse, NoSQL database,
to create a fully parallel indexing system. Experiments with structured, semi-structured and
unstructured data of various sizes demonstrate the flexibility, speed and robustness of this im-
plementation and contrast it with similarly oriented projects. The 11 node cluster prototype
managed to keep full-text indexing time of 150GB raw content in less than 3 hours, whereas the
system’s response time under sustained query load of more than 1000 queries/sec was kept in
the order of milliseconds.

The remainder of this chapter is organized as follows: the basic system architecture is pre-
sented in Section 5.1, experimental results are detailed in Section 5.2, in Section 5.4 we discuss

some design decisions, while Related Work and the Discussion Section conclude the chapter.

5.1 Architecture

A distributed processing platform suitable for indexing, storing and serving large amounts (in
the orders of TB and more) of content data under heavy request loads is presented. Indexing

rules of variable granularity, relative to both type of data and user-input, along with the raw
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Figure 5.1: Combining MapReduce with NoSQL to create a fully distributed indexing system.

content are processed by the framework. The augmented information is extracted in the form
of a distributed index served to an arbitrarily large number of concurrent users. In order to
speed up indexing, the compute and storage-intensive index creation and maintenance leverages
Hadoop [Apallb] the open source version of the innovative MapReduce [DGO08] framework. To
achieve low response times in high query load using commodity-node clusters, user requests are

served through an HBase database, the open source alternative of Google’s Bigtable [CDG T 08].

In Figure 5.1 we depict a platform overview. We notice that our framework distributes both
the content and the index. Hadoop’s MapReduce framework is employed both during content
upload and index creation so as to efficiently harness the cluster’s computational resources. For
content retrieval and index querying we utilize HBase since it is tightly coupled with Hadoop,
it has one of the biggest open-source communities in the area of NoSQL and it is used by a big
number of companies and organizations worldwide. As our back-end storage for both the Index
and the Content we utilize Hadoop’s Distributed File System (HDES) that provides a unified view
of the cluster’s local storage.



5.1. Architecture 77

T imlaader I Content 1=~ -7 7777 1 Index
Uploader Ind
Raw Content :————p—,—————: table :———D—?—Xgr———: table
i Map |Reduce i Map Reduce
N I _:_, 1 1 I 1
- . O I OB
- -5 FB 1 =B
I - (IR T
M= —
Index rules ogjgzt Search
Client |, OPJects
API

Figure 5.2: System Architecture

The system is built on top of Hadoop [Apallb], an open source java implementation of the
MapReduce paradigm that has been widely adopted by a large number of organizations world-
wide [Apallc]. Hadoop consists of a distributed file system called HDFS (a GFS [GGLO03] - like
distributed file system) and a MapReduce [DG08] executing framework on top of it. HDFS file
metadata is being kept in a single node called the NameNode and raw data is stored in many
DataNodes. MapReduce consists of a job scheduler called JobTracker which co-ordinates many
worker nodes called TaskTrackers. In a typical setup, the NameNode acts as a JobTracker, and

DataNodes are also TaskTrackers.

HBase is used as the NoSQL storage substrate, which is an open source implementation of
Google’s Bigtable [CDGT08], since it is tightly coupled with Hadoop (it uses HDFS as its storage
backend and provides I/O hooks to Hadoop’s MapReduce framework). An HBase table consists
of a large number of sorted rows indexed by a row key and columns indexed by a column key
(each row can have multiple different columns). Actual content is stored in HBase cells: an
HBase cell is defined by a combination of a row and a column key, in the same way an (x,y)
value defines a point in a 2-dimensional space. The primary key of an HBase table is the row
key. HBase supports two basic lookup operations on the row key: exact match and range scan.
HBase consists of a single master (HMaster) that keeps track of numerous nodes that serve actual

content called RegionServers.

Overview: In Figure 5.2, an overview of the system components along with their interactions
are presented. The main idea is the following: The raw content (in the form of large XML files,
HTML files, SQL database dumps, logfile directories, etc) is submitted to HDFS. The content
along with some instructions (the indexing rules) is fed to the Uploader, which is a MapReduce
program. The Uploader creates an HBase table with the content in a record oriented view. A
second MapReduce task (Indexer) takes as input the Content table, and extracts the Index, which

is also stored as an HBase table. Users perform queries using the client APL. The API contacts
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<author>
<name>loannis</name>
Record /- Attribute/ <surname>Konstantinou</surname>
boundaries \  types <
\<date>26/04/2010</date>
</author>

Figure 5.3: Indexing rules. Record boundaries split input into distinct entities and attribute types define
record regions to index.

Table 5.1: Content table example. Row key is MD5Hash of the content, and cell content is the record data.

Row key: MD5Hash Row value: Record Content
2da0ae7cb598ac8e <author><name>Iloannis</name><surname>Konstantinou
9455570a9c2f19fe </surname><date>20100424</date></author>
223c14b2a8c7bbe2 | <author><name>Evangelos</name><surname>Konstantinou
4ba0d6854dd6f3cc </surname><date>20100426</date></author>

the Index table to perform searches, and the Content table to serve objects. In the following, a
detailed presentation of the system components is given.

Index rules: According to the content type, users provide the system with instructions of
what to index. In this phase, there is also a need to specify what are the boundaries of a single
“record”. Records are used to split the entire dataset in a number of distinct entities that will act
as processing units. For instance, in the XML case, record boundaries can be considered some
specific tags. In the unstructured content situation (e.g. in HTML files) a specific record can be a
single HTML document, whereas in the database case, records are table rows. It is important to
note that our system can adjust the granularity of the “record” according to the user/application
requirements. Apart from this, users also select what specific content regions (attribute types)
they want to index (such as text contents of a specific XML tag, contents of an HTML table or
paragraph, data from a specific table or column from a database, etc). Index rules are used from
every component (Uploader, Indexer and the client API).

In Figure 5.3 we present an example of the indexing rules in the XML case. The records are
the author XML tags, whereas the indexed areas are the surname and date tags. Note that
in this situation the tag name is left unindexed.

Uploader: The Uploader class reads bulk datasets previously uploaded to HDEFS, and creates
the Content table. The Content table acts as a content hashmap, where every row contains a
single record item and the row key is the MD5Hash of the record content. The content table
is in essence a forward index of the total document list. The Uploader class reads data input

from HDEFS and creates the content table using the MapReduce paradigm as follows: In the
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Table 5.2: Index table example. Row key is the index term followed by the attribute type and row content
is the list of the MD5SHashes of the documents that contain this keyword in this attribute.

Row key: “term”_“attribute type” Row value: list(MD5Hash)
20100424 _date 2da0ae7cb598ac8e9455570a9¢c2f19fe
20100426_date 223c14b2a8c7bbe24ba0d6854dd6f3cc

Konstantinou_surname 2da0ae7cb598ac8e9455570a9c2f19fe,
223c14b2a8c7bbe24ba0d6854dd6f3cc

Map phase, mappers read from HDFS and emit a list of <key, value> objects where, the key is
the MD5Hash of the record, and the value is an HBase cell containing the content. The reduce
phase lexicographically sorts the incoming <MD5Hash, HBase cell > key values according to the
MD5Hash, stores the results in HFiles (HBase data file format), and informs HBase of the location
of the new table data files. The use of the content table is twofold: first, it allows fast random
access reads during successful index searches. Second, it enables easy content manipulation in
the case of new item additions or deletions of old records. An example of a Content table can
be seen in Table 5.1: here, records are the XML tags named “author” and attribute types are the

tags “name’, “surname” and “date”.

Indexer: The Indexer module calculates an inverted list of index terms and document loca-
tions and stores it in the Index table. The row key of the index table (primary key) is the keyword
term followed by the attribute type on which this keyword was encountered (e.g., if the keyword
google was found in a <revision> tag, then the row key will be google revision). Every
row stores a list of MD5Hashes of the records that contain this specific keyword (e.g., google)
in a specific attribute (e.g., revision). This list actually links the Index to the Content table. The
Indexer is a MapReduce task that works as follows: in the Map phase, mappers process the Con-
tent table, and emit a <keyword_attribute, MD5Hash> key-value pair for every keyword they
encounter. Reducers receive all emitted key-values for a specific key and aggregate them in one
key-value pair of the type <keyword_attribute, listtMD5Hash)>. These key-value pairs are fi-
nally stored in HDFS (HFile format), and HBase is informed about the new table. In Table 5.2
we present the inverted index created by the content table 5.1, after selecting to index only the

attributes “date” and “surname”.

The reason for bypassing the HBase API during initial table creations is that it is many times
slower for bulk insertions, as it is explicitly stated by the HBase developers. This happens because
insertions are first written to a persistent write-ahead-log and are afterwards accumulated in a
memstore (a sorted, in-memory buffer). When the memstore is full, they are flushed to the
disk in HFiles. By directly storing HFiles, we avoid expensive intermediate interactions with the

write-ahead-log and the memstore for each new object.
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Client API: The client API provides the basic search and get operations and it is built on
top of HBase’s client API. Our index design allows us to perform google-style freetext queries
over multiple indexed attributes. Users are able to search content in a specific attribute type
(e.g., find all documents that contain the keyword google in the <title> tag) or in any attribute
type. In the first case, the user query is translated in an HBase point query with the parameter
“google_title’, whereas in the second case it is translated in a range scan in all the HBase rows that
start with the prefix “google_" (one for each attribute type), which by default are lexicographically
adjacent. More complex range queries of the type: “find all documents that have a creation date
in 2009” or prefix queries such as “find all the documents that contain a keyword goo*” are also
supported and are translated in an HBase range scan. In any case, the client contacts HBase once
for every query, even if this is a range scan, and the network overhead between the client and
HBase is only one round-trip message per query. Query results consist of a list of MD5Hashes
of the matching documents that can be retrieved with a simple lookup from the Content table.
Our system also enables AND-ing and OR-ing of queries through client side processing: queries
are executed for each dimension and query results are merged by the client to provide the final

list of the matching documents.

5.2 Experimental Results

Our experimental setup consists of 11 worker nodes and a single machine in the role of HDES,
MapReduce and HBase master. The worker nodes have 2 Quad-Core E5405 Intel Xeon°CPUs @
2.00GHz, 8 GB of RAM (with disabled page swapping) and a 500GB disk (for a total of 88 CPUs,
88 GB RAM and 5.37 TB of disk space), while the master has similar CPUs and disk, but only 2
GB RAM. The version of Hadoop is the latest 0.20.1, re-compiled from source to suite our setup.
HBase version is 0.20.2. The network infrastructure for the nodes and master consists of a single
Gigabit Ethernet Cisco Catalyst 2960g switch. All machines are running x64 Debian Linux using

SMP kernel 2.6.24.2, compiled from source and Sun Java 6™.

The Hadoop MapReduce framework is configured to take full advantage of the available re-
sources. Hadoop and HBase are each given 1 GB of memory in every running machine, and each
Mapper or Reducer task is given 512 MB of RAM. Each worker node can spawn 6 Mappers and
2 Reducers running concurrently, for a total cluster capacity of 66 Mappers and 22 Reducers.
We have disabled Hadoop’s speculative execution, where every task is executed 3 times for re-
dundancy, as this would drop the cluster’s effective capacity to one third. HBase is managing its
own Zookeeper (an Apache project providing a distributed consistency system) instance with 3

quorum nodes. HDFS was configured with a replication factor of 2.
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Table 5.3: Index size and creation time for different numbers of attribute types (5GB
HTML).

Iteration Indexed size | time
No tags (count #) GB | min
1 [table,li, p,b, i,u, title] (7) 1.049 7
2 1 + [h1, h2, h3, h4, h5, h6, big] (14) 1.097 | 6.5
3 2 + [blockquote, del, em, s, small] (19) 1.117 | 95
4 3+ [strong, sub, sup, tt, pre, dt, dd, font] (27) | 1.296 11

Table 5.4: DB Index creation
time vs number of nodes.

# of Nodes | time(min)
2 34
4 23
6 16
8 11
11 10

During MapReduce execution, the framework automatically sets the number of Map tasks.
To enable full cluster CPU utilization, Reducers for all jobs were manually set to 100. Any num-
ber beyond the cluster concurrent capacity of 22 would be sufficient, but a larger number min-
imizes the effect of failed reduce tasks on job completion time. If the job input comes directly
from HDFS, the number of spawned Mappers defaults to the number of the input’s 64MB HDFES
chunks. Similarly, in the case of HBase this number defaults to the number of HBase’s 64MB
regions (equivalent to Bigtable’s [CDG108] tablets).

Our datasets were downloaded from Wikipedia’s dump service [Foullb] and from project
Gutenberg’s custom DVD creation service [Gutll]. Our structured data comprises of a 23GB
MySQL database dump of the latest English version of Wikipedia. The structured dataset was
obtained from the current MediaWiki XML dump available at the Wikipedia download site with
the use of mwdumper [Foulla] and uploaded to a local MySQL 5.0.51 database instance, from
which a new SQL dump was obtained to form the basis for our experiments. The reason for this
process was our desire to have a dataset consistent with actual MySQL dumps.

Our semi-structured dataset comprises of one XML and one HTML dataset: the XML dataset
is a 150GB part of a 2.55TB uncompressed XML dump of every English Wikipedia page along
with its revisions up till May 2008. The HTML dataset in turn is a 150GB dump containing a
static version of Wikipedia from June 2008.

Our unstructured data is a full dump for all languages of Gutenberg’s text document col-
lection. The dataset comprises of approximately 46,300 text files, that take 20 GB of hard disk

space.
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Figure 5.4: Index size for various datasets
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Figure 5.5: Index time for various datasets

To locate attribute types during indexing creation, in the structured (database dump) and
the unstructured (text files) case we utilized simple regular expressions, whereas in the semi-
structured (XML and HTML) case Xpath expressions were used. In the case of HTML, all doc-
uments were filtered through TagSoup [Tagll], a parser that converts HTML to well formed
XHTML documents.

In order to create query traffic, we utilized a publicly available dataset from AOL that con-
tains twenty million search keywords for over 650,000 users over a 3-month period [Arr06] to
calculate a zipfian query frequency distribution. During our experiments, clients were generat-
ing both point and prefix queries based on that distribution. The advantages of the AOL key-
word dataset compared to a random keyword generator is that it follows a real-life, non-uniform
skewed distribution, where popular keywords are requested more often. The experiments try to
clarify the performance of our indexing system under heavy user load when using a reasonably

large number of structured, semi-structured and unstructured data.
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Table 5.5: Content table creation time for various dataset sizes and types

XML HTML DB TXT
size | time | size | time | size | time | size | time
GB | min | GB | min | GB | min | GB | min

5 7 5 9 1 3 1 3
10 44 10 42 6 9 5 15
50 | 192 | 50 | 202 | 12 12 10 33

150 | 576 | 150 | 601 | 23 20 20 70
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Figure 5.6: Response time of queries vs system load in queries/s, original data size and number of indexed
attributes.

5.2.1 Content table creation

In this section, we present our findings during the content table creation procedure. In Table 5.5
we depict the time it took for the Uploader to create the content tables from raw HDEFS data for
bulk insertion into HBase. The tests were run using all the available nodes.

From Table 5.5 we can deduce that our system exhibits the expected behavior for bulk in-
sertion of the dataset. The time to completion increases linearly with the size of the dataset and
is comparable between different types of data. The diversion from the norm of the structured
dataset can be explained by taking into account the reduced processing required for the SQL
dataset. Similarly, the larger than expected time to completion for the plain text Uploader is
justified, given the fact that it is composed of a large number of very small files. Thus, the ini-
tialization penalty for each Mapper is high compared to the processing, and though small (about
1 second), makes a significant difference given the average time to completion for each file (2-5

seconds).

5.2.2 Index table creation

In this section, we present our experiments during the index table creation. We are interested in

the index size and creation time. Index tables are created from the content tables described in
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Section 5.2.1. In Figure 5.4 we present the growth of the index size as the content table increases.
The first figure presents index growth for the HTML and XML dataset, whereas the second figure
depicts index growth for the DB and TXT dataset. In Figure 5.5 we present the indexing time
of the aforementioned four dataset types for various sizes. In the HTML_7 case, the indexed
attributes are the first 7 HTML tags from Table 5.3, whereas in the XML case, <content> and

<timestamp>> tags are indexed.

In Figure 5.4 for the XML and HTML inputs we notice that in any case the growth of the
Index table gets smaller with the increase of the dataset: this happens because, after a certain
Content size, indexed terms size is not significantly increased. What is more, we notice that
XML index is larger than the HTML index of the same dataset size: HTML dataset contains
a lot of formatting code that gets stripped during keyword extraction, whereas in the case of
XML there is (almost) clean text. In the case of DB and TXT, the variations between structured
and unstructured data as to the size are justified, as the structured dataset is already indexed
in a reasonable way. Moreover, the diversity between the different documents contained in the
Gutenberg collection (in terms of language and topic) means that a lot more terms have to be

indexed, increasing the size of the index because of the added metadata.

In Figure 5.5 for the XML and HTML we notice that the XML dataset is more demanding
in terms of processing time compared to the HTML dataset, because of the HTML formatting
code that gets stripped during indexing. In the TXT and DB case, the structured DB dataset is the
most easily indexed, as the system does not perform much re-indexing except for re-arranging
the data to fit its internal specifications. The TXT dataset obviously requires much more time, as
more processing is needed to extract and process metadata. Both datasets however exhibit near
linear scalability as the number of data increase, but with different angles as explained before.
This is a desirable outcome for the Indexer, as it highlights its robustness and good behavior

under these tests.

We now present experiments that show how our indexing mechanism responds when we
vary the number of the attribute types. We utilize the 5GB HTML dataset and we increase the
number of attribute types in every iteration, as we depict in Table 5.3: in every iteration, all the
tags from the previous iterations are included. In Table 5.3 we present the growth in the indexing
time and size for every iteration. As expected, both the size and the index time increases along

with the attribute type number. Nevertheless, this increase rate remains relatively low.

In the following experiment, we measure the scalability of the indexing mechanism by vary-
ing the number of the cluster nodes while keeping a stable index input dataset size. We run the
Indexer on the largest DB dataset and in Table 5.4 we present the index creation time variation.
As expected by the fully distributed indexing nature of MapReduce, the speed is proportional

to the number of processing nodes, something that proves the system’s scalability during index
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creation. This property is a typical cloud application requirement, since extra nodes are acquired

by a cloud vendor in an easy and inexpensive manner.

5.2.3 System performance under query load

In this section we measure our system’s ability to respond to a large number of simultaneous
user queries. We consider three types of queries on indexed attributes: free keyword search in
a specific attribute, free keyword search in any attribute and prefix queries in any attribute type.
Prefix queries were generated using the first four characters of randomly selected AOL keywords.
The test obtains response times from HBase for these search types. Client instances were run
concurrently on 14 machines, to ensure realistic measurements in terms of network load from
different machines. Most of the tests were executed using a 14GB index table of a 50GB HTML
dataset subset. For the response times vs data size, 5, 10 and 50 GB partitions of the HTML
dataset were used with 7 indexed attributes (as seen in Table 5.3).

Our first experiments evaluate the maximum load measured in queries/s that our index table
can support in HBase. We have observed the limit of HBase when serving queries by running
14 concurrent clients, each sending queries with a delay that follows an exponential distribu-
tion probability function. Our experiments (results seen in Figure 5.6a) were run with values
higher than the previously reported limit for sustained queries per second against HBase on
HDES [LRST09]. Although high response times were measured, the system remained stable and
kept serving requests even under heavy load, highlighting the robustness of HBase. Range query
loads above 140 queries/s however failed to complete and in most cases the clients had to be
manually terminated. This is reasonable, as such queries request a large number of data and de-
mand processing on both the server and client, increasing exponentially the load on available
resources. For reasonable load on the server, in the order of 14 queries per second from differ-
ent clients, we have measured response times close to 20 ms for point queries, 150 ms for any
attribute queries and 27 seconds for range queries.

We believe that the observed behavior of the system in Figure 5.6 is a consequence of HBase
caching: up to 100 queries/s there are available channels to accommodate the clients. Beyond this
point, the response time increases because of the increased client requests, who now have to wait
in line to be served. Between roughly 100 to 1000 queries/s, HBase caching is significant: each
popular keyword is loaded only once in memory and then served as is. This leads to a significant
decrease of the average response time of the system because of the skewed distribution of the
requests. This tactic fails for load above 1000 queries/s and the average response time for queries
increases exponentially.

Running queries for datasets of different sizes, shown in Figure 5.6b, the response times fol-

low an expected pattern. The tests were run with an average load of 14 queries per second for
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the system, i.e. 14 clients issued on average one query per second. The choice was made to en-
sure that range queries would be included in our results. Range queries are the most expensive,
and therefore response times are larger, as are searches for a specific keyword in any indexed
attribute. Response times for point queries (exact matches of keyword and attribute) remain
relatively constant, irrespective of dataset size, while response time for range and any attribute

queries increases slowly as the number of records containing them increases with the datasize.

An increase in the number of attributes (Figure 5.6¢) has no effect on the response time of
point queries, and this highlights the efficiency of the system. Similarly, times for range queries
and queries in any attribute scale almost linearly, keeping the overhead small even for large in-
dices. This might seem unexpected, as for most range queries, it would mean a theoretical in-
crease of factor 27. This is not the case due to the structure of HTML: since the expected nesting
depth of HTML tags is low, the number of query results returned by such queries rarely reaches
this theoretical maximum. However, since the selection of indexed attributes is left to the user,
this behavior could theoretically be simulated by choosing consistently nested tags (e.g. table, tr
and td in HTML). Given the limited usefulness of such a selection though, we believe that it is

not a concern for practical system use.

5.3 Related Work

The requirement to perform compute-intensive analytics on (semi) structured bulk datasets has
pushed sql-like centralized databases to their limits [Aba09]. This fact, along with the highly
parallel nature of these tasks, has lead to the development of horizontal scalable, distributed
non-relational data stores, called NoSQL databases. Google’s Bigtable [CDG108] and its re-
placement Megastore [BBC11], Amazon’s Dynamo [DHJ " 07], Facebook’s Cassandra [LM10],
IBM’s CouchDB [Apalla] and LinkedIn’s Voldermort [Vol09] are a representative sample of such
systems. The interest in such data-stores is so big that more than 120 different implementations
have been proposed according to the NoSQL site [NoS09] retrieved in April 2011. In favor of
scalability and high availability, NoSQL systems relax classic ACID guarantees made by typical
DBMS, allowing, for instance, only eventual consistency. NoSQL systems serve a dual purpose:
they can efficiently store and index arbitrarily big data sizes while enabling a large amount of
concurrent user requests. NoSQL systems are perfect candidates for cloud infrastructures, as
their shared nothing architecture enables them to scale by simply acquiring more computational
and storage resources from a cloud vendor.

The distributed cooperation of a large number of computational and storage resources is a
challenging task. Application specific requirements of large scale data management tasks (e.g.

the need to push computation near the data) prohibit the use of typical general purpose job
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Figure 5.7: Overview of a simple MapReduce operation. Input chunks are fed to a number of mappers,
intermediate output is sorted and assigned to a usallly smaller number of reducers which produce the final
output.

schedulers. To cope with these requirements, “data-aware” distributed data management frame-
works have been proposed, with Google’s MapRreduce [DGO08] as the most prevalent. MapRe-
duce is inspired by the typical “map” and “reduce” functions found in Lisp and other functional
programming languages: a problem is separated in two different phases, the Map and Reduce
phase. In the Map phase, non overlapping chunks of the input data get assigned to separate
processes, called mappers, which process their input and emit a set of intermediate results. In-
termediate results are automatically sorted in the shuffling phase. In the Reduce phase, these
results are fed to a (usually smaller) number of separate processes called Reducers, that “summa-
rize” their input in a smaller number of results that are the solution to the original problem. In
Figure 5.7 we present the execution of a simple MapReduce job. For more complex situations, a

workflow of map and reduce steps is followed, where mappers feed reducers and vice versa.

5.3.1 MapReduce based data analysis frameworks.

On top of MapReduce, a number of frameworks have been proposed to facilitate the manage-
ment and execution of data warehousing tasks. Yahoo's Pig [ORST08], Facebook’s Hive [TS]™09]
and HadoopDB [ABPA"09] are a representative subset of such frameworks.

Pig [ORST08] users write their analytical jobs in a declarative scripting language, and Pig
translates them to MapReduce jobs in Hadoop. Pig aims to simplify the creation of MapReduce
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jobs by enabling code re-usability. Data objects consist of atoms (simple value), tuples (collec-
tions of atoms), Bags (collections of tuples) and Maps (key->value pairs, where keys are atoms and
values are any of the aforementioned types). Pig loads data and saves output using custom Seri-
alizers/Deserializers through its LOAD and SAVE commands respectively. Data manipulation is
performed through its commands (FOREACH, FILTER, COGROUP, UNION, CROSS,ORDER
and DISTINCT). Each command is actually a MapReduce program. Pig enables nested data (e.g.
tuples inside of tuples) and nested commands (e.g. FILTER inside of FOREACH commands).

Hive [TSJT09] offers an SQL-like declarative language called HiveQL. User queries are trans-
formed to a chain of MapReduce steps through its query optimizer component, and Hadoop’s
HDES is used as its storage substrate. Hive stores its data in HDFS directories in an hierar-
chical manner (databaseName/ tableName/ columnName/ PartitionID). Table metadata, called
HiveMetastore, is stored outside of HDFS in a random-access optimized storage, such as a database
or a local file-system. Both Pig and Hive are not optimized to serve large number of concurrent
requests in a low-latency manner, since queries are executed as MapReduce jobs (completion
time in the order of seconds) and data is served through HDEFS, which is not designed to facili-

tate a large number of concurrent reads.

HadoopDB [ABPA109] is a MapReduce and database hybrid that aims to bridge the gap be-
tween parallel databases and MapReduce systems: it uses Hadoop as its communication layer
with the difference that DataNodes are also running local instances of a DBMS (PostgreSQL
or MySQL) that store the actual data (in contrast to Pig and Hive that store data directly to
HDEFS). HadoopDB also extends Hive’s query optimizer component to “understand” local DataN-

ode databases, but queries are also executed as MapReduce tasks.

SCOPE [CJL*08] is Microsoft’s SQL-like scripting language for distributed analytical tasks.

SCOPE is executed on top of Cosmos, a distributed storage and execution engine.

A number of content analytic platforms built on top of Hadoop have been proposed recently.
In [BEKT09], IBM presents a preliminary version of their work on analyzing large datasets using
Hadoop, where they do not deal with serving the created content. Their platform utilizes Sys-
temT, an information extraction engine which extracts structured information from unstruc-
tured data and Jaql, a general purpose data-flow language that process semi-structured infor-
mation as abstract JSON values. Jaql queries are translated into MapReduce steps and process
unstructured data which is augmented with structured information (in the form of JSON values)
from the SystemT engine. Both Jaql and SystemT are used in IBM’s ES2, an enteprise semantic
search engine. ES2 uses Nutch [Apallf], the open-source web crawler project from which the
Hadoop was created. ES2 process a company’s intranet, and extracts an index which is used to

perform “smart” queries.
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5.3.2 Distributed indexing frameworks based on NoSQL and MapReduce combi-
nations.

Distributed index creation frameworks that exploit the parallelism of Hadoop and HBase have
been recently announced. Ivory, [LMEW10] an inverted indexing framework implementation on
top of Hadoop, distributes the index creation through a MapReduce job, and the index is served
through two different ways: a centralized repository (i.e., from a web server’s disk) and a custom
distributed repository based on HDFS. The partition of the index is term based, i.e., each node
serves a subset of the index terms and the full document list of a term is stored in one node. In the
HDFES case, the authors launch a “dummy” MapReduce program with only a Map phase, and each
Mapper executes as a resident TCP/IP server which handles queries that search keywords from
the local HDFS index shard. User queries are directed to the Partition Server, where mappings of
keywords to HDEFS files containing postings are stored (Ivory utilizes Metzler’s [MCO5] retrieval
engine during index creation and querying). The Partition Server then connects to the resident
TCP/IP server of each HDFES Node, gathers the required information, and returns the answer to
the user query. The drawback of this method is the overkill of a resident TCP/IP server in each
HDES Node: instead of this, a NoSQL storage substrate could do the job with less programmatic

effort and with the same efficiency both in terms of performance and query precision.

On the other hand, HIndex [LRST09] serves indices through HBase, but the index creation
is centralized. In HIndex, the partition of the index is document based, i.e., each node is re-
sponsible for a subset of the documents and keeps a “local” inverted index list. The drawback
of this approach is that even a single keyword query needs to be sent to all the participating
peers, as it is not known in advance whether a node stores documents with this specific query.
Nevertheless, this method is more efficient during document updates: when a new version of a
document is inserted, only the node that is responsible for that document will be contacted and
its local index will be updated, whereas in the term based indexing, a larger number of nodes
that index terms of both the new and the old document will be contacted. What is more, HIndex
tries to avoid a query flooding to all nodes by carefully selecting document ids and by exploiting
HBase’s ordering. HIndex utilizes Lucene [Apalle], a popular open source text index library, as
its local inverted index. HIndex stores lucene indexes as “special” HFiles after changing HBase’s
source code. HIndex has the one-server bottleneck problem during bulk insertions as discussed
in [BMBB10]. The authors tackle this with the manual creation of numerous HFiles in different
nodes, nevertheless they still do not bypass the slow HBase API. The main drawbacks of HIndex

is the query flooding during searches and the inherent difficulty in bulk insertions.
The authors of [BMBB10] present a general purpose bulk insertion mechanism that is built

on top of HBase and takes advantage of its shared nothing architecture. They also utilize a paral-

lel approach during insertions where the HBase API is bypassed, and HFiles are directly written
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down to the HDFS with the use of the MapReduce framework. The work also deals with the over-
head caused by the use of the HBase API. They argue that during bulk insertions of ordered data
(for example, log entries ordered by date) range-partitioned data structures like HBase have an
inherent load balancing problem, where each time most of the load is handled by a small number
of nodes. They deal with this problem by utilizing Hadoop’s MapReduce framework to perform
parallel bulk insertions of sorted data. Similar to my approach, mappers read the content previ-
ously uploaded in the HDEFS, sort the values according to a global order-preserving partitioner
and reducers materialize ordered ranges to HFiles in the HDFS. They utilize a preliminary sam-
pling phase that approximates the key distribution in order to split the ID space evenly and each
reducer gets an equal share of the load (the output of the sampling phase is fed to the Partitioner).

The fundamental problem of bulk insertion in distributed ordered tables where most of the
load is directed in a small number of nodes is studied in [SCST08]. The authors deal with the
bottleneck problem that results in low throughput during bulk insertions with the use of a pre-
liminary planning phase before the insertion. The planning phase creates new partitions and
intelligently distributes partitions among machines to maximize perceived throughput and to
minimize data transfer. This works by a first small sampling step, in which the system tries to
identify regions and servers that will be overloaded during the bulk insertion. The outcome of the
sampling phase is a schedule of partition splits and moves (from one server to another). Existing
partitions are pre-splitted before they reach their maximum size and are moved to numerous
servers in order to accommodate the foreseen incoming insertions with more than one servers.
Nevertheless, moving underfull partitions is also a costly procedure. The authors first show that
this partition to server reassignment and movement is an NP-hard problem and present a so-
lution through approximation. They finally apply their algorithm to PNUTS [CRS108], Yahoo's
equivalent to BigTable.

The combination of HBase with the MapReduce framework also is applicable to indexing
RDF triplestores which is used to answer semantically enriched SPARQL queries, as in the works
of [CSCT09,KU10,ABC*10].

In [CSC*09] the authors present SPIDER, a distributed system based on Hadoop and HBase
that can efficiently handle the storage of RDF triples and the answering of SPARQL queries. Large
amounts of RDF data is stored in HBase region servers called “triple servers” SPARQL queries
which require distributed subgraph processing are analyzed into Hadoop MapReduce jobs and
are executed in parallel by the triple servers. SPIDER combines HBase’s flexibility of storing
sparse semi-structured RDF data with the powerful execution framework of Hadoop.

In [KU10] both HBase and MapReduce are used to store RDF triples. In this paper, the
authors present a framework for creating and serving large RDF stores using a combination of the
MapReduce framework (for creating the index) and a NoSQL system (for serving the index). The
authors present SPARQLp grammar, which is considered an extension to the standard SPARQL



5.4. Discussion 91

grammar and is used to create and query the index. In essence, the authors have added two
different functions in the SPARQLp grammar: the first is the “DEFINE” function. This function
is similar to an SQL function that creates a materialized view, and is used by their framework
to pre-compute and store in the distributed file system some expensive SPARQL queries. This
materialization is done through the execution of a MapReduce workflow. For each “DEFINE”
function a NoSQL table (with a single index key) is created. This NoSQL table is used by the
“GET” function to perform simple exact match NoSQL get operations on the table’s indexed
key. Finally, the authors measure the table creation procedure of the “DEFINE” query and the

performance of the “GET” operation under different query workloads.

Distrubuted RDF data management with the combined use of HBase and Hadoop is also
performed in the work of [ABC'10]. The authors present ProvBase, a distributed system based
on HBase and Hadoop which provides a three-table storage schema that can be instantiated
in HBase to hold provenance triples and querying algorithms that evaluate SPARQL queries in
HBase using its native APL

5.4 Discussion

The indexing system described above is an attempt to leverage the abilities of Hadoop and HBase
over similar distributed approaches. In essence, we complement the MapReduce framework’s
ability to distribute processing over a large number of nodes with HBase’s flexible and high per-
formance architecture. Similar solutions (see Pig [ORST08] or Hive [TSJT09]) deal with the
same problems by running MapReduce jobs for each query submitted. While this allows for
complex queries, it also requires significant processing time on the servers for each query and
knowledge of the way the data are physically stored. In comparison, our solution aims for speed
in simple queries, while most of the processing required on complex queries is performed by
the client. This keeps network traffic and CPU load on the data servers at a minimum, allow-
ing for more concurrent client connections. HadoopDB [ABPAT09] extends Hive with support
for SQL queries but suffers from the same issues, although it does allow for data partitioning,
which would be comparable with our indexing process. However, this requires explicit knowl-
edge of the HadoopDB architecture, while alternative partitioning rules (i.e., views in database
terminology) cannot be enforced.

In contrast to other approaches (such as Ivory [LMEW10] and HIndex [LRST09]) that dis-
tribute only one part of the process, our implementation has the benefit of a fully distributed
architecture. This ensures full utilization of the available physical infrastructure and increased
scalability. Moreover, our approach significantly reduces the time needed for both index creation

and query responses.
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Considering that data are already stored in HDFS, storing them again in HBase seems redun-
dant: one could use the offsets of an HDFS file as record identifiers. Yet, such an approach makes
insertion of records difficult, as all offsets need to be re-calculated. HBase can perform single im-
ports and requires few updates in the index table per new record. Instead of index updates, if
consistency between the context table and its index is relaxed, periodic reruns of the Indexer can
be used. An evaluation of the trade-off between these two approaches is left for future work.

At the moment, the content and index creation is a serial procedure that could be otherwise
pipelined: the output of an Uploader reducer could be directly fed to the Indexer mapper and
written down to HDEFS as HFiles at the same time using a chain of MapReduce steps. Neverthe-
less, this operation is new and, in our opinion, relatively unstable in the current Hadoop version.

The need for complex row keys in the index table (e.g., google_revision) was imposed from
the diversity of our datasets. Different data types (structured, unstructured, semi-structured)
constrain the granularity of the index in different ways. With such a complex row key, a single
index table that accommodates all these constraints can be used, while making client lookups
for specific attributes from different data types fast and straightforward. This structure can also
overcome HBase limitations on the dimensionality of the data stored in its tables.

In the future, our system will be extended to support more complex queries, such as SQL-
like joins, and complex table views for the content and index tables. This would make our system
more functional while preserving its main advantages, speed and ease of use. Another useful
improvement to our implementation would be support for secondary indices to speedup custom
searching on different dataset dimensions. This would be implemented using the same basic
design as the index table and would immediately increase the usability and lower response times
for complex, multidimensional queries. We are also considering the deployment of our system

to an actual cloud vendor such as Amazon.
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Conclusions and Future Work

6.1 Conclusions

This thesis focused on the behaviour and performance of distributed systems when they are
stressed with high and dynamic load. Emphasis was given in the load problems that arise during
processing and serving big amounts of data in networks of shared nothing commodity machines.
More specific, this work studied how a network of shared nothing commodity machines can ef-
ficiently handle two important mechanisms in general data management systems: range queries
and index maintenance. My emphasis was on the efficient handling of imbalances created by
skewed data accesses in distributed range-queriable data structures, and the distribution of index
creation and serving using state-of-the art cloud enabled data processing techniques. To achieve
this, methods from various areas of distributed computing such as peer to peer and cloud-based
data processing systems were employed. In both situations, my concern was to devise and uti-
lize adaptive schemes that could scale to a high number of participating nodes in order to satisfy
arbitrarily large and diverse workloads with the least possible human interaction.

Regarding range queries in distributed systems, this thesis analyzed existing approaches,
compared their performance both experimentally and theoretically and detected their relative
advantages and shortcomings. This research lead to the design and implementation of NIX-
MIG [KTK11, KTKO09, KTKO08], a scalable decentralized algorithm for load balancing of dis-
tributed range queriable data structures. Although this problem has received a lot of attention

and there have been proposed many solutions during the last years, none of them offered load
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balancing without the use of replication, centralized load directories or expensive message prob-
ing. In NIXMIG, we proposed a novel wave-like locking and load dissemination mechanism
which achieves distributed peer co-ordination and collaboration during load exchanges. NIX-
MIG peers, by utilizing only local knowledge, are able to detect global load imbalances due to
skewed data access and to perform fast and bandwidth efficient on-line load balancing.

With respect to the distribution of the index creation and serving, the thesis investigated
numerous state-of-the art processing frameworks and data stores. This research lead to the de-
sign and development of the distributed indexer of Chapter 5 [KATK10]. This system com-
bines the power of the widely adopted open source alternatives of MapReduce [DG08] and
BigTable [CDG™08] in order to create a fully parallel processing and serving framework. The
indexer parallelizes both the index creation through MapReduce and the index and content serv-
ing through BigTable, compared to other approaches proposed in the literature where they par-
allelize only one part of the procedure. The experimental evaluation proved that the existing
open-source programs like Hadoop [Apallb] and HBase [Apalld] have matured and they can
be used quite effectively in order to deal with data scalability issues.

Throughout the dissertation, we got involved in various stages of system design and eval-
uation: from simulation to real implementation and from theoretical to experimental analysis.
NIXMIG was implemented in a simulated environment and was evaluated both experimentally
and theoretically, whereas the distributed indexer of Chapter 5 was an actual implementation
that was evaluated in a physical cluster. Each approach has its relative advantages and disadvan-
tages. A simulated environment enables the easy repetition of experiments in order to identify
how a specific parameter affects the system’s performance. Nevertheless, a small design error
in the simulation can completely alter the produced results, and if it remains untraced, it can
cause the extraction of erroneous conclusions. On the other hand, an actual implementation
produces more indisputable results, but those results are tightly bound to the specific hardware
and software configuration which makes their generalization more difficult. A correct theoretical
evaluation provides indisputable and generalizable results, but in the case of distributed systems
with so many degrees of freedom and randomness, it is very difficult and sometimes impossible
to obtain a closed-form formula that captures the system’s behavior. In my opinion, most of the
times a combination of the aforementioned methods is necessary in order to extract meaningful
conclusions.

In the NIXMIG case, apart from experimental evaluation, we were also able to theoretically
calculate the algorithm’s performance and provide closed-formulas with the utilization of legacy
load balancing theories [GM96, Cyb89]. Considering the fact that this area of research is quite
mature, from one hand we had the opportunity to study many different approaches, but on the
other hand it was difficult to prove that our system is significantly different. Nevertheless, our

system proved to be more efficient in many cases compared to other popular approaches. In
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the case of the distributed indexer of Chapter 5, we managed to build our framework on top
of relatively unstable versions of open-source software, we received invaluable help from the
communities of both Hadoop and HBase, we contributed with numerous bug fixes in the HBase
system, and our research received their attention. The scientific area of cloud-enabled distributed
processing systems is relatively new but it is rapidly evolving, mainly because of the increased
need for fast, and sometimes realtime, processing of vast amounts of data. In this case, real
implementations offer fast solutions to actual problems and therefore are very useful for the

respective communities.

If we treat distributed systems as black boxes, they have the same functionality and they
perform the same basic tasks with their centralized alternatives. What is more, in small scale,
centralized architectures can prove to be more efficient and easier to develop and maintain. For
instance, range query support is a de-facto operation in centralized RDBMS for years, and index
creation is a straightforward task for single server approaches. An RDBMS like MySQL [MyS11]
can evaluate range queries easier than NIXMIG, and a centralized index creation mechanism
like Lucene [Apalle] can be more configurable and simple to setup than the distributed indexer.
Nevertheless, when both the storage and access load increases, single server approaches fail. In
these situations distributed approaches are showing their true strength. As of this, if a system is
expected to experience high loads, the design of a distributed approach from the beginning is a

wise choice despite the architectural and operational difficulties.

6.2 Future Directions

In this section we discuss about possible research directions in our work. We are considering
many axes along which our work can be extended. The first direction constitute an enhancement
in NIXMIG, the load balancing algorithm presented in Chapter 4, while the other enhancement
targets the general area of cloud based shared-nothing distributed data management systems

presented in Chapter 5.

6.2.1 Adaptive replication of distributed range partitioned data structures.

NIXMIG balances load by redistributing keys between nodes and does not employ any replica-
tion strategy. Throughout our analysis, we consider replication to be an orthogonal approach. In
Figure 6.1 we present how NIXMIG balances a skewed workload: Range queries ¢;...q7 overload
nodes N7 and N that are responsible for the first 8 keys of the ID space. In this scenario, at time
t = t, either N1 or No (Whoever “wins” during the locking procedure) initiates a NIXMIG oper-

ation, places nodes N3, Ny and N5 next to it and offloads a number of items to them, dropping
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Figure 6.1: NIXMIG balancing. Nodes N3, Ny and N leave their place and take a part of the overloaded
area previously served by Ny and No.

its load below its thres value. Finally, when the system is balanced at time ¢ = t;, four nodes are
responsible for the first eight “popular” keys, while the rest are served by Na.

When we consider replication, an interesting research direction would be to study NIXMIG’s
dual approach: instead of rearranging items between nodes, it might be efficient to identify “hot”
areas and replicate them in a number of different nodes. In Figure 6.2 we present how the repli-
cation approach can balance the same workload as the one of Figure 6.1. An operation similar to
a NIXMIG wave is triggered when N or N; is overloaded. In this approach, the difference with
NIXMIG is that each remote underloaded node N3, N4 and Nj takes the entire overloaded area
of the first eight keys (bottom of Figure 6.2) instead of just taking only a portion of it. Finaly, in
the balanced state at time ¢t = t;, nodes Ny, Na, N3 and Ny are responsible for the first 8 keys,
and, assuming a “fair” routing protocol, each node will serve one fourth of the requests for this
area. Although this operation resembles a NIXMIG wave, it needs to be designed in a completely
different way, as different decisions need to be taken. For instance, during a replication request,
nodes need to decide both the item range that will be replicated (e.g. items 1-8 in Figure 6.2)

along with the number of total replica holders for this range (e.g. four nodes in Figure 6.2).

6.2.2 NoSQL adaptive replication of popular regions.

NoSQL systems like HBase use replication for two reasons: load balancing and fault tolerance.
Load is balanced among replica holders as requests are handled by more than one peer, and

fault tolerance is achieved as even in the case of failing nodes, the remaining peers continue to
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Figure 6.2: Balancing through replication. Nodes N3, Ny and N leave their place and, together with Ny,
handle requests for the overloaded area of the first 8 items of the ID space.

serve incoming queries. Nevertheless, HBase, like the majority of the existing NoSQL platforms,
employ a static replication scheme, with a fixed predefined number of replicas for each region
(an HBase region is a subset of the ID space containing items whose total size does not exceeds
a maximum predefined size, the equivalent of BigTable [CDG108] s Tablet). A fixed number of
replicas for each region is not very efficient, considering that, in many cases, item requests are

skewed: a small percentage of the total stored items receives the majority of the requests.

In order to tackle the problem posed by static replication, we consider to extend HBase to
support dynamic replication per stored region. The replication factor per region will be decided
at runtime and will be workload adaptive: “popular” regions will increase their available replicas
whereas regions that are rarely requested will respectively decrease their replica number. The
replication factor per region will be decided at runtime using a monitoring and balancing module.
The module will monitor for region specific workload changes, and when the workload value
exceed a thres_high or drops below a thres_low it will increase or decrease respectively the

number of available replicas.

Deciding the appropriate number of replicas per region is not a trivial task: one could ar-
gue that skewed workload can be tackled by globally setting a large replication factor number.
Nevertheless, considering the fact that most NoSQL systems do not create replicas using erasure

codes, the total storage space needed for each item gets multiplied by the number of replicas,
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thus decreasing the available storage space. Moreover, a big replication factor will make object
updates inefficient, as more replica holders need to be synchronized and receive the new object.

What is more, several research issues arise concerning monitoring and replication decisions:
is it efficient to deploy the module in the HBase master node? How is the module going to
operate in a transparent way, i.e., without further degrading performance in workload intensive
situations? Is it feasible to design a generic module so that it can be easily deployed in other
NoSQL systems like Cassandra [LM10] or CouchDB [Apalla]?
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APPENDIX A

On the Elasticity of NoSQL Databases over Cloud

Management Platforms

NoSQL databases focus on analytical processing of large scale datasets, offering increased scal-
ability over commodity hardware. One of their strongest features is elasticity, which allows for
fairly portioned premiums and high-quality performance and directly applies to the philosophy
of a cloud-based platform. Yet, the process of adaptive expansion and contraction of resources
usually involves a lot of manual effort during cluster configuration. To date, there exists no com-
parative study to quantify this cost and measure the efficacy of NoSQL engines that offer this
feature over a cloud provider. In this work, we present a cloud-enabled framework for adaptive
monitoring of NoSQL systems. We perform a thorough study of the elasticity feature on some

of the most popular NoSQL databases over an open-source cloud computing platform.

A.1 Introduction

Computational and storage requirements of applications such as web analytics, business intelli-
gence and social networking over tera- (or even peta-) byte datasets have pushed sql-like cen-
tralized databases to their limits [Aba09]. This led to the development of horizontally scalable,
distributed non-relational data stores, called NoSQL databases. Google’s Bigtable [CDG ™ 08]
and its open-source implementation HBase [Apalld], Amazon’s Dynamo [DHJ07], Facebook’s

Cassandra [LM10], and LinkedIn’s Voldemort [Vol09] are a representative set of such systems.

123



124 Appendix A. On the Elasticity of NoSQL Databases over Cloud Management Platforms

NoSQL systems exhibit the ability to store and index arbitrarily big data sets while enabling a
large amount of concurrent user requests. They are perfect candidates for cloud platforms that
provide infrastructure as a service (IaaS) such as Amazon’s EC2 [Amalla] or its open-source al-
ternatives such as Eucalyptus [NWG™09] and OpenStack [Opel1]: NoSQL administrators can
utilize the cloud API to throttle the number of acquired resources (i.e., number of virtual ma-

chines — VMs and storage space) according to application needs.

This is highly-compatible with NoSQL stores: Scalability in processing big data is possible
through elasticity and sharding. The former refers to the ability to expand or contract dedicated
resources in order to meet the exact demand. The latter refers to the horizontal partitioning
over a shared-nothing architecture that enables scalable load processing. It is obvious that these
two properties (henceforth referred to as elasticity) are intertwined: as computing resources
grow and shrink, data partitioning must be done in such a way that no loss occurs and the right

amount of replication is conserved.

Many NoSQL systems (e.g., [Apalld, DHJT07, LM10, Vol09, rial1]) claim to offer adaptive
elasticity according to the number of participant commodity nodes. Nevertheless, the “throt-
tling” is usually performed manually, making availability problems due to unanticipated high
loads not infrequent (e.g., the recent Foursquare outage [Hor11]). Adaptive frameworks are of-
fered by major cloud vendors as a service through their infrastructure: Amazon’s SimpleDB [sim],
Google’s AppEngine [app] and Microsoft’s SQL Azure [azub] are proprietary systems provided
through a simple REST interface offering (virtually) unlimited processing power and storage.
However, these services run on dedicated servers (i.e., no elasticity from the vendor’s point of
view), their internal design and architecture is not publicly documented, their cost is sometimes

prohibitive and their performance is questionable [KKL10a].

A number of recent works has provided interesting insights over the performance and pro-
cessing characteristics of various analytics platforms (e.g., [KKL10a, PPR*09, CST*10]), without
dealing with elasticity in virtualized resources, which is the typical case in cloud environments.
The studies presented in [GSRM ™09, MKF10, XCZ"11] deal with this feature but do not address
NoSQL databases, while [LBC10] is file-system specific. Finally, proprietary frameworks such as
Amazon’s CloudWatch [clo] or AzureWatch [azua] do not provide a rich set of metrics and re-
quire a lot of manual labor to be applicable for NoSQL systems. Thus, although both NoSQL and
cloud infrastructures are inherently elastic, there exists no actual study to report how effective

this is in practice, at least over architecturally different engines.

Our work aims to bridge this gap between individual implementations and practice. Having
reviewed the majority of open-source NoSQL solutions (including considerable hands-on expe-
rience with many of them) and the Eucalyptus [aaS [NWG™09], our task is to design and deploy

a distributed framework that allows in a customizable manner any NoSQL engine to expand
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or contract its resources by using a cloud management platform. Specifically, in this work we

perform a thorough study that presents the following tangible contributions:

« Utilizing a VM-based measurement framework, we are able to provide a generic control mod-
ule that monitors NoSQL clusters. We then identify how each metric of interest (CPU, Mem-
ory usage, Network, etc) varies under workloads of various types (reads, writes, updates) and
rates.

+ We document the costs and gains after a cluster resize. Specifically, using both client and
cluster-based metrics, we register the performance gains when increasing the size of the clus-
ter in varying workloads. We also measure the cost in terms of time delay and describe the

performance degradation at all stages of adding or deleting a new VM.

Taking advantage of our experience in building and operating this platform, this work may
also be used as an invaluable guide to technical issues such as: Automatic VM setup and configu-
ration, NoSQL tuneup and glitches, implementation shortcomings and best workload practices.

To achieve maximum result generalization and show our framework’s modularity, we incor-
porate three popular NoSQL implementations, HBase [Apalld], Cassandra [LM10] and Riak
[riall] that support elasticity and also offer an acceptable level of development support required.
The same hold for the choice of the open-source client [CST*10] our system incorporates.

The remainder of this work is organized as follows: the basic system architecture is presented
in Section A.2. Section A.3 presents a brief description of the supported NoSQL systems and
their elasticity features. Our experimental results are detailed in Section A.4, related work is
presented in Section A.5 and Section A.6 contains a thorough analysis of our findings, design

decisions and recommendations, while Section A.7 concludes our work.

A.2 Architecture

We now give a brief description of the modules of our elasticity-testing framework: The Com-
mand Issuing module is used to initiate a cluster resize operation. It interacts with the Cloud
Management module that contacts the cloud vendor to adjust the cluster’s physical resources by
releasing or acquiring more virtual machines. The Rebalancing module makes sure that newly
arrived nodes join the cluster contributing an equal share of the work. The Cluster Coordinator
module executes higher level add, remove and rebalance commands according to the particular
NoSQL system used. Finally, the Monitoring module maintains up-to-date performance metrics
that collects from the cluster nodes. Below we describe each module in more detail:

Command Issuing Module: This is the ‘coordinator’ module. In the current implementation
phase, this module requests addition or removal of a number of VMs using the Cloud Manage-

ment and Cluster Coordinator modules.
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Monitoring Module: Our system takes a passive monitoring approach. Currently, it receives
data from Ganglia [MCCO04], a scalable distributed system monitoring tool that allows the user
to remotely collect live or historical statistics (such as CPU load averages, network, memory or
disk space utilization) through its XML API and present them through its web front-end via
real-time dynamic web pages. Apart from general operating-system statistics, Ganglia may also
gather NoSQL performance metrics such as the current number of open client threads, number
of served operations per second, etc.

Rebalancing Module: The rebalancing module is activated after a newly arrived virtual machine
from the cloud vendor has successfully started (i.e., has booted and received a valid IP). When
this happens, the module executes a “global rebalance” operation, in which client requests are
spread equally among the cluster nodes according to the specific NoSQL implementation and
semantics.

Cloud management: Our system interacts with the cloud vendor using the well known euca-
tools, an Amazon EC2 compliant REST-based client library. The command issuing module in-
teracts with this module when it commands for a resize in the physical cluster resources, i.e., the
number of running VMs. Our cloud management platform is a private Eucalyptus [NWG109]
installation. The use of euca-tools guarantees that our system can be deployed in Amazon’s EC2
or in any EC2-compliant Iaa$S cloud. We have created an Amazon Machine Image (AMI) that
contains pre-installed versions of the supported NoSQL systems along with the Ganglia moni-
toring tool.

Cluster coordinator: The coordination of the remote VMs is done with the remote execution
of shell scripts and the injection of on-the-fly created NoSQL specific configuration files to each
VM. A higher level “start cluster”, “add NoSQL node” and “remove NoSQL node” command
is translated in a workflow of the aforementioned primitives. Our framework implementation

makes sure that each step has succeeded before moving to the next one.

For instance, the Command Issuing module requests an “add virtual machine” command us-
ing the euca-tools API and waits until it is started and has been assigned with an IP. After this,
the Cluster Coordinator creates the appropriate configuration scripts on-the-fly, transfers them
to the new VM, and remotely starts the NoSQL service along with the Ganglia tool. The Re-
balancer module inserts the node to the cluster and rebalances client requests among the server
nodes. In the “remove noSQL node” command, the Cluster Coordinator is instructed to remove
it from the cluster calling the “terminate instance” command of the Cloud Management. Data
loss during node removal is avoided with the use of NoSQL data replication. In this case, NoSQL

systems transparently replicate the removed data in order to maintain the replication factor.

Our framework currently incorporates three popular NoSQL systems that implement rebal-

ancing operations: HBase, Cassandra and Riak (for an overview of these systems, refer to Section
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A.3). Yet, the system is extensible enough to include more engines that support elastic opera-
tions by implementing the system’s abstract primitives in the Cluster Coordinator module and

by including the system’s binaries to the existing AMI virtual machine image.

A.3 NoSQL Overview

This section provides a short overview of the three NoSQL engines incorporated so far in our
framework. In particular, we focus on key architectural characteristics, behaviour and advan-

tages, as these features shed light into many of the results that follow.

A.3.1 HBase

HBase is a Bigtable-like structured store that runs on top of the Hadoop Distributed File System
(HDES). Both HBase and Hadoop implement a centralized master-slave architecture. HBase has
an HMaster node that keeps track of the various cluster nodes (RegionServers) that serve client
requests. Data is divided into regions allocated to the RegionServers by HMaster and reside,
normally, on the local HDFS DataNode. When regions grow above a user-defined limit, they
are split in half. Incoming data is cached until a pre-configured size is reached at which point a
flush to disk creates a new file. Once the number of newly written files exceeds a configurable
threshold a minor compaction is performed. In contrast, a major compaction is scheduled at
regular intervals that consolidates all files.

A load balancer is triggered periodically aiming to balance the cluster load by migrating re-
gions as required. Cluster synchronization is accomplished thanks to Zookeeper, a distributed
coordination service. Clients contact the Zookeeper to retrieve the node hosting the necessary
metadata for locating the RegionServer that owns the corresponding region. Data replication
is supported, with the default factor set to 3. HBase inherits a strong level of consistency from
HDES. In the event of new nodes joining the cluster, they are used for storing any new data in

the system. Data are not redistributed by default but a load rebalancing can be forced.

A.3.2 Cassandra

Cassandra is a Dynamo-inspired system that follows Bigtable’s data model [LM10]. Nodes form
a DHT ring with each node holding a specific partition of the key-space and serving as a contact
point.

New nodes entering the ring are assigned a partition of the data stored in the cluster, namely,
half the key-space of the node with the largest partition is transferred to it. Therefore, no more
than the number of nodes present in the ring can be inserted at the same time. Data is replicated

for fault-tolerance, with the default replication factor being equal to 3. Cassandra is optimized for
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fast write operations. There exist five levels of consistency available for every operation executed.

Eventual consistency can favour fast writes whereas strong consistency can be achieved if needed.

A.3.3 Riak

Similarly to Cassandra, Riak is strongly influenced by the Dynamo paper [riall]. Featuring a
DHT architecture, Riak focuses on scalability and high availability supporting adjustable data
replication for durability (the default replication factor is 3) and tunable levels of consistence.
Data rebalancing is handled automatically as soon as new nodes enter the ring, aiming in dividing

data partitions into equal shares and distributing them amongst nodes.

A.4  Experimental Results

Our experimental setup consists of a Eucalyptus 2.0.0 private cluster of 16 Node controllers and
a single machine in the role of Cloud and cluster controller. We were allocated enough resources
for a cluster of 20 client VMs (load generators) and 28 server VMs. Each server VM has a 4
virtual core processor with 8GB of RAM and 50GB of storage space, while client VMs have 2
virtual CPUs and 4GB of RAM. Cluster peers store their data into their root file system, i.e., no
external Elastic Block Storage (EBS) is used. The versions of Hadoop and Ganglia used are 0.20.2
and 3.1.2 respectively, both in their default configuration.

Clients and workloads used: We utilize fixed HBase (v. 0.20.6) Cassandra (v. 0.7.0 beta) and
Riak (v. 0.14.0) initial cluster sizes of 8 nodes which are loaded with 20 million objects (i.e., 20GB
of plain raw data, since each item takes up 1KB) by utilizing the YCSB [CST*10] load function.
Every database is configured with a replication factor of 3, which in the case of Cassandra, HBase
and Riak results in a total database size of about 60GB, 90GB and 105GB respectively (HBase and
Riak use more metadata per record). Since HBase and Cassandra are written in java and they
were setup for production mode, a generous heap space of 6GB was supplied. For the most
part, all database systems were setup using their default settings, as presented in their online
manual pages. The only deviation from this rule is Cassandra’s auto bootstrap parameter,
which was set to false, as it effectively prevents adding more nodes to the cluster ring than the
number of already participating nodes.

Our default workload for use through the YCSB tool is a straightforward random uniform
read, varying A appropriately, where X is the number of active threads of the YCSB tool. YCSB
uses two parameters, the number of threads per client and the target number of operations per
second they will try to achieve. Consequently, A defines the number of concurrent pending
operations at every time point. In our experiments, we pose a sufficient number (2M to 10M) of

simple get queries that collectively cover a significant part of the dataset (10% to 50%).
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Figure A.1: CPU-RAM usage and mean query throughput-latency for various A query rates of the UNI-
FORM_READ workload for an HBase-Cassandra Cluster of 8 nodes.

Although YCSB comes with a set of workloads that simulate real-world conditions, we use 4
consistent workloads (namely UNIFORM_READ, ZIPFIAN_READ, UNIFORM-_UPDATE and
UNIFORM_RMW) in order to better understand the behaviour of the databases for different
types of load. These correspond to simple (i.e., not composite) workloads, where all operations
are of the defined type, that is uniform random reads, zipfian random reads, uniform random
updates and uniform random read-modify-writes respectively.

Our evaluation conforms to the following methodology: First, we plan to identify the perfor-
mance metrics that are affected under heavy load of concurrent requests and various workload
types. Finally, we plan to identify the cost and performance gain/loss cost after cluster resize for

various workloads and resize choices.

A.4.1 Metrics affected during stress-testing

In the first set of experiments, we measure how a number of metrics is affected under variable

load. We are interested both in generic, server-side metrics (i.e., CPU load and memory usage)
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and application-specific, client-side ones (i.e., query throughput and mean query latency), vary-
ing the aggregate query rate as well as the workload type. Figure A.1 presents the results for four
metrics, two reported by YCSB (throughput and latency) and two by Ganglia (CPU and Memory
usage) for values of aggregate A up to 280 Kreqs/sec.

Considering Riak, the 8-node cluster could not accommodate such big rates of A. Riak was
able to achieve an average throughput of 10 Kregs/sec for an 8-node cluster, which fully com-
plies with previously reported performance measurements'. Yet, above this rate, extra requests
are dropped and Riak servers become unresponsive. Thus, we were unable to directly compare
Riak with HBase and Cassandra, limiting its participation to the data rebalancing experiment in
Section A.4.3.

The maximum throughput for the other two databases can be derived from the first graph
of Figure A.1. We notice that HBase achieves a maximum aggregate throughput of about 80
Kregs/secat A ~ 80 Kreqs/sec, while Cassandra achieves its maximum throughput of 13K at A ~
20 Kreqgs/sec. The variation of the CPU load as perceived from the cluster seems in accordance
with the client-perceived throughput. The maximum usage is a bit over 55% (aggregated over
the whole server cluster) for HBase and ~ 76% for Cassandra, with the load remaining constant
henceforth. As seen in both experiments, increasing A further has no effect, as both systems
are fully utilized. Thus, further arriving requests are simply queued, to be answered later by the

system, resulting in mostly flat CPU and throughput curves.

In terms of memory usage, the HBase cluster uses a constant 17 GB of memory while Cas-
sandra seems to take up more memory as the load increases. This could be due to the fact that
Cassandra, unlike HBase, has no central node that directs the clients to the appropriate server to
get a particular tuple. The server responsible is reached after searching the ring and returns the
tuple to the client. This process can create several cached results. To force a memory cleanup,
a restart of the cluster is necessary, which results in an original memory usage of 5 GB. Finally,
in terms of the average read latency per query, HBase predictably outperforms Cassandra. Both
systems exhibit a linear increase in the client-side perceived latency with Cassandra’s rate being
noticeably higher. The linearly increasing latency curves can be explained from pending server
requests which have to wait more since A increases but the throughput remains constant.

Having determined the way the metrics were affected during the uniform reads for variable A,
we monitor the steady state values of these metrics for different types of workloads. In Table A.1,
we present the relevant results for a value A = 180 Kreqs/sec. As shown, the average CPU and
RAM usage is almost identical for HBase for uniform and zipfian read workloads, while average
CPU usage slightly decreases in the case of updates. Cassandra on the other hand exhibits more

variation between uniform and zipfian read, with zipfian read producing lower CPU load and

'http://bit.ly/IEpqWC
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Table A.1: CPU-RAM usage and mean query throughput-latency under different workload types with a
fixed query rate of A = 180 Kreqgs/sec for an HBase-Cassandra Cluster of 8 nodes.

Metric | CPU | MEM | Thr/put [Latency|

Workload (%) | (GB) |(Kregs/sec) (sec)
HbCassHbCass|Hb Cass [HbCass

Uniform READ 55 73 |17 48 755 9 (39187
Zipfian READ 55 68 (17 28 774 8.6 (14184
UPDATE 45 74124 36 304 122 14.110.8

memory usage. Update operations produce slightly more load but are less heavily dependent on
memory. In all cases, Cassandra uses more memory and produces significantly more CPU load
than HBase. In terms of average throughput and latency, HBase outperformed Cassandra for

short term experiments, even in the case of updates.

A.4.2 Costof adding and removing nodes

The cost of adding or removing nodes in a NoSQL cluster is mostly measured in time and can
be divided in four parts:

VM initialization: Launching new virtual machines takes a significant part of the addition
phase. Even when the virtual machine image is cached on the VM container, the VM is available
after about 3 minutes, allowing for OS boot time and DHCP negotiation. However, multiple
node addition can be done in parallel on multiple VM containers even when multiple VMs are
launched on the same container. This means that the previously reported time remains con-
stant. VM removal is done instantaneously (i.e., in less than 10 secs), since it is a much more
straightforward operation for the cloud management system.

Node reconfiguration: This phase involves the creation of various configuration files and
their propagation to all nodes on the cluster. This is necessary because in both existing and new
nodes the configuration files should match and because there are a number of settings that have
to be available on both new and existing nodes (for example, hard coded domain name resolution
effected by altering the /etc/hosts file of all nodes). Given the fact that configuration files are
usually small in size, completing this phase takes at most 30 seconds even for large cluster sizes.
This phase is necessary during node addition as well as during node removal.

Region rebalancing: This part of the addition/removal process involves the necessary time
for the new nodes to become actual serving parts of the cluster. This consists of the time con-
sumed by launching the services/daemons using the database’s default scripts, the time for the
new node to become active during addition and the time for the data regions to be allocated to
each new node during addition or to an old node during removal. The total time for HBase could

vary depending on the number of new or removed nodes and the amount of regions, but in our
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Table A.2: Completion time, total moved data, final average query throughput and latency for a 8+8 node
cluster resize operation in HBase, Cassandra and Riak with and without data rebalancing

Cluster HBase Cassandra| Riak
Reb| No |Reb[ No [Reb
Completion time (min) | 98 5 | 665 5 |150
Data moved (GB) 22.5 - | 877 - |44.8
Througput (Kreqs/s) |154.5 129.6|18.3 14.9| 18
Avg. Latency (s) 07 11 |71 93|02

Metric

experiment we have measured times of at most 2 minutes. Given the distributed nature of Cas-
sandra and Riak, the time to add/remove new nodes to the ring is at most 30 seconds irrespective
of database size.

Data rebalancing: Data rebalancing is expensive in terms of extra load on the servers and
the network infrastructure. It also invalidates data blocks while operations are performed on the
cluster as we have witnessed in our tests. HBase and Cassandra can add nodes to the cluster
without moving the relevant data. The operational correctness in this case is achieved through
the distributed HDES filesystem in HBase’s case and through extra hops in Cassandra’s case. In
Riak, data rebalancing cannot be avoided when bringing new nodes online. This operation, in any
case, depends heavily on the amount of data that have to be moved, the number of pre-existing
nodes and the number of new nodes that have to fetch the existing data. This means that all cases
would have to be treated individually. However, a relevant test outlining performance gains and
time costs is presented in Section A.4.3. In general, in the rebalancing tests we performed, we

observed erratic cluster behaviour and large time costs.

A.4.3 Cluster resize performance measurements

Our first concern on the costs and gains of a resize operation relates to the rebalancing of the
database data. Since data rebalancing is by itself a resource intensive procedure, we only perform
node additions and data migration in an idle cluster for this case, i.e., without applying extra
client workload. This scenario is valid, since data rebalancing is usually scheduled for off-peak
time periods. Nevertheless, in our experiments conducted with extra client workload during
data rebalance, all systems exhibited erratic behaviour, and never reached the performance in
throughput or latency of the initial cluster before the resize operation. Even worse, disconnects
and inconsistencies were propagated to the clients, resulting in a significant number of excep-
tions.

In Table A.2 we present our results for an original examination of the costs and gains of data
rebalancing for HBase, Cassandra and Riak. We have started an 8-node cluster in each case and

added 20M tuples. After the data insertion, we expand each cluster by adding 8 more nodes, let
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the systems stabilize without performing data rebalance and apply a UNIFORM_READ workload
with a A = 180 Kreqgs/sec. These results are depicted in the “No” column for every database
(for Riak that rebalances data automatically as soon as a new node joins the ring, this is not
applicable). After this, we perform a manual data rebalancing operation in HBase (through the
HDFS balancer?) and Cassandra (through 1oadbalance commands®). When data rebalancing
finishes, we apply a UNIFORM_READ workload with a A = 180 Kreqs/s for HBase, Cassandra
and 18 Kregs/s for Riak (Riak could not operate with a higher workload). The results for this

setup are presented in the “Reb” column for every database.

As can be deduced from Table A.2, the data rebalancing costs far outweigh its benefits for the
cases of HBase and Cassandra. For HBase, which also required a restart of the whole cluster that
took about 4 minutes, a net gain of about 20% in throughput (154.5 Kreqs/sec balanced vs 129.6
Kregs/sec not balanced) was achieved compared to a non-rebalanced 16 node cluster, which
could be easily offset by adding two extra nodes without using data rebalancing. In Cassandra’s
case, the results were better with a net gain of 22% for the average throughput (18.3 Kreqs/sec
vs 14.9 Kregqs/sec for a non balanced 16 node cluster). In terms of latency, similar performance
benefits were achieved (33% and 23% for HBase and Cassandra respectively). The data moved
during data rebalancing for HBase are roughly 22 GB or 25% of the entire dataset. In Cassandra’s
case, a much larger number of 87.7 GB of data are moved, which translates to the whole dataset.
HDEFS’s centralized balancer is more advanced than Cassandra’s when deciding how many data
blocks to move to the new nodes since it tries to minimize the moved data by taking into account
replica locations. Although this leaves the cluster unbalanced in terms of disk usage, it allows a
rebalancing operation to complete in much less time than Cassandra. Cassandra, on the other
hand, by halving the ID space of a pre-existing node and assigning it to the newly arrived one,

uses a more naive but decentralized approach to balance the cluster, moving more data.

As far as Riak is concerned, rebalancing is also a costly operation both in time, taking 150
minutes to complete in our experiment, and in network bandwidth since 44.8 GB (or 43% of the

entire dataset) were transferred to the newly added nodes.

Given the large time costs for data rebalancing operations (93, 660 and 150 minutes in HBase,
Cassandra and Riak respectively), and the fact that the benefits can be outweighed by adding
more nodes without data migration with a fixed time cost of 5 minutes for each database (see
the following results), we conclude that gains do not outweigh costs when aiming for the highest
degree of elasticity. Therefore, subsequent tests were run without performing data rebalancing

operations.

*http://bit.ly/iCNsbF
*http://bit.ly/KEZZFI
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Figure A.2: Query latency, query throughput and CPU usage per time for an HBase cluster of 8 nodes after
adding 8 and 16 more nodes for the UNIFORM_READ and UNIFORM_UPDATE workload with a query

rate of A = 180 Kregs/sec

We continue our evaluation of the gains in performance when adding nodes under vary-
ing workloads without data rebalancing for HBase and Cassandra. Our results describe the be-
haviour of an 8-node cluster under varying workloads after the addition of a variable number of
nodes. We utilize a YCSB-generated load of A\ = 180 Kreqgs/sec, which, as previously shown, is
well over the maximum load that both Cassandra and HBase can efficiently handle. Two types
of workloads are used, UNIFORM_READ and UNIFORM_UPDATE (referred to as READ and
UPDATE henceforth). For each combination of workload and database, we perform an addi-
tion of 8 (i.e., double the size) and 16 (i.e., triple the size) nodes. The cluster resize occurs at
about ¢ = 370 sec (shown in Figures A.2 and A.3 as a vertical line). The client-side query latency
and throughput 1 are measured as well as the total aggregate cluster CPU usage reported by the

Ganglia tool. As we have shown, CPU usage is highly indicative of the cluster’s status.

Figure A.2 presents our results concerning the HBase cluster. Legends refer to the work-
load type along with the resizing action (e.g., READ+8 represents a read workload with an 8-
node resize). With read operations being faster than writes, we achieve comparable run times
by adjusting the amount of objects requested in each workload, i.e., 10M in READ and 4M in
UPDATE. The first graph plots present the mean query latency. Adding nodes during READ
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loads (READ+8 and READ+16) has a transient negative effect on the query latency, attributed
to the fact that HMaster reassigns table regions to the new nodes as soon as the resize occurs.
Although data is not actually moved (as explained in section A.3.1), this reassignment poses an
extra burden to the already overloaded cluster. Clients cache region locations which however
change during cluster resizing. As a result, latency increases due to client cache misses. Nev-
ertheless, this effect lasts for around 4-5 minutes when adding 8 nodes, while only a couple of
minutes when adding 16 nodes (with query latency less affected during this interval). This is
because more servers quickly join the cluster and take a large portion of the applied load. The
total 24 nodes are now adequate to handle the load. Therefore the transient period takes less
time and affects the clients at a smaller degree. In the update workloads, we notice an oscillation
in both cases: This happens because of the compaction and caching mechanisms of HBase (see
Section A.3.1). Incoming data is cached in memory (resulting in low update latencies) but when
the memory is full and a I/O flush occurs with a compaction, the latency is increased until the

new blocks are written to the file system.

For the client-side throughput p, depicted in the second graph, we notice a clear gain when
adding nodes in read workloads: after the transient phase, adding 16 nodes results in about 170
Kregs/sec in the steady state and 100 Kregqs/sec for the READ+8 case (compared to about 55K
before additions). More servers are able to simultaneously handle more requests that results
in a higher throughput (roughly doubling and tripling it respectively). Although items are not
actually transferred, this speed is due to the caching effect of the RegionServers: New nodes
eventually cache their assigned regions and do not need to contact the nodes that store them.
For the update workloads, we notice small improvement in adding 16 compared to adding 8
nodes, but since the update is an I/O-bound operation, y is not significantly altered. As initial
data is not moved, a portion of incoming updates will be handled by the initial nodes. Only when
new regions are created, due to a minor compaction for instance, I/O operations will be handled

by the new nodes.

The final graph reports the aggregate cluster CPU usage as registered by the Ganglia tool.
In the read workloads we notice that the initial load of around 55% is reduced to around 42% in
both cases. Evidently, the newly arrived nodes immediately start handling incoming queries and
alleviate the initially overloaded cluster. The addition of 16 against 8 nodes does not result in a
further decrease in the average CPU, as the load is still large enough for all servers to contribute.
The extra 8 nodes make a difference in terms of throughput, as shown in the second graph.
Contrarily, a drop in CPU usage is a good indication for adding servers against the maximum
load. In the update workloads, we notice that in both experiments the initial CPU load continues
to drop until run completion. This drop is due to the slow writes that occur during updates: The

server freezes incoming requests until the updated regions are flushed to the file system.
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Figure A.3: Query latency, query throughput and CPU usage per time for a Cassandra cluster of 8 nodes
after adding 8 and 16 more nodes for the UNIFORM_READ and UNIFORM_UPDATE workload with a

query rate of A\ = 180 Kregs/sec

In Figure A.3 we present the respective results for the Cassandra cluster. In each test, clients
request 2M each out of the total 20M objects stored in the database. During the experiment,
clients are aware of the up-to-date list of server addresses and each request is directed to a ran-
dom one. Since Cassandra does not have a mechanism to inform clients about new servers, a
custom script was developed to propagate these changes back to the clients, whenever a clus-
ter resize occurred. The first graph presents query latency: In both READ cases, we notice that
the latency almost immediately drops from an initial value of around 22 secs to 10 secs and 8
secs respectively: New servers are assigned half of the data partitions of existing servers, they
cache portions of their data and answer queries on their behalf. The larger the resize, the bigger
the decrease in latency. The same hold for the update workloads: Adding more nodes reduces
the query latency from 11 sec to around 7 in the UPDATE+8 case and to around 5 in the UP-
DATE+16 case. Again, we notice here that writes are in general faster than reads: This is due to
the weak consistency model followed by Cassandra, where writes do not have to be propagated
to every replica holder for the operation to succeed.

Query throughput p shows a similar trend. Both in read and update workloads we notice

the almost linear effect of adding new nodes. Read throughput is increased from an initial value
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of 9 Kregs/sec to 18 Kreqgs/sec when 8 nodes are added and to 22 Kregs/sec when 16 nodes are
added. Update throughput is increased from around 15 Kreqs/sec to 29 Kreqs/sec in the +8 case,
and to 35 Kregs/sec in the +16 case. This behaviour is expected, since extra servers immediately
join the p2p ring and take portions of the applied workload. Moreover, the asynchronous nature
of eventual consistency enables Cassandra to maintain a stable throughput rate even in a write-
heavy workload: Updates are successful upon transmitting the object to a single server, which
replicates it later on in a lazy manner.

Finally, in the third graph of Figure A.3 we present the variation of the total cluster’s CPU
usage during time. In the read case, we notice that adding 8 nodes slightly decreases the initial
CPU usage to around 60%, whereas adding 16 extra servers decreases the average CPU load to
around 50%. Similar to the HBase case, the 50% load of the 24-node cluster shows that the applied
load is big enough for every server to contribute, since new servers are not idle. The same hold
for the update workloads: Adding 8 nodes brings the load to around 80% and the addition of 16
nodes drops the load to around 70%. Update workloads are more computationally heavy than
simple reads, as in the update case there is an extra cost of disk access that is avoided during
reads by caching fetched results.

In this kind of setting, we note how both NoSQL systems take advantage of the addition of ex-
tra nodes: HBase exhibits very fast concurrent reads compared to Cassandra: In the READ+16
case it can handle 160 Kreqs/sec with a latency of about 2-3 secs and an aggregate CPU us-
age of 40%, whereas Cassandra’s throughput is 40 Kreqs/sec, a latency of around 8 secs and a
higher CPU usage of 50%. On the other hand, Cassandra is more efficient with object updates:
It maintains stable throughput and latency curves avoiding oscillations that occur with HBase.
Finally, we notice that Cassandra does not exhibit a negative transient effect when new nodes
enter the ring. Its decentralized nature allows for a transparent cluster resize, whereas in HBase

the HMaster needs to coordinate the whole procedure.

A.5 Related Work

A literature study about the challenges of scaling whole applications in cloud environments is
presented in [VRMBI11], along with an overview of state of the art efforts towards that goal.
In [GSRM™09], the authors propose a service specification language for cloud computing plat-
forms that handles automatic deployment and flexible scaling of services. Similarly, the work
in [MKF10] designs a model implementing an elastic site resource manager that dynamically
consolidates remote cloud resources on demand based on predefined policies and a prototype
for extending Torque clusters. The works in [XCZ" 11, SMA108] solve the problem of optimiz-
ing VM resources (CPU, memory, etc) to achieve maximum performance using relational DBs.

In comparison, we use the standard VM model that large cloud providers currently offer. As a
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general observation, these works do not address NoSQL systems and their performance under
(dynamic) cluster resizes.

A thorough analysis of various proprietary NoSQL-like cloud services, namely Google’s Ap-
pEngine, Microsoft’s SQL Azure and Amazon’s SimpleDB, is presented in [KKL10a]. The authors
test system aspects such as scalability, cost and performance utilize the TCP-W benchmark. All
systems are treated as “black boxes’, since no information about their design or implementation
is assumed to be known. In contrast, our system is fully aware of the different engines’ inside
mechanisms.

Cloudy [KKL"10b] is a cloud-enabled framework which supports auto-scaling features ac-
cording to demand, providing simple key/value put/get primitives. In NEFELI [TRFD10], cloud
users inform the cloud management framework with hints about the application nature and the
framework modifies its scheduling policies to improve the application performance.

CloudWatch [clo] is Amazon’s commercial product for monitoring and managing cloud re-
sources. CloudWatch offers a set of metrics for every VM instance and a policy framework to
trigger balancing actions when some conditions are met. Its metric support is limited, offering
only hypervisor-related information such as CPU usage and network traffic. Memory usage or
application-specific metrics are not supported out of the box, in contrast to Ganglia which, apart
from its own rich set of probes, has inherent support from many applications, including some
NoSQL systems. Other frameworks for commercial cloud platforms like AzureWatch [azua]

feature similar characteristics, resulting in expensive vendor lock-ins.

A.6 Discussion

As our architecture and experimental section makes clear, there exists a number of often con-
flicting factors that our framework needs to take into account. During our design and imple-
mentation, we have observed that there are numerous pitfalls and dubious assumptions about
several components, e.g., about the elastic capabilities of NoSQL databases. In the following, we
argue on the design choices and offer recommendations based on our experience in setting up

this system.

A.6.1 Monitoring module

Certain design decisions have to be made concerning the monitoring module. The most impor-
tant of them are the type of monitoring, the relevant metrics that will be monitored, and the
avoidance of single points of failure. Monitoring can be either active, achieved by periodically

injecting probing queries, or passive, thus collecting statistics from already posed user queries.
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Similarly, monitored metrics could include either general-purpose metrics (such as network traf-
fic, memory and CPU usage per VM) or high-level application-specific metrics (such as mean
query response time), and they should ideally be collected in a fast and scalable way.

Active monitoring implies running a specialized tool for determining the state of the database
cluster as a whole, while passive monitoring could use statistics exported from the VMs and
database-specific metrics reported from the database system. Our design has opted for the
passive monitoring solution without database-specific metrics for two reasons; speed and ac-
curacy. Active monitoring entails a significant trade-off between speed, accuracy and system
abuse. This means that executing long running tests would interfere with the system’s normal
operation stressing or altering it (in the case of writes). On the other hand, if small tests were to
be chosen, they would fail to spot possible stress on very active data regions, giving an inaccurate
state of the cluster’s performance. Results of Section A.4.1 show that we can fairly accurately
distinguish both the critical state of each database system and the amount of load that currently
stresses the system using passive, general purpose metrics. We have selected to utilize the VM-
related metrics for generality, because not every database uses the same metrics or reports them
in a comparable manner.

Passive data-collection through Ganglia, besides using a unified way to report accurate statis-
tics in human readable format, is easy to setup in an elastic way, requiring only a single config-
uration file to be propagated amongst different monitored VMs. Ganglia offers proven scala-
bility. Data can be collected remotely for individual hosts or for the whole cluster by probing
the metadata aggregation service (gmetad). These collected statistics are then remotely accessed
and evaluated in order for a system administrator or automated system to decide on appropriate

rebalancing actions.

A.6.2 Database elasticity

Deciding the best way to elastically alter the cluster size for each database, one has to take into
account each DB’s characteristics. This includes data and region rebalancing, the ability to expose
changes to the DB’s clients and avoid data loss when scaling down. Although HBase, Cassandra
and Riak claim that they behave in an elastic way, the practicalities of scaling up or down differ
in each system due to their architectural differences, and therefore affect the performance gain
in each case.

The ability to automatically rebalance different database regions (or shards in RDBMS termi-
nology) is crucial for any elastic system. In HBase, region rebalancing is automatically performed
by the HMaster when new nodes are added or removed from the cluster, and the Zookeeper is
responsible for propagating and resolving conflicts between RegionServers, as per the HMaster’s

decision. Given that all RegionServers operate on top of a shared file system (HDFS) there is no
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preferential treatment when assigning new regions, thus HMaster can easily deal the available
regions in a fair way. Therefore, HBase is extremely elastic, as all new nodes can quickly assume
load, increasing the cluster’s performance in very short time, as reported.

Conversely, Cassandra does not split data into regions of equal size. As a decentralized sys-
tem, it reassigns regions on a per node basis, i.e., region rebalancing is performed in node pairs
between newly arrived and previously existing ones. Every new node acquires and is responsible
for serving half the key-space of an existing one, meaning that for each request it has to retrieve
data from the previous owner. Despite the fact that retrieved data are cached, new nodes are
practically much slower, as they have to rely on existing nodes for results. In order for a new
node to assume all the data corresponding to its key-space, a data rebalance operation has to be
performed. Although our experiments show a 22% boost in terms of throughput compared to an
unbalanced cluster of the same size, data migration took more than 11 hours and moved almost
the entire dataset of 90GB. The need for such an expensive operation limits the elasticity of a
Cassandra cluster for short-term load variations.

Riak, on the other hand, divides data space into partitions and as new nodes are added, they
claim an equal slice of partitions so that both data and requests are allocated evenly to all nodes
participating in the ring. However, the fact that the cluster turns unresponsive for a throughput
higher than what its nodes can handle, prevents us from examining its elasticity under high
load. Overall, the important question is whether data rebalancing operations are necessary and
when. In our opinion, data rebalancing should only be performed when the system administrator
can accurately predict that the load will remain constant for a large amount of time, that is in
the order of days. In this case, a data rebalancing operation should be performed, even if it
affects peak system performance, as the overall gain justifies the time and performance cost of
the rebalancing. On the contrary, variable and unpredictable load in the order of hours does not
justify such an expensive of operation, and should be avoided.

In this work, our goal is to test NoSQL systems undergoing extremely elastic operations un-
der variable high load. This behaviour can be achieved using Cassandra and HBase, although
the results are not similar. HBase’s operation over a similarly elastic, shared file system, and
infrequent compactions provide the best results.

Elastic behaviour has to also be exploited on the client side, which means that the clients can
be made aware of the addition of new servers. This is achieved automatically in HBase’s case, as
clients negotiate with the HMaster. However, Cassandra and Riak need an explicit load-balancer
external to the database system to simulate such a behaviour, affecting performance in terms of
latency.

Finally, there is the matter of avoiding data loss during node removal. To avoid data loss, there
should remain at least one replica during node removal. For this guarantee, only 2 nodes can be

removed at once, in the case of a replication factor of 3. What is more, after the removal, NoSQL
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systems must deal with the degraded replicas. Since Cassandra and HBase do not perform this
automatically, it must be manually handled by the elasticity framework by explicitly issuing data

rebalancing commands, which is, as we have shown in A.4.3, a costly procedure.

A.7 Conclusions

In this work we presented a thorough study to quantify and analyze the costs and gains of various
NoSQL cluster resize operations, utilizing three popular NoSQL implementations. To this end,
we designed and implemented a fully modular and cloud-enabled framework that allows efficient
resource monitoring and direct interaction with the cloud vendor and the cluster manager.

During this study, lots of valuable lessons were learned and much experience was gained
relative to both cloud-platforms and NoSQL engines. A primary concern relates with the pro-
visioning of a platform-agnostic, non-intrusive and metric-complete monitoring module. Our
Ganglia choice offers a complete set of metrics reported in a scalable manner, even with na-
tive NoSQL support (e.g., for HBase). Moreover, requiring just an image from a NoSQL engine
enables different implementations being tested over the same framework.

The ease of setup and the performance under elastic operations weigh on choosing a par-
ticular NoSQL. All three engines we tested can be setup with relative ease. There are few con-
figuration files that need to be injected during launch and most of the operational parameters
can be adjusted by altering the appropriate settings. There is no need to provide new config-
uration files or commands during normal operation, especially during the rebalancing phases.
Nevertheless, their quite distinctive behavior and performance under different scenarios make
the decision quite application-specific: HBase is the fastest and scales with node additions (only
for reads though); Cassandra performs fast writes and scales also, without any transitional phase
during node additions; Riak was unresponsive in high request rates, could scale only at lower
rates but rebalances automatically; all three achieve small gains from a data rebalance, provided

they are under minimal load.
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