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Abstract

This doctoral thesis focuses on the domain of mobile Peer-to-Peer applications and
specifically it provides a Distributed Hash Table (DHT) architecture and implementation
that is able to bootstrap and operate in Mesh Environments without any form of
centralization. Merits of DHTs, such as decentralization, scalability and fault-tolerance,
gave them a dominant position in the architecture of Peer-to-Peer systems in fixed
Networks. However, severe problems arise when as-is DHT algorithms are ported in Mesh
Environments. The contribution of the present doctoral thesis can be summarized in four
main axes:

The first axis refers to the identification of the problems that arise when existing DHT
implementations are ported to a Mesh Environment. The majority of problems exist
because already developed DHTs base their operation to the efficiency and robustness of
the underlying fixed Networking environment which is not considered as granted at Mesh
Environments.

The second axis focuses on an architectural proposal that overcomes the identified
problems. The architectural proposal relies on principles of autonomicity and i ntroduces a
layered approach that can be realized in various ways. This layered approach is
benchmarked in a simulator and specific modifications are further introduced in order to
achieve scaling and efficiency issues.

The third axis refers to a reference Implementation of the proposed layered approach.
This reference implementation will be addressed as UbiChord. Since, specific technical
choices have been followed in order to realize the layered approach, these choices will be
analyzed. Finally the fourth axis focuses on the creation and the benchmarking of
indicative Mobile Peer-to-Peer Applications based on UbiChord implementation.

An extensive set of simulations and emulations have been conducted in the frames
of this thesis. Simulations refer to the simulations model that has been developed while
emulations refer to the actual UbiChord implementation. UbiChord can be used to create

mobile Peer-to-Peer services such as mobile social networking, file sharing etc.

Keywords: Mobile Peer-to-Peer, DHT, Gossiping, Overlay Networks, MANET, Mesh,

Reactive Routing, Autonomic Computing



Mepiinym

H mapouoca &idaktopikn diatplfry eotialel oto medio TwWV UTNPECLWVY OE KLVNTOUG
OMOTIHOUC KOMUPBouC. Mo ocuykekplpuéva, ota mAaiola tng Slatplprng mpoteivetal pla
OPXLTEKTOVIK Kol avaAUetal o vAomoinon evog  Katavepnuévou  Mivaka
Katakeppatiopou (Distributed Hash Table-DHT) n omoila elval tkavr vo AELTOUpPYHOEL
XwpLg Kapla kevtplkomoinan. Ta blaitepa xapaktnpLlotikd Twv DHT 0nwg n amokévipwon,
N EMEKTACLUOTNTA KOL N aVekTkOTnTa, Ttou¢ O&ivel o Seomolovca BO€on otnv
OPXLTEKTOVIKN TwV OSIKTOWV OPOTIHWY KOUPwv o otabepd Siktua. Qotoco, cofapd
TPOBARUATA TTPOKUTITOUV OTAV UTIAPXOUCEC UAOTIOLOELG ‘LeTtadépovTal’ ag Kivnta Siktua.
H ouvelodopa tng mapovoag SL8akTopikng dtatplBng unopet va o uvoloBel os Téooeplg
KUPLOUG AEOVEC:

O nmpwrtog afovag adopd TNV avayvwplon tTwv mpoBAnudtwy mou Snpioupyolvtal,
otav oL urmapyouoec vAomolnoelg DHT petadepBolv oe éva SikTuo KlvnTtwv KOPBwv. H
mAeoPndia Twv TPOPANUATWY  ATIOPPEOUV ONMO TO YEYOVOG OTL OL UTAPXO UCEG
vlorownoelg Pacilovtal otnv aflomoTio Kal TNV omodoTkOTNTO TOU UTOKELUEVOU
otaBepol Olktuou. AUTA TO XOPAKTNPLOTIKA OV UTAPXOUV OE OCUPUATO N
KevTpLlKomoLnpuéva Siktua.

O 6eUtepOC ALoVaC ETIKEVIPWVETAL OE L0 OPXLTEKTOVIKN TPOTAON YL TV UTEpBaon
TWV TapAmavw TPoBAnuATtwy. H opxLTEKTOVIKN Tpotacn PBaociletal OTIC APXECG TwV
OUTOVOUWY CUOCTNUATWY KOl EL0AYEL Pla TOAUETinedn TPOCEyyLon TOU HIMOpel va
vlomotnBel pe Siadopoug tpomoug. H mpooyylon autr apxlkd afloAoyeital oe évav
TIPOCOUOLWTN KOl KATOTILY ELSLIKEC TPOTIOTIOL OELG ELOAYOVTAL TIPOKELMEVOU Va EMITELYXOOUV
peYaAUTEPN KALLAKWON KOL ATIOTEAECHATIKOTNTA.

O tpitog afovag avadéEpetal oe pLo UAOTOLNGN TNG TIPOTELWVOUEVNG APXLTEKTOVLKAG.
Autn n vhomoinon ovopadletatl UbiChord. AeSOUEVOU OTL CUYKEKPLUEVEC TEXVLKEC ETILAOYEG
akolouBnbnkav mpokelpévou va ulomolnBel n ToAueminedn TMPOOEyylon, AUTEG Ol
emAoy£Eg avaAvovtal. TENOG, 0 TETAPTOG ALOVOG EMLKEVIPWVETAL 0Tn Snuloupyia Kot TN
OUYKPLTLKA afloAdynon KAmolwv evOelkTIkwy edappoywVv mou Bacilovtal otnv edpapuoyn
tou UbiChord.

‘Eva eKTETAPEVO OUVOAO TIPOCOUOLWOEWV Kal fopolwoswv €xouv Oie€axBel ota
mAailola tNg mapoloag OSlatplpng. OL TMPOCOUOLWOEL; avadEPOVIOL OTO HOVTEAO
mpooopoiwon mou €xel avamtuxBel, evw n efopolwon avadEpetal otnV T PAYUOTLKNA
epapuoyn. To UbiChord pmopei va ypnotpomolnBei yia tn dnuloupyia umnpeclwv os

acUppata SikTtua OTwE ebaPPOYEC KOWVWVLKNAC SIKTUWONG, SLOVOURG apXElwV KA.

Né€elc KAelbla: Kkwnto Olktuo opoOTIHWY  KOUBwv, Katavepnuévog Mivakog

Katakepuatiopou, ume pkeipeva Siktua
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Evyaplotieg

H mapouoa Sidaktoptkr SLatplPr anoteAel TO EMIOTEYOAOUA LLOC TTPOOTIAOELOG TTEVTE ETWY,
ota TTAQLOLO TOU TIPOYPAMUATOC HETAMTUXLOKWY omoudwyv Tou Tunpatog HAektpoAdywv
Mnxovikwv kat Mnxavikwv H/Y tou EBvikol MetodBlou MoAutexveiou. H cuvavaotpodn
pe ouvadéddoug, aAAd Kol TO KAMA SnUoupylKOTNTAC OMOTEAECAV PAGCIKEG TNYEC
EUMVELONG Kal CUVEBAAAOV ONUAVTIKA 0T BeATiwon TNG MPOCWTTILKAG AVTILUETWITLONG Kal
EMIAUONC EPEUVNTLKWYV TIPOKAN GEWV.

To amotéAeopa mou mapouclaletal otig oeAibeg autég od elAetal oto HEYLOTO
BaBuo otn Ponbela kat otnv kabodrynon mou eixa amnd tov emBAénovra Kabnyntn k. I'p.
N. Mévtla. Tou odeilw OLalTEPEG EUXAPLOTIEG VLA TIG EUKALPLEG TTOU POU TIPOCEDEPE Kal
TNV niotn tou o€ péva. Ta pabrpata emoTnUOoVIKAG KOTAPTLONG, EPELVNT LKOU {nAou, aAAd
KoL NBLKAG aKEPALOTNTOG IOV TIPA OO QUTOV ATOTEAOUV TA ONUAVILKOTEPA £hOdLa yla
TN PeAAovTiki Hou mopeia.

Oa nbsla va eguxaplotiow ta AAAa SUo PEAN TNG TPLUEAOUC E£LONYNTLKAG HOU
gmtponng, tov Kabnyntn k. I. Wappad kat tov AvanAnpwtn Kabnyn t K. A. Aokouvn, KaBw¢
KoL Tou¢ Kabnyntég MuxanA @soldyou, Mewpylo Itacwvonoulo, Navaywwtn Toavaka Kot
Tov Mdplo AWKOLAKO yla TNV TIUA TIOU HOU €KAVAV VO CUMUETOOXOUV OTNV EMLTPONN
g€€taong Tng SlatpLPnc.

OéAw emiong va euyxaplotiow Toug cuvadéddoug pou Mavvn Bepywadn, Inupo
Ntoldn, XapdAaumo Mayyouta kat EuBOpio MmoBo mou umnipéov apwyol kat
CUUTOPOOTATEG 0 OAN auTth TNV Topeia. ISlaitepeg euxaplotieg odpeldw oToug AnunTpLo
Ale€avépou kal Oavacn MmolUpa Tou €KTOG amd ouvadeAdol ota TAaiclad Tou
gpyaotnpiou eival blaitepol ¢ilol kal cuvodoumdpol otov emayyeAUATIKO otifo. H
oUpBoAn Toug otnv enitevén TwWv oTOXWV HOU £ival TEpACTLA Kal TO KAlpO elAKplveLlag Kal
ouvepyaoiag HeTafl pag avavikataotato. IStaitepn pveia opeilw oTOUG EMLOTNUOVIKOUG
pou ouvepyateg kal ¢idoug ABavacto Alakomoudo, Inupo Mavtl{oupdto Kal AvaoTtaoclo
Zadelpomoudo ywa tTnv cupBoAn toug otnv Statplpi pou, otn Nwta BeAévtla alAd kal
otou¢ adeAdpLkou¢ pou Ppihoug Imupo MeTaAAvo kat Napn Aldmn ywa tnv otnpLén mou pou
mapeixav.

OAokAnpwvovtag Ba nbsla va aneubivw €va PeydAo EUXAPLOTW OTOUG YOVELG HoU
Ayyelikn kat AyaBokAn, otnv adepdn pou EAEvn otnv ylayld pou MnALd, yio tTnv apépLotn

ayann kot Nk umoaoThPLEN TToU Uou TTPpooédepav OAA AUTA TA XPOVLA.

lkouBag A. Mavaylwtng
AnpiAlog 2011
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1. Introduction & Motivation

1.1 Evolution of Mobile Networks & Provided Services
The emergence of mobile networks has been tremendous during the last ten years. It is
remarkable that while internet users have increased approximately 5 times the last
decade, mobile cellularsubscriptions have increased 60 times during the same period.This

trend isillustrated at Figure 1.1 [ITU Report, 2010] where a comparative graphis provided.
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Figure 1.1 - Subscriptions per 100 inhabitants

However, the most significant observation from Figure 1.1 is that in a few years the
majority of internet users will be mobile users. This conclusion can be derived by the facts
that a) many operators have evolved their infrastructure to support High Speed Packet
Access (HSDPA!) services to their customers and b) the problem of IP scarcity that is raised
by IPv4’s lack of free addressesis sufficiently solved by IPv6’.

Indeed, today more than 151 countries and more than 373 operators haveadopted
HSPA [3GAmericas, 2010]. Furthermore, according to the two most prominent predictive
models® for IPv4 exhaustion, IPv4 address space will be exhausted between17-Jun-2011
(IANA prediction) and 19-Feb-2012 (RIR prediction). This trend is depicted at Figure 1.2

where the projection of reserved addresses based on data up to 2008 is provided.

'www.umtsworld.com/technology/hsdpa.htm
*www.ipv6.org
*http://www.potaroo.net/tools/ipv4/index.html
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Figure 1.2 - IPv4 exhaustion prediction (IANA)

Conclusively, IPv6 will inevitably drive the Internet locomotive since it provides a
robust solution for addressing (128 bit address space instead of 32bit address space of
IPv4) and contains quite a few supplementary features that impose its adoption. Such
indicative features are native Mobile IP support, stateless auto-configuration, extensible

protocol stack etc. IPv6 adoption rate is reflected in Figure 1.3.

2005 2006 2007 2008 2009 2010

Announced IPvE Prafives ] ASes announcing IPvE Prefixes

Figure 1.3 - IPv6 announced Prefixes
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The graphs above represent the IPv6 address space that is actually in use on the
Internet, as seen by the RIPE NCC’s Routing Information Service (RIS)4. The data is near-real
time, based on data gathered by the Internet Number Resource Database (INRDB)S.This
blue line in the graph represents the number of Autonomous Systems announcing IPv6
addresses, while the yellow one represents the total number of IPv6 prefixes announced to
the Internet.

Emergence of mobile networks is also verified by the announced governmental
expenditures of most developed countries. Indicatively, in Figure 1.4, it is shown that the
scheduled US government expenditures will increase 4 times between 2007 and 2011 as

far as wireless data infrastructure is concerned [ATT Report, 2007].

2007 2011
Wireless Wireless
Voice, Voice,
$3.9, 24% $5.5, 26%

Wireless Data,

$1.1, 6%
Wireline Wireline
Senices, Senices, Wireless Data,
$11.5, 70% $11.0, 53% $4.5, 21%

Figure 1.4 - US Government expenditures in Billion $

However, the most revolutionary aspect of the wireless networking era is Mesh
Networking. Mesh networking is a type of networking where each node in the network
may act as an independent router, regardless of whether it is connected to another
network or not. Mesh networking implies multi-hop connectivity without static routing
schemes. Mesh networking has been the main area of research for more than 10 years
now. This is also reflected at the innovation Hype provided by Gartner at 2006 [Gartner,
2006] (see Figure 1.5).

It is remarkable that the hype’s predictive trend has been affirmed since in less than 5
years (where Mesh Networking was in the Trough of Disillusionment) concrete Mesh
Networking protocols have been formulated such as 802.1156, Zigbee7 etc that serve
diverse needs (low power consumption, mobility, security without centralization etc). Such
protocols have already reference implementations by vendors and, consequently, they

belong to the Plateau of Productivity regarding their Hype classification (see Figure 1.5).

*http://www.ripe.net/projects/ris/index.html
*http://labs.ripe.net/node/45

§ www.ieee802.0org/11

"www.zigbee.org
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Figure 1.5 - Hype cycle for Wireless Networking

However, the most significant indication of the Mesh Networking emergence is the
Mobile Operator’s architectural choice to expand their network with femtocell endpoints.
Femtocells are sold by Mobile Network Operators to their residential end-users or
enterprise customers. A femtocell is typically the size of a residential gateway or smaller,
and connects to the end-user's broadband line. Integrated femtocells (which include both
a DSL router and femtocell) also exist. Once plugged in, the femtocell connects to the
MNO's mobile network, and provides extra coverage in a range of typically 30 to 50 meters
for residential femtocells (depending on the existing coverage and output power — usually
20mW which is five times less than a Wi-Fi router). From an end-users' perspective, it is
plug and play since there is no specific installation or prerequisite technical knowledge.

The prediction of the femtocell-roll out is provided at Figure 1.6 where it could be
argued that the tension is logarithmic since every year the expected amount of installed

femtocell access points is doubled.

22



120

100

A0

FAP and subscriber numbers (million)

20

2009 2010 2011 2012 1013 2014

Femtocell access points Femtocell users

Saurce: Inferma Telecoms & Media

Figure 1.6 - Femtocell roll-out prediction [Informa, 2010]

Consequently, while the infrastructural scenery is highly complex, a clear view about
the capabilities of future networks and mobile nodes is perceptible even from today.
Devices will be equipped with protocols that will allow Mesh communication and networks
to be expanded under the femtocell approach. On the other hand, in the field of provided
services the field is totally unclear.

The main reason for this uncertainty is related to the fact that the Mobile Network
Operators (MNOs) and handset OEMs move their industries’ structure from vertical to
horizontal and vice versa [Visionmobile, 2009]. Therefore, the notion of service value is
continuously changing. Differences between vertical and horizontal structures are depicted
at Figure 1.7. A vertical industry structure implies the usage of already integrated
components with proprietary interfaces. Barriers for entering the market are relatively
high and the emphasis is given to the guaranteed performance.

In contradiction to the vertical structure, a horizontal industry structure emphasizes in
the usage of modular components with standardized interfaces. Barriers for entering the
market are low and the emphasis is given to flexibility and customization. In order to
predict the nature of the provided mobile services in the near future, the helix for both
Mobile Network Operators (MNOs) and OEM handset producers must be compared. These

helixes areillustrated at Figure 1.8 and Figure 1.9 respectively.
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The Double Helix: industries move between horizontal to vertical structures

Horizontal industry structure Vertical industry structure
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mix and match
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emphasis:
performance, functionality

based on: Charles Fine: Clockspeed
Figure 1.7 - Vertical/Horizontal structure helix

MNO’s helix (see Figure 1.8) indicates that network operators are positioned at the
horizontal industry structure. This practically means that their infrastructure up to 2010 is
fully interoperable since all interfaces used are standardized. Specifically, the adoption of
IP-Multimedia Subsystem (a.k.a. IMS®) of all MNOs was one of the biggest success stories

for standardization and modularization according to 3GPP S,

Horizontal industry structure Vertical industry structure
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2009 2004 2003

open to social networks end of walled IT operations
open network APIs gardens  outsourced

2010
outsourced
sub-brands "2
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Figure 1.8 - MNO helix

Swww.3gppl.net/article/ims
? http://www.3gpp.org
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Moreover, OEM producers have moved the last four years (i.e. 2006 - 2010) to the
vertical helix and this can be easily inferred by the fact that all handset producers have
created closed Application Repositories (a.k.a. AppStores) bounded to the capabilities of

their products (see Figure 1.9).

Horizontal industry structure Vertical industry structure
—
—
— 2003 2002 2007-8 2008-9 III
outsourced  first MNO Nokia Ovi  RIM, Apple:
operating systems  customised devices service shopping spree complete service+device
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. ® - H
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phones outsourced

2007-- @
open source
browsers and B.-..oooo.o. 1085
operating systems the mobile industry
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OEM app stores .
OEM sync services 5
~ 1999 G 1990-8
first ODMs standardisation of radio
appear and SIM interfaces

Figure 1.9 - OEM helix

This contradictive tension has already been identified. Additionally, there is an
estimation that Handset OEMs move twice as fast as MNOs on the helix [Visionmobile,
2009]. Under this perspective, the notion of the delivered mobile service “value” has been
radically redefined. As a result, today a service value can be classified in one of the
guadrants that are formulated by the axis of when the service value is created and where
the service value is created (see Figure 1.10). “When” refers to pre-sales or post-sales and
“where” refers to the device itself or to cloud consisting of other devices. This service-value
classification is extremely crucial because based on this classification someone can judge
upon the viability or predict the sustainability of a new or existing service class.

The most emerging mobile service classes for 2010 are according to [ReadWrightWeb,
2010] the following: geo-location services, Internet of Things services, Augmented Reality
services, and mobile social networking services. Additionally, at Gartner’s press release
regarding “Top 10 Consumer Mobile Applications for 2012”10, the following additional
service-classes are identified: Money Transfer & Mobile payment, Mobile Health

Monitoring, Mobile Advertising and Mobile Instant Messaging.

"http://www.gartner.com/it/page.jsp?id=1230413
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Figure 1.10 - Mobile-Service “value” redefined

It is remarkable that the majority of the emerging services are placed on the cloud
quadrants (see Figure 1.10) which implies that the application value is derived by the
interaction of a mobile node with other nodes in the network either fixed (in case of a
Mobile Payment Gateway etc.) or mobile (in case of Mobile Gaming, Social Networking
Applications etc.). This peer-to-peer nature of the emerging services can also be predicted

by the already existing traffic distribution in fixed networks ( see Figure 1.11).

oP2pP

B WWW

0O Steaming
66% OOther TCP
B Other IP

6% 5% 2%
21%

Figure 1.11 - Traffic Distribution in fixed Networks [Y. Raivio, 2005]

Therefore, in the mobile services domain there is a new emerging trend for Mobile
Peer-to-Peer applications. This trend is empowered by a) the Mesh networking protocol
evolution, b) the increasing mobile nodes capabilities and c) the infrastructural support by
MNOs.
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1.2 Motivation - Main Objectives
The trend towards the Future Internet is the transition to networks that provide highly
distributed, pervasive and communication-intensive services. These services pose new
requirements on the underlying network infrastructure [A. Galis et al., 2009] [R. Bless et
al., 2008] that derive from the need to operate on top of dynamic, heterogeneous and
complex networks. In order to cope with these requirements, such services will be
expected to (i) be aware of the context and the environment in which they operate, (ii)
self-configure and self-adapt according to the network conditions that they sense and (iii)
require minimum feedback from the end-user avoiding any explicit human intervention.

These challenges can be addressed through the creation and maintenance of overlay
networks [G. Kunzmann et al.,, 2008]. Overlay networks create a well-defined virtual
topology above the underlying network infrastructure, where advanced services may be
provided. However, new methodologies for implementing and operating overlays are
needed. In particular new mechanisms are required that permit overlays to structure their
topology, define their routing scheme, and manage their resources independently [K.
Tutschkua et al., 2008].

The transition to overlay networking and the incorporation of autonomic

characteristics in next generation networks is most crucial in ad-hoc and mesh networks
since they present specific challenges, especially due to the following characteristics: (i)
dynamic topology (links are established / torn down frequently), (ii) unreliable operation
(nodes may be disconnected at any time), (iii) complexity (lack of centralized control or
network hierarchy) and (iv) loose control of nodes (roles in the overlay network are
automatically assigned).

Peer-to-peer (p2p) networks constitute the best candidate for addressing most of
these challenges (unreliable operation, complexity, loose control of nodes) [E. K. Lua et al.,
2005]. In p2p networks, a dynamic assignment of tasks among peers is realized and the
provided services are based on their direct cooperation. Peer nodes share the available
resources, provide redundancy due to distribution and replication of data and thus impose
minimal requirements to the infrastructure. Ad-hoc deployment increases the self-
organization level of the network and permits its operation also in an unstable
environment with loosely connected nodes. Furthermore, despite the apparent chaos of
periodic random changes to the membership of the network, p2p networks provide
provable guarantees about performance.

However, the adoption of current p2p techniques necessitates the existence of a fixed
network topology [M. Bisignano et al., 2007] [M. Caleffi et al., 2009]. With the term
“fixed”, we refer to wired and wireless networks that have formulated their physical
topology and do not present any topology changes. Over a formulated physical topology,

specific p2p functions can be applied and a wide range of services can be deployed. This is
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not the case in Mesh Environments. Each device in a Mesh Environment is free to move
independently in any direction, and thus frequently change its connectivity to other
devices.

Traditional Peer-to-Peer applications were considered revolutionary, as
aforementioned, however all implemented Peer-to-Peer protocols base their operation to
the reliability and centralization of the underlying fixed network infrastructure.
Indicatively, regarding “(i) dynamic topology issues” in order for a node to identify its
relative position in the overlay it consults a super-peer which has a public IP in the fixed
network. Regarding, ”(ii) unreliable operation” in order for a node to identify if another
node is unreachable it relies on TCP timeout mechanism. Consequently, Mobile Peer-to-
Peer protocols are very challenging domain since traditional protocols cannot be used or
ported as-is in the Mesh Networking domain.

The cornerstone of most P2P systems is a Distributed Hash Table (a.k.a. DHT [H.
Balakrishnan et al., 2003]). DHTs are a class of decentralized distributed systems that
provide a lookup service similar to a hash table i.e. (key, value) pairs are stored in the DHT,
and any participating node can efficiently retrieve the value associated with a given key.

Responsibility for maintaining the mapping from keys to values is distributed among the

nodes, in such a way that a change in the set of participants causes a minimal amount of

disruption. This allows DHTs to scale to extremely large numbers of nodes and handle

continual node arrivals, departures and failures.

The goal of this Thesis is to provide a Distributed Hash Table architecture and
implementation that is able to bootstrap and operate in Mesh Environments without any
form of centralization. This DHT will be addressed as UbiChord. UbiChord can be used as a
cornerstone in order to create Mobile Peer-to-Peer applications. In the frames of this
Thesis, the following objectives have been identified:

Objective 1: to identify the key problems for bootstrapping and maintaining a
distributed key-value store in a Mesh Environment. Since DHTs are considered the
cornerstone of p2p applications, it is highly important to analyze why traditional practices
that are well established and applied in fixed networks cannot be ported as-is in mesh
environments.

Objective 2: to propose and evaluate a protocol that overcomes the identified
problems. More specifically, since there are specific problems that prevent existing DHTs
operation, a new protocol that overcomes these problems must be proposed. This
protocol will be tailored for mesh environments.

Objective 3: to provide Reference Implementation of the proposed protocol. This
objective is the realization of objective-2 since in the course of this objective a real
implementation of the afore-proposed protocol will be provided. This objective is related

to the feasibility of the proposed pro tocol.
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Objective 4: to create Indicative Mobile Peer-to-Peer Applications based on UbiChord.
Taking under consideration the four main objectives, the contribution of this Thesis is

described in the upcoming subsection.

1.3 Contribution of this Thesis

Taking under consideration the four main objectives of the Thesis we could highlight
the assets that derive from the conducted research. In general there are three major
assets:

Asset 1: The first asset is the formulation of a Distributed Hash Table Protocol capable
of operating on top of Mesh Networks. Specific protocol mechanisms will be introduced to
guarantee reliable operation of the structure, under the uncertainty of Mesh networking
conditions. Various mechanisms that comprise the protocol are analytically described and
evaluated. Furthermore, the protocol follows a layered approach, which allows
straightforward protocol implementation in diverse platforms.

Asset 2: The second asset is a concrete reference implementation of the
aforementioned protocol which is addressed as “UbiChord”. In order for the protocol to be
realized (or instantiated) specific technical choices have been followed. Moreover, during
the evaluation of the implemented protocol, additional mechanisms have been created in
order to tackle specific bottlenecks that were identified. These bottlenecks led to the
creation of additional mechanisms that “bend” the non-linear performance of some layers
(mainly routing layer). These mechanisms were grouped as a separate protocol addressed
as “NEURON”. However, NEURON mechanisms have not been integrated in the
implemented protocol.

Asset 3: The third asset is related to the provision of a novel application-provision
paradigm. More specifically, the existence of a DHT capable for storing and retrieving
information (i.e. key-value sets) can introduce a new programming model regarding service
provisioning. Up to now, collaborative applications in Mesh or PAN networks follow a
centralized approach, in the sense that either all nodes that run the application are
assumed to have connectivity with the central server or one node of the mesh network
“acts” as a server. The utilization of UbiChord can alter this programming model by
introducing native decentralization. Applications can share (i.e. store and retrieve) volatile
data in UbiChord without caring who is responsible for the physical storage of data. This
capability paves the way for the creation of a new set of applications that are in line with

autonomic principles.
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1.4 Scientific Publications & Contribution to Standards

The Thesis is the outcome of targeted research conducted in the domain of service
provisioning in Mesh Environments. Research was targeting both theoretical and practical
aspects of the domain. It is of major importance to emphasize on the continuity of the
research in order to comprehend the maturity of the final results. First of all, the
technology trigger at 2006 - 2007 (see Figure 1.5) was Near Field Communications
technology (a.k.a. NFC) according to which, each internet-capable device could participate
in a service-ecosystem. The open research issues included, among others, the formulation
of semantic service models for sensors and actuators. In this specific field, the following
publication [P. Gouvas et al., 2007]: “Panagiotis Gouvas, Thanassis Bouras, Gregoris
Mentzas: An OSGi-Based Semantic Service-Oriented Device Architecture. OTM Workshops
(2) 2007: 773-782" contributed on establishing a meta-model for service-grounding in
Service Oriented Device Architectures (a.k.a. SODA).

However, the vision of numerous inter-connected devices which collaborate, soon led
to the emergence of the “broader” notion of Internet of Things (or equivalently the
Internet of Connected Objects). This vision incorporates many challenges. Some of these
challenges include creation of applications that operate on top of dynamic topologies,
under uncertain and unreliable conditions with increased complexity. Under this
perspective, the following publication [P. Gouvas et al. - 1, 2010]: “Panagiotis Gouvas,
Anastasios Zafeiropoulos, Athanassios Liakopoulos, Gregoris Mentzas and Nikolas Mitrou:
Integrating Overlay Protocols for Providing Autonomic Services in Mobile Ad -hoc Networks
2010 IEICE Transactions on Communications” proposed an innovative way for creating
services in Mesh Environments. The proposed approach relied on the adaptation of DHT
structures that are a-priori non suitable for operating in such dynamic environments. A
theoretical and practical description of the approach was provided. This publication is the
foundational cornerstone of UbiChord.

Since a DHT structure could be the center of gravity as far as service creation in
Mesh environments is concerned, UbiChord had to be exhaustively tested given that such
environments are extremely challenging. Therefore, the aspect of scaling was thoroughly
investigated. Specific bottlenecks that have been identified, especially in routing layer
resulted in the creation of further adaptations. According to these adaptations, clustering
and gossiping techniques can be used to minimize routing overhead. Indicative services
have been created in sensor mesh environments. The outcome of this research was
published at [A. Zafeiropoulos et al., 2010]: “Anastasios Zafeiropoulos, Panagiotis Gouvas,
Athanassios Liakopoulos, Gregoris Mentzas and Nikolas Mitrou, NEURON: Enabling
Autonomicity in Wireless Sensor Networks, 2010, Sensors (ISSN 1424-8220)".

The mechanisms of NEURON resulted in radical reduction of routing and signaling

overhead required by the DHT structure in order to be fully operational. As a result, further
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investigation of some mechanisms was conducted. Special emphasis was given in bio-
inspired mechanisms such as gossiping. The goal of this research was to identify the
implication of dynamicity in bio-inspired techniques. Conclusively, the following
publication was accomplished [P. Gouvas et al. -2, 2010]: “Panagiotis Gouvas, Anastasios
Zafeiropoulos, Athanassios Liakopoulos: Gossiping for Autonomic Estimation of Network -
Based Parameters in Dynamic Environments. OTM Workshops 2010: 358-366"

Furthermore, UbiChord can be used for the creation of several autonomic
applications. Such applications include autonomic network monitoring and management
which was discussed in the frames of the publication [A. Liakopoulos et al., 2010]:
“Athanassios Liakopoulos, Anastasios Zafeiropoulos, Constantinos Marinos, Mary
Grammatikou, Nikolay Tcholtchev and Panagiotis Gouvas, Applying distributed monitoring
techniques in autonomic networks, | EEE GLOBECOM 2010, Florida, USA”.

Finally, it could be argued that the need derived by the next generation of services
is distributed reasoning. Distributed reasoning implies that inter-connected nodes (i.e.
sensors or actuators) generate or consume information while interacting with the
environment. UbiChord could be medium for information fusion which is the first step of
distributed reasoning. Usage of domain dependent context models would optimize the
reasoning procedure. Such a context model, on top of UbiChord has been evaluated in the
frames of the publication [A. Zafeiropoulos et al., 2011]: “Anastasios Zafeiropoulos,
Panagiotis Gouvas, Athanassios Liakopoulos, A Context Model for Autonomic Management
of Ad-hoc Networks, International Conference on Pervasive and Embedded Computing and
Communication Systems, 2011, Portugal” targeting the domain of network monitoring.

Regarding standardization efforts, concrete research results of this Thesis have
been diffused in a Draft of European Telecommunications Standardization Institute (ETSI),
in the working group of “Autonomic network engineering for the self-managing Future
Internet” (a.k.a. AFl). More specifically, Draft “AFl 001: Scenarios, Use Cases, and
Requirements for Autonomic/Self-Managing Future Internet” contains requirements for
autonomic applications which are in-line with the requirements and the architectural
principles of UbiChord. For ETSI members, the standardisation draft is also available here:
http://portal.etsi.org/portal/server.pt/community/AFI/344.

A complete list of publications is provided as an annex at the end of the Thesis.
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1.5 Structure of this Thesis
The Thesis is structured as follows:

“Chapter 2 - Problem Statement” introduces the reader to the key concepts of

autonomic principles. Furthermore it explains why a Distributed Hash Table can be used as
cornerstone for the realization of autonomic applications. DHTs have many reference
implementations. However, DHT mechanisms can be abstracted at a certain level. Ignoring
the low level implementation details of the diverse reference implementations, the
abstracted DHT principles will be described. These principles are fundamental in order to
understand the difficulties for porting an existing DHT implementation in a Mesh Network.
DHT principles are provided at Chapter 2.1 while the aforementioned difficulties are
thoroughly discussed at Chapter 2.2. Chapter 2.2 covers Objective-1.

“Chapter 3 - State of The Art Analysis” intends to familiarize the reader with existing

DHT implementations in fixed networks (Chapter 3.1) and existing approaches/research
initiatives that attempted to port Peer-to-Peer protocols in Mesh Environments (Vhapter
3.2). In parallel, limitations and correlation with UbiChord are discussed. Finally, one of the
most critical aspects of Mesh Networks is routing since the absence of predefined routing
scheme is a key problem as shown at Chapter 2.2. This fact leads to the presentation of a
brief State of the Art (SoTA) analysis regarding Mesh routing (Chapter 3.3).

“Chapter 4 - Proposed Layered Approach” aims to analyze the UbiChord architecture

that overcomes difficulties as identified at Chapter 2.2. The proposed approach is a layered
approach and therefore Chapters 4.1 and 4.2 explain why this layered approach has been
followed. Chapter 4.3 describes in-detail the mechanisms in each layer. These mechanisms
have been implemented at a Simulator (PeerSimll Simulator). The results of simulations
are described on Chapter 6.1. Based on these results, the four-layered approach has been
enhanced in order to be more scalable. Specific adaptations have been introduced to
address scalability. These adaptations are described at Chapter 4.4 and evaluated on
Chapter 6.1.3. Finally, Chapter 4.5 provides a detailed analysis on how autonomic services
can be created on-top of UbiChord. The entire Chapter 4 covers Objective-2.

“Chapter 5 - Prototype Implementation details” describes the prototype

implementation of the layered approach that is described on Chapter 4. The layered
approach is an architecture that can be realized, technically, in diverse ways. A prototype
implementation of the architecture is described in the specific chapter. Chapter 5.1
analyses the technical choices that have been followed in order to realize UbiChord and
provides and detailed analysis of UbiChord’s internal architecture. Chapter 5.2 provides a
bird’s eye view of the developed Custom Emulation environment that was developed in

the frames of this Thesis in order to assess the various layers of UbiChord. The necessity

" PeerSim Simulator - http:/peersim.sourceforge.net/
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for this environment and the environment itself are covered in this sub-chapter. Chapter 5
covers Objective-3 and partially Objective-4.

“Chapter 6 - Simulation & Emulation Results” has a threefold goal. First it provides the

simulator results for the Proposed Layered Approach as described on Chapter 4 and an
indicative service built on top of the layered approach (Chapters 6.1 and 6.2). Then it
provides simulator results for the extensions that have been built in order to overcome
scaling issues (Chapter 6.3). Finally, it provides the emulation results of the reference
implementation as described on Chapter 5. Chapter 7 covers partially Objective-4.

“Chapter 7 - Conclusions and further research” contains an initial chapter which

concludes on how UbiChord overcomes difficulties that were posed at the problem
statement (Chapter 7.1). Then, an analysis on current limitations that have to be
confronted, and ideas of possible improvements are provided on Chapter 7.2 along with
description of the future steps of UbiChord.

Finally, “Chapter 8 - References” contains the references for the entire Thesis.
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2. Problem Statement

2.1 Incorporation of Autonomic Principles in Mesh networking

applications
As already stated in the introduction the trend regarding networks’ evolution includes the
incorporation of characteristics such as dynamic topologies, zero-configuration, mesh
environments etc. In parallel, a plethora of devices is emerging supporting diverse
networking capabilities. The combination of these trends leads to the realization of the so-
called Internet of Things (loT).

While there is no formal definition of the term Internet of Things, it could be argued
that expresses the ability of everyday ordinary objects to connect to a network. When the
ability of physical connection is augmented to ability of inter-operation among the
participating objects then we refer to Internet of Connected Objects (ICO). There are
diverse types of Objects which can be classified based on many characteristics e.g. objects
can be characterized as sensors or actuators depending on the characteristic of
information extraction/reaction or hardware/software depending on the physical nature of
the object etc.

The instantiation/rollout of Internet Connected Objects paradigms follows a diverse
scheme. Indicatively, Hewlett Packard launched at May 2010 CENSE™ where millions of
sensors will measure data such as vibration, rotation, sound, air flow, light, temperature,
pressure and much more all around the globe. Furthermore, IBM's Smarter Planet
campaign is about connecting objects to the Internet and applying intelligence and services
on top of that. In January 2010, IBM shed light on Big Blue's sensor platform highlighting
that IBM had developed 1,200 "smarter solutions" up till that time pinpointing that IBM
has the ability to provide sensor systems to support city infrastructures B

Although the benefits for the applications that are based on IoT technology are a lot,
there are problems that can be summarized in the estimation of HP's Peter Hartwell: "one
trillion nanoscale sensors and actuators will need the equivalent of 1000 Internet
Infrastructures (as deployed today): the next huge demand for computing!".

Consequently, ICO per se is not affected by the limitations and pathogens of existing
Internet deployment but on the other hand it constitutes the basic reason why existing

technology should change.

2.1.1 Problems regarding IoT applications
Moving one step further it is valuable to examine the nature of ICO deployment and

applications and discuss on the competitive forces on the domain that formulate center of

“http://www.hpl.hp.com/research/intelligent_infrastructure/
Phttp://www.readwriteweb.com/archives/top_10_internet of things developments_of 2010.php
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gravities. First of all, the first set of competitive forces is complexity of operation and the
requirement of a simplified administration (complexity VS simplicity).

Additionally, the decentralized manner of deployment is opposing to the need for
centralized control (decentralization VS centralization). Each object is able to generate and
consume local information (e.g. sensor data) but a context-aware incident can only be
inferred by the combination of available information (information fusion VS distributed
reasoning). Moreover, medium level communication between Objects is considered as
granted, but the mobile nature of nodes prevents the operation of scalable static routing
schemes (reactive routing VS scalability). Finally, the functionality exposed by Connected
Objects is context-dependent while a developer would need a sound and simplified APl in
order to create an application utilising Connected Objects (expose Connected Object’s

functional profile VS transparency to application developer).

2.1.2 Autonomicity as a solution

Most of the aforementioned problems are already successfully tackled in existing biological
systems, e.g. human body uses a hierarchically structured nervous system to coordinate a
vast amount of sensors and actuators of diverse nature (i.e. different types of cells).
Although each “sensor” and “actuator” seam to act independently (decentralized), they
manage to achieve one (centralized) goal; “guarantee equilibrium between the body and
the environment”. Although there is no detailed view of the envisaged algorithms, there
are many principles that can be ported from the domain of biology to the domain of
Internet Connected Objects. Among all concepts, the most crucial one is the concept of
autonomic systems.

Autonomic system is the part of the nervous system which controls the tissues, organs
and systems without conscious thought. Lack of conscious and centralized control urged
computer scientists to port autonomic principles in the networking domain to resolve
growing complexity of network management. This philosophy is in-line with the emerging
trend of bio-inspired computing according to which algorithms and principles applied at
nature can provide elegant solutions to existing problems in computer science. As a result,
Autonomic Computing Initiative intro duced four principles (a.k.a. self-* principles) that any
computational autonomic system should take under consideration:

e Self-Configuration: Automatic configuration of elements

e Self-Healing: Automatic discovery, and correction of faults

e Self-Optimization: Automatic monitoring and control of resources to ensure the
optimal functioning with respect to the defined requirements

e Self-Protection: Proactive identification and protection from arbitrary attacks

The cornerstone concept applied in Autonomic Systems is the closed control loop.

Such a loop in a self-managing system monitors some resource/variable of a software or
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hardware component and autonomously tries to keep its parameters within a desired
range. The theory behind the control loops is derived by the Process Control. According to
IBM, hundreds or even thousands of these control loops are expected to work in a large -

scale self-managing computer system.

Control Measure
variables
and
objectives

Control

Figure 2.1 - Autonomic loop

The maintenance of an autonomic loop in a networking environment pre-assumes the
ability to read and write variable values/states. Based on these values proactive or reactive
decisions can be made. However, reading and writing in a shared data-space is not trivial
since the usage of a centralized “database” is out of the question. A centralized solution
would have a single point of failure and would impose extreme configuration cost in
dynamic environments.

The most elegant solution for the realization of this shared ”"data-space” is a
Distributed Hash Table Structure which has zero-configuration cost and no point of failure.
Although DHTs have significant properties regarding putting and getting key-value pairs,
their principles of operation rely on network stability and reliability. Consequently, DHTs
cannot be used, per se, in Mesh Environments. In the frames of this Thesis we will
introduce mechanisms accompanied by theoretical analysis that overcome difficulties

which are raised by Mesh environments.
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2.2 DHTs at a glance
As already mentioned above a Distributed Hash Table is a class of decentralized distributed
system that provides a lookup service similar to a hash table; (key, value) pairs are stored
in the DHT, and any participating node can efficiently retrieve the value associated with a
given key. Responsibility for maintaining the mapping from keys to values is distributed
among the nodes, in such a way that a change in the set of participants causes a minimal

amount of disruption. This allows DHTs to scale to extremely large numbers of nodes and

to handle continual node arrivals, departures, and failures.

DHTs form an infrastructure that can be used to build more complex services, such as
distributed file systems, peer-to-peer file sharing and content distribution systems,
cooperative web caching, multicast, anycast, domain name services, and instant
messaging, social applications etc. Notable distributed networks that use DHTs include
BitTorrent's distributed trackerM, the Kad network [M. Steiner et al, 2007], YaCylS, and the
Coral Content Distribution Network [M. J. Freedman et al., 2004].

2.2.1 History

DHT research was originally motivated, in part, by peer-to-peer systems such as
Napsterls, Gnutella”, and Freenetls, which took advantage of resources distributed across
the Internet to provide a single useful application. In particular, they took advantage of
increased bandwidth and hard disk capacity to provide a file sharing service. These systems
differed in how they found the data their peers contained:

Napster had a central index server: each node, upon joining, would send a list of
locally held files to the server, which would perform searches and refer the “querier” to
the nodes that held the results. This central component left the system vulnerable to
attacks and lawsuits.

Gnutella and similar networks moved to a flooding query model—in essence, each
search would result in a message being broadcasted to every other machine in the
network. While avoiding a single point of failure, this method was significantly less efficient
than Napster. Moreover, Freenet was also fully distributed, but employed a heuristic key -
based routing in which each file was associated with a key, and files with similar keys
tended to cluster on a similar set of nodes. Queries were likely to be routed through the
network to such a cluster without needing to visit many peers. However, Freenet did not

guarantee that data would be found.

"“http://bitconjurer.org/BitTorrent

"http://yacy.net/Technology.html

"http://www.napster.com

'” Gnutella Protocol Specification http://wiki.limewire.org/index.php?title=GDF
"®http://freenetproject.org/
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On the other hand, Distributed Hash Tables use a more structured key-based routing
in order to attain both the decentralization of Gnutella and Freenet, and the efficiency and
guaranteed results of Napster. One drawback is that like Freenet, DHTs only directly
support exact-match search, rather than keyword search, although such functionality can
be layered on top of a DHT.

From 2001 to 2004, six systems - CAN [S. Ratnasamy et al., 2001], Chord [I. Stoica et
al., 2003], Pastry [A. Rowstron et al., 2001], Tapestry [B. Y. Zhao, 2004], Kademlia [P.
Maymounkov et al., 2002] and Viceroy [D. Malkhi et al., 2002] - ignited DHTs as a popular
research topic, and this area of research remains active. Outside academia, DHT
technology has been adopted as a component of BitTorrent and in the Coral Content

Distribution Network.

2.2.2 DHT Properties
DHTs characteristically emphasize the following properties:

e Decentralization: the nodes collectively form the system without any central
coordination.

e Scalability: the system should function efficiently even with thousands or millions
of nodes.

e Fault tolerance: the system should be reliable (in some sense) even with nodes
continuously joining, leaving, and failing.

A key technique used to achieve these goals is that any node needs to coordinate with
only a few other nodes in the system — most commonly, O(log n) of the n participants — so
that only a limited amount of work needs to be done for each change in membership.

Some DHT designs seek to be secure against malicious participants [G. Urdaneta et al.,
2011] and to allow participants to remain anonymous, though this is less common than in
many other peer-to-peer (especially file sharing) systems; see anonymous P2P. Finally,
DHTs also deal with more traditional distributed systems issues such as load balancing,
data integrity, and performance (in particular, ensuring that operations such as routing and

data storage or retrieval complete quickly).

2.2.3 DHT Principles
The structure of a DHT can be decomposed into several main components [Gurmeet,

2004]. The foundation is an abstract keyspace. A keyspace partitioning scheme splits

ownership of this keyspace among the participating nodes. An overlay network then,
connects the nodes, allowing them to find the owner of any given key in the keyspace.
Once these components are in place, a typical use of the DHT for storage and retrieval
might proceed as follows. Suppose the keyspace is the set of 160-bit strings. To store a file
with given filename and data in the DHT, the SHA-1 [ANSI, 1997] hash of filename is

generated, producing a 160-bit key k, and a message put(k,data) is sent to any node
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participating in the DHT. The message is forwarded from node to node through the overlay

network until it reaches the single node responsible forkey k as specified by the keyspace

partitioning. The appropriate node stores the key and the data. Any other client can
retrieve the contents of the file by again hashing filename to producek and asking any DHT
node to find the data associated with k with a message get(k). The message will again be
routed through the overlay to the node responsible fork, which will reply with the stored
data.

These principles are depicted at Figure 2.2 where the inner circle represents the
physical topology of the mobile nodes while the outer circle represents the DHT overlay.
The general idea is that every node that is registered to tke DHT is able to publish and
retrieve data. Please note that the same Hash function that is used for node registration in
the overlay is used for data registration. This is very crucial since it is related to the

keyspace partitioning.

Node ™ (ogistered to DHT)
IDy

=) Get( Hash(‘test.jpg’))

Node i
1Dx (registered to DHT)

Put( Hash(‘test.jpg’), Contents(test.jpg) )

Hash() Consistent Hash Function
——==  Physical Connection

—— Registration to DHT

--—) PUT/GET

Figure 2.2 - DHT overview

The keyspace partitioning and overlay network components are described below with
the goal of capturing the principal ideas common to most DHTs; many designs differ in the

details.

2.2.3.1 Keyspace partitioning

Most DHTs use some variant of consistent hashings [D. Karger et al., 1997] to map keys to

nodes. This technique employs a function &(ky, k;) which defines an abstract notion of the
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distance from key k; to key k;, which is unrelated to geographical distance or network
latency. Each node is assigned a single key called its identifier (ID). A node with ID ixowns
all the keysk,, for which iy is the closest ID, measured according to &(kp,iy).

In order to make keyspace partitioning clearer, an example from a real DHT
implementation will be provided. The Chord DHT treats keys as points on a circle, and
O(ky, k) is the distance traveling clockwise around the circle from k; to k;. Thus, the circular
keyspace is split into contiguous segments whose endpoints are the node identifiers. If ij
and i, are two adjacent IDs, then the node with ID i, owns all the keys that fall between i
and iz. This can be depicted at Figure 2.3 where a Chord DHT is bootstrapped. The DHT is
configured to have replication factor equals to two. This practically means that every key-
value pair that is assigned to the node-responsible is automatically assigned to the next
two successors in the overlay. So, if a key-value pair with key:K is stored (e.g. by node-F) to
the DHT and A<K<B then the authoritative physical node that must store this pair is the
one that has Hash(NodelD)=B. Because of the replication factor, nodes B, C and D store

keys in the range of A-B.
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Figure 2.3 - Chord’s keyspace partitioning

Consistent hashing is based on mapping items to a real angle (or equivalently a point
on the edge of a circle). Each of the available machines (or other storage buckets) is also
pseudo-randomly mapped on to a series of angles around the circle. The bucket where
each item should be stored is then chosen by selecting the next highest angle which an
available bucket maps to. The result is that each bucket contains the resources mapping to
an angle between itself and the next smallest angle.

If a bucket becomes unavailable (e.g. because the computer it resides on is not

reachable), then, the angles it maps to will be removed. Requests for resources that would
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have mapped to each of those points now map to the next highest point. Since each
bucket is associated with many pseudo-randomly distributed points the resources that
were held by that bucket will now map to many different buckets. The items that mapped
to the lost bucket must be redistributed among the remaining ones, but values mapping to
other buckets will still do so and do not need to be moved.

A similar process occurs when a bucket is added. By adding an angle, we make any
resources between that and the next smallest angle map to the new bucket. These
resources will no longer be associated with the previous bucket, and any value previously
stored there will not be found by the sele ction method described above. The portion of the
keys associated with each bucket can be altered by altering the number of angles that
bucket maps to.

Consistent hashing has the essential property of minimal disturbance of the network
during removal or addition of nodes since topology-changes affect only the set of keys
owned by the nodes with adjacent IDs, and leaves all other nodes unaffected. On the other
hand, in traditional hash tables addition or removal of one bucket causes nearly the
remapping of the entire keyspace. Since any change in ownership typically corresponds to
bandwidth-intensive movement of objects stored in the DHT from one node to another,
minimizing such reorganization is required to efficiently support high rates of churn (node

arrival and failure). The most common consistent Hashing function is SHA-1.

2.2.3.2 Overlay Network
Each node maintains a set of links to other nodes (its neighbors or routing table) and
together these links form the overlay network. A node picks its neighbors according to a
certain structure, called the network's topology.

All DHT topologies share some variant of the most essential property: for any key k,
each node either has a node ID which owns k or has a link to a node whose node ID is
closer to k, in terms of the keyspace distance defined above. It is then easy to route a
message to the owner of any key k using the following greedy algorithm (that is not
necessarily globally optimal): at each step, forward the message to the neighbor whose ID
is closest to k. When there is no such neighbor, then we must have arrived at the closest
node, which is the owner of k as defined above. This style of routing is sometimes called
key-based routing.

Beyond basic routing correctness, two important constraints on the topology are to
guarantee that the maximum number of hops in any route (route length) is low, so that
requests complete quickly; and that the maximum number of neighbors of any node
(maximum node degree) is low, so that maintenance overhead is not excessive. Of course,

having shorter routes requires higher maximum degree. Some common choices for
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maximum degree and route length are as follows, where n is the number of nodes in the
DHT, using Big O notation:

e Degree O(1), route length O(n)

e Degree O(logn), route length O(logn / loglogn)

e Degree O(logn), route length O(logn)

e Degree O(v/n), route length O(1)

The third choice is the most common even though it is not quite optimal in terms of
degree/route length tradeoff, because such topologies typically allow more flexibility in
choice of neighbors. Many DHTs use that flexibility to pick neighbors which are close in
terms of latency in the physical underlying network.

Maximum route length is closely related to diameter: the maximum number of hops in
any shortest path between nodes. Clearly the network's route length is at least as large as
its diameter, so DHTs are limited by the degree/diameter trade off which is fundamental in
graph theory. Route length can be greater than diameter since the greedy routing

algorithm may not find shortest paths [Gurmeet et al., 2004].

2.2.3.3 Variations of diverse Implementations
The most notable differences encountered in practical instances of DHT implementations
are discussed below. First of all, several real world DHTs use 128 bit or 160 bit keyspace.
Furthermore, some real-world DHTs use hash functions other than SHA1. Additionally, in
the real world the key k could be a hash of a file's content rather than a hash of a file's
name, so that renaming of the file does not prevent users from finding it.

Moreover, some DHTs may also publish objects of different types. For example, key k
could be node ID and associated data could describe how to contact this node. This
flexibility allows publication of presence information and is often used in Instant
Messaging applications, etc. In simplest case ID is just a random number which is directly
used as key k (so in a 160-bit DHT ID will be a 160 bit number, usually randomly chosen). In
some DHTSs publishing of nodes IDs is also used to optimize DHT operations.

Redundancy can be added to improve reliability. The (kdata) key pair can be stored in
more than one node corresponding to the key. Usually, rather than selecting just one
node, real world DHT algorithms select i suitable nodes, with i being an implementation-
specific parameter of the DHT. In some DHT designs, nodes agree to handle a certain
keyspace range, the size of which may be chosen dynamically, rather than hard-coded.

Some advanced DHTs like Kademlia [P. Maymounkov et al., 2002] perform iterative
lookups through the DHT first, in order to select a set of suitable nodes and send
put(k,data) messages only to those nodes, thus drastically reducing useless traffic, since
published messages are only sent to nodes which seem suitable for storing the key k; and

iterative lookups cover just a small set of nodes rather than the entire DHT, reducing
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useless forwarding. In such DHTs forwarding of put(k,data) messages may only occur as
part of a self-healing algorithm: if a target node receives a put(k,data) message but
believes that k is out of its handled range and a closer node (in terms of DHT keys pace) is
known, the message is forwarded to that node. Otherwise, data are indexed locally. This
leads to a somewhat self-balancing DHT behavior. Of course, such an algorithm requires

nodes to publish their presence data in the DHT so the iterative lookups can be performed.
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2.3 Difficulties in maintaining a distributed key-value store in Mesh
Environments
In Chapter 2.1 the principles of DHTs and the merits that are derived from them were
presented. However, DHTs are designed to operate on the Internet environment and not
on a Mesh environment. More specifically, the assumptions that are made by the majority
of DHT implementations which are met by the Internet environment are the following:

Efficient underlay routing & efficient connection establishment: e.g. assume that a

newnode enters the overlay in a Chord DHT implementation between nodel and node2
(we remind the reader that Chords uses a circular overlay topology). Since new segments
have been formulated i.e. nodel-newnode&newnode-node2, specific key-value entries
have to be transferred from node2 to newnode. This transfer has to be done efficiently
without a big communication start-up cost since a possible query for a specific key k in the
structure may end-up at nodel. If newnode is the correspondent node according to the
consistent hashing function, nodel will consult its finger table and will propagate the query
to newnode. Consequently, newnode should be ready to respond to the query performer
as quick as possiblein order to prevent blocking issues.

Long lasting connections & stationary peers: assume that in the example described

above, newnode enters and leaves the topology instantly. This would not be catastrophic
for the DHT structure’s coherency (since mechanisms that handle timeouts during key-
value transfers exist) but it would generate a signaling cost both in the network and the
overlay layer. This cost may be insignificant in fixed networks since a predefined routing
scheme exists (see below) but in a Mesh Environment it would be too expensive.

Hierarchical routing scheme: assume that in the example described above, node2 is

notified that specific key-value pairs must be transferred to newnode. However, node2 is

not aware on how new node will be reached; but it does not care also, since Internet’s

hierarchical structure implies that the transferable key-value entry(ies) will be routed to
node2’s default gateway and through TCP/IP entries will reach their destination.

Dedicated peers: as explained above, the task of overlay topology construction and

maintenance is undertaken by low level mechanisms which in most of the cases are

centralized or semi-centralized. Indicatively, such mechanisms are used in the Gnutella

network [Y. Wang et al., 2007], in which topology creation may b e achieved by using a pre-
defined address-list of working nodes included within a compliant client or by using web
caches of known nodes, a.k.a. Gnutella web caches. Similarly, Chord pre-assumes that
nodes are ordered in a ring and are aware of their successor and predecessor in the
overlay ring topology. Chord also relies on underlying mechanisms for the overlay network
bootstrapping [l. Stoica et al., 2001]. In conclusion, p2p protocols are able to react to

topology changes (and automatically re-assign key-value pairs) but are not responsible for
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creating and maintaining the overlay topology. This indicative issue, among others, is
delegated to some super-peers that are also accessible due to the hierarchical routing

scheme (see bullet -c-).

Stable network: refers to the backbone network and not to the endpoints that
constitute the DHT peers. A stable backbone network reassures the efficiency of the
hierarchical routing scheme and prevents island formulation. In order to clarify this issue,
assume that in the example of bullet -a- newnode is connected to node2 trough a unique
valid route e.g. newnode-nodex-nodey-node2 and the connection between nodex and
nodey during key-value pair transfer is lost. This would result in the formulation of two
islands consisting of i) island 1: newnode, nodex and all their local neighbors and ii) island
2: nodey, node?2 and all their local neighbors.

It is obvious that none of the aforementioned assumptions can be considered as

granted in a Mesh environment. Nodes are not stationary and links are considered

unreliable (see Figure 2.4). Moreover, there is no form of centralization and no dedicated
peer in order to coordinate overlay construction. Consequently, the construction and

maintenance of the overlay must be accomplished in an ad-hoc mode.

unreachable nodes

, movement network split

'1

_-~"unstable
connections

weak or unreliable nodes

Figure 2.4 - Mesh Networking Environment

Furthermore, low level routing among nodes is an important issue since no predefined
routing scheme can be taken for granted. Therefore, alternative routing policies have to be
adopted. Such routing protocols will be described at Chapter 3.3.

Finally, the most critical problem is the lack of topological hierarchy which results in
loosely temporarily created graphs. Such graphs (a.k.a. islands) of interconnected nodes
may merge and split according to the current topology. This affects significantly the DHT
operation. E.g. assume that in two existing separate islands, as depicted at Figure 2.5, the
Chord protocol has bootstrapped. The mechanisms that have been used by Chord to
bootstrap are out of the scope of the example. According to Chord all participant nodes
are directed to circular overlay topology for both islands. Assume that one node from one
island committed put(keys;,valuey) and another node from the other island committed in
his circle/DHT put(keys,valuey). In the next step, the nodes that comprise the two islands

come closer and formulate one big island (see Figure 2.6).
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Figure 2.5 - Two islands before they merge

Figure 2.6 - Two islands already merged

The goal that has to be achieved after the merging is the efficient identification of the

responsible node that maintains the value of key; after the query of a third-party node.
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Normally, according to the DHT consistency principle, values should be merged and a
possible get(key:) should result in the multi-value response values-value,. However, a
successful response pre-assumes that DHT signaling has been completed. On the other
hand signaling is of minor importance for DHTs that are bootstrapped on fixed networks
but it is considered too expensive for Mesh Environments.

Moreover, node-splitting is a scenario where DHT consistency is not guaranteed. E.g.
assume that the big island of Figure 2.6 splits in two sub-islands of Figure 2.5. Suppose that
a specific key;-valuey pair is published, the DHT protocol is Chord and the
HashOf(key1)=130. According to Chord algorithm the responsible for storing this pair is the
successor node of 130 i.e. node 140 in our case. It must be clarified here, that node 140
actually means node with HashOf(NodelD)=140 where NodelD is something common
among the nodes e.g. their MAC address. According to the splitting scenario, the physical
topology is split and node 140 belongs to the “blue” island. Now the question is what will
the result be when node “79” from the orange islands commits get(key;)? The answer is
null since in the “orange” island the authoritative node for providing the response is node
190 (i.e. the successor of 130). Node 190 has no info about key ;.

Similarly, assume that during put(keys,value,) (and before splitting up) there was a
redundancy policy and the key-value pair was stored to its successor and to the next node
(one node for redundancy). After the split-up, when node “79” from the orange islands
commits get(key;), the result would be value,. So, redundancy is the key parameter as far
as network splitting is concerned. Consequently, merging and splitting, in general, results

in significant signaling cost on Mesh environments.
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3. State Of The Art Analysis

3.1 Overview of Structured and Unstructured P2P Networks in fixed

Networks
Peer-to-peer overlay networks are distributed systems in nature, without any hierarchical
organization or centralized control. Peers form self-organizing overlay networks that are
bootstrapped and operated on top of IP-networks, offering a mix of various features such
as robust wide-area routing architecture, efficient search of data items, selection of nearby
peers, redundant storage, permanence, hierarchical naming, trust and authentication,
anonymity, massive scalability and fault tolerance.

Peer-to-peer overlay systems go beyond services offered by client-server systems by
having symmetry in roles where a client may also be a server. They allow access to
resources of participating systems and support resource-sharing, which requires fault-
tolerance, self-organization and massive scalability properties.

We can view P2P overlay network models spanning a wide spectrum of the
communication framework, which specifies a fully-distributed, cooperative network design
with peers building a self-organizing system. Figure 3.1 shows an abstract P2P overlay
hierarchy, illustrating the components in the overlay communications framework. The
Network Communications layer describes the network characteristics of nodes connected
over the Internet or small wireless or sensor-based devices that are connected in an ad-

hoc manner. The dynamic nature of peers poses challenges in communication paradigm.

The Overlay Nodes Management layer covers the management of peers, which
include discovery of peers and routing algorithms for optimization. The Features
Management layer deals with the security, reliability, fault resiliency and aggregated
resource availability aspects of maintaining the robustness of P2P systems. The Services
Specific layer supports the underlying P2P infrastructure and the application -specific
components through scheduling of parallel and computation -intensive tasks, content and
file management. Meta-data describes the content stored across the P2P peers and the
location information. The Application-level layer is concerned with tools, applications and
services that are implemented with specific functionalities on top of the underlying P2P

overlay infrastructure. There are two classes of P2P overlay networks: Structured and

Unstructured.
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Figure 3.1 - Abstract Peer-to-Peer Overlay Architecture

The technical meaning of Structured is that the P2P overlay network topology is tightly

controlled and content is placed not at random peers but at specified locations which

results inefficient querying. Such Structured P2P systems use the Distributed Hash Table
(DHT) as a substrate, according to which the location information of data-object is placed
deterministically at a specific peer identified by the data object’s unique key. DHT-based
systems have the advantage of consistent assignment of data-objects to the nodes that
constitute the network.

Data objects are assigned unique identifiers called keys, chosen from the same
identifier space. Keys are mapped by the overlay network protocol to a unique live peer in
the overlay network. The P2P overlay networks support the scalable storage and retrieval
of {key,value} pairs on the overlay network, as illustrated in Figure 3.2. Given a key, a store
operation put(key,value)and a lookup retrieval operation value=get(key) can be invoked to
store and retrieve the data object corresponding to the key, which involves rou ting
requests to the peer corresponding to the key. Each peer maintains a small routing table

consisting of its neighboring peers’ NodelDs and network addresses. In the case of MESH

networks, IP_cannot be used since no TCP/IP routing is used. Lookup queries or message

routing requests are forwarded across overlay paths to peers in a progressive manner

utilizing the NodelDs that are closer to the key in the identifier space.
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Distributed Structured P2P Overlay Application
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Figure 3.2 - Application Interface for Structured DHT-based P2P Overlay Systems
Different DHT-based systems have different organization schemes for the data objects

and their key space and routing strategies. In theory, DHT-based systems can guarantee

that any data object can be located in OflogN ) overlay hops on average, where N is the

number of peers in the system. The underlying network path between two peers can be
significantly different from the path on the DHT-based overlay network. Therefore, the
lookup latency in DHT-based P2P overlay networks can be quite high and could adversely
affect the performance of the applications running over it. [C. Plaxton et al., 1997] provides
an elegant algorithm that achieves nearly optimal latency on graphs that exhibit power-law
expansion [L. Breslau et al., 1999], at the same time, preserving the scalable routing
properties of the DHT-based system. However, this algorithm requires pair-wise probing
between peers to determine latencies and it is unlikely to scale to a large number of peers
in the overlay.

DHT-based systems [D. R. Karger et al., 1997] are an important class of P2P routing
infrastructures. They support the rapid development of a wide variety of Internet-scale
applications ranging from distributed file and naming systems to application-layer
multicasting. They also enable scalable, wide-area retrieval of shared information. In 1999,
Napster pioneered the idea of a peer-to- peer file sharing system supporting a centralized
file search facility. It was the first system to recognize that requests for popular content
need not to be sent to a central server but instead it could be handled by many peers that
have the requested content. Such P2P file-sharing systems are self-scaling in that as more
peers join the system, they add to the aggregate download capability. Napster achieved
this self-scaling behavior by using a centralized search facility based on file lists provided by
each peer, thus, it does not require much bandwidth for the centralized search. Such a

system has the issue of a single point of failure due to the centralized search mechanism.
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However, a lawsuit filed by the Recording Industry Association of America (RIAA) forced
Napster to shut down the file-sharing service of digital music — literally, its killer
application.

However, the paradigm caught the imagination of platform providers and users alike.
Gnutella is a decentralized system that distributes both search and downloads’ capabilities,
establishing an overlay network of peers. It is the first system that makes use of an

Unstructured P2P overlay network. An Unstructured P2P system is composed of peers

joining the network with some loose rules, without any prior knowledge of the topology.

The network uses flooding as the mechanism to send queries across the overlay with a
limited scope. When a peer receives the flood query, it sends a list of all content matching
the query to the originating peer. While flooding-based techniques are effective for
locating highly replicated items and are resilient to peers joining and leaving the system,
they are poorly suited for locating rare items. Clearly this approach is not scalable as the
load on each peer grows linearly with the total number of queries and the system size.

Thus, Unstructured P2P networks face one basic problem: peers readily become

overloaded, therefore, the system does not scale when handling a high rate of aggregate

queries and sudden increase in system size.

Although Structured P2P networks can efficiently locate rare items since the key-based

routing is scalable, they incur significantly higher overheads than Unstructured P2P

networks for popular content. Consequently, over the Internet today, the decentralized
Unstructured P2P overlay networks are more commonly used. However, there are recent
efforts on Key-based Routing (KBR) API abstractions [F. Dabek et al., 2003] that allow more
application-specific functionality to be built over this common basic KBR APl abstractions,
and OpenHash (Open publicly accessible DHT service) [B. Karp et al., 2004] that allows the
unification platform of providing developers with basic DHT service models that runs on a
set of infrastructure hosts, to deploy DHT-based overlay applications without the burden
of maintaining a DHT and with ease of use to spur the deployment of DHT-based
applications.

In contrast, Unstructured P2P overlay systems are Ad-Hoc in nature, and do not
present the possibilities of being unified under a common platform for application
development. In the sections below, we will describe the key features of Structured P2P
and Unstructured P2P overlay networks and their operational functionalities. After
providing a basic understanding of the various overlays schemes in these two classes, an
evaluation of these schemes is provided followed by some comparative results based on
the following attributes:

e Decentralization: examine whether the overlay system is distributed.
e Architecture: describe the overlay system architecture with respect to its

operation.
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e Lookup Protocol: the lookup query protocol adopted by the overlay system.

e System Parameters: the required system parameters for the overlay system
operation.

e Routing Performance: the lookup routing protocol performance in overlay routing.

e Routing State: the routing state and scalability of the overlay system.

e Peers Join and Leave: describe the behavior of the overlay system when churn and
self-organization occurred.

e Security: look into the security vulnerabilities of overlay system.

e Reliability and Fault Resiliency: examine how robust the overlay system when

subjected to faults.

3.1.1 Structured Networks
In this category the overlay network assigns keys to data items and organizes its peers into

a graph that maps each data key to a peer. This structured graph enables efficient

discovery of data items using the given keys. However, in its simple form, this class of
systems does not support complex queries and it is necessary to store a copy or a pointer
to each data object (or value) at the peer responsible for the data object’s key. In this
section, we survey and compare the following Structured P2P overlay networks: Content
Addressable Network (CAN) [S. Ratnasamy et al., 2001], Tapestry [B. Y. Zhao, 2004], Chord
[I. Stoica et al., 2003], Pastry [A. Rowstron et al., 2001], Kademlia [P. Maymounkov et al.,
2002] and Viceroy [D. Malkhi et al., 2002].

3.1.1.1 Content Addressable Network (CAN)
The Content Addressable Network (CAN) [S. Ratnasamy et al.,, 2001] is a distributed
decentralized P2P infrastructure that provides hash-table functionality on Internet-like

scale. CAN is designed to be scalable, fault-tolerant, and self-organizing. The architectural

design is a virtual multi-dimensional Cartesian coordinate space on a multi-torus. This d-

dimensional coordinate space is completely logical. The entire coordinate space is
dynamically partitioned among all the peers (N number of peers) in the system so as every
peer possesses its individual, distinct zone within the overall space. A CAN peer maintains a
routing table that holds the IP address and virtual coordinate zone of each of its neighbors
in the coordinate space. A CAN message includes the destination coordinates. Using the
neighbor coordinates, a peer routes a message towards its destination using a simple

greedy forwarding to the neighbor peer that is closest to the destination coordinates. CAN
1
has a routing performance of O(d. N4) and its routing state is of 2.d bound.
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As shown in Figure 3.3 [S. Ratnasamy et al., 2001], the virtual coordinate space is used
to store (key,value) pairs as follows: to store a pair {K,V}, key K is deterministically mapped
onto a point P in the coordinate space using a uniform hash function. According to the
lookup protocol in order to retrieve an entry corresponding to key K, any peer can apply
the same deterministic hash function to map K into point P and then retrieve the
corresponding value V from the point P. If the requesting peer or its immediate neighbors
do not own the point P, the request must be routed through the CAN infrastructure until it
reaches the peer where P lays. A peer maintains the IP addresses of those peers that hold
coordinate zones adjoining its zone. This set of immediate neighbors in the coordinate
space serves as a coordinate routing table that enables efficient routing between points in
this space.

A new peer that joins the system must have its own portion of the coordinate space
allocated. This can be achieved by splitting existing peer’s zone in half; retaining half for
the peer and allocating the other half to the new peer. CAN has an associated DNS domain
name which is resolved into IP address of one or more CAN bootstrap peers (which
maintains a partial list of CAN peers). For a new peer to join CAN network, the peer looks
up in the DNS a CAN domain name to retrieve a bootstrap peer’s IP address, similar to the
bootstrap mechanism in [P. Francis et al., 2000]. The bootstrap peer supplies the IP
addresses of some randomly chosen peers in the system.

The new peer randomly chooses a point P and sends a JOIN request destined for point
P. Each CAN’s peer uses the CAN routing mechanism to forward the message until it
reaches the peer in which zone P lies. The current peer in zone P then splits its zone in half
and assigns the other half to the new peer.

For example, in a 2-dimensional (2 - d) space, a zone would first be split along the X-
dimension, then the Y-dimension, and so on. The {K,V} pairs from the half zone to be
handed over are also transferred to the new peer. After obtaining its zone, the new peer
learns of the IP addresses of its neighbor set from the previous peer in point P, and adds to
that previous peer itself.

When a peer leaves the CAN network, an immediate takeover algorithm ensures that
one of the failed peer’s neighbors takes over the zone and starts a takeover timer. The
peer updates its neighbor set to eliminate those peers that are no longer its neighbors.
Every peer in the system then sends soft-state updates to ensure that all of their neighbors
will learn about the change and update their own neighbor sets.

The number of neighbors a peer maintains depends only on the dimensionality of the
coordinate space (i.e. 2d) and it is independent of the total number of peers in the system.
Figure 3.3 illustrates a simple routing path from peer X to point E when a new peer Z joins
the CAN network.
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Figure 3.3 - Example of 2-d space CAN before and after peer-Z joins

For a d-dimensional space partitioned into n equal zones, the average routing path

1
length is (d/4) x(nE) hops and individual peers maintain a list of 2d neighbors. Thus,
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growth of peers (or zones) can be achieved without increasing per peer state while the

average path length grows as O(né).

Since there are many different paths between two points in the space, when one or
more of a peer’s neighbors fail, this peer can still route along the next best available path.
Improvement to the CAN algorithm can be achieved by maintaining multiple, independent
coordinate spaces with each peer in the system being assigned a different zone in each
coordinate space, called reality. For a CAN with “r” realities, a single peer is assigned “r”
coordinate zones, one on each reality available, and this peer holds “r” independent
neighbor sets.

The contents of the hash table are replicated on every reality, thus improving data
availability. For further data availability improvement, CAN could use “k” different hash
functions to map a given key onto “k” points in the coordinate space. This results in the
replication of a single {key,value} pair at “k” distinct peers in the system. A {key,value} pair
is then unavailable only when all the “k” replicas are simultaneously unavailable. Thus,
queries for a particular hash table entry could be forwarded to all “k” peers in parallel
thereby reducing the average query latency, and reliability and fault resiliency properties
are enhanced.

CAN could be used in large scale storage management systems such as the OceanStore
[J. Kubiatowicz et al., 2002], Farsite [W. J. Bolosky et al., 2000], and Publius[ M. Waldman et
al., 2000]. These systems require efficient insertion and retrieval of content in a large
distributed storage network with a scalable indexing mechanism. Another potential
application for CANs is in the construction of wide-area name resolution services that
decouple the naming scheme from the name resolution process. This enables an arbitrary

and location-independent naming scheme.

3.1.1.2 Chord

Chord [I. Stoica et al., 2003] uses consistent hashing [D. Karger et al., 1997] to assign keys
to its peers. Consistent hashing is designed to let peers enter and leave the network with
minimal interruption. This decentralized scheme tends to balance the load on the system,

since each peer receives roughly the same number of keys, and there is little movement of

keys when peers join and leave the system. In a steady state, for N peers in the system,

each peer maintains routing state information for about only O(logN) other peers (N
number of peers in the system). This may be efficient but performance degrades gracefully
when that information is out-of-date.

The consistent hash functions assign peers and data keys an m-bit identifier using SHA-
1 [NIST, 1995] as the base hash function. A peer’s identifier is chosen by hashing the peer’s
IP address, while a key identifier is produced by hashing the data key. The length of the
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identifier “m” must be large enough to make the probability of keys hashing to the same
identifier negligible. ldentifiers are ordered on an identifier circle modulo 2m.Key k is
assigned to the first peer whose identifier is equal to or follows k in the identifier space.
This peer is called the successor peer of key k, denoted by successor(k). If identifiers are
represented as a circle of numbers from 0 to 2m - 1, then successor(k) is the first peer
clockwise from k.

The identifier circle is termed as the Chord ring. To maintain consistent hashing
mapping when a peer n joins the network, certain keys previously assigned to n’s successor
now need to be reassigned to n. When peer n leaves the Chord system, all of its assigned
keys are reassigned to n’s successor. Therefore, peers join and leave the system with
(IogN)2 performance. No other changes of keys assignment to peers need to occur. In
Figure 3.4 (adapted from [I. Stoica et al., 2003]), the Chord ring is depicted with m = 6. This
particular ring has ten peers and stores five keys. The successor of the identifier 10 is peer
14, so key 10 will be located at NodelD 14. Similarly, if a peer were to join with identifier
26, it would store the key with identifier 24 from the peer w ith identifier 32.

Each peer in the Chord ring needs to know how to contact its current successor peer
on the identifier circle. Lookup queries involve the matching of key and NodelD. For a given
identifier, queries could be applied around the circle via these successor pointers until they
encounter a pair of peers that include the desired identifier; the second peer in the pair is
the peer the query maps to. An example is presented in Figure 3.4, whereby peer 8
performs a lookup for key 54. Peer 8 invokes the find successor operation for this key,
which eventually returns the successor of that key, i.e. peer 56. The query visits every peer
on the circle between peer 8 and peer 56. The response is returned along the reverse of
the path.

As m is the number of bits in the key/NodelD space, each peer n maintains a routing
table with up to m entries, called the finger table. The ith entry in the table at peer n
contains the identity of the first peer s that succeeds n by at least 2i-1 on the identifier
circle, i.e. s = successor(n + 2t ), where 1 < i £ m. Peer s is the it finger of peer n
(n.finger[i]).

A finger table entry includes both the Chord identifier and the IP add ress (and port
number) of the relevant peer.

Figure 3.4 shows the finger table of peer 8, and the first finger entry for this peer
points to peer 14, as the latter is the first peer that succeeds (8+20) mod 26 = 9. Similarly,
the last finger of peer 8 points to peer 42, i.e. the first peer that succeeds (8 + 25) mod 26 =
40. In this way, peers store information about only a small number of other peers, and
know more about peers closely following it on the identifier circle than other peers. Also, a

peer’s finger table does not contain enough information to directly determine the
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successor of an arbitrary key k. For example, peer 8 cannot determine the successor of key

34 by itself, as successor of this key (peer 38) is not present in peer 8’s finger table.

: " ’LDO KUP( qu}/
NEB__-"" . ..""--.__ o "_____.-'
N51 N14
N48 ~. K10
N42
K3s 5
Finger Table
N8+1 N14
N&8+2 N14
"N8+4 N14
N8+8 N21
N8 + 16 N32
N8 + 32 N42

Figure 3.4 - Chord Ring of 10 peers and 5 key -value pairs.

When a peer joins the system, the successor pointers of some peers need to be
changed. It is important that the successor pointers are up to date at any time because the
correctness of lookups is not guaranteed otherwise. The Chord protocol uses a stabilization
protocol [I. Stoica et al., 2003] running periodically in the background to update the
successor pointers and the entries in the finger table. The correctness of the Chord
protocol relies on the fact that each peer is aware of its successors. When peers fail, it is

possible that a peer does not know its new successor and it has no chance to learn about
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it. To avoid this situation, peers maintain a successor list of size r, which contains the peer’s
first r successors.

When the successor peer does not respond, the peer simply contacts the next peer on
its successor list. Assuming that peer failures occur with a probability p, the probability
that every peer on the successor list will fail is p". By increasing r makes the system more
robust. By tuning this parameter, any degree of robustness with good reliability and fault
resiliency may be achieved. The following applications are examples of how Chord could be
used:

e Cooperative mirroring or Cooperative File System (CFS) [F. Dabek et al., 2001], in
which multiple providers of content cooperate to store and serve each other’s data.
Spreading the total load evenly over all participant hosts lowers the total cost of
the system, since each participant needs to provide capacity only for the average
load, not for the peak load. There are two layers in CFS. The DHash (Distributed
Hash) layer performs block fetches for the peer, distributes the blocks among the
servers, and maintains cached and replicated copies. The Chord layer distributed
lookup system is used to locate the servers responsible for a block.

e Chord-based DNS [R. Cox et al, 2002] provides a lookup service, with host names as
keys and IP addresses (and other host information) as values. Chord could provide a
DNS-like service by hashing each host name to a key [D. Karger et al., 1997]. Chord-
based DNS would require no special servers, while ordinary DNS systems rely on a
set of special root servers. DNS also requires manual management of the routing
information (DNS records) that allows clients to navigate the name server
hierarchy; Chord automatically maintains the correctness of the analogous routing
information. DNS only works well when host names are hierarchically structured to
reflect administrative boundaries; Chord imposes no naming structure. DNS is
specialized to the task of finding named hosts or services, while Chord can also be

used to find data object values that are not tied to particular machines.

3.1.1.3 Pastry

Pastry [A. Rowstron et al., 2001] makes use of Plaxton-like prefix routing to build a self-
organizing decentralized overlay network, where each peer routes client requests and
interacts with local instances of one or more applications. Each peer in Pastry is assigned a
128-bit peer identifier (NodelD). The NodelD is used to give a peer’s position in a circular

128

NodelD space, which ranges from 0 to 2" — 1. The NodelD is assigned randomly when a

peer joins the system and it is assumed to be generated such that the resulting set of

NodelDs is uniformly distributed in the 128-bit space. For a network of N peers, Pastry

routes to the numerically closest peer to a given key in less than loggN steps under normal

operation (where B = 2®is a configuration parameter with typical value of b = 4). The
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NodelDs and keys are considered as a sequence of digits with base B. Pastry routes
messages to the peer whose NodelD is numerically closest to the given key. A peer
normally forwards the message to a peer whose NodelD shares with the key a prefix that is
at least one digit (or b bits) longer than the prefix that the key shares with the current peer
NodelD.

As shown in Figure 3.5, each Pastry peer maintains a routing table, a neighborhood set
and a leaf set. A peer routing table is designed with loggN rows, where each row holds B —
1 number of entries. Each of the B - 1 number of entries at row n of the routing table
refers to a peer whose NodelD shares the current peer’s NodelD in the first n digits, but
whose (n +1)th digit has one of the B — 1 possible values other than the (n + 1)th digit in the
current peer’s NodelD. Each entry in the routing table contains the IP address of peers
whose NodelD have the appropriate prefix, and it is chosen according to close proximity
metric. The choice of b involves a trade-off between the size of the populated portion of
the routing table [approx. (loggN ) x (B — 1) entries] and maximum number of hops required
to route between any pair of peers (loggN ).

With a value of b = 4 and 10° peers, a routing table contains on average 75 entries and
the expected number of routing hops is 5. The neighborhood set, M contains the NodelDs
and IP addresses of the |M| peers that are closest in proximity to the local peer. The
network proximity that Pastry uses is based on a scalar proximity metric such as the
number of IP routing geographic distance. The leaf set L is the set of peers with |L|/2
numerically closest larger NodelDs and |L|/2 peers with numerically smaller NodelDs, in
relation to the current peer’s NodelD. Typical values for |L| and |M| are B or 2 x B. Even in
case of concurrent peers’ failure, eventual delivery is guaranteed with good reliability and
fault resiliency unless |L|/2 peers with adjacent NodelDs fail simultaneously, (|L| is a
configuration parameter with a typical value of 16 or 32).

When a new peer (NodelD is X) joins the network, it needs to initialize its state table
and inform other peers of its presence. This joining peer needs to know the address of a
contact peer in the network. A small list of contact peers, based on a proximity metric (e.g.
the RTT to each peer) to provide better performance, could be provided as a servi ce in the
network, and the joining peer could select at random one of the peers to be its contact
peer. So, this new peer knows initially about a nearby Pastry peer A, according to a
proximity metric, from the list of contact peers. Peer X asks A to route a special join
message with the key equal to X. Pastry routes the join message to the existing peer Z
whose NodelD is numerically closest to X. In response to receiving the join request, peers
A, Z and all peers encountered on the path from A to Z send the ir state tables to X. Finally,
X informs any peers that need to be aware of its arrival. This ensures that X initializes its

state with appropriate values and that the state in all other affected peers is updated.
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Routing Table of a Pastry peer with NodelD 37A0x,
k =4, digits are in hexadecimal, x is an arbitrary suffix

O Ix x 3x|dx Dx Ex Fx

_,_.—-—'—"_'_'_'_'_F_._'_'_._ __‘__-—\_———————_

0= [3ix 33 |.. [37x [3Bx  |.. SEx_ |3Fx
.,—'—'—'__'_'_'_'_. D T

370w |37k (372« | |3FRx |37Bx | 37Ex |37Fx
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Routing from Peer 37A0F1 with key B57B20

Figure 3.5 - An example of routing path for a Pastry peer

As peer A is assumed to be topologically close to the new peer X, A’s neighborhood set
initializes X’s neighborhood set. Considering the general case, where NodelDs of A and X
share no common prefix, let A; denote peer A’s row of the routing table at level i. AO
contains appropriate values for X0 , since the entries in row 0 of the routing table are
independent of a peer’s NodelD. Other levels of A’s routing table are of no use to X, since

A’s and X’s NodelDs share no common prefix. Appropriate val ues for X1 can be taken from
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B1, when B is the first peer along the route path from A to Z. The entries in B1 and X1 share
the same prefix, because X and B have the same first digit in their NodelD. Finally, X
transmits a copy of its resulting state to each of the peers found in its neighborhood set,
leaf set and routing table. These peers then update their own state based on the
information received.

A Pastry peer is considered failed when its imm ediate neighbors in the NodelD space
can no longer communicate with the peer. To replace a failed peer in the leaf set, its
neighbor in the NodelD space contacts the live peer with the largest index on the side of
the failed peer, and requests its leaf table. For example, if L; failed for |L|/2 <i< 0, it would
request the leaf set from L - |L|/2. Let the received leaf set be L’, which overlaps the
current peer’s leaf set L, and it contains peers with nearby NodelDs not present in L. The
appropriate one is then chosen to insert into L, verifying that the peer is actually still alive
by contacting it. To repair the failed routing table entry Ry(evely , @ peer contacts first the
peer referred to by another entry Rjjeven) , i # d of the same row, and asks for that peer’s
entry for Rd . If none of the entries in row | hasa pointer to a live peer with appropriate
prefix, the peer contacts an entry Rjjevell+1) , i # d, thereby casting a wider coverage. The
neighborhood set is not used in the routing of messages, but it is still kept fresh/update
because the set plays an important role in exchanging information about nearby peers.
Therefore, a peer contacts each member of the neighborhood set periodically to see if it is
still alive.

If the peer is not responding, the peer asks other members for their neighborhood sets
and checks for the closest proximity of each of the newly discovered peers and updates its
own neighborhood set. Pastry is being used in the implementation of an appli cation-level
multicast, called SplitStream [M. Castro et al., 2003].

Instead of relying on a multicast infrastructure in the network which is not widely
available, the participating peers route and distribute multicast messages using only
unicast network services. SplitStream allows a cooperative environment where peers
contribute resources in exchange for using the service. The key idea is to split the content
into k stripes and to multicast each stripe using a separate tree. Peers join as many trees as
there are stripes they wish to receive and they specify an upper bound on the number of
stripes that they are willing to forward. The challenge is to construct this forest of multicast
trees such that an interior peer in one tree is a leaf peer in all the re maining trees and the
bandwidth constraints specified by the peers are satisfied. This ensures that forwarding
load can be spread across all participating peers. For example, if all peers wish to receive k
stripes and they are willing to forward k stripes, SplitStream will construct a forest such
that the forwarding load is evenly balanced across all peers while achieving low delay and

link stress across the network.
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Scribe [A. Rowstron et al., 2001], [M. Castro et al., 2002] is a scalable application-level
multicast infrastructure that supports a large number of groups with large number of
members per group. Scribe is built on top of Pastry which is used to create and manage
groups and to build efficient multicast trees for the dissemination of messages to each
group. Scribe builds a multicast tree formed by joining Pastry routes from each group
member to a rendezvous point associated with a group. Membership maintenance and
message dissemination in Scribe leverages the robustness, self-organization, locality and
reliability properties of Pastry.

Squirrel [S. lyer et al., 2002] uses Pastry as its data object location service to identify
and route to peers that cache copies of a requested data object. It facilitates mutual
sharing of web data objects among client peers and enables the peers to export their local
caches to other peers in the network, thus creating a large shared virtual web cache. Each
peer then performs both web browsing and web caching without the need of expensive
and dedicated hardware for centralized web caching. Squirrel faces a new challenge
whereby peers in a decentralized cache incur the overhead of having to serve each other
requests, and this extra load must be kept low.

PAST [P. Druschel et al, 2001], [A. Rowstron et al., 2001] is a large scale P2P persistent
storage utility, based on Pastry. The PAST system is composed of peers connected to the
Internet where each peer is capable of initiating and routing client requests to insert or
retrieve files. Peers may also contribute storage to the system. A storage system like PAST
is attractive because it exploits the multitude and diversity of peers in the Internet to
achieve strong persistence and high availability. This eradicates the need for physical
transport of storage media to protect lookup and archival data, and the need for explicit
mirroring to ensure high availability and throughput for shared data. A global storage
utility also facilitates the sharing of storage and bandwidth, thus permitting a group of
peers to jointly store or publish content that would exceed the capacity or bandwidth of
any individual peer.

Pastiche [L. P. Cox et al., 2002] is a simple and inexpensive backup system that exploits
excess disk capacity to perform P2P backup with no administrative costs. The cost and
inconvenience of backup are unavoidable, and often prohibitive. Small-scale solutions
require significant administrative efforts. Large-scale solutions require aggregation of
substantial demand to justify the capital costs of a large, centralized repository. Pastiche
builds on three architecture: Pastry which provides the scalable P2P network with self-
administered routing and peer location; Content -based indexing [A. Muthitacharoen et al.,
2001], [U. Manber et al., 1994] which provides flexible discovery of redundant data for
similar files; and Convergent encryption [W. J. Bolosky et al., 2000] which allows hosts to

use the same encrypted representation for common data without sharing keys.
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3.1.1.4 Tapestry
Sharing similar properties as Pastry, Tapestry [B. Y. Zhao, 2004] employs decentralized

randomness to achieve both load distribution and routing locality . The difference between

Pastry and Tapestry is the handling of network locality and data object replication, and this
difference will be more apparent, as described in Pastry section. Tapestry’s architecture
uses variant of the [Plaxton et al., 1997] distributed search technique, with additional
mechanisms to provide availability, scalability, and adaptation in the presence of failures
and attacks. [Plaxton et al., 1997] proposes a distributed data structure, known as the
Plaxton mesh, optimized to support a network overlay for locating named data objects
which are connected to one root peer. On the other hand Tapestry uses multiple roots for
each data object to avoid a single point of failure. In the Plaxton mesh, peers can take on
the roles of servers (where data objects are stored), routers (forward messages), and
clients (entity of requests). It uses local routing maps at each peer to incrementally route
overlay messages to the destination ID digit by digit, for instance, ***7 =%% 97 %297 =
3297, where “*” is the wildcard, similar to the longest prefix routing in the CIDR IP address
allocation architecture [Y. Rekhter et al., 1993]. The resolution of digits from right to left or
left to right is arbitrary. A peer’s local routing map has multiple levels, where each of them
represents a matching of the suffix up to a digit position in the ID space. The nth peer that a
message reaches shares a suffix of at least length n with the destination ID. To locate the
next router, the (n + 1)th level map is examined to locate the entry matching the value of
the next digit in the destination ID. This routing method guarantees that any existing
unique peer in the system can be located within at most loggN logical hops, in a system
with N peers using NodelDs of base B. Since the peer’s local routing map assumes that the
preceding digits all match the current peer’s suffix, the peer needs only to keep a small
constant size (B) entry at each route level, yielding a routing map of fixed constant size:
(entries/map) x no.of maps = BloggN .

The lookup and routing mechanisms of Tapestry is similar to Plaxton, which are based
on matching the suffix in NodelD as described above. Routing maps are organized into
routing levels, where each level contains entries that point to a set of peers closest in
distance that matches the suffix for that level. Also, each peer holds a list of pointers to
peers referred to as neighbors. Tapestry stores the locations of all data object replicas to
increase semantic flexibility and allow application level to choose from a set of data object
replicas based on some selection criteria, such as date. Each data object may include an
optional application-specific metric in addition to a distance metric; e.g. OceanStore [J.
Kubiatowicz et al., 2002] global storage architecture finds the closest cached document

replica which satisfies the closest distance metric. These queries deviate from the simple
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“find first” semantics, and Tapestry will route the message to the closest k distinct data
objects.

Tapestry handles the problem of a single point of failure due to a single data object’s
root peer by assigning multiple roots to each object. Tapestry makes use of surrogate
routing to select root peers incrementally, during the publishing process to insert location
information into Tapestry. Surrogate routing provides a technique by which any identifier
can be uniquely mapped to an existing peer in the network. A data object’s root or
surrogate peer is chosen as the peer which matches the data object’s ID, X. This is unlikely
to happen, given the sparse nature of the NodelD space. Nevertheless, Tapestry assumes
peer X exists by attempting to route a message to it. A route to a non-existent identifier
will encounter empty neighbor entries at various positions along the way. The goal is to
select an existing link, which can act as an alternative to the desired link; i.e. the one
associated with a digit X. Routing terminates when a map is reached where the only non-
empty routing entry belongs to the current peer. That peer is then designated as the
surrogate root for the data object. While surrogate routing may take additional hops to
reach a root if compared with Plaxton algorithm, the additional number of hops is small.
Thus, surrogate routing in Tapestry has minimal routing overhead relative to the static
global Plaxton algorithm.

Tapestry addresses the issue of fault adaptation and maintains cached content for
fault recovery by relying on TCP timeouts and UDP periodic heartbeats packets to detect
link, server failures during normal operations, and rerouting through its neighbors. During
fault operation, each entry in the neighbor map maintains two backup neighbors in
addition to the closest/primary neighbor. On a testbed of 100 machines with 1000 peers
simulations, the results in [Y. Shavitt et al., 2004] indicate that good routing rates and
maintenance bandwidths under instantaneous failures and continuing churn have been
achieved.

A variety of different applications have been designed and implemented on Tapestry.
Tapestry is self-organizing, fault-tolerant, resilient under load, and it is a fundamental
component of the OceanStore system [J. Kubiatowicz et al., 2002], [S. Rhea, 2001]. The
OceanStore is a global-scale, highly available storage utility deployed on the PlanetLab [L.
Peterson, 2003] testbed. OceanStore’s servers use Tapestry to disseminate encoded file
blocks efficiently, and clients can quickly locate and retrieve nearby file blocks by their ID,
despite server and network failures. Other Tapestry applications include the Bayeux [S. Q.
Zhuang, 2001], an efficient self-organizing application-level multicast system, and
SpamWatch [F. Zhou et al.,, 2003], a decentralized spam-filtering system that uses a

similarity search engine implemented on Tapestry.
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3.1.1.5 Kademlia

The Kademlia [P. Maymounkov et al., 2002] P2P decentralized overlay network takes the
basic approach of assigning each peer a NodelD in the 160-bit key space, and {key,value}
pairs are stored on peers with IDs close to the key. A NodelD-based routing algorithm will
be used to locate peers near a destination key. One of the key architecture of Kademlia is
the use of a novel XOR metric for distance between points in the key space. XOR is
symmetric and it allows peers to receive lookup queries from precisely the same
distribution of peers contained in their routing tables. Kademlia can send a query to any
peer within an interval, allowing it to select routes based on latency or send parallel
asynchronous queries. It uses a single routing algorithm throughout the process to locate
peers near a particular ID.

Every message being transmitted by a peer includes its peer ID, permitting the
recipient to record the sender peer’s existence. Data keys are also 160-bit identifiers. To
locate {key,value} pairs, Kademlia relies on the notion of distance between two identifiers.
Given two 160-bit identifiers, a and b, it defines the distance between them as their
bitwise exclusive OR (XOR, interpreted as d(a, b) =a @ b =d(b, a) for all a, b), and this is a
non-Euclidean metric. Thus, d(a, b) =0, d(a, b) > 0(if a # b), and for all a, b: d(a, b) = d(b, a).

XOR also offers the triangle inequality property: d(a, b) + d(b, c) 2 d(a, c), since d(a, c) =
d(a, b) @ d(b, c) and (a+b >a@®b) foralla, b = 0.

Similarly to Chord’s clockwise circle metric, XOR is unidirectional. For any given point x
and distance d > 0, there is exactly one point y such that d(x, y) = d. The unidirectional
approach makes sure that all lookups for the same key converge along the same path,
regardless of the originating peer. Hence, caching {key,value} pairs along the lookup path
alleviates hot spots. The peer in the network stores a list of {IP address, UDP port, NodelD}
triples for peers of distance between 2" and 2" from itself. These lists are called k-buckets.
Each k-bucket is kept sorted by last time seen; i.e. least recently accessed peer at the head,
most-recently accessed at the tail.

The Kademlia routing protocol consists of the following set of functions:

e PING that probes a peer to check if it is active.

e STORE that instructs a peer to store a {key,value} pair for later retrieval.

e FIND NODE that provides to the node a 160-bit ID and returns {IP address, UDP

port, NodelD} triples for the k peers it knows that are closest to the target ID.

e FIND VALUE that is similar to FIND NODE and returns {IP address, UDP port,
NodelD} triples. Kademlia’s peer must locate the k closest peers to some given
NodelD. This lookup initiator starts by picking X peers from its closest non -empty k-
bucket, and then sends parallel asynchronous FIND NODE to the X peers it has

chosen.
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3.1.1.6 Viceroy

The Viceroy [D. Malkhi et al.,, 2002] P2P decentralized overlay network is designed to
handle the discovery and location of data and resources in a dynamic butterfly fashion.
Viceroy employs consistent hashing [D. Karger et al., 1997] to distribute data so that it is
balanced across the set of servers and resilient to servers joining and leaving the network.
It utilizes the DHT to manage the distribution of data among a changing set of servers and
allowing peers to contact any server in the network to locate any stored resource by name.
In addition to this, Viceroy maintains an architecture that is an approximation to a butterfly
network [H. J. Siegel et al., 1979], as shown in Figure 3.6 (adapted from diagram in [D.
Malkhi et al., 2002]), and uses links between successors and predecessors — ideas that
were based on [J. Kleinberg et al., 2000] and [L. Barriere et al., 2001]-on the ring (a key is
mapped to its successor on the ring) for short distances. Its diameter of the overlay is

better than CAN and its degree is better than Chord, Tapestry and Pastry.

: éLeveI1

Level 3

Figure 3.6 - Simplified Viceroy Network

When N peers are operational, one of logN levels is selected with near equal

probability. Level | peer’s two edges are connected to peers at level | + 1. A down-right
. . 1
edge is added to a long-range contact at level | + 1 at a distance about -1 away, and a

down-left edge at a close distance on the ringto the level | + 1. The up edge to a nearby
peer at level | — 1 is included if | > 1. Then, level-ring links are added to the next and
previous peers of the same level |. Routing is done by climbing, using up connections to a
level | — 1 peer. Then, it proceeds down the levels of the tree using the down links, and

moving from level | to level | + 1. It follows either the edge to the nearby down link or the

further down link, depending on distance > i This continues recursively until a peer is
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reached with no down links, and it is in the vicinity of the target peer. So, a vicinity lookup
is performed using the ring and level-ring links. For reliability and fault resiliency, when a
peer leaves the overlay network, it hands over its key pairs to a successor from the ring
pointers and notifies other peers to find a replacement. It is formalized and proved [D.
Malkhi et al., 2002] that the routing process requires only O(logN) messages, where N is

the number of peers in the network.

3.1.2 Comparative View of Structured (DHT) implementations
The algorithm of Plaxton was originally devised to route web queries to nearby caches and
this influenced the design of Pastry, Tapestry and Chord. The method of Plaxton has
logarithmic expected join/leave complexity. Plaxton ensures that queries never travel
further in network distance than the peer where the key is stored. However, Plaxton has

several disadvantages: it requires global knowledge to construct the overlay; an object’s

root peer is the single point of failure; no insertion or deletion of peers; no avoidance to
hotspots congestion. Pastry and Tapestry schemes relied on DHT to provide the substrate
for semantic-free and data-centric references, through the assignment of a semantic-free
NodelD, such as a 160-bit key, and performed efficient request routing between lookup
peers using an efficient and dynamic routing infrastructure, whereby peers leave and join.
Overlays that perform query routing in DHT-based systems have strong theoretical
foundations, guaranteeing that a key can be found if it exists and they do not capture the
relationships between the object name and its content. However, DHT -based systems have
a few problems in terms of data object looku p latency.

For each overlay hop, peers route a message to the next intermediate peer that can be
located very far away with regard to the physical topology of the underlying IP network.
This can result in high network delay and unnecessary long-distance network traffic, from a
deterministic short overlay path of O(logN), (where N is the number of peers). DHT-based
systems assume that all peers equally participate in hosting published data object s or their
location information. This would lead to a bottleneck at low -capacity peers.

Pastry and Tapestry routing algorithms are a randomized approximation of a
hypercube and routing towards an object is done by matching longer addresses suffixes,
until either the object’s root peer or another peer with where a nearby copy is found. [S.
Rhea et al., 2003] makes use of FreePastry implementation to discover that most lookups
fail to complete when there is excessive churn. They claimed that short-lived peers leave
the overlay with lookups that have not yet timed out. They outlined design issues
pertaining to DHT-based performance under churn: lookup timeouts, reactive versus

periodic recovery of peers; and the choice of nearby neighbors.
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Since the reactive recovery will increase traffic to congested links, they make use of
periodic recovery and for lookup, they suggested for an exponential weighted moving
average of each neighbor’s response time instead of alternative fixed timeout. They
discovered that selection of nearby neighbors, required global sampling which is more
effective than simply sampling neighbor’s neighbors. However, [Castro et al., 2004] uses
the MSPastry implementation to show that it can cope with high churn rates by achieving
shorter routing paths and less maintenance overhead. Pastry exploits network locality to
reduce routing delays by measuring the delay Round-Trip-Time (RTT) to a small number of
peers when building the routing tables. For each routing table entry, it chooses one of the
closest peers in the network topology whose NodelD satisfies the constraints for that
entry. The average IP delay of each Pastry hop increases exponentially until it reaches the
average delay between two peers in the network. Chord’s routing protocol is similar to
Pastry’s location algorithm in PAST. However, Pastry is a prefix-based routing protocol and
differ in other details from Chord. Chord maps keys and peers to an identifier ring and
guarantees that queries make a logarithmic number hops and that keys are well balanced.
It uses Consistent Hashing to minimize disruption of keys when peers leave and join the
overlay network. Consistent Hashing ensures that the total number of caches responsible
for a particular object is limited and when these caches change the minimum number of
object-references will move to maintain load balancing. Since the Chord lookup service
presents a solution where each peer maintains a logarithmic number of long-range links, it
gives a logarithmic join/leave update. In Chord, the network is maintained appropriately by
a background maintenance process, i.e. a periodic stabilization procedure that updates
predecessor and successor pointers to cater for newly joined peers.

[Liben-Nowell et al., 2002] asks the question of how often the stabilization procedure
needs to run to determine the success of Chord’s lookups and determining the optimum
involves the measurements of peers’ behavior. [Stoica et al., 2003] demonstrates that the
advantage of recursive lookups over iterative lookups, but future improvement work is
proposed to improve resiliency to network partitions using a small set of known peers, and
to reduce the amount of messages in lookups by increasing the size of each step around
the ring with larger fingers in each peer. [Alima et al., 2003] proposes a correction-on-use
mechanism in their Distributed K-ary Search (DKS), which is similar to Chord, to reduce the
communication costs incurred by Chord’s stabilization procedure. The mechanism makes
correction to the expired routing entries by piggybacking lookups and insertions.

The work on CAN is related to the creation of a constant degree network for routing
lookup requests. It organizes the overlay peers into a d-dimensional Cartesian coordinate
space, where each peer undertakes the ownership of a specific hyper-rectangular shape in
the space. The key motivation of CAN design is based on the argument that Plaxton-based

schemes would not perform well under churn, given peer departures and arrivals would
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affect a logarithmic number of peers. It maintains a routing table with its adjacent
immediate neighbors. Peers joining the CAN cause the peer owning the region of space to
split, giving half to the new peer and retaining half. Peers leaving the CAN will pass its
NodelD, neighbors’ NodelD, IP addresses and its {key,value} pairs to a takeover peer.

CAN has a number of tunable parameters to improve routing performance:
Dimensionality of the hypercube; network-aware routing by choosing the neighbor closest
to the destination in CAN space; multiple peers in a zone, allowing CAN to deliver
messages to anyone of the peers in the zone in an anycast manner; uniform partitioning
allowed by comparing the volume of a region with the volumes of neighboring regions
when a peer joins; and landmark-based placement that causes peers, at join time, to probe
a set of well-known landmark hosts, estimating each of their network distances. There are
open research questions on CAN’s resiliency, load balancing, locality and latency/hopcount
costs.

The Kademlia’s XOR topology-based routing resembles very much the first phase in
the routing algorithms of Pastry, Tapestry and Plaxton. For these three algorithms, there is
a need for an additional algorithmic structure for discovering the target peer within the
peers that share the same prefix but differ in the next b-bit digit. In [P. Maymounkov et al.,
2002], it is argued that Pastry and Tapestry algorithms require secondary routing tables of
size O(Zb) in addition to the main tables of size O(2b10g2b N), which increases the cost of
bootstrapping and maintenance.

Kademlia resolves in their distinctive ways by the use of XOR metric for the distance
between 160-bit NodelD and each peer maintains a list of contact peers, which longer-
lived peers are given preference on this list. Kademlia can easily be optimized with a base
other than 2, by configuring the bucket table so that it approaches the target b bits per

160-(i+1)b (J +

1).2160_(i+1)b], foreach0<j< 2 and 0 <i <1bﬁ . This expects no more than (2b - 1)(log,» N)

hop. This needs having one bucket for each range of peers at a distance [j.2

buckets.

The Viceroy’s overlay network (butterfly) presents an efficient network construction
proved formally in [D. Malkhi et al., 2002] in order to maintain constant degree networks
in a dynamic environment, similar to CAN. Viceroy has logarithmic diameter, similar to
Chord, Pastry and Tapestry. Viceroy’s diameter is proven to be better than CAN and its
degree is better than Chord, Pastry and Tapestry. Its routing achieved is O(logN) hops
(where N is the number of peers) and with nearly optimal congestion.

Peers joining and leaving the system induce O(logN) hops and require only O(1) peers
to change their states. [X. Li et al., 2002] pinpoint that limited degree may increase the risk
of network partition or limitations in the use of local neighbors. However, its advantage is
the constant-degree overlay properties. [F. Kaashoek et al., 2003] highlights about its fault-

tolerant blind spots and its complexity.
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Further work was done by Viceroy’s authors with proposal of a two -tier, locality-aware
DHT [I. Abraham et al., 2004] which gives lower degree properties in each lower-tier peer,
and the bounded-degree P2P overlay using de Bruijn graph [N. D. de Bruijn et al., 1946].
Since de Bruijn graphs give very short average routing distances and high resilience to peer
failure, they are well suited for structured P2P overlay networks. The P2P overlays
discussed above are “greedy”, and for a given degree, the algorithms are suboptimal
because the routing distance is longer. There are increasing de Bruijn P2P overlay
proposals [F. Kaashoek et al, 2003], [M. Naor et al., 2003], [D. Loguinov et al, 2003], [M.
Naor et al., 2003], [P. Fraigniaud et al., 2003]. The de Bruijn graph of degree k (k can be
varied) could achieve an asymptotically optimum diameter (maximum hop counts between
any two peers in the graph) of logkN, where N is the total number of peers in the system.

logN

Given O(logN) neighbors in each peer, the de Bruijn graphs’ hop count is O(W)' A

good comparison study is done by [D. Loguinov et al, 2003], where instances of Chord, CAN
and de Bruijn are used in order to study routing performance and resilience of P2P overlay
networks, including graph expansion and clustering properties. They confirmed that de
Bruijn graphs for a given degree k offer the best diameter and average distance between
all pairs of peers (this determines the expected response time in number of hops), optimal
resilience (k-peer connectivity), large bisection width (bisection width of a graph provides
tight upper bounds on the achievable capacity of the graph), and good node (peer)
expansion that guarantees little overlap between parallel paths to any destination peer (if
there is a peer failure, very few alternative paths to a destination peer are affected).

P2P DHT-based overlay systems are susceptible to security breach from malicious
peers’ attacks. One simple attack on DHT-based overlay system could be the malicious
return of wrong data objects to lookup queries. The authenticity of the data objects can be
handled by using cryptographic techniques through some cost-effective public keys and/or
content hashes to securely link together different pieces of data objects. Such t echniques
can neither prevent undesirable data objects from polluting th e search results, nor prevent
denial of attacks. Malicious peers may still be able to corrupt, deny access or response to
lookup queries of replicas of a data object, and impersonate s o that replicas may be stored
on illegitimate peers.

[E. Sit et al., 2002] provides a very clear description of security considerations that
involve the adversaries which are peers in the DHT overlay lookup system that do not
follow the protocol correctly: malicious peers are able to eavesdrop the communication
between other nodes; malicious peer can only receive data objects addressed to its IP
address, and thus, IP address can be a weak form of peer identity; malicious peers can
collude together giving believable false information. They presented a taxonomy of
possible attacks involving routing deficiencies due to corrupted lookup routing and

updates; vulnerability to partitioning and virtualization into incorrect networks when a
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new peer joins and contacts a malicious peer; lookup and storage attacks; inconsistent
behaviors of peers; denial of service attacks preventing access by overloading victim’s
network connection; and unsolicited responses to a lookup query. Defenses design
principles can be classified as defining verifiable system invariants for lookup queries,
NodelD assignment, peers selection in routing, cross checking using random queries, and
avoid single point of responsibility.

[M. Castro et al., 2002] relates the problems of secure routing for structured P2P
overlay networks, in terms of the possibilities that a small number of peers could
compromise the overlay system, if peers are malicious and conspire with each other (this is
also termed as Eclipse attack [A. Singh et al., 2004]). They presented a design and analysis
of techniques for secure peer joining, routing table maintenance, and robust message
forwarding in the presence of malicious peers in Structured P2P overlays. The technique
can tolerate up to 25% of malicious peers while providing good performance when the
number of compromised peers is small. However, this defense restricts the flexibility
necessary to implement optimizations such as proximity neighbor selection and only works
in Structured P2P overlay networks. So, [A. Singh et al., 2004] proposes a defense that
prevents Eclipse attacks for both Structured and Unstructured P2P overlay networks, by
bounding degree of overlay peers, i.e. the in-degree of overlay peers is likely to be higher
than the average in-degree of legitimate peers and legitimate peers choose their neighbors
from a subset of overlay peers whose in-degree is below a threshold. Having done the in-
degree bounding, it is still possible for the attacker to consume the in-degree of legitimate
peers and prevent other legitimate peers from referencing to them, therefore, bounding
the out-degree is necessary so that legitimate peers choose neighbors from the subset of
overlay peers whose in-degree and out-degree are below some threshold. An auditing
scheme is also introduced to prevent incorrect information of the in-degree and out-
degree.

Another good survey on security issues in P2P is from [D. S.Wallach et al., 2002], which
describes that secured routing primitives: how to assign NodelDs, maintain routing tables,
and forward messages securely. He also suggested looking at distributed auditing the
sharing of disk space resources in a P2P overlay network as a barter economy, and the
mechanism to implement such an economy. The work on BarterRoam [E. K. Lua et al,,
2004] sheds light on a formal computational approach that is applicable to P2P overlay
systems towards exchanging resources so that higher level functionality, such as incentive-
compatible economic mechanisms can be layered at the higher layers.

Formal game theoretical approach and models [C. Buragohain et al., 2003 ], [P. Golle et
al., 2001], [K. Lai et al., 2003] could be constructed to analyze equilibrium of user stra tegies
to implement incentives for cooperation. The ability to overcome free-rider problems in

P2P overlay networks will definitely improve the system’s reliability and its value Sybil
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attack termed by Douceur [J. R. Douceur et al., 2002]. [J. R. Douceur et al., 2002] described
the situation whereby there are a large number of potentially malicious peers in the
system and without a central authority to certify peers’ identities. It becomes very difficult
to trust the claimed identity. [R. Dingledine et al., 2001] proposes puzzles schemes,
including the use of micro-cash, which allow peers to build up reputations. Although this
proposal provides a degree of accountability, this still allows a resourceful attacker to
launch attacks. Many P2P computational models of trust and reputation systems have
emerged to assess trustworthiness behavior through feedback and interaction
mechanisms. The basic assumption of these computational trust and reputation models is
that the peers engage in bilateral interactions and evaluations done on a globally agreed
scale. However, most of such trust and reputation systems suffer from two problems, as
highlighted by [Z. Despotovic et al., 2004]: extensive implementation overhead and vague
trust related model semantics. The causes lie in the aggregation of the feedback about all
peers in the overlay network in order to assess the trustworthiness of a single peer, and
also the anti-intuitive feedback aggregation strategies resulting in outputs that are difficult
to interpret.

Lastly, since each of the basic Structured P2P DHT- based systems defines different
methods in the higher level DHT abstractions to map keys to peers and other Structured
P2P application-specific systems such as cooperative storage, content distribution and
messaging; there is effort [F. Dabek et al., 2003] in defining basic common APl abstractions
for the common services they provide which they called key-based routing API (KBR) at
lower tier of the abstractions. At higher tier, more abstractions can be built upon this basic
KBR. In addition to DHT abstraction which provides the same functionality as the hash
table in Structured P2P DHT-based systems by mapping between keys and objects, the
groups anycast and multicast (CAST) (provides scalable group communication and
coordination) and decentralized object location and routing (DOLR) (provides a
decentralized directory service) are also defined. However, [B. Karp et al., 2004] points out
that the above mentioned bundled library model where the applications read the local
DHT state and receive upcalls from the DHT, requires the codes for the same set of
applications to be available at all DHT hosts. This prevents the sharing of a single DHT
deployment by multiple applications and generates maintenance traffic from running the
DHT on its underlying infrastructure. Thus, they proposed OpenHash with ReDiR, a
distributed rendezvous service model that requires only put()/get() interfaces and shares a
common DHT routing platform. Table 3-1 summarizes the characteristics of Structured P2P

overlay networks which have been already discussed.
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3.1.3 Unstructured Networks

In this category, the overlay networks organize peers in a random graph in flat or
hierarchical manners (e.g. Super-Peers layer) and use flooding or random walks or
expanding-ring Time-To-Live (TTL) search etc. on the graph to query content stored by
overlay peers. Each visited peer will evaluate the query locally on its own content, and will
support complex queries. This is inefficient because queries for content that are not widely
replicated must be sent to a large fraction of peers and there is no coupling between
topology and data items’ location. In this se ction, we shall survey and compare some of the
more seminal Unstructured P2P overlay networks: Freenet [I. Clarke et al., 1999],
Gnutellalg, FastTrackZO/KaZaAu, BitTorrentzz, Overnet/eDonkey200023.

3.1.3.1 Freenet
Freenet is an adaptive P2P network of peers that make query to store and retrieve data
items, which are identified by location-independent keys. This is an example of loosely.

Structured decentralized P2P network with placement of files based on anonymity.
Each peer maintains a dynamic routing table, which contains addresses of other peers and
the data keys that they are holding. The key features of Freenet are the ability of
maintaining locally a set of files in accordance to the maximum disk space allocated by the
network operator, and providing security mechanisms against malicious peers. The basic
model is that requests for keys are passed along from peer to peer through a chain of
proxy requests in which each peer makes a local decision about the location to send the
request next, similar to the Internet Protocol (IP) routing.

Freenet also enables users to share unused disk space, thus allowing a logical
extension to their own local storage devices. The basic architecture consists of data items
being identified by binary file keys obtained by applying the 160 -bit SHA-1 hash function
[ANSI, 1997]. The simplest type of file key is the Keyword-Signed Key (KSK), which is
derived from a short descriptive text string chosen by the user, e.g. /music/Groupl. The
descriptive text string is used as the input to deterministically generate a public/private
key pair, and the public half is then hashed to yield the data file key. The private half of t he
asymmetric key pair is used to sign the data file, thus, providing a minimal integrity check
that a retrieved data file matches its data file key. The data file is also encrypted using the
descriptive string itself as a key so as to perform an explicit lookup protocol to access the

contents of their data-stores.

“http://groups.yahoo.com/group/the_gdf
**http://developer.berlios.de/projects/gift-fasttrack
*! http://www.kazaa.com

*www.bittorrent.com
“http://en.wikipedia.org/wiki/EDonkey2000
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However, nothing prevents two users from independently choosing the same
descriptive string for different files. These problems are addressed by the Signed -Subspace
Key (SSK), which enables personal namespaces. The public namespace key and the
descriptive string are hashed independently, XORed together and hashed to yield the data
file key. For retrieval, the user publishes the descriptive string together with the user
subspace’s public key. Storing data requires the private key, so that only the owner of a
subspace can add files to it, and owners have the ability to manage their own namespaces.
The third type of key in FreeNet is the Content-Hash Key (CHK), which is used for updating
and splitting of contents. This key is derived from hashing the contents of the
corresponding file, which gives every file a pseudo-unique data file key. Data files are also
encrypted by a randomly generated encryption key.

For retrieval, the user publishes the content-hash key itself together with the
decryption key. The decryption key is never stored with the data file but is only published
with the data file key, so as to provide a measure of cover for operators. The CHK can also
be used for splitting data files into multiple parts in order to optimize storage and
bandwidth resources. This is done by inserting each part separately under a CHK and
creating an indirect file or multiple levels of indirect files to point to the individual parts.
The routing algorithm for storing and retrieving data is designed to adaptively adjust
routes over time and to provide efficient performance while using local knowledge, since
peers only have knowledge of their immediate neighbors. Thus, the routing performance is
good for popular content. Each request is given a Hops-To-Live (HTL) limit, similar to the IP
Time-To-Live (TTL) which is decremented at each peer to prevent infinite chains.

Each request is also assigned a pseudo-unique random identifier so that peers can
avoid loops by rejecting requests they have seen before. If this happens, the preceding
peer chooses a different peer to forward to. This process continues until the request either
is satisfied or has exceeded its HTL limit. The success or failure signal (message) is returned
back up the chain to the sending peer. Joining the network will rely on discovering the
address of one or more of the existing peers through out-of-band means, and no peer is
privileged over any other peer, so no hierarchy or centralized point of failure can exist. This
intuitive resilience and decentralization enhances the performance and scalability, thus,
giving a constant routing state while peers join and leave the overlay. In addition, as
described in [I. Clarke et al.,, 1999], Freenet uses its data-store to increase system
performance. When an object is returned (forwarded) after a successful retrieval
(insertion), the peer caches the object in its data-store, and passes the object to the
upstream (downstream) requester which then creates a new entry in its routing table
associating the object source with the requested key. So, when a new object arrives from

either a new insert or a successful request, this would cause the data-store to exceed the
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designated size and Least Recently Used (LRU) objects are ejected until there is space. LRU
policy is also applied to the routing table entries when the table is full.

Figure 3.7 depicts a typical sequence of request messages. The user initiates a data
request at peer A, which forwards the request to peer B, and then forwards it to peer C.
Peer C is unable to contact any other peer and returns a backtracking failed request
message to peer B. Peer B tries its second choice, peer E, which forwards the request to
peer F, which then delivers it to peer B. Peer B detects the loop and returns a backtracking
failure message. Peer F is unable to contact any other peer and backtracks one step further
back to peer E. Peer E forwards the request to its second choice, peer D, which has the
data. The data is returned from peer D, via peers E, B and A. The data is cached in peers E,
B and A, therefore, a routing short-cut for the next similar queries is created. This example
shows that the overlay suffers from security problems such as man-in-the-middle and
Trojan attacks, and the failure of peers will not cause network-wide failure, because of its
lack of centralized structure. This gives good reliability and fault resiliency.
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Figure 3.7 - Request sequence in Freenet

3.1.3.2 Gnutella

Gnutella is a decentralized protocol for distributed search on a flat topology of peers
(servents). Gnutella is widely used and there has been a large amount of work on
improving Gnutella [P. Ganesan et al., 2003], [Q. Lv et al., 2002], [Y. Chawathe et al., 2003].
Although the Gnutella protocol supports a traditional client/centralized server search
paradigm, Gnutella’s distinction is its peer-to-peer, decentralized model for document
location and retrieval, as shown in Figure 3.8. In this model, every peer is a server or client.
This system is neither a centralized directory nor does it possess any precise control over

the network topology or file placement.
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Figure 3.8 - Gnutella’s decentralized architecture

The network is formed by peers joining the network following some loose rules. The
resultant topology has certain properties, but the placement of data items is not based on
any knowledge of the topology, as in the Structured P2P designs. To locate a data item, a
peer queries its neighbors, and the most typical query method is flooding. The lookup
query protocol is flooded to all neighbors within a certain radius. Such design is extremely
resilient to peers entering and leaving the system.

However, the current search mechanisms are not scalable and generate unexpected
loads on the network. The so-called Gnutella servents (peers) perform tasks normally
associated with both clients and servers. They provide client-side interfaces through which
users can issue queries and view search results while, at the same time, they also accept
qgueries from other servents, check for matches against their local data set, and respond
with applicable results. These peers are responsible for managing the background traffic
that spreads the information used to maintain network integrity.

Due to the distributed nature, a network of servents that implement the Gnutella
protocol is highly fault-tolerant, as operation of the network will not be interrupted if a
subset of servents goes offline. To join the system, a new servent (peer) initially connects
to one of several known hosts that are almost always available, e.g. list of peers available
from http://gnutellahosts.com. Once connected to the network, peers send messages to
interact with each other. These messages are broadcasted, (i.e. sent to all peers with which
the sender has open TCP connections), or simply back-propagated, (i.e. sent on a specific
connection on the reverse of the path taken by an initial, broadcasted message). First, each
message has a randomly generated identifier. Second, each peer keeps a short memory of

the recently routed messages, used to prevent re-broadcasting and to implement back-
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propagation. Third, messages are flagged with TTL and “hops passed” fields. The messages
that are allowed in the network are:

e Group Membership (PING and PONG) Messages. A peer joining the network
initiates a broadcasted PING message to announce its presence. The PING message
is then forwarded to its neighbors and initiates a back-propagated PONG message,
which contains information about the peer such as the IP address, number and size
of the data items.

e Search (QUERY and QUERY RESPONSE) Messages. QUERY contains a user specified
search string that each receiving peer matches against locally stored file names and
it is broadcasted. QUERY RESPONSEs are back-propagated replies to QUERY
messages and include information necessary to download a file.

e File Transfer (GET and PUSH) Messages. File downloads are done directly between
two peers using these types of messages.

Therefore, to become a member of the network, a servent (peer) has to open one or
many connections with other peers that are already in the network. In order to cope with
the unreliability, under such a such a dynamic network environment, after joining the
network a peer periodically PINGs its neighbors to discover other participating peers. Peers
decide where to connect in the network based only on local information. Thus, the entire
application-level network has servents as its peers and open TCP connections as its links,
forming a dynamic, self-organizing network of independent entities.

The latest version of Gnutella uses the notion of super-peers or ultra-peers (peers with
better bandwidth connectivity) to help improve the routing performance of the network.
However, it is still limited by the flooding mechanism used for communications across
ultra-peers. Moreover, the ultra-peer approach makes a binary decision about a peer’s
capacity (ultra-peer or not) and to our knowledge, it has no mechanism to dynamically
adapt the ultra-peer-client topologies as the system evolves. Ultra-peers perform query
processing on behalf of their leaf peers. When a peer joins the network as a leaf, it selects
a number of ultra-peers, and then it publishes its file list to those ultra-peers.

A query for a leaf peer is sent to an ultra-peer which floods the query to its ultra-peer
neighbors up to a limited number of hops. Dynamic querying is a search technique
whereby queries that return fewer results are re-flooded deeper into the network. [S.
Saroiu et al., 2002] examines the bandwidth, latency, availability and file sharing patterns
of the peers in Gnutella and Napster, and highlighted the existence of significant
heterogeneity in both systems. [B. Krishnamurthy et al., 2001] proposes a cluster-based
architecture for P2P systems (CAP), which uses a network-aware clustering technique
(based on a central clustering server) to group peers into clusters. Each cluster has one or
more delegate peers that act as directory servers for objects stored at peers within the

same cluster. [Y. Chawathe et al., 2003] proposes a model called Gia, by modifying
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Gnutella’s algorithms to include flow control, dynamic topology adaptation, one -hop
replication and careful attention to peer heterogeneity. The simulation results suggest that
these modifications provide three to five orders of magnitude improvement in the total
capacity of the system while retaining significant robustness to failures. Thus, making a few
simple changes to Gnutella’s search operations would result in dramatic improvements in

its scalability.

3.1.3.3 FastTrack/KazZaA

FastTrack P2P is a decentralized file-sharing system that supports meta-data searching.
Peers form a structured overlay of super-peers architecture to make search more efficient,
as shown in Figure 3.9. Super-peers are peers with high bandwidth, disk space and
processing power and have volunteered to get elected to facilitate search by caching the
meta-data. The ordinary peers transmit the meta-data of the data files they are sharing to
the super-peers. All the queries are also forwarded to the super-peer. Then, Gnutella-
typed broadcast based search is performed in a highly pruned overlay network of super-
peers. The P2P system can exist, without any super-peer but this result in worse query
latency. However, this approach still consumes bandwidth so as to maintain the index at

the super-peers on behalf of the peers that are connected.
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Figure 3.9 - FastTrack peers connected to super-peers

The super-peers still use a broadcast protocol for search and lookup queries are
routed to peers and super-peers that have no relevant information for the query. Both
KaZaA and Crokster are FastTrack applications. As mentioned, KaZaA is based on the
proprietary FastTrack protocol which uses specially designated super-peers that have

higher bandwidth connectivity. Pointers to each peer’s data are stored on an associated
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super-peer, and all queries are routed to the super-peers. Although this approach seems to
offer better scaling properties than Gnutella, its design has not been analyzed. There have
been proposals to incorporate this approach into the Gnutella network. The KaZaA peer to
peer file sharing network client supports a similar behavior, allowing powerful peers to
opt-out of network support roles that consume CPU and bandwidth.

KaZaA file transfer traffic consists of unencrypted HTTP transfers; all transfers include
KaZaA-specific HTTP headers (e.g., X-KaZaA-IP). These headers make it simple to
distinguish between KaZaA activity and other HTTP activity. A power-law topology,
commonly found in many practical networks such as WWW [A. Barabasi et al., 2000], [R.
Albert et al., 1999], has the property that a small proportion of peers have a high out-
degree (i.e. have many connections to other peers), while the vast majority of peers have a
low out-degree (i.e. have connections to few peers). Formally, the frequency f4 of peers
with out-degree d exhibits a power-law relationship of the form fq &« d? a <0. This is the
Zipf property with Zipf distributions looking linear when plotted on a log-log scale. [M.
Faloutsos et al., 1999] has found that Internet routing topologies follow this power-law
relationship with a = -2. However, [S. Saroiu et al., 2002], [K. P. Gummadi et al., 2003]
observes that the KaZaA measured popularity of the file-sharing workload does not follow
a Zipf distribution.

The popularity of the most requested objects (mostly large, immutable video and
audio objects) is limited since clients typically fetch objects at most once, unlike the Web.
Thus the popularity of KaZaA’s objects tends to be short-lived, and popular objects tend to
be recently born. There is also significant locality in the KaZaA workload, which means that

there is substantial opportunity for caching to reduce wide -area bandwidth consumption.

3.1.3.4 BitTorrent
BitTorrent is a centralized P2P system that uses a central location to manage users’
downloads. This file distribution network uses tit-for-tat (peer responds with the same
action that its other collaborating peer performed previously) as a method of seeking. The
protocol is designed to discourage free-riders, by having the peers choose other peers
from which the data has been received. Peers with high upload sp eed will probably also be
able to download with a high speed, thus achieving high bandwidth utilization. The
download speed of a peer will be reduced if the upload speed has been limited.

This will also ensure that content will be spread among peers to improve reliability.
The architecture consists of a central location which is a tracker that is connected to when
you download a torrent file, which contains information about the file, its length, name,

and hashing information, and URL of a tracker, as illustrated in Figure 3.10.
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Figure 3.10 - BitTorrent architecture

The tracker keeps track of all the peers who have the file (both partially and
completely) and lookup peers to connect with one another for downloading and
uploading. The trackers use a simple protocol layered on top of HTTP in which a
downloader sends information about the file it is downloading and the port number. The
tracker responds with a random list of contact information about the peers which are
downloading the same file. Downloaders then use this information to connect to each
other. A downloader which has the complete file, known as a seed, must be started, and
send out at least one complete copy of the original file.

BitTorrent cuts files into pieces of fixed size (256 Kbytes) so as to track the content of
each peer. Each downloader peer announces to all of its peers the pieces it has, and uses
SHA-1 to hash all the pieces that are included in the torrent file. When a peer finishes
downloading a piece and checks that the hash matches, it announces that it has that piece
to all of its peers. This is to verify data integrity. Peer connections are symmetrical.
Messages sent in both directions look the same, and data can flow in either direction.
When data is being transmitted, downloader peers keep several requests (for pieces of
data) queued up at once in order to get good TCP performance. This is known as pipelining.
Requests which cannot be written out to the TCP buffer immediately are queued up in
memory rather than kept in an application-level network buffer, so they can all be thrown
out when a choke happens.

Choking is a temporary refusal to upload; downloading can still happen and the
connection does not need to be renegotiated when choking stops. Choking is done for
several reasons. TCP congestion control behaves very poorly when sending over many
connections at once. Additionally, choking lets each peer use a tit-for-tat-like algorithm to
ensure that they get a consistent download rate. There are several criteria that a good

choking algorithm should meet. It should cap the number of simultaneous uploads for
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good TCP performance. It should avoid choking and unchoking quickly, known as
fibrillation. It should reciprocate service access to peers who let it download.

Finally, it should try out unused connections once in a while to find out if they might
be better than the currently used ones, known as optimistic unchoking. The currently
deployed BitTorrent choking algorithm avoids fibrillation by only changing the peer that is
choked once every ten seconds. It does reciprocation and the number of uploads are
capped by unchoking the four peers with the best download rates. Peers which have a
better upload rate but are not interested to get unchoked and if they become interested,
the worst uploader gets choked. If a downloader has a complete file, it uses its upload rate
rather than its download rate to decide which to unchoke. For optimistic unchoking, at any
one time there is a single peer which is unchoked regardless of its upload rate. If this peer
is interested, it counts as one of the four allowed downloaders. Peers which are

optimistically unchoked rotate every 30 seconds.

3.1.3.5 Overnet/eDonkey
Overnet/eDonkey is a hybrid two-layer P2P information storage network composed of
client and server, which are used to publish and retrieve small pieces of data by creating a

file-sharing network. This architecture provides features such as concurrent download of a

file from multiple peers, detection of file corruption using hashing, partial sharing of files

during downloading and expressive querying methods for file search. To join the network,
the peer (client) needs to know the IP address and port of another peer (server) in the
network. It then bootstraps from the other peer. The clients connect to a server and
register the object files that they are sharing by providing the meta-data describing the
object files.

After registration, the clients can either search by querying the meta-data or request a
particular file through its unique network identifier, thus providing guarantee service to
locate popular objects. Servers provide the locations of object files when requested by

clients, so that clients can download the files directly from the indicated locations.

3.1.4 Vis-a-vis of Structured-Unstructured Peer-to-Peer approaches
The Unstructured P2P centralized overlay model was first popularized by Napster. This
model requires some managed infrastructure (the directory server) and is subjected to
some scalability limits. A flooding-request model for decentralized P2P overlay systems
such as Gnutella, according to which each peer keeps a user-driven neighbor table to
locate data objects are quite effective to locate popular data objects, thanks to the power -

law property of user-driven characteristics. However, it can lead to excessive network
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bandwidth consumption, and remote or unpopular data objects m ay not be found due to
the limit of lookup horizon, typically imposed by TTL.

The argument is that DHT-based systems while more efficient at many tasks and
having strong theoretical fundamentals to guarantee a key to be found if it exists, are not
well-suited for mass-market file sharing. They do not capture the semantic object
relationships between its name and its content or metadata. In particular, DHT-based
ability to find exceedingly rare objects is not required in a mass-market file sharing
environment, and their ability to efficiently implement keyword search is still not proven.
In addition, they use precise placement algorithms and specific routing protocols to make
searching efficient. However, these Structured P2P overlay systems have not been widely
deployed, and their ability to handle unreliable peers has not been tested. Thus, in the
research community, efforts are being made in improving the lookup properties of
Unstructured P2P overlays to include flow control, dynamic geometric topology
adaptation, one-hop replication, peer heterogeneity etc.

The Freenet, like Chord, does not assign responsibility for data to specific peers, and
its lookups take the form of searches for cached copies. This prevents it from guaranteeing
retrieval of existing data or from providing low bounds on retrieval costs. But Freenet
provides anonymity and it introduces a novel indexing scheme where files are identified by
content-hash keys and by secured signed-subspace keys to ensure that only one object
owner can write to a file and anyone can read it. P2P overlay designs using DHTs share
similar characteristics as Freenet — an exact query yields an exact response. This is not
surprising since Freenet uses a hash function to generate keys. Recent research in [A. Goel
et al., 2004] shows that, that changing Freenet’s routing table cache replacement scheme
from LRU to enforcing clustering in the key space, can significantly improve performance.
This idea is based on the intuition from the small-world models [J. Kleinberg et al., 2000]
and theoretical results by [J. Kleinberg et al., 2000].

Version 0.6 of the Gnutella protocol adopted the concept of ultra-peers which are high
capacity peers that act as proxies for lower capacity peers. One of the main enhancements
is the Query Routing Protocol (QRP), which allows the leaf peers to forward index of object
name keywords to its ultra-peers. This allows the ultra-peers to have their leaves receive
lookup queries when they have a match, and subsequently, it reduces the lookup query
traffic at the leaves.

A shortcoming of QRP is that the lookup query propagation is independent of the
popularity of the objects. The Dynamic Query Protocol addressed this by letting the leaf
peers send single queries to high-degree ultra-peers which adjust the lookup queries” TTL
bounds in accordance to its number of received lookup query results.

As described in the Gnutella section, [Y. Chawathe et al., 2003] improves the Gnutella

design using their Gia system, by incorporating adaptation algorithm so that peers are
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attached to high-degree peers and providing a receiver-based token flow control for
sending lookup queries to neighbors. Instead of flooding, they make use of random walk
search algorithm and also the system keep pointers to objects in neighboring peers.
However, in a Gnutella UDP extension, it has been proposed that Unstructured P2P overlay
like Gnutella can be built on top of Structured P2P overlay to help reduce the lookup
queries overhead and overlay maintenance traffic. They used the collapse point lookup
query rate (defined as the per node query rate at which the successful query rate falls
below 90%) and the average hop counts prior to collapse. However, the comparison was
done in static network scenario with the older Gnutella and not the enhanced Gnutella
version.

BitTorrent, a second generation P2P overlay system, achieves higher level of
robustness and resource utilization based on its incentives cooperation techniq ue for file
distribution. The longest and most comprehensive measurement study of BitTorrent P2P
system [J. A. Pouwelse et al.,, 2004] provides a more insight by comparing a detailed
measurement study of BitTorrent with other popular P2P file-sharing systems, such as
FastTrack/KaZaA, Gnutella, Overnet/eDonkey, and DirectConnect, based on five
characteristics:

e Popularity - Total number of users participating over a certain period of time.

e Availability - System availability depending on contributed resources.

e Download Performance - Contrast between size of data and the time required for

download.

e Content Lifetime - Time period when data is injected into the system till no peers is

willing to share the data anymore.

e Pollution Level - Fraction of corrupted content spread throughout the system.

FastTrack/KaZaA has the largest file sharing community, with Overnet/eDonkey and
BitTorrent are gaining popularity. The popularity of BitTorrent system is influenced by the
availability of the central components in terms of its number of downloads and technical
faults in the system. Availability has a significant influence on popularity. FastTrack/KazZaA
being more architecturally advanced, achieve significant availability because of its Super-
Peers that allow the network to scale very well, by creating indexing. Gnutella and
Overnet/eDonkey provide full and partial distribution of the responsibility for shared files
respectively. The availability of content in BitTorrent is unpredictable and vulnerable to
potential failures, due to its lack of decentralization.

BitTorrent is well-suited for download performance due to its advanced download
distribution protocol. Overnet/eDonkey takes an opposite approach by offering powerful
searching capabilities and queue-based scheduling of downloads, which can take longer

waiting times. The lack of archive functionality in BitTorrent results in relatively short
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content lifetimes. FastTrack/KaZaA which uses directory-level sharing policy allows data
files to be located as long as the peer holding the data file stays connected.

FastTrack/KazZaA system does not limit the number of fake files in the overlay but it
allows user to identify correct files based on hash-code verification. BitTorrent prevents
fake files from floating in the system. The arising use of firewalls and NATs are growing
problems for P2P systems because of the effect of reducing the download speed. This
proposal [K. A. Skevik et al., 2004] tries to solve the firewall problems by designing a hybrid
CDN structure with a P2P based streaming protocol in the access network based on an
empirical study of BitTorrent which found the need for additional freeloader protection
and the potential negative effect of firewall on download speeds. A fluid model for
BitTorrent-like networks was proposed [D. Qiu et al., 2004] to capture the behavior of the
system when the arrival rate is small, and to study the steady-state network performance.
The study also provided expressions for the various parameters, such as average number
of seeds, the average number of downloaders and the average downloading time, and
proved that Nash equilibrium exists for each peer that chooses its uploading bandwidth to
be equal to the actual uploading bandwidth.

It is also interesting to note that most of these Unstructured P2P networks (such as
KaZaA and Gnutella) are not pure power-law networks with Zipf distribution properties; for
example, analysis in [M. A. Jovanovic et al., 2001] shows that Gnutella networks have
topologies that are power-law random graphs, and later measurement shows that there
are too few peers with a low number of connectivity. This may be attributed to the
behaviors of the users of these P2P networks. Research on power-law networks [A.
Barabasi et al., 2000], [M. Faloutsos et al., 1999], [A. Broder et al., 2000], [A. Barabasi et al.,
1999] shows that networks as diverse as the Internet, organize themselves so that most
peers have few links while a small number of peers have a large number of links. The
interesting paper by [L. Adamic et al., 2001] studies random-walk search strategies in
power-law networks, and discovers that by changing walkers to seek out high degree
peers, the search performance can be optimized greatly.

Several search techniques for Unstructured P2P networks are discussed in [B. Yang et
al., 2002]: iterative deepening, directed BFS and local indices. Networks with power-law
organizational structure, display an unexpected degree of robustness [R. Albert et al,,
2000], i.e. the ability of the peers to communicate unaffectedly even by extremely high
failure rates. But these networks are prone to attacks.

Thus, Unstructured P2P networks reduce the network dependence on a small number
of highly connected, easy to attack peers. Instead of using DHT as building blocks in
distributed applications, SkipNet [A. Harvey et al., 2003] is a new overlay based on Skip
Lists that organizes peers and data primarily by their sorted string names, as Skip Lists do,

rather than by hashes of those names. In this way, Skip Net supports useful locality
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properties as well as the usual DHT functionality. In addition, some recent research, e.g. [B.
T. Loo et al., 2004] proposes the design of a hybrid model by using Structured DHT
techniques to locate rare object items, and Unstructured flooding to locate highly
replicated contents.

All of the security issues discussed in the Structured P2P overlay networks section
apply to Unstructured P2P overlay networks. It is worthwhile highlighting the work of [S.
Bellovin et al., 2001] in the field of overcoming the difficult to limit Napster and Gnutella
use via firewalls and how information can be leaked through search queries in the overlay
network. The work highlighted concerns over Gnutella’s push feature, intended to work
around firewalls, which might be useful for distributed denial of service attacks. Napster’s
centralized architecture might be more secure towards such attacks due to a centralized

trusted server.
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3.2 Mobile Peer-to-Peer Approaches
As mentioned in Chapter 1, client-server networks are being transformed to distributed
peer-to-peer networks. Lessons learned from fixed networks have been applied in cellular
networks. But the special requirements of mobile devices and networks necessitate the
elaboration and the adoption of different solutions in order to fulfill the expectations
which arise with the use of mobile peer-to-peer technology.

Many researchers are currently proposing and developing new P2P schemes for
mobile environments. Recent advances in mobile devices and wireless communications
have enabled the development of mobile P2P applications for mobile phones. These new
mobile P2P systems seem promising in a new domain of applications based on physical
location and context together with the possibility of using a wide variety of wireless radio

access technologies (see Figure 3.11).

4G

Real Time BroadBand
IP Centric Multimedia Systems
Peer-to-Peer

IMT-Advanced

HSI A
Wimax/ 3G LTE

2002/03 2005/09 Next Decade

#4-144Kbps 384Kbps-TMbps 50-104 Mbps

Figure 3.11 - Wireless Radio access Technology Evolution

In this context, new applications, different from traditional file sharing applications
are expected to appear. For example, in all cell environments radio resources are very
limited and multicast architectures are not recommendable. In this sense peer-to-peer
video streaming applications appear as a real alternative to services based on multicast.

Peer-to-peer systems allow users to distribute their own content by means of the
Internet or between their friends without using costly and centralized servers with high
bandwidth requirements.

Peer-to-peer content distribution is a very interesting paradigm in cellular
environments because in p2p networks bandwidth available to the content server is
regulated according to the demand. This feature ensures a wide range of applications for
peer-to-peer systems in mobile environments. For the development of these applications

new techniques need to be adopted in order to deal with the limitations present in mobile
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devices and in cellular networks. Current P2P applications and architectures are mainly
designed to work in fixed and wired networks as analyzed in Chapter 2. Recently
developed wireless communication technologies and the new available capacities
presented in mobile devices have allowed novel peer to peer paradigms to emerge which
focus mainly on mobile devices such as PDA and mobile phones.

These paradigms involve new challenges due to constraints present in mobile devices
and wireless networks such as limited memory/processing power, network accessibility
issues such as low bit rates, high latency, packet losses, temporal disconnections etc. and
mobility issues such as roaming between different radio access technologies. Regarding
mobility issues, there are some standards that are trying to resolve this problem, such as
GAN (Generic Access Network), known before as UMA (unlicensed mobile access) [3GPP,
2007] or MIH (Multiple Independent Handover) IEEE 802.21 [M. G. Williams et al., 2005].

Additional problems are Operator-Control problems. Operators want to control traffic
and services offered in their networks. In the available literature, it has been proposed to
use a hybrid architecture where super-peers are located in the core network (which is the
logical location for sharing resources in a mobile network) under the control of the
operator [Q. Hofstatter et al., 2008]. Finally, other existing issues are related with firewall

and NATs existing in cellular networks.

3.2.1 Proposed Protocols & Architectures
The most prominent proposed solutions in order to bridge wired and wireless P2P
networks is the idea of using proxies as gateways between both domains. This model can
be extended to let mobile devices act as peers to other mobiles in the same network,
firstly allowing direct connections, and then enabling indirect connections through several
mobile nodes.

Following in this line, another work investigates using the already existing eDonkey
architecture to let mobile users directly participate in the network. The index server would
be hosted by the mobile operator. Also, the protocol would be extended with enhanced
signaling information about the mobile network domain and some infrastructure could be
added to deal with the needs of the mobile users. These new elements are caching peers,
servers that act as regular peers but are under the control of the mobile operator. They
would provide popular content, eliminating the need to connect to nodes outside the
mobile network; crawlers, nodes that bring information of the wired network to index
server and proxies that act as bridges between mobile and regular peers.

However, the main focus of research in overlay networks is in the adaptation of
already existing structured P2P architectures to the peculiarities of a mobile environment,
namely frequent disconnections, node mobility issues and scarce bandwidth and

resources. For example, DynaMO [R. Winter et al., 2004] is a modified Pastry [A. Rowstron
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et al.,, 2001] system that exploits physical proximity between nodes, trying to make the
overlay network similar to the underlying ad-hoc network. To this end, DynaMO adds two
new mechanisms to form clusters of related nodes, in which neighbors in the overlay
network are, probably, physically near nodes. Another example of this kind of architecture
is MobiGrid [A. Datta, 2003]. This system, like the previous one, is based on an already
existing structured P2P network targeted at fixed networks. Specifically, P-Grid [K. Aberer
et al., 2003] is used as a base, adding mechanisms to provide replication, security and self -
organization in ad-hoc networks.

The JXTA% project defines a set of open protocols that should allow devices connected
to the network, ranking from cell phone and wireless PDAs to PCs and servers, to
communicate and collaborate in a P2P manner.

Java version of these protocols are the most widely known, but there are projects in
other languages and areas such as C++% or Symbian 0S%. The Java version of these
protocols for embedded devices (JXME27) such as mobile phones is not completely
functional due to limitations in the MIDP profile present in these kinds of terminals.

Another example of protocol is the Mobile Peer-to-Peer Protocol (MPP) [R.
Schollmeier et al., 2003]. MPP has been developed for P2P networking in mobile ad hoc
environments. MPP implements an efficient signaling messages mechanism and cross layer
communication between the network layer and application layer. Current results are based
on NS-2 simulations and show that the MPP-protocol stack copes with node failures and

link breaks, typical issues associated with wireless networks.

3.2.2 Implementations
With the prior constraints in mind there are many available projects and solutions focused
on offering and developing mobile P2P applications in a straightforward manner. JXME (a
limited version of JXTA) and Microsoft P2P framework are the best known solutions for the
development of mobile P2P applications.

Mobile Peer to Peer Content Sharing Application [M. Matuszewski et al., 2006] is an
innovative proposal of architecture of mobile peer-to-peer content sharing services in
cellular networks developed by the Nokia Research Center and Helsinki University of
Technology. This approach uses the SIP protocol as a basis for the deployment of mobile
P2P services (Figure 3.12). The implementation consists of a peer-to-peer client application
in the mobile phone and an application server in the network. The mobile peer-to-peer
client was implemented on the Nokia Series 60 (Symbian platform). This solution presents

a hybrid architecture with peers and super-peers.

*http://www.jxta.org
“http://jxta-c jxta.org
*Shttps://symbianjxta.dev.java.net
“Thttp://jxme.jxta.org
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Figure 3.12 - Mobile Peer-to-Peer Content Sharing Prototype

The Generic Engine [T. Hakkarainen et al., 2005] uses mechanisms introduced in SIP in
order to make a terminal globally discoverable. Collaborative networks created with this
engine maintain a circular topology. Entering a network relies on the invite mechanism
provided by SIP, in which the communication initiator must provide a remote node SIP
identifier. Symbian has been chosen as the OS platform. This engine facilitates quick and
robust data modeling by providing a meta- model-based generative mechanism.

JMobipeer [M. Bisignano et al., 2005] is a framework designed to work on J2ME
enabled mobile devices on mobile ad-hoc networks (Figure 3.13). This framework uses a
reactive routing algorithm. Although due to the modularity of its architecture, the routing
algorithm can be replaced with any other algorithm. Interpretability with JXTA is
supported, and the increased network load is the main cost to be accepted if this
interpretability is to be maintained.

Proem [G. Kortuem et al., 2001] is a platform for the development of P2P collaborative
applications in mobile ad-hoc networking environments. Proem provides a complete SDK,
which includes a collection of Java interfaces and classes for rapid development of mobile
peer-to-peer applications called peerlets. Proem also provides a runtime environment for
the execution of peerlets. The Proem middleware consists of three main components: an
application runtime environment, a set of middleware services and a protocol stack. Proem
defines four protocols, one low level transport protocol and three higher-level protocols.
Proem differs from previous platforms by focusing on the requirements of face-to-face

applications.
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Figure 3.13 - JMobilePeer Architecture

Peer2Me [A. |. Wan et al., 2007] is an open source project developing a framework for
mobile collaborative applications on mobile phones. Peer2Me enables developers to
create collaborative applications for mobile phones using a network technology such as
Bluetooth. The architecture and concepts of this framework are independent of the kind of
PAN technology supported in the mobile device. The Peer2Me project was initiated to
enable rapid development of proximity-based peer-to-peer applications for mobile devices
on the Java 2 Micro Edition (J2ME) platform. Peer2Me is based on a hybrid peer-to-peer
model.

Mobile Chedar [N. Kotilainen et al., 2005] is an extension to the Chedar peer-to-peer
network allowing mobile devices to access the Chedar network and also to communicate
with other Mobile Chedar peers. Chedar (CHEap Distributed ARchitecture) is a peer-to-
peer middleware designed for peer-to-peer applications. In this project, Chedar has been
extended to the mobile platform as Mobile Chedar. Mobile Chedar is implemented using

Java 2 Micro Edition (J2ME) and uses Bluetooth as a transmission technology for
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connecting to other peers. Current Bluetooth implementations have a restriction that
nodes can be connected to only one piconet at a time. Therefore, the only topology
available for constructing Bluetooth network is star-shaped. One device functions as a
master and others as slaves (hybrid architecture).

SymeIIa28 is a Gnutella [J. Miller, 2004] file-sharing client for Symbian smartphones. It
is capable of searching and downloading, but does not upload any data in its current
release. It supports multi-threaded downloads which means that if multiple users have a
particular file, then Symella can download the file from several locations simultaneously.
Gnutella is a flooded request model. Each request from a peer is flooded to directly
connected peers. This solution consumes a lot of bandwidth and consequently this mobile
client does not support data uploading.

SymTorrent29 is a complete BitTorrent [L. Guo et al., 2007] client for Symbian OS. It
supports downloading multiple torrent files at the same time, is capable of both
downloading and uploading and can save the status of unfinished torrents so that
downloading can be resumed after restarting the application. BitTorrent organizes peers
sharing the same file into a P2P network and focuses on fast and efficient replication to
distribute the file. WizBit>® is another BitTorrent client for mobile phones. It does not fully
work yet and is only suitable for alpha release.

Finally, Bedd*! is a commercial application which runs on Symbian Series 60
smartphones. Bedd, currently, uses GPRS and Bluetooth wireless technology. Bedd is an
end user application which enables ad-hoc mobile communication between mobile

phones. A classification of the current approaches is depicted at Figure 3.14.

| Mobile Peer-to-Peer Content Sharing Application ;
_~\Basedon SIP |

Symella }— [:Based on Gnutellaj—--\ / “~{ Generic Engine for Collaborative Mabile Applications |
(UXME—\__ [ — f-—:SymTorrent‘_:
—_— —— Based on BitTorrent 5 - = -
[ MPP—{MP2P i WizBiy
:.;JM::biPeer_] ‘/ \“' :-Based on Chedar-] - [_W]
- N\ — -
| Bedd - \ PeerQMe_]

{ Proem |
Figure 3.14 - Current Approaches
After the analysis carried out, we can conclude that there is a huge fragmentation in

the mobile peer-to-peer field. Current approaches focus on operator-driven P2P

applications while UbiChord focuses on pure Mesh Networking.

**http://symella.aut.bme.hu
“http://symtorrent.aut.bme.hu
*http://dave1010.googlepages.com/wizbit
*'http://www.bedd.com
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3.3 Mesh Routing Protocols

3.3.1 Proactive Routing Protocols
Routing is the exchange of information (in our case typical term “packets”) from one
station of the network to another. The major goals of routing are to find and maintain
routes between nodes in a dynamic topology with possibly unidirectional links, using
minimum resources. A protocol is a set of standard-rules to exchange data between two
devices. Routing protocols are classified in unicast routing protocols, multicast routing
protocols and broadcast routing protocols.

Unicast forwarding means a one-to-one communication, i.e. one source transmits data
packets to a single destination. This is the largest class of routing protocols found in ad hoc
networks. Multicast routing protocols come into play when a node needs to send the same
message, or stream of data, to multiple destinations. Broadcast is the basic mode of
operation over a wireless channel; each message transmitted on a wireless channel is
generally received by all neighbors located within one-hop from the sender.

The simplest implementation of the broadcast operation to all network nodes is by
naive flooding, but this may cause the broadcast storm problem due to redundant re-
broadcasting. There are several unicast protocols such as proactive, reactive and hybrid

routing protocols (see Figure 3.15).

Routing Protocols in MANET

Unicast Routing Multicast routing Broadcast
Protocol protocols Algorithms
Tree-based Mesh-based
Multicast routing Multicast
Proactive Reactive Hybrid Multipoint Scalable
Routing Routing Routing Relaying Broadcast
Protocols Protocols Protocols Algorithm
DSR LAR1 AODV

Figure 3.15 - Routing Protocols classification

95



Proactive Protocols keep track of routes for all destinations in the ad-hoc network and

are also called Table-driven Protocols, as the routes can be assumed to exist in the form of

tables.

The main advantage is that communications with arbitrary destinations experience

minimal initial delay from the point of view of the application. The disadvantage of

proactive protocols is that additional control traffic is needed to continually update stale

route entries. Indicatives Proactive Routing Protocols are:

AWDS (Ad-hoc Wireless Distribution Service) 32

CGSR (Cluster-head Gateway Switch Routing Protocol) [Ching-Chuan et al., 1997]
DFR (Direction Forward Routing) [Gerla, 2006]

DBF (Distributed Bellman-Ford Routing Protocol) [Awerbuch, B. et al., 1991]

HSR (Hierarchical State Routing Protocol) [Pei et al., 1999]

IARP (Intrazone Routing Protocol) [Zygmunt et al., 2002]

Reactive Protocols acquire routing information only when it is actually needed. The

advantage is that due to the high uncertainty in the position of the nodes, the reactive

protocols are much suited and perform better for ad-hoc networks.

The disadvantages of reactive protocols include high latency time in route finding and

excessive flooding leading to network clogging. Indicative Reactive Routing Protocols are:

Admission Control Enabled On Demand Routing (ACOR) [Noureddine et al., 2006]
Associativity Based Routing (ABR) [Toh, 1997]

AODV (Ad-hoc On-demand Distance Vector) [Perkins et al., 1991]

DSR (Dynamic Source Routing) [D. B. Johnson et al., 1996]

CHAMP (CacHing And Multi-Path Routing) [Valera et al., 2003]

LAR1 (Location Aided Routing — Scheme 1) [Ko et al., 2000]

Hybrid routing are protocols in which the routing is initially established with some

proactively prospected routes and then serves the demand from additionally activated

nodes through reactive flooding. The disadvantages of hybrid protocols are that success

depends on amount of nodes activated and reaction to traffic demand depends on

gradient of traffic volume. Some of the most known Hybrid Routing Protocols are:

HRPLS (Hybrid Routing Protocol for Large Scale Mobile Ad-hoc Networks with
Mobile Backbone) [Pandey et al., 2006]

HSLS (HAZY Sighted Link State Routing Protocol) [Santivanez et al., 2003]

HWMP (Hybrid Wireless Mesh Protocol) [Bahr, 2007]

ZRP (Zone Routing Protocol) [Haas, 1997]

*http://awds.berlios.de/about.html
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It could be argued that proactive and hybrid methods are unsuitable for UbiChord, our
developed platform for mobile p2p communications, since signaling cost would cause
excessive flooding. Therefore, reactive routing should be adopted. In the next chapter, we

focus on these protocols.

3.3.2 Reactive Routing Protocols

Reactive Routing Protocols, otherwise known as on demand routing protocols, take a lazy
approach to routing which differs from proactive routing protocols by identifying and
maintaining routes only when needed which results in reduced overhead. Routes are
identified and maintained for nodes that require sending data to a known destination, this
is typically done by invoking route discovery mechanisms to find path to the destination.
The most prominent representative protocols in this category are DSR and AODV. A brief
description of these protocols will be provided below .

DSR is an on demand routing protocol in which a sender determines the exact
sequence of nodes through which a packet is propagated. The packet header contains a list
of intermediate nodes for routing. Route cache is maintained by each node which caches
the source route that it has learned. The major mechanisms of DSR are “Route Discovery”
and “Route Maintenance” which work together for determining and maintaining routes to
arbitrary destinations [D. B. Johnson et al., 1996]. It is designed to restrict the bandwidth
consumed by control packets in ad hoc wireless networks by eliminating the periodic table-
update messages required in the table-driven approach. A route is established by flooding
“Route Request” packets in the network [Gergely et al., 2005].

DSR protocol has many advantages. A route is established only when it is required. It
allows the sender to select and control routes there by reducing load. The other advantage
includes loop-free routing in networks containing unidirectional links. However, the source
route has to be included with each packet causing significant overheads. The other
disadvantage includes aggressive use of caching and lack of any mechanism to detect
freshness of routes which causes delay and throughput reduction. The route maintenance
mechanism does not locally repair a broken link. The connection setup delay is higher than
in table-driven protocols.

AODV is a reactive routing protocol which is basically a combination of DSR and DSDV
algorithms. It uses the advantageous feature of both these algorithms. Dynamic, self-
starting and multi-hop routing is allowed between participating mobile nodes. The demand
routing mechanism of route discovery and route maintenance of DSR and the use of hop
by hop routing sequencing number and periodic update packets of DSDV are both available
in AODV. It employs destination sequence numbers to identify the most recent path. In

AODV, the source node and the intermediate nodes store the next-hop information
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corresponding to each flow for data packet transmission [Perkins et al., 1991], [N. Moghim
et al., 2002], [Gergely et al., 2005].

The main advantages of AODV include its adaptability to highly dynamic networks and
its reduced overhead. Other advantages include lower setup delay for connections and
detection of latest route to the destination. As far as disadvantages are concerned, AODV
requires periodic updates. The distinguishing feature is the use of a destination sequence
number for each route entry. If the source sequence number is very old, it leads to
inconsistent routes. Unnecessary bandwidth consumption occurs in response to periodic
beaconing.

There are a lot of comparative studies that evaluate Mesh routing protocols. In one of
these studies that emphasizes only at reactive routing protocols [M. Uma et al., 2009] the

average end-to-end delay for three protocols are presented (see Figure 3.16).
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Figure 3.16 - Routing Protocols end-to-end delay
In the frames of UbiChord, the DSR protocol is adopted. The reason for this choice

is first of all the simplicity of the protocol’s mechanisms and its performance regarding

channel setup and end-to-end delay.
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3.4 Positioning of our approach to the SOTA
In the frames of this Thesis a protocol and a reference implementation of a Distributed
Hash Table that is able to operate on Mesh environments is introduced. The goal of this
structure is to facilitate the creation of emerging peer-to-peer mesh applications. In this
chapter we examined two different approaches regarding peer-to-peer applications; the
structured and the unstructured approach. The comparative analysis indicated that the un-
structured approaches are more loosly-coupled since they do not impose signaling for
overlay creation and maintenance. However, none of the existing unstructured techniques
are operational without any centralized “coordination” server (e.g. super-peer etc.).
Consequently, the techniques adopted in our approach are based on structured

approaches.
As already explained on Chapter 2, existing structured approaches (DHTs) can only

be used in order to create peer-to-peer applications in fixed networks. In the current
Chapter we presented various representative DHTs such as Chord, Pastry etc. All of them
suffer from the same barrier. The effort that has been made in order to re-use existing
DHTs for the creation of peer-to-peer applications has been thoroughly analyzed on
Chapter 3.2. However, these techniques rely on maintaining one server-side overlay
network at the Mobile Network Operator’s side through some proxies. Qur approach

follows a completely different policy. The maintenance of the overlay in UbiChord is

achieved with the utilization of self-healing and self-adapting gossiping techniques which

allows operation of a DHT without the involvement of the MNOQ’s infrastructure.

UbiChord’s approach is agnostic to a specific DHT implementation. However, for
implementation purposes we selected Chord.

Finally, the traditional communication pattern (i.e. sockets) for signaling and exchange
of data objects at the application level is in-adequate for our approach since no static
routing infrastructure can be considered as granted. Therefore, a MANET-like routing
scheme has to be incorporated. In the frames of this Chapter we examined the basic

MANET routing protocols. UbiChord will integrate a reactive routing scheme and

specifically Data Source Routing (DSR). This choice is made based on the linear behavior of

DSR regarding the end-to-end delay that is introduced as an overhead.
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4. Proposed Layered Approach

4.1 Generic Principles
The proposed layered-approach aims at the provision of a generic framework that will
facilitate the design and development of autonomic and decentralized services in Mesh
networks (see Figure 4.1). The introduction of the different layers of the proposed
approach is necessary due to the need to address the following challenges: a) efficiently
utilize available network resources in a dynamic environment, b) provide services
independently from the underlying topology, c) ensure reliability of services in case of
network topology changes and d) reduce the management complexity and increase
flexibility to application developers. In order to address these challenges, autonomic
functionalities have to be incorporated. The following self-* properties have been defined
[B. Jennings et al., 2007] and should be supported by an autonomic system: self-

configuration, self-optimization, self-awareness and self- healing.

Autonomic Network

Autonomic deployment Monitoring and Multimedia services on mobile
and operation of sensor Management terminals (e.g. video on demand,
networks chatting, file sharing etc.)
Deployment of

abstract Services

Retrieve

Data

Node 1 - . r .

Overlay
Network

Mobile Ad-hoc
Network

Figure 4.1 - Autonomic Services in Mesh Environments
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Existing protocols that satisfy partially the challenges described above were
considered during the design of the proposed approach. There is no existing work on how
to combine existing protocols for achieving autonomic service provisioning and how
different protocols could interact with using predefined interfaces. Taking into account
these considerations, the proposed approach is focusing on a) defining concrete layering
for enabling autonomic service provisioning in Mesh networks, b) specifying the discrete
functionality of each layer and the interfaces between them and c) resolving conflicts
between existing protocols, specifically in the field of the overlay t opology construction.

The creation and maintenance of an overlay topology that logically interconnects all
the participating nodes in the physical network is critical in our approach. Any node that
connects to the ad-hoc network has to join to the overlay network. The overlay network is
formulated during the topology stabilization phase in an autonomic manner and hides any
details of the underlying physical infrastructure, e.g. link establishment or torn down, node
failures, node mobility etc. In case of multiple changes in the physical topology, the overlay
network is able to adapt quickly to the new environment (re-stabilization). Furthermore,
recovery from failures can be easily achieved based on information that it is available in
the network. All these tasks are realized without the intervention of the network
administrator.

After the overlay network is established, participating nodes are able to store and
retrieve data using typical p2p protocols. Every node that wishes to store a key-value pair
or query a value based on a key can achieve it by using a Distributed Hash Table (DHT) [E.
Kang et al, 2008] that operates on-top of the overlay topology. In a similar way, several
applications can be built taking under consideration the existence of a high level API
put(key,value) and get(key) that would interact with a DHT protocol that operates on-top
of a non-reliable Mesh environment.

Provided services are designed based on assumption of collaboration and
dissemination of information among the participating nodes. These services can be fully
decentralized as data and functionality is allocated in different nodes at the overlay
network. Some functions may be delegated to more than one node for higher reliability. In
case of changes or failures, roles may be re-assigned autonomously and performance

guarantees may be assured for the services provision.
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4.2 Overview of the four-layered approach
We propose a four-layered scheme based on the functionality requirements imposed by
the provided services and the underlying physical networking environment. As shown in
Figure 4.2, the following four layers are defined: i) Neighbor-to-Neighbor layer, ii) Routing
layer, iii) Topology Maintenance layer and iv) DHT layer. Each layer has a discrete role,
implements different mechanisms and specifies its messages types. The proposed layered
approach is independent from the selection of p2p protocols, topology formulation
mechanisms and routing protocols. Therefore, any combination of different protocols may

be selected and proper adaptations may be proposed.
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Figure 4.2 - Four-layered Approach

The Neighbor-to-Neighbor layer is responsible for delivering an upper-layer frame
from a neighbor to another neighbor. No information from the upper layer is necessary for
the delivery. Two types of messages are used: i) MAC_SEND in order to achieve one way
frame delivery from neighbor X to neighbor Y and ii) MAC ACK in order to achieve
acknowledgment for successful message-delivery from neighbor Y back to neighbor X.
Also, this layer is responsible for maintaining (i.e. initializing and keeping up -to-date) the
routing cache of the Routing layer since, when neighbor-to-neighbor links are created or
destroyed, the related routing information has to be updated.

The Routing layer is responsible for delivering an upper-layer frame from a node X to
another node Z. It is assumed that node X is not aware how node Z can be reached. The

layer is also agnostic of the reason that node X wants to communicate with node Z. This

103



layer relies on routing protocol for frame forwarding across the network. As we stated in
section 3.3, in case of Mesh Environments it is suggested the use of a re-active routing
protocol.

The Topology Maintenance layer is responsible for formulating a virtual topology of
the participating nodes. In our case, the desired topology is a ring (imposed by the use of
Chord). Consequently, this layer undertakes the task of identifying the relative position of
each node in the overlay topology without being based in centralized or semi-centralized
techniques.

The DHT layer is responsible for maintaining a distributed hash table that is
bootstrapped over the stabilized overlay topology. For this purpose any existing DHT
protocol may be used. These protocols are (semi or fully) decentralized and -in addition to
storage and retrieval functionality- may succeed load balancing, reduce bandwidth
consumption and improve data reliability across the network. The following interfaces
have been defined for the communication among the different layers:

e The Neighbor-to-Neighbor layer provides to the Routing layer routing information
for existing neighbors that is stored in the routing cache of each node, through the
validateRoutingCaches() function. The Neighbor-to-Neighbor layer provides also
medium-level acknowledgments to the Routing layer for neighbor-to-neighbor
communication, through the transfer_Packet() function.

e The Routing layer provides routing functionality to upper layers through the
routePacket() function. Additionally, it exposes topology information derived
directly from the routing caches to the Topology Maintenance layer, through the
getRoutinginfo() function. It is up to the Topology Maintenance layer to utilize this
information for optimizing its mechanisms or not.

e The Topology Maintenance layer provides information to the DHT layer regarding
the relative position of a node in the overlay network (e.g. the predecessor and
successor in case of a ring topology) through the getRelativePosition() function. In
case of changes in the network topology, stabilization procedures take place in
both layers. The Topology Stabilize() function is used for re-ordering the overlay
topology (e.g. ring in our case) and triggers the DHT_Stabilize() function that is used
for the re-assignment of key-value pairs that are assigned in the overlay network

nodes.
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Figure 4.3 - Overlay topology stabilization & DHT entries stabilization

In Figure 4.3, a snapshot of the physical network topology (solid lines) and the logical
overlay topology (dashed lines with arrows) is depicted. Initially, node 3 does not exist in
the network and the key-value pairs have already been assigned to the network nodes by
applications that run on the existing nodes (i.e. applications that use DHT). Then, node 3 is
physically connected with node 1 and node 4 and the corresponding overlay topology is
updated. It is the responsibility of Topology Maintenance layer to find thesuccessor for
each node. However, it is not the Topology Maintenance layer’s responsibility to reassign
key-values according to the DHT’s assignment algorithm.

The Topology Maintenance layer must inform the DHT layer that the relative position
for the node in the overlay topology (e.g. ring in case of Chord) has changed. Then it is up
to DHT layer to re-assign key-value pairs. This re-assignment will be addressed as DHT re-
stabilization while the updated knowledge for the relative position in the overlaytopology

is called Topology stabilization.
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4.3 Protocol Analysis
In this section, a reference implementation of the proposed approach is described in
detail. Specific mechanisms and protocols are selected for each independent layer. In the
DHT layer we have selected Chord [W. Ding et al., 2007] as a p2p protocol, in the Topology
Maintenance layer we follow gossiping and exhaustive tree-based techniques, in the
Routing layer we have adapted the Data Source Routing (DSR) [D.B. Johnson et al., 1996]
protocol and in the Neighbor-to-Neighbor layer communication is established through a
simulation environment.

It is important to note that in addition to adopting specific techniques and
mechanisms, several adaptations - that were considered useful for our approach - are
provided. Specifically we describe in detail how gossiping techniques for topology
formulation and the DSR routing protocol can facilitate each other. These adaptations are

stated in detail in the following sub-sections.

4.3.1. Adapted DSR Routing Protocol
Prior to analyzing the overlay topology algorithms that have been implemented we briefly
refer to the reactive routing protocol that has been adopted and customized. The Data
Source Routing (DSR) is chosen for our reference implementation. Firstly, we describe the
basic characteristics of DSR and the implementation details and secondly the proposed
adaptations that are correlated with the Topology Maintenance layer.

DSR is relied on two mechanisms: a) Route Identification and b) Route Maintenance.
The protocol if fully reactive; hence every time one node wants to communicate with
another node, it initiates a route request mechanism. Note that it is not DSR’s
responsibility to know why one node wants to communicate with another node. In
general, this is upper layer’s responsibility (Topology Maintenance layer in our case).The
Route Maintenance mechanism is used for route identification (see Figure 4.4). A specific
message, called DSR_Route Request, is broadcasted. Each DSR_Route_Request contains a
request-id that is given by the initiator and the desired-destination node. This information
remains intact all across the flooding procedure. The message also contains a header that
logs the routing path of a route-request. Thus, a route-request message that is initiated by
one node ends up to many route-request messages with the same request-id but with
different headers (because different pathways are followed). Each node that receives a
DSR_Route_Request can perform three tasks:

If a node is the destination-node, it creates a route-reply message, called
DSR_Route_Reply. This message, in parallel with the request, contains a reply-id (which is
directly correlated with the request-id) and a header (which is actually the reversed route-

request header), that remain intact until the reply reaches its destination. In case that a
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route-request reaches a node that knows apriori the route to the destination node, it
appends to the header the remaining route and creates aDSR_Route_Reply.

If a node knows nothing about the destination node, it just forwards the
DSR_Route Request to its neighbors (excluding the neighbor that initially sent the
request). In both replying and forwarding cases the node adds the requestid to a “served”
list. The “served” list is a temporary list of all the request/response ids that are served by a
specific node, after the processing of a DSR_Route_Request (the same applies in route
replies). If a node has the request-id of the DSR_Route_Request in its “served” list, the

node does nothing at all. This is very critical for avoiding loops.
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Figure 4.4 - Adapted DSR_Route_Requesthandling mechanism

When a DSR_Route_Reply reaches its destination, the node that initially initiated the
route-request is “informed” for the route to a specific node. This information is stored in

the nodes’ routing cache. According to our implementation each node maintains a primary
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routing cache and a secondary routing cache. The primary routing cache contains only one
route for every known node and specifically the route which is considered to be optimum

(for our implementation optimum means shortest but in general optimum may refer to

other network parameters such as low latency etc.). The secondary routing cache contains
multiple alternative routes without loops for known nodes. In case that a broken link is
identified (through DSR_Route Error solicitation mechanism) both routing caches are
revalidated. If an invalid route -that contains this link- is identified in the primary routing
cache, the route is removed and substituted by a possible alternative valid route,
requested from the secondary routing cache.

As explained above, the Routing layer is necessary so as two nodes can exchange an
upper layer frame. In order to do so, a message called DSR_Message Transfer is used.
When a route to a destination is known then a DSR_Message_Transfer is initiated. This
message contains a packet-id (which is directly correlated with the sender’s address), the
destination node, the route that must be followed in the Mesh network in order to reach
the destination and a flag that informs the destination node whether it should respond
with a confirmation (acknowledgement). Finally, the DSR_Message Transfer contains
encapsulated upper layer data (topology formulation, DHT etc.).

When a DSR_Message_Transfer has to be transmitted from node A to node B and
from node B to node C, the intermediate nodes are responsible to complete the transfer.
Practically, if the DSR_Message_Transfer packet has reached node B and the header of the
DSR_Message_Transfer is A - B - C, assuming that node B has direct connection with
node C (because in the past a route_reply informed node A about that) and the connection
between node B and node C is no longer available, then it is in the responsibility of node B
to identify a new route to node C. Identification means usage of another route (consulting
the routing cache) or initiation from scratch of a new route -request.

Whenever during a DSR_Message_Transfer a broken link is identified, then a message
called DSR_Route_Error is initiated by the node that declares the broken link. The
DSR_Route Error contains a route-error-id and information about the broken link. This
message is flooded all across the Mesh network. When a node receives a DSR_Route_Error
it automatically removes from the primary and secondary cache all the occurrences of
routes that contain this link. Afterwards each node re-evaluates its primary and secondary
cache in order for the optimum (shortest) paths to be pushed in the primary cache.

At this point, we have to emphasize in some adaptations that we propose. The first
adaptation is regarded to the DSR_Route_Reply messages. Each DSR_Route_Reply contains
a valid up-to-date path that is routed from the destination back to the route-request
initiator. This information that is extremely valuable also for the intermediate nodes. In our

implementation all intermediate nodes overhear the route-replies that pass through them

and enrich their routing cache. The second adaptation regards the introduction of the
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Hopes-To-Live (HTL) parameter. As we already mentioned, the route-request mechanism
uses the request-id in order to prevent infinite loops. The HTL parameter is added as a field
in the DSR _Route Request. Every time a route-request is forwarded then the HTL
parameter is increased by one. When the maximum HTL is reached the node does not
forward the DSR_Route_Request messages any more.

The idea behind the HTL is the following: it is useless for a DSR_Route_Request to be
forwarded more times than the diameter (in hops) of the network. As a diameter we
define the maximum non cyclic route that can be accomplished. However, the problem for
a Mesh network is that it does not have a stable diameter and even if the nodes are
stationary the diameter has to be collaboratively inferred by a respective protocol. In our

implementation we take in account the worst case as we state in the following paragraphs.

\
\

Figure 4.5 - Tree-based representation

We assume that we have a network where each node has approximately Ny neighbors
(d refers to network density). Without loss of generality we can represent this network as a
tree with tree-degree: Ty =N4-1. As someone can notice from Figure 4.5, the worst case
scenario for a route request is to go from one leaf to the root of the tree and back to
another leaf; i.e. twice the tree depth. Consequently the maximum HTL that a route
request must have in order to find one node is tightly bound to the depth of the virtual
tree, which represents our network. We refer to this depth as k and we identify the

correlation of k with the network size N and the network degree Ng. The number of leafs of
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a tree with degree Ty and depth k is Tdk. The total amount of tree nodes (or network

nodes) is N and the depth of the virtual tree is k, as it is shown in the following equations:

T(k+l)_1
N =T, +T,' +..+T," =~
T, -1
+ Equation 1
- N=(Nd_1)(k Do quation
N, -2

logV(N,-2)+1) '
k= log(Nd—l) 1 Equation 2

In Figure 4.6, it is shown that the depth of the virtual tree that represents our network
is correlated with the network size for several network degrees. As we are going to see in
the simulation results the introduction of the maximum HTL in the DSR, results in radical
reduction of the DSR_Route Request messages. It is important to note that in order to
estimate the current depth of the network, based on the network size and degree,
averaging techniques may be applied [M. Jelacity-2 et al., 2005]. In these techniques, each
node interacts with its neighbors in order to calculate the mean value of a parameter and
convergence is succeeded after a small number of iterations.
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Figure 4.6 - Virtual tree depth vs network size
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4.3.2 Overlay Creation and Maintenance

4.3.2.1 Adapted T-MAN Protocol
Up to now we have examined the Routing layer that is the cornerstone regarding message
exchanges for the upper layers. Such an upper layer is the Topology Maintenance layer.
The topology formulation mechanism is responsible for identifying the relative position of
a node among all the network nodes. This is essential for providing DHT functionality. As
stated earlier, the challenge is to apply a topology formulation algorithm for topology
creation and maintenance to aMesh environment.

One of the most prominent algorithms that have been proposed for general purpose
topology formulation is T-MAN [M. Jelacity-1 et al., 2005]. The T-MAN approach is a gossip-
based approach where each node refhes its view about its relative position in the overlay
based on the “knowledge” of the “closest” nodes that exist in a buffer. Each node that
participates in a network uses a ranking function to evaluate its distance from another
node. The evaluation parameters can vary. Some indicative examples are the network
address, proximity, latency etc. The usage of different ranking function results in the
creation of different topologies.

In our implementation we are based on the creation of an overlay ring topolgy. In our
experiments we use as evaluation parameter the network address and as a distance
function: d(a, b) = min(N - |[a-b]|, |[a-b]).

~——

Figure 4.7 - T-MAN stabilization process

For example, we considerthe topology where we have a network with 5 nodes and we
assume that the network addresses of the participating nodes are 1,2, 3, 4 and 5
respectively (see Figure 4.7(a)). For the 3rd node, nodes 2 and 4 have score 1, while nodes

1 and 5 have score 2. In order to succeed successor identification as fast as possible, F
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MAN applies a gossiping technique. Specifically, each node maintains a view with the
nodes that are, up to a specific time, known and scored. Periodically, each node
communicates with the most “closer” node solicits its view and requests the current view
of the “closer” node (see Figure 4.7(b)). After this mutual exchange, nodes re-evaluate
their views ((see Figure 4.7(c) and Figure 4.7(d)). This iterative procedure leads to
extremely fast convergence (or stabilization), where convergence refers to the state that
each node knows its successor and any further exchange of messages leads to no further

refinement of the views (see Figure 4.7(e)).

do forever({ do forever({
Node To Sentp ~ selectCloserNode () receive bufferqg from Senderqg

buffer — merge (view, {myNodeDescriptor}) | buffer —

send buffer to Node To Sentp merge (view, {myNodeDescriptor})
receive bufferp from Node To Sentp send buffer to Senderq
buffer — merge (bufferp ,view) buffer — merge (bufferqg ,view)
view — Reevaluate (buffer) view ~ Reevaluate (buffer)
} }

active thread passive thread

Table 4.1 - T-MAN parallel threads

T-MAN is relied on two parallel threads as it is shown on Table 4.1. Since T-MAN is
proposed for routed networks, the only variable parameters that exist in the above Table
are the size of the view and the size of the buffer. The operation “send buffer to
Node_To_Sent,” of the active thread and “send buffer to Sendery” of the passive thread in
our layered approach is equivalent of initiating a DSR_Message Transfer between these
nodes. As mentioned above, a DSR_Message_Transfer consults the routing cache to find
out if a route to the destination exists. If not, the route-request mechanism is initiated.
Method “merge” returns a list that contains all the elements that exist in the sub-lists that
are passed as arguments. Finally, method “Revaluate” applies the scoring function to all
the elements of the argument-list and returns only the first n occurrences where n is the
size of the view.

Taking under consideration that DSR is continuously “working” and contains up-to-
date routing information, an adaptation (adapted T-MAN) of the initial T-MAN is proposed
as it is shown in Table 4.2. In the adapted T-MAN approach there are the three following
major changes.

Before the active thread sends its view to the closest node(s) it consults the DSR
cache. Consulting means actually that all nodes that exist in the primary and secondary

cache are scored (using the Ring-scoring function in our case). This “consultation” results in
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major reduction of the T-MAN messages that have to be exchanged (before the ring is
stabilized). Send-to-node is substituted by DSR_Message_Transfer as explained above.

Per each “cycle”, instead of sending one message to the closest node that is in the
node’s current view, we send multiple messages (as defined by the parameter gossip
factor). Multiple messages facilitate the fast dissemination of information regarding the
network topology, something that is very important in case of dynamic networks. It is
obvious that the gossip factor can be between one and buffer size. Proper selection of this

option may accelerate the convergence while keeping the routing overhead low.

do forever({ do forever({

buffer — merge (view, {myNodeDescriptor}) receive bufferqg from Senderqg
routingcachelist—ExtractNodesFromCache () buffer ~

buffer « merge (view, routingcachelist) merge (view, {myNodeDescriptor})
for (i=0;i<gossipfactor;i++) { DSRMessageTransfer to Senderqg
Node To Sentp « selectCloserNode (i) buffer « merge (bufferq ,view)
DSRMessageTransfer to Node To Sentp view « Reevaluate (buffer)

receive bufferp from Node To Sentp }
buffer — merge (bufferp ,view)
view « Reevaluate (buffer)

1}

active thread passive thread

Table 4.2 - Adapted T-MAN parallel threads

4.3.2.2 An alternative-exhaustive tree-based approach
In order to have a comparative view of T-MAN we have also implemented an exhaustive
tree-based approach (see Figure-4.8). According to this approach each node of the
network is responsible to find its successor by using an excessive flooding mechanism.
Each node in the network solicits a Find_Successor_Request message after assigning a
request-id to that message (see Figure 4.9a and 9b). This message flows across the nodes
using a Neighbor-to-Neighbor communication scheme (and not DSR node-to-node
message transfer scheme as it happens at adopted T-MAN). After sending the message, a
“served” list is enriched in each node with the request id. In this way each node keeps
track of the request-ids that have been forwarded by the node. Before the
Find_Successor_Request is forwarded to the next neighbor, each node enriches its header
with all the nodes that are “visible” as neighbors to that node. Consequently when the
next node receives the Find_Successor_Request, it has to check if all of its neighbors exist
in the header of the request. If not, it enriches the header and forwards the message to

the neighbors that did not exist in the header (see Figure 4.9c and 9d). The critical part of
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the process is that if one node receives a Find_Successor_Request and the request-id is not
in the served list and the header contains all of its current neighbors, then this node is

considered to be a “virtual leaf” of a tree that has as root node the initiator of the

Find_Successor_Request (see Figure 9e).

Find Successor Request (FSReq)

Eﬂﬂ,‘—':f“eg FSReq id exists at ServedList

[

Yes | Mo

I—' Al Neighbors exisis at FSReq header |
-

Find Successer Request Forwarding
Creats Find Successor Reply (FSRep) . -
FSRep destination = FSReg.inibiaior FSReq header. append{notExistingNeighbars)

Send to Initiator (DSR Message Transfer) Send o Neighbors

P03
update view

Figure 4.9 - Tree-based stabilization process

The virtual leaf wuses DSR’s message transfer mechanism to send a
Find_Successor_Response back to the initiator (root). This message contains the request -id
of the Find_Successor_Request and the header that was gradually built up to the point

that a node inferred that is a leaf. Consequently a Find_Successor_Request initiated by a
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node will result in as many Find_Successor_Responses as the number of the virtual leafs
that exist. Also DSR’s message transfers are equal to the amount of
Find_Successor_Responses. Each root that receives the Find _Successor Responses updates
its view as far as its successor is concerned.

The number of Find Successor Responses in order to succeed stabilization of the
overlay ring topology is the sum of the Find Successor Responses that receives each node
in the tree. The root node receives Td* responses (the number of the virtual leafs). In the
first level of the tree there are Ty4 children where each one receives Tdk responses. In the
second level of the tree there are T4 children where each one receives Tdk responses. In
the (k-1) level of the tree there are Tdk'l children where each node receives Tdk responses.
Finally, in the k level of the tree there are Td" children where each node receives Tdk- (Tdk -
1) responses. Thus, the number of Find_Successor Responses that are required for

stabilization is:

(T, -DT,“" (N, -Df —1)(Nd —1)**)
T, -1 N,-2
(Nd _ 1)(2k+1) _ Nd +1
N, -2

Routing Cost = Equation 3

= Routing _Cost =
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4.3.3 Chord P2P Protocol Adjustment
For implementation purposes Chord has been selected. Chord is a simple but powerful

protocol, which solves the problem of efficient data storage and retrieval on-top of fixed
networks. It is an efficient distributed lookup protocol based on consistent hashing. Its
basic principle is to map a key of a key-value pair to a responsible node. Each node
maintains routing information about O(logN) other nodes, and lookups are feasible via
O(logN) messages. Therefore, Chord scales well with a number of nodes and, thus, it can
be applicable to large systems. Chord continues to operate correctly even if the system
undergoes major changes or if the routing information is partially correct.

Chord does not implement services directly but rather provides a flexible, high -
performance lookup primitive, upon which such functionality may be efficiently layered. Its
design philosophy is to separate the lookup problem from additional functionality. By
layering additional features on top of a core lookup service, overall systems gain
robustness and scalability [A. Rowstron et al., 2001]. The DHT layer uses three types of
messages: i) PUT(k,v) in order to associate the value v with the key k, ii) GET(k) in order to
retrieve the value that is associated with the key k and, iii) STABILISE() in order to move
parts of the keys that are stored in the local cache to another node due to changes in the
topology (ring).

A thorough analysis of the Chord protocol has been provided at the State Of the Art
analysis (Chapter 3.2). The adaptations that have to take place in order to operate on-top
of Mesh networks are: a) the bootstrapping procedure which is based on gossiping (i.e.
every node joins the overlay after its relative position is identified), b) the asynchronous
maintenance operation of figure-table-fixing is becoming trigger-based (i.e. when gossiping
procedure stabilizes) c) successor/predecessor maintenance is delegated to the low-level
mechanisms and d) all socket based communications are substituted by reactive routing
mechanisms.

A precise simulation model for all three layers that are analyzed above has been
implemented in PeerSim [M. Jelacity et al., 2010]. On the other hand, for implementation
purposes an already existing Chord implementation (OpenChord) has been adjusted

(http://open-chord.sourceforge.net) which implies that only the first three layers and the

adjustments have been implemented from scratch. The architectural analysis of UbiChord

is provided on Chapter 5. Simulation model is also available at www.autonomicity.net.

Additionally, simulation results for various aspects of the layered approach are presented
at6.1.1and 6.1.2.
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4.4 Optimizations based on Feedback from Simulation Results (NEURON)
The proposed four layer approach has been implemented in PeerSim in order to evaluate
its scaling and performance. According to the simulation results (see Section 6.1) the four-
layered approach behaves linearly as far as the signaling cost is concerned, for mesh
networks that do not exceed =120 nodes. After this point, the routing layer introduces a
significant messaging cost that has to be suppressed. Suppression of this cost will be
achieved by some additional mechanisms that undertake the tasks of network-parameters’
identification, clustering and hierarchical routing. The following sections provide a

thorough analysis of these mechanisms.

4.4.1 Autonomic Estimation Algorithm (AEA)

The knowledge of network-based parameters is crucial for achieving high efficiency and
optimizing mechanisms in a Mesh environment. The estimation of such parameters is
challenging in dynamic environments, especially when there is no information available at
the initial deployment or after a topology change. Routing and Topology maintenance
layer should adapt their mechanisms based on network-wide parameters without
presuming a priori knowledge of their values. Therefore an Autonomic Estimation
Algorithm is introduced.

According to this algorithm, an estimation of the parameters’ values is autonomously
produced and updated regularly without imposing significant network overhead in terms
of messages exchanged. The mechanism is activated in each mobile node when the
network bootstraps or the topology changes significantly. It converge s in a short number of
cycles and is applicable to large scale Mesh networks. This mechanism is presented in this
section based on the principles of neighbor-based gossiping and specifically using

averaging techniques based on neighbor-based gossiping [Lee et al., 2008].

converged=false;
neighbconverged=false;

do forever{

if (cycle mod resetcycle ==0) { On_Message Receive Event {
converged=false; paramvalue+=ReceivedFrame [paramvalue];
neighbconverged=false; if (ReceivedFrame[conver ged]==false)
paramvalue = CountNeighbors(); neighbconverged=false;

ReceivedMSG=0; ReceivedMSG++;

} }
if (ReceivedMSG!=0) {

oldparamvalue= paramvalue;
paramvalue= (paramvalue) /

ReceivedMSG;

if (Abs(oldparamvalue-
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paamvalue) <threshold) {
converged=true;

}

}

if (neighbconverged==false) {

for (i=0;i<Neighbors.size();i++) {
Send Frame [paramvalue, coverged] to
Node;

}

neighbconverged=true;

}

}

active thread passive thread

Table 4.2 - Averaging through Neighbor-gossiping

According to the AEA, each node interacts with its neighbors in order to calculate the
mean value of a parameter (Table 4.2). Each node calculates its initial value for a
parameter and sends this value to its neighbors. In parallel each node receives from its
neighbors their calculation about this parameter. After each “cycle” of mutual exchanges,

each node revises its calculation using a weighting average:

Valuef"""’neighborl te +Valuef"’mneighborn

n

Updatedy,;,, = Equation 4

When the updated value after the completion of a cycle differ less than a specified
threshold from the previous one, the parameter is considered as converged on this node.

In this case, the node, in the next cycle, sends its converged value along with a flag that

indicates that the node considers the parameter-estimation as precise. Only when all

messages that are received during a message-exchange-cycle contain this convergence
flag, a node decides to stop broadcasting its current value about a parameter. This
procedure is repeated periodically in order to calculate the updated values of the network
parameters.

This technique presents many advantages since there are no preconditions during the
network bootstrapping, the estimation is conducted in an ad-hoc manner and the
algorithm converges quickly, even for large scale networks, while communication overhead
is kept low. The frequency of the periodic estimation mechanism is related to the
application dynamicity. According to the AEA, this technique is used for size and average
density estimation. The knowledge of these parameters is indicative for the possible
network topology scheme and facilitates the good distribution of cluster heads in the

clustering mechanism, as we explain in detail in Section 4.4.2. However, the same
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technique may be used for the autonomic calculation of other parameters within a Mesh
(e.g. variance in the cluster sizes, available energy percentage).

For the density estimation, each mobile node calculates the number of its neighbors
and thus the converged parameter is considered to be the average network density. For
the size estimation, one or more predefined nodes in the network initialize the parameter
Network_Size to 1 (at step 0) while the rest nodes initialize the parameter Network_Size to
0.

When the averaging protocol converges, the estimated value is 1/(N - k) where N is the
network size and k the number of nodes that initialized the parameter Network_Size to 1
[M. Jelacity-2 et al., 2005]. The following adaptation is proposed in order to estimate the
Network_Size autonomically (without the need to predefine specific nodes that initialize
the parameter Network_Size to 1). All nodes have a random number generator and express
their initiative to initialize their Network Size parameter to 1 with a certain probability. We
address this probability as Pj,;. The critical part of the adaptation is that all nodes respect
the same probability. Pj,; varies from 0.1 to 0.3. When the Network_Size parameter
converges the converged value is approximately 1/(N - Pii). By inversing the converged
value, an approximation of the network size is available.

However, this adaptation provides a parameter’s estimation with some variance. In
case that we desire to have more precise estimations, each node that chooses to initialize
its Network_Size parameter to 1 has to accompany the broadcasted message with an
additional field called SolicitatedGroup. In this field the MAC address of the node is placed.
Each node maintains a cache that contains all the solicitated MACs and in parallel, during
each exchange of messages, solicits the contents of its cache. Then, in addition to the
convergence criteria that were formulated previously, each node is not meant to be
converged if the number of MACs that exist in its cache is not equal to the number of
MACs that are solicited by its neighbors. Following this adaptation the converged value is
exactly (not approximately) [1/(N - NoMacs)] where NoMacs stands for the number of
solicited MACs. The advantage of this adaptation is that it generates extremely precise
results, albeit at the expense of a larger amount of messages exchanged until convergence

is achieved.
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4.4.2. Cluster Formulation, Maintenance and Update Mechanism

The cluster formulation mechanism in NEURON has a significant impact on the Mesh
Network from multiple perspectives. It improves the energy efficiency and accelerates the
deployment of higher layer protocols and specifically routing layer. Clusters are
autonomously formulated, maintained and updated based on neighbor to neighbor
communication among the network nodes. The Autonomic Estimation Algorithm provides
information necessary for the optimization of the Cluster Head (a.k.a. CH) selection and
distribution. Routing information acquired during the clustering process is stored in nodes’
local caches and used by the routing algorithm applied. Controlled flo oding is also utilized
in order to avoid traffic forwarding outside the cluster zone.

NEURON allows each node to become a CH according to specific criteria. A node that is
selected as CH acts as a proxy for the rest of the members in its cluster. Each node may be
in two states; either belonging to a cluster or being in the process of joining to a cluster.

The clustering process starts only after the Autonomic Estimation Algorithm has been

converged and, thus, the size N and density d of the Mesh network is estimated. Based on
these two parameters, each node decides to become a CH with a probability P (st given by
the following equation:
 hust = M*KPI Equation 5,
‘ 10*d

available _battery 4 0.5% available _memory Equation 6

where: KPI =0.5% .
total _battery total _memory

The Key Performance Indicator (a.k.a. KPI) in Equation 5 refers to the capabilities of
each node. Nodes with better KPI present higher probability of becoming CHs and
remaining in this status for a longer period of time until their resources are reduced
significantly. In our case, the KPI is related with the available battery and memory of each
node and is given in Equation 6. These parameters were considered crucial for a mobile

node deployment and operation in a Mesh Network. However, any other parameter that

better addresses application-specific requirements (for the KP1) may be selected.

According to Equation 5, a smaller number of CHs is expected to be elected in dense
networks than in sparse ones. In addition, a higher number of CHs is anticipated in larger
networks compared to smaller ones. Equation 5 was selected to cover a wide set of
possible Mesh topologies. However, if the network size or density is known a priori, more
optimal possibilities P ¢yt may be selected.

The Pgust is updated regularly based on the current parameters N and d of the
network. This allows NEURON to adapt to changes in the network topology or conditions
and optimise the clustering formulation process. For example, in case of a node

transitioning from a CH operation mode to normal operation mode, the nodes of the
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cluster decide to become CHs taking into consideration the latest estimations of the
parameters N and d. In this case, if the average density is reduced, more than one CH may
be elected. This process, combined with the cluster formulation update mechanism
described below, facilitates the better distribution of CHs among the Mesh network and
the extension in the network lifetime.

Each CH is responsible for periodically broadcasting its existence utilizing a controlled
flooding mechanism. According to this approach, at a certain time interval the CH
broadcasts one MSolicitateCH message. This message contains its MAC address (which is
also the group identifier), its updated KP/ and an auto increment number that is used for
cycle prevention. The goal for this solicitation message is threefold.

Cluster Formulation & Maintenance: Upon the receipt of a MSolicitateCH message by a
node not registered to a CH, a MRegisterNode2CH response message is send to the CH.
The latter updates its routing cache and then the node automatically becomes a member
of the broadcasted cluster. If the node belongs to the cluster controlle d by the CH
generating the message, the node forwards it to its neighbors. In addition, it stores the
message to a local cache in order to avoid serving the same message again. Otherwise, if
the node does not belong to the cluster controlled by the CH gene rating the message, the
node belongs to the borderline between two clusters, as shown in Figure 4.10. In this case,
the node does not forward the message to its neighbor but instead forwards it directly to

its CH. This process is very critical as it prevents the unnecessary flooding out of the scope

of a cluster and allows CHs to be aware of their neighboring CHs. The routing information,

collected to the CHs’ caches during the clusters formulation, facilitates the hierarchical
routing mechanism, as discussed in Section 4.4.3. The cluster formulation and
maintenance process is also shown in Figure 4.11.

Routing Cache Maintenance: Each MSolicitateCH message - broadcasted by a CH and
flooded within the cluster - contains a list of the MAC addresses of the nodes that have
already forwarded it since each node that serves this message appends its MAC to this list
(only once due to cycle preventive mechanism). This information allows cluster nodes to
learn (or update) the shortest path towards their CH and store this information in their

local routing cache.
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Figure 4.10 - Controlled Flooding Mechanism
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Cluster Formulation Update The MSolicitateCH message allows nodes to be
dynamically distributed among the existing clusters according to the CHs KPIs. In case that
a node receives a MSolicitateCH message from a neighboring CH, it compares the received
KPI with the KPI of its current CH. When this comparison overcomes a specified threshold,
the node unregisters from its current CH and registers to the new CH. These tasks are
accomplished with the usage of MRegisterNode2CH and MUnRegisterNodefromCH
message, accordingly. This approach allows CHs to extend their lifetime since the load is

re-distributed among the more powerful CHs.

every x seconds
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Figure 4.12 - Periodic Mechanism for CH election

NEURON clustering mechanism allows the autonomic reformulation of clusters and
enables the adaptation of the clusters’ number and formation to the existing network
conditions. This mechanism is initiated either because a CH decides to return tothe normal
operation mode or because the CH leaves the network due to an unforeseen situation. In
the first case, when the KPI of the CH passes below a specified threshold, the node stops to
undertake the role of CH and a MSolicitateCHDOWN message is flooded within its cluster.
Nodes update their routing cache and inform neighboring CHs, provided that routing
information for them is available in their routing cache.

The re-clustering mechanism is then invoked and the cluster members decide to
become a CH with the current probability P, If no CH is elected, the nodes join a
neighboring cluster after receiving a neighboring MSolicitateCH message. In the second
case, if the MSolicitateCH message is not received within a period, the node updates the

routing cache and initiates the reclustering mechanism as previously (Figure 4.12). It
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should be noted that the CHs remove any entries from their routing cache related with

neighboring CHs if no relevant MSolicitateCH message is received within a specific period.

4.4.3. Hierarchical Routing
Routing and clustering mechanisms are interrelated in Mesh networks, both of them
targeting to minimize energy consumption. It is desirable that packet forwarding and
routing protocol overhead is distributed among all the mobile nodes according to their KPI
values. This approach preserves scarce mobile node recourses and, thus, extends the
network lifetime.

Energy efficiency in NEURON is achieved by hierarchical reactive routing. Nodes are

organized into a hierarchy of clusters based on network proximity to the CHs. There is no
proactive mechanism to build and maintain a valid routing table as the network topology
continuously evolves. In addition, routing mechanism takes advantage of the routing cache

entries generated during the clustering process, as presented in Section 4.4.2.

MRouteRequest
AmICH ?
Yes Mo
Y Y
IsRoute2TargetKnown ? | Forward2MyCH

Yes | No {check MSGID for cycle

1] ¥ prevention) Y

MRouteResponse MForwardRReq20therCH —

—

Figure 4.13 - Routing in NEURON

The routing algorithm in NEURON presents similarities with the DSR routing protocol.
NEURON adopts some mechanisms from DSR for communication among CHs, while intra-
cluster communication is designed independently. A RouteRequest message is used for
detecting a valid route to a destination node, in accordance to the DSR protocol. In
NEURON, however, the RouteRequest message is not flooded but directly forwarded to
the CH of the transmitting node. The exact path to the CH is known via the MSolicitateCH

messages broadcasted by CHs in regular intervals.
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Figure 4.14 - Route Request Mechanism

When a node desires to establish communication with another node, it initially sends a
RouteRequest message to its CH (Figue 4.13). The message contains the exact path
towards the CH (source routing). If a node receives aRouteRequest message, it initially
checks whether it operates as a CH. This is necessary because the election of new CHs is a
dynamic process and thus new (Hs may be present. If the node is not a CH, then it
forwards the message to the next hop towards the CH according to the disseminated path
from the initiator node. In case that a node along a path is unreachable, aRouteError
message is generated and broadcasted within the scope of the cluster that contains the
broken link. If the message is delivered to a CH during its path, the CH queries its local
cache for the requested route towards the destination. If the valid entry is found, a
RouteResponse message is sent to the initiating node. Otherwise, the CH forwards the
RouteRequest message to its known CHs, exactly as routing is implemented in DSR. The CH
of the destination node will directly reply to the initiator node with the correct endto-end
path (Figure 4.14).

When a route to a destination is known then aMessage Transfer message is initiated.
This message contains the source node, the destination node, the route that must be
followed in the Mesh network in order to reach the destination and aflag that informs the
destination node whether it should respond with a confirmation (acknowledgement). The
Message_Transfer message is used for transferring upper layer data, e.g. overlay topology

formulation.
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4.5 UbiChord as a medium for realization of Autonomic Applications
As already mentioned at Chapter 2.1, the realization of the Internet Connected Objects
Architecture can be achieved as an autonomic service. UbiChord is designed to operate
without any form of centralization. This practically means that any node can participate in
the DHT upon establishment of medium-level connectivity with a participant node. Joining
the UbiChord DHT implies additional low-level signaling cost, than original Chord, since a
node must dynamically identify its relative position in the overlay topology. Participation in
the DHT implies that any node can commit (i.e. put(key, value)) and retrieve (i.e. get[key])
a set of values. We refer to set of values since multiple values may be associated with a
single key.

Also these values can be committed by different nodes. Interaction of the participant
nodes to this multi-value hashmap can be the basis of a brand new service development
and delivery paradigm. Developers may use UbiChord as an instant storage structure
where data can be consistently stored and successfully retrieved by any node in the

network without broadcasts at the application layer.

4.5.1 Service Principles
Indicatively, a topology-visualization service is considered as an indicative service that
requires that any node in the ad-hoc network must have the ability to obtain at any time
(upon request) a valid snapshot of the network topology. In order to develop such a service
without any form of centralization and without rendezvous-based solutions (sink points of
aggregated data), UbiChord can be exploited. In this case, all nodes have to publish in a
predefined key their current list of neighbors. The notion of “predefined key” is the
cornerstone of any service development and delivery according to the proposed layered
approach [P. Gouvas et al. -1, 2010]. For example, assuming that the key “topology” is the
predefined key for storing and retrieving topology related data, then each node; should call
the function putnode(ij(keYiopology, N€ighbor_viewnodes) in order to store the current view of
its neighbors. Consequently, every node that would like to have an up -to-date snapshot of
the topology, has to invoke the function get(keyiopoiogy). The result would be a set such as
{neighbor_vieWnode(), neighbor_viewode(), ...} Where node; and node; are nodes in the ad-

hoc network running the service over UbiChord (see Figure 4.15).
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Figure 4.15 - Keys for Topology Visualization Service

UbiChord may be used following an on demand pushpull model. The application

developer must take under consideration the following three aspects:

Publication policy is regulated by the service developer and is servicedependent.

Policy may be periodic or eventdriven. For instance, in the aforementioned
visualization scenario it is more reasonable for a node to publish its neighbor view
only if a change occurs (i.e. neighbor added or removed).

Retrieval policy is also service-dependent. It depends on how often the published
value-set that exists in the DHT has to be “consumed” by the business logic of a
service running on a node. Total messages required for both publishing and
retrieval (i.e. pushing and pulling) have a logarithmic behavior |. Stoica et al., 2001]

on a stabilized Chord ring.

All interactions that occur with the UbiChord structure are asynchronous.
Moreover no central notion of time exists. This practically means that a staledata

prevention policy must be incorporated to ensure valid datasets in the DHT.

4.5.2 Data validity Problem

It should be stressed that stale (outof-date) data is a two-fold problem. As global time

does not exist among the participating nodes, several entries to the DHT for the same key
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that are committed from the same node must be discriminated. In other words, a clear
indication about which is the latest valid data must exist. Moreover, a DHT entry from one
node is considered to be valid only if the node is part of the DHT. However, a node that
receives a multi-value set that is already announced by many nodes, is not aware if a node
that committed a key-value pair is still in the network (physical or overlay). It would be
unfeasible for this node to check the presence of each node separately due to the
exponential behavior of reactive routing protocols.

An elegant solution to the stale-data problem is the modification of the basic Chord
algorithm so as each entry in the hashmap would require the specification of an additional
volatility parameter. The volatility parameter would be initialized by the publi shing node to
a default value such as putioei(key, volatility value). Volatility parameter could vary
according to the key-publication policy for a specific service. In other words it would not be
reasonable to initialize the volatility parameter to 10 seconds when the business logic of a
service imposes re-publication of a value every 60 seconds. Upon a key-value publication,
the authoritative node for the insertion of this set in the overlay, would initiate a thread
per entry that would decrease -in terms of absolute time- the volatility of the key-value
entry until it expires. Every key-value transfer that could occur due to overlay re-
stabilization would be accompanied by the latest absolute volatility parameter. Although
the existence of one thread per entry would make the DHT inappropriate for resource
limited devices, it is in our future work plans to introduce this volatility parameter. In our
current implementation, we use a more simplified approach for stale-data prevention
based on versioning parameters that accompany the key-value entries. Specifically each
key-value publication from a specific node (for a specific service) is accompanied by a

version that is increasing per each key. Consequently each publication is as follows:
DPlUtnodety(k€Vservice), [Valueyy), versionymserviceqy, node;]) Equation 7

where node; is the publishing node, service, is the service that utilizes a specific predefined
key (keyservicey) in order to operate, value;m is the value of the specific key during
publication time#, and version versionuserice) iS an auto-increment versioning number
associated with the specific key(keyservicey). In €ach node that servicey is bootstrapped, a
publication similar to that described in (1) must be repeated containing the new value and
the new version (increased by one) every time period (f).i0q). The parameter #,..ioq is
defined by the developer and is dependent to the business logic of the required service.
For example, an instant chatting/social application has completely different needs than a
network topology visualization application as far as #,eqi0q is concerned. In this point, it must
be clarified that although #,.,0s corresponds to a absolute time duration, publication time is
different since there are overheads introduced by the routing layer, the topology

maintenance layer and the DHT layer. Also it should be noted that the value operand of
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the put(key,value)operation does not contain only the value of the key (for the specified
service) but also the node that committed the value and the version that accompanies the
commit. Consequently, the multi-value set that exists after several time periods for a

specific keyservicen is as follows (as retrieved by node;):
getnodeiy(keVservicey) =1 ..., [valuey, version,, node;], [value,, version,, nodey], ...} Equation 8

In order for a node to identify if an entry is considered invalid it maintains a local list for
every key after each retrieval (i.e. invocation of getnode(i)(keyservice(k))) that is structured

as follows:

validList(node(i), key, service(k))={[Abs(max(versionnode))— versionuode),
value(max(version,oge))], ...} Equation 9

Consequently, the list contains the relative version that is considered as a starting bias
for each node when compared with the retrieval node’s version. After each retrieval a new
validList is created (based on Equation 9). By calculating the derivative between two
successive retrievals from the DHT, we can infer if a node is absent by setting a threshold

to the acceptable range of changes.
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Figure 4.16 - API for next-generation of services
The usage of the aforementioned technique can guarantee valid data in a seamless

way for the application developer. Conclusively, a developer can focus on the usage of a

put/get API (Figure 4.17) ignoring network heterogeneity and data consistency.
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5. Prototype Implementation details

5.1 Architectural Design
UbiChord implementation comprises of eight parallel asynchronous threads that operate
independently in order to achieve DHT functionality (see Figure 5.1). Synchronization

between threads is achieved through the concurrent-structures available at Java

Framework.
ChordController
InterfaceController UbiChord e —— = i)
~-checktimeout : double(idl) =200 - ————— ——— — E f—————— I !_ —+setSuccessor()
rcheckVeinats) [m—————— E k————— 51 +setPredessesor()
R RO R R o
| T e
|
SocketServer : I : L1 :
-sockettimeout : doublefidl) = 3000 | : : : : | TmanController
+bindVELinkLocalAddrassi) = ! - - ——
+opanSocket( | Il L !_ _;ﬁ:ﬂmdﬂmu! : doublefidl) = 2000
*acceptPackat() : PackatController | ! N Gﬁgﬁ:’;ﬁ] -
| -packettimeout : doublefidl) =5 | | | +ForceRestabilize()
— ' +RouteRequest]) 11
SolicitateController I oqe
+RouteR 11 atControl
Csoltimeout - doublefidl) = 200 |- — — — — | +Rm;,ﬂ:e? 11 OutPack far
+solicitate]) +TransferProtocolPacket() | L— — —{-packettimeout : double{idl} = 1000
: +reSendPacket])
|
: CacheValldatorController
\_ _ _ _|checktimeout ; double(id]) = 100
+checkRoutingCache()
+optimiseRoutingCache()

Figure 5.1 - UbiChord’s threading model

In the following sections each of these threads are separately analyzed.

5.1.1 InterfaceController-Thread
The InterfaceController-Thread is responsible for monitoring the physical interfaces of the
host that runs the software in order to identify if an IPv6 interface is present. The presence
of an IPv6 interface is imperative since in order to achieve a zero-configuration DHT, the
problem of network layer auto-configuration must be solved. It is not in the scope of
UbiChord to provide a solution for this problem. Instead UbiChord relies on the robustness
of IPv6 in order to confront this issue.

When a node “physically” joins a network (wired or wireless) then this node must
acquire a network address that is resolvable and meaningful all across network. This is
essential for direct communication between the nodes. In IPv4 based networks, IP
assignment is delegated to DHCP servers that require manual configuration in order to

provide IP addresses that are compatible with the address space of the subnet mask.
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Beyond manual configuration, the IPv4 based assigned address is only meaningful in the
specific LAN which prevents mobility of the node from one network to another network.

The incorporation of IPv6 networking in UbiChord’s networking layer is imperative. It
could be argued that the competitive advantage of IPv6 when compared to IPv4 is the
extremely large address space, which allows a vast amount of nodes to be connected.
However, the existence of large address space consists only one of IPv6’ merits.
Other benefits include support for mobile devices, simplified address
auto-configuration, improved address management, built-in security with end-to-end
IPSec etc.

In parallel, IPv6 enables more levels of hierarchy for route aggregation compared to
IPv4. On the IPv6 era, billions of new devices such as cell phones, PDAs, appliances and
vehicles can be IPv6 enabled; therefore, the Internet can extend its reach to billions of new
users in densely populated regions of the world.

Regarding mobility, mobile access of the Internet becomes simplified to a great
extent, as it incorporates a specific protocol, called Mobile IP to support mobility. In
an IPv6 environment, there is support for roaming between different networks. Moreover,
security is a matter of increasing concern. IPv6 incorporates Internet Protocol security
(IPsec), which provides authentication, encryption, and compression of IP traffic. IPSec is a
set of open standards meant for the protection of data communicated over Internet
Protocol (IP) networks.

It achieves this protection through the use of cryptographic security services. IPsec
supports network-level peer authentication, data origin authentication, data integrity,
and data confidentiality (encryption), and replay protection. The Internet Engineering
Task Force (IETF) IPsec Working Group has developed the standards for IPSEc.

Finally, regarding IPv6 adoption, the most significant feature is extensibility. IPv6 has
been designed to be extensible and offers optimized support for new options and
extensions. UbiChord inherits auto-configuration and mobility features of IPv6 and
can even be bundled as an IPv6 extension that will facilitate the upper layers of the
approach (topology creation and distributed storage) by proposing the appropriate IPv6
extension headers.

The InterfaceController-Thread checks periodically (the initial timeout is 200msec) the
physical interfaces to identify if a new IPv6 enabled interface has been activated or de-
activated (method: checkv6lnets()). In case of activation, the link-local address of the
specific interface is propagated to the MulticastServer-Thread in order to “bind” it. The
usage of link-local-address is the cornerstone of zero-configuration. A link-local address is
an IP address that is intended only for communications within the segment of a local

network (a link) or a point-to-point connection that a host is connected to. Link-local
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addresses allow addressing hosts without using a globally-routable address prefix that
must be obtained from a local or regional Internet registry.

Link-local addresses are used in stateless address auto-configuration procedures for
IPv6 to assign IP addresses to network interfaces when no external, statefull mechanism of
address configuration exists, such as DHCP, or another primary configuration method has
failed. In IPv6, link-local addresses are always assigned, automatically or by configuration,
and are required for the internal functioning of various protocol components. Link-local
addresses follow the fe80::/10 notation prefix. The Data-Flow-Diagram of the

InterfaceController-Thread is presented at Figure 5.2.
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Figure 5.2 - InterfaceController flow

133



5.1.2 SocketServer-Thread
The SocketServer-Thread is responsible for “accepting” all packets that are transmitted in
the medium. In the frames of UbiChord implementation Java Socket technology has been
used. The maturity of IPv6 Socket stack allows the creation of socket-based
communication among IPv6 enabled devices. In fact, during the transition period from IPv4
to IPv6 Java offers a homogenized API for both IPv4 and IPv6. In other words, an

application developer can develop a socket-based application in an IP-agnostic way (see
Figure 5.3).

IPv6 Socket { IPv4 Socket J \ IPv6 Socket J

! $

$

=
!

Source : Rino Nucara, GARR, EuChinaGRID IPv6 Tutorial

Figure 5.3 - Java’s IPv4/6 homogenized API
UbiChord is fully functional, out of the box, only in IPv6 environments since it heavily
relies on IP auto-configuration mechanism of IPv6. However, UbiChord can operate also in
IPv4 networking environments assuming that a third party has undertaken the IP
assignment. Moreover the dual-stack development guarantees that UbiChord can interact

with IPv4 & IPv6 UbiChord clients (see Figure 5.4).
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Figure 5.4 - Dual-stack socket development paradigm
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The Data-Flow-Diagram for the SocketServer-Thread is presented at Figure 5.5.
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Figure 5.5 - SocketServer flow

5.1.3 SolicitateController-Thread
The SolicitateController-Thread is responsible for announcing the presence of a node to its
neighbor. This mechanism can be considered as a substitute of the available Neighbor
Discovery Protocol (a.k.a. NDP) that already exists in IPv6. However, since UbiChord has
been developed following the dual-stack pattern a custom Neighbor discovery mechanism
has been introduced. According to this mechanism every soltimeout milliseconds (initially
set to 200msec) a solicitation packet is broadcasted to a default IPv4 and IPv6 group using
the solicitate() method.

Neighbor identification is an extremely critical procedure because neighbors

constitute the 1-hop entries of UbiChord’s routing-cache as we will see in the
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PacketController-Thread analysis. Moreover the addition of one neighbor may result in
shortest routing paths as we will also examine at the CacheValidatorController-Thread. On
the other hand, the removal of one node may invalidate a set of existing routing paths
which contains the following chain-part: ... > MyNodelD - MyNeighborID - .... The Data-

Flow-Diagram for the SolicitateController-Thread is presented at Figure 5.6.

checkLinkLocal
addresses()

At least one
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BroadcastSolicitation}

[

Figure 5.6 - SolicitateController flow

5.1.4 OutPacketController-Thread
The OutPacketController-Thread is responsible for sending outgoing packets and keeping
track of the transfers in case of communication that requires acknowledgement (at the
application layer). An out_packet_hashmap (implemented as ConcurrentHashMap) is fil led
by high level protocols that require the communication between two nodes. This controller
examines the timestamp of an outgoing packet. If the packet has never been sent in the
past and the route to the destination is unknown the normal route -request procedure is
followed. After the route-discovery the packet is sent. If the application layer imposes an
acknowledgement then the OutPacketController keeps track of the number of re-sends. If
this number exceeds a limit the packet is dropped and the destination is considered un-
reachable. The Data-Flow-Diagram of the packet queuing strategy as implemented in the

frames of UbiChord is presented at Figure 5.7.
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Figure 5.7 - UbiChord’s outbound queuing strategy

5.1.5 PacketController-Thread
The PacketController-Thread is responsible for handling all incoming packets from the
SocketServer-Thread. Every packet that arrives is persistently stored at an inpacketqueue
which is instantiated as a ConcurrentLinkedQueue provided by Java 1.6. While the
SocketServer-Thread is responsible for en-queuing packets, the current thread is
responsible for de-queuing packets and handling them based on their protocol type. There
are specific packet-types that reflect the protocols that have been implemented and
thoroughly analyzed in the chapter above. In the following table the packet-object

members are provided.

public class Packet implements Serializable {
/[Transmit types
public static int BROADCAST = 0;
public static int UNICAST = 1;
/IProtocol types
public static int SOLEXIST_TYPE =0; // Neighbor Discovery protocol
public static int ROUTE_REQUEST = 1; // Route Discovery protocol
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public static int ROUTE_REPLY =2; // Route Discovery protocol
public static int ROUTE_ERROR = 3; // Route Maintenance protocol
public static int MSG_TRANSFER =4; /Route Maintenance protocol

/[Application types

public static int PING = 0; //echo service

public static int PONG = 1; //echo service

public static int MSG = 2; //Messaging

public staticint FILE =3; //Messaging

public static int SOCKET =4; [IMessaging

public static int NEIGHBORGOSSIP = 5; //Neighbor Gossiping
public static int TMANGOSSIP = 6; //Node2Node Gossiping

/l'init parameters
public static int HTL = 3;

/[Type of messages

public int transmittype=0; /le.g. BROADCAST-UNICAST
public int prottype=-1; //e.g. SOLEXIST_TYPE-ROUTE_REQUEST
public int applicationtype=-1; //e.g. PING or PONG

public boolean requiresAck = false; //flag for Acknowledgement

//ICommon attributes
public String packetid = ™";
public String sender;

public String target; /IONLY for UNICAST

public String macsender=""; /Imacsender(e.g. atlas)

public String mactarget=""; /IONLY for UNICAST messages

public String routeHeader=""; //Used: for MessageTransfer to identify the route
public int htl = -1; /IHTL -1=infinite

public long transmittimestamp;

/[Protocol specific attributes
public byte[] binmsg; [ffor currying binary data

Table 5.1 - Packet Object Members

First of all, a packet is characterized by its’ transmit type. The available transmit types
are BROADCAST and UNICAST. This attribute, as expected, affects the routing layer of
UbiChord. Beyond transmit-type, each packet contains a protocol type. There are three
types of protocol types: Neighbor-Discovery, Routing and Application-Level type. Neighbor
discovery type is represented by one message-type which is SOLEXIST_TYPE while Routing
type is represented by ROUTE_REQUEST, ROUTE_REPLY and ROUTE_ERROR message. Only
the SolicitateController-Thread generates SOLEXIST_TYPE messages. Finally, as Application-
Level type we characterize all packets that are “generated” and “consumed” by upper
protocols such as Gossiping, Messaging, Ping etc.

Since there are different Packet types there is a need for different application-specific
attributes. However there is a common set of attributes that are mandatory for all types
of Packets. These are sender, target, macsender, mactarget, routeHeader and htl. Sender
and target represent the sending node and the final destina tion node while macsender and

mactarget represent the 1-hop away communication parameters during the routing
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procedure. E.g. if a Gossiping Packet has to be routed from node A to B through nodes X ,Y
(i.e. A > X > Y = B) then when the PacketController-Thread processes the packet at node
X, the attributes of the packet would be: Transmit-type: UNICAST, Protocol-type:
MSG_TRANSFER, Application-type: TMANGOSSIP, sender: A, target: B, macsender: X ,
macsender: Y, htl = at_leaset_3. Hops-To-Live parameter is defined initially by packet
sender and can be optimised if a node is aware of the network size and density. The Data-

Flow-Diagram for the PacketController-Thread is presented at Figure 5.8.
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Figure 5.8 - PacketController flow

5.1.5 CacheValidatorController-Thread
The CacheValidatorController-Thread is responsible for validating the routing cache. Each
node, as mentioned in the chapter above, maintains a multi-value map that contains all

possible routes for a specific node. The ConcurrentHashMap Java object is used for
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implementation purposes. UbiChord uses two levels of Cache; one primary and one
secondary. Primary cache contains the shortest route to a node.

The roles of the CacheValidatorController are bilateral; in case of the discovery of a
new node or route the RoutingCache is updated and validated. “Update” refers to the
process where an alternative route of an existing destination (node) has already been
identified and is shorter than the existing one. In this case the primary routing Cache has to
be updated. It must clarified that “shorter” refers to hops which is not always
representative. Discovery mechanisms for the “new route” vary from Route_Request
announcements to Solicitation announcements.

On the other hand, when a Route_Error message is intercepted the RouteCache has to
be validated again since all routes that contain the broken link have to be removed.
Further revalidation is required is case of removal since some links in the secondary Cache
may have to be propagated in the primary Cache. The Data-Flow-Diagram for the

CacheValidatorController-Thread is presented at Figure 5.9.
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Figure 5.9 - CacheValidatorController flow

5.1.7 TmanController-Thread & ChordController-Thread
The tasks and flows of TmanController-Thread and ChordController-Thread are thoroughly
described in Chapter 4.2. The development was based on an existing Chord
implementation called OpenChord. The adaptations that took place in order to operate on-
top of Mesh networks are: a) the bootstrapping procedure which is now based on

gossiping (i.e. every node joins the overlay after its relative position is identified), b) the
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asynchronous maintenance operation of figure-table-fixing that has become trigger-based
(i.e. when gossiping procedure stabilizes) c) successor/predecessor maintenance that is
now delegated to low-level mechanisms and d) all socket based communication is
substituted by reactive routing mechanisms. The pre-existing OpenChord architecture is
depicted at Figure 5.10.

Java application

n =
‘(" )iAsynCherd interface Chord interface/( )’
. T

Chord logic

(7 7R\
l_\ J /)
i f

Communication Proxy Endpoint
abstraction
layer m m
Communication Proxyimpl Endpointimpl
layer

Figure 5.10 - OpenChord layering

The architecture of OpenChord is divided into three layers. On the lowest layer the
implementation of the employed communication protocol based on a network
communication protocol (e.g. Java Sockets) is located. On top of this communication layer
a communication abstraction layer resides, that provides interfaces, which abstract from
the actually used communication protocol.

For this purpose two abstract classes have been developed, which represent the
communication abstraction layer, and provide factory methods, to create instances of
them for a specific communication protocol. The communication abstraction layer
provides interfaces for synchronous communication between peers. Instances of class
represent chord.com.Proxy (Proxy) references to remote peers participating in an
OpenChord overlay network. For each node in an OpenChord network an instance of

chord.com.Endpoint (Endpoint) provides a connection point for remote peers with help of
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Proxy for a specific communication protocol. The concrete implementations for a
communication protocol are determined with help of the URL of a peer.

Based on the communication abstraction layer the logic of the Chord overlay network
such as how to find the successor of a peer has been already implemented. This layer
provides two interfaces to Java applications, which abstract from the implementation of
routing within the Chord DHT. One interface chord.service.Chord (Chord) provides
synchronous methods to retrieve, store and remove values within the DHT. The other
interface chord.service.AsynChord (AsynChord) can be used for asynchronous retrieval,
storage, and removal of data from the DHT. The Chord logic layer also is responsible for
replication of data and maintenance of the properties that are necessary to keep the DHT
running. These processes are transparent to the application using OpenChord, but can be
configured. The properties to configure maintenance and replication of the Chord DHT are

¢ Chord.successors: This property must be set to an integer value and represents the
number of replicas that are created from a data value.

¢ Chord.StabilizeTask.start: This property must be set to an integer value and specifies
the number of seconds to wait until the task to stabilize the Chord network is started, after
Chord has been initialized.

e Chord.StabilizeTask.interval: This property specifies the timespan in seconds
between successive executions of the task to stabilize the Chord network .

¢ Chord.FixFingerTask.start: This property must be set to an integer value and specifies
the number of seconds to wait until the task to fix the routing table of a Chord peer is
started, after Chord has been initialized.

e Chord.FixFingerTask.interval: This property specifies the timespan in seconds
between successive executions of the task to fix the routing table of a Chord peer.

¢ Chord.CheckPredecessorTask.start: This property must be set to an integer value and
specifies the number of seconds to wait until the task to check the predecessor of a Chord
peer is started, after Chord has been initialized.

e Chord.CheckPredecessorTask.interval: This property specifies the timespan in
seconds between successive executions of the task to check the predecessor of a Chord

peer.
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5.2 Emulation Environment
Since UbiChord is “shipped” as a standalone Java application, its extensive testing in real
environments is limited to the resources of a laboratory, since no physical large scale
experiments can be setup. Therefore, an emulation environment has been created to
emulate large and diverse topologies. The emulation environment comprises of two
software components: one “emulation filter” that is activated on-top of UbiChord and one
graphical tool for topology and experiment editing. The way UbiChord is “tapped” by the

emulation filter is depicted at Figure 5.11.
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Figure 5.11 - Emulation Business Logic

More specifically, the filter is applied at the MulticastServer-Thread. During UbiChord’s
bootstrapping a specific variable (i.e. boolean is_emulation_mode_activated) indicates
whether the emulation filter should be applied or not. If the filter is applied, every packet
that is transmitted is filtered based on the source and destination address. The filtering

business logic is based on a topology file which is common for all nodes and provides

information per each node about which node is considered to be a neighbor.
The topology file can be created manually, however a specific interface has been
developed in order to create and manage these topology-files. The interface of the Ul tool

is depicted at Figure 5.12.
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Figure 5.12 - Emulation Environment User Interface

Through the “Network” menu-item the user can create a topology, load an existing
topology for editing, save an edited topology and add an additional virtual node to a
topology. However, from the research perspective, there are specific topologies that are

interesting such as circular topologies, social-networking topologies etc.
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Figure 5.13 - Topology creation form

In order to increase the level of automation for the topology creation a topology-
generation module has been developed and integrated in the Emulation Environment.

Through the “Emulation” menu-item specific overlays are automatically generated based
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on configuration parameters that are graphically prompted as illustrated at Figure 5.13. An

auto-generated hypercube-overlay initialized for 12 nodes is depicted at Figure 5.14.
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Figure 5.14 - Hypercube topology visualized

[

A user can change the visualization mode of the auto-generated topology.
Furthermore, the topology can be edited through the addition or removal of nodes.
However, an emulation experiment requires more input-parameters than the initial
topology. Additional mandatory parameters are the duration of the experiment and the
Node_failure_rate. These mandatory parameters can be inserted through the “Create

Experiment” menu-item as illustrated at Figure 5.15.
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Figure 5.15 - Experiment creation
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Moreover, these mandatory parameters are essential for the static part of an
experiment. There is also a dynamic part of configuration which affects the application-
level events that have to be generated e.g. dhtput(vl,k1) at time: 10s from: nodel. These
application-level triggers are also included in an experiment descriptor (i.e. a file with
.experiment suffix). It must be highlighted that application-level triggers can only be
manually injected in the .experiment file since no Ul has been developed for such triggers.

When a node bootstraps a Console Shell is available to the end-user in order to

monitor and control UbiChord’s functionality (Figure 5.16).

Figure 5.16 - Console menu

The DHT-related available choices are:
e put:insertsin the DHT a key-value pair,
e get:retrieves a value based on a key,

e dhtprint: it prints the successor list and the finger -table of the DHT.
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6. Simulation & Emulation Results

6.1 Simulation Results
In this section we investigate the behavior of the proposed implementation, as it is
described in Section 4.3. Each layer that was presented -except Neighbor-to-Neighbor
layer- was implemented separately in PeerSim [M. Jelacity et al., 2010]. We assessed the
performance of each layer in terms of messages exchanged, generated errors and
convergence capability in diverse network sizes. Each simulation was executed multiple

times and average values were considered in our analysis.

6.1.1 Layered Approach Performance
In the following scenarios, multiple nodes are simultaneously activated in the simulated
ad-hoc network. Key parameters of the topology are the number of nodes (N) (size of the
network) and the average number of neighbors (d) (density degree). In all simulations, any
operational node automatically recognizes its neighbors and joins the overlay network.
Each node keeps state related to its successor in the ring topology. In case of node failures,
established connections are torn down and re-stabilization procedures take place.

Initially, we compare the performance of the proposed adaptations in terms of total
number of messages exchanged until the overlay ring topology is formulated. Simulations
are taken for practically sized and degree (density) networks. The Hops-To-Live parameter
in DSR protocol was set to infinite and optimum respectively.

In Figure 6.1, the performance of the proposed approach with the use of the adapted
DSR compared to the pure DSR is depicted. It is evident that the use of pure DSR
underperforms significantly compared to the adapted DSR. This is reasonable, since the
exploitation of routing cache information —generated by DSR— in adapted T-MAN makes
easier the identification of the successor nodes in topology formulation phase and thus

requires less messages.
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Figure 6.1 - Adapted DSR VS DSR messages

At this point, it is important to note that the selection of T-MAN instead of adapted T-
MAN was not considered a priori as a viable solution, since T-MAN is not able to converge
faster than the adapted T-MAN. This is due to the fact that T-MAN does not consult the
existing routing caches of the nodes and therefore more cycles are required for overlay
topology stabilization [M. Jelacity-1 et al., 2005].

In Figure 6.2, we compare the performance of adapted T-MAN and exhaustive tree-
based approach. It can be shown that the number of messages for topology formulation in
the tree-based approach is significant larger compared to the adapted T-MAN. This is due
to the fact that in the tree-based approach, exhaustive neighbor to neighbor
communication takes place and also that in the adapted T-MAN approach the information,

that is available in the nodes’ routing caches is exploited.
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Figure 6.2 - Adapted T-MAN VS tree-based messages

These simulation results led us to focus on the adapted T-MAN algorithm and further
investigate the impact of other parameters, such as the routing HTL parameter or the
network degree in the overlay topology formulation and maintenance process. In Figure
6.3 we can observe that as the number of nodes in the network increases, the number of
adapted T-MAN messages also linearly increases. In addition, fewer messages are required
for topology formulation in dense networks (high degree) as each node exchanges more
precise gossiping messages. Precision is achieved due to the scoring of larger number of
neighbors. Finally, the number of messages remains almost stable in large degree

networks.

149



30‘00 T | T | T | T | T T
L | =—= aT-MAN TotalMSGs (Degree = 3, HTL = inf) _
e—a aT-MAN TotalMSGs (Degree = 5, HTL = inf)
2500 [~ | +—= aT-MAN TotalMSGs (Degree = 10, HTL = inf) -
| | =—= aT-MAN TotalMSGs (Degree = 15, HTL = inf) |
wn "  — —
& 2000
@
_E. B _
2
= 1500 — —
z
= L o|
=
= 1000 —
500 —
U 1
20 40 60 80 100 120 140

Nodes
Figure 6.3 - Adapted T-MAN performance with HTL infinite

In Figure 6.4, the effect of the Hops-To-Live (HTL) parameter to the total number of
adapted T-MAN messages is depicted. In case the HTL parameter is set to the optimal
value according to the Equation 2 in Section 4.1, the number of T-MAN messages is slightly
increased compared to the previous case. As expected, by limiting the HTL parameter we
reduce the flooding of routing messages across the network -to the absolute minimum for
addressing routing needs- and, thus, smaller routing caches in each node are exploited by

adapted T-MAN stabilization phase.
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Figure 6.4 - Adapted T-MAN performance with HTL optimum

Furthermore, we aim to observe the amount of DSR’s route-request messages that is
exchanged until the overlay ring topology is formulated. In Figure 6.5 and 6.6, the HTL
parameter is set to infinite and to optimum respectively. As shown in both figures, more
route-request messages are generated as the size of the network increases. This is
expected as DSR messages are generated in response to T-MAN messages, which are
analogous to the number of nodes (Figure 6.3 & 6.4). Furthermore, sparse networks
require more routing messages than dense networks, especially as the number of nodes
increase due to smaller number of entries generated via neighbor-exchanges. The adapted
T-MAN affects the flooding of routing messages in the network and, thus, the routing

overhead is significantly reduced by approximately an order of magnitude.
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Figure 6.6 - DSR Route Requests with HTL optimum
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Thus, we conclude that the effect of the HTL parameter is extremely important
because, when the parameter is set to its theoretical optimum value, adapted T-MAN
messages were slightly increased while in parallel the routing overhead was reduced by an
order of magnitude.

Figure 6.7 depicts the number of adapted T-MAN messages for different network sizes
and variable density. An important observation is that the number of messages converges
quickly for different network density degrees. This observation is further exploited in
building clustering algorithms, where the network density is used to estimate the best

clustering size.
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Figure 6.7 - Adapted T-MAN messages for various sizes and densities
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6.1.2 Indicative Service Bootstrapping
Upon stabilization of the overlay ring, an indicative visualization service is provided. Each
node stores topology data that is available through information acquired from neighbor
discovery messages and also from information existing in the routing cache of each node.
All nodes use a predefined key (e.g. “network_topology”) in order to identify the
responsible node for the storage of the visualization data. The visualization cost, i.e. the

total number of messages exchanged for the visualization data to be stored, is calculated.
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Figure 6.8 - Visualization Cost

Figure 6.8 depicts the number of adapted T-MAN and DHT_PUT messages for constant
and variable network density. In the first case, the network expanses without any change
in its density while in the latter case the density is proportional increased as the network
sizes increases. We notice that the number of DHT _PUT messages required for the
provision of the visualization service, is slightly affected by the network size and density. It
is important to note that in case that the proposed adaptations in the T-MAN and DSR
algorithm were not applied, the visualization cost would be significantly higher, as already
shown in Figure 6.1.

In the last set of simulations, we investigated whether the visualization service is

robust to multiple node failures. Under the unfavorable condition that 20% - 30% of
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network nodes become simultaneously non-operational and for various network sizes, we
measure the number of DHT put(key, value) calls that generate DSR_Route_Error messages
for any broken link identified. Such messages are flooded across the network in order to
update the routing cache for future requests (see Section 4.3.1). As shown in Figure 6.9,
the majority of the put(key, value) requests are successfully completed without any delay
(error). For example, for a 40-node network and 30% node failure, 17 messages were
successful while another 10 failed. Even if a put(key, value) request initially fails due to
routing inconsistencies, the requests will be eventually be successful after the routing
tables are updated. Therefore, there is only a time penalty for the service delivery after a
major network failure. It could be argued, therefore, that the visualization service remains
operational even when a significant portion of nodes (and attached links) fails. Similar
trends should be noticed for other distributed services, which have to be verified with

further simulation experiments.
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Figure 6.9 - DHT_PUT failures
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6.1.3 Simulation of Optimization Mechanisms - NEURON evaluation
In this section the performance of NEURON for a wide set of topologies is evaluated.
NEURON has also been developed in the Peersim simulator. A visualization module is also
developed as a Peersim extension that provides a view of the clusters with their CHs that
are formulated in the Mesh network at each cycle period of the simulation. In order to
simulate the limited resources of the participant nodes of the Mesh network, a custom
dynamic model is incorporated that imposes penalties according to the nodes operations.

In the simulations multiple nodes are simultaneously activated without any
preconfigured state information. Each simulation lasts 2,000 cycles, while every node is
initialized with 100,000 battery units and 1,000 routing cache memory units. Battery and
memory penalties are defined for serving each message in the network. Each entry in the
routing cache occupies one memory unit, each packet transmission or reception drains the
available battery by three units, while each packet processing action (e.g. protocol
encapsulation) that is accomplished by a node drains the battery by one unit. The periodic
broadcasting of MSolicitateCH messages is set to five cycles, the KPI threshold (see Section
4.4.2) for transition to a new CH is set to two, and the threshold wher e a CH switches to
normal mode is set to 50%. All the nodes are considered with equal battery and memory
capabilities at their initial deployment. The number of nodes varies from 50 to 12,800
while the density varies from 3 to 36.

The performance of each mechanism is assessed using multiple criteria, such as
messages exchanged for the operation in steady state, convergence capability, precision in
the estimation of parameters, behaviour of the probabilistic techniques, energy effici ency
and quality of distribution of CHs in diverse network sizes and densities. Simulation results
that are related with the creation of the overlay network and NEURON’s suitability for
deployment of advanced services in the Mesh network are also presented. Each simulation

is executed five times and average values are considered in our analysis.
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6.1.3.1 Evaluation of the Autonomic Estimation Algorithm
The Autonomic Estimation Algorithm, aiming to estimate two network parameters, is
activated right after the mobile nodes become operational. In each node, the algorithm
converges if the estimated parameters’ values, between two consecutive cycles, are less
than 5%.

Figure 6.10(a) shows the number of messages that are exchanged until the algorithm
converges to the estimation of the density and the size parameter for various sizes and
densities. Figure 6.10(b) shows how these messages are distributed between nodes. There
is a linear relationship between the total number of messages exchanged and the network

size. It derives that the algorithm convergences without imposing significant overhead

since the average number of messages per node remains small and stable even for large-
scale networks. The autonomic estimation process may be repeated periodically in

predefined number of cycles, related with the dynamicity that is present in the Mesh

network.
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Figure 6.10(a) - Messages for Network Density and Size Estimation
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Figure 6.10(b) - Messages for Network Density and Size Estimation per node

Figure 6.11 presents the cycles that are necessary for the algorithm to converge.
Stable behavior is achieved for each network density independently from the network size.
The algorithm converges in less than 20 cycles in sparse networks and in less than 10 cycles
in dense networks, independently of the network size. In dense networks, convergence is

faster since more messages are exchanged at each cycle.
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Figure 6.11 - Cycles for convergence of the estimated parameters

The Autonomic Estimation Algorithm achieves adequate precision for the estimation
of the network parameters, as presented in Figure 6-12(a) for the density estimation and
Figure 6-12(b) for the size estimation. For the density estimation, the deviation from the
real values is less than 9% in all cases and remains approximately constant for a given
network density. For the size estimation, the deviation is less than 20% for sparse netw orks
and less than 10% in dense networks. In both cases, higher precision is noticed in dense

networks since averaging is performed between multiple neighbors in each cycle.
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6.1.3.2. Clustering and Routing Mechanism Evaluation
A visualization module is developed for the dynamic illustration of the clustering process
and the distribution of the CHs within the WSN. It is noticed that the clusters’ distribution
improves (qualitative metric) over time since the probabilistic techniques used tend to
homogenize the size and form of the created clusters and thus distribute the clustering
overhead among the elected CHs. Two indicative screenshots are presented in Figure 6.13
where clusters are distinguished.

Figure 6.13 - Cluster Visualization
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In Figure 6.14, the comparison of the number of CHs that are elected in the simulation
environment with the theoretical ones according to the Pt (refer to Equation 5) is shown.

As it is expected, the theoretical and simulation results are closely related.
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Figure 6.14 - Theoretical and Practical number of elected CHs

An important characteristic for the optimization of the clustering process is the
adaptation of the clusters’ size according to the changes in the network topology. In cases
of more dense networks, it is desirable the creation of larger (in size) clusters since nodes
are close (in number of hops) to each other. The existence of less CHs with small distances
from their members improves the energy efficiency of the WSN (refer also to Section
6.1.3.3).

In Figures 6.15(a) — (c), the average size of the clusters that are created is presented
for fixed and variable probability (refer to Equation 5). In the latter case, the trend is the
creation of larger in size clusters in dense networks in opposition to the first case where

the cluster size remains stable. Self-optimization of the clustering process is therefore

achieved. However, more optimal equation for the Py probability may be selected in
case that, smaller clusters are desirable in dense networks. Furthermore, great variation is
present in small-scale networks [Figure 6.15(c)] due to the impact that has the probability
in the cluster size, as the number of the elected CHs significantly affects the average
cluster size. This variation is decreased as the period that NEURON is applied in the WSN

increases since probabilistic techniques follow an opti mal behavior.
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Figure 6.15(b) - Cluster Size for P¢ust = 4%
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Figure 6.15(c) - Cluster Size for variable P¢st

The average number of route entries that are stored on each node’s routing cache
after the cluster formulation process is shown in Figure 6.16. This number is critical since
mobile nodes may present memory constraints. Pyt is variable according to Equation 5. It
is shown that the number of route entries increases slightly as the size and the density of
the network increases. However, this number remains bounded, even for large networks.
In sparse networks, an average routing cache has 50 entries while in dense networks an
average routing cache with 150 entries is needed. Since the maximum size of a routing

entry is 45 bytes, 15kB of routing cache size is adequate for all the mobile nodes.
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Figure 6.16 - Average entries in each node’s routing cache

In addition to the number of route entries, a qualitative metric is the percentage of
the total route entries that exists in the CH’s routing caches since these entries are used
from the routing functionality in NEURON. This metric is depicted in Figures 6.17(a) - (c) for
fixed and variable probability. As the number of CHs increases in the network, the
percentage of the total routing entries that exist in their routing caches also increases. This
is shown in Figures 6.17(a, b), where the selection of larger value for the stable probability
results to higher percentages of routing cache entries in the CHs.

When this percentage is smaller, intra-cluster communication is facilitated since the
nodes that are not CHs have available routes for other nodes within the cluster and do not
need to communicate with their CH for establishing a route towards them. This percentage
is smaller for dense networks due to the greater overlapping among the cluster zones and
the existence of multiple paths toward a CH. Nodes in the overlapping regions store
routing entries towards more than one CH. The percentage also increases as the size of the
network increases while when a variable probability is used [Figure-6.17(c)] the percentage

is small for dense networks and large for sparse networks.
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In Figure 6.18(a), the total number of routing messages that are exchanged until the
clustering formulation is completed is presented, while in Figure 6.18(b), the same number
per node in the WSN is shown. More routing messages are exchanged in dense networks,
due to the nature of the controlled flooding mechanism that has been adopted from the
MSolicitateCH message. Although cluster formulation messages are confined and cycle-
prevented as discussed earlier, the existence of multiple connections for each node creates
an analogous routing overhead that is avoided in sparse networks. Furthermore, in Figure
6.18(b) it is shown that the clustering formulation mechanism is scalable since the number
of messages per node for different densities remains either stable or slightly increases as

the network size increases.
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Figure 6.18(b) - Total number of messages exchanged for cluster formulation/node

168



Upon completion of the clustering process, routing functionality exploits the available
information in the routing caches of the mobile nodes. In Figure 6.19(a) and Figure 6.19(b)
the total number of RouteRequest and RouteResponse messages that are exchanged in
order a node to identify a valid route, are depicted. The number of the generated
RouteRequest and RouteResponse messages is radically reduced as the network density
increases since more routing information is already available in the nodes. Thus, NE URON’s
scalability is addressed as the routing overhead (in number of messages) is considered low.
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Figure 6.19(a) - Route Request Messages Cost
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6.1.3.3. Energy Efficiency & Topology Formulation Evaluation in NEURON
Simulations are performed in order to assess the energy efficiency of NEURON
mechanisms and their impact to the network lifetime. Network lifetime refers to the time
period where all the nodes of the network (or a very high percentage of them) are
operational. The network size is set to 1,000 while the initial energy of each node is set to
100,000 units. Simulations are terminated when the existing Mesh is split into two or more

isolated groups as nodes leave the Mesh network when their battery is exhausted.
In Figure 6.20(a) the number of nodes that are alive while the number of cycle
increases is shown for fixed and variable probability and different densities. The threshold
where a CH switches to normal mode — when the KPI of the CH goes below it — is set to

50%. It is noticed that the network tends to extend its network lifetime as the number of

alive nodes reduces steeply after a certain number of cycles. This means that the available

power of the mobile nodes is almost the same and thus they run out of power in a few
cycles. Furthermore, it is shown that the network lifetime is longer in the case of applying
the variable probability and in case of more sparse networks. This is reasonable since
fewer messages have to be exchanged in sparse networks for cluster formulation and

maintenance. In Figure 6.20(b), the residual energy in the network is shown. The threshold
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where a CH switches to normal mode is set to 50% and 75% while the density is set to 15
and 30, respectively. The residual energy is higher in case of sparse networks and in the
case where the threshold is set to 50%. A high threshold reduces the rotation in the CHs in
the Mesh and causes high energy consumption in each CH, causing them to run out of
energy earlier than the other nodes. In this case, therefore, energy consumption is not
homogeneously distributed among the mobile nodes. In Figure 6.20(c), the consumed
energy is depicted in case of the fixed and the variable probability, while the density is set
to 15 and the threshold where a CH transits to normal mode is set to 50%. It is clear that
the application of the autonomic mechanism in the election of clusters is more energy
efficient compared to the application of a stable probability.
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As described in Section 4, the NEURON protocol facilitates the creation of an overlay
topology and consequently the deployment and provision of autonomic services over it. In
order to show NEURON'’s suitability for this purpose, we compare the messages that are
generated for the overlay topology formulation using DSR, i.e. another reactive routing

protocol. In Figure 6.21, it is shown that the logarithmic behaviour of routing cost in DSR

imposes extreme overhead to the network in comparison to NEURON. Furthermore, this

overhead is much greater in dense networks.
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Figure 6.21 - Routing Messages Cost for Topology Formulation (logarithmic scale)

6.2 Emulation Results
Beyond PeerSim models that have been implemented in order to evaluate UbiChord’s
performance, an extensive set of emulations have been conducted using the real software.
As mentioned at Chapter 5, the prototype implementation is developed in Java and
supports the bootstrapping of a (multi-hop) ad-hoc network and the communication
among the participant nodes. In the bootstrapped network, the autonomic estimation
algorithm is applied for the estimation of various parameters. It is important to note that
multiple instances of the prototype implementation may run to the same node for
experimental purposes.

A topology editor is also implemented that permits the creation of an experimental

topology and the emulation of the algorithm in the specified topology. The following
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topologies that are representative of global characteristics of real networks are supported:
Hypercube, Star, Rotated Tree, Ringlattice and Barabasi-Albert. These topologies are
helpful for understanding the behaviour of the gossiping mechanism in various graphs

models. An indicative screenshot with the form of each topology is shown in Figure 6.22.

(a) (b)

(d) (e)
Figure 6.22 - Various Topologies: (a) Hypercube, (b) Star, (c) Rotated Tree, (d) Ring, (e)

Barabasi
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According to each experiment, multiple nodes are simultaneously activated without
any preconfigured state information. In Figure 6.23, the total number of messages that are
exchanged - until convergence of the estimated value is succeeded in the emulated
network with threshold set to 10% - is depicted for various network sizes. The threshold
refers to the difference in the estim ated value between two consecutive cycles.

In topologies where the density is almost stable for all the nodes (i.e. the Tree and
Circular topologies) the total messages required are less than those for topologies that
present non uniform distribution of the network density (i.e. Barabasi-Albert, HyperCube
and Star). Especially in the Star topology, the total messages required were more than
double from the other topologies (Circular and Tree topologies) since the centralized
structure is not suitable for neighbor to neighbor gossiping (inconsistency is present due to
many mutual exchanges of messages with the central node). The proposed algorithm is
claimed to be scalable since there is almost linear behavior in all the types of topologies.
However, further study is necessary in larger networks in order to validate that the

number of messages is proportional to the size of the network.
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Figure 6.23 - Number of messages for convergence
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In Figure 6.24, the emulation time - until convergence of the estimated value is
succeeded in the emulated network - is depicted for various network sizes. In all types of
topologies, the emulation time is increasing linearly with the increase in the network size.
The smallest time is needed in case of Tree topologies. Moreover, in Figure 6.25, the
number of messages required for convergence is depicted in case of threshold 1% and 10%
for difference between two consecutive values. The emulation is performed in case of Tree
topology. It is clear that an increase in the accuracy of the estimated value necessitates

more messages for convergence.
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In the examined scenarios, multiple nodes are simultaneously activated in the
emulated ad-hoc network. Emulations are conducted for networks with size from 5 to 20
nodes. Each experiment was executed 5 times and average values were considered in our
analysis. An indicative visualization service is created on top of UbiChord. Each node
periodically publishes its neighbors’ view to the overlay network that is created and
maintained over a mesh physical topology.

A final set of experiments on a complete autonomic visualization service has been
conducted. In the first experiment, all network nodes were simultaneously bootstrapped.
The total messages required for the provision of the visualization service are measured. In
Figure 6.26, the total messages exchanged for routing purposes, for creation and
maintenance of the overlay network and for the visualization service provision are
depicted. It is shown that the number of messages increases following an almost linear

pattern as the size of the network increases.
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In the second experiment, the size of the mesh network was progressively increased
ranging from 1 to 20 nodes. In each entrance of a new node, re-stabilization procedures
took place for the overlay network topology as well as the re-assignment of the key-value
pairs. In Figure 6.27, the total messages exchanged for routing purposes, for creation and
maintenance of the overlay network and for the visualization service provision are
depicted. In comparison with the previous experiment, it is shown that the number of
messages for routing and overlay topology maintenance is slightly increased due to the

messages exchanged for re-stabilization purposes.
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Figure 6.28 - Total number of signalling messages

In the third experiment, the size of the mesh network was progressively increased
ranging from 1 to 20 nodes. In each case, a node was randomly removed from the
network, while the provision of service was not interrupted. Re-stabilization messages
were necessary in case of each topology change in order to make the service provision
stable and reliable. In Figure 6.28, the total number of signaling messages exchanged, in
case of stable network (before the removal) and in case of removal of one node (after the
removal) is depicted. It is shown that dynamicity (removal of nodes) in the network slightly
affects the total number of messages required for provision of stable services over the

overlay network, and thus the extra overhead imposed is small.
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7. Conclusions and further research

7.1 Conclusions
In the mobile services domain there is a new emerging trend for Mobile Peer-to-Peer
applications. This trend is derived the increased capabilities of mobile devices as far as
Mesh networking is concerned and the infrastructural support by Mobile Network
Operators. Such applications are demanding since they must be aware of the context and
the environment, in which they operate, self-configuration and self-adaptation according
to the network conditions that they sense and require minimum feedback from the end-
user avoiding any explicit human intervention.

These challenges can be addressed through the incorporation of p2p techniques. Such
techniques base their operation on Distributed Hash Table structures maintained on top of
overlay networks. However, the adoption of current p2p techniques necessitates the
existence of a fixed network topology. Under this perspective, the major objectives of this
Thesis were the analysis of the key problems that are raised during bootstrapping and
operation of DHTs in Mesh Environments, the proposal and evaluation of a protocol that
overcomes the identified problems and the provision of a reference i mplementation of the
proposed protocol accompanied by a real Mobile Peer-to-Peer application.

As a result, the Thesis produced three concrete assets. First of all, a Distributed Hash
Table Protocol capable of operating on top of Mesh Networks was introduced. In order to
cope with the dynamicity that exists in mesh environments specific mechanisms had to be
created. These mechanisms are organized in a layered scheme to undertake tasks such as
unreliable node-to-node communication, absence of static routing scheme, ability to join
and maintain an overlay etc. All these mechanisms where thoroughly analyzed since a
representative simulation Peersim model has been created.

Furthermore, the second asset is related to a concrete reference implementation of
UbiChord protocol. In order the protocol to be realized (or instantiated) specific technical
choices have been followed. During the emulation of the implemented protocol, additional
mechanisms have been introduced in order to tackle specific bottlenecks that were
identified, especially at the routing layer. In order to resolve these issues, additional
mechanisms that “bend” the non-linear performance issues have been incorporated.
These mechanisms were grouped as a separate protocol addressed as “NEURON”.
NEURON mechanisms have not been integrated in the implemented protocol however
they have been exhaustively analyzed through Peersim simulations.

Furthermore, in the frames of this Thesis, a novel application-provision paradigm
targeting mobile peer-to-peer services has been introduced. More specifically, the
existence of a DHT capable for storing and retrieving information (i.e. key-value sets)

comprises the cornerstone of a new programming model regarding service provisioning.
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Up to now, collaborative applications in Mesh or PAN networks follow a centralized
approach, in the sense that either all nodes that run an application are assumed to have
connectivity with the central server or one node of the mesh network “acts” as a server.
The utilization of UbiChord can alter this programming model by introducing native
decentralization. Applications can share (i.e. store and retrieve) volatile data in UbiChord
without caring who is responsible for the physical storage of data. This capability paves the
way for the creation of a new set of applications that are in line with autonomic principles
in the era of Internet of Things (a.k.a. Internet of Connected Objects).

The instantiation/rollout of Internet Connected Objects paradigms follows a diverse
scheme by industrial stakeholders (e.g. IBM, HP etc.). Although the benefits for the
applications that are based on loT technology are a lot, there are problems that are raised
by this diversity and are leveraged by the scaling limitation of existing Internet centralized
infrastructure, which is not capable of “serving” the load of millions of sensors/actuators
that have to collaborate. These specific problems can be tackled with the incorporation of
autonomic techniques. This philosophy is in-line with the emerging trend of bio-inspired
computing according to which algorithms and principles applied at nature can provide
elegant solutions to existing problems in computer science.

As a result, theoretical and practical assets of this thesis can be used to create
applications that can achieve Self-Configuration, Self-Healing, Self-Optimization and Self-
Protection. These autonomic principles can be achieved using UbiChord as the medium for

storing and retrieving information.
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7.2 Limitations, Possible Improvements & Future Work
In the frames of this Thesis, theoretical and practical aspects of Distributed Hash structures
that are able to operate in Mesh environments have been provided. The concrete outcome
of this research was a proposed DHT protocol (i.e. UbiChord), a concrete implementation
of this protocol (i.e. Java Library of UbiChord) and a set of mechanisms that resolve scaling
issues of UbiChord (i.e.NEURON). It is meaningful, to refer to limitations that exist in each
of the three different assets of the Thesis.

Regarding UbiChord protocol, it has been exhaustively simulated based on Data
Source Routing protocol. It would be valuable to integrate a different reactive routing
protocol (e.g. AODV) in order to examine changes regarding message-signaling overhead.
Examining the simulation-results in Chapter 7, it could be argued that the routing layer
introduces the majority of signaling, especially under dynamic conditions such as node
failures, node entries, island formulations etc. The introduction of NEURON optimized the
routing overhead since it introduced a dynamic clustering mechanism that is able to
hierarchically propagate routing requests/replies. This policy minimizes the restricted
flooding that is essential for any reactive routing protocol, while it introduces additional
signaling for cluster formulation and cluster maintenance. This additional signaling has
been examined also thoroughly. In general, the optimal solution would be the creation of a
policy model which would control the mechanisms of each layer. For example, since every
node is self-aware of the network size, a policy rule could regulate the routing protocol
which is, during run-time, activated. For example in case of 10 to 50 nodes DSR performs
extremely well even under the worst dynamic conditions. However, if the network size
changes suddenly to 100 or 1000 then a hierarchical routing mechanism should be
activated.

This policy model could be generalized, in the sense that usage of global information
such as network size, density etc. could affect several mechanisms of UbiChord.
Indicatively, in order to achieve neighbor identification, a periodic solicitation is made by
each node (just as 802.11b sends 5 packets per second). Since a node can be aware of the
dynamicity of its neighborhood, it could regulate the frequency of the announced packet
by applying an exponential back off. This would result to energy saving which would be
preferable in resource-constrained nodes such as nodes of a Wireless Sensor Network
(WSN).

Moving from the routing layer and the various optimizations that can be applied there,
many open research space exists at the overlay maintenance and DHT layer. Probably the
most challenging issue that UbiChord has to undertake is the fast formulation of the
overlay during startup and the minimum disruption of the overlay upon various topology
changes. To achieve that UbiChord is relying to the unique IPv6 address of the node’s

physical network adapter. This technique implies that every node enters the overlay having
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an already assigned identifier. However, in the DHT research domain another approach
also exists; the assignment approach. According to this approach, each node that enters a
physical network, where an overlay is already bootstrapped, is assighed with a virtual
identifier. This approach minimizes the bootstrapping cost, however it introduces several
other issues such as uniqueness of identifiers, maintenance of generated identifiers etc.

Another issue which is valuable to investigate is the correlation between the DHT
redundancy-ratio and the signaling overhead that is generated under dynamic conditions.
As described at Chapter 4, every key-value entry is physically stored to a delegated node
according to the protocol. However, if the physical existence of the entry is confined in
only one node, this node would be a single-point of failure. Consequently, UbiChord
follows the traditional practice of replication for a specific entry. Nevertheless, the
overhead of applying traditional practice of replication on DHTs that are bootstrap ped on
fixed networks is minimal. In the case of UbiChord this is not true, because the disturbance
of the physical topology (which is frequent) causes significant signaling cost for key-value
transferring. Part of the future work is to identify the golden ratio between the replication
ratio (i.e. how many times every entry has to be replicated), the size of the network and
the dynamicity of the network (i.e. frequency of removals/entries/link-failures etc.).

Regarding the limitations and possible improvements of the Java library that
encapsulates the UbiChord functionality, there are a set of low-level improvements that
could be accomplished. First of all, DSR mechanism has been implemented from scratch,
but the maximum payload that can be transferred is limited at TCP MTU. In other words,
routing layer can route messages that are less than the TCP MTU. This issue can be
resolved with the creation of a Packetiser/Depacketiser that would disassemble and
reassemble large amount of transferable information. Furthermore, the emulation layer
that has been created is monolithic with means that a specific amount of memory is
reserved per node-instance. A possible improvement here is to enable parallelization in
order to emulate large number of nodes. Moreover, an improvement that would leverage
the utilization of the library is its porting to the Android programming model.

Finally, regarding NEURON mechanisms, they have to be also integrated at the core
UbiChord library, while in parallel the clustering and hierarchical routing mechanisms have
to be tested under some context dependent mobility model. Such indicative models are

applied on Vehicular Networks or Virtual Sensor Networks.
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Z0vtopo Bloypadiko Znpeiwpa — NkouBa MNavaywwtn

O k. Navaywtng MkouPac eival AumAwpatouxog HAekTpoAdoyog Mnyavikog Kol
Mnxavikog YrioAoylotwy tou EBvikou Metooflou MoAutexveiou (EMM) pe nepiodo
dolitnong 1999-2004. NapaAAnAa pe tnv doltntikn Tou LotnTa 0 K. NkouBag amnod
To ZemtépuPpLo tou 2001 epyaldTav W MPOYPAUHATLOTNG oTnV €Talpeia European
Profiles (www.europeanprofiles.gr) CUUHUETEXOVTAC OTNV QATMOMEPATWON EPywV

nmAnpogoptkn¢ otnv EAAGSa aAAd kal otnv Evpwmnaikn Evwon. Ita mAaiola tng
gpyaciag tou, cUVEBAAE evepyd OTOV OXESLOOUO KAL TNV QVANTUEN €PELVNTIKWY
KOL EUTIOPLKWY EPYWV OTOKTWVTAG TNV avtiotolxn eunelpia (evéeiktika WEIGHT-
INFO (1ST-2000-2625), ML-IMAGES (EDC-22046)).

Ao tov No£puBpn tou 2004 o k. FTkouPag epyacTnKe w¢ EPEUVNTNC 0To Epyaotrplo
Awoiknonc NAnpodoplakwy TuoTNUATWY TNE 2XoAN¢ HAekTpoAOywv MnyovIKwV Kal
Mnxavikwy YrnoAoylotwy TOU EBvikou MetodBou MoAutexveiou
(www.imu.ntua.gr). NapdaAAnAa, o k. FkouBag Eekva tnv SLa xpovikn nepiodo tnv

£KTIOVNON TNG S16AKTOPLKAG SLaTtpLPr g Tou.

Jta mAaiola tng SLaTPLPAG CUUUETEINE EVEPYA OTLC EPEUVNTIKEC SPAOTNPLOTNTEC

TOU €pyaoTnPlou HECOW EPEUVNTIKWY £PYWV TIOU Yapaktnpllovtal and onuavtiki

TPWTOTUTILA Kot UPNAN EMLOTAPOVIKN oTABun. EVOElKTIKA €pya lval Ta akoAouba:

e 2005 — 2008: “FUSION: Business process fusion based on Semantically-enabled
Service-oriented Business Applications” Xtdxog tou £pyou Atav n dnuwoupyia
KataAAnAou mMAnpodoplakoU GUOTAHOTOC YLO TNV OVTLLETWTILON TTPOBANUATWY
SlaAeltoupyLlkOTNTAC LETAED ETEPOYEVWY TANPOGDOPLAKWY GUCTNUATWV.

e 2006-2008: “SOPRANO: Service-oriented Programmable Smart Environments
for Older Europeans” ZKkomo¢ tou €pyou ATav n dnuloupylo pLog mAatdpopuag
ouveEPYal{OUEVWY  UTNPECLWYV ota  TAaiolo  evog  €EUTVOU  OLKLOKOU
neplBaAiovtoc.

NapaAAnAa o k. TkouPBdg epydoTnKe WC €EWTEPLKOG OUVEPYATNG TOu EBVIKOU

AwktOou Epeuvag kat Texvoloyiag oto akoAouBo £pyo:

e 2007-2010: “EFIPSANS: Exposing the Features in IP version Six protocols that
can be exploited/extended for the purposes of designing/building autonomic
Networks and Services” To €pyo OTOXEUE va Xpnollomolnoel ta blaitepa
XOPOKTNPLOTIKA TNG TEXVoAoylag IPv6 yla va BeAtiwoel To oXeSlaoUO Kol vo
SleukoAUveL TNV UAoMoOINON AUTOVOUWV SIKTUWV. XTta mAaiola Tou £pyou
oxebldotnkav EMEKTACEL OTO TPWTIOKOAAO IPv6 mou otoxevouv otnv
umtootnpLEn autévouwyv AELToupyLwv oto Siktuo.

TéAog o K. TkoUPBAC CUMUETEIXE EvEpYd KATA TN SLApKeELA TG SLATPLBRC TOU KaL 0To

EKTIOLSEUTIKO €pyo NG 2ZXOANG HAektpoAdoywv Mnxavikwv Kal Mnxovikwy

YnoAoylotwv tou EMMN evw amoé 1o 2007 eival LOPUTIKO Kal EVEPYO OTEAEXOG TNG

etalpelag UBITECH (www.ubitech.eu) mou &paotnplomoleital oTov TOUEA TNG

TANPOGOPLKAC KOL TWV ETLKOLVWVLWV.
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