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Preface

Most methods applied in electromagnetics nowadays are mainly based on numerics,
since the classical analytical techniques are unable to cover complex configurations.
However, the latter are respected from the analytical point of view, and they consti-
tute reference points for the validation of the numerical methods. In Duffy’s book
[19] there is a nice table in his introduction, depicting the relationship between the
various techniques. This doctoral dissertation covers three out of four areas: separa-
tion of variables, asymptotic analysis, and numerical techniques. The first two were
completed during my thesis at National Technical University of Athens, while the
third was completed when I was a visiting researcher at Delft Institute of Applied
Mathematics, at Delft University of Technology.

The content of this doctoral dissertation is validated by the journal publications
[84, 85, 86].

Abstract

The topic of this doctoral dissertation is oriented on two directions: the first consists
of exact techniques whose power is based on analytical expressions. More specifically,
two classical problems – one in electromagnetic scattering and one in electromagnetic
wave propagation – are treated with the use of elliptical wavefunctions. The second
direction is oriented toward numerics, where the singular domain integral equation
is studied. Its great advantage relies on understanding the physical point of view,
with applications like photonics, nanophysics, biological imaging, fiber optics, etc.

The electromagnetic scattering by an arbitrarily oriented elliptical cylinder hav-
ing different constitutive parameters to those of the background medium, is treated
in the first chapter. The separation of variables method is used to solve this prob-
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lem, but, due to the oblique incidence of the source fields, hybrid waves for the
scattered and the induced fields are generated, thus making the formulation compli-
cated. Moreover, because of the different wavenumbers between the scatterer and
the background medium, the orthogonality relations for Mathieu functions do not
hold, leading to more complicated systems, compared to those of normal incidence,
that should be solved in order to get the solution for the scattered or the induced
field. The validation of the results reveals the high accuracy of the implementation,
even for electrically large scatterers. Both polarizations are considered and numer-
ical results are given for various values of the parameters. The method is exact and
can be used for reference as an alternative validation for future methods involving
scattering problems.

In the second chapter the cutoff wavenumbers of the elliptical dielectric waveg-
uide are calculated exactly and analytically. Two separate methods are used to solve
this problem. The first method is based on the separation of variables technique
using Mathieu functions and gives the exact cutoff wavenumbers. The system ma-
trices of which the roots of their determinant should be determined are complicated
because of the nonexistence of orthogonality relations for Mathieu functions, due
to the different constitutive parameters between the core and the cladding of the
fiber. In the second method the cutoff wavenumbers are obtained through analytical
expressions, when the eccentricity h of the elliptical core is specialized to small val-
ues. In the latter case, analytical, closed-form algebraic expressions, free of Mathieu
functions, are obtained for the expansion coefficients g.2/

sn in the resulting relation

x1;sn.h/ D x1;sn.0/
�

1 C g.2/
sn h2 C O.h4/

�

for the cutoff wavenumbers, where x1;sn.0/
are the normalized cutoff wavenumbers of the circular dielectric waveguide. These
expressions are valid for every different value of s and n, corresponding to every
higher-order hybrid mode. Numerical results are given for various higher-order
modes, as well as a comparison with the exact solution.

Finally, in the third chapter the domain integral equation method is studied
which, with its FFT-based matrix-vector products, is a viable alternative to local
methods in free-space scattering problems. However, it often suffers from the ex-
tremely slow convergence of iterative methods, especially in the transverse electric
(TE) case with large or negative permittivity. We identify very dense line segments
in the spectrum as partly responsible for this behavior, and the main reason why a
normally efficient deflating preconditioner does not work. We solve this problem by
applying an explicit multiplicative regularizing operator, which on the operator level
transforms the system to the form “identity plus compact”. On the matrix level this
regularization reduces the length of the dense spectral segmets roughly by a factor
of four, while preserving the ability to calculate the matrix-vector products using the
FFT algorithm. Such a regularized system is then further preconditioned by deflating
an apparently stable set of eigenvalues with largest magnitudes, which results in a
robust acceleration of the restarted GMRES under constraint memory conditions.

Abstract in greek

Το αντικείµενο αυτής της διδακτορικής διατριβής προσανατολίζεται σε δύο κα-
τευθύνσεις: η πρώτη περιλαµβάνει ακριβείς τεχνικές των οποίων η ισχύς βασίζεται
σε αναλυτικές εκφράσεις. Πιο συγκεκριµένα µελετάται ένα κλασικό πρόβληµα της
σκέδασης ηλεκτροµαγνητικών κυµάτων, µε χρήση ελλειπτικών κυµατικών συναρ-
τήσεων. Η δεύτερη κατεύθυνση προσανατολίζεται στις αριθµητικές τεχνικές, όπου
και µελετάται η ιδιόµορφη χωρική ολοκληρωτική εξίσωση. Το κύριο πλεονέκτηµά
της έγκειται στην κατανόηση φυσικών φαινοµένων, όπως για παράδειγµα φω-
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τονικές εφαρµογές, εφαρµογές νανοφυσικής, βιολογικές απεικονίσεις, οπτικές ίνες
κ.λπ.

Στο πρώτο κεφάλαιο µελετάται η σκέδαση ηλεκτροµαγνητικών κυµάτων από
έναν απέραντο ελλειπτικό κύλινδρο τυχαίου προσανατολισµού, ο οποίος έχει δια-
φορετικές συντακτικές παραµέτρους από τον περιβάλλοντα χώρο. Η επίλυση
του προβλήµατος γίνεται µε τη µέθοδο χωρισµού των µεταβλητών, λόγω όµως
της λοξής πρόσπτωσης δηµιουργούνται υβριδικά κύµατα για τα σκεδαζόµενα και
τα επαγόµενα πεδία, γεγονός που περιπλέκει τον φορµαλισµό. Επιπλέον, λόγω
των διαφορετικών κυµαταρίθµων του σκεδαστή και του περιβάλλοντα χώρου, οι
σχέσεις ορθογωνιότητας των συναρτήσεων Μάθιου δεν είναι δυνατόν να εφαρ-
µοστούν. Έτσι οδηγούµαστε σε ακόµη πιο πολύπλοκα συστήµατα, συγκρινόµενα
µε αυτά της κάθετης πρόσπτωσης. Η επίλυση αυτών των σύνθετων συστηµάτων
θα οδηγήσει στην εύρεση των σκεδαζόµενων και των επαγόµενων πεδίων. Η
επικύρωση των αποτελεσµάτων αποκαλύπτει την υψηλή ακρίβεια της µεθόδου,
ακόµη και για ηλεκτρικά µεγάλους σκεδαστές. Μελετώνται και οι δύο πολώσεις
και δίνονται αριθµητικά αποτελέσµατα για διάφορες τιµές των παραµέτρων. Η
µέθοδος είναι ακριβής και µπορεί να χρησιµοποιηθεί ως αναφορά για την ορθότητα
µελλοντικών τεχνικών ηλεκτροµαγνητικής σκέδασης.

Η ηλεκτροµαγνητική σκέδαση από διάφορα αντικείµενα είναι µεγάλου εν-
διαφέροντος στον εφαρµοσµένο ηλεκτροµαγνητισµό. Για παράδειγµα, διαγνω-
στικές µεθοδολογίες ή ο ρυθµός απορρόφησης ακτινοβολίας, µπορεί να υπολογιστεί
σε ελλειπτικά βιολογικά µοντέλα ιστών. Η µελέτη της σκέδασης από κυκλικούς
κυλίνδρους, έχει συζητηθεί διεξοδικά στη βιβλιογραφία. Τα τελευταία χρόνια
υπάρχει µια αυξανόµενη µελέτη της σκέδασης από την πιο δύσκολη ελλειπτική
γεωµετρία, δηλ. κύλινδροι µε διηλεκτρικό που αποτελούνται από ελλειπτικές δια-
τοµές, πολυστρωµατικοί διηλεκτρικοί ελλειπτικοί κύλνδροι, ή ακόµη και οµοιο-
γενείς ανισοτροπικοί ελλειπτικοί κύλινδροι.

Η πιο ευρέως χρησιµοποιούµενη µέθοδος για ελλειπτικούς σκεδαστές βασίζε-
ται στο χωρισµό των µεταβλητών µε ανάπτυξη των πεδίων µε χρήση των ελλει-
πτικών κυµατοσυναρτήσεων, δηλαδή συναρτήσεων Μάθιου. Είναι γνωστό ότι,
όταν δύο µέσα – ο σκεδαστής και ο περιβάλλων χώρος – έχουν τους ίδιους κυ-
µατάριθµους, τότε ισχύει η ορθογωνιότητα των συναρτήσεων Μάθιου. Από την
άλλη πλευρά, όταν ο σκεδαστής έχει δείκτη διάθλασης διαφορετικό από εκείνο του
περιβάλλοντα χώρου, η ορθογωνιότητα δεν ισχύει, κάτι που οδηγεί σε περίπλοκες
εκφράσεις, όταν κάποιος προσπαθήσει να ικανοποιήσει τις οριακές συνθήκες.
Επιπλέον, µια πρόσθετη δυσκολία προκύπτει όταν η πρόσπτωση του επίπεδου
κύµατος δεν είναι κάθετη, αλλά πλάγια, µε αποτέλεσµα έναν συνδυασµό ΤΜ και
ΤΕ κύµατων – υβριδικά κύµατα – για τα επαγόµενα και τα σκεδαζόµενα πεδία.

Τα περισσότερα προβλήµατα σκέδασης ασχολούνται µε την κάθετη πρόσπτω-
ση. Αρχικά, η µελέτη ξεκίνησε µε τον υπολογισµό της οπίσθιας διατοµής σκέδασης
από έναν διηλεκτρικό ελλειπτικό κύλινδρο υπό κάθετη πρόσπτωση [79]. Ακριβείς
εκφράσεις κλειστής µορφής έχουν ληφθεί [70] για τις διατοµές σκέδασης από έναν
ελλειπτικό µεταλλικό κύλινδρο που έχει µικρή εκκεντρότητα, χρησιµοποιώντας
ασυµπτωτική ανάλυση, ενώ στην [72], η ίδια διαδικασία έχει ακολουθηθεί για
έναν διηλεκτρικό ελλειπτικό κύλινδρο, επίσης µε µικρή εκκεντρότητα. Σύνθετες
ελλειπτικές γεωµετρίες έχουν επίσης µελετηθεί, π.χ. στην [60] για την περίπτωση
ενός ελλειπτικού κυλίνδρου επικαλυµµένου µε οµοιογενές υλικό. Η µέθοδος που
χρησιµοποιήθηκε είναι ο χωρισµός των µεταβλητών. Τεχνικές για πολυστρω-
µατικές δοµές ελλειπτικών κυλίνδρων έχουν επίσης προταθεί. Στην [10] οι συγ-
γραφείς έχουν µελετήσει την περίπτωση ΤΜ πρόσπτωσης για σκέδαση από πο-
λυστρωµατικό ελλειπτικό κύλινδρο. Έχουν κατασκευάσει µια αναδροµική δια-
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δικασία για τον υπολογισµό του πεδίου, µε βάση τις συναρτήσεις Μάθιου, και
πάλι για κάθετη πρόσπτωση. Στην [9], έχει προταθεί µια αναλυτική λύση για έναν
πολυστρωµατικό ελλειπτικό κύλινδρο, στην περίπτωση που ο κύλινδρος και το
µέσον που τον περιβάλλει έχουν τον ίδιο δείκτη διάθλασης, ή αλλιώς, τον ίδιο
κυµατάριθµο, ικανοποιώντας έτσι τις ιδιότητες ορθογωνιότητας των συναρτήσεσν
Μάθιου. Τελικά, στην [42], η περίπτωση ενός οµοιογενούς ανισοτροπικού ελλει-
πτικού κυλίνδρου έχει επίσης µελετηθεί.

Η σκέδαση της λοξής πρόσπτωσης είναι µια πιο γενική περίπτωση σε όσα
συζητήθηκαν µέχρι στιγµής. Πολλοί συγγραφείς έχουν συµβάλλει για την περίπτω-
ση των κυκλικών κυλίνδρων, όπου διαφορετικές µέθοδοι έχουν χρησιµοποιηθεί.
Στην [40], τα κυλινδρικά κυµαταδιανύσµατα χρησιµοποιούνται από τον συγγραφέα
για τη µελέτη της σκέδασης από διηλεκτρικό κυκλικό κυλίνδρο. Η µέθοδος των
βοηθητικών πηγών έχει χρησιµοποιηθεί στην [69] για τη διερεύνηση της σκέδασης
από έναν τέλεια αγώγιµο κυκλικό κύλινδρο, αν και στην περίπτωση αυτή δεν εµ-
φανίζονται υβριδικά κύµατα. Μια εναλλακτική µέθοδος µε βάση γενικευµένες
σειρές παρουσιάζεται στην [39], και οι συγγραφείς επιβεβαιώνουν τα αποτελέσµατα
από την [40]. Η περίπτωση των ελλειπτικών κυλίνδρων ξεκίνησε στην [78], µε το
φορµαλισµό του προβλήµατος µέχρι ένα συγκεκριµένο σηµείο, αλλά δεν υπάρχουν
αριθµητικά αποτελέσµατα. Στην [68] ο συγγραφέας χρησιµοποιεί ολοκληροδιαφο-
ρικές εξισώσεις για να µελετήσει την σκέδαση από διηλεκτρικούς κυλίνδρους,
αυθαίρετης διατοµής, και επικυρώνει τα αποτελέσµατά του µε την εξέταση ελλειπ-
τικών κυλίνδρων. Επίσης, στην [45], µελετάται η σκέδαση ηλεκτροµαγνητικών
κυµάτων µε χρήση του τανυστή Γκρήν, και δίνονται παραδείγµατα µε ελλειπτικές
γεωµετρίες.

Είναι προφανές ότι η χρήση των τεχνικών που χρησιµοποιούνται για τους
ελλειπτικούς κυλίνδρους, βασίζεται κυρίως στην κάθετη πρόσπτωση και στη χρήση
υλικών µε ίδιους δείκτες διάθλασης. Υπάρχει µια έλλειψη του συνδυασµού της
λοξής πρόσπτωσης µε υλικά που έχουν διαφορετικές συντακτικές παραµέτρους.
Η µέθοδος που παρουσιάζεται εδώ είναι ακριβής και εναλλακτική εκείνων που
βασίζονται στις ολοκληρωτικές εξισώσεις [68, 43]. Επιπλέον, αν και η επικύρωση
για πολλές νέες τεχνικές βασίζεται σε κυκλικούς κυλίνδρους, µε βάση τις γνω-
στές λύσεις των συναρτήσεων Μπέσελ, το πρόβληµα σκέδασης από ελλειπτικούς
κυλίνδρους είναι σε πολλές περιπτώσεις µια ισχυρή απόδειξη της ορθότητας των
αποτελεσµάτων. Ως εκ τούτου, τα αποτελέσµατα της παρούσας µεθόδου µπορούν
να χρησιµοποιηθούν ως αναφορά για την επικύρωση µελλοντικών µεθόδων που
επιλύουν προβλήµατα ηλεκτροµαγνητικής σκέδασης.

Στο δεύτερο κεφάλαιο υπολογίζονται οι κυµατάριθµοι αποκοπής για έναν
διηλεκτρικό ελλειπτικό κυµατοδηγό. Ο υπολογισµός γίνεται µε ακριβή καθώς και
µε αναλυτικό τρόπο. Για την επίλυση αυτού του προβλήµατος χρησιµοποιήθηκαν
δύο διαφορετικοί τρόποι. Ο πρώτος τρόπος βασίζεται στο χωρισµό µεταβλητών
µε χρήση των συναρτήσεων Μάθιου, ο οποίος δίνει τους ακριβείς κυµαταρίθµους
αποκοπής. Η µέθοδος αυτή οδηγεί σε σύνθετα γραµµικά οµογενή συστήµατα
των οποίων πρέπει να υπολογίσουµε τις ρίζες της ορίζουσας των αντίστοιχων
πινάκων. Η πολυπλοκότητα των πινάκων αυτών οφείλεται στη µη ύπαρξη ορ-
θογωνιότητας των συναρτήσεων Μάθιου λόγω των διαφορετικών συντακτικών
παραµέτρων µεταξύ του πυρήνα και του περιβλήµατος της ίνας. Η δεύτερη
µέθοδος υπολογίζει τους κυµαταρίθµους αποκοπής αναλυτικά, χρησιµοποιώντας
κλειστούς τύπους. Οι εκφράσεις αυτές ισχύουν όταν η εκκεντρότητα του ελλειπ-
τικού πυρήνα της ίνας περιορίζεται σε µικρές τιµές. Στην περίπτωση αυτή οι
κυµατάριθµοι αποκοπής έχουν τη µορφή x1;sn.h/ D x1;sn.0/

�

1 C g.2/
sn h2 C O.h4/

�

,

όπου οι συντελεστές ανάπτυξης g.2/
sn δίνονται από αναλυτικούς, κλειστούς αλγε-
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βρικούς τύπους, χωρίς την παρουσία συναρτήσεων Μάθιου, ενώ x1;sn.0/ είναι οι
κυµατάριθµοι αποκοπής του διηλεκτρικού κυκλικού κυµατοδηγού. Οι αναλυ-
τικές αυτές εκφράσεις ισχύουν για κάθε διαφορετική τιµή των δεικτών s και n,
που αντιστοιχούν σε υβριδικούς ρυθµούς υψηλότερης τάξης. ∆ίνονται αριθµητικά
αποτελέσµατα για διάφορους ρυθµούς υψηλότερης τάξης και γίνεται σύγκριση µε
την ακριβή λύση.

Το προαναφερθέν εσωτερικό πρόβληµα έχει πολύ µεγάλο ενδιαφέρον και
εφαρµογές, όπως στη χρήση των οπτικών κυµατοδηγών σε δίκτυα διανοµής σήµα-
τος σε κεραίες, σε συστήµατα κινητής τηλεφωνίας, και ιδιαίτερα στη χρήση ως
γραµµών µεταφοράς µεγάλης απόστασης για οπτικά δίκτυα. Η µελέτη των ρυθµών
κυµατοδήγησης µέσα σε έναν κυκλικό διηλεκτρικό κυµατοδηγό είναι γνωστή εδώ
και πέντε δεκαετίες. Στην [58] οι συγγραφείς εξάγουν πρώτοι τη χαρακτηρι-
στική εξίσωση για την εύρεση των κυµαταρίθµων αποκοπής για ανώτερης τάξης
υβριδικούς ρυθµούς. Μια πιο λεπτοµερής και εµπεριστατωµένη ανάλυση σχετικά
µε το θέµα των υψηλότερης τάξης ρυθµών δίνεται στην [44], όπου ο συγγραφέας
παρουσιάζει τις χαρακτηριστικές εξισώσεις για εγκάρσια µαγνητικούς (ΤΜ), εγκά-
ρσια ηλεκτρικούς (ΤΕ) και υβριδικούς (ΕΗ ή ΗΕ) ρυθµούς. Ασυµπτωτικές εκφρά-
σεις παρουσιάζονται στην [63], οι οποίες ισχύουν για όλους τους ρυθµούς ανώτερης
τάξης. Μια ολοκληρωµένη µελέτη για τους ρυθµούς της κυκλικής οπτικής ίνας
δίνεται στην [81], µαζί µε µια ωραία περιγραφή για τους ρυθµούς. Η µελέτη της
διάδοσης σε ελλειπτικούς διηλεκτρικούς κυµατοδηγούς είναι πολύ πιο δύσκολη
και παρουσιάζει µεγάλο ενδιαφέρον. Ωστόσο, οι µελέτες αυτές είναι λίγες λόγω
των δυσκολιών που προκύπτουν από την ελλειπτική γεωµετρία, και δεν υπάρχουν
καθαρά κλειστής µορφής αναλυτικοί τύποι για τους υβριδικούς ρυθµούς κυµα-
τοδήγησης.

Οι ερευνητές έχουν χρησιµοποιήσει διαφορετικές µεθόδους, κατά τα τελευ-
ταία χρόνια, για να µελετήσουν τα χαρακτηριστικά των ρυθµών για οπτικές ίνες
ελλειπτικής γεωµετρίας. Η µέθοδος της ανάπτυξης των πεδίων σε σειρές συναρτή-
σεων Μάθιου χρησιµοποιείται στην [77], όπου εξετάζεται µόνο ο θεµελιώδης ρυθ-
µός. Στη συνέχεια, στην [80], χρησιµοποιούνται και πάλι οι συναρτήσεις Μάθιου,
ο συγγραφέας όµως απλοποιεί το φορµαλισµό κάνοντας χρήση της συνθήκης της
χαλαρής κυµατοδήγησης, δηλαδή όταν οι δείκτες διάθλασης του πυρήνα και του
περιβλήµατος της ίνας είναι σχεδόν όµοιοι. Η ίδια προσέγγιση χρησιµοποιείται
στην [64] για να µελετηθούν οι γραµµικά πολωµένοι ρυθµοί µέσα σε οπτικούς
κυµατοδηγούς που έχουν αυθαίρετη διατοµή. Η τροποποιηµένη µέθοδος των
πεπερασµένων στοιχείων εφαρµόζεται στην [82] για να µελετηθούν οι ρυθµοί σε
έναν κυκλικό οπτικό κυµατοδηγό µε ανοµοιογενή πυρήνα,και η µέθοδος εφαρµόζε-
ται και για την ελλειπτική περίπτωση. Η περίπτωση των διηλεκτρικών κυµα-
τοδηγών αυθαίρετης διατοµής αντιµετωπίζεται στην [24], όπου οι συγγραφείς
µελετούν την περίπτωση της ασθενής κυµατοδήγησης. Στην [38] δίνεται µια πλήρης
ανάλυση των ρυθµών, µε βάση τις συναρτήσεις Μάθιου, και οι συγγραφείς δίνουν
µια ποικιλία αποτελεσµάτων για τη διασπορά, για τους ανώτερης τάξης υβριδικούς
ρυθµούς, χρησιµοποιώντας την ακριβή χαρακτηριστική εξισώση. Η εργασία τους
επεκτείνεται στην [52], όπου µελετώνται διάφορα χαρακτηριστικά διάδοσης, όπως
η ταχύτητα οµάδας και η εξασθένηση των διαφόρων ανώτερης τάξης ρυθµών. Στην
[51] υπολογίζεται ο κυµατάριθµος αποκοπής του πρώτου ανώτερης τάξης ρυθµού,
χρησιµοποιώντας το φορµαλισµό της [77]. Η µέθοδος των πεπερασµένων στοιχείων
έχει χρησιµοποιηθεί στην [14], προκειµένου να υπολογιστούν οι συχνότητες αποκο-
πής για τους ανώτερους τάξης ρυθµούς, και υπό το πρίσµα της ασθενούς κυµα-
τοδήγησης, σε ίνες αυθαίρετης διατοµής, και δίνονται αριθµητικά αποτελέσµατα
για ίνες µε ελλειπτικό πυρήνα για διάφορες εκκεντρότητες. Στην [50], γίνεται
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σύγκριση µεταξύ της µεθόδου των συναρτήσεων Μάθιου, της µεθόδου που χρησι-
µοποιήθηκε στην [56], και ερµηνεύονται διάφορες αποκλίσεις. Μια πειραµατική
προσέγγιση παρουσιάζεται στην [20], για τον υπολογισµό της αποκοπής κάποιων
ρυθµών υψηλότερης τάξης σε διηλεκτρικούς ελλειπτικούς κυµατοδηγούς. Η προ-
σέγγιση της ασθενούς κυµατοδήγησης εφαρµόζεται στην [61], για τον υπολο-
γισµό των ρυθµών από την επίλυση της εξίσωσης Μάθιου µε τη χρήση των χαρα-
κτηριστικών αριθµών τους. Η ίδια προσέγγιση χρησιµοποιείται επίσης στην [74],
διατυπώνοντας το πρόβληµα µε χρήση ελλειπτικών σειρών Φουριέ. Τέλος, στην
[27] υπολογίζονται οι ρυθµοί στη χαλαρή κυµατοδήγηση, χρησιµοποιώντας µια
απλοποιηµένη χαρακτηριστική εξίσωση µε βάση την ανάπτυξη σε συναρτήσεις
Μάθιου.

Είναι προφανές ότι, παρόλο που το µεγαλύτερο µέρος της έρευνας γίνεται για
την περίπτωση της ασθενούς κυµατοδήγησης, όπου ο φορµαλισµός απλοποιείται
σηµαντικά, η γενική περίπτωση έχει επίσης µελετηθεί, ωστόσο, οι ακριβείς χαρα-
κτηριστικές εξισώσεις που εµφανίζονται στις [77] και [38] χρειάζονται περισσότερη
ανάπτυξη για να καταλήξουµε σε µια νέα χαρακτηριστική εξίσωση που να ισχύει
στην αποκοπή. Επιπλέον, σε σύγκριση µε τον κυκλικό διηλεκτρικό κυµατοδηγό
όπου έχουµε ξεχωριστές αναλυτικές, κλειστού τύπου εξισώσεις για τον άµεσο υπο-
λογισµό των κυµαταρίθµων αποκοπής [44], δεν υπάρχουν οι αντίστοιχες αναλυ-
τικές, κλειστής µορφής χαρακτηριστικές εξισώσεις, απευθείας στην αποκοπή, για
τον ελλειπτικό διηλεκτρικό κυµατοδηγό.

Τέλος, στο τρίτο κεφάλαιο µελετάται η µέθοδος της χωρικής ολοκληρωτικής
εξίσωσης. Η υλοποίηση της µεθόδου βασίζεται στον ταχύ µετασχηµατισµό Φουριέ
για τον ταχύ υπολογισµό των γινοµένων µεταξύ πινάκων και διανυσµάτων, και
αποτελεί µια εναλλακτική µέθοδο για προβλήµατα σκέδασης, σε σχέση µε τις
αντίστοιχες «τοπικές» µεθόδους. Παρ’ όλα αυτά, ένα αρνητικό σηµείο της µεθόδου
είναι η πολύ αργή σύγκλιση των επαναληπτικών µεθόδων που χρησιµοποιούνται,
ιδιαίτερα στην περίπτωση της εγκάρσιας ηλεκτρικής πόλωσης µε υψηλή ή αρνητική
τιµή της επιτρεπτότητας. ∆ιαπιστώνουµε ότι το φάσµα αποτελείται από πολύ
πυκνά τµήµατα στα οποία οφείλεται αυτή η συµπεριφορά της αργής σύγκλισης,
και επιπλέον είναι ένας ακόµη λόγος για τον οποίο µέθοδοι βελτιστοποίησης οι
οποίες βασίζονται σε απλή µετακίνηση των ιδιοτιµών σε πιο πρόσφορα σηµεία, δεν
επιτυγχάνουν. Το πρόβληµα αυτό της βελτιστοποίησης ξεπερνιέται εφαρµόζοντας
ένα τελεστή οµαλοποίησης, ο οποίος, σε επίπεδο τελεστών µετασχηµατίζει το
σύστηµα σε µορφή «µοναδιαίο και συµπαγές». Σε επίπεδο πινάκων, αυτή η
οµαλοποίηση ελαττώνει κατά τέσσερις φορές το µήκος των πυκνών φασµατικών
τµηµάτων, ενώ διατηρείται η δυνατότητα του υπολογισµού των γινοµένων µεταξύ
πινάκων και διανυσµάτων, µε χρήση του ταχύ µετασχηµατισµού Φουριέ. Το οµα-
λοποιηµένο σύστηµα βελτιστοποιείται περαιτέρω µε µετακίνηση ευσταθών ιδιο-
τιµών µε µεγαλύτερο µέτρο, κάτι που οδηγεί σε αξιόλογη επιτάχυνση της επαναλη-
πτικής γενικευµένης µεθόδου ελαχίστου υπολοίπου (GMRES), και µάλιστα κάτω
από περιορισµένες συνθήκες υπολογιστικής µνήµης.

Γενικά, οι µέθοδοι µπορούν να διαιρεθούν σε δύο κατηγορίες – τοπικές και
ολικές – ανάλογα µε τις εξισώσεις. Οι τοπικές µεθόδοι βασίζονται στις διαφορικές
εξισώσεις Μάξγουελ [22, 23, 29, 30], είναι πιο δηµοφιλείς λόγω των αραιών πινάκων
που προκύπτουν και την ευκολία του προγραµµατισµού τους. Παράλληλα µε τις
τοπικές µεθόδους, οι ολικές µεθόδοι βασίζονται στις ισοδύναµες ολοκληρωτικές
εξισώσεις που χρησιµοποιούνται συχνά σε προβλήµατα σκέδασης ελευθέρου χώ-
ρου. Εάν ένα αντικείµενο είναι µεγάλο και οµογενές, ή είναι τέλεια αγώγιµο,
τότε το πρόβληµα συνήθως εκφράζεται µε χρήση συνοριακών ολοκληρωτικών
εξισώσεων, µε θεµελιώδεις αγνώστους τα πεδία (ρεύµατα) στις διεπαφές [28]. Εάν
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ένα αντικείµενο είναι ανοµοιογενές ή σύνθετο και αποτελείται από πολλά µικρά
διαφορετικά µέρη, η πλέον ενδεδειγµένη ολική µέθοδος είναι αυτή της χωρικής
ολοκληρωτικής εξίσωσης, σε δύο ή σε τρεις διαστάσεις [31, 32, 34, 41, 49, 53, 65,
67, 73, 33, 17]. Παρόλο που οι ολικές µέθοδοι παράγουν πυκνούς πίνακες, είναι
γενικά πιο σταθερές, όσο αφορά τη διακριτοποίηση, και οι συνελικτικού τύπου
ολοκληρωτικοί τελεστές επιτρέπουν µερικές φορές τον υπολογισµό των γινοµένων
πίνακα-διανύσµατος µε την ταχύτητα του ταχύ µετασχηµατισµού Φουριέ. Αυτά
τα χαρακτηριστικά καθιστούν τη µέθοδο της χωρικής ολοκληρωτικής εξίσωσης µια
εναλλακτική λύση για προβλήµατα σκέδασης ελεύθερου χώρου.

Οι κυριότερες δυσκολίες της παρούσας µεθόδου είναι η µη κανονικότητα,
τόσο του τελεστή, όσο και του πίνακα που προκύπτει, και η εξαιρετικά αργή
σύγκλιση των λίγων επαναληπτικών µεθόδων που µπορούν να εφαρµοστούν σε
τέτοιους πίνακες. Αριθµητικά πειράµατα δείχνουν σταθερά ότι η επαναληπτική
γενικευµένη µέθοδος ελαχίστου υπολοίπου είναι η καλύτερη επιλογή [25]. Ως
ένας πεπερασµένος αλγόριθµος, η πλήρης (χωρίς επανεκκίνηση) αυτή µέθοδος,
τελικά θα συγκλίνει µε οποιοδήποτε φυσικά λογικών διαστάσεων σκεδαστή [57].
Ωστόσο, ο αριθµός των αγνώστων είναι απαγορευτικός για τη χρήση της πλήρους
µεθόδου, και συνεπώς την χρησιµοποιούµε µε επανεκκίνηση. ∆υστυχώς, µερικές
φορές, ειδικά στα προβλήµατα της ΤΕ σκέδασης µε υψηλές τιµές επιτρεπτότητας
ή διαστάσεων του σκεδαστή, η επαναληπτική γενικευµένη µέθοδος ελαχίστου
υπολοίπου µε επανεκκίνηση, καθώς και άλλες γνωστές επαναληπτικές µέθοδοι,
συγκλίνουν πολύ αργά, ή δε συγκλίνουν καθόλου.

Πολλές επιτυχηµένες στρατηγικές βελτισοποίησης έχουν προταθεί για τις
τοπικές µεθόδους, βλέπε π.χ. [22, 23], καθώς και για τις συνοριακές ολοκληρωτικές
εξισώσεις [2, 3, 15, 16, 66]. Η µέθοδος της χωρικής ολοκληρωτικής εξίσωσης υστερεί
στον τοµέα αυτό [12, 25, 26, 83], και όποιες αναφορές βελτιστοποίησης υπάρχουν,
γίνονται κυρίως για χαµηλές τιµές επιτρεπτότητας ή για µικρούς σκεδαστές. Μια
από τις δυσκολίες στο σχεδιασµό µιας κατάλληλης τεχνικής βελτιστοποίησης για τη
µέθοδο αυτή, είναι ότι πρέπει οι πίνακες να είναι αραιοί, ώστε να είναι σε θέση να
ανταγωνιστούν µε τις τοπικές µεθόδους όσον αφορά τη µνήµη και την ταχύτητα.
Πρόσφατα, µια τεχνική βελτιστοποίησης που βασίζεται σε µετακίνηση ιδιοτιµών,
έχει προταθεί στην [62], για την επιτάχυνση της λύσης στην περίπτωση της ΤΜ
σκέδασης. Μια λεπτοµερής φασµατική ανάλυση του πίνακα του συστήµατος που
αναφέρθηκε στην [62], δείχνει ότι οι αποµακρυσµένες ιδιοτιµές (οι µεγαλύτερες σε
µέτρο) είναι υπαίτιες για την στασιµότητα της πλήρης επαναληπτικής γενικευµένης
µεθόδου ελαχίστου υπολοίπου. Παρόλα αυτά, όπως δείχνουµε εδώ, αυτή τη
στρατηγική δε λειτουργεί στην περίπτωση της ΤΕ σκέδασης.

Αναλύουµε, συνεπώς, τη διαφορά ανάµεσα στα φάσµατα της ΤΕ και ΤΜ
σκέδασης και δείχνουµε ότι η διακριτοποιηµένη έκδοση της µεθόδου οδηγεί σε µια
πολύ πυκνή οµάδα ιδιοτιµών, καθιστώντας τη διαδικασία µετακίνησης ανέφικτη.
Εναλλακτικά, χρησιµοποιούµε έναν οµαλοποιητή, ο οποίος είναι ένας συνελικτικού
τύπου ολοκληρωτικός τελεστής, κάτι που επιτρέπει να υπολογίζουµε τα γινόµενα
πινάκων-διανυσµάτων µε τον αλγόριθµο του ταχύ µετασχηµατισµού Φουριέ. Η
εφαρµογή του οµαλοποιητή συµπιέζει τις πυκνές οµάδες ιδιοτιµών, και εν συνεχεία
µπορούµε να µετακινήσουµε τις µεγαλύτερες σε µέτρο ιδιοτιµές. Έχουµε, εν
συνεχεία, εκτελέσει µια σειρά αριθµητικών πειραµάτων τα οποία έχουν επανειληµ-
µένα δείξει ότι, αφιερώνοντας ένα σταθερό ποσό της µνήµης του υπολογιστή για την
µετακίνηση των ιδιοτιµών και, εν συνεχεία, χρήση της επαναληπτικής γενικευµένης
µεθόδου ελαχίστου υπολοίπου, οδηγεί σε πιο αποτελεσµατικό εξαγόµενο από το
να αφιερώσουµε όλη τη µνήµη του υπολογιστή για τη µεγιστοποίηση της διάστασης
του εσωτερικού υπόχωρου για χρήση της πλήρους µεθόδου.
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Αν και η µέθοδος της χωρικής ολοκληρωτικής εξίσωσης – τόσο η ΤΜ όσο και
η ΤΕ περίπτωση – είναι γνωστή στην επιστηµονική κοινότητα εδώ και πολλά χρόνια
[31, 32, 34, 41, 49, 53, 65, 67, 73], η πλήρης θεωρητική ανάλυση στις δύο διαστάσεις
εξακολουθεί να λείπει. Ο λόγος µπορεί να είναι η παρουσία των ειδικών συναρτή-
σεων στον πυρήνα του ολοκληρωτικού τελεστή, κάτι που περιπλέκει τους υπολο-
γισµούς, περισσότερο απ’ ότι στην τρισδιάστατη περίπτωση [5, 57, 33, 17]. Ως εκ
τούτου, πριν εισέλθουµε στις λεπτοµέριες των αριθµητικών τεχνικών, αφιερώνουµε
κάποιο χώρο για την θεωρητική ανάλυση των δύο διαστάσεων. Τα αποτελέσµατα
από το θεωρητικό µέρος της εργασίας µας είναι: το σύµβολο (symbol) του ολοκλη-
ρωτικού τελεστή, ο οµαλοποιητής (regularizer), και η ισοδυναµία του φάσµατος
µεταξύ δύο και τριών διαστάσεων, για την ΤΕ περίπτωση.
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Introduction

Electromagnetic scattering from various objects is of great interest in applied elec-
tromagnetics. For instance, diagnostic methodologies in biological tissues can be
deduced or the specific absorption rate (SAR) can be computed inside elliptic bio-
logical tissue models [11]. The study of the scattering by circular cylinders has been
discussed thoroughly in the literature. In the recent years there is a growing study
of scattering by the more difficult elliptical geometries, i.e. dielectric cylinders which
are composed by elliptical cross sections, multilayered dielectric elliptical cylinders,
or even homogeneous anisotropic elliptical cylinders.

The most widely used formulation for elliptic scatterers is based on the sep-
aration of variables method (SVM) by expanding the fields in terms of elliptical
wavefunctions, i.e. Mathieu functions. It is known that when two media – the scat-
terer and the background medium – have the same wavenumber, then there exists
the orthogonality relation for Mathieu functions. This also applies when the scatterer
is perfectly conducting. On the other hand, when the scatterer has a refractive in-
dex different than that of the background medium, the orthogonality does not hold,
leading to complicated expressions when one tries to satisfy the boundary conditions.
Moreover, an additional difficulty arrives when the incidence on a dielectric cylin-
der is not normal but oblique, leading to cross polarization of the fields, namely a
combination of TM and TE waves (or hybrid waves) for the scattered and induced
fields.

Most scattering problems deal with normal incidence. Initially, the study was
started in [79] by obtaining the back scattering cross section of a dielectric elliptical
cylinder under normal incidence. In [59] the authors have considered the scattering
by elliptic cylinders on various configurations, i.e. homogeneous cylinders and dielec-
tric coated conducting cylinders, based on expanding the fields in terms of elliptical
wavefunctions. Exact, closed form expressions have been obtained in [70] for the
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scattering cross sections of the scattering by an elliptic metallic cylinder having small
eccentricity, by using asymptotic analysis, while in [72], the same procedure has been
followed to obtain results for a dielectric elliptic cylinder, also with small eccentricity.
Composite elliptical bodies have also been studied, e.g. in [60] for the case of an
impedance elliptic cylinder coated with homogeneous material. The method used
there was the separation of variables with the impendance boundary condition (IBC).
Techniques for multilayer elliptic structures have also been proposed. In [10] the
authors have studied the TM illumination case for scattering by a multilayer elliptic
cylinder. They have built a recursive procedure for the field computation, based on
Mathieu functions, again for normal incidence. In [9], an analytical solution has been
obtained for a multilayer elliptic cylinder in the case of isorefractive materials, i.e.
when the two media have the same refractive index, or else, the same wavenumber,
thus satisfying the orthogonality properties of Mathieu functions. The case of the
normal scattering by multilayer elliptic cylinders is also reviewed in [48]. Ultimately,
in [42], the case of a homogeneous anisotropic elliptic cylinder has been considered.
The solution was obtained by expanding the fields using Mathieu functions as eigen-
functions, together with Fourier series. Their formulation includes media having
different refractive indices, but still is under normal incidence.

Scattering of obliquely incident waves, sometimes being referred as 2:5D scat-
tering or 3D scattering by an infinite cylinder, is a more general case to what discussed
so far. Many authors have contributed for the case of circular cylinders where dif-
ferent methods have been employed. In [40], the circular cylindrical wavevector
functions have been used by the author to study the scattering by dielectric circular
cylinders. The method of auxiliary sources (MAS) has been used in [69] to investi-
gate the scattering by a perfectly conducting circular cylinder, although in this case
hybrid waves do not appear. An alternative method based on the generalised Debye
series expansion (GDSE) is presented in [39] and the authors confirm the results
from [40]. The version of elliptical cylinders was started in [78] by modelling the
problem up to a specific point, but not providing any numerical results. Then, in
[55], the problem for the case of a perfectly conducting elliptic cylinder embedded in
an uniaxially anisotropic medium has been formulated. Impedance elliptic cylinders
have also been studied, i.e. in [76], by the use of two alternative methods. One
was the manipulation of the elliptical boundary it terms of polar coordinates and the
other was the direct implementation of the finite difference method (FDM). In [68]
the author uses integral-integrodifferential equations, which are solved via Nyström
method, to study dielectric cylinders having arbitrarily shaped smooth boundary, and
he validates his results by considering elliptic cylinders. Also, in [45], the Green’s
tensor technique is applied to study 2D and 3D electromagnetic scattering and ex-
amples are provided with elliptical geometries. Finally, in [43], the authors continue
their work started in [42] by introducing oblique incidence. They use Galerkin’s
method as well as the FDTD method to validate the results.

It is evident that the formulation of the most techniques used for elliptical
cylinders supports mostly normal incidence or isorefractive materials. There is a
lack of combination of oblique incidence on materials having different constitutive
parameters, and its corresponding investigation. The method presented here is
exact and alternative to those that can support the aforementioned combination,
i.e. methods that are based on integral equations [68, 43]. Moreover, although the
validation for many new techniques relies on the circular geometry with the well
known solution based on Bessel functions, the scattering problem from elliptical
cross section cylinders is in many cases a challenging way for proving the correctness
of the results. Therefore, this method can be used for reference as an alternative
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validation for future methods involving scattering problems.
There is also a steady interest in the numerical simulation of the electromag-

netic field in inhomogeneous media. The methods can be roughly divided into two
categories – local and global – in accordance with the governing equations. The
local methods based on the differential Maxwell’s equations [22, 23, 29, 30] are
generally more popular due to the sparse nature of their matrices and the ease of
programming. Alongside the local methods, global methods based on an equiva-
lent integral equation formulation are also often employed, especially in free-space
scattering. If an object is large and homogeneous or has a perfectly conducting
boundary then the problem is usually reduced to a boundary integral equation with
the fields (currents) at the interfaces being the fundamental unknowns [28]. If an
object is continuously inhomogeneous or is a composite consisting of many small
different parts, the most appropriate global method is the domain integral equa-
tion (DIE), in two dimensions, or the volume integral equation, in three dimensions
[31, 32, 34, 41, 49, 53, 65, 67, 73, 33, 17]. Although the global methods produce
dense matrices, they are generally more stable with respect to discretization than the
local ones, and the convolution-type integral operators sometimes allow to compute
matrix-vector products at the FFT speed. These properties make the DIE method a
viable alternative to local methods for certain free-space scattering problems.

The main difficulties with the DIE method are the non-normality of both the
operator and the resulting system matrix, inherent to frequency-domain electromag-
netic scattering, and the extremely slow convergence of the few iterative methods
that can be applied with such matrices. Numerical experiments consistently show
that the GMRES algorithm is the best choice [25]. Being a finite algorithm, the
full (un-restarted) GMRES will eventually converge with any physically meaning-
full scatterer and incident field [57]. Most of the practically interesting problems,
however, involve the number of unknowns prohibitive for the full GMRES, and its
restarted version is used. Unfortunately, sometimes, especially in TE scattering with
large permittivities/dimensions, restarted GMRES as well Bi-CGSTAB converge
very slowly or do not converge at all.

Several successful preconditioning strategies have been proposed for local
methods, see e.g. [22, 23], and boundary integral formulations [2, 3, 15, 16, 66].
Whereas the domain integral equation method is lagging behind in this respect
[12, 25, 26, 83], reporting convergence and acceleration thereof mainly for low-
contrast and/or small objects. One of the difficulties in designing a suitable multi-
plicative preconditioner for this method is that it needs to be either sparse or have
a block-Toeplitz form to be able to compete with local methods in terms of memory
and speed. Recently a deflation-based preconditioner has been proposed in [62] for
accelerating the DIE solver in the TM case. A thorough spectral analysis of the
system matrix reported in [62] showed that the outlying eigenvalues (largest in mag-
nitude) are responsible for a period of stagnation of the full GMRES, and that their
deflation accelerates the iterative process. As we show here this strategy, however,
does not work in the TE case. Moreover, using the deflation on top of a full GMRES
puts an even higher strain on the memory.

To further extend the applicability of the DIE method towards objects with
higher contrasts/sizes, in this dissertation we propose a two-stage preconditioner
based on the regularization of the pertaining singular integral operator and subse-
quent deflation of the largest eigenvalues. To derive a regularizer we employ the
symbol calculus, which also provides us with the essential spectrum of the original
operator. Our regularizer may be viewed as a generalization of the Calderón iden-
tity recently employed for preconditioning of the boundary integral equation method
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[2, 3, 15]. As an illustration and a proof of the concept we compute the complete
spectrum of the system matrix for a few typical objects of resonant size. We analyze
the difference in spectra between the TE and TM polarizations and demonstrate
that the discretized version of the regularizer indeed contracts a very dense group of
eigenvalues making the regularized system amenable to deflation. Unlike the previ-
ously mentioned boundary integral equation approach [2] the DIE method permits
a straightforward discretization of the continuous regularizer without any additional
precautions. As our regularizer is a convolution-type integral operator, all matrix-
vector products can be carried out with the FFT algorithm. The subsequent deflation
of the largest eigenvalues can be achieved with the standard Matlab’s eigs routine.
Most importantly, these largest eigenvalues and the associated eigenvectors turn out
to be rather stable, so that one can considerably accelerate the eigs algorithm by
setting a modest tolerance. We have performed a number of numerical experiments
which have consistently demonstrated that given a fixed amount of computer mem-
ory it is better to spend some part of it on deflation than all of it on maximizing
the dimension of the inner Krylov subspace of the restarted GMRES. Keeping the
restart parameter of the GMRES in the order or larger than the dimension of the
deflation subspace gives a speed-up which grows with the object size and permittivity.

Although the DIE method (both TM and TE versions of it) has been around
in engineering community for many years [31, 32, 34, 41, 49, 53, 65, 67, 73], the full
theoretical analysis of the two-dimensional case (in the strongly singular form) is
still missing. The reason might be the presence of special functions in the kernel
of the integral operator, which makes calculations more tedious than in the three-
dimensional case [5, 57, 33, 17]. Therefore, before going into the numerical details,
we devote some space here to the analysis of the two-dimensional singular integral
operator. In this theoretical part we restrict ourselves to objects described by the
constitutive parameters Hölder-continuous in R2. The analysis requires re-writing
the problem as a standard singular integral equation with its strongly and weakly
singular parts explicitly separated. The results of the theoretical part of our work are:
the operator symbol, the explicit regularizer, and the apparent (spectral) equivalence
of the two-dimensional transverse case and the more general three-dimensional
problem. The subsequent numerical analysis of the problem utilizes an equivalent
but visually different form of the equation, since there is no need to separate the
strongly and weakly singular parts while compiling the system matrix.

Apart from the aforementioned scattering problems, the corresponding inner
problem, i.e. the electromagnetic wave propagation in dielectric waveguides, is of
great interest in engineering since it has many applications, such as their use in
signal distribution networks for phased-array antennas, for cellular phone systems,
and especially the elliptical core fibers as long-distance transmission lines for optical
networks. The study of the modes propagating inside a circular dielectric waveguide is
well known since five decades ago. In [58] the authors first extracted the equation for
obtaining the cutoff wavenumbers for higher-order hybrid modes. A more detailed,
rigorous analysis on the aforementioned theme for the higher-order modes is given in
[44], where the author presents the characteristic equations for transverse magnetic
(TM), transverse electric (TE) and hybrid (EH or HE) modes. Analytical asymptotic
expressions are presented in [63], which are valid for all frequencies and higher-order
modes. Then, a comprehensive study for all modes in circular optical fibers is given in
[81], along with a nice description for the modes and their designation. The study of
the propagation in elliptical dielectric waveguides, apparently much more difficult, is
also of great interest. However, such studies are cumbersome due to the difficulties
arising by the elliptical geometry, and pure analytical formulas for hybrid modes of
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any order do not exist.
The researchers have employed different methods, during the last years, to

study the characteristics of the modes for the elliptical fibers. The expansion in
series of Mathieu functions is used in [77] where only the fundamental modes eHE11

and oHE11 are examined. Then, in [80], using again Mathieu series expansions, the
author simplifies the formulation under the weakly guiding approximation, i.e. when
the refractive indices of the core and the cladding of the fiber are almost similar,
and he expands his study to some higher-order modes. The same approximation is
used in [64] to study the linearly polarized (LP) modes in optical waveguides having
arbitrary cross section, but the formulation now is based on the scalar wave equations.
The modified finite element method is applied in [82] to study single mode circular
optical waveguides having inhomogeneous cores, and they further apply it to the
elliptical case. The case of arbitrary cross sectional shape dielectric waveguides is
treated in [24], where the authors use integral representations for the fields, and they
study the weakly guiding case as well as the general case of completely different
refractive indices between the core and the cladding. In [38] a complete analysis
on the modes, based on Mathieu functions, is given, and the authors give a variety
of dispersion curves for higher-order hybrid modes, from the exact characteristic
equations. Their work is extended in [52] where the propagation characeristics,
such as the group velocity and the attenuation for various higher-order modes, are
studied. In [51] the cutoff parameter of the first higher-order mode, i.e. oEH01,
is computed from the formulation obtained by Yeh in [77] and discrepancies with
previous results are resolved. The finite element method is then again used in [14]
to obtain the cutoff frequencies for the higher-order LP modes in fibers of arbitrary
cross section and numerical results are given for circular as well as for elliptical cores,
for various eccentricities. An alternative method to that of Mathieu series expansion,
namely the point-matching numerical method, is used in [56] for the calculation of
some higher-order hybrid modes. Then, in [50], a comparison between the Mathieu
series expansion and the point-matching method employed in [56] is made, and
discrepancies are resolved. An experimental approach is presented in [20] for the
cutoff calculation of some first higher-order modes in elliptical dielectric waveguides.
The weakly guiding approach is again employed in [61] to determine the LP modes,
by solving the Mathieu’s equation with the use of the corresponding characteristic
numbers. The same approach is also used in [74] by formulating the problem using
the elliptical Fourier series expansion. Finally, the intensity distributions and the
LP modes are calculated in [27], using a simplified characeristic equation based on
Mathieu series expansion.

It is apparent that, although most of the research is made for the weakly
guiding case where the formulation is considerably simplified, the general case was
also studied, however, the exact characteristic equations obtained in [77] and [38]
need more development to obtain a new characteristic equation valid at cutoff.
Furthermore, compared with the circular case where we have two discrete analytical
equations for the direct calculation of the cutoff wavenumbers [44], the corresponding
analytical, closed-form characteristic equations, directly at cutoff, for the elliptical
case do not exist.
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Chapter 1

Oblique scattering by
elliptical homogeneous
dielectric cylinders

The electromagnetic scattering by an arbitrarily oriented elliptical cylinder having
different constitutive parameters to those of the background medium, is treated in
this chapter. The separation of variables method is used to solve this problem, but,
due to the oblique incidence of the source fields, hybrid waves for the scattered
and the induced fields are generated, thus making the formulation complicated.
Moreover, because of the different wavenumbers between the scatterer and the
background medium, the orthogonality relations for Mathieu functions do not hold,
leading to more complicated systems, compared to those of normal incidence, that
should be solved in order to get the solution for the scattered or the induced field.
The validation of the results reveals the high accuracy of the implementation, even
for electrically large scatterers. Both polarizations are considered and numerical
results are given for various values of the parameters. The method is exact and
can be used for reference as an alternative validation in future methods involving
scattering problems.

1.1 Introduction

In this chapter the electromagnetic scattering of an obliquely incident plane wave by
an elliptic dielectric cylinder is examined. The geometry of the scatterer is depicted
in Figure 1.1 where the cross section corresponds to an ellipse having a major axis of
length 2c0, a minor axis of length 2b0 and a focal distance of length 2a. The incident
wave is impinging with an angle  with respect to Ox semiaxis and with an angle �
with respect to Oz semiaxis. The permittivity and permeability of the scatterer is �2

and �2 respectively, while for the background medium is �1 and �1. All materials are
lossless. Both polarizations are considered for oblique incidence, namely the case of

1
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Figure 1.1 Geometry of the configuration.

a TM incident wave (or E-wave polarization) and the case of a TE incident wave (or
H-wave polarization).

The problem is solved using the separation of variables based on the elliptical
coordinate system. By expanding the fields in terms of radial and angular elliptical
wave functions, there result four infinite sets of linear nonhomogeneous equations
for the scattered electromagnetic field. Each of the four sets is actually built up from
two equations involving both TM and TE waves, thus leading to a 2 �2 linear system.
Then the systems are solved numerically, by truncation, resulting to non-symmetric
complex system matrices. Truncation of the systems should be appropriate in order
not to increase the corresponding condition numbers. In the present case, due to
the cross polarization of the fields, quantities including integrals of angular ellipti-
cal functions and their derivatives, should be carefully handled since non diagonal
terms are present, unlike the case of isorefractive materials, or perfectly conducting
boundaries, where only diagonal terms exist.

1.2 Scattering by a transverse magnetic incident wave

The case of an obliquely TM plane wave will be first considered. This has the form

Ei
z D exp.�jk1 � r/

D expŒ�jh1.cosh � cos' cos C sinh � sin ' sin /� exp.�jk1z cos �/; (1.1)

where we have expressed the position vector r in terms of the elliptical coordinates
.�; '; z/, by using the relations x D a cosh� cos ' and y D a sinh � sin '. In (1.1),
h1 D �1a D k1a sin � D k1c0h sin � with h D a=c0 being the eccentricity of the
ellipse and k1 being the wavenumber of region I. The time dependence is of the form
exp.j!t/ and it is suppressed throughout. When h D 0 the ellipse degenerates into
a circle of radius c0 while, when h D 1, it degenerates into a strip of length 2a. We
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expand the incident wave of (1.1) in series of elliptical wave functions [47], namely

Ei
z D

p
8�e�jˇz

� 1
X

mD0

j�m Sem.�a; cos /

Me
m.h1/

Jem.h1; cosh �/Sem.h1; cos'/

C
1
X

mD1

j�m Som.�a; cos /

Mo
m.h1/

Jom.h1; cosh �/Som.h1; cos'/

�

; (1.2)

where Jem and Jom are the even and odd radial Mathieu functions of the first kind,
Sem and Som are the even and odd angular Mathieu functions, and Me

m, Mo
m are the

normalization constants [47] and are given in Appendix 1.A. All quantities that relate
integrals of angular Mathieu functions and the way to be calculated, are gathered in
Appendix 1.A. In (1.2) we have defined ˇ D k1 cos � .

The scattered field in region I has both electric and magnetic field components,
otherwise the boundary conditions cannot be satisfied. The z-component of the
electric field is expressed as

Esc
z D e�jˇz

"

1
X

mD0

Ae
mHe.2/

m .h1; cosh �/Sem.h1; cos'/

C
1
X

mD1

Ao
mHo.2/

m .h1; cosh �/Som.h1; cos'/

#

; (1.3)

where He.2/
m and Ho.2/

m are the even and odd radial Mathieu functions of the fourth
kind, sometimes also referred as Mathieu-Hankel functions. From now on, the
superscript .2/will be ommited for simplicity. The corresponding magnetic scattered
field Hsc

z in region I, has the same expression as Esc
z in (1.3), but with different

expansion coefficients, denoting them by De
m for the even part, and by Do

m for the
odd part.

The other components of the scattered electric and magnetic field are given by

Esc
� D � jˇ

h��
2
1

@Esc
z

@�
� j!�1

h��
2
1

@Hsc
z

@'
; (1.4)

Esc
' D � jˇ

h��
2
1

@Esc
z

@'
C j!�1

h��
2
1

@Hsc
z

@�
; (1.5)

Hsc
� D j!�1

h��
2
1

@Esc
z

@'
� jˇ

h��
2
1

@Hsc
z

@�
; (1.6)

Hsc
' D � j!�1

h��
2
1

@Esc
z

@�
� jˇ

h��
2
1

@Hsc
z

@'
; (1.7)

where h� D a

q

cosh2 � � cos2 ' is the scale factor of the elliptical coordinate system.

The induced field in region II has again both electric and magnetic field com-
ponents. The induced electric field is expressed as

E2
z D e�jˇz

"

1
X

mD0

Ce
mJem.h2; cosh �/Sem.h2; cos '/

C
1
X

mD1

Co
mJom.h2; cosh �/Som.h2; cos'/

#

; (1.8)
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while the induced magnetic field H2
z has the same expresseion as E2

z in (1.8), but with
the expansion coefficients Fe

m and Fo
m for the even and odd part, respectively. Since

(1.8) describes the fields in region II, it includes the quantity h2 D �2a D k2a sin � ,
with k2 being the wavenumber of region II. Relating the inner wavenumber to the

outer wavenumber by k2 D
p

�2=�1

p

�2=�1k1, we express h2 in terms of h1 by h2 D
p

�2=�1

p

�2=�1h1.
The boundary condition for the z-component of the electric field on the elliptical

boundary � D �0 is

Ei
z C Esc

z D E2
z: (1.9)

Upon satisfying it, and after using the orthogonality properties for the angular Math-
ieu functions, one time for the even function and one time for the odd function, we
express the inner expansion coefficient in terms of the outer expansion coefficient by
the formula

Ce
i D

"

p
8�

1
X

mD0

j�m Sem.�a; cos /

Me
m.h1/

Jem.�a; cosh �0/M
e
mi.h1;h2/

C
1
X

mD0

Ae
mHem.�a; cosh�0/M

e
mi.h1;h2/

#

=
�

Jei.a; cosh �0/M
e
i .h2/

�

; i D 0; 1; 2; : : : : (1.10)

A similar expression is obtained for the Co
i coefficient versus Ao

m by simply
changing “e” with “o” in (1.10), and carefully do the summation by starting m from
1 to 1. The quantity Me

mi appearing in (1.10) and its corresponding Mo
mi are defined

in Appendix 1.A.
A similar procedure is followed to satisfy the boundary condition for the mag-

netic field intensity, namely

Hsc
z D H2

z ; (1.11)

and leads to the following relation

Fe
i D

1
X

mD0

De
mHem.�a; cosh �0/M

e
mi.h1;h2/

=
�

Jei.a; cosh �0/M
e
i .h2/

�

; i D 0; 1; 2; : : : ; (1.12)

where we have again expressed the inner expansion coefficient in terms of the outer
one. Similarly as before, by changing “e” with “o” in (1.12), and interpreting the
summation index m from 1 to 1, we can express Fo

i in terms of Do
i .

Substituting the expansion coefficients Ce
i and Co

i in (1.8) by their equivalent
from (1.10), we obtain the electric field intensity in region II given by a double series
and expressed via the only unknowns now, namely, the expansion coefficients of
region I. The same is done for the magnetic field H2

z by substituting Fe
i and Fo

i by
their equivalents from (1.12).

Next, we proceed with the boundary condition at � D �0 for the '-components
of the electric field, namely

� ˇ

�2
1

@Ei
z

@'
� ˇ

�2
1

@Esc
z

@'
C !�1

�2
1

@Hsc
z

@�
D � ˇ

�2
2

@E2
z

@'
C !�2

�2
2

@H2
z

@�
: (1.13)

Multiplying both sides of (1.13) with Ses.h1; cos '/ and integrating from ' D 0 to 2� ,
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there results the set of linear nonhomogeneous equations

� cos �

1
X

mD1

Hom.�a; cosh �0/M
o0e
ms .h1/A

o
m

C cos �
�1

�2

�1

�2

1
X

mD1

1
X

iD1

Ao
mHom.�a; cosh �0/

Mo
mi.h1;h2/M

o0e
is .h2;h1/

Mo
i .h2/

C
r

�1

�1
He0

s.�a; cosh �0/M
e
s .h1/D

e
s

�
r

�1

�1

�1

�2

1
X

mD0

1
X

iD0

De
mHem.�a; cosh �0/

Je0
i.a; cosh �0/

Jei.a; cosh �0/

Me
mi.h1;h2/M

e
is.h2;h1/

Me
i .h2/

D cos �
p

8�

1
X

mD1

j�mSom.�a; cos /Jom.�a; cosh�0/
Mo0e

ms .h1/

Mo
m.h1/

� cos �
�1

�2

�1

�2

p
8�

1
X

mD1

1
X

iD1

j�m Som.�a; cos /

Mo
m.h1/

Jom.�a; cosh �0/

� Mo
mi.h1;h2/M

o0e
is .h2;h1/

Mo
i .h2/

; s D 0; 1; 2; : : : : (1.14)

In eqs. (1.14), the primed versions of Mathieu functions denote the derivative

with respect to �. Moreover, the various quantities Mo0e
ms appearing, are defined

in Appendix 1.A. The set of (1.14) relates the odd part expansion coefficient of
the scattered electric field with the even part expansion coefficient of the scattered
magnetic field, hence leading to a cross relation. Since we have two unknowns here,
another set is necessary, and thus a 2 � 2 linear system is composed. This extra set
is obtained if we satisfy the final boundary condition for the '-components of the
magnetic field, namely

�!�1

�2
1

@Ei
z

@�
� !�1

�2
1

@Esc
z

@�
� ˇ

�2
1

@Hsc
z

@'
D �!�2

�2
2

@E2
z

@�
� ˇ

�2
2

@H2
z

@'
: (1.15)

Next we multiply both sides of (1.15) with Sos.h1; cos'/ and integrate from ' D 0
to 2� . The resulting set has the same structure for LHS (left hand side) as that
of eqs. (1.14), but different RHS (right hand side). To obtain the LHS we should
make the following substitutions; for the part relating Ao

m: Ao
m ! De

m, “o”!“e”,
“o0e”!“e0o” and �i $ �i; i D 1; 2. For the part relating De

m: De
m ! �Ao

m, “e”!“o”
and �i $ �i; i D 1; 2. The RHS of this new set would be given by

RHS D
r

�1

�1

p
8�j�sSos.�a; cos /Jo0

s.�a; cosh �0/

�
r

�1

�1

�1

�2

p
8�

1
X

mD1

1
X

iD1

j�m Som.�a; cos /

Mo
m.h1/

Jom.�a; cosh �0/
Jo0

i.a; cosh �0/

Joi.a; cosh �0/

� Mo
mi.h1;h2/M

o
is.h2;h1/

Mo
i .h2/

; s D 1; 2; 3; : : : : (1.16)

Instead of the aforementioned sets, there is also another couple which composes
a new 2�2 linear system. This new group relates the remaining expansion coefficients
Ae

m and Do
m. To obtain it, we should multiply both parts of (1.13) with Sos.h1; cos'/
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and integrate from ' D 0 to 2� , and do the same with (1.15) with Ses.h1; cos'/.
Alternatively, the last one can be directly obtained from the previous sets by using
the following substitutions: Ao

m ! Do
m, De

m ! �Ae
m and �i $ �i; i D 1; 2.

1.3 Scattering by a transverse electric incident wave

To derive the case for a TE incident wave, a complete duality scheme should be
applied to all formulas of Section 1.2. Therefore, the following changes are necessary:
E ! H, H ! �E and �i $ �i, i D 1; 2.

1.4 Scattering cross sections

Yeh [79] has obtained the back scattering cross section for a dielectric elliptical
cylinder but this was for normal incidence. In the present case, due to the cross
polarization, the full definition should be used to derive an expression that includes
the contribution of both electric and magnetic field components. The bistatic cross
section is given by [4]

� D lim
�!1

2��
jEscj2

jEij2
; (1.17)

where � is the distance from the origin in polar coordinates. Then, using the asymp-
totic expansion for the radial Mathieu function of the fourth kind [8, 43] and the
corresponding one for its derivative [43]

He
om.h1; cosh �/ �

�!1

s

1

�1a cosh �
expŒ�j.�1a cosh �� .2m C 1/�=4/�; (1.18)

He
o

0
m.h1; cosh �/ �

�!1

s

1

�1a cosh�
expŒ�j.�1a cosh� � .2m C 1/�=4/�

�
�

� 1

2
� j�1a cosh�

�

; (1.19)

in (1.3), in the corresponding one for the Hsc
z , and finally in eqs. (1.4)–(1.7), we

obtain the scattered far field expressions. Next, using the asymptotic formula
a cosh ���!1 � and keeping only the dominant terms in the fields, i.e. those with

1=
p
� compared with 1=�3=2 behaviour, we finally obtain from (1.17) the back or

radar (k1�b), the forward (k1�f), and the total (k1Qt) normalized scattering cross
sections. For the back and forward scattering cross sections we have

k1�b D 2�

sin �

�

jGE. C �/j2 C �1

�1
jGH. C �/j2

�

; (1.20)

k1�f D 2�

sin �

�

jGE. /j2 C �1

�1
jGH. /j2

�

; (1.21)

where
�

GE.'/

GH.'/

�

D
1
X

mD0

�

Ae
m

De
m

�

jmSem.h1; cos '/C
1
X

mD1

�

Ao
m

Do
m

�

jmSom.h1; cos'/: (1.22)

Compared with the expressions in [70, 72], it is obvious that we have two contributions
due to the hybrid fields, and also, the additional factor 1= sin � that appears in the
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oblique incidence case. For the total scattering cross section, defined in [54], we have

k1Qt D 1

sin �

(

1
X

mD0

jAe
mj2Me

m.h1/C
1
X

mD1

jAo
mj2Mo

m.h1/

C �1

�1

"

1
X

mD0

jDe
mj2Me

m.h1/C
1
X

mD1

jDo
mj2Mo

m.h1/

#)

: (1.23)

1.5 Numerical results

A part of this section is devoted to the validation and then, various examples are
presented and discussed. A complete vectorized Matlab package was developed for
the calculation of Mathieu functions. Mathieu functions used here correspond to the
ones used in [47]. For accurate calculation, the implementation on the computer was
based on [7]. The linear systems, see for instance eqs. (1.14), are solved numerically,
by truncation. What is important here is the appropriate choice of the truncation
order so not to add terms that will cause the system to become ill-posed. So, we first
check the projection of all RHS and we select the order of truncation to be such that
terms of the order 10�16 and smaller not to be included. Then the system is solved
using the Gauss elimination technique with partial pivoting.

1.5.1 Validation

The verification of the code was mainly preferred to be done by comparison with
other, different techniques from the literature. In [72] the authors provide a table for
the calculation of the back, forward and total scattering cross sections, under normal
incidence. In Table 1.1 a comparison is made between the current work and theirs. In
the special case where �2=�1 ! 1 and �2=�1 ! 0, the results of this work conclude
to the ones of [70] where the cylinder is a perfect conductor, and again under normal
incidence. The agreement is shown in Table 1.1 where the extreme ratios �2=�1 D 1015

and �2=�1 D 10�15 have been used. From the values presented, it is evident that
an agreement has been achieved between 4 and 7 significant digits. However this
comparison is not sufficient to conclude about the accuracy of the present technique,
since their algorithm is based on a series expansion of the eccentricity h, up to the
order h4.

Next, in Table 1.2, a comparison is made with [68] where the author has obtained
highly accurate results with the use of the exponentially converging Nyström method.
The author refers to an elliptic dielectric cylinder which is isorefractive compared
to the background medium, and he presents results for the total tangential field
components in the case where both TM and TE incident waves are present. The
results are found to agree within 8 and 14 significant figures, thus revealing the high
accuracy of the implementation of the work presented here. We further check for
the correctness for an electrically large scatterer having k1c0 ' 25:5� . As can be
also seen from Table 1.2, even for this difficult case, the present algorithm yields an
astonishing agreement up to 13 significant digits. The truncation order for the case of
k1c0 ' 0:7� is 7 for TM and 9 for TE wave, respectively. For the case of k1c0 ' 25:5�
is 39 terms for TM and 43 terms for TE wave, respectively. It is obvious that when
k1c0 factor increases, more terms are required if one wants to achieve high accuracy.

A self validation was also investigated with the satisfaction of the boundary
conditions across the elliptic interface, which were verified to an excellent accuracy,
as can be seen from Table 1.3. This constitutes a further check for the correctness of
the present solution.
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Table 1.1 Comparison with the closed form relations in [70, 72] based on asymptotic
analysis.*

Method k1�b k1�f k1Qt

TM incident wave: �2=�1 D 2:54, �2=�1 D 1, k1c0 D � ,  D 0ı

[72] 6.18706994547200 184.9067048022120 27.12969561215999
This work 6.18703078788406 184.9062767761573 27.12969292771986

TE incident wave: �2=�1 D 2:54, �2=�1 D 1, k1c0 D � ,  D 45ı

[72] 0.115168127410000 150.5303809198020 24.3357001800960
This work 0.115130859315949 150.5304186551822 24.3357297357245

TM incident wave: �2=�1 D 1015, �2=�1 D 10�15, k1c0 D 1:4� ,  D 18ı

[70] 14.05514176996800 115.7218114169368 20.7438342450944
This work 14.05518224090304 115.7217521256232 20.7438734217104

TE incident wave: �2=�1 D 1015, �2=�1 D 10�15, k1c0 D 1:4� ,  D 63ı

[70] 14.71419260987070 55.49594687890344 14.3503668802168
This work 14.71418407607783 55.49594751732805 14.3503702205521
*The values of the parameters used are h D 0:1 and � D 90ı. The rest parameters

are shown in the subcategories.

Finally, in Table 1.4 we see how the series of(1.3) for the magnetic field converge,
together with the accompanied accuracy. For this case, whose values of parameters
are shown also in Table 1.4, 21 terms are needed to catch an accuracy of 16 significant
digits. The number of terms is increased when k1c0 is increased, as can be seen from
Table 1.5, where now 75 terms are needed for the series of (1.3) for the electric
field. In companion with Tables 1.4 and 1.5 are Figures 1.2 and 1.3 which illustrate
the convergence for each case. It should be also noted that a verification on the
convergence, like the one presented here, were also done for the series which accrue
after differentiation, i.e. for the '–components of the fields obtained from (1.5) and
(1.7).

1.5.2 Applications

The presentation of the results is organized as follows: figures 1.4–1.10 have double
vertical axes. The blue curves should be read with respect to the left axis while the
red curves with respect to the right axis. We correspond to the left axis the results
obtained for the case of a TM incident wave, while, to the right axis, the results from
a TE incident wave. The values of the parameters are gathered in the captions.

In Figure 1.4 we plot the back scattering cross section versus the incident angle 
for various tilt angles � . The plot is in the range from 0 to 90 degrees, since the results
are symmetric about the 90 degrees, as it is imposed by the geometry of the scatterer.
We observe a highly sensitive behaviour for the back scattering cross section to the
change of  , and this also depends on the change of the obliquely incident angle.
When the incidence is very oblique (solid curves with � D 10ı) the variation of k1�b

is very smooth, then continuing on an intermediate value of � (dashed curves with
� D 30ı), the variation starts to become important, and finally, when we approach the
normal incidence (dash-dot curves with � D 80ı), the variation becomes very large.
The higher variation of k1�b in the case of the TE incident wave, is also evident.

The same remarks can be concluded from Figure 1.5 where we plot the forward
scattering cross section. Again, when the tilt angle becomes larger, the sensitivity
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Table 1.2 Comparison with the highly accurate results from [68].*

Method jEz.c0; 0/j jE'.c0; 0/j � 10�3 jHz.c0; 0/j jH'.c0; 0/j
h D 0:6, k1c0 D

p
2=2� ' 0:7�

[68] 0.776688259004 0.2868380432785 1.1811246931802 0.9340099224582
This work 0.776688259004474 0.286838044996280 1.181124693180238 0.934009922481920
Agreement† 12 8 14 10

h D
p

1 � .5=9/2 ' 0:83, k1c0 D 18
p

2� ' 25:5�
[68] 0.875644527 0.367480904914 1.126681679992 0.97588563775
This work 0.875644527300915 0.367480907116272 1.126681679992637 0.975885637775567
Agreement† 9 8 13 10
*The values of the parameters used here to match the ones in [68] are �1 D

p
2�0, �1 D

p
2�0, �2 D 2�0,

�2 D �0,  D 180ı C 45ı and � D 180ı � 40ı. The rest parameters are shown in the subcategories.
†In significant digits, compared with the results from [68].

Table 1.3 Satisfaction of the boundary conditions for all tangential field components.*

Total field jEz.c0; 0/j jE'.c0; 0/j jHz.c0; 0/j jH'.c0; 0/j
TM incident wave

Region I 0:8756445273012264 0:6943660706634107 2:471228083329778 � 10�18 0:00325649435176776
Region II 0:8756445273012283 0:6943660706632128 2:471228083329779 � 10�18 0:00325649435176778
Agreement† 14 12 15 14

TE incident wave
Region I 3:289348154170203 � 10�13 366:7869354856975 1:126681679992637 0:9791420617943808
Region II 3:289348154170201 � 10�13 366:7869354856993 1:126681679992639 0:9791420617943756
Agreement† 15 14 15 13
*The values of the parameters used are �1 D

p
2�0, �1 D

p
2�0, �2 D 2�0, �2 D �0,  D 180ı C 45ı, � D 180ı � 40ı,

h D
p

1 � .5=9/2 ' 0:83 and k1c0 D 18
p

2� ' 25:5� .
†In significant digits.
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Table 1.4 Convergence history for the series of (1.3), for the total magnetic field
jHz.c0; 0/j and for the case of a TM incident wave.*

NOT† Partial sums �10�3§ Accuracy¶

1 0:02762426190699955 0
2 0:264942507449316 0
3 0:722386463238474 0
4 0:7952206859739518 1
5 0:7891377483696527 1
6 1:356086513119823 0
7 1:315115632795634 2
8 1:28279671507106 1
9 1:283629533523272 3
10 1:283928540306621 4
11 1:283937221266295 5
12 1:283938171065654 6
13 1:283938130469819 8
14 1:283938203254267 7
15 1:283938199378802 7
16 1:283938198295074 9
17 1:283938198309434 10
18 1:283938198307139 12
19 1:28393819830737 13
20 1:283938198307413 13
21 1:283938198307413 16
22 1:283938198307413 16
23 1:283938198307413 16
*The values of the parameters used are �1 D �0, �1 D �0,

�2 D 4�0, �2 D �0,  D 45ı, � D 30ı, h D 0:4 and k1c0 D 2� .
†Number of terms.
§When the 15th decimal digit is missing, it is understood to be zero.
¶In significant digits, compared with the previous term.
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Figure 1.2 (color online). Illustration of the convergence for the data in Table 1.4.
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Table 1.5 Convergence history for the series of (1.3), for the total electric field
jEz.c0; 0/j and for the case of a TE incident wave.*

NOT† Partial sums �10 Accuracy§

60 4:456426094495426 8
61 4:456426108333447 7
62 4:456426103445187 9
63 4:456426102262043 9
64 4:456426102687145 10
65 4:456426102779209 10
66 4:456426102745657 11
67 4:456426102739103 11
68 4:456426102741522 11
69 4:456426102741951 13
70 4:456426102741792 13
71 4:456426102741765 14
72 4:456426102741775 14
73 4:456426102741776 15
74 4:456426102741775 15
75 4:456426102741775 16
76 4:456426102741775 16
77 4:456426102741775 16
*The values of the parameters used are �1 D �0, �1 D �0,

�2 D 4�0, �2 D �0,  D 45ı, � D 60ı, h D 0:6 and k1c0 D 10� .
†Number of terms.
§In significant digits, compared with the previous term.
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Figure 1.3 (color online). Illustration of the convergence for the data in Table 1.5.
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Figure 1.4 (color online). Back scattering cross section versus the incident angle
 . Solid curves: � D 10ı, dashed curves: � D 30ı, dash-dot curves: � D 80ı. The
rest parameters are �2=�1 D 2:54, �2=�1 D 1, h D 0:6 and k1c0 D 10� .

begins to appear, however, it is not so high compared to that of k1�b. Moreover,
we observe the same behaviour for both the two cases of TM and TE incident wave,
which means that k1�f has almost the same magnitude for both TM and TE cases to
the change of  . This is not true for the case of k1�b.

As far as the total scattering cross section is concerned, see Figure 1.6, the same
comments apply like the ones for the forward scattering cross section, although the
magnitude of k1Qt is much smaller compared to that of k1�f.

The sensitivity also depends on the size of the scatterer. In Figure 1.7 we
illustrate this change for obliquely incident TM and TE waves at � D 60ı, for two
different values of k1c0 D 2� and k1c0 D 20� , by plotting the back scattering
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Figure 1.5 (color online). Forward scattering cross section versus the incident
angle  . Solid curves: � D 10ı, dashed curves: � D 30ı, dash-dot curves: � D 80ı.
The other values of the parameters are the same as in Figure 1.4.



§ 1.5 NUMERICAL RESULTS 13

40

60

80

100

120

140

160

180

0 10 20 30 40 50 60 70 80 90
60

80

100

120

140

160

180

k
1
Q

t
–

T
M

in
ci

d
e

n
t

w
a

v
e

 (degrees)

k
1
Q

t
–

T
E

in
ci

d
e

n
t

w
a

v
e

Figure 1.6 (color online). Total scattering cross section versus the incident angle
 . Solid curves: � D 10ı, dashed curves: � D 30ı, dash-dot curves: � D 80ı. The
other values of the parameters are the same as in Figure 1.4.

cross sections in dB [10 log.k1�b/]. Alternatively, these values of k1c0 correspond to
c0=�1 D 1 and c0=�1 D 10, respectively, so we have a scatterer having size of the order
of the incident wavelength, and one ten times bigger. The much higher sensitivity
and variation of k1�b to the change of  , when the size of the scatterer is electrically
increased, is evident.

Figure 1.8 shows the results for the back scattering cross section when we
increase the eccentricity to the value h D 0:8. By comparing the results between
Figure 1.8 and Figure 1.4 that correspond to very oblique incident angles (solid
curves), we see that, when the ellipse approaches the strip, k1�b becomes more
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Figure 1.7 (color online). Back scattering cross section in dB versus the incident
angle  , and for � D 60ı. Solid curves: k1c0 D 2� , dashed curves: k1c0 D 20� . The
other values of the parameters are the same as in Figure 1.4.
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Figure 1.8 (color online). Back scattering cross section versus the incident angle
 , but for h D 0:8. Solid curves: � D 10ı, dashed curves: � D 30ı, dash-dot curves:
� D 80ı. The other values of the parameters are the same as in Figure 1.4.

sensitive. For larger tilt angles, it continues to have the high sensitivity, but now the
variation is larger for smaller tilt angles.

The back scattering cross section in dB (same definition as in Figure 1.7) ver-
sus the electrical size of the scatterer, is shown in Figure 1.9 for � D 10ı, and in
Figure 1.10 using � D 70ı. The peaks and troughs observed in both Figures 1.9 and
1.10 correspond to resonant frequencies. The variation and the sensitivity becomes
higher when the oblique incident angle increases, as we have already noticed from
Figure 1.4. Moreover, in the case of � D 70ı, the variations are greater for the TM
incident wave.

Finally, in Table 1.6 we have gathered some results for the computed absolute
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Figure 1.9 (color online). Back scattering cross section in dB versus c0=�1 for
 D 45ı, � D 10ı and h D 0:8. The other values of the parameters are the same as
in Figure 1.4.
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Figure 1.10 (color online). Back scattering cross section in dB versus c0=�1 for
 D 45ı, � D 70ı and h D 0:8. The other values of the parameters are the same as
in Figure 1.4.

value of all tangential field components. The values depicted are for the total fields,
i.e. the scattered fields plus the incident fields, and on the elliptic boundary at the
location .�; '/ D .�0; 0/. This would be an extra comparison for validation in future
methods.

1.6 Concluding remarks

The electromagnetic scattering of obliquely incident plane waves by an elliptical di-
electric cylinder was studied by using the SVM. The formulation supports different
constitutive parameters between the scatterer and the background medium, thus
leading to nonorthogonal relations for angular Mathieu functions. Moreover, the
existence of hybrid waves makes the formulation challenging, since the linear system
from which the solution is retrieved is composed by coupled equations, which include
both the contribution of TM and TE waves. The validation of the correctness of the
method was achieved by comparing it with exact, closed-form relations, and addition-
ally, with a highly accurate formulation. The results agree up to 13 significant figures,
even for electrically large scatterers, thus revealing the highly accurate implementa-
tion. Finally, we observe and discuss the sensitivity of the scattering cross sections
upon the change of various parameters. This method is exact, is alternative to the
ones based on integral equations, and can be used for reference as an alternative
validation for future methods involving scattering problems.

1.A Appendix: Integrals of angular Mathieu functions

In eqs. (1.2)–(1.16) integrals of various combinations of angular Mathieu functions
have been used. The normalization constants Me

m and Mo
m given in [47] can be

calculated by substituting the definition series of angular Mathieu functions and
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Table 1.6 Absolute value of all tangential total field components on the elliptic boundary.*

jEz.c0; 0/j jE'.c0; 0/j jHz.c0; 0/j � 10�4 jH'.c0; 0/j � 10�4

TM incident wave: �2=�1 D 2:54, �2=�1 D 1, h D 0:1, k1c0 D � ,  D 0ı, � D 90ı

2.288195081322319 0 0 38.94375263319

TM incident wave: �2=�1 D 4, �2=�1 D 1, h D 0:4, k1c0 D � ,  D 45ı, � D 90ı

1.803748227000343 0 0 35.38444329392

TM incident wave: �2=�1 D 4, �2=�1 D 1, h D 0:4, k1c0 D 2� ,  D 45ı, � D 30ı

0.209999529274052 0.195835248999691 12.83938198307 6.033213282836437

TM incident wave: �2=�1 D 4, �2=�1 D 1, h D 0:6, k1c0 D 10� ,  D 45ı, � D 60ı

0.223189903589569 0.196366158675060 6.225945875074653 7.885613920065429

jEz.c0; 0/j � 102 jE'.c0; 0/j � 102 jHz.c0; 0/j jH'.c0; 0/j
TE incident wave: �2=�1 D 2:54, �2=�1 D 1, h D 0:1, k1c0 D � ,  D 45ı, � D 90ı

0 1.173910610000002 0.669332490754157 0

TE incident wave: �2=�1 D 4, �2=�1 D 1, h D 0:4, k1c0 D � ,  D 45ı, � D 90ı

0 1.395819481293371 1.180533876627618 0

TE incident wave: �2=�1 D 4, �2=�1 D 1, h D 0:4, k1c0 D 2� ,  D 45ı, � D 30ı

1.652547067361899 3.570317971553199 0.515151791537351 0.343462144368244

TE incident wave: �2=�1 D 4, �2=�1 D 1, h D 0:6, k1c0 D 10� ,  D 45ı, � D 60ı

0.44564261027417750 1.295488454706039 0.086477523480504 0.163519279817156
*The values of the parameters are shown in the subcategories.
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using the orthogonality relations for cosines and sines. Therefore we have
Z 2�

0

Se
om.h; cos'/Se

ov.h; cos '/d' D M
e
o
mv.h/ımv

D ımv2�

1
X

nD0
1

1

"n

B
e
o
n.h;m/B

e
o
n.h; v/; (1.A.1)

with m; v D 0; 1; 2 : : :. Stacked notation have been used to include both even and odd
functions at once. In (1.A.1), ımv is Kronecker’s delta while "0 D 1, "n D 2; .n � 1/

is Neumann factor and B
e
o
n.h; l/ are the expansion coefficients for Mathieu functions

[47]. l and n should be both even or both odd. All these types of integrals we
encounter here, actually define a M � V matrix whose elements are defined for every
different value of m and v, e.g. m D 0; 1; 2; : : : ;M and v D 0; 1; 2; : : : ;V. In the case
of (1.A.1), only the diagonal terms are present, while the rest are all zero.

The inner products Me
mv.h1;h2/ and Mo

mv.h1;h2/ are not orthogonal and are
given by [72]

Z 2�

0

Se
om.h1; cos'/Se

ov.h2; cos'/d' D M
e
o
mv.h1;h2/

D 2�

1
X

nD0
1

1

"n

B
e
o
n.h1;m/B

e
o
n.h2; v/; (1.A.2)

with m; v D 0; 1; 2 : : :. These constitute a full M � V matrix. When h1 D h2, (1.A.2)
degenerates to (1.A.1).

Combinations between angular functions and their derivatives are also present,
namely

Z 2�

0

Se
o

0
m.h; cos'/So

ev.h; cos '/d' D M
e0o

o0e
mv .h/

D ��
1
X

nD1

nB
e
o
n.h;m/B

o
e
n.h; v/; (1.A.3)

where the primed angular functions denote the derivative with respect to '. In this
case, even if we have the same h, these inner products are not orthogonal, such as
that of (1.A.1). Moreover, due to the existence of one even type and one odd type
function, indices m and v are not the same, as it is also in (1.A.1). Therefore, these
quantities constitute a full M � V matrix. When we speak for even indices, the one
should begin from 0 and the other from 2. When we speak for odd indices, both

should begin from 1. For Me0o
m , m D 0; 1; 2; : : : and v D 1; 2; 3; : : : while for Mo0e

m ,
m D 1; 2; 3; : : : and v D 0; 1; 2; : : :. This fact results in a combination of existence
of both diagonal and non diagonal terms when setting up the systems. For instance,
in the set of eqs. (1.14), the matrix that corresponds to De

m consists of full matrix
elements plus diagonal terms, while, the matrix that corresponds to Ao

m, consists of
two full matrix elements.

The more general inner product
Z 2�

0

Se
o

0
m.h1; cos'/So

ev.h2; cos'/d' D M
e0o

o0e
mv .h1;h2/

D ��
1
X

nD1

nB
e
o
n.h1;m/B

o
e
n.h2; v/; (1.A.4)
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also appears. All the aforementioned commentaries are valid. When h1 D h2, (1.A.4)
also degenerates to (1.A.3).



Chapter 2

Hybrid wave
propagation in
elliptical dielectric
waveguides

The cutoff wavenumbers of the elliptical dielectric waveguide are calculated exactly
and analytically. Two separate methods are used to solve this problem. The first
method is based on the separation of variables technique using Mathieu functions and
gives the exact cutoff wavenumbers. The system matrices of which the roots of their
determinant should be determined are complicated because of the nonexistence of
orthogonality relations for Mathieu functions, due to the different constitutive param-
eters between the core and the cladding of the fiber. In the second method the cutoff
wavenumbers are obtained through analytical expressions, when the eccentricity h of
the elliptical core is specialized to small values. In the latter case, analytical, closed-
form algebraic expressions, free of Mathieu functions, are obtained for the expansion
coefficients g.2/

sn in the resulting relation x1;sn.h/ D x1;sn.0/
�

1 C g.2/
sn h2 C O.h4/

�

for
the cutoff wavenumbers, where x1;sn.0/ are the normalized cutoff wavenumbers of
the circular dielectric waveguide. These expressions are valid for every different
value of s and n, corresponding to every higher-order hybrid mode. Numerical re-
sults are given for various higher-order modes, as well as a comparison with the exact
solution.

2.1 Introduction

The geometry of the waveguide is depicted in Figure 2.1, where the core corresponds
to an ellipse having a major axis of length 2c0, a minor axis of length 2b0, and
an interfocal distance of length 2a. The permittivity and the permeability of the
core are �1 and �1, respectively, while, for the cladding, they are �2 and �2. For
our calculations, the core and the cladding materials are non magnetic, therefore
implying that �1 D �2 D �0, the permeability of free space.

19
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Figure 2.1 Geometry of the dielectric waveguide.

We follow two alternative procedures to obtain the solution of the problem.
The first one, based on the separation of variables in terms of Mathieu functions,
leads us to homogeneous linear systems at cutoff that, compared with the metallic
elliptical waveguide, are much more complicated due to the different constitutive
parameters in the core and the cladding. This fact leads to nonorthogonal relations
between angular Mathieu functions and their derivatives. A similar complication is
obtained in the scattering by obliquely incident waves – as we have seen in Chapter 1
– however, in the present case, the situation is more challenging since the roots of
the determinant of this complex system are required, and not simply the solution
of the system, which is the case when dealing with the scattering problem. Setting
this determinant equal to zero, it defines the characteristic equation of the problem
the roots of which are the exact cutoff wavenumbers for the corresponding hybrid
modes. Once the system is set up, the roots are obtained using numerical techniques
that will be described later.

When the solution is specialized to small values of the eccentricity h D a=c0,
i.e. for h � 1, analytical, closed-form expressions are obtained for the normalized
cutoff wavenumbers in the form x1;sn.h/ D x1;sn.0/

�

1 C g.2/
sn h2 C O.h4/

�

. The expan-

sion coefficients g.2/
sn for all higher-order modes are given by analytical, closed-form

expressions, independent of h, while x1;sn.0/ corresponds to the circular dielectric
waveguide having radius c0. Once a new cutoff wavenumber is of interest, the first
procedure will require repetition, from the beginning, for each different h or for each
different mode order. On the other hand, once the coefficients g.2/

sn are known, the
same cutoff wavenumber is immediately obtained by a quick “back-of-the envelope”
calculation, for each small value of h and for every order.

The independent exact solution described above is required to validate the
correctness of the results of our analytical, closed-form formulas, and to conclude
about the restriction of how much small values of h should be used in order to keep
low errors in our analytical formulas.

2.2 Mode designation

The elliptical dielectric waveguide maintains only hybrid modes, due to the lack of
the symmetry of the configuration. As can be also seen from [38, 51, 56], these
modes are split in two groups, the even modes and the odd modes. According to the
definition given by Yeh in [77], the even group of modes corresponds to the equations
that describe the even part of the axial component of the magnetic field, while, the
odd group of modes corresponds to the equations that describe the odd part of the
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axial magnetic field component. Each group has two different types of hybrid modes,
i.e. the EH and HE. So we speak about eEHsn and eHEsn modes for the even group
and for oEHsn and oHEsn modes for the odd group.

The circular dielectric waveguide has four different types of modes, namely the
TM0n, TE0n, EHsn and HEsn. The characteristic equations at cutoff for the afore-
mentioned modes, which will give the corresponding normalized cutoff wavenumbers
x1;sn.0/ D x0

1;sn, are [44]

TM0n;TE0n W J0.x
0
1;0n/ D 0; n > 1 (2.1)

EHsn W Js.x
0
1;sn/ D 0; x1;sn ¤ 0; s > 1; n > 1 (2.2)

HE1n W J1.x
0
1;1n/ D 0; n > 1 (2.3)

HEsn W Js�1.x
0
1;sn/

�

�1

�2
C 1

�

�
x0

1;snJs.x
0
1;sn/

s � 1
D 0; s > 2; n > 1 (2.4)

When the eccentricity of the ellipse becomes zero, the core of the fiber becomes a
circle with radius c0. In this case, the oEH0n and eHE0n modes degenerate to TM0n

and TE0n modes, respectively, while eEHsn and oEHsn (s > 1) degenerate to EHsn,
and finally, eHEsn and oHEsn (s > 1) degenerate to HEsn.

2.3 Solution of the problem

The longitudinal component EI
z in the region I of the waveguide is expressed as

EI
z.�; '; z/ D e�jˇz

"

1
X

mD0

Ae
mJem.�a; cosh�/Sem.�a; cos'/

C
1
X

mD1

Ao
mJom.�a; cosh�/Som.�a; cos'/

#

(2.5)

where �; ' are the transverse elliptical-cylindrical coordinates with respect to xOy,
Jem and Jom are the even and odd radial Mathieu functions of the first kind, Sem and
Som are the even and odd angular Mathieu functions, ˇ is the propagation constant,
and � D .k2

1 � ˇ2/1=2 with k1 D !.�1�1/
1=2 being the wavenumber of region I. The

time dependence exp.j!t/ is suppressed throughout. A similar expression as in (2.5)
also holds for the axial component HI

z with the only difference that the expansion
coefficients Ae

m and Ao
m are replaced by De

m and Do
m, respectively.

In region II, the longitudinal component EII
z is expressed as

EII
z .�; '; z/ D e�jˇz

"

1
X

mD0

Ce
mKem.a; cosh �/Sem.�ja; cos'/

C
1
X

mD1

Co
mKom.a; cosh �/Som.�ja; cos '/

#

(2.6)

where Kem and Kom are the even and odd modified radial Mathieu functions of
the second kind, defined in [1] by the relation Ke

om.a; cosh �/ D �=2 expŒ�j.m C
1/�=2�He

o
.2/
m .�ja; cosh �/, with He

o
.2/
m being the even/odd radial Mathieu functions of

the fourth kind. Moreover, in (2.6)  D .ˇ2 � k2
2/

1=2 with k2 D !.�2�2/
1=2 being the
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wavenumber of region II. Again, a similar expression to that in (2.6) holds also for the
longitudinal component HII

z with the only difference that the expansion coefficients
Ce

m and Co
m are replaced by Fe

m and Fo
m, respectively.

Satisfying the boundary conditions for the longitudinal components at the el-
liptical interface � D �0, namely EI

z D EII
z and HI

z D HII
z , and using the orthogonality

properties for the angular Mathieu functions, we can express the expansion coeffi-
cients of the fields in region II in terms of the expansion coefficients of the fields in

region I, i.e. C
e
o

m in terms of A
e
o

m and F
e
o

m in terms of D
e
o

m.
Next, we need to satisfy the remaining two boundary conditions at � D �0 for

the tangential components, namely EI
' D EII

' and HI
' D HII

' . The procedure is similar
to the one described in Chapter 1, so the details will not be repeated here for brevity.
Expressing the tangential component in terms of the longitudinal one, we end up
with the following two sets of linear homogeneous equations. The first set is

�ˇ
�2

1
X

mD0

Jem.�a; cosh �0/M
e0o
ms .�a/Ae

m

� ˇ

2

1
X

mD0

1
X

iD0

Ae
mJem.�a; cosh �0/M

e
mi.�a;�ja/

Me0o
is .�ja; �a/

Me
i .�ja/

C !�1

�2
Jo0

s.�a; cosh �0/M
o
s .�a/Do

s

C !�2

2

1
X

mD1

1
X

iD1

Do
mJom.�a; cosh�0/

Ko0
i.a; cosh �0/

Koi.a; cosh �0/

� Mo
mi.�a;�ja/Mo

is.�ja; �a/

Mo
i .�ja/

D 0; s > 1 (2.7)

while the second one is resulting from (2.7) using the following substitutions: Ae
m !

Do
m, “e”!“o”, “e0o”!“o0e”, and Do

m ! �Ae
m, “o”!“e”,�1;2 ! �1;2. Moreover, the

index s should be interpreted from 0 to 1. In (2.7), the primed versions of Mathieu
functions denote their derivative with respect to �, while the various inner products

Me0o
ms etc, are all gathered in the Appendix 1.A. It is worthy to note the difference

between the inner products of this problem and the ones appeared in Chapter 1,
where here some contain imaginary arguments.

These two sets described above, define a 2 � 2 homogeneous system with un-
knowns the expansion coefficients for the even part of EI

z and for the odd part of HI
z.

Thus, according to the description given in Section 2.2, the roots of the determinant
of this system matrix will describe the oEHsn and oHEsn modes. Apart from the
aforementioned homogeneous system, there exists its dual one, which occurs if we
simply swap Ae

m ! De
m, Do

m ! �Ao
m, and �1;2 $ �1;2. The roots of the determinant

of this dual system matrix will describe the eEHsn and eHEsn modes. Further details
about the indices s and n of the modes will be given in the Appendix 2.A, where we
further develop these sets to reach the cutoff condition. The roots obtained from
these determinants will give us the exact cutoff wavenumbers, and will be used to
conclude about the accuracy of our analytical formulas.

Now we proceed with the expansion of (2.7) and its pair, by keeping terms up
to the order of h2. The expansions for small eccentricities of the Mathieu functions
appearing in (2.7) are given in [35], the expansions for small eccentricities of the
various inner products Me and Mo are given in the Appendix of [72], while, the

expansions for small eccentricities of Me0o and of Mo0e, are given in the Appendix 2.B.
Substituting these expansions in (2.7), we conclude to the following infinite linear set
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of homogeneous equations for the expansion coefficients Ae
s and Do

s :

� ˇ

�

1

�2
˛s�2;s C 1

2
as�2;s

�

Ae
s�2 C !

�2

2
bs�2;sD

o
s�2

� ˇ

�

1

�2
˛ss C 1

2
ass

�

Ae
s C !

�

�1

�2
ıss C �2

2
bss

�

Do
s

� ˇ

�

1

�2
˛sC2;s C 1

2
asC2;s

�

Ae
sC2 C !

�2

2
bsC2;sD

o
sC2 D 0; s D 1; 2; : : : (2.8)

The quantities ˛, a, ı and b appearing in (2.8) are defined in the Appendix 2.B.
Following a similar procedure for the pair of (2.7), we conclude to a second infinite
linear set of homogeneous equations, namely:

� !
�2

2
a0

s�2;sA
e
s�2 � ˇ

�

1

�2
ı0

s�2;s C 1

2
b0

s�2;s

�

Do
s�2

� !

�

�1

�2
˛0

ss C �2

2
a0

ss

�

Ae
s � ˇ

�

1

�2
ı0

ss C 1

2
b0

ss

�

Do
s

� !
�2

2
a0

sC2;sA
e
sC2 � ˇ

�

1

�2
ı0

sC2;s C 1

2
b0

sC2;s

�

Do
sC2 D 0; s D 1; 2; : : : (2.9)

The various primed quantities are again gathered in the Appendix 2.B. Although
the index s in (2.9) should start from zero, the zero value has been extracted so
that both sets (2.8) and (2.9) start from s D 1. These two sets constitute a 2 � 2
homogeneous system from which the oEHsn and oHEsn, s > 1 modes are described.
The aforementioned special case where s D 0 in (2.9) contributes to oEH0n modes,
and the corresponding linear homogeneous equation, valid only for the expansion
coefficient Ae

0, is given by

�!
�

�1

�2
˛0

00 C �2

2
a0

00

�

Ae
0 � !

�2

2
a0

2;0Ae
2 D 0 (2.10)

The linear system defined by (2.8) and (2.9) has the same form with the one
appearing in [37], although in the present case it is homogeneous. As it is described
in [37], in order to analytically express its determinant, these two sets must be
transformed beforehand so that the off diagonal terms in the determinant be free of
zero order terms in their expansions. Before we proceed with the transformation, it
is more convenient to rewrite (2.8) and (2.9) in a compact form by introducing the
quantities

�.`/
ss D 1

�2
˛.`/

ss C 1

2
a.`/

ss ; ` D 0; 2 (2.11)

�.`/
ss D �1

�2
ı.`/

ss C �2

2
b.`/

ss ; ` D 0; 2 (2.12)

� 0.`/
ss D �1

�2
˛0.`/

ss C �2

2
a0.`/

ss ; ` D 0; 2 (2.13)

� 0.`/
ss D 1

�2
ı0.`/

ss C 1

2
b0.`/

ss ; ` D 0; 2 (2.14)

which correspond to the expressions inside the brackets of the coefficients Ae
s and

Do
s in (2.8) and (2.9). So, for instance, the expression inside the brackets of Ae

s in

(2.8) is written compactly as �ss D �.0/
ss C �.2/

ss h2. To achieve the aforementioned

transformation, we multiply (2.8) with ˇ=�.0/
ss and (2.9) with !=� 0.0/

ss and then we add
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their corresponding terms. We do the same by multiplying (2.8) with !=�.0/
ss and (2.9)

with �ˇ=� 0.0/
ss and then we add their corresponding terms. In the two new resulting

sets, we substitute! by k2=.�2�2/
1=2 and the ratio k2

2=ˇ
2 by .2C�2/=Œ�1�1=.�2�2/

2C
�2� and finally we arrive at two sets having the form

ts�2;sA
e
s�2 C us�2;sD

o
s�2 C tssA

e
s C ussD

o
s

C tsC2;sA
e
sC2 C usC2;sD

o
sC2 D 0; s D 1; 2; : : : (2.15)

t0s�2;sA
e
s�2 C u0

s�2;sD
o
s�2 C t0ssA

e
s C u0

ssD
o
s

C t0sC2;sA
e
sC2 C u0

sC2;sD
o
sC2 D 0; s D 1; 2; : : : (2.16)

In (2.15) and (2.16), tss D T.0/
ss C T.2/

ss h2 C O.h4/ and u0
ss D U 0.0/

ss C U 0.2/
ss h2 C O.h4/

where

T.`/
ss D ��

.`/
ss

�
.0/
ss

� 1

�2�2

2 C �2

�1�1

�2�2
2 C �2

� 0.`/
ss

�
0.0/
ss

; ` D 0; 2 (2.17)

U 0.`/
ss D � 0.`/

ss

�
0.0/
ss

C 1

�2�2

2 C �2

�1�1

�2�2
2 C �2

�.`/
ss

�
.0/
ss

; ` D 0; 2 (2.18)

while t0ss D T0.2/
ss h2 C O.h4/ and uss D U.2/

ss h2 C O.h4/. The quantities ts˙2;2, us˙2;2,
t0s˙2;2 and u0

s˙2;2 lead to O.h4/ terms and do not contribute in the development of the

determinant up to O.h2/ studied here. Since T0.0/
ss D U.0/

ss D 0, the aforementioned
requirement for the off diagonal terms of the determinant is now fulfilled. Therefore,
the expansion of the determinant � is [37]

� D P.tqq/P.u
0
qq/

�

1 �
1
X

wD0
1

tw;wC2twC2;w

twwtwC2;wC2
�

1
X

wD0
1

uwwt0ww

twwu0
ww

�
1
X

wD0
1

uw;wC2t0wC2;w

twwu0
wC2;wC2

�
1
X

wD0
1

t0w;wC2uwC2;w

u0
wwtwC2;wC2

�
1
X

wD0
1

u0
w;wC2u0

wC2;w

u0
wwu0

wC2;wC2

�

(2.19)

with the quantity P.tqq/ given in [36]

P.tqq/ D P.T.0/
qq /

�

1 C h2
1
X

wD0
1

T
.2/
ww

T
.0/
ww

C O.h4/

�

(2.20)

P.T.0/
qq / D T.0/

wwT
.0/
wC2;wC2 � � � ; w D 0; 1 (2.21)

Stacked notation has been used to include both even and odd indices at once. Same
expressions as (2.20) and (2.21) hold for P.u0

qq/ as well by substituting “T” with

“U 0”. By inspection, all the summations in (2.19) are O.h4/, so the expansion of the
determinant by keeping terms up to the order h2 is

� D P.T.0/
qq /P.U

0.0/
qq /

�

1 C h2
1
X

wD0
1

�

T
.2/
ww

T
.0/
ww

C U
0.2/
ww

U
0.0/
ww

�

C O.h4/

�

(2.22)

As it is also explained in [36], the quantities T
.`/
ww and U

0.`/
ww depend on the normalized

cutoff wavenumbers x1 D x1.h/ D �c0 of the elliptical dielectric waveguide that have
values near x1.0/, i.e. the cutoff wavenumbers of the circular dielectric waveguide.
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This means that x1.h/ is expanded around h D 0 as x1.h/ D x
.0/
1 C x

.2/
1 h2 C O.h4/.

In the remaining text we use x0
1 instead of x

.0/
1 for simplicity. Therefore, these values

are retrieved by setting the quantity inside the curly brackets in (2.22) equal to zero.
Expanding T.`/

ss .x1.h// in Maclaurin series in terms of h, we get

T.`/
ss .x1.h// D T.`/

ss .x
0
1/C x

.2/
1

dT.`/
ss .x

0
1/

dx1
h2 C O.h4/

D ŒT.`/
ss �

.0/ C ŒT.`/
ss �

.2/h2 C O.h4/; ` D 0; 2 (2.23)

Same expansion holds for U 0.`/
ss .x1.h//. Setting � D 0 and retaining only the large

terms up to the order h2, yields

1 C
�

T.2/
ss .x1.h//

T
.0/
ss .x1.h//

C U 0.2/
ss .x1.h//

U
0.0/
ss .x1.h//

�

h2 D 0 (2.24)

Multiplying (2.24) with T.0/
ss .x1.h// ¤ 0 and using (2.23) as well as the corresponding

expansion for U 0.`/
ss .x1.h//, we get

ŒT.0/
ss �

.0/ C
(

ŒT.0/
ss �

.2/ C ŒT.2/
ss �

.0/ C ŒT.0/
ss �

.0/

ŒU
0.0/
ss �.0/

ŒU 0.2/
ss �.0/

)

h2 D 0 (2.25)

As can be seen, but not shown here for brevity, after laborious calculations using
(2.23), (2.17), (2.18) and (2.11)–(2.14), as well as (2.B.6), (2.B.9), (2.B.12), (2.B.15),
(2.B.17), (2.B.19), (2.B.21) and (2.B.23), these two expressions reduce to the well
known characteristic equation for the circular optical fiber, i.e. equation (8.2–49) of
[44]. Equating separately the zero order term as well as the coefficient of h2 to zero
in (2.25), we get

T.0/
ss .x

0
1/ D 0 (2.26)

x
.2/
1 D �

T.2/
ss .x

0
1/C U 0.2/

ss .x0
1/

dT
.0/
ss .x0

1/=dx1

(2.27)

These two expressions are valid at cutoff. Equation (2.26) corresponds to the cutoff
characteristic equations of the circular dielectric waveguide, i.e. (2.2)–(2.4), and so

x0
1 are the roots of these equations. Once x0

1 is known for the desired mode, x
.2/
1 is

calculated from (2.27) in terms of x0
1, and therefore the desired cutoff wavenumber

for the elliptical dielectric waveguide is given by x1 D x0
1 C x

.2/
1 h2, or equivalently by

x1;sn D x1;sn.0/
�

1 C g.2/
sn h2

�

.
The denominator of (2.27) is obtained by simply differentiating the appropriate

equation of Section 2.2 for the mode of interest. In order to get the expression for
T.2/

ss .x
0
1/ in (2.27), we use (2.17), (2.11)–(2.14), as well as (2.B.5)–(2.B.24). We note that

the second order expansions of (2.B.16) and (2.B.20) contain the second kind Hankel
functions with various indices, namely Hs and Hs˙2, as well as their corresponding
derivatives. The asymptotic expansions for small arguments of Hankel functions and
their derivatives are [1]

H0.z/ �
jzj!0

�2j

�
ln

j�z

2
(2.28)

Hn.z/ �
jzj!0

j�.n/

�

�

2

z

�n

; n > 1 (2.29)
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H0
0.z/ �

jzj!0
�2j

�

1

z
(2.30)

H0
n.z/ �

jzj!0
� j�.n C 1/

�

2n

znC1
; n > 1 (2.31)

In (2.28),� D exp./with  the Euler-Mascheroni constant, while in (2.29) and (2.31)
�.n/ is the Gamma function. Since the expression for T.2/

ss .x
0
1/ must be calculated at

cutoff, i.e. when x2 D c0 ! 0, appropriate substitution should be done in (2.B.16)
and (2.B.20) for the Hankel functions since they have different asymptotic behaviour
when s D 0 and when s > 1, as can be seen from (2.28)–(2.31). It should be reminded
that all the expansions in Appendix 2.B are originating from the expansions for
Mathieu functions and so all the indices appearing must be nonnegative. So, for
instance, when we examine the case s D 1, Hs and HsC2 in (2.B.16) and (2.B.20)
must be substituted from (2.29) while Hs�2 should disappear. Same applies for the
derivatives. A similar procedure also holds when evaluating U 0.2/

ss .x0
1/ in (2.27).

The wavenumbers obtained from the aforementioned procedure correspond to

oEHsn and oHEsn (s > 1, n > 1) modes. If we repeat the same process but with the
dual sets of (2.8) and (2.9), we will get expansions giving the cutoff wavenumbers for

eEHsn and eHEsn (s > 1, n > 1) modes. Precisely at cutoff (x2 D 0), however, these
expansions are the same, and just above cutoff (x2 � 1) they start to separate, given
by prohibitively lengthy expressions. This means that exactly at cutoff, both even
and odd modes have the same cutoff wavenumbers, which are given by the same

expansions. Concluding, we have the following results for x
.2/
1 in (2.27) (the various

˛’s and g’s appearing in the following expressions as well as in the expressions of the
Appendix 2.B are given in equations (A.6)–(A.12) in the Appendix of [70]):
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The dominant modes e
oHE11 have x

.2/
1 D 0 and are always cutoff at zero.

In the special case where s D 0, we no longer have two coupled sets, but only
one equation given by (2.10). This case is similar to [36] and the cutoff wavenumbers

are given again from (2.26)–(2.27) but setting U 0.2/
ss .x0

1/ D 0. However T
.`/
00 is not

given by (2.17) but from the equation
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T
.0/
00 .x

0
1/ now corresponds to (2.1) for TM and TE modes of the circular waveguide

and the cutoff wavenumbers obtained from this special case correspond to oEH0n

and eHE0n (n > 1) modes of the elliptical waveguide, with x
.2/
1 given by
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2.4 Numerical results and discussion

This section is organized in three subsections: first, we check the validity of the exact
method by comparing it with results from other works in the literature. Then our
analytical method is checked versus our exact method for various eccentricities, and
finally, a variety of numerical results and a practical application relevant to microwave
frequencies is presented and discussed.

2.4.1 Validation of the exact method

The exact cutoff wavenumbers are obtained by setting the determinant of (2.A.1),
or its dual, equal to zero. The routines for Mathieu functions used to build up
the system matrix are the same with the ones used in Chapter 1. Then the system
matrix is truncated and the roots are found by using a combination of the bisection
and the inverse quadratic interpolation method. The truncation order used for the
determinant was 12, however even 8 terms could be used to converge to the correct
root. So, the computational performance is high and the result is exact, but the
algorithm must be repeated, from the beginning, each time a new root is of interest,
each time the materials of the two regions of the waveguide are changed, or each
time the eccentricity of the elliptical core is changed.

First, we have validated the results for the special case when the eccentricity
h D 0. In this case the results should match the corresponding ones for the circular
dielectric waveguide, whose cutoff wavenumbers are given by the exact formulas
(2.1)–(2.4). The 3rd column in Tables 2.3 and 2.4 – which we will introduce in
Subsection 2.4.3 – depict the exact cutoff wavenumbers for the circular waveguide,
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Table 2.1 Comparison of the normalized cutoff wavenumber �b0 for the first higher-
order mode oEH01, of the current work with other methods from the literature.

c0=b0 h This work [74] [51]
1:1 0:42 2:24 2:240 2:237
1:5 0:75 1:791 1:791 1:778
2 0:87 1:468 1:468 1:451
4 0:97 0:942 0:942 0:925
10 0:995 0:5544 0:554 0:547
20 0:999 0:3814 0:381 0:379

obtained by (2.1)–(2.4), for two different relative permittivity values, namely �1=�2 D
2:56 and �1=�2 D 1:0404. We have verified these results to all 5 significant digits
shown in both Tables, for all modes, by setting the eccentricity of our exact method
equal to zero. A table depicting this comparison is not provided, since the agreement
is perfect.

Next we compare our results with the results from the published works [74]
and [51], where the authors have used the refractive indices n1 D 1:46 and n2 D 1:34,
for the first higher-order mode oEH01. In [74, 51], the authors give results for the
normalized cutoff wavenumber V D �b0, while our method gives results for the
normalized cutoff wavenumber �c0. So, we need to multiply our results with the
ratio b0=c0 and then compare them. The comparison is shown in Table 2.1 for
various values of the eccentricity. The agreement is evident from both works [74, 51].

Furthermore, we compare our results with the results from the published works
[14, 74, 61, 24]. The methods used in these works are described in the Introduction,
and are based on the weakly guiding approximation, when the difference of the
refractive indices between the core and the cladding of the waveguide is small.
Authors use different nomenclature for the modes, however, in our comparison
we will adopt the nomenclature given in [27], namely the linearly polarized modes
e
oLPsn, s > 0, n > 1. It should be noted that our exact method is full and that the
linearly polarized modes are provided here merely for illustration. In Subsection 2.4.3
numerical results are given and discussed for the complete hybrid modes. The values
of the refractive indices used to match the ones in the aforementioned published
works are n1 D 1:485 and n2 D 1:47. Again, as it was the case for Table 2.1,
in all these works the authors give results for the normalized cutoff wavenumber
V D �b0. Table 2.2 shows this comparison for 3 different cases – namely 3 different
eccentricities – for the first 12 successive modes. The agreement is evident, especially
with [14] and [74], and in some cases in all 4 significant figures. Even for the case of
high eccentricity h ' 0:87, some of the results agree in all significant digits.

2.4.2 Validation of the analytical formulas

The approximated cutoff wavenumbers are obtained using the formula x0
1;sn.1 C

x
.2/
1;sn=x0

1;snh2/ where x0
1;sn is obtained by (2.1)–(2.4) and x

.2/
1;sn by (2.32)–(2.36) and

(2.38), depending on the mode of interest. This is the result of daunting cumbersome
calculations, and the desired cutoff wavenumber is obtained immediately, using these
closed-form analytical expressions, for every higher-order mode, for different mate-
rials, and for different eccentricities. The limitation stems from the fact that these
formulas require small eccentricity.

The validity of our analytical formulas is verified by comparison with the exact
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Table 2.2 Comparison of the normalized cutoff wavenumbers �b0 of the current
work with other methods from the literature.

1st case: c0=b0 D 1:2 or h ' 0:55

No Mode This work [14] [74] [61] [24]
1 eLP01 0 0 0 0 0
2 eLP11 2:105 2:102 2:101 2:18 2:14
3 oLP11 2:305 2:303 2:302 2:35 2:32
4 eLP21 3:304 3:286 3:285 3:40 3:36
5 oLP21 3:514 3:509 3:510 3:54 3:52
6 eLP02 3:756 3:739 3:737 3:84 3:83
7 eLP31 4:555 4:552 4:550 4:62 4:59
8 oLP31 4:645 4:643 4:640 4:66 4:65
9 eLP12 4:987 4:989 4:985 5:00 5:00
10 oLP12 5:357 5:356 5:356 5:43 5:40
11 eLP41 5:72 5:721 5:714 6:20 5:72
12 oLP41 5:76 5:759 5:754 5:80 5:75

2nd case: c0=b0 D 1:5 or h ' 0:75

No Mode This work [14] [74] [61] [24]
1 eLP01 0 0 0 0 0
2 eLP11 1:793 1:791 1:791 1:81 1:82
3 oLP11 2:193 2:193 2:193 2:26 2:26
4 eLP21 2:753 2:736 2:736 2:84 2:80
5 oLP21 3:185 3:182 3:182 3:19 3:17
6 eLP02 3:654 3:638 3:639 3:73 3:71
7 eLP31 3:785 3:782 3:782 3:83 3:83
8 oLP31 4:098 4:097 4:095 4:10 4:08
9 eLP12 4:631 4:631 4:629 4:64 4:65
10 eLP41 4:764 4:763 4:757 5:35 4:78
11 oLP41 5:016 5:017 5:012 5:10 5:18
12 oLP12 5:238 5:237 5:237 5:30 5:28

3rd case: c0=b0 D 2 or h ' 0:87

No Mode This work [14] [74] [61] [24]
1 eLP01 0 0 0 0 0
2 eLP11 1:47 1:467 1:468 1:51 1:51
3 oLP11 2:077 2:077 2:076 2:10 2:10
4 eLP21 2:196 2:180 2:181 2:26 2:26
5 oLP21 2:848 2:846 2:846 2:89 2:89
6 eLP31 2:983 2:981 2:981 3:00 3:01
7 eLP02 3:535 3:522 3:520 3:63 3:61
8 oLP31 3:539 3:537 3:537 3:52 3:55
9 eLP41 3:738 3:738 3:734 4:64 3:77
10 oLP41 4:234 4:238 4:232 4:2 4:24
11 eLP12 4:293 4:295 4:293 4:4 4:3
12 eLP51 4:49 4:496 4:487 — —
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Figure 2.2 (color online). Percentage error for x1;sn for various higher-order even
modes when �1=�2 D 2:56. Solid curve: eHE01; dashed curve: eHE21; dashed-dotted
curve: eHE31.

cutoff wavenumbers obtained by setting the determinant of(2.A.1) equal to zero. The
cutoff wavenumbers with even indices, for example oHEmn with m D 0; 2; : : :, n > 1,
are extracted by building up the even part of (2.A.1). The cutoff wavenumbers with
odd indices, those with m D 1; 3; : : :, are extracted by taking the odd part of (2.A.1).
This property was also reported in [38]. The same holds also for the even modes, for
example eHEmn, but in this case the dual of (2.A.1) should be used. In Figure 2.2 we
give the percentage relative error j.exact value � approximate value/=exact valuej �
100 for the cutoff wavenumbers of various higher-order even modes. The details and
the values of the parameters used are given in the captions. The approximate values
used correspond to our analytical formulas. As it has been already pointed out in
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Figure 2.3 (color online). Percentage error for x1;sn for various higher-order odd
modes when �1=�2 D 2:56. Solid curve: oEH01; dashed curve: oHE21; dashed-dotted
curve: oHE31.
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Table 2.3 Normalized cutoff wavenumbers x1;sn for an elliptical dielectric wave-
guide.*

No Mode x1;sn.0/ D x0
1;sn g.2/

sn D x
.2/
1;sn=x0

1;sn

1 e
oHE11 0 0

2 eHE01, oEH01 2.4048 0.25
3 e

oHE21 2.8652 0.086284
4 e

oHE12, e
oEH11 3.8317 0.54122

5 e
oHE31 4.3551 0.056829

6 e
oEH21 5.1356 2.4333

7 eHE02, oEH02 5.5201 0.25
8 e

oHE41 5.6855 0.029099
9 e

oHE22 5.7780 �0:46638
10 e

oEH31 6.3802 1.3524
11 e

oHE51 6.9445 0.002074
12 e

oHE13, e
oEH12 7.0156 �2:4471

13 e
oHE32 7.3868 �0:41643

14 e
oEH41 7.5883 0.95942

15 e
oHE61 8.1616 �0:024383

*The value of the parameter used is �1=�2 D 2:56.

Section 2.3, precisely at cutoff, our analytical formulas give the cutoff wavenumbers
for both even and odd modes. So, the results depicted in Figure 2.2 are the analytical
results compared with the ones obtained from the dual of (2.A.1). In Figure 2.3
we present the same comparison but for the odd modes, i.e. the analytical results
compared with the ones obtained from (2.A.1) itself.

As it can be concluded from Figures 2.2 and 2.3, the errors remain low enough
even for some relatively high values of h, although the expansions used are valid up to
the order of h2 only. For instance, for the eHE01 mode we get an error less than 0.1%,
and for the oEH01 mode an error less than 0.14%, even up to h D 0:3. For the higher-
order modes depicted in Figures 2.2 and 2.3, the errors are maintained below the level
of 2%. From these figures, as well as from many other of our available numerical
results not published here, the sprectrum of the modes maintains errors below 0.4%
for eccentricities up to 0:1. Lower errors for higher eccentricities require more terms,
O.h4/ and higher, in the expansion. Nevertheless, this will lead to prohibitively
lengthy expressions for the expansion coefficients, as it can be concluded from the
present analysis where, although only O.h2/ terms are considered, the expressions
are still lengthy.

2.4.3 Discussion

In Table 2.3 we list the first fifteen successive cutoff wavenumbers x1;sn for the hybrid
modes appearing in the elliptical dielectric waveguide. In this case, the core of the
fiber is polystyrene having a relative refractive index n1=n2 D 1:6, or equivalently, a
relative permittivity of �1=�2 D 2:56. The third column of the Table, namely x1;sn.0/
corresponds to the circular dielectric waveguide, while the fourth column gives the
values of the expansion coefficients g.2/

sn for the corresponding elliptical dielectric
waveguide, having small eccentricity.

When the fractional refractive index defined by � D 1 � n2=n1 is small, practi-
cally � < 0:05, then we talk about the weakly guiding approximation (WGA) [13].
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Table 2.4 Normalized cutoff wavenumbers x1;sn for an elliptical dielectric wave-
guide.*

No Mode x1;sn.0/ D x0
1;sn g.2/

sn D x
.2/
1;sn=x0

1;sn

1 e
oHE11 0 0

2 eHE01, oEH01 2.4048 0.25
3 e

oHE21 2.4215 �0:0092828
4 e

oHE12, e
oEH11 3.8317 0.54122

5 e
oHE31 3.8525 �0:039927

6 e
oEH21 5.1356 2.4333

7 e
oHE41 5.1588 �0:07852

8 eHE02, oEH02 5.5201 0.25
9 e

oHE22 5.5274 �0:49137
10 e

oEH31 6.3802 1.3524
11 e

oHE51 6.405 �0:12158
12 e

oHE13, e
oEH12 7.0156 �2:4471

13 e
oHE32 7.0271 �0:46769

14 e
oEH41 7.5883 0.95942

15 e
oHE61 7.6145 �0:1672

*The value of the parameter used is �1=�2 D 1:0404.

This means that more than a single mode can have the same propagation constant
ˇ. In Table 2.4 we give the cutoff wavenumbers for this case where the above cri-
terion for WGA is satisfied, by selecting n1=n2 D 1:02 (or �1=�2 D 1:0404), which
is equivalent to � D 0:02. If one uses the approximate equations for finding the
cutoff wavenumbers, he will conclude that a group of modes have the same cutoff
wavenumber. For instance, all three modes eHE01, oEH01 and e

oHE21 (No 2 and 3 in

Table 2.4) have the same cutoff wavenumber, leading to the e
oLP11 mode. Rigorously

speaking, however, the e
oHE21 mode is still separated by a small fraction. This is

indeed the case from our results in Table 2.4, which can serve for a comparison with
future methods studying the LP modes. It should be noticed that the modes e

oEHsn

(s > 0, n > 1) and e
oHEsn (s D 0; 1, n > 1) have the same expansion coefficients, as

can be concluded from both Tables, while the e
oHEsn (s > 2, n > 1) modes do not.

This comes from the fact that the e
oEHsn (s > 0, n > 1) and e

oHEsn (s D 0; 1, n > 1)

modes are independent of the relative permittivity, as can be seen from (2.32)–(2.36)
and (2.38), while the e

oHEsn (s > 2, n > 1) modes do depend on it. This also leads to
the fact that the cutoff wavenumbers are safely separated each other, at least by 0:2,
in the case where �1=�2 D 2:56, since, the larger the contrast between the core and
the cladding permittivity, the larger the separation between the modes. This is why
we notice a change in the order between lines No 7 and 8 in Tables 2.3 and 2.4: the
current value of permittivity used in Table 2.3 makes the e

oHE41 mode to overpass
the eHE02 and oEH02 modes.

The expansion coefficients g
.2/
0n for the eHE0n and oEH0n (n > 1) modes are

all the same and equal to 0:25. This can be seen from both Tables 2.3 and 2.4 only
for eHE01

2
and oEH01

2
modes, but it was verified to other higher-order modes as well.

This behaviour appeared also in the TEe1n and TEo1n (n > 1) modes of the elliptical
metallic waveguide [71].

A practical application with relevance at microwave frequencies is presented
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Table 2.5 Normalized cutoff wavenumbers and cutoff frequencies for an elliptical
dielectric waveguide.*

Approx. Exact value, Exact value, Percentage Percentage
value even modes odd modes error, error,

No x1;sn x1;sn x1;sn even modes odd modes
1 0 0 0 0 0
2 2:411 2:411 2:411 0:002042 0:002766
3 2:868 2:872 2:872 0:1664 0:1658
4 3:852 3:843 3:839 0:2412 0:3506
5 4:358 4:366 4:366 0:1966 0:1966
6 5:261 5:149 5:148 2:177 2:179
7 5:534 5:534 5:534 0:002166 0:002605
8 5:687 5:699 5:699 0:216 0:2159
9 5:751 5:793 5:793 0:7276 0:7248
10 6:466 6:396 6:396 1:1 1:1

Cutoff frequency Cutoff frequency
in GHz for the in GHz for the

No Mode circular waveguide elliptical waveguide
1 e

oHE11 0 0
2 eHE01, oEH01 9:187 9:21
3 e

oHE21 10:95 10:95
4 e

oHE12, e
oEH11 14:64 14:72

5 e
oHE31 16:64 16:65

6 e
oEH21 19:62 20:1

7 eHE02, oEH02 21:09 21:14
8 e

oHE41 21:72 21:73
9 e

oHE22 22:07 21:97
10 e

oEH31 24:37 24:7
*The values of the parameters used are �1=�2 D 2:56, h D 0:1, and c0 D 1cm.

in Table 2.5 where �1=�2 D 2:56, h D 0:1, and c0 D 1cm, for the first 10 successive
hybrid modes of Table 2.3. In the upper part of Table 2.5 we depict the normalized
cutoff wavenumbers, obtained by our analytical formulas and by our exact solution.
Then we compare them by taking the percentage relative errors. As it can be
seen from the last two columns, the percentage error is maintained at low levels,
mainly below 0:73%, but in the case of the e

oEH21 and e
oEH31 modes, this error

slightly exceeds the level of 2% and 1%, respectively, which is still small. In the
lower part of Table 2.5 we depict the cutoff frequencies in GHz, obtained by the

relation f D x1;sn=Œ2�c0�
1=2
0 .�1 � �2/

1=2�, using our analytical formulas, for both the
circular case and the elliptical case. The range for the single mode operation is
0 < f < 9:21 GHz for the elliptical waveguide. Comparing the cutoff frequencies
between the circular and the elliptical case, we note a slightly increased value for
the elliptical case. This means that the range of the single mode operation for an
elliptical fiber is increased, a fact that was also observed by Yeh in [77]. This is also
shown in Table 2.3 where the first few g.2/

sn ’s are positive, and thus lead to increased

x1;sn’s, compared with x1;sn.0/’s. Some g.2/
sn ’s in both Tables 2.3 and 2.4 are negative,

however the error compared with the exact value was less than 1%; thats the reason
why in line No 9 of Table 2.5 the frequency is decreased.
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2.5 Concluding remarks

In this work the cutoff wavenumbers of an elliptical dielectric waveguide were ob-
tained exactly and analytically. The exact solution requires the algorithm to be
repeated, from the beginning, each time a new mode, different materials of the
waveguide, or a different eccentricity is needed. On the contrary, our analytical,
closed-form formulas are valid for every small eccentricity, for every higher-order
hybrid mode, and for different materials. The validation of our exact solution was
performed by comparing with the case of the circular dielectric waveguide and with
previously published results. The validation of our analytical formulas was done by
comparison with our exact solution. The errors are maintained low enough, lower
than 0.4% for eccentricities up to 0.1 for a big spectrum of higher-order modes, and
in some cases this small error was even extended at higher values of eccentricities up
to 0.3.

2.A Appendix: The exact characteristic equation at cutoff

The set appearing in (2.7)and its pair, define the homogeneous system with unknowns
the expansion coefficients Ae

m and Do
m. We multiply both sides of (2.7) by �22

and use ! D k2=.�2�2/
1=2. Then there appears the ratio k2=ˇ which equals to

k2=ˇ D .2 C �2/1=2=Œ�1�1=.�2�2/
2 C �2�1=2. At cutoff,  ! 0. Expanding k2=ˇ in

Maclaurin series, we get k2=ˇ D 1 C Œ1 � �1�1=.�2�2/�=.2�
2/2 C O.4/. Now, the

normalized wavenumbers x1 D �c0 are obtained through �a D �c0h D x1h. Similarly
holds a D c0h D x2h. So, by keeping terms in (2.7) and in its pair up to the
order 2, and using the aforementioned substitutions for �a and a, there results the
following system matrix M at cutoff, namely

M D
�

M11 M12

M21 M22

�

(2.A.1)

where

M11 D �x2
2A1.x1/ � x2

1A2.x1; x2/ (2.A.2)

M12 D x2
2

�1

�2

r

�2

�2
diag.d.x1//C

 

x2
1 C

1 � �1�1

�2�2

2
x2

2

!

r

�2

�2
D3.x1; x2/ (2.A.3)

M21 D �x2
2

�1

�2

r

�2

�2
diag.a.x1// �

 

x2
1 C

1 � �1�1

�2�2

2
x2

2

!

r

�2

�2
A3.x1; x2/ (2.A.4)

M22 D �x2
2D1.x1/ � x2

1D2.x1; x2/ (2.A.5)

If N is the truncation order, then M is of the order 2N � 2N, while the submatrices
A1;2;3;D1;2;2;diag.a/;diag.d/ 2 RN�N . At cutoff, x2 ! 0 and the field in region II
detaches and does not decay. The O.x2

2/ terms appearing in (2.A.1) are necessary for
the validity of all types of modes for the case when h ! 0, i.e. the circular dielectric
waveguide. This means that (2.A.1) must be set up just above cutoff with x2 � 1.
On the contrary, if we dismiss these terms by setting (2.A.1) precisely at cutoff with
x2 D 0, then the roots that correspond to the HE modes when h ! 0, i.e. (2.4), do
not appear. This fact was also observed by Saad in [56] when he was missing some
modes due to unfavorable numerical conditions. So to conclude, by keeping x2 � 1
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and setting h ! 0, the roots of the equation det.M/ D 0 are identical to all the roots
given by (2.1)–(2.4).

2.B Appendix: Expansions for the characteristic equation

The analytical expressions of the various quantities appearing in (2.8) are found after
lengthy, laborious calculations, by using the expansions for the Mathieu functions
from [35], the expansions for the various inner products Me and Mo from the Ap-

pendix of [72], and finally, the expansions for the various inner products Me0o and

Mo0e. The last are defined in the Appendix 1.A and their expansions are

ŒMe0o
ss .�ja; �a/�.0/ D ��sgo

0.s/; s > 1 (2.B.1)

ŒMe0o
ss .�ja; �a/�.2/ D ��s

�

x2
1go

2.s/ � x2
2go

0.s/g
e
2.s/

�

; s > 1 (2.B.2)

ŒMo0e
ss .�ja; �a/�.0/ D �sgo

0.s/; s > 1 (2.B.3)

ŒMo0e
ss .�ja; �a/�.2/ D �s

�

x2
1go

0.s/g
e
2.s/ � x2

2go
2.s/

�

; s > 1 (2.B.4)

The expansions with higher order indices like ŒMe0o
s˙2;s�

.2/ and ŒMo0e
s˙2;s�

.2/ lead to O.h4/

terms, so they are neglected. Therefore, the various quantities appearing in (2.8) are
given in what follows:

˛ss D ˛.0/
ss C ˛.2/

ss h2 (2.B.5)

˛.0/
ss D �go

0.s/sJs.x1/�
3=2

p
2

(2.B.6)

˛.2/
ss D

�3=2sx2
1p

2

˚

�
�

2ge
2.s/g

o
0.s/C go

2.s/
�

Js.x1/

C go
0.s/Js�2.x1/˛

e�
20 .s/C go

0.s/JsC2.x1/˛
eC
20 .s/

	

(2.B.7)

ass D a.0/
ss C a.2/

ss h2 (2.B.8)

a.0/
ss D ˛.0/

ss (2.B.9)

a.2/
ss D ��

3=2sp
2

˚ �

2ge
2.s/g

o
0.s/C go

2.s/
�

Js.x1/x
2
1 � 4ge

2.s/g
o
0.s/Js.x1/x

2
2

� go
0.s/x

2
1

�

Js�2.x1/˛
e�
20 .s/C JsC2.x1/˛

eC
20 .s/

� 	

(2.B.10)

ıss D ı.0/
ss C ı.2/

ss h2 (2.B.11)

ı.0/
ss D Œgo

0.s/�
2J0

s.x1/�
3=2x1p

2
(2.B.12)

ı.2/
ss D go

0.s/�
3=2

p
2s

n

s
˚

3go
2.s/J

0
s.x1/x

3
1 C go

0.s/
�

Js.x1/ � J0
s.x1/x1

�	

� go
0.s/x

3
1

�

J0
s�2.x1/.s � 2/˛o�

20 .s/C J0
sC2.x1/.s C 2/˛oC

20 .s/
�

o

(2.B.13)

bss D b.0/
ss C b.2/

ss h2 (2.B.14)



36 PROPAGATION IN ELLIPTICAL DIELECTRIC WAVEGUIDES CHAP. 2

b.0/
ss D �

jŒgo
0.s/�

2H0
s.�jx2/Js.x1/�

3=2x2p
2Hs.�jx2/

(2.B.15)

b.2/
ss D go

0.s/�
3=2

p
2sŒHs.�jx2/�2

n

Hs.�jx2/Js.x1/s
˚

go
0.s/Hs.�jx2/

C jH0
s.�jx2/

�

go
0.s/ � 3go

2.s/x
2
1

�

x2 C j4go
2.s/H

0
s.�jx2/x

3
2

	

C jgo
0.s/.s � 2/x2˛

o�
20 .s/

˚

Hs.�jx2/H
0
s.�jx2/Js�2.x1/x

2
1

C
�

Hs�2.�jx2/H
0
s.�jx2/ � Hs.�jx2/H

0
s�2.�jx2/

�

Js.x1/x
2
2

	

C jgo
0.s/.s C 2/x2˛

oC
20 .s/

˚

Hs.�jx2/H
0
s.�jx2/JsC2.x1/x

2
1

� Hs.�jx2/H
0
sC2.�jx2/Js.x1/x

2
2 C H0

s.�jx2/HsC2.�jx2/Js.x1/x
2
2

	

o

(2.B.16)

In (2.B.5)–(2.B.16) J denotes the Bessel function, J0 denotes the derivative of J with
respect to its argument, H denotes the Hankel function of the second kind with the
superscript .2/ omitted for simplicity, and finally, H0 denotes the derivative of H with
respect to its argument. It is reminded that the arguments are x1 D �c0 and x2 D c0.
Finally, the index s is interprented as s > 1.

The primed quantities appearing in (2.9) have the same expansion forms as the
unprimed ones, and are given in what follows:

˛0.0/
ss D

p
2J0

s.x1/�
3=2x1 tanh�0

"s

(2.B.17)

˛0.2/
ss D �

p
2�3=2x3

1 tanh�0

�

� 3ge
2.s/J

0
s.x1/C J0

s�2.x1/˛
e�
20 .s/

C J0
sC2.x1/˛

eC
20 .s/

�

="s (2.B.18)

a0.0/
ss D � j

p
2H0

s.�jx2/Js.x1/�
3=2x2 tanh�0

Hs.�jx2/"s

(2.B.19)

a0.2/
ss D j

p
2�3=2x2 tanh�0

n

ge
2.s/Hs.�jx2/H

0
s.�jx2/Js.x1/.�3x2

1 C 4x2
2/

C
˚

Hs.�jx2/H
0
s.�jx2/Js�2.x1/x

2
1 C

�

Hs�2.�jx2/H
0
s.�jx2/

� Hs.�jx2/H
0
s�2.�jx2/

�

Js.x1/x
2
2

	

˛e�
20 .s/

C
�

Hs.�jx2/H
0
s.�jx2/JsC2.x1/x

2
1 � Hs.�jx2/H

0
sC2.�jx2/Js.x1/x

2
2

C H0
s.�jx2/HsC2.�jx2/Js.x1/x

2
2

�

˛eC
20 .s/

o

=
˚

ŒHs.�jx2/�
2"s

	

(2.B.20)

ı0.0/
ss D

p
2Œgo

0.s/�
2Js.x1/�

3=2s2 tanh�0

"s

(2.B.21)

ı0.2/
ss D go

0.s/�
3=2sx2

1 tanh�0

˚

sJs.x1/
�

ge
2.s/g

o
0.s/"s C go

2.s/.2 C "s/
�

� 2go
0.s/Js�2.x1/.s � 2/˛o�

20 .s/

� 2go
0.s/JsC2.x1/.s C 2/˛oC

20 .s/
	

=
�
p

2"s

�

(2.B.22)

b0.0/
ss D

p
2Œgo

0.s/�
2Js.x1/�

3=2s2 tanh�0

"s

(2.B.23)
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b0.2/
ss D

p
2go

0.s/�
3=2s tanh �0

n

sJs.x1/
˚�

ge
2.s/g

o
0.s/C 2go

2.s/
�

x2
1

� 4go
2.s/x

2
2

	

� go
0.s/x

2
1

�

Js�2.x1/.s � 2/˛o�
20 .s/

C JsC2.x1/.s C 2/˛oC
20 .s/

�

o

="s (2.B.24)

In (2.B.17)–(2.B.24) "0 D 1, "n D 2, (n > 1) is the Neumann factor, and the index s is
now interpreted as s > 0 for ˛0

ss and a0
ss, and as s > 1 for ı0

ss and b0
ss.





Chapter 3

Spectrum &
preconditioning of the
singular domain
integral equation

The domain integral equation method with its FFT-based matrix-vector products is
a viable alternative to local methods in free-space scattering problems. However, it
often suffers from the extremely slow convergence of iterative methods, especially
in the transverse electric (TE) case with large or negative permittivity. We identify
very dense line segments in the spectrum as partly responsible for this behavior,
and the main reason why a normally efficient deflating preconditioner does not
work. We solve this problem by applying an explicit multiplicative regularizing
operator, which on the operator level transforms the system to the form “identity
plus compact”. On the matrix level this regularization reduces the length of the dense
spectral segmets roughly by a factor of four while preserving the ability to calculate
the matrix-vector products using the FFT algorithm. Such a regularized system is
then further preconditioned by deflating an apparently stable set of eigenvalues with
largest magnitudes, which results in a robust acceleration of the restarted GMRES
under constraint memory conditions.

3.1 Singular domain integral equation

We consider the two-dimensional frequency-domain electromagnetic scattering
problem on an inhomogeneous object of finite spatial support exhibiting contrast
in both electric and magnetic properties. Figure 3.1 depicts this configuration where
the inhomogeneous object occupies the domain D. We assume that the object (a
cylinder) as well the source of the incident field (a plane wave, a current carrying
line, etc.) are invariant in the x3-direction of the spatial Cartesian system. The
Maxwell equations describing the total electromagnetic field in the .x1; x2/-plane in

39



40 SPECTRUM & PRECONDITIONING OF THE DIE CHAP. 3

Figure 3.1 The configuration of the problem.

the presence of an inhomogeneous magneto-dielectric scatterer can be written as

�@2H3.x; !/ � i!".x; !/E1.x; !/ D �J1.x; !/; (3.1.a)

@1H3.x; !/ � i!".x; !/E2.x; !/ D �J2.x; !/; (3.1.b)

�@2E1.x; !/C @1E2.x; !/ � i!�.x; !/H3.x; !/ D 0; (3.1.c)

and
@2H1.x; !/ � @1H2.x; !/ � i!".x; !/E3.x; !/ D �J3.x; !/; (3.2.a)

@2E3.x; !/ � i!�.x; !/H1.x; !/ D 0; (3.2.b)

�@1E3.x; !/ � i!�.x; !/H2.x; !/ D 0; (3.2.c)

where we introduce the two-dimensional position vector x D .x1; x2/; J is the electric
current density; " and � are the possibly complex-valued dielectric permittivity and
magnetic permeability; and ! is the angular frequency. It is easy to notice that the
first three equations, (3.1), are decoupled from the last three, (3.2). Reflecting the fact
that the electric field strength is transverse to the axis of invariance, equations (3.1)
are said to describe the transverse electric or TE case (also somewhat confusingly
called H-wave polarization). Analogously, the three equations (3.2) correspond to
the transverse magnetic, or TM case (also known as E-wave polarization).

The integral formulation of the scattering problem is obtained by first intro-
ducing the so-called incident field .Ein, Hin/, which has the same physical source as
the total field, but satisfies some simpler version of the above equations. Usually,
the incident field is considered in a homogeneous isotropic background medium with
parameters "b.!/ and �b.!/. Then, it is fairly easy to see that the scattered field,
defined as the difference between the total and the incident fields

Esc.x; !/ D E.x; !/ � Ein.x; !/; Hsc.x; !/ D H.x; !/ � Hin.x; !/; (3.3)

also satisfies Maxwell’s equations in the same homogeneous medium, i.e.,

�@2Hsc
3 .x/ � i!"bEsc

1 .x/ D �Jind
1 .x/; (3.4.a)

@1Hsc
3 .x/ � i!"bEsc

2 .x/ D �Jind
2 .x/; (3.4.b)

�@2Esc
1 .x/C @1Esc

2 .x/ � i!�bHsc
3 .x/ D �Kind

3 .x/; (3.4.c)
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and
@2Hsc

1 .x/ � @1Hsc
2 .x/ � i!"bEsc

3 .x/ D �Jind
3 .x/; (3.5.a)

@2Esc
3 .x/ � i!�bHsc

1 .x/ D �Kind
1 .x/; (3.5.b)

�@1Esc
3 .x/ � i!�bHsc

2 .x/ D �Kind
2 .x/; (3.5.c)

where the implicit dependence on ! has been omitted for simplicity. The physical
sources of the scattered field are the induced current densities, also known as contrast
currents:

Jind
k .x/ D �i! Œ".x/ � "b�Ek.x/; k D 1; 2; 3I (3.6.a)

Kind
m .x/ D �i! Œ�.x/ � �b�Hm.x/; m D 1; 2; 3: (3.6.b)

It is convenient to write the Maxwell equations in the following matrix form:
2

4

�i!"b 0 �@2

0 �i!"b @1

�@2 @1 �i!�b

3

5

2

4

Esc
1

Esc
2

Hsc
3

3

5 D

2

4

�Jind
1

�Jind
2

�Kind
3

3

5 ; (3.7)

2

4

�i!�b 0 @2

0 �i!�b �@1

@2 �@1 �i!"b

3

5

2

4

Hsc
1

Hsc
2

Esc
3

3

5 D

2

4

�Kind
1

�Kind
2

�Jind
3

3

5 : (3.8)

The two-dimensional Fourier transform of (3.7) and (3.8) with respect to coordinates
x1 and x2 takes us from the .x; !/ domain to the .k; !/ domain, whereby @n !
�ikn; n D 1; 2. In this way we arrive at the following linear algebraic problem of the

form A QF D �QS for the TE case (similar procedure is followed for the TM case which
is ommited for brevity):

2

4

�i!"b 0 ik2

0 �i!"b �ik1

ik2 �ik1 �i!�b

3

5

2

4

QEsc
1QEsc
2

QHsc
3

3

5 D �

2

4

QJind
1QJind
2

QKind
3

3

5 : (3.9)

Solving (3.9) via matrix inversion, we obtain the scattered fields in terms of the
induced currents:

2

4

QEsc
1QEsc
2

QHsc
3

3

5 D

2

6

4

k2
1�!2"b�b

i!"b

k1k2

i!"b
ik2

k1k2

i!"b

k2
2�!2"b�b

i!"b
�ik1

ik2 �ik1 i!"b

3

7

5

2

4

QA1

QA2

QF3

3

5 ; (3.10)

where we have introduced the vector potentials

QAk D 1

k2
1 C k2

2 � !2"b�b

QJind
k ; k D 1; 2; 3I (3.11.a)

QFm D 1

k2
1 C k2

2 � !2"b�b

QKind
m ; m D 1; 2; 3: (3.11.b)

Transforming (3.10) back to the .x; !/ domain and recognizing the partial derivatives
as kn ! i@n; n D 1; 2, we get

2

4

Esc
1

Esc
2

Hsc
3

3

5 D

2

6

4

� @2
1

i!"b
� !2"b�b

i!"b
� @1@2

i!"b
�@2

� @1@2

i!"b
� @2

2
i!"b

� !2"b�b

i!"b
@1

�@2 @1 i!"b

3

7

5

2

4

A1

A2

F3

3

5 : (3.12)
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The .x; !/-domain vector potentials are the spatial convolutions of the induced cur-
rents with the scalar Green’s function, namely

Ak.x; !/ D
Z

x02R2

g.x � x0; !/Jind
k .x0; !/dx0; k D 1; 2; 3; (3.13.a)

Fm.x; !/ D
Z

x02R2

g.x � x0; !/Kind
m .x0; !/dx0; m D 1; 2; 3: (3.13.b)

The Green’s function g.x; !/ is the two-dimensional inverse Fourier transform
of the expression 1=.k2

1 C k2
2 � !2"b�b/ appearing in (3.11). It is easy to verify

that this Green’s function satisfies the non-homogeneous Helmholtz equation with
a line current (two-dimensional Dirac’s delta function) as a source term, located at
x0 position. Since the scattered fields are supposed to satisfy the so-called radiation
boundary condition (i.e. outgoing waves decaying at infinity), out of the two possible
solutions of the said Helmholtz equation one choses

g.x � x0; !/ D i

4
H

.1/
0 .kbjx � x0j/: (3.14)

The other possible solution has the form of the Hankel function of the second kind,
and is chosen when a different time convention is used, i.e. for the time-dependence
of the form ei!t.

Substituting the induced currents from (3.6) and expressing the scattered fields
as Esc D E � Ein and Hsc D H � Hin, we arrive at the following integro-differential
equations, for TE and TM cases respectively, with the total fields as the fundamental
unknown:
2

4

Ein
1

Ein
2

Hin
3

3

5 D

2

4

E1

E2

H3

3

5�

2

4

k2
b C @2

1 @1@2 �i!�b.�@2/

@2@1 k2
b C @2

2 �i!�b@1

�i!"b.�@2/ �i!"b@1 k2
b

3

5

2

4

g � .�eE1/
g � .�eE2/
g � .�mH3/

3

5 ; (3.15)

2

4

Hin
1

Hin
2

Ein
3

3

5 D

2

4

H1

H2

E3

3

5 �

2

4

k2
b C @2

1 @1@2 �i!"b@2

@2@1 k2
b C @2

2 �i!"b.�@1/

�i!�b@2 �i!�b.�@1/ k2
b

3

5

2

4

g � .�mH1/
g � .�mH2/
g � .�eE3/

3

5 ; (3.16)

where

�e.x; !/ D ".x; !/

"b
� 1; (3.17)

�m.x; !/ D �.x; !/

�b
� 1; (3.18)

are the normalized electric and magnetic contrast functions, respectively, and the star
.�/ denotes the 2D convolution, for example

g � .�eE1/ D
Z

x02R2

g.x � x0; !/�e.x
0/E1.x

0/dx0: (3.19)

Although the integro-differential equations (3.15)–(3.16) can to a certain extent
be analyzed directly on the pertaining Sobolev spaces [33, 17], we prefer to transform

them into singular integral equations and work on the Hilbert space L
.3/
2 .D/ of vector-

valued functions with spatial support on D.
As the two problems (3.15) and (3.16) are mathematically identical, up to some

constants and non-essential sign changes in the differential matrix operator, we shall
concentrate on just one of them, say the TE case (3.15). A standard singular integral
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equation is obtained from (3.15) by carrying out the spatial derivatives of the weakly
singular integrals (3.19), and writing the result as

uin D Du C GXu C KXu; (3.20)

where D and X are “diagonal” multiplication operators, G is a principal-value singu-
lar integral operator, and K is a compact integral operator. In our case, things become
a little more complicated due to the matrix-valued kernel and the involvement of
special functions.

The system (3.15) contains nine scalar integro-differential operators. If the
partial derivatives are carried out, then we arrive at nine “pure” integral operators
whose kernels have different degrees of singularity. The weakly singular kernels
result in compact operators, whereas the strongly singular kernels require some
extra caution. The presence of the second-order partial derivatives in the upper left
.2 � 2/-corner of the derivative matrix in (3.15) indicates that we have four scalar
strongly singular kernels in the TE case. The corresponding operators are called
singular integral operators.

To arrive at the standard form of the singular integral operator we first separate
the domain of integration D in two sub-domains as D D ŒD n D.�/� [ D.�/ where
D.�/ is a circular area around x with the radius �. Let ur be either of the electric
field components E1 or E2, then the product between the operator matrix and the
convolution vector in (3.15) can be written as

I1 D lim
�!0

Z

x02ŒDnD.�/�

@k@rg.x � x0/�e.x
0/ur.x

0/dx0

C lim
�!0

@k

Z

x02D.�/

@rg.x � x0/�e.x
0/ur.x

0/dx0; k; r D 1; 2: (3.21)

Here and in what follows we save some space by not showing the parametric depen-
dence on !. The first term in (3.21) is recognized as the principal value, while the
second integral will be denoted by I2. This second term incorporates the Green’s
function of (3.14). Utilizing asymptotic expansions for small arguments for the zero
order Bessel and Neumann functions [1], namely

J0.z/ D 1 � z2

4
C O.z4/; (3.22)

N0.z/ D 2

�
J0.z/C 2

�
J0.z/ ln

z

2
C O.z2/; (3.23)

we replace the Hankel function in Green’s function by its asymptotic expansion based
on (3.22) and (3.23), arriving at

g.x � x0/ D � 

2�
C i

4
� 1

2�
ln

kbjx � x0j
2

C O.jx � x0j2/

D g0.x � x0/C g1.x � x0/; (3.24)

where we have defined

g0.x � x0/ D g.x � x0/ �
�

� 1

2�
ln

kbjx � x0j
2

�

; (3.25)

and

g1.x � x0/ D � 1

2�
ln

kbjx � x0j
2

: (3.26)
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The function g0.x �x0/ is not singular and its contribution (even after differentiation)
in I2 will vanish in the limit � ! 0. The nonzero contribution to I2 comes from
g1.x � x0/. Taking the first partial derivative @r of g1.x � x0/, we get

@rg1.x � x0/ D 1

2�

�‚r

jx � x0j ; (3.27)

where ‚r D .xr � x0
r/=jx � x0j. A singularity of order one has appeared, which is still

a weak singularity (the order of the singularity is smaller than the dimension of the
manifold, which is two-dimensional in the present problem). Applying the second
partial derivative @k we obtain a strong second-order singularity:

@k@rg1.x � x0/ D 1

2�
@k

�‚r

jx � x0j D 1

2�

1

jx � x0j2
.2‚k‚r � ıkr/ : (3.28)

Thus, omitting the g0 part (since it disappears in the limit) we re-write the second
term of (3.21) as

lim
�!0

@k

Z

x02D.�/

@rg.x � x0/�e.x
0/ur.x

0/dx0

D lim
�!0

Z

x02D.�/

1

2�
@k

�‚r

jx � x0j�e.x
0/ur.x

0/dx0: (3.29)

By adding and subtracting �e.x/ur.x/ inside the integral of (3.29), we get

lim
�!0

@k

Z

x02D.�/

@rg.x � x0/�e.x
0/ur.x

0/dx0

D 1

2�
lim
�!0

Z

x02D.�/

@k

�‚r

jx � x0j
�

�e.x
0/ur.x

0/ � �e.x/ur.x/
�

dx0

C 1

2�
lim
�!0

�e.x/ur.x/

Z

x02D.�/

@k

�‚r

jx � x0jdx0: (3.30)

Assuming the Hölder continuity of the function �e.x/ur.x/, i.e., assuming that there
exist ˛;C > 0, such that for all x; x0 2 R2,

j�e.x/ur.x/ � �e.x
0/ur.x

0/j � Cjx � x0j˛; (3.31)

we effectively lower the order of singularity in the first integral in the RHS of (3.30).
Hence, in the limit � ! 0 this term is zero. Interchanging @k with �@0

k and applying
the 2D divergence theorem in the remaining term of (3.30), we obtain

lim
�!0

@k

Z

x02D.�/

@rg.x � x0/�e.x
0/ur.x

0/dx0

D 1

2�
�e.x/ur.x/ lim

�!0

I

x02@D.�/

��k

�‚r

jx � x0jdx0; (3.32)

with �k D �‚k being the projection of the normal unit vector of the polar coordinate
system on the xk axis. Finally, we arrive at the result

lim
�!0

@k

Z

x02D.�/

@rg.x � x0/�e.x
0/ur.x

0/dx0

D 1

2�
�e.x/ur.x/ lim

�!0

I

x02@D.�/

� ‚k‚r

jx � x0jdx0

D � 1

2�
�e.x/ur.x/ lim

�!0

I

x02@D.1/

‚k‚rdx0

D �1

2
�e.x/ur.x/ırk; (3.33)
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where we notice that the last contour integral is over the unit circle. Hence, (3.21)
can now be written as

I1 D p: v:

Z

x02D

@k@rg.x � x0/�e.x
0/ur.x

0/dx0

� 1

2
�e.x/ur.x/ırk; k; r D 1; 2: (3.34)

Now, we can represent (3.15) in the standard form
2

4

Ein
1

Ein
2

Hin
3

3

5 D

2

4

S 0 0
0 S 0
0 0 I

3

5

2

4

E1

E2

H3

3

5C p: v:

2

4

G11 G12 0
G21 G22 0

0 0 0

3

5 �

2

4

XeE1

XeE2

XmH3

3

5 (3.35)

C

2

4

K11 K12 K13

K21 K22 K23

K31 K32 K33

3

5 �

2

4

XeE1

XeE2

XmH3

3

5 ; (3.36)

with S denoting the operator of (pointwise) multiplication with the function s.x/ D
1C1=2�e.x/, and I – the identity operator. The kernels in the principal-value operator
in (3.35) are easily recognized using (3.28) and (3.15), and are given by

Gnm.x/ D � 1

2�jxj2
Œ2‚n‚m � ınm� ; n;m D 1; 2: (3.37)

The kernels in the compact operator in (3.35) are easily obtained if we first calculate
the first order derivative of Green’s function which is

@rg.x � x0/ D � i

4
kb

xr � x0
r

jx � x0jH
.1/
1 .kbjx � x0j/; r D 1; 2: (3.38)

as well as the mixed derivative

@k@rg.x � x0/ D i

4

�

kb
1

jx � x0j

�

2
xr � x0

r

jx � x0j
xk � x0

k

jx � x0j � ıkr

�

H
.1/
1 .kbjx � x0j/

� k2
b

xr � x0
r

jx � x0j
xk � x0

k

jx � x0j H
.1/
0 .kbjx � x0j/

�

; k; r D 1; 2; (3.39)

where ıkr is the Kronecker’s delta. So, using (3.38), (3.39) and (3.15), the aforemen-
tioned compact kernels are given by

Knm D
�

1

2�jxj2
� ikb

4jxjH
.1/
1 .kbjxj/

�

Œ2‚n‚m � ınm�

C
ik2

b

4
H

.1/
0 .kbjxj/ Œ‚n‚m � ınm� ; n;m D 1; 2I (3.40)

K13 D �!�bkb‚2

4
H

.1/
1 .kbjxj/I (3.41)

K31 D �!"bkb‚2

4
H

.1/
1 .kbjxj/I (3.42)

K23 D !�bkb‚1

4
H

.1/
1 .kbjxj/I (3.43)

K32 D !"bkb‚1

4
H

.1/
1 .kbjxj/I (3.44)
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K33 D �
ik2

b

4
H

.1/
0 .kbjxj/: (3.45)

As can be deduced from asymptotic expansions of special functions, all Knm ker-
nels are weakly singular, i.e., their singularity is less than that of the factor jx � x0j�2,
and the corresponding integrals exist in the usual sense. The remaining strong sin-
gularity is explicitly contained within the Gnm kernel. The latter kernel also features
a very special tensor 2�n�m � ınm, which guarantees the existence of the integral in
the sense of a principal value. The standard assumption, sufficient to guarantee the
boundedness of the matrix singular integral operator G and the equivalence of the
integral equation (3.20) to the original Maxwell’s equations, is that of Hölder conti-
nuity of the dielectric permittivity and of all components of the incident field vector
for all x 2 R2.

The solution is sought on L
.3/
2 .D � R2/, i.e., inside a finite spatial domain D.

It is well-known that an integral operator with a weakly singular kernel is compact

on L
.3/
2 .D/, however, the same operator is, generally, not compact on L

.3/
2 .R2/, since

a weakly singular kernel often decays too slowly at infinity. On the other hand,
analysis of the existence of the solution of integral equations with a strongly singular

integral operator is usually performed on domains without an edge, i.e., on L
.3/
2 .R2/,

see [46]. A way around this apparent technical contradiction was proposed in [57]

(Lemma 9.1, pp. 45–46), where the analysis of existence is performed on L
.3/
2 .R2/

with the weakly singular integral operators replaced by equivalent compact operators.
The procedure involves a weighting (pointwise multiplication) of the equations with
a finite differentiable function (equal to one inside D). The existence of the solution

of such a weighted integral equation established by standard methods on L
.3/
2 .R2/

implies the existence of the solution of the original equation on L
.3/
2 .D/.

3.2 Symbol & existence

At the core of the Mikhlin-Prössdorf approach, successfully applied in [5, 57] to the
three-dimensional volume integral equation, is the symbol calculus. It allows to study
the existence of a solution and shows a way to reduce the original singular integral
operator to a manifestly Fredholm operator of the form “identity plus compact”. The
symbol of an integral operator in the present two-dimensional case is a matrix-valued
function ˆnm.x;k/, n;m D 1; 2; 3, x 2 R2, and k 2 R2. Construction of the symbol
follows a few simple rules explained in [46, 57, 5]: the symbol of the sum/product of
operators is the sum/product of symbols; the symbol of a compact operator is zero;
the symbol of a multiplication operator is the multiplier function itself; the symbol of
the strongly singular integral operator is the principal value of the Fourier transform
of its kernel (that is where the second argument k – the dual of x – comes from).
It follows, in particular, that the symbol of the matrix operator is a matrix-valued
function. Applying these rules with the use of operator notation, (3.35) can be written
as

.AE/.x/ D
�

E C 1

2
M

�

E.x/C AsME.x0/C KE.x0/; (3.46)

where As is a (matrix) singular integral operator, K is a (matrix) compact integral
operator, E is a (matrix) identity operator, and M.x/ D �e.x/E2 is a (matrix) multi-
plication operator, where the lower-right element of E2 is set to zero. The singular
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term of (3.46) is of the form

.AsME/.x/ D
Z

x02D

F.‚/

jx � x0j2
�e.x

0/E.x0/dx0: (3.47)

According to (3.28), the characteristic (matrix) function F.‚/ has the form

F.‚/ D � 1

2�
Œ2Q.x � x0/ � I2�; (3.48)

where I2 is the .3 � 3/ identity matrix with the lower-right element set to zero, and
the tensor Q is given by

Q.x � x0/ D

2

6

4

.x1�x0

1/2

jx�x0j2
.x1�x0

1/.x2�x0

2/

jx�x0j2
0

.x1�x0

1/.x2�x0

2/

jx�x0j2
.x2�x0

2/2

jx�x0j2
0

0 0 0

3

7

5
: (3.49)

For �e.x/ Hölder-continuous on R2, the symbol of the compound singular integral
operator of (3.46) can be computed as (see [46]):

Smb.A/ D I C 1

2
�e.x/I2 C Smb.As/�e.x/; (3.50)

where I is the ordinary .3 � 3/ identity matrix. Since the characteristics F depends
only on x�x0, the symbol of the singular integral operator As is the Fourier transform
of its kernel F.‚/=jx �x0j2 with respect to the variable y D x �x0, i.e. it is a k-domain

matrix-valued function QF s.k/. Computing this Fourier transform is a daunting task,
and we shall use a shortcut proposed in [46].

Let As be a single component of our matrix-valued operator As and let ˆ
s.k/

denote its symbol, which is one of the components of the matrix-valued symbol

function QF s.k/ we are trying to compute. The symbol Smb.As/ D ˆ
s.k/ of a scalar

simple singular integral operator can be expanded in a series of 2D spherical functions
of order p, that is, in Fourier series of sines and cosines [46], namely

ˆ
s. Q‚/ D

1
X

pD0

h

2;pa.1/
p Y

.1/
p;2 .

Q‚/C 2;pa.2/
p Y

.2/
p;2 .

Q‚/
i

; (3.51)

where Q‚ D k=jkj is the unit vector in the k-domain, Y
.1/
p;2 D sin.p Q�/, and Y

.2/
p;2 D

cos.p Q�/ is the basis of the expansion, a
.1/
p and a

.2/
p are the expansion coefficients, and Q�

is the directional angle of the unit vector Q‚. In (3.51), 2;p D �ip�.p=2/=�..2Cp/=2/
[46]. Since any component f .‚/ of the characteristic matrix-valued function F.‚/
given by (3.48) depend only on ‚, we can expand each of them in a Fourier series as
well

f .‚/ D
1
X

pD1

h

a.1/
p sin.p�/C a.2/

p cos.p�/
i

; (3.52)

where � is the directional angle of the unit vector ‚ D .x � x0/=jx � x0j. It was shown
in [46] that the expansion coefficients in (3.52) are the same with those of (3.51).
Using (3.48) and (3.49), we see that the components of the characteristic F are

F.‚/ D � 1

2�
Œ2Q.x � x0/ � I2� D � 1

2�

2

4

2 cos2 � � 1 2 cos� sin � 0
2 cos� sin� 2 sin2 � � 1 0

0 0 0

3

5 : (3.53)
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To calculate the expansion coefficients, we must equate each element ŒF.‚/�kr; k; r D
1; 2, from (3.53) with the series from (3.52). For example, for the element ŒF.‚/�11

we have

� 1

2�
Œ2 cos2 � � 1� D � 1

2�
cos.2�/ D

1
X

pD1

h

a.1/
p sin.p�/C a.2/

p cos.p�/
i

: (3.54)

From this expansion it is obvious that the only nonzero expansion coefficient is a
.2/
2 D

�1=.2�/, while the rest are all zero (i.e. a
.1/
p D 0 8p and a

.2/
p D 0 8p ¤ 2). The same

procedure is followed for the rest of the components in (3.53). Then, we substitute

the known expansion coefficients in (3.51) to get the elements Œ QF s. Q‚/�kr; k; r D 1; 2.

Continuing our example, the element Œ QF s. Q‚/�11 is obtained through the substitutions

2;2 D �i2�.1/=�.2/ D �� , Y
.2/
2;2 D cos.2 Q�/ and a

.2/
2 D �1=.2�/, and therefore

Œ QF s. Q‚/�11 D 1=2 cos.2 Q�/ D cos2. Q�/ � 1=2. Following the same procedure for all
components, we finally get

Smb.As/ D QF s. Q‚/ D

2

4

cos2 Q� � 1=2 sin Q� cos Q� 0

sin Q� cos Q� sin2 Q� � 1=2 0
0 0 0

3

5 D Q.k/ � 1

2
I2: (3.55)

Substituting the result of (3.55) back in (3.50), we get the symbol of the complete
operator as the following .3 � 3/ matrix-valued function:

Smb.A/.x;k/ D I C �e.x/Q.k/: (3.56)

Several important conclusions can be made already at this stage. First of all we
notice an almost complete equivalence of the symbol in the two-dimensional TE case
with the previously obtained symbol of the three-dimensional scattering operator
[5, 57]. The necessary and sufficient condition for the existence of a solution is now
readily obtained as the condition on the invertibility of ˆ. The explicit inverse of the
symbol matrix is found to be

ˆ
�1.x; Q�/ D I C �0

e.x/Q; (3.57)

where �0
e.x; !/ D "b=".x; !/ � 1. Hence, the existence condition is

".x; !/ ¤ 0; x 2 R2: (3.58)

In the TM case (3.16) the symbol can be derived along the same lines and turns out
to be I C �m.x/Q, with the existence condition being �.x; !/ ¤ 0, x 2 R2. It is
interesting to note the difference in these existence conditions with respect to the
three-dimensional case, where both ".x/ and �.x/ are required to be nonzero at the
same time.

3.3 Regularizer, spectrum & uniqueness

The inverse of the symbol is the symbol of the regularizer – an operator, which
reduces the original singular integral operator to the form “identity plus compact”.
Since ˆ

�1 has the same form as ˆ, we conclude that our original operator with its
electric contrast function changed into �0

e may be employed as a regularizer. Thus,
if A.�e/ is the original operator from (3.20)–(3.35), and A.�0

e/ denotes the same
operator with the contrast function replaced by �0

e, then we have

A.�0
e/A.�e/ D I C K; (3.59)
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where K is a generic compact operator. This looks strikingly similar to the Calderón
identity [2, 3, 15].

It is easy to see that the application of the regularizer eliminates the essential
spectrum – a part of the operator spectrum that is invariant under compact pertur-
bations of the operator. Indeed, even if A.�e/ has a nontrivial essential spectrum,
densely spread over a part of the complex plane, the spectrum of I C K consists
of isolated points only. As can be deduced from the symbol (3.56), the essential
spectrum of the operator A.�e/ in the TE case is given by

�ess D
˚

".x/="bI x 2 R2
	

; (3.60)

and by �ess D
˚

�.x/=�bI x 2 R2
	

in the TM case.
A well-known sufficient condition for the uniqueness of the solution has the

form Im ".x/="b > 0, x 2 D, see e.g. [34]. Simple algebraic manipulations allow
expressing the resolvent operator ŒA.�e/ � �I��1 of the eigenvalue problem as the
inverse of the original operator ŒA.�0

e/�
�1 with a contrast function �0

e containing a
new relative permittivity function "0.x; �/, which depends on the parameter �. Then,
applying the opposite of the uniqueness condition, i.e. Im "0.x; �/ � 0, x 2 D, one
obtains a wedge-shaped bound on the location of discrete eigenvalues:

Im ".x/� ŒIm ".x/C Im "b�Re�

C ŒRe ".x/ � Re "b� Im�C Im "bj�j2
6 0; x 2 D: (3.61)

3.4 Discretization & collocation

Equation (3.35) defines an algebraic system Au D b for the numerical evaluation of
the fields. To derive the matrix elements, its more convenient to use the equivalent
integral form of (3.35).

The application of the matrix operator of (3.15) – the matrix that contains the
partial derivatives – on Green’s functions, give us the Green’s tensor. In order to
get the equivalent integral form of (3.35), we need to split the Green’s tensor in two
parts. The first part, denoted by A.x � x0/, corresponds to the second order or mixed
derivatives only, i.e.

A.x � x0/ D

0

@k2
b

2

4

1 0 0
0 1 0
0 0 1

3

5C

2

4

@2
1 @1@2 0

@2@1 @2
2 0

0 0 0

3

5

1

A g.x � x0/: (3.62)

The second part, denoted by B.x �x0/, corresponds to the first order derivatives only,
i.e.

B.x � x0/ D

2

4

0 0 @2

0 0 �@1

�@2 @1 0

3

5 g.x � x0/: (3.63)

To obtain the explicit relations for A.x � x0/ and B.x � x0/, we use the first and mixed
order derivatives of Green’s function given by (3.38) and (3.39), respectively. So, the
A tensor is given by

A.x � x0/ D i

4
kb

1

jx � x0jH
.1/
1 .kbjx � x0j/Œ2Q.x � x0/ � I2�

� i

4
k2

bH
.1/
0 .kbjx � x0j/ŒQ.x � x0/ � I�: (3.64)
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The tensor Q was introduced in (3.49) while I2 is, as explained in Section 3.2, the
.3 � 3/ identity matrix with the lower-right element set to zero. The B tensor is
obtained with the use of (3.38)

B.x � x0/ D � i

4
kbH

.1/
1 .kbjx � x0j/‚.x � x0/�; (3.65)

where we have now introduced the ‚� tensor given by

‚.x � x0/� D

2

6

6

4

0 0
x2�x0

2
jx�x0j

0 0 � x1�x0

1

jx�x0j

� x2�x0

2
jx�x0j

x1�x0

1
jx�x0j

0

3

7

7

5

: (3.66)

After this splitting, we can easily express (3.35) in the following integral form

Ein.x/ D
�

1 C 1

2
�e.x/

�

E.x/

� p:v:

Z

x02D

A.x � x0/�e.x
0/E.x0/dx0

� i!�b

Z

x02D

B.x � x0/�m.x
0/H.x0/dx0; (3.67)

Hin.x/ D H.x/ �
Z

x02D

A.x � x0/�m.x
0/H.x0/dx0

C i!"b

Z

x02D

B.x � x0/�e.x
0/E.x0/dx0; (3.68)

where the vectors E.x/ D ŒE1.x/;E2.x/; 0�
T and H.x/ D Œ0; 0;H3.x/�

T . Same applies
for Ein.x/ and Hin.x/.

Equation (3.67) can be rewritten as

Ein.x/ D
�

1 C 1

2
�e.x/

�

E.x/

� p:v:

Z

x02Ds

A.x � x0/�e.x
0/E.x0/dx0

�
Z

x02DnDs

A.x � x0/�e.x
0/E.x0/dx0

� i!�b

Z

x02Ds

B.x � x0/�m.x
0/H.x0/dx0

� i!�b

Z

x02DnDs

B.x � x0/�m.x
0/H.x0/dx0; (3.69)

where we have separated the domain D into a domain D n Ds “free” of singularity,
and a domain Ds which encloses the position vector x and hence the singularity. In
this way we have three integrals in the usual sense and one in the sense of principal
value.

Let us introduce a uniform two-dimensional N-node grid over a rectangular
computational domain D. For simplicity let the grid step h be the same in both direc-
tions. Typically the grid step is chosen in accordance with the following empirical rule:

find out the highest local value of the refractive index n D maxf
p

"0.x/�0.x/�="b�bg,
x 2 D, where prime denotes the real part; choose an integer k – the number of points
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per smallest wavelength; and, finally, compute the grid step as h D �b=.kn/, where �b

is the wavelength in the background medium. We set our discretization here at the
traditional level of k D 15 points, which, as we verified, gives a small global error (in
the order of 10�5) with respect to the analytical solution for a homogeneous circular
cylinder. For rectangular grid-conforming boundaries the error with this discretiza-
tion rule could be even smaller, since most of the error for a circular cylinder comes
from a poor geometrical representation of the boundary and/or bad approximation
of the area of the circular cross-section.

Applying a simple collocation technique with the mid-point rule, the usual
sense integrals over the domain D n Ds would be given by

�
Z

x02DnDs

A.x � x0/�e.x
0/E.x0/dx0

� �
N�1
X

mD1
m¤n

A.xn � xm/�e.xm/E.xm/Sm; n D 1; 2; : : : ;NI (3.70)

� i!�b

Z

x02DnDs

B.x � x0/�m.x
0/H.x0/dx0

� �i!�b

N�1
X

mD1
m¤n

B.xn � xm/�m.xm/H.xm/Sm; n D 1; 2; : : : ;NI (3.71)

where Sm D h2 is the surface of each elementary cell Dm of side h in the computational
domain.

We now proceed to calculate the principal value integral in (3.69). We have

p:v:

Z

x02Ds

A.x � x0/�e.x
0/E.x0/dx0

D lim
�!0

Z

x02DsnD.�/

A.x � x0/�e.x
0/E.x0/dx0

� �e.xn/E.xn/ lim
�!0

Z

x02DsnD.�/

A.x � x0/dx0; (3.72)

where the domain of integration in the last integral is over the singular cell but with
an exception of a small circular neighborhood having radius �. This is illustrated in
Figure 3.2. We further define the tensor L as

L D lim
�!0

Z

x02DsnD.�/

A.x � x0/dx0: (3.73)

Now we recall the form that A.x � x0/ has from (3.64). It is convenient to rewrite
(3.64) in terms of Q.x � x0/ and I2, namely

A.x � x0/ D i

4

�

2kb
1

jx � x0jH
.1/
1 .kbjx � x0j/ � k2

bH
.1/
0 .kbjx � x0j/

�

Q.x � x0/

C i

4

�

k2
bH

.1/
0 .kbjx � x0j/ � kb

1

jx � x0jH
.1/
1 .kbjx � x0j/

�

I2: (3.74)

To compute (3.73), we transform the singular cell Ds from rectangular shape to a
circular disk having center at x and radius an, as shown in Figure 3.3. The transformed



52 SPECTRUM & PRECONDITIONING OF THE DIE CHAP. 3

Figure 3.2 Some elementary cells of the domain D and the singular cell.

circular cell with the original one have the same surface S D �a2
n D h2. Then, (3.74)

is transformed into polar coordinates as

A.�; �/ D i

4

�

2kb
1

�
H

.1/
1 .kb�/ � k2

bH
.1/
0 .kb�/

�

Q.�/

C i

4

�

k2
bH

.1/
0 .kb�/ � kb

1

�
H

.1/
1 .kb�/

�

I2: (3.75)

Now, we calculate each element of the tensor L from

Lpq D i

4

�

lim
�!0

Z an

�D�

�

2kb
1

�
H

.1/
1 .kb�/ � k2

bH
.1/
0 .kb�/

�

�d�

Z 2�

�D0

Qpq.�/d�

C
Z an

�D�

�

k2
bH

.1/
0 .kb�/ � kb

1

�
H

.1/
1 .kb�/

�

�d�

Z 2�

�D0

ıpqd�

�

; p;q D 1; 2: (3.76)

The integration in (3.76) is carried out only three times since the tensor Q.x � x0/ is
symmetric. The angular integral with integrand function Qpq.�/ gives �ıpq, while the
other with the integrand function ıpq gives 2�ıpq. The radial integrals are evaluated

Figure 3.3 Transformation of the singular cell.
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by changing variables z D kb� and using the well known integral formulas for Bessel
functions [75]

Z z

�nC1Zn.�/d� D znC1ZnC1.z/; (3.77)

Z z

��nC1Zn.�/d� D �z�nC1Zn�1.z/: (3.78)

The result is

Lpq D ıpq

�

i�an

4
kbH

.1/
1 .kban/ � i�

4
kb lim

�!0

h

�H
.1/
1 .kb�/

i

�

; p;q D 1; 2: (3.79)

The involved limit is easily calculated giving �i2=.�kb/. Therefore, substituting the
results for the tensor L back to (3.72)

p:v:

Z

x02Ds

A.x � x0/�e.x
0/E.x0/dx0

� �e.xn/

�

�1

2
C i�an

4
kbH

.1/
1 .kban/

�

E.xn/; xn 2 Ds: (3.80)

What remains is the calculation of the integral involving B.x � x0/ over the
domain Ds in (3.69). We have

� i!�b

Z

x02Ds

B.x � x0/�m.x
0/H.x0/dx0

� �i!�b�m.xn/H.xn/

Z

x02Ds

B.x � x0/dx0: (3.81)

Utilizing (3.65) and (3.66), and expressing B.x � x0/ in polar coordinates, in the same
manner as we did for the L tensor before, we arrive at an angular integration from 0
to 2� for each component‚pq of ‚.x � x0/� tensor. This integration is zero for each
component ‚pq, and hence this term does not contribute.

Putting together the results of (3.70), (3.71) and (3.80), we arrive at the linear
equations

�

1 � �e.xn/

�

i�kbh

4
p
�

H
.1/
1 .kbh=

p
�/ � 1

��

E.xn/

� h2
N�1
X

mD1
m¤n

A.xn � xm/�e.xm/E.xm/

� i!�bh2
N�1
X

mD1
m¤n

B.xn � xm/�m.xm/H.xm/ D Ein.xn/; n D 1; 2; : : : ;N: (3.82)
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Following the same analysis for (3.68), we arrive at the linear equations
�

1 � �m.xn/

�

i�kbh

2
p
�

H
.1/
1 .kbh=

p
�/ � 1

��

H.xn/

� h2
N�1
X

mD1
m¤n

A.xn � xm/�m.xm/H.xm/

C i!"bh2
N�1
X

mD1
m¤n

B.xn � xm/�e.xm/E.xm/ D Hin.xn/; n D 1; 2; : : : ;N: (3.83)

Equations (3.82) and (3.83) compose the linear system for the evaluation of the
unknown total fields, with the following structure

2

4

A11 A12 A13

A21 A22 A23

A31 A32 A33

3

5

2

4

u1

u2

u3

3

5 D

2

4

b1

b2

b3

3

5 : (3.84)

In (3.84), Œu1;u2;u3�
T D ŒE1.xn/;E2.xn/;H3.xn/�

T , n D 1; 2; : : : ;N, are the unknown
total field components on the grid, while Œb1;b2;b3�

T D ŒEin
1 .xn/;E

in
2 .xn/;H

in
3 .xn/�

T

contains the grid values of the incident field. For example, the TE plane wave
impinging to the object at an angle  with respect to x1-axis is represented by:
Œb1�n D expŒikb.x1;n cos C x2;n sin /�, Œb2�n D �Œb1�nkb sin =.!"b/, and Œb3�n D
Œb1�nkb cos =.!"b/, n D 1; : : : ;N. The elements of the system matrix in (3.84) are
now easily recognized with the use of (3.82), (3.83), (3.64), (3.65) and (3.14). The
results are

ŒA``�nm D �k2
bh2�e.xm/

� �

i

2kbrnm

H
.1/
1 .kbrnm/ � i

4
H

.1/
0 .kbrnm/

�

�`;nm�`;nm

C
�

i

4
H

.1/
0 .kbrnm/ � i

4kbrnm

H
.1/
1 .kbrnm/

�

ı``

�

; ` D 1; 2; m ¤ nI (3.85)

ŒA``�nn D 1 C
�

1 � i�kbh

4
p
�

H
.1/
1 .kbh=

p
�/

�

�e.xn/; ` D 1; 2I (3.86)

ŒA`q�nm D �k2
bh2�e.xm/

�

i

2kbrnm

H
.1/
1 .kbrnm/ � i

4
H

.1/
0 .kbrnm/

�

� �`;nm�q;nm.1 � ınm/; `;q D 1; 2; ` ¤ qI (3.87)

ŒA13�nm D i!�bh2�m.xm/
ikb

4
H

.1/
1 .kbrnm/�2;nm.1 � ınm/I (3.88)

ŒA32�nm D �i!"bh2�e.xm/
ikb

4
H

.1/
1 .kbrnm/�1;nm.1 � ınm/I (3.89)

ŒA31�nm D i!"bh2�e.xm/
ikb

4
H

.1/
1 .kbrnm/�2;nm.1 � ınm/I (3.90)

ŒA23�nm D �i!�bh2�m.xm/
ikb

4
H

.1/
1 .kbrnm/�1;nm.1 � ınm/I (3.91)

ŒA33�nm D �k2
bh2�m.xm/

i

4
H

.1/
0 .kbrnm/; m ¤ nI (3.92)
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ŒA33�nn D 1 C
�

1 � i�kbh

2
p
�

H
.1/
1 .kbh=

p
�/

�

�m.xn/: (3.93)

In (3.85)–(3.93) we have defined rnm D jxn � xmj, �`;nm D .x`;n � x`;m/=rnm, ` D 1; 2,
n;m D 1; : : : ;N, and x`;n denotes the Cartesian component of the 2D position vector
xn, pointing at the nth node of the grid.

3.5 GMRES convergence

Both the system matrix and the original integral operator are neither symmetric
nor normal. Therefore, the range of iterative methods applicable to the problem is
extremely limited, with (restarted) GMRES typically showing the best performance.
Figure 3.4 shows the GMRES convergence histories on the original system Au D b for
three physically distinct scatterers (all with �m D 0) and two different polarizations,
corresponding to the TE and TM cases. The three scatterers are: a lossless object
with large positive real permittivity, "="b D 16, an object with small losses and a large
negative real part of the permittivity, "="b D �16 C i1:5, and an inhomogeneous
object consisting of two concentric layers with the inner part having large losses,
"="b D 2:5 C i20, and the outer layer having a large positive real permittivity, "="b D
16. All objects are cylinders with square cross-sections with the side length a D �b.
The inner core of the inhomogeneous object has also a square cross-section with the
side length a=2. The restart parameter of the GMRES algorithm is equal to 40 (we
shall study the influence of this parameter in more detail later). In Figure 3.4 (left) we
illuminate the scatterers with a plane wave whose electric field vector is orthogonal
to the axis of the cylinder (TE), whereas in Figure 3.4(right) the electric field vector
of the incident plane wave is parallel to the axis of the cylinder (TM). Since all three
objects do not exhibit any magnetic contrast with respect to the background medium,
the integral operators are different for these TE and TM cases – see (3.15), (3.16).
The latter contains now only the weakly singular part and is, therefore, of the form
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Figure 3.4 (color online). Convergence of restarted GMRES applied to the
original system with (dashed) and without (solid) deflation of the largest eigenvalues
for three physically distinct scatterers. Deflation accelerates GMRES in the TM case
(right), but does not work in the TE case (left). Lossless object – red lines (with
circles), object with small losses and negative real part of permittivity – green lines
(with diamonds), and inhomogeneous object – blue lines (with squares).
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“identity plus compact”.
Next to the convergence plots of the original system in Figure 3.4 we present the

convergence histories of the restarted GMRES with a deflation-based right precondi-
tioner (dashed lines). As was suggested in [62], deflating the largest eigenvalues of A
in the TM case may significantly accelerate the convergence of the full (un-restarted)
GMRES. The preconditioner deflating r largest eigenvalues of A is constructed by
first running the eigs algorithm to retrieve these r eigenvalues and the corresponding
eigenvectors. With the help of the modified Gram-Schmidt algorithm we further
build an orthonormal basis for the retrieved set of eigenvectors. Let this basis be
stored in a 3N � r matrix V. Then, the right preconditioner [21] has the form

P�1 D I3N C V
h

T�1 � Ir

i

V�; (3.94)

with
T D V�AV: (3.95)

As was observed in [62] for the TM case, although the system matrix is not normal,
the matrix V has full column rank, and the matrix T has a decent condition number.
We confirm this behavior in the present TE case. The term “deflation” refers to
the fact that the spectrum of AP�1 looks like the spectrum of A with r largest
eigenvalues moved to the point 1 C i0 of the complex plane, and the corresponding
eigen-subspace has been projected out. Here, even with the restarted GMRES, we
see some improvement in the TM case Figure 3.4(right). The TE case, however, is
not affected by deflation (it may even become worse).

Table 3.1 and Table 3.2 summarize the numerical results corresponding to the
test objects in the TM and TE cases. The 3N � r matrix V needs to be stored in the
memory. For the sake of fair comparison, we divide our memory between the inner
Krylov subspace of the restarted GMRES and V, i.e., if we set restart D k, k > r
with the original matrix A, then we use restart D k � r with the preconditioned
matrix AP�1.

One can understand the peculiar lack of progress in the TE case by considering
Figure 3.5, which shows the spectra of the system matrix for the TE and TM cases
corresponding to the numerical experiments of Figure 3.4. As can be seen, the
difference between the spectra is in the presence of dense line segments Œ1; ".x/="b�,
x 2 R2 and some extra isolated eigenvalues inside a distribution remotely resembling
a shifted circumference (the latter is much more pronounced with homogeneous
objects at higher frequencies, see [62]). The dense line segments in the TE spectrum
contain a very large number of closely spaced eigenvalues, and the deflation process
simply stagnates when it reaches the outer ends of these lines, corresponding to
".x/="b, x 2 D. Indeed, in the TE case we have seen no change in the convergence
with AP�1 when we tried to deflate any eigenvalues beyond those that were present
outside a circle with the center at zero and the radius reaching the largest value of
j".x/="bj, x 2 R2 for each particular scattering configuration. At the same time in
the TM case we observed consistent improvement in convergence when deflating all
eigenvalues outside the unit circle, see Table 3.1.

3.6 Preconditioning

In the three-dimensional case it was conjectured [5] that the dense line segments,
which we now observe in the TE spectrum as well, have something to do with the
essential spectrum, �ess D ".x/="b, of the corresponding singular integral operator.
Obviously, there is no such thing as essential spectrum with matrices, and its role and
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Table 3.1 Restarted GMRES with fair memory usage for three different test scatterers, TM case. Original and deflated systems.

r, deflated CPU time, Iterations, Speed–
System "="b eigenvalues restart seconds tol. 10�8 up

A 16 0 40 168 7311 1.0
AP�1 16 28 12 78 4230 2.2

A �16 C i1:5 0 40 0.7 27 1.0
AP�1 �16 C i1:5 28 12 0.5 14 1.4

A 16 and 2:5 C i20 0 40 23 1000 1.0
AP�1 16 and 2:5 C i20 28 12 14 749 1.6

Table 3.2 Restarted GMRES with fair memory usage for three different test scatterers, TE case. Original, deflated, regularized, and
regularized-plus-deflated systems.

r, deflated CPU time, Iterations, Speed–
System "="b eigenvalues restart seconds tol. 10�8 up

A 16 0 40 350 15258 1.0
AP�1 16 6 34 306 14002 1.1
ARA 16 0 40 142 4030 2.5

ARAP�1 16 14 26 117 3626 3
A �16 C i1:5 0 40 39 1708 1.0

AP�1 �16 C i1:5 7 33 36 1659 1.1
ARA �16 C i1:5 0 40 36 1021 1.1

ARAP�1 �16 C i1:5 30 10 16 534 2.4
A 16 and 2:5 C i20 0 40 275 11823 1.0

AP�1 16 and 2:5 C i20 3 37 310 13156 0.9
ARA 16 and 2:5 C i20 0 40 107 3032 2.6

ARAP�1 16 and 2:5 C i20 14 26 94 2911 3
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(top) TE case.
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(bottom) TM case.

Figure 3.5 (color online). Eigenvalues of the system matrix A for three physically
distinct scatterers in the TE (top) and TM (bottom) cases. Horizontal axis – real part,
vertical axis – imaginary part. Also shown are the values of the relative permittivity
of the object (triangles and circles), and the background medium (squares, always at
one).

transformation in the process of discretization is so far unclear. Moreover, recently it
was shown [18] that in the case of a discontinuous medium the essential spectrum will
contain only the end and the middle points of the lines. Yet, it is also known [6] that
the convex hull of the essential spectrum contains all other (discrete) eigenvalues of
the problem in the low-frequency regime (! ! 0). Since the discrete eigenvalues
of the operator correspond to “proper” eigenfunctions they do appear in the matrix
spectrum upon discretization and should thus be accumulated inside the convex hull
of the essential spectrum.

As the process of deflation is obviously hindered by the dense spectral segments
one needs to reduce their extent prior to deflation. Numerical experiments and the
above considerations suggest that we need to reduce the convex hull of the essential
spectrum. On the operator level such a reduction can be achieved by regularization.
We shall, therefore, apply the discretized regularizer AR, i.e., a discrete version
of the operator A.�0

e/, so that the problem becomes ARAu D ARb. Notice that
no additional storage is required, since the original Green’s tensor can be re-used.
Matrix-vector products, however, do become twice more expensive to compute.

To see how this procedure affects the matrix spectrum we compute the eigen-
values of ARA corresponding to the matrices analyzed in Figure 3.5 (top). The
results are presented in Figure 3.6, where we see that the line segments have been
substantially reduced. For a homogeneous object we can see what is going on also
on the matrix level. The general form of our system matrix is A D I � GX , where
I is a 3N � 3N identity matrix, X is the diagonal matrix, containing the grid values
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Figure 3.6 (color online). Eigenvalues of the regularized matrix ARA, correspond-
ing to the spectra of A in the TE case, see Figure 3.5 (top). Large red circles show
the estimated outer bounds of the dense cluster – deflation bounds. Also shown are
the values of the relative permittivity of the object (triangles and circles), and the
background medium (squares, always at one).

of the contrast function, and G is a dense matrix produced by the integral operator
with the Green’s tensor kernel. When the contrast is homogeneous and equal to a
scalar complex value � D "="b � 1 inside the scatterer, we can write our matrix as
A D I � �G. Now, let  n be an eigenvector of G, i.e. G n D ˇn n. Then, the
eigenvalues of A are:

�n D 1 � ˇn

�

"

"b
� 1

�

; (3.96)

and the eigenvalues of ARA are

�0
n D

h

1 � ˇn

�"b

"
� 1

�i

�n: (3.97)

Eliminating ˇn we get

�0
n D

h

1 C "b

"
.1 � �n/

i

�n: (3.98)

We have verified numerically that this transformation holds for the first two plots of
Figure 3.5 (top) and Figure 3.6. Curiously, the seemingly quadratic amplification of
the large eigenvalues in (3.98) is moderated by the inverse of the relative permit-
tivity. That is why the regularized spectra are not as extended as one would fear.
Unfortunately, such a simple proof is not possible with an inhomogeneous object,
yet the effect of the regularization on the matrix spectrum in Figure 3.5 (top, right)
and Figure 3.6 (right) is obviously similar to the homogeneous cases.

Table 3.2 shows that such a regularized system is already better than the original
one in terms of convergence. The relative speed-up, however, is limited to approx-
imately 2:5 times due to the extra work involved in computing the matrix-vector
products with ARA. Moreover, no convergence improvement is observed with the
negative permittivity object.

To further accelerate the convergence and make the method work with the
negative permittivity objects as well (they are important in surface plasmon-polariton
studies) we can now apply the deflation technique. For that we need to decide on the
number of eigenvalues to be deflated. Obviously, it does not make sense to deflate
beyond the first (from outside) dense cluster – deflation will only cost more time and
memory, while the improvement will stagnate. After the regularization, the outer
boundaries of the dense line segments have been all shifted inwards. However, due
to nonlinear nature of the mapping (3.98) it is hard to tell exactly what an image
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Figure 3.7 (color online). Dependence of the number of eigenvalues to be deflated
on the wavelength for three test scatterers (same medium parameters as in previous
figures). Left: ratio ˇ of the number r of eigenvalues outside the deflation bound
(circles with radius R, see Figure 3.6) to the total number 3N of eigenvalues for a
classical discretization rule (fixed number of points per smallest medium wavelength).
Right: actual number r of eigenvalues to be deflated (with magnitude greater than the
deflation bound R) and our analytical prediction based on an average ˇ coefficient
estimated from the left plot.

of an arbitrary line segment would look like. Only for a lossless homogeneous
scatterer are we able to predict that a real line segment Œ1; "="b� will be mapped
onto the real line segment Œ1; 1 C .1 � "="b/

2=.4"="b/�, which contracts the original
segment by approximately four times. For a general line segment radially emerging
from the point 1 C i0 we have made a small numerical routine, which produces a
discretized image according to (3.98) and finds the point with the largest absolute
value – the radius of the circle beyond which all eigenvalues should be deflated. We
have observed, by analyzing the spectra for various inhomogeneous objects, that
the general regularization seems to transform each line segment according to (3.98).
Therefore, in an inhomogeneous case, we can simply apply the aforementioned
numerical mapping to each of the segments Œ1; ".x/="b�, x 2 D, and choose the point
with the maximum absolute value as the deflation radius. The deflation bounds
obtained in this way are shown in Figure 3.6 as solid red circles.

The number of eigenvalues outside the deflation bound depends on the physics
of the problem. For example, we know that at low frequencies (large wavelengths)
all discrete eigenvalues are located within the convex hull of the essential spectrum
[6], and that at higher frequencies they tend to spread out. We have investigated this
phenomenon in more detail and have found a pattern, similar to the one reported in
[62]. As one can see from Figure 3.7 (left), the ratio of the number r of eigenvalues
outside the deflation bound to the total number of eigenvalues 3N is roughly constant
(for objects larger than �b), if at each wavelength we adjust the spatial discretization
according to the classical rule (say, 15 points per smallest medium wavelength).
Hence, with fixed medium parameters and a square computational domain with
side a, the total number of unknowns and therefore eigenvalues grows as 3N D
3Œ˛2.a=�b/

2 C 2˛.a=�b/C 1� with ˛ D 15 maxf
p

."0="b/g. Thus, knowing ˇ D r=.3N/
for some wavelength, we can estimate r D 3Nˇ at any other wavelength. This
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Figure 3.8 (color online). Convergence of restarted GMRES with the original
Au D b (solid) and preconditioned ARAP�1v D ARb (dashed) systems for the three
physically distinct scatterers in the TE case. Red lines (with circles); "="b D 16; Green
lines (with diamonds): "="b D �16 C i1:5; Blue lines (with squares): inhomogeneous
object "="b D .16; 2:5 C i20/.

empirical law comes very handy since solving a relatively low-frequency spectral
problem can be really easy due to small system matrix dimensions. Otherwise, if
there is no shortage of memory for the chosen wavelength, one can simply run
the eigs routine increasing the number of recovered largest eigenvalues until the
deflation bound obtained above is reached.

Having a good estimate of the deflation parameter r we have applied the right
preconditioner given by (3.94) to the regularized system for the same three objects
as in all previous examples. The largest eigenvalues/eigenvectors of the regularized
system turn out to be very stable, so that one can safely apply the eigs routine
with its tolerance set as high as 10�2. Though, we have not seen any substantial
acceleration beyond the 10�4 tolerance, which, in its turn, gave us a significant speed-
up in the off-line work compared to the default machine precision tolerance. In all
our experiments, the off-line time remained a small fraction of the total CPU time
(for concrete numbers we refer to the example at the end of this Section).

The convergence histories for a restarted GMRES with this preconditioner are
presented in Figure 3.8. This figure, and the iteration counts in general, are slightly
misleading when one deals with an iterative algorithm like restarted GMRES. For
example, we see in Table 3.2 that, apart from the negative permittivity case, the
iteration counts after deflation are only slightly better than what we have already
achieved with the regularized system. Hence, one could conclude that the deflation
is not worth the effort. However, the GMRES algorithm does not scale linearly
in time as a function of the restart parameter, i.e., while it may converge in less
iterations for larger values of restart, the CPU time may not decrease as much. This
has partly to do with the re-orthogonalization process, which takes more time for
larger inner Krylov subspaces, and partly with the very bad spectral properties of our
system matrix.

Thus, to decide upon the benefits of deflation we compare execution times
for various values of restart parameter. In addition, we need to consider another
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Figure 3.9 (color online). CPU time (left) and the achieved speed-up (right) as a
function of wavelength (object size) for restart D r=2 (red, squares), restart D 2r
(green, triangles), and restart D 10r (blue, circles). The permittivity of the scatterer
is "="b D 16. Solid lines – original system Au D b; dashed lines – preconditioned
system ARAP�1v D ARb.

important constraint – the available memory. Since a fair comparison can only
be achieved if we give the same amount of memory to both the original and the
preconditioned systems, we give all the available memory to the GMRES algorithm
in the former case, and split it between the restart and the deflation subspace of size r
in the latter. Finally, we want to know if the efficiency of the proposed preconditioner
depends on the physics of the problem, i.e., does it work better or worth for larger
objects and contrasts? Of course, the system becomes larger and more difficult to
solve for larger objects, and we have to be prepared to increase the value of restart

for larger objects and contrasts to achieve any convergence at all. Hence, assuming
that we have enough memory at least for deflation, we shall distinguish between
the following three situations: limited memory, restart.ARAP�1/ < r; moderate
memory, restart.ARAP�1/ � r; large memory, restart.ARAP�1/ > r.

We observe from the plots of Figure 3.9 that with limited memory, where we
choose restart.ARAP�1/ D r=2 and restart.A/ D r, the original system initially
outperforms the preconditioned one. As the object size grows, so does the size r of
the deflation subspace. Since in that case the restart.ARAP�1/ parameter grows as
well, at some point (for a=� D 1:9 with this particular object) it reaches a value at
which the preconditioned system breaks even and begins to outperform the original
one for larger objects (maximum achieved speed-up is 2:4 times at a=�b D 2:2). With
moderate memory, restart.ARAP�1/ D 2r, restart.A/ D 3r, the preconditioned
system always performs better than the original one. Moreover, the relative speed-
up Figure 3.9 (right) generally increases with the object size (maximum achieved
speed-up is 5:1 times at a=�b D 2, minimum – 2:1 times at a=�b D 1). With large
memory, i.e., for restart.ARAP�1/ D 10r and restart.A/ D 11r, the speed-up may
be as high as 46:6 times (a=�b D 2:2) (minimum speed-up of 8:7 times at a=�b D 1),
and it also grows (on average) with the object size.

With objects of finite extent changing the wavelength of the incident field is not
the same as changing the object permittivity. Hence, we repeat the same numerical
experiments as in Figure 3.10, but now for an object of fixed size, a=�b D 1, and
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Figure 3.10 (color online). CPU time (left) and the achieved speed-up (right) as
a function of permittivity for restart D r=2 (red, squares), restart D 2r (green,
triangles), and restart D 10r (blue, circles). The scatterer is lossless with side length
fixed at a=�b D 1. Solid lines – original system Au D b; dashed lines – preconditioned
system ARAP�1v D ARb.

varying permittivity. The deflation parameter r is estimated using the same algorithm
as above and turns out to grow only slightly as a function of permittivity, climbing from
13 to 17 for the permittivity changing between 10 and 20. At the same time the total
number of unknowns as well as eigenvalues grows very fast. Therefore, deflation did
not accelerate the iterative process here as much as when we changed the wavelength,
and most of the speed-up must be due to the regularization. For this relatively
small scatterer we see some improvement in convergence only with relatively large
amounts of memory devoted to the restart parameter, i.e., restart.ARAP�1/ � 2r.
Moreover, preconditioned GMRES with restart.ARAP�1/ D r=2 did not converge
for "="b D 14 at all (we set this point arbitrarily high in the plot). On the other hand,
the maximum speed-up for restart D 2r was 4:1 times (minimum 1:8 times), while
for restart D 10r the maximum speed-up was 11:4 times (minimum 1:6 times). From
the previous experiments we may expect that the speed-up will be larger with larger
objects.

As an example of a systematic application of the present preconditioner, we
consider the problem, for which the DIE method is most suited, i.e., scattering on an
object with continuously varying permittivity. The steps we suggest to follow are:

1. Determine the total available memory: M bytes
2. Fix the discretization rule at k points per smallest medium wavelength.
3. Estimate ˇ from low-frequency matrix spectra.
4. Determine the maximal number of grid points Nmax:

• If a – size of the computational domain D, and N – number of grid points, then
N D ˛2.a=�b/

2 C 2˛.a=�b/C 1, where

˛ D k maxf
p

."0.x/="b/g, x 2 D.
• Memory needed for the system, right-hand side, and the unknown vector: MA D

720N bytes (one complex number – 16 bytes).
• Memory required for deflation and GMRES:

MPrec D 16r2 C 48Nr C 48Nrestart bytes, where r D 3Nˇ and
restart D xr, i.e., MPrec D 144.ˇ2 C ˇ C xˇ/N2 bytes.
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Figure 3.11 (color online). Scattering of a TE plane wave on an inhomogeneous
object with continuously varying permittivity. Left – permittivity profile (side length
a=�b D 4). Right – computed electric field intensity jE1j2 C jE2j2. Preconditioning
gives 11:6 times speed-up for this problem.

• The largest affordable grid follows from MA C MPrec � M:

Nmax � Œ
p

900 C M.ˇ2 C ˇ C xˇ/ � 30�=Œ12.ˇ2 C ˇ C xˇ/�.

5. Determine the maximum affordable object size (smallest wavelength) via
Œa=�b�max D .

p
Nmax � 1/=˛.

The scatterer is depicted in Figure 3.11 (left). The relative permittivity function
profile is given by

".x/="b D 10 C 5 sin.4�x1=a/ sin.4�x2=a/; x 2 D; (3.99)

where the origin of the coordinate system is in the middle of the computational
domain, and ".x/ D "b for x … D. The incident plane wave is impinging at an
angle of 45 degrees with respect to the x1-axis, so that both the object and the
incident field are axially symmetric. We calculated ˇ for this scatterer to be ap-
proximately 0:0011. Having M D 4 GB of memory available and choosing k D 15
and restart.ARAP�1/ D 8r, from the above algorithm we determine the largest
affordable size with this permittivity as Œa=�b�max D 4. Hence, the total number of
unknowns is 3N D 162867 and the deflation parameter is r D 180. The GMRES
was restarted at restart.ARAP�1/ D 1440 and restart.A/ D 1620. The results of
this test are as follows: original system – 93020 seconds of CPU time, preconditioned
system – 7999 seconds. The speed-up in pure “on-line” calculations is 11:6 times, as
we would expect from our previous experiments with the homogeneous test object.
The off-line work with the tolerance of eigs set to 10�4 took only 745 seconds, so that
even with this time included we get a 10:6 times speed-up. The computed electric
field intensity, shown in Figure 3.11 (right), is axially symmetric as expected. The
efficiency of the current preconditioner comes also in surface, not only when the
object is electrically large, but also when we have to evaluate the fields for various
incident angles, say for instance to compute the bistatic cross section for angles in
the range from 0 to 2� . In some cases, changing just the incident angle, may lead the
things to become even worse; so consider the same example as before with the only
difference that the incident angle is now zero degrees. The results of this new test
are as follows: original system – 162692 seconds/45:2 hours/1:9 days of CPU time,
preconditioned system – 11620 seconds/3:2 hours. The speed-up in pure “on-line”
calculations is 14 times.

The CPU timing is provided here merely for illustration and should not be
used for direct comparison against the local methods, which was not the purpose
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of this work either. For the particular problems considered above one could, for
instance, substantially accelerate the calculations and free some valuable memory
by computing the electric field only. On the other hand, the presented CPU timing
data give us a good relative estimate of what to expect with objects having both
electric and magnetic contrasts so that both electric and magnetic fields must indeed
be computed at the same time.

Finally we should mention that, while we have been focusing here on the
restarted GMRES, obviously, any other memory-efficient solver, which works with
the original system Au D b, could also be applied to the preconditioned system
ARAP�1v D ARb. We have considered, for instance, Bi-CGSTAB, restarted GCR,
and IDR. Sometimes we could achieve faster convergence by tuning the restart
method of GCR, although, this did not happen with all types of scatterers (only with
a homogeneous lossless one). Moreover, with some scatterers (inhomogeneous with
losses) GCR and other algorithms would simply stagnate. Thus, for the moment, the
restarted GMRES remains the most robust solver for the present problem, whereas
other algorithms require more tuning and a more systematic study.

3.7 Concluding remarks

The analysis of the domain integral operator of the transverse electric scattering pre-
sented here helps to understand the reasons behind the extremely slow convergence
of iterative methods often observed with this method. Unlike the TM case, which is
equivalent to the Helmholtz equation and can be easily accelerated by deflating the
largest eigenvalues, the TE case showed no improvement with this type of precondi-
tioner. Direct numerical comparison of the TE and TM matrix spectra indicates that
the TE problem features extended and very dense eigenvalue clusters accumulating
around the convex hull of the essential spectrum of the pertaining singular integral
operator. These clusters cause stagnation of the deflation process, especially with
high-contrast objects. We have derived an analytical multiplicative regularizer and
demonstrated on various test scatterers that its discretized version robustly reduces
the extent of the troublesome dense clusters. Notably, the discretized regularizer
does not require any extra computer memory and its action on a vector can be com-
puted at FFT speed. Applying deflation of the largest-magnitude eigenvalues on the
regularized system we could achieve up to 46:6 times acceleration of the restarted
GMRES with relatively large memory, and up to 5:1 times with modest memory. The
off-line work typically takes only a small fraction of the total time, since one can apply
a very rough tolerance in the eigs algorithm when recovering the largest-magnitude
eigenvalues/eigenvectors. Somewhat surprisingly, this preconditioner showed a ten-
dency to become more efficient (on average) with the increase in the object size and
permittivity.
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