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Abstract

The pace at which data are described, queried and exchanged, using unstructured data rep-
resentations, is constantly growing. Semantic Web technologies have emerged as one of the
prevalent unstructured data sources. Utilizing the RDF description model, they attempt to en-
code and make openly available various World Wide Web datasets. Therefore, the constantly in-
creasing volume of available data calls for efficient and scalable solutions for their management.
In this thesis, we devise distributed algorithms and techniques for data management, which can
scale and handle huge datasets. We introduce H2RDF+, a fully distributed RDF store that com-
bines the MapReduce processing framework with a NoSQL distributed database. Creating 6
indexes over HBASE tables, H2RDF+ can process complex queries making adaptive decisions
on both the join ordering and the join execution. Joins are executed using in distributed or
centralized resources, depending on their cost. Furthermore, we present a novel system that
addresses graph-based, workload-adaptive indexing of large RDF graphs by caching SPARQL
query results. At the heart of the system lies a SPARQL query canonical labelling algorithm
that is used to uniquely index and reference SPARQL query graphs as well as their isomorphic
forms. We integrate our canonical labelling algorithm with a dynamic programming planner in
order to generate the optimal join execution plan, examining the utilization of both primitive
triple indexes and cached query results. By monitoring cache requests, our system is able to
identify and cache SPARQL queries that, even if not explicitly issued, greatly reduce the average
response time of a workload. The proposed cache is modular in design, allowing integration
with different RDF stores.

19



Another ever-increasing source of unstructured data is the Internet traffic. Network datasets
collected at large networks such as Internet Exchange Points (IXPs) can be in the order of Ter-
abytes per hour. To handle analytics over such datasets, we present Datix, a fully decentral-
ized, open-source analytics system for network traffic data that relies on smart partitioning
storage schemes to support fast join algorithms and efficient execution of filtering queries. In
brief, Datix manages to efficiently answer queries within minutes compared to more than 24
hours processing when executing existing Python-based code in single node setups. Datix also
achieves nearly 70% speedup compared to baseline query implementations of popular big data

analytics engines such as Hive and Shark.
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[TepiAnyn

O puBuo¢ e Tov omoio Ta deSopéva TTEPLYPAPOVTUL, EPWTOVTAL KAL AVTAANACGOVTAL XPNOLHO-
TIOLOVTAG [N Sopnpéveg avamapaotaoelg dedopévmv ouvexws avfdvetat. Mia amd Tig Kupto-
Tepeg TNYEG TETOlwV dedopévwy eival ot Texvoloyieg Znpactoloylkov IoTov, oL omoieg xpnot-
porolovv To RDF povtédo yia tnv avanapdotaon twv dedopévmv touv maykdoptov 1otot. H
Heydn avénon twv Stabéoipuwy RDF Sedopévmv emiBalel Tnv e0peon amodoTiK®V Kot KALHo-
KOOIHOV AVoE®V Yl TNV Slayeipton Toug. Xe avTn TNV StaTpLPr] XPrOtHOTIOIOVHE KATOVEUNLEVES
He@6d0oug dtaxeiptong Twv RDF Sedopévwy, ol ommoieg Hitopolv va KAIHXK@®OOLV 0€ aeploplota
peydho aplBuod dedopévav. Iapovotalovpe 1o H2RDE, pia mAfjpwg Kataveunuévn B&on amo-
Brkevong RDF dedopévav, n onoia suvdualet to mhaioto enefepyaoiog tov MapReduce pe pia
katavepnuévn NoSQL Baon. Anpiovpymvtag 6 Stadopetikd evpetripla dedopévwv pe HBASE
niivakeg, To H2RDF pnopei va eneepyactel ovvBeta epotipata pe KAHAKOOILO TPOTIO K-
VOVTOG TIPOCAPHOCTIKEG ATTOPATELG YLt TNV OELPE KAL TOV TPOTIO EKTENEDT)G TWV OLVEVWOEWV.
Ol ovveVOOELG EKTENODVTAL KATAVEUNHUEVA 1] KEVIPIKA, O€ £VAV LITOAOYLOTH, avaAoya He TO
KOO0TOG TOLG. EmimAéov, mapovotdlovpe €va KatvoTOHO GUOTNHA TTOU GTOXEVEL GTNV TIPOOAP-
HOOTIKT Kal BACIOUEVN OTA epwTAHHATH TToL ekTEoLvTaL, Setktoddtnon RDF ypapwv pe
Xpron Hag kpudng pvApng yix amotedéopata SPARQL epotnpdtwy. Z1nv Kapdid Tov ov-
oTNpaTog Ppioketal £vag alyoplOpog mov apayel KAVOVIKOTopHéveG eTikéTeg Yo SPARQL
EPWTHHATA KAL XPTOLHOTIOLEITAL Yl TNV povoonpavTn Seiktoddtnon kot avapopad oe SPARQL
UTTOY PAPOUVG, AVTIHETWTTICOVTHG TO TIPOPANHA TWV LOOHOPPIKWV YpddwVv. Evag alydpiBpog dv-
VOHIKOU TIPOYPUHUATIOHOV XPTOLHOTIOLEITAL YO TNV €VPECT) TOU PEATIOTOL TTAGVOU EKTENEOTG

TV epOTNHATWY, e€eTalovTag Tnv alomoinon t6co Twv Pacikwv RDF evpetnpiwv kabwg kat

21



TV TPoowpva artodnkevpévmv amotehecpdtov SPARQL epotnpdtomv. Me tTnv mopakolov-
Bnon Tv aTnpaT@y oTNV Kpudn HVHHN, To CVOTNHA pag eival og Béon va Tpoadlopioel Kat v
TorofeTroeL OTNV KPLPT UV EPWTAHATA TIOV, av Kal Oev €xouv {nNtnOei, Lmopovv va peio-
OOUV TOUG XPOVOUG EKTENEOT)G TOV EPWTNHATOV TwV XpnoTtwv. H mpotevépevn kpudr) pvrpn
elvat ETEKTAOLUN, ETITPETIOVTAG TNV EVOWUATWOT TNG o€ ToAamAég RDF Bdoelg dedopévav.
M axkopa mnyr) ouvexag avfavopevng moodtntag dedopévav eivat kat ) kivnon dedo-
Hévwv oto Internet. Autd yivetat meplocdTepo eppaveg oe kOUPovg ovdétepng dtaovvdeong
(IXPs) amnd Toug omoioug mAéov Siépxovial éwg kat Terabytes Sedopévwv avd wpa. Lo Ty aro-
dotikn Siaxeipton kat emefepyaocia Tétolwv dedopévwy apovatdlovpe To Datix, éva TANpwg
KATAVEUNHEVO, avolXTOU KOSIKA cVoTNHA avalvong dedopévwv kivnong Siktvwv. To Datix
Paociletat oe TEXVIKES EELTTVNG KATAVOUTNG TwV OeSOUEVWY, OL OTTOIEG HITOPOVY VUL XPNOLUOTION -
Bovv ylo TV LTTOOTHPIEN YPIYOPWV CLVEVAOCEWY KAl ATTOSOTIKMV AEITOLPYLOV eTA0YNG dedo-
HéVwV. Zav amotéheopa, To Datix metuxaivel va ekteel o€ Aiya NenTd epwTHHATA TTOL ATTolL-
TOLOAV £WG KAL HEPEG XPNOLHOTIOIOVTAG TIG UTIAPXOVOEG TEXVONOYiEG KEVTPIKNG emeepyaoiag.
Eniong mapovotdlet éwg kat 70% peiwon Xpovou eKTENEON G O€ OXEOT) HE avTioToL e SUOPLAE(G

TN TPOPHES KaTavepnpévng eneepyaoiag, 6nwg 1o Hive kat to Shark.
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CHAPTER 1

Introduction

This dissertation introduces efficient algorithms that enable distributed query execution and

indexing over unstructured or semi-structured data.

1.1 Motivation

The amount of publicly and privately available data has been exploding within the recent years
[Manyika 11]. Companies and organizations alike capture trillions of bytes of information
about their customers, suppliers, and operations. At the same time, interconnected devices
such as smart phones, sensors, etc. contribute to the “data deluge” Managing and analyzing
such large data sets, so-called “big data’; is becoming a key basis of competition, underpinning
new waves of productivity growth, innovation, and consumer surplus. It comes as no surprise
that, personalized services, the rise of multimedia, social media, and the Internet of Things in
turn fuel exponential data growth for the foreseeable future [Lohr 12].

Traditionally, data management platforms were designed for structured data. The relational
model [Codd 70] has been driving research and innovation on data management systems for
at least 4 decades. However, lately a series of disruptive technologies and applications have
challenged the status quo on the production, management, analysis and utilization of data.
Rather than being scarce, specific, private and limited in access, data are now produced in high

volumes, have vast variety, are stored with low cost and are increasingly open and accessible. In
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Figure 1.1: Unstructured Data Growth

this highly complex and diverse data landscape, the ever-growing data are generated in multiple
formats having no standardized form.

Figure 1.1 depicts the recent trends in data growth. It is clearly visible that the total amount
of unstructured data has surpassed the respective amount of structured data. Only a mere
12% of the existing data is structured. What is more, the amount of unstructured data grows
exponentially with an increase ratio of 56% per year. Unstructured content is fundamentally
different from structured data and must be handled appropriately for use in big data analysis
applications.

Cloud and Distributed Computing are emerging as the main technologies that attempt to
tackle the “big data” challenge. While distributed computing leverages the power of decentral-
ized resources, Cloud Computing has become the de-facto, pay-as-you-go paradigm for allo-
cating and deallocating such resources, transforming the design and philosophy of the entire
IT industry. Developers with innovative ideas can directly start implementing them without
worrying about investing large capital expenditures for the purchase and maintenance of hard-
ware resources. They can avoid overspending for a service that does not meet the expected
user engagement as well as underspending for a service that gets quickly popular. Therefore,

this resource elasticity has emerged as the biggest advantage of the Cloud Computing model.
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1.2 Semantic Web

One of the largest sources of data nowadays is the World Wide Web, an information space
where documents and other resources can be shared, interlinked and accessed via the Internet.
Information production and consumption on the Web is moving toward the so-called “Seman-
tic Web”. The “Semantic Web” describes an extension of the Web where computers will be able
to process efficiently the data and reason about them exactly as human do. This vision was

originally expressed by Tim Berners-Lee who stated the following:

“I have a dream for the Web, in which computers become capable of analyzing

all the data: the content, links, and transactions between people and computers.”

User interface and applications

Proof
Unifying Logic
Ontologies: Rules: A
Querying: OWL RIF/SWRL g
SPARQL . =
Taxonomies: RDFS a
o
=
=3
el

Data interchange:RDF

Syntax:XML

Identifiers: URI Character Set: UNICODE

Figure 1.2: Semantic Web Technologies

This era targets the representation and integration of data originating from different appli-
cation, enterprise, and community boundaries. The term “Semantic Web” is often used more
specifically to refer to the formats and technologies that enable it. Figure 1.2 depicts all the
various technologies that have been presented for materializing the “Semantic Web” concept.
Initially, the Resource Description Framework (RDF)" has been proposed for the data represen-
tation. As mentioned before, the schema-dependent data representation formats, like the tradi-

tional relational representation, fail to adjust and handle the diversity and constantly changing

"https://www.w3.org/RDF/
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nature of the Internet data. As a result, the Semantic Web community has acknowledged the
RDF standard [Manola 04] together with the SPARQL query language [Prud’hommeaux 06] as

its de facto technologies.

Dﬁp%ia RDF-encoded Wikipedia 1.89 billion triples
BlUEERDF RDF-encoded biological data 2.7 billion triples
@ -DATA GOy US government data in RDF 5 billion triples
b Challenge Crawled Web data 2 billion triples

US population statistics 1 billion triples

=
* Yago facts from Wikipedia,
Y360 Wordnet, Geonames 0.12 billion triples
Linked Open Data cloud 30 billion triples

Figure 1.3: Semantic Web Datasets

The schema-free nature of RDF data allows the formation of a common data framework that
facilitates the integration of various data sources. This property has led to an unprecedented
increase in the rate at which RDF data is created, stored and queried, even outside the purely
academic realm and, consequently, to the development of many RDF stores [Weiss 08, Neu-
mann 10a, Zeng 13, Atre 08, Bonstrom 03] that target RDF indexing and efficient SPARQL
querying performance. Figure 3.1 contains a list of the most popular public datasets along
with their respective sizes. To present a more detailed picture of the “Semantic Web” data
growth, Figure 1.4 illustrates the evolution of the publicly available linked datasets as well as

their interconnections.

2007 2008 2009 2011

Figure 1.4: Semantic Web Technologies
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1.2.1 Resource Description Framework (RDF)

The Resource Description Framework (RDF) is a flexible data model that expresses unstruc-
tured information as statements about resources. In essence, the RDF data model is naturally
represented as a directed labeled graph, where nodes correspond to resources or literals and
edges are used to describe the relations between the resources. Each RDF statement, triple, has
the form (s p o) where s stands for the subject, p for the property, and o for the object. Viewing
RDF from the graph perspective, each triple corresponds to a directed and labeled graph edge.

Figure 1.5 shows a visual representation of an RDF triple.

Resource Resource
Predicate
Predicate "ob}m"
Resource Literal

Figure 1.5: RDF triples

Triples are merged together to form a knowledge graph that contains all the information of
the individual triples. This requires that all resources are uniquely identified, i.e., all resources
have a unique resource identifier (URI). This identification is a central notion for the vision of
the “Semantic Web” as it extends the unique identification of web pages, present in the current

version of the Web, to any resource of the physical or digital world.
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Figure 1.6: Knowledge Graph

For example, the knowledge graph of Figure 1.6 contains information about the creator, the

language and the creation date of the web page http://www.example.org/index.html.
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1.2.2 SPARQL Query Language

The RDF graph based data specification defines the syntax and semantics of the SPARQL query
language. SPARQL can be used to express queries across diverse data sources, whether the data
is stored natively as RDF or viewed as RDF via middleware. The basic idea of SPARQL querying
is based on subgraph matching. Therefore, queries in this context are in essence graph patterns
containing bound or variable labels on their nodes and edges. For example, Figure 1.7 depicts
a SPARQL query that retrieves all FullProfessors that work for NTUA along with their names,

emails and telephone numbers.

el

| ?email

Figure 1.7: SPARQL query

Nodes with names that start with “?” are query variables. A SPARQL query engine must find
all subgraphs of the entire RDF knowledge graph that match with the query in hand. SPARQL
also specifies more generic capabilities like optional graph patterns, property paths, inference

as well as result aggregation and ordering.

1.2.3 Contributions

The first contribution of this thesis, is HoRDF+ (Chapter 2), a fully distributed, cloud-enabled,
RDF store that combines the MapReduce processing framework with a NoSQL distributed
database. HoRDF+ is highly scalable, performing distributed Merge and Sort-Merge joins over
a multiple index scheme. Depending on aggressive byte-level compression and result grouping
over fast scans, it can process both complex and selective join queries in a highly efficient man-
ner. Furthermore, it adaptively chooses for either single- or multi-machine execution based on
join complexity estimated through index statistics. Our experimental evaluation demonstrates

that HoRDF+ excels in multi-join and nonselective queries, scaling linearly to the amount of
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available resources while achieving interactive, comparable to centralized RDF stores, execu-
tion for selective queries.

However, the move from the schema-dependent relational to the schema-free RDF data
has brought forth new indexing and querying challenges. Extensively used schema based opti-

mizations cannot be easily extended in the RDF context. For instance:
+ Grouping data that are accessed together using tables.
+ Indexing according to filtering and join operations.
+ View materialization of frequently queried data patterns.

In fact, RDF databases assume limited knowledge of the data structure. This usually hap-
pens via RDEFS triples [Brickley 14]. However, RDFS information is not as rich and mandatory
as the SQL schema. It can be incomplete and change rapidly along with the dataset. There-
fore, most RDF databases target the indexing of individual RDF edges resulting in query exe-
cutions with much more joins than if processing the same dataset in a schema-aware manner.
For example, TPC-H Query 2 written in SPARQL requires 26 joins while the respective SQL
formulation contains only 5 joins [Gubichev 14]. In contrast, RDF databases that use RDFS
information to store and group RDF data [Stuckenschmidt 04, Tran 10], fail to effectively adapt
to schema changes and to non-conforming data.

In state-of-the-art graph databases [Zhao 07, Yan 04], we note that frequent and discrim-
inative graph pattern indexing is extensively used. However, RDF stores have not yet taken
advantage of these techniques. What is more, these schemes focus on static indexing of im-
portant graph patterns, namely they index subgraphs solely based on the underlying dataset,
without any regard for the workload. However, the diversity of the applied SPARQL workloads
together with the requirement for high performance for all the different workloads calls for
dynamic, workload-driven indexing solutions (e.g., [Idreos 11]).

Furthermore, SPARQL queries tend to increase in complexity and become hard to opti-
mize using dynamic programming algorithms. For instance, DBpedia reports that its SPARQL
endpoint query log contains queries with up to 10 patterns [Gallego 11]; analytical queries in
the biomedical domain may include more than 50 patterns [Sahoo 10]. Experimental results
show that finding the optimal join plan using dynamic programming approaches can have pro-
hibitive execution times for queries with more than 15 patterns [Neumann 10a, Gubichev 14].
While there exist several greedy, heuristic approaches for SPARQL query planning [Tsialiama-
nis 12, Papailiou 13], they might select a suboptimal join plan, adding overheads to the query
execution time [Gubichev 14] and cannot be easily integrated with a cached result discovery

algorithm that finds all usable cached results.
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As a result, the second contribution of this thesis (Chapter 3) is the adaptive indexing and
caching of SPARQL query results in order to effectively detect frequent query patterns and
offer data grouping and view materialization properties. We propose a caching framework that
can offer re-usability of computed SPARQL results. By actively monitoring the SPARQL query
workload, our system can detect cross-query frequent patterns and trigger their materialization
and caching in order to boost the performance of consequent queries and adapt to the workload.
We also introduce a SPARQL query simplification algorithm, used to handle complex query
graphs and offer near optimal execution plans that take into account the utilization of cached

query subgraphs. In brief, this work introduces:

« A SPARQL query simplification algorithm (Section 3.2), based on the star simplification
techniques, that splits the query in a skeleton graph and multiple star graphs.

« A SPARQL query canonical labelling algorithm (Section 3.3) that is able to generate
canonical string labels, identical among all isomorphic forms of a SPARQL query. These
labels are used as cache keys to store and retrieve information related to SPARQL query
graphs. Furthermore, our query simplification technique manages to effectively reduce

the complexity of the canonical labelling algorithm for complex query graph structures.

o A Dynamic Programming Planner [Moerkotte 08] is extended in order to issue cache
requests for all query subgraphs using their canonical label (Section 3.4). The planner is
also extended to handle multi-way join exploration and cached result discovery over our
simplified query graphs. The resulting optimal execution plan may thus involve, in part

or in whole, cached query subgraphs.

+ A Cache Controller process monitors all cache requests issued by the workload queries,

enabling it to detect cross-query profitable patterns and trigger their execution and caching.

The proposed cache is modular in design, allowing integration with different RDF stores.
Incorporating it to HoRDF+ we prove that workload-adaptive caching can reduce average re-
sponse times by up to two orders of magnitude and offer interactive response times for complex

workloads and huge RDF datasets.

1.3 Network Data Analytics

Another source of “big unstructured data” is the actual Internet traffic which increases at a pace
that makes it difficult to track its growth and trends in a systematic and scalable way. Indeed,
recent studies show that Internet traffic continues to grow by more than 30% annually as it has

done the last twenty years and is expected to continue at the same pace in the future [Cisco 13].
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Therefore, network traffic analytics have become a necessity nowadays. It is essential to provide
a systematic and scalable method of analyzing such network monitoring data and thus, aiding
network administrators in identifying the different types of traffic that traverses a network. The
extracted knowledge provides invaluable assistance in effectively dealing with factors such as
bandwidth, security and application priority or detecting problems such as phishing attempts,

DDoS attacks, spoofing etc.

Network datasets collected at large Internet Service Providers (ISPs) and Internet Exchange
Points (IXPs) have been at the forefront of network analytics. ISPs serve, depending on their
footprint, thousands to tens of millions of end-users daily and facilitate billions of network
connections [Poese 10]. IXPs consist of physical machines (core switches) to facilitate traffic
exchange among different types of networks [Chatzis 13a]. Some of the most successful IXPs,
connect more than 600 networks and are handling aggregate traffic that is peaking at multiples
of TB per second. To put this traffic into perspective, on an average business day in 2013, one of
the largest IXPs, AMS-IX in Amsterdam, exchanged around 25 PB while AT&T and Deutsche
Telekom reported carrying 33 PB and 16 PB of data traffic respectively [Chatzis 13a].

Current techniques for capturing, storing and analyzing network traffic data rely on cen-
tralized architectures that fail to cope with their ever increasing volumes and generation rate.
Surprisingly, in the era of Big Data and Cloud Computing, centralized proprietary tools, e.g.,
sFlow” and NetFlow® or custom serial scripts are still considered state-of-the-art. An sFlow
record contains Ethernet frame samples and captures the first 128 bytes of each sampled frame.
This implies that in the case of IPv4 packets the available information consists of the full IP and
transport layer headers (i.e., source and destination IPs and ports, protocol information and
byte count) and 74 and 86 bytes of TCP and UDP payload, respectively.

In order to extract aggregated monthly or weekly reports on massive amounts of monitor-
ing data, system administrators rely on proprietary script-based approaches, something that
limits both the expressiveness and the size of the analyzed data. Up till now, there are few
big-data enabled open-source tools that can be used by IXP administrators to perform typical
reporting and monitoring tasks on the collected passive monitoring data. Taking into account
that both the size of the data and the posed regulations do not allow IXPs to keep the col-
lected data for a long amount of time, most of the times the collected data is not evaluated,
and its “secrets” remain hidden and lost. Lately, it has been shown that passive monitoring
data does contain valuable information, not only for the IXP itself, but for the entire Internet
structure [Chatzis 13b]. Examples of such information are depicted in Figure 1.8 where a global

view of the entire internet was achieved using analytics over data from one IXP. Although this

*http://www.sflow.org/
*http://www.cisco.com/c/en/us/products/ios-nx-os-software/ios-netflow/index.html
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Figure 1.8: IXP Summary statistics and percentage of IPs per country

information was extracted using simple script-based centralized approaches, a more systematic

approach with the use of state-of-the-art big-data processing tools is currently missing.

1.3.1 Contributions

The last part of this thesis (Chapter 4), attempts to overcome the aforementioned problems
related to both scalability and efficient query executions. We design and implement Datix: a
scalable, network traffic data analysis system. Our system is based on distributed techniques for
data analytics, such as MapReduce [Dean 08] and is capable of solving the more general problem
of log processing as described in [Blanas 10]. Our goal is to implement efficient distributed
join algorithms to combine the information from a main dataset, in our case being the sFlow
data collected at an IXP, with additional complementary information provided by secondary
datasets, such as the mapping of IP addresses to their corresponding AS, IP geolocation, i.e.,
country of origin, and IP profile information, e.g., reverse DNS lookup as reported by Internet
measurement studies such as ZMap [Durumeric 13]. Our contributions can be summarized

as follows:
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+ We introduce a smart way of pre-partitioning the dataset in files that contain records of

a certain range of values, so as to facilitate data processing and query execution.

« Using this particular partitioning scheme we are able to efficiently execute filtering queries,
for example across a certain time period, avoiding the need to process the entire dataset

but instead accessing only the necessary files.

+ We integrate these features into Datix, an SQL compliant network data analysis system,
by implementing distributed join algorithms, such as map join [Blanas 10], in combi-
nation with custom-made user-defined functions that are aware of the underlying data

format.

1.4 Document Outline

The rest of this document is organized as follows. Chapter 2 describes the design and imple-
mentation of the HoRDF+ distributed datastore. Section 2.1 introduces HoRDF+. Section 2.2
describes HoRDF+’s architecture. Section 2.3 discusses our indexing and storage decisions.
Section 2.5 analyzes our distributed join algorithms. Section 2.6 introduces HoRDF+’s query
planner. To evaluate the presented system, Section 2.7 contains extensive experiments and
comparisons of HoRDF+ and other state-of-the-art systems.

In Chapter 3, we extend the work on HoRDF+ by introducing a SPARQL query caching
framework. Section 3.2 describes our SPARQL query simplification algorithm. Section 3.3
analyses our SPARQL query canonical labelling algorithm. Section 3.4 introduces our extended
Dynamic Programming Query Planner. Section 3.6 discusses our Cache Controller module and
Section 3.7 presents the experimental evaluation of our caching framework on top of HoRDF+.

To handle big network data analytics, Chapter 4 introduces Datix. Section 4.1 motivates the
proposed system. Section 4.2 describes our main architectural decisions. In addition, Section
4.3 presents our distributed join algorithms while Section 4.4 contains a detailed experimental
evaluation of the system.

A detailed survey of the related work on both RDF datastores and network data analytics is

presented in Chapter 5. Lastly, Chapter 6 concludes the thesis.
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CHAPTER 2

HsRDF+ Distributed RDF Datastore

2.1 Introduction

Distributed triple stores decentralize some or all the stages of RDF data management. Yet, they
do not flexibly adjust their behavior with respect to the query in hand, either committing on
a specific join algorithm or the execution platform’s resources. SPARQL queries often require
multiple joins over a (possibly large) number of triple patterns and variables that the query con-
tains. Thus, a resolution engine would need to adjust its execution with respect to both query
input and complexity. Single joins range in complexity as input and selectivity range. As the
number of joins and intermediate results to be processed increase, this should, correspondingly,
not lead to an exponential growth of response times.

Furthermore, distributed approaches have not yet taken advantage of maintaining all per-
mutations of RDF elements, namely spo, pso, pos, ops, osp and sop indexes [Weiss 08]. Such
a scheme offers the following advantages: (1) All SPARQL triple patterns can be answered ef-
ficiently using a single index scan on the corresponding index. For example, a triple pattern
with bound subject and variable predicate/object can be answered using a range scan on the
spo or the sop index. (2) Merge joins that exploit the precomputed orderings can be extensively
employed. The existence of all six indexes guarantees that every join between triple patterns
can be done using merge joins. More expensive join algorithms are needed only when joining

unordered intermediate results. In the HoRDF+' case, we maintain both of these properties

'https://github.com/npapa/h2rdf, http://h2rdf.googlecode.com
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while moving towards a distributed and scalable environment. We summarize the main con-

tributions of this work as follows:

+ We devise an indexing scheme for storing RDF data implemented in HBase, which allows
bulk-import jobs to load and index large RDF datasets. We optimize the retrieval capabili-
ties of our distributed index by applying aggressive compression and minimizing the storage
requirements. The latter is coupled with the use of an intermediate result materialization that
maintains groups of bindings. Our indexes compensate the fact of being nearly 10x slower
than disk-based B trees by achieving great scalability and parallel scanning performance.

+ We present fully scalable, distributed (MapReduce based) versions of the well-studied multi-
way Merge and Sort-Merge join algorithms.

+ We devise a join cost model and use the estimated cost of each join to greedily decide on the
order of joins and the platform (central or distributed) of their execution.

+ We perform a thorough experimental evaluation of our system. Results show that HoRDF+
can be orders of magnitude faster than a state-of-the-art centralized store [Neumann 10a]
for complex, non-selective joins, while being only tenths of a second slower in selective ones.
Moreover, it proves 6—8 times faster than its previous version [Papailiou 12] and up to orders
of magnitude faster than an alternative MapReduce-based scheme [Husain 11]. HoRDF+
easily scales to 14 billion triples (2.5TB) using a cluster of 35 VMs, providing linear scalability

in terms of the amount of available resources.

2.2 Architecture

Figure 2.1 presents an overview of the HoRDF+ [Papailiou 13, Papailiou 14] architecture. The
system uses HBase” as a distributed indexing substrate for large triple datasets. RDF data is im-
ported in HBase through a bulk import process. Users are able to pose SPARQL queries parsed
by a Jena [Carroll 04] parser that checks the query syntax and creates the query graph. Our
Join Planner and Executor modules choose the join that needs to be executed, the algorithm to
be used, the method of execution (centralized or distributed) and the required resources on a
per-join basis. Our system is available as an open-source project and offers RDF data indexing

and SPARQL querying functionality as well as a user friendly web-interface.

*https://hbase.apache.org/
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Figure 2.1: Ho RD F+ architecture

2.3 Indexing Scheme

In this section, we explain the decisions made about the number and type of indexes used in our
system. Although most state of the art centralized RDF stores use combinations of Hexastore-
like indexes, distributed approaches have not yet taken advantage of this technique to offer
increased scalability and fast querying. Maintaining all six permutations of RDF elements,
namely spo, pso, pos, ops, osp and sop, offers the following advantages: (1) All SPARQL triple
patterns can be answered efficiently using a single index scan on the corresponding index. For
example, a triple pattern with bound subject and variable predicate/object can be answered
using a range scan on the spo or the sop index. (2) Merge joins that exploit the precomputed
orderings can be extensively employed. The existence of all six indexes guarantees that every
join between triple patterns can be done using merge joins. More expensive join algorithms are
needed only when joining unordered intermediate results. In the HoRDF+ case, we maintain
both of these properties while moving towards a distributed and scalable environment. We
move from local disk BT -trees to distributed key-value tables (HBase) and from centralized to

distributed, MapReduce-based, join processing.

2.3.1 HBase Indexes

HBase is a distributed, NoSQL key-value store that can handle large amounts of data using
commodity machines. HBase tables are, in practice, range partitioned sorted key-value maps.
In our system, we use an HBase table for each index. As HBase uses a key-value model, our

indexes store all triples in keys and leave the values empty.
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RDF triples contain long string URIs and literals that can add a lot of space overhead, es-
pecially in the case of multiple indexes. To achieve a space-efficient implementation, we use
IDs instead of strings and keep two separate HBase tables that work as dictionaries to translate
string values to IDs and vice versa. This mapping from string-based IDs to byte-based IDs is
created during data import with respect to the occurrence frequencies of the string literals in
the dataset: A very frequent predicate will get an ID with value close to zero. In order to take
advantage of the frequency related IDs we apply byte-level, variable-length encoding when stor-
ing IDs in HBase. Variable length encoding leads to smaller byte representations for frequently

used values and thus achieves high compression.

2.3.2 Index Statistics

Apart from the six indexes described above, we keep aggregated index statistics that can be
used to estimate triple pattern selectivity as well as join output size and join cost. We have two

categories of aggregated indexes:

1. With two out of the three triple elements bound, namely sp_o, ps_o, po_s, op_s, os_p and
so_p. For example, the sp_o table contains a set of (subject, predicate, count) key-values,
were the count represents the number of triples that contain the respective combination

of subject, predicate.

2. With one bound element, namely s_po, p_so, p_os, o_ps, o_sp and s_op. For example the
p_so index contains a set of (predicate, count, average) key-values, where count is the
number of distinct subjects related to this predicate and average is the average number

of objects related to each subject.

2.4 Bulk RDF data indexing using MapReduce

In this section, we thoroughly describe our MapReduce bulk indexing process that can handle

the indexing of massive RDF datasets. It consists of four highly scalable MapReduce jobs that:

« Translate RDF literals to integer IDs with respect to the literal’s occurrence frequency in the
dataset. A very frequent predicate will get an ID with value close to zero. Both the String-I1D
and the ID-String dictionaries are stored in separate HBase tables. The frequency aware ID
mapping in conjunction with our variable length encoding scheme for writing IDs inside our
indexes achieves great reductions in storage space requirements.

+ Generate and load HBase tables for all 6 RDF triple indexes along with their respective ag-

gregated statistics.
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In order to handle web scale RDF datasets our bulk indexing process needs to minimize the
number of I/O and network operations and avoid unnecessary iterations over the RDF dataset.
It also avoids the execution of HBase API calls for each tuple insertion; instead, bulk import
MapReduce jobs directly create HFiles (the HBase file format) which are then loaded directly
in HBase tables.

2.4.1 First MapReduce job

In the first MapReduce job each mapper reads one block of RDF triples and generates a sorted-
map that contains all the unique string labels found in the file followed by a counter that rep-
resents the number of times each string label was found in the respective RDF block. At the

cleanup phase of each mapper this sorted-map is used to produce the following information:

« For each RDF block, a file that contains all its distinct string labels is created. This file will
be used in subsequent steps in order to efficiently retrieve the relevant IDs that are needed
to translate all the triples in the block.

+ Each mapper emits all the wordcounts of the sorted-map in order for the reducers to produce
a global string label wordcount.

+ We also use a sampling rate in order to sample the input triples and generate balanced par-
titions on both the distinct string label space and the indexing space (for all possible triple
orderings). Concerning the distinct string label space for each sampled triple the mappers
emit three special key-values one for each of its string labels(s, p, 0). All the sample key-values
are sent to a special reducer that is responsible for generating a load balanced partitioning of
the string label space. At this moment, we cannot yet create the partitioning of the index-
ing space because we require the translated IDs that are not yet decided. Therefore, we just

generate for each RDF block a sample file that contains its sampled triples.

The first job issues two types of reducers: 1)the first reducer which handles the sampled key-
values and generates the string-label partition and 2)the wordcount reducers that sum up all
local counters for each distinct label. Each wordcount reducer maintains a sorted list containing
its wordcount key-values sorted by their counts. The reducers write their output at the cleanup

phase and thus generate blocks of locally ordered, according to the count, key-values.

2.4.2 Second MapReduce job

The second job is responsible for giving globally unique and frequency aware IDs to all distinct
string labels present in the dataset. The mappers of this job read the locally ordered, accord-
ing to the count, wordcount output produced in the previous step. In order to avoid globally

sorting all the distinct string labels according to their frequency count we assign IDs using a
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loose global order that requires no more communication information. The first MapReduce
job utilized a HashPartitioner to split the labels between the reducers and therefore we can as-
sume, with high probability, that all output blocks will contain labels from all the frequent and
non-frequent classes of string labels. Taking advantage of this property we assign IDs using the

following formula:

D= { locID x R+ redlD, if locID < min 2.1)

of fset[redID] + locID — min, iflocID >= min

where:

ID :is the global ID assigned to a label

locID : is the local ID inside each block that is assigned according to the local order of counts
min : is the minimum number of key-values produced by a wordcount reducer in the first
MapReduce job

redI D : is the ID of the reducer that produced the respective output block

of fset[] : all reducer IDs will be interleaved until the minimum number of keys is reached. In
order to avoid introducing holes to the assigned ID space we then start assigning contiguous ID
regions to each reducer. This is achieved using the of f set table that contains the first ID of the
respective contiguous region. The of fset is computed using the values numKeys[redI D] —
min for each reducer.

Both the min number of output key-values and the of f set table can be easily computed by
the output of the previous job. We can observe that this formula interleaves IDs between the
wordcount blocks, generates a loose order of assigned global IDs and introduces no holes to
the assigned ID space. We note here that by generating this loose ordering we avoid resorting
and reshuftling the data and introducing unnecessary overhead.

Using the above formula, the mappers of the second job can assign independently the global
IDs for each string label. For each string label the mappers emit two key-values in order to
create both the string-to-ID and ID-to-string HBase dictionaries. This job also takes as input
the distinct string label blocks generated in the first step. The mappers that read those files emit
for each distinct label a key-value containing as key the label and as value the block ID.

To handle the two indexing spaces we use two separate partitioners for this job. The first
partitioner is the string label partitioner computed in the previous step. The second partitioner
handles the ID space and just splits it in continuous regions of a certain size. The load balancing
of the ID space partitioner is achieved due to the fact that we used a contiguous ID space that
contains no holes. We use two types of reducers for this job. The ID space reducers simply
create the respective HFiles and directly load them to HBase tables. The string label reducers

both generate the respective HFiles and also a file that contains for each string-ID pair a list of
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blocks that this is required. The second file is used in the following job to translate the distinct

string label blocks.

2.4.3 Third MapReduce job

The third job handles the translation of the distinct string label blocks. It utilizes the files gen-
erated in the previous job. We assign one reducer to each RDF triple block. The job reads the
files that contain for each string-ID pair a list of blocks that this is required and generates for
each a key-value with key the block ID and value the string-ID mapping. Each reducer gets all
the translations of an RDF triple block and just outputs them to an HDFS file.

2.4.4 Fourth MapReduce job

The last job parses the RDF triples again. First, each mapper reads the translation file for the
corresponding RDF block and loads it into a memory hash map. It then parses the RDF triples,
translates the string values and emits key-values for all 6 different orderings of the RDF triple.
This job also requires the computation of a load balanced total order partitioner for the hexa-
store indexing space. Before starting the job, we translate the sample triple files created in the
first job using our HBase dictionaries and generate a load-balanced partitioner for the indexing
space. Each reducer of this job takes as input a sorted range partition of the indexing space and,
while iterating over it, computes the aggregated statistics described above and creates the cor-
responding HFiles for both the primary and the aggregated indexes. The statistics maintained
in the aggregated indexes, described in the previous section, can be easily computed while iter-
ating over the sorted indexes and thus are computed without introducing additional network
or I/O overhead.

2.4.5 Indexing storage space

HoRDF+ utilizes an aggressive compression scheme for storing its indexes using: 1)variable
length encoding for writing IDs in conjunction with frequency based String-ID mapping, 2)Google
Snappy compression®, also known as “Zippy” compression to further compress the resulting
HBase tables. Our variable length encoding scheme is presented in Table 2.1 and can support
IDs with up to 8 byte length.

Our encoding scheme uses variable length prefixes in order to encode the length of each

ID. The specific selection of prefixes achieves the following objectives:

*https://code.google.com/p/snappy
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Positive Prefix | Negative Prefix | Total Bytes | ID Bits
1O R 1 6+0=6
1107 2 5+8=13
1110%*** 3 4+16=20
11110%** 00001*** 4 3+24=27
111110** 000001** 5 2+32=34

11111100 00000011 6 0+40=40
11111101 00000010 7 0+48=48
11111110 00000001 8 0+56=56
11111111 00000000 9 0+64=64

Table 2.1: Variable length encoding scheme

+ Maintains the byte ordering property of the encoded IDs. This means that a raw byte com-
parator would order the variable length IDs in the same order as a value comparator. This
property is really important because our indexes depend heavily on byte order.

+ The variable length prefixes allow more IDs to be encoded with less bytes. A static prefix
definition would require at least 5 bits to encode all the different cases. This means that only
23=8 IDs could be encoded using only one byte. However we can encode 2°=64 IDs using

only one byte. The same is true for all IDs that can be encoded with less than 5 bytes.

2.5 Join Execution Algorithms

Our work makes a twofold contribution relative to the join execution engine: We present a
multi-way merge join algorithm and a sort-merge join algorithm, both executed over our dis-
tributed index. The former performs efficient joins over already sorted data (i.e., the HBase
index tables); the latter performs joins when some of the data is unsorted (i.e., when interme-
diate results exist). The two algorithms can be executed in both distributed (via MapReduce)

and centralized (over a single cluster node) mode.

2.5.1 MapReduce Merge Join Algorithm

This algorithm is designed to join multiple triple query patterns over the same variable. For

example, suppose that we want to perform the following join on variable department:

select * where{

?person ub:memberOf ?department .
?department ub:subOrganizationOf ?university .
?department rdf:type ub:Department .

}
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We can get the triples ordered by department if we do the following three range scans: (for
each range scan we specify the index table and the bound values in the respective order) {pos,
ub:memberOf}, {pso, ub:subOrganizationOf}, {pos, rdf:type, ub:Department}. To execute the
distributed merge join over those scans, we first specify the largest scan (i.e., the scan that spans
the most HBase regions). We implement the merge join algorithm as a Map-only job over the
regions of the largest scan. Each mapper processes a sorted partition of the scan (region), which
translates to a sorted partition over the join variable’s keys. The mapper has alocal scanner over
the large pattern and initializes the respective scanners over the other query patterns respecting

the range of the the join variable’s keys.

For example, let us assume that the largest pattern of the above join is the first containing
two regions with the following join variable ranges: [Dep@, Dep5) and [Dep5, Depl®). Note
that we use string values here for readability; the partitions are in the ID space. The first map-
per will initialize two scanners: {pso, ub:subOrganizationOf, [Dep@, Dep5)}, {pos, rdf:type,
ub:Department, [Dep@, Dep5)} and merge join them with the local region scanner. The sec-

ond mapper will handle the range [Dep5, Depl1@) respectively.

2.5.2 MapReduce Sort-Merge Join Algorithm

This algorithm is only used when we join intermediate (thus unordered) results. It can take as
input one or more intermediate results and one or more triple queries. For example, suppose

that we want to perform the following join on variable department:

select * wheref{

?y ?department ?w . (1)

?z ?department . (2)

?person ub:memberOf ?department . (3)
?department rdf:type ub:Department . (4)

}

The first two patterns present intermediate results that contain bindings for all the variables
depicted in the pattern’s name. These patterns are not ordered by the join variable. At first, we
check the triple query scans (triple patterns (3) and (4)) and find the maximum partition of the
join variable in the same way that we described above. The sort-merge join is executed as a
MapReduce job that takes as input only the intermediate result patterns (triple patterns (1) and
(2)). Each mapper reads bindings from the intermediate results and maps them using as key
the binding of the join variable. The job uses the maximum join variable partition to produce a
global ordering of the reduce keys. This means that each reducer will get a sorted range of the

join variable’s keys. The reducer initializes the index scans for its respective key range and then
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merges all intermediate and triple patterns by iterating over the sorted input. In case we need
to join only intermediate results we utilize a hash partitioner and perform a hash join.

For example, let us assume that the largest pattern of the above join is, as before: [Dep@,
Dep5), [Dep5, Depl®@). The first reducer will get all the intermediate bindings in the first
range and will initialize two scanners: {pos, ub:memberOf, [Dep@, Dep5)} and {pos, rdf:type,
ub:Department, [Dep@, Dep5)}. The reducer will iterate over all patterns and produce the join

results. The same will happen with the second reducer over the second range.

2.5.3 Centralized Join Algorithms

We also implement the classic versions of the merge and sort-merge join algorithms in a cen-
tralized environment. The only difference is that we use HBase scanners in order to iterate over

the sorted relations rather than local BT -tree or file scanners.

2.5.4 Intermediate results format

SPARQL queries involve multiple joins and feeding results of one join to the next. Interme-
diate results can become really large and grow exponentially with each subsequent join. This
is why we need to have a space-efficient representation of the intermediate results. Standard
row oriented databases create all result tuples at the end of each join. Instead, we opt for a lazy
materialization of intermediate tuples and try to maintain grouped results as much as possible.
Our lazy materialization maintains groups of bindings that contain: 1) a set of the names of
variables contained in the result, 2) for each variable, a list of its bindings. The bindings con-
tained inside a group must satisfy the property of all-to-all connection, i.e., the respective tuples
can be materialized by a nested loop over all variables. As an example, suppose that we execute

the following join:

select * wheref{
?department ub:subOrganizationOf ?university .
?student ub:undergraduateDegreeFrom ?university .

}

Our sorted indexes can retrieve all departments and students grouped per university. We
need to exploit this grouping as much as possible in order to avoid generating all intermediate
result tuples. Assume our database contains 2 universities, each having 2 departments and 3
students. The row-oriented results of the join are depicted in Fig. 2.2 (left). Instead of mate-
rializing all these combinations we store grouped results as depicted in Fig. 2.2 (right). Note
that there is no explicit connection between students and departments (students and depart-

ments connect only with the university and not with each other), thus the all-to-all connection
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property applies. Extending our example with larger figures, if our database contains 100 uni-
versities, each of them with 30 departments on average and 100K students, a row-oriented
scheme would create 100 x 30 x 100K = 300M result tuples by replicating a lot of times the
IDs of universities and departments. To store these results, we would need to write three times
as many IDs (900M). For the same example, our scheme would create 100 groups, one for each
university, each group containing 30 bindings for the department variable and 100K bindings
for the student variable. Thus, we would need to output 100 + 100 x 30 + 100 x 100K =
10,003,100 IDs which is orders of magnitude smaller that the previous requirement. We also

apply byte level, variable length encoding on IDs and achieve a highly compressed output size.

?university |?department |?student
Univ0 Dep0 Stl
Univ0 Dep0 St2 2university Univ0
Univ0 Dep0 St3 2department | Dep0, Depl
Univ0 Depl Stl ?student St1, St2, St3
Univ0 Depl St2
Univ0 Depl St3 3 - -
2university Univl
Univl Dep2 St4
?department |Dep2, Dep3
Univl Dep2 St5
?student St4, St5, St6
Univl Dep2 St6
Univl Dep3 St4 Grouped Results
Univl Dep3 St5
Univl Dep3 St6

Row Oriented Results

Figure 2.2: Grouped intermediate results

As stated before, groups are split on demand according to the sequence of joins. For exam-

ple, lets assume that we want to use the above results in the following join:

select * where{
?department ?university ?student .
?professor ub:worksFor ?department .

}

This join, on variable department, is executed using the sort merge join algorithm described
in the previous section. In Fig. 2.3 we can see how we use the grouped results in the join
procedure. Initially, in the map phase, we split the group according to the join variable, thus we
create one group for each department. Note that the map output is not split across the student
bindings because those bindings maintain the all-to-all connection with the rest bindings. In
the reduce phase groups of professors per department are retrieved from the index and are

merged with the inputs to form the output groups.
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Figure 2.3: Join on grouped intermediate results

2.6 Query Planning and Execution

Deciding on the query execution plan is an important aspect that greatly influences perfor-
mance, since SPARQL queries usually require multiple joins on different variables. The HoRDF+
planner decides on the execution order of the different joins so as to minimize the total query
execution time. To find the optimal join order we have to consider the different combinations
in which the joins can be performed. Obviously, the number of choices grows exponentially to
the number of joining variables, making the problem computationally expensive. Instead, we
use a greedy, cost-based, online planner that decides on the join that must be executed in every
step of the query. To derive the costs of possible joins we devise a detailed join cost model that
takes advantage of our stored statistics. Our cost model can be also used to help the planner
decide on whether the join will be executed in a centralized or a distributed fashion. The in-
centive behind this decision is that distributed MapReduce jobs cannot offer real-time response
times for small joins and are beneficial only in case of large joins. In this section we present the

join cost model as well as our greedy join planner.

2.6.1 HBase scan performance evaluation

Our join execution heavily depends on HBase scans and thus in order to derive an applied cost
model we need to stress-test their performance. The key parameters of a scan are the seek

latency and the read throughput. After doing some experiments on scanning our indexes we
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found out that a seek operation takes on average 16ms and the average read throughput reaches
400,000 key-values(triples)/second. Detailed performance evaluation for those features can be
found in Section 2.7.4. These values are infrastructure specific and can change across different
installations but they can be estimated by a simple benchmarking test that runs once for every

different installation.

We integrate this performance knowledge into our merge join algorithm in order to make
it more efficient. Except from sequentially scanning the input relations a merge join algorithm
may need to jump forward on one relation if we know that there are no possible join results in
this range. In this case we need to take the decision of whether to seek to the next position by
initializing a new scanner or read all intermediate values sequentially. From the above metrics
we can easily note that the time needed for a seek operation is equal to the time needed to se-
quentially read nearly 6,400 key-values. Thus the merge join algorithm uses the seek operation

only if it is expected to discard more than 6,400 key-values.

2.6.2 Merge join cost model

The merge join algorithm is controlled by its input triple queries((Q). The total cost of the join

(in terms of completion time) is:

MJcost(Q) = Z ReadKeys(Q,1)/thr (2.2)
1€Q

ReadKeys(Q,1) = min{(mig n;) - 0; - SeekOverhead, n;o;} (2.3)
j€

n;: number of join variable’s bindings for the i*" query.
o;: average bindings of the non-joining variables corresponding to one join variable binding.
Refers to the i*" query.
thr: the scan throughput discussed earlier.
SeekOverhead: the seek overhead (6,400 key-values)
ReadKeys(Q,i): the number of key-values that will be read from the i*" query.

The cost of the merge join algorithm depends on the number of key-values that need to
be read. To estimate this size we first find the minimum number of input join keys among the
joining queries. A merge join algorithm would need to read at most that amount of keys from
each relation using seeks to pass over irrelevant keys. As stated before we use an heuristic to
decide whether to perform a seek operation and thus in the worst case scenario our merge join

algorithm would always seek paying each time the SeekOverhead.
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2.6.3 Sort-Merge join cost model

In this algorithm we have to join both a set of input scans(()) and a set of intermediate results(/).

The total cost of the join (in terms of time) is:

SMJcost(Q,I) = (2 Z n;0; + Z ReadKeys(QUI,1))/thr (2.4)

i€l i€Q
The cost of the sort-merge join algorithm is divided in two main parts. The first part is the
cost of joining the intermediate results. The intermediate patterns are read twice, once in the
map and once in the reduce phase. For the triple queries we use the same estimation described

in the above section.

2.6.4 Join Planner

The cost model described in the previous section is a step towards finding the optimal join
execution plan, i.e,, the join order with the minimum total execution cost. Our planner uses a

greedy algorithm that in each step of the execution selects the smallest cost join to be executed.

Algorithm 1: HoRDF+ PLANNER

1. V « {vy,v1,...,v,} //join variables

2: TQ <« {tq1,tqq,...,tqm} //triple queries

3: //TQ(v) triple queries that contain variable v

4: while V' # empty do

Jstruct < empty //Join’s required information
Vjoin — minyieV{GTGEdy(viv TQ(U1))}
Jstruct.addJ 0in(Vjoin, TQ(Vjoin))
V.remove(Vjoin)

TQ.remove(TQ(Vjoin))

10:  if Jstruct.executionType() = MR then

O %o N T

11: execute M apReduce(Jstruct)

12:  elseif Jstruct.executionType() = Cent then
13: executeCentralized(Jstruct)

14:  endif

15: end while

Our greedy join planner is presented in Algorithm 1. Set V' contains all the variables that
need to be joined in order to answer the query. Set 7'Q) contains all the triple queries that need
to bejoined. While V' contains more variables we need to execute more joins. Using our greedy
function we select the most beneficial variable to be joined. The selected variable is fully joined
in the current job (multi-way join), which means that all its queries are joined and we remove
it from V.
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Our greedy function is presented in Algorithm 2. This function checks if the join requires
a merge or a sort-merge join algorithm and then computes the costs of executing the join in
centralized or distributed manner. The centralized cost is the cost described in the previous
section. The distributed MapReduce cost is computed by dividing the centralized cost by the
minimum of partitions and number of mappers in the cluster. This number is the maximum
amount of parallelism that will be present when executing the distributed job. We also add an
overhead called MRoverhead which is the amount of time required to setup a MapReduce job.
A MapReduce job with no input data needs at least 30 sec to finish. Thus our incentive is to
use centralized jobs when quick responce times can be achieved and leverage the parallelism

of distributed execution only when we face large joins.

Algorithm 2: Greedy(v, TQ)

1: //TQ contains the triple queries to be joined
: //Split TQ in scans and intermediate results
2 (Q, I) « splitPatterns(TQ)
. if I # empty then
//Sort-merge join
cost < SMjcost(Q, )
else
//Merge join
cost < MJcost(Q)
. end if
: //Compute MapReduce Cost
: MRcost + cost/ min(patitions, mappers) + MRoverhead
. if cost < MRcost then
Jstruct.add ExecutionType(Cent)
return cost
. else
Jstruct.add ExecutionType(MR)
return MRcost
. end if

O 0 Ny T Wy

e sl e e e =

2.6.5 Elastic Execution

In this section, we focus on the resource adaptivity properties offered by our system. HoRDF+
is able to decide, on the fly, on the number of resources required to process each join in hand.
In effect, it is able to automatically estimate the amount of required resources, be they threads
(centralized case) or map/reduce tasks (distributed case), on a per-join basis. The adaptive
decisions for each join are done during runtime and they scale according to the estimation of

the join cost.
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For small join costs we use centralized execution and scale the resources using a different
number of concurrent threads. Both our merge and sort-merge join algorithms can be exe-
cuted in parallel by partitioning the join variable key space. Utilizing the statistics held in our
aggregated indexes we can estimate the number of join variable bindings contained in each of
the joined relations. We use the estimation of the maximum number of bindings contained in
a join relation to decide at runtime how many threads will be launched. We then greedily split
the join variable key space and assign work to different execution threads. We launch a thread
only if it is estimated to process more than a minimum amount of input bindings. We also pose
a limit to the number of concurrent threads in order to avoid costly context switching between
them.

Larger joins are executed using distributed MapReduce jobs. The resources required for
the MapReduce execution also scale with the join cost. The resources available on a MapRe-
duce cluster are the number of concurrent mappers and reducers. Assuming these are set for a
specific cluster, we want to occupy only the number of mappers and reducers required for the
execution of each join. The cost of a MapReduce join is proportional to its input data. As dis-
cussed in [Papailiou 13], input data are split in HBase regions, each region having a configured
size. In our implementation, every map task handles one HBase region and thus the region size
is configured to contain the amount of data required to amortize the initialization overhead of
launching the task. If the region had less data, the initialization overhead of a map task would
be greater than the actual processing of the data. Therefore, the number of resources occupied
is proportional to the size of input and, by extension, to the join cost. If the map tasks launched
by the join are less than the cluster’s concurrent mappers (which we anticipate to be the case
for less costly joins on medium to large size clusters), the remaining resources will be propor-
tionally allotted to other users’ joins. In the opposite case, all the mapper slots and the cluster

resources will be occupied.

2.7 Experiments

In this section we present a thorough performance evaluation of the HoRDF+ system.

2.7.1 Cluster configuration

Our experimental setup consists of an OpenStack private cluster of 6 VM containers. Each
container has a 2x6-core Intel Xeon®CPUs at 2.67GHz, 48 GB of RAM and two 2TB disks
setup with RAID 0. Worker VMs feature a 2-virtual core processor, 4GB of RAM and 300GB

of storage space, allowing the cluster to support a total of 36 VMs. The clusters we use for our
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evaluation consist of variable numbers of VMs (10 to 35) plus a single VM in the role of the
HDES, MapReduce and HBase master. Each worker VM runs 2 mappers and 2 reducers, each
consuming 512MB of RAM. We utilized Hadoop v1.1.2 and HBase v0.94.5 respectively.

2.7.2 Compared Systems

We compare the performance of HoRDF+ against three state-of-the-art RDF stores: RDF-3X
[Neumann 10a], HadoopRDF [Husain 11] as well as the first version of our distributed system
HoRDF [Papailiou 12]. We evaluate the latest version (v0.3.7) of RDF-3X [Neumann 10a, Neu-
mann 10b]. HadoopRDF was built using the latest SVN rev. 158 from the project repository.
All the above systems process queries using dictionary IDs rather than strings and URIs.
We have observed that the last step of translating query result IDs to strings is a challenging
task for all compared triple stores. In some cases, it requires time comparable or even larger
than the actual processing. In this paper, we focus on the join execution engine. Thus, in order
to provide a fair comparison, we have also removed the translation task from all the compared

systems.

2.7.3 Data Sets Used

To test the system under web-scale, realistic conditions we utilize two datasets. The Yago2
dataset [Hoffart 11] consists of real data gathered from various resources such as Wikipedia,
WordNet, GeoNames, etc, and contains more than 120 million triples. This dataset is relatively
small; we use it to show that distributed query execution can perform better even for small
datasets when large non-selective queries are required. The LUBM dataset generator [Guo 05]
creates datasets with academic domain information, enabling a variable number of triples by
controlling the number of university entities. By varying this parameter between 1K to 100K,
we create datasets ranging from 1.4 million (25GB) to 13.8 billion triples (2.5TB). This dataset is
widely used to compare performance of triple stores especially when arbitrarily large datasets
are required. Lehigh university has also published a suite of test queries* that offer a good
mixture of SPARQL queries.

2.7.4 Index comparison

In this section we evaluate the performance of our indexing scheme. Initially, we consider space
requirements. As mentioned in Section 2.3.1, HoRDF+ uses an aggressive compression scheme
using variable length encoding and smaller IDs for frequent string values. We also compress

our index tables using the Google Snappy compression® also known as “Zippy” compression.

*http://swat.cse.lehigh.edu/projects/lubm/queries-sparql.txt
*https://code.google.com/p/snappy

51



We choose the Snappy library because it offers very high decompression speed and reasonable
compression. Snappy’s CPU-efficient decompression algorithm makes it a perfect candidate
for NoSQL stores by exploiting the trade-off between I/O and CPU bandwidth.

Dataset Raw Size | RDF-3X | HoRDF H;RDF+ H>RDF+
(no Snappy)
LUBMI1k 28 GB 9GB 25 GB 27 GB 7 GB
LUBMIOk || 276 GB 77 GB 214 GB 241 GB 62 GB
LUBM20k || 549 GB 156 GB | 529 GB 545 GB 121 GB
Yago2 26 GB 12 GB 33 GB 35 GB 10 GB

Table 2.2: Comparison of storage requirements

In Table 2.2 we register the storage requirements of the compared systems for the LUBM
and Yago datasets. The “Raw Size” column contains the size of the dataset serialized using
the N-Triples format. Although storing 6 rather than 3 indexes and more detailed statistics,
HoRDF+ manages to have smaller space requirements than its previous version due to: 1) the
smaller ID values, as HoRDF uses the 8-byte MD5-hash of the string values, 2) the byte-level
variable length encoding in conjunction with the frequency-aware ID mapping, 3) the block
level Snappy compression. RDF-3X also offers a highly compressed storage scheme due to
its gap compression [Neumann 10a] (stores only the difference between subsequent triples in
the index). The difference between the storage requirements of RDF-3X and HoRDF+ results
mainly from the frequency-aware ID mapping and the block-level Snappy compression used in

HoRDEF+ (achieves ~70% storage reduction).

RDF-3X | HoRDF | HoRDF+
Local Scan Throughput 17 0.73 1.13
(million triples/sec)
Remo‘te'Scan .Throughput i 0.2 0.4
(million triples/sec)
Seek latency cold cache (ms) 1 86 16
Seek latency hot cache (ms) 0.2 17 7

Table 2.3: Comparison of scan throughput and seek latency

We also study the retrieval efficiency of the indexes and their respective technologies. As
mentioned in Section 2.6.1, scan throughput and seek latency are very important metrics that
need to be optimized and evaluated. From Table 2.3, we deduce that our new indexing scheme
achieves substantial improvements in all categories compared to our previous one. We notice
a 54% improvement in local (the client is in the same host with the HBase server responsible

for the data) scan throughput and 100% improvement in remote scan performance (the client
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scan data from a remote HBase server). We also greatly reduce the latency of a seek operation
due to the more compact representation of HBase key-values.

Compared to RDF-3X, scan/seek times are almost an order of magnitude larger. RDEF-
3X maintains extremely efficient clustered B ¢rees that are placed in local disk storage. Our
indexes suffer from retrieval overheads related to the distributed architectures of both HBase
and HDFS. This performance overhead is alleviated by the capability of distributed, concurrent
scanning inside MapReduce jobs.The impact of using distributed indexes will be made visible
in the next section in the case of small, selective queries; the effect disappears when processing

distributed, non selective joins.

2.7.5 Data Import

In this section we evaluate the performance of the HoRDF+ bulk indexing process. HoRDF+’s
indexing process is consisted of 4 MapReduce jobs that materialize all 6 combinations of RDF
indexes. To test the efficiency of our indexing method we compare it using RDF-3X, HadoopRDF
as well as the first version of our distributed system HoRDF.

We first test the scalability properties of all the compared systems regarding the RDF dataset
size. To do so we utilize the LUBM dataset generator that can generate RDF datasets with vari-
able size. We import LUBM datasets containing 1K to 20K universities, i.e., 0.14 to 2.7 billion
triples (28 to 549GB of data respectively). HoRDF+, HoRDF and HadoopRDF were executed
using a cluster of 25 worker and 1 master nodes, while RDF-3X uses a 4x 16-Core server with
128 GB RAM and 1TB disk. Total import times are presented in Figure 2.4. This is the time
needed for all systems to load the full dataset according to their indexing scheme.

RDEF-3X, being a centralized system, parses all triples sequentially in order to create its in-
dexes. It doesn't exploit the parallelism capabilities offered by the modern multicore architec-

ture of CPUs. It also reads the input data several times in order to generate the various different
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orderings of the triples. This iterative scan of input data results in an increasing import com-
plexity. As we can see in Figure 2.4, RDF-3X introduces the slowest, among the compared
systems, import times for loading RDF datasets.

HadoopRDF needs to execute four different MapReduce jobs which take as input the whole
dataset. This means that it needs to scan the data four times resulting in low import perfor-
mance. Additionally, some of these jobs do not equally partition the reduce input data and
thus overload some reducers while leaving others idle. The load balance between the available
computing resources is one of the most important properties that need to be handled in order
for distributed systems to offer good scalability properties. We can observe that HadoopRDEF,
while materializing only one ordering of the triples in raw HDFS files, requires 2x more time
than HoRDF+ for loading the LUBM20k dataset.

We also compare HoRDF+ to our previous HoRDF system. HoRDF used 2 MapReduce
jobs to materialize 3 of the 6 RDF triple indexes. The first job was a sampling job that created
a load balanced partitioning of the indexing space, while the second one used the partitioning
to generate and load the 3 materialized HBase RDF indexes. In Figure 2.4 we can observe that
HoRDF+ manages to import 3 additional indexes and keep more detailed statistics than HoRDF

at a mere 10-20% overhead. This is mainly attributed to:

+ Our optimized indexing procedure that minimizes the times that the raw dataset is read.
While requiring 4 Map-Reduce jobs to import the dataset, only 2 of them read the raw dataset
while the rest process output files that are quite smaller than the original dataset. This greatly
reduces the I/O time needed for executing our import process.

+ The aggressive compression used in all the indexing steps. We use our variable length en-
coding to write all intermediate and final results of our indexing process and thus save both
storage space and I/O time.

+ The extensive use of sampling to generate load balanced partitions for all our MapReduce

computation steps.

Another important point is the indexing scalability to the number of available computing
resources. We import the LUBM10k dataset (1.3 billion triples) using clusters with different
number of worker nodes. We use clusters with 10, 15, 20, 25, 30 worker nodes. The correspond-
ing results are presented in Figure 2.5. We can observe that HoRDF+ manages to maintain the
scalability properties of HoRDF while introducing a more complex RDF indexing process. Us-
ing the MapReduce framework we can gain almost linear speedup when we increase the num-
ber of worker nodes: At 10 workers we achieve an import speed of 49 Ktriples/sec, while using
30 nodes we almost triple the import speed at 142 Ktriples/sec. We also observe that HoRDF+

introduces only a small time overhead (10-20%) compared to HoRDF in all tests.
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2.7.6 Direct Comparison

Yago2
HoRDF+ | HoRDF | HadoopRDF
Import(min) 31 26 72
YQ1(sec) 0.9 0.9 52
YQ2(sec) 1.5 1.7 68
YQ3(sec) 154 952 1832
YQ4(sec) 87 728 1495
LUBM10k
HoRDF+ | HoRDF | HadoopRDF
Import(min) 182 168 198
LQIl(sec) 0.6 0.6 152
LQ3(sec) 0.8 0.8 231
LQ4(sec) 2.1 2.4 1289
LQ2(sec) 95 635 915
LQ9(sec) 151 787 1488
LUBM20k
HoRDF+ | HoRDF | HadoopRDF
Import(min) 385 312 815
LQ1(sec) 0.8 0.8 378
LQ3(sec) 0.9 1 449
LQ4(sec) 2.3 2.4 2650
LQ2(sec 131 880 1367
LQ9(sec) 292 1034 2933
LUBM100k
HoRDF+ | HoRDF
Import(min) 1154 985
LQ1(sec) 0.8 0.9
LQ3(sec) 1.1 1.1
LQ4(sec) 2.4 2.5
LQ2(sec) 412 1853
LQ9(sec) 890 2761

Table 2.4: Performance comparison of HoRDF+, HoRDF and HadoopRDF for LUBM and Yago2 datasets

In order to provide a direct, fair comparison among the different systems, we first test the
performance of HoRDF+ versus the other distributed systems. We utilize four datasets, namely
LUBM with 10k, 20k and 100k universities and Yago2, consisting of 1.3 billion, 2.7 billion, 13.8
billion and 120 million triples respectively. HoRDF+, HoRDF and HadoopRDF were executed

using a cluster of 25 worker and 1 master nodes. In Table 2.4 we register the data import times
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and response times for the selected queries. For a fair comparison to the centralized RDF-
3X, we run both systems using the same total amount of resources: For RDF-3X, we use two
single-server configurations (a 2xQuad-Core with 8 GB RAM, 8 GB swap and 1TB disk and
a 4x16-Core with 128 GB RAM and 1TB disk); for HoRDF+, we use as many worker VMs as

the corresponding RDF-3X’s server capacity allows. These results are reported in Table 2.5.

Yago2
Resources 8CPU/8GB RAM 64CPU/128GB RAM

HoRDF+ | RDF-3X | HoRDF+ | RDF-3X
Import(min) 164 157 26 149
YQI(sec) 0.9 0.7 0.9 0.7
YQ2(sec) 15 1 1.6 0.9
YQ3(sec) 241 3037 138 1929
YQ4(sec) 123 2973 79 2068
LUBM10k

Resources 8CPU/8GB RAM 64CPU/128GB RAM

HoRDF+ | RDF-3X | HoRDF+ | RDF-3X
Import(min) 912 605 162 576
LQl(sec) 06 0.4 06 03
LQ4(sec) 2.1 0.8 2.1 0.7
LQ2(sec) 373 2297 89 1277
LQ9(sec) 411 68 141 51
LUBM20k

Resources 8CPU/8GB RAM 64CPU/128GB RAM
HoRDF+ | RDFE-3X | HoRDF+ | RDF-3X

Import(min) 2075 1526 349 1398
LQl(sec) 08 0.4 0.9 0.4
LQ4(sec) 2.3 0.8 2.2 0.8
LQ2(sec) 706 Failed 119 2065
LQ9(sec) 753 Failed 264 289

Table 2.5: Performance comparison of HoRDF+ and RDF-3X

Query Performance: LUBM provides a SPARQL query benchmark. The compared sys-
tems do not support OWL reasoning so we only test queries that do not require reasoning or in
some cases (e.g., query LQ9) we remove the hierarchy of the rdf:type predicate by querying
for explicit types with no subclasses. We show results for five such queries (identified as LQ)
that provide a good mixture of both simple and complex structures. The selected set covers all
variations of the LUBM test queries; moreover they are able to highlight the different decisions
and characteristics of HoRDF+ and the compared systems. Yago2 does not provide benchmark
queries; Relative to the LUBM queryset, we have created a set of representative test queries.

In detail, there are two main categories of SPARQL queries tested: the ones that contain some
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selective pattern and have small number of results (LQ1, LQ3, LQ4, YQ1, YQ2) and the ones
that contain no selective patterns and represent more complex join structures (LQ2, LQ9, YQ3,
YQA4).

HoRDF+ performs noticeably better in queries with large input: We exploit the orderings
provided by our indexes via the distributed Merge and Sort-Merge join algorithms and achieve
almost 7x performance gain compared to HoRDF and 10x compared to HadoopRDE. We also
outperform RDF-3X in most of the complex queries both when running on the small and the
large server configuration. For example, for LQ2, RDF-3X requires almost 12GB of memory to
execute the query for LUBM10k and proves 6 x slower than HoRDF+ in the small server setting.
For LUBM20k (and large server setting) this increases to 14x slowdown compared to HoRDF+.
Our system achieves 3—6x smaller response times when moving to a larger cluster, while RDF-
3X’s speedup is mainly attributed to the bigger amount of memory (no swapping). In LQ9,
RDF-3X manages to perform better, as it loads query data in memory. Yet, this approach does

not scale; the system runs out of memory for LUBM20k on the small server.

For small, selective queries HoRDF+ uses centralized execution and manages to obtain per-
formance comparable to RDF-3X. The difference in performance is mainly attributed to the
lower scan throughput and the higher seek latency provided by our distributed HBase indexes.
We also note that there is a small improvement compared to HoRDF due to the more optimized
indexing scheme. We also note that HadoopRDF has really poor performance for all selective
queries due to the fact that it only executes MapReduce joins that process all input data and

cannot take advantage of query selectivity.

From these results, we deduce that HoRDF+ processes all query types according to the goals
set in its design: It manages to correctly identify selective vs. non-selective joins, performing
either distributed or centralized joins, each join being performed in the most advantageous
strategy. In high-selectivity queries, it is almost as efficient as RDF-3X, with a small difference
(few tenths of a second) due to the fact that our index is shared across multiple cluster nodes.
This small performance difference is alleviated by our system’s ability to serve multiple concur-
rent queries (see Section 2.7.8). For more data-intensive queries, it proves greatly superior to
both central solutions and competitive Hadoop-based schemes due to both our join strategy

and the ability to group multiple bindings.

LUBM full scale evaluation: Table 2.4 also contains HoRDF+ and HyRDF import and
query execution times for the LUBM100k dataset that consists of 14 billion triples (2.5 TB),
using a cluster of 1 master and 35 worker nodes. Our system achieves an import speed of
202 Ktriples/sec, a state-of-the-art performance according to [W3C 15]. Query response times
follow the trend described in the previous experiments: For selective queries, centralized joins

are selected, resulting in times that range between 0.8 and 2.4 sec. For non-selective queries
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with huge input sizes, such as LQ2 and LQJ9, it achieves 3—4 times smaller response times

compared to HoRDE.

2.7.7 Join algorithm comparison

In this section, we compare the performance of our join algorithms over joins with different
input sizes. In order to test the scalability of our algorithms we generate the following bench-
mark setup: We use a cluster of 25 VMs and the ud: takesCourse property from the LUBM20k
dataset which contains 515 million triples that describe connections between students and
courses. We randomly sample the corresponding data using variable sampling rates and store
the sampled triples in a new HBase index. Figure 2.6 shows the execution times required to
join the full ud:takesCourse relation with the sampled one using different join algorithms.

We range the sampled triples from 5 to 500 million.
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Figure 2.6: Join algorithm scalability

We notice that for joins that contain one selective input triple pattern, the most efficient
join strategy is the centralized Merge join algorithm. This is because MapReduce joins always
incur an initialization overhead of almost 30 seconds. The performance of the centralized join
deteriorates with the input size due to the fact that the algorithm does not exploit the parallel
scanning capabilities of our distributed indexes.

Relative to MapReduce-based join algorithms, we consider the Merge, Sort-Merge, Partial
Input Hash and the Full Input Hash [Papailiou 12] join algorithms. We can clearly note that
the Merge join algorithm has the best scalability performance due to the fact that it performs
the join on sorted relations and minimizes the overhead of data movement. But this algorithm
cannot be executed on intermediate, non-sorted relations. In this case, we can see that the
Sort-Merge join proves to be the most scalable join algorithm. The difference between the
Sort-Merge and the Partial Input Hash joins is the MapReduce partitioning method. The Sort-
Merge join partitions the input data using a total order partitioner that takes advantage of the
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sorted indexes while the Partial Input join partitions using a Hash partitioner. This has impact
on the reduce phase of the join: The Sort-Merge join performs a scalable merge join in the
reduce phase while the Partial Input join executes a random HBase get on the indexes for each
key. The second approach proves not scalable when the small input increases in size. Lastly,
in the case that we have no sorted-indexed relation in the join, we need to fall back to the Full

Input Hash join.

2.7.8 Concurrent execution of selective queries
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Figure 2.7: Query throughput scalability

For the case of centralized joins, we show that concurrent execution can result in very large
query throughput. To achieve this, HoRDF+ utilizes a zookeeper quorum that is responsible for
the distribution of centralized joins to the cluster nodes. Each node has a maximum capacity
of joins that can be simultaneously processed, set to 4 in our experiments. All tests are exe-
cuted using the LUBM5k dataset. We use 10, 15, 20 and 25 worker nodes to see the impact of
increasing the cluster size on the execution throughput. Results for queries LQ1, LQ3 and LQ4
are presented in Figure 2.7. We present the average query throughput in queries per second.
We run the same test twice to get the cold(CC) and warm cache(WC) throughput. We do not
implement any special caching scheme but rely on HBase’s caching. We notice that the warm
cache execution results in 2 to 3 times higher throughput compared to the cold cache execu-
tion which means that our system can take advantage of caching. We observe an almost linear
throughput increase to the number of worker nodes: For example LQ1 has a throughput of 65
q/sec (a 15.4 ms per query) in a 10-node cluster (40 executors). This is a speed-up of 40x as the
individual execution of LQ1 takes 0.6 sec. LQ1 and LQ3 have almost the same performance
due to their similar execution cost. HoRDF+ needs 0.6 and 0.7 sec to answer LQ1 and LQ2

respectively. As for the smaller throughput of LQ4, this is due to its increased execution cost,
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as it needs approximately 2 sec to be answered. LQ4 exhibits the same scalability and warm

cache properties discussed previously.

2.7.9 Query Scalability

In this section we evaluate the scalability properties of our distributed query processing. We
use LQ9 because it is one of the most complex queries tested, requiring three distributed joins.
We test query execution scalability using different dataset sizes and number of worker VMs.
The scalability results for LQ9 are presented in Figure 2.8. We test the performance of the
MapReduce join execution using different dataset sizes using a 25-node cluster. The input and
result size of LQ9 depends on the dataset size (directly affecting LQ9’s execution time as well).
Another parameter tested here is the region size effect on the MapReduce join execution. Large
regions exhibit lower performance for small datasets because the number of tasks created fail to
fully utilize the cluster resources. For larger datasets, all region sizes achieve good performance,
as a result of having enough regions to fully utilize the cluster. For smaller region sizes (64MB

or 32MB) the complexity is almost linear to the size of the input data.
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Figure 2.8: Distributed query scalability for different number of universities and nodes for
the LQ9

Figure 2.8 also shows the LQ9 query execution time as the number of nodes increases. All
tests are executed using the LUBMb5k dataset. We vary the cluster size from 10 to 25 worker
nodes and we vary the maximum region size from 32MB to 256 MB. In the 32MB case, the join
execution is highly scalable, gaining great speedup by adding more nodes. The deviations from
linear speedup are mainly caused by the fact that the number of map tasks may or may not fit
well to the cluster’s capacity. As the region size grows, we note that adding more worker nodes
does not significantly affect the speedup due to the fact that larger region sizes incur fewer tasks

which cannot fully utilize cluster resources.
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2.7.10 Join Planner and Elastic Execution

In this section, we compare the performance of our join algorithms and test our planner’s deci-
sions over different input queries. Moreover, we demonstrate the adaptive execution properties
of our system. In order to test the scalability of our algorithms we use the sampling-based join
experiment presented in Section 2.7.7. Figure 2.9 shows the ammount of computing resources
occupied by our join algorithms to execute a merge join of the full ud: takesCourse relation of
the LUBM1k dataset(25 million triples) with the sampled ones using different join algorithms.
We range the sampled triples from 10 to 500 million.
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Figure 2.9: Adaptive query resource allocation

Our merge join algorithm can be executed either in a centralized or a distributed environ-
ment. In Figure 2.9 we depict the number of dedicated resources for every join execution. We
can see the amount of resources committed to the join scale proportional to the join cost. For
centralized joins, the planner scales the number of concurrent threads while for MapReduce
joins it scales the number of mappers. For our cluster configuration, threads were launched
only when they had a minimum amount of 100 binding to process. We also set the maximum
amount of concurrent threads to 60.

Regarding distributed joins our join planner can decide on the fly for the amount of map
tasks required to execute the join according to its cost. This is done by finding the maximum
join input scan, i.e. the join relation scan that spans the most HBase regions. When finding
the maximum scan, one map task is assigned to each of its regions. As the size of the sampled
triples range from 10 to 500 million triples the size of the largest scan varies. When the sampled
triples are less than the 25 million of the ud: takesCourse relation the maximum scan is the
ud: takesCourse relation of LUBM1k that spans 4 regions and thus 4 map tasks are launched.
When the sampled triples get bigger they become the larger scan and then on the utilized map

tasks scale proportionally to their size.
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CHAPTER 3

SPARQL Query Caching

3.1 Introduction

The schema-free nature of RDF data allows the formation of a common data framework that
facilitates the integration of data originating from different application, enterprise, and com-
munity boundaries. This property has led to an unprecedented increase in the rate at which
RDF data is created, stored and queried, even outside the purely academic realm' * and conse-
quently to the development of many RDF stores [Weiss 08, Neumann 10a, Zeng 13, Atre 08, Pa-
pailiou 13, Bonstrom 03] that target RDF indexing and high SPARQL querying performance.
However, the move from the schema-dependent SQL data to the schema-free RDF data has
introduced new indexing and querying challenges and made a lot of the well-known relational
database optimizations unusable. In fact, RDF databases assume limited knowledge of the data
structure mainly in the form of RDEFS triples [Brickley 14]. However, RDFS information is
not as rich and obligatory as the SQL schema; it can be incomplete and change rapidly along
with the dataset. Therefore, most RDF databases are targeting the indexing of individual RDF
edges resulting in query executions with much more joins than processing the same dataset
in a schema-aware relational database. In contrast, RDF databases that use RDFES information

to store and group RDF data [Stuckenschmidt 04, Tran 10], fail to effectively adapt to schema

thttp://www.bbc.co.uk/blogs/bbcinternet/2012/04/ sports_dynamic_semantic.html
*http://data.gov.uk/
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changes and to non-conforming, to the schema, data. In general, RDF databases have not yet

effectively benefited from the classic schema-aware optimizations used in SQL databases:

+ Grouping data that are accessed together using tables.
+ Indexing according to filtering and join operations.

+ View materialization of frequently queried data patterns.

We argue that all those optimizations can be employed by an RDF database, without any
prior knowledge of both the data schema and the workload, by actively monitoring query re-
quests and adapting to the workload.

Result caching is a methodology that has been successfully employed over different applica-
tions and computing areas to boost performance and provide scalability. Given the complexity
and very high execution latencies [Neumann 10a, Papailiou 13] of several SPARQL query pat-
terns, caching of frequent RDF subgraphs has the potential of boosting performance by even
orders of magnitude. While indexing of graph patterns is extensively used in state of the art
graph databases [Zhao 07,Yan 04], RDF stores have not yet taken advantage of these techniques.
What is more, these schemes focus on static indexing of important graph patterns, namely they
index subgraphs based solely on the underlying dataset, without any regard for the workload.
However, the diversity of the applied SPARQL workloads together with the requirement for
high performance for all the different workloads calls for dynamic, workload-driven indexing
solutions (e.g., [Idreos 11]).

However, SPARQL queries tend to increase in complexity and become hard to optimize
using dynamic programming algorithms. For example, DBpedia reports that its SPARQL end-
point query log contains queries with up to 10 patterns [Gallego 11] and analytical queries in the
biomedical domain can include more than 50 patterns [Sahoo 10]. Experimental results show
that finding the optimal join plan using dynamic programming approaches can have prohibitive
execution times for queries with more than 15 patterns [Neumann 10a, Gubichev 14].

In this work we argue for a workload-adaptive RDF caching engine that manages to dynam-
ically index frequent workload subgraphs in real time, and utilize them to decrease response

times. The major contributions of this paper are:

« We propose a novel SPARQL query simplification algorithm (Section 3.2), based on the star
simplification techniques presented in [Gubichev 14], that splits the query in a skeleton graph
and multiple star graphs.

+ We introduce a SPARQL query canonical labelling algorithm that is able to generate canon-
ical string labels, identical among all isomorphic forms of a SPARQL query. We use these
labels to identify and request query graphs to or from the cache. Most importantly, this
scheme enables unique identification of all common subgraphs inside any SPARQL work-
load.
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+ We integrate our SPARQL query canonical labelling algorithm with a state-of-the-art Dy-
namic Programming Planner [Moerkotte 08] by issuing cache requests for all query sub-
graphs using their canonical label. The resulting optimal execution plan may thus involve, in
part or in whole, cached query subgraphs. In addition, we not only examine the utilization
of exact cached subgraphs, but also larger, more general graphs that can be used to provide
the input of a query subgraph.

+ A Cache Controller process complements the caching framework. The controller monitors
all cache requests issued by the workload queries, enabling it to detect cross-query profitable

subgraphs and trigger their execution and caching.

Our caching framework is modularly designed so as to support different RDF engines and
their respective indexing and cost models. To showcase this, we integrate our prototype im-
plementation with three state-of-the-art RDF engines: RDF-3X [Neumann 10a], TriAD [Gu-
rajada 14] and HoRDF+ [Papailiou 13]. Extensive evaluation results using diverse workloads
show that our caching framework is able to effectively optimize complex SPARQL queries and
automatically detect, cache and utilize SPARQL query results. The proposed query simpli-
fication approach substantially improves the query optimization and cached result discovery
overheads. Using query abstraction and profitable result caching, we improve cache utilization,

achieving up to three orders of magnitude speedups for several workloads and datasets.

3.2 SPARQL query simplification

There are two common ways of representing a SPARQL query. In the one, we have the SPARQL
query graph representation in which nodes denote query variables while edges represent triple
patterns that connect them. This structure follows the graph based nature of the RDF data
and depicts the subgraph pattern that needs to be extracted from the underlying dataset. For
example, Fig. 3.1 depicts the SPARQL query graph of the following query:
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Figure 3.1: SPARQL query graph for Q.
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Example query Q.:

select * where {

?prof type Professor . (pl)

?prof fullName ?pName. (p2)

?prof emailAddress ?pEmail . (p3)
?prof worksFor ”MIT” . (p4)

?prof author ?paper . (p5)

?prof advisor ?st . (p6)

?st author ?paper . (p7)

?st fullName ?stName . (p8)

?st emailAddress ?stEmail . (p9)
?st studiesIn ”Harvard” . (pl@)
?st type GraduateStudent . (pll)}

Another way of representing a SPARQL query is the join graph. In this representation,

every triple pattern of the query is turned into a node and two nodes are connected if they

share a common query variable. Therefore, nodes represent scans of the dataset that retrieve

the triples that match with the respective triple pattern. The edges of the graph correspond to

the joins that need to be performed in order to answer the query. This graph resembles the join

graphs used for query optimisation in traditional relational query optimizers. For our example

the join graph of (). is presented in Fig. 3.2
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Figure 3.2: join graph for Q.

Finding the optimal join execution plan for a SPARQL query is a very challenging task due

to the complexity of the SPARQL join graphs. As mentioned before, SPARQL queries are very

verbose and can contain as much as 50 patterns. Running dynamic programming planners and
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checking all possible query plans for query graphs with more than 10 patterns becomes pro-
hibitive for state-of-the-art query planners [Gubichev 14, Papailiou 15]. Furthermore, SPARQL
queries are described in the primitive RDF graph format. This lack of knowledge of the dataset
schema and its grouping properties, results in reconstruction of frequent data patterns for each
query using joins. For example, a frequent problem is the attribute retrieval for a certain record
(e.g., name, email, phone number for a professor). While this query would require one filtering
operation on top of a table using traditional relational databases, in SPARQL it is described as
a star graph pattern that needs to be constructed from index scans, of primitive RDF edges,
using joins.

Star patterns are very common and widely used in SPARQL query graphs [Gubichev 14].
Star SPARQL graph patterns are transformed to cliques in the join graph representation. This is
due to the fact that a// their triple patterns need to be joined with respect to their common query
variable. Query planners use the join graph representation to find the optimal execution plan
and thus large cliques, present in the join graph, lead to a worst case exponential complexity for
dynamic programming planners [Moerkotte 08]. Canonical labelling of SPARQL queries, used
for detecting usable cached results, is also based on the join graph representation. As shown
in [Papailiou 15], both canonical labelling and the extended dynamic programming planner
that checks the usability of cached results face exponential complexity for the commonly used
SPARQL star query patterns.

However, star query pattern optimization have been successfully tackled. Most of the state-
of-the-art RDF datastores index RDF data using multiple or all combination of Subject, Pred-
icate, Object ordering permutations [Weiss 08, Neumann 10a, Papailiou 13]. Since the input
data can be retrieved in several orderings, the most beneficial query plan for a star query is in
most cases a sequence of two-way merge joins [Neumann 10a, Gubichev 14] or a multi-way
merge join [Papailiou 13]. In the case of multi-way merge joins [Papailiou 13] there is actually
no alternative join execution plan for answering the query. Additionally, when using a sequence
of two-way merge-joins [Neumann 10a], heuristics like characteristic sets [Neumann 11] for
cardinality estimation and hierarchical characterisation for join ordering [Gubichev 14] can
provide near optimal join plans for star patterns in linear-time, without examining all possible
join orderings. Therefore, while star query patterns are described as complex clique graphs in
the join graph query representation, they can be effectively planned using heuristics that avoid
their join enumeration complexity.

In this work, we propose a novel query simplification method that reduces the graph com-
plexity of the SPARQL query join graph while it can be used to both provide near optimal
join execution plans and detect all possibly usable cached results. Our simplification approach
transforms the initial query graph into a skeleton graph and multiple star subgraphs. The star

subgraphs are removed from the query graph and are replaced with one high level star node
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Figure 3.3: Simplified SPARQL query graph for Q.

along with the edges that connect them with other nodes of the query graph. In our example,
Fig. 3.3 depicts the skeleton graph of (). using bold lines for the edges. The star patterns of the
query graph are depicted within dashed ellipses. This simplified query graph maps to a simpli-
fied join graph depicted in Fig. 3.4. We note that compared to the initial join graph depicted in
Fig. 3.2 the simplified join graph consists of far less nodes and is loosely connected due to the

fact that entire clique subgraphs were reduced to simple nodes.

Algorithm 3: SPARQL query simplification
Input: SPARQL query graph G, = (V,, E,), join graph G, = (V;, E})
Output: Star subgraphs St = (s, L(s)) map of (starID, list of star triple patterns), set of skeleton
patterns Sk, simplified join graph G; = (V;, Es; )
Sk < 0; St + 0
fortp € E, do
if tp.getJoinVariables() > 1 then
Sk + Sk Utp;
else
St « St.add(tp.getJoinVariableStarId(),tp);
end
end
Vs;j <= Sk U St.keySet();
Esj «— (Z);
for (ps,pq) € E; do

O 0 N O UL R W N =

-
- O

12 if ps € StV pg € St then

13 E,; + E,; UreplaceTpldwithStarId(ps,pa);
14 else

15 Eyj + Eg U (ps,pa);

16 end

17 end
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Figure 3.4: Simplified join graph for Q.

A formal description of our query simplification procedure can be found in Algorithm 3.
The algorithm takes as input the SPARQL query graph as well as its respective join graph rep-
resentation and produces the simplified join graph, along with a set containing the skeleton
patterns and a map containing the star triple patterns grouped by their starID (a unique ID
attributed to each discovered star pattern). To find the skeleton triple patterns, our algorithm
iterates over all the patterns of the initial query graph. Each pattern is either a skeleton or a star
pattern. If the pattern contains more than one join variables it is characterised as a skeleton
pattern. By join variables we refer to query variables that are present in more than one triple
patterns and thus require a join. If a triple pattern contains 2 or more join variables, it is part
of a path in the SPARQL query graph and thus it belongs to the skeleton graph of the query. In
contrast, if a triple pattern contains only one join variable, it belongs to the star formed around
its join variable and is added in the star pattern map using as key the starID that is assigned to
the specific join variable. This distinction can create star subgraphs that contain one or more
triple patterns.

When the skeleton and star patterns are identified, we build the simplified join graph with
nodes: the skeleton patterns and one node per identified star subgraph. The edges of the initial
join graph are transferred to the simplified join graph as is, if they connect skeleton patterns.
If their source or destination is a star pattern the edge is transformed in order to connect the
respective star node in the simplified join graph. The extreme case of stars containing only one
triple pattern does not affect the query planning because we just replace the pattern node in
the join graph with a star node that contains only one pattern. The complexity of our query
simplification algorithm is linear to the size of the query graph because it just iterates over its

triple patterns deciding whether they belong to the skeleton of the query or to a star subgraph.

3.3 SPARQL query canonical labelling

In this section, we propose a SPARQL canonical labelling algorithm. We also propose a canoni-

cal labelling algorithm that runs on top of our simplified join graph representation, presented in
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the previous section, and can avoid the exponential labelling complexity introduced by cliques
and strongly connected subgraphs of the join graph.

Indexing graph patterns is a challenging task because it requires to tackle the graph iso-
morphism problem [Kobler 94], a fundamental problem in graph theory. This problem arises
when the same query pattern appears in different queries with small deviations such as pattern

reordering, variable renaming etc. For example the following SPARQL queries are isomorphic.

?prof worksFor *MIT” . ?vl studiesIn ”Harvard” .
?prof author ?paper . ?v2 author ?7v3 .

?st author ?paper . ?v2 worksFor ”MIT” .

?st studiesIn ”Harvard” ?vl author ?v3

All “isomorphs” of the same SPARQL graph must be identified and linked to the same cache
entry for a graph caching scheme to work. To address this issue, we extend a solution for graph

canonical labelling and introduce the concept of SPARQL graph canonical labelling.

Definition A graph labelling algorithm C takes as input a graph G and produces a unique label
L=C(G). Cis a canonical graph labelling algorithm if and only if for every graph H which is iso-
morphic to G we have C(G)=C(H). We call L a canonical label of G. Additionally, L introduces

a canonical total ordering between the vertices of G.

The canonical labelling problem shares the same computational complexity with the graph
isomorphism problem and belongs to the GI complexity class. GI is one of the few open
complexity classes that is not known to be either polynomial-time solvable, or NP-complete
[Kobler 94, Hartke 09]. To date, there exists a lot of heuristic evidence that GI is not NP-
complete and there are many efficient open-source implementations for both graph isomor-
phism and canonical labelling algorithms [McKay 14, Junttila 07, Darga 08] that are able to
handle really large graphs. One of the first and most powerful canonical labelling algorithms
is McKay’s nauty algorithm [McKay 81] that introduced an innovative use of automorphisms
to prune the isomorphism search space. Bliss [Junttila 07] extends nauty by introducing some
extra heuristics that boost its performance on difficult graphs. Such algorithms can compute
canonical labels for graphs with thousands of vertices in milliseconds making them ideal to
handle even the most complex SPARQL query graphs. However, the most descriptive format

that most of the above algorithms work with is the directed vertex-colored graph.

Definition A directed vertex-colored graph is a graph G=(V,E,c), where V.= {1,2,...,n}isa
vertex set, ECV xV is a set of directed edges, and ¢ : V—N is a function that associates to

each vertex a non-negative integer(color).

In order to use the existing graph canonical labelling algorithms we present a transforma-
tion of SPARQL queries to directed vertex-colored graphs. The transformed SPARQL graph
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can be then labelled by one of the previously mentioned graph canonical labelling algorithms.
The proposed transformation guarantees no lose of query information. It avoids introducing
false positives or false negatives, i.e., non-isomorphic SPARQL queries having the same label

or isomorphic queries having different labels.

3.3.1 Labelling SPARQL join graphs

In this section, we present our SPARQL join graph canonical labelling algorithm. As a running
example, let us assume that we need to get a canonical label for the following SPARQL query:
?prof teacherOf ?gcourse . (1)
?prof teacherOf ?ugcourse . (2)
?ugcourse type UndergraduateCourse . (3)

7?gcourse type GraduateCourse . (4)
The first task is to transform SPARQL queries to directed vertex-and-edge-colored graphs.

Definition A directed vertex-and-edge-colored graph is a graph G=(V,E,cy,cc), where V' =
{1,2,...,n} is a finite set of vertices, ECV xV is a set of directed edges, ¢, : V—N and ¢, :

E— N are color functions for vertices and edges.

The join graph of the query is depicted on the left part of Fig. 3.5, where the vertex IDs cor-
respond to the triple pattern IDs presented above. Initially, we remove all information related
to the variable names. To do so, for each triple query we create a label that consists of three IDs,
one for each position inside the triple. Bound nodes are translated to integer IDs using a String
to ID dictionary while variables are translated to zero. For the current example, let us assume
that the String-ID dictionary contains: {teacherOf—15, type—3, UndergraduateCourse—52,
GraduateCourse—35}. The label of the first triple query would be, for example, “0_15_0" OP-

TIONAL triple patterns are handled by appending a special character ‘|" at the beginning of
their label. We also direct and color the edges according to the type of join that they represent.
All possible types are {SS, SP, SO, PS, PP, PO, OS, OP, OO}. To reduce the number of edge
colors needed, a position ordering (S<P<O) is introduced and only edges whose source po-
sition is lower than or equal to their destination position are added to the transformed graph.
Therefore, only the following 6 edge types {SS, SP, SO, PP, PO, OO} are required. In the second
graph of Fig. 3.5, we can see both the vertex and edge labels for our query.

In the final step, the vertex and edge labels are translated to non-negative integers(colors).
To do so, a sort of the vertex labels is performed and the position of the label in the sorted set is
used as the final label. For edge labels the following translation {SS—1, SP—2, SO—3, PP—4,
PO—5, O0—6} is used. The final graph is a directed vertex-and-edge-colored graph and can

be seen in the first graph of Fig. 3.6. SPARQL grouping, ordering, filtering and projection
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Figure 3.5: SPARQL query transformation

information is not used for labelling SPARQL queries. Queries that are isomorphic but differ
for example in result ordering will get the same label but are later handled as different versions
of the same result by the dynamic programming planner, Section 3.4. The above transformation
removes all information relevant to variable naming while managing to maintain all structural
information of the query using the directed join edges [Papailiou 15].

In [McKay 90], a practical way to transform directed edge-colored graphs to simple directed
graphs without changing their automorphism group is presented. More specifically, if there are
v vertex colors and all available edge colors are integers in {1,2,...,2¢ — 1}, a graph with d
layers is constructed. Each of the layers contains n vertices, where n is the number of vertices
of the initial graph. As mentioned in the previous paragraph only 6 edge colors are required,
one for each possible type of triple pattern join, and thus d equals to 3 leading to a new graph
that contains 3n vertices. The vertices of the different layers (each corresponding to one vertex
of the original graph) are vertically connected using paths. The vertex colors of the first layer
remain the same as in the original graph and they get propagated to higher layers by adding v
to the corresponding color of the lower layer. For each edge of the original graph the binary
expansion of its color number tells us which layers should contain the horizontal edge. For
example, an edge with color 3, whose binary expansion is 011, will be placed both in the first
and the second layer of the new graph. The transformation for the above example is depicted

in the second graph of Figure 3.6, where the vertex IDs represent the assigned colors.

L O

Dag)

3

D @ (Fo-0 @

Figure 3.6: Transformation to directed vertex-colored graph

At this point the Bliss algorithm is used to produce a canonical label for the above graph. The

canonization process returns a canonical order of the graph’s vertices. As stated in [McKay 90],
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the order by which a canonical labelling of the new graph labels the vertices of the first layer
can be taken to be a canonical labelling order of the original graph. Thus, after executing Bliss
we can get a canonical ordering for our initial query. For our example the canonical order-
ing is {1,2,4,3}, where the ids are the SPARQL triple query ids used in the initial graph. Using
this ordering, a string canonical label of the SPARQL query graph can be generated. To do so,
we use this canonical ordering to iterate over the triple patterns, for each pattern we append
its signature at the end of the label string. While iterating, a canonical ordering of the vari-
ables is also generated, i.e. variable ?prof is the first variable that we find and thus it gets the
canonical ID ?1. In our example, the canonical variable mapping is {?prof—7?1, ?gcourse—?2,
?ugcourse—?3} and the generated string label is ?1_15_?2&?1_15_?3&?2_3_35&?3_3_52. The
presented algorithm produces the exact same string label for any isomorphic SPARQL query
and thus is a canonical labelling algorithm for SPARQL query graphs. This label can be used as
key for a SPARQL result caching implementation.

3.3.2 Labelling simplified SPARQL join graphs

As a running example, let us assume that we need to get a canonical label for the simpli-
fied join graph presented in Fig. 3.4. As before, let us also assume that the String-ID dic-
tionary contains: {author—407, advisor—85, type—3, fullName—176, emailAddress—243,
worksFor—401, studiesIn—545, Professor— 211, GraduateStudent— 102, MIT—1623, Harvard— 18744}.
Initially, we transform the simplified join graph of Fig. 3.4 to a labelled graph presented in Fig.
3.7. The labelling procedure of the skeleton part of the graph is the same as the one presented
in the previous section. For each of the star nodes, we create a list of labels containing all their
triple patterns. The only difference, while generating the triple pattern labels, is that, in this

case, we do not replace the star join variable with ‘0" but with “?s” in order to maintain the

?s 176 0
?s 243 0
?s 3 102
?s_545 1874

Figure 3.7: Labelled simplified join graph for Q.
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information of the star variable position. After creating the list of pattern labels we also lexico-
graphically sort them in order to generate a unique string label for the star node. The labelling

of simplified join graphs is split into the following steps:

1. Generate a canonical label for the skeleton subgraph of the labelled join graph. This is

done using the canonical labelling algorithm presented in the previous section.

2. Use the canonical variable mapping generated from the labelling of the skeleton graph to

generate canonical labels for the star subgraphs.

3. Concatenate the skeleton and the star canonical labels in order to produce a canonical

label for the entire query described by the simplified join graph.

In our running example, the canonical label of the skeleton graph is ?1_407_?2&?3_407_?72&
?3_85_?1 and the generated canonical variable mapping is {?st—?1, ?paper—7?2, ?prof—?3}. The
canonical variable mapping of the skeleton graph generates canonical IDs for all the star join
variables in a connected join graph. In the extreme case of a star only query graph, where the
skeleton subgraph is empty the star join variable gets the first canonical ID: ?1. Having gen-
erated canonical variable IDs for all the star join variables we use them to iterate over the star
subgraphs. Each star subgraph, is labelled using the lexicographically sorted list of its pattern la-
bels, as depicted in Fig. 3.7. In our example, we first label the star subgraph around ?st—7?1 and
the generated canonical label is (?1,[?s_176_0,?s_243_0,?s_3_102,?s_545_1874]). The label of
the second star subgraph around ?prof—?3 is (?3,[?s_176_0,?s_243_0,?s_3_211,?s_401_1623]).
When creating the star labels, we also generate canonical variable IDs for the rest of the star
variables {?stName—?4, ?stEmail—?5, ?pName— 7?6, ?pEmail—?7}. However, those IDs are not
replaced in the final canonical label. As we will discuss in the next section, this provides the abil-
ity for our labels to be used, apart from exact isomorphism testing, for subgraph isomorphism
testing. To generate the canonical label of the entire query we just concatenate the skeleton label
with the star labels using the canonical star join variable order. Therefore the label of the entire
queryis: ?1_407_?2&?3_407_?2&?3_85_?1&{(?1,[?s_176_0,?s_243_0,?s_3_102,?s_545_1874]), (?3,
[2s_176_0,%s_243_0,?s_3_211,%s_401_1623])}.

Proof The presented algorithm is a canonical labelling algorithm for SPARQL query graphs.
The canonical labelling process of the skeleton query subgraph is the same as the one men-
tioned in section 3.3.1. Therefore, the label generated for the skeleton query subgraph is a
canonical label. Concerning star subgraphs, they can be described as a set of pattern labels
E, representing triple patterns that are only connected by their common join variable and are
also disconnected from the rest of the query graph. Our algorithm bases the labelling of star

graphs on: i) removing variable naming information from the labels of the set E, ii) canonical
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labelling the set of edges using its lexicographic order, iii) retrieving the canonical ID of the
star join variable from the skeleton graph label and propagating canonical IDs to the star graph
variables.

We will prove that the lexicographic ordering of the pattern label set E provides a canon-
ical label for a star query graph. Initially, all isomorphic star queries generate the same set E,
independent of the utilized variable names as well as the triple pattern ordering used. Respec-
tively, a pattern set I/ can be used to generate an isomorphic star query graph. This can be
done by giving unique IDs to all non-join variables presented as “0” in the pattern labels. The
join variable presented as “?s” can also be assigned to a unique variable ID. Therefore, canoni-
cal labelling of the pattern label set E provides a canonical label for the star graph. Due to the
fact that there are no dependences between the labels contained in F, its lexicographic order
can be used as a canonical order. Thus, the lexicographic order of the pattern set E provides a
canonical label for a star query graph.

Additionally, concatenating the skeleton label with the star labels using the canonical or-
dering of the star join variables provides a canonical label for the entire query. To prove this,
we note that isomorphic queries have the same skeleton subgraph and thus they will generate
the exact same canonical ordering for all their star join variables. Therefore for all isomorphic
queries, the star labels will be concatenated in the same order and thus the generated labels are
canonical for the entire query and we can use exact label matching to performing isomorphism

tests.

3.3.3 Using canonical labels for subgraph isomorphism

Using the previously mentioned algorithm to generate canonical labels we also have the capa-
bility to perform subgraph isomorphism testing for special graph classes. More formally, the

problem of subgraph isomorphism can be defined as:

Definition Given two graphs G(V, E)and H(V', E’) we want to test if there exists a subgraph,
G1(V1,Ey) : V4 CV, E; C E, of G that is isomorphic to H.

While canonical labels are designed to perform exact graph isomorphism testing, our pro-
posed skeleton-star canonical labels can be efficiently used to also perform subgraph isomor-
phism for queries that share the same skeleton graph but have deviations in their star subgraphs.

More formally, we introduce the problem of skeleton-star subgraph isomorphism testing.
Definition Given two graphs G(V, E') and H(V’, E’) and their respective simplified graphs

(Sk, St), (SK', St"), where Sk C (V, E), Sk’ C (V',E’) and St = (s,L(s) C V), St' =
(s, L'(s) C V') are the skeleton and star subgraphs of G and H respectively. H is skeleton-star
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subgraph isomorphic to G iff there exists a subgraph, G1(Vi,E;) : Vi C V,E; C E, of G
with Sk; = Sk that is isomorphic to H. Additionally, if H is a skeleton-star subgraph of G,
it is true that their skeleton subgrahs are isomorphic Sk = Sk; = Sk’. Concerning their star
subgraphs, it is true that St' C St : {V(s, L'(s)) € St' : (s, L(s)) € St,L'(s) C L(s)}

To be skeleton-star subgraph isomorphic, two queries must share isomorphic skeleton
structures and therefore the same skeleton canonical labels. Furthermore, all the star subgraphs
of the one query must be subgraphs of the star subgraphs of the other query. For example, the
query depicted in Fig. 3.8 is skeleton-star subgraph isomorphic to the query depicted in Fig.
3.3.

) ?stEmail
“IpName <& 2 ’%/*%
i e’b _B 0
v RS” k] L
£ ¢ %, < :
= ©
= Q/)) 1S
5 2 e 9
ug —type— ?prof~ author ?paper AU O s
2 v

-J
—
[

advisor

Figure 3.8: Query that is skeleton-star subgraph isomorphic to Q).

The algorithm that we can use to perform skeleton-star subgraph isomorphism tests, using
our canonical labels, is presented in Algorithm 4. The algorithm starts by checking the equality
of the skeleton canonical labels. If the skeleton subgraphs of the tested queries are isomorphic,
we continue to the star subgraph test, otherwise we return false because the two queries are by
definition not skeleton-star subgraph isomorphic. To test the star subgraph isomorphism we
need to ensure that all the star subgraphs of H are present in GG. To do this efficiently, we take
into account the canonical ordering of the star join variables as well as the lexicographic order
of the patterns inside the star labels.

Due to the fact that the skeleton graphs of the two queries are isomorphic, our canonical
labelling algorithm will generate, for both, the same canonical variable IDs and therefore their
star subgraphs will be labeled in the same canonical order. The only difference is that G can have
more star subgraphs than H. To find if all star subgraphs of H exist in G we just iterate over the
ordered star subgraphs of H and try to match them with the star subgraphs of G. To check if
two star subgraphs match, we first check if they have the same join variable canonical ID. If they
do, we continue the check by iterating over the lexicographically ordered lists of their patterns.

Again, the list of patterns for a star subgraph of G is allowed to have more patterns than the
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Algorithm 4: Skeleton-star subgraph isomorphism testing

Input: Two graphs G, H and (G, Gst), (Hsk, Hst), their canonical skeleton and star labels
Output: True/false if H is skeleton-star subgraph isomorphic to G

1 if G4 # Hy, then

2
3
4
5
6
7
8
9

else

return false;
sit <— Hgy.iterator(); hst = sit.nextStar(); star Matches = false;
for gst € G4 do
if gst.getStarVar() = hst.getStarVar() then
pit = hst.iterator(); hp = pit.next Pattern(); patternMatches = false;
for gp € gst do
if gp = hp then

10 patternMatches = true;

11 if pit.hasMore() then

12 hp = pit.next Pattern();

13 else

14 break;

15 end

16 end

17 end

18 if pit.hasMore()||patternM atches = false then
19 return false;

20 end

21 starMatches = true;

22 end

23 end

24 if sit.hasMore()||star Matches = false then
25 return false;

26 end

27 return true;

28 end

respective list of H, but all patterns of H'’s list must be present in G’s list. The use of the generic
variable IDs “0” and “?s” for the star pattern labels, described in the previous section, ensures
that the lexicographic order of the star patterns will be the same in both queries. Therefore, the

proposed algorithm can perform the skeleton-star subgraph isomorphism test with just one

pass over the canonical labels of the tested queries.

3.3.4 Canonical labelling complexity

In this section, we formally examine the time and space complexities of the proposed canon-
ical labelling algorithms. The first examined algorithm is the canonical labelling algorithm of
Section 3.3.1. The complexity of this algorithm is directly associated with the complexity of
the Bliss algorithm that attempts to solve the graph isomorphism (GI) problem. GI is known

77



to have time complexity at most 0(2\/@) for graphs with n vertices [Arvind 00]. How-
ever, this is not a representative bound for Bliss because its complexity mainly depends on
the amount of automorphisms present in the graph structure rather than on the number of its
vertices. Indeed, there are graph examples that result in exponential labelling times but for gen-
eral graphs Bliss presents sub-exponential complexity. The extended SPARQL query labelling
algorithm introduces a polynomial time, O(n), transformation of the input query which is neg-
ligible compared to the worst-case exponential time complexity of Bliss. Its major overhead is
the fact that it transforms the n vertices of the query graph to 3n vertices and thus introduces
a polynomial increase to the input size.

Concerning the simplified join graph canonical labelling algorithm, of Section 3.3.2, it again
depends on the complexity of the Bliss algorithm. The major difference now is that Bliss only
runs on top of the skeleton subgraph of the query. The complexity of the skeleton subgraph
labelling is the same as discussed above but it now depends on sk, the number of skeleton
triple patterns of a query, which can be much smaller than n. Furthermore, our simplification
procedure removes all star subgraphs from the query graphs and thus removes cliques from
the join graph used as input for canonical labelling. Therefore, the skeleton graph not only
contains less vertices than the original join graph but is also more loosely connected. As a
result, the skeleton graph contains less automorphisms than the initial join graph and reduces
the complexity of the automorphism enumeration procedure performed by the Bliss algorithm.
Labelling star subgraphs has polynomial O(st log (st)), to the number of star patterns st, time
complexity because it just requires a lexicographic sort of the pattern labels.

Lastly, having generated canonical labels for query graphs, we can efficiently perform iso-
morphism and skeleton-star subgraph isomorphism tests in polynomial time. The complexity
of the proposed skeleton-star subgraph isomorphism algorithm is linear to the number of the
query patterns (label size) n, because in the worst case it needs to iterate once over the query
labels. The exact isomorphism test has also linear complexity to the label size n because it needs
to perform an equality match between two labels and in the worst case it needs to examine the

entire label strings.

3.4 Query planning

Finding the optimal join plan for complex queries has always been a major research challenge
in optimizing database systems. In addition, our system needs to effectively discover which
of the maintained cached results can be used to provide input for a query’s subgraph. Both
these tasks have exponential complexity to the size of the query because they need to check
all of its subgraphs. While there exist several greedy, heuristic approaches for SPARQL query

planning [Tsialiamanis 12, Papailiou 13], they cannot be easily integrated with a cached result
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discovery algorithm that finds all relevant cached results. In contrast, dynamic programming
query planning approaches [Moerkotte 06, Neumann 10a] explore all subgraphs of a query and

thus can be easily modified to achieve both optimal query planning and cached result discovery.

One of the oldest and most efficient dynamic programming algorithms for join planning is
DPsize [Gassner 93], widely used in commercial databases like IBM’s DB2. DPsize limits the
search space to left-deep trees and generates plans in increasing order of size. A more recent
approach, DPccp [Moerkotte 06] and its variant DPhyp [Moerkotte 08] are considered to be
the most efficient, state of the art dynamic programming algorithms for query optimization.
They reduce the search space by examining connected subgraphs of the query in a bottom-up
fashion. In addition, DPccp is successfully utilized to generate optimal SPARQL join plans in
RDF-3X [Neumann 10a].

SPARQL queries frequently contain many star-shaped pattern joins, making multi-way
joins attractive for execution engines. A multi-way join can process a star query that contains
an arbitrary number of patterns in a single step. Especially in the case of indexing all ordered
permutations of RDF indexes (e.g., [Weiss 08]), a star-shaped query graph can be effectively
executed with one multi-way merge join on the common join variable instead of a sequence
of two-way merge joins [Papailiou 14]. Since DPccp only explores two-way join plans, in this
work we extend it by adding support for both cached result discovery and multi-way join ex-
ploration. This way, our caching framework can also be integrated with execution engines that

support multi-way joins.

3.4.1 Multi-way join exploration

In this section, we describe the changes required for the DPccp to efficiently explore multi-way
join plans. The input query graph G = (V, E, ¢) used in our dynamic programming planner is
the simplified SPARQL join graph presented in Fig. 3.3 of Section 3.2, where each triple query
is represented by a vertex and triple queries that share a common variable are linked with an
edge labelled by the variable’s name. DPccp bases its enumeration procedure on finding all ¢sg-
cmp-pairs in the query graph [Moerkotte 08]. Csg-cmp-pairs are pairs containing a connected

subgraph(csg) of the query graph and one of its connected complement subgraphs(cmp).

Definition (csg-cmp-pair). Let G = (V, E, ¢) be a query graph and S1, S2 two subsets of V
such that S1 C Vand S2 C (V \ S1) are a connected subgraph and a connected complement
respectively. If there further exists an edge (u, v)€E such that ueS1 and veS2, we call (S1, S2)

a csg-cmp-pairs.
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The enumeration of csg-cmp-pairs restricts DPccp to 2-way join plans because each csg-
cmp-pair corresponds to a 2-way join between the csg and the cmp graphs. To explore multi-
way join plans our algorithm enumerates label connected, connected complement subgraph

lists(crmp-lc-list).

Definition (cmp-lc-list). Let G = (V, E, ¢) be a query graph, L an edge label and S={Sy,. . .,S,}
a list of sets where S1CV, SeC(V \ S1), .., ShC (V \ S1, ..., Sp—1) are connected subgraphs of
G. If for every pair (S;, S;) € S there exists an edge (u, v) € E with label L such that u € S; and

v € Sj, we call S a cmp-lc-list.

Each c¢mp-lc-list corresponds to a multi-way join of all subgraphs contained in the list, on
the common join variable represented by label L. Note that if S={S1, . . ., S,,} is a cmp-lc-list, then
any reordering of the sets in S will result in a cmp-lc-list as well. We restrict the enumeration
of cmp-lc-lists in the same way as presented in [Moerkotte 08]. We enumerate only the lists
that satisfy the condition min(S;) < min(S2) < --- < min(S,,), where < is the total ordering

relation introduced over the vertices of G by their vertex IDs and
min(S;) = {v|v € S;,Vv' € S;: v #£v = v <} (3.1)

Assuming that multi-way join operators are commutative, meaning that the order of the
sets inside the list does not affect the cost of the join, the enumeration of all list orderings is
superfluous. Thus, the application of this restriction ensures that no duplicate cmp-ic-lists are
examined by our dynamic programming algorithm. Furthermore, in order to find the optimal
join execution plan, a dynamic programming algorithm would need to examine all the crmp-lc-
lists, each corresponding to a distinct multi-way join, making our algorithm optimal in terms

of the amount of examined plans.

3.4.2 Dynamic programming planner algorithm

In this section, we present the pseudocode of our dynamic programming planner. We focus
more on the changes made compared to the DPccp algorithm but we maintaining the same
notation as used in [Moerkotte 08], allowing interested readers to easily point to this paper for
the details of the baseline algorithm. One of the major differences of our algorithm compared
to DPccp is the structure of the dpTable used. To leverage the strengths of maintaining all
permutations of RDF indexes, a system needs to promote the use of merge joins [Weiss 08,
Neumann 10a]. To achieve that in the presence of multiple indexes and cached orderings of
the same graph pattern, we need to carefully preserve result orderings while generating join
plans. A result with a certain ordering, while more expensive to generate than another with no

ordering, can be more efficiently used in a subsequent join leading to a better join plan for the
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query. To cover this case, we change the structure of our dynamic programming table. While
in DPccp only one plan is kept for each query subgraph, our dpTable maintains, for each query
subgraph, a list of plans that contains the best join plan for each discovered ordering. The
mergeAll method merges two join plan lists maintaining only the best plan for each distinct

ordering found in both lists.

The proposed dynamic programming planner runs on top of the simplified join graph de-
scribed in Section 3.2. Its main method is the solve(V'), where V is the set of nodes of the

simplified join graph, presented in Algorithm 5.

Algorithm 5: solve(V)

1 forv e Vdo

2 //initialize dpTable

3 if v.isStar() then

4 dpTable[{v}].mergeAll(get PlanForStar(v));
5 else

6 dpTable[{v}].mergeAll(indexScans(v));

7 end

8 end

9

for v € V descending according to < do
10 emitCsg({v});

11 enumerateCsgRec({v}, B,);

12 end

13 return dpTable[V];

Initially, the solve(V') method seeds the dpTable with plans for all the vertices of the sim-
plified join graph. The simplified graph contains vertices that represent either skeleton triple
patterns or star subgraphs. In the case of skeleton triple patterns, we add to the dpTable all
the possible triple query index scans. For example, if a hexastore [Weiss 08] indexing is used,
the data of a triple pattern can be retrieved from multiple indexes with different orderings.
Concerning star subgraphs, we need to generate join plans and store them in the dpTable. For
engines that support multi-way joins, the best plan for a star subgraph consists of one multi-
way merge join on the star variable. In the case of engines that use 2-way join plans, efficient
methods of generating join plans for star patterns, such as hierarchical characterization and

characteristic sets [Gubichev 14], are used.

Consequently, the solve method calls the two subroutines emitCsg and enumerateCsgRec
for all vertices in decreasing order according to <. For readability, we maintain the same nam-
ing used in [Moerkotte 08] but for us the csg set represents the first set of a crmp-Ic-list. Thus,
the emitCsg method bounds the first set of the cmp-lc-list and continues by enumerating the

rest of its subsets. The enumerateCsgRec(S1, X) function is used to extend a given connected
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subgraph S to a larger connected subgraph while avoiding vertices that belong to the exclu-
sion set X. The exclusion set is used to avoid duplicate subgraph enumerations by prohibiting
the subgraph to expand and include nodes that are ordered before v according to <. This is
achieved with the use of B, = {w : w < v} U {v} which restricts nodes that have IDs smaller

than v.

Algorithm 6: enumerateCsgRec(S1, X)
for N C N(S1,X): N #0do
emitCsg(S1 UN);
end
for N CN(S1,X): N #0do
enumerateCsgRec(S1 U N, X UN (S, X);
end

A Ul B W N =

To extend a subgraph, the enumerateCsgRec uses the concept of a subgraph’s neighbour-
hood N (S7, X) containing all nodes reachable from S; with one edge that are not in X. For
all those sets, we call both emitCsg and enumerateCsgRec.

To facilitate the better understanding of our algorithm, Fig. 3.9 depicts the trace of its
execution for the simplified join graph of Section 3.2. The trace presented on the upper part
of the figure depicts the sequence of calls to both emitCsg and emitCmpLcList functions. The
trace of emitCsg('S1) is depicted as { .S } while for emitCmpLcList we use [var|{S1},...,{Sn}].
The solve method will start by emitting the set {12} because this is the largest vertex according to
<. This set will not generate any cmp-Ic-lists and will not be further extended as its exclusion
set contains all its neighbours. The same will happen for the set {11}. The emitCsg method
will then enumerate all cmp-lc-lists that have {6} as their primary set. When this is done the
enumerateCsgRec will expand {6} and call emitCsg for {6,12}. The same will happen for {5} that
will be extended to {5, 6}, {5, 11}, {5, 12}, {5, 6, 11}, {5, 6, 12}, {5, 11, 12}, {5, 6, 11, 12}. The set
{4} will be extended as, {4, 5}, {4, 6}, {4, 11}, {4, 5, 6}, {4, 5, 11}, {4, 6, 11}, {4, 5, 6, 11} from the
first loop of the enumerateCsgRec method. The second loop will then recursively add the node
12 in all the above sets calling emitCsg for {4, 5, 12}, {4, 6, 12}, {4, 5, 6, 12}, {4, 5, 11, 12}, {4, 6,
11,12} and {4, 5, 6, 11, 12}.

During the enumeration process, the emitCsg(S1) function is executed only once for every
connected subgraph of the query in hand, making it a great place to integrate our check cache
mechanism. In addition, emitCsg('S1) is called before every attempt to utilize S} in a join and
thus the cache results retrieved here will be available for the computation of the cost of any join
plan that contains 5.

The emitCsg function proceeds with enumerating the cmp-lc-lists presented in Section

3.4.1. We now introduce the concept of the labelled neighbourhood of a subgraph Ny, =
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Algorithm 7: emitCsg(S)

if |S1| > 2 then
dpTable[S1].mergeAll(checkCache(S1)); //check cache and merge plans
end
X=5U Bmin(Sl);
Niavel = Niaper (S1, X);
for (l,Sg) € Nigpel : S2 75 0 do
X1 = X U Sg;
list.push(S1);
enumerateCmpLcList(list, So, X1,1);
end

O N QU W N =

=
(=}

Niaber (S1, X). Niaper is a set of pairs (I, So), where [ is an edge label that corresponds to a join
variable and S is the set of nodes not contained in X and reachable from S; with one edge
labelled by [. We also want to enforce the enumeration of multi-way joins that join al/ patterns
that share a certain variable in one step. To do s0, Njuper(S1, X) is restricted to contain only
pairs (1, S2), such that S U S contains all the nodes of the join graph that have an edge labeled
by I. For each pair of the labelled neighbourhood of S; we enumerate all possible cmp-lc-lists
that contain S as their primary set and enforce the cmp-lc-list ordering constraints of Section

3.4.1 using the function enumerateCmpLcList.

Algorithm 8: enumerateCmpLcList(list, S, X,1)

1 if S = () then

2 extendCmpLcList(list, 1, X,1);

3 return;

4 end

5 M= m<in{v €S}

6 for Sy C S\ mdo

7 S1 =51 Um; Sy =8\ Sy; list.push(Sy);
8 enumerateCmpLcList(list, Sa, X, 1);

9 list.pop();
10 end

The enumerateCmpLcList(list, S, X, ) function recursively splits the set .S in two sets; S}
containing the minimum node of S according to < and Sy = S\ Si. S1 gets pushed in the
cmp-lc-list and the enumeration continues until S2 has no more elements. This procedure
ensures that the cmp-Ic-lists satisfy the ordering property described in Section 3.4.1. Finally, the
enumerateCmpLcList calls the extendCmpLcList function to recursively extend all the subsets
of a cmp-lc-list.

The extendCmpLcList(list, i, X, 1) function enumerates all possible extensions of the i-th

subgraph of the cmp-Ic-list. Its primary subgraph was extended using the enumerateCsgRec
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Algorithm 9: extendCmpLcList(list, i, X, 1)

if i < list.size() — 1 then
extendCmpLcList(list,i + 1, X,1);
else
emitCmpLcList(list,l);
end
S = list.get(i);
for N CN(S,X): N #(0do
S1 = S U N; list.put(i, Sy);
extendCmpLcList(list,i, X UN (S, X),1);
end
list.put(i, S);

O 0 NN LA W N =

==
- o

function and thus the extension procedure skips it and recursively extends all subgraphs hav-
ingindexi = 1,...,list.size() — 1. The emitCmpLcList(list, ) is the final step of our dynamic
programming algorithm and is responsible for computing the cost of the multi-way join de-
scribed by (list, ), using the query engine’s cost model and updating the dpTable entry for the
resulting subgraph.

In our example, the emitCsg({5}) method will call enumerateCmpLcList once for every la-
belled neighbourhood of {5} ([st,{6,12}]). In this case, the corresponding lists cannot be further
extended due to the ordering constraints and the emitCmpLcList will be called twice: [st|{5}, {6},
{12}], [st|{5}, {6, 12}]. In the case of {4}, the labelled neighbourhood is ([prof,{5,11}],[paper,{6}]).
Examining the case of the neighbourhood [prof,{5,11}], the recursive enumeration of the enu-
merateCmpLcList will then call extendCmpLcList for the following lists: [{4}, {5}, {11}], [{4},
{5,11}]. Finally, the extendCmpLcList will extend all the subsets of those lists calling the emitCm-
pLcList for: i) [prof]{4}, {5}, {11}], [prof|{4}, {5, 6}, {11}], [prof|{4}, {5, 12}, {11}], [prof|{4}, {5, 6,
12}, {11}] ii) [prof]{4}, {5, 11}], [prof|{4}, {5, 6, 11}], [prof|{4}, {5, 11, 12}], [profl|{4}, {5, 6, 11, 12}].

3.5 Caching framework

In this section, we describe our caching framework, used to discover cached results that can
enhance the execution of the query in hand. As depicted in Figure 3.10, query resolution starts
from the Dynamic Programming Planner, described in Section 3.4, that iterates over all possible
plans identifying the optimal execution plan. Meta-data about cached results are stored in-
memory, indexed using their canonical labels, in the Result Cache table. In order to find usable
cached results, while the planner examines all the connected subgraphs of the simplified join
graph, it issues cache checks using the canonical labelling algorithm presented in Section 3.3.2.
The benefit of all discovered cached results is examined by the cost model during the planner’s

execution and the optimal plan can contain (in part or in whole) cached query results. The
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(12}, (11}, {6}, {6, 12}, {5}, [st]{5), (6}, (12}, [st[{5), {6, 12}, {5, 6}, [st|(5, 6}, (1], (5,
11}, [st|{5, 11}, {6}, {12}], [st|{5, 11}, {6 12}], {5, 12 3, [st|{5, 12}, {6}], {5, 6, 11}, [st]{S,
6, 11}, {12}], {5, 6, 12}, {5 11, 12}, [st|{5, 11, 12}, {6}], {5, 6, 11, 12}, {4}, [prof|{4}
{11}], [prof|{4}, {5 6}, {11}], [profl|{4}, {5, 12}, {11}], prof]{4} {5, 6, 12}, {11} prof]{4}
{5, 11}], [profl|{4}, {5, 6, 11}], [prof|{4}, {5, 11, 12}], [prof|{4}, {5, 6, 11, 12}], [paper|{4}
{6}, paper\{4} {5 6}, paper!{4} {5, 6, 11}], paper!{4} {6, 12}] paper!{4}, {5, 6, 12}],
paper| {5, 6, 11, 12}] {4, 5}, [prof|{4, 5}, {1 }] [paper|{4, 5}, {6}], [paper|{4, 5}, {6,
st]{4 53}, {6}, {12}], st\{4 5 }, {6, 12}], {4, 6}, [prof]{4, 6}, {5} {11}], [prof|{4, 6}, {5,
} { 1, [profl{4, 6}, {5, 11}], [prof|{4, 6}, {5, 11 12}], [st|{4, 6}, {5}, {12} [st|{4, 6}, {5,
11}, {12}], [st|[{4, 6}, {5, 12}], [st|{4, 6}, {5, 11, 12}], {4, 11 }, [prof|{4, 11}, {5}], [prof|{4, 11},
{5, 6}], prof| {4, 11}, {5, 12} [profl|{4, 11}, {5, 6, 12}], [paper|{4, 11}, {6}], paper] {4, 11},
{5, 6}], [paper|{4, 11}, {6, 12}], [paper|{4, 11}, {5, 6, 12}], {4, 5, 6}, [prof|{4, 5, 6}, {11}],
[st]{4, 5 6} {12}], {4, 5, 11}, [paper|{4, 5, 11}, {6}], [paper|{4, 5, 11}, {6, 12}], [st|{4, 5, 11},
6}, (12}, [st|{4, 5, 11}, {6, 12}], {4, 6, 11}, [prof|{4, 6, 11}, {5}], [prof|{4, 6, 11}, {5, 12}],
[st|{4, 6 11} {5}, {12}], [st|{4, 6, 11}, {5, 12}] {4,5, 6,11}, St]{4 5,6, 11}, {12}], {4, 5, 12},
[prof|{4, 5, 12}, {11}], [paper|{4, 5, 12}, {6}], [st|{4, 5, 12}, {6}], {4, 6, 12}, [prof|{4, 6, 12},
(5}, {(11}], [prof|{4, 6, 12}, {5, 11}], [st|{4, 6 12}, {51, [st|{4, 6 12} (5,11}, 4, 5, 6, 12},
[prof|{4, 5, 6, 12}, {11}], {4, 5, 11, 12}, [paper|{4, 5, 11, 12}, {6}], [st|{4, 5, 11, 12}, {6}], {4,
6,11, 12}, [prof|{4, 6, 11, 12}, {5}, [st|{4, 6, 11, 12}, {5}], {4, 5, 6 11, 12}

Figure 3.9: Planner’s execution trace for Q.

Cache Controller module is responsible for monitoring cache requests and maintaining detailed

benefit estimations for possibly usable query patterns as well as for their materialization cost.

This information is stored in the Cache Requests table and is used to trigger the execution and

caching of profitable queries (frequently requested but not cached queries) in order to boost

the cache utilization.

The above approach introduces two main challenges:

1. Our dynamic programming planner runs on top of the simplified join graph which con-

tains star nodes, representing entire star subgraphs of the query in hand. Therefore, our

planner’s enumeration of connected query subgraphs is restricted to the enumeration of

connected skeleton-star query subgraphs. This restriction lowers the complexity of our

query planner but it introduces a challenge of locating all possibly usable cached results
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Figure 3.10: System architecture

because it avoids the enumeration of the star subgraphs. To alleviate this, we utilize our
skeleton-star canonical labels in order to perform skeleton-star subgraph isomorphism
tests, presented in Section 3.3.3, when checking for usable cached results. Our planner
enumerates all skeleton-star query subgraphs. This enumeration, along with our cache
check mechanism that examines all skeleton-star subgraph isomorphic cached results,

ensures that a// cached results matching a subgraph of the query in hand are examined.

. The check cache mechanism should be able to examine not only cached results that ex-
actly match query subgraphs but also more general results that can be used to provide
the input of a query subgraph by applying filtering or projection operations on them. In
this case, we also need to take into account optional pattern properties and cached result
indexing that can help reduce the filtering operation overhead. To tackle this problem,

we utilize a query abstraction technique presented in Section 3.5.1.

3.5.1 Query abstraction

In this section, we describe how we can locate and check the usability of results that can be

used to provide the input of a query subgraph by applying filtering operations on them. Lets

examine the following query:
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?prof worksFor ”MIT” .
?prof emailAddress ?email .

?prof name ”Mike” .

Using exact matching, our planner would only issue cache requests for query subgraphs
that contain all the bound literals and URIs of the initial query, depicted below:
?prof worksFor “MIT” . ?prof worksFor “MIT” .
?prof name “Mike” . ?prof emailAddress ?email .
?prof worksFor “MIT” .

?prof emailAddress ?email . | ?prof emailAddress ?email .

?prof name “Mike” . ?prof name “Mike” .

However, we notice that the following indexed cached result, while not examined, could

also be beneficial for answering the query, transforming it to a simple index lookup:

{ ?prof worksFor ?univ .
?prof emailAddress ?email

?prof name ?name } index by ?univ ?name

To address this scenario, we need to also examine more general graphs as well as their
indexing properties that can help reduce the filtering operation overhead. For example and in
the above case, caching the general result without any indexing might be useless, if for instance
its size was significantly larger than the size of the filtered results, as we would have to read
all its data in order to find the relevant ones. In addition, the usability of a cached result also
depends on the join operation that must be applied on it. For example, if we need to join this
result with another triple pattern according to variable ?prof, we would like to have it sorted in
order to perform a merge join operation and not a more complex and inefficient hash or sort-
merge join operation. Furthermore, we need to take into account the case of cached results
or queries that contain more complex filters on variables, projection and group-by clauses. To
achieve all these goals, we need to find an efficient way to examine which of the cached results
can provide input for a query subgraph, due to filtering, projection and grouping properties,
and search them to find the one that incurs the least cost.

To tackle this problem, we abstract our query graph. We remove all bound query nodes that
reside in the subject or object position of a triple query and replace them with variables along

with the respective equality filters. In the above example, the query would be transformed to:

{ ?prof ub:worksFor ?univ .
?prof ub:emailAddress ?email

?prof ub:name ?name } filter(?univ="MIT”, ?name="Mike”)
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We use this abstract query graph as input for our dynamic programming planner and thus
check all its subgraphs issuing cache requests. Each cache request is issued having as key the
canonical skeleton-star label of the abstract query subgraph and is accompanied by the fil-
ter,optional pattern, projection and group-by clauses of the query as well as by a request for a
join variable. As mentioned in Section 3.3, filters, optional patterns, projections and groupings
are not used to generate the canonical label and thus queries with the same abstract structure

will be grouped together using their label.

3.5.2 Result Tree

The use of canonical labels to access the Result Cache reduces the results that we need to ex-
amine for every query subgraph but we still need an efficient way to select the best result from
the list of all existing results that share the same abstract skeleton structure. Each cache record,
related to an abstract skeleton label, maintains all cached results that share this label using a
tree structure, called Result Tree. This structure can then be used: i) to efficiently perform
skeleton-star subgraph isomorphism tests and ii) to efficiently search for the best result with
respect to the request’s auxiliary information(filters, projections, groupings). Fig. 3.11 depicts

this structure for the abstract skeleton query graph used in Section 3.2:

?3 author 72 .
?3 advisor 71 .

?1 author 72 .

For better understanding, we use the canonical variable names, presented in Section 3.3.1.
In this example, we assume that our cache contains several cached results with the two follow-

ing abstract star labels:

?1 fullName 74 .
?1 emailAddress ?5 .
?1 studiesIn 77 .

7?1 type 76 .

?1 fullName ?4 .
?1 emailAddress ?5 .

?1 studiesIn 76 .

The first edges of the tree encode the abstract star labels of the existing cached results.
Each other edge contains the filtering, optionality and indexing information related to a specific
query variable. Each leaf of the tree represents a cached result and, therefore, the path that
connects it with the root node encodes all its auxiliary information. For example, an edge with
label ?4{** Index”} means that the result contains no filter on this variable and provides an index
for it. An edge labeled ?6{="MIT"} denotes that the result contains the filter 76="MIT”. A “II”
edge denotes that the respective variable is projected out in the result while an “O” edge denotes

the optionality of a specific pattern. If the query contains a group-by clause it is encoded as a
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last level edge in the cached result tree. To check the usability of cached results for a cache
request, we can traverse the tree from the root node and find the results that can be utilized to
answer it by following only the edges that provide more generic results than the query request.
When crossing star label edges, we perform a skeleton-star subgraph isomorphism test in order

to only follow the subtrees that can be used to provide input for the respective result.

~ T
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/

{(?1,125_176_0,25°243_0, {(?1,[?5_176_0,75_2430, {(?1,125_176_0,25°243_0, {(?1,[?s_176_0,%5s_243_0,
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Figure 3.11: Cached Result Tree Figure 3.12: Search Result Tree for Q)

Apart from checking the usability of cached results for a cache request, we also need to be
able to evaluate their cost and find the result that best matches each cache request. As cost of
a cached result, we refer to the amount of records that need to be accessed for using it. To esti-
mate this cost in the presence of several indexed variables and query filters, we need to extend
our tree structure with selectivity estimations and result sizes. The procedure of inserting a
cached result in the result tree can be seen in Algorithm 10. The treelnsert method recursively
adds a new leaf node, representing the current result, along with its size in number of records.
The minResults value of each tree node, visible inside each node of Fig. 3.11, represents an es-
timation of the lowest cost that can be achieved by the results of its respective subtree. Having
guarantees for the lowest cost of a subtree, we can perform the search for a cache request using
efficient A* search and prune entire subtrees that do not contain relevant results. To create
the minimum cost estimations, each leaf node contains the actual result size; we propagate this
value to the parent nodes by keeping each time the minimum value among all children. In the
case of indexed edges, we apply the selectivity estimations before we propagate the value from
the child to the parent node. If a request contains a filter on a variable that is indexed, we need

to reduce the cost of the result by the expected selectivity of the filtering operation on the index.
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Edges that contain no indexes do not change the cost of the result because we would need to

access all their data to perform the filtering operation.

Algorithm 10: cacheResult

1 function cacheResult(V, E, aux, size)

2 //V, E :vertices and edges of the abstract query graph
3 //auz : auxiliary query info(filters, projections, etc)

4 //size : the size of the result in records

5 (skeletonLabel, star Label) < canonical Label(V, E);
6 resultTree < ResultCache.get(skeletonLabel);
7
8
9

auzx.addStar Label(star Label);
treelnsert(resultTree.root, auz, size);
function treelnsert(node, aux, size)
10 if auz.isEmpty() then

11 createLeaf (size);

12 else

13 alnfo + aux.getNext();

14 if ((edge, child) = node.get Edge(alnfo)) = null) then
15 //Edge does not exist, create new

16 (edge, child) = newEdge(alnfo);

17 end

18 treelnsert(child, aux, size);

19 if alnfo.isIndexed() then

20 //compute the maximum selectivity of the index
21 maxSel < mazxSelectivity(edge);

22 results = child.minResults x maxSel;
23 else

24 results = child. minResults;

25 end

26 if results < node.minResults then

27 if results < 1 then

28 results < 1;

29 end

30 node.minResults = results;

31 end

32  end

Our cache implementation does not depend on the specific way that an RDF execution en-
gine handles selectivity estimations. To create the cached result tree we only require the max-
imum selectivity that can be achieved by doing a filtering operation on a certain index. For each
indexed edge of a cached result, we generate a selectivity value s = minRecords/total Records,
depicted along the indexed edges of Fig. 3.11. In our running example, an index on the general
result(1 million records), on variable ?7 (?univ) has a minimum amount of 1000 records and

thus its maximum selectivity is s = 1000/1m = 1073. To handle the estimation of multiple
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filtering operations on different variables we follow the independency assumption, i.e., the se-
lectivity of two filtering operations with selectivities s; and s is s = s; - so. This property
allows us to follow paths of filtering operations on the cached result tree and maintain a total
estimation by just multiplying the individual selectivities while crossing indexed edges. The
treelnsert method (Algorithm 10) starts by adding the respective leaf along with its amount
of records. We then move from the leaf to the root node and update the minimum values of
the parent nodes. When crossing an indexed edge we apply the maximum selectivity by mul-
tiplying it with the child’s number of records. We also set a minimum value of 1 for the costs
of nodes. The complexity of the add operation is linear to the size of the auxiliary query info,
which is bound by the amount of variables contained in the abstract query pattern.

As mentioned before, we use the minimum cost estimations of the tree nodes in order to
perform an A* search and prune subtrees with large costs. The search procedure starts from
the root node and checks all nodes in a best-first search according to cost estimations. Fig. 3.12
depicts the execution of the searchTree method (Algorithm 11) when searching for the follow-

ing cache request (Q,):

{ 73 author ?2 .

?3 advisor 71 .

?1 author 72 .

?1 fullName 74 .

?1 emailAddress 75 .

?1 studiesIn 77 .

7?1 type 76 .

} filter(?6=GraduateStudent, ?7="Harvard”)

In Fig. 3.12, each node contains two numbers; its estimated cost (upper number) and its
selectivity (lower number). When crossing tree edges our Algorithm checks the following prop-

erties:

+ Whether the specific edge can be used for answering the request. For example, the edge
with label ?4="Mike” will not be followed because it is more restrictive than the request.
We also check the usability of optional query patterns by applying projection and not null
filters.

+ When crossing indexed edges that match with a filtering operation of the request, we
need to apply their selectivity. For example, when crossing the edge (?7: “*Indexed”)
we need to apply the selectivity of the filter ?7="Harvard”. To do so, we consult the

selectivity estimator of the abstract skeleton-star result for the respective variable. We
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Algorithm 11: CheckCache

1 function checkCache(V, E, aux, k)

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

/1V, E : vertices and edges of the abstract query subgraph
/laux : auxiliary query info(filters, projections, etc)

/1k : search for the top-k results

(skeletonLabel, star Label) < canonical Label(V, E);
resultTree + ResultCache.get(skeletonLabel);
auzx.addStar Label(star Label);

return searchTree(resultTree, aux, k);

function searchTree(resultTree, auzx, k)

results < {};
/lopenN odes : priority queue with pairs (node, cost)
openNodes + {(resultTree.root,1)};
while openNodes # {} do
//get the open node with the minimum cost
n < openNodes.removeH ead();
if (results.size = k)and(n.cost > results.maxCost) then
//We have found k results and all open nodes have greater cost
return results;
end
processNode(n, openNodes, results, aux, k);
end
return results;

function processNode(n, openNodes, results, aux, k)

for (edge, child) € n.children() do
if s = selectivity(edge, auzx) > 0 then
child.selectivity < s * n.selectivity;
child.cost < child.minResults % child.selectivity;
if child.isLeaf() then
//maintain the k best results
if results.size < k then
results.add(child);
elseif results.maxCost > child.cost then
results.removeM ax And Add(child);

end
else
openNodes.add({child, child.cost});
end
end
end

use the abstract result to estimate selectivities because a tree edge can belong to several
results with different sizes and we want to get an estimation of the maximum selectivity.
In this case, the selectivity of ?7="Harvard” is 0.02 because it is expected to return 20

thousand records and the abstract result contains 1 million records.
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« When crossing join variable edges, we multiply the selectivity by 2, if the edge is not
indexed, due to the fact that the overhead of performing a hash or sort-merge join al-
gorithm instead of a merge join can be approximated by the time to read the input data

twice [Neumann 10a].

« For star label edges, we need to perform a subgraph isomorphism test on the star labels
in order to check the usability of the existing subtrees of results. If the star label exactly
matches the request label we do not change the selectivity estimation. In the case of
cached results that are subgraphs of the request, we need to change their selectivity in
order to reflect the cost of joining it with the remaining star triple patterns. We also need
to change the canonical variable name mapping for the specific subtree because some
of the star variables change their canonical names due to the missing patterns. In our
example, when following the right subtree the ?univ variable has canonical name ?6 and
not ?7. Concerning the selectivity estimation, we set it to 2 plus the number of the un-
joined triple patterns. This number estimates the cost of performing a sort-merge join

on top of the cached result.

To estimate the selectivity of several consecutive edges we maintain a selectivity estimation
for each open node and propagate it to children nodes by multiplying it when crossing indexed
edges with filter operations.The minimum cost estimation for each node (upper value) is com-
puted by multiplying its selectivity with the minResults estimation depicted in Fig. 3.11. The
selectivity estimation of a cached result edge according to the auxiliary query info is described
in detail using function selectivity(edge, aux), Algorithm 12.

Our cost estimations can deviate from the actual costs due to the use of the abstract result
selectivity estimator and our assumption of independency for filtering operations. Therefore,
we perform a top-k search for results and then further examine the cost of each result, inside
DPccp, using the detailed cost model of the execution engine. In Fig. 3.12, we perform a top-2
search, depicting on the side of each node the step in which it was opened. Nodes marked with
a ‘x’” were not opened; grey coloured nodes depict the results. We observe that we required
7 steps to find the top-2 cached results and our search managed to prune a large part of the
search tree due to auxiliary info mismatches and minimum cost estimations.

The irregularity of the A* search does not allow us to set a useful upper bound for this
algorithm. Of course, an upper bound for the algorithm is the maximum size of the tree stored
inside each cache record, but this bound does not take into account the intelligent pruning of
the search space performed. In the worst case, the tree search will have complexity O(r), where
r is the maximum amount of cached results that share the same abstract skeleton structure. We
note here that r is also bound by the cache size constraints, as discussed in the next Section,

and we can therefore expect that it will not grow limitless. Our checkCache (Algorithm 11),
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Algorithm 12: Selectivity estimation

1 function selectivity(edge, aux)

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

//compute edge selectivity for aux info
selectivity < 1;
if edge.isStarLabel() then
if edge.skeletonStar Subgraphlsomorphic(aux) then
auz.setNewCanonicalVariable M apping();
selectivity < 2 + patternsToBeJoined();
else
return 0;
end
else
for a € auz.get(edge.variable) do
//check edge usability
if edge.subsumes(a) then
if a.isFilter then
if edge.isIndexed then
//ilter selectivity estimation using the abstract result estimator
selectivity < selectivity * filterSelectivity(a);
end
else if a.isJoinV ariable and edge.isNotIndexed then
selectivity < selectivity * 2;

end
else
return 0;
end
end
end

return selectivity;

generates a canonical label and then performs a tree search in the respective result tree. Thus,

the canonical labelling time will, in the worst case, dominate the checkCache mechanism due to

its exponential time complexity and due to the fact that the tree search has bounded worst-case

performance. However, as shown in our experimental evaluation, our checkCache mechanism

is practical and presents acceptable time complexity for general and complex graphs.

3.5.3 Containment of SPARQL Queries

In this section, we present the query containment properties of our caching framework. We fo-

cus on conjunctive SELECT queries that contain filters, projections, groupings, orderings and

optional patterns. Nested SPARQL queries, OWL reasoning as well as more complex function-

alities such as property paths are not supported. Specifically:
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Our execution plans can utilize multiple cached results, each covering different non-overlapping
subgraphs of the query. This feature extends related SPARQL query containment approaches
that check the usability of a single cached pattern [Shu 13, Fard 14].

A usable cached result can provide input for a subgraph of the query in hand. In current ap-
proaches, the new query has to be entirely answered using a cached result [Harbi 16, Shu 13,
Fard 14].

We extend the usability of cached results by checking for filter, projection, ordering, grouping
and optional pattern usability. While filter usability is introduced in [Shu 13], addressing the
rest of these features is a novelty of this work.

Our dynamic programming planner, along with the skeleton-star isomorphism tests per-
formed in our cache checks, ensure that all results that match a subgraph of the query are

examined.

3.6 Cache Controller

In this section, we describe the functionality of our Cache Controller module. Its tasks are the

generation and caching of profitable query patterns and the cache replacement strategy. As

profitable query patterns we define queries that, even if not exactly issued by users or executed

as intermediate results, could benefit the execution of the workload if cached. For example,
consider a workload of queries having the same abstract query structure but random bound
selective IDs. Caching only the intermediate results of those queries would not offer a great
benefit to the workload because it would achieve cache hits only for queries that share the exact
same IDs. In contrast, caching the abstract query pattern indexed according to the variable
that contains the selective IDs would introduce benefits for all queries, in this special type of
workload, transforming them to index scans. Apart from identifying abstract results and their
indexing, our cache controller can intelligently identify cross-query frequent subgraphs and
index them according to: 1) their most common filtering variables and 2) their most common

join variables.

3.6.1 Generation of profitable cached results

As discussed in the previous section, our dynamic programming planner issues cache requests
for all subgraphs of the abstract query. In addition, these cache requests are issued while op-
timizing the query plan and can thus be recorded along with estimations about their effect to
the execution time of the respective query. Maintaining such a detailed log of cache requests

provides valuable information about which query patterns can provide the most benefit to the
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Figure 3.13: Benefit Estimation Tree for the cache re-
quest (Qr)

workload. The exact benefit computation of each cached request Q; = (V;, E;) to the execu-
tion ofa query Q = (V, E) would require the execution of DPccp for each one of them. To avoid
this, we use the following heuristic function, that multiplies the query’s cost by the fraction of

triple patterns covered by the subgraph, to compute a benefit estimation.

BQIQ) = (11 - cost(@Q) 62

This benefit estimation requires the optimal cost of the query Q and can be computed at
the end of our planning process. Therefore, during the planning process our planner records
all non satisfied cache requests (();) and at the end compiles a list of requests along with their
respective benefit and sends it to the Cache Controller for further processing. This means that
the complexity cost of attributing benefits to possibly usable query patterns does not affect the
execution and planning time of queries because it is done in an offline manner by the separate
thread of the Cache Controller module. The Controller maintains a Cache Requests structure
containing request benefit estimations indexed by their abstract skeleton canonical label. Each

record holds a tree structure encoding benefit estimations for requests sharing the same label.

Fig. 3.13 depicts this benefit estimation tree, generated by the addBenefit method (Algo-
rithm 14), for the cache request (Q,.) of the previous Section with benefit B = 3sec. Each
leaf of the tree represents a query pattern that can be possibly utilized for the cache request.
To attribute benefits to all possibly usable results, for all query filters we at least create the “%
Index” and the edge that contains the respective filter. Furthermore, if the record of the Cache

Requests table already contained benefits for results with filters or optional patterns that can be
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Algorithm 13: executeQuery

1 function executeQuery(query)

2 (q,aux) « abstractQuery(query);
3 //q: abstract query, aux: auxiliary query info
4 cacheRequests < {};
5 plan < DPccp(q, aux, cacheRequests);
6 results < execute(plan); //RDF engine
7  //handled offline by the CacheController thread
8  CacheController.cache Results(results);
9  CacheController.addRequestBene fits(cache Requests, I D);
10 CacheController.addResult Bene fit(q, plan);
11 function cacheResults(results)
12 //cache computed results
13 for result € results do
14 //get the respective benefit from the cache requests
15 request < CacheRequests.get(result);
16 result.bene fit < request.bene fit;
17 result.queryl Ds < request.queryl Ds;
18 cache(result, result.bene fit);
19 end
20 function addRequestBene fits(cacheRequests, gI D)
21 for (req, benefit) € cacheRRequests do
22 addBene fit(req.skeletonLabel, req.star Label, req.auzx, bene fit, I D);
23  end
24 function addResultBene fit(q, plan)
25  //update the benefit of utilized cached results
26 for result € plan.usedCachedResults do
27 newPlan < DPccpWithout Result(q, result);
28 result.bene fit+ = (newPlan.cost — plan.cost);
29 end

used for the current request, they are also followed. For example, if a previous query had a reg-
ular expression filter 7univ = “H x” we would also attribute benefits to its subtree. Concerning
star label edges, if the existing tree contains a skeleton-star subgraph isomorphic subtree, then
it is also followed in order to attribute benefit to its leafs. When existing star labels can be
utilized, we also generate more generic labels that contain both the existing and the new star
patterns. In this merge process, we use OPTIONAL patterns to handle mismatches. This ap-
proach is used to create more generic cached results by recording and augmenting star patterns
that are frequently accessed. The values inside the nodes represent the selectivity estimations
for the respective pattern. To generate these estimations we only require a selectivity estimator
of the abstract result and the total amount of records of the abstract result. We again use the
independency property to estimate the selectivities for multiple filters on different variables.

Therefore, we just need to propagate the selectivity estimation from the parent to the child
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Algorithm 14: addBenefit

1 function addBenefit(skeletonLabel, star Label, auz, bene fit, qI D)

2 //skeletonLabel, star Label : the canonical labels of the abstract query graph
3 //aux : auxiliary query info(filters, projections, etc)

4 //benefit : the estimated benefit for the query

5 //qID :the query ID

6 auz.addStarLabel(star Label);

7

8

9

benefitTree < CacheRequests.get(skeletonLabel);
treeAddBenefit(benefitTree.root, aux, benefit,1,qID);
function tree AddBene fit(node, auz, bene fit, s, qI D)
10  //s : parent node selectivity
11 if auz.isEmpty() then

12 addChild(benefit, s, qID);

13 else

14 alnfo + auzx.next();

15 if aInfo.isStar Label() then

16 newEdgel f NotExists(alnfo.get Label());
17 else

18 addChild(benefit, s,qID);

19 newFEdgel f Not Exists(“x, Index”);

20 newEdgel f NotExists(alnfo);

21 end

22 for (edge, child) € node.children() do

23 //check usability, selectivity of existing edges
24 selectivity < s x selectivity(edge, alnfo);
25 //prune subtrees with bene fit < 0

26 if (benefit — selectivity * R/thr) > 0 then
27 treeAddBenefit(child, aux, bene fit, selectivity);
28 end

29 end

30 end

node by multiplying with the selectivity of the respective edge. The benefit for each usable

result, leaf node, is:

b=DB—s-R/thr (3.3)

where B is the total benefit of the request, s is the selectivity of the result, R is the number
of records of the abstract query, and thr is the engine’s read throughput (e.g. 100k records/sec).
The second part of the equation represents the cost to read the result. In Fig. 3.13, the benefit
for a result with selectivity s3 is bs = 3sec— s3* 1m/100k ~ 3sec. We also ignore benefits that
are less than 0. For example, the non indexed abstract result, higher leaf, has selectivity 1 and
benefit b = 3sec — 1% 1m/100k = —7sec. When the benefits of all patterns are estimated, the

Cache Controller sums the previously existing benefit values with the new ones and stores the
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Algorithm 15: CacheController PeriodicProcess

1 // methods that run in configurable time or query intervals;
2 function update Bene fits()

3 //OrderedResults : benefit ordered list of cached results
4 for result € ResultCache do
5 //decrease benefit with time using decay paramater 0 < a < 1
6 result.bene fit = result.benefit x qa;
7 OrderedResults.insert(result);
8 end
9  //OrderedRequests : benefit ordered list with max size
10 for request € CacheRequests do
11 //decrease benefit with time
12 request.bene fit = request.benefit x a;
13 OrderedRequests.insert(request);
14 end

15 //remove cache requests that are not in OrderedRequests
16 removeFromCacheRequests(OrderedRequests);
17 for request € OrderedRequests do

18 //estimate cost for best requests using D Pccp
19 request.benefit = request.bene fit/estimateCost();
20 end

21 function profitableQueryGeneration()
22 //iterate in decreasing order of benefit/cost
23 forreq € OrderedRequests do

24 //proactively check cache replacement

25 evict + evictions(estimateSize(req), req.bene fit);
26 if evict.satis fied then

27 result < executeQuery(req);

28 return;

29 end

30 end

tree inside the record of the Cache Results table. The Controller, running our planner, estimates
the execution cost of the most prominent requests and maintains an ordered list of (request,
benefit/cost) pairs (Algorithm 15) used by the profitableQueryGeneration method to trigger
the caching of the most profitable queries.

The query pattern tree grows exponentially to the size of the auxiliary info of the query
request and there are various computed and maintained benefits for results that will never be
the most profitable. However, this exponential complexity does not affect our query response
times because it is done independently of the query execution. To alleviate the problem of
maintaining every benefit estimation, we utilize an offline process (Algorithm 15) that runs in
configurable timeframes (e.g., every 10sec or every 10 queries) and maintains only the top-k leaf
nodes of the Cache Requests table. Furthermore, to avoid promoting only queries with large

costs, we normalize the benefit estimation of a query pattern using its execution cost. Thus,
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Algorithm 16: cachingPolicy

1 function cache(result, bene fit)

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

evict + evictions(result.size, bene fit));

if evict.satis fied then
removeCachedResults(evict);
cacheResult(result.V,result.E, result.aux, result.size);
decreaseBenefits(result.queryl Ds);
return;

end

function evictions(size, benefit)

//cache replacement policy
evict < {};
if availableCacheSize > size then
evict.satis fied = true;
return evict;
end
/literate cached results in decreasing benefit order
for result € OrderedResults do
if result.benefit < bene fit then
evict.add(result);
if evict.totalSize > size then
break;
end
end
end
if evict.totalSize > size then
evict.satis fied = true;
else
evict.satis fied = false;
end
return evict;

function evictions(size, benefit)

for request € CacheRequests do
oldSize < request.queryl Ds.size;
//remove common query IDs
request.queryl Ds = request.queryl Ds \ queryl Ds;
newSize < request.queryl Ds.size;
request.bene fit = request.bene fit x newSize/oldSize;
end

in the previous example, if we had queries that mostly targeted “Harvard”, both the indexed
version of the abstract result and the version that contains only records for “H arvard” would

gather the same benefit but eventually the more specific result would be cached due to its lower

cost of execution.

query pattern gets selected for caching, the corresponding benefit should be removed from all

In addition, queries issue cache requests adding benefit to all their subgraphs. When one
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other patterns that were requested by the same queries as they were satisfied. Not reducing
benefits for satisfied queries can lead to: 1) executing all subgraphs of a frequent query pattern,
2) difficulties in identifying new profitable cache requests due to obsolete benefit estimations
of satisfied requests. To alleviate this problem, we maintain for each query pattern in the Cache
Requests table a list of query IDs that attributed to its benefit. This list is used to reduce the
benefit of cache requests after the execution of a profitable query. We reduce the benefit of
each request by the fraction of its query IDs that belonged to the profitable’s query ID list. In
the example above, if we decided to execute the abstract query indexed according to variable
Tuniv, all query profits would go to zero because the profitable query gathered benefit from
all workload queries. Thus, no more queries would be executed by the Controller. To avoid
maintaining obsolete benefit estimations for cache requests, we additionally decay their benefit

with time.

3.6.2 Cache replacement strategy

In this paper, we target disk based cached results keeping only their meta-data in main memory.
Thus, the amount of the maintained cached results is only limited by the available disk space.
However, the user can set limits on the disk space capacity dedicated for storing cached results.
When a new cached result cannot be stored without exceeding those limits, we need to remove
some of the existing results. To be able to intelligently select which result should be evicted from
the cache, the Controller also maintains a benefit estimation for each cached result. This benefit
estimation is updated using the method addResultBenefit (Algorithm 13) and differs from the
one described in the previous section. After the execution of a query that used a cached result,
the Controller executes the planner one more time, restricting the use of this cached result.
This gives us the cost of the query without utilizing the respective cached result. The controller
adds the difference between this cost and the actual cost to the result’s benefit value. Benefits,
also, decrease with time in order to avoid maintaining obsolete results. We prioritize cache
evictions using Algorithm 16 that utilizes this benefit estimation. New results can only evict
cached results that have less benefit. In addition, if the cache size constraints are violated, our
controller will not execute new profitable queries unless their benefit is larger than the lowest
cached result benefit. To evict multiple results, due to its size, a new result must have benefit

greater than the sum of benefits of all evicted results.

3.6.3 Complexity analysis

For a more detailed description, Algorithm 13 describes the complete processing of a SPARQL
query corresponding to Fig. 3.10. It starts with the abstraction of the query graph updating

its auxiliary info(aux). It then calls the extended DPccp planner that issues cache requests
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and records their benefit using Equation 3.2. The optimal query plan is executed and then
the CacheController thread handles the caching of produced intermediate results, the request
and result benefit attribution. The cacheResults method tries to cache all computed results
consulting our caching policy. The addRequestBenefits updates benefits for all recorded cache
requests using Algorithm 14. Lastly, the addResultBenefit method updates the benefit of all
utilized cached results. It computes their contribution to the query execution by checking the
optimal execution time computed by the DPccp without the use of the respective cached result.

Our caching policy, described in Section 3.6.2, is depicted in Algorithm 16. The evictions
function, called if the cache constraints are violated, tries to find a set of results that cover the
new result size and have cumulative benefit that is lower than the benefit of the new result.
Furthermore, the decreaseBenefits function is presented that handles the update of benefits
after the execution of a profitable result mentioned in the end of Section 3.6.1.

Lastly, Algorithm 15 presents our periodic processes. The updateBenefits method is re-
sponsible for decreasing the benefit estimations for both cached results and requests through
time. To do so it uses a configurable decay factor 0 < a < 1. It also maintains the ordered lists
of results and requests used in our other algorithms. In the case of cache requests, we remove
requests that are not in the top-k most profitable ones and also compute their execution cost.
The profitableQueryGeneration method iterates over all cache requests in decreasing order of
benefit/cost and, consulting our caching policy, selects the most profitable request for execu-
tion. It proactively checks the caching policy using an estimation of the query size, in order to
avoid executing requests that cannot be cached due to their size and benefit constraints.

The addRequestBenefits method, presented in Algorithm 13, is responsible for attributing
benefits to all possibly usable query patterns for all the cache requests issued during the plan-
ning of a query. The number of cache requests for a query graph is bound by the number of
its connected subgraphs(csg) s. For every csg the addBenefit method is called (Algorithm 14).
The worst-case time and space complexity of the addBenefit method is O(d") where d is the
maximum degree of the tree nodes (at least 3) and v is the number of variables in the query.
In total, the worst-case complexity of the cacheRequests method is O(sd”). This worst-case
complexity is dominated by: (i) the offline pruning of the benefit trees that maintains the top-k
most profitable tree nodes for all query labels and (ii) the ability of the addBenefit method to
prune entire subtrees with benefit < 0.

The profitableQueryGeneration method, presented in Algorithm 15, iterates, in a benefit
order, over the benefit estimations checking the caching policy in order to select the query that
is going to be executed and cached. Our caching policy check has linear complexity, O(res), in
the amount of cached results res because, in the worst case, it needs to check the removal of all
cached queries. Therefore, its worst-case complexity is O(req - res) where req is the number

of maintained request benefit estimations. As stated above, this number is regulated by our
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offline request pruning process in order not to grow exponcentially. The res parameter is also
regulated by the cache size constraints.

Our updateBenefits method, presented in Algorithm 15, has complexity O(res - logres +
req-creq+req-logreq+req-dp). It sorts res cached results, it maintains and sorts req of the
creq accumulated requests. It also executes req times the DPccp algorithm, with complexity dp
as presented above. The main memory space complexity of our caching framework is O(res +
req + creq) which is regulated using the configurable res and req values. The creq value is

regulated by the execution frequency of the updateBenefits method.

3.7 Experiments

In this section, we present a detailed performance evaluation of the proposed RDF caching

framework.

3.7.1 RDF engines

We have integrated our caching framework on top of three open source RDF engines:

+ RDF-3X [Neumann 10a]: we have extended the latest version® (0.3.8) of the RDF-3X
centralized engine. The respective experiments were conducted using an 8-Core Intel
i7-4820K CPU at 3.90GHz, 64GB of RAM server, with 7.5TB of disk space.

+ HoRDF+ [Papailiou 13]: we have extended the latest version® (0.2) of HoRDF+. All ex-
periments on the HoRDF+ system use a cluster of 10 worker nodes plus a single machine
in the role of the Hadoop and HBase master. Each of the workers features a 2 Quad-Core
E5405 Intel Xeon®CPUs at 2.00GHz, 8 GB of RAM and a 500GB disk, while the master
has similar CPU/disk specs and 4 GB of RAM. Each worker is set to concurrently run 5
mappers and 5 reducers, each consuming 512MB of RAM. In our experiments, we used
Hadoop v1.1.2 and HBase v0.94.5.

« TriAD [Gurajada 14]: we obtained and extended the latest version (1.0.1) of the TriAD
engine. All TriAD experiments were conducted on the same 10-worker cluster, used for
HoRDF+.

Our caching framework is independent of the query execution engine and thus changes
are mainly required inside the query planner module of the engines. RDF-3X and TriAD uti-

lize the same implementation of the DPccp dynamic programming planner, which we extend

*https://code.google.com/archive/p/rdf3x/downloads
*https://github.com/npapa/h2rdf
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Dataset Triples #S #P #0 Size
LUBM1k 153 M | 23 M 18 17M | 26GB
LUBM10k 14B 222 M 18 165 M | 276 GB
LUBM20k 15.2 B 2.3B 18 1.7B | 549 GB
WatDiv-100M | 109M | 52 M 86 18 M 19GB
WatDiv-1B 1.09B | 52M 8 | 179M | 149GB
Yago2 18 M | 10M 98 51M | 26GB
Bio2RDF 42 B 552 M | 1,714 | 1.07 B | 547GB

Table 3.1: Dataset statistics

with our caching functionalities. For HoRDF+ we replace its planner with our multi-way join
enumeration algorithm described in Section 3.4.1. Another important aspect of the imple-
mentations is the indexing and storage of cached results. In the case of HoRDF+ non-indexed
results are stored in plain HDEFS files while indexed ones are stored in HBASE tables according
to HoRDF+’s indexing scheme. For both RDF-3X and TriAD we maintain all cached results

using main-memory structures.

3.7.2 Datasets

To conduct a detailed experimental evaluation we used both real and synthetic RDF datasets
of variable sizes. Table 3.1 records for each dataset, its total number of triples, its distinct num-
ber of subjects, predicates and objects (#S, #P, #0) and its raw size in GB. First, the LUBM?®
dataset generator creates RDF datasets with academic domain information, enabling a vari-
able number of triples by controlling the number of university entities. LUBM is widely used
to compare the performance and scalability of triple stores due to its ability to create arbitrar-
ily large datasets. We used 3 LUBM datasets consisting of 1, 10 and 20 thousand universities
respectively. However, recent work [Alug 14] suggests that LUBM generates uniform data dis-
tributions while its queries are limited in complexity. WatDiv® is a test suite that generates data
from skewed and non-uniform distributions and issues queries of varying structural character-
istics and selectivity classes. We experimented with two versions of this dataset: WatDiv-100M
and WatDiv-1B. In order to test our system with real-life RDF data we also utilized the Yago2’
and Bio2RDF?® datasets. Yago2 consists of real data gathered from various resources such as
Wikipedia, WordNet, GeoNames, etc. Bio2RDF provides biological linked data connecting 24

different biological datasets.

*http://swat.cse.lehigh.edu/projects/lubm/
*http://dsg.uwaterloo.ca/watdiv/
"http://yago-knowledge.org/
®http://download.bio2rdf.org/release/2/
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3.7.3 SPARQL query canonical labelling
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Figure 3.14: Canonical labelling performance

In this section, we evaluate our SPARQL query canonical labelling algorithm. We test its
performance for various types of queries and compare it with the algorithm presented in [Pa-
pailiou 15], which is not using query simplification, denoted by a “_NS” suffix in the experi-
ments. In the following, we report results using the RDF-3X implementation, while a com-
parison between the HoRDF+, TriAD and RDF-3X implementations is presented in Section
3.7.5. The performance of the canonization process is tightly coupled to Bliss’s, with an added
graph transformation overhead. The first graph of Fig. 3.14 depicts the time required to label
different query graphs with variable number of triple patterns. We use a set of graph patterns
consisting of paths, stars, cycles, snowflakes, grids and spiders, which contains patterns with
ranging graph connectivity complexity [Alug 14, Chen 97]. The utilized SPARQL queries were
generated using the WatDiv benchmark. Ranging the size of the query graph, from 4 to 30,
we observe that our algorithm can label all query graphs in less than 1 ms. Spider graphs and
grids prove to be the most challenging cases because they contain more automorphisms and
cannot be simplified. In contrast, star queries are entirely simplified and thus require the least
amount of labelling time. The comparison of our skeleton-star simplification technique to the
non-simplified algorithm [Papailiou 15] is depicted in the second graph of Fig. 3.14. Both star
and snowflake graphs can be sufficiently simplified and their labelling times drop with respect
to their simplification. In the case of star graphs, we observe a speedup of almost 2 orders
of magnitude for queries with 30 nodes. Our algorithm performs a simple sort operation to
label stars while, in the “_NS” case, a clique graph is passed to Bliss for labelling. Snowflakes
contain multiple star patterns that are connected with each other only by their central nodes.
Therefore, all their star patters are simplified, leading to a 2x performance gain.

The third graph of Fig. 3.14 depicts the effect of having different types of triple patterns in
the queries. Different triple patterns provide Bliss with more information to prune the isomor-
phism search space. We measure the time needed to label the challenging spider queries while

ranging their percentage of unique triple patterns. We examine queries with 0% (used in the
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Figure 3.15: Query planning performance

previous experiments), 50% and 100% of the query’s patterns being unique while the rest of the
patterns are duplicates. We notice that the required labelling time decreases when queries con-
tain more unique patterns. This gain is exponential to the number of query patterns, leading to

almost one order of magnitude speedup for queries with 100% unique triple patterns.

3.7.4 Dynamic Programming Planner

In this section, we evaluate our dynamic programming planner. We report measurements for
the RDF-3X implementation while the comparison of all our implementations is presented in
Section 3.7.5. The first graph of Fig. 3.15 depicts the time required for our planner to generate
canonical labels for all the query subgraphs, check for existing usable cached results and com-
pute the optimal join plan for the set of query patterns utilized in the previous section. The
complexity of our planner depends highly on the amount of connected subgraphs of a query.
Path and cycle queries do not contain many subgraphs and therefore our planner is able to op-
timize queries with up to 20 relations in less than 15ms. Spider and grid query graphs, due to
their more complex structure and the fact that they are not simplified, present higher complex-
ity than paths and cycles resulting in sub-second response times for queries with up to 14 triple
patterns. Star graphs and snowflakes are sufficiently simplified leading to optimization times of
1ms and 38ms respectively, for queries with 20 patterns. The comparison of our simplification
technique (“_S”) to the non-simplified version (“_NS) [Papailiou 15] is depicted in the second
graph of Fig. 3.15. Clearly, the non simplified join graphs require exponential optimization
times for star SPARQL queries. The join graphs of snowflakes are also highly connected and
contain many subgraphs that increase their optimization complexity. In both cases, our sim-
plification technique manages to offer gains to the query optimization complexity. We note
that we can handle both star and snowflake queries with up to 20 patterns in less than 40 ms,
while optimizing over non-simplified graphs required nearly 10 sec for stars with 14 patterns

and snowflakes with 20 patterns.
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Figure 3.16: Labelling and planning times for RDF-3X, TriAD and HaRDF+

Another major parameter that affects the complexity of our planner is the tree search for
cached results inside a cache record. This procedure mainly depends on the amount of main-
tained cached results. As explained in Section 3.5.1, we perform a top-k A* search to find the
best result inside each cache record. The third graph of Fig. 3.15, depicts the effect of the
amount of cached results to the planners execution time, using top-3 search. We select a set
of query graphs all consisting of 10 triple patterns and range the number of cached results per
cache record by randomly generating and loading 1 to 1k cached results. We assume that 1
thousand results per unique abstract query subgraph suffice to evaluate our planner’s perfor-
mance even for the most challenging caching scenario. We note that the performance of our
planner scales well to the amount of cached results. This means that our A* search manages to
effectively prune large parts of the result trees. The time needed for our planner to evaluate the
same query in the presence of 1 and 1000 cached results per cache record only increases by a

factor of 3 for all query patterns.

3.7.5 Comparison of different implementations

Our caching algorithms have been integrated with 3 RDF engines. RDF-3X and TriAD are
based on the same C++ planner, initially created for RDF-3X. Therefore in the planning and
labelling results we omit the TriAD measurements as they are similar to the ones reported for
RDEF-3X. In contrast, HoRDF+ is implemented in Java and Bliss in C++. In this section, we eval-
uate the performance deviations among the different caching and planning implementations.
The first graph of Fig. 3.16 depicts the labelling time required for different query graphs, all con-
sisting of 10 triple patterns. As we observe, the HoRDF+ implementation has a stable overhead
compared to RDF-3X, which is due to the better integration of the C++ based code of Bliss.
However, we note that, for all engines, our query simplification achieves great speedups for
stars and snowflakes while introducing minor overheads for queries that cannot be simplified

(paths, cycles and spiders).
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Dataset Workload | Query | Distinct Total Description
Name Types | Queries | Queries
WatDiv L 5 588 5000 linear queries
WatDiv S 7 900 5000 star queries
WatDiv F 5 464 5000 snowflake queries
WatDiv C 3 27 5000 complex queries
WatDiv G 20 1979 20000 general, all query types
LUBM S 6 4621 10000 selective queries
LUBM C 3 19 10000 complex queries
LUBM SG 5 897 10000 | subgraph pattern queries
LUBM G 14 3768 10000 general, all query types
Yago2 G 7 8407 20000 general, all query types
Bio2RDF G 4 7225 10000 general, all query types

Table 3.2: Workloads

The second and third graph of Fig. 3.16 depict the planning times for both HoRDF+ and
RDE-3X, for different types of queries, all consisting of 10 triple patterns. We report measure-
ments for 4 different planning implementations: i) no caching and no simplification(_NC_NS),
ii) no caching and simplification (_NC_S) [Gubichev 14], iii) caching and no simplification
(_C_NS) [Papailiou 15], and iv) caching and simplification (_C_S). We observe that, in both
engines, the simplified versions manage to offer speedups for stars and snowflakes while in-
troducing small overheads for the rest of the queries. Lastly, we note that planners can adopt
result caching mechanisms with a small overhead (lower than 5x in all cases), which decreases

when query simplification is applied.

3.7.6 Query Workloads

To offer a detailed evaluation of our caching platform, we compile a set of SPARQL query
workloads that spans various RDF datasets, query patterns and query complexities. Table 3.2,
presents the workloads that we use in our evaluation. Starting with WatDiv, we generate for
each of its query categories (L, S, F and C) one workload containing 5 thousand queries. We
also merge all workloads together to generate the general (G) WatDiv workload consisting of
20 thousand queries. For LUBM, we create 4 workloads each containing 10 thousand queries.
The S workload contains queries with selective triple patterns. The C workload consists of
non-selective and complex query patterns. The SG workload contains complex queries with
common subgraph patterns and the G workload contains a combination of the previous. We
randomly select IDs for the bound nodes of each query ensuring high percentage of distinct
queries within each workload. For Yago2 and Bio2RDF we generate two general workloads

consisting of queries that match all the above categories.
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3.7.7 Workload queries

In this section, we present all the patterns of the workload queries.
LUBM-S: <CID>: Course ID, <PID>: Professor ID, <DID>: Department ID, <UID>: University ID

select * where {?x type ub:GraduateStudent . ?x ub:takesCourse <CID>}
select * where {?x type ub:Publication . ?x ub:publicationAuthor <PID>}
select * where {?x ub:worksFor <DID> . ?x ub:name ?n . ?x ub:emailAddress ?em .
?x ub:telephone ?t . ?x type ub:Professor}
select * where {?x type ub:GraduateStudent . ?x ub:memberOf <DID>}
select * where {?x type ub:Student . ?y type ub:Course . ?x ub:takesCourse ?y . <PID> ub:teacherOf ?y}
select * where {?x type ub:Student . ?y type ub:Department . ?x ub:memberOf ?y .
?x ub:emailAddress ?em . ?y ub:subOrganizationOf <UID> }

LUBM-C: <DT>: Department type, <ST>: Student type, <PT>: Professor type, <CT>: Course type

select * where {?z type <DT> . ?x ub:memberOf ?z . ?x rdf:type <ST>.

?z ub:subOrganizationOf ?y . ?y type ub:University . ?x ub:undergraduateDegreeFrom ?y}
select * where {?x type <ST> . ?y rdf:itype <PT> . ?z rdf:type <CT> . ?x ub:advisor ?y .

?y ub:teacherOf ?z . ?x ub:takesCourse ?z}

select * where {?p type ?tp . ?p ub:worksFor ?d . ?s ub:takesCourse ?c . ?p ub:teacherOf ?c}

LUBM-SG: <DT>: Department type, <ST>: Student type,<UID>: University ID

select * where {?z type <DT> . ?x ub:memberOf ?z . ?x rdf:itype <ST> .

?z ub:subOrganizationOf ?y . ?y type ub:University . ?x ub:undergraduateDegreeFrom ?y}
select * where {?x ub:name ?n. ?x ub:emailAddress ?e . ?x ub:telephone ?t .

?z ub:subOrganizationOf ?y . ?y type ub:University . ?x ub:undergraduateDegreeFrom ?y}
select * where {?z ub:subOrganizationOf <UID> . ?y type ub:University .

?z ub:subOrganizationOf ?y . ?x ub:undergraduateDegreeFrom ?y}
select * where {?x type <ST> . ?y type ub:University .

?z ub:subOrganizationOf ?y . ?x ub:undergraduateDegreeFrom ?y}
select * where {?x ub:memberOf <DID> . ?z ub:subOrganizationOf <UID> . ?y type ub:University .

?x ub:undergraduateDegreeFrom ?y}

Yago2-G:<N>: name, <C>: city

select * where {?p y:hasGivenName ?gn . ?p y:hasFamilyName ?fn . ?p y:wasBornln ?cl .
?p y:hasAcademicAdvisor ?a . ?a y:wasBornln ?c}

select * where {?p y:hasGivenName ?gn . ?p y:hasFamilyName ?fn . ?p y:wasBornln ?c.

?p y:hasAcademicAdvisor ?a . ?a y:wasBornln ?c . ?p y:isMarriedTo ?p2 . ?p2 y:wasBornln ?c1}
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select *

select *

select *

select *

select *

where {?al y:hasPreferredName ?n1 . ?a2 y:hasPreferredName ?n2 . ?al y:actedIn ?m . ?a2 y:actedIn ?mj}
where {?p1 y:hasPreferredName ?nl . ?p2 y:hasPreferredName ?n2 . ?p1 y:isMarriedTo ?p2.
?pl y:wasBornln ?c . ?p2 y:wasBornlIn ?c}
where {?p1 y:hasGivenName <N> . ?p y:hasFamilyName ?fn . ?p y:wasBornln <C> .
?p1 y:hasFamilyName ?fn . ?p1 y:hasGivenName ?gn . ?p1 y:wasBornlIn ?c .}
where {?p1 y:hasGivenName <N> . ?a2 y:hasPreferredName ?n2 . ?al y:wasBornIn ?cl .
?a2 y:wasBornIn ?c2 . ?al y:actedIn ?m . ?a2 y:actedIn ?mj}
where {?p1 y:hasGivenName <N> . ?p2 y:hasPreferredName ?n2 . ?p1 y:isMarriedTo ?p2.

?pl y:wasBornln ?cl . ?p2 y:wasBornln ?c}

Bio2RDF-G: <JID>: journal title, <DID>: description name, <ID>: identifier

select *

select *

select *

select *

3.7.8

where {?s label ?1 . ?s type ?t. ?s identifier <ID> . ?s inDataset ?d . ?s mesh_heading ?h .
?h mesh_descriptor_name ?dn . ?h label ?11 . ?h type ?t1 }

where {?s label ?1. ?s type ?t . ?s identifier ?id . ?s inDataset ?d . ?s mesh_heading ?h .
?h mesh_descriptor_name <DID> . ?h label ?11 . ?h type ?t1 }

where {?s label ?1. ?s mesh_heading ?h . ?hlable ?1 }

where {?s label ?1 . ?s type ?t . ?s identifier <ID> . ?s inDataset ?d . ?s pb:journal ?j .
?j pbjjournal_title <JID>. ?j pb;journal_volume ?v }

Caching different query patterns

In this section, we evaluate the efficiency of our caching framework using a diverse set of query

patterns and caching approaches. We focus on the RDF-3X implementation and the WatDiv

workloads. A comparison between all RDF engines and datasets is presented in Section 3.7.11.

To evaluate all alternative caching techniques we test the following combinations:

1) Original: The original query engine without any caching.

2) CS:

The discovery of a relational schema using characteristic sets (CS) can be exploited to

improve SPARQL query efficiency [Pham 15]. To test the effect of using such approaches, be-

fore executing each workload we use the discovered schemas’ to create the respective cached

results. We also index the initial results according to primary and external keys and use op-

tional query patterns for table columns that can receive null values.

3) EX-NS: caching with exact cache checks (without abstracting the query graph) and without

query simplification [Papailiou 15].

4) EX-S: caching with exact cache checks and query simplification.

5) AB-NS-PR: caching with abstract cache checks, profitable result execution and without query

simplification [Papailiou 15].

’http://homepages.cwi.nl/~boncz/emergent/
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Linear queries (type L)

WatDiv-100M WatDiv-1B
RDF3X Plan|Check|Execute |Profitable| Total|| Plan|Check| Execute|Profitable Total
Original 1.91 - 20.97 -1 22.88|| 1.70 -| 185.89 - 187.60
CS 2.23| 0.13 19.03 - 2140}| 1.71| 0.24| 150.44 - 16191
EX-NS 1.93| 0.52 2.14 - 4.59| 1.62| 0.52 18.37 - 20.52
EX-S 2201 0.37 1.85 - 443 1.76] 0.35 15.24 - 17.36
AB-NS-PR|| 1.95| 0.25 2.04 0.08 4.25( 1.62| 0.50 13.59 0.05 15.78
AB-S-PR 2211 0.21 1.77 0.04 4.19|| 1.75| 0.25 9.05 0.34 1141

Star queries (type S)

WatDiv-100M WatDiv-1B
RDF3X Plan|Check|Execute |Profitable| Total|| Plan|Check| Execute|Profitable Total
Original 5.73 - 6.10 -| 11.83|| 4.65 - 49.12 - 53.76
CS 1046 9.91 2.57 -l 2294 9.34| 9.97 18.80 - 38.12
EX-NS 10.29] 9.99 4.63 -l 24.91| 9.32| 10.09 34.68 - 54.08
EX-S 448| 045 4.92 - 9.84|| 3.46| 0.45 38.53 - 42.44
AB-NS-PR|[10.41| 9.98 0.71 0.61| 21.70|(10.45| 10.19 3.78 0.10 24.51
AB-S-PR 4,201 0.55 0.70 0.57 6.02|| 3.27| 0.55 4.41 0.19 8.42

Snowflake queries (type F)

WatDiv-100M WatDiv-1B
RDF3X Plan|Check|Execute |Profitable| Total|| Plan|Check| Execute|Profitable Total
Original 5.19 - 74.67 -l 79.86| 4.69 -1 1019.74 -1 1024.42
CS 4.82| 046| 60.02 -|  65.30| 7.16| 10.51| 812.86 - 830.52
EX-NS 7.42| 11.57| 16.04 -|  35.03| 6.92| 11.07| 188.30 - 206.29
EX-S 443 1.22| 1693 -| 2257 3.84| 0.71] 201.60 -l 206.15
AB-NS-PR|| 7.49| 11.48 2.98 0.78| 22.73|| 6.93| 11.20| 103.58 1.87| 123.59
AB-S-PR 4.37| 0.66 3.92 0.62 9.56|| 3.83| 0.60 57.13 6.35 67.91

Complex queries (type C)

WatDiv-100M WatDiv-1B
RDF3X Plan|Check|Execute |Profitable| Total|| Plan|Check| Execute|Profitable Total
Original 1.17 -1 7847.97 -17849.14|| 2.52 -154007.70 -154010.30
CS 3.55| 0.69| 843.37 -| 847.61| 3.25| 0.70| 6278.80 -| 6282.75
EX-NS 3.50| 8.45| 668.17 -| 680.11|| 3.14| 8.26| 3872.80 -| 3884.19
EX-S 2.32| 3.96| 671.86 -| 678.13| 2.29| 3.62| 3888.41 -1 3894.32
AB-NS-PR| 3.51| 831| 4745 567 64.94| 3.26| 8.34| 424.22 2.29| 435.82
AB-S-PR 2.28| 3.83 43.38 1.10] 50.59| 2.29| 3.61| 421.12 249| 427.02

All queries (type G)

WatDiv-100M WatDiv-1B
RDF3X Plan|Check|Execute |Profitable| Total|| Plan|Check| Execute|Profitable Total
Original 14.00 -1 7949.72 -17963.721/13.57 -155262.45 -155276.09
CS 21.06| 11.19| 924.99 -| 957.24(|21.46| 21.43| 7260.91 -1 7313.31
EX-NS 23.15| 30.52| 690.97 -| 744.64|(21.00| 29.94| 4114.15 -1 4165.10
EX-S 13.43| 599| 695.56 -| 714.98(/11.35| 5.13| 4143.80 -1 4160.27
AB-NS-PR|[23.37| 30.02 53.18 7.14| 113.63|22.27| 30.23| 545.18 4.31| 599.70
AB-S-PR ||13.06] 5.26 49.78 2.33| 70.38||11.16] 5.01| 491.72 9.37| 514.76

Table 3.3: WatDiv execution times (sec) for alternative caching techniques
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5) AB-S-PR: caching with abstract cache checks, query simplification and profitable result exe-
cution.

Table 3.3 reports, for each WatDiv workload, the breakdown of time spent in each phase of the
query execution. We measure the total time required for executing the entire workload and the
amount of time spent in query planning, checking for cached results, actual query execution
and profitable result execution. The results for all the WatDiv-1B and the WatDiv-100M-G

workloads are also presented as stacked bar charts in Figures 3.17-3.22.

Starting with linear queries (L), both planning and check cache times are small for all sys-
tems. This is expected by their limited amount of subgraphs and the results presented in the
previous sections. We note that, in this case, the overhead of checking for cached results is
almost negligible and does not largely deviate, regardless of using query simplification or not.
We also observe that abstract query caching and profitable results generation can speedup the
workload execution by almost an order of magnitude, while building cached results using the
relational schema (CS) is not effective providing approximately a 10% speedup. Linear queries

are paths involving multiple tables, requiring joins even when using star-based CS indexing.

Inspecting star queries (S), a big percentage of the workload execution time is spent for
planning and checking for cached results. This workload type highlights the effects of query
simplification. Non-simplified versions spend almost 2 x and an order of magnitude more time
in planning and checking the cache respectively. Simplifying the query graph can lead to less
efficient query plans, this is depicted by the increase of execution time between NS and S ver-
sions. However, the reduction of planning times proves larger than this increase. Star queries
are also a good match for the CS technique. In most cases, they refer to a specific table trans-
forming the query to a simple scan. This is observed by the large reduction of the execution
time between the Original and the CS versions. This workload also includes a high percentage
of distinct queries, highlighting the effects of query abstraction which provides around 10x

improvement compared to the exact caching versions.

For snowflake queries (F), we observe a similar behavior in planning and caching times
caused by query simplification. However, simplification leads to a large increase of actual exe-
cution times due to sub-optimal plans. Additionally, the effect of the CS approach is not that

profound because snowflake queries often span more than two tables, requiring join execution.

Complex query workloads (C) dedicate most of their time in actual query execution. The CS
technique takes advantage of the discovered schema and provides approximately 10x speedup
for this workload. However, the execution of such queries can be further improved by main-
taining more complex cached results. Exact caching reduces the workload execution time by
almost an order of magnitude, while abstract caching offers more than two orders of magnitude

speedup.
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Figure 3.23: Execution time breakdown for various WatDiv workloads and different caching techniques

To sum up, the characteristics of all discussed query categories affect the execution of the

general workloads (G). As expected, complex queries occupy the majority of the actual execu-

tion time. In contrast, star and snowflake queries occupy the majority of the planning time.
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However, query simplification effectively reduces planning and cache checking times. In addi-
tion, query abstraction is used to effectively trigger the caching of profitable results that improve

execution times by almost two orders of magnitude.

3.7.9 Caching effect over time
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In this section, we use all LUBM10k workloads and the HoRDF+ system to test the caching
effect with respect to time. For each workload, we examine the impact of our cache imple-
mentation to the average query response time. Figures 3.24-3.27 present the respective results
for: 1) the baseline HoRDF+ system, 2) our caching implementation with exact cache checks
and simplification labelled “EX-S” and 3) our fully functional system with query simplification,
abstraction and profitable result generation labelled “AB-S-PR”. In all cases, we use unlimited
cache size. We average query response times using a window of 10 queries in order to avoid
large randomness and achieve quick responsiveness to the cache changes. Finally, our Cache
Controller is configured to check the Cache Requests table and generate profitable queries ev-

ery 10 sec.

Fig. 3.24 illustrates the results for the selective workload (S). Initially, we note that our
baseline HoRDF+ system has an average performance that ranges between 1 and 2.5 seconds.
This is expected due to the use of centralized joins that take advantage of HBase indexes. This
workload contains random selective IDs and high percentage of distinct queries. Therefore ex-
act caching fails to effectively improve performance. In contrast, when using query abstraction
we can effectively discover and cache profitable queries, resulting in an average response time
of 0.5sec after 400 seconds.

The average response times for the complex query workload (C) are presented in Fig. 3.25.
This workload is a lot more execution-intensive than the previous one, leading to an average
response time of nearly 130 sec for the plain HoRDF+ approach. However, our fully functional
caching system is able to achieve interactive, millisecond-range response times for this work-
load in less than 1000 seconds (over 2 orders of magnitude reduction in the mean response
time). The abstract caching technique only requires the execution and indexing of 3 results to
offer interactive response times for this workload. The time required to execute these queries
is around 400 sec. The additional time required to minimize the average response times is in-
troduced by: 1) the fact that the result discovery process will not be very effective until enough
entries are gathered in the Cache Requests table and 2) the concurrent execution of workload
queries affects the execution time of profitable queries. We notice that the exact cache version
can also benefit this workload but it needs nearly 1500 sec to do so. There are only 19 distinct
queries in workload C and, thus, only when all of them are executed once the average response

time drops.

Fig. 3.26 depicts the results of the subgraph pattern workload (SG). We observe that both
caching versions are presenting similar average response time behaviors. This is due to the
fact that the common query pattern, despite its execution complexity, is quite selective. Both
caching techniques can detect and cache this inter-query dependency, leading to interactive

execution times after only 240 sec. After caching the common subgraph, the abstract cache
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version will also continue caching indexed results for all the query types of the workload. This
procedure leads to another small gain, which can be seen after 650 sec.

The caching efficiency for the general workload (G) is depicted in Fig. 3.27. We observe that
this is a quite challenging workload for our baseline HoRDF+ engine as it presents an average
response time of around 60 sec. Exact caching is able to reduce the average response time by
an order of magnitude resulting in average response times that oscillate around 3 seconds after
2000 seconds. Using query abstraction we manage to reduce the average response time by two
orders of magnitude for this challenging workload. As mentioned in Section 3.6.1, our Cache
Controller prioritizes the execution of profitable queries according to their expected benefit,

resulting in a smooth and gradual query speedup.

3.7.10 Dataset Size and Caching Policy effects

Fig. 3.28 depicts the caching performance for LUBM10k-G and LUBM20k-G workloads. The
major differences between the two cases are:

+ The average response time in the beginning of the execution is larger for LUBM20k.
When increasing the dataset size, the response time for non-selective queries increases
respectively while the performance of selective queries remains almost stable. This is why

the baseline average response time increases but remains less than double.

+ The time needed for our caching framework to give milli-second-range average response
times increases. While for LUBM10k our framework requires 1300 sec, 2000 sec are
required for fully caching the general workload for LUBM20k. This is due to the fact that
most of the profitable queries are non-selective, thus their execution time increases along

with the dataset size.

To evaluate the effectiveness caching policy heuristics described in Section 3.6, we execute
LUBMI10k-G three times: 1) with unlimited cache and without using our benefit estimation to
discover profitable queries, 2) with unlimited cache and using the proposed benefit estimation,
3) with benefit estimation and 2GB cache size. The experimental results are presented on Fig.
3.29. For the no estimation policy, instead of maintaining benefit estimations we just maintain
a counter for each cache request, incremented by 1 each time the query graph is requested. We
observe that both policies can eventually minimize the average response time of the workload
but the proposed simple benefit-based approach manages to smoothly decrease the response
times by caching the profitable queries in the most suitable order. In contrast, the policy that
uses no benefit estimations leads to large deviations in the average response time due to the

fact that costly queries happen to get cached later than selective queries. When limiting the
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cache size, we note that the large output of LQ15 cannot be cached, while all the rest cached

results fit inside our cache, requiring nearly 1.7GB of disk space. LQ15 requires 182 sec to be

executed by HoRDF+. While all other queries present interactive response times after 800 sec,

the execution of LQ15 triggers the oscillations of the average response time.

3.7.11 Caching on different RDF engines
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Figure 3.38: Effectiveness of caching techniques

In this section, we use the general workloads (G) of Table 3.2 and compare their total exe-
cution times on HoRDF+, RDF-3X and TriAD. Figures 3.31-3.36 present the respective results.
We note that TriAD proves faster in all workload cases due to its distributed main-memory
query processing. Although HoRDF+ performs centralized execution for selective queries, it
fails to achieve the millisecond range response times offered by RDF-3X and TriAD. However,
when the dataset sizes grows larger it gains performance by utilizing multiple resources. Re-
gardless of the query engine, we observe that our caching techniques equally affect all systems
and achieve up to 3 orders of magnitude speedup for challenging query workloads and large

datasets.

3.7.12 Caching techniques comparisson

To present a more detailed comparison of all different caching techniques for RDF data we use
the Detailed Cost Saving Ratio (DCSR) metric presented in [Kotidis 99].

. S;
DOSR = =i (3.4)
D icq Ci
where c¢; is the execution cost for query ¢; without utilizing the cache and s; is the savings

provided by using the cache:

0, if ¢; does not use the cache
5 =1 ¢, if there is an exact match for ¢; (3.5)

¢; — cfi, if ¢; uses the cache and has cost cf;

DCSR captures the different effectiveness of the materialized results against the workload

queries and can be used to accurately compare different caching techniques.
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The DCSR(%) measurements, for our generic workload LUBM-10k-G, for four different
RDF caching techniques are presented in Fig. 3.38. To compare our system to the related
RDF caching techniques we choose as baseline the AET-based caching [Yang 11] which caches
normalized join execution trees and is the most efficient among the related work systems. We
also compare the effectiveness of our techniques for: 1) utilizing more general results using
the abstract cache requests, 2) generating profitable results using our benefit estimations. Fig.
3.38, shows that our fully functional cache implementation can achieve the best cost saving ratio
stabilizing to 96% after 350 queries. We also note that the cache efficiency is reduced by nearly
15% when removing our abstract request functionality and another 4% when removing the
discovery of profitable results. Lastly, our system outperforms the AET based caching by nearly
24% due to its ability to utilize all possibly usable cached results. The cost savings achieved by
the AET based technique are limited to the caching of non-selective queries that do not vary
much across the workload. The efficiency difference compared to our cache would increase for

workloads with more variable query types and filtering values.

119



120



CHAPTER 4

Network Data Analytics

4.1 Introduction

The Internet has become the dominant channel for innovation, commerce, and entertainment.
Both Internet traffic and penetration increases at a pace that makes it difficult to track Internet
growth and trends in a systematic and scalable way. Indeed, recent studies show that Internet
traffic continues to grow by more than 30% annually as it has done the last twenty years and
is expected to continue at the same pace in the future [Cisco 13]. Yet, operators and admin-
istrators have to perform fast and large scale analytics in huge network datasets to optimize

parameters regarding network routing, dimensioning, accountability and security.

Network datasets collected at large Internet Service Providers (ISPs) and Internet Exchange
Points (IXPs) have been at the forefront of network analytics. ISPs serve, depending on their
footprint, thousands to tens of millions of end-users daily and facilitate billions of network
connections [Poese 10]. IXPs consist of physical machines (core switches) to facilitate traffic
exchange among different types of networks [Chatzis 13a]. Some of the most successful IXPs,
connect more than 600 networks and are handling aggregate traffic that is peaking at multiples
of TB per second. To put this traffic into perspective, on an average business day in 2013, one of
the largest IXPs, AMS-IX in Amsterdam, exchanged around 25 PB while AT&T and Deutsche
Telekom reported carrying 33 PB and 16 PB of data traffic respectively [Chatzis 13a].
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To monitor traffic at that scale, specialized technologies such as sFlow" or NetFlow” are
used. An sFlow record contains Ethernet frame samples and captures the first 128 bytes of each
sampled frame. This implies that in the case of IPv4 packets the available information consists
of the full IP and transport layer headers (i.e., source and destination IPs and ports, protocol
information, and byte count) and 74 and 86 bytes of TCP and UDP payload, respectively. These
records are then collected in a centralized location for processing. Typically data scientists
that analyze these records rely on centralized approaches to execute queries. NetFlow does
not capture part of the payload but only source/destination IP and port, interface, protocol,
and type of service information. Centralized processing of sFlow or NetFlow is not scalable
when it comes to processing multiple TB of data. Moreover, it is challenging to efficiently
execute join or filtering queries, e.g., for a particular time period. Other related distributed
approaches [Lee 13, Bumgardner 14] have been proposed to tackle the scalability issue, but
failed to address the issue of fast execution of join and filtering queries.

To overcome the aforementioned problems related to both scalability and efficient query
executions, we design and implement Datix: a scalable, network traffic data analysis system
that can efficiently handle data in the form of a classic star schema [Gopalkrishnan 99]. Our
system is based on distributed techniques of data analytics, such as MapReduce [Dean 08] and
is capable of solving the more general problem of log processing as described in [Blanas 10].
Our goal is to implement efficient distributed join algorithms to combine the information from
a main dataset, in our case being the sFlow data collected at an IXP, with additional comple-
mentary information provided by secondary datasets, such as the mapping of IP addresses to
their corresponding AS, IP geolocation, and IP profile information, e.g., reverse DNS lookup as
reported by Internet measurement studies such as ZMap [Durumeric 13].

Our contributions can be summarized as follows:

+ We introduce a smart way of pre-partitioning the dataset in files that contain records of

a certain range of values, so as to facilitate data processing and query execution.

+ Using this particular partitioning scheme we are able to efficiently execute filtering queries,
for example across a certain time period, avoiding the need to process the entire dataset

but instead accessing only the necessary files.

« We integrate these features into Datix, an open—source3, SQL compliant network data
analysis system by implementing distributed join algorithms, such as map join [Blanas 10]
in combination with custom-made user-defined functions that are aware of the underly-

ing data format.

thttp://www.sflow.org/
*http://www.cisco.com/c/en/us/products/ios-nx-os-software/ios-netflow/index.html
*https://github.com/dsarlis/datix
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4.2 System Description

Datix operates on top of cloud or dedicated computing resources and runs user queries on
data that reside in distributed file systems such as HDFS [Shvachko 10] or HBase [Chang 08].
It uses either Hive over Hadoop [Thusoo 09] or Shark over Spark [Zaharia 10] to run dis-
tributed MapReduce jobs, generated by translating the user queries from an SQL-like language
(HiveQL). Datix divides input datasets in two categories. The first category is the central (log)
dataset which in our case is the sFlow data collected at the IXP for its operational purposes.
This dataset is the central table of our star-schema data formulation and needs to be joined with
several other datasets (meta-datasets) on one or several of its columns. In our IXP data case,
as well as in the general log processing case [Blanas 10], this dataset is expected to be orders
of magnitude larger than the rest meta-datasets. Apart from the log dataset, Datix supports
the import of several meta-datasets which, in this study, are the IP to AS and IP to Country
mappings® and the IP to reverse DNS lookup mapping®. We choose to use these meta-datasets
for our analysis because they are publicly available sources. Nevertheless, Datix supports the
import of arbitrary meta-datasets even proprietary ones depending on each user’s preferences.
Meta-dataset sizes can range vastly according to the information they provide. In order to han-
dle all meta-dataset cases, we divide them in two categories: (i) the small sized ones that are in
the order of several MBs and can fit in the main memory of mappers (i.e., a single process entity
in the MapReduce terminology) and (ii) the large sized ones which are bigger and do not abide
to the main memory constraints of mappers. Small sized meta-datasets are stored in HDFS
files while large sized ones are stored in HBase tables, indexed according to their star-schema

join attributes.

By joining raw traffic data with meta-data using Datix, it is possible to efficiently answer
important operational queries, such as heavy hitter queries, e.g., which are the most popular
IPs, AS-pairs, or ports by volume or by frequency of appearance, summary queries, e.g., the
aggregated traffic per AS or IP, or range queries, e.g., which are the IPs that are active in two
different time periods (when denial of service attacks took place) that are responsible for more
than 1% of the overall traffic and more than 3% of the HTTP request traffic.

Figure 4.1 illustrates the architecture of Datix. A graphical interface assists the user to pro-
vide custom query parameters. Then, Datix takes over and appropriately rewrites the user input
to HiveQL compliant queries (upper part of Figure 4.1) that can be forwarded to the Processing
Engine layer comprised by either Hive or Shark. The Processing Engine layer handles the query

execution by translating the HiveQL input to a sequence of distributed processing jobs that take

*http://dev.maxmind.com/geoip/legacy/geolite/
*http://scans.io/
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Figure 4.1: Datix Architecture

input from the required Datix datasets stored in HDFS or HBase (lower part of Figure 4.1). In
detail, Datix consists of the following four layers:

Datix Partitioner/Indexer: This layer is responsible for pre-partitioning the datasets, ac-
cording to user-specified partitioning attributes while utilizing a K-d Tree [Louis 75] (Section
4.3.3). These attributes can be either join attributes (e.g., source and destination IP) or filtering
attributes (e.g., timestamp, protocol, port). Our pre-partitioning aims to achieve a number of
optimization objectives:

+ Meta-data required for the processing of each partition of the log data must fit in a mapper’s
main memory in order to perform efficient map-joins [Blanas 10].

« Large sized meta-datasets should be efficiently indexed in order for mappers to be able to
retrieve their respective meta-data with minimum overhead.

+ Apart from join attribute partitioning the log dataset must be partitioned according to filter-
ing attributes that are used to efficiently run queries on a subset of the log dataset.

Furthermore, large meta-datasets are indexed using HBase.

Storage Engine: This layer stores and indexes all necessary datasets. Each partition of
the log dataset is stored in a separate HDFS file while the partitioning information (K-d Tree)
is also stored in HDFS. As mentioned before, small meta-datasets are stored in HDFS while
larger ones are stored and indexed using HBase.

Processing Engine: This layer is responsible for the distributed execution of HiveQL queries

that take input from the respective Datix datasets residing in HBase. In particular, either Hive
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or Shark produces a multi-step plan for executing the query in accordance with the number of
actions requested.

Datix SQL Rewriter: This module is responsible for translating the user input preferences
into a HiveQL query that both Hive and Shark can interpret and execute. The Datix Rewriter
utilizes custom made user-defined functions in order to inject Datix related code inside the
HiveQL query execution. It also consults the K-d Tree partitioning scheme, stored in HDEFS, in
order to apply filtering constraints and reduce the query input to only the required partitions.
One of the desired properties of the K-d tree is to locate the portions of a dataset that has to be
processed and thus avoid unnecessary processing (Section 4.3.3). Hence, with this scheme it is

possible to efficiently execute range queries e.g., for a particular time period.

4.3 Description of Algorithms

In this section, we give an overview of the suite of distributed join algorithms currently imple-
mented in Datix. We present the two major types of algorithms implemented: (i) when the
meta-dataset is small enough to fit in the main memory of a map task (Sections 4.3.1, 4.3.2),
and (ii) when the meta-dataset does not fit in memory (Section 4.3.3). Even though Hive and
Shark support map-joins, there are some prerequisites that have to be fulfilled. First, map-joins
need to be equi-joins and second, one of the two tables should be small enough to fit in a map-
per’s main memory. In the following sections, we describe how Datix manages to overcome

the aforementioned restrictions in each case.

4.3.1 Map equi-join

Problem Statement: For two tables, a large table L and a small table .S, the goal is to perform
the equi-join L <7, .—g.. S on a specific characteristic (column) ¢ of the two tables, with |S| <
|L|, so that S can fit in the main memory of a mapper task. This assumption holds true for the
case of IP to AS and IP to Country mapping files which are less than 12 Megabytes in size each.

Instead of using the basic, shuffle join, implementation of Hive which requires a lot of disk
I/O and data transfer, we utilize a join method based on the map-join technique [Tang 11] and
more specifically, on Broadcast Join as described in [Blanas 10]. Our map equi-join performs
the join operation during the map phase. At each node, S is retrieved from HDEFS and stored
locally in the Distributed Cache of each mapper. Each map task then uses an in-memory hash
table to join a split of L with the appropriate records of S.

In the beginning of a map task, it is checked whether S has already been stored in memory.
If not, the hash table containing the key-value pairs of S' is built. Then, while each record of

L is processed, the map function extracts the join key and searches the hash table to produce
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the desirable join output. We note here that this process only transfers the small table S to
all cluster nodes and thus avoids the costly data shuffling of the large table L, minimizing any
time consuming data transfers. However, a possible drawback is that S has to be loaded several
times, since each mapper runs as a separate process. This can be optimized by loading S only

once per node, using a shared memory among mappers.

4.3.2 Map theta-join

Problem Statement: Similar to Section 4.3.1 consider the case where we have two tables L
and S but now the goal is to perform a compound theta-join on a specific column, i.e., our goal
is to compute L DX, ¢>5.c; AL.c<S.c; S- The rational is that the files containing the IP to AS and
IP to Country mappings consist of IP ranges that are part of an AS or country dataset and not a
record for each IP address with its corresponding information. Thus, it is clear that we cannot
perform an equi-join without blowing up the size of files from a few MB to some Gigabytes.
To perform the theta-join required, we must now use a different data structure rather than
a hash table and so we choose to design our algorithm using an order-preserving data structure,
such as a TreeMap. The methodology, in this case, consists of the following steps. We transfer
table S to each map task and import it in a TreeMap main memory structure. To produce the
join results, for each record of L we extract the join key and perform a range search against the
TreeMap structure. We integrate this functionality in Hive and Shark by using custom made

user-defined functions that are responsible for the aforementioned operations.

4.3.3 Map equi-join with large meta-dataset

Problem Statement: The definition of the problem is almost identical to this in Section 4.3.1
except for the fact that now S is quite large and cannot fit in a mapper’s main memory as
a whole. An example of this restriction is the IP to reverse DNS lookup mapping file which
is around 57 Gigabytes in size. In this case, we must follow a slightly different approach to
implement a map-join and avoid unnecessary data transfers. In particular, the key idea here is
that each sFlow data file contains a limited number of unique IP addresses and thus, it is not
required to transfer the entire mapping file into memory but only the portion that contains
the information about these unique IPs (see semi-join in [Blanas 10]). Our approach is to pre-
partition the sFlow data. Knowing beforehand the range of IPs in each file we can retrieve the
respective records from HBase. Thus, utilizing the order-preserving storage of HBase we can
perform range scans and transfer only the required IP to reverse DNS (IP-DNS) pairs into a
mapper’s memory.

Pre-partitioning can be performed using various approaches but we turn our attention to-

wards two methods:
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Method 1: Static partitioning. The first approach in partitioning is to use a uniform partition
scheme across the join fields (IP addresses) of the log dataset. The meta-data required for each
partition of the log (sFlow) dataset should fit in the main memory of a map task. In our IXP use
case, we divide the IP-DNS meta-dataset in chunks of IP-DNS pairs that can fit in memory, and
then apply the same uniform partitioning to the sFlow data. We must take into account that
each sFlow file contains a source and a destination IP. Thus, the partitioning needs to be in two
dimensions with each one corresponding to one of these IP types. This way of partitioning the
dataset is quite straightforward. However, it fails to produce balanced output sFlow data files.
This particular partitioning scheme does not consider the distribution of IP addresses in the
sFlow files and hence, which IP pairs tend to exchange more traffic than others. Furthermore,
the number of output files is quite large without being equally balanced in size (actually a lot
of files end up empty) which results in poor performance during the partitioning phase. The

implementation consists of two steps:

(i) Partitioning: A MapReduce job is responsible for performing the actual partitioning
after defining the split points from the mapping file and produces sFlow files containing records
with IP addresses in a given range as well as files containing the actual unique IPs in every chunk.

This process is done off-line before any actual query is issued.

(ii) Query: The second step is to integrate the creation of the hash table containing the
unique IP to reverse DNS lookup pairs and the equi-join implementation logic in a user-defined

function which is aware of the underlying partitioning scheme.

Method 2: Dynamic partitioning. The second approach overcomes the restrictions and prob-
lems of the aforementioned method by using a dynamic data structure for partitioning the
dataset, called K-dimensional Tree (K-d Tree) [Louis 75]. This data structure is well suited,
among other alternatives (e.g., R-Tree), for space partitioning such as the one we are interested
in for the following reasons: (i) it leaves no empty space when partitioning the data, (ii) it en-
sures that all output files will contain a balanced number of records, and (iii) it allows multiple
dimensions in data partitioning. This last feature leads, naturally, in an efficient way of exe-
cuting multi-dimensional filtering queries. Although the K-d Tree structure does not perform
efficiently when the number of dimensions increases beyond a certain limit, it is suitable for our
cause since the number of dimensions for the important analytics queries in the sFlow dataset
does not exceed 10. For values close to 10 the performance of K-d Tree is slightly reduced but

nevertheless it is still quite acceptable. There are three steps:

(i) Sampling: First, a relatively small (about 1%) sampling of the input data is performed to
create the K-d Tree that holds the information of the split points used during the partitioning
step. During the sampling step, the number of maximum records m that each file will contain

after the partitioning has taken place, is also set. This value is chosen to allow the creation of
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Figure 4.2: Join Execution using K-d Tree.

similar in length log table partitions while their size is close to the HDES’s predefined block size

for well-balanced load distribution among mappers.

(ii) Partitioning: The second step is the use of the K-d Tree for partitioning the dataset
according to the split points specified in the previous step. This process is executed in a separate
MapReduce job that outputs the log table partition files that contain data within a hypercube of
the partitioning space attributes and files containing the unique join values present inside each
partition, in ascending order. The latter information is used to efficiently retrieve the respective

meta-data values from the HBase indexed meta-datasets.

(iii) Query: The final step is to construct a user-defined function that integrates the above
described functionality. The operations of this function are clearly illustrated in Figure 4.2. The
user-defined function takes as input a join attribute (e.g., IP) and the K-d Tree structure. It uses
the partition’s join range as well as the file that contains the unique join values of the respec-
tive partition in order to transfer the relevant meta-data to a mapper’s memory. Essentially, it
follows a merge join technique between the unique join values and the HBase indexed meta-
dataset. When the relevant meta-data are retrieved, an equi-join similar to that in Section 4.3.1

produces the join output (see Algorithm 17).

As mentioned before, the required IP-DNS pairs are transferred from HBase, a fact that
renders network throughput a determining factor for the system’s performance. In order to
make the HBase merge-join operation more efficient, we introduce a new scan utility that en-
hances the performance when reading a range of IPs from HBase. Our scan utilizes a method
called seekTo() that uses a heuristic to decide whether the next key-value pair will be accessed
sequentially using the next() method or it will be accessed immediately by jumping directly to
it (see Figure 4.2). Essentially, it is best to choose the latter when the number of intermediate
key-value pairs is above a certain threshold defined by the cost of initializing a jump to the next

pair compared to the cost of sequentially accessing all of the intermediate pairs [Papailiou 13].
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Algorithm 17: Join execution using K-d Tree

1: Function evaluate()
2: if DnsMap == NULL then
3 kd = readTreePartitionF'ile()

4:  kd.findBuckets(min, max,1)
5. Lsort()
6:  partNum = lindexO f(part Num)
7. line = readLineFrom(uniquel PFile)
8 s = HBaseTable.getScanner(scan.setStart Row(line))
9:  result = s.next()
10:  while line! = NULL&&result! = NULL do
11: if Uniquel P>Scanl P then
12: result = s.seekTo(line, Uniquel P — ScanlP)
13: else
14: line = br.seekTo(result.get RowKey())
15: end if
16: if result.get RowKey().equals(line) then
17: keyValue.putInHashMap()
18: end if
19:  end while
20: end if

21: return DnsMap.get(ip)

The combination of the aforementioned techniques results in a significant speed up in the
execution time of each query. Apart from that, it provides us with a straightforward way of
implementing range queries, e.g., across a certain time window, by exploiting the properties
of a K-d Tree to find the specific sFlow files that contain records whose target-values lie in the
specified range. This way we can limit the number of files that need to be processed and avoid

a time consuming scan of the entire dataset.

4.3.4 Dynamic Mapping Files

The mapping files of IPs to ASes, IP geolocation, and reverse DNS lookup are not static and they
do change over time. These changes might not be that often, e.g., IP block assignments to ASes,
or they may get updated daily, e.g., geolocation information. Datix supports the import of mul-
tiple time-varying mapping files. To accomplish this, we use two different storage approaches
based on the size of meta-datasets. Small ones are stored in an HDFS directory containing all
the different timestamp versions (each file’s name is appended with the timestamp version).
As mentioned before, large mapping files are stored in HBase which natively supports mul-
tiple key-values that have different timestamp versions. In each case, during query time the
appropriate key-value pairs are loaded into memory according to the log partition’s timestamp

range.
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4.4 Experiments

4.4.1 Cluster Configuration

The experimental setup consists of an ~okeanos [aaS [Koukis 13] cluster of 15 VMs. The HDFS,
MapReduce, HBase and Spark master is equipped with 4 virtual CPUs, 4GB of RAM and 10GB
of disk space. There are also 14 slave nodes hosting all other required processes each of which
has 4 virtual CPUs, 8GB of RAM and 60GB of disk space, summing up to a total of approxi-
mately 900GB of disk space. Each worker VM runs up to 4 map tasks and 4 reduce tasks, each
consuming 768MB of RAM. We utilized Hadoop v1.2.1, HBase v0.94.5, Hive v0.12.0, Spark
v0.9.1 and Shark v.0.9.1 respectively.

4.4.2 Dataset Specification

In our experiments we used a set of sFlow data coming from a national Internet Exchange
Point. This dataset spans a period of about six months from 31/07/2013 until 17/02/2014 and is
around 1TB in size. In addition, supplementary information of IP to AS and country mappings
was retrieved from Geolite® . These two files are 122MB and 7MB in size respectively. Finally, [P
to reverse DNS lookup mapping had a size of 57GB and was retrieved from the ZMap public

research repository that archives Internet-wide scans’.

4.4.3 System-level Comparison

We compare the performance of Datix when running the same queries using either Hive or
Shark as the data analysis tools. We evaluate the performance of these two systems based on
the query execution time and we comment on the performance advantages and disadvantages
of each system.

Dataset Partitioning: Table 4.1 depicts the overhead of pre-partitioning the dataset for
variable dataset sizes. Both sampling and partitioning have been incorporated into the resulting
values. As we can see, data loading time scales linearly in respect to dataset size especially for
smaller values. For larger datasets, there is an additional slight overhead, mainly due to the fact
that more mapper and reducer processes have to be scheduled to complete the job. In addition,

pre-partitioning takes roughly 4 times more compared to a simple scan of the respective dataset.

Dataset Size (%) | 20% | 40% | 60% | 80% | 100%
Loading (min) 24 50 78 | 102 | 150

Table 4.1: Data Loading vs Dataset Size

*http://dev.maxmind.com/geoip/legacy/geolite/
"nttp://scans.io/
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Quer . Datix-Hive Datix-Shark
Typey Python | Hive ' —5—r—5—"5p T 3D
topAS | 58min | 170min | 50min || 52min | 15min || 16min
topDNS | >24h | 135min | 35min || 76min | 30min || 64min
topDNS
1 week

>24h | 116min | 30min || 9min | 28min || 8min

Table 4.2: Base Join Implementation vs Datix

Table 4.2 reports the execution times for two query types using a Python based centralized
approach, the default join implementation of Hive and Datix. These queries compute the top-k
AS or DNS pairs, i.e., we refer to Fully Qualified Domain Names (FQDN), exchanging network
data for the entire time period of the dataset we possess. These queries, although simple, cover
the basic SQL functionalities and can be used to form more complex or specific ones. In par-
ticular, these two queries use: join operators, GROUP BY operators, COUNT operators and
ORDER BY operators. By combining some or all of the aforementioned operators, more com-
plex queries can be formed to utilize in full scale Datix capabilities. For example, a useful query
would be “Calculate the daily traffic of a specific web-server over time” that uses some of the
primitives described above (i.e., filtering in time dimension and GROUP BY/COUNT opera-
tors to calculate daily traffic). In all tables and graphs, 3D partitioning(i.e., source, destination

IP, timestamp) results are presented, unless it’s explicitly stated otherwise.

For our Python based experiments, we used a host machine featuring a Core i7-4820K CPU
with 8 threads, 48GB of RAM and 8TB disk. For the topAS query, where the meta-dataset is
small enough and fits in a main memory dictionary, the Python based implementation is nearly
4 times slower than the Datix on top of Shark while it is almost the same for Datix using Hive.
There are several reasons why the latter takes place. First, the machine we used for our Python
experiments has a CPU clocked 2 times faster than that of the VMs, so, in this case, where all
operations are in-memory, the difference in speed is obvious. Second, the performance of VMs
running on top of an Iaa$ that might over-provision its resources cannot be as good as a physical
machine. Furthermore, the mapping of virtual CPUs may not be 1 to 1 with the physical CPUs
of each host. Lastly, the communication overhead between mappers and reducers when using
MapReduce based applications is another thing to consider. On the other hand, the meta-
dataset for the topDNS query is quite large and thus, it is not feasible to store it in main memory.
A possible solution to this problem is to store the meta-dataset in a database (e.g., MySQL) and
for each sFlow record issue a query to retrieve the required information. Due to high latency
when accessing the database, this implementation is inefficient and the query requires more

than one day to be executed even in the case of a week’s amount of data. In contrast, Datix
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manages to execute those queries offering scalability and efficiency as discussed in detail in the
following paragraphs.

As a second observation, we note that our distributed join algorithms outperform the ones
in Hive by nearly 70% both for topAS and topDNS queries because we manage to efficiently ex-
ploit in-memory computations and avoid expensive disk I/O operations compared to the sim-
ple join algorithm used by Hive. In the case of Shark, the base join implementation fails during
execution due to lack of memory, while our implementation is more robust and is executed
successfully in short time as shown in Table 4.2. Another point of interest is the behavior of
our system when using a 2D (i.e., source and destination IPs) or 3D (including timestamp) par-
titioning scheme. In the case of 3D partitioning, a considerable increase in the execution time
occurs for the topDNS query. To explain this behavior, we note that when more dimensions
are used, the sFlow files produced contain IPs in a wider range and therefore, more IP-reverse
DNS lookup pairs have to be transferred from HBase. This fact is verified, since the execution
time of the topAS query, where all operations are performed in-memory, is not affected. De-
spite this noticeable overhead, using 3D partitioning results in much better performance when
it comes to filtering queries as shown in the third row of Table 4.2. To explain this, we note
that adding another dimension (i.e., timestamp of sFlow records) results in much faster query
execution since the processing is limited only to the sFlow files that contain the appropriate

records.
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Figure 4.3: Hive vs Shark

In order to provide a direct comparison of the two different big data analysis tools, we
then test the performance of Hive versus Shark. Figure 4.3 shows the execution time for both
systems for two different queries. For a fair comparison we used the exact same HiveQL query
for Hive and Shark. We observe that for the topDNS query the execution time is similar for
both systems compared to the topAS query where Shark is significantly faster. This behavior

is somewhat expected since the former query requires a large amount of data to be transferred
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from HBase, a process that is limited by the available network throughput and therefore is

independent of the characteristics of each tool.
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Figure 4.4: Dataset Scalability Figure 4.5: Nodes Scalability

Figures 4.4 and 4.5 show the scalability of our system in respect of dataset size and number
of available nodes respectively. In Figure 4.4, we vary the volume of data processed while we
keep the number of nodes at 14. In contrast, in Figure 4.5 we vary the number of nodes while
processing the entire dataset. A first observation is that our system scales linearly with the
dataset size regardless of the tool used. Shark is faster in all cases when compared to the cor-
responding implementation in Hive. This is mainly due to the following reasons. First, Shark
avoids data spilling to disk for all the intermediate results in a multi-staged MapReduce job,
thus, it avoids time consuming I/O operations. Second, it utilizes an efficient task scheduling
algorithm and hence, overcomes the expensive launch procedure of mapper or reducer tasks
that takes place in traditional MapReduce engines, like Hadoop. Moreover, we observe that
for small number of nodes the system’s scalability is close to linear while experiencing a slight
degradation in performance as this number increases. Lastly, the difference in execution time
when using Hive and Shark is quite significant for the topAS query regardless of the cluster or
dataset size.

Figure 4.6 shows the speedup in execution time for both query types when using the ORC
file format [Huai 14] instead of a plain text format on top of Hive. ORC file format uses a column
based approach when storing a Hive table data and is able to retrieve only the required column
data. Therefore, in queries that combine information only from a few columns we observe a
significant speedup in total execution time.

Asan overall comment, Datix’s power lies in the cases where the meta-dataset is quite large
and the available RAM is not sufficient to perform a simple map-join. In particular, our parti-
tioning scheme is designed to overcome such limitations and enables us to efficiently answer

various queries. However, when the meta-dataset is small enough, a Python-based approach
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Figure 4.6: Text vs ORC file format

running on a single node with lots of resources (CPUs and RAM) is expected to yield compa-

rable performance to Datix. Nevertheless, our system still overpowers such methods (even by
a small percentage) and is by far better than the baseline join of Hive and Shark.
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CHAPTER D

Related Work

This chapter surveys the related work to this thesis. We organize it in two components: work re-
lated to RDF datastores (Section 5.1), containing references to both RDF engines and SPARQL

result caching, and work related to Network data analytics (Section 5.2)

5.1 RDF Datastores

Since its introduction, RDF data management has been studied in a wide variety of contexts.
Driven by diverse data sources and query patterns, a rich and constantly expanding collection
of RDF engines has emerged [Luo 12, Kaoudi 15].

A popular approach for RDF engines is to leverage relational databases by introducing SQL
schemas to describe RDF data. Statically defined schemas contain a single (S,P,O) table where
all triples are stored in one relational table, property tables [Carroll 04], clustered property ta-
bles [Broekstra 03], optimized schemas for column-oriented databases [Abadi 09], etc. Recent
research suggests the discovery of an SQL schema using data mining techniques on RDF data.
Lattice structures are used in [Wang 10] to derive a schema evolution algorithm. Hashing and
graph coloring are employed in [Bornea 13], while characteristic sets [Gubichev 14] are used
in [Pham 15].

Apart from relational-based approaches, a wide variety of native indexing techniques have

been proposed for RDF data. One of the most widely used ideas is Hexastore [Weiss 08] which
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sugests the materialization of all six permutations of subject-predicate-object indices. Follow-
ing this technique, engines can retrieve any triple pattern at minimal cost and extensively use
efficient merge joins. A similar approach is followed in RDF-3X [Neumann 10a] which main-
tains a total of 15 RDF indices. BitMat [Atre 08] is an alternative approach for storing RDF
triples via one- and 2-dimensional bit matrices and using efficient matrix operations for query

processing.

Viewing RDF data from a graph perspective, a wide variety of indexing and query pro-
cessing techniques have been proposed. The GRIN index [Udrea 07] can be used to reduce
the query search space leveraging information about central RDF vertices. To achieve data
locality, the TripleT index groups RDF nodes according to their distance [Fletcher 09]. In
[Tran 10, Hawash 10], a RDF graph summary is extracted and used for data partitioning and
for early pruning of query results. The RG-index [Kim 14] can also be used to filter out RDF
triples when processing SPARQL queries. Recently, state-of-the-art subgraph isomorphism
algorithms were adapted to handle SPARQL processing [Kim 15].

To tackle the “Big-Data” challenge, research has also moved onward to distributed RDF
data management systems. HoRDF+ [Papailiou 13] stores RDF data on HBase tables while
adaptively processing queries using centralized or MapReduced-based distributed execution.
Huang et al. [Huang 11] propose graph partitioning techniques to distribute the RDF graph
into a cluster of nodes, each running a local RDF-3X instance. Replicating triples that reside
within n hops from each partition allows for unobstructed parallel processing of queries satisfy-
ing the n hop guarantee. Trinity-RDF [Zeng 13] targets distributed, main-memory indexing for
RDF data. Utilizing graph exploration techniques it avoids join execution overheads and takes
advantage of the quick random access provided by the memory resident data. TriAD [Gura-
jada 14] depends on distributed main-memory indices, partitioning RDF data using both hash
and graph based partitioning techniques. TriAD’s asynchronous MPI-based execution takes
into account location information to avoid data transfers and synchronization during join exe-

cution.

In this section, we also present in more detail some of the most relevant RDF indexing and

querying systems, distinguishing them in two categories: centralized and distributed systems.

5.1.1 Centralized Systems

Hexastore [Weiss 08] is a centralized solution that materializes six different indexes, one for
each possible permutation of subject-predicate-object values; these permutations are spo, pso,

pos, ops, osp and sop. The spo index, for instance, contains a list of predicates for each subject,
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while each predicate p in the list points to a table that contains all objects associated with s by
p- These indexes allow the retrieval of any simple triple pattern at minimal cost.

A similar approach is followed in RDF-3X [Neumann 10a] along with query optimization
strategies. RDF-3X employs six lexicographic indexes (similar to [Weiss 08]) as well as addi-
tional indexes that collect statistical information for pairs and stand-alone entities, amounting
to a total of 15 indices. It extensively uses merge joins in order to achieve good performance.
However, query execution highly depends on the amount of main memory required to perform
joins, presenting problems with joins with small selectivity and large input. The use of single
threaded query execution limits RDF-3X’s scalability on modern multi-core server architectu-
res. RDF-3X is regarded as a state-of-the-art solution in centralized RDF data stores.

In BitMat [Atre 08], RDF triples are indexed via a 3-dimensional (s, p, 0) bit matrix. Each
matrix element is a bit denoting the presence or absence of the corresponding triple. This
matrix is flattened to 2-d matrices creating multiple indexes for all possible combinations of
subject-predicate-object. However, this approach is effective only in a main-memory environ-
ment.

Other frequently-used, efficient centralized systems include Virtuoso [Erling 09], Jena [Car-
roll 04] and OWLIM [Kiryakov 05]. Still, all aforementioned approaches run on a single ma-

chine, limiting their storage and processing capacity.

5.1.2 Distributed Systems

In order to tackle the big-data challenge, research has recently moved onward to distributed
RDF data management systems. A first attempt in this direction, 4store [Harris 09], distributes a
single pos index over the nodes of a cluster, and employs distributed join algorithms to execute
SRARQL queries. However, apart from the deficiency ensuing from having a single index,
4store does not adapt its performance for multiple join queries of various selectivity.

HadoopRDF [Husain 11] uses Hadoop Distributed File System (HDES) files named after
predicate values to partition the input RDF data, thereby creating a pos index. It is not a fully
functional index though, as it can only retrieve subject-object combinations for a given pred-
icate, but not, for instance, subjects for a given predicate-object combination. HadoopRDF
performs SPARQL joins in the MapReduce framework, employing an algorithm that greedily
reduces the total number of remaining MapReduce joins at each step. Remarkably, this greedy
planner does not take into consideration the join selectivity. Finally, joins are executed only
with MapReduce jobs, inducing large overheads for selective queries.

Efforts have also been made towards optimizing distributed joins using MapReduce [Blanas 10].
In this work, the authors compare different algorithms for joining big log tables, stored in raw
HDES files. The main difference with HoRDF+ is that we index our data using HBase. This
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means that we always process only the amount of data required for each join without having
to process the whole dataset. The join algorithms presented in [Blanas 10] do not take into
account any data preprocessing and indexing. We also use a multi-way join scheme that differs

from the two-way joins implemented in [Blanas 10].

HyRDF [Papailiou 12] uses a three-index scheme and depends on the Partial Input Hash-
join. This algorithm exploits HBase indexing and checks whether the join contains small input
patterns. If this is the case, only those are read from the indexes during the map phase. The
remaining patterns are joined using get operations on the reduce phase of the join. HoRDF
also uses adaptive centralized and distributed execution. The main differences with HoRDF+,
can be found in the join algorithms, the number of maintained indexes (three versus six), the

more detailed statistics and the type and size of IDs

An alternative proposal is presented by Huang et al. [Huang 11]; this method starts out by
partitioning the RDF graph into distinct subgraphs, each stored in a single node running a lo-
cal RDF-3X instance. Moreover, in a replication scheme, each node keeps information on the
graph contents within n sops from the contents it owns; this provision allows for unobstructed
parallel processing of SPARQL queries satisfying an n hop guarantee. In case this guarantee is
not satisfied, Hadoop is invoked for distributed join processing. The proposed system suffers
from the following drawbacks:(1) Slow import: apart from the centralized graph processing,
it also needs a large amount of time to load the corresponding data to individual RDF-3X in-
stances.(2) Its MapReduce joins implement a non optimized, 2-way hash-join scheme.(3) The

n-hop guarantee requires size of replication data exponential to n.

Zeng et al. [Zeng 13] introduce Trinity.RDEF, a distributed, in-memory system. They pro-
pose a query execution model based on graph exploration that can be viewed as a sequence
of semi-joins similar to the approach followed in BitMat. The main drawback of this system is
that its performance is bound by the main memory capacity of the cluster, as the whole set of
triples needs to be loaded in main memory. This is not a scalable approach, especially given that
clusters are comprised by commodity nodes. Moreover, local semi-join results are gathered at
a central node responsible for producing the final results. This server can be the bottleneck of
the query execution when: 1) Handling query graphs that contain cycles. The semi-join query
execution engine employed cannot fully reduce the result size for these graphs [Bernstein 81],
thus overloading the last step of the execution. 2) The query output is really large. In this case
the last server will need to generate and write the whole output. This process is limited by the

sequential iteration over the result set and the large write I/O requirements.
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5.1.3 Workload-adaptive RDF engines

Workload-adaptivity is also emerging as a prevalent technique to handle the diversity of RDF
data and SPARQL queries. In [MahmoudiNasab 10], the workload queries are monitored to
discover frequent co-existing predicate groups. An automated adjustment phase is responsible
to materialize n-ary relational tables based on the discovered groups. This approach resem-
bles schema discovery based on characteristic sets [Pham 15] and is limited to flat grouping of

predicate values without any regard to the query graph structure.

Partout [Galarraga 14] introduces a distributed RDF engine which, upon examining a query
workload, makes decisions on both triple partitioning and replication to reduce network traffic
and increase parallelization. Similarly, WARP [Hose 13] extends basic graph partitioning with
query pattern partitioning, discovered from a set of predefined workload queries. However,
both WARP and Partout assume that the representative workload queries are given upfront.
Expensive re-partitioning of the entire data is applied before the actual query execution. Addi-
tionally, both systems use location information to generate query plans. In the case of WARP,
a heuristics-based query containment algorithm is used to find which parts of a query can be

executed in parallel. For Partout, flat triple pattern location is used to avoid communication.

In contrast, AdPart [Harbi 16], initially applies subject-based hash partitioning of RDF
triples. It constantly monitors the query workload making dynamic decisions on redistribu-
tion and replication of triples. Furthermore, triples transferred during query execution are also
replicated. As a result, consecutive queries can be executed in parallel without data communi-
cation. However, AdPart only applies flat triple replication without maintaining materialized
query results. This approach can boost parallel execution and avoid communication but offers
no speedup to the actual join execution. To showcase this, let us consider the case of the exact
same query being executed twice. While our system will just point to the first computed result,
AdPart will need to perform the same join operations on top of the redistributed data. Further-
more, AdPart can take advantage of pattern redistribution only when a consecutive query is a
complete subgraph of a redistributed pattern. Therefore, queries that are partially redistributed

will still be executed over the primitive hash-based partitioning scheme, offering no speedups.

Lastly, Chameleon-db [Aluc 15] uses graph partitioning to store RDF data and subgraph
matching for query processing. It also monitors the query workload, periodically adjusting its
storage partitions and creating partitions based on query patterns. Query rewriting techniques
are used to process queries using the most appropriate layouts. However, this technique mainly
targets the adaptive partitioning of the RDF graph, while our system targets result re-usability

and materialized view caching.
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5.1.4 SPARQL Result Caching

Relative to relational data management, a lot of research has been conducted in the fields of
automatic view selection [Yu 03, Aouiche 09], query rewriting using views [Levy 95], multi-
query optimization [Roy 00, Diwan 06] and result caching [Shu 13, Fard 14]. To be effectively
used, such techniques restrict RDF engines to the relational perspective, discarding the po-
tential benefits of native or graph indexing. In contrast, we present algorithms that utilize the
SPARQL interface and can thus be shared by all RDF engines.

A first attempt to introduce SPARQL caching was made in [Martin 10], where a meta-data
relational database is responsible for storing information about cached query results. However,
this approach cannot tackle the isomorphism problem introduced when the same SPARQL
graph pattern is requested from different queries with small deviations such as pattern reorder-
ing, variable renaming, etc. A more sophisticated approach was presented in [Yang 11], where
the cache keys consisted of normalized Algebra Expression Trees (AETSs) that correspond to
cached join plans. A cached AET is only used in join plans that exactly contain it as a subtree
limiting the usability of cached results. In [Lorey 13], the authors introduce a similarity-based
matching algorithm that can detect cached queries that resemble the query in hand. Yet, this
greedy technique cannot find all candidate subgraph matches for a SPARQL query. They also
propose some heuristics to augment the workload queries and prefetch SPARQL query results,
which resembles our profitable query execution. Their approach is based on techniques that

cannot examine the benefit of all possibly usable results as well as their indexing.

In [Shu 13], query containment and “evaluability” algorithms are described in order to
check if a consequent SPARQL query can be entirely evaluated using the computed results
of a previous one. In addition, [Fard 14] proposes a tight simulation algorithm that performs
a more generic SPARQL query containment. This algorithm is, again, used to check for the
usability of computed results. Yet neither system tackles the case of a result matching part of
the new query graph and the case of using multiple cached results to answer separate parts of

a new query.

Apart from SPARQL result caching, there exist alternative techniques that attempt to tackle
parts of the problem that we address in this paper. Many of the state-of-the-art approaches
in graph database indexing propose the use of frequent pattern indexing [Zhao 07, Yan 04].
Frequent and discriminative subgraphs are discovered and indexed during the import phase of
the dataset and can then be utilized to efficiently answer queries. In addition, approaches for
multi-query optimization have also been proposed for SPARQL query processing [Le 12]. Such
techniques depend either on knowledge of the workload or on discovering frequent patterns in
the dataset. In contrast, our approach assumes no a-priori knowledge on either the dataset or

the workload.
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5.2 Network Analytics

In this section we present related research on network data analytics as well as on distributed
join algorithms, discussing their comparison to the presented Datix system. There is a number
of systems that have been proposed for network traffic analysis and each one tackles a particular
aspect of this broad research area. In [Lee 13], an approach was presented to analyze network
traffic by processing libpcap files in a distributed environment provided by Hadoop’s MapRe-
duce in combination with Hive as a data warehousing tool. The authors implemented an intel-
ligent NetFlow reader in Hadoop that was aware of the particular format of libpcap files which
could be spread across different nodes in the cluster. Our work is rather orthogonal as our join
algorithms can be integrated in their system and by using the same meta-datasets can extract
additional information about network traffic. Another approach is proposed in [Li 13], where
the authors introduce a machine learning paradigm to classify host roles based on network
traffic analysis through collecting sFlow records. Essentially, this work tries to extract informa-
tion like our approach by analyzing sFlow packets and utilizing MapReduce as the execution
framework and NoSQL databases as storage. The difference of our proposed approach is that
by enabling the use of arbitrary meta-datasets we can extract much richer information about
network routing, dimensioning and security features rather than only classifying host roles. A
system that can perform both streaming and batch processing of network traffic in order to an-
alyze the constantly increasing volume of network traffic data is presented in [Bumgardner 14].
It addresses the scalability problem of existing systems by using distributed methodologies such
as MapReduce but it does not support the use of high-level languages over Hadoop framework

and thus, cannot be executed over Spark without considerable effort.

The work presented in [Herodotou 11] deals with hierarchical partitioning, optimizing the
query plan to prune processing only to required data partitions. For each data dimension there
is a different level in the partitioning tree structure. It involves changing the optimizer module
by adding extra features to decide on the chain of joins performed. The main focus of the au-
thors is on traditional RDBMSs while they claim that their approach can be extended to parallel
databases. Our approach differs in the fact that we use a flat partitioning scheme dictated by the
K-d Tree structure and our system design is tailored to using NoSQL storage and distributed
system techniques. Furthermore, our partitioning scheme focuses on splitting the volume of
data appropriately to fit in a mapper’s memory to perform efficient map-side joins.

In [Johnson 15], the authors present TidalRace which builds on data streaming applications
and show how to optimize partition-based operations. Datix focuses on log processing (batch
operations) and overall optimization of query execution in various cases. In contrast, Tidal-
Race supports incremental updates to partitioning information, partition re-organization, and

partition-wise optimizations.
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DBStream [Bar 14] is a Data Stream Warehouse solution for Network Traffic Monitoring
and Analysis applications. The queries we execute could also be deployed on this system by
extending the functionality of DBStream to support the import of various meta-datasets like
Datix and then evaluate the resulting performance. DBStream supports real-time data analysis
and incremental queries apart from batch processing jobs. However, it is deployed in a central-
ized manner over a traditional RDBMS (PostgreSQL) while our system is fully decentralized,
designed to be able to scale to a large number of nodes and gain extra performance when more
resources become available. TicketDB [Baer 11], which is the predecessor of DBStream, was
compared to vanilla MapReduce jobs performing reduce-side joins, but it does not use a par-
titioning scheme similar to our K-d Tree approach to enable efficient execution of map-side

joins.

5.2.1 Distributed Join Algorithms

Distributed join over MapReduce-like systems is challenging and therefore different approaches
have been proposed to address this issue. A first attempt to introduce join algorithms for log
processing was presented in [Blanas 10], where the authors compare different algorithms, de-
pending on whether the meta-dataset can fit in memory, that can be used to implement equi-
joins in MapReduce. However, this work does not tackle the problem of theta-joins which
consist of more general join conditions. In fact, our approach modifies the Broadcast Join al-
gorithm presented in this work to effectively deal with theta-joins. In [Yang 07], the authors
introduce techniques that support other joins and different implementations, but it is also re-
quired to extend the MapReduce model. Furthermore, users have to implement non-trivial
functions that can handle the dataflow in the distributed system. Hence, this work cannot sup-
port high-level languages that run on top of MapReduce (i.e., Hive) compared to our approach.
In [Okcan 11, Afrati 10], the authors propose algorithms that perform partitioning during query
time to speed up execution time, whereas our approach focuses on pre-partitioning data in or-

der to efficiently use map-phase joins.
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CHAPTER O

Conclusions

In this thesis, we presented HoRDF+, a fully distributed RDF store capable of storing and query-
ing arbitrarily large amounts of triples. The main contribution lies in our scalable distributed
Merge and Sort-Merge join execution and our adaptive decisions about centralized and dis-
tributed join execution. We have also optimized both the compression and retrieval capabil-
ities of our HBase indexes. H2RDF+ greatly. HoRDF+ is able to achieve great speedups and
linear scaling in query processing and data loading tasks as well as high-throughput concurrent
operations. These features allows HoRDF+ to handle non-selective queries in a dataset of size
2.5TB using a 35 small-sized worker node cluster.

We have also proposed a SPARQL query caching framework that is able to effectively cache
and utilize query results. We introduced a novel SPARQL query simplification technique that
can be used to reduce the complexity of labelling and optimizing complex SPARQL queries.
Our simplification technique is integrated in both the canonical query labelling algorithm and
the cache architecture that is used to effectively store and retrieve cached results. Furthermore,
we extend the DPccp dynamic programming optimizer by adding support for multi-way join
plan exploration and generation of optimal query plans that consider the utilization of cached
query subgraphs. Profitable SPARQL queries are discovered and pro-actively cached, in order
to reduce the response times for several workloads. Our caching framework was integrated on
top of a state-of-the-art distributed RDF datastore, reducing its average response time by up
to two orders of magnitude and offering interactive response times for complex workloads and
huge RDF datasets.

143



Another contribution of this thesis is a novel network analytics system that depends on
distributed processing techniques and is able to effectively execute filtering queries over state-
of-the-art distributed processing engines. We introduced a smart pre-partitioning scheme to
speed up the execution time of filtering queries (i.e., over a particular time period or set of IP
addresses) and we integrated this functionality into an SQL compliant system by using custom-
made user-defined functions that are aware of the data format and implement a custom vari-
ation of map-join algorithm. Our approach reduced query execution time compared to the
basic Hive and Shark implementation by nearly 70%, while efficiently answering queries that
took over a day to be processed with the existing Python-based code. In this work, we used

sFlows as a log dataset from which various information was recovered.
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Abbreviations

AS Autonomous System

BGP Basic Graph Pattern

DNS Domain Name System

HDFS Hadoop Distributed File System

HFile HBase file format

ISP Internet Service Provider

IXP  Internet Exchange Points

NoSQL Not only SQL

RAID Redundant Array of Inexpensive Disks

RDF  Resource Description Framework

RDFS Resource Description Framework Schema
SPARQL SPARQL Protocol and RDF Query Language
SQL  Structured Query Language

TPC Transaction Processing Performance Council

URI  Unique Resource Identifier
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VM  Virtual Machine
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